# Rhoodora 

JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
CHARLES ALFRED WEATHERBY
ALBERT FREDERICK HILL STUART KIMBALL HARRIS

Aspociate Editors

VOLUME 47

1945

8 and 10 West King St., Lancaster, Pa.
Botanical Museum, Oxford St., Cambridge 38, Mass.

Rhootura
JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Condueted and published for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
$\left.\begin{array}{l}\text { CHARLES ALFRED WEATHERBY } \\ \quad \text { ALBERT FREDERICK HILL. } \\ \text { STUART KIMBALL HARRIS }\end{array}\right\}$ Associate Editors

Vol. 47. January, 1945. No. 553.

## CONTENTS:

Ruellia in the Eastern United States. M. L. Fernald. ............ 1
Carex cristatella in New Hampshire. A. R. Hodgdon. ........... 38
Euphrasia canadensis in Massachusetts. Arthur K. Harrison. .. . 39
Vegetative Reproduction in Carex tribuloides and C. projecta.
C. A. Weatherby. ...................................................... . . 39

Vegetative Reproduction in Carex tribuloides
and C. projecta. C. A. Weatherby. ............................. 39

Che satw englano 酸otanical Club, 3 Inc.
8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.


#### Abstract

RHODORA.-A monthly journal of botany, devoted primarily to the flora of the Gray's Manual Range and regions floristically related. Price, $\mathbf{8 4 . 0 0}$ per year, net, postpaid, in funds payable at par in United States currency in Boston; single copies (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd coverpage). Volumes 1-9 can be supplied at $\$ 4.00,10-34$ at $\$ 3.00$, and volumes $35-46$ at 84.00 . Some single numbers from these volumes can be supplied only at advanced prices (see 3rd cover-page). Somewhat reduced rates for complete sets can be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern states, will be considered for publication to the extent that the limited space of the journal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pages of print) will receive 15 copies of the issue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost.


## Address manuscripts and proofs to

M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass.

Subscriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Betanieal Museum, Oxford St., Cambridge 38, Mass.
Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Act of March 3, 1879.

# INTELLIGENCER PRINTING COMPANY <br> Specialists in Scientific and Technical Publications EIGIIT WEST KING ST., LANCASTER, PA. 

## CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES OF AMERICAN PLANTS, 1885 TO DATE.

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at $\$ 22.50$ per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

GRAY HERBARIUM of Harvard University,<br>Cambridge 38, Mass., U. S. A.

MEMOIRS OF TIIE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. $\$ 3.00$.

No. III. The Linear-leaved North American Species of Potamogeton Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. $\$ 3.00$.

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. $\$ 1.00$.

Gray Herbarium of Harvard University, Cambridge 38, Mass.



Photo. B. G. Schubert.
Rueliia Brittoniana: fig. 1 , summit of plant, $\times 1$; fig. 2 , summit of peduncle and calyx, $\times 4$; fig. 3 , corolla, $\times 1$; fig. 4, calyx and capsule, $\times 2$.

## TRbodora

JOURNAL OF

## THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
January, 1945.
No. 553.

CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-NO. CLIII

## RUELLIA IN THE EASTERN UNITED STATES

M. L. Fernald
(Plates 839-875) ${ }^{1}$
Always a difficult genus to understand, Ruellia, as it occurs in the eastern United States, is quite as baffling as elsewhere. Field-experience for several seasons in eastern Virginia has demonstrated to Mr. Bayard Long and me that too often plants growing side-by-side will differ very strikingly in the degree of pubescence or its length on stem or calyx and that, to some extent, the specimens from a single small colony have to be arbitrarily sorted in order that those of a single number may be tolerably uniform. The accumulated collections have been allowed to wait, with the hope that some ambitious student would care to hunt for stable characters. Finally, however, the familiar "let Fernald do it" has prevailed and I have found it necessary to seek fundamental characters in the plants of the "Manual range". In doing so it soon became evident that, since names originally given to plants of Georgia, Carolina, Virginia, Kentucky or Arkansas were being currently used for species growing only far from the type localities, it would be necessary to consider all species occurring from the Atlantic coast to Nebraska, Kansas and eastern Texas. Happily for me the polymorphic Mexican and Texan series centering about $R$.

[^0]nudifora does not extend into the area specially covered, and the relatively simple $R$. Drummondiana and R. Parryi are likewise excluded from the present study. I have been concerned only with the species which are definitely eastern or which extend eastward into the "Manual range".

In studying these relatively few species it has become evident that much recent publication upon them has rather glibly passed by the need even to look up the original descriptions of the earlier recognized species. Thus, although $R$. humilis Nutt. was described from "rocks in the upland forests and prairies" of Arkansas, a plant with oblong-ovate and sessile leaves, the name has been transferred by Small and others to a species with rosulate and chiefly spatulate leaves occurring, to quote Small, in "Sandy soil, Coastal Plain, Fla. to Miss. and Ga."; and the latter author says "Stem $1-3 \mathrm{~cm}$. tall" but correctly identifies as $R$. humilis, in his sense, specimens up to ten times that height! Again, R. hybrida Pursh came from Savannah, Georgia, but Small restricts it to "Pinelands, Fla." As striking a case as any is $R$. parviflora (Nees) Britton, given by Small the range "Sandy soil, Coastal Plain and adj. provinces, Fla. to Tex., Ind. and N. J."; the case striking because Dipteracanthus ciliosus, $\gamma$. parviflorus Nees, basis of Britton's binomial, came from far away from the Coastal Plain, "Ad Ky. fluvium, Julio (Short! in herb. Hook.)". Incidentally, Nees described it with petioles 3-6 inches long-"corollâ vix pollicari, foliis paulo longiori petiolo (3-6-pollicari)." Such a description can hardly apply to a plant with petioles rarely 1.5 cm . long! Nevertheless the misbegotten name, R. parvifora (Nees) Britton, promptly came into vogue for almost anything, with either petioled or sessile leaves and no matter where it grew, until Blake revived $R$. caroliniensis (Walt.) Steud., which was based in a roundabout way upon Walter's clear description of a characteristic Carolina plant. When $R$. caroliniensis came to the front it replaced $R$. parvifora as a blanket-name for anything, just as, still earlier, the name $R$. strepens L. had covered almost every species in the United States.

The greatest complexity is in the two series of variations which together make up the northernmost or, at least, the most north-ern-ranging species, $R$. humilis and $R$. caroliniensis, for a number
of strictly southern species are relatively stable. The latter series of plants, relatively comforting to work with, includes $R$. pedunculata Torr., a clear-cut species radiating from the Ozarkian region southward into Louisiana and eastern Texas; two habitally similar but morphologically distinct new species, one of pine barrens of the Coastal Plain from South Carolina (possibly Virginia) to Louisiana, the other centering on the Blue Ridge and Alleghenies; another newly described species concentrated in southern Florida; R. ciliosa Pursh (as I interpret him), the characteristic rosulate-leaved plant of central Florida, north to South Carolina and west to Louisiana, the species treated erroneously by Small as $R$. humilis Nutt.; the fleshy plant of subtropical Florida, R. succulenta Small; and the local and amazingly clear long-flowered and large-fruited $R$. noctiflora (Nees) Gray, occurring from eastern Georgia to northwestern Florida, thence to southern Louisiana. There is no trouble in separating these relatively stable species nor in promptly recognizing the continental $R$. strepens.

The great difficulty is to find stable characters within the two polymorphous species, $R$. caroliniensis and R. humilis. The latter, characterized by somewhat uniform sessile or essentially sessile leaves, many flowering nodes and a strong tendency to bushy branching, is found through much of the prairie region, but in some of its variations it extends eastward to the Blue Ridge and in one variety even to northwestern Florida. In some areas the corolla may be only 2 cm . long, in others up to 8 cm . Whether the corolla is short or long the leaf-outlines present two parallel trends, on the one hand elliptic-oblong to oblonglanceolate and (the larger ones) only $1-2.5 \mathrm{~cm}$. broad, on the other hand ovate, oval-oblong or elliptic and 2-4 cm . broad. Furthermore, the pubescence varies from a copious wide-spreading hirsuteness to glabrescence (the latter especially on the Cumberland Plateau). Search at long and baffling periods through eight months have failed to bring to light any stable characters. The series is certainly an unstable one. I have, as the best I can yet do, suggested its recognition as a number of more or less segregated geographic varieties with some minor forms.

Similarly with $R$. caroliniensis, trials of first one character,
then another, from June to February, have led to optimistic moments, these always followed by despair. At one time the reactions of the seeds in the diverse trends within the mass of material looked like a hopeful character. In Ruellia (at least in all of ours) the thin and discoid seeds are superficially very similar. When soaked for a few seconds in water they give an immediate reaction. They promptly send out from the margin a continuous film of mucilage and the flat surfaces become covered with minute processes. When watched for a minute or two they broaden the marginal band of mucilage and the minute processes prolong as flexuous mucilage-spiracles, these visibly shooting out (as seen by a microscope) and often suggesting slender flames. Eventually (after many minutes) the whole surface is plush-like and the marginal band breaks up (on drying) into innumerable slender spiracles; and finally the spiracles somewhat collapse, fall together as domes and eventually subside. During a full week of soaking and watching the behavior of seeds, with thousands of objects to study, I had great hopes that the different species and varieties would yield in the behavior of moistened seeds something diagnostic. When, however, the whole series was compared I was forced to give up; the possibility that, in spite of its history and development, taxonomy, through Ruellia, was entering the field of experimental physiology, was discouragingly abandoned. I have, then, as the best I can do, treated the polymorphous Ruellia caroliniensis as a series of geographic varieties, some with pretty definite areas of development, others overlapping, and within these varieties, minor local forms in which the abundance, scarcity or length of pubescence strikingly differ.

In this unusually protracted study, in view of the small number of species involved, I have had not only the accumulated material of the Gray Herbarium but that of several of the larger herbaria and of a number of smaller ones, to the officers or owners of which I extend my cordial thanks for the use of their material. Throughout the work, both in bibliographic details and in making the plates I have had the unlimited and most valuable aid of Dr. Bernice G. Schubert. Even if the keys and descriptions fail to convey my ideas of a still perplexing group her photographs will make quite clear the chief diagnostic characters.

In the citations, specimens which are in the Gray Herbarium are rarely designated as being there, then by G. The other herbaria cited are as follows:

E. Lucy Braun (Braun)<br>Duke University (Duke)<br>F. W. Hunnewell (F. W. H.)<br>Missouri Botanical<br>Garden (Mo)<br>New York Botanical<br>Garden (NY)<br>University of North<br>Carolina (NC)<br>University of Pennsylvania (Pa)

Philadelphia Academy of Sciences (Phil)

Dr. P. O. Schallert

(Schallert)
United States National Arboretum (USNA)
United States National Herbarium (US)
Virginia Polytechnic Institute (VPI)
As I understand these species they are as follows.

## Key to Ruellia in the Eastern United States

a. Main axis terminating in a prolonged flowerless leafy tip, with flowers 1-few at leafy-bracted summits of branches or on peduncles from the median or lower axils, or the cymose inflorescence much branched. . . b $b$.
b. Leaves chiefly elongate-linear; bracts of loose cyme linear or linear-lanceolate; garden-escape in the Gulf States.

1. R. Brittoniana.
b. Leaves lanceolate, oblong, elliptic or ovate; peduncles terminated by dilated bracts; indigenous . . .c.
c. Calyx-segments lanceolate to lance-linear, flat to the tip, 2-4 mm. broad; ovary and capsule glabrous; larger leaves with blades $7-18 \mathrm{~cm}$. long and $3-9 \mathrm{~cm}$. broad. 2 .
c. Calyx-segments narrowly linear, tapering to prolonged linear-acicular tips, the segments $0.5-1.2 \mathrm{~mm}$. wide at base; larger leaf-blades $2-11 \mathrm{~cm}$. long and $0.8-5 \mathrm{~cm}$. broad. . . .d.
d. Stem usually divergently branching, the branches simple or forking, or stem simple to but slightly branched; peduncles or glomerules from axils of main stem or branches; calyx-segments $0.5-1 \mathrm{~mm}$. wide, tapering from base to very slender tips.
Calyx, ovary and capsule pilose with slender-tipped
but short spreading pubescence; plant of Ozarkian
and adjacent areas. ........................ 3 . $R$.
Calyx closely covered with appressed and partially
immersed slender cystoliths; ovary and capsule
glabrous; plant of southeastern Coastal Plain
2. R. pinetorum.
d. Stem simple or with few ascending branches; peduncles 1-flowered, from 1 or $2(-4)$ nodes; calyx-segments linear, $0.7-1.2 \mathrm{~mm}$. wide to near middle, tapering thence to apex, minutely canescent-pilose; capsule pilose-hirtellous; Appalachian and eastern Piedmont species.
3. R. Purshiana.
a. Main axis with sessile or very short-peduncled glomerules or flowers in the axils of the upper (sometimes median and lower) leaves, or the terminal pairs of leaves crowded and approximate to the upper fertile axils....e.
$e$. Calyx-segments flat, lanceolate, $2-4 \mathrm{~mm}$. wide, shorter than to but slightly exceeding capsule; flowers chiefly or wholly cleistogamous, with small closed corollas; wideranging erect simple or but slightly erect-branching continental plant................2a. R. strepens, forma cleistantha.
$e$. Calyx-segments narrowly linear, with prolonged and slender to almost bristleform tips mostly overtopping the capsules; flowers rarely cleistogamous (except in nos. 5a and 6), mostly showy and expanding. ... $f$.
$f$. Plant strongly dimorphic or heteromorphic; the vernal (sometimes later) stems erect and simple or slightly branched, with 1-3 showy flowers from axils of 1-3 pairs of upper leaves; later trailing or decumbent branches prolonged and bearing dense glomerules of mostly closed tubular cleistogamous flowers and abundant glabrous capsules; leaves elliptic, oblong, oblanceolate or narrowly obovate, $1.5-5.5 \mathrm{~cm}$. long, definitely short-petioled, firm, with one or both faces often closely covered with slender cystoliths; expanded corolla $2.5-6 \mathrm{~cm}$. long; calyx $1.5-2.5 \mathrm{~cm}$. long; plant of

f. Plant not strongly or not at all dimorphic; flowers all or nearly all with expanded corollas or, if most or all flowers cleistogamous (in no. 5a), the plant erect and simple or nearly so and the capsules pilose-hirtellous . ...g.
g. Principal leaves spatulate-oblong or spatulate-okovate, with prolonged bases and rounded or blunt tips; stem very short and with the crowded basal leaves subrosulate, or stem elongate and erect, with the $2-5$ pairs of spatulate leaves remote, these $0.3-3 \mathrm{~cm}$. broad; veins of leaves and usually the uppermost internodes white-villous; species of southern Costal Plain
4. R. ciliosa.
g. Principal leaves ovate, lanceolate, elliptic or oblong, not appearing rosulate (if slightly subspatulate and round-tipped in no. 8, then with only minutely pilose to glabrescent fleshy stems) . . . . . .
$h$. Stem fleshy, often hollow, glabrescent, erect, simple or with strongly ascending branches; leaves fleshy, purple-tinged, oblanceolate, narrowly obovate or oblong, essentially glabrous; calyx shorter than to one third longer than the glabrous capsule; plant * of Everglades region of southern Florida....8. R. succulenta.
$h$. Stem not fleshy, solid, firm, pubescent to rarely glabrous; leaves membranaceous to firm, not fleshy, rarely purplish, linear-lanceolate to broadly lanceolate, oblong, elliptic or ovate, pubescent to glabrate or glabrous; calyx exceeding capsule....i.
i. Leaves sessile or barely petioled but often with narrowed bases, nearly uniform or the upper but slightly reduced, erect or ascending.
Simple or with erect branches (divergently branched only after injury); primary axis with 3-10 remote pairs of narrowly lanceolate to lance- or elliptic-oblong submembrana-


Photo. B. G. Schubert.
Ruellia Tweediana: figs. 1 and 2, portions of branching plant, $\times 1$; fig. 3 , summit of peduncle and base of calyx, $\times 4$; fig. 4 , tip of calyx-segment, $\times 10$; FIG. 5 , corolla, $\times 1$.


I'hoto. B. G. Schubert.
Ruelifa strepens: fig. 1 , flowing median node, $\times 1$; fig. 2 , corolla, with one basal bract removed, $\times 1$; fiti. 3, flower, showing broad calyx-segment, $\times 1 ;$ fig. 4 , long-peduncled fruit, $\times 1$.

## ceous puberulent or minutely hirtellous leaves

 tapering to apex; flowers $1-$ few from 1-4 upper nodes; calyx $2.5-4.5 \mathrm{~cm}$. long, cinereouspuberulent or minutely hispidulous; corolla $6-11 \mathrm{~cm}$. long, its slender tube $4.5-8 \mathrm{~cm}$. long; capsule cinereous-puberulent, $2.25-3.5 \mathrm{~cm}$. long; species of southern Coastal Plain.... 9.Branching, rarely simple, the elongate archedascending to widely divergent branches often reclining at base, decumbent or with bushy habit; leaves narrowly oblong-lanceolate to broadly oval or ovate, coriaceous, with blunt or rounded tips, often hirsute to coarsely villous, 4-12 pairs on well developed primary axis equaling or longer than internodes, 4-10 nodes floriferous; calyx $1.5-2.5 \mathrm{~cm}$. long, usually hirsute- to villous-ciliate; corolla 2-8 cm . long, its tube $0.7-5 \mathrm{~cm}$. long; capsule glabrous, $1.2-1.5 \mathrm{~cm}$. long; plant of Great Plains, eastward to Blue Ridge and, rarely, northwestern Florida.
. 10.

R. noctiflora.

R. humilis.

i. Leaves, or at least the principal ones, tapering to definite petioles (up to 2 cm . long), spreading to ascending; primary axis with $1-4$ flowering nodes or, if more, with leaves often undulatedentate.
Upper internodes greatly abbreviated, villous, hirsute, puberulent or glabrescent; upper pairs of leaves approximate or crowded; corolla usually showy and expanding, the flowers only exceptionally cleistogamous; calyx-segments linear-setaceous, attenuate from near the base; capsules glabrous (or, if pilose, the plant with copiously villous upper internodes, leaves and calyces).......11. R. caroliniensis.
Upper internodes elongate, minutely pilosepuberulent; upper pairs of leaves distant; corolla usually clavate, inconspicuous, unexpanding, the flowers cleistogamous; calyxsegments linear up to the middle, tapering above; capsules pilose-strigose

5a. R. Purshiana, forma claustrofiora.

1. Ruellia Brittoniana Leonard, emended and validated. ${ }^{1}$ Stems usually several, subligneous, $3-10 \mathrm{dm}$. high, subterete, nearly or quite glabrous, soon branching, subcorymbosely

[^1]branched at flowering summit: lowest leaves linear-oblong to -spatulate; principal and rameal leaves narrowly linear-lanceolate or linear, long-attenuate to callous apex and to ascending petiole, pale green, glabrous above, often lineolate beneath, the larger (primary) ones $0.8-2.8 \mathrm{dm}$. long and $0.5-2 \mathrm{~cm}$. broad, entire or obscurely undulate: inflorescence corymbiform, leafy, often equaled or exceeded by upper leaves, the stiffly ascending peduncles one third to half as long as the subtending leaves and cymosely forking: bracts and bractlets linear- to narrowly lancesubulate: calyx-segments subrigid, narrowly lance-attenuate to obtuse tips, glabrous, glabrescent or barely hirtellous, usually covered with pale cystoliths; the mature segments becoming 5-10 mm . long: corolla blue-violet, $2.5-4 \mathrm{~cm}$. long; cylindric tube $8-13$ mm . long; the broadly infundibuliform throat glabrous to but sparsely pilose without, $1.2-2 \mathrm{~cm}$. long, $0.9-1.5 \mathrm{~cm}$. broad at summit; limb (laid open) $2.5-5 \mathrm{~cm}$. broad, with broad rounded lobes; capsule lance-fusiform, glabrous, $2-2.7 \mathrm{~cm}$. long; retinacula 14-24; seeds suborbicular, $2-2.5 \mathrm{~mm}$. in diameter.-Journ. Wash. Acad. Sci. xxxi. 96, fig. 1 (1941) without diagnosis but accepted and here validated as to type, Cryphiacanthus angustifolius Nees in DC. Prodr. xi. 199 (1847) in part (the Galeotti specimen from Jalapa) ; not R. angustifolia Swartz, Prodr. Veg. Ind. Occ. 93 (1788). R. spectabilis Britton in Ann. N. Y. Acad. Sci. vii. 192 (1893), without diagnosis, only as the Mexican plant was included in his citation of the type, Cryph. angustifolius Nees, 1. c. but not as to Paraguayan plant cited; not $R$. spectabilis Nicholson, Gard. Dict. iii. 334 (1886). R. malacosperma sensu Small, Man. Se. Fl. 1229 (1933), not Greenman in Proc. Am. Acad. xxxiv. 572 (1909).-Native of eastern Mexico; cultivated and spread to disturbed soils, roadsides, cultivated ground, borders of ditches, etc., from Texas to Florida. Florida: open places, Arcadia, 1918, Small, no. 9010 (NY) as R. malacosperma; Glen St. Mary, June, 1923, C. R. Stevens (Mo); roadsides, Ft. Myers, Aug., 1921, W. M. Buswell (NY) as R. malacosperma. Louisiana: low sandy soil, Houma, Aug. 31, 1913, E. C. Wurzlow (Mo and US) as $R$. spectabilis, Oct. 10, 1913, Wurzlow (NY), identified by Small as R. malacosperma, by Leonard as R. Tweediana Griseb. Texas: escaped from gardens, San Antonio, Sept. 20, 1901, Bush, no. 864 (Mo); damp places near Polytechnic, Oct. 10, 1916, A. R. Drumm (US) as R. spectabilis; Houston, July 10, 1934, Cory, no. 11,330, as $R$. Tweediana. San Luis Potosi: wet ledges by river, Micos, July 31, 1891, Pringle, no. 5043, as R. Tweediana; gravelly and rocky sand near river, alt. 200 feet, near Axtla, June 27, 1942, J. N. Weaver, no. 658, as R. Tweediana, corrected to $R$. Brittoniana. Vera Cruz: in the bed of the Colobozo near Tantoyuca, April, May, 1858, Ervendberg, no. 104, identified by Asa Gray as Cryphiacanthus angustifolius, by Leonard as $R$.

Tweediana; along streams, Tenera, Zacuapan, Dec., 1912, Purpus, no. 6162, identified by Leonard as $R$. Tweediana; Barranca de Panoya, Sept., 1919, Purpus, no. 8409, identified by Leonard as $R$. Tweediana. Guatemala: cultivated, vicinity of Quiriguá, Dept. Izabel, Standley, no. 24,307, as R. malacosperma, another number $(72,225)$ cited by Leonard as $R$. Brittoniana in publishing that unclarified name. N. B. The Mexican material in the Gray Herbarium only here cited. Plate 839.

So far as I can find the specific characters of Ruellia Brittoniana have never been clearly stated, except partially by Nees who, under the name Cryphiacanthus angustifolius, had two quite distinct but by him undifferentiated species, and partially by Small, who described and had before him $R$. Brittoniana but misidentified it as $R$. malacosperma. In fact, the entire history of the names and the recognition of specific lines in the two plants, inadequately treated by Nees in 1847 as a geographically bi-centric species, Cryph. angustifolius, is one of discreditably opportunist shiftings, without any evident attempt at clarification. The original treatment of the two confused species by Nees in DC. Prodr. xi. 199 (1847) was
5. C. angustifoluus, caulescens, foliis lanceolato-linearibus acutis integerrimis sessilibus glabris, pedunculo subbifloro folio breviore, calycis laciniis subulatis scabris. 4 Ad Xalapa (Galeotti! in h. Hook.), Entre Rios (Tweedie!). Corolla pollicaris. Capsula 9 lin. longa, lanceolata, 16 -20-sperma. ( v in h. Hook.)
The first separation of the Mexican (Xalapa or Jalapa, Galeotti) plant and the Argentinian (Tweedie) elements was in 1879 when Grisebach, in his Symbolae ad Floram argentinam, in die Abhandlungen Königlichen Gesellschaft der Wissenschaften zu Göttingen, xxiv. 259 (1879), took out the Argentinian element, as Ruellia Tweediana Griseb.:

> 1597. R. Tweediana Gr-Syn. Cryphiacanthus angustifoliius Tweedianus Ns. Folia variant lineari-lanceolata et inferiora breviora lanceolate v. ovato-lanceolata.- Ei. .. Prov.. Entrerios, as explained by Grisebach on his p. 4, Nees having originally cited "Entre Rios"].

In other words, Grisebach, concerned only with the flora of Argentina and not the Galeotti specimen from Xalapa (or Jalapa) in the state of Vera Cruz, Mexico, based his Ruellia Tweediana (without adequate description) on the Tweedie specimen cited by Nees. Since Grisebach did not use trinomials but regularly designated varieties as "var." (see the synonym of $R$. geminiflora

Kunth given by him on the same page as "R. geminiflora var. humilis Gr.") it may reasonably be inferred that his typonym of R. Tweediana "Syn. Cryphiacanthus angustifolius Tweedianus Ns." was intended to mean the Tweedie element of $C$. angustifolius, Grisebach thus leaving out the Galeotti plant, which, by the very sensible but commonly ridiculed "doctrine of residues" remained as true $C$. angustifolius. If it be argued otherwise the result is somewhat the same, for there was already a Ruellia angustifolia Swartz (1788), so that $R$. Tweediana is the first valid name under Ruellia. Hemsley, in his monumental Biologia Centrali-Americana (Botany), ii. 508 (1882), seems to have suspected that the Jalapa (Mexican) plant was not identical with the Argentinian element, for he entered

Ruellia tweediana, Griseb. Symb. ad Fl. Arg. p. 259?
Cryphiacanthus angustifolius, Nees in DC. Prodr. xi. p. 199, saltem pro parte.
South Mexico, Jalapa (Galeotiz). Hb. Kew.
The Argentine plant may be a different species.
But Hemsley did not note any specific differences. Neither have those who have rather easily and very carelessly rushed into print with substitute-names. Thus, when, in 1893, in an enumeration of plants of Paraguay, Britton substituted for Cryphiacanthus angustifolius Nees the name Ruellia spectabilis, he obviously intended the plant of temperate eastern South America, not the Mexican element, but Britton's item was so hastily prepared that it is evident that he did not stop to gain a clear understanding of specific lines, nor had he gone carefully into the literature. His treatment was as follows:

Ruellia spectabilis, Britton.
Cryphiacanthus angustifolius, Nees in D.C. Prod., xi, 199, not Ruellia angus[t]ijolia, Sw.
Caballero (461). January.
This species has branching stems $10-12 \mathrm{~cm}$. high, linear, sessile leaves, and flowers larger than in no. 323 [Ruellia Morongii Britt., new name for Cryphiacanthus acaulis Nees, not $R$. acaulis R. Br.], otherwise much the same. Occurs on the railway track.
Since Cryphiacanthus angustifolius (in its inclusive sense) consists of erect, caulescent plants up to 1 m . high, with remote pairs of linear-lanceolate to broadly lanceolate leaves and glabrescent to only minutely glandular-hirtellous calyx about half the length of the capsule or shorter, while Cryphiacanthus
acaulis Nees, basis of Ruellia Morongii, is, as described by Nees and partly by Britton and as shown by all specimens, acaulescent, "Habitus Primulae" (Nees), with the basal rosulate leaves oblong-ovate; -obovate or subspatulate, and the calyces copiously villous-hirsute and equaling to exceeding the capsule, Britton's characterization of the two as "much the same" indicates a rather offhand understanding of a few conspicuously different species. Dr. Britton also overlooked the fact that, in his well known Dictionary of Gardening, iii. 334 (1886), George Nicholson had published a $R$. spectabilis (Hook.) Nicholson, based on Dipteracanthus spectabilis Hook. Bot. Mag. t. 4494 (1850), an Andean plant of a different section, with flowers sessile in the axils of ovate leaves, etc. Furthermore, Britton evidently overlooked $R$. Tweediana Griseb. (1879), the name he should have taken up for the Paraguayan as well as Argentinian Cryphiacanthus angustifolius. Had he looked up Grisebach's Symbolae he would not, on the same page with his $R$. spectabilis, have published as new $R$. Tweedyi (Nees) T. Anderson in Herb. Kew., based on Blechum Tweedyi Nees, for, by the rules promulgated and followed by Britton, the substantive-genitive personal names (such as Tweedyi) and the adjectival forms (such as Tweediana) could not both be used. By the International Rules, vigorously fought by Britton, his combination R. Tweedyi (Nees) T. Anderson ex Britton is rescued. Whether the type of R. Tweedyi is a Ruellia is much more doubtful. The genus Blechum is so very different from Ruellia that it would be surprising if Nees, who monographed both genera, did not know it. Incidentally, but of real importance, the original Blechum Tweedyi came from Panama. It would be very surprising, to say the least, if the same species (even if not a Blechum, a genus apparently unknown in Paraguay) were found also in Paraguay.

The next step in the tortuous history of the much abused typonym, Cryphiacanthus angustifolius Nees, was when Leonard, noting that Britton had slipped in publishing a second Ruellia spectabilis, gave, in Journ. Wash. Acad. Sci. xxxi. 96, fig. 1 (1941), another name:

Ruellia brittoniana Leonard, nom. nov.
Fig. 1
Cryphiacanthus angustifolius Nees in DC. Prodr. 11: 199. 1847.
Not R. angustifolia Sw., 1788.
Ruellia spectabilis Britton, Ann. New York Acad. 7: 192. 1893; not Nichols, 1886.

A single cultivated plant, from Guatemala, was cited and a very characteristic figure of the Mexican plant, with longattenuate upper leaves inclined to overtop the subcorymbiform inflorescence, was given as fig. 1. Leonard gave no statement of characters nor any indication as to whether he was accepting Cryphiacanthus angustifolius in the original inclusive sense of Nees or whether he restricted it to the Mexican element left to stand for it when Grisebach withdrew the Argentinian element as Ruellia Tweediana. It is unfortunate, if he intended $R$. Brittoniana (Britton having published only on the Paraguayan plant) to stand exclusively for the quite different North American species, that he did not give any word of clarification, for the North American species, at least in the Gray Herbarium and the Britton Herbarium, had been annotated by Leonard as $R$. Tweediana. Incidentally, had he looked up the first publication of $R$. spectabilis he would have found that its author was Nicholson, not "Nichols". Only by accepting the possible and perhaps probable interpretation that, by removing the Tweedie element from the mixed originals of Nees as $R$. Tweediana, Grisebach had, by the "doctrine of residues", left the Mexican element as true Cryph. angustifolius-only by this interpretation can we possibly save for the Mexican plant the inappropriate name $R$. Brittoniana, which may or may not have been intended for it. I am following this interpretation merely in order to avoid publishing still another name and thus further increasing the confusion. If the alternative reasoning were adopted the Mexican species (cultivated and naturalized eastward to Florida) would require a new and clearly applied name, since none of the authors, from Grisebach on, who have hastily proposed new names in this relatively simple pair of species, has recognized the elementary requirement of sound taxonomy, of accurately defining their species and explaining what they meant.

I have stated above what I consider the specific characters of Ruellia Brittoniana as here validated, and in plate 839 its diagnostic characters are shown. In plate 840 I have shown some of the differential characters of $R$. Tweediana; and in the following paragraph I indicate some of its other claims to recognition as an endemic species of temperate eastern South America, the name R. Tweediana thus being validated:
R. Tweediana Grisebach, caulibus glabris; foliis inferioribus lanceolatis vel lanceolato-ovatis, supernis lanceolatis subacutis vel obtusis juvenilibus ciliolatis, majoribus $5-12 \mathrm{~cm}$. longis integris vel undulatis; inflorescentiis elongatis subthyrsoideis; calycibus glanduloso-hirtellis, segmentis lineari-subulatis attenuatis ad apicem acutum hirtum; corollis $3-4 \mathrm{~cm}$. longis extus valde pilosis, fauce supra $5-10 \mathrm{~mm}$. lato; capsulis lanceolatofusiformibus $2-2.5 \mathrm{~cm}$. longis glabris. Tab. 840 .

Since Ruellia Brittoniana has been mistaken by Small and his followers for $R$. malacosperma Greenm. it should be noted that the latter species differs in the following characters: young internodes of stem and young leaves villous-hirsute, becoming glabrate; leaves oblong or elliptic-lanceolate, often undulate-dentate, the primary ones slender-petioled, strigillose-lineolate; calyx lineolate, with lance-attenuate sharp-pointed segments becoming $1.5-2 \mathrm{~cm}$. long; corolla $3.5-5 \mathrm{~cm}$. long, essentially glabrous without; capsule $2.5-3 \mathrm{~cm}$. long; seeds orbicular, broadly obovate or elliptic, $2.8-3.3 \mathrm{~mm}$. long. The plant called $R$. malacosperma by Small (as represented in the Britton Herbarium) is not that species; all that I have seen of it belongs to the frequently cultivated $R$. Brittoniana.
2. R. strepens L., as emended by L. in 1771. Stems 1 -few from a knotty rhizome, $0.2-1.1 \mathrm{~m}$. high, simple or with few ascending branches, obtusely 4 -angled, minutely pilose (often in decussate lines), glabrate or glabrous (rarely, when deeply buried in silts after freshets, the stem becoming strongly ligneous and then freely branching): lowest leaves small, rounded or obovate; principal leaves membranaceous, ovate, rounded or tapering to short but definite petioles, more or less acuminate, entire or barely undulate, the larger ones $7-18 \mathrm{~cm}$. long and $3-9 \mathrm{~cm}$. broad, short-strigillose on one or both surfaces or glabrescent, minutely ciliolate when young: short to long ascending peduncles ( $0.2-10 \mathrm{~cm}$. long) borne from axils of $1-3$ pairs of median leaves (very rarely terminal), these bearing a pair of dilated leafy bracts and usually $1-3$ showy expanded flowers: calyx-segments lanceolate to lance-linear, flat to tip, $2-4 \mathrm{~mm}$. broad, $1-2.5 \mathrm{~cm}$. long, villous-ciliate, more or less villous or pilose to glabrescent on the back: corolla pale blue-violet, broadly expanding, 3-6 cm. long; the slender tube about as long as the broadly funnelform throat, the broad lobes rounded: capsule (relatively infrequent as compared with the next form) $1-2 \mathrm{~cm}$. long, glabrous, usually overtopped by calyx-segments.-Sp. Pl. 634 (1753) in part, as emend. by L. Mantiss. Alt. 422 (1771), he thus excluding the wholly different plants of Dillenius and others; Schkuhr, Handb. ii. t.
clxxii. (1791); Willd. Sp. iii. 363 (1800); Pursh, Fl. Am. Sept. ii. 420 (1814); LeConte in Ann. Lyc. N. Y. i. 140 (1824); and later authors generally. Dipteracanthus strepens (L.) Nees in Linnaea, xvi. 292 (1842) and in DC. Prodr. xi. 121 (1847), including var. calycinus Nees, 1. c. (1847), var. pedunculatus Nees, 1. c. 122 (1847) and var. strictus (Nees) Nees, 1. c. (1847), in part. D. strictus Nees in Linnaea, xvi. 293 (1842). R. biflora Balbis ex Nees in DC. Prodr. xi. 122 (1847) in synonymy, nomen only. R. foliosa Schweinitz ex Nees 1. c. in synonymy, nomen only. R. oblongifolia Kinn ex Nees, l. c. in synonymy, nomen only. $R$. vincaeflora DC. ex Nees, 1. c. in synonymy, nomen only.-Low woods, bottomlands, wooded swamps, etc., chiefly in basic or calcareous soils, South Carolina to eastern Texas, northeast and north to north-central New Jersey, southern Pennsylvania, central Ohio, Indiana, Illinois, southern Iowa and eastern Kansas. Fl. mid-May-July (rarely -October). The following, from a very much larger series, are characteristic. New Jersey: New Brunswick, "common" June, 1894, F. H. Blodgett (NY). Pennsylvania: lancaster co.: rich wooded hillside along Conestoga Creek, 1 mile south of Bausman, Louise F. A. Tanger, no. 3270 (Pa, Phil) ; banks of Conestoga, near Lancaster, 1838, W. W. Wister (Phil), June 17, 1859, Porter; near Columbia, S. W. Knipe (Phil); "on an excursion to Safe Harbor", June 18, 1859, Joseph Crawford (Phil). cumberland co.: creek-bankside, Camp Hill Borough, H. L. Plasterer, as D. E. and Dorothy Wade, no. 1727 (Pa). franklin co.: Mercersburg, June, 1844, Porter (Phil). Delaware: without statement of locality, Nuttall (Phil). Maryland: cecll co.: Bald Friar, July 4, 1907, E. B. Bartram (Phil). montgomery co.: banks of Potomac, June 6, 1881, J. D. Smith; Great Falls, C. S. Williamson; High Island, June 6, 1881, C. S. Sheldon (US). District of Columbia: Potomac Flats, Chain Bridge, June 13, 1897, Kearney (NY); Canal District, June 9, 1897, Steele (US). West Virginia: jefferson co.: along Shenandoah River, near Charlestown, R.F. Martin, no. 200 (USNA). cabell co.: dry hillside, Huntington, Gilbert, no. 123 (Mo, Pa). wayne co.: Buffalo Creek, Plymale, no. 445. Virginia: isle of wight co.: base of rich calcareous wooded slopes by Burwell's Bay, James River, below Rushmere (Fergusson's Wharf), Fernald \& Long, no. 13,463. prince george co.: swampy woods, bottomland of Powell's Creek, Garysville, Fernald \& Long, nos. 8472 and 8854. clarke co.: Castleman Ferry, June 13, 1937, O. M. Freeman (USNA). frederick co.: low woods, Cedar Creek, Meadow Mills, Hunnewell, no. 13,712. shenandoah co.: along stream, north of Short Mt., Allard, no. 5087. Page co.: shady ravine, eastern foothills of Massanutten Mountain, W. H. Camp, no. 1386 (NY). roanoke co.: Roanoke River, south of Roanoke, Small \& Heller, no. 431 (Phil). mont-


Photo. B. G. Schubert.
Ruellia strepens, forma clfistantha: fig. 1, summit of plant, $\times{ }_{2}$; fig. 2, terminal glomerule, $\times 1$; FIG. 3, node with large cleistogamous flower, $\times 2$; FIG. 4, terminal glomerule with two small cleistogamous flowers, $\times 2$; FIg. 5, subterminal fruiting node, $\times 2$ : fig. 6, calyx and open capsule, $\times 2$.


Photo. B. G. Schubert.
Ruellia pedunculata: fig. 1 , small flowering plant, $\times 4 / 9$; fig. 2 , base of more branching fruiting plant, $\times 1 / 2$; fig. 3 , portion of branching inflorescence, $\times 1$; fig. 4, calyx and capsule, $\times 2$; FIG. 5 , calyx-segments and base of capsule, $\times 10$; FIG. 6 , strigose surface of capsule, $\times 10$.
gomery co.: limestone soil, edge of woodlands just north of Price's Station, A. B. Massey, no. 5065. South Carolina: berkeley co.: Eutaw Springs, May, H. W. Ravenel. athens co.: Aiken, Sept. 17, 1885, H. W. Ravenel. Georgia: without stated locality: "of the Savannahs", Le Conte (Phil); "Mts. of Georgia", Chapman (US). walker co.: dry ground, Chickamauga Park, May 25, 1911, J. R. Churchill. (Specimens from Polk County, Florida, Mrs. J. M. Milligan (US) were presumably of cultivated plants. Chapman includes "Florida" in his stated range, but his " $R$. strepens" was made up of several other species. There is no material from Florida in the Britton Herbarium, rich in specimens from that state.) Ohio: athens co.: Athens, J. P. Drushel, no. 6623 (Mo). lawrence co.: open woodlands, Coal Grove, Biltmore Herb., no. $4500^{\text {b }}$ (US). franklin co.: Columbus, Sullivant. montgomery co.: Dayton, July 7, 1879, L. V. Morgan (US). Butler co.: moist woods, Oxford, June 30, 1910, Overholts (Mo). hamilton co.: near Cincinnati, June 15, 1879, C. G. Lloyd (NY, US) ; open woods on hillsides, Anderson's Ferry, June 14, 1905, E. L. Braun (Braun). (Specimens with the label "Plants of Northern Ohio", and marked as from Lucas County, bear the memorandum "Obtained from Mr. Burger of Toledo; never found it in northern Ohio".) Indiana: wells co.: moist banks of Wabash River, June 21, 1905, Deam (US). montgomery co.: Crawfordsville, June 23, 1892, Rose (US). marion co.: woods along White River, Scott McCoy, no. 1938 (US). parke co.: Turkey Run, W. H. Dunkan, no. 114 (Duke). vigo co.: Terre Haute, June 1, 1889, B. W. Evermann (US). bartholomew co.: creek-bottom north of Elizabethtown, Deam, no. 34,266. Jefferson co.: Hanover, 1874, Coulter (Phil). Kentucky: scott co.: along Elkhorn Creek, Stamping Ground, J. W. Singer, no. 219 (US). Franklin co.: open woods, Farmdale, June 16, 1879, H. R. Bassler (Pa). Spencer co.: near High Grove, E. L. Braun, no. 3259 (Braun). warren co.: Bowling Green, June, 1892, Sadie F. Price (Mo.); bluff along Gasper River, southeast of Hadley, Leslie Hubricht, no. B2170 (Mo). UNION CO.: moist overflow-forest, near State Lake, H.T. Shacklette, no. 345. LYON co.: Kuttawa, Eggleston, no. 4524 (NY). Tennessee: knox co.: woods, Knoxville, Ruth, no. 591 (Mo) and 721 (US), Pennell, no. 11,301 (Phil). hamilton co.: Chickamauga Park, May 27, 1911, J. R. Churchill. davidson co.: bluffs below Nashville, Biltmore Herb., no. 4500 ${ }^{\text {c }}$ (US); Nashville, Eggleston, no. 4444; limestone cliff of Cumberland River, Nashville, Pennell, no. 11,411 (Phil). houston co.: limestone bank, Erin, E. B. Harger, no. 7866. lake co.: dense shade of sandy woods, Reelfoot Lake, J. R. Swallen, no. 2159 (US). Alabama: jackson co.: dry soil, Stephenson, Biltmore Herb., no. $4500^{\text {a }}$ (US) ; Sand Mountain, Biltmore Herb., no. $4500^{\text {d }}$
(US). clarke co.: dry copses and hillsides, Thomasville, April $27,1888, C$. Mohr, as R. ciliosa, var. ambigua (US). Mississippi: lee co.: Tupelo, 1914, Henshaw (USNA). oktibbeha co.: low woods north of Starkville, C.A.\& Una F. Weatherby, no. 6309. Illinois: kankakee co.: Kankakee, C. C. Crampton, no. 212 (US). peoria co.: rich woods, Peoria, July, 1903, F. E. McDonald. hancock co.: Augusta, S. B. Mead. macon co.: 3 miles east of Decatur, Clokey, no. 2486. pike co.: Mississippi levees, East Hannibal, June 3, 1913 (Mo). richland co.: Parkersburg, June 9, 1902, Robt. Ridgway (US). marion co.: Salem, June, 1860, M. S. Bebb (Phil). st. clair co.: woods, St. Clair Co., Sept. 20, 1878, Eggert; Cahokia, June 11, 1890, A. S. Hitchcock (Mo); East Carondelet, June 4, 1875, Eggert (Mo, US). jackson co.: black rich soil, bottoms of Big Muddy and Crab Orchard Creeks, John McCree, Jr., no. 775 (Mo.). Iowa: decatur co.: woods, June 29, 1904, J. P. Anderson (Mo). Missouri: pike co.: dry bluffs, near Eolia, John Davis, no. 7617 (Mo). lincoln co.: rich soil, Winfield, June 7, 1916, John Davis, no. 1406 (Mo). marion co.: Scipio Bluffs, north of Hannibal, John Davis, no. 1491 (Mo). st. Louls co.: Creve Coeur Lake, June 12, 1914, M. W. Lyon (Mo); Meramec Highlands, June 13, 1909, W. W. Ohlweiler (Mo); Allenton, G. W. Letterman, many collections (Mo); rich woods, Allenton, May 29, 1918, J. R. Churchill. jefferson co.: DeSoto, June, 1887, H. E. Hasse; Ditmar, J. H. Kellogg, no. 2005 (Mo). franklin co.: Pacific, Greenman, no. 3895 (Mo). shelby co.: rich woods near Bethel, Palmer \& Steyermark, no. 40,908 (Mo). butler co.: low woods along Mud Creek, northwest of Rombauer, Steyermark, no. 11,420 (Mo). boone co.: Rock Bridge, June, 1926, H.W. Rickett (Duke). phelps co.: Jerome, June 1, 1914, J. H. Kellogg, no. 494 (Mo). saline co.: Sweet Springs, June 20, 1886, Wm. Trelease (Mo). greene co.: Springfield, June 11, 1887, J. W. Blankinship (Mo). stone co.: rich hillside woods, Galena, E. J. Palmer, no. 5774 (Mo, US). daviess co.: dry banks, Pattonsburg, Bush, no. 13,587. Johnson co.: rich woods and thickets, limestone hills, Columbus, E. J. Palmer, no. 36,697 (Mo). barry co.: barrens, Shell Knob, Bush, no. 15,596 (Mo). jackson co.: Independence, Bush, no. 39 ( Pa ). cass co.: bottoms, June 23, 1864, G. C. Broadhead (Mo). Jasper co.: woods, Webb City, Bush, no. 528 (Mo), E. J. Palmer, no. 528 (Mo). Arkansas: crittendon co.: bottomland, Hulbert, Demaree, no. 11,372. phillips co.: Crowleys Ridge, Helena, Demaree, no. 19,240 (NY, Mo). pulaski co.: Little Rock, H. E. Hasse (NY); swampy Arkansas bottoms, Little Rock, Demaree, no. 17,321 (Mo). Kansas: leavenworth co.: woody ravines, Fort Leavenworth, June, 1854, F. V. Hayden (Mo). wyandotte co.: low woods, May 30, 1897, K. K. Mackenzie
(NY). cherokee co.: woods along Shoal River, near Schimmerhorn Pk., no. 20,178, from Kansas State College (NY). riley co.: low woods, J. B. Norton, no. 387; Manhattan, June, 1886, Kellerman (US). cowley co.: 1895, C. N. Gould (NY), May, 1898, Mark White (Mo). Oklahoma: sequoyah co.: damp, shaded ground near mouth of Illinois River, Goodman \& Barkley, no. 2131. Le Flore Co.: low woods, Poteau, E. J. Palmer, no. 8275 (Mo). creek co.: Sapulpa, June 2, 1924, C. B. Williams. kay co.: woods, Tonkawa, $G$. W. Stevens, no. 1869. oкlahoma co.: wooded creek-bottom north of Edmond, Waterfall, no. 1975. pottowattome co.: in small valley, St. Louis, Mortimer Faulkner, no. 106 (Mo). murray co.: Davis, W. H. Ennig, no. 683 (Mo). Texas: without stated locality, Drummond, no. 259 (cited by Nees under his Dipteracanthus strepens, vars. strictus and pedunculatus and under several other species and varieties!); Coombs Branch, Reverchon (Mo). dallas co.: woods, Dallas, May 6, 1874, Reverchon (Mo); moist woodlands, Dallas, Biltmore Herb. no. $4500^{\mathrm{h}}$ (US); vicinity of Dallas, Mary R. Stephenson, nos. 91 and 94 (US). tarrant co.: rich woods near Trinity River, Lake Worth, Ruth, no. 318 (Pa, Phil, US). fort bend co.: Richmond, W. L. Bray, no. 118 (US). Plate 841; map 1.

2a. Forma cleistantha (Gray) S. McCoy. Flowers and abundant fruits borne in sessile or subsessile glomerules from the upper and often from most (1-8) of the axils, the stem only occasionally branching: calyx-segments often more pubescent and much shorter than to but little longer than capsule: corolla relatively small, usually reduced to a slender closed tube 0.7-2 cm . long, pale to creamy, but sometimes partially expanding or even large and terminal: capsules abundant, usually plumper and shorter than in typical form of species; retinacula mostly 6 or 8: seeds suborbicular to elliptical, 3-4 mm. long.-Am. Bot. xliii. 24 (1937). Dipteracanthus micranthus Engelm. \& Gray in Bost. Journ. Nat. Hist. v. (Pl. Lindheimerianae), 49 (1845). Hygrophila illinoiensis Wood in Bull. Torr. Bot. Cl. v. 41 (1874). Var. cleistantha Gray, Syn. Fl. N. Am. ii1. 327 (1878). R. strepens micrantha (Engelm. \& Gray) Britton in Mem. Torr. Bot. Cl. v. 300 (1894). -Same range as the typical form of the species. Fl. June-October. The following from a very large representation before me are characteristic. (omitting stations enumerated under the preceding). Pennsylvania: lancaster co.: wooded hillside along Conestoga Creek, south of Wabank, L. F. A. Tanger, no. 4603 (Pa, Phil); edge of woods along Conestoga Creek, south of Millersville, Tanger \& Groff, no. 4872. Maryland: cecil co.: Conowingo, Aug. 19, 1906, J. J. Carter (NY, Phil). kent co.: Tolchester Beach, September 4, 1906, C. S. Williamson (Phil). West Virginia: ohio co.: thickets near Wheeling Creek, east of Wheeling, July 22, 1909, Mac Elwee (Phil). Virginia: charles

City co.: alluvial woods along James River, Harrison Point, Fernald \& Long, no. 9150. Prince george co.: wooded swamp by James River, south of Indian Point, Fernald \& Long, no. 11,153. loudon co.: Short Hill, Aug. 9, 1936, O. M. Freeman (USNA). warren co.: bottomlands by Shenandoah River, Hunnewell, no. 17,872 (stems, deeply covered by freshet-silts, subligneous, with strong branches and shortened and firm leaves). rockbridge co.: Natural Bridge, Sept. 14, 1907, E. B. Bartram (Phil). Ohio: franklin co.: Gahanna, Oct. 19, 1903, O. E. Jennings. warren co.: moist rich soil along Little Miami River, South Lebanon, E. B. Harger, no. 8010. Indiana: gibson co.: low woods bordering Eggwood Pond, Deam, no. 9958 (NY). Kentucky: nelson co.: wooded ravine east of Chapin, Wherry \& Pennell, no. 13,673 (Phil). edmonson co.: wooded alluvial flat of Green River, Mammoth Cave, E. L. Braun, no. 3611 (Braun). daviess co.: swamp in Ohio River bottom, Maceo, Wherry \& Pennell, no. 13,585 (Phil). Tennessee: shelby co.: Memphis, Oct. 20, 1850, Fendler. Alabama: without stated locality: Buckley (paratype of Dipteracanthus micranthus Engelm. \& Gray). Lee co.: "N. W. of Lee Co.", June 24, 1897, F. S. Earle (NY). Illinois: champaign co.: Urbana, Oct. 4, 1880, A. B. Seymour (Duke). wabash co.: Mt. Carmel, 1874, J. Schneck (isotypes of Hygrophila illinoiensis Wood). hardin co.: low woods, Elizabethtown, E. J. Palmer, no. 17,023 (Mo). Iowa: henry co.: Mt. Pleasant, J. H. Mills, no. 1854 (Mo). Missouri: st. charles co.: Watson, Wm. Trelease, no. 453 (Mo). st. Louis co.: St. Louis, Sept. 1845, Engelmann (paratypes of Dipteracanthus micranthus). IRON co.: moist shady ground, Iron Mountain, Sept. 1897, Colton Russell (Mo). mississippi co.: rich swampy woods, Three States Timber Tract, southwest of Wolf Island, Steyermark, no. 8761 (Mo). ozark co.: thickets along creek, near Bakersfield, E. J. Palmer, no. 32,872 (Mo). taney co.: woods, Swan, Bush, no. 697 (Mo). sullivan co.: Pawpaw Junction, Sept. 15, 1893, Bush (Mo). hickory co.: low woods along Pomme de Terre River, northeast of Elkland, Steyermark, no. 24,514 (Mo). st. Clair co.: low woods around White Sulphur Spring, Steyermark, no. 24,401 (Mo). dallas co.: base of slope along Mangua River, southwest of Long Lane, Steyermark, no. 24,231 (Mo). Vernon co.: low open woods along creek, near Deerfield, Palmer \& Steyermark, no. 42,140 (Mo, NY). mcdonald co.: low ground, Noel, E. J. Palmer, no. 4069 (Mo, US). Arkansas: marion co.: bottoms of White River, Flippin, Demaree, no. 20,640 (Mo, NY). saline co.: bottoms of Saline River, Benton, Demaree, no. 8491 (US). Carroll co.: Eureka Springs, E. J. Palmer, no. 4439 (Mo). hempstead co.: woods, Fulton, Bush, no. 984 (Mo). lafayette co.: Spirit Lake, A.A. \& E. G. Heller, no. 4118.

Louisiana: west feliciana parish: deciduous woodland, Catalpa, Pennell, no. 4308 (NY). Oklahoma: rogers co.: Verdigris, Bush, no. 429 (Mo). johnston co.: open woods near Tishomingo, H.W. Houghton as Stevens, no. 3342. payne co.: Stillwater, Eugene Blevins, no. 90 (Mo). Texas: without stated locality: Drummond, no. 202 (paratype of the following). harris co.: rich shaded bottoms around Houston (data with sheet in Herb. Mo), Lindheimer, Fasc. II, no. 290 (type and isotypes of Dipteracanthus micranthus). Brazoria co.: woods, Columbia, Bush, no. 1342 (Mo); San Bernardo, June 28, 1923, Tharp. Jackson co.: Lavaca River, Aug. 29, 1941, Tharp. Plate 842.

As originally published in Species Plantarum (1753) Ruellia strepens (from strepo, to rustle, presumably from the dehiscing of the capsules) was a mixture. The plant of the Linnean Herbarium, which Linneaus had before him, has not been available and cannot be until after "the duration". Neither can I discuss the specimens cited in other Linnean works. The name was taken over from Ruellia strepens, capitulis comosis of Dillenius, Elth. ii. 330 (misprinted by L. as 300), t. 249, fig. 321 (our plate 863), a wholly different plant from that here treated, one of the species (our no. 11) with relatively low hirsute stem, pubescent oblong leaves, dense glomerules of relatively small flowers crowded in the upper axils, and the calyx-segments narrowly linear. The confusion prevailed for some decades (before and after 1753) but in 1771, in his Observationes in Species Plantarum cum Emendationibus et Animadversionibus, Mantissa Altera, pp. 315 et seq., Linnaeus redefined Ruellia strepens (p. 422) to stand only for the present species ". . . Pedunculi oppositi, laterales breves, triflori. Bracteae 2 oppositae, etiam 2 sub singulo flore laterali. Calyx 5partitus, lanceolatus" etc. He thus threw out the wholly different plant of Dillenius (with abundant fruit which, when pressed, promptly rustles) and restricted the name to the showy-flowered and usually infertile or only weakly fertile typical $R$. strepens which, except in the cleistogamous state (unknown to Linnaeus), rarely gets a chance to rustle! Schkuhr, Willdenow, Pursh, LeConte, Torrey, Gray, Engelmann, Nees, Britton and all others have consistently adopted the redefinition made in Mantissa Altera, and only confusion would result if the pre-Linnean and confused application of the name were forced. Our species, preeminently of calcare-
ous bottomland and bases of limestone bluffs, with great concentration in the Mississippi Basin (map 1), pushes down to the Atlantic area along the Susquehanna, Potomac, James, Santee and Savannah River systems. It is on the upper Roanoke, and, presumably, search may bring it to light farther down that valley, even in northeastern North Carolina. In the great accumulation of material before me, from some of the more representative larger herbaria, there is no evidence that it is common in either North or South Carolina; and from Georgia I have seen it only from tributaries of the Tennessee (thence the Mississippi) River, although (since it has been found at Aiken) it is probably along the Savannah in Georgia. The Ruellia strepens, capitulis comosis of Dillenius was raised from seed sent from Carolina and flowered in 1726: "Nata fuit haec species e seminibus Carolinensibus, \& Septembri mense primum floruit anno 1726, sequentibus autem annis tota fere aestate". This plant (our no. 11), abundant in eastern North and South Carolina as well as reaching eastern Virginia, isinclined to growin slightly dry and rather acid soils.

It is a very striking fact that the accumulated material before me shows forma cleistantha regularly and ábundantly fruiting, while the typical form, with few peduncles from a few median axils and few showy, expanded flowers, is largely sterile. Of the 270 sheets of typical $R$. strepens before me only 12 ( $42 / 5$ per cent.) show 1 or 2 developed capsules (plate 841, fig. 4); all of the 168 sheets of forma cleistantha are loaded with fruit or show the possibility of it.

When he reduced Gray's var. cleistantha to the rank of a form Mr. Scott McCoy reported on plants brought into the garden: "Each June it bloomed as the species and each fall it bore cleistogamous flowers as does the so-called variety cleistantha Gray." Further checks should be made in other regions for, if all the material in the United States National Herbarium, the Torrey and Britton Herbaria of the New York Botanical Garden, the herbaria of the Missouri Botanical Garden, the Philadelphia Academy of Sciences, the University of Pennsylvania and several smaller collections, added to the representation in the Gray Herbarium, can be taken (and I believe it can) as a fair average, there are some very important characters distinguishing the two


Photo. B. G. Schubert.
Ruellia pinetorum: fig. 1, flowering and fruiting branches from type, $\times 1$; Fig. 2, portion of fruiting branch, $\times 1$; rif. 3 , portion of leafy base, $\times 1$; fig. 4 , calyx and capsule, $\times 2$; FIG. 5 , surface of peduncle, $\times 10 ;$ FIG. 6 , bases of calyx-segment and capsule, $\times 10$.


Photo. B. G. Schubert.
Ruellia Purshiana: fig. 1, portions of type, $\times{ }_{2}^{2} ;$ fig. 2 , third node from base, $\times 1$; fig. 3, second node from base, $\times 1$; fig. 4 , calyx and capsule, $\times 2$; fig. 5 , surface of stem, $\times 4$.
plants which one would not expect to find if forma cleistantha always develops from individuals which early in the summer were typical $R$. strepens. Typical showy-flowered R. strepens bears 1-3 flowers on few leafy-bracted peduncles from the median axils; forma cleistantha has the flowers more densely crowded in nearly sessile glomerules, usually from many, including the upper, axils. Of the 270 sheets of typical $R$. strepens before me 145 (nearly 54 per cent.) have elongate median peduncles $2-10 \mathrm{~cm}$. long; when rarely such plants fruit (July 25, Va., Fernald \& Long, no. 13,463; July 22, Ky., Braun, no. 3259; June 25, Mo., Hasse, no. 1094; July 7, Mo., Steyermark, no. 11,420; July 13, Mo., Palmer, no. 8275; August 27, Kans., Norton; etc.) they show no incipient sessile glomerules in the upper axils, such as one would expect if they always change to forma cleistantha. The peduncles are still there, up to autumn. Of the 168 sheets of forma cleistantha only 20 ( 11.5 per cent.) have such peduncles (not counting branches with subsessile glomerules). Furthermore, very many specimens with only glomerulate fruits in the middle and upper axils were collected pretty early in the season, June 17-August 18 (W. Va., McElwee; Ky., Price; Ill., Eggert; Mo., Palmer, no. 1310; Ark., Heller \& Heller, no. 4118), their fruiting period overlapping the flowering period of typical $R$. strepens. It must be evident, then, that not always do typical early and showily flowering plants of $R$. strepens change late in the season into forma cleistantha; if they did so a much larger percentage of the latter would retain the elongate peduncles of the former, and the former, late in the season, would regularly bear crowded fruits in the upper axils. The problem is a promising one for the experimenter. Do the abundant seeds of the cleistogamous plant reproduce only the cleistogamous form or do they equally yield the typical showy-flowered and largely infertile plant? Carefully checked and numerous cultures are necessary before we can say with finality.
3. R. pedunculata Torr. Stem 1-7.5 dm. high, slender, firm, obtusely quadrangular or subterete, puberulent or minutely cinereous-pilose, with long internodes, simple, with axillary peduncles, to branched; the branches ascending and but slightly forking to more divergent and much divided, often bushy in habit: leaves ovate to ovate-oblong or lanceolate, short-petioled, tapering from slightly above base, pale green, puberulent,
entire or very shallowly undulate; those of primary axis (above the rounded or obovate lowest ones) $3-11 \mathrm{~cm}$. long and 2-4.5 cm. broad, the rameal smaller: flowers solitary at tips of simple 2bracted peduncles or loosely cymose on the branches; the cymes, when developed, 2 -several-flowered: calyx-segments linearfiliform, $0.5-1 \mathrm{~mm}$. wide at base, thence tapering to very slender often flexuous tips, in maturity $1-3 \mathrm{~cm}$. long, closely cinereoushirtellous with slender-tipped spreading pubescence: corolla blue-violet, $2.5-5.5 \mathrm{~cm}$. long; the slender tube about equaling the ampliate throat: ovary and capsule cinereous-puberulent; the capsule $1-2 \mathrm{~cm}$. long; retinacula usually 6 or 8 : seeds orbicular or suborbicular, cinereous, $2.5-3.5 \mathrm{~mm}$. in diameter.- $R$. pedunculata Torr. ex Gray, Syn. Fl. N. Am. ii ${ }^{1}$. 325 (1878).Woods, bluffs, rocky slopes, barrens, open fields, etc., in calcareous to circumneutral soil, western Louisiana and eastern Texas, north to southern Illinois, eastern and south-central Missouri and eastern Oklahoma. The following are representative. Illinois: jackson co.: Murphysboro, Benke, no. 4648 (US); mesophytic woods, Makanda, June 20, 1903, Gleason; dry upland or rocky woods, Grand Tower, Gleason, nos. 1793, 2654, 2655 (all as $R$. strepens); dry rocky limestone hillsides, Grand Tower, Gleason, no. 9007 (NY). Johnson co.: rocky woods, Tunnel Hill, June 27, 1902, J. Schneck (NY). union co.: dry sandstone bluff, Cobden, May 23, 1902, F. S. Earle (NY). [In Herb. Duke Univ. there is a specimen of $R$. pedunculata, bearing a label, "Ruellia strepens, Nees. Urbana, Ill. Oct. 4, 1884, W." with the heading "Herbarium of Merton B. Waite" and, printed above it, "Herbarium of A. B. Seymour". Since R. strepens is well known from the region of Urbana, where frequently collected, while there is no other evidence of $R$. pedunculata from northeast of the southwestern corner of Illinois, it is probable that in the wanderings of this material some transfer of labels has occurred]. Missouri: jefferson co.: rich woods in ravine, southwest of Crystal City, Steyermark, no. 1357 (Mo); dry copses, DeSoto, May 30, 1887, Hasse (Mo, US). ste. genevieve co.: Bloomdale, J. H. Kellogg, no. 2004. cape girardeau co.: wooded limestone slopes, Hickory Ridge, west of Delta, Steyermark, no. 20,811 (Mo). dunklin co.: Campbell, uncommon, Bush, no. 343 (Mo, NY). madison co.: rocky open woods, near Fredericktown, E. J. Palmer, no. 31,608 (Mo). wayne co.: low woods in Happy Hollow, north of Kime, Steyermark, no. 6318 (Mo). butler co.: rocky upland woods, Poplar Bluff, E. J. Palmer, no. 16,345 (Mo); cherty slopes bordering lowlands along Mud Creek, northwest of Rombauer, Steyermark, no. 11,422 (Mo). iron co.: Arcadia, Greenman, no. 3750 (Mo, Phil); rocky open woods near Ironton, E. J. Palmer, no. 18,111. Reynalds co.: cherty slopes, south of Oates, Steyermark, no.

19,724 (Mo). Carter co.: rocky woods, Van Buren, J. H. Kellogg, no. 15,300 (Mo). phelps co.: Jerome, June 11, 1914, Kellogg (Mo). shannon co.: rocky woods, Monteer, Bush, nos. 6401 and 6401 A. texas co.: wooded limestone slopes at base of bluffs along Big Pine River, southeast of Prewitt Spring, Steyermark, no. 20,077 (Mo). oregon co.: stony grove, Thayer, F. W. Pennell, no. 11,521 (Phil). ozark co.: cherty limestone slopes on top of bluff along White River, northeast of Dormio, Steyermark, no. 10,417 (Mo). douglas co.: limestone glade and cherty open woods, between Roosevelt and Richville, Steyermark, no. 19,165 (Mo). wright co. : open hillside, west of Cedar Gap, O. E. Lansing, no. 3020. laclede co.: cherty bottom of Pine Creek Hollow, southwest of Nebo, Steyermark, no. 25,159 (Mo). webster co.: limestone outcrops, south of Fordland, Steyermark, no. 19,239 (Mo). taney co.: common in woods, Swan, Bush, no. 236 (Mo, US) ; open rocky ground near Gretna, $E . J$. Palmer, no. 19,224. STONE CO.: dry rocky hillside by James River, E. J. Palmer, no. 5831 (Mo, ÚS). Barry co.: dry woods around Eagle Rock, Sept. 24, 1896, K. K. Mackenzie (Mo, NY); Eagle Rock, Bush, nos. 78 and 1551 (Mo, NY, US). mCdonald co.: dry ground, Bush, no. 283. Arkansas: craighead co.: open sandy soil, Jonesboro, F.W. Pennell, no. 11,510, as $R$. ciliosa (Phil); open woods, Bono, Demaree, no. 3519 (Mo). sharp co.: Hardy, W. H. Emig, no. 152 (Mo). fulton co.: dry cherty forest, Mammoth Spring, $F$. W. Pennell, no. 11,558 (Phil). Izard co.: sandstone, east of Guion, Pennell, no. 10,692 (NY, Phil). Lonoke co.: fallow fields, Carlisle, Demaree, no. 17,516 (Mo, NY). drew co.: woods, Monticello, Demaree, no. 14,969 (Mo, NY). Faulkner co.: open fields, Conway, as $R$. ciliosa, Flora A. Hass, no. 1746 (US). Garland co.: near Hot Springs, Runyon, nos. 1142 (NY) and 1439 (US). pulaski co.: low ridges, Fort Roots, Demaree, no. 17,301 (Mo, NY); Little Rock, Demaree, nos. 17,325 (Mo, NY) and 17,516 (Mo, NY). pope co.: Nogo, Geo. M. Merrill, no. 342 (Mo). nevada co.: southeast of Prescott, June 3, 1912, Mabel P. Hollister (US). carroll co.: dry open ground, Eureka Springs, E. J. Palmer, nos. 4378 (Mo, US) and 20,483 (NY). hempstead co.: near McNab, Greenman, no. 4417 (Mo). Franklin co.: rocky hillside, Ozark, $F$. W. Pennell, no. 10,622 (NY, Phil). howard co.: Baker Springs, Oct. 5, 1909, J. H. Kellogg. Benton co.: 1889, E. N. Plank (NY). washington co.: Savoy, May 18, 1922, E. T. Wherry (US). sebastian co.: Fort Smith, 1853-4, J. M. Bigelow, paratypes (US). Louisiana: without cited station: Hale, isotype. Natchitoches parish: dry open ground, Natchitoches, E. J. Palmer, no. 7511 (Mo, NY, US). st. landry Parish: dry woods, Opelousas, Carpenter \& Hale (US). Jefferson davis parish: knolls in low prairies, Welsh, E. J.

Palmer, no. 7649 (US). Oklahoma: le flore co.: woods, near Page, G. W. Stevens, no. 1423. mccurtain co.: woods near Idabel, H.W. Houghton as G. W. Stevens, nos. 3625 and 3638. Texas: bowie co.: near Texarkana, A.A. \& E. G. Heller, no. 4171 (Mo, NY, US). harrison co.: woods, Marshall, Bush, no. 781 (Mo). Cass co.: rocky woodland, Hughes Springs, Biltmore Herb., no. 10,679a (US). Cherokee co.: dry sandy ground, Jacksonville, E. J. Palmer, no. 8600 (Mo, NY, US). anderson co.: Palestine, April 19, 1895, E. N. Plank (NY). upshur co.: sandy woods, Big Sandy, May 28, 1901, Reverchon (Mo); common in sand, Big Sandy, Reverchon, no. 2535 (Mo, NY). SAN augustine co.: open woods, Geo. L. Crocket (US). harris co.: Houston, 1917, Ada Hayden. Plate 843; map 2.

In view of its very definite characters it is remarkable that the earlier collectors seem not to have secured Ruellia pedunculata and that it was not described until 1878. It is not improbable that Nees included it in his complex and chiefly tropical Cryphiacanthus barbadensis. In his treatment in DC. Prodr. xi. 197 (1847) Nees gave the broad range of the latter as tropical America, thence to Virginia, Carolina and Texas ("In Americae calidioris . . . inde a prov. Virginiâ, Carolinâ et Texas") but under the citation of specimens he gave nothing from the United States. Since his $C$. barbadensis had long peduncles with cymes, subovate leaves, and subulate-acuminate calyx-segments, the Texan element was presumably $R$. pedunculata. The representatives of the latter in Virginia and Carolina are the two following, only the first of which has "pedunculis subcymosis".
4. R. pinetorum, sp. nov. (tab. 844), planta habitu R. pedunculatae; caule $1-3 \mathrm{dm}$. alto puberulo obtuse quadrangulato vel subtereto subsimplice vel divergenter ramoso vel ramosissimo internodiis elongatis; foliis oblongis vel elliptico-lanceolatis breviter petiolatis obtusis vel subacutis subcoriaceis minute lineolato-puberulis vel glabratis integris vel undulatis, majoribus $2-3.8 \mathrm{~cm}$. longis $0.8-1.8 \mathrm{~cm}$. latis; pedunculis axillaribus $0.2-3 \mathrm{~cm}$. longis $1-3$-floris, bracteolis oblongis petiolatis calyce brevioribus; calycis laciniis lineari-acicularibus deinde $1.3-2 \mathrm{~cm}$. longis a basi $0.5-1 \mathrm{~mm}$. latis attenuatis dorso cystolithos gerentibus; corollis caeruleo-purpureis $3-4 \mathrm{~cm}$. longis, tubo cylindrico $1.5-2 \mathrm{~cm}$. longo, fauce $1-1.5 \mathrm{~cm}$. longo supra $6-10 \mathrm{~mm}$. diametro, limbo (expanso) $2-4 \mathrm{~cm}$. lato; capsulis glabris 1.2-1.6 cm . longis; seminibus orbicularibus 3 mm . diametro.-Low pine barrens of the Coastal Plain, South Carolina (possibly Virginia) to northern Florida and Louisiana, apparently local. South Carolina: horry co.: low pine barrens, July 28, 1936, F. G.


Ranges of Ruellia. Map 1, R. strepens; 2, R. pedunculata; 3, R. pinetorum; 4, R. Purshiana; 5, R. heteromorpha; 6, R. ciliosa; 7, R. succulenta; 8, R. noctiflora; 9, R. humilis, var. typica; 10, R. humilis, var. frondosa; 11, R. humilis, var. longiflora; 12, R. humilis, var. expansa; 13, R. humilis, var. calvescens; 14, R. caroliniensis, var. typica; 15, R. caroliniensis, var. semicalva; 16, R. caroliniensis, var. membranacea; 17, R. caroliniensis, var. nanella; 18, $R$. caroliniensis, var. cheloniformis; 19, R. Caroliniensis, var. salicina; 20, R. caroliniensis, var. dentata

Tarbox, no. 800, type in U. S. Nat. Herb. Florida: calhoun co.: low grounds, Iola, May, 1896, Chapman, three specimens, one unnamed, one marked "n. sp.", with entry of an unpublished name which appears in American herbaria on sheets of at least two other and quite different species (therefore unwise to take up), the third marked "sp. nov. affin. R. pedunculata" (Mo). Alabama: washington co.: Fruitdale, July, 1904, as R. pedunculata, Southern Floral Nursery Co. (Mo). Mississippi: wayne co.: Waynesboro, Aug. 8-9, 1896, C. L. Pollard, as R. strepens, no. 1220 (Mo, NY, US). Harrison co.: Cuevas, Sept. 8, 1900, Lloyd \& Tracy, no. 346 (NY). Louisiana: st. Tammany parish: Covington, Sept., 1919, as $R$. parviflora, G. Arsène, no. 11,687 (US). orleans parish: New Orleans, 1832, T. Drummond, nos. 257 in part (as $R$. strepens); 258 in part and 259 in part (as $R$. longifora), the numbers inextricably confused, two of them appearing on one label. calcasied Parish: vicinity of Lake Charles, May 28, 1904, and other dates (not given) in 1904, Andrew Allison, nos. 57, 261 and 297, all as $R$. pedunculata (all US). Map 3.

Ruellia pinetorum is the southeastern Coastal Plain representative of $R$. pedunculata and most of the few specimens seen were identified with that species which centers on the Ozark Upland. Chapman correctly understood it as a new species of this relationship but, as explained, the name he proposed but did not publish has been entered as a wholly new name on many sheets of at least two other species and should not be taken up. The finest material is that in the National Herbarium collected by Mr. Tarbox in low pine barrens of Horry County, South Carolina. I am, therefore, treating this as the type. In the chiefly Ozarkian $R$. pedunculata the leaves are more ovate, the primary ones $3-11 \mathrm{~cm}$. long and $2-4.5 \mathrm{~cm}$. wide; in $R$. pinetorum the leaves are oblong to elliptic-lanceolate and only $2-3.8 \mathrm{~cm}$. long by $0.8-1.8$ cm . wide. In $R$. pedunculata the broad bracts, especially in the simpler-stemmed plant with peduncles bearing solitary terminal flowers, nearly equal to greatly exceed the calyx; in $R$. pinetorum the narrow bracts are much shorter than the calyx. In $R$. pedunculata the calyx is copiously hirtellous with divergent sharp-tipped trichomes; in $R$. pinetorum glabrous or nearly so and closely invested with elongate and partially imbedded cystoliths. In $R$. pedunculata the corolla-tube and the ampliate throat are subequal in length; in $R$. pinetorum the tube is much longer than the less ampliate throat. In $R$. pedunculata the capsule is cinereous-puberulent; in $R$. pinetorum glabrous.


Photo. B. G. Schubert.
Ruellia Purshiana: fig. 3 , summit of capsule, showing pilose surface, $\times 10$.
R. Purshiana, forma claustroflora: fig. 1, summit of type, $\times 1$; fig. 2, uppermost node, with small cleistogamous fowers (above) and capsule, $\times 2$.


Photo. B. G. Schubert.
Ruellia meteromorpha, vernal stage: figs. $1-3$, portions of flowering stems, $\times 1$; fig. 4 , summit of internode and base of leaf, $\times 4$; fig. 5 , base of calyx, $\times 10$.

The very few specimens assembled indicate that Ruellia pinetorum is a very local plant. Now that attention is called to it, it is hoped that fuller material will become available. As noted under R. pedunculata, it is probable that this is the plant intended by Nees when, in DC. Prodr. xi. 197 (1847), he noted his quite different tropical Cryphiacanthus barbadensis as extending northward to Virginia and Carolina. No other plant known in the East satisfies his "pedunculis subcymosis petiolo longioribus vel et folium aequantibus superantibusve". We do not now know $R$. pinetorum from Virginia but so many species are now known to "jump" from eastern South Carolina or southeastern North Carolina to southeastern Virginia that $R$. pinetorum may well (before the destruction of most of the pine barrens) have been one of them. Really quite as closely related to the Ozarkian R. pedunculata, as is the Coastal Plain R. pinetorum, is the following beautiful species which centers on the Appalachian Upland.
5. R. Purshiana, sp. nov. (тab. 845 et tab. 846, fig. 3), planta habitu plantae simplicissimae $R$. pedunculatae; caule simplice recto vel ramis erectis paucis gracile $1.5-6 \mathrm{dm}$. alto cinereo-puberulo internodiis elongatis; foliis membranaceis majoribus elliptico- vel lanceolato-ovatis basi attenuatis apice obtusis vel acutis integris vel subtile undulatis ad venas puberulis plus minusve hirtellisque vel glabratis, axis primarii 3 - 6 -jugis remotis $2.5-10 \mathrm{~cm}$. longis $1.5-4.3 \mathrm{~cm}$. latis, petiolo gracili $0.5-2$ cm . longo; pedunculis 1 -floris $0.2-3 \mathrm{~cm}$. longis axillaribus ad $1-2$ $(-4)$ nodos imos apice bracteatis; bracteis ellipticis vel ovalibus; axillis superioribus efloriferis; calycis segmentis anguste linearibus $0.7-1.2 \mathrm{~mm}$. latis apice attenuatis minute cinereo-pilosis vel -hirtellis deinde $1.6-2.8 \mathrm{~cm}$. longis; corollis $3-5 \mathrm{~cm}$. longis caeruleo-purpureis vel pallide purpureis vel albescentibus, tubo cylindrico $1.5-3 \mathrm{~cm}$. longo, fauce ampliato supra $0.8-1.4 \mathrm{~cm}$. diametro, limbo (expanso) $3-4 \mathrm{~cm}$. lato; capsulis minute strigosohirtellis vel pilosis $1.5-1.8 \mathrm{~cm}$. longis; retinaculis $8 .-R$. ciliosa, var. hybrida Gray, Syn. Fl. N. Am. ii ${ }^{1}$. 326 (1878) in part only. R. parviflora sensu Britton in Britton \& Brown, Ill. Fl. ed. 2, iii. 241, fig. 3891 (1913) at least as to fig., not $R$. parviflora (Nees) Britt. (1901) at least as to basonym, Dipteracanthus ciliosus, var. parviforus Nees (1842).-Dry to moist woods, bluffs, granitic or calcareous slopes, etc., western Maryland, south along the mountains and locally on the Piedmont to eastern Virginia, central South Carolina, Georgia and Alabama. Maryland: FREDERICK co.: $W . F . A$. Aiken, as $R$. strepens, altered
to $R$. caroliniensis (Phil). Virginia: frederick co.: woods, Cedar Creek, June 2, 1929, Hunnewell, no. 11,135 (FWH); limestone cliffs, Cedar Creek, June 5, 1936, Hunnewell (VPI); both as $R$. caroliniensis, var. parviflora; Meadow Mills, June 9, 1935, O. M. Freeman (USNA), as $R$. ciliosa. rockingham co.: Paul's Fort, Frederick Pursh (Phil). Rockbridge co.: Natural Bridge, May 28 and 29, 1909, E. B. Bartram, as R. parviflora, one sheet (Gray) changed by later student to R. humilis "Pursh", another (Phil) to R. caroliniensis; "Glasgow", June 1, 1891, J. R. Churchill, as $R$. ciliosa, var. ambigua (Mo). botetourt co.: Indian Rock, June, 1887, H. E. Wetherill, as R. strepens (Pa). washington co.: shaly banks, vicinity of Mendota, L. G. Carr, no. 572, as $R$. caroliniensis. Roanoke co.: Roanoke, May 29, 1890, Brown, Hogg, Vail, Timmerman, Britton \& Britton, as $R$. ciliosa, var. ambigua (NY); wooded limestone slope along Roanoke River at Dixie Caverns, July 6, 1942, C. E. Wood, Jr., no. 3673, as $R$. caroliniensis. BEDFORD co.: July 8, 1871, A. H. Curtiss, one of the several quite dissimilar sheets marked by Gray as his R. ciliosa var. ambigua, one of the Curtiss specimens tagged by a later student as $R$. caroliniensis, the other as $R$. hybrida. amelia co.: June 5, 1937, J. B. Lewis, no. 626, as $R$. ciliosa, var. parviflora (VPI). henrico co.: Richmond, De Chalmot, as $R$. pedunculata (US). North Cairolina: orange co.: open woodś, Upper New Hope Creek, Duke Forest, May 27, 1932, Blomquist, no. 4911, as R. caroliniensis (I 1':e); New Hope Creek, Duke Forest, May 20, 1933, Blomquist \& Oosting, no. 3364, as R. parviflora (Duke); dry bank near University Lake, on Neville's Creek, northwest of Chapel Hill, May 29, 1940, Radford \& Stewart, no. 654a, as $R$. ciliosa (NC). Guilford co.: near High Point, May 22, 1902, Biltmore Herb., no. 14718d, as $R$. parviflora (NY, US). Forsyth co.: Salem, Schweinitz, as $R$. strepens, altered by others, first to $R$. ciliosa, later to $R$. caroliniensis (Phil); woods, Winston-Salem, Aug. 20, 1921, P. D. Shallert, as $R$. ciliosa, May 30, 1934, Schallert, no. 6509 , as $R$. strepens (Schallert). rutherford co.: Cuba, June 27, 1887, L. W. Lynch, no. 36, as $R$. strepens (NC). madison co.: Marshall, May 28, 1904, Biltmore Herb., no. 14718 ${ }^{\text {c }}$, as $R$. parviflora (US); dry woods, Hot Springs, June 2, 1899, J. R. Churchill, as R. ciliosa, var. parviflora (Mo). South Carolina: sijmter co.: Sept., 1937, E. E. Holdaway, no. 73, as R. ciliosa (Duke). Anderson co.: 1886, Miss F. Earl, as R. strepens (VPI); Andersonville, 1884, N. H. E. (NY). oconee co.: Keowee, May 20, 1906, H. D. House, no. 2171, as $R$. parviflora (NY). Georgia: without stated locality: mountains of Georgia, Chapman, as $R$. ciliosa, var. ambigua (Mo). burke co.: woods, Shell Bluff on Savannah River, April 23, 1936, Leeds \& Harper, no. 2756, as $R$. parviflora (Phil). oglethorf co.: granite outcrop west of Lex-
ington, May 28, 1934, Francis Harper, as $R$. parviftora (Phil). dekalb co.: Stone Mountain, May 23, 1897, Henry Eggert (Mo); mixed woods, Emory University campus, April 30, 1936, Don Eyles, no. 695, as R. parviflora (Duke). floyd co.: Rome, Chapman (Mo), as $R$. ciliosa, var. hybrida; dry hillsides near Silver Creek, May 11, 1899, Biltmore Herb., no. 849d, as R. ciliosa (type in Herb. U. S. National Herb.). Tennessee: knox co.: Knoxville, May 14, 1889, Lamson-Scribner, as R. strepens, changed by later students to R. ciliosa and to R. parviflora (US); woods and groves, Knoxville, July, 1897, Ruth, no. 9572, as $R$. strepens (NY); woodlands, Knox County, May, 1898, Ruth, no. 737, as $R$. strepens (NY). Alabama: blount co.: rocky woodlands, Bangor, May 20, 1902, Biltmore Herb. no. 14,718, as $R$. ciliosa, var. parviflora (US). Jefferson co.: Birmingham, May 24, 1901, F. S. Earle, as R. parvifora (NY). Map 4.

5 a . Forma claustroflora, f. nov. (тab. 846, fig. 1 et 2), floribus in glomerulis axillaribus aggregatis, glomerulis ad nodos omnes gestis; corollis tubulosis clausis $4-8 \mathrm{~mm}$. longis apice dense pilosis; capsulis numerosis.-Virginia: without stated locality: 1843, Gray \& Sullivant, as R. strepens. Rockbridge co.: "ex umbrosis Virginiae juxta Virginia Natural Bridge", Sept. 14, 1884, John Ball (US), identified by a later student as $R$. strepens, afterward changed to R. parvifora; Natural Bridge, Sept. 4, 1885, N. L. \& E. G. Britton, as R. strepens, var. cleistantha (NY). Tennessee: cocke co.: within three miles of Wolf Creek Station, Aug. 31, 1897, Kearney, no. 863, as R. ciliosa, var. hybrida (Mo and NC), type in Herb. Missouri Botanical Garden.

Ruellia Purshiana, named for Frederick Pursh, who first collected the species in the mountains of Virginia, is, when assembled from the very miscellaneous covers in which it has been confused, under 11 misidentifications, with no less than 7 species, stands out as a remarkably definite species of the Appalachian Upland. Although this is doubtless the plant chiefly intended by Gray when he conceived his $R$. ciliosa, var. ambigua, "as if a hybrid between $R$. ciliosa and $R$. strepens, with the aspect of the latter, but the calyx of the former", it can not be overlooked that Gray promptly lost his bearings in applying the name $R$. ciliosa, var. ambigua, for sheets carrying the printed annotation-slip "Syn. Fl. N. Amer." and marked by Gray as $R$. ciliosa, var. ambigua belong to no less than five species: the present one (in Herb. Gray); a Floridan sheet in Torrey's Herbarium containing at least three species, none of them like anything else included by Gray in his var. ambigua; and a mixed sheet in Herb. Gray, con-
taining a sprig of $R$. pedunculata Torr. from Arkansas and the top of a plant of the very different Texan R. Drummondiana (Nees) Gray (this mixed sheet later misidentified as $R$. "caroliniensis"). I have not located the Kentucky plant included by Gray under $R$. ciliosa, var. ambigua. Even though we can infer that by his description and note Gray meant chiefly the plant I am here calling $R$. Purshiana, it is evident that, as he originally labelled specimens, the name $R$. ciliosa, var. ambigua was emphatically a nomen ambiguum. The name has subsequently been further misapplied. I am, therefore, assigning to the species with somewhat the aspect of $R$. strepens but with much more slender calyx-segments a new name, typified by a characteristic sheet of specimens.

That Ruellia Purshiana simulates very extreme plants of $R$. strepens with short leaves there can be no question. Some specimens of the latter, especially those from upland and dry habitats, consequently with greatly reduced stature and abbreviated leaves, are superficially similar (such specimens as the following: dry ground, Chickamauga Park, Georgia, May 25, 1911, Churchill (G); open woodlands, Coalgrove, Ohio, Biltmore Herb., no. $4500^{\text {f }}$ (US); dry ground near Chattanooga, Tennessee, May 27, 1911, Churchill; and dry soil, Stevenson, Jackson County, Alabama, Biltmore Herb., no. $4500^{\mathrm{a}}$ (US)). There the resemblance stops, except for the possibly significant fact that both species have the showy flowers mostly solitary on few axillary peduncles and rarely producing fruit, and also have cleistogamous forms with glomerules of several highly fertile flowers in many of the upper axils. In $R$. strepens the stem is glabrous, pilose in lines or rarely over the whole surface; the lanceolate calyx-segments are flat to the tip, 2-4 mm . broad, and conspicuously villous-ciliate; and the capsules glabrous. R. strepens is usually a plant of rich calcareous woods, oftenest on wooded bottoms, with its greatest concentration in the Mississippi Basin (map 1). R. Purshiana (map 4) is a plant of dry rocky or upland habitats, sometimes on limestones but often (as on Stone Mountain) in granitic or somewhat acid soils. Its stem is closely cinereous-puberulent; its calyx-segments linear and only $0.7-1.2 \mathrm{~mm}$. wide below the middle, thence tapering to almost thread-like tips, and its surfaces are densely cinereous-hirtellous. The capsules, too, are
closely and minutely hirtellous. R. Purshiana was illustrated, erroneously as $R$. parviflora, in Britton \& Brown, Ill. Fl. ed. 2, iii. fig. 3891. It certainly has nothing to do with the type of R. parviflora, which rests upon Dipteracanthus ciliosus, var. parviflorus (see p. 2).

In its minutely puberulent and slender stem, its slender calyxsegments and pubescent capsule Ruellia Purshiana is similar to the simpler-stemmed and least floriferous states of the chiefly Ozarkian R. pedunculata (map 2); but in these least branching plants of $R$. pedunculata (plate 843) the peduncles are soon widely divergent; the linear-acicular calyx-segments taper from base to apex; the showy flowers are quite fertile and regularly followed by capsules. So far as we know $R$. pedunculata does not have a cleistogamous form.

Although Ruellia Purshiana has often been identified as $R$. ciliosa Pursh, R. caroliniensis (Walt.) Steud., R. parviflora (Nees) Britton, R. hybrida Pursh, and even as R. humilis Nuttall, such identifications merely reflect the general lack of clarity regarding specific characters and the current and still inevitable vagueness about the early-proposed species. The earliest of these names or their basonyms is Anonymos caroliniensis Walt. Fl. Carol. (our no. 11). Although no specimen now exists as type of Walter's, species, his remarkably detailed description, "caule tetragono hirsuto; foliis . . . hirsutis, . . . ; floribus sessilibus purpureis", surely does not apply to R. Purshiana. R. ciliosa Pursh (our no. 7) from near Savannah, was a branching plant, with subsessile ovate-oblong (really, apparently, obovate) leaves with margins and veins ciliate with long white hairs, the calyxsegments four times shorter than the corolla-tube (calycis laciniis subulatis tubo corollae quadruplo brevioribus). Such a plant could not be R. Purshiana; in fact, when Pursh twice collected the latter in the mountains of Virginia, he did not venture to name it. $R$. hybrida Pursh (see discussion under no. 11) also from Savannah, is quite as remote: much branched (ramosissima) and hirsute with white hairs, the oblong leaves densely hirsute, etc. R. humilis Nutt. (our no. 10), an essentially sessile-leaved and usually freely divergent-branched plant, originally from Arkansas, has nothing to do with $R$. Purshiana; and as to $R$. parviflora (see p. 2), that ill-defined name goes back to Dip-
teracanthus ciliosus, var. parviflorus Nees, from the Kentucky River, and with an impossible description for any North American member of Ruellia: with petioles $3-6$ inches long-foliis paulo longiori petiolo (3-6-pollicari)! Only by substituting for "petiolo" the word "pedunculo" could one make much sense out of Nees' diagnosis (if his plant was a Dipteracanthus and related to $D$. ciliosus) but even then his var. parviflorus remains wholly vague. It is not a good basis for the name of a common species with petioles rarely 1 cm . long, and surely it was not $R$. Purshiana.
6. R. heteromorpha, sp. nov. (тab. 847 et 848 ), planta dimorpha vel plus minusve heteromorpha. Caulibus vernalibus 1-3 basi plerumque decumbentibus jam adscendentibus simplicibus vel divergenter ramosis $0.4-4 \mathrm{dm}$. altis puberulis plus minusve patenter villoso-hirsutis, nodis $3-5(-10)$, internodiis $0.5-5 \mathrm{~cm}$. longis; foliis membranaceis obovatis vel ellipticis vel oblanceolatis breviter petiolatis integris vel obscure undulatis plus minusve lineolato-strigillosis supra villoso-strigosis basin versus villoso-ciliatis subtus strigoso-hispidis glabratisve, laminis maturis $1.5-4.5 \mathrm{~cm}$. longis $0.8-2.5 \mathrm{~cm}$. latis; pedunculis perbrevibus axillaribus ad 1-3 nodos superiores bracteatis; bracteis oblongis; calycis segmentis lineari-attenuatis vix 1 mm . latis villosociliatis $1.5-2 \mathrm{~mm}$. longis; corollis (rarissime 2) $3-5.5 \mathrm{~cm}$. longis coeruleo-purpureis vel pallide caerulescentibus late infundibuliformibus, tubo cylindrico $1.5-3 \mathrm{~cm}$. longo, fauce obconico supra $1-2 \mathrm{~cm}$. diametro, limbo (expanso) 3-4.5 cm. lato; capsulis glabris $1.1-1.6 \mathrm{~cm}$. longis; retinaculis 6 vel 8 . Caulibus seroTINIS decumbentibus vel prostratis elongatis ad 6 dm . longis deinde ramosissimis, floribus in glomerulis axillaribus terminalibusque aggregatis, corollis plerumque clausis clavato-tubulosis cleistogamicis $1-3 \mathrm{~cm}$. longis, vel corollis expansis reductisque; seminibus subrotundis $2.5-3.5 \mathrm{~mm}$. diametro. $R$. hybrida sensu Small, Fl. Se. U. S. 1084 (1903), presumably not Pursh, Fl. Am. Sept. ii. 420 (1814).-Dry sands among pines or palmettos, Keys and Everglades, north to east-central Florida: volusia co.: moist pine barrens, near Seville, Aug. 1, 1900, A. H. Curtiss, no. 6701A (US), July 30, 1909, Curtiss, no. 6701, as R. ciliosa, var., vernal fl. brevard co.: scrub, south of Eau Gallie, Dec. 1, 1919, Small, Britton \& De Winkeler, no. 9200 (NY, US), later state, as $R$. parviflora. st. lucie co.: (formerly included in Brevard Co.): edge of pond, Okeechobee region, April 18, 1903, Fredholm, no. 5808, vernal fl., as $R$. ciliosa, annotated in one herbarium (US) as $R$. parviflora, in another (G) as $R$. caroliniensis, with an unpublished varietal name); Indian River, $E d w$. Palmer, no. 348 (Mo), as $R$. strepens. de soto co.: dry gravelly
soil, below Arcadia, March 14, 1926, Mary H. Williams (Phil), as $R$. ciliosa, later annotated with an unpublished specific name. lee co.: Owanita, March 18, 1907, Wm. Kellogg, vernal fl., as $R$. ciliosa, later annotated as undescribed var. of $R$. caroliniensis; among palmettos, vicinity of Fort Myers, March 21, 1916, Jeanette P. Standley, no. 70, vernal fl., as $R$. humilis, later annotated like the last (G) and as R. parvifora (US) and as an undescribed species (Phil); in pineland, vicinity of Fort Myers, May 4, 1916, J. P. Standley, no. 425, vernal fl. (US), as $R$. humilis, later annotated as R. parvifora; in pineland, Mullock Creek District, about 8 miles southeast of Fort Myers, MayJune, 1917, J. P. Standley, no. 444, vernal fl., as R. humilis, annotated (G) as an unpublished var. of $R$. caroliniensis, (Phil) as an unpublished species, and (US) as R. parvifora; sandy pine woods along road to Coconut, April 14, 1930, Moldenke, no. 968, vernal fl. (Duke, Mo, NY). dade co.: dry sandy soil among palmettos, Buena Vista, Jan. 17, 1930, Moldenke, no. 426 (Duke, Mo, NY), as $R$. hybrida, vernal fl. and fr.; pinelands near Little River, Feb., 1917, W. E. Safford (US), as R. hybrida, later annotated as R. parviflora; Miami, April 4-7, 1898, Pollard \& Collins, no. 233 (US), as R. humilis, later annotated as $R$. parviflora, April 1, 1903, vernal fl., N. L. Britton (US), as R. hybrida, later annotated as an unpublished var. of $R$. caroliniensis, March 14, 1917, H. B. Meredith (Phil), vernal fl., passing to later stage, as $R$. ciliosa, later annotated as an unpublished species; pinelands between Miami and Kendall Station, Nov. 5 , 1906, Small \& Carter, no. 2603 (NY), later stage, as R. hybrida, later annotated as unpublished var. of $R$. caroliniensis; pinelands between Cocoanut Grove and Cutler, Oct. 31-Nov. 4, 1903, Small \& Carter, no. 1273 (NY as R. hybrida, Phil as R. parvifora, the former later annotated as an undescribed species), later stage; pinelands about Sykes Hammock, Everglade Keys, March 15, 1915, Small, Mosier \& Simpson, no. 5772, as $R$. hybrida, later annotated as an undescribed var. of $R$. carolinien-sis-type of R. heteromorpha in Herb. N. Y. Bot. Gard., vernal fl., passing to later stage; pinelands about Goodburn Hammock, Everglade Keys, June 31, 1915. Small \& Mosier, no. 6381 (NY); pinelands between Cutler and Longview Camp, Nov. 9-12, 1903, Small \& Carter, no. 1097, later state, labeled and annotated like the last; pinelands between Long Prairie and Camp Longview, Oct. 31, 1906, Small \& Carter, no. 2695 (NY), later state, labeled and annotated like the last; between Peter's and Long Prairie, Nov., 1906, J. J. Carter, no. 173 (Phil), as R. parviflora, later annotated as an undescribed species; pinelands about Humbugus Prairie, Feb. 28, 1915, Small \& Mosier, no. 5555 (NY), later state, as $R$. hybrida, later annotated as a var. of $R$. caroliniensis; pinelands between Peter's Prairie and Homestead, Nov. 10,

1906, Small \& Carter, no. 2701 (NY), later state, named as the last; pinelands about Ross-Costello Hammock, Everglades Keys, June 24, 1915, Small, Mosier \& Small, no. 6552, later state, as R. hybrida. monroe co.: woods, Pine Key, Blodgett, later state; pinelands, Big Pine Key, May 1, 1917, Small, no. 8142, vernal fl., as $R$. humilis. Map 5.

Although most often, following Small, identified as Ruellia hybrida Pursh, it can hardly be overlooked that $R$. heteromorpha is a species of southern Florida, most abundant in the subtropical Everglades and Keys regions, that its branches, as soon as developed, trail and greatly elongate, that the lower surfaces of its petioled leaves are glabrescent or nearly glabrous from the first (except for lineolate cystoliths and closely appressed strigae) while the upper surfaces are strigose, and that the tube of its fully expanded corolla is usually twice as long as the calyxsegments. R. hybrida, from Savannah, Georgia, was described as erect and very much branched, hirsute with white hairs; the subsessile oblong leaves densely hirsute; the calyx-segments scarcely shorter than the corolla-tube. That is not a good diagnosis of the present species. Furthermore, Savannah is about 180 miles (a significant distance) north of the northernmost known station for $R$. heteromorpha; and it is surely significant that Nees in DC. Prodr. xi. 123 (1847), indicating by a mark of affirmation that he had seen the Pursh material, cited as belonging with it Drummond's nos. 258 and 259, both of which belong in the essentially sessile- and oblong-leaved copiously white-villous-hirsute plant which Nuttall described from Arkansas as R. humilis, a species, moreover, which is unknown in eastern Georgia. Nevertheless, one can hardly pass by this identification by Nees, especially since the description of $R$. hybrida does not closely suggest $R$. heteromorpha. In view of his lack of material and his "lumping" of many different American plants as so-called varieties of his all-inclusive Dipteracanthus ciliosus, one can hardly accept the identification of Nees as final. Similarly, R. ciliosa Pursh, originally described as with subsessile, ovate-oblong leaves with margins and veins long-ciliate with white hairs, and also from Savannah, was by Nees, who evidently saw the original material, matched with the broader-leaved and longer-flowered extreme of the species which Nuttall described as $R$. humilis. Several of the numbers cited by Nees are before me. They are uniform and


Photo. B. G. Schubert.
Ruellia heteromorpha, later cleistogamous stage: fig. 1, portion of long fruiting branch, $\times 1$; figs. 2 and 3 , branchlets, $\times 1 / 2 ;$ fig. 4 , tip of branchlet, with two cleistogamous flowers, $\times 1$; fig. 5 , calyces and capsules, $\times 2$.


I'hoto. B. G. Schubert.
Ruelifa clliosa: figs. $1-3$, plants, $\times 1$; fig. 4 , summit of internode and base of caluline leaf, $\times 4$; fig. 5 , calyx and capsule, $\times 2$.
have nothing to do except generically with $R$. heteromorpha nor with any plant known from the Savannah region; $R$. parviflora, as already sufficiently emphasized (see p. 2), was a misbegotten name for some plant (surely not the present) with "petioles 3-6 inches long"; while $R$. caroliniensis goes back to Walter's remarkably clear description of a plant extending hundreds of miles north of $R$. heteromorpha, with distinctive characters which do not belong to the latter: ovate-lanceolate and hirsute leaves; throat of corolla campanulate, etc. When many of the specimens were annotated by an earlier student as an unpublished new species, they were given a name previously used by Nuttall for a quite different species (with rosettes of spatulate leaves, the plant I take to be Pursh's R. ciliosa, the $R$. humilis sensu Small, not Nutt.), but identical material of the same numbers was likewise annotated with 2 or more additional names. Under these circumstances it seems wiser to avoid publishing names so vaguely understood by their author and to start anew.

In its vernal showily flowering state, with simple or subsimple, erect stems (plate 847, figs. 1-3) Ruellia heteromorpha is so unlike the later state of the plant (plate 848, figs. 1-3), with trailing and elongate heavily fruiting and freely branching stems, and with smaller or even closed and cleistogamous flowers, that the two might be mistaken for two species. Transitions between the two states are, however, very numerous.
7. R. ciliosa Pursh. Rosulate copiously villous plant, either with main axis abbreviated ( $0.5-5 \mathrm{~cm}$. long) or elongated to 3 dm . high, the internodes copiously white-villous, the pairs of leaves in the abbreviated plants crowded, in the more open and elongate individuals the $2-5$ pairs remote, the stem often divergently branched, especially at base: lower subrosulate leaves oblong, oblong-obovate or oblong-oblanceolate to lance-spatulate, prolonged to subsessile bases, obtuse to rounded at summit, copiously lineolate and more or less villous-hirsute, the larger ones $2-10 \mathrm{~cm}$. long and $1-3 \mathrm{~cm}$. broad; the median leaves often much longer; the upper reduced and often crowded, both median and upper more definitely petioled, their margins often undulate: flowers mostly solitary in the axils, short-peduncled, the heavily villous peduncle terminated by 2 small oblong to lanceolate bracts: calyx-segments linear-acicular, copiously villous, $1.5-2.5$ cm . long: corolla bluish or lavender to nearly white, $2.5-5.5 \mathrm{~cm}$. long; the slender tube $1.3-3 \mathrm{~cm}$. long, the slenderly obconic throat $5-10 \mathrm{~mm}$. in diameter at summit, the expanded limb
$2.5-5 \mathrm{~cm}$. broad: capsule $1.3-2 \mathrm{~cm}$. long, glabrous; retinacula 6 or 8: seeds suborbicular, about 3 mm . in diameter.-Fl. Am. Sept. ii. 420 (1814), not most later auth. Dipteracanthus ciliosus (Pursh) Nees in Linnaea, xvi. 204 (1842), not in DC. Prodr. xi. 122 (1847), which was a hopeless mixture. $R$. humilis sensu Small, Fl. Se. U. S. 1084 (1903), not Nutt.-Dry pine barrens and sands, South Carolina to central Florida and southeastern Louisiana. South Carolina: without stated locality: "Hab. in Carolina", H. M. Altorp (Mo). darlington co.: sandy soil in Sheep Pasture Savannah at Hartsville, B. E. Smith, no. 1651 (NC), dwarf state, as $R$. humilis; sandy soil between Darlington and Hartsville, B. E. Smith, no. 916 (NC), tall state, as $R$. hybrida Pursh. sumter co.: pine barrens near Cane Savannah, Witmer Stone, no. 426 (Phil), as R. humilis. Georgia: without stated locality: Nuttall, as an unpublished new species (Phil); Boykin (Phil). camden co.: lowland, Grace J. Schallert, no. 13,127 (Schallert). charleston co.: "Extreme drought conditions", Gopher Ridge (sandy), near Sterling Branch, Jean Sherwood Harper, no. 419 (Phil), as R. humilis. worth co.: vicinity of Poulan, Pollard \& Maxon, no. 574, as $R$. humilis, later annotated (G) correctly as $R$. ciliosa. mitchell co.: Camilla, S. M. Tracy, no. 3532 (Mo), as R. strepens. FloridA: duval co.: dry pine barrens, A. H. Curtiss, no. 1944*, as an unpublished var. of $R$. strepens, in some herbaria altered to $R$. ciliosa, in others to R. humilis; Jacksonville, 1875, A. H. Curtiss (US), correctly as $R$. ciliosa, annotated as $R$. humilis; dry pine barrens, Fredholm, no. 5085, as R. ciliosa, var. longiflora Gray. st. Johns co.: near St. Augustine, June, 1883, T. F. Seal (Phil). orange co.: sand, Winter Park, April, 1900, A. M. Huger (NY), as $R$. humilis; sandy pine barren, Lake Brantley, C. S. Williamson (NY), as $R$. strepens, altered to $R$. humilis; Clarcona, 1899, A. J. Pieters, no. 120 (US). lake co.: Okahumpha, March 5, 1888, Isaac Burk (Phil); vicinity of Eustis, Nash, no. 183. hernando co.: dry sandy woods, Brookeville, Moldenke, no. 5948 (NY). pasco co.: high pineland, Blanton, Barnhart, no. 2653 (US), as $R$. humilis. hillsboro co.: Tampa, June-Aug., 1898, A. M. Ferguson (Mo). marion co.: turkey-oak woods, east of Citra, April 14, 1940, W. A. Murrill (Mo), as R. humilis. alachut co:: Gainesville, G. S. Miller, no. 437 (US) as $R$. humilis; scrub west of Carroll's, near Gainesville, May 28, 1936, W. A. Murrill (Mo), as $R$. humilis. suwanee co.: Live Oak, S. M. Tracy, no. 6684 (NY), as $R$. humilis. GADSDEN Co.: in pinetis, prope Quincy, Mai-Jul. 1843, Rugel (NY), as R. strepens; grassy, white sandy dry field under pine, River Junction, Wiegand \& Manning no. 2927, as $R$. humilis. liberty co.: Bristol, Chapman (Mo, US). calhoun co.: Wewahitchka, Chapman (Mo). holmes co.: Ponce de Leon, June 20, 1905, J. M. Mac-
farlane $(\mathrm{Pa})$. walton co.: dry open woods, Crestview, A. H. Curtiss, no. 6489, in part, as $R$. humilis. okaloosa co.: near Camp Pinchot, June 21, 1928, O. M. Freeman (USNA), as $R$. humilis. Alabama: without stated locality: $R$. Haines, from Gates (Phil). chilton co.: Clauton, Pollard \& Maxon, no. 273 (US), as R.humilis. elmore. co.: Deatsville, Pollard \& Maxon, no. 305 (US), as $R$. humilis. washington co.: Fruitdale, July, 1904, So. Floral Nursery Co. (Mo), as R. humilis. baldwin co.: dry woods, Magnolia Springs, June 25, 1909, Schallert (Duke); dry open woods, Point Clear, 1896, Mohr (US); dry pine barrens about $1 / 2$ mile west of Elberta, R. M. Harper, no. 3795. mobile co.: dry pine woods, Mobile, July, 1877, Mohr (US); pine barrens, Spring Hill, E. W. Graves, no. 498 (? or 948), in part only (Mo, US), as $R$. humilis. Mississippi: Jasper co.: Heidelburg, Tracy, no. 3324 (US), as R. humilis. wayne co.: Waynesboro, Pollard, no. 1221 (Mo, NY, US), as R. humilis. harrison co.: Beauvoir, S. M. Tracy, no. 4942 (US), as R. humilis; Biloxi, Tracy, no. 6433 (US), as $R$. parviflora, altered to $R$. humilis; Ocean Springs, A. B. Seymour, no. 153, as R. humilis, var. longiflora. Louisiana: orleans parish: New Orleans, Drummond. pointe coupée parish: dry sandy soil, Red River, Hale. Plates 849 and $850 ;$ MAP 6.

Among the very diverse plants which have been identified with Ruellia ciliosa Pursh the present species seems to me most likely to be what he had from Savannah. His description, emphasizing the subsessile ovate-oblong leaves (remembering that Pursh used "ovate" for truly ovate and for obovate outlines) with long white ciliation, the bracts lanceolate, the subulate calyx-segments one fourth the length of the corolla-tube, was better for this plant than for most of the species (with ovate or lanceolate and petioled leaves) to which the name has been applied. Pursh's account was as follows
ciliosa. 4. R. erecta, ramosa; foliis subsessilibus ovatooblongis margine nervis venisque pilis albis longe ciliatis, bracteis lanceolatis brevibus, calycis laciniis subulatis tubo corollae quadruplo brevioribus.
Near Savannah, Georgia. 24. July. v.s. in Herb. Enslen.

Since this is the only plant which approximately satisfies the diagnosis and since it extends northward across South Carolina, I am retaining the name Ruellia ciliosa for it. When the actual type can be examined some revision may be necessitated. In DeCandolle, Prodr. xi. 122 (1847) Nees introduced a confusion
which has lasted for nearly a century, by citing under Dipteracanthus ciliosus a number of Drummond and other specimens, from Texas to Missouri, which belong to the wholly different $R$. humilis Nutt. The latter, of which a type or isotype is before me, is a definite and wide-ranging inland species, quite unknown on the Atlantic slope of South Carolina and Georgia, with essentially sessile, oblong, ovate or lanceolate leaves with none of the subspatulate or obovate tendency of $R$. ciliosa and never, so far as I have seen, with the slightest rosulate tendency. The type of $R$. humilis was from Arkansas. Nevertheless, Small, clearly describing as $R$. humilis only the dwarfer plants of $R$. ciliosa, gave it, as $R$. humilis, the range: "Georgia and Florida to Mississippi", thus excluding the type-region. By Small's account, his " $R$. humilis" had the "Stems very short, $1-3 \mathrm{~cm}$. long". The majority of collections show some individuals with stems $0.3-3 \mathrm{dm}$. high, many of them from Florida; I cannot make out how Small disposed of them, for their leaf-outline and extreme villosity keep them out of his other categories.
(To be continued)

Carex cristatella in New Hampshire.-A few hundred yards from where I live in Durham is a swale through which a small brook flows, an area which for a considerable number of years, at least, has been unmowed. Having passed by this relatively unspoiled area often while on my way to work, I finally decided to investigate it. Amongst the abundant Carices there, one species in particular, bearing spikes of globose to subglobose and very conspicuous heads on sturdy culms, quickly attracted my attention. It proved to be Carex cristatella Britton.

Mackenzie ${ }^{1}$ gives its distribution as "swampy meadows and thickets, eastern Massachusetts to North Dakota and southward to Virginia and Missouri", though immediately after he states "(Specimens examined from Quebec, Vermont, . . .)".
In New England, north of Connecticut and Rhode Island, Carex cristatella seems to be common only in the western parts of Massachusetts and Vermont. Outlying stations in Massachusetts noted in the Gray Herbarium are at Wilbraham Moun-

[^2]tain, F. C. Seymour No. 644, and at Framingham, July 16, 1905, F. F. Forbes, the latter place some sixty miles southwest of Durham. The nearest this species approaches us in Vermont seems to be Danville, which is nearly a hundred miles to the northwest.

The Durham collection, A. R. Hodgdon No. 4122, has been placed in the Gray Herbarium as well as the Herbaria of the New England Botanical Club and the University of New Hamp-shire.-A. R. Hodgdon, University of New Hampshire, Durham, New Hampshire.

Euphrasia canadensis in Massachusetts.-While working over the lower eastern slopes of Mt. Greylock on August 11 and 12, 1944, I found Euphrasia canadensis at three stations in the town of Adams. The first was in wet land by the roadside between Hoxie Brook and the Theil Farm, which is now a part of the State Reservation. A second station, about a mile and a half from the first, was in dry grassy pasture-land at the top of a bank by the upper road leading southward from Peck's Brook toward Cheshire Harbor; here the plant was in considerable abundance. A few others were noticed at a third station, on a cut by the roadside on Fiske Street, nearer the village of Adams.

Prof. Fernald writes me that these are the first specimens of this plant he has seen from south of the Maine coast or the White Mountain region.

Material from the second station has been deposited in the Gray Herbarium and in the Herbarium of Massachusetts State College.-Arthur K. Harrison, Massachusetts State College, Amherst.

Vegetative Reproduction in Carex tribuloides and C. projecta.-In an interesting little article on sympodial and monopodial growth in American Carices ${ }^{1}$, Theodor Holm remarks incidentally that the vegetative shoots of Carex tribuloides sometimes develop small axillary buds, "which, however, die off at the same time as the entire shoot itself." The last observation is by no means always correct; both in C. tribuloides and its near

[^3]relative, C. projecta, the buds may become an effective means of vegative propagation.

My attention was drawn to the matter while collecting, last summer, on the island of Grand Manan in Charlotte County, New Brunswick. In moist, well shaded ground along a brook I ran across a luxuriant clump of C. projecta. On the damp soil about its base lay prostrate culms of the previous season, their original blades and sheaths withered and brown, but with slender young shoots up to 5 cm . long arising from just such buds as Holm described and already beginning to take root. Obviously there were here the makings of new individuals, and since the leafy culms may reach a height of $4-5 \mathrm{dm}$. they would, if they fell outward, carry the young plants beyond the range of fatal competition with the parent rhizome.

The buds develop at the very base of the old sheaths-i. e. at the nodes-and inside them. They produce four or five short, stiff, veiny blades which apparently function as bud-scales. With their protection, the buds live independently over winter; the old culms are flaccid and seemingly dead to the very base and to all appearance could furnish no nutriment. The new shoots soon force their way out of the sheaths; but if the sheath below the point of origin of the bud is not thoroughly decomposed, the first root may grow down inside it to a distance of 2 cm . In the Grand Manan specimen, the roots also had made their way out and into the soil.

Three sheets of $C$. tribuloides and 10 of $C$. projecta in the Gray Herbarium show sprouting buds in more or less advanced stages. There would probably be more if collectors had less often been contented to snatch a culm or two and leave the rest of the plant behind. It would seem that someone must have noticed a phenomenon so far from rare, but I find no mention of it in the literature at hand.-C. A. Weatherby.

Volume 46, no. 552, including pages 453-516 and title-page of volume, was issued 16 December, 1944.


Photo. B. G. Schubert.
Ruellia ciliosa: fig. 1, plant, $\times 1$; fig. 2, basal branch, $\times 1$; fig. 3 , large-flowered branch, $\times 1$.


## JOURNAL OF THE

NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by MERRITT LYNDON FERNALD, Editor-in-Chiof

CHARLES ALFRED WEATHERBY ALBERT FREDERICK HILL STUART KIMBALL HARRIS

Associate Editors
Vol. 47. February, 1945. No. 554.
CONTENTS:
Notes on Plants of Central Pennsylvania. Herbert A. Wahl. ..... 41
Hairy Variety of Sweet Pignut in New England. Wayne E. Manning ..... 46
Perezia aletes an Argentinian Species. M. L. Fernald. ..... 47
Ruellia in the Eastern United States (continued). M. L. Fernald. ..... 47
Marine Algae of the Monterey Peninsula (Review).
Roy M. Whelden ..... 63

## Uhe sew $\mathbb{E}$ ngland 据otanical Club, Jinc.

 8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.
#### Abstract

RHODORA.-A monthly journal of botany, devoted primarily to the fora of the Gray's Manual Range and regions floristically related. Price, 84.00 per year, net, postpaid, in funds payable at par in United States currency in Boston; single copiea (If available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd cover. page). Volumes $1-9$ can be supplied at $\$ 4.00,10-34$ at $\$ 3.00$, and volumes $35-46$ at 4.00. Some single number: from these volumes can be supplied only at advanced pricea (see 3rd cover-page). Somewhat reduced rater for complete sets can be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern states, will be conaidered for publication to the extent that the limited space of the journal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pages of prini) will receive 15 copies of the issue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in ad. vance, will be furnished at cost.

Address manuscripts and proofs to M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass.

Subscriptions (making all remittances payable to RHODORA) to Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford St., Cambridge 38, Mass. Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Act of March 3, 1879.


## INTELLIGENCER PRINTING COMPANY

## Specialists in Scientific and Technical Publications

EIGHT WEST KING ST., LANCASTER, PA.

## CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES OF AMERICAN PLANTS, 1885 TO DATE.

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at $\$ 22.50$ per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

GRAY HERBARIUM of Harvard University, Cambridge 38, Mass., U. S. A.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals. sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. $\$ 3.00$.
No. III. The Linear-leaved North American Species of Potamogeton Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. $\$ 3.00$.
No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. $68 \mathrm{pp} .1939 . \$ 1.50$.
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

Gray Herbarium of Harvard University, Cambridge 38, Mass.

# IRbodora 

JOURNAL OF

## THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
February, 1945.
No. 654.

## NOTES ON PLANTS OF CENTRAL PENNSYLVANIA ${ }^{1}$ <br> Herbert A. Wahl

It is the purpose here to record the occurrence of some plants in Central Pennsylvania which have not previously been reported from the state, or that reach a limit of their present distribution in this region, or that are otherwise noteworthy because of their distribution. Specimens of all the plants mentioned are deposited in the herbarium of The Pennsylvania State College and duplicates of most of those collected by the author have been distributed to other herbaria, including the University of Pennsylvania, Cornell University and The Gray Herbarium.

Potamogeton Oakesianus Robbins. In 1-2 feet of water in small pool in Oak Barrens at Scotia, 4 miles W. of State College, Centre Co., June 28, 1940. Wahl 758.

The determination has been checked by Ogden, who had seen no Pennsylvania specimens before the publication of his monograph ${ }^{2}$. Well established at Scotia in shallow ponds and pools formed by iron-ore mining. Another sheet in the herbarium of The Pennsylvania State College labelled "Barrens Swamps Aug. 1857. Lowrie" was probably collected in Huntingdon County. It is here near the southern limit of its distribution, although it occurs also in the eastern part of the state.
P. natans L. Black Moshannon, 8 mi . E. of Philipsburg, Centre Co., July 4, 1921. L. W. Nuttall. Not recorded for Pennsylvania by Ogden (loc. cit.) but probably of more frequent occurrence than the reports indicate.
${ }^{1}$ Contribution from the Department of Botany, The Pennsylvania State College No. 145.
${ }^{2}$ Rhodora, 45: 57-105, 119-163, 171-216. 1943.

Bromus ciliatus var. intonsus Fernald. Wet meadow 1 mi . E. of Ridgeway, Elk Co., Sept. 6, 1940. Wahl 853. Dry clearing beside Black Moshannon Lake, 8 mi . E. of Philipsburg, Centre Co., Aug. 4, 1941. Wahl 1065. Stream-bank 5 mi. S. E. of Philipsburg, Aug. 18, 1941. Westerfeld 245 . Roadside in woods 41/2 mi. S. E. of Philipsburg, July 22, 1942. Westerfeld 1499. Not recorded for Pennsylvania by Hitchcock ${ }^{1}$ but is of frequent occurrence especially in the northern counties.
B. japonicus Thunb. var. porrectus Hackel (See Rhodora, 43: 529). In waste field at State College, Centre Co., June 11, 1942. Wahl 1309. Around stone-pile in hay-field $21 / 2 \mathrm{mi}$. S. S. W. of Bellefonte, Centre Co., June 24, 1942. Wahl 1319. A relatively recent introduction. Pennsylvania records have been lacking.

Glyceria Fernaldii (Hitchc.) St. John (G. pallida var. Fernaldii Hitchc.). Moist soil around Black Moshannon Lake 8 mi . E. of Philipsburg, Centre Co., July 16, 1938. Wahl 190.

This is the only known Pennsylvania record and apparently the southernmost station for this plant of distinctly northern distribution. Since the collection in 1938, the station has been used extensively as a picnic ground. Recent search has failed to relocate the plant, so it is assumed to have been eradicated here.
G. borealis (Nash) Bachelder. Growing in edge of water, pond at log-jam, Black Moshannon, Centre Co. Nuttall, July 18, 1921. The only other report for this species in Pennsylvania is one listed as doubtful by Gress ${ }^{2}$.

Eragrostis poaeoides Beauv. Waste place near C. C. C. camp S-103, Laquin, Overton Twp., Bradford Co., Aug. 1, 1942. Westerfeld 1187. Not listed for Pennsylvania by Hitchcock ${ }^{1}$ but occurs also in other places in the eastern part of the state.

Calamagrostis Porteri A. Gray. Woods $3 / 4 \mathrm{mi}$. S. of Warriors Mark, Huntingdon Co., Lowrie, Aug. 21, 1865. Open woods 2 mi . E. of Coburn, Centre Co., Wahl, July 8, 1933.

The distribution and identity of $C$. Porteri and its close relatives have been admirably discussed by Father Louis-Marie ${ }^{3}$, who also has verified the determinations of the above collections. The Huntingdon County station is approximately 10 mi. north of Porter's original station near Alexandria, while the Centre County station is about 70 miles N. E. Gress ${ }^{4}$ also reports it

[^4]from Blairs Mills, Huntingdon County, about 50 miles S. E. of Alexandria and from Lackawanna and Monroe Counties in Northeastern Pennsylvania. These additional stations help to fill in the Alleghenian distribution of this rare grass.

Agrostis perennans forma chaetophora Fernald. 2 mi . N. W. of Petersburg, Huntingdon Co., Sept. 21, 1941. Wahl 1164. 8 mi . N. of McAlevys Fort, Huntingdon Co., Aug. 18, 1943. Wahl 1389. Two other sheets from Huntingdon County and two collections by Nuttall from near Philipsburg in Centre Co., show this awned form of Agrostis perennans, described by Fernald ${ }^{1}$ from Huntingdon Co., to be fairly common in the mountainous parts of Huntingdon and Centre Counties.
A. perennans var. aestivalis Vasey, forma atherophora Fernald. "Allegheny Mt." Sept. 1873. Lowrie. (Probably Huntingdon or Blair Co.) Described by Fernald ${ }^{3}$ from Quebec and not otherwise reported. Most of the above were originally labeled A. canina.

Panicum Leibergii (Vasey) Scribn. Limestone outcrop along railroad at west edge of State College, July 10, 1941. Wahl 1035A.

The colony consists of only a few plants which have persisted in a healthy and vigorous condition, but without spreading, since their discovery. The only known record for Pennsylvania.

Carex festucacea Schkuhr. Open woods at Ingleby, 2 mi. E. of Coburn, Centre Co., June 13, 1934. Wahl. Fairly abundant at this locality, the only station known to the author in central Pennsylvania.
C. Richir (Fern.) Mackenzie. Ashy spot in acid marshy meadow at Avis, Clinton Co., June 3, 1938. Wahl 119. The only station known to the author in central Pennsylvania. Sporadic in its distribution. Listed from several counties by Bright ${ }^{2}$.
C. straminea Willd. Edge of small temporary pool 4 mi . W. of State College. June 22, 1937. Wahl. Edge of dried-up waterhole 4 mi . N. W. of State College. July 1, 1941. Wahl 1034.

The distribution of this species given by Mackenzie ${ }^{3}$ as being chiefly coastal adds significance to central Pennsylvania stations although it is a rare sedge here. Listed also by Bright ${ }^{2}$ from several western counties.

[^5]C. aenea Fernald. Very dry gravelly bank 3 mi . N. of Lock Haven, Clinton Co., May 28, 1931. Wahl.

When the above specimen was collected it was placed in the herbarium under $C$. foenea Willd. (C. argyrantha Tuckerm.) and so remained until 1940 when its identity as $C$. aenea was suspected by the author and confirmed by Professor Fernald. The material was taken from a single large plant growing on what was then a newly formed roadside fill. A brief visit to the station in June, 1940, failed to relocate the plant, but further search is necessary to determine if the species is still present so far removed from its nearest reported stations in New York and Connecticut.

## C. Geyeri Boott.

The local occurrence of this sedge, not otherwise known east of Colorado, was reported by Clausen and Wahl ${ }^{1}$. Its local distribution has now been determined as extending over an area approximately 4 miles long by $1 / 2$ mile wide where it is chiefly confined to wooded areas on the north-west-facing slope of a valley, usually near limestone outcrops. It is especially abundant where white pine occurs intermixed with the hardwoods. It has every appearance of being indigenous to the area.
C. Sprengelii Dewey. In shallow soil at top of shaded rocky outcrop $1 / 2 \mathrm{mi}$. N. W. of State College. May 23, 1943. Wahl 1348. The only station known in this part of the state but present also in eastern counties.

Juncus balticus Willd. var. littoralis Engelm. Marshy meadow 1 mi . E. of State College. July 24, 1931. Wahl.

This characteristic plant of brackish shores here grows in a small dense colony in a distinctly calcareous marsh associated with Carex prairea, C. Schweinitzii, C. hystricina, etc. Of sporadic distribution in the state, but here near its southern limit. Known also from Erie Co. (Presque Isle), Lehigh and Lancaster Counties.

Stellaria calycantha var. isophylla (Fernald) Fernald ${ }^{2}$. Stream-bank, 5 mi S. E. of Philipsburg, Centre Co., May 27, 1941. Westerfeld 358.
S. calycantha var. floribunda (Fernald) Fernald ${ }^{2}$. Wet place along Wallace Run 4 mi . N. of Unionville, Centre Co., June 2, 1941. Wahl 986.
${ }^{1}$ Rhodora, 41: 28-34. 1939.
2Rhodora, 42: 254-259. 1940.

These varieties are here at or near the southern limit of the distribution of the species.

Holosteum umbellatum L. In cultivated field at State College, May 17, 1943. Wahl 1344. The first collection of this weedy species from the local area.

Erucastrum gallicum (Willd.) Schultes. In corn-field at State College, October 6, 1941. Wahl 1226. Likewise the first local record of this weedy species which is becoming widely distributed.

Lespedeza stipulacea Maxim. In field not cultivated for several years, 3 mi . S. of Centre Hall, Centre Co., October 5, 1940. Wahl 897.
L. cuneata (Dumont) G. Don (L. sericea Miq.). In field not cultivated for several years 5 mi . N. W. of State College, October 8, 1941. Wahl 1248.

Both of the above species of Lespedeza are plants that are grown for forage and have become established in the fields where they occur but have not spread. Both constitute the first and only known records for the species from this area. The author is indebted to the late Dr. K. M. Wiegand for the determination of the former and to Dr. F. J. Hermann for the latter.

Hypericum gymnanthum Engelm. \& Gray. Edge of dried-up pool in Oak Barrens 2 mi. N. W. of State College, August 17, 1938. Wahl 113.

This isolated colony, the only known local station, possibly represents the northernmost point of distribution for this species.

Lonicera villosa var. tonsa Fernald. Marsh at Black Moshannon, 8 mi . E. of Philipsburg, May 8, 1941. Wahl and Sinden 927 and 928, also 1033, July 1, 1941.

This shrub reaches the southern limit of its distribution in Pennsylvania, where it is known from Warren and Monroe Counties in addition to the above station in Centre County. The Centre County plants differ from the description of var. tonsa in having some of the branchlets pilose.

The locality around Black Moshannon is noteworthy because of the occurrence here of several plants of distinctly northern distribution. Those mentioned in this paper as here reaching or approaching the southern limit of their present range are Glyceria Fernaldii, Glyceria borealis and Lonicera villosa var. tonsa. Also present are such plants of boreal affinities as Rhamnus alnifolia, Sanguisorba canadensis, Poa saltuensis, Dalibarda repens and

Cornus canadensis. The locality is on the Allegheny Plateau, about three miles from its south-east edge, at an altitude of about 1880 feet.

Eupatorium altissimum L. Dry bank 2 mi . W. of Spring Mills, Centre Co., August 6, 1939. Wahl 330. Dry roadside 1 mi . W. of Spring Mills, September 3, 1939. Wahl 419. The only stations known in Central Pennsylvania and here at or near its northern limit. Occurs sparingly in the S. E. part of the state.

Grindelia squarrosa var. serrulata (Rydberg) Steyermark. Dry roadside 4 mi . N. E. of Bellefonte, Centre Co., July 30, 1941. Wahl 1047. A western species locally and sparingly introduced in the east. The only other Pennsylvania record for this variety is from Erie County. ${ }^{1}$

Aster lucidulus (Gray) Wiegand. Moist soil along stream at Oak Hall, September 10, 1939. Wahl 443. Marshy place along stream at Linden Hall, September 25, 1939. Wahl 526. Wet field along stream $1 / 2 \mathrm{mi}$. E. of Lemont, September 27, 1941. Wahl 1200B. Fairly abundant along about $41 / 2$ miles of the upper reaches of Spring Creek between Lemont and Linden Hall in Centre County. The only known Pennsylvania records for this more northern species.

Carduus acanthoides L. Dry field at Oak Hall, Centre Co., September 25, 1941. Wahl 1200. Quite abundant at this station and with scattered patches extending about five miles northeast. Occurs sparingly in the eastern part of the state.

The Pennsylvania State College

Hairy Variety of Sweet Pignut in New England-Carya ovalis (Wang.) Sarg. var. hirsuta (Ashe) Sarg. (see Sargent, C. S., Bot. Gaz. 66: 247 , 1918) has been collected in several localities near Northampton, Mass., and on Meetinghouse Hill, Winchester, New Hampshire. This variety differs from the other varieties or forms of the species in having the rachis and often the lower surface of the leaflets densely pubescent, some of the hairs fascicled, others single. Several features vary as in the species as a whole. Thus, the leaflets range from 5 to 7 ; the fruit is quite diverse in shape and size, in the amount of splitting of the husk, and in the roughness of its surface; the bark varies from scaly to tight. The fruit on some trees approaches that of $C$. glabra. This variety is probably found locally throughout much

[^6]

Photo. B. G. Schubert.
Ruellia succulenta: fig. 1, portion of flowering plant, $\times 2 / 5$; fig. 2 , fruiting branch, $\times 1$; FIG. 3 , summit of internode and bases of leaves, $X 4 ;$ fig. 4 , lower surface of leaf, showing cystoliths, $\times 10$; figs. 5 and 6 , median and terminal flowering nodes, $\times 1$; FIG. 7, calyx and fruit, $\times 2$


Ihoto. B. G. Schubert.
Ruellia noctiflora: fig. 1 , base of plant, $\times 1$; figs. 2,3 and 4, flowering tips, $\times 1$ (fig. 3, isotype); fig. 5 , summit of internode and bases of leaves, $\times 4$; fig. 6, calyx and capsule, $\times 2$
of the range of the sweet pignut in eastern United States from the place of original description in North Carolina to New Hampshire. It might be confused vegetatively with C. ovata and C.tomentosa (C. alba) in New England, and with C. pallida in the southeast. The subapical tufts of hairs on the serrations of the leaflets (see Manning, Amer. Jour. Bot., supplement Dec. 1942, p. 13s) and the persistent coriaceous dark outer bud-scales of the longer terminal buds are distinctive for the shagbark. The hairy twigs, the definitely separated fascicles of quite curly hairs on the rachis, giving this a shaggy appearance, the constantly fascicled hairy lower leaflet-surface, the stout branchlets, and the large buds distinguish the mockernut. The pale hickory differs only in the clearly separated fascicles of curly hairs on the rachis together with the pale and, except for the midrib, glabrous lower surfaces of the leaflets. A paper giving distribution, notes, and a key will be published later.-Wayne E. Manning, Northampton, Mass.

Perezia aletes an Argentinian Species.-In Rhodora, xx. 151 (1918), Perezia aletes Macbride was described as a new species, casually adventive from somewhere, found in 1917 as a gardenweed in North Worcester, Massachusetts. It has not been subsequently reported; furthermore, Dr. I. M. Johnston has, correctly it would seem, identified the specimen with $P$. sonchifolia Baker, a characteristic species of Argentina. Unless it subsequently appears to have got a real foothold, the species can be considered only a temporary and casual adventive.M. L. Fernald.

## RUELLIA IN THE EASTERN UNITED STATES

M. L. Fernald

(Continued from page 38)
In northwestern Florida there occurs a localized variety which differs from wide-ranging Ruellia ciliosa in suppression of the pubescence, the internodes being merely cinereous-puberulent, and the calyx-segments, though long-ciliate, covered on the back with cinereous pulverulence. This should be called

Var. cinerascens, var. nov., caulis internodiis cinereo-puberulis; calycis laciniis dorso cinereo-pulverulentibus margine villoso-ciliatis.-Northwestern Florida: walton co.: dry open woods, Crestview, July 22, 1899, A. H. Curtiss, no. 6489 in part, distrib. as $R$. humilis (Mo, NY, US (Type in U. S. Nat. Herb.)). escambia co.: Fisherville, near Pensacola, June 17, 1905, J. M. Macfarlane (Pa)."
8. R. succulenta Small. Erect or nearly so, with simple hollow and fleshy stems or erect branches $1.5-7.5 \mathrm{dm}$. high, the internodes sparingly puberulent or generally glabrous, purplish: leaves succulent, purplish, oblanceolate, narrowly obovate or oblong, narrowed to definite petioles, glabrous or minutely hirtellous and glabrate, undulate, the surfaces more or less lineolate; larger blades $3-6 \mathrm{~cm}$. long and $0.7-2 \mathrm{~cm}$. wide: flowers 1-3 on very short glabrous axillary peduncles: bracts small, lanceolate or oblong, glabrous: calyx-segments linear-filiform, $1-2 \mathrm{~cm}$. long, glabrous or sparsely ciliate: corolla blue-purple, $2.5-4.5 \mathrm{~cm}$. long, or the latest ones smaller; the slender tube $1.5-2.5 \mathrm{~cm}$. long, the slenderly campanulate throat $0.7-1 \mathrm{~cm}$. in diameter at summit, the expanded limb $2.5-4 \mathrm{~cm}$. broad: capsule glabrous, rarely strigose, $1-1.5 \mathrm{~cm}$. long, longer or slightly shorter than calyx.-Bull. N. Y. Bot. Gard. iii. 437 (1905).Everglades region of southern Florida: desoto co.: sandhills, Avon Park to Sebring, Small \& DeWinkeler, no. 9047 (NY). lee co.: hammocks, Myers, Hitchcock, no. 261. dade co.: border of wet prairie, Bay Biscayne, A. H. Curtiss, no. 5500 E ; near Cutler, A. A. Eaton, no. 257; in everglades near unfinished railroad grades, between Coconut Grove and Cutler, Small \& Carter, no. 1721 (isotypes); northwest of Perrine, Small \& Carter, no. 2999; west of Perrine, Small, no. 7880; west of Peters, Small, nos. 7917 (NY) and 7923 (NC, NY, Pa); between Peter's Prairie and Homestead, Small \& Carter, no. 2702 (NY); glade, Black Point Bridge, below Cutler, J. P. Young, no. 319 (US); hammocks, Black Point, Small \& Carter, no. 1101 (NY); pinelands, Large Island, east of Naranja, Small \& Carter, no. 3070 (NY); pinelands about Sykes Hammock, Small, Mosier \& Small, no. 5659 (Duke, NY); hammocks on prairie east of Florida City, Small, no. 8080 (NY); near the Homestead Trail, Small, no. 2256 (NY); west of Camp Jackson, Small \& Wilson, no. 1844 (NY); Camp Jackson to Camp Longview, Small, Carter \& Small, no. 3490 (NY); Paradise Key and vicinity, Safford \& Mosier, no. 207 (US). monroe co.: everglades, intersecting Long Key, Small \& Carter, no. 3017 (NY). Plate 851; map 7.

In its stiffly upright habit, glabrescent and more or less fistulous stems, fleshy purplish leaves and relatively short calyx Ruellia succulenta is not likely to be confused with more northern species.

Small contrasted it with $R$. "parviflora", but that name, as currently used, applies to as diverse an aggregation of plants as can be imagined, the name, as originally applied, belonging to nothing readily identifiable. In some characters, especially in habit and foliage $R$. succulenta might, superficially, be mistaken for the next.
9. R. noctiflora (Nees) Gray. Stems erect or arched-ascending (rarely divergently branching from base-presumably after injury), 1.5-6 dm. high, cinereous-puberulent or minutely cinereous-pilose, glabrescent, with elongate internodes and 3-10 pairs of leaves on main axis: leaves narrowly lanceolate to lanceor elliptic-oblong, submembranaceous, puberulent or minutely hirtellous, tapering to blunt or subacute apex and to sessile to short-petioled base, undulate; the larger ones $3-8 \mathrm{~cm}$. long and $0.8-2.7 \mathrm{~cm}$. broad: peduncles solitary in axils of $1-4$ upper pairs of leaves, very short, cinereous-puberulent; the 2 cinereous bracts linear-lanceolate and undulate-dentate: calyx-segments slenderly linear, cinereous-puberulent or minutely hirtellous, $2.5-4.5 \mathrm{~cm}$. long: corolla bluish to nearly white, expanding in the night, $6-11 \mathrm{~cm}$. long; slender tube $4.5-8 \mathrm{~cm}$. long; the slender throat only $1-2 \mathrm{~cm}$. long and $5-10 \mathrm{~mm}$. thick; the expanded limb $3.5-6 \mathrm{~cm}$. broad: capsule cinereous-puberulent, 2.25-3.5 cm. long.-Syn. Fl. N. Am. ii ${ }^{1}$. 326 (1878). R. tubiflora LeConte in Ann. Lyc. N. Y. i. 142 (1824), not HBK. (1817). Dipteracanthus noctiflorus Nees in DC. Prodr. xi. 123 (1847) in part, i.e. the typonym Dizygandra tubiflora Shuttleworth in Pl. Rugel in herb., and the citation of $R$. tubiflora LeConte and LeConte's material, not the other citations.-Savannas and wet pine barrens, evidently local, eastern Georgia to northwestern Florida, west to southwestern Louisiana. Georgia: without stated locality: LeConte (Mo, NY); savannas, LeConte? (Phil); these perhaps portions of the original collections, at first called $R$. longiflora (not $R$. longiflora Richard, 1792 ) but on some sheets altered to $R$. tubiflora, LeConte in his publication saying: "Inhabits in the savannahs of the Altamaha". Richmond co.: "Altamaha, Bath", LeConte (Phil). liberty co.: near Sunbury ${ }^{1}$, LeConte (NY); wet peaty pine barrens, 14 miles southeast of Ludowici, Wiegand \& Manning, no. 2928 (erroneously noted as from "Long Co."). mcintosh co.: at sea-level, about Darien Junction, June 25-27, 1895, J. K. Small (NY). Florida: without stated locality: Florida, LeConte (Phil); Florida, Chapman, several collections (Mo, NY, Phil, US); West Florida, Chapman, several collections. wakulla co.: "Dizygandra noctiflora Shuttl. n. sp.", In campis graminosis,

[^7]inter St. Marks et Port Leon, Florida, legit Rugel, Jun. 1843 (Mo, NY), isotypes of Dipteracanthus noctiflorus Nees. Franklin co.: Apalachicola, Chapman, with note, "The flowers open in the night and fall off by morning"; low prairie, Apalachicola, 1867, B. F. Saurman; low, grassy pine barren, Apalachicola, Chapman, distr. by Biltmore Herb., no. 4501a; low pinelands, Port St. Joe to Apalachicola, Small, Small \& DeWinkeler, no. 11,417 (NY, US). Alabama: low meadows on the coast, Portersville, Sept., 1892, Mohr (US)-locality not definitely located, since Portersville in DeKalb County is not on the coast. cullman co.: Cullman, June 22, 1897, Eggert (Mo). mobile co.: grassy pine meadows near the coast, Bayou Labatre, Aug. 13, 1892, Mohr (NY, US). Mississippi: Deer Island, A. B. Seymour, no. 197 (loosely branched, presumably injured, the rameal leaves with unusually long petioles). harrison co.: Biloxi, June 22, 1899, S.M. Tracy, some specimens as no. 6500 others as no. 4948 (Mo, NC, NY, US). hancock co.: pine barren, Woodson \& Schery, no. 51 (Mo); Bay St. Louis, Ingalls (NY). Louisiana: calcasieu parish: vicinity of Lake Charles, 1904, Andrew Allison (US). Plates 852 and 853; map 8.

Ruellia noctiflora is one of the most distinctive and, at the same time, highly localized American species. In view of the great amount of collecting in the Southeastern States, it should, if at all common, be better represented in herbaria. LeConte's statement, when he originally published it as $R$. tubiflora, that it "Inhabits in the savannahs of the Altamaha", suggest localization. When he renamed the species Dipteracanthus noctiftorus, Nees, as usual, had very mixed ideas, for he included with the LeConte plant and that from St. Marks, Florida, material from Texas of the wholly different $R$. humilis Nutt.; in fact he made $R$. humilis a variety of $D$. noctiflorus, and he went so far in his general misinterpretations as to note that the wonderfully different Dipteracanthus noctiflorus "vix a D. cilioso Purshii differret". Aside from the minutely canescent pubescence which covers most parts of $R$. noctiflora, this species has the longest corolla and calyx of any of our species, and its very long (up to 3.5 cm . long) capsule is cinereous-puberulent.
10. R. humilis Nutt. Stem often at first simple, soon with arched-ascending to horizontally divergent or reclining branches; the main axis $1-7(-8.5) \mathrm{dm}$. high; the rather short internodes villous-hirsute or canescent-pilose to glabrescent, quadrate, with 4-12 pairs of leaves longer than the internodes, and 4-10 nodes floriferous: leaves coriaceous, often hirsute to villous on


Photo. B. G. Schubert.
Ruellia noctiflora: fig. 1, summit of flowering stem of probable type of $R$. tubiflora, $\times 1$; FIG. 2 , fruiting summit, $\times 1.8 ;$ FIG. 3, bract, calyx-segment and base of capsule, $\times 10$; FIG. 4 , surface of capsule, $\times 10$


## Photo. B. G. Schubert.

Ruellia humilis, var. typica: fig. 1 , type or isotype, $\times 1$; fig. 2 , summit of primary axis, $\times 1$; fig. 3, calyces and capsules, $\times 2$
nerves and margin, oblong or oblong-lanceolate to ovate, sessile or subsessile, nearly uniform or but slightly reduced upward: flowers few in the axils: bracts lanceolate, oblong or elliptic: calyx-segments $1.5-2.5 \mathrm{~cm}$. long, linear-attenuate, mostly hirsute- to villous-ciliate: corolla $2-8 \mathrm{~cm}$. long, lavender to bluish (rarely white), the slender tube $0.7-5 \mathrm{~cm}$. long, the throat campanulate; corolla reduced, closed and tubular in rare cleistogamous individuals: capsule glabrous, $1.2-1.5 \mathrm{~cm}$. long: seed suborbicular, $3-4 \mathrm{~mm}$. in diameter.-A wide-ranging polymorphous species, of which the following are the more significant varieties.
a. Younger internodes of stem copiously villous-hirsute to canes-cent-pilose or -puberulent; larger leaves $3-8 \mathrm{~cm}$. long, their veins and margins usually villous-ciliate ....b.
b. Corolla 3-4.5 (-5) cm. long, its slender tube $1.2-2.5 \mathrm{~cm}$.
long.
Larger leaves of main axis elliptic-oblong to oblonglanceolate, $1-2.5 \mathrm{~cm}$. broad, obtuse to subacute. Internodes of stem copiously villous-hirsute with long divergent hairs. . . . . . . . . . . . . . . . . . . . . . . . . 10a. Internodes canescent-pilose or -puberulent, with no or but few scattered long hairs. ..... 10b. Var. typica, forma grisea. Larger leaves of main axis ovate to oval-oblong or broadly elliptic, $2-4 \mathrm{~cm}$. broad, mostly rounded at summit; stems strongly spreading-villous......10c. Var. frondosa.
$b$. Corolla 5-8 cm. long, its slender tube $3-5 \mathrm{~cm}$. long; internodes of stem more or less villous-hirsute.
Larger leaves of main axis elliptic-oblong to oblonglanceolate, $1-2.5 \mathrm{~cm}$. broad, obtuse to subacute 10 d . Var. longiflora. Larger leaves of main axis ovate-oblong to broadly oval, rounded at summit, 2.5-4 cm. broad............10e. Var. expansa.
a. Younger internodes of stem glabrous, glabrescent or with only few scattered hairs on the angles; leaves glabrous, glabrescent or only sparsely short-hirsute on nerves beneath and margin, narrowly elliptic-oblong to oblonglanceolate, the larger ones $1-3 \mathrm{~cm}$. broad and $2-6 \mathrm{~cm}$. long; corolla $2-3.5 \mathrm{~cm}$. long, its tube $0.7-2.3 \mathrm{~cm}$. long; plant chiefly of Cumberland Plateau

10f. Var. calvescens.
10a. Var. typica. R. hirsuta Ell. Sk. ii. 109 (1822), not Vell. (1790). R. humilis Nutt. in Trans. Am. Phil. Soc. v. 182 (1837). Dipteracanthus noctiflorus, 3. humilis Nees in DC. Prodr. xi. 123 (1847), at least as to basonym. R. ciliosa, var. longiflora Gray, Syn. Fl. N. Am. ii ${ }^{1} .326$ (1878) in part only. R. ciliosa, var. humilis (Nutt.) Britton in Trans. N. Y. Acad. Sci. ix. 185 (1890), at least as to basonym.-Dry prairies, rocky slopes, open woods, etc., southern and eastern Iowa to Texas, east to the Mississippi and very locally to south-central Pennsylvania, western Maryland, western Virginia, Tennessee and northwestern Alabama. The following are characteristic (all, unless specified, called R. ciliosa Pursh). Pennsylvania: franklin co.: "abundant and common", Chambersburg, July 24, 1896, Thos. C. Porter
(NY, Phil), variously as $R$. ciliosa, R. ciliosa, var. parvifora and $R$. strepens, var.; dry ground, among grasses, near Baker Cavern, south of Williamson, Hans Wilkens, no. 5592 (Pa); Mercersberg, 1846, Ruel (Phil), as R. strepens. Maryland: washington co.: Potomac River, Williamsport, Aug. 1849, Porter (Phil), as Dipteracanthus strepens. West Virginia: hardy co.: Lost River, Aug. 18, 1931, Core (NY). Virginia: giles co.: Ripplemead, Aug. 29, 1933, Alexander, Everett \& Pearson (NY), as R. parvifora; roadside near Stone Quarry, above Ripplemead, July 19, 1936, M. L. Vardell (Pa); limestone cliffs, Ripplemead, August 11, 1937, Lena Artz (MtL). Ohio: cuyahoga co.: near Blue Rock Springs, Cleveland, Greenman, no. 1542. Indiana: st. joseph co.: South Bend, Aug. 3, 1909, Mrs. Joseph Clemens (NY). warren co.: dry, sunny poor soil, northwest of Covington, R. M. Tryon, Jr., no. 2698 (Duke), as R. caroliniensis. floyd co.: rocky woods between Duncan and New Albany, Deam, no. 13,995 (NY). CRAWFORD co.: rocky, exposed wooded hillside southwest of Milltown, Deam, no. 16,422. Kentucky: logan co.: limestone ledges and barrens, near Russelville, E. J. Palmer, no. 17,758 (Mo), as $R$. parviflora (transition to var. calvescens). Tennessee: davidson co.: copses, vicinity of Nashville, Gattinger; West Nashville, Eggleston, no. 5160. franklin co.: Cumberland Mts., Cowan, Ruth, no. 564 (US). Alabama: franklin co.: small flat cedar glade just north of Isbell, $R$. M. Harper, no. 3887 (US, VPI), as $R$. caroliniensis (transition to var. calvescens). Mississippi: lowndes co.: sandy, open places, banks of Tombigbee River, Columbus, June 15, 1892, C. Mohr (US), as $R$. ciliosa, var. hybrida. warren co.: near Vicksburg, Paul J. Schallert, Jr., no. 13127 (Schallert). Illinois: cook co.: limestone cliffs, Lemont, July 20, 1912, E. L. Braun (Braun). will co.: near Romeo, Aug. 6, 1895, Umbach (US). кankakee co.: river-bank, vicinity of Kankakee, C. C. Crampton, no. 568 (US). richland co.: southwest of Calhoun, Robt. Ridgway, no. 3183, in part (Phil). kendall co.: Yorkville, September, 1884, T. E. Boyce. lee co.: Dixon, July, 1861, Wm. Boott (Phil), as Dipteracanthus ciliosus, correctly annotated as $R$. humilis. washington co.: Ashley, $F$. Beckwith, no. 47 (Mo). jackson co.: gumbo soil, woods, Big Muddy River, John McCree, Jr., no. 833 (Mo). union co.: southwest of Lick Creek, Oct. 7, 1939, E. Anderson \& Wm. Bauer (Mo). Iowa: clinton co.: Lyons, Pammel, no. 77 (NY). henry co.: Mt. Pleasant, C. R. Ball, no. 1564 (Mo), J. H. Mills, no. 1732 (Mo). decatur co.: dry soil, Aug. 4, 1903, J. P. Anderson (Mo). Missouri: clark co.: Aug. 27, 1892, with cleistogamous flowers (NY). marion co.: woods, Hannibal, John Davis, no. 978 (Mo). ralls co.: dry hillsides, west of Hannibal, John Davis, no. 4646 (Mo). pike co.: Eolia, Aug. 26, 1916, John Davis (Mo), st, louis co.: Meramec Highlands, July 29,

1905, A. G. Johnson (Mo) ; West Webster, Uphof, no. 3803 (Mo). jefferson co.: Cedar Hill, John H. Kellogg, no. 1185 (Mo). franklin co.: Pacific, Sept. 18, 1910, Moses Craig (Mo). butler co.: woods, Bush, no. 3739 (Mo, NY, US), as R. parviflora. shannon co.: Bush, no. 70, identification correctly altered to $R$. humilis. COOPER CO.: rocky woods, Bush, no. 15,137 (Mo). MORGAN Co.: rocky woods, Bush, no. 15,147 (Mo). webster co.: upland limestone glade, north of Forkner's Hill, Steyermark, no. 23,854 (Mo), as $R$. caroliniensis. ozark co.: rocky open ground (dolomite), slopes of "Bald Jesse", near Gainesville, E. J. Palmer, no. 33,073 (Mo). benton co.: Cole Camp, Trelease, no. 439 (Mo). barry co.: barrens, Bush, no. 15,007 (Mo), as R. parviflora. clay co.: Chandler, June 29, 1893, A. C. Magruder (Mo), as R. ciliosa, var. humilis. Jackson co. : rocky barrens, Greenwood, Bush, no. 9745 (Mo, NY), as R. parviflora; Rocky Bluff, south of Independence, K. K. Mackenzie, no. 1065 (NY), as R. ciliosa, var. humilis. Jasper co.: chert barrens, Joplin, E. J. Palmer, no. 1309 (Mo) and no. 18,451 (NY), the latter as $R$. parviflora. newton co.: chert barrens, Reding's Mill, E. J. Palmer, no. 1532 (Mo). mcdonald co.: July 24, 1893, Bush (Mo). Arkansas: without stated locality: "on rocks in the upland forests and prairies", Nuttall, type or isotype (NY), the specimen marked by Britton $R$. ciliosa Pursh. clay co.: woods, Moark, Bush, no. 3746 (Mo), as $R$. parviflora. lonoke co.: fallow fields, Carlisle, Demaree, no. 17,613 (Mo), as $R$. caroliniensis. pulaski co.: rocky ridges, Fourche Mt., Demaree, no. 19,797 (Mo), as R. caroliniensis. carroll co.: rocky slopes, Eureka Springs, E. J. Palmer, no. 4426 (Mo). benton co.: Decatur, 1899, E. N. Plank (NY). Johnson co.: ridges, Knoxville, Demaree, no. 19,933 (Mo), as $R$. caroliniensis. Franklin co.: low ridges, Branch, Demaree, no. 17,786 (NY), as R. caroliniensis. yell co.: dry rocky ridges, Tones Mt., Dardanelle, Demaree, no. 20,006 (Mo, NY). scott co.: dry low hills, Mansfield, Demaree, no. 18,171 (NY). Louisiana: calcasieu parish: Lake Charles, S. M. Tracy, no. 3468 (NY). Kansas: crawford co.: 6 miles west of Pittsburg, Rydberg \& Imler, no. 164 (NY). labette co.: bluffs north of Oswego, Rydberg \& Imler, no. 359 (NY). моntgomery co.: northeast of Caney, Rydberg \& Imler, no. 401 (NY). Oklahoma: ottawa co.: woods, Miami, G. W. Stevens, no. 2304. mccurtain co.: woods, near Idabel, H. W. Houghton as G. W. Stevens, no. 3633. osage co.: dry knoll, near Pawhuska, G. W. Stevens, no. 1931. payne co.: Stillwater, Waugh, no. 144 (Mo); sandy clay soil, north of Stillwater, Robert Stratton, no. 141 (Mo). ellis co.: sand, Arnett, L. F. Locke, no. 25 (US). Texas: wood co.: sands, Mineola, Reverchon (Mo). Jefferson co.: west of Beaumont, April 11, 1921, E. T. Wherry (US), correctly identified. harris co.: prairies, Laporte, Reverchon, no. 3938
(Mo), as $R$. parviflora. brazos co.: College Station, R. G. Reeves, nos. 167 and 168 (US). dallas co.: dry places, Dallas, July, 1877, Reverchon (NY). bell co.: dry woods, near Temple, S. E. Wolff, no. 2288 (US). tarrant co.: sandy post-oak woods between Grapevine and Ft. Worth, Lundell \& Lundell, no. 9516 (US). fayette co.: Crawford, 1892 (Mo). lavaca co.: Hallettsville, G. L. Fisher, no. 100 (US). bexar co.: bank of Helotes Creek, northwest of San Antonio, Sister Mary Clare Metz, no. 59 (NY). Kerr co.: hillside woods, Lacey's Ranch, E. J. Palmer, no. 9994 (Mo). Plates 854 and 855; map 9.

The minor form with white corollas is
Forma alba (Steyermark), comb. nov. R. caroliniensis, forma alba Steyermark in Rhodora, xli. 585 (1939).-Type from Missouri: prairie-slopes above limestone bluffs along Long Creek, $11 / 2$ miles south of Kingston, Caldwell County, Steyermark, no. 3058 (isotype Mo).

Although the description of forma alba, as a form of Ruellia caroliniensis (a strikingly different species not found in Missouri), gave no indication that it is an albino of the sessile-leaved species of the prairie-region and not at all of $R$. caroliniensis, the isotype is quite like typical $R$. humilis except for its white corolla.

Forma grisea, f. nov. (тab. 856) caulis internodiis griseopuberulis vel cinereo-pilosis, vix hirsutis.-Scattered through the range of var. typica. Оhio: pickaway co.: Aug. 9, 1912, R. R. Dreisbach (Phil). Illinois: Jackson co.: gravelly hillside, Grand Tower, Aug. 28, 1900, Gleason, no. 1803. Missouri: phelps co.: Jerome, Oct. 5, 1913, John H. Kellogg, no. 157 (Mo). jackson co.: dry open bank, Kansas City, Sept. 15, 1916, Ralph Hoffmann (Mo). mcdonald co.: dry ground, uncommon, July 24, 1893, Bush, no. 281 (type in Herb. Gray.; isotype in Herb. Britt.). Louisiana: jefferson davis parish: knolls in low prairie, May 17, 1915, E. J. Palmer, no. 7649 (Mo). calcasieu Parish: Lake Charles, Aug. 7, 1897, S. M. Tracy, no. 3469 (US). Oklahoma: ottawa co.: pasture near Narcissa, Aug. 31, 1937, F. R . Fosberg, no. 14,289 (Penn). Texas: van zandt co.: Grand Saline, Oct. 18, —, Reverchon (Mo).

Var. frondosa, var. nov. (тab. 857), internodiis valde villosohirsutis; axis primarii foliis majoribus ovatis vel ovali-oblongis vel late ellipticis, $3.5-8 \mathrm{~cm}$. longis $2-4 \mathrm{~cm}$. latis, plerumque obtusis; corollis $3-4.5(-5) \mathrm{cm}$. longis tubo $1.2-3 \mathrm{~cm}$. longo.Southeastern Nebraska to eastern Texas and Louisiana, eastward to south-central Pennsylvania and western Virginia; specimens, unless otherwise noted, originally called $R$. ciliosa, in a few cases corrected to $R$. humilis. Pennsylvania: franklin co.: Chambersburg, Aug. 27, 1897, Thos. C. Porter. Virginia:


Photo. B. G. Schubert.
Ruellia humilis, var. typica: fig. 1, median nodes of primary axis, $\times 1$; fig. 2, summit of internode and bases of leaves, $\times 4$; FIG. 3, portion of fruiting branch, showing diffuse habit, $\times 1$


IRUELLIA HUMILIs, forma grisea: fig. 1 , portion of typr, $X 1$; Fig. 2 , internode and bases of leaves, $\times 4$
shenandoah co.: rocky (limey) woods, near Strasburg, Hunnewell, no. 12,037 (FWH), as $R$. caroliniensis; limestone barrens near Strasburg, June 6, 1936, Hunnewell (VPI), as R. caroliniensis; damp thicket near Meadow Mills, Hunnewell, no. 17,837 (FWH). wythe co.: banks, Reed Creek, June 28, 1910, F. S. H. (VPI). Ohio: cuyahoga co.: Euclid Heights, Cleveland, Greenman, no. 353; near Blue Rock Springs, Cleveland, Greenman, nos. 1541 and 1542 (US). green co.: Xenia, July 10, 1883, H. A. Young; open bottoms, Yellow Springs, July 10, 1935, Demaree, no. 11,436 (Mo, Phil); Cedarville, July, 1906, J. F. Clevenger (US). montgomery co.: Dayton, John W. VanCleve (Phil), as R. oblongifolia. clermont co.: sandy soil, gravel terrace, Mulford, June 17, 1916, E. L. Braun (Braun). hamilton co.: gravel banks, near Fernald, July 19, 1914, E. L. Braun (Braun). Indiana: warren co.: prairie north of Tab, August 31, 1916, Deam, no. 21,613 (NY) ; high bank of Pine Creek, west of Kramer, July 8, 1918, Deam, no. 25,843. marion co.: abundant among tall weeds between Indianapolis and Carmel, Aug. 8, 1942, R. C. Friesner, no. 17,202 (type in Herb. Cray.; isotype in Herb. Butler Univ.), distrib. as R. caroliniensis; same station, August 5, 1944, Friesner, no. 18,579 (topotypes). harrison co.: bluff, south side of Buck Creek, southeast of Corydon, June 15, 1940, Friesner, no. 14,369 (Duke, NY), as R.caroliniensis. Kentucky: Pendleton co.: dry grassy bank, south of Peach Grove, July 8, 1941, E. L. Braun, no. 4037. Tennessee: davidson co.: West Nashville, May 26-27, 1909, Eggleston, no. 4436 (Phil). Illinois. cook co.: Chicago, H. H. Babcock (US); Flossmoor, Aug. 1, 1909, Greenman, no. 2816. dupage co.: introduced along roadside, Naperville, Aug. 1, 1897, L. M. Umbach (US). will co.: roadside, Romeo, June 25, 1896 (Phil), July 26, 1897 (US), Umbach. winnebago co.: Rockford, July 11, 1926, Pammel \& Fisk, no. 293 (Mo). richland co.: Larchmount, Aug. 1, 1914, Robt. Ridgway. champaign co.: vicinity of Urbana, Aug. 10, 1910, Steele (US). stark co.: gravel slope, near Wady Petra, July 9, 1900, V. H. Chase, no. 673 (Phil). hancock co.: Augusta, 1845, S. B. Mead, as $R$. strepens. st. Clair co.: dry ground, June 28, 1875, Henry Eggert (Mo). Iowa: clinton co.: Clinton (Lyons), Sept. 4, 1896, Pammel, no. 77. warren co.: Indianola, July 6, 1918, Pammel, Welbus \& Jacques. Missouri: clark co.: Dumas, Aug. 27, 1892, Bush (Mo). st. louis co.: collines arides, St. Louis, Juillet 1838, Riehl (Mo), as R. strepens; O'Fallon Park, St. Louis, June 28, 1892, N. M. Glatfelter (Mo). Jefferson co.: Bushberg, July 4, 1883, F. C. Prince. st. francois co.: dry ground, Bismark, Aug. 1897, Colton Russell (Mo). carter co.: dry open ground, Van Buren, July 6, 1913, E. J. Palmer, no. 6205 (Mo). nodaway co.: dry grassy openings, northwest of Parnell, June 20, 1938, Steyermark, no. 5936 (Mo). Jackson co.:
dry grounds, Waldo Park, June 10, 1896, K. K. Mackenzie (US). johnson co.: sandstone hillside, Warrenburg, Aug. 27, 1916, G. W. Stevens, no. 4106 (NY). greene co., : northeast of Springfield, Aug. 29, 1911, P. C. Standley, no. 8390 (US). Jasper co.: chert barrens, northwest of Joplin, Aug. 16, 1908, E. J. Palmer, no. 1309 (Mo). mcdonald co.: dry open ground, Noel, Sept. 7, 1913, E. J. Palmer, no. 4164 (Mo); chert slopes west of Noel, May 31, 1938, Steyermark, no. 562 (Mo), as $R$. caroliniensis. Arkansas: faulkner co.: rocky glade, Guy, Sept. 4, 1934, Demaree, no. 10,963 (US). pulaski co.: Little Rock, July, 1886, H. E. Hasse (NY). carroll co.: Eureka Springs, July 17, 1898, N. M. Glatfelter (Mo). Louisiana: rapides parish: pine woods, vicinity of Alexandria, June 6, 1899, C. R. Ball, no. 655, in part (Mo, US). Nebraska: lancaster co.: roadsides, Lincoln, Aug. 1889, H. J. Webber (US). Kansas: douglas co.: Lawrence, W. C. Stevens (US). riley co.: prairie, June 15, 1895, J. B. Morton, no. 386 (Mo). geary co.: Republican Fork of Kansas River, June 25, 1856, H. Engelmann (Mo). cherokee co.: road through wooded area, southeast corner of county, July 23, 1937, N. B. Jacobs, no. 134 (NY). Cowley co.: 1895, C. M. Gould (NY). Окlahoma: ellis co.: east of Harmon, June 17, 1932, H. Wilkens (Phil). Texas: van zandt co.: sandy pasture 1 mile east of Martin's Mill, May 7, 1939, Durward Timmons, no. 522 (NY). travis co.: Austin, C. Wright. Map 10.

Var. longiflora (Gray), comb. nov. Stems villous-hirsute: leaves copiously villous-hirsute on veins and margins; the larger ones of the main axis elliptic-oblong to oblong-lanceolate, 1-2.5 cm . broad and $3-6 \mathrm{~cm}$. long, obtuse to subacute: corolla $5-8 \mathrm{~cm}$. long, its tube $3-5 \mathrm{~cm}$. long.- $R$. ciliosa, var. longiflora Gray, Syn. Fl. N. Am. ii ${ }^{1}$. 326 (1878) as to descr., largely excl. synonyms. Dipteracanthus Drummondii Torr. \& Gray ex Engelm. \& Gray in Bost. Journ. Nat. Hist. v. 258 (1845), not D. Drummondianus Nees.-Southern Illinois, Missouri and eastern Kansas to Louisiana and Texas; specimens, unless noted, distributed as $R$. ciliosa, more rarely as $R$. humilis. Illinois: richland co.: Parkersburg, June 14, 1902, Robt. Ridgway (US). macoupin co.: Piasa, Aug. 5, 1905, G. E. McClure (Mo). williamson co.: dry soil, Bush, John McCree, Jr. no. 881 (Mo). Missouri: marion co.: dry soil, near Mark Twain Cave, John Davis, no. 4101 (Mo). lincoln co.: Silex, John Davis, no. 3887 (Mo). st. louls co.: Windsor Springs, July 1, 1890, A. S. Hitchcock (Mo). Jefferson co.: stony hills north of Hematite, July 7, 1891, Henry Eggert, (Mo); dry limestone glade southwest of Crystal City, Steyermark, no. 1114 (Mo), as R. caroliniensis; Festus, July 11, 1925, Woodson (Mo); south of Festus, Mildred Mathias, no. 700 (Mo). washington co.: Potosi, July 24, 1885, Frederick Wislizenus (Mo). cooper co.: rocky barrens, Bush, no. 13,673 (Mo).
greene co.: dry hills near Fulbright Spring, P. C. Standley, no. 9567 (US). taney co.: Forsythe, Trelease, no. 440 (Mo), as R. ciliosa, var. longiflora. jackson co.: rocky hillside, June 15, 1864, G. C. Broadhead (Mo). benton co.: Mora, Trelease, no. 438 (Mo). st. clair co.: rocky woods, Osceola, Bush, no. 12,819 (Mo). Jasper co.: Aug. 16, 1893, Bush (Mo), as R. ciliosa, var. longiflora. Arkansas: craighead co.: open woods, Lake City, Demaree, no. 3391 (Mo). sharp co.: Hardy, Greenman, no. $152^{\text {a }}$ (Mo). ashley co.: prairie-thickets, Mist, Demaree, no. 15,096 (Mo). faulkner co.: rocky hillsides, Guy, Demaree, no. 10,963 (NY). conway co.: Petit Jean Mt., Morrilton, June 25, 1937, John K. Edwards (Pa). Logan co.: rocky, dry situations at 2800 ft ., Magazine Mt., Demaree, no. 17,720 (Mo, NY), as R. caroliniensis. sebastian co.: Fort Smith, 1853-4, J. M. Bigelow (US). Louisiana: without cited station: western Louisiana, Hale, type of $R$. ciliosa, var. longiflora Gray, in Torrey Herb. (NY). natchitoches parish: dry open ground, Natchitoches, E. J. Palmer, no. 7940 (NY); dry sandy ground, Chopin, E. J. Palmer, no. 7565 (Mo); long-leaf pine sandhills, June 20, 1930, Caroline Dorman (NY). rapides parish: Alexandria, Josiah Hale (NY). Jefferson davis parish: knolls on low prairies, Welsh, E. J. Palmer, no. 7649 (NY). calcasieu parish: low grassy soil, 1 mile east of Lake Charles, D.S. \& H.B. Correll, no. 9652 . Kansas: without definite locality: between Neusha and Red Fork, Sept., 1849, Marcy Exped. Riley co: Manhattan, Sept. 29, 1884, M. A. Carleton (Mo). Lyon co.: Emporia, July 13, 1891, E. C. Smith (Mo). MONTGOMERY CO.: dry prairie, Cherryvale, September 16, 1900, Frank W. Johnson (NY). sedgwick co.: Wichita, 1892, H. R. Rose. Oklahoma: craig co.: north of Vinita, G. J. Goodman, no. 3047. osage co.: dry knoll, Pawhuska, G. W. Stevens, no. 1931. creek co.: Sapulpa, Bush, no. 428 (Mo). Texas: without stated locality: Drummond, nos. 219 and 220 (paratypes) and 258 (nos. 220 and 258 the types of Dipteracanthus Drummondii Torr. \& Gray); Lindheimer, no. 158; Reverchon, no. 725 (Mo). tyler co.: pineland south of Woodville, Lundell \& Lundell, no. 11,544 (US). Hardin co.: east of Camp Jackson, Cory, no. 19,793. houston co.: sandy open ground, Latexo, E.J. Palmer, no. 12,820 (Mo, NY). Walker co.: vicinity of Huntsville, R. A. Dixon, no. 377. montgomery co.: Willis, L. $R$. Warner (Mo). harris co.: open woods, June, 1842, Lindheimer (Mo) ; prairies, Houston, Elihu Hall, no. 425 (Mo, NY, US) ; low ground, Houston, Biltmore Herb., no $4501^{\text {b }}$ (US), as R. noctiflora; Laporte, Reverchon, no. 3938 (Mo, NY). Fort bend co.: Richmond, W.L. Bray, no. 96 (US). AUSTIN co.: sandy loam of prairie, San Felipe, F. W. Pennell, no. 10,292 (NY). colorado co.: dry sandy oak-land, Sheridan, F.W. Pennell, no. 5520 (Pa). dallas co.: Dallas, June, 1874, Reverchon, no. 410, paratype; vicinity
of Dallas, Mary R. Stephenson, no. 92 (US); creek-bottoms, north of White Rock Lake, Lundell, no. 11,676 (US); post-oak woodland, north of Seagoville, Lundell, no. 11,679 (US). tarrant co.: Fort Worth, Ruth, no. 103 (different sheets as no. 103, distributed as from dry woods, June 27, 1911 (NY), dry woods, August 10, 1912 (Mo), open woods, Oct. 2, 1912 (G) and from rocky ground, Aug. 10, 1924 (NY)). travis co.: Austin, Tharp, no. 1384 (US). bastrop co.: McDade, Va. Collins, no. 266. de witt co.: hillside, July 30, 1941, Marguerite Riedel. bexar co.: hills north of San Antonio, Sept. 1, 1900, Henry Eggert (Mo). tom green co.: Knickerbocker Ranch, Dove Creek, May, 1880, Frank Tweedy (US), as R. ciliosa, var. longiflora. Plate 858; map 11.

Var. expansa, var. nov. (tab. 859), caulibus ad 8.5 dm . altis, internodiis valde villoso-hirsutis; axis primarii foliis majoribus ovatis vel ovali-oblongis vel late ellipticis apice obtusis, 2.5-4 cm . latis $3-7.5 \mathrm{~cm}$. longis, ciliato-hirsutis; corollis $5-8 \mathrm{~cm}$. longis, tubo $3-5 \mathrm{~cm}$. longo.-Iowa and Nebraska to Texas, eastward to southern Michigan, western Indiana, Illinois, Missouri, and very locally to northeastern Mississippi and northwestern Florida; specimens, unless specially noted, originally distributed as $R$. ciliosa, more rarely as $R$. humilis. Florida: calhoun co.: Dead Lakes, Chapman (Mo). Michigan: old specimen marked by Asa Gray "Michigan coll.". Wisconsin: rock co.: Beloit, 1860, T. J. Hale (Phil). Indiana: tippecanoe co.: dry sandy soil, Lafayette, July 4, 1898 (USNA), as R. ciliosa. montgomery co.: roadside near Clarkshill, Aug. 12, 1934, Scott McCoy, no. 2010 (US). Illinois: cook co.: Chicago, July 7, 1873, I. H: Babcock (US); prairie, Streator, Aug. 11, 1929, Howard K. Henry, no. 130 (Pa); between the Sag and Palos Park, Sept. 1, 1908, Caldwell \& Greenman, no. 3584 (Mo); Riverside, June 29, 1871, H. H. Babcock (NY), July, 1888, E. L. Sturtevant (Mo). will co.: Joliet, July 4, 1900, H. P. Skeels (USNA). winnebago co.: Fountaindale, M. S. Bebb, as Dipteracanthus strepens. woodford co.: Minonk, Aug. 13, 1895, Chas. Thom (USNA). peoria co.: Peoria, 1868, J. T. Stewart (Phil); dry barrens, Peoria, June, 1887, F. E. McDonald; dry prairies, Peoria, July, 1903, and July, 1904, F. E. McDonald. mason co.: Havana, Aug. 17, 1904, Gleason. henderson co.: oak barrens, near Oquawka, July 6 and August 20, 1872, H. N. Patterson. mclean co.: Bloomington, Aug. 1886, E. C. Smith (Mo). champaign co.: Champaign, June 15, 1899, Gleason, no. 590; prairie, Urbana, July 15, 1878, A. B. Seymour (Duke). macon co.: openings in timber, Stevens Creek at Wabash, July 1, 1915, I. W. Clokey, no. 2429 (type in Herb. Gray; isotypes in Herb. Mo. Bot. Gard., N. Y. Bot. Gard. and U. S. Nat. Herb.); Decatur, July 14, 1940, R. G. Mills (NY). hancock co.: Augusta, 1843, S. B. Mead as R. strepens?. adams co.: Camp Point, Aug. 6,


## Photo. B. G. Schubert.

RUELLIA humilis, var. frondosa: fig. 1, portion of Type, $\times 1 / 2$; Fig. 2 , summit of internode and bases of leaves, $\times 4$; FIGS. $3-5$, flowering nodes, $\times 1$; fig. 6 , fruiting node, $\times 1$; F1G. 7 , calyx and capsule, $\times 2$


Photo. B. G. Sthubert.
Ruellia humilis, var. longiflora: figs. $1-3$, summits of flowering branches, $\times 1$; FIG. 4 , summit of internode and bases of leaves, $\times 4$; Fig. 5 , bracts, calyces and fruits, $\times 2$

1877, A. B. Seymour (Duke). st. Clair co.: woods, Belleville, July, 1846, Th. Hilgard, Jr. (Mo)-plant 8.25 m . high. Randolph co.: Red Bud, June 30, 1888, L. H. Pammel (Mo). Mississippi: oktibbeha co.: Agency, May 31, 1897, S. M. Tracy, no. 3203 (NY). Iowa: johnson co.: Aug. 13, 1909, M. P. Somes, no. 3617 (US). van buren co.: open woods, Bentonport, July, 1920, E. W. Graves, nos. 1687 and 1957 (Mo). wayne co.: July, 1885, R. R. B. (Phil). greene co.: Jefferson, July 24, 1867, J. A. Allen. madison co.: Peru, June 20, 1897, D. E. Hollingsworth, no. 577. Ringgold co: Mount Ayr, July 24, 1926, Ada Hayden (Phil). fremont co.: rich soil, border of woods, Manti, July 12, 1925, L. H. Pammel, no. 733. Missouri: marion co.: dry woods, Hannibal, Aug. 7, 1912, John Davis (Mo). pike co.: dry meadow, near Clarkesville, June 15, 1914, John Davis, no. 2677 (Mo). st. Louis co.: limestone hill, Pacific, June 3, 1918, J. R. Churchill (Mo). washington co.: Irondale, June 30, 1893 , Henry Eggert. carter co.: rocky open ground, Van Buren, July 6, 1914, E. J. Palmer, no. 6205. phelps co.: Jerome, June 16, 1914, John H. Kellogg (Mo). boone co.: banks of Missouri River, Rocheport, July 4, 1927, H. W. Rickett (Duke). wright co.: open woods, east of Mansfield, June, 1911, O. E. Lansing, no. 3180. morgan co.: rocky woods, June 11, 1934, Bush, no. 13,708 (Mo, Pa). hickory co.: cherty limestone slopes, east of Jordan, July 10, 1934, Steyermark, no. 13,216 (Mo). greene co.: Springfield, July, 1904, P.C. Standley (US). Jackson co.: Independence, June 10, 1894, Bush, no. 349 ; barrens, Independence, July 6, 1900 , Bush, no. 775 (Mo, US) and several other nos. (one of them with the penciled memorandum, "type of $R$. ciliosa", a difficult proposition to defend since Pursh's species was from Savannah, Georgia!). barry co.: fields, Eagle Rock, June 29, 1897, Bush, no. 506 (Mo). Jasper co.: dry prairies, Carthage, July 13, 1902, Bush, no. 356 (Mo). mCdonald co.: dry ground, Bush, no. 282 (NY), as $R$. ciliosa, var. longiflora. Arkansas: without stated locality: Krunholdt, no. 24. prairie co.: Hazen, Grand Prairie, June 29, 1941, Demaree, no. 23,304 (Mo), as $R$. caroliniensis. carroll co.: Eureka Springs, July 7, 1898, N. M. Glatfelter (Mo). benton co.: prairie-like thickets, Willow Springs, Aug. 9, 1941, Demaree, no. 22,380 (Mo), as $R$. caroliniensis. Louisiana: Red River parish: $J$. Hale as $R$. hirsuta Ell. natchitoches parish: dry open ground, Natchitoches, June 10, 1913, E. J. Palmer, no. 7946, in part (Mo). rapides Parish: Alexandria, 1844, Josiah Hale (NY, Phil, US). Nebraska: lancaster co.: Lincoln, $H$. J. Webber (Mo). Kansas: riley co.: prairie, June 15, 1895, J. B. Norton, no. 386; Manhattan, 1883, T. Bassler (NY), June 5, 1887, W. A. Kellerman (Mo). butler co.: July, 1904, S. C. Jones (Mo). rooks co.: Rockport, July 5, 1892 (US).
ellis co.: Cyril Zeller (Mo). Oklahoma: ottawa co.: pasture near Narcissa, Aug. 31, 1937, F. R. Fosberg, no. 14,289 (Pa). pittsburg co.: rocky woods west of McAlester, May 27, 1920, F. W. Pennell, no. 10,600 (Phil). payne co.: Stillwater, June 22, 1926, Robt. Stratton, no. 622 (Mo); clay soil north of Stillwater, June 6, 1937, Darrell McLean, no. 3 (Phil). bryan co. Colbert, June 15, 1891, C. S. Sheldon, no. 14 (US), as R. ciliosa, var. longiflora. cleveland co.: Norman, Sept. 25, 1914, W. H. Emig, no. 522 (Mo), as R. parviflora. caddo co.: between Fort Cobb and Fort Arbuckle, 1868, Edw. Palmer (US), as Dipteracanthus strepens. COMANCHE co.: Fort Sill, May 29, 1916, Mrs. Joseph Clemens. Texas: newton co.: Autreville, 1857, C. G. Fosberg (Phil). camp co.: Pittsburg, Sept. 13, 1923, Tharp (Phil). gregg co.: July, 1939, C. L. York. wood co.: post-oak woods, July 6, 1924, Tharp (US). harris co.: barren bluffs, Houston, Sept., 1843, Engelmann (Mo). dallas co.: vicinity of Dallas, July 3, 1929, Mary R. Stephenson, no. 96 (US). parker co.: Weatherford, July 4, 1902, S. M. Tracy, no. 8078. travis co.: Austin, July 20, 1940, Tharp (transition to var. longiflora). nueces co.: near Corpus Christi, March, 1894, A. A. Heller (NY). comanche co.: DeLeon, June 16, 1941, Tharp. Map 12.

Var. calvescens, var. nov. (тab. 860), caulibus 1-4 dm. altis, ramosis, ramis plerumque divergentibus, internodiis glabris vel glabrescentibus vel sparse breviterque hispidis; foliis glabris vel glabrescentibus vel ad venas remote hirtellis, anguste ellipticooblongis vel oblongo-lanceolatis, majoribus $2-6 \mathrm{~cm}$. longis $0.7-2.3 \mathrm{~cm}$. latis; corollis $2-3.5 \mathrm{~cm}$. longis, tubo $0.7-2.3 \mathrm{~cm}$, longo.-Cumberland Plateau of Kentucky and Tennessee, overlapping slightly into southern Indiana and southern Ohio, locally in Alleghenies of northwestern Virginia, Great Smoky Mountains of eastern Tennessee and mountains of northern Georgia and Alabama; specimens, unless otherwise noted, distributed as $R$. ciliosa or $R$. humilis. Virginia: frederick co.: lime barrens, Middletown, Sept. 14, 1941, Hunnewell, no. 17,361, as Dyschoriste oblongifolia (misidentification mine). SHENANdонн со.: dry limerock barrens, 1 mile northeast of Strasburg, Aug. 30, 1927, Wiegand \& Manning, no. 2934; rocky field near Ormanda, July 27, 1942, Hunnewell, no. 17,721 (FWH), as Dyschoriste oblongifolia. Georgia: walker co.: Chickamauga Park, Biltmore Herb., no. 849b (US). Oho: highland co.: Sept., 1928, Katie M. Roads, September, 1928 (US). Indiana: crawford co.: in shallow soil on washed limestone slope, just north of Leavenworth, Oct. 5, 1920, Deam, no. 33,429 (Pa). Kentucky: without stated locality: 1916, Anna King, no. 310 (Duke and, in part, US); hills of Kentucky River, Aug. 15, 1895, H. Garman \& J. N. Rose (type in Herb. Gray; isotype in U. S. Nat. Herb.), distrib. as R. strepens. fleming co.: dry soil
east of Hillsboro, Aug. 21, 1940, E. L. Braun, no. 3364 (Braun). robertson co.: dry slopes, limestone soil, west of Blue Licks, July 8, 1941, E. L. Braun, no. 4044. nicholis co.: open woods, Blue Lick Springs, Sept. 17, 1936, F. J. Scully, no. 814 (US), as R. parviflora; dry soil, open red cedar, south of Fairview, Sept. 22, 1939, E. L. Braun, no. 2684 (Braun). sсотт co.: dry woods, Stamping Ground, July 27, 1931, J. W. Singer, no. 145 (US), as R. parviflora. Pulaski co.: bluffs near Burnside, Aug. 22, 1903, Biltmore Herb. no. 849 ${ }^{\mathrm{k}}$ (US). nelson co.: prairie patches, Balltown, July 22, 1940, E. L. Braun, no. 3248 (Braun); dry limestone slope, prairie patches, west of Bardstown, Aug. 18, 1941, E. L. Braun, no. 4085. hardin co.: thin soil over limestone, Howe Valley, Sept. 6, 1927, Wherry \& Pennell, no. 73,642 (Phil). hart co:. sandy roadside, 2 miles southeast of Horse Cave, Sept. 4, 1930, Svenson, no. 4418. Grayson co.: Leitchfield, Aug. 22, 1895, J. N. Rose (US), as R. strepens; Leitchfield, Oct. 11 and 12, 1903, W. W. Eggleston, no. 5442 (NY). Edmonson co.: prairie patches, dry limestone slopes, Mammoth Cave, Aug. 19, 1941, E. L. Braun, no. 4095 (branching unusually strict). warren co.: near Bowling Green, Aug. 17, 1897, Henry Eggert (Mo); field, Bowling Green, Aug. 20, 1899, Sadie F. Price (Mo). Tennessee: sevier co.: between Gatlinburg and Maryville, July 27, 1936, W. C. Coker (NC). wilson co.: dry cedar glades, Lebanon, Aug. 11, 1900, Biltmore Herb. no. 849: (US). davidson co.: cedar barrens, common, Gattinger (Mo); Nashville, Aug., 1879, Gattinger (Mo); West Nashville, May 26-27, 1909. Eggleston, no. 4436 (US), Sept. 24-25, 1909, Eggleston, no. 5160 (NY, Phil). coffee co.: near Manchester, Aug. 14, 1899, Biltmore Herb., no. $849^{\text {b }}$ (US). rutherford co.: near Lavergne, Aug., 1897, Henry Eggert (Mo). Franklin co.: Cumberland Mts., Cowan, July, 1898, Ruth, no. 556 (NY), no. 590 (Mo). Alabama: madison co.: ad montes, prope Huntsville, Oct., 1843, Rugel (NY), with unpublished but quite appropriate varietal name. Map 13.

When sorted out from the very diverse species with which it has been confused, Ruellia ciliosa, $R$. caroliniensis, and even the wholly different $R$. strepens and the apocryphal $R$. parviflora, Ruellia humilis becomes a very consistent species of wide inland range. By the singular and not very edifying fatality which has obscured the clarification of even the simpler of our species of Ruellia the great bulk of material of the continental $R$. humilis (including its varieties) has very generally passed as $R$. ciliosa Pursh, its type from Savannah, Georgia, although there is no evidence in any of the larger American herbaria that the present species approaches Savannah nearer than the Shenandoah Valley
of Virginia, the Great Smoky Mountains of Tennessee, the mountains of northwestern Georgia, and the northwestern corner of Florida. Conversely, although $R$. humilis was described from "rocks in the upland forests and prairies" of Arkansas, the name $R$. humilis has been consistently used by Small and his followers for true and strikingly different R. ciliosa Pursh and given a range, "Sandy soil, Coastal Plain, Fla. to Miss. and Ga.", through a country without the dry limestone rocks where true R. humilis prevails, and entirely excluding the type-region of the latter!

There is great probability that Ruellia hirsuta Ell. Sk. ii. 109 (1822) was typical R. humilis Nutt. Elliott, familiar with the more eastern plants, went beyond the stated limits of his Sketch to describe a remarkable new species from "near the Alabama River in dry soils": "Hirsute, branching, leaves oval-lanceolate, nearly acute, sessile, segments of the calyx subulate, hispid, a little longer than the tube of the corolla
Stem
very hirsute. Leaves . . . almost hispid". Elliott's type is lost; furthermore his name was antedated by $R$. hirsuta Velloso (1790).

As the type or isotype of Ruellia humilis (until a possibly more authentic type is found) I have taken an Arkansas specimen from Nuttall, in the Torrey Herbarium. This (plate 854, fig. 1) is of the relatively short-flowered series with narrow leaves, a plant (map 9) prevailing west of the Mississippi, southward into Texas, but scattered eastward even to the mountains of south-central Pennsylvania, western Maryland and western Virginia. This plant passes through obvious transitions into a coarser and broader-leaved extreme of similar range (map 10), which might perhaps be considered an ecological variety were it not that in their morphological characters they exactly parallel the two plants with greatly prolonged corolla-tube (the longest corolla of any of our species except the southeastern Coastal Plain $R$. noctiflora). Although the very long-flowered plants have similar areas of development, the narrow-leaved var. longiflora (map 11) is more restricted, its eastern range stopping essentially at the Mississippi, with northern limits in southern Illinois and Missouri; the broader-leaved var. expansa (map 12) with outposts eastward to northwestern Florida, northeastern Alabama and in Indiana and Wisconsin and, farther west,


Photo. B. G. Schubert.
Rubllia humilis, var. expansa: fig. 1, flowering node, $\times 1$, from type; fig. 2, median fruiting node, $X 1$; fig. 3, internode and leaf-base, $X 4$; fig. 4 , calyx and capsule, $\times 2$


I'hoto. B. G. Schubert.
Ruellia humlis, var. calvescens: fig. 1 , portion of isotype, $\times 1$; fig. 2 , flowering tip, $\times 1$; fig. 3 , internode and leaf-bases, $\times 4$; fig. 4 , lower surface of leaf, $\times 10$; fig. 5 , fruiting nodes, $\times 1$; fig. 6, calyx and capsule, $\times 2$
extending well into Iowa. These two plants, although merging, seem fairly well defined. In Texas and Louisiana var. longiflora has often been mistaken for the more eastern Coastal Plain $R$. noctiflora. It is promptly distinguished, however, by its greatly developed villous-hirsute pubescence, $R$. noctiflora being puberulent; by its short and strongly hirsute-ciliate calyx-segments, those of $R$. noctiflora prolonged ( $2.5-4.5 \mathrm{~cm}$. long) and puberulent; and by its short and glabrous capsule, the very long ( $2.25-3.5 \cdot \mathrm{~cm}$. long) capsule of $R$. noctiflora pubescent.

As extreme as any variation of Ruellia humilis is var. calvescens (map 13), concentrated on the Cumberland Plateau, with colonies along the Alleghenies and the Great Smokies. Smaller in all parts than most members of the species and nearly glabrous, it has been mistaken (by the writer among others) for Dyschoriste oblongifolia (Michx.) Ktze. In their more upright extremes the two plants are often superficially similar, but the technical differences of calyx-segments and anthers hold. Furthermore, when the ripe seeds of $R$. humilis, var. calvescens, like those of all our species of Ruellia, are moistened they promptly exude mucilage which soon takes the form of prolonging and streaming spiracles which finally give the seed a more or less plush-like surface. Many tests of seeds of Dyschoriste oblongifolia have shown no such mucilage-spiracles there. The latter species, furthermore, is a plant of southern Coastal-Plain pine barrens and fall-line sands, northward to South Carolina (the old and doubted basis for it as Virginian, in the Gray Herbarium, being a specimen with copied-not original-label, reading "Southern States. Virginia"), not of calcareous upland.
(To be continued)

Marine Algae of the Monterey Peninsula'.-Those who are interested in the seaweeds of the Pacific coast of the United States will receive with approval this book which, while dealing only with the marine algae of the Monterey region, is, nevertheless, usable for nearlv all parts of that coast. The book should appeal especially to three groups of individuals, to all biologists, but particularly algologists, who will receive it with delight, to students in schools and colleges who are seeking an acquaintance with the plants of the coast, and to the more numerous group

[^8]of people who have a general interest in all that they see and a desire to learn more about seaweeds and to name them. To all of these, Prof. Smith's book should be easily and pleasantly useful.

In the introduction, many of the problems receiving the attention of students of this group of plants, and particularly the factors which affect their distribution, are treated. Here are discussed various factors, among them vertical distribution and horizontal (the latter, of course, referring to range along the coast) pointing out the importance of suitable substrata on which the plants can maintain themselves. In this connection, it would seem that a map of the Monterey region would be decidedly helpful. So also a more general treatment of the effects of temperature and of seasonal distribution would be very interesting to the general user of the book. Frequent statements show that these factors are important.

Extremely thorough and excellent is the discussion of the problems of collecting the different kinds of algae under various conditions. Unfortutunately, no information is given as to the means of preservation of the material which has been collected, a point of particular interest to occasional collectors.

Especially helpful to the latter group and useful to all, is the glossary which is generally adequate and if anything errs on the side of too many definitions. But would there not be some who would appreciate definitions of such terms as parthenogenesis and whorl, and others who might question the significance of a zoospore defined as a "sport with flagella," one of the very few typographical errors occurring in the book?

Keys leading to the identification of any alga of the region are numerous and eminently satisfactory, and should make fairly easy and sure the determination of all specimens found, though it is a well-known fact that there must always be a certain number of plants that will exhibit misleading or confusing characters to baffle any collector. The numerous excellent illustrations make a decidedly helpful addition, clearly and beautifully showing the nature of nearly all the marine algae of this region.-Roy M. Whelden, Harvard University.

Volume 47, no. 553, including pages 1-40 and plates 839-850, was issued 11 January, 1945.

## Rhootora

JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Conducted and publiahed for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
CHARLES ALPRED WEATHERBY ALBERT FREDERICK HILL STUART EIMBALL HARRIS

Associate Editors
\}
Vol. 47. March, 1945. ..... No. 555.
CONTENTS:
James C. Nelson (with portrait). M. E. Peck. ..... 65
Linum catharticum in New Brunswick. C. A. Weatherby. ..... 68
Ruellia in the Eastern United States (concluded). M. L. Fernald. ..... 69
Rediscovery of Paronychia argyrocoma, var. albimontana at Newburyport, Massachusetts. Frank J. McGregor. ..... 90
Thermopsis mollis in eastern Massachusetts. William Birrell. ..... 91
Author Citation for Eriogonum hemipterum. George J. Goodman. ..... 92

## 

8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.

[^9]
## INTELLIGENCER PRINTING COMPANY

## Specialists in Scientific and Technical Publications eight west king st., lancaster, pa.

## CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES OF AMERICAN PLANTS, 1885 TO DATE.

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at $\$ 22.50$ per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

GRAY HERBARIUM of Harvard University, Cambridge 38, Mass., U. S. A.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. $\$ 3.00$.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \$3.00.

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. $\$ 1.50$.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

Gray Herbarium of Harvard University, Cambridge 38, Mass.

## IRbodora

JOURNAL OF

## THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
March, 1945.
No. 555.

## JAMES C. NELSON <br> M. E. Peck

(With portrait)
The subject of this sketch was born in Grant County, Kentucky, December 11, 1867. He received his B. S. degree from Hanover College, Indiana, in 1890, and three years later his master's degree.

He had prepared himself for the teaching profession and spent the remainder of his life in this field. He taught first in Carthage College, Missouri, then in Hull Academy, Iowa, and later at Princeton, Illinois, Dubuque, Iowa, and Marshalltown, Iowa, as high school principal. From the last named place he went to Wenatchee, Washington, and two years later, 1914, to Salem, Oregon, where he spent the rest of his life, as principal of the high school until 1929, when the load of responsibility became too great and he was obliged to retire. He then took the position of registrar, which he held to the time of his death, January 29, 1944. He was married to Anna Van Horssen, of Orange City, Iowa, in 1904.

Mr. Nelson was a man of broad intellectual attainments and a tireless student to the end of his life. He mastered languages with facility, was an accomplished Latin and Greek scholar, read extensively in German, Dutch, French and Portuguese, and was a careful student of French history of the revolutionary period, gathering for his private library a large collection of French histories of the time. Later he became deeply interested in the literature of the South American republics and carried on an extensive correspondence with many of the eminent writers of
those countries, and accumulated a choice collection particularly of Brazilian works.

With all his intense intellectual activity Mr. Nelson never lost personal touch with the hundreds of young people who were under his supervision. His influence over them was wholesome and profound, and he was respected and loved accordingly. His work with the Salem High School was remarkable. From a very mediocre institution he raised it, largely by his own personal influence, into one of the best schools of its kind in the state.

His botanical work, while pursued with his characteristic enthusiasm, did not constitute a major part of his activity, though he had a keen taxonomic sense. All his published papers and notes on the subject, with one or two exceptions, fall within a period of seven years, 1916-1923. This represents but a small part of his work, however. He once told me with regret of the poor start he had in taxonomy. His teacher in Botany took no interest in his aspirations in this field, and was even annoyed by his propensity for collecting and identifying plants. He persisted, however, and finally became particularly interested in grasses and sedges, accumulating a considerable collection, which he deposited in the herbarium of Willamette University. His later interests were largely concerned with the introduction of foreign plants in Oregon. The number of these exotics is very large, and the part they play in the make-up of the flora of the state is immensely important. In this field his contributions have great value, both in published records and in specimens collected, nearly all of which have been deposited in large herbaria, especially the Gray Herbarium and the National Herbarium.

It is to be deeply regretted that Mr. Nelson's botanical work could not have been continued to the end of his life. A defective heart action made it necessary to discontinue the strenuous field trips that gave zest to his work, and having no large collection or library at hand, there was little he could do to advantage. With that cheerful philosophy that characterized his whole attitude toward life, he took up those intellectual pursuits which ripened, though late in life, into a broad rich scholarship, such as we seldom find in these days.

James C. Nelson was somewhat below medium height, with clear-cut, rather rugged features, quick and energetic in his
movements. He had a deep, resonant voice, with a great range of expression. He possessed a keen sense of humor and a remarkable command of language. He was capable of deep emotions and when strongly moved was a superb public speaker. I have a vivid memory of an April morning a few days after this country entered the first World War, when the call had just come for volunteers. Mr. Nelson had been asked to address the student body of Willamette University at their morning assembly. That address, which I believe was wholly extemporaneous, was the most moving, the most eloquent example of spontaneous oratory I have ever heard. Its effect on his hearers may be judged by the fact that more than a third of the young men of the student body went from the chapel straight to headquarters and enlisted.

He carried on a varied and voluminous correspondence with scientists and scholars in many parts of this country as well as in Europe and South America. His letters have a fine characteristic flavor, whether philosophical, humorous, satirical or merely circumstantial. They represent the man as we knew him best, a superior intellect, an accomplished scholar, with broad, sympathetic human interests.

## Bibliography

A list of Oregon plants not mentioned in the local manuals. Muhlenbergia, IX. 345 (1916).

Introduction of foreign weeds as illustrated at Linnton, Oregon. Torreya, XVII. 151 (1917).

A remarkable grass. Am. Bot. XXIII. 140 (1917).
Adiantum Jordani. Am. Fern Jour. VII. 16 (1918).
Additions to the flora of western Oregon. Torreya, XVIII. 21 (1918).
Erigenia bulbosa. Am. Bot. XXIV. 31 (1918).
Western malodorous plants. Am. Bot. XXIV. 42 (1918).
Mosher's "Grasses of Illinois", (Rev.) Torreya, XVIII. 172 (1918).
A new form of Prunella vulgaris. Am. Bot. XXIV. 82 (1918).
Notes on the flora of Lake Labish, Oregon. Torreya, XVIII. 191 (1918).
Further additions to the flora of western Oregon. Torreya, XVIII, 221 (1918).

Some Oregon exotics. Am. Bot. XXIV. 126 (1918).
Plants of Boone County, Kentucky. Proc. Ind. Acad. Sc. 152 (1918).
Some recent etymological blunders. Class. Jour. XIV. 320 (1919).
The name Toxylon again. Am. Bot. XXV. 21 (1919).
Species east and west. Am. Bot. XXV. 70 (1919).
A freak foxglove. Am. Bot. XXV, 88 (1919).
Monomorphism in Equisetum Telmateia. Am. Fern Jour. IX. 92 (1919).
"Flora of southern British Columbia and the state of Washington" (Rev.).
Torreya, XIX. 174 (1919).
Another freak Equisetum. Am. Fern Jour. IX. 103 (1919).
Deam's "Trees of Indiana" (Rev.) Rhodora, XXI. 250 (1919).
Notes on the grasses of Howell's "Flora of Northwest America". Torreya, XIX. 187 (1919).

The grasses of Salem, Oregon and vicinity. Torreya, XIX. 216 (1919).

[^10]Linum catharticum in New Brunswick.-There is always a certain interest in tracing the spread of an introduced species; from this point of view, it may be worth while to record the occurrence of Linum catharticum L. in New Brunswick. My wife and I found it in considerable quantity in a neglected athletic field at St. Andrew's in July, 1944. We were without collecting apparatus and could take no more specimens than could be carried in an envelope in my pocket; but enough to serve as vouchers for the locality have been deposited in the Gray Herbarium and the New Brunswick Museum.
L. catharticum is native in Newfoundland, ${ }^{1}$ has been reported as adventive in eastern Nova Scotia, the central Maine coast and northern Vermont, and is said to be a bad weed at Farnham in southern Quebec-though it is hard to imagine so pretty and fragile-looking a little plant becoming really a nuisance. The St. Andrew's station is, then, not an extension of range, but it is apparently the first record for New Brunswick.-C. A. Weatherby.

[^11]

Ihoto. B. G. Schubert.
Ruella caroliniensis, vir. typica: fig. 1, portion of flowering plant, $\times 1$; fig. 2, flowering tip, $\times 1 ;$ fig. 3 , summit of internode, $\times 4 ;$ fig. 4 , upper surface of leaf, $\times 10 ;$ FIG. 5 , lower surface of leaf, $\times 10$


I'hoto. B. G. Schubert.
RuEllia caroliniensis, var. typica: fig. 1, summit of plant, to show characteristic divergent branching, $X 1$; fig. 2, calyx and capsule, $X 2$; Fig. 3, portion of calyx and capsule, $\times 10$

# RUELLIA IN THE EASTERN UNITED STATES 

M. L. Fernald<br>(Continued from page 63)

11. R. caroliniensis (Walt.) Steud. Erect, simple to divergently or strictly branched, $1-9 \mathrm{dm}$. high, canescent-pilose, villous, hirsute, puberulent or rarely glabrescent; the upper internodes greatly abbreviated, the lower more elongate, at least the upper with crowded leaves and glomerules: lowest leaves more or less obovate and rounded at summit; middle and upper leaves distinctly petioled, lanceolate to ovate, oval, elliptic or oblong, commonly strigose above, either strigose, hispid, pilose or glabrescent beneath: glomerules very shortpeduncled to subsessile, mostly crowded, at 1-4 upper nodes (or in var. dentata up to 9 pairs of glomerules extending down often to base of plant): bracts oblong-lanceolate to elliptic, narrow, nearly equaling to shorter than calyx: calyx-segments linear-setaceous, $1.3-2.5 \mathrm{~cm}$. long, usually shorter than corollatube, copiously ciliate (more rarely eciliate): corolla lilac- or lavender-blue, $2-5 \mathrm{~cm}$. long; the slender tube $1.3-2.7 \mathrm{~cm}$. long; the campanulate-obconic throat $1-1.5 \mathrm{~cm}$. broad at summit; expanded limb $2-4 \mathrm{~cm}$. broad: capsule glabrous, pilose or hirtellous, $1.2-1.7 \mathrm{~cm}$. long; seeds orbicular to oval, 3 mm . long. Our most polymorphous species, consisting of several locally constant but marginally intergrading varieties and many minor but morphologically consistent forms. The chief variations are the following.
a. Stem simple or with mostly strongly divergent branches from lower and median axils, these branches commonly elongate and flowering at summit; the upper internodes canescentpilose to softly villous; leaves elliptic, subrhombic, oval or narrowly ovate, membranaceous and pliable, with more or less undulate surfaces (slightly crumpled even when carefully pressed); calyx-segments canescent-puberulent to villous on back: corolla $2.5-5 \mathrm{~cm}$. long: capsule pilose-hirtellous to glabrous. . . b.
b. Upper internodes of stem and branches copiously whitepilose and commonly white-villous; leaves white-villous to canescent-pilose beneath when young, copiously strigose above; capsule usually densely pubescent. .11a. Var. typica.
b. Upper internodes merely short-pilose or with only few elongate hairs; leaves glabrescent or merely sparsely hirtellous beneath; capsule usually glabrous or promptly glabrate.
Calyx-segments ciliate. . . . . ....................11b. Var. semicalva. Calyx-segments eciliate......11c. Var. semicalva, forma detonsa.
a. Stem simple or with few ascending to suberect (very rarely strongly divergent) branches, spreading-hirsute, pilose, puberulent or glabrescent, the branches when borne from the middle and upper axils rarely prolonged or floriferous; leaves flat (not crumpled when carefully pressed), lanceolate to ovate, oval, elliptic or oblong, membranaceous and flexible to thickish, hard and firm, strigose to hispid along principal veins or quite glabrous beneath, remotely strigose to glabrescent above; corolla 2-4.5 cm. long; capsule usually glabrous. . . .c.
c. Leaves of upper more or less approximate nodes chiefly longer than those below, entire or not very dentate; 1 or 2 (rarely 3 or 4) nodes of the main axis floriferous, the lowest floriferous ones from closely crowded to $10(-15) \mathrm{cm}$. apart; stem simple, only rarely branched. . . . $d$.
$d$. Longer leaves of the uppermost nodes broadly lanceolate to oval, ovate or elliptic, if lance-subacuminate $1.5-$ 4.5 cm . broad; calyx-segments glabrous or nearly so on back; summit of throat of corolla $0.7-1.5 \mathrm{~cm}$. broad, expanded limb $2.5-4 \mathrm{~cm}$. broad . . .e.
e. Leaves membranaceous, pliable, oval, ovate or elliptic to broadly lanceolate. ... $f$.
$f$. Stem stoutish to slender, $1-5 \mathrm{~mm}$. thick at base, 1-9 dm. high; larger leaves $5-12 \mathrm{~cm}$. long, if obtuse mostly more than 7 cm . long.... $g$.
g. Leaves strigose or hispid on veins beneath; calyxsegments ciliate.
Internodes of stem (or some of them) copiously spreading-hirsute. ................11d. Var. membranacea.
Internodes puberulent to glabrescent, at most with remote elongate trichomes

11e. Var. membr., forma breviberbis.
g. Leaves glabrous beneath.

Calyx-segments ciliate; internodes of stem usually pubescent; upper surfaces of leaves usually strigose. .......11f. Var. membr., forma hypopsila. Calyx-segments eciliate; internodes glabrescent or glabrous; upper surfaces of leaves glabrous or essentially so........11g. Var. membr., forma laevior. f. Stem filiform, 1-2 mm. thick at base, 1-2 (-4) dm. high; leaves membranaceous, elliptic to oblong, the larger ones $2-6 \mathrm{~cm}$. long, obtuse to rounded at apex.
Calyx-segments ciliate; internodes (or some of them) of stem copiously villous-hirsute with divergent hairs................................... or merely puberulent........11i. Var. nan., forma eciliata. $e$. Leaves subcoriaceous, firm and stiff, lanceolate to lance-ovate, subacuminate; stem rigid, 4.5-9 dm. high.......................................11j. Var. cheloniformis.
d. Longer leaves of the uppermost nodes narrowly lanceolate to lance-linear, $0.5-1.5(-2) \mathrm{cm}$. broad; stem slender, $1.5-7 \mathrm{dm}$. high; calyx-segments canescentpilose to glabrescent; throat of corolla $5-10 \mathrm{~mm}$. broad at summit, expanded limb $2-3.5 \mathrm{~cm}$. broad.... 11k. Var. salicina.
c. Leaves of flowering summit gradually much reduced in size; $4-9$ nodes of well developed main axis bearing glomerules; all but upper internodes elongate; stem frequently with


Copy, slightly reduced, of the Dillenian plate of Ruellia strepens, capitulis comosis


Ihotn. B. G. Schubert.
Ruellia caroliniensis, var. semicalva: fig. 1 , type, $\times 3 / 7$; fig. 2 , portion of internode, $\times 10$; fig. 3, lower, and Fig. 4, upper surface of leaf, $\times 10$; fig. 5 , calyx and capsule, $\times 2$; Fig. 6 , calyx-segment and portion of capsule, $\times 10$

> elongate floriferous ascending basal branches; median leaves oblong, oblong-lanceolate, ovate or elliptic, subequal, subcoriaceous, often undulate-dentate.....111. Var. dentata.

11a. Var. typica. Stem when well developed $1.5-7 \mathrm{dm}$. high, simple, or with divergently to horizontally spreading elongate branches mostly flowering at tips, obtusely angled, canescentpilose to copiously white-villous; middle and lower internodes greatly elongated ( $5-18 \mathrm{~cm}$. long), the uppermost greatly abbreviated: principal leaves elliptic, subrhombic, oval, ovate or ovate-lanceolate, membranaceous, slender-petioled, obtuse to acute, white-villous to villous-hirsute or canescent-pilose beneath when young, closely strigose above; the blades $3-10 \mathrm{~cm}$. long and $1.5-4 \mathrm{~cm}$. broad, with somewhat undulate surface, thus crumpled or puckered in drying: glomerules very short-peduncled, trom 1-3 approximate or subapproximate upper nodes and at tips of longer branches, 2-many-flowered: bracts oblong-lanceolate to narrowly elliptic, nearly equaling to shorter than calyx: calyx-segments linear-setaceous, white-villous or canescentpilose on back, villous-ciliate, $1.3-2.3 \mathrm{~cm}$. long, usually considerably shorter than corolla-tube: corolla bluish-lavender, $2.5-5 \mathrm{~cm}$. long; the slender tube $1.3-2.7 \mathrm{~cm}$. long, the campanu-late-obconic throat $1-1.5 \mathrm{~cm}$. thick at summit; expanded limb 2.5-3.5 cm. broad: capsule often densely pilose-hirtellous, sometimes glabrous, $1.4-1.7 \mathrm{~cm}$. long. $-R$. strepens, capitulis comosis Dillenius, Hort. Elth. ii. 330, t. 331 (1732). R. strepens L. Sp. Pl. 634 (1753), in part, not L. Mantiss. Alt. 422 (1771). Anonymos caroliniensis Walt. Fl. Carol. 168 (1788). Pattersonia caroliniensis (Walt.) J. F. Cimel. Syst. 925 (1791), the binomial wrongly ascribed to Walter, p. 167 (instead of 168) with a brief summary of Walter's generic diagnosis. $R$. hybrida Pursh, Fl. Am. Sept. ii, 420 (1814); LeConte in Ann. Lyc. N. Y. i. 140 (1824), in part only; Small, Fl. Se. U. S. 1084 (1903) and Man. 1229 (1933). R. strepens sensu Ell. Sk. ii. 109 (1822), not L. emend. R. caroliniensis (Walt.) Steud. (as carolinensis), Nom. ed. 2, ii. 481 (1841), based only on "Patersonia carolinensis Walt.", without further reference, this obviously copied (with change of spelling of both names) directly from J. F. Gmelin; Blake in Rhodora, xxii. 134 (1915), in part, excluding R. ciliosa and $R$. carol. var. parviflora (Nees) Blake and all synonyms cited under it. Dipteracanthus strepens, $\gamma$. Dillenii Nees in DC. Prodr. xi. 122 (1847), at least as to Dillenian plant. D. ciliosus, 3. hybridus (Pursh) Nees l. c. 123 (1847), in part. D. Mitchillianus Nees l. c. (1847). R. ciliosa, var. hybrida (Pursh) Gray, Syn. Fl. ii ${ }^{1}$. 326 (1878), in part.-Sandy woods, Florida, north to castern South Carolina; Tennessee, Kentucky and eastern Arkansas (unless otherwise noted, specimens distributed as $R$. hybrida). South Carolina: lancaster co.: rocky hillside, 40-

Acre Rock, west of Taxahaw, Dorothy Huntley, no. 256 (Duke). horry co.: low woods near Myrtle Beach, July 13, 1932, Coker \& Totten (NC). GEORGETOWN co.: sandy woods, Brookgreen Gardens, F. G. Tarbox, no. 567 (US). williamsburg co.: rich woods, 10 miles southeast of Gourdin, Godfrey \& Tryon, no. 433. berkeley co.: Santee Canal, $H$. W. Ravenel, as $R$. strepens, changed by Asa Gray to $R$. ciliosa, var. hybrida. charleston co.: Charleston, June, 1902, Wm. Palmer (US), as R. parviflora. beaufort co.: Bluffton, 1872, Mellichamp (Mo, US); St. Helena, 1878, Laura Towne (Pa), as $R$. ciliosa. Georgia: without stated locality: Chapman, chatham co.: Savannah, Mrs. Say. Florida: without definite locality: E. Florida, Chapman (NY), as Dipteracanthus Mitchillianus. duval co.: dry rich ground near Jacksonville, A. H. Curtiss, no. 4764 (Mo, NY, US), as $R$. strepens, one sheet changed to $R$. hybrida, another to $R$. parviflora; St. Nicholas, May 12, 1896, L. H. Lighthipe (NY), as R. ciliosa, April 20, 1897, J. R. Churchill; vicinity of Mayport and Jacksonville, H. D. Keeler (NY), as R. ciliosa; Hummock, Fredholm, no. 5150, as R. ciliosa. st. johns co.: May 20-22, 1885, G. C. Whitlock. Clay co.: dry oak woods, Green Cove Springs, April 14, 1939, W. A. Murrill (Mo), as R. ciliosa. putnam co.: Crescent City, March, 1880, G. Marten (Phil). alachua co.: open pine woods I mile north of Newberry, E. Perot Walker, no. 1862 (Phil), as R. humilis; high hummock, Burnett's Lake, April 30, 1939, W. A. Murrill (Mo); Gainesville, 1887, M. F. Price, as $R$. ciliosa, var. ambigua; May 12, 1897, Joseph Crawford (Phil.), as R. ciliosa; hammock near Gainesville, May 31, 1937, W. A. Murrill (Mo), as R. ciliosa. volusia co.: Port Orange, F. C. Straub, no. 120, as R. ciliosa, var. ambigua; sandy soil, Ormond, April 23, 1903, H. A. Purdie, as $R$. ciliosa, altered to $R$. humilis; lush growth by road, north of Ormond, May 16, 1943, E. H. Butts \& Oakes Ames (Ames); in shade or half-shade, Ormond Beach, May 12, 1943, Butts \& Ames (Ames); dry soil, Crescent City, June 28, 1943, E.H. Butts, as R. parviflora. lake co.: vicinity of Eustis, Nash, nos. 242 (US) and 1801, July, 1894, A. S. Hitchcock (Mo); pinelands east of Eustis, J. K. Small, no. 8667 (NY), as R. parviflora; dry wood-border, Hiawatha Lake, Wiegand \& Manning, no. 2932, as $R$. parviflora. sumter co.: Lake Ashtachula, March 29, 1879, $J$. D. Smith (US), as $R$. strepens. hernando co.: rich open woods, Brooksville. April 9, 1927, Hugh O'Neill (Mo). polk co.: Peace Creek, March, 1880, J. D. Smith (US), as $R$. strepens, dry pineland, April 12, 1894, L. B. Ohlinger (Mo), as R. strepens. osceola co.: sandy soil, Kissimmee, April 5, 1936, Mary L. Singletary (Duke). manatee co.: Manatee, S. M. Tracy, no. 6758 (NY, US). dade co.: pine woods near Rockdale, J. L. Fennell, no. 270 (USNA). Kentucky: owen co.: about 1
mile north of Scott Co. line, E. L. Braun, no. 3204 (Braun). Jefferson co.: 3 miles south of Louisville, July 5, 1892, L. S. Bergman, in part (Mo), as $R$. ciliosa. calloway co.: upland oak woods just west of the Tennessee River, Gleason, no. 8950 (NY). Tennessee: cocke co.: Newport, June 6, 1925, O. M. Freeman (USNA). кnox co.: Knoxville, Ruth, no. 101, as $R$. strepens. franklin co.: Cowan, Biltmore Herb., no. $849^{e}$ (US), as $R$. ciliosa; woods north of Sheridan, June 6, 1897, H. Eggert (Mo). davidson co.: Ridge Top, July 13, 1897, Eggert (Mo). shelby co.: Memphis, Fendler, as $R$. ciliosa. Arkansas: st. francis co.: Crowley's Ridge, Forrest City, Demaree, no. 15,137 (Mo), possibly, when more material available, to be placed elsewhere. Plates 861-863; map 14.

11b. Var. semicalva, var. nov. (тab. 864), var. typicae simillima; caule vix villoso-hirsutis; foliis subtus glabrescentibus vel sparse strigosis; capsulis plerumque glabris.-Of much wider range, from central Florida to South Carolina, locally to southeastern Virginia, westward to eastern Texas. Virginia: southampton co.: rich woods, Violet Hill, near Devil's Elbow, June 23, 1936, Fernald, Long \& Smart, no. 5922 (тype in Herb. Gray; isotypes in Herb. Phil. Acad., etc.), as $R$. ciliosa; about Franklin, Heller, no. 953 (US), as $R$. ciliosa. North Carolina: chatham co.: dry soil, Silver City, Biltmore Herb., no. $849^{j}$ (US), as $R$. ciliosa. columbus co.: grassy woodland at Lake Waccamaw, Godfrey \& Shunk, no. 4170, as $R$. parviflora. New hanover co.: Wilmington, June, 1894, J. M. Macfarlane (Pa). South Carolina: georgetown co.: shady, weedy waste place, Georgetown, Godfrey \& Tryon, no. 1683. williamsburg co.: rich woods, 10 miles southeast of Gourdin, Godfrey \& Tryon, no. 433. berkeley co.: railroad right-of-way, south of Moncks Corner, $R$. $F$. Martin, no. 1130 (USNA), as $R$. parvifora. Charleston co.: near Charleston, Aug. 1886, L. R. Gibbes (NY), as R. parviflora. anderson co.: dry rich woods, Anderson, John Davis, no. 9193 (Mo), as $R$. parviflora. Georgia: without definite locality: middle Georgia, T. C. Porter. Jefferson co.: July 8, 1897, M. H. Hopkins (NY), as $R$. parviflora. liberty co.: Sunbury, LeConte (NY), as $R$. ciliosa. Jasper co.: fence-corner, 1846, $T$. C. Porter (approaching var. dentata). cobs co.: moist field near brook, Marietta, June 12, 1885, R. N. Larrabee. walker or dade co. : foot of Lookout Mt. near road out of St. Elmo, June 6, 1921, O. M. Freeman (USNA). Florida: lake co.: clay soil, vicinity of Eustis, Nash, no. 242. sumter co.: March 29, 1879, J. D. Smith (US), as $R$. strepens. Citrus co.: moist shaded rock north of Pineola, H. J. Oosting, no. 135 (Duke). Brevard co: hammock along Indian River, Coco, J. K. Small, no. 8727. seminole co.: moist grassy clearing, south of Sanford, Moldenke, no. 184 (Duke, Mo, NY, Pa), as $R$. parviflora. polk co.: sandy
roadside, Winter Park, March 8, 1923, Hunnewell, no. 8732 (FWH). hillsboro co.: Tampa, May, 1876, A. P. Garber (Phil, US), as Dipt. ciliosus. leon co.: near Tallahassee, N. K. Berg (NY), as R. parviflora. wakulla co.: prope St. Marks, Mai, 1843, Rugel, with an unpublished name (NY). calhoun co.: Iola, Chapman (Mo). Tennessee: hamilton co.: old fields, Sequach Valley, Biltmore Herb., no. $849^{\text {h }}$ (US), as $R$. ciliosa. Alabama: dekalb and etowah cos.: Lookout Mt., July 6 and 8, 1898, H. Eggert (Mo). etowah co.: Gadsden, 1878, G. R. Vasey (US), as $R$. ciliosa. cullman co.: woods, June and Sept., 1897, H. Eggert (Mo). hale co.: Greensboro, 1857, Sereno Watson, as $R$. ciliosa, var. ambigua. lee co.: dry pine woods, $J . D$. Smith, no. 1940 (US), as R. strepens. montgomery co.: low abandoned field near Montgomery, June 18, 1932, J. K. Edwards (Pa). dallas co.: 1879, Wm. Trelease (Mo), as Dipt. ciliosus. CONECAH co.: Evergreen, Baker \& Earle, no. 39 (US), as R. ciliosa. monroe co. : dry hills, July 23, 1885, Mohr (US), as $R$. ciliosa. mobile co.: Mobile, 1905, W.C. Dukes, as $R$. parviflora; pine barrens, Spring Hill, E.W. Graves, no. 498, in part (Mo). Mississippi: grenada co.: moist wooded hillside, Pay West's Lake, May 27, 1932, Vena Millsaps (NC), as $R$. ciliosa. oктibвeha co.: Starkville, July 26, 1890, S. M. Tracy, as $R$. strepens (NY)—plant habitally resembling var. dentata. lauderdale co.: Meridian, S. M. Tracy, no. 3271 (NY), resembling var. cheloniformis. Jackson co.: Ocean Springs, Josephine Skehan as Seymour \& Earle, no. 154, as R. ciliosa, var. ambigua, June 7, 1895, Skehan, as $R$. ciliosa (simulating var. cheloniformis). harrison co.: Biloxi, S. M. Tracy, nos. 4944 (Mo, NY, US-very mixed no., some specimens nearly var. salicina), 6434 (NY, US), 6435 (G, Mo, NC, NY, US-some plants nearly var. salicina, others approaching var. nanella), as $R$. strepens. COPIAH CO.: Brushy Creek, Crystal Springs, May 18, 1925 (US), as $R$. parvifora. Louisiana: st. tammany parish: vicinity of Covington, Bro. Anect, no. 65 (US), as R. parviflora; Bro. G. Arsène, no. 12,240 (US), as $R$. parviflora. iberia parish: moist open grassy woods, Avery Island, D.S.\& H.B. Correll, no. 9525. rapides parish: Alexandria, Hale (NY), as R. strepens, corrected by Britton to $R$. ciliosa. Natchitoches parish: woods near Marthaville, May 5, 1893, Langlois (US), as $R$. ciliosa. Texas: upshur co.: sandy woods, Big Sandy, Reverchon, no. 2536 (Mo), as R. parviflora. Liberty co.: low woods, Dayton, E. J. Palmer, no. 7768 (Mo), as $R$. parviflora (plant resembling large-leaved var. membranacea). harris co.: Houston, G. L. Fisher, no. 81 (US), as $R$. parviflora. Plate 864 ; map 15.

11c. Var. semicalva, forma detonsa, f. nov., caule, foliis, calycis segmentibusque minute canescento-puberulis eis ecilia-


Photo. B. G. Schubert.
Ruellia carolinifnsis, var. membranacea: fig. 1, type, $X 1 / 2 ;$ fig. 2 , upper, and fig. 3 , lower surface of leaf, $\times 10$; fig. 4 , flowering tip, $\times 1.7$; fig. 5 , portion of calyx and capsule, $\times 10$; fig. 6 , fruiting summit, $\times 2$


Photo. B. G. Schubert.
Ruellia caroliniexsis, var. membranacea: figs. 1-3, summits of plants, to show leafvariation, $\times 1$
tis.-Florida: roadside, Sebring, Highland Co., March 4, 1924, Hunnewell, no. 9044 (тype in Herb. Hunnewell).

11d. Var. membranacea, var. nov. (тab. 865 et 866), caule $1-9 \mathrm{dm}$. alto ad basin $1-4 \mathrm{~mm}$. diametro, internodiis valde divergenterque hirsutis; foliis membranaceis $5-12 \mathrm{~cm}$. longis supra strigosis subtus ad venas strigosis vel hirsutis, ovalibus, ovatis, ellipticis vel late lanceolatis obtusis vel subacutis; calycis segmentis dorso glabris vel glabrescentibus longe ciliatis- $R$. parvifora sensu Small, Fl. Se. U. S. 1085 (1903) and sensu Britton in Britton \& Brown, Ill. Fl. ed. 2, iii. 242 (1913), excl. fig., which is of $R$. Purshiana; not $R$. parviflora (Nees) Britt. Man. 854 (1901), at least as to basonym, Dipteracanthus ciliosus, var. parviflorus Nees.-Woods, openings and clearings, either calcareous or subacid, north-central South Carolina to southcentral Tennessee, north to southern New Jersey, southeastern Pennsylvania, northern Maryland, West Virginia, southeastern Ohio and north-central Kentucky (unless otherwise noted, distributed as $R$. caroliniensis, ciliosa or parviflora); usually commoner than other vars. northward. New Jersey: cape may co.: woods south of Mill Lane, north of Cape May City, Aug. 10, 1918, W. Stone (Phil) ; north of Cape May, Sept. 13, 1901, C. S. Williamson (Phil); Cape May Court House, Aug. 6, 1909, Van Pelt (Phil); Cold Spring, Sept. 13, 1908, C. S. Williamson (Phil), July 18, 1909, Van Pelt, no. 12,199 (Pa). Pennsylvania: york co.: below McCall's Ferry, July 11, 1895, Joseph Crawford (Phil). Delaware: new castle co.: Aug. 9, 1866, A. Commons (NY), as R.strepens. Kent co.: moist woods west of Woodland Beach, R. R. Tatnall, no. 1462. sussex co.: Rehoboth, July 8, 1908, C. S. Williamson (Pa, Phil) ; sandy woods east of Milford, July 16, 1896, A. Commons (Pa, Phil). Maryland: cecil co.: Elk Neck, June 24, 1923, W. L. Abbott (Phil); woods, high bluff west of Georgetown, Aug. 6, 1938, Mrs. L. R. Holmes (Pa); Leslie, July 15, 1891, Crawford (Phil) ; flats, Conowingo, July 29, 1924, Crawford; Conowingo, July 25, 1907, J. J. Carter (Phil). Kent co.: near Chestertown, July 11, 1907, Shreve, no. 1696 (US). QUEEN ANNE Co.: Aug. 20, 1900, G. Vanatta (Phil). talbot co.: railroad ballast, northwest of St. Michaels, $R . R$. Tatnall, no. $386(\mathrm{~Pa})$; edge of woods, west of Easton, E. C. Earle, nos. $2251(\mathrm{~Pa})$ and $3698(\mathrm{~Pa})$. wicomico co.: Salisbury, July 14, 1904, J. J. Carter (Phil). worcester co.: roadside through swamp, north of Dividing Creek Bridge, G. F. Beaven, no. 455 (Duke). harford co.: low, moist woods, Creswell, July 28, 1883, L. W. Brosius (Pa). Baltimore co.: Baltimore, Leroy (NY). prince george co.: Hyattsville, Aug. 13, 1904, Steele (Mo). calvert co.: low swampy woods, North Bay, Chesapeake Bay, Muenscher, no. 3867 (Mo). montgomery co.: edge of woods, July 7, 1901, M. W. Lyon, Jr. (US). washington
co.: island above Harper's Ferry, F. W. Pennell, no. 2430 (Phil). District of Columbia: in vicinis Washington, June 29, 1884, L. F. Ward; thickets near Ivy City, June 14, 1891, F. Blanchard (Mo), as $R$. strepens; open woodland, Washington and vicinity, July 16, 1896, Steele (NY, Mo); Congress Heights, Philip Dowell, no. 7012. West Virginia: nicholas co.: dry bank, Peter Creek, Millspaugh, no. 596 (NY). mason co.: along Ohio River, near Pum Roy, E.E. Berkley, no. 913 (Mo). cabell co.: abandoned wooded pasture, Pleasant Valley, Gilbert, no. 483. lincoln co.: near Mills School, E. E. Berkley, no. 969 (Mo). wayne co.: dry hillside, Buffalo Creek, Lewis Plymale, no. 95. mC dowell and wyoming cos.: woods along Indian Ridge, E. L. Morris, no. 1172 (US). Virginia: fairfax co.: Falls Church, June 23, 1872, J. J. Carter (Phil). alexandria co.: Naucks, Pennell, no. 2456 (Phil); Fort Myer, July 14, 1895, $E$. A. Mearns (NY), as $R$. strepens. northampton co.: sandy woods back of the dunes, Savage Neck, Fernald \& Long, no. 5453. middlesex co.: bank of Rapahannock River at Gray's Point, A. B. Massey, no. 2115 (VPI). mathews co.: sandy open soil along North End Branch, "Fort Nonsense", south of Soles, Wherry \& Pennell, no. 12,616, in part (Phil). Gloucester co.: Beaver Swamp Creek, north of Gloucester, July 5, 1924, H. B. Meredith (Phil). York co.: steep wooded bank, York River, above Mt. Folly, Fernald \& Long, no 13,459. James city co.: rich woods and slopes by James River, Grove Landing, southeast of Grove, Fernald \& Long, no. 13,457; moist rich soil in woods, west side of Jones Millpond, Williamsburg, Grimes, no. 3887. charles city co.: wooded slope by James River, at "Four Oaks", below Harrison Point, Fernald \& Long, no. 13,149. princess anne co.: rich deciduous woods east of Little Creek, Fernald \& Long, no. 4193; sandy woods, northern end of Knott's Island, Fernald \& Long, no. 4194, in part. norfolk co.: Portsmouth, June, 1840, in part, Rugel (NY). isle OF wight co.: thicket back of sandbeach of Burwell's Bay, James River, below Rushmere (Fergusson's Wharf), Fernald \& Long, no. 13,150. surry co.: rich calcareous wooded ravines along James River, Claremont, Fernald \& Long, nos. 13,762 and 13,837; rich calcareous wooded ravine near James River, northwest of Chippokes, July 25, 1941, Fernald \& Long, no. 13,458 . SOUTHAMPTON CO.: border of sandy woods south of Applewhite's Church, Fernald \& Long, no. 13,153. sussex co.: border of woods near Nottoway River, Green Church Bridge, southwest of Owen's Store, Fernald \& Long, no. 12,472 (type in Herb. Gray.; isotype in Herb. Phil. Acad.). greenville co.: bottomland woods along Meherrin River, southeast of Gaskins, Fernald \& Long, no. 13,151. dinwiddie co. : low woods near Mt. Olivet Church, Fernald \& Long, no. 14,021. amelia co.: J. B. Lewis, nos. 114 and 733 (VPI). BRUNSwICK co.: bottomland
woods near Western Bridge, Meherrin River, south of Edgerton, Fernald \& Lewis, no. 14,498. campbell co.: vicinity of Lynchburg, July 1, 1892, Britton, Britton \& Vail (NY). bedford co.: July 8, 1871, A. H. Curtiss (Mo, NY). rockbridge co.: "Near the natural bridge in rich soil along fences", Pursh (Phil), correctly called "Anonymos caroliniensis Walt."; Natural Bridge, Margaret P. Russell. North Carolina: pasquotank co.: oak-pine-beech woods south of Elizabeth City, Wiegand \& Manning, no. 2929. tyrrell co.: open woodland, Columbia, Godfrey, no. 4322. Рitt co.: pine woodland near Farmville, Godfrey, no. 4278. warren co.: Warrenton, July 19, 1924, H. B. Meredith (Phil). Granville co.: wet meadow, Oxford, M. F. Buell, no. 1404 (US). durham co.: shaded low woods, Duke Forest, Blomquist, no. 367 (US). wake co.: sandy bank west of Raleigh, Wiegand \& Manning, no. 2930. bladen co.: moist sandy soil, Biltmore Herb., no. $849^{\text {a }}$. orange co.: woods near Chapel Hill, Aug. 17, 1909, Coker (NC), June 23, 1933, M. T. Cameron (NC); dry open woods, Hollow Rock, C.C. Wilson, no. 17 (Mo). chatham co.: dry soil, Silver City, Biltmore Herb., no. 849j. forsyth co.: moist woods near Mt. Carmel, Correll, no. 2591 (Duke). surry co.: moist shaded cove, Pilot Mt., R. M. Williams, no. 464 (Duke). rowan co.: vicinity of Salisbury, Heller, no. 140 (NY, Phil). polk co.: near Columbus, July 22, 1897, E. C. Townsend (US). madison co.: open woods, bluff along river, Hot Springs, Oosting, no. 34,230 (Duke). buncombe co. $:$ Biltmore, Biltmore Herb., no. 849 b in part (US); Weaversville, July 8, 1933, H. B. Teague (Duke). swain co.: partly shaded roadside near Cherokee Lodge, rare, $R . A$. McLean, no. 73 (Duke). South Carolina: darlington co.: woods at Lauther's Lake, Budd E. Smith, no. 1652 (NC). hexington co.: vicinity of Batesburg, E. A. McGregor, no. 309 (US), as R. hybrida. greenville co.: summit of Paris Mt., July, 1896, J. K. Small (NY). anderson co.: damp soil, Anderson, John Davis, no. 8394 (US, Mo, same no. with label copied and data changed to "dry ground" by B. F. Bush whose Missouri plant grows in dry ground). oconee co.: thickets, A. P. Anderson, no. 1222 (US); Clemson College, H. D. House, no. 2384 (NY). Georgia: clarke co.: roadside, Athens, L. M. Perry, no. 1083, as $R$. humilis. Ohio: meigs co.: Letart, Sept. 10, 1935, C. H. Jones (NY). Kentucky: locality not definitely placed: "Ky river hills, mouth of Hickman Cr.", July, 1832, C. W. Short, as R. strepens (Phil), sent to Hooker who wrote in 1833: "The other Ruellia [var. nanella] with small flow ${ }^{8}$ looks difft-But I am much puzzled with the Genus". rowan co.: prairie patch, Clark Mt., E. L. Braun, no. 1930 (Braun). menifee co.: oak woods, dry limestone slope, Red River valley, E. L. Braun, no. 2128 (Braun). bell co.: rocky woodland, Pineville, Pennell, no. 11,804 (Phil);
sandy soil, slope of Pine Mt. at Frakes, E. L. Braun, no. 1530 (Braun). rockcastle co.: wooded gully, south of Livingston, Smith \& Hodgdon, no. 3785 (US). owen co.: about 1 mile north of Scott Co. line, E. L. Braun, no. 3204 (Braun); wooded slope, Severn Creek, E. L. Braun, no. 4578 (Braun). wayne co.: Beaver Creek, E. L. Braun, no. 3099 (Braun). Jefferson co.: 3 miles south of Louisville, July 5, 1892, L. S. Bergmann (Mo). larue co.: open cedar slope, limestone, Upton, E. L. Braun, no. 1970 (Braun). Tennessee: sevier co.: Great Smoky Park, near Gatlinburg, 1932, Mrs. C. D. Walcott (US). knox co.: Knoxville, Ruth, no. 101, as R. strepens. hamilton co.: old fields, Sequachie Valley, Biltmore Herb., no. $849^{\mathrm{h}}$ (US); Chickamauga Park, May 25, 1911, J. R. Churchill (Mo). franklin co.: dry soil, Cowan, Biltmore Herb., no. 8490 (US); woods north of Shernwood, June 6, 1897, H. Eggert (Mo). cheatham co.: limestone bluffs, Kingston Springs, Svenson, no. 42. Map 16.

11e. Var. membranacea, forma breviberbis, f. nov. (tab. 867, fig. 4-6); var. membranaceae simillima, caulis internodiis puberulis vel glabrescentibus rare sparseque hirsutis.-Scattered through the general range. Maryland: anne arundel co. Bay Ridge, July 13, 1897, F. H. Knowlton (US). West Virginia: cabell co.: dry field in clay soil, near Roland Park, Gilbert \& Gilbert, no. 259 (VPI). North Carolina: polk co.: wet shaded ground, Tryon, D. C. Peattie, no. 1351 (NC). Georgia: dekalb co.: Stone Mountain, July 1-8, 1886, Small (type in Herb. NY. Bot. Gard.). Tennessee: cocke co.: near Wolf Creek, Kearney, no. 863 (US).

11f. Var. membranacea, forma hypopsila, f. nov. (tab. 867, FIG. 1-3), var. membranaceae simillima; caulis internodiis plerumque pubescentibus; foliis subtus glabris vel subglabris, vix strigosis, supra strigosis; calycis segmentis ciliatis.-Occasional in Virginia and North Carolina. Virginia: elizabeth city co.: Old Point Comfort, Sept. 15, 1895, Britton (NY). norfolk co.: near Northwest, Kearney, no. 1565 (US). surry co.: border of bottomland woods along Blackwater River, about 1 mile southwest of Dendron, June 14, 1941, Fernald \& Long, no. 13,148 (type in Herb. Gray.; isotype in Herb. Phil. Acad.), no. 13,491 (fruit of preceding). southampton co.: dry sandy pine woods by Nottoway River, near Carey Bridge, Fernald \& Long, no. 13,147; alluvial wooded bottomland of Nottoway River, Cypress Bridge, Fernald \& Long, no. 8470; wooded alluvial bottomland of Meherrin River, near Haley's Bridge, Fernald \& Long, no. 8471. SUSSEX co.: bottomland woods along Nottoway River, east of Huske, Fernald \& Long, no. 13,761. North Carolina: orange co.: meadow below Durham-Chapel Hill Bridge, June 26, 1915, Coker \& Totten, transition to next form (NC).


Photo. B. G. Schubert.
Ruellia caroliniensis, var. membranacea, forma hypopsila: fig. 1 , summit, $\times 1$, of TYPE; FIG. 2, upper, and FIG. 3, lower surface of leaf, $\times 10$

Var. membranacea, forma breviberbis: fig. 4 , internode and leaves, $\times 1.7$; fig. 5 , upper, and fig. 6, lower surface of leaf, $\times 10$


Fhoto. B. G. Schubert.

Ruellia caroliniensis, var. membranacea, forma laevior: fig. 1, fruiting summit, $\times 1.7$, of TYPE; FIG. 2, upper, and Fig. 3, lower surface of leaf, $\times 10$; FIG. 4 , portion of calyx-segment and capsule, $\times 10$


Ihoto. B. G. Schubert.
Ruellia caroliniensis, var. nanella: fig. 1 , type ( 2 plants), $\times 1$; fig. 2 , upper, and fig. 3, lower surface of leaf, $\times 10$; fig. 4, flower-bud, with folded bract and 2 calyx-segments, $\times 10$; fig. 5 , portion of calyx-segment and capsule, $\times 10$


Photo. B. G. Schubert.
Ruellia caroliniensis, var. nanella: fig. 1 , internode and base of leaf, $\times 4$
R. caroliniensis, var. nanella, forma eclliata: fig. 2, type ( 3 plants), $\times 1$; fig. 3 , portion of leaf, bracts and internodes, $\times 10$; Fig. 4 , portion of calyx and capsule, $\times 10$

11g. Var. membranacea, forma laevior, f. nov. (tab. 868), var. membranaceae simillima; caulis internodiis glabrescentibus; foliis utrinque glabris glabrescentibusve; calycis laciniis eciliatis vel vix ciliatis.-Local, Virginia and North Carolina. Virginia: southampton co.: wooded alluvial bottomland of Meherrin River, near Haley's Bridge, Fernald \& Long, no. 9151. greensville co.: bottomland woods along Meherrin River southeast of Gaskins, Aug. 3, 1941, Fernald \& Long, no. 13,462 (type in Herb. Gray.; isotype in Herb. Phil. Acad.). amelia co.: July 1, 1936, J. B. Lewis, no. 114 (VPI). North Carolina: orange co.: swamp of New Hope Creek, 5 miles east of Chapel Hill, June $30,1931, H . R$. Totten (NC); meadow 3 miles out from Chapel Hill, on Raleigh Road, 1931, T. N. Webb (NC).

11h. Var. nanella, var. nov. (tab. 869 et 870 , fig. 1), caule filiformi ad basin $1-2 \mathrm{~mm}$. diametro $1-3(-4) \mathrm{dm}$. alto, internodiis valde divergenter villoso-hirsutis; foliis membranaceis, ellipticis vel oblongis majoribus 2-6 cm. longis; calycis segmentis 1.3-2 cm . longis, ciliatis dorso plerumque glabrescentibus.-Dry to moist woods, local, eastern Maryland to Kentucky, south to South Carolina; southern Mississippi. Maryland: cecll co.: loamy, wooded slope, Duffy Creek, 2 miles southeast of Cecilton, B. Long, no. 48,422 (Phil.); North East, Sept. 2, 1894, Joseph Crawford (Phil), transition to var. membranacea. KENT co.: Chestertown, July 29, 1901, E. ('. V'anatta (Phil), transition to var. membranacea. charles co.: dense woods, Tompkinsville, Leonard \& Killip, no. 838 (US). Virginia: nansemond co.: near Suffolk, Kearney, no. 1718 (US); dry sandy woods above Nansemond River, east of Cahoon Pond, northwest of Suffolk July 23, 1941, Fernald \& Long, no. 13,461 (type in Herb. Gray.; isotype in Herb. Phil. Acad.). princess anne co.: Oceana, July 2, 1923, H. B. Meredith, in part (Phil), transition to var. membranacea; dry, mixed woods, Little Neck, Fernald \& Long, no. 4195, transition to var. membranacea. North Carolina: halifax co.: Weldon, July, 1875, Mac Elwee (Phil). mcdowell co.: Old Fort, June, 1872, Walter Faxon. orange co.: Chapel Hill, July, 1931, Vena Millsaps (NC). South Carolina: darlington co.: damp shady woods near Auburn, June 27, 1909, Coker (NC). Kentucky: poor dry hill on the Kentucky River, 1832, C. W. Short (Phil), this material referred to Hooker (see note under Kentucky specimens of var. membranacea), with the following note: "Is this plant specifically distinct from $R$. strepens in another part of the Collection? Found on a poor dry hill on the Ky river. It flowers later than the former \& is much more starved in its growth." Mississippi: jackson co.: Ocean Springs, A. B. Seymour, no. 91822 , as $R$. ciliosa. harrison co.: Biloxi, Lloyd \& Tracy, no. 347, in part (NY). Map. 17.

11i. Var. nanella, forma eciliata, f. nov. (tab. 870, fig. 2-4),
var. nanellae simillima, internodiis glabrescentibus vel puberulentibus; foliis vix vel minutissime strigosis; calycis laciniis ecilia-tis.-Local, southeastern Virginia: southampton co.: dry sand of open alluvial flat by Blackwater River, southeast of Unity, July 4, 1942, Fernald \& Long, no. 14,412 (type in Herb. Gray.; isotype in Herb. Phil. Acad.); white sand of pine and oak woods at Round Gut, southwest of Franklin, Fernald \& Long, no. 13,154. Sussex co.: bushy clearing southeast of Stony Creek, Fernald \& Long, no. 13,145, taller plants, transitional to var. membranacea, forma laevior. Mississippi: simpson co.: Magel, E. G. Holt, no. 5 (US), as R. humilis.

11 j . Var. cheloniformis, var. nov. (tab. 871 et 872), caule stricto vix vel sparse ramoso $4.5-9 \mathrm{dm}$. alto basin versus $2-5$ mm . diametro plus minusve hirsuto; foliis subcoriaceis firmis duris lanceolatis vel lanceolato-ovatis subacuminatis, majoribus (supernis) 6-12 cm. longis 2-4.5 cm. latis, subtus ad venas strigosis vel hispidis supra strigosis; nodis floriferis 1-4 approximatis vel imis $3-15 \mathrm{~cm}$. distantibus; glomerulis congestis; calycis laciniis dorso glabris vel sparse hirsutis ciliatis; corollis $3-4.5 \mathrm{~cm}$. longis.-Woods and clearings, north-central South Carolina and northern Georgia, north to southern New Jersey, northern Maryland and northern Virginia, more rarely to Kentucky and southern Indiana. New Jersey: cape may co.: margins of fresh meadows east of Cape May Court House, Long, no. 6685 (Phil), appr. var. membranacea; Cape May Court House, 1886, Isaac Burk (Pa, Phil) ; woods, Cold Spring, July 18, 1908, Van Pelt (Phil). Delaware: sussex co.: Rehoboth, July 8, 1908, Van Pelt (Phil). Maryland: cecil co.: North East, July 20, 1890, J. B. Brinton (Pa), as R. strepens; Elk Neck, June 24, 1923, W. L. Abbott (Phil) ; moist soil below Cromley's Mount, Pennell, no. 1591 (Pa). montgomery co.: Little Falls Brook, Pennell, no. 2439 (Phil). st. marys co.: Point Lookout, July 13, 1930, O. M. Freeman (USNA). District of Columbia: Brookland, July 17, 1897, Carrie Harrison (USNA). Virginia: clarke co.: woods, Boyce, Hunnewell, no. 10,742 (FWH). northampton co.: dry woods, Savage Neck, July 19, 1936, $R$. R. Tatnall, no. 3013 (type in Herb. Gray.). gloucester co.: Beaver Swamp Creek, north of Gloucester, July 5, 1924, H. B. Meredith (Phil), as $R$. parvifora. elizabeth city co.: Hampton, July 22, 1927, J. R. Churchill, (Mo), as R. strepens. james city co.: open places in moist hardwood ravine, southwest of Williamsburg, Grimes, no. 4609 (NY); Jamestown, June 24, 1924, H. B. Meredith (Duke). princess anne co.: Virginia Beach, July 3, 1892, Britton, Britton \& Vail (NY) ; pine woods, Virginia Beach, Fernald \& Long, no. 4191 ; sandy woods, Knott's Island, Fernald \& Long, no. 4194, in part. norfolk co.: Portsmouth, June, 1840, Rugel (NY). dinwiddie co.: low open pineland, thickets
and clearings just east of McKenney, Fernald \& Long, no. 14,413. mecklenburg co.: roadside-thicket, 6 miles north of Clarksville, $F$. $R$. Fosberg, no. 15,463 . halifax co.: old clearing, east of Dan River, Fosberg, no. 15,384 . North Carolina: Camden co.: low, moist bushy soil, near Shiloh, Correll, no. 2068 (Duke). WASHINGTON CO.: moist soil near Scuppermong, Correll, no. 1918 (Duke). greene co.: pine woodland, Farmville, Godfrey, no. 4278 (Duke, US), transition to var. membranacea. wake co.: pine woodland along Crabtree Creek, 8 miles northwest of Raleigh, Godfrey, no. 4991, in part. harnett co.: Buie's Creek, June 29, 1938, Frances \& Sarah Fount (NC). rowan co.: Salisbury, June, 1872, LeRoy \& Ruger, in part (NY). Forsyth co.: woods, June 20, 1940, Schallert. alexander co.: on bank, road from Gelreath P. O. to Hidnite, Radford \& Stewart, no. 1600 (NC). mc dowell co.: Old Fort, Biltmore Herb., no. $849^{i}$ (US). buncombe co.: Biltmore, Biltmore Herb. no. $849^{\text {b }}$, in part, mixed with var. membranacea (US). polk co.: Tryon, July 22, 1897, E. C. Townsend, in part (US). South Carolina: florence co.: sandy, shady banks of Pee Dee River, near Mars Bluff Bridge, Wiegand \& Manning, no. 2931, as R. parviflora. charleston co.: near Charleston, 1856, L. R. Gibbes (NY), as R. parviflora. oconee co.: Clemson College, H. D. House, no. 2384 (US), as $R$. parviflora. Georgia: without stated locality: Boykin (NY), as Dipteracanthus hybridus; Porter, 1846 (Phil) "mid. Georgia, 1846," Porter, with the comment: "There is a good deal of confusion among the Ruellias". clarke co.: Athens, June 28, 1930, J. H. Pyron (Duke). Gwinnett co.: Yellow River, near McGuire's Mill, July 2, 1895, Small (NY), as $R$. ciliosa, changed by Small to $R$. parvifora; Thompson's Mills, Allard, no. 225 (NY, US). floyd co.: Rome, July, 1888, Gerald McCarthy (US). Indiana: jefferson co.: Hanover, July, 1875, A. H. Young (NY). CRAWFORD Co.: roadside near Leavenworth, Deam, no. 16,473 (NY), as R. strepens. KENTUCKY: ROCKCASTLE CO.: wooded gully south of Livingston, Smith \& Hodgdon, no. 3758 (G), as $R$. strepens. map 18.

11 k . Var. salicina, var. nov. (тab. 873), caule simplice vel sparse breviterque ramosi tenui $1.5-7 \mathrm{dm}$. alto canescentipuberulo vel subvilloso; nodorum superiorum foliis longioribus anguste lanceolatis vel lanceolato-linearibus $0.5-1.5(-2) \mathrm{cm}$. latis subtus glabrescentibus vel sparse strigosis; calycis segmentis dorso canescenti-pilosis vel glabrescentibus ciliatis; corollis 2-3 cm . longis, fauce supra $5-10 \mathrm{~mm}$. diametro. - Northern Florida to eastern Texas, north, locally, to northern Georgia, Tennessee and southern Indiana. Georgia: gwinnett co.: Thompson's Mills, Allard, no. 224 (US), as $R$. parviflora. floyd co.: deciduous woodland, Horseleg Mt., Pennell, no. 4099 (Pa). Florida: gadsden co.: open dry woods of pine and oak, River Junction,

Wiegand \& Manning, no. 2933. lake co.: dense, moist woodland, Hawkinsville, May 7, 1910, S. C. Hood (Mo). Indiana: clark co.: wet grassy and rocky shore, southwest of Charleston, F. J. Hermann, no. 6730. Tennessee: davidson co.: copses, vicinity of Nashville, Sept., 1885, Gattinger. shelby co.: Normal, C. E. Moore, no. 69 (US). Alabama: blount co.: Blount Springs, May 5, 1898, C. F. Baker (NY), as R. pedunculata. monroe co.: Perdue Hill, July 22, 1885, C. Mohr (US), as $R$. ciliosa, var. hybrida, this altered to var. ambigua, then the sheet, in spite of petioles 1.5 cm . long, annotated as the sessileleaved $R$. humilis! mobile co.: pine barrens and dry pastures, Spring Hill, E.W. Ganes, no. 948, in part (US)-the sheet also containing var. semicalva and $R$. ciliosa. Mississippi: clarke co.: Enterprise, S. M. Tracy, no. 3288 (NY), as $R$. ciliosa, altered to $R$. parviflora. Louisiana: without stated locality: Steinhaur. orleans parish: New Orleans, Drummond, no. 257, as Dipteracanthus strepens, another, with no., as Calophanes humistrata. Natchitoches parish: open ground, Natchitoches, June 10, 1915, E. J. Palmer, no. 7945 (type in Herb. N. Y. Bot Gard.; isotypes in Herb. Mo. Bot. Gard. and U. S. Nat. Herb.) rapides parish: pine-barren hills, vicinity of Alexandria, $C . R$. Ball, nos. 559 (US), as $R$. strepens, and 655, in part (Mo)-the latter mixed on a sheet with $R$. humilis var. frondosa and quite like the other sheets of no. 559 (presumably the former mixed in handling). iberia parish: moist open grassy woods, Avery Island, D.S.\& H.B. Correll, no. 9525. Texas: upshur co.: sandy woods, Big Sandy, Reverchon, no. 2536 (Mo); damp sandy soil, Big Sandy, Reverchon, no. 1402 (simulating small var. dentata). GREGG co.: rich sandy woods, Gladwater, June 18, ...., Reverchon (Mo). wood co.: damp woods, Mineola, Reverchon, no. 2113 (Mo). harris co.: White Oak Bayou, 4 miles west of Houston, Lindheimer, no. 40 (data and no., Mo.; two sheets without no., G), as $R$. strepens. map 19.
111. Var. dentata (Nees), comb. nov. Stem stiff and relatively strong, simple or more often with ascending branches, the main axis $1.5-9 \mathrm{dm}$. long, hirsute to puberulent; the lower and median internodes elongate; 4-9 nodes bearing glomerules; leaves oblong, oblong-lanceolate, ovate or elliptic, subcoriaceous, often undulate-dentate, blunt or acutish, the lower and middle ones subequal, the upper reduced and definitely smaller; flowers occasionally cleistogamous; calyx-segments ciliate, $1.8-2.5 \mathrm{~cm}$. long.-Dipteracanthus ciliosus, $\beta$. dentatus Nees in DC. Prodr. xi. 123 (1847).-Chiefly in dry woods and clearings, upland of South Carolina, western North Carolina and eastern Tennessee, north to Delaware, southeastern Pennsylvania, Maryland, northern Virginia, West Virginia, Kentucky and southeastern Indiana. Pennsylvania: york co.: below McCall's Ferry,


Photo. B. G. Schubert.
Ruellia caroliniensis, var. cheloniformis: fig. 1, type, $\times 5 / 12$; fig. 2 , corolla, $\times 1$; FIG. 3, calyx and capsule, $\times 2$; fig. 4 , bract, calyx-segment and portion of capsule, $\times 10$


Photo. B. G. Schubert.
Ruellia caroliniensis, var. cheloniformis: figs. 1 and 2 , flowering summits, $\times 1$; fig. 3, upper and fig. 4, lower surface of leaf

July 11, 1895, Crawford (Phil). Delaware: new castle co.: north end of cedar scrub, near Taylor's Bridge, July 28, 1891, A. Commons. sussex co.: oak copse, Rehoboth, Sept. 5, 1908, J. R. Churchill. Maryland: cecil co.: Conowingo, July 25, 1907, J. J. Carter (Phil). baltimore co.: near Baltimore, 1866, P. V. LeRoy (NY). calvert co.: dry woods, Chesapeake Beach, Hunnewell, no. 5666 (FWH). wicomico co.: Salisbury, July 14, 1904, J. J. Carter (Phil). District of Columbia: June 22, 1902, Steele (Duke). West Virginia: nicholas co.: dry bank, Peter Creek, Millspaugh, no. 596 (NY), as R. ciliosa. Virginia: fairfax co.: woods, Great Falls, Hunnewell, no. 7027 (FWH). james city co.: dry slope about 3 miles north of Williamsburg, $R$. W. Menzel, no. 30, as $R$. strepens. henrico co.: Fairway Ridge, near Richmond, July 10, 1928, F. H. W. princess anne co.: pine woods, Virginia Beach, Sept. 25 and 28, 1900, Wm. Palmer (US); Oceana, July 2, 1923, H. B. Meredith, in part (Phil); open clay at border of woods, east of Little Creek, Fernald \& Long, no. 4192. norfolk co.: dry sandy roadside, Ocean View, July 3, 1923, H. B. Meredith (Phil). nansemond co. : moist clearing, site of extinct Marsh's Millpond, Fernald \& Long, no. 14,414. isle of wight co.: sandy, recently cleared woods along Blackwater River, below Broadwater Bridge, north of Zuni, Fernald \& Long, no. 13,460. sussex co.: dry sandy woods, thickets and clearings, north of Moore's Mill, Fernald \& Long, no. 6397; dry woods near Nottoway River, Green Church Bridge, northwest of Owen's Store, Fernald \& Long, no. 14,020. halifax co.: old clearing, east of Dan River, 12 miles east of Danville, F. R. Fosberg, no. 15,384 (Pa). orange co.: field, Orange, Killip, no. 13,248 (US). North Carolina: orange co.: Arboretum and Campus of Univ. N. C., July 1, 1914, Coker (NC). polk co.: banks and meadows, "Valhalla", Tryon, D. C. Peattie, no. 626 (NC). madison co.: Warm Spring, Aug. 23, 1875, J. H. Redfield (Mo). buncombe co.: Asheville, B. L. Robinson, no. 59, as R. strepens; Biltmore, Biltmore Herb. no. 849 (US). rowan co.: vicinity of Heilig's Mill, Small \& Heller, no. 139 (Phil, US). Jackson co.: near Dillsboro, Sept. 9, 1933, Alexander, Everett \& Pearson (NY). South Carolina: darlington co.: east side of Lynches River near Clyde, B. E. Smith, no. 1653 (NC). anderson co.: dry ground, Anderson, John Davis, no. 8369 (Mo). Indiana: floyd co.: wooded hillside and along railroad, west of New Albany, Deam, no. 14,010. Kentucky: rockcastle co.: near Conway, E. L. Braun, no. 3132 (Braun). pulaski co.: thin soil over limestone, south of Burnside, Wherry \& Pennell, no. 13,786 (Phil). edmonson co.: near Sweeden, E. L. Braun, no. 3593 (Braun). warren co.: Bowling Green, July 3, 1889, Sadie F. Price, painting (Mo). ballard co.: woods, Wickliffe, McFarland \& Anderson, no. 293
(Mo). Tennessee: blount co.: damp woods 2 miles east of Townsend, W. M. Benner, no. 5803 (Phil). Plates 874 and 875; map 20.

Of all the species of Ruellia in the eastern United States $R$. caroliniensis is the most baffling, for in different areas it is reasonably definable as geographic varieties, but, at least in eastern Virginia, plants with strongly spreading-hirsute stems and others with the internodes merely puberulent or shortpilose will occur side-by-side, while in other colonies may be found individuals with the leaves strongly hispid on the veins beneath almost mingled with individuals with the lower leafsurfaces glabrous. In general the more northern series (vars. membranacea, nanella, cheloniformis and dentata) have the soft villosity or pilosity of stem or leaves less marked than in the more southern vars. typica, semicalva and salicina. In the three latter, furthermore, the leaf-blade is rather "full", so that the pressed foliage commonly puckers or has a "tuck" and the calyx-segments are commonly canescent on the back. In the more northern varieties, on the contrary, the leaf-blade is readily flattened in pressing and the calyx-segments are glabrous or only exceptionally pubescent on the back. When well developed the stems of the southern vars. typica and semicalva tend to divergent branching, with the elongate branches floriferous at tip, but simple-stemmed plants somewhat obscure this character. In the northern series the branching, except sometimes (as in var. dentata) from the base, is weak, most plants having simple stems or few short and rarely floriferous branches.

The commoner northern plants fall into the thin-leaved var. membranacea (with several minor forms based upon development or lack of development of trichomes on the leaves or of cilia on the calyx-segments), which passes insensibly, on the one hand, into the stouter, stiffer and firmer-leaved var. cheloniformis, on the other into the dwarf, very slender and small-leaved var. nanella, the latter, or something very like it, reappearing in southern Mississippi, where it passes into weak unbranched states of the southern var. semicalva. In the extreme South, furthermore, the narrow-leaved var. salicina, very definite in its extreme development, merges into var. semicalva and strongly suggests the narrowest-leaved extreme of the usually more
northern var. cheloniformis. Var. dentata, with great reduction of leaves above, with the lower and median leaves nearly uniform, with strong tendency to develop elongate and floriferous basal branches, and its great abundance of glomerules, is as definite as any of the varieties, but some specimens show evident transition to vars. salicina, semicalva, cheloniformis and membranacea. In short, the species, like the usually more western $R$. humilis, is evidently in a state of flux and I am unable to find in it really stable characters.

The identifications of the past clearly show how perplexing have been the many variations of this most complex species, especially to those without any field-experience with it. It has been variously known or identified as $R$. strepens L. (our species 2, plates 841 and 842 ), or $R$. pedunculata Torr. (our species 3, plate 843), mixed in collections with $R$. Purshiana (our species 5 , plates $£ 45$ and $£ 46$ ), identified as $R$. ciliosa Pursh (our species 7, plates 849 and 850 ) or as $R$. humilis Nutt. (our species 10 , plates $854-\varepsilon 60$ ).

It was described and illustrated by Dillenius (our plate 863) and his description and plate were included in the $R$. strepens of Linnaeus (1753), but later excluded by him. In fact, Elliott, apparently not cognizant of the redefinition of $R$. strepens by Linnaeus (1771), was puzzled by the restriction of the latter name by authors who had Mantissa Altera. Describing in detail Ruellia caroliniensis, var. typica, as $R$. strepens, "the whole plant hairy . . . Calyx [-segments] . . . linearlanceolate, the upper half almost setaceous, very hispid", and correctly citing for his South Carolina plant the Dillenian plate and Anonymos caroliniensis Walter, 168, Elliott thus expressed his perplexity: "I know not how Pursh could have called [correctly following the emended description of Linnaeus in 1771] the segments of the calyx lanceolate, they are very accurately represented by Dill. Hort. Elth. T. 249, F. 321, excepting that in number 5 and 6 the setaceous points are not sufficiently extended, but in number 1 from which he derived the epithet Comosa, the representation is very accurate."

Although the Walter type of his Anonymos caroliniensis, p. 168, basis of Ruellia caroliniensis, is lost, his generic description was good and his specific description well applies to the southern
plant, which occurs abundantly in eastern South Carolina and about Savannah (see map 14). Since the other strongly pubescent ("hirsute") varieties (vars. membranacea, cheloniformis and dentata) barely reach the northern half of South Carolina from the north (see maps 16,18 and 20) we are quite safe in identifying as Walter's plant the variety which abounds in the region he best knew. R. caroliniensis (var. typica) was next described by Pursh as $R$. hybrida (1814), evidently from the strongly branching state: " $R$. erecta, ramosissima, pilis albidis hirsuta; foliis . . . dense hirsutis, . . . calycis laciniis linearibus tubo corollae vix brevioribus. In sandy fields near Savannah, Georgia", where our plant abounds. If it were not for the earlier name of Walter the correct name of this species would be $R$. hybrida Pursh, the name used for the canescent-villous extreme by Small and others. Nees, who sadly mixed the identities of our American species and varieties, again beautifully described typical $R$. caroliniensis as Dipteracanthus Mitchillianus (1847), emphasizing the stem "pube albâ densê incano pilisque patulis hirsutis", the oval-oblong to oblong and obtusish leaves decurrent into petioles, the blades "utrinque laxe hirsutis", the linearsetaceous calyx-segments "albo-hirsutissimis" and about half as long as the corolla-tube. That was a first-rate description. Unfortunately, in the same treatment Nees published the illdescribed $D$. ciliosus, " $\gamma$. parviflorus, corollâ vix pollicari, foliis paullo longiori petiolo (3-6-pollicari)", from Kentucky. As already sufficiently emphasized, a plant with petioles $3-6$ inches long is quite impossible in Ruellia (at least in ours). Nevertheless, the impossible description by Nees has been made the basis for a specific combination, R. parviflora (Nees) Britton, and for the varietal combination, $R$. caroliniensis, var. parviflora (Nees) Blake; and in recent years these ill-founded names have largely appeared on the labels of most of the varieties and forms of $R$. caroliniensis.

The confusion in the use of names is here perhaps somewhat cleared. The presentation of the varieties and forms may later need revision. After some years of puzzling over the misbehavior of these inconstant trends, I have done the best I can with them. Future and wiser students may work out a better treatment.


Ihoto. B. G. Schubert.
Ruellia caroliniensis, var. salicina: fig. 1 , type, $\times 4.7$; figs. 2 and 3 , summits of plants, $\times 1$


Photo. B. G. Schubert.
Rubllia caroliniensis, var. dentata: fig. 1, small plant, $\times 2 / 5$; fig. 2, portion of branch, $\times 1$; figi, 3, portion of fruiting branch, $\times 1 / 2$, to show characteristic branching

## Explanation of Plates

Plate 839. Ruellia Brittoniana Leonard: fig. 1 , summit of plant, $\times 1$, from Houma, Louisiana, Wurzlow; Fig. 2, summit of peduncle and calyx, $\times 4$, from Wurzlow; fig. 3, corolla, $\times 1$, from $W$ urzlow; Fig. 4, calyx and capsule, $\times 2$, from Wurzlow.
Plate 840. R. Tweediana Griseb.: figs. 1 and 2, portions of branching plant, $\times 1$, from Colonia Benitez, Chaco, Argentina, A. G. Schulz, no. 778; Fig. 3, summit of peduncle and base of calyx, $\times 4$, from no. 778; fig. 4, tip of calyx-segment, $\times 10$, from no. 778 ; fig. 5 , corolla, $\times 1$, from no. 778.
Plate 841. R. strepens L.: fig. 1, flowering median node, $\times 1$, from near Chattanooga, Tennessee, May 27, 1911, J. R. Churchill; Fig. 2, corolla, with one basal bract removed, $\times 1$, from near State Lake, Union Co., Kentucky, Shacklette, no. 345; fig. 3, flower, showing broad calyx-segment, $\times 1$, from no. 345; FIG. 4, long-peduncled fruit, $\times 1$, from Powell's Creek, Garysville, Virginia, Fernald \& Long, no. 8472.
Plate 842. R. strepens, forma cleistantha (Gray) S. McCoy: fig. 1, summit of characteristic plant, $\times 2 / 5$, from South Lebanon, Ohio, E. B. Harger, no. 8010; Fig. 2, a terminal glomerule, $\times$ 1, from Mammoth Cave, Kentucky, E. L. Braun, no. 3611; fig. 3, node with large cleistogamous flower, $\times 1$, from Deerfield, Vernon Co., Missouri, Palmer \& Steyermark, no. 42,140; fig. 4, terminal glomerule with 2 (upper) small cleistogamous flowers, $\times 2$, from Joplin, Missouri, E. J. Palmer, no. 1310; Fig. 5, subterminal fruiting node, $\times 2$, from McDonald Co., Missouri, E. J. Palmer, no. 4069; fig. 6, calyx and open capsule, $\times 2$, from St. Louis, Missouri, August 19, 1905, A. G. Johnson.

Plate 843. R. pedunculata Torr.: fig. 1, small flowering plant, $\times 4 / 9$, from Natchitoches, Louisiana, E. J. Palmer, no. 7511; fig. 2, base of more branching fruiting plant, $\times 1 / 2$, from Monteer, Missouri, Bush, no. 6401A; Fig. 3, portion of branching inflorescence, $\times 1$, from near Arcadia, Missouri, Greenman. no. 3764; fig. 4, calyx and capsule, $\times$ 2, from Baker Springs, Howard Co., Arkansas, October 5, 1909, J. H. Kellogg; fig. 5, calyx-segments and base of capsule, $\times 10$, from last specimen; Fig. 6 , strigose surface of capsule, $\times 10$, from same specimen.

Plate 844. R. pinetorum Fernald: fig. 1, flowering and fruiting branches, $\times 1$, from type; fig. 2 , portion of fruiting branch, $\times 1$, from type; fig. 3, portion of leafy base, $\times 1$, from Lake Charles, Louisiana, Andrew Allison, no. 261 ; fig. 4, calyx and capsule, $\times 2$, from type; fig. 5 , surface of peduncle, $\times 10$, from type; Fig. 6 , bases of calyx-segment and capsule, $\times 10$, from type.
Plate 845. R. Purshiana Fernald: fig. 1, portions of type, $\times$ 2 ; fig. 2 , third node from base, with solitary flower, $\times 1$, from Cedar Creek, Frederick Co., Virginia, Hunnewell, no. 11,135; fig. 3, second node from base, with solitary flower, $\times 1$, from Natural Bridge, Virginia, May 28, 1909, E. B. Bartram; fig. 4, calyx and capsule, $\times 2$, from Dixie Caverns, Roanoke Co., Virginia, C. E. Wood, Jr., no. 3673; fig. 5, surface of stem, $\times 4$, from Wood, no. 3673 .

Plate 846, figs. 1 and 2. R. purshiana, forma claustroflora Fernald: FIG. 1, summit of type, $\times 1$; FIG. 2, uppermost node, with a tiny cleistogamous flower (upper right) and a capsule, $\times 2$, from Natural Bridge, Virginia, September 4, 1885, N. L. \& E. G. Britton. Fig. 3, R. Purshiana: summit of capsule, showing pilose surface, $\times 10$, from Wood, no. 3173.

Plate 847 and 848. R. heteromorpha Fernald. Plate 847, vernal stage: Fig. 1, flowering stem, $\times 1$, from near Camp Longview, Florida, Small \& Wilson, no. 1700; FIGs. 2 and 3 , flowering tips, $\times 1$, from southeast of Fort Myers, Florida, Jeanette P. Standley, no. 444; FIG. 4, summit of internode and base of leaf, $\times 4$, from between Cutler and Longview Camp, Florida, Small \& Carter, no. 1097; fig. 5, base of calyx, $\times 10$, from Big Pine Key, Monroe Co., Florida, Small, no. 8142. Plate 848, later cleistogamous stage: fig. 1, portion of a long fruiting branch, $\times 1$, from between Peter's Prairie and Homestead, Florida, Small \& Carter, no. 2701; FIGs. 2 and 3,
branchlets from more open fruiting branch, $\times 1 / 2$, from between Coconut Grove and Cutler, Florida, Small \& Carter, no. 1273; fig. 4, tip of branchlet with two cleistogamous flowers, $\times 1$, from Ross-Costello Hummock, Dade Co., Florida, Small, Mosier \& Small, no. 6552; Fig. 5, calyces and capsules, $\times 2$, from no. 1273.

Plates 849 and 850. R. ciliosa Pursh: plate 849, fig. 1, plant, $\times 1$, from Cape Savannah, Sumter Co., South Carolina, Witmer Stone, no. 426; rigs. 2 and 3, plants, $\times 1$, from Poulan, Worth County, Georgia, Pollard \& Maxon, no. 574 ; FIG. 4 , summit of internode and base of cauline leaf, $\times 4$, from River Junction, Gadsden Co., Florida, Wiegand \& Manning, no. 2927; Fig. 5, calyx and capsule, $\times 2$, from no. 2927. Plate 850, fig. 1, plant, $\times 1$, from Florida, May, A. H. Curtiss; fig. 2, basal branch, $\times 3 / 5$, from Clarcona, Orange Co., Florida, A. J. Pieters, no. 120; fig. 3, basal branch, $\times 1$, from Duval Co., Florida, A. H. Curtiss, no. 1944*.

Plate 851. R. succulenta Small: fig. 1, flowering plant, $\times 2 / 5$, from Everglades west of Perrine, Florida, Small, no. 7880; Fig. 2, fruiting branch, $\times 1$, from between Coconut Grove and Cutler, Florida, October 31-November 4, 1903, Small \& Carter; Fig. 3, summit of internode and bases of leaves, $\times 4$, from same collection as fig. 2 ; FIG. 4, lower surface of leaf, showing cystoliths, $\times 10$, from Bay Biscayne, Florida, A. H. Curtiss, no. 5500 E ; Figs. 5 and 6, median and terminal flowering nodes, $\times 1$, from same specimen, as fig. 1 ; fig. 7, calyx and fruit, $\times 2$, from east of Florida City, Dade Co., Florida, Small, no. 8080.

Plates 852 and 853. R. noctiflora (Nees) Gray: Plate 852, fig. 1, base of plant, $\times 1$, from southeast of Ludowici, Georgia, Wiegand \& Manning, no. 2928; Fig. 2, flowering tip, $\times 1$, from no. 2928; fig. 3 , summit, $\times 1$, of Isotype, from inter St. Marks et Port Leon, Florida, Rugel; FIG. 4, flowering tip, $\times 1$, from Apalachicola, Florida, 1867, Chapman; Fig. 5, summit of internode and bases of leaves, $\times 4$, from Apalachicola. Chapman; fig. 6, calyx and capsule, $\times 2$, from Biloxi, Mississippi, S. M. Tracy, no. 6500. Plate 853, fig. 1, summit of flowering stem to show long calyx-segments, $\times 1$, from near Sunbury, Liberty Co., Georgia, LeConte (probable type or isotype of $R$ tubifora LeConte); fig. 2, fruiting summit, $\times 1.8$, from Port St. Joe to Apalachicola, Florida, Small, Small and De Winktler, no. 11,417; fig. 3, bract, calyx-segment and base of capsule, $\times 10$, from Tracy, no. 6500 ; Fig. 4, surface of cap.ule, $\times 10$, from no. 6500 .

Plates 854 and 855. R. humilis Nutt., var. typica: Plate 854, fig. 1, type or isotype, $\times 1$; Fig. 2 , summit of primary axis, $\times 1$, from Mercersburg, Pennsylvania, 1846, Ruel; fig. 3, calyces and capsules, $\times 2$, from Butler Co., Missouri, Bush, no. 3739. Plate 855, fig. 1, median nodes of primary axis, $\times 1$, from west of Hannibal, Missouri, John Davis, no. 4646; fig. 2, summit of internode and bases of leaves, $\times 4$, from Cooper County, Missouri, Bush, no. 15,137; FIG. 3, portion of fruiting branch, showing diffuse habit, $\times 1$, from vicinity of Nashville, Tennessee, September, 1885, Gattinger.

Plate 856. R. humilis, forma grisea Fernald: fig. 1, portion of type, showing characteristic habit of the species, $\times 1$; FIG. 2, internode and bases of leaves, $\times 4$, from type.

Plate 857. R. humilis, var. frondosa Fernald: fig. 1 , type, $\times 1 / 2$; fig. 2 , summit of internode and bases of leaves, $\times 4$, from Cleveland, Ohio, 1895, Starr; fig. 3, flowering node, $\times 1$, from Milford, Ohio, June 17, 1916, E. L. Braun; fig. 4, flowering node, $\times 1$, from Chambersburg, Pennsylvania, August 27, 1897, T. C. Porter; Fig. 5, flowering node, $\times 1$, from Corydon, Indiana, Friesner, no. 14,369; Fig. 6, fruiting node, $\times 1$, from Clinton. Iowa, Pammel, no. 77; Fig. 7, calyx and capsule, $\times 2$, from Champaign, Illinois, A. S. Pease, no. 12,420.

Plate 858. R. humilis, var. longiflora (Gray) Fernald: fig. 1, two flowering branches, $\times 1$, from Piasa, Illinois, 1905, G. E. McClure; Fig. 2, summit of flowering branch, $\times 1$, from Wichita, Kansas, 1892, H. K. Pease; fig. 3, flowering summit, $\times 1$. from Huntsville, Texas, R. A. Dixon, no. 377;


I'hoto. B. G. Schuberl.
Roellia caroliniensis, var. dentata: figs. 1 and 2 , flowering summits, $\times 1$

FIG. 4, summit of internode and bases of leaves, $\times 4$, from Willis, Texas, L. R. Warner; FIG. 5, bracts, calyces and fruits, $\times 2$, from north of Seagoville, Texas, Lundell, no. 11,679.

Plate 859. R. humlis, var. expansa Fernald: fig. 1, flowering node, from type, $\times 1$; FIG. 2, median fruiting node of primary axis, $\times 1$, from Oquawka, Illinois, Patterson; Fig. 3, internode and leaf-base, $\times 4$, from McDonald Co., Missouri, Bush, no. 282; Fig. 4, calyx and capsule, $\times 2$, from Hendrix, Illinois, August, 1904, B. L. Robinson.

Plate 860. R. humilis, var. Calvescens Fernald: fig. 1, portion of isoTYPE, $\times 1$; Fig. 2, flowering tip, $\times 1$, from near Burnside, Kentucky, Biltmore Herb., no. $489^{\mathrm{k}}$; Fig. 3, internode and leaf-bases, $\times 4$, from near Manchester, Tennessee, Biltmore Herb., no. $849^{\text {f }}$; Fig. 4, lower surface of leaf, $\times 10$, from Middletown, Frederick Co., Virginia, Hunnewell, no. 17,561; FIG. 5, fruiting nodes, $\times 1$, from no. 17,561 ; Fig. 6, calyx and capsule, $\times 2$, from north of Leavenworth, Crawford Co., Indiana, Deam, no. 33,429.

Plates 861, 862 and 863. R. caroliniensis (Walt.) Steud., var. typica. Plate 861, Fig. 1, portion of flowering plant, $\times 1$, from Ormond, Florida, H. A. Purdie; FIG. 2, flowering tip, $\times 1$, from Brookgreen Gardens, Georgetown Co., South Carolina, F. H. Tarbox, no. 567; fig. 3, summit of internode, $\times 4$, from no. 567; FIG. 4, lower surface of leaf, $\times 10$, from Green Cove Springs, Clay Co., Florida, W. A. Murrill; fig. 5, upper surface of leaf, $\times 10$, from same specimen. Plate 862, fig. 1, portion of summit, with flowers hardly developed, $\times 1$, to show characteristic divergent branching, from Newberry, Alachua Co., Florida, E. P. Walker. no. 1862; fig. 2, calyx and capsule, $\times 2$, from east of Eustis, Florida, Small, no. 8667; fig. 3, portion of calyx and capsule, $\times 10$, from no. 8667. Plate 863: copy of the plate, slightly reduced, of $R$. strepens, capitulis comosis of Dillenius.

Plate 864. R. caroliniensis, var. semicalya Fernald: fig. 1, type, $X$ 3/7; fig. 2, portion of internode, $\times 10$, from type; fig. 3, lower surface of leaf, $\times 10$, from type; fig. 4, upper surface of leaf, $\times 10$, from type; fig. 5 , calyx and capsule, $\times 2$, from Iola, Florida, May, 1896, Chapman; FIG. 6, calyx-segment and portion of capsule, $\times 10$, from last.

Plates 865 and 866 . R. Caroliniensis, var. membranacea Fernald: Plate 865, fig. 1, type, $\times 1 / 2$; fig. 2, upper surface of leaf, $\times 10$, from Savage Neck, Northampton Co., Virginia, Fernald \& Long, no. 5453; Fig. 3, lower surface, $\times 10$, from no. 5453 ; FIG. 4, flowering tip, $\times 1.7$, from below Rushmere, Isle of Wight Co., Virginia, Fernald \& Long, no. 13,150; fig. 5, portion of calyx and capsule, $\times 10$, from no. 13,150; Fig. 6, fruiting summit, $\times 2$, from Claremont, Virginia, Fernald \& Long, no. 13,837. Plate 866, summits to show variations of leaves, $\times$ 1: fig. 1, from Little Creek, Princess Anne Co., Virginia, Fernald \& Long, no. 4193; fig. 2, from Congress Heights, District of Columbia, Philip Dowell, no. 7012; fig. 3, from Cold Spring, Cape May Co., New Jersey, C. S. Williamson.

Plate 867, figs. 1-3. R. caroliniensis, var. membranacea, forma hypopsila Fernald: fig. 1 , summit, $\times 1.7$, of type; figs. 2 and 3 , upper and lower surfaces of leaves, $\times 10$, from type. Figs. 4-6, forma breviberbis Fernald: FIG. 4, internode and leaves, $\times 1.7$, from Wolf Creek, Tennessee, Kearney, no. 863; figs. 5 and 6, upper and lower leaf-surfaces, $\times 10$, from no. 863.

Plate 868. R. caroliniensis, var. membranacea, forma laevior Fernald: FIG. 1, fruiting summit, $\times 1.7$, of TYPE; FIGs. 2 and 3 , upper and lower surfaces of leaf, $\times 10$, from type; fig. 4, portion of calyx-segment and capsule, $\times 10$, from type.

Plate 869. R. caroliniensis, var. nanella Fernald: fig. 1 , type, $\times 1$; Figs. 2 and 3, upper and lower surfaces of leaf, $\times 10$, from type; Fig. 4 , flower-bud, with folded bract and 2 calyx-segments, $\times 10$, from type; fig. 5 , portion of calyx-segment and capsule, $\times 10$, from tYPe.

Plate 870, fig. 1. R. caroliniensis, var. nanella: internode and base of leaf, $\times 4$, from type. Figs. 2-4, var. nanella, forma fclliata Fernald:
fig. 2, type, $\times 1$; fig. 3, portion of leaf, bracts and internode, $\times 10$, from TYPE; Fig. 4, portion of calyx-segment and capsule, $\times 10$, from TYPE.

Plates 871 and 872. R. caboliniensis, var. cheloniformis Fernald: plate 871, fig. 1, type, $\times 5 / 12$; fig. 2, corolla, $\times 1$, from Cold Spring, Cape May Co., New Jersey, Van Pelt; fig. 3, calyx and capsule, $\times 2$, from Virginia Beach, Virginia, Fernald \& Long, no. 4191 ; Fig. 4, bract, calyx-segment and portion of capsule, $\times$ 10, from no. 4191. Plate 872: Fig. 1, summit, $\times 1$, from Scuppernong, Washington Co., North Carolina, Correll, no. 1918; FIG. 2, portion of summit, $\times 1$, from Cold Spring, New Jersey, Van Pelt; FIGs. 3 and 4, upper and lower leaf-surfaces, $\times 10$, from Fernald \& Long, no. 4191.
Plate 873. R. caroliniensis, var. salicina Fernald: fig. 1 , type, $\times 4 / 7$; Fig. 2, summit of plant, $\times 1$, from Louisiana, Steinhaur; FIg. 3, plant, $\times 1$., from River Junction, Gadsden Co., Florida, Wiegand \& Manning, no. 2933.

Plates 874 and 875. R. caroliniensis, var. dentata (Nees) Fernald: plate 874, fig. 1, small plant, $\times 2 / 5$, from Broadwater Bridge, Isle of Wight Co., Virginia, Fernald \& Long, no. 13,460; Fig. 2, summit of branch, $\times 1$, from no. 13,460; FIG. 3, portion of fruiting branch, $\times 1 / 2$, from Rehoboth, Delaware, Churchill. Plate 875, fig. 1, upper fifth of main axis, $\times 1$, from Marsh's Millpond, Nansemond Co., Virginia, Fernald \& Long, no. 14,414; Fig. 2, summit of branch, $\times$ 1, from Sweeden, Edmonson Co., Kentucky, E. L. Braun, no. 3593.

Rediscovery of Paronychia argyrocoma, var. albimontana at Newburyport, Massachusetts.- Gray's Manual, in noting the range of Paronychia argyrocoma, var. albimontana, states that it occurs locally on an island in the Merrimac River at Newburyport, Massachusetts. There is a specimen in the Gray Herbarium which Dr. Karl Castelhun collected at this station more than half a century ago; no record of a more recent collection being known, Dr. M. L. Fernald visited the locale to check on it in his work of rewriting the Manual for its next edition. He reported at a meeting of the New England Botanical Club that he found no trace of it. From such a careful botanist that seemed to me the final, undebatable fact and when, on June 4, 1944, I visited Carr's Island for the first time (it is a wild-life reservation of this commonwealth and posted against trespass) the Paronychia was the last thing I expected to find. Therefore, when I suddenly beheld a great ledge whose crevices were almost wholly clothed with a strange silver-green plant bearing a profusion of white, pinkish-tinted flowers of alpine appearance, my elation was great. Although I had never before seen the genus, many readings of its description had made me almost sure that this plant was the sought-for Paronychia. I at once dispatched a specimen to Dr. Fernald and that prompt gentleman confirmed my find by return mail. There may be some question of vandalism involved in the rediscovery of
this station but I trust its value in scientific aspect will be found to compensate the commonwealth for this intrusion. Since there are eight islands in the Merrimac River at Newburyport, it seems likely that the Fernald examination covered an island other than Carr's. I counted 112 clumps on the large ledge and 86 clumps on contiguous ledges, all within 20 feet of the water at high tide. One clump is so low on the ledge that it is submerged by the occasional $12-\mathrm{ft}$. tides of early spring. -Frank J. McGregor, Newburyport, Mass.

Thermopsis mollis in eastern Massachusetts.-In 1935, staying for a few days with a daughter living in Beverly, I got on a bus, careless of its destination. It passed close to a big sheet of water, then lost it. I jumped off. In a roadside stand I got a drink. The owner espied my "Gray" and began pumping me. Satisfied with my answers he told me he was brought up in Germany, that his mother dosed him with an herbal cure-all, that he had found a plant of it growing at the rear of his place. Would I look at it? It was Achillea millefolium. He told me I could go down a little-frequented road which led to the lake. I did so and found what was identified at a meeting of the New England Botanical Club as Thermopsis mollis. Perhaps I could have discovered other things but the mosquitoes were too powerful.

The past season, again from my daughter's, I made the same trip. The German was dead, his place closed, but I found the road which is about two hundred yards south of the murderer's stone standing at the edge of the sidewalk, opposite a cemetery, presumably the Wenham one, and running west. Getting permission to ignore a gate and after walking about three fourths of a mile, I found my plant in greater numbers and taller than previously (some in excess of five feet) disputing the ground with goldenrods, brambles, dogwoods and such like.

I should have liked to poke around but the mosquitoes again forbade.

Studying the topographic one-inch map, I imagine the location to be on the east side of the northern tip of Wenham Lake. William Birrell, Auburndale, Mass.

Author Citation for Ehiogonum hemipterum.-The recent use (Jour. Arn. Arb. 25: 138. 1944) of the name Eriogonum hemipterum Torr. ex Stokes, Gen. Eriog. 21. 1936, brought to attention the matter of the author-citation.

The plant concerned was described as $E$. hieracifolium Benth. var. hemipterum T. \& G., Proc. Am. Acad. 8: 154. 1870. There Torrey and Gray listed as a synonym the herbarium name Eriogonum hemipterum Torr. In considering the plant as a species, Miss Stokes has (1) described it anew (as the Jour. Arn. Arb. indicates), (2) raised Torrey and Gray's variety to species rank, or (3) not effected a change at all.

That Miss Stokes was not intending to supply a new description for Torrey's herbarium name is quite evident both from the way the name is given (Eriogonum hemipterum Torr. in T. \& G., Pr. 154) and from the lack of a Latin diagnosis, new species being regularly so accompanied in her 1936 work. This lack of the Latin diagnosis is probably the most tangible argument against accepting choice no. 1 .

The spirit of the rules is more closely followed if Torrey and Gray's variety is raised to species rank and the subsequent author is given full responsibility, than if an herbarium name of Torrey is utilized in describing a new species when Torrey has concluded the plant to be a variety.

Inasmuch as Miss Stokes considered var. hemipterum T. \& G. as a species, used the name $E$. hemipterum, and listed both the synonym which in more regular procedure would be unquestionably the name-bringing synonym, and the bibliographic reference, choice no. 2 is better than no. 3. The name, I think, should be Eriogonum hemipterum (T. \& G.) Stokes, Gen. Eriog. 21. 1936.-George J. Goodman, Iowa State College, Ames, Iowa.

[^12]

JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Conducted and publiched for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
CHARLES ALFRED WEATHERBY
ALBERT FREDERICK HILL \} Assoclate Editor: STUART KIMBALL HARRIS

A Rators

Vol. 47.
April, 1945.
No. 556.
CONTENTS:
Botanical Specialties of the Seward Forest and adjacent Areas of Southeastern Virginia. M. L. Fernald.93
Some heretofore unnoticed Plants of the South Carolina
Coastal Plain. Kenneth W. Hunt. ..... 142
Gentiana quinquefolia in Maine. R. C. Bean. ..... 143
Woody Plants of Maine (Notice). M. L. F. ..... 143
Minor Forms and Transfers. M. L. Fernald. ..... 144

## The 3em england 唃otanical Club, Int.

8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mano.


#### Abstract

RHODORA.-A monthly journal of botany, devoted primarily to the fora of the Gray's Manual Range and regions foristically related. Price, $\$ 4.00$ per year, net, postpaid, in funds payable at par in United States currency in Bostona aingle coples (if available) of not more than 24 pages and with 1 plate, 40 centa, numbers of more than 24 pages or with more than 1 plate montly at higher prices (see 3rd coverpage). Volumes 1-9 can be supplied at $\$ 4.00,10-34$ at $\$ 3.00$, and volumes $35-46$ at 4.00. Some single numbers from these volumes can be supplied only at advanced prices (see 3rd cover-page). Somewhat reduced rates for complete sets can be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northenstern states, will be considered for publication to the extent that the limited apace of the journal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pages of print) will receive 15 copies of the issue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost.


Address manuscripts and proofe to
M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mase.

Subseriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford St., Cambridge 38, Mass.
Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Act of March 3, 1879.

# INTELLIGENCER PRINTING COMPANY <br> Specialists in Scientific and Technical Publications eight west king st., lancaster, pa. 

## Cardindex of new genera, species and varieties of american plants, 1885 TO Date.

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at $\$ 22.50$ per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

> GRAY HERBARIUM of $$
\begin{array}{c}\text { Harvard University, } \\ \text { Cambridge 38, Mass., U. S. A. }\end{array}
$$

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \$3.00.

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

Gray Herbarium of Harvard University, Cambridge 38, Mass.

H plo8 $6-227$

# IRbodora 

JOURNAL OF

## THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
April, 1945.
No. 656.

CONTRIBUTIONS FROM THE GRAY HERBARIUM
OF HARVARD UNIVERSITY-NO. CLVI

BOTANICAL SPECIALTIES OF THE SEWARD FOREST
AND ADJACENT AREAS OF SOUTHEASTERN VIRGINIA ${ }^{1}$
M. L. Fernald
(Plates 876-911)

## Part I. Two Visits to the Seward Forest in 1944

Dr. Alfred Akerman, Director of the Seward Forest, and Mr. J. B. Lewis, Naturalist of the Forest, most kindly renewing invitations for me to return for study of the local flora at seasons different from those when I had visited the area in October of 1942 and in April, 1943, I gladly returned on June 19, 1944, for a week of local exploration. Lewis had been saving his gasolinecoupons against our needs but, naturally, we could not go far from Triplett, although we did get one trip, specially seeking further limits of range of Asarum Lewisii Fernald in Rhodora, xlv. 398, plates 774 and 775 (1943), as far as Poplar Creek, draining into the Roanoke in southwestern Brunswick County. We did not need to go far for interesting returns, for within the limits of Seward Forest and the immediate vicinity of Triplett there was plenty to occupy us. The fruit of Rubus was ripening and, since some of the species of this region of the outer Piedmont were quite unlike those I knew on the Coastal Plain, I made a point of securing a good series (and of testing the fruits). There
${ }^{1}$ The cost of plates defrayed through grants from the American Philosophical Society and from the Department of Biology of Harvard University.
are several strikingly different species. Some of these will be discussed in Part II.

As we drove from the train, at Emporia, to the Seward Forest, Lewis said, "Don't forget to remind me to show you a strange Baptisia when we get to Philadelphia Church. It's the only colony I ever saw of it". So, when we got to the locality we stopped and I promptly said "Baptisia tinctoria". "But the flowers are so small. What I know as Baptisia tinctoria has larger flowers and leaves". It is the typical Coastal Plain extreme, the plant separated by Small as B. Gibbesii from "Sandy woods, Coastal Plain, S. C.", although, as I showed in Rhodora, xxxix. 414 (1937), B. Gibbesii is a close match for the type of $B$. tinctoria (L.) R. Br., while the common inland and northern plant, with which Lewis had been familiar, is the usually coarser B. tinctoria, var. crebra Fernald, l. c. Since I had just sent for issue in Rhodora, xlvi. 281 (1944) a note by Dr. Robert Clausen, in which he expressed the opinion that "Var. crebra seems scarcely tangible", Lewis's unsolicited tribute to its worth was interesting. Certainly, nowhere else in the region have I seen anything so small-flowered and -fruited as the colony near Philadelphia Church.

This intrusion into the upland flora of the Piedmont in Brunswick and western Greensville Counties of plants more characteristic of the Coastal Plain was emphasized by me in my last paper on the Virginian work ${ }^{1}$; and now, again, we met at almost every turn a singular mixture of inland or upland species (sometimes specialties of the Appalachian Upland or of the Mississippi Basin) and those which are primarily on the Coastal Plain, although, naturally, only a few of the latter have intruded so far inland. In fact, the first plant I collected after getting into old clothes, the everywhere abundant representative of Rubus § Cuneifolii, was at once impressive on account of the 5 -foliolate leaves of the primocanes, with very narrow leaflets. To me it seems a close match for $R$. sejunctus, described by Bailey from material collected by Long and me near Branchville, 30 miles to the east and well out on the Coastal Plain in southern Southampton County-there also on Meherrin drainage.

[^13]

Photo. B. G. Schubert.

Cyperus viresis: fig. 1 , type, $\times 1$, after Cintract; fig. 2 , spikelets, $\times 10$, from fig. 1 ; FIG. 3, two inflorescences, $\times 1 / 2$, of $C$. pseudovegetus, fic. 4 , spikelet, $\times 5$, from fig. 3
C. robustus: fig. 5 , spikelet, $\times 5$


I'hoto. B. G. Schubert.
Cyperus Plukenfiti: fig. 1, Plukenet's figure of a plant from Virginia; pla, 2, inflorescence of type, $\times 1$; fig. 3 , characteristic base, $\times 1$

Two stations, one of them within the seward Forest, the other barely not, are specially noteworthy. The most distinctive is the little spring-fed and (originally) Sphagnum-carpeted Magnolia swamp, which is called the "Ram-hole" or "Ram-hole Swamp", because of the ram once installed for pumping the spring-water. I have previously noted it and in September it yielded more than its share of Coastal Plain specialties. In June, however, these were scarcely evident, the most notable plant then being a long-arching and doming blackberry such as I had never met, but which proved to be characteristic across the county, even to its southwestern corner, and eastward into Greensville County. Since it is so characteristic of the Seward Forest and its vicinity I shall describe and illustrate it (plates 890 and 891) in Part II and there take the liberty of naming it for the Director of the Forest, although, if he could discover it, he would doubtless prefer his name to be associated with a new tree! Further discussion of "Ram-hole Swamp" will be deferred until I record the September trip.

The area which in June had the greatest mixture of upland and Coastal Plain types was the "Moseley flat pineland", near Triplett. It was here that Lewis had found Cynoctonum sessilifolium (Walt.) J. F. Cimel., at the only known station north of the savannas of the Coastal Plain of North Carolina, and Hypericum setosum L., a characteristic southern species already known very locally from the Coastal Plain of Virginia, forty-five miles away. Here in June the most striking plant was a Fimbristylis, forming dense and tough hassocks, with many already fruiting tufts arising from bulbous bases crowded on the stout and short rhizomes. This was new to me (also to Virginia). Its identification has necessitated a prolonged study of its section of the genus, which will be detailed in Part II. Briefly, it is F. Drummondii Boeckl., described from New Orleans but found (though commonly misidentified) in pine or oak barrens, on sterile meadows, prairies, etc., from Florida to eastern Texas, northward, very locally, to Long Island, and, more generally, in the Interior to southern Michigan, Illinois and Missouri. With it, and giving further inland atmosphere to the spot, was Psoralea psoralioides

[^14](Walt.) Cory, var. eglandulosa (Ell.) F. L. Freeman, widely dispersed from interior (ieorgia to eastern 'lexas, northward to the upland of North Carolina and to Ohio, Indiana, Illinois, Missouri and eastern Kansas, with its only previously known Virginian station in similar flat pineland at McKenney, 25 miles to the north, in Dinwiddie County. And with these two characteristically inland plants Juncus Longii Fernald in Rhodora, xxxix. 397, pl. 777, figs. 1-4 (1937), and J. scirpoides extended inland from the Coastal Plain, and the common Coastal Plain Scleria pauciflora formed loose tussocks. Near the margin of a small branch which borders this flat pineland I was puzzled by a very lax Carex with the flaccid culms loosely arching, so that the inflorescences lop to the ground. We had never had it in southeastern Virginia, but it proves to be the chiefly inland C. hirsutella Mackenzie. The "Moseley flat pineland" is an interesting tract.

The day we visited the Roanoke drainage in southwestern Brunswick County we drove directly to Ebony, where we made the first stop. Near there a bit of undisturbed swaley thicket looked promising. Here was the long-arching new Rubus of the "Ram-hole Swamp", 12 miles to the northeast; and when, another day, I got it in abundance near Brink in Greensville County, thus demonstrating its occurrence over a belt at least 20 miles across, it was evident that I was dealing with a true species, not merely a clone. The Rubus leaned out of a clump of the unusual form of Willow-Oak, Quercus Phellos, with the lower leaf-surfaces white with fine silk, forma intonsa Fernald in Rноdora, xliv. 392 (1942), typical and abundant Q. Phellos having the leaves green and glabrous on both sides. And here, almost in Mecklenburg County and 120 miles inland from the coast, where true Juncus dichotomus occurs, was the very different species, which elsewhere pushes inland and which passes as a mere flat-leaved variety of that coastal species, J. dichotomus, var. platyphyllus Wiegand. Its specific claims will be discussed in Part II.

Poplar Creek, emptying into the Roanoke, has good bottomland woods, with an abundance of Acer floridanum and its very definite var. Longii Fernald in Rhodora, xliv. 426, pl. 726 (1942), the latter previously known only from calcareous slopes to the
lower James in James City County, ninety miles away. Beneath them was a fruiting Aesculus. Without flowering material I balk at naming it. Geum canadense, var. brevipes Fernald in Rhodora, xxxix. 410, pl. 479, fig. 1-3 (1937), supposed to be endemic on the bottomlands of the Nottoway, forty-five miles to the northeast, in Sussex County, abounded. It presumably will be found along the Roanoke in North Carolina. So, likewise, will be Boltonia caroliniana (Walt.) Fernald in Rhodora, xlii. 487, pl. 642 (1940), of southeastern Virginia and the lower Santee Valley of South Carolina, for here, on Poplar Creek, it is almost in North Carolina and far inland from its center on the Coastal Plain.

The "Chamblis bigwoods" of the Seward Forest, a vast tract for which I learned in September to have a vast respect (having been lost there for three hours), had yielded on my two previous visits some choice and apparently isolated inland or montane plants, enumerated in the last Virginian paper: Panicum flexile, Polygala Senega, var. latifolia, and Zizia trifoliata, for instance. In June these woods were equally productive. Festuca paradoxa Desv. (F. Shortii), common in rich woods of the Coastal Plain, was here abundant, although, from the range given by Hitchcock and his map (chiefly from western North and South Carolina and northwestern Georgia to Iowa, Missouri, eastern Oklahoma and northeastern Texas), one would never guess it. Cypripedium Calceolus L., var. pubescens (Willd.) Correll, was frequent, as was the southern Sanicula Smallii Bicknell. Young shrubs of Nyssa produced puzzling atypical leaves and I stumbled upon a few straggling shrubs of Castanea neglecta Dode, supposed by some to be a hybrid of C. dentata and C. pumila, but here, as in calcareous woodlands farther east, where it occurs, C. pumila would be out of place and (. . dentata of acid woodland would scarcely have thrived. But the great excitement was a knoll in rich woods bordering the swamp along Quarrel's ('reek, a slope covered with abundant Sanicula Smallii, ('arex oxylepis and other species of rich southern woodland. (On this knoll the leaves of a low Circaea were of a pale yellowish green, the margins of the rounded-cordate blades undulate, the pedicels purplebased, the sepals somewhat villous on the back, the tiny fruits as in the northern C. canadensis Hill (C. intermedia Ehrh.).

Outside of Europe ('. canadensis is known from the Gaspé Peninsula of eastern Quebec to Lake St. John, and south to Nova Scotia, southern Maine, southern New Hampshire, western Massachusetts and Connecticut, New York and upland West Virginia. Its associates are northern, not southern species. We as yet know the little plant of Seward Forest from only this one spot. Its characters, however, justify its separation from the northern plant which, superficially, it suggests. In Part II it will be described and illustrated (plate 896).

Two old clearings within the area of the "Chamblis bigwoods" are, like most such habitats, largly given over to brambles (Rubus). Two species here specially interested me, both of them doming and forming intricate mounds, with the long and coarse overarching canes eventually trailing at tip, as in the wideranging plant already noted, members of my \& Tholiformes. These were both very different from each other and quite unlike anything I can find described. One of them was in the clearings about the old Chamblis place and also in the clearing near the old Taylor place, the other was noted only in the latter locality. The former of these two abounds near an old outhouse where, in June, a brood of young turkey-buzzards very unsociably ran to a corner and tried to hide from our gaze and where, in September, they still clung to the old home. Since most descriptive specific names in Rubus are preempted I shall, in Part II, name this very characteristic blackberry (plates 892 and 893 ) for the buzzards upon whose domain we rudely forced ourselves in collecting it. The other (plates 894 and 895) I am naming for the very antithesis of a buzzard, the generous and scholarly founder of the Seward Forest, Dr. Walter Seward.

I kept hearing of Quarrel's Creek and Pair's Store. These geographic names, coupled with Triplett (which our non-meddlesome government rules should be spelled "Triplet", in spite of the name of the original settler-on a tributary to Fontaine, not "Fountain", Creek), struck my whimsical sense of humor, for the combination of pairs, triplets and quarrels would intrigue even a dull imagination. So we went from Triplett to Pair's Store and thence followed down Quarrel's Creek to its junction with Fontaine Creek. Swaley open woods not far from Pair's Store looked interesting but, alas, most of the area had been
under the plow; elsewhere it had been burned. The only plant of note there was the white-flowered Polygala sanguinea, a form I had rarely seen. The bottomland woods had passed the interesting period of early spring and had not reached the autumnal phase which is always interesting, but at the margin of the bottomland I was delighted to come upon the first thicket of Amorpha fruticosa, but not the last, I had ever seen, for in a few days we found it along Fontaine Creek near Round Hill Church, also in Greensville County, but nearer the Fall Line.

On my first trip to Seward Forest we had gone to the Meherrin River at Westward Bridge (or Mill), south of Edgerton. The greatest excitement there was the discovery on the bottomland of Muhlenbergia glabriftora Scribn., previously known only from southwestern Indiana and Illinois to Texas. With this rather startling isolation in mind we returned to Westward Bridge. I had many times tried to cap one good discovery with another, but usually it hadn't worked. So I was prepared for the worst. Wallowing through the deep and retarding tangle on the bottom, I suddenly halted. The Tripsacum there didn't look right. Its slender staminate inflorescence had narrow and sharply acuminate glumes, whereas I remembered the glumes as broad and blunt. Three or four plants were taken "just in case", and this time luck was with me. I cannot separate the Meherrin River plant from an isotype and other Texan material of the recently described Tripsacum dactyloides, var. occidentale Cutler \& Anderson, the variety known to them only from the Davis and the Chisos Mountains in western Texas. When in doubt take a specimen!

Lewis and Dr. Akerman again saved up gasoline, and in September it seemed possible to get about a little. So, on September 11, I reached Seward Forest. This time we conserved all possible motive power for a final day, and our longest trip away from the Forest, until I had to return to Emporia to take the night-train home, was to the Meherrin at Westward Bridge. My arrival had broken the all-summer drouth ${ }^{1}$; consequently the muddy shore of the river, where I hoped for good things,

[^15]was drowned under more than opaque red-brown water. But the woods contained the very heavily pubescent Elephantopus carolinianus, forma vestitus Fernald, which we had known only from the bottomland of Adams Swamp, seventy miles to the east in Nansemond County; the mass of ordinary pink-flowered Polygonum pensylvanicum contained scattered plants with bright white flowers. The Pycnanthemum incanum certainly was not the northern plant with more or less divergent pubescence. Neither did it look like the southern var. Loomisii (Nutt.) Fernald, with the internodes and calyces densely canescent. It looked too glabrescent. At the risk of possibly overloading with material of the latter, already much collected farther east, I took a specimen. It is the extreme of $P$. incanum recently described as Pycnanthemum puberulum Grant \& Epling, its type from southwestern Georgia. At any rate, I got one specimen! But I took twenty sheets of the next plant of note. This is Dicliptera brachiata (Pursh) Spreng., a very definite member of the Acanthaceae. Some years ago Long and I made frequent visits to the intermittently drowned bottomland of the Meherrin just before it leaves Virginia, below Haley's Bridge (between southeastern Greensville and southwestern Southampton Counties), for in early summer we had there found young foliage of a strange member of the Acanthaceae. Repeated or longcontinued drownings delayed the identification until finally, in October, the water receded and we got the Dicliptera in flower and fruit. That has been the only station known in Virginia. Now, directly under the northern end of Westward Bridge, we have another.

Hoping that the once flooded but now fully overgrown bottom where the dam had gone out at old Clipper's Mill on Rattlesnake Creek, southwest of Triplett, would have some worth-while shore-vegetation, we tried there. For the most part the old bottom is a dense and very deep swale of Pilea, Boehmeria and their ilk, but here was an inland station, pretty well back from the Coastal Plain, of Rhynchospora corniculata, and in one area there is an Erianthus with peculiarly silvery and pale panicles. It didn't quite register; I had never met it growing, for it is $E$. alopecuroides, an inland species which we have not had on the Virginian Coastal Plain. Not far away, in a mossy bottom,

Dryopteris cristata, very local in southeastern Virginia, abounds, but, so far as I saw, that is the only specialty of note there.

Visiting the lower mile of Quarrel's Creek and again following down to its confluence with Fontaine Creek, we were amazed that the bottomland woods had none of the big Compositae we should have expected. However, as we entered the woods near the station of Amorpha fruticosa, we got into a tangle of Vitis cinerea, frequent farther down the Meherrin system on the Coastal Plain, although generally treated as western or very southern: "Centr. Ill. to Kan. and Tex."-Gray; "Indiana, southwestern Wisconsin, Illinois, Missouri, Kansas, Arkansas, Oklahoma, eastern Texas, Louisiana, Alabama, western Geor-gia"-Bailey, Gent. Herb. iii. 316. Farther down, where the often flooded bottoms by Quarrel's Creek merge with those of Fontaine Creek, we established some new inland extensions of Coastal Plain types, such as Scirpus divaricatus, Juncus repens and Ludwigia glandulosa. And farther up Quarrel's Creek, in the swamp where it flows through the "Chamblis bigwoods", I was delighted to find an inland colony of Cornus foemina Willd. (C. stricta Lam.). Searching near-by for mature fruit of the new Circaea (now completely dessicated and ruined by prolonged drouth), I was impressed by a nearly smooth creeping Desmodium, much smoother than $D$. rotundifolium with which it grows. It proves, according to Dr. Schubert, to be only the Coastal Plain $D$. lineatum, which, in former years, I had learned to pass without emotion. This station, very rich and damp woodland, is so unlike the relatively sterile and dry woods where I had known it that I was fooled. Beside it was another plant which registered with some doubt; so I took a couple of specimens. It is fortunate that I did so, for it is Polymnia Uvedalia, var. densipila Blake, described from Louisiana, Oklahoma and Texas; also Bermuda. That was the last important collection in the "Chamblis bigwoods".

Lewis had announced, while I was in the swamp, that it was time to start home; but very soon he commented on the shouts, like those of a woman calling, from deep in the woods. He said it was a Barred Owl, and I suppose he was right. Nevertheless, when I came out of the swamp and whistled for my companion and guide, he was gone. My masculine shouts did not interest
him; and, reasoning that he had gone on ahead and had ascribed to me a greater degree of wood-craft than I possess, especially on a rainy and sunless day in a strange and extensive "bigwood", I followed broken plants and some remembered landmarks to what I thought the proper place to break out toward the waiting car, soon got tangled and twisted around in impenetrable briars and towering dog-fennel (Eupatorium capillifolium) ten feet high, and, taking again to the woods, made broad circles for three hours, until, finally, by sighting on tall trees and following a straight course, I came out, rather surprised at myself, at the car. After that I carried raisins as well as a compass in my hippocket! As we approached headquarters a truck, with the Director and a crew, had started out as a searching-party. The whole community soon had the story, but I insisted on pretending to wonder whether the womanish calls which had lured Lewis away were really those of an owl!

Dr. Akerman wanted us to see one of the eastern extensions of the Seward Forest, in the extreme eastern edge of Brunswick County, south of Ante. As we entered the dry pines the first herbaceous plant we noticed was the essentially glabrous Coastal Plain Tephrosia virginiana, var. glabra Nutt. Then we walked through acres and acres of Asarum Lewisii, forming broad and open carpets to the exclusion of anything else. This, the most extensive colony yet known, is in ordinary dry or dryish woods, largely of Loblolly Pine. Here, in the spring, we may be able to secure the unknown fruit, for so extensive a colony must spread largely by seed.

I could not leave Seward Forest without spending some hours in the little "Ram-hole Swamp", so near-by that we were apt to overlook it. We already knew it as the only station yet discovered in the Manual range for the southern square-stemmed Solidago salicina Ell., here isolated by 100 miles from the northernmost known station in North Carolina; also as an isolated inland station for the beautiful Lobelia glandulifera (Gray) Small (See Rhodora, xlv. 377 (1943)), the Lobelia delighting in just such spots on the Virginian Coastal Plain. Unfortunately, fire has ruined much of the sphagnous carpet and inevitable brambles are rapidly monopolizing the area, but enough of the original bog remains to maintain the Solidago and the Lobelia.


Photo. B. G. Schubert.
Cyperds retrofractus: fig. 1, type, $\times 1 / 3$, of Scirpus retrofractus L.; fig. 2, inflorescence of tYPe, $X 1 / 2$; FIG. 3, inflorescence, $X 1$, of type of $C$. hystricinus; FIG. 4 , rhizome, $\times 1$


Photo. B. G. Schubert.
Juncus tenuis: fig. 1 , inflorescence, $\times 1$, of type, after Rostkovius; fig. 2 , two inflorescences, $\times 2$, of $J$. macer; fig. 3 , sheath and auricle, $\times 5$; fig. 4 , mature fruits, $\times 6$ J. dichotomus: fig. 5 , summit of sheath and base of leaf, $\times 10$; Fig. 6, inflorescence, $\times 1$; FIG. 7 , fruits, $\times 6$

In September the Coastal Plain Helianthus angustifolius and Cirsium virginianum, including the cut-leaved forma revolutum (Small) Fernald, abound and here we got our most inland stations in southeastern Virginia for Rhynchospora globularis (Chapm.) Small, var. recognita Gale, Lycopus americanus, var. Longii Benner, typical Eupatorium hyssopifolium (See Rhodora, xliv. 459), Solidago rugosa, var. celtidifolia (Small) Fernald and Fuirena squarrosa ( $\boldsymbol{F}$. hispida Ell.). The latter was tangled in and rather overwhelmed by the dominating Coastal Plain Panicum lucidum and a very slender but long-since overripe Rhynchospora which must be collected earlier another season. These are not all. A problematic low shrub of some species of Pyrus, subg. Aronia, is quite like low and simple-stemmed shrubs from pine barrens and savanna of the southeastern Coastal Plain, its identity yet to be worked out; and some other puzzles, still awaiting study, were secured. One of them, the tiniest alder I know, fruiting shrubs only 2 to 3 feet high, with scattered simple and erect stems, mature leaves only 1 to 2 inches long and very small staminate aments, cones and fruits, is like similarly dwarf shrubs once collected by Long and me in a bushy sphagnous swamp, with Sarracenia flava and Lachnocaulon anceps, in Prince George County. This is so strikingly unlike other eastern Virginian alders, that I have dug out from hiding a study of the Swamp Alders of eastern America, a study begun nearly 40 years ago but several times shelved or pigeon-holed. This I am aiming to bring to a conclusion for publication in the near future. This little remnant of a springy and sphagnous bog is one of the unique and most interesting habitats in the Seward Forest. What a place it must have been before fire (Dr. Akerman's scrupulously avoided and most dreaded foe throughout the forest) got into the place!

At last it was time to leave. It had rained intermittently through five days out of seven and, of course, we got some of the downpour at the western border of the hurricane of the period. In early July of 1943 Long and I had discovered on the sandy beach of Whitefield's Millpond, southwest of Corinth in Southampton County, very young plants of an annual which closely simulated the southern and southwestern Eryngium prostratum, originally described from Arkansas. The material was too
young, but its fruit did not seem quite typical of $E$. prostratum, unknown within some hundreds of miles of southeastern Virginia. In October, 1943, after a week of downpour, following months of drouth, Akerman, Lewis and I visited Whitefield's Pond in search of ripe material. But the elements were not on our side. As I wrote in my last Virginian paper: "When we got to Sedley we were told that we could not get at Whitefield's Pond from the south, for the road was completely under water and the dam itself flooded. That sounded pretty bad, and when we reached Whitefield via Corinth, there was the overflowing pond extending back into the woods. The farmer living near-by told us that in the forty years he had lived there the water had never been so low as it was until the five-day rain came on. We could have wept. Locating a spot where the little Eryngium should be, I walked in to shoulder-depth (I was already drenched by rain), ducked and grabbed. Nothing but floating Utricularia and debris came up. The Eryngium still evades us"-Rhodora, xlv. 390 (1943).

That defeat had been rankling for two years; and when I reached Seward Forest I had urged that we use the accumulated gasoline with rigid economy, in order to try again on the last day, before I should take the night-train north from Emporia. So on Monday, the 18 th, disappointed that Dr. Akerman must give up the trip with us, Lewis and I started for Whitefield's Pond. It still rained, so hard as seriously to obscure our vision, but we figured on getting to Whitefield by 9 in the morning and then having a full day for exploration. But Fate was still not wholly reconciled to our programme. On the way to Sedley, reached by a road full of unexpected angles and forkings, we were undecided which of two surfaced forks to take. Driving up to what in the rain looked like a filling station, we suddenly went bang! bang! A rear and a front wheel were down to their hubs in rotted tar pavement! The filling station had been deserted and we were alone on a deserted road. Luckily a friendly board-pile was soon discovered and eventually we pried ourselves out. It was afternoon when we got to Whitefield. Twenty feet of beach were still undrowned. The Eryngium, with sky-blue flowering and paler fruiting heads, made repent mats and by rapid work we secured a splendid type-series
(plates 897 and 898) before the early twilight. We had finally won! There was no time for exploration of the four miles of beach and marshy shore, but while uprooting the trailing branches of the undescribed Eryngium, I snatched a single plant of a Ludwigia which looked unfamiliar. It is; I can find nothing quite like it in the herbarium, but without fuller material I withhold further comment. The carpet of Polygonum bordering the outlet of Whitefield's Pond looked strange: with the very narrow (almost linear) leaves and thick finger-like panicles suggesting $P$. opelousanum Riddell, but the flowers deep pink, not greenish. A hastily snatched bunch had to suffice, but the plant proves to be a very definite new variety (plate 884) of $P$. hydropiperoides, represented in the Gray Herbarium by an old collection of Rugel's from Norfolk County; otherwise only from the region of Wilmington in southeastern North Carolina-a geographic segregation repeated by very many plants of the Coastal Plain of southeastern Virginia. Whitefield's Pond needs close study! The next morning, September 19, in a few short hours a regular cloud-burst precipitated 6 inches of rain over southeastern Virginia and caused disastrous floods. We had got the Eryngium; one day later we should have missed it.

Thus the two short visits to Seward Forest, with a total of 14 half-days or one week of field-work, brought their botanical returns in unexpected number, and it is possible to close off the very brief season of 1944 with a record of discovery not at all discreditable in view of the limitations. These results would have been impossible without the cordial and genuine hospitality and helpfulness of the Director, Staff and families of the Seward Forest. My gratitude to them all is very great.

## Part II. Technical Notes and Revisions

As usual in this series of papers, the more important rangeextensions are briefly assembled, even though already noted in the journal. Plants thought to be previously unrecorded from Virginia are indicated by an asterisk $\left(^{*}\right)$ and in all except the several technical studies, the names of collectors, Fernald \& Long, Fernald \& Lewis, etc., are omitted, the numbers sufficing. Since, for the most part, Lewis has a separate series of numbers,
plants collected by us both and of which only my own series of numbers are available are cited as Fernald (with Lewis), etc. Some studies which have resulted from earlier collections in the state by Mr. Bayard Long and me are included; a few plants, recently recorded by me elsewhere and new to Virginia, are briefly noted, that their records may be easily available; and the last discussion, although not growing immediately out of our field-work, is here included, since most of the plants discussed are Virginians. As for several years past, I am greatly indebted to Dr. Bernice G. Schubert for her skill in preparing the plates. The cost of engraving has been met through grants from the American Philosophical Society and from the Department of Biology of Harvard University.

Dryopteris cristata (L.) Gray. Brunswick Co.: bottomland woods near old Clipper's Mill, southwest of Triplett, no. 14,680. Not recorded by Massey from Brunswick Co. See p. 101.

Festuca paradoxa Desv. Local range extended inland to Brunswick Co.: low woods along Meherrin River near Westward Bridge (or Mill), no. 14,554. Seen in other rich woodlands. See p. 97.

Vulpia Elliotea (Raf.), comb. nov.? Festuca quadriflora Walt. Fl. Carol. 81 (1788), not Honkeny, Verz. Aller Gew. Teutschl. 268 (1782). F. monandra Ell. Sk. i. 170 (1816), in obs. on misapplied name $F$. myuros L., the full description being of the indigenous plant of S. C. Dasiola elliotea Raf. Neogen. 4 (1825). Festuca sciurea Nutt. in Trans. Am. Phil. Soc. n. s. v. 147 (1835). V. sciurea (Nutt.) Henrard in Blumea, ii. 323 (1937).

The earliest available name for this characteristic American (including Virginian) species is Dasiola Elliotea Raf. (1825), Rafinesque defining the new genus Dasiola with the single species D. Elliotea based on the very fully described Festuca monandra Elliott. Elliott's description is unequivocal; he called the plant the Old World F. myuros L., but said "I once considered this plant as distinct from the Linnaean F. myurus, and named it F. monandra; the description however of Lamarck renders it probable that it is the same: the only circumstances which still occasion any doubt, the hairy corolla and solitary filaments, are omitted in his description". The hairy "corolla" is distinctive of the native southern plant; and this comment, as well as Elliott's full account, leaves no question as to the identity
of his plant, therefore of Rafinesque's Dasiola Elliotea. Elliott's Festuca monandra can not be taken up. He published it only as a provisional name which he had himself abandoned.
V. octoflora (Walt.) Rydb., var. tenella (Willd.), comb. nov. Festuca tenella Willd. Sp. Pl. i. 419 (1797). F. octoflora, var. tenella (Willd.) Fernald in Rhodora, xxxiv. 209 (1932).
V. octoflora, var. glauca (Nutt.), comb. nov. Festuca tenella, B. glauca Nutt. in Trans. Am. Phil. Soc., ser. 2, v. 147 (1835). F. octoflora, var. glauca (Nutt.) Fernald, 1. c. (1932).

It is difficult to understand why the genus Vulpia has not been generally taken up in America, except that Piper, in his North American Species of Festuca, Contrib. U. S. Nat. Herb. x. pt. 1 (1905), followed Hackel in treating it as Festuca, subg. Vulpia and Hitchcock and others have followed Piper. The two groups, true Festuca L. and Vulpia K. C. Gmelin, are very different in morphology and in geographic occurrence. Festuca is a genus of perennials, ocecurring in temperate regions of both northern and southern hemispheres and extending to the Arctic and to highalpine habitats. The florets open regularly and the plumose stigmas emerge from the sides of the lemmas; the 3 free anthers are exserted and, as we know, are so distinctive as to offer clear and diagnostic specific characters. The grain is ellipsoid or ovoid. In most species of true Festuca the 2nd glume is merely pointed, though sometimes awned, and the acute to blunt lemmas may be awnless or awned.

Vulpia, on the other hand, is a group chiefly of annuals, with the lower glume often greatly reduced, the upper one frequently awned, and the slender lemmas long-attenuate to long-awned. The florets do not open, but remain closed (cleistogamous) and are enlarged upward when the anther is mature, the 1 (rarely 3 ) included anther being appressed to the lemma or to the included stigmas and with nearly suppressed filament; and the linearcylindric grains are attenuate to each end. This characteristic group occurs in temperate Europe and the Mediterranean region (North Africa and southwestern Asia), in temperate (not frigid) North America and in western South America.

The fact that Hackel in his earlier work and in Engler \& Prantl merged Vulpia with Festuca is hardly sufficient ground for maintaining an artificial union. Hackel, likewise, merged other groups which, in Washington, have been officially segregated.

Thus, by Hackel, in his monumental Andropogoneae in DC. Mon. vi. (1889), Sorghum, Sorghastrum (Chrysopogon), including Rhaphis, Vetiveria, Cymbopogon, Hyparrhenia and Heteropogon, all maintained with us as genera, were merged into Andropogon; and just imagine how the ultraconservative and very accurate Hackel would have groaned at the segregation of Panicum as he conceived it; to him Digitaria, Trichachne, Brachiaria, Echinochloa, etc., were mere sections of Panicum. Since all or nearly all of his sections in Panicum and his subgenera in Andropogon (as well as in many other groups) are taken up in America as full genera, why discriminate against his Festuca, subg. Vulpia? In Europe and Africa nearly all, if not quite all, recent close students of the Gramineae regularly maintain Vulpia as a genus: Beck von Managetta, Rouy, Hegi, Lindman, Henrard and such sound and conservative British authorities on grasses as Bews, C. E. Hubbard and Vaughan. It seems reactionary to persist in merging Vulpia with Festuca ${ }^{1}$.

Eragrostis multicaulis Steud. Synop. Pl. Glum. i. 426 (1855). Glyceria airoides Steud. 1. c. 287 (1854), not Reichenb. (1827). E. pilosa, var. Damiensiana Bonnet in Naturaliste, iii. 412 (1881). E. pilosa, var. condensata Hackel in Allg. Bot. Zeitschr. vii. 13 (1901). E. peregrina Wiegand in Rhodora, xix. 95 (1917). E. Damiensiana (Bonnet) Thell. in Fedde, Repert. xxiv. 323 (1928).

I am indebted to Capt. Stanley J. Smith for calling my attention to the correct name for the ruderal annual which has rapidly spread in eastern North America and which is currently known as Eragrostis peregrina Wiegand. In their Grasses of Mauritius and Rodriguez, 43 (1940) the two distinguished English specialists on grasses, C. E. Hubbard and R. E. Vaughan, give the above bibliography of $E$. multicaulis, "Native of eastern Asia; introduced into Europe, America and Australia". Steudel originally described the species as Glyceria airoides from Japan but a year later, describing it under Eragrostis, he rightly gave a new specific name, since his earlier name, Glyceria airoides, was a later homonym. Now that we know $E$. multicaulis ( $E$. peregrina) to be introduced from eastern Asia, not indigenous, its behavior, suddenly appearing and then rapidly spreading, is easily understood. It well matches eastern Asiatic specimens.

[^16]Phleum pratense L., var. nodosum (L.) Schreb. Local range extended inland to Greensville Co.: roadside bordering sandy woods and thickets along Fontaine Creek, near Round Hill Church, no. 14,556.

Panicum agrostoides Spreng., var. ramosius (Mohr) Fernald. Local range extended inland to western Greensville Co.: bottomland woods along Fontaine Creek, at mouth of Quarrel's Creek, no. 14,688.
P. roanokense Ashe. Range extended inland from Coastal Plain to western Greensville Co.: low woods, Mitchell's Millpond, west of Brink, no. 14,563.

* Setaria Faberi Herrm. See Rhodora, xlvi. 57, 58 (1944). Abundantly naturalized in Roanoke and Botetourt Cos., C. E. Wood, Jr.

Erianthus alopecuroides (L.) Ell. Brunswick County: abundant in bottomland woods along Rattlesnake Creek, at old Clipper's Mill, southwest of Triplett, no. 14,690. Chiefly an inland species, here at our first station in the southeastern counties. See p. 100.

* Tripsacum dactyloides L., var. occidentale Cutler \& Anders. in Ann. Mo. Bot. Gard. xxviii. 258 (1941). Brunswick County: border of low woods, Meherrin River at Westward Bridge (or Mill), no. 14,565. Halifax County: Lawson Creek, southwest of South Boston, June 21, 1938, Fosberg, no. 15,412. See p. 99.

Recently distinguished as a supposed endemic of the Davis and the Chisos Mts. of western Texas, on account of the long and narrow acuminate glumes of the staminate spikelets. The plant at Westward Bridge is closely associated with Muhlenbergia glabrifora Scribn., there at its first known station east of the Mississippi Basin (southwestern Indiana and Illinois to Texas)see Fernald in Rhodora, xlv. 379 and 385 (1943). It is a very close match for the type-collection of var. occidentale (Moore \& Steyermark, no. 3092). Material from near Nashville, Tennessee, Gattinger, has even longer and narrower glumes and is comparable with coarse extremes of var. occidentale from Texas (Chisos Mts., Mueller, no. 7891 and Warnock, July 12, 1937, and Presidio Co., L. C. Hinckley, no. 1691).

The Identity of Cyperus virens Michx. (Plate 876, figs. $1-4$ ).-In sorting the large accumulation of photographs of types assembled before the present war I have, rather naturally, been amazed to note that the type (fig. 1, $\times 1 / 2$ ) of Cyperus virens Michx. Fl. Bor.-Am. i. 28 (1803), "Hab. in Carolina", is very
characteristic material of C. pseudovegetus Steud., Syn. Cyp. 24 (1855) and not at all the plant which Steudel and all his followers have erroneously called C.virens. C.virens (FIGs. 1 and 3) is a relatively slender plant, with culms $3-7.5 \mathrm{dm}$. high; leaves nearly equaling the culm and $2-5 \mathrm{~mm}$. wide, not strongly spongy below; the ovate spikelets (Fig. $4, \times 5$ ) very flat and soon, by spreading of the narrow scales, with slightly excurved mucronate tips (fig. $5)$, displaying the rachilla. The much coarser plant, erroneously passing as C. virens, has stout culms $0.5-1.2$ (in the tropics -1.8 ) m . high; its spongy-based leaves much shorter than the culms ("Folia culmo parum breviora"-Kükenthal) and $5-13 \mathrm{~mm}$. wide; the slightly narrower spikelets relatively plump, with the broader and straight scales (FIG. $5, \times 5$ ) rather closely imbricated at base, so that the rachilla remains partly hidden. Differences in the achenes and other characters not evident in the photograph of Michaux's type need not now concern us. The Michaux type (fig. $1, \times 1 / 2$, and fig. $2, \times 10$ ) is very evidently the same as C. pseudovegetus (figs. 3 and 4) and not at all the coarser and largely tropical plant. If Kükenthal's synonymy is safer to follow than his identifications of species (for Kunth's types should certainly have been available to him, even if inhibition and Germanic self-satisfaction kept him from seeing Michaux's in Paris), the coarser plant may perhaps be (. robustus Kunth, Enum. ii. 4 (1837). I have not yet checked that point, as it concerns a species as yet known only outside the area upon which I must chiefly concentrate. Michaux's C. virens was from Carolina. Of the slender species which perfectly matches his type there are before me 12 sheets from North Carolina, 9 from South Carolina, 16 from Virginia and others from Delaware, Maryland, the District of Columbia and New Jersey. Of the coarse tropical and subtropical species the northernmost specimen (the only one I have seen from the state) is from Washington County, on Albemarle Sound, in North Carolina (so near the Virginia line that I may yet have to settle the name!), with 5 sheets from river-swamps and tidal reaches of South Carolina. Michaux got the ubiquitous species of the Carolinas.

Cyperus (§ Umbellati) Plukenetii, sp. nov. (tab. 877), rhizomate subligneo crasso abbreviato; culmo subrigido scabropuberulo $0.3-1 \mathrm{~m}$. alto; foliis firmis scabris planis 4-8 mm. latis


Photo. B. G. Schubert.
Juxcus platyphillus: fig. 1 , inflorescence, $\times 1$; fig. 2 , summit of sheath and base of leaf, $\times 10$; fig. 3 , capsules, $\times 6$


Photo. B. G. Schubert.
Juncus Canadensis, var. euroauster: fig. 1, portion of type, $\times 1 / 2$; fig. 2, portion of glomerule, $\times 10$, from TYPE; FIG. 3 , seeds, $\times 10$, from TYPE

Var. sparsiflords: fig. 4, inflorescence, $\times 1$; fig. 5 , glomerule, $\times 10$
attenuatis; involucro $3-7$-phyllo, foliis quam radiis brevioribus scabris; radiis 4-12, subrigidis seabris adscendentibus ad 2.5 dm . longis; spicis turbinato-obovoideis $1-2.3 \mathrm{~cm}$. longis; spiculis $75-$ 125 lineari-subulatis valde appresso-reflexis $6-7 \mathrm{~mm}$. longis; squamis 4 vel 5 striatis terminale involuta firma subacerosa; acheniis linearibus $2.5-3 \mathrm{~mm}$. longis.-Dry or moist sands and rocks, Florida to Texas, north to New Jersey (possibly Long Island), southern Ohio and southeastern Missouri. Type: sandy pinelands, The Desert, Cape Henry, Virginia, July 28 and 29, 1934, Fernald \& Long, no. 3734 (in Herb. Gray.; isotype in Herb. Phil. Acad.), distrib. as C. retrofractus (L.) Torr.

Cyperus Plukenetii, named for Leonard Plukenet (16411706), who originally described and illustrated it (our fig. 1) from Virginia, has been erroneously passing as C. retrofractus (L.) Torr., Fl. N. Y. ii. 344 (1843), Torrey's combination resting on the Scirpus retrofractus L. Sp. Pl. 70 (1753), our plate 878. Linnaeus, like Torrey and some others after him, confused two quite distinct species. His original account was very brief:
retrofractus. 17. SCIRPUS culmo triquetro, umbella simplici: spicarum flosculis retrofractis.
Cyperi genus indianam, panicula speciosa, spiculis propendentibus atris. Pluk. phyt. 415. f. 4. Habitat in Virginia.
As is so often the case, everyone since 1753 has taken the easier course. It was perfectly simple to turn to Plukenet and see his very characteristic figure (our fig. 1); it would have required more effort and considerable trouble to find out what Linnaeus actually had before him. If they had taken this trouble, it would have been evident that the Linnean type (plate 878, figs. 1 and 2) is not like the Plukenet plant, for Linnaeus had from Virginia a very characteristic specimen of Cyperus hystricinus Fernald in Rhodora, viii. 127 (1906), our plate 878, fig. 3. In plate 878 I show the type (figs. 1 and 2) of Scirpus retrofractus, $\times 1 / 3$ and $1 / 2$, from a photograph received from Mr . Savage. With it, $\times 1$, is an umbel from the type of Cyperus hystricinus ${ }^{1}$. That they are quite the same no one, who really understands Cyperus, can doubt.

True $C$. retrofractus ( $C$. hystricinus) differs in many characters from C. Plukenetii (C. retrofractus sensu Torrey, for the most

[^17]part, and most later authors, incl. Kükenthal in Engler, Pflanzenr. iv ${ }^{20}$. fig. 56 (1935), the latter an excellent illustration of $C$. Plukenetii). The chief differences are as follows:
C. retrofractus: rhizome relatively slender and elongate, the corms (when more than 1) remote; culm smooth and glabrous; leaves smooth and glabrous, the basal $2-5 \mathrm{~mm}$. wide; rays of umbel smooth, when fully mature mostly shorter than the smooth and narrow involucral leaves; spikes cylindric or cylindric-obovoid; spikelets golden brown, not pungent, soon loosely reflexed and promptly falling; achenes $2-2.5 \mathrm{~mm}$. long.
C. Plukenetii: rhizome stoutish, the corms (when more than 1) approximate; culm scabrous-puberulent; leaves harsh and pubescent, the basal 4-8 mm . wide; rays of umbel scabrous, when mature mostly much longer than the involucral leaves; spikes strongly turbinate-obovoid, tapering to acute obconic base; spikelets greenish, becoming drab or dull brown, pungent, soon tightly appressed-reflexed, long-persistent; achenes $2.5-3 \mathrm{~mm}$. long.

If one takes Kükenthal's bibliography at its face value it will be found as unreliable for North American plants as his treatment of many of our species. Besides Scirpus retrofractus L. and the resultant combinations under Cyperus and Mariscus he gives, without the slightest indication of doubt, the synonym Mariscus pubescens Presl, Reliq. Haenk. i. 181 (1830). Now, Cyperus retrofractus sensu Kükenthal (C. Plukenetii), with, to quote Kükenthal, involucral leaves (like the basal) "4-8 mm. lata plana", the "spicae obovato-turbinatae", "Spiculae omnes retroflexae", occurs from Florida to eastern Texas, north to New Jersey, southern Ohio and southeastern Missouri. Mariscus pubescens Presl was originally said to be from Monterey, California, its "Involucella setacea", the "Spicae cylindraceae", "Spiculae horizontales". Kükenthal has another guess coming, if he survives the war. He evidently accepted, without looking up the Presl plant or description, the entry in Index Kewensis, fasc. iii. 169 (1894) under Mariscus: "pubescens, J. \& C. Presl, Rel. Haenk. i. $181=$ retrofractus". In the first fascicle, 697 (1893) the editor, Jackson, had entered the same plant as a maintained species of Cyperus: "pubescens, J. \& C. Presl, Rel. Haenk. i. 181-Calif.", thus making a new and superfluous name, for there was already a $C$. pubescens Steud. (1855) ${ }^{1}$.

Plate 876, figs. 1-4, Cyperus virens Michx.: fig. 1 , type, $\times 1 / 2$, photograph after Cintract; FIG. 2, spikelets, $\times 10$, from type; fig. 3, inflorescences,

[^18]$\times 1 / 2$, of characteristic C. pseudovegetus Steud. from Accomac, Virginia, Fernald, Long \& Fogg, no. 5225; Fig. 4, spikelet, $\times 5$, from no. 5225. Fig. 5, C. robustus Kunth (C. virens sensu Steudel and later auth., not Michx.): spikelet, $\times 5$, from Walterboro, Colleton Co., South Carolina, Wiegand \& Manning, no. 523.

Plate 877, Cyperus Plukenetii Fernald: fig. 1, Plukenet's figure of Cyperi genus indianam, etc. from Virginia, included by Linnaeus under his mixed Scirpus retrofractus; fig. 2, inflorescence, $\times 1$, of TYpe; Fig. 3 , characteristic base, $\times 1$, from Cypress Bridge, Southampton Co., Virginia, Fernald \& Long, no. 6040.

Plate 878, C. retrofractus (L.) Torr. as to type: fig. 1 , type, $\times 1 / 3$, of Scirpus retrofractus L., courtesy of Mr. S. Savage; FIG. 2, inflorescence, $\times 1 / 2$, of type; fig. 3, inflorescence, $\times 1$, of type of C. hystricinus Fernald; fig. 4, characteristic rhizome, $\times 1$, from Joyner's Bridge, Isle of Wight Co., Virginia, Fernald, Griscom \& Long, no. 6528.
C. odoratus L. Sp. Pl. i. 46 (1753). C. ferax Richard in Act. Soc. Hist. Nat. Par. i. 106 (1792).-Frequent in saline and brackish marshes or on shores along the coast.

Since some have questioned the identity of these two species, a memorandum by Dandy in Exell, Cat. Vasc. Pl. So. Tomé, 360 (1944), is important to quote. Under C. odoratus L. he says:

This species is the true C. odoratus of Linnaeus, which was based on the Jamaican plant named Cyperus odoratus, panicula sparsa, spicis strigosioribus viridibus by Sloane, Cat. Pl. Ins. Jam. 35 (1696); Voy. Jam. Nat. Hist. I. 116, t. 74, fig. I (1707). . . . The original specimen from which Sloane's figure was drawn is preserved in Herb. Sloane (vol. II. fol. 46) at the British Museum, and is identical with C. ferax Rich. There was no specimen of $C$. odoratus in the Linnean Herbarium in 1753, and the type of the species is Sloane's figure (since Linnaeus did not see the actual specimen). The name C. odoratus has been misapplied to C. polystachyos and other species.
C. tenuifolius (Steud.) Dandy in Exell, Cat. Vasc. Pl. So. Tomé, 363 (1944).-Seen along wet woodroads in the Seward Forest, but not collected; common farther east.
C. tenuifolius (Steud.) Dandy is the plant generally known as Kyllinga pumila Michx. (1803), the genus Kyllinga now very generally reduced to Cyperus. Its essential synonymy, as given by Dandy, is as follows:
C. tenuifolius (Steud.) Dandy, 1. c. (1944). Kyllinga pumila Michx. (1803), not C. pumilus L. (1756). K. elongata Kunth (1816), not C. elongatus Steud. (1855). K. caespitosa Nees (1842), not C. caespitosus Poir (1806). K. tenuifolia Steud. (1855). K. rigidula Steud. in part (1855), not C. rigidulus Vahl (1806). C. densicaespitosus Mattf. \& Kükenth. (1936).

* Fimbristylis Drummondii Boeckl. Brunswick County: damp openings in woods, "Moseley flat pineland", near Triplett, Fernald (with J. B. Lewis), no. 14,568. See p. 95.

F'imbristylis Drummondii has been variously confused with a number of other species, particularly with the tropical South American and very distinct $F$. spadicea (L.) Vahl and the halophilous North American $F$. castanea (Michx.) Vahl and $F$. caroliniana (Lam.) Fernald ( $=F$. puberula (Michx.) Vahl). $F$. castanea is the coarse and densely cespitose, rigid plant of salt marshes and saline shores, from the West Indies and Florida to Texas, extending northward on saline marshes to Long Island. Its coriaceous dark sheaths, rigid culms up to 1 m . tall, its lustrous and coriaceous broadly rounded scales and the castaneous broad-ovoid achenes clearly mark it. F. caroliniana (Lam.) Fernald in Rhodora, xlii. 246 (1940) is the same as $F$. puberula (Michx.) Vahl and its habit was clearly shown in Rhodora xxxvii. t. 388 (1935). It is contrasted with $F$. castanea by its small soft-based tufts, with paler sheaths, its prolonged and slender cord-like scaly stolons, its thinner and membranaceous scales, at least the outer ones puberulent, and the narrower and paler achene. It occurs on brackish or saline sands, flats or marshes and in dune-hollows along the coast from Florida to Texas, northward to New Jersey.

Fimbristylis Drummondii, on the other hand, is nonstoloniferous; its culm-bases are enlarged and bulbous and when fully developed it makes dense tussocks with the stout rhizome forking into thick crowns covered with the bulbous-based tufts. Too many specimens in herbaria, however, merely pulled off from the rhizome, fail to display this distinctive character and very young and first-fruiting plants often have only poorly developed rhizomes. They have, however, the bulbous bases which are characteristic, the puberulent scales and the pale achenes. This plant, which has recently been confused with the others, is a species of peats, sterile meadows, pine and oak barrens, and other acid habitats. It occurs from Florida to eastern Texas, northward to Virginia, southeastern Pennsylvania, the New Jersey pine barrens and the Hempstead Plains of Long Island; in the interior across Tennessee and Arkansas to southern Michigan, Illinois and Missouri. Whereas the halophilous F. castanea and $F$. caroliniana fruit from late July to October, the inland $F$. Drummondii is mature from May into July, the Virginia material, collected in June, being over-ripe. One other species of this
series should be noted, F. interior Britton in Britt. \& Br. Ill. Fl. ed. 2, i. 320, fig. 785 (1913), a species of the Great Plains, from east-central Nebraska to eastern Colorado, south to Texas. Somewhat resembling both $F$. caroliniana and $F$. Drummondii, the material has bulbous-based tufts of the latter but shows no tendency to produce subligneous rhizomes and occasionally it develops stolons suggesting those of the former species. Its scales, however, are firmer and glabrous or glabrescent and its achenes with many more longitudinal ribs than in the others. It seems to be a well defined campestrian species.

The correct application of the name Fimbristylis Drummondii needs clarification, for its author, Boeckeler, created a confusion regarding it, the effects of which still linger. Boeckeler published his first F. Drummondii in Flora, xli. 603 (1858), a plant with "basi valde bulboso-incrassato, bulbo (crassitie nucis Coryli minoris) vaginis . . . coreaceis. . . . obtecto squamis . . . omnibus puberulis", etc. This species consisted of two varieties: " $\alpha$. minor; culmo subpedali, umbella subsimplici, spicis magis ovatis foliis superne scabris. Prope N. Orleans legit Drummond. (In hrb. ej. sub Nro. 416.)" and " $\beta$. major; culmis elatis (sesquipedalibus); spicis paulo majoribus subglobosis, involucellis squamisque glabrescentibus. Ad rio Brazas terrae Texanae legit Drummond". Since var. $\alpha$. minor was the first defined and since two sheets of Drummond's no. 416 from New Orleans before me have the puberulent scales as described in Boeckeler's full description I am taking these to be isotypes of $F$. Drummondii. His var. $\beta$. major seems to contradict his fuller description in having "squamis glabrescentibus". Boeckeler cited no number and, presumably, his type is now destroyed. If it came from the upper Brazos it might have been F. interior Britton; if from the tidal reaches of the lower Brazos it might have been the glabrous-scaled $F$. castanea (Michx.) Vahl, which abounds in coastwise Texas. The latter species does not have bulbous bases, however; but Boeckeler's "squamis glabrescentibus" is not easily reconciled with his "squamis omnibus puberulis" of his primary description of $F$. Drummondii. Although the identity of var. $\beta$. major can not now be settled, the identity of var. $\alpha$. minor is clear. It is the plant I am taking up as $\boldsymbol{F}$. Drummondii.

In 1836 Torrey, treating the all-inclusive Isolepis, placed together in one series two species, I. capillaris, the tiny capillaryleaved annual now known as Bulbostylis capillaris, and the new I. Drummondii Torr. \& Hook. in Ann. Lyc. Nat. Hist. N. Y. iii. 350 (1836), this being a very tall plant, with firm "Culm 3 feet high . . . Spikes half an inch long . . . Scales closely appressed [coriaceous], smooth . . . Hab. Texas, T. Drummond!'", the authors stating that it has the habit of Fimbristylis spadicea. I have not seen the type but the description suggests $F$. castanea. Still another Drummond plant from Texas was described by Boeckeler, this his F. anomala in Flora, xliii. 242 (1860), "Caespitosa; radice valide fibrosa stolonifera; stolonibus tenuibus (crass. pennae corvinae) . . . culmo 1-2 pedali rigido . . . spicis 3-4 lin. longis $11 / 3$ lin. latis squamis arcte imbricatis . . . , inferioribus puberulis Texas. Herb. Drummond. Nr. 445." This number, likewise, I have not seen. The point in bringing into the discussion Isolepis Drummondii, with culms " 3 feet high" and smooth scales, and $F$. anomala, 1-2 feet high, stoloniferous, with lower scales puberulent, is that they both soon figured under another name, F. Drummondii (Torr. \& Hook.) Boeckeler in Linnaea, xxxvii. 21 (1871), based nomenclaturally upon Isolepis Drummondii Torr. \& Hook., with $F$. anomala cited as a synonym, this plant stoloniferous, the subsolitary culms $11 / 2-21 / 2$ feet high, the scales of the spikelet membranaceous-margined, "nitidulis".

Naturally, there can be no second valid Fimbristylis Drummondii (Torr. \& Hook.) Boeckl. (1871), in view of the earlier and different $F$. Drummondii Boeckl. (1858), which is the eastern species with bulbous-based tufts arising from stout caudices or hard rhizomes, with the outer scales of the spikelets puberulent. Whether $F$. anomala is an earlier name for $F$. interior I do not know; only examination of Boeckeler's type or of an unquestioned isotype can settle that. But for our plant the name $F$. Drummondii Boeckl. (1858) seems to be the correct one.

Scirpus polyphyllus Vahl. To the very few stations in the southeastern counties add one in Brunswick Co.: margin of Mill Creek, southwest of Ebony, no. 14,566.
S. divaricatus Ell. Local range extended inland to western Greensville Co.: bottomland woods along Quarrel's Creek below Pair's Store, no. 14,567. See p. 101.

Fuirena squarrosa Michx. (F. hispida Ell.). Local range extended into the Piedmont in Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,692; culms weak and reclining. See p. 103.

Rhynchospora corniculata (Lam.) Gray. Range extended back into the Piedmont. Greensville Co.: bottomland woods along Fontaine Creek, at mouth of Quarrel's Creek, no. 14,694. Brunswick Co.: bottomland woods along Rattlesnake Creek, at old Clipper's Mill, southeast of Triplett, no. 14,693. See p. 100.
R. globularis (Chapm.) Small, var. recognita Gale ( $R$. cymosa sensu Torr. and later auth., not Ell.). Local range extended from Coastal Plain inland to Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,569 ; damp openings in woods, Moseley flat pineland, near Triplett, nos. 14,570 and 14,571 . See p. 103.

Scleria pauciflora Muhl. To the counties from which this species is known (see Rhodora, xxxix. 392) add Greensville Co.: swaley clearing along Quarrel's Creek, below Pair's Store, no. 14,573. Also Brunswick Co.: damp woods along branch, east of Moseley flat pineland, near Triplett, no. 14,574. See p. 96.

Carex hirsutella Mackenzie. Brunswick County: woods, Moseley flat pineland, near Triplett, no. 14,581, our first station in the southeastern counties. Plant very lax, with flaccid, loosely divergent culms, the inflorescences lopping to the ground. See. p. 96.

Commelina virginica L. (C. hirtella Vahl). Ordinarily with erect flowering stems, the plants in bottomland woods along Meherrin River at Westward Bridge (or Mill) have them depressed or trailing (no. 14,695).

Since the summer had been one of unusual drouth and the Commelina was well above the level of the river in mid-September the trailing habit was, obviously, not induced, at least during this season, by drowning.

The Identity of Juncus tenuis (Plate 879).—Juncus tenuis was described by Willdenow, Sp. Pl. ii ${ }^{1}$. 214 (1800) ${ }^{\mathbf{1}}$, as follows:
> *23. JUNCUS tenuis W.
> J. culmo teretiusculo indiviso, foliis linearibus canaliculatis, corymbo terminali, calycinis foliolis acuminatis capsula triquetra obtusa longioribus. W.
> Schlanke Simse. W.

[^19]> Habitat in America boreali.' 2 (v. s.)
> Culmus dodrantalis teretiusculus subcompressus basi foliosus. Folia ut in pracedente. Flores ut in praecedente [i. e. J. bulbosus sensu Willd. incl. J. compressus
> Jacq. and $J$. Gerardi Loisel.] sed duplo majores et rami laterales corymbi majis elongati.
> Foliola calycina lancolata acuminata capsula paulo longiora. Capsula triquetra truncato-obtusa. W.

Practically without exception the name Juncus tenuis was thereafter correctly applied to a widespread and very common species with drab or pale brown young sheaths, flattish (though on drying often inrolled) leaves with whitish scarious and friable margins to the sheaths, the elongate-oblong or lanceolate auricles thin and scarious or thin-hyaline, the inflorescence greatly overtopped by 2 or more flattish bracts, the flowers, in more open inflorescences, inclined to be grouped in 3 's, the perianth overtopping the oblong-ovoid capsule which is retuse at summit and partially 3 -locular. So firmly established was the name $J$. tenuis Willd. for this clear-cut and wide-ranging species (much of North America, Europe, Australia, New Zealand, etc.) that it came as a shock when, in 1929, the late Kenneth K. Mackenzie announced:
"Juncus tenuis Willd. (Sp. Pl. 2: 214. 1799), 'Habitat in America boreali,' is Juncus dichotomus Elliott (Bot. S. Carolina \& Georgia 1: 406. 1817), and is not the plant appearing as Juncus tenuis in our current manuals. Dr. Diels, Director of the Botanical Garden and Museum at Berlin, has very kindly sent me from Willdenow's material portions showing the leaf-blade, the mouth of the sheath, the inflorescence, and the seeds. The leaf-blade is not flattened, and the auricles are rounded cartilaginous and not conspicuously prolonged.
"I was brought to look into this matter by noting that Steudel (Syn. Pl. Glum. 2: 305. 1855) described Juncus tenuis' Willd. as with 'vaginis adpressis ore nudis'. On the same page he described a new species Juncus germanorum ('J. tenuis Auctor. Germ.') as with 'vaginis laxiusculis ore in marginem membranaceum utrinque productis (ligulam mentientem)'. This last, of course, is a very accurate description of the plant appearing in our manuals as Juncus tenuis"-Mackenzie in Bull. Torr. Bot. Cl. Ivi. 25 (1929).

That seemed to settle the matter and I promptly fell into the unintentional trap. In my search for the earliest name for Juncus tenuis of most authors I found, while in England, that the earliest available name (if $J$. tenuis Willd. is indeed only $J$.

[^20]

Photo. B. G. Schubert.
Juncus canadensis, var. typicus: fig. 1 , inflorescence, $\times 1$; fig. 2 , flower, $\times 10$; fig. 3 , seeds, $\times 10$

Forma apertus, all figs. from Type' Fig. ${ }^{4}$, inflorescence, $\times \frac{1}{2}$; Fig. 5 , glomerule, $\times 10$; fig. 6 , seeds, $\times 10$

Forma conglobatus: fig. 7, two inflorescences, $\times 1$, from type


Rumex Britannica: the Clayton (Gronovian) specimen from Virginia, photo. from Dr. John Ramsbottom $=$ R. obtusifolius L.
dichotomus Ell.) seemed to be J. macer'S. F. Gray, Nat. Arr. Brit. Pl. ii. 104 (1821). This decision I announced in Journ. Bot. lxviii. 366 (1930) and, most unfortunately, my interpretation has been generally accepted in America, Europe and Australia.

The difficulty seems to be, that Willdenow had mixed material. From Mackenzie's account the fragments sent to him were apparently from J. dichotomus Ell. That species (figs. 5-7), however, is strongly distinguished from $J$. macer ( $J$. tenuis of Rostkovius, Engelmann, Buchenau, Gray, Britton, etc.), figs. $1-4$, by many characters:


#### Abstract

J. MACER: (1) Tufts or tussocks relatively soft; young membranaceous sheaths drab or pale brown to greenish; (2) with whitish friable broad scarious margins; (3) the uninjured auricles lance-triangular to -oblong, scarious or thin-hyaline and much longer than broad; (4) leaf-blades flat or broadly canaliculate; (5) lower involucral bract and ordinarily 1 or 2 others much prolonged beyond the cyme; (6) cyme either compact or open and with elongate outer branches, each branch or branchlet (in the typical form) with 2-6 (commonly 3) approximate flowers; (7) prophylla thin or membranaceous, greenish or drab; (8) sepals much longer than capsule; (9) capsule retuse, 3-locular; (10) anthers much shorter than filaments; etc. J. dichotomus Ell.: (1) Dense and hard tussocks with inner firm sheaths purple-tinged, the outer brown, (2) without friable margins; (3) short rounded auricles firm and cartilaginous; (4) leaf-blades filiform, merely slenderly channeled on upper side; (5) lower involucral bract shorter than or but slightly exceeding cyme, the others shorter; (6) cyme with flowers mostly secund and alternate along the branchlets; (7) prophylla coriaceous, pale to deeper-brown; (8) sepals and capsule subequal; (9) capsule rounded at summit, 1-locular; (10) anthers nearly equaling filaments.


Willdenow's original description, of course, has final significance. This was beautifully supplemented by the dissertation on Juncus by Rostkovius-De Iunco (1801)-for Rostkovius definitely states that his dissertation for the degree of Doctor of Medicine ${ }^{1}$ was based upon the material of Juncus in Willdenow's Herbarium: "Cum absoluto cursu academico de specimine inaugurali meditarer, inter varia argumenta suasu optimi Praeceptoris Clarissimi Willdenowif, Professoris Historiae naturalis Berolini, e ditissimo Suo Herbario Iunci genus selegi, quod benevolentia Celeberrimorum Virorum Linkit, Mühe

[^21]endergit, Stephanit, et Hoppif valde auctum evasit, spe fretus hocce tentamen Botanophilis haud ingratum fore".-Rostk. Iunc. Praefatio (1801). Not only did Rostkovius (his p. 24) evidently study the plant which Willdenow had described as J. tenuis; he gave a very detailed description of it and an illustration of the characteristic and wholly distinctive inflorescence (our plate 879, fig. 1). Here is the account by Rostkovius:
18. Iuncus tenuis. Tab. Nost. I. fig. 3.
I. culmo folioso simplici teretiusculo, foliis canaliculatis, corymbo terminali dichotomo foliis floralibus breviore, capsula oblongo obtusa petalis breviore.
I. culmo teretiusculo indiviso, foliis linearibus canaliculatis, corymbo terminali, calycinis foliolis acuminatis capsula triquetra obtusa longioribus. Sp. pl. ed. W. 2. p. 214.
I. foliolus minimus campestris et nemorensis Gron. virg. 152.

Gramen iunceum virginianum calyculis paleaceis bicorne Moris. hist. 3. p. 228. f. 8. t. 9. f. 15.
Gramen iunceum elatius pericarpiis ovatis americanum Pluk. alm. 179. t. 92. f. 9.

Habitat in America boreali. 24.
Culmus semipedalis vel pedalis erectus simplex teretiusculus basi foliosus.
'Folia linearia canaliculata.
Corymbus terminalis dichotomus, ramis multifloris.
Folia floralia bina, sub corymbo, linearia canalicu-
lata, quorum alterum corymbo quadruplo longius, alterum longitudine corymbi vel paulo longius.

Calyx bivalvis membranaceus, valvulis lanceolatis acutis.

Corolla hexapetala, petalis lanceolatis acuminatis margine membranaceis, interioribus parum brevioribus.

Capsula oblonga triquetra obtusa basi styli
persistentis coronata, trilocularis trivalvis polysperma, petalis brevior.

Similis praecedenti [J. bulbosus sensu Willd., i. e.
$J$. compressus and J. Gerardi], sed corymbo dichotomo paucifloro, petalis acuminatis capsula longioribus diversus. Flores fere ut in Iunco bufonio. Synonyma Iunci nodosi a Linnaeo adducta hue per.

Now if we make an analysis of the differential characters of Juncus tenuis, as originally described by Willdenow, almost immediately thereafter and in great detail by Rostkovius from Willdenow's material, and by Engelmann, Buchenau, Wiegand and others who have maintained it in the sense of $J$. macer, (our figs. 1-4) and those of $J$. tenuis sensu Steudel and Mac-
kenzie and those of us who have supposed that they were right (i. e. J. dichotomus Ell.), our figs. 5-7, we get the following results. The index-numbers are those used in the contrasts given on p. 119 .

|  | J. tenuis as defined by Willdenow and by Rostkovius from Willdenow's material | J. dichotomus Elliott <br> (J. tenuis sensu Steudel and Mackenzie) |
| :---: | :---: | :---: |
| (1) Habit | No statement (Willd.) | "very small tufts" (Ell.) |
| (2) bassl sheaths | No statement (Willd.) | No statement (Ell.) |
| (3) auricles | No statement (Willd.) | No statement (Ell.) |
| (4) basal leaves | linear, channeled (Willd., Rostk.); "readily distinguished. . . by its flat leaves, $\because$ only ... on the margin slightly involute" (Engelm.); "lax, flat and soft, rarely slightly involute" (Wieg.); "folia . . . plana" (Buch.) | nearly terete, channeled on the upper side (EII.); "terete ..., marked by a shallow groove on their upper side" (Engelm.); "nearly terete, rarely much channeled' (Wieg.); "subteres, anguste canaliculata" (Buch.) |
| culms | nine inches high (Willd.); 1/21 ft . (Rostk.); a few inches to 2 ft . (Engelm.); 2-6 dm., commonly spreading (Wieg.); 10-40 (rarely -90) cm. (Buch.) | $1-2 \mathrm{ft}$. (Ell.); 3-10 dm., stiff, erect (Wieg.); 20-80 cm., strict (Buch.) |
| (5) lower involucral bracts | 2, linear-canaliculate, 4 times as long as corymb (Rostk.); 2, rarely 3, foliaceous, much exceeding inflorescence (Wieg.); 2 (rarely 1 or 3 ), frondose, "inflorescentia ... longe superata" (Buch.) | "One ... sometimes longer than the panicle, the others much shorter" (Ell.); "either longer or shorter" (Wieg.); "bractea infima frondosa inflorescentia nunc longior, nunc brevior" (Buch.) |
| (6) cyme | lateral branches much elongate (Willd.); "ramis multifloris" (Rostk.); fig. of Rostk. with flowers in 3 's at tips of branches; flowers somewhat aggregated at ends of very unequal branches (Wieg.); open, mostly many-flowered, anthelate (Buch.) | dichotomus, flowers alternate and terminal (Ell.); anthelate, dense, rarely open (Buch.) |
| (7) prophylla | membranaceous (Rostk.) | coriaceous |
| (8) comparative length of sepals and capsule | longer than capsule (Willd.) "Capsula, . . . petalis brevior" (Rostk.); exceeding capsule (Engelm.); "capsule . . .shorter than the perianth" (Wieg.); "Fructus tepalis brevior" (Buch.) | "Capsule . . . , when mature, as long as the calyx" (Ell.) "capsule $3 / 4-7 / 8$ the length of the perianth" (Wieg.); "Fructus perigonium fere aequantia" (Buch.) |

J. tenuis as defined by J. dichotomus Elliott Willdenow and by Rostkovius from Willdenow's material (J. tenuis sensu Steudel and Mackenzie)
(9) capsule

$$
\begin{aligned}
& \text { "Capsula triquetra truncato- "oval, nearly globose" (Ell.); } \\
& \text { obtusa" (Willd.); "Capsula "subglobose, ... but never } \\
& \text { oblonga triquetra obtusa . . ., retuse . . . the ripe pods as- } \\
& \text { trilocularis'" (Rostk.); retuse sume a mahogany color" } \\
& \text { (Engelm.); "thin-walled, ob- (Engelm.); "ovate-oblong, } \\
& \text { tuse", "3-celled" (Wieg.) rounded", "1-celled" (Wieg.) } \\
& \text { trigonous-spherical or -ovate, } \\
& \text { obtuse (Buch.) }
\end{aligned}
$$

From this summary of the characters recognized by the original authors and by the closest students of the group in the past (with length of stamens and some other characters not mentioned by Willdenow or Rostkovius omitted) it should be apparent that the plant which Willdenow and, after him, Rostkovius, redescribing the Willdenovian material, had before them was of the species which Kunth, E. Meyer, Engelmann, Gray, Wiegand, Britton, Buchenau and most others have regularly and correctly recognized as $J$. tenuis, the plant which, most unfortunately, I took up in 1930 as $J$. macer S. F. Gray. The plant called J. tenuis by Steudel in 1855 and by Mackenzie in 1929 was obviously not what Willdenow diagnosed and Rostkovius more fully described and illustrated. Whether it was contemporaneous in the Willdenow Herbarium with the material actually described by him we may never know. At any rate, we cannot accept it as the type of his very different species; it is obviously material of J. dichotomus Ell.

Confusions in the old and much handled herbaria are common and no specimen in them should be accepted as the type of the briefly described old species unless it agrees with the description. That seems axiomatic, but too many students overlook the necessity to eliminate the demonstrably extraneous or subsequently acquired specimens. In case of the Willdenow Herbarium, now tragically lost, to the incalculable detriment of our science, such confusions have been demonstrated. Thus, as pointed out by Weatherby in Contrib. Gray Herb. no. cxxiv. 19 (1939), various students were misled by a confusion regarding the type of Acrostichum lanuginosum Willd. Quite similarly in Rhodora, xxxv. 193-195 (1933), I showed that students had been taking the wrong plant as the type of Elymus striatus

Willd. Juncus tenuis seems to be another case in which early confusion of material crept in. At any rate, we may now, happily, come out of the misinterpretation which has recently prevailed and again use the name Juncus tenuis as Willdenow described it and as most botanists up to Mackenzie have correctly interpreted it. With this reinstatement of long-established and erroneously abandoned temporary usage the following combination becomes necessary:
*Juncus tenuis Willd., forma discretiflorus (F. J. Hermann), comb. nov. J. macer, forma discretiflorus F. J. Hermann in Rhodora, xl. 82 (1938).
Although Hermann had seen forma discretiflorus only from the southern third of Indiana, it is of wider range, south at least into Tennessee and eastward to New York, Pennsylvania and Virginia. The following Virginian material is much larger than Hermann's largest specimen ("ultimate branches of inflorescence
frequently 7 cm . long"), for its longer branches have a length of 15 cm .:

Sussex County: wooded bottomland, Jones Hole Swamp, west of Coddyshore, Fernald \& Long, no. 10,187.

Although, as noted by me in Journ. Bot. Ixviii. 365 (1930), the Michaux material of his Juncus bicornis, Fl. Bor.-Am. i. 191 (1803) "is without question . . . J. dichotomus", the earlier and often misinterpreted name of Michaux cannot be taken up to replace Elliott's later one. After his not too convincing diagnosis of $J$. bicornis Michaux confused matters by giving as an exact synonym " $J$. tenuis. Rostk. 24. t. l. f. 3 ", the $J$. tenuis of Rostkovius being identical with and based upon $J$. tenuis Willd. (1800). By the present International Rules the name $J$. bicornis is, therefore, illegitimate, for Michaux was giving a new name and not taking up the valid earlier one as he should have done. ${ }^{1}$ J. dichotomus Ell., therefore stands but

[^22]another plant which has been associated with it seems to be specifically distinct from it. It is discussed in the following notes.

Juncus platyphyllus (Wiegand), stat. nov. Plate 880. J. dichotomus Ell., var. platyphyllus Wiegand in Bull. Torr. Bot. Cl. xxx. 448 (1903). J. tenuis Willd., var. platyphyllus (Wiegand) Cory in Rhodora, xxxviii. 405 (1936). See p. 96.
losa (Michx.) Fernald in Rhonora, xvii. 164 (1915). Ptertis nodulosa (Michx.) Nieuwl. in Am. Mid. Nat. iv. 334 (1916). $P$. Struthiopteris, var. pensylvanica las pennsylvanica) (Willd.) Farwell in Rep. Mich. Acad. Sci. xxi. 346 (1920). S. Struthiopteris, var. pensylvanica (Willd.) Farw. in Am. Mid. Nat. xil. 252 (1931).
P. pensylyanica, forma pubescens (Terry), comb, nov. Struthiopteris germanica, f. pubescens Terry in Clute in Fern Bull. xvi. 5 and 47 (1908), originally published by Clute as "Ostrich Fern var. pubescens". Onoclea Struthiopteris, var. pubescens (Terry) Clute, 1. c. (1908). S. pubescens (Terry) Clute in Fern Bull. xvi. 48 (1908). S. pensylvanica, f. pubescens (Terry) Clute, 1. c. (1908). Matteuccia pubescens (Terry) Clute, 1.c. (1908). M. Struthiopteris, f. pubescens and var, pubescens (Terry) Clute, 1. c. (1908). Pteretis nodulosa, f. pubescens (Terry) Fernald in Rhodora, xxxvii. 219 (1935). P. Struthiopteris, var. pensylvanica, subvar. pubescens (Terry) Clute in Am. Fern. Journ. xxxvil. 15 (1937).
P. pensylvanica, forma obtusilobata (Clute), comb. nov. Onoclea Struthiopteris, f. obtusilobata Clute in Fern. Bull. xviii. 111 (1910). Struthiopteris germanica. f. obtusilobata Clute, 1. c. (1910). P. nodulosa, f. obtusilobata (Clute) Fernald in Rhodora, xxxvii. 219 (1935). $P$. Struthiopteris, var. pensylvanica, subvar. obtusilobata (Clute) Farwell in Am. Fern Journ. xxvii. 15 (1937).
P. pensylvanica, forma foliacea (Farw.), comb. nov. P. Struthiopteris, var. pensylvanica, subvar. foliacea Farwell in Am. Fern Journ. xxvii. 15 (1937). P. nodulosa, 1. foliacea (Farw.) Broun, Index N. Am. Ferns, 150 (1938).

Unfortunately the combination Ptertis nodulosa is based upon an illegitimate name. When he published his Onoclea nodulosa Michaux gave what he thought two earlier synonyms for it. Although these do not apply to the plant he described, he nevertheless thought that they did. He should, therefore, have taken up the earlier specific name of the two. Both Swartz (1806) and Schkuhr (1809) repeated the supposed synonyms. Willdenow (1810) described his Struthiopteris pensylvanica from Muhlenberg material and gave no earlier name for it. His name is the first legitimate one for our plant.

Scirpus rubricosus, nom. nov. S. Eriophorum Michx. Fl. Bor.-Am. 1. 33 (1803), as to plant described "spiculis copiosissimis, rufidulis, ovatis, omnibus distincte pedicellatis" and the "Hab. a Virginia ad Georgiam," not as to synonym, Eriophorum cyperinum L., cited.

Michaux well described the tall southeastern species (Florida to Tex., north to southeastern Massachusetts, Long Island, New Jersey, southeastern Pennsylvania, Maryland, West Virginia, Indiana and Illinois) with spikelets drooping on long pedicels and with bractlets, scales, etc., red-ochre in color (whence the new name); and his southern material, preserved at Paris, is unequivocal. He complicated matters, however, by giving the synonym Eriophorum cyperinum L. If, as he thought, his species was the Linnean one he should have used the latter's specific name. S. cyperinus (L.) Kunth, however, is a relatively northern species with the spikelets sessile in glomerules (Newfoundland to Minnesota. south to upland North Carolina and to Oklahoma). When Willdenow described the inclusive S. thyrsiflorus Willd. Enum. Hort. Berol. 78 (1809) he cited as mere synonyms S. Eriophorum Michx. and Eriophorum cyperinum $L$. Here again he neglected to take up the earliest specific name and by the International Rules of 1935 his S. thyrsifiorus is illegitimate.
S. RUBRICOsus, forma praelongus (Fernald), comb. nov. S. Eriophorum, f. praelongus Fernald in Rhodora, xliv. 383 (1942).

Although Wiegand distinguished his var. platyphyllus from $J$. dichotomus merely by its "Leaves expanded and flat, otherwise as in the type", he and those who have seen only that character (less evident in dry foliage), overlooked several important points. $J$. dichotomus is a stiffly erect or ascending plant of the outer coastal strip, forming hard tussocks, with the inner firm sheaths purple-tinged, the outer ones brown. Its leaf-blades are stiff, filiform, or merely very slenderly channeled on the upper side, with short rounded firm and cartilaginous basal auricles (plate 879, fig.4). The lustrous hard perianth equals or but slightly exceeds the strongly lustrous brown obscurely 1-locular capsule (plate 879, fig. 6).

In J. platyphyllus (a hardly descriptive name), on the other hand, the small tufts are relatively soft, although the fresh inner sheaths are purple-tinged; the blades are flat (fig. 2) or, on drying, merely inrolled; the auricles (fig. 2) are truncate or merely round-tipped, of firm-membranaceous texture and drab or fuscous, about as broad as long (these differing from the whitish scarious and friable lance-triangular or -oblong auricle of the green- to drab-sheathed J. tenuis Willd.); and the relatively soft perianth (fig. 3) exceeds the paler-brown partially 3 -locular capsule, in which the partitions extend half-way to the axis. Other characters in the bracteoles, seeds, etc. are good, but less obvious. Whereas J. dichotomus is strictly a coastwise species, J. platyphyllus extends far inland (to central Maine, western New York, the Piedmont of Pennsylvania, etc.). In Virginia it is common on the inner Coastal Plain and at least the outer Piedmont: to westernmost Brunswick Co., near the Mecklenberg line, 120 miles due west of False Cape, on the coast, where $J$. dichotomus prevails.

The collections (many more could have been made) of Juncus platyphyllus are the following from Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,585; damp thicket northeast of Ebony, no. 14,583.

[^23]mont, July 14, 1901, Ezra Brainerd. Figs. 5-7, J. dichotomus Ell. (J. tenuis sensu Steudel, Mackenzie and their followers, not Willd.): fig. 5, summit of sheath and base of leaf, $\times 10$, from Angier, Hartnett Co., South Carolina, Godfrey, no. 4266; Fig. 6, inflorescence, $\times 1$, from no. 4266; Fig. 7, fruit, $\times 6$, from no. 4266.

Plate 880, J. platyphyllus (Wiegand) Fermald: fig. 1, inflorescence, $\times 1$, from near Burgess Station, Dinwiddie Co., Virginia, Fernald \& Long, no. 10,185 ; fig. 2 , summit of sheath and base of leaf, $\times 10$, from no. 10,185 ; Fig. 3 , capsules, $\times 6$, from no. 10,185 .

A second Station for Juncus Griscomi.-Two species of Juncus § Genuini are among the rarest plants of the eastern United States. The famous J. gymnocarpus Coville has a few remotestations, the northernmost in a sphagnous swamp on top of Broad Mountain in Schuylkill Co., Pennsylvania, where it was discovered by the late Charles E. Smith, the species appropriately called $J$. Smithii Engelm., but, on account of the earlier use of that name, changed to J.gymnocarpus. The other is J. Griscomi Fernald in Rhodora, xxxviii. 401, pl. 445, figs. 1-4 (1936), suggesting a lax-flowered extreme of $J$. effusus L., but with the flowers mostly on filiform pedicels up to 1 cm . long, the capsules rounded to the summit and definitely beaked (instead of emarginate and beakless). This remarkable plant was discovered by Griscom and me by lucky chance. Botanizing on a terrifically hot June day in 1935, on Little Neck in Princess Anne County, Virginia, we were panting with thirst when we saw children emerge from the rich woods with pails of water. Quick to take the hint, we followed the foot-path and came to a spring-rill and mossy swale in the deciduous woods, the swale solidly occupied by the strange new Juncus. Search by my companions and me during eight seasons has failed to reveal another station for it.

At the meeting of the New England Botanical Club on the evening of June 2nd last, I showed these two famously rare species and urged the members to watch for them in New England or elsewhere. I little expected immediate results; but promptly on the morning of June 3, looking through the miscellaneous unidentified Junci at the Gray Herbarium, I was surprised and delighted to find a beautifully characteristic specimen of $J$. Griscomi, sent in unidentified and collected on June 20, 1922, by L. F. \& Fannie R. Randolph (no. 403) in "moist rich soil, Powhatan Swamp $1 / 2$ mile southwest of Five Forks, James City County", Virginia. As usual the Randolphs saw and prepared beautiful material of a great rarity.


Photo. B. G. Schubert
Polygonum hydropiperoides, var. euronotorum, all figs. from type: fig. 1, portion of plant, $\times 3 / 5$; fig. 2, summit of ochrea, $\times 4$; FIG. 3 , panicle, $\times 1$; fig. 4, portion of panicle, showing ochreolae, $\times 10$


Photo. I3. G. Schubert.
Polygonum hydropiperoides (typical): fig. 4 , ochrea, $\times 4$; fig. 5 , panicle, $\times 1$; FIG. 6, portion of panicle, to show ochreolae, $\times 10$

Var, Bushandia, all figs. from type: figis. 1 and 2 , summit of plant, $\times 1$; FIf. 3 , portion of panicle, to show ochreolae, $\times 10$
J. repens Michx. Local range extended inland to western Greensville Co.: open muddy border of Fontaine Creek, near mouth of Quarrel's Creek, no. 14,696. See p. 101.
J. Longir Fernald. Local range extended inland from Coastal Plain to Brunswick Co.: damp openings in woods, scarce, Moseley flat pineland, near Triplett, no. 14,586, there associated with other Coastal Plain types, such as Hypericum setosum L. and Cynoctonum sessilifolium (see Rhodora, xlv. 374, 376, 453 and 457), as well as such essentially inland plants as Fimbristylis Drummondii (p. 95), Carex hirsutella (p. 96) and Psoralea psoralioides, var. eglandulosa (p. 95).
J. scirpoides Lam. Local range extended back into the Piedmont in Brunswick Co.: with the last, no. 14,587. See p. 96.

Some Varieties and Forms of Juncus canadensis (Plates 881 and 882). -Even after the removal from the complex Juncus canadensis J. Gay, as conceived by Engelmann, of J. brachycephalus (Engelm.) Buchenau, J. brevicaudatus (Engelm.) Fernald and J. subcaudatus (Engelm.) Coville \& Blake, the remaining stiffly ascending $J$. canadensis is still a complex and highly variable plant. Generally, throughout its range, its capsule barely to but slightly exceeds the perianth and is gradually rounded at summit to a short and rather abrupt beak, but from southeastern Virginia to Georgia there occurs a very similar plant (plate 881, figs. 1-3), always with a large cyme (1-3.3 dm . long and $5-16 \mathrm{~cm}$. broad), closely resembling large plants of typical $J$. canadensis ${ }^{1}$, but with prolonged capsule tapering gradually to summit, much as in the northern $J$. brevicaudatus and the extremely southern $J$. trigonocarpus. This constitutes a well defined geographic variety which I am calling
*Juncus canadensis J. Gay, var. euroauster, var. nov. (тав. 881, fig. 1-3), planta robusta 0.9-1.2 m. alta, culmo ad basin 4-7 mm. diametro; cyma $1-3.3 \mathrm{dm}$. longa $5-16 \mathrm{~cm}$. alta; capitulis hemisphericis vel subglobosis multifloris distinctis vel paullo aggregatis; perianthiis $3-4 \mathrm{~mm}$. longis; capsula acuta sensim attenuata valde exserta.-Southeastern Virginia to Georgia. Virginia: pool in sandy barrens, Cape Henry, Sept. 23, 1933, Fernald \& Griscom, no. 2811; sphagnous springy swales bordering Whiteoak Swamp, west of Elko Station, Henrico Co., Sept. 21, 1938, Fernald \& Long, no. 9294; moist argillaceous pineland about 2 miles east of Stony Creek, Oct. 11 and 12, 1933, Fernald \& Long, no. 9553 ; wet sandy and peaty shore, near entrance to Portsmouth Ditch, Lake Drummond, Great Dismal Swamp,

[^24]west of Wallaceton, Norfolk Co., Sept. 6, 1941, Fernald \& Long, no. 13,588 (type.in Herb. Gray., isotype in Herb. Phil. Acad.); fresh reed-marsh and swale along Northwest River, near Northwest, Norfolk Co., Oct. 11, 1941, Fernald \& Long, no. 13,913; sphagnous bog about 1 mile northwest of Dahlia, Greensville Co., Sept. 18, 1938, Fernald \& Long, no. 9293. North Carolina: drainage-ditch near Sea Level, Cartaret Co., Sept. 1, 1938, Godfrey, no. 6505. South Carolina: without stated locality, M. A. Curtis; drainage-ditch, 15 miles northwest of Georgetown, Georgetown Co., Aug. 25, 1939, Godfrey \& Tryon, no. 1693. Georgia: swamp (at sea-level) Satella River, near Woodbine, Camden Co., Aug. 23, 1902, Harper, no. 1564.

In its slender, long-exserted and tapering capsule Juncus canadensis, var. euroauster suggests J. trigonocarpus Steud., but in all other characters, including the very large cyme, it belongs with J. canadensis.

Typically and through most of its range Juncus canadensis has a relatively short and apically rounded and abruptly shortbeaked capsule, and the perianth is only 2.5 -rarely 3.5 mm . long, but in the plant of Newfoundland, the northern regions of Quebec and locally southward into Nova Scotia and eastern Maine, rarely on Cape Cod, var. sparsiflorus Fernald (plate 881, figs. 4 and 5) in Rhodors, xxiii. 241 (1921), the perianth is 3.5-4 mm . long, much as in the extreme southern var. euroauster. The remaining large series which passes as $J$. canadensis presents three rather striking forms-forms because, although sometimes more abundant in definite ecological conditions, they occur wholly within the broad range of typical J. canadensis. In order to show their distinctive characteristics I am indicating the varieties and forms in a key.
a. Capsule plump, gradually rounded at summit to the rather abrupt short beak. ...b.
b. Perianth 2.5-3.3 (rarely -3.5 ) mm. long; cyme (except in forma conglobatus), with spreading-ascending branches (rays) and branchlets, 0.4-3 dm. high ....c.
c. Heads chiefly or wholly scattered in anthelate fashion along the branches of the open cyme; cyme $0.4-3 \mathrm{dm}$. high, with some elongate branches. Heads densely 8 -20-flowered, hemispherical to subglobose. . ................................. canadensis, Heads turbinate to subhemispherical, 2-7-flowered Var. typicus, forma apertus.
c. Heads all or many densely crowded into irregular glomerules or masses, globose, many-flowered, the glomerules sessile or on short rays up to $1-3 \mathrm{~cm}$. long.

Var. typicus, forma conglobatus.
b. Perianth 3.5-4 mm. long; cyme with stiffly erect branches and branchlets, 0.3-1.5 (-2) dm. high Var. sparsiflorus.
a. Capsule slender, gradually attenuate to acute tip, longexserted; cyme open, $1-3.3 \mathrm{dm}$. high; glomerules hemispherical to subglobose, many-flowered; perianth $3-4 \mathrm{~mm}$.
long
Var. euroauster.
J. canadensis J. Gay, var. typicus. Plate 882, figs. 1-3. J. canadensis J. Gay in Laharpe, Mon. Junc. 134 (1827), in large part ( $\alpha$ ) ; Engelm. Trans. St. Louis Acad. ii. 436 (1866-var. longicaudatus) and 474 (1868-var. longecaudatus); Coville in Britton \& Brown, Ill. Fl. i. 394, fig. 955 (1896); Fernald in Rhodora vi. 35 (1904) and xxxii. 83 et seq. (1930).-Widely distributed from southern Quebec and Ontario to Georgia, Tennessee and Louisiana.
*Forma apertus, f. nov. (тab. 882, fig. 4-6), cyma $1-3 \mathrm{dm}$. longa laxe aperta, capitulis remotis turbinatis vel subhemisphaericis 2-7-floris.-Scattered in the range of var. typicus. Nova Scotia: gravelly margin of brook, Sydney, Aug. 18, 1902, Fernald; roadside-pool, Yarmouth, June 22-29, 1901, Howe \& Lang, no. 131. Maine: Labrador Pond, Sumner, Aug. 9, 1890, J. C. Parlin. Massachusetts: sandy and cobbly beach of Seth's Pond, West Tisbury, Aug. 16, 1928, Fernald \& Fogg, no. 865. Rhode Island: edge of pond-hole, northwest shore of Block Island, Aug. 11, 1919, C. B. Graves. Connecticut: ponds, Wethersfield, Chas. Wright. New York: woody swale east of north end of Duck Lake, Conquest, Aug. 12, 1916, F. P. Metcalf, no. 6164. New Jersey: border of white-cedar swamp along Scotland Run, Malaga, Gloucester Co., Nov. 1, 1936, Bayard Long, no. 49,279 (tYPe in Herb. Gray.). Virginia: quaking margin of pond-hole about 2 miles east of Bowling Green, Oct. 15, 1941, Fernald \& Long, no. 13,914; sandy swampy ground, Chisel's Run, west of Williamsburg, July 16, 1921, Grimes, no. 4040; sphagnous border of shallow pond-hole $1 / 2$ mile east of Centerville, James City Co., July 26, 1941, Fernald \& Long, no. 13,296. South Carolina: creek, 8 miles southeast of Columbia, Lexington Co., Aug. 8, 1939, Godfrey \& Tryon, no. 1346. Georgia: bushy place, south of Kennesaw Mt., Cobb Co., July 12, 1900, Harper, no. 995.
*Forma conglobatus, f. nov. (Tab. 882, fig. 7), culmo stricto $2-10 \mathrm{dm}$. alto; cyma $1-12 \mathrm{~cm}$. longa; capitulis globosis multifloris in glomerulis subglobosis vel lobatis plerumque aggregatis, ramibus nullis vel ad $1-4 \mathrm{~cm}$. longis.-Through much of the area of var. typicus, especially concentrated near the Atlantic coast from southern Maine to Maryland. The following are selected from a large representation. Maine: brackish marsh, Winnegance Creek, Phippsburg, Aug. 23, 1909, Fernald, no. 1559. New Hampshire: marsh, Rye Beach, Aug. 18, 1886, W. Deane. Massachusetts: Plum Island, Essex Co., 1896, A. A. Eaton;

Kent's Island, Byfield, Aug. 18, 1904, J. H. Sears; Dorchester, Aug. 28, 1853, Wm. Boott; Sept. 3, 1882, C. W. Swan; damp open sandy soil near Kelly's Pond, West Dennis, Dennis, Aug. 10, 1918, Fernald \& Long, no. 16,544; cranberry bog near beach, Hyannis, Oct. 5, 1911, C. A. Weatherby, no. 2833 (TYPe in Herb. Gray, isotype in Herb. New Engl. Bot. Cl.). Rhode Island: Cat Swamp, Providence, Sept. 4, 1892, J. F. Collins; Middletown, Sept. 13, 1908, E.F. Williams; dryish fresh to slightly brackish borders of marshes east of Trim's Pond and Great Salt Pond, Block Island, Aug. 20, 1913, Fernald \& Long, no. 9206; borders of brackish pools and salt marshes, vicinity of Watch Hill Pond, Westerly, Aug. 31, 1919, Weatherby \& Collins. Connecticut: wet meadow, East Windsor, Aug. 14, 1906, Bissell; moist field, Waterbury, Aug. 21, 1911, Blewitt, no. 510; fresh-water swamp near Saybrook Point, Saybrook, Sept. 7, 1908, Blewitt; edge of salt meadows, Fairfield, Aug. 20, 1909, Eames. New York: edge of salt marsh, Oceanside, Nassau Co., Sept. 20, 1917, House, no. 18; Westbury Prairie, Butler, Wayne Co., Oct. 5, 1916, Metcalf \& Wright. New Jersey: Hackensack Marshes, Sept., 1848, J. Carey (the specimen given by Engelmann an appropriate but unpublished formal name but one preoccupied in the specific category). Delaware: moist soil, Rehoboth, Sept. 6, 1908, Churchill: wet hollows in sand dunes, south of Bethany Beach and on Fenwick Island, Sussex Co., Aug. 28, 1936, Fogg, nos. 11,225 and 11,301 . Maryland: wet sand, border of brackish marsh, north of Ocean City, Worcester Co., Sept. 12, 1936, Fogg, no. 11,429. Virginia: "Ram-hole Swamp," Seward Forest, Brunswick Co., Dec. 1, 1944, Lewis. North Carolina: marsh near Leechville, Hyde Co., Oct. 13, 1938, Godfrey \& White, no. 6852. South Carolina: wet ground near a spring, Aiken, Oct. 8, 1866, H. W. Ravenel in Engelm. Herb. Junc. Bor.-Am., no. 86. Georgia: shallow grassy pond, alt. 250 ft , near Adams Park, Twiggs Co., Sept. 7, 1903, Harper, no. 1972. Michigan: wet ground, Hersen Island, mouth of St. Clair R., Sept. 17, 1908, C. K. Dodge, no. 39; drying mucky shore of Lake Sixteen, Black Lake State Forest, Presque Isle Co., Aug. 27, 1935, F. J. Hermann, no. 7010 (transitional). Wisconsin: St. Croix Co., 1861, T. J. Hale. Illinois: Englewood, South Chicago, Sept. 2, 1893, Churchill. Minnesota: Minneapolis 1861, T. J. Hale; moist sandy soil, shores of Moore Lake, Anaka Co., Oct. 3, 1927, Rosendahl, no. 5472, Sept. 6, 1936, Rosendahl \& Rydberg, no. 5124.

From its strong tendency along the Atlantic coast to abound at the upper borders of salt marshes forma conglobatus might be thought a good variety (and perhaps it is), but it also occurs in acid peats and sands and extends as far west as typical J. canadensis. Many specimens, difficult to place, occur, these making
every conceivable transition to the latter plant, with more open cyme, elongate rays and mostly scattered or anthelate heads. As noted in one case, Engelmann gave an appropriate but preoccupied formal name to this plant.

Var. sparsiflorus Fernald in Rhodora, xxxiii. 241 (1921). Plate 881, figs. 4 and 5.-Newfoundland to the Laurentide Mts. of Quebec, south to Nova Scotia and eastern Maine, rarely on Cape Cod, Mass.

Var. euroauster Fernald, supra. Plate 881, figs. 1-3.Southeastern Virginia to Georgia.

Plate 881, figs. 1-3, Juncus canadensis J. Gay, var. euroauster Fernald: fig. 1, portion of TYPE, $\times 1 / 2$; FIG. 2 , portion of glomerule, $\times 10$, from type; fig. 3 , seeds, $\times 10$, from type. Figs. 4 and 5, var. sparsiflorus Fernald: FIG. 4, inflorescence, $\times 1$, from Quarry, Newfoundland, Fernald \& Wiegand, no. 5129; Fig. 5 , glomerule, $\times 10$, from no. 5129 .

Plate 882, figs. 1-3, J. canadensis, var. typicus: fig. 1, inflorescence, $\times 1$, from Iona Island, Hudson River, Rockland Co., New York, Muenscher \& Curtis, no. 5833; FIG. 2, flower, $\times 10$, from no. 5833 ; Fig. 3 , seeds, $\times 10$, from no. 5833. Figs. 4-6, forma apertus Fernald, all figs. from type: fig. 4, inflorescence, $\times 1 / 2$; fig. 5 , glomerule, $\times 10$; fig. 6, seeds, $\times 10$. Fig. 7, forma conglobatus Fernald: two inflorescences, $\times 1$, from type.
*Smilax Bona-nox L., var. exauriculata Fernald in Rhodora, xlvi. 36 and 37, t. 811. fig. 3 (1944). Type from Norfolk, Reed?

Dioscorea Batatas Dene. To the relatively few stations recorded add one in Brunswick Co.: climbing over bushes, dry thicket near old Taylor Place, Seward Forest, near Triplett, no. 14,593.

Cypripedium Calceolus L., var. pubescens (Willd.) Correll. To the few recorded stations in the southeastern counties add one in Brunswick Co.: rich woods, "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,594. See p. 97.

Quercus Phellos L., forma intonsa Fernald in Rhodora, xliv. 392 (1942). To the two recorded Virginia stations add one in Brunswick Co.: damp thicket northeast of Ebony, no. 14,598 . See p. 96.

Castanea neglecta Dode. To the few recorded stations add two in Brunswick Co.: rich woods "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,597; mixed woods, Seward Forest, southeast of Ante, no. 14,698.

Here, as in the more eastern counties, Castanea neglecta is a straggling or loosely branched shrub of rich woodland. We have never found it fruiting, nor have we found it with C. pumila nor in habitats where $C$. dentata might formerly have grown. See p. 97.

The Indigenous Variations of Ulmus americana.-Ulmus americana, the most wide-spread of the American species and the tree probably more generally recognized than any other by the layman in the East, is far from being a definite unit. As one collects material in foliage he promptly becomes aware of four different forms. These first came to my attention when, in late May, 1904, I visited my parents in central Maine, just as the fruit of the elms was dropping and the foliage well expanding. I then made collections to display the forms and have subsequently waited in vain for some of the specialists on trees to clarify the situation. In brief, Ulmus americana may have the leaves smooth or essentially smooth to touch on the upper surface, or the latter may be almost as harshly scabrous as in the Slippery Elm, U. rubra Muhl. (U. fulva Michx.)-see last notes in this paper. In each series the young branchlets may be pubescent or quite glabrous. In the flowering condition, obviously, these strongly marked extremes can hardly be recognized; in the foliage-material they are striking.

As early as 1789 Aiton, Hort. Kew. i. 319, 320 (1789) recognized varieties of Ulmus americana with scabrous or with smoothish leaves and Spach (1841) and Walpers (1852-53) took these up or augmented them; but so far as I can find, the actual type of Linnaeus has not been closely examined, to determine to which of the four variations it belongs. The photograph of it before me is wholly inconclusive. Nor can I get what I consider true geographic varieties in the species. Each of the variations appears throughout most or all of the broad range of the species, trees with scabrous or smooth leaves and with pubescent or glabrous new branchlets occurring, for example, in New England, while two or three of these trends are represented in the Gray Herbarium from Virginia, Ontario and Oklahoma. I am, therefore, treating them as forms, with the clear understanding that when the actual types of Linnaeus, Aiton and others can be studied some shifting in the application of the names may be required. It is better to have names by which the forms can be designated than to call them all one, without differentiation. As I see these forms they are as follows:

| Leaves smooth or smoothish ab |  |
| :---: | :---: |
| Young branchlets pubescent | Forma pendula. |
| Young branchlets glabrous. | Forma laevior. |
| Leaves harshly scabrous above |  |
| Young branchlets pubescent | a. |
| Young branchlets glabrous | ma intercedens. |

U. americana L., forma pendula (Ait.), stat. nov. U. americana $\gamma$. pendula Ait. Hort. Kew. i. 320 (1789); Willd. Sp. Pl. $1^{2}$. 1326 (1798); Spach in Am. Sci. Nat. Bot. sér. 2, xv. 364 (1841). U. americana, $\alpha$. glabra Walp. Annal. iii. 424 (1852-53), illegitimate substitute for var. pendula Spach.

The following Virginian specimen is clearly referable here. Henrico Co.: south shore of James R., Richmond, April 20, 1915, J. R. Churchill.
*Forma laevior, f. nov. foliis supra laevibus vel sublaevibus; ramulis novellis glabris.-Type: river-bank, Orono, Maine, May 30, 1904, Fernald (in Herb. Gray.; isotype in Herb. New Engl. Bot. Club).

The following Virginian specimens are before me. Princess Anne Co.: Oceana, Fernald \& Long, nos. 3911 and 3912. Isle of Wight Co.: below Rushmere, F. \&. L. no. 13,325.
*Forma alba (Ait.), stat. nov. U. americana, $\beta$. alba Ait. l. c. (1789); Willd. l. c. (1798). U. americana, $\beta$. scabra Spach, 1. c. (1841), illegitimate substitute for var. alba Ait.

The following Virginian specimen belongs here. New Kent Co.: Pamunkey R., southeast of White Horse, F.\& L., no. 11,560.
*Forma intercedens, f. nov., foliis supra scaberrimis; ramulis novellis glabris. Type: Franconia, New Hampshire, Sept. 15, 1910, G. G. Kennedy (Herb. Gray.).

The following Virginian specimen is characteristic. Fauquier Co.: Bull Run Mts., Allard, no. 1037.

Asarum Lewisii Fernald in Rhodora, xlv. 398, plates 774 and 775 (1943). Range extended slightly to the northeast in Brunswick Co.: very abundant, forming extensive carpets in pine (Pinus Taeda) or mixed woods, even far removed from streams, Seward Forest, southeast of Ante, no. 14,699. Leaves varying from short-reniform (nearly twice as broad as long) through cordate-rotund or cordate-ovate outlines to subhastate or narrowly ovate. See p. 102.

So-called Rumex Britannica not a Virginian. (Plate 883).-In his Materia Medica, 59 (1749) Linnaeus, describing the Water Dock of northern Europe, Rumex Hydrolapathum Huds., stated that its root was known in pharmacy as "HERBAE BRI'TANNICAE Radix" and that it occurred in Europe: *
177. RUMEX floribus hermaphroditis, valvulis integerrimis nudis, foliis cordato-lanceolatis. Fl. Suec. 292. $\beta$.

Lapathum aquaticum, folio cubitali. Boerh. pin. 116.
Loc: Europae nostrae paludes. Perennis, vulgaris.
Pharm: HERBAE BRITANNICAE Radix.-L. Mat. Med. 59 (1749).
Three years later, in Sp. Pl. 334 (1753) there appeared, immediately following Rumex verticillatus from Virginia, another reputed Virginian:

Britannica. 5. RUMEX floribus hermaphroditis: valvulis integerrimis: omnibus graniferis, foliis lanceolatis: vaginis obsoletis. Mat. med. 17.
Rumex aquatica, calycis foliolis omnibus aequalibus, radice exterius nigra vel flava. Cold. noveb. 83.
Lapathum foliis longis latis vix acuminatis costis caulibusque rubentibus, radice intus crocea. Gron. virg. 39.
Habitat in Virginia. 24.
In praecedenti stipula cylindrica membranacea fere ad dimidium vaginans internodium, in hac vero non item, sed ut in Europaeis. Pedicelli in priori crassiores in hac capillares; prior magis spicata; hac magis paniculata. Plantam Gron. in Fl. virginica habui a Cl. Authore, quae non rubra erat caule aut costis.

The first reference, to "Mat. med. 17 ", was apparently meant for his no. 177, with the description somewhat altered but belonging to the European plant. The Colden plant, Rumex aquatica, etc. from New York was probably the American species which now passes as $R$. Britannica but the Clayton (Gronovian) material from Virginia was "something else again". Asa Gray, studying the Gronovian material reported as follows:
*Rumex Britannica L. I think I have been able to determine the Rumex to which Linnaeus gave this unfortunate name. The source of the name is to be found by following up his reference to "Mat. Med. 17," i. e. Materia Medica, paragraph 177 (not 17), where, under reference to Fl. Suec. 292, "Europae nostrae paludes," is added "Pharm. Herbae Britannicae radix." The North American plant to which he applied this name was one in his herbarium sent to him by Gronovius from Clayton's herbarium of the Flora Virginica. The fruit of it is not well developed, but the slender pedicels and the foliage show that it is the $R$. orbiculatus of the later edition of my Manual. But the specimen retained in Clayton's herbarium to represent the species, and the only Rumex in that herbarium, is quite different, has some long-awned teeth to the valves, and is, I believe, $R$. obtusifolius. The difference in the plants accounts for the remark of Linnaeus: "Plantam Gron. in Fl. Virginica habui a Cl. Authore, quae non rubra erat caule aut costis." For Clayton's character, as printed by Gronovius in the first edition of


I'hoto. B. G. Schubert.
Polygonum hydropiperoides, var. breviciliatum, all figs. from type: FIG. 1, flowering tip, $\times 1 ;$ fig. 2 , ochrea, $\times 4 ;$ fig. 3 , portion of panicle, to show ochreolae and distant flowers, $\times 10$


I'hoto. B. G. Schubert.
Amaranthus graecizans: fig. 1, type, $\times 2 / 5$, from photograph from Dr. John Ramshottom; FIG. 2, text from bottom of sheet; FIG. 3 , portion of type, $\times 1$, of A. blitoides

Flora Virginica, was:-"Lapathum foliis longis latis vix acuminatis, costis caulibusque rubentibus, radice intus crocea." That probably relates to the plant retained by Gronovius. And the specimen sent was perhaps Clayton's other species, viz.,-"Lapathum aquaticum foliis longis," \&c., which Linnaeus referred to $R$. verticillatus. As to the $R$. Britannica of Michaux, Pursh, and even Meisner, it is uncertain whether they had in view the plant called by me in the Manual by that name, but named by Professor Wood R. altissimus, or that which Wood and probably Pursh took for $R$. Britannica, and I named $R$. orbiculatus. The latter proves to be the Linnaean species, and must claim the name, unless that be regarded as a nomen falsum, in which case we must take up that of $R$. Claytoni[i] Campdera, who may be presumed to have meant the Linnaean plant, although there is nothing in his character to certify it. A considerable difficulty in identifying the Linnaean species by the description grew out of the comparison in the species Plantarum with $R$. verticillatus, with which when in fruit it has little in common, except the slender pedicels. It should also be noticed that there is a transposition in the naming of the specimens in the Linnaean Herbarium, which, however, has been corrected by Smith.Gray, Proc. Am. Acad. viii. 399 (1872).

Gray referred to the fragment sent by Gronovius to Linnaeus as having " the fruit . . . not well developed, but the slender pedicels and the foliage show that it is the $R$. orbiculatus of the later edition of my Manual", while the specimen in the Clayton (Gronovian) collection seemed to him $K$. obtusifolius. Of the latter a photograph (our plate 883) before me is convincing; it is very characteristic $R$. obtusifolius, adventive from Europe. As to the bit preserved in the Linnean Herbarium Reckinger wrote:

The name $R$. Britannica is used here in the sense of Trelease and subsequent authors. The identity of this plant with Linné's R. Britannica is not clear to me. Earlier authors seem to have confused it with $R$. altissimus Wood. Perhaps it would be more cautious to use the name R. orbicularis [orbiculatus] Gray.

Mr. H. W. Pugsley of London kindly undertook to examine for me the specimen of $R$. Britannica in the Linné Herbarium. He wrote that the specimen deposited there under the name $R$. Britannica is not absolutely a type, because there is no evidence of the date at which it was inserted in the herbarium. It consists of a small branch with narrow leaves, without axillary branches. The fruiting pedicels are $7-15 \mathrm{~mm}$. long and the valves triangular, about 5 mm . long and broad. These characters for the most part seem not to agree with $R$. Britannica of authors.-Reckinger, North American Species of Rumex, Field Mus. Nat. Hist. Bot. Ser. xvii. no. 1. 126 (1937).

It is not without significance that we do not know the subaquatic plant which regularly passes as Rumex Britannica so far
south as Virginia. The southernmost material in the Gray Herbarium from the Atlantic States is from northern New Jersey and northeastern Pennsylvania, although Mr. Long informs me that it reaches south, rarely, to southern New Jersey and southeastern Pennsylvania; Trelease said "south to New Jersey" and Reckinger cites nothing from south of northern New Jersey.

Since Rumex Britannica started out as a European species but, in spite of references to the latter in 1753, when the binomial was published, had its "Habitat in Virginia", and since the only fragment in the Linnean Herbarium is something else, while the Virginian specimen in Clayton's herbarium is the adventive $R$. obtusifolius L., it is difficult to see why R. Britannica is not an absolute nomen confusum. I must view it so and am taking up for our indigenous representative of the European R. Hydrolapathum the unequivocal R. orbiculatus Gray, Man. ed. 5: 420 (1867).

When he published the name Rumex orbiculatus for the northern subaquatic American species with orbicular or round-ovate to subcordate fruiting valves all grain-bearing, Gray took up for the mixed Virginian material the ill-begotten name R. Britannica and placed in its synonymy $R$. Claytonii Campdera, "which name is to be adopted if we reject that inconsiderately assigned by Linnaeus, who transferred the obscure Herba Britannica of the old writers to a Virginian species". Campdera, however, in publishing R. Claytonii Mon. Rumex, 99 (1819) with "Hab. ad rivulos Virginiae et Carolinae", stated off with the Gronovian description of the red-veined $R$. obtusifolius L., which Gronovius had from Clayton, then the Colden reference to the aquatic plant of New York, then the description of the European plant in Materia Medica, etc., and described the valves as scarcely grainbearing (sepalis interioribus vix granulatis). Since our northern subaquatic species is very definite, in having the three valves all grain-bearing, Campdera's $R$. Claytonii was almost as confused a concept as was the original $R$. Britannica; and any one who is familiar with the "rivulos Virginiae et Carolinae" knows that the abundant plant at their margins is $R$. verticillatus L. Specimens of $R$. altissimus Wood, with which Gray in 1867 identified R. Claytonii, could be found by Trelease southward in the East only to the District of Columbia; while Reckinger saw Virginian
material only from the Potomac near Washington and none from farther south in Virginia or from the Carolinas. Within the area known to Clayton the only material of $R$. altissimus we know is a small patch recently and casually introduced into the yard of the Norfolk and Western Railroad at Petersburg. The Norfolk and Western did not exist in Clayton's time. R. Claytonii, then, is a hopelessly confused concept, the plant "ad rivulos Virginiae et Carolinae" being the earlier published $R$. verticillatus L.!

Four sheets in the Gray Herbarium were marked by Gray Rumex orbiculatus "Man. ed. 3", although actually in ed. 5. In ed. 3 he merely suggested that our plant, which he then called R. Hydrolapathum, var. americanus, was probably a distinct species. As type of $R$. orbiculatus I am designating a sheet from New Haven, Connecticut, coll. D. C. Eaton.
*Polygonum pensylvanicum L., forma albinum, f. nov., calycis albidis.-Wooded bottomland of Meherrin River at Westward Bridge, Brunswick Co., Virginia, Sept. 16, 1944, Fernald (with J. B. Lewis), no. 14,702 (type in Herb. Gray.). An albino of typical $P$. pensylvanicum (with glandular peduncles). See p. 100.
*P. minus Huds., var. subcontinuum (Meisn.) Fernald in Rhodora, xix. 134 (1917). Greensville Co.: roadside, Emporia, no. 14,600. Not previously recorded, apparently, from south of Pennsylvania.
*P. hydropiperoides Michx., var. euronotorum, var. nov. (тав. 884), foliis anguste linearibus vel lanceolato-linearibus plerumque $6-12 \mathrm{~cm}$. longis $4-14 \mathrm{~mm}$. latis longe attenuatis supra glabrescentibus vel sparsissime minuteque strigillosis subtus minute puberulis marginibus revolutis; ochreis strigosis ciliis vaginas subaequantibus; paniculis densis $5-8 \mathrm{~mm}$. crassis; ochreolis arctis supra turbinatis inferioribus ciliis $3-5 \mathrm{~mm}$. longis, mediis ciliis $1.5-2 \mathrm{~mm}$. longis; pedicellis vix exsertis; calyce fructifero anguste rhomboideo $3-3.5 \mathrm{~mm}$. longo achenio trigono arcte adpresso.-Southeastern Virginia and southeastern North Carolina. Virginia: Western Branch, Norfolk Co., August, 1840, Rugel, no. 113; moist sandy and peaty shore of Whitefield's Millpond, southwest of Corinth, Southampton Co., Sept. 18, 1944, Fernald, no. 14,701 (тype in Herb. Gray.; isotype in Herb. Phil. Acad.). North Carolina: along shore of lake at Lakeview, Moore Co., July 18, 1938, Godfrey, no. 5112; Greenfield Lake, Wilmington, New Hanover Co., June 29, 1938, Godfrey \& Wells, no. 4808 (in bud); drainage-ditch at Carolina Beach, New Hanover Co., July 18, 1938, Godfrey, no. 4656. See p. 105.

Var. euronotorum (of southeast winds) is one of the very narrow-leaved extremes of Polygonum hydropiperoides. In foliage and in its dense panicle it simulates $P$. opelousanum Riddell, but its deep pink flowers with relatively slender calyces $3-3.5 \mathrm{~mm}$. long and completely investing the achene, place it clearly in the former species, the usually greener and plumper calyx of $P$. opelousanum being only $1.5-2 \mathrm{~mm}$. long and shorter than the achene.
$P$. hydropiperoides, var. euronotorum has the long cilia of the ochreolae (fig. 4) as in var. Bushianum Stanford in Rhodora, xxviii. 27 (1926) but that plant (plate 885, figs. 1-3) of Oklahoma, Kansas and possibly Missouri has broadly lanceolate leaves and the panicles (figs. 2 and 3) loose and open with very long-exserted pedicels. Occasionally typical $P$. hydropiperoides (plate 885, figs. 4-6) has as narrow leaves, but its panicles are more slender and the cilia of the ochreae $2-4 \mathrm{~mm}$. long (fig. 4), those of the ochreolae $0.5-1 \mathrm{~mm}$. long (fig. 6), the uninjured ochreae of var. euronotorum having cilia $5-7 \mathrm{~mm}$. long, those of the ochreolae $1.5-2 \mathrm{~mm}$. long. The local var. breviciliatum Fernald in Rhodora, xlii. 448 (1940), our plate 886, as yet known only from Dinwiddie Co., Virginia, has lanceolate leaves $1.5-3.2 \mathrm{~mm}$. broad, the cilia of the ochreae only $0.8-1.2 \mathrm{~mm}$. long (fig. 2), those of the ochreolae (fig. 3) wanting or at most 0.4 mm . long, the panicle (figs. 1 and 3) slender and open, with long-exserted pedicels.

In its apparent concentration on the coastal plain of southeastern Virginia and in the region of Wilmington and adjacent southeastern North Carolina var. euronotorum joins a considerable group of plants of similarly bicentric ranges.

Plate 884, Polygonum hydropiperoides Michx., var. euronotordm Fernald, all figs. from type: fig. 1, portion of plant, $\times 3 / 5$; fig. 2, summit of ochrea, $\times 4$; FIG. 3, panicle, $\times 1$; FIG. 4, portion of panicle, to show ochreolae, $\times 10$.

Plate 885, figs. 1-3, P. hydropiperoides, var. Bushiandm Stanford, all figs. from the type, Bush, no. 509 from Sapulpa, Oklahoma: Figs. 1 and 2, summit of plant, $\times 1$; FIG. 3 , portion of panicle, to show ochreolae, $\times 10$. Figs. 4-6, typical P. hydropiperoides: fig. 4, ochrea, $\times 4$, from northwest of Raynor, Isle of Wight Co., Virginia, Fernald \& Long, no. 13,330; fig. 5, panicle $\times 1$, from no. 13,330 ; FIG. 6 , portion of panicle, to show ochreolae, $\times$ 10 , from no. 13,330 .

Plate 886, P. hydropiperoides, var. breviciliatum Fernald, all figs. from type, south of Burgess Station, Dinwiddie Co., Virginia, Fernald \& Long, no. 8698: FIG. 1, flowering tip, $\times 1$; FIG. 2, ochrea, $\times 4$; FIG. 3, portion of panicle, showing ochreolae and distant flowers, $\times 10$.

Amaranthus graecizans L. Sp. Pl. 990 (1753). A. blitoides S. Wats. in Proc. Am. Acad. vii. 273 (1877). Plate 887.

This is a disconcerting but apparently necessary change, for the name A maranthus graecizans for the erect or bushy-branched A. albus L. Syst. ed. 10: 1268 (1759), the plant with elongate pungent bracts, has been erroneously used for the latter ever since Uline and Bray took it up in Bot. Gaz. xix. 316 (1894). Unfortunately they did not see even a photograph of the Linnean A. graecizans and, consequently, did not appreciate the significance of Linnaeus's contrast between the two when, in 1759 , he published the second species of the pair as $A$. albus, a species with stiffish ascending whitish stems and prolonged subulate bracts, as contrasted with the prostrate purplish and slightly succulent stems and blunter and shorter bracts of A. graecizans L. (A. blitoides).

A maranthus graecizans was known to Linnaeus only from the Clayton material from Virginia:
graecizans. 5. AMARANTHUS floribus triandris conglomeratis axillaribus, foliis lanceolatis obtusis.
Amaranthus floribus lateralibus congestis, foliis lanceolatis obtusis. Gron. virg. 116.
Habitat in Virginia. ©
A photograph, $\times 2 / 5$, of the Clayton plant, received from the British Museum of Natural History through Dr. John Ramsbottom, is shown as Plate 887, fig. 1; fig. 2 is the text at bottom of the sheet, slightly enlarged from that on the original photograph, for ease of reading. The last two words of the first line are, therefore, since the line is a long one, moved up above their original position. Beside these, fig. 3 shows a portion, $\times 1$, of one of the specimens (the type) marked by Watson $A$. blitoides. Since no type of Watson's species was indicated, I am now designating as its type a sheet from Ames, Iowa, sent by the late $C . E$. Bessey with the critical notes which evidently drew Watson's attention to it. Watson had originally identified the plant as A. Blitum L., but Bessey wrote: "Plant prostrate, spreading from a central root, resembling the habit of Portulaca oleracea, often with a reddish or purplish cast". Then, for full measure, " This plant with us never is ascending in growth, but is always prostrate". It was upon these characters and the "bracts nearly equal, ovate-oblong, shortly acuminate,
. . . little exceeding the . . . sepals" that Watson distinguished his A. blitoides from A. albus, of "usually erect diffusely branched habit . . . bracts subulate, rigid, pungently awned". Unfortunately, he seems to have overlooked A. graecizans L. (1753).

There is, however, no reason why we should not take up the latter name for $A$. blitoides, thus restoring $A$. albus L . for the stiffer species with slender spinescent bracts, which for more than half a century has wrongly passed as A. graecizans.

The name graecizans is not at once of obvious meaning. In his Flora Virginica, after giving the diagnosis, which was copied as well as altered by Linnaeus, Cronovius made a guess that the plant was "Amaranthus Graecus sylvestris angustifolius" of Tournefort. The specific name, then, is comparable to that of Galium circaezans L., meaning, approximately, simulating $A$. graecus.

The following transfer is necessitated:
Amaranthus albus L., var. pubescens (Uline \& Bray), comb. nov. A. graecizans, var. pubescens Uline \& Bray in Bot. Gaz. xix. 317 (1894). A. pubescens (Uline \& Bray) Rydb. in Bull. Torr. Bot. Cl. xxxix. 313 (1912).

Xanthorhiza simplicissima Marsh. To the relatively few recorded stations in the eastern counties add one in Greensville Co.: sandy woods and thickets along Fontaine Creek, near Round Hill Church, no. 14,605.

Menispermum canadense L. To the few recorded stations on the Coastal Plain add one in Greensville Co.: rich woods along Meherrin River, below Emporia, no. 14,606; very rank, the very shallowly to hardly lobed leaves 1.4 dm . broad and on petioles 2 dm . long.

Litsea aestivalis (L.), comb. nov. Laurus aestivalis L. Sp. Pl. 370 (1753). Laurus geniculata Walt. Fl. Carol. 133 (1788). Tetranthera geniculata (Walt.) Nees, Syst. Laurin. 567 (1836). Litsea geniculata (Walt.) Benth. \& Hook. f. Gen. Pl. iii. 162 (1883) and Nichols. Dict. Gard. ii. 287 (1885). Malapoenna geniculata (Walt.) Coult. in Mem. Torr. Bot. Cl. v. 164 (1894). Glabraria geniculata (Walt.) Britton in Britt. \& Brown, IIl. Fl. ed. 2, ii. 135, fig. 1970 (1913). Plate 888.

It is most astounding to note how generally Laurus aestivalis and L. Benzoin L. 1. c. (1753) have been merged by authors as one species under the competitive generic names Lindera and Benzoin. As usual, Linnaeus was too keen a student to publish two species, one next the other and both received from Virginia, if they were
identical. His account in Species Plantarum was simple and clear:
> aestivalis. 8. LAURUS foliis venosis oblongis acuminatis annuis, ramis supra-axillaribus. Laurus foliis lanceolatis enervibus annuis. Gron. virg. 159.
> Laurus foliis enervibus ovatis utrinque acutus. Gron. virg. 46.
> Habitat in Virginia ad ripas rivulorum. b Pedunculi hujus fructiferi colorati sunt.
> Benzoin. 9. LAURUS foliis enerviis ovatis utrinque acutis integris annuis. Hort. Cliff. 154. Mat. med. 195. Gron. virg. 46. Roy. lugdb. 226.
> Arbor virginiana, citreae vel limoni folio, Benzoinum fundens. Comm. hort. I. p. 189, t. 97.

> Arbor virginiana, pishaminis folio, baccata Benzoinum redolens. Pluk. alm. 42, t. 139. f. 3. 4.

> Habitat in Virginia.

One must note, in the first place, the error of citing the same reference to Gronovius, p. 46 for both species and the further Linnean error of misquoting under the second species his own original and correct diagnosis in Hortus Cliffortianus, in which the leaves are described "foliis . . . obverse ovatis", i. e. obovate, not, as Linnaeus carelessly wrote in 1753, "ovatis", and the same error made in transcribing from Gronovius.

In the original and fuller account in Hortus Cliffortianus, Linnaeus gave a clear definition of our Spicebush, Lindera Benzoin (L.) Blume: "Involucrum sessile, tetraphyllum, corni simillimum, includens flosculis quinque petiolatas, longtiudine involucro", etc. The identity of the shrub of Virginia, with entire obovate leaves, called Laurus Benzoin, and having the involucrate inflorescences sessile and suggesting those of Cornus mas, can hardly be questioned and the photograph, sent me by Dr. Ramsbottom (our plate 889) of the Hortus Cliffortianus specimen, which must stand as the TYPe, is unequivocal.

Excluding from the account of Laurus aestivalis the reference to the obovate-leaved shrub of Virginia, erroneously cited under it as well as under L. Benzoin, for Gronovius had merely copied and cited the diagnosis given in Hortus Cliffortianus, we have left the real Laurus aestivalis. This was a shrub which had been
collected by Clayton and Clayton's own note, not reprinted by Linnaeus, was of real significance: "Lauro affinis aquatilis". This, added to the lanceolate or oblong leaves and the supraaxillary branching, clearly indicate the rare shrub of ponds and inundated swamps, Pond-spice, which Walter later described as Laurus geniculata. In this shrub the umbels, instead of being sessile along the main branches, are on short and scattered branchlets (our rig. 3, from Georgia). It is, then, exactly as it should be: the TYPE of Laurus aestivalis in the Linnean Herbarium (our plate 888, figs. 1 and 2) is the same as Laurus geniculata Walt. The type has Linnaeus's annotation: species no. " 8 . aestivalis" and a further annotation (FIG. 2) giving Clayton's account, "Laurus affinis aquatilis", etc. Laurus aestivalis of Linnaeus obviously is not at all his L. Benzoin!

So far as we know Litsea aestivalis has not been found in Virginia since Pursh collected it in Southampton County. It should be sought at pond-margins.

Plate 888, Litsea aestivalis (L.) Fernald: fig. 1, type of Laurus aestivalis L., $\times 1 / 2$, courtesy of Mr. S. Savage; Fig. 2, Clayton's description from bottom of sheet, $\times \frac{2}{3}$; FIG. 3, flowering branch, $\times 1$, of characteristic Litsea geniculata (Walt.) Benth. \& Hook. f., from Schreven Co., Georgia, Eyles, no. 6748, as Glabraria geniculata (Walt.) Britton.

Plate 889, Lindera Benzoin (L.) Blume: type, $\times 3_{5}$, of Laurus Benzoin L., courtesy of Dr. John Ramsbottom.

> (To be continued)

Some heretofore unnoticed Plants of the South Carolina Coastal Plain.-Uvularia flohidana Chapm. Collected in slightly sloping rich woods bordering swamps at three stations near Charleston, S. C. (Caw Caw Swamp, Turkey Creek, and at the north end of Goose Creek Reservoir). This is the first record of this species north of Georgia.

Silene virginica L. Found in well-drained woods along the roadside near Middleton Gardens. In Small's Manual this species is said to grow "north of the Coastal Plain". However, Dr. John Bachman included a "Silene virginiana" of Linnaeus in the list of Charleston plants which he published in the Southern Agriculturist for June, 1835, and recently Dr. R. 'T. Clausen collected this species on the inner edge of the Coastal Plain, just southeast of Augusta, Ga., on the Savannah River.

Cassia fasciculata Miche., var. robusta (Pollard) Macbride. The typical form of the species has been credited to the Carolina Coastal Plain, but not this variety. Actually, it is the variety


Photo. B. G. Schubert.
Litsea aestivalis: fig. 1 , type of Laurus aestivalis L., $\times 1 / 2$, courtesy of Mr. S. Savage; fig. 2, Clayton's description from bottom of sheet; fig. 3, flowering branch, $\times 1$, of Litsea geniculata (Walt.) Benth. \& Hook. f.


Lindera benzoin: type, $\times{ }_{2}$, of Laurus Benzoin L., after photograph from 1)r. John Ramsbottom
which is more common around Charleston, frequently seen by roadsides and in fields.
Vicia tetrasperma (L.) Moench. Logally abundant in fields and vacant lots in the Charleston suburbs.

Camellia sinensis (L.) Kuntze (Thea sinensis L.). Collected at Holly Grove on the south edge of Caw Caw Swamp, on the site of a former tea-plantation. The area is now a woodland with the tea-shrubs forming the chief understory species. Cultivation was discontinued some thirty years ago.

Heliotropium amplexicaule Vahl. An escape, growing abundantly in a sandy field at Mt. Pleasant.
Specimens of these are in the herbarium of the College of Charleston, and duplicates have been deposited at Cornell University, the Gray Herbarium, and the University of Georgia. I am grateful to Dr. Robert T. Clausen for searching the South Carolina collections at Cornell for these species, and to Dr. Lyman B. Smith for doing the same at the Gray Herbarium. Dr. Smith has also kindly checked and corrected my determinations of these and numerous other species.-Kenneth W. Hunt, College of Charleston, Charleston, S. C.

Gentiana quinquefolia in Maine.-In October, 1944, among some plants which I received from Maine, collected October 15, 1944, by Miss E. A. Lowell and Mr. Stanley B. Attwood, was a gentian which seemed unusual. This was kindly identified by Prof. Fernald as Gentiana quinquefolia L. It was collected in Paris, Oxford County, south of Hall Pond. There is a single sheet of this species from Maine in the Gray Herbarium, collected at Pike's Hill, Norway, by a Mr. Olmsted in 1864, which is in the same general region. It has not been seen from this part of Maine for many years. There is a single specimen from Maine in the Herbarium of the New England Botanical Club, collected at Prout's Neck, Scarboro, in southern Cumberland County on October 3, 1895.-R. C. Bean, Wakefield, Mass.

[^25][April
the volume are attractive, the treatment of species and varieties up-todate. The authors have studied all the extant collections available and have been at great pains to check recent studies and revisions. For those who have not been situated to do so, it is as invaluable as a reference work as are Wiegand \& Eames's Flora of the Cayuga Lake Basin or Deam's Flora of Indiana, in which, likewise, the studies since the 7th edition of Gray's Manual are duly cited. Thus Picea rubens correctly takes the place of P. rubra, Salix Bebbiana of S. rostrata, S. pyrifolia of S. balsamifera, Sambucus pubens of S. racemosa, etc.; Amelanchier appears with 8 species, Rubus with 29 . The generic treatment is sound, not trifling and radical. Pinus, Juniperus, Ribes, Pyrus, Potentilla, Prunus, Rhus, Acer, Cornus, etc. are kept intact. The local viewpoints of the Rafinesques, -Rydbergs and Smalls have not been accepted as superior to the outlooks of the DeCandolles, Endlicher, Bentham \& Hooker, Baillon, Gray, Engler, Bailey and others who have had a world-wide view of genera. The book is as conservative as the State of Maine. "As Maine goes so [should go] the nation" was once a proverb. It is now too often forgotten!-M. L. F.

## Minor Forms and Transfers-

Alnus crispa (Ait.) Pursh, forma stragula, f. nov., truncois ramibusque prostratis; foliis maturis $2-4.5 \mathrm{~cm}$. longis; amentis foemineis maturis $0.8-1 \mathrm{~cm}$. longis.-Alpine areas, eastern Quebec to northern New York. Type from dry schistose crests and talus of Razorback Ridge, alt. 850-1000 m., Mt. Logan, Matane Co., Quebec, July 13, 1923, Pease \& Smith, no. 25,707, in Herb. Gray.

This is evidently the prostrate and otherwise dwarfed shrub intended by House in N. Y. State Mus. Bull. no. 254: 271 (1924), when he recorded from the summits of the Adirondacks the European A. viridis (Chaix) DC., var. repens (Wormskj.) Aschers. \& Graebn. It is only subgenerically allied to A. viridis.

Nemopanthus mucronata (L.) Trel., forma chrysocarpa (Farwell), stat. nov. Var. chrysocarpa Farwell in Rhodora, xlii. 307 (1940).

Scutellaria ovata Hill, var. rugosa (Wood), stat. nov. S. rugosa Wood, Class-Bk. ed. 2: 424 (1847). S. ovata, subsp. rugosa (Wood) Epling in Univ. Calif. Pub. Bot. xx. no. 1: 57 (1942).
M. L. Fernald.

Volume 47, no. 555, including pages 65-92 and plates 861-895, was issued 19 March, 1945.


JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Condueted and publighed for the Club, by MERRITT LYNDON FERNALD, Elitor-ln-Chiof

```
        CHARLES ALFRED WEATHERBY ALbERT FREDERICK HILL STUART TMMBALA HABRIS

Vol. 47.

CONTENTS:
So-called Woodsia alpina in North America. A. E. Porsild. ... 145
Distichlis spicata in Australia. A. A. Beetle 148
Botanical Specialties of the Seward Forest and Adjacent Areas of Southeastern Virginia (continued). M. L. Fernald. ..... 149
Notes on Compositae of the Northeastern United States,
I. Inuleae. Arthur Cronquist. ..... 182

\section*{Che siew england 㽝otanical Club, Int.} 8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridse 38, Mass.

RHODORA.-A monthly journal of botany, devoted primarily to the flora of the Gray's Manual Rango and regions floristically related. Price, \(\mathbf{6 4 . 0 0}\) per year, net, postpaid, in funds payable at par in United States currency in Boaton; single coples (if available) of not more than 24 pages and with 1 plate, 40 cente, numbert of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd coverpage). Volumes 1-9 ean be supplied at \(\$ 4.00,10-34\) at \(\$ 3.00\), and volumes \(35-46\) at \(\mathbf{\$ 4 . 0 0}\). Some single number from these volumes ean be supplied only at advanced prices (see 3rd cover-page). Somewhat reduced rates for completo sote ean be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern states, will be considered for pablication to the extent that the limited apace of the journal permito. Forms many be olosed five weeks in advance of publication. Authort (of more than twe pages of print) will receive 15 copies of the iasue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cont.

Address manuseripts and proofa to -
M. L. Fornald, 14 Hawthorn Street, Cambridge 38, Mans.

Subseriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Detanical Museum, Oxford St., Cambridgo 38, Mass.
Entered an eceond-class matter Mareh 9, 1929, at the post office at Laneastor, Fan, under the Act of March 8, 1879.

\title{
INTELLIGENCER PRINTING COMPANY \\ Specialists in Scientific and Technical Publications \\ EIGIIT WEST KING ST., LANCASTER, PA.
}

\section*{CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES OF AMERICAN PLANTS, 1885 TO DATE. \\ For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at \(\$ 22.50\) per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.}

> GRAY HERBARIUM of Harvard University,
> Cambridge 38, Mase, U. S. A.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately
No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.
No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \(\$ 1.50\).
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \(\$ 1.00\).

Gray Herbarium of Harvard University, Cambridge 38, Mast.

H p1.890-90\%

\title{
IRbodora
}

JOURNAL OF

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
May, 1945.
No. 557.

\section*{THE SO-CALLED WOODSIA ALPINA IN NORTH AMERICA}

\author{
A. E. Porsild
}

It has, for some time, been clear to the writer that the plant which in temperate eastern North America has long passed as Woodsia alpina is really abundantly distinct from the circumpolar, arctic-alpine plant which alone should bear that name.

The latter is a somewhat variable species which, by some European authors \({ }^{1}\), has been considered a variety or subspecies of the circumpolar W. ilvensis (L.) R. Br. Thus Robert Brown (Linn. Soc. Trans. XI, 172 (1815)), in discussing the relation of \(W\). ilvensis to \(W\). hyperborea [a nomen confusum for \(W\). alpina] states:
"These two plants are indeed so nearly related, that I find myself unable to construct for them clear specific characters; and therefore, in proposing them here as distinct species, I am, for want of sufficient materials to determine the question, rather following the prevailing opinion than my own."
Brown's description, which follows, clearly shows his difficulty:
"ilvensis. 1. W. frondibus bipinnatifidis, pinnis oblongis, pinnulis con-
fluentibus multifloris: inferioribus subrepandis: infimis subaequalibus.
Habitat in rupibus Europae et Americae borealis
hyperborea. 2. W. frondibus pinnatis, pinnis triangularibus oblongisve inciso-pinnatifidis: lobis integerrimis pauciforis: antico baseos productiore. Tab. XI.
Habitat in Europae alpibus
The nomenclature of the latter species is as follows:
Woodsia alpina (Bolton) S. F. Gray, Nat. Arr. Brit. Pl. 2:

\footnotetext{
\({ }^{1}\) Hartman, Skandinaviens Flora p. 536 (1879); Gelert in Ostenfeld, Flora Arctica
} p. 7 (1902); Simmons, Fl. Ellesmereland 183 (1906); Hegi, Fl. v. Mittel-Europa 1: 13 (1906).

17 (1821); Acrostichum alpinum Bolton, Fil. Brit. 76 (1790); W. hyperborea R . Br. as to plant, not as to basonym, Acrostichum hyperboreum Liljebl. Sv. Fl. 307 (1792); Fl. Dan. Tab. 2921 fig. 2.

Holmberg (Skandinaviens Flora 1: 4 (1922)) gives the following description (here translated from the Swedish text):
"W. alpina (Bolton) S. F. Gray . Stipe usually \(1 / 8\) to \(1 / 2\) as
long as the lamina; lamina hairy on the underside but without chaff; length
of the primary segments not, or but slightly, greater than their breadth.-
Usually lower ( 3.0 to 15.0 cm.) and fresher green than preceding [W.
ilvensis]. Lamina narrowly linear-lanceolate, \(1.0-2.0 \mathrm{~cm}\). broad, broad-
est at or above the middle, sparingly hirsute, sometimes without chaff.
Primary segments short, broadly ovate, often deeply lobed, with \(1-3\)
(-4) entire secondary segments on each side.
On rocks (preferably calcareous) chiefly in the mountains and in alpine
places."
To Holmberg's description should be added that the stipe is straw-colored to pale brown, dull, not at all shiny, always more or less chaffy. The fronds are rather stiffly erect, usually forming small, dense and firm tufts; the sori as a rule are confluent. In 21 typical specimens selected at random in the Gray Herbarium and in the National Herbarium of Canada, the fronds average 8.1 cm . in length and 1.45 cm . in breadth, near or slightly above the middle, while the average diameter of the stipe just above the joint is 1.0 mm . Habitat: dry, sunny places such as rock talus etc. Distribution: Circumpolar, arctic-alpine. Northern East and West Greenland across arctic Canada to Yukon and Alaska, arctic and alpine Asia and Europe, Iceland. The following specimens in the Gray Herbarium (G) and the National Herbarium of Canada (Can) are representative:
Sweden: Uppl. Djurö \(\mathrm{S}^{\mathrm{n}}\), Ranmarö, July 10, 1922, A. Hülphers (Can). Iceland: Thingvellir, Edith Scamman, No. 1202 (G). W. Greenland: Umiviarfik Fj., \(71^{\circ} 56^{\prime}\) N., M. P. Porsild, Sept. 7, 1934 (G); Kangerdluarsuk, \(74^{\circ} 18^{\prime}\) N. Ryder (Can). Hudson Strait: Nottingham Island, R. Bell (Can 28,354); Coats Isl., A. E. Porsild, 5862 (Can). Keewatin District: Baker Lake, A.E. Porsild, 6075 (Can). Mackenzie District: East slope of Richardson Mts. west of the Mackenzie Delta, A. E. Porsild, 6744 (Can). Yukon Territory: Canol Road, Rose-Lapie Pass, A. E. Porsild \& A. J. Breitung, 10,103 (Can). Alaska: Healy, J. P. Anderson 5772 (Can); Norton Sound, Pastolik, A. E. \& R. T. Porsild, 889 (Can).

The plant of temperate eastern North America differs consistently from the arctic-alpine, circumpolar plant by its non-
confluent sori, reddish-brown, shiny stipes and rhachis which are almost completely devoid of chaffy scales. Also it is taller and more delicate and the fronds are somewhat flexuous. Unlike the arctic-alpine plant it prefers moist, shady places and is invariably found on calcareous soil. In 29 typical specimens selected at random in the Gray Herbarium and in the National Herbarium of Canada the fronds average 12.4 cm . in length and 1.58 cm . in breadth well above the middle while the average diameter of the stipe just above the joint is 0.75 mm .

In 1940, Mr. C. A. Weatherby (Am. Fern. Journ. 31, no. 2: 62 (1941)), in the herbarium of Mount Allison University of Sackville, New Brunswick, discovered a number of Lawson's fern types, among them the type of Woodsia glabella \(\beta\) Belli Lawson. Of it Mr. Weatherby, l. c., writes as follows:
> "Lawson was evidently in much doubt as to this specimen. A slip accompanying it reads: "Woodsia laetevirens var. of glabella ??, ilvensis ? or hyperborea ??," and finally, in pencil, "hyperborea according to Eaton". Lawson eventually accepted Eaton's determination and reduced his variety (Trans. Bot. Soc. Edinburgh 8: 108 (1866)). The specimen is a rather stout individual of \(W\). alpina."

A photograph kindly presented by Mr. Weatherby shows that Lawson's plant is indeed our plant, the name of which becomes:
Woodsia Belli (Lawson), n. comb. W. glabella \(\beta\) Belli Lawson, Edinburgh New Phil. Journ. n. s. 19: 281 (1864); W. alpina of Gray's Manual, not W. alpina (Bolton) S. F. Gray (at least in part). Type: Dartmouth River, 20 miles from mouth, Gaspé, C. E. [Canada East], July 3, 1862, John Bell. Habitat: Shaded, moist places on calcareous rocks. Distribution: Lab., Nfld., Que., south to northern New Brunswick and northern Vermont; the Adirondacks, N. Y. and west to Lake Superior. The following specimens in the Gray Herbarium (G) and the National Herbarium of Canada (Can) are typical: Labrador: Nain, \(56^{\circ} 30^{\prime}\) N., V. C. Wynne-Edwards, No. 7531 (Can). New Brunswick: Aroostook Falls, John Macoun, No. 22,700 (Can). Quebec: bonaventure co., Grand Cascapedia R., J. F. Collins \& M. L. Fernald, No. 7 (G and Can); rimouski co., crevices of limestone-conglomerate, north side of the "Haystack" west of Bic, M. L. Fernald \& J. F. Collins, No. 831 (G and Can); gaspé co., River Ste. Anne des Monts, M. L. Fernald \& J. F. Collins, No. 292 (G and Can). Ontario: Kakabeka Falls, Kaministiquia R., Red Rock near C. P. R. station, John Macoun, No. 28,351 (as W. glabella) (Can); Thunder Bay, Lake Superior, July 31Aug. 6, 1926, F. Morris, No. 117,370 (Can). Michigan:

Keweenaw Co., Eagle Harbor, M. L. Fernald \& A. S. Pease, No. 3051 (G). Minnesota: Cook Co., south side of Clearwater Lake, F. K. Butters \& M. N. Buell, No. 397 (G).

The characters distinguishing \(W\). alpina from \(W\). Belli may be summarized as follows:
\begin{tabular}{|c|c|c|}
\hline & W. alpina & W. Belli \\
\hline Stipe: & straw-coloured to pale & reddish-brown, shiny, almost devoid of chaff \\
\hline Average diam. just above joint: & 1.0 mm . & 0.75 mm . \\
\hline Frond: & broadest above the middle, stiffly erect, & broadest at the middle, delicate, flexuous \\
\hline Average dimensions of frond: & 8.1 cm . long; 1.45 cm . wide & 12.4 cm . long, 1.58 cm . wide. \\
\hline Sori: & usually confluent & rarely confluent. \\
\hline
\end{tabular}

National Museum of Canada
Distichlis spicata in Australia.-When publishing in 1943 (Bull. Torr. Bot. Club 70: 633-650) on "The North American Variations of Distichlis spicata", the writer confined the range for the composite species to North and South America. It was also stated that Distichlis "is represented by D. distichophylla (Labill.) Fassett in the South Australian area." This last conclusion was drawn entirely from the literature on the genus, since at that time no Australian material had been examined. Subsequent study of sheets of D. distichophylla in the Herbarium of the New York Botanical Garden show it to fall well within the specific limits of D. spicata. Although the relationship within D. spicata must remain obscure until the South American varieties are clarified, in order to redefine the range of the species and also to bring the Australian material into its proper alignment in the genus, the following combination is important:
Distichlis spicata (L.) Greene var. distichophylla (R. \& S.) comb. nov. Uniola distichophylla R. \& S. Syst. Veg. 2: 596. 1817. Distichlis distichophylla Fassett, Rhodora 27: 71. 1925.

Apparently Distichlis is native in Australia for a specific distribution involving North and South America and Australia is not unusual. The geographical varieties that compose both Scirpus americanus Pers. and S. cernuus Vahl encompass the same area.-A. A. Beetle, Division of Agronomy, University of California, Davis.


I'hoto. B. G. Schubert.
Rubus Akermani (floricane), all figs. from type: fig. 1, portion of cane, \(\times 1\); Fig. 2 , portion with 3 -fruited spurs, \(\times 1\) 1/ ; fig. 3, lower surface of leaf, \(\times 10\); FIG. 4 , summit of pedicel and base of calyx, \(\times 5\)


Photo. B. G. Schubert.
Rubus Arermani (primocane), all figs. from type: fig. 1, portion of cane and typical leaf, \(\times 1\); Figs. 2 and 3 , upper and lower leaf-surfaces, \(\times 10\)

\title{
BOTANICAL SPECIALTIES OF THE SEWARD FOREST AND ADJACENT AREAS OF SOUTHEASTERN VIRGINIA
}

\author{
M. L. Fernald
}
(Continued from page 142)
Persea Borbonia (L.) Spreng., forma pubescens (Pursh), stat. nov. Laurus caroliniensis \(\beta\). pubescens Pursh Fl. Am. Sept. i. 275 (1814). P. caroliniensis \(\alpha\). Nees, Syst. Laur. 150 (1836). Tamala palustris Raf. Sylv. Tellur. 137 (1838). P. caroliniensis \(\beta\). pubescens (Pursh) Meisn. in DC. Prodr. xv \(^{1} .51\) (1864). \(P\). caroliniensis, var. palustris (Raf.) Chapm. Fl. So. U. S. 393 (1860). P. pubescens (Pursh) Sarg. Silva N. A. vii. 7, t. 302 (1895). Tamala pubescens (Pursh) Small, Fl. Se. U. S. ed. 2: 822 and 1375 (1913). P. palustris (Raf.) Sarg. in Bot. Gaz. Ixvii. 229 (1919).

After closely watching, collecting, and intensively studying the Red Bay, as it occurs in eastern Virginia, I have abandoned the futile attempt to see two species or two varieties in the glabrous-leaved material and that with leaves densely pubescent beneath, and I cannot look upon them as anything but glabrous and pubescent forms of one species, P. Borbonia (L.) Spreng. The bibliography of the latter is
P. Borbonia (L.) Spreng. Syst. ii. 268 (1825). Laurus Borbonia L. Sp. Pl. 370 (1753). L. axillaris Lam. Encycl. iii. 453 (1789). L. caroliniensis Michx. Fl. Bor.-Am. i. 245 (1803). L. caroliniana Poir. in Lam. Encycl. Suppl. iii. 323 (1813). L. caroliniensis, \(\alpha\). glabra Pursh, Fl. Am. Sept. i. 276 (1814). \(P\). caroliniensis (Michx.) Nees, Syst. Laur. 150 (1836). Tamala Borbonia (L.) Raf. Sylv. Tellur. 136 (1838). P. caroliniensis, \(\alpha\). glabriuscula Meisn. in DC. Prodr. xv \({ }^{1} .51\) (1864). P. palustris, forma laevifolia Fernald in Rhodora, xliv. 399 (1942).

Hoping against hope that, with most of our American herbarium material interned (or destroyed?) in Holland, there might be some erudite difference which I could not discover, I went so far in 1942 as to distinguish a glabrous-leaved form of the pubescent-leaved Persea palustris, although it already had a plethora of names. Now, having to dispose of Laurus axillaris Lam., a photograph of the type of which is before me, I have again sought characters aside from the superficial and very obvious and variable one of pubescence. In the first place,

Laurus axillaris Lam. is not, as indicated by Index Kewensis, Litsea geniculata (i. e. L. aestivalis supra); the type is a very immature branch of Persea Borbonia with very young (therefore short-peduncled) inflorescences. It was sent by Fraser from South Carolina and Lamarck merely suggested its relationship to the Litsea: "An Laurus geniculata Walt." In the second place, I can get nothing stable out of the supposed specific differences: P. Borbonia, according to Sargent's Silva, with "Peduncles short; leaves oblong or oblong-lanceolate, obscurely veined, glabrous; branchlets puberulous"; P. palustris (or pubescens) with "Peduncles elongated; leaves oval or lanceolate, conspicuously veined, tomentose on the lower surface; branchlets coated with tomentum".

Persea Borbonia, according to Sargent, with "Peduncles short; leaves oblong or oblong-lanceolate, obscurely veined", started in L., Hort. Cliff. 154 (1737), and by Linnaeus was described as having the peduncles long (pediculis longis), instead of "short", the leaves lanceolate, instead of "oblong or oblong-lanceolate" and the veins transverse (evident to Linnaeus)! The full account was:
3. Laurus foliis lanceolatis, nervis transversalibus, fructus calicibus baccatis.
Borbonia fructu oblongo nigro, calyce coccineo. Plum. gen. 4? Laurus caroliniensis, foliis acuminatis, baccis coeruleis, pediculis longis rubris insidentibus. Catesb. ornith. 63, t. 63. Crescit in Carolina.
In Species Plantarum (1753), under Laurus Borbonia, the only changes were the dropping of the reference to Plumier, the adding of references to Gronovius, Virg. 46, and to Royen, and the change to "Habitat in Carolina, Virginia". According to Daydon Jackson there was no specimen in the Linnean Herbarium in 1753 . We can, of course, not get at the Hortus Cliffortianus material now, but Catesby's plate is a definite, though much distorted representation, with petioles often much longer than in nature and obviously not differentiated by the artist from the "foot-stalks [peduncles] of two or three inches long". "These Trees . . . not common in Virginia, except in some places near the Sea. In Carolina . . . every where seen, particularly in low swampy lands." In the collections represented in the Gray Herbarium nearly glabrous-twigged and


Ihoto. B. G. Schubert.
Rubus cathartium (floricane), all figs. from type: fig. 1, portion of cane in fruit, \(\times 1\); fig. 2, lower surface of leaf, \(\times 10\); fig. 3 , summit of pedicel and base of calyx, \(\times 5\)


I'hoto. B. G. Schubert.
Rubus cathartium (primocane), all figs. from type: fig. 1 , two leaves, \(\times 1\); fig. 2 , portion of rane, \(\times 1\); fig., 3 and 4, upper and lower leaf-surfaces, \(\times 10\)
-leaved branches may have peduncles only 1 cm . long or up to the length shown in Catesby's plate. Similarly, branches with densely velvety cortex and lower leaf-surfaces (merely taking the Virginian series) may have fruiting peduncles anywhere from \(1.5-7 \mathrm{~cm}\). long. As forms the essentially glabrous and the heavily pubescent extremes are striking, but there are altogether too many transitional trees for them to be called geographic varieties and surely not different species. It is inconvenient that the very pubescent form is much commoner than the glabrescent type of the species. At least, in the material which has accumulated in the Gray Herbarium since the bulk of specimens was sent on loan to Utrecht, the heavily pubescent form outnumbers the other two to one.
*Magnolia virginiana L., var. australis Sargent in Bot. Gaz. lxvii. 231 (1919). Range extended from southeastern North Carolina northward into southeastern Virginia. Dinwiddie Co.: along stream near Petersburg, May 13, 1935, E. Puette \& M. Ellyson. Princess Anne Co.: rich pine woods, Munden, Fernald \& Griscom, no. 4408, with note: "Trunk 1 ft. in diameter; trees 30 ft . high."

This southern large extreme with silky white pubescence on new branchlets, petioles and often the lower side of the leaf, was pronounced by Sargent a larger tree than glabrous true \(M\). virginiana and "Swamps in the neighborhood of Wilmington, North Carolina, is the most northern station from which I have seen specimens of this tree". The Munden material is thoroughly typical; that from Petersburg even more heavily pubescent than any from Florida to Louisiana.

In the Gray Herbarium there is extreme material of var. australis from Tyrrell Co., North Carolina: south of Columbia, Godfrey, no. 3928. This station is on Albemarle Sound, only 40 miles south of Munden, whereas Wilmington is nearer 190 miles from Munden.
*Crataegus aestivalis (Walt.) T. \& G. Princess Anne Co.: low woods along Back Bay, Long Island, no. 10,671. The first from north of South Carolina.
C. flava Ait. Nansemond Co.: dry pine and oak woods about 2 miles southeast of Cleopus, no. 9578 (vegetative sprouts with characteristic glandular-margined stipules). Isle of Wight Co.: dry sandy woods northwest of Raynor, no. 14,339; border of dry sandy woods south of Zuni, no. 6818. Southampton Co.:
about Franklin, June, 1893, Heller, no. 978 as C. glandulosa Moench, the identification changed by Eggleston to C. flava; frequent on higher ridges, Franklin, Aug., 1908. Eggleston, no. 4011, with the note: "Only known Manual station". Greensville Co.: rich deciduous woods by Metcalf Branch, east of Emporia, no. 8293. Brunswick Co.: wooded swamp along Quarrel's Creek, "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,710.

Although included by Eggleston in Britton \& Brown, Ill. Fl. ed. 2, from southeastern Virginia, C. flava is given by Tidestrom in Small's Manual as coming north only to Georgia.

Geum canadense Jacq., var. brevipes Fernald in Rhodora, xxxix. 410, pl. 479, figs. 1-3 (1937). This characteristic plant, heretofore known only from the bottoms of the Nottoway, is now found along Roanoke drainage in southwestern Brunswick Co.: bottomland woods along Poplar Creek, southwest of Ebony, no. 14,619. See p. 97.

Rubus (§ Flagellares) connixus Bailey, Gent. Herb. v. 273, fig. 113 (1943). Range extended 45 miles southeastward from the type-locality (Keysville, Charlotte Co.) to eastern Brunswick Co.: trailing in argillaceous flatland along Sawmill Branch, Seward Forest, near Triplett, no. 14,617.

The specimens closely match Bailey's figure and his description, including (for most leaves) his "leaves of primocanes leaflets . . . not subcordate at base", although one leaf retained at the Gray Herbarium fits Bailey's contradictory key-character: "Odd or terminal leaflet of primocane leaves . . . more or less cordate".
R. (§ Cuneifolii) sejunctus Bailey, Gent. Herb. v. 201, fig. 205 (1943). To the original stations in Southampton Co. add one in Brunswick Co.: dry thicket, Seward Forest, near Triplett, no. 14,611. Very abundant; seen over much of the region. See p. 94.
*Rubus (§ Tholiformes) Akermani, sp. nov. (tab. 890 et 891), valde arcuans deinde depressis cannis tholos formantibus, cannis vel ramibus ad \(2-3 \mathrm{~m}\). longis apicibus prostratis rare radicantibus; primocannis simplicibus \(4-8 \mathrm{~mm}\). diametro glabris remote armatis; aculeis rectis horizontalis vel vix recurvatis subulatis \(3-6 \mathrm{~mm}\). longis basi \(2-5 \mathrm{~mm}\). latis; primocannae foliis ternatis firmis supra strigoso-pilosis subtus dense tomentulosis; foliolis ovatis acuminatis duplicato serratis basi subrotundatis, foliolo terminali \(5-8 \mathrm{~cm}\). longo \(2.5-5.5 \mathrm{~cm}\). lato, petiolulo armato \(1.5-2.5 \mathrm{~cm}\). longo; floricannis intricate ramosis ramibus porrectis vel divergentibus rigidis; floricannae foliis ternatis, foliolis
ellipticis vel anguste cuneato-obovatis acutis vel obtusis subtus pilosis, foliolo terminali \(1.5-6 \mathrm{~cm}\). longo; inflorescentiis perbrevibus corymbiformibus foliosis \(1-4\)-floris, bracteis trifoliolatis vel superne simplicibus quam pedicellis superantibus; pedicellis villosis plerumque inarmatis adscendentibus \(0.7-1.8 \mathrm{~cm}\). longis; calycis pilosis inarmatis segmentis deinde reflexis; fructibus ad 1.8 cm . diametro.-Brunswick and Greensville Counties, Virginia: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, Brunswick Co., June 22, 1944, Fernald (and Lewis) \({ }^{1}\), no. 14,614 (тype in Herb. Gray., isotype in Herb. Phil. Acad.); damp thicket northeast of Ebony, Brunswick Co., June 21, 1944, Fernald (and Lewis), no. 14,613; dry woods near Mitchell's Millpond, west of Brink, Greensville Co., June 29, 1944, Fernald (and Lewis), no. 14,618.

Rubus Akermani, with which it is a great pleasure to associate the name of Alfred Akerman, Director of the Seward Forest, to whom I am under great obligation, is a relatively unique species. Its doming and long-arching habit is striking, as are the very leafy few-flowered and -fruited corymbs with the fruits mostly hidden among the leaves. It is much coarser than the species with slender and closely trailing floricanes (the Dewberries), and I am not able to place it definitely near any described species. See p. 95.
*R. (§ Tholiformes) cathartium, sp. nov. (tab. 892 et 893), valde arcuans cannis tholos altos formantibus, cannis vel ramibus ad 2.5 m . longis apicibus prostratis plus minusve radicantibus; primocannis simplicibus vel ramosis longe arcuatis flexuosis subteretibus glabris ad 7 mm . diametro armatis; aculeis oblique deltoideo-subulatis recurvatis vel unguiculatis \(3-5 \mathrm{~mm}\). longis basi \(3-6 \mathrm{~mm}\). latis; primocannae foliis imis ternatis mediis superioribusque quinatis submembranaceis supra strigoso-pilosis subtus piloso-tomentulosis pilis fulvescentibus; petiolo valde ungui-culato-armato; foliolis ovatis vel elliptico-ovalibus grosse dupli-cato-serratis acuminatis basi rotundatis, foliolo terminali 8-14 cm . longo \(5-10 \mathrm{~cm}\). lato, petiolulo armato \(1.5-3 \mathrm{~cm}\). longo; floricannis subsimplicibus subrigidibus; foliis membranaceis ternatis, petiolo piloso sparse stipitato-glanduloso setosisque, foliolis rhomboideo-oblongis acutis vel subacutis duplicato serratis 4-7 cm. longis; racemis corymbiformibus 1 - 7 -floris, bracteis imis ternatis supernis simplicibus quam pedicellis valde brevioribus; pedicellis erectis filiformibus pilosis plus minusve stipitato-glandulosis setosisque plerumque \(2-4 \mathrm{~cm}\). longis; calycis pilosis plus minusve glanduliferis deinde reflexis.-

\footnotetext{
\({ }^{1}\) Lewis did not take specimens.
}

Brunswick County, Virginia: dry thickets near old Taylor Place, Seward Forest, near Triplett, June 23, 1944, Fernald (and Lewis), no. 14,615 (type in Herb. Gray.; isotype in Herb. Phil. Acad.); dry thicket, Old Chamblis Place, Seward Forest, June 20, 1944, Fernald (and Lewis), no. 14,612.

Rubus cathartium (cathartium, of buzzards, from Cathartes, the Turkey-buzzard \({ }^{1}\) because, in collecting the type (see p. 98), we seriously disturbed a brood of young buzzards whose home was in the shed near-by) is, like \(R\). exsularis Bailey, Gent. Herb. v. 386, fig. 175 (1943), "a rampageous very prickly woody grower making deep tangled mounds or heaps" (Bailey, p. 243), "a fearsome briar to handle" \({ }^{\prime 2}\) (his p. 388), and the pubescence, glandularity and prickles are similarly distributed. The pedicels in the New York \(R\). exsularis are illustrated as much shorter than and overtopped by the leafy bracts. In \(R\). cathartium they greatly overtop their subtending bracts, thus suggesting the inflorescences of \(R\). flagellaris. From the latter \(R\). cathartium is quickly distinguished by its coarse and doming habit, the densely velvety lower surfaces of the primocane-foliage, the broad-based prickles and the glandular inflorescence.
*R. (§ Tholiformes) Sewardianus, sp. nov. (tab. 894 et 895), valde arcuans cannis tholos formantibus, cannis vel ramibus ad 2 m . longis apicibus longe arcuatis; primocannis deinde divergente ramosis \(5-7 \mathrm{~mm}\). diametro glabris vel apice pilosis remote armatis; aculeis rectis horizontalis subulatis \(3-5 \mathrm{~mm}\). longis basi \(2-3 \mathrm{~mm}\). latis; primocannae foliis ternatis vel quinatis membranaceis supra remote strigosis subtus tomentulosis, petiolo unguiculato-armato superne piloso; foliolis ovatis acuminatis duplicato serrato-dentatis basi rotundatis, foliolo terminali \(8-12 \mathrm{~cm}\). longo \(5-7.5 \mathrm{~cm}\). lato basi cordato, petiolulo piloso armato \(2.5-3 \mathrm{~cm}\). longo; floricannis inextricabiliter divergenterque ramosis valde arcuato-depressis ramis unguiculato-aculeatis; floricannae foliis ternatis, foliolis anguste elliptico-ovalibus acuminatis duplicato serratis \(4-7 \mathrm{~cm}\). longis subtus minute pilosis; inflorescentiis breviter racemoso-corymbosis 2 - 8 -floris;

\footnotetext{
\({ }^{1}\) I have been told that the specific name cathartium (of turkey-buzzards) will inevitably be misspelled and interpreted as coming from catharticum, a cathartic. As a matter of fact, the very rich and juicy fruit of Rubus cathartium would make the finest of blackberry-cordial, the famous old domestic cure for diarrhoea. Turkeybuzzards, unless scrupulously cleaned and thoroughly cooked before eating, might give uncomfortable results.
\({ }^{2}\) In his rather unconventional descriptions of "rampageous" and "fearsome" briars Bailey consistently uses in his Latin diagnoses the Latin ablative "canis," spelled like the classical nominative for a dog, instead of the more conventional cannis, from canna, a cane. Sometimes the scratchy and "fearsome" canes certainly suggest a dog.
}


Photo. B. G. Schubert.
Rubus Sewardianus (floricane), all figs. ( \(\times 1\) ) from type: fig. 1, primary axis, showing straight prickles; FIG. 2, upper fruiting branchlets; fiti. 3, portion of lateral branch, showing unguiculate prickles, and of leafy branch


Thoto. B. G. Schubert.

Rubus Sewardianus, all figs. from type: fig. 1, portion of primocane with leaf, \(\times 5\); figs. 2 and 3 , lower and upper surfaces of primocane-leaf; fis. 4 , summit of pedicel and calyx,\(\times 5\)
bracteis imis ternatis, superne simplicibus parvis quam pedicellis; pedicellis divergenter adscendentibus \(1-2.5 \mathrm{~cm}\). longis retrorse villosis plus minusve armatis; calycibus pilosis segmentis acuminatis deinde reflexis; fructibus \(1.5-1.8 \mathrm{~cm}\). diametro.Brunswick County, Virginia: dry thicket near old Taylor Place, Seward Forest, near Triplett, June 23, 1944, Fernald (and Lewis), no. 14,616 (тype in Herb. Gray.; isotype in Herb. Phil. Acad.). See p. 98.

Rubus Sewardianus is named for the late Dr. Walter Seward of Triplett, Virginia, through whose munificence the University of Virginia received the original Seward Forest and its initial endowment. Not referable to any of the doming species accounted for by Bailey, Gent. Herb. v. part v (1943). Very striking on account of the divergently branched overarching canes, which, because of the long and intricate branching and the strong prickles, become almost inextricable. Notable also because the prickles of the primary axes of the primocanes and the floricanes are straight and horizontally divergent, those of the branches strongly unguiculate. The very broad leaflets of the primocane-foliage, with the terminal leaflet cordate, and the acuminate leaflets of the floricanes at once distinguish it from firmer-leaved \(R\). Akermani. From \(R\). cathartium it is quickly told by its chiefly 3 -foliolate leaves, those of the primocanes with low and relatively small dentation (rather than coarse and sharp serration), by the glandless petioles of the floricane-leaves and glandless pedicels and calyx, by the more compact inflorescence, and by the unusual disparity in the toothing of the leaves, those of the primocanes dentate, of the floricanes sharply serrate. The differences between prickles of primary and secondary axes and between toothing of primocane- and floricane-foliage are unusual features. R. Sewardianus, R. Akermani and R. cathartium are neighbors. No one would confuse them and, except for growthhabit, they are very different plants.

Plates 890 and 891, Rubus Akermani Fernald, all figs. from type. Plate 890, floricane: FIG. 1, portion of cane, bearing solitary fruits, \(\times 1\); FIG. 2, another cane with 3 -fruited spurs, \(\times 1 / 3\); fig. 3 , lower surface of leaf, \(\times 10\); fig. 4, summit of pedicel and base of calyx, \(\times 5\). Plate 891, primocane: fig. 1 , portion of cane and typical leaf, \(\times 1\); Figs. 2 and 3, upper and lower leafsurfaces, \(\times 10\).

Plates 892 and 893, Rubus cathartium Fernald, all figs. from type. Plate 892, floricane: fig. 1, portion of cane in fruit, \(\times 1\); fig. 2, lower surface of leaf, \(\times 10\); fig. 3 , summit of pedicel and base of calyx, \(\times 5\). Plate 893 , primocane: fig. 1, two leaves, \(\times 1 / 2\); Fig. 2, portion of cane, \(\times 1\); figs. 3 and 4, upper and lower leaf-surfaces, \(\times 10\).

Plates 894 and 895, Rubus Sewardianus Fernald, all from type. Plate 894, all figs, \(\times 1:\) fig. 1, primary axis of floricane, to show straight prickles; FIG. 2, upper fruiting branchlets; fig. 3, portion of lateral branch (showing unguiculate prickles) and of leafy branch. Plate 895, fig. 1, primocane and primocane-leaf, \(\times 5 / 6\); Fig. 2, lower, and fig. 3, upper leaf-surface, \(\times 10\); FIG. 4, summit of pedicel and calyx, \(\times 5\).

Rosa multiflora Thunb. Well naturalized around Triplett, Brunswick Co.: no. 14,713.

Baptisia tinctoria (L.) R. Br., typical. Brunswick Co.: very local, seen only in thicket near Philadelphia Church, no. 14,621 . See p. 94 .

Tephrosia virginiana (L.) Pers., var. glabra Nutt.; see Rhodora, xlv. 452 (1943). Local range extended inland from the Coastal Plain to Brunswick Co.: dry pine woods, Seward Forest, southeast of Ante, no. 14,715. See p. 102.

Amorpha fruticosa L. Greensville Co.: thicket along Quarrel's Creek, below Pair's Store, no. 14,623 ; sandy woods and thickets along Fontaine Creek, near Round Hill Church, no. 14,624. Closely approaching the Coastal Plain. See p. 99.

Psoralea psoralioides (Walt.) Cory, var. eglandulosa (Ell.) F. L. Freeman. To the single recorded Virginian station, in Dinwiddie Co. (see Rhodora, xlv. 366 and 452) add one in Brunswick Co.: damp openings in woods, Moseley flat pineland, near Triplett, no. 14,630. See p. 95.

Desmodium lineatum (Michx.) DC. Local range extended inland to Brunswick Co.: rich low woods, "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,716. See p. 101.
*Polygala sanguinea L., forma albiflora (Wheelock) Millsp. Greensville Co.: swaley clearing along Quarrel's Creek, below Pair's Store, no. 14,632. See p. 99 .
*Cyrilla racemiflora L., var. subglobosa Fernald in Rhodora, xlvi. 46, t. 813, figs. 1 and 2 (1944). Known only from a wooded swamp along Mill Creek, north of Skipper's, Greensville Co.

The Identity of Michaux's Acer barbatum.-For many years the northern and montane Sugar-Maple, Acer saccharum Marsh., at least in part, was called A. barbatum Mich. Fl. Bor.Am. ii. 252 (1803). This name was used by Sargent, Silva, ii. 97 (1891), Sargent then including under it the northern SugarMaple, A. saccharum Marsh., the Black Sugar-Maple, A . nigrum Michx. f., the Southern Sugar-Maple or Sugartree, A. foridanum (Chapm.) Pax, the southwestern A. grandidentatum Nutt. and some others-an all-inclusive species later better understood and broken up by him (Man. Trees N. A.) into five species: A. saccharum with bark "becoming on large trunks \(1 / 2^{\prime}-3 / 4\) ' thick and
broken into deep longitudinal furrows, . . gray-brown", leaves pale beneath and "glabrous" (or in the var. Schneckii Rehd. of the Interior pubescent beneath), "calyx greenish yellow, hairy on the outer surface", fruit "glabrous", etc.; A. nigrum Michx. f. with bark "becoming on old trunks thick, deeply furrowed, and sometimes almost black", leaves "with a broad sinus usually more or less closed . . . , dull green on the upper surface, yellow-green and soft-pubescent . . . on the lower surface, . . . with drooping sides", "flowers yellow, . . . calyx . . . pilose on the outer surface near the base", "fruit glabrous"; A. floridanum (Chapm.) Pax, with bark "thin, smooth, pale", leaves "at maturity pale and pubescent below", "rounded, truncate or slightly cordate at the broad base", calyx "ciliate on the margin with long pale hairs", fruit "villose until fully grown"; the shrubby green-leaved and light-barked A. leucoderme Small, with "calyx glabrous or slightly villose", "fruit villose . . . until nearly grown"; and the western A. grandidentatum Nutt.

When, in Rhodora, xliv. 359 and 360 and 426-428, plates 725-727 (1942), I discussed the variations of Acer floridanum, I mistakenly assumed that the almost universal \({ }^{1}\) reduction by students of trees of \(A\). barbatum Michx. to the glabrous-leaved northern and montane \(A\). saccharum (or A. saccharophorum K. Koch) meant that they had settled that point, in my general ignorance of trees supposing it unnecessary to look up my notes made in 1903, when I studied the Michaux material. Michaux in his Flora Boreali-Americana showed clear understanding of our maples, and the specimens in his herbarium closely match his descriptions. Passing A. pensylvanicum, montanum, rubrum and Negundo, we have three species of his Flora to consider: \(\boldsymbol{A}\). saccharinum "L.", A. barbatum Michx. and A. eriocarpum Michx. As said, the material in the Michaux Herbarium at Paris definitely fits his descriptions.
A. eriocarpum was described: "foliis palmato-5-lobis, inaequaliter dentatis, subtus glabriusculis glaucisque; sinubus obtusis: floribus fertilibus subsessiliter conglomeratis. A. tomentosum. Hort. paris. OBS. Fructus junior lanosus; maturus

\footnotetext{
\({ }^{1}\) In Rhodora, xxiv. 79 (1922) Ashe spoke of A. "barbatum Mx. (A. floridanum) (Chap.) Pax" but he did not here discuss his identification.
}
pubens, alis amplissimis, decussato-convergentibus". This is, as it should be from the description, the River-Maple, A. saccharinum L., not Wangenheim and others.

Acer saccharinum of Michaux (following Wangenheim) included the two northern Sugar-Maples, A. saccharum Marsh. in part (A. saccharophorum) and A. nigrum Michx. f. There are two sheets in the Michaux Herbarium, with the small labels probably interchanged by the post-Michauxian mounter. The labels read: "Rivière Sagney et tout le Canada" and "Kentucky, Ohio et Tenassee". One is, as my notes say, "the common Sugar Maple of New England and Quebee", i. e. A. saccharum. The other, the tree collected by Michaux on his trip down the Ohio, is, my notes say, "the best kind of A. nigrum". When we compare these, "HAB. a sinu Hudson ad Carolinam et Tennassée", with Michaux's "OBS. Habitus A platanoidis. Folia modo, uti supra dicti, subtus glabella, modo pubentia", it is evident that the A. saccharinum of Michaux was both the glabrousleaved \(A\). saccharum and the pubescent-leaved \(A\). nigrum. That being the case and Michaux a remarkable observer, why should he describe the Sugar-Maple of the North all over again, in the very next paragraph, and why give the name \(A\). barbatum (bearded) to the glabrous or essentially glabrous northern and montane tree which he so well knew?

The answer is, that Acer barbatum Michaux, as shown by his material, is A. foridanum (Chapm.) Pax (1886). A. barbatum " HAB. \(^{\text {in }}\) Carolina" "foliis breviter trilobis" had the "flores pallido-viriduli", the "Calyces masc. intus densissima barba obsiti", whence the specific name. The calyces of \(A\). floridanum are striking in anthesis on account of the long setiform beard projecting from the summit, the beard particularly conspicuous in the hermaphrodite flowers because it also covers the prolonging ovary. Now, more than 40 years late, I read in my notes on the Michaux material, examined when I had never heard of the pubescent-leaved southern A. foridanum (Chapm.) Pax with bearded calyx, these items: "A. barbatum, flowering branches of very pubescent A. saccharum (Sugar-Maple), nos. 1, 2, 3, 4, \& 5 . \(6=\) leaves and 7 fruit of A. rubrum!'", the latter doubtless due to confusion during handling. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) Torrey and Gray, neither of them knowing Acer floridanum, wrote: "We suspect,
}

In view of the general abundance in the Piedmont and Coastalplain areas of the Carolinas, thence to Florida and west to Texas (inland to southeastern Missouri), of this characteristic tree with thin and pale bark, leaves pale and pubescent beneath, and flowers bearded at summit, it would seem very strange if the tree were not separated until Chapman noted it in 1860 as a variety, and that its specific separation should have waited for Pax in 1886. Michaux knew it and gave it a descriptive name in 1803 !

This interpretation gains support from the known ranges of A. saccharum and A. foridanum in North Carolina. I quote from Coker and Totten, Trees of North Carolina, 79 (1916). Under A. saccharum, Sugar-Maple, they say: "plentiful in our mountain valleys and slopes . . . Ayers and Ashe remark that it is 'Common . . . above an elevation of 2000 feet on cold moist soil"", while A. foridanum, Southern Sugar-Maple, "takes its place in the Piedmont and coastal plain regions of this state and from thence southward". Michaux, with vast experience in the North, where A. saccharum (his A. saccharinum) grew on "Rivière Sagney et tout de Canada", but also, more broadly, "a sinu Hudson ad Carolinam et Tennassée", would not redescribe it in the very next paragraph, if he considered it identical with the more northern and upland trees just described, as a second species from Carolina, with copiously bearded calyxthroat and there collect specimens with flowering branches very pubescent. Such a tree from eastern Carolina, with its characteristically paler and smoother bark could hardly have been missed by him. While I regret the necessity to change, I feel that Acer barbatum should finally be recognized for what it is. I am, therefore, forced to the following transfers.

\footnotetext{
indeed, that the description of A. barbatum, Michx. was drawn up, at least as to the flowers and fruit, from specimens of A. saccharinum [meaning Sugar-Maple]; the only species, so far as we are aware, which has the sepals bearded inside"-T. \& G. Fl. i. 249 (1835). In the Supplement, after Gray had seen the Michaux material, he reafflrmed this judgment, saying: "A. barbatum (Michx.!) should be discarded as a species, it having been founded (as we had indeed long suspected) upon the flowers of A. saccharinum, the fruit of A. rubrum, and a leaf of something else, apparently of A. spicatum, (v. sp. in herb. Michx. propr. \& herb, Richard.)-T. \& G. 1. c. 684 (1840). Gray, apparently, was not disturbed by the very pubescent branchlets; neither was he troubled when he found that "A. saccharinum was wholly established by Linnaeus upon a specimen (leaves only) received from Kalm; which specimen, we find on inspection, belongs to A. dasycarpum! Still as the A. saccharinum of Wangenheim, Michaux, and all succeeding authors, is the true Sugar-Maple, a change in the application of the name would be unwarrantable."-T. \& G.1. c. That happy period is gone.
}

Acer barbatum Michx. Fl. Bor.-Am. ii. 252 (1803), not Sargent and later auth. A. floridanum (Chapm.) Pax, var. villipes Rehder in Sargent, Trees and Shrubs, ii. 255 (1913). A. floridanum, forma villipes (Rehder) Fernald in Rhodora, xliv. 426, t. 725, fig. 3, and 727, fig. 4 (1942).
A. barbatum, forma floridanum (Chapm.), stat. nov. A saccharinum, var. floridanum Chapm. Fl. So. U. S. 81 (1860). A. floridanum (Chapm.) Pax in Engler, Bot. Jahrb. vii. 243 (1886). A. barbatum, var. foridanum (Chapm.) Sargent, Garden \& Forest, iv. 148 (1891) and Silva, ii. 100, t. xci. fig. 4 (1891); Fernald in Rhodora, l. c. t. 725, figs. 1 and 2, and 727, fig. 3 (1942).
A. barbatum, var. Longii (Fernald), comb. nov. A. floridanum, var. Longii Fernald in Rhodora, 1. c. t. 726 (1942).
A. barbatum, var. Longif, forma platylobum (Fernald), comb. nov. A. foridanum, var. Longii, forma platylobum Fernald, l. c. t. 727, figs. 1 and 2 (1942).

To the Virginian records add the following from the Roanoke drainage.
A. barbatum Michx., forma floridanum (Chapm.) Fernald, supra. Brunswick Co.: bottomland woods along Poplar:Creek, southwest of Ebony, no. 14,636. See p. 96.
A. barbatum, var. Longii (Fernald) Fernald, supra. With the last, no. 14,637. See p. 96.

Vitis cinerea Engelm. Local range extended inland to western Greensville Co.: bottomland woods along Quarrel's Creek, below Pair's Store, no. 14,723. See p. 101.

Viola Stoneana House. To the single record from southeastern Virginia (Princess Anne Co.) in Rhodora, xxxviii. 436 (1936) add the following. Norfolk Co.: rich deciduous wooded ridge above swamp, near Gertie, no. 14,201. Dinwiddie Co.: border of swampy woods southwest of Carson, no. 7542. Greensville Co.: rich deciduous woods by Metcalf Branch, east of Emporia, no. 9102; rich deciduous wooded slope by Three Creek, slightly above the "fall-line", northwest of Emporia, no. 11,872. Brunswick Co.: mixed woods, Seward Forest, south of Hobbs Store, no. 14,725. Mecklenburg Co.: dry wooded ridge north of Roanoke River, near Goode's Ferry, no. 7115.

Other specimens, one from Stony Man Mountain, identified by Brainerd in 1914, coll. Steele \& Steele, no. 106, others from Alexandria Co., Steele, are in the Gray Herbarium. It is, therefore, a bit surprising to note the restricted range recorded by Brainerd in his Violets of North America, 21 (1921): "It is of limited range-moist woodlands New Jersey, eastern Pennsylvania to the vicinity of the District of Columbia". The Check-


Photo. B. G. Schubert.
Circaea canadensis: fig. 5 , half of leaf, \(\times 1\)
Var. virginiana, all figs. from type: fig. 1 , plant, \(\times 1 / 2\); fig. 2 , leaf, \(\times 1\); fig. 3, portion of inflorescence, \(\times 10\); FIG. 4 , fruit, \(\times 10\)


Photo. B. G. Schubert.
Erfngium prostratum: fig. 4, fruits, \(\times 10\)
Var. disjunctum, all fign. from type: fig. 1 , portion of plant, \(\times 1\); fig. 2 , head, \(\times 5\); fig. 3 , fruits, \(\times 10\)
list of Plants in the Washington-Baltimore Area (1941) does not mention it. Very slight effort would probably extend its range from southeastern Virginia into eastern North Carolina.
*Rhexia virginica L., var. septemnervia (Walt.) Pursh. Frequent on the Coastal Plain, all collections but the first by Fernald \& Long. James City Co.: Sphagnum-Magnolia swamp, 4 miles west of Williamsburg, Grimes, no. 4315. Norfolk Co.: wet peaty clearings in woods of Pinus serotina, south of Grassfield, no. 4063. Nansemond Co.: low sandy woods along Nansemond River, east of Cahoon Pond, northwest of Suffolk, no. 13,701 ; border of low woods northeast of Baines Hill School, no. 13,979. Sussex Co.: border of wet woods, Coppahaunk Swamp, southeast of Waverly, no. 10,746; swampy woods north of Jarratt, no. 12,749. Prince George Co.: exsiccated argillaceous swale about 3 miles southeast of New Bohemia, nos. 6299 and 6842.

Rhexia virginica, var. septemnervia is the extremely coarse variation of the species, originally described by Walter, Fl. Carol. 130 (1788) with "caule 4 s. 5 -pedali". It is not only much taller than typical \(R\). virginica; its aggregate of characters mark it as a good variety of the southern Coastal Plain, occurring from Florida to Louisiana, northward to southeastern Virginia, whereas the smaller typical \(R\). virginica occurs from Nova Scotia to southern Ontario and Minnesota, thence south to Georgia, Alabama, Tennessee and Missouri, often ascending to high altitudes (up to 2300 ft . in North Carolina and Tennessee). I distinguish the two as follows
R. virginica (typical): stem \(1-5\) (exceptionally to 10 ) dm. high, \(1-4.5 \mathrm{~mm}\). thick toward base (excluding spongy tissue when present), its angles with wings 0.1 -rarely 1 mm . wide; larger leaves \(0.5-3 \mathrm{~cm}\). broad, those at base of inflorescence \(0.5-2 \mathrm{~cm}\). broad, their longer teeth \(0.5-1.2 \mathrm{~mm}\). long; flowers \(1-50\) (rarely -100 ).
Var. Septemnervia: stem ( \(0.6-\) ) \(0.8-1.6 \mathrm{~m}\). high, \(5-8 \mathrm{~mm}\). thick, its conspicuous thin wings \(1-2 \mathrm{~mm}\). wide; larger leaves \(2-4 \mathrm{~cm}\). broad, those at base of inflorescence \(1.5-3 \mathrm{~cm}\). broad, their longer teeth \(1-1.5 \mathrm{~mm}\). long; flowers \(20-200\) or more.

Ludwigia glandulosa Walt. Local range extended inland from Coastal Plain to western Greensville Co.: border of Mitchell's Millpond, west of Brink, no. 14,641; muddy margin of Fontaine Creek, at mouth of Quarrel's Creek, no. 14,727. See p. 101.
*Circaea canadensis Hill, var. virginiana, var. nov. (tab. 896, FIG. 1-4) rhizoma firma \(2.5-3 \mathrm{~mm}\). crassa; foliis firmis cordatis undulato-dentatis; racemi rhachi pedicellisque valde
villosis, pedicellis ad basin purpurascentibus; sepalis dorso villosis.-Brunswick County, Virginia: rich woods, associated with Sanicula Smallii Bickn., "Chamblis bigwoods", Seward Forest, near Triplett, June 23, 1944, Fernald (and J. B. Lewis), no. 14,643 (type in Herb. Gray; isotype in Herb. Phil. Acad.). See p. 97.

Circaea canadensis Hill (1756), as revived by me in Rhodora, xix. 86, 87 (1917), is a plant of rich or alluvial woods; in America occurring from the Gaspé Peninsula to Lake St. John, Quebec, south to Nova Scotia, southern Maine, southern New Hampshire, western Massachusetts and Connecticut, New York and upland West Virginia. Although having the essential characters of the more northern plant, var. virginiana differs in some notable points: its rhizome is stiffer and thicker than in most of the northern material, though in occasional northern plants quite as stout; its leaves are of firmer texture than in most (but not all) of the northern series, the petiole relatively short, the definitely cordate blade (figs. 1 and 2) merely undulate-dentate (in typical C. canadensis (Fig. 5) the membranaceous longpetioled blade merely rounded or subcordate, rarely definitely cordate, at base, and coarsely sharp-dentate); in var. virginiana the bases of the pedicels (and sometimes the adjoining rachis) are conspicuously deep purple (in typical C. canadensis only faintly so); in var. virginiana the backs of the calyx-lobes are somewhat spreading-villous, in typical C. canadensis mostly glabrous. It may prove that the petals are shorter in var. virginiana, the material being too inadequate to warrant a definite assertion. The 2-locular fruits seem inseparable from those of C. canadensis.

Var. virginiana is geographically far removed from the typical northern (and Eurasian) plant. Its type-station is in rich woods at the base of a slope (alt. about 200 feet) in the Seward Forest, where, as stated, it is associated with unusually abundant and southern Sanicula Smallii (Florida to eastern Texas, north to southern Virginia, Tennessee and southeastern Missouri), other occupants (some of them scarce) of these rich woods including such southern species as Zizia trifoliata (Michx.) Fern. ( \(Z\). Bebbii (Coult. \& Rose) Britton), Ligusticum canadense (L.) Britt., Carex oxylepis Torr. \& Hook. and C. flaccosperma Dew., Polymnia Uvedalia, var. densipila Blake (Bermuda, and Missouri
to Louisiana and eastern Texas), etc. These are not the northern species with which typical Circaea canadensis is usually associated. Further collections, which will doubtless be made elsewhere in the South, may reveal other and stronger differences.

Plate 896, figs. 1-4, Circaea canadensis Hill, var. virginiana Fernald, all from TYPE: FIG. 1, a plant, \(\times 1 / 2\); FIG. 2 , leaf, \(\times 1\); FIG. 3, portion of inflorescence, \(\times 10\); Fig. 4 , fruit, \(\times 10\). Fig. 5 , typical C. canadensis: half of characteristic leaf, \(\times 1\), from Frankfort, Maine, Fernald \& Long, no. 14,208.

Sanicula Smalli Bickn. To the few recorded Virginian stations add a prosperous one in Brunswick Co.: rich woods, "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,644. See p. 97.
*Eryngium prostratum Nutt., var. disjunctum, var. nov. (tab. 897, FIG. 1-3, TAB. 898, fig. 1), fructu plus minusve obconico 0.6-0.9 mm. longo \(0.5-0.6 \mathrm{~mm}\). lato.-Southampton Co., Virginia: moist sandy and peaty shore of Whitefield's Millpond, southwest of Corinth, July 7, 1943, Fernald \& Long, no. 14,375; Sept. 18, 1944, Fernald (with J. B. Lewis), nos. 14,728 (TYPE in Herb. Gray.; isotypes in Herb. Phil. Acad. and elsewhere), 14,729 and (in wet litter and humus under shrubs at upper border of beach) 14,730 . See p. 103 .

Eryngium prostratum Nutt. has the usually depressed-cupuliform or subglobose fruits (plate 897, fig. 4) \(0.8-1 \mathrm{~mm}\). broad and mostly shorter ( \(0.4-0.6 \mathrm{~mm}\). high or long), with the scattered papillae capitate or barely stalked. It occurs from northern Florida to eastern Texas, northward to southeastern South Carolina, southwestern Georgia, southwestern Kentucky and western Tennessee, southeastern Missouri and eastern Oklahoma. It thus has a wide Coastal Plain range, largely on the Gulf Coastal Plain and along the Mississippi Embayment. Var. disjunctum, removed by 360 miles from the northeastern known limit of typical E. prostratum (Cambahee River, southwest of Hendersonville, Colleton Co., South Carolina, Wiegand \& Manning, no. 2263), by about 500 miles from the nearest station (muddy shore of small pond near Flint River, Sumter Co., (Harper, no. 1047) in Georgia, and by 600 miles, with the Cumberland Plateau and the Appalachian Upland intervening, from the easternmost station in Kentucky (gravelly edge of small creek, 3 miles south of Murray, Calloway Co., Smith \& Hodgdon, no. 4149), shows a type of geographic affinity which we find in many plants of southeastern Virginia.

Superficially and in the great range of ecological variation in response to lack of or abundance of moisture and shade, the plant of Whitefield's Pond closely matches typical E. prostratum, but its fruits (plate 897, fig. 3) are usually more elongate, tending to obconic, usually narrower than in the typical form and with stipitate papillae. At the type-locality the plant is excessively variable. When discovered in early July, 1943, the loosely ascending stems were only \(5-15 \mathrm{~cm}\). long. In midSeptember, 1944, they were prostrate, rooting at all but the lower nodes and up to 4.5 (rarely -6) dm. long. On open sand the basal leaf-blades ranged from \(1.5-3 \mathrm{~cm}\). long and \(0.8-2 \mathrm{~cm}\). broad, the cauline leaves \(2-10 \mathrm{~mm}\). wide (plate 897 , fig. 1 ). Nearer the water the leaves were thinner and larger, while in the loose litter and humus in the shade of the thicket the plants (plate 898, fig. 1) scarcely yet fruiting, had basal blades 4-7 cm . long and \(2-4.3 \mathrm{~cm}\). broad, the cauline leaves often nearly as broad.

The latest treatment of the genus with us seems to be the Synopsis of the North American Species of Eryngium by Mathias and Constance in Am. Midl. Nat. xxv. 361-387 (1941). There they assign our two prostrate species, E. prostratum Nutt. and E. Baldwini Spreng., the following ranges: E. prostratum, "Tennessee to Florida west to Missouri and Texas"; E. Baldwini "Southeastern Georgia to Florida". Much earlier, in 1888, Coulter \& Rose, Revis. N. Am. Umbelliferae, 102 (1888), cited E. prostratum from Georgia and Kentucky, and later, in their Monograph of the North American Umbelliferae, Contrib. U. S. Nat. Herb. vii. no. 1: 46 (1900), they also cited material of \(E\). prostratum from Indian Territory (now Oklahoma). In the small representation in the Gray Herbarium E. prostratum is represented from South Carolina, Georgia, Florida, Kentucky, Tennessee, Mississippi, Missouri, Arkansas, Louisiana, Oklahoma and Texas, as well as Virginia (var. disjunctum). It is too bad that the authors of the recent Synopsis, who (their p. 361) cite the Gray Herbarium as having lent material of the genus, did not check the representation there (and evidently in other herbaria).

Although in their Monograph of 1900 Coulter \& Rose, 1. c. 45, assign the quite distinct Eryngium Baldwini (altered by them to


Eryngium prostratum: figs. 2-5, heads, \(\times 5\), from different colonies


Fhoto. B. G. Schubert
Eryngium Baldwini: fig. 1, base and median node, \(\times 1\); fig. 2 , fruits, \(\times 10\); figs. \(3-5\), heads, \(\times 5\), from different stations
"baldwinii") the range "from Georgia and Florida to Louisiana and Missouri", they added the significant "although all the material we have seen is from Florida". The small series in the Gray Herbarium shows 3 numbers from Georgia, many from Florida, but none from farther west; but, in view of the many characters distinguishing E. Baldwini and E. prostratum, the only distinctions given in the recent Synopsis are bound to perplex the beginner:
> "Involucral bracts shorter than the heads; bractlets exceeding the fruit; fruit 1 mm . in diameter
> 39. E. Baldwini. Involucral bracts equalling the heads; bractlets shorter than the fruit; fruit 2 mm . in diameter.
> 40. E. prostratum."

In attempting to identify plants by these characters one quickly finds the length of bracts very unstable but the length of bractlets very constant, while it is most difficult in E. prostratum to find any ripe fruits more than half the diameter here assigned them (see plate 897, fig. 4), unless, perchance, they referred to the persistent calyx-segments which cap the fruit. In E. prostratum, typical, the cauline leaves have dilated, flat and entire to coarsely toothed or cleft blades, in E. Baldwini (plate 899), to quote Coulter \& Rose, they are " 3 -parted (rarely entire or lobed), the divisions from lanceolate to filiform". In \(E\). prostratum all but sometimes the uppermost bractlets are shorter than the flowers, so that the summits of the loosely spreadingascending perianth are evident, the bractlets, often appressed to the young flower, being coarsely trident-shaped, with the 2 lateral lobes broad, thus suggesting the bracts of Betula populifolia; the mature head is \(3-10 \mathrm{~mm}\). long and subtended by an involucre of variable length, sometimes (but rarely) as prescribed, equaling the heads (plate 898, fig. 2), often (fig. 3) two thirds as long, again (Fig. 4) barely half as long, and sometimes (fig. 5) so short as scarcely to equal half the diameter of the head! In E. Baldwini (plate 899), on the other hand, the bractlets are as stated by Mathias \& Constance, "exceeding the fruit", so that the erect and connivent calyx-segments are prevented from spreading. Incidentally the long bractlets are lance-attenuate and entire (not broadly 3 -lobed). The mature head (figs. 3-5) is \(2-6 \mathrm{~mm}\). high, usually with very short involucres (fig. 3) but sometimes with them half as long as the
head (FIG. 4) or rarely quite as long (fig. 5). The best character, in addition to the foliage and bractlets, is in the mature fruit. In \(E\). prostratum the large calyx-segments, capping the fruits (plate 897, figs. 3 and 4), are divergent to only loosely ascending and the papillae on the body of the fruit are scattered. In \(E\). Baldwini the persistent calyx-segments are erect and strongly connivent above (plate 899, fig. 2) and the papillae are closely crowded.

Since the strongest specific characters of these two species have been previously so little clarified, it seems desirable to show them in the accompanying plates. It is also important to discuss the characteristic and strictly erect plant of the South which passes as Eryngium integrifolium Walt. Fl. Carol. 112 (1788). Taking the characters chiefly from Coulter \& Rose, Contrib. U. S. Nat. Herb. vii. 48, we get

Erect, 3 to 9 dm . high, branching above; leaves oblong or oblongobovate, the basal ones entire or crenately toothed [very rarely entire; Small says simply "serrate-crenate"], upper ones becoming sharply serrate or even laciniately toothed; bracts linear and entire or with 2 to 4 prickly teeth longer than the heads; bractlets equally 3 -cuspidate, longer than the flowers.

Now, taking the characters of \(E\). prostratum chiefly from Coulter \& Rose, l. c. 45, we get

Prostrate, diffusely branched; lower leaves oblong, entire, fewtoothed, or lobed at base, the upper ovate, few-toothed or entire, with some additional trifid ones; bractlets very small [broadly trifid above].

The reason for intruding Eryngium integrifolium into the discussion is, that Walter, in describing it, may have had E. prostratum Nutt. before him. Torrey \& Gray, uniting E. prostratum and \(E\). Baldwini as a single species, referred \(E\). integrifolium with doubt to the aggregate; and in other works, like Watson's Bibliographic Index and Index Kewensis, it has been similarly referred to \(E\). prostratum as a doubtful earlier name, but not formally taken up, since no \(E\). prostratum was actually known from South Carolina. Now, however, with good material of it known from near Hendersonville in Colleton Co., only about 45 miles from Charleston, Walter's species comes into the picture. Here is Walter's account
\(\left.\begin{array}{cc}\text { integrifoli- } & \text { caule procumbente ramoso; foliis radicalibus } \\ \text { rotundatis, integris, planis; foliis caulinis }\end{array}\right\}\)

Obviously caule procumbente is far from good for the tall (up to 9 dm .) and erect so-called Eryngium integrifolium of recent treatments (E. virgatum Lam.), but it is the striking habital character of E. prostratum. Caule ramoso would do for either (if the larger and somewhat forking plants of \(E\). virgatum are considered). Foliis radicalibus rotundatis is as poor for one as for the other. Foliis integris is perfect for most material of the procumbent E. prostratum, not at all good for characteristic \(\boldsymbol{E}\). virgatum. Foliis caulinis nervosis, ovato-lanceolatis would do for either, while apice serratis basi integris is good for E. prostratum, not for \(E\). virgatum; and serraturis subspinosis is perfect for \(E\). virgatum. Foliis floralibus trifidis is good for \(E\). virgatum, in which occasional involucral bracts are 3 -cleft; and paleis trifurcis is unquestionably good for the long 3 -cleft bractlets of the latter, the 3 -forked pales (bractlets) of \(E\). prostratum being hidden in the head. Capitulis parvis caeruleis is all right for either. It is difficult to reconcile the procumbent stem, entire basal leaves and cauline leaves with entire bases and teeth only at apex, with \(E\). virgatum. The other characters, when not shared by both species, are better for that than for E. prostratum. It is also difficult to imagine Walter confusing such very different species. When Coulter \& Rose, considered whether Walter's E. integrifolium might be either E. Baldwini or E. prostratum, they concluded: "But Walter's description is so meagre [mixed or confused would have been better], and the two species in question so variable, that there seems to be no way of positively determining which one of them is \(E\). integrifolium Walter"-C. \& R., Revis. N. Am. Umbelliferae, 102 (1888). Soon thereafter, two distinguished botanists at the British Museum of Natural History, James Britten and Edmund G. Baker, took up the point:
E. integrifolium Walt. Fl. Carol. 112 (1788). Messrs. Coulter \& Rose . . . say that it "seems impossible to determine" this plant. The specimen in Walter's Herbarium, however, although fragmentary, is clearly identical with \(E\). virgatum Lam. as was indeed correctly indicated by Sprengel (Syst. i. 870) in 1825. Walter's name must therefore
be substituted for Lamarck's.-Britten \& E. G. Baker, Journ. Bot. xxxviii. 244 (1900).

In view of the facts, that Walter's own herbarium is lost, that the series which John Fraser carried to England was many times handled \({ }^{1}\) and its specimens given to those who were specially interested, \({ }^{2}\) and that it had at least one change of lodging before it reached the British Museum, one can hardly escape the conviction that the specimen discussed by Britten \& Baker does not tell the whole story.

Plate 897, figs. 1-3, Eryngium prostratum Nutt., var. disjunctum Fernald: fig. 1, portion of type, \(\times 1\); fig. 2, head, \(\times 5\), from type; fig. 3, fruits, \(\times 10\), from type. Fig. 4, typical E. prostratum: fruits, \(\times 10\), from Saratoga, Mississippi, Tracy, no. 8631.

Plate 898, figs. 2-5, Eryngium prostratum Nutt., heads, \(\times 5\) : fig. 2, from Chattahoochee River, Seminole Co., Georgia, Eyles, no. 7081; fig. 3, from Lake Charles, Louisiana, Allison, no. 210; fig. 4, from Sapulpa, Oklahoma, Bush, no. 193; fig. 5, from southwest of Hendersonville, South Carolina, Wiegand \& Manning, no. 2263. Fig. 1, var. disuunctum Fernald; base of very large plant, \(\times 1\), from type-station, Fernald, no. 14,730.

Plate 899, Eryngium Baldwini Spreng. : fig. 1, base and median node, \(\times\) 1, from Indian River, Florida, Curtis, no. 1002; fig. 2, fruits, \(\times 10\), from north of Waverly, Camden Co., Georgia, Wiegand \& Manning, no. 2259; Fig. 3, head, \(\times 5\), from no. 2259; fig. 4, head, \(\times 5\), from Shell Island, Florida, Tracy, no. 7446; Fig. 5, head, \(\times 5\), from Fort Myers, Florida, J. P. Standley, no. 108.

Cornus foemina Willd. (C. stricta Lam.). Range extended inland to Brunswick Co.: wooded swamp along Quarrel's Creek, "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,732 . See p. 101.

Nyssa sylvatica Marsh., var. biflora (Walt.) Sarg. Local range extended inland to Brunswick Co.: along Sawmill Branch, Seward Forest, near Triplett, no. 14,647.
N. sylvatica, var. caroliniana (Poir.) Fernald in Rhodora, xxxvii. 436, pl. 400 (1935). Local range extended to Brunswick Co.: "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,648.

Rhododendron canescens (Michx.) Sweet. Local range extended inland to Brunswick Co.: by small branch in woods, Seward Forest, east of Hobbs Store, no. 14,733.
*Leucothoe axillaris (Lam.) D. Don., var. ambigens, var. nov. (тab. 901), a var. typica differt foliis lanceolatis vel lanceo-lato-oblongis superna sensim angustatis acuminatis; racemorum

\footnotetext{
1"Walter in his Flora Caroliniana has another species . . Of this plant I was not able to find any information in his Herbarium."-Pursh, Fl. Am. Sept. 415 (1814). If we accept the reputation given Pursh by Thomas Nuttall and other contemporaries, it is a wonder that any of Walter's plants were preserved for inspection by later students!
\({ }^{2}\) See Fernald \& Griscom, Rhodora, xxxix. 497 (1937).
}


I'hoto. B. G. Schubert.
Levcothoe axillaris: fig. 1 , type, \(\times 1 / 2\), of Andromeda axillaris Lam., after Cintract; FIG. 2, flowering branch, \(\times 1\), of \(L\). platyphylla small; Fig. 3, portion of inflorescence, to show blunt bracts and calyx-segments, \(\times 4\)


1'hoto. B. G. Schubert.
Leucothoe axillaris, var. ambigens: fig. 1 , portion of type, \(\times 1\); fig. 2 , portion of inflorescence of TYPE, \(\times 4\)
bracteis subrotundis obtusis; sepalis oblongo-ovatis obtusis.Swampy woods and clearings, southeastern Virginia to Florida. Virginia: by Lake Drummond, Great Dismal Swamp, Norfolk Co., April 8, 1939, J. T. Baldwin, Jr., no. 120; swampy woods, west end of Lake Drummond, Nansemond Co., Dec. 30, 1938, Fernald \& Long, no. 9683; border of pine woods near Benefit, Norfolk Co., May 7, 1935, Fernald \& Griscom, no. 4480; low woods, Adams Swamp, Nansemond Co., April 9, 1937, Fernald \& Long, no. 7124; Goodman Swamp, near St. Mary's Church, southwest of Whaleyville, Nansemond Co., Sept. 17, 1937, Fernald \& Long, no. 7565; wet woods and clearings, Great Dismal Swamp, southeast of Whitemarsh School, Nansemond Co., Oct. 12, 1929, Fernald \& Long, no. 11,600 (autumnal flowering); swampy thickets in sandy and peaty pine barrens, east of Cox Landing, south of South Quay, Nansemond Co., May 10, 1940, Fernald \& Long, no. 11,887 (type in Herb. Gray.); swampy pine woods south of Yadkin, Norfolk County, April 21, 1942, Fernald Long \& Abbe, no. 14,213. North Carolina: low oak-pine woods, 8 miles south of Williamston, Martin Co., June 21, 1927, Wiegand \& Manning, no. 2373. South Carolina: locality not stated, type of Andromeda axillaris, \(\beta\). Lam.; rich pine woods, Pine Island, Horry Co., April 9, 1932, Weatherby \& Griscom, no. 16,608. Florida: several sheets without further data, Chapman.

Leucothoe axillaris, var. ambigens is so named because of the extreme doubt, which, until after the war, cannot be removed, as to its exact identity. That it is an extreme variety of \(L\). axillaris (Lam.) D. Don there can be no doubt, but whether it has one or more earlier names is the problem. The type of Andromeda axillaris Lam. Encycl. i. 157 (1783) is shown in plate 890, fig. 1. It is the extreme of the species with ovate, oval or ovate-oblong leaves abruptly short-tipped, the shrub which abounds on the Coastal Plain, from Florida to Louisiana, northward to North Carolina and, less characteristically and locally, into southeastern Virginia (swamp of Nottoway River, Smith's Ferry, Southampton Co., Fernald \& Long, no. 7935; swampy woods north of Whitemarsh School, Nansemond Co., \(F . \& L\)., no. 10,764 ), both of the Virginia collections being transitional to var. ambigens.

There are two very similar species, Leucothoe axillaris of the Coastal Plain, and the shrub of the mountain-region which passes, perhaps incorrectly, as L. Catesbaei (Walt.) Gray (plate 902). L. axillaris, when it lives up to the type (plate 900, fig. 1) and to Gray's description in the Synoptical Flora,
"leaves from oval to oblong-lanceolate . . . , mostly with an abrupt acumination, serrulate mainly toward the apex," is easily distinguished because the bracts of the young raceme are broadly rounded and the broad ovate-oblong sepals blunt, whereas the mountain species which we call L. Catesbaei (plate 902) has "leaves ovate-lanceolate to lanceolate and tapering into a long and slender acumination, serrulate throughout" and the bracts are acute, the acutish sepals narrow. L. axillaris, var. ambigens has leaves which can easily be matched by those of the upland species and in some collections, such as Fernald \& Long, no. 7565, sharp serrulations extend three-fourths to the base, more strongly than in much of \(L\). "Catesbaei".

Now the difficulty is, that Walter could hardly have escaped seeing either typical Leucothoe axillaris or transitional forms or var. ambigens somewhere in the eastern Carolinas or Georgia, for either typical L. axillaris, the extreme described as L. platyphylla Small in Bull. Torr. Bot. Cl. xxviii. 290 (1901) (plate 900, FIGS. 2 and 3), or intermediates or extreme var. ambigens are in his territory, as shown by abundant specimens. Nevertheless, the only evergreen Andromeda of this affinity described by Walter was his
A. Catesbaei 3. racemis ovatis axillaribus, corollis ventricoso tubulosis bracteatis; foliis alternis petiolatis, ovato-lanceolatis, serrulatis, crassis, perennantibus.-Walt. Fl. Carol. 137 (1788).

When, not realizing that the Coastal Plain species may also have ovate-lanceolate or narrower leaves "serrulatis", Gray examined Walter's type he merely made the memorandum that it " = A. spinulosa Pursh." But Pursh had some points scrambled, for he described A. axillaris, with a var. longifolia (foliis lineari-lanceolatis longissimis) from "the mountains of Virginia to Georgia", whereas the type of A. axillaris is of the shortestand broadest-leaved extreme of the Coastal Plain species! As to A. spinulosa Pursh, with A. Catesbaei cited as a synonym, his description seems to be that of the montane species, although he specifically assigned it to "Lower Carolina", the Coastal Plain region.

Since none of the original descriptions note any of the really distinctive characters, while those botanists who early applied or misapplied the names did not seem to understand them, we
are left with the problems as to the true identities of Andromeda Catesbaei Walt. and of A. spinulosa Pursh. It is not unreasonable to suppose that, when the types can be studied with the real specific differences in mind, we may have to reduce \(A\). Catesbaei Walt. to the Coastal Plain species and to decide on the proper name for the montane one.

It is not without interest that Lamarck recognized two varieties of his Andromeda axillaris: the typical plant, "foliis ovatis", and \(\beta\). "foliis lanceolatis", but he gave no name to the latter; the specimen, as shown by a photograph of it, being Leucothoe axillaris var. ambigens from South Carolina.

Plate 900, Leucothoe axillaris (Lam.) D. Don: fig. 1, type of Andromeda axillaris Lam., \(\times 1 / 2\), after Cintract; FIG. 2 , flowering branch of \(L\). platyphylla Small, \(\times\) 1, from Emanuel Co., Georgia, Harper, no. 2093; fig. 3, portion of inflorescence, to show blunt bracts and calyx-segments, \(\times 4\), from near Augusta, Georgia, Olney \& Metcalf.

Plate 901, L. axillaris, var. ambigens Fernald: fig. 1, portion of type, \(\times 1\); FIG. 2, portion of inflorescence of TYPE, to show blunt bracts and calyxsegments, \(\times 4\).

Plate 902, L. Catesbaei (Walt.) Gray, as usually interpreted: fig. 1, portion of flowering branch, \(\times 1\), from Biltmore, North Carolina, Bilt. Herb., no. \(1280^{\text {b }}\); FIG. 2, portion of inflorescence, to show acute bracts and calyxsegments, \(\times 4\), from no. \(1280^{\text {b }}\).

Vaccinium tenellum Ait. Range extended inland to Greensville Co.: sandy woods and thickets along Fontaine Creek, near Round Hill Church, no. 14,651.

Lysimachia lanceolata Walt. Very local in Brunswick Co.: border of rich woods, Seward Forest, near Triplett, no. 14,652.

Fraxinus caroliniana Mill., var. pubescens (M. A. Curtis) Fernald. Local range extended inland to western Brunswick Co.: bottomland woods along Poplar Creek, southwest of Ebony, no. 14,653 .

Ligustrum sinense Lour. To the records from more easterly counties add one from Greensville Co.: thicket by Meherrin River, below Emporia, no. 14,604.
*Phacelia fallax Fernald in Rhodora, xlvi. 51, t. 814 (1944). Known in Virginia only from Giles Co.: May, 1869, Canby.
*P. dubia (L.) Trel., var. interior Fernald in Rhodora, xlvi. 54, t. 816, fig. 4 (1944). Alleghany Co.: dry roadside, Covington, Hunnewell, no. 4080.
*Heliotropium amplexicaule Vahl. Henrico County: waste ground, Richmond, May 11, 1884, J. R. Churchill as H. anchusaefolium Poir.; waste places and roadsides, Richmond, Fernald, Long \& Smart, no. 5904, as H. europaeum L. Dinwiddie County: waste ground and cinders of freight-yard of

Atlantic Coast Line Railroad, Petersburg, Fernald \& Long, no. 12,172, as H. europaeum.
H. amplexicaule Vahl, a decumbent perennial, with many soon forking branches, sessile or but short-petioled narrowly oblonglanceolate leaves and lilac flowers in at first dense cymes, has fruit very similar to that of \(H\). indicum. It was formerly erroneously reported as \(H\). europaeum, an annual with 4 -lobed (instead of 2 -lobed) fruits and long-petioled elliptic leaves. The latter is before me from streets of Alexandria, Virginia, September 28, 1897, Steele. H. amplexicaule (with an often misleading name) is naturalized from South America.

Scutellaria parvula Michx., var. Leonardi (Epling), comb. nov. S. Leonardi Epling in Am. Journ. Bot. xxvi. 20 (1939). S. parvula, var. ambigua sensu Fernald in Rhodora, iii. 201 (1901), not S. ambigua Nutt. Gen. ii. 37 (1818). S. ambigua sensu Leonard in Contrib. U. S. Nat. Herb. xxii. 729 (1927), not Nutt. (1818).

When I identified this smoothish extreme of Scutellaria parvula as S. ambigua Nutt. I was apparently in error. Epling has stated that the Nuttall material at Kew, as well as the representation of it at the Philadelphia Academy, suggests a mixture of S. nervosa Pursh with S. parvula, var. Leonardi, only Epling, naturally, did not use the latter combination. He speaks of Leonard "who, in his careful and useful revision, recognized the specific distinctions clearly but, lacking access to the type, was misled as to the name." The "specific" distinctions are those of superficial pubescence and size and slight difference of shape of leaf-outline, points which, if treated as "specific", would break such a complex transcontinental series as S. epilobiifolia A. Hamilt. into many such "species". Yet Epling, in spite of a very real difference in the nutlets, throws the latter, not even as one of his "subspecies", back into the Old World S. galericulata L. As to the "specific distinctions clearly" "recognized" in Leonard's revision one finds himself in some perplexity. On p. 729 of his study, Leonard said under S. parvula: "Scutellaria parvula is closely related to S. ambigua, since both species have similar flowers and roots and resemble each other in habit. There are, however, certain striking differences. The stem of S. ambigua is glabrous, or, at most, roughened or finely puberulent on the angles, while its leaves are rather narrowly ovate or
more nearly lanceolate, strongly involute, and not exceeding 7 mm . in width. . . . Plants are not uncommon, however, in the ample material of the U. S. National Herbarium, which seem to be intermediate between the two species."

Remembering, then, that S. ambigua sensu Leonard is "strikingly" different from S. parvula because its "stem is glabrous, or, at most roughened or finely puberulent on the angles" and the leaves are "strongly involute", we turn to the discussion of the former at the bottom of the page and read: "Scutellaria ambigua is a well-marked species, readily distinguished from S. parvula by its minutely puberulent stem and more pointed leaves with revolute margins" (italics mine). Furthermore, although Nuttall, in describing S. ambigua, definitely said, "Нав. In dry and open forests, Ohio", Leonard says: "Type locality: Council Bluff on the Missouri." It is too bad that the name S. ambigua does not really belong here. Some such name is needed for the "specific distinctions clearly" "recognized" in these quotations.

As I understand the Nuttall type of Scutellaria ambigua, Dr. Pennell having kindly sent me the specimen at the Philadelphia Academy for study, it is a stiff and thick-leaved extreme of \(S\). nervosa Pursh, with the larger cauline leaves unusually small and subentire or barely dentate, narrowly ovate and \(1.5-2.5 \mathrm{~cm}\). long by \(8-15 \mathrm{~mm}\). broad. It is highly localized: on Linnaean Hill in the District of Columbia (Steele in U. S. Nat. Herb.), somewhere in Ohio, presumably near the Ohio River (Nuttall's type), near Blue Licks in northern Kentucky (Short) and on limestone outcrops at Mascot, Tennessee (Billings, Cain \& Drew).

Typical Scutellaria nervosa is much more flexuous, with the leaves membranaceous, the larger median cauline ones broadly to narrowly ovate and dentate with several teeth on each margin, \(2-5 \mathrm{~cm}\). long by \(1-3.25 \mathrm{~cm}\). broad, the young foliage abundantly strigose on the upper face. This plant is of broad range in the Piedmont region and Appalachian Upland (Pursh's type, which Dr. Pennell has kindly sent me for study, coming from Winchester, Virginia) and only slightly and exceptionally intruding into the lower or flatter marginal areas. In its narrower- and firmerleaved extremes it merges into \(S\). ambigua. Superficially resembling typical \(S\). nervosa is the plant of the outer Piedmont
and Atlantic Coastal Plain region, crossing westward mostly north of the Appalachian Upland, as far as Iowa and found at relatively low levels along the Mississippi Valley. This extreme, which has the upper surfaces of the leaves glabrous, was called to my attention by Mr. Bayard Long. It and typical S. nervosa are neighbors near Philadelphia and Washington and at some points along the Ohio River but the general avoidance of the Appalachian Upland of the plant with upper leaf-surface glabrous is so evident from the 118 sheets of specimens before me that I am looking upon \(S\). nervosa as consisting of three geographic varieties as follows. For the use of the material in their care I am greatly indebted to Dr. Fred J. Seaver of the New York Botanical Garden, Dr. Francis W. Pennell and Mr. Bayard Long of the Academy of Natural Sciences, Philadelphia, and Dr. William R. Maxon of the United States National Herbarium.

Scutellaria nervosa Pursh, var. typica. S. nervosa Pursh, Fl. Am. Sept. 412 (1814) from "the banks of rivulets: Virginia", Winchester, in the mountains. S. gracilis Nutt. Gen. ii. 37 (1818). S. parvifora Raf. ex A. Hamilt. Mon. Scut. 37 (1832) as a syn. of S. gracilis Nutt., without diagnosis. [Epling, Univ. Calif. Pub. Bot. xx. no. 1. 20 (1942) gives as the first synonym of \(S\). nervosa "S. teucrifolia J. E. Smith, in Rees Cycl. 32, No. 15, 1816; a synonym, based upon the preceding [S. nervosa]". But, if he had looked up Smith's publication of 1819, not 1816, he could hardly have made that statement, for as no. 6 Smith maintained S. nervosa, taking his account from Pursh; while his no. 15 , the new \(S\). teucrifolia, was a segregation from the mixed S. integrifolia L. (1753), and he did not mention S. nervosa in his account of it. In fact, at the end of his discussion of S. teucrifolia, Smith explicitly said: "Mr. Pursh seems not to have recognized this plant. At least we can refer it to none of his species." See discussion under S. elliptica at end of this Contri-bution].-Eastern Pennsylvania to central Ohio, southern Indiana and southeastern Illinois, south in the Piedmont and among the mountains to western North Carolina and eastern Tennessee; also northwestern Louisiana.
*Var. calvifolia, var. nov., a var. typica recedit foliis supra glabris.-Northern New Jersey to southern Ontario, west to southeastern Iowa, s. on or near the Coastal Plain to Virginia, and in the interior to southern Ohio, southern Indiana and western Tennessee. The following are referred here. New Jersey: Little Falls, Aug. 22, 1889, Geo. D. Hulst; rare at foot

Photo. B. G. Schubert.
Lelcothoe Catesbaei, as usually interpreted: fig. 1 , flowering branch, \(\times 1\); fig. 2 , portion of inflorescence, to show
acute bracts and calyx-segments, \(\times 4\)

I'hoto. B. G. Schubert.
Pycnanthemum monotrichum, all figs. from type: fig. 1, plant, \(\times 1 / 2 ;\) fig. 2 , leaf, \(\times 1\); fig. 3, venation of back of leaf, \(\times 4\); FIG. 4, flower, \(\times 5\); FIG. 5 , portion of glomerule, \({ }^{'} \times 10 ;\) Fig. 6 , calyx,\(\times 10\)
of bluff in woods north of Weston's Mills below New Brunswick, Mackenzie, no. 7041; Lambertville, June 2, 1886, R. E. Schuh, May 28, 1921, Mackenzie; Princeton, 1883, J. E. Peters; along Crosswick's Creek, Bordentown, Long, no. 10,139. Pennsylvania: along East Swamp Creek, Milford Square, Long, no. 34,645; Telford, Benner, no. 430½; Rockhill, July, 1882, Fretz; West Rockhill, June 6, 1926, F.H. Strohm; near Quakertown, June 3, 1894, S. Brown; near Tinicum Creek, Ottsville, Long, no. 33,392; Palm, June 18, 1925, Mary H. Williams; Sumneytown, May 30, 1903, Albrecht Jahn; near Ridge Valley Creek, Finland, Long, no. 24,787; Ivy Rock, May, 1894, S. Brown, May, 1906, Long; Byberry, Martindale; Manayunk, C. E. Smith and others; Fairmount Park, Philadelphia, C.E. Smith; banks of Schuylkill near Philadelphia, July, 1844, Thurber; ne. of Friedensburg, Wilkens, no. 5526; slope of Wagenhorst Hill, nw. of Kutztown, Wilkens, no. 5137; Conewago, May 28, 1889, Heller, Small, May 29, 1889, Small; limestone bluffs on Conestoga, above Lancaster, June 22, 1913, Long; Aspinwall, June 8, 1901, J. A. Shafer. Delaware: near Perry's Tavern, June 12, 1897, Canby. Maryland: Conowingo, May 30, 1907, Bartram, June 24, 1907, J. J. Carter. District of Columbia: Insane Asylum woods, in vicinis Washington, May 21, 1879, L. F. Ward, May 26, 1889, Coville. Virginia: rich sandy and loamy wooded slopes and clearings along Appomattox River, just above the "fall-line", about 2 miles west of Petersburg, May 12, 1940, Fernald \& Long, no. 11,905 (type in Herb. Gray., isotype in Herb. Phil. Acad.). Ontario: near Kingsville, J. Macoun, no. 54,679. Оhio: Florence, Erie Co., 8/7, 1897, Moseley; Muskingum, Herb. Schweinitz; Columbus, 1837, and 1840, Sullivant; "Fernbank"ad ripas fluminis Ohio, prope "North Bend", Short. Indiana: Seymour, Pennell, no. 11,751, Friesner, no. 16,774. Tennessee: woods along river, Clarksville, E.J. Palmer, no. 17,601; bank of Tennessee R., Rockport, Harger, no. 7893. Illinois: Tazewell Co., July, 1889, F. E. McDonald; Athens, Menard Co., 1861, E. Hall; Olney, Richland Co., E. J. Palmer, no. 15,585; Madison Co., June, 1877, Eggert; St. Clair Co., June, 1877, Eggert; near No. 13, Saline Co., Pepoon \& Barrett, no. 5154. Iowa: Cedar Creek, Stockport, E. W. Graves, no. 2052; (In the U. S. Nat. Herb. there is a sheet without locality on the original label, but with an annotation which seems to be "Knobs. Ia. Mohr lg. 1854." The specimens are of the strigose-leaved var. typica, such as one expects from the Knobs of Kentucky and Tennessee, but not from Iowa. The disparity in the two handwritings on the label suggests some error).

Var. ambigua (Nutt.), comb. nov. S. ambigua Nutt. Gen. ii. 37 (1818) not sensu Leonard in Contrib. U. S. Nat. Herb. xxii. 729 (1927). S. parvula, var. ambigua (Nutt.) Fernald in Rhodora,
iii. 201 (1901) as to basonym only.-See discussion on pp. 172 and 173.

Agastache nepetoides (L.) Ktze. Charles City Co.: old clearing in dry woods above Chickahominy River, Eagle Bottom, F. \& L., no. 11,724. Surry Co.: rich wooded ravine, northwest of Ingersoll, no. 11,723; rich alluvial thickets back of sand-beach of James River, below Sunken Meadow Beach, no. 8443.

These stations are here cited because, from the most recent map of ranges of Agastache, Lint \& Epling in Am. Mid. Nat. xxxiii. map 1, p. 213 (1945) one is likely to assume that the species is not in southeastern Virginia-the map showing an eastern boundary from near Washington southwestward across western Virginia, more than 200 miles west of Surry County.
*Glechoma hederacea L., forma acutiloba Neuman. The form with sharp-toothed leaves. Surry Co.: roadside bank about 3 miles southwest of Surry Courthouse, no. 13,127.
*Pycnanthemum monotrichum, sp. nov. (tab. 903), planta habitu \(P\). aristato simillima; caule puberulo \(0.8-1.2 \mathrm{~m}\). alto ramulis elongatis deinde floriferis; foliis ovatis vel ovato-lanceolatis acuminatis viridibus serrato-dentatis, majoribus \(4-5.5 \mathrm{~cm}\). longis, \(2-3 \mathrm{~cm}\). latis, venis lateralibus \(5-8\)-jugis venis superioribus supra medium laminae exortis; dentibus calycis lanceolatoaristatis subaequalibus \(2.5-3 \mathrm{~mm}\). longis, plerumque trichoma longum flexuosum multicellare infra apicem gerentibus.-Dry sandy woods and clearings, southeastern Virginia; northeast of Homeville, Sussex County, July 20, 1936, Fernald \& Long, no. 6380 (type in Herb. Gray.; isotype in Herb. Phil. Acad.); Kilby, Nansemond County, September 11, 1935, Fernald, Long \& Fogg, nos. 5023, 5024 and 5025 ; all distributed as \(P\). clinopodioides T. \& G.

As noted, Pycnanthemum monotrichum (from the usually solitary long trichomes near the tips of the calyx-teeth) was distributed as \(P\). clinopodioides. That was on account of the long flexuous bristle just referred to; but its calyx is nearly regular, with essentially uniform teeth, all \(2.5-3 \mathrm{~mm}\). long, whereas \(P\). clinopodioides has the calyx definitely bilabiate, with the longer (lower) and merely acuminate (instead of aristate) teeth only 1-1.5 mm. long, while its leaves are membranaceous, those ot \(P\). monotrichum subcoriaceous. Grant \& Epling have labelled all the specimens as a probable hybrid of \(P\). hyssopifolium Benth. and P. Tullia Benth. (i. e. P. pycnanthemoides (Leavenw.) Fern., the name required by the International Rules but which Grant and Epling refuse to take up \({ }^{1}\) ). Just why it should be called such

\footnotetext{
\({ }^{1}\) Dr. Epling rejects the name required by the International Rules, Pycnanthemum
}
a hybrid (see Grant \& Epling, Study of Pycnanthemum, Univ. Calif. Pub. Bot. xx. no. 3: 234 (1943)) I do not know and such a disposition of it would certainly be better supported if the plant grew within flying-distance for bees of \(P\). pycnanthemoides! \(P\). monotrichum occurs in acid sandy woods of the Coastal Plain, near where both \(P\). hyssopifolium and \(P\). setosum Nutt. (see note at end of discussion, p. 178) are found, but the only station in Virginia cited by Grant \& Epling for true P. pycnanthemoides ( P. Tullia), on their p. 211, is in Patrick County at the base of the Blue Ridge, 150 miles west of the westernmost station for \(P\). monotrichum, altogether too long a flight for the pollencarrying bee! \({ }^{1}\) Their most eastern station in North Carolina (Durham County) is, to be sure, a little nearer, only 115 miles away, but even that would require a tremendous relay of bees to carry the necessary pollen-grain.

If \(P\). monotrichum had been called a hybrid of \(P\). pycnanthemoides, var. viridifolium Fern. in Rhodora, xxxix. 445 (1937), our plate 904, the relay of bees required would be less, but this plant, type from the inner Coastal Plain in Greensville County, Virginia, is treated by those authors as one of their so-called species, P. viridifolium (Fern.) Grant \& Epling, 1. c. (1943), which, in spite of the type-station on the Coastal Plain, is said in their key (p. 203) to be "plants of the Appalachian Mountains from Virginia and West Virginia to Alabama", not a significant morphological character. But even so, P. pycnanthemoides, var. viridifolium (plate 904) is a plant of richer, basic to calcareous, soils and its nearest stations to \(P\). monotrichum are too far away ( \(18-35\) miles) to make the guess very plausible. Incidentally, \(P\). pycnanthemoides and its var. viridifolium would scarcely suggest themselves as related to \(P\). monotrichum to those who know the plants. Besides the very large leaves and outer bracts and broad open inflorescences, with multicellular flexuous trichomes very numerous on calyx-teeth and inner bracts, \(P\).

\footnotetext{
pycnanthemoides, presumably because it seems meaningless. Would he carry this philosophy so far as to exclude Arctostaphylos Uva-ursi (Arctostaphylos being the Greek, Uva-ursi the Latin for bearberry), Clethra alnifolia (Clethra the ancient Greek equivalent of the Latin Alnus) and all others in which the trivial repeats the meaning of the generic name?
\({ }^{1}\) Although radio-listeners have for several years gained the impression that "The Flight of the Bumblebpe" is never ending, the flights of that busy individual are actually limited in extent, rarely two miles I am told.
}
pycnanthemoides and its variety have the calyx strongly bilabiate; and, as originally illustrated and described by Leavenworth, when he set up the genus Tullia with a single species, the corolla is very large for the genus, deep pink to purple and with the lateral lobes of the lower lip spreading-ascending. Unfamiliar with such striking field-characters, the recent monographers of Pycnanthemum made nothing of the large purple to deep pink corolla! In brief, P. monotrichum, with its nearly regular calyx, mostly solitary long trichomes on the aristate calyx-teeth, small whitish corollas, etc., shows no more influence of \(P\). pycnanthemoides (or Tullia) than do \(P\). hyssopifolium and \(P\). setosum, i. e. none at all.
\(P\). monotrichum seems to be a definite species of the sandy Coastal Plain. Although with broad foliage somewhat suggesting that of \(P\). setosum, it differs in several characters from it. It is generally taller, its leaves are more ovate and acuminate, sharply serrate-dentate, its calyx-teeth \(2.5-3 \mathrm{~mm}\). long and usually with a subterminal divergent long trichome, the calyx-teeth of \(P\). setosum (plate 905, fig. 4) \(1.3-2.5 \mathrm{~mm}\). long and without the long trichome. In some characters \(P\). monotrichum is as near \(P\). hyssopifolium (plate 905, Figs. 1-3), but that species is grayish in tone, not full green, commonly with many short and suppressed axillary branches, instead of elongate and finally flowering ones; its entire or subentire leaves are narrowly oblong to oblong-lanceolate or -linear, blunt, at most \(0.5-1.5 \mathrm{~cm}\). broad and with the uppermost of the \(3-5\) pairs of lateral veins arising at or below the middle of the blade (in \(P\). monotrichum the serrate-dentate, ovate, acuminate leaves mostly \(2-3 \mathrm{~cm}\). broad, the uppermost of the 5-8 pairs of lateral veins borne well above the middle of the blade). In \(P\). hyssopifolium the bristleless calyx-teeth are \(2.3-5 \mathrm{~mm}\). long; in \(P\). monotrichum the usually bristle-tipped teeth only \(2-3 \mathrm{~mm}\). long.

The name Pycnanthemum setosum Nutt. in Journ. Acad. Phil. vii. ‘'100 (1834) must, under the International Rules, replace \(P\). aristatum Michx. Fl. Bor.-Am. ii. 8, t. 33 (1803). There is no question about the plant clearly described and illustrated by Michaux but, unfortunately, he cited as an unquestioned synonym of it Nepeta virginica L. (1753). That being his interpretation, he should have used the earlier specific name, for it had


I'hote. B. G. Schubert.
Pycnanthemum pycnanthemoides, var. vihidifolium, all figs. from topotype: fig. 1 , portion of inflorescence, \(\times 1\); fig. 2 , portion of glomerule, with corolla, \(\times 8\)


Photo. B. G. Schubert.
PYCNANTHEMUM HYssopifolicm: figs. 1 and 2 , foliage and inflorescence, \(X 1 ;\) FIG. 3 , calyx, \(\times 10\)
not then been used under Pycnanthemum. Under the International Rules the name \(P\). aristatum is illegitimate.

\begin{abstract}
*P. umbratile, sp. nov. (tab. 906), a P. clinopodioide differt caule arcuato-pilosis nec divergente villosis; foliis ovatis obtusis viridibus integris vel subintegris basi late rotundatis subtus ad costas sparse puberulis, majoribus \(2.5-3.5 \mathrm{~cm}\). latis; corymbis terminalibus hemisphaericis bracteis externis foliaceis ellipticis vix reductis; bracteis internis breviter hirtellis; calycibus bilabiatis dentibus apice subulatis breviter hirtellis.-Virginia: border of rich bottomland woods along Blackwater River, southeast of Ivor, Southampton County, September 16, 1937, Fernald \& Long, no. 7595 (type in Herb. Gray.).
\end{abstract}

Pycnanthemum umbratile (from the deep shade of its typestation) has been only once collected. The type, snatched at the end of the day, was found upon study to be unique in another sense. When we later returned for more of it, the road-machinery had done its work. Soil to the depth of several feet had been removed for use in construction of the neighboring 4-lane trunkroad and the station obliterated. The plant, obviously, will later be found elsewhere on the wooded bottomland where abound many other rather local species. I do not hesitate to describe the unicate, for it is very distinctive. By current treatments it would be placed with \(P\). clinopodioides T. \& G. The distinctions are as follows. In P. clinopodioides (plate 907) the short curving hairs of the stem are mixed with longer spreading trichomes; in \(P\). umbratile the long and spreading hairs are wanting. \(P\). clinopodioides has the pale green leaves lanceacuminate, tapering gradually to the petiole and often with sharp serrations, with the veins beneath hirtellous, the primary blades only 1-2 cm. broad; \(P\). umbratile has the full green leaves oval, bluntish, essentially entire, broadly rounded to the petiole, and barely puberulent on the midrib beneath, the larger blades 2.53.5 cm . broad. In \(P\). clinopodioides the glomerules terminate the branches or are verticillastrate; in the type of \(P\). umbratile there is a single terminal, open corymb. In P. clinopodioides the calyx-teeth are appendaged near their tips, like the inner bracts, by long, flexuous, divergent multicellular trichomes; in \(P\). umbratile these long trichomes are lacking. Until fuller material is at hand distinctions in the flowers cannot safely be stated.
*P. incanum (L.) Michx., var. puberulum (Grant \& Epling), stat. nov. P. puberulum Grant \& Epling in Univ. Calif. Pub. Bot. xx. no. 3: 212 (1943). Described from Florida and Alabama, northward into North Carolina and West Virginia. Virginia now comes into the range. Brunswick Co.: rich wooded bluff by Meherrin River at Westward Bridge (or Mill), no. 14,738. See p. 100.

Plate 903, Pycnanthemum monotrichum Fernald, all figs. from the type: fig. 1, plant, \(\times 1 / 2\); Fig. 2, leaf, \(\times 1\); Fig. 3 , back of leaf, to show venation, \(\times 4\); FIG. 4, portion of glomerule, to show flower, \(\times 5\); FIG. 5 , portion of glomerule, to show bristles, \(\times 10\); Fig. 6 , calyx, \(\times 10\).

Plate 904, P. pycnanthemoides (Leavenw.) Fernald, var. viridifolium Fernald: fig. 1, portion of inflorescence, \(\times\) 1, of topotype, Fernald \& Long, no. 11,130; FIG. 2, portion of glomerule, to show flower and bristle-tipped calyx-segments, \(\times 8\), from no. 11,130.

Plate 905, figs. 1-3, P. hyssopifolium Benth.: figs. 1 and 2, foliage and inflorescence, \(\times 1\), from southwest of Cypress Bridge, Southampton Co., Virginia, Fernald \& Long, no. 6374; fig. 3, calyx, \(\times 10\), from no. 6374. Fig. 4: P. setosum Nutt.: calyx, \(\times 10\), from Forked River, New Jersey, Sept. 3, 1893, MacElwee.

Plate 906, P. umbratile Fernald, all figs. from type: fig. 1, summit of plant, \(\times 1\); FIG. 2, portion of stem, to show curving pubescence, \(\times 10\); FIG. 3 , lower surface of leaf, to show pubescence, \(\times 10\); FIG. 4, calyx, \(\times 10\).

Plate 907, P. clinopodioides Torr. \& Gray: figs. 1 and 2, portions of plant, \(\times 1\), from Rye, New York, Asa Gray; figs. 3, portion of stem, and 4, lower surface of leaf, to show pubescence, \(\times 10\), from the standard specimen, New Jersey, 1841, Carey; fig. 5, calyx, \(\times 10\), from Palisades, New Jersey, 1860, C. F. Austin.

Lycopus americanus Muhl., var. Longii Benner. Local range extended back into the outer Piedmont. Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,740. See p. 103.

Var. Longii has been accredited an inland occurrence about the Great Lakes. It is, however, apparently confined to the Atlantic Coastal Plain and its intrusions into the Piedmont. The plant of the Interior is

Lycopus americanus Muhl., var. scabrifolius, var. nov., internodiis supernis villosis, villis multicellulis; foliis bracteatis lineari-lanceolatis superne scabro-puncticulatis.-Southern Michigan to Illinois, south to Louisiana and Texas. Type: wet sandy prairie, Havana, Illinois, August 15, 1903, H. A. Gleason in Herb. Gray.

Var. scabrifolius, at least of northern Indiana, as well as northern Ohio plants which I have not seen, was originally included in the Coastal Plain L. americanus, var. Longii Benner in Bartonia, no. 16: 46 (1934). The latter plant, occurring from Long Island, New York, to eastern Virginia, has the upper


I'hoto. 13. G. Schubert.
Pycnanthemum umbratile, all figs. from type: fig. 1 , summit of plant, \(\times 1\); fig. 2 , portion of stem, \(\times 10\); fig. 3, lower surface of leaf, \(\times 10\); fig. 4 , calyx, \(\times 10\)


\section*{Photo. B. G. Schubert.}

Pyenanthemum clinopodiomes: figs. 1 and 2, portions of plant, \(\times 1\); fig. 3 , portion of stem, \(\times 10 ;\) fig. 4 , lower surface of leaf, \(\times 10 ;\) Fig. 5 , calyx, \(\times 10\)
surfaces of the leaves smooth and not puncticulate. All the material 1 have seen from Michigan, Indiana, Illinois, Oklahoma, Louisiana and Texas has the upper surfaces harsh with minute crowded point-like trichomes. It seems to be a more inland and western extreme. Whether the gap in the representation in the Gray Herbarium-between Indiana and Illinois at the north and Oklahoma and Louisiana at the south-is to be overcome by collections from western Kentucky, western Tennessee and Missouri, must depend upon further collecting.

Dicliptera brachiata (Pursh) Spreng. To the single recorded Virginian station (bottomland of Meherrin River at Haley's Bridge, Southampton Co.) add an extensive one about 30 miles inland (much more as the river flows) farther up the valley. Brunswick Co.: wooded bottomland of Meherrin River at Westward Bridge (or Mill), no. 14,741. See p. 100.
*Ruellia Purshiana Fernald in Rhodora, xlvii, 27, t. 845 and t. 846, fig. 3 (1945).-Stations cited in Frederick, Rockingham, Rockbridge, Botetourt, Washington, Roanoke, Amelia and Henrico Cos.
*R. Purshiana, forma claustroflora Fernald, l. c. 29, t. 846, figs. 1 and 2 (1945).-Cited from Rockbridge Co.
*R. humilis Nutt. (typical). See Fernald, l. c. 52 , tt. 854 and 855 (1945).-Cited from Giles Co.
*R. humilis, var. frondosa Fernald, l. c. 54, t. 857 (1945).Cited from Shenandoah and Wythe Cos.
*R. humilis, var. calvescens Fernald, l. c. 60, t. 860 (1945).Stations in Frederick and Shenandoah Cos.
*R. caroliniensis (Walt.) Steud., var. semicalva Fernald, 1. c. 73, t. 864 (1945).-Type from Southampton Co.
R. caroliniensis, var. membranacea Fernald, l. c. 76, tt. 865 and 866 (1945).-The common plant which has passed, erroneously, as \(R\). parvifora, \(R\). ciliosa or \(R\). caroliniensis. Cited from Fairfax, Alexandria, North, Middlesex, Mathews, Gloucester, York, James City, Charles City, Princess Anne, Norfolk, Isle of Wight, Surry, Southampton, Sussex, Greensville, Dinwiddie, Amelia, Brunswick, Campbell, Bedford and Rockbridge Cos.
*R. CAROLINIENSIS, var. membranacea, forma hypopsila Fernald, l. c. 78, t. 867, figs. 1-3 (1945).-Recorded from Elizabeth City, Norfolk, Surry, Southampton and Sussex Cos.
*R. caroliniensis, var. membranacea, forma laevior Fernald, 1. c. 79, t. 868 (1945).-Recorded from Southampton, Greensville and Amelia Cos.
*R. caroliniensis, var. nanella Fernald, l. c. 79 , tt. 869 and 870, fig. 1 (1945). -Cited from Nansemond and Princess Anne Cos.
*R. caroliniensis, var. nanella, forma eciliata Fernald, 1. c. 80, t. 870, figs. 2-4 (1945).-Cited from Southampton and Sussex Cos.
*R. caroliniensis, var. cheloniformis Fernald, l. c. 80, tt. 871 and 872 (1945).-Recorded from Clarke, Northampton, Gloucester, Elizabeth City, James City, Princess Anne, Norfolk, Dinwiddie, Mecklenburg and Halifax Cos.
*R. caroliniensis, var. cheloniformis, forma candida, f. nov., corollis albidis.-Brunswick Co., Virginia: Triplett, 1945, J. B. Lewis (type in Herb. Gray.).
*R. caroliniensis, var. dentata (Nees) Fernald, 1. c. 83, tt. 874 and 875 (1945).-Cited from Fairfax, James City, Henrico, Princess Anne, Norfolk, Isle of Wight, Sussex, Halifax and Orange Cos.
(To be continued)

\section*{NOTES ON THE COMPOSITAE OF THE NORTHEASTERN UNITED STATES. I. INULEAE}

\section*{Arthur Cronquist}

In the course of preparing a treatment of the Compositae for the new illustrated flora of the northeastern states, it becomes necessary to make a number of new combinations. These, with such comments as may seem desirable, will be published in advance. It is intended that automatic tautonyms, without citation, be used in the flora for nomenclaturally typical intraspecific units. Such of these as do not conflict with previously published names of the typica category will be validated in this series of papers.
In this work, as in previous work with certain western and southern groups, it is noteworthy how often I have been forced to return to a treatment approximating that of Asa Gray in the Synoptical Flora. In several instances in which the past 60 years have seen a marked increase in the number of generally accepted species, I have been unable to recognize or delimit satisfactorily the major part of the recent segregates. Such a case is furnished by Antennaria. Gray disposed of all our Antennarias as one variable species, A.plantaginifolia. Experience has shown this treatment to be too conservative, but even so it is more satisfactory than the treatments now in vogue. The chaotic condition which has been brought about in some Euro-
pean genera that also show well-developed apomixis, such as Hieracium, should give pause to those who have so multiplied our species. As Stebbins has shown (Bot. Gaz. 94: 134-151. 1932; Rhodora 37: 236. 1935), the sexual forms of the largeleaved and small-leaved eastern Antennarias hybridize, but the offspring show cytological irregularities and reduced fertility. These two groups thus behave about as we would expect two closely related but distinct species to do. Our plants may be segregated fairly readily into large-leaved and small-leaved forms (A. plantaginifolia and A. neglecta), although with some overlapping. The further segregation from A. plantaginifolia of the single-headed southern plant with certain habital peculiarities, A. solitaria, leaves us with three fairly well-marked species. The first two of these are highly variable, and may be separated into more or less evident varieties, although the distinctions sometimes become entirely arbitrary. I do not deny that some of these varieties may seem distinct in restricted areas, but when the whole region is considered the segregation becomes too dependent on temporary whim, or at best on individual opinion, to justify specific recognition. This should cause no surprise, since Fernald has pointed out (Rhodora 38: 231. 1936) that certain groups which are largely apomictic in some areas are frequently sexual in others.

Antennaria plantaginifolia (L.) Richards. var. plantaginifolia Cronquist, nom. nov. A. plantaginifolia (L.) Richards. App. Frank. Journ. ed. 2. 30. 1823. Gnaphalium plantaginifolium L. Sp. Pl. 850. 1753 , sens. strict. Basal leaves tardily glabrate above; pistillate involucres mostly \(5-7 \mathrm{~mm}\). high.
A. plantaginifolia (L.) Richards. var. ambigens (Greene) Cronquist, comb. nov. A. arnoglossa Greene var. ambigens Greene, Pitt. 3: 320. 1898. A. fallax Greene, Pitt. 3: 321. 1898. Basal leaves tardily glabrate above; pistillate involucres mostly 7-10 mm. high.
A. plantaginifolia (L.) Richards. var. arnoglossa (Greene) Cronquist, comb. nov. A. arnoglossa Greene, Pitt. 3: 318. 1898. A. Parlinii Fern. Gard. \& For. 10: 284. 1897. A. Parlinii var. arnoglossa Fern. Proc. Bost. Soc. Nat. Hist. 28: 243. 1898. Basal leaves glabrous above nearly or quite from the first; pistillate involucres mostly \(7-10 \mathrm{~mm}\). high.
A. neglecta Greene var. neglecta Cronquist, nom. nov. A. neglecta Greene, Pitt. 3: 173. 1897, sens. strict. Basal leaves tardily glabrate above; stolons long, procumbent, with small and
often few leaves; basal leaf-blades tending to taper gradually to the base; pistillate involucres mostly \(7-10 \mathrm{~mm}\). high.
A. neglecta Greene var. Randii (Fern.) Cronquist, comb. nov. A. canadensis Greene var. Randii Fern. Proc. Bost. Soc. Nat. Hist. 28: 247. 1898. A. canadensis Greene, Pitt. 3: 275. 1898. Basal leaves glabrous above nearly or quite from the first; leaves and stolons variable; pistillate involucres mostly \(7-9 \mathrm{~mm}\). high.
A. neglecta Greene var. attenuata (Fern.) Cronquist, comb. nov. A. neodioica Greene var. attenuata Fern. Proc. Bost. Soc. Nat. Hist. 28: 245. 1898. A. neodioica Greene, Pitt. 3: 184. 1897. Basal leaves tardily glabrate above; pistillate involucres mostly \(7-10 \mathrm{~mm}\). high; stolons relatively short and leafy, merely decumbent; basal leaf-blades tending to be abruptly contracted to the petiole-like base.
A. neglecta Greene var. gaspensis (Fern.) Cronquist, comb. nov. A. neodioica Greene var. gaspensis Fern. Ottawa Nat. 19: 156. 1905. Similar to var. attenuata, but the leaves much smaller, not over 5 mm . wide, and generally narrower in shape.
A. neglecta Greene var. argillicola (Stebbins) Cronquist, comb. nov. A. virginica Stebbins var. argillicola Stebbins, Rhodora 37: 232. 1935. A. virginica Stebbins, Rhodora 37: 230. 1935. Similar to var. attenuata, but smaller in all parts, the pistillate involucres mostly \(5-7 \mathrm{~mm}\). high.

All of the varieties of the two preceding species, as I have delimited them, occur nearly or quite throughout our range, except for var. gaspensis and var. argillicola. The former is limited to the Gaspé region, the latter to the mountains of Virginia and adjacent areas. It is to be understood that the Antennarias of Newfoundland are excluded from consideration in the foregoing discussion.

Pluchea purpurascens (Sw.) DC. var. purpurascens Cronquist, nom. nov. P. purpurascens (Sw.) DC. Prodr. 5: 452. 1836, sens. strict.
The New York Botanical Garden,
New York, New York

Volume 47, no. 556, including pages 93-144 and plates 876-889, was issued 14 April, 1945.


JOURNAL OF THE NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by MERRITT LYNBON FERNALD, Editor-in-Chief


Vol. 47.
CONTENTS:
Juncus Mertensianus and its austrolimital Segregate, J. Duranii. Joseph Ewan. ..... 185
Botanical Specialties of the Seward Forest and Adjacent Areas of Southeastern Virginia (concluded). M. L. Fernald. ..... 191
An Incomplete Flora of Illinois (Critique). M. L. Fernald ..... 204
Geranium nepalense, var. Thunbergii in Massachusetts.
Francis Welles Hunnewell. ..... 219
Sorbus Andersoni, a new Name for an Alaskan Mountain-Ash.
George Neville Jones. ..... 220

\section*{}

8 and 10 West King St., Lancaster, Pa.
Botanical Museum, Oxford St., Cambridge 38, Mass.

RHODORA.-A monthly journal of betany, deveted primarily to the fore of the Gray's Manaal Range and regione foristieally related. Price, 84.00 per jear, met, pestpaid, in funds payable at par in United States currency in Beatoni oingle copiee (If available) of not more than 24 pages and with 1 plate, 40 centa, numbera of more than 24 pages or with more than 1 plate mostly at higher prices (aee 3rd eovorpage). Volumes 1-9 ean be supplied at \(\$ 4.00,10-34\) at \(\$ 3.00\), and volumeat \(\mathbf{3 5}-46\) at \(\mathbf{5 4 . 0 0}\). Some singlo numbers from these volumos can be supplied only at advanced priees (see 3rd cover-page). Somowhat reduced rates for complete sets entu be obtained on application to Dr. Hill. Notes and shert eclentific papers, relating directly or indirectly to the planis of the northeastern states, will be considored for publication to the extent that the limited apace of the journal pormits. Forms many be elosed five woeks in advance of publication. Authort (of more than two pagee of print) will receive 15 copies of the tasue in which thoir contributions appenf, if they request them when returning proef. Extracted reprinto, If ordored in advanco, will be furniched at cost.

Addrese manuscripts and preefe to
M. L. Fernald, 14 Hawthorn Street, Cambrldga 3A, Mans.

Subseriptiong (making all remittances payable to HHODORA) te
Dr. A. F. Hill, 8 W. King St., Lancaster, Pan or, prefarably, Botanicel Masoum, Oxford St., Cembridge 38, Masi.
Eniored as second-clase matter March 9, 1929, at the pest office at Lanenster, Pe., under the Act of Murch 3. 1879.

\title{
INTELLIGENCER PRINTING COMPANY Specialists in Scientific and Technical Publications EIGIT WEST KING ST., LANCASTER, PA.
}

\section*{CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES OF AMERICAN PLANTS, 1885 TO DATE.}

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at \(\$ 22.50\) per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

\author{
GRAY HERBARIUM of Harvard University, Cambridge 38, Mase, U. S. A.
}

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \$3.00.

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

\author{
Gray Herbarium of Harvard University, Cambridge 38, Mass.
}

\section*{IRbodora}

\author{
JOURNAL OF
}

THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
June, 1945.
No. 558.

\section*{JUNCUS MERTENSIANUS AND ITS AUSTROLIMITAL SEGREGATE, J. DURANII \\ Joseph Ewan}
(With one map)
Franz Buchénau wrote in 1906 that "J[uncus] Mertensianus, nevadensis, Suksdorfi et columbianus gregem polymorphum formant. Formae saepe difficillime distinguendae et in locis natalibus melius observandae." (Engler, Pflanzenreich 25: 202.) Subsequent collections accumulating in our herbaria lend support to Buchenau's statement. But in plant species of wide distribution the geographically terminal populations may, under physiographic isolation, differentiate to a point where they can no longer, with morphologic consistency, be recognized as conspecific with the parent wide-ranging species. The degree of such departure from the characters of the species, along with the nature of the genus, determine whether the biologic unit shall be recognized as a species or subspecies. Juncus is generally admitted to be a natural genus; here the specific lines must be definitively and neatly drawn. Accordingly, I am distinguishing Juncus Duranii as the austrolimital Californian facies of the wide-ranging \(J\). Mertensianus. The number of collections of Juncus Duranii available for study is unfortunately small. Moreover, the habitable areas where such a boreal Juncus might logically be expected in the San Gabriel Mts. are also limited. Dry seasons, particularly when repeated uninterruptedly for a span of years, force boreal plant species into dormancy. Close scrutiny of more cienegas along the highest coast-desert "divide" of the range may reveal additional colonies.

Juncus Duranii, n. sp. Slender perennial, rather densely tufted from a short usually matted vertical rootstock, glabrous throughout; stems erect, capillary, \(10-20 \mathrm{~cm}\). high, lightly compressed; leaves grass-like, all radical or nearly so, attenuate to a long tip, firm but not stiff, mostly shorter than the flowering stems, \(7-15 \mathrm{~cm}\). long, blades subterete, a little conduplicate below, the ligules prominent, rounded or cuspidate, straw-colored; bract of inflorescence subulate, usually \(7-10 \mathrm{~mm}\). long, early deciduous; heads solitary, \(7-9 \mathrm{~mm}\). across, rarely 2 in a short panicle, flattened-hemispherical; bractlets light-translucent, abruptly mucronate with a distinct awn; perianth-segments linear-lanceolate, 3 mm . long, pale chestnut-brown, the inner whitish on margins, the outer carinate; anthers equaling or a little longer than the filaments; capsule obtuse-obovoid (like \(J\). Mertensianus), not stipitate at base; seeds narrowly lanceolate, 0.5 mm . long, honey-brown, obscurely longitudinally lineate. \({ }^{1}\)

Type, J. \& N. Ewan 10060, Lilly Spring, n. slope Mt. Hawkins, San Gabriel Mts., Calif., at COLO. J. Mertensianus sensu Parish, Muhlenbergia 6: 123. 1910, as to so. Calif. colls. and sensu Johnston, Bull. S. Calif. Acad. Sci. 17: 60. 1918, as to Johnston 1502, Kellys Cabin; cf. Johnston, Pl. World 22: 83. 1919.

Known only from the San Gabriel, San Bernardino, and San Jacinto mountains of southern California where it is apparently localized about shaded mossy seeps in the White Fir-Lodgepole Pine association (Abies concolor-Pinus contorta Murrayana), often growing with Mimulus moschatus and other Canadian-Zone herbaceous species.

Colls. studied: San Gabriel Mts.: Mt. Islip, n. slope 7500 ft ., Fosberg \& Ewan 4978 (LAM) ; Lilly Spr., Mt. Hawkins, TYPE; Kellys Cabin, 8350 ft ., Ontario Peak, Johnston 1502 (DS). Almost certainly Johnston 1390, Coldwater Fork Lytle Creek, in cienegas, 7000 ft ., is this species but material not seen. San Bernardino Mts.: cienega in Mill Creek Canyon, ca. 6000 ft , Parish 2522 (DS). San Jacinto Mts.: stream above Round Valley, C. M. Wilder 924 (DS).

\footnotetext{
\({ }^{1}\) Juncus Duranil, sp. nov. Herba perennis gracilis e rhizomate brevi verticali plerumque implexo subdense caespitosa omnino glabra; caulibus erectis capillaribus \(10-20 \mathrm{~cm}\). altis leviter compressis; foliis graminoideis omnibus basi vel basem versus gestis, in apicem longum angustatis, firmis plerumque quam caulibus floriferis brevioribus, \(7-15 \mathrm{~cm}\). longis, laminis subteretibus inferne leviter conduplicatis, ligulis prominentibus stramineis apice rotundatis vel cuspidatis; inflorescentiae bractea subulata plerumque \(7-10 \mathrm{~mm}\). longa mox decidua; capitulis solitariis \(7-9 \mathrm{~mm}\). diametro rarius 2 paniculam brevem formantibus depresso-hemisphaericis; bracteolis translucentibus abrupte mucronatis manifeste aristatis; tepalis lineari-lanceolatis \(\mathbf{3 ~ m m}\). longis pallide castaneis, interioribus margine albescentibus, exterioribus carinatis; antheris fllamenta vel aequantibus vel paullum superantibus; capsulis obtuso-obovoidels basi estipitatis; seminibus anguste lanceolatis 0.5 mm . longis melleo-brunneis obscure longitudinaliter lineatis.
}

The Juncus here designated as \(J\). Duranii was referred to \(J\). Mertensianus by California authors, beginning with Samuel Bonsall Parish. However, it is almost as closely related to \(J\). nevadensis. Table 1 brings out the morphological likenesses of

Table 1. Comparison of three species of Juncus
\begin{tabular}{|c|c|c|c|}
\hline Juncus & Mertensianus & Duranii & nevadensis \\
\hline Flowering stems & rather tufted from an almost single compact rootcrown, not spread-ing-rhizomatous & tufted, from a single congested rootcrown, not spreading-rhizomatous & not tufted, several, from a spreading rhizome \\
\hline Leaves & somewhat gladiate, distinctly compressed laterally, not at all capillary & not at all gladiate narrowly lengthwise compressed, capillary & scarcely gladiate but variable, from capillary to linear. \\
\hline Ligule & prominent, broadbarely acute at tip, opaque & prominent, rounded or cuspidate, translucent & prominent, long-acuminate to an acute tip, translucent \\
\hline Bract of head & spathe-like or flaring, clasping at base, tapering to a long-filiform erect or ascending tip & only a little broader at base, almost uniformly subulate, erect or apparently early withering and deciduous beyond head & inconspicuous, short subulate, equaling or a little exceeding lowest head \\
\hline Heads & solitary or as if so by crowding of 2 or 3 short-stalked clusters (rarely 2 or more in interrupted succession), rounded-hemispherical or as broad as high & solitary or rarely 2 in interrupted succession, flattenedhemispherical in outline & often 3 or 4 (or to 10 in an interrupted narrow panicle, flat tened-hemispherical to turbinate or campanulate \\
\hline Bractlets subtending each flower & tapering to a short awn-tip, dark brown, opaque & abruptly mucronate with a distinct awn \(1 / 3\) as long as bractlet, flesh-colored, translucent & ovate, acuminate to an awn-tip, fleshcolored, translucent \\
\hline Perianth segments & long-subulate, wholly rich shining chestnut brown & linear-lanceolate pale or dilute brown, whitish-hyaline-margined & lanceolate, wholly light brown \\
\hline Stigmas & included or scarcely exserted & long-exserted & long exserted \\
\hline
\end{tabular}

Juncus Duranii with both cognate species. The seed characters are not definitive; both \(J\). Duranii and \(J\). nevadensis have minute seeds. The capsules of the three species are very similar and cannot be distinguished. In habit, leaf, bracts, heads, bractlets, and perianth Juncus Duranii combines the characters of \(J\). Mertensianus and \(J\). nevadensis.
Juncus Duranii bears the name of Victor Duran, painstaking student of the flora of the White Mts. of the California-Nevada border (cf. Madrono 2: 119), whose well prepared exsiccatae of the San Gabriel Mts., distributed by the University of California, have enriched our herbaria.

\section*{Juncus Mertensianus}

Juncus Mertensianus Bong., Mem. St. Petersb. Acad. Sci. ser. 6. 2: 167. 1832, based on a Mertens collection from "l'Ile de Sitcha", Alaska. Type presumably at Leningrad. In Prager Herb. (CAS) there is a sheet (no. 106338) bearing the label "Sitcha, ex Museo Petropolitani 160 "; this may be an authentic specimen. The many Alaskan collections examined are in agreement with this Sitka plant. Carl Heinrich Mertens accompanied Lütke on the corvette Senjavin, visiting Sitka from June 24th to July 31st, 1827, fide Hultén.

Since the publication containing the original description of Juncus Mertensianus is rare in libraries, the description is reproduced here:
"162. Juncus Mertensianus n. sp. Culmo erecto basi vaginato, folio uno alterove plano lineari basi vaginante; floribus capitatis, triandris, perigonii exterioris partibus carinatis subulatis interioribus paulo longioribus; capsula

Planta caepitosa [sic], spithamaea. Culmi basi vaginati, applanati, striati, glabri. Vaginae membranaceae basi laxae, aphyllae. Folia caulina 1-2, plana, linearia, acuta, glabra, striata, 1-2-pollicaria, basi vaginata; vaginis laxis, margine membranaceis, striatis. Involucrum foliis simile. Flores capitati, atro-purpurei. Capitula saepissime duo."
In the introduction to the florula of Sitka the statement is made that the enumeration is based on the collections of Mertens made on "l'Ile de Sitcha".

The published illustrations of Juncus Mertensianus are of varying usefulness and not all faithful to the habit of the plant. Both Buchenau (op. cit. fig. 96. 1906) and Jepson (Fl. Calif. fig. 42 f and \(\cdot 42 \mathrm{~g}\). 1921) exaggerate the creeping rootstocks, as if the
material from which the figure was drawn had been abnormally flattened out in the press. However, Jepson does not describe the plant as strongly rhizomatous (op. cit. 1: 254. 1921), as it is illustrated. The illustration offered by Abrams (Ill. Fl. Pac. States 363 . fig. 888. 1923) better indicates the short vertical rootstock of Juncus Mertensianus.

Representative colls.: Alaska: Old Harbour, Kodiak Isl., Eyerdam 712 (DS); Yes Bay, 20 VIII 1895, T. Howell (DS); Unimak Isl., Eyerdam 2021; Atka, Eyerdam 1174. British Columbia: Big Bend district, Selkirks, 6000 ft., Shaw 1093 (COLO), 982 (COLO); Glacier VII 1896, Dudley. Washington : Olympic Mts., Elmer 2735. Whatcom Co.: Welcome Pass, 5000 ft., Thompson 8068. Pierce ('o.: Paradise glacier, Mt. Rainier, 6000 ft., Vincent Nelson 2912 (COLO). California: Siskiyou Co.: Mt. Shasta summit trail, \(8250 \mathrm{ft} .\), Cooke 16300 (COLO); Wagon Camp, Mt. Shasta, 5700 ft., Cooke 13733 (DS); Rattlesnake Mdw., Preston Peak, 5500 ft., Kildale 9035; Medicine Lake, \(7000 \mathrm{ft} .\), Heller 13715; foot Mt. Eddy, \(3700 \mathrm{ft} .\), Heller 12251. Shasta Co.: Bumpas Hell trail, Mt. Lassen, \(7000 \mathrm{ft} ., 7\) IX 1931, M. S. Jussel (CAS). Butte Co.: Butte Creek House, E. B. Copeland 348; Butte Meadows, Heller 14680. Plumas Co.: Mud Lake, Mt. Elwell, \(6800 \mathrm{ft} .\), Ewan 8274. Sierra Co.: Lake of the Woods, vic. Webber Lake, 1 IX 1894, Dudley. Amador Co.: Emigrant trail summit, 8000 ft ., Silver Lake, 24 VIII 1929, Gwendolen Newell (CAS). Eldorado Co.: Grass Lake, Lake Tahoe region, Abrams 6793; Glen Alpine, 1 VIII 1906, Geo. B. Grant; Desolation Valley, 8500 ft ., Abrams 12735. Tuolumne Co.: summit Sonora Pass, 9000 ft ., Hutchinson 3777 (COLO). Mono Co.: Mill Creek, Lundy Canyon, 8200 ft ., Pierson 12200 (COLO); Mono Lake, Abrams 13613; Slate Creek Basin, J. Clausen 967 (DS). Mariposa Co.: above Nevada Falls, Clouds Rest trail, 13 VI 1894, Dudley; Peregoy Mdws., 7200 ft ., Abrams 5457, 5462; Yosemite Valley, Abrams 4630. Fresno Co.: upper Kings River, 23 VIII 1904, Dudley. Tulare Co.: Kaweah Peaks, 6000-8000 ft., Dudley 2332; above Bullion Flat, Mineral Gap, Dudley 2582; Hocket trail, Dudley 1065; upper Kern River, in 1875, Rothrock 382 (DS). Inyo Co.: Rock Creek Lake Basin, \(11,400 \mathrm{ft}\)., Peirson 9119 (COLO). Utah: Iron Co.: betw. Navajo Lake and Cedar Breaks, Eastwood \& Howell 7250 (more rhizomatous than Pac. coast colls.!). Colorado: Clear Creek Co.: meadow at upper Clear Cr. above Ski House, Ewan 14646.

\section*{Excluded Species}

Juncus aseptus Engelm. ex Buch. = J. nevadensis Wats., Proc. Am. Acad. Arts and Sci. 14: 303. 1879. Juncus aseptus Engelm.

ex Buch. in Engler, Pflzr. 25: 202. 1906, nomen subnudum, based on Parish 3788, from Bear Valley, San Bernardino Mts., Calif. Isotype (UC) studied.
"Juncus aseptus", an herbarium name bestowed by Engelmann, was first published by Buchenau and must rest nomenclaturally on Parish 3788. Parish was correct in pointing out (Muhlenbergia 6: 123. 1910) that the name was first given to an earlier collection, also from Bear Valley, his 1439, nevertheless his 3788 must be considered the type collection, contrary to Parish's holographic note accompanying 1439 in the Parish


Ihoto. B. Gi. Sichubert.
Eupatoriem cordiderm: figi, 1, portion of typa, \(\times 1\); fig. 2, venation of lower leafsurface, \(1 \frac{1}{2} ;\) fig. 3 , old involucre, \(\times 10\)


Photo. B. G. Schubert.
Eupatoriem rotundifolium: fig. 1, type, \(\times 1 / 5\), after \(B\). L. Robinson; fig. 2, median leaves, \(\times 1\); fig. 3, venation of lower leaf-surface, \(\times 2\); fig. 4 , involucre, \(\times 10\)

Herbarium (DS). The plants which Engelmann named Juncus aseptus are incompletely septate, but this condition is frequent over the entire range of \(J\). nevadensis. Jepson's diagnosticum: "marked by its very narrow and erect strongly septate leaves with prominent ligules" for Juncus nevadensis is only partly true. The leaves are seldom "strongly septate" and not always "very narrow", though in general they are much more grasslike than those of J. Mertensianus. Both species have "prominent ligules". From the fact that Engelmann did not publish J. aseptus we may infer he concluded that the plant was indistinguishable from \(J\). nevadensis, as Parish and Jepson subsequently decided.

Collections from the herbaria of Stanford University (DS), University of California, Berkeley (UC), California Academy of Sciences (CAS), Los Angeles Museum (LAM) and the University of Colorado (COLO) have been studied and selected collections are cited herein. Where the location of the collection may not be deduced from the collector's name, the herbarium of deposit is noted. To the personnel of these institutions who have made available this material I am indeed grateful.
Botanist with the Foreign Economic Administration

BOTANICAL SPECIALTIES OF THE SEWARD FOREST AND ADJACENT AREAS OF SOUTHEASTERN VIRGINIA

\author{
M. L. Fernald \\ (Continued from page 182)
}

Cephalanthus occidentalis L., var. pubescens Raf. To the previously cited stations, on the Coastal Plain, add an extensive one in the outer Piedmont. Greensville Co.: border of Mitchell's Millpond, west of Brink, no. 14,665; the dull or lustreless foliage, downy beneath, strongly contrasting with the bright green foliage of typical glabrous C. occidentalis.

Elephantopus carolinianus Willd., forma vestitus Fernald in Rhodora, xliv. 458 (1942). To the single known station (in Nansemond Co.) add one in Brunswick Co.: woods along Meherrin River at Westward Bridge (or Mill), no. 14,742. See p. 100.

Eupatorium hyssopifolium L. (typical). See Rhodora, xliv. 459, pl. 737, fig. 1 (1942). Local range extended inland from the

Coastal Plain to Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,744 . See p. 103.
E. cordigerum (Fernald), stat. nov. (plate 908). E. rotundifolium L. var. cordigerum Fernald in Rhodora, xlv. 477 (1943).

At the time I published E. rotundifolium, var. cordigerum I was following the interpretation of Fernald \& Griscom in Rhodora, xxxvii. 180 and 181 (1935), in which all members of the rotundifolium series were merged as one variable species. In that paper, however, certain seemingly constant and morphologically significant characters were overlooked and too much weight was placed on the variable ones, like the occurrence of occasional alternate branching as opposed to predominantly opposite branching. No note was made of the very striking fact that in E. rotundifolium the principal cauline leaves (plate 909, figs. 1-3) have their bases straight, entire and subtruncate to broadly cuneate, with the toothing starting above this entire base; furthermore, it was not noted that in E. rotundifolium (plate 909 , figs. 2 and 3) the ascending and prolonged prominent lateral veins arise from the base of the midrib. In the other three species, E. verbenaefolium Michx. (1803) \(=\) E. lanceolatum Muhl. ex Willd. (1804), our plate 910, E. pubescens Muhl. ex Willd. (1804), our plate 911, and E. cordigerum, plate 908, the principal leaves are toothed to the base and the elongating lateral veins tend to be united at base to the midrib, coming off from it well above its base. The uppermost leaves of \(E\). verbenaefolium are greatly reduced, becoming narrowly lanceolate to linear and entire, while in the other three species they are more ovate and toothed. The involucre of E. verbenaefolium (plate 910 , FIG. 4) is about 1 mm . shorter than in the others, the inner phyllaries rather abruptly tipped. Northeast of the upland region of Virginia and Kentucky E. verbenaefolium is primarily a coastwise plant, of acid peats and sands northeastward to southern New England. Reexamination of a photograph of Michaux's type (our plate 910, fig. 1) indicates that an error was made when, in 1935, it was stated as identifiable with \(E\). pubescens (plate 911). In regard to earlier names of Walter which, perhaps, might be applicable to \(E\). verbenaefolium, it is unsafe to take them up until his plants can be actually studied. Walter's diagnoses were very brief, he did not realize the com-
plexity of the genus in the Southeast, and his names could well belong to plants quite different from \(E\). verbenaefolium.
E. pubescens, E. cordigerum and E. rotundifolium have the inner phyllaries attenuate to acute or slender tips. In E. pubescens the leaves are oblong to ovate, gradually rounded to base, the plant more general in the Piedmont area than \(E\). verbenaefolium, occurring in moist or dry woods, thickets, etc., from Florida to Louisiana, northward to southern Maine, Massachusetts, southeastern New York, New Jersey, Pennsylvania, western Virginia and West Virginia.
E. rotundifolium, with characteristic straight and untoothed leaf-base, broadly deltoid-ovate to suborbicular rugose-veiny blades, with the prolonged ascending lower veins springing from the base of the midrib, characterizes siliceous, argillaceous or peaty soils from Florida to Texas, north only to Long Island, New Jersey, Maryland, Tennessee and Arkansas; while E. cordigerum is characteristic of river-marshes, swales and bogs of the Coastal Plain of southeastern Virginia and eastern North Carolina. Its strongly cordate-clasping leaves are unique in the group and their prolonged lateral veins are united to the midrib much higher than in the others, the type showing compound bases of the midrib up to 1.5 cm . long. In E. rotundifolium the inner phyllaries taper to slender pointed tips, in E. pubescens they are merely acuminate, but in \(E\). cordigerum they are prolonged into long arching, linear, scarious appendages.

After several days of checking and rechecking the characters I feel that \(E\). verbenaefolium, pubescens, cordigerum and rotundifolium, although some of them may hybridize, are quite as clear species as \(E\). rugosum ( \(E\). urticaefolium) and \(E\). aromaticum, or as E. dubium (verticillatum), E. maculatum and E. fistulosum of the purpureum series.

Plate 908, Eupatorium cordigerum Fernald: fig. 1 , portion of type, \(\times 1\); Fig. 2, base of leaf, to show fusing of lateral nerves and midrib, \(\times 11 / 2\), from type; fig. 3, involucre, \(\times 10\), from Fernald, no. 14,502.

Plate 909, E. rotundifolium L.: fig. 1, type (two stems), \(\times 1 / 5\), photo. by B. L. Robinson; fig. 2, characteristic leaves, to show subtruncate and entire base and basal lower lateral veins, \(\times 1\), from south of Grassfield, Norfolk Co., Virginia, Fernald \& Long, no. 4219; fig. 3, base of leaf, to show venation, \(\times 2\), from no. 4219; Fig. 4, involucre, \(\times 10\), from no. 4219 .

Plate 910, E. verbenaefolium Michx.: Fig. 1, type, \(\times 1 / 4\), photo. by B. L. Robinson; fig. 2, characteristic foliage, \(\times 1\), from Winterham, Amelia Co., Virginia, Fernald \& Long, no. 9168; FIG. 3, base of leaf, to show venation, \(\times 2\), from no. 9168 ; FIG. 4 , involucre, \(\times 10\), from no. 9168 .

Plate 911, E. pubescens Muhl.: fig. 1, type, \(\times 1 / 4\), photo. by B. \(L\). Robinson; fig. 2, median leaves, \(\times 1\), from Auburn, New Jersey, Long, no. 18,060 ; FIG. 3, base of leaf, to show fusion of lower lateral veins and midrib, \(\times 2\), from no. 18,\(060 ;\) Fig. 4 , involucre, \(\times 10\), from no. 18,060 .
*E. aromaticum L., var. lacerum Gray.-Princess Anne County: rich woods, Virginia Beach, no. 5075 (distrib. as a hybrid). Sussex County: rich woods and bushy clearing north of Double Bridge, about 6 miles northwest of Jarratt, no. 11,452.

Typical thick-leaved Eupatorium aromaticum has the dark green leaves ovate, rounded to subtruncate at base, blunt and with blunt teeth. Var. lacerum, described from Florida, has the thinner, pale green, rhombic- or triangular-ovate, acuminate blades cuneate at base and sharply, sometimes lacerately, toothed, and on slender petioles. Transitions occur but the variety seems to be southern.
*E. sessilifolium L., var. Brittonianum Porter. Giles County: woods on dry shaly hillslope along New River, 1.5 miles south-southwest of Goodwin's Ferry, Fogg, no. 14,991.

Typical Eupatorium sessilifolium has relatively thin, lanceolate leaves, usually with rather prominent toothing. It is apparently frequent in calcareous areas in Virginia, where both vars. Brittonianum and Vaseyi (Porter) Fernald \& Griscom are found. The species consists of three somewhat pronounced varieties, though, like all true varieties, their characters merge. As stated, the leaves of true \(E\). sessilifolium are relatively thin, lanceolate and commonly with prominent teeth. It is rare and mostly uncharacteristic in New England and most of New York, where var. Brittonianum is the usual variety, this plant having firmer to subcoriaceous ovate-lanceolate to ovate leaves, with the teeth relatively fine. Like typical \(E\). sessilifolium its leaves are slenderly acuminate and the larger ones range from \(0.8-1.8 \mathrm{dm}\). long. Measurements of the thin- and lanceolate-leaved series ( 25 nos.) gives a range in size of the largest leaves of \(0.9-1.8 \mathrm{dm}\). long by \(2-4 \mathrm{~cm}\). wide, with an average of 14 cm . long and 2.5 cm . wide, five to six times as long as broad. Var. Brittonianum ( 45 sheets), an isotype of which is before me, gives a range of \(0.8-1.8 \mathrm{~cm}\). long by \(3-6 \mathrm{~cm}\). wide, with an average of 12.9 cm . long by 4.4 cm . wide, about three times as long as wide. That these proportions are significant is apparent from the rarity of typical \(E\). sessilifolium or its absence in New England, interior New York, Wisconsin, Illinois and Missouri, and the tendency of


Photo. B. G. Schubert.
Eupatorium verbenaefolium: fig. 1, type, \(\times 1 / 4\), after B. L. Robinson; fig. 2, foliage, \(\times 1\); fig. 3 , lower veins of lower leaf-surface, \(\times 2\); fig. 4 , involucre, \(\times 10\)


Ihoto. B. Gi. Schubert
Eupatorium publescens: fig. 1 , type, \(\times 1 / 4\), after \(B\). L. Robinson; fig. 2 , median leaves, \(\times 1\); fig. 3, involucre, \(\times 10 ;\) fig. 4, venation of lower leaf-surface, \(\times 2\)
var. Brittonianum to follow the higher mountains to western North Carolina and eastern Kentucky.

Var. Vaseyi has the upper half of the stem puberulent or minutely pilose, sometimes glutinous, the duller green leaves oblong-ovate, merely acute or short-acuminate, the larger ones \(4-12 \mathrm{~cm}\). long by \(2.3-6 \mathrm{~cm}\). broad (about twice as long as broad) and scabrous beneath with minute puberulence. The type (U.S. Nat. Herb.) is quite characteristic of the narrower-leaved plants of this variety. It occurs in less calcareous habitats than the others, from southeastern Pennsylvania and eastern Maryland to West Virginia, south to eastern Virginia, North Carolina and eastern Tennessee. \({ }^{1}\)

Solidago rugosa (Ait.), var. celtidifolia (Small) Fernald. Local range extended inland from Coastal Plain to Brunswick Co.: springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, no. 14,751. See p. 103.
*Haplopappus divaricatus (Nutt.) Gray. (Isopappus divaricatus (Nutt.) T. \& G.). Range extended northward into Brunswick Co.: fallow field, south of Seward Forest Headquarters, Triplett, Nov., 1944, Lewis.

A characteristic erect and late-flowering southern annual of dry open woods, clearings and fields, often weedy. In his Genus Haplopappus, 212, 213 (1928), Hall gave its range, from Florida to Texas, northward to South Carolina and Arkansas, and its height as " 2 to 7 dm ." It has been found, however, in North Carolina: old field, McCuller's, Wake Co., Oct. 12, 1937, Godfrey;
\({ }^{1}\) The following Eupatoria, although not from Virginia, may be noted here.
E. resinosum Torr., var. kentuckiense, var. nov., E. resinoso habitu simillima; caulis internodiis supernis corymbi ramibusque pilosis, pilis elongatis curvatis.-Nelson County, Kentucky: marshy area, Bean's Lake, September 8, 1932, Sister Rose Agnes (type in Herb. Gray).

Closely matching the endemic Eupatorium resinosum of pine-barren bogs of New Jersey and Delaware in habit, foliage, involucres, etc., but differing in the longer pubescence, typical \(E\). resinosum being minutely puberulent. Sister Rose Agnes correctly identifled the plant as \(E\). resinosum but the late Dr. Robinson, evidently without a close study of the plant, relabeled it E. perfoliatum, var. cuneatum Engelm. The involucre and the narrow leaves without the broadly cuneate, entire base of \(E\). perfoliatum, var. cuneatum are identical with those of the New Jersey plant.
E. dubium Willd., forma elutum, f. nov., foliis ovatis triplinerviis subtus viscidogranulatis scabris; involucris floribusque albidis.-Type: low ground near Long Island Sound, Saybrook Junction. Connecticut, September 14, 1914 (colony of about 100 plants), R. W. Woodward in Herb. Gray.
E. maculatum L., forma Faxoni, f. nov., foliis anguste ovatis utrinque attenuatis irregulariter grosse serratis subtus scabris; corymbo supra complanato; phyllariis floribusque albidis.-Type: Gate of Crawford Notch, New Hampshire, September 2. 1884, Charles E. Faxon in Herb. Gray.
disturbed soil on sandhill, south of Aberdeen, Scotland Co., Godfrey, no. 6938; one of the Godfrey specimens 1 m ., the other 1.4 m . high. Mr. Lewis states that his plant was 6 ft . ( 1.8 m .) high. Small individuals from Georgia are only 1.5 dm . high. The species, like most annuals of disturbed soils, will evidently respond to the amount of nutrition.

Boltonia caroliniana (Walt.) Fernald in Rhodora, xlii. 487, pl. 642 (1940). Range extended inland to western Brunswick Co.: bottomland woods along Poplar Creek, southwest of Ebony, no. 14,668. See p. 97.

Boltonia caroliniana, known only from eastern South Carolina and southeastern Virginia, is here found along Roanoke drainage. It is presumably along the lower Roanoke River and its tributaries in North Carolina.
*Polymnia Uvedalia L., var. densipila Blake in Rhodora, xix. 48 (1917). Brunswick Co.: rich low woods (bordering swamp of Quarrel's Creek), "Chamblis bigwoods", Seward Forest, near Triplett, no. 14,754 . See p. 101.

Differing from typical Polymnia Uvedalia \({ }^{1}\) and its var. floridana Blake in the very dense and essentially glandless pilosity of the branches of the inflorescence. Originally described from Louisiana, Oklahoma and Texas; also from Bermuda. More recently extended northward in the Mississippi Basin to Missouri. Its seeming isolation in southeastern Virginia reminiscent of several other plants.

Helianthus angustifolius L. Noted (but not collected) at several places in Brunswick Co. See p. 103.

Eclipta prostrata (L.) L. E. alba (L.) Hassk.-Common in the southeastern counties.

Here entered in order to call attention to the correct name, as taken up by Exell in his Cat. Vasc. Pl. S. Tomé, 225 (1944). The earliest names (omitting later ones for this cosmopolitan species) as enumerated by Exell are

Verbesina alba L. Sp. Pl. ii. 902 (1753); V. prostrata L., l. c. (1753). Eclipta prostrata (L.) L. Mant. Pl. Alt. 286 (1771). E. erecta L. I. c. (1771), nomen illegitimum. E. alba (L.) Hassk. Pl. Jav. Rarior. 528 (1848).

\footnotetext{
\({ }^{1}\) I am often asked about the specific name Uvedalia. The species was named for the Rev. Dr. Robert Uvedale (1642-1722), an English botanist, mentioned by Plukenet and a correspondent of Magnol, Sloane, Sherard and other leading botanists of his time. The genus Uvedalia was dedicated to him by Robert Brown.
}

Since Verbesina alba L. and V. prostrata L. are considered conspecific and are of even date, the first of them taken up must stand. This is E. prostrata (L.) L. (1771).

Cirsium virginianum (L.) Michx. Range extended inland to Brunswick Co.: springy sphagnous and argillaceous bog, Ramhole Swamp, Seward Forest, near Triplett, no. 14,757. Also noted in dry pine woods near by. See p. 103.
C. virginianum, forma revolutum (Small) Fernald in Rhodora, xlv. 509 (1943). Brunswick Co.: with the last, no. 14,758 . See p. 103.

Some Inconvenient Upheavals of Familiar Names and Author-Citations.-Tiring of trying to find even recognizable formal, not to say varietal, differences in some recently proposed "subspecies", I turned, for a let-up in the tension, to the problem of exact dates of issue of certain publications which I had found cited. These involved three works of nearly competing dates: Sprengel, Florae Halensis Tentamen Novum, with the date on the title-page 1806; Sprengel, Mantissa Prima Florae Halensis, with the title-page dated 1807; and Persoon, Synopsis, pars ii. dated 1807. Fortunately the date of publication of pp. 1-272 of vol. ii. of Persoon was established by Blake in Rhodora, xvii. 134, footnote (1915), he correctly stating that:

Although the second volume of Persoon's Synopsis is dated 1807, its first section (pp. 1-272) was issued in the autumn of 1806, as is shown by a review in the Regensb. Bot. Zeit. v. 321 (21 Nov. 1806).
That pushes a large part of Persoon's 2nd volume into competition with other publications of 1806 . The resulting changes have not been checked.

My special purpose in the present notes is to draw attention to two other works, one of which seems to have been overlooked by the editors of Index Kewensis and by others who have followed that work in assigning many specific names to the wrong author. On May 30, 1807, Johann Friedrich Theodor Biehler issued his doctor's dissertation, printed in Halle. It was entitled Plantarum Novarum ex Herbario Sprengelii Centuriam . . . and it was reviewed in the Regensburg Botanische Zeitung for 15 October, 1807; in other words it was definitely published in late spring or summer of 1807. Biehler having done a piece of descriptive work considered by Sprengel sufficient for his thesis,

Sprengel promptly absorbed it and as the second part of his own Mantissa Prima (pp. 27-58) put it out under his own name as Novarum Plantarum ex Herbario meo Centuria. The latter work, containing Biehler's unacknowledged descriptions and differently paged, did not come out in time to be reviewed in the Botanische Zeitung for 1807. Biehler's original publication was clearly the earlier of the two; yet all of the 100 species described are regularly cited from the second publication and Sprengel is as regularly and unjustifiably cited as the author. Some of the proposed species were described from garden plants, others from India, New Caledonia, New Zealand, St. Helena, The Caucasus, Cuban, Mongolia, etc., while a few were from North America, chiefly received from Muhlenberg. Since these, as well as the Old World species, have been regularly cited as of Sprengel, I am here noting such in our own flora as require the replacement of that author's name by Biehler's.

Scirpus lupulinus Biehler, Plant. Nov. Herb. Spreng. Cent. 4 (1807); Spreng. Mant. Prima Fl. Hal. 30 (1807). Generally identified with Cyperus filiculmis Vahl (1806).

Panicum pensylvanicum Biehler, l. c. 6 (1807); Spreng. l. c. 31 (1807). Not identified; type needs examination.
P. discolor Biehler, 1. c. (1807); Spreng. 1. c. (1807). Type needs critical examination.

Polypogon setosus Biehler, l. c. 7 (1807); Spreng. 1. c. (1807). Basis of Muhlenbergia setosa (Biehler) Trin. ex Jackson, Ind. Kew. iii. 209 (1894); Fernald in Rhodora, xlv. 237, plates 755 and 756 (1943).

Agrostis clandestina Biehler, l. c. 8 (1807); Spreng. 1. c. 32 (1807). Basis of Sporobolus clandestinus (Biehler) Hitche. in Contrib. U. S. Nat. Herb. xii. 150 (1908).

Aira nitida Biehler, l. c. 8 (1807); Spreng. l. c. 32 (1807). Basis of Sphenopholis nitida (Biehler) Scribn. in Rhodora, viii. 144 (1906).
A. pallens Biehler, l. c. (1807); Spreng. l. c. (1807). Basis of Sphenopholis pallens (Biehler) Scribn. 1. c. 145 (1906).

Poa caroliniana Biehler, I. c. 10 (1807); Spreng. 1. c. 33 (1807). Basis of Eragrostis caroliniana (Biehler) Scribn. in Mem. Torr. Bot. Cl. v. 49 (1894).

Although Hitchcock reduces Poa caroliniana to the synonymy of Eragrostis pectinacea (Michx.) Nees, emend., and illustrates the "linear" spikelets as \(10-15\)-flowered, the original description of \(P\). caroliniana called for "spiculis lanceolatis quinque-
floris". The "ligula abbreviata obtusa" of P. caroliniana does not well describe the long tuft of hairs at the orifice of the sheath in \(E\). pectinacea. The type needs critical examination.

Festuca nutans Biehler, 1. c. 10 (1807); Spreng. l. c. 34 (1807), not Moench (1794) and F. obtusa Biehler, l. c. 11 (1807); Spreng. l. c. (1807).

Since Festuca nutans of Sprengel (i.e. Biehler) has generally been referred to \(F\). obtusa, it is noteworthy that both Biehler and Sprengel (neither of whom were "splitters") described them both "E. Pensylvania. Mühlenberg". Their F. nutans was strict, 3 feet high, with lanceolate leaves, the panicle erect but nodding at summit; the ovate-oblong, obtuse spikelets 5 -flowered, the oblong glumes muticous; the grain oblong. \(F\). obtusa had decumbent, geniculate and weak culms and glaucous, linear leaves; the panicle "aequali" (evidently equaling the culm), flaccid, with few spikelets, these pedicellate, oblong and 3-flowered, the unequal glumes much smaller than the lemmas. In other words, \(F\). obtusa was the familiar, weak and usually sprawling plant with usually 3 -flowered spikelets and soon diffuse panicle which correctly passes under that name (incorrectly as of Sprengel instead of Biehler); while for \(F\). nutans Biehler gave a good description of F. paradoxa Desv. Opusc. 105 (1831) or F. Shortii Kunth ex Wood, Class-bk. 794 (1861), a species long known to grow in Muhlenberg's area, about Lancaster. The earlier \(F\). nutans Moench (1794) invalidates F. nutans Biehler.

Epilobium coloratum Biehler. l. c. 18 (1807); Spreng. l.c. 39 (1807); Muhl. ex Willd. Enum. Hort. Berol. 411 (1809).

Although Index Kewensis caught the Sprengel citation of 1807, it entered it as somehow secondary to that of Muhlenberg ex Willdenow (1809) and quite overlooked the earlier publication of Biehler, based on material sent by Muhlenberg to Sprengel. Biehler's detailed description in 12 lines is much more decisive than the 2-line diagnosis of Muhlenberg ex Willdenow. The easy-going faith in "authority" is illustrated by the regular taking up of E. coloratum as of Muhl. ex Willd. (1809), with the 1807 publication of the species by Sprengel (who absorbed it from the still earlier Biehler) as a secondary citation only. There seems to be no escape from writing E. coloratum Biehler.

Scutellaria incana Biehler, l. c. 25 (1807); Spreng. l. c. 44 (1807).

Sprengel as the author must give way to Biehler. The plant was received from Muhlenberg as his S. pubescens Muhl. in Trans. Am. Phil. Soc. iii. 173 (1793), nomen nudum, but, published as a synonym of S. incana, it should have the following additional references: S. pubescens Muhl. ex Biehler, 1. c. (1807) as synonym; Spreng. l. c. (1807) as synonym.
S. elliptica Muhl. ex Biehler. l. c. 26 (1807); Spreng. 1. c. 44 (1807); but originally and legitimately published by Muhl. in Trans. Am. Phil. Soc. iii. 173 (1793).
S. elliptica Muhl. (1793) must take the place of S. ovalifolia Pers. Syn. ii. 136 (1806), the S. pilosa Michx. (1803), not Hill (1768). In his American Species of Scutellaria, Univ. Calif. Pub. Bot. xx. no. 1: 86 (1942), Epling cited S. ovalifolia as of Persoon (1807) but, as noted on p. 197, the first section of Pers. Syn. ii. came out in 1806. Under his needless S. ovalifolia, subsp. mollis Epling, 1. c. (based on the same type as S. ovalifolia) he cites the valid publication of S. elliptica as starting with Sprengel, 1. c., "probably based upon a specimen sent by Muhlenberg". Sprengel, literally copying from Biehler, left no "probably" in the matter since he definitely gave Muhlenberg as the author: "Sc. elliptica Mühlenb. in lit.", the plant "E. Pensylvania".

In the same treatment Epling cites as a synonym S. elliptica Muhl. in Trans. Am. Phil. Soc. iii. 173 (1793), "nomen nudum". Now, although most of the new names published by Muhlenberg in his Index Florae Lancastriensis, Trans. Am. Phil. Soc. iii. 157184 (1793) and in his Supplementum Indicis Florae Lancastriensis, 1. c. iv. 235-242 (1799) were merely nomina nuda, in a very few cases Muhlenberg based his species on plants collected by Clayton and described by Gronovius in his Flora Virginica, ed. 2 (1762) or described by Marshall or others. If the species of Linnaeus (or his contemporaries), based wholly on earlier polynomials of himself or others are valid, then, surely, Muhlenberg's binomials, given to clearly cited and earlier described plants of others are equally valid. In the case of Scutellarıa elliptica Muhl. in Trans. Am. Phil. Soc. iii. 173 (1793) Muhlenberg was definite:

Scutellaria elliptica, Claytoni. 92. N. S.
That, expanded, is S. elliptica of Clayton (or Gronovius), Fl. Virg. ed. 2: 92 (1762). Turning to Gronovius (or Clayton) we
find on p. 92 only one species of Scutellaria, described in perfectly clear terms:

> SCUTELLARIA foliis ovatis, utrinque acutis, obtuse serratis.
> Scutellaria virginiana foliis dentatis. Moris. hist. III. p. 416.
> t. 19.f. 3.

> Cassida foliis Betonicae, flore ex albo \& violaceo variegato.
> Clayt. n. 758.

OBS. Bracteae seu folia floralia parva, ovata
integerrima, corollis dimidio breviora.
That is a perfectly good account of the common plant of eastern Virginia which has passed as Scutellaria pilosa Michx. and which has recently passed as \(S\). ovalifolia Pers. Aside from the Clayton material, no. 758, Morison's Scutellaria virginiana foliis dentatis was cited. Morison's account and figure (Sect. 11, t. 19, fig. 23 , miscited by Gronovius), were perfect, the latter showing the characteristic rhombic-oval leaves, and the description was adequate. Surely, when Muhlenberg based his \(S\). elliptica upon such antecendent descriptions and figure he was not publishing a "nomen nudum". It may be inconvenient, but there seems to be perfectly sound reason for taking up

Scutellaria elliptica Muhl. in Trans. Am. Phil. Soc. iii. 173 (1793); ex Biehler, Plant. Nov. Herb. Spreng. Cent. 26 (1807); ex Spreng. Mant. Prim. Fl. Hal. 44 (1807). S. integrifolia L. Sp. Pl. 599 (1753), excl. Gronovian citation. S. pilosa Michx. Fl. Bor.-Am. ii. 11 (1803), not Hill (1768). S. ovalifolia Pers. Syn. ii. 136 (1806). S. nemorosa Raf. in Am. Mo. Mag. ser. 2. ii. 120 (1817). S.teucrifolia J. E. Sm. in Rees Cycl. xxxii. no. 15 (1819). S. pilosa, var. ovalifolia (Pers.) Benth. in DC. Prodr. xii. 423 (1848), nomenclaturally based on S. ovalifolia Pers. (which, according to Epling, l. c. 86, was "based apparently upon Plukenet's figure" of a plant from Virginia, so that it is difficult to follow him in his statement that S. pilosa, var. ovalifolia (Pers.) Benth. had its "type collected in New Jersey near Princeton (N. Y. Bot. Gard.)". It is probable that the Princeton specimen which Bentham cited, not as a "type", is in the Bentham or the DeCandolle Herbarium). S. ovalifolia, subsp. mollis Epling, l. c. 86 (1942).

The taking up of Scutellaria elliptica forces the following change:

Scutellaria elliptica Muhl., var. hirsuta (Short), comb. nov. S. hirsuta Short in Transylv. Jour. Med. viii. 582 (1836). S. pilosa Michx., var. hirsuta (Short) Gray, Syn. Fl. N. Am. ii \({ }^{1}\).

379 (1878). S. ovalifolia Pers., subsp. hirsuta (Short) Epling, 1. c. 86 (1942). S. ovalifolia Pers., var. hirsuta (Short) Fernald in Rhodora, xliv. 433 (1942).

It is in some ways fortunate that Scutellaria elliptica of Muhlenberg (1793) is so clearly applicable for we are thus saved from the complication started when Linnaeus became confused in publishing S. integrifola L. Sp. Pl. 599 (1753). His account was as tangled as was his understanding of hosts of other American plants:
6. SCUTELLARIA foliis sessilibus ovatis: inferioribus integrifolia. obsolete serratis; superioribus integerrimis.
Scutellaria foliis integerrimis Gron. virg. 67.
Scutellaria caerulea virginiana, lamii aut potius teucrii folio, minor. Pluk. alm. 338. t. 313. f. 4.
Scutellaria, teucrii folio, marilandica. Raj. Suppl. 310. Habitat in Virginia, Canada.
This was immediately followed by
7. SCUTELLARIA foliis lanceolatis. Gron. virg. 167. hyssopifolia. Cassida mariana hyssopifolia. Pet. act. angl. Habitat in Virginia.

The diagnosis "foliis . . ovatis: inferioribus obsolete serratis", the Plukenet description and drawing and the Ray account all belong to the plant above discussed as S. elliptica, while the Gronovian account and the Clayton specimen (photograph, \(\times 1\), before me) from which Linnaeus got the epithet integrifolia are of the plant currently so called; while the type of S. hyssopifolia (photograph, \(\times 1\), before me) is only a narrowleaved individual of our familiar S. integrifolia. Neither element of the bipartite Linnean species is known from Canada!

Now, a complication might seem to arise from the treatment by J. E. Smith in Rees Cyclopaedia, xxxii. nos. 15 and 16 (1819). There Smith, possessor of the Linnean Herbarium, pointed out the original confusion, described as new S. teucrifolia, the ovateand obsoletely serrate-leaved element of the Linnean bipartite \(S\). integrifolia (excluding the entire- and narrow-leaved plant of Gronovius), and concluded, regarding the name integrifolia, "This appellation, however, being erroneous, and having caused much confusion among subsequent botanists, is best laid aside, and we have preferred one taken from the very apt synonyms of Plukenet and Ray." And, forthwith, Smith reduced to \(S\). hyssopifolia L. (1753) the Cronovian element, "S. foliis integer-
rimis", of the original \(S\). integrifolia. On its surface, since \(S\). hyssopifolia was of the same date as S. integrifolia, that would seem to dispose of the latter in the current sense, since it was reduced by Smith to \(S\). hyssopifolia.

Further search, however, shows that Michaux, Fl. Bor.-Am. ii. 12 (1803), had already restricted Scutellaria integrifolia to the plant with all but the lowest leaves "oblongis, integris" and clearly said under it: "S. hyssopifolia. L. hujusce varietas est". Aiton went further in Hort. Kew. ed. 2, iii. 428 (1811), there taking up \(S\). integrifolia "foliis oblongis linearibusve obtusis integris . . . Linn. sp. pl. 836. (secundum synon. Gronovii; reliquis exclusis.)" and flatly citing S. hyssopifolia as an unequivocal synonym. We are, then, quite right in maintaining \(S\). integrifolia as emended by Michaux and by Aiton. \({ }^{1}\)

Turning again to Muhlenberg's new names published in his Index Florae Lancastriensis and its Supplement, most of them, as stated, are unquestioned nomina nuda. Some of them, like "Arabis integrifolia, Clayton 99. n. 745 ?", Muhl. in Trans. Am. Phil. Soc. iii. 174 (1793), must be left as they are because of the doubt expressed by Muhlenberg as to the identity. The following case, unfortunately, is clear.

Ulmus rubra Muhl. in Trans. Am. Phil. Soc. iii. 165 (1793).
Muhlenberg was renaming the perhaps misidentified Ulmus americana of Marshall:

Ulmus rubra. N. S. americana, Marshalli.
There is no question as to Ulmus americana Marshall, Arb. Am. 156 (1785). To the "larger" tree with "leaves smooth on the upper surface, of thinner texture and softer than those of the first kind [Marshall's U. americana]. The seedvessels . . . considerably smaller, end nicked or cleft, and ciliated or fringed on the margin" Marshall gave a new name, \(U\). mollifolia. This, of course, was \(U\). americana as commonly interpreted. Marshall's second species was

\footnotetext{
\({ }^{1}\) Pursh, who got many clues from the more scholarly Flora Boreali-Americana of Michaux, took the hint conveyed by Michaux's statement under the emended Scutellaria integrifolia, "S. hyssopifolia. L. hujusce varietas est" and, in Pursh, Fl. Am. Sept. 413 (1814), formally made the varietal combination S. integrifolia \(\beta\). hyssopifolia. This varietal combination is ascribed by Epling, 1. c. 90, to "Millsp., F1. W. Va. 427, 1892"; but Millspaugh simply listed the name without even any author and with no word of diagnosis nor bibliography.
}

Ulmus americana. American rough leaved Elm-Tree, rises to the height of about thirty feet, . . . with a lightish coloured rough bark. The leaves are oblong, oval and sharp-pointed, somewhat unequally sawed at the edges, . . . very rough on their upper surface and hairy underneath. The flowers are produced thick upon the branches, upon short, collected footstalks; and are succeeded by oval, compressed, membranaceous seed-vessels, with entire margins.

That is certainly Slippery or Red Elm, Ulmus fulva Michx. Fl. Bor.-Am. i. 172 (1803) the species which was later and independently described as U. rubra Michx. f., Hist. Arb. Am. iii. 278, t. 6 (1813). The younger Michaux, although not accepting the name given by his father but preferring to give a new one, unwittingly used the earliest name for the species, for there seems no way to avoid taking up for \(U\). fulva Michx. (1803) the much earlier U. rubra Muhl. (1793).

An Incomplete Flora of Illinois.-It is a subject for special note when one of our larger Universities produces what purports to be a "comprehensive treatment" of the flora of its state, and especially when another university in a neighboring state sponsors its publication. The state of Illinois has had in the past some very learned or scholarly students of its flora, for, although today, to the traveler who passes hastily across it, the state often looks botanically rather uninspiring, that was not always the case. Writing in 1882, the very keen and always helpful student of the flora of Illinois and neighboring states, the late M. S. Bebb \({ }^{1}\), in his discussion of Recently Introduced Plants in and about Rockford, Ill., said "I remember well . . . how here in Rockford, IIl., say twenty years ago, the indigenous plants of the prairie and oakopening sprang up on every side in close proximity to the beaten paths of busy men. The industrious young botanist, collecting for exchange, found his only limitations in the quantity of driers he possessed, and the amount of time, energy and discretion he could bring to the work of using them well. Now we must go miles out into the country for material and count ourselves fortunate, even then, if the little vestige of the native flora which last season afforded us a dozen desirable specimens has not since been swept away by the plow; while in the central portion of the city scarcely a single native species remains to dispute possession with street weeds, mostly of European descent and training." Now, more than 60 years later, the native flora is still further diminished and that of "European descent and training" greatly increased.

The first botanist to explore Illinois was the greatest of them all, André Michaux, who, descending the Ohio in 1795, camped on the lower Wabash and then proceeded westward to the Mississippi, making a center at Kaskaskia and botanizing up and down the Mississippi and along the lower Ohio from August to October. This great pioneer in American botanical exploration

\footnotetext{
\({ }^{1}\) Bot. Gaz. vil. 68-90 (1882).
}
carried his material back to Paris, where the great collection has long been available for ready reference. Michaux's monumental Flora Boreali-Americana (1803) contained scores and scores of records from Illinois and more than 60 new species with their types from the southern portion of that state-the greatest series of new species of vascular plants ever collected by one man in Illinois.
After Michaux, the first three-fourths of the last century saw some remarkably strong botanists collecting assiduously or writing authoritatively upon the floral areas and the native and introduced plants of Illinois. Some, like the erratic Rafinesque or the learned and careful Louis C. Beck, who wrote as an introduction to his Contributions toward the Botany of the States of Illinois and Missouri (1826-28), "During my residence in Missouri in . . . 1820, 21 , and 22, a portion of my time was occupied in the investigation of the vegetable productions of that and the adjoining state", came from outside. Others, like Samuel B. Mead, were content to collect discriminatingly and to refer their problems to masters at the older centers, with the result that we have a noble series of species, such as Carex Meadii, Asclepias Meadii and others discovered and modestly communicated by him. One of the first extensive lists of Illinois plants as such (Engelmann's Catalogue of a Collection of Plants made in Illinois and Missouri by Charles A. Geyer not discriminating often between the two states) was the cautious and very reliable Catalogue of the Plants of the State of Illinois (1856-57) by Dr. Increase A. Lapham, an amateur scientist of such scholarship and precision that he was awarded what few amateurs ever have received, one of the most distinguished honors open to American scholars, election to the American Philosophical Society. Besides his Catalogue of more than 1125 vascular plants then known in the state, Lapham published one of the most critical and accurate series of descriptions up to his time of Native, Naturalized and Cultivated Grasses of the State of Illinois. Another great scholar, Frederick Brendel, published in the Zeitschrift für die Gesammten Naturwissenschaften, xv. (1860) his Verzeichniss der in Illinois wildwachsenden phanerogamischen und cryptogamischen Gefösspflanzen, a catalogue of nearly 1200 species. This was followed by the publication at Budapest in Természetrajzi Füzetek, v. (1882) of his remarkably helpful Flora Peoriana, die Vegetation im Clima von Mittel-Illinois. This contained more than 1360 species, with indication of the geographic areas of the state where it occurred: if not near Peoria, then along the Mississippi ("Am Mississippi"), in the region of the Ohio ("Im Ohiogebiet"), along Lake Michigan ("Am Michigan-See"), etc. Here were the first records for a great number of plants in Illinois, with a scholarly discussion of the natural floral areas, a model of scientific presentation. Then, in English, Brendel published (1887) his Flora Peoriana, the Vegetation in the Climate of Middle Illinois,"the result of thirty-five years observations'. To these add Patterson's Catalogue in 1876, Flagg's in 1878 and very many local floras and notes (a few of them cited in the bibliography of the new Flora of Illinois (1945)). George Vasey, Henry Eggert, E. J. Hill, M. S. Bebb, F. E. McDonald, Robert Ridgway and many others added materially to the published Catalogues, and John Wolf, too modest to publish, enriched our knowledge very materially, sending to others the specimens upon which were based such very unusual species as Poa Wolfi and Eleocharis Wolfi.

With such a background of sound enumerations of the vascular plants of the state or of sections of it, the student in 1945, hearing that a professor at the University of Illinois has published through Notre Dame University a new and up-to-date Flora of Illinois, naturally looks forward to an accurate recension of all this assembled matter. If, however, he has known these scores of discriminating lists and as many technical studies of genera or sections of genera in our flora, most of which I had long since had to digest in revising the Manual and which, consequently, were largely right at hand, he is in for a great disappointment. Therefore, when the editor of the new Flora of Illinois, by George Neville Jones, \({ }^{1}\) asked me to review the book in Rhodora, I was obliged to write him that he had assigned me an unwelcome and highly unpleasant task. Of course some reviewers would easily say "It is finely printed, neatly bound and has very simple keys. It is, therefore, a great book". But, in view of the great mass of accurate data which has been neglected but which I had already taken into account in my own work, I cannot stop there; and I am sure that the more experienced living botanists of Illinois must react in the same way.

The first part of the book is made up of speciously simple keys-specious because they are so likely to mislead. On p. 8, Section 1 is defined as " 1 . Plants grasses, sedges, or rushes; perianth green or absent". How in the world does the beginner know whether the plant is a grass, sedge or rush, merely because it has a green perianth, or none? Scouring Rush (not a grass, sedge or rush) has no flowers. Turning to the fuller detail of Section 1 we are given the following key:

\section*{Section 1. Grasses (or Grass-like Plants), or Sedges, and Rushes}
1. Flowers enclosed by chaffy scales; perianth none, or of bristles; fruit a grain or an achene.
2. Stem usually cylindrical [etc.]
22. Gramineae
2. Stem cylindrical or triangular. . ; fruit an achene.. 23. Cyperaceae
1. Flowers not enclosed by chaffy scales; perianth 6-parted; stems terete; fruit a capsule.
3. Stem not glandular.
30. Juncaceak
3. Stem glandular. Tofieldia in 31. Liliaceae

Now, if the uninitiated get hold of almost any species of Fimbristylis or of Cladium, for instance, he will find the flower subtended by but not "enclosed by" a scale (in most Gramineae the "enclosing" is complete, but not in most Cyperaceae, except Carex); if he gets Fuirena he will find, as Dr. Jones states, on p. 69, a "perianth of 3 stalked sepals". And how can he know, when he gets green-flowered Stenanthium gramineum, with flowers constructed like those of Juncus, or of Zigadenus or Yellow-eyed Grass, Hypoxis, with their green-backed perianths appressed to the fruit, that it is not a grass-like plant with "perianth 6-parted; . . . fruit a capsule"? Furthermore, when he gets hold of a Juncus of the Prophyllate series (with chaffy scales "enclosing" the bases of the flowers) how can he be sure that they don't? And as to the

\footnotetext{
\({ }^{1}\) George Neville Jones: Flora of Illinois, containing keys for identification of the flowering plants and ferns. The American Midland Naturalist, Monograph No. 2 University of Notre Dame, Notre Dame, Indiana (1945). 317 pp. \$4.00.
}
perianth of the Juncaceae being "green", only the green beginner will try to hold his Rushes to that definition. Just look at the brown or fulvous outer tepals (sepals) of many species of Juncus or of Luzula!

Having learned (we hope) that some plants with grass-like leaves and green perianths are not necessarily Rushes, the beginner tries another lot of specimens. He has come in from the dunes of Lake Michigan with a slightly frutescent little gray-pubescent plant with tiny scale-like leaves and bright yellow petals, surely an Angiosperm. Imagine his shock, if he has had even an elementary training in morphology, to find it placed with the Gymnosperms! The only excuse for here placing Hudsonia is that Gymnosperms are trees and shrubs with "Leaves needle-like (acicular), scale-like, or subulate, evergreen", though admittedly deciduous in Larix and Taxodium (in which some of the leaves are flat, as they are in Tsuga!). Certainly if the barely shrubby Hudsonia can be placed (with apologies, to be sure) with the Gymnosperms, then bushy-branched, though herbaceous Asparagus could be placed there; and why not Belamcanda with its naked seeds or Reseda with its seeds maturing in an open barrel-like capsule (Reseda is wild in Illinois, though not cited in the book). After struggling, to the point of inaccuracy or near-absurdity not to use technical terms, why give up and suddenly, in the keys, expect the ignorant beginner to understand "stamens hypogynous", "Corolla not papilionaceous", "corolla sympetalous"? If the student understands these terms he doesn't need the misleading pap.

Now to the Flora itself. Dr. Jones here carries out his oft-expressed admiration of Rydberg's inability to distinguish between species, varieties and forms. Consequently many plants which some pretty sound taxonomists rank as varieties or as mere forms (without different ranges) are here treated as species. In general, varieties and forms are not even mentioned but sometimes their names are bracketed as synonyms of the maintained specific one: under Lathyrus, for instance, "[L. venosus var. intonsus Butters \& St. John]
L. venosus Muhl."; or under Acalypha "[A. gracilens var. fraseri (Muell. Arg.) Weatherby] . . . A. gracilens Gray". In at least three cases, however, the offending varieties or forms are not bracketed. These are under Prunus virginiana "The form with the lower surfaces of the leaves, young twigs, and rachis of inflorescence pubescent is f. deamii G. N. Jones"; under Gleditsia triacanthos "The spineless form is f. inermis (Pursh) Fassett"; and under Psoralea psoralioides "The plants of the Central States are less glandular and have been named P. psoralioides var. eglandulosa (Ell.) F. L. Freeman". When one notes that the combination under Gleditsia was used by Schneider in 1907, he has left as authors of an accepted form and an accepted variety G. N. Jones and F. L. Freeman (now Mrs. G. N. Jones). That is "keeping up with the Joneses" with a vengeance!

In carrying through his Rydbergian principle of species or nothing Dr. Jones treats the American variety of the circumboreal Scheuchzeria palustris as a species, S. americana (Fern.) Jones. Why stop there? Are not the American varieties of other circumboreal species quite as eligible? They are; but it is devoutly hoped that they will not be elevated to specific rank without sound morphological characters: our Eleocharis paucifora, var. Fernaldii Svenson,

Scirpus cespitosus, var. callosus Bigelow, Juncus effusus, var. solutus Fern. \& Wiegand, Menyanthes trifoliata, var. minor Michx. ex Raf., etc., etc. But, if the Eleocharis is so treated, I hope against hope that its specific name will be allowed to retain its capital initial. In the new Flora of Illinois all personal genitives and all old generic names used as specific ones are decapitalized, in violation of good usage and in spite of the recommendation of the International Rules. Essentially all botanists of scholarly background, from Linnaeus down, have shown their understanding by using the capital; it was regularly used, even by Rafinesque, and by Torrey, Engelmann, Gray, Britton, Small and Jones's usual model, Rydberg, while the very distinguished founder of the American Midland Naturalist, Nieuwland, was too great a scholar to decapitalize such names.

Incidentally, followers of the new Flora should be warned against untenable specific names there used. Such a name as Agropyron pauciflorum (Schwein.) Hitchc. ( 1933 or '34) should not be used. There was already an A. pauciforum Schur (1859); a matter discussed in Rhodora, xxxvi. 417-419 (1934) and again noted in xxxvii. 372 (1935).

In this Flora 2124 species and pseudo-species are enumerated as occurring in Illinois but, if the compiler had taken into account the published Illinois records, the number would be nearer 2325 . It is unfortunate that the old and pretty sacred principle of state's rights should have been transgressed in making up the deficient total. For instance, Eriocaulon septangulare is formally entered (and presumably counted), with the Illinois occurrence stated as "Borders of ponds and lakes. Pepoon says" . . from East Chicago eastward'". That suggests Illinois to those who do not know local geography, but we learn over the radio, from the "Quiz Kids", that East Chicago is in Indiana, a fact corroborated by the Postal-Guide and the Atlas!; and Jones himself adds apologetically: "Locally abundant in northern Indiana, but no Illinois specimens seen". I have not taken the time to figure how many other species got entered without sustaining credentials. It is very certain, however, that fully 200 species or strongly defined geographic varieties with the best of credentials were not admitted to the official registration. Some of these, like Scirpus Hallii Gray, were christened from Illinois material and even named for Illinois botanists; others have merely been well known to grow there. Toward the end of the volume there is a brief bibliography in which a part, but scarcely half, of the papers or reports upon Illinois plants are cited. It is, then, to be regretted that the contents of even these, to say nothing of many other authoritative publications, were not more generally accepted or understood. Many of the names used in older reports are not now (since the principle of priority of specific names, instead of the first combination of generic and specific, came into vogue) known to the "younger generation"; but they should be quite identifiable by any one competent to rank as an authority on the flora. Even the great initial contribution of Michaux to our knowledge of the Illinois flora is quite ignored, for such an obvious grass as Bouteloua curtipendula (Michx.) Torr. is credited to "the n . half of Ill." only, although the type of the basic Chloris curtipendula Michx. was from Wabash. In fact, as already noted, more than 60 of Michaux's species had their types from

Illinois. They were known to Lapham, Brendel and their really careful followers; but since, on the first page of the present Flora we are told that "no comprehensive treatment of the botany of this state has hitherto been published", it is just too bad that so much of the work of Michaux and so many records of his successors were not included and, by implication, not comprehended. Agrostis [Muhlenbergia] racemosa Michx. is the bushybranched species found on the driest of habitats from bluffs of the Mississippi across the Plains (not the simple-culmed species of bogs and wet shores); and, although Jones thinks Croton capitatus Michx. "probably adv. from s. U. S.", Michaux, discovering it in 1795 and describing it as a new species, did not so consider it; and the unique (and by Hitchcock wholly misunderstood) Erianthus brevibarbis, with its type from southern Illinois, should have had due recognition; so should the conspicuous Cardiospermum Halicacabum which Michaux got near Kaskaskia. Furthermore, Heteranthera limosa (not in the new \(\boldsymbol{F}\) lora) was beautifully illustrated and described as a new species, Leptanthus ovalis, by Michaux from "paludosis Illinoensibus".

Even though the author of a "comprehensive" state-flora may not have known the early history of botanical exploration of his region, he certainly knew of some catalogues and lists; at least he cites in the bibliography some of those of Brendel, Gleason, Higley \& Raddin, E. J. Hill, Lapham, Mosher, E. J. Palmer and Patterson, as well as numerous others. Practically every one of the reports or papers of the above-mentioned students of the flora contains from 1 to 50 or more species not accounted for by the compiler of the "comprehensive" Flora. Even one of the very latest papers cited by him, E. J. Palmer's Botanical Reconnaissance of southern Illinois (1921), which, although cited, was apparently not carefully digested, would have yielded 28 additions to the Flora: Justicia humilis (Dianthera ovata), Spilanthes americana, Corallorrhiza Wisteriana, Eupatorium incarnatum, Talinum calycinum, Vaccinium tenellum, Carya Pecan, Tilia floridana, etc., etc. Since Palmer's report was primarily upon the trees, with herbs and shrubs only incidentally mentioned, one can only imagine the many other species new to Illinois in his extensive and discriminating collections. And when, as in Strophostyles umbellata (see p. 216) the author himself collected, correctly identified and distributed species but did not admit them to his Flora, it is evident that something slipped.

All this is very sad; one is sadder that it seems necessary to point it out. When the Flora of Illinois first came to my desk I expected a worthy book. Soon discouraged, as its inadequacy became more and more apparent, I jotted down a few (toward 100) members of the Monocotyledoneae and the Archichlamydeae (not attempting Carex, Crataegus and Rubus) which, although I had never been in Illinois except to lecture in Chicago, I knew to occur in that state. These memoranda, sometimes with some (but not all) supporting citations, were written out; then I balked. I had made no contract to prepare a new flora of the state. However, having made the partial enumeration, I here present it. It is obviously very incomplete and were the Metachlamydeae added one would have to start right out with such obvious omissions as Lysimachia hybrida Michx., Fraxinus biltmoreana Beadle, Sabatia campestris Nutt.,
and so on to Sonchus uliginosus Bieb. It is altogether too evident that here is another case of "boom-town" construction, the big-fronted upper story constructed without serious consideration given the necessary foundations.

\section*{A partial Supplement to the "Flora of Illinois", made from a Desk-top in Massachusetts}

Sparganium angustifolium Michx. "McHenry county, Vasey"-Patterson Cat.

Najas gracillima (A. Br.) Morong. "Wabash county, Schneck"-Patterson Cat.; "Im Ohiogebiet", Brendel, Fl. Peoriana (1882).

Echinodorus tenellus (Mart.) Buchenau. E. parvulus Engelm. in Gray, Man. ed. 2:438 (1856); Robinson in Rhodora, v. 85-89, pl. 45, figs. 1-10 (1903). Helianthium tenellum (Mart.) Britton, Man. ed. 2: 54 (1904). H. parvulum (Engelm.) Small in N. Am. Fl. xvii1. 45 (1909). "Margin of shallow ponds, Michigan to Illinois and westward"-Engelm., l. c.; "found . . on the Illinois side of the Mississippi by Dr. Engelmann and by Mr. Henry Eggert"Robinson, 1. c. 89. Clearly cited also by Lapham, Patterson, Brendel and several others.

Glyceria striata (Lam.) Hitchc., var. stricta (Scribn.) Fern. (Panicularia rigida (Nash) Rydb.). Skokie Marsh, Glencoe, June 12, 1911, Sherff.

Having been called a species by Rydberg this plant is certainly eligible under Jones's rules, even though only a northern variety.
G. arkansana Fern. Mt. Carmel, 1874, J. Schneck; marsh northwest of Glencoe, June 12, 1911, Sherff. See Rhodora, xl. 386 (1938).

Vulpia octoflora (Walt.) Rydb., var. tenella (Willd.) Fern. (Festuca oct. Walt., var. tenella (Willd.) Fern.). Frequent in Illinois: Oakwood, Pease, no. 14,713A; between Oakwood and Collison, G. N. Jones, no. 13,872; Peoria, McDonald; Crawford, Clokey, no. 2445; Starved Rock, Greenman, Lansing \& Dixon, no. 78; Hillery, Gleason; etc.

Differing at once from true \(V\). octoflora in its lower glumes only \(2.3-4 \mathrm{~mm}\). long; awns \(1-3 \mathrm{~mm}\). long. This variety (why not, then, a species?) occurs across the continent, from Maine and southern Quebec to southern British Columbia, southward through much of the United States. True V. octoflora, described from South Carolina, is decidedly southern, from Florida to Texas, northward to southern New Jersey, southern Illinois (Makanda, Gleason), central Missouri and Oklahoma. Its lower glumes are \(3.5-4.5 \mathrm{~mm}\). long, the longer awns of the lemmas \(3.5-7 \mathrm{~mm}\). long.

Upon much diluter characters than these the author of the Flora of Illinois maintains as species in Panicum and Paspalum plants which pretty accurate and long-experienced students (like Wiegand, Witmer Stone, Deam, Weatherby and others) balk at so dignifying.

Agrostis hyemalis (Walt.) BSP. (A. antecedens Bicknell). See Rhodora, xxxv. 207, 208, pl. 246, figs. 3-5 (fig. 5 from Illinois): "extending north in the interior to . . . Illinois and Indiana."

The numerous sheets of \(A\), hyemalis, in flower or fruit, in the Gray Herbarium from Illinois (northern limit of species) were collected in May and early June: Decatur, Peoria, Starved Rock, Glencoe, Marion Co., Hillery, Wady Petra and St. Clair Co. The coarser, later and generally more northern \(A\). scabra is not represented from Illinois in the Gray Herbarium. The flowering material from Ohio was collected from July 17 to August 12; from Michigan

July 16 to August 22 ; from Wisconsin August 31 to September 13. Kneucker's Gram. exsicc. no. 569 from Wady Petra is a good example of \(A\). hyemalis.

Higley and Raddin, in their Flora of Cook County, cite A. scabra as common there on prairies in July. That may well be the northern species.

Muhlenbergia curtisetosa (Scribn.) Bush. "Illinois (Clinton)"Hitchcock, Man. 375.
M. setosa (Spreng.) Trin., var. cinnoides (Link) Fernald in Rhodora, xlv. 238, pl. 757 (1943). Formerly confused with the stiffly branching M. racemosa (Michx.) BSP. of dry bluffs and prairies from Wisconsin and Illinois westward, M. setosa ( \(M\). glomerata) is a much simpler plant of meadows, bogs and wet shores. Its var. cinnoides is common in Michigan. Wisconsin and Minnesota. Lapham (like most earlier authors) included them both under his M. glomerata, but the plant of "very wet meadows and swamps" was clearly M. setosa, var. cinnoides. So was Patterson's plant of "Bogs . . . northward".

Sporobolus canovirens Nash. Much material in Gray Herbarium from Illinois.

Sporobolus canovirens is very distinct from S. clandestinus (Biehler) Hitchcock. The type of the latter was from eastern Pennsylvania, the species with terminal panicle \(4-10 \mathrm{~cm}\). long, spikelets \(6-8 \mathrm{~mm}\). long, palea much prolonged beyond the lemma into a subaristate beak, found on the Atlantic slope from Connecticut to Florida, thence to Mississippi. I have seen none of it from Illinois. The plant of the latter region, S. canovirens -(type from Kansas) has the terminal panicle stouter and \(0.5-2 \mathrm{dm}\). long, spikelets \(5.5-6 \mathrm{~mm}\). long, with merely acute lemma and palea subequal. It occurs from Indiana and Wiscon\(\sin\) to Kansas and south to Mississippi and Texas. The mere fact that Hitchcock could not see the differences should not forbid its recognition. Miss Edna Mosher, in her discriminating Grasses of Illinois, clearly recognizes S. canovirens; and her figures well show the contrasts between it and S. clandestinus.

Stipa avenacea L. Lapham, in his very accurate study of the Grasses of the State of Illinois, clearly described this species as growing in the state. Both his description and illustration are conclusive. Miss Mosher expresses the same view.
Leptochloa attenuata Nutt. Metropolis, Massac Co., Benke, no. 4679, as L. filiformis.

Although Hitchcock reduced outright to L. filiformis (Lam.) Beauv. the weaker and more flaccid \(L\). attenuata, they are far more distinct than many so-called species separated by him: such fluctuating and intergrading complexes as Panicum Werneri Scribn., merely a glabrous or glabrescent P. linearifolium, or \(P\). xalapense HBK., with its assigned diagnostic characters hopelessly crossing those of \(P\). laxiflorum Lam. Leptochloa filiformis, except in the smallest individuals, is commonly \(0.7-1.2 \mathrm{~m}\). high, with the leading panicles \(1.5-6 \mathrm{dm}\). long, made up of stiff spikes up to 1.5 dm . long; its glumes merely acute, not at all or but rarely overtopping the 2-4 florets; the grain 0.7-0.9 mm . long. It is a wide-ranging weedy species from the West Indies and Florida to Mexico, north to Virginia, Indiana, Illinois, Missouri and Kansas. L. attenuata is weaker and softer, \(1-6 \mathrm{dm}\). high, with the leading panicles rarely 3 dm . long, made up of flexuous spikes \(2-11 \mathrm{~cm}\). long; its slender glumes
aristate, the 2 d overtopping the lemmas, and its grains are \(0.4-0.5 \mathrm{~mm}\). long. It occurs from southern Illinois to Louisiana and Texas. Even though its doom has been settled by an edict from Washington it is well to study the plants themselves. If \(L\). attenuata is not a good species it is, at least, a very strong (though physically weak and flaccid) variety. The great and wise soil-chemist, Hilgard, decrying the tendency of the uncritical majority to follow blindly and without careful checking the emanations from the government bureau which most concerned his field, used to refer to these uncritical flocks as being "under the divine official afflatus of that head center".

Paspalum laeve Michx. Stations cited by Edna Mosher.
P. setaceum Michx. Cited by Lapham, Patterson and most others, including Miss Mosher (with citation of specimens) but not by Jones.
P. setaceum, var. longepedunculatum (LeConte) Wood (P. longepedunculatum LeConte). Definite stations cited by Miss Mosher.
P. Bushir Nash. Stations cited by Miss Mosher.

Echinochloa pungens (Poir.) Rydb. (E. muricata (Michx.) Fern.). See Wiegand in Rhodora, xxiii. 57-60 (1921). Illinois specimens cited by Wiegand.
E. pungens, var. occidentalis (Wieg.) Fernald \& Griscom. (E. muricata, var. occidentalis Wieg.; E. occidentalis (Wieg.) Rydb.) Type from Grand Tower, Illinois.
E. pungens, var. microstachya (Wieg.) Fernald \& Griscom. (E. muricata, var. microstachya Wiegand; E. microstachya (Wieg.) Rydb.). Illinois material cited in Wiegand's original account.

Although Hitchcock (therefore the Flora of Illinois) could not see the specific characters which sharply separate the indigenous North American Echinochloa pungens from the introduced \(E\). crusgalli (L.) Beauv., they were understood by Michaux (and Richard), by Poiret, Wiegand and some others. In the introduced \(E\). crusgalli the nodes and rachis of the panicle bear slender bristles, such bristles wanting or few in E. pungens. In E. crusgalli the spikelets are subglabrous or with appressed setiform hairs on the surfaces, bulbous-based hairs, if present, marginal; while in E. pungens the glumes and sterile lemma are more often echinate, with some or all of the trichomes pustular-based. In \(E\). crusgalli the coriaceous lemma is obtuse, with a soft and soon withering tip; while in the indigenous \(E\). pungens the coriaceous lemma is acuminate or subacuminate to a firm (nonshriveling) tip.

In Illinois Echinochloa pungens is represented by three varieties, so different that, when he published them, Wiegand stated that in his first manuscript he had treated them as distinct species but that further study revealed some intergradation. Rydberg had no such hesitation. How torn the recent author must have been between the two culture-heroes, Hitchcock and Rydberg. Had he taken a cue from the scholarly and accurate Dr. Lapham Echinochloa might have been differently treated. In 1856 (or 57) Lapham wrote: "The Barn yard grass is a coarse species, introduced from Europe; but we have at least two varieties that are native, growing in moist rich grounds, and along the margins of lakes and streams". Lapham really saw something.

Erianthus brevibarbis Michx. The type, bearing Michaux's label "hab. in collibus desertis ab amnio Wabash ad Ostium Missouri 5 diebus distantibus", which, as indicated in Rhodora, xlv. 248 (1943) was "in southern Illinois, presumably between Jefferson County at the east and Randolph County at
the west", was shown in Rhodora 1. c. plate 759 , while plate 760 showed a modern specimen from a tributary of the Mississippi farther south.

In the same paper (pp. 224-230, plates 749-752) it was shown that the name Muhlenbergia mexicana has been wrongly applied and that (pp. 255-258) the name Andropogon furcatus Muhl. (1806) was antedated by A. Gerardi Vitman (1792). Nevertheless, the Flora of Illinois continues the erroneous use of Muhlenbergia mexicana and prefers the latest of three specific names for the Andropogon!

Cyperus virens Michx. (C. pseudovegetus Steud.). See Rhodora, xlvii. 109, plate 876. Metropolis (gravelly creek-bank), Gleason, no. 2242.

Fimbristylis Baldwiniana Torr. "west to Illinois", etc., Britton in Britton \& Brown, III. Fl. ed. 2, i. 321 (1913); undoubtedly correct, there being characteristic material in the Gray Herbarium from eastern Missouri. Cited as \(F\). laxa, by Lapham, Brendel and others.

Scirpus Hallii Gray. Type from "Along ponds, Mason Co., Illinois - . . E. Hall"-Gray, Man. ed. 4, xcix (1863), error for Menard Co. Cited many times subsequently. Type in Gray Herbarium.
S. heterochaetus Chase. "Illinois: Henderson Co., near Oqua[w]ka, H. N. Patterson; near Dupond [Dupont], J. A. Steyermark 4471; South Eastern Railroad, H. Eggert in 1876".-A. A. Beetle in Am. Journ. Bot. xxviii. 693 (1941).
S. rubricosus Fernald (S. Eriophorum Michx., illegitimate substitutename). Open wet bottomlands, Makanda, Gleason, no. 2243 (as S. lineatus). Cited by both Patterson and Brendel.

Commelina diffusa Burm. f. (C. nudifora sensu many auth., not L.). Mound City, Aug. 1, 1862. Geo. Vasey (as C. virginica). Also cited by others from southern Illinois.
C. erecta L., var. angustifolia (Michx.) Fernald in Rhodora, xlii, 439 (1940). Including C. angust folia Michx., C. Nashii Small and C. crispa Wooton \& Standley (enough binomials to make it eligible to the Flora of Illinois). Wooded dunes, Bath, Aug. 17, 1903, Gleason: Chandlerville, Aug. 13, 1886, A. B. Seymour; east of Havana, Evers, Jones \& Jones, no. 588.
C. erecta, var. Deamiana Fernald, 1. c. 440, pl. 631 (1940). Oquawka, Gleason.

Heteranthera limosa (Sw.) Willd. Ponds, St. Clair Co., Aug. 2, 1877, Eggert. Lapham (Cat.) cited it in 1857 but his material was cited in Gray, Man. ed. 2: 485 (1856) from "Illinois". In fact, the Illinois records go way back to Michaux's Flora (1803), the Illinois material collected in 1795. Michaux described and illustrated (plate 5) Heteranthera limosa as a new species, Leptanthus ovalis, "HAB. in paludosis Illinoensibus. Augusto florens".

Juncus brevicaudatus (Engelm.) Fernald (J. canadensis, var. coarctatus Engelm.). Cited by Patterson from Kankakee County; also cited by Brendel. J. Debilis Gray. Cited by Patterson from "Southern Illinois".

Chamaelirium luteum (L.) Gray. "Illinois"-Gray, Man. ed. 2: 478 (1856); also cited by Patterson and by Brendel. Fine specimen from Abingdon in Gray Herb.
Smilacina trifolia (L.) Desf. Patterson (1876), Brendel and Higley \& Raddin cite stations in northern Illinois.
Spiranthes lucida (H. H. Eaton) Ames. "Menard county, Hall"-Patterson Cat.; "Among the drift hills near Mokena, south of Chicago . . two specimens found"-E. J. Hill in Bull. Torr. Bot. Cl. xxvi. 306, 307 (1899). In both cases called \(S\). latifolia, thus apparently unrecognized by the author of the new Flora.

Malaxis brachypoda (Gray) Fernald. Microstylis monophyllos sensu e. Am. auth., not (L.) Lindl. "Swamps. Menard county, Brendel; Elgin, Kane county, Vasey"-Patterson Cat.

Salix longipes Shuttl., var. Wardi (Bebb) Schneid. "In Illinois
in St. Clair and Madison Counties"-Schneider in Journ. Arn. Arb. i. 28 (1919).
S. missouriensis Bebb. Little Wabash bottoms, Richland County, Robert Ridgway, no. 1580; "It occurs in Illinois along the Ohio River near its junction with the Mississippi"-C. R. Ball in Deam, Shrubs of Ind. 52.

Carya glabra (Mill.) Sweet, var. megacarpa Sarg. (C. megacarpa Sarg.). "Tunnel Hill, Johnson County"-Sargent, Trees and Shrubs, ii. 201.

Although later ranked as a strong geographic variety, this tree was originally treated as a species. That makes it eligible.
C. Buckleyi Durand, var. arkansana Sarg. (C. arkansana Sarg.), "southern Illinois"-Sargent, Man. Trees N. A. ed. 2: 199 (1922). Cited by Ridgway and others.

Fagus grandifolia Ehrh., var. caroliniana (Loud.) Fern. \& Rehder.
The tree of southern Illinois is so distinct from true northern Fagus grandifolia that it stands well apart. Clearly cited by E. J. Palmer.

Alnus glutinosa (L.) Gaertn., "naturalized in some places south of Jackson Park. It has spread into the wet land, making thickets . . . They fruit when at the height of four to six feet"-E. J. Hill in Bot. Gaz. xxi. 121 (1896). That sounds like naturalization.

Ulmus serotina Sarg., "southwestern (Grand Tower, Jackson County, H. A. Gleason) and southern Illinois (Richland County, R. Ridgway)"Sargent, Man. Trees N. Am. ed. 2: 316 (1922).

Iresine rhizomatosa Standl. (I. celosioides Michx., not L.). "Im Ohiogebiet", Brendel, Fl. Peor. (1882). Cited by others.

Spergularia marina (L.) Griseb. "Chicago, . . . Moffat 283"Ruth P. Rossbach in Rhodora, xlii. 128 (1940).

Although the author of the Flora of Illinois specially cites (p. 287) Mrs. Rossbach's monograph, he drew no sustenance from it, completely omitting the genus Spergularia from the enumeration.

Cerastium brachypodum (Engelm.) Robinson, "southwestern Illinois"Britton in Britt. \& Brown., Ill. Fl. ed. 2, ii. 48 (1913).

Stellaria crassifolia Ehrh. "Ringwood, Illinois, Vasey"-Gray, Man. ed. 3: 59 (1862); "Illinois, Vasey, Hill"-Robinson in Proc. Am. Acad. xxix. 286 (1894); "N. Illinois, Vasey, Hill"-Robinson in Gray, Syn. Fl. i'1. 235 (1897). Plenty of other citations, by Patterson, Brendel (1882 and 1887) and by Higley \& Raddin (with record of a new station).

Dianthus deltoides L. Hillery, June, 1907, Gleason.
Claytonia caroliniana Michx. Records by Patterson, Brendel and Higley \& Raddin.

Nuphar variegatum Engelm. "A few specimens near South Chicago"Higley \& Raddin.

Anemone quinquefolia L., var. interior Fernald. Illinois material cited in original description.

Argemone intermedia Sweet. Sands, banks of Illinois River, Mendosia. July 20, 1878, A. B. Seymour.

Rorippa obtusa (Nutt.) Britton. Old specimen marked in Hall's handwriting, "Illinois, E. Hall". Cited by Vasey in Trans. Ill. Nat. Hist. Soc. ed. 2, i. ser. 1. 140 (1862), by Patterson and by Brendel.

Descurainia Sophia (L.) Webb. "Thoroughly naturalized along the roadside", Fountaindale, Bebb in Gray. Herb. Cited by Patterson with note from Bebb.

Reseda alba L., "streets of Morgan Park"-E. J. Hill in Bull. Torr. Bot. Cl. xxvi. 309 (1899). Also later records.

Podostemum ceratophyllum Michx. "South Chicago"-Higley \& Raddin.
Heuchera americana L., var. interior Rosend., Butt. \& Lak. Many Illinois specimens cited in the Monograph by the authors of the variety.
H. Richardsonif R. Br., var. Grayana Rosend., Butt. \& Lak. Many Illinois specimens cited in the Monograph. In the Flora of Illinois this is made a mere synonym of the very different \(H\). hispida Pursh, a local montane species not occurring in Illinois.
Pyrus angustifolia Ait. (Malus angustifolia (Ait.) Michx.), "in southern Illinois (Pope and Johnson Counties. E. J. Palmer)".-Sargent, Man. Trees N. Am. ed. 2: 386 (1922). Listed by Patterson from "Washington county . . .; Wabash, Schneck"; also by several others.

Potentilla millegrana Engelm. "Illinois"-Rydberg in N. Am. Fl. xxii". 305 (1908).
Geum rivale L. "Near Elgin, Kane county, Vasey; McHenry, Miss Holmes. Rare"-Patterson Cat. "Wet bogs and swamps; rare", Higley \& Raddin.

Prunus Munsoniana Wight \& Hedrick, "southern Illinois (Alexander, Gallatin, Pope, Johnson and Richland Counties)"-Sargent, Man. Trees N. A. ed. 2: 569 (1922). Palmer discusses its abundance.

Baptisia tinctoria (L.) R. Br., var. crebra Fernald. Many records (simply as B. tinctoria) by Lapham, Patterson, Brendel et al.
Lupinus perennis L., var. occidentalis S. Wats. Probably all Illinois material belongs to this chiefly inland variety.

Typical Lupinus perennis, with minutely pubescent to glabrous stems, occurs from southwestern Maine to New York and south to Florida. Var. occidentalis, with the upper half of the stem and upper (as well as lower) petioles with long spreading villi, occurs from New York to Ontario and Minnesota, south to Maryland, West Virginia, northern Ohio, Indiana and northern Illinois.

Trifolium resupinatum L. Mount Prospect, Cook Co., Benke, nos. 5598 and 5946 .

Psoralea tenuiflora Pursh and var. floribunda (Nutt.) Rydb. ( \(P\). floribunda Nutt.).

Typical P. tenuiflora extends south to Texas, New Mexico and Arizona. Its racemes are \(1.5-4 \mathrm{~cm}\). long, with usually only 1 or 2 flowers at a node, these only about 5 mm . long, with calyx \(2-2.5 \mathrm{~mm}\). long. Var. floribunda is found southward only to Arkansas and Texas. Its racemes are up to 1 dm . long, with 2-4 flowers at a node, the calyx 3 mm . long, the corolla \(6-7 \mathrm{~mm}\). long. Since one of the very few geographic varieties not reduced to synonymy in the Flora of Illinois is P. psoralioides, var. eglandulosa (Ell.) F. L. Freeman, which differs in being "less glandular", one wonders why the much stronger \(P\). tenuiflora, var. floribunda is suppressed. Typical P. tenuifora is in the Gray Herbarium from Palatine, Lisle and Beardstown; var. foribunda (maintained by Rydberg as a species (Psoralidium floribundum) from Carlisle, Peoria, Joliet, Lemont, Athens and Malomet.

Amorpha nitens Boynton. "Illinois: Golconda, Pope County"-E. J. Palmer in Journ. Arn. Arb. xii. 177 (1931).
A. fruticosa L., var. tennesseensis (Shuttlew.) E. J. Palmer, 1. c. 192 (1931). Illinois specimens cited.
A. frut., var. emarginata Pursh. Several Illinois specimens cited by E. J. Palmer, 1. c. 196.
A. frut., var. croceolanata (P. W. Wats.) Schneider (A. croceolanata P. W. Wats.), "northward in the Mississippi valley to southern Illinois"E. J. Palmer, 1. c. 182.

Tephrosia virginiana (L.) Pers., var. holosericea (Nutt.) T. \& G.; Fernald in Rhodora, xlv. 452 (1943) (T. holosericea Nutt.).

Typical Tephrosia virginiana, Florida to Texas, north to southern New Hampshire, Massachusetts, New York, southern Ontario, southern Michigan, southern Wisconsin and Missouri, is silky-villous, the upper internodes of the stem and the leaf-rachises with long spreading villi, the leaflets green and glabrous or only sparsely strigose. It is represented in the Gray Herbarium by Illinois material from Wolf Lake, Forest City and Makanda.

Var. holosericea, as its name implies, is silky-villous throughout, the leaflets densely silvery-silky above. It occurs from Michigan and Wisconsin to South Dakota, south to Arkansas, Oklahoma and Texas but not in the more eastern states. Illinois material in the Gray Herbarium is from Ottawa, Peoria, Olney and Havana.

Astragalus tennesseensis Gray (Geoprumnon Rydb.). "Ill., Morris (Vasey), Ogle Co. (Bebb)"-Robinson \& Fernald in Gray, Man. ed. 7: 515 (1908); "Sandy banks of Rock River, Ogle county, 1858, but not since found, Bebb; Will county, Vasey"-Patterson Cat. Specimens from both Morris and Ogle County, also from Ottawa (H. L. Boltwood) in Gray Herb.

Stylosanthes biflora (L.) BSP., var. hispidissima (Michx.) Pollard \& Ball. Herod, Gleason, no. 2903.
S. riparia Kearney. Grand Tower, Gleasom, no. 2910.

Apios americana Medic., var. turrigera Fernald in Rhodora, xli. 546, pl. 575, figs. 1 and 2 (1939). Illinois specimens cited.
Strophostyles helvola (L.) Ell., var. missouriensis (S. Wats.) Britton (S. missouriensis (S. Wats.) Small).

The outright reduction of var. missouriensis to \(S\). helvola can be justified only if one overlooks its coarser habit, much larger and unlobed blunt to merely acutish leaflets, larger flowers and legumes, and seeds \(8-12\) (instead of 6-9.5) mm . long, with hilum 5-7 (instead of 4-5) mm. long. See Rhodora, xliv. 421 (1942).
S. umbellata (Muhl.) Britton. Cobden, Gleason, no. 1311; Makanda, Gleason, no. 2440; Metropolis, Gleason, no. 2439; Coatsburg, Adams Co., Evers, Jones \& Jones, no. 591, collected in 1941 and correctly identified!

The name Phaseolus helvolus sensu Torr. \& Gray and authors up to 1889 was wrongly applied to this species. Consequently, records of that period under \(P\). helvolus belong to Strophostyles umbellata (S. peduncularis). Under the name \(P\). helvolus, the present species was listed by Lapham (1857) and by Patterson, and from "Sandboden" by Brendel (1882) and again in 1887. Higley \& Raddin cite it as Strophostyles peduncularis Ell., with the clear explanation that it is "Phaseolus helvolus, of Manual, 5th Ed., not of L." That should have put on guard any compiler of a Flora, even though he lacked a background of knowledge of the bibliography and identities of plants of the state.

Geranium sibiricum L. "Illinois"-Hanks \& Small in N. Am. Fl, xxvi. 7 (1907). Urbana, Gleason, no. 34.

Linum floridanum (Planch.) Trelease. See Rhodora, xxxvii. 430, pl. 396, figs. 11-14 (1935): "north to southern Illinois". Specimen without further data than "Illinois" in Gray Herbarium.

Croton texensis (Klotsch) Muell. Arg. "Illinois" with citation of specimens, Ferguson in Mo. Bot. Gard. Rept. no. xii. 68 (1901).
Tragia cordata Michx. Rocky woods bordering Ohio River, Golconda, Pope Co., E. J. Palmer, no. 19,582 (as T. macrocarpa). As far back as 1876
recorded by Patterson (Cat.) as T. macrocarpa Willd., from "Banks of the Ohio at Golconda, Pope county, Forbes."

Acalypha ostryaefolia Riddell (A.caroliniana Ell., not Walt.). Definitely in Lapham's Catalogue. By Patterson cited from "Near Jonesboro, Union county, Vasey; Wabash, Schneck".

Ilex opaca Ait., "southern Indiana and Illinois"-Sargent, Man. Trees N. A. ed. 2: 670 (1922).

Acer pensylvanicum L. Two stations near Chicago reported by Higley \& Raddin.
A. rubrum L., var. trilobum K. Koch (var. tridens Wood; Rubacer carolinianum (Walt.) Small), "southern Illinois"-Sargent, l. c. 699. Cited and discussed by Palmer.

Quite as well defined, in its own way, as Acer rubrum, var. Drummondii (Hook. \& Arn.) Sargent, which is glorified in the Flora of Illinois as a full species.

Cardiospermum Halicacabum L. Rich ground, St. Clair Co., Aug. 1878, Eggert. The first record from Illinois was by the first and greatest botanist to explore southern Illinois, André Michaux, who in 1803 recorded Cardiospermum from "juxta amnem Kaskaskia, ab occidente in flumen Mississipi defluentem". Lapham knew about it but Michaux's pioneer exploration from the lower Wabash to the Mississippi from August to October, 1795, with a base at Kaskaskia, seems not to have been known by the very modern author of the Flora.

Ceanothus americanus L., var. Pitcheri T. \& G. Shirland, Gleason; Peoria, McDonald; Macon Co., Clokey, no. 2432; Champaign, Pease, nos. 12,405 and 13,003.
Distinguished from the acute- or acuminate-leaved typical Ceanothus americanus (with leaves green and glabrous above) by its blunt or roundtipped leaves pilose above. If Rorippa islandica (Oeder) Borbás, var. hispida (Desf.) Butters \& Abbe is a species, as the Flora of Illinois maintains (p. 139), merely because it has "Stem hirsute" as opposed to the "Stem glabrous or nearly so" of true \(R\). islandica (palustris), surely Ceanothus americanus, var. Pitcheri, known only from the Interior, is a sharply defined geographic variety.
Callirhoe alcaeoides (Michx.) Gray. Gravelly slopes, Peoria, McDonald; dry ground, recently introduced, Champaign, June, 1899, Gleason.

Hypericum ellipticum Hook. "St. Clair county, Brendel; Fulton, WolfPatterson Cat. "Sudwärts"-Brendel (1882). Specimen from Athens in Gray Herb. Cited without locality by Vasey in Trans. Ill. Nat. Hist. Soc. ed. 2, i. ser. 1, 140 (1862).
H. boreale (Britton) Bicknell. Olney, R. Ridgway, no. 820.
H. tubulosum Walt,, var. Walteri (Gmel.) Lott ( \(H\). petiolatum Walt.; Triadenum petiolatum (Walt.) Britton). Vasey, 1. c. (1862). "Wabash county, Schneck"-Patterson Cat. "Im Ohiogebiet" as Elodes petiolata, Brendel (1882). Several other records.

Bergia texana (Hook.) Seubert. "Found in St. Clair county, two miles south of St. Louis, by Mr. H. Eggert.-Engelmann"-Patterson Cat. Cited by Brendel in 1882 and 1887.

Passiflora lutea l., var. glabriflora Fernald.
True Passiflora lutea, occurring from Florida to southeastern Pennsylvania and Delaware, has the young stem pilose and the calyx pilose at base. The plant of the Interior (var. glabriflora) is glabrous throughout or only the stem rarely pilose. These are the characters used in the Flora of Illinois to distinguish two geographically inseparable "species" in Rorippa.

Mentzelia oligosperma Nutt. Cited by Lapham, also by Brendel (1882 and 1887). Fine sheet from Pike County, Holton, in Gray Herb.

Rhexia mariana L., var. leiosperma Fernald \& Griscom. Specimen from Metropolis cited with original description.

Ludwigia palustris (L.) Ell., var. americana (DC.) Fernald \& Griscom.
The plant of North America is so different from the typical European Ludwigia palustris that it has three specific names. Although only a strongly defined North American variety of a European type, it is as strong as the North American variety of Eurasian Scheuchzeria palustris, which the author of the Flora of Illinois separates as an American species.

\section*{Myriophyllum exalbescens Fernald.}

It is not indicative of close study that the American plant is reduced outright to the Eurasian M. spicatum. If it were called M. spicatum L., var. exalbescens (Fern.) Jepson there would be some evidence of understanding. The American and the Eurasian plants differ in many points. M. spicatum: old dried stems remaining fulvous or olivaceous; principal leaves of primary axis with 14-21 pairs of stiff linear segments; bracts rhombic-obovate; bractlets suborbicular or reniform, broader than long, \(0.5-0.8 \mathrm{~mm}\). long; anthers linear, 1.8-2.2 mm. long. M. exalbescens: old stems soon blanching; principal leaves of primary axis with 7-11 pairs of capillary soft (often flaccid) segments; bracts spatulate-obovate or oblong-cochleiform; bractlets ovate, longer than broad, \(0.7-1 \mathrm{~mm}\). long; anthers oblong, \(1.2-1.8 \mathrm{~mm}\). long.

It really does not clarify matters to merge them outright.
Proserpinaca palustris L.
True Proserpinaca palustris, occurring from the West Indies and Florida to Texas, and northward in the coastal states, has the thin- or wing-angled fruits with concave sides and \(4-6 \mathrm{~mm}\). broad ( \(P\). platycarpa Small). The plants of Illinois have smaller fruits ( \(2.5-4 \mathrm{~mm}\). wide). One, var. crebra Fernald \& Griscom, has the fruits with flat to convex sides and subacute angles; the other, var. amblyogona Fernald (P. amblyogona (Fern.) Small) has the very plump fruits with broadly rounded or obsolete angles. These are real differences.

Hydrocotyle americana L. In Lapham's Catalogue; also listed by Higley \& Raddin.

Ptilimnium costatum (Ell.) Raf. Characteristic material of this longstyled southern species from Mound City and Desoto, Aug., 1862, Vasey, distributed without identification. Listed in Patterson Cat.

Thaspium pinnatifidum (Buckl.) Gray. Waldron, Kankakee Co., 1870, E. J. Hill, and banks of Kankakee River, Momence, 1894, Hill, with detailed account of characters-E. J. Hill in Bot. Gaz. xxi. 118 (1896).

One seeks in vain for any "pattern" which may have governed the selection of species to be continued as admitted members of the Flora of Illinois, except the stated one that, for the most part, the author had personally examined them; as if Michaux did not know his own species (the specimens extant, and photographs of many of them in some of our herbaria), as if the identifications of woody plants by Sargent, Ridgway or Palmer (the specimens extant) must be excluded, or as if the identifications of Lapham, Bebb and Hill (specimens largely extant) were unreliable!
Very naturally, the earlier botanical explorers of Illinois (before there were
well established institutional herbaria there) sent material of their more interesting plants or their puzzles to Torrey, Gray or Engelmann. It thus happens that great series of Illinois specimens are in the larger and older herbaria which, it would seem, were not critically canvassed in order that the already well accredited species of that state might be personally examined. In studying a single small genus I recently had before me the material from some of our larger herbaria. These showed from Illinois specimens from 33 botanists: in the Gray Herbarium alone from Babcock, Bebb, Benke, Wm. Boott, T. E. Boyce, V. H. Chase, Clokey, Eggert, Gleason, Greenman, Lapham, McDonald, Mead, E. J. Palmer, Patterson, Pease, Ridgway, Schneck, Seymour, Sherff and Umbach; while the Engelmann Herbarium had Illinois material from most of the same botanists as well as from Edgar Anderson, Bauer, Beckwith, Hitchcock, McCree and Pammel; the Torrey and Britton Herbaria material from many of the same collectors and from some others; the Philadelphia Academy similarly; while Duke has the very extensive Illinois herbarium of A. B. Seymour; the National Herbarium, Illinois material of many already cited, as well as of many others, including Crampton, Earle and Steele.

Nevertheless, some very local and not recently collected species are admitted and one which is "probably extinct". There seems no satisfactory excuse for the omission of any mention of 200 others, except what may be politely called lack of information, and for not examining (since that was a prerequisite) the larger and often older herbaria of the country for Illinois material of Bebb, Clokey (especially his own vast herbarium), Eggert (particularly at St. Louis), Gleason (largely at New York), Lapham, Mead, Palmer (very largely at St. Louis and at the Arnold Arboretum and, of course, in his extensive private herbarium), Pease, Ridgway (largely at the Arnold Arboretum and the Gray Herbarium), Seymour (his great herbarium at Duke), and many others. It is too bad that the old collections and records were not thoroughly checked.-M. L. Fernald.

Geranium nepalense, var. Thunbergil in Massachusetts. -Last summer, while walking by an arbor-vitae hedge on my brother's place in Wellesley, I noticed a large patch of an unusual looking Geranium growing along the foot of the hedge and, on further examination, found it to be an abundant weed in a nearby garden. Being unable to find it mentioned in Gray's Manual or Britton \& Brown, I took it to the Gray Herbarium, where Professor Fernald kindly identified it for me as Geranium nepalense Sweet, var. Thunbergii (Siebold \& Zucc.) Kudo, a Japanese variety of a wide-spread Asiatic species not before reported from North America.

Later on, when I showed it to my brother, his only comment
was: "That thing a rare plant! Why, I have been trying to weed it out of my garden for the last five or six years without success".

Professor Fernald has supplied the following description of Geranium nepalense:
Plant with stout rhizome; slender stems depressed or decumbent at base, prolonged to 4 dm ., retrorse-hirsute; petioles similarly hirsute; larger (lower) leaf-blades with 3 or 5 deeply incised divisions; axillary peduncles up to 8 cm . long, with the usually 1 slender pedicel retrorsehairy; the spreading-pubescent lanceolate sepals with a terminal mucro about 1 mm . long; the broadly obovate entire petals about equaling or but slightly exceeding the sepals; fruit about 1.7 cm . long, hirtellous, the short beak puberulent.

Var. Thunbergii, the Japanese variety which is established at Wellesley, has the divisions of the leaf only shallowly and bluntly toothed at summit, and the pedicels are usually 2 . Francis Welles Hunnewell, Wellesley, Mass.

Sorbus Andersoni, a new Name for an Alaskan Moun-tain-Ash.-Sorbus alaskana, described by the writer in 1939 from material collected near Lake Iliamna, Alaska, by M. W. Gorman in 1902, and subsequently by several other botanists in a number of other Alaskan localities, can not be correctly designated by that name. Mr. J. P. Anderson of Iowa State College has drawn my attention to the fact that the name Sorbus alaskana had been previously used for a fossil species by Arthur Hollick in 1930. I therefore take the opportunity to rename the living plant in honor of Mr. Anderson, who for many years has studied the botany of Alaska, and whose flora of that region is now being published serially by his college.

Sorbus Andersoni, nom. nov. S. alaskana G. N. Jones in Journ. Arnold Arboretum 20: 24, pl. 226. 1939, non Hollick in U. S. G. S. Prof. Paper 159: 97. 1930.

> George Neville Jones, University of Illinois.

Volume 47, no. 557, containing pages 145-184 and plates 890-907, was issued 14 May, 1945.


JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief CHARLES ALFRED WEATHERBY ALBERT FREDERICK HILL (Associate Editors STUART KIMBALL HARRIS

Vol. 47 July, 1945.

No. 559.

CONTENTS:
Contributions from the Gray Herbarium of Harvard UniversityNo. CLVII. M. L. Fernald: I. Key to Antennaria of the "Manual Range".221
Utricularia inflata var. minor in Canada. C. A. Weatherby. ..... 235
A Bibliography of Canadian Botany (review) Albert F. Hill. ..... 236

\section*{The sem \(\mathbb{E}\) ngland 越otanical \(\mathbb{C l u b}\), Jinc.}

8 and 10 West King St., Lancaster, Pa.
Botanical Museum, Oxford St., Cambridge 38, Mass.

\begin{abstract}
RHODORA.-A monthly journal of botany, deroted primarily to the fora of the Gray's Manual Range and regions floristically related. Price, 84.00 per year, net, postpaid, in funds payable at par in United States currency in Boston; single copies (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd coverpage). Volumes 1-9 can be supplied at \(84.00,10-34\) at \(\$ 3.00\), and volumes \(35-46\) at \$4.00. Some single numbers from these volumes ean be supplied only at advanced prices (see 3rd cover-page). Somewhat reduced rates for complete sets ean be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern atates, will be considered for publication to the extent that the limited space of the jouranal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pages of print) will receive 15 copies of the issue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost.
\end{abstract}

Address manuseripts and proofs so
M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass. Subscriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford St., Cambridge 3B, Mass.
Entered as second-clase matter March 9, 1929, at the post office at Laneaster, Pa., under the Aot of March 3, 1879.

\section*{INTELLIGENCER PRINTING COMPANY}

Specialists in Scientific and Technical Publications eight west king st., lancaster, pa.

\section*{CARD-INDEX OF NEW GENERA, SPECIES AND VARIETIES (OF AMERICAN PLANTS, 1885 TO DATE.}

For American taxonomists and all students of American plants this is the most important supplement to the Index Kewensis. A work of reference invaluable for larger herbaria, leading libraries, academies of sciences, and other centers of botanical activity. Issued quarterly, at \(\$ 22.50\) per 1000 cards. Sets of the past issues can now be supplied only in negative photostats.

\author{
GRAY HERBARIUM of Harvard University, Cambridge 38, Mass., U. S. A.
}

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).
No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \(\$ 1.50\).
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \(\$ 1.00\).

Gray Herbarium of Harvard University, Cambridge 38, Mass.


Ihoto. B. (r. Schubert

Antennaria eucosma: figin. 1 and 2 , pistillate and staminate plants, \(\times 1\); fig. 3 , pistillate involucre, \(\times 6\); FIG. 4 , pistillate flower, \(\times 10\); FIG. 5 , pistillate corollas, \(\times 10\) : FIG. 6 , achene \(\times 10\).

\section*{TRbodora}

JOURNAL OF

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
July, 1945.
No. 659.

\section*{CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-NO. CLVII}

\author{
M. L. Fernald \\ (Plates 912-962) \({ }^{1}\)
}

During recent studies of four somewhat complex and often misinterpreted genera, as represented in northeastern America, the following notes have accumulated. Since the proper interpretation of many of the species and varieties is greatly aided by careful illustration, I have asked Dr. Bernice G. Schubert to prepare plates which show the essential characters, these derived chiefly from types, isotypes or other authentic specimens.

\section*{I. KEY TO ANTENNARIA OF THE "MANUAL RANGE"}
(Plates 912-958) \({ }^{2}\)
From the time when its diversity and great interest first impressed our botanists in 1897 there was a concentration of our most active field-botanists upon this genus in the East for about thirty-five years. By the end of that period essentially all the wide-ranging species were apparently well collected and understood, although local or endemic species are still likely to be

\footnotetext{
1 The cost of preparing the plates and of the engraver's blocks largely met through grants from the American Philosophical Society and from the Department of Biology of Harvard University.
\({ }^{2}\) The cost of printing the plates met through a gift from Mr. Bayard Long, Associate Curator of Botany of the Academy of Natural Sciences of Philadelphia.

The inflorescences, especially whitish ones mounted on white paper, are most diffcult to photograph. Their outlines, at least, are partly visible in the plates. It should be remembered that the fresh pistillate involucres are much more cylindric than the loosened ones of dried specimens, which alone are here shown.
}
found in unexplored areas of Newfoundland and perhaps of Gaspé. So thoroughly have these plants been studied and so clear-cut are their differential characters, ranges and flowering seasons that we more active explorers of the "effete East" thought that we had them well in hand. Beginning with the publication by Greene in May, 1897, of A. neglecta, Plates 924926 , (and a few western species), the recognition of species in the region to be covered by the next "Manual" has proceeded until the differentiation by Stebbins in July, 1935, of a probable but tiny grandfather and grandmother of some of them, A. virginica (plate 937) of the ancient Appalachian Upland. So many morphological characters are found in habit, leaves, leaf-tips or appendages, pubescence, inflorescences, involucres and their phyllaries, receptacles, corollas, pappus and achenes, that keen students like the late B. L. Robinson, a life-long specialist on the Compositae, S. F. Blake, another sound and generally recognized specialist on the Compositae, and Ledyard Stebbins, outstanding morphologist and student of phylogeny, have clearly understood the differences; while some of us who have, through decades, had a tremendous experience with them in the field and the herbarium recognize the amazing stability of the essential characters. It is, then, at least surprising to be told by one "who blew in from the West" so recently that his field-experience with the plants of the "Manual range" as delimited by him (from Gaspé County, Quebec, to western Minnesota, south to southern Virginia, Kentucky and Missouri) must have been more limited than that of lifelong explorers of the area,-it is startling to be assured that in all this diverse area we have only "three fairly well-marked species", and that the segregations which have been recognized by a host of our best technical students and most observant amateurs are "too dependent on temporary whim, or at best on individual opinion, to justify specific recognition". \({ }^{1}\)

Now it so happens that in the on-the-whole satisfactorily systematized series of eastern Antennaria (I can say nothing of the sort for the western species nor for the undifferentiated stacks in some other large herbaria) in the two collections before me, those of the Gray Herbarium and of the New England Botanical Club, there are approximately 2500 numbers or sheets of Anten-

\footnotetext{
\({ }^{1}\) Cronquist, Rhodora, xlvii. 183 (1945).
}
naria from the "Manual range" (in my case including Newfoundland as well as Gaspé); and more than 700 of these were collected by myself or by my companions (Robinson, Wiegand, Collins, Pease, Long, Fogg, St. John, Stebbins, Weatherby or others) and me with such intelligence as the Lord vouchsafed us. It is, furthermore, amazing, if the recognition of our species is merely "dependent on temporary whim", that there should be, in case of all species in their own areas, essential unanimity in the identifications made by the 150 quite unwhimsical and lucid collectors and students of this vast series. I enumerate in the footnote \({ }^{1}\) only about half of these students, none of them toadies and most of them ready to disagree if they cannot concur, some of them always seeking an opportunity to do so.

Since some readers, in spite of the stated editorial policy, still assume that everything published in Rhodora has the editorial stamp of approval, I hasten to put on record the key which is prepared for the next edition of Gray's Manual. 'That work will include Newfoundland; consequently 10 species here appear (nos. \(1,3,4,5,6,7,9,10,13\) and 14) which are outside the range covered by the projected Illustrated Flora. These are here included, although they were rather fully treated and illustrated in Rhodora, xxxv. 327-346, plates 263-268 (1933). Of the 22 species occurring from Gaspé Co., Quebec, to Minnesota and southward 8 are pontificated upon by Cronquist; the remaining 14 have not received his approval even as forms. Since, by his interpretation, they are presumable local whimsies I have asked Dr. Schubert to put concretely into plates some of the characters of most of those which have not previously been carefully illustrated. I am not at this time publishing the detailed drawings of them which have been prepared for the Manual.

It certainly would seem strange, if we have in the region from

\footnotetext{
\({ }^{1}\) Allard, Ball (C. R.), Bartram (E. B.), Bicknell, Bissell, Blake (S. F.), Blanchard, Brainerd, Brunel, Bush, Chamberlain (E. B.), Chase (Agnes), Collins (J. F.), Deam, Deane, Dodge (C. K.), Eames (A. J.), Eaton (A. A.), Eggleston, Farwell, Fassett, Faxon (Edwin), Forbes (F. F.), Gates (F. C.), Greene, Greenman, Grimes, Griscom, Harper, Hermann, Herriot, Hill, (A. F.). Hill (E. J.), Holm, House, Hunnewell, Kennedy (G. G.), Klugh, Knowlton (C. H.), Krotkov, Lansing (O. E.), Long, LouisMarie, McDonald (F. E.), Mackenzie, Macoun (John), Macoun (J. M.), Malte, Marie-Victorin, Maxon, Moore (J. W.), Muenscher, Palmer (E. J.), Parlin, Pease, Peck (C. H.), Rand (E. L.), Raup, Robinson, Rolland-Germain, Rousseau, Seymour (F. C.), Smith (L. B.), Standley, Stebbins, St. John, Tatnall (R. R.), Taylor (T. M. C.), Wahl, Weatherby, Webb (R. J.), Wiegand, Williams (E. F.), etc., etc.
}

Gaspé County westward and southward only three species, \(A\). neglecta, plantaginifolia and solitaria, that two tiny plants, \(A\). vexillifera (plate 913) and A. Peasei (plate 915), utterly unlike any of the three elect, should have taken the whim to isolate themselves near or above such arctic-alpine companions as Lycopodium alpinum L., Deschampsia atropurpurea (Wahlenb.) Scheele, Carex nardina Fries, C. rarifora (Wahlenb.) Sm., Juncus castaneus Sm., Luzula confusa Lindeb., Salix herbacea L., Betula glandulosa Michx., Oxyria digyna (L.) Hill, and others likewise never found with Antennaria neglecta of low altitudes much farther south. These being "small-leaved", they have to go, apparently, into Cronquist's hodgepodge "A. neglecta." True lowland A. neglecta (plates 924-926) has prolonged and nearly naked flagelliform stolons, the midrib of the basal leaves excurrent as a subulus, the inflorescence at first glomerulate but by elongation of the rachis (sometimes up to 1.5 dm . long) finally becoming spicate or racemose. As a result of the crazy whim by which, if the latest interpretation is valid, they isolated themselves on alpine and subalpine spots hundreds of miles away from the relatively southern true \(A\). neglecta, they lost the flagelliform stolons and became compact, with crowded assurgent leafy offshoots, stubbed off the terminal subulus of the rosette-leaves (thus taking on a character of the large arctic-alpine series to which they really belong), and changed their inflorescences from ultimate racemes to mere unaspiring corymbs, and lost the characteristic papillae which occur on at least the young and undried achenes of \(A\). neglecta, as well as of the other relatively southern species. In the latter character they belong with the great bulk of the Arctic and Eurasian series, \({ }^{2}\) not with the common species of the eastern United States.

If, furthermore, the latest interpretation of Antennaria is not

\footnotetext{
\({ }^{1}\) Although the title of Dr. Cronquist's paper emphasizes "the northeastern United States", his inclusion, as one of his varieties, of \(A\). gaspensis indicates a broader eastern extension of his limits; for A. gaspensis is known only from the calcareous mountains, bluffs and slopes of easternmost Gaspe County (Mt. Ste.-Anne and coastal cliffs at Perce; Cap Gaspe; Le Forillon to Grande-Grève; Cap Rosier and Anticosti) and western Newfoundland. Since A. gaspensis of the extreme eastern tip of the Gaspe Peninsula is included by Cronquist it must be assumed that species found on the Peninsula farther west, A. vexillifera, Peasei, subviscosa and appendiculata, automatically come within his range, although he does not account for them in his "three fairly well-marked species" of the whole "Manual range".
\({ }^{2}\) See the very significant article, On the "Papillose" Achenes in the Genus Antennaria by Morten P. Porsild in Rhodora, xxxiv. 213-222 (1931).
}
itself "too dependent on temporary whim" (as it seems to be) and is a sound and sensible treatment, we must also put \(A\). subviscosa (plates 916 and 917) into all-inclusive A. neglecta, already defined, for, unlike the two alpine species just discussed, A. subviscosa has papillate achenes. If it is only \(A\). neglecta in complete disguise it has been playing a great joke. A. neglecta has slender, lash-like stolons ending in tardily developed rosette-leaves, which are completely rotted off during the second year; its cauline leaves end in scarious appendages; its involucres are \(6.5-9 \mathrm{~mm}\). high; its corollas \(5-6.2 \mathrm{~mm}\). long; the style usually purple; the longer pappus-bristles \(6-9 \mathrm{~mm}\). long. Greatly excited, if the latest flash-interpretation is correct, by freeing itself from sex, which so generally characterizes \(A\). neglecta and, therefore, by the theory involved, makes it a species, and getting into a sweeter soil than the sour and worn-out old fields and pastures where the relatively southern male and female \(A\). neglecta persist in growing together, \(A\). subviscosa must have taken a broad jump to the limestone walls which face north toward the vast lower River St. Lawrence and the Gulf, there finding new neighbors, Arctic, northern Cordilleran or North Pacific calcicolous specialties such as Woodsia glabella R. Br., Festuca saximontana Rydb., Calamagrostis purpurascens R. Br., Carex concinna R. Br., Cerastium beeringianum Cham. \& Schl., Arabis Holboellii Hornem., Saxifraga cespitosa L., Potentilla nivea L., etc. Landed there, among neighbors who could never know of its earlier sexual existence farther south, and now safely apomictic, it further shook off any supposed alliance with \(A\). neglecta by taking on a suffruticose habit, the larger plants (plate 916) trailing out as long-lived mats a full meter across, with the crowded branches heavily invested with long-marcescent basal foliage, the latter without the subulus of \(A\). neglecta, the cauline leaves merely mucronate or subulate-tipped, the corymb viscid with glandular secretions, the pale involucre only \(5-6.5 \mathrm{~mm}\). high, the corollas shrinking down to a length of only \(3.8-4.3 \mathrm{~mm}\)., the styles becoming diluted to a creamy tone, and the longer pappus-bristles shortening to only \(4.5-5 \mathrm{~mm}\). On the larger mats the old branches carry for many years the ancient flowering stems, holding on as marcescent remnants. Who ever saw any of our other eastern Antennarias do that? In fact, no one who understands Antennaria would
guess that \(A\). subviscosa belongs with or ever had anything to do with \(A\). neglecta. That, however, is the only place for it if, in all the Manual range, we are given a choice of only "three fairly well-marked species".

These three species and many more from Gaspé or elsewhere in Canada and the northernmost states, as well as some from farther south, have real characters, as real as those of Polygonum viviparum L., Saxifraga cernua L. and a host of other sexless and morphologically definite plants; and by those who, happily, still believe the stable morphological characters of more importance than "large" or "small" leaves alone they will be maintained. Furthermore, if the recent student of the genus were consistently retaining as species and varieties of Antennaria only those which are bisexual, he would be at least logical; but he includes as a variety under his " \(A\). neglecta", the strictly apomictic and tremendously isolated A. gaspensis, which differs from everything else he puts into \(A\). neglecta in its receptacle being higher than broad (instead of broader than high), a character which in Eupatorium is considered subgeneric (or even generic). If his treatment of Antennaria is typical of what is to be expected for other groups in the new Illustrated Flora, it would seem that that work will be an abbreviated pocket-novel, the next Gray's Manual a family bible.

\section*{Key to Antennaria to be used in the next Gray's Mandal}
\(N\). B.-The pistillate involucres only are intended in the measurements (unless otherwise specified); the counts and descriptions of upper cauline leaves refer to those below the inflorescence and exclude the bracteal leaves in the corymb.
a. Basal leaves erect, oblanceolate to elliptic-acuminate, 2-18
cm . long, similar to the cauline ones; involucres of pistillate heads deep-brown to blackish; achenes glabrous, not papillate.
Flowering stem with 4-10 leaves; pistillate corollas 3-4.3 mm . long; exserted tip of mature style three-fourths as long as corolla; longer pappus-bristles \(6-7 \mathrm{~mm}\). long; phyllaries of staminate heads fuscous; staminate corollas 3-4 mm. long
A. eucosma.

Flowering stem with \(6-12\) leaves; pistillate corollas \(4.5-5.2\) mm . long; exserted tip of mature style at most one third length of corolla; longer pappus \(9-11 \mathrm{~mm}\). long; phyllaries of staminate heads whitish; staminate corollas 4-5

a. Basal leaves spreading, forming depressed rosettes, strongly contrasting in outline with the cauline leaves; plants humifuse to stoloniferous....b.
b. Larger basal leaves only \(1-5 \mathrm{~mm}\). wide, blunt or only obscurely mucronulate, whitened above; flowering stems only \(0.05-1.8 \mathrm{dm}\). high; only pistillate plants known, their involucres deep-brown to blackish or, if pale, at most 7 mm . high....c.
c. Cauline leaves 15-28, very crowded (except in old individuals), the upper 7-20 with twisted scarious tips 2-3 mm . long; taller stems up to 4 (rarely -6) cm . high; involucre with 3-4 very unequal series of conspicuously imbricated phyllaries; achenes glabrous.
. Cauline leaves 4-16, only the upper 1-7 with scarious tips; flowering stems mostly \(4-18 \mathrm{~cm}\). high; involucres with phyllaries subequal or in 2 or 3 unequal series (or in 4-6 series in no. 10 , which has only \(8-10\) remote cauline leaves, with \(3-5\) appendaged, and pale involucres).... d.
d. Involucres deep-brown to blackish; phyllaries subequal or in 2-3 unequal series
\(e\). Involucres with the lower half prolonged, green and viscid, the phyllaries closely and firmly appressed or agglutinated to form an ellipsoid-campanulate falsely gamophyllous cup \(7-9 \mathrm{~mm}\). high; corollas \(5-5.5 \mathrm{~mm}\). long; achenes glabrous
4. A. Foggii.
\(e\). Involucres with loose and distinct phyllaries; corollas \(3-5 \mathrm{~mm}\). long. . . \(f\).
\(f\). Phyllaries conspicuously unequal, in 3 series, the outer about half as long as the inner; corollas \(4-5 \mathrm{~mm}\). long
Cauline leaves 6-9, the 2 or 3 upper with unguiculate subulate tips \(0.6-1.5 \mathrm{~mm}\). long; involucres \(6-7 \mathrm{~mm}\). high, their outer and median phyllaries with scarious tips \(1.2-2 \mathrm{~mm}\). wide; style included or nearly so, subentire; achenes papillate, \(1.1-1.4 \mathrm{~mm}\). long

\author{
5. A. Bayardi.
}

Cauline leaves \(8-14\), the 4 or 5 upper with flat scarious tips 2-3.5 mm. long; involucres 7.5-9 mm . high, their outer and median phyllaries with scarious tips \(2-2.5 \mathrm{~mm}\). broad; style exserted, 2 -cleft; achenes glabrous, 1.8 mm .

\(f\). Phyllaries subequal, in 2 or 3 series, the outer nearly as long as the inner; corollas \(3-4.5 \mathrm{~mm}\). long; achenes glabrous....g.
g. Flowering stems at most 1.2 dm . high, with 5-8
leaves; the 3-6 upper leaves with flag-like oblong-lanceolate flat tips.
Involucres \(7-10 \mathrm{~mm}\). high, with squarrose pale brown phyllary-tips \(1.3-2 \mathrm{~mm}\). broad; upper 3 or 4 cauline leaves appendaged; corollas 4-4.5 mm. long; achenes \(1.2-1.4\) mm . long.
7. A. cana.

Involucres 6-7 mm. high, with ascending fulvous phyllary-tips rarely more than 1 mm . broad; upper 4-6 cauline leaves appendaged; corollas 3-4 mm. long; achenes \(1.6-\) 1.8 mm . long. ......................... A. . vexillifera. g. Flowering stems slender, up to 18 cm . high, their 8-15 leaves mostly subulate-tipped,
only the uppermost with lance- or linearinvolute scarious tips; involucres \(5-6 \mathrm{~mm}\). high, the outer ascending tips \(1-1.7 \mathrm{~mm}\). broad.
9. A. confusa.
d. Involucres milk-white or ochroleucous or pale brown; achenes glabrous . . . . \(h\).
h. Cauline leaves 5-10; involucres pale brown or stramineous, sometimes roseate or greenish, \(5-7 \mathrm{~mm}\). high; corollas \(3.7-5 \mathrm{~mm}\). long; mature pappus 4.55 mm . long. . . i.
i. Involucres of 4-6 series of conspicuously unequal phyllaries, stramineous to pale brown....10. A. straminea.
i. Involucres of 2 or 3 series of subequal phyllaries.

Flowering stems 3-7 cm. high, not glandular; upper cauline leaves with oblong-lanceolate scarious appendages 2-3 mm. long; involucres not glandular; achenes glabrous.
11. A. Peasei.

Flowering stems \(5-18 \mathrm{~cm}\). high, glandular above; upper cauline leaves with subulate or involute tips; involucres glandular-viscid at base; achenes papillose. ........................12. A. subviscosa.
\[
\begin{aligned}
& \text { h. Cauline leaves } 9-15 \text {; involucres milk-white or ochro- } \\
& \text { leucous, } 4.5-6 \mathrm{~mm} . \text { high; corollas } 3-3.3 \mathrm{~mm} \text {. long; } \\
& \text { mature pappus } 4-4.3 \mathrm{~mm} \text {. long..................... A. albicans. }
\end{aligned}
\]
b. Larger basal leaves mostly wider, \(0.2-5.5 \mathrm{~cm}\). broad, usually distinctly apiculate or mucronate, green and glabrous to white-tomentose above; flowering stems, \(0.4-5 \mathrm{dm}\). high; involucres whitish, greenish, pale brown or fulvous, 5-11 mm . high; staminate plants of some species known....j.
\(j\). Rosette-leaves comparatively small, \(0.2-2.1 \mathrm{~cm}\). wide, with only the midrib prominent to the tip beneath, the lateral ribs short and evanescent. ...k.
\(k\). Middle and upper cauline leaves of pistillate plants terminated by a flat or merely inrolled scarious appendage. . . \(l\).
l. New rosette-leaves bright green and glabrous or promptly glabrate on the upper face....m.
\(m\). Rosette-leaves spatulate to cuneate-oblanceolate or narrowly cuneate-obovate, scarcely petioled, rounded at tip or only subacute, terminated by a mucro less than 0.5 mm . long; heads 1-6; plants of Nfld. and e. Que. .n.
\(n\). Bassel offshoots crowded, scarcely elongate; basal leaves \(6-13 \mathrm{~mm}\). long, \(2-4 \mathrm{~mm}\). wide; flowering stem \(5-13 \mathrm{~cm}\). high, its longer leaves barely 1 cm . long; involucres brown, \(6-8 \mathrm{~mm}\). high; corollas 4.5 mm . long; achenes glabrous.
14. A. Wiegandii.
\(n\). Basal offshoots elongate, when well developed
cord-like; basal leaves \(1-3.5 \mathrm{~cm}\). long, 4-12 mm . wide; flowering stem \(0.5-3 \mathrm{dm}\). high, its longer leaves \(1-2.5 \mathrm{~cm}\). long; involucres whitish, \(7-11 \mathrm{~mm}\). high; corollas \(4.8-6 \mathrm{~mm}\). long; achenes papillate.
Rosette-leaves broadly rounded at summit; lower and median cauline leaves obtuse, merely mucronate-tipped, the upper 1-3 with scarious appendages...........15. A. spathulata.


Photo. B. G. Schubert.
Antennaria vexillifera: fig. 1 , plant, \(\times 1\); fig. 2 , basal rosette, \(\times 5\); fig. 3 , tip of cauline leaf, \(\times 10\); fig. 4 , inflorescence, \(\times 2\); fig. 5 , involucre, \(\times 6\); FIG. 6 , corollas, \(\times 10\); fig. 7 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria straminea: figs. 1 and 2, plants, \(\times 1 ;\) fig. 3 , portion of basal rosette, \(\times 5\); FIg. 4 , tips of cauline leaves, \(\times 10 ;\) fig. 5 , inflorescence, \(\times 2\); fig. 6 , involucre, \(\times 5 ;\) fig. 7 , corolla, \(\times 10 ;\) fig. 8 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria Peasei: fig. 1, plant, \(\times 1\); fig. 2, basal rosette, \(\times 5\); fig. 3 , tip of cauline leaf, \(\times 10\); FIG. 4 , inflorescence, \(\times 2\).


Ihotn. J. F. ('ollims


Ihoto. B. G. Schubert.
Antennaria subviscosa: figs. 1 and 2 , small plants, \(\times 1\); fig. 3 , basal leaves, \(\times 5\); fig. 4 , tip of cauline leaf, \(\times 10\); fig. 5 , inflorescence, \(\times 2\); fig. 6 , involucre, \(\times 6\); fig. 7, corollas, \(\times 10\); fig. 8 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria albicans: fig. 1 , plants, \(\times 1\); fig. 2 , basal rosettes, \(\times 5 ;\) fig. 3 , tip of cauline leaf, \(\times 10\); fig. 4 , inflorescence, \(\times 2\); fig. 5 , pistillate flower, \(\times 10\); fig. 6 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria Wiegandit: fig. 1, plant and a basal rosette, \(\times 1\); fig. 2, basal rosette, \(\times 5\); FIG. 3 , inflorescence, \(\times 2\); FIG. 4 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria spathulata: figs. 1 and 2, plants, \(\times 1\); fig. 3 , portion of rosette-leaf, \(\times 5\); FIG. 4, inflorescence, \(\times 2\); Fig. 5, portion of involucre, \(\times 5\); FIG. 6, corollas, \(\times 10\); FIG. 7, achenes, \(\times 10\).



Photo. B. G. Schubert.
Antennaria canadensis: figs. 1 and 2, pistillate plant, \(\times 1\); fig. 3 , tip of cauline leaf, \(\times 10 ;\) fig. 4 , achenes, \(\times 10\).


Photo. B. G. Schubert.

Antennaria canadensis: fig. 1 , staminate plant, \(\times 1\); fig. 2 , basal leaves, \(\times 5\); fig. 3 , pistillate corymb, \(\times 2\).


Photo. B. G. Schubert.

Antennaria neglecta: figs. 1 and 2, pistillate plant, \(\times 1 ;\) fig. 3, tip of cauline leaf, \(\times 10\); figs. 4 and 5 , pistillate inflorescences, \(\times 2\).


Photo. B. G. Schubert.
Antennaria neglecta: figs. 1 and 2 , broad-leaved plant, \(\times 1\); fig. 3 , mature pistillate inflorescence, \(\times 2 ; \mathrm{FIG} .4\), achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neglecta: fig. 1 , staminate plant, \(\times 1\); fig. 2 , tip of cauline leaf, \(\times 2\); FIG. 3, upper half of mature pistillate raceme, \(\times 2 ;\) fici. 4 , pistillate corolla, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neglecta, forma simplex: plants, \(\times 1\).


Photo. B. G. Schubert.

Antennaria campestris: fig. 1 , pistillate plant, \(\times 1\); fig. 2 , staminate plant, \(\times 1\); FIG. 3 , tip of cauline leaf, \(\times 10\); FIG. 4 , corymb, \(\times 2 ;\) FIG. 5 , achenes, \(\times 10\).



Ihoto. B. G. Schubert.
Antennaria rupicola: fig. 1, flowering summit of plant in plate \(929, \times 1\); FIG. 2 , corymb, \(\times 2 ;\) fig. 3 , receptacle, \(\times 10 ;\) FIG. 4 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neodioica, var. typica: figs. 1, 2 and 3 , portions of isotype, \(\times 1\); fig. 4, tips of rosette-leaves, \(\times 5\); Fig. 5 , tip of cauline leaf, \(\times 10\); fig. 6 , corymb, \(\times 2\); FIG. 7, portion of involucre, \(\times 5\); FIG. 8 , receptacle, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neodioica, var. typica: figs. 1, 2 and 3, portions of staminate plants, \(\times 1\); FIG. 4 , pistillate corolla, \(\times 10\); FIG. 5 , achenes, \(\times 10\).


Photo. B. G. Schubert.

Antennaria neodioica, var. attenuata: figs. 1 and 2 , portions of plant, \(\times 1\); FIG. 3, tip of cauline leaf, \(\times 10 ;\) FIG. 4 , corymb, \(\times 2 ;\) Fig. 5 , portion of involucre, \(\times 5\).


Photo. B. G. Schubert.
Antennaria neodioica, var. interdecta: fig. 1 , small plant and base and inflorescence of others, \(\times 1\); fig. 2 , tips of rosette-leaves, \(\times 5\); fig. 3 , tip of cauline leaf, \(\times 10\); fig. 4 , corymb, \(\times 2\); FIG. 5 , corollas, \(\times 10\); fig. 6 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neodioica, var. chlorophylla: figs. 1 and 2, portions of plant, \(\times 1\); fig. 3 , tip of rosette-leaf, \(\times 5\); FIG. 4 , involucre, \(\times 5 ;\) FIG. 5 , corolla, \(\times 10\).


Photo. B. G. Schubert.
Antennaria neodioica, val. grandis: figs. 1 and 2 , portions of plant, \(\times 1\); fig. 3, two mature corymbs, \(\times 1\); fig. 4 , corollas, \(\times 10\); Fig. 5 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria virginica: figs. 1 and 2, pistillate plant, \(\times 1\); figs. 3 and 4, staminate plant, \(\times 1\); FIG. 5 , rosette-leaf, \(\times 5\); fig. 6 , tip of cauline leaf, \(\times 10\); fig. 7 , involucre, \(\times 5\); fig. 8 , receptacle, \(\times 10 ;\) fig. 9 , pistillate corollas, \(\times 10 ;\) fig. 10 , achenes, \(\times 10\);
A. virginica, var. argillicola: fig. 11, base of plant, \(\times 1\); fig. 12, tip of cauline leaf, \(\times 10\).


Photo. B. G. Schubert.
Antennaria aprica: fig. 1, pistillate plant and corymb, \(\times 1\); fig. 2 , corymb, \(\times 2\); fig. 3 , pistillate corollas, \(\times 10\); Fig. 4 , achenes, \(\times 10\).


Photo. B. G. Schubert.

Antennaria aprica: fig. 1, staminate plant, \(\times 1\); fig. 2; rosette-leaves, \(\times 5\); Fig. 3, tip of cauline leaf, \(\times 10\). Fig. 4 , involucre. \(\times 5\).


Fhoto. B. G. Schubert.
Antennaria petaloinea (typical): figs. 1,2 and 3 , portions of plant, \(\times 1\); fig. 4 , base of plant, \(\times 1\); fig. 5 , tip of cauline leaf, \(\times 10\) : fig. 6 , portion of corymb, \(\times 2\).


Photo. B. G. Schubert.
Antennaria petaloidea: fig. 1 , staminate plant, \(\times 1\); fig. 2 , tips of rosette-leaves, \(\times 5\); fig. 3 , involucre, \(\times 5\); fig. 4, pistillate corolla, \(\times 10\).


Photo. B. G. Schubert.
Antennaria petaloidea, var. scariosa: figs. 1 and 2 , portions of plant, \(\times 1\); fig. 3 , corymb, \(\times 2 ;\) FIG. 4, exceptionally lax corymb, \(\times 1 ;\) FIG. 5 , involucre, \(\times 5\).


Photo. B. G. Schubert.
Antennaria petaloidea, var. subcorymbosa: figs. 1 and 2, portions of plant, \(\times 1\); FIG. 3, tip of cauline leaf, \(\times 10\); fig. 4 , involucre, \(X 5\); FIG. 5 , corollas, \(\times 10 ;\) FIG. 6 , achenes, \(\times 10\).


\section*{Photo. B. G. Schubert.}

Antennaria petaloidea, var. subcorymbosa: portions of large inflorescence, \(\times 1\); FIG. 2, the summit of inflorescence in fig. 1.
\(m\). Rosette-leaves oblanceolate to narrowly obovate, somewhat narrowed to acute tip and tapering to a subpetiolar base, tipped by a sharp mucro \(0.5-1.5 \mathrm{~mm}\). long; heads 3-18; plant of broad continental range; achenes (at least when young) papillate............................17. A. canadensis.
\(l\). New rosette-leaves grayish- or whitish-tomentulose or -sericeous on upper face; achenes (at least when young) papillate....o.
o. Rosette-leaves cuneate-oblanceolate, -obovate or -spatulate, mostly \(1.5-6.5 \mathrm{~cm}\). long, \(0.5-1.8 \mathrm{~cm}\). broad, the old ones becoming green with weathering; stolons filiform, lash-like or cord-like, elongate; heads crowded in a glomerule or becoming loosely racemose; corollas \(5-6.2 \mathrm{~mm}\). long; continental plants, both staminate and pistillate.
Stolons flexuous and lash-like; rosette-leaves cuneate-oblanceolate to -spatulate, narrowed to a subpetiolar base, \(0.5-1.3 \mathrm{~cm}\). broad; stems of pistillate plants elongating in fruit to \(1.5-4 \mathrm{dm}\). high; pistillate heads in maturity becoming spicate to racemose; staminate involucres \(4-6 \mathrm{~mm}\). high; eastern species. .18. A. neglecta. Stolons stiffer, cord-like; rosette-leaves narrowly cuneate-obovate, broad-based, \(0.6-1.8 \mathrm{~cm}\). broad; stems of pistillate plants \(0.4-2 \mathrm{dm}\). high; pistillate heads closely glomerulate; staminate involucres \(6-8 \mathrm{~mm}\). high; Great Plain species
19. A. campestris.
o. Rosette-leaves oblanceolate or narrowly obovate, acute or acutish, \(0.5-2 \mathrm{~cm}\). long, \(2-5 \mathrm{~mm}\). broad, strongly whitened; basal offshoots crowded, very short and assurgent, consisting chiefly of depressed rosettes; heads loosely corymbose (or solitary); corollas 4-4.5 mm. long; staminate plant unknown; species of e. Que. and Nfld... 20. A. gaspensis.
\(k\). Middle and upper cauline leaves of pistillate plants blunt or with subulate or subulate-aristate tips (only those about the corymb with flat scarious appendages); achenes (at least when young) papillate....p.
\(p\). Stolons and basal offshoots short and assurgent, ending in depressed rosettes; rosette-leaves oblanceolate to broadly obovate, often with definite petioles. . . q.
g. Rosettes-leaves and cauline leaves all or nearly all with a naked terminal mucro or subulus; eastern and northeastern species.
Basal leaves oblanceolate or narrowly spatulateobovate, acute or subacute, scarcely petioled; flowering stem stiff, its \(8-18\) leaves subapproximate and evenly spaced; corymb compact; involucres greenish or light brown only at base, with firm chartaceous milk-white to
creamy-brown blunt phyllaries mostly 1.4-2 mm . broad; pits of denuded receptacle narrower than the ridges 21. A. rupicola.

Basal leaves narrowly to broadly obovate, mostly rounded to tip, petioled; flowering stem usually becoming flexuous upon elongation, its 4-10 ( -14 ) leaves often becoming remote; pistillate involucres greenish-, purplish- or brown-tinged, their thin and usually scarious pale-tipped phyllaries \(0.4-1.4 \mathrm{~mm}\). broad; pits of old receptacle broader than ridges.
Plants all or chiefly all pistillate, these with stems \(0.5-5 \mathrm{dm}\). high; rosette-leaves 1-5.5 cm . long, \(0.3-2 \mathrm{~cm}\). wide; lower cauline leaves \(1.5-4 \mathrm{~cm}\). long, \(2-6 \mathrm{~mm}\). broad; pistillate involucres \(6-9 \mathrm{~mm}\). high, with \(30-60\) or more phyllaries; florets \(50-140\); corollas \(4-6 \mathrm{~mm}\). long; pits of receptacle deep; staminate involucre \(5-6.5 \mathrm{~mm}\). high; wide-ranging from Nfld. to n. Ont., s. to N. S., N. E., L. I., Va., Ind., Wisc. and Minn................................. 22.
Plants about equally staminate and pistillate;
the pistillate ones with very slender stems \(0.6-2 \mathrm{dm}\). high; rosette-leaves \(1-2.5 \mathrm{~cm}\). long, \(3-8 \mathrm{~mm}\). wide; lower cauline leaves \(1-1.3 \mathrm{~cm}\). long, \(1-2 \mathrm{~mm}\). wide; pistillate involucre \(5-7 \mathrm{~mm}\). high, with \(25-35\) phyllaries; florets \(40-70\); corollas \(3.2-4.5 \mathrm{~mm}\). long; pits of receptacle shallow; staminate involucre 3.8-5 mm. high; plant of Appalachian Upland, Va., W. Va. and Pa., very locally to \(\mathrm{w} . \mathrm{Vt}\). 23. A. neodioica.
stems (pistillate) \(1.5-5 \mathrm{dm}\). high; involucres \(7-11 \mathrm{~mm}\). high; corollas \(5-7 \mathrm{~mm}\). long; longer pappus 6-9 mm. long.
Rosette-leaves spatulate to narrowly spatu-late-obovate, strongly rounded at summit, closely canescent-tomentose above; heads glomerulate or densely crowded; longer mature pappus 8-9 mm. long; stems glandless
27. A. munda.

Rosette-leaves broadly obovate-spatulate to obovate and subacute to suborbicular and rounded above; heads densely to loosely corymbed; longer mature pappus \(6-8.5 \mathrm{~mm}\). long; stems frequently glandular above.
New rosette-leaves permanently and closely canescent-tomentulose above; stems and involucres rarely purple; mature achenes \(1.3-1.6 \mathrm{~mm}\). long, densely papillose, their longer pappus \(6-8 \mathrm{~mm}\). long; summit of plant glandless or glandular.
28. A. fallax.

New rosette-leaves bright green and glabrous or only lightly canescent and glabrate; stems and involucres frequently purplish; mature achenes \(1.6-2.2 \mathrm{~mm}\). long, smooth or slightly papillose, their longer pappus \(7.5-8.5 \mathrm{~mm}\). long; summit of stem usually glandular. . . ........29. A. Parlinii.
\(u\). Blades of larger rosette-leaves \(1.5-3.5 \mathrm{~cm}\). long,
strongly rounded, loosely tomentose above; mature flowering stem (pistillate) 1.3-3.5 dm. high, with stipitate glands at summit and in the corymb; involucres \(6-8.5 \mathrm{~mm}\). high; corollas \(4.5-5.5 \mathrm{~mm}\). long; longer pappus \(6-7 \mathrm{~mm}\). long. ......................................... A0. Brainerdii.
8. Pistillate involucres \(5-7 \mathrm{~mm}\). high; central corollas \(2.5-4.3 \mathrm{~mm}\). long; achenes \(1-1.5 \mathrm{~mm}\). long; mature pappus 4-5.5 mm. long; rosette-leaves oblanceolate, obovate or suborbicular, minutely canescent above.
31. A. plantaginifolia.
\(r\). Heads solitary; stolons filiform, lash-like, tardily producing terminal rosettes of sessile to broad-petioled obovate- to broadly oblong-spatulate leaves. . . . 32. A. solitaria.
1. A. eucosma Fernald \& Wiegand in Rhodora, xiii. 23 (1911); Fernald, 1. c. xxxv. 330 (1933).-Straits of Belle Isle to Bay St. - George, Nfld. Both staminate and pistillate. Fl. mid-July, Aug. Plate 912.
2. A. pulcherrima (Hook.) Greene, Pittonia, iii. 176 (1897). A. carpatica sensu Hook. Fl. Bor.-Am. i. 329 (1834), not Wahlenb. A. carpatica, \(\gamma\). pulcherrima Hook. 1. c. (1834).-Anticosti I., Gaspé Co., Que.; w. Ungava to n. Alta., s. in Rocky Mts. Both staminate and pistillate. June-early Aug.
3. A. columnaris Fernald in Rhodora, xxxv. 331, t. 263 (1933).-Near St. John and Ingornachoix Bays, Nfld. Pistillate only. July, early Aug.
4. A. Foggii Fernald, l. c. 332, t. 264 (1933).-Near St. John and Ingornachoix Bays, Nfld. Pistillate only. July, early Aug.
5. A. Bayardi Fernald, l. c. 333, t. 265 (1933).-Bonne Bay and Bay of Islands, Nfld. Pistillate only. July, early Aug.
6. A. brunnescens Fernald, 1. c. 336, t. 266 (1933).-Alpine crest, Mt. Killdevil, Bonne Bay, Nfld. Pistillate only. Aug.
7. A. cana (Fernald \& Wieg.) Fernald, 1. c. xviii. 236 (1916) and xxxv. 337, t. 267 (1933). Straits of Belle Isle to Bonne Bay (ascending to alpine areas), Nfld.; n. B. C. Pistillate only. July, early Aug.
8. A. vexillifera Fernald, l. c. xxvi. 99, t. 142, fig. 4 (1924), xxxv. 338 (1933). Nw. Nfld.; Shickshock Mts. (at 3500 ft .), Gaspé Pen., Que. Pistillate only. July. Plate 913.
9. A. confusa Fernald, 1. c., t. 268 (fig. at left) (1933). W. Nfld. Pistillate only. July, Aug.
10. A. straminea Fernald, l. c. xvi. 130 (1914), xxvi. 100, t. 145, fig. 8 (1924) and \(x x x v . ~ 340\) (1933). N. and w. Nfld. Pistillate only. July, early Aug. Plate 914.
11. A. Peasei Fernald, 1. c. xxvi. 101, t. 142, fig. 11 (1924). Alpine region, Shickshock Mts., Gaspé Pen., Que. Pistillate only. July. Plate 915.
12. A. subviscosa Fernald, 1. c. xvi. 131 (1914) and xxxv. 334 (1933). Rimouski Co. to Gaspé Co., Que. Late June, July. Pistillate only. Plates 916 and 917.
13. A. albicans Fernald, 1. c. xvi. 197 (1914), xxvi. 100, t. 145, fig. 6 (1924) and xxxv. 340 (1933). W. Nfld. Pistillate only. July, early Aug. Plate 918.
14. A. Wiegandir Fernald, 1. c. xxviii. 238 (1926), xxxv. 240 (1933). W. Nfld. Pistillate only. July, early Aug. Plate 919.
15. A. spathulata Fernald, 1. c. xvi. 196 (1914), xxxv. 340 (1933). A. canadensis, var. spathulata Fernald, 1. c. 132 (1914). A. spathulata, var. continentis Fernald \& St. John in St. John, Bot. Exped. No. Shore Gulf St. Lawr. 55 (1922). Nfld. and St. P. et Miq.; Côte Nord, Anticosti and Lake Mistassini, Que. Pistillate only. Late June-early Aug. Plate 920.
16. A. appendiculata Fernald, 1. c. xxiii. 295 (1922). Nw. Nfld.; Anticosti and Gaspé Pen., Que.; w. Ungava. Pistillate only. Plate 921.
17. A. canadensis Greene, Pittonia, iii. 275 (1898). Var. Randii Fernald in Proc. Bost. Soc. Nat. Hist., xxviii. 246 (1898). A. neglecta, var. Randii (Fernald) Cronquist in Rhodora, xlvii. 184 (1945). Gaspé Co., Que., to n. Man., s. to N. S., N. E., N. Y., mts. of Pa. and Va., n. Ind. and Mich. Pistillate chiefly; staminate plants comparatively rare. May-early July (-Aug. in mts.). Plates 922 and 923.
18. A. neglecta Greene, Pittonia, iii. 173 (1897). A . neglecta, var. neglecta (Greene) Cronquist in Rhodora, xlvii. 183 (1945). N. S. and Me. to s. Ont., s. to Va., W. Va., O., Ind., Mo. and Kans. Both staminate and pistillate. Late April-July. Plates 924-926.

Antennaria neglecta is the earliest-flowering species. In eastern Massachusetts (north of Cape Cod) its flowering period in normal seasons begins about April 20 and extends to May 20; that of \(A\). plantaginifolia April 25-May 20; of A. canadensis, A. neodioica, A. petaloidea, A. Parlinii and A. fallax May 10-June 17; of \(A\). munda May 20-June 15. When, watching for the coming of Spring, one finds the first expanded flowers of A. neglecta (exceptionally on April 1) he knows that A. plantaginifolia will soon follow, but that he must wait two or three weeks for the others and even a month for \(A\). munda. These are not trifling differences nor "temporary whims", although the element of time is involved!
A. neglecta, forma simplex (Peck) Fernald, 1. c. xxxviii. 230 (1936). A. simplex Peck, Bull. N. Y. State Mus. Ixvii. Bot. vi. 33 (1906). Sporadic, Me. and N. Y. Plate 927.
19. A. campestris Rydberg in Bull. Torr. Bot. Cl. xxiv. 304 (1897). No. B. C. to Man., s. to Okla., e. to Thunder Bay Distr., Ont., Mich. and Mo. Both staminate and pistillate. Late April-June. Plate 928.
20. A. gaspensis Fernald, 1. c. xxxv. 341, t. 268, plant at right (1933). A neodioica, var. gaspensis Fernald in Ottawa Nat. xix. 156 (1905). A neglecta, var. gaspensis (Fernald) Cronquist, 1. c. 184 (1945). W. Nfld.; Anticosti I. and e. Gaspé Pen., Que. Pistillate only. Late June-Aug.
21. A. rupicola Fernald in Rhodora, i. 74 (1899) and xxxv. 342 (1933). A. neodioica, var. rupicola Fernald, 1. c. xvi. 132 (1914). Nfld. and Anticosti to Magdalen Ids. and ne. Me.; L. Huron and L. Superior regions of Ont. and n. Mich. Pistillate only. June, July. Plates 929 and 930.
22. A. neodioica Greene, Pittonia, iii. 184 (1897).-Variable, with some pronounced varieties
a. Rosette-leaves \(1-4 \mathrm{~cm}\). long, \(3-17 \mathrm{~mm}\). broad; lower cauline leaves \(1-3 \mathrm{~cm}\). long, \(1-5 \mathrm{~mm}\). broad; involucres of pistillate heads greenish- or purple-tinged, with scarious tips; corollas \(3.2-5 \mathrm{~mm}\). long. \(\therefore b\).
b. Rosette-leaves gray- or grayish-tomentose above . . . .c.
c. Flowering stems flexuous upon elongation, 1-5 dm. high; the 4-14 leaves becoming distant; rosette-leaves obovate, petioled; corymb open.

Outer and middle phyllaries of pistillate involucre obtuse to subacute

Var. typica. Outer and middle phyllaries lance- to linear-attenuate.Var. attenuata.
c. Flowering stems stifly erect, \(0.5-2.5 \mathrm{dm}\). high; the 8-14
leaves subapproximate or imbricated; rosette-leaves oblanceolate or narrowly obovate, acutish, cuneate at base; corymb subglomerulate, globose or hemispherical Var. interjecta.
b. Rosette-leaves green and glabrous above, \(3-13 \mathrm{~mm}\). wide; flowering stem 1.5-5 dm. high...................... Var. chlorophylla.
a. Rosette-leaves 2-5.5 cm. long, \(0.7-2 \mathrm{~cm}\). broad; lower cauline leaves 2-4 cm . long, \(3-6 \mathrm{~mm}\). broad, often overlapping;
flowering stems stoutish, \(1.5-4.5 \mathrm{dm}\). high; corymb loose; heads very full; involucres (except in shade) reddish, their phyllaries with white petaloid tips; corollas \(4.8-6 \mathrm{~mm}\). long. .Var. grandis.

Var. typica Fernald, l. c. xxxv. 345 (1933). A. neodioica Greene, l. c. Nfld. to Ont., s. to N. S., N. E., inland Va., Ind., Wisc. and Minn. Staminate plants few and rare. May-early July. Plates 931 and 932.

Var. attenuata Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 248 (1898). A. neglecta, var. attenuata (Fernald) Cronquist, l. c. (1945), as to basonym. Similar range. Staminate plant almost unknown. May-Aug. (northw.). Plate 933.

Var. interjecta Fernald in Rhodora, xxxv. 345 (1933). Gaspé and Rimouski Cos., Que.; n. shore, L. Sup., Ont., to e. Wisc. Staminate plant unknown. Mid-June-mid-July. Plate 934.

Var. chlorophylla Fernald, l. c. xxiii. 296 (1922). Nfld. to Wisc., s. to N. S., N. E. and N. Y. Staminate plant unknown. May-Aug. Plate 935.

Var. grandis Fernald, l. c. i. 73 (1899) and xxxv. 345 (1933). A. grandis (Fernald) House, Bull. N. Y. State Mus. no. 188: 60, 63 (1916), without indication of specific characters. N. S. and s. N. B. to s. Que., w. to Mich., s. to Mass. and N. Y. Staminate plant unknown. Late May-July. Plate 936.
23. A. virginica Stebbins in Rhodora, xxxvii. 230 (1935). Appalachian Upland, Va., W. Va. and Pa., rarely to w. Vt. Staminate and pistillate plants both abundant. April-June. Plate 937, figs. 1-10.

Var. argillicola Stebbins, 1. c. 232 (1935). A neodioica, var. argillicola (Stebbins) Fernald, 1. c. xxxviii. 230 (1936). A. neglecta, var. argillicola (Stebbins) Cronquist, l. c. (1945). W. Pa., e. W. Va. and w. Va. Plate 937, figs. 11 and 12.
24. A. aprica Greene, Pittonia, iii. 282 (1898). E. Man. to B. C., s. to w. Minn., Neb., N. M. and n. Mex. Both staminate and pistillate. May-July. Plates 938 and 939.
25. A. petaloidea Fernald, l. c. i. 73 (1899). A. neodioica, var. petaloidea Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 245 (1898). Three geographic vars.

Flowering stems 1-3 (-4) dm. high during anthesis, their leaves at almost regularly decreasing intervals up to the inflorescence; rosette-leaves \(1.5-5 \mathrm{~cm}\). long, \(0.5-1.7 \mathrm{~cm}\). broad, rounded to acute at summit.
Phyllaries with whitish petaloid tips; rosette-leaves roundtipped to subacute, up to 1.7 cm . broad. ...... A. petaloidea (typical). Phyllaries scarious, lustrous, yellowish, long-attenuate; rosette-leaves acute, up to 1.2 cm . broad. . . . . . . . . . . . Var. scariosa.
Flowering stems 2-5 dm. high, nearly or quite without leaves for a distance of \(0.7-1.7 \mathrm{dm}\). below the inflorescence; phyllaries white-tipped; rosette-leaves acute or acutish, mostly \(3-6.5 \mathrm{~cm}\). long and up to 2.1 cm . broad. ............ Var. subcorymbosa.
A. petaloidea (typical). Rimouski Co., Que., to Thunder Bay Distr., Ont., s. to s. N. B., N. E., N. Y., mts. of Pa., and W. Va., Mich. and Wisc. Staminate plant very rare. Mid-Mayearly July. Plates 940 and 941.

Var. scariosa Fernald in Rhodora, i. 73 (1899). Var. modesta E. Nelson in Proc. U. S. Nat. Mus. xxiii. 710 (1901). Local, centr. Me. to Vt. Staminate plant unknown. Late May, early June. Plate 942.

Var. subcorymbosa Fernald, l. c. xvi. 133 (1914) and xxxv. 344 (map) and 346 (1933). A. neglecta, var. subcorymbosa Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 246 (1898). E. Nfld. and Anticosti, Que., s., especially in coastwise areas, to se. Mass. Staminate plant unknown. June, early July. Plates 943 and 944.

> (To be continued)

Utricularia inflata var. minor in Canada.-In Rhodora xliv. 235 (1942), I reported Mrs. Weatherby's and my collection of Utricularia inflata var. minor in Ponhook Lake, Queens County, Nova Scotia, as the first authentic record from Canada. In so doing, I overlooked an earlier one-Lake Sawlor, near Hubbard, Halifax County, Nova Scotia, Margaret S. Brown in Can. Field Nat. liv. 44 (1940), as U. inflata. Since only the variety occurs so far north, there can be no doubt that the plant was the same in both cases.
Correction of my report is hereby made, with apologies to the earlier collector.-C. A. Weatherby

A Bibliography of Canadian Botany.-The University of Montreal has recently issued a bulletin \({ }^{1}\) which should prove of inestimable value to taxonomists everywhere and to all students of the flora of northern and northeastern America.
This Bibliography, so called, is in reality a cumulative index, in part, of the first forty-five volumes of Rhodora (1899-1943). Rhodora was chosen since it is the botanical journal most actively concerned with the Canadian flora. The present publication extends an earlier work by Jacques Rousseau covering the years 1899-1934.

The Bibliography is concerned not only with Canada proper but also with such closely related phytogeographic areas as Alaska, Newfoundland and Greenland. It consists of three parts.

Part I (pp. 9-103) comprises an alphabetical index of all new names proposed without regard to geographic location. Parenthetical as well as actual authorities are given.

Part II (pp. 105-275) consists of a list of all articles relating directly or indirectly to the flora of Canada, Newfoundland, St. Pierre et Miquelon, Greenland, Labrador and Alaska. This list is arranged alphabetically by authors. Following each bibliographic reference there appears a list of species and lesser entities mentioned in the article cited. In the case of articles directly concerned with the geographic areas mentioned above all the species, varieties and forms discussed are included. In those works dealing but indirectly with these areas, however, only those concepts are listed which are specifically cited in the articles as occurring in the regions under consideration.

Part III (pp. 277-367), a necessary complement, is an alphabetical index of all the species, varieties and forms mentioned in Part II.

This Bulletin may be obtained from Institut Botanique de l'Université de Montréal, 4101 est, rue Sherbrooke, Montréal, Canada at a cost of two dollars.-Albert F. Hill.

\footnotetext{
\({ }^{1}\) Rouleau, Ernest: Bibliographie des travaux concernant la flore canadienne, parus dans "Rhodora", de 1899 à 1943 inclusivement, précélé d'un index alphabétique de tous les noms botaniques nouveaux proposes dans cette revue:-Contributions de l'Institut Botanique de l'Université de Montreal-No. 54. 1944.
}

Volume 47, no. 558, including pages 185-220 and plates 908-911, was issued 10 June, 1945.


\section*{JOURNAL OF THE}

NEW ENGLAND BOTANICAL CLUB

Conducted and publiched for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
```

CHARLES ALFRED WEATHERBY
ALBERT FREDERICK HILL Associate Editors
STUART EIMBALL HARRIS {

```

Vol. 47.
August, 1945.
No. 560.
CONTENTS:
Jussiaea uruguayensis in Staten Island, New York.
Joseph Monachino. ................................................. . . 237
Contributions from the Gray Herbarium of Harvard Univer-
sity-CLVII. M. L. Fernald. I. Key to Antennaria of the
"Manual Range" (continued). II. Transfers in and Anim-
adversions on Artemisia. III. Senecio congestus. ............. 239
Filago arvensis in North America. George A. Hardy. ......... 258
Injury to Herbarium-Specimens by extreme Heat. M. L. Fernald.258
Bingham's Flora of Oakland County, Michigan (Review). C. A. Weatherby ..... 260

\section*{The jew \(\mathfrak{E n}\) ngland fotamical Club, Jut.}

8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.

\section*{RHODORA.-A monthly journal of botany, devoted primarily to the flora of the} Gray's Manual Range and regions floristically related. Price, \(\mathbf{8 4 . 0 0}\) per year, not, postpaid, in funds payable at par in United States curreney in Boaton; single coplee (If available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (soes 3rd eover. page). Volumes 1-9 can be supplied at \(\$ 4.00,10-34\) at \(\$ 3.00\), and volumes \(35-46\) at \(\$ 4.00\). Some single numbers from these volumes can be supplied only at advanced prices (see 3 rd cover-page). Somewhat reduced rates for complete sets ean be obtained on application to Dr. Hill. Notes and short selentific papers, relating directly or fadirectly to the plants of the northeastern states, will be considered for publication to the extent that the limited space of the journal pormits. Forms may be closed five weeks in advance of publication. Authors (of more than' two pages of print) will receive 15 copies of the issue in which their contributions appear, if they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost.
Addrese manuseripts and proofs to
\[
\text { M. L. Fernald, } 14 \text { Hawthorn Street, Cambridge 38, Mass. }
\]

Subseriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Muecum, Oxford St., Cambridge 38, Mass.
Entered as second-class mater March 9, 1929, at the post office at Lancaster, Pa.s under the Act of March 3, 1879.

\title{
INTELLIGENCER PRINTING COMPANY Specialists in Scientific and Technical Publications EIGHT WEST KING ST., LANCASTER, PA.
}

\section*{edible wild plants of eastern north america}

\section*{by Merritt Lyndon Fernald and Alfred Charles Kinsey}

Practical discussion of edibility and directions for recognition and preparation of more than 1000 wild plants. 422 pp., introd. and detailed index, 124 line drawings, 25 half-tone plates. \(\$ 3.00\), postpaid. The Idlewild Press, Cornwall-on-Hudson, New York, or Librarian, Gray Herbarium, Cambridge 38, Mass.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \(\$ 3.00\).

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

\author{
Gray Herbarium of Harvard University, Cambridge 38, Mass.
}

\title{
IRbodora
}

\author{
JOURNAL OF
}

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
August, 1945.
No. 560.

\section*{JUSSIAEA URUGUAYENSIS IN STATEN ISLAND, NEW YORK}

\author{
Joseph Monachino
}

On Sept. 17, 1944, the writer discovered a large showy colony of Primrose-Willow in a pond located about 100 yards north of the corner of Richmond Valley Rd. and Arthur Kill Rd., Staten Island, Richmond Co., New York. The pond is a permanent one, apparently, and consists of fresh water separated from the Arthur Kill by a narrow stretch of sand; it is quite removed from immediate habitation. An area of several hundred feet of shore around this pond was densely populated with Jussiaea, which waded out into the water some two or three feet deep and formed an almost exclusive stand. Its only associate represented in an appreciable number was Glyceria obtusa.

The Jussiaea was extensively creeping, the flowering stems erect with the flowers large and striking (the fugacious petals about 2.5 cm . long and 1.5 cm . broad). The leaves on the upright stems were elliptic or lanceolate, narrowed at both ends, usually \(5-9 \mathrm{~cm}\). long inclusive of the petiole, \(1-2 \mathrm{~cm}\). broad; bracteoles lanceolate, about \(1.5-1.6 \mathrm{~mm}\). long; capsules \(1.5-2\) cm . long and \(3-4 \mathrm{~mm}\). diam. The plants were moderately to sparsely pilose, except for the calyx-tube which was rather densely so. A careful survey indicated this pubescence character to be quite uniform in all the plants examined.

On Dec. 3 of the same year the writer revisited the Jussiaea station. The aerial stems of the plants were completely withered, while the creeping rhizomes and shoots submerged beneath the
frozen surface of the pond were in full vigor and with bright green leaves. Matured fruits were scarce.

The species has been known as Jussiaea grandiflora Michx., and it is given this name by Muenscher in his recent (1944) "Aquatic Plants of the United States." Hassler (Fedde Rep. Sp. Nov. 12: 276. 1913) placed \(J\). grandiflora in synonymy of \(J\). repens L. subsp. hirsuta Hassler var. grandiflora (Michx.) Hassler. From the interpretation presented by P. A. Munz (Studies in Onagraceae XII. A Revision of the New World Species of Jussiaea. Darwiniana \(4(2-3): 190,268,269\). 1942) the identity of our plant is J. uruguayensis Camb. var. genuina Munz. Concurring with Hassler in recognizing a very close affinity between the repens and the grandiflora elements, this authority stated that \(J\). uruguayensis "is very near to \(J\). repens and perhaps doubtfully distinct."

Search of literature failed to disclose any record of J. uruguayensis north of North Carolina. In the herbarium of the N. Y. Bot. Gd. there is a specimen of this species, ex herb. C. D. Lippincott, of a plant which grew in a garden from root originally brought from South Carolina by C. Williamson; coll. Lippincott, Swedesboro, N. J., 9-10-1900. (Identification confirmed by Munz.) The northernmost station for the species (var. genuina) cited by Munz in Darwiniana is from near Wilmington, N. Carolina.
M. L. Fernald (Rhodora 46: 197. 1944) reports Jussiaea Michauxiana Fernald, which is a new name for J. grandiflora Michx. (not Ruiz \& Pavon), as locally abundant on stream-banks in Berks County, Pennsylvania, where it was discovered by H. Wilkens in 1941. This plant was identified by Munz as J. uruguayensis. Subsequently, a second sheet of the same species, labeled \(J\). uruguayensis, was sent to the Gray Herbarium, this collected by W. C. Brumbach at another station in Berks County, Pennsylvania. M. L. Fernald maintains these collections of \(J\). Michauxiana as distinct from true \(J\). uruguayensis. In a personal communication, Prof. Fernald kindly informed the writer that there is no doubt about the identity of his plant from Staten Island and that the eastern Pennsylvania species is not like it.

The 1867 edition of Gray's Manual notes J. repens as naturalized near Philadelphia. Munz cites several collections of \(J\).
repens var. glabrescens Kuntze from the vicinity of Philadelphia: "New Jersey, Camden, Parker in 1870, in 1866. Pennsylvania, Philadelphia, without collector's name; Delaware Co., Hog Island, Fogg 9775."

A letter was sent by the writer to William T. Davis inquiring about any possible information on the establishment of Jussiaea in Richmond Co., but he received the sad news from Mr. Coles, the Director of the S. I. Institute of Arts and Sciences, that the venerable authority on Staten Island had recently died. The query was transferred to Mr. Ellison, President of the Bird andNature Club of Staten Island, who reported that none of the members of the club had observed Jussiaea uruguayensis.

Vouchers (Monachino 427) for the subject of the present discussion are deposited in the Gray Herbarium and the New York Botanical Garden.

New York Botanical Garden

\section*{CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-NO. CLVII \\ M. L. Fernald}

\section*{I. KEY TO ANTENNARIA OF THE "MANUAL RANGE"}
(Continued from page 235)
26. A. Farwellit Greene, Pittonia, iii. 347 (1898); Fernald in Rhodora, xxxviii. 230, t. 433, fig. 3 (1936). Very local, Bruce Pen., Ont., and Keweenaw Co., Mich. Staminate plant unknown. June, early July.
27. A. munda Fernald, 1. c. 229, t. 433, figs. 1 and 2 (1936). \(A\). occidentalis sensu Robinson \& Fernald in Gray, Man. ed. 7, 821, fig. 879 (1908), not Greene. Centr. Me. to Thunder Bay Distr., Ont., s. to Mass., Ct., N. Y., e. Va. (local), W. Va., n. Ind., Wisc. and Minn. Staminate plant very rare: Mid-May-mid-June.
28. A. fallax Greene, Pittonia, iii. 321 (1898); Fernald in Rhodora, i. 74 (1899). A. arnoglossa, var. ambigens Greene, Pittonia, iii. 320 (1898). A. Parlinii, var. ambigens (Greene) Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 244 (1898). A. ambigens (Greene) Fernald in Rhodora, i. 150 (1899). A. plantaginifolia, var. ambigens (Greene) Cronquist, 1. c. 183 (1945). Centr. Me. to s. Ont. and Minn., s. to Va., Tenn., Ark. and e. Tex. Staminate plants abundant southw. and westw., rare northeastw. April-July. Plates 945 and 946.

Var. calophylla (Greene) Fernald, 1. c. xxxviii. 230 (1936). A. calophylla Greene, Pittonia, iii. 347 (1898). Ga. to Tex., n. to s. Md., Va., s. Mich., s. Ill. and Mo. Plates 947 and 948.
29. A. Parlinit Fernald in Gard. and For. x. 287 (1897), in Asa Gray Bull. v. 92, t. 2, figs. 1-5 (1897) and in Proc. Bost. Soc. Nat. Hist. xxviii. 243 (1898). Western N. B. and se. Me. to s. Ont., s. to Ga., O., Ind., Ill. and Ia. Staminate plants freq. southw. and westw., rare northeastw. April-early June. Plates 949 and 950.

Var. arnoglossa (Greene) Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 244 (1898); Rhodora, i. 151 (1899). A. arnoglossa Greene, Pittonia, iii. 318 (1898). A. plantaginifolia, var. arnoglossa (Greene) Cronquist, 1. c. (1945). Similar range, s. to N. C., Tenn. and Mo. Late March-early June. Plate 951.
30. A. Brainerdi Fernald in Rhodora, i. 153 (1899). Wcentr. Me. to Ont., s. to Ct., N. Y., mts. of Va., and n. Mich. Staminate plant unknown. Mid-May-mid-June. Plates 952 and 953.
31. A. plantaginifolia (L.) Hook. Fl. Bor.-Am. i. 330 (1834), as to basonym only; Greene, Pittonia, iii. 173 (1897). Gnaphalium plantaginifolium L. Sp. Pl. 850 (1753), typified by the Plukenet plant but excluding the Gronovian, which belongs to the next species. G. plantagineum L. Syst. ed. 12: 545 (1767), with same description, with phrases rearranged, as of his G. plantaginifolium (1753), therefore an illegitimate substitute. G. dioicum, \(\beta\). plantaginifolium (L.) Michx. Fl. Bor.-Am. ii. 128 (1803) as to basonym and as to plant "corymbo", not as to plant "unifloro; flore manifeste majore". A. plantaginea (L.) R. Br. in Trans. Linn. Soc. xii. 123 (1818); Richardson in Append. Frankl. Narr. ed. 2: 758-repr. 30 (1823)-Richardson often erroneously given as author of the combination \(A\). plantaginifolia, including later auth., for instance Fernald in Asa Gray Bull. v. 92, t. 2, fig. 6 (1897), the fig. showing the Plukenet type, and in Proc. Bost. Soc. Nat. Hist. xxviii. 242 (1898), Disynanthus Raf. in Am. Mo. Mag. ii. 268 (1818), undefined generic name based on the confused Gnaphalium plantaginifolium L. Disynanthus plantagineus (L.) Raf. ex Jackson in synonymy in Ind. Kew. fasc. ii. 782 (1893), this illegitimate combination based on an illegitimate (substitute) name united with a nonvalid (undefined) generic name for a wholly mixed basic specific concept (great work!). A. decipiens Greene, Pittonia, iii. 278 (1898). Sw. Me. to Minn., s. to Ga., Ala. and Mo. Staminate and pistillate plants abundant. April-June. Plates 954 and 955. Passing into

Var. petiolata (Fernald) Heller, Muhlenbergia, i. 5 (1900). A. plantaginea, var. petiolata Fernald in Proc. Bost. Soc. Nat. Hist. xxviii. 242 (1898). Sw. Me. to e. N. Y., s., locally, to Va. Plate 956.
32. A. solitaria Rydb. in Bull. Torr. Bot. Cl. xxiv. 304 (1897). Gnaphalium plantaginifolium L. Sp. Pl. 850 (1753) as to description in part and including the Gronovian Gnaphalium stolonibus reptatricibus longissimis, foliis ovatis, caule capitato (our Plate 957). G. dioicum, B. plantaginifolium (L.) Michx. Fl. Bor. Am. ii. 128 (1803) in part, the plant "caule breviore, unifloro; flore manifeste majore . . . in occidentalibus Alleghanis montibus". A. plantaginifolia, 乃. monocephala Torr. \& Gray, Fl. ii. 431 (1843). Gnaph. monocephalum Carpenter ex Torr. \& Gray, l. c. in synonymy (1843). A. monocephala (Torr. \& Gray) Greene, Pittonia, iii. 176 (1897), not DC. (1837). Md. and w. Pa. to Ind., s. to Ga., Ala. and La. Staminate and pistillate plants about equally abundant. April, May. Plates 957 and 958.

Although Antennaria solitaria was not at first specifically separated from the utterly different \(A\). plantaginifolia, as typified by Plukenet's plant, it was well known to Clayton and Gronovius, as well as to Linnaeus. Those who are familiar with the plant could scarcely confuse it with anything else. Nevertheless, this was done until Michaux in 1803 commented on it as a variation but without formally separating it. Cronquist, in the most recent discussion of the genus (preceding the present one) concedes that the two species which were elements of the Linnean Gnaphalium plantaginifolium are really distinct species, A. solitaria, "the single-headed southern plant with certain [unstated] habital peculiarities". He admits just one more species in all our diversified area, A. neglecta, which, like \(A\). solitaria, has flagelliform stolons. When, in forma simplex, A. neglecta puts its whole vigor into one exceptionally large head, as in Peck's original material (our plate 927) of what avail are the "certain habital peculiarities" without the technical morphological ones, especially when the rosette-leaves of \(A\). neglecta are \(1.5-6.5 \mathrm{~cm}\). long and up to 1.3 cm . broad (plate 925), while those of A. solitaria are \(2-8 \mathrm{~cm}\). long and, in the smaller specimens, down to only 1.5 cm . broad (plate 958, fig. 2)? The treatment of eastern North American Antennaria of two centuries ago was inadequate and confused. The latest student of the genus in our area, although not reuniting it with Gnaphalium, has otherwise got back essentially to the pre-Linnean stage. As Mary, Queen of Scots, is reputed to have said when her regal career was coming to its tragic conclusion, "In my end is my beginning".

I was once told, by one whose voluminous errors were too apparent, that I should not "knock" the assertive errors of men younger than myself; that I should expect them not to get many of their facts straight. When, however, a comparative beginner on our eastern flora urges me to see through the press his characterization, as "too dependent on temporary whim", of my species, which have been defined after intensive field- and herbariumstudy over a period of a third of a century, it is surely not unreasonable to expect him to show evidence of at least an elementary understanding of the very numerous characters of our eastern species. It must be assumed, apparently, that his very off-hand reduction of one of the few plants which fully satisfies his theoretical requirement (abundance of both sexes) for a species, Stebbins's presumably ancestral \(A\). virginica of the ancient Appalachian Upland, and the reduction of or complete ignoring of my 11 described species from Gaspé County, Quebec, westward and southward-it must be assumed that, if he fails to uphold such a theoretically ideal species as A. virginica, he would similarly wipe out of consideration the embarrassing scores of species known, locally, from Newfoundland to Greenland and across boreal America and defined by Ostenfeld, Ekman, the Porsilds, Malte, Polunin and, obviously, myself. It is well to be forewarned of their impending doom and to prepare to lie down and meekly to watch them degraded!

In view of the actual situation in Antennaria and that in Hieracium, Cronquist's warning that "The chaotic condition which has been brought about in some European genera that also show well-developed apomixis, such as Hieracium, should give pause to those who have so multiplied our species", is worth a moment's consideration. There seems here to be an assumption that the behavior of apomicts in Antennaria and Hieracium (perhaps also Taraxacum) is comparable. It is, but certainly not identical nor very similar. Those who have lived and explored all their lives in eastern North America are painfully aware of the dominating aggressiveness and rampageous destructiveness, beginning in the late ' 70 's and expanding almost daily in the open season, of the small host of apomicts in Hieracium from the very modern flora of Europe, the various species known as King Devil, Devil's Paint-brush and other equally contemptu-
ous names. They also know that, except for occasional crossing of \(H\). Gronovii or \(H\). scabrum with H. venosum, our native Hieracia are relatively well-behaved. Similarly the mass of inextricable apomicts known as Taraxacum officinale Weber [I was in error when I identified them with \(T\). palustre ( Sm .) Blytt] are among the most aggressive of all our weeds; but how many of our eastern botanists know the strictly indigenous and morphologically very definite species of our area: T. phymatocarpum, T. ceratophorum, T. laurentianum. T. dumetorum or T. Longii? Very few, because they are conservative and local species which have to be sought; they do not intrude upon us like the more familiar apomicts of the genus or of Hieracium. Now, in Antennaria our nonapomictic species, \(A\). virginica (plate 937), \(A\). neglecta (Plates 924-926), A. plantaginifolia (plates 954-956) and \(A\). solitaria (plates 957 and 958), for example, are abundant and as nearly dominating as any members of the genus with us; but, as compared with the apomictic Pilosella group of Hieracium or the heteromorphic apomicts of Taraxacum officinale, they are shy and retiring amateurs. And, whereas the endless apomicts in European Hieracium and in the European Taraxacum officinale bunch are unrestrainedly aggressive, the unisexual (apomictic) Antennarias are local and relatively rare and usually highly selective as to habitat: A. columnaris, a species with remarkable individuality and with corollas only 4 mm . long, the achenes 1.2 mm . long, known only on the barrens at the base of Pointe Riche in Newfoundland, there associated with the utterly different A. Foggii, unique in having the outer phyllaries agglutinated and thus forming a falsely gamophyllous cup, the corollas 5-5.5 mm. long and the achenes 1.7 mm . long; A. vexillifera (plate 913), discussed on p. 224, one of the tiniest of species, with 4-6 of the cauline leaves terminated by broad pennant-like scarious appendages \(1.5-3 \mathrm{~mm}\). long, known only from an alpine barren in Gaspé and similar barrens in Newfoundland; A. subviscosa (plates 916 and 917), discussed on p. 225, forming dense carpetlike mats (with crowded trailing branches up to 5 dm . long and heavily covered with marcescent leaves) on the calcareous northfacing cliffs near the lower St. Lawrence from Rimouski Co. to Gaspé Co., Quebec, the upper nodes of the stem and the inflorescence viscid, the cauline leaves with subulate or involute (in-
stead of flat and pennant-like) tips, the viscid pale involucres often pink-tinged. Other chiefly pistillate but sometimes staminate species, like A. canadensis (plates 922 and 923), A. petaloidea (plates 940-944) and A. munda, occur over broader ranges; while species such as A. Parlinii (plates 949-951) and A. fallax (plates 945 and 946), abundantly bisexual southward or westward but wholly or chiefly pistillate northeastward, are as wide-spread as any. If there is a universal rule for apomicts, Hieracium, Taraxacum and Antennaria do not make it perfectly clear.

\section*{Explanation of Plates 912-958}

Plate 912. Antennaria eucosma Fernald, all figs. from type-series: FIGs. 1 and 2, a pistillate and a staminate plant, \(\times 1\); FIG. 3, pistillate involucre, \(\times 6\); FIG. 4 , a single pistillate flower, \(\times 10\); FIG. 5 , pistillate corollas, \(\times 10\); Fig. 6 , achene, \(\times 10\).

Plate 913. A. vexillifera Fernald: fig. 1, pistillate plant, \(\times\) 1, from type-series; fig. 2, basal rosette, \(\times 5\), from Boat Harbor, Straits of Belle Isle, Newfoundland, Fernald, Wiegand \& Long, no. 29,172; FiG. 3, tip of cauline leaf, \(\times 10\), from Cook Point, Pistolet Bay, Newfoundland, Fernald \& Gilbert, no. 29,171 ; FIG. 4 , inflorescence, \(\times 2\), from no. 29,171; FIG. 5 , involucre, \(\times 6\), from TYPE; FIGS. 6 and 7, pistillate corollas and achenes, \(\times 10\), from Eastern Point, St. John Bay, Newfoundland, Fernald, Long \& Fogg, no. 2085.

Plate 914. A. straminea Fernald: figs. 1 and 2, two plants, \(\times 1\), from type-sheet; fig. 3, portion of basal rosette, \(\times 5\), from type; fig. 4, tips of two cauline leaves, \(\times 5\), from St. John Island, St. John Bay, Newfoundland, Fernald, Wiegand, Long, Gilbert \& Hotchkiss, no. 29,170; Fig. 5, inflorescence, \(\times 2\), from no. 29,170 ; fig. 6 , involucre, \(\times 5\), from type; fias. 7 and 8, corolla and achenes, \(\times 10\), from no. 29,170.

Plate 915. A. Peasei Fernald, all figs from type: fig. 1, pistillate plant, \(\times 1\); fia. 2, basal rosette, \(\times 5\); Fig. 3, tip of cauline leaf, \(\times 10\); Fig. 4, inflorescence, \(\times 2\).

Plates 916 and 917. A. subvibcosa Fernald: Plate 916, small portion of one large plant, \(\times 3 / 5\), trailing down a limestone wall, Bic, Quebec, Fernald \& Collins, no. 1195, part of type (note marcescent old flowering stems), after photo. by J. F. Collins. Plate 917, figs. 1 and 2, two small plants, \(\times 1\), from type-series; fig. 3, basal leaves, \(\times 5\), from type; fig. 4, tip of cauline leaf, \(\times 10\), from type; fig. 5, mature inflorescence, \(\times 2\), from Gros Morne, Gaspé Co., Quebec, Fernald \& Weatherby, no. 2475; Fig. 6, involucre, \(\times 6\), from TYPE; FIGS. 7 and 8, corollas, \(\times 10\), and achenes, \(\times 10\), from Cap Pleureuse, Gaspé Co., Quebec, Fernald, Weatherby \& Stebbins, no. 2474.

Plate 918. A. albicans Fernald: fig. 1, group of plants, \(\times 1\), from typesheet; fig. 2, basal rosettes, \(\times 5\), from type; fig. 3, tip of cauline leaf, \(\times 10\), from Eastern Point, St. John Bay, Newfoundland, Fernald, Long \& Fogg, no. 2083; Fig. 4, inflorescence, \(\times 2\), from no. 2083; fig. 5 , pistillate flower, \(\times 10\), from type; fig. 6 , achenes, \(\times 10\), from type.

Plate 919. A. Wiegandii Fernald: fig. 1, plant and basal rosette, \(\times 1\). from type-sheet; fig. 2, basal rosette, \(\times 5\), from Eastern Point, St. John Bay, Newfoundland, Fernald, Long \& Fogg, no. 2098; fig. 3, inflorescence, \(\times 2\), from type; fig. 4, achenes, \(\times 10\), from type.

Plate 920. A. spathulata Fernald: fig. 1, two plants, \(\times 1\), from Table Mountain, Port-au-Port Bay, Newfoundland, Fernald \& St. John, no. 10,870; FiG. 2 , base, to show repent habit, \(\times 1\), from Pointe Riche, Newfoundland, Fernald, Long \& Fogg, no. 2109; fig. 3, portion of rosette-leaf, \(\times 5\), from no.

10,870; fig. 4, inflorescence, \(\times 2\), from Pointe Riche, Fernald \& Wiegand, no. 4143; Fig. 5 , portion of involucre, \(\times 5\), from no. 10,870 ; Fig. 6, corollas, \(\times 10\), from St. John Island, St. John Bay, Newfoundland, Fernald, Wiegand, Long, Gilbert \& Hotchkiss, no. 29,183; Fig. 7, achenes, \(\times 10\), from no. 29,183.

Plate 921. A. appendiculata Fernald, all figs. from type: figs. 1 and 2, portions of plant, \(\times 1\); FIG. 3, upper half of rosette-leaf, \(\times 5\); Fig. 4, tip of cauline leaf, \(\times 10\); fig. 5 , corymb, \(\times 2\); fig. 6, achenes, \(\times 10\).

Plates 922 and 923. A. Canadensis Greene: Plate 922, figs. 1 and 2, pistillate plant, \(\times 1\), from Franconia, New Hampshire, June 13, 1897, Edwin Faxon; FIG. 3, tip of cauline leaf, \(\times 10\), from same collection; FIG. 4, achenes, \(\times 10\), from St. Ours, Co. de Richelieu, Quebec, Rolland-Germain, no. 43,516. Plate 923, fig. 1, staminate plant, \(\times 1\), from Ile Perrot, Quebec, Victorin, no. 28,256; FIG. 2, basal leaves, \(\times 5\), from Manchester, Vermont, June 30, 1898, Mary A. Day; Fig. 3, corymb, \(\times 2\), from Masardis, Maine, Fernald, no. 2363.

Plates 924-926. A. neglecta Greene: Plate 924, figs. 1 and 2, pistillate isotype, \(\times 1\); Fig. 3, tip of cauline leaf from isotype; fig. 4, pistillate inflorescence, \(\times 2\), from Menands, Albany Co., New York, May 24, 1916, House; FIG. 5, pistillate inflorescence, \(\times\) 2, from Brookland, D. C., May 2, 1900, Holm. Plate 925, figs. 1 and 2, broad-leaved plant, \(\times 1\), from Ardsley, Montgomery Co., Pennsylvania, May 17, 1909, B. Long; Fig. 3, pistillate inflorescence, \(\times 2\), from southeast of Ligonier, Noble Co., Indiana, Deam, no. 27,459; FIG. 4, achenes, \(\times 10\), from Upland, Grant Co., Indiana, Deam, no. 15,779. Plate 926, fig. 1, staminate isotype; fig. 2, tip of cauline leaf, \(X\) 10, from staminate isotype; fig. 3, pistillate inflorescence, \(\times 2\), from Vaughan, New York, June 1, 1916, Burnham; Fig. 4, pistillate corolla, \(\times 10\), from no. 15,779.

Plate 927. A. neglecta, forma simplex (Peck) Fernald: isotype, \(\times 1\).
Plate 928: A. campestris Rydb.: fig. 1, pistillate plant, \(\times 1\), from Custer, South Dakota, Rydberg, no. 794 (paratype-collection); FIG. 2, staminate plant, \(\times 1\), Deadwood, South Dakota, E. J. Palmer, no. 37,137; FIG. 3, tip of cauline leaf, \(\times 10\), from Charlot Pt., Lake Athabaska, Saskatchewan, Raup, no. 6079; FIG. 4, corymb, \(\times 2\), from no. 6079; FIG. 5, achenes, \(\times 10\), from Charlot Pt., Raup, no. 5283.

Plates 929 and 930 . A. rupicola Fernald: Plate 929, fig. 1, base of one of type-specimens, \(\times 1\); fig. 2, rosette-leaves, \(\times 5\), from type; fig. 3 , tip of cauline leaf, \(\times 10\), from type. Plate 930, fig. 1 , flowering summit of same plant as in plate 929 , fig. 1; FIG. 2, corymb, \(\times 2\), from TYPE; FIG. 3, receptacle, \(\times\) 10, from Grand Falls, Newfoundland, Fernald, Wiegand, Bartram \& Darlington, no. 6344; fig. 4, achenes, \(\times 10\), from same station and same collectors, no. 6343.

Plates 931 and 932. A. neodioica Greene, var. typica Fernald: Plate 931, Figs. 1,2 and 3 , portions of isotype, \(\times 1\); Fig. 4, tip of rosette-leaf, \(\times 5\), from northeast of Wenksville, Adams Co., Pennsylvania, L. F. A. Tanger, no. 4383; fig. 5 , tip of cauline leaf, \(\times 10\), from isotype; Fig. 6 , corymb, \(\times 2\), from Mickleton, Gloucester Co., New Jersey, B. Long, no. 20,454; Fig. 7, portion of involucre, \(\times 5\), from isotipe. Plate 932, figs. 1, 2 and 3 , portions of staminate plants, \(\times 1\), from Frazer, Chester Co., Pennsylvania, May 7, 1910, Bartram; FIG. 4, pistillate corolla, \(\times 10\), from isotype; Fig. 5 , achenes, \(\times 10\), from Isotype.

Plate 933. A. neodioica, var. attendata Fernald: figs. 1 and 2, portions of \(\frac{\text { Tÿpe }}{} \times 1\); Fig. 3 , tip of cauline leaf, \(\times 10\), from Orono; Maine, Fernald, no. \(2356^{\circ}\) (PARATYPE); FIG. 4 , inflorescence, \(\times 2\), from no. 2356; FIG. 5 , portion of involucre, \(\times 5\), from Sangerville, Maine, July 7, 1897, Fernald (paratype).

Plate 934. A. neodioica, var. interjecta Fernald, all figs. from type:FIG. 1, small plant and base and inflorescence of others, \(\times 1\); FIG. 2, tips of rosette-leaves, \(\times 5\); fig. 3 , tip of cauline leaf, \(\times 10\); FIG. 4 , corymb, \(\times 2\); fig. 5, corollas, \(\times 10\); fic. 6 , achenes, \(\times 10\).

Plate 935. A. neodioica, var. chlorophylla Fernald, all figs. from TYPE: FIGS. 1 and 2, portions of plant, \(\times 1\); fig. 3 , tip of rosette-leaf, \(\times 5\); FIG. 4, involucre, \(\times 5\); FIG. 5 , corolla, \(\times 10\).

Plate 936. A. neodioica, var. grandis Fernald: fige. 1 and 2, portions of a plant, \(\times 1\), from South Ashburnham, Massachusetts, May 30, 1904, F. F. Forbes; Fig. 3, two mature corymbs, \(\times 1\), from Somesville, Maine, July 1, 1897, E. L. Rand; fig. 4, corollas, and Fig. 5, achenes, from last collection.

Plate 937, figs. 1-10. A. virginica Stebbins: figs. 1 and 2, pistillate, and 3 and 4 , staminate plants (TYPE) \(\times 1\); FIG. 5 , rosette-leaf, \(\times 5\), from type; fig. 6, tip of cauline leaf, \(\times 10\), from East Furnace, Shenandoah Co., Virginia, Lena Artz, no. 4; fig. 7 , involucre, \(\times 5\), from Hanging Rock, Hampshire Co., West Virginia, W. M. Frye, no. 4 (paratype); fig. 8, receptacle, \(\times 10\), from last no.; FIG. 9, pistillate corollas, \(\times 10\), from no. 4; Fig. 10, achenes, \(\times 10\), from no. 4.

Plate 937, figs. 11 and 12. A. virginica, var. argillicola Stebbins: fig. 1 , base of type, \(\times 1\); fig. 2, tip of cauline leaf, \(\times 10\), from type.

Plates 938 and 939. A. aprica Greene: Plate 938, fig. 1, pistillate plant and corymbs, \(\times 1\), from near Deadwood, South Dakota, E. J. Palmer, no. 37,116; FIG. 2, pistillate corymb, \(\times 2\), from Perham, Ottertail Co., Minnesota, May 31, 1912, Z. L. Chandonnet; Fig. 3, pistillate flower and corolla, \(\times 10\), from Mouth of Qu'Appelle River, Manitoba, Wm. Herriot, Geol. Surv. Can., no. 72,845; Fig. 4, achenes, \(\times 10\), from no. 72,845 . Plate 939, fig. 1, staminate plant, \(\times 1\), from Valentine, Nebraska, June 30, 1891, J. M. Bates; Fig. 2, basal rosette, \(\times 5\), from same specimen; fig. 3, upper half of cauline leaf, \(\times\) 10, from Perham, Minnesota, Chandonn t; fig. 4, pistillate involucre, \(\times 5\), from Herriot, no. 72,845.

Plates 940 and 941. A. petaloidea Fernald (typical): Plate 940, figs. 1,2 and 3, portions of TYPE, \(\times 1\); FIG. 4, base of plant, to show repent habit, \(\times 1\), from Foxcroft, Maine, Fernald, no. 2390; Fig. 5, tip of cauline leaf, \(\times 10\), from type; fig. 6, half of corymb, \(\times 2\), from type. Plate 941, fig. 1, staminate plant, \(\times 1\), from Harwich, Massachusetts, Fernald, no. 19,243; fig. 2, tips of basal rosette, \(\times 5\), from Milo, Maine, Sept. 2, 1897, Fernald; Fig. 3, pistillate involucre, \(\times 5\), from type; fig. 4 , pistillate corolla, \(\times 10\), from type.

Plate 942. A. petaloidea, var. scariosa Fernald: figs. 1 and 2, portions of tYpe, \(\times 1\); FIG. 3, corymb, \(\times 2\), from a TYPE-specimen; FIG. 4, exceptionally lax corymb, \(\times 2\), from type-series; FIG. 5 , involucre, \(\times 5\), from TYPE.

Plates 943 and 944. A. petaloidea, var. subcorymbosa Fernald: Plate 943 , figs. 1 and 2, portions of type-series, \(\times 1 ;\) fig. 3 , tip of cauline leaf, \(\times 10\), from type; fig. 4, involucre, \(\times 5\), from type; fig. 5 , pistillate corollas, \(\times 10\), from near Charlottetown, Prince Edward Island, Fernald \& St. John, no. 11,205 ; fig. 6, achenes, \(\times 10\), from no. 11,205 . Plate 944 , fig. 1, portions of two large inflorescences, FIG. 2, summit of inflorescence at right, \(\times 1\), from Cemetery, Jordan Pond Road, Mt. Desert Island, Maine, June 4, 1901, E. L. Rand.

Plates 945 and 946 . A. fallax Greene: Plate 945, pistillate plant: figs. 1 and 2, base and summit of flowering plant, \(\times 1\), from Chestnut Hill, Pennsylvania, May 3, 1889, Heller; Fig. 3, corymb, \(\times 17 / 8\), from same collection; fig. 4, achenes, \(\times 10\), from Ferrisburg, Vermont, Eggleston, no. 2645. Plate 946, Fig. 1, staminate plant; \(\times 1\), from Agricultural College, Michigan, May 6,1898, C. F. Wheeler; FIG. 2, involucre of pistillate head, \(\times 6\), from Chevy Chase Lake, Maryland, Maxon \& Standley, no. 291; FIG. 3, pistillate corollas, \(\times 10\), from Eggleston, no. 2645.

Plates 947 and 948 . A. fallax, var. calophylla (Greene) Fernald: Plate 947: pistillate plant: figs. 1 and 2, portions of base and summit, \(\times 1\), of plant from Cape Girardeau, Missouri, E. J. Palmer, no. 39,081 ; FIG. 3, portion of involucre, \(\times 6\), from same no. Plate 948, fig. 1 , staminate plant, \(\times 1\). an isotype from Cobden, Illinois, June 15, 1898, E. L. Greene; Fig. 2, pistillate inflorescence, \(\times 13 / 4\), from E. J. Palmer, no. 39,081.

Plates 949 and 950. A. Parlini Fernald: Plate 949, pistillate plant: FIGS. 1 and 2, base and summit, \(\times 1\), of one of TYPE-specimens; FIG. 3, summit of flowering stem, to show dark glands, \(\times 10\), from Foxcroft, Maine, Fernald, no. 2340 ; Fig. 4 , corymb, \(\times 3\), from type; fig. 5 , achenes, \(\times 10\), from topo-
type, June 5, 1897, Parlin. Plate 950, figs. 1 and 2, staminate plant, \(\times 1\), from type-locality, May 28, 1899, Parlin; FIG. 3, portion of pistillate involucre, \(\times 6\), from topotype; fig. 4, pistillate corollas, \(\times 10\), from topotype.

Plate 951. A. Parlinit, var. arnoglossa (Greene) Fernald: figs. 1 and 2, portion of base and summit, \(\times 1\), of isotype; fig. 3 , involucre, \(\times 6\), from ISOTYPE.

Plates 952 and 953. A. Brainerdif Fernald: Plate 952, from isotype, Barber's Meadow, Addison, Vermont, May 27, 1899: figs. 1 and 2, base and summit of plant, \(\times 1\); fig. 3, summit of stem, to show dark glands, \(\times 10\); fig. 4, an inflorescence, \(\times 6\); fig. 5 , achenes, \(\times 10\). Plate 953, fig. 1, portion of base, showing unusually large leaves, \(\times 1\), from Mt. Battie, Camden, Maine, July, 1902, G. G. Kennedy; FIG. 2, loose pubescence of upper surface of rosette-leaf, \(\times 10\), from same specimen; Fig. 3, involucre, \(\times 6\), from type; rig. 4, corollas, \(\times 10\), from TYPE.

Plates 954 and 955 . A. plantaginifolia (L.) Hooker: Plate 954, pistillate plant: FIGS. 1 and 2, base and summit of plant from type-region, \(\times 1\), west of Williamsburg, Virginia, Grimes, no. 2543; Fig. 3, involucre, \(\times 6\), from no. 2543; fig. 4, corollas, \(\times 10\), from no. 2543. Plate 955, fig. 1, staminate plant from type-region, \(\times 1\), from west of Lake Matoka, James City Co., Virginia, J. T. Baldwin, no. 204; FIG. 2, inflorescence, \(\times 6\), from Grimes, no. 2543; FIG. 3, achenes, \(\times 10\), from no. 2543.
Plate 956. A. plantaginifolia, var. petiolata (Fernald) Heller, all figs. from type-series: figs. 1 and 2, small fruiting plant, \(\times 1\); FIG. 3, staminate plant, \(\times 1\).
Plates 957 and 958. A. solitaria Rydberg: Plate 957, fig. 1, tracing, \(\times 1\), of the Gronovian element, of Gnaphalium plantaginifolium L., "Gnaphalium stolonibus reptatricibus longissimis, foliis ovatis, caule capitatis. Gron. virg. \(95^{\prime \prime}\), after B. L. Robinson; FIG. 2, one of the TYPE-specimens (pistillate), \(\times 1\), of A. plantaginifolia, \(\beta\). monocephala Torrey \& Gray (basis of A. solitaria), coll. Louisiana, Carpenter. Plate 958, fig. 1, average plant (staminate), \(\times\) 1, from Williamsburg, Virginia, Fernald, Long \& Abbe, no. 14,241; FIG. 2, very small plant (staminate) \(\times 1\), from Chapel Hill, North Carolina, Pease, no. 26,998; Fig. 3, achenes, \(\times 10\), from north of Medora, Jackson Co., Indiana, Deam, no. 24,771.

\section*{II. TRANSFERS IN AND ANIMADVERSIONS ON ARTEMISIA}

Artemisia glauca Pall., var. dracunculina (S. Wats.), comb. nov. A. dracunculina S. Wats. in Proc. Am. Acad. xxiii. 279 (1888). A. Dracunculus L., subsp. dracunculina (S. Wats.) Hall \& Clements, Phylogen. Meth. in Taxon. 116 (1923). A. dracunculoides Pursh, var. dracunculina (S. Wats.) Blake in Journ. Wash. Acad. Sci. xxx. 472 (1940).

I get no satisfaction in trying to separate Artemisia dracunculoides Pursh (1814) from A. glauca Pallas (1804). At best they seem to be confluent forms of one species, the degree of pubescence or glabrousness and of glaucescence or greenness being most difficult to distinguish. Var. dracunculina is more tangible, with its loose inflorescence and nodding or pendulous longpedicelled heads. In the type the filiform pedicels are \(4-8 \mathrm{~mm}\). long (Watson said " 2 to 4 lines"), in Hartman no. 778, also from

Chihuahua, up to 9 mm ., and extreme specimens, such as J.H. Oyster, no. 2 from Kansas, and Bush, no. 4121 from Greenwood, Missouri (distrib. as A. mexicana Willd.), have them (or the filiform minutely bracteate monocephalous branchlets) prolonged to \(2-3.5 \mathrm{~cm}\) !

Some botanists, overlooking the fact that the name Artemisia glauca Pall. (1804) antedates A. dracunculoides Pursh (1814), are using the combination A. dracunculoides, var. glauca (Pall.) Munz, Man. So. Cal. Bot. 575 and 601 (1935).
A. ludoviciana Nutt., var. cuneata (Rydb.), stat. nov. A. cuneata Rydb. in N. Am. Fl. xxiv \({ }^{3} .269\) (1916).
A. ludoviciana Nutt., var. Brittonii (Rydb.), stat. nov. A. Brittonii Rydb. in Bull. Torr. Bot. Cl. xxxii. 129 (1905).
A. ludovicians Nutt., var. pabularis (Nelson), comb. nov. A. rhizomata Nelson, var. pabularis Nelson in Bull. Torr. Bot. Cl. xxvii. 34 (1900). A. pabularis (Nelson) Rydb. in Bull. Torr. Bot. Cl. xxxiii. 137 (1906).
A. ludoviciana Nutt., var. americana (Bess.), comb. nov. A. vulgaris L., var. americana Besser in Linnaea, xv. 105 (1841) in part.
A. ludoviciana Nutt., var. mexicana (Willd.), comb. nov. A. mexicana Willd. ex Spreng. Syst. iii. 490 (1828). A. indica Willd., var. mexicana (Willd.) Besser in Nouv. Mém. Soc. Nat. Mosc. iii. 56 (1834). A. vulgaris L., var. mexicana (Willd.) T. \& G. Fl. N. Am. ii. 421 (1843). A. vulgaris, subsp. mexicana (Willd.) Hall \& Clements, Phylogen. Meth. Tax. 80 (1923) in part.

I get no intellectual satisfaction from the treatment of Artemisia by Hall \& Clements. Although published under the sophisticated title "The Phylogenetic Method in Taxonomy", this treatment, it seems to me, does serious injury to sound taxonomy and its natural ally, sound phylogeny. My chief objection is, that fundamental characters in growth-habit, such as one would expect to be given real weight, were ignored or, apparently not recognized. Under the single blanket-name, A. vulgaris, Hall \& Clements amassed plants of most diverse habit: : species with rounded and deeply dissected leaves with stipule-like appendages at the base, others with comparable leaves but no appendages; species with strictly entire long-attenuate leaves, others with them variously dissected;:species with heavy ligneous and nonstoloniferous crowns, others with herbaceous slender rhizomes and prolonged lash-like stolons; plants with densely tufted habit,


Photo. B. G. Schubert.
Antennaria fallax: figs. 1 and 2 , base and summit of pistillate plant, \(\times 1\); fig. 3 , corymb, \(\times 2\); fig. 4 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria fallax: fig. 1, staminate plant, \(\times 1\); fig. 2 , pistillate involucre, \(\times 5\); FIG. 3, pistillate corollas, \(\times 10\).


Photo. B. G. Schubert.
Antennaria fallax, var. calophylla: figs. 1 and 2, portions of base and summit of pistillate plant, \(\times 1\); FIG. 3 , half of involucre, \(\times 5\).


Photo. 13. G. Schubert.
Antennaria fallax, var. calophylla: fig. 1 , staminate plant, \(\times 1\); fig. 2 , pistillate corymb, \(\times 2\).


Photo. B. G. Schubert.
Antennaria Parlinii: figs. 1 and 2, base and summit of plant, \(\times 1\); fig. 3, summit of flowering stem, showing glands, \(\times 10 ;\) FIG. 4 , corymb, \(\times 2\); FIG. 5 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria Parlinii: figs. 1 and 2, base and summit of staminate plant, \(\times 1\); fig. 3, half a pistillate involucre, \(\times 5\); Fig. 4, pistillate corollas, \(\times 10\).


Photo. B. G. Schubert.
Antennaria Parlinii, var. arnoglossa: figs. 1 and 2, portions of base and summit of plant, \(\times 1\); fig. 3, involucre, \(\times 5\).


Photo. B. G. Schubert.
Antennaria Brainferdif: figs. 1 and 2, base and summit of plant, \(\times 1\); fig. 3 , summit of stem, showing glands, \(\times 10\); FIG. 4 , corymb, \(\times 2\); FIG. 5 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Antennaria Brainerdii: fig. 1, base of large-leaved extreme, \(\times 1\); fig. 2, upper surface of rosette-leaf, showing long tomentum, \(\times 10\); fig. 3 , involucre, \(\times 5 ;\) fig. 4 , corollas, \(\times 10\).


Photo. B. G. Schubert.
Antennaria plantaginifolia: figs. 1 and 2, base and summit of pistillate plant, \(\times 1\); FIG. 3 , involucre, \(\times 5\); Fig. 4 , corollas, \(\times 10\).


Photo. B. G. Schubert.

Antennaria plantaginifolia: fig. 1, staminate plant, \(\times 1\); fig. 2, pistillate corymb, \(\times 2\); fig. 3 , achenes, \(\times 10\).


I'hoto. B. G. Schubert.
Antennaria plantaginifolia, var. petiolata: figs. 1 and 2, small fruiting plant, \(\times 1 ;\) FIG. 3 , staminate plant, \(\times 1\).


Photo. B. G. Schubert.
Antennaria solitaria: fig. 1 , tracing by B. L. Robinson of the Gronovian plant included by Linnaeus in his Gnaphalium plantaginifolium; fig. 2, one of type-specimens, \(\times 1\).


Photo. B. G. Schubert.
Antennaria solitaria: fig. 1, average staminate plant, \(\times 1\); fig. 2 , small staminate plant, \(\times 1\); fig. 3 , achenes, \(\times 10\).


Photo. B. G. Schubert.
Senecio congestus: fig. 1, isotype, \(\times 1\); fig. 2, summit of pedicel and base of involucre, \(\times 10\).

Var. palustris: fig. 3, inflorescence, \(\times 1\); fig 4 , summit of pedicel and base of involucre, \(\times 10\).


Photo. B. G. Schubert.
Senecio congestus, var. tonsus: fig. 1 , inflorescence of type, \(\times 1 ;\) fig. 2 , summit of pedicel and base of involucre, \(\times 10\).
forming cespitose clumps, others with the stems scattered and arising from the tips of elongate stolons, thus forming loose colonies. It is as if one united as a single species all the members of Solidago with the panicle made up of secund branches: calling S. sempervirens the maritime fleshy-leaved and, because of its habitat, the large-headed phase; S. uniligulata (neglecta) a thinner-leaved and, because of its occurrence in eastern acid peat, a smaller-headed phase; S. missouriensis a phase developed on the western prairies and, on account of its crowded habitat, sending up only one flowering stem at a time and spreading by prolonged subterranean stolons; and so on through many species. That would be easy and hopelessly superficial; it would be neither sound taxonomy nor phylogeny nor sensible ecology. That Hall, whose work up to the Artemisia-period had been sound and free from vagaries and who understood the taxonomic significance of growth-forms when associated with other characters, should suddenly have coöperated in such a confused and unclarifying piece of work is at least amazing.

In attempting to get some workable mean between this treatment and the extreme splitting of Rydberg and to put the many pigeon-holes of undigested material in the Gray Herbarium into such order that it could be readily available I have been handicapped by lack of field-experience with most of the species; but in this case I have temporarily adopted the sophistry of a student of one technical field who, venturing into another with which he was not too familiar, wrote: "It is conceivable that one who is, in a way, an amateur may be more likely to appreciate the more salient features . . . than the specialist". \({ }^{1}\) At least the growth-habit, as shown by the few well collected specimens in the collections before \({ }^{2}\) me, is highly suggestive of real specific differentiation.

A: vulgaris L., the Eurasian species much naturalized in the northeastern States, Canada and Newfoundland, forms vase-like clumps arising from a thick but scarcely ligneous forking rhizome, only tardily sending out short stolons. It is tall, with glabrescent stems up to 2 m . high, and its large roundish-ovate to -obovate

\footnotetext{
\({ }^{1}\) Campbell, Douglas Houghton, Outline of Plant Geography, v (1926).
\({ }^{2}\) Ninety per cent of so-called specimens in this group are not specimens at all; they are lazily plucked bits, their collectors taking no pains to get the subterranean parts or to show the habit or the lower leaves. That would require work and acuteness.
}
leaves are green and glabrous or promptly glabrate above, deeply cleft, and bearing at the base of the petiole 4 to 8 obvious leafletor stipule-like appendages. It occurs with us as three varieties. Typical A.vulgaris has the leaves cleft to midrib into lacerate or cut-toothed lance-acuminate divisions, this plant found from Newfoundland to Ontario, south to Nova Scotia, New England, New Jersey, Pennsylvania, casually to Georgia, Michigan and Wisconsin. Var. glabra Ledeb. is similar but with the narrowly lance-acuminate divisions of the primary leaves entire. It is local, from northwestern New England to Ontario, south to Connecticut, Ohio, Michigan and Kansas. Var. latiloba Ledeb. has thinner leaves, the principal ones less deeply cleft, the broadly obovate or rhombic terminal divisions and the oblanceolate to oblong lower ones and their few teeth blunt or merely acutish, the panicle but slightly developed. It is local in Quebec and New England. Only one other species of the few in the "Manual range" merged by Hall \& Clements with the Old World A. vulgaris has stipule-like appendages. This is
A. serrata Nutt., indigenous on bottoms, on prairies or in rich thickets from Wisconsin to North Dakota, south to Illinois, Missouri and Kansas. Hall \& Clements treat it as a subspecies of \(A\). vulgaris, but its uncleft lance-attenuate sharply fine-serrate primary leaves are only \(1-3 \mathrm{~cm}\). broad, their basal appendages small and lance-subulate. I have not seen a base but it is evidently near the next species in which the base has been well collected.
A. Herriotil Rydb., found on plains, dry ridges and gravelly shores from Minnesota to northern Alberta and South Dakota. Rhizome stout, woody, without evident stolons; leaves linearattenuate, without basal appendages, entire or with few falcate lobes, the larger ones 1-2 dm. long (twice or thrice length of leaves of \(A\). vulgaris) and only \(0.5-1.5 \mathrm{~cm}\). wide (many times narrower than in \(A\). vulgaris). Hall \& Clements get rid of this characteristic species of the northern Plains (east of the Rocky Mts.) by pushing it into the "the douglasiana form" of their \(A\). vulgaris, subsp. heterophylla, i. e. A. Douglasiana Besser, a big species of the Pacific slope, from southern British Columbia to Lower California, with the rhizome or its branches long and creeping, suggesting thick rope, the "principal leaves oblanceolate or broadly elliptic in outline, somewhat spatulate, . . . 1.5-

5 or 10 cm . wide . . . all . . . tomentulose above" (H. \& C.). Naturally, to those who place A. serrata and A. Douglasiana in the Old World A. vulgaris, the Great Plain species, A. Herriotii, with strong woody base, narrowly longattenuate leaves glabrous above, and elongate (instead of campanulate) involucre \(4-5\) (instead of \(3-4\) ) mm . long, could make no appeal. But it looks like a real species and its base is similar to that of
A. longifolia Nutt., occurring on dry plains or in alkaline situations from western Ontario and Michigan to the Rocky Mts., a plant with hard woody bases (without stolons) branching into crowns up to 2 cm . thick, the many stems clustered, the very narrow linear-attenuate entire leaves gray-puberulent above, with revolute margins, the principal ones \(3-10 \mathrm{~cm}\). long and mostly \(2-5 \mathrm{~mm}\). broad, etc.

When we come to Artemisia ludoviciana Nutt. the situation seems to be different. This is an aggressive and "weedy" species "varying all over the lot", all over the lot because it is loosely stoloniferous, the long and lash-like stolons enabling it to form loose colonies with more or less circular outline. It is this highly inconstant series which has spread eastward along railroads, roadsides and in litter to Quebec, the Maritime Provinces and the Atlantic States. The growth-habit of its base is very definite; its foliage, whether entire, falcately cleft or merely toothed, hopelessly indefinite. Yet Hall \& Clements toss them all into their all-inclusive \(\boldsymbol{A}\). vulgaris, not as one subspecies but as three: two of them, their \(A\). vulgaris, subspp. ludoviciana and gnaphalodes, which differ only in that the former has the wool of the upper leaf-surface less permanent than in the latter, each being considered by them as equivalent in value (as subspecies) to true nonstoloniferous Eurasian A. vulgaris, the big A. Douglasiana of the Pacific Slope, the woody-based and nonstoloniferous more eastern campestrian A. longifolia, the campestrian A. serrata, and others quite as definite. The attempt, however, in view of the very real character of the rhizome and stolons, to keep A: gnaphalodes more than weakly varietally apart from typical A. ludoviciana has thus far proved hopeless. In fact, these two are really somewhat intermediate variations in a series which includes plants with upper leaf-surfaces lanate or others, with distinctive ranges, with them bright green and glabrous from the
first. In the limited area of Gray's Manual I am recognizing the following, all as varieties of A. ludoviciana which stands apart from A. serrata, Herriotii and longifolia in its loosely colonial habit, the slender cord-like rhizome freely stoloniferous, the stolons slender and elongate, the primary leaves either entire or variously lobed or cleft. Since the abundance as weeds in the East varies, I shall be glad of information regarding additional areas invaded by them.
a. Young leaves tomentose or lanate on upper as well as lower surface . . . . b.
b. Pubescence of upper surfaces of primary and often rameal leaves loosening and rather deciduous, the older leaves becoming glabrate and bright green above; leaves entire or some of the lower and median ones with falcate-lobed margins
A. ludoviciana (typical).
b. Pubescence of upper as well as lower surfaces persistent, the upper surface remaining whitish or gray....c.
c. Principal leaves lance-linear, lanceolate, oblong or oblanceolate, entire or with marginal falcate teeth or divisions, the blades soft and pliable, heavily tomentose, many times longer than broad....d.
d. Leaves flat, mostly straight, ascending or spreading.

Blades lanceolate, acute or attenuate, longer ones \(5-10 \mathrm{~cm}\). long, ascending; stem usually simple below or to summit, without or more often with short suppressed axillary branches.......... Var.
Blades oblong, oblong-elliptic or oblong-oblanceolate, blunt or merely acutish, 2.5-7 cm. long, loosely ascending or spreading; stems frequently with loosely spreading or divergent elongate branches

Var. latifolia.
d. Leaves mostly plicate, widely spreading or recurving,
often twisted, the longer ones \(2.5-5 \mathrm{~cm}\). long; stem or its erect basal branches with suppressed axillary branchlets

Var. pabulariz.
c. Principal leaves broadly oblong, with few coarse teeth
around the summit, firm and thick, rather hard, only two to four times as long as broad; axillary branches short and suppressed

Var. Brittonii.
a. Young leaves glabrous (or only obscurely puberulent) and bright green above from the first, blades linear to lanceolate, entire or with long falcate lobes, they and the lobes attenuate.
Panicle open and leafy, virgate or with virgate branches; involucre globose-hemispherical; stem usually covered with dense continuous felt

Var: americana
Panicle dense, pyramidal; involucre cylindric or cylindricovoid; stem thinly tomentulose to puberulent, often glabrescent

Var. mexicana.
A. ludoviciana, typical (A. vulgaris, subsp. ludoviciana (Nutt.) Hall \& Clements, in part).-Native of prairies and dry open soils or thin woodland, Michigan to Washington, south to Illinois, Arkansas, Texas and Mexico; spread eastward along railroads, roads, in waste ground, dooryards, grassland, ceme-
teries, etc., to New England, New York, New Jersey and Virginia.

Var. gnaphalodes (Nutt.) T. \& G. (A. gnaphalodes Nutt.; A.vulgaris, subsp. gnaphalodes (Nutt.) Hall \& Clements, in part). -Native of prairies, etc., southern Ontario and Michigan to southern British Columbia, south as in the preceding; naturalized eastward to Quebec, New England, New Jersey and Delaware.

Var. latifolia (Bess.) T. \& G. (A. Purshiana Bess., var. latifolia Bess.; A. vulgaris, subsp. gnaphalodes, in part, of Hall \& Clements). - Native from Manitoba and Minnesota to southern British Columbia, south to Iowa, Kansas and New Mexico; naturalized eastward to Quebec, New Brunswick and New Eng-land.-One of the more marked extremes of the species on account of its short and broad leaves, tendency to divergent branching and relatively loose tomentum. The following are characteristic: Quebec: Lac des Chênes, Rolland, no. 6121; Notre-Dame-de-la-Dore, Co. Lac-St.-Jean, Victorin et al., no. 30,517; L'Annonciation, Co. Labelle, Victorin et al., no. 384. New Brunswick: Fairville, Fernald, no. 2268. Maine: Portland, July 19, 1910, A. R. Stubbs; North Berwick, Sept. 1895, Parlin. New Hampshire: south of Cold River Station, Walpole, July, 1901, Blanchard. Massachusetts: Newbury, Aug. 7, 1899, Williams; Lee, Sept. 3, 1920, Hoffmann. Michigan: Keweenaw Co., Farwell, no. 427. Indiana: Kokoma, Aug. 28, 1942, C. M. Ek. Illinois: Chicago, Lansing, no. 2635. Manitoba: Cedar Lake, Riding Mountain National Park, Scamman, no. 2967. Minnesota: Lake Vadnais, Rosendahl, no. 5180. Iowa: Estherville, Wolden, no. 1264. North Dakota: Leeds, Aug. 14, 1900, Lunell; Jamestown, O. A. Stevens, no. 302. South Dakota: Redfield, Brenckle, no. 40-74. Kansas: Ellis, July 21, 1935, Bondy. Saskatchewan: ex Hook. (isotype). Alberta: Rosedale, Moodie, no. 1183. Montana: Silver Bow, H. M. Hall, no. 11,492, in part. Wyoming: Upper Tongue R., Bighorn Mts., July 22, 1900, J. G. Jack. Nevada: Truckee Valley, W. W. Bailey, no. 640. British Columbia: Beavermouth, C. H. Shaw, no. 1153.

Var. pabularis (Nelson) Fernald, supra. Native from Manitoba and Minnesota to Oregon, south to Iowa, Nebraska and Colorado; adventive eastward to Michigan.-One of the most characteristic varieties on account of its longitudinally folded and recurving or arching leaves. The following are characteristic. Michigan: River Rouge, Farwell, no. 4375, in part. Minnesota: Brown's Valley, Sept., 1893, Sheldon; Muskoda, Ballard, no. 3120. Iowa: Iowa Falls, Aug. 1928, M. E. Peck; Estherville, Wolden, no. 1264a. North Dakota: Leeds, Aug. 20, 1900, Lunell, as A. longifolia; Fargo, Aug. 19, 1901, Waldron \& Manns. South Dakota: Brookings, Sept. 1894, Thornber; Iriquois, Aug. 11, 1894, Thornber. Nebraska: Kennedy, Oct. 15,

1900, Bates; Hazel Creek, Fred Clements, no. 2917; Thedford, Rydberg, no. 1725. Wyoming: Creston, Nelson, no. 4426 (isotype). Colorado: Palmer Lake, Sept. 3, 1919, H. M. Hall. Oregon: Upper Klamath Lake, M. E. Peck, no. 9523.

Although Hall \& Clements call var. pabularis merely "A slender competition-form of A. vulgaris gnaphalodes" with "Leaves only 2 to 5 mm . wide", it seems to have won its competition and to grow successfully over a vast area.

Var. Brittonii (Rydb.) Fern., supra. A local extreme of Montana to Colorado, etc., casually adventive in Maine: about wool-waste, Sept. 10, 1895, Parlin.

Var. americana (Bess.) Fern., supra. Native from Alberta to Texas and northern Mexico; casually adventive in Massachusetts. The following, often confused with var. mexicana, are characteristic. Massachusetts: dry sandy field, not scarce, Clam Shell Bluff, Concord, Aug. 11, 1938, R. J. Eaton. Tennessee: Nashville, Gattinger. Kansas: Poola, Oyster. Texas: Lindheimer, fasc. iii. no. 442; Weathersford, Tracy, no. 8135; Graham, Reverchon, no. 3283; Tarrant Co., Ruth, no. 320; Briscoe, Cory, no. 17,314; Boat Springs, Chisos Mts., Cory, no. 7258. British North America: Richardson. Alberta: below McKay, Lower Athabasca River, Raup, no. 6001. Idaho: Twilight Gulch, Macbride, no. 485, as A. atomifera Piper. Colorado: Engelmann Cañon, Clements \& Clements, no. 57; Norwood Hills, E. P. Walker, no. 455; Naturita, Payson, no. 590. New Mexico: Cloudcroft, E. D. Schulz, no. 308. Arizona: Marshall Gulch, Shreve, no. 5398; Mule Mts., Harrison \& Kearney, no. 6238.

Besser's original description of Artemisia vulgaris, var. americana (as americanum) was based primarily on a "specimen Hookerianum e Britt. N. America", the plant with laciniate leaves "supra glabris", \(1 / 2\) inch \([1 \mathrm{~cm}\).] wide, with lanceolate laciniae \(11 / 2-3\) lines wide, the virgate panicle with hemispherical heads. It seems to be the plant here called \(A\). ludoviciana, var. americana, although Hall \& Clements place it in the very striking A. Tilesii Ledeb. (their A. vulgaris, subsp. Tilesii), a plant of eastern Siberia and Pacific America from Alaska to Oregon, etc., with "principal leaves ovate or broadly elliptic in outline, \(3-7 \mathrm{~cm}\). wide", etc. I have seen no authentic material and my interpretation may be incorrect; but the general placing of these specimens in var. mexicana, simply because the leaves are bright green above and often slenderly dissected, overlooks the impor-
tant characters of the latter, the densely pyramidal panicle of cylindric-ovoid heads or, as Willdenow's original diagnosis said, "panicula pyramidali subfoliata, floribus ovatis subsessilibus bracteis tomentosis", such a plant as abounds in much of Mexico.

Var. mexicana (Willd.) Fern., supra. Mexico and Texas, extending northeastward to barrens and sands of Missouri. The following are typical. Missouri: Dodson, Bush, no. 7844; Courtney, Bush, no. 6509. Arkansas: Engelmann, isotype of the 2 d plant described by Besser as \(A\). vulgaris, var. americana. Texas: Lindheimer, fasc. iii. nos. 442, 443, and 444; Polytechnic, Ruth, no. 320; Brown Co., Cory, no. 15,855. Mexico: Berlandier, no. 1253; Bourgeau, no. 832; Ghiesbrecht, no. 155; Hinton, no. 1847; Lyonnet, no. 435; Palmer, nos. 597, 600 and 602; Parry \& Palmer, nos. 530 and 531; Pringle, nos. 290, 7929, 8765, 9848 and 11,481; Schaffner, no. 277.

One other species which has spread into the Northeast is the very characteristic Artemisia Carruthii Wood (A. kansana Britton; included under their A. vulgaris, subsp. Wrightii (Gray) Hall \& Clements), with the somewhat ligneous crown producing abundant prolonged and often leafy-tipped stolons (in some specimens these freely forking and 3 dm . long), the short ( \(1-5\) cm . long) elliptic to oblanceolate leaves essentially all pinnately dissected to the midrib into narrowly linear or linear-filiform lobes only \(3-10 \mathrm{~mm}\). long and \(0.1-1 \mathrm{~mm}\). broad. Native on plains and in dry scrub from western Kansas and Colorado to western Texas, New Mexico and Arizona, this aggressive and vegetatively rapidly reproducing plant has come east. The following eastern specimens are before me. Rhode Island: Pawtucket, October, 1898, M. L. McCudden. Indiana: Miller's, October, 1898, Umbach. Missouri: Sheffield, Bush, nos. 1838 and 3333 .

Allied to these and likely to wander eastward (especially since it is here cultivated as Silyer-king Artemisia) is the characteristic Artemisia albula Wooton, of western Texas, New Mexico, Arizona, southern California and northern Mexico. Although this small-leaved and small-headed white or whitish plant was given no recognition by Hall \& Clements, except as a reduced "form" of their too inclusive A. vulgaris, subsp. gnaphalodes, they did see something in it: "but with distinctive habit, very narrow leaves, widely branched inflorescence, and exceptionally small heads, the involucres 3 mm . high". The "distinctive
habit" was unexplained, but A. albula forms dense or cespitose clumps and, instead of spreading as do \(A\). ludoviciana and its many varieties (including gnaphalodes) by slender elongate stolons, its basal offshoots, as shown by material from careful collectors like Charles Wright, are assurgent or erect from the subligneous crown and with well developed leaves. This is a "distinctive habit" similar to that of the woody-based \(A\). Michauxiana Bess. (A. discolor). That it was not noted by Hall \& Clements is natural. Of the 54 sheets of it in the Gray Herbarium 38 indicate no attempt to collect the characteristic base, most of them nipped-off bits without even the distinctive leaves of the main stem-the kind of rubbish which some think we must house in our limited space because, forsooth, these snips have numbers!; in such disgraceful witnesses to laziness the diagnostic characters are mostly lacking. These points were strongly emphasized by Dr. Merrill in his foreword to Johnston's most helpful and practical "The Preparation of Botanical Specimens for the Herbarium'", a pamphlet which should be carefully studied by all who attempt to make herbarium-specimens.

\section*{III. SENECIO CONGESTUS}
(Plates 959 and 960)
Senecio congestus (R. Br.) DC., var. palustris (L.), stat. nov. Cineraria palustris L. Sp. Pl. ed. 2, 1243 (1763). S. palustris (L.) Hook. Fl. Bor.-Am. i. 324 (1834), not Velloso (1827). S. tubicaulis Mansfeld in Fedde, Rep. Spec. Nov. xlviii. 264 (1940). Plate 959, figs. 3 and 4.
S. congestus, var. laceratus (Ledeb.), comb. nov. S. palustris, r. laceratus Ledeb. Fl. Ross. ii. 648 (1845), excl. syn.
S. congestus, var. tonsus, var. nov. (tab. 960), habitu a var. palustre differt corymbo aperto vix lanato-villoso, pedicellis hirtellis sparse villosisque.-Alberta to Wisconsin and Minnesota. The following are characteristic. Alberta: Gov. Hay Camp district, Slave River, about \(59^{\circ} 31^{\prime}\) N., \(111^{\circ} 28^{\prime}\) W., Aug. 4, 1928, Raup, no. 3384; Reed's Portage, upper Embarras River, about \(58^{\circ} 28^{\prime}\) N.; \(111^{\circ} 32^{\prime}\) W., Aug. 15, 1930, Raup, no. 3383. Maniтовя: Clear Lake, alt. 2016 ft. , Riding Mountain National Park, Aug. 29 -Sept. 2, 1941, Scamman, no. 2970. Wisconsin: La Chapelle, July 16, 1897, L. S. Cheney, no. 7419 (type in Herb.

\footnotetext{
\({ }_{1}\) Johnston, I. M. The Preparation of Botanical Specimens for the Herbarium. Published by the Arnold Arboretum of Harvard University. 1939.
}

Gray.). Minnesota: sandy lake-shore, Detroit, June 20, 1909, H.F. Bergman.

Unfortunately the name Senecio palustris (L.) Hook. (1834) is a later homonym, excluded by \(S\). palustris Velloso (1827). When Mansfeld published for it the new binomial S. tubicaulis in 1940 he evidently overlooked \(S\). congestus (R. Br.) DC. Prodr. vi. 363 (1837), which rests upon Cineraria congesta R. Br. in Parry, 1st Voyage, App. 279 (1824), the arctic extreme with the densely congested corymb and the leaves heavily villous-lanate, the plant treated as S. palustris, var. congestus (R. Br.) Hook. by Hooker, 1. c., by Ledebour, l. c., and which in the Synoptical Flora, \(1^{2} .394\) (1884) Gray placed under S. palustris (L.) Hook., with the comment: "C[ineraria] congesta, R. Br. in Parry, Voy., Richards., \& c., only an arctic and woolly condensed form, var. congesta, Hook.".

Typical arctic Senecio congestus (plate 959, figs. 1 and 2, from isOTYPE) extends south at least to the southeastern coast of Labrador, but more generally across North America it is represented by var. palustris (plate 959, Figs 3-4), which I cannot separate from the wide-ranging plant of Eurasia with an open corymb but with copious long villosity or wool on the expanding corymb and more or less permanent dense villi on the pedicels and involucre. This variety extends south with us to the Côte Nord, Quebec, the foot of James Bay, and northern Iowa.

Var. laceratus, described from western Alaska, is an extreme with all the leaves lacerate-pinnatifid.

Var. tonsus (sheared) has almost or quite lost the long and dense villous-tomentum. Its open corymb has merely hirtellous or short-pilose pedicels or the long villi very few and scattered (Plate 960). \({ }^{1}\)

In plate 959, fig. 1 is an isotype, \(\times 1\), of Senecio congestus; fig. 2 , summit of pedicel and base of involucre, \(\times 10\), of isotype. Figs. 3 and 4, var. Palustris: fig. 3, inflorescence, \(\times 1\), from Vartofte-Asaka, Sweden, Aug., 1907, Karl Wigardt; FIG. 4, summit of pedicel and base of involucre, \(\times 10\), from same plant.

Plate 960 . S. congestus, var. tonsus: fig. 1 , inflorescence of type, \(\times 1\); FIG. 2, summit of pedicel and base of involucre, \(\times 10\), from TYPE.
(To be continued)

\footnotetext{
\({ }^{1}\) A discoid form of the boreal Senecio Pseudo-Arnica Less. is S. Pseudo-Arnica Less., forma Rollandil (Victorin), stat. nov. S. Pseudo-Arnica, var. Rollnndii Victorin, Mém. Soc. Roy. Canada. sêr. 3, xix. 87, t. 4 (1925). S. Rollandii (Victorin) Victorin, Contrib. Lab. Bot. Univ. Montreal, no. 13: 26 (1929).
}

Filago arvensis in North America.-Specimens of Filago arvensis L. collected on July 31, 1942, by Mary Johnstone at Kitchener, British Columbia, close to the southeastern boundary of the Province, apparently provide the first record of this species for the continent. The collection-note states "growing on roadsides and appears to be spreading all over the district".

In response to a request for further material Mr. W. B. Johnstone of Cranbrook collected an excellent series of specimens at the same station in 1943. In August of the same year Mr. J. W. Eastham found it "in a barnyard" at Erickson, some ten miles south of Kitchener. This would indicate that it is established over a considerable terrain and may well spread over a much larger area or until it reaches the limits of adaptability.

This plant has a superficial resemblance to species of Gnaphalium. It is by no means inconspicuous, as it attains a height of from 2 to 4 decimetres. It is not known to have any economic significance. The species is a native of Eurasia where it grows in dry sandy or stony soils. I am indebted to Dr. M. L. Fernald of the Gray Herbarium, Harvard University, for his kindness in verifying the determination.-George A. Hardy, Provincial Museum, Victoria, B. C.,

Injury to Herbarium-Specimens by extreme Heat.-Ever since the use of corrugated pasteboard in drying specimens has come into vogue there has been a tendency to try very rapid drying by placing the presses of "ventilated" specimens over heat. The belief has been propagated that this method tends to keep the natural colors-when it does not steam and blacken specimens not sufficiently dried before being subjected to heat. The late Dr. M. O. Malte made wonderfully fine specimens on his trips to Labrador and the Hudson Bay area by placing the presses, on shipboard, over the grills from the engine-room. Mr. Long and I similarly used the heat from the engine-room on Newfoundland steamers-thus providing diversion and subjects for inquiry for the other passengers. In our case, however, great care was taken to give the specimens a full twenty-four hour period between driers ("blotters"), then to straighten foliage, etc., and even then to give another day or two between driers to all juicy plants, for fear of steaming them or boiling
them, if transferred to ventilators, by giving them too much heat while they were still actively sweating.

In recent studies I have had occasion to note the ill effects of too much heat applied to certain plants which are characterized by waxy coats or glaucous foliage. It is well known that the late Professor Karl M. Wiegand devised a carrying-rack for his presses, which he placed over the engine of his automobile. He thus was able to hasten the drying of specimens on long journeys. Similarly, the late Marie-Victorin and his associates dried their ventilated presses over artificial heat. Now, if one examines the specimens prepared by Victorin and his companions of Salix glaucophylloides, Primula laurentiana or Mertensia maritima, all of which are characterized by having a white bloom or a waxy coat on the leaf (on the lower surface in the Salix and the Primula) he will find this striking and diagnostic character melted off-the bloom of youth and naturalness is gone and the foliage has lost its original color. Similarly with Wiegand's material. In checking the specimens of Magnolia virginiana (M. glauca), which is characterized by the very white bloom of the lower leaf-surface, to see if there is any stability to the varieties of \(M\). glauca proposed by Aiton and taken up by Pursh, I became impressed by the complete lack of bloom on the lower surfaces of several specimens from the Southeast, while others, like them in all other characters, had the white lower surface. Separating out the green-leaved specimens it was at once clear that they were all collected by Wiegand and Manning on their remarkably productive trip of the summer of 1927 from the Coastal Plain of Virginia to that of the Gulf.
Another point constantly noted, is that specimens too rapidly dried soon become brittle. They are easily fractured and in a few years make an unfavorable showing beside specimens carefully dried in the slower and more thorough period.
Since the above went into type I have received from the most çareful maker of specimens, Mr. Bayard Long, the following note, which further emphasizes my last point. It is worth quoting.
Your note on excessive heat in drying specimens is very much to the point and I hope it strikes home. I wish you would elaborate a bit more on the brittleness induced and the inevitable lack of "fixing" of the specimens. This has been impressing me very strongly the past few
years, in material received from some of our local collectors. Of course it saves "busy" men much labor but it produces a very unsatisfactory grade of specimens. They get dried without even being examined again (while green and fresh) and, of course, there is no opportunity (if desire) to straighten leaves, draw flowers or fruit into view, or any of the other desirable "fixing" which results in good specimens. They become invariably badly wrinkled (often with leaves crumpled across the stems) and so brittle that the first handling starts their disintegration, a process greatly accelerated by mounting and surely continuing to the end of their existence. Foliage nice and green but only fragments remaining!

\author{
It is evident that we must remember the old saying, that "haste makes waste".-M. L. Fernald.
}

Bingham's Flora of Oakland County, Michigan.-This flora may stand as a rather successful example of what is sometimes called humanized science-non-technical and pleasantly written exposition with a solid core of observation and knowledge. It is an account of the vascular vegetation of a county in southern Michigan from an ecological point of view. It accomplishes the somewhat unusual feat of defining intelligibly numerous plant associations without the use of a single Latin name. Details-such as species of Carex and Juncus-are filled in by a list of all species known or reported to occur in the county, with the associations in which each is found. In this list, naturally, Latin names are used-mostly those from the seventh edition of Gray's Manual, with occasional interpolation of the results of later studies.

Some items in the list seem to need verification. I know of no evidence that "Aspidium spinulosum var. dilatatum forma anadenium", for instance, occurs in Michigan except in the extreme north (old reports of this cannot be relied upon); and Vaccinium arboreum appears to be an unorthodox extension of range from the Mississippi Embayment. Nevertheless, the list shows plain evidence of care in preparation and (in spite of some misprints) attention to technical detail; and it is backed by specimens at the Cranbrook Institute.
The Flora is well printed and well illustrated; it will have real usefulness for anyone interested in the flora of Michigan. \({ }^{-}\)C. A. Weatherby.

\footnotetext{
\({ }^{1}\) Bingham, Marjorie T. The Flora of Oakland County, Michigan: a study in Physiographic Plant Ecology. Cranbrook Institute of Science, Bulletin no. 22. May. 1945. 155 pp., 30 ill., maps. \(\$ 1.00\) at the Institute, Bloomfleld Hills, Michigan.
}

Volume 47, no. 559, including pages 221-236 and plates 912-944, uas issued 10 July, 1945.


JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Condueted and pablished for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
CHARLES ALFRED WEATHERBY
\(\left.\begin{array}{l}\text { ALBERT FREDERICK HILL } \\ \text { STUART EIMBALL HARRIS }\end{array}\right\}\) Asociate Editors
STUART EImball haris

Vol. 47. September, 1945. No. 561.

\section*{CONTENTS:}

An untenable Generic Name in Acanthaceae. William A. Dayton. 261
Leptoloma in New England. Frank C. Seymour. ............ 263
Viburnum acerifolium, forma Collinsii. Ernest Rouleau. ...... 264
Contributions from the Gray Herbarium of Harvard University-
CLVII. M. L. Fernald (concluded). IV. Notes on eastern American Luzula.265
Sporobolus asper in Quebec. Ernest Rouleau. ..... 272

\section*{The sem england 我otanical Club, Jinc.}

8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mans.

\title{
RHODORA.-A monthly journal of botany, devoted primarily to the fora of the Gray's Manual Range and regions floristically related. Price, \(\mathbf{\$ 4 . 0 0}\) per year, nef, postpaid, in funds payable at par in United States currency in Boston; single copiea (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd coverpage). Volumes \(1-9\) can be aupplied at \(\$ 4.00,10-34\) at \(\$ 3.00\), and volumes \(35-46\) at 4.00. Some single numbers from these volumes can be supplied only at advanced prices (see 3rd cover-page). Somewhat reduced rates for complete sets can be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern states, will be considered for publication to the extent that the limited space of the journal permits. Forms may be closed five weeks in advance of publication. Author (of more than two pages of print) will receive 15 coples of the issue in which their contributions appear, if they requent them when returning proof. Extracted reprints, if ordered in advance, will bo furnished at cost. \\ Address manuscripts and proofs to \\ \[
\text { M. L. Fernald, } 14 \text { Hawthorn Street, Cambridge 38, Mass. }
\] \\ \\ M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass. \\ \\ M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass. \\ Subucriptions (making all remittances payable to RHODORA) to \\ Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford Si., Cambridge 38, Mass. \\ Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Act of March 3, 1879.
}

\title{
INTELLIGENCER PRINTING COMPANY Specialists in Scientific and Technical Publications eight west king st., lancaster, Pa.
}

\section*{EDIBLE WILD PLANTS OF EASTERN NORTH AMERICA}

\author{
by Merritt Lyndon Fernald and Alfred Charles Kinsey
}

Practical discussion of edibility and directions for recognition and preparation of more than 1000 wild plants. 422 pp ., introd. and detailed index, 124 line drawings, 25 half-tone plates. \(\$ 3.00\), postpaid. The Idlewild Press, Cornwall-on-Hudson, New York, or Librarian, Gray Herbarium, Cambridge 38, Mass.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \(\$ 3.00\).

No. III. The Linear-leaved North American Species of Potamogeton. Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

\author{
Gray Herbarium of Harvard University, Cambridge 38, Masn.
}

\section*{1Rbodora}

JOURNAL OF
THE NEW ENGLAND BOTANICAL CLUB

Vol. 47.
September, 1945.
No. 561.

\section*{AN UNTENABLE GENERIC NAME IN ACANTHACEAE}

\section*{William A. Dayton}

In June, 1944, Dr. Burch H. Schneider of the department of animal husbandry of West Virginia University wrote Mr. Harlan P. Kelsey, chairman of the editorial committee of Standardized Plant Names, stating that, at the request of the animal nutrition committee of the National Research Council, he was preparing a monograph on the composition of feeding stuffs and their digestibility by farm animals. He sought help with regard to certain scientific and common plant names not appearing in Standardized Plant Names. Mr. Kelsey referred this request to me and, since that time, Dr. Schneider has addressed a number of inquiries to me.

Among the plants discussed by Dr. Schneider is the acanthaceous Disperma trachyphyllum Bullock of Tanganyika. I called Dr. Schneider's attention to the untenability of this name and told him I was referring the matter to Mr. E. C. Leonard of the Smithsonian Institution, one of whose specialties is Acanthaceae, with the suggestion that he rename the plant. Mr. Leonard later informed me that he had discussed the matter with his chief, Dr. W. R. Maxon, who, in turn, communicated with Dr. E. D. Merrill, and that Dr. Merrill advised that Mr. Leonard recommend the name Disperma for conservation. Despite my urging, Mr. Leonard has declined to do this and suggests that I publish a note on the matter myself.

Under Art. 61, the name Disperma is clearly illegitimate. I seriously doubt that the genus is sufficiently prominent, large, or
economically important to justify overriding that rule by conserving the name, or that the name conforms to such conservation standards as are set up by Art. 21. I propose, therefore, to rename the genus as follows, and with as little alteration from the original as possible:

Duosperma nom. gen. nov. Disperma C. B. Clarke in W. T. Thiselton-Dyer, Fl. Trop. Afr. 5 (1): 79 (1899), not DISPERMA J. F. Gmelin, Linn. Syst. Nat. ed. 13, 2: 885, 892 (1791).

Gmelin's monotypic Disperma is, of course, a synonym of the rubiaceous partridgeberry (Mitchella repens L.). Clarke's homonymous Disperma belongs to Acanthaceae, tribe Ruellieae, with close affinities to Hygrophila and Dyschoriste. The genus consists of perhaps a dozen, mostly rather small, shrubby, undershrubby, herbaceous or somewhat scandent plants native to tropical Africa, except for one species in the Cape region. The leaves mostly are rather small; the mostly small flowers are in axillary clusters; calyx 4- or 5 -cleft or parted, the lobes narrow; bracts oblong, about equalling the calyx; stigmas 2 ; anthers 4 ; ovules 1 in each cell but sometimes with an abortive extra ovule present. In erecting this genus its author emphasizes its small, brown, woody, shining, much flattened, ellipsoid, 2-seeded capsules.

Clarke designated no type. Presumably the first species he describes, Disperma kilimandscharicum, should be accepted as the type species. This is a small pubescent shrub, with small obovate toothed leaves; small hairy flowers, the calyx subequally 5 -fid half way to base, the lobes of a linear-lanceolate type. The type locality is the base of Mt. Kilimanjaro, the twin-peaked highest mountain in Africa. This species is here renamed

Duosperma kilimandscharicum (C. B. Clarke), comb. nov., based on Disperma kilimandscharicum C. B. Clarke in W. T. Thistelton-Dyer, Fl. Trop. Afr. 5 (1): 80 (1899).

Concerning the economic significance of Disperma trachyphyllum Dr. Schneider writes me as follows: "The leaves were fed to sheep in experiments reported by M. H. French in the Tanganyika Territory Report of the Department of Veterinary Science and Animal Husbandry for the year 1932. The digestibility of these leaves was determined. They do not appear to be of a very high nutritive value, but may possibly be fed in certain localities during times of great feed shortage."

It seems desirable to give the above plant a legitimate name:
Duosperma trachyphyllum (Bullock), comb. nov., based on Disperma trachyphyllum Bullock, Kew Bull. Misc. Inf. 1933 (10): 476 (1933).

This species is a "subshrubby herb", locally known as "Asbes-tos-bush", growing up to about 4 feet high and reported to form impenetrable thickets on stony hill slopes in the neighborhood of 4,000 feet elevation in Dodoma Province, Tanganyika. It has lightly puberulent to glabrate, quadrangular stems; elliptic to ovate leaves up to about 2 inches long and 1 inch wide, scabrous but not bristly above, and white flowers about 13 mm . long with a cylindric tube 8 mm . long.

It does not seem desirable to attempt any additional transfers of species to the generic name Duosperma at this time; that had probably best be referred to some future monographer or to the African botanists who know these plants well under field conditions.

Forest Service, Washington, D. C.

Leptoloma in New England.-Leptoloma cognatum (Schultes) Hitchcock has a very limited range in New England. Not yet reported from Maine or Rhode Island, it is known from the following localities in New Hampshire, all in the valley of the Merrimac River, listed in order, beginning with the northernmost: Concord, coll. F. W. Batchelder; Hooksett, coll. F. W. Batchelder; Bedford, coll. M. L. Fernald \& Ludlow Griscom; Merrimack, coll. M. L. Fernald \& Ludlow Griscom; Litchfield, coll. C. A. Weatherby \& Ludlow Griscom; Hudson, coll. C. A. Weatherby \& Ludlow Griscom.
Two stations are known in Vermont through collections from Hartford in the valley of the White River by E. M. Kittredge; and from Townshend in the valley of the West River by Leston A. Wheeler.

The only locality in Connecticut where it is known to occur is New Haven, which is not in a river valley. There it has been collected by C. H. Bissell, R. W. Woodward and A. E. Blewitt.

As to Massachusetts, Hitchcock in his Manual of the Grasses
of the United States mentions no station from this State. \({ }^{1}\) The occasion of this article is to draw attention to the first and to report a second collection in Massachusetts. The first was made by Dr. H. D. House in Shelburne Falls in the valley of the Deerfield River. The second was made by Dr. Burton N. Gates in Upton, Worcester County, in the valley of the West River, in 1944. Here Dr. Gates found it in a spot which was supposed to have been a sidewalk, but which had been completely overrun by grass. West River, or a pond made by damming up the river, was a few hundred yards away. The presence of a house about fifty feet from the spot suggests the possibility of its having been introduced with filling. However, neither Dr. Gates nor the writer, who accompanied him, observed any evidence that it was introduced.

There were several clumps, abundantly fruiting. Growing side by side with Eragrostis spectabilis (Pursh) Steud., the two at a distance were not easily distinguishable. Without more than casual inspection, this species is easily confused with Panicum capillare L., also. Perhaps careful examination of supposed colonies of those species will disclose more stations for Leptoloma cognatum.

At a later date, the writer returned to the station and collected sufficient material so that it will be distributed as no. 171 in a new century of Grasses and Grass-like Plants of North America about to be issued by the writer.

It is suggested that further careful search is likely to reveal this species growing in a number of localities where it is not at present known.

The help of Dr. Lyman B. Smith in identification of the specimens and in ascertaining the known occurrence in New England is acknowledged with appreciation.-Frank C. Seymour, Lancaster, Mass.

Viburnum acerifolium L., forma Collinsii, f. nov., differt a typo petalis roseis.-Rhode Island: Lincoln, Providence County. June 16, 1926, J. F. Collins (Type in Herb. New England Botanical Club, isotype in Gray Herbarium).-Ernest Rouleau, Gray Herbarium.

\section*{CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-NO. CLVII}

\author{
M. L. Fernald \\ (Continued from page 257)
}

\section*{IV. NOTES ON EASTERN AMERICAN LUZULA}
(Plates 961 and 962)
Luzula sudetica (Willd.) DC., var. frigida (Buchenau), comb. nov. L. campestris (L.) DC., var. frigida Buchenau in Oesterr. Bot. Zeitschr. xlviii. 284 (1898). L. frigida (Buchenau) Samuelsson in Lindm. Svensk Fanerogamfl. 161 (1918). Plate 961, figs. 7-9.

I am unable to separate specifically Luzula campestris, var. frigida or L. frigida and L. sudetica (Figs. 1-6). They have the same aspect and habit, dark perianths, castaneous to blackish capsules, and seeds only \(1-1.6 \mathrm{~mm}\). long and tipped by a minute caruncle only \(0.1-0.2 \mathrm{~mm}\). long. Whereas true \(L\). sudetica has the perianth \(2-2.5 \mathrm{~mm}\). long, with the broadly lance-ovate sepals nearly equaled or exceeded by the capsule, var. frigida (Figs. 7-9), theoretically at least, has the perianth mostly longer, 2.2-3 mm. long, with the narrowly lance-attenuate and slender-tipped sepals clearly overtopping the capsule. The difficulty is that in too many specimens, often under the same number, transitions occur and separation becomes arbitrary. Typical L. sudetica extends southward in eastern America to Newfoundland and the Shickshock Mountains in the Gaspé Peninsula, Quebec. I refer the following relatively southern specimens to true L. sudetica:

Newfoundland: shelves and talus of diorite cliffs, Western Head, entrance to Bonne Bay, Fernald, Long \& Fogg, no. 1512, as L. campestris, var. alpina Gaudin; meadow near Frenchman's Cove, Bay of Islands, Mackenzie \& Griscom, no. 10,202, as Juncoides multiflorum (Ehrh.) Druce, var.; turfy slopes near the sea, Seal's Nest Island, Bay of Islands, Fernald, Long \& Fogg, no. 180, as L. campestris, var. frigida.

The interpretation by Wiegand and me in Rhodora, xv. 42 (1913) of Luzula campestris var. frigida was a confused one, the plants of southern New Brunswick and eastern Maine being really quite different from the original Labrador material. We were misled by Buchenau's citation of Robinson \& Schrenk, no.

85, from St. John's, Newfoundland; but a rereading shows that the Robinson \& Schrenk plant was not considered by Buchenau as typical: "Ich lernte diese Form [var. frigida] zuerst aus Labrador kennen, wo sie mehrfach gesammelt wurde. Sehr ausgeprägt findet sie sich ferner auf

Alberta
Etwas weniger characteristisch ist die Pflanze von St. Johns auf Neufundland (Robinson und Schrenk, Nr. 85)." The Labrador plant which closely matches Buchenau's description is, as stated, an extreme of \(L\). sudetica with more slender and elongate perianth-segments. The southernmost stations of var. frigida are along and near the Straits of Belle Isle in

Newfoundland: margin of pond back of St. Anthony, E. C. Abbe, no. 201; turfy slopes of slaty hills, Little Quirpon, Fernald, Gilbert \& Hotchkiss, no. 27,809; springy swale and turfy upper border of strand, Anse au Sauvages, Pistolet Bay, Fernald, Wiegand \& Long, no. 27,810; turfy limestone barrens, Cook Point, Pistolet Bay, Fernald \& Gilbert, no. 27,808; swamp, Flower Cove, July 28, 1920, M. E. Priest.

Much of the material heretofore misidentified with Luzula campestris var. frigida, including the Robinson \& Schrenk material doubtfully cited by Buchenau, belongs to L. multiflora (Retz.) Lejeune, var. fusconigra Čelak., at least sensu Samuelsson in Lindman, Svensk Fanerogamfl. 161 (1918). See plate 962, figs. 4 and 5. Its seed is decidedly not that of L. sudetica, but is characteristic of \(L\). multiflora: \(1.5-2 \mathrm{~mm}\). long, with a roundtipped bulbiform caruncle \(0.4-0.7 \mathrm{~mm}\). long. From the common and wide-spread fulvous or paler L. multiflora it differs in its relatively narrow leaves, slender, stiff and low ( \(1-4 \mathrm{dm}\).) stems, dark brown to fuscous sepals (with pale margins) and dark chestnut to blackish capsules. It is northern and relatively local with us. The following specimens have been seen (distributed as L. campestris, var. frigida unless noted) of what I take to be L. multiflora var. fusconigra.

Newfoundland: peaty limestone barrens about Flower Cove, Straits of Belle Isle, Fernald, Long \& Dunbar, no. 26,504; boggy spots on the rocky crests, Twillingate, Notre Dame Bay, Fernald, Wiegand \& Bartram, no. 5169: dry turf, Old Perlican, Trinity Bay, G. S. Torrey, no. 38; dry open turfy slopes of sandstone and arenaceous slate hills back of Carbonear, Conception Bay, Fernald \& Wiegand, no. 5166 (dwarf, with unusually capitate inflorescences); rocky hills, St. John's, Robinson \& Schrenk, no.


Photo. B. G. Schubert.
Luzula sudetica: figs. 1 and 4, inflorescence, \(\times 2\); figs. 2 and 5 , portions of spike, \(\times 8 ;\) figs. 3 and 6 , seed, \(\times 10\).
L. sudetica, var. frigida: fig. 7 , inflorescence, \(\times 2\); fig. 8 , portion of spike, \(\times 8\); fig. 9 , seed, \(\times 10\).
L. multiflora, var. congesta: fig. 10 , inflorescence, \(\times 2\); fig. 11, portion of spike, \(\times 8 ;\) fig. 12 , seed, \(\times 10\).

85, as L. arcuata Meyer; by rill on seepy silicious slope of Joan Plains Hill, Bay Bulls, Fernald, Long \& Dunbar, nos. 26,502 and 26,503 , as L. campestris, var. multiflora; Spreadeagle, June 30, 1893, Waghorne, as L. campestris; dry field near sea-level, Bay of Islands, Eames \& Godfrey, no. 5985. Quebec: Rivière du Loup, Pease, no. 2259, as L. campestris, var. multiflora. Prince Edward Island: damp clearing, Morell, Fernald \& St. John, no. 10,992, as L. camp., var. mult. Nova Scotia: wet peaty and rocky ground, Shag Harbor, Fernald, Bissell \& Linder, no. 20,727 , as \(L\). camp., var. mult. Maine: turf, Tenant's Harbor, Pease, no. 26,067; Isle au Haut, July 8 and 10, 1920, N. T. Kidder. New Hampshire: field, Wolfeboro, H. E. Sargent. Masisachusetts: swamp, Nantucket Island, Bicknell, no. 260a, unidentified. New York: low mossy meadow in rather heavy mucky soil, alt. \(1840 \mathrm{ft} .\), Parker's (Montague), Lewis Co., Hotchkiss, no. 2321; heavy rather dry meadow-soil, alt. 1800 ft. , Rector (Montague), Lewis Co., Hotchkiss, no. 2323; heavy soil of meadow, alt. 1680 ft ., northeast of Mohawk Hill (West Turin), Lewis Co., Hotchkiss, no. 2274.
Some material, wrongly distributed as Luzula campestris, var. frigida, differs at once from L. multiflora and its var. fusconigra in the very condensed umbel, usually with several sessile or subsessile spikes, with or without stiff rays up to 3.5 cm . long, the pale perianth \(3-4 \mathrm{~mm}\). long and greatly exceeding the capsule, the seeds only \(1.5-1.7 \mathrm{~mm}\). long and with conically tapering caruncle. This is
L. multiflora (Retz.) Lejeune, var. acadiensis (Fernald), comb. nov. L. campestris, var. acadiensis Fernald in Rhodora, xix. 38 (1917). Originally described from Prince Edward Island, Nova Scotia, and New Brunswick, var. acadiensis is now known from Newfoundland, the Gaspé Peninsula and southeastern Maine, as well. Plate 962, figs. 6-8.

Although often merged with Luzula campestris (L.) DC. the common species across North America is abundantly distinct. L. campestris is a low plant with seattered tufts of narrow and very silky leaves separated by slender rhizomes and stolons up to 3 cm . long, each tuft with a usually solitary decumbent to ascending flowering stem, bearing 2-6 subglobose spikes, all but the central spike on divergent to recurving rays; the anthers two to five times as long as the filaments. In North America it is apparently native in woods and openings of the Avalon Peninsula of Newfoundland, along with scores of other typical Europeans (Pedicularis sylvatica, Sieglingia decumbens, etc., etc.). In 1920
the late C. E. Robbins found it naturalized in a lawn at Wareham, Massachusetts. L. multiflora (plate 962, figs. 1-3), on the other hand, is densely cespitose, nonstoloniferous, with numerous erect (up to 9 dm . high) flowering stems, the anthers shorter than to about equaling the filaments.

The only other variety of Luzula multiflora in the "Manual range" is var. Congesta (Thuill.) Koch, Syn. 734 (1837), based on Juncus congestus Thuill. Fl. Env. Paris, ed. 2, ii. 179 (1799). Var. Congesta (plate 961, figs. 10-12) is frequent in

Newfoundland: Baccalieu Island, July, 1902, Sornborger (misidentified by Fernald \& Wiegand as L. campestris, var. comosa); Whitbourne, Fernald \& Wiegand, no. 5168 (a lax form with elongate rays, misidentified like the last); Murray's Pond, 1931, Agnes Ayre; Trepassey, Fernald, Long \& Dunbar, no. 26,505 (misidentified as L. campestris, var. frigida) ; Port Saunders Fernald \& Wiegand, no. 3056 (misidentified like the last); Port aux Basques, Fernald, Long \& Dunbar, no. 26,500.

I am retaining the long familiar name Luzula multiflora but as starting with Juncus multiflorus Retzius, Fl. Scand. Prodr. ed. 2: 82 (1795), who first properly published it. Ordinarily, as in Index Kewensis, the writings of Ascherson \& Graebner and of Buchenau and others, the basic Juncus multiflorus is cited, to quote Ascherson \& Graebn. Syn. Mitteleur. Fl. ii². 523 (1904), as "Junc. multiflorus Ehrh. Calam. No. 127 (etwa 1791). Hoffm. Deutschl. Fl. I. 169 (1800)", with Juncus intermedius Thuill. Fl. Env. Paris, ed. 2: 178 (1799), J. liniger With. Syst. Arr. ed. 4, ii. 343 (1801) and \(J\). erectus Pers. Syn. i. 386 (1805) as synonyms. So far as I can find the properly described Juncus multiflorus Retzius (1795) has usually come into the picture only as a negative element, for, according to Index Kewensis \(J\). multiflorus Retz. " = capensis", i. e. J. capensis Thunb. Prod. Pl. Cap. 66 (1794). Just how, to use an American idiom, the original editors of Index Kewensis "got that way," unless a probable Luzula campestris got entered as Juncus capensis, is not clear. In fact, one soon learns to take the attempted identifications in the original volumes with much more than the conventional grain of salt; for, as in this case, every careful student of the Juncaceae or of the flora of The Cape of Good Hope, Ernst Meyer, Buchenau, Baker (in Flora Capensis) and others, have regularly and rightly recognized Juncus capensis Thunb. as a true Juncus, with long
and very slender, linear-subulate, glabrous leaves, naked or scapose flowering stems, and very many muticous seeds about 0.6 mm . long. It is in no wise a Luzula, with flat leaves, leafy stems and 3 large carunculate seeds. In describing his Juncus multiforus (1795) Retzius was not accounting for the flora of the Cape of Good Hope! His Florae Scandinaviae Prodromus was, to quote his title-page, an enumeration of the plants of Sweden, Lappland, Finland and Pomerania, as well as of Denmark, Norway, Holstein, Iceland and Greenland, a large enough task without dragging in the Antipodes (especially without any mention of them). Retzius had the usual northern European species of Juncus (J. acutus, conglomeratus, effusus, filiformis, trifidus and so on to J. biglumis and J. triglumis), followed by the species which constitute Luzula: J. vernalis or pilosus, J. parviflorus, J. maximus, J. multiflorus (as new), J. campestris and J. spicatus. His description was clear:
435*. J. multiflorus, foliis planis nudis, culmo basi folioso, corymbo subramoso, capitulis multifloris terminalibus axillaribusque. Juncus Hall. St. Helv. 1329? d) P. sylv.
To those who know Juncus capensis the "Foliis planis" and "culmo basi folioso", to say nothing of its Scandinavian occurrence, might have been suggestive! In fact, Buchenau in Das Pflanzenreich correctly cites \(J\). multiflorus Retzius as identical with the reputed \(J\). multiflorus Ehrh. and graciously notes it as "in Ind. Kew. errore calami \(=J\). capensis dicitur"-one of the cases where the pen was mightier than the brain. Furthermore, it is clear that Retzius was not basing his Juncus multiflorus (1795) on a reputed \(J\). multiflorus Ehrh. (1791-17931). Whether Ehrhart ever published such a species seems open to question. All the bibliographies, Index Kewensis, the citations by Buchenau and others, for instance, take the name back to Ehrhart, the former compendium saying, rather cryptically, under Juncus, "multiforus, Ehrh. [Calam.]. 127; ex Hoffm. Fl. Deutschl. i. 169." Hoffm. l. c. (1800), properly publishing J. multiflorus, ascribed it

\footnotetext{
\({ }^{1}\) The title-page of Ehrh. Beitr. vi. says 1791 and this date is commonly accepted. Buchenau, however, in Engler, Pflanzenr. ivw. 94 (1906) and elsewhere, said "ca. \(1791^{\prime \prime}\), while von Hayek, Fl. Steierm. i. 106 and elsewhere (1908) gives the unquestioned date 1793. Schneider, too, in his III. Handb. Laubhoizk., after citing Beitr. vi. consistently as published in 1791, said in his Nachtrag, ii. 886, "Nähreres 1793". If the exact dates of Ehrhart's different volumes have been worked out I shall welcome a reference to the publication.
}
to "ehrf. gram. n. 127", while Buchenau, in Engl. Pflanzenr. iv \(^{36} .91\) (1906), gives the more detailed " \(J\). multiflorus Ehrh., Calam., Gram. et Tripet. exsicc. (ca. 1791)." With the aid of Miss Ruth D. Sanderson, Librarian of the Gray Herbarium, I have made a long and fruitless search for any published description by Ehrhart of J. multiflorus. Search of Pritzel's Thesaurus and other reliable bibliographies reveals no book by him entitled either "Calam." (the title in brackets given in Index Kewensis), "gram." (the title given by Hoffmann) nor even "Calam., Gram. et Tripet. exsicc.", as cited by Buchenau. In Ehrhart's Beiträge zur Naturkunde, vi. (1791-1793) the 8th article is "Index Calamariarum, Graminum et Tripetaloidearum Linn., quas in usum Botanophilorum collegit et exsiccavit Fridericus Ehrhart, Helveto-Bernas". This, pp. 80-84, consists merely of a list of names, without descriptions, of twelve decades of the Exsiccatae, ending with no. 120 and dated October, 1790. The names of plants of Linnaeus and others of earlier date are of species already published but throughout the list are several new names of Ehrhart, all nomina nuda and of no nomenclatural standing until taken up and defined by subsequent authors. To this group of original nomina nuda belong nos. 66, Juncus acutiforus Ehrh., 76, J. obtusiforus Ehrh., 85, J. glaucus Ehrh. and 86, J. setifolius Ehrh.; but there is no number 127, J. multiflorus, the twelfth decade ending, naturally, with no. 120. Until it is is shown to be otherwise, we must infer that decades of the exsiccatae following the 12th may have been issued with names on the labels (including specimens numbered 127 and called J. multiflorus), but the first description of J. multiflorus as of Ehrhart was by Hoffmann in 1800. In the meantime, under that name and without any reference to Ehrhart, Retzius in 1795 described the New Scandinavian species which he thought might be the same as a Swiss plant of Haller. Juncus multiflorus Retzius (1795) apparently has the right-of-way.

The error which Buchenau charitably called a slip of the pen, by which Index Kewensis identified Juncus multiflorus Retz. (1795) with the South African J. capensis Thunb. (1794), at once intrigued some, who promptly altered names without checking the fundamental data. Thus in Bull. Torr. Bot. Cl. xxxii. 610


Photo. B. G. Schubert.
Luzula multiflora: fig. 1 , inflorescence, \(\times 2\); fig. 2 , portion of spike, \(\times 8\); fig. 3 , seed, \(\times 10\).
L. multiflora, var. fusconigra: fig. 4 , portion of inflorescence, \(\times 2\), fig. 5 , seed, \(\times 10\).
L. multiflora, var. acadiensis: fig. 6 , inflorescence, \(\times 2\); fig. 7 , portion of inflorescence, \(\times 8\); fig. 8 , seed, \(\times 10\).
(1905), Rydberg, accepting unquestioningly the "lapsus calami", published the new combination

Juncoides intermedium (Thuill.) Rydb.
Juncus intermedius Thuill. Fl. Env. Paris, ed. 2, 178. 1799.
Juncus multiflorus Ehrh.; Hoffm. Fl. Deutschl. [i. e. Deutschl. Fl.] ed. 2, 1: 169. 1800. Not J. multiflorus Retz. 1795.

Rydberg added, what seems to be the case, "The name Juncus multiflorus dates back as far as 1791, when Ehrhart issued his set of grasses, sedges, etc., but, as far as can be ascertained, it was never published for this plant before 1800, in the revised edition of Hoffmann's Flora". Promptly Professor Aven Nelson, apparently accepting Rydberg's copied statement that Juncus multiflorus Retz. is not the same as J. multiflorus Ehrh. ex Hoffm., published Luzula intermedia (Thuill.) A. Nels. in Coult. \& Nels. New Man. Bot. Centr. Rocky Mts. 109 (1909), he evidently not realizing that the identical combination, as a substitute for Juncus multiflorus, was published 84 years earlier: L. intermedia Spenner, Fl. Friburg. i. 178 (1825), with the synonym "Juncus multiflorus. Hoffm. germ. ed. 2". Incidentally two other species were named \(L\). intermedia early enough to find entry in the original Index Kewensis.

In plate 961, figs. 1-6 are of Luzula sudetica (Willd.) DC.: fig. 1, inflorescence, \(\times 2\), from Varmland Grännark, Sweden, June 17, 1918, Samuelsson; fig. 2, portion of spike, \(\times 8\), from same plant; fig. 3, seed, \(\times 10\), from same plant; fig. 4, inflorescence, \(\times 2\), from Seal's Nest Island, Bay of Islands, Newfoundland, Fernald, Long \& Fogg, no. 180; fig. 5, portion of spike, \(\times 8\), from no. 180: fig. 6, seed, \(\times\) 10, from no. 180. Figs. 7-9, L. sudetica, var. frigida (Buchenau) Fernald: fig. 7, inflorescence, \(\times 2\), from Fullerton, Hudson Bay, lat. \(63^{\circ} 57^{\prime}, J\). M. Macoun, no. 79,215 ; FIG. 8 , portion of spike, \(\times 8\), from no. 79,215; fig. 9, seed, \(\times 10\), from no. 79,215 . Figs. 10-12, L. multiflora (Retz.) Lejeune, var. congesta (Thuill.) Koch: fig. 10, inflorescence, \(\times 2\), from Port Saunders, Newfoundland, Fernald \& Wiegand, no. 3056; fig. 11, portion of spike, \(\times 8\), from no. 3056; FIG. 12, seed, \(\times 10\), from no. 3056.

Plate 962, figs. 1-3. L. multiflora (Retz.) Lejeune: fig. 1, inflorescence, \(\times 2\), from Grindstone Island, Magdalen Islands, Quebec, Fernald et al., no. 7188; fig. 2, portion of spike, \(\times 8\), from no. 7188; FIG. 3, seed, \(\times 10\). from no. 7188. Figs. 4 and 5, L. multiflora, var. fusconigra Čelak.: fig. 4, portion of inflorescence, \(\times 2\), from Shag Harbor, Nova Scotia, Fernald, Bissell, \& Linder, no. 20,727; fig. 5, seed from no. 20,727. Figs. 6-8, L. multiflora, var. acadiensis Fernald: fig. 6, inflorescence, \(\times 2\), from Windsor, Nova Scotia, Fernald, Bartram \& Long, no. 23,584; Fig. 7, portion of inflorescence, \(\times 8\), from type; fig. 8 , seed, \(\times 10\), from no. 23,584 .

Sporobolus asper in Quebec.-St. Papll Island (more familiarly called Nuns' Island) is one of the few spots around Montreal which has retained much of its primitive flora. This is why I began a few years ago to compile a list of plants from that island.

In August, 1943, on the rocky shores of the St. Lawrence River I collected a strange Sporobolus that did not fit well with the species then known for Quebec. Specimens, studied by Brother Rolland-Germain, proved to be Sporobolus asper (Michx.) Kunth. Dr. M. L. Fernald has kindly corroborated this identification.

This Sporobolus had been collected previously in nearly all of the northern States adjacent to Quebec. This collection is, then, a very interesting addition to the Canadian flora. It was growing with Verbena simplex Lehm. (known from only three localities in Quebec) and Scutellaria parvula Michx. (rare in the Montreal region, although Michaux's type had been collected there).

Specimens have been deposited in the Victorin Herbarium of the University of Montreal and in the Gray Herbarium of Harvard University. Duplicates will be sent to other institutions on our next distribution of duplicates. The known distribution is as follows: southwestern Quebec, Massachusetts, Vermont and eastern New York, south to eastern Virginia; Ohio to North Dakota, south to Tennessee, Louisiana and Texas.

Other plants of this flora worthy of mention are Carex Sprengelii Dewey (forming a dense grassy carpet at the top of the shore-line), Floerkea proserpinacoides Willd. (fairly abundant in a damp Ulmus americana wood, and the only known locality in Quebec). Both species will be distributed in the next century of the Plantae Exsiccatae Grayanae. In a marsh along the shore there was a great abundance of Decodon verticillatus (L.) Ell., var. laevigatus Torr. \& Gray, also infrequent in Quebec.Ernest Rouleau, Institut Botanique, Université de Montréal.

Volume 47, no. 560, containing pages 237-260 and plates 945-960, was issued 6 August, 1945.


\section*{JOURNAL OF THE} NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by MERRITT LYNDON FERNALD, Editor-in-Chiof
```

        CHARLES ALFRED WEATHERBY
        ALBERT FREDERICE HILL }}\mathrm{ Assoeinte Editors
        STUART EIMBALL HARRIS
    Absociate Editors

```

Vol. 47.
October, 1945.
No. 562.

\section*{CONTENTS:}

On the Descriptive Method of Linnaeus. H. K. Svenson. ...... 273
Senecio Smallii, forma tristis. M. L. Fernald. . . . . . . . . . . . . . . . 302

New Species of Anulocaulis from southwestern Texas and adjacent New Mexico. U.T.Waterfall. ......................... 329
Convolvulus Hallichiana at Swarthmore, Pennsylvania.
Samuel C. Palmer.

\section*{}

8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.
```

RRODORAo-A monthly journal of botany, dovoted primarily to the fora ef the
Gray's Manual Range and regione floristically related. Price, \$4.00 por year, nok
pestpaid, in funde payable at par in United States curreney in Boston; aingle cepiee
(If available) of not more than }24\mathrm{ pages and with 1 plate, }40\mathrm{ cents, numbers
more than 24 pages or with more than 1 plate mostly at highor prices (see Brd cover.
page). Volumes 1-9 can be supplied at \$4.00, 10-34 at \$3.00, and volumes 35-46
at 84.00. Some single numbers from theme volumes can be mupplied only at ad-
vanced prices (see 3rd cover-page). Somewhat reduced rutes for complate aets can
be obtained on application to Dr. Hill. Notes and short soiontifie paperg, rolating
directly or indirectly to the plants of the northeastorn states, will be considered for
publication to the extent that the limited apace of the Journal permits. Forms mey
be closed five weeks in advance of publication. Authors (of more than twe pages of
print) will receive }15\mathrm{ copies of the issue in which their contributions
If they request them when returning proof. Extraeted reprints, if ordered in ad-
vance, will be furnished at cost.
Address manuscripts and proofs to
M. L. Fernald, 14 Hawthorn Street, Cambridyo 38, Mam.
Subscriptions (making all romittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancanter, Pa., or, prefermbly, Botanical Muaeum,
Oxford St., Cambridge 38, Mase.
Entered as second-class matter March 9, 1929, at the post offce at Lancaster, Pa.,
under the Act of March 8, 1879.

```

\title{
INTELLIGENCER PRINTING COMPANY
}

Specialists in Scientific and Technical Publications EIGHT WEST KING ST., LaNCASTER, PA.

\section*{Edible wild plants of eastern north america}

\author{
by Merritt Lyndon Fernald and Alfred Charles Kinsey
}

Practical discussion of edibility and directions for recognition and prepareion of more than 1000 wild plants. 422 pp ., intros. and detailed index, 124 line drawings, 25 halftone plates. \$3.00, postpaid. The Idlewild Press, Cornwall-on-Hudson, New York, or Librarian, Gray Herbarium, Cambridge 38, Mass.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \$1.00.

Gray Herbarium of Harvard University, Cambridge 38, Masan.


\section*{Photo. B. G. Schubert}

Betula minor: fig. 1, portion of type, \(\times 1\); fig. 2 , fruiting branch, \(\times 1\); fig 3 , staminate aments, \(\times 1\); Fig. 4, lower surface of leaf, \(\times 5\); fig. 5 , branchlet, \(\times 10\); fig. 6 , fruiting bract, \(\times 4 ;\) FIG. 7 , samara, \(\times 4\).
B. microphylla: fig. 8, fruiting branch (probably of isotype), \(\times 1\); fig. 9, fruiting bract, \(\times 4 ;\) fig. 10 , samara, \(\times 4\).
B. alba, var. tortuosa: fig. 11, samara, \(\times 4\).

\section*{TRbodora}

JOURNAL OF

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
October, 1945.
No. 561.

\section*{ON THE DESCRIPTIVE METHOD OF LINNAEUS*}

\author{
H. K. Svenson
}
(Plates 990 and 991)

\begin{abstract}
"There are as many various forms in the world as there are individuals, and no two are found which are perfectly alike; therefore Nature may be said to display herself in variation . . . The older naturalists saw that there was order in nature which consisted in the similitude of things, but they were unable to combine the similar and to separate the dissimilar. They saw the chain of nature but could not forge the links. The links of this chain . . . the Creator has thrown into the world without order; thus it is of wisdom to inquire into these, and to search out their similitudes and dissimilarities and to combine those which should be combined; whence at length results the Ordo naturalis, which presents the mundane things mutually combined so that an affinity of these appears, which extending itself throughout the whole reign of Nature is the ultimate end of the systematic order". From Introductio ad Ordines Naturales Linnaei, Mss. Fabricius (1792), ed. Schuster, 1926.
\end{abstract}

Species Plantarum, published in 1753 by Carl Linnaeus (1707\(1778),{ }^{1}\) has been chosen as the starting point of modern botanical nomenclature, and as such it represents perhaps the most important work in systematic botany. But various interpretations show that there is not a clear understanding of the method by which the book was written, and of its purpose. Consequently there have been many unnecessary changes of names in recent times, due primarily to a lack of understanding of Linnaean procedure. The subject is therefore of vital importance in the development of a stabilized nomenclature, a goal toward which all systematic botanists are bent, at least nominally. Spring (Ueber

\footnotetext{
* Brooklyn Botanic Garden Contribution no. 103.

In formal Latin this becomes "Carolus Linnaeus"; the form "Linne", obvionsly of French origin, was later in common use by Linnaeus.
}
die naturhistorischen Begriffe von Gattung, Art, und Abart und über die Ursachen der Abartungen in den organischen Reichen. Leipzig. 1838, pp. 14-24) gives a good general account of preLinnaean nomenclature. Of Linnaeus (p.18) he says: "What he differed in from all his predecessors, and what will always remain as his greatest accomplishment is the sequence with which he built up a system of nature, and the precision and clarity with which he formulated the rules and principles of the subject. In this respect he has been the law-giver for all succeeding time."

By Linnaeus Species Plantarum was looked upon as a compendium without descriptions, except in some ambiguous \({ }^{2}\) cases, and the number of species described within its covers was relatively few. The names of species go back in general to earlier dates, usually within the fifty to eighty preceding years, and especially to Linnaeus' earlier works. Many names were based upon illustrations. Where there is a description to be found, Linnaeus marks the reference with an asterisk. Binomial nomenclature was not intended by Linnaeus to supersede the polynomial specific name, and Linnaeus when later citing specific names used the binomial no more than he did the polynomial nomenclature. Despite statements in text books the polynomial specific name, especially as developed by Linnaeus \({ }^{3}\), was not so cumbersome and could readily be cited by use of dots for the abbreviated portion. No one would want to give up the binomial system of today, but that does not preclude the fact that modern botanical nomenclature lacks some of the flexibility of the Linnaean polynomial.

Much of the misunderstanding of the Linnaean method is due to a lack of comprehension of definitions4. The term "method"

\footnotetext{
2 No definite explanation of the word "ambagibus" is given by Linnaeus, but its application is apparent once the usage of the Linnaean term "descriptio" has been recognized. On page 18 of the preface to Flora Zeylanica (1747), Linnaeus mentions both obscure and dubious plants. Obscure plants are deflned as those of which the fructification is but little, or insufficiently, known; in dubious plants the fructification is lacking. These terms apparently were not carried over into Species Plantarum.
\({ }^{3}\) Composed of not more than twelve words, differentiating the species from all others of the genus according to rules laid down in Critica Botanica (1737). Differentiae were called "essential" when only a single idea was emphasized, as Claytonia foliis linearibus, or synoptic when (as in large genera) a series of ideas was necessary.
\({ }^{4}\) Linnaeus was a rapid worker, and at times careless in details, especially as to bibliographic references. Many of these minor errors were corrected in the second edition of Species Plantarum (1763), but some of the mistakes ascribed to him were rather the mistakes of recent interpreters. Such, for example, is the idea that Scirpus geniculatus was based on the plant with rounded spikelets, or that Dioscorea sativa
}
applies here to a formal arrangement of material especially dealing with phrase-names and synonymy, such as, for example, Gronovius employed when he followed the Linnaean "method" in his Flora Virginica (1739). The term "specific name" applies only to the phrase-name \({ }^{5}\). This has been more clearly recognized in recent years, and the term "specific epithet" is sometimes used in place of the Linnaean "trivial name". The term "description" applies to an actual, more or less detailed, description of the plant. \({ }^{6}\) Short comments following a discussion of a species in Species Plantarum should be classed as "observations". Examples of the descriptio are given in Philosophia Botanica, that of Passiflora foetida being considered by Linnaeus as ideal. The

\footnotetext{
is an oriental species. The latter is unknown in the Old World, as the species of the genus are recognized in modern literature, and nearly all of the Linnaean references point to a New World species, which the habitat "in Indils" does not preclude. The editing of some of Linnaeus' works was done hurriedly and sometimes by students. In a letter to Beck ((Hulth no. 785; May 29, 1753) he says of Species Plantarum: "Salvius demanded a prompt recension. I asked a student to make it. Salvius tmproved it." Kalm, writing on Oct. 15, 1752 (Hulth no. 1614) urged Linnaeus to write a "Synonymia Plantarum", offering "to take it upon myself to edit half the book, though I should have to sit night and day to write; only so that the book might come out".
The exacting and often discouraging task of writing Species Plantarum was carried out in the years 1749-1752, and its progress may be followed in letters to Beck (edited by J. M. Hulth, 1909) from which excerpts are quoted in translation. No. 671, Oct. 6, 1749: "I am beginning to drop Species Plantarum from my mind; since autumn I have not had time to look at it. I have worked along to the Polyandria, but it will be impossible with a whole year's steady work to finish them. I feel like leaving what is done as an inventory after me, so that posterity might see that I could have done it If I had had the time and energy. Why should I work myself to death and lose contact with the world? What does one gain? One does not become wise till the end". No. 728. Nov. 12, 1751: "I am working on Species Plantarum and have come to Icosandria". No. 738, Dec. 1751: "I am like a setting hen on its eggs, hatching out species, but the hatching time is much longer, so that I have got only to the Diadelphia. though I work night and day". No. 741, March 6, 1752: "Now I have reached to the Syngenesia with my Species, and think I shall rest for a few days". No. 752, June 5, 1752: "I have finished my Species".
- It is strange that a person as well versed as DeCandolle (Theorie êtementaire de la Botanique 1813, p. 223) should have so misunderstood the situation: "Linne propose . . . que le nom d'un être naturel serait composé de deux mots: le premier, qu'il appela le nom gênérique, serait commun à toutes les espèces d'un genre; par example, Rosa, Trifolium; le second, qu'il nomma spécifique, devait être propre a chaque espèce d'un genre."
- cf. Richter, Codex Botanicus Linnaeanus, p. xi. (1840): "Signum* in Spec. pl. adhibitum, teste praefatione signiflcat descriptionem in aliquo citato opere dari
Hoc signio nonnulli, qui leviter inspexerant Species Plantarum, decepti sunt, ut orederent opus praecipuum et prae ceteris fidum eo indicare, id quod nunquam in mentem venit Linnaeo." [The asterisk, used in Species Plantarum, signifies (according to the introduction) that a description is given in the work cited. . . . By this sign, some who have casually examined Species Plantarum have mistakenly believed that a work more important than the others was indicated by him, something which had never entered Linnaeus' mind].
}
term "diagnosis" does not occur in Linnaean works except in connection with the generic name; it has been adopted by some as a substitute for the Linnaean specific phrase-name, but in modern usage it may lack entirely the differential character of the Linnaean specific phrase-name. There is nothing to support the statement of some botanists that a new specific phrase-name ("diagnosis") was based upon herbarium specimens which Linnaeus had before him. The new specific name was, on the other hand, a most important feature in the Linnaean method, by which old phrase-names were brought into conformity with the other specific names in the genus, in whatever new work was under way by Linnaeus or his collaborators. \({ }^{7}\) Such new specific names, quite obviously, do not constitute a quotation from some previous work, as do the majority of Linnaean specific [phrase] names in Species Plantarum. The Linnaean specific name was not only a definition of the species, but essentially an all-inclusive key to the species, corresponding to the distinctions in dichotomous keys of our current manuals. A new specific name represented either a new species or the reformation of an older specific name; in the latter case the old name became a synonym taking its place at the head of the list. Such synonyms were names, in general comprehensive and accumulative, i. e. including various figures, descriptions and specimens, and were not ordinarily, as in modern usage, based on single specimens. The Claytonian reference in Gronovius' Flora Virginica was not a true synonym; it was a brief description of the Clayton specimen, now being assigned to a proper specific name under the Linnaean method. These descriptive notes, accompanying specimens, which Claytonwrote in English, were translated into Latin by Gronovius and appended to his treatment of the individual species. Misunderstandings as to the nature of Gronovius' synonyms have led, in the author's opinion, to many unnecessary changes in the names of American timber trees, and this subject is therefore one of great practical importance. This procedure will be discussed in detail under the heading "The Species".

\footnotetext{
\({ }^{7}\) Cf. Fl. Suecica (1745), introd.: "The majority of the specific [phrase] names are new. I have sometimes changed speciflc names, not because I considered the previous ones as erroneous, but because these new ones are clearer and easier to understand. When more species have been observed and their outstanding characteristics detected, and more apt terms struck, it will be necessary sometimes to emend the differentiae, though previously they may have been very good."
}

Whatever thread is followed into the tangled skein of comment and literature on the Species Plantarum, general conclusions or points of view are reached that would also have been attained by some other angle of approach. The term "method" is a comprehensive one, but, as I have stated, it has a certain connotation in respect to the Linnaean works. I have found it expedient to treat the subject both from a historical point of view and as an elaboration of the important elements of the method. Perhaps the most outstanding asset of Linnaeus was "common sense". In the reforms of botanical nomenclature which will come within the next few decades, I believe the method of Linnaeus will play an important part. Since so much has been written about the artificial as compared with the natural system of botany, I have included at the end a resumé of the Linnaean natural system, as recorded by his students, Fabricius and Giseke. It will be seen that many things that the present-day botanist thinks of as recent developments, such as the reticulate nature of evolution, and graphic presentations of the relationship between families and genera, had already been elaborated by Linnaeus and his students. It is strange that no botanist to whom I have shown Giseke's account in the course of the last ten years (during which I have from time to time been occupied with this paper) had ever seen, or more than glanced at the work.

As early as the spring of 1733 , Linnaeus (then twenty-six years old and recently returned from his Lapland journey) had preliminary drafts of Species Plantarum and a general outline of the botanical works, that he was to publish from time to time. To Cronhjelm \({ }^{8}\), then chancellor at Lund, he wrote:

\footnotetext{
"I have worked with the greatest diligence on a new System, based on a wholly new principle. Having assembled a herbarium of some thousand plants, I have examined as many species as possible, with dissection of three to four thousand flowers. From this work has come six or seven small volumes, including Bibliographia Botarica, which shows at a glance what each botanist has written, and an account of all previous botanical systems; Philosophia Botanica, which sets up rules, with examples, showing
\({ }^{2}\) cf. T. M. Fries, Bref och Skrivvelser af och till Carl von Linne, vol. 1, pt. 5 : letter no. 1233. Vol. 1 (1907-1922), containing letters to and from correspondents in Sweden, consists of 8 parts but reaches alphabetically only through Laxmann. There are 1670 letters in this volume of which parts 7 and 8 are by J. M. Hulth. He also edited the second volume, which contains correspondence with foreign botanists, but reaches only from Adanson through Brinnich.
}
the reasons for many botanical errors, which are now becoming aggravated; Homonyma Botanica, dealing with all the names of plants which botanists have postulated (in large measure groundless), and showing that of 2000 generic names scarcely 200 are correct, and of some 1000 species names hardly 100 -since botanists have not understood varieties. which they hold to be distinct species; Species Plantarum, in which I intend to show that though botanists pride themselves on having 20,000 plant species \({ }^{9}\), there are not more than 8000 when varieties have been placed under their proper species. Each species is to be recognized at first glance without the presence of description or figure". \({ }^{10}\)

This new method was not perfected until 1753, with the publication of Species Plantarum. The species contained in this work were derived from five sources:
1. Publications dealing with plants which Linnaeus had seen growing under natural conditions, as Flora Suecica and Flora Lapponica.
2. Publications based on cultivated plants which Linnaeus had seen in a living state, as Hortus Cliffortianus and Hortus Upsaliensis.
3. Publications based on herbarium specimens, as Gronovius' Flora Virginica and Linnaeus' Flora Zeylanica.
4. Specimens in Linnaeus' own herbarium and in the herbaria of other botanists.
5. Figures, such as those of Plukenet, and of Cornut's Canadensium Plantarum Historia (1635), and Sloan's History of Jamaica, of which Linnaeus had seen no herbarium specimens. \({ }^{11}\)

\footnotetext{
- Compare the notation in the introduction to Species Plantarum; "I have judged with satisfactory calculation that the number of species in the entire world is much less than is commonly believed, and that it hardly reaches \(10.000^{\prime \prime}\). Considering this flgure, it must be kept in mind that Linnaeus' conception of species in general was a much broader one than that of the present day. According to A. P. DeCandolle (Theorie elémentaire de Botanique 1813) Linnaeus had 7540 species in 1260 genera in the second edition of Species Plantarum (1763). On page 23 DeCandolle says: "There are 30.000 species of plants known in the world; \(\mathbf{4 0 , 0 0 0}\) if we include all that are unnamed in our collections; and there will probably be more than 60,000 when all the continents are well investigated."
\({ }^{10}\) In the preface to Critica Botanica, written from Cliffort's Museum in 1737. Linnaeus states: "As to specific names I have mentioned hardly any examples, since there are but few that are meritorious, and to very few botanists (even at this date, when we take pride in a flourishing botanical science) is it certain which plants are varieties and which are species; therefore in Hortus Cliffortianus. which is soon to be published through the liberality of my generous patron, I have worked hard to reduce varieties to their species, and to provide the species with specific names."
\({ }^{11}\) Of the nineteenth century botanists, C. B. Clarke had perhaps the best understanding of Linnaean procedure. In Journ. Linn. Soc. Bot. 30: 299. 1894, he writes: "A 'species' in his Sp. Pl. is made up of 4 (or fewer) parts, viz. (a) the citations of his predecessors; (b) the citations of pictures; (c) the diagnosis of Linnaeus himself; (d) the authentic examples in Linnaeus's herbarium. Perhaps the most important of these four is the first: Linnaeus meant invariably that his species should be the sp.
}

Here is bound up the most significant feature of Species Plantarum, a recension of previously published work [of comparatively recent authors], in which species are for the first time \({ }^{12}\) differentiated. Previous works such as Bauhin's Pinax had treated various "kinds" of plants as units of equal rank. A corollary to this idea, as Lindman and E. L. Greene have already pointed out, is that varieties were first distinguished from species by Linnaeus.

In Species Plantarum, the species are treated from a wholly practical point of view. It was not meant to be otherwise. As a philosophical treatise on the species problem it offers little or nothing; the work is an artificial \({ }^{13}\) system based on the number of pistils and stamens, which, as Linnaeus was wise enough to see, could not in his day be replaced by a natural system satisfactory for the practical identification of plants.

From a philosophical point of view Linnaeus was clearly a disciple of Ray, and through Ray, of Morison. It may be added that the technical approach of Species Plantarum, the methodus, is modeled also on the work of Ray: Linnaeus' philosophical concept of species follows quite a different trend from that of Species Plantarum and is based mostly on experimental evidence; Ray's work forms the basis of the Critica Botanica and the Philo-

\footnotetext{
auct. of his day; Linnaeus generally draws his diagnosis by directly copying from his predecessors, only altering it so far as to make it include his authentic specimens."
\({ }^{12}\) This does not include such fragmentary forerunners as Linnaeus' Amoenitates Academicae and Flora Suecica, the treatments of which were usually incorporated directly into Species Plantarum.
\({ }_{13}\) This was only one of a number of artificial systems current at the time (cf. the fructification system of Hermann, the calyx system of Magnol, and the corolla system of Rivinus. These various systems formed the taxonomy of DeCandolle (1813), p. 24: "After having devised successfully in many groups the individual names of the plant world, we arrive at a sure means of identifying those which interest us: it is this part of plant study which I designate by the name taxonomie botanique." Practically all parts of the plant were used in various schemes. Thus, as Usteri (Magazin fur die Botanik 1: 15-48. 1787, under the title Nachtraege und Fortsetzung der Linneischen Sammlung botanischer Systeme) says (p. 16): "To proceed along the way that had been shown, and to make it the more passable, was the effort of every worthy botanist. But the nature of the thing was such that they did not work together, but went along different ways; this differentiation was, however, only superficial-for fundamentally they all worked toward the same goal-and in order to attain this goal, all the various ways had to be used, for by one way alone it could not be achieved. These various ways were the fundamental parts upon which they built their divisions, and such a foundation every part of the plant could give. There are systems which are based on all observed parts of the plant, at least in contemplation, and the greater number of them have already appeared."
}
sophia Botanica; as these works deal with the fundamental problem of species. The "constancy" of species as stated in Linnaeus' earlier works was an answer to the "transmutation" ideas of the naturalists who came before Redi, and whose influence still lingered on into the eighteenth century. \({ }^{14}\) In rejecting ideas of direct transmutation of species, which had been based on faulty experimental evidence, Linnaeus was abreast of, or ahead of his time-as a matter of fact no one up to the present time has directly perceived the transmutation of one species into another.

It is quite fitting to quote here Chapter xxi of Ray's Historia Plantarum (1704), in translation:
"Plants which derive their origin from the same seed, and again propagate themselves in sowing, we may consider as belonging to a single species; for those variations of leaves, colors of roots, taste, or even colors of fruits and seeds, we conclude to be neither characters nor indices of what is called specific diversity. But this quality, however constant it may be as a sign of species, is not perpetual or infallible. Experiments have been made to try to show that some seeds degenerate and produce plants, though rarely, of diverse species from the mother . . . Galen once sowed Triticum and Hordeum, and having selected out all of the seeds which were admixed, he could with certainty tell whether Lolium and Aegilops had arisen from a 'mutation' of these, or whether each had its own appropriate seed. For, if by chance one of these made its appearance among pure seeds, as Lolium frequently does among Triticum, or the vigorous Aegilops among Hordeum, the aggressor was evident . . . These experiments, from various workers both ancient and modern, appear very similar to some of our own; partly because through error the cause was not recognized, partly because they owe their origin to philosophers or the overcredulous or to the less circumspect in tracing a phenomenon to its causes-for these reasons we hold these experiments as uncertain and suspicious. Thus we think that the father of Galen was deceived in the rationalizing of phenomena. For it does not follow that because Lolium is often found in Triticum that the Triticum has changed into Lolium: the Lolium might well have arisen from Lolium seed from a previous year. And so as to the Aegilops: I myself have observed that in a certain field where pure Triticum had been sowed, that the potent Aegilops, had lain fallow after a whole year. Then the Aegilops owes its appearance to its own seeds and not to those of Triticum". And on p. 40: "Thus as to plants of specific conformity: there is certainty that they came from the seed of the same plant, whether as species or individual. For those which differ as species preserve their species in perpetuity, and one does not arise from the seed of the other, or vice versa."

This problem and the associated problem of the continuity of species was discussed by Hornborg under the supervision of Linnaeus in volume 5 of the A moenitates Academicae (1757):

\footnotetext{
\({ }^{11}\) This situation is well described by Bateson, Problems of Genetics, p. 3, 1913.
}
"The ancients thought that many plants were produced from seeds sown at the creation of the earth, when they observed various plants springing forth from soil recently dug up. Some thought that pines, when burned, turned into oak; others thought that fungi, mosses and other minute plants, as well as minute animals, originated by spontaneous generation, or by putrefaction or fermentation. This hypothesis endured until the time of Harvey, who dared to assert that all life came from the egg, and was similar to the mother

Nor was Redi able to obtain animalcules in putrid meat unless insects had access to lay their eggs.' " And in part x: "Turning our attention to plants we see the trunk of the tree extending into branches. We may compare this type of multiplication with that of Taenia, where any single articulation may produce a new individual Or we may compare it with Sertularia! ! . . Similarly to be compared are the roots of grasses and cereals which have numerous joints creeping below the surface of the ground; . . . these plants often form gemmules which reproduce the entire plant. What mortal has ever seen a branch of a tree, of herb, of grass, or any other vegetation, however much it may be dissected, ever change its nature, or produce other plants or species? Ligustrum, Tilia, or any other tree may be repeatedly trimmed by the topiarist, as is the custom in our gardens; but no mortal has ever seen new branches of any different species regenerate".\(\quad \vdots\). Nature is a law of God; constant, ever constant, is this law of nature, that organisms give rise to similar ones, and that ferocious eagles do not produce peaceful doves". Cf. also one of Linnaeus' letters to Beck (Hulth no. 657, written in 1746): "It is apparent that polyps lead a vegetable life. They increase by seeds as do plants; they increase by stems or roots as do Salices. Good God! the animal and vegetable kingdoms approach each other so much that we shall soon have to have a new set of surveyors to make the division lines".

These introductory statements on the constancy of species, as seen by Linnaeus in his earlier years, may be brought to a close with the related philosophical arguments on the nature of varieties, propounded by Linnaeus in section 271 of Critica Botanica (1731):

\footnotetext{
"All species number their origin first from the hand of the Omnipotent Creator: for species having been created, the Author of Nature has imposed: the eternal law of generation and multiplication within the species itself. It is conceded that the external appearance often deviates, but there is never a metamorphosis from one species into another: : Hence there is. today a double differentiation among plants; one a diversity produced by the wise hand of the Omnipotent, the other of sportive Nature, showing variety in the external crust. If the garden is sowed with a thousand diverse seeds, the diligent care of the gardener aids in the production of monstrosities; and after some years it will contain six thousand varieties, which the ordinary botanist calls species. \({ }^{\circ}\) I therefore distinguish species of the Omnipotent Creator or true species from the monstrous varieties of the Horticulturist These monstrosities luxuriate in variegations, multiplications, doublings, proliferations, and fascinate the eyes of the beholders with their protean variation, as long as the gardeners make daily sacrifices for their idols. If they are neglected, these ghosts of variability fall into ruin."
}

\section*{The Genus}

The Genus was elaborated in Linnaeus' Genera Plantarum (1737.) \({ }^{15}\). As I have pointed out, it may be considered the oldest of the botanical groups. Genera of Bauhin contained, more or less indiscriminately, items which were placed by Linnaeus under their proper species and varieties. Generic names frequently came from Tournefort or even older writers, but some were based on collections of Gronovius and the American plants obtained by Kalm. Thus in Amoenitates Academicae, generally accepted as the work of Linnaeus \({ }^{16}\), his student Chenon (3: 1-27. 1751) states under the title "Nova Plantarum Genera": "Since Professor Kalm, lately returned from Canada, has detected many new genera . . . (p. 3), with these brief remarks I proceed to propose as new those genera which are established by Kalm's plants, together with his notes which were communicated to me." These new genera are: Lechea, Sarothra, Alethris, Helonias, Dirca, Kalmia, Gaultheria, and Polymnia. These genera were incorporated without further change into the first edition of Species Plantarum, an example (Lechea major), being as follows:
2. Lechea foliis ovati-lanceolatis, floribus lateralibus vagis.

Gen. nov. 1074. f. 4*.
Habitat in Canada aridis.
The genus and species, under the Linnaean method, were the stable and fundamental categories, i. e. they were "natural" units (Philosophia Botanica, section 162). Superior groups, the class and order, were to be considered as both natural and artificial; the lower group, the variety, was in general to be considered the product of cultural conditions. The character, or definition of a genus (Phil. Bot. sect. 186) was of three grades, depending upon the amplification:

\footnotetext{
\({ }^{15}\) This publication. dealing with the larger, relatively simpler group, i. e. the genus, was a forerunner of Species Plantarum. In par. xxvif: "Species heic nullas trado; quas diagnoscere facillimum erit Botanico ex datis Characteribus; qui has desiderat ex meis principils, eas partim in Flora Lapponica quaeret, sed maximum numerum ex Horto Cliffortiano petat". [I treat no species here; these can be easily distinguished by the botanist from the given characters; whoever wishes these species, based on my principles, will find them partly in Flora Lapponica, but for the greater part in Hortus Cliffortianus.]
\({ }^{14}\) B. D. Jackson, Authorship in the Amoenitates Academicae, Journ. Bot. 51: 101-103. 1913: "He [Linnaeus] (p. 102) plainly looked upon these productions as entirely his own."
}
(1) The natural character (189) was the basis of all systems, and included all possible notae of the genus, both macroscopic and microscopic (191), except for such common structurae naturalissimae as only idiots (59) bothered to describe. "The natural character is absolutely fundamental for the recognition of plants and cannot be neglected; it is, however a work of infinite labor before characters are evolved which accord with all the species of the genus. The experienced botanist alone (193) can best make the natural character, which should be drawn up from an accurate description of the primae speciei \(i^{17}\), with which all other species of the genus should be carefully compared, in order to exclude all discordance. No character is infallible until it has been applied to all the species of the genus. Difference in structure of the fructification (92) is the basis of genera. \({ }^{18}\)
(2) The factitious character distinguishes a genus from all other genera of the same artificial order (188). The few notae (which are taken from the natural character), suffice to distinguish genera. The factitious character, or diagnosis \((188)^{19}\), as Linnaeus states, was defined by Ray (188): "the characters of a genus are not to be multiplied except from necessity, and not more are to be assembled than are necessary for definitely determining the genus." Factitious characters (190) have been proposed by those who introduce notae in an artificial method, by which they are able to distinguish genera placed within the same order; thus they were used by Ray, Tournefort, Rivinus, and many previous authors.
(3) The essential character (187) distinguishes the genus by a single peculiar or unusual character (such as the nectariferous

\footnotetext{
\({ }^{17}\) This is the only reference I have found in Linnaean literature to the "type method". It does not necessarily refer to the first species published under the genus in Species Plantarum.
\({ }_{18}\) Every nota characteristica depends on the number, figure, proportion and place of the differentiating parts of the fructification (86). These are: calyx (including glumes of grasses, spathes, bracts of aments, involucrum of Umbelliferae, etc.), corolla (including petals and nectaries), stamens, pistils, pericarp (capsules, legumes, pomes, etc.) seeds, and receptacle. These various parts (167) of the fructification number 38. When multiplied by 4 (number, figure, situs, and proportion), 152 combinations are possible; by recombination of the 38 parts, there are 5776 possibilities, far more than sufficient for the number of genera.
\({ }^{19}\) This is the only instance where I have seen this term used by Linnaeus. It has been misapplied to the Linnaean specific name. At the present time it is used much in the manner of the factitious character of Linnaeus for a brief condensation of the description of a genus or of a species, but without the differential feature which was fundamental to the Linnaean specific name.
}
pores at the base of the petals in Ranunculus, or the capitate fruit of Magnolia with seeds pendent by threads (105). It is the easiest way to know plants, and is used to distinguish genera of close affinity in a natural order by one or two notae. It is selected from the natural character. "If the essential characters of all the genera could be detected the recognition of plants would be easy, but whoever thinks that he can know botany from the essential character to the neglect of the natural character deceives himself. In the detection of new genera, without the natural character there would always be doubt (191) \({ }^{20}\)."

The foregoing three characters of the genus-which have been quoted from Philosophia Botanica-show different human aims. The natural character represents the complete description of the genus, upon which the natural system could be based. This type is the basis of Genera Plantarum. The factitious character was a selection of characteristics; such as would suffice for separation of genera in an artificial system or key. It has been in use from time immemorial. The character essentialis represents the simplest method of recognition. This triple method of working out the genus, it will be seen, was also a prototype for the Linnaean treatment of the species. \({ }^{21}\)

Genera were described in Genera Plantarum, and in conformity with the conciseness characteristic of Linnaeus, the genera were not again treated in Species Plantarum. The preface to Genera Plantarum contains a number of statements of importance in the Linnaean method, though the idea of fixity of species expressed in this early work was considerably modified in later years. The most important ideas (from our point of view) are perhaps the following:

\footnotetext{
\({ }^{30}\) The question whether a generic character (in the modern sense) can delimit a genus per se arises constantly. The essential character of Linnaeus (such as threadpendent seeds of Magnolia) was founded only on unusual structures.
\({ }^{11}\) The factitious, essential, and natural characters were briefly discussed by Thornton, Elements of Botany (1812) p. 83-85, without much understanding:
1. The factitious character is employed in tables to discriminate all the genera falling under each particular Class and Order (Vide our British Flora).
2. The essential generic character comprehends all the distinctions requisite to discriminate any qenus from all the other genera in the world . . . the multitude of genera is great, amounting . . . to considerably more than 2000.
3. The natural generic character is a careful description of all parts of the fructification, as the Calyx. Corolla. Stamina, Pistilla, Pericarp and Seed; and this was what Linnaeus particularly prided himself in
}
"Names of plants are generic and specific (in case there is more than one species in the genus). There are as many species as there are diverse forms produced by the Infinite Being in the beginning; these forms have produced descendents, but always similar, according to the known laws of generation, so that the species which we now have are no more than there were in the beginning. Therefore species are as many as there are diverse forms or structures of plants occurring today, excepting those in which habitat or some other cause has produced differentiation (i. e:, varieties). Genera (section 6), therefore, are as many as there are common attributes next [in rank] to those of distinct species, such as were created in the beginning: this is confirmed by revelation, experiment and observation. Hence all genera and species are natural. We must attentively and assiduously, by observation, inquire into the limits of genera. These limits may be difficult to determine, but confusion in genera means confusion in everything. I inculcate on all true botanists, if stability in this art is to be desired, that all genera and species are natural; unless this principle is assumed there can be no soundness in the art.

Natural genera (section 10) being assumed, there are two requirements for maintaining them sound: that only true species and no others be placed in the genus; that each true genus be circumscribed by limits and terms which we call the generic character. No authority except dissection in the herbarium should be acknowledged.

Icones (section 13) are not recommended for determination of genera: before the development of the alphabet it was necessary for things to be expressed in pictures where speech was not possible. Upon written words a genus can be more firmly based, and it is not always practicable to publish a picture. In a given genus the shape and number of parts differs in the various species, and the position and proportion of the parts must be established with care. This cannot be done in an illustration unless figures of all species are given. Thus for fifty different species, there should be that number of illustrations. Therefore, to omit the differential characters and describe only similarities is far less work and easier to understand". \({ }^{22}\)

As Spring (op. cit.) states ( 1838, p. 88) most genera in practice are artificial, inasmuch as they do not actually represent the next entity above the species, but only the relative goal of easier classification. But all should [theoretically] be natural, since (1) they have natural entities [i. e., species] as their base, and are built up on the same principles as are species; and (2) genera must (of necessity) be set up if there is a similarity which affects the whole plant and not merely the individual parts, and if a disconformity (Bildungsabschnitt) or change in nature is suspected. The existence of genera in Nature is apparent only by induction. Di-

\footnotetext{
\({ }_{2}\) The reader will realize how difficult it is to illustrate a genus pictorially, and that illustrations of genera are almost invariably delineations of individual species. This question was discussed by a nomenclature committee in Journ. Bot. 30:242. 1892: "But a picture can never show the special characteristics alone, which raise the genus above the other of its affinity. A genus only gains priority by a verbal diagnosis".
}
rect proofs of the existence of genera fail us. But this is true also of species and no one doubts that there are natural species. Both are abstractions (p. 89), for the individual alone appears bodily in Nature. That natural genera exist is shown in their unrestricted sense in the speech of various peoples. Everywhere one finds similar species consolidated under a single genus name, but seldom do vernacular names conform to true species ( \(\mathbf{p} .90\) ). Even among uneducated peoples, the pink, the rose, tulip, grass, the owl and the eagle are seen as genera. As natural history rose among the Greeks and Romans, genus names increased accordingly, while species were differentiated only by occasional and changeable names. It is, as a rule, easy to recognize concretely what differentiates and what binds together (p. 96); "but to find the exact point wherein things differ and where they are similar, and to explain the situation in measurable terms, is very difficult."

This question as to whether or not genera are "natural" came up at an early date, and still persists in some form or other. \({ }^{23}\)

\footnotetext{
\({ }^{23}\) Cf. the question, "Which in your opinion is the more natural unit among the flowering plants, the genus or the species? (i. e., which of the two more often reflects an actual discontinuity in organic nature) by Anderson in the "Concept of the Genus". Bull. Torrey Club 67:364. 1940. I believe that I was one of the few who replied that the question was meaningless, for the genus and the species-at least in Linnaean taxonomy-are both natural by assumption, hence the limits of these entities are represented by discontinuities. As revealed by the answers, the hypothetical question was understood as, "On the basis of present (or past) taxonomic usage is a discontinuity found between genera more frequently than between species?" The difficulty and necessary ambiguity in answering this question becomes apparent from Weatherby's statement in Rhodora 44: 160. 1942, "So long as we have to rely on judgment at all, the accuracy and soundness of any taxonomic category, definition or no definition, will be in direct proportion to the accuracy and soundness of the individuals who apply \(1 t^{\prime \prime}\).

It was precisely here that Lamarck differed from the Linnacan point of view, to quote from Lamarck, Illustration des Genres, p. xv. 1791 (in translation): "If Linnaeus, instead of attributing genera to Nature, had considered them as assemblages of species approaching one another in most respects, and at the same time of assemblages well detached from one another by artificial limits . . . he would have prescribed laws convenient for guiding the establishment of limits of these assemblages. By these laws he would have prevented and moderated the arbitrariness which exists among nearly all botanical authors, who, without any rule which suits them well, continually are making innovations. Some reunite many genera into one, but more often form several genera from the species of a genus already established, which they distinguish by certain considerations chosen for this genus alone. The essential object in the formation of genera is to diminish the quantity of names to be retained In the memory, a quantity which would be enormous if a simple name were given to each plant . . . Two forces must of necessity be taken into consideration in the establishment of genera, that is to say, in the distribution of separating lines which one chooses for the genera: 1) it is important that genera should not be too numerous in species; 2) genera must not be too much reduced, and they should comprise, as far
}

Thus, in Ortega's edition of Philosophia Botanica (1792), in the "Annotationes, Explanationes, et Supplementa" (p. 410) there is a discussion of the Linnaean precept, "Omnia Genera et Species naturales esse, confirmant revelata, inventa, observata". Of this phrase Ortega says:
"That species of plants were created by God at the beginning of the world and do not change into other species, and are therefore natural, and that they remain unchanged to the present day no sane person will doubt; the confusion which would arise from the change of one Species into another, to the detriment of mankind, would not be allowed by the most provident Maker. And Genera, inasmuch as they are composed of natural species might also be said to be natural: but that God, all powerful in creation, has made the Species of plants with similar marks and characters, so to be distinguished that all of these species fall into certain Genera, just as families are diverse from one another, I do not dare to affirm. A posteriori, certainly many Species are to be observed with so many characters, especially of the fructification, in turn consistent with or different from other Species, that they can readily be referred to the same Genus in conformity with our art. But on the other hand, there are individual Species which could in no way be associated with others to constitute a Genus. And the idea of a Genus, if I am not mistaken, always involves the idea of several species similar to one another, and

\footnotetext{
as possible, a certain set number of species". And p. ix: "Linné, wishing apparently to give to genera a consideration which they did not have, pronounced anathema against those who were assured that there were no genera in Nature. He had, without doubt, more ability in supporting his opinion by trenchant decision, and by the pretended axioms and laconic maxims with which he has flled his Philosophia and his Critica Botanica, than by solid proofs which alone would convince those whom he could not win over by authority; proofs that he always forgot to establish.'"

The opinion of Asa Gray was still different (Structural Botany, p. 323, 1879): "Constituted as the vegetable and animal kingdoms are, the recognition of genera or groups of kindred species, is as natural an operation of the mind as is the conception of species from the association of like individuals . . . The number of species in a group is immaterial, and in fact is very diverse. A genus may be represented by a single known species, when its peculiarities are equivalent in degree to those which characterize other genera If only one species of Oak were known, the Oak genus would have been as explicitly discerned as it is now that the species amount to three hundred; and better deflned, for now there are forms quite intermediate between Oak and Chestnut . . . (p. 324) So that the recognition of genera even more than of species is a matter of judgment, and even of conventional agreement as to how and where a certain genus shall be limited, and what particular association of species shall hold the position of genus'.

Linnaeus gave the clever answer to this problem by stating that the genus was "natural", but that the limits could not be determined until all the species of the genus were known. He wisely left the differentiation of genera to a succeeding generation. The real question at hand is whether we wish to have all of our genera "natural", that is bounded by discontinuities, and I think that our answer, as it was with Ass Gray, is "No!" No more disastrous way could be found for destroying the stability of our nomenclature. In large genera only a very few species approach the theoretical boundary line against which the adjacent "unnatural" genera eventually impinge, the point at which there should be "conventional agreement as to how and where a certain genus should be limited". As in many other things, we must formulate hare a compromise between the practical and the theoretical.
}

Linnaeus himself says (Canon 159): 'There are as many genera as there are similar structures of fructification produced by diverse natural Species' The similitude cannot exist unless it is shared by at least two species, despite whatever Linnaeus may have precariously asserted in Canon 203. For of the species which he had considered as solitary, several have proved not to be so, since congeners have been detected in Dodartia, Hydrophyllum, Corymbium, and Gloriosa; as to the others it is prudent neither to assert or deny what may be their future status . . We do not wish to raise the nominal question whether plants have really been formed by God into Natural Genera; we rather offer the definition of a genus in the judgment of the learned, as follows: "There are as many genera as the Natural Species show different forms of fructification'."

The modern problem of the limits of genera thus had raised itself at an early date. Ortega (op. cit.), in discussing the statement of Linnaeus (Phil. Bot. 160) that "artificial classes are a substitute for the natural until all the natural classes have been detected, and because many genera are as yet unknown, the limits of classes present the greatest difficulties," says that the same, in his judgment is true of the limits of genera. If all plants (cf. Linnaeus, Phil. Bot. 77) show an affinity on either side, then that affinity would increase more and more if all species were detected. And he quotes from Oeder (Fl. Danica, Fasc. 2, introd. p. 12); "If we are really willing to confess, it is not allowed us or ever will be, to know the differences which exist between plants or to set up invariable limits of genera or of superior or inferior groups. Not only may the author of such limits modify these limits from time to time, but others may be led by sufficiently strong arguments to acknowledge these changes".

The younger Linnaeus, in the preface to Supplementum Plantarum (1780), was cognizant of some of the difficulties:
"I have tried, as far as possible, to make few new genera; whatever plants could be transferred to some genus already recognized without danger to the character essentialis, I have assigned to the genus, even though there might be only a single character in diagnosing them. In this respect I am in disagreement with many botanists of our time, who seem to be persuaded that the genus produces the character. For I have found in my experience, that too numerous genera unnecessarily extend the science, separate affinities, multiply difficulties in distinguishing the genera, and furthermore impede the perception of the character essentialis".

Thus the character or nota appeared-and this is true also in modern taxonomy-as a sort of "doctrine of signatures" which revealed to what genus the species was to be allocated. And the variation in human judgment in selection of characters and their
delimitation has produced a sort of fantasy which has its main significance and stabilization in the historical view which is called "usage". To this stabilization the "doctrine of descent" has not added as much as was anticipated in the late nineteenth century; as a matter of fact, by injecting the additional dimension of "time", the evolutionary point of view has sometimes complicated rather than simplified the situation, leading to many tenuous modifications of nomenclature based on theoretical phylogeny.

As A. P. DeCandolle explains it (Théorie de Botanique 187. 1813): "The second rule Linnaeus announces to us in his laconic style in the words character non facit genus, that is to say, in order to make a genus it is not sufficient to have any isolated character, taken from the fructification and separating one or many plants from those that resemble it, but it is also necessary that the plants themselves be distinguished from others and approach them in 'l'ensemble de leur végétation'. This sage principle is the veritable touchstone of genera, and should always be in the eyes of the naturalist". Cf. Critica Botanica, 169: "Characterem non constituere Genus, sed Genus characterem". [The character does not make the genus, but the genus makes the character]. \({ }^{24}\) The corollary is the Linnaean statement that the limits of a genus cannot be definitely determined until all the species of the genus are known.

As to any single character alone characterizing a genus, the opinion of Linnaeus was probably much like that of many modern botanists, such as that of Pittier (Contrib. U. S. Nat. Herb. 20, pt. 2:40. 1917): . . . "the differential characters of the genus (Lonchocarpus) are never absolute when taken singly . . . Every one of these characters, considered separately, will be found to be shared with other more or less related genera,

\footnotetext{
\({ }^{24}\) Cf. the footnote in Ruiz \& Pavon, Fl. Peru. Prodr. p. 41: "This genus (Gilibertia) and the preceding (Tovaria) were opposed by Cavanilles because, as he says, they were founded without any criteria. Though there may be only one species in Tovaria, he says there is nothing constant in Tovaria stigmata peltata et septemfida to be a generic character, since the number of parts of the fructification is sometimes eight or rarely nine, as was mentioned in the Observ. It might be noted, as Ruiz has added, that there is no genus if there is only one recognized species . . . For it is well known to all that no generic character is well constructed, or at all stable, unless all species of the genus are discovered and recognized. For this principle Linnaeus, 'Botanicorum faclle Princeps', set up Canon 193 in his Philosophia Botanica, where he says: 'No character is infallible until it has been applied to all the species of the genus." \({ }^{\text {". }}\)
}
but it is their concurrence upon which the genus Lonchocarpus is based". There seems to be such a thing as a generic character per se only in the relatively unusual nota singularis of Linnaeus.

The most important statements of Linnaeus as regards the Genus are in sections 169 and 170 of Philosophia Botanica, and these all tend to emphasize the relatively unstable limits of the genus as compared with the species:
"Notae characteristicae which serve for stabilization in a certain genus may be of little value in some other genus. For you know that the character \({ }^{25}\) does not constitute the Genus, but the Genus the character; that the character flows from the Genus, and not the Genus from the character; the character is set up, not that the Genus shall be made, but that the Genus shall be known. Therefore the greatest botanical heresy is to set up innumerable spurious genera, to the detriment of botany. A genus is rarely observed in which some part of the fructification \({ }^{26}\) is not aberrant. Many genera ficta have arisen from species diverse in some part of the fructification: e. g. in Carduus, Euphorbia, Hibiscus, Ranunculus, Gentiana, Primula, Bidens, etc. Unless this principle is assumed there will be as many genera as there are species".

Linnaeus has something to say, also, on the opposite side of the question:
"In many genera a nota singularis" of the fructification will be observed, but if it is not present in all the species of the genus, care must be taken that several genera were not originally included-for example, Erica and Andromeda were formerly placed in one genus, but the awned anthers are peculiar to Erica; Aloe and Agave formerly constituted a single genus, but the stamens of Agave, inserted on the corolla and not part of the receptacle, distinguish the two genera. The more constant a part of the fructification may be in many species, the more certain it is that a generic character (nota) is present [174]. In some genera one part, in other genera another part of the fructification will be found the more constant; but none are absolutely constant. If the flowers are the same, but the fruit differs, all other things being equal, the genera should not be separated [176]".

\section*{And in Critica Botanica (section 281):}
"Generic characters [notae] used for [specific] differentiae \({ }^{28}\) are absurd. The beginner, when he first starts to examine the fructification, finds so

\footnotetext{
\({ }^{25}\) This term, as I have mentioned, is used in the sense of "generic" description; for the individual "character", in our sense, Linnaeus uses the term "nota".
\({ }^{2}\) This Linnaean term includes also the flower.
\({ }^{27}\) Based on the number, figure, proportion and site of various parts of the flower and fruit (Phil. Bot. 92) a triple classification is to be derived: Naturalissimam, Differentem, and Singularem, and upon these are based respectively the Natural, Factitious, and Essential Oharacters of the Genus.
\({ }^{28}\) It should be emphasized here that the species within a genus were distinguished and delimited by the differentiae which were part of the specific name. This was not done for genera by Linnaeus, the genus being set up merely as a synthesis of species. The limits of genera are, in common experience, more vague and less easily drawn than are
}
many individual characters [notas singulares], almost infinite, that he believes that no one before him has examined the flowers, and that there are almost as many new genera as there are species; but when several years have passed in such examination, he first finds the essential generic characters, and begins to distinguish them. Then he easily falls into the other extreme, and has doubts in everything."

\section*{The following translated quotations from letters of Linnaeus} (Hulth 1907-1912) provide a commentary:

No. 545. To Bergius, Dec. 12, 1770. "Erica is undoubtedly one of the most difficult of genera. If it is at any time to be worked out, I think the following would be necessary: 1) sufficient differentiae specificae, so that the species could be clearly and securely distinguished; 2) correct descriptions and figures; 3) synonyms, preferably from accurate figures. As far as synonyms are concerned, I think it is better to have a few sure ones, for many figures are uncertain, and when we do get them they are often distorted. To get figures accurately made here, has been and will always be impossible for me. \({ }^{29}\) I believe that if you and I should go into partnership, that we would have most of the Ericas. You have seen how difficult, if not impossible it was to evaluate certain synonyms, until a great many species were made known. I could have sworn that your E. Plukenetii and mine were the same species if I had not seen both of them."

No. 620. Browallius to Linnaeus, Jan. 24. 1745. "From Kalm's letter I see how your Peloria has caused alarm in the ranks; but I really think you should not be troubled too much about it, since if it throws over some of the principles assumed for setting up genera, so much to the good. And you well know that you have never thought otherwise than, since genera are the work of man, that man can also be mistaken. But one should especially be careful of the dangerous statement that this species might have been produced after the Creation. Species the

\footnotetext{
the limits of individual species. Between many genera, -such as Aster and Erigeron, Oldenlandia and Houstonia, or Rynchospora and Dichromena-the distinctions become merely academic, or indeed invisible. The situation may be compared to the contiguous or separated circles which illustrate the relationship of the orders in Linnaeus' Natural System (see discussion at the end of this paper) and which are graphic illustrations of his statement: "Natura non facit saltus. Plantae omnes utrinque affinitatem monstrant, uti Territorium in Mappa geographica". From a dynamic point of view we may think of genera as broadening concentric circles such as the rings formed by pebbles thrown into water: the initial impact representing the type species of the genus, and the resulting concentric rings the accretion of species through historical usage. Not until such a circle impinges upon other circles is the practical problem of generic limits involved. This problem may be solved by somewhat arbitrarily dividing the few transitional species which occur at the borderline, chiefly according to usage, between the component genera, or of combining the two genera into one. The first method gives us stability of generic nomenclature. The second leads us to eternal instability, in an attempt to complete the "chain of nature" or the "phylogenetic tree". In the flowering plants, at least, our progress does not seem to have been very marked during the past century.
\({ }^{29}\) Linnaeus was never able to obtain funds at Upsala or Stockholm for sumptuously illustrated botanical works, such as were published in Holland or England. For further notations on synonymy and illustrations the reader is referred to succeeding sections of this paper.
}

Creator has determined through [unchanged] propagation by seeds. Genera are the first and smallest group of species, and they do no good except to bring simplicity into the study of elementary botany. And things should not seem too strange if a new observation discloses something that goes against previous rules. One must in such cases cling to Newton's rule: against truths established on the basis of a comprehensive and certain experience, no objections are admissable except those drawn from experience; then first should a doctrine be offered, bounded by these limitations. The same thing can happen in botany that we have seen in the history of magnetism, electricity, and endless other things".
As a final word on the Genus, I quote from A. P. DeCandolle's "Theorie de Botanique" (1813), p. 260-261, to show how much the understanding of Linnaean method had already gone astray.
"Generic characters vary, according to whether they represent a natural or an artificial order. Linnaeus distinguished two sorts of characters: one, which he called essential, stated only what he considered necessary to distinguish a genus from others in the same class; the other, which he called with reason natural, contained a short description of all the parts of the fructification. Distinction between these two types of characters was indispensable in an artificial system. One can, in an artificial order, understand very well the essential character of a genus without having the least idea of the real form or of its nature or relationships, which are what one finds in the natural character . . all that one finds in the natural characters of Linnaeus is implicitly stated in the character of the family and the tribe . . If a genus has several characters particular to it, one does not fear to use all: thus my generic characters are somewhat longer than the essential characters of Linnaeus, but we avoid also the descriptive or natural characters. The generic characters should be treated in a sequence similar to those of a family: 1) the reproductive structures, which are to be considered as the true distinctive character; 2) the vegetative organs; 3) observations peculiar to the genus and showing the natural affinities."

\section*{The Species}
"The Ariadnean thread of the systematists terminated in Genera, but I have attempted to extend it so far as Species, for which I have made proper differentiae; so that by these differentiae they may endure, for all true recognition begins with the recognition of species. Whatever botanists had built formerly is now collapsed, for it lacked a suitable foundation. But a strong botanical science has grown up in the last eighty years, now so firm that there seems no possibility of its collapse. For there is a solid foundation of species and a definite certainty in genera; for if genera are confused, then everything is confused." Linnaeus, Introduction to Species Plantarum.

\author{
The Spectific Name
}

The principle element of Species Plantarum was the polynomial specific name, and upon its construction Linnaeus lavished his
skill and placed his greatest emphasis. \({ }^{30}\) The specific name was a series of descriptive words (differentiae) selected according to rules laid down in Philosophia Botanica, by which each species was to be differentiated at first glance from all others in the genus. This method had already been in use in Linnaeus' earlier works and in those of Gronovius and Royen, who were both under the tutelage of Linnaeus. \({ }^{31}\) Indeed these polynomials are the definition or boundaries of the individual Linnaean species, which represent units of practical usage within the "compendium" (i. e., "Species Plantarum") of virtually all previously published names, figures, and descriptions. In other words the synthesis of these names, figures and descriptions, together with associated herbarium specimens, constitutes the "species" of Linnaeus. It will be noted that these Linnaean species are in general more comprehensive than species of present usage. The 'Linnaean species was a somewhat arbitrary unit-according to our standards of today-separated from all other species of the genus by means of the differentiae within the specific name, the entire treatment being comparable to, or even identical with, our modern keys to the species within a genus. These specific names were arranged in numerical order, each preceded by the generic name, with a "trivial" name added in the margin. As an example, with synonyms and bibliographic references omitted, may be cited the first genus treated in Species Plantarum:
1. Canna foliis ovatis utrinque acuminatis nervosis.
2. Indica.
3. Can
3. Canna foliis lanceolatis petiolatis enervibus

When genera came to be revised in Species Plantarum from their treatment in earlier Linnaean works, a revision of specific names was often necessary in order to provide adequate differentiae. Thus we have (p. 113):
1. Plantago foliis ovatis glabris, nudo scapo tereti, spica flosculis imbricatis.
Plantago foliis ovatis glabris. Hort. Cliff.

\footnotetext{
\({ }^{30}\) Introd. Sp. Pl.: "To set up the essential characters for the specifle name is not an easy task; for it requires an accurate knowledge of many species, a most attentive investigation of the parts, the selection of differentiae, and finally the proper application of the art of terminology, in order that the briefest and most effective name may be arrived at."
\({ }^{31}\) Introd. Sp. Pl.: "Differentias specificas antehac Plantis non paucis imposui in Flora Lapponica, Suecica, Zeylanica, in Horto Cliffortiana, Upsaliensi. Iisdem principlis institere Botanici Gronovius, Royenus, etc.".
}

\section*{contrasted with a new species:}
2. Plantago foliis ovatis glabris, scapo angulato, spica flosculis distinctis.
asiatica. [Here follows a short description].
3. Plantago foliis ovato-lanceolatis pubescentibus, spica cylindrica, scapo tereti. Hort. Cliff. 36. Fl. Suec. 123. etc.
media.
4. Plantago foliis lanceolato-ovatis pubescentibus subdenticulatis, spicis cylindricis pubescentibus, scapo angulato. Gron. virg. 16.

The characteristics of the specific name and rules for its formation I have extracted from paragraphs in Philosophia Botanica (1751), together with some of the longer explanatory notes provided in "Critica Botanica" (1737).
256. A plant is perfectly named when it has a generic and a specific name. The idea of a species lies in the essential character by which alone the species is distinguished from its congeners. The differentia specifica contains the characters (notae) by which a species is distinguished from its congeners. Therefore the specific name contains the essential characters of the differentia. \({ }^{32}\)
257. The specific name should distinguish the true plant from all congeners. This is the fundamental rule for specific names; if neglected, all will be confusion. All nomina specifica which do not distinguish a plant from the congeners are false; and all nomina specifica which distinguish the plant from others not in the same genus are false. The nomen specificum is therefore the differentia essentialis.
258. The specific name makes the plant recognizable at first glance, since it contains the differentia inscribed in the plant itself. The character naturalis of a species is the Descriptio; but the character essentialis is the Diffirentia. I was the first to base nomina specifica on essentials; previously no differentiae of value had been set up. My nomina specifica are based on Differentiae taken from the Descriptio; from the Differentiae is traced out the character essentialis in which nomina specifica are constant. Some of the recent botanists, such as Royen, Gronovius, Guettard, and Dalibard have accepted this method in entirety; Haller, Gmelin, and Burmann have accepted it in part. To be excluded from the specific name are all accidental things not existing in the plant itself or things which are intangible, such as place, time, duration, or use.
282. Every differentia is of necessity derived from the number, figure, place and proportion of variable parts of plants. These four fundamentals are the same as in genera, and they are constant everywhere: in the

\footnotetext{
\({ }^{22}\) It would be quite possible to have a specific name without differentiae. Such, in general, were the pre-Linnaean speciflc names. Only in the Linnaean method did the specific names become mutually dependent on the adjacent specific names. More extended accounts of a species, such as a descriptio, might also have differentiae; but such as were selected for use in the speciflc name became the differentia specifica. Since in the specific name only restricted or essential differentiae were permitted, the nomen specificum became actually the differentia essentialis (cf. 257 and following sections).
}
[living] plant, in the herbarium, and in icones. (Critica Botanica: On these four fundamentals-number, figure, proportion and place-depend the external structure of the plant by which alone its difference from others is represented to us. It is these characteristics and no others which we represent in icones. It is these which we preserve in the herbarium, for all others may be accidental. - No character in any part of the plant which cannot be referred to one of these four, can we assume as perfect and certain).
283. Care must always be taken that the variety is not used in place of the species. This is a difficult problem and must be looked into with the greatest of care. Errors arise and we are frequently blind, the chief causes being as follows: 1) the diversity and variability of nature, never ceasing in its operation; 2) the diversity and peculiarities of regions and climates; 3) remote places of origin; 4) the brevity of human life, which by fate perishes at an early day. (Critica Botanica: Figure, number, proportion, and location give us clear ideas, nor do they ever fail us; but, assuming them to be of fundamental importance, it is necessary to apply them to stable and not variable parts. Figure, number, proportion, and location do vary in plants, though rarely, and not all at the same time, nor in all parts of the plant at the same time. They vary, though less than other characteristics, and not enough to cause structural differences. Thus the task of the botanist in differentiae is double: to distinguish varieties from species and to express in exact words the characters which are inherent in distinct species.

The botanist who is more accustomed to the herbarium than living plants thinks the smallest difference to be the character of a distinct species, but he who has gone through the fields finds new species more difficult to discover. Likewise, they who cultivate plants in gardens only, where plants often change, commonly believe that they have more species than actually is the case, if they do not take the trouble to examine wild plants. To prevent unnecessary species there is no more apt and certain method than:-1) a careful examination of all parts of the plant, especially the fulcra [i. e., stipules, bracts, etc.]; 2) careful study of the ovary in all its parts; 3) a search for the most apparent differentiae in related species, for Nature does not make a saltus, but commonly uses the same method in a single genus; 4) a search for affinities or diversities, if any, in species which have been placed under another and adjacent genus because of diverse habits; 5) cultivation in diverse soils, which often change species already transformed by culture).

To separate species or genera by a single character, if possible, has always been a goal of systematists, ancient and modern. Such a single character is seen in "Eriophorum spicis pendulis" in Flora Lapponica, and it constitutes a nomen specificum essentiale. Where several characters are necessary, the specific name becomes synoptic, as in "Salix foliis subintegerrimis lanceolatolinearibus longissimis acutis: subtus sericeis, ramis virgatis" of Flora Suecica. For these procedures, the following extracts from Philosophia Botanica and Critica Botanica are quoted:
288. The true nomen specificum is either Synoptic or Essential. Nomina specifica distinguish species definitely, easily, and with certainty. A selection should be made from all possible differentiae of the species, from which the most outstanding are chosen, so that, finally, the species will be clearly recognized. (Critica Botanica: The nomen specificum is worthless unless there is a primary characteristic taken from the differentiae, by which I can rapidly, surely, and easily distinguish the species from all others in the same genus. Therefore all nomina specifica are false and not genuine, which include other characteristics (notae) than those distinctive of the species, since then the treatment runs into a descriptio. If I find no characteristic [nota] alone peculiar to the species, it is necessary to look for a few characters common to a few species of the same genus, but not to all the species; and these characters being found, then one peculiar in a higher degree, until I finally come to the ultimate subdivision. Hence all specific names are said to be either essential or synoptic. The differentia may be partly essential, partly synoptic; for if I begin a specific name by synoptic division, as soon as possible I shall use an essential character by which the name may be readily shortened).
289. The synoptic name employs semi-dichotomous characters for the plants of a genus. Where the notae essentiales cannot be found, it is necessary to make the differentia by synopsis; therefore the synopsis is a substitute for the differentia essentialis. In large genera we must usually employ the synoptic method.
290. The nomen specificum essentiale (288) has a single character of differentiation, peculiar to this species alone. It is presented in one or two words, or as a single idea. When genera and species have been stabilized, limited by the differentia essentialis, we have reached the highest point in re Herbaria. This name commends itself in brevity, facility, and certainty. A synopsis should not be admitted into the differentia specifica when a nomen essentialis has been detected; when the nomina essentialia have been worked out, we have reached the final goal.
294. Whoever discovers a new species adds not only the differentia of this species, but emends the differentiae in other species of the genus, so that the species may be distinguished in posterity.

Closely bound up with this last statement is the practical usage of synonyms. Under section 318, Linnaeus mentions that the earliest botanists were content with generic names.
"Succeeding botanists applied names arbitrarily, but Caspar Bauhin
(1622) combined the names of these previous authors and reduced them to
6000. The 'Curiosi', interested only in new plants, doubled the number
of names which previous authors had made. Bauhin's 'Pinax' was con-
tinued by Sherard, and in 1728 he left it to Dillenius, who died in 1747
with the work still uncompleted. Haller, in various publications, elab-
orated the absolute synonymy of the plants of Switzerland. A work of
absolute synonyms is of the greatest necessity to botanists, for if the name
of one author is detected all [the synonyms] are known."
Among synonyms (319) the best name leads the list, and it should be so chosen by the author, either from among his own names or from someone else's. Synonyms (320) may be arranged
in two ways, either descending (from the oldest to the newest) or ascending (from the new to the ancient). In the descending, the author's name heads the list, and the synonyms are arranged chronologically, as with Haller and Dillenius. In the ascending, names are arranged by genera [i. e., not mixed], and these proceed from the more recent to the ancient; this form has most often been used by me. \({ }^{23}\)

With this account of the specific name and its differential function together with a very brief review of synonymy, we are in a position to treat the subject from the practical view of modern nomenclature. In \(1939^{34}\) I came to the conclusion that the recent change in the name of the northern red oak (Quercus rubra) was wholly unnecessary. And the same applies to many other Linnaean names that have been shifted about, chiefly, it seems to me, from a lack of understanding of the Linnaean method. The Linnaean treatment of the American oaks, with the exception of \(Q\). Phellos, is reproduced here from the first edition of Species Plantarum:
[p. 995] 6. QUERCUS foliis ovatis indivisis spinoso-dentatis gla- Coccifera. bris. Roy. lugdb. 8.
Quercus foliis ovatis dentato-spinosis, glandibus sessilibus. Sauv. monsp. 96,
Ilex aculeata cocciglandifera. Bauh. pin. 425.
Ilex coccifera. Cam. epit. 774.
Habitat in G. Narbonensi, Hispania. b
7. QUERCUS foliis obovatis utrinque acuminatis sinu- Prinus. ato-serratis: denticulis rotundatis uniformibus. Hort. cliff. 448. Gron. virg. 117. Roy. lugdb. 80.
Quercus, castaneæ foliis, procera arbor, virginiana Pluk. alm. 309. t. 54. f. 3. Raj. hist. 1916. Catesb. car. 1. p. 18. t. 18.

Habitat in America boreali. h
8. QUERCUS foliis cuneiformibus obsolete trilobis. nigra. Gron. virg. 117.
Quercus folio non serrato in summitate quasi triangulo. Catesb. car. 1. p. 20. t. 20.

\footnotetext{
\({ }^{23}\) A. DeCandolle. Lois de la Nomenclature Botanique. 1867, p. 8. "I may say, in commencing, that there is a certain inquietude today caused by the great complication of synonymy. The botanists with but little experience will not be greatly affected. They will not adopt new names unless the necessity for them is stated, or at least until they are sure that the names have been approved, after examination by many competent men. After all, synonymy is not without merit. It constitutes the history of the science. Completely given, in order of dates, it is often instructive and interesting . . . Will the increase of synonyms continue in the same manner for a long time? That does not seem to be at all probable."
\({ }^{4}\) Rhodora 41: 521-524.
}
[p. 996] \(\beta\). Quercus marilandica folio trifido ad sassafras accederdente. Raj. Catesb. car. 19. t. 19.
Habitat in America septentrionali, b
rubra. 9. QUERCUS foliis obtuse-sinuatis setaceo-mucronatis.
Quercus foliorum sinubus obtusis: angulis lanceolatis seta terminatis integerrimis vix divisis. Gron. virg. 117.
Quercus esculi divisura, foliis amplioribus aculeatis. Pluk. alm. 309. t. 54. f. 4. Catesb. car. 1. p. 23. t. 23.
\(\beta\) Quercus foliorum sinubus obtusis: angulis acutis seta terminatis: intermediis vix tridentatis margine integerrimo. Hort. cliff. 448. Roy. lugdb. 80.
Quercus carolinensis, virentibus venis muricata. Catesb. car. 1. p. 21. t. 21.f. 1.
Quercus virginiana venis rubris muricata. Pluk. alm. 309. t. 54. f. 1.

Habitat in Virginia, Carolina. h
alba. 10. QUERCUS foliis oblique pinnatifidis: sinubus angulisque obtusis.
Quercus folis superne latioribus opposite sinuatis, sinubus angulisque obtusis. Gron. virg. 117.
Quercus alba virginiana. Catesb. car. 1. p. 21. t. 21. f. 2. Habitat in Virginia. h

With the help of Mr. Savage I examined the specimens of Quercus in the Linnaean Herbarium in London in 1937, representing the following trivial and specific names:
7. (Prinus) Quercus foliis obovatis utrinque acuminatis sinu-ato-serratis: denticulis rotundatis uniformibus. Hort. Cliff. etc.
8. (nigra) Quercus foliis cuneiformibus obsolete trilobis. Gron. Virg.
9. (rubra) Quercus foliis obtuse-sinuatis setaceo-mucronatis.
10. (alba) Quercus foliis oblique pinnatifidis: sinubus angulisque obtusis.
In \(Q\). Prinus and \(Q\). nigra the specific names were taken over without change from their usage in Hortus Cliffortianus, Gronovius' Flora Virginica, and Royen's account of the Leyden Garden. In the case of \(Q\). rubra the synoptic specific names from these same sources were combined into a simple essential name according to the rules laid down in section 290 of Philosophia Botanica, but one of the synoptic names was retained as the var. \(\beta\)., which was differentiated by the somewhat 3 -toothed apices of the leaf lobes. The specific name of \(Q\). alba was a modification of the Gronovian name to form a better differential with the European Q. Robur. It should be noted that the older
specific name now has become a synonym. It is of great importance to recognize that the individual Linnaean synonyms were nomina, often used successively in various publications for objects of entirely different origin (often from our present point of view applied to objects which we regard as representing distinct species). To Linnaeus they all represented variability within the same species. Such for example is Quercus esculi divisura, foliis amplioribus aculeatis derived by Linnaeus from the illustrations of Plukenet and of Catesby; in this case Catesby had used Plukenet's name for quite a different kind of oak. It is quite evident that the Linnaean species was an aggregate of wild plants, as treated in Flora Suecica; cultivated plants, as in Hortus Upsaliensis and Hortus Cliffortianus; herbarium specimens in the Linnaean Herbarium, and those seen by Linnaeus in other herbaria; and lastly, figures and descriptions of which herbarium specimens were not seen. "This is substantially the opinion to which C. B. Clarke \({ }^{35}\) came \(_{\substack{\text {, }}}\) and likewise Spencer Savage, our foremost authority on Linnaean procedure \({ }^{36}\) :
"A considerable number of the plants described in the first edition of the 'Species Plantarum' cannot be said to have type-specimens in the ordinarily accepted sense. Linnaeus renamed and placed systematically a large number of plants that had been known to botanists for centuries,a different thing from naming and describing a species for the first time. The Linnaean 'type' of any such well-known species will surely be found to consist of all the surviving herbarium specimens determined by Linnaeus at the time he wrote the diagnosis. A 'species' in Linnaeus's sense was not founded on an individual specimen, but was rather an intellectual concept of a natural group, even though that group was part of an artificial system. The specimens he determined he considered to be typical of such a group".

This subject will be discussed further under the heading of "Herbarium", but I wish to point out that the Linnaean species from one point of view was the synthesis of all bibliographic citations under the species, together with Linnaean herbarium specimens, whether or not they were associated with citations. From a second point of view, and a very important one, the species represented that portion of a genus which was included

\footnotetext{
\({ }^{3}\) Journ. Linn. Soc. 30: 299. 1895. "Linnaeus conceived a species as an entity and did not suppose that it could be restricted to one 'type', A 'species', in his Sp. P1., is made up of 4 (or fewer) parts." See footnote 11.
\({ }^{36}\) Catalogue of the manuscripts in the library of the Linnaean Society of London. Part II. Caroll Linnaei determinationes in hortum siccum Joachimi Burseri.: Ed. Spencer Savage, 1937, p. 5.
}
under and defined by the specific name, of which the differential character has been discussed. It may be argued that this was not the idea of species of the present day, which in general are drawn on narrower lines. The corollary is that most species of Species Plantarum comprise two or more species as recognized in the modern consensus. It must be remembered that Species Plantarum was a tentative and artificial system. Natural species, as Linnaeus recognized, should be based on experimental cultivation, i. e., they were plants which came true to seed. But neither in Linnaeus' day or in the present day could a comprehensive classification be made on the basis of experimental data. The synthetic nature of species as treated in Species Plantarum was emphasized by the fact that the work was primarily without descriptions, and that reference to a description was made by the use of an asterisk. \({ }^{87}\) "Only in obscure cases has it been necessary to add descriptions, and these are without ambiguity, so that I may keep the handbook acceptable to the beginner." \({ }^{28}\)

Especially as knowledge of the American and Asiatic floras increased, these Linnaean species were subjected to analytic treatments by later writers, and broken up into smaller units. As to the limits of species there is no unity even among botanists of the present day. \({ }^{39}\) By Linnaeus himself specific names were corrected and restricted in succeeding editions of Species Plantarum. \({ }^{40}\)

\footnotetext{
\({ }^{37}\) Cf. Scirpus culmo nudo setaceo, spicis lateralibus subsolitarils sessilibus. it. scan.* (Sp. pl. p. 49), and Scirpus culmo triquetro nudo, umbelia simplici, spicis ovatis. Fl. zeyl. 38*. (Sp. pl. p. 50).
\({ }^{34}\) Introd. Sp. Pl.: Descriptiones tantum in obscuris adhibere necessum fuit, easque mine ambagibus, ut obtinerem compendium tironibus gratum. Cf. Rhodora 41: 139-140. 1939. It is obvious that Linnaeus placed the asterisk after the word "DESCRIPTIONES", in ed. 2, to call attention to the fact that the gign meant a cited description.
\({ }^{34}\) Bentham, perhaps the greatest of systematic botanists (Trans. Linn. Soc. 27: 507. 1871): "whether we follow Closs in breaking it (Cassia Candolleana) up into three species, or with Vogel regard it as a single representative species, or, as suggested by some others, reduce it to a variety only of the widely spread C. bicapsularis, its geographical and natural relations remain the same. I have, in the following enumeration, after much hesitation classed it as a variety; but all that is thereby meant is that, upon weighing all the evidence afforded by the materials at my disposal, it has appeared to me that its relationship to the other forms of C. bicapsularis is rather of that degree which botanists whose views I adopt call varieties than of the remoter degree which they term spectes."
\({ }^{40}\) Thus in the second edition of Species Plantarum, Scirpus geniculatus was restricted to the plant with articulate culms and elongated spikes. whereas in the first edition it had included also the round-headed plant. Scirpus (Eleocharis) caribaeus
}

Several fallacies have crept into the interpretation of Linnaean procedure, one being that a new specific name ("diagnosis") is based on herbarium specimens at hand. \({ }^{41}\) Such a new specific name was (as previously mentioned) either 1) a new name constructed according to the rules in Philosophia Botanica, as in the example (Quercus foliorum . . . divisis) in Gronovius' Flora Virginica, 117 (1739):
Quercus foliorum sinubus obtusis, angulis lanceolatis seta terminatis integerrimis vix divisis.
Quercus Esculi divisura, foliis amplioribus aculeatis. Plukn. Alm. p. 309, t. 54, f. 4. Red-Oak. Catesb. Hist. Carol. vol. I. t. 32.
Quercus rubra seu Hispanica hic dicta, foliis amplis varie profundeque incisis. Clayt.;
or 2) a shortening of the specific name from synoptic to essential form (cf. Quercus foliis obtuse-sinuatis setaceo-mucronatis. Sp. Pl. p. 996); or 3) change in an adjacent name due to interpolation of a new species into the genus. In the citation just made from Gronovius' Flora, the old specific name of Plukenet was taken up
(or S. capitatus, according to a specimen placed later by Linnaeus in his herbarium, but not according to the immature specimen which Linnaeus had formerly seen in the Gronovian herbarium and which formed the basis of the treatment in the first edition).

Following Gronovius. Cerasi similis arbuscula mariana, padi folio, flore albo parvo racemoso of Plukenet and Catesby was included by Linnaeus as a synonym under Prunus floribus racemosis, folits deciduis basi antice glandulosis Sp. Pl. 473. \({ }^{1} 1753\). This Linnaean species quite evidently included the species now recognized as Prunus virginiana L., P. serotina Ehrh. and Itea virginica L. Between the issue of the first and second editions of Species Plantarum, Linnaeus realized that the Plukenet flgure represented Itea virginica. Torrey \& Gray, F1. N. Am. 1: 410. 1840, discussed the situation as follows: "The Prunus Virginiana of Linnaeus was founded on the present species (the Choke-Cherry), as appears from his description [i, e., speciffc name] and herbarium: but the synonym adduced from Gronovius relates to the succeeding species [ \(P\). serotina] that of Plukenet (omitted in ed. 2) to Itea Virginical and that of Catesby (which was afterwards erased by Linnaeus in his own copy of the Species Plantarum) to Cerasus Caroliniana."

In passing, it might be mentioned that the difficulties in the interpretation of dioecious vines such as Dioscorea and Cissampelos from pictures and meager herbarium specimens was exceedingly difficult.

Plukenet's figure representing Bryoniae similis floridana listed by Linnaeus under Dioscorea villosa, Sp. Pl. p. 1033, represents the staminate flower of Cissampelos Pareira.
\({ }^{41}\) In the treatment of Hedysarum violaceum (Sp. Pl. 749) there is a new speciflc name. and one might say on the basis of this argument that Linnaeus had derived this new name ("diagnosis") from a specimen at hand, since a real description is appended to the treatment. But in discussing Lespedeza violacea. Britton (Trans. N. Y. Acad. Sch. 12: 62. 1893) says: . . . "as illustrated by his own [Linnaeus'] herbarium the species is complex, but the specimens are not the types of the species." The Gronovian reference [based supposedly on a specimen not to be found at the British Museum] is taken as the type. Schindler (Bot. Jahrb. 49:587. 1913) intimates that Linnaeus had a Gronovian specimen under his eyes.
also by Catesby, but merely in a bibliographic sense, and applied by Catesby to a wholly different plant-as we see it today. This old Plukenet name now became a synonym. To this treatment was added the phrase from Clayton, which was in no sense a name or synonym, but merely a translation into Latin by Gronovius of the original English descriptive notes which accompanied the numbered (and unnumbered) specimens. It is quite evident from the much longer descriptive account of Ruellia (Fl. Virg. p. 73) that such descriptive notes were not specific names according to the Linnaean method under which Gronovius worked:

Ruella foliis petiolatis, fructu sessili conferto. Linn. Hort. Cliff. p. 318. \(n\). 1 .

Ruellia strepens, capitulis comosis. Dill. Hort. Elth. p. 300. T. 240. f. 321.

Ruelliae Species flore amplo coerulea inferne tubulato, superiore in quinque segmenta expanso, cito márcescente, in summo caule \& ad nodos florens, foliis oblongis hirsutis serratis ex adverso binis, vasculo longo rotundo, bicapsulari, semine compresso. Clayt. n. 85 \& \(98^{12}\).
(To be continued)

Senecio Smallit Britton, forma tristis, f. nov., ligulis nullis. -Virginia: a single clump at the dry border of "Ram-hole Swamp," Seward Forest, near Triplett, Brunswick Co., May 12, 1945, Fernald, no. 14,859 (тype in Herb. Gray.).

As I have elsewhere predicted, sooner or later a discoid form may be found in any member of §Aurei, so that the character "discoid", as opposed to "radiate", is not a sound one for use in keys.-M. L. Fernald.

\footnotetext{
42 A description of Ruellia strepens was first given by Linnaeus in Mantissa 2: 422. 1771.
}


\section*{Photo. B. G. Schubert}

Betula fapyrifera: fig. 1, fruiting branch, \(\times 1\); fig. 2 , staminate aments, \(\times 1\); fig. 3 , tip of young shoot, \(\times 5 ;\) FIG. 4 , fruiting bract, \(\times 4 ;\) FIG. 5 , samara, \(\times 4\).


Photo. B. G. Schubert
Betula papyrifera, var. commutata: fig. 1, portion of Lyall's specimen, \(\times 1\); fig. 2, characteristic close bark, \(\times 1\); fig. 3, exfoliating bark from base of old trunk, \(X 1\); Figs. 4,5 and 7 , fruiting bracts, \(\times 4 ;\) figs. 6 and 8 , samaras, \(\times 4\).


\section*{Photo, B. G. Schubert}

Betula occidentalis, var. fecunda: fig. 1, portion of type, \(\times 1\); fig. 2, flowering branchlet, \(\times 1 ;\) FIG. 3 , staminate aments, \(\times 1\).


Ihoto. B. G. Schubert

Betula papyrifera, var. pensilis: fig. 1, portion of type, \(\times 1\); fig. 2, fruiting bract, \(\times 4\); Fig. 3, samara, \(\times 4\); fig. 4 , branch with younger aments, \(\times 1\).


\section*{Photo. B. G. Schubert}

Betula papyrifera, var. macrostachya: fig. 1 , portion of type, \(\times 1\); fig. 2, fruiting bract, \(\times 4\); fig. 3, samara, \(\times 4\).

Var. macrostachya, forma longipes: fig. 4 , portion of type, \(\times 1\).


Photo. B. G. Schubert
Betula papyrifera, var. elobata: fig. 1, portion of type, \(\times 1\); fig. 2, immature samara embraced by bract, \(\times 4\); fig. 3 , immature bracts, \(\times 4\).


Photo. B. G. Schubert
Betula papyrifera, var. cordifolia: fig. 1, portion of fruiting branch, \(\times 1\); Fig. \(\mathbf{2}\), tip of vigorous sprout, \(\times 5\); FIG. 3 , fruiting bract, \(\times 4\); FIG. 4 , samara, \(\times 4\).


Photo. B. G. Schubert
Betula papyrifera, var. humilis: fig. 1, portion of branch and Regel's label, from rYpe, \(\times 1\); fig. 2, lower surface of leaf, \(\times 10 ;\) fig. 3, fruiting bract, \(\times 4\); fig. 4 , samara, \(\times 4\); FIG. 5 , fruiting tip,\(\times 1\).


Photo. B. G. Schubert
Betula papyrifera, var. humilis: fig. 1 , specimen, \(\times 1\), cited by Sargent as his \(B\). alaskana; FIGS. 2 and 4 , fruiting bracts, \(\times 4\); FIGS. 3 and 5 , samaras, \(\times 4\).


Photo. B. G. Schubert
Betula borealis: fig. 1, mature branchlets, \(\times 1\); fig. 2, immature fruiting branch, \(\times 1\); fig. 3, tip of young branch, \(\times 5 ;\) FIG. 4 , fruiting bract, \(\times 4\); FIG. 5 , samara, \(\times 4\).


\section*{Photo. B. G. Schubert}

Betula uber: fig. 1, fruiting branchlets from isotype, \(\times 1\); fig. 2 , upper surface of half a leaf, \(\times 2\), showing venation and toothing; fig. 3, portion of lower surface of leaf, \(\times 2\); FIG. 4 , fruiting bract, \(\times 4\); FIG. 5 , samara, \(\times 4\).
B. Lenta: fig. 6, lower surface of half a leaf, \(\times 1\), to show venation and toothing; fig. 7, fruiting bract, \(\times 4\).


Photo. B. G. Schubert
Betula terrae-novae: fig. 1, portion of type, \(\times 1\); fig. 2 , tip of fruiting branchlet, \(\times 5 ;\) fig. 3, two fruiting bracts, \(\times 10 ;\) fig. 4 , nutlet, \(\times 10\).
B. naNA: fig. 5 , tip of branchlet, \(\times 5\); FIG. 6 , fruiting bract, \(\times 4 ;\) FIG. 7 , samara, \(\times 10\).

\title{
CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-No. CLIX
}

\section*{SOME NORTH AMERICAN CORYLACEAE (BETULACEAE)}

\author{
M. L. Fernald
}
(Plates 963-989) \({ }^{1}\)

\section*{I. Notes on Betula in eabtern North America}
(Plates 963-975)
It has long been evident that the ultraconservative treatment of Betula, published by me in 1902, as Relationships of some American and Old World Birches \({ }^{2}\), can not be accepted, in view of the many characters of aments, their bracts and samaras then not understood. That sophomoric study, based on complete lack of understanding, well illustrates how an over-conservative treatment may be as far afield as are those which split beyond the normal divergencies in Nature. In a recent attempt to set in order the White Birches and the Dwarf Birches as they occur in the Gray's Manual range the names applied to our species and varieties have necessarily changed in several cases. The entire treatment can hardly be given here, but, in order to clarify the situation, the key to our members of Series Albae is here given.
a. Bark opaque, chalky- or ashy-white, close, the layers not
readily exfoliating; staminate ament usually 1 and, before expanding, pointing stiffly forward; leaves glabrous or merely glutinous on both sides, abruptly ending in prolonged tail-like tips (caudate); fruiting aments \(1-2.5 \mathrm{~cm}\). long; their mature bracts nearly horizontally divergent, crowded, \(3-4.5 \mathrm{~mm}\). long, uniformly ashy-puberulent on back. ...................................................... B. populifolia.
a. Bark lustrous, creamy- or pinkish-white to warm-brown, in maturity often exfoliating or separating into layers; staminate aments 1 -few; leaves not prominently caudatetipped; fruiting aments (except in the dwarf shrubby no. 4) mostly larger; their bracts (except in the introduced no. 2) ascending, glabrous or pilose on back, the lobes ciliate....b.
b. Samaras \(3.5-6.5 \mathrm{~mm}\). broad, the wings broader than the achene; trees or coarse shrubs.

\footnotetext{
\({ }^{1}\) The cost of preparing and engraving the plater met in part through a grant from the American Philobophical Society.
\({ }^{2}\) Contrib. Gray Herb. n. s. xxili., Am. Journ. Sci., ser. 4, xiv. 167-194, plates v and vi (1902).
}
c. Leaves glabrous on both sides; young shoots glabrous or merely with resinous warts....d.
d. Trees with whitish bark; leaves deltoid-ovate, acuminate from broad base, those of fertile branches \(3-10 \mathrm{~cm}\). long; staminate aments \(4-10 \mathrm{~cm}\). long; lateral lobes of pistillate bracts divergent, larger than terminal lobe; species of low or intermediate \({ }^{\circ}\) altitudes.
Leaves of fertile branches 3-7 cm. long, their cuneate to truncate bases entire; fruiting aments \(2-4 \mathrm{~cm}\). long, their bracts divergent; introduced species... 2 Leaves of fertile branches \(5-10 \mathrm{~cm}\). long, their rounded bases toothed except near petiole; fruiting aments \(2.5-5 \mathrm{~cm}\). long, their bracts ascending; indigenous. . . . ........................3. B. caerulea-grandis.
d. Shrub with dark close bark; leaves ovate, merely acute to blunt, those of fruiting branches \(1.5-4.5 \mathrm{~cm}\). long; staminate aments \(1.5-3.5 \mathrm{~cm}\). long; lateral lobes of pistillate bracts ascending, scarcely broader than terminal lobe; subarctic-alpine species
4. B. minor.
c. Leaves pubescent beneath, at least when young, or on veins or in their axils; young vegetative shoots pubescent or puberulent.
Buds lustrous with resin; leaves merely acute, those of fertile branches \(3-5 \mathrm{~cm}\). long; mature fertile aments \(1.5-3 \mathrm{~cm}\). long; introduced species.
5. B. alba.

Buds scarcely resinous; leaves mostly acuminate, those of fertile branches \(2.5-10.5 \mathrm{~cm}\). long; mature fertile aments \(1.5-6.5 \mathrm{~cm}\). long; indigenous. ....6. B. papyrifera.
b. Samaras \(2-3.5 \mathrm{~mm}\). broad, the wings scarcely to barely as broad as the achene; new sprouts pubescent; leaves elliptic, rhombic-oval or ovate; shrub with close dark bark. 7. B. borealis.
1. B. populifolia Marsh.. Arb. Am. 19 (1785). B. alba L., var. populifolia (Marsh.) Spach, Ann. Sci. Nat. sér. 2, xv. 187 (1841).-Sterile dry to wet acid soils, Prince Edward Island to Laurentide region of Quebec, west to southern Ontario, south to Delaware, Pennsylvania, upland to Virginia, northern Ohio and northern Indiana.
B. populifolia Marsh., forma incisifolia, f. nov., foliis lacerato-incisis, laciniis attenuatis plus minusve incisis.-Massachusetts: old field at border of woods, Auburndale, July 23, 1941, D. S. Correll (type in Herb. N. E. Bot. Club). Pennsylvania: along trail just north of highway, below the Pagoda, Mt. Penn, Berks Co., Aug. 14, 1943, a single young individual, Wherry. Illustrated as var. laciniata Loud. by Correll in Rhodora, xliv. plate 708 opp. p. 236 (1942).

Unfortunately the name Betula populifolia, var. laciniata (Lodd.) Loud., currently used for this "cut-leaved" form; is not a safe one to take up. The identity is too doubtful since Loudon based it on a nomen nudum which had been published by Conrad Loddiges and Sons, Nurserymen, in their 16th Catalogue
of Plants, 44 (1836). Loddiges and Sons merely had the name Betula laciniata in a list of hardy trees and shrubs cultivated by them. ' There was no description; consequently when Loudon, Arb. and Frut. Brit. iii. 1707 (1838), published B. populifolia, var. laciniata, "B. laciniata Lodd. Cat. ed. 1836, has large, smooth, shining, deeply cut leaves, and appears to us to belong to \(B\). (a.) populifolia, rather than to B. alba", he based his combination on a nomen nudum. If he had omitted the citation of Loddiges' identical nomen which was further invalidated by the well described B. laciniata Ehrh. (1788), the case would be different. At least, if it be maintained that Loudon gave a sufficient diagnosis and thus validated the name, it is not at all certain what he had. It is safer to establish our indigenous form on surer ground.
2. B. pendula Roth, Tent. Fl. Germ. i. 405 (1788). B. alba L. Sp. Pl. 982 (1753), in part; Koch, Syn. 662 (1837). B. alba, ß. pendula Ait. Hort. Kew. iii. 336 (1789). B. verrucosa Ehrh. Beitr. vi. 98 (1791-1793).-Introduced from Europe; spread to roadsides, thickets, open woods, etc., Nova Scotia to Ontario, south to Pennsylvania, Michigan, Wisconsin and Iowa.

Forma dalecarlica (L. f.) Schneid. Handb. Laubholzk. i. 112 (1904). B. alba, ß. dalecarlica L. f. Suppl. 416 (1781).-Similarly spreading from cultivation.

Those who treat this half of the mixed Betula alba L. as typical B. alba (for instance Beck von Mannagetta and Wilmott) go back only to Koch (1837) for their cue. Evidently they have overlooked the fact that Roth in 1788 had removed B. pendula, thus leaving the other species (B. pubescens Ehrh., 1791) to stand as true \(B\). alba. See comments under our no. 5 .
3. B. caerulea-Grandis Blanchard, Betula, i. no. 1 (May 7, 1904); Fernald in Rhodora, xxiv. 171 (1922). B. caerulea Blanchard, var. grandis Blanchard in Vermont Phoenix for May 13, 1904 and Betula, i. no. 2 (May 13, 1904). B. caerulea, var. Blanchardi Sargent, Man. Trees. N. A. 202, fig. 168A (1905).Dry woods, Gaspé Peninsula to Montmorency Co., Quebec, south to Nova Scotia, northern New England and eastern New York.
\(\times\) B. caerulea Blanchard, Betula, i. no. 1 (May 7, 1904); Sargent, Man. 201, fig. 168 (1903); Fernald in Rhodora, l. c. 172 (1922)-A hybrid of no. 3 with no. 1, occasional where they are together.
4. B. minor (Tuckerm.), stat. nov. B. papyracea, var. minor Tuckerman in Am. Journ. Sci. xlv. 31 (1843). B. dahurica, \(\beta\). americana Regel in DC. Prodr. xvi \({ }^{2} .175\) (1868). B. alba, subsp. papyrifera, \(\beta\). humilis Regel, l. c. 166 (1868), in small part only (i. e. B. papyracea, var. minor Tuckerm., the tYpe of which is also the type of Regel's B. dahurica, var. americana!) B. papyrifera, var. minor (Tuckerm.) Wats. \& Coult. in Gray, Man. ed. 6, 472 (1889), at least in part. B. odorata, var. tortuosa sensu \({ }^{1}\) Fernald in Rhodora, iii. 173 (1901), not (Ledeb.) Lange. B. alba, var. minor (Tuckerm.) Fernald in Am. Journ. Sci. ser. 4. xiv. 179 (1902).-Acidic rocky barrens, peats and alpine summits, Labrador Peninsula, south to Newfoundland, Shickshock Mts.; Gaspé Peninsula, and Laurentide Mts., Quebec, highest mountains of northern New England and northeastern New York, and shores of James Bay, Ontario. The following are characteristic. Labrador: head of pond, 30 miles west of Nain", Anatolak Bay, Potter \& Brierly, no. 2614; Anatolak, C. S. Sewall, no. 449; Hopedale, Aug., 1935, Agnes Ayre; granite hills, Salmon Bight, \(53^{\circ} 27^{\prime}\) N., \(55^{\circ} 47^{\prime}\) W., A. E. Porsild, no. 37, as B. papyrifera, var. cordifolia; Square Island, lat. \(52^{\circ} 49^{\prime}\), Aug. 16, 1882, J. A. Allen; large shrubs on upper crests and on gneiss plain, Blanc Sablon, Fernald \& Wiegand, nos. 3248 and 3249. Newfoundland: shrub \(0.5-0.8 \mathrm{~m}\). high, turfy and rocky slopes of Cape Dégrat, Quirpon Island, Fernald \& Long, no. 28,071, erroneously distributed as \(B\). microphylla Bunge; thickets; brooksides and ravines, western side of Quirpon I., Wiegand, Gilbert \& Hotchkiss, no. 28,076 (as B. microphylla); quartzite one half mile south of Deer Pond, Highlands of St. John, Wiegand, Gilbert \& Hotchkiss, no. 28,078 (as B. microphylla); erect, 1 m . or less high, peaty or turfy upper quartzite slopes, alt. 600-650 m., Killdevil, Bonne Bay, Fernald, Long \& Fogg, no. 1635 (as B. microphylla); diorite tableland, alt. about 550 m ., northern region of the Blomidon ("Blow-me-down") Mts., Bay of Islands, Fernald \& Wiegand, no. 4263; diorite tableland, near Franchman's Cove, Bay of Islands, Griscom, no. 10,242; about 4 feet high, Riverview Camp, Grand Codroy R., Pease \& Edgerton, no. 27,113; damp thickets on hill southwest of Tilt Cove, Notre Dame Bay, Fernald \& Wiegand, no. 5307. Quebec: rocky hillsides, Vieux-Fort, Pontchartrain, Saguenay Co., St. John, no. 90,831 (as B. glandulosa); tundra, Ile Herbée, Archipel de VieuxFort, St. John, no. 90,832 (as B. glandulosa); sur les gneiss près des chutes, Natashquan, Côte-Nord, Victorin \& Rolland, no. 28,101 (as B. microphylla); Seven Islands, Saguenay Co., C. B. Robinson, nos. 864 and 867; plateau dénudé, Botanists' Dome, Montagne de la Table, Rousseau \& Fortier, no. 31,429; abondant près du sommet, Mt. Lyall, Gaspé Co., Victorin, Rolland \&

\footnotetext{
\({ }^{1}\) For these more erroneous identifications one is tempted to write "nonsensu."
}

Jacques, no. 33,516 (as B. microphylla); parties sèches près des sommets, Mont Sterling, Gaspé Co., Victorin, Germain \& Jacques, no. 33,481 (as B. microphylla); rocky slopes and barrens, alt. 650-1100 m., Mt. Albert, Gaspé Co., Collins \& Fernald, no. 67; on hornblende schist, alt. \(900-1060 \mathrm{~m}\)., north slope, Mt. Albert, Fernald \& Collins, nos. 214 and 529 (as B. microphylla); sur les schistes hornblendiques et les paragneiss, Mt. Albert, Victorin, Brunel, Rolland \& Rousseau, no. 17,598 (as B. pumila ?); bare hornblende schist near summit, about 1100 m . alt., Mt. Fortin, Matane Co., Fernald \& Pease, nos. 25,023 and 25,024 (as B. microphylla); Port à Pueis, below Cap à l'Aigle, J. Macoun, no. 68,776. Maine: summit of Mt. Katahdin, Aug., 1847, Aaron Young, Bot. Surv. Me., Aug. 25, 1847, George Thurber, Aug. 12, 1873, Scribner, Aug. 1874, Scribner (as B. glandulosa), Sept. 1898, E. D. Merrill (as B. glandulosa); small shrubs, summit of 1st North Peak, Mt. Katahdin, July 14, 1900, Fernald. New Hampshire: "In alpinis Mont. Alborum", Tuckerman (isotype); White Mts., 1842, A. Gray, this and the preceding the types of B. dahurica, var. americana Regel; Alpine Garden, Mt. Washington, July 10, 1893, E. \& C. E. Faxon, June 26, 1898, E. F. Williams (as B. glandulosa), Aug. 5, 1901, Robinson, August 13, 1902, Pease, no. 445, July 31, 1926, Pease, no. 19,828; Oakes Gulf, Mt. Washington, July 4, 1878, Faxon (as B. glandulosa), July 8, 1895, Kennedy, Williams; Oakes Gulf, Eggleston, no. 2376 (as B. odorata, var. tortuosa); 5-mile post on Carriage Road, Mt. Washington, July 27, 1886, Faxon (as B. glandulosa), Greenman, no. 1088 (as B. glandulosa), Pease, no. 10,532; "Cape Horn", Mt. Washington, June 24, 1898, Williams, Robinson, no. 955; Lake of the Clouds, Mt. Washington, July 4, 1878, Faxon (as B. glandulosa), Pease, no. 446; near Duck Fall, Low \& Burbank Grant, Pease, no. 14,160; Nowell's Ridge, Low \& Burbank Grant, Pease, no. 12,316; Ice Gulch, Randolph, Pease, nos. 10,750 ("trees 2 ft . high"), 16,707; upper rocky slopes of Mt. Lafayette, St. John, no. 439. New York: summit of Mt. McIntyre, alt. 4800-5000 ft., House, no. 9488. Ontario: Hasey Island, Moose River, James Bay, D. Potter, no. 804. Plate 963 , rigs. 1-7.

Betula minor closely simulates the Arctic Eurasian and Greenland shrub, there passing as B. alba, var. tortuosa (Ledeb.) Schneider or B. odorata Bechst., var. tortuosa (Ledeb.) Lange or B. tortuosa Ledeb. (plate 963, fig. 11). That shrub, however, apparently an arctic extreme of B. alba, has the samaras elliptic to obovate (as long as or longer than broad) with wings about equaling the narrow achene. B. minor, on the other hand, has the broadly subreniform samaras definitely broader than long,
the wings as broad as or broader than the broadly elliptic achene. A great number of specimens (through my original \(\sin\) ) have been misidentified as the Siberian B. microphylla Bunge, but that poorly understood species seems to be unlike anything American (see discussion under B. borealis). As for its relationship to \(B\). papyrifera, \(B\). minor has, somewhat naturally, been inferred to be merely a dwarfed alpine or subarctic extreme of the tree of lower altitudes and more favorable climatic conditions. Examination of the two, however, brings out several important characters. In B. papyrifera (plates 964, 965 and \(967-972\) ) the vigorous young shoots are pubescent; in B. minor glabrous but often so gummy as to be mistaken for those of B. glandulosa. In B. papyrifera the expanding leaves are pubescent beneath, the mature ones with traces of pubescence beneath, at least in the axils of the veins. In B. papyrifera the bracts of the pistillate aments (except in vars. macrostachya and cordifolia) have broad and widely divergent lateral lobes; in B. minor the lateral and terminal lobes are of about the same breadth and porrect. Although the lateral lobes of B. papyrifera, vars. macrostachya (plate C68) and cordifolia (plate 970) are porrect, the bracts are much longer than in B. minor and the other characters sufficiently different: both with pubescent new shoots and young foliage, var. macrostachya with mature fruiting aments \(1.3-2 \mathrm{~cm}\). thick, the samaras \(5-6 \mathrm{~mm}\). broad; var. cordifolia similar but with definitely cordate leaves; \(B\). minor glabrous from the first, often gummy, with very short staminate and fruiting aments, the latter at most 9 mm . thick, and samaras averaging 4.6 mm . wide.
5. B. alba L. Sp. Pl. 982 (1753), in part; emend. Roth, Tent. FI. Germ. i. 404 (1788); Schneid. Handb. Laubholzk. i. 116 (1904); Rendle \& Britten in Journ. Bot. xlv. 441 (1907). B. alba, a. vulgaris Ait. Hort. Kew. iii. 336 (1789). B. pubescens Ehrh. Beitr. v. 160 (1790), nomen only, vi. 98 (1793-on title page as 1791). B. tomentosa Reitter \& Abel, Beschr. und Abbild. Deutschl. selt. wild. Holz.-Art. 17, t. 15 (1803).-Introduced from Europe; naturalized on roadsides, in thickets and at borders of woods, Newfoundland to Pennsylvania, west to Michigan.

Although this characteristic European species is passing in this country as B. pubescens Ehrh. (1793) it is clear, I think, that
we should retain for it the name B. alba L. (1753), as emended by Roth (1788) and as taken up by Aiton (his var. vulgaris, as opposed to his var. \(\beta\). pendula). Roth properly split the bipartite \(B\). alba of Linnaeus in 1788 into what he considered true \(B\). alba and the newly segregated \(B\). pendula. Except to those who, following the very simple but also very doubtful Germanic practice of rejecting all Linnean names of European species if they included what are now considered two or more species, the case seems quite clear. B. alba in the sense of Roth, who first made the split, and of Aiton, who, the next year, split the species into its two primary elements (as varieties) was thus retained by those very keen students of nomenclature, Schneider in Vienna and Rendle \& Britten in London.

If we should apply to North American species of Linnaeus the Germanic idea of rejecting all of his names, which were used for two or more specific elements but which Linnaeus supposed to be conspecific and to both of which the original Linnaean name has been frequently applied, the havoc would be amazing and futile. An embarrassingly large number of the American species of Linnaeus, to say nothing of Old World species from the Orient, were hopeless confusions. Nevertheless, we try to typify them by singling out the element most definitely seeming to be what he primarily intended; or we accept the first clear breaking of the mixture into its primary elements. In case of Betula alba the bipartite species was clearly separated into its two primary elements by Roth in 1788 . Unless someone earlier segregated them under different names, Roth's typification of \(B\) : alba should stand.

The name Betula tomentosa and that of one of its authors, Reitter (or Reiter) have made endless trouble for those who merely compile from others rather than check the original sources. Thus, from the statement in Dippel, Handb. Laubholzk. ii. 174 (1892), a work in which the illustrations (and apparently the bibliography), right or wrong, were copied from others, we find under \(B\). alb\(a, ~ s u b s p\). pubescens the following bibliography: "Bet. pubescens Ehrh. Beitr. z. Naturk. VI. S. 98. 1793.
Bet. tomentosa Reitter u. Abel Abbild. d. 100 wild. deutsch. Holzart. I. 17. 1790." If Dippel's bibliography were correct, the name B. tomentosa (" 1790 ") would obviously antedate \(B\).
pubescens (1793). This, however, is not the case. It is simply one of the many errors which the incorrect citations of Reitter \& Abel have started.

In the first place, the name of the first of the two authors has been so misinterpreted that one wonders if later authors have ever taken the trouble to look up the books. Thus, in Index Kewensis he appears as Retz[ius]. Von Hayek, Fl. Steyerm. i. 105 (1908), swallowed without evident choking the predigested date, 1790, and displaced B. pubescens (1793) by B. tomentosa "Reith et Abel"; and Schneider, Ill. Handb. Laubholzk. ii. 886 (1912) also said "Reith et Abel". Ascherson \& Graebner, Syn. iv. 398, got nearer the facts as to the first author but by omitting a period made the authors and the place of publication erroneously appear as "Reitt u. Abel Abb. 100 wild. Holzart. I. 17 (1790)." Even the very careful Bradley Bibliography called them Reiter \& Abel in vol. i. 370, but one looks in vain for them under Reiter in the Index, for there (vol. iv. 716) they are entered only under Reitter.
The author himself (or his editors, collaborators or publishers) was doubtful as to his own name. There were two quite different books by the pair of authors. In the citations by later authors these have been hopelessly confused. These books were
1. Abbildung der Hundert deutschen wilden Holz-Arten, etc. Stuttgart. 1790. With colored plates. The authors given as Reitter und Abel and the first author's name spelled in the dedication very definitely "Reitter". The somewhat altered second edition, with the dedication and much of the introductory matter omitted, the plates uncolored, came out in 1805. Here he appears as "Reiter".
2. Beschreibung und Abbildung der in Deutschland seltener wildwachsenden und einiger bereits naturalisirten Holz-Arten, etc. Stuttgart. 1803. The authors given as Reiter und Abel.

No. 1 alone was caught by Pritzel's Thesaurus. Since no. 2 was evidently unknown to Pritzel it must be very rare. I have, fortunately, been able to consult them both, as well as the 2nd edition of no. 1, at the Arnold Arboretum; and the Librarian, Mrs. Schwarten, kindly refers me to the biography of Johann Daniel Reitter in Hess, Lebensbilder, 287 (1885), the biographer there listing book no. 1, Abbild. Hundert deutsch. wild. HolzArt., but not no. 2, Beschreib. und Abbild. Deutschl. Holz-Art. Now, when both these works are examined it will be found that in no. 1, Abbild. Hundert deutsch. wild. Holz-Art., there is no

Betula tomentosa. The only true Birch there is on p. 7 (not 17), "XV. Kupfertafel. Die Birke. Wonnerbaum. Betula alba"; while plate 15 has merely the text "Betula alba. Die Birke". Dippel, von Hayek and others who have started B. tomentosa there have obviously been mistaken.

In work no. 2, Beschr. und Abbild. 17 (1803) there is a detailed account of Betula tomentosa, the "wohlriechende Birke" and t. 15 shows it in color, also as B. tomentosa. That, however, was in 1803, not in 1790, so that for those who maintain \(B\). pubescens as a species the name B. tomentosa offers no competition. The rarity of Reitter \& Abel's Beschr. und Abbild. (1803) is further indicated by the absence of a reference to its plate 15 in Index Londinensis. Plate 15 of the Abbildung (1790) is there correctly cited under B. alba.
6. B. papyrifera Marsh. Arb. Am. 19 (1775). B. papyracea Ait. Hort. Kew. iii. 337 (1789). B. alba, 8. papyrifera Spach in Ann. Sci. Nat. Bot. sér. 2, xv. 188 (1841); Regel in Nouv. Mém. Soc. Sci. Nat. Mose. xiii. 81 -repr. Mon. Bet. 23-t. v. fig. 5-16 (1861). B. alba sensu Fernald in Am. Journ. Sci. ser. 4, xiv. 169 and 190, in small part (1902).-Highly variable; represented in eastern North America by the following varieties and forms,
\(\boldsymbol{a}\). Leaves merely rounded to tapering at base. ... .b.
b. Bracts of pistillate aments 3-lobed; peduncle usually shorter than fruiting ament; the latter \(2.5-6.5 \mathrm{~cm}\). long. . . .c.
c. Mature fertile bracts \(3.5-7 \mathrm{~mm}\). long, with divergent lateral lobes; samaras \(3.5-5 \mathrm{~mm}\). broad....d.
d. Branchlets spreading or ascending, not strongly drooping; leaves of fertile branches broadly ovate, mostly rounded at base; pistillate aments mostly solitary on the spurs....e.
\(e\). Bark of trunks of fruiting trees (or shrubs) creamyto pinkish-white, very soon exfoliating.
Leaves membranaceous to firm, hardly lustrous B. papyrifera (typical).

Leaves thick and leathery, lustrous above..... Forma coriacea.
e. Bark of fruiting trunks warm-brown, only on oldest bases with smooth outer brown layer exfoliating Var. commutata.
d. Branchlets pendulous; leaves of fertile branches narrowly ovate to ovate-lanceolate, only slightly rounded to gradually tapering to petiole; pistillate aments often in fascicles of 2-4 on the spurs.......
c. Mature fertile bracts \(\mathbf{7 - 1 0} \mathrm{mm}\). long, with ascending lateral lobes; samaras \(6-8 \mathrm{~mm}\). broad; leaves ovate, with rounded bases; fruiting aments solitary or paired.
Peduncles of fruiting aments \(0.5-1.5 \mathrm{~cm}\). long, many times shorter than ament. . ................... Var. macrostachya.
Peduncles 2-3 cm. long, one half to essentially as long as pendulous ament.

Forma longipes.

> b. Bracts unlobed or with merely rudimentary lateral lobes, elliptic-oblong; pistillate aments \(1.5-2 \mathrm{~cm}\). long, about equaled by arched-recurving peduncle; leaves rhombicoval, dentate.
> Var. elobata.
> a. Leaves definitely cordate at base; bracts of mature pistillate
> aments \(5-10 \mathrm{~mm}\). long, mostly with ascending lobes; bark of mature trunks warm-brown to creamy- or pinkish-white
> Var. cordifolia.
B. papyrifera, typical.-Woods, especially on slopes, Labrador to Alaska, south to Newfoundland, Nova Scotia, New England, New York, upland of Pennsylvania and West Virginia, northern Ohio, northern Indiana, northern Illinois, northern Iowa, South Dakota, etc. Plate 964.

Forma coriacea Fernald \& Wiegand in Rhodora, xxv. 209 (1923)-Dunes of Lake Ontario, New York.

Var. commutata (Regel), comb. nov. B. occidentalis Hook. Fl. Bor.-Am. ii. 155 (1839) as to specimen from Scouler only, not as to other specimens and detailed description; sensu Lyall in Journ. Linn. Soc. vii. 134 (1864); sensu Sargent in Bot. Gaz. xxxi. 237 (1901); not Hook. l. c. as to detailed descr. (1839), nor Nutt. N. A. Syl. i. 23, pl. 7 (1853), nor S. Watson in Bot. King ReportU. S. Geol. Expl. 40th Parallel, v. 323, pl. xxxv (1871), nor Sargent, Sylva, ix. 65, pl. cccelv (1896), nor S. Wats. Bot. Calif. ii. 79 (1880). B. alba, subsp. occidentalis (Hook.) Regel, \(\beta\). commutata Regel in Bull. Soc. Nat. Mosc. xxxviii. 401 (1865)repr. as Bemerk. Gatt. Bet. Aln. 14, pl. 7, figs. 6-10 (1866) and in DC. Prodr. xvi². 166 (1868), as to Type from Sumass Prairie, Lyall. B. papyracea, var. occidentalis sensu Dippel, Handb. Laubholzk. 177 (1892). B. Lyalliana Koehne in Mitt. Deutsch. Dendr. Gesellsch. 1899: 53 (1899), nomen only. B. alba, forma occidentalis sensu Fernald in Am. Journ. Sci. ser. 4, xiv. 173 and 190 (1902), not.B. occidentalis Hook. basonym. B. papyracea Lyalliana Koehne ex Schelle in Beisner, Schelle \& Zabel, Handb. Laubh.-Ben. 55 (1903). B. papyrifera, var. Lyalliana (Koehne) Schneid. Ill. Handb. Laubhk. i. 115 (1904), based on "B. occidentalis Lyall, in Jour. Lin. Soc. VII. 134. 1864, ex parte, non Hook." B. papyrifera, var. occidentalis sensu Sargent in Journ. Arn. Arb. i. 63 (1919), not B. occidentalis Hook. basonym.Woodlands near the coast, Labrador to northeastern Massachusetts; western North America south to Oregon. Plate 965.

In 1902 I pointed out that the character of permanently close and dark bark, which Sargent (1901) took as the single specific character of the tall tree of the Pacific slope, "perhaps the largest of all birch-trees" (Sargent, l. c. 238), breaks down in the West and that in the East trees, otherwise inseparable from B. papyrifera, may have the bark permanently quite as dark as in the tree
of Puget Sound and the lower Fraser River. Subsequently I have seen forests in Newfoundland and at the tip of the Gaspé Peninsula where the large trunks (up to 9 dm . in diameter) were covered with smooth deep-brown bark. In the oldest trees, however, the dark bark of the base of the trunk (up to 2 or 3 m .) will sometimes exfoliate and there leave perfectly characteristic exfoliating pale bark (plate 965, figs. 2 and 3) of typical B. papyrifera. One of the southernmost stations in the East seems to be on Cape Ann, large brown-barked shrubs loaded with fruit, near granite-quarries back of Bayview, Gloucester, where it was collected in August, 1944, by Miss Elizabeth Johnston. It might be thought that it was long ago recorded from Essex County, for the three specimens cited by Regel of his B. alba, subsp. occidentalis, ß. commutata were from "Sumass Prairie (Lyall), Topsfield, Massachusetts (Asa Gray), Oregon (Lyall). The Topsfield specimen, labelled by Regel as above, was distributed by William Oakes as B. papyracea; Asa Gray merely sent it on loan to Regel. There is no note regarding the bark of the trunk; apparently Oakes did not see anything unusual in it. The Lyall specimen from Sumass Prairie is the type of var. commutata.
Hooker, Nuttall, Torrey, Sereno Watson and many other careful students of the past correctly understood Hooker's rather vivid description of Betula occidentalis. Unfortunately, however, Hooker originally complicated matters by first citing a specimen from "Straits of De Fuca. Dr. Scouler", although his description was, it seems to me and to several field-botanists who know both trees, based almost entirely on the characteristic shrub or small tree of the Rocky Mountain region, west to the drier slopes of British Columbia, Washington, Oregon and California, the species which Sargent, l. c. 239 (1901) renamed B. fontinalis. These two trees are abundantly distinct but I am unable to follow Sargent's reasoning, except that in 1901 he was following the now abundantly discredited principle of neglecting, if it happened to disagree, the description and taking as type the first cited specimen, in this case the Scouler specimen from the Straits of Juan de Fuca. In doing so, however, he saw in Hooker's description more elements of that species than I can find and consequently set off the cordilleran B. fontinalis. He
stated that the specimens cited by Hooker came from three different trees:
First, Betula papyrifera Marsh
Second, the large tree which grows on the lower Fraser river, on the shores and islands of Puget sound, and on Vancouver island (plate 965, FIGE. 1 and 4-6). This tree has pubescent branchlets, leaves pubescent on the lower surface, . . Specimens of this tree, which is perhaps the largest of all birch-trees, were first gathered on the shores of the straits of Fuca by Dr. John Scouler . . The tree from the straits of Fuca appeared first in the description of Betula occidentalis which was evidently drawn principally from the specimen of that tree [italics mine], and must be considered the type of Hooker's species
Third, the half-shrubby dark-barked species . . . which ranges as far south as Colorado, Utah, and northern California. This plant was collected by Nuttall on the Sweetwater ... and was first described and figured by him as Betula occidentalis (Sylva I: 23. pl. 7). Torrey in the Botany of Fremont's Expedition repeats this error. This same species was also described and figured in King's Rep. (5: 323. pl. 35) as Betula occidentalis by Watson who repeated his error in the Botany of California, and it . . is described and figured as Betula occidentalis in my ninth volume of The Sylva of North America . . . our tree, for which I now propose the name of Betula fontinalis.

Along with many others I have fallen into the trap and have followed Sargent in calling the cordilleran low tree or coarse shrub Betula fontinalis. This course, as already stated, ignores the very definite description given by Hooker:
3. B. occidentalis; ramis rufo-fuscis copiose resinoso-verrucosis, foliis late rhombeo-ovatis sublobatis grosse inciso-serratis sub lente appressohirsutulis v . nudis subtus pallidioribus epunctatis, nervis paucis remotis, amentis foem. lato-cylindraceis, squamis lobis ovato-oblongis lateralibus decurvo-falcatis intermedio longiore.

Hab. Straits of De Fuca. Dr. Scouler. Near springs on the west side of the Rocky Mountains. Douglas; and on the east side, from the mountains to Edmonton House. Drummond. One specimen is in the collection from the Arctic coast* (?) Dr. Richardson-This Birch does not agree with any described species, and it is probably confined to the west coast, and to the immediate vicinity of the Rocky Mountains, forming a low, small brush-wood, 6-10 feet high, and never exceeding a few inches in the diameter of its trunk. Mr. Drummond considered it to be the B. nigra, but its bark and leaves are quite different; [Then a statement of characters of \(B\). nigra]. The main branches are erect, and somewhat virgate, clothed with a red-brown bark, a little inclining to purple, copiously sprinkled with resinous warts in all the specimens. Petioles \(1 / 2\) to \(3 / 4\) of an inch long, adult leaves \(2-21 / 2\) inches, broadly ovato-rhomboid, rather acute than acuminate, of a harsh and dry but not thick texture, slightly lobed at the margin, and inciso-serrate, the serratures coarse and sharp, paler beneath, but never, either in the old or younger state, dotted. Male catkins resembling those of the preceding \([B\). papyrifera], 1-2 inches long.

\footnotetext{
"* There has probably been some mistake in the station of this."
}

In the two following paragraphs I have quoted the characters as described by Sargent, Man. 204, 205 and 207 (1905) and by Rydberg, Fl. Rky. Mts. 202-204 (1918) of B. occidentalis sensu Sargent (i. e. B. papyrifera, var. commutata) and B. fontinalis Sargent (i. e. B. occidentalis Hook.); and after each item Hooker's own description in italics. As Bateson used to say, a judicious advocate leaves the conclusion to flow quietly from the evidence.
B. occidentalis sensu Sargent (i. e. B. papyrifera, var. commutata). "A tree, \(100^{\circ}-120^{\circ}\) high, with a trunk \(3^{\circ}-4^{\circ}\) in diameter" (Sargent); "tree sometimes \(30-40 \mathrm{~m}\). high" (Rydb.) Hooker: "small brush-wood, 6-10 feet high, and never exceeding a few inches in the diameter of its trunk". The "branches often pendulous on old trees, . . . branchlets more or less glandular and coated with long pale hairs when they first appear, . . . marked by numerous minute pale lenticels and pubescent or puberulous during their first winter and nearly destitute of glands" (Sargent); "at first pubescent or puberulent" (Rydb.) Hooker: "ramis . . . copiose resinoso-verrucosis", "The main branches erect, and somewhat virgate, . . . copiously sprinkled with resinous warts on all the specimens". Leaves "ovate, acute, covered with dark reddish resinous viscid glands, and villous along the midribs and veins, with long white hairs often also in large persistent tufts in the axils of the primary veins, and at maturity thin and firm in texture, marked by the scars of the fallen glands, . . \(3^{\prime}-4^{\prime}\) long, . . . their petioles stout, glandular, at first tomentose, ultimately pubescent or puberulous, about \(3 / 4\) ' long"' (Sargent). Hooker: "foliis late rhombeo-ovatis . . sub lente appresso-hirsutulis v. nudis subtus . \({ }^{\circ}\) epunctatis"". "Petioles \(1 / 2\) to \(3 / 4\) of an inch long, adult leavcs 2-2 \(1 / 2\) inches, broadly ovato-rhomboid, rather acute than acuminate, of a harsh and dry but not thick texture, paler beneath, but never, either in the old cr younger state, dotted". The "staminate aments . . . becoming \(3^{\prime}-4^{\prime}\) long" (Sargent). Hooker: "Male catkins . . . 1-2 inches long."
B. occidentalis sensu Nuttall, Torrey, Sereno Watson and Sargent's Sylva (i. e. B. Fontinalis Sargent): "more commonly shrubby, with many thin spreading stems forming open clusters, \(15^{\circ}-20^{\circ}\) high; often much lower, and frequently crowded in almost impenetrable thickets" or more rarely "A tree, occasionally \(30^{\circ}-40^{\circ}\) high, with a trunk \(12^{\prime}-18^{\prime}\) in diameter" (Sargent); "tree occasionally \(10-12 \mathrm{~m}\). high, often growing in clumps and shrub-like" (Rydb.). Ноокеr: "forming a low, small brush-wood, 6-10 feet high, and never exceeding a few inches in the diameter of its trunk." Branchlets "much roughened at first by large lustrous resinous glands persistent until the second season" (Sargent); "twigs densely glandular-resiniferous", "not hairy" (Rydb.). Hooker: "ramis copiose resinoso-verrucosis", "branches . . . copiously sprinkled with resinous warts in all the specimens". Leaves "broadly ovate, acute" with "abruptly wedge-shaped . . . base, and sometimes slightly laciniately lobed, . . pilose above, and covered by conspicuous resinous glands when they unfold, at maturity thin and firm, . . . \(1^{\prime}-2^{\prime}\) long, petioles . . \(1 / 3^{\prime},-1 / 2\) ' long" (Sargent); "leaves broadly ovate, usually less than 4 cm . long" (Rydb.). Hooker: "foliis late rhombeo-ovatis sublobatis grosse inciso-serratis sub lente appresso-hirsutulis v. nudis subtus epunc atis", "petioles \(1 / 2\) to \(3 / 4\) of an inch long, adult leaves \(2-21 / 2\) inches, broadly ovato-rhomboid, rather acute than acuminate, of a harsh and dry but not not thick texture, slightly lobed at the margin, . . . never, either in the old or younger state, dotted". Staminate "aments . . becoming 2'-21/2' long" (Sargent); "staminate aments 5-7 cm. long" (Rydb.). Hooker: "Male catkins . . . 1-2 inches long".

When we take into account the facts that plenty of mature branches of Betula occidentalis (fontinalis) have leaves down to \(3 / 4\) inch long and petioles down to less than \(1 / 4\) inch in length, while others (Koehne, Herb. Dendrol. no. 105; L. E. Smith, no. 759; Muenscher \& Maguire, no. 15,690; M. E. Peck, no. 9468; F. A. Walpole, no. 323; Eggleston, no. 21,998; St. John, no. 7655; show blades \(2-21 / 2\) inches long, while in an extreme variety they may be up to 7 cm . long, it becomes quite clear that in most of his stated characters Hooker was accurately describing the relatively low and often shrubby species which Nuttall, Torrey, Watson and others understood as B. occidentalis and which Sargent, without any concrete diagnosis and without designation of type, called B. fontinalis.
Returning to Betula papyrifera, var. commutata, that name started as B. alba, subsp. occidentalis, var. \(\beta\). commutata Regel in 1865, Regel defining his subsp. occidentalis, var. \(\alpha\). typica "trunco humili, folis inciso-sublobatis dentatisque" (i. e., following Hooker's original description), while his var. commutata was defined as follows:

в commutata (tab. 7, fig. 6-10); trunco elato; foliis duplicato-dentatis.Als B. papyracea und papyrifera im Herbarium Asa Grays und Boissiers.Wächst in Nord-amerika, Sumass Praierie (Lyall), Topsfield, Massachusets (Asa Gray), Oregon (Lyall).

Von der folgenden Unterart [papyrifera] nur durch die gespreizten oder zurück gekrümmten Seitenlappen der Schuppen des Fruchtzäpfchens verschieden.

All three sheets, including the type from Sumass Prairie are before me. In all evident characters they are quite like the tree of the Pacific slope which Sargent took as B. occidentalis and they are all easily matched in details by much eastern B. papyrifera. The tree of the Fraser River region, including Sumass Prairie, is with reasonable certainty the dark-barked variety, but the Topsfield specimen of William Oakes (not Asa Gray) is, as already explained (p. 313) evidently from the pale-barked and generally commoner eastern B. papyrifera. In Lyall's account of "The Lower Fraser River district, which includes the Sumass and Chilukweyuk prairies and other low grounds to the westward of the Cascade Mountains-a moist region", Lyall, in Journ. Linn. Soc. Lond. vii. 131-135 (1864), enumerated from "The banks of the Lower Fraser River . . . Abies Douglasii,

Abies Menziesii, . . . Abies Mertensiana, . . . Thuja gigantea, . . . Acer macrophyllum", etc. and then "Betula occidentalis, Hook. (a tree growing to the height of 60 or 70 feet [compare Sargent's " \(100^{\circ}-120^{\circ}\) ", also J. K. Henry's "A small or large tree'] and most common about the borders of the forest)". That material was the basis of var. commutata. When Schneider published his B. papyrifera, var. Lyalliana, citing the Lyall account above quoted and the synonym B. occidentalis sensu Sargent, not Hooker, he evidently overlooked the earlier name which had been based on the Lyall collections. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) The reinstatement of Betula occidentalis Hook. necessitates the following new varietal name.
B. occidentalis Hook, var. fecunda, nom. nov. Betula, 3d. described tree in
} Piper \& Beattie, Fl. Palouse Reg. 55 (1901). B. Piperi Britton in Bull. Torr. Bot. C. xxxi. 165 ( 1904 ), as to description, not as to single collection cited. B. fontinalis. var. Piperi (Britton) Sargent in Journ. Arn. Arb. i. 65 (1919), in part only. Plate 966.

In their Flora of the Palouse Region Piper \& Beattie. with well-understood hesitation, refrained from assigning guesswork names to the three birches of the area. Instead, they described the three in detail but without names. Their third tree was
B. Graceful tree, 8-15 m. tall, with drooping branches: bark dark bronze branchlets . . . very glandular; leaves ovate, obtuse or acute at the base, shining green above, glandular on both surfaces, 2-4 cm . long
pistillate aments cylindrical: 5 cm . long, .5 cm . thick, often flexuous, mostly in twos, . Springy hillsides near Almota."
This description was but slightly, though somewhat, changed by Britton, whose B. Piperi was the "tree . . . described by Professor Piper as attaining a height of 15 m . and being slender and graceful, with drooping branches" \&c., largely a rewriting of the Piper \& Beattie description above quoted. But, most unfortunately, the locality of the "Graceful tree, \(8-15 \mathrm{~m}\). tall. with drooping branches", "Springy hillsides near Almota", was not given. Instead, Britton cited only a single station "Type collected by Professor C. V. Piper, July 9, 1901, nine miles south of Pullman Washington", with the sad result that Piper himself, accepting for the tree which I am calling B. papyrifera, var. commutata Sargent's misidentification of it as B. occidentalis Hook., was forced to reduce B. Piperi to its synonymy. Piper's statement follows: "The name Betula piperi was meant by its author to apply to the third unnamed species in the Flora of the Palouse Region, but the specimen actually cited is the eastern Washington form of B, occidentalis Hook."-Piper. Fl. Wash., Contrib U. 8. Nat. Herb. xi. 218 (1906).

Var. fecunda (plate 966) is a remarkably deflnite variety of the western Betula occidentalis (fontinalis). In its pendulous branches with the tendency to fascicled and slender aments it is strikingly unlike the shrubby and virgate-branched \(B\). occidentalis of Hooker's original description, in which the shorter aments are mostly solitary on the spurs. The latter has been so often illustrated that I am here showing only var. fecunda. Piper, puzzled by this beautiful tree, sent, unnamed, 14 sheets (under several numbers) to the Gray Herbarium. These were mostly misidentified by me as the Asiatic B. microphylla. Under this misidentiflcation of mine Piper in his Flora of Washington, p. 219, wrote: "The Almota specimens form the basis for the third unnamed species in the Flora of the Palouse Region. This is a tall graceful tree with drooping branches, appearing very different from the ordinary form of B. microphylla, and probably distinct from it." As type of var. fecunda I am designating Piper, no. 1642 in the Gray Herbarium.
Although the leaves of var. fecunda were described by Piper as \(2-4 \mathrm{~cm}\). long, his material was all rather young. Material from slightly to the southwest, Columbia Co., St. John, Davison \& Scheibe, no. 6939, has leaves \(5-7 \mathrm{~cm}\). long.

Var. pensilis, var. nov. (tab. 967), ramulis pendulis; foliis angusto-ovatis vel ovato-lanceolatis basin versus plerumque angustatis vel vix rotundatis; amentis foemineis solitariis vel 2-4fasciculatis; bracteis \(5.5-7 \mathrm{~mm}\). longis, lobis lateralibus rhomboideis vel late oblongis divergentibus. B. alba var. glutinosa sensu Fernald in Am. Journ. Sci. ser. 4, xiv. 176 (1902), not Trautv.Locally abundant, Newfoundland to western Quebec, south to Nova Scotia, Maine, Massachusetts and northern New York. Newfoundland: high tableland, Holyrood, Aug. 1, 1931, Agnes M. Ayre; Buchan Junction, July 19, 1930, K. P. Jansson. Quebec: Rivière du Brick, Anticosti, Victorin \& Rolland, no. 27,773; thickets and borders of woods near mouth of Marsouin River, Gaspé Co., Fernald \& Pease, no. 25,017; head of l'Anse aux Bouleaux, Bic, Rimouski Co., July 6-10, 1905, Williams, Collins \& Fernald; Bic, July 17, 1905, J. R. Churchill; east side of Lac Tremblant, Terrebonne Co., July 21, 1922, Churchill; near - Georgeville, Lake Memphremagog, Aug. 12, 1914, Churchill. Nova Scotia: "small tree 10 ft . high, branches drooping", banks of Lahave R., Bridgewater, J. G. Jack, no. 3510. Maine: tree by road to Leighton Pond, Pembroke, July 10, 1909, Fernald (type in Herb. Gray.); by Wassataquoik River between Roebar's and Dacy Dam, Piscatquis Co., July 17, 1900, Fernald. Massachusetts: large tree by Charles River, Newton Lower Falls, July 23, 1912, Wiegand. New York: banks of Cascade Lakes, Essex Co., House, no. 7640; mountain-side, alt. 1800 ft., near Minerva, Essex Co., House, no. 14,887; Stony Island 2, west end of Black Lake, St. Lawrence Co., Muenscher \& Maguire, no. 2168.

Var. pensilis is very striking, not only as a "weeping" birch but on account of the mostly acute-based leaves and the very abundant fruiting aments. In 8 of the sheets before me they are often clustered on the spurs in fascicles of 2-4.

Var. macrostachya, var. nov. (тab. 968, fig. 1-3), ramulis divergentibus vix pendulis; foliis ovatis basi rotundatis; amentis foemineis solitariis vel binis, maturis \(3.5-5.5 \mathrm{~cm}\). longis \(1-2 \mathrm{~cm}\). crassis pedunculatis; pedunculis arcuato-recurvatis \(0.5-1.5 \mathrm{~cm}\). longis; bracteis \(7-10 \mathrm{~mm}\). longis, lobis lateralibus rhomboideis porrectis vel adscendentibus; samaris \(6-8 \mathrm{~mm}\). latis.-Local, northern Newfoundland to Rimouski County, Quebec, soath to Nova Scotia and northern Maine. Newfoundland: rich thickets on lower slopes of \(\mathrm{Ha}-\mathrm{Ha}\) Mt., \(\mathrm{Ha}-\mathrm{Ha}\) Bay, Fernald, Wiegand, Long, Gilbert \& Hotchkiss, no. 28,065; thickets and glades, slopes of Cape Dégrat, Quirpon Island, Straits of Belle Isle, Fernald \& Long, no. 28,067. Quebec: cold northerly calcareous walls of Grande Coupe, Percé, Gaspé Co., Fernald \& Collins, no. 1000; bois près de la mer, Bic, Rimouski Co., Victorin \& Rolland, no. 49,461. Nova Scotia: dry mixed woods, Hecta-
nooga, Digby Co., July 31, 1920, Long \& Linder, no. 21,007 (type in Herb. Gray.; isotype in Herb. Phil. Acad.). Maine: in disintegrated volcanic rock, Haystack Mt., Aroostook Co., July 11, 1902, Williams, Collins \& Fernald.
In its very large aments, bracts and samaras var. macrostachya stands midway between typical Betula papyrifera and var. cordifolia. It is also intermediate in the tendency of its pistillate bracts to have the porrect lateral lobes of the latter, but sometimes nearly or quite horizontal as in the former. Its leaves are like those of typical B. papyrifera, without the cordate base so characteristic of var. cordifolia. Were it not for this transitional v ar. macrostachya, it would be reasonable to look upon var. cordifolia as a fairly distinct species, the status originally given it by Regel.

Var. macrostachya, forma longipes, f. nov. (тab. 968, fig. 4), pedunculis \(2-3 \mathrm{~cm}\). longis, amentis fructiferis pendulis.-Gaspé Peninsula, Quebec: woods, Malbaie, Gaspé Co., Pease, no. 6025A, as var. cordifolia; mossy meadows and woods at 455 m . ( 1500 ft .) \(915 \mathrm{~m} .(3000 \mathrm{ft}\).) in the great basin [Fernald Basin] under the north slope of Mt. Logan, Matane Co., July 22, 1922, Fernald \& Pease, no. 25,019 (тYPe in Herb. Gray.).

Very striking in its long drooping peduncles often essentially as long as the pendulous aments.

Var. elobata (Fernald) Sargent in Journ. Arn. Arb. i, 63 (1919). B. alba, var. elobata Fernald in Rhodora, xv. 169 (1913).-Known only from the type-locality in Quebec: crevices and talus of serpentine along Ruisseau à la Neige, Mt. Albert, Gaspé Co., Fernald \& Collins, no. 531. Plate 969.

It is not improbable that var. elobata, when mature fruiting material is secured, may prove to be an endemic species. - In its subrhombic and dentate leaves, suggestive of those of B. nigra L., and in its very short pendulous pistillate aments with unlobed or only obsoletely lobed bracts, it is very distinct. Unfortunately, the material, collected in an alpine area and only slightly past anthesis in July, does not show mature samaras. The typecolony is near the head of one of the northwestern tributaries of Ruisseau à la Neige, as it abruptly descends the cañon-wall, not far below the serpentine tableland (alt. about 3500 ft .). Under it grow Polystichum mohrioides, var. scopulorum (D. C. Eaton) Fernald, in its only known area east of local stations in Idaho, while close-at-hand are the type-areas of the endemic or near-
endemic Salix chlorolepis Fernald, S. hebecarpa Fernald, Arenaria marcescens Fernald and Solidago chlorolepis Fernald, and endemic or disjunct varieties in Salix, Statice and Cnicus. It is important to secure the fruit of Betula papyrifera, var. elobata.

Var. cordifolia (Regel) Fernald in Rhodora, iii. 173 (1901), by inference only; Rehder, Man. Cult. Trees and Shrubs, 141 (1927). B. cordifolia Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. 86-repr. as Mon. Bet. 28, t. 12, figs. 29-36 (1861). B. alba, subsp. papyrifera, \(\beta\). cordifolia (Regel) Regel in Bull. Soc. Nat. Mosc. xxxiii. 401 (1865)-repr. as Bemerk. Gatt. Bet. Aln. 14 (1866) and in DC. Prodr. xvi². 166 (1868). B. papyracea, a cordifolia (Regel) Dippel, Handb. Laubholzk. ii. 177 (1892). B. alba, var. cordifolia (Regel) Fernald in Am. Journ. Sci. ser. 4, xiv. 177 and 190 (1902). B. papyracea cordifolia (Regel) Scheele in Beisn., Scheele \& Zabel, Handb. Laubh. Benen. 55 (1903). B. papyrifera, var. communis, f. cordifolia (Regel) Schneid. Handb. Laubholzk. i. 115 (1904).-Labrador to Algoma District, Ontario, south to Newfoundland, Nova Scotia, New England (rare southward), northern New York, Michigan, Wisconsin and northern Iowa; high altitudes on Blue Ridge, North Carolina. Plate 970.

In its firm and definitely cordate leaves, its long bracts with mostly porrect lobes and its large samaras Betula papyrifera, var. cordifolia might merit the specific rank originally given it by Regel; but, as already noted, var. macrostachya, with leaves merely rounded and not cordate at base, exactly bridges the gap between it and typical B. papyrifera. With its very long bracts with mostly porrect (instead of horizontally divergent) lobes it is certainly a well marked geographic variety, which in the western half of the continent is replaced by var. subcordata (Rydb.) Sargent. Rare in southern New England and not known south of the Adirondack region in New York, this is the only variety of B. papyrifera known on the high mountains of North Carolina. In discussing its discovery and abundance at \(5500-6200 \mathrm{ft}\). altitude, "in the spruce and balsam forest", "about 550 miles" south of its supposed southern limit (in Massachusetts and Connecticut), Ashe in Rhodora, xx. 63, 64 (1918) quoted various northern botanists, some of whom (Britton and Blanchard) regarded it a good species, others (Sargent and Burns, besides the present writer) recognizing intergradient trees; and be concluded: "The fact that the cordate [-leaved] form alone occurs in North Carolina, and that there its leaf-form is strongly marked and
without indication of variation-foliage was examined from more than 100 trees-would at least seem to give it excellent varietal if not specific characterization."

In his original publication of Betula cordifolia Regel cited it as in "Novaja Semlaja von Hr. de la Tylaie im Jahre 1826 gesammelte" and compared it with the Asiatic B. Ermani Chamisso, arguing for its specific separation since "dass B. Ermani bis jetzit aus Novaja Semlaja noch nicht bekannt ist". Bearing in mind that Novaja Semlaja is the Russian equivalent of Terre-neuve, where Bachelot de la Pylaie (not "Tylaie") spent so many years in botanizing, the intent is obvious. In fact, Regel got the typelocality straightened in his later treatments, where he correctly gave it as "Terra nova (de la Pylaie )."
A small-leaved northwestern variety of Betula papyrifera, which may be expected to cross the plains into Minnesota, has leaves in outline resembling those of \(B\). pendula. This is
B. papyrifera Marsh., var. humilis (Regel) Fernald \& Raup, comb. nov. B. alba, subsp. papyrifera, var. \(\gamma\) humilis Regel in DC. Prodr. xvi. 166 (1868), in part (descr. and Bourgeau specimen from Saskatchewan). B. alaskana Sargent in Bot. Gaz. xxxi. 236 (1901), not Lesq. (1883). B. neoalaskana Sarg. in Journ. Arn. Arb. iii. 206 (1921). B. papyrifera, var. neoalaskana (Sarg.) Raup, Contrib. Arn. Arb. vi. 152 (1934). Plates 971 and 972.

Betula alba, subsp. papyrifera, \(\gamma\). humilis was based primarily on a sheet in the Gray Herbarium, collected by Bourgeau in 1857-8 in Saskatchewàn ("Bords de la rivière Castor"). This sheet (our plate 971 , figs. 1-4) bears Regel's annotation. Although Regel followed this with citation of Parry and Hall \& Harbour specimens, which are of \(B\). occidentalis Hook. (B. fontinalis Sarg.) and the type of Tuckerman's B. papyracea, var. minor (B. minor) from the White Mts., his description, "folia . . . juniora petiolique saepe pubescentia, . . . subtus ad nervos tantum pilosula. Samararum alae nucula usque triplo latiores", definitely applies to the Bourgeau sheet. It can not apply to \(B\). minor, for the branchlets and leaves of that more eastern shrub are strictly glabrous and the wings of its samaras are never "nucula usque triplo latiores". Nor could the glabrate brannches of Regel's "Ramuli . . . glanduliferi v. juniores pubescentes, dein glabrati" apply to either B. minor or B. occi-
dentalis, both of which have glabrous branchlets; the "juniores pubescentes, dein glabrati" belongs also to the Bourgeau element. Since this Saskatchewan specimen, clearly labelled by Regel as his B. alba, subsp. papyrifera, var. humilis, agrees with his description in the more diagnostic characters, whereas the Rocky Mountain specimens (Parry and Hall \& Harbour) as well as the White Mountain one (Tuckerman) already had legitimate names, we see no way but to take up the name var. humilis for the Saskatchewan element primarily described.

There is a second sheet of Bourgeau's Saskatchewan material (1858) in the Gray Herbarium. This one (plate 972, fig. 1) has had a checkered career. In his Bemerkungen über die Gattungen Betula und Alnus, Bull. Soc. Nat. Mosc. xxxviii. 398 (1865)-repr. 11 (1866)-Regel published under the strictly Eurasian Betula alba, subsp. verrucosa, a var. resinifera, based exclusively on a Middendorf specimen from eastern Siberia. In DeCandolle's Prodromus, xvi². 164 (1868), however, although otherwise holding his B. alba, subsp. verrucosa strictly to Eurasia, he cited under var. resinifera a single North American specimen: "in America boreali-occidentali ad Saskatchevan (Palliser)". This specimen, Bourgeau, 1858, on the Palliser Expedition (Gray Herb.), was originally distributed as B. papyracea but it bears Regel's annotation as above. A portion of it is shown in plate 972, fig. 1. The significant point in connection with this second Bourgeau (Palliser) sheet is that Sargent, describing his B. alaskana, selected it as the first specimen to be cited under his new specific name: "Saskatchewan, E. Bourgeau, 1858 (in Herb. Gray); near Prince Albert in latitude 53, July 1876, John Macoun [our plate 971, fig. 5 and 972, figs. 2 and 3]; northwestward, reaching the Alaskan coast", etc. Of this Bourgeau specimen Sargent wrote: "The specimen in Herb. Gray collected by Bourgeau in flower on the Saskatchewan was referred by Regel (Bull. Mosc. 18: 398; DC. Prodr. 16 \({ }^{2}\) : 164) to his Betula alba, sub'species verrucosa o resinifera". The fact that, in spite of Sargent's statement, Regel did not mention the Bourgeau specimen in his first publication (Bull. Mosc.) but only in the second (DC. Prodr.) is significant; otherwise it might be involved in the typification of his B. alba, subsp. verrucosa, var. resinifera which, fortunately, was based solely on the Middendorf material.

The name B. alba, subsp. papyrifera, var. humilis has the right-of-way.
7. B. borealis Spach in Ann. Sci. Nat. sér. 2, xv. 196 (1841). B. pumila, \(\gamma\). borealis (Spach) Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. 113-repr. Mon. Bet. 55, t. 13, figs. 38 and 39 (1861) and in DC. Prodr. xvi². 173 (1868). B. alba, var. carpatica sensu Fernald in Am. Journ. Sci. ser. 4, xiv. 179 and 190 (1902) in part only, not B. carpatica Wald. \& Kit. B. microphylla sensu Eames and sensu Fernald, as quoted by Eames, in Rhodora, xi. 93 (1909), not Bunge.-Southern Labrador to James Bay, Ungava, south, chiefly on calcareous or magnesian soils to Newfoundland, Anticosti Island and Gaspé Peninsula, Quebec, and very rarely to Cape Breton and to northern Vermont.-Since this characteristic and very definite northeastern species has not been understood during the full century since Spach very clearly described it as "Legit cl. de Lapylaie, in insulá Terrae-Novae" (this later rendered by Regel "von Herrn de la Tylaie in Novaja Semlaja gesammelt"), it is important to cite and illustrate good material (all, unless noted, distributed erroneously as B. microphylla Bunge). Labrador: common on many barrens and hillsides, Backway, off Lake Melville, R. H. Wetmore, no. 102,930. Newfoundland: 1 m . high, peaty limestone barrens, southern half of Burnt Cape, Pistolet Bay, Fernald \& Long, no. 28,070; cool springy glade, Burnt Cape, \(F . \& L\)., no. 28,075; limestone barrens on the Highlands northeast of Big Brook, Straits of Belle Isle, Fernald, Wiegand \& Hotchkiss, no. 28,072; shrubs 1-2 m. high, spruce woods and thickets bordering limestone barrens, Brig Bay, Fernald, Long \& Dunbar, no. 26,596; spruce woods. and thickets, St. Barbe, F.L. \& D., no. 26,595; 1-2 m. high, thickets along East Brook, St. Barbe Bay, Wiegand \& Hotchkiss, no. 28,080 ; slaty gorge of brook below serpentine barrens above Woody Point, Bonne Bay, R. H. Kimball, no. 117; 1-2 ft. high, quartzite gravel and talus, Killdevil, Fernald, Long \& Fogg, no. 1636; gravelly beach, Middle Birchy Pond, Eastern Drainage of Humber R., Fernald \& Wiegand, no. 3247 (as B. alba, var. carpatica); coarse shrub, southerly slopes of dry serpentine ridge, North Arm, Bay of Islands, Long \& Fogg, nos. 217 and 219; dry thicket on exposed slope at about \(1650 \mathrm{ft} .\), Blow-me-down Mt., Eames \& Godfrey, no. 6033; serpentine and magnesian limestone barrens, northeastern base and slopes of Blomidon ("Blow-medown') Mts., Fernald \& Wiegand, nos. 3245 (as B. alba, var. carpatica) and 3246; large shrubs, dry limestone barrens, upper slopes and tablelands, alt. 200-300 m., Table Mt., Port-à-Port Bay, Fernald \& Wiegand, no. 3250 (as B. alba, var. carpatica), also Fernald \& St. John, no. 10,827; coarse shrub, thickets on gneiss ledges along Grandy Brook, Distr. of Burgeo and La Poile,

Fernald, Long \& Fogg, no. 218; springy and boggy places in rivergravel, Gander R., Glenwood, Fernald \& Wiegand, no. 5308 (as B. alba, var. carpatica); gravelly river-bank, Glenwood, F. \& W., no. 5309 (as B. alba, var. carpatica). Quebec: 4 ft . high, rocky crest, Pointe au Maurier, Charnay, Saguenay Co., St. John, no. 90,385; granite hills, Mingan, St. John, no. 90,384 ; limestone sea-cliffs, Ile Ste. Généviève, Mingan Ids., St. John, no. 90,830; sur les rivages calcaires près du Lac Salé, Ile St.-Charles, Archipel de Mingan, Victorin \& Rolland, no. 18,881; bordant le sommet de l'escarpement, Ile Nue, Mingan, \(V . \& R\)., no. 24,728; rivages, Ile à la Chasse, Mingan, \(V . \& R\)., no. 24,740 (as B. glandulosa); wet places, Becscie R., Anticosti, Sept. 7, 1883, J. Macoun; le long des platières calcaires, Rivière à la Patate, Anticosti, Victorin, Rolland \& Louis-Marie, no. 21,726; à une douzaine de milles de l'embouchure, R. Jupiter, Anticosti, Victorin \& Rolland, no. 24,729 ; arborescent, sur le bord de la falaise boisé, le long du portage de la ligne, Sand-top, Anticosti, \(V . \& R\)., no. 27,775; crèvices and talus of serpentine, Ruisseau à la Neige, Mt. Albert, Gaspé Co., Fernald \& Collins, no. 532; large shrub, steep clay banks of Matane R., Matane, Fernald \& Pease, no. 25,022; Rupert House, James Bay, D. Potter, no. 805. Nova Scotia: low thicket in bog on plateau north of Bay St. Lawrence; Victoria Co., Roland, no. 41,354 (as B. pumila). Vermont: rock-outcrop, shore of Fairfield Pond, alt. 550 ft ., Fairfield, Franklin Co., S. F. Blake, no. 3105 (as B. alba, var. minor); summit of Mt. Mansfield, July 2, 1897, Kennedy, Williams (as B. papyrifera, var. minor), July 23, 1901, T. O. Fuller (as B. papyrifera, var. minor). Plate 973.

Betula borealis was very fully and clearly described by Spach, whose description is worth repeating:
B. borealis Nob.-Legit cl. de Lapylaie, in insulâ TerraeNovae; forsàn varietas Betulae excelsae v. Betulae albae.
Arbor? vel frutex? Rami haud resinoso punctati: novelli tomentosi. Folia floralia \(6-15\) lineas longa, ovato-v. obovatov . lanceolato-v. oblongo-rhombea, acuta, subaequaliter serratodentata, basin versùs integerrima, brevè petiolata: juniora pubescentia; adulta subtùs glaucescentia, sparsè punctulata, reticulata, praeter nervos glabra. Stroboli subpollicares, erecti (?), brevè pedunculati, cylindracei, graciles; rachi gracili, ferè filiformi; squamis tricarpis cuneiformibus, subciliolatis, samaras obtegentibus, trilobis: lobis obtusis, aut subaequalibus, oblongis, nunc parallelis, nunc divergentibus, aut dissimilibus: lateralibus subfalcatis, deflexis, terminali abbreviato, subovato. Samarae ovatae v. suborbiculares, vix lineam latae, angustè alatae, squamis duplò brevioribus. (V. s. sp. in Herb. Mus. Par.)
The densely tomentulose pubescence of vigorous new shoots, usually without glandular atoms, the elliptic to somewhat
rhombic or ovate merely acute or acutish leaves more or less pubescent beneath, and the small samaras with the wings scarcely broader than the achene, clearly distinguish it from the other dwarf species of the Albae in the Northeast: B. minor. There is little to induce one who knows B. pumila to place it with that, as was finally done by Regel. The identification with the Siberian B. microphylla Bunge was a very crude mistake, quite as unclarifying as my reduction to the latter of the cordilleran North American B. occidentalis Hook. (B. fontinalis Sargent). \({ }^{1}\) B. microphylla, as originally described and as represented by Altai material sent by Regel to Gray and perhaps isotypic (plate 963, figs. 8-10), as well as by more modern specimens, has the small obovate leaves with entire cuneate bases, the summit only coarsely dentate; its branchlets are covered with resinous warts and the wings of its samaras (plate 963 , fig. 10) are as originally described by Bunge "semen longitudine et latitudine superantibus." In B. borealis the acute or acutish leaves are toothed to base, the branchlets rarely glutinous and the wings of the samara narrow. B. occidentalis (B. fontinalis), although having broadly winged samaras and very gummy but glabrous branchlets and leaves, has the latter of firmer and heavier texture, more regularly serrulate or doubly serrate margins and usually an ovate outline and lingering pubescence on the upper surface. It does not well match true B. microphylla and is quite distinct from the eastern \(B\). borealis and \(B\). minor, the former with new branchlets heavily pubescent, and the samaras with very narrow wings, the latter glabrous from the first, with more slender fruiting aments and narrower samaras (2.5-5, av. \(3.5, \mathrm{~mm}\). broad), whereas the western \(B\). occidentalis has the aments thick and the samaras 4-6, av. 5.2, mm. broad.

In Betula, ser. Humiles, two species need special discussion. The first is only doubtfully a nember of this series, a tree of the mountains of western Virginia:
B. uber (Ashe), stat. nov. B. lenta, var. uber Ashe in Rhodora, xx. 64 (1918). Plate 974, figs. 1-5.
It is most difficult to feel that the low tree (" \(20-25 \mathrm{ft}\). high", according to Ashe's label) described by Ashe as a small-leaved

\footnotetext{
\({ }^{1}\) See discussion, pp. 313-317.
}
variety of Betula lenta has much, except aromatic bark, to do with that species. B. lenta (figs. 6 and 7) has cordate-ovate and long-acuminate leaves with fine and sharp serrulation and 10-20 pairs of veins impressed into the upper surface (a typical member of series Costatae). B. uber, on the other hand, as shown by isotypes at the Gray Herbarium and the Arnold Arboretum, has very short and broadly rounded, often nearly orbicular leaves with few coarse dentations and with only 3-6 pairs of veins not impressed above (characteristics of series Humiles). Furthermore, the pistillate aments are more slender than in B. lenta and the bracts end in low and broad lobes, those of B. lenta more elongate, with the middle lobe prolonged.

In describing his \(B\). lenta, var. uber Ashe made no note of its size and he stated that the material, in young fruit and foliage, was collected on "Banks of Dickey Creek, Smyth County, Virginia, south of Rye Valley Station, January 14, 1914". The isotype deposited in the Gray Herbarium has Ashe's label, stating that the tree is " \(20-25\) feet high" and that it was collected "At 2800 ft ., June [not January], 1914". It is very important to learn much more about B. uber,-whether it is shrubby, the range of variation of foliage, the characters of the staminate aments, and its abundance and range.
B. terrae-novae, sp. nov. (тав. 975, fig. 1-4), planta habitu B. nanae; ramis novellis tomentosis; foliis late cuneato-flabelliformibus coriaceis glabris valde reticulatis inciso-dentatis basin versus integerrimis; strobilis sessilibus \(0.5-1 \mathrm{~cm}\). longis; strobili squamis integerrimis vel subintegerrimis oblongis vel oblongolanceolatis vel oblongo-ovatis arcte adpressis apice subsquarrosis; nuculis ovoideis vel subrotundatis apteris margine incrassato.B. Michauxii Spach in Ann. Sci. Nat. sér. 2, xv. 195 (1841), as to description, not as to Michaux plant, basis of the name. Apterocaryon Michauxii (Spach) Opiz in Lotos, v. 258 (1855), in part, not B. nana sensu Michx., basis of name. B. nana, \({ }^{\varepsilon}\) Michauxii (Spach) Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. \(103-\) repr. Mon. Bet. 45 (1861), excluding Michaux plant, source of name.-Bogs, tundra and peaty, acidic barrens, Newfoundland and adjacent southeastern Labrador Peninsula. Type from diorite tableland, altitude about 550 m ., northern region of the Blomidon ("Blow-me-down") Mts., Newfoundland, Aug. 22, 1910, Fernald \& Wiegand, no. 3271, as B. nana, var. Michauxii (in Herb. Gray.).
It is unfortunate that the name Betula Michauxii had so con-
fused a start. The tiny shrub of Newfoundland, southeastern Labrador and the extreme eastern end of the Côte Nord of Quebec is very distinct from the arctic B. nana (figs. 5-7) in its tomentose (instead of cinereous-puberulent) branchlets, its more flabelliform, more incised and more strongly reticulate leaves, and above all in simple instead of prominently 3 -lobed pistillate bracts and its thick-margined, instead of definitely winged samaras. Spach gave a good description of it in general, but his "Strobili 4-8 pollices [inches] longi" was most unfortunate for any American birch and emphatically for a dwarf with strobiles only \(5-10 \mathrm{~mm}\). long! For his B. Michauxii Spach set up the new section Apterocaryon, which was clearly based on Newfoundland material: "Nuculae apterae, margine incrassato, intus suberoso, cinctae.-Squamae strobilae semper 1 -carpae, integerrimae, nuculis duplo angustiores", and this was taken up as the genus Apterocaryon (Spach) Opiz. Further to confuse matters Spach started his description of the Newfoundland shrub: "B. Michauxir Nob.-Betula nana Michx.! Flor. Bor. Amer. (excl. syn.)" and gave the range "America borealis [derived from Michaux] et insula Terrae Novae [La Pylaie material at Paris, presumably]". The name B. Michauxii automatically belongs with the Michaux element which came from at least 650 miles farther west ("in sphagnosis, a sinu Hudsonis ad lacus Mistassins") than the western known limit of B. terrae-novae. Furthermore, the description of B. nana sensu Michx. Fl. Bor.-Am. 180 (1803), nomenclatural type of \(B\). Michauxii, was of something quite different: the shrub "glaberrima" (instead of with tomentose branchlets); "amenti squamis profunde 3-partitis, laciniis oblongis" (instead of entire or merely with obscurely undulate margin); "capsulis orbiculatis; subapteris" (instead of quite apteris). Just what Michaux got we cannot learn at the moment. His description suggests one of the dwarf and glabrous or glabrescent extremes of B. pumila L., such as var. renifolia Fernald, which abounds on much of the Labrador Peninsula and in Newfoundland and which, in exposed situations, may become a tiny depressed mat with round-obovate to reniform leaves down to 8 mm . long and either pubescent or glabrous. Michaux's plant was, obviously, not at all the characteristic little shrub of the Newfoundland barrens.

The fact that Regel confused Betula Michauxii, as a variety,
with B. nana carries little weight. At the same time he also reduced B. glandulosa Michx. to his all-inclusive B. nana, as he likewise included the utterly different \(B\). borealis Spach (our plate 973).

\section*{Explanation of Plates}

Plate 963, figs. 1-7, Betula minor (Tuckerm.) Fernald: fig. 1, portion of TyPe, \(\times 1\); Fig. 2, fruiting branch, \(\times 1\), from Oakes Gulf, Mt. Washington, New Hampshire, Eggleston, no. 2676; FIG. 3, staminate aments, \(\times 1\), from Mt. Washington, New Hampshire, Greenman, no. 1087; Fig. 4, lower surface of leaf, \(\times 5\), from no. 2676 ; FIG. 5 , branchlet, \(\times 10\), from no. 2676 ; FIG. 6 , fruiting bract, \(\times 4\), and fig. 7, samara, \(\times 4\), from no. 2676. Figs. 8-10, B. microphylla Bunge: FIG. 8 , fruiting branch, \(\times 1\), from the Altai of Siberia, probably an isotype; fig. 9 , fruiting bract, \(\times 4\), and fig. 10 , samara, \(\times 4\), from same specimen. Fig. 11, B. alba L., var. tortuosa (Ledeb.) Schneider: samara, \(\times 4\), from Kingua Tunugdliarfik, Greenland, Aug. 17, 1888, Kolderup Rosenvinge.
Plate 964, B. papyrifera Marsh. (typical): fig. 1, fruiting branch, \(\times 1\), from Middlebury, Vermont, July 8, 1908, E. F. Williams; fig. 2, staminate aments, \(\times 1\), from Winchester, Massachusetts, May 9, 1897, E. F. Williams; FIG. 3, tip of young shoot, \(\times 5\), from Lac Ste.-Anne, Gaspé Co., Quebec, Victorin, Rolland \& Jacques, no. 33,476; Fig. 4, fruiting bract, \(\times 4\), and Fig. 5, samara \(\times 4\), from Southport, Maine, Aug. 8, 1894, Fernald.

Plate 965 , B. papyrifera, var. commutata (Regel) Fernald: fig. 1, portion, \(\times 1\), of the Lyall specimen from "Cascade Mountains. 49 N. Lat."; FiG. 2, characteristic close bark, \(\times 1\), from Percé, Quebec, July, 1905, Williams, Collins \& Fernald; Fig. 3, outer bark exfoliating, exposing whitish inner bark, \(\times 1\), from base of same tree as in fig. 2; FIGs. 4 and 5 , fruiting bracts, \(\times 4\), from the Lyall specimen; Fig. 6, samara, \(\times 4\), from the Lyall specimen; Fig. 7, fruiting bract, \(\times 4\), from Bayview, Gloucester, Massachusetts, Aug., 1944, Elizabeth Johnston; Fig. 8, samara, \(\times 4\), from the same specimen as fig. 7 .

Plate 966, B. occidentalis Hook., var. fecunda Fernald: fig. 1, portion of TYPE, \(\times 1\); FIG. 2, younger (flowering) branchlet, \(\times 1\), from type-locality, May 11, 1901, Piper; Fig. 3, staminate aments, \(\times 1\), from type-locality, April 27, 1925, Constance et al., no. 1043.

Plate 967, B. papyrifera, var. pensilis Fernald: fig. 1, portion, \(\times 1\), of type; fig. 2, fruiting bract, \(\times 4\), and fig. 3 , samara, \(\times 4\), from type; fig. 4 , younger branch, \(\times\) 1, from Bic, Quebec, July, 1905, Williams, Collins \& Fernald.

Plate 968, figs. 1-3, B. papyrifera, var. macrostachya Fernald: fig. 1, portion. \(\times 1\), of tYpe; Fig. 2, fruiting bract, \(\times 4\), and FIG. 3, samara, \(\times 4\), from type. Fig. 4, forma longipes Fernald: portion, \(\times 1\), of type.
Plate 969, B. papyrifera, var. elobata (Fernald) Sargent: fig. 1, portion, \(\times 1\), of TYPE; FIG. 2, immature samara embraced by bract, \(\times 4\), from type; FIG. 3, young bracts, \(\times 1\), from TYPE.

Plate 970, B. papyrifera, var. cordifolia (Regel) Fernald: fig. 1, portion, \(\times 1\), of fruiting branch from Malbaie, Gaspé Co., Quebec, August 20, 1904, Collins, Fernald \& Pease; Fig. 2, tip of vigorous sprout, \(\times 5\), from Roberval, Quebec, July 28, 1892, G. G. Kennedy; Fig. 3, fruiting bract, \(\times 4\), and FIG. 4, samara, \(\times 4\), from same specimen as fig. 1 .

Plates 971 and 972, B. papyrifera, var. humilis (Regel) Fernald \& Raup. Plate 971: fig. 1, portion, \(\times 1\), of type of \(B\). alba L., subsp. papyrifera (Marsh.) Regel, var. humilis Regel, with Regel's identification; FIG. 2, lower surface of leaf (with scattered trichomes), \(\times 10\), from tyPE; FIG. 3, fruiting bract, \(\times 4\), and FIG. 4 , samara, \(\times 4\), from tYPE; FIG. 5 , fruiting tip, \(\times 1\), of specimen from Prince Albert, Saskatchewan (Macoun, no. 12,952^), one of the 2 specimens cited by Sargent as his B. alaskana. Plate 972, fig. 1, portions,
\(\times 1\), of the Saskatchewan plant (Bourgeau, 1858), the first specimen cited by its author for B. alaskana Sargent: Fig. 2, fruiting bract, X4, and fig. 3, samara, \(\times 4\), of the Prince Albert material, Macoun, no. \(12,952^{\text {a }}\); FIG. 4, fruiting bract, \(\times 4\), and fig. 5, samara, \(\times 4\), from near Fairbanks, Alaska, Ynez Mexia, no. 2291.

Plate 973, B. borealis Spach: fig. 1, branches, \(\times 1\), from Glenwood, Newfoundland, Fernald \& Wiegand, no. 5308; Fig. 2, fruiting branch, \(\times 1\), from Glenwood, Fernald \& Wiegand, no. 5309; FIG. 3, tip of young branch, \(\times 5\), from no. 5309; FIG. 4, fruiting bract, \(\times 4\), and FIG. 5, samara, \(\times 4\), from base of Blomidon, Bay of Islands, Newfoundland, Fernald \& Wiegand, no. 3246.

Plate 974, figs. \(1-5\), B. uber (Ashe) Fernald: fig. 1, portion, \(\times 1\), of isotype in Herb. Arnold Arboretum; fig. 2, upper surface of leaf, \(\times 2\), to show venation and toothing, from isotype; fig. 3, portion of lower surface of leaf, \(\times 2\), from isotype; Fig. 4 , fruiting bract, \(\times 4\), and FIG. 5 , samara, \(\times 4\), from isotype. Figs. 6 and 7, B. Lenta L.: fig. 6, portion of lower surface of leaf, \(\times 1\), to show venation and toothing, from Jamaica Plain, Massachusetts, August 25, 1885, C. E. Faxon; Fig. 7, fruiting bract, \(\times 4\), from same specimen.

Plate 975, figs. 1-4, B. terrae-novae Fernald: fig. 1, portion of type, \(\times 1:\) fig. 2, tip of branchlet, \(\times 5\), from Goose Pond, ypper Humber River, Newfoundland, Fernald \& Wiegand, no. 3272; FIG. 3, fruiting bracts, \(\times 10\), and fig. 4, nutlet, \(\times 10\), from type. Figs. 5-7, B. nana L.: fig. 5, tip of branchlet, \(\times 5\), from Velmunden, Norway, July 23, 1909, Fr. Lange; Fig. 6, fruiting bract, \(\times 4\), and FIG. 7 , samara, \(\times 10\), from the Lange specimen.
(To be continued)
\(\qquad\)

\section*{A NEW SPECIES OF ANULOCAULIS FROM SOUTHWESTERN TEXAS AND ADJACENT NEW MEXICO}

\section*{U. T. Waterfall}

Several collections of Anulocaulis were made by the author while botanizing in the Transpecos Region of southwestern Texas and adjacent New Mexico during the summers of 1942 and 1943, and October, 1944. The majority of these were of a plant having large, pallid, eglandular leaves, and long flowers. One collection, my no. 5026 from near the Finlay gypsum quarry in Hudspeth County, was characterized by smaller, greener, papillate-glandular leaves, and by smaller flowers. The latter plant agrees with Torrey's description of Boerhaavia leiosolena, \({ }^{1}\) the type of which was taken along the Rio Grande about 50 miles southeast of Finlay. The other specimens do not agree with it in several respects.

Most authors have treated the plants as one species, their descriptions merging the characteristics of Torrey's plant with those of later collections which have been almost entirely of the

\footnotetext{
\({ }^{2}\) Torrey, John. Botany of the Mexican Boundary, 172. 1859.
}
proposed new species. The only collections of true A. leiosolenus I have seen in the material borrowed from the Gray Herbarium are my no. 5026, mentioned above, and Bigelow's specimen from "the Great Canon of the Rio Grande", presumably near the present location of Indian Hot Springs in southern Hudspeth County. Dr. I. M. Johnston recognized this situation in his account of the Plants of Coahuila, Eastern Chihuahua, and Adjoining Zacatecas and Durango \({ }^{1}\), citing under Anulocaulis leiosolenus only the specimens listed above.

This, the typical variety, Anulocaulis leiosolenus (Torr.) Standl., var. typicus, nom. nov. (Boerhaavia leiosolena Torr., Bot. Mex. Bound. 172. 1859), appears to be a localized plant restricted to gypsum habitats in the southern part of Hudspeth County, while its var. lasianthus Jtn. is isolated in the Big Bend \({ }^{2}\). The proposed new species is much wider-ranging, being found on the great Permian gypsum beds of Culberson and Reeves Counties, Texas, in adjacent Eddy County, New Mexico, and as far north as the gypsum deposits of the Comanchean Bluffs east of Roswell, Chaves County, New Mexico. It is an obligate gypsophile, as apparently are other members of the genus.

Anulocaulis gypsogenus, n. sp. Anulocaulis leiosolenus (Torr.) Standl., Contr. U. S. Nat. Herb. 12. 375. 1909, in part. Not Boerhaavia leiosolena Torr. in Bot. Mex. Bound. 172. 1859. -Plant perennial, erect, \(8-12 \mathrm{dm}\). high from a woody root; stems glabrous, usually with an irregular glutinous band on each of the internodes; leaves opposite, mostly from the crowded lower nodes, thus appearing basal; leaf-blades ovate-cordate to reniform-cordate, \(7-19 \mathrm{~cm}\). long, \(6-23 \mathrm{~cm}\). wide, coriaceous, pallid, glabrous, never glandular-tuberculate as in A. leiosolenus; panicle-branches about \(2 / 3\) the height of the plant, the ends of the several opposite branches tending to be somewhat closely several-flowered, floral bracts ovate to ovate-lanceolate with acuminate tips; perianths large, about \(3-3.5 \mathrm{~cm}\). long, greenishwhite suffused with pink toward the limb; lower part of perianth tubular, upper \(1 / 3\) funnel-form, 5 -lobed, the lobes about 4 mm . long, each lobe deeply bifid and having a prominent midvein extending through the tube to the triangular sinus where it is minutely excurrent; stamens 3 , unequal, exserted, \(4-6.5 \mathrm{~cm}\). long; bases of filaments unequally united into a short hypogynous tube which is about as long as the ovary; style filiform, extending

\footnotetext{
\({ }^{1}\) Johnston, I. M., Journ. Arn. Arb. XXV, 174-175. 1944.
\({ }^{1}\) Op. cit. 175.
}
about 1 cm . beyond the stamens; stigma minutely capitate; anthocarp turbinate, \(5-7 \mathrm{~mm}\). long, \(4-5 \mathrm{~mm}\). wide, surrounded just below the middle with a reflexed wing about 1 mm . wide, lower part of fruit narrowly conical, upper part hemispherical, prominently 10 -ridged.

Anulocaulis gypsogenus, sp. nov. Planta perennis, e caudice lignoso erecta 8-12 dm. alta; caulibus glabris, internodiis annulo glutinoso irregulari cinctis; foliis oppositis, maxima parte e nodis inferioribus congestis, sicut basalibus: laminis ovato-cordatis vel reniformi-cordatis, \(7-19 \mathrm{~cm}\). longis, \(6-23 \mathrm{~cm}\). latis, coriaceis, pallidis, glabris, haud glandulari-tuberculatis ut apud A. leiosolenum; ramis paniculae pluribus oppositis, apicem versus plus minusve dense plurifloris; bracteis ovatis vel ovato-lanceolatis acuminatis; perianthio magno, ca. \(3-3.5 \mathrm{~cm}\). longo, tubo siridialbido, limbo rosaceo-albido, ca. 1.5 cm . diametro, 5-lobato, lobis ca. 4 mm . longis, bifidis, vena mediana ad imum sinum triangulare inter lobos ca. 3 mm . altum brevissime excurrente; staminibus 3 , inaequalibus, exsertis, \(4-6 \mathrm{~cm}\). longis, basibus filamentorum in tubum hypogynum ovario subaequilongum inaequaliter adnatis; stylis filiformibus, \(5-7.5 \mathrm{~cm}\). longis; stigmatibus minute capitatis; anthocarpiis turbinatis, \(5-7 \mathrm{~mm}\). longis, \(4-5 \mathrm{~mm}\). diametro, ala angusta reflexa ca. 1 mm . lata infra mediam circumcinctis; parte inferiore fructus anguste conica, parte superiore hemisphaerica, 10-costata.

The TYPE is the author's no. 5701 deposited in the Gray Herbarium. Isotypes are in the Herbarium of the Missouri Botanical Garden, the Herbarium of the New York Botanical Garden, and the author's private herbarium. This collection was taken from gypsum strata on the Comanchean Bluffs on the east side of the Pecos River, 7 miles east of Roswell, Chaves County, New Mexico. Here it grew in association with other gypsophiles characteristic of similar habitats farther south in Transpecos Texas. These include: Bouteloua breviseta, Sporobolus Nealleyi, Selinocarpus lanceolatus, Mentzelia humilis, Coldenia hispidissima, Gaillardia multiceps, Sartwellia Flaveriae and Dicranocarpus parviflorus.

Specimens examined: Texas, Culberson County: Cory 1535, Millers Brothers Ranch (central Culberson Co.), June 17, 1928. Reeves County: Waterfall 4258 from Screw Bean Arroyo near Texas-New Mexico Boundary. County Undetermined, Havard 87 from bluffs of Deleware Creek, West Texas (northern Reeves or Culberson Co.). New Mexico: Chaves County: Waterfall 4294 from gypsum of Comanchean Bluffs, 7 miles east of Roswell, Aug. 23, 1942; Waterfall 5701, TYpe, same site, Oct. 9,
1944. Eddy County: Strandtman 6, New Mexico, near Texas State line, Aug. 21, 1941; Waterfall 5721 from gypsum hills extending north from the Culberson Plateau, 3 miles north of state line near U. S. Highway 62, Oct. 9, 1944.

The author is indebted to Dr. Milton Hopkins of the University of Oklahoma for borrowing material from the Gray Herbarium, to Dr. C. A. Weatherby and Dr. Milton Hopkins for aid in the preparation of the latin translation, and to the Arnold Arboretum of Harvard University and the Carnegie Institution of Washington for grants of funds to aid these investigations.
Wynnewood, Oklahoma

Convolvulus Wallichiana at Swarthmore, Pennsyl-vania.-Among the plantings around Swarthmore College, Swarthmore, Pa., there grows a species of Convolvulus which is rapidly becoming a weed. This plant was first observed about three years ago but little attention was paid to it.

Examination of all keys available failed to establish the identity of this species. It resembles C. sepium very closely but is much smaller and the leaf-characters are somewhat different. The specimen was forwarded to the Gray Herbarium where it was identified as Convolvulus Wallichianus Spreng., a native of India, China, and adjacent parts of Asia. According to report this is the first specimen collected in America.

The source of this plant at Swarthmore can not be determined with any certainty. It was found growing among some narcissus and near an ilex. The narcissus bulbs came from Germantown, Pa., and much of the shrubbery came from Long Island, N. Y. In addition a great deal of mushroom soil has been added from time to time from New York.

The plant is very difficult to exterminate and is likely to become a nuisance. At present it is found in about five separate areas in and around the buildings.-Samuel C. Palmer, Swarthmore College.

Volume 47, no. 561, containing pages 261-272 and plates 961 and 962, was issued 5 September, 1945.


JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

Conducted and published for the Club, by
MERRITT LYNDON FERNALD, Editor-in-Chief
\(\begin{aligned} & \text { CHARLES ALFRED WEATHERBY } \\ & \text { ALBERT FREDERICK HILL } \\ & \text { STUART EIMBALL HARRIS }\end{aligned}\) Associate Editors

Vol. 47. November, \(1945 . \quad\) No. 563.

\section*{CONTENTS:}

Contributions from the Gray Herbarium of Harvard UniversityCLIX (concluded). M. L. Fernald. II. Eastern North American Representatives of Alnus incana.
A necessary Transfer in Populus § Turanga. Ernest Rouleau. ... 362
Linum catharticum in Ontario. Herbert Groh. ................... . . 362
On the Descriptive Method of Linnaeus (concluded).
H.K. Svenson. ............................................................ 363
Chrysanthemum uliginosum adventive in Quebec.
James Kucyniak. ....................................................... 389
Chamaedaphne calyculata, var. latifolia. M. L. Fernald. ...... 390
New Form of Campanula from Minnesota. Olga Lakela. ...... 391

\section*{The Sew \(\mathbb{E}\) England 据otanical \(\mathbb{C l u b}\), Jnt.}

> 8 and 10 West King St., Lancaster, Pa. Botanical Museum, Oxford St., Cambridge 38, Mass.

\title{
RHODORA.-A monthly journal of botany, devoted primarily to the dora of the Gray's Manual Range and regions floristically related. Price, 4.00 per year, net, postpaid, in funds payable at par in United States currency in Boston; single copiea (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate montly at higher prices (see 3rd coverpage). Volumes 1-9 can be aupplied at \(84.00,10-34\) at 83.00 , and volumes \(35-46\) at 4.00. Some single numbers from these volumes can be supplied only at ad. vanced prices (see 3rd cover-page). Somewhat reduced rates for complete sett can be obtained on application to Dr. Hill. Notes and short scientific papers, relating directly or indirectly to the plants of the northeastern states, will be considered for publication to the extent that the limited apace of the journal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pagen of print) will receive 15 copies of the issue in which their contributions appear, If they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost. \\ Address manuscripts and proofs to \\ M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass. \\ Sabscriptions (making all remittances payable to RHODORA) to \\ Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford St., Cambridge 38, Mazs. \\ Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Act of March 3, 1879.
}

\title{
INTELLIGENCER PRINTING COMPANY \\ Specialists in Scientific and Technical Publications EIGHT WEST KING ST., LANCASTER, PA.
}

\section*{EDIBLE WILD PLANTS OF EASTERN NORTH AMERICA}

\section*{by Merritt Lyndon Fernald and Alfred Charles Kinsey}

Practical discussion of edibility and directions for recognition and preparation of more than 1000 wild plants. 422 pp., introd. and detailed index, 124 line drawings, 25 half-tone plates. \(\$ 3.00\), postpaid. The Idlewild Press, Cornwall-on-Hudson, New York, or Librarian, Gray Herbarium, Cambridge 38, Mass.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \$3.00.

No. III. The Linear-leaved North American Species of Potamogeton, Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \(\$ 1.50\).
No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \(\$ 1.00\).

\author{
Gray Herbarium of Harvard University, Cambridge 38, Mase.
}

\section*{IRbodora}

JOURNAL OF

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
November, 1945.
No. 563.

\title{
CONTRIBUTIONS FROM THE GRAY HERBARIUM OF HARVARD UNIVERSITY-No. CLIX
}

\author{
M. L. Fernald \\ II. Eastern North American Representatives \\ of Alnus incana
}
(Plates 976-989)
In 1906, while he was a student with me, Dr. Harley H. Bartlett joined me in collecting at different stages of development through the season material of the Swamp Alders of northeastern Massachusetts, for it was quite apparent that the variations within this group were not satisfactorily disposed of merely by calling them all simply Alnus incana and A. serrulata or rugosa. With the cooperation of the late Professor J. Franklin Collins in Rhode Island, we assembled many collections but their final identification was interrupted by Bartlett's finishing his studies at Cambridge and the mass of material was stored, with the hope that one of those eclectic students, who specialize on our trees and shrubs, to the exclusion of herbs, would be interested to clarify the situation. More than quarter of a century later, when he was studying with me, Dr. Ernst C. Abbe, working primarily on morphological problems in the Corylaceae (Betulaceae), made a fresh start on the problem and, although he was obliged to cut short this special work, he had, before he finished, assembled striking evidence that the shrub or small tree, which in North America passes as the Eurasian A. incana, really differs from that species in very many important characters. Following up Abbe's unfinished studies, I undertook to conclude the quest and a decade or more ago wrote the introduction to the present paper.

Interrupted by more immediately pressing matters, I likewise failed to bring the study to completion. Now, after these repeated interruptions, I am again endeavoring to set the group in such order as I can establish in it. Fortunately but somewhat unhappily, I am faced by vastly more numerous, though more satisfactorily made, collections to deal with than Bartlett and I had before us 39 years ago, for wherever I have been, in Newfoundland, eastern Canada, New England, New York, Michigan or Virginia, my companions and I have had our eyes open for variations of the Alders. The present paper cannot, therefore, be called a hasty and off-hand study.

The name Alnus incana for the common Swamp Alder of the Labrador Peninsula, Newfoundland, eastern Canada and the more northeastern United States (plates 977-982) has been so thoroughly established, especially since Edward Tuckerman in 1843 so identified the northern shrub or small tree with leaves glaucous beneath, that to those who are more influenced by longestablished usages than by precision its abandonment might seem mere iconoclasm. At the beginning, however, the name belonged strictly to a Eurasian tree and, of course, it must be retained for that variable but morphologically definite species. True Alnus incana (L.) Moench (plate 976) was so named because of the hoary (incanous) pubescence which so generally characterizes it; ordinarily its leaves are permanently quite gray with soft and velvety pilosity, as are the young branchlets and the axes of the inflorescences. The terminal lobes (figs. 5 and 6) of the bracts of the pistillate and fruiting aments (figs. 4 and 5) are depressed and slightly recurving or sometimes almost suppressed. This species is found in North America only in cultivation or where introduced from Europe, as formerly on the sandhills near Provincetown, at the tip of Cape Cod, where it was originally planted and was abundant as late as 1919 (Fernald \& Long, nos. \(18,354,18,355\) and 18,360 ) but where, by 1944 , none of it seems to have persisted. \({ }^{1}\)

\footnotetext{
\({ }^{1}\) The introduction of European plants for the reclamation of the sand-dunes back of Race Point Life Saving Station near Provincetown is typical of much of the practice in holding or reclaiming loose solls. The natural dunes of Cape Cod are very effectively and automatically reclaimed by the indigenous eastern North American Ammophila brevilioulata Fernald and Pinus rigida (Pitch Pine), while the Alders of the dunes and hollows are endemic Americans. Nevertheless, the reclamation of the dunes of the old province-lands was largely attempted through the planting of imported
}

The eastern North American shrub or (rarely) small bushy so-called tree (plates 977-982) which erroneously passes as Alnus incana is not truly incanous. Its new branchlets and the axes of its inflorescences, are, with rare exceptions, glabrous or only very sparsely pilose and very gummy, having, when dry, a crackled or subverrucose surface. The oval or ovate to roundelliptical and usually coarsely undulate or doubly toothed leaves are less pubescent or glabrous beneath or, if strongly pilose, with usually rufescent pubescence. The pale cross-veins (between the strong parallel ribs) are, in mature foliage, coarse and prominent beneath (plates 977, fig. 2, 978, fig. 2, and 979, fig. 4), freely confluent and forming a conspicuously scalariform and rugose pattern, the veins in European A. incana (plate 976, fig. 2) being very slender and comparatively delicate. In the American species the pistillate aments are usually more numerous than in the European species; and the outer lobes of the summit of each bract of the pistillate cone are suberect or arching and prolonged (plates 977, fig. 3, and 978, figs. 3 and 5). That the so-called A. incana of North America is really very different from true Eurasian A. incana is quite obvious; but for clarity of discussion this American shrub, which for more than a century has erroneously passed with us as Old World A. incana, may be temporarily designated Species no. 1.

All the characters above noted are such as can be seen in a good herbarium. Others of equal significance are not often there displayed. Eurasian Alnus incana is a large shrub or, more often, a considerable tree, up to 35 or even to 85 feet high and with single erect trunks up to 3 feet in diameter, the cortex lustrous and whitish-gray. "In . . . Europe . . . in the south . . . sometimes attaining a height of seventy feet; it is the common Alder of Siberia and southeastern Asia [this

\footnotetext{
European White Alder, Scotch Pine and Scotch Broom; but the Broom is there now relatively unimportant, the Scotch Pine is secondary to the native Pitch Pine, and the European Alder has not survived. That is as it should be: the climate of the dunes of western Eurasia, with prevailingly western winds off the Atlantic, is so unlike the dry and hot summer conditions at the eastern border of North America, that western European shrubs are too much handicapped. Some years ago I received a call from an American soil-conservator who stated that he was going on a federal government mission to India, to find some Asiatic species which would control erosion in our "dust-bowl". A few days later I had a brief visit from a prominent botanist of India, who had been sent to America by his government to see if in our "dust-bowl" he could secure some plant to control wind-erosion in India. Tra-la-la!
}
sometimes separated], . . . a stately tree fifty or sixty feet in height, with a trunk often two or three feet in diameter"Sargent, Silva, ix. 69, in footnote (1896). "Strauch oder bis 10 (25) m hoher Baum. . . . Rinde glatt, glänzend weissgrau" -Hegi, Ill. Fl. Mitt.-Eu. iii. 89, with illustration of the arborescent habit as fig. 483. "Arbre à écorce lisse, d'un gris blane"Rouy, Fl. France, xii. 261 (1910); "meist 6 bis etwa 23 m hoch, in der Tracht der A. glutinosa ähnlich, aber meist niedriger, mit ziemlich dichter Krone. Stamm glatt mithellgrauer Rinde"-Ascherson \& Graebner, Synop. Mitteleur. Fl. iv. 423 (1911). Certainly the North American shrub or bushy "tree", which for a century or more has passed as A. incana (our Species no. 1), does not have sufficiently erect or solitary trunks to rank as a real tree; otherwise it would have been included among the trees in such compendious works as Sargent's Silva and his Manual of the Trees of North America and in Britton's North American Trees, in none of which is it included. If a tree, it should also be in Sudworth's Check List of the Forest Trees of the United States. Rightly enough, however, A. incana is mentioned by Sudworth only in a footnote as "a shrub", "as it occurs in northeastern North America and United States" (Sudworth, p. 80). In a footnote Sargent, Silva, 1. c., refers to it (as A. incana) in the following terms: "In North America, where it is the common Alder of swamps and river-banks in the northeastern parts of the continent, forming dense shrubby thickets rarely more than ten or twelve feet high"; while F. A. Michaux, describing it as his A. glauca and comparing it with \(\boldsymbol{A}\). serrulata, said "c'est-à-dire qu'on en trouve souvent des individus qui ont de 18 à 20 pieds . . . de hauteur, sur environ 3 pouces ( 12 centim.) de diamètre". And surely the cortex of our northern shrub is never whitish gray, the color so consistently stated by Eurasian botanists for their A. incana. The thin cortex of ours is a warm purpleblack, purple-brown or gray-brown, with conspicuous elongate white lenticels (plate 980, fig. 2). "L'écorce qui couvre le trone, ainsi que les branches secondaires, est d'une teinte brune trèsfoncée" (Michx. f. in describing his A. glauca); "bark gray brown with lighter horizontal markings" (Mathews, Field Book Am. Trees and Shrubs, 126). "A shrub 8-20 feet high; the stem sometimes 3-4 inches in diameter, with a smooth brown bark"-

Torrey, Fl. N. Y. ii. 202 (1843). In fact, so dark is the bark that, when the younger Michaux published his Alnus glauca, with "foliis subrotundд-ellipticis, duplicatò-serratis, subtùs glaucis", he gave our shrub of "les Etats du New-Hampshire, Massachusetts et de Vermont" which has the foliage so "vert pâle et comme bleuâtre, ce qui les fait reconnoître au premier abord", the English name " BLACK ALDER"; whereas in Europe A. incana is frequently called "White" or "Gray Alder". Furthermore, in Europe witches' brooms (Hexenbesen) are frequent on \(A\). incana, sometimes as many as 100 on a single tree; our darkbarked northeastern shrub, Professor Faull informs me, has never been known to produce them; and Professor Arthur Stanley Pease tells me that his students in Latin, familiar with the shrubbiness of alders in eastern North America, always have a great laugh as they read passages (at least 11 of them) by the Latin poets, telling of ships built of alder!. Surely no argument beyond the mere facts and the plates is needed to show that we have been far astray in calling our northern Swamp Alder the same as the Eurasian A. incana!

The only other indigenous Swamp Alder of temperate North America, excluding the quite definite autumn-flowering Alnus maritima (Marsh.) Muhl., is the generally more southern shrub (plate 983-989) with the white lenticels of the bark much smaller than in Species no. 1 or often very obscure (plate 985, fig. 5); the leaves of a generalized obovate type, mostly subcuneately narrowed (but sometimes more rounded) to base, usually with regularly or subuniformly fine-serrulate margins, with cross-veins beneath (plates 984, fig. 4, 985, fig. 4, 987, FIG. 4 and 988, Fig. 3) more delicate and less conspicuous, the lower leaf-surfaces ful-vous-green to reddish, glabrous, glabrate or reddish-pubescent; the axis of the pistillate inflorescence (plates 983, figs. 3 and 4, 985 , fig. 3,986 , FIG. 3,988 , FIG. 4 , and 989 , FIG. 4) commonly with right angles or strongly geniculate bends. The outer terminal lobes of the cone-bract (plate 986, fig. 4) are low and broadly rounded. This shrub, the northern limits of which interlock with the southern outposts of Species no. 1, long passed correctly as A. serrulata (Ait.) Willd. ; but, especially since Karl Koch in 1872, Coulter in 1894 and Sargent's Silva (1896), it has recently been incorrectly passing as \(A\). rugosa (Du Roi) Sprengel. Since the
latter name must be considered in connection with Species no. 1, it will make for clarity, until the application of the various names is investigated, to designate the more southern shrub as Species no. 2.

Almost from the start, at least beginning with Willdenow in 1796, the names rugosa and serrulata, whether under Betula or Alnus, were hopelessly confused. Regel at last got them clearly separated but, depending chiefly on variable leaf-outline and -pubescence, without noting the striking differences of bark and inflorescences, he maintained them both as variations of one species. With the two eastern American species defined as Species nos. 1 and 2 and clearly shown in the plates, we may proceed to examine the specific names published for them, somewhat in chronological order, that we may settle their correct application. In so doing I am omitting the several nomina nuda of Steudel and others, undefined names which by various authors have been placed in the vague synonymy of one or another of the properly defined ones.

The first of these two American species defined was Betula Alnus (rugosa) Du Roi, Obs. Bot. p. xxxii (1771). The original diagnosis and discussion of the shrub growing in the botanic garden of Harbke near Brunswick was as follows:
5. betula Alnus (rugosa) foliis mucronatis acute serratis, subtus venosorugosis.
Germ. Nordamerikanische Eller.
Habitat in America septentrionali.
Species horti Harbeccensis foliis ovatis mucronatis, acutius serratis et angustioribus, quam in B . Alno incana, viridibus glabris, subtus venis albidis rugosis. Rami tenues, cortice nigricante. E semine misso culta arbor in horto nondum adhuc floruit.

This was followed by the fuller account in Du Roi's detailed Die Harbkesche wilde Baumzucht, i. 112 (1771):
3. BETULA Alnus (rugosa) foliis mucronatis acute serratis, subtus venoso-rugosis.
The American Alder.
Aune d'Amerique septentrionale.
Die Nordamerikanische Eller.
Sie unterscheidet sich deutlich von den beiden vorigen, und ist hier aus Saamen gezogen, welcher aus Nordamerika geschickt worden ist.

Die Blätter erscheinen schmaler als bei den vorhergehenden, und in den mehresten an vier Zoll Länge und zwei Zoll Breite. Sie sind oval zugespizt, am Rande scharf und fein gezahnt, auf der oberen Fläche hell grün und glatt, und auf der unteren ebenfals hellgrün. Auf der lezteren lauft der Länge nach eine weissgrüne erhabene Ader hin, welche in schrägen Linien nach dem Rande aus etwas feinere Nebenäste Paarweise gegen einander über ausschicket, und aus diesen lezteren kleinen Adern gehet ein Gewebe noch kleinerer Adern heraus, die das Blatt etwas runzlicht bilden.

Die äussere Rinde ist dunkelgrau an alten Zweigen, an iungen aber grün.
Ehrhart, improving on the trinomial nomenclature of Du Roi, redescribed the shrub growing in the Harbke Garden as Betula rugosa (Du Roi) Ehrh. Beitr. iii. 21 (1788).

\section*{6. Die Haseleller.}

Betula rugosa.
Betula gemmis elevatis, obtusis; foliis ovatis, acutis, repando-angulatis, serratis, nudis, superne glabris, subtus venoso-rugosis;racemis subtristrobilis, aphyllis.
Ihr Vaterland ist Nordamerika.
Die Plantage zu Herrnhausen, die Gärten zu Harbke, Destedt und mehrere haben sie.
Betula Alnus rugosa. Duroi baumz, v. i, p. 112.
Sprengel, too, in transferring the species to Alnus, in Syst. iii. 848 (1826), was equally clear:

> rugosa* \(^{*}\) 8. A[lnus] foliis basi rotundata ovato-oblongis acutis duplicato-denticulatis subtus rugulosis, axillis venarum villosis. Amer. bor.
but Sprengel made the serious mistake of suggesting identity with the Peruvian A. acuminata HBK.

From the original accounts of Du Roi, Ehrhart and Sprengel, then, it is clear that Alnus rugosa rests upon material cultivated in Germany and having dark or blackish bark, leaves ovate or oval, acutish, rounded at base, doubly toothed, green and glabrous or glabrescent beneath, a leaf which so resembles that of Corylus as to suggest to Ehrhart the name "Haseleller" (Hazel-Alder). These descriptions are so vivid for the common extreme of the shrub of northeastern America which has erroneously passed as the European A. incana, var. hypochlora Call. \({ }^{1}\), that it is doubly reassuring to see a photograph (our plate 979, Fig. 1) of a speci-
\({ }^{1}\) As by Fernald in Rhodora, xxiii. 257 (Feb. 27, 1922).
men distributed by Ehrhart as his Betula rugosa and coming from the Harbke Garden. The photograph, for the use of which I am indebted to Professor Alfred Rehder and the Arnold Arboretum, was taken by Professor Rehder at the Botanical Museum at Berlin-Dahlem; and, since the destruction of that invaluable herbarium, it is a most fortunate photograph to have. The foliage shown is young first-year leaves and is closely matched by the leaves on young and vigorous sprouts of our greener-leaved so-called " \(A\). incana, var. hypochlora". Surely no one, familiar with the obovate and usually cuneate-based leaf of \(A\). serrulata, would think of matching the latter with the authentic foliage from the Harbke Garden. Neither would they call our A. serrulata "Hazel-Alder". That name is wholly appropriate for our shrub (Species no. 1) which has been passing as A. incana. A characteristic leaf was shown by Regel in his Monographia Betulacearum in Nouv. Mém. Soc. Nat. Mosc. xiii. 165, t. xi. fig. 8 -repr. as Mon. Bet. 107 (1861)-of the shrub "in den Gärten Europas" and which Regel, with remarkable conservatism, called A. glutinosa, lusus rugosa! Regel in 1861 stated that the shrub was widely grown in the botanical gardens of Europe and he identified with it the \(A\). hybrida of Alexander Braun in Reichenb. Ic. Fl. Germ. xii. 3, t. 630, fig. 1292 (1850), which had been found wild in various parts of Germany and in Bohemia. Such a shrub, from a wild habitat in Wittenberg, was distributed in Baenitz. Herb. Dendrol. no. 1214, as A. rugosa. This material, unlike the Ehrhart specimen, shows mature fruiting branches with the characteristic cones and the typical foliage of fruiting branches of our greener-leaved "A. incana". It is shown in our plate 977. Native American specimens, almost like it in every respect, are shown in plate 978.

Confusing as it may temporarily prove, there seems to be no escape from taking up for the North American shrub which passes as Alnus incana, our Species no. 1, its earliest name, A. rugosa (DuRoi) Spreng.

Chronologically, the names of Humphrey Marshall, Arb. Am. 20 (1785), have to be noted. The first, "Betula-Alnus glauca. Silver-leaved Alder" of "low marshy ground", had no diagnosis whatever but from its names may be inferred as being the common northern variety of \(A\). rugosa, which reaches northeastern

Pennsylvania, a species which had already been described by DuRoi (1771) and which in 1813 F. A. Michaux properly described and illustrated, with no reference to Marshall, as \(A\). glauca. Marshall's second species, "Betula-Alnus maritima, Sea-side-Alder", was sufficiently defined as to give an unquestioned basis for A. maritima (Marsh.) Nutt., a clear-cut autumnflowering species which we are not here discussing. His third had no good description, merely very brief and inconclusive comments. though geographically it was obviously intended for A. serrulata (Ait.) Willd., our Species no. 2. This was

Betula-Alnus rubra. Common Alder.
This grows very common in most parts of Pennsylvania.
The leaves are broader than the other kinds and rough or wrinkled.
This flowers in the spring, and perfects its seeds in the fall.
From its abundance in Pennsylvania Marshall's species, as said, should be some form of Alnus serrulata. The leaves "broader than the other kinds and rough or wrinkled" is inconclusive but there are plenty of broad-leaved variations of \(A\). serrulata. Tuckerman interpreted it as unmistakable \(A\). serrulata and described A. rubra (Marsh.) Tuckerm. in Am. Journ. Sci. xlv. 32 (1843), with leaves obovate and with Betula serrulata Ait. and A. serrulata (Ait.) Willd. as synonyms, Tuckerman giving the naïvely nationalistic explanation:

> The name of our own botanist should have the priority: his description, though short [he might have said inconclusive], notices the most striking features of the species, and cannot be mistaken. The A. rubra of Bongard [1833], is many years later [than Betula-Alnus rubra]. Add to this, that Marshall's name is far more expressive and apt than that of Aiton [1789].

Nevertheless, Alnus rubra Bongard (1833), the Pacific North American species, has right of way and under present-day rules no other species can validly bear the same name, even though its name-bringing typonym was earlier. A. rubra (Marsh.) Tuckerm. (1843) is fortunately, in view of its vague origin, a later homonym.

The next name, chronologically, was Betula serrulata Aiton, Hort. Kew. iii. 338 (1789). Aiton's diagnosis was brief but its characterization of the leaf definite:

> serrulata. 11. B. pedunculis ramosis, foliis obovatis acutis; venis et axillis venarum subtus villosis, stipulis ovalibus obtusis. Notch'd-leaved Alder Tree. Nat. of Pensylvania. Cult. 1769, by Peter Collinson, Esq.

That Betula serrulata was our Species no. 2 (especially as shown in plate 983) is clear from the obovate, acute leaves; but, with wholly vague conceptions of our two species, European authors promptly produced confusion of names, like most botanists who study names to the exclusion of the plants! Thus, Willdenow, in his Berlinische Baumzucht, 45 (1796), took up Betula serrulata with Aiton's original diagnosis of 1789 and placed unquestioningly in its synonymy B. rugosa Ehrh. (1788), which went back to Du Roi's original publication of 1771. And later, when he made the combination Alnus serrulata (Ait.) Willd. Sp. Pl. iv \({ }^{1} .336\) (1805), Willdenow merged with this species, correctly described "foliis obovatis", the above discussed Betula rugosa "foliis ovatis . . . repando angulatis". Further augmented by the failure of André Michaux (1803) definitely to distinguish our two species, the mixing of the two, started by Willdenow in 1796, became general and, consequently, has resulted in the recent erroneous and highly uncritical application of the name \(A\). rugosa to the abundantly different and usually more southern \(A\). serrulata. Michaux's confusion of the two may be stated as follows: in his Flora Boreali-Americana, ii. 181 (1803) he described Betula rugosa (American "incana") as B. serrulata "foliis lato-ovalibus" and then added the

> Obs. Folia saepe obovalia, interdum subglanduloso-repanda, basi semper acuta,
the observation referring to the relatively southern \(A\). serrulata. Michaux gave the range from "Pensylvania ad Carolinam", the specimen in his Herbarium at Paris, which I examined in 1903, being of the southern species. Somewhat surprisingly, André Michaux, who had explored eastern Canada as far north as Rupert River and west to Lake Ontario and who knew northern New England, gave no intimation in his Flora that there is any Alder of this group north of his "Pensylvania ad Carolinam". Having collected A. serrulata in that area, he possibly did not further feel any special interest in the group; at any rate,

\section*{1945] Fernald,-American Representatives of Alnus incana}
the only Alder he noted from Canada in his Flora was Betula crispa Ait. More probably, however, northern material was lost before the writing of the Flora Boreali-Americana. It is fairly clear that Michaux recognized the northern species as distinct from the southern, for in his Journal-Journal of André Michaux. 1787-1796. with an Introduction and Notes, by Charles Sprague Sargent, Proc. Am. Phil. Soc. xxvi. no. 129 (1888)-he noted, among the plants seen on his trip up the Saguenay and across to Lake Mistassini, "Alnus glauca stipulis lanceolatis" (Sargent, 1. c. 75 , under "Le 15 " of August). To be sure, Sargent (l. c.) identified Michaux's Alnus glauca as Betula pumila, but Michaux knew the difference, for on the 19th of August on "la riv. ditte Mistassin", he specially noted Betula pumila. \({ }^{1}\)
F. A. Michaux, the son, carried the confusion still further, describing A. serrulata "foliis duplicato-serratis, ovalibus, acutis" \({ }^{\prime 2}\), stating that it is found in the Northern, Central and Southern States ("on la trouve aussi bien dans les Etats du Nord que dans ceux de Centre, du Sud et de l'Ouest"), and illustrating the round-based doubly serrate leaf of typical \(A\). rugosa, already discussed. With such inauspicious beginnings, it is little to be wondered at that the correct applications of the names \(A\). rugosa and \(A\). serrulata have been hopelessly confused by those who have relied more upon "the books" than upon the morphological characters of the plants.

The next specific name to consider is Alnus glauca. Although the undefined name "Betula-Alnus glauca" had been used by Marshall in 1785, that publication was not cited by F. A. Michaux when he described and illustrated his own Alnus glauca, Michx. f. Hist. Arb. Forest. Am. Sept. iii. 322, t. 4, fig. 2 (1813). The diagnosis and figure are unequivocal, the former being

\footnotetext{
\({ }^{1}\) Unfortunately, most others of Sargent's identifications of Michaux's plants need correction. For instance, "Sparganium natans", collected on the same trip, was identifled by Sargent (p. 75) as S. minimum. Michaux's collection, labeled "Hab. in Amnibus à Québec ad Lacus Mistassins', was the type of S. angustifolium Michx. Fl. Bor.-Am. ii. 189 (1803), the only species of the genus in the Flora. Similarly Michaux's Journal recorded as growing with the Sparganium and near the Alnus "Alisma subulata", which Sargent identifled as "Alisma Plantago, L. var. Americanum. Gray". But Michaux knew the broad-leaved plant and in his Flora, i. 218, had it as A. Plantago. He there included A. subulata L. from Florida only, the plant now known as Sagittaria subulata (L.) Buchenau. The plant of Canada, which Michaux mistook in the field for Allsma subulata L., is the type of Sagittaria graminea Michx. FI. Bor.-Am. ii. 190 (1803).
\({ }^{2}\) Michx. f., Hist. Arb. Forest. Am. Sept. iii. 320, fig. 1 (1813).
}

> Alnus glauca, foliis subrotundò-ellipticis, duplicatoे-serratis, subtus glaucis,
the species said to be unknown in the South, very rare in the Middle States but abundant in New Hampshire, Vermont and Massachusetts ("Cette espèce d'Aulne qui ne se trouve pas dans les États du Sud, qui est assez rare dans ceux du Milieu, est, au contraire, plus multipliee dans les États du New-Hampshire, Massachusetts et de Vermont"). The description, figure and abundance in northern New England clearly indicate the common shrub of the North with gray or glaucous lower leaf-surfaces (plates 980 and 981), which erroneously and almost universally passes as the Old World \(A\). incana, the only possible excuse for such an interpretation being the glaucous lower surface of the leaves. This familiar shrub is, of course, one of the extreme and usually most northern variations of \(A\). rugosa.

In 1894, the late Dr. Britton collected on Staten Island fruiting material from a "large alder in swampy woods, . . . ; these were at the time referred to Alnus incana, though with doubt, inasmuch as the height of the tree seemed much too great for that species, and the large, strongly pointed leaves seemed also to be different from those of any specimens of incana that I had seen. The woods in which this tree grew were cut away soon after my collection was made, and, though a search was made in the vicinity for other plants, I was never able to find another specimen".-Britton in Torreya, iv. 124 (1904). Since, however, the late Eugene P. Bicknell subsequently found somewhat similar shrubs on Long Island, the Staten Island specimen was made the type of Alnus noveboracensis Britton in Torreya, 1. c. (1904) our plate 995 . It was more fully described and illustrated in Britton, N. Am. Trees, 264, fig. 224 (1908), but in Britton \& Brown, Ill. Fl. ed. 2, i. 613 (1913) it was noted after "A. rugosa", i. e. A. serrulata, with the justifiable comment: "It may be a race of this species". The latter disposition of it seems about right; it is an occasional and rather marked extreme in the broad range of A. serrulata, from Maine to Georgia, Tennessee and Louisiana. Unfortunately the type from Staten Island, which I have before me through the courtesy of Dr. Gleason, had been badly pressed, poorly mounted and seriously broken. It is, therefore, not a very good subject for illustration, but in plate 985 Dr. Schubert has cannily covered the most broken parts.

Numerous varietal names must be considered but, since they do not disturb the specific epithets which we must apply to our two native species, their discussion will be deferred until the varieties of the two species are defined.

As I understand our spring-flowering native Alders of this group they fall into the two species following.
Cortex of trunks and older branches bearing abundant linear
transverse whitish lenticels up to 7 mm . or more long; axis
of young or flowering inflorescence arching, without right
angles, the pistillate branch or branches (in monoecious
inflorescences) then drooping and appearing to be below
the staminate ones; leaves ovate, oval, subelliptic or
rounded, broadest below or near the middle, with rounded to
subcordate bases, oftenest double-serrate or -dentate, often
repand-undulate, not at all or only slightly glutinous, the
mature blades with the cross-veins beneath prominent and
forming ladder-like reticulation between the main lateral
veins. .
1. A. rugosa.
Cortex with fewer and shorter orange to gray lenticels or
these obsolescent; axis of young inflorescence with 1 or more
abruptly geniculate or right-angled bends, the pistillate
branches erect or strongly divergent and thus appearing to
be above the drooping staminate ones; leaves obovate or
obovate-elliptic, broadest above middle, cuneate to but
slightly rounded at base, simply serrulate, only exceptionally
strongly undulate, the expanding ones glutinous, often
aromatic, the mature blades with the lower surface delicately
or finely reticulate or with only weak cross-veins........2. A. serrulata.
1. A. rugosa (Du Roi) Spreng. Syst. iii. 848 (1826).-The following varieties and forms are recognized.
\begin{tabular}{|c|}
\hline \multirow{13}{*}{} \\
\hline \\
\hline
\end{tabular}
iii. 848 (1826); Callier in Mitteil. Deutsche Dendr. Gesellsch. 1918: 114 (1918), in small part only (a bad mixture). A. latifolia Desf. Cat. Pl. Hort. Par. ed. 3: 352 (1829), nomen nudum, cited in synonymy of the next by Spach (1841). A. hybrida A. Br. ex Reichenb. Ic. Fl. Germ. xii. 3, t. 630, fig. 1292 (1850). \(A\). serrulata, 3. macrophylla Spach in Ann. Sci. Nat. sér. 2, xv. 206 (1841). A macrophylla Desf. ex Spach, l. c. in synonymy (1841). A. autumnalis Hartig. Naturgesch. Forste, Kulturpfl. 337 (1850). A.glutinosa, \(\delta\). serrulata, lusus c. rugosa (Du Roi) Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. 165, t. xi. figs. \(8-10\)-repr. as Mon. Bet. 107 (1861). A. serrulata \(\beta\). rugosa (Du Roi) Regel in DC. Prodr. xvi². 188 (1868). A. glutinosa, var. autumnalis (Hartig) Ktze. Rev. Gen. ii. 638 (1891). A. incana, var. hypochlora sensu Fernald in Rhodora, xxiii. 257 (Feb. 27, 1922), not Callier (1918).-Low grounds, western Nova Scotia to northern Michigan, south to southern New England, locally to northern and eastern Pennsylvania and northern Indiana. The following, mostly distributed as A. incana and selected from more than 300 specimens before me, are characteristic. Nova Scotia: Cedar L., Digby Co., Fernald \& Long, no. 23,781 (as A. incana, var. hypochlora); Eel L., Yarmouth Co., F. \& L., no. 23,782 (as A. incana, var. hypochlora). Maine: Milford, Penobscot Co., Fernald \& Long, no. 13,474 (as A. incana, var. hypochlora); Rowe P., Pleasant Ridge, Somerset Co., Sept. 10, 1909, J. F. Collins; New Sharon, Franklin Co., July 23, 1904, Knowlton (as A. serrulata) ; Whitney P., Oxford, Oxford Co., July 12, 1914, Weatherby; Mud P., Greenwood, Oxf. Co., June 12, 1931, Bill, Eaton, Fernald, Griscom \& Hunnewell; Washington, Knox Co., J. G. Jack, no. 3398 (as A. incana, var. hypochlora); Isle au Haut, Knox Co., Aug. 11, 1918, Kidder (as A. incana, var. hypochlora), A. F. Hill, no. 1652; Waterville, Kennebec Co., July 5, 1904, Knowlton; Livermore, Androscoggin Co., 1879, Kate Furbish; Baldwin, Cumberland Co., Fernald \& Long, no. 13,476; Limington, York Co., \(F . \& L\)., no. 13,475; Cape Neddick, York Co., J. G. Jack, nos. 3388 and 3392. New Hampshire: Lebanon, Grafton Co., June 12, 1920, Fernald, Hunnewell and \(R\). W. Blanchard; Hookset, Merrimac Co., Aug. 2, 1925, C. F. Batchelder; Durham, Strafford Co., Sept. 7, 1918, Knowlton: Derry, Rockingham Co., Aug. 25, 1917, C.F. Batchelder; Nashua, Hillsborough Co., Robinson, no. 800; Jaffrey, Cheshire Co., Robinson, no. 156. Vermont: Essex Junction, Chittenden Co., S. F. Blake, no. 2218; Middlebury, Addison Co., Sept. 25, 1880, Brainerd (as A. serrulata); West Rutland, Rutland Co., Eggleston, no. 3211; Townshend, Windham Co., June 2, 1912, L. A. Wheeler; Manchester, Bennington Co., M. A. Day, no. 163. Massachusetts: Emerson Point, Rockport, Essex Co., L. B. Smith \& R. G. Gates, no. 1009; West Manchester, Essex Co., June 7, 1913, F. T.

\section*{1945] Fernald,-American Representatives of Alnus incana 347}

Hubbard; Plum Island, Essex Co., White \& St. John, nos. 528 and 543; Winchester, Middlesex Co., Fernald \& Bartlett, no. 7; West Cambridge, Mid. Co., F. \& B., no. 2; Concord, Mid. Co., July, 1857, E. S. Hoar; Boxboro, Mid. Co., Hubbard \& Torrey, no. 477; West Roxbury, Suffolk Co., April 9 and September 11, 1906, F. F. Forbes (as hybrid of A. incana and A. rugosa); Dorchester, Suf. Co., Sept. 23, 1919, Kidder, Brookline, Norfolk Co., March 19, Sept. 9 and Nov. 24, 1902, F. F. Forbes; Dedham, Norfolk Co., Sept. 8, 1895, E. F. Williams; Hanson, Plymouth Co., Knobloch, Smith \& Stebbins, no. 2562; North Tisbury, Martha's Vineyard, Dukes Co., Oct. 3, 1912, Bicknell; Copaum P., Nantucket, Nant. Co., June 8, 1908, Bicknell; Hardwick, Worcester Co., Aug. 9, 1935, C. F. Batchelder; Sutton, Worc. Co., Anderson, Smith \& Weatherby, no. 2446; Montague, Franklin Co., May 11, 1912, Wheeler \& Wiegand; Chicopee, Hampden Co., Murdoch \& Torrey, no. T 435; Smith's Ferry, Northampton, Hampden Co., Aug. 10, 1912, F. F. Forbes; Proven Mt., Agawam, Hampden Co., May 18, 1913, Knowlton \& White; North Adams, Berkshire Co., May 14, 1915, Knowlton; Lenox, Berks. Co., Aug. 24, 1902, Hoffmann; Centre P., Becket, Berks. Co., Sept. 22, 1904, Hoffmann; Mount Washington, Berks. Co., Sept. 10, 1915, Floyd. Rhode Island: Cumberland, Providence Co., May 30, 1911, Knowlton; East Providence, Prov. Co., J. F. Collins, no. 15,010. Connecticut: Middlebury, New Haven Co., April 25 and July 16, 1897, Shepardson; Oxford, N. H. Co., April 12, 1888 and Sept. 17, 1897, Harger. New York: Black Lake, St. Lawrence Co., Fernald, Wiegand \& Eames, no. 14,251; Canton, St. L. Co., Phelps, no. 373; Sandy Creek Township, Oswego Co., Fernald, Wiegand \& Eames, nos. 14,249 and 14,250; Spruce P., Black Lake Forest, Orange Co., Raup, no. 7589; Taughannock Ravine, Ulysses, Tompkins Co., Eames \& Wiegand, no. 11,930. Pennsylvania: Kenney's P., e. of West Auburn, Susquehanna Co., Wahl, no. 489; 7 miles s. of Moscow, Lackawanna Co., Randolph \& Randolph, no. 57; Martic Forge, Lancaster Co., Aug. 16, 1914, J. F. Collins; Crawford Co., Dickey, no. 23. Michigan: Isle Royale, Keweenaw Co., Cooper, no. 7; Keweenaw Co. (without stated localities), Oct., 1904, Farwell (some as A. incana, var. americana, some as var. glauca); north of St. Ignace, Mackinac Co., Benner, no. 6715. Indiana: south of Tamarack, Porter Co., Deam, no. 8064.-Spread from cultivation in Europe. Plates 977-979.

Var. typica, forma Emersoniana, f. nov. (tab. 979, fig. 4), foliis subtus piloso-tomentulosis, pilis plus minusve rufescentibus. -A. incana sensu Emerson, Trees and Shrubs in Mass. i. 251, with plate (1875), not (L.) Moench.-Differing from typical \(A\). rugosa in having a permanently and usually densely pilosetomentulose lower surface, the pubescence mostly ferruginous.

Of essentially the same range but forming individual and constant large colonies. The following, selected from thrice as many sheets, are characteristic. Nova Scotia (all distrib. as A. incana, var. hypochlora): Lahave R., Bridgewater, Lunenburg Co., Fernald \& Long, no. 23,779; Wallace Lake, Italy Cross, Lun. Co., F. \& L., no. 23,780; Sloane L., Pleasant Valley, Yarmouth Co., Fernald, Bissell, Graves, Long \& Linder, no. 21,015. Maine: Fairfield, Somerset Co., Fernald \& Long, no. 13,472; Pembroke, Washington Co., Fernald, no. 1700; Burnham, Waldo Co., July 24, 1940, Knowlton; Nequasset L., Woolwich, Sagadahoc Co., Fernald \& Long, no. 13,477; Cape Elizabeth, Cumberland Co., Chamberlain, no. 682; Limington, York Co., Fernald \& Long, nos. 13,475, 13,479 and 13,480; Alfred, York Co., F. \& L., no. 13,478; Wells, York Co., F.\& L., no. 13,467; York Harbor, York Co., Aug., 1892, Bicknell (with unpublished new specific name). New Hampshire: Haverhill, Grafton Co., Fernald, no. 15,525; Mason, Hillsborough Co., Aug. 20, 1917, C. F. Batchelder; Dover, Strafford Co., Hodgdon, no. 2567; Hampton Falls, Rockingham Co., Sept. 10, 1916, C.F. Batchelder; Derry, Rock. Co., Aug. 15, 1926, Batchelder; Hinsdale, Cheshire Co., Aug. 23, 1919, Batchelder. Vermont: Milton, Chittenden Co., July 25, 1927, Knowlton; Hartford, Windsor Co., June 12, 1920, Eaton \& St. John; Wallingford, Rutland Co., May 30, 1907, Kennedy. Massachusetts: Lynnfield, Essex Co., Fernald \& Bartlett, no. 786; Round Pond, Tewksbury, Middlesex Co., April 14 and Oct. 14, 1906, M. L. Fernald \& H. H. Bartlett, nos. 14 (тype in Herb. Gray.) and 18; Fresh Pond, Cambridge, Mid. Co., 1842 or 43, Asa Gray (sheet sent to and identified by Regel as "Alnus serrulata Willd., ß. rugosa"); West Cambridge, Fernald \& Bartlett, no. 4; West Roxbury, Suffolk Co., March 25, April 5 and May 28, 1904, F. F. Forbes; Brookline, Norfolk Co., Oct. 11, 1914, F. F. Forbes; Milton, Norf. Co., March 26 and May 26, 1921, Kidder; Hanson, Plymouth Co., Aug. 30, 1941, Knowlton; Gunning P., Falmouth, Barnstable Co., Fernald, no. 578; Dennis P., Yarmouth, Sept. 19, 1913, Fernald \& Long, as A. noveboracensis; Lambert Cove, Martha's Vineyard, Dukes Co., Bicknell, no. 3432; Great P., Martha's Vineyard, Bicknell, no. 3143 (as A. noveboracensis); Nantucket, Bicknell, no. 3438; Leominster, Worcester Co., Fernald \& Bean, no. 14,017; Princeton, Wor. Co., July 22, 1913, Weatherby; Barre, Wor. Co., May 14, 1915, Hunnewell, Macbride \& Torrey; Northfield, Franklin Co., May 11, 1912, Fernald \& Floyd; Longmeadow, Hampden Co., May 18, 1913, Hill \& St. John; Chester, Hampd. Co., May 17, 1913, Weatherby \& Bean; Worthington, Hampshire Co., B. L. Robinson, no. 812; Adams, Berkshire Co., Knowlton \& Bean, no. 15,107. Rhode Island: Newport, N. Co., Mearns, no. 603. Connecticut: Woodstock, Windham Co., July 31, 1919, Weatherby;

Pomfret, Wind. Co., July 4, 1901, Driggs; Franklin, New London Co., Aug. 27 and Nov. 21, 1912, Woodward; Sprague, N. L. Co., Sept. 3, 1913, Woodward; Tyler P., Goshen, Litchfield Co., Weatherby, no. 3350. New York: Bear P., French Mt., Warren Co., June 9, 1920, Burnham; Long L., Hamilton Co., House, no. 10,172; Mud Pond, Oswego, O. Co., Fernald, Wiegand \& Eames, no. 14,246. Michigan: Douglas L., Cheboygan Co., Ehlers, no. 534. Indiana: Tremont, Porter Co., Sept. 9, 1920, D. C. Peattie.

The extreme with soft-pubescent lower leaf-surfaces, Alnus rugosa, forma Emersoniana, is named for that remarkably accurate and unexcelled student of Massachusetts trees and shrubs, George Barrell Emerson (1797-1881), author of the scholarly Report on the Trees and Shrubs in Massachusetts ( 2 vols., 1875), a famous and greatly honored educator, an intimate of Jacob Bigelow, adviser of Horace Mann, and one of the three trustees of the Arnold bequest which, as a result of his guidance, became the initial fund of the Arnold Arboretum. Emerson clearly understood and first discriminatingly stated the strong specific differences which separate the northern Alnus rugosa and the southern \(A\). serrulata. These he accurately illustrated but, like every one of his period and up to the present, he did not get away from the conviction that our dark-barked shrub is identical with the whitish-barked tree of Europe. Although in Trees and Shrubs in Mass. i. 248 he definitely wrote "White Alder of Europe is a very beautiful tree, sometimes rising to the height of seventy feet", on p. 251 he began his very accurate account of "The Speckled Alder. A. incana, Willdenow", "easily distinguished by the brilliant, polished, reddish green color of its stem-bark", "speckled with conspicuous light gray dots", "The stem is usually eight or ten feet high and from one to three inches in diameter".

Emerson distinguished three variations of the Speckled Alder: (1) what he considered typical, with "leaves . . . broad oval, rounded or somewhat cordate at base . . . , doubly serrate or denticulate-serrate . . . smooth and conspicuously impressed at the veins and veinlets above; of a soft coriaceous texture; covered with abundant, soft, often ferruginous pubescence beneath, with the veins and veinlets strikingly prominent" (A. rugosa, forma Emersoniana); (2) A. glauca Michx.:
"A striking and very beautiful variety of the speckled alder, called the glaucous alder by the younger Michaux, is distinguished by the pale blue or glaucous color of the lower surface of the leaves. The pubescence is less abundant, but the veins and footstalk are often, as in the common form [i. e. A. rugosa, forma Emersoniana] of the tree, of a rusty color"; and (3) a series which Emerson considered "intermediate between the common [ \(A\). serrulata] and the glaucous alder . . . It differs from the common alder in its leaves being always acute and never obovate, and from the speckled, in having its leaves shining and free from down . . . The general aspect of this alder is similar to that of the speckled alder, differing in the greenness of the under surface of the leaves". Emerson's third variety was, apparently, a mixture of typical \(A\). rugosa and the extreme of \(A\). serrulata with subelliptic and round-based leaves.

Var. americana (Regel), comb. nov. A. incana, B. americana Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. 155 -repr. as Mon. Bet. 97 (1861); H. Winkl. in Engler, Pflanzenr. iv \({ }^{61} .123\) (1904). A. glauca Michx. f. Hist. Arb. Forest. Am. Sept. iii. 320, t. 4, fig. 2 (1813). A. incana, var. glauca (Michx. f.) Loudon, Arbor. Brit. iii. 1688 (1838) pro parte, excl. citation of Ait.; Gray, Man. ed. 2: 412 (1856); Callier in Mitteil. Deutsche Dendr. Gesellsch. 1918: 143 (1918) \({ }^{1}\), not Ait. Hort. Kew. ed. 2, v. 259 (1813). \(A\). incana, a. vulgaris Spach in Ann. Sci. Nat. sér. 2, xi. 206 (1841) in small part only (A. glauca Michx. fil), excluding the synonyms "Alnus incana auctor", "Alnus undulata Pursh" (Pursh correctly giving \(A\). undulata Willd. as a synonym of A. crispa Ait.) and "Foliis . . obovatis". A. incana sensu Tuckerm. in Am. Journ. Sci. xlv. 32 (1843) and most later Am. auth., not (L.) Moench. A. americana (Regel) Hort. ex K. Koch, Dendrol. ii \({ }^{1}\). 636 (1872).-Generally more northern in range, Labrador to Hudson Bay region and Saskatchewan, south to Newfoundland, Nova Scotia, Maine, New Hampshire, Massachusetts, uplands of Pennsylvania, Maryland and West Virginia, northern Ohio, northern Indiana, Wisconsin and northeastern Iowa. The following, selected from nearly 200 sheets before me, are characteristic. Labrador: Paradise R., Sandwich Bay (lat. \(53^{\circ} 30^{\prime}\), long. \(57^{\circ} 15^{\prime}\) ), Harlow Bishop, no. 275. Newfoundland: Clarenville, July 30, 1938, Agnes M. Ayre; Quarry, Fernald \&

\footnotetext{
\({ }^{1}\) Callier showed the usual Germanic lack of understanding of American geography: citing one specimen from "Dakota: New Anglia leg. Blake" and Mrs. Chase's no. 2105 from Dune Park, Indiana, as from "Michigan: Lake Michigan, Done Park". On a preceding page the strictly northeastern A. rugosa was cited from anywhere, including California.
}

Wiegand, no. 5302; Grand Falls, F. \& W., no. 5301; near mouth of Badger Brook, Robinson \& Schrenk, no. 35; Little Red Indian Lake, \(F . \& W\)., no. 5300; Goose P., F. \& W., no. 3276; Winterhouse Brook, Bonne Bay, Fernald, Long \& Fogg, no. 1647; Summerside, Bay of Islands, F. \& W., no. 3277; Table Mt., Port-à-Port Bay, Fernald \& St. John, no. 10,828. Quebec: Natashquan R., Saguenay Co., July, Aug., 1912, C. W. Townsend; Piashtibaie, Sag. Co., St. John, no. 90,395; Seven Islands, Sag. Co., C. B. Robinson, no. 900; Douglastown, Gaspé Co., Aug. 22, 1904, Collins, Fernald \& Pease; R. Ste. Anne des Monts, Gaspé Co., Fernald \& Collins, no. 217; Bonaventure R., Bonav. Co., Aug. 4-8, 1904, C. F. \& P.; Matane, M. Co., Aug. 5, 1904, F. F. Forbes; Bic, Rimouski Co., Rousseau, no. 21,457; Cap-àl'Aigle, Charlevoix Co., J. Macoun, no. 68,768; Lac Tremblant, Terrebonne Co., July 23, 1922, Churchill; Black Lake, Megantic Co., Fernald \& Jackson, no. 12,076; Georgeville, Stanstead Co., Aug. 22, 1914, Churchill; East Main, E. Coast of James Bay, D. Potter, no. 265; Rupert House, E. Coast, Potter, no. 260. Magdalen Islands: Brion Island, St. John, no. 1847; Ile de l'Étang-du-Nord, Victorin \& Rolland, no. 9418; Grindstone I., Fernald, Bartram, Long \& St. John, no. 7310. New Brunswick: Kent Co., 1870, Fowler. Nova Scotia: Pottle's L., North Sydney, Cape Breton Co., Bissell \& Linder, no. 21,020; Glenbard, near James River Sta., Antigonish Co., Perry, Wetmore, Hicks \& Prince, no. 10,256; Musquodoboit Harbor, Halifax Co., Rousseau, no. 35,263; Deception L., Shelburne Co., Fernald \& Long, no. 23,777; Clyde River, Shelb. Co., J. G. Jack, no. 3454; Butler's L., Gavelton, Yarmouth Co., Fernald, Long \& Linder, no. 21,021; Lake Annis, Yarm. Co., Bissell, Pease \& Linder, no. 21,017; Journeay L., Weymouth, Digby Co., Fernald \& Long, no. 23,778. Maine: Fort Kent, Aroostook Co., Fernald, no. 2446; Masardis, Aroost. Co., Fernald; no. 2447; Orono, Penobscot Co., May 30, 1904, Fernald; Foxcroft, Piscataquis Co., Aug. 31, 1897, Fernald; St. John P., Township iv, Range 17, Somerset Co., St. John \& Nichols, no. 2272; Dead River, Som. Co., Fernald \& Strong, no. 409, in part; Chesterville, Franklin Co., Aug. 28, 1904, E. B. Chamberlain; Calais, Washington Co., Aug. 24, 1928, Knowlton; Roque Bluff, Wash. Co., July 31, 1918, Knowlton; Northfield, Wash. Co., Aug. 2, 1941, Knowlton; Nicatous L., Twp. 3, Hancock Co., Fassett, no. 2378; Seal Harbor, Hanc. Co., July 8, 1889, Redfield; Brooklin, Hanc. Co., A. F. Hill, no. 1051; Isle au Haut, Knox Co., Aug. 26, 1927, Kidder; Monhegan I., Lincoln Co., Aug., 1911, Kate Furbish; Brunswick, Cumberland Co., Aug. 26, 1910, Kate Furbish; Baldwin, Cumb. Co., Fernald \& Long, no. 13,470; North Berwick, York Co., Aug. 31, 1894, Parlin. New Hampshire: White Mountains, Tuckerman, labeled, "Alnus incana, Willd. A. glauca, Michx. f. species unica", with reference
to Tuckerman's treatment in Am. Jour. Sci. xlv. 32 (1845), this sheet marked by Regel A. incana ß. glauca; Lake Umbagog, Cambridge, Coös Co., Pease, no. 18,150; Pittsburg, Coos Co., Pease, no. 10,297 ; summit of Cape Horn, Northumberland Co., Coös Co., Pease, no. 16,451; Jackson, Carroll Co., Aug. 1895, E. W. Hervey; Bow, Merrimack Co., Sept. 21, 1930, G. M. Bryant; Hillsborough, H. Co., Sept. 2, 1921, C. F. Batchelder; New Hampton, Belknap Co., Sept. 5, 1904, F. F. Forbes; Richmond, Cheshire Co., Aug. 21, 1919, C. F. Batchelder; Cheshire Co., Robinson, no. 156. Vermont: Brunswick Springs, Essex Co., S. N. F. Sanford, no. 1083; Willoughby, Orleans Co., July, 1898, Kennedy: Worcester, Washington Co., Aug. 25, 1875, Blanchard; Charlotte, Chittenden Co., April 15 and Sept. 29, 1879, Pringle; Hartland, Windsor Co., J. G. Underwood, no. 3116. Massachusetts: Lexington, Middlesex Co., March 23 and May 20, 1931, L. B. Smith; Buckland, Franklin Co., April 11 and Aug. 19, 1904, F. F. Forbes; Worthington, Hampshire Co., B. L. Robinson, no. 507; Pittsfield, Berkshire Co., Aug. 5, 1915, Churchill. New York: Norfolk, St. Lawrence Co., Phelps, nos. 1139-1141; Selkirk, Oswego Co., Fernald, Wiegand \& Eames, no. 14,245; Canadice, Ontario Co., C. C. Thomas, no. 3926; Penn Yan, Gates Co., Sartwell (Sartwell Herb., Hamilton College, presumable duplicate of the type of A. incana \(\beta\). americana Regel); western New York, Asa Gray, identified by Regel as A. incana, var. glauca. Pennsylvania: Little Mud P., e. of Porter's L., Pike Co., Fogg, no. 10,767; Pocono Plateau, Monroe Co., July, Aug., 1904, Harshberger. Maryland: s. of Finzel, Garrett Co., Aug. 15, 1936, Wherry. West Virginia: at 2500 ft . alt., e. of Gormannia, Grant Co., Svenson, no. 4439. Ontario: Lake Rosseau, Muskoka Co., W. F. Wright, no. 140; Moose River, James Bay, Nipissing Distr., David Potter, nos. 262-264; Sand Point, Algoma Distr., Taylor et al. no. 842; Batchawana R., Alg. Distr., Taylor et al. no. 839; Nipigon, Thunder Bay Distr., Jennings \& Daily, no. 481. Michigan: Baraga, B. Co., Fernald \& Pease, no. 3081. Ohio: Hiram, Portage Co., R. J. Webb, no. 1377. Indiana: Chesterton, Porter Co., Aug. 12, 1925, Churchill. Wisconsin: Kewaunee, K. Co., Aug. 2, 1902, Schuette; Brodhead, Green Co., Fassett, no. 12,931; Dayton, Green Co., Fassett, no. 13,990; Brown Co., 1880, Schuette. Minnesota: Sect. Nw.-Sw. 35, T. 144, R. 36, Clearwater Co., M. L. Grant, no. 3368; Cass L., Cass Co., Pammel, no. 5; Centre City, Chisago Co., July, 1892, B. C. Taylor; Bembridge, Pammel, no. 892. Iowa: Postville, Allamakee Co., June, 1914, Schultz, Pammel \& Orr; Bluffton, Winneshiek Co., March 28 and Sept. 16, 1903, Shimek; New Hampton, Chickasaw Co., Pammel, no. 475. Plates 980 and 981.

Var. americana, forma tomophylla (Fernald), comb. nov. A. incana, var. glauca, f. tomophylla Fernald in Rhodora, xvi. 56 (1914). A. incana, var. tomophylla (erroneously attributed to Fernald) by Rehder, Man. Cult. Trees and Shrubs, 147 (1927).-Local. Newfoundland: Norris Arm, Fernald \& Wiegand, no. 5303 (type). Maine: Hartford, Oxford Co., Aug., 1892, Parlin. Plate 982, fig. 4.

Var. americana, forma hypomalaca, f. nov. (tab. 982, fig. \(1-3\) ), foliis subtus molliter persistenterque piloso-tomentulosis, pilis cinereis.-Local, often abundant, through much of the area of var. americana. Quebec: Pointe du Lac, St. Maurice Co., Aug. 2, 1923, Chamberlain \& Knowlton. New Brunswick: Shediac Cape, Westmoreland Co., July 3, 1914, F. T. Hubbard; Seal Cove Brook, Grand Manan, Charlotte Co., July 24, 1941, C. A. \& Una F. Weatherby, no. 7015 (тype in Herb. Gray.). Prince Edward Island: St. Charles, Kings Co., Fernald \& St. John, no. 11,030. Nova Scotia: Central Port Mouton, Fernald, Bissell, Graves, Long \& Linder, no. 21,019; Meteghan, Digby Co., Fernald \& Long, no. 21,016; Middleton, Annapolis Co., Fernald, Pease \& Long, no. 21,018. Maine: Houlton, Aroostook Co., Aug. 26, 1897, Fernald; Patten, Penobscot Co., Aug. 23, 1897, Fernald; Milford, Fernald \& Long, nos. 13,468 and 13,469; Fryeburg, Oxford Co., C. E. Faxon; Cutler, Washington Co., July 1, 1902, Kennedy et al.; Pembroke, Wash. Co., Fernald, no. 1699; Dedham, Hancock Co., Fernald \& Long, no. 13,465; Deer Isle, Hanc. Co., A. F. Hill, no. 2096; Atlantic, Swans Island, Hanc. Co., Hill, no. 2281; Rockport, Knox Co., Rossbach, no. 1207; Nequasset L., Woolwich, Sagadahoc Co., Fernald \& Long, no. 13,477; Leeds, Androscoggin Co., July 23, 1913, Knowlton; Falmouth, Cumberland Co., Chamberlain \& Bissell, no. 389; Limington, York Co., Fernald \& Long, nos. 13,479 and 13,480 ; Alfred, York Co., \(F\). \& L., no. 13,466; Kennebunkport, York Co., Aug. 1929, C. A. Cheever. New Hampshire: Mt. Washington, Coös Co., July 16, 1891, Kennedy: Randolph, Coös Co., Pease, no. 11,179; Shelburne, Coös Co., Pease, no. 11,133; Jackson, Carroll Co., July 12, 1883, C. W. Jenks; Warren, Grafton Co., July 24, 1908, E. F. Williams; Merrimack, Hillsborough Co., Aug. 11, 1917, C. F. Batchelder; Rindge, Cheshire Co., May 30, 1912, F. F. Forbes. Vermont: Stowe, Lamoille Co., July 27, 1884, C. W. Swan. Massachusetts: Round Pond, Tewksbury, Middlesex Co., Fernald \& Bartlett, no. 15; Beaver Brook Reservation, Mid. Co., May 26, 1894, G. L. Chandler; Brookline, Norfolk Co., Sept. 25, 1905, F. F. Forbes; Needham, Norf. Co., T. O. Fuller; Springfield, Hampden Co., June 17, 1913, Luman Andrews; Cheshire, Berkshire Co., July, 1912, E. J. Winslow; Sheffield, Berks. Co., July 24, 1912, Hoffmann. New York: Axton, Franklin Co., July 10,

1899, Rowlee, Wiegand \& Hastings; Conklingville, Saratoga Co., Fogg, no. 15,161. Ontario: Kokoko Bay, Timagami Region, Edgar \& Dorothy M. Anderson, no. 26,045B; Stokes Bay, Bruce Peninsula, Krotkov, no. 8948. Indiana: Dune Park, Porter Co., Greenman, no. 2683.

Alnus rugosa, vars. typica and americana are not mere forms, the former with green to rufescent lower leaf-surfaces, the latter with them glaucous, gray or cinereous. The latter is decidedly more northern in range. I am indebted to Professor Rehder and Dr. A. C. Smith for the use of a Sartwell sheet from PennYan, New York, lent by the Herbarium of Hamilton College. This is presumably part of the original collection upon which Regel founded his A. incana, B. americana. The approximately 400 sheets showing foliage in the Gray Herbarium and the herbarium of the New England Botanical Club, when tabulated, give the following proportions (in percentages).

Labrador Peninsula, var. typica 0, var. amer. \(100 \%\); Newfoundland, var. typica 0, var. amer. 100; Quebec (south of Lab. Pen.), var. typica 0, var. amer. 100; New Brunswick, var. typica 0, var. amer. 100; Nova Scotia, var. typica 43, var. amer. 57 ; Northern Maine (northern tier of counties), var. typica 59, var. amer. 41; Southern Maine, var. typica 80, var. amer. 20; Coös Co., New Hampshire, var. typica 5, var. amer. 95; rest of New Hampshire, var. typica 65, var. amer. 35; Vermont, var. typica, 62, var. amer. 38; Massachusetts, var. typica 89 , var. amer. 11; Rhode Island, var. typica 100, var. amer. 0; Connecticut, var. typica 100, var. amer. 0.

The variations which I treat as forms show no such geographic concentrations; they are scattered throughout the range of the variety under which they are placed.
2. A. serrulata (Ait.) Willd. Sp. Pl. iv \({ }^{1}\). 336 (1805).-TThe following varieties and forms are recognized.

\footnotetext{
a. Principal leaves definitely obovate, cuneate, or subcuneate to subacute at base; those of vigorous 1st. year's shoots obtuse or acute; those of fertile branches of 2nd. year one third to two thirds as broad as long.
Lower surfaces of mature leaves glabrous or strongly glabrescent
Lower surfaces of mature leaves permanently and densely pilose-tomentulose, plush-like to touch..... Forma noveboracensis.
a. Principal leaves broadly elliptic-obovate to broadly oblongelliptic or subrotund (though broadest at or above the middle), gradually rounded at base; those of fertile branches of 2 nd. year mostly three fifths to nine tenths as broad as long. ...b.
\(b\). Lower surfaces of mature leaves glabrous or strongly glabrescent.
}

\section*{1945] Fernald,-American Representatives of Alnus incana}
```

Leaves gradually rounded to subacute (or more rarely acute) at apex, mostly $6-15 \mathrm{~cm}$. long; staminate aments 3-7 cm. long. Var. subelliptica.

```

Leaves broadly retuse or emarginate at apex, mostly 2-5
cm. long; staminate aments 2 cm . long......... Forma emarginata.
b. Lower surfaces of mature leaves permanently and densely
pilose-tomentulose, plush-like to touch.
Large shrub or small tree; principal leaves 6-12 cm. long; mature cones \(1-2 \mathrm{~cm}\). long; staminate aments \(3-7 \mathrm{~cm}\). long

Forma mollescens.
Dwarf shrub \(0.5-1 \mathrm{~m}\). high; principal leaves 2-5 cm. long;
mature cones \(6-12 \mathrm{~mm}\). long; staminate aments \(1.3-1.8\)
cm. long

Forma nanella.
A. serrulata, var. vulgaris Spach in Ann. Sci. Nat. sér. 2, Bot. xv. 206 (1841), in part ("Foliis . . . lanceolatoobovatis, v. obovatis, v. oblongo-obovatis, saepius obtusis v. vix acuminatis, basi cuneatis"). Betula-Alnus rubra Marsh. Arb. Am. 20 (1785), presumably. Betula serrulata Ait. Hort. Kew. iii. 338 (1789); Willd. Berlin. Baumzucht, 45 (1796), at least as to citation of Ait. A. serrulata (Ait.) Willd. Sp. Pl. iv \({ }^{1} .336\) (1805). A. rubra (Marsh.) Tuckerm. in Am. Journ. Sci. xlv. 32 (1843), not Bong. (1833). A.glutinosa, 8. serrulata (Ait.) Regel in Nouv. Mém. Soc. Nat. Mosc. xiii. 164, t. xi. fig. 7 -repr. as Mon. Bet. 106, t. xi. fig. 7 (1861), in part, incl. basonym. A. glutinosa, \(\delta\). serrulata, lusus a. genuina Regel, l. c. fig. 6 (1861). A.glutinosa, 8. serrulata, lusus b. obtusifolia Regel, 1. c. fig. 7 (1861). A. serrulata, a. genuina Regel in DC. Prodr. xvi². 188 (1868), in part. A. serrulata, \(\delta\). obtusifolia Regel, l. c. (1868). A. rugosa sensu K. Koch, Dendrol. ii. 635 (1872); sensu Coulter in Mem. Torr. Bot. Cl. v. 131 (1894); sensu Sargent, Silva, ix. 69 (1896) and subseq. auth.; not Spreng. (1825). A. rugosa, var. serrulata (Ait.) H. Winkler in Engler, Pflanzenr. iv \({ }^{61}\). 120 (1904). A. rugosa, var. obtusifolia (Regel) H. Winkler, l. c. (1904). A. serrulata pumila Dameker in Mitt. Deutsch. Dendr. Ges. 1909: 326 (1909).Northern Florida to Louisiana, north to southwestern Nova Scotia, central and southern Maine, southern New Hampshire, central Vermont, New York, West Virginia, Ohio, Indiana, Illinois, Missouri and southeastern Oklahoma. The following, selected from many hundreds of sheets, are characteristic. Nova Scotia: Ponhook L., Queen's Co., Weatherby, no. 6955: Cameron L., South Brookfield, Queen's Co., C. A. \& Una F. Weatherby, no. 7059. Maine: North P., Norway, Oxford Co., Pease, no. 24,100; near Jordan P., Mt. Desert I., Hancock Co., Stebbins, no. 235; Bristol, Lincoln Co., E. B. Chamberlain, no. 716 ; South Poland, Androscoggin Co., 1893, Kate Furbish; Wilson's Mill, Cumberland, C. Co., Chamberlain, Morris \& Ricker, no. 852; Limington, York Co., Fernald \& Long, no. 13,481; Cape Neddick, York Co., J. G. Jack, no. 3394. New Hampshire: Wild Goose P., Strafford, S. Co., Hodgdon \& Cham-
berlain, no. 2886; Nottingham, Rockingham Co., A. A. Eaton, no. 435 ; Danville, Rock. Co., Pease, no. 28,210; Manchester, Hillsborough Co., Oct. 2, 1896, F. W. Batchelder; Walpole, Cheshire Co., Fernald, no. 505; Sandy P., Richmond, Chesh. Co., Sept. 3, 1916, C. F. Batchelder. Vermont: L. St. Catherine, Wells, Rutland Co., Dodge \& Fassett, no. 822. Massachusetts: Andover, Essex Co., Pease, no. 3432; Ashby, Middlesex Co. May 30, 1914, Knowlton; Concord, Mid. Co., April 4 and July 20, 1858, E. S. Hoar; Wilmington, Mid. Co., Fernald \& Bartlett, no. 9; West Roxbury, Suffolk Co., Aug. 9 and Sept. 9, 1904, F. F. Forbes; Blue Hills Reserv., Aug. 11, 1895, E. F. Williams; Lakeville, Plymouth Co., Fernald \& Long, no. 9345 ; Prospect Hill P. Taunton, Bristol Co., F. C. Seymour, no. 4460; Brewster, Barnstable Co., Fernald, no. 16,684; Provincetown, Barns. Co., Fernald \& Long, no. 18,356; Chilmark, Martha's Vineyard, Dukes Co., F. C. Seymour, no. 1671; Harvard, Worcester Co., Aug. 6, 1916 and April 22, 1917, F. F. Forbes; Gill, Franklin Co., May 11, 1912, St. John \& Weatherby; Ware, Hamshire Co., Goodale, Potsubay \& St. John, no. 64,660; Stockbridge, Berkshire Co., Aug. 6, 1917, Hoffmann. Rhode Island: Lincoln, Providence Co., St. John, no. 894: Barrington, Bristol Co., May 20, 1911, E. J. Winslow; Warren, Bristol Co., July 25, 1919, Sanford; Prudence I., Newport Co., Sanford, no. 10,377; Richmond, Washington Co., Aug. 30, 1919, Fernald \& Collins; Hopkinton, Wash. Co., Sept. 1, 1919, Fernald, Woodward \& Collins. Connecticut: Woodstock, Windham Co., Weatherby, no. 4519; Franklin, New London Co., Oct. 4, 1913, Woodward; Tolland, T. Co., Weatherby, no. 5330; Tariffville, Hartford Co., May 17, 1913, Winslow \& Hill; North Guilford, New Haven Co., July 11, 1904, W. R. Dudley. New York: West Fort Ann, Washington Co., Aug. 17, 1913, Dobbin \& Burnham; Ballston L., Saratoga Co., Aug. 11, 1906, Burnham; Sutherland P., Black Lake Forest, Orange Co., Raup, no. 7746; Fishers Island, Suffolk Co., St. John, no. 2683; Sandy Creek Township, Oswego Co., Fernald, Wiegand \& Eames, no. 14,248; Ithaca, Tompkins Co., MacDaniels, no. 3928. New Jersey: Oradell, Bergen Co., April 16 and Oct. 8, 1905, Mackenzie; Denville, Morris Co., Aug. 13, 1905, Mackenzie; Vincetown, Burlington Co., Long, no. 11,091; Pleasantville, Atlantic Co., Tidestrom, no. 11,377; Friendship, Salem Co., Long, no. 51,606. Pennsylvania: Scotrun, Monroe Co., Aug., 1906, B. Long; Chester Co., Sharpless, no. 276; Smithfield Swamp, Lancaster Co., Aug. 30, 1889, Heller; Miffinville, Columbia Co., Fogg, no. 14,537; Farrandsville, Clinton Co., Fogg, no. 11,516; Fayette Co., Dickey, nos. 21 and 205. Delaware: Cool Spring, Sussex Co., Larsen, no. 459. Mariland: Chesapeake City, Cecil Co., Tidestrom, no. 11,679; St. Mary's Co., Tidestrom, no. 5062. District of Columbia: Brookland, Oct. 15, 1898,

Holm; Terra Cotta, Aug. 18, 1915, Holm. West Virginia: Huttonsville, Randolph Co., Greenman, no. 330; Tygart Junction, Barbour Co., Greenman, no. 329; between Gilmer and Read, Gilmer Co., Greenman, no. 331. Virginia: se. of Alexandria, Fairfax Co., Wiegand \& Manning, no. 958; ne. of Mechanicsville, Louisa Co., Adams \& Wherry, no. 2228; Capital Landing Creek, York Co., Mentzel, no. 145; Oceana, Princess Anne Co., Fernald \& Long, nos. 3896 and 3897 ; eastern shore, Lake Drummond, Norfolk Co., J. Arthur Harris, no. C 18,233; Zuni, Isle of Wight Co., Fernald, Griscom \& Long, no. 6582; south of South Quay, Nansemond Co., F. \& L., no. 11,559; south of Franklin, Southampton Co., F. \& L., no. 8235; e. of Dan River, Halifax Co., Fosburg, no. 15,383; Hollins School, Roanoke Co., C. E. Wood, Jr., no. 5483; "Mts., Virg. 1843", Asa Gray (type of var. obtusifolia Regel, in Gray Herb.); Bane, Giles Co., Fogg, no. 14,714, as A. crispa; Peak Creek, Pulaski Co., at 2200 ft . alt., July 16, 1892, Small. North Carolina: Snow Hill, Greene Co., L. F. \& F. R. Randolph, no. 776; Clinton, Sampson Co., Godfrey, no. 5895; Biltmore, Buncombe Co., Bilt. Herb. no. \(1240^{\text {b }}\); at 4000 ft alt., Pisgah Forest, Transylvania Co., House, no. 4041 ; at 1700 ft. alt., Great Smoky Mts., Swain Co., July, 1891, Beardslee \& Kofoid. South Carolina: s. of Myrtle Beach, Horry Co., Weatherby \& Griscom, no. 16,511; Georgetown, G. Co., Godfrey \& Tryon, no. 988; Santee Canal, Ravenel (identified by Regel as his var. genuina); Summerville, Dorchester Co., B. L. Robinson, no. 114; se. of Elloree, Orangeburg Co., Godfrey \& Tryon, no. 1503. Georgia: se. of Ludowici, Long Co., Wiegand \& Manning, no. 962; s. of Cuthbert, Randolph Co., Harper, no. 1782. Florida: River Junction, Gadsden Co., Nash, no. 2590; Peters Creek, Clay Co., Small \& DeWinkeler, no. 9706. Indiana: s. of Chestnut Ridge, Jackson Co., Deam, no. 13,740. Kentucky: Keyser Creek, Boyd Co., Sept. 25, 1937, T. N. McCoy; Tygart's Creek, Carter Co., Oct. 16, 1937, E. L. Braun; "Fernbank-ad ripas fluminis Ohio, prope 'North Bend'", Short. Tennessee: Rugby, Morgan Co., Svenson, no. 4048; Sunbright, alt. 2200 ft., Morgan Co., Svenson, no. 4117; n. of Manchester, Coffee Co., Svenson, no. 9256; Hollow Rock Jc., Carroll Co., Svenson, no. 374. Alabama: n. of Headland, Henry Co., Wiegand \& Manning, no. 964; Perdido, Baldwin Co., Blanton, no. 7087. Illinois: Pope Co., July 31, 1898, G. P. Clinton. Missouri: Jefferson Co., July, 1887, Eggert; Bismark, St. Francois Co., E. J. Palmer, no. 18,065; Monteer, Shannon Co., Bush, nos. 204 and 7852. Arkansas: Kensett, White Co., Demaree, no. 8658; Siloam Springs, Benton Co., Demaree, no. 4626; Washington Co., Aug. 17, 1895, Blankinship; Howard Co., Demaree, no. 9734; Murfreesboro, Pike Co., Demaree, no. 9377; Locksburg, Sevier Co., Demaree, no. 9890. Louisiana: New Orleans, 1832, Drummond; n. of Kisatchie, Natchitoches Parish,
D. S. \& H. B. Correll, no. 9765. Oklahoma: Page, LeFlore Co., Stevens, no. 2619; Valliant, McCurtain Co., Demaree, no. 12,022 (appr. var. subelliptica). Plates 983 and 984.

Var. vulgaris, forma noveboracensis (Britton), stat. nov. A. noveboracensis Britton in Torreya, iv. 124 (1904) and N. Am. Trees, 264, fig. 224 (1908). A. rugosa, race? Britton in Britt. \& Brown, Ill. Fl. ed. 2, i. 613 (1913).-Differing from typical var. vulgaris only in the persistent plush-like pubescence of the lower leaf-surfaces.-Scattered through the range, often abundant. Maine: Orono, Penobscot Co., Fernald \& Long, no. 13,473, as A. incana, var. hypochlora. Massachusetts: West Roxbury, April 5 and May 18, 1904, F.F.Forbes. Rhode Island: Washington P., Kent Co., May 24, 1914, Thos. Hope. New York: Grant City, Staten I., Aug. 5, 1894, Britton (TYpe of A. noveboracensis); Selkirk, Oswego Co., Fernald, Wiegand \& Eames, no. 14,247. New Jersey: South Amboy, Middlesex Co., Mackenzie, no. 1465. Virginia: Blackwater R., Princess Anne Co., Fernald \& Long, no. 3898; w. of Franklin, Southampton Co., \(F . \& L\)., no. 6583 ; se. of Branchville, South. Co., F. \& L., no. 10,231; n. of Skipper's, Greensville Co., F. \& L., no. 8693. South Carolina: M. A. Curtis. Georgia: s. of Athens, Clarke Co., Duncan \& Roland, no. 3877; Augusta, Richmond Co., Olney \& Metcalf, no. 91. Kentucky: Harlan Court House, Harlan Co., Kearney, no. 7; s. of Albany, Clinton Co., Smith \& Hodgdon, no. 3992. Tennessee: between Lexington and Natchez Trace Forest, Henderson Co., Svenson, no. 10,499. Louisiana: Hale (identified by Regel as his A. serrulata, var. genuina). Plate 985.

Var. subelliptica, var. nov. (тав. 986), foliis late ellipticoobovatis vel oblongo-ellipticis vel subrotundo-obovatis basin versus sensim rotundatis, subtus glabris vel glabratis; amentis masculis \(3-7 \mathrm{~cm}\). longis; strobilis maturis \(1-2 \mathrm{~cm}\). longis.Georgia, north to southern New Hampshire, Massachusetts and New York. New Hampshire: Wheelwright P., Lee, Strafford Co., Hodgdon, no. 2576. Massachusetts: Rockport, Essex Co., L. B. Smith \& R. C. Gates, nos. 964 and 965 ; Round P., Tewksbury, Middlesex Co., Fernald \& Bartlett, no. 17; sandy swamp, Tewksbury, April 14 and October 14, 1906, Fernald \& Bartlett, no. 16 (TYPe in Herb. Gray.); Winchester, Mid. Co., F. \& B., nos. 8, 11 and 13; West Cambridge, Mid. Co., F. \& B., no. 3; Fresh Pond, Cambridge, Sept. 29, 1894, Robinson, also \(F\). \& B., no. 1 ; Bedford, Mid. Co., Sept. 12, 1903, Knowlton; Needham, Norfolk Co., April 20 and July 3, 1883, T. O. Fuller; Bellingham, Norf. Co., Sept. 17, 1935, Ordway \& Sanford; Silver L., Kingston, Plymouth Co., Aug. 30, 1941, Knowlton; Wareham, Plym. Co., Sept. 18, 1925, Knowlton; Waquoit, Falmouth, Barnstable Co., R. A. Ware, no. 336; East Sandwich,

Barn. Co., Sept. 16, 1916, F. F. Forbes; Seward's P., West Barnstable, Barn. Co., St. John \& White, no. 924; Great P., Centerville, Barn. Co., June 16, 1895, E. F. Williams; Walker P., Brewster, Barn. Co., Fernald, no. 16,681; Sheep P., Brewster, Fernald, no. 16,683; Cliff P., Brewster, Fernald \& Long, no. 16,685; Davis P., Greenwich, Hampshire Co., Pease, no. 20,353. Rhode Island: Limerock, Lincoln, Providence Co., Oct. 19, 1906, J. F. Collins; East Providence, Prov. Co., Oct. 17, 1906, Collins; Wash. P., Block Island, Newport Co., Fernald, Hunnewell \& Long, no. 9344. Connecticut: Coventry, Tolland Co., Aug., 1916, Weatherby \& Smith; Ladd Fool Bridge, Franklin, New London Co., Aug. 24 and Sept. 6, 1912, Woodward; Rainbow, Windsor, Hartford Co., Sept. 20, 1908, H. S. Clark; Southington, Hartford Co., L. Andrews, no. 182; Oxford, New Haven Co., April 16, 1888 and July 30, 1899, Harger. New York: Long L., Hamilton Co., House, no. 13,513; Ashokan, Ulster Co., Muenscher, no. 16,104; Glycerine Hollow, Black Lake Forest, Orange Co., Raup, nos. 7789 and 7792; Peconic R., Southampton, Suffolk Co., St. John, no. 2682: Renwick Flats, Ithaca, Tompkins Co., MacDaniels, no. 3927. Pennsylvania: near Kimbles, Pike Co., Fogg, no. 10,780; Allegheny Co., Dickey, no. 24. Virginia: n. of Keyesville, Charlotte Co., Fosberg, no. 15,531; se. of Whitemarsh School, Nansemond Co., Fernald \& Long, no. 11,558 (transitional); south of South Quay,Nans. Co., F. \& L., no. 10,611 . North Carolina: Parkville, Perquimans Co., L. F. \& F. R. Randolph, no. 682; Raleigh, Wake Co., Godfrey, no. 4957; Hamlet, Richmond Co., Wiegand \& Manning, no. 960. South Carolina: Pee Dee R. at Mars Bluff, Florence Co., Wiegand \& Manning, no. 961. Georgia: e. se. of Statesboro, Bulloch Co., July 5, 1936, Wherry.

Var. subelliptica forma emarginata, f. nov. (тab. 987). Frutex ad 1.5 m . alta; foliis subrotundo-obovatis 2-5 cm. longis \(1.5-4 \mathrm{~cm}\). latis basin versus rotundatis apice late emarginatis paginis inferioribus glabratis; amentis masculis 2 cm . longis; strobilis maturis \(5-10 \mathrm{~mm}\). longis.-Connecticut: open, rather sphagnous, swamp, Rainbow, Windsor, Hartford Co., Sept. 16, 1906 and April 6, 1907, C. H. Bissell \& C. A. Weatherby (Weatherby, no. 2031), tyPE in Herb. Gray.

Var. subelliptica, forma mollescens, f. nov. (tab. 988). Frutex altus vel arbor fastigiata ad 8 m . alta; foliis ut in var. subelliptica \(6-12 \mathrm{~cm}\). longis apice obtusis vel acutis basin versus rotundatis subtus dense persistenterque subvelutinis; strobilis maturis \(1-2 \mathrm{~cm}\). longis. Scattered through the range of the variety. New England: old specimen from "Nova Anglia", Oakes, identified by Regel as his var. genuina. Massachusetts: Plum Island, Essex Co., St. John, no. 837; Winchester, Middlesex Co., July, 1907, Knowlton; Sharon, Norfolk Co., S. F. Poole,
no. 3; Barnstable, B. Co., Fernald \& Woodward, nos. 15,124 and 15,126; Sheep P., Brewster, Barn. Co., Fernald, no. 16,682; Seth's P., West Tisbury, Dukes Co., Fernald \& Fogg, no. 888; Brookfield, Worcester Co., Hill, St. John \& Torrey, no. T. 261. Connecticut: Thompson, Windham Co., June 11, 1922, Eaton, Fassett, Jack, Linder \& Peattie. New York: wet hollow, Riverhead, Southampton, Suffolk Co., July 25-Aug. 3, 1920, St. John, no. 2681 (type in Herb. Gray.). New Jersey: South Amboy, Middlesex Co., Mackenzie, no. 1906. Virginia: Little Neck, Princess Anne Co., Fernald \& Long, no. 3899. North Carolina: Raleigh, Wake Co., Godfrey, no. 4052; Gilson, Scotland Co., Godfrey, no. 5073.

Var. subelliptica, at the northern border of its range, has often been taken for a hybrid of Alnus serrulata (var. vulgaris) and \(A\). rugosa (var. typica) and in outline of leaf it is suggestive of such an origin. It has, however, the characteristic bark, glutinous or gummy quality, branching of inflorescence and venation and serrulation of leaves of A. serrulata, not of A. rugosa. In southern New England and New York the two species meet, but farther south, from eastern Maryland to Georgia, no representative of the latter species is known.

Var. subelliptica, forma nanella, f. nov. (tab. 989), nana, \(0.5-1 \mathrm{~m}\). alta; foliis elliptico-obovatis \(2-5 \mathrm{~cm}\). longis, subtus subvelutinis; strobilis maturis \(6-12 \mathrm{~mm}\). longis.-VIRginia: dwarf shrubs with scattered simple stems only 5-8 mm. thick, springy sphagnous and argillaceous bog, Ram-hole Swamp, Seward Forest, near Triplett, Brunswick Co., June 22 and Sept. 13, 1944, Fernald (and Lewis), no. 14,596 (TYPE in Herb. Gray.); with Lachnocaulon anceps, Sarracenia flava, etc., bushy sphagnous swamp southeast of Petersburg, at head of Poo Run, Prince George Co., Fernald \& Long, no. 6167.

\section*{Explanation of Plates}

Plate 976, Alnus incana (L.) Moench.: Fig. 1, leading shoot, with foliage and young aments, \(\times 1\), from Breslau, Sept. 20, 1908, Ziesché; FIG. 2, lower surface of leaf, \(\times 10\), from Charlottenbrunn, Silesia, Baenitz, no. 1373; Fig. 3 , inflorescence, \(\times 1\), from Möenlycke, April, 1890 , Walter Unlemann, Fl. Scand.; fig. 4, mature cones, from Baenitz, no. 1373; FIG. 5, half a cone, \(\times 4\), from Wurzburg, Fl. exsicc. Bavar., no. 56; FIG. 6, bract, \(\times 10\), from Bohemia, July, 1887, Fopitze; FIG. 7, nutlet, \(\times 10\), from same specimen as fig. 6 .
Plates 977 and 978, A. rugosa (Du Roi) Spreng., var. typica H. Winkl. Plate 977: fig. 1, fruiting branch, \(\times 1\), of shrub spread from cultivation in Europe, from Gehölze an der Lüneburger Eisenbahn nach Motrich, Wittenberge, Baenitz, Herb. Dendrol. no. 1214; fig. 2, venation of lower leaf-surface, \(\times 10\), from no. 1214; Fig. 3, half a cone, \(\times 4\), from no. 1214; FIG. 4, nutlet, \(\times\) 10, frrom no. 1214. Plate 978: FIG. 1, fruting branch from Narrows Island, Black Lake, New York, Fernald, Wiegand \& Eames, no. 14,251; Fig. 2,
venation of lower leaf-surface, \(\times 10\), from no 14,251 ; fig. 3, portion of cone, \(\times 4\), from no. 14,251 ; FIG. 4 , achene, and FIG. 5 , bract, \(\times 10\), from no. 14,251 .
Plate 979, figs. 1-3, A. rugosa, var. typica: fig. 1, terminal leaves of vegetative sprout, \(\times\) ca. \(1 / 2\), from торотчpe, Harbke Garten, Ehrhart, no. 88; FIG. 2, branches of strictly pistillate shrub, \(\times 1\), from Townshend, Vermont, June 2, 1912, L. A. Wheeler; fig. 3, inflorescence, \(\times 1\), from West Roxbury, Massachusetts, April 9, 1906, F. F. Forbes. Fig. 4, forma Emersoniana Fernald: lower surface of leaf, \(\times 10\), from type.

Plates 980 and 981, a. rugosa, var. americana (Regel) Fernald. Plate 980: fig. 1, fruiting branch, \(\times 1\), from Douglastown, Gaspé Co., Quebec, Aug. 22, 1904, Collins, Fernald \& Pease; fig. 2, bark, \(\times 1\), from Rindge, New Hampshire, Sept. 8, 1917, C. F. Batchelder; FiG. 3, group of cones, \(\times 4\), from same specimen as fig. 1. Plate 981: fig. 1, foliage and young aments of larger-leaved specimen, \(\times 1\), from Hillsborough, New Hampshire, Sept. 3, 1921, C.F. Batchelder; Fic. 2, inflorescence, \(\times 1\), from Buckland, Massachusetts, April 11, 1904, F. F. Forbes.

Plate 982, figs. 1-3, A. rugosa, var. americana, forma hypomalaca Fernald: fig. 1, foliage, \(\times 1\), of TYPE; Fig. 2, foliage of vigorous sprout, \(\times 1\), from Tewksbury, Massachusetts, Fernald \& Bartlett, no. 15; FIG. 3, lower surface of leaf, \(\times 10\), from type. Fig. 4 , var. americana, forma tomophylla Fernald; leaf, \(\times 1\), from type.

Plates 983 and 984, A. serrulata (Ait.) Willd., var. vulgaris Spach. Plate 983, extreme with more acute leaves, "Foliis obovatis acutis", Aiton: FIG. 1, foliage of vigorous sprout-shoot. \(\times 1\), from Newton, Massachusetts, Wm. Boott; FIG. 2, foliage and incipient inflorescence of fertile branch, \(\times 1\), from Oceana, Virginia, Fernald \& Long, no. 3896; Fig. 3, inflorescence, \(\times 1\), from Centerville, Massachusetts, April 18, 1897, E. F. Williams; FIG. 4, old cones, \(\times 1\), from Weymouth, New Jersey, Long, no. 25,358; FIG. 5, half a cone, \(\times 4\), from Stoneham, Massachusetts, April 16, 1896, W. P. Rich; Fig. 6, nutlet, \(\times 10\), from Long, no. 25,358. Plate 984, extreme with obtuse leaves; FIG. 1, TYPE, \(\times 1\), of var. obtusifolia Regel; Fig. 2, narrower leaf (approaching forma nanella), \(\times 1\), from Richmond, Rhode Island, Aug. 20, 1919, Fernald \& Collins; Fig. 3, broadest-leaved extreme, approaching var. subelliptica, \(\times 1\), from Wareham, Massachusetts, Sept. 18, 1928, C. H. Knowlton; Fig. 4, venation of lower leaf-surface, \(\times 10\), from same leaf as in fig. 2; FIG. 5 , young inflorescences of staminate shrub, \(\times 1\), from south of South Quay, Virginia, Fernald \& Long, no. 11,559.
Plate 985, A. serrulata, var. vulgaris, forma noveboracensis (Britton) Fernald: fig. 1, type, \(\times 1 / 2\), of \(A\). noveboracensis Britton; fig. 2, tip with incipient inflorescence, \(\times 1 / 2\), from Selkirk, Oswego Co., New York, Fernald, Wiegand \& Eames, no. 14,247; FIG. 3, fruiting cones, \(\times 1\), from no. 14,247; Fig. 4, lower surface of leaf, \(\times 10\), from no. 14,247 ; Fig. 5 , bark, \(\times 1\), from Orono, Maine, Fernald \& Long, no. 13,473.

Plate 986, A. serrulata, var. subelliptica Fernald, all figs. from type: FIG. 1, foliage and incipient inflorescence, \(\times 1\); Fig. 2, inflorescence, \(\times 1\); Fig. 3, fruit, \(\times 1\); Fig. 4 , bract, \(\times 10\); fig. 5 , nutlet, \(\times 10\).

Plate 987, a. serrulata, var. subelliptica, forma emarginata Fernald, all figs. from type: fig. 1, fruiting branch, \(\times 1\); fig. 2, largest leaves, \(\times 1\); FIG. 3, flowering tip, \(\times 1 ;\) FIG. 4 , lower surface of leaf, \(\times 10\).
Plate 988, A. serrulata, var. subelliptica, forma mollescens Fernald: Fig. 1, leaf and incipient inflorescence, \(\times 1\), from type; fig. 2 , old cones, \(\times 1\), of TYPE; FIG. 3, lower surface of leaf, \(\times 10\), from TYPE; FIG. 4, branch with unusually long cones, \(\times 1\), from Little Neck, Virginia, Fernald \& Long, no. 3899 .
Plate 989, A. serrulata, var. subelliptica, forma nanella Fernald, all figs. from tYPE: FIGS. 1 and 2, fruiting branches, \(\times 1\); FIG. 3, lower surface of leaf, \(\times 10\); FIG. 4 , nutlet, \(\times 10\).

A necessary Transfer in Populus § Turanga.-During the compilation of bibliography preliminary to monographic studies in the genus Populus, it has become evident that there is an earlier name for the British East African Poplar known as Populus Denhardtiorum (Engler) Dode, the said combination made in 1909.

Dode's basonym was Populus euphratica Olivier, subsp. Denhardtiorum Engler (1898). But Engler himself, in 1905 (Bot. Jahrb. 36: 252. 1905), had clearly indicated that he had given a full description of the same tree under the name Celtis ilicifolia in his Pflanzenwelt Ost-Afrikas, Theil C, p. 160. 1895. It is, then, clear that this species should bear the following name:

Populus ilicifolia (Engler) comb. nov. Celtis ilicifolia Engler in Pflanzenwelt Ost-Afrikas, Theil B, p. 290 et Theil C, p. 160. 1895. Populus euphratica Olivier, subsp. Denhardtiorum Engler in Notizbl. Kön. Bot. Gart. Mus. Berlin, 2: 217-218. 1898, in Sitzungsber. Preuss. Akad. Wiss. 369. 1904, in Engl. Bot. Jahrb. 36: 252. 1905; Aschers. in Ber. Deutsch. Bot. Gesellsch. 36a: 360. 1908. Populus euphratica Olivier, var. Denhardtiorum Gombocz in Math. Természet. Közlem. 30:72. 1908 (Populus-nem Monogr.). Populus Denhardtiorum Dode, in Bull. Soc. Dendr. France, 1909: 152. 1909; Stapf in Hooker, Icon. Pl. 31: t. 3050. 1916; Skan in Prain, Flora of Tropical Africa, 6, sect. 2, part 2, pp. 325-326. 1917; Battiscombe, in Descr. Cat. Common Tr. \& Woody Pl. Kenya Colony, pp. 66-67. 1926. Turanga ilicifolia Kimura in Sc. Rep. Tôhoku Imp. Univ., ser. IV, Biol., 13: 387. 1938. Balsamiflua ilicifolia Kimura, Sc. Rep. Tôhoku Imp. Univ., ser. IV, 14: 192. 1939.
Ernest Rouleau, Institut Botanique, Université de Montréal

Linum catharticum in Ontario.-A note in Rhodora for March, 1945, called attention to occurrence of Linum catharticum L. in New Brunswick and Quebec, the provinces next westward from Nova Scotia, in the eastern parts of which it is well known. An Ottawa, Ontario, collection made by John Macoun on June 15, 1903, "on the left side of the road near the entrance of Beechwood Cemetery", was reported in the Ottawa Naturalist 20: 164.1906, by J. M. Macoun; and specimens are preserved in the National Herbarium and in the Herbarium of the Division of Botany, Department of Agriculture, Ottawa, from which a spare plant was recently contributed to the Gray Herbarium. Search for


Photo. B. G. Schubert
Alnus incana: fig. 1, shoot with foliage and young aments, \(\times 1\); fig. 2, lower surface of leaf, \(\times 10\); fig. 3 , inflorescence, \(\times 1\); FIG. 4 , mature cones, \(\times 1\); fig. 5 , half a cone, \(\times 4\); fig. 6 , bract, \(\times 10\); fig. 7 , nutlet, \(\times 10\).


Photo. B. G. Schubert
Alnus rugosa, var. typiea: fig. 1, fruiting branch of the shrub cultivated and maturalized in Germany, derived, presumably, from the original specimen; fiti. 2, venation of lower leaf-surface from same collection, \(\times 10\) : Fig. 3, half a cone from sume collection, \(\times 4\); fig. 4, nutlet, \(\times 10\).


Photo. B. G. Schubert
Alnus rugosa, var. typica, native American shrul): fig. 1 , fruiting branch, \(\times 1\); fig. 2 , venation of lower leaf-surface, \(\times 10\); fig. 3, portion of cone, \(\times 4\); fig. 4 , achene, \(\times 10\); fig. 5 , bract, \(\times 10\).


Photo. B. G. Schubert
Alnus rugosa, var. typica: fig. 1, terminal leaves of vegetative sprout of topotype, \(\times ? 1 / 2\), after photo. by Professor Alfred Rehder; fig. 2, branches of strictly pistillate shrub, \(\times 1\); Fig. 3, typical inflorescence, \(\times 1\).
A. rugosa, forma Hmersoniana: lower surface of leaf of type, \(\times 10\).


Photo. B. G. Schubert
Alnus rugosa, var. americana: fig. 1, fruiting branch, \(\times 1\); Fig. 2, bark, \(\times 1\); fig. 3 , cones, \(\times 4\).


Ihoto. B. G. Schubert
Alnus rugosa, var. americana: fig. 1, foliage and young aments of large-leaved shrub, \(\times 1\); fig. 2 , inflorescence, \(\times 1\).


Photo. B. G. Schubert
Alnus rugosa, var. americtana, forma hypomalaca: fig. 1 , foliage of type, \(\times 1\); fig. 2, leaf of vigorous sprout, \(\times 1 ;\) fig. 3 , lower surface of leaf, \(\times 10\).

Var. americina, forma tomophylda: fig. 4 , leaf of type, \(\times 1\).


Photo. B. G. Schubert
Alnus serrulata, var. vulgaris, extreme with more acute leaves as in Aiton's type, "foliis obovatis acutis": FIG. 1, foliage of vigorous sprout, \(\times 1\); FIG. 2, fertile branch, \(\times 1\); fig. 3 , inflorescence, \(\times 1\); fig. 4 , old cones, \(\times 1\); fic. 5 , half a cone, \(\times 4\); fig. 6 , nutlet, \(\times\) 10.


Photo. B. G. Schubert
Alnus serrulata, var. vulgaris, extreme with obtuse leaves: fig. 1 , type, \(\times 1\), of var. obtusifolia Regel; fig. 2, narrow leaf, \(\times 1\); Fig. 3, broad leaf, \(\times 1\); fig. 4, venation of lower leaf-surface, \(\times 10 ;\) Fig. 5 , inflorescence of staminate shrub, \(\times 1\).


Photo. B. G. Schubert
Alnus serrulata, var. vulgaris, forma noveboracensis: fig. 1, type, \(\times 1 / 2\); Fig. 2 , tip of branchlet with incipient inflorescence, \(\times 1 / 2\); FIG. 3, fruiting cones, \(\times 1\); FIG. 4 , lower surface of leaf, \(\times 10\); Fig. 5 , bark, \(\times 1\).


Photo. B. G. Schubert
Alnus serrulata, var. subelliptica, all figs. from type: fig. 1, foliage and incipient inflorescence, \(\times 1 ;\);IG. 2 , inflorescence, \(\times 1\); FIG. 3 , cones, \(\times 1\); fig. 4 , fruiting bract, \(\times\) 10; FIG. 5 , nutlet, \(\times 10\).


Photo. B. G. Schubert
Alnus serrulata, var. subelliptica, forma emarginata, all figs. from type: fig. 1, fruiting branch, \(\times 1\); fig. 2, largest leaves, \(\times 1\); fig. 3, flowering tip, \(\times 1\); fig. 4, lower surface of leaf, \(\times 10\).


Photo. B. G. Schubert
Alnus serrulata, var. subelliptica, forma mollescens, figs. 1-3 from type: FIG. 1, leaf and incipient inflorescence, \(\times 1\); fig. 2 , old cones, \(\times 1\); fig. 3 , lower surface of leaf, \(\times 10\); fig. 4, unusually long cones, \(\times 1\).


Photo. B. G. Schubert
Alnus serrulata, var. subelliptica, forma nanella, all figs. from type: figs. 1 and 2 , fruiting branches, \(\times 1\); FIG. 3, fruiting cones, \(\times 1\); FIG. 4, lower surface of leaf, \(\times 10\); fig. 4 , nutlet, \(\times 10\).

Euphorbia maculata: left, Smith \& Zimmerman, Winchester, Massachusetts; right, Plukenet,
Alm.t. 65, f. 8.

any subsequent reference to a continuing colony, and search in 1945 for such a colony, have failed to locate anything more.

The collection reported for St. Andrews, New Brunswick, July, 1944, by Mr. Weatherby, was not the first from this station. Specimens secured by J. Adams, September 1, 1936, and by H. Groh, July 31, 1936, are in the Divisional Herbarium, but have not been reported.-Herbert Groh, Central Experimental Farm, Ottawa.

\section*{ON THE DESCRIPTIVE METHOD OF LINNAEUS}

\section*{H. K. Svenson \\ (Continued from page 302)}

How well Clayton's English notes were translated into Latin by Gronovius, I cannot say. But the English common names did not always fare well, as may be seen by his treatment of the skunk cabbage ( p .186 ): "calla aquatilis odore alii vehementer praedita, radice repente, vulgo Pole Cadweed. Clayt. n. 17." Clayton undoubtedly had written, at least approximately, "Calla, with creeping root, growing in wet places, with a strong odor of onions, commonly called Polecat Weed." A description was given by Gronovius, but no specific name. The latter was supplied by Colden, and was copied by Linnaeus in Species Plantarum (p. 967) as: "dracontium foliis subrotundis. Cold. noveb. 214." On the other hand, the jack-in-the-pulpit received a specific name from Gronovius (p. 186): arum caulescens foliis ternatis, and his italics show that it was a new name. This was based on Clayton's no. 539, which bore the descriptive note: "Arisarum triphyllum altissimum, spatha \& spadice omnino albovirescentibus". Gronovius' specific name was taken up, practically intact, by Linnaeus in Species Plantarum, p. \(965 .{ }^{13}\)

Of the Clayton specimens, Linnaeus saw only the first installment except for duplicates which Gronovius later sent him, or of specimens in the collections of other persons. \({ }^{44}\) The assistance of

\footnotetext{
\({ }^{48}\) The Brazilian collection to which Linnaeus refers under Arisaema triphyllum came from Canada, and was part of the Burser Herbarium (cf. Juel, H. O. Symbolae Bot. Upsal. II, pt. 1: 5. 1936).
\({ }^{44}\) Linnaeus to Bergius (Hulth no. 519), July 2, 1753: "At Beck's I saw a Ribes from America, recently recelved from Gronovius, pediculis dichotomis." Clayton also sent some living plants, for Beck (Hulth Letter no. 626) saw Hamamelis in London, which Clayton had sent to Catesby.
}

Linnaeus was chiefly in helping Gronovius arrange the new flora according to the Linnaean method, and in describing some new genera. The situation has in general been so misunderstood that I am quoting (in translation) from the preface of Flora Virginica (1739), which was addressed to Clayton:
"I have therefore not hesitated to undertake this work, leaning upon the assistance of our friend, and to examine your gift of specimens (as many as had been up to that time received) with keen-eyed Linnaeus, and to search out the characters of the rare plants which had not been assigned to their genera. \({ }^{45}\) I wish that I could recall that learned man [Linnaeus] to examine the remainder of the specimens which you sent me in this and the previous year. After his departure I carried on alone, to the best of my ability, the work of writing up the characters of rare plants; and I earnestly ask you to examine these characters anew in the living plants and to correct any errors which I may have committed.

For certain plants I have given the specific names which are in Hortus Cliffortianus and Flora Lapponica; for the remainder, which had no obvious names, I have myself adapted specific names according to the method prescribed by Linnaeus. For some plants I have omitted names, not sufficiently trusting my own observations; therefore I propose that you examine them for insertion in the second edition of the Flora Virginica which I am preparing.

For each plant I have added as a rule only a single synonym, from which others may be easily found; except for a few plants where synonyms are scattered among various authors and have not hitherto been assembled. Furthermore it will be well to place an asterisk before the names of plants listed in the catalogue of which specimens have not reached me."46

As I have pointed out (Rhodora 41: 521-524. 1939), Quercus rubra of Linnaeus included all the American species with lobed and bristle-tipped leaves, and of these the northern red oak was first clearly differentiated by Du Roi in 1772. Much the same is true of Quercus Prinus L. This species first appears with a spe-

\footnotetext{
\({ }^{45}\) Melothria, Xyris, Houstonia, Cephalanthus, Claytonia, Pontederia, Prinos, Medeola, Rhexia, Clethra, Hydrangea, Penthorum, Trichostema, Schwalbea, Diodia, Obularia, Chrysogonum, Nyssa.
\({ }^{46}\) Cf. also Amoenitates Academicae. Vol. III. n. 31. p. 5. 1751 (L. J. Chenon, sub Praesidii Doct. Caroli Linnaei): "Gronovius, in Flora Virginica (1739 \& 1743), enumerated more plants of North America than all others before him; all of which John Clayton, who lived in Virginia, had collected. The illustrious Gronovius examined them, added synonyms, referred them to genera, and distinguished them by specific differentiae." And Jacob Biuur, Amoen. Acad. 3: 388, 389. 1753. "Species Plantarum, which comprises all the species which he (Linnaeus) has treated in his previous works, or later examined, or any that have been collected or described by his associates: as well as those which have been sent to him from all parts of the world, by Gmelin from Siberia, by Sauvage from Mt. Pessulano, by Loeffing from Spain, by Kalm from Canada, etc. Gronovius has written Flora Virginica (1739) in which he enumerates many plants, which Clayton had diligently collected and sent; these he examined, referred them to genera, determined them with differentiae and added synonyms; and in this work no botanist has gone further."
}
cific name according to the Linnaean method in Hortus Cliffortianus p. 448 (1737):

Quercus foliis obverse ovatis utrinque acuminatis serratis; denticulis rotundatis uniformibus.

Quercus castaneae foliis, procera arbor virginiana. Pluk. alm. 309, t. 54, f. 3. Raj. hist. 1916. Catesb. ornith. 18. t. 18.

Crescit in Virginia \& Carolina.
This specific name remained unchanged in Gronovius' Flora Virginica, and to it was assigned Clayton's specimen. The trees grown in Cliffort's garden presumably came from England, the source of most of the American plants then grown on the Continent. Cliffort's tree had leaves with "denticulis rotundatis uniformibus" as did the Plukenet figure, and through Du Roi (1772) and Marshall (1775) this northern tree has come down to us as "Quercus Prinus" even in Sargent's Silva of North America (1895). Here in a note (vol. 8, p. 53) was the first inkling of the change that was to be made later: "The early description of the Chestnut Oak might apply as well to the Swamp Chestnut Oak (Quercus Michauxii) as to this species which does not grow near the coast of Virginia, where, however, the Swamp Chestnut Oak is common, and may have been the first of the Chestnut Oaks noticed by the Europeans". To this may be replied that Banister, who collected much of the early material described by Plukenet, did not lose his life by falling off a mountain on the coastal plain. Many other plants were collected by Banister in the Virginia mountains \({ }^{47}\), where Quercus Prinus ( \(Q\). montana Willd.) is abundant. Michaux (Chênes Am. 1801) made Q. Prinus into five subdivisions in a peculiar trinomial manner. Of these \(Q\). Prinus palustris was based on Clayton no. 77, and Q. Prinus monticola on Marshall's species no. 16. This was renamed Q. montana by Willdenow in 1805.

In the Linnaean Herbarium in London, which I examined in 1937, there are three specimens of Quercus Prinus, all of the

\footnotetext{
\({ }^{47}\) Cf. Ray, Historia Plantarum, Vol. III lib. xxv, p. 6. 1704, "Nux Juglans Virginiana fructu minore oblongo. Ex superioribus montosis fluvii inundationibus aliquando defertur, \& in rupibus ad praecipitia aut catarractas invenitur." Professor Fernald has written "There is every reason in the world why Linnaeus could have had Quercus Prinus (montana) and Q. rubra (borealis, var. maxima) from Clayton. They both abound on the lower James River (See Rhodora, xl. 182 \& 412). Several later stations were found farther down the James." Changes in application of the names were undoubtedly due to Ashe.
}
northern tree now frequently called \(Q\). montana Willd. Two of these specimens are from Kalm, one of them with staminate flowers; both are labeled "Prinus" by Linnaeus under the number " 7 ", according to the enumeration of species in Species Plantarum, and the sheets also bear the number " 15 ". A third sheet (no. 34) bears the label in Linnaeus' hand: "Quercus foliis obverse ovatis, utrinque acuminatis serratis, denticulis rotundatis uniformibus. Hort. Cliff. 448". This specimen, with staminate flowers, has the characteristic shallow crenate toothing of the northern tree, leaves densely stellate-pubescent below, and the winter buds silky tomentose. Nothing is further indicated as to its source. A fourth sheet (no. 20) from Kalm is merely marked " 7 " by Linnaeus, and was placed under " 8 " ( \(Q\). nigra) by J. E. Smith; it is \(Q\). heterophylla.

It is advantageous here to discuss other American oaks in the Linnaean herbarium, since they tend to show that the Linnaean species was not based on type specimens, but was rather the subdivision of a genus comprising all specimens, illustrations and descriptions, falling within the differential limits of the specific phrase name.
Q. nigra: sheet 18 , " 8 nigra K " and sheet 19 " 8 K " (i. e., both from Kalm). On the latter the number " 9 " has been written above, and there is the notation "triloba n. 47 det. Smith".
Q. rubra: sheet 21, "K" (discolor det. Smith). The lower surface is densely stellate-pubescent. This is \(Q\). falcata Michx., or a deeply incised form of \(Q\). velutina. Sheet 22: " 9 " ("discolor H. Kew" det. Smith). The lower surface is densely tomentosestellate and the upper surface a bit scurfy-stellate. It bears on the reverse side in Linnaeus' hand: "Quercus foliorum sinubus obtusis, angulis lanceolatis seta terminatis integerrimis (vix divisis deleatus et legatus subtus tomentosis)"; i. e., from the Gronovian specific name of Quercus rubra the phrase "vix divisis" [somewhat divided] was to be deleted and "subtus tomentosis" inserted. It is probable that this was a modification of the specific name intended for future publication. Sheet 23: "rubra K", a young specimen with staminate flowers from Kalm, determined as \(Q\). palustris by Smith, and is that. Sheet 24 : " 9 K " a mixture of the northern red oak and Q. palustris (det. "rubra \& palustris" by Smith). Sheet 25 : "K" ("ilicifolia Willd. no. 59" det. Smith).
Q. alba: sheet 26 " 10 K alba". A specimen from Kalm with elongate mature leaves glabrous below, and with very narrow lobes. Sheet 27: "476 Quercus alba". A very young specimen of \(Q\). stellata from Gronovius with staminate flowers, lower leafsurface hairy matted, and the upper with stellate hairs on the veins toward the margin of the leaf. Sheets 26 and 27 are pinned together. Sheet 35: "K"; a single leaf ( \(15 \times 12 \mathrm{~cm}\).) of \(Q\). stellata.

From the foregoing account of literature and herbarium material, it should be obvious that most Linnaean species consist of two or more species of general present-day usage. Only occasionally, as in Viburnum dentatum \({ }^{48}\), is it based unequivocally upon a single collection. If the Linnaean Quercus rubra is to be rejected because it is based on two or more species of our present interpretation, then the names Quercus alba, \(Q\). nigra, and \(Q\). Prinus should also be discarded, along with most other Linnaean binomials.

With these preliminary remarks we come to the crucial point in the interpretation of Linnaean species: the relative value of specimens, figures, descriptions and synonyms. It is quite evident that Linnaeus considered the species as an entity which included all these elements. All entities were part of the species and "by knowing any synonym one would know the species". This is true also of herbarium specimens, whether or not they represent the species as we now understand it. Species Plantarum was written from a practical point of view, and the fact that Linnaean species were more inclusive, in general, than species of today, does not modify the original status of the Linnaean species.

Thus the statement of Wheeler (Contrib. Gray Herb. n. s. no. 127: 76. 1939), in 'discussing the identification of Euphorbia maculata, that "the identity of the plate is of secondary importance since the specimen in Linnaeus' herbarium takes precedence over cited figures" controverts all Linnaean philosophy, and it is only natural that Wheeler should therefore have found the Linnaean method only chaos. The Plukenet plate has come down through botanical usage and history as the recognized representation of Euphorbia maculata. It was based on plants

\footnotetext{
48 Cf. Rhodora 42: 1. 1940.
}
growing in Walker's garden at London as early as 1660 (Plukenet t. 65, fig. 8. 1691). E. maculata, in the sense of Asa Gray, has been well known as a European weed (cf. Hegi, Ill. Fl. MittelEur. f. 1757 (1911). Although no scale was given in Plukenet's plate, I believe it to be the generally recognized E. maculata (E. supina Raf.) because of the following characteristics: 1) it has the reduced axillary shoots very characteristic of \(E\). maculata, but rarely seen in E. nutans; 2) the leaves are slightly, but definitely, petioled, which is a characteristic of \(E\). maculata and not \(E\). nutans; 3) the leaves of \(E\). maculata are as frequently 3 -veined as not, as a casual inspection of herbarium specimens will show. See pl. 990.

There seems to be no reason for Wheeler's change of the traditional usage of the Linnaean Euphorbia maculata.

There is nothing in the description, in my estimation, which would discriminate between \(E\). maculata and \(E\). nutans. It applies equally well to either one. Linnaeus, in the Second Mantissa 382. 1771, merely said: "Euphorbia maculata similis E. hypericifolia", and nothing more. The treatment in Species Plantarum (p. 455) is as follows:
> 21. EUPHORBIA dichotoma, foliis serratis oblongis pilosis, floribus axillaribus solitariis, ramis patulis. Tithymalus s. Chamaesyce altera virginiana, foliis crenatis \& macula fusca eleganter notatis. Pluk. alm. 372. t. 65. f. 8.

> Habitat in America septentrionali.
> Caules dichotomi: Ramis alternis, patentibus, supra purpurascentibus. Folia ovali-oblonga, trinervia, subpilosa, serrata, altero latere maxima parte integerrima, tenera adhuc planta notata macula fusca. Flores \(a\) xillares, solitarii, parvi, calyce rufo.

It will be noted that this Linnaean treatment consists of 1 ) a new specific name; 2) a synonym; 3) habitat; and 4) a description. Most of the other species of Euphorbia treated in the first edition of Species Plantarum had been described in the Amoeni-tates-Euphorbia maculata is evidently one of those plants, mentioned in the preface of Species Plantarum, for which a description "sine ambagibus" was added.

Since Species Plantarum was a compendium based partly on illustrations, there are many instances where pictured material of great similarity in appearance, but representing as we now
understand it, distinct species, was included under the same specific name. Such, for example, were the American Asclepias syriaca, based partly on illustrations by Cornut and Clusius \({ }^{49}\); and Trillium erectum, based partly on the purple-flowered plant of Cornut's plate (which was said by Cornut to have a white variation), and partly on the once white-flowered specimen of Trillium grandiflorum in Burser's herbarium.

Progress of the art of illustration is taken up amusingly, and at the same time regretfully, by Linnaeus in his message to the Royal Academy (Jan. 3, 1765; Fries, Letter no. 367):
"In order that I may further follow the progress of my natural sciences,
I observe how the first workers after the Palingesia literarum tried to understand the objects of creation, and to illustrate them by descriptions and figures.
"Descriptions were then wrapped up in long and lofty orations; now they have just so many words as are necessary, and without a whippedcream covering-that is, they are characteristic descriptions which exclude common structures. One no longer says of animals that the head is placed in front of the body, or the eyes in the head, or that a bird has two wings and two feet; or that, in the case of a plant, that the root is dark, the leaves green, the flower beautiful, and that the fruit comes after the flower-one states only the characteristic things.
"Figures provide a similar situation. If I compare the first figures, for example those of Cuba in Hortus Sanitatis with Ehret's in Hortus Cliffortianus, they appear like ghosts among angels. Figures of the 15th century needed a superscript in order to be understood; they painted a rabbit and said it was a bear. They made figures according to the stories of others, without having seen the object.
"In the beginning of the 16th century the figures were poor, but toward the end of the century they become tolerable, especially after the good masters began carving in boxwood.
"With the beginning of the 17 th century, when it was seen that subtle lines could not be cut well in wood, some began to employ copper; at first it went rather slowly and the plates became smudges. But before the century's close appeared Dodart's beautiful figures from the French Academy of Science, not to mention others.
"Even at the beginning of this century, in spite of the fact that the figures had become reasonable enough, one had to get together a whole lot

\footnotetext{
\({ }^{19}\) This plant, the widespread Calotropis procera Ait., was brought to Vienna from Jericho by Weixius, and illustrated by Clusius in 1601. This illustration was not unlike Cornut's plant from Canada, and Linnaeus took Cornut's word for their identity. Cornut, Pl. Canad. 1635, p. 89 says: "I here offer a double differentia for Apocynum: maius \& minus. [These were respectively Apocynum maius Syriacum and A. minus Canadense, known now as Asclepias syriaca and A. incarnata]. Maius I believe to be the same as Clusius has described under the name Apocynum Syriaci. But since a description is lacking and the plant is mutilated (for there is nothing of the root and of its duration, and of the flowers and juice little is known). Furthermore, the learned man states that he has seen the plant only in small dried fragments I have added what seems to be lacking in description."
}
of synonyms each time a plant or animal was to be determined. One had to get a sufficient library and set up all the citations until naturalists began to paint their objects in lifelike colors, so that one could not possibly be mistaken. I am not speaking of the old illuminated figures which made all leaves the same shade of green, or all yellow flowers the same kind of yellow: but I refer to the Surinam insects of Merian, Seba's paintings, Frischen's birds, Catesby's fishes, Ehret's plants, Roesel's insects, Edward's birds, Regenfus's snails, in which the objects stand as though living, as well as the best portrait painter delineates the human face. Among all these, Roesel is best in the insects, Regenfus in shells, Ehret in plants-all of which are so beautiful that the most stupid Hottentot could stand in admiration and affection for the master's work.
"If I ask, furthermore, what has brought this kind of literature to such a height, I will reply that patronage has been entirely responsible. Wealthy Englishmen supported Catesby's voyage to America, and paid well for his pictures. Roesel was supported by a baron. Ehret's plates brought a guinea apiece, as fast as he could produce them. His Majesty of Denmark's generosity brought us Regenfus's shells. Edward's patron can be read about in his preface. The English boast of Edward, the Germans of their Roesel, the Danes of their Regenfus, and with much reason.
"Our librarians have obtained a new point of view from them; even potentates must stand at the opening of these books, and be drawn into support of the natural sciences. I have tried [unsuccessfully] to get Clerck's figures published . . . This has placed me in wonderment that \(I\), in the 27 years since I returned from my foreign travels, never could command a single good figure. With this help, I, who have had the opportunity of seeing more of our rare plants and animals than anyone else, would surely have brought out some observations quarterly."

It may now be of some interest to trace the progress, or rather the change, of the Linnaean conceptions as they are enunciated in the introductions to succeeding issues of Linnaean works. Many of these were by authors who had lost contact with the Linnaean method, and whose publications merely retained the Linnaean trade-mark, so to speak.

Linnaeus' Systema Naturae appeared as a very small publication in 1735. It ran through twelve editions, the last (in 1766) with notes by Fabricius. A number of these editions represented merely translations into other languages, and the eleventh edition is non-existent. The most important were the fourth (by B. Jussieu in 1744), the ninth by Gronovuis in 1756 , and the tenth in 1758.

Beginning with the thirteenth (ed. Murray) in 1774, the botanical part was separated out as the Systema Vegetabilia, based upon the twelfth edition (1766-1788) of the Systema

Naturae. Another edition by Murray appeared in 1784, and this was translated into Italian (as the fourteenth edition) and was also issued with very slight changes by Persoon in 1797. In the meantime Gmelin's edition (which he called the thirteenth) had appeared in 1791, and caught up the names in Walter's Flora Caroliniana (1788). The remarkably fine edition (also inscribed as the fifteenth) by Roemer \& Schultes required the span of years from 1817 to 1830, and during this interval came the final edition (the sixteenth) by Sprengel in 1825.

In 1817 Roemer \& Schultes began their monumental edition of the Systema Naturae, and the preface of this work is an extended account of the difficulties which had arisen in the field of systematic botany. It is as fresh and timely today. As they state, Persoon's unsatisfactory edition of the Systema had appeared twenty years before (1797). The early death of Willdenow had left his edition (fourth) of Species Plantarum unfinished, and the same was true of Vahl and his Enumeratio Plantarum. Lamarck's Encyclopedia, in process of completion by Poiret, was too large and expensive for ordinary use. The number of species and synonyms since the time of Linnaeus had increased out of all bounds due to the opening up of Australia and America, and the number of herbarium specimens now preserved in various institutions was far beyond the power of any single human being to correlate.

\footnotetext{
"What (p. vii) was allowed the father of the science is not forever permitted his successors. And for these a new edition either of Species Plantarum or of the Systema Vegetabilia is necessary for determination of plants: with synonyms not only for species, but for the synonyms scattered about among genera, orders and even classes. From these, new miseries have arisen for even the best botanists of our time. Scarcely half of the plants have been seen that have been collected and described in our time-a burden for many camels-preserved in the museums of London, Paris, Madrid, etc.: so that a man's life would not suffice in comparing and describing either those known or those in herbarium collections

For not only are many specimens deceptive, often badly dried or poor in other ways, but even those plants that are living; so that it not rarely happens that excellent botanists have published this or that new species, but later acknowledged it to be only a variety of a species already known. We have omitted genera, since Nature herself has not produced genera; perhaps not even species, you may readily say, if you consider those royal battles of botanists as to what should be considered a species. These arguments could easily be solved, if you would consider as forms \({ }^{50}\) what they often call species-but forms of some importance and
st This seems to be the first use of the word "form" in a classification sense, but Roemer \& Schultes give no further deflnition.
}
easy distinction . . . And what advantage lies in a battle of words, when it is sufficient to know that a plant may have leaves now ovate, or again lanceolate?
"To the diagnoses expressed in an oracular style, as was customarily done in previous editions of Systema Vegetabilia, it seems best for us not to acquiesce. We are persuaded that but few species can be distinguished easily and definitely by these diagnoses alone. We have therefore added short descriptions to the diagnosis, by which the plant can be determined more easily and correctly.
"We (p. ix) have diligently added copious synonyms. The way to enter the sanctuary of truth is to be sceptical in judgment (which we express by the sign '?') . . . If we fail in synonymy there is some excuse in the diverse names published at about the same time by various authors, and the diverse plants published under a single name, and the heteronyms which refer to the same plant under different names. Of synonyms those only are of value by which the plant can be readily and securely known to all botanists. There is nothing in a synonym or a homonym or a heteronym, when a plant-either per se or by fallacious and difficult description or rarity-is dubious, or has been based by its authors on an imperfect figure or description: there you will not rarely find ten or more synonyms. . . If, therefore, you perhaps find the same plant written up under two or even three names in our edition, you should not wonder or be too critical before you have patiently looked through the botanical works of others

Who does not detest the enumeration under one name of different plants which have not been seen, or the inclusion of two or three diverse species? By monographs the core of botany will ultimately be reached, so that further doubt may not proceed from the doubtful, and that the abyss will not invoke a greater abyss. We have not dared to change the diagnosis or definition of plants we have not seen.
"All (p. xiii), who may propose new species, are advised to be thoughtful of the future, and to place the new species in its systematic place, indicating its place between species already known, and to which it is most clearly related. We have placed new species at the end of the genus, rather than to interpolate them ourselves."

\section*{The Trivial Name}

Binomials had appeared sporadically in the publications of Bauhin, Cornut, and others, but not until their use by Linnaeus did they become adjuncts to specific names. The idea itself was one of almost childish simplicity, and the strength of the trivial names lay in the specific phrase names which they represented. It is probable that Linnaean trivial names had their inception in pharmacological terms such as Sarsaparilla, China, Tacamahacca, Tragacantha, etc.; it is at least of interest to note that the ordinary Latin adjectives which are often employed as trivial names are not listed in the index to trivial names in Species Plantarum, and we may infer therefore that the substantives were considered
as of more importance. As has been pointed out by Sherff (quoting L. H. Bailey; Bull. Torrey Bot. Club 67: 374. 1940) it would be as logical to have monomials as binomials. This had already been done to some extent by Ehrhart in 1790 (cf. Rhodora 31: 171. 1929) and such monomials as Trichophyllum were taken up by some American botanists and combined as though they were legitimate generic names. Ehrhart was not the only one to advocate the use of monomials, even in limited usage. \({ }^{51}\)

Nor was Species Plantarum the first place where trivial names were used by Linnaeus. As he says in Philosophia Botanica 257: "Nomina trivialia may be admitted after a fashion, as I have used them in Pan Suecica; they consist of a single word freely selected from any source. \({ }^{52}\) A list of over 800 plants in Pan Suecica bears such names, the method as mentioned by Hasselgren in Amoen. Acad. 2: 213. 1749 being as follows: "I have arranged the plants of Flora Suecica according to their catalogue numbers; and so that I could study them in brevity, I found it advantageous to add to the generic name a short and insufficient epithet, which is made clear by the Flora itself". An even earlier indication is seen in the italicized second word of the specific name, as in the account of "Radix Senega" issued by Kiernander in the Amoenitates in April, 1749. This paper is perhaps the real genesis of the Linnaean binomial, since in nine

\footnotetext{
\({ }^{51}\) Cf. A. P. DeCandolle, Théorie . . . Bot. 224. 1813: "It is true that the Linnaean method facilitated the study of names; it is also true that it brought to students the possibility of knowing the name of a plant without knowing its character, and thus to place the word for the thing itself. It was without doubt, in accordance with this idea, that Haller rejected specific [i. e., "trivial"] names, but gave great emphasis to descriptive phrases . . . A second inconvenience of the Linnaean nomenclature was to admit the name of the genus as a basis for the name of the species: in effect, genera are very arbitrary, more variable than species; and so, any plant one meets has received four or flve names, solely because different botanists have thought that it should be placed in four or flve different genera. Therefore, some naturalists, among them Richer de Belleval, Renaulme and Buffon, have thought that it might be more convenient to give each species a single name, so that nomenclature might be independent of classification and not participate in its variations. But this method has been renounced, partly because of the large number of names, partly because there is no aid to memory, and finally because nomenclature itself is a guide to related species."
\({ }^{58}\) A. DeCandolle, Lois de la Nomenclature Botanique. 1867. Footnote, p. 7: "What appears to us today to be the most fortunate and the most important of Linnaeus" ideas, seemed to him merely an accessory; for in the editions of his Philosophia, all published after 1745, he discourses at length on the phrases (nomina specifica) and merely mentions what we now call the specific names In his dissertation of June 1753, Incrementa botanices, in which he considered himself as a reformer in science . . . he did not remark on the employment of binomial nomenclature."
}
out of ten of the plants (in addition to Polygala Senega) which were reputed remedies for rattlesnake bite, the italicized word is taken over directly into Species Plantarum. One of these plants was an unidentified plant of Plukenet; the others were Aristolochia Serpentaria, Actaea racemosa, Prenanthes alba, Veratrum luteum, Osmunda virginiana, Sanicula canadensis, Uvularia perfoliata, Aletris farinosa, Cunila mariana.

In some other accounts in the Amoenitates, the trivial name, instead of being italicized, was enclosed in parentheses. When it came to writing Species Plantarum, Linnaeus placed such names "in the margin", as he says in the introduction to Species Plantarum. With an outlook to the future, he continued with the important advice which has been but little heeded, or not at all, "Caveant autem quam sanctissime omnes sani Botanici, umquam proponere nomen triviale sine sufficienti differentia specifica, ne ruat in pristinam barbariem scientia." (All botanists must beware of proposing any trivial name without sufficient differentia specifica, lest the science fall into its original barbarity.) "I have placed the trivial name in the margin so that we may find any plant whatever encompassed by a single name; this I have placed without selection, which however another day may demand."

These trivial names Linnaeus often wrote at the bottom of his herbarium sheets, as has been mentioned in the discussion of Quercus. In addition, they were placed by him against some of the polynomials in books in his library, thus [Letter no. 816 (Hulth), Dec. 28, 1753]: "I have written in the trivial names in Flora anglica Ray, helvetica Haller, monspeliensis Magnolii, and a lot of others; and thus the species appear short and clear."

In evaluating the trivial name, Link (Philosophia Novae Prodromus, 1798, p. 190) says,
"Trivial names are now given to all species, a good invention of Linnaeus by which botany is made brief, easy, and secure. It may be a Latin adjective in apposition with the generic name, but as much as possible it should not be a variable character, i. e., color, or even less a country, which is subjected to political changes, and which a species rarely inhabits solely . .. . I would prefer some other substantives added to the generic name, either Greek or barbarous, which could be understood by themselves, and would so explain themselves that their significance would not be a cause of trouble. The subspecies should be designated by a third name, preferably by an adjective which denotes in what way it differs
from other subspecies; the variety not so, but by a brief phrase; and the monstrosity not to be indicated by way of name."

With the exception of the work by Roemer \& Schultes, the editions beginning with Murray were unimaginative. Johan Andreas Murray, one of Linnaeus' students, set up rules for the formation of the trivial name similar to those used by Linnaeus for the specific phrase-name. To Linnaeus the trivial name was always an accessory. Murray's changes are to be found in the preface of the thirteenth edition of Systema Vegetabilia \((1774)^{53}\). They were published with good intentions but undoubtedly led to greater emphasis of the trivial name. Murray notes (p. x) that he has had to change the "character essentialis" of many species, and because of poor descriptions of recent authors was unable to allocate many species within the genus, but was obliged to place them at the end. In changes of the specific phrasenames ( \(\mathrm{p} . \mathrm{xvi}\) ) he has added the letter " M ", not from any feeling of vanity \({ }^{54}\), but so that any mistakes that were made might not be attributed to Linnaeus. In the edition of 1784 (and also of 1774?) Murray (p.8) gives Linnaeus' explanation of the origin of genera and species by hybridization:
"Suppose the Creator, in a progression from the simple to the complex and from few to many, at the beginning of plant life to have created as many diverse plants as there are natural orders. These plants the Creator then allowed to reproduce by crossing so that as many plants arose as there are distinct genera today. From these genera, Nature has through generations without change of flowering structures, mingled and multiplied them into existing species. But to be excluded from this type of generation are hybrid plants which are for the most part sterile. Nature therefore confirms that the Genus is natural."

A Character, furthermore, does not constitute a genus, but the character is to be carefully drawn up according to the genus as it occurs in nature . . . The Diagnosis of a plant consists in the "affinitate Generis" and the "discrimine Speciei". \({ }^{55}\) The name of a plant, "utramque diagnosis indiget", is to be duplex: a) a Generic cognomen gentilitium, and b) a Specific Praenomen

\footnotetext{
\({ }^{53}\) Murray states ( \(\mathbf{p}\). ix) that for two years the younger Linnaeus had promised him the editing of the third mantissa of Species Plantarum, a work which never appeared due to the illness and early death of Linnaeus, the son.
\({ }^{54}\) A similar procedure was followed by Reichard and by Willdenow in their editions of Species Plantarum, but no reference was made to vanity.
\(\$\) This statement is somewhat obscure, but certainly different from the Linnaean usage of the term, which applied only to the genus.
}
triviale, and under this the Synonyma vaga of authors. And (p.9):
"The botanist, following the classification, is led by the character of the plant to a named genus; by the differentiae to the name of the species; thence to its synonyms; from these to the authors, and to all the information that has come to us about the object in question through the course of time. Thus the plant tells its name, and its history among a great multitude of species and individuals; this, the first goal of the botanist, has been brought about during our time, and every true botanist should be absorbed in its perfection".

Miller's seventh edition of the Gardener's Dictionary appeared in 1759. The early editions did not use binomial nomenclature, for Miller, as did Haller, \({ }^{56}\) realized the difficulties that would arise from an unrestricted use of the binomials without the concurrent specific phrase name. As Martyn, editing the edition of 1807 , says (p. ix):
"[Miller], early and practically versed in the methods of Ray and Tournefort, [was] habituated to the use of these [phrase-names], from his younger years, and it was not without reluctance that he was brought to adopt the system of Linn[aleus; but he was convinced at length by the arguments of the late Sir William Watson and Mr. Hudson, and embraced it . . . (p. v.)

It is quite evident that Link's observations on the trivial name, especially those dealing with color and geographic locality, were influenced by Murray, who in his edition of Systema Vegetabilia (1774) included a supplement with rules for the formation of the trivial name. As he says (Sect. 1): "The trivial name does not render superfluous the definition of a species or the specific differentia; it should however be added whenever in any work there is to be exact determination of plants. Such a necessity exists in the systematic enumeration of plants, in extended designation of either exotic or indigenous species, where there should be some character for comparison, as in medical books or those in plant economy, so that there will not be confusion of species due to lapse of memory or hasty writing". These rules tended to focus attention on the trivial name rather than the specific name, and

\footnotetext{
\({ }^{56}\) Stirpium indigenarum Helvetil inchoata historia. 1768. Introd, p. xxil: "More and more I feel that most genera are artiffial, nor can any law be given by which you can determine what discrimination is necessary for separating two genera . . . I have not wished to create trivial names, which Linnaeus and Rivinus have given us, since I realize how meagre several words are, and feel that it would be most difficult to express any characteristic in a single word."
}
in that respect perhaps tended to hasten the downfall of the Linnaean method.

\section*{Varieties}

As both Lindman and E. L. Greene have pointed out, Linnaeus was the first to distinguish varieties from species, i. e., at the time of Bauhin there was no distinction between species and varieties, all plants being collected under the genus without further formal designation. Thus the statement of Linnaeus to Cronhjelm "botanists pride themselves on having 20,000 species of plants; but there are not more than 8,000 when varieties have been placed under their proper species". A variant of this statement found its way into the preface of Species Plantarum: "Numerum plantarum . . . vix 10,000 attingat". (The number of species in the whole world is much less than is generally credited; I have calculated, sufficiently accurately, that there are about 10,000 ). The actual number of species in the second edition of Species Plantarum, was 7540, and these were distributed in 1260 genera. \({ }^{57}\) But it should be emphasized here that the Linnaean species was, in general, much more inclusive than that of the modern consensus.

It is generally accepted that the Greek-letter subdivisions in Species Plantarum represent varieties, and this view is corroborated by Linnaean correspondence. For example, in Letter no. 542 (ed. Fries) from Bergius, 1769: "Erica Gnaphalodes n. 27. Your synonym which I placed with this species is probably not the proper one, for I see in the new system that E . Gnaphalodes of Sp. Pl. is placed as a variety under Erica spumosa." It is obvious that the Linnaean "variety" represented the third and lowest stage in the "Genus, Species, Variety" series, and included all the categories below the species, of our modern literature. The low esteem in which Linnaeus held the too liberal designation of varieties may be gained from a letter to Beck (no. 671, ed. Fries, in 1749): "Rosen's flora has 5 or 6 species; the others are all varieties that no one in these times takes the trouble to look for or describe". This statement, and those in Philosophia Botanica (section 306) \({ }^{58}\), was directed primarily toward the dilet-

\footnotetext{
\({ }^{57}\) Sprengel, K. Geschichte der Botanik. 2: 284. 1818.
\({ }^{58}\) " The use of varieties in economics, cooking, and medicine shows the necessity for their recognition in ordinary life; otherwise varieties should not be recognized by botanists unless care is taken that species are not multiplied or confused thereby
}
tantes or "Anthophili". The idea that the Linnaean variety as employed in Species Plantarum applied only to horticultural variations (varietates levissimae), or to plants that we would now call "formae", is quite erroneous. Linnaeus tended toward the reduction of varieties (cf. Fl. Suecica, p. ix): "Varieties for the most part I have voluntarily omitted, except for a few which I have placed under their proper species; if, after the manner of some others, I should enumerate varieties in the place of species, I should certainly be able to show more than twice as many plants; I have however judged that the plants themselves and not their mere increase should be considered and I have departed from that custom". That the Greek-letter subdivisions of Species Plantarum often have a geographical significance is evident from such examples in Species Plantarum as:

Juncus pilosus (p. 329). Habitat in Europae sylvis, at varietates \(\beta\), \(\delta, \varepsilon\) in Europae australioribus; \(\gamma\) in Alpibus.

Bupleurum angulosum (p. 236). Habitat in Pyreneis. \(\beta\) in Vallesiae alpibus.

Asarum canadense (p. 442). An varietas praecedentis (A. curopaeum); sic suadet Folia bina, dissuadet alia.
In Flora Suecica a similar treatment of varieties based on habitats had been carried out for Myosotis (no. 149) and Gentiana (no. 203). And in the Amoenitates Academicae 1: 334 . 1743, the paper on Betula nana treats the Greek-letter variants as having a significance quite remote from that of cultivated plants. It should be kept in mind, however, that one of the chief functions of Species Plantarum was to dispose of the loose-lying varieties of Bauhin's Pinax, and to place them under their proper species; hence the large number of Greek-letter subdivisions under such important cultivated plants as Prunus Cerasus, Prunus domestica, and various species of Pyrus.

The following observations in sections of Philosophia Botanica provide a good background for the problem of varieties:
158. Varieties are as many as there are different plants produced from the seed of the same species. This is due to accidental causes: climate, soil, temperature, winds, etc. Varieties often revert when the soil is changed.
259. That varieties are distinct species, no sane person admits in the animal kingdom: for there are white cows, black cows, lean and fat cows,

\footnotetext{
Obvious varieties, in general use, are inserted at the end of the differentiae when necessary."
}
smooth and wooly cows, and no one has thought that the most diverse represent species.
317. It is as important to assemble varieties under their species, as it is to place species under their genera. The constancy of the older botanists in treating species as distinct, was superseded by the eagerness of more recent botanists (previous to the end of the last century) in augmenting the number of plants and infecting the science by the introduction of varieties as species. This heresy was first opposed by Vaillant, then by Jussieu, Haller, Royen, Gronovius, and a few others, in order that botanical science might not be ruined.

Many varieties can be easily traced back and explained by comparing their variable characters with those of the natural plant; but there are not a few varieties which demand both genius and experiment. The botanist who chooses to occupy himself with varieties can hardly reach his goal-the bounds of interplay of polymorphic nature.
310. Varietates levissimas non curat Botanicus. The horticulturists (Anthophili), unremitting in their industry and observation, see in the corollas of flowers marvellous things which the untrained eye cannot perceive; their object is the most beautiful flowers of Tulips, Hyacinths, Dianthus, Primulas, etc. To obscure varieties of these they give names that arouse wonder! They cultivate the science of flowers, all its own and pertaining only to themselves. Into their camp no sane botanist goes.

The technical aspect of varieties, from the modern point of view, has been so extensively discussed in recent literature \({ }^{59}\) that little space is needed here. As I have pointed out in a discussion of Hypericum cistoides, many of our present varieties have no geographic background, and represent merely random variations in herbarium collections. Moreover we are not certain that some of the variations that we call "geographic" are not responses to climate and soil. The history of subspecies of the ornithologists is quite different from that of the botanists.

\section*{The Herbarium}

The status of some specimens in the Linnaean Herbarium, especially of the genus Quercus, has been discussed. The best general statement on the Linnaean Herbarium seems to be that of C. B. Clarke, the eminent specialist on the Cyperaceae, in Journ. Linn. Soc. Bot. 30: 299. 1894:
"The herbarium of Linnaeus appears to have originally contained a perfect, or very nearly perfect, set of examples (one, two, or rarely more, sheets of each species) representing the Sp. Pl. ed. 1. Each sheet of this set was numbered and named in the hand of Linnaeus, in ink, on the paper
\({ }^{59}\) Cf. R. T. Clausen in Rhodora 43: 157-167. 1941; and C. A. Weatherby in Rhopora 44: 157-167. 1942. The problem of varieties is also discussed in the outstanding paper by Ramsbottom, Proc. Linn. Soc. London, 150th Session: 192-219. 1938.
itself, the numbers corresponding always to the species-numbers in the first edition of the Sp. Pl.
"The herbarium of Linnaeus has been, as is well known, disarranged: a quantity of additional material has been mixed into it; some of the original names have been crossed out; some of the original sheets have been moved, and many have disappeared altogether. There still remain, however, in the Cyperaceae enough of these authentically named sheets to verify more than half the species described in his Sp. Pl. From comparing these so many times, I have come to the conclusion that we possess, in them, in every case, a specimen plant that Linnaeus himself referred to the name he wrote on them. Besides these (usually numbered) specimens there are a good many other sheets named in Linnaeus's hand (but without numbers) which refer to species subsequently published under Linnaeus's names in the Sp. Pl. ed. ii, in the Mantissa, and in Linn. f. Suppl."

And Ramsbottom (Linn. Soc. London Proc. 148th session, p. 26. 1936), in discussing Savage's paper on Burser's herbarium:
"When dealing with the Linnaean Herbarium some botanists seem to have lost their sense of proportion. Great as Linnaeus's opinion of his own work was-with abundant reason-it is foolish to imagine that he could ever have anticipated the importance that future botanists would place on his specimens. Consequently his herbarium was likely to contain some specimens which had been placed with less care than had the majority; moreover, it took many years to accumulate.
"It was common knowledge that all the specimens contained in the Linnaean Herbarium were not types and that all his types were not in his own herbarium; some, for example, were in the Department of Botany [British Museum] in the Hortus Cliffortianus and the Sloane Collections."

Linnaeus notes in the introduction to Species Plantarum that Clifford gave him all the specimens that he had in duplicate, and that Gronovius gave him many Virginia plants. In the several volumes of Linnaean letters published by Hulth are references here and there to the herbarium, and of these I quote a few:

No. 767 (to Beck) Jan. 28, 1753: "Take out as many duplicates as you are certain of ; then there will be room in the herbarium". No. 61, vol. 2 (to Aymen) May 14, 1753: "You say that you have 6000 plantas exsiccatas; I have received plants from nearly the whole world, but have obtained only 6000 ". No. 1172 (to Celsius) Nov. 1736 (written from Hartekamp, Holland): "Sloane's big collection is wholly in disorder. I got a lot of rare species in England, especially of American plants, such as Sassafras, Canella alba, Alpinia, Barleria, Bauhinia [no.] 6, Bellonia, Bocconia, Breynia, Brunsfelsia, Cameraria, Coa, Cornutia, Dioscorea, Dodonea (mea, non Plumieri), Fuchsia, Hermania (formosissima arbuscula), Jan roja (?), Karatas, Magnoliae 2nd. spec., Mancinella (venenatiss.), Maranta, Petivera, Millera Houst., Kaempferia Nobis, Collinsonia nob., Mollugo nob., Dorstenia Plum., Catesbaea Gronov., Ammania Houst., Triopteris nob., Tetracera nob., Lippia Houst., Dalea Nob., Trigonella nob., Guazuma Plum. \&c. Nearly all of them I brought back living to Holland

I am now working hard on Hortus Cliffortianus, which is now up to 300 quarto pages; altogether it will go well over a thousand." Fries has provided the following footnote: "In 1736 Linnaeus visited England, returning to Clifford in Holland in 1737, when he assisted Gronovius on the Flora Virginica. In October he left for Sweden and remained there until the end of February, 1738. He then went to Hartekamp in Holland, which he left in May, 1738; next he went to Paris, and then to Sweden, where he was married in June, 1739."

The "herbarium parvum" was obtained by Alstroemer, who supplied the younger Linnaeus with travel funds. It was composed of specimens from the large herbarium, left at Alstroemer's place in Halland, and eventually came to the museum at Stockholm. (cf. Fries: Biographical Sketch of Alstroemer in Letters, Vol. 1, pt. 3. p. 13. 1909).

No. 968 (to Beck) Feb. 22, 1758: "I have sent 600 thalers to London for Browne's herbarium; I hope it comes intact through the pirates. It certainly must have Rolander's plants". No. 976 (to Beck) July 18, 1758: "Finally I have received Dr. Browne's Jamaica herbarium, which I have been waiting for so long; it contains more than 1000 beautiful plants . . . Here I find all the rare plants which I saw hastily at Rolander's and all that Loefling has described".

No. 440 (to Elvius) Dec. 1773: "I have read through Retzius' paper in which he wants to make 4 species of out Sophora biflora. Of this large tree, called coral-tree, I have several specimens. As I read through the paper much seemed paradoxical. But I did not wish to trust to my memory, until I came to the country to my collection, which in all ways confirmed my previous ideas . . . The peduncles are usually biflori; in poor soil they become uniflori . . . and I have specimens which have peduncles unifloris et biflores on the same branch . . . So I see in this paper nothing which is to be gained, but only more harm, and the placing of 4 species incorrectly for one which is certain."

An extensive list of papers dealing with the Linnaean Herbarium will be found in Soulsby's "Catalogue of the Works of Linnaeus" published by the British Museum, 1933, pp. 217-222.

\section*{The Natural System}

The idea of a natural system interested Linnaeus at an early date. \({ }^{60}\) As mentioned in Philosophia Botanica (1751, p. 25) a

\footnotetext{
\({ }^{60}\) Spring, p. 5: "The regular arrangement of natural objects under the lowest element of unity [i. e., species] gives us what Linnaeus, for example, called a 'natural system'. But the subjective natural system, as it is set up in the sciences, is quite different from the actual or objective; the latter is an ideal which the former, as much as possible, strives to illustrate."

Spring, p. 6: "The natural system has a double role to fulfill
1) It serves as a register in which each discovered natural object is arranged without constraint, and where each object already named and determined can be placed without difficulty.
}
natural method had been sought by Royen, by Haller, and by Wachendorff, according to cotyledons, calyces, etc. The "Fragmenta" of a natural system (p. 27-36) were composed of 67 groups, together with an additional group of plants which were of vague or uncertain status. "This is the first and ultimate desideratum in botany. Natura non facit saltus. \({ }^{61}\) All plants show an affinity on either side, as a territory in a geographic map. The lack of undetected plants has been the cause of deficiency in the natural system, rather than that the knowledge of many plants has perfected it; for Natura non facit saltus. \({ }^{\prime}{ }^{6}\)

Schuster, Nachwort über das Natürliche System. p. civ. 1926, briefly reviews the situation.
"In Classes Plantarum (1738) Linnaeus says that he has worked for a long time on the natural method . . . that he could not complete it within his lifetime . . . and that the key to the system could be given only when all plants had been brought under their natural orders. The natural system must be improved, rebuilt, and completed; those who do so will be the reigning botanists. The principles would be that here no a priori rule would suffice, no definite part of the fructification organs, but the integral relationship of all parts". (Schuster notes here that Linnaeus has already seen the principle of the Organism as a Whole). "The relationship of the artificial system Linnaeus explained as follows: the system is for the purpose of determining plants without an instructor. Without a key there is no method for the natural families. But since a key to the natural families is nearly or quite impossible, one can use only the artificial system for identification; the artificial system deals only with the diagnosis of plants, the natural only with the internal character or nature of plants. Who therefore refers to the artificial system resembles a builder who cannot complete the roof of the house. In the last analysis

\footnotetext{
2) It should provide us a picture of the plan of Nature, of natural objects in their natural relationships.
The flrst is the function of the so-called artificial system; the second of the natural system. Completion of the natural system is the most important contribution to Natural History. The better it is done, the more unnecessary an artiflcial system will become in time."
\({ }^{61}\) This phrase had also been used by Ray, Hist. Plant. sig. As verso. "Nam, cum Natura (ut dici solet) non faciat saltus, neque ab extremo ad extremum transeat nisi per medium . . . (for, Nature, as we say, does not make a leap and does not proceed from one extreme to the other, except through intermediaries)
\({ }^{62}\) Cf. A. P. DeCandolle, Théorie Elémént. Bot. 1813, p. 45. "Several objections have been made to the system based on a separation contrary to the natural order; but since Linnaeus is the first to have distinguished the natural from an artificial system, he is far from meriting such a reproach. Also whoever examines the [artificial] system sees how relatively certain it is for discovering the names of plants." And p. 59, "The group of imitators of Linnaeus have poorly understood the master and have attributed opinions to him contrary to those he actually held. It is today truly remarkable that those who call themselves Linnaeans are in direct opposition to all the pages of Linnaeus, while Linnaeus and Jussieu were practically in accord on all the principles of the science. Linnaeus was always in favor of the natural system."
}

Linnaeus' wisdom is a compromise between the unattainable natural and the completed artificial system".

The manuscripts of Linnaeus' student, Fabricius, were issued and edited in 1926 by Schuster [see introductory paragraph of this paper]. In discussing the "chain of nature", Fabricius says:
"Our illustrious preceptor knew how commonly, though erroneously these words were often used, for he was among the first to contend that the affinities of natural objects are many, according to the various relationships observed. Well known is his statement in Phil. Bot. 77: 'Plantae omnes utrinque monstrant, uti Territorium in Mappa geographica'. Should the word 'catena' be employed, it will not be found to be a simple chain, but multiplex and intertwined, and with many free ends which are not connected with other links. On the other hand, the word 'scala' is quite inept. What use I ask, is a ladder, if certain steps are missing, sometimes so many that you cannot make the jump to the succeeding ones? or if after a few steps there may be a huge hiatus to be ascended? Certainly I would not wish to use such a ladder. More apt is the idea of a reticulum (retis) of which the substance is disrupted here and there at random. Or to speak without metaphor: into continuous families many plants are joined, each of which has the lineaments of the family, but is otherwise distinguished from the other, as men of the same family in face, stature and approach. Those which are more similar are placed closer to one another, as tribes are joined from families . . . But there are families, in plants as in humans, in which the connection can be seen only as a probability or not at all. Here the network is broken; there it is continuous. The most apt comparison is with a geographic map, where the families of the first group form provinces in their own right, the middle group (which constitute most of the reticulum) form boundaries with these, and those which do not directly cohere form islands. Upon this idea the table has been constructed". [Cf. the appended chart from Giseke's "Praelectiones"] \({ }^{63}\).
"Thus, let it be supposed that the mystery of creation was being investigated, and a method imitating nature could be found. Who then seeks the natural method 1) forms genera, and these natural; 2) having formed these, he examines their convergences and affinities, and then will come the idea of order. For no one will say that Zea and Poa, for example, are of the same genus, though he sees that they are related. He therefore concludes that they are diverse genera of the same order.
"If this method is really natural, the affinities of genera and orders should appear among themselves; thus the natural method should be set up so that the genus or order should be intermediate to the preceding or following genus or order with which it coheres; in this way the chain arises. But such a method cannot be easily shown; for genera are lacking which

\footnotetext{
\({ }^{63}\) Cf. Sprengel, K., Geschichte der Botanik 2: 242. 1818: "Finally Linnaeus appears to have occupied himself studiously with the Natural Method. At least this is shown by his 'Vorlesungen' on the natural families, which he held at his country place, Hammarby, until 1771. (Praelectiones in Ordines Naturales, ed. Giseke, Hamburg 1792)."
See also Sprengel's editions (1809) of Philosophia Botanica, Sect. 77: "Fragmenta, quae Linnaeus proposuit, in Praelectionibus a Gisekio editis, haec sunt".
}
have not yet been detected, which cause a hiatus and a defect in the natural chain, so that order at times may seem to be lacking. Hence anomalies arise, which have an uncertain place in the natural system. But the natural method, though best, cannot be easily discovered; therefore the artificial is to be sought, so that genera can without difficulty be located and distinguished".

The accompanying chart (pL. 991) of the Linnaean natural orders has an ingenuity equal to the phylogenetic charts of the present day, though it bears the inscription, "Tabula genea-logico-geographica Affinitatum Plantarum secundum Ordines Naturales Linnaei delinavit Paulus Dietericus Giseke, 1789". The explanation is given on p. 623 of Giseke's "Praelectiones", of which fragments (in translated form) are included here:
"There are provinces (of circles) of which some are merely neighbors while others are contiguous, which I have tried to indicate as clearly as possible. When circles are closely assembled they usually, but not always, indicate neighboring provinces. Thus the first 13 orders are not only as Monocotyledons more closely related to one another than to others, but furthermore even by genera themselves, which are inscribed at the periphery. One of these, the Palmae, is related to the Acotyledons; another, the Filices, through Equisetum, is related to the Amentaceae and Coniferae. Thus they are not only neighboring but contiguous. 'The Hesperideae and Preciae [Primula, etc.] are closely related, but there is no intermediate genus by which they can really be joined. The Aggregatae, with seeds solitary and naked, approach the Compositae. . From the Compositae recedes the order of Umbellatae, with two naked seeds, but only in degree does it differ in inflorescence (cf. Eryngium)
Finally, from the Compositae the Columniferae are not so greatly removed, in the character of the solitary seeds . . . This is the plan of affinity, or GENEALOGY.
"As to the GEOGRAPHIC nexus, the provinces of the Monocotyledons (I-XIII) are sufficiently close. But others are much more distant than can be expressed in the plate. From the Personatae to the Tricoccae the distance is greater than the map shows. The former probably touch the Luridae from which the Campanaceae are removed, for there is similarity in the corolla of certain plants (e. g. Datura and Convolvulus), the number of stamens and pistils, and the similar fruit. With some others, Campanula lactescens might seem to make a transition to the Contortae. Though many Tricoccae have milky juice, none can be combined [with the Campanaceae] by means of the fruit. For Linnaeus did not wish to build orders on qualities. Thus there are islands . . . but none of the islands is more remote from other provinces or other islands than the Siliquosae.
"Finally, as to the amplitude these provinces of islands attain, I have taken the proportion that the number of genera in any order should be a third of the radius of the circle (at the time the map was drawn in 1789, not as in the exposition of orders, in which many new genera from the recent Genera Plantarum Linn., ed. Schreber, were added) . . . Thus in the Stellatae there are 25 genera, a third of which is 8 ; therefore the
radius [one-half the diameter] should be four lines long. But if this is carried out in the smaller orders (as those of 10 or 7 genera) the names could not be written in or read, and the radius has been made larger. Such are inscribed with an asterisk. If made on the same scale, the Compositae would have taken the whole page, so the proportions are there reduced.
". . . Order XVI is not in the table, because the genera are so few
Nor are there any in LIV, of which I did not at all understand the inscription Miscellanea until I heard Linnaeus . . . Thus he explained to me: 'Whoever has seen Sarracenia in flower does not question its close affinity with Nymphaea, but at what place can both be put?' I responded that I would associate it with Papaver, on account of the similarity of the stigma of Nymphaea. He replied that he would concede that point, but that plants were lacking which would properly join with the rest of the parts"。

The transitional genera between orders are written in fine script on the plate. The orders on the plate, together with the number of genera in each order, the connecting genera and the orders which they connect, are enumerated below:
I. Palmae 10

Nipa-Filices
Hydrocharis-Tripetaloideae
II. Piperitae 10

Acorus-Tripetaloideae
III. Calamariae 12

Carex-Gramineae
Scirpus \& Schoenus-Tripetaloideae
IV. Graminae 54

Cenchrus \& Cynosurus-Calamariae
V. Tripetaloideae 8

Butomus-Palmae
Sagittaria-Ensatae
Juncus-Calamaria
VI. Ensatae 10

Ixia-Tripetaloideae
Crocus-Spathaceae
Gladiolus-Orchideae
Iris-Coronariae
VII. Orchideae 11

Serapis-Ensatae
VIII. Scitamineae 13
IX. Spathaceae 12

Colchicum-Ensatae
Erythronium-Coronariae
X. Coronariae 20

Lilium \& Martagon-Ensatae
Tulipa-Spathaceae
Amaryllis-Sarmentaceae
XI. Sarmentaceae 21

Alstroemeria-Coronariae
XII. Oleraceae 36
XIII. Succulentae 29

Sedum
XIV. Gruinales 14

Linum-Caryophylleae
XV. Inundatae 10
XVI. Lacking (see note)
XVII. Calycanthaceae 17

Rhexia-Bicornes
XVIII. Bicornes 23

Kalmia-Calycanthemae
XIX. Hesperideae 19
XX. Rotaceae 14
XXI. Preceae 12
XXII. Caryophylleae 31

Lychnis-Gruinales
XXIII. Trihalatae 13
XXIV. Corydales 10

Fumaria-Rhoeadeae
XXV. Putamineae 8 Capparis-Rhoeadeae
XXVI. Multisiliquae 24

Trollius-Rhoeadeae
XXVII. Rhoeadeae 6

Chelidonium-Corydales
Sanguinaria-Fumarineae
Podophyllum-Multisiliquae
XXVIII. Luridae 19

Pedalium \& Datura-Personatae
XXIX. Campanaceae 15

Lobelia-Contortae
XXX. Contortae 25
XXXI. Asperulae 10
XXXII. Papilionaceae 55
XXXIII. Lomentaceae 10
XXXIV. Cucurbitaceae 12
XXXV. Senticosae 12
XXXVI. Pomaceae 10
XXXVII. Columniferae 43
XXXVIII. Tricoccae 35
XXXIX. Siliquosae 31
XL. Personatae 63

Martynia \& Barleria-Luridae
XLI. Asperifoliae 21
XLII. Verticillatae 39
XLIII. Dumosae 19
XLIV. Sepiäriae 9
XLV. Umbellatae 50

Sium \& Ninsi-Hederaceae
XLVI. Hederaceae 7

Panax-Umbelliferae
XLVII. Stellatae 25

Phyllis-Umbelliferae
XLVIII. Aggregatae 30

Dipsacus \& Globularia-Compositae
XLIX. Compositae 120

Capitatae
Sphaeranthus \& Echinops-Aggregatae
L. Amentaceae 14

Casuarina-Filices
Betula-Coniferae
LI. Coniferae 7

Cupressus-Amentaceae
LII. Coadunatae 8
LIII. Scabridae 12
LIV. Miscellaneae
LV. Filices 18

Zamia \& Cycas-Palmae
Osmunda regalis-Musci
LVI. Musci 10

Lycopodium clavatum-Filices
Hypnum-Algae
LVII. Algae 12

Jungermannia-Muscae
Marchantia \& Tremella-Fungi
LVIII. Fungi 11

Agaricus \& Peziza-Algae

With this brief account of the Natural Method of Linnaeus, it may be of interest in the nature of a review to insert here what were the last words of Linnaeus on botanical method-the preface to the Second Mantissa, dated September 1, 1771.
> "In the twilight of my life I am assembling some scattered accounts and unrecorded observations to add to the First Mantissa. I have emended some differentia specifica, where I have seen better or living specimens . . . Dubious synonyms, formerly admitted, I have often excluded here; for not in many synonyms, but in true specific differentiations lies the strength of the art. The new species of many authors I would gladly have inserted, if the essential characters had been included, but with these lacking I was obliged to omit plants which I had not seen myself. Some botanists talk loudly about the Natural Orders in place of a method, but so long as there is no essential character of an order, by which the genera can be combined or distinguished from those of different orders, these orders remain as a bell without a clapper. However, their use in other respects may be of the greatest importance.
> "If anyone after my time should publish my Systema, Genera, or Species, I beg him to insert in its proper place, each of the plants that I have noted in the Mantissae, Systema, and the various appendices. If he should wish descriptions of species he will find them in Hortus Cliffortianus and Hortus Upsaliensis, in Flora Suecica and Flora Zeylanica, in the Amoenitates and in my Travels".

\section*{Resumé}

Not until Redi had disposed of the doctrine of spontaneous generation, and Harvey had shown the continuity of life from the egg, was it possible to place species on a firm basis, i. e., immutability, and to observe that "there are as many species as were
created in the beginning'. The doctrine of immutability of species from the beginning was to give way later in Linnaeus' life to the idea that existing genera and species had been derived by the crossing or hybridization of a few created forms. As early as 1733, Linnaeus had outlines of his chief botanical works: Bibliographia Botanica, Philosophia Botanica, Genera Plantarum and Species Plantarum. The last-named work (1753), the basis of modern nomenclature, may be looked upon as a revision of Bauhin's "Pinax" in which the unit of classification was to be the species; whereas in Bauhin's work the genus was the unit of classification. Binomial nomenclature, as used in Species Plantarum, consisted of the genus and a trivial name, the binomial to be used as a supplement to (but not a replacement of) the polynomial specific name. Treatment of the genus (Genera Plantarum) was in three stages of amplification: 1) the natural character, essentially a description; 2) the factitious character, a few notae sufficient to distinguish genera in an artificial order; and 3) the essential character, a single unusual character sufficient for recognition. The goal, as in modern times, was to find the character essentialis. At the time of publication of "Species Plantarum", both genera and species were considered by Linnaeus to be "natural"; i. e., they were created units, and it was the duty of man to group together those species which belonged to a genus. According to Linnaeus: "All genera and species are natural: unless this principle is assumed there can be no soundness in the art". This point of view was strongly opposed by Lamarck who considered all genera as artificial.

As Spring and others have pointed out, most of our genera are not natural units; but merely represent a stage of classification above that of the species. Nor did the doctrine of descent with modifications of Lamarck and of Darwin ease the Genus problem, since it introduced the additional element of time into a system which had been preeminently concerned with the nomenclature of plants and animals as they are distributed in space. To this problem of the Genus, Linnaeus seems to have given a good answer: "The limits of a genus cannot be determined until all the species of the genus are known". In the author's opinion, the attempt to make all genera "natural", without some conventional limitations, would be destructive to nomenclature, which is built up primarily on a basis of history and usage.
"The Ariadnean thread of the systematists terminated in Genera, but I have attempted to extend it so far as Species, for which I have made proper differentiae". As in the treatment of the Genus, there was also a threefold aspect of technical delimitation: 1) The Descriptio, or character naturalis; 2) the Nomen Specificum, or polynonial phrase-name, based on differentiae taken from the Descriptio; 3) Nomen specificum essentiale, in which only a single character (nota) was present, and which constituted the goal of differentiation in species; but most Linnaean specific names remained in the synoptic stage, where several characters (notae) were still required for differentiation. The trivial name was placed "in the margin" in Species Plantarum.

The polynomial phrase name (specific name) required changes when it was converted from a synoptic to an essential name; also changes were usually necessary in adjacent specific names when a new species was introduced into the genus, in order to balance the differentiae; new specific names were required when preLinnaean and other specific names without differentiae were introduced into the Linnaean system. These older specific names became synonyms.

The Linnaean species appears to have been an aggregate of the synonyms, illustrations, herbarium specimens and living plants noted in the gardens at Upsala and elsewhere. All synonyms seem to have been of equal value, since "by any synonym you can know the species". The Linnaean species, therefore, included all material encompassed by the specific name. Distinctions were not so closely drawn as at the present day, and in general each Linnaean species consisted of several species, as delimited by modern consensus. Illustrations played a large part in Linnaean procedure. Specimens were placed in the herbarium as representative of the species, but were frequently discarded or replaced. Selection of a representative element for each Linnaean species, would seem largely dependent on usage.

The Linnaean natural system as it was conveyed to his student, Gieseke, is shown in graphic form, with explanations.
The writer is greatly indebted to Mr. C. A. Weatherby for a number of suggestions made after reading the manuscript, and to Mr. W. L. Dix for his help in translating the Latin of the preface of Roemer \& Schultes' Systema.

\author{
Brooklyn Botanic Garden
}

Chrysanthemum uliginosum Pers. adventive in Quebec.Late in the season of 1939, while botanizing in a once-abandoned cow-field in Lachine, a suburb of Montreal, the author came upon what first struck him as an odd, if not extremely robust, form of the "ox-eye daisy". The short-stalked flowers, which occasionally were severally grouped together, though somewhat larger, closely resembled those of the weed species of the genus Chrysanthemum. At the same time, however, it was striking to observe that in the older heads, the yellow ray-flowers had turned dark brown. The erect, shoulder-high stems were well covered with light green foliage, the long-lanceolate, acutely-pointed leaves of which were regularly as well as sharply toothed. Owing to the author's unfamiliarity with the following variety, it was originally determined as Chrysanthemum Leucanthemum var. pinnatifidum Lecoq \& Lamotte. A comparison, last summer, with the various species of Chrysanthemum grown here at the Montreal Botanical Garden, revealed that the material on hand was good C. uliginosum Pers., which some botanists keep in a genus apart, Pyrethrum. Dr. L. H. Bailey's observation (Standard Cyclopedia of Horticulture 1: 758. 1939) that this native Hungarian species "deserves a greater popularity" increases the interest in this plant as a garden escape.

This may be the first record for Quebec though it is not the first time that the giant daisy has been mentioned as having become established outside of a garden. Last November, Mr. C. A. Weatherby informed the writer by letter that there was but a single American specimen of the species at the Gray Herbarium. It bears the data: "A plant on roadside with Boltonia asteroides, probably dumped, Lenox, Berkshire Co., Massachusetts, Sept. 9, 1919, R. Hoffmann". He also mentioned that two localities in Connecticut, New London and Woodbridge, were given in the paper on "Additions to the Connecticut Flora" (Bull. Conn. Nat. Hist. Survey 48: 90. 1931).

Dr. G. L. Wittrock, Custodian of the Herbarium, states that no specimen of \(C\). uliginosum collected in the field is housed at the New York Botanical Garden.

The giant daisy has not spread elsewhere in Lachine but has remained localized in the spot where the author first collected it on October 9, 1939. It now seems firmly well established in a
moist depression in this cow-pasture, growing along with Ranunculus acris L., Galium palustre L., Scirpus atrovirens var. georgianus f. viviparus Vict. together with some other plants less exacting in habitat-requirements, such as Pastinaca sativa L., Lithospermum officinale L., Solidago rugosa Mill. and S. canadensis L. It now forms an almost perfectly circular patch, some six feet in diameter, with the number of plants densest about the circumference and gradually thinning out towards the center. The plant, in all likelihood, may merely have been dumped there.

The original collection has been deposited with the Herbier de l'Institut Botanique de l'Université de Montréal. Duplicates of material collected on a subsequent trip to the station on September 28, 1943, have been forwarded to the Gray Herbarium of Harvard University for checking.

The author desires to express his sincere thanks to Messrs. Weatherby and Wittrock for their generous assistance, as well as to Mr. Marcel Raymond, of the Montreal Botanical Garden, for several valuable suggestions.-James Kucyniak, Montreal Botanical Garden.

Chamaedaphne calyculata (L.) Moench, var. latifolia (Ait.), comb. nov. Andromeda calyculata, \(\beta\) latifolia Ait. Hort. Kew. ii. 70 (1789).

Typical Eurasian Chamaedaphne calyculata has the oblong to oblong-lanceolate leaves mostly \(2.5-5 \mathrm{~cm}\). long, about one third as wide, its calyx-segments broadly deltoid-lanceolate to narrowly deltoid-ovate and acuminate or nearly so, these a third to half as long as the urceolate corolla. The common North American shrub, similar to the Eurasian and up to 1 m . or more high, has the leaves one fourth to two fifths as broad as long, the acute calyx-segments about one third as long as the nearly cylindric corolla. This is var angustifolia (Ait.) Rehder.

Var. latifolia was described by Aiton:
\(\beta\) corollis oblongo-cylindricis, foliis oblongo-ovalibus obtusis Nat. . . . of Newfoundland.

All the specimens from Labrador and most of the many collections from Newfoundland have the oblong or oblong-elliptical leaves broadly rounded at summit and only \(1-3 \mathrm{~cm}\). long, only
about twice as long as broad. Furthermore, the calyx-segments are broad- to roundish-ovate and blunt, often quite obtuse. This shrub, often depressed and down to only 1 dm . high (up to 6 dm .), is clearly what Aiton had. It occurs from the Labrador Peninsula south, somewhat locally, to Nova Scotia and northern New England, the commoner shrub of the latter regions being var. angustifolia.

It is probable that Chamaedaphne calyculata, var. latifolia is C. calyculata, var. nana (Lodd.) Rehder in Bailey, Stand. Cycl. Hort. ii. 732 (1914). However, Andromeda calyculata \(\beta\) latifolia Ait. (1789) greatly antedates Andromeda calyculata nana Lodd. Bot. Cab. ix. no. 862 (1824); and Loddiges, although giving a good plate, had no description which can be taken as diagnostic. Instead he wandered over the subject, including a sermon, without getting down to a concrete description:

This neat little variety is a native of North America: it is evergreen, and seldom grows above half a foot from the ground. It flowers with us in the month of March, being one of the earliest shrubby plants that we are acquainted with.

It is quite hardy, and may be increased by layers, thriving best planted in a mixture of peat earth and loam in a border. Care should be taken to place such dwarf plants in situations where they may be seen to advantage. It is thus even in matters of far greater importance, and such as are connected with our highest interests, for (to use the words of an excellent writer,) 'Much of the credit and comfort of Christianity is lost in consequence of its professors fixing their aims too low, and not conceiving of their high and holy calling in so elevated and sublime a view as the nature of religion would require, and the word of God would direct.'
M. L. Fernald

A new Form of Campanula from Minnesota.-Campanula rotundifolia L. var. intercedens (Witasek) Farw. forma cleistocodona, f. nov., flores erecti, steriles; corollae inflatae, clausae.-Minnesota: a colony restricted to a single fissure of diabase, southwest end of Beaver Island in Lake Superior, 2 mi. east of Beaver Bay, Lake Co., Aug. 14, 1944, Lakela no. 5777 (type in Univ. Minn. Herb.) Lab. grown spec. no. 6133.

The form herewith described appears to be a natural clone capable of maintaining itself by vegetative propagation. Moreover, it differs from the typical form by erect, sterile flowers, inflated corollas closed at the mouths.

To confirm field observations of its flowering habit by experimental study, the writer collected from the fissure on Beaver Island young plants with basal leaves on May 26, 1945. The potted plants grown under laboratory conditions showed notable vigor. During the period of anthesis, from the latter part of June till the middle of Sept., over fifty flowers were produced by the six plants. Not one of the flowers opened its corolla-lobes.

In about a month the first formed flower-buds were as large as those of the typical form at the time of the opening of the corollalobes. In the typical form, also grown under laboratory conditions, the lobes expand while the limb of the corolla is still plaited in at the sinuses, exposing the dehiscing anthers and the elongating style. In the clone, the anthers dehisced within the closed corollas, coating the styles with copious pollen. At this time nectar was notable. Then the corollas gradually inflated into pyriform balloons within which the stigmas matured but the styles failed to elongate. At that time the pollen was postmature. Without deflation the corollas dried up on infertile withering ovaries.

The laboratory observations are in full accord with those of the field study at the time of the discovery of the colony and three later collecting trips. In the particular crevice, the Campanula with erect, air-filled, balloon-form flowers presented a startling contrast with the typical form, growing in abundant clusters in the adjacent crevices of the same rock ledge. The colony was last observed on Sept. 6, 1945. The fissure was well filled with stolons and basal leaves; in post-anthesis the withered but inflated bells were fruitless.

In drying the specimens at least some of the flowers popped open from pressure; on boiling the pressed specimens open.Olga Lakela, Duluth State Teachers College, Minnesota.

Volume 47, no. 562, including pages 273-382 and plates 969-975, was issued 20 October, 1945.


JOURNAL OF THE
NEW ENGLAND BOTANICAL CLUB

\section*{Conducted and published for the Club, by MERRITT LYNDON FERNALD, Editor-in-Chief \\ CHARLES ALFRED WEATHERBY ALBERT FREDERICK HILL STUART KIMBALL HARRIS \\ Asseciate Editors}
\[
\text { STUART KIMBALL HARRIS } \quad
\]December, 1945.No. 564.
CONTENTS:
Comparison of the Toxicity of Notholaena sinuata and N. sinuata, var. cochisensis. Frank P. Mathews. ..... 393
Handy Guide to Aquatic and Marsh Vegetation (Review).
M. L. \(F\). ..... 395
Notes on Compositae of the Northeastern United States.
II. Heliantheae and Helenieae. Arthur Cronquist. ..... 396
Campanula rapunculoides in Indiana. Edwin D. Hull. ..... 404
"Ia." sometimes stands for Indiana. M. L. Fernald. ..... 404
Betula papyrifera, var. commutata in western Maine. R. \(C\). Bean. ..... 405
Errata. ..... 406
Index to Volume 47. ..... 407
The Sem \(\mathfrak{E n g l a n d}\) 颉otanical Club, Jnt.8 and 10 West King St., Lancaster, Pa.Botanical Museum, Oxford St., Cambridge 38, Mass.

RHODORA.-A monthly journal of botany, devoted primarily to the fora of the Gray's Manual Range and regions foriatically related. Price, \(\mathbf{8 4 . 0 0}\) per year, net, postpaid, in funds payable at par in United States currency in Boston; single copies (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see ard coverpage). Volumes 1-9 can be supplied at \(\$ 4.00,10-34\) at \(\$ 3.00\), and volumes \(35-46\) at 4.00. Some single numbers from these volumes can be supplied only at ad. vance prices (see 3rd cover-page). Somewhat reduced rates for complete sett can be obtained on application to Dr. Hill. Notes and short scientific paper, relating directly or indirectly to the plants of the northeastern states, will be considered for publication to the extent that the limited apace of the journal permits. Forms may be closed five weeks in advance of publication. Authors (of more than two pages of print) will receive 15 copies of the issue in which their contributions appear, If they request them when returning proof. Extracted reprints, if ordered in advance, will be furnished at cost.

Addren manuscript and proofs to
M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass.

Subscriptions (making all remittances payable to RHODORA) to
Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Museum, Oxford St., Cambridge 38, Mass.
Entered as second-class matter March 9, 1929, at the post office at Lancaster, Pa., under the Aet of March 3, 1879.

\title{
INTELLIGENCER PRINTING COMPANY \\ Specialists in Scientific and Technical Publications \\ EIGHT WEST KING ST., LANCASTER, PA.
}

\section*{Edible wild plants of eastern north america}

\section*{by Merritt Lyndon Fernald and Alfred Charles Kinsey}

Practical discussion of edibility and directions for recognition and preparatimon of more than 1000 wild plants. 422 pp., introd. and detailed index, 124 line drawings, 25 halftone plates. \$3.00, postpaid. The Idlewild Press, Cornwall-on-Hudson, New York, or Librarian, Gray Herbarium, Cambridge 38, Mass.

MEMOIRS OF THE GRAY HERBARIUM. A series of illustrated quarto papers issued at irregular intervals, sold separately

No. I. A Monograph of the Genus Brickellia, by B. L. Robinson. 150 pp., 96 fig. 1917. \(\$ 3.00\).

No. III. The Linear-leaved North American Species of Potamogeton. Section Axillares, by M. L. Fernald. 183 pp., 40 plates, 31 maps. 1932. \(\$ 3.00\).

No. IV. The Myrtaceous Genus Syzygium Gaertner in Borneo, by E. D. Merrill and L. M. Perry. 68 pp. 1939. \$1.50.

No. V. The Old World Species of the Celastraceous Genus Microtropis Wallich, by E. D. Merrill and F. L. Freeman. 40 pp. 1940. \(\$ 1.00\).

\footnotetext{
Gray Herbarium of Harvard University, Cambridge 38, Mass.
}


\section*{TRbodora}

\author{
JOURNAL OF
}

\section*{THE NEW ENGLAND BOTANICAL CLUB}

Vol. 47.
December, 1945.
No. 564.

\section*{A COMPARISON OF THE TOXICITY OF NOTHOLAENA SINUATA AND N. SINUATA VAR. COCHISENSIS* \\ Frank P. Mathews}

Data on the toxicity of a fern for cattle, sheep, and goats were presented in a previous publication under the title of Notholaena sinuata, var. crenata (Texas Agricultural Experiment Station Bulletin No. 611, 1942). Quite recently it was called to our attention that the nomenclature employed in that publication was erroneous and that the correct designation for the plant should have been \(N\). sinuata, var. cochisensis. Therefore, the correct nomenclature is employed in this publication.

Both the species and the variety are common plants in the Trans-Pecos area of Texas, but as a rule they do not occur with equal abundance in the same locality. On the limestone hills and mountains of this area the variety is the more abundant of the two plants, while on the Davis Mountains, which are of igneous rock formation, the opposite condition prevails. Proof of the toxicity of the variety determined the cause of serious sheep losses in many limestone areas but left the status of the species in doubt. Information concerning the toxicity of the species was desired in view of the fact that there has been a gradual extension of the sheep industry into the Davis Mountains, where this plant is often found in considerable abundance.

\footnotetext{
* Approved for publication as Technical Contribution no. 906 from the Texas Agricultural Experiment Station by C. H. McDowell, Acting Director, and G. B. Winstead, Director of Information and College Publication, Prepared in cooperation with the United States Department of Agriculture, Bureau of Animal Industry, Agricultural Research Administration, Washington, D. C.
}

For exact information a comparison of the toxicity of the two plants growing in the same soil formation was desired. With this in view a place was selected in the Davis Mountains near Alpine, where both plants could be found in sufficient quantities to feed to experimental animals. This locality consisted of but a few acres with uniform soil conditions throughout, thus eliminating the factor of different soil formations which must be considered in an experiment of this nature. For the past four years both plants have been gathered in this locality and fed to both sheep and goats in both green and dry state. The results of the feeding tests are summarized in the accompanying table.
\begin{tabular}{|c|c|c|c|c|c|}
\hline No. & Animal weight lbs. & Total lbs. fed & Per cent body wt. & \[
\begin{aligned}
& \text { Days } \\
& \text { fed }
\end{aligned}
\] & Results \\
\hline & \multicolumn{5}{|c|}{N. sinuata (Lag. ex Sw.) Kaulf.} \\
\hline S163 & 70 & 6.3 & 9.0 & 9 & No ill effects \\
\hline S169 & 55 & 4.5 & 8.1 & 6 & No ill effects \\
\hline S170 & 65 & 6.4 & 9.8 & 8 & No ill effects \\
\hline S139 & 70 & 8.4 & 12.0 & 8 & No ill effects \\
\hline S142 & 73 & 4.8 & 6.5 & 8 & No ill effects \\
\hline S169 & 55 & 7.0 & 12.7 & 7 & No ill effects \\
\hline S176 & 83 & 8.3 & 10.0 & 6 & No ill effects \\
\hline G92 & 70 & 5.6 & 8.0 & 8 & No ill effects \\
\hline G2879 & 50 & 6.0 & 12.0 & 6 & No ill effects \\
\hline \multicolumn{6}{|c|}{N. sinuata var. cochisensis (Goodding) Weath.} \\
\hline S170 & 65 & 1.8 & 2.7 & 3 & Marked toxic effects \\
\hline S142 & 73 & 0.6 & 0.82 & 2 & Marked toxic effects \\
\hline S169 & 55 & 0.9 & 1.63 & 3 & Marked toxic effects \\
\hline S176 & 85 & 1.5 & 1.78 & 3 & Marked toxic effects \\
\hline G2879 & 50 & 1.5 & 3.0 & 3 & Marked toxic effects \\
\hline
\end{tabular}

A total of seven sheep and two goats were fed \(N\). sinuata for periods of 6 to 9 days. The total amounts of the plant fed during these periods varied from 6.5 to 12.7 per cent of the bodyweights of the animals. No evidence of toxic effects were observed. On the other hand the variety cochisensis produced marked toxic effects in four of these animals with the largest dose equivalent to 3 per cent and the smallest 0.82 per cent of the body-weight, after a feeding period of but 2 to 3 days. The largest dose was probably in excess of the minimum amount which would have been required to produce toxic effects as numerous feeding tests with the variety have shown that one per cent of the body-weight constitutes a toxic dose for both
sheep and goats. The plan adopted was to feed the species to two animals and the variety to a third animal at the same time. The feeding of the latter plant was discontinued as soon as toxic effects appeared but the feeding of the species was continued until comparatively large amounts had been administered. Since no evidence of ill effects could be detected as a result of feeding the species, part of the animals which received this plant were later fed the variety in order to test the susceptibility of these animals, a procedure that was not required from past experience, as we have never found a sheep or goat which is resistant to the toxic principle in var. cochisensis. The results of the experimental feeding are in accord with limited field observations which have disclosed no reason for suspecting \(N . \operatorname{sinuata}\) of being poisonous for livestock.

In view of the fact that the two plants occur in the same soil formation, that one is toxic and the other is not, that the two plants can be readily differentiated, the present classification is certainly inadequate. The gulf between these two plants should provide sufficient reason for classifying var. cochisensis as a species rather than a variety.
Loco Weed Laboratory, Texas Agricultural Experiment Station, A. and M. College of Texas, Alpine, Texas.

A handy Guide to Aquatic and Marsh Vegetation.-A number of sumptuously illustrated and extensive volumes on aquatic and marsh plants have recently been published. These hardly demand comment here. A more modest study, with every indication of care in its preparation and up-to-date understanding of the plants is the pamphlet by Moyle and Hotchkiss on such plants of Minnesota. \({ }^{1}\) As said, this study shows every indication that the authors have taken pains to check on the latest studies of the plants they discuss; only in two or three cases have they missed recent revisions. Their keys are clear and interesting, the drawings simple and readily recognizable, the text instructive and authoritative. The state of Minnesota is to be congratulated upon the production of so unpretentious and accurate a bulletin.-M. L. F.

\footnotetext{
\({ }^{1}\) Morle, John B., and Neil Hotcheiss. Aquatic and Marsh Vegetation of Minnesota and its Value to Waterfowl. Minn. Dept. Conservation, Technical Bull. no. 1. 122 pp., many illustrations, keys, etc. 1945.
}

NOTES ON THE COMPOSITAE OF THE NORTHEASTERN UNITED STATES. II. HELIANTHEAE AND HELENIEAE

\section*{Arthur Cronquist}

The first paper of this series appeared in Rhodora 47: 182-184. 1945.

Ambrosia trifida L. var. trifida, nom. nov. A. trifida L. Sp. Pl. 987. 1753, sens. strict.

Bidens vulgata Greene var. vulgata, nom. nov. B. vulgata Greene, Pitt. 4: 72. 1899, sens. strict.

The North American species of Coreopsis with yellow rays, greatly reduced upper leaves, and fimbriate or pectinately toothed achaenial wings were treated by Asa Gray as two species, \(C\). gladiata Walt., with alternate, elongate, and relatively broad leaves, and C. angustifolia Ait., with mostly opposite, shorter, and relatively narrow leaves. Some other names which have been applied to plants of this group are C. linifolia Nutt., C. longifolia Small, C. falcata Boynton, C. oniscicarpa Fern., and C. oniscicarpa var. simulans Fern. In general these plants may be sorted into the groups made out by Gray, but there are so many intermediates that it seems unwise to maintain them as distinct species. There has been some doubt as to the identity of \(C\). angustifolia, Sherff (Field Mus. Pub. Bot. 11: 407. 1936) considering it to have narrow but elongate and alternate leaves. Nuttall's name C. linifolia has been taken up by Sherff and others for the plant with small and narrow opposite leaves. The only varietal name thus far used in the group is C. oniscicarpa var. simulans, applied to a plant with broad opposite leaves, thus squarely between the two main intraspecific groups. Just as a binomial applied to an intraspecific hybrid need not be used for either of the parents, so, I believe, the var. simulans need not be taken up for either of the two varieties between which it stands. Plants of this alliance, as I understand them, may be treated as follows:

Coreopsis gladiata Walt. var. gladiata, nom. nov. C. gladiata Walt. Fl. Carol. 215. 1788, sens. strict. Leaves all or nearly all alternate, the lower ones greatly elongate, mostly \(1-3.5 \mathrm{~cm}\). wide; stem mostly terete.

Coreopsis gladiata Walt. var. linifolia (Nutt.) comb. nov. C. linifolia Nutt. Journ. Acad. Philad. 7: 75. 1834. Leaves
(or at least the middle and upper ones) mostly or all opposite, the lower ones not greatly elongate, mostly \(0.3-1 \mathrm{~cm}\). wide; stem tending to be quadrangular.

The rays of var. gladiata average a little longer than those of var. linifolia, as noted by Gray, but the difference is entirely inconstant and not at all to be depended on. The differences which have been noted by various students in the size and shape of the involucral bracts, and size of the achenes and their wings, seem to me too variable to be of much assistance. No difference in the range of the two varieties can be discerned from our specimens and the previous treatments.

Coreopsis lanceolata L. var. lanceolata, nom. nov. C. lanceolata L. Sp. Pl. 908. 1753, sens. strict.

Coreopsis major Walt. var. major, nom. nov. C. major Walt. Fl. Carol. 214. 1788, sens. strict.
Echinacea laevigata (Boynton \& Beadle) Blake is a rare plant that differs from E. purpurea in being glabrous throughout. Its range is almost entirely included within that of \(E\). purpurea, but is much more restricted. E. purpurea ordinarily has both the stem and the leaves conspicuously hirsute, but individuals with the stem essentially glabrous are not uncommon. A specimen in the herbarium of the New York Botanical Garden (Murrill s. n., Lynchburg, Va.), annotated E. laevigata by Sharp, has the upper surface of the leaves short-hirsute, but is otherwise essentially glabrous. In the absence of any other distinguishing feature, \(E\). laevigata can scarcely stand as a species.

Echinacea purpurea Moench var. purpurea, nom. nov. E. purpurea Moench, Meth. Pl. 591. 1794, sens. strict.

Echinacea purpurea Moench var. laevigata (Boynton \& Beadle), comb. nov. Brauneria laevigata Boynton \& Beadle in Small, Fl. S. E. U. S. 1261. 1903.

Echinacea atrorubens Nutt., described from Arkansas, is represented in the herbarium of the New York Botanical Garden by specimens from Oklahoma and Texas. A tracing of part of the type collection, with detailed drawings of certain parts, is also on deposit. E. paradoxa (Norton) Britton \& Brown is represented by several specimens from Missouri and a few from Oklahoma and Texas, and specimens from these states only are cited by Sharp (Ann. Mo. Bot. Gard. 22: 95. 1935). The ranges of the two species, although not identical, are seen to cover much of
the same territory. E. J. Palmer pointed out in 1936 (Rhodora 38: 197-199) that the two species are very much alike except for the color of the ligules, these being purple in \(E\). atrorubens, and yellow in E. paradoxa. The two other minor differences which he suggested, the sometimes longer ligules of \(E\). atrorubens, and the sometimes wider leaves of \(E\). paradoxa, nearly vanish when our specimens are examined. In the absence of any other distinguishing feature, it seems unwise to maintain the two species as distinct.

Echinacea atrorubens Nutt. var. atrorubens, nom. nov. E. atrorubens Nutt. Trans. Am. Phil. Soc. n. ser. 7: 354. 1840, sens. strict.

Echinacea atrorubens Nutt. var. paradoxa (Norton), comb. nov. Brauneria paradoxa Norton, Trans. Acad. Sci. St. Louis 12: 40. 1902.

It may be noted that \(E\). atrorubens has nearly from the first been confused with a southeastern species of Rudbeckia. A full and apparently correct discussion was published in 1901 by Boynton \& Beadle (Bilt. Bot. Stud. 1: 11-12), but as late as 1935 Sharp excluded it from Echinacea with only the following comment: "Small in 'Flora of the Southeastern United States' . . . included six species, four of which are retained in this monograph, one reduced to a variety, and the sixth being excluded." (Ann. Mo. Bot. Gard. 22: 85. 1935.)

Dr. Fernald, following Exell (Cat. Vasc. Pl. S. Tome 225. 1944), has recently maintained (Rhodora 47: 196-7. 1945) that the name Eclipta alba (L.) Hassk. must be replaced by Eclipta prostrata (L.) L. Linnaeus, in the Species Plantarum, proposed among others two species of Verbesina, \(V\). alba and \(V\). prostrata. Later (Mant. 286. 1771) he transferred both these species to Eclipta, but substituted the epithet erecta for alba, thus coining the illegitimate name \(E\). erecta, a nomenclatural synonym of Verbesina alba. Later (in 1848) Hasskarl published the combination Eclipta alba, based on Verbesina alba L., and indicated that \(E\). prostrata might or might not be sufficiently distinct to warrant recognition.

Fernald says "Since Verbesina alba L. and V. prostrata L. are considered conspecific and are of even date, the first of them taken up must stand. This is E. prostrata (L.) L. (1771)". The pertinent statement in Article 56 of the Rules is as follows: "If the
names or epithets are of the same date, the author who unites the groups has the right of choosing one of them. The author who first adopts one of them, definitely treating another as a synonym or referring it to a subordinate group, must be followed." Note that the two species were not combined by Linnaeus in the Mantissa. The fact that prostrata was the first legitimate epithet to be used in Eclipta has no bearing on the matter; the Kew Rule has been repudiated by the International Code. The two epithets, alba and prostrata, are still of the same date; therefore the first author to unite them definitely under one name or the other must be followed. Hasskarl's treatment, in which he indicated that \(E\). prostrata might or might not be distinct from \(E\). alba, is not sufficiently definite to fulfill the requirement of Article 56 in setting the precedent. The first definite use of one name to cover both species, so far as I am aware, is that of Miquel, in the Fl. Ind. Bat. 2: 65. 1856 \({ }^{1}\), where E. alba is used and E. prostrata relegated to varietal status. This usage, with \(E\). prostrata as a variety or synonym of \(E\). alba, was adopted successively in Oliver's Flora of Tropical Africa, Hooker's Flora of British India, Martius' Flora Brasiliensis, and Gray's Synoptical Flora of North America, and is in general use today. Unless and until it can be shown that, prior to 1856, some author definitely united \(E\). prostrata and \(E\). alba, accepting the former epithet and relegating the latter to intraspecific status or synonymy, the name \(E\). alba must stand as the proper one.

Helianthus atrorubens L. var. atrorubens, nom. nov. H. atrorubens L. Sp. Pl. 906. 1753, sens. strict.

Helianthus occidentalis Riddell var. occidentalis, nom. nov. H. occidentalis Riddell, Suppl. Cat. Ohio Pl. 13. 1836, sens. strict.

Helianthus tuberosus L. var. tuberosus, nom. nov. \(H\). tuberosus L. Sp. Pl. 905, 1753, sens. strict.

Parthenium integrifolium L. var. integrifolium, nom. nov. \(P\). integrifolium L. Sp. Pl. 988, 1753, sens. strict.

Parthenium integrifolium L. var. auriculatum (Britton) Cornelius in herb., comb. nov. P. auriculatum Britton, Ill. Fl. 3: 521.1898.

Specimens in the herbarium of the New York Botanical Garden bear Miss Cornelius' label with the heretofore unpub-

\footnotetext{
\({ }^{1}\) I have had the assistance of Dr. M. L. Fernald and Mr. C. A. Weatherby in arriving at this conclusion.
}
lished combination given above. Since her monograph of the genus Parthenium was completed more than 10 years ago, it seems unlikely that publication is now contemplated.

Polymnia Uvedalia L. var. floridana Blake (Rhodora 19: 48. 1917) and var. densipilis Blake (loc. cit.), both differing from var. genuina Blake in having the peduncles spreading-hairy, with few or obscure glands, are now known to be confluent in range, and are distinguished only by the most tenuous of characters. It seems proper to treat them both under the name \(P\). Uvedalia L. var. densipilis Blake.

A considerable number of specific and varietal names has been proposed for the Rudbeckias in our area having the leaves entire or merely toothed, the receptacular bracts glabrous or ciliate, the style-appendages short, and the pappus evident. Among these names are \(R\). fulgida, R. spathulata, R. speciosa, \(R\). Sullivantii, \(R\). palustris, \(R\). missouriensis, R. umbrosa, and R. Deamii. While plants of this group show a great deal of variation in size and shape of the leaves, amount and orientation of pubescence, and length of rays, the variation seems to be essentially continuous. The oldest name, R. fulgida Ait., must therefore stand for the entire group. Four varieties, showing considerable intergradation, may be recognized in our range.

Rudbeckia fulgida Ait. var. Sullivantii (Boynton \& Beadle), comb. nov. R. Sullivantii Boynton \& Beadle, Bilt. Bot. Stud. 1: 15. 1901. R. speciosa var. Sullivantii Robinson, Rhodora 10: 68. 1908. R. speciosa Wenderoth, Ind. Sem. Hort. Marb. 1828. Rays mostly \(2.5-4 \mathrm{~cm}\). long; leaves usually sharply toothed, commonly but not always relatively broad and only sparsely or moderately pubescent; involucral bracts mostly glabrous or strigose. Mostly in moist places; Mich. to Mo. and W. Va., and perhaps southward.

Rudbeckia fulgida Ait. var. umbrosa (Boynton \& Beadle), comb. nov. R. umbrosa Boynton \& Beadle, Bilt. Bot. Stud. 1: 16. 1901. Rays mostly \(1-2.5 \mathrm{~cm}\). long; leaves not very sharply toothed, the cauline ones mostly ovate or broader and abruptly contracted to the wingless or narrowly winged petioles; herbage mostly only sparsely hairy; involucre mostly glabrous or strigose. Moist woodlands; Ky. to Tenn. and Ga.

Rudbeckia fulgida Ait. var. fulgida, nom. nov. R. fulgida Ait. Hort. Kew. 3: 251. 1789, sens. strict. Rays mostly 1-2.5 cm . long, leaves mostly denticulate or subentire, the cauline mostly narrower than ovate and sessile or merely narrowed to
winged petioles or petioliform bases, nearly always at least some of them over 2 cm . wide; herbage usually only sparsely or moderately pubescent; involucral bracts mostly glabrous or strigose. Mostly in woodlands, but sometimes in drier or boggy places; Pa. to Ohio, Ind., Mo., and southward.

Rudbeckia fulgida Ait. var. missouriensis (Engelm.), comb. nov. R. missouriensis Engelm. ex Boynton \& Beadle, Bilt. Bot. Stud. 1: 17. 1901. Rays mostly \(1-2.5 \mathrm{~cm}\). long; leaves denticulate or subentire, narrow, even the basal ones rarely over 2 cm . wide; involucral bracts mostly spreading-hirsute; herbage densely spreading-hirsute. Mostly in dry open places; Mo. to Tex.

Rudbeckia laciniata L. var. laciniata, nom. nov. \(R\). laciniata L. Sp. Pl. 906. 1753, sens. strict.

Rudbeckia triloba L. var. triloba, nom. nov. \(R\). triloba L. Sp. Pl. 907. 1753, sens. strict.

Rudbeckia alismaefolia T. \& G. apparently differs from \(R\). grandiflora Gmel. only in being less pubescent and in having usually more obtuse leaves. The two are habitally very much alike, and intermediates may be found. The necessary combinations follow.

Rudbeckia grandiflora Gmel. var. grandiflora, nom. nov. R. grandiflora Gmel. ex DC. Prodr. 5: 556. 1836, sens. strict. Rudbeckia grandiflora Gmel. var. alismaefolia (T. \& G.), comb. nov. R. alismaefolia T. \& G. Fl. N. Am. 2: 310. 1841.

Silphium integrifolium Michx. var. integrifolium, nom. nov. S. integrifolium Michx. Fl. Bor. Am. 2: 146. 1803, sens. strict.

SilphiUm trifoliatum L. var. trifoliatum, nom. nov. \(S\). trifoliatum L. Sp. Pl. 920. 1753, sens. strict.

The genus Verbesina of Linnaeus included plants now referred to several distinct genera, and there has been some question to which of these the name should be applied. According to the list of proposed type species of Linnaean genera, as printed in the currently available edition of the International Rules, \(V\). alata should be accepted as the type. This is in accordance with the treatments of Bentham, Hoffman, and Gray, and may well be adhered to. In the Genera Plantarum, Bentham separated Actinomeris Nutt., with 9 species, from Verbesina on the basis of its neutral rather than pistillate rays, noting that in habit and other features the two groups were very similar. It is now well known that several species of Verbesina may either lack or possess the style, however. Hoffman, and most American botanists,
have maintained Actinomeris (or one of its synonyms, such as Ridan) for two species with squarrosely spreading achenes and relatively few and soon deflexed involucral bracts. The type species of Verbesina, however, frequently has distinctly squarrosespreading achenes, and the difference in the involucres is neither very great nor sharply defined. In view of the general habital similarity of the groups, their admittedly close relationship, and the absence of any well-marked differentiating character, it seems pointless to maintain the separation. Actinomeris Nutt. should be considered an integral part of Verbesina L. No new combinations are required. It may be noted that the combination V. alternifolia (L.) Britt., which appeared as a nomen nudum in Bull. Torrey Bot. Club 20: 485. 1893, was validated by Mohr in Contr. U. S. Nat. Herb. 6: 804. 1901.

The determination of species of Xanthium has become a formidable task, undertaken by many botanists only when it becomes unavoidable, and then with serious misgivings. More than 20 species are reputed to occur in North America. I am convinced that the only proper way out of the difficulty is that suggested by Wiegand in the Flora of the Cayuga Lake Basin. ("Several years ago I undertook a revision of the American Xanthiums, making use of the material in the Gray Herbarium. After a prolonged but unsuccessful effort to prepare a satisfactory treatment, the problem was laid aside. I am now greatly in doubt as to the existence of more than one real species in the group represented by \(X\). chinense Mill., X. pennsylvanicum Wallr., X. italicum Mor., and other related forms. The foliage in these forms is practically identical, and the only differences of any moment are in the burs, which are indeed highly variable. Extreme forms of burs, however, are often found in the same colony, as though sporadically produced. A large suite of specimens is almost sure to show a nearly or quite unbroken series through the various forms. In every attempt to segregate the burs into species, so many transitional specimens have been found as to do unwarranted violence to any species concept. It is probably wise to treat all North American Xanthiums as one species except \(X\). spinosum L. and possibly \(X\). strumarium L . and \(X\). echinatum Murr. \(X\). strumarium, however, is scarcely distinct, and with more study may also be included. X. echinatum may be a real species, as it has a distinct coastal range, and seems
to behave as though genetically distinct . . .") I am completely in agreement with Wiegand's observations, except that \(X\). strumarium sens. strict. seems no more than varietally distinct from our plants, and that I am quite unable to see any sort of taxonomic unit in X. echinatum. Our plants, as I understand them, may be treated as follows:

Xanthium strumarium L. sens. strict. Fruit straightbeaked, small, less than 2 cm . long, yellow-green, puberulent but not hirsute or markedly glandular. Common in Europe; also in Calif. and reputedly in Mass.

Xanthium strumarium L. var. glabratum (DC.), comb. nov. X. macrocarpum var. glabratum DC. Prodr. 5: 523. 1836. Fruits with more or less incurved beaks, usually small, seldom over 2 cm . long, usually brownish or yellowish-brown, atomifer-ous-glandular or slightly glandular-puberulent to subglabrous between the prickles, not hirsute. Sometimes closely resembling the preceding, sometimes passing into the following. Occurs throughout our range, but not so sommon as the next.

Xanthium atrumarium L. var. canadense (Mill.) T. \& G. Fl. N. Am. 2: 294. 1841. X. canadense Mill. Gard. Dict. ed. 8. 1768. Fruits with evidently incurved beaks, usually large, commonly \(2-3.5 \mathrm{~cm}\). long, occasionally larger or smaller, generally brown or yellowish-brown, the lower part of the prickles conspicuously spreading-hirsute with viscid hairs, the surface between the prickles often stipitate-glandular. Occurs throughout our range.

Although both species of Xanthium have now become cosmopolitan weeds, and \(X\). strumarium was well established in Europe four hundred years ago (according to Hegi), it seems probable that they originated in the new world. Except for a few species of Ambrosia, the subtribe Ambrosinae is otherwise exclusively American.

I am fully in agreement with Asa Gray that the plant treated in recent manuals as Actinea herbacea Greene is no more than varietally distinct from A. acaulis (Pursh) Spreng., but the proper varietal combination under Actinea has not yet been made.

Actinea acaulis (Pursh) Spreng. var. glabra (A. Gray), comb. nov. Actinella scaposa var. glabra A. Gray, Man. ed. 5. 263. 1867. Actinella acaulis var. glabra A. Gray, Syn. Fl. 2 (1): 345. 1884.

Helenium autumnale L. var. autumnale, nom. nov. \(H\). autumnale L. Sp. Pl. 886. 1753, sens. strict.
The New York Botanical Garden

Campanula rapunculoides in Indiana.-The 7th Edition of "Gray's Manual" gives the range of this plant as far west as Ohio. Deam's "Flora of Indiana" records it from Steuben Co., which has Ohio as its eastern boundary, and also from Wells Co. in the eastern part of the state. Deam also records the essentially glabrous variety ucranica from Lake Co., remote from the range of the species.

June 30, 1942, I found a small patch of what seems to me the species itself at Hobart, Lake Co., in waste ground along a road. The plants are much roughened, especially on leaves and calyx lobes, with small hairs, in many cases reduced to little more than papillae. June 21, 1945, I again visited this colony, and found it much increased, and the plants larger, due to the copious rainfall during the spring months. Pubescence, however, seemed to be about the same. The flowers are a clear lilac, although they turn blue in drying.

Specimens have been sent to the Gray Herbarium.-Edwin D. Hull, Gary, Indiana.
"Ia." sometimes stands for Indiana.-In Rhodora, xlvii. 175 (1945) I referred to a sheet of specimens of typical Scutellaria nervosa as bearing the annotation "Knobs. Ia. Mohr lg. 1854" and suggested the possibility of some error in the data, since no such plant is known from Iowa, but is what "one expects from the Knobs of Kentucky and Tennessee". Dr. Roland M. "Harper, in a letter written June 23, points out that in this case "Ia." unquestionably stands for Indiana. In his very detailed Biographical Sketch of Dr. Charles Mohr, Bull. Torr. Bot. Cl. xxviii. 599-604 (1901), Dr. Eugene A. Smith stated that Mohr arrived at Cincinnati in December, 1850, and "The next two years were spent upon a farm in Indiana . . Finally he went to Louisville" until the climate forced him to go farther south. As Dr. Harper says, "Clarke Co., Indiana has plenty of knobs"; he further calls my attention to the publication of Gerardia Skinneriana Wood, Class-Bk., ed, 2, 408 (1847), a species described from "Barrens, Ia.!", and named for an Indiana botanist: "I detected this delicate species in July, 1846, in Greene Co., Ia., on land belonging to Dr. A. G. Skinner." Deam, Fl. Ind. 853, speaks of "the type locality in Greene County"; while Pennell, Scroph. E. Temp. N. Am. 468, cites the type as marked by Wood as from "Indiana, legit ipse". The case is clear, then, that "Ia." once stood for Indiana, now
generally abbreviated "Ind.", while "Ia." now stands for "Iowa". One is reminded of the policy of the old lady in the autobiographical story of early Indiana, popular during my boyhood, The Hoosier-Schoolmaster: "'Git a plenty while you're a gittin' says I". Turning to Lippincott's Gazetteer of 1856 with the hope of finding Indiana abbreviated "Ia.", my eye is caught by "INDIANAPOLIS, a post-village of N. E. of Oskaloosa"!-M. L. Fernald.

Betula papyrifera, var. commutata in western Maine.While botanizing along the Sunday River beyond Ketchum in Riley, Oxford County, Maine, on August 16, 1945, I found a birch which, because of the red-brown color of the bark, seemed unusual. When the revision of the white birches by Prof. Fernald appeared in the October Rhodora, I immediately tried to place the birch. The range, "woodlands near the coast", did not seem to fit western Oxford County but Prof. Fernald has kindly confirmed the specimen as Betula papyrifera Marsh., var. commutata (Regel) Fernald. This seems worth recording as it extends the range of this variety much farther inland.-R. C. Bean, Wakefield, Mass.

Volume 47, no. 563, including pages 933-992 and plates 986-989, was issued 15 November, 1945.

\section*{ERRATA}

No. 553, Contents, lines 6 and 7; omit.
Page 3, line 34 ; for have read has.
Plate 841, in caption; for flowing read flowering.
Page 15, line 3; for athens read aiken.
Page 15, line 46; for Stephenson read Stevenson.
Page 27, last line; for W.F. A. read W.E.A.
Page 36, line 17 ; for charleston read charlton.
Page 65, line 4; for Grant read Boone.
Page 82, line 42 ; for \(\beta\). dentatus read \(\beta\). * dentatus.
Page 101, line 31; for densipila read densipilis.
Page 135, lines 28 and 43; for Reckinger read Rechinger.
Page 136, lines 6 and 39; for Reckinger read Rechinger.
Page 136, line 26; for stated read started.
Page 139, line 2; for vii. read xii.
Page 149, line 8; for 275 read 276.
Page 149, line 11; for (Raf.) Chapm. read Chapm.
Page 162, last line; for densipila read densipilis.
Page 196, line 15 ; for densipila read densipilis.
Page 253, line 24; for Kokoma read Kokomo.
Page 259, page-heading; for Hardy,-Filago arvensis in North
America read Fernald,-Injury to Herbarium-Specimens.
No. 562, Contents, line 9; for Hallichiana read Wallichianus.
Page 332, line 13, for Wallichiana read Wallichianus.

\section*{INDEX TO VOLUME 47}

\section*{New scientific names are printed in full-face type}

Abies concolor, 186; Douglasii, 316; Menziesii, 317; Mertensiana, 317
Acalypha, 207; caroliniana, 217; gracilens, 207, var. fraseri, 207; ostryaefolia, 217
Acanthaceae, 100, 261, 262; An
* untenable Generic Name in, 261; tribe Ruellieae, 262
Acer, 144; barbatum, 156-160, The identity of Michaux's, 156, f. floridanum, 160, var. floridanum, 160, var. Longii, 160, f. platylobum, 160; dasycarpum, 159; eriocarpum, 157; floridanum, \(96,156-160\), var. Longii, 96,160 , f. platylobum, 160 ; floridanum, f . villipes, 160 , var. villipes, 160 ; grandidentatum, 156, 157; leucoderme, 157; macrophyllum, 317; montanum, 157; Negundo, 157; nigrum, 156-158; pensylvanicum, 157, 217; platanoides, 158; rubrum, 157-159, var. Drummondii, 217 , var. tridens, 217 , var. trilobum, 217; saccharinum, 157-159, var. floridanum, 160; saccharophorum, 157, 158; saccharum, 156-159, var. Schneckii, 157; spicatum, 159; tomentosum, 157
Achillea millefolium, 91
Acorus, 385
Acotyledons, 384
Acrostichum alpinum, 146; hyperboreum, 146; lanuginosum, 122
Actaea racemosa, 374
Actinea, 403; acaulis, 403, var. glabra, 403; herbacea, 403
Actinella acaulis, var. glabra, 403; scaposa, var. glabra, 403
Actinomeris, 401, 402
Adventive in Quebec, Chrysanthemum uliginosum, 389
Aegilops, 280
Aesculus, 97
Agaricus, 386
Agastache, 176; nepetoides, 176
Agave, 290
Aggregatae, 384, 386
Agropyron pauciflorum, 208
Agrostis antecedens, 210; canina, 43; clandestina, 198; hyemalis, 210, 211; perennans, 43, var. aestivalis, f. atherophora, 43;
perennans, f. chaetophora, 43; racemosa, 209; scabra, 210, 211
Aira nitida, 198; pallens, 198
Alaskan Mountain-Ash, Sorbus Andersoni, a New Name for an, 220
Alder, 103; American, 338; Black, 337; Common, 341; Glaucous, 350; European White, 335; Gray, 337; Sea-side, 341; Silver-leaved, 340; Speckled, 349, 350; Swamp, 103, 333, 334, 337; White, 337, 349
Alder Tree, Notch'd-leaved, 342
Alethris, 282
Aletris farinosa, 374
Algae, 386; marine, 64; of the Monterey Peninsula (Review), Marine, 63
Alisma Plantago, 343, var. Americana, 343; subulata, 343
Alnus acuminata, 339; americana, 350 ; autumnalis, 346 ; crispa, 350 , 357, f. stragula, 144; glauca, 336, \(337,341,343,344,349-351\), stipulis lanceolatis, 343; glutinosa, 214, 336, var. autumnalis, 346, lusus rugosa, 340, 8. serrulata, 355 , lusus a. genuina, 355 , lusus b . obtusifolia, 355 , lusus c . rugosa, 346; hybrida, 340, 346; incana, 333-337, 340, 344, 346, 347, 349-351, \(360, \quad\) pl. 976 , Eastern North American Representatives of, \(333-361\), pls. 976989 , var. americana, \(347, \beta\). americana, \(350,352,354\), var. glauca, \(347,350,352\), \(\beta\). glauca, 352 ; var. glauca, f. tomophylla, 353, var. hypochlora, 339, 340, 346, 348, 358, var. tomophylla, 353, \(\alpha\) vulgaris, 350 ; latifolia, 346 ; macrophylla, 346; maritima, 337, 341; noveboracensis, 344, 348, 358, 361 ; rubra, 341,355 ; rugosa, \(333,337,339,340,342-345,347\), \(349,350,355,358,360\), var. americana, \(345,350,353,354\), 361 , pls. 980,981 , f. hypomalaca, \(345,353,361\), pl. 982, f. tomophylla, \(345,353,361\), pl. 982, var. obtusifolia, 355, var. serrulata, 355, var. typica, 345, \(354,360,361\), pls. \(977-979\), f.

Emersoniana, 345, 347, 349, 350, 361, pl. 979; serrulata, 333, \(336,337,340-346,349,350,354\), 355,360 , var. genuina, \(357-359\) \(\alpha\). genuina, 355, \(\beta\). macrophylla, 346 , var. obtusifolia, 357,361 , б obtusifolia, 355 , pumila, 355 , \(\beta\). rugosa, 346, 348, var. subelliptica, 355, 358-361, pl. 986, f. emarginata, 355, 359, 361, pl. 987, f. mollescens, \(355,359,361\), pl. 988, f. nanella, 355, 360, 361, pl. 989, var. vulgaris, 354,355 , \(358,360,361\), pls. 983,984 , f. noveboracensis, \(354,358,361\), pl. 985; undulata, 350 ; viridis, var. repens, 144
Aloe, 290
Alstroemeria, 385
Amaranthus albus, 139, 140, var. pubescens, 140; blitoides, 139, 140; Blitum, 139; floribus lateralibus congestis, etc., 139; graecizans, 139, 140, pl. 887, var. pubescens, 140; graecus, 140 ; pubescens, 140
Amaryllis, 385
Ambrosia, 403, trifida, 396, var. trifida, 396
Amelanchier, 144
Amentaceae, 384, 386
American Alder, 338
Ammophila breviligulata, 334
Amorpha croceolanata, 215; fruticosa, \(99,101,156\), var. croceolanata, 215, var. emarginata, 215 var. tennesseensis, 215; nitens, 215
Andromeda, 170, 290; axillaris, 169171, \(\beta\)., 169, 171, var. longifolia, 170; calyculata, \(\beta\). latifolia, 390, 391; nana, 391; Catesbaei, 170, 171; spinulosa, 170, 171
Andropogon, 108, 213; Gerardi, 213; furcatus, 213
Anemone quinquefolia, var. interior, 214
Angiosperm, 207
Animadversions on Artemisia, Transfers in and, 247-256
Anonymos caroliniensis, 31, 71, 77, 85
Antennaria, 182, of the "Manual Range", Key to, 221-235, 239 247, pls. 912-958; albicans, 228, 232, 244, pl. 918; ambigens, 239; appendiculata, 224, 229, 232, 245, pl. 921 ; aprica, \(230,234,246\), pls. 938, 939; arnoglossa, 183, 240 ,
var. ambigens, 183, 239; Bayardi, 227, 232; Brainerdii, 231, 240, 247 , pls. 952,953 ; brunnescens, 227, 232; calophylla, 240; campestris, 229, 233, 245, pl. 928; cana, 227, 232; canadensis, 184, \(229,232,233,244,245\), pls. 922 , 923, var. Randii, 184, 232, var. spathulata, 232; carpatica, 231, \(\gamma\). pulcherrima, 231; columnaris, 227, 231, 243; confusa, 228, 232; decipiens, 240 ; eucosma, 226, 231, 244, pl. 912; fallax, 183, 231, 233, \(239,244,246\), pls. 945,946 , var. calophylla, 240, 246, pls. 947, 948; Farwellii, 230, 239; Foggii, 227, 232, 243; gaspensis, \(224,226,229\),' 233; grandis, 234; monocephala, 241; munda, 231, 233, 239, 244; neglecta, 183, 184, 222, 224-226, \(229,233,241,243,245\), pls. \(924-\) 926, var. argillicola, 184, 234, var. attenuata, 184, 234, var. gaspensis, 184, 233, var. neglecta, 184, 233, var. Randii, 184, 232; neglecta, f. simplex, 233, 241, 245, pl. 927, var. subcorymbosa, 235; neodioica, 184, 230, 233,234 , var. argillicola, 234 , var. attenuata, 184, 234, 245, pl. 933, var. chlorophylla, 234,245 , pl. 935 , var. gaspensis, 184,233 , var. grandis, 234,246, pl. 936 , var. interjecta, 234, 245, pl. 934, var. petaloidea, 234, var. rupicola, 233, var. typica, 234, 245, pls. 931, 932; occidentalis, 239; Parlinii, \(183,231,233,240,244,246\), pls. 949,950 , var. ambigens, 239 , var. arnoglossa, 183, 240, 247, pl. 951; Peasei, 224, 228, 232, 244, pl. 915; petaloidea, 230, 233-235, 244,246, pls. 940,941 , var. modesta, 235 , var. scariosa, 235, 246, pl. 942, var. subcorymbosa, 235, 246, pls. 943 , 944 ; plantaginea, 240; plantaginifolia, 182, 183, 224, 231, 233, 240, 241, 243, 247 , pls. 954,955 , var. ambigens, 183, 239, var. arnoglossa, 183, 240, \(\beta\). monocephala, 241, 247, var. petiolata, 240, 247, pl' 956, var. plantaginifolia, 183; pulcherrima, 226, 231; rupicola, 230, 233, 245, pls. 929, 930; simplex, 233; solitaria, 183, 224, 231, 241, 243, 247, pls. 957, 958; spathulata, 228, 232, 244, pl. 920, var. continentis, 232; straminea,

228, 232, 244, pl. 914; subviscosa, 224-226, 228, 232, 243, 244, pls. 916, 917 ; vexillifera, 224, 227 , \(232,243,244\), pl. 913 ; virginica, 184, 222, 230, 234, 242, 243, 246, pl. 937, var. argillicola, 184, 234, 246, pl. 937; Wiegandii, 228, 232, 244, pl. 919
Antennarias, 183, 184
Anulocaulis, 329 , from southwestern Texas and adjacent New Mexico, New Species of, 329; gypsogenus, 330; leiosolenus, 330, 331, var. lasianthus, 330, var. typicus, 330
Apios americana, var. turrigera, 216
Apocynum, 369; maius Syriacum, 369; minus Canadense, 369; Syriaci, 369
Apterocaryon Michauxii, 326
Aquatic and Marsh Vegetation (Review), Handy Guide to, 395
Arabis Holboellii, 225; integrifolia, 203
Arbor virginiana, citreae, etc., 141; virginiana, pishaminis, 141
Arbor-vitae, 219
Archichlamydeae, 209
Arctostaphylos, 177; Uva-ursi, 177
Arenaria marcescens, 320
Argemone intermedia, 214
Argentinian Species, Perezia aletes an, 47
Arisaema triphyllum, 363
Arisarum triphyllum altissimum, etc., 363
Aristolochia Serpentaria, 374
Artemisia, Transfers in and Animadversions on, 247-256; albula, 255,256 ; atomifera, 254; Brittonii, 248; Carruthii, 255; cuneata, 248; discolor, 256; Douglasiana, 250, 251; dracunculina, 247; dracunculoides, 247, 248, var. dracunculina, 247 , var. glauca, 248; Dracunculus, subsp. dracunculina, 247; glauca, 247, 248, var. dracunculina, 247 ; gnaphalodes, 251, 253; Herriottii, 250252; indica, var. mexicana, 248; kansana, 255; longifolia, 251-253; ludoviciana, 251, 252,256 , var. americana, 248, 252, 254, var. Brittonii, 248, 252, 254, var. cuneata, 248, var. gnaphalodes, \(252,253,256\), var. latifolia, 252, 253, var. mexicana, 248, 252, 254, 255, var. pabularis, 248, 252-254; mexicana, 248; Michau-
xiana, 256; pabularis, 248; Purshiana, var. latifolia, 253; rhizomata, var. pabularis, 248; Silver-king, 255; serrata, 250252; Tilesif, 254; vulgaris, 248251, var. americana, 248, 254, 255 , var. glabra, 250 , subsp. gnaphalodes, 251, 253, 255; vulgaris gnaphalodes, 254, subsp. heterophylla, 250, var. latiloba, 250, subsp. ludoviciana, 251, 252 , subsp. mexicana, 248 , subsp. Tilesii, 254, subsp. Wrightii, 255
Arum caulescens foliis ternatis, 363
Asarum canadense, 378; europaeum, 378; Lewisii, 93, 102, 133.
Asbestos-bush, 263
Asclepias incarnata, 369; Meadii, 205, syrica, 369
Asparagus, 207
Asperifoliae, 386
Asperulae, 385
Aspidium spinulosum, var. dilatatum, f. anadenium, 260
Aster, 291; lucidulus, 46
Astragalus tennesseensis, 216
Australia, Distichlis spicata in, 148
Author Citation for Eriogonum hemipterum, 92

Balsamiflua ilicifolia, 362
Baptisia, 94; Gibbesii, 94; tinctoria, \(94,156,215\), var. crebra, 94,215
Barleria, 386
Barnyard grass, 212
Bay, Red, 149
Bean, R. C., Betula papyrifera, var. commutata in western Maine, 405; Gentiana quinquefolia in Maine, 143
Beetle, A. A., Distichlis spicata in Australia, 148
Belamcanda, 207
Benzoin, 140
Bergia texana, 217
Betula, 338, 386, in Eastern North America, Notes on, 303-329, pls. 963-975; sect. Apterocaryon, 327; ser. Albae, 303, 325; ser. Costatae, 326; ser. Humiles, 325, 326; alba, 304, 305, 307-309, 311, 324, var. carpatica, 323,324 , var. cordifolia, 320, \(\beta\). dalecarlica, 305, var. elobata, 319, var. glutinosa, 318, var. minor, 306, 324; alba, f. occidentalis, 312, subsp. occidentalis, var. \(\beta\). commutata, 316, \(\beta\). commutata, \(312,313,316\), var. \(\alpha\). typica, 316, s. papyrifera, 311,
subsp. papyrifera, \(\beta\). cordifolia, 320 , var. humilis, 322, 323, 328, \(\beta\). humilis, 306, var. \(\gamma\). humilis, 321, \(\beta\). pendula, 305, 309, var. populifolia, 304, subsp. pubescens, 309, var. tortuosa, 307, 328, pl. 963, subsp. verrucosa, 322, a var. resinifera, 322 , var. resinifera, 322,8 . resinifera, 322 , var. vulgaris, 309, \(\alpha\). vulgaris, 308 ; alaskana, \(321,322,328,329\); Alnus incana, 338, (rugosa), 338, 339, 345; borealis, 304, 308, 323\(325,328,329\), pl. 973 ; caerulea, var. Blanchardi, 305, var. grandis, 305 ; \(\times\) caerulea, 305 ; caeruleagrandis, 304, 305; carpatica, 323 ; cordifolia, 320,321 ; crispa, 343 ; dahurica, var. americana, 306, 307, 3. americana, 306; Ermani, 321; excelsa, 324 ; fontinalis, 313317, 321, 325, var. Piperi, 317; glandulosa, 224, 306-308, 324, 328; laciniata, 305; lenta, 326, 329, pl. 974 , var. uber, 325, 326 ; Lyalliana, 312; Michauxii, 326, 327; microphylla, 306-308, 317, 323, 325, 328, pl. 963; minor, \(304,306-308,321,325,328\), pl. 963 ; nana, \(326-329,378\), pl. 975 , var. Michauxii, 326, e. Michauxii, 326; neoalaskana, 321 ; nigra, 314, 319; occidentalis, 312-317, 321, 322, 325, var. fecunda, 317, 328, pl. 966; odorata, var. tortuosa, 306, 307; papyracea, \(311,313,316,322\), cordifolia, 320 , a cordifolia, 320, Lyalliana, 312, var. minor, 306,321 , var. occidentalis, 312; papyrifera, 304, 308, 311-314, 316, 319-321, 328, pl. 964 , var. communis, f. cordifolia, 320, var. commutata, 311, 312, 313, 315-317, 328, 405, pl. 965 , in western Maine, 405, var. cordifolia, 306, 308, 312, 319,320 , 328, pl. 970 ; papyrifera, f. coriacea, 311, 312, var. elobata, 312, \(319,320,328\), pl. 969, var. humilis, 321, 322, 328, pls. 971, 972, var. Lyalliana, 312, 317, var. macrostachya, 308, 311, 318 320,382 , pl. 968 , f. longipes, 311, 319, 328, pl. 968, var. minor, 306, 324, var. neoalaskana, 321, var. occidentalis, 312, var. pensilis, 311, 318, 328, pl. 967, var. subcordata, 320 ; pendula, 304, 305, 309, 321, f. dalecarlica,

305; Piperi, 317; populifolia, 165, 303-305, f. incisifolia, 304, var. laciniata, 304, 305; pubescens, 305, 308-311; pumila, 307, 324, 325, 327, 343, \(\gamma\). borealis, 323, var. renifolia, 327; rugosa, 339, 340, 342, 345; serrulata, 341, 342, 355; terrae-novae, 326, 327, 329, pl. 975; tomentosa, 308-311; tortuosa, 307, pl. 963; uber, 325, 326, 329, pl. 974 ; verrucosa, 305
Betula-Alnus glauca, 340, 343; maritima, 341; rubra, 341, 355
(Betulaceae), Some North American Corylaceae, I. Notes on Betula in Eastern North America, 303329, pls. 963-975; II. Eastern North American Representatives of Alnus incana, 333-361, pls. 976-989
Bibliography of Canadian Botany (Review), A, 236
Bicornes, 385
Bidens, 290; vulgata, 396, var. vulgata, 396
Bingham's Flora of Oakland County, Michigan (Review), 260
Birch, 314, 405; Dwarf, 303; White, 303, 405
Birrell, William, Thermopsis mollis in eastern Massachusetts, 91
Black Alder, 337
Blackberry, 95,98
Blechum, 11; Tweedyi, 11
Boehmeria, 100
Boerhaavia leiosolena, 329, 330
Boltonia asteroides, 389; caroliniana, 97, 196
Borbonia fructu oblongo, etc., 150
Botanical Specialties of the Seward Forest and adjacent Areas of Southeastern Virginia, 93-142, 149-182, 191-204, pls. 876-911
Botany (Review), A Bibliography of Canadian, 236
Bouteloua breviseta, 331, curtipendula, 208
Brachiaria, 108
Brambles, 91 .
Brauneria laevigata, 397; paradoxa, 398
Bromus ciliatus, var. intonsus, 42; japonicus, var. porrectus, 42
Broom, Scotch, 335
Bryoniae similis floridana, 301
Bulbostylis capillaris, 116
Bupleurum angulosum, 378
Butomus, 385

Calamagrostis Porteri, 42; purpurascens, 225
Calamaria, 385
Calamariae, 385
Calla aquatilis odore, etc., 363
Callirhoe alcaeoides, 217
Calophanes humistrata, 82
Calotropis procera, 369
Calycanthaceae, 385
Calycanthemae, 385
Camellia sinensis, 143
Campanaceae, 384, 385
Campanula, 392; from Minnesota, New Form of, 391; lactescens, 384; rapunculoides, in Indiana, 404, var. ucranica, 404 ; rotundifolia, var. intercedens, f. cleistocodona, 391
Canada, Utricularia inflata var. minor in, 235
Canadian Botany (Review), A Bibliography of, 236
Canna angustifolia, 293; glauca, 293; Indica, 293
Capitatae, 386
Capparis, 385
Cardiospermum, 217; Halicacabum, 209, 217
Carduus, 290; acanthoides, 46
Carex, 96, 206, 209, 260, 385; aenea, 44; argyrantha, 44; concinna, 225; cristatella, 38, in New Hampshire, 38; festucacea, 43; flaccosperma, 162; foenea, 44; Geyeri, 44; hirsutella, 96, 117, 127; hystricina, 44; Meadii, 205; nardina, 224; oxylepis, 97, 162; prairea, 44; projecta, 40, Vegetative Reproduction in Carex tribuloides and, 39; rariflora, 224; Richii, 43; Schweinitzii, 44; Sprengelii, 44, 272; straminea, 43; tribuloides, 39,40 , and C. projecta, Vegetative Reproduction in, 39
Carices, 38, 39
Carya alba, 47; arkansana, 214; Buckleyi, var. arkansana, 214; glabra, 46, var. megacarpa, 214; megacarpa, 214; ovalis, var. hirsuta, 46; ovata, 47; pallida, 47; Pecan, 209; tomentosa, 47
Caryophylleae, 385
Cassia bicapsularis, 300; Candolleana, 300 ; fasciculata, var. robusta, 142
Cassida foliis Betonicae, etc., 201; mariana hyssopifolia, 202

Castanea dentata, 97, 131; neglecta, 97, 131; pumila, 97, 131
Casuarina, 386
Ceanothus americanus, 217, var. Pitcheri, 217
Celtis ilicifolia, 362
Cenchrus, 385
Cephalanthus, 364; occidentalis, 191, var. pubescens, 191
Cerasi similis arbuscula mariana, etc., 301
Cerastium beeringianum, 225; brachypodum, 214
Cerasus Caroliniana, 301
Chamaedaphne calyculata, 390, var. angustifolia, 390, 391, var. latifolia, 390, 391, var. nana, 391
Chamaelirium luteum, 213
Chelidonium, 385
Chestnut, 287; Oak, 365
Chloris curtipendula, 208
Choke-Cherry, 301
Chrysanthemum, 389; Leucanthemum, var. pinnatifidum, 389 ; uliginosum, 389, adventive in Quebec, 389
Chrysogonum, 364
Chrysopogon, 108
Cineraria congesta, 257; palustris, 256
Circaea, 97, 101; canadensis, 97, 98 , 162, 163, pl. 896, var. virginiana, 161-163, pl. 896; intermedia, 97
Cirsium virginianum, 103, 197, f. revolutum, 103, 197
Cissampelos, 301; Pareira, 301
Citation for Eriogonum hemipterum, Author, 92
Cladium, 206
Claytonia, 364; caroliniana, 214; foliis linearibus, 274
Clethra, 177, 364; alnifolia, 177
Cnicus, 320
Coadunatae, 386
Coastal Plain, Some heretofore unnoticed Plants of the South Carolina, 142
Colchicum, 385
Coldenia hispidissima, 331
Columniferae, 384, 386
Commelina, 117; crispa, 213; diffusa, 213; erecta, var. angustifolia, 213, var. Deamiana, 213; hirtella, 117; Nashii, 213; nudiflora, 213; virginica, 117, 213
Common Alder, 341
Comparison of the Toxicity of

Notholaena sinuata and N. sinuata, var. cochisensis, 393
Compositae, 101, 182, 222, \(384-\) 386, subtribe Ambrosinae, 403; of the Northeastern United States. I. Inuleae, Notes on, 182; II Heliantheae and Helenieae, Notes on, 396
Coniferae, 384, 386
Contortae, 384, 385
Contributions from the Gray Herbarium of Harvard UniversityNo. CLIII, pp. 1-38, 47-63, 69 90, pls. 839-875; No. CLVI, pp. 93-142, 149-182, 191-204, pls. 876-911; No. CLVII, pp. 221235, 239-257, 265-271, pls. 912962; No. CLIX, pp. 303-329, 333-361, pls. 963-989
Convolvulus, 332, 384 ; sepium, 332 ; Wallichianus, 332, at Swarthmore, Pennsylvania, 332
Coral-tree, 381
Corallorrhiza Wisteriana, 209
Coreopsis, 396; angustifolia, 396; falcata, 396; gladiata, 396, var. gladiata, 396, 397, var. linifolia, 396, 397; lanceolata, 397, var. lanceolata, 397; linifolia, 396; longifolia, 396; major, 397, var. major, 397; oniscicarpa, 396, var. simulans, 396
Coronariae, 385
Cornus, 144; canadensis, 46; foemina, 101, 168; mas, 141; stricta, 101, 168
Corydales, 385
Corylaceae, 333; (Betulaceae), Some North American, I. Notes on Betula in Eastern North America, 303-329, pls. 963-975; II. Eastern North American Representatives of Alnus incana, 333-361, pls. 976-989
Corylus, 339
Corymbium, 288
Crataegus, 209; aestivalis, 151; flava, 151, 152; glandulosa, 152
(Critique), An Incomplete Flora of Illinois, 204
Crocus, 385
Cronquist, Arthur, Notes on Compositae of the Northeastern United States. I. Inuleae, 182; II. Heliantheae and Helenieae, 396
Croton capitatus, 209; texensis, 216
Cryphiacanthus acaulis, 10, 11; angustifolius, 8-12; Tweedianus, 9,10 ; barbadensis, 24,27

Cucurbitaceae, 386
Cunila mariana, 374
Cupressus, 386
Cycas, 386
Cymbopogon, 108
Cynoctonum sessilifolium, 95, 127
Cynosurus, 385
Cyperaceae, 206, 379, 380
Cyperi genus indianam, etc., 111, 113
Cyperus, 111-113; caespitosus, 113; densicaespitosus, 113; elongatus, 113; ferax, 113; filiculmis, 198; hystricinus, 111, 113; odoratus, 113, panicula sparsa, etc., 113; Plukenetii, 110-113, pl. 877; polystachyos, 113; pseudovegetus, 110, 113, 213; pubescens, 112; pumilus, 113; retrofractus, 111113, pl. 878; rigidulus, 113 ; robustus, 110,113 ; tenuifolius, 113; virens Michx., The Identity of, 109, pl. 876; virens, 109, 110, 112 , 113, 213, pl. 876
Cypripedium Calceolus, var. pubescens, 97, 131
Cyrilla racemiflora, var. subglobosa, 156

Daisy, 389; Ox-eye, 389
Dalibarda repens, 45
Dasiola, 106; Elliotea, 106, 107
Datura, 384, 385; Stramonium, 119
Dayton, William A., An untenable Generic Name in Acanthaceae, 261
Decodon verticillatus, var. laevigatus, 272
Deschampsia atropurpurea, 224
Descriptive Method of Linnaeus, On the, 273-302, 363-388, pls. 990, 991
Descurainia Sophia, 214
Desmodium, 101; lineatum, 101, 156; rotundifolium, 101
Devil's Paint-brush, 242
Dewberries, 153
Diadelphia, 275
Dianthera ovata, 209
Dianthus, 379; deltoides, 214
Dichromena, 291
Dicliptera, 100; brachiata, 100, 181
Dicranocarpus parviflorus, 331
Digitaria, 108
Diodia, 364
Dioscorea, 301; Batatas, 131; sativa, 274; villosa, 301
Dipsacus, 386
Dipteracanthus, 32; ciliosus, 32, 34,
\(36,38,50,52,74, \beta\). dentatus, \(82, \beta\). hybridus, \(71, \gamma\). parviflorus, 2, 86, var. parviflorus, 27, 31, 32, 75; Drummondii, 56, 57; hybridus, 81 ; micranthus, 17-19; Mitchillianus, \(71,72,86\); noctiflorus, \(49,50, \beta\). humilis, 51 ; spectabilis, 11; strepens, \(14,52,58,60,82\), var. calycinus, 14, \(\gamma\). Dillenii, 71, var. pedunculatus, 14, 17, var. strictus, 14, 17; strictus, 14
Dirce, 282
Disperma, 1, 261, 262; kilimandscharicum, 262; trachyphyllum, 261-263
Distichlis, 148; distichophylla, 148; spicata, 148, in Australia, 148, var. distichophylla, 148
Disynanthus, 240; plantagineus, 240
Dizygandra noctiflora, 49; tubiflora, 49
Dock, Water, 133
Dodartia, 288
Dog-fennel, 102
Dogwoods, 91
Dracontium foliis subrotundis; 363
Dryopteris cristata, 101, 106
Dumosse, 386
Duosperma, 262, 263; kilimandscharicum, 262; trachyphyllum, 263
Dwarf Birch, 303
Dyschoriste, 262; oblongifolia, 60, 63

Eastern American Luzula, Notes on, 265-271, pls. 961, 962 ; North American Representatives of Alnus incana, 333-361, pls. 976989; United States, Ruellia in the, 1-38, 47-63, 69-90, pls. 839-875
Echinacea, 398; atrorubens, 397, 398, var. atrorubens, 398, var. paradoxa, 398; laevigata, 397; paradoxa, 397, 398; purpurea, 397, var. laevigata, 397, var. purpurea, 397
Echinochloa, 108, 212; crusgalli, 212 ; microstachya, 212; muricata, 212, var. microstachya, 212, var. occidentalis, 212; occidentalis, 212 ; pungens, 212, var. microstachya, 212, var. occidentalis, 212
Echinodorus parvulus, 210; tenellus, 210
Echinops, 386
Eclipta, 398, 399; alba, 196, 398,

399; erecta, 196, 398; prostrata, 196, 398, 399
Eleocharis. 208; pauciflora, var. Fernaldii, 207; Wolfii, 205
Elephantopus carolinianus, f. vestitus, 100, 191
Elm, Red, 204; Slippery, 132, 204
Elodes petiolata, 217
Elymus striatus, 122
Ensatae, 385
Epilobium coloratum, 199
Equisetum, 384
Eragrostis, 108; caroliniana, 198; Damiensiana, 108; multicaulis, 108; pectinacea, 198, 199; peregrina, 108; pilosa, var. condensata, 108, var. Damiensiana, 108; poaeoides, 42; spectabilis, 264
Erianthus, 100; alopecuroides, 100, 109; brevibarbis, 209, 212
Erica, 290, 291; Gnaphalodes, 377; Plukenetii, 291; spumosa, 377
Erigeron, 291
Eriocaulon septangulare, 208
Eriogonum hemipterum, 92, Author Citation for, 92 ; hieracifolium, var. hemipterum, 92
Eriophorum cyperinum, 124; "spicis pendulis", 295
Erucastrum gallicum, 45
Eryngium, 104, 105, 384; Baldwini, 164-168, pl. 899; integrifolium, 166, 167; prostratum, 103, 104, \(163-168\), pls. 897, 898, var. disjunctum, 163, 164, 168, pls. 897, 898; virgatum, 167
Erythronium, 385
Eupatoria, 195
Eupatorium, 226; altissimum, 46; aromaticum, 193, 194, var. lacerum, 194; capillifolium, 102; cordigerum, 192, 193, pl. 908; dubium, 193, f. elutum, 195; fistulosum, 193; hyssopifolium, 103, 191; incarnatum, 209; lanceolatum, 192, pl. 910; maculatum, 193, f. Faxoni, 195; perfoliatum, var. cuneatum, 195; pubescens, 192-194, pl. 911; purpureum, 193; resinosum, 195, var. kentuckiense, 195; rotundifolium, 192, 193, pl. 909, var. cordigerum, 192; rugosum, 193; sessilifolium, 194, var. Brittonianum, 194, 195, var. Vaseyi, 194, 195; urticaefolium, 193; verbenaefolium, 192, 193, pl. 910; verticillatum, 193
Euphrasia canadensis, 39, in Massachusetts, 39

Euphorbia, 290, 368; hypericifolia, 368; maculata, 367, 368; nutans, 368; supina, 368
European White Alder, 335
Ewan, Joseph, Juncus Mertensianus and its austrolimital Segregate J. Duranii, 185

Fagus grandifolia, 214, var. caroliniana, 214
Fernald, M. L., An Incomplete Flora of Illinois (Critique), 204; Botanical Specialties of the Seward Forest and adjacent Areas of Southeastern Virginia, 93-142, 149-182, 191-204, pls. 876-911; Chamaedaphne calyculata, var. latifolia, 390; Handy Guide to Aquatic and Marsh Vegetation (Review), 395; "Ia." sometimes stands for Indiana, 404; Injury to Herbarium-specimens by extreme Heat, 258; Key to Antennaria of the "Manual Range", 221-235, 239-247, pls. 912-958; Minor Forms and Transfers, 144; Notes on eastern American Luzula, 265-271, pls. 961, 962; Perezia aletes an Argentinian Species, 47; Ruellia in the Eastern United States, 1-38, 47-63, 69-90, pls. 839-875; Senecio congestus, 256; Senecio Smallii, forma tristis, 302; Some North American Corylaceae (Betulaceae). I. Notes on Betula in Eastern North America, 303-329, pls. 963-975; II. Eastern North American Representatives of Alnus incana, 333-361, pls. 976-989; Transfers in and Animadversions on Artemisia, 247-256; Woody Plants of Maine (Notice), 143
Festuca, 107; subg. Vulpia, 107, 108; monandra, 106, 107; myuros, 106; octoflora, var. tenella, 210; nutans, 199; obtusa, 199; octoflora, var. glauca, 107, var. tenella, 107; paradoxa, 97, 106, 199; quadriflora, 106; saximontana, 225; sciurea, 106; Shortii, 97, 199; tenella, 107, \(\beta\). glauca, 107
Filago arvensis, 258, in North America, 258
Filices, 384-386
Fimbristylis, 95, 206; anomala, 116; Baldwiniana, 213; caroliniana, 114, 115; castanea, 114-116; Drummondii, 95, 113-116, 127,
ß. major, 115, \(\alpha\). minor, 115; interior, 115, 116; laxa, 213; puberula, 114; spadicea, 114, 116
Floerkea proserpinacoides, 272
Flora of Illinois (Critique), An Incomplete, 204; of Oakland County, Michigan (Review), Bingham's, 260
Form of Campanula from Minnesota, New, 391
Forms and Transfers, Minor, 144
Fraxinus biltmoreana, 209; caroliniana, var. pubescens, 171
Fuirena, 206; hispida, 103, 117; squarrosa, 103, 117
Fumaria, 385
Fumarineae, 385
Fungi, 281, 386
Gaillardia multiceps, 331
Galium circaezans, 140; palustre, 390
Gaultheria, 282
Generic Name in Acanthaceae, An untenable, 261
Gentian, 143
Gentiana, 290, 378; quinquefolia, 143, in Maine, 143
Geoprumnon, 216
Geranium, 219 ; nepalense, 220, var. Thunbergii, 219, 220, in Massachusetts, 219 ; sibiricum, 216
Gerardia Skinneriana, 404
Geum canadense, var. bręvipes, 97 , 152; rivale, 215
Gilibertia, 289
Glabraria geniculata, 140, 142
Gladiolus, 385
Glaucous Alder, 350
Glechoma hederacea, f. acutiloba, 176
Gleditsia, 207; triacanthos, 207, f. inermis, 207
Globularia, 386
Gloriosa, 288
Glyceria airoides, 108; arkansana, 210; borealis, 42, 45; Fernaldii, 42, 45; pallida, var. Fernaldii, 42; obtusa, 237; striata, var. stricta, 210
Gnaphalium, 241, 258; dioicum, \(\beta\). plantaginifolium, 240, 241 ; monocephalum, 241; plantagineum, 240; plantaginifolium, 183, 240, 241, 247; stolonibus reptatricibus etc., 241, 247
Goldenrods, 91
Goodman, George J., Author Cita-
tion for Eriogonum hemipterum, 92
Gramineae, 108, 206, 385
Grass, Barnyard, 212; Yellow-eyed, 206
Grasses, 206
Gray Alder, 337
Gray Herbarium of Harvard University, Contributions from the, -No. CLIII, pp. 1-38, 47-63, 69-90, pls. 839-875; No. CLVI, pp. 93-142, 149-182, 191-204, pls. 876-911; No. CLVII, pp. 221-235, 239-257, 265-271, pls. 912-962; No. CLIX, pp. 303-329, 333-361, pls. 963-989
Grindelia squarrosa, var. serrulata, 46
Groh, Herbert, Linum catharticum in Ontario, 362
Gruinales, 385
Guide to Aquatic and Marsh Vegetation (Review), Handy, 395
Gymnosperms, 207
Hairy Variety of Sweet Pignut in New England, 46
Hamamelis, 363
Handy Guide to Aquatic and Marsh Vegetation (Review), 395
Haplopappus divaricatus, 195
Hardy, George A., Filago arvensis in North America, 258
Harrison, Arthur K., Euphrasia canadensis in Massachusetts, 39
Harvard University, Contributions from the Gray Herbarium of,No. CLIII, pp. 1-38, 47-63, 6990, pls. 839-875; No. CLVI, pp. 93-142, 149-182, 191-204, pls. 876-911; No. CLVII, pp. 221235, 239-257, 265-271, pls. 912962; No. CLIX, pp. 303-329, 333-361, ple. 963-989.
Hazel-Alder, 339, 340
Heat, Injury to Herbarium-Specimens by extreme, 258
Hederaceae, 386
Hedysarum violaceum, 301
Helenieae, Notes on Compositae of the Northeastern United States. II. Heliantheae and, 396

Helenium autumnale, 403, var. autumnale, 403
Heliantheae and Helenieae, Notes on Compositae of the Northeastern United States. II., 396
Helianthium parvulum, 210; tenellum, 210

Helianthus angustifolius, 103, 196; atrorubens, 399, var. atrorubens, 399; occidentalis, 399, var. occidentalis, 399; tuberosus, 399, var. tuberosus, 399
Heliotropium amplexicaule, 143, 171, 172; anchusaefolium, 171; europaeum, 171, 172; indicum, 172
Helonias, 282
Herbarium-Specimens by extreme Heat, Injury to, 258
Hesperideae, 384, 385
Heteranthera limosa, 209, 213
Heteropogon, 108
Heuchera americana, var. interior, 214; hispida, 215; Richardsonii, var. Grayana, 215
Hibiscus, 290
Hickory, Pale, 47; Shagbark, 47
Hieracium, 183, 242-244; Pilosella group, 243; Gronovii, 243; scabrum, 243; venosum, 243
Hill, Albert F., A Bibliography of Canadian Botany (Review), 236
Hodgdon, A. R., Carex cristatella in New Hampshire, 38
Holosteum umbellatum, 45
Hordeum, 280
Houstonia, 291, 364
Hudsonia, 207
Hunnewell, Francis Welles, Geranium nepalense, var. Thunbergii in Massachusetts, 219
Hull, Edwin D., Campanula rapunculoides in Indiana, 404
Hunt, Kenneth W., Some heretofore unnoticed Plants of the South Carolina Coastal Plain, 142
Hyacinths, 379
Hydrangea, 364
Hydrocharis, 385
Hydrocotyle americana, 218
Hydrophyllum, 288
Hygrophila, 262; illinoiensis, 17, 18
Hyparrhenia, 108
Hypericum boreale, 217; cistoides, 379; ellipticum, 217; gymnanthum, 45; petiolatum, 217; setosum, 95, 127; tubulosum, var. Walteri, 217
Hypnum, 386
Hypoxis, 206
"Ia." sometimes stands for Indiana, 404
Icosandria, 275
Identity of Cyperus virens Michx., The, 109, pl. 876; of Juncus
tenuis, The, 117-123; of Michaux's Acer barbatum, The, 156
Ilex, 332; aculeata cocciglandifera, 297; coccifera, 297; ораса, 217
Illinois (Critique), An Incomplete Flora of, 204
Incomplete Flora of Illinois (Critique), An, 204
Indiana, "Ia." sometimes stands for, 404; Campanula rapunculoides in, 404
Indigenous Variations of Ulmus americana, The, 132
Injury to Herbarium-Specimens by extreme Heat, 258
Inundatae, 385
Iresine celosioides, 214; rhizomatosa, 214
Iris, 385
Isolepis, 116; capillaris, 116; Drummondii, 116
Isopappus divaricatus, 195
Itea virginica, 301
Ixia, 385
Jack-in-the-pulpit, 363
Jones, George Neville, Sorbus Andersoni, a new Name for an Alaskan Mountain-Ash, 220
Juncaceae, 206, 207, 268
Juncoides intermedium, 271; multiflorum, var., 265
Juncus, 119, 126, 185, 187, 206, 207, 260, 268, 269, 385; \& Genuini, 126; ser. Prophyllati, 206; acutiflorus, 270; acutus, 269; aseptus, 189-191; balticus, var. littoralis, 44; bicornis, 123; biglumis, 269; brachycephalus, 127; brevicaudatus, 127, 213; bufonius, 120; bulbosus, 118, 120 ; campestris, 269; canadensis, \(127-130\), Some Varieties and Forms of, 127-131, pls. 881, 882, var. coarctatus, 213, var. euroauster, 127-129, 131, pl. 881, var. longecaudatus, 129, var. longicaudatus, 129, var. sparsiflorus, \(128,129,131\), pl. 881 , var. typicus, 128, 129, 131, pl. 882, f. apertus, 128, 129, 131, pl. 882, f. conglobatus, 128, 129-131, pl. 882; capensis, 268270; castaneus, 224 ; columbianus, 185; compressus, 118, 120; congestus, 268; conglomeratus, 269 ; debilis, 213; dichotomus, 96, 118, 119, 121-123, 125, 126, pl. 879, var. platyphyllus, 96, 124; Duranii, 185, 186-188, 190, Juncus

Mertensianus and its austrolimital Segregate, 185; effusus, 126, 269, var. solutus, 208; erectus, 268; filiformis, 269; Gerardi, 118, 120; germanorum, 118; glaucus, 270; Griscomi, 126, A second Station for, 126; gymnocarpus, 126; intermedius, 268, 271; liniger, 268; Longii, 96, 127 ; macer, \(119,120,122,125\), f. discretiflorus, 123; maximus, 269; Mertensianus, 185-191, and its austrolimital Segregate, J. Duranii, 185; multiflorus, 268-271; nevadensis, 185, 187-191; obtusiflorus, 270; parviflorus, 269; pilosus, 269, 378; platyphyllus, 124-126, pl. 880; repens, 101, 127 ; scirpoides, 96,127 ; setiflorus, 270 ; Smithii, 126; spicatus, 269; subcaudatus, 127; Suksdorfii, 185; tenuis, 117-123, 125, pl. 879, f. discretiflorus, 123, var. platyphyllus, 124, 125; trifidus, 269 ; triglumis, 269; trigonocarpus, 127, 128; vernalis, 269
Jungermannia, 386
Juniperus, 144
Jussiaea, 237, 239; grandiflora, 238; Michauxiana, 238; repens, 238, var. glabrescens, 239, subsp. hirsuta, var. grandiflora, 238; uruguayensis, 238, 239, in Staten Island, New York, 237, var. genuina, 238
Justicia humilis, 209
Kalmia, 282, 385
Key to Antennaria of the "Manual Range", 221-235, 239-247, pls. 912-958
King Devil, 242
Kucyniak, James, Chrysanthemum uliginosum adventive in Quebec, 389
Kyllinga, 113; caespitosa, 113; elongata, 113; pumila, 113; rigidula, 113; tenuifolia, 113

Lachnocaulon anceps, 103, 360
Lakela, Olga, New Form of Campanula from Minnesota, 391
Larix, 207
Lathyrus, 207; venosus, 207, var. intonsus, 207
Laurus aestivalis, 140-142, 150; axillaris, 149, 150; Benzoin, \(140-\) 142; Borbonia, 149, 150; caroliniana, 149; caroliniensis, 149,
\(\alpha\). glabra, 149, \(\beta\). pubescens, 149, foliis, etc., 150; foliis enervibus, 141; foliis lanceolatis, etc., 141, 150; geniculata, 140, 142, 150
Lapathum aquaticum, folio, etc., 134, 135 ; foliis longis, etc., 134,135
Lechea, 282; foliis ovati-lanceolatis, etc., 282; major, 282
Leptanthus ovalis, 209, 213
Leptochloa attenuata, 211, 212; filiformis, 211
Leptoloma in New England, 263; cognatum, 263, 264
Lespedeza 45; cuneata, 45; sericea, 45 ; stipulacea, 45 ; violacea, 301
Leucothoë axillaris, 169-171, pl. 900, var. ambigens, 168-171, pl. 901; Catesbaei, 169-171, pl. 902; platyphylla, 170, 171
Ligusticum canadense, 162
Ligustrum, 281; sinense, 171
Liliaceae, 206
Lilium, 385
Lindera, 140; Benzoin, 141, 142, pl. 889
Linnaeus, On the Descriptive Method of, 273-302, 363-388, pls. 990, 991
Linum, 385; catharticum, 68, 362, in New Brunswick, 68, in Ontario, 362 ; floridanum, 216
Lithospermum officinale, 390
Litsea, 150; aestivalis, 140, 142, pl. 888; geniculata, 140, 142, 150
Lobelia, 102, 385; glandulifera, 102
Loblolly Pine, 102
Lolium, 280
Lomentaceae, 385
Lonchocarpus, 289, 290
Lonicera villosa, var. tonsa, 45
Ludwigia, 105; glandulosa, 101, 161; palustris, 218, var. americana, 218
Lupinus perennis, 215, var. occidentalis, 215
Luridae, 384-386
Luzula, 207, 269; Notes on eastern American, 265-271, pls. 961, 962; arcuata, 267; campestris, 267, 268, var. acadiensis, 267, 271 , pl. 962 , var. alpina, 265, var. comosa, 268 , var. frigida, 265-268, var. multiflora, 267; confusa, 224; frigida, 265; intermedia, 271; multiflora, 266-268, 271, pl. 962, var. acadiensis, 267, pl. 962, var. congesta, 268, 271, pl. 961, var. fusconigra, 266, 267, 271, pl. 962; sudetica, 265,

266, 271, pl. 961, var. frigida, 265, 266, 271, pl. 961
Lychnis, 385
Lycopodium alpinum, 224; clavatum, 386
Lycopus americanus, var. Longii, 103,180 , var. scabrifolius, 180
Lysimachia hybrida, 209; lanceolata, 171

Magnolia, 284; glauca, 259; virginiana, 151, 259, var. australis, 151
Maine, Betula papyrifera var. commutata in western, 405; Gentiana quinquefolia in, 143; (Notice), Woody Plants of, 143
Malapoenna geniculata, 140
Malaxis brachypoda, 213
Malus angustifolia, 215
Manning, Wayne E., Hairy Variety of Sweet Pignut in New England, 46
"Manual Range", Key to Antennaria of the, 221-235, 239-247, pls. 912-958
Marchantia, 386
Marine algae, 64; of the Monterey Peninsula (Review), 63
Mariscus, 112; pubescens, 112
Marsh Vegetation (Review), Handy Guide to Aquatic and, 395
Martagon, 385
Martynia, 386
Massachusetts, Euphrasia canadensis in, 39; Geranium nepalense, var. Thunbergii in, 219; Rediscovery of Paronychia argyrocoma, var. albimontana at Newburyport, 90; Thermopsis mollis in eastern, 91
Mathews, Frank P., Comparison of the Toxicity of Notholaena sinuata and N. sinuata, var. cochisensis, 393
Matteuccia nodulosa, 124; pubescens, 124; Struthiopteris, f. pubescens, 124, var. pubescens, 124
McGregor, Frank J., Rediscovery of Paronychia argyrocoma, var. albimontana at Newburyport, Massachusetts, 90
Medeola, 364
Melothria, 364
Menispermum canadense, 140
Mentzelia humilis, 331 ; oligosperma, 217
Menyanthes trifoliata, var. minor, 208

Mertensia maritima, 259
Metachlamydeae, 209
Method of Linnaeus, On the Descriptive, 273-302, 363-388, pls. 990, 991
Michigan (Review), Bingham's Flora of Oakland County, 260
Microstylis monophyllos, 213
Mimulus moschatus, 186
Minnesota, New Form of Campanula from, 391
Minor Forms and Transfers, 144
Miscellaneae, 386
Mitchella repens, 262
Mockernut, 47
Monachino, Joseph, Jussiaea uruguayensis in Staten Island, New York, 237
Monocotyledoneae, 209
Monocotyledons, 384
Monterey Peninsula (Review), Marine Algae of the, 63
Mosses, 281
Muhlenbergia, 209; curtisetosa, 211; glabrifora, 99, 109; glomerata, 211; mexicana, 213; racemosa, 211; setosa, 198, 211, var. cinnoides, 211
Multisiliquae, 385
Muscae, 386
Musci, 386
Myosotis, 378
Myriophyllum exalbescens, 218; spicatum, 218, var. exalbescens, 218

Najas gracillima, 210
Name for an Alaskan MountainAsh, Sorbus Andersoni, a New, 220; in Acanthaceae, An untenable Generic, 261
Narcissus, 332
Necessary Transfer in Populus § Turanga, A, 362
Nelson, James C. (with portrait) [sketch of life of], 65
Nemopanthus mucronata, f. chrysocarpa, 144
Nepeta virginica, 178
New Form of Campanula from Minnesota, 391; Name for an Alaskan Mountain-Ash, Sorbus Andersoni, a, 220; Species of Anulocaulis from southwestern Texas and adjacent New Mexico, 329
New Brunswick, Linum catharticum in, 68
New England, Hairy Variety of

Sweet Pignut in, 46; Leptoloma in, 263
New Hampshire, Carex cristatella in, 38
New Mexico, New Species of Anulocaulis from southwestern Texas and adjacent, 329
New York, Jussiaea uruguayensis in Staten Island, 237
Newburyport, Massachusetts, Rediscovery of Paronychia argyrocoma, var. albimontana at, 90
Ninsi, 386
Nipa, 385
North America, Notes on Betula in Eastern, 303-329, pls. 963-975; So-called Woodsia alpina in, 145; Filago arvensis in, 258
North American Representatives of Alnus incana, Eastern, 333-361, pls. 976-989
Northeastern United States. I. Inuleae, Notes on Compositae of the, 182; II. Heliantheae and Helenieae, Notes on Compositae of the, 396
Notch'd-leaved Alder Tree, 342
Notes on Betula in Eastern North America, 303-329, pls. 963-975; on Compositae of the Northeastern United States. I. Inuleae, 182; II. Heliantheae and Helenieae, 396; on eastern American Luzula, 265-271, pls. 961, 962; on Plants of central Pennsylvania, 41
Notholaena sinuata, 394, 395, and N. sinuata, var. cochisensis, Comparison of the Toxicity of, 393, var. cochisensis, 393-395, Comparison of the Toxicity of Notholaena sinuata and, 393, yar. crenata, 393
(Notice), Woody Plants of Maine, 143
Nuphar variegatum, 214
Nymphaea, 385
Nyssa, 97, 364; sylvatica, var. biflora, 168, var. caroliniana, 168

Oak, 281, 287, 297, 299; Chestnut, 365; Red, 297, 364, 366; Swamp Chestnut, 365
Oakland County, Michigan (Review), Bingham's Flora of, 260
Obularia, 264
Oldenlandia, 291
Oleraceae, 385
Onoclea nodulosa, 123, 124; Stru-
thiopteris, f. obtusilobata, 124, var. pubescens, 124
Ontario, Linum catharticum in, 362
Orchideae, 385
Osmunda regalis, 386; virginiana, 374
Ostrich Fern, var. pubescens, 124
Ox-eye Daisy, 389
Oxyria digyna, 224
Palmae, 384-386
Palmer, Samuel C., Convolvulus Wallichianus at Swarthmore, Pennsylvania, 332
Panax, 386
Panicularia rigida, 210
Panicum, 108, 210; agrostoides, var. ramosius, 109; capillare, 264; discolor, 198; flexile, 97 ; laxiflorum, 211; Leibergii, 43; linearifolium, 211; lucidum, 103; pensylvanicum, 198; roanokense, 109; Werneri, 211; xalapense, 211
Papaver, 385
Papilionaceae, 385
Paronychia, 90; argyrocoma, var. albimontana, 90 , at Newburyport, Massachusetts, Rediscovery of, 90
Parthenium, 400; auriculatum, 399, integrifolium, 399, var. auriculatum, 399, var. integrifolium, 399
Partridgeberry, 262
Paspalum, 210; Bushii, 212; laeve, 212; longependunculatum, 212; setaceum, 212, var. longepedunculatum, 212
Passiflora foetida, 275; lutea, 217, var. glabriflora, 217
Pastinaca sativa, 390
Pattersonia caroliniensis, 71
Peck, M. E., James C. Nelson (with portrait), 65
Pedalium, 385
Pedicularis sylvatica, 267
Peloria, 291
Pennsylvania, Convolvulus Wallichianus at Swarthmore, 332; Notes on Plants of central, 41
Penthorum, 364
Perezia aletes, 47, an Argentinian Species, 47; sonchifolia, 47
Persea Borbonia, 149, 150, f. pubescens, 149; caroliniensis, 149, a., 149, \(\alpha\). glabriuscula, 149, var. palustris, 149, \(\beta\). pubescens, 149; palustris, 149, 150, f. laevifolia, 149; pubescens, 149, 150

Personatae, 384-386
Peziza, 386
Phacelia dubia, var. interior, 171; fallax, 171
Phaseolus helvolus, 216
Phleum pratense, var. nodosum, 109
Phyllis, 386
Picea rubens, 144; rubra, 144
Pignut in New England, Hairy Variety of Sweet, 46; Sweet, 47
Pilea, 100
Pine, 281; Pitch, 334, 335; Scotch, 335
Pinus, 144; contorta Murreyana, 186; rigida, 334
Piperitae, 385
Pitch Pine, 334, 335
Plantago asiatica, 294; foliis ovatis, etc., 293; major, 293; media, 294; virginica, 294
Plants of central Pennsylvania, Notes on, 41; of Maine (Notice), Woody, 143; of the South Carolina Coastal Plain, Some heretofore unnoticed, 142
Pluchea purpurascens, 184, var. purpurascens, 184
Poa, 383; caroliniana, 198, 199; saltuensis, 45; Wolfii, 205
Podophyllum, 385
Podostemum ceratophyllum, 214
Polygala sanguinea, 99, f. albiflora, 156; Senega, 374, var. latifolia, 97
Polygonum, 105; hydropiperoides, 105,138, pl. 885 , var. breviciliatum, 138, pl. 886, var. Buchianum, 138, pl. 885, var. euronotorum, 137, 138, pl. 884; minus, var. subcontinuum, 137; opelousanum, 105, 138; pensylvanicum, 100, 137, f. albinum, 137; viviparum, 226
Polymnia, 282; Uvedalia, var. densipilis, \(101,162,196,400\), var. floridana, 196, 400, var. genuina, 400
Polypogon setosus, 198
Polystichum mohrioides, var. scopulorum, 319
Pomaceae, 386
Pond-spice, 142
Pontederia, 364
Populus, 362; \& Turanga, A necessary Transfer in, 362; Denhardtiorum, 362; euphratica, subsp. Denhardtiorum, 362, var. Denhardtiorum, 362; ilicifolia, 362
Porsild, A. E., So-called Woodsia alpina in North America, 145

Portulaca oleracea, 139
Potamogeton natans, 41; Oakesianus, 41
Potentilla, 144; millegrana, 215; nivea, 225
Preceae, 385
Preciae, 384
Prenanthes alba, 374
Primrose-Willow, 237
Primula, 259, 290, 379, 384; laurentiana, 259
Prinos, 364
Proserpinaca amblyogona, 218; palustris, 218, var. amblyogona, 218, var. crebra, 218; platycarpa, 218
Prunus, 144; Cerasus, 378; domestica, 378 ; floribus racemosis, etc., 301; Munsoniana, 215; serotina, 301; virginiana, 207, 301, f. deamii, 207
Psoralea floribunda, 215; psoralioides, 207, var. eglandulosa, 95, 127, 156, 207, 215; tenuiflora, 215, var. floribunda, 215
Psoralidium floribundum, 215
Pteretis nodulosa, 124, f. foliacea, 124, f. obtusilobata, 124, f. pubescens, 124; pensylvanica, 123, f. foliacea, 124, f. obtusilobata, 124, f. pubescens, 124; Struthiopteris, var. pensylvanica, 124, subvar. foliacea, 124 , subvar. obtusilobata, 124 , subvar. pubescens, 124
Ptilimnium costatum, 218
Putamineae, 385
Pyenanthemum, 178, 179; aristatum, 176, 178, 179; clinopodioides, \(176,179,180\), pl. 907 ; hyssopifolium, 176-178, 180, pl. 905; incanum, 100, var. Loomisii, 100, var. puberulum, 180; monotrichum, 176-178, 180, pl. 903; puberulum, 100,180 ; pyenanthemoides, \(176-178\), var. viridifolium, 177, 180, pl. 904; setosum, 177, 178, 180, pl. 905; Tullia, 176, 177; umbratile, 179, pl. 906; viridifolium, 177
Pyrethrum, 389
Pyrus, 144, 378; subg. Aronia, 103; angustifolia, 215

Quebec, Chrysanthemum uliginosum adventive in, 389; Sporobolus asper in, 272
Quercus, 298, 374, 379; alba, 298, 367, virginiana, 298; borealis, var.
maxima, 365; carolinensis, virentibus venis, etc., 298; castaneae foliis, etc., 297, 365; Coccifera, 297; discolor, 366; esculi divisura, etc., 298, 299, 301; falcata, 366; folio non serrato, etc., 297; foliis obverse ovatis, etc., 365 ; foliis ovatis, etc., 297; foliis superne latioribus, 298; foliorum sinubus obtusis: angulis acutis, etc., 298; foliorum sinubus obtusis: angulis lanceolatis, etc., 298, 301; heterophylla, 366; ilicifolia, 366; marilandica folio trifido, etc., 298; Michauxii, 365; montana, 365, 366; nigra, 297, 298, 366, 367, \(\beta\)., 298; palustris, 366; Phellos, \(96,297, f\). intonsa, 96 , 131; Prinus, 297, 298, 364, 365, 367, monticola, 365, palustris, 365; Robur, 298; rubra, 297, 298, \(364-367, \beta\)., 298, var. \(\beta\)., 298, seu Hispanica, etc., 301 ; stellata, 367 ; triloba, 366; velutina, 366; virginiana venis rubris, etc., 298

Ranunculus, 284, 290; acris, 390
Red Bay, 149; Elm, 204; Oak, 297, 301, 364, 366
Rediscovery of Paronychia argyrocoma, var. albimontana at Newburyport, Massachusetts, 90
Reproduction in Carex tribuloides and C. projecta, Vegetative, 39
Reseda, 207; alba, 214
(Review), Bingham's Flora of Oakland County, Michigan, 260; Handy Guide to Aquatic and Marsh Vegetation, 395; Marine Algae of the Monterey Peninsula 63
Rhamnus alnifolia, 45
Rhaphis, 108
Rhexia, 364, 385; mariana, var. leiosperma, 218; virginica, 161, var. septemnervia, 161
Rhododendron canescens, 168
Rhoeadeae, 385
Rhus, 144
Rhynchospora, 103; corniculata, 100, 117; cymosa, 117; globularis, var. recognita, 103, 117
Ribes, 144, 363
Ridan, 402
River-Maple, 158
Rorippa, 217; islandica, 217, var. hispida, 217; obtusa, 214; palustris, 217
Rosa, 275; multiflora, 156

Rotaceae, 385
Rouleau, Ernest, A necessary Transfer in Populus \& Turanga, 362; Sporobolus asper in Quebec, 272; Viburnum acerifolium, forma Collinsii, 264
Rubacer carolinianum, 217
Rubus, 93, 96, 98, 144, 209; § Cuneifolii, 94; \& Tholiformes, 98; Akermani, 152, 153, 155 , pls. 890, 891; cathartium, 153-155, pls. 892,893 ; connixus, 152 ; exsularis, 154; flagellaris, 154; sejunctus, 94, 152; Sewardianus, 154-156, pls. 894, 895
Rudbeckia, 398; alismaefolia, 401; Deamii, 400; fulgida, 400, var. fulgida, 400, var. missouriensis, 401, var. Sullivantii, 400, var. umbrosa, 400; grandiflora, 401, var. alismaefolia, 401, var. grandiflora, 401; laciniata, 401, var. laciniata, 401; missouriensis, 400, 401; palustris, 400; spathulata, \(400 ;\) speciosa, 400 , var. Sullivantii, 400; Sullivantii, 400; triloba, 401, var. triloba, 401; umbrosa, 400
Rudbeckias, 400
Ruellia, 302, in the Eastern United States, 1-38, 47-63, 69-90, pls. 839-875; acaulis, 10; angustifolia, \(8,10,11\); biflora, 14; Brittoniana, 5, 7-9, 11-13, 87, pl. 839; caroliniensis, 2-4, 7, 28, 30-33, \(35,52-57,59,61,69,75,84-86\), 181, f. alba, 54, var. cheloniformis, \(25,70,74,80,84-86\), 90,182 , pls. 871,872 , f. candida, 182, var. dentata, \(25,69,71,73\), \(74,82,84-86,90,182\), pls. 874 , 875, var. membranacea, 25, 70, \(74,75,78-81,84-86,89,181\), pls. 865, 866, f. breviberbis, 70, 78, 89, pl. 867, f. hypopsila, 70 , 78, 89, 181, pl. 867, f. laevior, 70, 79, \(80,89,181\), pl. 868; var. nanella, \(25,70,74,77,79,80\), \(84,89,181\), pls. 869,870 , f. eciliata, \(70,79,89,182\), pl. 870 , var. parviflora, \(28,29,71,86\), var. salicina, \(25,70,74,81,84,85\), 90, pl. 873, var. semicalva, 25 , \(69,73,82,84,85,89,181\), pl. 864, f. detonsa, 69, 74, var. typica, 25, 69, 71, 73, 84-86, 89, pls. \(861-863\); ciliosa, \(3,6,23,25\), 28, 29, 31-38, 47, 51-54, 56, 5862, 71-75, 79, 81-83, 85, 88, 181,
pls. 849,850 , var., 32 , var. ambigua, 16, 28-30, \(72,74,82\), var. cinerascens, 48, var. humilis, 51,53 , var. hybrida, 27, 29, 52, \(71,72,82\), var. longiflora, 36, 51, 56-60, var. parviflora, 52; Drummondiana, 2, 30; foliis petiolatis, etc., 302; foliosa, 14; geminiflora, 9 , var. humilis, 10 ; heteromorpha, 6, 25, 32-35, 87, pls. 847, 848; hirsuta, 51, 59, 62; humilis, \(2,3,7,28,31,33-38,48,50-54\), \(56,58,60-62,72,77,80,82,85\), 181, pl. 854, var. calvescens, 25 , \(51,52,60,63,89,181\), pl. 860 , var. expansa, \(25,51,58,62,89\), pl. 859, var. frondosa, 25,51 , \(54,82,88,181\), pl. 857, var. longiflora, \(25,37,51,56,60,62\), 63,88, pl. 858 , var. typica, 25 , 51, 54,88 , pls. 854,855 , f. alba, 54, f. grisea, \(51,54,88\), pl. 856 ; hybrida, 2, 28, 31-34, 36, 71, 72, 77, 86; longiflora, 26, 49; malacosperma, \(8,9,13\); Morongii, 10, 11; noctiflora, \(3,7,25,49,50,57,62\), 63,88 , pls. 852,853 ; nudiflora, 2 ; oblongifolia, 14, 55; Parryi, 2; parviflora, 2, 26-29, 31-33, 35, \(37,52-54,60,61,72-75,80-82\), 86, 181; "parviflora", 49; pedunculata, \(3,5,21,22,24-28,30,31\), \(82,85,87\), pl. 843 ; pinetorum, 5, 24-27, 87, pl. 844; Purshiana, \(5,25,27,29-32,75,85,87,181\), pls. 845, 846, f. claustroflora, 7, \(29,87,181\), pl. 846 ; spectabilis, \(8,10-12\); strepens, \(2,3,5,13,15\), \(19-22,25-30,32,36,52,55,58\), \(60,61,71-83,85,87\), pl. 841, var., 52 , capitulis comosis, \(19,20,71\), 89,302 , pl. 863 , f. cleistantha, 6 , \(17,20,21,87, \mathrm{pl} .842\), var. cleistantha, 17, 20, 29, micrantha, 17 ; succulenta, \(3,6,25,48,49,88\), pl. 851; tubiflora, 49, 50, 88 ; Tweediana, 8, 9-13, 87, pl. 840; Tweedyi, 11; vincaeflora, 14
Rumex, 134; altissimus, 135-137; aquatica, 134, calycis, etc., 134 ; Britannica, 134-136, not a Virginian, So-called, 133, pl. 883; Claytonii, 135-137; floribus hermaphroditis, etc., 134; Hydrolapathum, 133,136, var. americanus, 137; obtusifolius, 134-136, pl. 883 ; orbicularis, 135 ; orbiculatus, 134-137; verticillatus, 134137

Rush, Scouring, 206
Rushes, 206, 207
Rynchospora, 291
Sabatia campestris, 209
Sagittaria, 385; graminea, 343; subulata, 343
Salices, 281
Salix, 259, 320; balsamifera, 144; Bebbiana, 144; chlorolepis, 320; foliis subintegerrimis, etc., 295; glaucophylloides, 259; hebecarpa, 320; herbacea, 224; longipes, var. Wardi, 213; missouriensis, 214; pyrifolia, 144; rostrata, 144
Sambucus pubens, 144; racemosa, 144
Sanguinaria, 385
Sanguisorba canadensis, 45
Sanicula canadensis, 374; Smallii, 97, 162, 163
Sarmentaceae, 385
Sarothra, 282
Sarracenia, 385; flava, 103, 360
Sartwellia Flaveriae, 331
Saxifraga cernua, 226; cespitosa, 225
Scabridae, 386
Scheuchzeria americana, 207; palustris, 207, 218
Schoenus, 385
Schwalbea, 364
Scirpus, 385 ; americanus, 148; atrovirens, var. georgianus, f. viviparus, 390 ; capitatus, 301 ; caribaeus, 300 ; cernuus, 148 ; cespitosus, var. callosus, 208; culmo nudo setaceo, etc., 300 ; cyperinus, 124; divaricatus, 101, 116; Eriophorum, 124, 213, f. praelongus, 124; geniculatus, 274, 300; Hallii, 208, 213; heterochaetus, 213; lineatus, 213; lupulinus, 198; polyphyllus, 116; retrofractus, 111-113; rubricosus, 124, 213, f. praelongus, 124; thyrsiflorus, 124
Scitamineae, 385
Scleria pauciflora, 96, 117
Scotch Broom, 335; Pine, 335
Scouring Rush, 206
Scutellaria, 201; ambigua, 172, 173, 175; caerulea virginiana, etc., 202; elliptica, 174, 200-202, var. hirsuta, 201; epilobiifolia, 172; foliis integerrimis, 202; foliis lanceolatis, 202; foliis ovatis, etc., 201; foliis sessilibus, etc., 202; galericulata, 172; gracilis, 174;
hirsuta, 201; hyssopifolia, 202, 203; incana, 199, 200; integrifolia, 174, 201-203, \(\beta\). hyssopifolia, 203; Leonardi, 172; nemorosa, 201; nervosa, \(172-174,404\), var. ambigua, 175 , var. calvifolia, 174, var. typica, 174, 175; ovalifolia, 200, 201, subsp. hirsuta, 202, var. hirsuta, 202, subsp. mollis, 200, 201; ovata, subsp. rugosa, 144 , var. rugosa, 144; parviflora, 174; parvula, 172, 173, 272, var. ambigua, 172, 175, var. Leonardi, 172; pilosa, 200, 201, var. hirsuta, 201, var. ovalifolia, 201; pubescens, 200; rugosa, 144; teucrifolia, 174, 201, 202; teucrii folio, etc., 202; virginiana, etc., 201
Sea-side Alder, 341
Seaweeds, 63, 64
Second Station for Juncus Griscomi, 126
Sedges, 206
Sedum, 385
Selinocarpus lanceolatus, 331
Senecio \&urei, 302; congestus, 256,257 , pls. 959,960 , var. laceratus, 256, 257, var. palustris, 256, 257, pl. 959, var. tonsus, 256, 257, pl. 960; palustris, 256, 257, var. congestus, 257, \(\gamma\). laceratus, 256; Pseudo-Arnica, 257, f. Rollandii, 257, var. Rollandii, 257; Rollandii, 257; Smallii, forma tristis, 302 , f. tristis, 302; tubicaulis, 256, 257
Senticosae, 386
Sepiariae, 386
Serapis, 385
Sertularia, 281
Setaria Faberii, 109
Seward Forest and adjacent areas of Southeastern Virginia, Botanical Specialties of the, 93-142, 149-182, 191-204, pls. 876-911
Seymour, Frank C., Leptoloma in New England, 263
Shagbark hickory, 47
Sieglingia decumbens, 267
Silene virginiana, 142; virginica, 142
Siliquosae, 384, 386
Silphium integrifolium, 401, var. integrifolium, 401; trifoliatum, 401, var. trifoliatum, 401
Silver-king Artemisia, 255
Silver-leaved Alder, 340
Sium, 386
Skunk cabbage, 363

Slippery Elm, 132, 204
Smilax Bona-nox, var. exauriculata, 131
Smilacina trifolia, 213
So-called Rumex Britannica not a Virginian, 133-137, pl. 883; Woodsia alpina in North America, 145
Solidago, 102, 249; canadensis, 390; chlorolepis, 320 ; missouriensis, 249; neglecta, 249; rugosa, 390 , var. celtidifolia, 103,195 ; salicina, 102; sempervirens, 249 ; uniligulata, 249
Some heretofore unnoticed Plants of the South Carolina Coastal Plain, 142; Inconvenient Upheavals of Familiar Names and Author-Citations, 197-204; North American Corylaceae (Betulaceae). I. Notes on Betula in Eastern North America, 303-329, pls. 963-975; II. Eastern North American Representatives of Alnus incana, \(333-361\), pls. 976-989
Sonchus uliginosus, 210
Sophora biflora, 381
Sorbus alaskana, 220; Andersoni, 220, a new Name for an Alaskan Mountain-Ash, 220
Sorghastrum, 108
Sorghum, 108
South Carolina Coastal Plain, Some heretofore unnoticed Plants of the, 142
Southeastern Virginia, Botanical Specialties of the Seward Forest and adjacent Areas of, 93-142, 149-182, 191-204, pls. 876-911
Sparganium, 343 ; angustifolium, 210, 343 ; minimum, 343 ; natans, 343
Spathaceae, 385
Specialties of the Seward Forest and adjacent Areas of Southeastern Virginia, Botanical, 93142, 149-182, 191-204, pls. 876911
Species, Perezia aletes an Argentinian, 47; of Anulocaulis from southwestern Texas and adjacent New Mexico, New, 329
Speckled Alder, 349, 350
Sphaeranthus, 386
Sphenopholis nitida, 198; pallens, 198
Spilanthes americana, 209
Spiranthes latifolia, 213; lucida, 213
Spergularia, 214; marina, 214

Sporobolus, 272; asper, 272, in Quebec, 272; canovirens, 211; clandestinus, 198, 211; Nealleyi, 331
Staten Island, New York, Jussiaea uruguayensis in, 237
Statice, 320
Stellaria calycantha, var. floribunda, 44, var. isophylla, 44; crassifolia, 214
Stellatae, 384, 386
Stenanthium gramineum, 206
Stipa avenacea, 211
Strophostyles helvola, 216, var. missouriensis, 216; missouriensis, 216 ; peduncularis, 216 ; umbellata, 209, 216
Struthiopteris germanica f. obtusilobata, 124, var. pensylvanica, 123 , f. pubescens, 124 ; nodulosa, 123; pensylvanica, 123, 124, f. pubescens, 124; pubescens, 124; Struthiopteris, var. pensylvanica, 124
Stylosanthes biflora, var. hispidissima, 216 ; riparia, 216
Succulentae, 385
Sugar-Maple, 156, 158, 159; Black, 156; Northern, 158; Southern, 156, 159
Sugartree, 156
Svenson, H. K., On the Descriptive Method of Linnaeus, 273-302, \(363-388\), pls. 990, 991
Swamp Alder, 103, 333, 334, 337; Chestnut Oak, 365
Swarthmore, Pennsylvania, Convolvulus Wallichianus at, 332
Sweet Pignut, 47, in New England, Hairy Variety of, 46
Syngenesia, 275
Taenia, 281
Talinum calycinum, 209
Tamala Borbonia, 149; palustris, 149; pubescens, 149
Taraxacum, 242, 244 ; ceratophorum, 243; dumetorum, 243; laurentianum, 243; Longii, 243; officinale, 243; palustre, 243; phymatocarpum, 243
Taxodium, 207
Tephrosia holosericea, 215; virginiana, 216, var. glabra, 102, 156, var. holosericea, 215, 216
Tetranthera geniculata, 140
Texas and adjacent New Mexico, New Species of Anulocaulis from Southwestern, 329

Thaspium pinnatifidum, 218
Thea sinensis, 143
Thermopsis mollis, 91, in eastern Massachusetts, 91
Thuja gigantea, 317
Tilia, 281; floridana, 209
Tofieldia, 206
Tovaria, 289; stigmata peltata, etc., 289
Toxicity of Notholaena sinuata and N. sinuata, var. cochisensis, comparison of, 393
Tragia cordata, 216; macrocarpa, 216, 217
Transfer in Populus § Turanga, A necessary, 362
Transfers, Minor Forms and, 144; in and Animadversions on Artemisia, 247-256
Tremella, 386
Triadenum petiolatum, 217
Trichachne, 108
Trichophyllum, 373
Trichostema, 364
Tricoccae, 384, 386
Trifolium, 275; resupinatum, 215
Trihalatae, 385
Trillium erectum, 369; grandiflorum, 369
Tripetaloideae, 385
Tripsacum, 99; dactyloides, var. occidentale, 99, 109
Triticum, 280
Trollius, 385
Tsuga, 207
Tulipa, 385
Tulips, 379
Tullia, 178
Turanga ilicifolia, 362
Turkey-buzzards, 98
Ulmus americana, 132, 203, 204, 272, The Indigenous Variations of, 132, f. alba, 133, \(\beta\). alba, 133, var. alba, 133, \(\alpha\). glabra, 133, f. intercedens, 133, f. laevior, 133, f. pendula, 133, \(\gamma\). pendula, 133 , var. pendula, \(133, \beta\). scabra, 133; fulva, 132, 204; mollifolia, 203; rubra, 132, 203, 204; serotina, 214
Umbellatae, 384, 386
Umbelliferae, 283, 386
Uniola distichophylla, 148
United States, Notes on Compositae of the Northeastern, I. Inuleae, 182; II. Heliantheae and Helenieae, 396; Ruellia in the Eastern, 1-38, 47-63, 69-90, pls. 839-875

Untenable Generic Name in Acanthaceae, An, 261
Utricularia, 104; inflata, 235, var. minor, 235, in Canada, 235
Uvedalia, 196
Uvularia floridana, 142; perfoliata, 374

Vaccinium arboreum, 260; tenellum 171, 209
Varieties and Forms of Juncus canadensis, Some, 127-131, pls. 881, 882
Variety of Sweet Pignut in New England, Hairy, 46
Vegetation (Review), Handy Guide to Aquatic and Marsh, 395
Vegetative Reproduction in Carex tribuloides and C. projecta, 39
Veratrum luteum, 374
Verbena simplex, 272
Verbesina, 398, 401, 402; alba, 196, 197, 398; alata, 401; alternifolia, 402; prostrata, 196, 197, 398
Verticillatae, 386
Vetiveria, 108
Viburnum acerifolium, forma Collinsii, 264, f. Collinsii, 264; dentatum, 367
Vicia tetrasperma, 143
Viola Stoneana, 160
Virginia, Botanical Specialties of the Seward Forest and adjacent Areas of Southeastern, 93-142, 149-182, 191-204, pls. 876-911
Vitis cinerea, 101, 160
Vulpia, 107, 108; Elliotea, 106; octoflora, 210, var. glauca, 107, var. tenella, 107, 210; sciurea, 106

Wahl, Herbert A., Notes on Plants of central Pennsylvania, 41
Water Dock, 133
Waterfall, U. T., New Species of Anulocaulis from southwestern Texas and adjacent New Mexico, 329
Weatherby, C. A., Bingham's Flora of Oakland County, Michigan (Review), 260; Linum catharticum in New Brunswick, 68; Utricularia inflata var. minor in Canada, 235; Vegetative Reproduction in Carex tribuloides and C. projecta, 39

Wheldon, Roy M., Marine Algae of the Monterey Peninsula (Review), 63

White Alder, 337, 349; Birch, 303 405

\section*{Willow-Oak, 96}

Woodsia alpina, 145-148, in North America, So-called, 145; Belli, 147, 148; glabella, 147, \(225, \beta\). Belli, 147; hyperborea, 145-147; ilvensis, 145-147; laetevirens, var., 147
Woody Plants of Maine (Notice), 143

Xanthium, 402, 403; canadense, 403; chinense, 402; echinatum,

402, 403; italicum, 402; macrocarpum, var. glabratum, 403; pensylvanicum, 402; spinosum, 402; strumarium, 402, 403, var. canadense, 403, var. glabratum, 403
Xanthorhiza simplicissima, 140
Xyris, 364
Zamia, 386
Zea, 383
Zigadenus, 206
Zizia Bebbii, 162; trifoliata, 97, 162```


[^0]:    ${ }^{1}$ The cost of reproducing the plates defrayed through a gift from Mr. Bayard Long.

[^1]:    1 Validated by the following Latin diagnosis:
    Ruellia Brittoniana Leonard, caulibus subligneis adscendentibus $3-10 \mathrm{dm}$. altis, deinde ramosis supra subcorymbosis; foliis plerumque lineari-lanceolatis utrinque valde attenuatis petiolatis, subtus lineolatis supra glabris, majoribus $0.8-2.8 \mathrm{dm}$. longis $0.5-2 \mathrm{~cm}$. latis integris vel obscure undulatis; inflorescentiis subcorymbiformibus foliosis pedunculis rigide adscendentibus quam foliis subtendentibus $1 / 3-1 / 2$ brevioribus; bracteis bracteolisque lineari- vel anguste lanceolato-subulatis; calycis segmentis subrigidis anguste lanceolatis attenuatis ad apicem obtusum glabris vel sparsissime hirtellis supra cystolithos gerentibus, segmentis maturis $5-10 \mathrm{~mm}$. longis; corollis $2.5-4$ cm . longis fauce infundibuliforme extus glabro vel sparse piloso supra $0.9-1.5 \mathrm{~cm}$. lato, limbo (expanso) $2.5-5 \mathrm{~cm}$. lato; capsulis lanceolato-fusiformibus glabris $2-2.7 \mathrm{~cm}$. longis, retinaculis $14-24$; seminibus suborbicularibus $2-2.5 \mathrm{~mm}$. diametro.

[^2]:    ${ }^{1}$ North American Flora, Volume 18, p. 167, December 1931.

[^3]:    ${ }^{1}$ Amer. Journ. Sci. ser. 4, i. 348-350, pl. 9 (1896).

[^4]:    ${ }^{1}$ Manual of the Grasses of the United States. U. S. Dept. Agric. Misc. Pub. No. 200. 1935.
    ${ }^{2}$ The Grasses of Pennsylvania. Bur. Pl. Ind. Gen. Bul. 384. Harrisburg, Pa. 1924.
    ${ }^{3}$ Rhodora, 46: 285-305. 1944.
    ${ }^{4}$ The Grasses of Penna., Bur. Pl. Ind. Gen. Bul. 384. Harrisburg. Pa. 1924.

[^5]:    ${ }^{1}$ Rhodora. 35: 317. 1933.
    ${ }^{2}$ Trillia, 9: 1-33. 1925-1930.
    ${ }^{2}$ Cyperaceae in North American Flora 18: (part 3) p. 163. 1931.

[^6]:    ${ }^{8}$ Anp. Mo. Bot. Gard. 21: 483. 1934.

[^7]:    ${ }^{1}$ Sunbury, not found on modern maps of Georgia, was thus described in Lippincott's Gazeteer (1856): "a decayed town of Liberty co., Georgia, on the Medway River, about 30 miles S. S. W. of Savannah".

[^8]:    ${ }^{1}$ Marine Algae of the Monterey Peninsula by Gilbert M. Smith, vii +622 pp., with 98 plates. \$6.00, Stanford University Press. 1944.

[^9]:    RHODORA.-A monthly journal of botany, devoted primarily to the fora of the Gray's Manual Range and regiong foristically related. Price, $\$ 4.00$ per year, net, poatpaid, in funds payable at par in United States curreney in Bonton; single copies (if available) of not more than 24 pages and with 1 plate, 40 cents, numbers of more than 24 pages or with more than 1 plate mostly at higher prices (see 3rd coverpage). Volumes $1-9$ can be aupplied at $84.00,10-34$ at 83.00 , and volumes $35-46$ at 64.00. Some single numbers from these volumes can be supplied only at advanced prices (aee 3rd cover-page). Somewhat reduced rates for complete sets can be obtained on application to Dr. Hill. Notes and short ccientific papers, relating directly or indirectly to the plants of the northeastern atates, will be considered for publication to the extent that the limited apace of the journal permits. Forms may be closed five weeke in advance of publication. Authors (of more than two pages of print) will receive 15 copies of the issue in which their contributions appear, if they request them when returning preof. Extracted roprints, if ordered in advance, will be furnished at cost.

    Addrest manuscripts and proofs to
    M. L. Fernald, 14 Hawthorn Street, Cambridge 38, Mass.

    Subseriptions (making all remittances payable to RHODORA) to
    Dr. A. F. Hill, 8 W. King St., Lancaster, Pa., or, preferably, Botanical Muscum, Oxford St., Cambridge 38, Mass.
    Entered as second-class mattor March 9, 1929, at the post office at Laneaster, Pa., under the Act of March 3, 1879.

[^10]:    A little known botanist. Am. Bot. XXV. 129 (1919).
    The genus Bromelica. Rhodora, XXI. 215 (1919).
    A noteworthy grass. Am. Bot. XXVI. 10 (1920).
    Tilia europaea in Oregon. Torreya, XX. 31 (1920).
    Additions to the flora of Oregon during 1919. Torreya, XX. 37 (1920),
    Hitchcock's "Genera of Grasses of the United States" (Rev.) Torreya, XX. 84 (1920).

    Flower buds two years old. Am. Bot. XXVI. 99 (1920).
    Under which code? Am. Bot. XXVI. 129 (1920).
    Notes on Scleropoa. Torreya, XX. 119 (1920).
    Crepis setosa in Oregon. Rhodora, XXII. 119 (1920).
    Does "saximontanus" mean "Rocky Mountain?" Rhodora, XXII. 194 (1920).

    Additions to the flora of Oregon. Torreya, XXI. 24 (1921).
    Deam's "Trees of Indiana." Rhodora, XXIII. 179 (1921).
    Introduced species of Lathyrus. Rhodora, XXIV. 75 (1922).
    Another lawn pest. Am. Bot. XXVIII. 85 (1922).
    Flowering bamboos. Am. Bot. XXVIII. 129 (1922).
    A new weed from Oregon. Torreya, XXII. 86 (1922).
    Muscari comosum in Oregon. Rhodora, XXIV. 208 (1922).
    The bracken as a poisonous plant. Am. Fern Jour. XII. 125 (1922).
    Additions to the flora of western Oregon. Torreya, XXII. 98 (1922).
    Notes on the ballast vegetation at Linnton, Oregon. Torreya, XXIII. 1 (1923).

    Chase's "First Book of Grasses" (Rev.). Torreya, XXIII. 33 (1923).
    Additions to the flora of Oregon during 1922. Torreya, XXIII. 63 (1923).
    M. W. Gorman. Rhodora, XXIX. 33 (1927).

    Willamette University, Salem, Oregon.

[^11]:    : See Rhodora, xxxy. 15 (1933).

[^12]:    Volume 47, no. 554, including pages 41-64 and plates 851-860, was issued 3 February, 1945.

[^13]:    ${ }^{1}$ Virginian Botanizing under Restrictions, Contrib. Gray Herb. no. clxix. Rhodora, xlv. 357-413, 445-480, 485-511 (1943)-especially pp. 374-377.

[^14]:    ${ }^{1}$ The labels for this station got printed "mostly flat pineland". If any of them chanced to be distributed without correction, the error should be noted.

[^15]:    ${ }^{1}$ For several summers, whenever Long and I reached our old center at Petersburg, it would begin to rain. So regularly did this occur that we were always greeted: "I knew you had come; the drouth has broken".

[^16]:    ${ }^{1}$ For a scholarly discussion see Henrard, Th., A Study in the genus Vulpia, Blumea, ii. 299-326 (1937).

[^17]:    ${ }^{1}$ This type, from Haddonfleld, New Jersey, was collected by C. F. Parker, not C. F. Austin. as erroneously stated with the original description.

[^18]:    ${ }^{1}$ Mariscus pubescens was named for the very pubescent culm and leaves. So far as I can find, nothing like it is known in California. It might have come from western Mexico, the Philippine Islands, Peru or some other Pacific area. Steudel, Syn. Pl. Cyp. 50 (1855) had a Cyperus pubescens from the Island of Bourbon.

[^19]:    ${ }_{1}$ Although the title-page gives the date 1799 , vol. i1. pt. 1, was apparently not issued until early in 1800.-See Schubert in Rhodora, xliv. 147-150 (1942).

[^20]:    ${ }^{1}$ The "Habitat in America boreali" of Willdenow is rendered by Index Kewensis as "Europ.; Ind. occ.; Austral."

[^21]:    ${ }^{1}$ How our M. D's. have slumped! One of them in Cambridge came to see me and asked: "Are there any plants around here which might poison a child? I was called up to see a sick child and I can't make out what is the trouble'". "There's one right there", I replied, pointing to Datura Stramonium. "All right", he said, "I'll treat him for Stramonium-poisoning". Another, also a professor in a distinguished medical school, argued at me throughout the length of a dinner, that there must be some simple formula (like the silver spoon with toadstools) by which any one can tell whether any wild plant is poisonous or edible!

[^22]:    ${ }^{1}$ Unfortunately the application of this rule to Michaux's Flora Boreali-Americana (1803) results in the following mishaps. For the first combinations I offer the superfluous apology that, my name as author of plant-names being abbreviated "Fern.", I occasionally feel justifled in touching up the nomenclature of that group!

    Pteretis pensylvanica (Willd.), comb. nov. Onoclea nodulosa Michx. Fl. Bor.-Am. ii. 272 (1803), as to description and type-specimen preserved in Michx. Herb., not as to synonyms and habitat stated; Sw. Synop. Fil. 111 (1806); Schkuhr, Krypt. Gew. 1. 96, t. 104 (1809). Struthopteris pensylvanica Willd. Sp. Pl. v. 289 (1810). S. nodulosa (Michx.) Desv. Mém. Soc. Linn. Paris, vi² 287 (1827). S. germanica, var. pensylvanica (Willd.) Lowe. Ferns, Brit. and Exot. ii. 138 (1862). Matteuccia nodu-

[^23]:    Plate 879, figs. 1-4, Juncus tenuis Willd. (J. macer S. F. Gray): fig. 1, inflorescence, $\times 1$, of TYPE, after Rostkovius; FIG. 2, characteristic inflorescence, $\times 1$, from Middletown, Rhode Island, July 4, 1909, E. F. Williams; Fig. 3, summit of sheath, showing friable hyaline margin and thin, prolonged and easily shriveled auricle, $\times 5$, from Southington, Connecticut, L. Andrews, no. 189; Fig. 4, mature fruits, $\times 6$, from Knight's Island, North Hero, Ver-

[^24]:    ${ }^{1}$ See Fernald in Rhodora, xxxii. 83-88 (1930).

[^25]:    Woody Plants of Maine.-Under this title a very attractive and authoritative book has appeared ${ }^{11}$, which every New England botanist and student of trees and shrubs will wish to have. The plates at the front of

    1 Fay Hyland and Ferdinand H. Steinmetz. The Woody Plants of Maine, Their Occurrence and Distribution. $72+$ xix pp., map, 7 half-tone plates. University Press, Orono. 1944. Order from Library, University of Maine, Orono, Maine. 50c.

