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PREFACE.

IN this little treatise on the Geometry of the Triangle are

presented some of the more important researches on the subject

which have been undertaken during the last thirty years. The

author ventures to express not- merely his hope, but his con-

fident expectation, that these novel and interesting theorems

some British, but the greater part derived from French and

German sources will widen the outlook of our mathematical

instructors and lend new vigour to their teaching.

The book includes some articles contributed by the present

writer to the Educational Times Reprint, to whose editor he

would offer his sincere thanks for the great encouragement

which he has derived from such recognition. He is also

most grateful to Sir George Greenhill, Prof. A. C. Dixon,

Mr. V. R. Aiyar, Mr. W. F. Beard, Mr. R. F. Davis, and

Mr. E. P. Rouse for permission to use the theorems due to

them.

W. G.
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CHAPTER I.

INTRODUCTION: DIRECTION ANGLES.

1. IN this work the following conventions are observed: the

Circumcentre of ABC, the triangle of reference, will be denoted

by ;
the Orthocentre by J3"; the feet of the perpendiculars

from A, B, G on BG, CA, AB respectively by Hlt
J3"

2 ,
Hs (the

triangle HJIJi.& being called the Orthocentric Triangle) ; the

lengths of AH^ BH^ GHS by /?
l?
&

2 ,
7?,3 ;

the Centroid or Centre
of Gravity by G

;
the in- and ex-centres by I, J,, J

2 ,
73 ;

the

points of contact of the circle I with the sides of ABG by X, Y,
Z

;
the corresponding points for the circle I

I being X^ Y^ Zr

The Circiimcentre of JjJjJg is /, which lies on 01} also

OJ OJ, and the Circumradius of ^IjJj = 2E.
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The mid-points of BC, CA, AB are A', B', C" ; the triangle-
A'B'C' being called the Medial Triangle. Its Circumcircle is

the Nine-Point Circle, with Centre 0' and radius = \E'. the-

Orthocentre of A'B'C' is 0, the Centroid is G, while the in-cen Ire-

is denoted by 1'.

The lines drawn through A, J5, C parallel to BC, CA, AB
form the Anti-Medial Triangle A 1

B
1
G

1
.

Its Circumcentre is JT, its Centroid is 6r, its Medial or Nine-
Point Circle is ABG ; and its Nine-Point Centre is 0.

The letters "n.c." stand for normal or triUnear coordinates-

denoted by a/?y.

The letters
"
b.c." stand for barycentric or areal or triangular

coordinates, denoted by xyz ;
also x = aa, &c., so that

2. Let
_p, g, r be the lengths of the perpendiculars from A, B, C

on a straight line TT'.

Let 1?
<9.

2 , 8 be the Direction Angles of TT'
;
that is, the

angles which the sides of ABC make with TT', these angles

being measured from TT' as axis, and in the same sense.

By projecting the sides of ABC along and perpendicular to.

TT', we obtain 5 . a cos
t
= 0, 2. a sin ^ = 0.

The diagram shows that a sin 6
l
= q r, &c., so that

S.op sin^ = 2.^(3 r)
= 0.

'

a, r

Two sets of direction angles should be particularly noted.

For 01, cos t
= A'X/OI = \ (b-c)/OI oc (6-c).

For OG^if,

cos 0,
= A'HJOH = R sin(5-0)/0//oc (/r-r)/^.
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To express cos O
l
in terms of p, g, r.

Since CH
l
:H

l
B = b cos C . c cos 5,

.'. g.6 cos C+ r.c cos B = (b cos (7+ c cosB)Hl
d

= a(p H
ld')

= ap a.AJI
l
cos

t ;

.*. 2A.cos 0j ap bq cos crcosB;

When H
l
falls outside dd', the right-hand signs are changed.

3. To determine the condition that la. -\-mj3-\-ny = 0, and
I'a + m'ft+ n'y

= may be at right angles.

Let OH 0.2 ,
#3 and <

a ,
<

2 ,
<

3 be the direction angles of the two

lines, so that O
l
= <^ =b \TT.

Let p, q, r, p', 5',
r' be the perpendiculars on the lines from

A, 5, (7, so that Z cc op, Z' oc op'.

Xow ap' sin <j+ ... = p' (%' r
') + ' 0.

And 2A . sin fa = 2A . sin (^ |ir)
= 2A cos 0,

= ap bq cos (7 cr cos 5.

.;. ap'(apbq cos Gcr cos 5) + ... = 0,

or ZZ' -f mm'+ ww' (mn
r+ m'w) cos J. . . .

= 0,

which is the required condition.

4. To determine TT, the length of the perpendicular on TT' from
a point P, whose b.c. are (, y, ), in terms of p, q, r.

Since P is the centre for masses at A, B, C proportional to

so that TT is determined when p, q, r are known.

Note that the ratios only of #, ?/,
z are needed.

5. To determine TT, when T21 '

is Za + m/8+ wy = 0.

Put Z
2
+... 2mwcos A ... = D2

.

Now Z oc ap ^ k.ap.

Also 2 (a
2/ gr . 26c cos ^1)

= 4A2

,

and %+ y+ z = aa+bft+cy = 2A.

Hence TT = (Za+ m/3+ ny)/D.

A form of little use, as it is almost always difficult to

evaluate D.
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6. A straight line TT' is determined when any two of the three

perpendiculars p, q, r are given absolutely. It follows that

there must be some independent relation between them.

From elementary Cartesian Geometry we have

2A = Ap.qr+ Bq.rp+Cr.pq
= p.a cos O

l+ q.b cos #
2 4- r . c cos 3

/. 4A2 = op.2A cos #!+ ... = ap (apbq cos C cr cos P) -f ...

= S (ay-26tfcos-4.gr) = 2{ay-(-a
2+ Z>

2 + c
2

)grj.

This is the relation sought.

When TT' passes through A, p = 0, so that

&
2

g
2+ cV2 2bc cos A.qr = 4A2

.

7. The points P, P' lying on TT' have absolute n.c. (, /?, y) and

(a//3', y'). It is required to determine d, the length of PP', in

terms of these coordinates.

We have 2
{ o-p

2-
(
- a2 + 6

2+ c
2

) gr }
= 4A 2

.

But a2 = 2A (cot B + cot C),

and a2+ 6
2
-i-c

2 = 4A cot A.

Hence (q r)
2
cot ^4 + (r p)

2
cot B+ (p r/)

2
cot = 2A.

Now
^7

r = a sin $
a

a. (a a!)/d.

Hence

.d a = (a-a')
2 sin 2A + (P-fi')

2
sin 27?+ (y-y')

2
sin 2(7.

8. To prove thatv when TT' is a circumdiameter,

op/JB = b cos 3+ c cos #2 .................. (G)f

From (2) we can express the right side in terms of p, q, r.

Then apply the condition a cos A .p-}~ ... = 0, and the result

follows.

Hence prove that

for Of, p = R/OI.(b-c)(8-a)/a ;

for OF, p = R/OH. (6
2-c2

) cos A/a.

The equation to TOT', which is p.aa.+ ... = 0, now takes

the form (fr cos Os+ c cos
2) a+ = 0.

For 01, (6-c)(*-a).tt+... =
[more useful that (cos B cos C) a+ ... = 0].

For OGH, (&*-c
s

)cos4.a+... = 0.

t For theorems and proofs marked (G) the present writer is responsible.
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9. The results just obtained are useful in investigating some

algebraic relations of a quadrilateral, which has BC, CA, AB
for three of its sides : the fourth side being PQR.
The circumcircles of the four triangles AQR, BRP, CPQ,

ABC, have a common point (call it If) so that the parabola
which touches the four sides of the quadrilateral will have M
for focus

;
while the four orthocentres lie on the directrix, which

is also the common radical axis of the circles (AP)(BQ)(CR).
The four circumcentres 0, Olt 2 ,

0.A are known to lie on a

circle (call it the Centre Circle) which also passes through If.

Let p be the radius of this circle and pv p2 , p& the radii of

AQR, BRP, GPQ.
Since the angles at Q, R are #2 , 3 ,

2p l
sin S

= AQ (in circle AQR) p/sin 2 ;

/. Pl
= p sin Q

l
. l/(2 sin ^ sin 2

sin 3 )
= m .p sin 6V

In circle AMQR, AM = 2Pl sin ARM,
;md in BMRP, BM = 2p2

sin (BRM or ARM) ;

.-. AM : BM : CM pl
: pz : pa

= p sin #
a

: q sin 6.
2

: r sin 3 ;

therefore the n.c. of M are as

l/p sin OH l/q sin S , 1/r sin 8 ,

or a/p(qr),&c. or a/(l/q l/r). (R.F.Davis)
1-Iote that in the circle AMQR,

QR = 2pl
sin A cr, ap sin Or
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10. The join 00, of the centres ABCM, ARQM is perpendi-
cular to the common chord MA,

Similarly 002 is perpendicular to the chord MB.
.-. L 0,00, = AMB = ACB (in ABCM) = C;

.'. 0,0,0,= C, ...;

and the triangle 0,0,03 is similar to ABC. But, from
MA : MB : MO = Pl : p, : Pt

= MO, : MO, : MO,.
Hence M is the double point of the similar triangles ABO,

0,0,0,.
Since 0,0 is perpendicular to MB, and 0,0, to MR,

.'. Z 00,0, or OMO, = BMR = BPR (circle JBMPR) = 0,.

Hence the chords 00,, 00,, 00, in the Centre Circle subtend

angles 1} 0,, 3 ,
so that

00! : 00
2

: 003
= sin^ : sin0

3 : sin 8 .

11. To determine the equation of the 4-orthocentre line. The
equation to PQR being p. aa + q.bfi -\-r.cy

= 0, the point P is

determined by a = 0. q.bp+ r.cy = 0.

The perpendicular from P on An proves to be

cos A . aa/r -f (c/p a cos B/r) ft+ cos A . cy/p = 0,

and the perpendicular from R on AC is

cos A . aa/q + cos A . bft/p+ (b/pa cos C/q) y = 0.

By subtraction their point of intersection is found to lie on

or p sin.0, cos A .aa+ ... = 0,

or cos.4/a'.aa-f ... = 0,

or p(qr} cos^.a+ ... = 0. (M is a'/3V)

From the symmetry of this equation the line clearly passes
through the other three orthocentres and is therefore the
directrix of the parabola.
For example, let PQR be xla?-\-... = 0, which will prove to

be the Lemoine Axis (128).*
Here p cc I/a

2
: so that the focus of the parabola, known as

Kiepert's Parabola, has n.c. a/(6
2

c
2

) &c., the directrix being
(6

2
c
2

) cos A.a+... = 0, which is OGH.
The mid-points of diagonals lie on

( 1/p + l/g-f l/r)aj+... = 0, or cotA.x+ ... = 0,

the well known Radical Axis of the circles ABC, A'B'C', &c.

* The bracketed numbers refer to sections.
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12. To determine p, the radius of the Centre circle. (G)
M0l

= p l
= m.p sinflj, so M0

2
= m.q sin02 ,

and O^MO^ = 0,0.60.2 C;
sin2 O

z 2pq sin 6
l
sin #

2 cos G

pY _ (qr}(p-r} a2+6 2-c 2

J

ab ~ab~~

But since Z O
a 3 2

= 0, O^ = 2p sin (7,

.'. p = mB.k^/abc.

To determine the length of AP, one of the diagonals of the

quadrilateral.
The distance d between (a/?y) and (a'fl'y') is given by

^2

.A/B
2 = (a- a')

2
sin 2A+.... (6)

Now, for P, a = 0; ^.fc^+ c.ry 0;

... =(_r)/( 3 -r).2A/6, y = gr/(g-r).2A/c.
Also for ^1, a' = 2A/a, )8'

= 0, / = ;

+ <fl(qry. 4A
2

/c
2

. sin 20.

Hence .4P2

(g-r)
2 =

q*b
2+ r'

2
c*

13. Let o>
15

w.
2 ,

a)5 be the centres of the diameter circles, or

mid-points of AP, BQ, CR. To determine the length of ci^to,.

Forcu,, a1==A/a, ft = (_r)/(gr-r) . A/6, 7l
= gr/(g-r).A/c.

For <o
2 ,

a
2
= r/(rp) . A/a, /32

= A/6, yt= ( -p)/(rp) . A/c.

Now, a^V.A/E
2 = (aa

a
2)

2 sin

/. 2 . w,V/A - _J^
,

. cot J. + <y8

X9 . cot

(p-rr (^-^)
2

,
Cp

Hence, since cot .4 ( ^+

D = a sin $
a

I 6 sin ^
2

I c sin 3
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MEDIAL AND TRIPOLAR COORDINATES.

14. Medial Coordinates. If A', J5', C' are the rnid-points of

BC, CA, AB, the triangle A'B'G' is called the Medial Triangle
of ABO ;

its circumcircle A'B'G' is the Nine-Point Circle whose
centre 0' bisects OH.
For every point P in ABO there is a homologous point P'

in A'B'G', such that P' lies on GP, and GP = 2. OP'.

Let a/?y, a'fi'y' be the n.c. of a point P referred to ABC, A'B'C'

respectively.
A diagram shows that a -fa' = hr

.'. aa+ aa' = i.a^ = A = 4. area of A'B'C'

= oa

/. aa = b(3' + cy', &c.,

so that 2aa' = aa+ bft+ cy,

or, in b.c.,

a; = y+ s', 2^' = % + y + z.

For example, the ^4'5'C" b.c. of the Feuerbach Point F being

a/(b c), 6/(c ), c/(a 6), to determine the J.0 b.c. of this

point.

Here #' oc a/(b c), &c.
;

.-. a; = ^+^ oc b/(ca) + c/(ab) oc (6 c)(s a)/(c a)(a b)

ac (b c)*(s-a).

If the J.'5'C' b.c. are to be deduced from the ABC b.c., then

oc _(6-c)
2

(s-a) + (c-a)
2

(

oc a(a ?>)( c) oc a/(6 c).

15. If the ABC equation to a straight line is lx+ my + nz = 0,

the A'B'C' equation is

l(y' + z') + ... = 0, or (w+ w)aj'+... = 0.

If the A'B'G' equation to a straight line is I'x'+ m'y'+ n'z' = 0,

the ABC equation is

+ ... = 0, or ( Z' +mf+ w')a' + - = -

8
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Example. The well known Radical Axis whose ABC equation
is cotA.x-\- ... = becomes

(cot B+ cot C)x' + . . . = or aV+ b*y'+ cV - 0,

when referred to A'B'C'.

If H
lt H,, H3 are the feet of perpendiculars, the ABC

equation to H.
2
HS is

cot^.a-+ cot.B.?/ + cot0.z = 0.

Therefore the A'B'C' equation is

(cot B + cot C) x+ (cot 6' cot 4)y + ( cot ^ + cot B)z = 0,

reducing to a~x-\- (a
8

c
2

) y+ (a
2

fr
2

) .

Returning to the quadrilateral discussed in section (13) we
see the b.c. of o^ given by a, = A/a, &c.

Hence the ABC equation to the mid-point line of the

quadrilateral is ( I/p+ 1/q + 1/r) x + . . . =0.
The 4''C' equation therefore is

x'/P+ y'/q+ z'/r 0, or aqr.a+ ... = 0.

The perpendicular on this from J/ is therefore given by

TTj
= aqr.h-i/D,

where D2 = 2 {
a2

g
s
rs

-_p
2

gr (
- a2

-f 6
2 + c

2

) }
= k\

16. To determine the A'B'C' equation to a circumdiameter

TOT', whose direction angles are 1} 0^ Os
.

Letjp', 7',
r' be the perpendiculars from A', B', C' on TOT'.

A diagram shows that

p' = OA' cos 6
l
= R cos J. cos 6r

Hence the required equation is

cos A cos 6
l

. x' -H . . . =0.

Example. For OI
? cos^ = %(b c)/OL

Hence the A'B'C' equation to 01 is

(b c) cos ^1. #'+... = 0.

The J..B(7 equation to the circumcircle ABC is

a/a+ ... = 0, or a2

/#+... = 0.

Therefore its A'B'C' equation is

a2

/0/+ ,') + ... = 0,

or aV+6y+ cV + (a
2+ 6

2+ c
2

) (yV+ z'x' 4- -''?/')
= -

Referred to A'B'C', the equation of the Nine-Point or Medial

Circle is a2
#'+ ... = 0.
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Referred to A BC, this becomes

reducing to the well known form

a cos A.d:+ ... a3 ... = 0.

17. Tripolar Coordinates.

The tripolar coordinates of a point are its distances, or ratios

of distances, from A, J5, C.

To determine the tripolar equation to a circumdiameter whose
direction angles are

T , 2 , 3 .

Let P be any point on the line, x, y, z, the projections of OP
on the sides.

Then, if r
jt

r2 ,
rs be the tripolar coordinates of P,

r
2

2
r3

2 = a.2x = a. 2. OP cos
t ,

and (rf^ftrMvf-rflrn+\r*-rf)rf = 5

.'. a cos 0! . rj
2
4- 6 cos

2
. r

2

2
4- c cos 3

. r3
2 = 0,

and a 0080!+... = 0.

So that an equation of the form

lr*+ mrf+ nrs

* = 0,

where I+m + n = 0,

represents a circumdiameter.
Note that, for every point P or (r15

r.
2 ,

rs) on the line, the

ratios r
2

2
r3

2
: r3

2
r

a

2
: r/

2
r,

a are constant
; being, in fact,

equal to the ratios a cos 0j : b cos $2
: c cos 3 .

The tripolar equations to 01, OGH should be noted.

(i) The projection of 01 on BG J (& c) ;

.'. cos 0j cc (bc) ;

and the equation to 01 is

o(fe-c)r1

2
+... =0.

(ii) The projection of OH on BG
= (M~C

a

)/2a;
and the equation to OH is

18. To find the equation to a straight line with direction

angles Olt 2 , 3 ,
and at a distance d from 0. (Gr)

Transferring to Cartesian coordinates, we see that the equa-
tion differs only by a constant from that of the parallel
circumdiameter.
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It must therefore be of the form

a cos 6
l

. rf + . . . = k.

Let A', B', C' be the mid-points of the sides, and let A'O meet

the line in A".

A

Then if (p1? p2 , p3) be the coordinates of A",

k = a cos O
l

. pf 4- 6 cos 0., . p2

2
4- c cos 3 . p2

2

[p2
= p3]

(pl

z

p./)

= acos^.Sc.C'lf
= a(OD/OA")2c.OA"sinB
= cZ . 2ac sin />'

Hence the required equation is

a cos . . . = 4<iA.

19. When (/4-m+ w) is not zero.

To prove that if Q -be the mean centre of masses Z, m, at

^t, 5, ;
or if (Z, m, w) are the b.c. of Q, then, for any point

P whose tripolar coordinates are (rl5
r
2 ,

r3 ),

Zr
1

2+ mr2

2
-f nrs

2 = Z.^!Q
2+ m. J5Q

2+ w. CQ2+ (l+m+ n) PQ*.

Take any rectangular axes at Q, and let (c^Og), (^i?>2), (^2)1
be the Cartesian coordinates of .4, -B, (7, P.

Then ZTY*
= I (al -x)~^-l(a t,-yY
= LAQ^l.PQi -2x.la

l-2y.lar
But, since Q is the mean centre for masses Z, wi, TO,

-i
-f w^ = ;

la
z + m62 -H wcs

=
I
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.'. Irf +mrf+nr* = I . AQ2

-}-m . BQ2 + n . CQ2+ (Z +m+ w) PQ 2
.

This, being true for any point P, is true for
;

n) OQ2

;

The power II of the point 'Q for the circle ABU is K2-OQ2

or OQ 2
JR

2

, according as Q, lies within or without the circle.

If P describes a circle of radius />(= PQ) round Q, an internal

point, then the tripolar equation to this circle is

If the circle cuts the circle ABG orthogonally, then

OQJP+rt
so that the circle becomes

Zr/
2+ mr/+ nr3

2 = 0. (R. F. Davis) .

Examples.

(A) The circumcircle :

Here p = JK, QO = 0, Z oc sin 2^1
;

(B) The inscribed circle:

p = r, QO8 = I02 = E2

-2Sr, Z oc a
;

/ . ar
T

2+ fer
2

2+ crs
2 = 2A (r -f 2E) .

(C) The Nine- Point circle :

p = R- Q& = JOB
2 = R--2R cos ^l cos B cos (7.

Since the n.c. of the Nine-Point centre are cos (B (7)....,

the b.c. are sin A cos (B C1

),..., so that

Z oc sin 2 + sin 2(7;

/. 2 (sin 2B+ sin 2(7) r
a

s = 4A (1 4- 2 cos ^4 cos 5 cos C).

2O. To determine the point or points whose tripolar coordi-

nates are in the given ratios p : q : r.

Divide BG, CA, AB internally at P, Q, R and externally at

P', Q', R', so that

BP : CP = q : r = BP' : GP',

GQ:AQ = r:p=GQr

: AQ',

AR : BR = p : q = AR' : BR'.

Let Wj, w
2 ,

<o
3
be the centres of the circles described on PP',

QQ', RR' as diameters, and let the circles (PP), (QQ) intersect

at T, T'.
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Then since GPBP' is harmonic, we have, for every point T or
T' on the circle PP'

a'

BT : CT = BP : CP = q : r - BP r

: GP' = BT' : CT',

and TP, TP' bisect the angles at T, while T'P, T'P' bisect those
at T'.

So for every point T or T' on the circle (QQ
r

)

GT : AT ^ CQ : AQ = r : p, Ac.

Hence at T, T' the points of intersection of the circles (PP'),

(QQ
f

) AT: JIT : CT = p: q:r = AT' : BT' : CT'.

The symmetry of the result shows that T and T' lie also on
the circle (BE').
Hence there are two points whose tripolar coordinates are as

p : q : r, and these points are common to the three circles

(QQ')> (RR').

Since (GPBP'} is harmonic,
.-. WlP2 = (>,. Wl O.

Hence the circle (PP
1

), and similarly the circles (QQ'),
'), cut the circle ABG orthogonally, so that the tangents

from to these circles are each equal to R.

It follows that

(a) lies on TT', the common chord or Radical Axis of

the three circles (PP';, (W), (RR
1

).

(b) OT.OT' = E\ so that T, T are inverse points in circle

ABC.

(c) The circle ABG cuts orthogonally every circle through
T, T' including the circle on TT' as diameter, so

that wT 2 = Ow2 B2

,
where w is the mid-point of

TT'.
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(d) The centres o^, o>
2 ,
w

3 lie on the line through w, bisect-

ing TT' at right angles.

21. The tripolar coordinates of Limiting Points. (Gr>

Since OT . OT = _R
2

,
the circle ABC belongs to the coaxal

system which has T, T' for Limiting Points, and therefore

O^CD^ for Radical Axis
;
so that, if 7r

a , 7r.
2 ,

7r3 are the perpen-
diculars from A, J5, G on a>

1
(o

2
o>

3 ,
we have by coaxal theory

2.0T.7TJ =~AT* or ^ocp
2

.

Hence the equation to the Radical Axis w^Wg is

p
z

x-\-q
2

yi-T'z = 0.

And conversely, if the Radical Axis be

Xx + /XT/ + vz = 0,

then the tripolar coordinates of T or T' are VA, v'/x, \/v.

Examples.

(1) For the coaxal system to which the circle ABC and the

in-circle XYZ belong, the Radical Axis is

(s a)-x+ ... = 0.

Hence the tripolar coordinates of the limiting points lying on
01 are as (s a), ( &), (sc).

(2) For the circles ABC, 1^1* the Radical Axis is

a+ /?+ y = or x/a + . . . =
;

.-. p : q : r = I/ Va : I/ Vb : 1/v/c,

the limiting points lying on 01.

(3) The circle ABC and the Antimedial circle A
1
B

1
C

1 (1)

have Radical ALxis a?x+ b
z

y+ (?z =
;

/. p : q : r = a : b : c,

the limiting points lying on OGH.

(4) The circles ABC, A'B'C', Polar Circle, &c., have for their

common Radical Axis

cot A . x + cot B . y -f cot C . z =
;

.*. p : q : r = A/cot J. : v/cot 5 : \/cot 0,

the limiting points lying on OGH.



CHAPTER III.

PORISTIC TRIANGLES.
22. LET I be any point on the fixed diameter DD' of the circle

0(R). With centre D and radius DI cut the circle at e, and
e, ;

let 6,6, cut DD' at e. Let 01 = d, and le = r.

Then De+ el+IO = R, and J>e = De*/2R = DP/2R
.'. (Rd)*/2B+ r+ d = E

;

,
or OI 2 = d = R--2Br.

(Greenhill)

L'

An infinite number of triangles can be inscribed in the circle

0(R) and described about the circle /(r), provided

On 0(JJ) take any point A, and draw tangents AB, AC to
/(r). Let BI, CI meet 0(Ej in 5', C" respectively.
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Then, since BI.IB' = &-OI* = 2Br, and #/ = r/sin ;

.-. B'l = 2E sin = 7?M
So C'l = C'A.

Hence B'C 1 bisects AT &t right angles, so that

L B'C'A = 'C"I or 'C"(7
;

.'. BC touches I(r).

It follows that by taking a series of points J along DTJ and

calculating r from r = (JS
3

d~)/2R, we have an infinite

number of circles /(r) ;
each of which, combined with 0(7?),

gives a poristic system of triangles.

23. The Radical Axis of 0(R) and I(r).

Let .L, U be the Limiting Points of the two circles, and let

E
l.E/2,

the Radical Axis, cut 01 in 1J7.

Bisect 01 in &.

Then W- R3 = -E/^
2 = EP-i* t

by ordinary coaxal theory ;

= (2#
2

-2fir-r*)/2d,

and J5I = -
Jd = (2Rr-v*)/2d.

Also ^i2 = ^i 2 -r2 =

24. We now proceed to discuss some points which remain

unchanged in a system of poristically variable triangles ABC.

(a) The inner and outer centres of similitude (8l
and S2 )

of the circles ABC, XYZ.

(6) The centre of similitude (<r) of the homothetic triangles
XYZ and 1,1Jy

(c) The orthocentre (Ht) of the triangle XYZ.

(d) The Weill Point (^), the centroid of XYZ.

25. (a) To determine the distances of Sl and $2
from the

Radical Axis.

Since 01 is divided at Slt
so that

03, : 13, = E : r.
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So that the circle

known theorem.
is coaxal with 0(R) and I(r), a well

26. To show that <r, the centre of similitude of the homothetic

triangles XYZ, 1^1^ is poristically fixed, and to determine its

distance from the Radical Axis.

Since the circumcentre of XYZ is J, while the circumcentre
of /jJa/s is /, lying on 01, and such that OJ = 01;

.'. a- also lies on 01
\

and al/aJ = ratio of circumradii = r/2R = constant
;

.*. <r is a fixed point.

Again a-I/IJ = r/(2R r), from above
;
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And EI=r(2R-r)/2d.
.-. Ea . El = EL\ (Greenhill)

so that the circle Jo- belongs to the coaxal system. Note that

the homothetic triangles XYZ, J^/g slide on fixed circles, the

joins XIlt Y72 , ZI^ passing through the fixed point IT.

It will he convenient here to determine the n.c. of the point a.

From figure p..., drawing cro-j perpendicular to 7, (7, and

noting that X and 7| are homologous points in XYZ, ^ZjJg, we

have a-X/a-I-i
= ratio of circumradii of the triangles
= r/2R ;

.-. ao-j/JjX, = a-X/I.X = r/(2R-r).

0-0-,
= a = r/(2R-r).rl ;

.'. a : ft : y = TI : r, : r,
= l/(s-a) : l/(s-b) : l/(*-c).

Note also that, since 7 and J are the circumcentres of XYZ,

vI/IJ = r/(2R
-

r) ,
and IJ=2.0I=2d-,

.'. o-I= 2dr/(2Rr).

27. To prove that 23",, the orthocentre of XYZ, is poristically

fixed, and to determine its distance from the Radical Axis.

Since H
{
and I are the orthocentres of XYZ, j^/s/j,

/. jffi lies on o-J, that is, on 01;
.'. crHJal = r/2R, a fixed ratio

;

/. Hi is a fixed point.

Again, since o-J = 2dr/(2R r), (26)

Note also that

7T r 7?7 7?7T
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To determine the n.c. of JET,-.

The orthocentre JT, of XYZ is the centre of masses tan X,
tan Y, tan Z placed at -V, Y, Z.

/. a oc tanY. X Y sin Z+ tan Z. ZX sin Y,

oc cot B cos2

|6
Y+ cot J(7 cos2

J5,

/(*-a), Ac.

28. TAe JF^ZZ

When an infinite number of n-gons can be inscribed in one
fixed circle, and described about another fixed circle, the mean
centre of the points of contact X, Y, Z, . . . with the inner circle

is a fixed point, which may be called the Weill Point of the

polygon (M'Clelland, p. 96). For a triangle the Weill Point is

Gh the centroid of XYZ.
In the triangle XYZ, since / is the circumcentre and /T, is

the orthocentre,

/. Gf is a fixed point on 01, and ^,-H, = 2.GJ.

To determine the n.c. of 6r,.

Since G
t
is the mean centre of masses 1, J, I at JT, Y, Z.

aoc Yoc cos* cos

29. We now proceed to discuss the loci of some well known
points related to ABC, which are poristically variable :

(a) The Feuerbach Point F,

(6) The Centroid G,

(c) The Orthocentre H,

(d) and (e) 0' the circumcentre, and I' the in-centre of

the Medial Triangle A'B'G'.
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Draw Hh, Gg, I'k parallel to O'l:

(a) The point F moves alonsr the in-circle,

(6) G describes a circle, for OG = f . 00' ;

/. 00 = f.OI;
thus # is fixed, and

6ty
-

|.0'I= i(fi 2r) = constant,

(c) H describes a circle, for

OH = 2. 00'; /. Oh = 2. 01,

so that & is fixed, and

Hh = 2.0'I = R2r = constant,

(d) 0' obviously describes a circle, centre I, radius

(4B-f),

(e) I' describes a circle.

For since I, I' are homologous points in the triangles A BO,
A'B'C', whose double point is 6r,

/. IGT is a straight line, and GI-2. GF,
/. Ik = f . 10, so that fc is a fixed point, and

&/' = f . Gg = %(R-2r) = /O'.

3O. (/) The Nagel Point. This point also belongs to the

series whose circular loci may be found by inspection.
Let XIx be the diameter of the in-circle which is perpendi-

cular to BC, and let the ex-circles /
15
/

2 ,
/

3 touch BC in X^
OA in Y

2 ,
AB in Zz respectively.

Then BX, = sc, CX
l
= sb,

so that the equation to AX
l
is

y1(8-1) = zl(s-c),
and thus AX^ BT^ CZS concur at a point N whose b.c.'s are

as (s a), (s 6), (sc).

This point is called the Nagel Point of ABC.
If the absolute n.c. of N are a/2y, then

aa/0 a) = ... = 2A/s;
a = h

l
. (s a)/s.

Draw NP, NQ, NR perpendicular to AH,, BK2 ,
CHS ,

then

AP = h, a = h^a/s = 2r.

.'. the perpendiculars from N on B-f!^ }A^ A
VB^ the sides

of the anti-medial triangle A^B-^G-^ (...) are each = 2r.

Hence N is the in-centre of the triangle A 1
B

1
C1

.
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The two triangles ABC, A
1
B

1
C1 have G for their common

centroid and centre of similitude, / and N for their in-centres,
and H for circumcentres, 0' and for Nine-Point centres.

The corresponding joins are parallel, and in the ratio 1:2.

Thus ON = 2 . 0'l = E-2r,
and ON, O'l are parallel.

.*. N describes a circle, centre 0, radius = B 2r.

31. An additional note on this interesting point may here be

interpolated.
Since AB, AC are common tangents to the circles / and /

15

and Ix, ZjX, are parallel radii of the circles, drawn in the same

direction,

/. AxX
l
or AxNX

l
is a straight line.

And since AP = 2r = Xx,
.'. PX is parallel to AxNX

l ;

/. PXX^ is a parallelogram, and PN XX^ = b c.

Again XI = Ix and XA' = A'X
l

/. A'I is parallel to AN and PX.

Let /P meet BC in T.
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Then TH, :TX = TP:TI=TX: TA',

= TH..TA'.
.-. T lies on the Radical Axis (common tangent) of the

in-circle and Nine-Point circle.

32. The Gergonne Point.

This is another point whose poristic locus is a circle.

Since BX = s b and GX = sc,
the barycentric equation to AX is y(s b) = z(s c), so that

AX, BY, CZ concur at a point whose b.c. are I/ (s a), ....

This point, the Centre of Perspective for the triangles ABC
and XYZ, is called the Gergonne Point, and will be denoted

byM.
To determine the absolute b.c. of JSf,

a? 2A 2A 3 2A'2

The join of the Gergonne Point M and the Nagel Point N
passes through jST

t
. (G.)

Proceeding as usual, the join proves to be

a(b c)(s a).a;4-... 0,

which is satisfied by the n.c. of H
t ,
which are (&-f c)/(s )

The join of JH and 6r passes through <r. (G.)

For this join is (b c)(s a) .aa+ ... 0,

which is satisfied by the n.c. of (r, which are l/(s a) ....

33. In the poristics of a triangle the following formulae are

often required.

(1) A = ra. (2) abc 4AR =
Put s a = $], &c. : so that a = s

a

(3) sl8& = AV* = r2*-.

(4) l/^ + 1/^+l/*, = ifi+v* r
3)/A

(5) Va+ ...

(6) aX-."

= s . r (4E -h r) + 3r2
5 = 4r (E 4-
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34. * The poristic locus of the Gergorme Point If is a circle

coaxal with (R) and I(r). (Greenhill)

Let TTj, 7r
2 , TT, be the perpendiculars from A, B, C on the

Radical Axis E^E^.
The power of A for the circle J(r) = (s a)".
But by coaxal theory this power is also equal to 2ir^d ;

.-, ^ =
(s-a)

2

/2d, &c .

But, if TT be the perpendicular on the Radical Axis from any
point whose b.c. are (x, y, z), then

(X+ y+ Z) 7T = 7TrC -f 7T
2y -f 7T

3Z.

Hence, for If, whose b.c. are as 1/s,, &c.,

and, finally,

Again, the power II for the circle ABC of a point whose b.c.

are (x, y, z) is given by

ncu'iiz -f- o'zx -f- c'xu //?A\=
/ . .. , ..v2

.Hence, for M, whose b.c. are

II = (a>sl +...)sl
*

Of. the power of M for the circle ABO varies as the distance of

M from the Radical Axis. Hence M describes a circle coaxal

with 0(K) and f(r).
[f m is the centre of this circle, then

II = 2 . Om . TT, by coaxal theory ;

4(E+ r) ,
/. Om ;^^ '

.d.

4R+r
It may be shown that the radius of the M circle = r

^

~
,

but the proof is long.

* The original proof belongs to Elliptic Functions. For the proof here

given the present writer is responsible.



CHAPTER IV.

THE SIMSON LINE.

35. FROM any point Ton the circumcircle ABC, draw perpen-
diculars TX, TY, TZ to the sides BC, CM, AB. Produce TX
to meet the circle in t.

Then, since BZTX is cyclic,

L BZX = BTX or BTt = BAt
.'. ZX is parallel to At.

So XY is parallel to At.

Thus XYZ is a straight line, parallel to At.

It is called the Simson Line of T, and T is called its Pole.

24
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To draw a Simson Line in a given direction At.

Draw the chord tT perpendicular to BC, meeting BC in X.
A line through X parallel to At is the Simson Line required,
T being its pole.

Let AH19 AO meet the circle ABC again in a, a'; it is required
to determine the Simson Lines of A, a!, a.

(a) For A, the point X coincides with H
lt while Y and Z

coincide with A
;
therefore AH

l
is the Simson Line of A .

(b) Since a'BA, a'GA are right angles, it follows that BC is

the Simson Line of a'.

(c) Drawing ay, az perpendicular to AC, AB. it is at once

seen that yz, the Simson Line of a, passes through Hlt and that

it is parallel to the tangent at A.

36. To prove that XYZ bisects TH (E orthocentre) .

If Q be the orthocentre of TBC,
TQ = ZRcosA AH,

and QX = Xt Ax,

since At, XYZ are parallel ;

.-. Hx=TX;
.'. HxTX is a parallelogram.

/. XYZ bisects TH, say at h.

It follows that h lies on the Nine-Point Circle.

TOT' being a circumdiameter, prove that, when the Simson
Line of T passes through T', it also passes through G.

(W. F. Beard)

37. Let o-,,
o-

2 , 0-3 be the direction angles of XYZ, taking
BXZ = ov
To prove that the base angles of the triangles OAT, OBT,

OCT are equal to the acute angles which XYZ makes with the

sides of ABC; i.e., to o^, o-
2 ,

<r3 , or their supplements, as the

case may be.

L OAT (or OTA) = fr%.AOT
= frAtT = \K- YXT = BXZ = ov

A relation of fundamental importance.
To determine QX or Xt,

Xt Bt.Ct/2R,
and Bt 2R sin BA t = 2R sin BZX 2R sin <r3 ;

.'. QX = Xt = 2R sin <r
2 sin crs .
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38. To determine the n.c. of T, the direction angles of XYZ
being o-j, o-

2 ,
o-3 .

TA = 212. cos OTJ. = 2# cos o-, ;

/. a . 2R TB . TC = 4<R- cos <r.
2
cos cr3 ;

a = 2R cos o-., cos cr3 ;

so that the n.c. are as sec <r
l

: sec<r2
: seco-3

.

To determine the segments YZ, ZX, XY.
In the circle AYTZ, with AT as diameter,

YZ = AT sin A = 2R cos <r
l

. sin yl = a cos ar

39. To determine p, q, r, the lengths of the perpendiculars
from A, B, C on XYZ, the Simsori Line of T.

From (37) Jft = 2R sin o-, sin o-
8 ,

and / ^lfX = ZXT - JTT
-

o-j ;

.-. p = JC^ . gin AtX = 2R cos <r
l
sin (r2 sin o-3

cc cot o^!.

The equation to XYZ is therefore

cot <T! . a; + cot <r
2

. y -t- cot 0-3.2;
= 0.

To determine TT, the length of the perpendicular TU 011 the

Simson Line of T.

TT = TU = TX sin TXZ = 2R . cos o-2 cos <r
s cos o-^

Or, since 2
7
^1 27t cos o-

15

4O. Let a parabola be drawn touching the sides of ABG and

having T for focus. The Simson Line XYZ is evidently the

vertex-tangent and U is the vertex.

Since XYZ bisects TH, the directrix is a line parallel to

XYZ and passing through H.

Kiepert's Parabola. Let T be the pole, found as in (35),
of the Simson Line parallel to the Euler Line OGH. Let the

direction angles of OGH be 15 2 , 8 ,
then

cos O
l

oc (6
2

c
2

)/a, &c. ;

so that the n.c. of T are a/(6
2

c
2

)....

The directrix will be OGH,

or (6
s

c
2

) cos A.a+....
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41. Denote the vectorial angles OTA, OTB, OTC, OTU by
^n ^j' ^3< ^ respectively, so that <

x ,
<

2 ,
<

3 are equal to <rlt a
2 ,

OT3 or their supplements.

To prove that S = fa+ tfr.-,
<

3
.

Since TtT' = JTT ; .-. arc Ct = BT'

.'. L tTC = BTT' = <, ;

.-. T'Tt = T'TC-tTC - c
3-4>2 ;

... ITT-S = TYZ = ZXT+ T'TX = (^r-^) + 4>3 -4>2 5

/. 8 = ^4-<| <
8.

Making the usual convention that <
s is to be negative when

(7 falls on the side of TOT' opposite to A and B, we may write

42. Consider the quadrilateral formed by the sides of ABC
and a straight line PQR.
The circles ABC, AQR, BRP, CPQ have the common point

M", and their centres 0, 0,, 2 , 3 lie on a circle called the

Centre Circle, passing through M. (9)

Let
15 2 , 3 be the direction angles of PQE.

If pl
be the circumradius of AQR, the perdendiculars from Oj

on AQ, AR are
/o 1

cos E, /c x
cos Q.

So that, if a, /?, y are the n.c. of
I5

ft :y = cos jB : cos Q = sec 0.2 : sec 3

Hence A0
15 BO^ CO.A meet at a point N whose coordinates

are (sec015
sec

2 , sec03 ).

And, since -^- + -^-7-+-^ = o cos ^+ ... = ; (2)
sec ^ sec 0, sec 8

/. JV lies on the circle ABC,
and is the pole of the Simson Line parallel to PQR.

Again L 0,NO, = -rrANB

(BNO% being a straight line)

= TT
;

and since 00
2 , 00., are perpendicular to MA, MB,

.-. 0,00, = AMB = 0;

so that N lies on the Centre Circle, and is therefore the second

point in which the Centre Circle intersects the circle ABC.
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43. We will now deal with pairs of Simson Lines.

T and T' being any points on the circle ABC, it is required
to determine 8, the point of intersection of their Simson Lines.

Let 0J0203 be the direction angles of the

Simson Lines of T, T', and of the chord TT'.

Then, if a, /?, y are n.c. of 8,

a = SX sin <r
l

XX' sin o^ sin cr//sin (o^ <r/)

= TT' cos 6
l

. sin o^ sin o-//sin (o^ o-/) .

But OJT = o-,, OAT' = o-/, (37)

so that TAT' --- o^ <r/;

.'. TT' = 2Esin(o-1 -o-/),

and a = 2J2 cos ^ sin cr, sin o-/. (G.)

The equation to the chord which joins the points (aj/S^) and

(a2/32y2) on the circle ABC is

aa/ajttg -f . . . = 0.

Hence the equation to TT' joining the points T, T' whose n.c.

are (seco-,, ...)(sec<r/, ...) is

cos o-! cos <r/ . aa+ . . . = 0.

And the tangent at T is

cos 2

o-j . aa+ . . . = 0.

44. To prove that the Simson Lines of T and T', the ex-

tremities of a circumdiameter, intersect at right angles on the

Medial Circle.
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Let these Simson Lines Xh, X'h' intersect at o>.

Produce TX, T'X' to meet the circle in t, ', so that TtT't' is a

rectangle, and tt' a diameter.

The Simson Lines of
T

l\ T' are parallel to At, At' (35), and are
therefore at right angles.

Again, since h, // are mid-points of HT, HT\ (36)

But h, h' lie on the Medial Circle
;
therefore they are the

ends of a Medial diameter.

Also huh' =
JTT, as shown above.

Therefore w lies on the Medial Circle.

Since A'X - A'X', and X<*X' =
JTT,

/. A'u = A'X or A'X' = E cos
t ,

where 6^ 2 ,
O.
d are the direction angles of TOT'.
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45. Let TOT' cut the Simson Lines wh, wh' in k, /,'
;
and cut

O'to in
1? where 0' is the Nine-Point centre.

Since Hh = hT and Hh' = h'T',

.'. fcfc' is parallel to TOT' or fcfc' :

And since hh 1

is parallel to kk', and 07i = 07i',

.-. 0,k = OJc ;
also kuk' = TT :

Hence kk' is a diameter of the circle described with Oj as

centre and O
a
w as radius.

And since O'OjOj is a straight line, this circle touches the

Nine-Point circle at oj.

46. Let or/, (r./, o-./ be the direction angles of X'h'u, the Simson
Line of T.

Then, since the Simson Lines of T and T1

are at right angles,

.'. cr/
= O^i^TT,

so that the n.c. of T' are 2Bcos (^TT o-.
2 ) cos (^TT <r

3), &c., or

2/t sin o-
2 sin or

3,
&c.

;
which are as cosec^ : coseccr

2
: cosec <r

3
.

Or, since T't is parallel to EC,
.-. T'X' tX = 2R sin cr., sin cr

3
.

Therefore the equation to the diameter TOT' is

cos o-j sin o-
a

. a;+ . . . = 0.

47. Consider the figures ATOT', uXA'X'.
Since TAT' and XwX' are right angles, while 0, A' are the

mid-points of TOT', XA'X', and

the angle OTA or (MT = A'Xu or 4'wX
; (37)

it follows that

the figures ATOT' ,
uXA'X' are similar,

a fact to be very carefully noted.

48. Through o> draw Pwp perpendicular to BC.
Then from similar triangles AOp, wA'p',

OpjR = A'p'/A'u = Ap'/R cos 0, ;

/. A'p = Op cos ^!
= perpendicular from p on 0^4'

;

.*. Pwp' passes through p.

Hence, if Ap, Bq, Or be perpendiculars to TOT', and pp', qq\ rr'

be perpendiculars to BO, CA, AB, then pp', qq', rr' are concurrent
at that point o> on the Nine-Point circle, where the Simson
Lines of T, T' intersect.

It follows that o> is the Orthopole of the diameter TOT' (see

Chap. VI).
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49. Since A'u = R cos (915 (44)

and A'<t) = R sin A'P<a, in the Nine-Point Circle,

.-. ^4'Pw = i-Tr #!
= angle Op// ;

.-. ^L'P is parallel to TOT'.

Hence, to find <u when 2
7
O.T" is given, draw the chord A'P in

the Nine-Point circle, and then draw the chord P<o perpendicular
to BG.

A'

SO. The A'B'C' n.c. of <o.

From (35) the Simson Line of o> in the Nine-Point circle

is parallel to A'P, and therefore to TOT'.
Hence the direction angles of this Simson Line are #1? 0, Qy
It follows from (38) that the J/'C" n.c. of o> are

a' = 2.JEcos^2 cos^, &c.,

which are as sec 15 sec ^
2 ,

sec 3
.

The ^BCn.c. of w.

From the similar triangles wA'p', AOp,
a = up = A'u.Ap/A = p cos 6r

Hence the absolute n.c. of w are p cos 15 ^ cos $
2 ,

9* cos ^8
.

To determine a in terms of p, q, r.
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Let p', q',
r' be the perpendiculars on TOT' from A', B', C'.

Then since A' is mid-point of 50,

also p' = A'O.cos 6
l
= R cos A cos

l ;

The formulae of (14) and (50) supply us with a very simple
proof of (8).
For aa = bp+ rf. (14)

.*. a .p cos #!
= b .R cos S cos 6

l+ c.R cos ^ cos #., ;

= b cos 3+ c cos 2
.

51. To illustrate the use of these formulae, take the case

when TOT' passes through J, the in-centre.

Here cos0
a
= %(b-c)/d, p = R/d.(b-c)(*-a)/a \d=OI].

So that 4o ; = R(c-a)(a-b)/d* oc l/(&-c),

and aa = ^E/d
2

. (6-c)
2

(5-a) a (6-c)
2

(.s-a).

Hence w is the Feuerbach Point.

52. To determine the A'B'G' n.c. of 1? the centre of the circle

in (45).

Taking A'B'G' as triangle of reference, the equation to TOT'

is cos ^.cos O
l
.aa jr ... = 0. (16)

The equation to the diameter of the Nine-Point circle passing

through oo, whose n.c. are (sec 1S ...) is

sin O
l
cos 6

l
. aa'+ . . . = 0. (46)

Hence at Olt
where these lines intersect,

aa'.cos O
l

oc cos B sin 3 cos C sin $
2

a cos B (p q)/siu G cos C (r p}/ sin B
;

/. a'cosflj oc p (sin 2J5+ sin 2 (7) 5. sin 25 r sin 2 6'.

Bat since TOT' is a diameter of ABC,
p sin 2J. + ^ sin 27?+ r sin 20 = 0.

Hence a <x p sec
X ,

&c.

To determine the radius Ojw (= p) of this circle.

The perpendicular TT from o> on the A'B'C' Simson Line of <u

= 2 . JE . cos
t
cos 0, cos 6y (39)

The angle &' which this makes with the diameter wO^'
= ^ + ^ + 0,. (41).
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The perpendicular from oo on TOT'
= 2 perpendicular on Simson Line = 2?r

;

/. p = Oj<o = 2?r sec 8' = 2.R cos ^ cos
2
cos 3 . sec (0X + 2+ 8) .

The parabola, which touches the sides of A'B'G' and has o> for

focus, has the Simson Line of o> for its vertex tangent, and for

its directrix the diameter TOT', which is parallel to the Simson
Line and passes through the orthocentre of A'B'G'.

53. The envelope of the Simson Line is a Tricusp Hypocy-
cloid .

Since /.wA'H1
= AOT,

.-. >0'H
l
= 2.AOT.

But Medial Radius = JB ;

/. arc -E^w = arc AT = 2 arc dh,

by similar figures Hdh, HAT.
Now take arc A'L = ^ arc A'H^

and draw Medial diameter LO'l.

Then, since A'd is also a Medial diameter,

arc A'L = arc Id
;

/. arc H^L = 2 arc A'L 2 arc Id.

Also arc H^ = 2 arc JW
;

.'. arc LCD = 2 arc Z&.

Therefore Xo>/> touches* a Tricusp Hypocycloid, having 0'

for centre, the Medial Circle for inscribed circle, and LOl for

one axis.

54. Let DOD' be the circumdiameter through I, the in-centre.

Let <j, </>.2 , 3 denote the vectorial angles D'DA, D'DB, D'DG.

Draw the chord CIP.

Then P is the mid-point of the arc AB ;
and

Also IPD' or GPD' = GDD' = 3 ;

/. IPD = ^r-03
.

Let r/R = in
; then

I +m_llj f

__ny IP _ sin IPD' sin P DP'

lm ~
ID

"
IP

'

ID
~~

sinDD'P
'

sin IPD
sin 0.< sin -| (^ + <ft.2)

cos
-| (0j + </>2) cos 3

D
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.'. tan
I

. cot
</>,

Put <k + 2 0s = ^
5

sin S EEB
,S', sin 3 =

Then # = sin (<k + <
2 ) cos <

8 cos (<k -f
2) si

. 2tan^(<k + <M , 1 - tan-
l + tan'i^ + i.)

' C S -

/.
fif/s. (l-m)

2 sm 2

= 2 (1 m2

) cos2

<^)3 (1 m)
2
sin 2

cos

And finally,

8/s. f

or .s-

3-m^.
= (3

^ = 0.

B D

From (42) the angle S is the vectorial angle of the perpendi-
cular from _D on the Simson Line of -D, and this Simson Line

passes through the Feuerbach Point F, and through /, one of

the fixed points, where the circle I(r) cuts the axis DIOD' (45).
The cubic then gives the values of <k, <

2 > 0i *ne vectorial
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angles of DA, DB, DC ;
and thus the triangle ABC is deter-

mined for any given position of F.

Again, if we put cos 8 = (7, cos < 3 = c, we shall obtain

(Greenhill).

55. In a poristic system of triangles ABC, the Simson line of

a fixed point 8 on (-R), passes through a fixed point.
Let SSv S8Z be tangents to I(r) ; then 8^ is also a tangent.
Draw DE touching I (r) and parallel to /SyS'.,.

Draw 8T perpendicular to DE.
Then shall the Simson Line of 8 pass through the fixed point T.

Let DE be cut by AB. AC in y, /?.

Let AC, AB cut S, 2
in F, G

;
let AS AS l

cut D.2? in H, K.

Now ip, IE, Iy, ID are perpendicular respectively to IF, T8^
1G, IS

l ;
and hence

Thus

or
ftD.pH yD.yH

Ao-nin, L SDH = SS& = SAS, or Sf/lfi".

.*. HDAH is cyclic, and similarly SEAK.
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The relation (i) shows that the powers of fi and y for these

circles are in the same ratio
;
and hence that ft, y lie on a circle

coaxal with these circles, and therefore passing through A and 8.

That is, ASj3y is cyclic.
Now the four circles circumscribing the four triangles formed

by AB, AC, BC, fiy have a common point, which must be /S,

since this point lies on the circles ABC, Afiy.
Hence o^o^cr, and T, the feet of the perpendiculars from S on

the lines jRO, GA, AB, /3y, are collinear.

In other words, the Simson Line o^o-gOg of S for the triangle
ABG passes through T, a fixed point, being the foot of the

perpendicular from S on the fixed line fty.

(Grreenhill and Dixon)

The properties given in (34), (54), (55) present themselves
in the Cubic Transformation of the Elliptic Functions.



CHAPTER V.

PEDAL TRIANGLES.

56. FROM a point S within the triangle ABC draw Sd, Se, Sf
perpendiculars to BC, CA, AB respectively, so that def is the
Pedal Triangle of 8 with respect to ABC.
Let angle d = A, e = /*, / = v.

Produce AS, BS, CS to meet the circle ABC again in

L, If, N.
From the cyclic quadrilateral SdCe,

L Sde = SCe or NCA = NLA,
so Sdf = MLA

;

d or A = MLN, &c.

Thus LMN is similar to the pedal triangle of S with regard
to ABC.

Similarly ABC is similar to the pedal triangle of S with

regard to LMN.
.'. BSC=BMC+SCM

= BMC+NCM or NLM = A + \.

To determine a point 8 whose pedal triangle has given

angles A, /x, v, describe inner arcs on BG, CA, AB respectively,

containing angles A-}- A, J5+ /x, + v, any two of these arcs

intersect at the point S required.
37
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This construction also gives S as the pole of inversion when
ABC is inverted into a triangle LMN with given angles X, /x, v.

57. If r
x ,

r
2 ,

?*3 represent SA, SB, 8C, the tripolar coordinates

of 8, and if p be the circumradius of def,

then 2p sin A = e/ = SA . sin eJ/
(in circle SeAf, diameter AS)

= r
l
sin JL

;

.*. MN : NFj : LM = ef : fd : de = sin A : sin /x : sin v

= a r

i\ : ferj : ci\.

Limiting Points. (G""0

In section (21) let TA, TB, TC meet the circle ABC again
in IMN.
Then from (57) MN oc sinX or arr

In (a), TA&S a; .'. MNcta(sa).
In {&), 7

7

J. a 1/ya; /. M"JV oc a/v/a a A/a.

In (c), TAaza-, /. IfJV oc a2
.

In (a
1

), T^l oc v/cot^.; .'. JfJVocsin^. -s/cot J. oc \/sin 2J..

Let J
x ,
I3 be the in-centres of LMN in (a) and (c) ; H^ H4

the orthocentres in (b) and (rf).

It is very easy to prove that

01, = 01, OI3
= OH, OH, = 01, OiT4

=

58. In (21), since

p : q : r oc sin A/a : sin fji/b : sin
i//c,

the Radical Axis becomes

sin
2

A/a
2

. x+ sin
2

/x/6
2

. ?/ 4- sin
2

vjc~ . z = 0.

To determine J, the pole of this Radical Axis for the circle

ABC.
The polar of a'ft'y' is (by

1+ c)8') a + . . . = 0.

/. sin
2

A/ oc ~by -\-cfi }

.'. sin
2A a ac/3' +- aZ>y' ;

. . 6ca' oc sin2 A -f sin
2

/x+ sin2
v oc e/

2

+/^
2+ de*

a cos A .fd . de oc cos A . sin ^ sin v

oc cot A
;

.*. a! oc a cot A;

so that the n.c. of /are a cot A, 6 cot/x, c coti/. (Dr. J. Schick)
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59. To show that Z7, the area of def, is proportional to II. the

power of 8 for the circle ABC.

2U = de . df. sin X = r
2
r3 . sin B sin C sin X,

and 2A = 4 R- sin A sin B sin C.

Now r
3 .&M"=I

and in the triangle SMC,
r
3 or 86' = $flf.si

Hence Z7/A = Jll/fi
3 = J (B

2-
OS')/Rr.

When U is constant, OS is constant, and S describes a circle,

centre 0.

Let a, ft, y be the n.c. of S.

Then fty sin .1 + . . .
= 2(AeS/+...)

Putting 4A2 = (aa+ &^ -f cy )
2

,

we have afiy+ . . . = (R
2

S)/abc, . (aa+ 6^-4- cy)
2

as the locus (a concentric circle) of S
9
when OS is constant.

When 08 = R, U vanishes, as the pedal triangle becomesa

Simson Line, and

GO. To determine the power II of a point S in terms of #, y, z,

the b.c. of S.

Since aa/x = bft/y cy/z

.'. a = 2A/ (a: -\-y + -z). x/a, &c.
;

C 2R

Note that only the ratios x : y : z are required.

Examples.

(i) For I, x oc a
;
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(ii) For #, x oc tan ^4
;

a 1 tan B tan + .

(tan A + tan 1? + tan (7)
J

= 8 7T
2

. cos ^4. cos B cos C.

(iii) For 6r, a; = y = z ;

61. When 8 lies on a known circle for which the powers of

J., J5, G are simple expressions, the power II of S for the circle

ABC usually takes a simpler form than that given by the above

general formula.

Let d be the distance between the centres of the two circles

Q and ABC
; tftftf the known powers of J., #, G for the circle Q ;

TrTTjTToTr.j, the perpendiculars from $, J., 5, (7 on the Radical Axis
of the two circles.

From (7), we have ;r = "

But, from coaxal theory,

t* = 2d . 7r1? &c., while II =

Equating this to the expression for II, found in (60 j

we have a-yz + tfzx+ rfxy = (tiX+t*y+tz)(p+y+t}
as the locus of 8 : i.e. the circle Q.

As an example, let us find II for the point w (50).
This point lies on the Nine-Point Circle, for which the power

of A = t* = \ be cos ^4, &c.

Also for w, x = aa = p (q+ r} tan A, (50)

and x + y+ z = 2A.

/. H= [Jfoccos-4._p(2+ r) tan -4 -f.. . J/2A

62. The Radical Axis of the circles Q and ^5(7 is

t?x+tfy+ t'fz
= 0,

for
TTj

oc t^.

Examples.

(i) When Q is In-circle : t? = (saf.
(ii) When Q is Circle J^Jj : ^

2 = fee.
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(iv) When Q is Anti-medial Circle (1) : t* = a\

(v) When Q is Nine-Point Circle : ^
2

^ be cos A oc cot -4.

(vi) When Q is circle T^./l
1

.^ circumscribed to the triangle
formed by the tangents at A, B, C :

t* E2 tan B tan C oc cotA
(vii) When Q is the circle ((91?) : t? = 2E cos A.%h,ac cot A.

(viii) When Q is Polar Circle :

t? = AH*+4<B? cos A cos B cos a cotA
So that circles (v) (vi) (vii) (viii) have the same Radical Axis

cot A.x+ cot B . y + cot C . z = 0.

63. Feuerbach's Theorem.

To determine the Radical Axis of the Nine-Point circle and
In-circle :

Take A'B'C' as triangle of reference,

The power of A' for the In-circle = t* = A'X* = J(6 c)
2

;

/. the Radical Axis is (6 c)
2
#'-|- ... = 0.

But this is the tangent to the circle A'B'C' at the point whose
n.c. are l/(6 c)....

Hence the two circles touch, and !/(& c)... are the n.c. of

the point of contact.

64. To express II in terms of X, //,,
v.

We have L BSG = A + A
; (Fig., p. 37)

/. aa = 2.&BSC = BS.SO.aintA + X)
= BS . SM . sin (A + X) sin A/sin X

= n {sin
2 A cot X+ i sin 2^1} ;

. 2A/H or (aa+ &/34-cy)/LI = S.sinM cot X+i^.sin2^.

Multiply each side by 452
. Then

87?
2

A/I1 or 2E . abc/tt = a? cot X+ 6
2 cot

/x,+ c
2 cot v+ 4A

= 2E . abc or 8E2

A, n = 2R . abc/M ;

giving II in terms of X, /x, v.

* The expression "a2 cotA+..." was first used, I believe, by Dr. J.

Schick, Professor in the University of Munich. The relations he deals

with are different from those treated in this work.
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Since IV

cr cotX-K..+4A

65. Observe also that the area of def
= U= J. A/E

2.n = 2A2

/M ;

so that, if p be the radius of the pedal circle def,

2p~. sin X sin
/UL

sin v U = 2A2
/M ;

and now all the elements of def are found in terms of X, /UL,
v.

From above, aa = fl . sin (A + X) sin A/sin. X.

(ibc sin (A +X)Hence a = . : .M sin X

66. To illustrate one of these results, take $, the focus of

Artzt's Parabola, which touches AB at B and J.Cf at C (see

Figure, p. 88). (G-.)

It is known that L SAC = SBA, SAB = SOA ;

/. 5^% = BAS+ABS = BAS+ CAS = A.

So GSK^ = A.

.'. BSA = IT A #+ G = 06VI,

and 58(7 = 2,1.

So that, if X, /x, v are the pedal angles of $,

Putting 4A.cot^L = a2

we obtain 2A.M = a2

(2

= 4crra
1

2

,
where m

l
^

Then p~ sin ^4. sin G sin J? A2

/lf ;

and finally p J&c/m,.

Then $^4 . sin J. = e/
= 2p sin X

;

/. SA = %. bc/m, ; so 85 = | . c^jm^ SG =
The n.c. of S can be at once obtained from

a = abc/M. sin ( A + A.) /sin X, &c.

67. If, with respect to the circle ABC, the point S
l
be the

inverse point of S, lying on OS produced ;
then OS.OSl

= -B
2

,
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so that S, >i may be taken as the limiting points of a coaxal

system, to which the circle ABC belongs.

If OSS, cuts this circle in T,. T', then AT, AT' bisect the

angles between AS and AS19 &c., so that

S,A : SA = ^T : ST = S,B : SB = S,C : SC.

Let d^f, be the pedal triangle of S
l ;

then in the cyclic quad-
rilateral S

l
e
lAfl

: BI/I
= SiA . sin A ;

"
ei/i : /i^i : ^iei

= #i-4. sin J. : S^B.sinB : S-^C . sin C
= SA .sin A : SB .sin B : SO .sin C
-

ef : fd : de.

Hence the pedal triangles of the inverse points S and Si are

inversely similar : so that

di
= X, e

l
= ^ fi

= v.

To prove that the triangle .L
1
.M

1
.W

1
is similar to d^fi, the

pedal triangle of Sr
In the cyclic quadrilateral # 1

d
1
ce

] ,

So

.'. eidji or X = M^N^ &c.

Similarly ABC is similar to the pedal triangle of Sl with

respect to the triangle LjJtfjJVj.

To determine &\ first find 8 (56), and then obtain Sl as the

inverse point of S.
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We now have a second pole ($T) from which ABC can be
inverted into a triangle J^M^ with given angles X, p., v.

68. To express IIj, the power of Sl
for the circle ABC, in

terms of X, /u,,
v.

l_ B8,C = BM1
GM

1
CS

1 (M.CN,)
= HM.C-M.L.N, [cyclic quad.
= A\.

So A&\B = C-v.

Also A8,C = A8
1
B+ B81

C = (A-\) + (C- v )

= n-B. |> > B]
.-. oo! = 2.^B8

1
C = BS

l
.C8

1 .sinB8l
C

= BS
l

.8^ . sin (A- X) sin A/sin X

= Ilj.sin (A X) sin J./sinX.

So
cy-t
= Hi . sin (Cv) sin (7/sin v,

and 6ft = n
:

. sin (Bp) sin 7?/sin /*,

giving y8x
a negative value [/A > B], as the figure indicates.

Proceeding as before, we find

n^ = ZR.abc or 852

A, where M,= a2 cot X+ ... 4A,

giving IIj in terms of i
15 and therefore of X, u, i^.

Since H = 2-E2

Jtt
2

'

a2 cotX+...-4A'

[or from

Hence 0/S
2

/^
2 = ^/M, and 0<S\W =

OT E08 VM_
8T'

~
JB+ 08

~
VM+ VMl

'

The area of A^A/I = #1 = SA2

/!/!.

Hence l/Ul/Ul
= 4!/^.

If^ be the radius of the pedal circle d^f^
2pi* . sin X sin

/x,
sin v = ^ = 2A2

/M 1
.

And now all the elements of d
l
e

lfl
are found in terms of

/A,
V.

From above, ac^ = IIj . sin (A X) sin A/sin X.

a6c sin (A X)Hence a, = -
.
-\ .

}
.M sin X
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69. In section (47) it was proved that the figures ATSOT' and
uXdA'X' are similar, and just as S is homologous to d, so is S

l

homologous to dr

Now AT bisects the angle SASl ;

.*. toX bisects the angle dn)dr

It follows that

<ad : wdi = Xd : Xd, = TS : TS &c.,

so that <*>d : we : w/ = <ad
l

: o^ : <ofr

Hence <o is the double point of the similar figures ;
and wX,

<uX', the Simson Lines of T, T\ are the axes of similitude for the

inversely similar triangles def and ^i/i- (Neuberg)



CHAPTER VI.

THE ORTfiOPOLE.*

*7O. LET
jo, g, r be the lengths of the perpendiculars Ap, Bq, Cr

from A, 7?, C on any straight line TT', whose direction angles
are M 2 , 0,.

Draw p$j perpendicular to BC, qS2 perpendicular to OA,
rS& perpendicular to AB.

These lines shall be concurrent.

For B8l
= BD+p sin^, CS

l
= GDp sinfl,,

and i.apsinWj^O; (2)

/. KBSfGSfi = 5('/)
2-OD2

)4-2.2^sin^ = 0.

Hence $!_p, *S2g, /93r are concurrent.

The point of concurrence, denoted by <S',
is called (by Professor

J. Neuberg) the Orthopole of TT.

The Orthopole theorems are nearly all due to Professor J. ISeuberg.

46
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Let 9 be the length of the perpendicular 88' on TT1

.

Now, for this one particular case, take
a ,

Or 3 to represent
the acute angles which the sides of ABO make with TT'.

We have pq = c cos S .

Also pSS' = O
l :

since 8p, 88' are perpendicular to BC, TT' ;

also #$' = 3
and ^$2 = C

;

since $p, $g are perpendicular to 50, (7A
.-. Sp = c cos 3 .sin (90 2)/sin G = 2R cos

2 cos 6..

and 9 = Sp cos
X
= 2J^ . cos 0, cos

2 cos 3 .

As T2" moves parallel to itself, the figure SqS'pr remains

unchanged in shape arid size.

71. To determine the Orthopole geometrically.

Let Ap meet the circle ABG again in R.

Draw the chord RR'R" perpendicular to BG.
Let BA, OA meet TT' in r', r".

Then BR = 2B.sin (BAR or r'Ap) = 2R cos
8 ,

so OS = 2E cos
2

.

/. RR = BR . OB/2B = 2E cos
2
cos <93

=
^8p.

Hence 8 is found by drawing R'S, pS parallels to Ap, RR'.

As TT' moves parallel to itself, 8 slides along R'8 perpendi-
cular to TT'.

Also R'8'8, being parallel to AR, is the Simson Line of R".

72. To determine the ABC n.c. of S, (G.)

a. = 8S
l
= projection of J9gr$ on fi^^

= q cos 0j+ 85 cosp8q
=

q cos 0j + 2R cos
6*! cos $3 . cos 0.

.'. asectfj q + 2R cosC (cr ap cos B bq cos J.)/2A,
from (2).

Multiply first term on right side by sin A sin B sin and the

other terms by 2A/4R
2

.

Then

!
. A/2/t

2 = sin ^4 sin 0.^ sin B cos A cos G .q sin 5
+ cos C.r sin G cos jB cos O.jp sin A

cos J5.(/ sin J9+ cos0.r sin 6' cos^cos O.
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Also 2A.COS0J = ap cos C .bq i

*.-. a = R/2&
2

.(apbq cos C cr cos B)
x (cos 73 cos C.ap cos B . bq cos C .cr).

Multiplying the two factors, and using the form

2 .ay -S.gr. 2bc cos A = 4A2

, (5)
we obtain

2Aa = abc cos B cos C+aqr rpb cos C pq.c cos B.

When TT', whose equation is ap.a+ ... = 0, passes through
the circumcentre 0, then ap . cos A+ . . . =0.

In which case

a = JK/2A
2

. 2A cos O
l

. (cos B cos C.ap + ap. cos ^4)

= p cos r

73. Let ^Oi' be the circumdiameter parallel to TT'.

Then cr, the orthopole of tt\ lies on the Ts"ine-Point circle.

Let H be the orthocentre of ABC.
Since ATT = irR, .'. J^'o-j

= o^-Hp

Again 5"E' = 2?.J2'+ 2.0A' = tnr+ AH;

* It was Mr. T. Bhimasena Rao who first pointed out that the

expression for each coordinate involves two linear factors in p, q, r. His
method is different from that given above.
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But ATT' = RR' (equal triangles Ame r RarR'] = o-rr.

And Tr'H, = 2.7TO-,;

Hence o- is the mid-point of /TZ?", and therefore lies on the

Nine-Point circle.

74. To find a y ,
the ABO n.C. of cr. (G.)

Bisect Tr'jETj in m.

Then CTTT = JV and TT<T
I
== TT'W.

.*. a = o-^ = J.m = ATT COS m^TT jo COS 0j, &C.,

as found in preceding; article.

To find a
'

'y ',
the J/'C' n.c. of cr. (G.)

Since cr^ is = and parallel to Am,
.'. Acr is = and parallel to o^m.

Also TT^Hjm is a rectangle ;

AH^cr is a symmetrical trapezium.

Hence the circle (^Lw), passing through Hl
and TT, passes also

through or.

.'. <rA' = R sin o-JfjJ/ = U cos (9
T ;

/. a/ = orB' .irC'/R R COS ^
2
COS #3 , &C.,

so that cr is (sec^, sec<9
2 ,

sec ^
3) referred to A' JVC'.

It follows that the point cu of sections (44-50) coincides

with the Orthopole <r of a circumdiameter TOT'.

75. The Simson Lines of the extremities of any chord TT'

of the circle ABC pass through $, the orthopole of TT' .

For, since L TpR = 90 = TR
1 R,

.'. TR^R is cyclic ;

.'. pR^X or pR^ = TRp or TRA = T1\A ;

.'. R
rp is parallel to ATV

But XE
a
= 72'JS = Sp ;

.'. XA^ is parallel to R\p, and therefore to T^.
Hence XS is the Simson Line of T.

So for T'.
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Thus we have three Simson Lines SX, SX r

, 8R', all passing
through 8, their poles being T, T', R" respectively.

They are the three tangents drawn from 8 to the tricusp-

hypocycloidal envelope of the Simson Lines, so that each of the

points T, T\ R" has similar relations to the other two
;
for

example :

() Just as R'S is perpendicular to TT'. so XS is perpen-
dicular to T'R", and X'S to TR"

;
or each Simson Line is per-

pendicular to the join of the other two poles.

(6) As
jp, the foot of the perpendicular from A on TTf

1
lies

on the perpendicular to BC from S : so also do p l
and p3 ,

the
feet of perpendiculars from A on TR", T'R".

Hence ppip$ is the Simson Line of A in the triangle TT'R".

Thus (S. Narayanan) the Simson Lines of A, B, C for th

triangle TT'R" as well as the Simson Lines of T, T\ R" for AhO
all pass through 8.
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76. Let TT' cut BG in 7, and let the circle (AU) 9 passing

through Hl
and p, cut Sp in p'.

Then Sp . Sp' = twice product of perpendiculars from and
S on TT'. (G.)

In the circle (A U ) the chords pp\ H^A are parallel ;

.'. the trapezium Ap'pH^ is symmetrical.
But the trapezium Aa"jrH

l
is also symmetrical ;

/. p'a-
=

pir d and p-rr
= S<r ;

Sp' = 2 So- cos crSp'
= 2d cos Qr

But Sp 2R cos 0.
2
cos

;i

= d sec 6^ ;

Note that 2^8 is therefore the power of S for the circle (AU).
Similarly, if TT' cut CA in 7, ,15 in TF, the power of

S = 2c/3 for each of the circles (7), (017).
Therefore in the quadrilateral formed by 730, CA, AB, TT',

the orthopole ( S) of TT' lies on the 4-orthocentre line, or

common Radical Axis of the three diameter circles.

77. Lemoyne's Theorem.

If P be any point on the straight line TT', whose orthopole

is S, then the power of S' with regard to XT/, the pedal circle

of P, is constant.
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Draw pfi, py parallel to RB, Ti'O, so that tlie figures Aftpy,
ABRC are honiothetic.

Draw AX' parallel to BC, XPX' perpendicular to PC.
Let YZ cut /3y in x.

Since Zi lies on the circle A BC, therefore^ lies on the circle Afty.

Lpyx or pyfi
= pA3 or pAZ

i
= pYZ or pYx
(circle AYpZPX', diameter AP) ;

Yxpy is cyclic ;

/. pxy - pYy = 180-pr,4 = jpX'4 ;

/. pxX' is a straight line.

Let Xx cut pS in 8.

Then Sp/XX' = px/xX'
ratio of perpendiculars from p and J. on fiy

= It and ^L on BG
(from similar figures Aftpy, ABRC)

= SB'/XX' ;

/. 8p = RR' = pS;
.'. 8 coincides with $.

Observe that, since U^pp A is symmetrical,
.*. Xpp'X' is symmetrical, and therefore cyclic.

Denote the circles XYZ, XX'pp, AYpZPX' by L, M, N
respectively.

Let L and M intersect again in x.

Xow the common chord of L and M is A'a''.

If and N is A~>.

,, ,,
L and JV is YZ.

These common chords are concurrent.

But X'p, YZ pass through x
;

.'. Xx' passes through &, and therefore through S.

Finally, since Xpx'p'X' is cyclic,

/. SX.Sx' = Sp.Sp' = 2d&.

But X, x' are two points on the circle XYZ.
Hence the power of $ for the circle XYZ = 2<iS.

ISTote that the circles (AU), (#P), (GW) are thepedal circles of

ur, F, w.

78. When TT' is a circumdiameter ^Of', then t7 vanishes, and
then the pedal triangles all pass through the orthopole <r of tOt'.
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Since in this case AT = TrR, the dimensions of the homothetic

figures A^iry, ABRC are as 1 : 2, so that fty becomes B'G'.

Hence Xo- and YZ intersect on B'C'.

79. Returning to the general case, the diagram shows that if

x, y, z are the b.c.'s of 8 with regard to the triangle XYZ, then

8 SP
AXYZ~xX XX'

_ 27? cos #
2 cos 0^ >

2R sin B sin

.'. x : y : z = sec 0, sin A : sec 2 sin B : sec #3 sin C.

Thus the Orthopole has constant b.c. for every one of the

pedal triangles XYZ. (Appendix I.)

8O. In section (20) we determined the inverse points T, T'

whose tripolar coordinates are p, q, r by dividing BG at P, P'
;

CA at Q, (/ ;
AB at 1?, J?/

;
so that BP : PC = q : r, &c., and

describing circles on PP', ^(/, _BK'.

Conversely we may begin by taking two inverse points T and

T', whose tripolar coordinates are p, q, r. Then the internal

and external bisectors of BTC, (BT'G) meet the sides in the

points P, P', &c.
;
for

J3P : PC = BT : TC = q : r, &c.

It is known that the triads of points P'^'JB', P'QR, Q'RP,
E'PQ lie 011 four straight lines, the equation of P'Q'R' being

px+ qy+ rz = 0,

while that of P'QR is px-}-qy+ rz = 0, &c.

To prove that the point common to the four circumcircles of

the four triangles formed by these four straight lines is w, the

Orthopole of OT1*.
Describe a parabola touching P'Q'R' and the sides of the

Medial Triangle A'B'C', and take AB'C' as triangle of reference.

From (15) the A'B'G' equation of P'Q'R' is

(g+ r) x' 4- (r +p) y'+(p + q) z' = 0.

Then from (9) the n.c. of the focus are as
, ^-, &c.,

where [g + r = p'], ..., or as
a^ y3

,

Changing +p into jo makes no change in the focus, therefore

the parabola also touches P'QR, and similarly Q'RP and R'PQ
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Now let 0,, 2 , 3 be the direction angles of OTT\ and draw
Tm perpendicular to BG.

Then - oc GT* oc 2a. J/w oc 2a.OIT cos0
1 ;

a /)

-=-5 oc sec 0,.2-r
Hence the orthopole w, whose n.c. are (sec 15 ...) is the

focus of the parabola : the Simson Line of w (in A'B'G') being
the vertex tangent, and OTT' the Directrix. And, the circum-
circles of the triangles formed by any three of the four tangents
P'Q'R', ..., pass through the focus o>.

On the fixed Directrix TOT' may now be taken an infinite
number of inverse pairs (TT*). For each pair we have a set of

four harmonic lines touching the parabola, the circumcircles of

the four triangles passing through <o, and the four orthocentres

lying on TOT'.
In addition to each set of four harmonic tangents, there are

also the three tangents Bf

G'
1 G'A\ A'B'. The student may

develop this hint. (G.)
Remember also that the pedal circles of all points T or T' also

pass through o>. (Appendix II}.



CHAPTER VII.

ANTIPEDAL TRIANGLES.

81. If S be any point within the triangle ABC, the angles
BSC, CSA, ASB are called the Angular Coordinates of

'

8
-,

they are denoted by .X", Y, Z.

If A, /A, v are the angles of the pedal triangle of S, then

(65)

So that, if a, /?, y are the n.c. of 8,

aa = Il.sin (A+\) sinA/siu A
= n . sin X sin A/sin (XA).

82. Orthologic Triangles.

N

Draw any straight lines MN, NL, LM perpendicular to 8A,
SB, SO, so that the perpendiculars from J, 5, C on the sides
of LMN are concurrent (at /S). Then shall the perpendiculars
from LMN on the sides of ABC be concurrent.

Let AS, MN intersect at Z, &c.

55
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Then SM 2- SN 2 = MPNP = AM*-AN 2

8VSM* = CL*-CM*',
.-. (BL

2- CL2

) + (CM'-^Jtf
2

) 4- (AN'-BN*) = 0.

Hence the perpendiculars from L, If, JV on 0, (7-4, AB are

concurrent, say at R.

Triangles ABC, LMN which are thus related, are said to be

mutually Orthologic.

To determine the trigonometrical relation between 8 and R.

Since SB, SC are perpendicular to LN, LM,
.-. /_ BSC = X = TT-L

;

so that aa = Il.sin (TT L) sin ^4 /sin (?r L J.), from (65)

or x = II .sin i sin^4/sin (lv+ ^1).

Now let ', ^/',
2' be the b.c. of R referred to LMN, and let

II' be the power of R for the circle LMN.

Reasoning as before, we have

x' = n'.sin (TT A) sin _L/sin (TT A L)
= IT. sin ^4 sin _L/sin (J.+ L) ;

.-. x/x' = y/y
f = z/z

f - area ABC/LMN
= n/n'.

Hence the b.c. of & with reference to ABC are as the b.c. of

R with reference to LMN
;
and the proportion is that of the

areas of the triangles, or of the powers of S and R for their

respective circumcircles.

83. Antipedal Triangles.

Let def be the pedal triangle of 8.

Then, since dS is perpendicular to BC, eS perpendicular to CM,

fS perpendicular to AB are concurrent at S, the triangles ABC,
def are orthologic, so that the perpendiculars from A on ef, from
B on fd, from on de, are concurrent say at /S".

Through A, B, C draw perpendiculars to S'A, S'B, S'G, form-

ing the triangle D'E'F' the Antipedal Triangle of S'.

The sides E'F', ef (being each perpendicular to S'A) are

parallel ; and therefore def, the pedal triangle of S, and I)'E'F',

the antipedal triangle of >$", are homothetic.

It follows that

jy = d = >, E' = e = ,M, F' =f= v.
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Also

BS'C = TT D' = TT A, OS'A = TT n, AS'B - -RV.

Again, since ABC and def are orthologic, the b.c. of 8' for

5(7 are as the b.c. of S for def.

Therefore, taking a/3y, afly' as the ii.c. of S, /S", respectively,

k.BS'C _ area of ABC _ A^ .^

area of de/

"
U"

aa =

But, from (65),

_ afrc sin (.?+/*.) . _ a^c sin ( G + v) .

: ~' "
" '

sn /A
sn r

and

n ,
?^c sin (B + fi) sin (C+

so that, finally, .' .
-*-r-^-

2
:J M sm /x sin v

But
abc

sin A

a'
2
?>

2
c
2 sin (^ +X) sin (g + /*) sin- -

M* sin A sin
fj.

sin v

= ftp = -yy',
from symmetry.

Thus 8, S' are the foci of a conic inscribed in- ABO.

(65)

In Germany these points are called "
Gegenpunkte." In this

work the name " Counter Points
"
will be used.
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84. To determine the area (V) of D'E'F', the antipedal

triangle of S\ in terms of X, /A, v. (G-.)

Henceforth the areas of the pedal triangles of $, S f

, &c., will

be denoted by U, Z7', &c., antipedal triangles by F, F', &c.

Let
1? 2 , 3 be the circumcentres of the circles S'BD'C,

ffCE'A, S'AF'B
; S'D', S'E', S'F' being diameters.

Then 0,A
f = i.acotD' = i.

.-.
. AO.BC = J. a

2
cot A.

Now Oj is the mid-point of S'D' ;

.-. area S'BD'C = 2 . BO^S' = 2 (J . a2 cot X+ '

.-. V = S'BD'C+ S'CE'A+ S'AF'B

= \ (a
2 cot X -j- 6

2 cot /x+ c
2
cot i/ + 4A)

But Z7 = 2A2

/M. (65)

/. C7F' = A2

;

or, the area of ABC is a geometric mean between the area of

the pedal triangle of any point, and the homothetic antipedal

triangle.

D'

This is a particular case of the more general theorem given
in (158).
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85. To determine the n.c. (X v, w) of T, the centre of similitude

of the homothetic triangles def and D'E'F'. (Gr.)
The ratio of corresponding lengths Td, TD' in def and D'E'F'

= VU : VV = N/J7F : V = A : V = U : A.

Therefore, since e, D' are homologous points,

M/JW = Td/D'd = U/(U).
Now the perpendicular from d' on AC = J3

1
'

-\-a! cos 0,

^L7? = y'+a' cos#;

.-, d'C = (P+ a! cos 0)/sin 6', d'5 = (/+ a;

cos )/sin ;

.-. D'D" = d'd" = d'B.d'C/d'S' ;

where m = Z7/(A

Example. The orthocentric triangle, or pedal triangle of jff,

is homothetic to T^T^ (Fig., p. 89), which is formed by
the tangents at A, 5, 0, and is therefore the antipedal triangle
of 0.

Here a = R cos J., &c., and the formula gives

7-j sin
2
^1 cos J3 cos (7 ,,

,

u - 2R.- - -ccsm^tan/1.
1 2 cos J. cos ? cos U

Since H and are homologous points, being the in-centres of

the two triangles, the point T lies on OH.

86. Let S
1
be the inverse of 8 for the circle ABC, as in (67),

and let d
l
e

lfl
be the pedal triangle of Sv

Then, since d^S^ 6^,/jSj, perpendiculars to BC, CA, AB, are

concurrent at Slt therefore the triangles ABC and d
lejl

are

orthologic.
It follows that the perpendiculars from J., 2?, G on e^,, /^p

^G! respectively meet at a point call it $/
Through A, B, G draw perpendiculars to S^A, S^B, S^O

forming the triangle D/J^j'J?/, the antipedal triangle of /S/.

The sides E^F-{ and ejlt being each perpendicular to *S/A,

are parallel, so that d^f^ the pedal triangle of $19
and D^E^F^

the antipedal triangle of $/, are homothetic.

Hence D/ = di = X, -
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We have now four triangles, viz. : the pedal triangles of >V, ,S',,

and the antipedal triangles of S\ $,', each of which has angles
X, /x, v.

Let c^ftyj and a/ft'y/ be the n.c. of 4 and $/.

From (82) the b.c. of #/ in ABC are as the b.c. of 8
l
in d^i/i-

i = ... = -

; (Z7,
= area of d^)

.'. aa,' =

But, from (68), ft =

so for yl ;
and I

Hence, finally,

.

J/
1

sin
/x,

a, a,

/ abc sin (B /x) sin ((.7 v)

MI
"

sin
fji.

sin v

, _ 2
6
2
c
2

sin (.-I X) sin (5 /x) sin(0 v)

sin A sin /< sin v

= ft/3/ = y^/, from symmetry.

Hence Sl
and /S'/ are a second pair of Counter Points, being

the foci of a conic touching the sides of ABC.
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87. To determine the area (F/) of the antipodal triangle

^'EiFi in terms of A, /tx,
v. (Gr.)

Let O/, 2', 8

' be the circumcentres of the circles S^BD^C,
\'CEiA, Si'AFiB} SI'DI, SiJB^, SI'FI being diameters, and

>/, O./, 3

'

lying on A'O, B'O, C'O respectively.

Then 0,'A' = a cot D/ = Ja cot A
;

O/ is the mid-point of S
l
'D

l

'

.

Therefore, if (a/yS/y/) ^e ^ne n -c -

pendicular from _D/ on J5C',

i
be the^per-

So

Adding, \ve have on the left side
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Hence F/ = | (a
2 cot A + &'- cot /A+ c

2 cot v 4A)
- P*r

Now area (Z7J of ^e^ is 2^/Ml ; (68)

,-, JW = A2
.

N"ote also that difference of antipedal triangles of *S", S }

'

= F'-F/ = ^M-^M, = 4A.

The points 8' and S^ having similar antipedal triangles, are

called "Twin Points."

Of the four points 8, S\ 8^, 8^ :

(a) 8 and 6\ are Inverse Points, with similar Pedal triangles.

(6) 8' and $/ are Twin Points, with similar Antipedal triangles.

(c) (SS
f

) and ($!$/) are pairs of Counter Points, the Pedal

triangle of either point of a pair being homothetic to

the Antipedal triangle of its companion point.



CHAPTER VIII.

THE ORTHOGONAL PROJECTION OF A TRIANGLE.

88. * AL being a given axis in the plane of the triangle ABC,
it is required to determine the shape and size of the orthogonal
projection of ABC on a plane X, passing through AL and
inclined at an angle 6 to the plane ABG.
Draw AM perpendicular to AL.
In AM take a point T, such that AT/AM = cos 0. Draw

BUb, CVc perpendicular to AL, cutting LT in U and V.

Then, since Ub/Bb = Vc/Cc = AT/AM = cos 6,

AUV represents, in shape and size, the orthogonal projection of

ABG on the plane X.

S 1

* In writing Sections (88-90) I have drawn on Professor J. Neuberg's
"
Projections et Contre-projections d ?un Triangle fixe," with the author's

permission. To avoid overloading the chapter, the Counter-projection
theorems are omitted.
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On either side of the common base BG a series of triangles
is described similar to the orthogonal projections of ABC on a
series of planes X passing through the common axis AL.

It is required to determine the locus of the vertices of these

triangles.
Draw At8 perpendicular to LT, cutting the circle ALA^I in

S. The triangle SBC will be similar to A UV, and therefore to

the projection of ABC on the plane X.
Draw SNS' perpendicular to BC.

Then L ALT = tAT or SAM
= SLM.

And A, t, S, N are right angles.

Therefore the figures ALtT, SLNM are similar.

And LU : LB = LV : LC = LT : LM.

Therefore the figures ALUVtT and SLBONM are similar.

Therefore the triangle SBC is similar to AUV.
Hence the vertices of all triangles SBC, described on BC, and

having SBC = AUV, SCB = A VU, BSC = UA V,

lie on the circle ALA r
The angles of projection range from

(9 = to =
-J7T.

When 6 = 0, cos = 1, so that T coincides with Af, S with

AV and S' with A.

As 6 increases from to ^TT, T travels from M to A, S from
A

l
to M, and S' from A to M.
Hence the locus of S is the arc AMA

l
on the side of AA'

remote from the axis AL.

89. When a series of variable axes AL
19
AL

2 ,
... are taken, the

point AH being the image of A in BC, remains unchanged.
Hence each position of the axis AL gives rise to a circle

ALA-^M passing through the two fixed points A and A^ so that

this family of circles is coaxal.

Let DA or DA
l
=

,
and let DR = h, where R is the centre

of the circle ALAr

Then, with D as origin and DA as 7/-axis, the equation of the

circle is x*+ y* 7r = 2hx,

h being the variable of the coaxal system.

We may now deal with the problem : To determine the

plane X on which the orthogonal projection of ABC has given

angles X, /x,
v.
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Construct the triangle SBC, so that SBC = /*, SCB = v, and
hence B8C = A.

Let the circle ASA l
cut BC in L and M".

Then, if AL and $ are on opposite sides of AA
{ ,
AL is the

required axis.

Draw LtT perpendicular to SA.
Then the required inclination of the plane X to the plane

ABC is given by
cos 6 = AT/AM.

9O. The triangle ABC being projected on a series of planes

making a constant angle a with the plane of ABC, and the

triangles SBC being drawn, as before, similar to the successive

projections, it is required to determine the locus of S.

Draw AL parallel to the line of intersection of the planes ;

then the original projection is equal and similar to the pro-

jection on a parallel plane through AL.

Determine S as before, taking T such that

AT/AM = cos a.

Join 8L, SM, cutting AA l
in H and H'.

Then H is the orthocentre of LH'M, so that

DH.DH' = DL.DM=k-.
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AT tsLvAL
Again, cos a AM t&nALM

tan SLM HD"
tan ^ L.I/' A^D*

.'. HD = k cos a = constant,

H'D = k sec a = constant,

so that H and H f

are fixed points.
Hence, since HSH' is a right angle, the point ,S describes a

circle on HH' as diameter.
The equation to the circle HSH' is

x"+ (yk cos a) (y It sec a) = 0.

For another series of planes inclined at a constant angle a',

the points H and H' would be changed to B
l
and If/, where

DH, = k cos a', DH,' = k sec a',

and DH..DH,' = Jr.

The series of circles are therefore coaxal, having A and A
}

for limiting points, and therefore cutting orthogonally the
former series of circles, which pass through A and Ar

91. A triangle ABG, with sides a, 6, c and area A, is projected
orthogonally into a triangle A'B'C', with sides ', &', c', angles
A, yu, ?, and area A'

; the angle of projection being 0, so that

A' = A cos 0.

To prove 2 . a!* cot J = 2A (1 4- cos
2

0) ;

^.ar cot A. = 2A (sec 04- cos 0).

Let /^, hfr h% be the heights of the points A, 7?, C above the

plane A'B'O.
'

Then //,/?. = vV-a'2
;

... v/V2-a"2
v/6 2-Z/2 vV-c'2 = 0,

the signs of the surds depending on the relative heights of

A, n, c.

This leads to

-(6
2+ c

2-a2

)
2 or 16A-+16A'2

No \v b~ + c
2 a2 = 4A . cot J

;

fe'
2
-fc'

2-a'2 = 4A'.cotX = 4A. cos cot A.

Hence 2 . a'
2 cot 4 = 2A (1 + cos2

6) ;

2. a2
cot A - 2A (sec + cos 0).
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The Equilateral Triangle and the Brocard Angle.
When ABC is equilateral, we have

(a'
2+ 6'

2+ c'
2

) . I/ A/3 = 2A (1 + cos2

0) = 2A' (sec (9+ cos 6) .

But, if u/ be the Brocard Angle of A'B'C',

cot
' = (a'

2 f fe'
2+ c'

2

)/4A' ; (131)

.-. cot a/ - -v/3/2 . (cos + sec 0) .

The Brocard Angle therefore depends solely on the angle (#)
of projection. It follows that all equilateral coplanar triangles

project into triangles having the same Brocard Angle.

92. Antipedal Triangles and Projection. (Gr.)

Let I'm'n'j Z/w/n/ be the sides
; F', F/ the areas ;

and A, /*,
v

the angles of D'E'F', JD/JW. the antipedal triangles of 8', /
From (84),

2F' = 2.a2 cotA+ 4A = 2A (sec (9+ cos 0) +4A ;

/. F'/A = ( v/sec<9+ vx
cos <9)

2
.

So F//A = ( v/s^c~- v/c^sl)
2

;

'- ^F/ = 2. %/A cos 6> = 2. A/A'
;

and yF'+A/F/^ 2. x/A sec^ = 2. v/A, ;

where A
x
is the area of the counter-projection of ABC : that is,

the triangle whose projection (for 0) is ABC.
Xow the triangles F', F/, with the projection and counter-

projection, are all similar, having angles X, /x,
v

;
so that their

corresponding sides are as the square roots of their areas
;

/. Z'-Z/ = 2.a'; Z'+ Z/ = 2.a
1

.

Hence, if two antipedal triangles be drawn having the same

angles as the projection, the sides of the projection are half the

difference of the corresponding sides of the antipedal triangles.
This theorem, of which the above is a new proof, is due to

Lhuillier and Neuberg.

93. The triangle ABC is projected orthogonally on to a plane
inclined at an angle 6 to the plane of ABC.

If U, the line of intersection of the planes, make direction

angles uv u^, u^ with the sides of ABC, it is required to deter-

mine the lengths a', &', c' of the sides of the projection A'B'G' in

terms of u^ u.
2 , %, and 0.

Let cos 6 = k.
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Draw perpendiculars Bb, Cc to the line U, and take

so that B'C' (= a') is equal to the projection of BC.
Now the projection of B'C' on Bb

= B'b-C'c = k(Bb-Cc~) = A-.asin^;

and the projection of B'C' on U = a cos u^ ;

.', a!" = B'C'- = a2

(cos
2

u^ + k~ sin2
?t

t )

= a2

(1-(1- A;
2

) sin2

u,}

= a2

(1 Bins t*,
siri'

2

^).

The dimensions of the projection depending, of qourse, only
on the direction, not on the position, of U'.

94. Pedal Triangles and Projection. (G.)
To prove that, as the plane of projection revolves round Z7,

the projections of ABC are similar to the pedal triangles of

points lying on the circumdiameter TOT', where T is the pole
of the Simson Line parallel to U.

Let XYZ, X'Y'Z' be the Simson Lines of T7

, T'.

Then XYZ, being parallel to ?7, makes angles u
lt u^ u

$ with
the sides of ABC, and therefore

L OTA or OAT = ur (37)
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In TOT' take any point P, and let OP = k
r

. R.

Let u, v, w be the sides of the pedal triangle of P.

Then, in the triangle GAP,
AP2 = tf+ k'*E2

So that

4tt* = 4 .AP2
Bin*A = a2

(1 + k')
z

j
1- 4k>

2
sin2

u, I .

But a'- = rt
2

{1 (l-/v
2

) sinX}. (93)

a'
2

1
Hence

,
= -

,

4w* (! + &')

and a' : b' : c' = u : v : if '

(so that the projection on the plane is similar to the pedal
triangle of P), provided that

so that P, and its inverse point P', are given by

TP/T'P = TP'/T'P' = cos 0.

From (36) the point Tis found by drawing chord At parallel
to

7",
and the chord tXT perpendicular to BC.

95. Next, let the plane of projection be inclined at a constant

angle a to the plane of ABC. (Gr.)

T j.i it 1 k 1 COS a 21In this case, k' - = --- - = tan2 ia
;

1 + COSa

.'. OP R tan2

Ja, OP' = B cot2
ia.

If, therefore, circles be drawn with centre and radii

tair^a.jB and cot2

|a.JK. any point P on one circle, and its

inverse point P' on the other circle, will have their pedal
triangles similar to the projections of ABC.

Another Proof. Let ABC be projected on the plane a into

A'B'G', whose angles are A, /x, v. Let P (or its inverse P') be
a point whose pedal triangle has angles A, /x, v.
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Then OP--IB' = "'cotA + fr cotg + r
cotK-jA

or cot \ 4- o cot /x + c cot i> 4- 4A

_ 2A (sec a+ cos a) 4A _ (1 cos a)'~
2A(seca+ cosa)-f-4A

~~

(1 + cosa)
2

'

/. OPIE = tan2

Ja ;
so OP'/R = cot

2

ia,

as before.

96. A triangle XYZ is projected orthogonally on a series of

planes inclined to its own plane at a given angle 0. A point is

taken such that its pedal triangle with respect to ABC is

similar to one of these projections.

To determine the locus of the point.
Draw inner arcs BQC, CQA, AQB containing angles A+X,

B+ Y,
C -{- Z : a point Q being thus determined whose pedal

triangle has angles X, Y, Z.

Let AQ, BQ, CQ (or AQ', BQ', CQ') meet the circle ABC
again in yyz (or x'y'z') : then it is known that

the angle x or x' = X, y or y'
= F, z or z' = Z. (56)

Take Q as inversion centre, and let

(inversion-radius)
2 or fc

2 = power of Q for ABC
= E'-OQ* = OQ.OQ-OQ?
= QO.QQ';

so that in this system Q' is inverse to 0.

Also tf = AQ.Qx = BQ.Qy = CQ.Qz;
so that #i/;z inverts into ABC,

97. Lemma.

If with any centre JT and any radius p, any four points

I), jB, .F
7

, G are inverted into D', E', F', G', then the pedal

triangle of G with respect to DEF is similar to the pedal

triangle of G' with respect to D'E'F'. For

D'G'/DG = KD'/KG, and E'F'/EF = KE'/KF ;

/. (D'G'.E'F')/(DG.EF) = (KD'.KE')/(KG.KF)
= (KD'.KE'.KF')/(p\KG)
= (E'G'.F'D')/(EG.FD)
= (F'G'.D'E')/(FG.DE) 9

by symmetry, so that the theorem is proved.



ORTHOGONAL PROJECTION OF A TRIANGLE. 71

In Section (95) substitute the triangle xyz for ABC. Then
the circles with common centre and radii Rt2

, R/t*, are the

loci of points whose pedal triangles with respect to xyz are

similar to the projections of XYZ on planes inclined to the

plane of XYZ at an angle 6.

N"ow invert, with centre Q, radius k. Then xyz inverts into

ABC, into Q', and the two concentric circles (0, Rt2

) and

(0, R/t*) into circles of the coaxal system which has Q and Q'

for its limiting points.
Let R be a point on either concentric circle, inverting into $,

a point on one or other of the coaxal circles. Then, by the

Lemma, the pedal triangle of 8 with respect to ABC is similar

to the pedal triangle of R with respect to xyz ;
that is, to one of

the projections of XYZ.
Hence the required locus consists of these two coaxal circles.

98. Let the circumdiameter OQQ' be cut by the concentric

circles in LL'
,
MM' : and by the coaxal circles in II', mm', : so

that L and Z, ..., are inverse points in the (Q, k) system.
The centres o>, w' and the radii p, p' of the circles II', mm' will

now be determined in terms of X, Y, Z, t,

Ql = W/QL = W
.-. 01= OQ+Ql=

01' = [_R(R+ OQ
p/R = i

(01- 01'}IU = k*t-/(OQ
2

-RW),
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And, writing l/t
2 for f',

Om = [R(OQ-Rt*)y(R-OQ.t*),
Om' =

Hence OLOm = R- 01' . Om',

so that the circles II', mm', which are inverse to LL', MM' in the

(Q, -K") system, are mutually inverse (as are LL', MM') in the

(0, J?) system. Since the pedal triangle of Q has angles
X, Y, Z, it follows, from Section (64), that

QQzi-p* - ^ cot x+ fr
2 cot r+ c

2 cot Z- 4A
a* cot X+b* cot Y+ c

2 cot Z+ 4A '

so that now
/a, p', Ow, Oo>' are expressed in terms of X, Y, Z, t.

When OQ = -Bf
2

,
or when Q lies on the inner concentric circle

LZ/, then Oo> and p are infinite.

Hence the (Q, &) inverse of the circle (0, OQ) is DJS'D', the

Radical Axis of the coaxal system, bisecting QQ' at right

angles.
And if N be the pole of DED' for the circle ABC, it is easily

proved that the (Q, k) inverse of the circle (0, OQ') is the

circle ON.

99. A case of great beauty and interest presents itself when the

triangle XYZ is equilateral. For then Q, Q', having equilateral

pedal triangles, are the Isodynamic points 8, S,, lying on 0-ST,

the Radical Axis of the coaxal system is now the Lemoine axis ;

and N, the pole of the Lemoine axis for the circle ABC, is the

Lemoine point K.
It follows that in the (8, fc) system, the Lemoine axis is the

inverse of the circle (0, 08) ;
while the Brocard circle is the

inverse of (0,

Suppose the equilateral triangle XYZ to be projected into a

triangle with angles A/xv, sides Zwm, area A', and Brocard angle <.

Then, from Section (91),

.-. ;
4 = (cot < v/3)/cot <+ V3).

Therefore < is constant, as is constant.

Hence the remarkable property of this coaxal system of

Schoute circles, viz., the pedal triangles of all points on the

circumference of any one circle have the same Brocard angle.
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1OO. To prove that the Brocard angle < is equal to the acute

angle (less than 30) between wO and OO. (G-.)

From Section (98),

Otf/R* = (a
2 cot 60+ ... -4A)/(a

2 cot60+ ... + 4A)
= (cotw v/3)/(cotu>+ A/3).

And t* = (cot< v/3)/(cot< + A/3) (Section 99).

Therefore, from Section (98),

= (cotw+ \/3)/(cot a>

In our calculations, Section (98), we took Rt* < OQ, so that

to lies to the right of Q, and therefore of Q' (here 8
a ).

Let OOo> = 180 x .

It is known that

008 = 30, OQ^ = 150
; (ISO/.)

= sin x/sin (x o>) .sin (o> + 30)/sin 30

= (cot co -|- v/3)/(cotw cot^) ;

/.
<^>
=

x-

Many years ago Prof. Dr. P. H. Schoute proved that the locus

of a point whose pedal triangle had a constant Brocard angle is

a circle of the coaxal system whose limiting points were 8, 8r
His proof, I believe, was analytical.

Bead sections 99, 100 after Chapter XI.



CHAPTER IX.

COUNTER POINTS.

1O1. WE now proceed to a further examination of the two

pairs of Counter Points ($, S') and (Sv $/), where the pednl

triangle of 8 is homothetic to the antipodal triangle of S1

,
while

the pedal triangle of 8' is homothetic to the antipedal triangle
of $, and so for S

l
and $/.

Let afiy, a'P'y' be the n.c. of 8, 8'.

It has been shown that

W sin (A+ X) sin (B + /*) sin ( C+ v

M* sin A sin /x sin v

74

= yy = . (83)
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It follows that S and 8' are the foci of a conic inscribed in

ABC
;
that the two pedal triangles def, d'e'f have the same

circumcircle, the Auxiliary Circle of the conic
;
that the major

axis = 2p, the diameter of this circle, the centre lying midway
between S and 8 f

,
while the semi-minor axis q is given by

q-
= aa', &c

The points S, S' are often called i;

Isogonal Conjugates,"
because, by a well known property of conies,

L SCB = S'CA, SBA = tf'BG, 8A C = 8'AB,

the pairs (SA, S'A), &c., being equally inclined to the corre-

sponding sides.

The line 8'A is then said to be isogonal to SA, S'B to MB,
S'C to SC', so that S', the counter point of S, lies on any line

isogonal to SA or SB or SG.

Let afty be any point Z/ on Z?0, and a'/S'y' its counter point.

Then ftft
1 =

yy'
= aa' = 0. (a = 0)

But /?, y are not zero ;

.-. /3'
= y = 0;

i.e. the counter point of L is A.

If S be on the circle ABC, draw chord ST perpendicular to

BC, and draw diameters S8
l
and T'L\.

Obviously AT^ is isogonal to AS; also AT^ is parallel to the

Simson Line of 8^ and therefore perpendicular to the Simson
Line of 8.

Hence the counter point of 8 is at infinity, being common
to the three parallels ATlt BT%, CT3 which are perpendicular
to the Simson Line of S.

1O2. To determine the relations between X, /x, i/, the angles
of def, and A', //, i/, the angles of d'e'f.

It is known that tBSC = A + \; so BS'C = A+X. (56)

But BS'C = -rr-BD'C = TT-X
;

so B8C = V.

And ^4 +X - 5/SC = TT X'
;

.-. X + V = 7T A.

.'. sinX' = sin(^. + X), sin X = sin (J. + X') ;
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abc sin X'
,

abc sin // sin v'
also a = .

-T ,

-
;

a' = -
. -^ .

-
; (83)M sin A M sin

/u,
sin v

2 a2
6
2
c
2

2 sin X' sin u! sin v'
ana a- = aa = m .

,
where m =

:
-

r :
-

.M sin X sin /x sin v

Let n' be the power of S'
;
U 1 the area of d'e'/' ;

M' = a2
cotX'+...+4A.

Then UM = 272 . afcc = U'M'. (64)

And 2/.sinA sin//. sinv = U = 2A'-/3f ; (65)

2/.sinX' sin/x' sinv' = 17' = "2

.-. m - = u'/u = M/M' = n'/n ;

.-. U f = m*U = m\2tf/M-,

and I/' = M/m?, U' = maH.

Since aa = n .

sin^ +A) sln ^ = n .

B1
'

pX/Bin ^
;

sin X sin X

and, similarly,

; _ ri, sin(^.4-X
f

) sin A _ ^,,
sin X sin A

sin X' sin X'

a result due to Professor Genese.

1O3. The equation to the minor axis of the conic which has

8, S f

for foci. (H. M. Taylor)

Let 7r
15

7r
2 ,

7r3 be the perpendiculars on the minor axis from

-4, J3, 0, so that the equation is

jr^a . a -\- 7r.
2
b . j3 -r TT^C . y = 0.

A diagram shows that

C A 2 <" j 2 O v1 ^
\SJBL O./1 =^.00.^;

also 8A sin A = ef 2p sin X
; (57)

.*. Trj.sin
2
^. oc (sin'

2 X sin'^X') a sin (X X') sinA

Hence the equation to the minor axis is

a.sin(X X')+y3.siii(/< /x') + y.sin(v v')
= 0.

The proof here given is by the present writer.
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1O4. Lemma. The tangent be to the conic being drawn

parallel to BC, to prove

SA.S'A = AC.Ab = AB.Ac.

Let a, /?, y, 8 be the angles subtended at & by the tangents
from 5, (7, c, b.

Then - = y;

and, regarding the parallel tangents as drawn from a point}D
at infinity, so that SD is parallel to B(7,

Z DSl = DSn = i(2/3-h2y) =

/. DSC= DSl-CSl= (/?+ y)-

/. S'CJL = SCI = DSC = y =

Also >S'^(7= SAb.

Hence the triangles ASb, ACS' are similar;

.*. AS : Ab = AC : AS'
;

/. SA.S'A = AC.Ab = AB.Ac.

The theorem is due to Mr. E. P. Rouse, the demonstration to

Mr. B. F. Davis.
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1O5. The coordinates of the centre cr of the conic. (G.)

Let a /8 y ,
a

n7? 'y
' be the n.c. of o-

,
the centre of the conic,

referred to ABO and to the mid-point triangle A'B'C' respect-

ively.

Let &i be the perpendicular from A on B G.

Then a -j- a
' = J^ ;

/. 4E.o ' = 2R(h, 2a )
= 2Experp. from A on be

= ZRxAbsiuB or 2Rx4csinC f

= AC. Ab or AB.Ac

= 8A . S'A (from Rouse's Theorem).

But 8A .sin A = ef 2p . sin X
; (57)

/. 4 71 . a
' = 4p

2
. sin X sin X'/sin

2
J.

;

aa
(

' =
"2p

2
. sin X sin X'/sin yl,

giving the absolute A'B'C' b.c. of cr
;
and since

aa
'+ fy8

' + cy
' = A,

,
where N = 3,. sin X sin X'/sin ^4.

1O6. The conic touching BG at Z, to prove

Bl : Cl = sin /u, sin /x,'/sin J5 : sin v sin v'/sin (7.

Project the conic (ellipse) into a circle of radius q, the angle
of projection being 6 = cos" 1

q/p.

Let the centre cr be projected into o-
a ,
and ^4.5(7 into A^B^J^.

Then A. B
l
a-lCl

= A. Bo-^C X q/p ;
.'. q.a^ = ac^Xq/p ;

/. a, cc aa
;

/. 5Z : C? = J?^! : C% = j &! :
*?,

c
a

= aa 6/3 -f cy : aa -(- ?>^ cy

=
feft' : cy

'

(14)

= sin
/x.

sin /x'/sin B : sin v sin v'/sin 6'.

The theorem is by Mr. H. M. Taylor; the proof is by the

present writer.
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1O7. Let w, a/ be the orthopoles of the circumdiameters passing
through 8 and S'

;
i.e. the points on the Nine-Point circle

whose Nine-Point circle Simson Lines are parallel to the
diameters OS and 08' (49).

The pedal circle of every point on the diameter through 8
passes through o>

;
therefore def, the pedal circle of 8, passes

through w
; similarly the circle d'e'f passes through a/. (78)

Therefore defd'e'f, the common pedal circle of 8 and $', passes
through <o and <*/.

And therefore ww' is the Radical Axis of the two circles. (Gr.)

0)

s'/L

When OS' falls on OS, a/ coincides with w, and the pedal
circle touches the Nine-Point circle at w.

108. Aiyars Theorem.

If 0' be the Nine-Point centre

Then OS . OS' = 2R . 0'<r .

Let OJA and %$&' be the direction angles of OS, OS'.

The power of A' for the pedal circle = A'd.A'd'

= OS cos 0,. OS' cos 0/.

But since GMO' is the Radical Axis of the two circles, the

power of A' for pedal circle

= perpendicular from A' on wo/ x 2 . 0'<r .

And this perpendicular from A'

= A'w.A'u'/R = E cos e,.R cos 6,' ; (44;

/. OS.OS' = 2R.O'<rQ .

(V. Ramaswami Aiyar.)
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Xote that the A'B'C' equation to o>o/ is

COS O
l
COS 6-[ . aa + . . - = :

for, from (50), w and o>' have n.c. (sec^... sec ft/...).

1O9. M'Cay's Cubic. Tor this occasion take (Imn) as the

n.c. ABC coordinate? of S
;
so that (1/7, 1/m, 1/n) are the n.c.

of ,S".

The equation to &$' then is

l(m~-n-)a+... = 0.

When /8/S>' passes through 0, we have

I (m
2

rr) cos A+ ... =0.

So that and 8' He on M'Cay's Cubic,

And conversely, if any diameter TOT' cut this cubic at S, 8'

(the third point is 0), then ;S, /S' are counter points, and their

pedal circle touches the Nine-Point circle at w, the orthopole
of TOT'.

We have already met with this circle in Section (45) : its

centre is On O'Q-p* is a straight line, so that now Aiyar's
Theorem may be written 08. OS' = 2R(Rp), and if the

circle cut TSS'OOfl' in k, k', then w&, wk' are the Simson Lines

of T, T'.

110. Counterpoint Conies. (G.)

The point P moving along a given line TT', it is required
to determine the locus of its counter point Q.

Let TT cut the sides of ABC in L, M, N.

Then the Q locus passes through J., B, C the counter point
of

, I/, A7
. (101)

Draw the chord Aa parallel to TT', and at parallel to BC.

The counter point of t (101) is the point at oo on Aa, and
therefore on TT'. But this point being on TT', its counter point
must be on the locus of Q.

Hence t is a point where the Q locus cuts the circle ABC ;

also (101) t is the pole of the Simson Line perpendicular to TT.

Denote perpendiculars from Q, the counter point of P, on

AC, AB, Bt, Ct by ft y, ', /.
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sin (1A(
"

siu PA /;
-Then

y sin QA'Ji sin

H _smQCB ainQBt _smPCA sin QBt
Q<J .sin Q.Ct

~
sin ^5(7

'

sin QCt
~
ninPBA

'

sin QCt'

Let Z?P, (7P cut Aa in ?w, and w.

Then QBt = QBC+CKt = PBA+ BCa - FBA +BAm
= Bma = BPT.

So QCt = QCB+BCt = PCA+ CBa = PCA + nAC

= Pna = OPT.

^ q~
yy' PC' PA' sin CPT PC . sin OPT

~
r

'

where p, g, r are perpendiculars from. A, B, C on T27
'.

Hence the locus is a come passing through ^4, J5, C, ^.

If the sides of the quadrilateral were BA, BO, tA, tC, we

should have yy'/aa'
=

r/p, .....

111. To determine the directions of the asymptotes and axes.

Draw Tx, T'x' parallel to BC.
The points at infinity of the Q conic are the counter points of

T, T f

;
and therefore lie on Ax, Ax', which are isogonal to AT,

AT', so that Ax, Ax' are parallel to the asymptotes.

But the arc tx = aT = AT'.

Hence tT, tT' are parallel to Ax1

, Ax, and therefore to the

asymptotes.
G
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112. To determine the Counter Point Conic of a circum-
diameter TOT'.

From (111), the Asymptotes are at right angles, since they
are parallel to tT, tT'

; therefore the conic is ^a Rectangular
Hyperbola. .

If TOT' be la +mp+ny=Q or p.aa+... = 0,

the conic is Z/a-f... = 0.

To find the centre, we have

my+ nfi cc a, &c.
;

a a Z( al -\-brn -\-cti).

But I oc op, and, from (8), ap/R = b cos 8+ c cos ^2 ;

whence a ex. p cos #j, &c.

Hence, from (50), the centre is w, the Orthopole of TOT'.

T'

113. To determine the Asymptotes. (G.)

Let wZ, wX' be the Simson Lines of T, T'.

From Section (41), if u
l9

, i(?,, A
t
ai-e the perpendiculars from

A, 5, 0, .7? on ojj^ ;
arid w

2 ,
r

2 , w^ h
z those on coX2 ;

then

n
l
= 2E . cos <r

l
sin cr

2
sin cr3 ,

^
2
= 2/i'.cos (^TT o-J...

= 2B . sin o-j cos o-2 cos cr3 ;
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.'. 2 .u^ = R*. sin 2o-
l
sin 2<r2 sin 2<r

3

= 2 . t^ro = 2 . iv
}
w*.

Also Aj
= perp. from -ff on o>Xj

= perp. from T on w.X'j

= 2R . cos o-j cos o-2 cos <r
s .

So h, = 2R.cos(i7r-(T1 )...

= 2R . sin o-j sin o-., sin cr3 ;

/. 2.w
1 2
= ... 27^,.

Hence w^, wXg are the Asymptotes of the Rectangular Hy-
perbola and the square of the semi-axis

= -B
2
. sin 2^ sin 2cr2 sin 2<r3 .

Since OT.4 or OAT =
o-, ; (37)

/. |?
= E.sin^OT = E.sin2o-.

Hence the square of semi-axis = pqr/R.

114. Produce H<o'to cut the circle ABC in t'.

Then, since oj lies on the Nine-Point Circle,

flu> = wt'.

But H is on the Eectangular Hyperbola, and w is the centre.

Therefore t' lies on the Rectangular Hyperbola.
Therefore t' coincides with t, the fourth point where the

Rectangular Hyperbola cuts the circle ABC.

Let
ttj, &, yx

be the n.c. of S^ inverse to 8; and a/, /?/, y/
the n.c. of $/, the Twin Point of 6'.

It has been shown that

_ abc sin(J. A.) , _ abc sin (B p) sin (C v)

If sin A. JVJT

'

sin /x sin v

(68) and (86)

So that /S/ is the counter point of $,, and therefore lies on the

Rectangular Hyperbola, which is the counter point conic of

TOT'.
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115. To prove that o> is the mid-point of S'SJ.

We have shown that the pedal circles of all points on TOT'
pass through the orthopole w.

Therefore the pedal circles of (SS
f

) and (fi^/S/) pass through w.

Also, from Section (69), w is the Centre of Similitude of def,
the pedal circle of S, and of d^ej^ the pedal circle of $,.

Hence, if p, p1
are the circumradii of these circles,

tad <ad
}

P Pi
'

d, d' being homologous points in the similar triangles def, d^fr

S,/-

Draw to& perpendicular to BG.

Then, since CD is on the circle defd'e'f,

2p
and similarly, w/c = ud^ . wd

l'/2p l ;

so that the projection of w on BG is midway between the pro-

jections of 8' and Si on BG.

So for OA, AB.

Therefore o> is the mid-point of S' and /S'/.

Hence, as the inverse points S and S
l
travel along TOT' in

contrary directions from T, their counter points S' and $/ travel

along the Rectangular Hyperbola which passes through -4, B^ G
and has o> for its centre. $', $/ are always at the extremities

of a diameter of the Rectangular Hyperbola, and the difference

between the areas of their antipedal triangles is always 4A.
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116. Let I', m', n' be the images of 8' in EG, CA, AB. (Gr.)

Then, because cr is the centre of the pedal circle of ($$'),
.-. <r S=:o- '; .'. SI' = 2.<r d' = 2p.

Therefore a circle, centre 8, radius 2p, passes through I'm'n'.

Again, since S'<rQ
= ar 8 and 8'<o = oi/8/,

/. 88^ = 2.o- <u = 2p,

since the circle def passes through <u.

Hence a circle described with centre S and radius 2p passes
through I'm'n' and $/.



CHAPTER X.

LEMOINE GEOMETRY.

117. The Lemoine Point. On the sides of the triangle ABC
construct squares externally, and complete the diagram as

given, the three outer sides of the squares meeting in A,, B,, C,.

The perpendiculars from A, on AC, AB being b and equal to

c, the equation to AA
l
is (3/b

=
y/c.

Hence AA,, BB,, CCl
meet at the point whose n.c. are

(a, 6, c),and whose b.c. are therefore (a
2
,
6
2

,
c
2

).

This point is called the Lemoine or Grebe or Symmedian
Point and will be denoted by K.

AK, BK, CK are called the Symmedians of A, B, C.

The absolute values of the n.c. are given by a = ha, &c.,

2A
where k =

Produce AK to meet BC in K
l ; then,

BK, : CK, = &AKB : AAKC
= ratio of b.c. z and y

o , ,>= c . o"
;

so that the segments BK,, CK, are as the squares of adjacent
sides.
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118. K is the centroid of its pedal triangle def.

For &eKf= ^.Ke.KfsinA
cc be sin A

;

.-. A eKf = AfKd = A dKe.

So that K is the centroid of def.

Since the n.c. of are as (cos A, cos -B, cos 0), while
those of ET are as (sin A 9

sin 5, sin C) t
therefore the equation to

OK is sin( C).a+sm(C-4).j8+ sin(4 5).y,

or (b*-<?)/a*.x+;.. = 0.

The Power of JT for the circle ABC.

Using the form of Section (60), we have

119. If a, /?, y are the n.c. of any point, then a2 + /?
2

-fy
2

is a

minimum at K.

Since a2
+Z)

2+ c
2

= 4A2
+... ;

therefore (a
3+ &

2+ c
2

)(a
2+ /S

2+ y
2

) is always greater than 4A2

except when a/a = (3/b
-= y/c

or when the point coincides with K.
In this case, therefore, a2

4-/8
2

-fy
2 has its minimum value,

4A2

which is
2 7j 7

t

The sides of the pedal triangle of a point 8 are u, v, .

To show that u*-\-v*+v& is a minimum when 8 coincides with
the Lemoine Point K.

From (57), u = r,.sin A ; (SA = r,)

But, since a2
,
6
2

,
c
2 are the b.c. of K, we have, from (19),

a\ r,
2 + Z>

2 '

r
2

2+ c
2

. r3

2 = (a
2 + 6

2 + c
2

) CfiTtf
2- KO* + E2

) ;

and the right-hand expression is a minimum when KS = 0, or

when 8 coincides with K.
The minimum value of u2

(118) and (131)
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12O. Let figures Yand Z, directly similar, be described exter-

nally on AC, AB. so that A in Y is homologous to B in Z, and
in Y to JL in Z.

Then, if 8 be the double point of Y and Z, the triangles SAO,
SBA are similar, having

L SEA = SAC
;
SAB = SGA ; ASB = 4SC,

so that $ is the focus of a parabola known as Artzt's First

Parabola, touching AB, AO at B, C.

Let Pv Pz be the perpendiculars from S on AC, AB.

Then, from similar triangles SBA, SAC,

so that S lies on the J.-Symmedian.

Again, / BSK, = SAB+ SBA
= SAB+ SAC

.;.
BSC = 2.BSK, = 2A = BOG;

so that S lies on the circle BOG.

Also, OSKi = OSB+A = OGB +A (in circle B08C)
= 90;

/. 8A = 5A-
Hence the double point 8 of the two directly similar figures

on AB, AC may be found by drawing the Symmedian chord AA
l

through K and bisecting it at 8.
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121. Let r

l\'l\'l\ be the Tangent Triangle, formed by drawing
tangents to the circumcircle at A, B, C.

Then AT,, BT2 , CTS ,
are concurrent at K.

For, if q, r be the perpendiculars from T^ on AC, AB,

q__ _ T.GsinACT,, _sinff_ b

r *inC c
'

Hence AT^ passes through K ;
so also do BT.2 ,

(7T3 .

Note that T
l

is the point of intersection of the tangents at
B and C, whose equations are y/c+ a/a = 0, a/a-f 6//S

= 0, so
that the n.c. of '1\ are ( a, 6, c).

122. The Lemoine Point A of I^A,.
In the figure of the preceding section, it will be seen that

the Lemoine Point K of the inscribed triangle ABC, is the

Gergonne Point (32) of
r

I\T2
Ts ,

Therefore the point M, which is the Gergonne Point of ABC,
is the Lemoine Point of XYZ.
But XYZ and I-J^ are homothetic, the centre of similitude

being <r. (26)

Therefore the Lemoine Point call it A of I^/a lies on crJIf,

and <rM : crA = linear ratio of XYZ, IJJs =r:2B.



90 MODERN GEOMETRY.

The point A has n.c. (s a), ...
;
for the perpendiculars from

the point {(s a), (s &), (s c)} on the sides of 1^1^ are found
to be proportional to the sides of this triangle.

Note the following list of
"
(s a)

"
points :

(1) Nagel Point: b.c. are (s-a), (5-6), (s c). (30)

(2) Grergonne Point : b.c. are 1/0 a), &c. (32)

(3) Lemoine Point A of I-J^: n.c. are
(.<? a),

(4) Centre of Sim. o- of XTZJJJ.,: n.c. are 1/0 -a),.... (26)

123. To prove that JJT bisects all chords of the triangle ABC,
which are parallel to the tangent at A, or perpendicular to OA,
or parallel to the side H

Z
HS of the orthocentric triangle H^H^Hy

Let BAK = B, OAK = <.

Then sin 0/sin < =
y/ft

=
c/b

= sin 0/sin B = sin 5^T2/sin CA'1\.

Therefore AK and T^AI\ are harmonic conjugates with

respect to AB and AC.
It follows that J..K bisects all chords which are parallel to

T2Tx or JTo-Hg, or are perpendicular to OA.

124. The Harmonic Quadrilateral. The angles of the har-

monic pencil at A are seen to be B, <, 6 or (7, 0, <f> (Fig., p. 89).
The same angles are found, in the same order, at B and and.4r
Hence the pencils at B, (7, A and A

l
are harmonic; ABA

}
C

being called, on this account, a Harmonic Quadrilateral.
In the triangle ABA l

the tangent at B is harmonically con-

jugate to BK^ so that BK
l
is the B-symmedian for this triangle.

Similarly, A^K^ is the Jlj-symmedian in A
1
C

1 ;
and CK^ the

C-symmedian in AGAr

To prove that rectangle AB.A-^G = rectangle AC .A^B.

sin 0/sin <t>
= sin BCA/sin CBA l

= A^/A.C.
.-. AB.A.G = AC.A

1
B.

If x.
//, z, u are the perpendiculars from K

l
on AB, AC, AJ3,

A, then x/AB = y/AC = z/A,B.

For, since AI^ is the J.-symmedian of ABC,
.-. x/AB = y/AC.

And, since 5^ is the .B-symmedian of

x/AB = z/A,B.

And, since A
l
K

l
is the J-^symmedian of
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125. The Lemoine Point is the point of intersection of lines

joining the mid-points of the sides of ABC to the mid-points of

corresponding perpendiculars.

A

Let A', B', C' be the mid-points of BC, CA, AB, and let A'K
meet AD in I.

Then, since BK and the tangent BTl
at B form a harmonic

pencil with BA, BC, therefore the range (AKK^T-^ is harmonic :

therefore the pencil A'(AWco ) is harmonic, so that AD is

bisected at I.

A rectangle XYVU being inscribed in ABC with the
side XY on BC, to find the locus of its centre P.

The diagram shows that the mid-point of UV lies on A'A,
and that P lies on A'L
The Lemoine Point K, common to A'l, B'm, C'n is the com-

mon centre of three inscribed rectangles, standing on BC, CA,
AB respectively.

126. To determine the direction angles 6
19 2 , 3,

which OK
makes with the sides of ABC.
From the diagram,

OK cos l
= A'd = A'D.

HJ

Now

and

A'D = fr
2-c2

2a

2A
(117)
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.-. COS0! = m.a(b~ c
2

), where 1/m =
.-. COS0! : cos08 : cos &

= a(b"c
2

) : 6 (c
2 a2

) : c(a
2

Z>
2

).

Hence the tripolar equation to OK is

a1^8
C
i
)r1

i
-ffe

2
(c

s-os
)r8*-f6

l
(a

a
--6)rt

l = 0. (17)

127. !TAe Apollonian, Circles. Let the several pairs of bisectors

of the angles A, B, C meet BG in a, a!
; OJ. in ft

'

; J.B in y, y'.

The circles described on aa', /?/?, yy' as diameters are called

the Apollonian Circles.

Let the tangent at A to the circle ABC meet BG in Lr

Then angle L,aA = aBA + BAa. =
L^a = L,AC -\-GAa. =

so that /^a = L^.
And, since aAa' = 90,

.', L,A = LX ;

so that Z/j is the centre of the Apollonian Circle (aa'), passing
through A and orthogonal to the circle ABG.

Since AL^ is a tangent, the polar of L
l passes through A

;

and, since (BKfiL^ is harmonic, the polar of L
t passes

through Kr

It follows that AKK^Ti is the polar of L, ; so that L,A, is

the other tangent from Lv

Hence the common chords AA^ BB^ GGl
of the circle ABG

and the Apollonian Circles intersect at K, which is therefore

equipotential for the four circles.

Note that OL
l
bisects AKK

1
A

1
at right angles, and therefore

passes through the point IS of Section (120).

128. The Lemoine Axis.

Since the polars of L^ L>
2 ,
Ls pass through K, therefore L^L.^

lie on the polar of K.
The equation to the tangent at A is ft/b+y/c = 0, &c.

Hence L^L.^LS is

a/a+ /3/6-fy/c = 0, or x/ar + y/tf + z/c* 0.

This is called the Lemoine Axis.

129. A Harmonic Quadrilateral such as ABA^ can be in-

verted into a square.
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Let the circle described with centre 'L\ and radius
cut the Apollonian Circle L

l
in E and E' .

or

Then, since the tangents OA, OB, 00, OA
{
to the two circles

are equal, lies on their common chord EE', and

OE.OE' = S2

;

so that E, E' are inverse points for the circle ABC.
Let AE, BE, CE, A }

E meet the circle again in LMNL'.
Then, taking E as pole and VII as radius of inversion (where

n = power of E = RZ

OE*), we have

n nLM= AB. LN = AC.
EA.EB'

'

EA.EC
But BE : EC = BA : AC,

since E is on the Apollonian Circle aAa!
;

/. LM = LN, Ac.

Hence LMNL' is a square.

Another square may be obtained by taking E' as pole.

In the above figure, E is on the Apollonian Circle aa';

/. r
2

: r3 = BE : CE = Ba : aC = c : b ;

.. br
z
= cr& ;

.*. de = df or /x
= v.

Also A + \ = BEC = TT-^.BT.C =
.-. \ ?r so that x = v =



CHAPTER XI

LEMOINE-BROCARD GEOMETRY.

13O. The Brocard Points. On the sides BC, CA, AB let triads

of circles be described whose external segments contain the angles

O) A,,C;
(b) C,A, B-

(c) B, C, A ;

the cyclic order (ABC) being preserved.

The first triad of circles intersect at the orthocentre H.

Let the second triad intersect afc 17, and the third at O'.

O and O' are the Brocard Points of ABC.

Since the external segment of BQC contains the angle C, this

circle touches CA at C.

Similarly, CttA touches AB at A, and AlB touches BC at B.

(Memorize the order of angles for O by the word " CAB."}
In like manner. BQ!G touches AB at B, Cti'A touches BC at

C, ASl'B touches CA at A.

Again, since J.O/> touches BC at B, the angle

056' = VAB.

So QCA = SIBC.

Similarly, Q'AC = Q'CB = &BA.
Denote each of the equal angles IBC, QCA, SlAB by w, and

each of the equal angles 0,'CB, &c., by </.

94
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131 B To determine CD and to'.

In the triangle AtoB,
toB =: c sin w/sin B = 2R sin to.c/6.

So toA = 2B sin to . 6/a, 12 6Y = 2JB sin co . a/c ;

sin (01 -to) _ sin CLIO _ 120 _ a2

.

sin to

~~

sin 12 0.4
~
toA~ be

'

... cot to = ^1 - cot A + cot 5+ cot
4A

_ sin
2
J,+ sin2B+ sin

2

C. _ 1 4- cos A cos j? cos C
2 sin ^. sin B sin C sin ^1 sin B sin

The same expressions are found for a/
;

a> ^^ o>.

The angle <o, which is equal to each of the six angles QA B,

, QCA, &BA, Q'CB, Q'AC, is called the Brocard Angle of

ABC.
Since oV = o>, it follows that

to'A = 2E sin w . c/a, Q'C = 2 Z? sin co . fe/c, O'5 = 2.R sin w . a/6.

Observe that the n.c. of K may now be written

2A
a = --

. a = Ja tan to = R sin A tan to, &c. (117)
CL" -\~ b -\~ c"

132. To determine the n.c. and b.c. of to and fi'.

From the diagram,
a = toB sin to 212 sill

2
to . c/6.

So fi
= 2R sin2

to . a/c, y = 2E sin2
to . 6/a.

And for O',

a' = 2B sin2
to . 6/c, ft'

= 2R sin
2
to . c/a, 7'

= 2JB sin
2
to . a/6,

.*. aa' = y8y8'
=

yy' : so that O, 12' are Counter Points.

The b.c. of O are given by

x:y:z = l/b- : 1/c
2

: I/a
2

;

and for to', x' : y' : z' = 1/c
2

: I/a
2

: 1/61

The line toto' is then found to be

(a
4-62

c
2

).^/a
2 + (6

4

-cV).?//6
2

+(c
4-a2

6
2

)^/c
2 = 0.

The power U of to = /V+"; 2
. ^ , ?'f ^22 22

.-. on = on'.
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133. The Brocard Angle is never greater than 30.

For cot <o = cot A -\- cot B + cot (7,

and cot V cot ('+... = 1
;

.*. cot- co = cot
2 J.+ ... + 2;

/. (cotl?-cot(7)
2
+... = 2(cotM + ...)-2

= 2 (cot
2

(o-3).

Hence cot to is never less than A/3, and therefore w is never

greater than 30.

134, Some useful formulae.

(a) cosec
2
CD = 1 4- cot

2
<o = 1 4- (a

2
4- &

2+ c
2

)
2

/16A
2

s -, , . a4

and 1 4 sin- cu =

This expression will be denoted by e
2
.

(6) cos CD == -
.

. 2A(a
2+ 6

2+ c
2
)

(c) sin 2to ^ .
2 a

.

(d) COS l>oi = _-A^

(e) cotL^^j.
a

4
A(

(/) Since sin (A w)/sinw = as
/66;

/. sin(J. w) : sin(l? a>) : sin (0 w) = a3
: I

s
: c

8

,

.and sin(J. w) sin (/? <o) siii(6' to)
= sin

3
to.

(gr) sin (^.4 -j-w)/sin o> = sin A (cot to -f cot A)

Note that, when 6 c, sin (^4.+ w) = 2 sin to.

(/&) cos (^4 + <o)/sin J. sin to = cot A cot to 1

/. cos(yl+(o) = sin A sinto/8A
2

.(fc
4+ c

4 a2
/;

2
<rc

2

)

a sin (AE) sin 7> + sin (J. C) sin f '.
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135. JTeuberg Circles.

The base BG of a triangle ABC being fixed, to determine the

locus of the vertex A, when the Brocard Angle of the triangle
ABC is constant.

Bisect BG in I) : draw DA^A.2 perpendicular, and AM parallel
to BG.

Then

=

4. area of ABC 4,a.DM

.'. AD* a.DM .coto)+ 3/4.a
2 = 0.

Take DN = \ a . cot o>, so that L BND = GND = u>.

Then NA* = AD* +ND2-2.DN.DM

-3/4.o
8 = 1/4. a

2

(cot'w-3)
= constant.

Hence the locus of -4 is a circle, called a Neuberg Circle,

centre N, and radius p = \a

136. Let Sj&C', #_E7'(7 be equilateral triangles on opposiie
nicies of the common base BC, so that DE = |a. V3.

Let the Neuberg Circle cut DE in A A.
2 .

Then DA,. DA, = DJV2-
P
2 = 3/4. a

2 = DE2
.

And thus, for different values of <o, the Neuberg Circles form
H
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a coaxal family, with E and E' for Limiting Points, and EG for

Radical Axis.

Let GA
l
cut the circle in Tv

Then, since E is a limiting point,

A GA^.CT^ = CE* = CB\

so that the triangles GBA 19 GT^B are similar
;

.-. B'l\ : A,B = BG : A,G.

But A,B = A,C, /. BT, = BG = BE
;

/. BT
l
is a tangent at Tr

Similarly, if BA% cuts the circle at T^ ;

then CT is a tangent at T2
.

137. The Steiner Angles.

From the similar triangles BA,G, T^BC,

L r

l\BG = BAf.
Also, from the cyclic quadrilateral BT^ND^ with right angles

at T, and Z>, /_ BT^D = BND or w ;

BG = u + BA.C = A
l + >;

n o) _ sin r,D(7 _ ^^ _ BG
sino> ~*inB rl\D~ BD

~
BD

o- -i i

Similarly,
sin w

Thus J.
15 A% are the values of x obtained from

sin (x+ w) = 2 sin o>.

This gives cot2^ 2 cot J# . cot w+ 3 = 0;

whence cot^^ = cot w -v/cot'
2 w 3,

cot^A, = cot 00+ v/cot'
2 w 3

;

as is obvious from the diagram.

For A.D/DB
-

DJNT/DJ5
-NAJDB ;

-j
= cot to p/^a = cot GJ \/cot

2
a> 3.

A
denoted by S

19
/S'2 .

So cotJA2
= cot w -f \/cot2 w 3.

The angles %AV \A^ will be called the Steiner Angles, and
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138. Either Brocard Point ft or ft' supplies some interesting
illustrations of the properties of pedal triangles.

For ft, A+ \ = BQO = 180-0 = A + B;
.'. \ = B, so /x

= 0, v = A.

And for ft', \' = 0, // A, v' = B.

So that the pedal triangles of the Brocard Points are similar

to ABO.
To determine p, the circumradius of the pedal triangle of ft.

ef = 2p sin A. 2p sin B.

But ef=QARiuA = 2R sin to . b/a . sin A (131)

p = J\ sin to.

Hence, the triangles def, ABO have their linear ratio equal to

sin <o : 1.

U A sin
2
w.

Also II = 4_B2

/A . U
;

.-. E2
Oft

2 = n = 4JR2
sin2

to,

/. Oft
2 = E2

(l 4 sin
2

o>)
= e'E*. (134 a)

139. Lemma I.

Let XBC, YCA, ZAB be isosceles triangles, described all

inwards or all outwards, and having a common base angle 6.

To prove that AX, BY, CZ are concurrent.

Let (a^yO, (a2/32y2 ), (a3&y3 ) be the n.c. of X, Y, Z.

Then 04 = ^ a tan
;

ft = JO7sin(C'-6>) = i. a sec 0. sin (C-0) ;

yx
= ia sec 0. sin (B 6).

A

C

So that fll
: ft : yj

= sin0 : sin (00) : sin (.# 0) ;

a
2

: ft : y.2
= sin (00) : sin : sin (A 0),

a ft :
7;i

== sin (^ 0) : s in (^ 0^ : si 11 0-



100 MODERN GEOMETRY.

The equation to AX is ft/fa
= y/y1?

or ft. sin (7>> 0> = 7 sin (C-0), &c.

Hence AX, J3Y, 0^ concur at a point 8, the centre of

Perspective for triangles ABC, XYZ, whose n.c. are as

I/sin (A- 0), I/sin (7?-0), I/sin (0-0).
The point 8 obviously lies on Kiepert's Hyperbola, the

Counter Point conic of OK, for the K.H. equation is

sin (B G) . 1/a-f- ... =0. (Appendix TIL a)

14O. Lemma II.

The centroid (') of XYZ coincides with O.

For if (a, 0, 7) be the n.c of G'.

3. (la =
ttj + Oo+ a..

=
\ sec0 [a sin 0-1-6 sin (0 0) +c.sin (7? 0) }

oc 26 sin (7 oc I/a ; &c.

6r' coincides with G. (See Appendix 771.6)

141. Illustrations, (A) In the diagram of Neuberg's Circle

(p. 97), change N into Nv and on BC, CA, AT? describe the

isosceles triangles N^BC, N.
2CA, N^AB (all inwards), with the

common base angle (^-TT <o), so that N
1N^N9 are the centres of

the three Neuberg Circles, corresponding to 7? (7, CA, AB.
Then since sin (A 0} becomes cos (A + <*>), the lines AiV,, BN.2 ,

CNS concur at a point whose n.c. are as sec (A + w)..., that is,

at the Tarry Point. (143)

For a second illustration take the triangles PBC,
RAB having the common base angle w measured inwards.

The triangle PQR, called the First Brocard Triangle, has G
for centroid from (140), while AP, BQ, CR meet at a point D,
the Centre of Perspective for PQR, ABC, its n.c. being as

I/sin (A-cu) Ac., or I/a
3
, 1/6

3
, 1/c

8
,
the b.c. being as I/a2

, 1/6%

1/c
2

.

For the n.c. of /',

aj : ^ : yl
= sin a> : sin (C co) : sin (7^ co) ;

= 1 : cr/ab : b*/ac,

BO that the b.c. of P are as a2
,
c
2

,
6
2

.
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Similarly those of Q are c'
2

, ?r, cr, and those of R are ?/
2

,
a2

,
c
2

.

The equation of QR is found to be

(a
4

&
3
e
2

)0+(c
4 a2

6
2

)2/+(6* cV)s = 0.

This meets J56' at a pointy, for which

(c
4-o8

6
s

)y+(fe*-c
aa2

)
= 0,

or, ?//(6
4

-cV) + s/(c'-aW) = 0.

Hence the Axis of Perspective _p<?r of the triangles PQR, ABC
is z/O

4 6V2

) + . . . =0. (4p_pewdi'a' 7IZ". c)

142. O, O', A'.

Some of the relations between O, Q', and K, will now be

investigated.

A

B

(a) Since PA' = 5.4'. tan PjBA' = Ja.tan w = KM,
/. AP is parallel to BC,

so Y^, 7CK are parallel to OA, AB

respectively.

Since OPK = 90 = OQK = ORE,

it follows that P, Q, E lie on the Brocard Circle (OA').

(6) Since the angles PPG', QBG are each = o>,

/. PP passes through O.

Similarly OQ, AE pass through fl, while C'P, AQ, BR pass

through O'.
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(c) Since KQ, KR, are parallel to AC, AB,
.; QPR = QKR = A.

So RQP = B, PRQ=C;
and thus PQR is inversely similar to ABC, the triangles having
the common centroid G as their double point.

(d) Since

POE = VAB+ ttBA = u+(B o>) =B = PQR,
.'. O (and similarly O') lies on the Brocard Circle.

(e) L VOK = &PK = OJ5(7 = o>
;

so Q'OK = <o.

OK bisects flO' at right angles (at Z).

From Section (138).

00 = R (1-4 sin2

oo)
4 = eR

;

OK (diameter of Brocard Circle) = eR secw.

DO' = 2 . 012 sin o> = 2eR sin to.

143. The Steiner and Tarry Points.

The ABC Steiner Point denoted by 2 is the pole of the ABC
Simson Line which is parallel to OK.

To determine 2 geometrically, draw Aa- parallel to OK,
and crS perpendicular to BC. (35)

If 0j, 0.
2 ,
#3 are the direction angles of OK, it has been proved

that cos 6
l
oc a (6

2
c
2

). (126)

The n. c. of 5 are 2 R cos
2
cos 3 , &c., which are as

sectf], &c., or as 5 r ;
and the b.c. are as l/(6

2
c
2

).
a (o c )

The point diametrically opposite to S on the circle J^-BO

is called the Tarry Point, and is denoted by T
;
therefore the

Simson Lines of 2 and T are at right angles. Hence the n.c.

of Tare 2 R sin 2 sin 8 ,
&c. (46)

Now 03T sin ^ = J^M- OA 1 (KM perp. to 56')

= R sin A tan o> IZ cos -4

oc cos(J.-f to).

Hence the n.c. of Tare as sec(J.+ oo), sec(5+(o), sec((7+ u>).

In (42) let PQR be the Lemoine Axis
;
then N is the pole

of the Simson Line parallel to this axis, and therefore per-

pendicular to OK.

Hence N is the Tarry Point.
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144. PQR being the First Brocard Triangle, inversely similar

to ABC, to prove that the figure KPROQ is inversely similar

to 2ACTB.
Since ZSOT is a diameter, 3o-T is a right angle, so that a-T is

parallel to BC, and arc B<r = CT.

Now, since KR is parallel to AB (142 a.), and KO to A<r (as

above), .'. L OKR = <rAB = T2C, from the equal arcs.

Similarly, OKQ = T2B ;

also ABC, PQR are inversely similar.

Hence and T are homologous points in these two triangles.
Therefore K and 2 are homologous.
Hence the figures KPROQ, ^AGTB are inversely similar.

Since L 2BA = KQP (similar figures)
= JKTJKP,

and AB is parallel to KR,
.'. 2B is parallel to EP, &c.

Hence TA is perpendicular to QE, T5 to EP, TO to PQ.

145. Lemma.
The points L, If, JV have b.c. proportional to yzx, zxy, xyz,

arranged in cyclic order
;
to prove that 6?', the mean centre of

LMN, coincides with G.

Let (0,^70, OAh)* (oa^sys)* (aW) be tne absolute n.c. of

L, 3f, N and 6r' respectively.
Then, for L,

So

and

/. a,
= 2A/ (aj+ y + z).y/a.

04 = 2A/(o;+ y+ )./,
a8
= 2A/ (a;+ y + 2) . a?/a ;

/. 3a' = ai + a
2 4-a3

= 2A/o, Ac.

Hence G' coincides with G.
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146. The b.c. of P, Q, It being aVfe 8

, cW, 7/W, in cyclic

order, it follows that G is the centroid of PQR, as already
proved, and is therefore the double point of the inversely
similar triangles ABC, PQR.

Let L be the circumcentre of PQJR, and therefore of the

Brocard Circle (OK) ;
then L in PQR is homologous to in

ABC. Therefore the axes of similitude of the two inversely
similar triangles bisect the angles between GO and GL.

Again, the b.c. of 1), O, 12' are I/a
2

, 1/6
2

, 1/c
2

; 1/6',

1/c
2

, l/a
j

; 1/c
2

, I/a
2

, 1/6
2

,
in cyclic order.

Hence G is the centroid of DOQ'.

Bisect DO' in Z, then (9 lies on DZ, and Z : GD = 1 : i>.

But OG:GH=l:2. (H orthocentre of ABO)
.'. D.S" is parallel to OK, and Dfi" =2.0Z = 2.eP cos to.

Let LG meet DIf in H'.

Since i is the circumcentre, and G the centroid of PQR,
.'. LGH' is the Euler Line of PQR.

But LG : GH' = ZG : GD = 1 : 2
;

/. J^ is the orthocentre of PQE.
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Again, HH' 2 . OL = OK,

.'. H'HKO is a parallelogram

and E'K bisects OH at the Nine-Point centre.

147. Since G is the double point of the inversely similar

figures 2ACTB, KPROQ, therefore the points 6?, 0, T in the

former figure are homologous to G, L, in the latter.

Hence angle OGT = LGO, so that G, L, T are collinear.

Again, if p(= eR secco) be the radius of the Brocard Circle,

then GO : GL = R : p (by similar figures).

So GT:GO=R: P ;

.-. GO'=GL.GT-
and GT2

: GO- = P- : p- = GT : <!L.

148. To prove that D lies on the circurndiameter SOT.

From (146) H'D : ZL = H'G : GL = 2 : 1
;

and ZL = OZp = eR cos w^eR sec w = p cos 2w
;

/. H'D = 2.ZL = 2
f
> cos 2o>.

Again, H'T:LT= GT+2.GL: GT-GL;

and, from above, GT : GL = R- : p~ ;

.-. H'TiLT = jB
2 + 'V : J^-p

2

= 2 cos 2w : 1 = H'D : LO (or p),

/. D lies on SOT.

To determine OD.

DT: OT= H'T: LT = 2cos2w:l,

.-. OD:B = 2cos2o>-l:l;

/. OD = e-K

Note also that

OD. 02 = e
2E2 = Ofi

2 or OO'2
.

So that OO, OO' are tangents to the circles

respectively.



106 MODERN GEOMETRY.

149. The Isodynamic Points.

These are the pair of inverse points 8 and 8
1?
whose pedal

triangles are equilateral ; so that

A = ^ = v = 60.

In this case, M = a? cot X+ . . . + 4A (64)

= 4A (cot o> cot 60 + 1).

So for S
T , M, 4A (cot & cob 60 1). (68)

The Powers 11(11^ are given by
H (BO = 8Es

A/Jf (1Q = 2EV(cotoi cot60=bl).
Areas of pedal triangles = 2A*/M (-3^)

= -|A/(cot(ocot60 l).

abc
Absolute n.c. = a (al} =

oc sin (A 60).
The circamradii of the pedal triangles are given by

2p* (2p*) . sin 60 sin 60 sin 60 = area of pedal triangles
= iA/(cot<ocot60l).

Let (piP2p3), (p/paW) be the tripolar coordinates of 8, 8
a

.

Then p l
sinA = ef = p sin 60 = constant.

'

Pi-P-2'-Pz= 1>
'

1/& : !/c = />/ : Ps' ^ Pa'-

The tripolar equation to OK is

a (6
*_ cs) rii_,_. i> = 0, for cos^ oc a(6

2-c2

); (126)

and this is satisfied by )\ oc I/a.

Hence 8, 8! lie on OK.

1 50. Consider the coaxal system which has 8 and 8
t
for its

limiting points.

From (149), since p : q : r I/a : l/b : 1/c,

therefore the Radical Axis of the system becomes

which is the Lemoine Axis Jj^L^Jj^.

Let this Radical Axis cut OK in X
;

then, since K is the pole of L-JJ^LZ for the circle ABC,
.'. \0 . ^K = square of tangent from X to ABO

= X82 or XSj
2

,

since ABO belongs to the coaxal system.
Therefore the Brocard Circle (OK) belongs to this system,

and therefore is coaxal with ABC.
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151. The Isogonic Points.

These are the Counter Points of 8 and B
l ; they are therefore

denoted by 8' and /.

Their antipedal triangles are equilateral, having
areas %M (MJ = 2A (cot w cot 60d=l).

Their n.c. are

,,
!}

ale sin(Bd=60) sinf fJ=b60)~
M(Ml )'' sin 60 sin 60

oc I/Bin (4 60).

Hence, from (139), if equilateral triangles XBC, YCA, ZAB
be described inwards on BC, CA, AB, then XA, YB, ZC concur
at 8'

;
for the outward system, the point of concurrence is S/.

These points lie on Kiepert's Hyperbola, whose equation is

sin (5 C)/a+... 0.

152. The Circum-ellipse.

Let l/a+ m//3+ n/y 0, be the ellipse, with axes 2p, 2q.

Let a/?y, a//?V be the n.c. of the centre O, referred to ABC
and A'B'C', so that 2aa' = oa+ fyS+ cy.

Project the ellipse into a circle, centre co, the radius of the

circle being therefore g, while the angle of projection 6 is

cos"
1

q/p.

Let LMN, with angles X/xv, be the triangle into which ABC is

projected.
/. A.lfo>J\r = A.J3OC'xcos0;

/. g
2 sin 2X = aa x g/p ;

.-. aa =:
pg' sin2X;

so that the ABC b.c. of O are as sin 2X, sin 2/t, sin 2p.

Also | (aa+ 6/3+ cy)
= A

;

.*. 2pg sin X sin /x sin i/ A.

Again 2a' = aa -\- b/3+ cy ;

aa' = 2pg sin X cos /x cos v ;

so that the A'B'G' b.c. of O are as tan A, tan/x, tanv.

Since A = 2pq sin A sin ti sin v
;

and aa+6/2-fcy = 4>pq sin A cos/x cos i/ ;

and aa = pq sin 2A
;

it follows that

(aa-f bfi cy)

= 2/?y . sin
2 2A sin

2

2p sin2 2v
;
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aa b/3+cy) (aa+bfi-cy)

giving the locus of the centre, when the area of the ellipse

(irpq) is constant.

Let PQB he the triangle formed by tangents to the Ellipse at

A, B, Cf

, then AP, BQ, GR have a common point call it T
whose b.c. are as Z, fern, en.

Let PQR be projected into pqr, whose sides touch the

circle LMN.
* Then the projection of T is evidently the Lemoine Point of

LMN (fig., p. 89), and therefore its b.c. are as

HN*, NL2

,
LM- or as sin2

A, sin
2
tt, sin'

2

v;

.'. al : bm : en = sin
2 A : sin

2
//,

: sin
2
v.

Hence the Ellipse is

sin2

A./a./3y + ... = 0;

and its Counter Point Locus is

sin2

A/a. a -|- ... =0.
This is the Radical Axis of the coaxal system, whose Limit-

ing Points have A/U.I/ for the angles of their pedal triangles.
To calculate the axes of the ellipse in terms of A, /A, v.

From (91),

a2 cot A+ b" cot ^ -f c
2 cot v =. 2A (sec 6+ cos 6)

= 2A (q/p+p/q) = 2A (p*+ q*)/l>q.

And from (152), A = 2pq sin A sin/x sinv.

J/
..

1
. . . .

sin A sin
//.

sin v sin A sin /x sin v

So (P~g)
8 = i. x

^
sin A siti /x sin v

A well known example is the Steiner Ellipse, whose centre is

6r, so that LMN is equilateral, and

A =
/u,
= v ^TT.

It will be found that

p~ + cf
= (a

2
-4- fe

2
4- c

3

)
= f . A cot w

; _pg
= 4A/3 \^3 ;

p/q (cot w-f \/cot2 w 3)/ \/3 = cot ;S
T
V3 ;

^/p = (cotw v/cot2
a> 3)/v/3 = cot jS2 \/3 ;

where ^, /S2 are the Steiner Angles.
The Counter Point Locus of the Steiner Ellipse is

a/a+0/6+?/c s= 0,

which is the Lemoine Axis.

* The point T may be called the Sub-Lemoine Point of the conic.



CHAPTER XII.

PIVOT POINTS. TUCKER CIRCLES.

153. Let DEF be any triangle inscribed in ABC, and let its

angles be A, /x, \>.

The circles AE F, BFD, ODE meet in a point call it S.

Let def be the pedal triangle of S, 17 its area, andp its

circumradius.

In the circle SDBF, angle SDF = SBF or SBf = Sdf.

So L SDE = Sde

.*. d = X, so e =
/LI, /=:/;

and thus the triangle D/*/.?
1

is similar to the pedal triangle of 8.

The point $ can be found, as in (56) by drawing inner arcs

(A+ X)... on BC,CA,AB.

Again, / dSf irB DSF (circle tiD'BF).

Hence L dSD = fSF = eSE.

Denote each of these angles by 0.

Then SD = a sec (9, SE = ft sec 0, SF = y sec b,

where (a/3y) are the n.c. of 8.

Hence /S is the double point for any pair of the family of

similar triangles DEF, including def, so that it may be fitly
named the " Pivot Point

"
(Drehpunkt) of these triangles, which

rotate about it, with their vertices on the sides of ABC, chang-
ing their size but not their shape.

109
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The linear dimensions of DEF, def are as sec 6 : 1
;
so that,

if M, m are homologous points in these triangles ; then

MSm = 0, MS = mS sec
;

and the locus of M for different triangles DEF is a line through
m perpendicular to 8m.
An important case is that of the centres of the triangles DEF.
These lie on a line through <TO ,

the centre of the circle def,

perpendicular to >Scr ; and, if a- is the centre of DE F, then
<rSo- = 6.

154. All the elements of DEF may now be determined

absolutely in terms of X/xv and 0.

For M sin A (65)

where M = a~ cot X-f fe
2 cot

/x.+ c
2
cot v+ 4d

;

and 2p
2

. sin X sin /* sin i/ = Z7
;

so that p is known.

Hence SD = a sec 0, circumradius of DEF = p =
EF = 2p sin X ;

area of D#^ = U sec
2

6^ = 2&-/M . sec- ^.

155. The circle DEF cutting the sides of ABC again in D'E'F',
let X', //, v' be the angles of the family of triangles D'E'F', and
S' their Pivot Point.

In the triangle AF'E,
180 A FI'E+ F'EE' = FDF + F'D'E' =

So 18G-B
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It follows that S' is the Counter Point of $, and that the

angles of the family D'E'F' are 180 A-X, ... . (102)

The triangles def, d'e'f therefore have the same circumcentre
cr and the same circumradius p .

To find or', the centre of D'E'F', we draw a perpendicular to

SV $' through o-
,
and take

L o-'SV = &
;

where 6' = d'S'D'.

But a-' coincides with a-, either being the centre of the circle

DD'EE'FF'.
Hence 0' = 0.

156. To prove that the circle DD'EE'FF' touches the conic

which is inscribed in ABC, and has $, S' for foci.

Let TT be a point where the circle So-ti' meets the conic.

Then since arc So- = S'ar
;

L STrS' is bisected by TTO-.

Therefore CTTT is normal to the conic at TT.

Now, in the cyclic quadrilateral o-iSV/S",

O-TT . SS' = S'(T . STT -j- Str . S'ir = S& (Sir+ S'TT) ;

=: So-.2p : for 2p = major axis of conic.

But SS'/S<r = '2 . S<rJS<r = 2 cos
;

<T7r = p sec 6 = p.

Also cr is the centre of the circle DD' ... .

Hence this circle touches the conic at r.
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157. Triangles circumscribed about ABO.

Through A, B, C draw perpendiculars to S'A, S'B, S'O,

forming pqr, the Antipedal Triangle of S'.

This triangle (o, S' being Counter Points) is known to

be homothetic to def, the pedal triangle of S, and therefore to

have angles X, /A, v.

Obviously Sp, 8q, Sr are diameters of the circles BS'Cp, &c.

Through A draw QR parallel to EF, and therefore making
an angle with qr.

Let QC, RB meet at P.

Since AQC = AqC /A, and ARB = v ;

so that P lies on the circle BS'C'p.

R

Hence, as the vertices of DEF slide along the sides of AB( ',

the sides of PQR, homothetic to DEF, rotate about A, B, C, and
its vertices slide on fixed circles.

Since S'q is a diameter of S'qQC,

S'Q= S'q cos 0, ....

Therefore 8' is the double point of the family of triangles

', including jp^r.

The linear dimensions of the similar triangles PQR, pqr are

as cos 6 : 1 ; so that, if 2V, n be homologous points in the two

triangles, N describes a circle on S'n as diameter.
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158. To determine the elements of PQR.

From (84) V = area of pqr = %M ;

so that, if p' be the circumradius of pqr,

2p'
2

. sin \ sin /x sin v = ^M.

Then, for PQR, circumradius p' p' cos 0.

Area of PQR = V cos2 = i Afcos2
0.

But area of DBF - 2A2

/M . sec
2
0.

Hence, the area of ABC is a geometric mean between the
areas of any triangle DEF inscribed in ABC, and the area of

the triangle PQR which is homothetic to DEF, and whose sides

pass through A, B, C.

159. Tucker Circles.

An interesting series of circles present themselves, when
for " Pivot Points

" we take the Brocard Points O and 1'. The
circle DD'EE'FF', is then called a Tucker Circle, from
K. Tucker, who was the first thoroughly to investigate its

properties.

Since def, d'e'f are now the pedal triangles of 12, O'
;

/. D = d = B, E = e= C, F = f = A-,

Denote by Z (corresponding to o- ) the centre of the common
pedal circle of O, O', and by Z' (corresponding to a-) the common
circumcentre of DEF, D'E'F'.

The line of centres ZZ', bisecting Ofi' at right angles, falls on

Oil; also Z'VZ = = Dtid = EVe = Ftlf.

And since SlOZ = u = VAF = O5D = Q(IE7,

it follows that the figures VOZ'Z, QAFf, VBDd, VCEe are

similar.
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' = 0' = ACIF = BttD = CQE.

Now the radius of the pedal circle of fii)' = JP
7i* sin w, (138)

.'. circumradius of DD' ... = p = p sec = Tt.siii to/sin (o> 4-0').

The quadrilateral BDSIF being cyclic, EFT) = B&D 6' :

therefore the arcs DF', FE', ED' subtend each an angle 6' at the

circumference, and are therefore equal.

Hence the chord E'D is parallel to AB, F'E to BC, D'F to AC :

and a circle with centre Z' and radius p cos 0' will touch the

three equal chords.

In the cyclic quadrilateral E!EDF, AE'F = EDF=B; so

that the equal chords are anti-parallel to the corresponding
sides of ABC.

L TJE'D' = F'E'D'- F'E'D = A-0'.

F'E'E = F'E'D'+ D'E'E A + 6'.

Chord EF' parallel to BO = 2p sin F'E'E = '2,> sin (4+ 6') ;

chord DD' cut from EC = 2/> sin DE'D' = 2P sin (A- 6').

And if afiy be the n.c. of the centre Z 1

',

a = p cos^DZ'D' = p cos DE'D' = p cos (A-&).
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16O. The following list of formulae will be found useful.

(a) Radius of circle DD' ... = p E sin co/sin (w+ fl').

(b) Radius of circle touching equal chords = p'
= p cos $'.

(c) N.c. of centre Z'
;
a = p cos (A 6').

(d) Length of equal anti-parallel chords = 2p sin &'.

(e) Chord DD' cut from PC = 2p sin (A &).

(/) Chord #/<" parallel to EG 2p sin (A + (>').

((/) If d! and d
l
are points on 0.K" such that

00d = 30, OOdj = 150;

then a x cos (A3Q) a sin (4 + 60),

and a
a

oc cos (^t 150) a- sin (J. 60).

Hence d and d
l
coincide with the Isodynamic Points 8 and 8r

161. The Radical Axis of the Tucker circle (parameter #'),

and the circle ABC.

If ^
2

, 2

2
,

I.* are the powers of A, B, C for the Tucker circle,

then the required Radical Axis is t
l
*x+ ... = 0. (62)

Now,

'sin A 'sin (w-f 6')'

o sin 5 .
/,,= 2p .

-
. sin 6.

Kin A

And since EF' is parallel to BO,

.

sin A

.'. ^
2 = AF. AF' = 4p

2
. sin ^. sin S sin C sin 0'. sin (4 -f ^)/sin

8
^1,

so that the Radical Axis is

sin^+0'^ + .-. = 0.
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162. The properties of four Tucker Circles, whose centres

are certain standard points on OK, will now be discussed.

(A) The First Lemoine Circle, or Triplicate Ratio Circle.

This has its centre at L, the mid-point of OK, or the

centre of the Brocard Circle.

so that & = <o.

Then, (a) p = R sin w/siii 2w = ^Ii* sec w.

(]}) p = p COS to = ^R.

(c) a = ^Ksec 00. cos (A w).

(d) Anti-parallel chord = R sec o> . sin <o = Z? tan oo.

(e) Chord DD' cut from 5C = E sec o> sin (A o>).

So that

: FF' = sin (A o>) : sin(S-w) : sin (6
y

o>)

Hence the name "Triplicate Ratio Circle."

(/) Chord EF' parallel to BC = R sec <o.sin

These chords pass through K. For since chord ED' is anti-

parallel to AB, ED'C = A,

.'. perp. from E on BC = ED' sin A = li tan o> . sin A, from (^)

= perp. from K on BC.
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163. (B) The Pedal Circle of OQ'.

The centre being Z, 6' = %TT w.

(a) p = R sin oj.

(fo) p'
= 72 sin2

(o.

'

c) a = R sin a) . sin (A -f- a>)
:= .R sin2

a> . 6/

(d) Anti-parallel chord = R sin 2w.

(a) Chord cut from BC = 2R sin w cos

(/) Chord parallel to BO = 2R sin w cos (J. <o).

164. (C) The Second Lemoine Circle, or Cosine Circle.

A

The centre of this circle is -K", so that & = O&K =
-Jir.

(a) p = R tan w.

(6) P
' - 0.

(c) a = R tan <o sin ^1. (131)

(d) Anti-parallel chords E'F, F'D, D'E each equal
the diameter 2R tan w; so that they each

pass through the centre K, as is also obvious
from (6).

(e) DD' = 2R tan co cos A
;

.'. J>D' : EE' : FF' = cos A : cos 5 : cos (7.

Hence the name "Cosine Circle."

(/) Chord parallel to BC = 2R tan <o cos A
= chord cut from BC.



118 MODERN GEOMETRY.

165. The Taylor Circle.

Let H!, H.
2 ,
Hs be the feet of the perpendiculars from

A, B, C on the opposite sides.

Draw H^ perpendicular to AB, H.
2
D to BC, HSE to CA.

Let A&F = <.

Then AF AH, sin B = 211 sin
2 B sin C

and AQ, = 2R sin o> sin 5/sin A ;

sin to

Also

Hence

cot o> =

AF sin A sin 5 sin C

1 + cos J. cos B cos (7

(131)

(131)
sin A sin j6> sin (7

tan < = tan A tan 5 tan 0.

Similarly it may be shown that

tan 5OD or tan ClE = tan A tan B tan ;

BO that AVF = BOD = CUE.

Next, draw HJE' perpendicular to CA, HZ
F' perpendicular to

A 13, jff3D' perpendicular to BC.
Then it may be shown that

AQ'E' = Btl'F' = Ctt'D' =
</>.

The six triangles A&F, ... being all similar, it follows that

D&EE'FF' lie on a Tucker circle, called the Taylor circle, after

Mr. H. M. Taylor.

A

B O

The angle < is called the Tajdor Angle.
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Since < is less than TT, we have

D sin < = + sin A sin B sin (7, D cos < = cos J. cos B cos (7,

where D2 = cos2
JL cos2 B cos2

C- -f sin
2 A sin2

J5 sin2
(7.

A diagram shows that, T being the centre of this circle,

OT : TK tan < : tan o> = tan A tan B tan C : tan w.

Note the equal anti-parallel chords DP', FE', ED'
;
also the

chord E'D, parallel to AB, F'E to BC, D'F to AC.

\
K T

166. The list of formulae is now

(a) Radius of T-circle = R .

sma>
. /

. .

sin (w+ />)

(fe) p' .= J?_D cos </>
:= 7? cos ^4 cos 5 cos 0.

(c) 'a = RDcos(A<j>}
= R (cos

2A cos 5 cos sin2A sin 5 sin C).

(d) Anti-parallel chord E'F or F'D or D'E
= 2RD sin

</>
= 2.B sin A sin 7? sin 0.

(e) Chord cut from BO = 2ED sin (.1 <)
= R sin 2.4 cos (BC).

(/) Chord ^'7 parallel to BC = R sin 2.4 cos A
;

the other chords being D'F and E'D.

To determine the Radical Axis of the circle ABC and the

Taylor Circle.

sin (A -f <) = sin A . cos
</>+ cos A sin

</>

= D ( sin A . cos .4 cos B cos

+ cos A . sin ^4 sin B sin ( ')

oc sin A cos2 A.

Hence, from (61), the Radical Axis is

cot2A. x+ ... 0.

So that the tripolar coordinates of the Limiting Points of

these two circles are as cot A : cotB : cot C. (21)
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Let LMN..., L'M'N'... be two systems of n points.

Place equal masses p, p at L, L'
; gr, q at M, If', &c.

To determine the condition that the two systems shall have
the same mass-centre.

Project LMN... and the mass-centre 011 any axis, and let

lmn...x be the distances of these projections from a given point
on the axis.

Then

m')+r(nn') + ... = 0.

and so for any number of axes.

But I I', &c., are the projections of LL', MM', NN'....

Therefore the required condition is that a closed polygon may be

formed, whose sides are parallel and proportional to p.LL', &c.

In the case of a triangle

p.LL' <x Bin (MM
1

, NN').

Now, in the case under discussion, take a second point P' on

TT, and let its pedal triangle be d'e'f.

Here LL' = dd' = PP . cos ^,

and angle (MM', NN') is (ee', //') or A
;

.'. p cos 6, oc sin A, or > oc sin A sec 1B

Hence all pedal triangles def of points P on TTf have the

same mass-centre for the constant masses sin A sec 6V &c.,

placed at the angular points d, e, /.

120



APPENDIX II.

To determine the second points in which the four circles

out the Nine-point Circle.

Let the circle PQR cut the sides of ABC again in P19 Q19
Rr

Then AQ.AQ^ = AR.AR,, &c.
;

.-. AQ.AQl
.BR.BR

l .CP.CP, = AR.AR..BP.BP,. GQ. CQr

But, by Ceva's Theorem, since AP. BQ, GR are concurrent,

BP.CQ.AR = CP.AQ.BR-

.: OP, .AQ l .BR, = BP, . CQ, . AR,.

Therefore AP^ BQ } ,
GR

l
are concurrent.

Again, since CQ : QA = r : /;,

and AR : RB = p : q,

.'. AQ=p/(r+p).b; AR=p/(p+q).c.

So AQi=pJ(ri+pJ.1>', AR
l =pJ(p } -{-ql }.c.

But AQ.AQ, = AR.AR^ &c.
;

6
2

121
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.'. p, a -
g + r r -\-p

So ql
oc H---h ; r, <x -M-- ;

: q.-r, a 2&

Tn (80) it was shown that the circle 1JQR cuts the Nine
Point Circle at a point w, whose b.c. are as a2

/(q
2

r*),

Similarly the circle P
1Q 1
B

1 (the same circle) cuts the Nine-

Point Circle at a point <o', where the b.c. of <o' are given by

a
'
J ^

AT' a
2 '

So, if the circle PQ,' R' cuts the Nine-Point Circle again at o^

the b.c. of o>
1
are given by

1

writing p for
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(a) To determine the area of X YZ.

Since

A'O = E cos A
,

A'X = %a tan = E sin 4 tan 6.

.'. OX= B/cos . cos (A+ 0} .

.'. Z.&retiYOZ = OY.OZ.sinA
= E2

/cos
2

. cos (B+ (9) cos (0+ 0) sin A.

/. 2.&XYZ = '2(YOZ +ZOX+XOY) = ...
;

and by some easy reduction we obtain,

&XYZ = AM cos2
0. [2 sin oj sin (20+ o>) }/sin o>.

When is equal to either Steiner Angle, (137)

then sin (20+ w) = 2 sin w,

and the triangle XYZ vanishes, so that XYZ is a straight
line.

But this triangle always has G for its centroid.

Hence, in this particular case, XYZ passes through G.

(b) Instead of the base angles being equal, suppose that

z XE( ' - YCA = ZAB = 0,

BOX = CAY = ABZ = 0,

and BXG CYA - AZB = X -

Then Oj
= a. sin sin </sin ^,

a
2
= b sin 0.sin(C' 0)/sinx,

as
= c sin 0.sin (B ^>)/siii x ;

3a = a
1+ a

2+ u
3
= A,, &c.

Hence 6r is the eentroid of XYZ.
123
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(c) Let YZ, ZX, XY meet BG, GA, AB in x, y, z respect-

ively.

Then, since AX, BY, GZ&re concurrent, xyz is a straight line,

being the axis of perspective of the triangles ABC, XYZ.
To show that the envelope of xyz is Kiepert's Parabola.

The equation of yz is

(Ay.-&y,) + (w-y3a.2) 0+ (oA-a,&) y = 0.

Now y2
a
3 y3

a
2

oc sin (J. 0) sin (B 0) sin sin
;

cc sin J. sin B sin C sin 26.

So a3&"~*a A <* s^n ^ sin J. sin 5 sin 2^.

Therefore at # we have

/3/(sin C' sin ^4 sin 5 sin 20) +y/(sin A sin 5 sin G sin 20) = 0,

so that xyz is

aa/(sin J. sin 5 sin (7 sin2 A sin 20) + . . . =0.

Writing this as px+ qy+ rz = 0, we know, from (9), that

this line touches the parabola, the n.c. of whose focus are

a/(l/3-l/r), Ac.

Here 1/g 1/r oc (sin
2
J5 sin2

0) sin 20.

Hence the focus has n.c. a/(fc
2

c
2

) &c., and the directrix is

(&
2-c2

)cos.4-a+... =0.

Hence the envelope of xyz is Kiepert's Parabola, having for

focus the point whose Simson Line is parallel to OGH, and
OGH for directrix.
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