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The influential recent literature on generalized method of moments (GMM) minimum

distance estimation (MDE) has found widespread econometric application. 1 In exponential

family models where sample moments may be interpreted as sufficient statistics these

methods are especially attractive, as for example under Gaussian error conditions. But, as we

shall see, sample moments are quintessentially non-robust; slight departures from Gaussian

conditions can provoke the complete collapse of classical GMM methods based on least-

squares principles. In this paper we explore some simple modifications of minimum distance

methods designed to insure against such statistically inclement, non-Gaussian weather. Our

evaluation of estimator performance employs a second-order expansion of the asymptotic vari-

ance of GMM-type estimators enabling us to study the effect of estimating the covariance

matrix of the initial estimator as well as the effect of the initial estimator itself. In this respect

our approach is closely allied with recent work by Rothenberg (1984), Carroll, Wu and Rup-

pert (1988), and Koenker, Skeels and Welsh (1990) on generalized least squares estimation.

After a brief, somewhat polemical, introduction intended to motivate an inquiry into

robustness of moment based methods, we describe in Section 2, a rather simple, stylized MDE

setting and explore the performance of conventional least-squares-based preliminary estima-

tion of the model. Our second-order variance expansions reveal some surprising consequences

of Eicker-White estimation of the covariance matrix of the least-squares preliminary estimates.

In Section 3 we turn to robust alternatives to least-squares preliminary estimation. Here the

second-order variance expansion is somewhat more arduous, but repays the effort yielding

interesting qualitative conclusions. Some further "stylization" of the design assumptions per-

mits us to explore quantitatively the the interplay between model dimension, error assump-

tions, and the degree of robustness of the preliminary estimation method. A final section

draws together some conclusions and suggests directions for subsequent research.

An exhaustive catalog of recent work on this subject is unrealistic here, but we should mention Hansen (1982),

Gallant (1987), Chamberlain (1982, 1987), Manski (1988), Newey (1985, 1988) on theoretical aspects, and work by

Hansen and Singleton (1983), Tauchen (1986) and others on applications. Our own interest in this topic was stimu-

lated by Altonji, Martins, and Siow (1987).
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1. Introduction

*
1.1. What's wrong with moments?

The question may appear heretical. It is an article of Gaussian faith that sample infor-

mation inheres in sample moments. However, outside Gaussian theology this is not the case.

Despite the sufficiency of sample moments in exponential family models like the Gaussian,

slight departures from the exponential family play havoc with the sufficiency paradigm. Fal-

ling from their exalted status as "source of all knowledge", they become the tainted "fruit of

forbidden tree."

1.2. Moments are difficult to interpret

The classical moment problem, e.g., Feller (1971) or Billingsley (1979, §30) asks: when is

a distribution, /i, uniquely characterized by its moments? One answer is simply: If y. has a

moment generating function which exists in a neighborhood of zero. In Figure 1.1 we illus-

trate two densities: one is the familiar lognormal density, the other bears little resemblance to

the first, but has the same sequence of integer moments. Many such examples exist, even when,

as here, the moment sequence is finite. When moments may be infinite the situation is much

worse.

Figure 1.1. Two Densities with the same Moment Sequence

>

C\J

00

d

d

o
d



Take any density / and consider the Cauchy contaminated density / €(x)

= (1-e)/ (x) + e[7r(l+x 2
)]
-1

. For any e > 0, such a density has no moments of any order so the

population moments convey no information about the form of the original /. It is tempting to

dismiss such examples as "pathological", attributing them to the fiendishly long tail of the Cau-

chy density. "Infinite moments are impossible in the real world" - one sometimes is told. Fair

enough. But one need only replace the Cauchy with something similar in shape, truncated to a

bounded support, or even a normal density with large variance, to see that e-contamination

can exert a grotesque influence on the moments of / ,
particularly the higher order moments.

In Figure 1.2-4 we illustrate three examples of (/, / e) pairs with / standard normal, standard

lognormal and a bimodal example. In all three cases e = .05 and it is difficult to distinguish

the contaminated density represented by the dotted line from the parent density represented

by the solid line, however all three contaminated densities have indistinguishable moment

sequences.

Figure 1.2.
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Figure 1.4.
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We are tempted to regard first moments as location parameters, and higher moments

about the mean as dispersion, skewness, kurtosis, etc., but all of these concepts have consider-

able ambiguity in any general setting where arbitrarily small amounts of contamination by

long-tailed distributions can distort these familiar quantities radically. Bickel and Lehmann

(1975) address this problem in elegant generality and conclude that even in the case of loca-

tion, the mean is a poor choice to characterize this fundamental descriptive aspect of distribu-

tions. Higher moments are similarly condemned.

1.3. Moments are difficult to estimate

If e-contamination can wildly distort the population moments of an uncontaminated den-

sity, /, making population moments difficult to interpret, such contamination is ruinous to

estimation based on sample moments. Suppose, for example, that we have a random sample

from a density we believe is normal-mean 0, variance 1. We wish to estimate 0, and confi-

dently, if perhaps naively, compute Xn = rt~
1
£)A',. If we are correct, we have behaved

"optimally" and Xn ~ N(9, \/n)\ our estimator is consistent, fully efficient, "true-BLUE." But

what if our e Cauchy contamination comes slithering back and the X
{
have density f t(x - 6)1

Then X - 6 is a mixture of normal and Cauchy random variables and since the normal com-

ponent degenerates at 0, Xn is asymptotically Cauchy, hence is inconsistent, has unbounded



mean-square error, zero efficiency, in short is an unmitigated disaster. These same remarks

apply for any fixed contamination proportions, e, however small.

If we had instead chosen to estimate 9 by the foolishly inefficient sample median

9 = X{n/2) , it is well-known that y/n (9 - 9) ~> N(0, u2
) where u>

2 = [2/ e(F €

_1
(0)]

-2 which in the

present case is about 1.60, if we assume e = .05 and that the Cauchy contamination is centered

at 9. For comparison, an asymptotically optimal estimator of 9, like the MLE, can approach

the Cramer-Rao bound of 1.0538. So the median sacrifices considerable efficiency to the

MLE, but nevertheless it clearly represents a huge improvement over the unbounded mean

square error of the sample mean in this setting.

The extreme sensitivity of the performance of the sample mean to modest departures

from strictly Gaussian conditions is the first lesson of robust statistics. Tukey's (1960) sum-

mary of extensive research during the late 40's and 50's is the seminal treatment. See Huber

(1981), Hampel, et.al. (1986) and Rousseeuw and Leroy (1988) for recent treatments.

If the mean is difficult to estimate in contamination models, higher moments pose even

greater challenges. The widely cited debate between R.A. Fisher and the physicist A.S.

Eddington illustrates this point vividly. Eddington advocated the use of the mean absolute

deviation dn = «
_1
£) |x,- - x\ as a measure of dispersion, while Fisher argued that

sn = («
_1
$](^t - x)2

)
1 !2 was 12% more efficient than dn at the normal model. Huber (1981)

computes the asymptotic relative efficiency of dn to sn at the contaminated normal model

F^x) = (l-e)$(x) + e$(.x/3). He finds that e > .002 contamination is enough to reverse

Fisher's efficiency claim for the standard deviation. At e = .05, dn is roughly twice as efficient

as sn \ Even dn is not robust in the formal sense of Hampel (1968) and most robustniks would

prefer the median absolute deviation from the median as a measure of dispersion. For sym-

metric F, this so-called MAD estimator estimates the interquartile range and has the virtue of

being entirely insensitive to the tail behavior of the error density. See Welsh and Morrison

(1990) for a recent discussion of robust methods for estimating dispersion.



What relevance does the foregoing discussion have to the performance of moment-based

minimum distance methods? In practice these methods typically involve minimizing a qua-

dratic form, (m - n(a))'V~
l{m - /x(a)) in sample moments, m, where V is an estimate of the

covariance matrix of m . Thus V typically consists of higher order sample moments as we

climb the "misty staircase" of Mosteller and Tukey (1977) on which less and less reliable

higher moments are employed to assess the higher reliability of lower moments.

A critical practical question about GMM-MDE methods is the effect of estimating the

covariance matrix V on the performance of the estimator a n . Unfortunately, the familiar

first-order asymptotics of an are silent on this effect and we must turn to higher-order expan-

sions.

2. A moment expansion for a least-squares-based minimum-distance estimator

In this section we wish to explore a simple, stylized version of minimum-distance estima-

tion based on least-squares principles. We consider the extremely simple, yet representative

model

y,- = x{
'g(a ) + ut i = 1, ... , n (2.1)

where {x,} is a sequence of known <y -vectors, g is a smooth, known function from R q to Rp
,

p « q, and {«,} is a sequence of independent random variables. Estimation of the model

(2.1) proceeds naturally in two steps. We begin with an estimator n of g(a ) and solve either:

rmn(pn -g{a)yP;\pn -g{a)) (2.2)
a

or, equivalently,

O = -2Vg(ayVn-\0n -g(a)) (2.3)

where the q x q matrix V~l
is typically chosen as an estimate of the asymptotic covariance

matrix of /3n .



Our objective in this section is to study the asymptotic performance of the estimator an

solving (2.2) or (2.3) when n is the (ordinary) least-squares estimator and Vn has the (Eicker-

White) form

Pn = n(X'X)-^xiXi '{i
xHX'X)-K (2.4)

«=i

It is well known that the limiting distribution of y/n (an - a ) does not depend upon the

specific form of ftn , but only upon its limiting value. The silence of first-order asymptotics on

this important issue has led us to second-order expansions of V(y/n (an - a )) incorporating a

term of 0{n~l
) which sheds some light on the effect of Vn .

To further simplify matters we will assume that the function g takes the linear form

f3 = g(a) = Ga (2.5)

for some q x p matrix G of rank p . Nonlinear g could be easily incorporated into our frame-

work, but specific assumptions about the curvature of g would then be required to interpret

the resulting expansions. With g linear and 3» linear as well, an expansion for y/n(a n - a ) is

relatively direct. Solving (2.3) we have

& n - a = (G'V-'Gr'G'^-'iX'Xr'X'u (2.6)

which we would like to expand asymptotically. Before attacking this directly we describe a

simple scalar example which illustrates the strategy of the expansion.

2.1. An Example

To illustrate the methods employed, we begin with an elementary problem where the

scalar computations are sufficiently transparent to illuminate our general moment expansion

strategy. Consider the problem of refining the usual "6-method" scheme for computing the

asymptotic variance of a nonlinear function of the sample mean. More explicitly let h (x ) be a

smooth function R — R admitting the cubic expansion,



•

h(x)-hQ*) + h'(jx)(x-n)+ j/2"(/x)Cx-/x)2 + ^-/2'"0i)(x-/z)3 +O(|,x - M |

4
)

For i.i.d. observations Xlt ..., Xn with finite 4th moment and Xn = w"1

^]^,

hence we may write

A n = y/n(h(X) - Eh(X)) = Z ln + -|^Z2n + -±-Z3n + o^"1
)

where

Z 2tt =«[(A
; -

/x)
2 -c72/«p"(/i)/2)

Z3n = " 3/2[(* - /x)
3 - vdnKh '"(/i)/6)

are all terms of
p
(l). The asymptotic variance of /i(^») may be expressed as,

V(A n ) = V(^h(XJ) =V(Z ln ) + ^[V(Z2n ) + 2(«
1/2Cov(Z ltt , Z2n ) + Cov(Z ln , Z 3J)] + ofa"

1
).

The leading term is the familiar ^-method asymptotic variance

V(Z in ) = (h '(n))
2nV(Xn - M ) = (h '(/i))V,

while the components of the \/n term are

V{Z2n ) = |(/z ' »)2k 2£[(A; - m)
4 - *4/*2]

4 /j
J « J n*

^(/!"0i))V+o(l)

Ctfv(Z lri , Zto) = y/i '0*Vi "G0« 3/2£(*B - /i)
3



= -jh'(jM)h"(n)-j=-n3

and

Cov(Z lft,Z 3ft )
= ±rh'W"Q<L)n 2E{X% -rt

= jh'{n)h"{n)o\

The last line follows from the fact that E(X - /z)
4 = 3a4 //? 2 + o(n~2 ), as in V{Z2n ) above. So

we have finally

V(A n ) = (h '(/x))V + H-V^tf-OO)2 + A '(/x)(/z "(/z)/x3/a
4 + h '"(/x))] + oCn"1).

The crux of this example, and its relevance for our expansions, is the cubic expansion of h (
•

)

required to compute the 0{n~x
) "correction" term for the expansion of V(A n ). The facts that

Cov(Z ln , Z2n ) = <9(«
-1/2

) and Cov(Z ln , Z3n ) = 0(1) are perhaps not immediately obvious.

Indeed the latter term is inexplicably missing from the treatment of this example in Bickel and

Doksum (1977). One may well ask what about Cov(Z ln , Z 4rl )? However, note that this term

may be relegated to the remainder since, if both Z in and Z4n are Op {\),
their covariance is,

by Cauchy-Schwartz,
P (1) and ZAn appears in the expansion multiplied by w"3/2 .

A simple application of this variance expansion for functions of the sample mean, and

one that permits us to evaluate the quality of the \/n correction term, is the following exam-

ple. Suppose Zn is the sample mean of n i.i.d. standard normal random variables, so

ZR ~> N(0, n~l
) and consider Yn = y/n sin(Zn ). Our variance expansion for this case is sim-

ply,

V{Yn)= i-l + (,7
-i).

n

The exact density of Yn is "easily" computed to be
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t i \ £ 1 r -(£ *•- sin-1 y A/ft )
2 w n Tr

jfc=^oV^r 2/n

where only the 3 central terms k = 1, 0, 1 are needed to capture virtually all of the standard

normal density in the interval [-3tt/2, 3tt/2]. Obviously, as n — oo,

/

n (v) tends to the stan-

dard normal density.

Approximate vs. Exact Var(vrT sin(Zn))
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To evaluate the performance of the 0(n~l
) variance expansion we plot this approxima-

tion versus the true variance as computed numerically, in Mathematica, Wolfram (1988),

directly from f n (y). It is striking how well the simple two term variance expansion performs

even at what might be regarded as rather small n. At n = 5, for example, the approximation

gives V{Yn ) ~ .8 while the exact computation yields V(Yn ) ~ .8242. Obviously, the expansion

is absurdly optimistic at n = 1, predicting a variance of zero when the correct value is about

.5. A similar breakdown will be seen to occur in the more complicated settings considered

below.
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2.2. The expansion in the independent case

As the previous example suggests we require an asymptotic expansion of y/n (an - a ) of

the form

V^(3 tt
oq) = A 0n + n-^A ln + n~lA 2n + op(n^ (2.7)

with Ain
= Op (\) for i = 0, 1,2. Starting from (2.6) and using the fact that

p-* _ v-1 = V-\V - V)V~l
(2.8)

= V~l(V - V)V~l + (V~l - v-l
){$ - V)V~l

= -V~l
(i> - V)V + V~\V - V)V-\V - V)V~l + Op

(\\V - Vf).

we may establish (2.7) under the following conditions

n

D. The design sequence {Xn ) satisfies the condition that h^EIM12 = 0(1).

F. The error sequence {w,} is independent, each component has a symmetric distribution

about zero, and finite sixth moment.

G. The matrix G has rank p, as has Qn = (G'HnJ~
lHnG) where Hn = n~1]£;c1 jci

',

Jn = n'^vfxiXi ', and a? = Eu?.

Theorem 2.1: Under conditions D, F, G, the expansion (2.7) holds with,

A 0n = Q-'G-H^n-^XiU,

A ln = -Qn
~lG 'H»J?[n-x

Y,Y,xixi 'KnXjW - °?)u
3 ]

•' 3

A 2n = Q?G'HnJ?n^l*[2Y,Y:Y,xixj 'x/H?xiKnxk uiujuk
i J k

~ n ^EEE*/*/
'Hn

lX£Xj 'Hn
lXiX {

'KnXk UiU3 Uk
i j k I



•

>

12

+ EEE*.*. 'KuXjXj 'Knxk {u? - o?){u? - aj)uk ]

X j k

and Kn takes the form

Kn = Jn
l - J^HnGQ?G 'HnJ~\ .

Proo/: (See Appendix A)

A more general expansion like (2.7) but based on an initial M-estimator and correspond-

A
ing Vn matrix will be developed in the next section. Computing moments as in the scalar

example we have the following result.

Theorem 2.2: Under conditions D, F, G,

F(v^(an - a )) = OT1 + rr*Q*G 'RjGQ* + o(n~l
)

where

**-n-*2tf(l-k,)HuJ*xixi 'Kuxtxi 'J+Hu

and kt = Eu */<?*. When the errors {«,} are identically distributed

V(y/h~(& n - o )) = <ftln + w-V(5 -k)Qln + ofa"
1
)

with ft n = (G 'HnG)-
x and Qln = Q nG 'n^x^ '[H?-G{G 'HnG)-

lG ']*<*, 'GSln .

Proof: See Appendix A.

The form of the leading 0(1) term in this variance expansion is quite familiar. The form

of the second 0(1 /n) term is perhaps less so. Consider the iid error context. The matrix fi lfl

is clearly positive definite. Thus for k (F) < 5 the effect of using Vn in lieu of the appropriate

and simpler Hn , is to increase the variance of a nt up to the order of the expansion. Recalling

that in the Gaussian case k(F) = 3, this finding provides a quantitative assessment of the effi-

ciency loss due to Vn . See Rothenberg (1984) for a discussion, from a sufficiency standpoint

of a similar result for generalized least squares (GLS) estimation under Gaussian conditions,
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and see Carroll, Wu and Ruppert (1988) and Koenker, Skeels and Welsh (1990) for closely

related expansions again in the (GLS) context.

Most curious is the effect of the 0{\/n) term when k(F) > 5, that is in long tailed cir-

A
cumstances. Here the expansion seems to suggest that estimating Vn is advantageous, actually

decreasing the variance of an below what it would be if the true Vn were used. (Had we

known that the errors were iid and used Hn instead of Vn , the expansion (2.7) simplifies to

just the leading term and the 0(\/n) term vanishes entirely in the variance expansion.) This

may seem paradoxical at first. How can ignorance of the true Vn lead us to an improved esti-

mator of a ? The answer lies in the robustifying effect of Vn : Since y/n(0n - p ) = Op (l),

estimating an by (2.6), thereby downweighting observations with big residuals from the initial

least-squares fit, has the effect of downweighting observation with large error realizations.

And this is exactly what robust A/-estimation would accomplish under long-tailed error condi-

tions. The effect is very much like the effect of a one-step (robust) M-estimator. Of course,

since the 0{\/n) variance term is linear in k{F) we have the ultimately absurd conclusion

that, to the order of the variance expansion, one can drive the variance of \fn a n to zero and

beyond by increasing the kurtosis of the {»,}. The same effect may be observed in the

0(\/n) variance expansion for GLS estimators in Carroll, Wu and Ruppert (1988) and

Koenker, Skeels and Welsh (1990).

To explore the design contribution to the 0(ti~l
) term of the variance expansion we

rewrite the expansion in the iid error case as

V(^(& n - a )) = eKlJLI + n~\5 - k)An ] + o(n~l
), (2.9)

where A n = G 'MnG 'Q
n so

«X = G'[^x i
x/(X'X)-Kx

i
x/)G'(G'X'XG)-1

+ G'['£
l
x

i
x

i
'G(G'X

,

XG)-1G'x i x i
]G'(G'X'XG)-1

Set Z = XG, so z, ' = x, 'G, and taking the trace, we have,
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tr («-*AJ = Y,PU(X)PU{Z) - Y,P*{Z)
i=i i=i

where P
ti
(Z) = 2, '(Z 'Z)_1

z,-, the diagonal elements of the "hat" matrix of Z.

Following Box and Watson (1962) we will make some (heroic) simplifying assumptions

in the effort to facilitate the interpretation of the design effect. In particular, we show in

Appendix D that when the design elements {*#} are iid

Y,Pu{X)Pu{Z) = ^{k{x) + q -1]

where k (x ) is the kurtosis of the design elements. Similarly, we show that

SCVCZ'Z)-1
*,)

3 = p(p + 2) + (*(*) - 3)
s* S?

+ yy
'fco<

M\2

+ 2EE
fc J/* S2S2

where, in the notation of Box and Watson (1962), S% = j}g% g™ and S^ - X)^7- Finally,

noting that if the {x^-} are Gaussian so k(x) = 3, and if the columns of G are orthogonal the

last two terms of the previous expression vanish and we have

tr(AJ = /I
"1
[3p +p(q -\)-p(p +2)]= Hq - p).

n

This dramatically simplified expression sheds some light on the choice of parametric

dimension of the original model, and the quality of the usual first-order asymptotic approxi-

mation for the variance of a
ft

. Even under the highly favorable design conditions imposed

above, we must have 2p(q - p)/n « 1 under ideal Gaussian error conditions if the usual first

order asymptotics are to be reliable. It is interesting to compare this result to those of Hubcr

(1973) who (Proposition 2.2) that a necessary and sufficient condition for any linear function

of the least-squares estimator to be asymptotically normal (with natural parameters) is that

maXjPjiiX) — as n — oo. This condition implies that p In —» as n -» oo. In our least-

squares minimum distance framework the analogous condition is {q - p)/n —
» 0. Note that p

in (2.9) may be factored out because we are summing over the asymptotic variances of p
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parameters of vector a n
v

in taking the trace. We will return to this problem of "large-p, q

asymptotics" in Section 3, when we consider A/-estimators.

When k(x) > 3 the situation is more difficult to characterize; now the kurtosis of g^-'s is

also relevant. Roughly speaking, high kurtosis in {xi3 ) and {##} amplify the O(lfn) effect

relative to Gaussian design conditions - acting, in effect, like an increase in the parametric

dimension of the model.

3. A moment expansion for M-MDE estimators

The estimator a n , and the asymptotic expansions for an , of the previous section break-

down completely in the face of long-tailed errors. Despite the salutory robustifying effect of

the covariance matrix estimate Vn , when moments are finite this effect is eventually dom-

inated by the (inflated) effect of the leading term of the variance expansion. When our

stringent Eii? < oo condition (F ) fails, the outlook is bleak indeed. In this section we consider

robustified versions of the MDE procedure studied above, in which the initial least-squares

A
estimator /3n is replaced by an M-estimator fin defined as the solution to either

min £>(yi -xjb) (3.1)
6€R? i=i

or

= EV'O',— Xtb)Xi (3.2)
1=1

where ^ = p'
• When the {«,-} are iid with a known, common density /, it is natural to choose

p = log/. When / is unknown, one would like to choose (p, rp) to achieve high efficiency over

a broad class of error distributions. The sine qua non for this objective is the boundedness of

V>. The fatal flaw of the least-squares choice ^(u ) = u is its unboundedness. See Huber

(1981) and Hampel, et.al. (1986) for an elaboration of these ideas.

When the errors {«,-} are independent but not identically distributed the analogue of Vn ,

in (2.4) is
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vn = H-l7nHzl = (EV''(«.K^')-
1

(EV'
2
(",-K^')(EV''(",K^')-

1
(3.3)

with Ui = yt
- XiPn which converges to Vn = H~lJnH~l where Hn = H

_1
E£^'(«.)*iXi' and

//a = n~lY,E i>
2
{Ui)x ix i

'• In tne i*d error context Fn obviously simplifies to

-rt 'J^Xj .

W("i))2 M

Note that //„ and 7a as defined above specialize to the form taken in the previous section

when ip(u ) = it for the least-squares estimator. As in least-squares case we need an expansion

of the form

y/n(a n - a ) = A 0n + n~l l2A ln + n~lA 2n + o
p
(n~l

) (3.4)

where as above

«n = {G'V?G)-iG'V;l~p
n (3.5)

and n now solves (3.2), Vn is defined as in (3.3) with A in = Op (\) for i = 1, 2, 3. If

Q~l = (G'V~lG)~l
, V~x

, and y/n(/3n - g(a )) possess expansions of the form (3.4), we may

write

A(*»-<*o) [QA + n-^Q n̂ + n~lQ£]G '\V£ + n~l l2Vln + »-%.] (3.6)

and we would have

A 0n ~QokG'VS*B0n

+ <2iJff'Koi*i. + QriG'VdB0n + G£GK6i*o.

As in the least squares case we can avoid expanding "inverses" using the "trick" (2.8) to
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express the expansions for Qn and Vn in terms of Qn and Vn .

The expansion for yjn n - g (a )) however raises some new problems. In the least-

squares case we had an exact linear representation for this quantity. Now, fin is defined by

the nonlinear system of equations (3.2) and the following lemma is crucial to the sequel.

Inversion Lemma: If h : Rp —» Rp admits the expansion, for nonsingular matrix A ,

h(t) = h(0) + At +

t'Bxt

t'B
p t

YjijktxtjtkClijk

zlijktitjtkCpijk

+ tf(ikii
4
)

and t solves h (t) = 0, then t admits the expansion in h = h (0),

t =Th +

h'A xh

h'Aph

Yiijkhihjhkkujk

Yiijkhihjhk^pijk

+ 0(11* II

4
)

where T = -A~l
, A, = -*£ A" A~lB,

A~l
, and

3=1

(A^B^.A^

^ijk = • = 2A~1 •

Aw* (A-iBJi.Ap
< *

+ A-1

EimnA
liA m3'A nk

clr

Proof: The proof proceeds by equating coefficients. Substituting / in the original expansion

we have

= (/ + AT)h + A

h'A xh

h'A
p h

+ AY,ijk hihjhk k ijk
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h'T'BjTh

h 'TBpTh

+ 2

h'TB^h'&Ji ...h'Aph)'

h'TBJh'AJ ...h'Aph)'

+ Y,iJkVi.hrJ,hrk hciJk +o(\\h\\4l

Thus clearly / + A T = implies T = -A \ Similarly equating the quadratic terms to zero

gives,

= /4

h'A
xh

h'Aph

h 'YB
x
Yh

h 'TBpTh

h'^AuAih

h'XiAfAih

h'A^B^h

h'A-lB
p
A-lh

= (A ®h')Ah +(I ®h')

A-lB,A-y

A-lBpA~
l

so

{A <g) I)A = -

-id a -iA~lB xA

A^BpA-1

and the expression for A,- follows. Similarly, summing the cubic terms in h and equating to

zero gives,
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o = EEE.^MA^* - 2«*MA

(A^BJi.Ap

(A^BJi.Afl

+ Yjijk^j^kYilmnVli^mj^nkClr

and expression follows upon substituting for T and solving for A#
fc

.

p

Remark: Note that A
iJfe

is the ./ft* element of A,- = -^A^A^BiA'1 so
1=1

In the remainder of this section we will impose the following regularity conditions.

D. The design sequence {Xn ) satisfies the following conditions:

(i) mzxWxi^oin 1 /2
)

(ii) n^EIWI13 = 0(1)

(iii) The matrices Jn = n'^XiX/E^iUi) and Hn = «~1
£}.x

t ;>c,'.£'V'0O converge to

positive definite limits.

F. The error sequence {«,•} is independent, and each component has a symmetric dis-

tribution about zero.

rp The function $ : R — R is odd, uniformly continuous, and possesses 3 uniformly

continuous, bounded derivatives, and there exists M < oo such that Eip6^) < M

for all / = 1, 2, ...

To apply the inversion lemma to y/n(J3n - 0) we first expand the implicit definition

= E^("i -*i(Pn -Ad))*;

writing V\ for V>(",), V\ ' for V '(«,), and so on,

= «"*£**<* - »-*&***< >« '(3. " A>) (3.7)
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+ -^{(k - A0'E*i* '***< ' '1& - A>)}/=i,_i

^E,w(3y» - 0yo)#*» - AoX?«. - Ao) • S<x*x*Xf*£*<

+ o>^/2
).

The order of the remainder may be established by noting that for

ii^-/y<Pn-/y = tf
P
("-1/2

),

n

i=i

by the boundedness of ^' ", D(ii) , and the strong law of large numbers. Applying the lemma

yields an expansion to order 0(n~l
).

Theorem 3.1: Under conditions D, F, ip

V*(0n ~ 0o) =B0n + n~l /2B ln + n~lB 2n + aJn'1
)

with,

B0n = H-bi-^^x^

B ln = -//-^Eo*.*, 'BfXjtoi ' - E+t ')^

Bin = hr+PLwMjxMXi'-H+XMXt'HfxrfiM*"

+ n^Ysiik^XiXi 'H*x3
x
3
'H-Kx^ ' -E^ '){i>j

' - E*,- ')1> k

~ 7*^£«Btf."*fa«lWi****i
' '

'

An immediate application of this expansion is the following variance expansion for

\/n (J3n - pQ ) and hence for y/h~(a n - a ).
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Theorem 3.2: Under conditions D, F, 0, with {«,} iid,

V(V*(0n ~ 0)) = «b(tf. F)Dn + n-lv x {xl>, F)D ln + o^"1
)

where v (V>, F) = E^/(E^'f, £>» = ""'E*,*,- '»

«i(tf, *") =
(£V')

4 (£V03 (£V04 (£V05

and Z) ln = AT1«~l
5]*i*i

/

Ar1
*i*t'Ar

1 and consequently,

F(v^(Sn(^«) - oo)) - «bC^, F)n n + ii-SW, F)fi ln + oin-1)

where as in Theorem 2.2, n n = (G 'DnG)~
l and ft ln = ftnG 'D

ft
D lnD„Cfin .

Since Qln is positive definite, the sign of v^, F) controls the effect of the 0(1 /n) vari-

ance term. Factoring out Cl n and noting as in the previous section that the design effect

tr (n-^x.x/D-^x/D-1
) = %P2(X).

may be expressed as n
~l
p (k (x ) + p + 2) following Box and Watson, we see that kurtosis of

the design observations {*#} accentuates the magnitude of the v^tp, F) effect on the 0(1 /n)

correction term, as in the least squares case.

Careful inspection of the argument leading to Theorem 3.2 reveals the critical role of the

continuity of V- It is perhaps worth noting here that discontinuous rp, exemplified by the

^i - V\ 4>(u) = sgn(u\ give rise to variance expansions in powers of n~l l2 rather than the

expansion in powers of n~l seen here. This qualitative disparity in performance due to con-

tinuity of V> has been previously noted by Jureckova (1985), Welsh (1989) and others.

To investigate the effect of estimating the matrix Vn by Vn we must carry out the expan-

sions of the inverse matrices as in the previous section. Expanding V~l
, we first note that

Vn
1 = HJn lHn = HnJZ

xHn + n-W2Hj-l[y/Z(Hn - HJ] (3.8)
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and using (2.8)

+ n-'J-\y/H(Jn - Jn)\J?W*(Jn - /.)]/.-»

+ «^/2op (i|v^r(Jn -yn )f)

Thus, it is apparent that expansions of y/n (Jn - Jn ) and y/h~(Hn - Hn ) to order Op (n~
l/2

) will

suffice. Expanding y/n (Hn - Hn ) we obtain,

y/n{8n - Hn ) = n-^XiXt'inui - xt n - fij) - E^']
i

= n+I^XiXi '(V,- ' - Eh ') - n+I^XiXi xt
'<$n - /W,

'

'

+ jn-W^XiXi x4
'0n - o)0n - fioYxtE+t

' '

'

and replacing y/n n -
f3 ) by its first order approximation yields,

y/h-(Hn - Hn ) = H0n + n~'l2Hln + oJn-1 '2
)

with

#0. = "-1/2
E*.*.-W " EM - 0,(1)

//m = «^/2
tXU*.*< '*« '".T

1
*;** 'H-Kx^^Erp,

' '

'

where //0n and //in are <9
P (1). Similarly,
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= n-W^XiXi '(V,
2 - E+T) -n-fl^XiXi '*,<?. - ft)*,*,

'

I
+ op ("~

1/2
)

so

Jbn'xn^^XiXi'W-Etf)

Jm= n~*,2Y,i3kxixi

,xiH^Lx
3
xk 'H-

l
XiXi 'Eifc '>,- - (V\-

')2
)4>3 i>k

- n^lY.ijXiXi 'XiH^xrfi 'V>y

Thus, again using (2.8) we may write

JrT
1 - Jn

1 = ""1/2
-/i

0) + n-*JjP + OpCw"1)

where 7j°) = -J~lJ0nJn
l and 7J

1
) = -J-lJ lnJ~

l + J

;

lJ XJ^

J

lnJ?, and thus,

where

Kj°> = //
ft 7i°)//n + 2HnJ-*H0n

and

Fj 1
) = #„/#>#,, + 2HnJ-'Hln +2Hn

jMH
n + HlnJ^Hln .

Now substituting back into (3.8) we have established:

Theorem 3.3: Under D, F, ij> :

vAT(5 ft
- a ) = ^o« + n~1/2A ln + rt

_1
/J 2n + p(O

with
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A Qn =Qn lG'HnJ-'n-
i^x^ i

A ln = Q?GHmJ*n-*EvlaJt>X+f - Etf)^- + ajp(V - £V,')V>y]

^ 2» = Q?GHnJ?n*fiY.*k\."8k+i' ~WW ~ E+j'Wk

a$(tf - tftfWj - **#*»

+ a$(il>?-EtfM/-Etl>3 ')il>k

+ ajfi+i+j+k + flftM" + a$Mi'Tp3M

Qn = G'V-'G =G'HnJ-
1HnG

Mn = Vn -GQ?G*

Kn = y.-1 - J^HnGQ^G'HnJ--i

41
) = -x

i
x i

'J-'HnMnHnJ-^xj

a& = -XiX/H^Xj + IXiXi'MnHnJ^X,

ai$ = XiXi 'Hn
xx

j
x
i
'H~lxk - 2x,x, 'MnHnJ^x,x3

- 'H~lxk

+ x*VP»*/*y Vn
lHnMnHnJ~lxk

- 4*,*,. '(K. - Mn)H%J?xjXj- 'MnHnJ?xk

affl = xtx{ '

K

nx3
Xj Knxk

a$ = XiXi'J+HJt+HJ+XjXj'H+Xt - 2xiXi
'

'J?xix/M.HuJ*xh

+ 2xiXi 'J?Hn{yn - MJH^-Kx^x/A^H^-Kx,

+ 2x,x/{Vm - Mn)HnJ-HiXi 'J^HnMnHnJ-
lxk
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ajS = -jn^EibviW' + «^EiW#.^*<*/#."**i*i

*.**[**,'" -*<Wi + M')2
)]

a&V = J*k*i 'H~
xxk xk 'Hz

lXj - 2xk xk 'xk
'//-1x

t
Mn//n/fT

1x
i

otf = IXiXi'Xi'H^XjJ^H.M^J^x*.

Computing moments from this expansion yields the following two term expansion for the

asymptotic variance of 5?n .

Theorem 3.4: Under conditions D, F, t/> with {u, } iid

V(^(a n(Vn ) - ob)) = v fa F)Vn + K"Wlk F)Oi. + v2(tf, F)n2J + op {n~
l
) (3.9)

where v (^, F), v^, F), Qn , f) lri are as defined in Theorem 3.2, fi2n = nn(7Mn(7nn,Mn is as

defined in Theorem 2.2, and

(£V')
5 (^f)4 (£f)4 (FV)3

(FV')4 (FV»')
4 E4>2(EiP')2

Remark: Comparing Theorems 3.2 and 3.4 we see that the effect of estimating Vn is captured

by the 0(\/n) term v2 (rj>, F)Cl2n where Q2n is the same design matrix which appears in the

Kn -effect for the least-squares effect in Theorem 2.2. The consequence of using Vn rather

than the true Vn = u (V>, F)Cln is, up to 0(l/n), the effect of the n~1v2(i>, F)Vl2n term. Since

the design contribution Cl2n has already been discussed in the previous section we focus atten-

tion here on the v,(V>, F) i = 0, 1, 2 terms.

In Table 3.1 we report computations of v 1(0, F) i = 0, 1, 2 for some representative

situations with Student / errors {2*,} and logistic rj> of the form
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a(m)- -(1-2/(1 +e-x*))

)

which may be regarded as a smooth version of Huber's (1964) well-known minimax r/>. In Fig-

ure 3.1 we illustrate Va f°r several choices of A. Relative to the Student / family A = 5

corresponds to rather aggressive trimming, A = 1 to light trimming, and A = 3 to an intermedi-

ate position. The column labeled A = oo gives corresponding coefficients for the least-squares

estimator where appropriate.

3 Logistic Psi Functions

-4

u

Table 3.1

Coefficients for the Moment Expansion
for y/n (a n -a )*

Student

DF

Scale of the Logistic rp

A = A = 1 A = 3 A = 5

1

oo 3.68

-16.79

6.08

2.45

-8.86

5.80

2.31

-3.38

6.34

2

oo 2.11

-2.81

1.59

1.73

1.04

1.84

1.73

5.70

2.10

5

1.67 1.38

1.12

0.34

1.36

3.85

0.49

1.42

8.04

0.58

10

1.25

1.00

1.18

1.82

0.12

1.25

4.39

0.18

1.33

8.43

0.21

* Each "cell" of the table reports the three coefficients v^F)
/ = 0, 1, 2, for the variance expansion of Theorem 3.4.
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As in the least squares case, there appears to be some robustifying effect from the esti-

mation of Vn when the errors are long-tailed and V is small, but this effect is confined to the

Cauchy and t 2 situations. The order 0(l/n) effect when Vn is (correctly) treated as propor-

tional to Dn m n~xX'X is to increase the asymptotic variance in all of our parametric exam-

ples, but vx (ip, F) may also perhaps be negative.

The F„-effect of the design is controlled by the matrix ftln which also appears in the

least-squares variance expansion for *Jn (an - a ), in Theorem 2.2. When the design is Gaus-

sian, k (x ) = 3, a simple interpretation is again possible if we write (3.9) as

V(y/t(cin - o )) = fiJv (V>, F)Ip + n-\v xk ln + v2A2n )] + ^(rc"1
)

where A,n = ft"1^ i = 1,2. Again taking traces, and dividing though by p, we may regard

$(n) = v + H
_1

(vi(l -p) + v2(q + 2))

as providing a 0(l/n) "correction term" for the standard first-order asymptotic variance, v ,

for each of the p parameters of the vector y/n^l~l l2din .

Obviously, it is difficult to interpret this expression given the rather exotic form of v x

and v2 . So we have to resort to plotting $n for a few representative situations. In Figure 3.2a

we illustrate $n for Cauchy errors and the logistic yp function with 3 different values of the

scale parameter A e {1, 3, 5}. In all three panels of Figure 3.2 we take p = 5, q = 20. In the

long-tailed / x situation severe trimming with A = 5 is best, achieving t> = 2.31 as n —» oo. The

Cramer-Rao lower bounded is 2.0 in this case. The mild trimming of A =1 performs sub-

stantially worse-achieving v = 3.68 asymptotically, but note that the robustifying effect of Vn

causes performance of the normalized estimator to approach this limit from below, while for

the more successful severely trimmed estimators the 0{\/n) variance correction is positive, so

<in ) decreases toward v as n —* oo.

In Figure 3.2b where we illustrate the situation for t 2 errors the outcome is similar, how-

ever there is a slight preference for the moderate trimming of A = 3 with n small. For t s , and
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/ 10 it is difficult to distinguish the performance of A 3 and A = 1, but both are slightly pre-

ferred to the severe trimming of A = 5. Reviewing the four cases, the fundamental observation

of the robustness literature, e.g., Huber (1981), is apparent -- a small insurance premium in

sacrificed efficiency in nearly Gaussian situations is justified by the protection afforded in

long-tailed situations by robust methods. We should perhaps emphasize that even the mild

trimming of A = 1 is quite successful in this respect relative to the least squares estimator

which has unbounded asymptotic variance in the t l and t 2 models.

Avar(MDE)'s for Student( 1 ) Model Avar(MDE)'s for Student( 2 ) Model

q

q
CO

o
CM

500 1000

sample size

5000

q

q
CO

o
c\i

500 1000

sample size

5000

Avar(MDE)'s for Student( 5 ) Model Avar(MDE)'s for Student( 1 ) Model

q

q
CO

o
c\i

500 1000

sample size

5000

o

q
CO

o
c\j

500 1000 5000

sample size



29

4. Conclusion

We began our investigation with two questions; how does estimation of the covariance

matrix Vn affect the performance of least-squares based minimum distance (GMM) estimators?

In particular, how does estimating Vn affect the robustness of minimum distance methods to

long-tailed error situations? These are questions that familiar first-order asymptotic methods

are unable to answer. In the first-order asymptotics, Vn is as good as Vn as long as Vn -* Vn in

probability.

Answers must be sought in "the garden of higher expansions" where the paths are ardu-

ous, but the vistas are rewarding at the end of the day. Perhaps the most surprising result is

the robustifying effect of the Eicker-White covariance matrix estimate for the least-squares

estimator a n when the errors are iid with kurtosis greater than 5. One might think that since

Vn is more difficult to estimate in such situations, that the use of Vn would inflate the variance

of a n relative to its performance when Vn is replaced by the correct Vn . This is certainly true

in the Gaussian case as the elegant sufficiency arguments of Rothenberg (1982) show. But

A
when k{u) > 5, even a poor estimate of Vn is valuable, because it effectively serves to down-

weight observations with large error realizations. Nevertheless, this effect is transitory, and

provides a fragile straw to grasp when least-squares methods are confronted by serious

outliers.

This notorious lack of robustness of least-squares methods leads us to consider a class of

minimum distance estimators based on preliminary M-estimation. Here the technical aspects

of the expansions are more challenging and we require an inversion of a cubic expansion of

the defining equation (3.2) for the M -estimator. This three term expansion to Op (n~
l
) for the

preliminary A/-estimation, y/n(/3n - /9 ), may be of independent interest. We may note at this

point that we have treated scale as known throughout these expansions for the A/-estimator;

in subsequent work we hope to report on joint expansions incorporating scale. As in the

least-squares case we focus the interpretation of the A/-estimator expansions for y/n0n -
O )
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and y/n (Sn - a ) on the two-term, 0(h -1
), expansions for the asymptotic variance of these

quantities when the errors are iid. In this case the design contributions to the 0(n~x
) terms

may be greatly simplified by treating the design observations as iid as in Box and Watson

( 1 962). This facilitates a rather simple graphical presentation of the results and reveals also

the effects of the dimensionality of the initial parameter vector 0, and the kurtosis of the

design observations: both tend to inflate the scale of the 0{\/n) term of the variance expan-

sion.

Taken as a whole our results reenforce the familiar robustness critique of least-squares

based methods. But by explicitly computing the 0{n~l
) term in the asymptotic variance

expansion of the MDE we are able to address a variety of questions unresolvable by tradi-

tional first-order asymptotic methods: How does estimation of the covariance matrix of the

preliminary estimator /?« effect the performance of the final estimator an ? How does the

dimensionality of /3n affect the performance of a n l What design conditions are necessary to

insure the validity of the usual first-order asymptotic normal approximation for a n ? Finally,

we may note that the methods employed here apply quite directly to a broad range of estima-

tors used in econometrics and we hope to explore other examples in future work.
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Appendix A

Proof (of Theorem 2.1) A direct proof is straightforward but tedious. Instead we may simply

substitute ^(« ) = " into the expansion of Theorem 3.3 to obtain the result.

Proof (of Theorem 2.2) Clearly V(A 0n)
= Q~l so it remains to compute the 0(n~^ term which

is, like our scalar example, given by

n-x[V{A ln ) + 2n x l2Cov{A 0n , A ln ) + 2Cov(A 0n , A 2n )\

Consider

[E(u? - c?)(u? - crfiujUiV-^G '&T
1

The expectation in square brackets is cr*trf(ki - 1) if /' = k and j = I, otherwise the expecta-

tion is zero, thus noting KnJnKn = Kn ,

V(A ln ) = Q-'GH^-hi-^Kki - \}xixi 'Kuxixi 'J?H9,G'Q? + op {n~').

3

To illustrate the remaining computation, write A 2n = $]/4 2m> and consider,

Cov(A 0n , A^) = -Q-lGHnJz
lLnJ-lHnGQ~l

where

Ln = n YiijicimXiXt '
H~ XiXj '

H~ x
t
x

t
'

K

nxk xm '
• EuiUjUk um .

As above, the expectations are zero except when the indices are pairwise equal. When

i -j f k - m ,

= n-tZucfxM 'HzlxiXi 'H-KxlXl 'Kn Jn + 0(n~l
).
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But KnJnJ~
lHnGQ~l = so the preceding contribution is negligible. When i = k f j = m

and i = m £ j = k , the contributions are identical, and take the form,

w_3£i £<E/**W*i*i
'Hn

lXiXj 'Hf^XtXt 'KnXiXj

'

= «^£i*i*i 'KnJHH^xlXl '//-Vn + Oin-1
).

The remaining terms may be computed similarly.

Proof (of Theorem 3.1) Applying the inversion lemma and its notation to (3.7) we have for n

sufficiently large, by D(iii),

Am =(Ermy rz?y )r.

3=1

Since, by hypothesis £V"(",) = 0,#y = n"*Y*xixi'xu$i" = op (l), and hence

= ~T^E mno^W T,^ T^ rt ~ J]XimXinXi0Xi lj>j

Approximating F = -A~l
as in (2.8) we have,

A-1 = /l"1 =- A~\A - A)A~l + /^(I - A)A~\A - A)A~l + Op
(||I - A f).

Since /4 - A = n^Y^XiX/W - Erp
{
') = Op (n~

1^) the preceeding remainder is of the desired

order Op(n^
2

).

For the quadratic terms h 'A,/i = £>
P («

-1
)A, so we may neglect the op {n~

l l2
) terms in the

expansion of A,. Thus we may write,

A, = -Y^A'iA^BjA-1 + o
p
{n~l l2

)
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jC»-*E**<**< 'r*{£(»"*E**< '**V}

{E("
_1
E*.*.- '** '^(i"1!]^ '***<

'

')}

[«-1E^oc,^v,'r1 + op
(«-1/2).

Similarly, in the cubic term we need only,

Ay« = -^//a
-1Emno^«

my^^[""1E^Vn^^^V','''] + Op (l)

and assembling terms yields the expansion

Proof (of Theorem 3.2) The argument proceeds exactly like that for Theorem 2.2. The com-

putations are similar except for the covariance of B^ with the last term of B2n which we give

here explicitly. Denote the latter as B^n,

Cov(B0n , B23n ) = -jn^^H-^^^rp^E^ ' f^ rx/H~\

Note that

E^i^j^k^T = <

£V4
if I » j m k m m

(Eifi
2
)
2

if / -j ±k = r, i = k +j = r, i = r ^7 - *

otherwise.

As before we may neglect the first case since it contributes a term of 0{n~l
). Symmetry in the

indices implies that the three cases of pairwise equality are identical, so it suffices to consider

the case when i = j ^ k - m. Note first that with {«,} iid,

n E J tijkl & $r ' ' ' = /r,,, x ,
W~EjE mnoitvX i» XjtXkvH™H*H™XlmXlnXloX {

(Eip y

so

n E jiklr Zijkl Xr
' = £"

V»
" '"^E •Ej>E / Ziijl X3

'
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_ ** Y v-< v-» LI m» fj nt lj ovw

where

Wfnnottv ~M 2-iiZ-ij tx2jl Xi«X itxjvXlmxlnxloX l
x
j

= (J5fB)il (/fm),(ii-
1
Ei*fai*fa*to*i') + C, (""1

)

Since Y>tHKHn)* = ^ and E.#W«).. = //n //tt
° = e where *„, is Kronecker's delta, and e

(

is the th unit vector of R9
, respectively. Thus,

n ^ Yj Zi}kl X r ~ ,„,,.-> n E/Emno^iT^m^^o^o^l
'

EJ)"' _lv^ - r» -1

(ErP f

since Eooi*io*«*i' -*i*i' and Y*mn=iH™ximxin = xi''Hn lx
i- Thus, since there are three

such terms,

G>v(50n , S^J = -y ^f/,^"

'

AT*E<*.*.- 'AT
1
*.*. 'AT

1
-

2 (£V )
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Appendix D

On the Design Effect

Consider 6gx = Yl
z

i
'(Z'Z)~1zixi '(X''X)~x

Xi and suppose provisionally that Z'Z and

X'X are diagonal. Then

y=i i=i y=i

2-i Zj oj'r&jtxirXj

2-I&ja 2-1%

and thus

P « 9 «

*«"EEE E
j=l As=l 1=1 mm=l

Sjl Sjm 2-i
XikXH Xim

«=1

t »=1 i

Now assuming that the {jc,y} are iid, symmetric about zero we have,

En l

2Zx*xa xim - (Ex
tjf = a\x)

j ml mm
j +1 mm
otherwise

so

p «

'« =»"XEE
j * ^4U)E^

»=i

p i i

+ EEE
j-lk=Utk

si
<l

»=i

= «-* /*(*) + EE
E^2 - rf
j

2-i Sjs
«=i

-H"*U*(*)+P(« - D]

Similarly,

*„ -E(V(z'z)"**<r«E
j=i

»'2E^
i

O^E^I)2

"

p p

+ EE
j-lkft

n*Y,z*z£
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Now z* = E**lgirg}tgjtgjmXirxi.xitXiU and

E-XfrXfa XftXit ~ <T
4U)

r = 5 = t = u

(r =5 ft =u ),(r =/ fs -u ),(r =w ^s =t )

otherwise

so

i=l fc=l k=ll£k

n^Ez3^o*{x)Xg,l t

i k=i

and for j f k ,

1 / = 1 //m //to

Writing, as in Box and Watson,

sj = Y.B& ; ^2 = Erf
/=i /=i

and

S'a - E SkmSlm '> Si » E SkmSlr
m=l m=l

we have finally, assembling these expressions,

+ (*(*) -3)
Jfc£ o 2o 2

2EE(^)2
/( s&si)}.








