

RAY SOCIETI.

INSTITUTED MDCCCXLIV

This volume is issued to the Subscribers to the Ray Society for the Year 1904.

A MONO(iRAPH

OF THE

BRITISH DESMIDIACEE

EY
II. WEST, F.L.S.,
Ex-president of the Yorkshire Nuturolists' Union;
Lecturer in Botany, Pioloqy, wnel Pacteriology at the Technical College, Bradiord ;
AND
(土. S. WEST, M.A., F.L.S., A.R.C.S., Professor of Natural History at the Royal Agricultural College, Cirencester; Formerly Scholur and Hutchinson Research Stulent of St. John's College, Cumbialge

VOLUME I

LONDON

PRINTED FOR THE RAY SOCIETY

PKINTED HY ADLARD AND SON, LONDON AND DORKING.

PREFACE。

Durase a longe and continuons study of the Desmidiacere we have realised the pressing need of a British Monograph he means of which diligent and painstaking students may reasonally hope to identify the rarions species which they may happen to meet with in ant part of the British Isles. We have no douldt that one of the principal reasons for the lack of persistent students of these beautiful plants has been the absence of a reliable British Monograph on the group. Therefore, when we were asked by the Council of the Ray Society to undertake the work, we consented with pleasure and with a determination to place the results of the inrestigations of man! years at the disposal of such a useful society.

The earliest recorded descriptions and figures of British Desmids are found in Dilhyyn's 'British Conferrae,' 1809; Smith's •English Botany,' 1790-181t; Greville's 'Scottish ('ryptoganic Botany,' 182:3-18.28; Smith's •English Botany', edit. O, 184t; and in Jemer's r Flora of Tumbridge Wells,' 184.5. Ralfs also pub)lished some of the results of his work in the 'Ammals and Magazine of Natural History ' from 1842 to 18t5, and in the 'Transactions of the Botanical Soeiety of Edinhurgh' from 184:3 to 1846 . In 184.5 a History
of British Freshwater Algee was published by Hassall, and in this work is Desmids were described and figured. Hassall did not give the dimensions of the species, and both the text and figures are often very inaccurate. Three years later', in 1848, Ralfs' 'British Desmidiex' appeared, and this book undoubtedly opened the eyes of British naturalists to the wondrons. beauty of a neglected class of plants. At the same time it gare a stimulus to the study of microscopical botany, and Ralfs' book stands to-day as the only monograph extant containing accurate figures of these simple plants. In this classical rolume Ralfs described and figured 162 species and 32 varieties of British Desmids, and 18 species and 4 rarieties of other Algre belonging to the genera Anliistronlesmms, Pediustrum, and sconedesmus. These genera were at that time supposed to belong to the Desmidiacer. He also briefly included some 64 species of Desmids and $: 3$ species of other Algæ which had been found in foreign countries.

From 18.58 to 188.5 a large series of notes and short papers by \mathbb{W}. Archer appeared in the ' Proceeding's of the Dublin Microscopical Society' and the 'Quarterly Journal of Microscopical Science,' and in 1861 the same writer contributed the article on the Desmidiacere for Pritchard's 'Infusoria.' These are unquestionably among the most valuable contributions to the literature of British Desmids, and clearly prove that Archer was second to none in his detailed acquaintance and clear insight into the structure and habits of these plants. It is a great pity that many of his preliminary notes were nerer followed hy his promised detailed descriptions and figures, as in several instances they were too meagre to be of any value.

Barker (1869), Bennett (1886-7), Bisset (1884), Cooke and Wills (1880-1), Marquand (1882-4), and Turner (188.5-6) also contributed short papers on British Desmids, which added considerably to the knowledge of the distribution of the Desmidiacea in the British Islands.

In 1887 M. C. Cooke issued his ' British Desmids.' A good work was much needed at that time, but the book which then appeared was most unsatisfactory to scientific botanists, whatever it may have been to microscopists. In the first place, it was evident that very little Desmid-material had been examined, and, secondly, that scarcely any attempt had been made to collect together what was already known concerning the distribution of Desmids in the British Isles. Added to this, the illustrations were mostly very diagranmatic and many extraordinarily inaccurate. Often when a cell had been figured showing the cell-contents, the outline of the same figure was made to do duty for an emptr cell, the latter being shown without its characteristic and indispensable markings. Not many (probably not more than a dozen in all) of the figures were original, and one of the remarks in the text called forth an article in the 'Journal of Botany' 1887, xxr, pp. 3.5-3.58, by Dr. O. Nordstedt of Lund, Sweden, who indicated the rarions works from which the figures had been roughly copied. Notwithstanding all these defects there is no doubt that the book was of value in stimulating students to further work on these plants. The number of species Cooke described was 271 with 46 rarieties; there were also 19 species and 2 varieties in a supplement, making a total of 290 species and 48 varieties.

Since the publication of Cooke's book many papers
have been issued concerning British Desmids. Several have appeared ben Bennett, Roy, and Turner, and also a very good and comprehensive account of 'The Scottish Desmidiere' by Roy and Bisset. The latter paper includes all the published information on Scottish Desmids up to 1094 .

During the last fifteen years many papers have been published by continental botanists on Desmids from rarious parts of the world. The principal contributors to Desmid-literature have been Wille in Norway, Wittrock, Nordstedt, Borge, and Lagerheim in Sweden; Börgesen in Denmark; Schmidle and Lemmermamı in Germany; Lütkemuiller in Austria; Gutwinski in Poland ; Gay in France ; and Johnson in North America. Many of the works of these authors have been up to the present absolutely indispensable to students of British Desmids, and some of them will always remain so.

In the present monograph we have endeavoured to bring together all the published information concerning British Desmids that we have already mentioned, also much work which we have ourselves published concerning these plants, as well as a large number of hitherto unpublished investigations.

The number of species described and figured in the present work will be approximately 690 , and the number of rarieties about 450 . This is an increase of 400 species and 402 rarieties over those enumerated in the last monograph of British Desmids, by Cooke, the majority of which lave been added by our own researches.

Although many months have been spent by us from year to year, investigating districts in almost all parts of the British Islands, large areas yet remain practi-
cally mworked. Under each species we give its distribution in the British Lstands so far as it is known, and this will at once indicate the extensive and representative area which has been examined.

We also give the known geographical distribution of each speeies. It must be remembered, however, that our knowledge of the geographical distribution of Desmids is at present very incomplete.

Most of the figures are original, and much time and care has been expended on the drawing of the specimens in order that they should he as accurate as possible. In many instances we lave given an accurate copy of the original figure published by the author of the species, but in all cases where the figmes are not our own, mention has been made of the fact. In some cases where we have not had a thawing of a British specimen in a convenient form for reproduction, we have not hesitated to give a figure of a foreign specimen, provided the latter was typical. We regret very much that the figures are not drawn to a uniform scale of magnification, but the great diversity of size, and of firmmess and structure of cell-wall exhibited thronghout the family, together with the fact that we have reproduced a large number of the original figures of various authors, has rendered such uniformity of magnification impossible. Moreover, many species vary very considerably in their dimensions, so that relative size is of mo fumdementul importancer as a specific distinction. Hence, it does not matter what the magnitication of the drawing is, provided the scale is large enough to show all the distinctive features of the species. We think, howerer, that the student will soon become acpuainted with the relative sizes of these plants, and we have endeavoured to make the measure-
ments in the text as accurate as possible. All measurements are given in micromillimetres (μ). $1 \mu=0.001$ mm. Every species is drawn to scale and the magnification is indicated.

The note of exclamation (!) indicates that we have seen a specimen from the locality after which it is placed.

W. \& G. S. West.

31st May, 1904.

CONTENTS OF YOL. I.

PAGE
Bibliography xvii
Introduction. 1
Phylogent of the Genera of Desimds 2
Order Conjugate 2:)
Fanily Desmidiacee 23
Sub-Family I. Saccoderde 69
Tribe 1. Gonatozyge Q)
Genus 1. Gonatozygon 29
2. Genicularia 3.5
Tribe 2. Spirotifnieq. 37
Genus 3. Spirotenia 37
.. t. Mesotenium 4
5. Cylindrocystis 57
6. Netrium © 3
Sub-Family II. Placoderme 70
Tribe 3. Penief 71
Genus 7. Penium 71
Tribe 4. Closterife 106
Genus 8. Roya 106
!. Closterium 109
Tribe 5. Cosmarie.e 192
Genus 10. Docidium 193
.. 11. Pleurotenium 197
.. 12. Tetmemorus 216

ERRATA.

P. 39, line 28, for musicola read muscicola.
P. 160, line 25 , in description of Closterium toxun, delete scattered.

LIST OF THE PLATES.

Plate I.

Figs. 1-7.-Gonatozyyon monotenium (p.30)
8-16.—G. Bribissonii (p. 31)
17-18.-G. Fjellmani (p. 33)
.. 19-20.-Cr. pitosum (р.34)

Plate II.

Figs. 1-3.-Gonatozygon Kinahun: (p. 35)

4-6.-Genicu?ariaspirotemia (p. 36)
-10.-Spirotaruia condensata (p. 38)
11.-S1. turiosn (1. 42)

12-14.-Sp. fusiformis (p. 4:3)
15-18.-S'parvala (p. 43)
19.-Sp. costeridia (p. 39)

20-23.-Sp. enclospie (p. 39)
$2 \pm-26 .-S_{1}$. trmacuta (p.40)

Plate III.

Figs. 1-3.-Spirotienia minuta (p. 41)

4-6.-Sp.euaracensis (p. 4:)
7-12.-Sp. alscura (p. 44)
13.-Sp. bispiratis (p. 45)

14-15.-Sp. acuta (1. 46)
16-17.-Sp.tenerrima! (p.47)
18-22.-Mesotraium De Greyi
(p .49)
23-24.- M. Fíamstai (p.57)
25-26.-II ритритени (р.55)

34-36.-M. macroсоссим
(p. 51)

Plate IV.
Figs. 1-3.-Mesotienium macrococcuin (p. 52)
,. 4-14.-M. chlemydospormu (p. 52)
.. 15-17.-M. caldariorum (p. 53)
.. 18-19.-M. mirificum (p. 50)
, 20-20.-MI. Endlicherianm (p. 56)
., 23-32.-Cy'indiocystis Brebissonii (p. 58)
,, 33-38.-C. crassa (p. 59)
., 39.-C. roseoct (p. 62)
., 40-43.-C. diplospara (p. 61)

> Plate V.

Figs. 1-2.-Genicataria elegans (p. 36)
,, 3-4.-G. spirotenia (p. 36)
.. 5.-Gomatozyyon momotanizm (p.30)
6.-Spirotenia trabecuTata (p. 45)
.. 7.-Netiviem ,blongum (p.66)
., 8.-Cyindrocystis obesa (p. 60)
9.-C. minutissima (p. 62)
.. 10-11.-C. Brébissonii (1. 58)
.. 12.-Mesotenium trunca$t<m$ (p.54)
Plate TI.
Figs. 1-3.-Penium Cylindrus (p. 84)

4-5.-P. cuticulare (p. 85)
6-8.-P. ехідит (р. 86)

Plate VI-contimued.
Figs. 9-11.-P. pleymatosporum (p. 91)
,, 12-13.-P. rufescens (р. 99)
,, 14-17.-Netrium Digitus (p. 64)

Plate VII.

Figs. 1-3.-Netrium interruptum (p. 68)

4-5.-N. Nügelii (p. 66)
,, 6-11.-Penium Libellula (p. 73)
,, 12-19.-P. Navicula (p. 75)
,, 20-21.—P. Jenueri (р.77)

Plate VIII.

Figs. 1-3.-Netriume oblongume (p. 66)

4-5.-Penium crassinsculum (p. 96)

6-7.-P. spinospermum (p. 78)

8-10.-P. Моптеаит (р. 80)
11-13.-P. didymocarpum (p. 79)
, 14-19.-P. suboctangulare (p. 81)
,, 20-23.-P. minutissimum (p. 81)
., 2t-26.-P. truncatum (p.82)
, 27-29.-P. subtite (p. 92)
,, 30-31.-P. adelochondrum (1. 93)
,. 32-35.-P. margaritacenm (p. 83)
,. 36-38.-P. Clevei (p. 87)
, 39.-P. granulatum (p. 87)

Plate IX.

Figs. 1-8.-Penium spirostriolatum (p. 88)
, 9-11.-P. polymorphum (1. 90)
12.-P.lagenacioides (p.93)
", 13-20.-P. Cисивіtітии (p. 94)

Plate X .
Figs. 1-14.-Periзm minитит (p. 101)
,. 15-17.-P. incouspicuит (p. 101)
,. 18-20.-P. cruciferum (p .100)
., 21-26.-P. curtum (р. 97)
., 27-29.-Roye obtuse (p. 107)
,, $\quad 30 .-R$. Psendociosterium (p. 109)
31.-R. Cambrica (p. 108)

Plate XI.

Figs. 1-4.-Ciosterium Cynthia (1, 113)
5-7.-Cl. Lagoense (p. 114)
.. 8-11.-C1. Archerianum (p. 115)
,, 12-13.-Cl. porrectum (p. 116)

Plate XII.

Figs. 1-7.-Closterium didymotoсин (р. 116)
., 8-10.-C7. пиасіlептим (р. 118)
,. 11-13.-Cl. cuyustatum (p.119)

Plate XIII.

Figs. 1-3.-Chosterium costutum (p. 120)
,. 4-6.-C7. reguture (р. 122)
,, 7-17.-Cl. striolatum (p. 122)

Plate XIV.

Figs. 1-6.-Closterium intermedium (1 . 125)
7-9.-C7. L7иа (р. 1・フ)
,, 10-16.-C7. juncidum (p. 128)
Plate XV.
Figs. 1-6.-Closterium Diunse (p. 130)

7-8.-C7. Psendodiunite
(p. 193)
., 9-14.-С7. parvu!иm (р. 133)

Plate XV-continued.
Figs. 15-20.-Cl. Temu: (p. 197)
,. 21-22.-Cl. Diance (p. 130)
,, 23-27.-Cl. Jenneri (p. 154)
,, 28-30.-Cl. incurvum (p. 136)
Plate XVI.
Figs. 1-6.-Closterium culosporum (p .138)
7-8.-C?. eboracense (p. 140)
9-14.-Cl. Leibleimii (p. 141)
15-16.-C7. moniliferume (p. 142)

Plate NVII.

Figs. 1-4.-Ciosterium Ehrenbergii (p. 143)

5-6.-C?. Ma?invernianum (p. 145)

7-8.-C7. decorum (р. 184)
9-11.-Cl. Tanceotatume
(p. 149)

Plate XVIII.

Figs. 1-6.-Closterimm acerosum (p. 146)
7.-C?. lanceotatum (p. 149) 8-12.-C7. Luпита (р. 150)

Plate NIX.

Eigs. 1-5.-CTosteriumsigmoideum (p. 153)

6-S.-Cl. Sitiqua (p. 154)
9-13.-Cl. peracerosum (p. 154)
14.-C7. littorale (p. 155)

15-18.-Ct. tumidum (p. 156)

Plate XX.

Figs. 1-5.-Closterium Cormu (p.157)
.. 6-12.-Cl. ubrupitum (p. 158)
,. 13-14.-Cl. taxon (p. 160)
15-16.-Cl. Balmacarense (p. 161)

Plate IX -continued.
Figs. 17-18.-Cl. Scoticum (p. 161)
,, 19- .-Cl. pusillum (p. 16:)
Plate XXI.
Figs. 1-5.-Closterium pretonyum (p. $16 \pm$)

6-7.-Cl. strigosum (p. 165)
,. S-16.-Cl. aracile (p. 166)
.. 17.-Cl. Lundellii (p. 169)
., 18-19.-Cl. aciculare (p. 174)

Plate X.iII.

Figs. 1-3.-Closteriumattenuatum (p. 169)

4-5.-Cl. turgidum (p. 170)
.. 6-14.-C!. Pritchardianum
(p.17-2)

Plate XXIII.

Figs. 1-3.-Closterium promum (p. 173)
,, 4-5.-C7. aciculare (p. 174)
., 6-8.-C․ Ceratium (p. 176)
.. 9-15.-C $\%$. acutum (р. 17万)
,, 16-19.-Cl. subutatum (p. 179)
., 20-21.-Cl.idiosporum (p.180)

Plate NXIV.

Figs. 1-5.-Clusterium linestum (p. 181)
.. 6-13.-Cl. Raltsii (p. 182)

Plate XXV.

Figs. 1-3.-Closterium decorum (p. 184)
.. 4-5.-Cl. laterale (p. 186)
.. 6-13.-Cl. Kïtzingii (1. 186)

Plate XXVI.

Figs. 1-8.-Closterium rostratum (p. 188)
., 9-13.-C. setaceum (p .190)

Plate XXVII.
Figs. 1-6.-Docidium Baculum (p. 193)
,, 7-12.-D. undulatum (p. 19£)
.. 13-15.-D. nobile (p. 196)
., 16-18.-Pleniotienium conomatum (p. 199)

Plate XXVIII.
Figs. 1-8.-Pleurotemium coromatum (р. 199)

Plate NXIX.
Figs. 1-2.-Plenrotienium ergeneum (p. 202)
, 3-8.-P!.truncatum (p. 203)
,, 9-11.-P?. Ehrenbergii
(P . 205)

Plate IXX.
Figs. 1-4.-Pieurotienium Ehrenbergii (p . 205)
,, 5-8.- Pl. tridentulum (p. 208)
., 9-15.-P!. Tirabecu!a (p. 209)
Plate IXXI.
Figs. 1-2-Preuroternium maximum (p. 213)
,, 3-6.—P!. modosum (р. 214)
,, 7.-Pl. Hutchinsomii (1. 214)
,. 8-9.-P!. Trubecuª (p. 209)
Plate XXXII.
Figs. 1-6.-Tetmemorus Brébissomii (p .216)
,. 7 -10.-T. gramulatus (p. 219)

. 17-19.-T. mimitus (р. 223)

BIBLIOGRAPHY.

Anderss. Scerig. Chlor.-O. Fr. Andersson, Bidrag till Kannedomen on Sreriges Chlorophyllophyceer. I. Chlorophyllophyceer från Roslagen. Bihang till K. Sv. Vet.Akad. Handl. xvi, 110. .5, 1890.
Aich. Suppl. Cat. Desmid.-W. Archer, Supplementary Catalogue of Desmidiacere found in the neighbourhood of Dublin, etc. Nat. Hist. Rev. (Proc.) v, 18.58.
Arch. in Pritch. Infus.-W. Archer in A. Pritchard's History of Infusoria; (Desmidiea by W. Archer). Edit. 4. London, 1861.
Arch. Descript. Neu Cosm., Atc.-Wr. Archer, Description of a new sipecies of Cosmarium (Corda), of Stumrastrum (Meyen), of two new species of Closterium (Nitzsch), and of Spirotæuia (Bréb.). Proc. Dubl. Nat. Hist. Soc. iii, part $2,1863$.
Arch. Palmoglaa and Nescrip. Mewot.-W. Archer, An Endeavour to identify Palmoglwa macrococca (Kiitz.), with description of plant believed to be meant, and of a new species, etc. Description of a new Species of Cosmarium and of Arthromesmus. Proc. Dubl. Nat. Hist. Soc. ir, part 1, 1864.
Asch. Obsercations on Cylindrocystis.-W. Archer, Observations on the genera Cylindrocystis (Meneghini), Mesotrnimm (Näg.), and SPivotrnia (Bréb.), etc. Quart. Journ. Micr. Áci. n.s. vi, 1866.
Arch. Comj. Spiroten.-W. Archer, On the Conjugation of Spirotania conlensata (Brélo.) and Spirotrnia truncata (Arch.). Quart. Journ. Micl. Sci. n.s. vii, July, 1867.
Arch. in Quart. Jomrn. Micr. Sci-WW. Archer, Numerons notes and papers in the Quarterly Journal of Microscopical Science, from 18.5 to 188.5.

Bail. Microsop. Ohserr.-.J. W. Bailey, Microscopical observations made in Sonth Carolina, Georgia, and Florida. smithson. Contrib. to Knowledge, ii, 18.50 \& 18.51.
Barker in (Murt. Jomrn. Micr. Sci-J. J. Barker, Several notes in the Quarterly Joumal of Microscopical science, from 1866 to 187 :3.
Benx. Fireshr. Alg. Eng. Lake Distr-A. Wr. Bemett, Freshwater Alga (including Chlorophyllaceous Protophyta) of the English Lake District, etc. Journ. Roy. Micr. Soc. 1886.
Benn. Freslur. Aly. Eng. Lakie Distr. II.-A. IV. Bemnett, Freshwater Algæe (including Chlorophyllou* Protophyta) of the English Lake District. II. With descriptions of a new gemus and five new species. Journ. Roy. Micr. Soc. 1888.

Benn. Alg. N. Comuall.-A. W. Bemett, Freshwater Algæ (inchding Chlorophyllaceons Protophyta) of North Cornwall; with descriptions of six new species. Journ. Roy. Micr. Soc. 1887.
Benn. Freshr. Aly. Hamps. and Decon.-A. W. Bemnett, Freshwater Alga and Schizophyceæ of Hampshire and Devonshire. Journ. Roy. Micr. Soc. 1890.
Benn. Freslue. Alg. S.II. Sumey.-A. W. Bemett, Freshwater Algre and Sclizophycere of S.W. Surrey. Journ. Roy. Micr. Soc. 1892.
Biss. Desm. Windermere.-J. P. Bissett, List of Desmidiere found in gatherings made in the neighbourhood of Lake Windermere during 1883. Journ. Roy. Micr. Soc. 1884.
Bohlin, Flor. Algol. d'eai douce d. Acores.-K. Bohlin, Etude sur la flore algologique d'eau douce des Açores. Bih. till K. Sv. Vet.-Akad. Handl. xxvii, Afd. III, no. 4, 1901.
Boldt, Siber. Chlorophy.-R. Boldt, Bidrag till Kämedomen om Siberiens Chlorophyllophyceer. Öfvers. af K. Vet.Akad. Förhandl. 188.5, no. 2.
Boldt, Desmid. Grönland.-R. Boldt, Desmidieer från Grönland. Bihang till K.Sv. Vet.-Akad. Handl. xiii, no.5, 1888.
Börg. Bornholm. Desm.-fl.-F. Börgesen, Et lille Bidrag till Bornholms Desmidié-flora. Botan. Tidskkrift, xvii, 1889.
Börg. Desm. Brasil.-F. Börgesen, Desmidiee in E. Warming, Symbole ad floram Brasilie centralis cognoscendam, part 34, 1890 ; publ. in Vidensk. Medd. f. naturh. Foren. Kjöbenhavn, 1890.
 fıa Östgrönländ. Meddelelser on (frönland, Kjöbenharn, 1594.

Börg. Ferslre. Alg. Lslamt.-F. Böroresen, Nogle Ferskvandsalger fira Island. Botanisk Tidskerift. xaii, Heft. 2, 1898.
 of the Faeröes. Botany of the Faeröes, part 1, Copenhagen, 1901.
Börg. \& Ostenf. Plytoplantiton Fowörs.-F. Börgesen and (. H. Ostenfeld, Phytoplankton of Lakes in the Faeröes. Botany of the Faeröes, 1903 .
Borge; Bill. Siber. Chlor-O. Borge, Ett litet bidrag till siberiens Chlorophyllophycé-flora. Bih. till K. Sv. Vet.Akad. Handl. xvii, Afd. III, no. 2, 1891.
Borge, Chlor. Norstat Finmart-O. Borge, Chluroplyylloplıyceer frin Norska Finmarken. Bilı. till K.Sv. Vet.-Akad. Handl. xvii, Afd. III, no. 4, 1892.
Borge, Sulifosw. sïlv. aly. (rotl--O.Borge, Subfossila sötvattemsalger fran Gotland. Botan. Notiser, 1892.
Borge, Süssw Chlor, Acchang.-O. Borge, Süsswasser-Chlorophyceen gesammelt von Dr. A. Osw. Kihlman in Nördhichsten Russland, gouvernement Archangel. Bilı. till K. Sr. Tet.-Akad. Handl. xix, Afd. III, no. is, 1894.

Borge, Austral. Sïssurssecohlor.-O. Borge, Anstralische Süsswasserchlorophyceen. Bihang till K. Sv. Vet.- Ahad. Handl. xxii, no. 9, 1896.
Borge, Tarinlil. Desmid.-O. Borge, Ueber die Tariabilitat der Desmidiaceen. Öfvers. af K. Sv. Vet.-Akad. Förh. 1896, по. 4.
Borge, Algologista Notiser:-O. Borge, Algologiska Notiser'. 4. Süsswasser-Plankton aus der Insel Mull. Botan. Notiser, 1897.
Borge, Trop. u. subtrop. Süssus-Chlor--O. Borge, Ueber tropische und subtrophische Süsswasser-Chlorophyceen. Bih. till K. Sr. Vet.-Akad. Handl. xxiv, Afd. ILI, no. İ, 1899.

Borge, Süsstcassetalgen Firauz Jospfo-Land--O. Borge, Süsswasseralgen von Franz Josefs-Land, gesammelt von der Jackson-Harmsworth'schen Expedition. Öfvers. af K. Vet.-Akad. Förh. 1899, no. 7.
Borge, Schuerl. Süs:suasserplankton.-O. Borge, Schwedisches Süsswasserplankton. Botaniska Notiser, 1900.

Borge, Sü̈ssurasseralgen Süd-Putagom.-O. Borge, Süuswasseralgen aus Süd-Patagonien. Bih. till K. Sr. Vet.-Akad. Handl. xxvii, Afd. III, no. 10, 1901.
Borge, Alg. erst. Regnell. Erpect., II. Dermid.-O. Borge, Die Algen der ersten Regnellschen Expedition. II. Desmidiaceen. Arkir. för Botanik, K. Sr. Vet.-Akad. Stockhohn. i, 1903.
Bréb. Alg. Falaive.-A. de Brébisson, Algues des environs de Falaise descrites et dessinées. Falaise 1835. Mem. de la Soc. Acad. d. sc. arts et bell. lettr. de Falaise, 183.).
Bréb. in Cheval. microscop, et usage.-A. de Brébisson, sur les preparations nécessaires à l'étude das Algues iuferieures, etc. Cheval. Des microwcop. et de lem nsage, Paris, 1839.
Bréb. in Dict. umir.hist. uat.-A. de Brélisson, in Dictionnaire universelle d’histoire naturelle. (Dirigé par C. d'Orbignv.) Paris, 1842-49.
Bréb. Liste Desm.-A. de Prélisson, Liste des Desmidiées, observées en Passe-Normandie. Mem. d. l. soc. imp. des Sciences nat. de Cherbourg. ir, 18.56.

Cleve, Surig. Desm.-P. T. Cleve, Bidrag till Kännedomen om Sreriges söttrattensalger af familjen Desmidiea. Öfvers. of K. Vet.-Akad. Förlı. 186:3, no. 10. (Stockhohn, 1864.)

Cohn, Desm. Bongo.-F. Cohn, Desmidiacea Bongoensen. Festechurift zur Feier des lundertjähr. Bestchens der Naturf. Ges. in Halle a S. 1879.
Comère, Desm. de France.-J. Comère, Les Desmidiées de France. Paris, 1901.
Cooke, Some Desm. new to Britain.-M. C'. Cooke, On some Desmids new to Britain. Journ. Quek. Micr. Clnb, vi, March, 1881.
Cooke, Brit. Desm.-M. C. Cooke, British Desmids. A supplement to British Freshwater Algw. London, 1886-87.
Corda in Alin. de Cailsbad.-A. J. C. Corda in Almanach de Carlsbad par le chevalier Jean de Carro. Prague, 1834, $18: 35,1839$, and 1840.

De Bary, in Hedrigia.-De Bary, Zin Gonatozygon monotenium. Hedwigia I, 1856, no. 16.
De Barr, Conj-D De Bary, Untersuchungen uber die Familie der Conjugaten (Kygnemeen und Dermidieen). Leipzig, 18.58.

Delp．Desm．subalp．－J．B．Delponte，Specimen Desmiliace－ arum swlolpinarum．Angustie＇Taurinormm，157：？P Pars altera，ibid．1s77．Memor．d．R．Acead．d．scienze di ＇Torino，ser．： 2 ，xxviii and xxx．
De Not．Desm．Ital．－G．de Notaris，Elementi per lo stndio delle Desmidiacee Italiche．（Genoa， 1867.
De＇Town，Syll．Alg．－（i．B．de＇loni，Syloge Algarmm ommimm hucnsque cognitarmm．Vol．I．C＇hlorophycer．Patavii， 1889.

Ehrenb．Britr．zur Kenntuisw der Oigamis．der Tufiル．－C．G． Elnenberg＇，Beiträge zur Kemntniss der Organisation der Infnsorien und ihner geographischen Terbreitung beson－ ders in siberien．Plys．Abhandl．d．K．Akad．d．Wissen－ schaft．an Berlin． 1830.
Ehrenb．Enturirf．Lebends．d．Infins．－C＇．（土．Ehrembero，Ueber die Entwickelnog und Lebensdaner der Infonsionsthiere， etc．Phys．Ablı．d．K．Akad．d．Wissensch．zu Berlin， 1830．（Berlin，1832．）
Ehrenb．Iufius－C．G．Ehrenberg＇，Die Infusionsthierchen als vollkommene Organismen．Leipzig， $18: 38$.
Eichler，Mat．flor．Mierlz．－B．Eichler＇，Materyaly do Hory wodorostów okolic Międzyr\％eca．Pamietnik Fizyjogra－ ficzny，Warszawa，xiii，Dzial iii，189：3，also xiv， 1894.
Eichler \＆（ixtw．Nonn．xpec．aly．not．－B．Eichler and R． Gutwinski，De nommllis speciebns algarum novarom． Rospraw Wydz．matem．－przyr．Akad．Uniej．Krakow． xxviil， 1894.
Elfv．Antecti．Finsta Desm．－F゙．Vlfiving，Anteckningrar on Finska Desmidicer．Acta Soc．pro Fanna et Flora Fennica，v，no．＇，1881．Helsingfors．

Focke，Plys．Stul．－（i．Wr．Focke，Ply̌iologische Studien I H．Bremen 1847．2 Heft，Hremen，18．）t．
Fowrs，Contrib． 4° ．flor．ficolog．Fermen－A．Forti，Contribnto 4° ．alla conoscenza della florula ficologica Teronese， 1902. Nuova Notarisia，ser．13， 190 ．
Fritsch，Periocl．decel．of Alyaz at Keu．—F．E．Fritsch，Re－ marks on the periodical development of the Algre in the artificial waters at Kew．Annals of Botany，xvii，Jan． 1903.

Gay, Monogr. loc. Comj.-F. (iay, Essai dune monographie locale des Conjugées. (Thères presentée et soutenue publiquement à l'Fcole superieure de Pharmacie de Montpellier. Febr. 1884.)
Gay, Note Comjornmidi de Francr-F. Gay, Note sur les Conjugées du midi de la France. Bull. d. l. Soc. botanique de France, xxxi, 1884.
Gay, Alg. Bagn. Bigom.-F. Gay, Alguen de Bagnères-deBigorre. Bull. Foc. botan. France, xxxiii, 1891.
Gipun. Derm. u. Pediest. ̈̈sterpeich. Moore--A. (immow, Die Demmidiaceen und Pediastreen einiger österreichischen Moore. Terhand. d. zool. bot. Ges. in Wien, 1855.
(irun. Diat. u. Desm. In.w. Bumk.-A. Grunow, Ueber die ron Herrn Gerstemberger in Rahenhorst's Decaden ansegerbenen Süsswasser-Diatomaceen mind Demmidiaceen ron der Insel Banka. Beiträge zu näheren Kentnise nud Terbreitung der Algen. Herausgegeben von L. Rabenhorst. Heft 2 , Leipzig, 1865.
Gutw. Tralu. d. Prioritït.-R. (iutwinski, Zur Wahrung der Priorität. Botanisches Centralblatt. xliii, 1890.
Gutw. Flor. Clon. Okolir Larow-R. Gutwinski, Flora Glonów Okolic Lwowa. Spraw. Kom. fizyjogr. Akad. Umiej. Krakow. xxrii, 1891.
Gotw. F'lor. glonore Gelic.-R. (iutwinski, Materyaly do Florẹ glonów (Galicri. Spraw. Kom. fizyjogr. Akad. Uniej. Krakow. xuviii, 1892.
Gutw. Flor. Alom. Okolie T'arnopola--R. Gutwinski, Flora Gkonów Okolic Tarnopola. Spraw. Kom. fizyjogr. Akad. Umiej. Kiakow. xxx, 1894.
Gutw. Nagi. dowel. Bowni Herregorm. lachgam.-R. Gutwinski, Onagjenim dosele 11 Bosni i Hercegorini halugama. Glasn. Zemaljs. Muz. Bom. Hercegovin. viii, 1896.
Getw. Nom. Alg. Nor--R. Gutwinski, De nommullis algis noris vel minus cognitis. Rozpraw IV ydz. matem.-przyr. Akad. Umiej. Krakow. xxxiii, 1896.
 Glonów zebranych w okolicy Wadowic-Makowa, Spraw. Kom. fizyjog. Akad. Umiej. Ǩakow. xxxii, 1897.
Gotw. Karmslarl Algen.-R. Gutwinski, Ueber die in der Umgebung von Karlshad iu Juli 1898 gesammelten Algen. Botan. Centralhlatt. lxxviii, no. 14, 1899.

GUTW: Aly. Ins. Jara-R. (intwinski, De Algis a M. Raciborski anno 1899 in Insula Java collectis. Bull. Acad. des Scriences Cracovie. Nor. 1902.
GuTw. Aly. S'atiopli. okolic. Trovencti-h (intwinski, O Algama sakupljenima u okolici 'Travnickoj. Glasn. Zemalje. Muz. Bosn. Hercegovin. xiv, 1902.
GuTw. Al!., pracip. Diatom., Avin rential. "tque in Chine collect.-R. (intwinski, De Aloris, prateipue Diatomaceis, a J. Holderer anno 1898 in Asia centrali atque in Chine collectis. Bull. Acad. des šiences Cracovie. Arril, 190:3.

Hansa. in Otster\%. loot. Znitsche- - Hamsgirg, Beitrage zur Kenntnis der Bergalgenflora Böhmerns. Oesterr. bot Keitschr. xxxvii, 1887.
Hansg. Prode. Algentt. Bälem.-A. Hansgiro, Prodromus der Algentora von Böhmen Prag. Theil Fist. 1888; Zweit. Theil 189.2. Archiv. der naturwiss. Landesdurchf. von B̈̈hmen, vi, no. 6 ; viii, no. t.
Hass. Brit. Freshue. Aly.-A. H. Hassall, A History of the British Freshwater Algie, vols. I and II. London, 184\%.
Hast. ill Amer. Month. Micr. Jomru.-W. N. Hasting's, New Desmids from New Hampshire. Amer. Month. Micr. Jourll. xiii, 189.
Havptal. Zellmembi. थ. Hïllyallerte Desm.-P. Hauptfleisch, Zellmembran und Hüllgallerte der Desmidiaceen In-angural-Dissert. Greifswald 1888. Mittlı. a. d. Naturwis. Ter. f. Neuvor-pommern u. Rügen. Jahrg. :20.
Henerl, Desm. alp.-A. Heimerl, Desmidiacese alpinae. Verhandl. der. k. k. zool.-botan. Gesellschaft Wien, shi, 1891.

Hieronvacts, Cony. in Engl. Pflanvenur. Ost.-Aficita.- (G. Hieronrmus, "Conjugate" in Engler's Die l'tanzenwelt Ost.-Afrikas mod der Nachbargebeite. Theil C'. Berlin, 1895.

Istranffi, Diag. mate. Alg. nor. Humgar.-Gi. Istranfti (Schaarselhmidt), Diagnoses prave Algarum novarum in Hungaria observatarum, ete. Notarisia, no. $5,1857$.
Itzigs. apued Braum in Bot. Zeit.-A. Braun, Beobachtungen des Dr. Itzigsohn in Neu-Damm iiber verschiedene mikroscopische Algen. Botanische Zeitung, Jan. 1856.

Jacobs. Desm. Danem.-.J. P. Jacobsen, Aperçu systematique et critique sur les Desmidiacées du Danemark. Botanisk Tidsskrift, viii, $1874-75$.
Johnson, Specirs of Micrasterion.-L. N. Johnson, On some -pecies of Micrasterias. Botan. (iazette, xix, 1894.
Johnson, Piare Desm. C.S., I.-L. N. Johnson, Some New and Rare Desmids of the United States. Bull. Torrey Bot. Club. xxi, no. 7, July, 1894.
Johnson, Rare Desm. C.S. II.-L. N. Johmson, Some New and Rare Desmids of the United States II. Bull. 'Torrey Bot. ('lub) xxii, uo. 7, July, 189\%.
Josh. Notes Brit. Desm. I.- IV. Joshua, Notes on British Desmidiere. Jourı. Bot. xx, Oct. 1882.
Josh. Notes Brit. Desm. II.-W. Joshaa, Notes on British Desmidieæ-no. 2. Journ. Bot. xxi, Oct. 188:3.
Josh. Neqe and Rare I)esm.-W. Joshua, On some new and rare Desmidieæ-no. 3. Journ. Bot. xxiii, Febr. 1885.
Josh. Burmese Desm.-W. Joshua, Burmese Desmidiea, with descriptions of new species occurring in the neighbourhood of Rangoon. Journ. Linn. Soc. bot. xxi, 1886.

Kinchn. Alg. Schles.-O. Kirchner, Kryptoganen-flora von Schlewien. Zweit. Bd., Erste Hälfte. Algen. Brewlau, 1878.
 Algentlora ron Würtemburg. Jahreshefte d. Tereins f. vaterl. Naturkunde in Würtemburg, Jahrg. 36. Stuttgart, 1880.

Kirchn. Flon. Plycolog. Benacemsin.-O. Kirchner, Florula Plyeologrica Benacensis. Civic. Mus. di Rovereto publicaz. xxxvi, 1899.
Klebs, Desm. Ostpreusw.-G. Klebs, Ueber die Formen ciniger Gattungen der Desmidiaceen Ostprensens. Schrift. d. physik,-rekonom. Gesellsch. zu Königsberg', V, : ㄹ, 1879.
Kuntze, Revis. (ien Plant.-O. Kuntze, Revisio generum plantarum vascularium omnium atque cellularium multarum secundum leges nomenclaturae internationales etc. Pars I et II. W iirzhurg, 1891.
Küqz Syn. Diut.-F. 'T. Kützing, Synopsis Diatomacearum oder Versuch einer systematischen Zusammenstellung der Diatomeen. Halle, 18:4. [Limaa, viii, 18:3:3.]
Kїт\%. Phyc. yfrm.-F. T'. Kützing, Phyeologia germanica, d. i. Dentschlands Algen in bündigen Beschreibungen. Nordhansen, 184.

K ̈̈тz. T'ab. phycolog.-F'. 'T'. Kützing, 'Tabula phyeologica oder Alhbildungen der Tange. vol. I, Nordhansen, 1847.
Kür\%. in liotan. Zeitıng.-F. 'T. Kiitzing, Diagnosen and Bemerkmgen \%n nenen oder Kritisehen Algen. Botanische Zeitung, 1847, no. 13.
 1849.
 algfora. Öfvers. af K. Vet.-Akanl. Föhr. 188:3, No. こ.
Lagerb. Bidr. Amerik: Desm.-ft.-(i. Lagerheim, Bidrag. till Amerikas Desmidiéflora. Öfvers. af K. Vet.-Akad. Förh. 188.5, 1107.

Latierh. Algol. Bidr.-(i. Lagerhein, Algologiska Bidrag. I Contributions algologigne à la flore de la Suède. Botaniska Notiser, 1886.
Lagerh. Krit. Bemerk. Desm.-(i. Lagerhem, Kritische Bemerkungen an einigen in den letaten Jahren beschriehenen Arten und Varietaten von Desmidiaceen. Öfvers. af K S'et.-Akad. Förlı. 1887, no. S.
Lagerh. Desm. alr: Bemgal.- (i. Lagerheim, Ueher Desmidiaceen ans Bengalen nebst Bemerkungen iuber die Geographische Verhreitung der Desmidiaceen in Asien. Bih. till K. S'v. Vet.-Akad. Handl. xiii, Afd. III, no. 9, 1888.

Lagerh. Contrit) aly. Echarl.-(i. Lagerheim, Contribuciones a la Flora algologica del Eeuador. Anales de la Universidad de Quito. iv, 1890.
Lagerh. Cllor. Aheswin. I. Kordyfan.-(i, Lagerheim, Chloroplyceen aus thessinien und Kordofan. La Noova Notarisia. ser. f, 189:3.
 phyrin, emer Conjugatenfarlstoff. Vidensk.-sels. skrift. I. math.-nat. kl. 1895.

Lematre, Listo Desm. Vonges-Ad. Lemaire, Liste des Desmidiées, observées dans les Youges jusqu'en 188.2 précedée d'une introduction contenant desindications sur la récolte et la préparation de ces Algues. Bull. Soc. d. Siciences Nancy. ser. 2, vi, 188:3.
Lema. in Klebahn S. Lemm. Vorabeit. Flor. Plön. Sompebeits. - Vorarbeiten zn einer Flora des Plöner reengelseits. 2. Verzeichmiss der in der Umgebend ron Ploen gecammelten Algen. Förschungrb. Biol. Stat. Plön. Heft :3, 189\%.

Lemar．Algent．Rirsengh hiopes：－E．Lemmermann，Kur Algen－ flora des Riesengebirges．Forschungsberichte ans der Biol．Stat．zu l’ön，Th．＇V＇，1896．
Lemar．Beitray Algentt．Schles．－E．Lemmermam，Beitrag zur Algenfl．Von schlexien．Abhand．d．Naturw．Ver，z． Bremen，xir，Heft $2,1897$.
Lemar．Britr．Keuntnisw Planlitomaly．－E．Lemmermam，Beit－ raige zur Kemntniss der Planktonalgen．Botan．（＇entral－ blatt．lixvi，1895．
Lema．Ploulitonalyen－E．Lemmermann，Planktonalgen；Erge－ lonise einer Reise nach dem Pacific．Abh．Nat．Ver． Brem．，xri，Heft 2 ， 1899.
Lema．Plogtoplankiton sichesis．Treirhe－EE．Lemmermann，Das Phỵoplanktom sächsischer＇Teiche．Plöner Forschungs－ berichten，Teil 7，1899．
Lemar．Beitr．a．Kenntn．der Plonktonaly．－E．Lemmermann， Beiträge zur Kemotniss der Planktonalgen．Berichteder Dentech．Botan．Gesellsch．xviii， 1900 ．
Lewin，Span．Sürswaseraly．－M．Lewin，Ueber spanische Süswaseralgen．Bilı．till K．Sr．Tet．－Akad．Handl．xir， Aft．111，no．1， 1858.
Luxi．Desm．Suec－Lundell，De Demidiaceis qua in Suecia insenter smit observationes critica．Nova Acta reg．soce． scient．U＇pala，ser．：＇，viii， 1871.
Lütкем．Desm．Attersees．－Luitkemüller，Desmidiaceen ans der Comgebmg des Attersees in Oherösterreich．Verhand． der k．k．zool．－l）ot．Geesellsch．Wien，1892．
Lüткем．（rutt．Spirotan－Lütkemüller，Ueber die Gattung Sipirotrnia Préb．Öterreich．botan．Zeitschrift．1895，nos． 1 and 2 ．
Lërtкem．Desm．Central China．－．J．Lütkemüller，Desmidiaceen ans den Ningpo－monntains in C＇entralchina．Ann．des． k．k．Naturlist．Hofmus．Wien．xr，Heft 2， 1900.
Lötк䒑．m．Dtsm．Millstittersers．－Luitkemüller，Desmidiaceen ans der Ungehmg des Millstïttersees in Kärnten．Ver－ handl．der k．k．zool－－hotan．Gesellsch．Wien． 1 （50）， 1900.
1⿺尢̈ткв．Zellmembr．Desmit．－Lä̈tkemïller，Die Zellmembran der Desmidiaceen．Beiträge znr Biologie der PHanzen， heransegeben ron Dr．Ferdinand Cohn，viii，190…
Lїткем．Gatt．Spirotarn．II．－J．Lätkemüller，Ueber die Gattung Spirotenia．II．Beschreibmog nener Arten und Bemerkmgen iiber bekannte．Oesterr．botan．＇Zeitschr． 190：3，no． 10.

Marquand．－The Desmids and Diatoms of West Cormwall． Trans．Penzance Nat．Hist．ant Antiq．Soc．，i，1880－3， and 188：3－1．
Mask．N．Zenl．Desm．－IV．M．Maskell，Contributions towards a list of the New Zealand Desmidiere．Trans．N．Zeal． Institute，xiii， 1881.
Mask．N．Zeal．Dexm．Add．－W．M．Maskell．On the New Zealand besmidiere．Additions to Catalogue and Notes on rarious species．Trans．N．Zeal．Institute，at，188：3．
Mask．Note Mire，Amerirana．－IV．M．Maskell，Note on Miera－ sterias Ameriond Ralfs and its varieties．Jom＇n．Roy． Micr．Soc． 1888.
Mask．F＇urther Notos N．Zeal．Desm．－IV．M．Maskell，Further Notes on the Dermidiere of New Kealand，etc．＇Trans．N． Zeal．Jnstit．xxi， 1888 （1889）．
Mexegh．Momegr．Nowtoch．－（r．Meneghini，Monographia Nos－ tochinearum italicarum addito specimine de Rivulariis， 184．2．Accad．1．delle fic．d．Torino．Class mat．e fis． 2 ser．r， $18+3$.
Menegh．Symups．Desm．－（i．Meneghini，Fyopsis Desmidi－ armon hensque cognitarm．Limma．1840，p．201－040．
Mö̈rits，Anstral．Süssurasseraly．－M．Möbins，Anstraliche Siiswasseralgen．Flora，1s）：Heft：
 phesiolugisch und systematisel bearbeitet．viii，Zurich， 1849.

Nitzsch，Beitr．aur Infusor．veder Natmprashir．der Zerlonrien and Bazillarien．－Nene Scluriften der naturforschenden Gesellschaft zu Halle．Dritter Bd．Halle， 1817.
Nordst．Dewm．Brasil－O．Nordstedt，Part i， 18 Fim．Des－ midiacear，in E．Warming Symbola ad Floram Brasilixe centralis cognoscendam．Vidensk．Medd．f．d．naturl． Foren．i K jöbenharu 1869，nos．14－1．5（1870）．
Nordst．Desm．Spetsh，－O．Nordstedt，Desmidiere ex insulis Spetsbergensibus et Beeren Kiland in expeditionibus annorum 1868 et 1870 snecanis collecta．Öfrers af K． Yet．－Akad．Förh．187－2，no． 6.
Nordst．Norges Desm．O．Nordsterlt，Bidrag till Kännedomen om sydigare Norges Desmidicer．Acta Unir．Land．ix， 1873.

Nordst．Desm．Areter．－O．Nordstedt，Desmidiear arctore． Öfrers af K．Vet．－Acad．Förlı．187．），no． 6.

Nordst. Desm. Ital.- O. Nordstedt, "Demmidiea" in Nordstedt \& Wittrock, Desmidieæ et (Edogonieæ in Italia et TYrolia collecte. Öfvers. af K. Vet.-Akad. Förh. 1876, no. 6.
Norustr Alg. Bravil.-O. Nordstedt, Nomullae algae aqua dulcis brasiliemsis. Öfverr. af K. Vet.-Akad. Förlı. 1877, no. B.
Nordss. Alg. aq. dule. et Char. Sandric.-(). Nordstedt, De Algis aquet dulcis et de Characeis ex insulix Sandviscensibus a N'v. Bergeren 187.) reportatis. Lund. 1875.
Nordst. Aly. et Char. I.- O. Nordstedt, De Algis et C'haraceis. 1. De Algis nomullis, pracipne Desmidicis, inter UtricuLarias Musei Lugduno-Batavi. Acta Univers. Land. xvi, 1880.

Nordst. Desm. (frönland.-O). Nordstedt, Desmidieer samlade af s. Berggren under Nordenskiöldaka expeditionen till Grouland 1870. Öfvers. af K. Vet.-Akad. Förh. 188.9, no.3.
Nordss. in Joum. Pat.-O. Nordstedt, The Figures in Cooke's "British Dexmids." Journ. Bot. xxv, Dec. 1887.
Nordst. in Botan. Notix.-O. Nordstedt, Utdrag ur ett arbete öfver de af Dr. S. Berggren på Nya Seland och i Australien samlade sötrattensalgerna. Botaniska Notiser, 1887.
Nordst. Boruh. Desm.- O. Nordstedt, Demidicer från Bornholn. Videnskab. Meddel. f. d. naturh. Foren. Kjöbenhavm. 1888.
Nords't. F'reshu. Aly. N. Zeal.-O. Nordstedt, Fresh-water Alga, collected by Dr. 心. Bergoren in New Zcaland and Australia. Kongl. šv. Vet.-Akad. Handl. xiii, no. 8, 1888.
Nordst. in Hecheigia- O. Nordstedt, Die Behandlnng einiger Siuswaseralgen, besonders der Desmidiaceen, in O. Kuntze's Revisio generum plantarum. Hedwigia, 189:3, xxaii, Heft :3.
Normst. Indee Desmid.-O. Nordstedt, Index Desmidiacearmm ritationibus locupletissimus atque Bibliographia. Lund. 1896.

Ostexfelb, Stul. Phyfoplankiton I.- (. H. Otenfeld, Studies on Phytoplankton I. Botanisk Thdskrift xxv, Heft \because - 1903.

Perty, Klkinst. Lebensf.-M. Perty, Kur Kemeniss kleinster Lebensformen nau Bau, Funktionen, Systematik, mit Specialserzeichniss der in der Schweiz beobachtetenen. Berrl, 189).

Pieters, Plents of Wratern Lake Erip.-A. J. Pieter's, The Plants of Western Lake Eric. Bull. U. S. Fish Commission, 1901.

Rabexh. Aly.-Rabenhorst, Die Algen Sachsens. (coll. exsicc.) Dresden, 18.50-79.
Rabenh. Krgpt. F'l. Suchw-Rabenhorst, Kryptogamenflora von Sachsen, der Ober-hausitz, 'Thuringen mud Nordböhmen, mit Bervïchsichtigung der Benachbarten Länder. Leipzig, 1863.
Rabexh. F'lor. E'mop. Alg.-Rabenhorst, Flora Europra Algarum, aqua dulcis et submarinæ. Lipsiz, 1868, nect. iii.
Racib. Nom. Desm. Polon.-M. Raciborski, De nomullis Desmidiaceis notis rel minus cognitis, quat in Polonia inventa smit. Pamiectnik Wydz. Akad. Umiej. w Krakow. x, 158.).
Racib. Desm. Nore-—11. Raciborski, Desmidyje Nowe. Pamiẹtnik. Wydz. matem.-przs. Akad. Umiej. Krakow. xvii, 1889.
Racrb. Desmityjáa Ciastomia-M. Raciborski, Demidya zebrane przez Dr. E. Ciastonia, w podrózy na okoloriemi. Roxpraw Wydz. matem.-przy. Akad. Umiej. Krakow. xxii, 1892.
Racib. Desm. Tupakoomus.-M. Raciborski, Die DesmidicenHora des Tapakoomasees. Flora, lxxxi, 159.5.
Ralfs, Brit. Desm.-J. Ralfs, The British Desmidiere. London, 1848.

Rennsch, Spec. Gen. Alg.-P. Reinsch, De speciebus generibusque nomullis novis ex Algarum et Fungorm classe. Francofurti ad Moenum. 1867.
Reirsch, Alyent. Frank:-P. Reinsch, Die Algenflora des mittleren 'Theiles ron Franken. Abhandl. d. Naturhistor. (Gesellsch. zn Nürnberg, iii, Heft 2, 1867 (1566).
Reinsch, Contrill. Alg. et Fung.-P. Reinsch, Contributiones ad Algalogian et Fungalogiam. i, Lipsiæ, 187..
Rennsch, Aly. Ins. Kerguelen.-P. Reinsch, Species ac (ienera nova Algarum aque dulcis, que sunt inventa in speciminibus in expeditione Vener. transit. hieme 1874-7.5 in Insula Kergnelensi a clar. Eaton collectis. Journ. Linn. Soc. bot. xr, 1876.
Reinsch, Aly. Prom. Bon. Spei.-P. Reinseh, Contributiones ad Horam Algarum aque dulcis Promontorii Bone Spei. Journ. Linn. Soc. bot. xvi, 1877.

Richter, in Hertuigia.-P. Richter, Plemrotanum nobile nov. sp. Hedwigia, ix, 186.).
Roy, Desm. Perthshirp.-J. Roy, Contributions to the Desmid Flora of Perthshire. Scottish Naturalist, April, 1877.
Roy in l'torn of Leirestershire.-.J. Roy, The Desmidiea of the comnty of leeicester, in 'Flora of Leicestershire.' Leicester Lit. and Philosoph. Soc. London, 1886.
Ror, Desm. Alford District.-J. Roy, The Desmids of the Alford District. S'cottish Naturalist, x, Jan. 1890.
Roy, Fieshur. Aly. Enhbidye Lake and Vicin.-J. Roy, Freshwater Algre of Enbridge Lake and Vicinity, Hampshire. Journ. Bot. xxriii, Nor. 1890.
Roy \& Bies. Jap. Desm.-.J. Roy and J. P. Bissett, Notes on Japanese Desmids. Journ. Bot. xxv, July and Aug. 1886.
Roy \& Biss. Scott. Desm.-J. Roy and J. P. Bissett, On Scottish Desmidiex. Ann. Scott. Nat. Hist. 189:-94.

Schafrschm. Magyar. Desm.-J. Schaarschmilt, Tamulmányok a Magyarhoni Desmidiaceákool. Magrar. 'Tudom. Akad. Math. s. Természettud. Közlemények. xviii, 1882, Budapest.
Schaarschm. Afghan. Aly.-J. Schaarschmidt, Notes on Afghanistan Algæ. Journ. Limn. Soc. bot. xxi, 1884.
Schmade, Beitr. Algenft. Schuarzuald. u. Rheimb.-W. Schmidle, Beiträge zur Algenflora des Sichwarzwaldes und der Pheinebene. Berichte der Naturforschenden Gesellschaft zu Freiburg i. B. vii, Heft 1, 1893.
S'chmide, Aly. Geh. Oherheins.-W. Schmidie, Algen ans dem Gebiete des Oberrheins. Bericht. Deutsch. Botan. Gesellsch. xi, Heft 10, 189:3.
Schmide, Variabil. Cormar:-W. Schmidle, Ueber die individuclle Variabilität einer Cosmarienspecies. Hedwigia, xxxii, Heft 3, 1893.
Schmide, Chlorophy.-Fll. Torfotiche Vimheim.-W. Schmidle, Aus der Chlorophyceen-Flora der Torfotiche zu Virnheim. Flora order allg. Bot. Zeitung. 1894, Heft 1.
Sohmide, Aly. Bern. Alp.-IV. Schmidle, Einzellige Algen aus den Berner Alpen. Hedwigia, xxiii, 1894.
Schmidee, Weit. Beitr. Algenfl. Rheineb. u. S.fıearzeald.-W. Schmidle, Weitere Beiträge zur Algenflora der Rheinebene und des Schwarzwaldes. Hedwigia, xxxir, Heft 2, 189.).

Sohmime，Beitr．alp．Aly．－Wr．Schmidle，Beiträge zur alpinen Algenflora．Österr．bot．Zeitschr．4．）Jahrg．1e9．5．
Sohmide，Alg．alis Smmation－W．Schmidle，Einige Algen ans sumatra．Hedwigi：xxxir，1895．
 algen in ‘Die Flora der Samoa－Inscln．＇Engler＇s Botan． Jahıtü̈ch．xxiii， 1896.
Sichminle，Beitr．Algent．des Schuamorald．n．Obermeins TT． －IV．Schmidle，Beiträge zur Algenflora des Schwarz－ waldes und des Oberrheins．Hedwigia，xxxri， 1897.
Schmide，Lappmark Silusuraswiolym．－IV．Schmidle，Ueber einige ron Knut Bohlin in l＇ite Lappmark und Vester－ botten gesammelte süswaseralgen．Bihang till K．Sr． Vet．－Akad．Handl．xxiv，Afd．III，no．8， 1898.
Sohminee，Ost－Afirika Desmint．－WT．Nchmidle，Die von Pro－ fessor Dr．Volkens und Dr．Stuhlmam in Ost－Afrika gesammelten Desmidiaceen．Engl．Botan．Jahrlü̈ch． xxti， 1893.
Schmide，Ostind．Sïnsuraseraly－IV．Schmidle，Ueber einige von Professor Hansgirg in Ostindien gesammelte Süss－ wasseralgen．Hedwigia，xxxix， 1900.
Schmide in Simmers Krophtoygmentl．der Kienzechigr．Kärnten． －Hans Simmer，Vierter Bericht über die Kryptogramen－ flora der Kreuzeckgruppe in Kärnten．［Algæ by W． Schmidle．］Flor．Allgem．Botan．Zeitschrift，1901．
Sohmidle，Algen ans Brasil．－－W．Schmidle，Algen aus Brasilien．Hedwigia，xl， 1901.
Schmidele，Beitr．Algenfl．Afrik．－W．Schmidle，Beiträge zur Algenflora Afrikas．Engler＇s Botann．Jahrbüch．xxx， 1901.
Schmidee，Algen Carolin．－W．Schmidle，Einige Algen welehe Prof．Volkens anf den Carolinen gesammelt hat．Hedwigia， xl， 1901.
Scemide，Chloro－u．Cyanophyceenplankitom．Nyasa mud anderer． innerafirik．Seen．－W．Schmidle，Das Chloro－und CYano－ phyceenplankton des Nyassa und einiger anderer imnerafrikanischer Seen．Engler＇s Botan．Jahrbüch． xxxiii，Heft 1， 1902.
Schmidel，Aly．aus Nyassa－See．－WT．Schmidle，Algen，insbeson－ dere solche des Plankton，aus dem Nyassa－See und seiner Umgebnng，gesammelt ron Dr．Fülleborn．Botan． Ergebn．der Nyassa－See－und Kinga－Gebirgs－Expedition， in Engl．Botan．Jahrb．xxxii， 1903.
 Grundlagen emer Algenflora der Lünelurger Heide. Hilderhein, 190:3.
Schröder, Aly. Terwhehsteiche Schles. Fischapeic. Trachenbery. -B. Schröder, Die Algen der Versuchsteiche Sichles. Fischereivereins zu 'Trachenberg. Forschungsberichten der Plöner biol. Station, Heft 5, 1897.
Schrödfr, Beitr. Algen Riesengebirges.-B. Schröder, Nene Beitrage zur Keuntnis der Algen des Riesengebirges. Forschungsberichten Biol. Stat. zu Plön. vi, 1898.
Sohröder, Planktomptl. ans Seen rom Wistpreuss.-Brumo Schröder, Planktonpflanzen ans Seen von Westpreussen. Berichte der Deutsch. Botan. Gesellsch. Bd. xrii, 1499.
Schröder, Cosmoclarlium saxonicum De Bary.-B. Schröder, Cosmocladiumsaxonicum De Barr. Berieht. der Deutsch. Botan. Gesellsch. xviii, Heft 1, 1900.
S'hröder, (rallertlildun! Alg.-B. Schröler, Untersuchungen über (Gallerthildung der Algen. Verhandl. des Naturhist.Med. Vereins zu Heidelberg. vii, Heft 2, 1902.

Turn. Aly. Strensall Common.--IV. B. Turner, The Algre of Strensall Common. Naturalist, viii, Dec. 1883.
Turx. Nelr and Rare Desm.-WI. B. Thrner, On some new and rare Desmids. Journ. Roy. Micr. Soc. 188.).
Turn. Notes freshu. Aly.-IV. B. Tumer, Notes ou lireshwater Alge with Descriptions of New Species. Naturalist, xii, Fel. 1886.
Trens. in Trans. Leeds Nat Chub.-W. B. Turner, Algat, in Contrib, to a Fama et Flora of W. Yorks. Trans. Leeds Nat. Club, i, 1886.
Torn. Fientur. Aly. E. India-WI. B. Tumer, The Freshwater Algae (principally Desmidiex) of East India. K. Srenska Vet.-Akad. Hindl. xxy, no. 5, Stockhohn (1592) 1893.

Turn. Desm. Notes- - II. B. 'Jurner, Desuid Notes. Naturalist, xviii, Nor. 1893.
T'ure. Apercu organograph.--P. J. F. 'Turpin, Aperc̣ı organographique sur le nombre deux. Mémoires du Mus. d'hist. nat. Paris, 1828.

Whllich, Desm. Lorr. Bengal.-G. C. Wallich, Desmidiacere of lower Bengal. Amu. Mag. Nat. Hist. ser. 3, v, 1860.

Tuppen West, Rem. Diat. Desm.-'luffen West, Remarks on some Diatomacea new or imperfectly described and a new Desmid. Trans. Roy. Micr. Soc. viii, 1860.
West, Desm. Maime.—W. West, The Desmids of Maine. Jonrn. Bot. xxvi, Nor. 1888.
West, Add. Alg. W. Somis.-W. West, Additions to the Alga of West Y̌orkshire. Naturalist, xir, March and April, 1889.

West, Dosm. Muss.-W. West, List of Desmids from Massachnsetts, U.S.A. Journ. Roy. Micr. Soc. 1889.
West, Freshur. Alg. Maine.-WT. West, The Freshwater Alga of Maine. Journ. Bot. xxvii, July, 1889.
$W_{\text {est, }}$ Alg. N. Yonh.-W. West, The Freshwater Aiga of North Yorkshire. Journ. Bot. xxrii, Oct. 1889.
West, Alg. N. Wales.-W. West, A Contribntion to the Freshwater Algre of North Wales. Journ. Roy. Micr. Soc. .June, 1890.
West, Freshur. Aly. Maine II.-W. West, The Freshwater Agax of Maine. Joum. Bot. xxix, Dec. 1891.
West, Add. Alg. W. Yorks. II.-W. West, Additions to the Freshwater Algae of West Vorkshire. Natmalist, xvi, Ang. 1891.
Westr, Danish Alyr.-W. West, Notes on Danish Alga. La Nuova Notarisia. ser. 2, 1891.
West, Aly. W. Iveland.-W. West, A Contribntion to the Freshwater Algae of West Ireland. Journ. Limn. Soc. bot. xxix, 189?.
West, Alg. aq. dulc. Iusitan.-W. West, Nomnullat alga aque dulcis Lusitanice. La Notarisia, vii, 1892.
West, Alg. Eng. Lake Distr.-W. West, Algaa of the English Lake District. Journ. Roy. Micr. Soc. 1892.
West \& (G. S. Wes'r, New Brit. Freshu. Aly.-W. West and (r. S. West, New British Freshwater Algæ. Journ. Roy. Нicr. Soc. 1894.
West \& G. S. West, Aly. Maday.-W. West and G. S. West, A Contribution to our Knowledge of the Freshwater Alga of Madagascar. 'Trams, Limn. Soc. bot. ser. 2, v, part 2, 1895.
West \& (t. S. Westr, Rec. pull. Desm.-W. West and G. S. West, Some recently published Desmidieæ. Journ. Bot. xxxiii, March, 1895.

Westi \& (i. S. West, New and Iut. Freshur. Aly.-W. West and $(\dot{1} . \mathrm{S}$. West, On some New and Interesting Freshwater Alga. Journ. Roy. Nicr. Soc. 1896.
West \& G. S. West, Some N. Amer. Desm.- W. West and (i.S. West, On some North American Desmillice. Trans. Linn. Soc. hot. ser. 2, v, 1896.
West \& G. S. West, Welu. Afie. Freshur. Aly.-.W. West and G. S. West, Welwitsch's African Freshwater Alga. Journ. Bot. xxxr, Jan.- Aug. 1897.
West \& G. S. Westr, Desm. Singapore. - W. West and G. S. West, Desmids from Singapore. Journ. Linn. Soc. bot. xxxiii, 1897.
West \& G. S. West, Alg. S. England.-W. West and G. S. West, A Contribution to the Freshwater Alga of the South of England. Journ. Roy. Micr. Soc. 1897.
West \& G. S. Wes'r', Some Desm. U. S.-W. West and Gi.S. Wrest, On some Desmids of the United S゙tates. Jomrn. limn. Soc. bot. xxxiii, 1898.
Wes'r \& G. S. West, Ols. on Conj.-W. West and G. S. West, Observations on the Conjugate. Ann. Bot. xii, 1898.
West \& G. S. West, Notes Aly. I-TI.-W. West and G. S. West, Notes on Freshwater Alga. I. Journ. Bot. xxxvi, Sept. 1898; II. Journ. Bot. xxxriii, Aug. 1900 ; III. Journ. Bot. xli, Febr. and March, 1903.
West \& G. S. West, Furth. Contrib. Freshu. Aly. IV. Indies. -W. West and G. S. West, A further Contribntion to the Freshwater Algre of the W'est Indies. Journ. Limn. Soc. bot. xxxiv, 1899.
West \& G. S. Went Freshu. Chlorophy. Koh Chang.- W. West and G. S. West, in Johs. Schmidt's Flora of Koh C'hang', Gulf of Siam, part iv. Butanisk Tidsskrift, xxiv, 1901.
West \& G. S. West, Alya-tl. Yortis.-W. West and (i. S. West, 'The Alga-flora of Yorkshire, a complete account of the known Freshwater Alge of the comnty, with many notes on their affinities and distribution. Bot. 'Trans. Yorks. Nat. Union, v, 1901-2.
Westi \& G. K. West, Aly. N. Irelaud.-W. West and (i. S. Wrest, A Contribution to the Freshwater Algae of the North of Ireland. Trans. Roy. Irish Acad. xxxii, section B, part 1, 1902.
West \& (i. S. West, Frostur. Aly. Ceylom.-W. Wrest and G. S. West, A Contribution to the Freshwater Alga of C'eylon. 'Trans. Limn. Soc. bot. ser. -2, vi, part 3, 1902.

West \& Ci. S. West, scott. Freshu. Plankton, I.-W. Wrest and (i. S. West, Scottish Freshwater Plankton.-No. 1. Journ. Linn. Soc. bot. xxxr, 190:3.
G. S. West, Alya-fl. Cambr--(i. S. West, The Alga-flora of Cambridgeshire. Journ. Bot. xxxvii, Feb.—.July, 1899.
G. S. Westr T'ariation Desm.-G. S. Wrest, On Tariation in the Desmidiese, and its Bearings on their Classification. Journ. Limn. Foc. loot. xxxiv, 1899.
G. S. West.-A 'Treatise on the British Freshwater Algae. Cambriclge (Univ. Press), 190t.
Wille, Ferwti. Aly. Not. Semlj.-Wille, Ferskrandsalger fra Noraja Semlja samlede af Dr. F. Kjellman paa Nordenskiölds Expedition 1875. Öfvers. K. Yet.-Akad. Förlı. 1879, no. 5.
Wille, Norges Ferstiv. Alg.-Wille, Bidrag til Kundskaben on Norges Ferskrandsalger'. C'hristiania Tidensk.-selsk. Forhandl. 1880, no. 11.
Wille, Sydamerik: Algft.-Wille, Bidrag til Sydamerikas Algflora. Bilang till K. Sr. Yet.-Akad. Handl. viii, no. 18, 1884.
Wille, in Naturl. Pflanzenfam.-N. Wille, Desmidiaceæ in Engler \& Prantl's Die naturlichen Pflanzenfamilien, I, 2, 1890.

Wille, Farö̈ernes Fersliv. alg.-N. Wille, On Faröernes Ferskrandsalger og om Ferskvandsalgernes Spredningsmadader. Botan. Notiser. 1897.
Winle, Alyolog. Notiz. VTL.-N. Wille, Algologisclue Notizen TTI. Zur Verbreitung der Süsswasseralgen im südlichen Norwegen. Nyt Magazin f. Naturvidenskab. xxxix, Heft 1, 1901.
Wills in Milland Naturalist.-A. W. Wills, List of Desmidies found in Sutton Park, Warwickshire. Midland Naturalist, iii, 1880.
Wills in Midland Naturalist.-A. W. Wills, On the Desmidica of North TVales. Midland Naturalist, iv, 1881.

Wittr. Slandinac. Desm.-VT. B. Wittrock, Anteckningar om Skandinaviens Desmidiaceer. Nova Acta Societ. Upsala, ser. 3, vii, 1869.
Wrtт尺. Gotl. Öl. sëte. Aly.-T. B. Wittrock, Om Gotlands och Ölands sötrattensalger. Bih. till K. Tet.-Akad. Handl. i, no. 1, 1872.

Wittr. \& Nordst. Alg. Eesic:-Y' Wittrock and O. Nordstedt, Algae aquar dulcis exsiccate. Fasc. $2 l$. Descript system.
Wittr., Nordst., \& Lagerif. Alg. Fersic.-V. Wittrock, O. Nordstedt, and (i. Lagerheim, Alga aquae dulcis exsiccatar. Fascic. 8.). Descript. system.
Wolle, in Bull. Tonr. But. Club, 1882, pp. 25-30, t. 13 .
Wolle, Desm. U. S.-F. Wolle, Desmids of the United States and list of American Pediastrmms. Bethlehem, l'a. 1884.
Wolde, Freshuc. Alg. U.S.-F. Wolle, Freshwater Algie of the United States (exclusive of the Diatomaceie), vols. i and ii. Bethlehem, Pa. 1887.

Wood, Freshut. Aly. N. Amer:-H. (. Woorl, A Contribution to the History of the Freshwater Mgor of N. America. Smithson. Contrib. Knowl. xix, no. י̈41, 1574.

BRITISH DESMIDIACEIE.

INTRODUCTION.

Desmins are unicellular plants of extremely varied form. Most of them are zygomorphically symmetrical in three different planes at right angles to each other. They are nearly always constricted in the middle, the constriction varying from a slight narrowing in the central portion of the cell to a relatively deep incision. The portion on each side of the constriction is termed a semicell, and that portion which comnects the semicells is called the isthmus. The incision on each side of the isthmus between the semicells is known as the simus, and the apices of the semicells are often termed the poles. In a few genera (such as Closterium, Mesotenium, Gonatozygon, and Spirotania) in which the cell itself is not constricted, that part of the protoplasm which contains the chloroplasts is almost invariably divided into two symmetrical portions.

Before the time of Ralfs, who advocated the view that Desmids are unicellular, nearly every author with the exception of Kiitzing considered that they consisted of two cells, even Meneghini and Ehrenberg being under the impression that they were bicellular.

Desmids belong to the green Algæ (or Chlorophyceæ) of which by far the greater proportion are inhahitants
of fresh water, and they constitute the family Deswrdinees of the order Conicgate. The Algre are a class of plants which possess a simple structure, the most highly developed forms being the red Alga (or Floridere), which are almost entirely marine.

Althongh some Desmids possess cylindrical cells very similar to those of other families of Conjugata, they can be readily distinguished by peculiarities in their cell-structure, their method of division, and the formation of the zygospore.

Some few Alga are subaërial, occurring in moist, shady places, and among these are a few Desmids, principally species of the genera Mesotæmimm and C!ylimdrocystis.

The Desmids are free-floating, and often occur' in mucilaginous masses. They are never marine, but have been found, though rarely, in slightly brackish water. They exhibit great diversity in size, the longest axis varying in length from 8 to 1200μ. In the British genera Ilyalothecu, Cymmozygu, Spomd!losimm, Sphæiozosmn, Omyrlomemn, and Desmidium, the cells remain attached to each other after division in the same manner as in the other families of Conjugate. These filaments may be plane or twisted, and the cells may be comnected by their flat apices or by the apposition of corresponding apical projections. This filamentous condition may however be developed in species of genera which normally occur as single cells. Instances of this are known in Cosmatimm, Eumstrmm, Microstrins, and stonnostirm. The cells of the genera Gomatozygon and Gmirnlanin frequently oceur in long' filaments, but a very slight disturbance is sufficient to canse the dissociation of these filaments into their separate cells. Even in the more typical filamentous forms such as Desmithum, Hyalothect, Spheroansmu, and Onychomemn, the filaments are usually dissociated into individual cells just prior to conjugation.

Every person who for the first time examines a varied collection of Desmids is astonished at their
wonderful symmetry and their elegrance of form. 'This feeling is highly intensified on observing the great variety of the forms, and astonishment increases when the beautiful ormamentation of some of them becomes manifest. Diatoms are atmitted by all to be very beautiful microscopic objects, but they are far surpassed in elegance by Desmids.

The simplest forms are seen in the genera Mesotaminm, Cylminocystis, Pemium, and Spirotaniu, which consist of cylindrical or subcylindrical cells, usually without any constriction. Even in some of these the cell-wall is ormamented. In some species of l'enium there is a distinct although slight median constriction, which is the first indication of the feature so characteristic of most Desmids, iciz. the constriction of the cell into two semicells. In the large genus Closterimm, and also in Royce and one or two other small genera, there is no constriction, but in those specified there is more elegance of form, many species of the former genus being most gracefully curved and gradually narrowed towards the extremities, whilst some of them have a slight ormamentation of the cell-wall. This is usually in the form of longitudinal striations. In Doritium, which is subcylindrical, there is always a division into two semicells with an ormamentation at the base of each, and some species possess a gracefully undulated outline. In P'lourotienium the apices are often ornamented. In Tetmemorus the apices are notched and the cell-wall is generally punctate. In most of the other genera of Desmils there is a more or less deep constriction, the semicells being comnected by an isthmus of variable breadth. In Cosmarinm, which is by far the largest genus of the family, many of the species exhibit an exquisite ornamentation of the cell-wall, being decorated with symmetrical patterns of granules, papillæ, or warts of various sizes and shapes. The next genus in point of view of numbers is Stanrastrum, and in this genus is found the greatest diversity of form. In addition to
gramules and warts, many species of this gems are atorned with spines of rariable length, or the angles of the semicells are produced into long hollow processes. Seen from the vertical view, many exhibit a radiating structure, the number of radii varying from three to ten. The two genera Sinthidimm and Eurstimm also contain some of the most beautifully ornamented Desmids, but perlaps the prettiest of all forms are to be found in the gemms Micorsterias, the exquisite symmetry of the incised margins of species such as Microsterims apirultetr, M. radiost, and M. furcutu, being without parallel in the regetable kingdom.

The great diversity of form and wonderfully varied character of Desmids are featmres associated with their almost exclusive confinement to small ponds or the quiet margins of lakes, localities snitable for their existence in large nmmbers. The complexity of ontline, which is so frequently accompanied by a defensive armour of spines and spinous processes, has most probably been acgnired as a means of resisting the attacks of aquatic animals, such as Amœbre, Turbellaria, Oligochæes, Tardigrades, small aquatic larve of iusects, and small species of Crustacea ; and it is noteworthy that most species which occur on wet rocks and in other localities from which these enemies are almost entirely absent, possess as a rule a comparatively simple outline.

The cell-wall is composed of cellnlose with a variable admixtmre of pectose. The pectose compomids are gelatinous, and in most Desmids they accmmulate as a considerable moncilaginons mass on the onter surface of the cellulose wall. It is most probable that this accumulation is dne to a gradual exndation of these gelatinous compounds throngh mumerous minute pores present in the cellulose wall of almost all Desmids. 'I'his is largely borne out by the radiating' fibrillar structure which is so characteristic of this mumens and which has at times caused serious errors of observation. 'The pectose componuds sometimes form
a considerable proportion of the cell-wall, and by their gelatination canse an ectlysis of the outer layers of cellulose. The cell-wall is ustally colourless, but sometimes is of a pale straw-colour or even of a reddish-brown tint. It is impregnated to a certain extent with lime, and an incineration of the living cells leaves an ash composed chicfly of calcium carbonate, a small quantity of calcium sulphate, and an insoluble residue which is probably silica.

The cell-wall is often beautifully sculptured or adorned with grauules, warts, processes, spines, etc. In some species the wall is devoid of such embellishments, but the cell-walls of almost all Desmids if examined under a sufficiently high maguifying power exhibit fine punctulations which are the optical expression of the pores in the cellulose wall.

The cell-protoplasm occupies a large proportion of the interior of the wall, and a portion of it always completely lines the imner surface of the cell-wall. This protoplasm contains numerous granules, largely of a mutritive nature, and it exhibits a well-marked circulatory movement. This circulation of the protoplasm is very variable and irregular, and its movements are rendered easily visible owing to the contained protoplasmic gramules. Vacuoles are present in the protoplasm, but their position and number largely depend on the form of the chromatophores and the general shape of the cell. There is usually a vacuole in the region of the isthmus between the two chloroplasts of constricted cells, but some genera, such as Closterium and Plonorotanimm, invariably possess apical vacuoles. In these apical or terminal yacuoles many small cerystals are usually found (sometimes only one), which exhibit a rapid vibratory or swarming movement. These minute crystals (often rhomboidal) are composed of calcium sulphate.

When Desmids are kept alive for some time, especially under abnormal conditions, the protoplasm develops numerons vacuoles, often of large size, all of
which become filled with a dense swarming mass of granular material. This change has been observed to take place in all the genera.

The liquid contained in the vacuoles is known as coll-sitp and is usually colourless. In certain species, such as Mrsotxnium violusens. De Bary and M. purpurem West \& G. S. West, the cell-sap is coloured violet or purple by a pigment which has been termed by Lagerheim phypoporphyrin.

The chloroplasts occur embedded in the protoplasm, either one or more in each cell. Sometimes they are parietal cuslions or bands on the walls of the cells, but more frequently they are central. In Spirotamia, Mesotanium, lioyn, and in some species of Gomatoryfon and I'eninm, there is only one chloroplast. In those species with parietal chloroplasts there may be four, six, or eight, but the vast majority of Desmids possess two central chloroplasts, one in each semicell. The chloroplasts of the Desmidiaceæ are chiefly remarkable for their large size, their variability in different genera, and their peculiar complex character. They may be straight and rod-like, ridged and spirally twisted, or they may exhibit a radiating structure. In some of the larger Desmids, such as in certain species of Eunstrm and Micresterias, they are plate-like and their margins are incised or lobed corresponding to the incisions or lobes of the cell-wall. Embedded in each chloroplast are one or more large conspicuous pyrenoids (Cosmurium, Stunurtrum, etc.), or in some cases numerous small pyrenoids (Gonatozyym, Genicnlaria, etc.). The pyrenoids are crystalloidal nitrogenous bodies, which usually become covered with minute starch-grains after exposure to light. They consist of reserve materials, and, with the exception of Anthoceros among the Hepaticæ, are quite peculiar to Algæ. The pyrenoids with their envelope of starch-grains are termed amylospheres.

There is one nucleus in each cell, generally situated in the central portion of the cell, and in those Desmids
which are conspicuously constricted it is found in the region of the isthmus．It is globose or ellipsoidal in shape，and contains one nucleohs．

Vablation．－Desmids are subject to certain varia－ tions of form and structure which have heen summed up as follows ：－

1．The structure of the cell－contents is one of the most constant features exlibited by the species；but this fact can be of little classificatory value owing to the very large number of species which possess the same structire and arrangement of the chromato－ phores．

2．The outward form of the cell，as seen in front view，varies within certain limits，which are usually very small，but which may in exceptional cases be considerable．The form of the vertical view is，as a rule，a more constant feature than the form of the front view．

3．The ornamentation（scrobiculations，granulations， spinulations，etc．）of the cell－wall is relatively constant， being always arranged according to a definite law， which is only transgressed by variations in one or more of the individual component groups which con－ stitute the pattern of arrangement．

4．The prolific growth and rapid division of immense numbers of Desmids have a tendency to produce variations from the typical forms．

5．Changes in the conditions of environment cannot affect the characters of a species unless they act for a long period of time．

Loconotion．－Desmids possess the power of slow locomotion．If numbers of them are placed in a small vessel and exposed to a moderate light they gradually travel to that side of the vessel nearest the light． Advantage may be taken of this fact，as we have often done，to olbtain pure masses of Desmids from any muddy sediments in which they exist in quantity． Stahl，in making observations on the movements of Closterium moniliferum，noticed that the plant attached
itself at one pole and then swang over and attached itself by the other pole, thus shifting its position by a distance equal to its own length. This is an exhibition of periodical polarity brought about by an alternation of positive and negative heliotropism or geotropism, or by a combination of both. Stahl's experiment was performed by placing the Desmids in glass tubes and altering the direction of the light by reflection. The longer axes of the cells placed themselves parallel to the incident rays, first one pole presenting itself towards the light and then the other. The reversal of position, which was a movement of the cell through an angle of 180°, occupied from six to thirty-five minutes according to the temperature ; the change of position occurring more rapidly as the temperature increased, taking from six to eight minutes at a temperature of $33^{\circ} \mathrm{C}$. In P'enium curtum the polarity is constant, the young semicells always turning towards the light. Goebel found that Mirwsterias rotute arranged itself so as to place its plate-like chloroplasts at right angles to the incident rays of light. Warming states that the movements are due to the protrusion of a mucilaginous stalk, and that they are partly dependent upon, and partly independent of heliotropism and geotropism.

The Vegetative Repronucton of Desmids takes place by the process of cell-division, but this presents a rather curious appearance, reminding one of gemmation, in those forms which possess a deep constriction. The first stage in this cell-division is an elongation of the isthmus causing the semicells to move slightly apart. The elongated isthmus increases in size, becomes somewhat swollen and turgid, and soon shows signs of a constriction. 'The constriction deepens, and when complete the two young semicells remain attached by their apices. The new semicells are at first much more delicate than the old ones, but they grarlually increase in size until they ultimately attain the form and strength of the mature halves, when in
most cases they soon separate. In those species which possess a sculptured cell-wall the new semicells are at first quite smooth, the markings only begiming to appear as the semicells approach maturity. In those species which have an incised outline the ineisions begin to form long before the semicells have attained half their full size. Thus, in all Desmids one semicell is younger than the other. Division is most active in late spring or early summer according to the eonditions of the climate.

Asexual Reproduction takes place by meams of "plumospores in certain speeies of Desmids. Each aplanospore is formed by the rejuvenescence of the entire contents of a cell, a new cell-wall being developed round the spore. This method of reproduction is of exceedingly rare occurrence, having only been seen by Wallich and Turner in Spomlylusitum nitros and by ourselves in Hymbothecn meglecte. Ralfs most probably noticed spores of this nature in Desmidium Surntaii.

Archer's account of the occurrence of zoospores in a 'Doricium' must have resulted from a mistaken observation, as all evidence tends to prove the entire absence of ciliated motile spores from the order Conjugata. It is most probable that some parasitic organism was present in the 'Uneiclimm,' which gave origin to the zoospores observed by him.

Sexual Rephomurtion of an exceedingly degenerate type occurs in all the genera of Desmids. It takes place by the conjugation of isogamous gametes, i.e. by the union of precisely similar gametes. The ordinary vegetative cells themselves become the gametangia, and as the ganetes possess no cilia they are known as aplanogametes.

Two cells of any one species having become approximated, they arrange themselves parallel to each other or inclined at various angles according to the genus to which they belong. From the middle of the contiguous sides, usually the sinus, a short comecting-tube is
formed between the cells, arising by the coalescence of two processer, one from each cell. This comnectingtube may be conspicuous or exceedingly delicate, and in many Desmids is only represented by the delicate vesicle "which surrounds the gametes. The gametes, each of which consists of the entire contents of a cell, issue into the comecting-tube (or into its representative vesicle) and there fuse together forming a $\quad \because y g o w p, 1, r e$ (or ayyote). This zygospore assumes a definite form, depending upon the species of Desmid, and then surrounds itself with a firm cell-wall, generally of a brown, sometimes of a black colour, and consisting of three layers. The aygospore may be spherical, ellipsoidal, or of amy degree of angularity. It may be quite smooth, as in many species of Clnsterivm and C'simnrimm; it may be scrobiculate, as in Ximtlietimm armuthm: or it may be furnished with simple spines, furcate spines, or branched processes, as in many species of Cormurimm and Stumustrum.

We have occasionally seen aygospores formed by the conjugation of three cells, and there is one record of a zygospore produced by the union of the contents of four cells. In Mroteninm the conjugating tubes may be put out from any part of the cell. Dremidium rylindricum stands alone amongst Desmids in having the zygospores produced in one of the conjugating cells, as in the case of spirogyice, thus exhibiting a trace of sexual differentiation. Rarely the same phenomenon has been observed in Hyctothern dissiliens. Lateral conjugation-or the conjugation of two adjacent cells in a Desmid filament-has been observed in Spondylosium pulchrmm var. plamm.

There is no doubt that conjugation frequently takes place between two individuals which have just separated by vegetative division, the two new semicells being as yet only imperfectly developed. This is frequently noticed in large species of the genus Closterium, such as Cl. moniliferm and Cl. Dlwenberyii, also in Micrasterias denticulata and in species of C'os-
murinm and Eutustrum. For there to be any lingering remains of sexuality under these circumstances, differentiation of sex could only occur immediately prior to conjugation.

The development of the zygospore has been worked out by De Bary, and there is no alternation of generations. He found that the gametes completely left the gametangia and united in from fifteen to forty minutes, but we have often known this process to take many hours. The time occupied in the escape and fusion of the gametes depends largely on the particular speceies mader consideration. 'The development of the external ornamentation of a zygospore may take many days. When germination takes place the outer wall of the zygospore splits and the entire contents escape, surrounded by the colourless imer cell-wall. This escaped cell cmlarges and soon becomes constricted, another constriction arising at right angles to the first one. Two or four new plants are thus formed which very soon appear of typical form and size. If the species bears external ornamentation, these firstformed cells are devoid of it, but on the first vegetative division the new semicells acquire the characteristic markings of the species. Hoffmeister, from observations on another species, states that the contents of the escaped cell divide repeatedly, forming eight or sixteen cells which have the same form, but not the same size as the parent cells, and that these cells then escape from the zygospore. Zygospores always rest some months before germination.

Double zygospores are found in some species, but little is known concerning their formation and nothing of their germination ; they occur in Closterium limentum, Cl. Rulfsii var. hybridum, Cylindrocystis diplospora, and Penium didymocarpum.

Phylogenetic Relationships of the DesmidhacemThe Desmidiaceæ must be regarded as a degenerate family of micellular Algæe evolved by retrogression from sexually differentiated, filamentous Conjugates.

They constitute moquestionably the family of Conjugates which las attained a maximmm state of specialization with regard to complexity of morphological characters, accompanied by the loss of the filamentous condition and the degeneration of sexual differences. It is a notable fact that Desmidium cyliudricmm is the only known Desmid in which the zygospore renains in one of the conjugating cells (presumably the female), and the occasional reversion to this trpe in Hyalothern dissiliens goes far to prove that in all probability this was their ancestral type of conjugation,-a type which still exists in the Zygnenacea, but which the Desuidiacea have lost except for the lingering remains of it which are found in Desmidiom rylindricum. Another fact testifying to this degeneration is the secondary assumption of the filamentons condition by about eight genera and several individual species of other genera. The recent discovery of that remarkable Conjugate Diborya desmidioides has also added still further evidence with regard to the evolution of Desmids from ancestral filamentous Conjugates.

Ofchrence had Distribetion.-Desmids occur from sea-level to just below the snow-line. A few species have been found in water that was somewhat brackish, but only in small numbers. Everything seems to indicate that they have but a precarious existence in such a medium; indeed, it is not only possible but probable that they have been introduced in snch situations by aquatic birds. As they are usually freefloating plants they are not as a rule found in rmming waters. They are most abundant in permanent shallow pools and the quict, sheltered recesses of small lakes. Some species can always be found in the hollows of peaty moors, whether natural or artificial, if of sufficient age. They are usually most abundant both witl regard to number of species and individuals in the pools, tarns, and lakes of rocky districts. In flat districts like the fens they are few in number, espectially
in momber of species，but in somewhat molulating， virgin，smmer districts they occur in considerable abmotanec．A few are met with among the sub）－ merged plants in slow streams and rivers，and some species usually occur on faces of rocks over which water is constantly trickling，growing associated with filamentous Algæe such as species of Ntiyourmon and Schiantlrit．Some occur in more rapitly roming water among other Algae，as V＇murlerin gemimutn amd N＇iorfomium stictirmm；or among mosses such as lilimtin aruta，Pontimulis antipmretira，Amblystegiuns glunrum， and liluromitrinm arirulare ；or among such Hepatice
 emai！ginatr．The occurrence of some species where water is rapidly moving indicates that their mucila－ ginous investment possesses considerable tenacity． Some species are associated with Butionchosprommm confum in peaty waters，and in moor pools with Jungermommin inflotu；others are attached to the leaves of Lsoëtes lurmstris，Lolelin Dortmmmun，and Liriocrulon；the peduncles and petioles of N！gmpharn． and Niphlur；and the submerged parts of the stems and leaves of Callitriche，Myriophyllum，and Scirpus Alutans．Ltiveulnia minom and U．intermediu are always submerged and are often clothed with a rich coat of Desmids．Many rare species occur on the leaves of the submerged form of Littmella lacustivs，and a few on species of Nitella and r＇lurire in the beds of rocky lakes．Desmids are also often associated with floating filamentous algae of various genera．Many species occur in quiet pools among such mosses and Hepatice as Sphurnum routortum，S＇．ruspirlatum var．plumosum， Ambl！stegnime scompioides，and A．exammlutum；other＇s occur in mountain springs where Philonotis fontomm， Jungermumin condifolin，suxitrega stellaris，and Epilo－ liem alpimum abound．

Some Desmids are found in the Plankton of large lakes，occurring in the surface－water far away from the shores．Ntumrastrom unutiumm，心．pelagicum，バ．pseudo－
pelugicum，S＇．purndomm var．Lomgipes，S．juculiferum，and Xrenthictium antilopxem are frequent plankton－Desmids．

A few are notably alpine or subalpine；such are Stanrostrum acorides，ぶ．Kjellmami，Cosmarimm cymatoplenrm，C．microsphinctum，C．cyclicum，etc．

We have collected the following species at an eleva－ tion of 2，700 feet on Glyder Fawr，North Wales：－ Cylimlrocystis ciossa，Penium Digitus，I ．polymorphum， T＇etmemorns gromulutus，T．Riélissonii，Closterium Ehrenbergii，Plenrotrmimm Trabecula，Enastrum binule， Cosmarium Cucurbita，C．Logiense，（＇．Ralfsii，Staurus－ trom Kjellmamni，and Hydothecn dissiliens．

We have also found the following in material collected for us by Mr．＇T＇．H．Burkhill at an elevation of 3,500 feet on Lochnagar：－Cylimdrocystis Brélissonii， l＇eumom patgum，forma major＇，T＇etmenorus lwris，＇I＇． gromulutus，Eunstrum bimule，E．lobulatum，Micrasterias ，lenticulata，C＇osmarinm lutum var．minor，C．bioculatum， （．crenatum，Stanrastrom．erasum，S．Kjellmamii，S＇． muricatum，S．margaritaceum，and S．orliculure var． cepressum．

At a still higher elevation，on some of the moun－ tains of Perthshire，we have gathered a few species such as Cosmutum cyclicum．

Some of the most striking of British Desmids appear to be confined to the rocky districts of the west coast ； such are I＇leurotanium nodosum，Docidium modulatum， Mirowsterins furcuta，Euastrum pingue，Stourastrom． rlomgatum，ふ．Iom！ispinum，N．Aretiscom，N．（＇epostes， S．Ophinto，S．revtirillatum，and s．Brosiliense var． Immdellii．

Some Desmids are absolutely cosmopolitan，occurring from sea－level to the snow－line；such are Cylindio－ cystis Piélissomii，Tetmemorns arumlatus，and＇T＇．lewis． In fact，the latter species is known from hot spring＇s in Iceland and the West Indies．

One of the chief determining factors of the abund－ ance of Desmids in any locality is the nature of the geological formation of the district．Limestone and
chalk districts yield few species, althongh one or two Desmids, such as Cosmminm durernse and Oocrmom strutum, have a preference for water saturated with calcium carbonate. Desmids are fairly numerons on some of the sandy undrained moors, but they only become generally abundant on the older Palaozoic Rocks, or on rocks of an igneous or metamorphic character.

Cohemtor and Presprition.-The collection of material requires very little apparatus. A number of corked glass tubes or wide-monthed bottles of varions sizes, from about half an inch to an inch and a half in diameter, will be found sulficient for most purposes. A few large wide-mouthed bottles will also be useful. All the bottles shoald bear numbered labels which have been varmished, and they should be wrapped separately in paper to prevent breakage. The numbers should be entered up consecntively in a pocket-book with spaces opposite each number for the description of the habitat and the locality. As cach bottle is filled an entry should be made opposite its number in the pocket-book. The bottles should not be filled more than about two-thirds full, and they shonld be uncorked immediately on arrival home. For facility in moving the bottles about, they are best placed in small wooden boxes about an inch in depth, and packed so as to prevent upsetting. If it is desired to keep the material alive for some time it may be necessary to transfer the contents to larger bottles, as plenty of water is in most cases absolutely indispensable.

We have already mentioned the likely places in which Desmids occur, and now it remains to give a few hints on the collection of material. Desmids sometimes occur on submerged plants in such numbers that the brownish jelly in which they are embedded can be gently removed from the water by means of the fingers. This is, however, unusual, and submerged mosses, Churn, Nitellu, Cullitriche, Myriophyllum, or I'triculuriu, have generally to be lifted carefully out of the
water, and after the superflnous liguid is allowed to drain away, squeezed over the wide mouth of the tube or bottle. The sediment that settles to the bottom of the bottle usually contains Desmids, more or less numerous. One may always depend upon finding some Desmids in material squeezed from perinanently submerged Sthlut, m!m.

Romed the rigid leaves of Lsoëtos and Lobolir there is often quite a thin gelatinous coating of a yellowishbrown colour. This can be removed from the water by getting the leaves between the fingers, with the hand palm upwards, and then gently drawing the hand upwards through the water. This method of collection requires much patience and some practice, as it is exceedingly difficult to raise in the open hand, light, flocculent, gelatinous material a distance of about two feet through the water. Most of the finest and purest material we have ever examined has been collected in this way.

All the larger Algre should be carefully collected, because it is amongst these that some of the most interesting Desmids are found. Similarly, the home of many characteristic Desmids is amongst the mosses and filamentous Algre which occur on dripping rocks.

In the sheltered cormers of some lakes there is often a growth of Plurngmites or Scinpus lacustris, and scrapings of the older stems of these plants frequently yield good results. A net of coarse muslin or a coarse copper strainer will be found to be very useful for passing amongst submerged plants. For the examination of large ponds and lakes the use of a boat is of great service and often indispensable.

To collect the plankton-material from large lakes, tow-nets are necessary. These nets are conical in shape and constructed of miller's silk; they are six or eight inches wide at the opening, and fourteen to twenty inches in length. The open end should be sewn on to coarse sail-cloth, the latter being doubled and fastened to a stout copper ring, and then three equidistant holes
should be made through the sail-cloth close to the ring. Through these holes stout cords are passed, and the nets are towed at a distance of a few yards behind an ordinary rowing-boat. The speed of the boat should not be more than three or four miles an hour, and the net normally takes up a position a foot or eighteen inches below the surface of the water. The net should be towed for three-quarters of an hour or an hour at a time through the surface-waters of the deepest parts of the lake. It is then drawn in, the water is allowed to drain away, and the sediment is transferred to bottles.

Sometimes the material can be cleaned by a system of washing and decanting, that is to say, all the heavier material can be removed. Unless, however, the material is very dirty and sandy, we do not recommend cleaning it. If a person wishes to make a real study of Desmids he will do better to examine his collections just as they have been gathered; he will then become acquainted with the nature of the material among which they occur, and will soon obtain a good idea of what to expect in his collections.

Nice clean material may be obtained by placing the collections in flat dishes and exposing them to a fairly good light. The Desmids appear at the surface in small gelatinous masses and with care may be removed by means of a small dipping-tube. Another method is to decant off most of the water and cover the sediment with a piece of undyed sieving silk. If the silk is sufficiently coarse the Desmids will make their way through the meshes and can be removed. Such material always contains numerous living Diatoms.

Living material should always be examined as carefully as possible, and then it should be preserved for future examination.

There are several methods of preserving Desmids for subsequent examination. For examining the structure of the cell-contents a 3-4 per cent. solution of formalin is best, but for bringing out the cell-outline and the structure of the cell-wall we find nothing to
equal a 4 per cent. solution of acetate of potassium (containing a trace of copper acetate). A solution of picric acid will also answer as a preservative, and a $0 \cdot 1$ per cent. solntion of osmic acid may be utilised for fixing the cell-contents. Flemming's solution and also carbolic acid may be nsed as preservatives, but are not to be recommended.

When glass-stoppered bottles are not used, it is in all cases advisable to previonsly soak the corks in strong methylated spirit in order to destroy varions spores of fungi.

Examination and Specific Determination.-For the examination of Desmids a compound microscope is necessary with two powers of 70 to 100 and 400 to 600 diameters respectively, and it is sometimes essential to examine the smaller species under a magnification of 800 to 1000 diameters. In all cases accurate drawings should be made to scale witlı a camera lucida. TVe emplasize the word accurute, as great confusion has been-and still is-caused by the rough, inaccurate figures of Desmids which inexperienced anthors have published. Desmids appear to be of very different forms according to the position in which they are seen, and for this reason it is necessary to have two or three views of most of them. They should be drawn in three positions:-(1) the front ieve, in which the two longest axes of the Desmid and the full constriction are seen ; (Ω) the side-rieu, in which the longest and shortest axes and the constriction are seen ; and (3) the vertical vieu, in which the Desmid is observed from above. With practice an observer can obtain these various positions with more or less ease.

Many species can only be accurately identified from empty cells or semicells in which the surface-markings can be plainly seen, and therefore preserved material is better for the identification of species than living material. If few empty cells can be found, treatment with a 5 per cent. alcoholic solution of potassium hydroxide is often very useful.

It is best to mount Desmids in the liquid in which they have been preserved, and old goldi-size is the only sate varnish for sealing them up. The first coat of gold-size should be allowed to thoroughly dry before another one is put on. Sometimes an exceedingly thin, well-seasoned cell of gold-size is used in which to mount them. 'This cell must be prepared months beforehand by making a thin ring of gold-size on the slide. Nothing can equal these fluid momests for purposes of future examination, but even the best of them frequently dry up. They may be mounted in glycerine jelly, and with great care the larger species can be placed in any desired position, but specimens mounted in this medium often exhibit considerable distortion.

The surest way of becoming acquainted with the diagnostic features of Desmids is to draw them very carefully in all positions. As previously stated these drawings should be made to scale by means of a camera lucida. This is also the best means of obtaining accurate measurements of the plants. The drawings can be finished off by direct observation, but the outline and the precise disposition and form of the markings must be drawn by means of the camera, in order to ensure exactitude. Needless to say some years of practice and experience are required before faithful representations of the smaller Desmids can be made. Strong fine drawing-paper should be used, and the only useful pencil is the "ННН Н," sharpened on the finest emery paper. The drawings should be fixed on to stiff slieets of paper of uniform size, each sheet being devoted to one species. In this way the variations of a species can be lest seen.

In conclusion, we must remark that this group of microscopic plants is well worth studying, and we sincerely hope that the appearance of our work will attract the attention of students to this beautiful and somewhat neglected family of plants. During a spring or a summer holiday, sufficient material can be
collecter to last many years. The Desmids offer a wide field for investigation, as many parts of the British Isles have not ret been examined. We have made many long journers for years past specially for collecting these plants and other Alga amongst which they are found, collecting daily throngh long holidays, but it is impossible for us unaided to cover the whole of the British [sles. We have been kindly helped in a few instances by material collected for us by friends in places which we have not ourselves visited. We have collected in Cumberland, W'estmoreland, Durham, Yorkshire, Lancashire, Derbyshire, Lincolnshire, Cambridgeshire, Essex, Middlesex, Surrer, Sussex, Hampshire, Devonshire, Cornwall, the Scilly Isles; Anglesey, Carnarvonshire; Dumfriesshire, Kirkcudbrightshire, Wigtownshire, Ayrshire, Dumbartonshire, Perthshire, Argyllshire, Aberdeenshire, Inverness, Ross, Sutherland, Caithness, Isle of Skye, Lewis, Harris, North Uist, Benbecula, South Uist, the Orkney Isles, the Shetland Tsles; Antrim, Londonderry, Donegal, Tyrone, Armagh, Down, Louth, Wicklow, Mayo, Galway, and Kerry. Archer also collected in Dublin, Wicklow, Galway, and Kerry, and was the pioneer in the investigation of the fresh-water Algre of Ireland-especially of the Desmids. Roy collected from several Scottish counties and worked up material sent to him from other parts of Scotland. He also made some collections in Wales and examined a collection sent to him from Hampshire as well as material sent to him from Leicestershire. Ralfs did a good deal of work in West Cornwall and also collected at Dolgrelly. Marquand added to the work done by Ralfs in West Cornwall. Jenner also collected good material in Sussex and Kent. This enumeration of counties shows clearly that a large part of the British Isles is yet unworked, and many of the counties enumerated have not been examined in a detailed manner. It is most desirable that much more work should be done in order to make our knowledge of the distribution of the Desmids more complete.

We would also impress upon future workers the desirability of examining any district they are studying at all periods of the year, and for more than one year; this applies more especially to those resident in or near such a district.

We have been very considerably helped in our investigation of the distribution of these plants in some of the remote districts by three grants from the Govermment Grant Committee of the Royal Society.

Dr. Otto Nordstedt of Lund, S'weden, has very kindly placed at our disposal the valuable Desmid material he collected when he visited Britain; this embraces many scores of gatherings. The material has been very useful, as such a noted and experienced algologist knew exactly how and where to collect. We believe that this work will show that considerably more is known concerning the Desmids of the British Isles than of those of any other country.

We have arranged the species of the larger genera in such a way as to facilitate their study.

The total number of Desmids known in the world in 1839 was about 90 species, in 1861 this had increased to about 300 , in 1889 to about 1200 , and in 1902 to about 2000. The number of species known to occur in the British Isles is approximately 690.

Philugeny uf the Geneha of Desmids.

Order CONJUGATA.

This is one of the orders of the class Chlorophycea (or Green Algae). The Algæe comprised in the order are characterised by their reproduction, which is a conjugation of isogamous gametes. This conjugation is a degenerate sexual reproduction, the gametes being alike in form and structure, and without cilia. Nonmotile gametes of this nature are known as aplanogametes. The result of the conjugation is a aygospore, which, after resting for a shorter or longer period, produces on germination one or more new vegetative plants. Motile spores are entirely wanting in all plants of the order. Sometimes aplanospores (spores formed without conjugation) are produced. The cells may be solitary or united to form simple colonies or filaments, which usually float freely in the water. Division is in one direction only. All possess conspicuous green chromatophores (chloroplasts), and pyrenoids around which starch is formed. They are also remarkable for the great development of the gelatinous constituents of the cell-wall. They are found in fresh water, and very rarely indeed in slightly brackish water.

The two European families are :-
Fam. 1. Zygnemacere.
Fam. 2. Desmidiaceæ.

Family DESMIDIACE E.

Minute unicellular Conjugata, sometimes united into colonies of a more or less fragile nature. Cells very variable in form, usually constricted in the middle into two symmetrical halves or semicells. The cellwall in the majority of Desmids exhibits characteristic surface-marking's. Chloroplasts generally divided symmetrically, one in each semicoll; sometines two to six in each semicell, or only one in the entire cell.

The arrangement of the genera of Desmids given in this work is based upon the scheme of evolution ahready published by one of the authors, and upon certain recent investigations of Lütkemïller.

The division of Desmids into solitary forms and filamentous forms can no longer be followed. The genera Gouatozygon and Cenicularia, althongh more specialised than Spirotania, Mesotwnium, or Netrium, have so little in common with most other Desmids that they must be regarded as having had a distinct origin from filamentous ancestors. Most of the genera of Desmids appear to have evolved from ('ylimblocystis and Mesotænium, which were themselves derived from filamentous ancestors, through such Conjugates as Debarya desmidioides. The genus Penium undoubtedly contains a collection of widely different plants, some of which should be distributed in the Spirotwniea, Closterieæ, and Cosmarieæ ; and Liitkemïller's suggestion that Nägeli's genus Netrium be used to include certain well-marked forms is a most useful one. The true Penia are of the nature of Penium margaritaceum, P. Cylindius, P. spirostriolatum, etc.

The genera Docidium and Pleurotænimm belong unquestionably to the tribe Cosmariea, but their origin is doubtful.

The retention of the names Plenrotaniopsis and Pleurenterium as genera of Desmids is as useless as it is foolish. These were originally proposed as subgenera by Lundell and afterwards elevated to the rank of genera by other less experienced authors. The establishment of such genera is against all principles of natural classification, as it necessitates placing in one genus a few of the most diverse forms of the present genera Cosmurium and Stnurastrum,-forms which have obviously $n o$ direct relationship with each other. Similarly, the genus Dysphinctium Näg. (=Calocylindrus Kirchn.) has no definite line of demarcation from Cosmarium Corda.

The large genera Cosmarium and Stuurastrum may
at some future date have to be split up into smaller genera, but nothing could be more foolish than to do this without first obtaining a reasomable knowledge of the forms included in these genera. At present our knowledge is insufficient for such a purpose. And when the separation does take place, we do not think that either the relative depth of constriction or the position of the chloroplasts will be the basis upon which they will be subdivided. The arrangement of the chloroplasts is quite mknown in more than half of the species of these genera, and it is a character of such little importance that it has been customar? to exclude it from specific deseriptions of these Desmids.

The following is an analytical key to all the known genera of Desmids. Five of these, \quad io. -Ancylonemm, Triploceras, I lithyocercus, Plymutorlocis, and Stireporneme, have not been observed from the British Islands.

Sub-family I. Saccoderma.

Cell-wall unsegmented, without pores. Point of division of cells not fixed, and mknown previous to the actual division. The youngr half of the cell is developed obliquely, and its walls are absolutely continuous with the walls of the older half.

Tribe 1. Gonatozygæ. Cells clongate, cylindrical and unconstricted, forming loose filanents. Cell-wall with a differentiated outer layer of which small rouglnesses and spines form a part.

* Chloroplasts axile.

Gonatozygon.
** Chloroplasts parietal and spirally twisted.
Geniculariu.
Tribe 2. Spirotænieæ. Cells solitary (except in Ancylomema), relatively short and mostly unconstricted. Cell-wall withont at differentiated outer layer. There is a periodical growth of the cell until maturity is reached.

* One chloroplast in each cell.
\dagger Chloroplast spirally twisted, axile or parietal.
Spirotemú
++ Chloroplast plane, axile.
\ddagger Cells solitary.
Mesotenium.
$\ddagger \ddagger$ Cells united into short filaments.
Ancylonema.
** Two chloroplasts in each cell.
\dagger Chloroplasts star-shaped, radiating from a central pyrenoid.

Cylindrocystis.
$\dagger+$ Chloroplasts ridged with longitudinal ridges; edges of ridges notched.

Netrium.

Sul-family II. Placoderme.

Cell-wall segmented, with a differentiated outer layer. Celldivision following a fixed type and the younger half-cells interpolated between the old ones. The younger portions of the cell-wall are not continuous with the older portions but are joined obliquely to them.

> A. Point of division of cells variable or sometimes fixed (at the isthmus).

Tribe 3. Peniex. Cells of moderate length, straight and more or less cylindrical, sometimes with a slight central tonstriction. Points of division often variable, following no law. Cell-wall with or without pores. There is frequently a periodical growth of the cell until maturity is reached.

> Penium.

Tribe 4. Closterieæ. Cells elongate, generally curved. Points of division regularly plated in the middle region of the cell. Cellwall commonly with pores.

* Cells almost cylindrical, scarcely attenuated. Chloroplast single. Nucleus in a lateral position. Apical vacuoles absent.

Roya.
** Cells strongly attenuated towards each end. Two chloroplasts in eath cell. Apical vacuoles with moving granules present.

Closterium.
B. Point of division always fixed (at the isthmus).

Tribe 5. Cosmarieæ. The cells exhibit great diversity of form, and the cell-wall consists of two thin, firm layers with pores. The cell becomes adult soon after division by the mature growth of the young semicell. There is no periodical growth.
a. The obliquely-fitting new and old parts of the cell-wall at the point of division (the isthmus) remain plane. Solitary or colonial.

* After division the cells become free and solitary individuals.
+ Cells elongated and cylindrical; constriction slight.
\pm Apices of cells trmucate or rounded.
§ Bases of semicells plicate.

Docidium.

§§ Bases of semicells plane.
Pleurotienium.

+ \ddagger Apices of cells cleft, incision widely open or narrow.
§ Cell-wall adorned with rings of furcate processes.

Triploceras.
§§ Cell-wall plane.
I| Apical incision widely open, apical angles furnished with a spine.

Ichthyocercus.
|||| Apical incision narrow, apicial augles rounded.

Tetmemorus.
$\dagger \dagger$ Cells relatively short, commonly eompressed or radiating; constriction usually deep.
\pm Cells compressed (at right angles to the plane of the front view) ; from the vertiçal view fusiform or elliptical.
§ Cells almost always with an apical incision and a moderately lobed margin ; with a central protuberante.

Euastrum.
$\oint \S$ Cells very compressed, with deeply lobed or incised margins.

Micrasterias.
§§§ Cells with a more or less entire margin, often furnished with warts or spines.
|| Cells commonly with a central protuberance.

- Cell-wall either smooth, or gramulate, or verrucose, ete. Central protuberance present or absent.

Cosmurium.

- Cell-wall with regularly arranged spines, generally in pairs. Central protuberance alwars present.

Xanthidium.
Cells withont a central protuberance; angles spinate.

Arthrodesmus.
$\pm+$ Cells from the vertical view commonly radiating ; triangular, quadrangular, or up to 11radiate ; rarely fusiform.

Staurastrum.
** After rlivision the cells remain attached to form colonies.
\uparrow Colonies spheroidal; cells not in contact, but joined together by gelatinous bands.
\ddagger Gelatinous bands narrow; few cells forming a microscopic colony.

Cosmocladium.
$\pm+$ Gelatinous bands very broad; many cells forming a macroscopic colony.

Oocurdium.
$+\dagger$ Colonies thread-like; cells attached by their apices into long filaments.
${ }_{+}^{+}$Cells attached by special apical processes.
§ Apical processes very short.
Spherozosma.
§§ Apical processes long and overlapping the apex of the adjoining cell.

Onychonema.
$\pm+A$ pices of cells plane and flat.
§ Cells deeply constricted.
|| Cells in vertical view elliptical.
Spondylosium.
|| || Cells in vertical view quadrangular with produced angles.

Phymatodocis.
§§ Cells very slightly constricted.
Hyalotheca.
b. The obliquely-fitting new and old portions of the cell-wall at the point of division (the isthmus) develope a girdle-like thickening, which projects batek into each of the old semicells during division. Cells attached to form thread-like colonies.

* Cells joined by special apical processes.

Streptonema.
** Cells joined by their flat apices or by flattened apical projections.

* Cells short; fusiform, triangular or quadrangular (rarely circular) in vertical view.

Desmidium.
$\dagger+$ Cells elongate, cylindrical.
Gymmozyye.

Sub-family I. SACCODERME.

In this sub-family the cell-wall is masegmented and entirely without pores. It is absolntely continuons, the newer half being intistingushable from the older half. 'There is no fixed point at which division takes place (except in a few species of (!ylimblowstis), and the young semicells are developed obliquely.

Tribe 1. Gonitozyge.

The two genera included in this tribe are considerably removed from most other Desmits. The cells are long, more or less cylindrical, and are mited by their apices to form very fragile filaments of varialle length. A very slight distubance will canse the filaments to dissociate into their individual cells, each of which then lives an independent existence. The cell-wall consists of two layers, the inner one being hyaline and structureless and the outer one being generally tlifferentiated so as to give rise to the minute prominences and delicate spines which are characteristic of these plants. Conjugation only takes place between cells which have become free.

Genus 1. GONATOZYGON De Bary, 1856.

De Bary, in Hedwigia, 1856, p. 105; Conj. 1858, p. 26.
Cooke, Brit. Desm. 1886, p. . .
Cells cylintrical or narrowly subfusiform, 10-20 (rarely 40) times longer than their diameter, not constricted, truncate, generally slightly dilated and often subcapitate at the apices; usually remaining attached to each other in filaments of variable length, which readily dissociate into the separate cells when tisturbed, and always before conjugation; during conjugation sometimes geniculate. Chloroplasts two, or sometimes only one, axile, generally mondate and rather narrow, containing from four to sixteen equidistant pyrenoids.

Zygospore globose and smooth.

This gemus, although widely distributed throughont the British Lslands, is not really common, nor is it partial to any particular kind of district. The filaments, which are sometimes of great length, are exceedingly fragile, and a slight disturbance of the water is usually sufficient to canse them to break up into their individual cells, each of which then lives a free and independent existence. There are usually two chloroplasts in each cell, the small space between them in the centre of the cell being occupied hy a certain amount of colourless protoplasm containing the ninclens. Wh hen only one chloroplast is present the muclens is situated in the median portion of the cell in a lateral position. A terminal vacuole containing a group of minute moving granules is sometimes present at each end of the cell; this is best observed in G. Kinahani.

1. Gonatozygon monotænium De Bary.

$$
\text { (Pl. I, figs. } 1-7 \text {; Pl. V, fig. 5.) }
$$

Docidium? asperum Ralfs, Brit. Desm. 1848, p. 158, t. xxi, f. $6 a, b$.
Gonatozygon monotænium De Bary, in Rabenh. Alg. 1856, no. 539.
G. Rulf'sii De Bary, Conj. 1858, p. 76, t. iv, f. 23-25; Archer, in Pritch. Infus. 1861, p. '21, t. iii, f. 1-2; Rabenh. Flor. Europ. Alg. 1868, III, p. 107; Cooke, Brit. Desm. 1886, p. 2, t. i, f. 1; Roy \& Biss. Scott. Desm. 1894, p. 250 ; West and G. S. West, Alga-fl. Yorks. 1901, p. 39.
Leptocystinema asperum Archer, Suppl. Cat. Desmid. 1858, v, p. 251, t. xxi, f. 5.

Gonatozygon asperum Rabenh. Krypt. Fl. Sachs. 1863, p. 181; Wolle, Desm. U.S. 1884, p. 22, t. i, f. 1.

Cells 10-25 times longer than their diameter, cylindrical, apices slightly dilated ; cell-wall minutely and deusely granulate; gramules variable, sometimes very indistinct, sometimes strong and sharp, even papilliform. Pyrenoids about six to uine in each chloroplast.

Zygospore globose and smooth.
Length $82-284 \mu$; breadth $7 \cdot 5-11 \cdot 5 \mu$; breadth of apices $8 \cdot 6-12 \cdot 5 \mu$; diam. zygospore $25-28 \mu$.

Englant.-Cumberland! Westmoreland! (Bissett). TV., N., and E. Yorks! Zygospores from Cullingwortl and Cautley Spout. Cheshire (Roy). Leicester (Roy). Cambridge! Surrey! Hants! (Roy). Devon! Corn. wall! (Marquand).

Wales.-Capel Curig! (Cooke and Wills), Llyn Ogwen and Llyu Padarn, Carnarvoushire!

Sombund.-Generally distributed! (Roy \& liksseff). Skye in Inverness! Lewis and Harris, Outer Hehrides!

Inemand.-Westport, Mayo! Baheh Loughs and near Recess, Galway! Muckross and Glengariff, Kerry! Dublin and TVicklow (Aprhom). Ram's Is., Lough Neagh! Loughs Ama, Darragh, and Gartan, Donegal! Lough Fea, Londonderyy S Slieve Donard, Down! 'Tipperary, with argospores ((Mrhoin).

Cicomi: Mistribuitim.-France. Germany. Austria. Hungary. Siweden. Faeroes. N. Russia. Greenland. India. Ceylon. Siam. Sumatra. West, Central, and East Africa. W. Indies. United States. Brazil (var.).

Var. pilosellum Nordst.

Gonatozygon monotenium var. pilosellum Nordst. in Wittr. \& Nordst. Alg. Exsic. 1886, no. 750 ; fasc. 21, p. 48.
Cell-wall furnished with fine papillate or spinate projections up to $2 \cdot 5 \mu$ in length.

Wames.-Between Llyniarth and Graig, near Dolgelly, Merioneth (Nordstert).

Ihemand.-Dublin Mts. (Aichor).
Geogi. Distitution.-Brazil.
This variety differs from cr. pilosum Wolle in the slightlydilated apices of the cells and in the less acute hairs (or spines), which are also somewhat denser.

๑. Gonatozygon Brébissonii De Bary.

(Plate I, figs. 8-11.)

Docidium? asperum Ralfs, Brit. Desm. 1848, t. xxi, f. 6e; Bréh. Liste Desm. 1856, p. 147, t. i, f. 33.
Gonatozygon Brébissonii De Bary, Conj. 1858, p. 77, t. iv, f. 26, 27, Archer', in Pritch. Infus. 1861, p. 722 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 156 ; Cooke, Brit. Desm. 1886, p. 2, t. i, f. : ; West, Alg. Wr. Ireland, 1892, p. 114 ; Roy \& Biss. Scot. Desm. 1894, p. 250.
Leptocystinema Portii Archer, Suppl. Cat. Desm. 1859, p. 251, t. xxi, f. 6.
Gonatozygon asperum Lutkem. Desm. Attersees, 1893, 1. 539 ; Johnson, Hare Desm. N.S. II, 1895, p. 291, t. 239, f. S.
Cells 10-16 (sometimes 30-40) times longer than their diameter, narrowly cylindrically-subfusiform, poles subcapitate ; cell-wall minutely and densely granulate ; granules variable, sometimes scarcely visible, sometimes
strongly developed and very sharp. Prrenoids five to sixteen in each chloroplast.
hygospore globose and smooth.
Length $162-288 \mu$; breadth $6 \cdot 8-10 \cdot 8 \mu$; breadth of apices $5 \cdot 8-10 \cdot 3 \mu$; breadth just below apices $42-7 \cdot 5 \mu$; diam. zygosp. 21μ.

Enghand.-Cumberland! Westmoreland! (Biswett). WV., N., and E. Yorks! ('heshire (Rom). Cambridge! Kent! Surrey! Hants! (Roy). Devon! Cornwall! (Marquami).

Wades.-Capel Curig (Coolie amd Will.s); near Dolbadarn Castle; Bethesda; Moelfre; Yr Orsedd, C'arnarvonshire!

Sorotand.-General! (Roy \& Bisseff). C'ommon in the Outer Hebrides! Shetlands!

Tremand.-Generally distributed!
Gionyr. Distrimution.-France. Germany. Norway. Sweden. Faeroes. Italy. Austria. Poland. Greenland. Spitzbergen. Tndia. W. Africa. United States.

This species is more generally distributed than (f. monotannum, firm which it is readily distinguished by the form of the cells. Although rery long, the cells are somewhat fuisiform and always attenuated towards the poles, which are subcapitate. In G. monotonium the cells are quite cylindrical and never attenuated towards the poles, which are slightly wider than any other portion of the cell.

> Var. læve (Hilse) West \& G. S. West. (Pl. I, figs. $12-14$.)

Gonatozygon lave Hilse, in Rabenh. Alg. 1867, no. 1892; West, Alg. N. Yorks. p. 291, t. 291, f. 6 (" G. lave n. sp.").
Gonatozygon Biébissonii var. leve (Hilse) West and G. S. West, Alga-fl. Yorks. 1901, p. 39.
Cells $7-20$ times longer than their diameter ; cellwall smootl.

Length $50-120 \mu$; breadth $4 \cdot 5-8 \cdot 7 \mu$; breadth of apices $4 \cdot 3-5 \cdot 5 \mu$.

Englant.-Cocket Moss, near Giggleswick, and Penyghent, W. Yorks! Mickle Fell, N. Yorks! Epping Forest, Essex !

Sootland.-Loch Harrow, Kirkeudbright!
Iraband.-Clifden, Loughs Derryclare and Shamaclontippen, Galway! Lough Guitane and near Lough Brin, Kerry !

Geogi. Distrilntion.-Galicia in Austria. Germany.
This variety is more often found than the typical form at considerable elevations in mountainons districts. It has been placed as a distinct species, but all intermediate stages occur between the smonth forms and the roughest specimens of typical Cr. Brébissonii.

Var. minutum West \& G. S. West. (Pl. I, figs. 15, 16.)
Gonatozygon minutum West, $A \mathrm{lg}$. N. Wales, $1890, \mathrm{p} .282$, t. v, f. 1; West,
Alg. W. Ireland, 1892, p. 114 .
G. Brélissonii var. minutum West \& (\%. S. West, Alga-fl. Yorks. 1900,
p. 39.
Cells much smaller than in the typical form, subcylindrical, and narrowed towards the poles; cell-wall minutely granulate.

Length $47 \cdot 5-67 \cdot 5 \mu$; breadth $4 \cdot 2-7 \mu$.
England.-Cumberland! Westmoreland! W. and E. Yorks! Surrey! Hants! Cornwall!

Wales.-Capel Curig and Llyn-y-cwm-ffynon, Car'narvonshire!

Scotland:-Harris and Lewis, Outer Mebrides! Skye, Inverness!

Ireland.-Frequent, especially in the west!
licoffr. Distribution.-East Africa.
3. Gonatozygon Kjellmani Wille.
(Plate I, fig. 17.)
Gonatozygon Kjellmani Wille, Ferskv. Alg. Nov. Semlj. 1897, p. 59, t. xiv, f. 78.
G. Brélissonii De Bary, var. Kjellmani Racib. Nonn. Desm. Polon. 1885, p. 69.

Cells 8 times longer than their diameter, commonly cylindrical, slightly curved, a little swollen in the middle, constrieted under each pole; cell-wall very minutely punctulate. Pyrenoids about two in each chloroplast.

Zygospore mknown.
Length 72μ; breadth 8μ; breadth of apices $5-6 \mu$.
The typical plant has not been fond in Britain; it is only known from Nova Zembla, Siberia, and Galicia in Austria.

Forma minor nol. (Pl. I, fig. 18.)
Gonatozygon Kjellmani, forma West, Alg. Eng. Lake Distr. 1892, p. 718.
Cells rather smaller and straight.
Lengtlı 58μ; breadth 6-6.5 μ.
England.-Borrowdale, Cumberland!
This rare species las been placed by Raciborski as a variety of G. Brétissomii, but we think it possesses characters which casily distinguish it from that species. It is a much shorter species than G. Brefissonii, being relatively much wider, the apices are not so rounded, and the gramlation is mnch finer.

4. Gonatozygon pilosum Wolle.

(Pl. I, figs. 19, 20.)

Gonatozygon pilosum Wolle, in Bull. Torr. Bot. Club, 1882, p 27, t. 13, f. 16 ; Desm. U.S. 1884, p. 32, t. i, f. 2; West, Alg. N. Wales, 1890, p. 282; West \& G. S. West, Freshw. Alg. Ceylon, 1902, p. 133.

Cells 12-20 times longer than their diameter, cylindrical; apices truncate, not at all or very slightly dilated; cell-wall more or less densely clothed with small, straight, hair-like spines. Pyrenoids about six in each chloroplast.

Zygospore unknown.
Length $177-300 \mu$; breadth (without spines) $10 \cdot 5-$ 15μ; length of spines $2 \cdot 5-5 \mu$.

England.-Skipwith Common, E. Yorks!
Wales.-Capel Curig, Carnarvonshire!
Geogr. Distribution.-India. Ceylon. Java. United States.

This is a rare species, resembling G. monotanium in the form of its cells, which are cylindrical and sometimes have slightly dilated apices. It is distinguished by the dense covering of fine, stiff spines.

ᄃ. Gonatozygon Kinahani (Arch.) Rabenh.

(Pl. II, figs. 1-3.)

Lepitocystinema Kinahani Arch. Suppl. Cat. Desm. 1852, p. 243, 250, t. xxi, f. 1-4.

Gonatozygon Kinahani (Arch.) Rabenh. Flor. Europ. Alg. III, 1858, p. 156 ; Cooke, Brit. Desm. 1887, p. 3, t. 1, f. 3; West, Add. Alg. W. Yorks. II, 1891, p. 244; West, Alg. W. Ireland, 1892, p. 114; Roy \& Biss. Scott. Desm. 1894, p. 250.

Cells 14-25 (sometimes 40) times longer than their diameter, cylindrical; apices truncate, sometimes very slightly dilated; cell-wall perfectly smooth. Pyrenoids four to ten in each chloroplast.

Zygospore unknown.
Length $162-376 \mu$; breadth $11-14 \mu$.
Evfiland.-Malham Tarn and Penyghent, W. Yorks! Strensall Common, N. Yorks! Sheep's Green, Cambridge! Richmond Park and Wimbledon Common, Surrey!

Scotiand.--Scotston Moor, Whitestripes Moor, Tillyfour, Powlair, and Slewdrum, Aberdeen; Crathes, Kincardine (Roy \& Bissett).

Ireland.-Ballynahinch and lakes near Recess, Galway! Churchill, Donegal! Lough Fea, Londonderry! Dublin and Wicklow (Archer).
(ieogi. Distribution.-Italy. Siam (var.). United States.

This species is the only Gonatozygon with a perfectly smooth cell-wall. In form it is somewhat similar to G. monutanium, but is often of larger size. It is easily overlooked on account of its apparent resemblance to sterile filaments of certain species of Mougeotia. We have often obtained it in long filaments and sometimes in almost pure gatherings.

Genus 2. GENICULARIA De Bary, 1858.
De Bary, Conj. 1858, p. 77.
Cooke, Brit. Desm. 1887, p. 184.
Cells cylindrical, elongate, not constricted, apices truncate, remaining attached in filaments for some
time, but separating previous to conjugation when they become geniculate. Chloroplasts two or three, forming parietal spiral bands, sometimes irregular. Cell-wall densely and minutely granulate.

Zygospores situated between the two conjugating' cells.

1. Genicularia spirotænia De Bary.

(Pl. II, figs. 4-6; Pl. V, figs. 3, 4.)
Gonatozygon spirotænia De Bary, in Hedwigia, 1856, p. 106.
Ceniculuria spirotænia De Bary, Conj. 1858, p. 77, t. iv, f. 1-22; Arch. in Pritch. Infus. 1861, p. 721, t. iii, f. 3 (from De Bary); Rabenh. Flor. Europ. Algar. III, 1868, p. 156; Cooke, Brit. Desm. 1857, p. 184, t. 66t, f. 6 ; West \& G. S. West, Notes Alg. III, 1903, p. 8 (sep.).

Cells 10-20 times longer than their diameter, cylindrical; apices very slightly dilated. Pyrenoids fairly numerous in each chloroplast. Chloroplasts two or three, making from $4_{2}^{1}-7 \frac{1}{2}$ turns.

Zygospore globose and smooth.
Length $200-400 \mu$; breadth $20-2.5 \mu$; breadth of apices $27-29 \mu$; diam. zygosp. 48-57 μ.

England.-Hayle Pool, abont four miles from the Lizard, Cornwall!

Geogr. Distribution.-Germany. Galicia in Austria.
This rare Desmid has been observed twice from Cornwall, but is not known from any other part of the British Islands. The genus Genicularia is one of the rarest of all known genera of Desmids.

2. Genicularia elegans West \& G. S. West.

(Pl. V, figs. 1, 2.)

Genicularia clegans West \& fr. S. West, Scott. Freshw. Plankton, I, 1903, p. 536, t. 14, f. $1,2$.

Cells 20-28 times longer than their diameter, cylindrical and slightly curved; apices slightly dilated. Chloroplasts two, in very loose spirals making from $1 \frac{1}{2}-4$ turns. Pyrenoids very numerous.

Zygospore unknown.

Length 300-127 μ; breadth $1 \cdot 1-16.3 \mu$; breadth of apices $17-18.5 \mu$.

Scotrand.-In the plankton of Loch nan Eun, N. Uist, Outer Hebrides !

We have ouly observed this interesting species in the plankton collections from the above-mentioned lake. It is distingnished from (\dot{r}. spirotania De Bary by its narrower and more elongated cells, and by the fewer turns and laxer disposition of the two spiral chloroplasts.

Tribe 2. Spiloteniee.

In the genera of this tribe (with the one exception of Ancylonemu, which is not a British genus) the cells are solitary, relatively short, and unconstricted (with the exception of a few species of Cylindrocystis). The cell-wall is not differentiated into two layers and is quite smooth. The individuals do not reach maturity by the mere growth of the younger half-cell, but there is a subsequent periodical growth, chiefly in length.

Genus 3. SPIROTENIA Bréb. 1848.

Bréb. in Ralfs' Brit. Desm. 1818, p. 178. Areh. in Pritch. Infus. 1861, pp. 720 and 751. Cooke, Brit. Desm. 1886, p. 50.
De Toni, Syll. Algar. 1889, p. Su7.
Lütkem. Gatt. Spirotien. 1895, p. 92.

Cells straight or almost straight, oblong-cylindrical or fusiform, not constricted, apices rounded, subacute, or acute; with a single chloroplast, band-like and parietal, or axile and cristate (or ridged), spirally twisted to the left; nucleus excentric; cell-wall smooth and colourless.

Species of this genns are nerer abundant and are mostly very uncommon. They are met with sparingly either amongst other Desmids in collections from bogs, or occasionally from wet rocks. They are casily overlooked owing to the delicate nature of the cell-wall and their generally inconspicnous appearance. There is frequently great difficulty in determining the precise nature of the chloroplast,
and they often occur in pairs owing to the copions mucus holding the two individuals in the position they occupied immediately after division.

The genus is divided into two sections according to the axile or parietal disposition of the chloroplast.

Section 1. Monotænix Rabenh.; em. Lïtkem.
Chloroplasts parietal, band-like; pyrenoids few and scattered.

1. Spirotænia condensata Bréb.

(Pl. II, figs. 7-10.)

Spirotrenia condensata Bréb. in Ralfs' Brit. Desm. 1848, p. 179, t. 34, f. 1 ; De Bary, Conj. 1858, p. 75, t. 5, f. 12 ; Arch. Conj. Spiruten. 1 s 67, p. 186, t. 8, f. 5-11; Rabenh. Flor. Europ. Algar. III, 1868, p. 146; Wolle, Desm. U.S. 1884, p. 33, t. 3, f. 21, 22; Cooke, Brit. Desm. 1856, p. 50, t. 19, f. 3; West, Alg. W. Ireland, 1892, p. 133; Lütkem. Gatt. Spirotæn. 1895, p. 53; Nordst. Index Desmid. 1896, p. 78 ; West \& G. S.West, Alg. S. England, 1897, p. 478 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 39.

Cells large, cylindrical, $5-10$ times longer than their diameter, poles rounded ; chloroplast broad, parietal, with 7-12 rather close revolutions.

Zygospore globose ; inner wall pale brown; outer wall colourless, thick, and furnished with large areolar markings.

Length $150-270 \mu$; breadth 18-27 μ; diam. zygosp. 60μ.

England. - Cumberland! Westmoreland! (Ralfs). W. and N. Yorks! Lancashire! Leicester (Roy). Warwick (Wills). Norfolk (Coolie). Gloucester (Ralfs). Surrey! Sussex (Ralfs). Kent (Rulfs). Hants! (Bennett). Devon! Cornwall! (Ralfs).

Wales.-General in the mountainous districts !
Scotland.-General! ; occasionally with zygospores (Roy \& Bissett). General in the Onter Hebrides!

Iremand.-Galway! Kerry! Donegal! Dublin and Wicklow (Archer). Down!

Geoyr. Distribution.-France. Germany. Austria Italy. Norway. Sweden. Denmark. Russia. Poland

Nova Zembla. Spitzbergen. Japan. United States. Cuba.

This is the largest and most frequent of the British species of Spirotania. It occurs frequently in bogs, especially in mountainous districts, and is a very striking. Desmid. The cells may be quite straight or slightly but variously curved.

2. Spirotænia closteridia (Bréb.) Arch.

(Pl. II, fig. 19.)
Enclospirce closteridiu Bréb. in Kütz. Tab. Phycolog. 1847, I, p. 24, t. 36, f. 2. Pulmoglac closteridia Kütz. Spec. Alg. 1849, p. 228.
Spirotænia closteridia (Bréb.) Arch. in Proc. Dubl. Nat. Hist. Soc. 1864, p. 16 ; Rabenh. Flor. Europ. Alg. III, 1868, p. 146, fig. xylogr. p. 104;

Roy \& Biss. Scott. Desm. 1894; Nordst, Index Desmid. 1896, p. 75 ;
Lütkem. (Gatt. spirotion. I1, 1903, p. 12 (sep.), t. 11, f. 12, 13.
Cells minute, $4-1 \frac{7}{2}$ times longer than their diameter, fusiform, usually distinctly curved, apices obtuse; chloroplast parietal, with two revolutions. Cells often gregrarious in a mucilaginous jelly.

Zygospore unknown.
Length $14-28 \mu$; breadth $3 \cdot 3-5 \mu$.
Scotland.-Muchalls, Kincardine (Roy \& Bissett).
Geogi. Distribution. - France. Germany (var.). Bohemia (var.).

3. Spirotænia endospira (Kütz.) Arch.

> (Pl. II, figs. 20-23.)

Palmoglac endospira Kütz. Tab. Phycolos, I, 1847, p. 19, t. 24, f. 6.
Endospiru Bryophila Bréb. in Desmaz. Crypt. de Fr. 1850, fasc. 40, no. 1654.

Spirotrnia musicola De Bary, Conj. 1858, p. 75, t. 7 F; Arch. in Pritch. Infus. 1861, p. 751.
Spirotæní endospiru (Kütz.) Areh. in Proc. Dubl. Nat. Hist. Soc. 1864, p. 15 ; Lütkem. Gatt. Spirotan. II, 1903 , p. 10 (sep.), t. 11, f. 10.

Spirotænia Bryophila (Bréb.) Rabenh. Flor. Europ. Alg. III, 1868, p. 146, fig. xylogr. p. 1U4; Wolle, Desm. U.S. 1884, p. 33, t. 3, f. 20; Cooke, Brit. Desm. 1886, p. 52, t. 19, f. 8 ; Nordst. Indux Desmid. 1896, p. 70.
('ells small, 2 or 3 times longer than their diameter, oblong-cylindrical, straight or very slightly curved, apices rounded; chloroplast parictal, broad, with $1-1 \frac{1}{2}$ revolutions. Cells gregarious in a mucilaginous jelly.

Zygospore unknown.
Length $12-21 \mu$; breadth $6-7 \cdot 4 \mu$.
England.-Shipley Glen, W. Yorks!
Wares.-Capel Curig (Roy).
Scotland.-Braes of Gight, Scotston Moor, Dalbagie, Aberdeen; Muchalls, Kincardine (Roy \& Bissett).

Tredand.-Dublin and Wicklow (Archer).
Gooyr. Distribution.-France. Germany. Switzerland. Hungary. Sweden. Faeroes. United States.
This is distinguished from the preceding species by its larger size and cylindrical cells. The chloroplast is also relatively broader.

4. Spirotænia truncata Arch.

(Pl. II, figs. 24-26.)
Spuirotaniut truncuta Arch. in Proc. Dubl. Nat. Hist. Soc. 1stie, p. 83, 1. .2, f. 2831 ; in Micr. Journ. 1862, p. 253, t. 12; Conj. Spirotæn. 1s67, p. 191, t. 8, f. 12 ; Rabenh. Flor. Europ. Algar. III, 18688, p. 147 ; Cooke, Brit. Desm. 1886, p. 51, t. 19, f. 4; Nordst. Index Desmid. 1896, p. 261.

Cells small, cylindrical, $5-8$ times longer than their diameter, attenuated near the apices which are truncate ; chloroplast with two to six rather close revolutions leaving a minute clear space at the poles; this clear space or apical vacuole sometimes contains one or more moving granules.

Zygospore globose, closely covered with large, acutely-conical teeth.

Length 50μ; breadth 7μ; diam. zygospore without spines 18μ, with spines $30-35 \mu$.

Engiand.-Angle Tarn, Cumberland!
Waies.-Capel Curig, Carmarvonshire!
Scotlanl.--Inverness (Skye), Aberdeen, Kincardine, Forfar, Perth, Argyle (Roy \& Bissett).

Indiand.-Dublin and Wicklow (Areher). Mourne Mts., Down! Zygospores from Glencar, Kerry, and from Westmeath (Archer).

Georf: Distribution.-Demmark. Sweden. Nova Zembla. India (var.).

5. Spirotænia minuta Thur.

(Pl. III, figs. 1-3.)

Spirotania minuta Thur. in Bréb. Liste Desm. 1856, pp. 157 and 303, t. 1, f. 30 ; De Bary, Conj. 1858, p. 75 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 147; Kirchn. Alg. Schles. 187s, 1. 136; Cooke, Brit. Desm. 1886, p. 51, t. 19, f. 7; Lütkem Gatt. Spirotan. 1895, p. 5. t, t. 1, f. 21 ; Nordst. Index Desmid. 1896, p. 171.
Spirotania erythrocephala Arch. in Pritch. Infus. 1861, p. 751 (non Itzigs.).
Cells small, $5-6$ times longer than their dianeter, fusiform, apices subacute or acutely rounded ; chloroplast parietal, rather narrow, with three to five revolutions.

Zygospore unknown.
Length $15-40 \mu$; breadth $3-7 \mu$.
England.-Pilmoor, N. Yorks! Enbridge Lake, Hants (Roy). Cormwall (Merquemud).

Wales.-Llyn Tdwal and Llyn Bochlwyd, Car'narvonshire!

Scotland.-General (Roy \& Bissett).
Irelani.-Carrick Mountain, Wicklow (Archer). West of Glenties, Donegal! Slieve Donard, Down!

Geogr: Distribution.-France. Germany. Austria. Sweden.

Laitkemüller has recently placed the British forms of this species as " var. obtusa."

Var. minutissima Kirchn.

Spirotania minuta Thur. var. minutissima Kirchn. Mger. Schles. 1878, p. 136; Roy \& Biss. Scott. Desm. 1894, p.250; Nordst. Index Desmid. 1896, p. 171.
About half the size of the typical plant and with the apices more acute ; chloroplast broader.

Length $15-20 \mu$; breadth $3 \cdot 5-4 \mu$.
Scotland.-Strathpeffer, Ross ; Glen Cattie, between Loch Kinnord and Cambus O’May, Aberdeen; Scolty, Kincardine ; Fendoch Hill, l'erth (lio! \& Lissett).

Coogr: Distribution.-Germany.
Roy remarks that this varicty forms " lines of from 20 to 30 individuals, in pairs, with a little distance between cach pair, enveloped in mucus."

The variety lias been elevated by Lütkemüller to a species under the name of "Sp. Kirchneri."

6. Spirotænia eboracensis G. S. West. (Pl. III, figs. 4-6.)

Spirotænia minuta Thur. var. cboracensis West \& G. S. West, Notes Alg. I, 1898, p. 2 (sep.) ; West \& (i. S. West, Alga-fl. Yorks. 1900, p. 40.
Spirotanice eborucensis G. S. West in Lütkem. Gatt. Spirotien. II, 1903, p. 9 (sep.), t. 11, f. 7.

Cells small, about 4 times longer than their diameter, fusiform-elliptic, with romeded apices; chloroplast parietal, rather narrow, with $1-4 \frac{1}{2}$ revolutions.

Zygospore unknown.
Length $30-32 \mu$; breadth $7-8 \mu$.
England.-Cam Fell, W. Yorkshire!
Not uncommon among Cylindrocystis crassa, Netrium Digitus, Hymlothecu dissiliens, etc., in peat bog's.

We agree with the recent suggestion of Lütkemüller that this plant should be regarded as a species distinct from Spirotenia minuta. It is distinguished by its relative shortness in proportion to its breadth, and by the outward form of the cell.

7. Spirotænia turfosa West \& G. S. West.

(Pl. II, fig. 11.)
Spirotrnia turfosa West \& G. S. West, Notes Alg. I, 1898, p. 2 (sep.); Alga-fl. Yorks. 1900, p. 40.
Cells of medium size, about 12 times longer than their diameter, subcylindrical, elongate, almost straight or slightly curved, at each pole gradually attenuated, apices rounded; chloroplast parietal, rather broad, making only $1 \frac{1}{2}-2$ revolutions, pyrenoids small and scattered.

Zygospore unknown.
Length $100-102 \mu$; breadth $7 \cdot 5-8 \cdot 5 \mu$; breadth of apices about 4μ.

Entiand.-Ilkley, W. Yorkshire!
This species, which was found in peaty pools, appears to come nearest to S. parmula Arch., but is of much larger size, is proportionately longer, and has more romded and relatively wider ends. It differs from S. fusiformis in its larger size, its more rounded poles, and in having more turns of the chloroplast.

8. Spirotænia fusiformis West \& G. S. West.

(Pl. II, figs. 12-14.)
Spirotanicifusiformis West \& (i. S. West, Notes Alg. I, 1s98, 1. 2 (sep.); Alga-fl. Yorks. 1900, p. 40.

Cells small, $10-12$ times longer than their diameter, elongate, straight or often slightly oblique, cylindricofusiform, attemnated towards the apices which are acute but rounded; chloroplast parietal, rather broad and somewhat irregularly disposed from pole to pole, making $\frac{1}{2}-\frac{3}{4}$ of a revolution.

Zygospore unknown.
Length $42-58 \mu$; breadth $4 \cdot 3-4 \cdot 6 \mu$.
England. - Cowgill Wold Moss, Widdale Fell, W. Yorkshire!

This species was found in peaty pools amongst Spharmum. The cells were solitary or in pairs (after division) and ocenred somewhat sparingly among a large quantity of Arthrodesmus Incus. It was very difficult to determine the precise nature of the chloroplast, on account of its indefiniteness and the small size of the plant; it only made from half to three-quarters of a turn, and the protoplasm (outside the chloroplast) contained some large granules.

It is distinguished from S. tenemima Arch. by its greater diameter, its comparatively shorter cells, and by the different nature of the chloroplast.

9. Spirotænia parvula Arch.

> (Pl. II, figs. 15-18.)

Spirotænia parvula Arch. Descript. new Cosm. etc. p. 8.4, t. 2, f. 32-43; Rabenh. F'lor. Europ. Algar. III, 1868, p. 147; Lund. Desm. Suec. 1871, p. 91 ; Cooke, Brit. Desm. 1886, p. 51 , t. 19, f. 5; Lütkem. Desm. Attersees, 1893, p. 540; Lütkem. (iatt. Spirotæn. 1895, p. 54 ; Nordst. Index Desm. 1896, p. 196.

Cells minute, $5-8$ times longer than their diameter, slender, fusiform, apices gently rounded; chloroplast parietal, very narrow, making $1-1 \frac{1}{4}$ revolutions.

Zygospore unknown.
Length $17-35 \mu$; breadth $3 \cdot 5-4 \cdot 5 \mu$.

England．－Bowness，Westmoreland（Bissett）．En－ bridge Lake，Hants（Roy）．Cornwall（Murqumul）．

Wales．－Glyder Fach，Carnarvonshire（at 2，200 ft．）！
Soutand．－Nairn，Aberdeen，Kincardine，Forfar， Perth（Roy \＆Bissett）．Rhiconich，Sutherland！

Treland．－Dublin and Wicklow（Arher）．
Georf．Distribution．－Austria．Sweden．Brazil．
This species is sufficiently distinct ly reason of the form of the cells and the narrow cliloroplast with few turns．We are indebted to Dr．J．Lütkemütler for accurate figmres of this plant．

Section 2．Polytænix Rabenh．

Chloroplast axile，cristate，with several spirally arranged ridges revolving to the left，rarely almost straight；with one axile series of pyrenoids．

10．Spirotænia obscura Ralfs．

> (Pl. III, fig's. 7-12.)

Spirotenic obscura Ralfs，Brit．Desm．1848，p．179，t．34，f．2；De Bary． Conj．1858，p． 75 ；Areh．in Pritch．Infus．1861，p． 752 ；Rabenh．Flor． Europ．Alg．III，1868，p．117；Wolle，Desm．U．S．188．，p．33，t．3， f．16－19；Cooke，Brit．Desm．1886，p．52，t．19，f．6；Luitkem．Gatt． Spirotan．1895，p．2，93，t．1，f．1－6，15－19；Nordst．Index Desmid． 1896，p． 186 ；Koy．\＆Biss．Scott．Desm．1894，p． 58 （sep．）；West \＆ G．S．West，Alg．S．England，1897，p． 478.
Cells of medium size， $3 \frac{1}{2}-8$ times longer than their diameter，cylindrical or fusiform，attemuated towards each pole，apices rounded；chloroplast axile，not quite reaching the poles，cristate，with $3-8$ ridges spirally twisted to the left，rarely almost straight，ridges thickened at the free margin；pyrenoids several．

Zygospore globose，areolate．
Length $50-210 \mu$ ；breadth $15-30 \mu$ ．
Enthand．－Westmoreland（ Bissett）．N．Yorks！ Lamcashire！Warwick（Wills）．Kent（hulfs）．Sur－ rey！Hants（Roy）．Cormwall（Lalfs）．

Wales．－Capel Curig！（C＇ooke f．Wills）；Llyn Idwal！；I Foel Fras，Carmarvonshire！

Scotland--Ross, Tnverness, Aherdeen, Kincardine, Perth, Stirling; zygospores from Cammic, Kincardine (Roy \& Bissett). Sutherland!

Inelant.-Dublin and Wicklow (Apeher). Near Loch Brim, Galway!

Geofr. Distribution.-France. Germany. Switzerland. Austria. Hungary. Italy. Norway. Sweden. Hollamd. Spitzbergen. Nova Kembla. United States.

11. Spirotænia bispiralis West. (Pl. III, fig. 13.)

Spirotrenia bispiralis West, Alg. W. Ireland, 1892, 1?. 138, t. 20, f. s; Lütkem. Gatt. Spirotan. 1895, p. 57; Nordst. Index Desmid. 1s9i; p. 62.

C'ells large, of times longer than their diameter, fusiform, poles subtruncate; chloroplast axile, with two narrow ridges arranged in close spirals making about 9 revolutions.

Zygospore unknown.
Length $86-100 \mu$; breadth $18-20 \mu$; breadth just below apices $4-6 \mu$.

Ireland.-Near Westport, Mayo!
This plant has only once been observed, but if its characters are constant it is a well-marked species. If the number of spiral ridges is variable it is probably only a form of S. nbscura Ralfs.

12. Spirotænia trabeculata A. Br.

> (Pl. V, fig. 6.)

Spirotænia trabeculata A. Br. in Rabenh. Alg. 1856, no. 543; De Bary, Conj. 1858, p. 75 ; Rabenh. Krypt. Fl. Sachs. 1863, p. 178 ; Lïtkem. Gatt. Spirotren. 1895, p. 5, 95, t. 1, f. 20; Nordst. Index Desmid. 189t, p. 256; West \& G. S. West, Alg. N. Ireland, 1902, p. 19.

Cells of medium size, $5-7 \frac{1}{2}$ times longer than their diameter, subeylindrical, gradually attenuated from the middle towards the apices, which are subtruncate; chloroplast axile, scarcely reaching the extremities of the cell, cristate, with 5 or 6 slightly spiral ridges
which are scarcely thickened at the free margin, pyrenoids many.

Zygospore unknown.
Length $142-210 \mu$; breadth $19-3.5 \mu$; breadth of apices $10 \cdot 5-11 \cdot 5 \mu$.

Ireland.-Lough Anna, Donegal!
Geogr. Distrilution.-Austria. Germany.
In the Irish specimens the chloroplast possessed six almost straight ridges, and extended the whole length of the cell with the exception of a very small space at each end. In many specimens the chloroplast was partially interrupted in the middle, and most of the examples appeared to be faintly constricted. The apices were distinctly more truncate than those figured by Luitkemüller, but Rabenhorst says " utroqne polo truncata," and Liitkemüller has since remarked that the apices are probably subtruncate. It is a very rare species.

13. Spirotænia acuta Hilse. (Pl. III, figs. 14, 15.)

Spirotania acuta Hilse, in Rabenh. Alg. 1866, no. 1830; Rabenh. Flor. Europ. Alg. III, 1868, p. 148 ; Cooke, Brit. Desm. 1887, p. 185, t. 66, f. 5; Lütkem. Gatt. Spirotæn. 1895, pp. 56, 93 ; Nordst. Index Desmid. 1896, p. 39 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 41 ; Alg. N. Ireland, 1902, p. 19.

Cells small, ($\left.2 \frac{1}{2}-\right) 5-8$ times longer than their diameter, fusiform, tapering from the middle to the apices, which are acute; chloroplast axile, with several (3 or 4) spirally arranged ridges which sometimes anastomose. Pyrenoid usually solitary.

Zygospore unknown.
Length $30-37 \mu$; breadth $6-7 \cdot 2 \mu$.
England.-Pilmoor, N. Yorks! Hampsfell, Lancashire!

Scotland.-Upper Powlair, Slewdrum, Culblean, Aberdeen; Den of Garrol and Dalbrake, Kincardine; Fintray Hills, Stirling (Roy \& Bissett). Rhiconich, Sutherland! Near Balallan, Lewis ; and near Tarbert, Harris, Outer Hebrides !

Ireland.-Galway (Archer). Near Gweedore; Loughs Anna and Machugh, Donegal!

Geogr. Distribution.-Silesia in Germany. Anstria.

This is a rare plant and is readily distinguished by the sharp apices of the cells. The chloroplast usually contains one pyrenoid and extends to the extreme points of the cells. The spiral ridges are generally three or four in number, rather irregular, and they frequently join together. Lütkemiuller gives 18μ as the length of his smallest specimen (ouly $2 \frac{1}{2}$ times longer than broad), but we have seen no British specimens so short as that.

14. Spirotænia tenerrima Arch.

Spirotrnia tenerrima Arch. in Quart. Journ. Micr. Sci. 1870, p. 203; Cooke, Brit. Desm. 1886, p. 52; Lütkem. Gatt. Spirotæn. 1895, p. 54; Nordst. Index Desmid. 1896, p. 251 ; West if it. S. West, Alga-fl. Yorks. 1900, p. 41.
? Spirotrnia gracillima Arch. in Quart. Journ. Micr. Sci. 1875, p. 116, t. 6 ; Nordst. Index Desmid. 1896, p. 133.

Cells minute, very slender, 20 times longer than their diameter, somewhat curved or arched and slightly attenuated towards the poles, apices truncate (P); chloroplast r, forming a single spiral.

Length $31-42 \mu$; breadth $2 \cdot 5-3 \cdot 5 \mu$.
? [England.-Pilmoor, N. Yorkshire! (Pl. III, figs. $16,17)$.

Treland.-Dublin (Archer).
It is extremely doubtful whether the specimens from Yorkshire really belonged to this species, or to the Desmidiacere at all! The nature of the chloroplast was very obscure and the specimens may have been forms of Rhaphidium fasciculutum var. aciculare. It is also doubtful whether the forms. described by Archer as two species are identical. For S. tenerrima he says : "Exceedingly slender, being, however, long as compared with the diameter; the cells somewhat curved or arched, slightly tapering, ends truncate, the endochrome forming a single spiral reaching from end to end of the cavity, self-division transverse ;" and for S. gracillima he says: "Very minute, linear, extremely slender, very slightly tapering, apices blunt, spiral turns very numerous; a remarkable form from its extreme slenderness. Breadth $2 \cdot 5-2 \cdot 8 \mu$, about twenty times longer than broad." It may be that these plants are distinct species, but Archer's descriptions are insufficient.

Genus 4. MESOT $\neq N I U M$ Näg. 1849.

Niig. Gatt. einz. Alg. 1849, p. 108.
De Bary, Conj. 1858, p. 20, 30, 74.
Arch. in Proc. Dubl. Nat. Hist. Soc. 1864, p. 20.
Cooke, Brit. Desm. 1886, p. 4.7.
De Toni, Syll. Alg., 1889, p. 811.
Cells cylindrical or subcylindrical, usually straight, often slightly curved, not constricted, apices rounded or subtruncate ; with a solitary chloroplast (more rarely with two chloroplasts), which is axile, flattened, and plate-like; pyrenoids one or several ; nucleus frequently excentric.

Of the ten British species of this genus, only three occur as free-floating Desmids in quiet water. The remaining seven are found in gelatinous masses amongst mosses, principally on wet rocks.

The cells are frequently filled with large quantities of reserve products which completely obscure the choloroplast.

The British species are best arranged in the following manner:

> A. Cells embedded in mucilaginous masses.
> * Cell-sap uncoloured.
> + Cells cylindrical or ellipsoilal, poles rounded.
> Cells large, often curved, 3-5 times longer than broad.
> 1. M. De Greyi.
> Cells of medium size, rarely curved, $1 \frac{1}{2}-2 \frac{1}{2}$ times longer than broad.
> 2. M. mirificum.
> Cells small, cylindrical, $2-2 \frac{1}{3}$ times longer than broad; diam. 15μ.
> 3. M. macrococcum.
> Cells small, cylindrical, 2-21 $\frac{1}{2}$ times longer than broad ; diam. 11-12 μ.
> 4. M. chlamydosporum. $\dagger \dagger$ Cells subeylindrical, poles attenuated.
> 5. M. caldariorum.
> $\dagger \dagger \dagger$ Cells cylindrical, poles truncate.
> 6. M. truncatum.
> ** Cell-sap normally coloured violet.
> 7. M. violascens.

> B. Cells free-swimming.

* Cell-sap coloured purple or violet.

8. M. purpureum.
** Cell-sap uncoloured.
\dagger Cells straight, 3-4 times longer than broad.
9. M. Endlicherianum
$\dagger+$ Cells curved, 6-8 times longer than broad.
10. M. Kramstai.
A. Cells in mucilaginous masses, principally on wet rocks.

1. Mesotænium De Greyi Turn.

(Pl. III, figs. 18, 19.)

Mesotunium De Greyi Turn. Notes Freshw. Alg. 1856, p. 31, t. 1, f. 1 ; Cooke, lirit. Desm. 18S6, p. 48, t. 18, f. (i; West, Alg. W. Ireland. p. 131 ; Alg. Eng. Lake Uistr. 1892, p. 721 ; West d G. S. West, Alg. S. England, 1. 475 ; Alga-fl. Yorks. 1900, p. 41 ; Alg. N. Ireland, 1902, p. 19; Nordst. Index Desmid. 1s96, p. 136.

IIcsotanium Braunii De Bary, var. Greyi ('Iurn.) Roy in Scott. Nat. x, 1890, p. 206.

Cells large, $4-4 \frac{1}{2}$ times longer than their diameter, cylindrical, straight or curved, apices broadly rounded.

Zygospore unknown.
Length $76-104 \mu$; breadth $20-2 \cdot 3$.
Eagland.-Bowness, Westmoreland! Blubberhouses (T'umer), Ilkley, Simon Seat, and near Settle, W. Yorks! Puttenham Common, Surrey! 'Tintagel, Cornwall!

Scotland. - Bræriach, Inverness; Tough, Glen Derry, and "Colonel's Bed," Aberdeen ; Kyles of Bute, Argyll (Roy \& Bissett).

Trbland.-Castletown, Kerry! Lough Nacung, Donegal!

Georg: Mistribution.-Australia.
This is the largest species of the gemis and the cells freequently become filled with reserve materials, often in the form of large oil globules.

Forma major formet noe. (Pl. III, fig. 21.)
Cells rather larger than in the typical form, and about $\&$ tinnes longer than their diameter.

Length $97-123 \mu$; breadth $26-30 \mu$.
Ireland.-Mourne Mts., Down.
This form uccurred in gelatinuus masses on rocks, mixed with other Desmids and numerous Diatoms. Many of the individuals were straight, the others being slightly curved.

> Forma tenuis forma nov. (Pl. III, fig. 22.)

Cells rather narrower than in the typical form ; a little more than 5 times longer than their diameter.

Length 83μ; breadth 15.5μ.
England.-Epping Forest, Essex!
This form occurred in peaty ditches along with Enastrum lubulatiom and Tetmemorus granulatus. It is of about the same length as the type, but is proportionately narrower. The cells were embedded in a mass of mucus produced principally by numerous specimens of Vanhentriaia rhombuides var. Saxonica.

Var. breve West. (Pl. III, fig. 20.)

M. De Greyi var. breve West, Alg. W. Ireland, 1892, p. 131, t. 20, f. 6.

Cells almost straight or slightly emrved, $2 \frac{1}{2}$ times longer than their diameter.

Length 58μ; breadth 21-22 μ.
Iremand.-Tore Mountain, Kerry ! on dripping rocks with Amphorilium Mongeotii and other mosses.

The cells of this variety are much shorter than those of the type, but in their breadth and other respects they are precisely similar.

2. Mesotænium mirificum Arch.

> (Pl. IV, figs. 18, 19.)

> Mesotenium mirificum Arch. Pahmoghea and descrip. Mesot. 186 f , p. 15, t. 1, f. 20-31; Cooke, Brit. Desm. 1886, p. 47, t. 18, f. 3; West © (i. S. West, Alga-fl. Yorks. 1900, p. 41; Nordst. Index Desmid. 1896, p. 173. Palmoglece mirificu Rabenh. Flor. Europ. Alg. 111, 1868, p. 117.

Cells broadly elliptical or oblong-elliptical, $1 \frac{1}{2}-2 \frac{1}{2}$ times longer than their diameter, straight or rarely slightly curved; chloroplast in the form of a very narrow axile plate which is often curved.

Zygospore unknown.
Length $9.5-42 \div \mu$; brealth $15-20 \mu$.
ExGband. - Stickle Tarn, Westmoreland! Ogrden Clough and Tngleton, W. Yorks! Leicester (Rom).

Wides. - Llyn Idwal, Carnarvonshire!
Southanl--Harris, Outer Hebrides! Goat Fell, Arran!

Ireland.-Dublin and Wicklow (Archer).
Archer observed the formation of asexual spore-like bodies in this plant; they were of a brown colour and of an average diameter of about 25μ. He says: "I have observed the cellcontents bonnded by the primordial utricle escape from the parent-cell without conjugation, throngh a lateral or terminal or intermediately disposed opening, effected by the raising up and often the separation of a lid or valve-like portion of the parent-cell membrane. During this operation the contents are often much constricted, by reason of the narrow orifice through which the mass makes an exit. After emergence it becomes rounded, and the contents of this resting-spore-like body, which do not conjngate or combine with any other, become of a reddish-brown hne, with a dark corpascle in the centre. The cmpty parent-cell membrane lies hard by, the lid-like structure sometimes apparently still adherent by one point-sometimes wholly detached, and lying about in various positions, or lost altogether."

T'he elliptical ontline of the cells is sufficient to distinguish this species from M. macrococtum and M. chlemydosporum.

3. Mesotænium macrococcum (Kütz.) Roy \& Bissett.

$$
\text { (Pl. III, figs. } 34-36 .)
$$

Pulmoglea mucrococcu Kütz. Phyc. germ. 1845, p. 153; Tab. Phycolog. 1817, I, t. 2.4, f. 2; Spec. Alg. 1849, p. 228; Labbenh. Flor: Europ. Alg. III, 1868, p. 115; Nordst. Index Desmid. 1896, p. 162 ; Arch. Palmogloa and descrip. Mesot. 1864, p. 12-14.
Mesotænium Braunii De Bary, Conj. 1858, p. 74, t. 7 A, f. 1-8; Kirchn. Ilg. Schles. 1878, p. 134; Wolle, Desm. U.S. 1884, p. 31, t. 3, f. 5-9; T'urn. Freshw. Alg. E. India, 1893, p. 15.
Mesotænium mucrococcum (Kütz.) Roy \& Biss. S'cott. Desm. 189\&, p. 61 (sep.) ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 41.
Cells cylindrical, $2-2 \frac{1}{2}$ times longer than their diameter, apices truncately rounded ; chloroplast a strong axile plate, often with a toothed margin.

Zygospore somewhat quadrate with rounded angles.

Length 33-35 μ; breadth 15μ.
England.-W. Yorks! Leicester (Roy). Hants (Roy). Cornwall!

Wares.-Capel Curig (Roy), Moel Siabod!, Llyn Idwal!, Glyder Fawr, at 2,300 ft., Carnarvonshire !

Scotland.-Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Renfrew (Roy \& bissett).

Ireland.-Dublin and Wicklow (Archer).
Geogr. Distribution.-France. Germany. Galicia and Austria. Norway. Faeroes. India. United States.

Var. micrococcum (Kütz.) West \& G. S. West. (Pl. IV, figs. 1-3.)
Palmoglaa micrococca Kütz. in Bot. Zeitung, 1847, p. 221; 'T'ab. Phycolog. 1847, I, p. 20 , t. 25 , f. 5 ; Spec. Alg. 1849, p. 299 ; Rabenh. Flor. Europ. Alg. 1868, III, p. 116.
Mcsotænium Braunii De Bary, var. minus De Bary, Conj. 1858, p. 74, t. 7 A, f. 9-11.

Mesotænium micrococcum Kirchn. Alg. Schles. 1878, p. 134; West, Alg. W. Treland, 1892, p. 131.
M. macrococcum var. micrococcum West \& G. S. West, Alga-fl. Yorks. $1900, \mathrm{p} .41$.
Cells shortly cylindrical, $1 \frac{1}{2}-2$ times longer than their dianeter, slightly attenuated towards the apices which are rounded.

Length $13 \cdot 5-16 \cdot 6 \mu$; breadth $8 \cdot 1-10 \cdot 2 \mu$.
Exaland.-Stickle Tarn, Westmoreland! Near Giggleswick, W. Yorks! Near Selly, E. Yorks!

Wanes.-Glyder Fawr (at 2,200 ft.), Carnarvonshire !
Scotland.-Cairngorm, Inverness; Dalbagie, Aberdeen (Roy \& Bissett).

Ireland.-Lakes, from Clifden to Roundstone, Galway! 8 miles S. of Kenmare, Kerry !

Cisogr. Distribution.-France. Germany. Austria. Norway. Poland. Faeroes. United States. West Indies!

4. Mesotænium chlamydosporum De Bary. (Pl. IV, figs. 4-14.)

Mesotrnium chlamydosporum De Bary, Conj 1858, p. 75, t. 7 d ; Nordst. Index Desmid. 1896, p. 73 ; West \& G. S. West, Alga-fl. Yorks. 1900, P. 42.

Palmogloce chlamydospora De Bary, in Rabenh. Alg. 1856, no. 514.
Hesotanium chlomydosporum var. β Arch. Palmoglwa and deserip. Mesot. 186.1, p. 26, t. 1, f. 1-19; Cookr, Brit. Desm. 1s86, p. 47, t. 18, f. 4.

Mesotienium chlamydosporum var. Archeri Labenh. Flor. Europ. 111, 186s, p. 117.

Cells oblong-cylindrical, 2-21 times longer than their diameter, apices broadly rounded or rarely subtruncately rounded; chloroplast axile, forming a narrow plate.

Zygospore irregular, more or less polygonal, becoming brown; outer coat thick and involucrate.

Length $25-33 \mu$; breadth $11 ־ 5-12 \mu$; length of zygosp. $26-38 \mu$; breadth of zygosp. 21-26 μ.

Exclant.-Cantley Spout, Widdale Fell, Eldwick, and near Settle, W. Yorks! Lund's Fell, N. Yorks! Near St. Just, Cornwall!

Wares.-Capel Curig and Twll Du, Carnarvonshire!
Scortand.-Ross, Inverness, Aberdeen, Kincardine, Perth (Roy \& Bixsett). Rhiconich, Sutherland! Lewis, Outer Hebrides! Goat Fell, Arran !

Ireland.-Dublin and Wicklow (Archer). Slieve Donard, Down (at 2,000 ft.)!

Gieoyr. Distritution.-Germany. Sweden (var.). Poland. Faeroes. India. Argentina. West Indies.

Forma minor forma nov.

Mesotænium chlamydosporum West, Alg. W. Ireland, 1892, p. 131, t. 24, f. 8
Cells and zygospores similar to those of the typical form but smaller.

Length $16-21 \mu$; breadth $8 \cdot 5-10 \mu$; diam. zygosp. 16-25 μ.

Ireland.-Near Westport, Mayo !
Forms large gelatinous masses on wet rocks.

5. Mesotænium caldariorum (Lagerh.) Hansg.

(Pl. IV, figs. 15-17.)
Mesotænium Endlicherianum Näg. var. calelariorum Lagerh. Algol. Bidr. 1886 , p. 4s, f. 4 xylogr.

Mesotænium saldariorum (Lagerh.) Hansg. Prodr. Algenfl. Böhm. 1sss, p. 174; ? Tum. Freshw. Alg. E. India, 1s93. p. 15, t. 1, f. 23; West \& f. S. West, Alga-fl. Yorks. 1900, p. 42.
Cells cylindrical or subcylindrical, $2 \frac{1}{2}-4$ times longer than their diameter, somewhat suddenly attemuated near the apices which are rounded; chloroplast axile, sometimes a little irregular and bent, often with one pyrenoid.

Kygospore unknown.
Length $27-46 \mu$; breadth $10 \cdot 5-11 \cdot 5 \mu$.
Enclant.-Bradford, Yorkshire! forming a gelatimous stratum in a greenhouse with lonctylotlower Tormmii Lagerh.

Coogr. Distrilntion.-Sweden. India? Ecuador.
We have previously mentioned that Turner's figure does not represent the species. It is a most characteristic Mesetrnimm owing to the sudden attemuation of the extremities of the cells; there is also an almost imperceptible narrowing of the middle region of the cells. It mast be a very rare plant as we have only once obtained specimens of it.

6. Mesotænium truncatum s. noc.

(Pl. V, fig. 12.)

Cells cylintrical, $3-3 \frac{1}{2}$ times longer than their diameter, apices broadly truncate; chloroplast axile, narrow, generally with a slight notch in the middle region of the cell, with two pyrenoids.

Zygospore unknown.
Length $31-35 \mu$; breadth $9 \cdot 5-10 \mu$.
England.-Cowgill Wold Moss, Widdale Fell, West Yorkshire!

This plant is readily distinguished from all other species of this genus by its broadly truncate apices. It resembles Penium truncatum Bréb. in its general ontline but is at once distinguished by its plate-like chloroplast.

A few individuals were observed in which there were two plate-like chloroplasts, one in each half-cell. Sometimes one chloroplast was disposed in a plane at right angles to the other, so that the flat surface of one was seen concurrently with the edge of the other.

It was found amongst mosses on wet rocks.

7. Mesotænium violascens De Bary.

(Pl. IIT, figs. 27-33.)

Mesotrnium vinlascens De Bary, Conj. 185s, p. 32, 74, t. 7, f. B; Cooke, Brit. Desm. 1886, p. 47, t. 18, f. 5 ; Nordst. Freshw. Alg. N. Zeal. 1888, p. 72.

Prtmoyloe violascens Rabenh. Krypt. F1. Sachs. 1863, p. 167; Flor. Europ. Alg. iii, 1868, p. 117.

Cells elliptico-cylindrical, $1 \frac{1}{2}-2$ times longer than their diameter, gradually attemuated towards the rounded apices; chloroplast an elliptical plate with one pyrenoid ; cell-silp coloured violet.

Zygospore obtusely angular.
Length $24-33 \mu$; breadth $15-165 \mu$; diam. zygosp. $2 \overline{2}-28 \mu$.

Englant.-Leicester (Roy). Devil's Jumps at Frensham, Surrey! Enbridge Lake, Hants (Roy).

Scotland.-Inverness, Nairn, Aberdeen, Forfar (Ro!! \& Bisisett). Craig-an-Lochan, Perth!

Iremand.-Bray, Wicklow (Archer).
Ceogr. Distribution.-France. Germany. Norway. Sweden. Lapland in Russia. New Zealand.

This plant is less cylindrical than most species of the genus, and its nearest ally is M. mirificum Arch. It is, however, scarcely so large as the latter species and not so elliptical in ontline. Nordstedt gives as the dimensions of his New Zealand specimens: length $32-36 \mu$; breadth $20-21 \mu$. The cell-sap is coloured violet owing to the presence of phycoporphyrin.

B. Cells free-swimming.

8. Mesotænium purpureum West \& G. S. West.

 (Pl. III, figs. 25, 26.)Mesotænium purpureum West \& G. S. West, Notes Alg. I, 1898, p. 2 (sep.) ; Alga-fl. Yorks. 1900, p. 42.
Cells cylindrical and slightly curved, $3 \frac{1}{2}-4 \frac{1}{2}$ times longer than their diameter, apices rounded; chloroplast plate-like and rather thick; cell-sap purple or violet in colour.

Zygospore unknown.
Length $32-16 \mu$; breadth $95-10 \mu$.
Exahand.-Old Cote Moor, West Yorkshire!, in peat bogs.

As in the previous species the cell-sap of this plant is coloured violet or purple by pliycoporphyrin. M. purpurenm is a free-swimming species and the chloroplast usually eontains two pyrenoids. Sometimes, as in other species of this genus, the chloroplast is olscured by large globules of an cily reserve material.

9. Mesotænium Endlicherianum Niig. (Pl. IV, figs. 20, 21.)

Mesotrniom Endlicherianum Näg. Gatt. einz. Alg. 1849, p. 109, t. 6 R; Kirchn. Alg. Schles. 1878, p. 134; Wolle, Desm. U.S. 1884, p. 32, t. 3, f. 11 ; Roy \& Biss. Scott. Desm. 189.1, p. 61 (sep.) ; West d G. S. West, Some Desm. U.S. 1898, p. 281; Alg. N. Ireland, 1902, p. 19 ; Alga-fl. Yorks. 1900, p. 42 ; Nordst. Index Desmid. 1896, p. 118.
Palmogloca Endlieheriana Rabenh. Flor. Europ. Algar. III, 1868, p. 116.
Cells cylindrical, 3-4 times longer than their diameter, apices broadly rounded; chloroplast an axile plate, pyrenoids one in each semicell.

Zygospore unknown.
Length $25-27 \mu$; breadth 8-95 μ.
England. - W. and N. Yorks! Cheshire (Roy). Leicester (Roy). Cornwall!

Wales.--Bog below Llyn Idwal, Glyder Fach (at 2,200 ft.), Glyder Fawr (at 2,600 ft.), Llyn Cwlyd, Llyn Pencraig near Bettws-y-coed, Carnarvonshire !

Scomland.-Sutherland, Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Stirling, Renfrew (Roy \& Bissett).

Ireland.-Near Gweedore and near Glenties, Donegal! Bog near Lough Neagh, Londonderry!

Geogi. Distribution.-Germany. Switzerland. Galicia and Austria. S. Russia. Australia. W. Indies. United States.
This species sometimes occurs in quantity in boggy pools or at the boggy margins of mountain lakes and tarns.
M. Endlicheriamm var. grende Nordst. in Wittr. \& Nordst. Alg. Excis. 1879, no. 271 ; Lagerh. Phycoporph. 1s95, p. 24; Wittr., Nordst., d Lagerheim, Alg. Exsic. 1s9\%, fase. 29, no. 1400; West d (x. S. West, Alg. S. England, 1897, p. 478 ; Alga-fl. Yorks. 1900 , p. 42.

A larger varicty, often twice as large as the type, with two pyrenoids in each semicell; cell-salp often violet.

Zygospore globose ; cell-wall thick and smooth.
Length $50-54 \mu$; breadth $12-13 \mu$; diam. zygosp. 26-28 μ.

Enaland.-Cragg Vale, Cocket Moss near Giggleswick, and near Settle, W. Yorks! Epping Forest, Fissex!

Wades.-Capel Curig, Carnarvonshire !
(icomf. Mistrilutiom.-Germany. Norway.

10. Mesotænium Kramstai Lemm. (Pl. III, figs. 23, 24.)

Mesotenium Kramstai Lemm. Algenfl. Riesengehirges, 1896, p. 115, 116, 8-10; Nordst. Index Desmid. 1896, p. 277 ; G. S. West, Alga-fl. Cambr. 1899, p. 110.

Cells cylindrical, often slightly curved, 6-8 times longer than their diameter, apices rounded or truncately rounded ; chloroplast an elongated plate.

Kygospore unknown.
Length $44-10+\mu$; breadth 9-1:3 μ.
Evgand. - Chippenham Fen, Cambridgeshire!
Geogr. Distribution.-Germany. W. Indies (var.).
This is the most elongate species of the genus and in its external form greatly resembles some of the smaller forms of lioya oltusa. The chloroplast is commonly obscured by dense masses of oil globules.

Genus 5. CYLINDROCYSTIS Menegh. 1838.

[^0]```
Archer, Observations on Cylindincystis, 1866, p. 206.
Gay, Monogr. loc. Conj. 1884, p. 34.
Cooke, Brit. Desm. 18s6, p. 46.
De Toni, Syll. Alg. 1889, p. $15.
```

Cells cylindrical, about twice longer than their diameter, often embedded in mucilage, unconstricted or with a slight median constriction, apices generally rounded; with one asile, substellate choroplast in each semicell; pyrenoids large, one in the centre of each chloroplast.

The principal character of this gemus is the presence in each semicell of a somewhat stellate chloroplast. In the centre of the semicell is a large pyrenoid, and radiating from it in crery direction are processes and prolongations of the chloroplast, which often flatten themselves against the inner surface of the cell-wall. During conjugation the cell-walls of the gametangia become confluent round the zygospore in some species, but not in others.

## A. Cells unconstricted.

## 1. Cylindrocystis Brébissonii Menegh.

> (Pl. IV, figs. 23-32 ; Pl. V, fig. 10.)

Cylindrocystis Brébissonii Menegh. 1838; Monogr. Nostoch. 1842, p. 89, t. 12, f. 13 ; Hass. Brit. Freshw. Alg. 1845, p. 361, t. 92, f. 17 ; De Bary, Conj. 1858, p. 35, 46, 74, t. 7, f. E 1-22: West, $A \mathrm{lg}$. W. Ireland, 1892. p. 131; Roy \& Biss. Scott. Desm. 1894, p. 62 (sep.) ; West \& (i. S. West, Alga-fl. Yorks. 1900, p. 43 ; Alg. N. Ireland, 1902, p. 20.
Palmogloca Brébissonii Kütz. Tah. phycolog. I, 1847, p. 19, t. 24, f. 4 ; Spec. Alg. 1849, p. 229.
Penium Brébissonii Ralfs, Brit. Desm. 1848, p. 153, t. 25, f. 6 ? ; Rabenh. Flor. Europ. Alg. III, 1868, p. 120; Delp. Desm. subalp. p. S8, t. 14, f. 28-36; Kirchn. Alg. Schles. 1878, p. 136 ; Wolle, Desm. U.S. 1884, p. 36, t. 5, f. 7-8; Cooke, Brit. Desm. 1S86, p. 43, t. 17, f. 3; West, Alg. N. Yorks. 1889, t. 291, f. 3.

Cells cylindrical, unconstricted, about 2-3 times longer than their diameter, apices rounded; chloroplasts usually with few large radiating prolongations and often difficult of observation.

Zygospore quadrate at first, and afterwards spherical or subsplierical or subquadrate.

Length $43-55 \mu$; breadth $15-18 \mu$; diam. zygosp. $30-18 \% \%$

Entadno.-Widely distributed all over the combtry. Zygospores firom Westmoreland, Yorkshire, and Surrer !

Whas.- ('ommon and often with zygospores! (1) to $2,200 \mathrm{ft}$. on Glyder Fach !

Scotano.- General and frequently conjugated! (hoy \& lBiswft). Up to $3, \% 00 \mathrm{ft}$. on Lochnagar ! Onter Hebrides! Orkneys! Shetlands!

Iremavo.- (ieneral and often abundant!
(ieor. Jistributiom.-Generally distributed in Emrope. Faeroes. Iceland. Greenland. Spitzbergen. Nova Zembla. Franz--Joseph Land. India. Siam. Java. Australia. New Zealand. E. Africa. North and South America. West Indies. Azores.

Pure gatherings of this species are not uncommon, especially in peaty districts, often at elevations of orer $2,000 \mathrm{ft}$. It sometimes oceurs on rertical faces of peat on mombains subject to frequent mists and rain. It is one of the commonest of British Desmids, and occurs in all kinds of damp and wet situations.

Var. minor West \& G. S. West. (Pl. V, fig. 11.)
C. Prébissonii var. minor West \& G. S. West, Alg. N. Ireland, 1902, p. 20, t. 2, f. 7 .

Cells narrower and shorter than in the typical form.
Length $27-41 \mu$; breadth $1 \Omega \cdot 5-1: 3 \mu$; length of zygosp. 3:3 $\mu$, breadth $30 \mu$.

Einghand.-Mickle Fell and Strensall Common, N. Yorkshire (with zygospores)!

Scuthand.-Pure gathering from Sligachan in Skye, Inverness !

Theland.-Lough Fea, Londonderry (with zygospores)!

## 2. Cylindrocystis crassa De Bary.

(Pl. IV, figs. 33-38.)
Cylindrocystis crassa De Bary, Conj. 1858, p. 37, 74, t. 7, f. C 1-12; Nordst. in Wittr. \& Nordst. Alg. Exsic. 1579, no. 269; Cooke, Brit. Desm. 1886, p. 46, t. 18, f. 2; West, Alg. W. Ireland, 1892, p. 131; West \& G. S. West, Alga-fl. Yorks. 1900, p. 43 ; Alg. N. Ireland, 1902, p. 20 ; Desm. Singapore, 1897, p. 156 ; Alg. S. England, 1897, p. 478.

Penium crassa W'olle, Desm. U.S. 1884, p. 37, t. 5, f. 3.

C'ells oblong-cylindrical, 11 -2 times longer than their diameter, apices broadly rounded; chloroplast similar to that of the preceding species.

Zygospore globose or rarely suloquadrangular.
Length $22-46 \mu$; breadth $18-24 \mu$; diam. zyposp. 2.)-:30 $\mu$.

Encand.- ('umberland! Westmoreland! Yorks! Lancashire! Cheshire (Roy). Leicester (Roy). Essex ! Surrey! Hants! (liemnett). Cornwall!

Wales.--Fairly general in Carnarvonshire; up to 2,700 ft. on Glyder Fawr !

Scotland-General! (Roy \& Bissett). Harris and Lewis, Outer Hebrides! Orkneys! Shetlands!

Irefand.-Galway! Kerry! Dublin and Wicklow (Archer). Donegal! Londonderry! Down!

Geofp. Distribution. - France. Germany. Austria. Portugal. Sweden. Norway. Singapore. Madagascar. New Zealand. West Africa. United States.

## 3. Cylindrocystis obesa West \& G. S. West.

(Pl. V, fig. 8.)
Cylindrocystis obesa West \& G. S. West, Alg. N. Treland, 1902, p. 20, t. 2, f. 6.

Cells of medium size, about $1 \frac{3}{4}$ times longer than their diameter, rhomboid-ellipsoid with the apices broatly rounded, unconstricted; cell-wall smooth and colourless ; chloroplasts stellate with numerous radiating processes, pyrenoids very large; with a distinct vacuole near each apex.

Zygospore unknown.
Length $48 \mu$; brearlth $27 \mu$.
Ireland.-Near Gweedore, Co. Donegal !
This species bears considerable resemblance to C. pyramidutu West \& G. S. West, a plant only known from Ceylon, but is distinguished by its relatively greater width, the more rounded apices, and the absence of a constriction. (Consult West d G. S. West, Hreshw. Alg. C'eylon, p. 134, t. 18, f. 1, 2).
$B$. Cells very slightly constricted.

## 4. Cylindrocystis diplospora Lund.

(Pl. IV, figs. 10, 41.)

Cylindrocystis diplospora Lund. Desm. Suec. 1871, p. 83, t. 5, f. 7; Cooke, Brit. Desm. 1856, p. 46, t. 1s, f. 1; Lioy \& Biss. Scott. Desm. 1s94, p. 62 (sep.) ; West © (i. S. West, Alg. S. England, 1597, p. 178 ; Alga-fl. Yorks. 1900, p. 44 ; Alg. N. Ireland, 1902, p. 20.
P'enium diplosportm Jacobs. Desm. Danem. 1575, p. 164.
? Schizospora pachylermu Reinsch, Contrib. Alg. et Fung. 1575, p. 87, t. 17, f. 1.

Calocylinerus diplosporus Wolle, in Bull. Torr. Bot. Clul. 1882, p. 15; Desm. U.S. 1884, p. 56, t. 12, f. 18.
Cells moderately large, twice longer than their diameter, subcylindrical, slightly constricted in the middle, gradually but faintly dilated towards the apices which are truncately rounded ; cell-wall slightly thickened at the apex, smooth and colourless; chloroplasts with numerous radiating processes.

Zygospore double, compressed, transversely sulbrectangular with the external angles rounded.

Length $52.5-66 \mu$; breadth $22 \cdot 5-33 \mu$; breadth of zygosp. $66 \mu$; length of halĭ zygosp. :38-42 $\mu$.

Evglant.-Cumberland! Westmoreland! (Biaset!). IV. and N. Yorks! Lancashire! Essex! Surrey! Hants! Devon (Bennett). Cornwall! (Bemuett).

Wales.-C'apel Curig', Llyn Llwal, and Bethesda, Carmarvonshire! Ffestiniog, Nerioneth!

Scothand.-Sutherland!, Ross ! , Inverness!, Aberdeen, Kincardine, Perth!, Argyll ; often conjugated (lioy \& Bissett). Orkneys! Outer Hebrides!

Treland. - Galway! Kerry! Wicklow (Archer). Donegal! Londonderry! Antrim! Down!

Geoyf. Distrilution.-Germany. Norway. Sweden. Demmark. Lapland in Russia. Greenland. India. New Zealand. East Africa (var.). United States.

Var. major West. (Pl. IV, figs. 42, 43.)
C. diplospora var. major West, Alg. W. Ireland, 1892, p. 131, t. 20, f. 3 ; West \& G. S. West, New Brit. Freshw. Mlg. 1592, p. 4, t. 1, f. 9; 11ga-fl. Yorks. 1900, p. 44 (forma constricta) ; Roy \& Biss. Scott. Desm. 1s94, p. 62 (sep.).

More cylindrical than the typical form and almost twice the size; sometimes unconstricted, but more often with a slight constriction.

I eng'th $102-114 \mu$; breadth $18-5+\mu$.
Engiano.-Pilmoor, N. Yorks! Riccall Common, E. Yorks !

Sootand.--Deeside, Aberdeen (Roy \& licssott).
haband.-Lakes, from Clifden to Roundstone, Galway!

Roy and Bissett found in Kincardine at Dallorake in Strachan a smaller form of this variety which was the exact comiterpart of the large one except for size; length $56 \mu$; breadth $25 \mu$. They also remark that "when seen side by side in the same gathering with ( ${ }^{2}$. diplospora it looks very different from that species.'

## 5. Cylindrocystis roscola Turn.

(Pl. IV, fig. 39.)
Cylimdrocystis roseola 'Turn. Desm. Notes, 1893, p. 346, f. 14: Nordst. Index Desmid. 1896, p. 225.

Cells subcylindrical, about $2 \frac{1}{2}$ times longer than their diameter, with a gradual constriction in the middle of the cell, attenuated towards the apices whieh are rounded and slightly thickened; cell-wall smooth, yellowish-pink or bright pink in colour.

Zygospore unknown.
Length $46-52 \mu$; breadth 1 !)-21 $\mu$.
Wabs.-Near Dolbadarn Castle, Carmarvonshire (IV. IS. T'urner).
6. Cylindrocystis minutissima 'I'urn.
(Pl. V, fig. !.)
Cytinhrocystis minutissimu 'Murn. Freshw. Alg. L. India, 1s93, p. 16, t. 1, t. 21: West id (t. S. West, Alg. N. Freland, 1902, p. 20; Freshw. Alg. Ceylun, 1902, p. 134.

Cells minute, about twice longer than the diameter,
with a slight median constriction, apices romnded; each chloroplast with a prominent pyrenoid.

Zygospore unknown. Length $10 \cdot 5-1: s \mu$; breadth $5 \cdot 5-7 \mu$. Iremavi.-hough Neagh!; along the shores. Georfr. Distribution. - India. Ceylon.
We think this plant is correctly placed in the genus Cylindrocystix, and it is much the smatlest known species. The Irish specimens were a little smaller than those observed from India, but otherwise were very similar.

## Genus 6. NETRIUM (Niig. 1819).


Itzigs. © Rothe, in Rabenh. Alg. 1856, no. 508 (genus without description). Lütkem. Zellmembr. Desmid. 1902, p. 395, 396, 407.

Cells straight, cylindrical, subcylindrical, or fusiform, without any median constriction; cell-wall unsegmented, without pores, destitute of a differentiated outer layer and quite smooth; chloroplasts two (in one species four), one (in one species two) in each semicell, each chloroplast axile with about six radiating longitudinal plates which are conspicuously notehed at their free edges (in all except $N$. interruptum) ; pyrenoids several in each chloroplast, arranged in a median series or sometimes scattered.

The establishment of this genus was suggested by Lütkemüller in order to include fonr forms which obviously do not belong to the Placoderm Desmids. The present genus Perium is the most artificial of the genera of Desmids, containing in addition to its true members quite a number of widely different forms, some of which really belong to the Cosmariea, others to the Closteriea, and those now included in the genns Netrium which belong to the Spirotaniese.

The species incloded under the generic name Netrium have long been considered as forms of l'enium, but the structure of the cell-wall-the absence of segmentation and of the differentiated onter layer-places these plants at once in the tribe Spirotrenica.

The chloroplasts are axile and are furnished with a number
(generally six) of radiating longitudinal plates, and so far they resemble those of the genus Peninm; but in three out of the four species of Netrinm the free edges of the plates possess conspicuons notches which are never present in the chloroplasts of Pemium, and the fourth species has each chloroplast transversely segmented so that fonr are present in the cell.

## 1. Netrium Digitus (Ehrenb.) Itzigs. \& Rothe.

 (Pl. VI, figs. 14-16.)Closterium Digitus Ehrenb. Entwick. Lebens. d. Infus. 1832, p. (is; Infus. 183S, p. 94, t. 6, f. iii ; Menegh. Synops. Desm. 1840, p. 236 ; Hass. Brit. Freshw. Alg. 1845, p. 376 , t. 8s, f. 4 ; Focke, Phys. Stud. I, 1847, p. 68, t. 3, f. 22.

Closterium lamellosum Brél). Alg. Falaise, 1835, p. 59, t. S.
Penium Digitus Brél. in Ralfs' Brit. Desm. 1848, p. 150, t. 25, f. 3; Arch. in Pritch. Infus. 1861, p. 751 ; Rabenh. Flor. Europ. Alg. 1stis, iii, p. 118; Delp. Desm. Subalp. 1877, p. 86, t. 15, f. 50, 51 ; Kirchn. Alg. Schles. $187 \mathrm{~S}, \mathrm{p} .134$; Wolle, Desm. U.S. 1854, p. 34, t. 53 , f. 1 ; Cooke, Brit. Desm. 1886, p. 40, t. 16, f. 1; Hauptfl. Zellmembr. u. Hüllgallerte Desm. 1888, p. 101, t. 3, f. 62 ; West, Alg. W. Ireland, 1892, p. 127 ; Litkem. Desm. Attersees, 1893, p. 544; Roy \& Biss. Scott. Desm. 1894, p. 2.51; West \& G. S. West, Rec. publ. Desm. 1895, p. 66; Alg. S. England, 1597, p. 478 ; Alga-fl. Yorks. 1900, p. 44; Alg. N. Ireland, 1902, p. 21; Some Desm. U.S. 1898, p. 282 ; Freshw. Alg. Ceylon, 1902, 1. 131.

Penium lumellosum Kïtz. Spec. Alg. 1849, p. 168; Bréb. Liste Desm. 185̃6, p. 146, t. 2, f. 34 ; Kirchn. Alg. Schles. 1878 , p. 135; Wolle, Desm. U.S. 1884, p. 34, t. 5, f. 4; Lütkem. Desm. Attersees, 1893, p. 545.
Netrium Digitus (Ehrenb.) Itziss. \& Rothe in Rabenh. Alg. 1856, no. 50 s ; Lütkem. Zellmembr. Desmid. 1902, p. 407.
Penium Digitus forma curte Anderss. Sverig. Chlor. 1890, F, p. 19, t. 1, f. 14.

Penium Digitus forma recta Turn. Freshw. Alg. E. India, 1893, p. 18, t. 1, f. 27.

Penium Navigium 'Turn. Freshw. Alg. E. India, 1593, p. 17, t. 1, f. 9.
Penium Digitus var. montanum Lemm. Algenfl. Riesengelirges, 1896, p. 120, f. 15-17.

Cells of variable size, generally large, $3-4$ times longer than their diameter, not constricted, ellipticohlong, gradually attenuated from the middle towards the apiees which are rounded truncate; chloroplasts axile with about six longitudinal plates, deeply notched at the free margins ; cell-wall smooth.

Zygospore spherical, smooth and thick-walled.
Length $130-387 \mu$; breadth $40-82 \mu$; breadth near apices $18-40 \mu$; diam. zygosp, $73 \cdot 6 \mu$; thickness of wall of zygosp. $3 \cdot \sim \mu$.

ExGland.-Only abundant in boggy and peaty districts. Cumberland! Westmoreland! (Ralfs). Yorks! Lancashire! Cheshire (Roy). Leicester (Roy). Warwick (Hills). Cambridge! Gloucester (Ralfs). Essex ! Kent! Surrey! Hants! Devon! (Bennett). Cornwall! (Rolfis).

Wales.-General and often abundant; at $2,700 \mathrm{ft}$. on Glyder Fawr, Carnarvonshire!

Scotland.-General and abundant! Zygospore from C'ambus O'May, Deeside. Aberdeen (Roy \&. Bissett). Common in the Outer Hebricles! Orkneys! Shetlands:

Irelani.-General and abundant!
Geogr. Distribution.-Generally distributed in Europe. Faeroes. India. Ceylon. Siam. Java. Central China. Japan. Australia. New Zealand. Azores. United States. British Guiana. Brazil.

This Desmid exhibits considerable rariation in form and size, and the distinction between it and Penium lamellosum completely breaks down on the careful examination of numerous specimens. Particularly is this the case with regard to the pure gatherings which can often be made in peaty districts. It is frequently attenuated near the apices.

Var. constrictum nob. (Pl. V1, fig. 17.)
Penium Digitus var. constrictum West, Alg. W. Ireland, 1892, p. 127; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Freshw. Alg. Ceylon, 1902, p. 134.

Cells 6-8 times longer than their diameter, gentlynarrowed in the median portion.

Length 353-405 $\mu$; max. breadth $5.5-65 \mu$; breadth in middle of cells $47-55 \mu$.

England.-New Forest, Hants !
Scotland.-New Galloway, Kircudbright! Moidart, Inverness!

Ireland. - Lakes, from Clifden to Roundstone, Galway !

Geogr. Ditstriluion.-Lapland in Russia.

## 2．Netrium Nägelii（Bréb．）nol．

(Pl. VII, figs. t, 5.)

Closterium（Netrium）Digitus Näg．Gatt．einz．Alg．1849，p．107，t．6，f．D．
Penium Nägelii Bréb．apud Arch．in Pritch．Infus．1861，p． $7 . ⿰ ㇒ ⿻ 土 一$ ；Rabenh．
Flor．Europ．Alg．1868，III，p． 119 ；Cooke，Brit．Desm．1s 66, p．42，t．16， f． 4 ；Schmidle Beitr．alp．Alg．1895，p．311，t．14，f． 31 ；West \＆゙ G．S． West，Alg．S．England，1897，p． 479.
Cells of medium size，about $4 \frac{1}{2}$ times longer than their diameter，not constricted，oblong－lanceolate， apices broadly but truncately rounded；chloroplasts axile，with from four to six longitudinal radiating plates which are notched at the free margins；some－ times large terminal vacuoles are present containing a number of moving granules．

Zygospore unknown．
Length $115-160 \mu$ ；breadth $25-34 \mu$ ．
Evgland．－Sutton Park，Warwick（IVill．s）．Enbridge Lake（Roy）．New Forest，Hants！

Wales．－Capel Curig！（Cooke $\rho$ ．Wills．s）．Moel Sia－ bod，Carnarvonshire！

Scotland．－General（Roy \＆Bissett）．Rhiconich， Sutherland！Moidart，Inverness！Near Tarbert， Harris，Outer Hebrides！

Ikeland．－Dublin and Wicklow（Archer）．
Geogr．Distrilution．－France．Germany．Austria． Switzerland．Norway．Sweden．Lapland in Russia． Australia．New Zealand．East Africa．Brazil．

This species bears considerable resemblance to $N$ ．Digitus， but is of smaller size and somewhat narrower．It is a very uncommon plant in the British Islands and we have not seen many specimens of it．

## 3．Netrium oblongum（De Bary）Lütkem．

（Pl．VIII，figs．1－3．）

[^1]Cells of medium size, $:-+\frac{t}{}$ times longer than their diameter, not constricted, oblong-cylindrical, gratually narrowed towards the rounded apices; chloroplast. axile, with six longitudinal plates which are deeply notched along their free margins.

Zygospore spherical (according to Wolle).
Length $96-1: 35 \mu$; breadth $32-3: 3 \mu$.
Evghand.-Common in the upland districts of Westmoreland and Yorks! Surey! Devon! Cormwall!

Whass.-General in Carnarvonshire!
Southand.-Sutherland! Ross, Aberdeen, Kincardine, Forfar!, Perth!, Argyll, Arran (Ro! \& Bisseft). Inverness! Lanark! Dumfries! Lewis and Harris, Outer Hebrides!

Lamand.-Frequent in Donegal! Lough Fea, Londonderry! Wicklow and Dublin (Archer).

Momfi. Distidution.-Germany. Austria. Hungary. Norway. Sweden. Lapland in Russia. Faeroes. India. West and East Africa. Somaliland. Ecuador. Brazil. United States.

This plant occurs abundantly in the upland bog's of most parts of the British Islands, particularly amongst Splummum in peaty pools. Apart from its smaller size, its form alone is sufficient to distinguish it from most forms of N. Digitus.

Var. cylindricum West \& G. S. West. (Pl. V, tig. 7.)
N. oblongum var. cylindricum West \& G. S. West, Notes Alg. III, 1903, p. S (sep.), t. 446, f. 10.

Cells smaller than in the typical form and exactly cylindrical ; apices hemispherical ; chloroplasts as in the typical form.

Length $57-7.3 \mu$; breadth $17-18 \% \mu$.
England.-Helvellyn, Westmoreland!
Wales.-Capel Curig', Moel Siabod, Llyn Idwal, Llyn Cwlyd and Llyn Giwynant, Carnarvonshire!

Scombad.-Near Tarbert, Harris, Outer Hebrides !
Geogr. Distribution.-Italy. Somaliland.
This variety is often abundant in the boggy portions of upland moors, round the margin of lakes, etc., frequently
occurring mixed with the typical plants. It is readily distingoished from the typical form by its small size and exactly crlindrical cells, which are not attenuated towards the apices.
4. Netrium interruptum (Bréh) Lïtkem.
(Pl. VII, fig's. 1, 2.)
Penium interruptum Bréb. in Ralfs' Brit. Desm. 1s4s, p. 151, t. 2.5, f. 4 ; De Bary, Conj. 18.58, p. 42-44, 46, 73, t. 5, f. 1-4; Arch. in Pritch. Infus. 1861, p. 751, t. 3, f. 45; Rabenh. Flor. Europ. Algar. 1868, III, p. 119 ; Delp. Desm. subalp. 1877, p. 79, t. 15, f. 1-9; Wolle, Desm. U.S. 1884, p. 35, t. 5, f. 14, 15 ; Cooke, Brit. Desm. 1886, p. 41, t. 16, f. 2; Hauptfl. Zellm. u. Hüllgallerte Desm. 1888, p. 101, t. 3, f. 61 ; West, Alg. W. Ireland, 1892, p. 127; Roy \& Biss. Scott. Desm. 1894, p. 59 (sep.) ; Nordst. Index Desmid. 1896, p. 148; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 45 ; Alg. N. Ireland, 1902, p. 21,
Closterium (Netrium) interruptum Reinsch, Algenfl. Frank. 1867, p. 185.
Netrium in ${ }^{\text {terruptum }}$ (Bréb.) Lütkem. Zellmembr. Desmid. 1902, p. 407.
Cells large, 4-6 times longer than their diameter, not constricted, cylindrical, near each extremity becoming suddenly conical, apices obtusely rounded; chloroplasts four, two in each semicell, median ones cylindrical, apical ones conical, each chloroplast with about eight longitudinal plates, free margins of plates entire ; apical racuole conspicuous and containing a solitary moving granule.

Zygospore unknown.
Length $220-320 \mu$; breadth 37-64 4 .
England.-Cumberland! Westmoreland! N. Yorks! Lancashire! Cheshire (Roy). Warwick (Wills). Susses (Ralfs). Surrey! Hants (Ro!). Cornwall! (Rulfs).

Wales.-Capel Curig! (Coolie \& Will.s), Llyn Idwal, Llyu-y-cwm-ffynon, and near Dolbadarn Castle, Carnarvonshire!

Scotlant.-Ross, Inverness !, Aberdeen, Kincardine, Forfar, Perth! (Roy \& Bissett). Lewis, Outer Hebrides !

Ireland.-Near Westport, Mayo! Loughs Creggan and Aunierin, Galway! Dublin and Wicklow (Archer). Slieve Donard, Down !

Geogr. Distribution.-France. Germany. Austria.

Italy. Hungary. Norway. Sweden. Russia. Lapland. United States.

This species is well characterized by the transverse division of the chloroplasts, so that four are present in each cell, arranged in a longitudinal series. The conical apices also enable it to be easily distinguished from other species of Netrium and of Penium. The radiating longitudinal plates of the chloroplasts resemble those of Penium more than the other species of Netrium by reason of the entire, free edges, but the structure of the cell-wall places this plant in the Spirotenier.
Var. sectum nol. (Pl. VII, fig. 3.)

Penium interruptum var. sectum West, Alg. W. Ireland, 189: p. 127; Nordst. Index Desmid. 1896, p. 148.
A variety with the apices suddenly truncate; cellwall becoming brown in colour.

Length $258 \mu$; brealth $47 \mu$; breadth of apices $20-22 \mu$.

Ineland.-Near Westport, Mayo!

## Sul-family II. PLACODERM※.

In this sub-family the cell-wall is segmented and is differentiated into an inner and an outer layer. The inner layer is structureless and consists of cellulose. The outer layer is firmer and thicker, and in most Desmids of this sub-family it consists of a groundsubstance of cellulose through which pass numerous tube-like structures known as "pore-organs." The latter do not consist of cellulose, and through each one runs a minute canal. The contents of the canals also pass through the inner layer of the cell-wall and usually terminate on its internal surface in a slight lens-shaped thickening or bulbous swelling. From the external end of the canal delicate club-shaped or flower-shaped structures frequently arise, and these curious structures, which are of a tough gelatinous consistency, have frequently given rise to erroneous conceptions of the nature of the firmer part of the cell-wall. They are sometimes prominent features of living specimens of Cosmarium, Arthrodesmus, staurustrum, and other genera. The large mass of enveloping jelly which is often present in the placoderm Desmids is the result of a secretion of the cell-protoplasm, the products passing outwards through the pores. This external gelatinous coat commonly exhibits a radiating structure which has sometimes given rise to grave misconceptions.*

This group includes the rast majority of Desmids, and there is almost always a distinct demarcation between the new and the old semicells, the rounger part of the cell-wall being joined to the older part by a narrow, bevelled surface.

Cell-division is of a fixed type, following strictly after the manner of previous cell-divisions, and the rounger semicells are always interpolated between the old ones.
> A. Point of division of cells variable or sometimes fixed (at the isthmus).

[^2]
## Tribe 3. Penief.

The cells are of moderate length, straight and usually crlindrical, sometimes with a slight median constriction. The points of division are often variable, although the actual divisions conform to the same type. The cellwall may be with or without pores, and the cell frequently grows periodically by the interpolation of new cylindrical pieces of cell-wall until maturity is reached.

There is only one genus in the tribe.

## Genus 7. PENIUM Bréb., 1844.

Bréb. in Dict. unir. hist. nat. 1844, vol. iv, p. 513; in Ralfs' Brit. Desm. 1ヶ4ヶ, p. 148.
Kütz. Spec. Alg. 1849. p. 167.
Arch. in Pritch. Infus. 1861, p. 720 and 750.
Rabenh. Flor. Europ. Alg. 1868, III, p. 118.
Gay, Monogr. loc. Conj. 1884, p. 38.
Cooke, Brit. Desm. 1886, p. 38.
De Toni, Syll. Alg. 1889, p. S55.
Cells straight, cylindrical, subcylindrical, ellipsoidal or fusiform, unconstricted or with a slight median constriction, apices rounded, subtruncate or truncate; with one axile chloroplast in each semicell, consisting of a central mass with several radiating longitudinal plates which are entire at their free edges; pyrenoids one or more in each chloroplast, arranged in an axile series; cell-wall commonly with pores.
The genus Penium as now constituted is undoubtedly an artificial one, including Desmids of widely different affinities. As our knowledge is at present insufticient to relegate these plants to their true positions we have still retained them in the gems Penium.
We lave so framed both the definition of the tribe Penice and of the genus Penium as to include all these plants, although a certain section of them represented by Penium maryaritaceum, $P$. cylindrus, and others, would form a wellmarked genus clearly differentiated from the rest of the Placoderin Desmids.
For the present the British species may be arranged as follows:-
Section A. (Holopenium Gay). Cells unconstricted, usually with no distinct demareation between the old and the young semicells. Cell-wall smooth.

* Cells attenuated towards each end, never cylindrical.

1. P. Libellula.
2. P. Nucicula.
** Cells cylindrical or ellipsoidal.

+ Poles rounded.

3. P. Jenneri.
4. P. spinospermum.
5. P. didymocarpum.
6. P. Moоreanит.
7. P. suboctangulare.
8. P. minutissimum.
$+\downarrow$ Poles truncate.
9. $P$ truncatum.

Section B. (Sphinctopenium Gay). Cells either conspicuously constricted in the middle or very slightly constricted ; always with a distinct demarcation leetween the newer and the older parts of the cell-wall.

* Cell-wall minutely or coarsely granulate.
+ Cell-wall granulate over its entire surface.

10. P. margaritaceum.
11. $P$. cylindrus.
12. $P$. cuticulare.
13. $P$. exiguum.
14. $P$. gramulatum.
$\dagger \dagger$ Granules restricted to the poles.
15. P. Clevei.
** Cell-wall striated.

+ Cells large, striations very distinct, spirally disposed.

16. P. spirostriolatum.
$\dagger+$ Cells small, striations longitudinal and faint.
17. P. polymorphum.
18. P. 1hymatosporum.
*** Cell-wall smooth, punctate, or finely scroliculate.

+ Cells minute, rounded, $1 \frac{1}{2}$ times longer than broad.

19. P. subtile.
$\dagger+$ Cells -4 times longer than broad.
a. Cell-wall scrobiculate or punctate.
20. P. adelochondium.
21. P. lagenarioides.
22. P. Cucurbitinum.
23. P. crassiusculum.
24. P. curtum.
$\beta$. Cell-wall smooth.
25. P. rujescens.
26. P. cruciferum.
27. P. inconspicuum.
$+\uparrow+$ Cells elongated, up to 30 times longer than broad.
28. P. minutum.

## Section A.

## 1. Penium Libellula (Focke) Nordst.

(Pl. VII, figs. (f, 子.)
Closterium Libelluld Focke, Phys. Stud. 1847, p. 58, t. 3, f. 29.
Penium closterioides Ralfs, Brit. Desm. 1848, p. 152, t. 34, f. 4; Arch. in Pritch. Infus. 1861, p. 751 ; Rabenh. Flor. Europ. Alg. III, 1868, p. 121; Kirchn. Alg. Schles. 1878, p. 135; Wolle, Desm. U.S. 18א4, p. 35, t. 5, f. 18 ; Cooke, Brit. Desm. 1886, p. 41, t. 16, f. 3 ; Nordst. Freshw. Alg. N. Zeal. 1858, p. 71 ; West, Alg. W. Ireland, 1892, p. 127 ; Alg. Eng. Lake Distr. 1892, p. 721 ; Börg. Ferskv. alg. Östgrönl. 1894, p. 9, t. 1, f. 1 ; Nordst. Index Desm. 1896, p. 75.

Closterium Lens Jacobs. (and var. intermedia Jacobs.) Desm. Danem. 1sin. pp. 167 and 168.
Penium elosterioides Ralfs, a. typicum Klebs, Desm. Ostpreuss. 1879, p. 24, t. 2, f. $\because f f$.

Penium Libelluta (Focke) Nordst. Bornh. Desm. 1ヶss, p. 1St; Turn. Freshw. Alg. E. India, 1893, p. 20; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Alg.-fl. Yorks. 1900, p. 45 ; Freshw. Alg. Ceylon, 1902, p. 135 ; Alg. N. Ireland, 1902, p. 21.

Cells large, $5-7$ times longer than their diameter, unconstricted, fusiform, with rounded or more often with subtruncate poles; cell-wall smooth, often of a yellowish-brown colour' ; each chloroplast with about s longitudinal plates and 3-6; pryenoids; apical vacuoles frequently present with several moving gramules.

Zygospore globose and smooth.
Length 2:30-356 $\mu$; breadth $36-52 \mu$; diam. aygosp. $45-56 \mu$

Exglaxd.-Cumberland! Westmoreland! (Bissett). W. and N. Yorks! Lancashire! Warwick (IVill:). Sussex (Rulfis). Surrey! (Rulfis). Hants! (Rulfis). Devon! Cornwall! (Ralfs).

Wales.-Capel Curig! (Cooke \& Wills:), Llyn Idwal! Llyn-an-afon!, near Dolbadarn C'astle !, Bettrs-y-coed (Iiny), Carnarvonshire! Llyn Coron, Angleser !
Scotland.-Sutherland! Ross!, Tnverness, Aberdeen, Kincardine, Forfar, Perth!, Argyll (Roy f. Bissett). Ayr! General in the Outer Hebrides!

Ireland.-Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Donegal! Down!

Geogr: Distribution.-France. Germany. Italy.

Norway. Sweden. Austria. Hungary. Russia. Lapland. Faeroes. Greenland. Ceylon. Singapore. Java. Central China. New Zealand. Brazil.

This is a well-marked species with the aspect of a straight Clostorium. Forms are sometimes met with in which there are two thickened lands round the centre of the cells; we give a figure of one of these forms from Capel Curig, N. Wales (Pl. YII, fig. 8). (intwinski has described this form as Clusterimen rectum (ride Gutw. Nom. Alg. Nor. 1896, p. 35, t. r. f. 3).

Lütkemialler is probably correct in considering Penium Libellule as a true species of Closterium. It is in a case of this kind that the distinction between Penium and Closterium completely breaks down.

Var. interruptum West \& G. S. West. (Pl. VII, figs. 9, 10.)
Penium closterioides forma interrupta West, Alg. Eng. Lake Distr. 1892, p. 721 : Schmidle, Beitr. Alg. Schwarzwald. 1893, p. 88, t. 3, f. 7.
$P$. Livellula var. interruptum West \& G. S. West, Alg. S. England, 1857, p. 479 ; Desm. Singapore, 1897, p. 156 ; Freshw. Alg. Ceylon, 1902, p. 135.

Somewhat smaller than the typical form, with each chloroplast transversely divided, so that there are four axile chloroplasts in each cell arranged in a longitudinal series.

Length 129-240 $\mu$; breadth $24-14 \mu$.
Exgland.-Black Sail Pass, Cumberland! Longhrigg and Elter Water, Westmoreland! Chobham Common, Surrey!

Scotland.-Loch Doon, Ayr! Rhiconich, Sutherland!
(isoffr. Distribution.-Germany. Ceylon. Singapore.
Yar. intermedium Roy \& Biss. (Pl. VII, fig. 11.)
I'. Libellula var. intermedium Roy id Biss. Scott. Desm. 1894, p. 252. West \& G. S. West, Desm. Singapore, 1s97, p. 156; Alg. N. Ireland, 1902, p. 21 ; Freshw. Alg. Ceylon, 1902, p. 136.

Rather less than half the size of the typical form, but otherwise precisely similar.

Length 102-132 $\mu$; breadth $19-29 \mu$.
Exchaxp-Westmoreland! Surrey! Cornwall!

Whins.-Bog above the Capel Curig lakes, and Llun Idwal, Carnarvonshire!

Sootind.-Ross, Inverness!, Aberdeen, Kincardine, Perth, Argyll, Arran (Ro!y of Biswett). Sutherland! Ay?

Ireland.-Sproule's Lough and near Lough Magrath, Donegal !
(ipogir. Distribution.-Russia. Ceylon. Singapore.
This variety is probably far more widely distributed than is here indicated, as it has modonbtedly been overlooked in the past.

## ๑. Penium Navicula Bréb.

## (Pl. VIl, figs. 12-15, and 19.)

Penium Navicula Bréb. Liste Desm. 18ご6, p. 146, t. 2, f. 37; Arch. in Pritch. Infus. 1861, p. 751 ; Rabenh. Flor. Europ. Alg. 1868, III, p. 121 ; Lund. Desm. Suec. 1871, p. 84, t. 5, t. 8 ; Kirchn. Alg. Schles. 1878 , p. 135 ; Wolle, Desm. U.S. 18s4, p. 36, t. 5, f. 16 ; Cooke, Brit. Desm. 1566, p. 42, t. 16, f. 5; Mask. Further Notes N. Zeal. Desm. 1859, p. 2s, t. 5, f. 51 a ; West, Alg. W. Ireland, 1892, p. 127; Alg. Eng. Lake Distr. 1892, p. 721; Roy \& Biss. Scott. Desm. 1894. p. 252; West d G. S. West, Alg. S. England, 1897, p. 479 ; Alg. N. Ireland, 1902, p. 21 ; Alg.-fi. Yorks. 1900, p. 45.
Penium Berginii Arch. Suppl. Cat. in Dubl. Univers. Zool. Bot. Assoc. 1855, p. 121, t. 11 , f. $14,15$.
Closterium Lens Jacobs. Var. minor Jacobs. Desm. Danem. 1875, p. 168.
Penium closterioides Ralfs, b. Navicula Klebs, Desm. Ostpreuss. 1879, 1. 24, t. 3, f. $2 . g$.

Cells small, $: 3 \frac{1}{2}-5$ times longer than their diameter, unconstricted, fusiform, with the poles broadly rounded ; cell-wall smooth and colourless ; each chloroplast with ; or 6 longitudinal plates (or ridges) and 1 or -2 pyrenoids ; apical racuoles often present with two or three minute moving granules.

Kygospore subquadrate, compressed, with rather shariply produced angles to which the empty half-cells are attached.

Length 32-61 $\mu$; breadth $10-1 \check{\sigma} \mu$; breadth of apices $6-7 \mu$; length of zygospore :38-4:3 $\mu$; breadth of $z y^{\circ}$ gospl. 33-38 $\mu$.

Enctand.-Cumberland! Westmoreland! (Rissett).
W., N., and E. Yorks ! Lancashire! Cheshire (Ro!!) Leicester (lioy). Warwick (lVills). Essex! Kent! Surrey! Hants! Devon! Cornwall! (Minquamd).

Wiles.-General in C'arnarvonshire and Merioneth !'
Scordand.-Common ! ; often with zygospores (lioy \& Bissett). Common in the Outer Hebrides! Shetlands ! Ireland.-General in Galway, Kerry, and Donegal! Dublin and Wicklow (Licher). Down!

Geoyr. Distribution.-France. Germany. Austria. Hungary. Norway. Sweden. Italy. Rinssia. Lapland. Faeroes. Greenland. India. Ceylon. Singapore. United States. Brazil.

This is a widely distributed species, particularly in mometainous districts. Its small size and its outward form, which somewhat resembles certain species of Naticula, render it casy of identification.

Luitkemüller considers it to be a much-shortened, straight - pecies of Closterium-Cl. Nıricula (Brélı) Lütkem.-Drut there are equally good reasons for retaining the plant in the genns Penium.

## Forma Willei schmidle.

Penium Nuriculu Bréb. forma apicibus rotundato-truncatis. Wille, Norges Ferskv. Alg. 1850, p. 49, t. 2, f. 32; West, Alg. Eng. Lake Distr. 1592, 1. 721.
P. Naricula forma Willei Schmidle, Lappmark Süsswasseralgen, 1598, p. 17.

A form with the apices subtruncate.
Length $41 \mu$; breadth $12 \mu$.
ExGlant.-Bowness, Helvellyn, and Langdale, Westmoreland!

Cieogr. Distribution.-Germany. Switzerland. Anstrian Tyrol. Norway.

$$
\text { Var. crassum cur. nor. (Pl. VII, figs. } 1(i, 17 .)
$$

C'ells about 3 times longer than their diameter, not so attennated; apices very broad and rounded-truncate. Length $365-58 \mu$; breadth $145-155 \mu$; breadth of apices $8 \cdot 5-9 \cdot 5 \mu$

Scotwnd．－Near Balallan，Lewis ；and near Tarbert， Harris，Outer Hebridcs！

So far as our own experience goes，this variety is confined to the extreme north－west of Scotland．

## Var．inflatum rer．nor．（Pl．VII，fig．18．）

Somewhat larger than the typical form， 3 times longer than the diameter，elliptic－fusiform，in the median part of the cell subcylindrical ；apices rounded．

Length $7 \pm \mu$ ；breadth $2+\mu$ ．
Scothand．－Ben Laoigh，Perthshire！
This variety is of the same outward form as the small forms of $P$ ．Naricula figured by Heimerl（Desm，alp．1891，p．590，t．．5， f．2．）and erroneously ascribed by him to Wille＇s＂forma ＂picilus rotundato－truncatis＂（＝forma WilleiSchmidle）．It also bears a great resemblance to another plant described by Heimerl（l．c．t．5，f．3）as P．closteroides Ralfs，forma minor； but it is relatively shorter and of smatler size．Schmidle has termed this second form of Heimerl＇s P．Heimerliantm（consult S＇chmidle，Alg．Bern．Alp．1894，p．89），but it is very difficult to define as a species distinct from $P$ ．Naricula and $P$ ．Libel－ Inla var．intermedium．

## 3．Penium Jenneri Ralfs．

## （Pl．VII，figs．20，21．）

Penium Jenneri Ralfs，Brit．Desm．1s48，p．153，t．33，f．2；Rabenh．Flor． Europ．Algar．III，186S，p．120；Wittr．Gotl．Öl．sötr．Alg．1472，p． 67 ； Gay，Monogr．loc．Conj．18st，p． 69 ：Wolle，Desm．U：S．18st，p． 36 ； Racib．Desm．Nowe，1889，p． 74 ；Nordst．Index Desmid．1596，p． $150 ;$ West．Alg．W．Ireland，1s92，p．12s．
Penium Brébissonii var．Jenneri Kirchn．Alg．Schles．157s，p． 136.
Cylindrocystis Biébissonii var．Jenneri Hansg．Prodr．Algenfl．Bömh．1888， 1． 175.
Cells small，-4 times longer than their diameter， unconstricted，cylindrical；apices broadly rounded； cell－wall smooth ；chloroplasts axile．

Zygospore globose and smooth，becoming yellow－ brotwn．

Length 20－58 $\mu$ ；breadth 1：3－15 $\mu$ ；diameter of zygospore 2．う－3．5 $\mu$ ．

Evglanb.-'Tumbridge Wells, Sussex (.Jemuer; Rulti). Sutton Park, Warwick (Will:s).

Scotland.-Several localities in Aberdeenshire (foy \& Biscett). Ben Nevis, Inverness! New Galloway, Kirkcudbright! Zygospores from Dinnet, Aberdeen (Roy \& Bissett).

Ireland.-Lakes near Recess, Galway!
Geogr. Distribution.-Germany. Austria. Norway. Sweden. Poland.

This Desmid requires investigation as the nature of its chloroplasts is unknown. Ralfs states: "I know no character ly which to distinguish the nsual state of Pemium Jenneri from $P$. Brébissonii. They agree in size and form ; in both the arrangement of the endochrome is similar." If the latter statement is correct the plant should be placed in the genus Cylindrocystis, but as we have never seen any living specimens we retain it in the genus Penium.

The conjugation, which takes place by the protrusion of conjugating-tubes, and the globular zygospore, indicate that it is a plant quite distinct from Cylindrocystis Brébisomii. Perhaps it would be better placed as Cylindrocystis Jenneri nob.

## 4. Penium spinospermum Josh.

 (Pl. VIII, figs. 6, 7.)[^3]C'ells small, $9-2 \frac{1}{4}$ times longer than their diameter, unconstricted or with a very slight median eonstriction, very slightly attemuated towards the apices, which are rounded; cell-wall smooth.

Kygospore globose, covered with obtuse conical projections.

Length $25-30 \mu$; breadth $12 \cdot 3-15 \cdot 5 \mu$; diameter of zygospore with projections $2(6-3: 3 \mu$.

Exgland.-Cowgill Wold Moss, Widdale Fell, W. Yorkshire (with zygospores)!

Somland--Inverness, Aberdeen, Kincardine, Stirling, Argyll, Renfrew (Roy of lissoctt).

Irelini.-Derrestrasna Bog, Armagh. (.Jssmu). Mourne Mts., Down (with zygospores) !

Geogro Distithution.-Ceylon.
Joshua's measurements for this species are quite wrong according to his own figures; we are therefore compelled to consider the "forma minor" as identical with the typical plant. It is a rare species with a very characteristic zygospore.

## 5. Penium didymocarpum Lund.

(Pl. VIII, figs. 11-13.)

> Penium didymocarpum Lund. Desm. Suec. 1571, p. S5, t. 5, f. 9; Cooke, Brit. Desm. 1856, p. 44, t. 17, f. 6; Nordst. Freshw. Alg. N. Zeal. 1shs, p. 72 (formæ incertæ) ; West, Alg. Eng. Lake Distr. 1892, p. 7 , 1 ; Lütkem. Desm. Attersees, 1593, p. 545.
> Schizospora minor Reinsch, Contrib. Alg. et Fung. 1575, p. sī, t. 17, f. :2.
> Schizospora didymocarpa Hansg. Prodr. Algenfl. Böhm. 1588, p. 175 (note)

Cells small, about $\simeq \frac{1}{2}$ times longer than their diameter, unconstricted, subcylindrical, slightly attenuated towards the poles, which are rounded; cell-wall smooth ; each chloroplast with one pyrenoid.

Zygospore double, compressed, subquadrate with rounded angles, of which the exterior ones slightly project; empty semicells closely adhering to the exterior angles.

Length $31-: 38 \mu$; breadth $13-15: 3 \mu$; length of $2 y g o-$ spore $22-30 \mu$, breadth $31-38 \mu$.

England.-Risley Bog (Roy) ; Hawksliead (with zygospores) !, Lancashire, Devon (Benuett). Cornwall (Marquand).

Wales.-Capel Curig, Carnarvonshire (Roy).
Scotland.-General!; conjugation not uncommon (Roy \& Bissett). Near Balallan, Lewis, and near' 'Lar' bert, Harris, Outer Hebrides (with zygospores)!

Ireland.-Dublin and Wicklow (Aicher).
Geogi. Distribution.-Austria. Sweden. Demmark. Lapland. Central China. New Zealand.

This species is remarkable in the possession of a double zygospore, a phenomenon which normally exists in about four
species of Desmids. There are two zygospores in close apposition, each one being formed by the union of a distinct pair of gametes. The form cells which take part in the conjugation appear to be produced from one individual by two consecutive regetative divisions, and prior to conjugation they become enveloped in a copions mucus.

In the other Desmids in which a double zrgospore results from conjugation only two cells are concerned in its formation.

The outer layers of the wall of the zygospore frequently show signs of splitting off, and for this reason Reinsch placed the plant in a genus which he named Schizuspora.

## 6. Penium Mooreanum Arch.

(Pl. VIII, figs. 8-10.)
Penium Mooreanum Arch. Descript. New Cosm., etc. 1864, p. 24, t. 1, f. 34-44; Rabenh. Flor. Europ. Algar. III, 1868, p. 123; Cooke, Brit. Desm. 1886, p. 44, t. 17 , f. 6 ; West, Alg. N. Yorks. 1859 ; Alg. W. Ireland, 1892, p. 128 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 46 ; Schmidle Beitr. Alg. Schwarzwald. 1893, p. 88, t. 3, f. 8, 9.
Cells minute, $1 \frac{1}{3}-1 \frac{1}{2}$ times longer than their diameter, unconstricted, ellipsoid with truncately rounded apices; chloroplasts with four or five longitudinal ridges; cell-wall smooth.

Zygospore quadrangular-oblong, compressed, with the lateral margins hollow and the angles markedly mammillate.

Length $19 \mu$; breadth $12.7 \mu$; length of zrgospore 3.5-42 $\mu$, breadth $25 \mu$.

Exglant.-Kildwick and Howgill Fells, W. Yorks ! Near Scarborough and Nickle Fell, N. Yorks. (with zyoospores)!

Waies.-Bethesda and Glyder Fach (at $2,200 \mathrm{ft}$.), Carnarvonshire!

Scotland.-Inverness, Aberdeen!, Kincardine, Forfar, Perth (Rom \& Bissett). Dumfries! Kirkcudbright! Caithness! Shetlands!

Ireland. - Galway! Kerry! Dublin (Aicher). Down!

Geogr. Distribution.-Germany. Austria. Switzerland. Italy. Norway. Lapland.

Areher deseribes this species as sulb-elliptic in outline, with the sides somewhat barrel-shaped and the ends truncatorotund. He states that the zygospore is twisted in those instances in which the conjugating cells lie at right angles to each other.

## 7. Penium suboctangulare West.

(Pl. VIII, figs. 14-19.)
Penium suboctangulare West, Alg. W. Ireland, 1892, p. 128, t. 24, f. 20; West id G. S. West, Alg. S. England, 1597, p. 479; Nordst. Index Desmid. 1596, p. 246 .
Cells minute, about $1 \frac{1}{2}$ times longer than their diameter, oblong-ellipsoid, unconstricted, apices broadly rounded; cell-wall smooth and colourless.

Zygospore quadrate or oblong, compressed ; angles truncate and retuse ; cell-wall thick, ultimately becoming brown.

Length $14-16 \mu$; breadth $10 \mu$; length of zygospore $2.5-28 \mu$, breadth $20-25 \mu$, thickness $18 \mu$.

England.-New Forest, Hants. (with zygospores)!
Ireland.-Lower Lake of Killarney, Kerry (with zygospores)!

## 8. Penium minutissimum Nordst.

 (Pl. VIIT, figs. 20-23.)Penium minutissimum Nordst. Norges Desm. 1s73, p. 43, t. 1, f. 21; Cooke, Brit. Desm. 1886, p. 45, t. 17, f. 10; West \& G. S. West, Alg. Madag. 1895, p. 47 ; Nordst. Index Desmid. 1896, p. 171 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 46.
Cells minute, $1 \frac{1}{2}-2$ times longer than their diameter, unconstricted or very slightly constricted in the middle, subellipsoid, very slightly but gradually attenuated from the middle towards the apices which are broadly rounded; cell-wall smooth, yellowish.

Zygospore subquadrate, angles rounded and slightly prominent; broadly elliptical from both vertical and lateral views; cell-wall yellowish.

Length 12-16 $\mu$; breadth $9-10 \mu$; length of zygospore $16 \mu$, breadth $14 \mu$.

Ergland. - Old Cote Moor, W. Yorks! Mickle Fell, N. Yorks!

Scotland--Poolewe, Ross; Brin, Inverness: Heughhead, Aboyne, "Colonel's Bed " in Braemar, Aberdeen; zygospores from Aboyne, Aberdeen (Roy $\downarrow$ Bissett). Lewis, Outer Hebrides!

Wales.-Capel Curig, Carnarvonshire! Ffestiniog, Merioneth!

Ireland.-Mourne Mts., Down!
Geogr. Distribution.-France. Austria. Norway. Burmah. Siam. Madagascar. Brazil. Aroentina.

## 9. Penium truncatum Bréb. (Pl. VIII, figs. 24-26.)

Penium truncatum Bréb. in Ralfs' Brit. Desm. 184S, p. 1502, t. …, f. 2; Arch. in Pritch. Infus. 1861, p. 751 ; Rabenh. Flor. Europ. Algar. III, 1865, p. 121; Kirchn. Alg. Schles. 187s, p. 136; Wolle, Desm. U.S. 1854, p. 35, t. 5, f. 9, 10 ; Cooke, Brit. Desm. 1886, p. 44, t. 17, f. 4 ; West, Alg. W. Ireland, 1892, p. 128; Alg. Eng. Lake Distr. 1892, p. 721 ; Roy \& Biss. Scott. Desm. 1894, p. 253 ; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1901, p. 46. ; Alg. N. Ireland, 1902, p. 21 ; Nordst. Index Desmid. 1896, p. 261.
P. truncatum forma punctate West, Add. Alg. W. Yorks. II, 1891, p. 24.5; West id G. S. West, Alga-fl. Yorks. 1901, p. 46.
Cells small, 2-:3 times longer than their diameter, cylindrical, slightly constricted or unconstricted, apices truncate with slightly rounded angles; cell-wall colourless and very minutely (often indistinctly) punctate.

Zygospore globose and smooth.
Length $23 \cdot 5-4 \bar{\prime} \mu$; breadth $10-13.5 \mu$; diam. zrgosp. $\because 6.5 \mu$.

Exgland.-W. and E. Yorks! Lancashire! Devon! Cornwall! (Inarqumel).

Wales.-Capel Curig! (Coole \& Wills), Llyn-Y-cwmffynon, Llyn Idwal, Twll Du, Glyder Fach (at $2, \dot{2} 00 \mathrm{ft}$.), Bethesda, Bettws-y-coed (Roy), Moelfre, Carnarvonshire! Dolgelly (Ralfis) and Ffestiniog, Merioneth! Glamorganshire ! Monmouth !

Sootland.-Sutherland, Ross, Tnverness! Aberdeen, Kincardine, Perth!, Argyll, Arran ; zygospores from Muiryhaugh, Kincardine (Roy \& Bissett).

Lamanı.-Kerry! Galway! Donegal! Dublinand Wicklow (Acher). Down! Antrim!

Geoyi. Distribution.-France. Germany. Austria. Norway. Sweden. Italy. United States.

Ralfs believed this species to be minutely and indistinctly punctate, and we find the punctulations very variable in intensity; some forms are very distinctly punctate, but others are apparently quite smooth.

## Section 1 .

10. Penium margaritaceum (Ehrenb.) Bréb.
(Pl. VIII, figs. 32-35.)
Closterium margaritaceum Ehrenb. Infus. 183s, p. 95, t. 6, f. xiii; Hass. Brit. Freshw. Alg. 1845, p. 376 , t. 88 , f. 5.
Penium margaritaceum (Ehrenb.) Bréb. in Ralfs’ Brit. Desm. 1s44, p. 149, t. 2.5 , f. $1 a, b, c$; t. 33, f. 3; Arch. in Pritch. Infus. 1861, p. 750, t. ${ }^{2}$, f. 14,15 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 121 ; Kirchn. Alg. Schles. 1878, p. 135 ; Wolle, Desm. U.S. 1854, p. 34, t. 5, f. 5, 6, 11 ; Cooke, Brit. Desm. 1886, p. 38, t. 17, f. $1 a-g$; West, Alg. W. Ireland, 1892, p. 126; Alg. Eng. Lake Distr. 1892, p. 720 ; Nordst. Index Desmid. 1896, p. 164; West it G. S. West, Alg. S. England, 1897, 1. 478 ; Alga-fl. Yorks. 1901, p. 46 ; Alg. N. Ireland, 1902, p. 21; Roy d Biss. Scott. Desm. 1894, p. 252.
Cylindrocystis margaritacea Reinsch, Algenfl. Frank. 1867. p. 198.
: Penium pandurans De Not. Desm. Ital. 1867, p. 70, t. 8, f. so.
Cells large, $6-12$ times longer thain their diameter, cylindrical or subfusiform, with a distinct median constriction, apices truncately rounded; cell-wall reddishbrown in colour and furnished with longitudinal rows of granules ; chloroplast with about 10 longitudinal plates (or ridges) and often showing a slight median interruption.

Kygospore globose and smooth.
Length $73-170 \mu$; breadth $12 \div-26 \mu$; breadth of apices about $\overline{7} \cdot \check{y}-18 \mu$; diam. zroosp. $4 \bar{\gamma} \mu$.

Exglavd.-Westmoreland! (Bissett). W. and N. Yorks! Lancashire! Cheshire (loy). Warwick (Hill.s). Gloucester (Rulfs). Surrey! Sussex (Ralfis). Hants! (lulfs). Devon! Cornwall! (Ralfs). Essex! (Rulfic).

Wं ures.-General, but scarce!

Scotland.-Sutlerland!, Ross, Inverness!, Aberdeen, Kincardine, Forfar, Perth!, Stirling, Arran (Roy f Pissett). Kirkcudbright! Harris, Outer Hebrides! Shetlands!

Irelaxd.-Kylemore, Roundstone and Ballynahinch. Galway! Castletown and Carrantuohill, Kerry! Dublin and Wicklow (Aicher). Slieve Donard, Down!

Geoyr. Distribution.-France. Germany. Austria. Poland. Hungary. Italy. Portugal. Norway. Sweden. Finland. Lapland in Russia. Faeroes. Greenland. Spitzbergen. Jara. New Zealand. East Africa. Azores. United States. Ecuador.

There is frequently a terminal racuole at each extremity of the cell, containing moring granules.

## 11. Penium Cylindrus (Elırenb.) Bréb.

> (Pl. VI, figs. 1-3.)

Closterium? (Toxotium) Cylindrus Ehrenb. Infus. 1838, p. 95, t. 6, f. vi; Menegh. Synops. Desm., 1840, p. 236.
Penium Cylindrus (Ehrenb.) Bréb. in Ralfs' Brit. Desm. 1848, p. 150, t. 2.5, f. $2 ;$ Arch. in Pritch. Infus. 1s61, p. 750 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 12: ; Cooke, Brit. Desm. 1886, p. 39, t. 17, f. 2; West, Alg. W. Ireland, 1592, p. 126; Alg. Eng. Lake Distr. 1892, p. 720 ; Roy and Biss. Scott. Desm. 1s94, p. 2.51; Nordst. Index Desm. 1896, p. 96 ; West \& G. S. West, Alg. S. England, 1897, p. 478 ; Alga-fl. Yorks, 1900, p. $44 ; \mathrm{Alg} . \mathrm{N}$. Ireland, 1902, p. 21.
Dysphinctium Cylindrus Näg. Gatt. einz. Alg. 1s 49, p. 111 ; Hansg. Prolr. Algenfl. Böhm. 1888, p. 186.
Cylindrocystis Cylindrus Reinsch, Algenfl. Frank. 1867, p. 198.
Calocylindrus Cylindrus a. genuinus Kirchn. Alg. Schles. 1878, p. 142.
Calocylindrus Cylindrus b. silesiacus Kirchn. l. c.
Cells small, $2-+$ (rarely up to (6) times longer than their diameter, cylindrical and unconstricted, apices truncately rounded; cell-wall reddish-brown in colour and furnished with longitudinal rows of minute granules, which are often scattered, especially near the extremities.

Zygospore globose and smooth.
Length $30-50 \mu$; breadth $10 \div-14 \mu$; diam. zygosp. 2.) $-27 \mu$.

Exaland.-Cumberland! Westmoreland! (Rulf:). W. and N. Yorks! Lancashire! Warwick (Wills). Surrey (with zygospores, from Thursley Common)!

Sussex (Ralfis). Hants! (Bennett). Devon! Cormwall! (Ifargumed).

Wales.-General in the mountainous areas !
Scotrand.-General ! ; zygospores from north of Loch Dawan, Aberdeen (Lo! of Biswett). Common in the Outer Hebrides!

Ireland.-Galway! Kerry! Donegal! Dublin and Wicklow (Aicher). Down!

Greogi. Distribution.-France. Germany. Austria. Italy. Poland (var.). Switzerland. Norway. Sweden. Finland. Lapland in Russia. Faeroes. New Zealand. United States. Brazil.

## 12. Penium cuticulare West \& G. S. West.

## (Pl. VI, figs. 4, 5.)

Penium cuticulare West \& G. S. West, New and Int. Freshw. Alg. 1S96, p. 153, t. 4, f. 43.44 ; Nordst. Index Desm. 1896, p. 276 ; West \& G. S. West, Alg. S. England, 1897, p. 4is; Notes Alg. I, 189s, p. 3 (sep.).
( $e$ ells minute, $2 \frac{1}{2}-3 \frac{1}{2}$ times longer than their diameter. cylindrical and unconstricted, apices broadly truncate with ronnded angles; cell-wall reddish-brown, very minutely and irregularly papillose-punctate.

Zygospore angular-globose, smooth.
Length $19-: 3+\mu$; breadth $S-10 \mu$; diam. zygosp. $19-2 \mu$.

Evgland.-Thursley Common, Surrey (with zygoo spores)!

This species is very closely allied to $P$. cylindrus (Ehrenb.) Bréb., differing only in its smaller size, the much finer and irregular markings on the cell-wall, and in the angularity of the zygospore. The young portions of the cell-wall are perfectly smooth and withont colour.

It is a very similar plant to the one described by Schmidle as $P$. Cylindrus var. subtruncatum (cide Beitr. alp. Alg. 1895, p. 310 , t. 14, f. $2 \overline{7}, 28$ ), but the latter is rather larger and has a colourless cell-wall. Schmidle (Lappmark Süsswasseralgen, 1898, p. 16) has since elevated his variety to specific lank muder the name of $P$. subtruncatum, and he places $P$. cuticulare as a synonym of it. The two plants are, howerer, not
strictly identical, and it is most probable that both should be merged into $l^{\prime}$. Cylindrus. It differs from P. truncatıom Brél, in its cell-wall and in its less trmate apices. From the succeeding species- $P$. exiguum West-it is distinguished by its different proportions, by the absence of the median constriction, by the madilated apices, and by its cell-wall.

## 13. Penium exiguum West.

 (Pl. VI, figs. (i, 7.)Penium exigum West, Alg. W. Ireland, 1892, p. 126, t. 19. f. 17, 15 ; Nordst. Index Desm. 1896, p. 121; West \& G. S. West, Alg. N. Ireland. 1902, p. 21.

Cells small, 3-6 times longer than their diameter, cylindrical, usually with a slight median constriction, apices truncate and commonly slightly dilated; chloroplasts with $2-3$ pyrenoids; cell-wall colourless, delicately and irregularly punctate.

Zygospore unknown.
Length $18: 5-37 \mu$; breadth 6-8.5 $\mu$.
Scotlaxp.-Near Balallan and near Barvas, Lewis; N. Uist, Outer Hebrides !

Irelaxd.-Kylemore, Galway! Cromagloun, Kerry! Near Glenties; near Gweedore; pool near Longh Glentornan, Donegal!
This species is characterised by its relative proportions, its dilated apices, and its punctate cell-wall. There is frequently a terminal racuole at each extremity of the cell, containing moring granules.

## Forma major nol. (Pl. VI, fig. S.)

Penium Lewisii Turner, Desm. Notes, 1s93, p. 349, f. 15.
$P^{\prime}$. exiguum West, forma Lewisii West it G. S. West, Rec. puhl. Desm. 1895, p. 66; Nordst. Index Desm. 1596, p. 122; West \& G. S. West, Alg. S. England, 1897, p. 478 ; Alg. N. Ireland, 190:2, p. 21.
Somewhat larger than the typical form, but otherwise exactly similar.

Length $46-62 \mu$; breadth $10-11 \mu$.
Exghap.-Keighley Moor, W. Yorks! Surrey! Cornwall!

Wares.-Llyn Idwal! Llyn-r-cwm-ffyon!, Snowdon ('tumer), Carnarronshire!

Scotlaxd.-Rhiconich, Sutherland! Lochnagar, Aberdeen (at $3,500 \mathrm{ft}$. )!

Irefand.-Near Glenties, Donegal! Slievecommedagh, Down!

Geogr. Distribution.-Germany. Austrian 'lyrol.
14. Penium granulatum (Bemn.) nub.
(Pl. VIII, fig. 39.)
Docidium granulatum Benn. Alg. N. Cornwall, 1857, p. 15, t. 4, f. 17 ; Choke, Brit. Desm. 1887, p. 184, t. 65, f. 2; Nordst. Index Desm. 1596, p. 134.
('ells small, about 5 times larger than their diameter, slightly constricted in the middle, semicells oblongellipsoid with the apices broadly rounded; cell-wall " conspicuously covered with pearly granules."

Length $50 \mu$; breadth $10 \mu$.
Exgland.-Mawgan, Cornwall (.1. II. Pemett).

## 15. Penium Clevei Lund.

(Pl. VIII, figs. 36, 37.)

> Penium Clerei Lund. Desm. Suec. 1871, p. s6, t. 5. f. 11; West, Alg. W. Ireland, 1492, p. 129; Alg. Eng. Lake Distr. 1892, p. 721 ; Nordst. Index Desm. 1896, p. 74; West \& G. S. West, Some Desm. U. S. 1895, p. 241.

> Peniu, Thuratesii Cleve (non Ralfs).
> Calocylindrus Clevei Wolle, Desm. U. S. 1554, p. 56, t. 50, f. 27.
> Dysphinctium Clevei De Toni, Syll. Alg. 1569, p. 893.

('ells of medium size, $2 \frac{1}{2}-3$ ) times longer than their' diameter, subcylindrical, slightly constricted in the middle; semicells pyramidate-ovate, with rounded apices; chloroplasts with one pyrenoid (rarely with two) ; cell-wall finely punctate and at each pole finely granulate.

Zygospore unknown.
Length $96-108 \mu$; breadth $36-42 \mu$; breadth of isthmus 33-38 $\mu$.

England.-Borrowdale and Angle Tarn, Cumberland! Bowness, TVestmoreland!

Scothand.-New Galloway, Kirkcudbright!
Ireland.-Roundstone and Ballynahinch, Galway ! Dublin and Wicklow (ficher).

Geogr. Distribution.-France. Austria. Lapland in Russia. East Africa. United States.

The finely granular apices of this species are very characteristic. It is a rare Desmid chiefly confined to a few permanent bogs.

Var. crassum West \& G. S. West. (Pl. VIII, fig. 38.)
Penium Clevci var. crassum West \& G. S. West, New Brit. Freshw. Alg. 1894, p. 4, t. 1, f. 5; Nordst. Index Desm. 1896, p. 75.
Cells only twice longer than their diameter, with the lateral margins more convex and with smaller granules at the poles; chloroplast with one large pyrenoid.

Length $80-98 \mu$; breadth $42-44.5 \mu$; breadth of isthmus $39 \cdot \breve{0}-40 \mu$.

England.-Bog at the side of Angle Tarn, Cumberland ( $1,500 \mathrm{ft}$.) !

## 16. Penium spirostriolatum Barker. (Pl. IX, figs. 1-8.)

? Penium margaritaceum var. $\gamma$ punctatum Ralfs, Brit. Desm. 1848, p. 149, t. 25 , f. 1 d-h; Schmidle, Beitr. Alg. Schwarzwald. 1893, p. s7, t. 3, f. 4.

Penium spirostriolatum Barker, in Quart. Journ. Micr. Sci. 1669, ix, p. 194 ; Arch. in Journ. Bot. 1874, p. 94 ; Cooke, Brit. Desm. 1886, p. 39, t. 15, f. 9; Wolle, Freshw. Alg. U.S. 1887, p. 22, t. 61, f. 19 ; West, Alg. N. Wales, 1890, p. 2S5, t. 6, f. 24; Alg. W. Ireland, 1892, p. 120; Alg. Engl. Lake Distr. 1892, p. 720 ; Roy \& Biss. Scott. Desm. 1804, p. 253 ; West \& G. S. West, Alg. S. England, 1897, p. 478 ; Some Desm. U.S. 1898, p. 282 ; G. S. West, Variation Desm. 1899, pp. 377-380; West \& G. S. West, Alga-fl. Yorks. 1900, p. 46 ; Alg. N. Ireland, 1902, p. 21; Freshw. Alg. Ceylon, 1902, p. 136.

Closterium spiraliferum Jacobs. Desm. Danem. 1875, p. 177. t. 7, f. 8.
Pcnium Haynaldii Schaarschm. Magyar. Desm. 1853, p. 277, t. 1, f. 20 .
Penium Royanum Tmı. Freshw. Alg. of E. India, 1593, p. 165, t. 23, f. 7.
Penium scandinavicum Turn. 1. c. p. 166, t. 23, f. 6.
Penium spirostriolatum var. amplificatum Schmidt, Grundl. Algenfl.
Lüneburg. Heide, 1903, p. 16, t. 2, f. 19.
Cells large, 5-11 times longer than their diameter,
subeylindrical, with a slight median constriction, gradually attemated towards the apices, which are rounded or truncately rounded and sometimes dilated; transverse sutures masually several or many ( 16 have been observed), marking the junction of cytindrical interpolated pieces of cell-wall of various ages; cellwall pale yellow or yellowr-brown in colour, furmished with longitudinal strize which have a variable spiral twist ; strise sometimes anastomosing or often partly replaced by rows of clots; between the striæ finely punctate.

Zygospore globose and smooth.
Length 12:3-974 $\mu$; breadth $20-26 \mu$; breadth of apices $13 \cdot 5-16 \mu$.

Evalint.-Cumberland! Westmoreland! WT, and N. Yorks! Lancashire! Surrey! Cornwall!

Wales.-General in Carnarronshire! Ffestiniog, Merioneth !

Scotland.-Ross, Invermess!, Aberdeen, Kincardine, Perth ! , Dumbarton, Argyll (Roy \& Bissett). Sutherland! Lewis and Harris, Outer Hebrides!

Ireland.-General in Mayo! Galway! Kerry ! Donegal! Armagh! Down!

Geogi. Distribution.-France. Germany. Austria. Hungary. Portugal. Denmark. Norway. Sweden. Finland. Ceylon. Java. United States.

The structure of the cell-wall of this Desmid has been carefully investigated (ride G. S. West, Yariation Desm. 1899, pp. 377-380) and its striolation has been shown to be its most variable character. The stria may be coarse, fine, or broken up into series of dots, even in different individuals from the same gathering, thus exhibiting the main characters of the three forms described by Turner as Peminm spirostriolatum, $P$. Royanum, and $P$. scandinaricum. The number seen at one time across the cell varies from about 8 to 13 , and this variation may be seen on one individual, the striolations being more crowded at some parts of the cellwall than at others. In one individual two striolations were onserved to be $2 \cdot 3 \mu$ apart, and the distance between one of these and the next one was $5-\mu$. They are generally arranged around the cell in a spiral manner from aper to
apes, and may make abont $1 \frac{1}{4}$ turns in the whole length of the ceell; but in the majority of specimens they are mucl straighter than this, and in some are longitudinal althongh not quite straight. They are not always continuous from end to end, but often rm only part of the distance and then fade away or join with a neighbouring striolation. In many cases they are very irregular, and a reticulation is often present joining together several, or all of them. In some individuals this reticulation is concentrated in the middle of the cell; in others there is a marked reticulation at the end of the cell, and sometimes a reticulated zone is present just below the apex. Most specimens hare a distinct convex apical cap which is strongly punctate, the punctulations being continuous witl those between the striolations. All examples possess punctulations between the striolations, however minute they may be. There is every indication that the striolations are internal thickenings of the cell-wall. In the majority of instances the edges of the striolations are not smooth, but exhibit varions degrees of roughness, and in some specimens under a particular focus a reticulation is perceived to exist between the punctulations, apparently comnecting the striolations together.
'The variations in the untward form of this species are due to the irregularity in the position of the sutures.

There is no doubt whatever that Ralfs confused this plant with Penium margaritaceum, and he muquestionably described and figured both vegetative specimens and zyogospores under the name of "P.margaritaceum $\gamma$ munctatum." It was one of the first Desmids we observed when examining some material of onr own collecting from one of the farourite localities of Ralfs near Penzance.

## 17. Penium polymorphum Perty. (Pl. IX, figs. 9-11.)

Closterium polymorphum Perty, 1849.
I'enium polymorphum Perty, Kleinst. Lebensf. 18.52, p. 207, t. 16. f. 15; Rabenh. Flor. Europ. Algar. III, 1868, p. 123 (in part); Lund. Desm. Suec. 1871 , p. 86, t. 5, f. 10 ; Wolle, Desm. U. S. 1884 , p. 36 , t. 5, f. 12 ; Nordst. Freshw. Alg. N. Zeal. 1888, p. 71; West, Alg. W. Ireland, 1892, p. 128; Alg. Engl. Lake Distr. 1892, p. 721; Roy \& Biss, Scott. Desm. 1894, p. 253: Nordst. Index Desm. 1896, p. 203; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 46 ; Alg. N. Ireland, 1902, p. 22.
Cosmarium polymorphum Jacobs. Desm. Danem. 1576, p. 201.
''enium polymorphum forma alpicola Heimerl, Desm. alp. 1891, p. 590, t. $\mathrm{\Sigma}, \mathrm{f} .4$.

Penium polymorphum var. Lundellii Schmidle, Alg. Bern. Alp. 1894, p. 89.

Cells small, $2-2 \frac{1}{2}$ times longer than their diameter, cylindrical or subcylindrical, with a vers slight median constriction ; semicells commonly gradually but very slightly attenuated to the apices, which are broad and truncately rounded; cell-wall with very delicate longitudinal striolations ; chloroplasts with one large prrenoid and many longitudinal ridges.

Zygospore unknown.
Length 44-61 $\mu$; breadtl $21-28 \mu$.
ExGrand.-Cumberland! Westmoreland! (BisisetI). Common in the upland districts of Yorks. (up to $2,000 \mathrm{ft}$.$) ! Surrey! Cormwall!$

Whaes.-Penmaenmawr, Y Foel Fras, Llyn Idwal, Lḷ̆ Bochlwred, Glyder Fawr (at 2,700 ft.), Llyn-y-cum-ff!non, and Snowdon, Carnarronshire!

Scotrand.-Sutherland!, Ross, Inverness!, Aberdeen!, Kincardine, Forfar!, Perth!, Stirling', Argyll, Arran (Roy f Bissett). Lewis, Harris, and Benbecula, Outer Hebrides! Orkneys! Shetlands!

Ireland.-Galway! Kerry ! Donegal! Shores of Lough Neagh! Londonderry! Down! Dublin and Wicklow (Archer).

Geogr. Distrilution.-France. Germany. Austria. Switzerland. Lapland in Russia. India (forma). New Zealand. Azores (var.) United States.

This species is somewhat rariable, but we see no reason for giving the name " var. Lundellii" to the most abundant form of it.

## 18. Penium phymatosporum Nordst.

(Pl. VI, figs. 9-11.)
Penium phymatosporum Nordst. Desm. Ital. 1s-6, p. 26, t. 12, f. 1; Josh. New and Rare Desm. 1855, p. 35, t. 254, f. 11 ; Ccoke, Brit. Desm. 1886, p. 40, t. 17, f. 8.

Cells small, about $2 \frac{1}{4}$ times longer than their diameter, subcylindrical, unconstricted or with a rery slight median constriction, very gradually and very slightly attemated towards the apices, which are
truncately rounded; cell-wall with very delicate longitudinal striolations; chloroplasts with one pyrenoid.

Zygospore subquadrate or rectangular, with the angles obtuse and protruding; apices and sides concare, with a rounded protuberance on each side and four similar ones within the angles; side view of zygospore sexangular; cell-wall thick.

Length $26-42 \mu$; breadth $11-18 \mu$; length of zyrgosp. $36-12 \mu$; breadth of zygosp. $30-36 \mu$.

England.-Minety, Wilts (with zygospores; Joslum).
Scotland.-Near Mill of Muchalls, Kincardine (with zygospores ; Roy $\delta$ Bissett).

Ireiand.-Dublin and Wicklow (Archer).
Geogr. Distribution.-France. Austria. Italy. Argentina. Trimidad (?).

This species is characterised by its delicately striated cells and its peculiar zygospore.

## 19. Penium subtile West \& G. S. West.

> (Pl. VIII, figs. 27-29.)

Penium subtile West \& G. S. West, Alg. S. England, 1897, p. 479, t. 6, f. $8,9$.

Cells very minute, almost $1 \frac{1}{2}$ times longer than their diameter, ellipsoid with a very faint median constriction (often only indicated by a median suture), apices subtruncate; cell-wall colourless, very delicately and indistinctly punctulate ; punctulations scattered, about 12 in each semicell; chloroplasts with one pyrenoid, and with two, three, or four longitudinal ridges; sometimes with only one chloroplast situated in the median portion of the cell.

Zygospore unknown.
Length $1+-15 \mu$; breadth $10-11 \mu$.
England.-Thursley Common, Surrey!
Wabes.-Llyn Geirionedd, Carmarvonshire!
Scotlant.-Near Balallan, Lewis; and a pure gathering from S. Harris, Outer Hebrides !

This is a rare species which occasionally occurs in pro-
digious quantity in small pools in the best bogs of the comitry. The widest part of the cell is always in the middle, and the apices are always flattened. Most specimens have two chloroplasts situated close together in the middle region of the cell, and each furnished with a pyrenoid, but others have only one median chloroplast with one prrenoid. The frequent reduction of the longitudinal ridges to two is also noteworthy. 'This same reduction of the chloroplasts we have observed in Cormocladium constrictum Arch.
$P$. subtile can be compared with Dysphinctium sporsimenctatum Sclmidle, from the unconstricted form of which it differs in the shape of its cells, its much more delicate pructulations, and its circular vertical view.

## 20. Penium adelochondrum Elfr. (Pl. VIII, fig's. 30, 31.)

[^4] West, Alg. W. Ireland, 1892, p. 128; Roy id Biss. Scott. Desm. 1894, p. 2.51 ; Nordst. Index Desm. 1896, p. 40.

Cells small, $2 \frac{1}{2}-2 \frac{3}{4}$ times longer than their diameter, subcylindrical, gradually narrowed towards each pole, with a slight median constriction, apices broadly truncate; cell-wall somewhat sparsely scrobiculate.

Zygospore unknown.
Length $40-46 \mu$; breadth $16-20 \mu$; breadth of apices 10-10.5

Scotland.-Poolewe, Ross; Glen Sligachan in Skye, Inverness; Glen Cattie, Aberdeen (hoy \& Bissett). Rhiconich, Sutherland!

Ifeland.-Cromagloun and Torc Mt., Kerry !
Geoyf: Distribution.-Germauy. Austria. Finland. West Africa.

## 21. Penium lagenarioides Roy.

 (Pl. IX, fig. 12.)Penium lagenarioides Roy, in Biss. Desm. Windermere, 1854, p. 197, t. 5, f. 6; Cooke, Brit. Desm. 1886, p. 45 ; Roy \& Biss. Scott. Desm. 1894, p. 252 ; Nordst. Index Desm. 1896, p. 154.
Cells large, ellipsoid, about twice longer than their diameter, with a very slight median constriction, semicells gradually attenuated towards the apices,

Which are subtruncate and slightly thickened; cellwall regularly and somewhat sparsely punctate ; chloroplasts with 9 or 10 longitudinal plates (or ridges) and one large pyrenoid.

Kygospore unknown.
Length $92-95 \mu$; breadth t.5 $\mu$.
Exaland.-Near Bowness, Westmoreland (Biswett).
Scotland.-Near 'Tain, Ross; Slewdrum, Ahoyne, Dawan, Presswhin, Dalbagie, Glen Clmie, Aberdeen; Scolty Dam, Curran, Bishop's Dam, Kincardine; Glen Clova, Glen Dole, Forfar; Brecklin, Coilantogle, Perth (Roy \& Bissett).
(teogli. Distribution.- Java (var.).

## 22. Penium cucurbitinum Biss.

(Pl. IX, figs. 1.3, 14.)
Penium cucurbitinum Biss. Desm. Windermere, 1884, p. 197, t. ,), f. 7: Cooke, Brit. Desm. 1886, p. 46 ; West, Alg. N. Yorks. 1ss9, p. 291; Alg. N. Wales, 1890, p. 286 ; Alg. W. Ireland, 1892, p. 128 : Alg. Eng. Lake Distr. 1892, p. 721 ; Roy \& Biss. Scott. Desm. 1494, 1. 2.51; Nordst. Index Desm. 1s96, p. 92; West \& G. S. West, Alg. S. England, 1897, p. 479; Alga-fl. Yorks. 1900, p. 47.

Cells of medium size, subcylindrical, rather more than $2 \frac{1}{2}$ times longer than their diameter, slightly tapering towards the apices which are broadly rounded, witle a slight median constriction ; cell-wall minutely and somewhat sparsely punctate; chloroplasts with about six longitudinal ridges and one large prrenoid.

Zygospore unknown.
Length $6 t-83 \mu$ (rarely up to $90 \mu$ ) ; breadth $26-: 33 \mu$ (rarely up to $35 \mu$ ).

Exaland.-Near Bowness! (Bissett), Loughrigg! , Helvellyn!, trough at Ambleside, Westmoreland! Ogden Clough, Shipley Glen, Holden Ghyll near Keighley, Ilkley, Penyolient, Widdale Fell, Wr: Vorks ! Riccall Common, E. Sorks! Epping Forest, Essex ! Thursley Common, Surrey !

Whes.-Llyn-an-afon, Y Foel Fras, and Snowdon, Carnarvonshire!

Scothind.-Sutherland!, Ross!, Aberdeen, Kincirrdine, Forfar ! , Perth !, Argyll, Renfrew (hoy s•liswett). Ayr! Kirkcudbright! Harris, Outer Hebrides!

Lreland.-Lakes near Recess and Ballynahinch, Galway! C'astletown and Carrantuohill, Kerry !

Forma minor West \& G. S. West. (Pl. IX, fig. 16.)
Penium cucu-bitinum forma minor West \& G. S. West, New Brit. Freshw. Alg. 1894, p. 4; Roy \& Biss. Scott. Desm. 1894, p. 251.
Rather smaller than the average : length $50-5 \delta \mu$; breadth $22 \cdot 5-25 \mu$.

Scotland.-Craig-an-Lochan, Perthshire!
Geogr. Distribution.-Siam. Brazil.

> Forma major formu nor: (Pl. LX, fig. 17.)

Rather larger than the average : length $98-100 \mu$; breadth $34.5-37 \mu$.

Scomand.-Tarbert, Harris; Near Balallan, Lewis, Outer Hebrides!

## Var. subpolymorphum Nordst. (Pl. IX, fig's. 19, 20.)

Penium cucurlitinum var. subpolymorphum Nordst. Freshw, Alg. N. Zeal. 1888, p. 71, t. 7, f. 20 ; West, Alg. N. Yorks. 1889, p. 291; Mask. Further Notes N. Zeal. Desm. 1889, p. 27, t. 5, f. 50; Lütkem. Desm. Attersees, 1893, p. 544; West \& G. S. West, Alga-fl. Yorks. 1900, p. 47.

More attenuated towards the apices than the trpical form ; apices subtruncately rounded ; cell-wall densely and minutely punctate.

Zygospore quadrate with rounded angles and straight sides; cell-wall lamellose.

Lengtl $71-86 \mu$; breadth $32 \cdot 5-38 \mu$; breadth of isthmus $32-35 \mu$; breadth of zygosp. $60-70 \mu$.

Exiland.-Mickle Fell, N. Yorks!
Geoyf. Distribution.-Austria. New Zealand.
Lütkemüller's Austrian specimens of this variety were larger than either the English or New Zealand ones; he gives as his measurements: length $96-100 \mu$; breadth $40-$ $42 \mu$; breadth of constriction $36 \mu$.

## Viar. Scoticum nol. (Pl. LX, fig. 18.)

Cosmarium Thucaitesii Ralfs, var. Scoticum West \& G. S. West, New Brit. Freshw. Alg. 1594, p. 8, t. 1, f. 15 ; Roy \& Biss. Scott. Desm. 1894, p. $256 ;$ Nordst. Index Desm. 1896, p. 255.

Rather larger than the trpical form, with the semicells inflated.

Length $9.5-97 \mu$; breadth $42 \cdot 5-43.5 \mu$; breadth of constriction $36-37 \cdot 5 \mu$.

Scotland.-New Galloway, Kirkcudbright!
Intermediate forms are sometimes met with between this variety and the type. Such a form with slightly inflated sides we have observed from Widdale Fell, W. Yorks. (PI. IX, fig. 1.5).

## 23. Penium crassiusculum De Bary.

(Pl. VIII, figs. 4, 5.)
Penium crassiusculum De Bary, Conj. 1858, p. 73, t. 5, f. 5-7; Cooke, Brit. Desm. 1886, p. 44, t. 17, f. 7; Roy \& Biss. Scott. Desm. 1894, p. 251; Nordst. Index Desm. 1896, p. 86 ; Desm. Singapore, 1897, p. 157; West \& G. S. West, Alga-fl. Yorks. 1900, p. 47 ; Alg. N. Ireland, 1902, p. 22.
Cells rather small, : $3-3 \frac{1}{2}$ times longer than their diameter, cylindrical with parallel sides, with a distinct median constriction, apices truncate with the angles slightly rounded; cell-wall smooth and colourless; chloroplasts with 4 or 5 somewhat irregular longitudinal ridges.

Kygospore "similar to that of $P$. pheymetosporum, but the angles less prominent and more rounded" (Rom).

Length $57-70 \mu$; breadth $20-23 \mu$; breadth of istlimus $18-18.5 \mu$.

Evgland.-Cowgill Wold Moss, Widdale Fell, W. Yorks!

Scotband. - Not uncommon; zygospore from Kyles of Bute in Argyll (Roy \& Bissett). Rhiconich, Sutherland!

Ireland.-Near Lough Glentornan, Donegal! Lough Fea, Londonderry! Dublin and Wicklow (Ancher).

Georn: Distribution.-Germany. Austria. Switzerland. Bornholm. Faeroes. Singapore. Java. Central China. Brazil.
This species is readily distinguished from $P$. polymorphum ly its more cytindrical cells with more truncate apices. The median constriction is also more evident in P. crassiusculum and the cell-wall is sinooth. The chloroplasts have also fewer and more irregular longitudinal ridges. It is a much rarer species than $P$. polymorphum, and one which we have never seell in quantity.

## 24. Penium curtum Brél.

(Pl. X, figs. 21, 22.)
Closterium curtum Bréb, 1838.
Cosmarium curtum Ralfs, Brit. Desm. 1848, p. 109, t. 32, f. 9; Bréb. Liste Desm. 18566, p. 133 ; Arch. in Pritch. Infus. 1861, p. 735 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 176.
Penium curtum Bréb. in Kütz. Spec. Alg. 1849, p. 167; Nordst. Desm. Spetsb. 1872, p. 25; Wille, Ferskv. Alg. Nov. Semlj. 1879, p. 56, t. 14, f. 74 ; Wille, Norges Ferskv. Alg. 1880, p. 49 ; Racib. Desmidyja Ciastonia, 1892, p. 390 ; West, Alg. Eng. Lake Distr. 1892, p. 721 ; Roy \& Biss. Scott. Desm. 1894, p. 251; Nordst. Index Desm. 1896, p. 93 ; West \& G. S. West, Alg. Madag. 1895, p. 17; Alg. S. England, 1897, p. 479 ; Welw. Afric. Freshw. Alg. 1897, p. 77 ; Furth. Contrib. Freshw. Alg. W. Indies, 1899, p. 283; Alga-fl. Yorks. 1900, p. 47 ; Alg. N. Ireland, 1902, p. 22 .
Dysphinctium? curtum Näg. Gatt. einz. Alg. 1849, p. 112 ; Reinsch Algenfl. Frank, 1867, p. 178.
Dysphinctium (Actinotæniam) Regelianum Näg. l. c. p. 110, t. VI e.
Calocylindrus curtus Kirchn. Alg. Schles. 1878, p. 143; Wolle, Desm. U. S. 1884, p. 54 , t. 12 , f. 15 , 16 ; Cooke, Brit. Desm. 1856, p. 126, t. 43, f. 11.

Cosmarium Thwaitesii d. curtum Klebs, Desm. Ostpreuss. 1879, p. 27.
Cells small, sometimes minute, a little more than twice longer than their diameter, with a distinct median constriction; semicells attenuated, sides convex, apex rounded and sometimes slightly thickened; cellwall punctate; chloroplasts with about eight longitudinal ridges.

Zygospore unknown.
Length $22-60 \mu$; breadth $105-325 \mu$; breadth of isthmus $9: 5-30 \mu$.

Exgland.-Westmoreland! W. and N. Yorks! Lancashire! Leicester (Roy). Gloucester! (Ralfs). Surrey! Devon! Cornwall! (Ralfs).

Wales.-Capel Curig, Llyn Cwlyd, Bethesda, Carnarvonshire! Ffestiniog, Merioneth !

Scotland.-Aberdeen, Kincardine, Perth! (Roy \& Pissett). Skye in Inverness! Forfar! Kirkcudbright! Harris, Outer Hebrides! Shetlands!

Treland.-Dublin and Wicklow (Archer). Slievecommedagh, Down !

Geogr. Distribution.-France. Germany. Austria. Italy. Norway. Sweden. Greenland. Spitzbergen. Nova Zembla. Franz-Joseph Land. India. Burmah. Siam. West Africa. Madagascar. West Indies. United States.
'Ihis Desmid varies much in size within certain limits. There is no definite line of demarcation between any of these forms, every intermediate size being met with, but for convenience they may be classitied as follows :-
(1) Forma minuta West.

Penium curtum forma minuta West, Alg. Eng. Lake Distr. 1592, p. .2.1.
Length 2.2-2.5 $\mu$; breadth $10: 5-11 \% \mu$.
(2) Forma minor Wille. (Pl. X, fig. 23.)

Penium curtum forma minor Wille, Ferskv. Alg. Nov. Semlj. 1579, p. 56, t. 14, f. 75.

Dysphinctium curtum var. exiguum Hansg. in Oesterr. bot. Zeitschr. 1857, xxxvii, p. 57 ; Prodr. Algenfl. Böhm. 188s, p. 184.
Length $28-32 \mu$; breadth $12-17 \mu$.
(3) Forma intermedia Wille.
$P$. curtum forma intermedia Wille, 1. c. f. 74 .
Length 34-38 $\mu$; breadth 16-19 $\mu$.
(4) Forma major Wille. (Pl. X, figs. 24, 2.-.).)
$P$. curtum forma major Wille, l. c. f. 73 .
Length 42-60 $\mu$; breadth $20-32 \cdot 5 \mu$.
Penium curtum is a well-marked species by reason of its short cells with attennated semicells. It is principally an upland Desmid, occurring amongst Splagnum and amongst wet mosses on rocks. It sometimes occur's in pure masses in temporary pools of rain-water on road-sides, in cart-ruts, etc.

## Var. obtusum West \& ( $\underset{\text { G }}{ }$ S. West. (Pl. 10, fig. 26.)

Penium curtum var. obtusum West \& ( C . S. West, Notes Alg . II, 1900, p. $\because=39$, t. 412, f. 1, 2 ; Alga-fl. Yorks. 190r), p. 47.

Rather larger than the average size, with the sides at the base of the semicells subparallel and with subtruncate apices, below which the sides are very faintly hollowed.

Length $41-4.5 \mu$; breadth $20-9.3 \mu$; breadth of isthmus $19 \mu$.

Englano.-Ingleton, W. Yorks!

## 2.). Penium rufescens Cleve.

(Pl. VI, figs. 12, 18.)

[^5]Cells rather moler the medium size, -2.2 times longer than their diameter, cylindrical or very slightly widening from the middle to the rom led apices, with an exceedingly faint trace of a constriction in the middle ; cell-wall dark brown or brick-red in colour, very minutely punctate; the newer portions of the cell-wall smooth and colourless, sometimes separating from the old coloured portions; chloroplasts with many longitudinal ridges.

Kygospore unknown.
Length $60-72 \mu$; breadth $23: 5-29 \mu$.
Evgland.-Bisley Common, Surrey! Cronkley Fell, N. Yorks!

Sompani.-Tnverness, Aberdeen, Kincardine, Perth, Argyll (Roy \& Rissett). Loch Luichart, Ross !

Treband.-Kylemore, Galway !
Cirogf. Distrilution.-Norway. Sweden. Brazil.
In some specimens of this rare species the cell-wall is conspicuously punctate, but in others it is not.
26. Penium cruciferum (De Bary) Wittr.
(Pl. X, figs. 18, 19.)
Cosmarizm? cruciferum De Bary, Conj. 185s, p. 72, t. 7 g, f. 3-6; Arch. in Pritch. Infus. 1861, p. 735 : Rabeuh. Flor. Europ. Algar. III, 1465 , p. 171 ; Lund. Desm. Suec. 1871, p. 51 ; Roy it Biss. Scott. Desm. 1s94, p. 44.

Peninm cruciferum (De Bary) Wittr. in Wittr. \& Nordst. Alg. Exsicc. 1852, No. 452, and in fasc. 21 (1859), p. 4s; Nordst. Freshw. Alg. N. Zealand, 1888, p. 71, t. 7, f. 19 ; Nordst. Index Desm. 1896. p. 90; West d G. S. West, Alg. S. England, 1897, p. 479; (i. S. West, Alga-H. Cambs. 1899, p. 111 ; West d G. S. West, Alga-fl. Yorks. 1900, p. 47.
Dysphinctium cruciferum Hansg. Prodr. Algenfl. Böhm. 1858, p. 155.
C'ells small, about twice longer than their diameter, ellipsoid-subcylindrical with a slight median constriction, apices broadly rounded or truncately rounded; cell-wall smooth and colourless ; chloroplasts with four longitudinal ridges and one central prrenoid.

Zygospore unknown.
Length $15 \cdot 3-26 \mu$; breadth $7 \cdot 6-13 \cdot 5 \mu$.
England.-Ogden Clough, Keighley Moor, Eldwick, Baildon Moor, Lindley, Appletreewick, Cocket Moss, Old Cote Moor, and Cray Moss, WT. Yorks! Market Weighton, E. Yorks! Chippenham Fen, C'ambridge! Epping Forest, Essex ! Wimbledon Common, Surrey ! Near St. Just, Cornwall!

Whaes.-Llyn Og'wen and Llen-cwm-ffynon, Carnarvonshire!

Scorland.-Near Loch Rosque, Ross! Lochnagar, Aberdeen ; Durris, Kincardine; Ramoch, Perth! (Ro! \&. lissett). Near Loch Thom, Renfrew! Loch Dungeon, Kirkcudbright!

Thelani.-Loughs Anna, Gatny, and Machugh, Donegral! Slieve Donard, Down!

Geoyr. Distribution.-France. Galicia in Austria. Lapland. New Zealand. East Africa. United States. Cuba.

This plant was donbtfully placed by its describer under the genus Cormarium, lont the structure of the chloroplasts and the rery slight median constriction indicate a much closer relationship to the genus Penium. Moreover, Wittrock has described a variety of it (rar. plumiradians) from Sweden in
which there are five or six longitudinal ridges on each chloror plast. The normal number of ridges is four, and it is from this character as seen in the rertical view that the specific name is derived.

## $2 \overline{2}$. Penium inconspicuum West.

 (Pl. X, figs. 15-17.)Penium inconspicum West, New Brit. Freshw, Alg. 1s94. p. 4, t. 1, f. 6, 7 ; Nordst. Index Desm. 1596, p. 144; West \& G. S. West, Some N. Amer. Desm. 1896, p. 237 ; Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 48 ; Lütkem. Desm. Millstättersees, 1900, p. 6 (sep.); West if G. S. West, Alg. N. Ireland, 1902, p. 22; Freshw. Alg. Ceylon, 1902, p. 135.

Cells very minute, about 3 times longer than their diameter, subcylindrical, slightly and gradually (but distinctly) constricted in the middle, gradually narrowed towards the apices, which are subtruncate; cell-wall smooth and colourless.

Zygospore unknown.
Length $15-19 \mu$; breadth $4 \cdot 8-5 \cdot 8 \mu$.
Exgland.-Elter Water, Westmoreland! Pilmoor, N. Yorks! Riccall Common, E. Yorks! Keston Common, Kent! Puttenham Common, Surrey !

Wales.-Capel C'mig, Carmarvonshire!
Scothand--Near Callernish and near Balallan, Lewis, Outer Hebrides !

Irefand.-Lough Gartan, Donegal!
Geogr. Distribution.-Anstria. Ceylon. Siam. United States.

This is one of the smallest and most characteristic species of the genus, but owing to its size it is readily orerlooked.

## 23. Penium minutum (Ralfs) Cleve.

(Pl. X, fig's. 1, 2.)
Docidium minutum Ralfs, Brit. Desm. 1S4s, p. 158, t. :26, f. 5; Reinsch, Algenfl. Franken, 1867, p. 183 ; Jacobs. Desm. Danem. 157.5, p. 162, t. 7 , f. (1) Wolle, Desm. U. S. 1sst, p. i2, t. 10, f. 9; t. 50, f. 29-31: Cooke, Brit. Desm. 1ss6, p. 16, t. s, f. 1; Roy \& Biss. Scott. Desm. 1s! 4 , p. 49 (sep.).
Penium Ralfsii De Bary, Conj. 185s, p. 45, 73, t. 5, f. \&; Roy \& Biss. scott. Desm. 1494, p. 253.

```
Penium minutum (Ralfs) Cleve, Sverig. Desm. 1864, p. 493; Rabenh. Flor. Europ. Algar. III, 1868, p. 122; Lund. Desm. Suec. 1871, p. 87 ; Wolle, Desm. U. S. 1854, p. 35, t. 5 , f. 19, 20; Wille, Sydamerik. Algfl 1s84, p. 22 ; Racib. Nonn. Desm. Polon. 1885, p. 60 ; West, Alg. W Ireland, 1892, p. 129 (forma genuina) ; Lütkem. Desm. Attersees, 1893, p. 545 ; Nordst. Index Desm. 1896, p. 172; West \& G. S. West, Welw. Afric. Freshw. Alg. 1897, p. 78 ; Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 48; Alg. N. Ireland, 1902, p. 22; Freshw. Alg. Ceylon, 1902, p. 136.
Pleurotænium minutum Delp. Desm. subalp. 187̄, p. 131, t. 20, f. 17-21; De Toni, Syll. Alg. 1889, p. 904.
Culncylindous minutus Kirchn. Alg. Schles. 1878, p. 142; Wolle, Desm. U. S. 1884, p. 54, t. 12, f. 12.
Dysphinctium minutum Hansg. in Oesterr. bot. Zeitschr. 1857, xxxvii, p. 09 : Prodr. Algenfl. Böhm. 1888, p. 185.
```

Cells of medium size, elongate, $8-12$ times longer than their diameter, almost cylindrical, with a distinct median constriction, very gradually attenuated towards the apices, which are truncate; cell-wall colourless, smooth or minutely punctate; chloroplasts variable, generally axile with a central row of about 6 pyrenoids and several irregular longitudinal ridges.

Zrgospore unknown.
Length $97-168 \mu$; breadth $12 \cdot 5-18 \mu$; breadth of apices $8 \cdot 5-11 \mu$.

Exaland.-Cumberland! Westmoreland! (Bissett). Lancashire! W., N., and E. Yorks! Sussex (Ralfs). Hants! Deron! Cormwall! (Marquand).

Whabs.-General, but scarce!
Scotland.-General, but scarce! (Roy \& Bissetf). Common in the Outer Hebrides and west of Scotland!

Irelant.-Generally distributed in the west and south-west! Donegal! Londonderry! Down! Dublin and Wicklow (Archer).

Cioogi. Distributiom.-France. Germany. Austria. Italy. Poland. Russia. Norway. Sweden. Ceylon. West Africa. United States. Britislı Guiana. Brazil.

This Desmid is by no means common, although it often occurs in abundance in the Sphaqnum-bogs of the western parts of the British Isles. Its position in the gems. Penium is questionable, but its position in any other genms wonld be still more so. It was originally placed by Ralfs in Docidium, from which genus, as now generally accepted, it mnst perforce be excluded.

Its true position is in the Tribe Cosmariex, but it cannot be regarded as an elongated Cosmarium, neither can it be reasonably placed in a distinct genus. Until more is known concerning its structure it is best left in the genus Penium, particularly as its zygospore is still unknown.

The chloroplasts are very variable, especially when the plant occurs in large quantity. The longitudinal ridges are most irregular, often being entirely absent, and the chloroplast of each semicell sometimes becomes quite parietal. We have observed a few specimens in which it was a parietal spirally-twisted band, similar to the chloroplast of certain species of Spirotænia.

There are numerous varieties of it, most of which are British.

Forma major Lund. (Pl. X, fig. 4.)
Penium minutum forma major. Lund. Desm. Suec. 1871, p. 87 ; Racib. Nonn. Desm. Polon. 1885, p. 61 ; West, Alg. W. Ireland, 1892, p. 129.
Length $170-270 \mu$; breadtlı $12: 5-18 \mu$.
Scotlayd.-Harris, Outer Hebrides!
Ireland.-Ballynahinch, Galway !
Geogi. Distribuition.-Austria. Sweden.

## Forma minor Racib. (Pl. X, fig. 3.)

Forma minn Racib. Nonn. Desm. Polon. 1885, p. 61; West, Alg. W. Ireland, 1892, p. 129.
Length 60-8.5 $\mu$; breadth $5.5-115 \mu$; breadth of арех $4 \%-9 \mu$.

Scotland.-Sligachan in Skye, Inverness !
Ireland.-Cromagloun, Kerry !
Geogr: Distribution.-Poland. West Africa.

## Var. gracile Wille. (Pl. X, fig. 6.)

Var. gracile Wille, Norges Ferskv. Alg. 1880, p. 51, t. 2, f. 33 ; Racib. Nonn. Desm. Polon. 1885, p. 60 ; West, Alg. N. Wales, 1890, p. 284 ; Alg. W. Ireland, 1892, p. 129; West \& G. S. West, Welw. Afric. Freshw. Alg. 1897, p. 7S; Some N. Amer. Desm. 1896, p. 237 ; Freshw. Alg. Ceylon, 1902, p. 136.
Cells elongated, 14-20 times longer than their diameter.

Length $110-220 \mu$; breadth $7 \cdot 5-12 \mu$.
Wares.-Capel Curig, Carnarvonshire !

Ireland.-Near Oughterard and Ballynahinch, Galway! Cromagloum, Adrigole, and Upper Lake of Killarney, Kerry !

Geogr. Distribution-Norway. Lapland. West Africa. United States. Cuba.
some of the American specimens of this varicty have reached a length of $268 \mu$, being 30 times longer than the diameter, thus merging into the next variety.

Var. elongatum West \& G. S. West. (Pl. X, fig. 8.)
Var. elongatum West \& G. S. West, Freshw. Alg. Ceylon, 1902, p. 136.
Docidium elongatum W'est. Alg. N. Wales, 1890, p. 284, t. v, f. 17.
Cells very elongate, $30-40$ times longer than their diameter.

Length $257-330 \mu$; breadth $8-9 \mu$.
Wales.-Capel Curig, Carnarvonshire!
Geogr. Distribution.-Ceylon.

## Var. tumidum Wille. (Pl. X, fig. 'כ.)

Yar. tumidum Wille, Norges Ferskv. Alg. 1880, p. 51. t. 2, f. 34; Racib. Nonn. Desm. Polon. 1885, p. 61; West, Alg. W. Ireland, 1892. p. 129.
Cells about 5 times longer than the diameter, semicells distinctly inflated.

Length $90-102 \mu$; greatest breadth $15-20 \mu$.
Ireland.-Ballymahinch, Galway!
Geogr. Distribution.-Norway.
Var. alpinum Racib. (Pl. X, fig. 9.)
Var. alpinum Racib, Nomn. Desm. Polon. 1885, p. 61; West, Alg. W. Ireland, 1592, p. 130.
Semicells slightly more attenuated than in the typical form, with the apices truncately rounded; cells $8-12$ times longer than their diameter.

Length $81-170 \mu$; breadth $9 \cdot 5-15 \mu$.
Wales.-Moel Siabod, and bogs above the "Capel Curig lakes, Carnarvonshire!

Ireland.-Oorid Lough, Galway! Cromagloun, Kerry!

Geogr. Distribution.-Poland.

Var. polonicum (Racib) West. (Pl. A, fig. 10.)
Var. polonicum (Racib.) West, Alg. W. Ireland, 1892, p. 130; West \& G. S. West, Alg. N. Ireland, 1902 , p. 22.

Penium (Docidium?) polonicum Racib. Nonn. Desm. Polon. 15s.), p. 61, t. 5, f. 12 ; Nordst. Index Desm. 1896, p. 203.

Semicells gradually and strikinglyattenuated towards the apices, which are rounded; cells $10-11$ times longer than their diameter.

Length $104-16.5 \mu$; breadth $10^{\circ}-15 \mu$; breadtl near the apex $3: 5-6 \mu$.

Scotland.-Rhiconich, Sutherland! N. Uist, Outer Hebrides!

Ireland.-Cromagloun, Kerry ! Glendoan, Donegal !
Geogr. Distribution.-Poland.

## Var. crassum West. (Pl. X, figs. 11-1:3.)

Var. crassum West, Alg. W. Ireland, 1892, p. 130, t. 20, f. 1-3 (inclus. f. punctata and f. inflata) ; West \& G. S. West. Welw. Afric. Freshw. Alg. 1897, p. 78 ; Some Desm. U. S. 1898, p. 282 ; Alg. N. Ireland, 1902, p. 22 .

Cells stout, sometimes a little inflated, $4-4 \frac{1}{2}$ times longer tham their diameter, apices very broad and truncate.

Length $46-98 \mu$; breadth $16-21 \mu$.
Wales.-Llyn-an-afon, Carnarvonshire!
Scorlayn.-Rhiconich, Sutherland! Loch Luichart, Ross!

Ireland.-Ballynahinch and Nacoogarrow Lough, Galway! Adrigole and Carrantuohill, Kerry! Near Gweedore, Donegal!

Geogr. Distribution.-Lapland. West Africa. Brazil.
Var. undulatum West. (Pl. X, fig. 7.)
Var. undulatum West, Alg. W. Ireland, 1892, p. 130, t. 20, f. 4.
Semicells regularly but very slightly 5 -mudulate.
Length $101 \mu$; breadth near base of semicells $12 \because \mu$, near apex $9 \mu$.

Ireland.-Cromagloun, Kerry!

## Tribe 4. Clostehief.

The cells are elongate, usually curved and commonly attemuated towards each extremity. There is no median constriction, and the plants are circular in crosssection. The place of division is regularly situated in the middle region of the cell, and the cell-wall generally possesses pores. They are symmetrical about me longitudinal plane.

## Genus 8. R0YA West \& G. S. West, 1896.

West d (i. S. West, New and Int. Freshw. Alg. 1596, p. 152. Nordst. Index Desm. 1896, p. 280.
Cells very slightly arcuate, almost exactly cylindrical, scarcely attenuated towards the extremities, apices subtruncate or obtusely rounded; cell-wall smooth and colourless; one chloroplast in each cell, generally with a small excaration in the middle of the concave side in which the nucleus is lodged; the extremities of the chloroplast are convex and extend almost to the extreme ends of the cell, there not being any apical vacuoles nor moring corpuscles; prrenoids $4-14$ in a single series.

The late Dr. J. Roy first pointed out the characters of this genus, remarking under "Closterium Psendoclusterium" that "this curious little species forms one of a small group of which Cl. obtusum Bréb. may be taken as the type. They do not accord well with Closterium, and undoubtedly should be placed in a new genus." As we had been fully convinced for some time that these plants could not remain in the geuns ('losterimm, we described the genus Roy" in 1896.

Roya is a well-marked genus which can be readily distinguished from either Penium or Clusterium; in fact the differences between Roya and those genera are far more striking than the differences between those genera themselves.

We think the gems snfficiently distinct from Chosterium by reason of the unbroken chloroplast which extends to the extremities of the cells, learing no room for apical racuoles. Specimens of certain species of Closterium are occasionally without apical racuoles containing moring corpuscles, but they have always sufficient space for the lodgment of a
vacuole within each apex, the extremity of the chloroplast falling short of the apex and being almost invariab]y hollowel for this purpose. We are inclined to beliere that the absence of the moving gypsum-corpuscles in the apical vacuoles of a chosterium is a very abormal featmre, and one which has been produced by pathological conditions. There is not the slightest trace of apical vacuoles in the genus Roya, and the extremities of the chloroplasts are comee in order to fit as closely into the romnded ends of the cell as possible. Other differences from the vast majority of Closteria are in the lateral position of the mucleus, which is lodged in a special excaration of the chloroplast, and in the almost entire absence of attenuation of the cells.

There are only three described species, all of which are rare British Desmids.

## 1. Roya obtusa (Bréb.) West \& G. S. West.

(Pl. X, fig. 27.)
Closterium obtusum Bríb. Liste Desm. 1850, p. 154, t. 2, f. 46 : Arch. in Pritch. Infus. 1861, p. 746 ; Rabenh. Flor. Europ. Algar. III, 186s, p. $103:$ Kirchn. Beitr. Algenfl. Würtemh. 1880, p. 173; Wolle, Desm. U. S. 1sst, p. 38, t. 6, f. 1; Cooke, Brit. Desm. 1886, p. 19, t. 10, f. 4; West, Alg. N. Wales, 1890, p. 284; Alg. W. Ireland, 1892, p. 121 ; Nordst. Index Desm. 1896, p. 186.
Closterium obtusum a. typicum Klebs, Desm. Ostpreuss. 1879, p. S, t. 1, f. $2 a$ et $b$.

Closterium obtusum b. major Racib. Nonn. Desm. Polon. 1885, p. 63.
Aithrodia obtusa Kuntze Revis. Gen. Plant, 1591, p. 883.
Roya obtusa (Bréh.) West \& G. S. West, New and Int. Freshw. Alg. 1896, 1. 152 ; Some Desm. U. S. 1598, p. 282 ; Alga-fl. Y'orks. 1900. p. 48.

Cells small, cylindrical, 4-10 times longer than their diameter, very slightly curved, apices obtusely rounded; with $4-8$ pyrenoids in the chloroplast.

Zygospore globose and smooth (according to Kirchner).

Length 75-14.8 $\mu$; breadth 9-1.5 $\mu$.
Exitinib-Greetland and Cullingworth, W. Yorks! Strensall, E. Yorks! Epping Forest, Essex! Esher West-end Common, Surrey! Enbridge Lake, Hants (Roy).

Wales.-Capel Curig, Carmarronshire!
Scotland.-Ross, Aberdeen, Inverness, Kincardine, Perth, Argyll (Roy \& Pissett).

Irflaxd-Kylemore, Galway! Carrantuohill, Kerry! Dublin and Wicklow (Amere).

Gcogl. Distribution.-France. Germany. Anstria. Poland. Italy. Norway. Sweden. Java. United States. Brazil.

Var. montana West \& G. S. West. (Pl. X, figs. 28, 29.)
$\div$ Closterium obtusum Lund. Desm. Suec. 1571, p. 77; Wille, Norges Fersky. Alg. 1480, p. 58 ; Heimerl, Desm. alp. 1891, p. 592.
? Closterium obtusum a. minor Racib. Nonn. Desm. Polon. 18s.5. p. 6?.
Closterium obtusum forma apicilus subtruncatis West, Alg. Eng. Lake Distr. 1892, p. 719, t. 9, f. 13.
Roya obtusa var. montana West \& G. S. West, New and Int. Freshw. Alg. 1896, p. 152, t. 3, f. 23, 24; Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 48.
A smaller variety with the apices distinctly subtruncate.

Length 48-81 $\mu$; breadth $5-6 \mu$.
Exidand.-Helvellyn, Westmoreland! Cocket Moss, Baildon Moor, and Cam Fell, W. Yorks!

Wates.-Llyn Pencraig, near Bettws-y-coed, Carnarronshire!

Geoffr. Distribution.-Austria.
The var. montuna is more frequently met with in albundance than the typical form, generally occurring amongst other alga or amongst mosses on wet rocks.

## 2. Roya cambrica West \& G. S. West.

 (Pl. X, fig. 31.)Roya cambrica West \& G. S. West, Notes Alg. III, p. 9 (sep.), t. 446, p. 11.
Cells of medium size, cylindrical, $25-26$ times longer than their diameter, slightly curved, apices subtruncate and scarcely narrowed; clloroplast with 12-14 pyrenoids.

Zygospore unknown.
Length $173-175 \mu$; breadth $6 \cdot 2-6 \cdot 7 \mu$; breadth of apices $4 \cdot 6-4 \cdot 8 \mu$.

Wales.-Llyn Ogwen and Llyn Cwlyd, Carnarvonshire!
3. Roya Pseudoclosterium (Roy) West \& G. S. West. (Pl. X, fig. 30.)
Closterium Pseudoclosterium Roy in Roy \& Biss. Scott. Desm. 1894, p. 247 ; Nordst. Index Desm. 18:15, p. 20 .
Roya. Pseuloclosterium West if G. S. West, New and Int. Freshw. Alg. 1896, p. 153 ; Alga-fl. Yorks. 1900, p. 49 ; Alg. N. Ireland, 1902, p. 22.
C'ells very slender, elongate, cylindrical, 40-60 times longer than their diameter, almost straight, apices truncately rounded; chloroplast with $4-6$ pyrenoids.

Zygospore mknown.
Length $96-192 \mu$; breadth $2 \cdot 6-3 \cdot 5 \mu$.
Englant.-Pilmoor, N. Yorks!
Whles.-_" North Wales" (Ro!)).
Scotland.-Slewdrum and Upper Powlair, Aberdeen; Cammie, Kerloch, Muiryhaugh, and Dalbrake, Kincardine (Roy \& Bissett). Rhiconich, Sutherland!

Irelani.-Near Glenties and Lough Anna, Donegal!

## Genus 9. CLOSTERIUM Nitzsch, 1817.

Nitzsch, Beitr. zur Infusor. oder Naturbeschr. der Zerkarien und Bazillarien, 1817, pp. 60 and 67.
Corda, in Alman. de Carlshad, 1835, p. 193.
Menegh. Synops. Desm. 1840, p. 2:9.
Ralfs, Brit. Desm. 1848, p. 159.
Kütz. Spec. Alg. 1849, p. 163.
Arch. in Pritch. Infus. 1861, pp. 720 and 746.
Rabenh. Flor. Europ. Algar. III, 1868, p. 123.
Kirchn. Alg. Schles, 1874 , p. 137.
Gay, Monogr. loc. Conj. 18s.t, p. 39.
Wolle, Desm. U.S. 1884, p. 37.
Cooke, Brit. Desm. 1486, p. 17.
De Toni, Syll. Alg. 1889, p. 817.
Cells elongated, always more or less attemated, generally curved and often strongly arcuate or lunate, unconstricted; poles obtuse, truncate, rostrate or attenuated to fine needle-like points; cell-wall smooth or striated, often brown or yellow-brown in colour; one chloroplast in each semicell, with a variable number of longitudinal ridges ; pyrenoids few or many, in a single axile series or scattered irregularly through the chloroplast; with a terminal vacuole between the end of the
chloroplast and the extremity of the cell, containing one or many crystals of gypsum which exhibit a constant motion. Cells in cross-section circular.

One of the principal features of the plants of this gemns is the curvature of the cells. This curvature is very constant for any one species and can be nsed as a specific claracter, the amount of curvature of the outer margin being expressed in degrees of arc. The measurement of length in this genus is the straight line between the apices, and the breadth is the diameter across the middle of the cell.

Kuntze in his 'Revis. gen. plant.' substituted "Arthrodia" for Closterium. This name was given by Rafinesque (in Desv. Journ. 181:3, i, p. 235) to some Alga which, from his diagnosis, might have been a Closterium, Penium, Docilium, Pleurotanium, Cylindrocustis, ''etmenorus, or even an Ankistrodesmus. Nordstedt (in Hedwigia, 1893, Heft :3, p. 148) has pointed out that "Arflurodia" must always remann a "genus ignotum et nomen delendum."

In Cl. acutum and a few others the chloroplasts are devoid of longitudinal ridges.
'There is very little difference between Closterium and certain species of Penium, and it is doubtful whether Penium Libellula and $P$. naricula should not be considered as straight species of Closterinm.

At the points of division transerse lines (commonly termed "sutures") are often seen, and their number denotes the number of cell-divisions. In some species, in which growth takes place after cell-division, these transverse sutures occur at different parts of the cell. They are uscless as specific characters, but the growth subsequent to division has been utilized by Lütkemüller as a means of subdividing the genus.

Section A. Cells with a median girdle ("Gürtelband") or crlindrical piece of cell-wall which arises sulnsequent to cell-livision and? is interpolated letween the new and old semicells.

* Cells strongly curred, lumate ; cell-wall striated.

1. Cl. Cynthia.
2. Cl. Lagoense.
3. Cl. Archerianum.
4. Cl. porrectun.
** Cells slightly curvel, ventral margin sometimes almost straight.
$\dagger$ Cell-wall smooth.
5. Cl. didymotocum.
6. Cl. macilentum.
$\dagger+$ Cell-wall striated.
7. Cl. angustatum.
8. Cl. cositutum.
9. Cl. requlare.
10. Cl. striolatum.
11. Cl. intermedium.
12. Cl. Ulna.
13. Cl. juncidum.

Section B. Cells without a median eirdle, the adult condition being attained on the growth to maturity of the younger semicells.

* Cells strongly curved, lunate.
+ Cell-wall smooth.
a. Ventral margin not distinctly tumid.

14. Cl. Diante.
15. Cl. Pseudodianie.
16. Cl. parvulum.
17. Cl. Jemmeri.
18. Cl. inсигит.
19. Cl. Venus.
20. Cl. culosporum.
21. Cl. ehoracense.
$\beta$. Ventral margin distinctly tumis.
22. Cl. Leibleinii.
23. Cl. monilifertm.
24. Cl. Ehrenbergii.
++ Cell-wall striated. Ventral maroin distinctly tumid.
25. Cl. Malinierniamzm.
** Cells slightly curved, ventral margin almost straight or slightly concave.

+ Cell-wall smooth.
a. Cells lanceolate, gradually attenuated to the poles, which are usually subacute.

26. Cl. acerosum.
27. Cl. Iunceolatum.
28. Cl. Lumula.
29. Cl. sigmoideum.
30. Cl. Siliqua.
31. Cl. peracerosum.
32. Cl. littorale.
33. Cl. tumidum.
34. Cl. Cormu.
f. Cells lanceolate, slightly attenuated to the poles, which are obtuse or truncate.
$\pm$ Poles truncate.
35. Cl. abruptum.
36. Cl. toxon.
$\pm+$ Poles rounded and inflated.
37. Cl. Balmacarense.
38. Cl. Scoticum.
+++ Poles obtusely rounded.
39. Cl. pusillum.
40. Cl . monotienium.
$\gamma$. Cells narrow and elongate; apices attenuate, acute and generally incurved.
$\pm$ Poles slightly recurved,
$\pm+$ Poles incurved.
41. Cl. prielongum.
42. Cl. strigosum.
43. Cl. gracile.
44. Cl. Lundellii.
$\dagger+$ Cell-wall striated.
u. Curvature regular ; poles suddenly attenuated.
45. Cl. attemuatum.
$\beta$. Poles slightly recurved.
46. Cl. turgidum.
47. Cl. Pritchardianum.
**** Cells slightly curved; poles very muclı attenuated, acute, subacute, or rounded.

+ Cell-wall smootl.
a. Cells almost straight, much elongated.

48. Cl. pronum.
49. Cl. aciculare.
$\beta$. Cells more or less distinctly curved (rarely straight), relatively shorter.
50. Cl. ceratium.
51. Cl. acutum.
52. Cl. subulatum.
53. Cl. idiosporum.
$\dagger \dagger$ Cell-wall striated.
a. Median portion of cells not (or rarely) ventricose; poles incurved.
54. Cl. lineatum.
$\beta$. Median portion of cells ventricose; gradually attenuated to the poles.
55. Cl. Ralfisii.
56. Cl. decorum.
57. Cl. laterale
$\gamma$. Median portion of cells ventricose; suddenly attenuated into elongate poles.
58. Cl. Kützingii.
59. Cl. rostratum.
60. Cl. setaceum.

## Section A.

# 1. Closterium Cynthia De Not. 

## (Pl. XT, figs. 1-3.)

Closterium Cynthia De Not. Desm. Ital. 1867, p. 65, t. 7, f. 71 ; 1and. Desm. Suec. 1871, p. 78 ; Cooke, Brit. Desm. 1886, p. 26, t. 13, f. 2; West, Alg. N. Wales, 1890, p. 285\% Alg. W. Ireland, 1892, p. 123; Roy d Biss. Scott. Desm. 1894, p. ᄅ11; West \& G. S. West, Some N. Amer. Desm. 1896, p. 237; Nordst. Index Desm. 1896, p. 96 ; West \& (i. S. West, Alg. S. Englanı, 1897, p. 181; Alga-fl. Yorks. 1900, p. 51 ; Alg. N. Ireland, 1902 , p. 24; Freshw. Alg. Ceylon, 1902, p. 140.
Clostrrium Ächerianum c. Cynthia Klebs, Desm. Ostpreuss. 1879, p. 13, t. 1, f. 12, $\alpha$ et $c$.

Arthrodia Cynthia Kuntze, Revis. gen. plant. 1891, p. 883.
Cells small, about 6-10 times longer than their diameter, strongly curved, onter margin $120^{\circ}-140^{\circ}$ (rarely $170^{\circ}$ ) of arc, inner margin not timid, gradually narrowed to the apices, which are obtusely rounded; pyrenoids 3-6 in each chloroplast ; terminal vacuoles generally with one moving granule ; cell-wall finely striate, about 14 striæ visible across the cell, pale yellow or yellow-brown in colour.

Zygospore globose and smooth.
Distance between apices $7: 3-160 \mu$; breadth $11-18 \mu$; diam. of zygosp. 28-31 $\mu$.

Englant.-Westmoreland! ( Pissett). N. Yorks! Lancashire! Surrey! Hants! Cornwall! (Marquomel).

Wales.-Capel Curig! (Cooke \& Hills), Pen-y-gwryd (Roy), Llyn Padarn!, Llyn Idwal!, and near Conway, Camaronshire!

Soothand.-Sutherland!, Ross, Tuverness!, Nairn, Aberdeen!, Kincardine, Forfar!, Perth!, Dumbarton (Ro! \& Pissett). Orkneys (Ro! \& Pissett).

Irmand.-Galway! Mayo! Kerry! Donegal! Dublin and Wicklow (Archer).

Georfr. Distritntion.-France. Austria. Hungary. Italy. Norway. Sweden. Denmark. India. Ceylon. Sumatra. New Zealand. Australia. East Africa. United States. Brazil.

This is a very well-marked species which conld only be confused with Cl. .Jenneri, Cl. parmlum, or Cl. Tenus. From all these speries it differs in the single corpuscle present in
the terminal vacuoles and in the striated cell-wall. It also differs in its curvature from Cll. Jenneri and Cl. Venus, and it is relatively broader than (\%. paroulum.

Var. curvatissimum West if ('. S. West. (Pl. XI, fig. 4.)
Cl. Cynthia var. curratissimum West \& G. S. West, Scott. Freshw. Plankton, I, 1903, p. 537, t. 14, f. 3.
A variety with the cells much elongated and the apices correspondingly incurved; each chloroplast with 6 pyrenoids; curvature $210^{\circ}$ of arc.

Distance between apices $88 \mu$; breadth $12 \cdot 5 \mu$.
Scotland.-Plankton of Loch a Bhursta, Benbecula, Outer Hebrides!

The curvature of this plant, which ocenpies $210^{\circ}$ of arc, is the greatest curvature known to exist in the genus. A distance of $102 \mu$ can be measnred along the curvature, although the apices are only $88 \mu$ apart.

## 2. Closterium Lagoense Nordst.

 (Pl. XI, figs. 5-7.)Closterium Lagoense Nordst. Desm. Brasil. 1870, p. 203, t. 2, f. 2: Arch. in Quart. Journ. Micr. Sci. 1873, p. 213 ; Cooke, Brit. Desm. 1sis6, p. 2 s , t. 12, f. 5; West \& G. S. W'est, Desm. Singapore, 1597, p. 159; Nordst. Index Desm. 1896, p. 154.
Arthrodia Lagoense Kuntze, Rev. gen. plant. 1891, p. 883.
Cells small, $6-7 \frac{1}{2}$ times longer than their diameter, strongly curved, outer margin $120^{\circ}-150^{\circ}$ of arc, inner margin not tumid but sometimes straight in its median portion, gradually narrowed to the apices, which are slightly dilated, obtuse, and suddenly attenuated; cellwall finely striate, about 16 striæ visible across the cell, pale yellow or becoming brown in colour; each chloroplast with about j pyrenoids in an axile series.

Zygospore unknown.
Distance between apices $138-194 \mu$; breadth, $2 \tilde{\varrho}-28 \mu$.
England.-Enbridge Lake, Hants (Ro!).
Ireland.-Galway (Archer).
Geogr. Distribution.-Singapore. Java (var.). Madagascar (var.). Brazil.

## 3. Closterium Archerianum C'leve.

(Pl. XI, figs. 8-10.)
Closterium Archerianum Cleve, in Lund. Desm. Suec. 1871, p. 77, t. 5, f. 13 ; Jacobs. Desm. Danem, 1875, p. 175, t. 7, f. 4; Cooke, Brit. Desm. 1886, p. 27, t. 13, f. 5 ; West, Alg. N. Wales, 1890, p. 285 ; Alg. W. Ireland, 1892, p. 123 ; Roy \& Biss. Scott. Desm. 1894, p. 243 ; Nordst. Index Desm. 1896, p. 50 ; West \& G. S. West, Alg. S. England, 1897, p. 481 ; Lütkem. Desm. Millstättersees, 1900 , p. 3 (sep.) ; West \& G. S. West, Alg. N. Ireland, 1902, p. 24.
Closterium Archerianum a. typicum Klebs, Desm. Ostpreuss. 1879, p. 13, t. 1, f. $13 h$, t. 2, f. 1.

Arthrodia Archeriana Kuntze, Revis. gen. plant. 1891, p. 883.
Cells of medium size, about 11 times longer than the diameter, strongly curved, outer margin about $123^{\circ}-145^{\circ}$ of arc, inner margin not tumid, gradually and regularly attenuated to the apices, which are narrow and obtusely rounded ; cell-wall pale yellow or brown in colour, striate, striz rather variable, from 8 to 11 visible across the cell; each chloroplast with 5) or 6 pyrenoids; terminal vacuoles indistinct, with one moving granule.

Zygospore subglobose and smooth.
Distance between apices $196-230 \mu$; breadth $18 \cdot 5-30 \mu$; diam. zygosp. 36-46 $\mu$.

England.--Loughrigg and Bowness, Westmoreland! Delamere, Cheshire (Roy). New Forest, Hants! Gunwen Moor, Cornwall!

Wales.-Capel Curig and Llyn Padarn, Carnarvonshire!

Scotland.-Ross, Aberdeen, Kincardine, Forfar, Perth, Stirling, Argyll (lioy \& Bissett). Rhiconich and Loch Inver, Sutherland!

Irelano.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Archer). Antrim! Armagh!

Geoffr. Distribution.-France. Germany. Austria. Norway. Sweden. Demmark. Lapland. Russia. India. Java. Azores.

We give a figure (Pl. XI, fig. 11) of a coarsely striated form of this species which somewhat approaches $C l$. porrectum var. angustatum.

## 4. Closterium porrectum Nordst.

> (Pl. XI, fig. 12.)

Closterium porrectum Nordst. Desm. Brasil. 1870, p. 203, t. 2, f. 1; Alg. Brasil. 1877, p. 16; Boergesen, Desm. Brasil. 1890, p. 933.
Arthrodia porvecta Kuntze, Revis. gen. plant. 1891, p. 884.
Cells of medium size, about 12 times longer than their diameter, very strongly arcuate, outer margin about $160^{\circ}$ of arc, inner margin not tumid, gradually and uniformly attenuated to the apices, which are narrow and obtusely rounded; cell-wall pale yellowbrown, strongly striate, about 6 striæ visible across the cell.

Zygospore unknown.
Distance between the apices $225-270 \mu$; breadth $24-30 \mu$.

Unknown from the British Islands.
Geogr. Distribution.-Brazil.
Var. angustatum var. nov. (Pl. XI, fig. 13.)

Cells narrower than in the typical form and slightly less curved, about 14 or 15 times longer than their diameter, outer margin about $140-145^{\circ}$ of arc ; cellwall brown in colour, 7 strong strix visible across the cell.

Distance between apices $195 \mu$; breadth $15 \cdot 5 \mu$. Scothand.-Near Balallan, Lewis, Outer Hebrides!
This variety stands intermediate between Cl . Archeriamm Cl. porrectum, and it bears a great resemblance to some of the more sparsely striated forms of the former species.

## 5. Closterium didymotocum Corda.

(Pl. XII, figs. 1-5.)
Closterium didymotocum Corda, in Alm. de Carlsbad. 1835, pp. 185, 190, 192,209, t. 5 , f. 64, 65 ; Ralfs, Brit. Desm. 1848, pp. 168-169, t. 28, f. $7 a$ and $b$; Arch. in Pritch. Infus. 1861, p. 746, t. 3, f. 39 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 125; Jacols. Desm. Danem. 1875, p. 175, t. 7, f. 6; Delp. Desm. subalp. 1877, p. 103, t. 17, f.31-37; Kirchn. Alg. Sichles. 1878 , p. 138; Wolle, Desm. U.S. 1884, p. 39, t. 8, f. 12, 13;

[^6]Cells large, 9-12 times longer than their diameter, slightly curved, outer margin from $27^{\circ}$ to $32^{\circ}$ of are, imer margin very slightly concave or almost straight, median portion of cell with subparallel sides, gradually and slightly attenuated towards the apices, which are broad and truncate with rounded angles (and sometimes very slightly recurved) ; cell-wall reddishbrown or yellow-brown in colour, smooth or very rarely with traces of a fine striation, with an ammular thickening of a dark brown colour at each apex; each chloroplast with $5-7$ large pyrenoids; terminal vacuoles with many moving granules.

Zygospore unknown.
Distance between apices $(=$ length) 295-672 $\mu$; breadth $24-48 \mu$; breadth of apices $13-20 \mu$.

England.-Westmoreland! (Rulfs; Dissett). W. Yorks! Lancashire! Cumberland! Warwick (Wills). Sussex (Ralfs). Surrey! (Ralfs). Hants! (Ralfs). Devon! Cornwall! (Ralfs).

Wales.-General in Carnarvonshire (at 2,200 ft. on Glyder Fach) ! Dolgelly, Merioneth !

Sconland.-General! (Roy \& Bissett). General in the Outer Hebrides!

Ireland.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Archer).

Geogr. Distribution.-France. Germany. Austria.

Hungary. Italy. Norway. Sweden. Denmark. Lapland in Russia. Faeroes. India. Singapore (var.). East Africa. United States.

This is one of the most striking species of the gemus, and is generally distributed over the boggy districts of the British Islands. It has in the past received a number of different names, largely owing to its variability and to its periodical increase in size after division. The forms which have been named "var. Baillyanum" are only young individuals before the development of the median girdle, which is a cytindrical piece of cell-wall interpolated between the two semicells. This growth subsequent to cell-division has given rise to many misconceptions with regard to this species.

The apices are usually thickened and of a darker brown than the rest of the cell-wall. Some observers have remarked the presence of fine striolations, but they minst be of very rare occurrence. We have examined thonsands of specimens of this species from all over the world and have never yet detected them.

## Var. asperulatum var. not. (Pl. XII, figs. 6, 7.)

More slender than the typical form, being $12-14$ times longer than the dianeter, rather more attenuate, apices slightly recurved and not thickened ; cellwall colourless, miuntely asperulate, being covered with somewhat irregular and depressed granules.

Length $405-418 \mu$; breadth $28-34 \mu$.
England.-New Forest, Hants!
6. Closterium macilentum Bréb.
(Pl. XII, figs. 8-10.)
Closlerium macilentum Bréb. Liste Desm. 1855, 1. 153, t. 2, f. 36; Arch. in Pritch. Infus. 1861, p. 747 ; Rabenh. Flor. Europ. Algar. II, 1868 , p. 131 ; Delp. Desm. subalp. 1877, p. 107, t. 17, f. 60-62; Kirchn. 1 lg . Schles. 1878, p. 137; Wolle, Desm. U.S. 1884, p. 38, t. 6, f. 6; Mansg. Prodr. Algenfl. Böhm. 1888, p. 178; West, Alg. N. Wales, 1830, p. 26. ; Gutw. Flor. glonów Galic. 1s92, p. 120 ; Roy © Biss. Scott. Desm. 1894, p. 246 ; Nordst. Index Desm. 1896, p. 162 ; West \& G. S. West, Some Desm. U.S. 1898, p. 283; Notes Alg. III, 1903, p. 9 (sep.).
Arthrodia macilenta Kiuntze, Revis. gen. plant. 1891, p. 883.
Cells of medium size, very elongate and nariow,

2 $4-10$ times longer than their diameter, slightly curved towards the extremitios, median portion straight with parallel sides, inner margin not tumid, gradually attemuated towards the apices, which are obtusely rounded; cell-wall smooth and colonrless; each chloroplast with 8 or 9 pyrenoids; terminal vacuoles with sereral moving gramules.

Zygospore subglobose and smooth.
Lengtl $261-2-2 \mu$; breadtl $11-20 \mu$; diam. of zygosp. $32 \mu$.

England.-Enbridge Lake, Hants (hoy). Near Mullion, Cornwall!

Wales-C'apel Curig, Carmarvonshire!
Scotland.-Ross, Inverness, Aberdeen, Forfar, Perth (hoy f. Bisseit).

Leeland.-Dublin and Wicklow (Archer).
Geogi. Distribution.-France. Germany. Austria. Norway. Faeroes. India. Japan. United States. Brazil.

## 7. Closterium angustatum Kiitz. (Pl. XII, figs. 11-13.)

Closteriunt angustutum Kütz, Phyc. germ. 1845, p. 132; Ralfs. Brit. Desm. 1848, p. 172, t. 29, f. 4; Kütz. Spec. Algar. 1849, p. 166 ; Areh. in Pritch. Infus. 1s $\$ 1$, p. 719 ; Rabenh. Flor. Europ. Algar. I1I, 1864, p. 126; Wolle, Desm. U.S. 18s4, p. 40, t. 6, f. 21 ; Cooke, Brit. Desm. 1886, p. 30, t. 11, f. 3; Bürg. Bornholm. Desm.-fl. 1889, p. 142, t. 6, f. 1 ; West, 11 g . W. Irelancl, 1892, p. 124; Schmidle, Beitr. Alg. Sehwarzwald. 1893, p. 89, t. 3, f. 12; Roy \& Biss. Scott. Desm. 1591, p. 243; Nordst. Index Desm. 1896, 1. 45; West \& \& S. West, Alg. S. England, 1897, p. 452 ; Alga-fl. Yorks. $1900, \mathrm{p} .54 ; \mathrm{Alg}$. N. Ireland, $1902, \mathrm{p} .24$.

Closterium speciosum 'Turn. in Trans. Leeds Nat. Club, 1856, p. 10, t. 1, f. 17.

Arthrodia angustata Kiuntze, Revis. gen. plant. 1891, p. 883.
Closterium angustutum var., subrectel Schmide, Beitr. Alg. Schwarzwald. 1893, p. 89, t. 3, f. 12.
Closterium unyustatum forma Eichleri Gutw. Wykaz Gilonów Wadow.Makow. 1897, p. 124.
Closterium angustatum var. speciosum Schmidle, Lappmark Süsswasseralgen, 1595 , p. 13, t. 1, f. 10.
Cells of medium size, $14-18$ (sometimes only about 10) times longer than their diameter, moderately curved, outer margin from $45^{\circ}$ to $51^{\circ}$ of arc, immer
margin not tumid, gradually but slightly attenuated from the middle to each extremity ; apices truncately rounded or sometimes rounded, often slightly swollen and subcapitate ; cell-wall reddish-brown in colour, generally darker at the apices, costate, with 4 costie visible atross the cell, costae frequently subspirally disposed ; each chloroplast with +7 pyrenoids in one axile series; terminal vacuoles with a number ( $1 \because-20$ ) of moving gramules.

Zygospore unknown.
Distance between apices ( $=$ lengtlı $\quad 390-4.03 \mu$; breadth $16-28 \mu$; breadth of apices $12-15 \mu$.

Englant-Westmoreland! (Rdlf: W. W. and N. Korks (very scarce)! Lancashire! Sussex (halfs). Surrey! (kitlis). Hants! (Bemett). Devon! (komett). Cormwall! (Mnrom"mel).

Walsis. ('apel Comig! (Cooke of Wills), Pen-ygwryd (Roy), Glyder Fach (at 2,200 ft.), ('arnarvonshire! Ffestiniog and Dolgelly, Merioneth!

Scotland.-Sutherland!, Ross !, Inverness !, Aberdeen!, Kincardine, Forfar, Perth!, Stirling, Argyll, Renfrew (Roy \& Rissett). Kirkcudbright! Lewis and Harris, Outer Hebrides !

Treland.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Archer).

Geogi. Distribution.-France. Germany. Austria. Italy. Norway. Sweden. Denmark. Lapland in Russia. India. Java. United States.

This is a most characteristic species by reason of the few strong costa on the cell-wall. It exhibits much yariation with regard to its extremities, the poles being truncate, rounded, or even subcapitate, and the costa are frequently disposed in a subspiral manner. 'The forms most frequently met with in the British Islands possess slightly swollen extremitics.

## 8. Closterium costatum Corda.

(Pl. XIII, figs. 1-3.)
Closterium costatum Corda, in Alm. de Carlsbad, 1834, p. 185, etc., t. 5 f. 61-63; lialfs, Brit. Desm. 1848, p. 170, t. 21, f. 1; Arch. in Pritch.

> Infus. 1861, p. 748 ; Rabenh. Flor. Europ. Algar. III, 18tis, p. 126; Wolle, Desm. U.S. 188ı, p. 42, t. 6, f. 1! ; Cooke, Brit. Desm. 18sti, p. ¿8, t. 10 , f. 3 ; West, 11 g . W. Ireland, 1s92, 1) 123 ; Roy \& Biss. Seott. Desm. 1894, 1. 244; Nordst. Index Desm. 1896, p. 85\%; West \& (i. S. West, Alg. S. England, 1897, 1. 4s1; Mgath. Yorks. 1900, 1. 54; Mg. N. Ireland, 1902 , p. 24.
> C7. dutiotutum Bréb. in Cheval. microscop. et usiče, Paris, 18:39, p. 27: .
> C7. turgidulum Ǩïtz. Phycol. germ. 184\%, p. 132.
> Ct. ditatatum Kütz. Phycol. germ. 18t5, p. 132.
> Cl. striohatum b. costutum Klehs, Desm. Ostpreuss. 1s79, p. 14.
> Arthrodia costata Kiuntze, Revis. gen. plant. 1891, p. 883.

Cells of medium size, ( $6-10$ (commonly 7 or 8) times longer than their diameter', moderately curved, outer margin from $90^{\circ}$ to $98^{\circ}$ of arc, gradually attenuated towards the apices, which are rounded, truncately rounded, or rounded-conical ; cell-wall reddish-brown, costate, with $6-8$ costre visible across the cell ; each chloroplast with $6-7$ pyrenoids in one axile series; terminal vacuoles with numerous moving granules.

Zygospore globose or ovoid-globose, smooth.
Distance between apices $340-105 \mu$; breadth $48-66 \mu$; diam. of zygosp. $100-120 \mu$.

England.-Cumberland! Westmoreland! (Ralfs). W. and N. Yorks! Cheshire (Ko!). Leicester (ho!!). Warwick(Hills). Oxford! Gloucester (Rulfis). Essex! Middlesex! Sussex (Rulfis). Surrey! (hulfs). Hants! (Rulfis). Devon! Cornwall! (Rulfis).

Wales.-Fairly general!
Scotlant.-General! (Koy \& Bisseit). Outer Hebrides! Shetlands!

Ireland.-Mayo! Galway! Kerry! Donegral! Dublin and Wicklow (Archer). Antrim!

Geogi. Distribution.-France. Germany. Austria. Hungary. Italy. Norway. Sweden. Denmark. N. and S. Russia. Faeroes. Greenland. United States.

This is a characteristic species which exhibits a certain amount of variation. The number of coste visible across the cell is nsually six, but there may be as few as five or as many as eight, and occasionally the cell-wall is punctate between the costre. The apices of the cells are generally angularly rounded and are often of a deeper colour than the rest of the cell-wall.

## 9. Closterium regulare Bréb.

## (Pl. XIIT, figs. 4-6.)

Closterium regulure Bréb. Liste Desm. 1856, p. 14.s, t. 2, f. 3.5; Rabrenh. Flor. Europ. Agrar. 1II, 1868, p. 1: ${ }^{(6 ;}$; Nordst. Freshw. Alg. N. Keal. 1s8s, p. 78 ; Roy id Biss. Scott. Desm. 1894, p. 248; Nordst. Index Desm. 1s96, p. 22:3; West \& G. S. West, Alg. S. England, 18:97, 1. 481 ; F'reshw. Chlorophy. Koh Chang, 1901, p. 82.

Closterium striolatum a Klehs, Desm. Ostpreuss. 1879, p. 14, t. 2, f. 2. A.throliu reguturis Kuntze, Revis. gen. plant. 1891, p. 884.

Cells of medium size, about ! times longer than the diameter, moderately curved, outer margin from $66^{\circ}$ to $86^{\circ}$ of are, inner margin not tumid, gradually attenuated towards the apices, which are somewhat elongated and truncately or angularly rounded; cellwall pale yellow-brown in colour and costate, with $11-12$ costa visible across the cell ; each chloroplast with about 5 pyrenoids; terminal vacuoles with a number of moving granules.

Kygospore unknown.
Distance between apices $226-280 \mu$; breadth $2 t-33 \mu$; breadth of apices $6-9 \mu$.

England.-Puttenham Common, Surrey (small forms) !

S'othant.-Near Kirgshouse, Argyll (Roy \& Disisett).
Geogi. Distribution.-France. Norway. Lapland in Russia. India. Siam. Australia. Ẅest Africa.

This rare species occupies a position intermediate between Cl. costatum and Cl. striolatum. It is distinguished from the former by its somewhat smaller size, more attennated apices, and by the greater number of coste ; from the latter it differs in its more attenuated and relatively narrower apices, and by the presence of 11 or 12 visible coste instead of 14 or more striolations. The coste of Cl . regulare are of about the same strength as those of CI. costatum, but are much closer together; they are much stronger than the strie of $C l$. striolatum.

## 10. Closterium striolatum Ehrenb.

## (Pl. XIII, figs. 7-16.)

Closterium striolutum Ehrenb. Entwick. Lebends. d. Infus. 18:32, p. 6s; Infus. 1838 , p. 96 , t. 6 , f. xii; Menegh. Synops. Desm. 1840, p. 231; Lass. Brit. Frushw. Mlg. 184v, p. 371, t. 87, f. 4; Ralfs, Brit. Desm.

1848, p. 170, t. 29, f. 2 (1-g; Areh. in Pritch. Infus. 1861, p. 749, t. 2, f. 2 and ( 6 ; Rabenh. Flor. Europ. Algar. 111, 1stis, p. 242; Kirchn. 11 . Schles. 1s78, p. 139 (а. gепиіииm); (iay, Mon. loc. Conj. 1884, p. Ti; Wolle, Freshw. Alg. U.S. 18s7, p. 2.4, t. 5̌, f. \%-8; Cooke, Brit. Desm. 1886, p. 29, t. 11, f. 1; Hansg. Prodr. Mgenfl. Bohm. 1858, pp. 180 and
 Alg. W. Ireland, 1892, p. 124; Roy \& Biss. Scott. Desm. 1894, p. 249; Nordst. Index Desm. 1s96, p. 242; West d ©. S. West, Desm. Singitpore, 1s97, p. 159; Alg. S. England, 1897, p. 4isl ; Some Desm. U.S. 1s9s, p. 2bt; (i. S. West, Variation Desm. 1899, p. 380; West d (i. S. West, Alga-fl. Yorks. 1900, p. 5j; 1 lg . N. Ireland, 1902, p. 24; Freshw. Alg. Ceylon, 1902, p. 1:37.
Cl. striolatum var. tumidum labenh. Flor. Europ. Ilgar. IlI, 1s68, p. 126 ; De Toni, Syll. Agar. 1ss9, p. 826.
Cl. striolutum a. typicum Klebs, Desm. Ostpreuss. 1879, p. 11, t. 2, f. \&u.
Cl. strioletum var. orthonotum Roy, Freshw, Alg. Enlridge Lake and Vicin. 1890, p. 336; West, Alg. W. Ireland, 1892, p. 124; Roy d Biss. Scott. Desm. 1s94, p. 249; West \& (r. S. West, Alg. S. England, 1897, p. 451 ; Alga-fl. Yorks. 1900, p.
Arthrodice striolute Kuntze, Revis. gen. plant. 1s91, p. SS4.
Cells of medium size, 8-12 times longer than their diameter, moderately curved, outer margin from $39^{\circ}$ to $69^{\circ}$ of arc, inner margin concave, never tumid, but sometimes straight in the middle, gradually attenuated to the apices, which are broad and truncate with rounded angles ; cell-wall yellowish or yellowish-brown in colour, striated, with $14-21$ strice visible across the cell ; each chloroplast with about 6 ridges and an
 many moving granules.

Zygospore globose and smooth, often enveloped in a copious mucus.

Distance between apices ( $=$ length ) 2:3.5-178 $\mu$; breadth $22-5: 3 \mu$; breadth of apices $10-14 \mu$; diam. of zygosp. $65 \mu$.

England.-Cumberland! Westmoreland! (lulfs). W., N., and E. Yorks! Lancashire! (Tulf※). Cheshire (hulfs). Leicester (ho!l). Warwick (llills). Herts (Hassall). Suffolk! Middlesex! Kent! (Rulfs). Surrey! (Ralf:s). Sussex (Ralfs). Hants! (Ralf: ). Devon! Cornwall! (Ralfs).

Wales.-General and abundant (at 2,200 ft. on Glyder Fach)!

Scotland.-General! (Ro! \& Bissett). Common in Outer Hebrides! Orkneys! Shetlands!

Treland.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Archer). Londonderry! Down! Antrim!

Geogr. Distrilution.-Generally distributed in Europe. Faeroes. Greenland. Spitzbergen. Nova Zembla. India. Ceylon. Burmah. Singapore. Java. Central China. Japan. New Zealand. East Africa. United States. Brazil.

Considering the wide distribution of this species it exhibits little variation. Specimens from different localities may vary in their comparative length and breadth and also in the relative breadth of the apices. Sometimes the apices are a little inflated, but this is not a common feature. The striolations vary from 13 to 17 in $20 \mu$. In many of the mountain forms the cell-wall is almost colourless. The curvature is somewhat variable but is never very great. In some forms the central portion of the cell is straight and the apices are considerably curved, but considering the large number of intermediate states the name "var. orthonotum," given to this form by Roy, is not warranted.

The striolations are not very strong and towards the extremities they become reduced in number, a character found in many striolated Closteria. This is brought about either by the gradual fading out of a few of the striolations or the fusion of some of them before they reach the apex. The cell-wall between the striolations is often minutely punctulate.

## Forma recta West. (Pl. XIII, fig. 17.)

Closterium striolatum forma recta West, Alg. N. Wales, 1890, p. 285, t. 5, f. 23 .

Cells straight and symmetrical around a longitudinal axis.

Length $216 \mu$; breadth $33 \mu$.
Wales.-Llyn Padarn, Carnarvonshire!
Lagerheim has suggested (Nuova Notarisia, H, p. 30) that this form is a species of Penium, but this is not so. Except for its straightness it is a typical Cl. striolatum.

## 11. Closterium intermedium Ralfs.

(Pl. XIV, figs. 1-5.)

> Closterium intermedium Ralfs, Brit. Desm. 1848, p. 171, t. 29, f. 3 and f. $2 h$; Arch. in Pritch. Infus. 1861, 1). 749 ; Lund. Desm. Suec. 1871, p. 77 ; Cooke, Brit. Desm. 1886, p. 29, t. 11, f. 2; t. 15, f. 6 ; Gutw. Flor. Glon. Okolic Lwowa, 1891, p. 34; West, Alg. Eng. Lake Distr. 1892, p. 720 ; Roy \& Biss. Scott. Desm. 1894, p. 245; Nordst. Index Desm. 1896, p. 148; West \& G. S. West, Alg. S. England, 1897, p. 482 ; Alga-fl. Yorks. 1900, p. 55 ; Alg. N. Ireland, 1902, p. 24 ; Freshw, Alg. Ceylon, 1902, p. 137.
> ? Cl. subjuncidum De Not. Desm. Ital. 1867, p. 63, t. 7, f. 68.
> Cl. striolatum b. elongatum Rabenh. Flor. Europ. Algar. III, 1868, p. 125; Kirchn. Alg. Schles. 1878, p. 139 ; Hansg. Prodr. Algenfl. Böhm. 1888, p. 242.
> Cl. subdirectum West, Desm. Massachussetts, 1889, p. 17, t. 3, f. 16.

> Arthrodia intermedia Kuntze, Revis. gen. plant. 1891, p. 884.

Cells of medium size, 12-15 times longer than their diameter, moderately curved, outer margin from $36^{\circ}$ to $45^{\circ}$ of arc, inner margin slightly concave, not tumid but sometimes straight in the median portion, gradually attenuated towards the apices, which are truncate with rounded angles; cell-wall pale yellow or yellowishbrown in colour, strongly striated, with $8-10$ visible strie across the cell ; each chloroplast with 5 or 6 pyrenoids; terminal vacuoles with one large moving gramule or a few smaller ones.

Zygospore globose and smooth.
Length 234-465 $\mu$; breadth $16-31 \mu$; breadth of apices $10-115 \mu$; diam. of zygosp. $38-54 \mu$.

England.-Cumberland! Westmoreland! (Bisseft). W., N., and E. Yorks! Cheshire (Toul). Leicester (Koy). Warwick (Wills). Surrey! Hants (Rwy). Devon! (Benneft). Cornwall! (Mutquend).

Wales.-Bettws-y-coed (Roy), Capel Curig! (Coole 8. Wills), Glyder Fawr (Roy), near Dolbadarn Castle !, Llyn Padarn, Carnarvonshire! Dolgelly, Merioneth (Ralfs).

Scotland.-Sutherland!, Ross, Inverness!, Nairn, Aberdeen, Kincardine, Forfar, Perth!, Stirling, Dumbarton, Argyll, Renfrew, Arran; zygospores from Fyrie, Aberdeen (Roy \& Rissett). Kirkcudbright! Lewis, Harris, and Benbecula, Outer Hebrides! Orkneys!

Trelann.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Arcler). Down! Armagh! Antrim!

Geotp. Distritution.-France. Germany. Austria. Poland. Portngal. Norway. Sweden. N. and S. Russia. Faeroes. Ceylon. Australia. United States. Brazil.
This species is easily distinguished from the succeeding' one (Cl. Tlmu) by its somewhat greater curvatnre, its greater attenuation towards the extremities, and its mnch coarser striolation. It is distingnished from Cl . striolatum by its proportionately narrower cells and by its fewer and coarser striæ.

The smallest forms we have observed were from Longh Akibbon, Donegal, Ireland:-length $190 \mu$; breadth $14 \mu$; breadth of apices $6 \mu$. In other respects they were absolntely typical.

## Var. hibernicum West. (Pl. XIV, fig. 6.)

Closterium intermedium var. hibernicum West, New Brit. Freshw. Alg. 1894, p. 3, t. 1, f. 2; West \& G. S. West, Alg. S. England, 1897, p. 482 ; Alga-fl. Yorks. 1900, p. 55.
? Cl. intermedirm a. typicum Klebs, Desm. Ostpreuss. t. 2, f. 16.
A rather long variety with the median part of the cell straight and the apical portions somewhat suddenly incurved; with 9 visible striæ, which are rather stronger than in the typical form.

Length $290 \mu$; breadth $19 \mu$.
England.-Terrington, N. Yorks! Puttenham Common and near Chapel Wood, Surrey !

Irblant. - Westport, Mayo!
Var. sculptum Racib.
Closterium intermedium var. sculptum Racib. Desm. Nowe, 1889, p. 75, t. 7, f. 19 .

A variety $15-17$ times longer than the diameter, commonly with 9 visible striæ, each being composed of a series of oblong granules ( $2-3 \mu$ in length).

Length $456-512 \mu$; breadth $30-32 \mu$; breadth of apices about $15 \mu$.

Distribution.-Bohemia.

The typical form of this variety has not been observed from the British Islands, but Trurner has deseribed a form of it.

Var. sculptum Racib. forma eboracensis Turner.
Closterium intermedium var. sculptum Racib. forma eboracensis Turner, Desm. Notes, 1893, p. 316, f. 17; West \& G. S. West, Alga-fl. Yorks. 1900, p. 55.

This form differs from Raciborski's in the possession of dilated apices.

Length $410 \mu$; breadth $21.5 \mu$; breadth of apices $15 \mu$. Englant.-Strensall Common, N. Yorks (II. li. Turner).

## 12. Closterium Ulna Focke.

(Pl. XIV, figs. 7-9.)
Closterium Ulna Focke, Phys. Stnd. 1847, p. 59, t. 3, f. 30; Nordst. Index Desm. 1596, p. 265; West \& G. S. West, Alga-fl. Yorks. 1900, p. 55 ; Alg. N. Ireland, 1902, p. 24.
Closierium directum Arch. Descript. new Cosm., etc., 1862, p. 249, t. 12, f. 23 and 24 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 127 ; Cooke, Brit. Desm. 1886, p. 18, t. 8, f. 3; Nordst. Freshw. Alg. N. Zeal. 18ss, p. 69 ; West, Alg. W. Ireland, 1892, p. 120 ; Roy \& Biss. Scott. Desm. 1894, p. 244 ; Borge, Süssw. Chlor. Archang. 189.4, p. I4; Nordst. Index Desm. Is $96, \mathrm{p} .110$; West \& G. S. West, Alg. S. England, 1897, p. 482.
Cl. striolatum var. Ulna Jacobs. Desm. Danem. 1875, p. 175.
Cl. intermedium b. directum Klebs, Desm. Ostpreuss. 1S79, p. 16, t. 2, f. 17.

Aithrodia directa Kuntze, Revis. gen. plant. 1891, p. 883.
Cells of medium size, $16-20$ times longer than their diameter, very slightly curved, outer margin from $15^{\circ}$ to $2: 3^{\circ}$ of arc, inner margin not tumid, almost parallel to the outer margin, very slightly attenuated to the apices, which are truncate; cell-wall colourless or pale yellow, very finely striated, with $14-20$ striæ visible across the cell ; each chloroplast with 5 or 6 indistinct ridges and a median series of 6 or 7 pyrenoids; terminal vacuoles generally with one large moving' granule.

Zygospore unknown.
Length $220-480 \mu$; breadth $11-22 \mu$; breadth of apices $8 \cdot 5-12 \mu$.

Engiand.-Cocket Moss, Giggleswick Common, bog two miles S. of Clapham, W. Yorks! Sutton Park, Warwick (Hills.s. Esher Common and near Chapel Wood, Surrey!

Wares.-Capel Curig, Moel Siahod, and Glyder Fach, Carnarvonshire!

Srotland.-Sutherland!, Ross!, Inverness!, Aberdeen, Kincardine, Forfar, Perth ! Argyll, Arran (Roy \& lisissett). Harris and Lewis, Outer Hebrides!

Ireland.-Galway! Kerry! Donegal! Dublin and Wicklow (Archer).

Geogn. Distrilution.-France. Germany. Austria. Norway. Sweden. Denmark. Russia. Poland. Faeroes. India. Java. New Zealand. United States.

Some algologists have confused this species with Cl . intermedium Ralfs, but those observers cannot have seen both species. Cl. Ulua is much less curved than Cl. intermedium; it is rather more elongate and is less attennated towards the extremities. The striolations of $C l$. Ulna are exceedingly delicate and from 14 to 20 are visible across the cell, whereas those of Cl . intermedium are very strong and only 8 to 10 are visible.

## 13. Closterium juncidum Ralfs.

> (Pl. XIV, figs. 10-14.)

Closterium juncidum Ralfs, Prit. Desm. 1848, p. 172, t. 29, f. 6; Arch. in Pritch. Infus. 1861, p. 749 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 127 ; Delp. Desm. subalp. 1877, p. 115, t. 17, f. 11-14; Kirchn. Alg. Schles. 1878, p. 137; Cooke, Brit. Desm. 1886, p. 30, t. 13, f. 7; Hansg. Prodr. Algenfl. Böhm. 1888, p. 178; Roy \& Liss. Scott. Desm. 1594, p. 245 ; Nordst. Index Desm. 1896, p. 151; West \& G. S. West, Aly. S. England, 1897, p. 482; Alga-fl. Yorks. 1900, p. $56 ;$ Alg. N. Ireland, 1902, p. 24.
Cl. intermedium c. juncidum Klebs, Desm. Ostpreuss. 1879, p. 16, t. 2, f. $5 b$.

Arthrodia juncida Kuntze, Revis. gen. plant. 1891, p. 883.
Cells elongate and slender, 24-40 times longer than their diameter, straight in the median portion and with the margins parallel, towards the apices slightly incurved and attenuated; apices obtusely rounded; cellwall brown or reddish-brown, sometimes only pale
yellow, striated, with $. \overline{-}-\bar{\gamma}$ visible strix across the cell, and with $4-\overline{7}$ pyrenoids in each chloroplast ; terminal vacuoles elongated, with several moving granules.

Kygospore globose and smooth.
Length $110-:: 30 \mu$; breadth $f: 5-S \mu$; diam. zygosp. $22-2+\mu$.

Evgland.-Cumberland! Westmoreland! (Ralf.). W., N., and E. Yorks! Lancashire! Cheshire (hulfs). Leicester (Roly). Warwick (Will.s). Essex! Sussex! (Ralfs). Surrey! Hants! Cornwall! (Rulfs) ; zygospores from Tintagel!

Wales.-General in Caruarvonshire (at $2,200 \mathrm{ft}$. on Clyder Fach1) ! Dolgelly, Merioneth !

Scotland.-General! (hoy s. Pissett). Kygospores from Fyvie, Aberdeen (Roy); and from Glas Meal, Perth! General in the Outer Hebrides! Shetlands !

Ireland.-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Areler). Down! Antrim!

Gengr. Distribution.-General in Enrope. Greenland. India. Java. Australia. East Africa. United States.

In the outline of its cells this species very much resembles Cl. gracile Bréb.

## Var. brevior Roy. (Pl. XIV, figs. 15, 16.)

Cl . juncilum var. $\beta$ Ralfs, Brit. Desm. 1848, p. 172, t. 29, f. 7 .
Cl. juncidum var. brevior et rohustior, Rabenh. Flor. Europ. Algar. III, 1868, p. 127.
Cl. juncidum var. brevior Roy, in Journ. Bot. 1890, p. 336; Borge Chlor. Norska Finmark. 1892, p. 14.

Cells relatively broader than in the typical form, 12-20 times longer than their diameter.

Length $150-2 \overline{5} 5 \mu$; breadth $12-14 \mu$; diam. zygosp. $40-44 \mu$.

Enghant.-Midhurst, Sussex (.Immer \& Rolfs).
Wales.-Dolgelly, Merioneth (Rulfic).
Scothand.-Much rarer than the typical form.
Geogr. Mistrilution.-France. Austria. Finland. United States.

The striolations of this variety are sometimes very obscure and liable to be overlooked.

## Tar. elongatum Roy \& Biss.

Cr. juncidum var. elongatum Roy \& lhiss. Seott. Desm. 1891, p. 24.
Cells rather large, about :3f times longer than their diameter.

Length $3.5 .5-100 \mu$; hreadth $119 \mu$.
Scotlant.-General (loy \& Bissett).
We have never seen this variety from any part of the British Islands, although Roy appears to have found it frequently in Scotland.

## Sectiom 1).

## 14. Closterium Dianæ Ehrenl).

 (Pl. XV, fig's. 1-6.):Closterium sufiecps Ehrenb. Entwick. Lehends. d. Infus. 1832, p. ©7.
Cl. Diana Ehrenh. Infus. 1838, p. 92, t. 5, f. xvii, 1-6; Menegh. Synops. Desm. 1840, p. 232; Hass. Brit. Freshw. Alg. 1845, p. 371, t. 84, f. 5; Lalfs, Brit. Desm. 1848, p. 168, t. 28, f. 5; Areh. in Pritch. Tufus. 1881, p. 748 ; Rabenh. Flor. Europ. Alg. III, 1868, p. 133 ; Cooke, Brit. Desm. 1886, p. 26, t. 13, f. $3 ;$ ? West, Alg. W. Ireland, 1s92, p. 122; Roy d Biss. Scott. Desm. 1894, p. 244; Nordst. Index Desm. 1896, p. 104 ; West \& (i. S. West, Alg. S. England, 1897, p. 481 ; Some Desm. U.S. 1898, p. 284; Alga-ft. Yorks. 1900, p. 48; Alg. N. Treland, 1902, p. 23.
Cl. acuminatum Kütz. Phyc. germ. 1845, p. 130; Rahenh. Flor. Europ. Algar. III, 1868, p. 133; Wittr. (qotl. Ol. sïtv. Alg. 1872, p. 61, t. 4, f. 18 ; Wolle, Desm. U.S. 18s4. p. 44 ; De 'loni, Syll. Alg. 1859, p. 840.

C7. Ditne a. typicum Klehs, Desm. Ostpreuss. 1879, p. 11, t. 1, f. 10 a. f. $13 h$.

Athrodiu Iiume Kuntze, Revis. gen. plant. 1891, p. 883.
A. acuminatu Kuntze, J.c.

Cells of medium size, usually $10-12$ times longer than their diameter, strongly curved, outer margin about $112^{\circ}-130^{\circ}$ of arc, inner margin scarcely or very slightly tumid, gradually and gracefully attemuated towards the apices, which are obtusely rounded ; dorsal margin at each apex obliquely trimeate and thickened; cell-wall smooth and of a reddish-brown colour ; chloroplasts obscurely ridged, containing a single series of five or six pyrenoids; terminal vacuoles with many moving granules.

Zygospore globose and smooth.
Distance between apices $270-380 \mu$; breadth $16-36 \mu$; breadtl of apices about $6 \mu$; diam. Zygosp. $36-2 \mu$.

Watman- Cumberland! Westmoreland (at 2, 100 ft . on Helvellyn)! W., N., and E. Yorks (aygosp. from Markington, W. Yorks)! Lancashire! Cheshire (Ren!is). Lincohshire! Suffolk! Essex! Cambridge! Warwick (Hills.s). Surrey! Sussex (linlfis). Hants! (lismelt). Devon! (Bennett). Cornwall! (Remlis).

Wabis.-Fairly general in the north!
Scotland.-General! Kygospores from Coul in Ross; between Loch Kinnord and Cambus O'Mar, Aherdeen; Loch Lundie, Perth (Roy \& P lissett). General in the Outer Hebrides! Orkneys! Shetlands!

Iremant-Mayo! Galway! Kerry! Donegal! Dublin and Wicklow (Arrhert). Antrim! Down!

Gicoff. Distribution.-France. Germany. Austria. Galicia. Hungary. Italy. Portugal. Norway. Sweden. Demmark. Bornholm. Finland. N., S., and Central Russia. Facrocs. Iceland. Nova Zembla. Spitzbergen. Greenland. Siberia. Central China. Japan. Ceylon. Siam. Jara. Australia. New Zealand. Central and E. Africa. United States. W. Indies. Brazil. Uruguay.

Some forms of this species lave been noticed in which the cell-wall was finely punctate, and others in which it was distinetly granulate. The granules were large, but only of slight elevation.

Var. arcuatum (Bréb.) Rabenh. (Pl. XV, figs. 21, 29.)
Closterium arrualum Bréb. in Ralfs' Brit. Desm. 184S, p. 219; Bréb. Liste Desm. 1856, p. 149, t. 2, f. 38 ; Lumd. Desm. Suce. 1471, p. 80 ; Roy \& Biss. Scott. Desm. 1894, p. 243; Nordst. Index Desm. 1s? $6, \mathrm{p}$. 50; West \& G. S. West, Alga-fl. Yorks. 1900, p. 49.
Cl. Diane var. arruatum Rahenh. Flor. Europ. Alg. III, 1868, p. 183 ; Hansg. Prodr. Algenfl. Böhm. 188s, p. ISI; Gutw. Flor. Glon. Okolic Tarnopola, 1894, p. 80 ; Nordst. Index Desm. 1896, p. 10.5.

About 10 times longer than the diancter, slightly sinaller and more strongly curved than the typical form, outer margin $140^{\circ}-152^{\circ}$ of are; cell-wall of a pale yellow colour.

Distance between apices 129-290 $\mu$; breadth 18-2.5 $\mu$ : breadtlı of apices $6-7 \mu$; diam «.ygosp. $27-29 \mu$.

Exgland.-Skipwith Common, E. Yorks! Delamere, Cheshire (Roy). Eubringe Lake, Hants (Roy).

Wames.- ('apel Corig, ('arnaronshire (Koy).
Somband. - Sutherland, Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth, Fife; zyospores from Fyvie, Aberdeen, and Cammie, Kincardine (loy).

Gengr. Dishilution.-France. Germany. Austria. Norway. Sweden. India. New Zealand. E. Africa.

This variety differs from typical Cl. Diana only in its greater degree of curvature. The apices of the cells are identical in character with those of the type form, and the cell-wall is faintly coloured. The zygospores are globose and smooth. It is very rarely met with even thongh typical Cl. Diture is abundant in many districts.

## 15. Closterium Pseudodianæ Roy. (Pl. XV, figs. 7, 8.)

> Closterium Pseudodianx Roy, Desm. Alford District, 1890, p. 201; Roy $\mathbb{E}$ Biss. Scott. Desm. 1894, p. 248, t. 1, f. 4 (1893); Nordst. Index Desm. 1896, p. 208 ; West \& G. S. West, Alg. S. England, 1897, p. 481 ; Algafl. Yorks. 1900, p. 49 ; Lütkem. Desm. Millstittersees, 19(t), p. 5.

Cells of medium size, $14-20$ (commonly $16-18$ ) times longer than their diameter, moderately curved, onter margin $78^{\circ}-88^{\circ}$ of arc, imer margin almost straight in the median part of the cell, gradually attemmated towards the apices, which are narrow and obtuse, with a slight thickening on the dorsal margin; cell-wall smooth, colourless, or yellowish-brown; chloroplasts obscurely ridged, with a single series of 5 or 6 pyrenoids; terminal vacuoles with several moving gramules.

Zygospore unknown.
Distance between apices $192-253 \mu$; breadth $12-14 \mu$; breadth of apices $9 \cdot 5-3 \mu$.

England.-Roundhay Park, Leeds; Cocket Moss, near Giggleswick, W. Yorks! Delamere, Cheshire (Roy). Thursley Common, Surrey!

Scothand.-Ross, Aberdeen, Kincardine, Forfar, Perth, Argyll (Roy). Loch Shin, Loch Inver, and Rhiconich, Sutherland! Skye in Inverness!

Ireland.-Adrigole and Glen Caragh, Kerry!

Goger. Distribution.-Austria. Ceylon. Madagascar. E. Africa.

This species is distinguished from Cl. Diana by its curvature and its smaller size. The apices are also relatively narrower than in Cl. Diana, although according to Roy they possess the oblique thickening fond in that species. 'This character is, howerer', variable in (l. I'seudodianx, and is often entircly absent.

It is a very rare species of the grems except in certain areas of the north-west of Scotland. The Anstrian specimens recorded by Lïtkemüller are of somewhat smaller size and have hroader apices.

## 16. Closterium parvulum Näg.

(Pl. XV, figs. 9-12.)
Closterium parvulum Näg. Gatt. einz. Alg. 1849, p. 106, t. 6 C, f. 2 (in part); De Bary, Conj. 1858, p. 4, 42, 48-51, t. 5, f. 14-23; Rabenh. Flor. Euwop. Alg. $111,1868, \mathrm{p} .134$; Kivehn. Mg. Schles. 1878, p. 141 ; Wolle, Desm. U. S. 188t, p. 45, t. 7, f. 7, t. 8, f. 16; Hansg. Prodr. Algenth. Böhm. 1888, p. 1s:2; De 'I'oni, Syll. Alg. 1859, p. 84l; Lütkem. Desm. Attersecs. 189:3, p. 543 ; Roy \& Biss. Scott. Desm. 1894, p. 247; West d 4. S. West, New and Int. Freshw. Ng. 1896, p. 151 ; Nordst. Index Desm. 1896, p. 196; West \& G. S. West, Alg. S. England, 1897, p. 481 ; G. S. West, Alga-fl. Cambr, 1899, p. 112; West if (1. S. West, Alga-fl. Yorks. 1900, p. 49 ; Alg. N. Ireland, 1902, p. 23; Scott. Freshw. Plankton, 1, 1903, p. 525.
Arthrodice purvula Kuntze, Revis. gen. plant. 1891, p. 884.
('ells small, 9-1.5 times longer than their diameter, strongly cmrved, outer margin $120^{\circ}-1+0^{\circ}$ of arc, immer margin not tumid, gradually attemated to the apices, which are acntely rounded; cell-wall smooth and colourless (arely yellowish-brown) ; chloroplasts with about five ridges and a single series of $3-6$ pyrenoids; terminal vacuoles with several moving granules.

Zygospore ellipsoid or subglobose, smooth.
Distance between apices $96-121 \mu$; breadth $11-145 \mu$; brealth of apices about $1.5 \mu$; length of zygospore $30-40 \mu$; breadth of zygospore 26-:34.5 $\mu$.

ExGiano- ('mblerland! Westmoreland (with zygosp.)! W. (with zygosp.), N. (with zygosp.), and E. Forks! Lancashire! Essex! Cambridge! Middlesex! Surrey (with zygosp.)! Kent! Hants! Devou! Cornwall (with zygosp.)!

Wades.-General in Carmarvonshire (up to $3,000 \mathrm{ft}$. on Snowdon)! Merioneth!

Sorothind. - Ross, Inverness!, Aberdeen (with zygosp.), Kincardine, Pertlı, Stirling, Fife (ho! os Jissett). Dunfries! Kirkcudbright! Ayr (with zygosp.)! Caithness! Sutherland! General in the Onter Hebrides! Orkneys! Shetlands!

Irelanh.-Donegal! Mayo! Galway! Kerry! Londonderry! Armagh! Wicklow!

Georfi. Distribution.-France. Germany. Switzerland. Austria. Galicia. Hungary. Spain. Norway. Sweden. Demmark. Finland. N., S., and C'entral. Russia. Nova Zembla. Greenland. Siberia. Japan. C'eylon. Siam. Sumatra. Java. Samoa. Australia. C'entral and E. Africa. United States. Brazil. Eenador. Patagonia.
'This Desmid is not more than about half the size of Cl . Dianze and is of a stouter aspect. The apices are also rather moreacute. Nägeli described the cell-wall as being very fincly striated, but as we invariably find it perfectly smooth and colomless, we are inclined to believe that he included more than one species in his observations.

> Var. angustum West \& G. S. West. (Pl. XV, figs. $1: 3,1 \%$ )
> Cl. permatum var. engustum West \& G. S. West, Notes Alg. II, 19(0), 1. 2!00, t. 412 , f. A; West © (1. S. West, Algath. Yorks. 1900 , p. 49 ; Burge, Alg . erst. Fiegnell. Exped., II, Desmid. 1903, p. 79.
('ells a little smaller and narrower than in the typical form.

Distance between apices $91-102 \mu$; breadth $78 \mu$.
Exgiand.-T'ilmoor, N. Yorks!
(imonf. Distrilution.—Brazil. Paraguay.

## 17. Closterium Jenneri Ralfs.

(Pl. XV, figs. 9:3-2.5.)

Clostorium Jenneri Ralfs, Brit. Desm. 18.1s, p. 167, t. 2s, f. (i; Areh. in Priteh. Infus. 1861, p. 7 is ; Rabenh. Flor. Europ. Algar. 111, 1868, p.

134; Kirehm. Alg. Sehles. 1878 , 1. 1 to ; Wolle, Desm. U.S. 1ss.t, p. H. t. 7, f. 5; Cooke, Brit. Desm. 1ssef, 1. 21, t. 13, f. \&; Hansg. Prodr. Agenfl. Böhm. 18ss, p. 212; De 'Fomi, syll. Alg. 18s9, p. sis; West, Alg. W. Areland, 1892, 1. 122; Börg. Ferskv. alg. Ostgrönl. 1894, p. 11, t. 1, f. 2; Roy. © Biss. Scott. Desm. 189.1, p. 215; Nordst. Index Desm.
 Yorks. 1900,1 . 49 ; $11 \mathrm{~g} . \mathrm{N}$. Ireland, 1902, p. 2t; Scott. Freshw. Plankton, I, 1903, p. 525.
(7l. Diena e. Jenneri Klebs, Desm. Ostpreuss. p. 12, t. 1, f. 12 b, f. 13 a.
Aithrodiu Jenneri Kuntze, Revis. gen. plant. 1891, p. 883.
Cells small, $8-1$ ? times longer than their diameter, strongly curved, more so towards the extremities than in the median portion, outer margin $1.50^{\circ}-1755^{\circ}$ of are, inner marcin not tumid, sometimes ahmost straight for a short distance in the middle, gradually attemated to the apices, which are obtusely rounded ; cell-wall smooth and colourless; chloroplasts with four or six ridges, and with 1-6 pyrenoids in a single series; terminal vacuoles with one or two large moving gramules.

Zygospore oblong-ellipsoid, smooth.
Distance between apices 18-94 $\mu$; breadth $7-1+\mu$; breadth of apices $2 \cdot 5-5 \cdot 5$; length of zygosp. :30-:37 $\mu$; breadth of zygosp. $20-30 \mu$.

Exitanb.-Cumberland! Westmoreland! (Rissett). W., N., and E. Yorks! Lancashire! Leicester (Roy). Surrey! (lulfs). Sussex (limfs). Hants! (Kalfs). Devon! (ormwall! (Ralfs).

Wabes.-Gencral in ('amarvonshire! Ffestiniog, Merioneth! Molyhead, Anglesey!

Scomand.-Sutherland!, Ross, Aberdeen, Kincardine, Forfar! , Perth!, Argyll, Arran (hoy of Bissett). Ayr! Dumfies! Lewis and N. Uist, Outer Hebrides! shetlands!

Trelaxn-Donegal! Mayo! Galway! Kerry! Down! Antrim! Dublin and Wicklow (Arclere).

Geofr. Distributem.-France Germany. Galicia. Hungary. Italy. Spain. Nopray. Sweden. Bornholm. N. and S'. Russia. Faeroes. Nova Kembla. Greenland. Sian. Java. ('entral and E. Africa. Azores. United States. Brazil.
Cl. Jemueri is easily distinguished from ('l. parculum by its stronger eurvature and by its more robust extremities. From
Cl. Venu. it is distinguished by the straighter median portion of the cell, by the thicker and more rounded apices, and by its proportionately greater length. It also differs from both these species in the nature of the terminal vacuoles, which contain only one or two large moving granules.

Var. robustum G. S. West. (Pl. XV, figs. 26, 27.)
Cl. Jemneri var. robustum \&. S. West, Alga-fl. Cambr. 1899, p. 112, t. 396, f. 9 ; West \& G. S. West, Alga-fl. Yorks. 1900 , p. 50 ; West \& G. S. West, Alg. N. Ireland, 1902, p. 24 [erronconsly reported as "var. crassum"].

Stouter than the typical form, scarcely attenuated towards the broadly obtuse apices.

Distance between apices $61-77 \mu$; breadth $12.5 \mu$; breadth of apices about $6-7.5 \mu$.

Evilani.-Pilmoor, N. Yorks! Twenty-foot River, between March and Guyhirne, Cambridge!

Ikeland.-North of Newcastle, Down!

## 18. Closterium incurvum Bréb.

(Pl. XV, figs. 28-30.)
Closterium incurum Bréb. Liste Desm. 1856, p. 150, t. 2, f. 17; Areh. in Pritch. Lnfus. 1861, p. 7 is ; Rabenh. Flor. Europ. Algar. IIl, lstis, p. 135 ; Delp. Desm. subalp. 1si7, p. 102, t. 17, f. 2:2 -27; De'Toni, syll. Alg. 1889, p. 843 ; Roy \& Biss. Scott. Desm. 1894, p. 345 ; Nordst. Index Desm. 1896, p. 144; West \& G. S. West, Algat-H. Yorks. 1900, p. 50 ; Alg. N. Ireland, 1902, p. 24.
Cl. Leibleinii Kütz. b. minus Rabenh. Flor. Europ. Algar. Ill, 186s, p. 132.
Cl. Diane e. incurvum Klebs, Desm. Ostpreuss. 1879, p. 12, t. 1, f. 14 a, b.

Cells very small, $\bar{y}-7$ times longer than their diameter, strongly curved, outer margin about $180^{\circ}$ of arc, inner margin not tumid, strongly attenuated towards the apices, which are acute; cell-wall smooth and colourless; chlorophasts with several small pyrenoids in one series; terminal vacuoles with several small moving gramules.

Kygospore globose and smooth.
Distance between apices $52-6 \% \mu$; breadth $10 \cdot 5-1+\mu$.
England.-Pilmoor, N. Yorks! Delamere, Cheshire
(Roy). Enbridge Lake, Hants (Roy). Cornwall (Murquand).

Wales.-Capel Curig (Roy).
Scorlanir.--Sutherland, Ross, Inverness, Nairn, Aberdeen, Kincardine, Forfar, Perth, Stirling, Dumbarton, Fife (Roy \& Bissett). Shetlauds!

1neland.-Lough Akibbon, Donegal! Carrantuohill, Kerry !

Geogr. Distribution.-France. Galicia in Austria. Italy. Sweden. Ceylon. Australia (var.). E. Africa.

Some specimens of this species possess a very slight depression or concavity on the outer margin close to the apex. It is a rare Desmid.

## 19. Closterium Venus Kütz.

(Pl. XV, figs. 15-20.)
Closterium Venus Kütz. Phyc. germ. 184.), p. l30; Ralfs, Brit. Desm. 184s, p. 220, t. 35, f. 12; Kütz. Spec. Alg. 1849, p. 164; Rabenh. Flor. Europ. Algar. III, 18is, p. 13t; Wolle, Desm. U.S. 1884, p. 4t, t. 7, f. (i; Hanser. Prodr. Algenfl. Böhm. 188s, p. 182; De 'Toni, Syll. Alg. 18s9, p. 840 ; West, Alg. W. Ireland, 1892, p. 123 ; Eichler \& Gutw. Nonn. spec. alg. nov. 1894, p. 16:3, t. 4, f. 3 ; Lioy \& Biss. Scott. Desm. 1894, p. 2t4; Nordst. Index Desm. 1896, p. 267; West \& (i. S. West, Alg. S. Finglanil, 1897.1 . 481 ; Alga-fl. Yorks. 1900, 1). 50; Alg. N. Lreland, 1902, p. 23; ; Sentt. Freshw. Ilankton I, 190z, p. 52\%.
Ci. Diante a. Venus Klels, Desm. Ostpretss. 187!, p. 122, t. 1, f. 14 c, c.

Arthrodia Venus Kuntze, Revis. gen. plant. 1891, p. S8.
Closterium trochiscosporum West \& C. S. West, New and Int. Freshw. Alg. 1896, p. 15l, t. 3, f. 16-20; West \& G. S. West, Mg. S. England, 1897, p. 451.

Cells small, S-9 times louger than their diameter, strongly curved, outer margin $150^{\circ}-1600^{\circ}$ of are, imer margin not tumid, gradually attemated to the apices, which are acute or acutely rounded; cell-wall smooth, colourless, or more rarely yellowish-brown ; chloroplasts ritged, with two pyrenoids (rarely only one); terminal vacuoles large, with a number of moving granules.

Zygospore oblong-rectangular with romuded angles, shorter sides retuse, longer sides convex and inflated in the middle; often twisted, the two angles at one end of the zygospore being disposed in a plane at
right angles to that containing the two angles of the opposite end.

Distance between apices 5 $1-81 \mu$; breadth $\overline{7}-10.5 \mu$; length of zygospore $2: 3-28.5 \mu$; breadth of zygosp. $18-29 \mu$.

Encland.-Westmoreland! W., N., and E. Yorks! Lancashire! C'heshire (Ro!!). Leicester (Ro!!). C'ambridge! Oxford (zygosp. from near Goring ! ! Essex ! Surrey! Hants! Cornwall (Marpuamd).

Wales.-Fairly general!
Sombano-Gencral! (ho!g of lisselt). General in Outer Hebrides! Orkneys! Shetlands!

Irelani.-Donegal! Galway! Kerry! Down! Armagh! Antrim! Lough Neagh! Dublin and Wicklow (. licher).
(ieorfi. Distribulion.-France. Germany. Austria and Galicia. Hungary. Italy. Norway. Sweden. N. Russia. Faeroes. Nova Zembla. Greenland. Siberia. Contral China. Japan. Ceylon. Burmah. Siam. New Kealand. ('entral Africa. Azores. United States. Brazil. l'atagonia.

The curvature of Cl. Venus distinguishes it from Cll parculum, and it is invariably of smaller dimensions. As a rule the apices are slightly more attenuated than those of Cl. parculum, and there are rarely more than two pyrenoids in cach chloroplast.

The cmrvature is almost the same as that of Cl. Iemeri, but the latter is a larger species of stouter aspect, with much thicker apices. 'The chloroplasts and terminal vacnoles are also different from those of Cl. Jemueri.
Cl. Temus has a very characteristic zygospore, which is at once sufficient to separate it as a well-marked species from atl other sumall, strongly curved Closteria.

## 20. Closterium calosporum Wittr.

(Pl. NVI, figs. 1-1.)

[^7]C'ells small, 8-10 times longer than their diancter', strongly eurved, outer margin 1950-1:35 of are, inner margin not tumid, gradually attenuated to the appices, which are subacute or acutely rombled; cell-wall smooth and colourless; chloroplasts with a single serics of about fom pyrenoids.

Zygospore globose, furnished with mammillate or conical projections, nine or ten of which show in the margin.

Distance between apices $77-108 \mu$; 1neadth $9-12 \mu$; diam. \%ygosp. without pojections $18-\because .5 \mu$, with projections $9.5-32 \mu$.

England.-Delamere, Cheshire (lioy). Enbridge Lake, Hants (Lo!!).

Wades.-Bettws-y-coed and Glyder Fawr, Carnarvonshire (Roy).

Somtand.-General ; zygosp. from near Dinnet, Aberdeen, and Glen Dye, Kincardine (Roy s. lisisett). Harris, Outer Hebrides! Orkneys!

Irelann.-Dungloe, Doocharry Bridge, near Gilenties, and Lough Machugh, Donegal! Dublin and Wicklow (. Archer).

Geemf. Distribution.-France. Galicia in Austriat Siweden. Poland. N. Russia. Nova Zembla. Ceylon. Siam. Brazil (var.). Paraguay (var.).

This species differs very little in its sterile comdition from Cl. parculum, having the same curvature but being a little smaller. The eell-wall was deseribed by Wittrock as very delicately striated, lont we doubt whether these striations have ever been detected since they were originally described. We have, therefore, described the cell-wall as "smooth." It is a species which has most probably been greatly overlooked, chietly: on accome of its close resemblance to $\mathrm{C} \%$. pervelum, but when found in the conjugated state the zygospores are eminently characteristic.

> Formar major West and G. S. West. (Pl. NY', figs. $\bar{y}$, (i.)
Cl. culosprom forma mojor West and G. S. West, New and Int. Freshw. Alg. 1896, p. 152, t. 3, f. 25,$26 ;$ Nordst. Index Desm. $1590, ~ p . ~ 275 ;$ West \& G. S. West, Alg. S. England, 1s:57, p. 4sl.
Cl. calosporum var. galiciense Gutw. Nonn. Alg. Nov. 1896, p. 9, t. 6, f. 21.

Cells larger than in the typical form; cell-wall smooth; zygospores with slightly longer conical projections, the bases of which are a little more remote.

Distance between apices $140-161 \mu$; breadth $14-17 \mu$; diam. zygosp. without projections $29 \cdot 5-37 \mu$, with projections $38-51 \mu$.

Enabant.-Near Goring, Oxfordshire (with zygosp.)! (icogr. Distrilution.-Galicia in Austria.
'The specimens described ly Gutwinski from Poland, under the name of "Cl. calowprum var. galiciense," were somewhat smaller than the British forms. His dimensions were:Distance between apices $11 \underline{-}-116 \mu$; breadth $13 \mu$; diam. zggosp. withont projections $24 \mu$; length of projections $6 \cdot 4 \mu$.

## 21. Closterium eboracense 'Turner.

## (Pl. NVI, figs. 7, 8.)

Closterium Chcumis Wolle, Desm. U. S. 188., p. 40, t. 6, f. 17, 18. [Not Cl. cucumis Ehrenb. 1848.
Cl. cboracense 'Turn. in Cooke's Brit. Desm. 1886, p. 37, t. 6.5, f. 1 ; Turn. in Trans. Leeds Nat. Cluh, 18s6, 1, t. 1, f. 16: De 'loni, Syll. N1g. 18s?, p. 84t; Roy \& Biss. Scott. Desm. 1894, p. 244; West \& G. S. West, Alga-fl. Yorks. 1902, 1.50.
Arthrodice cboracense Kuntze, Revis. gen. plant. 1891, p. 883.
Cells of medium size, robust, about is times longer than their diancter, outer margin about $160^{\circ}$ of arc, imner margin concave, not tumid, gradually attenuated to the apices, which are thick and broadly rounded; cell-wall smooth and colourless; chloroplasts with eight distinct ridges and a single series of about five pyrenoids; terminal vacuoles large, with a number of moving granules.

Kygospore unknown.
Distance between apices (length) $1+0-200(\mu$; breadth :3)- $19 \mu$; breadth near apices 11 15. $\mu$.

Eingland.-('ampsall, Doncaster, and Chapel-Allerton, W. Yorks ('moner). Mickle Fell, N. Yorks!

Scothand.-Little Don, Haughton, Aberdeen (Roy oj Bisisett).

## 2உ. Closterium Leibleinii Küitz.

(Pl. XVI, fig's. 9-14.)

Closterium Leibleinii Ǩ̈üz. Syn. Diat. 1834, p. 596, t. 18, f. 79; Menegh. Synops. Desm. 1810, p. 232; Ralfs, Brit. Desm. 1845, p. 167, t. 24, f. 4 ; Kït\%. Spec. Alg. 1819, p. $16: 3$; Arch. in Pritch. Infus. 1861, p. 74.4, t. 2, f. 1,5 ; Rabenlı. Flor. Europ. Algar. ILI, 1stis, p. 132; Wolle, Desm. U. S. 1854, p. 4(f, t. 7, f. 13, 14, 20) C Cooke, Brit. Desm. 1886; p. 25), t. 13, f. 1; De Toni, Syll. Algar. 1889, p. 846 ; West, Alg. W. Ireland, 1892, p. 122; Roy \& Biss. Scott. Desm. 1894, p. 246; Nordst. Index Desm. 1s96, p. 10̄6; West \& G. S. West, Alg. S. England, 1897, p. 481; G. S. West, Alga-fl. Cambr. 1899, p. 112 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 50 ; Alg. N. Ireland, 1902, p. 23.
Cl. Leibleinii var. $\beta$ Ralfs, Brit. Desm. 184s, p. 167.
Cl. moniliferum Ehrenh. forma A. Leibleinii Reinsch, Algenfl. Frank. 186it, p. 190.
Cl. moniliferum Elirenb. forma Leibleiniana Jacobs. Desm. Danem. 1875, p. 170.
Cl. moniliferum Ehrenb. b. Leibleinii Klebs, Desm. Ostpreuss. 1879, p. 9, t. 1, f. 7.

Arthrodia Leibleinii Kıntze, Revis. gen. plant. 1591, p. 883.
Cells of medium size, 6-8 times longer than their diameter, strongly curved, outer margin $135^{\circ}-190^{\circ}$ of arc, inner margin strongly concave, slightly tumid in the median part, gradually attemnated towards the apices, which are atutely rounded ; cell-wall smooth and colourless, more rarely straw-colour or yellowishbrown ; chloroplasts with about six ridges and a median row of 3-8 pyrenoids; terminal vacuoles large, with a number of moving granules.

Zygospore subglobose and smootl.
Distance between apices $107-202 \mu$; breadth $17-37 \mu$; diam. zygosp. 40-50 $\mu$.

Exglayd.-Westmoreland! (Bisseft). W., N., and E. Yorks! Lancashire! (Rulfs). Cheshire (Ralfs). Leicester (Rom). Essex! Cambridge! Oxford (zygosp. from near Goring)! Warwick (Wills.).
 Sussex (Ralfis). Hants! Devon! Comwall! (Ralf.s); zygosp. from Penzance (Josluna).

Wates.-General!
Scomband.-Common!; frequently in conjugation (Roy \& Binsedt). Lewis, Outer Mebrides! Shetlands!

Treland.-Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down! Lough Neagh! Antrim!
lienerf. Mistrilution.-France. Germany. Austria and Galicia. Hungary and Bosnia. Ttaly. Spain. Portugat. Norway. Sweden. Denmark. N. and S. Russia. Facroes. Iceland. Nova Zembla. (ircenland. Siberia. dapan. India (var.). Ceylon. Simoa. Australia. WV., Central, and E. Africa. Madagascar. United States. W. Indies. Brazil. Argentina. Uruguay. Patagonia.

Cl . Leiblemiii is an abundant and somewhat variable species, exhibiting a considerable range both with regard to its size and its curvature. The apices are often more or less suddenly narrowed and almost smbacuminate. Some of the American -pecimens reach a much larger size than any met with in Europe. The ventral inflation, which is one of its primary chanacters, varies much in the degree of its prominence, and the cell-wall occasionally becomes tinted. There are, however, too many intermediate states to discriminate with any degree of accuracy between these several forms.

It is distinguished from (l. monilifernm by its greater curvature, its much more attennated apices, and its smaller size. Perhaps Cl. moniliferum var. minus Kütz. $(=$ Cl. ornatum Rabenh.) is really a form of Cl. Leibleinii.

## 23. Closterium moniliferum (Bory) Ehrent). (Pl. XVI, figs. 15, 16.)

Lumulina monilifera Bory, 1824.
('lostevium moniliferum (Bory) Ehrenb. Infus. 1838, p. 91, t. 5, f. xvi (in part) ; Menegh. Synops. Desm. 1840, p. 232; Hass. Brit. Freshw. AIg. 1845, p. 370 , t. 87 , f. 2; Ralfs, Brit. Desm. 1848, p. 166, t. 28, f. 3; Küitz. Spec. Algar. 1849 , p. 1 (i3; Näg. Gatt. cinz. Alg. 1849, p. 106, t. 6, C, f. 1 ; Areh. in Pritch. Infus. 1861, p. 748 ; Rabenh. Flor. Emrop. Algar. III, 1s68, p. 131; Land. Desm. Snec. 1571 , p. So, t. 5, f. $1 \%$; Wolle. Desm. U. S. 18st, p. 45, t. 7, f. 15; Cooke, Brit. Desm. 1886, p. 24, t. 12, f. 3; Hansg. P'rodr. Algenfl. Böhm. 188s, p. 182, f. 108 ; De 'Ioni, SyH. AIg'. 1859, p. S45; Roy \& Biss. Scott. Desm. 1894, p. 246 ; Nordst. Index Desm. 1896, p. 173 ; West $\mathbb{\&}$ (4. S. West, Alg. S. England, 1897, p. 481 ; Alga-fl. Yorks. 1900, p. 50; Alg. N. Ireland, 1902, p. 23.
Cl. moniliferum a. genuinum Kirchn. Alg. Schles. 1878, p. 14.1.
(l. moniliferum a. typicum Klebs, Desm. Ostprenss. 1879, p, 9, t. 1, f. sb.
Cl. Leibleinii Kütz. var. curtum West, Desm. Mass. 18se, p. 17, t. 2, f. s.

Arthrodia monilifera Kuntze, Revis. gen. plant. 1891, p. 883.
? Closterium galiciense Gutw. Nomn. Alg. Nov. 1896, p. 39, t. 2, f. 18.
Cells of medium size, stont, $6-8$ times longer than their diameter, moderately curved, onter margin $100^{\circ}-110^{\circ}$ of are, inner margin with a distinct inflation
in the middle, minformly marrowed to the apiees, which are obtusely rounded; cell-wall smootlo and colouless; (hloroplasts with distinct ridges (about six in muntore) and with a single series of 1 or 7 prenoids ; termimal vacuoles with numerons moving gramules.

Kygospore ellipsoid and smootle, with an outer mucous, lamellose coat.

Distance between apices (length) $292-: 370 \mu$; breadth :3:3-50 $\mu$; breadth of apices $8-11 \mu$.

Enctand.-Cumberland! Westmoreland (at 2,400 ft. on Melvellyn)! (Rulfs). W., N., and E. Yorks! Lancashire (Rulfis). Leicester (Loy). Lincoln! Norfolk! Essex! ('ambridge! Gloucester! (Ralfis). Middlesex! (Hass,ll). Surrey! (Rulfs). Sussex (Ralfis). Kent! Hants! Devon! Cornwall! (Ralfis).

Wides.-Yr Orsedd!, Bethesta!, Snowdon!, and Capel Curig (forme o Will: ), Carnarvonshire I lyu ('oron, Anglesey ! Ffestiniog, Merionetly !

Sootand.- Caithness, Ross, Fnverness!, Aberdeen! , Kincardine!, Forfar!, Perth!, Fife (Ro! \& lissett). Shetlands!

Tredann.-Donegal! Mayo! Kerry! Wicklow! (Archer). Down! Antrim!

Geogi. Distrimtion.-France. Belginm. Germany. Sivitzerland. Galicia in Austria. Hungary and Bosnia. Italy. Portugal. Norway. Sweden. Demmark. Bormholm. N. and S'. Russia. Poland. Facroes. Tceland. China. Japan. Ceylon. New Zealand. C'entral Africa. United States. Brazil. Argentina. Uroguay. Patagonia.
'This species is distinguished from (7. Leilleinii by its lesser cmrature, its broader and more rommed apices, and its larger size. It differs firon ('\%. Ehrouhergii in its somewhat smaller. size, and in the central row of pyrenoids present in each chloroplast.

## 24. Closterium Ehrenbergii Menegh.

 (Pl. XVII, figs. 1-1.)Closterium Ehrenbergii Menegh. Synops. Desm. 18.10, p. 232; Hass. Brit. Freshw. Alg. 1845, p. 369, t. 87, f. 1; Ralfs, Brit. Desm. 1848, p. 166,
t. 28, f. 2; Arch. in Pritch. Infus. 1861, p. 748, t. 16, f. 10-14; Rahenh. Flor. Europ. Algar. III, 1864, p. 131; Kirchn. Alg. Schles. 18is, p. 141 ; Wolle, Desm. U.S. 1854, p. 45, t. 7, f. 16; Cooke, Brit. Desm. 18sti, p. $2: 3$, t. 12, f. 2 ; Hansg. Prodr. Algenfl. Böhm. 1sss, p. 18: ; De Toni, Syll. Alg. 1889, p. 84t: Roy \& Biss. Scott. Desm. 1s94, p. 24t; West \& (i. S. West, New and [nt. Freshw. Alg. 189\%, p. 151; Alg. S. England, 1897, p. 481 ; (i. S. West, Alga-fl. Cambr. 1s99, p. 112; West \& G. S. West, Alga-fl. Yorks. 1900 , p. $51 ; \mathrm{Alg}$. N. Irelanil, 1902, p. 23.
Avthrodia Ehrenbergii Kuntze, Revis. gen. plant. 1891, p. 883.
Cells large, stout, $4-5 \frac{1}{2}$ times longer than their diameter, moderately curved, outer margin $110^{\circ}-120^{\circ}$ of are, imner margin concave but inflated in the median part, gradually attenuated to the apices, which are obtusely rounded; cell-wall smooth and colourless; chloroplasts with eight to ten ridges, and containing numerous scattered pyrenoids; terminal racuole with a cluster of small moving granules.

Zygospore globose and smooth, with an outer mucous, lamellose coat.

Distance betreen apices (length) 382-54.1 $\mu$; breadth $72-137 \mu$; breadth near apices $12-18 \mu$; diam. zygosp. 113-118 $\mu$.

England.-Cumberland! Westmoreland (up to $2,400 \mathrm{ft}$. on Helvellyn)! (Rulfs). W., N., and E. Yorks! Cheshiire (Roy). Leicester (Roy). Essex ! Cambridge! Gloucester (Rulfis). Middlesex! Surrey (zygosp. from Wimbledon Common)! (Rulfs). Sussex (lialfs). Kent! (Ralfs). Hants! (Roy). Devon (Bemett). Cornwall! (Ralfs).

Wales.-Moel Fammau!, Glyder Fawr:(at 2,700 ft.)!, Pen-y-gwryd (Roy), and Snowdon (at over 3,000 ft.), (:arnarvonshire!

Scotland.-Ross, Inverness, Aberdeen!, Kincardine, Perth! Fife (Roy \& Pissett). Plankton of Loch Doon, Ayr! Sutherland! Orkneys! Shetlands!

Ireland.-Creggan Lough, Galway! Carrantuohill, Kerry! River Dargle, Wicklow! Dublin (Archer). Kilkeel, Down! Clough, Antrim!

Gieogr: Distrilution.-France. Belgium. Germany. Austria and Galicia. Bosnia in Hungary. Italy. Portugal. Norway. Sweden. Demmark. N., Central,
and S. Russia. Faeroes. Central China. Japan. Tndia. Siam. Samoa. New Kealand. Central Africa (var.). E. Africa. United States. W. Indies. Brazil. Uruguay. Patagonia.

The numerous scattered pyrenoids at once distinguish Cl . Ehrenbergii from all other allied species except Cl. Malinverniamm. It often occurs in abundance, and pure gatherings may sometimes be obtained from amongst other alga in stagnant ponds and ditches, or even from slow-ruming streams.

The ventral inflation varies much in relative size and prominence, and the apices of some specimens are much thicker than those of others.

The form first mentioned by Borge (Süssw. Chlor. Archang. 1894, p. 16, t. 1, f. 11), and since found in Cambridgeshire (G. S. West, Alga-fl. Cambr. 1899, p. 112), is chiefly notable for its relative shortness and for the slight curvature of the ventral or imer margin (cille Pl. XVII, fig. 3). The curvature of the inner margin varies greatly in different specimens, and for this reason the form just mentioned is unworthy of a special varietal name.

Conjugation appears to take place almost invariably between two individuals which have just separated after division, and in which the younger semicells are but partially developed. Moreover, the semicells do not come apart, but a distinct, though very short, conjugating-tube is protruded from the base of each of the younger semicells.

## 25. Closterium Malinvernianum De Not.

## (Pl. XVII, figs. 5, 6.)

Closterium Malinvernianum De Not. in Erb. crit. Ital. 1865, no. 1254 [we have not seen this]; Lund. Desm. Suec. 1571, p. 80 ; De Toni, Syll. Alg. 1889, p. 845 ; Roy \& Biss. Scott. Desm. 1894, p. 246 ; Nordst. Index Desm. 1896, p. 163; West \& G. S. West, Alg. S. England, 1897, p. 481 (in part); Alga-fl. Yorks. 1900, p. 51 ; Alg. N. Ireland, 1902, p. 23.
Cl. Ehrenbergii Menegh. b. ? Malinverniunum Rabenh. Flor. Europ. Algar. Il I, 1868, p. 131.
Arthrodia Malinverniana Kuntze, Revis. gen. plant. 1891, p. 883.
Closterium Cordanum Gutw. Nonn. Alg. Nov. 1896, p. 40, t. 2, f. 19.
Cells large, 6-7 times longer than their diameter, moderately curved, outer margin $90^{\circ}-110^{\circ}$ of arc, median part of inner margin inflated, gently attennated to the apices, which are obtusely rounded; cell-wall very finely striated, about $55-65$ striæ visible across
the cell, yellowish-brown in colour ; chloroplasts with distinct ridges and scattered pyrenoids; terminal vacuoles with many moving granules.

Zygospore unknown.
Distance between apices (length) 294-400 $\mu$; breadth $48-6+\mu$; breadth near apices $10-11 \mu$.

England.-Adel Bog (Thomei), Can Fell, and Boston Spa, W. Yorks! Pilmoor, N. Yorks! Dernford Fen, Sheep's Green, and Wimpole Park, C'ambridge! Esher West-end Common, and Frogit Heath, Surrey! Woolton Pond, Hants (Roy).

Scotland.-Near Brin, Inverness; Bourtie, Aberdeen ; Loch of Park, near Crathes, Kincardine ; Athole Forest, near Loch Mharc, and E. of Falar, Perth (Roy \& Bissett).

Ireland.-Loughs Akibbon and Gartan, Donegal! Bog near lake at 'Toome, Antrim !

Geogr: Distribution.-Austria and Galicia. Italy. Spain. Norway. Sweden.
This species differs from Cl. Ehrenlergii only in its colonred and striated cell-wall, and in its somewhat smaller dimensions. Landell states that it also differs from ('l. L'hirenleryii in its less prominent ventral inflation and in its less obtuse apices, but we find these features very variable in both species.

The striolation of the cell-wall is very delicate and apt to be at first sight overlooked.

> 26. Closterium acerosum (Schrank) Ehrenh. (Pl. XVIIT, figs. $2-5$. )

Vibrio acerosus Schrank, 1803.
Bacillaria acerosa Schrank, 1823.
Closterium acerosum (Schrank) Ehrenb., 182s; Infus. 1838, p. 93, t. 2, f. xv, t. 6, f. i, t. 22, f. v ; Menegh. Synops. Desm. 1840 , p. 233 ; Hass. Brit. Freshw. Alg. 1845, p. 374, t. 87, f. 5; Ralfs, Brit. Desm. 1848, p. 164, t. 27, f. 2 ; De Bary, Conj. 1858, p. 51 ; Arch. in Pritch. Infus. 1s61, p. 747 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 128; Kirchn. Alg. Schles. 1878, p. 138 ; Wolle, Desm. U.S. 18s4, p. 41, t. 6, f. 7, 11, t. 8, f. 17 ; Cooke, Brit. Desm. 1886, p. 20, t. 9, f. 1; Hansg. Prodr. Algenfl. Bühm. 1888, p. 179 ; De Toni, Syll. Alg. 1889, p. 824; Roy \& Biss. Scott. Desm. 1894, p. 242 ; Nordst. Tndex Desm. 1896, p. 37 ; West d G. S. West, Alg. S. England, 1897, p. 481; Alga-fl. Yorks. 1900, p. 52; Freshw. Chlorophy. Koh Chang, 1901, p. 164, t.2, f. 5; Alg. N. Ireland, 1902, p. 23.
Cl. acerosum A. majus Reinsch. Algenfl. Frank. 1867, p. 186.
Cl. acerosum a. typicum Klehs, Desm. Ostpreuss. 1879, p. 7, t. 1, f. 6.
Cl. acerosum var. truncatum Gutw. Wahr. d. Prioritat, 1590, p. 66; Flor. Glon. Okolic Lwowa, 1591, p. 33, t. 1, f. 7; West \& (i. S. West, Algat-fl. Yorks. 1900, p. 52.
Arthrodia acerosa Kuntze, Revis. gen. plant. 1891, p. 883.
Cells large, 8-16 times longer than their diameter, very slightly bent or almost straight, narrowly fusiform, outer margin slightly curved (about $10^{\circ}-20^{\circ}$ of arc), imner margin almost straight or slightly convex ; semicells gradually tapering to the apices, which are narrow and rounded-truncate (often slightly thickened) ; cellwall colourless and smooth, in older individuals becoming yellowish-brown and very delicately striolate; chloroplasts ridged, with a median series of $7-11$ pyrenoids ; terminal vacuoles with a number of moving granules.

Zygospore globose and smooth.
Length $300-460 \mu$; breadth $26-48 \mu$; diam. zygosp. 62-87 $\mu$.

England. - Westmoreland! (Rolfs). W. (with zygosp.), N., and E. Yorks! Lancashire! (Rulfs). Cheshire (Ralf:). Leicester (Rom). Essex! (Gambridge! Oxford! Warwick (IVills). Gloucester (Rulfix). Middlesex (with zygosp.)! Surrey! (Rulfs). Sussex (Rulf»). Kent! Hants! Devon! Cornwall! (Ralfs).

Wales.-General!
Scutland.-Widely distributed, but scarce! (Roy \& Bissett). Plankton of Loch Asta, Shetlands!

Ireland.-Galway! Kerry! Dublin and Wicklow (Archer). Down! Antrim!

Geogf. Distribution.-France. Germany. Austria and Galicia. Hungary and Bosnia (var.). Italy. Spain. Portugal. Norway. Sweden. Denmark. Bornholm. N. Russia. Iceland. Nova Kembla. Greenland. Siberia. Manchuria. Japan. India. (eylon. Siam. Australia. New Zealand. United States. Mexico. Brazil. Ecuador. Patagonia.
Cl. acerosum is a common species and often occurs abandantly amongst larger filamentons Algie. The cells frequently
become somewhat irregular in outline owing to rapidity of cell-division. 'The striations on the cell-wall are exceedingly' fine and delicate, and as a rule can only be observed on old individuals in which the cell-wall has become tinted.

The cells are often rather suddenly attenated near their apices, and the extreme apex is commonly truncate and sometimes slightly thickened. This character, which is undonbtedly very variable, was first mentioned by Gutwinski, who gave the name of "var. trincatum" to those forms which possessed it.
Cl. arerosum is found most abundantly in low-lying districts, and for this reason there are large areas of Scotland in which it is very rarely observed.

## Var. elongatum Brél. (Pl. XVIII, fig. 1.)

Cl. acerosum $\beta$ Ralfs, Brit. Desm. 1848, p. 164, t. 27, f. $2 c$.
Cl. acerosum var. elongalum Bréb. Liste Desm. 1856, p. 152.
Cl. acerosum var. acerosum Cooke, Lirit. Desm, 1886, p. 21.

Cells larger than in the typical form, relatively a little longer, and with the striolations of the cell-wall more distinct ; cell-wall of a yellowish-brown colour.

Length $525-790 \mu$; breadth $29-50 \mu$.
England.-Near Bristol, Gloucestershire (Thurates). Sheep's Green, Cambridge!

Cieogr. Distribution.-France. Germany. ('eylon. Mexico.

## Var. minus Hantzsclı.

Cl. acerosum var. minus Hantzsch. in Rabenh. Alg. Eur. 1861, no. 1047; Hansg. Prodr. Algenfl. Böhm. 1888, p. 179; De 'Toni, Syll. Alg. 1889, p. 825.
Cl. angustum Hantzsch. in Rabenh. Alg. 1861, no. 1206; Rabenl. Flor. Europ. Algar. III, 1868, p. 132 ; De 'Toni, Syll. Alg. 1889, p. 819.
Cl . acerosum P. medium Reinsch, Algenfl. Frank. 1867, p. 186. Cl. acerosum E. angustum Reinsch, l.c. p. 187.

Arlhrodia angusta Kuntze, Revis. gen. plant. 1891, p. 883.
A little smaller than the typical form, with a smooth and colourless cell-wall.

Length $176-336 \mu$; breadth $20-27 \mu$.
England.-Leicester (Roy).
Scurtand.-Near Slains Castle, Bourtie, Little Don at Haughton, Aberdeen (Roy \& Bisseft). Plankton of Loch Fadaghoda, Lewis, Onter Hebrides!

Giengr: Distribution.-Austria. Ecuador.

Var. angolense West \& G. S. West. (Pl. XVIII, fig. 6.)
Cl. ucerosum var. angolense West \& (i. S. West, Welw. Afric. Freshw. Alg. 1897, p. 79 ; G. S. West, Alga-fl. Cambr. 1899, p. 111.
Cells larger than in the typical form, with the lateral margins parallel, attenuated near each extremity to the apices, which are rounded; cell-wall smooth and colourless.

Length $773-780 \mu$; breadth $30-38 \mu$.
Exchantr-Near Ely, Cambridge!
Geogr: Distribution.-W. Africal.
27. Closterium lanceolatum Kütz.
(Pl. XVII, figゅ. 9, 10; Pl. XVIII, fig. 7.)
Closterium lenceolatum Kütz. Phyeol. germ. 1845, p. 130; Ralfs, Brit. Desm. 1848, p. 164, t. 2s, f. 1; Arch. in Priteh. Infus. 1861, p. 747; Fabenh. Flor. Europ. Algar. 1II, 1868, p. 129 ; Wolle, Desm. U.S. 188t, p. 39, t. 8, f. 11 ; Cooke, Brit. Desm. 1886, 1. 21, t. 9, f. 2; De 'loni, Syll. Mly. 1889, p. 826; Roy \& Biss. Scott. Desm. 188t, p. 245 ; West d (土. S. West, New and lnt. Freshw. Mg. 1s96, p. 150; Nordst. Index Desm. 1806, p. 155; West d G. S. West, Mlg. S. England, 1897, p. 481 ; Mlga-f. Yorks. 1902, p. 52.
Cl. ucerosum (Schrank) Ehrenb. D. Flunecolutum Reinsch, Algenfl. Frank. 1867, p. 187.
Cl. acerosum b. lunceolatum Kilebs, Desm. Ostprenss, 1879, p. 7.

Arthrodia lanceolutu Kuntze, Revis. gen. plant. 1891, p. 883.
Cells large, 5 -10 times longer than their diameter, sublanceolate, almost straight, outer margin slightly curved, about $30^{\circ}-36^{\circ}$ of are, inner margin straight or slightly convex, gradually narrowed towards the apices, which are acutely rounded; cell-wall smooth and colourless; chloroplasts with about eight ridges and a single central series of 6 or 7 pyrenoids; terminal vacuoles with a number of moving granules.

Kygospore subglobose or oblong-ellipsoid, smooth.
Length 2:3-370 $\mu$; breadth 32-72 $\mu$; diam. zygosp. $81-10+\mu$.

England.-Cumberland! Westmoreland! (Ralfs). W., N., and E. Yorks! Essex (zygosp. from Epping Forest)! Cambridge! Gloucester! Middlesex! Surrey! Kent!

Wades.-Capel Curig, and near Dolbadarn Castle, Carnarvonshire! Bodorgan, Anglescy!

Scothand.-Near Falls of Kirkaig, Sutherland; near Hangliton, Alford, and Koynach Moor in Cromar, Aberdeen (Ro! and Bissett). Orkneys! Shetlands!

Irelann.-Galway! Wicklow! Antrim (lílfic). Down!

Geogr. Distribution.-France. Germany. Cialicia in Anstria. Mungary. Portugal. Norway. Sweden. Poland. Greenland. Clima. Madagascar. Central and E. Africa. United States. Patagonia.

The cells of Cl. lanceolatum are proportionately shorter than those of Cl. acerosum, the outer margin is more convex, and the extremitios are more attenuated. The cell-wall is always colourloss and striations have not been observed on it.

Var. parvum West \& (i.S. West. (Pl. XVII, fig. 11.)
Closterium lenceulutum var. paroum West \& G. S. Wust, Alg. S. England, 1897, p. 481.

Cells about half the size of those of the typical form, but otherwise exactly similar.

Length $183 \mu$; breadth $21 \mu$.
England. - Lindeth, Westmoreland! Dorking, Surrey!

Cenofr. Distribution.--Central Africa.

## 28. Closterium Lunula (Mïll.) Nitzsch.

## (Pl. XVIII, figs. 8, 9.)

[^8]Cells latree, stout, $6-7$ times longer than their diameter, almost straght, outer margin $40^{\circ}-15^{\circ}$ of are, immer margin generally straight and very slightly tumid in the median part, gradually and gently narrowed to the apices, which are slightly recurved and obtusely rommerl ; cell-wall smooth and colomless; chloroplasts with alout ten to twelve ridges and mmerous scattered pyrenoids; terminal vacuoles with a large cluster of moving gramules.

Kygospore globose and imooth.
Length $478-680 \mu$; breadth $76-116 \mu$; breadth of apices about $19-2: 3 \mu$.

Extiand.-Cumberland! Westmoreland! W., N., and E. Yorks! Lancashire! Cheshire (linlfs). Leicester (Ro!!). Norfolk (Coolie). Warwick (Wills). Surrey! (Rulfis). Sussex (Ralfs). Kent! (Rulfs). Hants! (Benmett). Devon! Cormwall! (Rulfis).

Wales.-General!
Scormand.-General! (lio! and Bissett). General in Outer Hebrides! Orkneys!

Lremand. - Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

Ceogi. Distribution. - France. Germany. Switzerlaurl. Austria and Galicia. Hungary. Italy. Portugal. Norway. Sweden. Denmark. Bornholm. N. aud S. Russia. Caucasus. Faeroes. Iceland. Nova Zembla. Japan. India. Australia. New Zealand. W. and E. Africa. United States. Mexico. W. Indies. Brazil (var.). Ecuador. Paraguay. Uruguay. Patagonia.

This characteristic Desmid is not found in the situations in which Cl. acerosum, Cl. lanceolatnm, and Cl. Ehrenbergii are often abundant. It has a decided preference for bogs and is commonly found in association with Eremosphara viridis.

## Forma minor nol.

Cl. Lunula forma, G. S. West, Alga-fl. Cambr. 1899, p. 111.

Smaller than the typical form, witl a faintly strawcoloured cell-wall.

Length $375 \mu$; breadth $58 \mu$.
England.-Sheep's Green, Cambridge !

## Var. coloratum Klebs. (Pl. XVIII, fig. 10.)

Cl. Lunulu b. coloralum Klebs, Desm. Ostpreuss. 1879, p. 6, t. 1, f. 1 u, d, c;
De Toni, Syll. Alg. 1889, p. 832.
Cl. coloratum (Klebs) Gitw. Nonn. Ag. Nov. 1896, p. 38, t. 6, f. 16 .

Cell-wall of a reddish-brown colour.
Length 633-646 $\mu$; breadth $90-102 \mu$.
England.-New Forest, Hants!
Geogr. Distribution.-Austria. Paraguay.
There is no just reason for regarding this form as a species distinct from C'l. Lumela. The only distinction is the colour of the cell-wall.

Var. biconvexum Schmidle. (Pl. XVIII, fig. 11.)
Cl. Lunuta var. biconvexum Schmidle, Beitr. alp. Alg. 1895, p. 10 (sep.), t. 14, f. 18.

Cells about 5 times longer than their diameter, outer margin $50^{\circ}-55^{\circ}$ of arc, inner margin convex (about $30^{\circ}$ of arc) ; cell-wall colourless.

Length 530-60:3 $\mu$; breadth 110-126 $\mu$.
England-Bowness, Westmoreland! Gcogr. Distribution.-Austrian 'Iyrol. Caucasus.

Var. intermedium Gutw. (1'l. XVIII, fig. 12.)
Cl. Lumula var. inlermedium Gutw. Nonn. Alg. Nov. 1896, p. 39, t. 6, f. 17 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. 52.
Cells $5-6 \frac{1}{2}$ times longer than their diameter, outer margin more convex (about $70^{\circ}$ of arc), inner margin prominently inflated in the median portion (sometimes entirely convex), apices somewhat suddenly attenuated and truncate.

Length 408-660 $\mu$; breadth 71-140 $\mu$.
Entimand.-Near Bowness, Westmoreland! Bog two miles S. of Clapham, W. Yorks !

Licogr. Distribution.-Galicia in Austria.

## 29. Closterium sigmoideum Lagerh. \& Nordst.

(Pl. XIX, figs. 1, 2.)
Closterium sigmoideum Lagerh. \& Nordst. in Wittr. \& Nordst. Mly. Exsic. 1893, no. 1138; Nordst. Index Desm. 1896, p. 231; West di (i. S. West, Alga-fl. Yorks. 1900, p. 53.
Cells large, 7 - 8 times longer than their diameter, almost straight in the front view, onter margin slightly curved (about $60^{\circ}$ of arc), inner margin commonly straight, gradually attemated to the apices, which are slightly recurved and obtusely rounded (rarely subtruncate) ; when seen from the side the eells are sigmoid; cell-wall colourless and smooth; chloroplasts with S-12 pyrenoids in a somewhat irregular central series; terminal vacuoles with about twenty moving granules.

Zygospore unknown.
Length $270-330 \mu$; breadth $35-44 \mu$; breadth of apices $6-7 \mu$.

Evgland.-Eldwiek, W. Yorks !
Geogr: Distrilution.-Eeuador.
This is a well-marked species which we have only once obtained. It occurred in abondance in a bogey spring at Eldwick along with the forma major. From the side (or dorsal view) the cells possess a regular sigmoidal curvature similar to that fomd normally in Pleurosigma.

It is nearest to $C l$. Lumula but is smaller and not so robost, and the apices althongh possessing the slight but characteristic recurvature of the latter species, are narower. The chloroplasts also differ greatly from those of Cl. Lumula, possessing a central series of large pyrenoids.

Forma major West \& G. S. West. (I'l. N'IX, figゅ. :3-...)
Cl. sigmoideum forma mujor West \& G. S. West, Alga-fl. Yorks. 1900, 1. 53.

Cells larger than in the typical form, but otherwise similar.

Length $482-552 \mu$; breadth $47-58 \mu$; breadth of apices $10-11 \mu$.

Evgland.-Eldwick, W. Yorks!

This oceurred with the typical form, but was more almundant.

:30. Closterium Siliqua West \& (i. S. West. (Pl. NIX, figs. 6-8.)<br>Chosterium Silique West \& G. S. West, Mg. S. Englamd, 1s:17, p. 4so, t. ti. f. $1, \geq$.

Cells moderately large, abont 10 times longer than their diameter, slightly curved, outer margin $30^{\circ}-35^{\circ}$ of are, moner margin very slightly concave, margins almost parallel in the middle of the eell for about onethird its length, gradually attenuated towards the apices, which are narow, subtruncate, and slightly recurved ; cell-wall smooth and colourless ; chloroplasts with about sis ridges, and at single, somewhat inregular series of 7 or 8 pyrenoids; terminal vacuoles with only one large, ohlong, moving gramule.

Zygospore unknown.
Length $217-250 \mu$; breadth $21-24 \mu$; breadth of apices $4 \mu$.

Exgiand.-Esher West-end Common, Surrey !
Cl. Siliqua is distinguished from Cl. Pritchardienum Areh. by its much smaller size, its much more tapering and narrower extremities, as well as by its smooth and colourless membrane. From Cl. litiorale Gay, it differs in being a little longer, in the absence of the slight ventral inflation, and in the blunter and slightly recurved apices. It may also be compared with Cl. subangulatum Gutw. from which it differs in the subparallel median portion of the cells, in the absence of the ventral inflation, in the more convex outer margin, as well as in the recurved apices. From all the above, the living examples are distinguished by the terminal vacuoles possessing but one oblong moving granule.

## 31. Closterium peracerosum Gay.

## (Pl. XIX, figs. 9-11.)

[^9]Cells moderately large, about 12-14 times longer than their diameter, slightly curved, onter margin $30^{\circ}-32^{\circ}$ of are imer margin almost straight except towards the poles where it is slightly concave, gradually attemated towards the apices, which are achte (or rarely acntely romded); cell-wall smooth and colourless; chloroplasts with about six ridges and a central series of ahout four to six pyrenoids; terminal vacuoles with several small moving gramules.

Zygospore uuknown.
Length 180-30:3 $\mu$; headth 12-17.5 $\mu$.
Evalant,-Raweliffe Common, W. Yorks! Near Senens, Cormwall!

Mrelanl.-Gortahork, Donegal!
Geomf. Distrilution.-France. W. Africa.
This species shomld not, perlaps, be separated from (\% strignsum Bréb. It is distinguished from Brélisson's species ly its somewhat smaller size, its, relative shortness, and its apices, which are not incurved.

Var. elegans G. S. West. (Pl. XLX, figs. 12, 13.)
Cl. perucerosum var. elegans G. S. West, Alga-fl. Cambr. 1890, p. 111, t. 396, f. $1,2$.

Cells more graceful, more attenuated and curved towards the apices, ventral margin slightly tmmid in the middle, apices narrow but oltuse; chloroplasts with a series of $5-8$ pyrenoids; apical vacuoles subterminal, with one or two moving granules.

Length $196-2.58 \mu$; brealth $11-1.5 \mu$.
Evglasd.-Comberton and Sutton West Fen, Cambridge!

## 32. Closterium littorale Gay.

(Pl. XIX, fig. 14.)
Closterium littorale Gay, Monogr. loc. Conj. 1s84, p. 75, t. 2, f. 17 ; De Toni, Syll. Alg. 1889, p. 848 ; West d. G. S. West, Alg. S. England, 1897, p. 481 ; Alga-fl. Yorks. 1900, p. 53.
Aithrodia littoralis Kuntze, Revis. gen. plant. 1891, p. 883.

Cells of medium size, about 10 times longer than their diameter, slightly curved, outer margin $35^{\circ}-10^{\circ}$ of are, imer margin a little concave, and slightly but widely tumid in the middle, gradually attenuated to the apices, which are obtusely rounded; cell-wall smooth and colourless ; chloroplast with eight ridges and a central series of 4 or 5 pyrenoids; terminal vactuoles with a number of moving granules.

Kygospore unknown.
Length $150-200 \mu$; brearth $17 \cdot 5-295 \mu$.
Enchanb.-Masham, near Rievaulx Abbey, and Stokesley, N. Yorks! Kingsbury Green, Middlesex ! 'I'remethick Moor, Cormwall!
(ínomr. Distrilution.-France. Galicia in Austria. Central Africa (var.).

## 3:. Closterium tumidum Johnson. (Pl. XLX, figs. 15-18.)

[^10]Cells rather small, 8-9 times longer than their diameter, slightly eurved, outer mirgin $28^{\circ}-58^{\circ}$ of are, inner margin broadly tumid in the middle, faintly concave towards the extremities, gradually attenuated towards the apices, which are truncately rounded and of somewhat variable width; cell-wall smooth and colomrless; chloroplasts with four or six ridges, and 1 -: pyrenoids; terminal vacuoles with only one moving granule.

Cyonspore subrectangular, with retuse sides; angles produced and truncately rounded; viewed from the side, elliptical.

Length $59-139 \mu$; breadth $7 \cdot 7-18 \mu$; breadth of apices $2 \div 5-5 \mu$; length of zygospore :3卜.3:5 $\mu$; breadth of zygospore $2(-30 \mu$.

ExGLxy.-Bowness, Westmoreland! Near Lindley Reservoir, Eldwick, and Ribblehead, W. Yorks!

Wabs.-Capel Curig, Carnarvonshire!
Scombann-Near Alford, Aberdecn (Roy \& Bisseft).
(ipogr. Dixtribution.-Norway. Nova Kembla. Siam. Colebes. Samoa. UnitedStates. Brazil. Paragnay. Patagonia.
This species is distinguished from C'V. Cormu Flrenl, hy the shorter and broader cells, with a tmmid ventral (or immer) margin.

## :3. Closterium Cornu Ehrenl).

(Pl. XX, figs. 1-\%.)
Closterium Cornu Elarenb. 1830; Entwick. Lehends. d. Infus. 1832, p. 6it; Infius. p. $91, \mathrm{t} .6$, f. v : Menegh. Symops. Desm. 1840, p, 233; Hass. Brit. Freshw. Alg. 1sho, p. 372, t. Ss, f. 2; Ralfs, Brit. Desm. 1848, p. 176, t. 30, f. $6 . f^{\prime}, g$; Bréb. Liste Desm. 1s56, p. 154; Areh. in Priteh. Infis. 1861, p. 750 ; Rabenh. Flor. Euron. Algar. III, 1stis, p. 187 ; Kirchn. Alg. Schles. 4*78, p. 140; Cookr, Brit. Desm. lis6, p. 35, t. 12, f. 4; Hansg. I'rodr. Algenfl. Böhm. Lss8, p. 181; De Toni, Syll. dlg. 1s89, p. 835 ; West, Alg. aq. dule. Lusitan. $1892, \mathrm{p} .1500$; Koy d Biss. Seott. Desm. 1894, p. 244; Nordst. Index Desm. 1s!6, p. 82; West \& G. S. West, Alg. S. England, 1897, p. 482 ; Alga-fl. Yorks. 1900, p. 5.; Alg. N. Irelaud, 1902, p. 25, t. 2, f. 4, 5.
Cl. temue Kütz. Syn. Diat. 183-1, p. 595, t. 18, f. 7s (?).

Stauroceras Cormu Grmu. Desm. u. Pediast. österreich. Moore, 1s.ss, p. 497.
Closterium pronum Bréb. с Cormu Klehs, Desm. Ostpreuss. 1sig, p. 19, t. 2, f. $13 b$.

Arthrodia Cornu Kinntze, Revis. gen. plant. 1891, p. S8:3.
Closterium Cornu var. siemense West d G. S. West, Chlorophy. Koh Chang, 1901, p. 166, t. 2, figs. 6, 7 .

Cells small, 16-20 times longer than their diameter, slightly curved, onter margin $34^{\circ}-40^{\circ}$ of are, imer margin slightly concave and usually straight in the median part, margins parallel until near the extremities, which are gradually attemated; apices narrow, romnded or romded-truncate ; cell-wall smooth and colourless ; chloroplasts with :3-5 pyrenoids; terminal vacuoles with one oblong moving gramle.

Zygospore subquadrate or rectangular, sides straight,
concave, or slightly convex, angles produced and submamillate.

Length $110-16.5 \mu$; breadth (5.5-8.8 $\mu$; breadth of apices $1 \cdot 6-: 3 \mu$; diameter of zygosp. 2:3-30 $\mu$.

ExGlant.-Cumberland! Westmoreland! (Ralfs). W. and N. Yorks! (Cheshire (Roy). Leicester (Ro!!). Essex! Warwick (IVil/s). Middlesex! Surrey! Sussex (Ralfs). Kent! Hants! (Roy). Devon (liemmott). Cornwall! (Marquamd).

Whes.-Near Dolbadarn Castle!, Llyn Cwlyd!, Capel Curig! (Conke f. Wills), and Pen-y-gwryd (Ro!l), Carmarvonshire. Holyhead, Anglesey! Dolgelly, Merioneth (lialfs).

Scotland.-General! (Rom \&. Bissett). Shetlands!
Treland.-Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Apcher). Antrim!

Cicogf. Distribution.-France. Germany. Austria and Galicia. Hungary. Portugal. Norway. Sweden. Denmark. N. and Central Russia. Poland. Faroes (form). Nova Kembla. Siam. Java. Samoa (rar.). Australia (var.). Central Africa. United States. Brazil (var.).

This species has considerable resemblance to Cl . gracile Brél., with some forms of which it may easily be confounded. It is, however, more regularly curved than cil. gracile and the apices are more truncate. The zygospore is very different from that of Cl. gracile, and conjugated specimens conld not he confused. It should also be compared with Cl. tumidum.

Ralfs' statement that the cells are "five to eight times longer than broad" is erroneous.

> 3:. Closterium abruptum West.
> (Pl. XX, figs. 6-10.)

Closterium abruptum West, Alg. Eng. Lake Distr. 1892, p. 719, t. 9, f. 1 ; Johns. Rare Desm. U.S. II, 1895, p. 291, t. 239, f. 5; West \& G. S. Wrest, Some N. Amer. Desm. 1896; p. 236, t. 13, f. 14, 15; Nordst. Index Hesm. 1896, p. 36; West \& G. S. West, Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 5t; Alg. N. Ireland, 1902, p. 22.
Cells small, about 10 times longer than their diameter, slightly curved, outer margin about $55^{\circ}$ of arc, median portion of cells almost straight, more
curved towards the extremities, gradually but slightly attemated towards the apices, which are broad and truncate; cell-wall smooth, colourless or straw-coloured; chloroplasts with about six ridges and containing a central row of tor a pyrenoids; terminal vacuoles with one large moving granule.

Zygospore glohose and smooth.
Length $127-156 \mu$; breadth $12-155 \mu$; breadth of apices $6-7 \mu$; diam. zygosp. 32-46 $\mu$.

EntadNi.-Cumberland! Westmoreland! IV. and N. Yorks! Lancashire! Surrey! Hants! Devon! Cornwall!

Wales.-Y Foel Fras, C'apel Curig, Glyder Fach (at $\mathfrak{2}, 000 \mathrm{ft}$. ), Llyn-y-cwn-ffynon, and J.lyn Gwynant, Carnarvonshire!

Scotland.-Loch Minnoclı, Kirkeudbright! Loch Macaterick, Ayr! Near Lairg, Sutherland! Achmasheen, Ross! Moidart, Inverness! Near Tarbert, Harris and Balallan, Lewis, Onter Hebrides! Hoy, Orkneys! Plankton of Loch Beosseter, Shetlands !

Lafiant.-Near Glenties, Loughs Amai and C'logher', and near Lough Magrath, Donegal! Oughterard, Galway! Shores of Lough Neagh!

Geogr. Inistribution.-Germany (form). Austria and Galicia. Central Africa (form). United States. Brazil.

This is a well-marked species, some forms of which bear a slight resemblance to C7. tumidum Johns., but these are at once distingrished by their stouter habit and broadly truncate apices.

In outward form Cl . abruptum resembles some of the small forms of Cl. intermectium Ralfs, but can at once be distinguished by its smooth cell-wall.

## Forma punctata West.

Cly. abruptum forma punctuta West, Alg. Eng. Lake Distr. 1892, p. 719.
A form with the cell-wall irregrlanly punctate. In other respects exactly similar to the type.

Enalant.-bog near Cockley Beck, dancashire !

## Var. brevius nol. (Pl. XX, figs. 11, 12.)

Cl . abruptum forma brevior West \& G. S. West, New Brit. Freshw. Alg. 1894, p. 3, t. 1, f. 小.
$C^{\prime}$ 'ells shorter ant more curved, outer margin $80^{\circ}-100^{\circ}$ of arc.

Length $60-107 \mu$; breadth $15-16 \mu$.
Wales.-Ffestiniog, Merioneth !
Cteonn. Distilbution.-Anstrian 'Tyrol.
Thrner has described a "var. cambricum" of this species, which he says " differs from the type in being regularly curved, and in heing proportionately shorter and thicker." His measurements are :-Length $114-130 \mu$; breadth $14-17 \mu$. 'I'he specimens were from Llyn Padarn, Carmarvonshire (ide Tm'n. Desm. Notes, 1898, p. 346). We think this variety must be the same as var. Irevins, althongh 'Turner's specimens were a little larger.

## 36. Closterium toxon West. (Pl. XX, figs. 18, 14.)

Closterium toxon West, Alg. W. Ireland, 1892, p. 121, t. 19, f. 14; Nordst. Index Desm. 1896, p. 255: West \& G. S. West, Desm. Singapore, 1897, p. 158 ; Alga-fl. Yorks. 1900 , p. 54 ; Alg. N. Ireland, 1902, p. 25.

Cells narrow and linear, elongate, $25-30$ times longer than their diameter, straight for about two-thirds their length, with subparallel margins, onter margin slightly concave in the middle, towards the extremities gently incurved and gradmally attenuated, apices subtruncate; cell-wall smooth and colourless; chloroplasts with a number of small scattered pyrenoids; terminal vacuoles with two or three moving gramules.

Kygospore unknown.
Length $220-300 \mu$; breadth $8 \cdot 5-10 \mu$; breadth of apices $5 \cdot 5-8 \mu$.

Enitand.-Near Bowness, Westmoreland! Pilmoor, N. Yorks! Skipwith Common, E. Yorks!

Scothann.-Sligachan in Skye, and Moidart, Tnverness! Rhiconich and Loch Tnrer, Sutherland! Near Callernish and near Balallan, Lewis, Outer Hebrides! Plankton of Loch Nan Eun, N. Uist, Outer Hebrides !

Ireland.-Loughs Ama and Sproule, Donegal!

Ballynahinch, and Derryclare Lough, Galway! Tore Mt. and Cromagloun, Kerry! Mourne Mts., Down! Cicour. Distribution.-Singapore. United States.
This species is probably nearest to Cl, gracile Bréb., but is much stonter with broader apices, which are truncate. It sometimes ocents in immense quantity amongst the leaves of Uhricularia minor, or in the jelly surrounding the filaments of Batrachospermum ragum.

## :3. Closterium Balmacarense 'Turner'.

(Pl. XX, fig. 15.)
Closlerium Balmacarense Turn. Desm. Notes, 1893, p. 347; Roy \& Biss. Scott. Desm. 1894, p. 343, t. 4, f. 6 ; Nordst. Index Desm. 1896, p. 56.

Cells of medium size, about 16 times longer than their diameter, slightly and regularly curved, outer margin about $33^{\circ}$ of arc (without apices), gradually attenuated, apices dilated and rounded-truncate ; cell-wall smooth and colourless ; chloroplasts with eight distinct ridges ; pyrenoids--"

Zygospore unknown.
Length 315-320 $\mu$; breadth $20-21 \mu$; breadth of apices $16 \mu$.

Sootand.-Bahmacarra, Ross (A. Wr. Wills).

Forma minor Turner. (Pl. XX, fig. 16.)
Cl. Balmacarense $\beta$ minor Turn. Desm. Notes, 1893, p. 347 ; Roy \& Biss. Scott. Desm. 1894, p. 244, t. 4, f. 7.

Smaller than the type ; chloroplasts with six ridges. Length $260 \mu$; breadth $16 \mu$; breadth of apices $12 \mu$. Soothant.-Bahacarra, Ross (A. W. Wills).

## :38. Closterium Scoticum T'umer.

(Pl. XX, fig. 17.)
Closlerium Scolicum Turn. Desm. Notes, 1893, p. 347; Roy \& Biss. Scott. Desm. 1894, p. 248, t. 4, f. \& ; Nordst. Index Desm. 1896, p. 230.

Cells of medium sizc, narrow and elongate, $\simeq 6-36$ times longer than their diameter, straight or but slightly curver, onter margin about $30^{\circ}$ of are, margins almost parallel for about seren-eighths of the length, slightly attennated near the apices, which are cappitatetrincate; cell-wall smooth, colourless, yellow, or reddish-brown ; chloroplasts with a central row of pyrenoids.

Kygospore unknown.
Length $260-189 \mu$; breadth $10-18 \mu$; brearth of apices $S:-5-12 \because \mu$.

Siothad.-Balmacarra, Ross (A. II. Wrills).

## Var. fusiforme Turner. (Pl. XX, fig. 18.)

Cl. Scolicum var. fusiforme Turn. Desm. Notes, 1s9:3, p. 247; Roy \& Biss. Scott. Desm. 1s9.l, p. 249, t. 4, f. 9.
Cells almost straight, decidedly fusiform.
Length $295-115 \mu$; breadth $12 \div-1 \% \mu$; breadth of apices ! $-11 \cdot 5 \mu$.

Sootland.-Balmacarra, Ross (A. W. Wiliss).

## 39. Closterium pusillum Hantzsch.

> Closterium masillum Hantzsch in Rabenh. Akg. Europ. 1stil, no. 1ons; Reinsch. Algenfl. Frank. 1867, p. 187; Rahomh. Flor. Europ. Algar. III, 1siss, p. 125; De Toni, Syll. Alg. 1ss9, p. 820; Roy \& Biss. Scott. Desm. 1s:94, p. 24s; Nordst. Index Desm. 1s96, p. 213.
> C7. mesillum a. minor Racib. Nomn. Desm. Polon. 18sit, p. (i).
> Arthrorlite pusill" Kuntze, Revis. gen. plant. 1s:1, p. sist.

Cells rery small, subcylindrical, $4-7 \frac{1}{2}$ times longer than their diameter, slightly curved, outer margin $40^{\circ}-$ $50^{2}$ of are, inner margin slightly concave, very gradually and gently attemmated to the apices, which are obtusely or trmately rounded; cell-wall smooth and colourless; chloroplasts with about six ridges and with one or two pyrenoids; terminal vacuoles prominent, with one or two moving gramules.
hygospore quatrate.
Length : $20-50 \mu$; headth $4-9 \mu$.
Scothand.-Achmasheen, Ross; Auchterless, Long-
side, Towie, near Alford, Birse, and Birsemore, Aberdeen; Loch of Park, Clumic, Cammie, Kincardine; Buchanty, Perth; near 'Tobermory in Mull, Argyll (loyg Bissetl).

Cieogr. Dishilution.-Germany. Austria and Galicia. Hungary. Sweden. Poland. W. Africa (var.). Brazil. We have not seen the typical form of this species.

Var. major Racib. (Pl. XX, fig. 19.)
Cl. pusillum b. major Racib. Noun. Desm. Polon. 1s85, p. 63; De Toni, Syll Aly. 1859, p. 820) ; West \& (G. S. West, Alga-fl. Yorks. 19(H), p. 54. Cl. pusillum $\beta$ major Roy. \& Biss. Scott. Desm. 1591, p. 24s.

Larger than the typical form; terminal vacuoles with four or five moving granules.

Length $86-100 \mu$; breadth $1: 3-16 \mu$.
Enilinnt.-Cocket Moss, near Giggleswick, W. Jorks! Mickle Fell, N. Yorks!

Southanb.-Glen Callater, Corrie of Loch Kandor, Aberdeen; at the "Reeky Linn" on the Isla, Forfar (lioy \& liasset).

Ceogr. Distribution.-Poland.
Var. monolithum Wittr. (Pl. XX, figs. 20-24.)
Cl. pusillum var. monolithum Wittr. in Wittr. \& Nordst. Alg. Exsic. 1ssf, no. $8: 36$; De Toni, Syll. Alg. 1859, p. 820 ; Norlst. Index Desm. 1896, p. 213 ; West \& G. S. West, Notes Alg. III, 1903, p. ! (sep.).

Cells less curved, frequently with a faint median constriction; terminal racuoles with only one moving giatmule.

Length :30-4S $\mu$; breadth 9-10 $\mu$.
Exgland. - Gumard's Head, Cornwall, on damp ground!

Geogr. Distribution.-Austria.
40. Closterium monotænium Arch.

Closterium monotenium Arch. in Quart. Journ. Micr. Sci. 1876, p. 415 Cooke, Brit. Desm. 18sti, p. 25; De Toni, Syll. Alg. 1889, p. 849 ; Nordst. Index Desm. 1896, p. 175.
Arthrodia monotrenia Kuntze, Revis. gen. plant. 1891, p. 883.
Cells "small, comparatively stout, curvature slight,
inflated in the middle, gradtually tapering though still thick towards the apices, which are blunt and rounded ; membrane smooth and colourless. Endochrome a single longitudinal band, not plicated, each locellus containing a single moving granule, forming a romeded cavity in the plasma, at some distance from the apex.

Theland - Dublin and Wicklow (Archer).
The above is the only description ever pulbished of this C'losterium, and the size was not stated. We have not seen any Desmid in the genus which could be referred to it.

## 41. Closterium prælongum Bréb.

(Pl. XXI, figs. 1, 2.)

> Closterium pralongum Dréb. Liste Desm. 1856, p. 152, t. 2, f. 41 ; Arch. in Pritch. Infus. 1861, p. 747 ; Rabenh. Flor. Europ. Algar. III, 18fis, p. 130; Cooke, Brit. Desm. 1886, p. 22, t. 10, f. 2; Wolle, Freshw. Alg. U.S. 1857, p. 24, t. 55, f. 15, 16; De Toni, Syll. Alg. 1889, p. S30; Roy d Biss. Scott. Desm. 1894, p. 247 ; Nordst. Index Desm. 1896, p. 205 ; West \& G. S. West, Alg. S. England, 1897, p. 480 ; Alga-fl. Yorks. 1900, p. 54. Arthrodia pralonga Kuntze, Revis. gen. plant. 1891, p. 884.

Cells of medium size, very elongate, 30-4.5 times longer than their diameter, slightly curved, outer margin about $25^{\circ}-30^{\circ}$ of arc, inner margin slightly concave, not tumid, gradually attenuated towards the extremities which are a little recurved, apices obtuse or rounded-truncate ; cell-wall smooth and colourless; chloroplasts with one series of 10 or 12 pyrenoids; terminal vacuoles with many moving granules.

Kygospore unknown.
Length $530-846 \mu$; breadth $11: 5-24 \mu$.
Exahnib-Loughrigg, and near Bowness, Westmoreland! Mahham 'Tarn Bog and Boston Spa, W. Yorks! Riccall Common, E. Yorks! Near Chapel Wood, S.E. Surrey!

Wales.-Capel Curig, Carmarvonshire!
Scotrand.-Moss of Logie in Cromar, Aberdeen; Scolty Dam near Banchory, Kincardine (Ro! \& Biswett).

Irfland. - Near Leename, Galway! Dublin and Wicklow (Aicher).

Geoyr. Distrilution.-France. (Germany. Austria and Galicia. Portugal. Poland. Bornhohm. Siam. Central Africa (var.). United States. Brazil. Patagonia.

This is one of the rarest species of the genms, and one of the most elongate. It is characterised by the recurved apices and its smooth cell-wall.

## Forma brevior West. (Pl. XXI, figs. З-5.)

Cl. pralongum forma Nordst. Freshw. Alg. N. Zeal. 1888, p. 68, t. 3, f. $2 \cup- \pm 4$.
Cl. prexongum forma brevior West, Add. Akg. W. Yorks. 1I, 1891, p. 244; West d G. S. West, New and Int. Hreshw. Alg. 1896, p. 151; Nordst. Index Desm. 1896, p. 205; West id G. S. West, Mg. S. England, 1897, p. 480 ; G. S. West, Alga-fl. Cambr. 1899, p. 111; West \& G. S. West, Alga-fl. Yorks. 1900, p. 54; Alg. N. Ireland, 1902, p. 22.
Cells shorter, $1 \nmid-22$ times longer than the diameter.
Zygospore globose and smooth.
Length $198-320 \mu$; breadth $125-17 \mu$; diam. zygosp. $40-46 \mu$.

England.-W. and N. Yorks! Cambridge! Essex! Middlesex (zygosp. from Ruislip Reservoir)! Surrey ! Scotland.-Bressay, Shetlands!
Treland.-Ram's Island and entrance of River Ballanderry, Lough Neagh!

Geogr. Distrilution. - Portugal. Sweden. New Kealand.

This short form is more frequently met with than typical Cl. pralongum.

## 42. Closterium strigosum Brélb.

(Pl. XXI, figs. 6, 7.)
Closterium strigosum Bréb. Liste Desm. 1856, p. 153, t. 2, f. 43 ; Arch. in Pritch. Infus. 1861, p. 7.47 ; Rabenh. Flor. Europ. Algar. IIf, 1siss, 1. 130; Kirchm. Alg. Schles. 1578 , p. 139; Wolle, Desm. U.S. 1ssit, p. 42, t. (6, f. 13, 14, t. 53, f. 9, 10 ; De 'Toni, Syll. Alg. 18s9, p. 829; West, Mlg. Eng. Lake Distr. 1892, p. 720 ; Roy \& Biss. Seott. Desm. 1891, p. 219 ; Nordst. Index Desm. 1896, p. 241.
Cl. strigosum a. typricum Klebs, Desm. Ostpreuss, 1879, p. 8.

Arthrodia strigosu Kuntze, Revis, gen. plant. 1891, p. 88.
Cells of moderate size, $16-20$ times longer than their diameter, slightly curved, median portion of cell straight, towards the extremities incurved,
gradually attenuated to the apices, which are somewhat incurved and subacute; cell-wall smootl and colourless; chloroplasts with a central row of 7 or 8 premoids; terminal vacuoles with several moving grambes.

Zygospore ellipsoid and smooth.
Length $254-3.58 \mu$; 7readth $11-18.5 \mu$.
Eincano. - Scamdale, Westmoreland! Raweliffe Common, W. Yorks! Enbridge Lake, Hants (Roy).

S'othand.-Near 'Lain and Strathpeffer, Ross ; Brin, Inverness; St. Fergus Canal, Mintlaw, Alford, Whitestripes, Danestone, and near Siringhill, Aberleen; Lochs of Park and Lomgair, Kineardine (Lioy of Bisselt). (ilen Shee, Perth!

Ireland.-Dublin and Wicklow (Archer). Clough, Antrim!

Geogr. Distribulion.-France. Germany. Switzerland. Austria and Galicia. Hungary. Sweden. Poland. N. Russia. Central and E. Africa. Brazil.

The nearest species to Cl. strigosmm is Cl. procerosum (iay, and it is indeed a doubtful question whether the latter species should not really be placed under the former. Cl. peracerosime is somewhat smaller in size, is relatively shorter, and has not the chanacteristic incmived apices of Cl. strigosm.

It seems very probable that varions anthors have confused these two species of Clostrinm. The measmements siven ly Lumdell (1)esm. Sinee. 1871, 1. 79 ) of Cl. strigesim, viz. length $160-240 \mu$, breadth $10-16 \mu$, leal one to smpose that very possibly he had Cl.peracerosmm muler observation at the time. Similarly, the measurements given ly Fichler (Mat. flor. Miedz. 1893, p. 5s), viz.-length 145 $\mu$, breadth $11 \mu$, are much smatler than the average for Cl. strigosm.

Wolle las described zygospores which lie believed to be of this species, but as his figures are not good, and as he was somewhat dombtfut with regard to the identification of his specimens, the observation requires confirmation.

## 43. Closterium gracile Bréb.

(Pl. XXI, figs. 8-12.)
('losterium yrucile liréb. in Cheval. Des microscop. ct de leur usage, Paris, $1839,1,272$; Ratfs, Brit. Desm. 1848, p. 221 ; Bréh. Liste Desm. 1856,


Schles. 1578, p. 137; Wolle, Desm. U.S. 15st, p. 39, t. 6, f. 1, 5; Cooke,
 1. 17s; De 'Toni, Syll. Alg. 1ss! , p. sis; Roy di Biss. Seott. Desm. Ls 91 ,

 p. 54 ; Alsa-fl. Yorks. 1900, p. 51; Alg. N. Irelind, 19ん2, p. 25; Freshw. Alg. Ceylon, 1902, p. 138.
Cl. juncilum Kalls, forma grecillimu-levissinue Kabenh. Flor. Europ. Algar. 111, $1564, \mathrm{p}, 127$.
Cl. gracile formatentissimu Heimerl, Desm. Alp. 1891, p, 591.

Arthoolin gracilis limetze, hevis. gen, plant. 18:11, p. s83,
Closterium limnelicum Lemm, P'hytoplankton saichsis. 'Teiche, 1s!99, p. 2S,

Cells small, slender and linear, 28-40 times longer than their dianeter, almost straight for more tham half their length, margins parallel, gradually narrowed and gracefully curved towards the apices, which are obtuse; cell-wall shooth and colourless; choroplasts sonetimes subundulate, with 5 to 7 pyrenoids; terminal vacuoles with one to several moving granules.

Zygospore globose, angular-globose, or subpuatrate with rounded angles, smooth.

Leng'th $1: 30-190 \mu$; brealth $3 \cdot 4-6 \mu$; brearlth of apices $1 \cdot 2-2 \cdot 4 \mu$; diam. zygosp. 20-25. $7 \mu$.

Evglant.-Cumberland! Westmoreland! W., N., and E. Yorks! Lancashire! Cheshire (Roy). Essex! C'mbridge! Oxford (zygosp. from near Goring )! Middlesex! Surrey! Hants. (zygosp. from New Forest)! Devon! Cornwall! (Marquame); zygosp). from Penzance (Joshum).

Wales.-Fairly general!
Scothand,-Ross!, Sutherland!, Suverness!, Nairn, Aberdeen (with zygosp.), Kincardine, Forfar ! , Perth! !, Argyll (Roy \& Pissett). General in Outer Hebrides ! Orkneys! Shetlands!

Lrehand.-Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archeri). Antrim! Down!

Geogf. Distribution.-France. Germany. Anstria and Galicia. Hungary. Portugal. Norway. Sweden. Denmark. N., Central, and S'. Russia. Finland. Faeroes. Iceland. Siberia. Greenland. Ceylon. Siam. Sumatra. New Zealand. Australia. E. Africa. United States. Brazil. Paragruy. Patagonia.
Cl. grucile is a widely distributed species and is often almudant in collections from permanent bogs. It is muloultedly nearest to Cl. Cormu Ehrenb., from which it is disting?ished by its proportionately greater length, by the straighter median part of the cell, by the incurved and narrower apicen, and liy the form of the zygospore.

The curvature of Cl. gracile is very similar to that of Cl. jumidum, bat in no other respect do these species resemble each other. They are in no way closely related.

The figures given by Brébisson and by Cooke are very poor representations of the species, and have led to considerable confusion.

The zygospores of this species are somewhat variable. They are seldom spherical, but are more often angular-globose or even subquadrate with rounded angles.

## Var. elongatum vai. 1tor. (Pl. XXI, figs. 11-16.)

Cells very elongate, 85-95 times longer than their diameter, apices obtusely rounded.

Length $276-360 \mu$; breadth $3-4 \mu$.
Scotland.-Rhiconich, Sutherland!
Ireland.-Cromagloun, Kerry! Clough, Antrim!
Var. tenue (Lemm.) West \& G. S. West. (Pl. NXI, fig. 13.)
Cl. limneticum Lemm. var. tenue Lemm. Phytoplankton sächsis. Teiche, 1499, p. 28, t. 2, f. 42-44.
Ct. gracile vir. tenue (Lemm.) West \& G. S. West, Freshw. Alg. Ceylon, 1902, p. 138, t. 18, f. 22,23 ; Alg . N. Ireland, 1902, p. 25.
Cells smaller and somewhat thinner than in the typical form.

Length $69-110 \mu$; breadth $2 \cdot 5-3 \div \mu$.
Scotlmul.-Near I'arbert, Harris, and Balallan, Lewis, Outer Hebrides! W. of Kirkwall, Orkneys!

Ircluml.-Dangloe, Louglis Anna and Sproule, and near Longh Magrath, Donegal! Slieve Donard, Down !

Geogr. Distribution.-Germany. Ceylon.
This variety is sometimes very abundant amongst $S_{j}$ huremum curpidutum, intermingled with Netrium Digitus and Staurastrum. brachiatum. We have previously commented upon the erroncous measurements given by Lemmermam.

## 14. Closterium Lundellii Lagerh.

(Pl. XXI, fig. 17.)
Closterium gracile Lund. Desun. Suee. 1871, p. 82, t. Ј, f. 15.
Cl. Lumbellii Lagerh. Bidr. Sverig. Algfl. 18s:'s, p. 5i3; De 'Ioni, Syll. Alg. 1889, p. 818; lioy \& Biss. Scott. Desm. 1894, p. 244; Nordst. Index Desm. 1896, p. 160.
Arthrodia Lundellii Kuntze, Revis. gen. plant. 1891, p. 84i3.
Vegetative cells exactly similar to those of (\%.yrucile Bréb. Kygospore subpuadrate with rounded angles, each angle furnished with a long spine which fits into the base of an empty semicell.

Length of zygospore without spines $28-30 \mu$, brealth $22 \mu$; length of spines $1(i-1 \overline{7} \cdot 5 \mu$.

Exgland.-Enbridge Lake, Hants. (Ron).
Wales.-Bettws-y-coed, Carnarvonshire (lion).
Scommind-Loch Inver, Sutherland; Fyvie, near Alford, and S.W. of Loch Kinnord, Aberdeen (houl).
Geogr. Distribution.-Sweden.
Roy is the only observer who has recorded this Desmid as British, and he has never mentioned the occurrence of zygospores. As the vegetative cells are indistinguishable from those of Cl. yrucile, these records must be regarded as doubtful. We give a copy of Lundell's figure of the zygospore (Pl. XXI, fig. 17).

## 4.). Closterium attenuatum Ehrenb.

## (Pl. XXII, figs. 1-3.)

Closterium attenuatum Ehrenb. Infus. 1838, p. 94, t. 6, f. iv; Menegh. Synops. Desm. 1840, p. 233; Ralfs, Brit. Desm. 1848, p. 169, t. 29, f. j (char. amend.) ; Arch. in Pritch. Infus. 1861, p. 749, t. 3, f. 43; Rabenh. Flor. Europ. Algar. III, 1868, p. 130; Kirchn. Alg. Sehles. 187s, p. 138; Wolle, Desm. U.S. 1884, 1. 41, t. 8, f. 5; Cooke, Brit. Desm. 1886, p. 32, t. 11 , f. 1 (figure very bad); De Toni, Syll. Alg. 1859, p. sz9; Lütkem. Desm. Attersees, 1893, p. 542; Roy \& Biss. Scott. Desm. 1894, p. 24:3; Norlst. Index Desm. 1896, p. $\overline{5} 4$; West \& (i. S. West, Alg. S. England, 1597, p. $45^{2}$; Alga-fl. Yorks. 1900, p. $55 ;$ Alg. N. Ireland, 1902, p. 24.
Cl. candianum Delp. Desm. subalp. 1877, p. 104, t. 17, f. 7-10. [Cl. allenuatum Ralfs, but not Ehrenb., according to Delponte.]
Arthrodia attenuata Kuntze, Revis. gren. plant. 1891, p. 883.
A. canliana Ḱuntze, 1. с.

Cells large, 11-14 times longer than their diameter, slightly eurved, outer margin about $45^{\circ}$ of are, inner
margin not tumid, grarlually attenuated towards each extremity, near the apices rather suddenly narowed into an obtuse cone ; cell-wall delicately striated, fiom $17-24$ strix visible across the cell, brown or reddishbrown in colour ; chloroplasts obseurely ridged, with 6 or 7 pyrenoids in a central series; terminal vacuoles with a large number (about 20) of moving granules.

Zygospore manown.
Length $4: 30-528 \mu$; breadth 9.5 4s $\mu$.
Encland.-(Gmberland! Westmoreland! (Ralfs). Lancashire! N. Yorks! Essex! Warwick (Wills). Surrey! (hulfs). Sussex (halfs). Kent (hulfs). Hants! (Ro!!). Cormwall! (Ralfis).

Wates - Capel Curig, Carmarvonshire! (Coolie of Will.s.).

Scotlano.-Widely distributed! (Roy \& Bissett).
Treland.-Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Antrim!
(icogr. Distrilntion.-France. Germany. Anstria and Galicia. Italy. Norway. Sweden. Denmark. Bornholm. N. Russia. Ceylon. United States. Brazil (var.).

The apices of this species are very ineorrectly depicted by both Ralf's and Cooke, the apical attenuation being greatly exaggerated. There are also more striations on the cell-wall than are indicated by Ralfs.

The Desmid which Ralfs and all subsequent authors have referred to " Cl. attematum" appears to be somewhat different from the original Cl. attennatum Vhrenb.; hence Delponte's name "Cl. candianum." But since Ehrenberg's species hits never been identified with anything else, it wonld only create confusion to upset the present manimons interpretation accorded to the name $C l$. attenuatum.

## 46. Closterium turgidum Ehrenb.

 (Pl. XXTI, figs. 4, 5.)Closterium turgidum Ehrenb. Infus. 1838, 1. 95, t. 6, f. vii; Menegh Synops. Desm. 1840, p. 234; Hass. Brit. Freshw. Alg. 1845, 1. 371, t. 87, f. 3 ; Lialfs, Brit. Desm. 1845, p. 165, t. 27, f. 3 ; Areh. in Pritch. Infus. 1861, p. 747, t. 3, f. 40; Rahenh. Flor. Europ. Algar. III, 1868, p. 1:9); Kirchm. Alg. Sches. 1878, p. 138; Wolle, Desm. U.S. 1854, p. 44, t. 6,
f. 15; Cooke, Brit. Desm. 1886, p. 21, t. 9, f. 3; Hansg. Prodr. Algenfl.
Böhhm. 18ss, p. 180; De Toni, Syll. Alg. 1ss!, p. 827 ; West, Alg. Eng.
Lake Distr. 1s:l2, p. 720 ; Roy \& Biss. Scott. Mesm. 189), 1, 249; Nordst.
Index Desm. 1s:\%f, p. 263; West if (i. S. West, Mg. S. England, 1s:/7,
Arthrodia turgida Kuntze, Revis. gen. plant. 1s91, p, 884.

Cells large, moderately curved, 11-12 times longer than their diameter, outer margin about $50{ }^{\circ}$ of are, immer margin not tmmid, gradually attemated towards the extremities, which are distinctly recurved, apiees subtrmeate; cell-wall finely striated, from 30 :35 stria visible across the cell, yellowish-hrown or reddishbrown in colour ; ehloroplasts with abont eight ridges and a eentral series of 7 or 8 pyrenoids; terminal vacuoles with many moving granules.

Zygospore unknown.
Length $650-791 \mu$; breadth $.58-75 \mu$; breadth of apices $12-15 \mu$.

Evaland.-Cumberland! Westmoreland! Lancashire! N. Yorks! (heshire (lalfs). Essex! Surrey ! (Ralfs). Sussex (Rulfis). Kent! (hulfs). Hants! (Ralfs). Cormwall! (lulfis).

Wabes.-Capel Curig! (Cooke of Wills), Glyder Fawr (loy), and Snowdon! , Carnarvonshire. Dolgelly, Merioneth! Lym Coron, Anglesey!

Scordanb.-Sutherland!, Ross, Inverness!, Aberdeen, Kincardine, Forfar', Perth, Dumbarton, Argyll, Bute, Fife (Kon o lissett).

Iremand.-Near Glenties, Donegal! Loughs Ammierin and Creggan, Galway! Near Sugar-loaf Mt., Castletown, and Adrigole, Kerry! Dublin and Wicklow (Arler).

Geogi. Distrilution.-France. Germany. Austria and Galicia. Hungary. Italy. Norway. Sweden. Bormholm. S' Russia. Poland. Siberia. Sapan (var.). W. Africa. United States. W. Indies. Brazil. Ecnador. Paraguay.

This is one of the largest and most characteristic species of the genus. It is by no means common. Cl. turgitum Ehrenb. sulsp. giganteum Nordst, a native of Brazil, is the largest known Desmid, reaching a length of over $1,300 \mu$.

# 47. Closterium Pritchardianum Arch. (Pl. XXII, figs. 6-14.) 

Closterium Pritchardianum Arch. Descript. new Cosm., etc. 18fí, p. 2.50. t. 12, f. 25-27; Kabenh. F'lor. Europ. Algar. III, 1868, p. 129; Cooke, 13it. Desm. 1886, p. 22, t. 10, f. 1, t. 15, f. 7; De Toni, Syll. Alg. 1889, p. 830 ; Roy \& Biss. Sentt. Desm. 1894, p. 247; Nordst. Index Desm. 1896 , p. $206 ;$ West \& (i. S. West, Alg. S. England, 1897, p. 480; G. S. West, Alga-fl. Cambr. 1899, p. 111 ; West \& G. S. West, Alga-fl. Yorks. 1900, p. $56 ;$ Alg. N. Ireland, 1902, p. 22.
Cl. pronum Bréb. forma C. Pritchardianum Reinsch, Algenfl. Frank. 1867, p. 188.

Arthrodicu I'ritchardianum Kuntze, Revis. gen. plant. 1891, p. 884.
Closterium turgidum Ehrenb. var. decoratum West, Alg. Eng. Lake Distr. 1892, р. 720.
Cells large, very slightly curved, 12-17 times longer than their diameter, outer margin about $24^{\circ}$ of arc, inner margin straight or very slightly concave, not tumid, gradually attenuated towards the apices, which are slightly reeurved, narrow, and truncate ; cell-wall finely striated, :35-40 striæ visible across the cell, striæ composed of fine punctæ, of a yellowish colour, frequently becoming reddish-brown; chloroplasts with six to eight ridges, and a central series of 7 or 8 pyrenoids; terminal vacuoles with many moving granules.

Zygospore globose, subglobose, or ovoid, smooth.
Length $350-590 \mu$; breadth $30-46 \mu$; breadth of apices $7-8 \mu$; diam. zygosp. 83-108 $\mu$.

Engiand.-Near Bowness, Westmoreland! Crimsworth Dean, W. Yorks! Market Weighton, E. Yorks! Sheep's Green, Cambridge! Sutton Park, Warwick (Wills). Mill-pond, E. of Chapel Wood, S.E. Surrey ! 'Tremethick Moor, Cormwall (with zygosp.)!

Scombant--Ross, Aberdeen, Kincardine, Forfar, Perth, Stirling (Ko! \& Bissett). Inverness! Orkneys!

Irmand.-Gweedore and Lough Akibbon, Donegal ! Howth, Dublin (Aicher).

Georfr. Distribution.-France. Germany. Austria and Galicia. Italy. Norway. Sweden. N. Russia. China. Brazil. Argentina.

The cell-wall of Cl . Pritchardiantm is of a yellowish-brown
or golden-brown colour, and is very finely striated. These striations are not infrequently subsparal in their armagement, and when examined earefnlly they are seen to comsist of a series of fine puncte. 'Towards the apices the punctat are often no longer arranged in lines, but become irreginlarly scattered.

The species is distinguished from Cl. thergitum by its somewhat smaller size, its relatively greater length and slighter curvature, and ly its much marrower, trmeate apices. The cell-wall is also rather more finely striated and the strixe consist of pmetre.

Lütkemüller has fomnd specimens of this species with a length of $720 \mu$, and a Brazilian form (f. maxima Nordst.) reaches a length of $680 \mu$ and a hreadth of $65 \mu$.
Cl. Pritchurlirmum var. mimus. West (Alg. W. Ireland, 1892, p. 121, t. 19, f. 13) does not belong to (17. Pritchardiemum. We have only seen one specimen of it, and matil we obtain further information with regard to it, it must be left in abeyance as a form to be inquired into.

## 48. Closterium pronum Bréb.

(Pl. XXIII, figs. 1-3.)
Closterium pronum Bréb. Liste Desm. 1856, p. 157, t. 2, f. 42 ; Arch. in Pritch. Infus. 1861, p. 750 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 136 ; Lmnl. Desm. Suec. 1871, p. 81 ; De Toni, Syll. Alg. 1889, p. 852; West, Alg. W. Ireland, 1892, p. 125; Ruy \& Biss. Scott. Desm. 1894, p. 247; Nordst. Index Desm. 1896, p. 206 ; West \& G. S. West, Alg. S. England, 1897, p. 482 ; G. S. West, Alga-fl. Cambr. 1899, p. 113; West \& G. S. West, Alga-fl. Yorks. 1900, p. 56 ; Alg. N. Ireland, 1902, p. 25; Scott. Freshw. Plankton, I, 1903, p. 525.
Cl. Linea Lumd. Desm. Suec. 1871, p. 82.
Cl. pronum a. typicum Klebs, Desm. Ostprenss. 1879, p. 19, t. 2, f. 12 a.

Arthrodia prona Kuntze, Revis. gen. plant. 1891, p. 88.
Cells narrow and very elongated, $40-50$ times longer than their diameter, straight or very slightly curved, outer margin not more than $10^{\circ}-15^{\circ}$ of arc, very gradually attenuated to the apices, which are long and pointed although the extreme end of the cell is rounded ; cellwall smooth and colourless [but, according to Brébisson, yellow-brown and finely striated]; chloroplasts obscurely ridged, with a row of 8 to 10 pyrenoids; terminal vacuoles some distance removed from the apices and occupying all the apical parts of the cell, containing from two to six moving granules.

Zygospore unknown.
Length :31:3-42:3 $\mu$; breadth $5 \cdot 7-9 \mu$.
Evedand.-W., N., and E. Yorks! Cambridge! Essex! Surrey! Hants! (Roy). Cornwall! (Murmmen).

Wales.-Glyder Fach (at 2,200ft.), Carnarvonshire!
Scothand.-Loch Hempriggs, Caithness; near Tain, Ross, Scotston Moor, Aberdeen (lioy \& P lisselt). Gilen Shee, Perth! Rhiconich, Sutherland! Near Tharbert, Harris, Outer Hebrides!

Inemand.-Near Giweedore, River above Crolley Bridge, and Lough Ama, Donegal! Near Westport, Mayo! Near Leenane, Oughterard, Clifden, and Ballynahinch, Galway! Dublin and Wicklow (Archer).

Cienfl. Distrilution.-France. Germany. Austria and Galicia. Sweden. Denmark. N. Russia. Greenland. Japan. Java (form). Australia. Central and E. Africa. United States. Guiana. Patagonia.

The Clostrrium promm of recent anthors does not strictly agree with the Closterium described by Brebisson meder that name. Brélisson described the cell-wall as being yellowish or palc-brown and very delicately striated, but these striations have not since been detected. We have never yet seen a specimen in which there was the slightest trace of striation or even colomration of the cell-wall. The breadth given by Bréhisson ( $12-16 \mu$ ) is also much greater than the breadth of any specimen we have seen.

It is not an uncommon species in large borlies of water, such as at the margins of lakes, ete., and it is also a constituent of the fresh-water plankton.

The terminal vacuoles are very long, and the moving granules can wander along for some distance.

## 49. Closterium aciculare Tuffen West.

## (Pl. XXVT, figs. 18, 19.)

Closterium aciculare Tuffen West, Rem. Diat. Desm. 1860, p. 153, t. 7 , f. 16; Arch. in Quart. Journ. Mier. Sci. 1866, p. 181; Cooke, Brit. Desm. 1886, p. 36, t. 15, f. 1; De 'Toni, Syll. Alg. 1889, p. 837 ; Roy \& Biss. Scott. Desm. 1894, p. 2 R.3; Nordst. Index Desm. 1s9\%, p. 35.
A themlir acicultris Kuntze, Revis. gen. plant. 1891, p. ssis.
Cl. gracile Bréb. forma gracillime West, Alg. W. Ireland, 1892, p. 122 t. 19, f. 15,

Cells very narrow and greatly elongated, 85-95 times longer than their diameter, almost straight for above half their length, rery gradually and almost imperceptibly attenmated from the middle to the apices, which are slightly incurved, acute or acately rounded, and very narrow ; cell-wall smooth and colourless; chloroplasts with from 6 to 8 pyrenoids; terminal vacuoles very long and containing one (or two) moving granules.

Zygospore unknown.
Length $440-590 \mu$; breadth $5-7 \mu$.
Engiand. - Northmberland (I'uffen Wrot). Yorkshire (C'orlif). Crosby Warren, Lincolnshire! (Fonler). Leicester (Roy). Devon (Remmett).

Scomband.-Near 'Tain, Ross; Dimet Moss, Aberdeen (Ro! \& laissett). Kirkwall, Orkneys!

Ireland.-Arderry Lough, Galway! Dublin and Wicklow (Archer).

Geogr. Distrilution.-Italy. Faeroes.

## Var. subpronum nol. (Pl. XXIII, figs. 4, \%.)

> Choslerium subpronum West, New Brit. Freshw. Alg. 1804, p, 3, t. 1, f. 3; G. S. West, Alga-fl. Cambr. 1899, p. 113 ; West \& Cr. S. West, Alga-fl. Sorks. 1900 , p. 56 ; Alg. N. Treland, 1902 , p. 25, t. 2, f. 1, 2.

Cells commonly more elongate than in the type, straight, very slightly curved, or sigmoid, 85-144 times longer than their diameter, median portion of the cell with subparallel margins, then gradmally attennated to the apices, which are very narrow, much drawn out with parallel margins, and obtuse at the extremity; chloroplasts only extending half way from the middle to the extremity of the cell ; one moving granule in the terminal vacuole.

Length $392-716 \mu$; brearth $3 \cdot 7-5 \cdot 2 \mu$; brearth of apices $1 \cdot 6 \mu$.

England.-Malham Tarn, W. Yorks! Pilmoor, N. Yorks! Sandholme, E. Yorks! Wicken Fen, Cambridge!

Srotiand.-Plankton of Loch Fadaghoda, Lewis, Outer Hehrides! Plankton of Loch Asta, Shetlands! Themaxr.-Plankton of Lough Neagh!
(icomp. Distrilmtion. - Germany. New Zcaland (form).
This variety is sometimes freeprent in the freshwater plankton and is the longest known Desmid in proportion to its breadtll.

Börgesen it Ostenfeld (Phytoplankton Freröes, 190?, p. 620 ) state that ( C . sulbromum mist be placed as a synonym of Cl. acienlare. The Closteria recorded ly these anthors from the Faeroes are most probably forms of Cl. uciculare, but we dombt if either of them have observed any examples of Cl . sulbromum. We have ourselves here placed Cl . sulbpromum as a variety of Cl. aciculare as we think its characters do not warrant its complete separation.
The var. subpromem differs from typical Cl. aciculare in two important points,-(1) the median portion of the cell is cylindrical, and (2) the apices are much more prodnced, being of a miform thickness with parallel margins, and obtuse, althongh very narrow at the extremity. The extremities of the cell are produced into long coloniless processes such as those found in Cl. setuenm; and the apical racuoles, althongh containing only one moving granule, are of great length and contained within the base of these processes.
" Cl . sulypromm var. lachstre" Lemm. (Planktonalgen, 1899, p. 344, t. 1, f. 13, 14) should be relegated to this variety, although the dimensions are a little larger,--length $500-800 \mu$; breadth $6-8 \mu$.

50. Closterium Ceratium Perty.

## (Pl. XXIII, figs. 6-8.)

Closterium Ceratium Perty, Kleinst. Lebensf. 1852, p. 206, t. 16, f. 21 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 138 ; De 'Toni, Syll. Alg. 1sse, p. 8:37; Luitkem. Desm. Attersees, 18!3, p. 543; Foy d Biss. Scott. Desm. 1894, p. 24t; Nordst. Index Desm. 1896, p. 72; West \& G. S. West, Alga-fl. Yorks. 1900, p. $56 ; \mathrm{Alg}$. N. Ircland, $1902, \mathrm{p} .25$.
Arthrodia Ceratium Kuntze, lievis. gen. plant. 1891, p. 883.
Cells small, 20-40 times longer than their diameter, straight, slightly curved, or sigmoid, gradually attenuated from the middle to the extremities, apices drawn out into very acute, needle-like points; cell-wall smooth
and colourless; chloroplasts with four or five pyrenoids; terminal vacuoles remote from the apex, with one moving granule.

Kygospore glolose and smonth.
Length $110-2$ 6if $\mu$; brealth1 (i-6:5 $\mu$.
Fixhant,-Helvellyn, Westmoreland! Mickle Fell, N. Yorks! Delamere, ('heshire (Rom). Wimbledon and Esher Commons, Surrey! Enhmidge Lake, Hants (Rom).

Soothan.- General but scarce; argospores from Sentston Moor and Slewitrum, Aherdeen (Roy of lisisseft).
haedant.-Plankton of Lough Neagh!
(iomy: Distrilmtion.-France. Germany. Switzerlamd. Austria and Galicia. Sweden.

Wo always find the apices of this species to be drawn out into fine almost lristle-like puints. They are, in fact, the sharpest apices met with in the whole of the genns. Rabenhomst also describes the apices ats "acutissimis, lyyalinis," but continental observers have recorded mulder the name" ${ }^{(17}$. ('routium," specimens with relatively obthse extremities.
It is nearest to Cl. promm Biofl), from which it is distinguiched ly its relative shortness, by the variable curvature of the cell, and by the much sharper and more prodnced apices.

## 51. Closterium acutum (Lyngh.) Brél. (Pl. NXIII, figs. 9-14.)

Echinella acuta Lyngbye, 1819.
Frustulia reuta Kütz. Syn. Diat. 1834, p. 587.
Chosterizm tenerimum Kiutz. Phyc, germ. 1st5, p. 130.
Closterium ucutum Bréb. in Ralfs' Brit. Desm. 1849, p. 177, t. 30, f. 5, t. 34, f. j $a, b, d-f$; De Bary, Conj. 185s, p. 41, t. 5, f. 13 ; Rabenh. Flor. Europ, Algar. IlI, 186s, p. 187; Kirchn. Alo. Schles. 1878, p. 110 ; Wolle, Desm. U.S. 18st, p. 14, t. 7, f. 11, 12; Cooke, Brit. Desm. 18st, p. 35, t. 14 , f. 5 ; De Toni, Syll. Alg. 18s9, p. \&36; West, Alg. W. Ireland, 1892, p. 125 ; Alg. Eng. Lake Distr. 1892, p. 720 ; Roy i Biss. Scott. Desm. 1894, p. 243 ; Nordst. Index Desm. 1896, p. 39; West d G. S. West, Alg. S. England, 1897, p. 482 ; G. S. West, Alga-f. Cambr. 1899, p. 113 ; West \& G. S. West, Alga-fl. Yorks. 1900 , p. 56 ; Alg. N. Ireland 1902, p. 25.
Stauroceras acute Griun. Desm. u. Pediast. österreich. Moore, 185s, p. 497.
Closterium pronum Bréb. D. ucutum Klebs, Desm. Ostprenss. 1879, p. 1!, t. 2, f. $12 b, 13 c$.

Arthrodiu aeuta Kuntze, Revis. gen. plant. 1891, p. SS3.
Cells small, 20-3:3 (rarely 1.5) times longer than
their diameter, moderately and regularly curved, outer margin $40^{\circ}-60^{\circ}$ of are, imner margin mot tumid, gradually attenmated to the apices, which are acute; cellwall smonth and colombess ; choroplasts with four on fise small pyremoids in a central series; terminal vacmoles with several small moving gramules.

Kygospore oblong-rectangular, sides concave or slightly convex, ends concave, angles produced into mamillate or conical projections; from the side view the zygospore is elliptical.

Length 13O-11.6 $\mu$; breadth $3 \cdot 8-6 \mu$; length of zygospore 23-4. $\mu$; breadth of zygospore 12-27 $\mu$.

Wintavn.-C'mmberland! Westmoreland! (lissett). W. (with zygosp.), N., and E. Yorks! Lancashire! (lidfes). Essex! Osford (with zygosp.)! (amhridge! Warwick (IVill:). Middlesex! Surrey! Sussex (limffis). Hants! (limmett). (Comwall! (limlis). Wame-General!
Srothand.- ('ommon!; zygosp). from Aberdeen and Kincartine (lon! \& Bissett). Marris amd Lewis, Onter Hebrides! Shetlands!

Irblano.-General! Also in plankton of Longh Neagh!
(imeff. Distritmtion.-France. Germany. Switzerland. Austria and Galicia. Hungary. Norway. Sweden. Denmark. N. and S. Russia. Facroes. Nova Zembla. Spitzbergen. Greenland. Central China. [utlia. Siam. Sumatra. Java. Austıalia. New Kealand. E. Africa. United States.

This is one of the most abmetant of the small species of Closterinm, and with the exception of (\% pervelum is the one most often met with in the conjugated state.

> Var. Linea (Perty) West \& G. S. West. (Pl. XXIII, fig. 15.)

Closterium Linea Perty, Kleinst. Lehensf. 18:2, p. 20fi, t. 16, f. 20; Arelh. in Quart. Iourn. Mier. Sci. 1seig, p. 71; Rabenh. Flor. Europ. Algar. IlI, 18sts, p. 1399; De 'Tomi, Syll. Alg. 18s!9, p. sist; West, Alg. W. Jreland, 1s:2, p. 12.5; Roy \& Riss. Scott. Desm. 1s:4, p. elf ; Nortst. Indux


C7. promem Bréb, d. Linea Kilehs, Desm. Ostpreuss. 1879, p. 19, t. 2, f. 1+7, Aithrotin Line"t Kuntze, Revis. gen. plant, 1s!!1, p. Ss:3.
Clasterimm arutum (Lyngb.) Bréb. van: Linen (Perty) West \& (i. S. West, Alga-fl. Yorks. 1900, p. 57 ; Alg. N. Ireland, 1902, p. ㄹ..
('ells straight or almost straight, sometimes a little curved at the apices which are acnte; chloroplasts with two to four small pyrenoids; terminal vacuoles frequently occupying one-third the length of the cell and containing from one to eight small moving granules.

Zygospore similar to that of the type.
Length 1:3.1-16:3 $\mu$; breadth $3 \cdot 8-5 \mu$; length of zygospore :31-41 $5 \mu$; breadth of zyoosp. 13-16 $\mu$.

Exgland.-Westmoreland! W. and N. Yorks! Cheshire (Roy). Leicester (Roy). Essex! Surrey! Kent! Hants (Bemmett). Cornwall! (Meropuend).

Whiss.-Bog above C'apel C'mig lakes, and Glyder Fach, C'arnarvonshire!

Soothand-Gencral, with zygosp. (Toy \& Bixsett). General in Onter Hebrides !

Lratant.--More or less general!
(icogli. Distribution.-Wrance. Germany. Switzerlant. Austria and Galicia. Norway. Sweden. Japan. Guiana.
Cl. Linef mast be regarded as merely a variety of Cl . acutum as it only differs from that species in its somewhat straighter cells. The zygospores of the two are exactly similar.

Lütkemïller gives "length $72-110 \mu$; breadth $3 \mu$ " for Cl. Linfa, but we have never observed any British specimens so small as this.

## 52. Closterium subulatum (K゙ïtz.) Bréb. (Pl. XXTIT, figs. 16-19.)

Frustulia subulata Kïtz. Syn. Diat. 18:34, p. 538, t. 13, f. 1,
Chosterium subulatum (Kïtz.) Hréb. in Cheval. Des microseop. et leur nsage, Paris, 183!, p. 272; Conke, Brit. Desm. 1s86, p. 36, t. 15, f. 4; West, Alg. Wr. Ireland, 1s92, p. 125 ; Roy \& Biss. Sentt. Desm. 1894, p. 249 ; Nordst. Index Desm. 1s96, p. 248 ; West \& (r. S. West, Alga-fl. Yorks. 1900, 1. 57.
? Stanroceras subuhuta Kïtz. Phyc. germ. 1845, p. 133.
Closterium acutum (Lyngh.) Bréb. var. $\beta$ Ralfs, Brit. Desm. 1818, p. 17\%, t. 30, f. $5 c$.
('ells small, morlerately curved, 17-20 times longer' than their diameter, onter margin $28^{\circ}-5^{\circ}$ of anc, imer margin slightly tumid. gradually attemated from the mirlille towarls the apiees, which are acoutely romoded; cell-wall smooth and colombess; chlomplasts with there or four premoids; terminal vacuoles with several moving gramules.

Kygospore subghome or aroid-ghonase, smooth.
 19-2: $\mu$.

Extidand.--Rombald's Moor, Cockett Mass, and Cam Fell, Wr. Yorks! Great Shmmor Fell, Jamdis Fell, and Graydale Moor ( $1,900 \mathrm{ft}$.$) , N. Yorks!$

Whas.- (iapel C'mig, Carnaronshime!
Somano.- Brin, Invermess; Aboyne. Aberdeen; (Glen Coe, Argytl (hoy o lissett).
limbant.-Lough Amicrin, and near Onghterard, Callway! Adrigole, Kerry !
(imenf. Distilmtion.-Austria. Nomway. Sweden. Thited States.

This suall species differs principally from Cl. acutum in the slighty tomid imer margins of the cells, in the more rommed apices, and in the subglobose zygospore.

## :):. Closterium idiosporum West \& G. S. West.

(Pl. XXllt, figs. 20, 21.)
Closterium infosporum West \& G. S. West, Notes Ag. II, 190), P. B!ot, 1. 112, f. $6,7$.

Cells small, slightly curved, 20-2:3 times longer than their diameter, outer margin about $25^{\circ}$ of are, inner mangin very slightly tumid, median portion of cell with subparallel margins, gradually attemated to the apices, which are very narrow hut trmeate; cell-wall smooth and colourless ; chloroplasts with four or five premoids in a median series.

Kygospore narrowly ellipsoid, seen from the end circular; wall somewhat thick and densely scrobiculate.

Length $221-2: 38 \mu$; breadth $10-10.5 \mu$; breadth of apiees $1 . \bar{\gamma} \mu$; length of zygosp. $57.5 \mu$; hreadth of \%уœosp. $28.7 \mu$.

Enghano-Wicken Fen, Cambridge!
This species is proportionately shorter than Cl. fromm hreb., the apices being much less produced and truncate. It is somewhat larger than Cl. acutmm (Lyngl).) Bréb., and its apices are quite different. The zygospore is also peculiar.

## .) 4. Closterium lineatum Ehirenb.

## (Pl. XXIV, fig's. 1-ј.)

Closlerium lineatrm Ehrenb. 1834; Infus. 1838, p. 96, t. 6, f. viii ; Menerg. Synops. Desm. 1840, p. 234; Hass. Brit. Freshw. Alg. 1815, p. 372, t. ถs, f. 1 ; Ralfs, Brit. Desm. 1sks, p. 173, t. 30, f. 1; Arch. in Priteh. Infus. Ls61, p. $7 \%$, t. 3, f. 41, 12 ; Rabenh, Flor, Europ. Algar, III, 1stis, p. 1:30; Lund. Desm. Suec. 1871 , p. 79 ; Delp Desm. Subalp. 1877, p. 117, t. 17, f. 28-30; Kirchn. Alg. Schles. 187 s, 1). 139 ; Wolle, Desm. U.S. 1scit, p. 43, t. 6 , f. 16 ; Cooke, Brit. Desm. 18s6, p. 31, t. 12, f. 1, t. 15, f. 5; Hansgr. Prodr. Algenfl. Bohm. 18ss, p. 180; De 'Toni, Syll. Alg. 1ss9, p. siss; West, Alg. W. Irelind, 1892, p. 124; Lütkem. Desm. Attersces, 1893, ए. 543 ; Roy d Biss. Scott. Desm. 1894, p, 246 ; Nordst. Index Desm. 1896, p. 15s; West d G. S. West, Ilg. S. England, 1897, p. 4sz; (i. S. West, Alga-fl. Cambr. 1899, p. 113 ; West \& G. S. West, Alga-fl. Torks. $1900, \mathrm{p} . \mathrm{j}_{5} ; \mathrm{Ilg}$. N. Ireland, $1902, \mathrm{p}, 24$; Scott. Freshw. Plankton, I, 190:3, p. 525.
Arthrodia lineala Kiuntze, Kevis. gen. plant. 1891, p. 883.
Closlerium didymocorpum Schmidle, Alg. ans Nyassa-See, 1903, p. 65, t. 1, f. 15,21 .

Cells large, long and narrow, $16-2 \pm$ times longer than their diameter, moderately curved, median portion of the cell fainly straight and cylindrical, inner margin faintly and widely tumid, morlerately curved and gradually attenuated towards the apices, which are horad and truncately rounderl ; cell-wall striated, strise rather variable, from 10 to 20 visible across the cell, yellow-hrown or reddish-brown in colour; chlorophasts with about six ridges and a median row of nime to eleven pyrenoids; terminal vachole with a close cluster of several moving gramules.

Zygospore double; cach part ovoid or ovoid-ellipsoil, with thick, smooth walls.

Length $415-760 \mu$; brealth $17-3.5 \mu$; breadth of apices $7-10 \mu$; diann. of aygosp. +1-68\% $\mu$.

Evgland.-Cumberlaud! Westmoreland! (Bissett). Lancashire! (Rulfis). W., N., and E. Yorks! ('heshire (Roy). Leicester (Roy). Essex! Cambrilge! Warwick (Wills). Surrey! Kent! Sussex (Rallis) ; with zygosp. (.Jemerr). Hants! (Rou). Devon! Cornwall! (Rulfis) ; with zygosp. (.Joshmer).

Wales.-Carnarvon (linlfs), Capel Curig! (Comke s IVills), and Suowlon!, Carnarvonshire. Dolgelly, Merioneth! (Rulfs).

Southan.-Sutherland!, Ross, Inverness, Aberdeen!, Kincardine, Forfar, Perth! (Roy \& lissett). Harris, Outer Hebrides!

Mreland.-Donegal (with zygosp.)! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down! Antrim!

Geofr. Distribution.-France. Belgimn. Germany. Austria and Galicia. Hungary. Italy. Norway. Sweden. Demmark. Bornholm. N. and S. Russia. Faeroes. Japan. India. Ceylon. Sumatra. Australia. New Zealand. Central and E. Africa. United States. Mexico. Brazil. Ecuador.
This species is characterised by its relative length, its incurved extremitics, its striated membrane, and its peenliar donble zygospore. The number of strix varies considerably, almost more than in any other species of striated Clostorium, but in all cases they are strong and well marked.

## Forma spirostriolata nob.

Cl. lineulum var. $\beta$ Ralfs, Brit. Desm. 1848, p. 173.
Cl. linealum b. Forma slriis longiludinatibus spiratibus Rabenh. Flor. Europ. Algar. III, 1868, p. 130; Lioy \& Biss. Scott. Desm. 1894, p. 246.

Strix spirally disposed ; otherwise similar to the type.
Scotland.-Near Loch Dawan, Aberdeen (Roy of Bissett).

### 5.5. Closterium Ralfsii Bréb.

(Pl. XXIV, figs. 6, 7.)

[^11]Infus. 1861, 1. 746 ; Rateonh. Flor. Europ. Ilgar. III, 186s, p. 135; Wollr, Desm. U.S. 1sst, 1'. Hi, t. 7, f. 10; C'orke, Hirit. Dusmı. 1ssif, ].:30,
 syll. Dle. 1ss!, p. St7; Roy d liss. Scott. Desm. 1891, p. 2is; Nomlst.


? C7. Retjsii 1. typicum Klelos, Desm. Ostpreuss. 1879, p. 1s, t. 2, f. (i) b, c. Arthooliu Lirelfsti Kuntze, Revis. gen. plant. 1891, p. 884.

C'ells laroge, $6-8$ times longer than their diameter, moderately curved, outer margin about $35^{\circ}$ of arce, inner margin much inflated for over half the length of the cell, somewhat suddenly attenuated towards the extremities, which are drawn ont, somewhat narrow, and slightly incurved ; apices obtuse ; cell-wall finely striated, 2S-3:3 strize visible across the cell, yellowhrown or reddish-brown in colour; chloroplasts obscurely ridged, with a median series of about five pyrmoids; terminal vacuole with four or five large moving granules clustered together to form a single mass.

Zygospore unknown.
Length : $315-454 \mu$; breatth $42-50 \mu$; breadth of apices ! $-10 \mu$.

Fhaland. - Westmoreland! (lulfs). Lancashire (hirlfis). W. Yorks! Norfolk (Coolie). Sussex (Rulf:s). Kent! (Rulfs). Cornwall (Murgmoml).

Whals. - Carmarvon (hults) and C'apel C'urig! (Cooke f Wills), Ciarnarvonshire. Dolgelly, Merioneth (Rulfis).

Scotland.-Ross, Aberdeen, Kincardine, Forfar, Argyll (Ro!! \& Rissett). Rhiconich, Sutherland!

Gereff. Distribution.-France. Germany. Austria and Galicia. Norway. Sweden. Bormholm. Iceland. Greenland. Siberia. Australia. Central Africa. United States. Brazil.

The type of Cl . Ralfsii is one of the rarest and most striking of British Closteria. We have seen very few specimens of it.

## Var. hybridum Rabenh. (Pl. XXIV, figs. 8-13.)

Closterium Relfsii var. hybridum Rabenhı. Krypt. Fl. Sachs. 1863, 1). 174 ; Flor. Europ. Algar. III, 1868, p. 135 ; Ds Toni, Syll. Alg. 1859, p, sts;

West, Alg. W. Ireland, 1892, p. 121; Alg. Eng. Lake Distr. 1892, p. 720 ; West © G. S. West, Desm. Singapore, 1897, p. 159 (inclus. forma major); Ag. S. England, 1897, p. 462; Some Desm. U.S. 1s!s, 1. 28 t; Chlorophy. Koh Chang, 1901, p. 166 ; Freshw. Alg. Ceylom, 1!02, 1 , 135.
Cl . Lineutum Ehrenb. var. suntvicense Nordst. Alg. aq. dulc. et Char. Sandvic. 1878, p. 9, t. 1, f. $10-12$; Freshw. Alg. N. Zeal. 1888, p. 6s; Borge, Süssw. Chlor. Archang. 1894, p. 15.
Cells longer than in the type, 12-18 times longer than their diameter, somewhat variable in size, ventral inflation less prominent, apices subtruncate; $2: 3-3+$ striæ visible across the cell.

Zygospore double, each part ovoid-globose, smooth and thick-walled.

Length $306-700 \mu$; breadth $21-44 \mu$; breadth of apices $6-11.5 \mu$; diam. zygosp, $56 \%-80 \mu$.

England.-Near Bowness, and Loughrigg, Westmoreland! Hawkshead, Lancashire! P'uttenhan and Thursley Commons, Surrey! New Forest, Hants. (with zygosp.)!

Ineland.-Lough Amierin, Galway! Cromagloun, Kerry !

Geogr: Distribution.-Bohemia in Austria. Sweden. N. Russia. Ceylon. Siam. Singapore. New Zealand. Australia. Sindwich Is. United States.
This variety is widely distributed in many parts of the world and exlibits considerable variation. It is more tumid in the ventral margin, more attemated towards the extremities, and more finely striated than Cl. lineatum Elhrenb). It resembles very closely Cl. decorum Bréb., and should be carefully compared with that species.

## 56. Closterium decorum Bréb.

## (Pl. XVII, figs. 7, 8; Pl. XXVIII, figs. 1-3.)

Closterium decorum Bréh. Liste Desm. 1s50, p. 151, t. 2, f. 39 ; Mreh. in Pritch. Infus. $18(61, ~ p .749$; Vabenh. Flor. Europ. Algivr. 1II, 14is, 1. 137 ; Kirchn. M骂. Schles. 1578 , p. 139 ; ? Wolle, Desm. U.S. 188t, p. 43, t. 7, f. 1 ; Mansg. Prudr. Mgenfl. Böhm. 1888, p. 181 ; Nordst. F'reshw. Alg. N. Keal. 1858, p. 67; De 'Toni, Syll. Alg. 1889, p. 835 ; Roy \& Biss. Scutt. Desm. 189k, p. 2t1; Nordst. Index Desm. 1896, p. 98 ; West d G. S. West, Mgra-fl. Yorks. 1900, p. 51.
Cl. crussum Help. Desm. subalp. 1877, p. 121, t. 15, f. 22-30; Hansig. Prodr. Algenf. Böhm. 188s, p. 180 . [This is not Cl. crussum Rabenh. 186i3.]
Cl. Ralfsii Bréb. a. Delpontei Kilebs, Desm. Ostprenss. 1879, p. 17, t. 2, f. 5 ( $\ell, 5 c, 6 a$.
Cl. Delpontei Wolle in Bull. Torr. Bot. Clab, 1ssi), p. ̈̈; Woller, Freshw.
 d Diss. Scott. Desm. 1891, 1. 21H; West d (i. S. West, Some 1) Wem.

Arthrodice decora Kuntze, Revis. gen. plant. 1891, p. S8:3.

- 1. Delpontei Kimatze, l. c.

Cells generally large, 12-20 times longer than the irdiancter, curvature variable, often slightly or moderately curved, rarely somewhat sigmoil, outer margin from $20^{\circ}$ to 5.5 of arc, imer margin concave, with the median portion slightly but broadly tumid, gradually attennated towards the apices, which are somewhat drawn out and truncately rounded; cell-wall striated, with $1+18$ striae visible across the cell, strawcoloured or of a yellowish-brown colour ; chloroplasts ridged, with a single series of six to eleven pyrenoids; terminal vacuoles with several moving granules.

Zygospore subglobose and smooth.
Distance hetween apices (length) 370-720 $\mu$; lneadth 2.) $46 \mu$; breatth of apices $6-10 \mu$.

England.-Boston Spa, W. Yorks!
Wares.-Capel Curig, Camarvonshire!
Scothand-Brin, Inverness; Bourtie and Slewdrum, Aberdeen; near Loch Mhare, and Forest of Athole, Pertlı; Glen Coe, Argyll; Glen Clova, Forfar (Lion f. lissett).

Lieland.-Clough, Antrim!
(imafi. Distribntion.-France. Germany. Anstria and Galicia. Hungary Italy. Portugal. Nomaty. Sweden. Poland. N. Russia. Ceylon. Sumatra. Java. Australia. New Zealand. United States.

The figure given by Brébisson of Cl. decormm is not a goond one, but at the same time it is sufticiently good to recognise its identity with ell. Delpuntei (Klels.s) Wolle. We have given
 of Delponte's figures (l'l. XXT, figs. 1, 2) for purposes of comparison with catch other and with our own (Pl. XXV, fig. 3.
(\%. decornm is a very rare British species, although it is freguent in tropical and subtropical combtries. It has a slight though variable curvature, and it also varies much in relative length and breadth.

Its nearest ally is（！Rulfsii Breb．var．hylridum．Rabenh．， foom which it differs in its wrater curvature，its greater semblerness，especially towards the apices，and in its fewer strie．

## 57．Closterium laterale Nordst．

（Pl．NXV，figs．f．戶斤．）

> Closterium laterule Norlst．in Wittr．\＆Nordst．Alg．Exsic．1880，no． 383 ； fasc． $21,18 s 9$ ，p． 4 ij ；De Toni，Syll．Aly． 1 ss 9 ，p．Sts ；G．S．West．Alga－fl． Cambr．1s！！，p．11：．
> Arthrodialuteralis Kuntze，Revis．gen．plant．1891，p． 883.

Cells large，stout， $8-11$ times longer than their diameter，slightly curved，outer margin $4.3^{\circ}-65^{\circ}$ of arc， imner margin broadly subtumid，gradtally attentated to the apices，which are trumeate or subtrumeate ；cell－ wall finely striated，f．5－60 strixe visible across the cell，straw－coloured；chloroplasts with ahout ten rilges and a single series of many pyrenoids in each ridge ； terminal vacuoles with about ten moving gramules．

Zygospore unknown．
Length 284－5．3．5 $\mu$ ；breadth $11-60 \mu$ ；breadth of apices $7-8 \mu$ ．

Entann．－Dernford Fen，near Shelford，Cambrilge ！ ＇Tremethick Moor，Cormwall！
（icogr．Distribution．－Brazil．

## 58．Closterium Kützingii Bréb．

> (Pl. XXV, figs. (i-11.)

Stateroceras intermalium küt»．spee．Alg．1s49，p． 166.
Clusterium Kützingii Bréb．Liste Desm．1856，p．156，t．2，f．10；Kirehn． Alg．Schles．187s，p．1ヶ1；Nordst．Alg．et Char．I，1s80，p．1；Wolle， Desm．U．S．18st，p．17，t．s，f．s ；Cooke，Brit．Desm．18s6，p．34，t．．J，f． 3 ； LLansg．Prodr．Algenfl．Böhm．18s8，p．183；Nordst．Freshw．Alg．N． Zeal． 1888, p． 70 ，t．3，f．20；De Toni，Syll．Alg．1889，p． 8.50 ；West， 1 lg ． W．Ireland，1892，p．125；Alg．Fing．Lake Distr．1s92，p． 720 ；Roy d Biss． Scott．Desm．1891，1． 245 ；Nurdst．Index Desm．1896，p．152；West \＆ G．S．West，Alg．S．England，1s97，p．4s：；G．S．West，Variation Desm． 18199 ；Aga－fl．Yorks．1900，p． 57 ；Alg．N．Ireland，1902，p． 24.
Ct．setucenm Ehrenb．b．intermetium Rabenh．Flor．Europ．Algar．III， 1865, p． 136.
Cl．rostratum Ehrenb．1．Kïtzingii Klebs，Desm．Ostpreuss．1879，p． 18.
Aithrorliu Kützingii Kuntze，Revis．gren．plant．1891，p． 883.

Cells of medium size, 20-28 times lomger than their greatest dimmeter, almost straght, median part of coll fusiform-lanceolate, outer and inmer mangins almost equally convex, attemuated towirds each extremity into long, colourless, setaceons processes, apices slightly incorved, rombded, and often slightly swollen; cellwall colourless or straw-colomred, striated, 10-18 strixe visible across the cell ; chloroplasts with a median row of four or five pyremoids, teminating at the base of the apical processes; terminal vacuoles large, situated at the hase of the apical processes, and containing from six to nine moving gramules.

Kygospore subrectangular, sides straight or concave, angles truncate or truncately rounded.

Length $370-50$ (even up to 600 ) $\mu$; hrealth 16 - $23 \mu$; brealth of apices $2 \cdot 8-3 \cdot 8 \mu$; greatest breadth of aygospore fo-j1 $\mu$; shortest breadth of zygosp. $35-36 \mu$.

Engatand.-Westmoreland (zygosp). from Blea 'liar'u) ! Lancashire! W. and N. Yorks! Cheshire, with zygosp. (Roy). Leicester (Ro!!). Essex! Suffolk! Cambridge! Oxford (zygosp. from near Goring') ! Surrey! Hants! (Bemmett). Cormwall!

Wales.-Llyn Idwal!, llyn Ogwen!, Capel Curig (with zygosp.) ! , Llyn Gwynant!, and Llyn Padarn, Carnarvonshire! Llyn Coron, Anglesey!

Scothand.-Sutherland!, Ross, Inverness, Aberdeen ! , Kincardine, Forfar ! , Fife ; zygosp. from near Gillan in Strachan, Kincardine (Roy o• lisesett). Harris and Lewis, Outer Hebrides! In the plankton of Loch Thy and Loch Achray, Perth! and of Loch Doon, Ayr!

Ireland.-Donegal! Galway ! Kerry (zygosp. from Kylemore) !
(íooff. Distribution.-France. Germany. Austria and Galicia. Norway. Sweden. Bormholm. N. and Central Russia. Faeroes. Greenland. India. Ceylon. Siam. Australia. New Zealand. Central Africa (var.). Madagascar. United States. Brazil. Ecuador. Paraguay. Patagonia.
Cl. Kützingii is a more elegant species than Cl . rostrutum,
the actual body of the Chostrinm being propertionately smatler and the apieal processes relatively lomere. It is generally less curved than (7. rostratum, ant the cell-wall is more conspicuously striated. The angles of the zygospore are also more rounded.

Var. vittatum Nordst. (Il. XXV, figs. 1®, 1:3.)
(2. Kutzingii var. viltutum Nordst. 1sm7; Freshw. Alg. N. Zeal. 1sss, 1. $\overline{7}(1$, t. 3, f. 21; De 'Ioni, Syll. Alg. 15s:', p. 850.

Cell-wall costate, about j) or (i costa visible across the cell.

Zygospore precisely similar to that of the type.
length :3:30- $4: 30 \mu$; breadth $1: 3: 5-18 \mu$.
Encansu,-Near (Goring, Oxford (with zygosp) )
(icorgr. Distribution.-New Kealand.
This is a very striking variety which we have only oltained once. The proportions of the vegetative cells and the form of the aygospore are exactly like those of typical Cl. Kïtzimgii.

## 59. Closterium rostratum Ehrenb.

(Pl. XXVI, figs. 1-5.)
Chosterium iostrutum Ehrents. Entwick. Lebends. d. Infus. 1832, p. 67; Infus. 1838, p. !7, t. 6, f. x ; Menegh. Synops. Desm. 18t0, p. 234; Hass. Brit. Freshw. Alg. 1s1.7, p. 373, t. 87, f. 6; Kalfs, Brit. Desm. 1848, 1. 175, t. 30, f. 3; De Bary, Conj. 18.5s, p. 50, 54, t. 5, f. 26-30; Arch. in l'ritch. hufus, 1861, p. 719, t. 3, f. 41; Rabemh. Flor. Europ. Alg. 1Il, 1s6s, p. 135; Delp. Desm. subalp, 1s77, p. 118, t. 17, f. 63-68 $\mu$; Kirchm. Ilg. S'chles. 1875, p. 141; Wolle, Wesm. U.S. $1851, \mathrm{p}$. 46, t. 8 , f. 1-3; Cooke, Brit. Desm. 1ssfi, p, 33, t. 1f, f, 3; Hamsy. Prodr. Algentl. Bohm. 1siss, p. 1s:3; De 'Toni, Syll. Alg. 1ss!, p. 8.5l; West, Alg. W. Ireland, 1s!2, p. 12:5; Roy d liss. Scott. Desm. 1s9t, p. Dis; Nordst. Index
 Alpa-fl. Yorks. 1900, p. 57 ; 11 g . N. Helamd, 1902, p. 21 .
Cl. líus Nitzseh in Kitz. Syn. Diat. 18331, p. 5:5, t. 18, f. 81.
(Cl. cumatum Corda in Alm. d. Carlsbad. 1s:35, p. 190, 209, t. 5, f. (66.
(l. rostrutum at. typicum Klebs, Desm. Ostpreuss. 1879, p. 18.

- Withrodie rostrata Kuntze, Revis. gen. plant. 1891, p. 88.

Cells of medium size, $12-18$ times longer than their greatest diameter, slightly comved, median part of cell fusiform-lanceolate, immer margin more convex than onter margin, extremities prolonged into long, colom'less processes which are slightly incurved, apices obtuse
and slightly dilated; cell-wall straw-coloured, finely striated, $2 \boldsymbol{2}$ - 27 strix visible across the eedl ; (chloreplasts with fom or five promodis ; terminal vacomes large, situated within the hase of the apical processes. and contaming from twele to fiftecn moving granules.

Zyonpore somewhat rectangular, with hollow sides. anoles trmate and concave.

 minimum hreadth of zygosp. S. $10 \mu$.

Evatavo.- ('mmberland (with \%ygosp.) ! Westmore-

 Leicoster (Roy). Limcolnshire! ('ambrikge! Warwick (Hills). (iloncester (limlf). Surrey (with zyerosp.)!
 Devon! (ormwall (Talf*) ; with \%ygosp.!

Wabes.-Fairly general!
Scothand.-Gencral! (Roy \& Riswit!). Lewis, Outer Hebrides! Orkneys! Oftem in the freshwater plankton. Irebano-Donegal! Galway! Kerry! Dublin and Wicklow (Acher). Antrim!

Cieorf: Ihistrilntion.-France. Germany. Austria and Galicia. Hungary. Italy. Portngal. Norway. Sweden. Bornholm. Poland. N., ('entral, and S. Russia. Finland. Facroes. Iceland. Nova Kembla. Greenland. Siberia. dapan. C'eylon (form). E. Africa. United States. Brazil. Ecuador. Paraguay.

This species is generally distributed all over the British fslands, and in boggy ditches and ponds it often ocemes in abmulance. It is a stont species and is very frequently obtaincel in the conjugated state, panticularly in the sonth of England. The apical processes are monch shorter and more rolmst than those of Cl. Kïtzingii, and the cell-wall is more finely and delicately striated.

Var. brevirostratum West. (Pl. XXVI, figs. (6-S.)
Cl. rostratum var. Wrevirostrutum West, Dosm. Mass. 18s!), p. 17, t. : , f. G; Nomlst. Index Desm. 1896, p. 225; West \& G. S. West, Ag. S. England, 1897, p. 482.

C'clls with shorter apical processes than in the typical form, the borly of the cell heing gradually attennated to the apices; strize often searcely discernible.

Length 188-365 $\mu$; hreadth $18-27 \mu$; maximum lneadth of zygospore $7: 3-77 \mu$; minimum lireadth of $4 y$ gosp. $50-66 \mu$.

Evilayl- Esher West-end ('ommon, and Wimbledom Common (with aygosp.), Surey !

Girogr. Distrilution.-Gicrmany. Portugal. United States.

## (60. Closterium setaceum Ehrenb.

(Pl. XXVT, figs. 9-13.)


#### Abstract

Closterium setaceum Ehrenb. 1834; Infus. 1838, p. 97, t. 6, f. ix ; Menegh. Synops. Desm. 1840, p. 235; Hass. Brit. Freshw. Alg. 1845, p. 373, t. 57 , f. 7 ; Ralfs, Brit. Desm. 1845, p. 176, t. 30, f. 4; Arch. in Priteh. Infus. 1861, p. 750 ; Rabenh. Flor. Europ. Algar. III, 1s68, p. 136 ; Kirchm. Alg. Schles. 1878, p. 112 ; Wolle, Desm. U.S. 1s8., p. 47. t. S, f. 6. 7, 9-11; Cooke, Brit. Desm. 1ss6, p. 34, t. 14, f. 4; Hansg. Prohl. Algenfl. Böhm. 1888, p. 181; De Toni, Syll. Alg. 1859, p. 8.50; Roy \& Biss. Scott. Desm. 1894, p. 249 ; Nordst. Index Desm. 1896, p. 232; West \& G. S. West, Alg. S. England, 1897, p. 482 ; Alga-fl. Yorks. 1900, p. 57 ; Alg. N. Ireland, 1902, p. 24. Cl. rostratum Ehrenb. c. setaceum Klehs, Desm. Ostprenss. 1879, p. 18. A'throdiu setacea Kmintze, Revis. gen. plant. 18!11, p. 884.


Cells small, very slender, almost straight, 25-36 times longer than their greatest diameter, median portion of coll small, fusiform-lanceolate, both maroins equally convex, extremities prolonged into slender, setaccous, colourless processes, which are slightly incurved and obtuse at the apices ; each apical process is about three-eighths the length of the cell ; cell-wall colourless or pale straw-colomed, finely striated, about 13 fine striations visible across the cell; chloroplasts with two pyrenoids; terminal vacuoles within the base of the apical processes, with three or four moving granules.

Kygospores subpuaduate or cruciform, with deeply concave sides and truncate angles.

Lengtlı $2.27-450 \mu$; breadth $7 \cdot 5-12.5 \mu$; breadtl of apices $(1 \cdot \overline{-1-5} \mu$; breadth of zygosp. $30-32 \mu$.

ExGdant- ('mmberland! Westmoreland! (Bissett). Wr. amd N. Yorks! ('heshire (lom). Lacicester (loy!).
 (zyonp. from 'Thursley ('ommon)! Susex (Rulf: ). Hants (bemmetl). Devon (Remmell). Cormwall!


Wates. - Bettws-y-coed (Roy), Capel Curig! (romlie d. Wills), near Dolhardarn ('astla!, and Llyn P'adarn!, ('armanonshire! Dolgelly, Meriometh (Rimlis).

Soothant--Ross, Inverness, Aberdeen, Kincardine, Forfar, Perth ! Argyll (lion \& laiswett). Tn the plank$10 n$ of Loch Doon, Ayr (with zyoosp.)! Sutherland! Harris and Lewis (not meonmon in the plankton; with zygosp. from near Balallan), Outer Tebrides! Orkners! Shetlands!

Irelano. - Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Awher).
ficong. Distribution.-France. Germany. Anstria and Galicia. Ttaly. Norway. Swerlen. Demmark. Bormbolm. N. and S. Russia. Japan. Ceylon. Smmatra. Anstralia. Madagascar. United States.
Cl. setaceum is much the slenderest of the "beaked" Clossterict. The body of the cell is relatively rery small, and the apical processes are long and rery thin. The striolations on the cell-wall are very faint and in some of the smaller spectmens are searecly evident.

It is a much rarer species than either Cl. mostratum or ('). Kïtzingii.

## Excluped Spectes.

 t. ©. f. t.8. For the most part Algat recorded moller this name have been species of Rlmphintimm (or Anliis/ronlesmms).

Clostrimm Cirifilliii Berk. in Amm. Mag. Nat. Hist. 185) t, p. 2.)(f, t. 14, f. 2 (= Rhuphillimm sp.).
li. I'oint of division always fixed (at the isthmms).

> Tribe \%. Cowmater.

The Desmirls of this tribe exhibit great diversity of size and form, and they possess at least theer planes of symmetry. Most of them are solitary, but others are colonial, forming filamentons or more or less spherical ageregates. The cell-wall consists of two firm layers furmished with minute pores. 'The onter layer is frequently ormamented with spines, warts, gramules, or other excrescences, and the cell itself is often lobed.

No periodical growth takes place, the cell becoming adnat very soon after division hy the mature growth of the younger semicell.

The wall of the older semicell overlaps the wall of the younger semicell, and the edges of both new and old walls are bevelled so as to fit firmly together and at the same time present a plane surface. Thus, the two semicells, which are of different ages, are firmly joined along an oblique plane which runs romed the isthmus.

It is much the most important tribe of the Desmidiacer, and it includes some of the largest and bestknown genera.

The three genera Stroptonemu, Desmidium, and Gymmozy!n are at onee separated from the rest of the genera in this tribe by a peculiarity in the division of their colls, a girdle-like thickening being developed from the point of division at the isthmes, which projects backwards into each of the older semicells during division.

Section a. The cell-wall at the point of division (whicl is always at the isthmus) remains perfectly plane during division.

Genus 10. DOCIDIUM Brétl. ISFt; cm. Landell, 1871.
Bréb. in Dict. univ. hist. nat. 1S.1.1, p. 92.
Luml. Desm. Suec. 1871 , p. $8:$ |characters more strictly drawn upl].
C'ells straight, much elongated, more or less cylindrical, circular when viewed from the apex, slightly comstricted in the middle; apicestruncate and smooth; base of each semicell inflated and lomgitudinally plicate; one axile chloroplast in each semicell, with several irregular ridges, often partially applied to the cell-wall, and containing a number (about 6-8) of pyrenoids disposed in a more or less median series; with no conspicuons racuole near the aper; cell-wall smooth, faintly punctate, or delicately striolate.

Much confusion has at different times existed concerning the gencra Docilium and Plowotaruium, and they are yet regarded by many anthors as mowortly of separation. For some years past we have accepted the characters of the gems Docitium as they were laid down by Lmodell in 1871 . The gems thes includes a few species which are marked off from species of the genns Plewrotanimm by very decisive characters, the most important of which are the central or axile chloroplasts and the plication of the base of the semicells.

The most important feature of the genns is mudonlitedly the plicaterl base uf the semicells accompanied by a tromeate, smouth apex.
'There are only three British species.

## 1. Docidium Baculum Bréb.

(Pl. XXVII, figs. 1-(i.)
? Closterium Baculum Bréh. Alg. Falaise, 1835, p. 59, t. S.
Docidium Paculum liréb. in lict. univ. hist. nat. 1844, p. 92 ; Préls. in Ralfs' Brit. Desm. 1848, p. 15s, t. 33, f. 5; Arch. in Pritch. Infus. 1stis, p. 7.45, t. 3, f. 38 ; Land. Desm. Suec. 1871, p. 88; Kirchn. Alg. Schles. 1s7s, p. 144; Cooke, I'rit. Desm. 1886, p. 16, t. 7, f. 4; Hansg. Prodr. Algenfl. 1\}öhm. 18s*, p. 18s; De Toni, Syll. Alg. 1859, p. sie; Börg. Desm. Brasil. 1890, p. 933 ; West, Alg. W. Ireland, 1592, p. 117 ; Roy d Biss. Scott. Desm. 1891, p. 241 ; West d G. S. West, Alg. Madag. 1895, p. 4.t, t. 5 , f. 30 ; Sume N. Amer. Desm. 1596, p. 234, t. 12, f. 35; Nordst. Index Desm. 1596, p. 55 ; West \& G. S. West, Alg. S. England, 1s97, p. 4si2; Alga-fl. Yorks. 1900, p. 58 ; Alg. N. Ireland, 1002, p. 25: F'reshw. Alg. Ceylon, 1902, p. 141.
Closterium Sceptrum Kiitz. Phycol. germ. 1845, p. 133.
Penium Bucutum Kütz. Spec. Alg. 1849, p. 168.

```
Pen. (Docidium) Sceptrum Kütz. Spec. Alg. 1849, p. 168.
Pleurotænium Buculum (Bréb.) De Bary, Conj. 18.5s, p. 75; Delp. Desm.
 subalp. 1577, p. 130, t, 20, f. 12-16.
```

('ells small, narrowly subcylindrical, 1.j-2.) times longer than their diameter; semicells subeytindrical, witll a prominent basal inflation, which is plicated and furnished with a ring of hasal granules (of which firom five to seven are visible across the cell), with a slight constriction above the basal inflation; gradually or sometimes scarcely attenuated from the middle of the semicell to the apex, which is smooth and truncate; cell-wall smooth.

Zygospore unknown.
Length 148-269 (even up to 348 ) $\mu$; brearth of hasal inflation $9 \cdot 5-13 \mu$; hreadth of apex $4 \cdot 8-10 \mu$.

Enciand.-Westmoreland! (Rulf*). W. and N. Yorks! Lancashire (lirlfis). Gloucester (linlfs). Sussex (Rulfs). Hants! Cornwall (Rulfs).

Wales.-Capel Curig! (Coolie of Wills), and near Dolbadarn Castle!, Carnarvonshire. Llyn Coron, Anglesey !

Scomband.-Widely distributed, but scarce! (Ro!! d. liiseett state "general"). Not uncommon in the Outer Hebrides!

Ireland.-Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down!

Ctponfr. Distribution.-France. Germany. Calicia in Austria. Hungary. Ttaly. Portngal. Normay. Sweden. Demmark. Bornholn. N. and S. Russia. India. Ceylon. Java. Madagascar. E. Africa. United States. Brazil. Guiana. Paraguay.

Although this is the most frequent British species of the gemus, it is nevertheless somewhat rare. It is rarely found exeept in situations in which Desmids are abundant.

## 2. Docidium undulatum Bail. (Pl. XXVII, figs. 7-10.)

Docidium undulatum Bail. Microscop. observ. 1850, p. 36, 1. 1, f. 2; Areh.




Pleurotrnium undulatum Rabenh. Flor. Europ. Alg. III, 1868, p. 104.
Docidiem dilatutum Lund. Desm. Suec. 1871, p. 88, t. 5, f. 12; Kirchn. Ag. Schles. 1s78, p. 144; Wolle, Desm. U.S., 18s4, p. 50, t. 50, f. 32; De Toni, Syll. Alg. 1ss9, p. sis; West, Alg. W. Ireland, 1s.92, p. 11s, t. 19, f. 5; West i G. S. West, Some Desm. U.S. 1898, p. 255.

Cells small, elongated, $11-20$ times longer than their diameter; semicells with $7-8$ nodulose undulat tions along each margin; apices tilated, truncate, with rounded angles; basal plications 11-12, furnisherl with granules as in $D$. Buculum (about 7 visible across the base of the semicell) ; cell-wall smooth.

Zygospore unknown.
Length $178-246 \mu$; breadth (maximum) 12-16 $5.5 \mu$; breadth of apices $11 \cdot 5-15 \mu$.

Scotland.-Poolewe, Ross; Glen Dole, Forfar; Ramnoch, Perth (Ro! \& Bissotl). Loch Morar, Inverness! Rhiconich, Sutherland! Near Tarbert, Harris; near Balallan and near Callernish, Lewis, Outer Hebrides !

Trmann.-Near Oughterard, Kylemore, and Oorid Lough, Galway! Glengariff (Archer), Cromagloun, Tore Mt., and Glen Caragh, Kerry!

Georfi. Distribution.-France. Norway. Sweden. United States. Guiana.

The Desmid we have placed moder Docidium umdulatum Bail. is identical with that recorded by Lundell from sweden monder the name of "Docidium dilntntum." It agrees mnch more closely, howerer, with Docidium umtulatum Bail. than with the plant recorded by Cleve as I'loneotanium dilatatum. It possesses the undulated semicells exactly as figmred by Bailey, and also the dilated, truncate apiees. Bailey remarked that hoth the base and apex of the semicells were plicated, but all the British and American specimens we have examined have only a plicated base. In fact, we know of no Docidium with a plicated apex. Wolle's figure of Docilium undulatum (Desm. U.S. 1884, pl. ii, fig. 5) does not represent Bailey's species.
D. undulutum is a very rare British species, and appears to be principally confined to the western areas of Scotland and Ireland. $\dot{I}_{11}$ these districts it is sometimes met with abmolintly ; it is quite a characteristic species and seems to be an Atlantic type.

Forma perundulata nol. (Pl. XXVIT, fig. 11.)
Docirizem dilatatum Lund. forma, West, Alg. W. Ireland, 1ste, p. 11s, t. 19, f. 6 .

Cells rather more elongate; semicells with 10-1:3 undulations along cach lateral margin.

Length $200-262 \mu$; breadth (maximum) $12 \div-14 \mu$; breadth of apices 11-12 $\mu$.

Treland.-Cromaglom, Kerpr!
(isoofr. Distritutiom.-United States.
Var. dilatatum (Cleve) mol. (Pl. XXVTI, fig. 12.)
Pleurotrenium dilatatum Cleve, Sverig. Desm. 1864, p. 494, t. 4, f. 6.
Docidium dilatatum Lund. var. subundulatum West, Als. WV. Ireland. 1892, p. 118 , t. 19 , f. 7.
Cells relatively a little shorter; semicells less deeply modulated, generally slightly tumid about the midde, and with a slight constriction above the basal undulation; cell-wall often strongly punctate.

Length $187-205 \mu$; brearth at hase of semicells 15:5-16 $\mu$; breadth at middle of semicells 1 ( $-17 \mu$ : breadth of apices $1: 3-1+\mu$.

Scotland.-Rhiconich, Sutherland!
Ihefand.-Near Oughterard, Galway! Glen Caragh, Kerry!

Ceogr. Distribution.-Sweden. Lapland in Russia.
The apices of this variety are as dilated and trmeate as those of the type, but the marginal undulations are much less pronomed, and the semicells are slightly tumid.

```
8. Docidium nobile (Richt.) Lund.
```

(Pl. XXVII, figs. 1:3-15.)
Pleurotirnium mobile Richter in Inclwigia, 1865, p. 129, f. 1-3; Rabenh. Flor. Europ. Algar. III, 1SGs, p. 1t2.
Jocidirm mobile (Kicht.) Lund. Desm. Suec. 1s71, p. ss; Areb. in Mior. Journ. xii, 1872, p. s6; Cooke, Brit. Desm. 1886, p. 13, t. 7, f. 3; De Toni, Syll. Alg. 18s9, p. 873 ; Koy \& Biss. Scott. Desm. 1891, 1, 241.
Cells small, elongated, 10-12 times longer than their diameter ; semicells very gradually tapering from base to apes, base distinctly plicated, lateral margins with about 8 undulations; apices not conspicuously
dilated, convexo-truncate; cell-wall fincly and densely longitudinally plicate-striate.

Kygospore manown.
Length 210-260 $\mu$; breadth 20-:35 $\mu$ (licheter).
Length $175 \mu$; breadth 1 \& $\mu$ (Lumblel).
Sothand.-Poolewe, Ross; ('ambus O'May, Aberdeen; Bishop's Dam and Dalhnake in Strachan, Kincardine; near Kingshouse, Argyll (Roy (emul libsselt).

Imeand.—Glengariff, Kerry (Archer').
liromr. Distribution.-Germany. Sweden. Doland.
We have never seen this species from any part of the word. It apparently differs from $D$. umhulatum Bail. in being of stonter huild, with less dilated apices, and in the structure of the cell-wall. We give Richter's and Lundell's measmrements separately, as there is considerable discrepancy letween them. The figmes we give (I'I. XXVII, figs. 1:-15) are careful copies of Richter's figures in ' Itedwigia.' 'These fignres, atcording to Richter's stated magnification, measure $3: 30-353 \mu$ in length and $30-33 \mu$ in breadth.

## Genus 11. PLEUROTeNIUM Niig. 1849.

> Näs. Gatt. einz. Alg. 1819, p. 101.
> Rabrenh. Flor. Europ. Algar. 1II, 186S, p. 110.
> Kirchm. Alg. Schles. 1878, p. 144.
> Hansg. Prodr. Algenfl. Böhin. 1888, p. 189.
> De 'Ioni, Syll. Alg. 1889, p. 895.

Cells straight, elongated and eylindrical, viewed from the end circular, slightly constricted in the middle, with a prominent and usually projecting suture; semicells commonly with an inflated base, which is never plicate, lateral margins straight, undulate, or nodulose; apices truncate or trinicately romeded, frequently plicated round the periphery or furnished with a ring of tubercles; cell-wall rarely smooth, commonly punctate or minutely scrobiculate, sometimes gramulose or papillate. Chloroplasts parietal, numerous, arranged in irregular longitudinal bands which are frequently broken up into small rhomboidal or lanceolate masses, each with a single pyrenoid.

This gems is distinginished from Docitium by the entire absence of plications at the base of the semicells, by the commonly tubercnlated or peripherally plicated apices, and by the natire of the chloroplasts.

Fiew species of the genms are destitute of tubercles romed the apex, and in some, such as P'l. Sceptrom, the inbereles are replaced by sharp teeth. 'The gemus is poorly represented in the British Islands, being most abmodantly met with in the tropies. Many of the tropical species are very prettily marked, and some of them are attached by their tuberenkated apices so as to form long filamentons colonies.

The nature of the parietal chloreplasts is well illustrated by the drawing of the semicell of Pl. cormatum on PI. XXVIII (fig. 4). The central cavity of the cylindrical semicells is ocempied by a number of large flow vacuoles, the terminal one firequently containing a mass of small moving grammes. Under abnormal conditions these gramules make their appearance in all the vacuoles of the cell.

At the isthums or point of junction of the old and new semicells is a thickening of the cell-wall, termed the suture. 'this projects evenly as a circular rim all round the middle of the cell, and as a rule the larger the species the more prominent the suture. It is of no use as a specific character.

There are nine British species,* which are best arranged as follows :-

Section A. Cells cylindrical or slightly attenuated; cud view circular.

* Cell-wall smooth, punctate, or granulate.
$\dagger$ Apices furnished with a ring of tubercles.

1. Pl. coromutum.
2. Pl. eugeneит.
3. Pl. tiuncatum.
4. Pl. Ehrenbergii.
5. Pl. tridentulum.
$\dagger \dagger$ Apices without tubercles.
6. Pl. Trabecula.
7. Pl. maximum.
** Cell-wall papillate.
8. Pl. Intchinsonii.

Sbetion B. Cells furnisheed with rings of nodules; end view simuate-stellate.
9. Pl. nodosum.

* We regard Bailey's " Docidium hirsutum," which is mentioned in Cooke's British Desmids (p. 17, t. 7, f. 5) and doubtfully recorded by Roy from Scotland, as a defective representation of a species of Gonatozygon.


## 1. Pleurotænium coronatum (Brél.) Rabenlı.

(Pl. NXVII, figs. 16-18; Pl. NXVIII, fig. 1.)
Iociliem coronetum Brél). in Ralfs' Brit. Desm. 1stes, p. 217, t. 3.5, f. (i; Arch. in Lritch. Infus. 1s61, p. 75\% ; Cooke, Brit. Desm. 1ss6, 1. 13, t. 7, 1. 1; West, 11 g. N. Wales, 1890 , p. Ësi; Roy in Joum. Lot. Isto, p. 335 ; Luy d Diss. Scott. Desm. 1s9.4, p. 241.

Pletrotenime coronetum (Bréb.) Rabenh. F'lor. Europ. Algar. IH, 1siss,
 1sss, p. 190; Be Toni, syll. Ilg. 1ss9, p. 901; West, Alg. W. Irelamt, 1 s 92, p. 11s, t. 19, f. s-10; Nurdst. Index Desm. 1s96, p. ©3; West, 1 Im. Ener Lake Distr: 1892, p. 719 ; West © G. S. West, Alg. S. England, 1597, p. 4.42; Alga-fl. Iorks. 1900, p. 5s; Alg. N. Ireland, 1902, p. 26.
Pl. nodulostm var. coronatum (Breb,) Boldt in Bih. till Sv. Vet.-Akad Handl. Bd. 13, 1888, no. 6, p. 59.

Cells large, 9-12 times longer than their diamoter; semicells very slightly and gradually attemated from base to apex, with a prominent basal inflation and several smaller undulations immediately above it, ирper half of lateral margins straight; apices truncate, with a peripheral ring of $10-12$ large, conical or flattened tubercles ( $5-6$ visible across the apex) ; cell-wall scrobiculate.

Zygospore unknown.
Length $480-591 \mu$; breadth at base of semicells 38-70 $\mu$; breadth at aper of semicells :37-5:3 $\mu$.

England. - Brother's Water and Helvellyn, Westmoreland! Pilmoor, N. Yorks! Thursley Common, Surrey! Enbridge Lake (Koy) and New Forest!, Hants.

Wales.-C'apel C'urig', C'arrarrvonshire!
Scomband.-Inverness! , Aberdeen, Forfar', Pertlı!, Fife (Roy \& l bissett). Sutherland! Plankton of Loch Ruar and Loch Nau Cainne, Sutherland; and of Loch Faldaghoda, Lewis, Outer Hebrides !

Iretand.-Near Lough Magrath, Donegal! Loughs Aunierin, Derryclare, and Shamacloontippen, Galway ! Dublin and Wicklow (Archer).

Geogr. Distribution.-France. Germany. Galicia in Austria. Norway. Sweden. Central and E. Africa. United States. Brazil.

## Var. fluctuatum West. (1'l. XXVIlI, figs. 1, 2.)

Pleurotanium coronutum var. juctuetum West, Ng. W. Trelame, 1s: p. 118, t. 1!!, f. 11.

Cells larger than in the typical form, $11_{2}^{1}-11$ times longer than their diameter ; lateral margins of the semicells undulate along their entire length; basal inHation large, as in the type; apical tubercles large, 11-15 in mumber ( $6-8$ visible).

Length ( $670-8: 32,4$; beadth at hase of semicells 5.5 $70 \mu$, in middle of semicells 43-53 $\mu$, at apex $50-3 \mu$.

Sartanb.-Rhiconich, Sutherland! Plankton of Loch Fadaghoda, Lewis, Outer Hebrides!

Lheland.-Lough Aumierin, Galway!
This is the largest British Pleurotamium and is a verg hamdsome Desmid. Ilpurotenium coronatum is far from common and the var. fluctuctum is very rare. In all forms of this species the cell-wall is very thick and is finely scrobiculate.

## Var. robustum West. (Pl. XXVIII, fig. 3.)

Pleurotenium coronutum var. robustum West, Alg. W. Ireland, 1892, p. 118, t. 19, f. 12; West \& G. S. West, Aig. N. Ireland, 1902, p. 26.

Cells shorter than in the typical form, about 8 times longer than their diameter; semicells with the lateral margins subundulate, distinctly and somewhat suddenly attenuated at the apex; apical tubercles large, 10 in number (5 visible).

Length $460 \mu$; brealth at base of semicells $57 \mu$, in middle of semicells $55 \mu$, at ipex $+8 \mu$.

Lkemand.-Dungloe and Sproule's Lough, Donegral! Lough Derryclare, Galway!

Var. nodulosum (Bréb.) West. (H1. XXVIII, figs.
Docidium notulosum Bréh, in Ralfs' Brit. Desm. 1sts, p. 155, t. 2(6, f. 1 ; Arch. in Priteh. Infus. 1stiv, p. 715 ; Cooke, Brit. Desin. 188ti, p. 15, t.6, f. 3.

Pleurotenium nodulosum (Brćb.) De Mary, Cunj. 185s, p. 75; Delp. Desm. subalp. 1877, p. 126, t. 19, f. 1-6; Kirchm. Ng. Schles. 1878, p. 141 ; Hamsg. Iroolr. Algenfl. Bohm. 1884, p. 189, f. 112; De Toni, Syll. Alg. 1889, p. 900.

Docidium coronotum var. uodulosum Roy, Freshw. Alg. Enlridge Lakr and Vicinity, 1s! 9 , p. 335.
Plenrotanium coromutum vir. notulosum West, Mg. W. Ireland, Is!!2, p. 119 ; Alg. Eng. Lake Distr: 1s92, p. 719 ; West d q. S. West, Jlg. S. England, 1597,1 . 15 - ; G. S. West, Jgit-fl. Cimuln. 1s99, p. 113 ; West d (i. S. West, Mga-H. Yurks. 1900, p. 59.

Semicells with the basial inflation slightly reduced and with the apical tubercles much reduced (rately wanting).

Length 3:35-194 $\mu$; breadth at base of semicells $1: 3-$ $60 \mu$, at apex 2 1- $-11 \mu$.

Englavib.-Westmoreland! (linlfis). W. and N. Yorks! (ambridge! Warwick (IVills). (iloucester (hulfis). Surrey! Sussex (hillis). Hants! Cornwall! (Marquand).

Whass.-Capel Curig! (Cooke of Hills), and near Dolbadarn Castle!, Carnarvonshine. Dolgelly, Merioneth ( $k$ elffis).

Scomband.-General! (lioy fo lisisett). Outer Hebrides! Orkneys! Shetlands!

Lreland.-Cloonee Longh, and 8 miles N. of Kenmare, Kerry! Dublin and Wicklow (Archer). C'lough, Antrim!

Georfr. Distribution.--France. Germany. Galicia in Austria. Hungary. Italy. Norway. Sweden. Bornholm. Central and S. Russia. India. Central Africa (form). Sandwich Islands. United States. Brazil.

This is the most abundant and widely distributed of the varieties of l'lenrotanium coronatum. It differs little from the type, the most important distinction being the great reduction in the size of the apical tubereles, but every gradation exists between the condition typical of I'lenrotentum coronatum and a form in which the tubercles are completely absent.

Rabenhorst identifies "Docidium nodulosum Brél." with "Closterium cremulutum Ehrenl.," referring to both under the name of Plewrotanium cremulatum (Ehernb.) Rabenh. We do not think, howerer, that Ehrenberg's "Closterium cremulatum" is correctly identified with Docidium nodulosum Bréb. Certainly the plants described and figured by Wolle as "Docidiam crenulatum" are not identical with Brébis-
son's species, although Wolle gives Brébisson's name as a synonym.

Dosidlum corouatum var. undulatum Hieronymus (Conj. in Engl. P'flamzenw. Ost-Afrik. 189.), p. 19) does not appear to differ in amy marked degree from an ordinary form of the type. The measurements given by Schmidle (Ost-Afrika Desmid. 1898, p. 2:3) as "Dian. $30 \mu$; long. $180 \mu$," must refer to one semicell only, as is obviously shown by his figure (t. i, f. 11).

Thrner (in the Naturalist, Oct. 1887, p. 290) records Desitium nudulosum var. labiatum, but we do not quite comprehend the distinguishing features of this form. He suggests that there is an apical incision, but does not definitely saly so (ricle Naturalist, Sept. 1887, p. 275) ; neither do we know of anything of the nature of an apical incision in any species of this genus. We recorded 'Turner's form, which was from (Gormire, N. Yorks., in the 'Alga-flora of Yorkshire' (1, 59) as Pleurotanium coronatum var. nodulosum forma letierta.

## உ. Pleurotænium eugeneum ('T'urn.) nol.

Docidium cugeneum 'Turn. Freshw. Alg. E. India, 1893, p. 30, t. 3, f. 3 ; Nordst. Index Desm. 1896, p. 120.
C'ells large, elongated and eylindrical, $16-18$ times longer than their diameter; semicells with a prominent basal inflation, lateral margins slightly simate, very slightly attenuated towards the apex, which is rotundotruncate and furnished with a ring of $20-2+$ pyriform tubercles ( 11 visible across the apex) ; cell-wall smootl.

Kygospore unknown.
Length $670-720 \mu$; breadth at base of semicells $28-$ $\because 2 \mu$; brearth at apex $2+\mu$.
licogr: Distrilulion.--India.
The typical form does not occur in Britain.
'Thurner's dimensions do not agree with the size and proportion of his figure. The above measurements are those given by Thrner in his text, but his fignre measures: Length $71 \stackrel{\mu}{\mu} \mu$; breadth at base of semicells $45 \mu$, at apex $31 \mu$. These are much more in accordance with the proportions of the British forms.

## Formar Scotica forme not. (Pl. XXIX, fig. 1.)

Cells ahout 17 times longer than their diameter, scarcely attennated; semicells with thee or fome suraller undulations alove the basal inflation, the rest of the lateral margins straight; with a ring of of clongated tubercles romud the apex ( 11 visible); cellwall minutely punctate.

Length ( $6: 3 \mu \mu$; breadth at hate of semicells : $37 \mu$, at apex 28 .

Scothand.-Rhiconieh, Sutherland!

## Formal Cambrica formen nut. (Pl. XXIX, fig. e.)

Cells about $1+$ times longer tham their diameter, searcely attenuated; semiecels with a second harge inflation above the hasal inflation, the rest of the lateral margins straight; with a ring of 20 elongated tubercles round the apex ( 11 visible); cell-wall minutely punctate.

Length 666.5 $\mu$; breadth at base of semicells th $\mu$, at apex $30 \mu$.

Wales.-Capel Curig, Carnarvonshire!

## 3. Pleurotænium truncatum (Bréll.) Niig.

 (Pl. XXIX, figs. 3, 4.)Closterium truncutum Bréb. in Cheval. microscop. et leur usage, Paris, 1839, p. 272; Hréb. in Menegh. Synops. Desm. 1840, p. 235.
Docidium truncutum Bréb. in Ralfs' Brit. Desm. 1845, p. 156, t. 20, f. 2̈; Arch. in l'itch. Infus. 1861, p. 745; Cooke, Brit. Desm. 18s6, 1. 15, t. 6, f. 4; Loy \& Biss. Scott. Desm. 1894, p. 242.

Plewotænium? truncutum (Bréb.) Näg. Gatt. cinz. Alg. 1849, p. 104; De Bary, Conj. 1858, p. 75 ; Rabenh. Flor. Europ. Algar. IH, 186s, p. 112; Delp. Desm. subalp. 1877, p. 127, t. 19, f. 7-11; Hansg. Prodr. Nlgenff. Böhm. 1888, p. 190; De Toni, Syll. Alg. 1889, p. 897 ; West, Al․ W. Ireland, 1892, 1. 119 ; Lütkem. Desm. Attersees, 1893, p. 516 ; West d (4. S. West, Alg. S. England, 1897, p. 483; Alga-H. Yorks. 1900, p. 59.

Cells large, (i-8 (rarely up to $10 \frac{1}{2}$ ) times longer than their diameter; semicells somewhat tumid, generally a little broader in the middle than at the base, gradually
and considerably attemmated from the middle to the apex, with a slight but distinct basal inflation ; apices trmeate or convexo-truncate, with a ring of 1:3-1.5 small, depressed, apical tubercles ( $7-8$ visible across the apex) ; cell-wall punctate.

Zygospore unknown.
Length 380-5 50 (very rarely up to 700 ) $\mu$; hreadth in middle of semicells (maximm breadth) of-7.5 $\mu$; hreadth at apices $29-10 \mu$.

Evaland.-Cumberland! Westmereland! (lisisett). W.amd N. Yorks! Leicester (Louf). Suffolk! Warwick! (Hills). Surrey! (linlfs). Sussex (Rulfs). Hants. (Roy). Cornwall! (Rulfis).

Wabes.-Capel Cmig! (Jowle of Will.s), Snowdon (at over : $3,000 \mathrm{ft}$.) !, and Llyn P'alarn!, ('arnarvonshire.

Scotland.-General! (Koy of Bisselt). Outer Hehrides! Shetlands!

Lremand-Mayo! Galway! Kerry! Dublin and Wicklow (Archer).

Geoyr. Distrimution.-France. Germany. Austria and Galicia. Hungary. Italy. Norway. Sweden. Denmark. Bornholm. Poland. N. Russia. Nova Zembla. Spitzbergen. Greenland. India. New Zealand. United States. Brazil. Paraguay.

## Var. crassum Boldt.

Pleurolanium truncutum var. crussum Boldt, Siber. Chlorophy. 1885, p. 12l, t. 6, f. 4t; West d G. S. West, Mga-fl. Yorks. 1900, p. 59.

Pl. Brefcheii Istvanfli, Diag. prave. Alg. nov. Hungar. 18s7, p. 2du.
Cells shorter than in the typical form, only 4 times longer tham their diameter; semicells more tmmid, without basal inflation, and without apical tubereles.

Length $2.55 \mu$; maximum breadth $63 \mu$.
Entiand.-Gormire, N. Yorks (I'urner).
Ciromf. Distribuliom.--Hungary. Siveden. Nova Zembla. Siberia.

We think that Boldt's variety might perhaps be paced as a species, but as we have never seen a specimen of it we cannot pronounce a definite opinion on this point.

## Var. granulatum West. (1Pl. XXIX, figs. 7, 8.)

Plearotanium truncatum var. aramulutum West, New Brit. Freshw. Mgg.


A variety with the cell-wall distinctly ant irregularly gramulate.
length 40.)-46.5 $\mu$; max. brearth 5 $4-674$.
Enghant.-Borrowdale, Cumberland!
Soothano.-Ben Laoigh, Perth!

## Var. Farquharsonii (Roy \& Biss.) mol. (I'l. XXIX, figs. 5, (i.)

Docidirm Farquharsonii Roy, Freshw. Ag. Enhridge Lake and Vicin. 1890, p. 335); Roy \& Biss. Scott. Desm. 189.1, p. 241. t. 4, f. 1.

This variety differs only from the typical form in the somewhat sudden attenuation of the semicells nem the apex; apical tubercles large and very depressed, $12-14$ in number ( 7 or $S$ visible across the apex).

Length 288-:381 $\mu$; max. breadth $48-5: 3 \mu$; breadth at apices $22 \div 5-28 \mu$.

Exchand.-Ball Hill Pond, Mants (Roy). Near Land's End, Cornwall!

Scomand.-Near Springhill, Aberdeen; Muchalls, Kincardine ; Balquhadly Hill in Fern, Forfar ; 'I'ent's Moor, Fife; Sheriffmuir near Dumblane, and Bracklin near Callander, Perth (Roy s. Bissett).

## 4. Pleurotænium Ehrenbergii (Bréb.) De Bary. <br> (Pl. XXIX, figs. 9-11; Pl. XXX, fig. 1.)

Closterium Trabecula Ehrenb., 1830 [in part].
Docidium Ehrenbergii Bréh. in Dict. univ. hist. nat. 1844, p. 93; Ralfs, Brit. Desm. 18.48, p. 157, t. 26, f. 4; Arch. in Pritch. Infus. 186i1, p. 745, t. 2, f. S-11 ; t. 3, f. 46, 47 ; Cooke, Brit. Desm. 18s6, p. 14, t. (;, f. 1 u, $b$, d; West, Alg. N. Wales, 1890, p. 284; Lioy if Biss. Scott. Desm. 1894, p. 241 (in part?).
Penium (Docitirm) Ehrenbergii Kütz. Spec. Alg. 1849, p. 168.
Pleurotrnium Ehrenbergii (1réb.) De Mary, Conj. 185̄s, p. 75; Iansg. Prottr. Algenfl. Bïhm. 1858, p. 189; De Toni, Syll. Alg. 1889, p. S96; West, Alg. W. Ireland, 1892, p. 119; Alg. Eng. Lake Distr. 1s92, p. 719 ; Nordst. Index Desm. 1s96, p. 111; West \& G. S. West, Alg. ́. England, 1897. p. 483; G. S. West, Alga-fl. Cambr. 1849, p. 113 ;

West \& Cr. S. West, Alga-fl. Yorks. 1900, p. 58; Alg. N. Ireland, 1902. p. 26 .

Docidium Ehrenbergii var. tumidum Turn. Freshw. Alg. E. India, 1s9.3, p. 31, t. 4, f. 4.
1). quentillum 'Turn., 1. c., 1893, p. 28, t. 2, f. 9; t. 4, f. 12.

Cells of medium size, rather narrow and subcylindri(al, 1.)-20) times longer than their diameter; semicells somewhat variable in form, notat all or sometimes slightly attenuated from hase to apex, with a distinct though small basal inflation and one undulation (sometines two) immediately above it; apices trmente, bordered by a ring of conical or rounded tubercles, $7-10$ in number (4 or 5 visible across the apex) ; cell-wall punctate.

Zygospore globose or ellipsoid-globose, smooth.
Length $210-4 \mathrm{SO} \mu$; breadth at base of semicells 18-9.5 $\mu$, at midtle of semicells $16-26 \mu$, at apices $14.5-22 \mu$; diam. zygosp. $70-90 \mu$.

Everand.-Cumberland! Westmoreland! (Ralfs). W., N., and E. Yorks! Lancashire! Leicester ( Piny $^{\prime}$ ). Essex! Cambridge! Oxford! Warwick (Wills). (Aloncester (Comlie). Middlesex (Conlep). Sinrey (zygosp. from Thursley Common)! Sussex (Ralfs). Hants! (Ralfs). Devon! Cornwall! (Rulfs).

Whafs.-General! (at 2,200 ft. on Glyder Fach, (arnarvonshire).

Sortand.-General! ( Poy s. Bissett). Common in Onter Mebrides! Orkneys! Shetlands!

Iremand.-General and abmodant!
Gooyn. Distribution. - France. Germany. Anstria and Galicia. Hungary. Italy. Norway. Denmark. Bormholnn. Poland. N. Russia. Nova Zembla. Siberia. Central China. India. Ceylon. Java. Simatra. Samoa. Australia. New Zealand. Madagascar. E. \& W. Africa. United States. Brazil. Patagonia.

I't. Ehrenbergii is the most freguent of the British species of the gemus, and it exhibits considerable variability in both form and size. The semicells are generally slightly attemated from the base to the apex, but in some forms they are
somewhat tumic, or the lateral margins may be parallel. There is one hasal inflation with usually another smaller madulation just above it. The apical tubereles are never absent, but in rare instances they may be much reduced.

A curions form of this species is figmed on Pl. XXX, fig. $\ddot{-}$. The cells are larger than nsual and there is a large inflation on each semicell above the basal inflation. The sperimen was from Capel C'mrig, N. Wales; length 44.) $\boldsymbol{n}$; breadth abowe lasal inflation (max. brealth) $37-40 \mu$; breadth of apices $\underline{2}+\mu$. We have noticed the same form from the plankton of Loch Fadaghoda, Lewis, Outer Hebrides.

## Var. granulatum Ralfs.

Dociltum Ehrenbergii var. granulatum Ralfs, Brit. Desm. 184s, p. 157. t. 33. f. 4; West, Alg. N. Wales, 1890, p. 2S4; Roy \& Biss. Neott. Desm. 189.4, p. 241; West \& G. S. West, Alga-fl. Yorks. 1900, p. 54.

A variety with the cell-wall distinctly and coarsely granulate.

Length $350 \mu$; breadth at base of semicells $33 \mu$; breadth at apices $26 \mu$.

England.- Wr and N. Yorks! Sussex (Thelfis). Hants (Ro!!). Cornwall! (Ralfs).

Wales-Capel Curig, Carnarvonshire!
Scomband.-Aberdeen (Roy \& Bissett). Perth!
Ceoyf. Distribntion.-Bohemia in Austria.

## Var. elongatum West. (Pl. XXX, fig. 3.)

Docidium Ehrentergii var. clongatum West, Alg. N. Wales, 1890, p. 2st.
Pleurotenium Ehrentergii var. clongatum West, Alg. W. Ireland, 1s9:.. p. 119.

Cells narrow and much elongated, about 2.5 times longer than the diameter.

Length 525-57. $\mu$; breadth at hase of semicells $9:-$ $2(\mu$, in middle $21-22 \cdot 5 \mu$, at apices $17-19 \mu$.

Wades.-Capel Curig, Carnarvonshire!
Treland.-Clifden, Galway !

## Var. undulatum Schaarschm.

Plewrotenium Ehrenlergii var. undulutum Schaarschm. Magyar. Desm.
 fig.; West © G. S. West, Freshw. Alg. Ceylm, 1902, p. 145.

Cells larger than in the type, 20-2:3 times longer than their diameter; basal inflation prominent and lateral margins gently undulate from base to apex.

Length $600-700 \mu$; breadth in middle of semicells $28-30 \mu$, at apices $26-27 \mu$.
dicogn. Distribution.-Austria. Hnngary. Sumatra.
The true var. undulatum 'ichaarschm. has not been observed in the Pritish Isles, but a form has been fomm in Combloridgeshire which approaches very close to it (ride (i.S. West, Alga-fl. Cambr. 1899, p. 113). The upper third of the semicells was destitute of undulations, otherwise it would not have differed from Schaarschmidt's varicty; lengeth 709 ; hreadth at base of semicells $40 \mu$, in middle of semicells ? $31 \mu$, at apices $27 \mu$. This form is figured on Pl. XXX, f. 4.

## ヶ.) Pleurotænium tridentulum (Wolle) West.

 (Pl. XXX, figs. 5, (i.)Doridium tridentulum Wolle, in Bull. Torr. Pot. Cluh, 1882, p. 14 ; Desm. U.s. 1884, p. 52, t. 10, f. 10; De Toni, Syll. Alg. 1889, p. S7.t; Roy \& 1Biss. sentt. Desm. 1894, p. 21:2; Nordst. Index Desm. 1s!6, p. 2.5s.
D. Sceptrum Roy in scott. Naturalist, 1883, p. 39 . [This is not Closterium Sceptrum Kütz.]
Pleurotanium tridentulum (Wolle) West, Alg. W. Treland, 1892, p. 120.
Penium tridentulum Eichl. \& Racib., 1893; Eichler, Mat. flor. Miedz. 1891, p. 57.
Pleurotenium Sceptrum West \& G. S. West, Some N. American Desm. 1896 , p. 235, t. 13 , f. 6 ; Some Desm. U.S. 1898, p. 285 ; Alg. N. Ireland, 1902, p. 26.

Cells rather small, narrow, about 20 times longer than their diameter; semicells gradually attenuated from base to apex, with a slight basal inflation, lateral margins straight; apices truncate, furnished with four slarep spines or teeth ; cell-wall smootl.

Kygospore subglobose and smooth.
Length $211-320 \mu$; brearth at base of semicells 12.5 $16 \mu$; breadth at apex $6 \cdot 5-8 \cdot 3 \mu$; diam. zygosp. : $+\mu$.

Sootano.-Poolewe, Ross; Brin (Roy s lissett) and Moidant, Inverness ! Head of Glen Coe, and in Mull, Argyll (Ro! \& Bissett).

Lhemant.-Near Glenties, Donegal!
Geogr. Distribution.-Poland. India (form). W. Ludies. United States.

This is one of the rarest British species of the gemes, and is well characterised by its small size and apical teeth. The four apical tecth are not all in focms at the same time, and this led to an error in Wolle's original deserption, in which he mentions only three teetl. It is a deeided western spereies in the British isles. Some forms were noticed which were suddenly attenuated at abont one fifth of the length of their semicells from the apices.

As this Desmid is not " Chosterium Sceptrum Kïtz. 184.5," that species being Doritiom Baculnm B'téh., Roy's specific name "Sepptrum" camot be accepted for the species, being one year subserguent to Wolle's Dorintinm tridrontum.

## Var. capitatum West. (Pl. XXX, figs. 7, 8.)

Pleurot.mium tridentulum var. capitatum West, Alg . W. Ireland, 1892, p. 120, t. 24, f. 12.

Pl. trilentulum var. granulatum West, 1. c. p. 120.
Pl. Sceptrum West \& G. S. West, var. capitatum West \& G. S. West, Some N. Amer. Desm. 1896, p. 235, t. 13, f. 7, 8.

Cells more elongate than in the type, $26-27$ times longer than their diameter; semicells gradually attennated to the apices, which are subcapitate and rounded; cell-wall granulate except at the apices, which are smooth and furnished with the usual four teeth.

Length $314-360 \mu$; breadth at base of semicells $12-14 \mu$; breadth of apices $7 \cdot 5-8 \cdot 5 \mu$.

Iremand.-Lakes, Clifden to Roundstone, Calway !
(icoyr: Distribution.-United States.

## 6. Pleurotænium Trabecula (Ehrenb.) Nïg.

(Pl. XXX, figs. 11-13.)
Closterium Trabecula Ehrenb. Beitr. zur Kenntniss der Organis. der Infus. 1830, p. 62 and 70 ; Ehrenb. Infus. 1838, p. 92, t. 6, f. II (in part; according to Turner only II 4 and II 7) ; Menegh. Synops. Desm. 18.10, p. 235.

Pleurotrnium Trabecula (Ehrenh.) Näg. Gatt. cinz. Alg. 1849, p. 10.t, t. 6, f. A ; ? Rabenh. Flor. Europ. Algar III, 1868, p. 141 ; Lund. Desm. Suce. 1871. p. E9; Nordst. Alg. aq. dulc. et Char. Sandvic. 1878, p. 11 ; ? Kirchn. Alg. Schles. 1878, p. 141; Hansg. Prodr. Algenfl. Bühm. 188s. p. 190 ; De Toni, Syll. Alg. 1889, p. 895 ; Forge, Chlor. Norska Finmark. 1892, p. 13; Nordst. Iudex Desm. 1896, p. 255; West it G. S. West, Desm. Singapore, 1897 , p. $159 ;$ Alg. S. England, 1897 , p. 483 ; G. S. West,

Alga-fl. Cambr. 1899. p. 113; West \& G. S. West, Alga-fl. Yorks. 1900, p. 5s; Freshw. Chlorophy. Koh Chang, 1901, p. 167; Alg. N. Ireland, $1902, \mathrm{p} .26$.
Doridium Trabecula Reinsch, Algenfl. Frank. 1867, p. 183 (in part) : West. Desm. Mass. 1889, p. 17, t. 2, f. 11 ; Tu'n. Freshw. Alg. E. India, 15:13, 1. 34 ; Roy \& Biss. Scott. Desm. 1894, p. 242.
('ells large, subcylintrical, 11-15) times longer than their diameter; semicells with one basal inflation, rarely with a second slight umdulation above it, almost cylindrical, gradually attemuated towards the apices, lateral margins almost straight, gencrally faintly convex ; apices rounded-truncate, destitute of tubereles: cell-wall punctate.

K/ygospore ellipsoid and smooth.
Length 390-664 $\mu$; breadth at base of semicells $26-46 \mu$; breadth of apices $16-32 \mu$; lengtli of zygosp. $70 \mu$, breadth $48 \mu$.

Eingland.-Cumberland! Westmoreland! (Pissett). W. and N. Yorks! Lancashire! Essex ! Cambridge! Surrey! Mants! Devon! Cormwall!

Wides.-Capel Curig and Glyder Fawr (at 2,700 ft.), Carmarronshire!

Scotlant.-Sutherland! Ross!, Inverness, Aberdeen!, Kincardine, Perth!, Arran (Ro! \& l’isst!). ('umbrax, Ayr! Lewis, Outer Hebrides! Orkneys!

Traband.-Donegal! Galway! Kerry!
Geogr. Distribution.-France. Germany. Austria and Galicia. Italy. Norway. Sweten. Demmark. N., Central, and S. Russia. Tceland (var.). Nora Yembla. Greenland. Central Chima (var.). Japan (var.). India. Siam. Singapore. Ahyssinia. Anstralia (var.). United States. Brazil. Argentina. Uruguay.

Ct. Trabeuta Ehrenb. appears to have been a composite species as is amply illustrated on tab. (i) of Ehrenberg's 'Infusionsthierchen,' 18:38, f. II 1-7. From these figures recent authors have selected the two (figs. II 4 and II 7) which most nearly agree with the widely distributed type of Meurotanium described aloove.

It seems generally recognised that Plforotanium Trabecula is a monderately large species, with one basal inflation to the
semicells and romoded-truncate apices, which are quite destitute of tubercles.

Pl. Trabecula is a more romst species than Pl. Ehrenlergii, with a difference in the hasal mululation of the semicells, and with smooth apices. Some of its forms apmoach very closely I\%. maximmen (Reinseh) Lant.

Forma granulata G. S. West.
Pleurotanium Trabecula forma gronmlater G. S. West, Aleatit. Cambr. 1599, p. 113, t. 396 , f. 6.

Cell-wall tistinctly and irregularly gramulate.
Length $486 \mu$; hreadth at base of semicells 3.5 $\mu$; breadth of apices $25 \mu$.

Exeland.-Chippenham Fen, Cambridge!
'This form is precisely analogous to $I$ ' Ehrenbergii var. gremulutum Ralfs.

## Forma clavata (Kütz.) West \& G. S. West. (Pl. XXXI, figs. 8, 9.)

Docidium cluvatum Kütz. in Ralfs' Brit. Desm. 1848, p. 156, t. 26, f. 3 ; Arch. in Pritch. Iufus. 1si61, p. 745, t. 2, f. 9; Cooke, Brit. Desm. 1sis;, p. 14, t. 6, f. 2; Roy d liss. Scott. Desm. 1894, p. 241.

Pleurotanium clavatum (Kutz.) D،" Bary, Conj. 185s, p. 75; Rabenh. Flor: Europ. Alg. IHI, 186s, p. 141 ; De Toni, Syll. Alg. 1889, p. 897 ; West, Alg. W. Ireland, 1s92, p. 119.
Docidium Trobecula f. B. cluvatum Reinsch, Algenfl. Frank. 1867, p. 183.
I'leurotanium Trabecula forma clavatre West \& G. S. West, Alga-fl. Yorks. 1900, p. 58.

Cells about 12 times longer than their diameter; semicells slightly tumid and subclavate.

Length $300-390 \mu$; brearth at base of semicells 3-31 $\mu$; maximum breadth $21-32.5 \mu$.

Evglund.-Westmoreland! (Bissett). W., N., and E. Yorks! Warwick (Will.s). Sussex (Fulfis). Hants (Roy). Cormwall (Marqumme).

Wabes.-Bethesla!, Capel Curig! (Cowk f Wills), and near Dolbadarn Castle !, Carnarvonshire. Llyn Coron, Anglesey !

Soothant.-Sutherland, Ross, Inverness, Nairn, Aberdeen, Kincardine, Forfir', Perth! (ho! \& Bissett). Kirkeudbright!

Irefant.-Galway! Dublin and Wicklow (Archor). Antrim!

Ceong: Distrilntion.-France. (iermany. Italy: sweden. United States.

Var. rectum (Delp.) mol. (Pl. XXX, figs. ?, 10.)

Cells rather smaller than in the type, straight, 12-18 times longer than their diameter ; lateral margins of semicells above the slight hasal inflation stratight; cell-wall often smooth.

Length 212-408 $\mu$; breadth at base of semicells $22-23 \mu$; breadth of apices $14-20 \mu$.

England.-Enbridge Lake, Hants. (Roy).
Wales.-Capel Curig, Carnarvonshire (Ro!!).
Scomband-General (hoy \& Biswet). TVe have only found it in Aberdeen, Ross, Inverness, Sutherland, and the Outer Hebrides !

Lretand.-Cromagloun, Kerry !
Geogr. Distibutiom.-Italy. Austria. Hungary. Galicia. Norway. Sweden. Central Chima. India. New Zealand (var.). Australia. United States. Brazil.

It is impossible to retain Pleurotanium rectum Delp. as a species separate from Pl. 'T'rabecula (Ehrenb.) Naig. It ouly differs in the somewhat smaller size of the cells and the straighter lateral margins of the semicells. It is frequent in some districts of Scotland and Ireland, hut is very uncommon i: England.

Var. rectissimum var. nor. (Pl. XXX, figs. 14, 15.)
Cells more elongate than in the type, 26-30 times longer than their diameter, rigitly straight; semicells with the slight hasal motulation of the type, very
gramually atmoned to the apices, which are dilated and romaded-truncate.

Length $5+1-608 \mu$; breadth at hase of semicells $\because: 32: 3 \mu$; breadth of apices $114 \mu$.

Srofund.-Rhiconich, Sutherland!

## 7. Pleurotænium maximum (Reinsch) land.

(Pl. XXXI, figs. 1, உ.)

Docidium maximum Reinsch, Spec. Gen. Alg. 1867, p. 140, t. 20 C II, f. 1, 2; Algenfl. Franken, 1867, p. 18.t, t. 12, f. 4; Roy \& Piss. S'cott. Desm. 1891, p. 241.
Pleurotwnium maximum (keinsch) Lund. Desm. Suec. 1s71, p. S9; De 'Toni, Syll. Als. 1859, p. 599 ; Nordst. Index Desm. 1596, p. 166; West d G. S. West, Welw. Afric. Freshw. Alg. 1897, p. So; Freshw. Chlorophy. Koh Chang, 1901, p. 167 ; Freshw. Alg. Ceylon, 1902, p. 145.
Plewrotenium Archerii Delp. Desm. Suhalp. 1ヶ77, p. 128, t. 19, f. 12-16; Wille, Sydanerik. Algfl. 1854, 1'. 23 ; De 'Toni, Syll. Alg. 1889), p. 902 ; Litkem. Desm. Attersees, 1893, p. 546.
Docidium Archerii (Delp.) Wolle, in Bull. Torr. Bot. Club. 1885, p. 2.
Cells large, subcylindrical and elongated, 11-18 times longer than their diameter; semicells with a prominent basal inflation and often with a smaller madulation immediately above it, very slightly tumid and then gradually tapering to the apices, which are trumcate with rounded angles; cell-wall punctate.

Zygospore unknown.
Length $568-852 \mu$; breadth at base of semicells $38-5+\mu$; breadth in middle of semicells $31-12 \mu$; breadth of apices $22-30 \mu$.

Whes.-C'apel Curig, Carnarvonshire !
Scomband.-Scolty, near Banchory, Kincardine (Ro! \& Bissett). Äberdeen!
('en!i. Distribution.-France. Germany. Italy. Austria and Galicia. Hungary. Sweden. Japan (var.). Ceylon. Siam. Abyssinia. Wf. Africa. Brazil. Ecuador (var.). Paraguay. Upuguay.

This species differs very little from $P l$. Thabecula, being distinguished by its larger size and the greater prominence of the basal inflation of the semicells. It is one of the largest and likewise one of the rarest Desmids which occur in the British Islands.

# 8. Pleurotænium Hutchinsonii ('Inrı.) West \& G. S. West. 

(Pl. XXXI, fig. 7.)

Docidium IUetchinsonii Turn. Desm. Notes, 189:3, p. 346, fig. 16.
I'leurotenium Hutchinsonii ('Turn.) West \& (i. S. West, Alga-fl. Yorks. $19(6)$, р. 59.
('ells somewhat small, 11-12 times longer than their diameter; semicells with a slight basal inflation, very slightly attenuated to the apices; lateral margins faintly sinuate, apices truncate with broadly rounded angles; cell-wall covered with small papille $(2 \cdot 5-3 \mu$ in length; those at the apices $1 \cdot 7-2 \mu$ in length).

Kygospore unknown.
langth $24-280 \mu$; breadth at base of semicells 21-26 $\mu$; breadtle of apices $17-19 \cdot 5 \mu$.

England.-Strensall Common, N. Yorks. (IV. li. T'urner).
9. Pleurotænium nodosum (Bail.) Lund.

> (Pl. XXXI, figs. 3-6.)

## Ctosterium nodosum Bailey, 1846.

Docitium nodosum Bail. in Ralfs' Brit. Desm. 1845, p. 218, t. 35, f. 8 ; Bail. Microscop. observ. 1851, t. 1, f. 4; Arch. in Pritch. Iufus. 1scis, 1. 745 ; Rabenh. Flor. Europ. Algar. III, 1868, p. 145 ; Arch. in Quart. Journ. Mier. Sci. 1872, 1. 193 ("forma"); Wolle, Desm. U.S. 188. p. 50 , t. 11, f. 11, 12; t. 12, f. 20; Cooke, Lrit. Desm. 1s8ti, p. 12, t. 7, f. 2; Borge, Austral. Süsswasserchlor. 1890, p. 27, t. 4, f. 49-51.

I'letrotanium nodosum (Bail.) Lund. Desm. Suec. 1871, p. 90; Nordst. Alg. Brasil. 1877, p. 17; Freshw. Alg. N. Zeal. 1888, p. 6ä; Johnson, Lare Desm. U.S. II, 1894, p. 290 ; West \& G. S. West, some N. Amer. Desm. 1896, p. 234 ; Some Desm. U.S. 1898, p. 285; Freshw. Alg. Ceylon, 1902, p. 141.
Docilium notosum var. Hibernicum Cooke, Hrit. Desm. 18s6, p. 13.
Docidiopsis norlosu Racib. Desm. Nowe, 1889, 1, 107, t. 7, f. 22.
D. nodosum a. typica Turn. Freshw. Alg. E. India, 1893, p. 35.
D. notosum $\gamma$. dentatum 'Turn. 1. c.

Cells large or moderately large, $6 \frac{1}{2}-8$ times longer than their diameter' semicells with nodulose margins, caused by four rings of prominent nodules, one basal ring, and three other equidistant rings, 6-8 nodules in each ring, gradually tapering from base to apex; apices dilated, convexo-truncate, furnished with a
peripheral rimg of 6-8 conical teeth (which do not project leyond the extreme apex) ; cell-wall smooth or distinctly punctate.

Zyguspore unknown.
Length $280-502 \mu$; maximum breadtlı $40-80 \mu$; brealth of apices $24-$ 0 $0 \mu$.

Wabes.-Capel Curig, Carmarvonshire! (Coole \& IIIlls).

Soomhnd.-Rhiconich and Lower Duartmore, Sutherland!

Irehand.-Comnemara, Galway (Areher).
Ficogr. Distrilution.-Germany. Galicia in Austria. Norway. Sweden. India. Ceylon. Singapore. Java. New Zealand. United States. Brazil.

This is one of the most handsome of the British species of Pleurotania, and it is also one of the rarest, being confined to certain of the rocky districts of the west coast. It is a somewhat variable species, especially in the relative prominence of the rings of nodules, in the shape of the nodules themselves, and in the width and degree of extension of the apex. The apical teeth were not illustrated by Bailey (in Ralfs' Brit. Desm. t. 35, f. 8), but that was purely an oversight. They are present in all specimens of $P l$. norlosum, both American, European, Asiatic, and Australasian. We were at first inclined to believe that all the British examples were of comparatively small size, but we have since obtained Scottish specimens equal in size to the largest American or Asiatic forms.

There is no excuse for the names " $a$. typica" and " $\gamma$. dentata" given by Turner to forms of this species. If 'Thrner had examined a sufficient number of specimens from different localities, he would have found that all were dentate at the apex, and that the species was not exceptional in the matter of variation within certain limits.

Turner also describes " $\beta$. anglicum" from Capel Curig, N. Wales (Wills), and from near Windermere (Thrner) ; cile 'Freshw. Alg. E. India,' 1893, p. 35. He says that near the apex are 10-12 small nodes or hollow tubercles, but his figure gives one the impression that the apex was in an obliqne position when sketched. We have examined a number of specimens of this Desmid from Capel Curig, collected over a period of nine years, and have always found the apices typical.

## Genus 12. Tetmemorus Ralfs, 1844.

> Ralfs' in Amn. Mag. Nat. Hist. 1841, p. 2.56.
> Hitssall, Brit. Freshw. Mg. 1s $15, ~ p .377$.
> Kalfs, Jrit. Desm. 1848, p. 145.
> Areh. in Priteh. Infus. 1861, p. 720 and 716.
> Rateuh. Flor. Europ. Algar. III, 1868, p. 1:39.
> Cooke, Brit. Desm. 1886, p. 48.
> De Toni, syll. Alg. 1889, p. 866.

Cells elongated, straight, cylindrical or fusiformcylindrical, a little compressed at each apex, slightly constricted in the middle, with a very maroow incision in the middle of each apex, apical angles rounded; vertical view circular or broarlly elliptical; cell-wall minutely scrobiculate, or punctate; with a single chloroplast in each semicell, containing a central row of pyrenoids.

This genus is easily distinguished from Pleurotrenium by the well-marked apical incisions, and by other minor characters. It differs from Closterinm in its straight cells, its median constriction, and in its broad apices with median incisions. From Penium it is distingnished by its more evident median constriction and its apical incisions; from some Penia it is also at once separated by its method of division and the absence of periodical growth.

It is closely comected with Eucastrum through the American Desmid Euastrum giganteum (Wood) Nordst., formerly described by Wood as T'etmemonus. gigentens.
'The nearest genus to it in the general form of the cells is the African and S. American genus Ichthyocercus.

## 1. Tetmemorus Brébissonii (Menegh.) Ralfs. (Pl. XXXII, figs. 1, 2.)

Clostcrium Brebissonii Menegh. Synops. Desm. 1810, p. 236.
'Telmemorus Brébissonit (Menegh.) Ralfs, in Amm. Mag. Nat. Hist. 1814, 1.257, t. S, f. 1 ; Mass. Brit. Freshw. Alg. 1845, p. 377 , t. 89, f. 5; Ralfs, Lrit. Desm. 1848, p. 145, t. 24, f. 1 , $b$, c; De Bary, Conj. 18is8, 1. 73 ; Areh. in Priteh. Infus. 1861, p. 746, t. 2, f. 11-13; Rabenh. Flor. Emrop. Algar. III, 1868, p. 139 ; Kirchn. Alg. Schles. 1878, 1. 145; Wolle, Desm. U.S. 1884, p. 91, t. 20, f. 1, 2; t. 50, f. 36 ; Cooke, Brit. Desm. 1886, p. 44, t. 18, f. 7; Hansg. Prodr. Algentl. Böhm. 1ss8, p. 188; De 'Ioni, Syll. Alg. 1889, p. 866 ; West, Alg. W. Freland, 1892, p. 131; Roy \& Biss. Scott. Desm. 1894, p. 212; Nordst. Index Desm. 1896, p. 68; West \& G. S. West, Alg. S. England, 1897, p. 483; Alga-fl. Yorks. 1900, p. 59 ; Alg. N. Ireland, 1902 , p. 26.

Penimm (Tetmemorus) Bróbissonii Kïtz. Spec. Ag. 1s 19, p. 167 (in 1bat).
? Tetmemorus penioides Denn. Freshw. Ag. Eng. Lake Distı. Isst;, 1, 1:3, t. 22, f. 26; Cooke, Brit. Dosm. 1856, p. 50 , t. 19, f. 9 ; t. 2̈6, f. ᄅ̈; De Toni, Syll. Alg. 1589, p. 869.
Cells subcylindrical, $1-6$ (commonly 5) times longer than their diameter, with a conspicuous median constriction; semicells very slightly attenuated from base to apex; apices very broadly romuled, with a deep median incision ; cell-wall minutely scrobiculate or pmotulate, punctulations arranged in distinct longitudinal lines; chloroplasts with a single median series of four or five pyrenoids; cells in side view more fusiform, semicells attenuated.

Zygospore globose, with a thick smooth cell-wall.
Length $155-220 \mu$; breadth $30-41 \mu$; brealth of isthmus $22-32 \mu$; diam. zygosp. $80 \mu$.

Evaland.-Cumberland! Westmoreland! (herlis). W. and N. Yorks! Lancashine! Leicester (ho!!). Warwick (Hills). Surrey! (Rulfs). Sussex (hulfs). Kent (Rulfis). Hants! (Rulfs). Devon! Cornwall! (Ralf※).

Walfs.-General! (At 2,200 ft. on Glyder Fach, and 2,700 ft. on Glyder Fawr, Carnarvonslime.)

Scotland.-General! (hoy \& lissett). Outer Hebrides! Orkneys!
lamband.—Donegal! Mayo! Galway! Kerry! Dublin and Wicklow (Archer). Down! Londonderry!

Geogr. Distribution.-France. Belgium. Germany. Austria and Galicia. Italy. Norway. Sweden. Denmark. N. Russia. India. Australia (var.). New Zealand. Azores. United States. Brazil. Guiana.

This species is by no means common, and we never find it in any quantity except in permanent bogs and at the margins of hakes. It would appear that British specimens are larger than those found in many parts of continental Emrope. Ralfs' measurements of his typical form were: length $215 \mu$, breadth $36 \mu$ agreeing very well with our own measurements; whereas many continental olservers give dimensions not much more than half as large (length $78-116 \mu$; breadth 19-21 $\mu$ ).

It is difficult to correctly place the form described by

Bemett as T．peminders，but allowing sutticient latitude for Bemett＇s inaterate drawings and observations，we have little hesitation in placing it under T＇．Brehissonii．

Var＇．turgidus Ralfs．（ 1 l．XXXII，fig．3．）
Tetmemorus Brébissonii var．turgitus lalfs，Brit．Desm．1818，p．145，t．こ̈， f． 1 d，e；Cooke，Brit．Desm．1ssti，1．19；West，Alg．N．Wales，Isto， 1．こと6；Foy \＆Biss．Scott．Desm．1891，p．シ1シ．
（＇ells more deeply constricted ；semicells inflated．
Length $155 \mu$ ；breadth（maximum） $43-14 \mu$ ；breadth of isthmus $26 \mu$ ．

Engiand．－Ashdown Forest，Sussex（Ralfis）．
Wabis．－Snowdon，C＇arnarvonshire！
Somband．－Not macommon（hoy s．Rissett）．Perth！
liongr．Distribution．－Poland．Australia．United States．

## Var．attenuatus Nordst．

Telmomorus Brélissonii var．allenuatus Norlst．in Botan．Notis．1847， p．163；Freshw．Alg．N．Keal．1585，p．66，t．3，f． 18.

Semicells more or less sensibly attentated towards the apices．

Length 131－192 $\mu$ ；breadth $27-30 \mu$ ；breadth of istlumus $2+\mu$ ．

Sumband．－Ben Laoigh，Perth！
Geoffr：Distribution－－New Kealand．

Valr．minor De Bary．（Pl．NXX11，figs．4，ü．）
Tedmemorus Lrébissonii var．minor De Bary，Conj．1858，p．73，1．万，f．9 （Lialfs，1．c．f． $1 \mathrm{f}^{\circ}$ ）：Rabenlı．Flor．Lurop，Algar．III，186s，p． 140 ； Lioy \＆Biss．Scott．Desm．189f，p．24シ．

Cells not more than half the size of the type ；semi－ cells lnoadest towards the apices，lateral margins towards the base gently hollowed．

Length $64-82 \mu$ ；breadth（maximum） $17 \cdot 5-90 \mu$ ； Inearth of isthmus $14.5-15 \mu$ ．

Entiano．－Brandreth，Cumberland！Hawkshead， Lancashire！

Wabes.-Llyn Bochlwyd and 'T'wll Dha, ('armarvonshire!
 Outer Hebricles! Orkneys!
hemand.-Gahway! Kerry!
Ciconf. Dishimetion.-Germany. Poband. Norway. Siveden. Denmark.

This varicety is strikingly abmand in the west and morthwest of 'renthand. The form of the eedls, which are hroadest wwards the apices, is very chanacteristic.

## Var'. minimum mol. (Pl. XXXII, fig. (6.)

Tetmemorus Brébissonii var. minor West, Alg. W. Hreland, 1s 12, p. p. 1:32 (in pairt).
Cells very small; lateral margins of semicells parallel.

Length $57 \mu$; breadth $15 \mu$; breadth of isthmus $11 \mu$.
Iheland.-Near Oughterard, Galway!

## 2. Tetmemorus granulatus (Bréb.) Ralfs.

(Pl. XXXII, fig's. 7-9.)
Closterium granututus Bréb. in Cheval. microseop, et usage, Paris, 183:9, p. 272 ; Brélo. in Menegh. Synops. Desm. 1840, p. 236.

Tetmemorus granulutus Falfs, in Ann. Mag. Nat. Hist. 1814, p. 257, t. S, f. 2 ; Hass. Brit. Freshw. Alg. 1845, p. 378 , t. 89, f. 6; Kalfs, Brit. Desin. 1848, p. 147, t. 21, f. 2; t. 33, f. 1; De Bary, Conj. 185s, p. 29, ete., t. 5, f. 11 ; Areh. in Pritch. Infus. 1861, p. 746 ; Rabenh. Flor. Europ, Algar. III, 1868, p. 140, f. 55; Kirchn. Alg. Schles. 1878, p. 145 ; Cooke, Brit. Desm. 1886, p. 49, t. 18, f. 8; t. 19, f. 1; Hanser. Prodr. Algenfl. Bühm. 18ss, p. 189; De 'Toni, Syll. Alg. 18s9, p. 867; West, Alg. N. Yorks. 1889, t. 291, f. 5; West, Alg. W. Ireland, 1892, p. 132; Roy \& Biss. S'cott. Desm. 1894, p. 242; Nordst. Index Desm. 1596, p. 135: West if G. S. West, Alg. S. England, 1897, p. 483 ; Alga-fl. Yorks. 1900, p. $59 ; \mathrm{Alg}$. N. Ireland, 1902, p. 26.

Penium (T'etmemorus) gramulatus Kutz. Spec. Alg. 1849, p. 167.
Cells fusiform in both front and side views, $5-5 \frac{1}{2}$ times longer than their diameter, with a slight median constriction ; semicells gradually attemated from the base to the apex; apices rounded, with a median incision of somewhat variable depth, apical angles rounded or subacute; cell-wall finely scrobiculate,
those scrobiculations near the isthmus beng disposed in horizontal lines, the rest scattered; chloroplants with a mediam series of fom or five pyrenoids; semieells in side view rather suddenly narrowed near the apex.

Zygospore globose, with a thick, smooth cell-wall.
Length $138-239 \mu$; breadth $30-4.5 \mu$; brealth of isthmus $25-10 \mu$; diam. zygosp. 6:3-7.3 $\mu$.

Engiand.-Gumberland! Westmoreland! (lalfos). Lancashire! (Rulfis). W., N., and E. Yorks! Cheshire (Ro!!). Leicester (Ro!). Essex! Warwick (Wills). Gloncester (lulfis). Surrey! (hulfis). Sussex (halfis). Kent! (Ralfs). Hants! (limlfs). Devon! Cornwall! (Rulfs) ; zygosp. from 'Tintagel!

Walis.-Common!; at 2,200 ft. on Glyder Fach, and at $2,700 \mathrm{ft}$. on Glyder Fawr, Carnarvonshire.

Scomband.-Abundant! (Roy \& Bissett) ; zygospores from Fyvic and Birsemore, Aberdeen; Glen Dye, Kincardine. Up to $3,500 \mathrm{ft}$. on Lochmagar! Outer Hebrides! Orkneys! Shetlands!

Ireband.-Abundant (\%ygosp. from Lough Anna, Donegal) !

Cicorf: Distrimution.-France. Belgimm. Germany. Austria and Galicia. Hungary. Italy. Portugal. Norway. Sweden. Demmark. Bornholm. N. and S. Russia. Iceland. Greenland. China. Ceylon. Java. Australia. Sandwich Islands. Azores. United States. W. Indies.
T. gramulatus is the most abumdant and generally distributed species of ''etmemorus. It is a very cosmopolitan species and occurs from sea-level to the snow-line, but rarely in the freshwater plankton. In $S_{p}$ hagnum-bogs it sometimes occurs in large quantities, and almost pure gatherings of it can be obtained. It is a more slender and more attenuated species than T'. Brébissmii, with a less conspicuous difference between the front and side views, and a different arrangement of the marks on the cell-wall. The specific name "! Iramulutus" is somewhat unfortmate, as the cell-wall is not gramulate but finely serobiculate, the serobiculations being the optical expression of pores through the cell-wall.

Abnormalities of this Desmid are sometimes met with, one of the most enrions and interesting being a form in which ome semicell is bifurcated at the apes. Vide Tateols. Desm. Dinem. 187.), t. \&, f. 3l ; West and (x. S. West, Olos. on Conj. 1898, t. 4, f. 40. Another ahmomal coll has berom observed which consisted of three "semicells"; W"est, No. N. Yorks. 1889, t. 291, f. 5.

## Forma minor Nordst.

Tetmemorus granulatus forma minor Norlst. Alg. aq. dule. ot Char Samlvic. 187 s , p. 10; West, Alg. W. Ireland, 1892, p. 18: ; Whest d G. S. West, Alga-fi. Yorks. 1900, p. (6): Als. N. Ireland, 19世2, p. 27.
(eells considerably smaller than the average size.
Length $95-117 \mu$; breadth $21-28 \mu$.
England.-Near Settle, Gieat Sleddale, and hog near Widdale Beck, Yorks !

Scothand.-Near Scourie, Sutherland!
Ihaland.--Near Glenties, Donegal! Ballynahinch, Galway!

Geotr. Distribution.-New Zealand. Samdwich Islands.

## Var. attenuatus West. (Pl. XXXTT, fig. 10.)

Tetmemorus granulatus var. attenuatus West, Alg . W. Ireland, 1892, p. 132, t. 20, f. 7 ; West \& G. S. West, Some N. Amer. Desm. 1896, p. 235; Alg. N. Ireland, 1902, p. 27.

Semicells rather suddenly but slightly attennated just below the apices.

Length $170-182 \mu$; greatest breadth $30 \mu$; breadth of isthmus 22-25 $\mu$; breadth of apex $15-17 \mu$; breadth below apex $15 \mu$.

Enghand.-Blea 'Tarn and Stickle Tarn, Westmoreland! Hawkshead, Lancashire!

Wales.--Bog below Llyn Tdwal, Carnarvonshire!
Scotland.--Loch Luichart, Ross! Loch Macaterick, Ayr! Hoy and Kirkwall, Orkneys! Scalloway and Lerwick, Shetlands!

Ireband.-Donegal! Galway! Kerry!
Geogr. Distrilution.-United States.
We have examined American specimens of this variety up to $303 \mu$ in length.

## 3. Tetmemorus lævis (Kütz.) Ralfs.

## (Pl. XXXII, figs. 11-16.)

Closterium lise Kïtz, Phycolog. germ. 1s4., p. $1: 32$.
 in Pritch. Infus. 18(11, p. 714 ; Rahenh. Flor: Europ. Algar. III, 1stis, p. 140; Kirchn. Alg. Schles. 1878, p. 145; Wolle, Desm. U.S. $18 s 1$. p. 91, t. 20, f. 3; t. 50, f. 35; Cooke, Brit. Desm. 1s8(5, p. 49, t. 19, f. 2: Hansg. Prodr. Algenfl. Bähm. 1sss, p. 18s; De Toni, Syll. Alg. 18so. p. Sis ; West, Alg. W. Ireland, 18!2, p. 122 ; Roy \& Diss. Seott. Desm. 149.f, p. 2.12; Nordst. Index Desm. 1896, p. 153; West \& ii. S. West, Ag. S. England, 1897, p. 483; Alga-fl. Yorks. 1900, p. (i0; Alg. N. lreland, 1902, p. 27.
Penium (Tctmemorus) lxve Gay, Monogr. loc. Conj. 1881, p. 71.
Cells small, $3 \frac{1}{2}-1 \frac{1}{2}$ (commonly 4) times longer than their diameter, with a slight median constriction; semicells very gradually attemuated to the apices ; apex fairly broad and rounded, with a deep median incision; cell-wall minutely punctate; chloroplasts with a median series of $3-5$ pyrenoids; semicells in side view more attenuated than in front view, especially near the apex.

Zygospore oroid, compressed, enclosed within an outer, compressed, quadrate coat.

Lengeth $67 \cdot 5-123 \mu$; breadth $20-31 \div \mu$; breadth of isthmus 16-27 $\mu$; length of zygosp. $57 \mu$.

Encidant-Cumberland! Westmoreland! (liassett). W., N., and E. Yorks! Lancashire! Lecester (Ro!!) Essex! Norfolk (Coolie). Warwick (Tills). Surrey! Sussex (Ralfs). Hants! (liemett). Kent! Devon! Cornwall (AĹrquaml).

Wates.-General and abundant! ; at $2,200 \mathrm{ft}$. on Gilyder Fach, Carnarvonshire.

Sontand.-General! Zygosp, from Whitestripes Moss and Aboyne, Aberdeen; Cammie in Strachan, Kincardine (Roy \& Pissett). At 3,500 ft. on Lochnagar! Outer Hebrides! Orkneys! Shetlands!
limiano.-General, but not common!
(íouff. Distsilutiom.- Fiance. Belgium. Germany. Mustria and Galicia. Italy. Norway. Sweden. Denmark. Roruholm. N. and S. Russia. Nova Zembla. (ibennland. Singapore. Australia. New Zealaml.

Sandwich Eslands (var.). Azores. United States. Dominica and 'Trindad, IV. Indies. Brazil.

This small species of the gemes is almost as generally distributed as ' $T$ '. gremulutus, and at high elevations is often muth more abmatant. 'The median constriction is often rery faint, amt the semicells are not so attemmater as these of 'I'. gremulatus; the zagospore is alse peculiar. The eell-watl is always minutely punctate, sometimes more distinctly than at others.
T. lareis has a world-wide distribution ; it is fomm from sea-level to the snow-line, and also in the waters of warm and hot springs. It is rarely fomm in the freshwater planktom.

## 4. Tetmemorus minutus De Bary.

(Pl. XXXIT, figs. 17-19.)
Tetmemorus mimutus De Bary, Conj. 1s.5s, p. 41, 7.t, t. 5, f. 10; Areh. in Pritch. Infus. 1861, p. 746 ; Rabenh. Flor. Europ. Agar. $111,1868$. p. 1.4) Kirchn. Alg. Schles. 1878, p. 145; Hansg. Protr. Algenfl. Biohm. 1sss, p. 189: De Toni, Syll. Alg. 18s9, p. sbs; Bemn. Freshw. Alg. S.W. Surrey, 1892, p. 5 ; Roy \& Biss. Scott. Desm. 1s9.4, P. 24:2; Nortst. Inlex Desm. 1596, p. 172; West \& G. S. West, Alga-fl. Yorks. 1900, p. 60 .

Cells small, about is times longer than their tiameter, with a slight median constriction ; semicells conspicnonsly attemmated from base to apex; apices with a deep median incision ; cell-wall delicately and somewhat sparsely punctate ; chloroplasts with one or two pyrenoids; semicells in the side view rather more attemated than in the front view.

Kygospore unknown.
Length $52-6.5 \mu$; breadth $19-21 \mu$; breadth of istlmus 18:\% $\mu$.

Exgland.-Dodd Fell, N. Yorks. (at 2,000 ft.)! Hinthead, Surrey (limmett).

Whas.-Capel Curig (Roy), Pen-y-gwryd (Roy), and Llyn Bochlwyd!, Carnarvonshire. Radnorshire!

Sortanu.-Not meommon on wet rocks (Ro! of lissott). Moidart, Inverness! Gencral thronghont the Outer Hebrides!

Iredand.-Dublin and Wicklow (Areher).

Cipagr. Distrilntion.-Germany. Galicia in Austria. Norway. Sweden. Azores. United States (?). Brazil.

This is the smallest and rarest species of the gemes. It is somewhat smaller than the average forms of T. lavis, and the semicells are more attenmated. The cell-wall is not smooth as described by De Bary, but is punctate as in all other species of the genus, the punctulations being very delicate and not easily seen. Roy records it from Scotland as " not uncommon on wet rocks," but we find 'T'. laris. more usual in such situations. T'. mimutus is frequent in the bogpools in the Onter Hehrides.

All Wolle's figures of the genus Tetmemorns are very bad ones. The zygospores figured by him (Desm. U.S. 1884, t. 20, figs. 7-9) do not belong to 'I', mimutne, but to 'T'. laris.

## Plate 1

## PLATE I.

FIGS. PAGE1-7.-Gonatozygon monotrnium De Bary. 1-3, 6,after De Bary, $\times 390 ; 4,5,7, \times 520 ; 6$ and7, zygospores30
8-11.-C(r. Brélussomii De Bary. 8, 9, 11, x 520; 10,after De Bary, $\times 390$$:, 1$
12-14.-G. Brébisomii var. lare (Hilse) West \& (i. S. West. 12 and $1: 3, \times 400 ; 14$, zygospore, after De Bary, x 390 ..... $\because:$
15.-( (f. Brébissonii var. mimutum West \& G.S. West. $\times 400$ ..... :3:)
16.-G. Brétissomii var. mimulum West \& G. S. West, forma. $\times 400$ ..... 3:3
17.-Cr. Kiellmomi Wille. After Wille, $\times 400$ ..... :33
18.-G. Kjellmani forma minor West d G. S. West. $\times 830$ ..... 31
19-20.-(t. pilosum Wolle. 19, $\times 400$; 20, after Wolle, ..... 34

+...0.


Plate 2

## PLATE II.

FIGS. PAGE
1-3.-Conatozygon Kinalami (Arch.) Rabenh. 1 and 2, $\times 400 ; 3, \times 520$ ..... 35
4-6.-Genicularia spirotamia De Bary. After De Bary, $\times 390$ ..... $: 36$
7-10.-Spirotenia comdensatu Brél). 7, after De Bary, $\times 390 ; 8, \times 520 ; 9$ and 10 , zygospores, after Areher, $\times 300$ ..... :38
11.-Sp.turfosa West \& G. S. West. $\times 520$ ..... 4:
12-14.—心p. fusifomis West \& (i.S. West. $\times$ og2 ..... 4:3
15-18.-Sp. partula Arch. After Archer, $\times 400$ ..... $4: 3$
19.-Sp. closteridia (Brél).) Arch. After Kützing, $\times 600$ ..... 39
20-23.-Sp. endospira (Kütz.) Arch. After De Bary, $20, \times 390 ; 21-23, \times 750$ ..... 39
24-26.-Sp. truncata Arch. After Archer, $\times 400$; 26, zygospore ..... 40
 m

$$
\text { In } 18-1 \text { a o } 0
$$

Conement

mosm
ninctinn
-
—n


$88\}$
8
5
8
8
8
8
8 1 , 181

## Plate 3

## PLATE III.

Figes. PAGE
1-3.-Spirotenia minuta Thur. 1 and 2, $\times 520$; 3, after Liitkemüller, $\times 500$ ..... 41
4-6.—Sp. choracensis G. S. West. $\times 520$ ..... 42
7-12.-Sp. obscura Ralfs. 7-11, after Lütkemäller, $\times 500 ; 12, \times 400$ ..... 44
13.-Sp. Trispiralis West. $\times 400$ ..... 4.5
14-15.-sp. acuta Hilse. $\times 520$ ..... 46
16-17.-? S'p. tenerrima Arch. $\times 520$ ..... 47
18-19.-Mesotanium De Greyi 'Turn. After 'Tumer, $\times 500$ ..... 49
20.-M. De Gremi var. breve West. $\times 400$ ..... 50
21.-M. De Greyi forma major West and (i. S. West. $\times 400$ ..... 49
2.2.-M. De Greyi forma temuis West iv (G.s. West. $\times 520$ ..... 50
2:3-24.-M. Kramstai Lemm. 23, x 520; 24, after Lemmermann, $\times$ 30.) ..... 57
25-26.-M. purpureum West © G. S. West. $\times 520$ ..... 5.
27-3:3.-M. viol(cscens De Bary. After De Bary, x 390 ..... 5.)
34-36.-M. macrococcum (Kutz.) Roy \& Biss. After De Bary, x 390 ..... 51
chinue
civansos
3 -

Nut
HED comex ymary


## suatrlitho

客
## 1816 <br> 4 <br> (8) <br> 5

## Plate 4

## PLATE IV.

fIGS. PAGE1-3.-Mesot:eninm macrococcum (Kütz.) Roy \& Biss.var. micrococcum (Kütz.) West \& G. S. West.$1, \times 520 ; 2$ and 3, after De Bary, $\times 390$52
4-14.-M. chlamydosporum De Bary. After De Bary, $\times 390$ ..... 52
15-17.-M. caldariorum (Lagerh.) Hansg. $\times 520$ ..... $5: 3$
18-19.-M. mirificum Arch. $\times 520$ ..... 50
20-21.-M. Einullicherianum Näg. 20, after Nägeli, $\times$ $300 ; 21, \times 520$ ..... 56
22.-M. Lindlicherianum var. Ifraude Nordst. $\times 320$ ..... 57
2:3-29.-Cyliudrocystis Brébisismii Menegh. 2.3, 24, $27-29$, after De Bary, $\times 4.50$; 25 and 26 , $\times 520$ ..... 58
32.-C. Bretissonii Menegh. Young cells uscaping from zygospore, after De Bary, $\times 390$ ..... 58
33-38.-C. crassa De Bary. :3:3-35, after De Bary, $\times 390 ; 36-38, \times 520$ ..... 59
39. - C. roseola 'Iurn. After 'Jurner; $\times$ ju0 ..... 62
40-41.-C. diplospora Land. 40, $\times 520$; 41, after Lundell, $\times 400$ ..... 61
42-43.-C. diplosporca var. major West. 42, $\times 400$; $43, \times 5 \underline{2}$ ..... 61


## Plate 5

## PLATE V.

FIGS. PAGE
1-․--Genicularia elegans. West \& (i.S. West. $\times 5.20$ ..... 86
:3-4.-(t. spirotania De Bary. × ..こ0. 4, zygospore ..... 36
.).-Gonatozygou monotanium De Bary. Kygospore, $\times 520$ ..... 30
6.-Spirotienia trabeculata A. Br. $\times 5$ 20 ..... 4.)
7.-Netrium oblonqum (De Bary) Lütkem. var. cylindricum West \& (i.S. West. $\times$. 20 ..... 67
¿.-Cylindrocystis obera West \& G.S. West. $\times 520$ ..... 60
9.-Cyl. minutisxima 'Turn. $\times 5.20$ ..... $6:$
10. - Cyl. Brabissomii Menegh. Zygospore, $\times 520$. ..... 58
11.-Cyl. Brélissomii var. mimon West \& G. S. West. $\times 520$ ..... 59
12.-Mesotimimm truncutum West © G. S. West. $\times 520$ ..... 54

## Plate 6

## PLATE VI.

figs. PAGE
1-3.-Pemium Cylindru. Ehrent, 1, after Ralfs, $x$400 ; 2 and $3, \times 520 ; 3$, zygospore . 84
4-\%.-l. cuticnlare West \& (i. S. West. $\times 5.0$ ..... 8.5
6-7.-P. exigmum West. $\times 400$ ..... 868.- $P$ '. exiguum forma major West \& (i. S. West.$\times 520$86
9-11.- $P^{\prime}$. phymatospormm Nordst. After Nordstedt, $\times 570$ ..... 91
$12-13 .-P$ rufescens Cleve. 12, $\times 520 ; 13$, after Cleve, $\times 400$ ..... 99
14-16. -Netrimm Digitus (Ehrenb.) Itzigsh. \& Rothe. $14, \times 520 ; 15$, after Ralfs, $\times 200 ; 16, \times$ 400 ..... 64
17.-N. Digitus var. constrictum West. $\times 300$ ..... 6.)



$=-\infty$

Plate 7

## PLA'TE VII.

fics. PAGE1-2.-Netrium interruptum (Brél).) Lütkem. 1, $\times$$400 ; 2, \times 520$.68
3.-N. interruptum var. sectum West. $\times 300$ ..... 69
4-\%.-N. Nä̈yelii (Bréb.) West © (i.s. West. $\times$ jog ..... 66
(6-7.-Peнimm Libellulu (Focke) Nordst. 6, $\times 4.00$; $7, \times 200$ ..... $7: 3$
8.-I . Libellula forma. $\times 400$ ..... 74
9-10.-P. Libellula var. interrutum West \& (i. S. West. $\times 5$ 0. 0 ..... 7411.- $P$. Libellula var. intermertium Roy \& Biss. $\times$520
7.
12-15.- $I$. Nariculu Bréb. 12, $\times 400 ; 1: 3-15, \times 520$. ..... 75
 $\times 520$ ..... 7618.- $P$. Naricula var. inflatum West \& G. S. West.$\times 4.00$77
19.-P. Natirtla. Kygospore, after Lmadell, $\times 400^{\circ}$ ..... 75
$\because 0-21 .-1$. Jemueri Ralfis. After Ralfs, $\times 200 ; \mathfrak{2}$, zygospore ..... 77

$\qquad$


Plate 8

## PLATEE VIII.

fIGS. PAGE
1-3.-Netrium ollongum (De Bary) Lütkem. 1 and 2, after De Bary, $\times 390 ; 3, \times 400$ ..... 66
4-5.-Penium crassinsculum De Bary. 4, after De Bary, $\times 390 ; 5, \times 520$. ..... 96
6-7.-P. spinospermum Joshua. 6, after Joshua, $\times$ $4.50 ; 7, \times 520$. ..... 78
8-10.-P. Mooreanam Arch. After Archer, x 400 ..... 80
11-13.- $P^{\prime}$. dirlynocarmm. Land. 11 and $1 \stackrel{2}{2}$, after Lan- dell, $\times 400 ; 1: 3, \times 500$. ..... 79
14-19.-P. subuctongulare West. $\times 400$ ..... 81
20-23.- $I$. minutisximum Nordst. $20, \times 500 ; 21-23$, after Nordstedt, x 600 ..... 81
24-26.-P. trumetum Bréb. 24 and 2.), $\times 400$; 20, zygospore, after Ralfs, $\times 400$ ..... 8.2
27-29.- $P$. subtile West \& ( $4 . S$. West. 27 and 29 , $\times 520 ; 28, \times 660$ ..... $9 \cdot$
30-31.- $P$. adelochoulvom Elfv. :30, after Elfving, $\times 400 ; 31, \times 400$ ..... 93
32-35.- $P$. margaritacrum Ralfs. 32, $\times 520$; 3.3 and $34, \times 400 ; 3.5$, zygospore, after Ralfs, $\times 400$ ..... 83
36-37.-T . Clecei Lund. 36, $\times 400 ; 37$, after Lundell, $\times 400$ ..... 87
38.- $I$. Clerei var. crassum West. $\times 520$ ..... 88
39.-P. granulatum (Benn.) West \& G. S. West. After Bemnett, $\times 400$ ..... 87

(\$)
(\$)

"III
IIII


Plate 9

## PLATE IX.

figs. fage
1-8.-Penium spirostriolatum Barker. 1-4, $\times 520$; ${ }^{5}$ and 6 , two apices, $\times 1280 ; 7$, portion of cell- wall, $\times 1280 ; 8$, zygospore, after Ralfs ..... 88
9-11.-P. polymorphum Perty. 9, after Lundell, $x$ $400 ; 10, \times 400 ; 11, \times 520$ ..... 90
12.-P. lagenarioides Roy. After Roy, $\times 400$ ..... 93
13-14.-1 . Cucurlitinum Biss. $\times 520$ ..... 94
15.-P. Cucurbitinum forma. $\times 520$ ..... 96
16.- $P$. Cucurlitinum forma minor West. $\times 400$ ..... 9.5
17.--P. Cucurbitinum forma major West \&G.S. West. $\times 520$ ..... 95
18.-P. Cucurbitimum var. Scoticum West \& G. S. West. $\times 400$. ..... 96
19-20.-P. Cucurbitinum var. subpolymorphum Nordst. $19, \times 400 ; 20$, after Nordstedt, $\times 570$ ..... 95




## Plate 10

## PLATE X.

figs. page
1-2.-Penium minutum (Ralfs) Cleve. 1, $\times 400$;2, after De Bary, x 390 .101
3. $-P$. minutum forma minor Racib. $\times 400$ ..... 103
4.-P. minutum forma major Racib. $\times 400$ ..... 103
S.- $P$. minutum var. tumidum Wille. $\times 400$ ..... 104
6.- $P$. minutum var. gracile Wille. $\times 400$ ..... $10: 3$
7.- $P$. minutum var. undulatum West. $\times 400$ ..... 10.5
8.-l'. minutum var. elongatum West \& G. S. West. $\times 400$ ..... 104
9.- $P$ '. minutum var. alpinum Racib. $\times 400$ ..... 104
10.-P. minutum var. polomicum (Racib.) West\&G.S. West. $\times 400$. ..... 10.)
11-13.-P. minutum var. crassum West. $\times 400$ ..... 105
14.-P. minutum var crassmm forma inflata West. $\times 4.00$ ..... 105
15-17.-P. inconspicum West. $\times 520$ ..... 101
18-19.-P'. cruciferum (De Bary) Wittr. 18, $\times 625$; $19, \times 520$ ..... 100
20.- $P$. cruciferum, small form. $\times 520$
21-22.-P. curtum Bréb. $\times 520$ ..... 97
23. $-P$. curtum forma minor Wille. $\times 5 \underline{5}$ ..... 98
24-25.- $-P$. curtum forma major Wille. $\times 520$ ..... 9826.-P. curtum var. obtusum. West \& (土. S. West.$\times$ 2.2099
27.-Roya nbtusa (Bréb.) West \& (G.S. West. $\times 400$ ..... 107
28-29.- $R$. oltusa var. montana West \& G. S. West. 28 and $29 a, \times 625 ; 29 a^{\prime}, \times 520$. ..... 108
30.-R. Psenduclosterium (Roy) West \& G. S. West. $\times 5 \underline{0}$ ..... 109
31.—R. cambrica West \& (8. S. West. $\times 520$ ..... 108
cososes

Plate 11

## PLA'IE XI.

figs. PAGE1-3.-Closterium Cynthia De Not. 1 and 2 , forms,$\times 520 ; 3 a, \times 400$ (after De Not.) ; $3 a^{\prime}$,$\times 400$113
4.-Cl. Cynthia var. curvatiswimum West \& G. S.West. $\times 520$114
5-7.-Cl. Lagoense Nordst. 5, $\times 400$ (after Nord- stedt). 6 and $7, \times 520$. ..... 114
8-10.-Cl. Archerianm Cleve. 8, $\times 400$ (after Lundell) ; 9, $\times 400 ; 10$, zygospore, $\times 400$ (after Lütkemüller) ..... 11.5
11.-Cl. Archerianum forma. $\times$ 520 ..... 11.5
12.-Cl. porrectum Nordst. $\times 400$, after Nordstedt ..... 116
13.-Cl. porrectum var. anynstatum West \& G. S. West. $\times 220$. ..... 116


Plate 12

## PLA'TE XII.

FIGS. PAGE1-5.-Closterimm diclymotorum Corda. 1 and 2, $\times$400 ; 3 and 4, $\times 200$ (after Ralfs) ; 5, apexof semicell, $\times 700$116
6-7.-Cl. didymotocum var. asperulatum West \& G. S. West. $6, \times 220 ; 7, \times 520$ ..... 118
8-10.-Cl. macilentum Brél). 8 and 9, $\times 200$ (after Brébisson) ; 10, $\times 220$ ..... 118
11-13.-Cl. angustatum Kiitz. 11 and 12, $\times 220$; 13,
$\times 520$ ..... 119


Plate 13

## PLATE XIII.

figs. PAGE1-3.-Closterium costatum Corda. $1, \times 220 ; 2, \times$200 (after Ralfs) ; 3, $\times 320$120
4-6.-Cl. regulare Bréb. 4, $\times 200$ (after Brébisson); 5 and $6, \times 520$ ..... 1227-16.-Cl. striolatum Ehrenb. 7-i2, outline figures toshow the variability of form and the sutures,$\times 140 ; 13, \times 400 ; 14$ and $15, \times 520 ; 16$,zygospore, $\times 200$ (after Ralfs) .122
17.-Cl. striolatum forma recta West. $\times 400$ ..... 124


Plate 14

## PLA'TE XIV.

higs. PAGE1-5.-Closterium intermedium Ralfs. $1-3, \times 520$;$4-5, \times 200$ (after Ralfs).125
6.-Cl. intermedium var. hibermicum West. $\times 520$ ..... 126
7-9.-Cl. Ulua Focke. 7 and $8, \times 400 ; 9, \times 520$. ..... 127
10-14.-Cl. juncidum Ralfs. $10-13, \times 400 ; 14$, zygo-spore, $\times 200$ (after Ralfs)128
15-16.-Cl. juncidum var. Irevior Roy. $\times 200$ (after Ralfs) ..... 129

## Plate 15

## PLATE XV.

FIQS. PAGE1-6.-Closterium Diana Ehrenb. 1-3, $\times 220 ; 4$,$\times 200$ (after Ralfs); 5, extremity of cell,$\times 830 ; 6$, zygospore, $\times 220$130
7-8.-Cl. Pseudodiana Roy. 7, $\times 400$ (after Roy); $8, \times 400$ ..... 132
9-12.-Cl. parrulum Näg. 9, $\times 300$ (after Nägeli); 10 and $11, \times 520 ; 12$, zygospore, $\times 300$ ..... 133
13-14.-Cl. parvulum var. angustuin West \& G. S. West. $\times 520$ ..... 134
15-20.-Cl. Venus Kütz. $\times 520$; 18-20, zygospores ..... 137
21-22.-Cl. Dianx var. arcuatum (Bréb.) Rabenh. $\times$ 220 (after Brébisson) ..... 131
23-25.-Cl. Jenneri Ralfs. 23, × 200 (after Ralfs); 24 and $25, \times 520$ ..... 134
26-27.-Cl. Jenneri var. robustum G. S. West. $\times 520$. ..... 136
28-30.-Cl. incurvum Bréb. 28 and 29, $\times 520 ; 30$, $\times 200$ (after Brébisson). ..... 136


Plate 16

## PLATE XVI.

FIGS. PAGE1-4.-Closterium calosporme Wittr. $\times 400$ (afterWittrock). 3 and 4, zygospores a . 138i-6.-Cl. calosporrm forma major West \& G. S. West.'Tiwo zygospores, $\times \underline{2} 20$139
7-8.-Cl. eboracense Turn. $\times 400$; 7, after Turner . ..... 1409-14.-Cl. Leibleinii Kütz. $9-11, \times 200$ (after Ralfs) ;$12-14, \times 520$. . . . 141
15-16.-Cl. monilifernm Ehrenh. $\times 400$ ..... 142


$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \quad 0 \quad 0
$$



Plate 17

## PLA'IE XVII.

Figs. PAGE1-4.-Closterium Ehrenbergiii Menegh. 1 and 2, $\times$$220 ; 3, \times 120 ; 4$, zyoospore $\times 220$. 14.35-6.-Cl. Nalinverniamum De Not. 5, $\times 220 ; 6, \times$520145
7-8.-Cl. decorum Bréb. $\times 200$ (after Brébisson) ..... 184
$9-10 .-C l$. lanceolatrom Kütz. $9, \times 300 ; 10, \times 520$ ..... 149
11.-Cl. linceolatrom var. purrom West \& G. S.West. $\times 520$.1.50

## Plate 18

## PLATE XVIII.

FIGS. PAGE
1.-Closterium acerosum. (Schrank) Ehrenb. var. slongatum Bréb. $\times 220$. ..... 148
2-5.-_Cl. acerosum (Schrank) Ehrenb. 2 and 3, $\times$200 (after Ralfs) ; 4, extremity of a cellshowing slight truncation, $\times 520$; 5, zygo-spore, $\times 200$ (after Ralfs)146
6.-Cl. acerosum var. angolense West \& G. S. West. $\times 220$ ..... 149
7.-Cl. Tanceolatum Kütz. Zygospore, $\times 220$ ..... 149
8-9.-Cl. Lumulu. Ehrenb. $\quad \times$ 220 ..... 150
10.-C7. Lumula var. coloratum Klebs. $\times 120$ ..... 152
11.-Cl. Lumula var. liconvexum Schmidle. $\times 120$ ..... 152
12.-C7. Lumula var. intermedium Gutw. ..... 152


## Plate 19

## PLATE XIX.

FICS. PAGE1-2.-Closterinm sigmoidenm Lagerh. \& Nordst. $\times$170153
3-5.-Cl. sigmoidenm forma major West \& G. S.West. $\times 170$.153
6-8.-Cl. Siliqua West \& G. S. West. $\times 520$ ..... 154
9-11.-Cl. peracerosmm Gay. 9 and $10, \times 400 ; 11$,$\times 400$ (after Gay)1.54
12-13.-Cl. peracerosmm var. clegans G. S. West. $\quad \times 520$ ..... 15.$)$
14.-Cl. littorale Gay. $\quad \times 400$ (after Gay) ..... 155
15-18.-Cl. tumidmm Johnson. $\times 520$ ..... 156


Plate 20

## PLATE XX.

FIGS. PAGE
1-5.-Closterium Cormu Ehrenb. 1 and 2, $\times 400$; 3 and $4, \times 520 ; 5$, zygospore, $\times 400$. 157
$6-10 .-C l$. abruptum West. $\times 520$. 10, zygospore ..... 158
11-12.-Cl. ubruptum var. brevius West \& G. S. West. $\times 400$ ..... 160
13-14.-Cl. toxon West. $\times 400$ ..... 160
15.-Cl. Bulmacarense Turn. $\times 400$ (after Turner) ..... 161
16.-Cl. Balmacarense forma minor Turn. $\times 400$ (after Turner) ..... 161
17.-Cl. Scoticum Turn. $\times 400$ (after T'urner) ..... 161
18.-Cl. Scoticum var. fusiforme Turn. $\times 400$ (after 'I'urner) ..... 162
19.-Cl. pusillum Hantzsch var. major Racib. ..... 163
20-24.-Cl. pusillum var. monolithum Wittr. . ..... 163
H
H
$H$

프표

## PLATE XX.

## ERRATA.

Page 163, line 8, for Pl. XX, fig. 19, read Pl. XX, fig. 22.
" ", 21, for Pl. XX, figs. 20-24, read Pl. XX, figs. 19-21.
On explanation of Pl . XX-
Read figs. $19-21 .-C l$. pusillum var. monolithum Wittr. $(\times 520)$.
fig. 22.-Cl. pusillum var. major Racib ( $\times 400$ ).


Plate 21

## PLATE XXI.

FIGS. PAGE1-2.-Closterium pralongum Bréb. 1, $\times 200$ (afterBrébisson) ; 2, $\times 500$164
3-5.-Cl. pralongum forma brevior West. 3 and 4,
$\times 400$; 5, zygospore, $\times 200$ ..... 165
$6-7$.-Cl. strigosum Bréb. $\times 400$ ..... 16.5
8-12.-Cl. grucile Bréb. $\times 520$; 11 and 12, zygospores ..... 16613.-Cl. yracile var. tenue (Lemm.) West if (G. S.West. $\times 520$. 168
14-16.-Cl. gracile var. elonuatum West \& G. S. West. $\times 400$ ..... 168
17.-Cl. Lumulellii Lagerh. $\times 400$ ..... 169
18-19.-Cl. uciculare Tuffen West. $\times 400$ ..... 174

Plate 22

## PLATE XXII.



$$
4!!
$$

## Plate 23

## PLATE XXIII.

fios. page1-3.-Closterium momum Bréb. $\times 520$179
4-5.-Cl. aciculare 'Tuffen West var. sulpromm West \& G. S. West. $\times 520$ ..... 175
6-8.-Cl. Ceratium Perty. 6, $\times 520 ; 7$ and $8, \times 400$ ..... 176
9-14.-Cl. acutum Bréb. $\times 520$; 14, zrgospore ..... 177
15.-('l. uchtum var. Line\| (Perty) West \& G. S.West. $\times 520$.178
16-19.-Cl. sululatum Kiitz. 16 and 17, $\times 400 ; 18$, smaller forms, $\times 520 ; 19$, zygospore, $\times 520$. ..... 179
20-21.-Cl. itiosporm West \& G. S. West. $\times 520$ ..... 180

T2


numbin I Don nownerer

Plate 24

## PLATE XXIV.

FIGS. ..... PACE1-5.-Closterium lineatum Ehrenb. 1, $\times 200$ (afterRalfs) ; 2, $\times 400 ; 3, \times 520 ; 4$, zygospore,$\times 120 ; 5$, portion of cell-wall of conjugatingspecimen, $\times 520$181
6-7.-Cl. Ralfsii Bréb. 6, $\times 300 ; 7, \times 200$ (after Ralfs)182
8-13.-Cl. Ralfsii var. hybridum Rabenh. 8, 10, and $11, \times 520 ; 9, \times 220 ; 12$, zygospore, $\times 120$; 13, portion of cell-wall of conjugating speci- men, $\times 520$ ..... 183


Plate 25

## PLATE XXV.

FIGS. PAGE1-3.-Closterium decorum Bréb. 1 and 2, $\times 208$(after Delponte) ; 3, $\times 520$184
4-5.-Cl. literale Nordst. 4, $\times 220 ; 5, \times 520$ ..... 186
6-11.-Cl. Kützimgii Bréb. 6, $\times 500 ; 7-9, \times$ 520;10 and 11 , zygospores, $\times 400$186
12-19.-Cl. Kïtaingii var. rittatum Nordst. $\times 520$ ..... 188
$\qquad$ $\therefore$

$3 \quad 12$ 1.

## ,

## mex <br> \section*{1} <br> 

Plate 26

## PLATE XXVI.

figs$520 ; 7$ and 8 , zygospores, $\times 220$. 1899-13.-Cl. setareum Ehrenb. $9-12, \times 520 ; 1: 3$, zygospore, $\times 400$ (after Ralfs)

## $\infty$




Plate 27

## PLATE XXVII.

FIGS. PAGE1-6.-Docidium baculum Bréb. 1, $\times 430$; ᄅ-6,$\times 520 ; 6$, basal view of semicell, $\times 520$. 1937-10.-D. umulututum Bail. 7, $\times 430 ; 8$ and $9, \times 400$;10 , hasal view of semicell, $\times 520$. 194
11.-D. umbulatum forma peruudulata West \& G. S. West. $\times 400$. ..... 196
12.-D. undulatum var. dilatatum (Cleve) West \& G. S. West. $\times 400$ ..... 196
13-15.-D. nobile (Richter) Lund. 13 and 14, $\times 300$ (after Richter) ; 15, base of semicell, $\times 510$ (after Richter). ..... 196
16-18.-Pleurotrenium coronutum (Bréb.) Rabenh. 16,$\times 220 ; 17$ and $18, \times 400$199
3
3
3
$=2$
隹

## Plate 28

## PLA'IE XXVIII.

FIGS. PAGE1-2.-I'leurotanium coronatum var. fluctuatum West.$1, \times 430 ; 2, \times 400$200
3. - P'l. coronutum var. rolustum West. $\times 400$ ..... 2004.- Pl' coronatrm (Bréb.) Rabenh. $\times 520$. Semi-cell showing the disposition of the chloro-plasts1995-8.-Pl. coronatum var. nodulosum (Bréb.) West.$5, \times 400 ; 6, \times 220 ; 7$ and 8 , two apices,$\times 520$200

Plate 29

## PLATE XXIX.

FIGS. PAGE1.-Pleurotænium éugeneum ('Turn.) West \& Cr. S.West, forma Scotica West id (i. S. West.$\times 430$2032.-Pl. eugenemm forma Cambrica West \& G. S.West. $\times 430$.203
3-4.-P. truncatum (Bréb.) Niag. 3, $\times 200$ (after Ralfs) ; 4, $\times 430$ ..... 2035-6.-Pl. truncatum var. Farquharsomii (Roy) West\& G. S. West. 5, x 200 (after Roy) ; 6, x53020.)
7-8.-Pl. truncatum var. gramulatum West. 7, x $400 ; 8$, apex of semicell, $\times 400$ ..... 20.5
9-11.-1'. Eltrenbergii (Bréb.) De Bary. 9, $\times 400$; 10 and $11, \times 520$ ..... 20.5


Plate 30

## PLATE XXX.

FlGS.
PAGE
1.-Pleurotæuium Ehrenbergii (Bréb.) De Bary. Kygospore, $\times 315$
20. 5
2.-Pl. Ehrenbergii forma. $\times 400$. 207
3.-Pl. Ehrenhergii var. elongatum West. $\times 400$. 207
4.-l'l. Ehrenbergii forma. $\times 220$. 208
©-6.-Pl. tridentulum (Wolle) West. $\times 520$. 208
7-8.- Pl' tridentuhum var. cupitatum West. $\times 520.209$
$9-10 .-1 ' l$. Trabeculu (Ehrenb.) Näg. var. rectun (Delp.) West \& G. S. West. $\times 400$. 212 $11-13 .-P ' l$. Trabecula (Ehrenb.) Näg. 11, $\times 220 ; 12$.
and $13, \times 500$.
14-15.-Pl. Trabecula var. rectissimum West \& G. S. West. $\times 520$.211

Plate 31

## PLATE XXXI.

FIGS. PAGE1-2.-Pleurotanium maximum (Reinsch) Lund. 1,$\times 500 ; 2, \times 520$2133-6.-Pl. nodosum (Bail.) Lund. 3 and 4, $\times 430$;5, basal view of semicell, $\times 520 ; 6, \times 400$. 2147.-Pl. Mutchinsonii (Turn.) West \& G. S. West.$\times 400$ (after Thrner)214
8-9.-Pl. Thabecula (Ehrenb.) Näg. forma clarata(Kütz.) West \& G. S. West. 8, $\times 4.00$;$9, \times 200$ (after Ralfs) . . 211

Plate 32

## PLATE XXXII.

FIGS. PAGE
1-2.-Tetmemorus Brébissonii (Menegh.) Ralfs. $\times$ 430 ..... 216
3.-T. Brébissonii var. turyidus Ralfs. $\times 400$ (after Ralfs) ..... 218
4-5.)-T. Brebissonii var. minor De Bary. $\times 430$ ..... 218
6.-T. Brelissonii var. minimum West \& G. S.West. $\times 400$.219
7-9.-T. gramulatus (Bréb.) Ralfs. 7 and 8, $\times 430$; 9, zygospore, $\times 315$ ..... 219
10.-T. grımulatus var. attenuatus West. $\times 400$ ..... 221
11-16.-T. levis (Kütz.) Ralfs. 11, 12, and 14, $\times 520$;$13, \times 430 ; 15,16$, zygospore (two views),after Ralfs, $\times 400$. 22217-19.-T. minutus De Bary. 17 and $18, \times 430 ; 19$,$\times 390$ (after De Bary)298

(-0)

## RAY SOCIETY

INS'TIT'U'IED 184

FOR THE PUBLICATION OF WORKS ON NATURAL HIS'ORY.

ANNUAL SUBSCRIPTION ONE GUINEA.

## LIS'T OF' THE SOCIETY

FOR THE YEAR 1904.

## OFFICERS AND COUNCIL．

1904－1905．

## fnresidut．

The lit．Hon．LoRd AVEbURY，D．C．L．，Lh．D．，Pres．Soc．Ant． For．Sec．R．A．，F．R．S．，F．L．S．，etc．

## Hite－flrsiduts．

HOLERT RRAITHWAITE，M．D．，M．R．C．S．E．，F．L．S．
ALBER＇D．MCHAEL，F．L．S．，F．Z．S． ＇The Rit．Hon．LORD WhLsingham，M．A．，LL．D．，F．R．S．

## Coumail．

Chables G．Barbetty，F．E．S．
Rev．Alfreen Fuller，M．．A．，F．E．S．
John Marley，M．D．，F．R．C．＇＇．，F．L．＇S．
Sidney F．Harmer，Sc．D．，F＇R．S．
Prof．W．A．Herdman，D．Sc．，F．I．S．， F．R．S．E．，Pres．L．S．
13．Daydon Jackson，F．L．S．
Albert M．Jones，F．E．S．
Henry Laver，M．R．C．S．，F．L．S．
J．W．S．Melklejuinn，M．D．，F．L．S．

Liev．C＇mon Nomman，M．A．，D．C．L．， LL．D．，F．1．S．
J．S．Puené，IL．D．，F．S．A．
Prof．Edward 13．Puulton，M．A．， Sc．D．，LL．D．，F．L．S．
Henry lower，M．B．，F．L．S．，F．Z．S．
D．H．Scott，M．I．，Ph．D．，F．L．S．， F．L．S．，Pres．R．M．s．
Hentiy Spleek，B．A．，F．L．S．，F．G．S． Alfred O．Walker，F．L．S．，F＇L．S．

## Itrathrer．

F．Ducane godman，D．C．L．，F．R．S．，F．L．S．，F．G．S．

## 实以以ばいいた。

JUHN HOPKHSON゙，F．L．S．，E．d．S．，l．I．R．Met．Suc．，Weetwoul，Wrattord．

## LIS'T OF THE RIY SOCTETY.

Aberdeen, University of ; King's College', Aluerdeen.
Adkin, Robert, F.E.S.; Welljiell, 4 Lingerds hoal, Lewisham, S.E.

Adlard, R. E.; Bartholomew Close, E.C.
Advocates' Library ; Edinburgh.
Andrews, Arthur' ; Newtown Honse, Blackirock, Doblin.
Army and Nayy Clnb ; 36 Pall Mall, S.W.
Ash, The Rev. Cyril D.; Skipwith Vicaraye, Selly.
Athenamm Club; Pall Mall, 心.W.
Avebmy, The Right Hon. Lord, D.C.L., LL.D., F'R.S., F.S.A., F.L.S., F.G.S., F.Z.S., F.E.S., President ; 1.5 Lombarl Street, E.C.; 6 St. James's Square, S.IV.: and High Elms, Farnborongh, r.s.o., Kent.

Baer, Joseph, \& Co.; 6 Morhistrasse, Frankfort, Germany.
Barrett, Charles (E., F.E.S.; Tremont, 198 P'echhom liye, S.E.
Barrow-in-Furness Pnblic Library; Barrou-in-Finmess.
Battersea Public Library; Lavender Mill, S.W.
Belfast Library ; Donegal S'quare, Belfast.
Bentley, Richard, F.S.A., F.L.S., F.R.Met.Soc., F.R.G.S.; Cpton, Slongh.
Berens, A. A., M.A.; Costlemead, Wimhoor.
Bergen Museum; lergen, Nomouy.
Berlin Royal Lilrary; Berlin.
Berlin Royal Zoological Mnseum ; Bertin.
Berne Natnral IIistory Musemm; Berne, Switzerlunt.
Bethme-Baker, Cieorge 'T., F.L.S.: F.E.S.; 19 Clarentom Road, Eilybaston, Birmingham.
Binks, Mrs. I.; 9 limiton Street, Wakefield.
Birmingham Free Libraries; Birmingham.
Birmingham Library; Margaret Street, Birmingham.
Blackburnc-Maze, W. P., F.E.S.; Show Honse, Newtory.
Bloomfield, The Rev. L. N., M.A., F.E.S.; Guestling Rectory, Hasting..

Board of Education, Secondary Branch; South Kensington, S.W.

Bodleian Library ; Oxford.
Bootle Free Library; Oriel Road, Buotle, Liverpool.
Bostock, E. D., F.E.S.; Holly House, Stone.
Bostock, F., jun. ; Northampton.
Bonrne, T. W. ; The Wold, Kingskersuell, Newton Ablot.
Brady, G. Stewardson, M.D., 1.L.D., F.R.S., 1’rofessor of Natural History, Durham College of Science ; ב Moubray Villas, Sumderland.
Braithwaite, Robert, M.I)., M.R.C.S.E., F.L.S., Tice-Presibent; 26 Endymion Roml, Briaton ILill, S.W.
Breslau University Library ; Brestan, (tromany.
Briggs, C. A., F.E.S.; Rock Monse, Lymmouth, R.s.o., North Devon.
Briggs, 'T'. H., M.A., F.E.S.; Rock Mouse, Ligmmouth, r.s.o., North Devon.
Brighton and Hove Natural History Society; Public Lilrary, Brighton.
Bristol Microscopical Society; 20 Berkeley S'quare, Clifton, Bristol.
Bristol Musemm and Reference Library; Queen's Rocul, Bristol.
British Museum; Bloomslur!!, W.C.
Brockholes, Mrs. J. Fitzherbert ; Clifton Hill, Carrstany, r.s.o., Lancashive.
Bromley Naturalists' Society ; Bromley, Kent.
Brussels National Library ; Brussels.
Buchan-Hepburn, Sir Archibald, Bart., F.E.S.; SmeatonHeptrern, Prestonkirk, N.B.
Burrows, 'Ilse Rev. C. R. N.; Mucting Vicaraye, Stanford-leHope, s.o., Esser.

Cambridge Philosophical Library ; New Nuseums, Cumbridge.
Cambridge University Library ; Cambridge.
Campbell, F. Maule, F.L.S., F.Z.S., F.E.S., F.R.M.S.; Brynlluyduym, Machynlleth.
Cauterbury, Philosophical Institution of ; Christchurch, Nex Zealand.
Cardiff Free Libraries; Cardifi.

Carlyon, 'I. A. ; Connemara, Darracott Road, Boscombe Park, Bournemouth.
Chapman, Edward, M.A., F.L.S.; Hill End, Mottram, Manchester.
Chapman, 'T'. Algernon, M.D., F.Z.S., F.E.S. ; Betula, Reigate.
Chawner, Miss Ethel F., F.E.S.; Forest Bank, Lyndhurst, r.s.o., IIaut.s.

Cheltenham Natural Science Suciety; Cheltenham.
Chester Society of Natural Science; Grosvenor Museum, Chester.
Chicago Public Library ; Chicago, Ill., U.S.A.
Christiania, University of ; Christianin, Norway.
Church, Sir W. S., Bart., M.D.; 130 Harley Street, W.
Clark, J. A., L.D.S., F.E.S. ; 57 Heston Park, Crouch End, N .
C'leland, John, M.D., D.Sc., LL.D., F.R.S., Professor of Anatomy, University of (ilasgow; 2 The Unicersity, crlasgou.
Congress, Library of ; Washington, D.C., U.S.A.
Cornwall, Royal Institution of ; Truro.
Cotton, John, M.R.C.S., F.E.S.; 126 Prescot Roal, St. Helens.
Crawford, W. (.; 1 Luckerton (rardens, Colinton Road, Edinburgh.
Croft, R. Benyon, R.N.; Fanhams Mall, Trare.
C'roydon Public Libraries ; Town Mall, Croydon.
Daltry, 'The Rev. Thomas W., M.A., F.L.S.; Madeley Vicarrayf, Neucastle, Staffordshire.
Davies, A. Ellson, Ph.D., F.L.S., F.C.S.; Tweedlank, West Sacile Roarl, Entinburgh.
Derby Free Library; Warduick, Derly.
Detroit Public Library ; Detroit, Mich., U.S.A.
Devonshire, His (irace the Duke of, K.(G., M.A., LL.D., F.R.S., Hon M.Inst.C'.E. ; Deronstire Honse, Piccadilly, W., and Chatsuorth, Derlyshire.

Dickinson, Willian; Warham Roarl, Croydon.
Downing College ; Cambridge.
Dublin, Royal, Society ; Leinster Hıuse, Dublin.

East Kent Natural History Socicty ; Medical Hall, Canterlury.
Eastwood, Jolm E., F.E.S. ; Enton Lodge, Witley, Gollalming. Edinburgh Museum of Science and Art; Edinburgh.
Edinburgh Public Library ; Ettinburgle.
Edinburgh, Royal Society of ; Whimbmrgh.
Edinburgh, University of ; Erlinlorgh.
Elphinstone, Sir Howard Wr., Bart., M.A., F.L.S., F.R.G.S.; ¿2 Stone Building., Lincolu's Inn, W.C., and Struan, Wimbledon Parl, S.W.
England, Royal College of Surgeons of Lincoln's Im Fields, W.C.

Fitch, Frederick, F.R.G.S., F.E.S.; JIarleigh Honse, 40 Highbury New Park, N.
Fitzgerald, The Rev. H. Purefoy, F.L.S., F.C.S. ; Barracane, Wellington College, s.o., Berlis.
Fletcher, W. H. B., M.A., F.E.S.; Aldurick Manor, Bognor.
Folkestone Free Pulbic Library and Mnseum ; Fullestone.
Foster, C. ; Thorpe, Nomich.
Fraser, F. J.; 19 Soutluemptom Street, Bloomstury, W.C.
Freeman, Francis F., F.E.S.; Ablotsfiele, Taristocli.
Friedländer \& Sohn ; 11 Carlatrasse, Berlin.
Fulhan Public Library ; 592 Fullum Roal, S.W.
Fuller, The Rev. Alfred, M.A., F.E.S. ; The Lodge, Sydenlam Hill, S.E.
Gascoigne, Major French; Lotherton IIall, Aberforl, Leeds.
Geological Society of London ; Burlington House, Piccadiliy, IV.

Gerold \& Co. ; Viennu.
Gibson, Miss ; Hill House, Satfiron Walden.
Giles, Harry M.; Koological Crardens, Soutlo Perth, Western Australia.
Glasgow Natural History Society ; 207 Bath Street, Glasgor.
Glasgow, Royal Philosophical Society of ; 187 West George Street, Cilasgow.
Glasgow, University of ; Glasgow.
Godman, F. DuCane, D.C.L., F.R.S., F.L.S., F.G.S., F.Z.S., F.E.S., F.R.H.S., T'reasorer; 7 Carlos Place, Frostenor Squate, W., and South Lodlge, Horsham.

Gottingen University Library ; Gottingen, Germemy.
Green, E. Einest, ド.E.S., Govermment Entomologist ; Royal Botanic Gardens, I'erudeniya, Ceylon.
Grosvenor Public Librar! ; Bufficto, N. Y., I.S.A.
Guille-Alles Library; Guernsey.

Haileybury College ; Hertford.
Halifax Public Library ; Belle View, Mulifar.
Harley, Johm, M.D., F.R.C.P., F.L.S. ; Beetings, Pulloromgh.
Harmer, Sidney F., Sc.D., F.R.S.; King's Colle!fe, Combrid!ge.
Harrison, Albert, F.L.S., F.L.S., F.R.M.S., F.C.S.; Delamere, Crome Roall, šouth Hoorlford.
Marvard University Museum of Comparative Zoologr; Harvarl, Cambirilge, C.s.A.
Hastings and St. Leonards Natural History Society; The Museum, Ifrstings.
Heidelberg University ; Meidellertg, fermany.
Hertfordshire Comnty Musemm; St. Allums.
Hertfordshire Natural History Society and Field (Clnh) ; Cptom House, Watford.
Hilton, James; 60 Montague Square, W.
Hood, Donald W. C., M.D.; 4:3 Green Street, Park Lane, IV.
Hooker, Sir Joseph Dalton, (i.C.S.I., C.B., M.D., D.C.L., LL.D., F.R.S., F.L.S., F.G.S., F.R.G.S.; the Camp, Sunningdale, Ascot.
Норе, G. P.; Havering Crange, Romford.
Hopkinson, John, F.L.S., F.G.S., F.R.M.S., V.P.R.Met.Soe., Assoc.Inst.C.E., Secretary; Wectuoorl, W'atforel, amel 84 New Bond Street, W.
Huddersfield Naturalist and Photographic Society; The Technical College, ITudder:stield.
Hull Public Libraries; Hull.
Hnll Subscription Library; Royal Institution, Hull.
Ireland, National Library of; Kildare Strect, Dublin.
Irish, Royal, Acatemy; 19 Dauson Street, Dublin.
Jackson, B. Daydon, F.L.S., General Secretary of the Limean Society; 21, Cautley Acenue, Clapham Commom, S. W.

John Crerer Library ; Chicago, Ill., U.S.A.
Jones, Albert H., F.E.S. ; Slorublumds, Elthum.
Junk, W. ; 22 Rathenouerstrasse, Berlin.
Justen, Freclerick, F.L.S. ; 37 Soho Square, WV.
Kenrick, G. H., F.E.S.; Whetstone, Somerset Roal, Edybaston, Birmingham.
Kiel University Library ; Kiel, Cermany.
Kilmarnock Public Library and Muscum ; Kimarnocli, N.B.
King's Inn Library ; Dublin.
Laver, Henry, M.R.C.S. ; 4.3 Head Street, Colchester.
Leeds Pliilosophical and Literary Society; The Masenm, Leeds.
Leeds Public Free Libraries ; Leeds.
Leicester Free Public Library ; Wellington Street, Leicester.
Lemam, F. C., F.E.S.; Blackfiats Honse, Plymouth.
Lethbridge, Ambrose Y., F.E.S.; Buckimist, Wokingham, and Rokeby, Barnard Castle.
Limnean Society of London ; Burlington House, Piccudilly, WT.
Lister, Arthur, F.R.S., F.L.S. ; Sycamore Honse, Leytonstone, N.E., and High Clift, Lyme Regis.

Liverpool Atheniemm ; Liverpool.
Liverpool Free Public Libraries; Liverpool.
Liverpool Microscopical Society ; 20 Itackings Itey, Liverpool.
London Institntion ; Finsbury Circus, E.C.
London Library ; 12 St. James's Square, S.WV.
Longstaff, G. B., M.D.; Highlands, Putney Heatli, S.W.
Los Angeles Public Library ; California, U.S.A.
Lyons University ; Lyons, France.
McIntosh, W. C'armichacl, M.D., L.L.D., F.R.S.L.dE., F.L.S., Professor of Natural Ilistory, University of St. Amdrews 2 Allotsford Cressent, St. Andreuss, N. $\dot{B}$.
McMillan, William Singer, F.L.S.; Ardenholm, Maghull, Liverpool.
Magdalen College ; Oxford.
Manchester Literary and Philosophical Society; 36 Frorye Street, Manchester.

Manchester I'ublic Free Libraries; Munchester.
Marlborough College Natural History Socicty; Marlboromyh.
Massey, W. H. ; Twyford, ris.o., Berks.
Maiklojohn, J. W. S., M.D., F.L.S.; 10.) Holland liond, Kchsinytom, W.
Melbourne Poblic Libnary ; Mellomme, Australia.
Mennell, II. 'T', F.L.S.; 10 S't. Dunsten's Buidings, Gircat T'ouer Street, E.U.
Michael, Albert D., F.L.S., F.\%.S., F.R.M.'., F.R.H.s., VıéI'resinent; 9 Cadogno Mansions, Stoane Sqnare, Si.W., and The W'arren, Stmellaml, H'arehum.
Middleshorough Free Libmaries; Middleshomough.
Mitchell Library; 21 Miller S'treet, (ilusyour.
Munich Royal Library; Munirh, Liermany.

Neweastle-on-Tyne Literary and Philosophical Society ; IVestgate Road, Neucastle-on-T'yne.
Newcastle-on-Tyne Public Library; Neweastle-on-T'yue.
New South Wales, Royal Society of ; Sighey, N.S.W.
Newstead, Robert, A.L.S., F.E.S., Hon.F.R.H.S.; The (irowvenor Muserm, Chestor.
New York Public Library; New York, U.S.A.
New York State Library ; Ahany, N.Y., U.S.A.
Noble, Sir Andrew, K.C'.l., F.R.S.; Jesmond Dene Ifonse, Nexcastle-on-Tynu.
Norfolk and Norwich Library; Noruich.
Norman, The Rev. A. Merle, M.A., D.C.L., LL.D., F.R.S., F.L.S., Hon. Canon of Jurham ; The Red Honse, Berkhomester.
Norwich Free Library ; Noruch.
Nottingham Free P'ublic Libraries; Nottingham.
Ontario Agricultural College ; (̌nelph, Canada.
Otago, University of ; Dunedin, New Zealand.
Owens College (Christic Library) ; Manchester.
Paisley Philosophical Institution ; 3 County Place, Paisley.
Peabody Institute; Baltimore, Mar!llend, U.S.AI
Perthshire Society of Natmral Science; I'ay Street, Perth.

Phené, J. S., LL.D., F.S.A.; 5 Curlton Terrace, Oukley Street, S.I.

Philadelphia Academy of Natural Sciences; Philadelphia, Pa., U.S.A.
Pickard-Cambridge, The Rev. O., M.A., F.R.S.; Bloxworth Rectory, Wareham.
Plowman, 'I'.; Nystnen Lodge, Byjcullatu Park, Enfield.
Plymouth Tustitution ; Athenarm, Plymouth.
Porritt, George T., F.L.S., F.E.S. ; Mayfield, Hndedersfield.
Portsmouth Free Public Library ; Ton II all, Portsmonth.
Poulton, Edward B., M.A., L'c.D., LL.D., F.R.S., F.L.S., F.(G.S., F.E.S., Hope Professor of Zoology, University of Oxford; Wykeham Honese, Oxford.
Power, Henry, M.B., F.R.C.S., F.L.S., F.Z.S.; 10a Chaudos Street, Carendish Square, IV.
Preston Free Public Libraries and Musemm ; Preston.
P'ye-smith, P. II., M.D., B.A., F.R.C.I', F.R.S.; 48 Lirout street, Cavendish Square, IV.

Quaritch, Bernard; 1.5, Piccadilly, W.
Queen's College ; Belfast.
Queen's College ; Cork.
Quekett Microscopical Club: :20 Hanorer Square, W.
Radeliffe Library; Oxforl.
Rashleigh, J. ; Menahilly, Par Station, Rs.s.o., Cornuall.
Reader, Thomas ; Beanfort Honse, 12.5 Perliham Rye, S.E.
Ripon, The Most Hon. the Marquis of, K.(i., K.C.S.I., D.C.L., F.R.S., F.L.S., F.(G.S., F.Z.S.; 9, Chelsea Embankment, S.W., and Stolley Royal, Ripon.

Roberts, Sir Owen, M.A., D.C.L.; Leybonrne, Witley, Goclalming.
Royal Academy of Sciences; Amsterdam.
Royal Academy of Scionces; Stockholm, Sueden.
Royal College of Science; Dublin.
Royal Institution; Albemurle Street, W.
Royal Microscopical Socicty ; 20 Hanorer Stmare, W.
Royal Society ; Bmelington Ifonse, Piccadilly, W.
St. Albans Public Library ; St. Allame.
St. Andrews University ; St. Andreus, N.B.

St. Catharine's College; Combridge.
Salford Free Maseum and Libraries: Peel Park, Suljord, Munchester.
Sanders, Alfred, M.R.C.s., F.L.S.'; The Hawthorns, Cuterhum Valley, soo, Surrey.
Scharff, R. F'., Plı.D., B.Sc., F.L.S., F.Z.S.; Tudor Honse, Dumbrum, r.w.o., со. Dublin.
Sheffield Literary and Philosophical Society; Leopold Street, sheftiveld.
Sidney-sinsex College; Cambridye.
Sion College Library; Victoria Embankment, E.C.
Soar, C'. D. ; :37 Dreplough Romed, I'utury, S. W.
Somersetshire Archrological and Natural History Society; The Custle, Tanton.
Southport Free Library; Southport.
Spicer, Hemry, B.d., F.L.S., F.G.S.; 14 Aberdecn I'urk, Highbury, N.
Spragne, 'I'. 13. ; 29 Buckinghem Terrace, Edinburgh.
Stazione Zoologica ; Nuplex.
Stechert, G. E.; 乌 Star Yart, Carey Strect, II.C.
Stoke Newington Public Libnuries; Church Street, N.
Stublins, J.; II vorllands, I'oul, Lepeds.
Sunderland Library and Literary Society; Fanect Strert Sunderlend.

Terry, C. ; Fowhill Grove, Buth.
Toronto, University of : 'Torento, C'tmmla.
'Torquay Natural History Socicty ; Museum, línblacombe Romel Torquay.
Townshend, Frederick, M.A., F.L.S.; Honington Hall, Shipston-on-Stour.
Trinity College ; Cambrillye.
Trinity College ; Dublin.
Trondhjem, Royal Library of ; Tromllijem, Nimeny.
Thuer, sir Willian, M.B., D.C.L., LL.D., I'.l.C's., F.R.S.L.dE., Professor of Anatomy, University of Bdinburgh; 6 Eton 'lerrace, Ethinlurgh.

University College, London; (inner Street, II.C.
Upsala, Unirersity of ; Lpsala, Sucedru.

Victoria Institute; Wincester:
Walker, Alfred O., F.L.S., F.Z.'.; Vlcombe Place, Maidstom.
Walker, The Rev. F. A., I.D., F.L.S., F.E.S. ; Dun Mallard, Cricklewood, N.W.
Walsingham, The Right Hon. Lord, M.A., LL.D., F.R.S., F.L.S., F.Z.S., F.E.S., Vice-Presinent; Merton Hall, Thetford.
Warrington Municipal Museum; Warrington.
Weg, Max ; 1, Leplaystrass, Leipziy.
Wesley, E. F., A.K.C.; 2s Essex Street, Stroud, W.C.
West Kent Natural History Society ; Blackheath, S.E.
Whittle, F. G.; 3 Murine Arenue, Southend-on-Sea.
Wickes, W. D., F.L.S.; 20 Warvion Square, Southend-on-Seu.
Wood, J. H., M.B.; Tarriugton, Ledlury.
Woodd-Smith, Miss B. M., 149 Last Iudia Dock Road, Poplar, E.

Yale University ; New IHuren, U.S.A.
Yorkshire College ; Leeds.
Yorkshire Philosophical Suciety ; Musemm, Iork:
Zoological Society of London; 3 Hanover Square, W.

The Advocates' Library, Edinhurgh; the Bodleian Library, Oxford; the British Museum; Cambridge University Library; and Trinity Colleare, Dublin, enterel in the List, receive the Society's publications in accordance with the Copyright Act.


[^0]:    Menegh. Monogr. Nostoch. 1842, p. 88.
    Hassall, Brit. Freshw. Alg. 1845, p. 361.
    De Bary, Conj. 1858, p. 30, 35, 74.

[^1]:    Penium oblongum De Bary，Conj．1858，p．42，73，t． 7 g，f． 1,2 ；Rabenh． Flor．Europ．Alg．1868，III，p．119，fig．xylogr．p． 102 ；Delp．Desm．subalp． 1877，p．86，t．15，f． $40-42$ ；？Wolle，Desm．U．S．1884，p．34，t．5，f． 17 ； West \＆G．S．West，Alga－fl．Yorks．1900，p．45；Alg．N．Ireland，1902， p． 21.
    Netrium oblongum（De Bary）Lütkem．Zellmembr．Desmid．1902，p． 407.

[^2]:    * Such was the case with Xanthitium spinulasum Bennett.

[^3]:    Penium spinospermum Josh. Notes Brit. Desm. II, 1883, p. 292; New and rare Desm. 1885, p. 35, t. 254 , f. 10 ; Cooke, Brit. Desm. 1856, p. 45, t. 17, f. 9; De Toni, Syll. Alg. 1889, p. S63; Nordst. Index Desmid. 1896, p. $2: 37$; West \& ©. S. West, Alga-fl. Yorks. 1900, p. 4.5.
    l'enium spinospermum forma minor West if G. S. West, Freshw. Alg. Ceylon, 1902, p. 135, t. 18, f. 8, 9.

[^4]:    Penium udelochondrum Elfv. Anteck Finska. Desm. 1881, p. 17, t. 1, f. 13;

[^5]:    Penium rufescens Cleve, Sverig. Desm. 1864, p. 493, t. 4, f. 5; Rabenh. Flor. Europ. Algar. III, 186s, p. 123; Lund. Desin. Suec. 14ĩ. p. 4.); Wille, Norges Ferskv. Alg. 18s0, p. 50 ; Roy \& Biss. Scott. Desm. 1s94, p. 253 ; Nordst. Index Desm. 1896, p. 227 ; Weest d G. S. West, Alg. s'. England, 1897, p. 479 ; Alga-fl. Yorks. 1900, p. 44.
    Penium rufopellitum Roy, Desm. Perthshire, 1877, p. 73; Cooke, Brit. Desm. 1857, p. 185 ; West, Alg. W. Ireland, 1892, p. 126.

[^6]:    Cooke, Brit. Desm. 1886, p. 17, t. 8, f. $2 b$ and d; Hansg. Prodr. Algenfl. Böhm. 1888, p. 179; Hauptfl. Zehm. u. Hüllgallerte Desm. 18九8, p. 99, t. 3, f. 29 and 37 ; West, Alg. N. Wales, 1890, p. 284; Heimerl, Desm. Alp. 1s9n, p. 592 ; West, Alg. W. Ireland, 1s92, p. 120 ; Johnson, Rare Desm. U.S. I, 1894, p. 28t; Roy \& Biss. Scott. Desm. 1894, p. 244; Nordst. Index Desm. 1s 96, p. 107; West if G. S. West, Alg. S. England, 1897, p. 479 ; Alga-fl. Yorks. 1900 , p. 53 ; Alg. N. Ireland, 1902, p. 22.
    Cl. subrectum Brél. Ag. F'alaise, 18:35, p. 59, t. 8.
    Cl. Baillyanum Bréb. in Jenner's Flor. 'l'unbridge Wells, 1845, p. xix.
    Cl. Ensis Focke, Phys. Stud. I, 1847, p. 59, t. 3, f. 31.
    Cl. didymotocum var. Baillyanum Bréts, in Ralfs' Brit. Desm. 18.18, p. 169, t. 28, f. 7 c and $d$; Rabenh. Flor. Europ. Algar. III, 1868, p. 125; Cooke, Brit. Desm. 1886, t. S, f. 2 a, c, e; Hansg. Prodr. Algenfl. Böhm. 1888, p. 179.
    Cl. antiaccrosum De Not. Desm. Ital. 1867, p. 61, t. 6, f. 63; Nordst. Norges Desm. 1873, p. 41 ; Roy \& Biss. Scott. Desm. 1894, p. 243.
    Aithrodia didymotoca Kuntze Revis. gen. plant. 1591, p. 883.
    Clostcrium fructum Turn. Freshw. Alg. E. India, 1893, p. 20.

[^7]:    Clostcrium colnsporum Wittr. Skandinav. Desm. 1s60!, r. 2:3, t. i, f. 11 ; Luml. Wesm. Suec. 18t1, p. 81 ; Cooke, Brit. Desm. 18s6, p. 27, 1. 13, f.
     :14; Nordst. Index Desm. 189t, 1. 71; West \& (i. S. West, Ag. N. Ireland, 1902, p. 23; Freshw. Alg. Ceylon, 1902, p. 140.
    Arthrodia calospora Kuntze, Revis. gen. plant. 1891, p. 883.

[^8]:    Vibris Lumula Müller, 1784.
    Mülleria? Lunula Leclere, 1802.
    Ctosterium Lunulu (Müll.) Nitzsch, 1817; ? Kütz. Syn. Diat. 1834, p. 596, t. 18, f. 80 ; Menegh. Synops. Desm. 1840, p. 231 ; Ralfs, Brit. Desm. 1848, p. 163, t. 27, f. 1 ; Areh. in Pritch. Infus. 1861, p. 747 ; Reinsch. Algenfl. Frank. 1867, p. 186; Kabenh. Flor. Europ. Algar. III, 1868, p. 127; Delp. Desm. subalp. 1877, p. 95, t. 16, f. 1-3; Kirchn. Alg. Schles. 1878, p. 138; Wolle, Desm. U.S. 1884, p. 40, t. 50, f. 26 (figure bad) ; Cooke, Brit. Desm. 1886, p. 19, t. S, f. 4; Hansg. Prodr. Algenfl. Böhm. 1888, p. 179 ; De 'Toni, Syll. Alg. 1889, p. 831 ; West, Alg. aq. dulc. Lusitan. 1892, p. 1498; Roy \& Biss. Scott. Desm. 1894, p. 246 ; Nordst. Index Desm. 1896, p. 160 ; West \& G. S. West, Alg. S. England, 1897, p. 481 ; Alga-fl. Yorks. 1900, p. 52 ; Alg. N. Ireland, 1902, p. 23.
    Ct. Lurulu a. typicum Klebs, Desm. Ostpreuss. 1879, p. 6, t. 1, f. 1 b .
    Arthrodia Lunula Kuntze, Revis. gen. plant. 1891, p. 883.

[^9]:    Clusterium pertcerosum tay, Monogr. loc. Conj. 1sst, p. 75, t. 2, f. 1s; Du 'Tomi, syll, Alg. 1ss!, p. sez'; West d (f. N. West, Alga-fl. Yorks. 1000, p. ふis ; Ilg. N. Ireland, 1902, p. 23.
    Arthodia peracerosa Kuntze, Revis. gen. plant. 1891, p. 884.

[^10]:    Clostcrium Cornu Ehrenb. var. ß Ralfs, Brit. Desm. 1848, p. 176, t. 30, f. 6 a-c ; Roy d Biss. Scott. Desm. 1894, p. 244.
    Cl. Cornu b. forma tumido Rabenh. Flor. Europ. Algar. III, 18tis, p. 137 ; De 'Joni, Syll. Alg. 18s9, p. sis6.
    Cl. Cormu Wille, Ferskv. Alg. Nov. Semlj. 1579, p. 59, t. 14, f. S0, 81 (inclus. f. major Wille); Wille, Norges Ferskv. Nlg. 18s(), p. 57, t. 2, f. 38 ; West, Desm. Maine, 1888; Mg. N. Wales, 1890, p. 285.
    Cl. tumitum Johnson, Rare Desm. U.S. II, 1895, p. 299, t. 239, f. 4; Nordst. Index Desm. 1896, 1. 262; West d G. S. West, Some Desm. U.S. 1894, p. 284; Alga-fl. Yorks. 1900, p. 53 ; Chlorophy. Koh Chang, 1901, p. 166, t. 2, figs. 3, 4.

[^11]:    Closterium Rulfsii Bréb. in Jenner's Flor. 'Tunbridre Wells, 1845, p. x; Bréh. in Ralfs' Brit. Desm. 1815, p. 174, t. 30, f. 2 ; Areh. in Pritch.

