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Science is an adventure of the whole human race to learn to live in and
perhaps to love the universe in which they are. To he a part of it is to

understand, to understand oneself, to begin to feel that there is a capacity

within man far beyond what he felt he had, of an infinite extension of
human possibilities ....

I propose that science be taught at whatever level, from the lowest to the

highest, in the humanistic way. It should be taught with a certain historical

understanding, with a certain philosophical understanding , with a social

understanding and a human understanding in the sense of the biography, the

nature of the people who made this construction, the triumphs, the trials, the

tribulations.

I. I. RABI

Nobel Laureate in Physics

Preface

Background The Project Physics Course is based on the ideas and

research of a national curriculum development project that worked in

three phases. First, the authors—a high school physics teacher, a

university physicist, and a professor of science education—collaborated

to lay out the main goals and topics of a new introductory physics

course. They worked together from 1962 to 1964 with financial support

from the Carnegie Corporation of New York, and the first version of

the text was tried out in two schools with encouraging results.

These preliminary results led to the second phase of the Project

when a series of major grants were obtained from the U.S. Office of

Education and the National Science Foundation, starting in 1964.

Invaluable additional financial support was also provided by the

Ford Foundation, the Alfred P. Sloan Foundation, the Carnegie

Corporation, and Harvard University. A large number of collaborators

were brought together from all parts of the nation, and the group

worked together for over four years under the title Harvard Project

Physics. At the Project's center, located at Harvard University,

Cambridge, Massachusetts, the staff and consultants included college

and high school physics teachers, astronomers, chemists, historians

and philosophers of science, science educators, psychologists,

evaluation specialists, engineers, film makers, artists and graphic

designers. The teachers serving as field consultants and the students

in the trial classes were also of vital importance to the success of

Harvard Project Physics. As each successive experimental version of

the course was developed, it was tried out in schools throughout the

United States and Canada. The teachers and students in those schools

reported their criticisms and suggestions to the staff in Cambridge,

and these reports became the basis for the subsequent revisions of

the course materials. In the Preface to Unit 1 Text you will find a list of the

major aims of the course.



We wish it were possible to list in detail the contributions of each

person who participated in some part of Harvard Project Physics.

Unhappily it is not feasible, since most staff members worked on a

variety of materials and had multiple responsibilities. Furthermore,

every text chapter, experiment, piece of apparatus, film or other item

in the experimental program benefitted from the contributions of a

great many people. On the preceding pages is a partial list of

contributors to Harvard Project Physics. There were, in fact, many

other contributors too numerous to mention. These include school

administrators in participating schools, directors and staff members

of training institutes for teachers, teachers who tried the course after

the evaluation year, and most of all the thousands of students who

not only agreed to take the experimental version of the course, but

who were also willing to appraise it critically and contribute their

opinions and suggestions.

The Project Physics Course Today. Using the last of the experimental

versions of the course developed by Harvard Project Physics in

1964-68 as a starting point, and taking into account the evaluation

results from the tryouts, the three original collaborators set out to

develop the version suitable for large-scale publication. We take

particular pleasure in acknowledging the assistance of Dr. Andrew

Ahlgren of Harvard University. Dr. Ahlgren was invaluable because

of his skill as a physics teacher, his editorial talent, his versatility

and energy, and above all, his commitment to the goals of Harvard

Project Physics.

We would also especially like to thank Miss Joan Laws whose
administrative skills, dependability, and thoughtfulness contributed so

much to our work. The publisher, Holt, Rinehart and Winston, Inc.

of New York, provided the coordination, editorial support, and general

backing necessary to the large undertaking of preparing the final

version of all components of the Project Physics Course, including

texts, laboratory apparatus, films, etc. Damon, a company located in

Needham, Massachusetts, worked closely with us to improve the

engineering design of the laboratory apparatus and to see that it was

properly integrated into the program.

In the years ahead, the learning materials of the Project Physics

Course will be revised as often as is necessary to remove remaining

ambiguities, clarify instructions, and to continue to make the materials

more interesting and relevant to students. We therefore urge all

students and teachers who use this course to send to us (in care of

Holt, Rinehart and Winston, Inc., 383 Madison Avenue, New York,

New York 10017) any criticism or suggestions they may have.

F. James Rutherford

Gerald Holton

Fletcher G. Watson
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The Aztec calendar, carved over 100 years before our calendar was adopted, divides

the year into eighteen months of twenty days each.



UNIT 2
Motion in the Heavens

CHAPTER
5

6

7

8

Where is the Earth? -The Greeks' Answers

Does the Earth Move? -The Work of Copernicus and Tycho

A New Universe Appears -The Work of Kepler and Galileo

The Unity of Earth and Sky -The Work of Newton

PROLOGUE Astronomy, the oldest science, deals with objects now

known to be the most distant from us. Yet, to early observers, the sun,

moon, planets, and stars did not seem to be so far away. Nor were they

considered of little importance. On the contrary, even as today, the

majestic display of celestial events powerfully stimulated the imagination

of curious men. The great variety of objects visible in the sky, the

regularity of their motions, the strangely slow changes in their position

and brightness-this whole mysterious pattern of motions required

some reason, some cause, some explanation.

The discovery of the causes and the meanings is the subject of this

unit. It starts with prehistoric attempts to deal with the observations by

incorporating them, in disguised form, into myths and tales, some of

the best in world literature. It ends with the Scientific Revolution in the

seventeenth century, which gave us the explanations that hold to this

day. These explanations also provided a whole new set of methods for

solving problems in a scientific manner.

Astronomical events affected not only the imagination of the

ancients; they had a practical effect on their everyday life. The working

day began when the sun rose and ended when the sun set. Before

electric lighting, human activity was dominated by the presence or

absence of daylight and by the sun's warmth, which changed season

by season.

Of all the time units used in common practice, "one day" is

probably the most basic and surely the most ancient. For counting

longer intervals, a "moon" or month was an obvious unit. Over the

centuries, clocks have been devised to subdivide the days into smaller

units, and calendars have been devised to record the passage of days

into years.

When the early nomadic tribes settled down to live m villages some

10,000 years ago, and became dependent upon agriculture for their

food, they needed a calendar for planning their plowing and sowing.

Even in modern times outdoorsmen

use the sun by day and the stars by

night as a clock. Directions are

indicated by the sun at rising and

setting time, and true south can be

determined from the position of the

sun at noon. The Pole Star gives a

bearing on true north after dark. The

sun's position can also be used as

a crude calendar. Its noontime

altitude varies with the seasons.
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Stonehenge, England, apparently a

prehistoric observatory.

Throughout recorded history, most of the world's population has been

involved in agriculture and so has depended on a calendar. If seeds

were planted too early, they might rot in the ground, or the young

shoots might be l<illed by a frost. If they were planted too late, the crops

would not ripen before winter came. Therefore, a knowledge of the

times for planting and harvesting was important for survival. Because

religious festivals were often related to the seasons, the making and

improving of the calendar by observation of the sun, planets, and stars

was often the task of priests. The first astronomers were, therefore,

usually priests.

Practical needs and imagination acted together to give astronomy

an early importance. Many of the great buildings of ancient times were

constructed with careful astronomical orientation. The great pyramids

of Egypt, tombs of the Pharaohs, have sides that run due north-south

and east-west. The impressive, almost awesome circles of giant stones

at Stonehenge in England appear to have been arranged about 2000

B.C. to permit accurate astronomical observations of the positions of

the sun and moon. The Mayans and the Incas in America, as well as the

Chinese, put enormous effort into buildings from which they could

measure the changes in the position of the sun, moon, and planets. At

least as early as 1000 B.C. the Babylonians and Egyptians had

developed considerable ability in timekeeping. Their recorded

observations are still being unearthed.

Thus, for thousands of years, the motions of the heavenly bodies
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were carefully observed and recorded. In all sciences, no other field

has had such a long accumulation of data as astrononny has had.

But our debt is greatest to the Greeks, who began trying to deal in

a new way with what they saw. The Greeks recognized the contrast

between the apparently haphazard and short-lived motions of objects

on the earth and the unending cycles of motions of the objects in the

heavens. About 600 B.C. they began to ask a new question: How can

we explain these cyclic events in the sky in a simple way? What order

and sense can we make of the heavenly happenings? The Greeks'

answers, which are discussed in Chapter 5, had an important effect on

science. For example, as we shall see, the writings of Aristotle (about

330 B.C.) became widely studied and accepted in western Europe after

1200 A.D. and were important factors in the scientific revolution that

followed.

After the conquests of Alexander the Great, the center of Greek

thought and science shifted to Egypt at the new city of Alexandria,

founded in 332 B.C. There a great museum, similar to a modern research

institute, was created and flourished for many centuries. But as the

Greek civilization gradually declined, the practical-minded Romans

captured Egypt, and interest in science died out. In 640 A.D. Alexandria

was captured by the Muslims as they swept along the southern shore

of the Mediterranean Sea and moved northward through Spain to the

Pyrenees. Along the way they seized and preserved many libraries of

Greek documents, some of which were later translated into Arabic and

carefully studied. During the following centuries the Muslim scientists

made new and better observations of the heavens, although they did

not make major changes in the explanations or theories of the Greeks.

In western Europe during this period the works of the Greeks were

largely forgotten. Eventually they were rediscovered by Europeans

through Arabic translations found in Spain after the Muslims were

forced out. By 1130 A.D. complete manuscripts of at least one of

Aristotle's books were known in Italy and France. After the founding of

the University of Paris around 1200, many other writings of Aristotle

were acquired and studied both there and at the new English

universities, Oxford and Cambridge.

During the next century, the Dominican monk, Thomas Aquinas,

blended major elements of Greek thought and Christian theology into a

single philosophy. His work was widely studied and accepted in

western Europe for several centuries. In achieving this commanding and

largely successful synthesis. Aquinas accepted the physics and

astronomy of Aristotle. Because the science was blended with theology,

any questioning of the science seemed also to be a questioning of the

theology. Thus for a time there was little effective criticism of the

Aristotelian science.

The Renaissance movement, which spread out across Europe from

Italy, brought new art and music. It also brought new ideas about the

universe and man's place in it. Curiosity and a questioning attitude

became acceptable, even prized. Men acquired a new confidence in

their ability to learn about the world. Among those whose work

introduced the new age were Columbus and Vasco da Gama,

The positions of Jupiter from 132 B.C.

to 60 B.C. are recorded on this section

of Babylonian clay tablet, now in the

British Museum.

In the twelfth century, the Muslim

scholar Ibn Rashd had attempted a

similar union of Aristotelianism and

Islam.
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Gutenberg and da Vinci, Michelangelo and Raphael, Erasmus and

Vesalius, Luther, Calvin, and Henry VIM. (The chart in Chapter 6 shows

their life spans.) Within this emerging Renaissance culture lived Niklas

Koppernigk, later called Copernicus, whose reexamination of

astronomical theories is discussed in Chapter 6.

Further improvements in astronomical theory were made in the

seventeenth century by Kepler, mainly through mathematical reasoning,

and by Galileo through his observations and writings; these are

discussed in Chapter 7. In Chapter 8 you shall see that Newton's work,

in the second half of the seventeenth century, extended the ideas about

the motions of objects on earth to explain the motions observed in the

heavens — a magnificent synthesis of terrestrial and celestial dynamics.

The results obtained by these men, and by others like them in other

sciences such as anatomy and physiology, and the ways in which they

went about their work, were so far-reaching that the resulting changes

are generally referred to as the Scientific Revolution.

Great scientific advances can, and often do, affect ideas outside

science. For example, Newton's impressive work helped to bring a new
feeling of self-confidence. Man seemed capable of understanding all

things in the heavens and on the earth. This great change in attitude

Louis XIV visiting the French Academy
of Sciences, which he founded in the

middle of the seventeenth century.

Seen through the right-hand window
is the Paris Observatory, then under

construction.
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was a major characteristic of the eighteenth century, which has been

called the Age of Reason. To a degree, what we think today and how
we run our affairs are still based on the effect of scientific discoveries

made centuries ago.

Decisive changes in thought developed at the start of the

Renaissance and grew during a period of about a century, from the

work of Copernicus to that of Newton. In a sense, this era of invention

can be compared to the sweeping changes which occurred during the

past hundred years. This recent period might extend from the

publication in 1859 of Darwin's Origin of Species to the first large-scale

release of atomic energy in 1945. Within this interval lived such

scientists as Mendel and Pasteur, Planck and Einstein, Rutherford and

Fermi. The ideas they and others introduced into science during the

last century have become increasingly important. These scientific ideas

are just as much a part of our time as the ideas and works of people

such as Roosevelt, Ghandi, and Pope John XXIII, Marx and Lenin,

Freud and Dewey, Picasso and Stravinsky, Shaw and Joyce. If we
understand the way in which science influenced the men of past

centuries, we shall be better prepared to understand how science

influences our thought and lives today. This is clearly one of the

essential aims of this course.

In sum, the material treated in this unit, although historical as well

as scientific, is still of the first importance today for anyone interested

in an understanding of science. The reasons for presenting the science

in its historical context include the following:

THE ORIGIN OF SPECIES

BY MRANS OF NATURAL- SELECTION,

I'UESERVATION OF PAVOUIIED RACES IN TUE STRUGGLE

FOR LIFE.

Cv CHARLES PARWTN. M.A.,

LONDON:
JOHN MIIRnAV, ALBEMARLE STREET

The results that were finally obtained are still valid and rank

among the oldest ideas used every day in scientific work. The
characteristics of all scientific work are clearly visible: the role of

assumptions, of experiment and observations, of mathematical

theory; the social mechanisms for collaborating, teaching, and

disputing; and the possibility of having one's scientific findings

become part of the established lore of the time.

There is an interesting conflict between the rival theories used to

explain the same set of astronomical observations. It illustrates

what all such disputes have in common down to our day, and

helps us to see clearly what standards may be used to judge one
theory against another.

This subject matter includes the main reasons for the rise of

science as we understand it now. The story of the revolution in

science in the seventeenth century and its many effects outside

science itself is as crucial to the understanding of this current age
of science as is the story of the American Revolution to an

understanding of America today.
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CHAPTER FIVE

Where is the Earth?

-

The Greeks' Answers

5.1 Motions of the sun and stars

The facts of everyday astronomy, the heavenly happenings

themselves, are the same now as in the times of the Greeks. You
can observe with your unaided eyes most of what these early

scientists saw and recorded. You can discover some of the long-

known cycles and rhythms, such as the seasonal changes of the

sun's height at noon, the monthly phases of the moon, and the

glorious spectacle of the slowly revolving night sky. If our purpose

were only to make accurate forecasts of eclipses, planetary positions,

and the seasons, we could, like the Babylonians and Egyptians,

focus our attention on recording the details of the cycles and

rhythms. If. however, like the Greeks, we wish to explain these

cycles, we must also use these data to construct soine sort of simple

model or theory with which we can predict the observed variations.

But before we explore the several theories proposed in the past, let

us review the major observations which the theories had to explain:

the motions of the sun. moon, planets, and stars.

The most basic celestial cycle as seen from our earth is. of

course, that of day and night. Each day the sun rises above the local

horizon on the eastern side of the sky and sets on the western side.

The sun follows an arc across the sky. as is sketched in diagram

(a) on the top of the next page. At noon, halfway between sunrise

and sunset, the sun is highest above our horizon. Every day. a

similar motion can be seen from sunrise to sunset. Indeed all the

objects in the sky show this pattern of daily motion. They all rise in

the east, reach a highest point, and drop lower in the west (although

some stars never actually sink below the horizon).

As the seasons change, so do the details of the sun's path across

the sky. In our Northern Hemisphere during winter, the sun rises

and sets more to the south, its altitude at noon is lower, and hence,

its run across the sky lasts for a shorter period of time. In summer
the sun rises and sets more toward the north, its height at noon is

greater, and its track across the sky lasts a longer time. The whole

cycle takes a little less than SeSjdays.

SG5.1

The motions of these bodies,

essentially the same as they were

thousands of years ago, are not

difficult to observe — you should

make a point of doing so.

Handbook 1 has many suggestions

for observing the sky. both with the

naked eye and with a small

telescope.

This description is for observers in

the Northern Hemisphere. For

observers south of the equator,

exchange "north'" and "south."
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(a) Path of the sun through the sky

for one day of summer and one day of

winter.

(b) Noon altitude of the sun as seen

from St. Louis, Missouri, throughout

the year.
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To reduce the number of leap days
from 100 to 97 in 400 years, century

years not divisible by 400 were
omitted as leap years. Thus the

year 1900 was not a leap year, but

the year 2000 will be a leap year.

SG 5.4

This year-long cycle north and south is the basis for the

seasonal or "solar" year. Apparently the ancient Egyptians thought

that the year had 360 days, but they later added five feast days to

have a year of 365 days that fitted better with their observations of

the seasons. Now we know that the solar year is 365.24220 days

long. The decimal fraction of the day, 0.24220. raises a problem for

the calendar maker, who works with whole days. If you used a

calendar of just 365 days, after four years New Year's Day would

come early by one day. In a century you would be in error by

almost a month. In a few centuries the date called January 1 would

come in the summertime! In ancient times extra days or even

whole months were inserted from time to time to keep a calendar of

365 days and the seasons in fair agreement.

Such a makeshift calendar is, however, hardly satisfactory. In

45 B.C. Julius Caesar decreed a new 365-day calendar (the Julian

calendar) with one extra whole day (a "leap day") being inserted

each fourth year. Over many years, the average would therefore be

3657 days per year. This calendar was used for centuries, during

which the small difference between jand 0.24220 accumulated to

a number of days. Finally, in 1582 A.D., under Pope Gregory, a new
calendar (the Gregorian calendar) was announced. This had only 97

leap days in 400 years, and the new approximation was close

enough that it has lasted satisfactorily to this day without revision.

You have noticed that a few stars are bright and many are

faint. The brighter stars may seem to be larger, but if you look at

them through binoculars, they still appear as points of light. Some
bright stars show colors, but most appear whitish. People have

grouped many of the brighter stars into patterns, called constellations.

Examples include the familiar Big Dipper and Orion.

You may have noticed a particular pattern of stars overhead,

and several hours later, noticed it low in the west. What was
happening? More detailed observation, say by taking a time-exposure

photograph, would show that the entire bowl of stars had moved
from east to west -new stars rising in the east and others setting

in the west. During the night, as seen from a point on the Northern
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A combination trail and star photo-

graph of the constellation Orion. The
camera shutter was opened for several

hours while the stars moved across

the sky (leaving trails on the photo-

graphic plate). Then the camera was
closed for a few minutes and reopened
while the camera was driven to follow

the stars.

Time exposure showing star trails

around the north celestial pole. The
diagonal line was caused by the rapid

passage of an artificial earth satelite.

You can use a protractor to deter-

mine the duration of the exposure; the

stars move about 15° per hour.

Hemisphere of our earth, the stars appear to move counter-clockwise

around a point in the sky called the north celestial pole. This

stationary point is near the fairly bright star Polaris, as can be

seen in the photograph at the top right of the page.

Some of the star patterns, such as Orion (the Hunter) and

Cygnus (the Swan — also called the Northern Cross), were described

and named thousands of years ago. Since the star patterns

described by the ancients still fit, we can conclude that star

positions change very little, if at all, over the centuries. This

constancy of relative positions has led to the term "fixed stars."

Thus, we observe in the heavens both stability over the

centuries and smooth, orderly, motions. But, although the daily

rising and setting cycles of the sun and stars are similar, they are

SG 5.5

See "The Garden of Epicurus'

in Reader 2.

^-O d
URSA MAJOR URSA MINOR CASSIOPEIA CYGNUS LYRA ^••^ c^•\ ORION
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A very easy but precise way to time

the motions of the stars is explained

in Handbook 2.

The differences between the two

frames of reference -the horizon

and the fixed stars -are the basis

for establishing a position on the

earth, as in navigation.

not identical. Unlike the sun's path, the paths of the stars do not

vary in altitude from season to season. Also, stars do not have quite

the same rhythm of rising and setting as the sun. but go a little

faster. Some constellations seen high in the sky soon after sunset

will, at the same time several weeks later, appear to be catching up

with the sun. As measured by sun-time, the stars set about four

minutes earlier each day.

Thus far, we have described the positions and motions of the

sun and stars in relation to the observer's horizon. But. because

different observers have different horizons, the horizon is not an
unchanging frame of reference from which all observers will see

the same positions and motions in the sky. However, a frame of

reference which is the same for all observers is provided by the

fixed stars. The relative positions of these stars do not change as

the observer moves over the earth. Also, their daily motions are

simple circles with virtually no changes during a year or through

the years. For this reason, positions in the heavens are usually

described in terms of a frame of reference defined by the stars.

A description of the sun's motion, using the fixed stars as a

reference, must include the daily crossing of the sky, the daily

difference in rising and setting times, and the seasonal change in

noon altitude. We have already seen that, as measured by sun-time,

the stars set about four minutes earlier each day. We can just as

well say that, measured by star-time, the sun sets about four

minutes later each day. That is, the sun appears to be gradually

slipping behind the daily east-to-west motion of the stars.

The difference in noon altitude of the sun during the year

corresponds to a drift of the sun's path north and south on the back-

ground of stars. In the first diagram below, the appearance of the

middle portion of the sky is represented by a band around the earth.

The sun's yearly path against this background of stars is represented

by the dark line. If we cut and flatten out this band, as shown in

the second and third diagrams, we get a chart of the sun's path

during the year. (The 0° line is the celestial equator, the imaginary

line in the sky that is directly above the earth's equator.) The sun's

path against the background of the stars is called the ecliptic — its

drift north and south of the celestial equator is about 23^°. We also

need to define one point on the ecliptic so we can locate the sun, or

other objects along it. For centuries this point has been the place

where the sun moving eastward on the ecliptic, crosses the

equator from south to north -about March 21. This point is called

the "vernal (spring) equinox." It is the zero point from which
positions among the stars are usually measured.

March Zl
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Thus, there are three apparent motions of the sun: (1) its daily

westward motion across the sky, (2) its yearly drift eastward among
the stars, (3) its yearly cycle of north-south drift in noon altitude.

These phenomena are all the more intriguing because they repeat

unfailingly and precisely. We must try to explain these phenomena
by devising a simple model to represent them.

Q1 If you told time by the stars, would the sun set earlier or

later each day?

Q2 For what practical purposes were calendars needed?
Q3 What are the observed motions of the sun during one year?

These end-of-section questions are

intended to help you checit your

understanding before going on to

the next section.

5.2 Motions of the moon

The moon shares the general east-to-west daily motion of the

sun and stars. But the moon slips eastward against the background

of the stars faster than the sun does. Each night the moon rises

nearly an hour later. When the moon rises in the east at sunset

(opposite the sun in the sky) it is bright and shows a full disk (full

moon). Each day thereafter, it rises later and appears less round,

waning finally to a thin crescent low in the dawn sky. After about

fourteen days, when the moon is passing near the sun in the sky

and rises with it, we cannot see the moon at all (new moon). After

the new moon, we first see the moon as a thin crescent low in the

western sky at sunset. As the moon rapidly moves further eastward

from the sun. the moon's crescent fattens to a half disk and then

within another week goes on to full moon again. After each full

moon the cycle repeats.

A "half moon" occurs one-quarter

of the way through the monthly

cycle, and is therefore called "first

quarter" by astronomers. The full

moon occurs half way through the

cycle, and another "half moon"
occurs at "third quarter."

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ '^^^
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SG 5.6

As early as 380 B.C., the Greek philosopher, Plato recognized

that the phases of the moon could be explained by thinking of the

moon as a globe reflecting sunlight and moving around the earth in

about 29 days. Because the moon appears so big and moves so

rapidly compared to the stars, people in early times assumed the

moon to be quite close to the earth.

The moon's path around the sky is close to the yearly path of

the sun; that is, the moon is always near the ecliptic. But the

moon's path is tipped a bit with respect to the sun's path; if it were

not, the moon would come exactly in front of the sun at every new
moon (causing an eclipse of the sun) and be exactly opposite the

sun at every full moon, and move into the earth's shadow
(causing an eclipse of the moon).

The motions of the moon have been studied with great care for

centuries, partly because of interest in predicting eclipses, and

have been found to be very complicated. The precise prediction of

the moon's position is an exacting test for any theory of motion in

the heavens.

Q4 Draw a rough diagram to show the relative positions of the

sun, earth, and moon during each of the moon's four phases.

Q5 Why don't eclipses occur each month?

5.3 The "wandering stars"

When a planet is observed directly

opposite from the sun, the planet is

said to be In opposition. Retrograde

motions of Mars, Jupiter, and Saturn

are observed about the time they are

in opposition.

Without a telescope we can see, in addition to the sun and

moon, five rather bright objects which move among the stars. These
are the "wanderers," or planets: Mercury, Venus, Mars, Jupiter, and

Saturn. With the aid of telescopes, three more planets have been

discovered: Uranus, Neptune, and Pluto; but none of these were

known for nearly a century after the time of Isaac Newton. Like the

sun and moon, all the planets rise daily in the east and set in the

west. Also like the sun and moon, the planets generally move slowly

eastward among the stars. But they have another remarkable and
puzzling motion of their own: at certain times each planet stops

moving eastward among the stars and for some months loops back

westward. This westward or "wrong-way" motion is called

retrograde motion. The retrograde loops made by Mercury. Mars,

and Saturn during 1963 are plotted on the next page. Saturn.

Jupiter, and Mars can at one time or another be anywhere in the

sky, although always very near the ecliptic. The retrograde motion

of one of these planets occurs when it is nearly opposite to the sun

(that is, halfway across the sky at midnight). Mercury and Venus,

however, have limits to how far away from the sun they can be;

PLanft-t E-arUn
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The retrograde motions of Mercury

(marked at 5-day intervals), Mars (at

10-day intervals), and Saturn (at 20-

day intervals) in 1963, plotted on a

star chart. The dotted line is the an-

nual path of the sun, called the

ecliptic.
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Sun

The maximum angles from the sun at

which we observe Mercury and Venus.

Both planets can, at times, be ob-

served at sunset or at sunrise. Mer-

cury is never observed to be more than
28° from the sun, and Venus is never

more than 48° from the sun.

Merour

Ea.rt-h Earth

SG 5.7

Typical Retrograde

Motions of the Planets

WESTWARD
PLANET
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Q9 When do Mars, Jupiter, and Saturn show retrograde

motion?

Q10 Can Mars, Jupiter, and Saturn appear any place in the

sky?

5.4 Plato's problem

In the fourth century B.C., Greek philosophers asked a new
question: How can we explain the cyclical changes observed in the

sky? That is, what model can consistently and accurately account

for all celestial motions? Plato sought a theory to account for what
was seen, or, as he phrased it, "to save the appearances." The
Greeks were among the first people to desire explanations for

natural phenomena that did not require the intervention of gods

and other supernatural beings. Their attitude was an important step

toward science as we know it today.

How did the Greeks begin their explanation of the motions

observed in the heavens? What were their assumptions?

Any answers to these questions must be tentative. Although

many scholars over the centuries have devoted themselves to the

study of Greek thought, the documents, on which our knowledge of

the Greeks is based, are mostly copies of copies and translations of

translations, in which errors and omissions occur. In some cases all

we have are reports from later writers on what certain philosophers

did or said, and these accounts may be distorted or incomplete. The
historians' task is difficult. Most of the original Greek writings were

on papyrus or cloth scrolls which have decayed through the ages.

Many wars and much plundering and burning have also destroyed

many important documents. Especially tragic was the burning of

the famous library of Alexandria in Egypt, which contained several

hundred thousand documents. (It was burned three times: in part

by Caesar's troops in 47 B.C.; then in the fourth century A.D. by

Christians; and the third time about 640 A.D. by early Muslims

when they overran the country.) Thus, while the general picture of

Greek culture seems to be rather well established, many interesting

details are not known.

The approach taken by the Greeks and their intellectual

followers for many centuries was already implied in a statement

by Plato in the fourth century B.C. He defined the problem to his

students in this way: the stars — representing eternal, divine,

unchanging beings — move at a uniform speed around the earth, as

we observe, in that most regular and perfect of all paths, the

endless circle. But a few celestial objects, namely the sun, moon,

and planets, wander across the sky and trace out complex paths,

including even retrograde motions. Yet, being heavenly bodies,

surely they too must really move in a way that suits their exalted

status. Their motions, if not in a perfect circle, must therefore be in

some combination of perfect circles. What combinations of circular

motions at uniform speed can account for the peculiar variations

in the overall regular motions In the sky?

Several centuries later, a more
mature Islamic culture led to

extensive study and scholarly

commentary on the remains of

Greek thought. Several centuries

later still, a more mature Christian

culture used the ideas preserved by

the Muslims to evolve early parts of

modern science.
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Notice that the problem is concerned only with the changing

apparent positions of the sun, moon, and planets. The planets

appear to be only points of light moving against the background of

stars. From two observations at different times we obtain a rate of

motion: a value of so many degrees per day. The problem then is to

find a "mechanism," some combination of motions, that will

reproduce the observed angular motions and lead to predictions

which agree with observations. The ancient astronomers had no

observational evidence about the distances of the planets from the

earth; all they had were directions, dates, and rates of angular

motion. Although changes in brightness of the planets were known
to be related to their positions relative to the sun, these changes in

brightness were not included in Plato's problem.

Plato and many other Greek philosophers assumed that there

were a few basic "elements" that mixed together to cause the

apparent variety of materials observed in the world. Although not

everyone agreed as to what these elements were, gradually four

were accepted as the explanation of phenomena taking place on

earth. These elements were Fire, Air, Water, and Earth. Because

substances found on earth were supposed to contain various

mixtures of these elements, these compound substances would have

a wide range of properties. (See Unit 1, Chapter 2.) Only perfection

could exist in the heavens, which were separate from the earth and
were the abode of the gods. Just as motions in tTie heavens must be

eternal and perfect, so also the unchanging heavenly objects could

not be composed of elements normally found on or near the earth.

Hence, they were supposed to be composed of a changeless fifth

In Latin the ether became quinta element of their own — the ether.

essentia (fifth element), whence our Plato's problem in explaining the motion of planets remained
qum essence.

^.j^^ most significant problem for theoretical astronomers for nearly

two thousand years. To appreciate the later efforts and consequences

of the different interpretations developed by Kepler, Galileo, and

Newton, we will first examine the solutions to Plato's problems as

they were developed by the Greeks. Let us confess right away that

for their time these solutions were useful, ingenious, and indeed

beautiful.

Q11 What was Plato's problem of planetary motion?

Q12 Why is our knowledge of Greek science incomplete?

Q13 Why did the Greeks feel that they should use only

uniform circular motion to explain celestial phenomena?

5.5 The Greek idea of "explanation"

Plato's statement of this historic problem of planetary motion

illustrates three contributions of Greek philosophers which, with

modifications, are still basic to our understanding of the nature of

physical theories:

1. A theory should be based on simple ideas. Plato regarded it
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not merely as simple, but also as self-evident, that heavenly bodies

must move uniformly along circular paths. Only in recent centuries

have we come to understand that such common-sense beliefs may
be misleading. More than that — we have learned that unproved

assumptions are often necessary, but must be critically examined
and should at first be accepted only tentatively. As we shall often

see in this course, the identification of hidden assumptions in

science has been extremely difficult. Yet in many cases, when the

assumptions have been identified and questioned, entirely new
theories have followed.

2. Physical theory must incorporate the measured results of

observation of phenomena, such as the motions of the planets.

Furthermore, our purpose in making a theory is to discover the

uniformity of behavior, the hidden simplicities underlying apparent

irregularities. For organizing our observations, the language of

number and geometry is useful. This use of mathematics, widely

accepted today, was derived in part from the Pythagoreans, a group

of mathematicians who lived in southern Italy about 500 B.C. and
believed that "all things are numbers." Actually the use of

mathematics and measurement became important only in the later

development of science. Plato stressed the fundamental role of

numerical data only in his astronomy, while Aristotle largely

avoided detailed measurements. This was unfortunate because, as

the Prologue reported, the arguments of Aristotle, which did not

include the idea of measurement of change as a tool of knowledge,

were adopted by such influential philosophers as Thomas Aquinas.

3. To "explain" complex phenomena means to develop or invent

a scheme (a physical model, or a geometrical or other mathematical

construction) which shows the same features as the phenomena to

be explained. Thus, for example, if one actually constructs a model

of interlocking spheres, as has been often done, a point on one of

the spheres has the same motions as the planet which the point

represents.

5.6 The first earth-centered solution

The Greeks observed that the earth was large, solid, and

permanent, while the heavens seemed to be populated by small,

remote, ethereal objects that were continually in motion. What was
more natural than to conclude that our big, heavy earth was the

steady, unmoving center of the universe? Such an earth-centered

viewpoint is called geocentric. From this viewpoint the daily motion

of the stars could easily be explained: they were attached to, or

were holes in, a large, dark, spherical shell surrounding the earth

and were all at the same distance from us. Daily, this celestial

sphere turned once around on an axis through the earth. As a

result, all the stars fixed on it would move in circular paths around

the pole of rotation. Thus, a simple model of a rotating celestial

sphere and a stationary earth could account for the daily motions

of the stars.

The annual north-south (seasonal)

motion of the sun was explained by

having the sun on a sphere whose axis

was tilted 23j° from the axis of the

eternal sphere of the stars.
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A geocentric cosmological sciieme.

The earth is fixed at the center of

concentric rotating spheres. The
sphere of the moon (lune) separates

the terrestrial region (composed of

concentric shells of the four elements

Earth, Water, Air, and Fire) from the

celestial region. In the latter are the

concentric spheres carrying Mercury,

Venus, Sun, Mars, Jupiter, Saturn, and
the stars. To simplify the diagram, only

one sphere is shown for each planet.

(From the DeGolyer copy of Petrus

Apianus' Cosmographia, 1551.)

The three observed motions of the sun require a somewhat
more complex model. To explain the sun's motion with respect to

the stars, a separate invisible shell was imagined that carried the

sun around the earth. This shell was fixed to the celestial sphere

and shared its daily motion but had also a slow, contrary motion of

its own, namely one cycle of 360° per year.

The yearly north-south motion of the sun was accounted for

by tipping the axis of this sphere, for the sun was tipped from the

axis of the dome of the stars.

The motions of the visible planets — Mercury, Venus. Mars,

Jupiter, and Saturn — were more difficult to explain. They share

generally the daily motion of the stars, but they also have peculiar

motions of their own. Because Saturn moves most slowly among
the stars (it revolves once in 30 years), its sphere was assumed to

be largest and closest to the stars. Inside the sphere for Saturn

would be spheres that carried the faster-moving Jupiter (12 years)

and Mars (687 days). Since they all require more than a year for a

complete trip among the stars, these three planets were believed to

be beyond the sphere of the sun. Venus, Mercury, and the moon
were placed between the sun and the earth. The fast-moving moon
was assumed to reflect sunlight and to be closest to the earth.

Such an imaginary system of transparent shells or spheres can

provide a rough "machine" to account for the general motions of

heavenly objects. By choosing the sizes of the spheres and their

rates and directions of motions, a rough match could be made
between the model and the observations. If additional observations

revealed other cyclic variations, more spheres could be added to

make the necessary adjustment in the model.

Plato's friend Eudoxus concluded that 26 spheres would account

for the general pattern of motions. Later Aristotle added 29 more.

(An interesting description of this general system or cosmological

scheme is given by the poet Dante in the Divine Comedy, written

about 1300 A.D., shortly after Aristotle's writings became known
in Europe.) Yet even Aristotle knew that this system did not get the

heavenly bodies to their observed positions at quite the right time.

Moreover, it did not account at all for the observed variations in

brightness of the planets.

You may feel that Greek science was bad science because it

was different from our own or less accurate. But you should

understand from your study of this chapter that such a conclusion

is not justified. The Greeks were just beginning the development of

scientific theories and inevitably made assumptions that we now
consider invalid. Their science was not "bad science," but in many
ways it was a different kind of science from ours. And ours is not the

last word, either. We must realize that to scientists 2000 years from

now our efforts may seem strange and inept.

Even today's scientific theory does not and cannot account for

every detail of each specific situation. Scientific concepts are

idealizations which treat only selected aspects of observations

rather than the totality of the raw data. Also, each period in
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history has its own Hmits on the range of human imagination. As
you aheady have seen in Unit 1, important general concepts, such

as force or acceleration, are specifically invented to help organize

observations. They are not given to us in final form by some
supernatural genius.

As you might expect, the history of science contains many
examples in which certain factors overlooked by one researcher

turn out later to be very important. But how would better systems

for making predictions be developed without first trials? Theories

are improved through tests and revisions, and sometimes are

completely replaced by better ones.

Q14 What is a geocentric system? How does it account for the

motions of the sun?

Q15 Describe the first solution to Plato's problem.

5.7 A sun-centered solution

For nearly two thousand years after Plato and Aristotle, the

geocentric model was generally accepted. However, a radically

different model, based on different assumptions, had been proposed

in the third century B.C. The astronomer Aristarchus, (perhaps

influenced by the writings of Heracleides, who lived a century

earlier) suggested that a simpler explanation of heavenly motion

would result if the sun were considered to be at the center, with the

earth, planets, and stars all revolving around it. A sun-centered

system is called heliocentric.

Because the major writings of Aristarchus have been lost, our

knowledge of his work is based mainly on comments made by other

writers. According to Archimedes, Aristarchus taught that the sun

must be at least eighteen times farther away than the moon, and

that the larger body, which was also the source of light', should be

at the center of the universe.

Aristarchus proposed that all the daily motions observed in the

sky could be explained by assuming that the celestial sphere is

motionless and that the earth rotates once daily on an axis of its

own. The apparent tilt of the paths of the sun, moon, and all the

planets is accounted for simply by the tilt of the earth's own axis.

Furthermore, the yearly changes in the sky, including the retrograde

motions of the planets, could be explained by assuming that the

earth and the five visible planets revolve around the sun. In this

model, the motion previously assigned to the sun around the earth

was assigned to the earth moving around the sun. Also, the earth

became just one among several planets.

How such a system can account for the rectrograde motions of

Mars, Jupiter, and Saturn can be seen from the diagram in the

margin in which an outer planet and the earth are assumed to be

moving around the sun in circular orbits. The outer planet moves

Sun

As the earth passes a planet in its

orbit around the sun, the planet ap-

pears to move backwards in the sky.

The arrows show the sight lines to-

ward the planet for the different

numbered positions of the earth. The
lower numbered circles indicate the

resulting apparent positions of the

planet against the background of

distant stars.
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B*i-th

If the earth goes around the sun, then

the direction in which we have to look

for a star should change during the

year. A shift in the relative observed

positions of objects that is caused by

a displacement of the observer is

called a parallax. The greatest ob-

served parallax of a star caused by the

earth's annual motion around the sun

is about 1/2400". This is explained by

the fact that the distance to this

nearest star is not just hundreds of

millions of miles but 25 million million

miles.

more slowly than the earth. As a result, when the earth is directly

between the sun and the planet, the earth moves rapidly past the

planet. To us the planet appears for a time to be moving backward

or in retrograde motion across the sky.

Gone are all the interlocking concentric spheres. The heliocentric

(sun-centered) hypothesis, which also uses only uniform circular

motions, has one further advantage. It explains the bothersome

observation that the planets are brighter during their retrograde

motion, since at that time the planets are nearer to the earth. Even
so, the proposal by Aristarchus was essentially neglected in

antiquity. It was severely criticized for three basic reasons. One
reason was that the idea of making a moving earth was unaccept-

able. It contradicted the philosophical doctrines that the earth is

different from the celestial bodies and that the natural place of the

earth, both physically and theologically, is the center of the

universe. In fact, his contemporaries considered Aristarchus

impious for even suggesting that the earth moved. Also, this new
picture of the solar system contradicted common sense and everyday

observations: the earth certainly seemed to be at rest rather than

rushing through space.

Another criticism was that certain observational evidence

seemed to refute Aristarchus. If the earth were moving in an orbit

around the sun, it would also be moving back and forth under the

fixed stars. As shown in the sketch in the margin, the angle from

the vertical at which we have to look for any star would be different

when seen from the various points in the earth's annual path. This

annual shift of the fixed stars should occur if the earth moves
around the sun. But it was not observed by the Greek astronomers.

This awkward fact could be explained in two ways either (1) the

earth does not go around the sun and so there is no shift, or (2) the

earth does go around the sun but the stars are so far away that the

shift is too small to observe. But as the Greeks realized, for the

shift to be undetectably small, the stars would have to be enormously

far away — perhaps hundreds of millions of miles.

Today we can observe the annual shift of the stars with

telescopes, so we know that Aristarchus' model is in fact useful.

The shift is too small to be seen with the naked eye using the best

sighting instruments — and indeed so small that even with

telescopes it was not measured until 1838. The largest annual shift

is an angle of only about 1/2400 of a degree of arc. The smallest

angle observable by the human eye under ideal conditions is about

1/25^, so the actual angular shift is about 100 times smaller than

could possibly have been observed. The shift exists, but we can

sympathize with the Greeks, who rejected the heliocentric theory

partly because the shift required by the theory could not be

observed. Only Aristarchus imagined that the stars might be as

immensely distant as we now know them to be.

Finally, Aristarchus was criticized because he did not develop

his system in detail or use it for making predictions of planetary

positions. His work seems to have been purely qualitative, a general

scheme of how things might be.
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The geocentric and heliocentric systems were two different

ways to account for the same observations. But the hehocentric

proposal required such a drastic change in man's image of the

universe that Aristarchus' heliocentric hypothesis had little influence

on Greek thought. Fortunately his arguments were recorded and

reported and eighteen centuries later stimulated the thoughts of

Copernicus. Ideas are not bound by space or time.

Q16 What two radically new assumptions were made by

Aristarchus? What simplification resulted?

Q17 How can the heliocentric model proposed by Aristarchus

explain retrograde motion?

Q18 What change predicted by Aristarchus' theory was not

observed by the Greeks?

Q19 Why was Aristarchus considered impious? Why was his

system neglected?

5.8 The geocentric system of Ptolemy

Disregarding the heliocentric model suggested by Aristarchus,

the Greeks continued to develop their planetary theory as a

geocentric system. As we noted, the first solution in terms of

concentric spheres lacked accuracy. During the 500 years after

Plato and Aristotle, astronomers began to sense the need for a more

accurate theory for the heavenly timetables. To fit the observations,

a complex mathematical theory was required for each planet.

Several Greek astronomers made important contributions

which culminated about 150 A.D. in the geocentric theory of

Claudius Ptolemy of Alexandria. Ptolemy's book on the motions of

the heavenly objects is a masterpiece of analysis.

Ptolemy wanted a system that would predict accurately the

positions of each planet. The type of system and the motions he

accepted were based on the assumptions of Aristotle. In the preface The Arabic title given to Ptolemy's

to his Almagest, Ptolemy defines the problem and states his book, the Almagest, means "the

assumptions:

... we wish to find the evident and certain appearances

from the observations of the ancients and our own, and

applying the consequences of these conceptions by means
of geometrical demonstrations.

And so, in general, we have to state, that the heavens

are spherical and move spherically; that the earth, in

figure, is sensibly spherical . . .; in position, lies right in

the middle of the heavens, like a geometrical center; in

magnitude and distance, [the earth] has the ratio of a

point with respect to the sphere of the fixed stars, having

itself no local motion at all.

Ptolemy then argues that each of these assumptions is

necessary and fits with all our observations. The strength of his

belief is illustrated by his statement ".
. . it is once for all clear

greatest."
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from the very appearances that the earth is in the middle of the

world and all weights move towards it." Notice that he has

supported his interpretation of the astronomical observations with

the physics of falling bodies. This mixture of astronomy and

physics, when applied to the earth itself and its place in the

scheme, became highly important when he referred to the proposal

of Aristarchus that the earth might rotate and revolve:

Now some people, although they have nothing to

oppose to these arguments, agree on something, as they

think, more plausible. And it seems to them there is

nothing against their supposing, for instance, the heavens
immobile and the earth as turning on the same axis [as

the stars] from west to east very nearly one revolution a

day. . . .

But it has escaped their notice that, indeed, as far as

the appearances of the stars are concerned, nothing

would perhaps keep things from being in accordance with

this simpler conjecture, but that in the light of what
happens around us in the air such a notion would seem
altogether absurd.

SG 5.8

The annual path of the sun against

the celestial sphere.

Ptolemy believed that if the earth rotated it would not take its

blanket of air around with it, with the result that all clouds would

fly past toward the west, and all birds or other things in the air

would be carried away to the west. If, however, the air was carried

with the earth, the objects in the air would still be left behind by

the earth and air together.

The paragraphs quoted above contain a main theme in Unit 2.

Ptolemy recognized that the two systems were equally successful in

describing motion — in the kinematics; but the one was to be

preferred over the others because it better fit the causes of

motion — the dynamics — as understood at the time. Much later, when
Newton had developed a completely different dynamics, the choice

would fall the other way.

Ptolemy developed very clever and rather accurate procedures

by which the positions of each planet could be derived on a

geocentric model. In the solutions he went far beyond the scheme
of concentric spheres of the earlier Greeks, constructing a model

out of circles and three other geometrical devices. Each device

provided for variations in the rate of angular motion as seen from

the earth. To appreciate Ptolemy's ingenious solution, let us examine

one of the many small variations he was attempting to explain.

We can divide the sun's yearly 360° path across the background

of stars into four 90° parts. If the sun is at the point on March 21,

it will be 90° farther east on June 21, 90° further still on September

30*

20*

so*

March Zl June 2.1 Se|[^2& Deo. 27 March 21
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23, 90° farther on December 22, and back at the starting point on

March 21, a year later. If the sun moves uniformly on a circle

around the earth, the times between these dates ought to be equal.

But, as you will find by consulting a calendar, they aren't equal.

The sun takes longer to move 90° in spring and summer than it

does in fall and winter. So any simple circular system based on

motion with constant speed will not work for the sun.

The three devices that Ptolemy used in proposing an improved
geocentric theory were the eccentric, the epicycle and equant.

In agreement with Plato, astronomers had held previously that

the motion of a celestial object must be at a uniform angular rate

and at a constant distance from the center of the earth. Although

Ptolemy beheved that the earth was at the center of the universe,

he did not insist that it be at the geometrical centers of all the

perfect circles. He proposed that the center C of the circle could be

off-center from the earth, in an eccentric position. Thus, motion

that was really uniform around the center C would not appear to be

uniform motion when observed from the earth. An eccentric orbit

of the sun will therefore account for the type of seasonal irregularity

observed in the sun's rate of motion.

While the eccentric can also account for small variations in the

rate of motion of planets, it cannot describe any such radical

change as retrograde motion of the planets. To account for

retrograde motion, Ptolemy used another device, the epicycle (see

the figure at the right). The planet is considered to be moving at a

uniform rate on the circumference of a small circle, called the

epicycle. The center of the epicycle moves at a uniform rate on the

large circle, called the deferent, around the earth.

If a planet's speed on the epicycle is greater than its speed on

the large circle, the planet as seen from above the planetary system

would appear to move through loops. When observed from a

location near the center, these loops would look like the retrograde

motions actually observed for planets. The photographs below show

two views of the motions produced by a simple mechanical model,

an "epicycle machine" with a small lamp in place of the planet.

The photo on the left was taken from "above," like the diagram in

the margin; the photograph on the right was taken "on edge,"

PUai-»«t.

An eccentric

An epicycle

SG 5.9

Retrograde motion created by a sim-

ple epicycle machine.

(a) Stroboscopic photograph of epi-

cyclic motion. The flashes where made
at equal time intervals. Note that the

motion is slowest in the loop.

(b) Loop seen from near its plane.
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Ptolemy did not picture the

planetary motions as those in an
interlocking machine where each
planet determined the motion of the

next. Because there was no infor-

mation about the distances of the

planets, Ptolemy adopted the old

order of distances from the earth:

stars being the most remote, then
Saturn, Jupiter, Mars, the sun,

Venus, Mercury, and the moon. The
orbits were usually shown nested

inside one another so that their

epicycles did not overlap.

Simplified representation of the Ptolemaic system. The scale of the
upper drawing, which shows the planets between the earth and the
sun, is eight times that of the lower drawing, which shows the planets
that are farther than the sun. The planets' epicycles are shown along
one straight line to emphasize the relative sizes of the epicycles.
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almost in the plane of the motion; thus, the appearance of the loop

is very much like it would be if viewed from near the center.

Epicycles can be used to describe many kinds of motion. So it

was not too difficult to produce a system that had all the main

features of observed planetary motion. One particularly interesting

feature of Ptolemy's system was the epicycles for the outer planets

all had the same period: exactly one year! Moreover, as the sketches

on the opposite page indicate, the positions of the outer planets on

their epicycles always matched the position of the sun relative to

the earth. This correspondence of epicycles to the relative motion of

sun and earth was, fourteen centuries later, to be a key point of

concern to Copernicus.

So far, the system of epicycles and deferents "works" well

enough. It explains not only retrograde motion, but also the greater

brightness of the planets when they are in retrograde motion. Since

the planet is on the inside of its epicycle during retrograde motion,

it is closest to the earth, and so appears brightest. This is an

unexpected bonus, since the model was not designed to explain this

feature.

But even with combinations of eccentrics and epicycles,

Ptolemy was not able to fit the motions of the five planets precisely.

For example, as we see in the three figures above, the retrograde

motion of Mars is not always of the same angular size or duration.

To allow for these variations, Ptolemy used a third geometrical

device, called the equant, which is a modification of an eccentric.

As shown in the margin, the earth is again off-center from the

geometric center C of the circle, but the motion along the circle is

not uniform around C ; instead, it is uniform as seen from another

point C, which is as far off-center as the earth is, but on the other

side of the center.

5.9 Successes and limitations of the Ptolemaic model

Mars plotted at four-day intervals on

three consecutive oppositions. Note

the different sizes and shapes of the

retrograde curves.

PUanet

An equant. C is the center of the circle.

The planet P moves at a uniform rate

around the off-center point C

Ptolemy's model always used a uniform rate of angular

motion around some center, and to that extent stayed close to the

assumptions of Plato. But Ptolemy was willing to displace the

centers of motion from the center of the earth, as much as was
necessary to fit the observations. By a combination of eccentrics,

epicycles, and equants he described the positions of each planet

separately. For each planet, Ptolemy had found a combination of

motions that predicted its observed positions over long periods of

time to within about two degrees (roughly four diameters of the

moon)— a considerable improvement over earlier systems.

SG 5.10

Astronomical observations were all

observations of angles — a small

loop in the sky could be a small

loop fairly near, or a larger loop

much farther away.
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The success of Ptolemy's model, especially the unexpected

explanation of variation in brightness, might be taken as proof that

objects in the sky actually moved on epicycles and deferents around

off-center points. It seems, however, that Ptolemy himself did not

believe he was providing an actual physical model of the universe.

He was content to give a mathematical model for the computation

of positions.

Of course, some difficulties remained. For example, to explain

the motions of the moon, Ptolemy had to use such large epicycles

that during a month the moon would appear to grow and shrink in

size appearing to have at some times twice the diameter than at

other times! Ptolemy surely knew that this was predicted by his

model — and that it does not happen in actual observation. But, his

model was not intended to be "real," it was only a basis for

computing positions.

The Ptolemaic description was a series of mathematical devices

to match and predict the motion of each planet separately. His

geometrical analyses were equivalent to finding a complicated

equation of motion for each individual planet. Nevertheless, in the

following centuries most scholars, including the poet Dante,

SG 5.11 believed that the planets really moved on some sort of crystalline

spheres as Eudoxus had suggested earlier.

Although now discarded, the Ptolemaic form of the geometric

model of the planetary system, proposed in 150 A.D., was used for

about 1500 years. There were good reasons for this long acceptance.

It predicted fairly accurately the positions of the sun, moon.

and planets.

It explained why the fixed stars do not show an annual shift

when observed with the naked eye.

It agreed in most details with the philosophical doctrines

developed by the earlier Greeks, including the idea of "natural

motion" and "natural place."

It had common-sense appeal to all who saw the sun. moon,
planets, and stars moving around them.

It agreed with the comforting assumption that we live on an
immovable earth at the center of the universe.

Also, later, it fitted into Thomas Aquinas' widely accepted

synthesis of Christian belief and Aristotelian physics.

Yet, Ptolemy's system was eventually displaced by a heliocentric

one. Why did this occur? What advantages did the new theory have
SG 5.12 over the old? From this epic argument about competing theories

what can we learn about the relative value of rival theories in

SG 5.13 science today? These are some of the questions to consider in the

next chapter.



STUDY GUIDE

5.1 The Project Physics learning materials
particularly appropriate for Chapter 5 include the
following:

Experiments

Naked-Eye Astronomy (cont.)

Size of the Earth
Height of Piton, A Mountain on the Moon

Activities

Making Angular Measurements
Celestial Sphere Model
How Long is a Sidereal Day?
Scale Model of the Solar System
Build a Sundial
Plot an Analemma
Stonehenge
Moon Crater Names
Literature
Size of the Earth — Simplified Version

Reader Articles

The Boy Who Redeemed His Father's Name
Four Poetic Fragments About Astronomy

Film Strip

Retrograde Motion of Mars
Film Loops
Retrograde Motion of Mars and Mercury
Retrograde Motion — Geocentric Model

Transparencies
Stellar Motion
Celestial Sphere
Retrograde Motion
Eccentrics and Equants

In addition, the following Reader articles are of

general interest for Unit 2:

The Black Cloud
Roll Call

A Night at the Observatory
The Garden of Epicurus
The Stars Within 22 Light-years That Could
Have Habitable Planets

Scientific Study of UFO's

5.2 How could you use the shadow cast by a

vertical stick on horizontal ground to find

(a) the local noon?
(b) which day was June 21st?

(c) the length of a solar year?

5.3 What is the difference between 365.24220
days and 3657 days (a) in seconds (b) in percent?

5.4 (a) List the observations of the motions of

heavenly bodies that you might make
which would also have been possible in

ancient Greek times,

(b) For each observation, list some reasons

why the Greeks thought these motions
were important.

5.5 Which of the apparent motions of the stars

could be explained by a flat earth and stars fixed

to a bowl that rotated around it?

5.6 Describe the motion of the moon during one

month. (Use your own observations if possible.)

5.7 Mercury and Venus show retrograde motion
after they have been farthest east of the sun and
visible in the evening sky. Then they quickly move
ahead westward toward the sun. pass it, and
reappear in the morning sky. During this

motion they are moving westward relative to the
stars, as is shown by the plot of Mercury on page
13. Describe the rest of the cyclic motion of
Mercury and Venus.

5.8 Center a protractor on point C in the top

diagram on page 23 and measure the number of

degrees in the four quadrants. Consider each 1°

around C as one day. Make a table of the days
needed for the planet to move through the four

arcs as seen from the earth.

5.9 (a) How many degrees of longitude does
the sun move each hour?

(b) Tell how you could roughly obtain the
diameter of the earth from the following

information:
i. Washington. D.C. and San Francisco
have about the same latitude. How can
one easily test this?

ii. A non-stop jet plane, going upwind at

a ground speed of 500 mph from Washing-
ton, D.C. to San Francisco, takes 5 hours
to get there.

iii. When it is just sunset in Washington,
D.C, a man there turns on his TV set to

watch a baseball game that is just be-

ginning in San Francisco. The game goes

into extra innings. After three hours the

announcer notes that the last out occurred

just as the sun set.

5.10 In Ptolemy's theory of the planetary motions
there were, as in all theories, a number of

assumptions. Which of the following did Ptolemy
assume?

(a) the vault of stars is spherical in form
(b) the earth has no motions
(c) the earth is spherical

(d) the earth is at the center of the sphere of

stars

(e) the size of the earth is extremely small
compared to the distance to the stars

(f ) uniform angular motion along circles (even
if measured from an off-center point) is the
only proper behavior for celestial objects

5.11 As far as the Greeks were concerned, and
indeed as far as we are concerned, a reasonable
argument can be made for either the geocentric

or the heliocentric theory of the universe.

(a) In what ways were both ideas successful?

(b) In terms of Greek science, what are some
advantages and disadvantages of each
system?

(c) What were the major contributions of

Ptolemy?

5.12 Why was astronomy the first successful

science, rather than, for example, meteorology or

zoology?
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CHAPTER SIX

Does the Earth Move? -

The Work of

Copernicus and Tycho

6.1 The Copernican system

Nicolaus Copernicus (1473-1543) was a young student in

Poland when America was discovered. An outstanding astronomer

and mathematician, Copernicus was also a talented and respected

churchman, jurist, administrator, diplomat, physician, and

economist. During his studies in Italy he read the writings of Greek

and other earlier philosophers and astronomers. As Canon of the

Cathedral of Frauenberg he was busy with civic and church affairs

and also worked on calendar reform. It is said that on the day of

his death in 1543, he saw the first copy of his great book, on which

he had worked most of his life and which opened a whole new
vision of the universe.

Copernicus titled his book De Revolutionibus Orbium
Coelestium, or On the Revolutions of the Heavenly Spheres, which

suggests the early Greek notion of concentric spheres. Copernicus

was indeed concerned with the old problem of Plato: the construction

of a planetary system by combinations of the fewest possible

uniform circular motions. He began his study to rid the Ptolemaic

system of the equants, which were contrary to Plato's assumptions.

In his words, taken from a short summary written about 1530,

. . . the planetary theories of Ptolemy and most other

astronomers, although consistent with the numerical data,

seemed likewise to present no small difficulty. For these

theories were not adequate unless certain equants were

also conceived; it then appeared that a planet moved with

uniform velocity neither on its deferent nor about the

center of its epicycle. Hence a system of this sort seemed

neither sufficiently absolute nor sufficiently pleasing to

the mind.
Having become aware of these defects, I often

considered whether there could perhaps be found a more

reasonable arrangement of circles, from which every

apparent inequality would be derived and in which every-

thing would move uniformly about its proper center.

SG 6.1

Nicolas Copernicus (1473-1543). (in

Polish his name was Koppernigk, but,

in keeping with the scholarly tradition

of the age, he gave it the Latin form

Copernicus.)

29
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In De Revolutionibus he wrote:

We must however confess that these movements [of

the sun, moon, and planets] are circular or are composed
of many circular movements, in that they maintain these

irregularities in accordance with a constant law and with

fixed periodic returns, and that could not take place, if

they were not circular. For it is only the circle which can
bring back what is past and over with. . . .

I found first in Cicero that Nicetas thought that the

Earth moved. And afterwards I found in Plutarch that

there were some others of the same opinion. . . . Therefore

I also . . . began to meditate upon the mobility of the

Earth. And although the opinion seemed absurd, never-

theless, because I knew that others before me had been
granted the liberty of constructing whatever circles they

pleased in order to demonstrate astral phenomena, I

thought that I too would be readily permitted to test

whether or not. by the laying down that the Earth had
some movements, demonstrations less shaky than those

of my predecessors could be found for the revolutions of

the celestial spheres. ... I finally discovered by the help

of long and numerous observations that if the movements
of the other wandering stars are correlated with the

circular movement of the Earth, and if the movements
are computed in accordance with the revolution of each
planet, not only do all their phenomena follow from that

but also this correlation binds together so closely the

order and magnitudes of all the planets and of their

spheres or orbital circles and the heavens themselves

that nothing can be shifted around in any part of them
without disrupting the remaining parts and the universe

as a whole.

After nearly forty years of study, Copernicus had proposed a See the preface to Copernicus'

system of more than thirty eccentrics and epicycles which would ^® Revolutionibus in Reader 2.

"suffice to explain the entire structure of the universe and the entire

ballet of the planets." Like Ptolemy's Almagest, De Revolutionibus

uses long geometrical analyses and is difficult to read. Comparison

of the two books strongly suggests that Copernicus thought he was
producing an improved version of the Almagest. He used many of

Ptolemy's observations plus some more recent ones. Yet his system

differed from that of Ptolemy in several fundamental ways. Above

all. he adopted a sun-centered system which in general outline was
the same as that of Aristarchus (who was still discredited, and

whom Copernicus did not think it wise to mention in print).

Like all scientists. Copernicus made a number of assumptions

in his system. In his own words (rendered in modern equivalent in

several places), his assumptions were:

1. There is no one precise, geometrical center of all

the celestial circles or spheres.

2. The center of the earth is not the center of the
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universe, but only of gravitation and of the lunar sphere.

3. All the spheres revolve about the sun . . . and
therefore the sun has a central location in the universe.

4. The distance from the earth to the sun is

inperceptible in comparison with the distance to the

stars.

5. Whatever motion appears in the sky arises not

from any motion of the sky, but from the earth's motion.

The earth together with its water and air performs a

complete rotation on its fixed poles in a daily motion,

while the sky remains unchanged.
6. What appear to us as motions of the sun arise not

from its motion but from the motion of the earth and . . .

we revolve about the sun like any other planet. The
earth has, then, more than one motion.

7. The apparent retrograde motion of the planets

SG 6.2 arises not from their motion but from the earth's. The
motions of the earth alone, therefore, are sufficient to

explain so many apparent motions in the sky.

Comparison of this list with the assumptions of Ptolemy, given

in Chapter 5, will show some close similarities and important

differences.

Notice that Copernicus proposed that the earth rotates daily.

As Aristarchus and others had realized, this rotation would account

for all the daily risings and settings observed in the sky. Copernicus

also proposed, as Aristarchus had done, that the sun was stationary

and occupied the central position of the universe. The earth and

each of the other planets moved about different central points near

the sun.

The figure at the left shows the main concentric spheres

carrying the planets around the sun (sol). His text explains the

basic features of his system:

The ideas here stated are difficult, even almost
impossible, to accept; they are quite contrary to popular

notions. Yet with the help of God, we will make everything

as clear as day in what follows, at least for those who
are not ignorant of mathematics. . . .

The first and highest of all the spheres is the sphere

of the fixed stars. It encloses all the other spheres and is

itself self-contained; it is immobile; it is certainly the

portion of the universe with reference to which the

movement and positions of all the other heavenly bodies

must be considered. If some people are yet of the

opinion that this sphere moves, we are of contrary mind;
and after deducing the motion of the earth, we shall

show why we so conclude. Saturn, first of the planets,

which accomplishes its revolution in thirty years, is

nearest to the first sphere. Jupiter, making its revolution

in twelve years, is next. Then comes Mars, revolving

once in two years. The fourth place in the series is

occupied by the sphere which contains the earth

and the sphere of the moon, and which performs an
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annual revolution. The fifth place is that of Venus,
revolving in nine months. Finally, the sixth place is

occupied by Mercury, revolving in eighty days. ... In the

midst of all, the sun reposes, unmoving.

Already we see an advantage in Copernicus' system that makes it SG 6.3

"pleasing to the mind." The rates of rotation for the heavenly

spheres increase in order from the motionless sphere of stars to

speedy Mercury.

Q1 What reasons did Copernicus give for rejecting the use of

equants?

Q2 In the following list of propositions, mark with a P those

made by Ptolemy and with a C those made by Copernicus.

(a) The earth is spherical.

(b) The earth is only a point compared to the distance to the

stars.

(c) The heavens rotate daily around the earth.

(d) The earth has one or more motions.

(e) Heavenly motions are circular.

(f ) The observed retrograde motion of the planets results from

the earth's motion around the sun.

6.2 New conclusions

A new way of looking at old observations — a new theory — can
suggest quite new kinds of observations to make, or new uses of old

data. Copernicus used his moving-earth model to obtain two

important results which were not possible with the Ptolemaic

theory. He was able to calculate (a) the period of motion of each

planet around the sun, and (b) the sizes of each planet's orbit

compared to the size of the earth's orbit. This, for the first time,

gave a scale for the dimensions of the universe.

To calculate the periods of the planets around the sun,

Copernicus used observations that had been recorded over many
centuries. The method of calculation is similar to the "chase

problem" of how often the hands on a clock pass one another. The SG 6.4, 6.5

details of the calculation are shown on page 34. In Table 6.1 below,

Copernicus' results are compared with the currently accepted

values.



The Periods of Revolution of the Planets

The problem is to find the rate at which

a planet moves around the sun by using

observations made from the earth — which is

itself moving around the sun. Say, for

example, that a planet closer to the sun

than the earth is, goes around the sun at the

frequency (rate) of I7 cycles per year. The

earth moves around the sun also, in the same

direction, at the rate of 1 cycle per year.

Because the earth follows along behind the

planet, the planet's motion around the sun

would, as seen from the earth, appear to be at a

rate less than I7 cycles per year. In fact, as

the diagrams below suggest, the planet's

A planet that is inside the Earth's

orbit and moves 1:7 revolutions around

the sun in a year would, as seen from

the earth, appear to have made only

7 cycle.

A planet that is outside the Earth's

orbit and moves only 7 revolution

around the sun in a year would, as

seen from the earth, appear to make
about I7 revolution.

apparent rate of motion around the sun would

be the difference between the planet's rate and

the earth's rate around the sUn: I7 cycle per

year - 1 cycle per year = 7 cycle per year. In

general, if an inner planet moves around the

sun at frequency f„ and the earth moves

around the sun with frequency f^., then the

planet's apparent rate of motion, fp^., as seen

from the earth, will be fpe = fp — f^.

A similar argument holds for planets

farther from the sun than the earth is. (See

diagram B.) Since these outer planets revolve

about the sun more slowly than the earth, the

earth repeatedly leaves the planets behind. Con

sequently, for the outer planets the sign in

the equation for f,„. is reversed: fp,. = f„ - f^,.

The apparent frequency fp,. is what is

actually observed and ^e is by definition 1

cycle per year, so either equation is easily

solved for the unknown actual rate f„ of the

planet around the sun:

For inner planets: fp = 1 cycle/yr -r f^,^

For outer planets: f^ = 1 cycle/yr - ^p,.

Copernicus used some observations by

Ptolemy and some of his own. A typical data

statement in De Revolutionibus is "Jupiter

is outrun by the earth 65 times in 71 solar

years minus 5 days 45 minutes 27 sec-

onds . . .
." In the table below, Copernicus'

data have been rounded off to the nearest

year (but they were very near to whole years

to begin with). The cycle used for the inner

planets is from one position of greatest

eastern displacement from the sun to the

next. The cycle used for the outer planets is

from one opposition to the next.

TABLE 6.2
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of deriving the directions to the planets or the angle through which

they move.

So in Ptolemy's system, only the relative sizes of epicycle and

deferent circle were known, separately for each planet. In

Copernicus' system, the motions of the sun and five planets that

had previously been attributed to one-year epicycles or deferent

circles were all replaced by the single motion of the earth's yearly

revolution around the sun. The details of how this can be done are

given on pages 36 and 37. Thus, it became possible to compare the

radii of the planet's orbit with that of the earth. Because the

distances were all compared to the distances between the sun and

the earth, the sun-earth distance is conveniently called 1

astronomical unit, abbreviated 1 AU.

Table 6.3 below compares Copernicus" values of the orbit radii

with the currently accepted values.

MODERN VALUE

0.39 AU
0.72

1.00

1.52

5.20

9.54



Earth

Changing Frame of Reference from

the Earth to the Sun

The change of viewpoint from

Ptolemy's system to Copernicus'

involved what today would be called

a shift in frame of reference. The

apparent motion previously attributed

to the deferent circles and epicycles

was attributed by Copernicus to the

earth's orbit and the planet's orbits

around the sun.

For example, consider the motion

of Venus. In Ptolemy's earth-centered

system the center of Venus' epicycle

was locked to the motion of the sun,

as shown in the top diagram at the

left. The size of Venus' deferent

circle was thought to be smaller than

the sun's, and the epicycle was

thought to be entirely between the

earth and sun. However, the observed

motions to be explained by the

system required only a certain relative

size of epicycle and deferent. The

deferent could be changed to any

size, as long as the epicycle was

changed proportionally.

The first step toward a sun-

centered system is taken by moving

the center of Venus' 1-year deferent

out to the sun and enlarging Venus'

epicycle proportionally, as shown in

the middle diagram at the left. Now
the planet moves about the sun, while

the sun moves about the earth. Tycho

actually proposed such a system with

all the observed planets moving about

the moving sun.

Copernicus went further and

accounted for the relative motion of

the earth and sun by considering the

earth to be moving around the sun,

instead of the sun moving about the

earth. In the Copernican system,

Venus' epicycle becomes its orbit

around the sun and Venus' deferent

is replaced by the earth's orbit around

the sun, as shown in the bottom



diagram at the left. All three systems,

Ptolemy's, Tycho's and Copernicus',

explain the same observations.

For the outer planets the argument

is similar, but the roles of epicycle

and deferent circle are reversed.

For the outer planets, it was the

epicycles instead of the deferent

circles which had a 1-year period

and which were synchronized with

the sun's orbit. The sizes of the

deferents were chosen so that the

epicycle of each planet would just

miss the epicycles of the planets next

nearest and next furthest from the

sun. (This was a beautiful example

of a simplifying assumption — it

filled the space with no overlap and

no gaps.) This system is represented

in the top diagram at the right (in

which the planets are shown in the

unlikely condition of having their

epicycle centers along a single

line.)

The first step in shifting to an

earth-centered view was to adjust

the sizes of the deferent circles,

keeping the epicycles in proportion,

until the 1-year epicycles were the

same size as the sun's 1-year orbit.

This adjustment is shown in the

middle diagram at the right. Next,

the sun's apparent yearly motion

around the earth is accounted for

just as well by having the earth

revolve around the sun. Also, the

same earth orbit would account for

the retrograde loops associated with

all the outer planets' matched 1-year

epicycles. So all the synchronized

epicycles of the outer planets and the

sun's orbit are replaced by the single

device of the earth's orbit around

the sun. This shift is shown in the

bottom diagram at the right. The

deferent circles of the outer planets

became their orbits around the sun.

SAt-urn

Satur-n
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of the Divine Architect. To Copernicus, as to many scientists, the

complex events he saw were merely symbols of God's thinking. To
find order and symmetry in the observed changes was to Copernicus

an act of piety. To him the symmetry and order were another

proof of the existence of the Deity. As an important church

dignitary, he would have been appalled if he had been able to

foresee that his theory would contribute to the conflict, in Galileo's

time, between religious dogma and the interpretations that

scientists gave to their experiments.

2. Copernicus' analysis was as thorough as that of Ptolemy. The
relative radii and speeds of the circular motions in his system were

calculated so that tables of planetary motion could be made.

Actually the theories of Ptolemy and Copernicus were about equally

accurate in predicting planetary positions, which for both theories

often differed from the observed positions by as much as 2° (about

four diameters of the moon).

3. Copernicus tried to answer several other objections that were

certain to be raised, as they had been against Aristarchus'

heliocentric system nearly nineteen centuries earlier. In reply to the

argument that the rapidly rotating earth would surely fly apart, he

asked, "Why does the defender of the geocentric theory not fear the

same fate for his rotating celestial sphere — so much faster because

so much larger?" It was argued that birds and clouds in the sky

would be left behind by the earth's rotation and revolution. He
answered this objection by indicating that the atmosphere is

dragged along with the earth. To the lack of observable annual shift

for the fixed stars, he could only give the same answer that

Aristarchus had proposed, namely:

. . . though the distance from the sun to the earth appears

very large as compared with the size of the spheres of

some planets, yet compared with the dimensions of the

sphere of the fixed stars, it is as nothing.

4. Copernicus claimed that the greatest advantage of his

scheme was its simple description of the general motions of the

planets. There certainly is a basic overall simplicity to his system,

as is shown in his own diagram on p. 28. (Yet for precise computa-

tions, because Copernicus would not use equants, he needed more
small motions than did Ptolemy to account for the observations. A
diagram from Copernicus' manuscript that shows more detail is

reproduced on page 42.)

5. Last of all, Copernicus pointed out that the simplicity of his

system was not merely convenient, but also beautiful and "pleasing

to the mind. " It is not often stressed in textbooks that this sort of

esthetic pleasure which a scientist finds in his models" simplicity is

one of the most powerful experiences in the actual practice of

science. Far from being a "cold," merely logical exercise, scientific

work is full of such recognitions of harmony and therefore of

beauty. One beauty that Copernicus saw in his system was the

central place given to the sun, the biggest, brightest object — the

giver of light and warmth and life. As Copernicus himself put it:
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In the midst of all, the sun reposes, unmoving. Who, Look again at SG 6.2

indeed, in this most beautiful temple would place the

light-giver in any other part than whence it can illumine

all other parts? So we find underlying this ordination an
admirable symmetry in the Universe and a clear bond of

the harmony in the motion and magnitude of the spheres,

such as can be discovered in no other wise.

Q4 Which of these arguments did Copernicus use in favor of

his system?

(a) it was obvious to ordinary common sense

(b) it was consistent with Christian theology

(c) it was much more accurate in predicting planet positions

(d) its simplicity made it beautiful

(e) the stars showed an annual shift in position due to the

earth's motion around the sun

Q5 What were the largest differences between observed

planetary positions and those predicted by Ptolemy? by Copernicus?

Q6 Did the Copernican system allow simple calculations of

where the planets should be seen?

6.4 Arguments against the Copernican system

Copernicus' hopes for acceptance of his theory were not quickly

fulfilled. More than a hundred years passed before the heliocentric

system was generally accepted even by astronomers — and then, as

we shall see, the acceptance came on the basis of arguments quite

different from those of Copernicus. In the meantime the theory and

its few champions met powerful opposition. Most of the arguments

were the same as those used by Ptolemy against the heliocentric

system of Aristarchus.

1. Apart from its apparent simplicity, the Copernican system

had no clear scientific advantages over the geocentric theory. There

was no known observation that was explained by one system and

not by the other. Copernicus had a different viewpoint but no new
types of observations, no experimental data that could not be

explained by the old theory. Furthermore, the accuracy of his

predictions of planetary positions was little better than that by

Ptolemy. As Francis Bacon wrote in the early seventeenth century:

"Now it is easy to see that both they who think the earth revolves

and they who hold the old construction are about equally and

indifferently supported by the phenomena."

Basically, the rival systems differed in their choice of reference

systems used to describe the observed motions. Copernicus himself

stated the problem clearly:

Although there are so many authorities for saying

that the Earth rests in the centre of the world that people

think the contrary supposition . . . ridiculous; ... if,

however, we consider the thing attentively, we will see
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Ptolemy too had recognized the

possibility of alternative frames of

reference. (Reread the quotation on

p. 22 in Ch. 5.) Most of Ptolemy's

followers did not share this insight.

that the question has not yet been decided and accordingly

is by no means to be scorned. For every apparent change
in place occurs on account of the movement either of the

thing seen or of the spectator, or on account of the

necessarily unequal movement of both. For no movement
is perceptible relatively to things moved equally in the

same directions — I mean relatively to the thing seen and
the spectator. Now it is from the Earth that the celestial

circuit is beheld and presented to our sight. Therefore, if

some movement should belong to the Earth ... it will

appear, in the parts of the universe which are outside, as

the same movement but in the opposite direction, as

though the things outside were passing over. And the

daily revolution ... is such a movement.

SG 6.8

SG 6.7

In this statement Copernicus invites the reader to shift the frame

of reference from that of an observer on the earth to one at a

remote position looking upon the whole system with the sun at the

center. As you may know from personal experience, such a shift is

not easy, and we can sympthize wdth those who preferred to hold to

an earth-centered system for describing what they saw.

Physicists now generally agree that all systems of reference are

in principle equally valid for describing phenomena, although some
will be easier and others more complex to use or think about.

Copernicus and those who followed him felt that the heliocentric

system was right in some absolute sense — that the sun was really

fixed in space, and the same claim was made for the earth by his

opponents. But the modern attitude is that the choice of a frame of

reference depends mainly on which frame will allow the simplest

discussion of the problem being studied. We should not speak of

reference systems as being right or wrong, but rather as being

convenient or inconvenient. (To this day, navigators use a geocentric

model for their calculations; see the page of a navigation book

shown on p. 41.) Yet even if it is recognized that different frames

of reference are possible mathematically, a reference system that

is acceptable to one person may involve philosophical assumptions

that are unacceptable to another.

2. The lack of an observable annual shift for the fixed stars

spoke against Copernicus' model. His only possible reply was
unacceptable because it meant that the stars were at an enormous

distance away from the earth. The naked-eye instruments allowed

positions in the sky to be measured to a precision of about 1/10°;

for an annual shift to be less than 1/10°, the stars would have to be

more than 1000 times further from the sun than the earth is! To us

this is no shock, because we have been raised in a society that

accepts the idea of enormous extensions in space and in time.

Even so, such distances do strain our imagination. To the opponents

of Copernicus such distances were absurd. Indeed we may well

speculate that even if an annual shift in star position had then been

observable, it would not have been taken as unmistakable evidence

against one and for the other theory. One can usually modify a
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theory-more or less pleasingly — to accomodate a bothersome

finding.

The Copernican system led to other conclusions that were also

puzzling and threatening. Copernicus determined the actual

distances between the sun and the planetary orbits. Perhaps, then,

the Copernican system was not just a mathematical procedure for

predicting the observable positions of the planets! Perhaps

Copernicus was describing a real system of planetary orbits in

space (as he thought he was). But this would be difficult to accept,

for the orbits were far apart. Even the small epicycles which
Copernicus still needed to account for the variations in the motions

did not fill up the spaces between the planets. Then what did fill up
these spaces? Because Aristotle had stated that "nature abhors a

vacuum," it was agreed there had to be something in all that space.

As you might expect, even many of those who believed Copernicus'

system felt that space should be full of something and invented

various sorts of invisible fluids and ethers to fill up the emptiness.

More recently, similar fluids were used in theories of chemistry and

of heat, light, and electricity, as you will see in later units.

3. Since no definite decision between the Ptolemaic and the

Copernican theories could be made on the astronomical evidence,

attention focused on the argument concerning the central,

immovable position of the earth. Despite his efforts, Copernicus was
unable to persuade most of his readers that his heliocentric system

reflected the mind of God at least as closely as did the geocentric

system. All religious faiths in Europe, including the new Protestants,

found enough biblical quotations (for example, Joshua 10:12-13) to

assert that the Divine Architect must have worked from a

Ptolemaic blueprint. Indeed, Martin Luther called Copernicus "the

fool who would overturn the whole science of astronomy."

Eventually, in 1616, when storm clouds were raised by the case

of Galileo, the Papacy put De Revolutionibus on the Index of

forbidden books as "false and altogether opposed to Holy

Scriptures." Some Jewish communities also prohibited the teaching

of his theory. It seems that man, believing himself central to God's

plan, had to insist that his earth be the center of the physical

universe.

The assumption that the earth was not the center of the

universe was offensive enough. But worse, the Copernican system

suggested that the other planets were similar to the earth. Thus, the

concept of the distinctly different heavenly matter was threatened;

who knew but what some rash person might next suggest that the

sun and possibly even the stars were made of earthly materials? If

the other celestial bodies, either in our solar system or beyond, were

similar to the earth, they might even be inhabited. And the

inhabitants might be heathens, or beings as well-beloved by God as

man is, or possibly even more beloved! Thus, the whole Copernican

scheme led to profound philosophical questions which the Ptolemaic

scheme avoided.

4. The Copernican theory conflicted with the basic propositions

CELESTIAL
OBSERVATIONS
15)- Philip Kissam, C. E.

Professor of Civil Engineering,

Princeton University

I. The Principles upon >vhich
Celestial Observations are
Based.

A. CONCEPTS.

1. The Celestial Sphere. To simplify the
computations necessary for the determinations
of the direction of the meridian, of latitude, and
of longitude or time, certain concepts of the
heavens have been generally adopted. They are
the following:

a. The earth is stationary.

b. The heavenly bodies have been projected
outward, along lines which extend from
the center of the earth, to a sphere of

infinite radius called the celestial sphere.

The celestial sphere has the following char-
acteristics:

a. Its center is at the center of the earth.

b. Its equator is on the projection of the
earth's equator.

c. With respect to the earth, the celestial

sphere rotates from east to west about
a line which coincides with the earth's
axis. Accordingly, the poles of the celes-

tial sphere are at the prolongations of the
earth's poles.

d. The speed of rotation of the celestial

sphere is 360° 59.15' per 24 hours.

e. With the important exception of bodie?
in the solar system, which change position
slowly, all heavenly bodies remain prac-
tically fixed in their positions on the
celestial sphere, never changing more than
negligible amounts in 24 hours, and ac-

cordingly are often called fixed stars.

Celestial navigation involves compar-

ing the apparent position of the sun

(or star) with the "actual" position as

given in a table called an "ephe-

meris." Above is an excerpt from the

introduction to the tables in the Solar

Ephemeris for 1950. (Keuffel and Es-

ser Co.)
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of Aristotelian physics. This conflict is well described by H.

Butterfield in Origins of Modern Science:

... at least some of the economy of the Copernican
system is rather an optical illusion of more recent

centuries. We nowadays may say that it requires smaller

effort to move the earth round upon its axis than to swing

the whole universe in a twenty-four hour revolution

about the earth; but in the Aristotelian physics it required

something colossal to shift the heavy and sluggish earth,

while all the skies were made of a subtle substance that

was supposed to have no weight, and they were
comparatively easy to turn, since turning was concordant

with their nature. Above all, if you grant Copernicus a

certain advantage in respect of geometrical simplicity,

the sacrifice that had to be made for the sake of this was
tremendous. You lost the whole cosmology associated

with Aristotelianism — the whole intricately dovetailed

system in which the nobility of the various elements and
the hierarchical arrangement of these had been so

beautifully interlocked. In fact, you had to throw

overboard the very framework of existing science, and it

was here that Copernicus clearly failed to discover a

satisfactory alternative. He provided a neater geometry

of the heavens, but it was one which made nonsense of

the reasons and explanations that had previously been

given to account for the movements in the sky.

In short, although the sun-centered Copernican scheme was

scientifically equivalent to the Ptolemaic in explaining the

astronomical observations, to abandon the geocentric hypothesis

seemed philosophically false and absurd, dangerous, and fantastic.

Most learned Europeans at that time recognized the Bible and the

writings of Aristotle as their two supreme sources of authority. Both

appeared to be challenged by the Copernican system. Although the

freedom of thought that marked the Renaissance was beginning,

the old image of the universe provided security and stability to

many. So, to believe in a sun-centered rather than an earth-

centered universe in Copernicus' time required that a partial gain

in simplicity be considered more important than common sense and

observation, the teaching of philosophy and religion, and physical

science. No wonder Copernicus had so few believers!

Similar conflicts between the assumptions underlying accepted

beliefs and the philosophical content of new scientific theories have

occurred many times, and are bound to occur again. During the last

century there were at least two such conflicts. Neither is completely

resolved today. In biology, the evolutionary theory based on

Darwin's work has caused major philosophical and religious

reactions. In physics, as Units 4, 5. and 6 indicate, evolving theories

of atoms, relativity, and quantum mechanics have challenged other

long-held assumptions about the nature of the world and our

knowledge of reality. As the dispute between Copernicans and

Ptolemaists illustrates, the assumptions which common sense holds.

Opposite: A page from Copernicus' manuscript of De Revolutionibus,

showing detail of some epicycles in his model.
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SG 6 9 ^° dearly and defends so fiercely are often only the remnants of an
earlier, less complete scientific theory.

Q7 Why were many people, such as Francis Bacon, undecided
about the correctness of the Ptolemaic and Copemican systems?

Q8 How did the astronomical argument become involved with
religious beliefs?

Q9 From a modem viewpoint, was the Ptolemaic or the

Copemican system of reference more valid?

6.5 Historical consequences

Eventually the moving-earth model of Copemicus was accepted.
The slowness with which that acceptance came is illustrated by a
passage in the published diary of John Adams (who later became
the second president of the United States). He wrote that he
attended a lecture at Harvard College in which the correctness of
the Copemican viewpoint was argued -on June 19, 1753.

Soon we shall follow the work which gradually led to the
general acceptance of the heliocentric viewpoint-a heliocentric

viewpoint without, however, the detailed Copemican system of
uniform circular motions with eccentrics and epicycles. We shall

see that the real scientific significance of Copemicus' work lies in
the fact that a heliocentric view opened a new approach to

understanding planetary motion. This new way became dynamic,
rather than just kinematic -it involved the laws relating force and
motion, developed in the 150 years after Copernicus, and the
application of these laws to motions in the heavens.

The Copemican model with moving earth and fixed sun opened
a floodgate of new possibilities for analysis and description.

According to this model the planets could be considered as real

bodies moving along actual orbits. Now Kepler and others could
consider these planetary paths in quite new ways. In science, the
sweep of possibilities usually cannot be foreseen by those who begin
the revolution — or by their critics.

Today the memory of Copernicus is honored not so much
because of the details of his theory, but because he challenged the
prevailing world-picture, and because his theory became a principal
force in the intellectual revolution which shook man out of his

self-centered view of the universe. As men gradually accepted the
Copemican system, they necessarily found themselves accepting
the view that the earth was only one among several planets circling

the sun. Thus, it became increasingly difficult to assume that all

creation centered on mankind. At the same time, the new system
SG 6.10 stimulated a new self-reliance and curiosity about the world.

Acceptance of a revolutionary idea based on quite new
assumptions, such as Copemicus' shift of the frame of reference,
is always slow. Sometimes compromise theories are proposed as
attempts to unite two conflicting alternatives, to "split the
difl'erence." As you will see in later units, such compromises are
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rarely successful. Often the new ideas do stimulate new observations

and concepts that in turn may lead to a very useful development or

restatement of the original revolutionary theory.

Such a restatement of the heliocentric theory came during the

150 years after Copernicus. Many men provided observations and

ideas, and in Chapters 7 and 8 we will follow the major contribu-

tions made by Kepler, Galileo, and Isaac Newton. But first, we will

consider here the work of Tycho Brahe, who devoted his life to

improvements in the pi'ecision with which planetary positions were

observed and to the proposal of a compromise theory of planetary

motion.

Q10 In terms of our historical perspective, what were the

greatest contributions of Copernicus to modem planetary theory?

6.6 Tycho Brahe

Tycho Brahe was born in 1546 of a noble, but not particularly

rich. Danish family. By the time Tycho was thirteen or fourteen, he

had become intensely interested in astronomy. Although he was

studying law, he secretly spent his allowance money on astronomical

tables and books such as the Almagest and De Revolutionibus.

Soon he discovered that both Ptolemy and Copernicus had relied

upon tables of planetary positions that were inaccurate. He
concluded that before a satisfactory theory of planetary motion

could be created, new astronomical observations of the highest

possible accuracy, gathered over many years, would be necessary.

Tycho's interest in studying the heavens was increased by an

exciting observation in 1572. Although the ancients had taught that

the stars were unchanging. Tycho observed a "new star" in the

constellation Cassiopeia. It soon became as bright as Venus and

could be seen even during the daytime. Then over several years it

faded until it was no longer visible. To Tycho these events were

astonishing — changes in the starry sky! Evidently at least one

assumption of the ancients was wrong. Perhaps other assumptions

were wrong, too.

After observing and writing about the new star, Tycho traveled

through northern Europe where he met many other astronomers

and collected books. Apparently he was considering moving to

Germany or Switzerland where he could easily meet other

astronomers. To keep the young scientist in Denmark, King

Frederick II made Tycho an offer that was too attractive to turn

down. Tycho was given an entire small island and also the income

derived from various farms to allow him to build an observatory on

the island and to staff and maintain it. The offer was accepted, and

in a few years Uraniborg ("Castle of the Heavens") was built. It

was a large structure, having four large observatories, a library, a

laboratory, shops, and living quarters for staff, students, and

observers. There was even a complete printing plant. Tycho

estimated that the observatory cost Frederick II more than a ton of

gold. For that time in history this magnificent laboratory was at

Although there were precision sight-

ing instruments, all observations

were with the naked eye — the

telescope was not to be invented

for another 50 years.
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least as significant, complex, and expensive as some of the great

research establishments of our own time. Primarily a research

center, Uraniborg was a place where scientists, technicians, and

students from many lands could gather to study astronomy. Here

was a unity of action, a group effort under the leadership of an

imaginative scientist to advance the boundaries of knowledge in

one science.

In 1577 Tycho observed a bright comet, a fuzzy object whose

motion across the sky seemed to be erratic, unlike the orderly

motions of the planets. To find the distance to the comet, Tycho

compared its position as observed from Denmark with its positions

as observed from elsewhere in Europe. At any given time, the comet

was found to have the same position with respect to the stars, even

though the observing places were many hundreds of miles apart.

By contrast, the moon's position in the sky was measurably

different when observed from places so far apart. Therefore, Tycho

concluded, the comet must be at least several times farther away

than the moon.

This was an important conclusion. Up to that time comets had

been believed to be some sort of local event, like clouds or hghtning,

rather than something in the realm of eternal things beyond the

moon. Now comets had to be considered distant astronomical

objects which seemed to move right through the crystalline spheres

that were still generally beheved to carry the planets. Tycho's book

on this comet was widely read and helped to undermine belief in

the old assumptions about the nature of the heavens.

Q11 What event stimulated Tycho's interest in astronomy?

Q1 2 In what ways was Tycho's observatory like a modern

research institute?

Q13 Why were Tycho's conclusions about the comet of 1577

important?

The bright comet of 1965.

Two articles on comets appear in

Reader 2: "The Great Comet of

1965 ' and "The Boy Who Redeemed
His Father's Name."

SG6.11

6.7 Tycho's observations

Tycho's fame results from his lifelong devotion to making

unusually accurate observations of the positions of the stars, sun,

moon, and planets. He did this before the telescope was invented.

Over the centuries many talented observers had been recording the

positions of the celestial objects, but the accuracy of Tycho's work

was much greater than that of the best astronomers before him.

How was Tvcho Brahe able to do what no others had done before?

For a more modern example of this

same problem of instrumentation,

you may wish to read about the

development and construction of the

200-inch Hale telescope on Mt.

Palomar. Also see "A Night at the

Observatory" in Reader 2.
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One of Tycho's sighting devices.

Unfortunately Tycho's instruments

were destroyed in 1619 during the

Thirty Years War.

Singleness of purpose was certainly one of Tycho's assets. He
knew that highly precise observations must be made during many
years. For this he needed improved instruments that would give

consistent readings. Fortunately he possessed both the mechanical
ingenuity to devise such instruments and the funds to pay for their

construction and use.

Tycho's first improvement on the astronomical instruments of

the day was to make them larger. Most of the earlier instruments

had been rather small, of a size that could be moved by one person.

In comparison, Tycho's instruments were gigantic. For instance,

one of his early devices for measuring the angular altitude of

planets (shown in the etching in the margin) had a radius of about

six feet. This wooden instrument was so large that it took several

men to set it into position. Tycho also put his instruments on heavy,

firm foundations or else attached them to a wall that ran exactly

north-south. By increasing the stability of the instruments. Tycho
increased the reliability of the readings over long periods of time.

Thoughout his career Tycho also created better sighting devices,

more precise scales, and stronger support systems and made dozens
of other changes in design which increased the precision of the

observations.

Apparent distortion of the setting sun. The light's path through the

earth's atmosphere is bent, making the sun appear flattened and rough-
edged.
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Not only did Tycho devise better instruments for making his

observations, but he also determined and specified the actual limits

of precision of each instrument. He realized that merely making

larger and larger instruments does not always result in greater

precision; ultimately, the very size of the instrument introduces

errors, since the parts will bend under their own weight. Tycho

therefore tried to make his instruments as large and strong as he

could without at the same time introducing errors due to bending.

Furthermore, in modern style, Tycho calibrated each instrument

and determined its range of error. (Nowadays many commercially

available scientific instruments designed for precision work are

accompanied by a measurement report, usually in the form of a

table, of corrections to be applied to the readings.)

Like Ptolemy and the Muslim astronomical observers, Tycho

knew that the light coming from each celestial body was bent

downward by the earth's atmosphere and increasingly so as the

object neared the horizon. To increase the precision of his

observations, Tycho carefully determined the amount of refraction

so that each observation could be corrected for refraction effects.

Such careful work was essential if improved records were to be

made.

Tycho worked at Uraniborg from 1576 to 1597. After the death

of King Frederick II, the Danish government became less interested

in helping to pay the cost of Tycho's observatory. Yet Tycho was

unwilling to consider any reduction in the costs of his activities.

Because he was promised support by Emperor Rudolph of Bohemia,

Tycho moved his records and several instruments to Prague. There,

fortunately, he hired as an assistant an able, imaginative young

man named Johannes Kepler. When Tycho died in 1601, Kepler

obtained all his records of observations of the motion of Mars. As

Chapter 7 reports, Kepler's analysis of Tycho's observations solved

many of the ancient problems of planetary motion.

Q14 What improvements did Tycho make in astronomical

instruments?

Q15 In what way did Tycho correct his observations to provide

records of higher accuracy?

6.8 Tycho's compromise system

Tycho's observations were intended to provide a basis for a new

theory of planetary motion which he had outlined in an early

publication. Tycho saw the simplicity of the Copemican system by

which the planets moved around the sun, but he could not accept

the idea that the earth had any motion. In Tycho's system, all the

planets except the earth moved around the sun, but the sun moved

around the stationary earth, as shown in the sketch in the margin.

Thus he devised a compromise model which, as he said, included

the best features of both the Ptolemaic and the Copemican systems.

Refraction, or bending, of light from a

star by the earth's atmosphere. The

amount of refraction shown in the

figure is greatly exaggerated over

what actually occurs.

Main spheres in Tycho Brahe's system

of the universe. The earth was fixed

and was at the center of the universe.

The planets revolved around the sun,

while the sun, in turn, revolved around

the fixed earth.



Buildings and instruments of modern observatories. Top: the 200-inch telescope

and its dome on Mt. Palomar. Bottom: the complex of buildings on Mt. Wilson.
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However, he did not live to publish quantitative details of his theory.

The compromise Tychonic system was accepted by only a few

people. Those who accepted the Ptolemaic model objected to

Tycho's proposal because he had the planets move around the sun.

Those who accepted the Copernican model objected to having the

earth held stationary. So the argument continued between those

holding the seemingly self-evident position that the earth was
stationary and those who accepted, at least tentatively, the strange,

exciting proposals of Copernicus that the earth might rotate and

revolve around the sun. The choice for one or the other was based

on philosophical or esthetic preferences, for each of the three sys-

tems could account about equally well for the observational evidence.

All planetary theories up to that time had been developed only

to provide some system by which the positions of the planets could

be predicted fairly precisely. In the terms used in Unit 1, these

would be called kinematic descriptions. The causes of the motions —

what we now call dynamics — had not been considered in any detail.

The angular motions of objects in the heavens were, as Aristotle

said and everyone (including Ptolemy, Copernicus, and Tycho)

agreed, "natural"; the heavens were still considered to be completely

different from earthly materials and to behave in quite different

ways. That a single theory of dynamics could describe both earthly

and heavenly motions was a revolutionary idea yet to be proposed.

As long as there was no explanation of the causes of motion,

there remained a question of whether the orbits proposed for the

planets in the various systems were actual paths of real objects in

space or only convenient imaginary devices for making computa-

tions. The status of the problem in the early part of the seventeenth

century was later described well by the English poet John Milton

in Paradise Lost:

. . . He his fabric of the Heavens
Hath left to their disputes, perhaps to move
His laughter at their quaint opinions wide

Hereafter, when they come to model Heaven
And calculate the stars, how they will wield

The mighty frame, how build, unbuild, contrive

To save appearances, how gird the sphere

With centric and eccentric scribbled o'er

Cycle and epicycle, orb in orb.

You will see that the eventual success of Newton's universal

dynamics led to the belief, one which was held confidently for about

two centuries, that scientists were describing the "real world."

Later chapters of this text that deal with recent discoveries and

theories will indicate that today scientists and philosophers are SG 6.12

much less certain that the common-sense notion of "reality" is so

useful in science.

Q16 In what ways did Tycho's system for planetary motions

resemble the Ptolemaic and the Copernican systems?
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6.1 The Project Physics learning materials
particularly appropriate for Chapter 6 include the

following

:

Experiments
The Shape of the Earth's Orbit

Using Lenses to Make a Telescope

Activities

Two Activities on Frames of Reference

Reader Articles

The Boy Who Redeemed His Father's Name
The Great Comet of 1965
A Night at the Observatory

Film Loop
Retrograde Motion

-

Heliocentric Model

6.2 The first diagram on the next page shows
numbered positions of the sun and Mars (on its

epicycle) at equal time intervals in their motion
around the earth, as described in the Ptolemaic

system. You can easily redraw the relative

positions to change from the earth's frame of

reference to the sun's. Mark a sun-sized circle in

the middle of a thin piece of paper; this will be a

frame of reference centered on the sun. Place the

circle over each successive position of the sun,

and trace the corresponding numbered position of

Mars and the position of the earth. (Be sure to

keep the piece of paper straight.) When you have
done this for all 15 positions, you will have a

diagram of the motions of Mars and the earth as

seen in the sun's frame of reference.

6.3 What reasons did Copernicus give for

believing that the sun is fixed at or near the

center of the planetary system?

6.4 Consider the short and long hands of a clock

or watch. If, starting from 12:00 o'clock, you rode

on the slow short hand, how many times in 12

hours would the long hand pass you? If you are

not certain, slowly turn the hands of a clock or

watch, and keep count. From this information,

can you derive a relation by which you could
conclude that the period of the long hand around
the center was one hour?

6.5 The diagram at the upper right section of the

next page shows the motions of Mercury and
Venus east and west of the sun as seen from the

earth during 1966-1967. The time scale is

indicated at 10-day intervals along the central

line of the sun's position.

(a) Can you explain why Mercury and Venus
appear to move from farthest east to farthest

west more quickly than from farthest west
to farthest east?

(b) From this diagram can you find a period for

Mercury's apparent position in the sky
relative to the sun?

(c) Can you derive a period for Mercury's actual
orbital motion around the sun?

(d) What are the major sources of uncertainty
in the results you derived?

(e) Similarly, can you estimate the orbital

period of Venus?

6.6 From the sequence of orbital radii from
Mercury to Saturn, guess what the orbital radius
would be for a new planet if one were discovered.
What is the basis for your guess?

6.7 If you have had some trigonometry, try this

problem: the largest observed annual shift in star

position is about 1/2400 of a degree. What is

the distance (in AU's) to this closest star?

6.8 How might a Ptolemaic astronomer have
modified the geocentric system to account for

observed stellar parallax?

6.9 Do you know of any conflicts between
scientific theories and common sense today?

6.10 How did the Copernican system encourage
the suspicion that there might be life on objects

other than the earth? Is such a possibility

seriously considered today? What important kinds

of questions would such a possibility raise?

6.11 How can you explain the observed motion of

Halley's comet during 1909-1910, as shown on the

star chart on the next page?

6.12 To what extent do you feel that the

Copernican system, with its many motions in

eccentrics and epicycles, reveals real paths in

space, rather than being only another way of
computing planetary positions?
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A New Universe Appears—
The Work of Kepler and Galileo

7.1 The abandonment of uniform circular motion

Kepler's lifelong desire was to perfect the heliocentric theory.

He viewed the harmony and simplicity of that theory with

"incredible and ravishing delight." To Kepler, such patterns of

geometric order and numerical relation were clues to Gods mind.

To unfold these patterns further through the heliocentric theory.

Kepler attempted in his first major work to explain the spacing of

the planetary orbits, as calculated by Copernicus (p. 35 in

Chapter 6).

Kepler was searching for the reasons just six planets (including

the earth) were visible and were spaced as they are. These are

excellent scientific questions, though even today too difficult to

answer. Kepler felt the key lay in geometry, and he began to wonder
whether there was any relation between the six known planets and

the five "regular solids." A regular solid is a polyhedron whose faces

all have equal sides and angles. From the time of the Greeks, it was

known that there were just five regular geometrical solids. Kepler

imagined a model in which these five regular solids could be nested,

one inside the other, somewhat like a set of mixing bowls. Between

the five solids would be spaces for four planetary spheres. A fifth

sphere could be inside the whole nest and a sixth sphere could be

around the outside. Kepler then sought some sequence of the five

solids; just touching the spheres, that would space the spheres at

the same relative distances from the center as were the planetary

orbits. Kepler said:

I took the dimensions of the planetary orbits according

to the astronomy of Copernicus, who makes the sun

immobile in the center, and the earth movable both

around the sun and upon its own axis; and I showed that

the differences of their orbits corresponded to the five

regular Pythagorean figures. . . .

SG 7.1

The five "perfect solids" taken from

Kepler's Harmonices Mundi (Har-

mony of the World). The cube is a

regular solid with six square faces.

The dodecahedron has twelve five-

sided faces. The other three regular

solids have faces which are equilateral

triangles: the tetrahedron has four

triangular faces, the octahedron has

eight triangular faces, and the ico-

sahedron has twenty triangular faces.

For Kepler, this geometric view was
related to ideas of harmony. (See

"Kepler's Celestial Music" in

Reader 2. )
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A model of Kepler's explanation of the

spacing of the planetary orbits by

means of the regular geometrical

solids. Notice that the planetary

spheres were thick enough to include

the small epicycle used by Copernicus.

In keeping with Aristotelian physics,

Kepler believed that force was
necessary to drive the planets along

their circles, not to hold them in

circles.

SG 7.2

By trial and error Kepler found a way to arrange the solids so

that the spheres fit within about five percent of the actual

planetary distances. To Kepler this remarkable (but as we now
know, entirely accidental) arrangement explained both the spacings

of the planets and the fact that there were just six. Also it indicated

the unity he expected between geometry and scientific observations.

Kepler's results, published in 1597, demonstrated his imagination

and computational ability. Furthermore, it brought him to the

attention of major scientists such as Galileo and Tycho. As a result,

Kepler was invited to become one of Tycho's assistants at his new
observatory in Prague in 1600.

There Kepler was given the task of determining in precise detail

the orbit of Mars. This unusually difficult problem had not been

solved by Tycho and his other assistants. As it turned out, the in-

vestigation of the motion of Mars was the start from which Kepler

could redirect the study of celestial motion, just as Galileo used the

motion of falling bodies to redirect the study of terrestrial motion.

Kepler began his study of Mars by trying to fit the observations

with motions on an eccentric circle and an equant. Like Copernicus.

Kepler eliminated the need for the large epicycle by putting the

sun motionless at the center and having the earth move around it

(see p. 31). But Kepler made an assumption which differed from that

of Copernicus. Recall that Copernicus had rejected the equant as an
improper type of motion, but he used small epicycles. Kepler

used an equant, but refused to use even a single small epicycle. To
Kepler the epicycle seemed "unphysical" because the center of the

epicycle was empty, and empty space could not exert any force on a

planet. Thus, from the start of his study on Mars, Kepler was
assuming that the orbits were real and that the motion had some
physical causes. Even though Kepler's teacher advised him to make
only "astronomical" (observational) and not physical assumptions,

Kepler stubbornly stuck to his idea that the motions must be

produced and explained by forces. When finally he published his

results on Mars in his book Astronomia Nova, the New Astronomy,

it was subtitled Celestial Physics.

For a year and a half Kepler struggled to fit Tycho's observations

of Mars by various arrangements of an eccentric and an equant.

When after 70 trials success finally seemed near, he made a

discouraging discovery. Although he could represent fairly well the

motion of Mars in longitude (east and west along the ecliptic), he

failed markedly with the latitude (north and south of the ecliptic).

However, even in longitude his very best fit still had differences of

eight minutes of arc between Tycho's observed positions and the

positions predicted by the model.

Eight minutes of arc, about a fourth of the moon's diameter,

may not seem like much of a difference. Others might have been

tempted to explain it away, perhaps charging it to observational

error. But Kepler knew from his own studies that Tycho's

instruinents and observations were rarely in error by even as much
as two minutes of arc. Those eight minutes of arc meant to Kepler
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that his best system, using the old, accepted devices of eccentric

and equant, would never be adequate to match the observations.

In his New Astronomy, Kepler wrote:

Since divine kindness granted us Tycho Brahe, the

most diligent observer, by whose observations an error of

eight minutes in the case of Mars is brought to light in

this Ptolemaic calculation, it is fitting that we recognize

and honor this favor of God with gratitude of mind. Let

us certainly work it out, so that we finally show the true

form of the celestial motions (by supporting ourselves

with these proofs of the fallacy of the suppositions

assumed). I myself shall prepare this way for others in

the following chapters according to my small abilities.

For if I thought that the eight minutes of longitude were
to be ignored, I would already have corrected the

hypothesis which he had made earlier in the book and
which worked moderately well. But as it is, because they

could not be ignored, these eight minutes alone have
prepared the way for reshaping the whole of astronomy,
and they are the material which is made into a great part

of this work.

Fortunately Kepler had made a

major discovery earlier which was
crucial to his later work. He found

that the orbits of the earth and other

planets were in planes which

passed through the sun. Ptolemy

and Copernicus required special

explanations for the motion of

planets north and south of the

ecliptic, but Kepler found that these

motions were simply the result of

the orbits lying in planes tilted to

the plane of the earth's orbit.

Kepler concluded that the orbit was not a circle and there was no
point around which the motion was uniform. So Plato's aim of

fitting perfect circles to the heavens, which had for twenty

centuries engaged the minds of brilliant men, had to be abandoned.

Kepler had in his hands the finest observations ever made, but now
he had no theory by which they could be explained. He would have
to start over to account for two altogether new questions: what is

the shape of the orbit followed by Mars, and how does the speed of

the planet change as it moves along the orbit?

Q1 When Kepler joined Tycho Brahe what task was he

assigned?

Q2 Why did Kepler conclude that Plato's problem, to describe

the motions of the planets by combinations of circular motions,

could not be solved?

The diagram depicts a nearly edge-

on view of orbital planes of earth and

another planet, both intersecting at

the sun.

7.2 Kepler's law of areas

Kepler's problem was immense. To solve it would demand the

utmost of his imagination and computational skills.

As the basis for his study, Kepler had Tycho's observed

directions to Mars and to the sun on certain dates. But these

observations were made from a moving earth whose orbit was not

well known. Kepler realized that he must first determine more
accurately the shape of the earth's orbit so that he would know
where it was on the dates that the various observations of Mars had
been made. Then he might be able to use the observations to
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determine the shape and size of the orbit of Mars. Finally, to

predict positions for Mars he would need to discover some rule or

regularity that described how fast Mars moved along different

parts of its orbit.

As we follow his brilliant analysis here, and particularly if we
repeat some of this work in the laboratory, we will see the series of

problems that he solved.

To derive the earth's orbit he began by considering the

moments when the sun, earth, and Mars are essentially in a straight

line (Fig. A). After 687 days, as Copernicus had found. Mars would

return to the same place in its orbit (Fig. B). Of course, the earth

at that time would not be at the same place in its own orbit as

when the first observation was made. But as Figs. B and C indicate,

the directions to the sun and Mars as they might be seen from the

earth against the fixed stars would be known. The crossing point of

the sight-lines to the sun and to Mars must be a point on the earth's

orbit. By working with several groups of observations made 687

days apart (one Mars "year"), Kepler was able to determine fairly

accurately the shape of the earth's orbit.

MAr» MAfS

Q BArt-h

The orbit Kepler found for the earth appeared to be almost a

circle, with the sun a bit off center. From his plotted shape and
the record of the apparent position of the sun for each date of the

year, he could locate the position of the earth on its orbit, and its

speed along the orbit. Now he had an orbit and a timetable for

the earth's motion. You made a similar plot in the experiment The
Shape of the Earth's Orbit.

In Kepler's plot of the earth's motion around the sun, it was
evident that the earth moves fastest when nearest the sun. (Kepler

wondered why this occurred and speculated that the sun might

exert some force that drove the planets along their orbits; his

concern with the physical cause of planetary motion marked a

change in attitude toward motion in the heavens.) The drawings

at the left represent (with great exaggeration) the earth's motion

for two parts of its orbit. The different positions on the orbit are

separated by equal time intervals. Between points A and B there

is a relatively large distance, so the planet is moving rapidly;

between points C and D it moves more slowly. Kepler noticed,

however, the two areas swept over by a line from the sun to the

planet are equal. Kepler, it is believed, had actually calculated such

areas only for the nearest and farthest positions of two planets.

Earth and Mars, yet the beautiful simplicity of the relation led him
to conclude that it was generally true, for all parts of orbits. In its
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general form the Law of Areas states: The line from the sun to the

moving planet sweeps over areas that are proportional to the time

intervals. Later, when Kepler found the exact shape of orbits, his

law of areas became a powerful tool for predicting positions along

the orbit. In the next section we shall use both laws and see in

detail how they work.

You may be surprised that the first rule we have encountered

about the motions of the planets is concerned with the areas swept

over by the line from the sun to the planet. After we considered

circles, eccentric circles, epicycle, and equants, we come upon a

quite unexpected property: the area swept over per unit time is

the first property of the orbital motion to remain constant. (As we
shall see in Chapter 8, this major law of nature applies to all orbits

in the solar system and also to double stars.) Here was something

that, besides being new and different, also drew attention to the

central role of the sun, and so bolstered Kepler's faith in the still

widely neglected Copernican idea of a heliocentric system.

As you will see, Kepler's other labors would have been of little

use without this basic discovery, although the rule does not give

any hint why this regularity should exist. The law of areas

describes the relative rate at which the earth and. Mars (and,

Kepler thought, any other planet) move at any point of their orbits.

Kepler could not fit the rule to Mars by assuming a circular orbit,

and so he set out to find what shape Mars' orbit was.

Q3 What observations did Kepler use to plot the earth's orbit?

Q4 State Kepler's law of areas.

Q5 Where in its orbit does a planet move the fastest?

7.3 Kepler's law of elliptical orbits

With the orbit and timetable of the earth known, Kepler could

reverse the analysis and find the shape of Mars' orbit. For this

purpose he again used observations separated by one Martian year.

Because this interval is somewhat less than two earth years, the

earth is at different positions in its orbit at the two times, so the

two directions from the earth toward Mars differ. Where they cross

is a point on the orbit of Mars. From such pairs of observations

Kepler fixed many points on the orbit of Mars. The diagrams below

illustrate how two such points might be plotted. From a curve

drawn through such points, he obtained fairly accurate values

'^ h^^r»

SG 7.4

Another way to express this

relationship for the nearest and
farthest positions would be to say

the speeds were inversely propor-

tional to the distance; but this rule

does not generalize to any other

points on the orbit. (A modification

of the rule that does hold is

explained on pages 64 and 65.)

Kepler's Law of Areas. A planet moves
along its orbit at a rate such that the

line from the sun to the planet sweeps
over areas which are proportional to

the time intervals. The time taken to

cover AB is the same as that for BC,

CD, etc.
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In this experiment the orbit of Mars

is plotted from measurements made
on pairs of sky photographs taken

one Martian year apart.

SG7.5

r—

H

An ellipse showing the major axis a

the minor axis b, and the two foci F,

and F.2. The shape of an ellipse is

described by its eccentricity e, where

e = c/a.

SG7.6

SG 7.7

In the Orbit of Mercury Experiment,

you can plot the shape of Mercury's

very eccentric orbit from observa-

tional data. See also SG 7.8.

SG 7.9

for the size and shape of Mars' orbit. Kepler saw at once that the

orbit of Mars was not a circle around the sun. You will find the

same result from the experiment, The Orbit of Mars. But what sort

of path was this? How could it be described most simply? As Kepler

said, "The conclusion is quite simply that the planet's path is not a

circle — it curves inward on both sides and outward again at opposite

ends. Such a curve is called an oval." But what kind of oval?

Many different closed curves can be called ovals. Kepler

thought for a time that the orbit was egg-shaped. Because such a

shape did not agree with Kepler's ideas of physical interaction

between the sun and the planet, he rejected that possibility. Kepler

concluded that there must be some better way to describe the orbit,

and that he could find it. For many months, Kepler struggled with

the question. Finally he was able to show that the orbit was a

simple curve which had been studied in detail by the Greeks two

thousand years before. The curve is called an ellipse. It is the shape

you see when you view a circle at a slant.

Ellipses can differ greatly in shape. They have many interesting

properties. For example, you can draw an ellipse by looping a piece

of string around two thumb tacks pinned to a drawing board at

points F, and Fa as shown at the left. Pull the loop taut with a

pencil point (P) and run the pencil once around the loop. You will

have drawn an ellipse. (If the two thumb tacks had been together,

what curve would you have drawn? What results do you get as you

separate the two tacks more?)

Each of the points F, and F., is called a focus of the ellipse. The
greater the distance between F, and F2. the flatter, or more
"eccentric" the ellipse becomes. As the distance between F, and F,

shrinks to zero, the ellipse becomes more nearly circular. A
measure of the eccentricity of the ellipse is the ratio of the distance

F1F2 to the long axis. If the distance between F, and F2 is c and

length of the long axis is a, then the eccentricity e is defined as

e = da.

The eccentricities are given for each of the ellipses shown in

the series of photographs in the margin of the next page. You can
see that a circle is the special case of an ellipse with e = 0, and that

the greatest possible eccentricity for an ellipse is e = 1.0.
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What Kepler discovered was not merely that the orbit of Mars
is an ellipse -a remarkable enough discovery in itself- but also that

the sun is at one focus. (The other focus is empty.) Kepler stated

these results in his Law of Elliptical Orbits: The planets move in

orbits which are ellipses and have the sun at one focus.

As Table 7.1 shows, the orbit of Mars has the largest eccentricity

of all the orbits that Kepler could have studied, namely those of

Venus, Earth, Mars. Jupiter, and Saturn. Had he studied any planet

other than Mars, he might never have noticed that the orbit was an
ellipse! Even for the orbit of Mars, the difference between the

elliptical orbit and an off-center circle is quite small. No wonder
Kepler later wrote that "Mars alone enables us to penetrate the

secrets of astronomy which otherwise would remain forever hidden

from us."

Table 7.1 The Eccentricities of Planetary Orbits
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shape? While we might understand Plato's desire for uniform

circular motions, nature's insistence on the ellipse is a surprise.

In fact, there was no satisfactory answer to this question until

Newton showed, almost eighty years later, that these elliptical

orbits were necessary results of a more general law of nature. Let

us accept Kepler's laws as rules that contain the observed facts

about the motions of the planets. As empirical laws, they each

summarize the data obtained by observation of the motion of any

planet. The law of orbits, which describes the paths of planets as

elliptical around the sun, gives us all the possible positions each

planet can have if we know the size and eccentricity. That law,

however, does not tell us when the planet will be at any one

particular position on its ellipse or how rapidly it will be moving
then. The law of areas does not specify the shape of the orbit, but

does describe how the angular speed changes as the distance from

the sun changes. Clearly these two laws complement each other.

With these two general laws, and given the values for the size and

eccentricity of the orbit (and a starting point), we can determine

both the position and angular speed of a given planet at any time,

past or future. Since we can also find where the earth is at the

same instant, we can calculate the position of the planet as it

would have been or will be seen from the earth.

The elegance and simplicity of Kepler's two laws are impressive.

Surely Ptolemy and Copernicus would have been amazed that the

solution to the problem of planetary motions could be given by such

short statements. But we must not forget that these laws were

distilled from Copernicus' idea of a moving earth, the great labors

and expense that went into Tycho's fine observations, and the

imagination and devotion, agony and ecstasy of Kepler.

Q6 What was special about Mars' orbit that made Kepler's

study of it so fortunate?

Q7 If the average distance and eccentricity of a planet's orbit

are known, which of the following can be predicted from the law of

areas alone? From the law of Elliptical orbits alone? Which require

both? (Mark A, E, or A + E).

(a) All possible positions in the orbit,

(b) speed at any point in an orbit,

(c) position at any given time.

Empirical means based on
observation, but not on theory.

Conic Sections are figures produced

by cutting a cone with a plane — the

eccentricity of a figure is related to

the angle of the cut. In addition to

circles and ellipses, parabolas and

hyperbolas are conic sections, with

eccentricities greater than ellipses.

Newton eventually showed that all of

these shapes are possible paths for a

body moving under the influence of

the sun.

Ci'rcLe E-LL\toe>c
PA.ra.boLa. H v_j per boLcL

Opposite; A page from Kepler's notebooks.
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ViAt-

(B)
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A General Equation for Orbital Speed

Figure A represents the elliptical orbit of a planet, with

the sun at one focus. By a short analysis we can find

the ratio of the speeds at the position nearest to the

sun (perihelion) and farthest from the sun (aphelion).

Figure B shows a small part of the planet's path

around perihelion, during a time interval At. If Af is very

short, then the average speed along the path will be

virtually equal to the instantaneous speed at perihelion,

i^p, and the path length will be v,, x Af.

Also, if At is very short, the section of orbit is

almost straight, so it can be considered the base of a

long, thin triangle of altitude R,„ shaded in Figure C.

The area of any triangle is 7 base x altitude, so

the area A^ of this triangle is T(Vp x Af)f?„.

Similarly, the area A^ of a triangle swept out

during At at aphelion is j(v.^ x At)R^. By Kepler's

law of areas, equal areas are swept out in equal

times, so A^ = Ap. Then

jv^ X Atx R^= ^Vp X Atx Rp

and, dividing both sides by jAt.

We can rearrange the equation to the form

R,

which shows that the speeds at aphelion and

perihelion are inversely proportional to the distances

from the sun: at a larger distance the speed is smaller.

The derivation for these two points was easy,

because at these points the velocity is perpendicular to

the line drawn to the sun. When the planet is at some

(D)



position other than perihelion or aphelion, the velocity

vector Is not perpendicular, as shown in Figure D.

However, we can approximate the area swept out,

shaded in Figure E, by a triangle of altitude R, as

shown In Figure F. Notice that it Includes a tiny

corner of extra area, but also leaves out a tiny

corner. For a very short time Interval Af, the

triangle will be very thin and the difference

between the two tiny corners will virtually

vanish. As shown In figure G, the base of

the triangle is not v x At, but i/^ x At, where

v'^ Is the portion or component of v

perpendicular to the sun-planet line. Thus the

area swept out during At can be expressed as

jv^ xAtxR

This same derivation for area swept out will hold

for any part of the orbit over a short time interval At. By

Kepler's law of areas, the areas swept out during

equal time intervals would be equal, so we can write

TV, xAtxR^^v, xAtxR'^ Yv" xAtx R" etc.

or, dividing through by \ At,

v^R = v[R' = v'[R" etc.

Therefore, we can express Kepler's law of areas as

v^R = constant.

If the shape (eccentricity) of the orbit Is known,

together with the speed and distance at any one

point, we can use this equation to calculate the speed

at any other point In the orbit. (See SG 7.10.) Moreover,

the law of areas, from which this relation is derived. Is

true for the motion of any body that experiences a

force directed toward one of the foci of the ellipse —

a so-called "central force." So the relation Vj^R =

constant applies to double stars and to atoms as well

as to the solar system.

(E)

(F)

(G)

(H)
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7.4 Kepler's Law of Periods

As Einstein later put it: "The Lord is

subtle, but He is not malicious."

For the earth, T is one year. The
average distance R.,, of the earth

from the sun is one astronomical

unit, 1AU. So one way to express

the value of the constant ic is fr = 1

year'/AU'.

SG 7.11-7.14

Kepler's first two laws were published in 1609 in his book

Astronomia Nova, but he was still dissatisfied because he had not

yet found any relation among the motions of the different planets.

Each planet seemed to have its own elliptical orbit and speeds, but

there appeared to be no overall pattern relating all planets to one

another. Kepler had begun his career by trying to explain the

number of planets and their spacing. He was convinced that the

observed orbits and speeds could not be accidental, but that there

must be some regularity linking all the motions in the solar

system. His conviction was so strong, that he spent years examining

many possible combinations of factors to find, by trial and error, a

third law that would relate all the planetary orbits. His long search,

almost an obsession, illustrates a belief that has run through the

whole history of science: that despite apparent difficulties in

getting a quick solution, underneath it all, nature's laws are

understandable. This belief is to this day a chief source of inspiration

in science, often sustaining one's spirit in periods of seemingly

fruitless labor. For Kepler it made endurable a life of poverty,

illness, and other personal misfortunes, so that in 1619 he could

write triumphantly in his Harmony of the World:

. . . after I had by unceasing toil through a long period of

time, using the observations of Brahe, discovered the

true relation . . . overcame by storm the shadows of my
mind, with such fullness of agreement between my
seventeen years' labor on the observations of Brahe and
this present study of mine that I at first believed that I

was dreaming ....

Kepler's law of periods, also called the "harmonic law," relates

the periods of the planets to their average distances from the sun.

The period is the time taken to go once completely around the orbit.

The law states that the squares of the periods of the planets are

proportional to the cubes of their average distances from the sun.

In the short form of algebra, calling the period T and the average

distance Rav. this law can be expressed as

y2
T2 ex i?^^.3 or T' = feRav' or

^av
= fe

where fe is a constant. Because this relation applies to all the

planets and even to comets in orbit around the sun, we can use it

to find the period of any planet once we know its average distance

froin the sun, and vice versa.

Kepler's three laws are so simple that their great power may be

overlooked. When they are combined with his discovery that each

planet moves in a plane passing through the sun, they let us

derive the past and future history of each planet from only six

quantities. Two of these quantities are the size and eccentricity of

the orbit, three others are angles that relate the plane of the orbit

to that of the earth's orbit, while the sixth tells where in its orbit
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the planet was on any one certain date. These quantities are

explained more fully in the Activities section of Handbook 2 for

Chapters 7 and 8.
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7.5 The new concept of physical law

One general feature of Kepler's life-long work has had a

far-reaching effect on the way in which all the physical sciences

developed. When Kepler began his studies, he still accepted Plato's

assumptions about the importance of geometric models and

Aristotle's emphasis on natural place to explain motion. But later

he came to concentrate on algebraic laws describing how planets

moved. His successful statement of empirical laws in mathematical

form helped to establish the use of the equation as the normal

form of stating laws in physical science.

More than anyone before him, Kepler expected an acceptable

theory to agree with precise and quantitative observation. From
Tycho's observations he learned to respect the power of precision

measurement. Models and theories can be modified by human
ingenuity, but good data endure regardless of changes in assump-

tions or viewpoints.

Kepler went beyond observation and mathematical description,

and attempted to explain motion in the heavens by the action of

physical forces. In Kepler's system the planets no longer were

thought to revolve in their orbits because they had some divine

nature or influence, or because this motion was "natural." or

because their spherical shapes were self-evident explanation for

circular motion. Rather, Kepler was the first to look for a physical

law based on observed phenomena to describe the whole universe

in a detailed quantitative manner. In an early letter he expressed

his guiding thought:

I am much occupied with the investigation of the

physical causes. My aim in this is to show that the

celestial machine is to be likened not to a divine

organism but rather to a clockwork . . . insofar as nearly

all the manifold movements are carried out by means of

a single; quite simple magnetic force, as in the case of a

clockwork, all motions are caused by a simple weight.

Moreover, I show how this physical conception is to be

presented through calculation and geometry. [Letter to

Herwart, 1605]

To show the celestial machine to be like a clockwork propelled

by a single force — this was a prophetic goal indeed. Stimulated by

William Gilbert's work on magnetism published a few years earlier,

Kepler could imagine magnetic forces from the sun driving the

planets along their orbits. This was a reasonable and promising

hypothesis. As it developed, the basic idea that a single kind of

force controls the motions of all the planets was correct; but the

force is not magnetism, and it is needed not to keep the planets

moving forward, but to deflect their paths to form closed orbits.

Kepler's statement of empirical laws reminds us of Galileo's

suggestion, made at about the same time, that we deal first with

the how of motion in free fall and then with the why. A half

century later Newton used the concept of gravitational force to tie
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together Kepler's three planetary laws with laws of terrestrial

mechanics to provide a magnificent synthesis. (See Chapter 8.)

Q9 In what ways did Kepler's work exemplify a "new" concept

of physical law?

7.6 Galileo and Kepler

One of the scientists with whom Kepler corresponded about

scientific developments was Galileo. While Kepler's contributions to

planetary theory were mainly his empirical laws based on the

observations of Tycho, Galileo contributed to both theory and

observation. As was reported in Chapters 2 and 3. Galileo's theory of

motion was based on observations of bodies moving on the earth's

surface. His development of the new science of mechanics

contradicted the assumptions on which Aristotle's physics and

interpretation of the heavens had been based. Through his books

and speeches Galileo triggered wide discussion about the differences

or similarities of earth and heaven. Outside of scientific circles, as

far away as England, the poet John Milton wrote, some years after

his visit to Galileo in 1638:

. . . What if earth {Paradise Lost, Book V, line 574,

Be but the shadow of Heaven, and things therein published 1667.)

Each to the other like, more than on earth is thought?

Galileo challenged the ancient interpretations of experience. As

we saw earlier, he focused attention on new concepts: time and

distance, velocity and acceleration, forces and matter, in contrast

to the Aristotelian qualities of essences, final causes, and fixed

geometric models. In Galileo's study of falling bodies he insisted on

fitting the concepts to the observed facts. By seeking results that

could be expressed in concise algebraic form, Galileo paralleled

the new style being used by Kepler.

The sharp break between Galileo and most other scientists of

the time arose from the kind of questions he asked. To his

opponents, many of Galileo's problems seemed trivial. What was

important about watching pendulums swing or rolling balls down

inclines, when philosophical problems needed clarification? His

procedures for studying the world seemed peculiar, even fantastic.

Although Kepler and Galileo lived at the same time, their lives

were quite different. Kepler lived a hand-to-mouth existence under

stingy patrons and was driven from city to city by the religious wars

of the time. Few people, other than a handful of friends and

correspondents, knew of or cared about his studies and results. He

wrote lengthy, tortuous books which demanded expert knowledge

to read.

Galileo, on the other hand, wrote his numerous essays and

books in Italian, in a language and a style which could be

understood by his contemporaries who did not read scholarly Latin.
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In recent times, similar receptions

were initially given to such artists

as the painter Picasso, and the

sculptor Giacometti, and the

composers Stravinski and Schon-

berg. The same has often been true

in most fields, whether literature or

mathematics, economics or politics.

But while great creative novelty is

often attacked at the start, it does
not follow that, conversely, every-

thing that is attacked must be

creative.

Galileo was a master at publicizing his work. He wanted as many
as possible among the reading public to know of his studies and to

accept the Copernican theory. He took the argument far beyond a

small group of scholars out to the nobles, civic leaders, and religious

dignitaries. His arguments included satire on individuals or ideas.

In return, his efforts to inform and persuade on a topic as

"dangerous" as cosmological theory stirred up the ridicule and even

violence often poured upon those who have a truly new point of

view.

Q10 Which of the following would you associate more with

Galileo's work than with that of his predecessors: qualities and

essences, popular language, concise mathematical expression,

final causes?

7.7 The telescopic evidence

Two of Galileo's telescopes, dis-

played at the Museum of Science in

Florence.

Like Kepler, Galileo was surrounded by colleagues who were

convinced the heavens were eternal and could not change. Hence.

Galileo was especially interested in the sudden appearance in 1604

of a new star, one of those observed by Kepler. Where there had

been nothing visible in the sky, there was now a brilliant star.

Galileo, like Tycho and Kepler, realized that such changes in the

starry sky conflicted with the old idea that the stars could not

change. Furthermore, this new star awakened in Galileo an interest

in astronomy which lasted throughout his life.

Consequently, Galileo was ready to react to the news he

received four or five years later: that a Dutchman "had constructed

a spy glass by means of which visible objects, though very distant

from the eye of the observer, were distinctly seen as if nearby."

Galileo (as he tells it) quickly worked out some of the optical

principles involved and set to work to grind the lenses and build

such an instrument himself. His first telescope made objects appear

three times closer than when seen with the naked eye. Reporting

on his third telescope in his book The Starry Messenger:

Galileo meant that the area of the

object was nearly 1000 times

greater. The area is proportional to

the square of the magnification (or

"power") as we define it now.

Finally, sparing neither labor nor expense, I succeeded in

constructing for myself so excellent an instrument that

objects seen by means of it appeared nearly one thousand
times larger and over thirty times closer than when
regarded with our natural vision.

What would you do if you were handed "so excellent an

instrument"? Like the men of Galileo's time, you probably would

put it to practical uses. "It would be superfluous," Galileo agreed.

to enumerate the number and importance of the

advantages of such an instrument at sea as well as on
land. But forsaking terrestrial observations, I turned to

celestial ones, and first I saw the moon from as near at
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hand as if it were scarcely two terrestrial radii away.
After that I observed often with wondering delight both
the planets and the fixed stars ....

In the period of a few short weeks in 1609 and 1610, Galileo

used his telescope to make several discoveries, each of which is of

first rank.

First, Galileo pointed his telescope at the moon. What he saw
led him to the conviction that

. . . the surface of the moon is not smooth, uniform, and
precisely spherical as a great number of philosophers

believe it (and other heavenly bodies) to be, but is

uneven, rough, and full of cavities and prominences,
being not unlike the face of the earth, relieved by chains
of mountains, and deep valleys.

Galileo did not stop with that simple observation, so contrary to

the Aristotelian idea of heavenly perfection. He supported his

conclusions with several kinds of evidence, including careful

measurement. For instance, he worked out a method for determining

the height of a mountain on the moon from the shadow it is seen to

cast there. (His value of about four miles for the height of some
lunar mountains is not far from modern results such as those

obtainable in the experiment, The Height of Piton: A Mountain on

the Moon.

Next he looked at the stars. To the naked eye the Milky Way
had seemed to be a continuous blotchy band of light; through the

telescope it was seen to consist of thousands of faint stars.

Wherever Galileo pointed his telescope in the sky, he saw many
more stars than could be seen with the unaided eye. This observa-

tion was contrary to the old argument that the stars were created

to provide light so men could see at night. If that were the

explanation, there should not be stars invisible to the naked eye —

but Galileo found thousands.

After his observations of the moon and the fixed stars, Galileo

turned his attention to the discovery which in his opinion ".
. . de-

serves to be considered the most important of all — the disclosure

of four Planets never seen from the creation of the world up to our

own time." He is here referring to his discovery of four of the

satellites which orbit about Jupiter. Here before his eyes was a

miniature solar system with its own center of revolution. Today, as

to Galileo so long ago, it is a sharp thrill to see the moons of Jupiter

through a telescope for the first time. One is immediately struck by

this evidence so directly opposed to the Aristotelian notion that the

earth was at the center of the universe and the chief center of

revolution.

The manner in which Galileo discovered Jupiter's "planets" is a

tribute to his ability as an observer. Each clear evening during this

period he was discovering dozens if not hundreds of new stars

never before seen by man. When looking in the vicinity of Jupiter

Two of Galileo's early drawings of the

moon (from Galileo's Siderius Nun-

cius).
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Telescopic photograph of Jupiter and
its four bright satellites. This is ap-

proximately what Galileo saw and
what you see through the simple

telescope described in the Handbook.

As of 1970, 12 satellites of Jupiter

have been observed.
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These sketches of Galileos are from
the first edition of The Starry Mes-
senger.

on the evening of January 7, 1610, he noticed ".
. . that beside the

planet there were three starlets, small indeed, but very bright.

Though I believe them to be among the host of fixed stars, they

aroused my curiosity somewhat by appearing to lie in an exact

straight line . . .
." (The first page of the notebook in which he

recorded his observations is reproduced on p. 81 at the end of this

chapter.) When he saw them again the following night, he saw that

they had changed position with reference to Jupiter. Each clear

evening for weeks he observed that planet and its roving "starlets"

and recorded their positions in drawings. Within days he had

concluded that there were four "starlets" and that they were indeed

satellites of Jupiter. He continued his observations until he was
able to estimate the periods of their revolutions around Jupiter.

Of all of Galileo's discoveries, that of the satellites of Jupiter

caused the most stir. His book. The Starry Messenger, was an

immediate success, and copies were sold as fast as they could be

printed. For GalOeo the result was a great demand for telescopes

and great public fame.

Galileo continued to use his telescope with remarkable results.

By projecting an image of the sun on a screen, he observed

sunspots. This was additional evidence that the sun, like the moon,

was not perfect in the Aristotelian sense: it was disfigured rather

than even and smooth. From his observation that the sunspots

moved across the face of the sun in a regular pattern, he concluded

that the sun rotated with a period of about 27 days.

Photographs of Venus at various

phases with a constant magnification.

He also found that Venus showed all phases, just as the moon
does (see photos above). Therefore. Venus must move completely

around the sun as Copernicus and Tycho had believed, rather than

be always between the earth and sun as the Ptolemaic astronomers

assumed. Saturn seemed to carry bulges around its equator, as

indicated in the drawings on the next page, but Galileo's telescopes

were not strong enough to show that they were rings. With his

telescopes he collected an impressive array of new information

about the heavens — all of it seemed to contradict the basic

assumptions of the Ptolemaic world scheme.
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Q11 Could Galileo's observations of all phases of Venus
support the heliocentric theory, the Tychonic system, or Ptolemy's

system?

Q12 In what way did telescopic observation of the moon and
sun weaken the earth-centered view of the universe?

Q13 What significance did observations of Jupiter have in

weakening the Ptolemaic view of the world?

7.8 Galileo focuses the controversy

Galileo's observations supported his belief in the heliocentric

Copernican system, but they were not the cause of his belief. In

his great work, Dialogue Concerning the Two Chief World Systems

(1632), his arguments were based more on assumptions that

seemed self-evident to him than on observations. Galileo recognized,

as Ptolemy and Copernicus had, that the observed motions of

planets alone do not decide uniquely between a heliocentric and a

geocentric hypothesis. With proper modifications of the systems,

says Galileo, "The same phenomena would result from either

hypothesis." But Galileo accepted the earth's motion as real

because the heliocentric system seemed to him simpler and more
pleasing. Elsewhere in this course you wUl find other cases where
a scientist accepted or rejected an idea for reasons arising from a

strong belief or feeling that frankly could not, at the time, be

verified by experiment.

In the Dialogue Concerning the Two Chief World Systems,

Galileo presents his arguments in a systematic and lively way. Like

his later book, Discourses Concerning Two New Sciences, men-
tioned in Chapter 2, it is in the form of a discussion between three

learned men. Salviati, the voice of Galileo, wins most of the

arguments. His antagonist is Simplicio, an Aristotelian who speaks

for and defends the Ptolemaic system. The third member, Sagredo,

represents the objective and intelligent citizen not yet committed

to either system. However, Sagredo's role is written so that he

usually accepts most of Galileo's arguments in the end.

Galileo's arguments in favor of the Copernican system as set

forth in Two Chief World Systems were mostly those given by

Copernicus. Oddly enough. Galileo made no use of Kepler's laws.

However, Galileo's observations did provide new evidence for

Kepler's laws. After determining the periods of Jupiter's four

moons, Galileo found that the larger the orbit of the satellite, the

longer was its period of revolution. Copernicus had already found

that the periods of the planets increased with their average

distances from the sun. (Kepler's law of periods stated the relation

for the planets in detailed quantitative form.) Now Jupiter's

satellite system showed a similar pattern. These new patterns of

regularities would soon replace the old assumptions of Plato.

Aristotle, and Ptolemy.

Two Chief World Systems relies upon Copernican arguments,

cm)
Drawings of Saturn

made in the

seventeenth century.
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Galilean observations, and arguments of plausibility to attack the

basic assumptions of the geocentric model. In response, Simplicio,

seemingly in desperation, tries to dismiss all of Galileo's arguments

with a characteristic counter argument:

. . . with respect to the power of the Mover, which is

infinite, it is just as easy to move the universe as the

earth, or for that matter a straw.

But to this Galileo makes a very interesting reply; notice how he

quotes Aristotle against the Aristotelians:

. . . what I have been saying was with regard not to the

Mover, but only the movables . . . Giving our attention,

then, to the movable bodies, and not questioning that it

is a shorter and readier operation to move the earth than
the universe, and paying attention to the many other

simplifications and conveniences that follow from merely
this one, it is much more probable that the diurnal

motion belongs to the earth alone than to the rest of the

universe excepting the earth. This is supported by a very

true maxim of Aristotle's which teaches that ... 'it is

pointless to use many to accomplish what may be done
with fewer.'

With characteristic enthusiasm, Galileo thought his telescopic

discoveries would soon cause everyone to realize how absurd the

assumptions were that prevented wide acceptance of the Copemican
theory. But men cannot believe what they are not ready to believe.

In their fight against the new Copernicans, the followers of

Aristotle were convinced that they were adhering to the facts, that

the heliocentric theory was obviously false and in contradiction to

observation and also to common sense. The evidences of the

telescope could be due to distortions; after all, glass lenses change

the path of light rays. And even if telescopes seemed to work for

terrestrial observation, nobody could be sure they worked equally

well when pointed at these vastly more distant celestial objects.

Furthermore, the Aristotelians could not even consider the

Copernican system as a possible theory without giving up many of

their basic assumptions, as we saw in Chapter 6. This would have

required them to do what is nearly humanly impossible: give up
many of their common-sense ideas and find new bases for their

theological and moral doctrines. They would have to admit that

the earth is not at the center of creation. Then perhaps the universe

was not created especially .for mankind. Is it any wonder that

Galileo's arguments stirred up a storm of opposition?

Galileo's observations intrigued many, but they were unaccept-

able to Aristotelian scholars. Most of these had reasons one can

respect. But a few were driven to positions that must have seemed

silly at that time, too. For example, the Florentine astronomer

Francesco Sizzi argued in 1611 why there could not, indeed must
not, be any satellites around Jupiter:
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There are seven windows in the head, two nostrils,

two ears, two eyes and a mouth; so in the heavens there

are two favorable stars, two unpropitious, two luminaries,

and Mercury alone undecided and indifferent. From
which and many other similar phenomena of nature
such as the seven metals, etc., which it were tedious to

enumerate, we gather that the number of planets is

necessarily seven [including the sun and moon]. . . .

Besides, the Jews and other ancient nations, as well as

modern Europeans, have adopted the division of the

week into seven days, and have named them from the

seven planets; now if we increase the number of

planets, this whole system falls to the ground. . . .

Moreover, the satellites are invisible to the naked eye

and therefore can have no influence on the earth, and
therefore would be useless, and therefore do not exist.

A year after his discoveries, Galileo wrote to Kepler:

You are the first and almost the only person who,
even after a but cursory investigation, has . . . given

entire credit to my statements. . . . What do you say of the

leading philosophers here to whom I have offered a

thousand times of my own accord to show my studies,

but who with the lazy obstinacy of a serpent who has
eaten his fill have never consented to look at the planets,

or moon, or telescope?

Q14 Did Galileo's telescopic observations cause him to believe

in the Copernican viewpoint?

Q15 What reasons did Galileo's opponents give for ignoring

telescopic observations?

Some of the arguments that were
brought forward against the new
discoveries were so silly that it is

hard for the modern mind to take

them seriously. . . . One of his

[Galileo's] opponents, who admitted

that the surface of the moon looked

rugged, maintained that it was
actually quite smooth and spherical

as Aristotle had said, reconciling

the two ideas by saying that the

moon was covered with a smooth
transparent material through which

mountains and craters inside it

could be discerned. Galileo, sar-

castically applauding the ingenuity

of this contribution, offered to accept

it gladly—provided that his opponent
would do him the equal courtesy of

allowiny him then to assert that the

moon was even more rugged than

he had thought before, its surface

being covered with mountains and
craters of this invisible substance

ten times as high as any he had
seen. [Quoted from Discoveries and
Opinions of Galileo, translated by

Stillman Drake.]

SG 7.16

7.9 Science and freedom

The political and personal tragedy that befell Galileo is

described at length in many books. Here we shall only mention

briefly some of the major events. GalHeo was warned in 1616 by the

Inquisition to cease teaching the Copernican theory as true (rather

than as just one of several possible methods to compute the

planetary motions) for that theory was held contrary to Holy

Scripture. At the same time Copernicus' book was placed on the

Index of Forbidden Books and suspended "untO corrected." As we
saw before, Copernicus had, whenever possible, used Aristotelian

doctrine to make his theory plausible. But Galileo had reached a

new point of view: he urged that the heliocentric system be

accepted on its merits alone. While he was himself a devoutly

religious man. he deliberately ruled out questions of religious faith

from scientific discussions. This was a fundamental break with

the past.

When Cardinal Barberini, formerly a close friend of Galileo, was
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Pantheism refers to the idea that

God is no more (and no less) than

the forces and laws of nature.

According to a well-known, but

probably aprocryphal story, at the

end of these proceedings Galileo

muttered, "E pur se muove — but

it does move."

elected in 1623 to be Pope Urban VIII, Galileo talked with him
regarding the decree against the Copernican ideas. As a result of

the discussion, Galileo considered it safe enough to write again on

the controversial topic. In 1632, having made some required

changes, Galileo obtained the necessary papal consent to publish

Two Chief World Systems. This book presented very persuasively

the Ptolemaic and Copernican viewpoints and their relative merits.

After the book's publication, his opponents argued that Galileo

seemed to have tried to get around the warning of 1616. Further-

more, Galileo's forthright and sometimes tactless behavior and the

Inquisition's need to demonstrate its power over suspected heretics

combined to mark him for punishment.

Among the many factors in this complex story, we must
remember that Galileo, though a suspect of the Inquisition,

considered himself religiously faithful. In letters of 1613 and 1615

Galileo wrote that God's mind contains all the natural laws;

consequently he held that the occasional glimpses of these laws

which the human investigator may gain were direct revelations of

God, just as valid and grand as those in the Bible: "From the

Divine Word, the Sacred Scripture and Nature did both alike

proceed. . . . Nor does God less admirably discover himself to us in

Nature's action than in the Scripture's sacred dictions." These

opinions are held by many today whether they are scientists or not.

and are no longer regarded as being in conflict with theological

doctrines. But in Galileo's time they could be regarded as symptoms
of pantheism. This was one of the heresies for which Galileo's

contemporary, Giordano Bruno, was burned at the stake. The
Inquisition was alarmed by Galileo's contention that the Bible was
not a certain source of knowledge for the teaching of natural

science. In reply, arrogant as Galileo often was. he quoted Cardinal

Baronius: "The Holy Spirit intended to teach us how to go to

heaven, not how the heavens go."

Though he was old and ailing, Galileo was called to Rome and

confined for a few months. From the proceedings of Galileo's trial,

of which parts are still secret, we learn that he was tried, threatened

with torture, forced to make a formal confession of holding and

teaching forbidden ideas and to make a denial of the Copernican

theory. In return for his confessions and denial, he was sentenced

only to perpetual house arrest. Galileo's friends in Italy did not dare

to defend him publicly. His book was placed on the Index where it

remained, along with that of Copernicus and one of Kepler's, until

1835. Thus, he was used as a warning to all men that the demand
for spiritual conformity also required intellectual conformity.

But without intellectual freedom, science cannot flourish for

long. Perhaps it is not a coincidence that for two centuries after

Galileo, Italy, which had been the mother of many outstanding

men, produced hardly a single great scientist, while elsewhere in

Europe they appeared in great numbers. Today scientists are

acutely aware of this famous part of the story of the development
of planetary theories. Teachers and scientists in our time have had
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to face strong enemies of open-minded inquii-y and of unrestricted

teaching. Today, as in Galileo's time, men and women who create

or publicize new thoughts must be ready to stand up before those

who fear and wish to suppress the open discussion of new ideas and
new evidence.

Plato knew that an authoritarian state is threatened by

intellectual nonconformists and recommended for them the now
well-known treatment: re-education, prison, or death. Not long ago,

Soviet geneticists were required to discard well-established theories,

not on the basis of compelling new scientific evidence, but because

of conflicts with political doctrines. Similarly, discussion of the

theory of relativity was banned from textbooks in Nazi Germany
because Einstein's Jewish parentage was said to invalidate his

work. Another example of intolerance was the condition that led

to the "Monkey Trial" held during 1925 in Tennessee, where the

teaching of Darwin's theory of biological evolution was attacked

because it conflicted with certain types of biblical interpretation.

On two points, one must be cautious not to romanticize the

lesson of this episode. While a Galileo sometimes still may be

persecuted or ridiculed, not everyone who is persecuted is, therefore,

a Galileo. He may in fact be just wrong, or a crank. Secondly, it has

turned out that, at least for a time, science in some form can

continue to live in the most hostile surroundings. When political

philosophers decide what may be thought and what may not,

science will suffer (like everything else), but it will not necessarily

be extinguished. Scientists can take comfort from the judgment of

history. Less than 50 years after Galileo's trial, Newton's great

book, the Principia. brilliantly united the work of Copernicus,

Kepler, and Galileo with Newton's new statement of the principles

of mechanics. Without Kepler and Galileo, there probably could

have been no Newton. As it was, the work of these three, together

with the work of many contemporaries working in the same
spirit, marked the triumphant beginning of modern science. Thus,

the hard-won new laws of science and new views of man's place in

the world were established. What followed has been termed by

historians The Age of Enlightenment.

Q16 Which of the following appears to have contributed to

Galileo's being tried by the Inquisition?

(a) He did not believe in God.

(b) He was arrogant.

(c) He separated religious and scientific questions.

(d) He wrote in Italian.

Palomar Observatory houses the

200-inch Hale reflecting telescope.

It is located on Palomar Mountain in

southern California.

Over 200 years after his confinement

in Rome, opinions had changed so

that Galileo was honored as in the

fresco "Galileo presenting his tele-

scope to the Venetian Senate" by

Luigi Sabatelli (1772-1850).

SG 7.17



7.1 The Project Physics learning materials
particularly appropriate for Chapter 7 include the
following:

Experiments
The Orbit of Mars
The Orbit of Mercury

Activities

Three-dimensional Model of Two Orbits
Inclination of Mars Orbit
Demonstrating Satelhte Orbits
Galileo

Conic-Section Models
Challenging Problems: Finding Earth-Sun
Distance

Measuring Irregular Areas
Reader Articles

Kepler
Kepler on Mars
Kepler's Celestial Music
The Starry Messenger
Galileo

Film Loop
Jupiter Satellite Orbit

Transparency
Orbit Parameters

7.2 How large was an error of 8 minutes of arc in
degrees? How far right or left do you think a dot
over an i on this page would have to be before
you would notice it was off-center? What angle
would this shift be as seen from a reading distance
of 10 inches?

7.3 Summarize the steps Kepler used to determine
the orbit of the earth.

7.4 For the orbit positions nearest and furthest
from the sun, a planet's speeds are inversely
proportional to the distances from the sun. What
is the percentage change between the earth's
slowest speed in July when it is 1.02 AU from the
sun, and its greatest speed in January when it is

0.98 AU from the sun?

7.5 Summarize the steps Kepler used to determine
the orbit of Mars.

7.6 In any ellipse the sumlor/the distances from
the two foci to a point on the curve equals the
length of the major axis, or (F,P + F2P) = a. This
property of ellipses allows us to draw them by
using a loop of string around two tacks at the
foci. What should the length of the string be?

7.7 In describing orbits around the sun, the point
nearest the sun is called the perihelion point and
the point farthest from the sun is called the
aphelion point. The distances of these two points
from the sun are called the perihelion distance
and the aphelion distance respectively. The terms
perihelion and aphelion come from the Greek, in
which helios is the sun, peri means near, and apo
means away from.

(a) List some other words in which the prefixes
peri and apo or ap have similar meanings.

(b) In describing earth satellite orbits, the terms
apogee and perigee are often used. What do
they mean?

(c) What would such points for satellites

orbiting the moon be called?

7.8 For the planet Mercury the perihelion distance
(closest approach to the sun) has been found to be
about 45.8 x 10'^ kilometers, and the aphelion
distance (greatest distance from the sun) is about
70.0 X lO** kilometers. What is the eccentricity of
the orbit of Mercury?

7.9 The eccentricity of Pluto's orbit is 0.254. What
will be the ratio of the minimum orbital speed to

the maximum orbital speed of Pluto?

7.10 The rule Vj^R = const, makes it easy to find v^
for any point on an orbit if the speed and distance
at any other point are known. Make a sketch to

show how you would find v once you know v_^.

7.11 Halley's comet has a period of 76 years, and
its orbit has an eccentricity of .97.

(a) What is its average distance from the sun?
(b) What is its greatest distance from the sun?
(c) What is its least distance from the sun?
(d) How does its greatest speed compare with

its least speed?

7.12 The mean distance of the planet Pluto from
the sun is 39.6 AU. What is the orbital period of
Pluto?

7.13 Three new major planets have been
discovered since Kepler's time. Their orbital
periods and mean distances from the sun are
given in the table below. Determine whether
Kepler's law of periods holds for these planets
also.

Discov- Orbital

ery Period

Date

Average Eccentri-

Distance city

From of

Sun Orbit

Uranus 1781

Neptune 1846

Pluto 1930

84.013yr

164.783

248.420

19.19 AU 0.047

30.07 0.009

39.52 0.249
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7.14 Considering the data available to him. do you
think Kepler was justified in concluding that the
ratio T^/Rav' is a constant?

7.15 The chart on p. 79 is reproduced from the
January, 1969. issue of Sky and Telescope.

(a) Make a sketch of how Jupiter and its

satellites appeared at one week intervals,
beginning with dav "0."
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JUPITER'S

SATELLITES

The four curving lines

represent Jupiter's four

bright (Galilean) satel-

lites: I, lo; II, Europa;
III, Ganymede; IV, Cal-

listo. The location of

the planet's disk is in-

dicated by the pairs of

vertical lines. If a moon
is invisible because it is

behind the disk (that

is, occulted by Jupiter),

the curve is broken.

For successive dates, the

horizontal lines mark
0^ Universal time, or 7
p.m. Eastern standard
time (or 4 p.m. Pacific

standard time) on the

preceding date. Along
the vertical scale, 1/16
inch is almost seven
hours. In this chart,

west is to the left, as in

an inverting telescope

for a Northern Hemi-
sphere observer. At the

bottom, "d" is the point

of disappearance of a

satellite in the shadow
of Jupiter; "r" is the

point of reappearance.
From the American
Ephemeris and Nauti-

cal Almanac.

SATELLITES OF JUPITER, 1969

CONFIGlfRATIONS OF SATELLITES I-IV FOR JANUARY
INIVERSAI. TIMK

\
,A

PHASES OF THE ECLIPSES
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ecliptic, the central star being much larger than
the others. I believed them to be mutually
motionless, for when I first saw them they

seemed almost to touch, and they remained so for

almost two years without the least change. It was
reasonable to believe them to be fixed with
respect to each other, since a single second of arc

(a movement incomparably smaller than any
other in even the largest orbs) would have
become sensible in that time, either by separating
or by completely uniting these stars. Hence I

stopped observing Saturn for more than two
years. But in the past few days I returned to it

and found it to be solitary, without its customary
supporting stars, and as perfectly round and
sharply bounded as Jupiter. Now what can be
said of this strange metamorphosis? That the two
lesser stars have been consumed in the manner
of the sunspots? Has Saturn devoured his

children? Or was it indeed an illusion and a fraud
with which the lenses of my telescope deceived
me for so long — and not only me, but many
others who have observed it with me? Perhaps
the day has arrived when languishing hope may
be revived in those who, led by the most profound
reflections, once plumbed the fallacies of all my
new observations and found them to be incapable
of existing!

I need not say anything definite upon so strange
an event; it is too recent, too unparalleled, and I

am restrained by my own inadequacy and the
fear of error. But for once I shall risk a little

temerity; may this be pardoned by Your
Excellency since I confess it to be rash, and

protest that I mean not to register here as a
prediction, but only as a probable conclusion. I

say, then, that I believe that after the winter
solstice of 1614 they may once more be observed.
(Discoveries and Opinions of Galileo, translated

by Stillman Drake, Doubleday, 1957, pp. 101-102,
143-144.)

7.17 What are the current procedures by which
the public is informed of new scientific theories?

Do you think they are adequate? To what extent
do news media emphasize clashes of points of
view? Bring in some examples from news
magazines.

7.18 Recently the Roman Catholic Church
decided to reconsider its condemnation of Galileo.

The article reproduced opposite, which appeared
in The New York Times, July 1968, quotes
passages from an Austrian Cardinal's view of

the question.

(a) In the quoted remarks Cardinal Konig lists

three forms of knowledge: "divine

revelations," "philosophical constructions,"

and "spontaneously naive views of reality."

Under which of these do you think he would
classify Galileo's claims? Would Galileo

agree?
(b) What seems to be the basis for the

reconsideration? Is it doubt about the

conclusions of the trial, or about the

appropriateness of trying scientific ideas at

all? Is it being reconsidered because of a

change in Church philosophy, or because
Galileo turned out to be right?
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To Rehabilitate Galileo

The following are excerpts

from a speech entitled "ReUgion
and Natural Sciences" by Franz
Cardinal Konig of Vienna at a

meeting of Nobel Prize winners

in Germany last week.

Neither the Christian churches
nor modern science have man-
aged to date to control that com-
ponent of human nature which
mirrors visibly a like phenome-
non in the animal kingdom; ag-

gressiveness. I hold that the

neutralization of this instinct,

which now is creating more
dangers than ever before, ought
to be a prime goal of objective

cooperation between theologians

and scientists. This work should
try to bridge the incongruity be-

tween man's complete and per-

fected power of destruction and
his psychic condition which re-

mains unbridled and prey to

atavism.

Removing Barriers

To enable such cooperation

it is first of all necessary to

remove the barriers of the past.

Perhaps the biggest obstacle,

blocking for centuries coopera-

tion between religion and sci-

ence, was the trial of Galileo.

For the church after the sec-

ond Vatican Council, turning as

it is to the world as an advocate

of legitimate rights and the

freedom of the human mind, the

time appears to have come to

terminate as thoroughly as pos-

sible the era of unpleasantness

and distrust which began with

Galileo's censure in 1G33. For

over 300 years the scientific

world has rightly regarded as a

painful, unhealing wound the

church's unjust verdict on one

of those men who prepared the

path for modern science. Gali-

leo's judgment Is felt all the

more painful today since all in-

telligent people inside and out-

side the church have come to the

( onclusion that the scientist

Galileo was right and that

his work particularly gave mod-
ern mechanics and physics a

first, firm basis. His Insights er •

abled the human mind to de-

velop a new understanding of

nature and universe, thus re-

placing concepts and notions in-

herited from antiquity.

An open and honest clari-

fication of the Galileo case ap-

pears all the more necessary to-

day if the church's claim to

speak for truth, justice and

freedom is not to suffer in cred-

ibility and if those people are

not to lose faith in the church

who in past and picsent have

defended freedom and the right

to independent thought against

various forms of totalitariansim

and the so-called raison d'etat.

I am in a position to announce

before this meeting that com-

petent authorities have already

initiated steps to bring the

Galileo case a clear and open

solution.

The Catholic Church is un-

doubtedly ready today to sub-

ject the judgment in the Galileo

trial to a revision. Clarification

of the questions which at Gal-

ileo's time were still clouded

allow the church today to re-

sume the case with full confi-

dence in itself and without

prejudice. Faithful minds have

struggled for truth under pain

and gradually found the right

way through experience and dis-

cussions conducted with pas-

sion.

The church has learned to

treat science with frankness and

respect. It now knows that har-

mony is possible between mod-
ern man's scientific thinking

and religion. The seeming con-

tradiction between the Coperni-

can system or, more precisely,

the initial mechanics of modern

physics and the Biblical story

of creation has gradually disap-

peared. Theology now differen-

tiates more sharply between es-

sentially divine revelations, phil-

osophical constructions and

spontaneously naive views of

reality.

What used to be insurmount-

able obstacles for Galileo's con-

temporaries have stopped long

ago to irritate today's educated

faithful. From their perspective

Galileo no longer appears as a

mere founder of a new science

but also as a prominent propo-

nent of religious thinking. In this

field, too, Galileo was in many
respects a model pioneer.

Trial and Error

In Gahleo's wake and in the

spirit of his endeavors the Cath-

olic church has through trial

and error come to recognize the

possibility of harmonious coop-

eration between free research

and free thinking on the one

hand and absolute loyalty to

God's word on the other. To-

day's task is to draw the con-

sequences from this recognition.

Without fixing borders, God has

opened his creation—the uni-

verse—to man's inquiring mind.

The church has no reason

whatsoever to shun a revision

of the disputed Galileo verdict.

To the contrary, the case pro-

vides the church with an op-

portunity to explain its claim

to infallibility in its realm and

to define its limits. However, it

will also be a chance to prove

that the church values justice

higher than prestige.

Excerpt from The New York Times, July 1968.
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CHAPTER EIGHT

The Unity of Earth and Sky
—The Work of Newton

8.1 Newton and seventeenth-century science

In the forty-five years between the death of Galileo in 1642 and
the publication of Newton's Principia in 1687, major changes
occurred in the social organization of scientific studies. The new
philosophy of experimental science, applied by enthusiastic and
imaginative men, was giving a wealth of new results. These men
were beginning to work together and organize scientific societies in

Italy, France, and England. One of the most famous is the Royal

Society of London for Improving Natural Knowledge, which was
founded in 1662. Through these societies the scientific experi-

menters exchanged information, debated new ideas, argued against

the opponents of the new experimental activities, published

technical papers, and sometimes quarreled heatedly. Each society

sought public support for its work and published studies in widely

read scientific journals. Through the societies, scientific activities

were becoming well-defined, strong, and international.

This development of scientific activities was part of the general

cultural, political, and economic changes occurring in the 1500's

and 1600's (see the time chart on p. 84). Craftsmen and men of

wealth and leisure became involved in scientific studies. Some
sought the improvement of technological methods and products.

Others found the study of nature through experiment a new and

exciting hobby. But the availability of money and time, the growing

interest in science, and the creation of organizations are not

enough to explain the growing success of scientific studies.

Historians agree that this rapid growth of science depended upon
able men, well-formulated problems, and good experimental and

mathematical tools.

Some of the important scientists who lived between 1600 and

1750 are shown in the time chart for the Age of Newton. The list

includes amateurs as well as university professors.
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The forms "1500's" and "16th

century" are used interchangeably

in referring to the time period

roughly between 1500 and 1600.
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Well-formulated problems were numerous in the writings of

Galileo and Kepler. Their studies showed how useful mathematics
could be when used together with experimental observation.

Furthermore, their works raised exciting new questions. For
example, what forces act on the planets to explain the paths

actually observed? And why do objects fall as they do at the earth's

surface?

Good experimental and mathematical tools were being created.

With mathematics being applied to physics, studies in each field

stimulated developments in the other. Similarly, the instrument-

maker and the scientist aided each other.

Another factor of great importance was the rapid accumulation
of scientific knowledge itself. From the time of Galileo, repeatable

experiments reported in books and journals were woven into

testable theories and were available for study, modification, and
application. Each study could build on those done previously.

Newton, who lived in this new scientific age, is the central person

in this chapter. However, before we follow Newton's work, we must
recall that in science, as in any other field, many men made useful

contributions. The whole structure of science depends not only

upon those whom we recognize as geniuses, but also upon many
lesser-known men. As Lord Rutherford, one of the founders of

modern atomic theory, said:

It is not in the nature of things for any one man to make
a sudden violent discovery; science goes step by step, and

Newton entered Trinity College. Cam-
bridge University, in 1661 at the age
of eighteen. He was doing experi-

ments and teaching while still a stu-

dent. This early engraving shows the

quiet student wearing a wig and heavy

academic robes.

This drawing of the reflecting tele-

scope he invented was done by

Newton while he was still a student.
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every man depends upon the work of his predecessors. . . .

Scientists are not dependent on the ideas of a single man,
but on the combined wisdom of thousands of men.

To tell the story properly, we should trace fully each man's

dependence upon those who worked before him, the influences of

his contemporaries, and his influence upon his successors. While

this would be interesting and rewarding, within the space

available to us we can only briefly hint at these relationships.

Isaac Newton was bom on Christmas Day, 1642, in the small

English village of Woolsthorpe in Lincolnshire. He was a quiet

farm boy, who, like young Galileo, loved to build mechanical

gadgets and seemed to have a liking for mathematics. With

financial help from an uncle he went to Trinity College of

Cambridge University in 1661. There he enrolled in the study of

mathematics (perhaps as applied to astrology) and was an

enthusiastic and successful student. In 1665 the Black Plague,

which swept through England, caused the college to be closed, and
Newton went home to Woolsthorpe. There, by the time he was
twenty-four, he had made spectacular discoveries in mathematics

(the binomial theorem and diff'erential calculus), in optics (theory

of colors), and in mechanics. During his isolation. Newton had

formulated a clear concept of the first two laws of motion, the law

of gravitational attraction, and the equation for centripetal

acceleration. However, he did not announce the centripetal

acceleration equation until many years after Huygens' equivalent

statement.

This must have been the time of the famous and disputed fall of

the apple. One of the records of the apple story is in a biography of

Newton written in 1752 by his friend, William Stukeley. In it we
read that on a particular occasion Stukeley was having tea with

Newton; they were sitting under some apple trees in a garden, and
Newton recalled that:

he was just in the same situation, as when formerly, the

notion of gravitation came into his mind. It was occasion'd

by the fall of an apple, as he sat in a contemplative mood.
Why should that apple always descend perpendicularly

to the ground, thought he to himself. Why should it not go

sideways or upwards, but constantly to the earth's centre?

The main emphasis in this story should probably be placed on the

contemplative mood and not on the apple. Moreover, it fits again

the pattern we have seen before: a great puzzle (here, that of the

forces acting on planets) begins to be solved when a clear-thinking

person contemplates a long-known phenomenon (such as the fall

of objects on earth). Where others had seen no relationship,

Newton did. Refering to the plague years Newton once wrote,

I began to think of gravity extending to the orb of the

moon, and . . . from Kepler's rule [third law, law of
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periods] ... I deduced that the forces which keep the

Planets in their orbs must be reciprocally as the squares

of their distances from the centers about which they

revolve: and thereby compared the force requisite to keep

the moon in her orb with the force of gravity at the

surface of the earth, and found them to answer pretty

nearly. All this was in the two plague years of 1665 and

1666, for in those days I was in the prime of my age for

invention, and minded mathematics and philosophy more
than at anv time since.

Soon after Newton's return to Cambridge, he was chosen to

follow his former teacher as professor of mathematics. He taught at

the university and contributed papers to the Royal Society. At first,

his contributions were mainly on optics. His Theory of Light and

Colors, finally published in 1672, was the occasion of so long and

bitter a controversy with certain other scientists that the

introspective and complex man resolved never to publish anything

more.

In 1684 Newton's devoted friend Halley, a noted astronomer,

came to ask his advice in a controversy with Wren and Hooke about

the force that would have to act on a body to cause it to move along

an ellipse in accord with Kepler's laws. Halley was pleasantly

surprised to learn that Newton had already derived the exact

solution to this problem ("and much other matter"). Halley then

persuaded his friend to publish these studies that solved one of the

most debated and interesting scientific problems of the time. To

encourage Newton, Halley became responsible for all the costs of

publication. Less than two years later, after incredible labors.

Newton had the Principia ready for the printer. Publication of the

Principia in 1687 quickly estabhshed Newton as one of the greatest

thinkers in history.

Several years afterward. Newton had a nervous breakdown. He

recovered, but from then until his death, thirty-five years later, he

made no major scientific discoveries. He rounded out earlier studies

on heat and optics and turned more and more to writing on

theology. During those years he received many honors. In 1699 he

was appointed Warden of the Mint and subsequently its Master,

partly because of his great interest in and knowledge about the

chemistry of metals. In that office he helped to re-establish the

value of British coins, in which lead and copper were being

included in place of silver and gold. In 1689 and 1701 he represented

Cambridge University in Parhament, and he was knighted in 1705

by Queen Anne. He was president of the Royal Society from 1703

to his death in 1727. He was buried in Westminster Abbey.
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Title page of Newton's Principia

mathematica. Because the Royal So-

ciety sponsored the book, the title

page includes the name of the So-

ciety's president, Samuel Pepys, fa-

mous for his diary, which describes

life during the seventeenth century.

8.2 Newton's Principia

In the original preface to Newton's Principia we find a clear

outline of the book:
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These rules are stated by Newton

at the beginning of Book ill of the

Principia.

Since the ancients (as we are told by Pappus)

esteemed the science of mechanics of greatest importance

in the investigation of natural things, and the modems,

rejecting substantial forms and occult qualities, have

endeavored to subject the phenomena of nature to the

laws of mathematics, I have in this treatise cultivated

mathematics as far as it relates to philosophy [we would

say 'physical science'] ... for the whole burden of

philosophy seems to consist in this—from the phenomena

of motions to investigate [induce] the forces of nature,

and then from these forces to demonstrate [deduce] the

other phenomena, and to this end the general propositions

in the first and second Books are directed. In the third

Book I give an example of this in the explication of the

system of the World; for by the propositions mathe-

matically demonstrated in the former Books, in the third

I derive from the celestial phenomena the forces of

gravity with which bodies tend to the sun and the several

planets. Then from these forces, by other propositions

which are also mathematical, I deduce the motions of

the planets, the comets, the moon, and the sea [tides] ....

The work begins with definitions—mass, momentum, inertia,

force. Next come the three laws of motion and the principles of

addition for forces and velocities (discussed in Unit 1). Newton

also Included an equally important and remarkable passage

on "Rules of Reasoning in Philosophy." The four rules, or

assumptions, reflect his profound faith in the uniformity of all

nature. They were intended to guide scientists in making hypotheses,

and also, we might say, to lay his philosophical cards on the table.

These rules which had their roots in ancient Greece, are still useful.

The first has been called a Principle of Parsimony, the second and

third. Principles of Unity. The fourth expresses a faith needed for

us to use the process of logic.

In a brief form, and using some modern language, Newton's

rules are:

1. "Nature does nothing ... in vain, and more is in vain

when less will serve." Nature is essentially simple;

therefore we ought not to introduce more hypotheses than

are sufficient and necessary for the explanation of

observed facts. This fundamental faith of all scientists is

nearly a paraphrase of Galileo's "Nature . . . does not that

by many things, which may be done by few." Galileo in

turn was reflecting an opinion of Aristotle. Thus, the

belief in simplicity has a long history.

2. "Therefore to the same natural eff"ects we must, as far

as possible, assign the same causes. As to respiration in a

man and in a beast; the descent of stones in Europe and

in America; . . . the reflection of light in the earth, and

in the planets."

3. Properties common to all those bodies within reach of

our experiments are to be assumed (even if only

tentatively) to apply to all bodies in general. For example,
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since all physical objects known to experimenters had
always been found to have mass, this rule would guide
Newton to propose that every object has mass (even

those beyond our reach, in the celestial region).

4. In "experimental philosophy," hypotheses or

generalizations which are based on experience are to be

accepted as "accurately or very nearly true, notwith-

standing any contrary hypotheses that may be imagined"
until we have additional evidence by which our
hypotheses may be made more accurate or revised.

The Principia was an extraordinary document. Its three main
sections contained a wealth of mathematical and physical

discoveries. But overshadowing everything else in the book is the

theory of universal gravitation, with the proofs and arguments

leading to it. Newton uses a form of argument patterned after that

of Euclid—the type of proofs you encountered in studying geometry.

Because the style of detailed mathematical steps used in the

Principia is no longer so familiar, many of the steps given above

have been restated in modern terms.

The central idea of universal gravitation can be simply stated:

every object in the universe attracts every other object.

Moreover, the amount of attraction depends in a simple way on the

masses of the objects and the distance between them.

This was Newton's great synthesis, boldly bringing together the

terrestrial laws of force and motion and the astronomical laws of

motion. Gravitation is a universal force that applies to the earth

and apples, to the sun and the planets, and to all other

bodies (such as comets, moving in the solar system). Heaven and
Earth were united in one grand system dominated by the Law of

Universal Gravitation. The general astonishment and awe were

reflected in the words of the English poet Alexander Pope:

Notice that Newton's assumption
denies the distinction between
terrestrial and celestial matter.

You should restate these rules in

your own words before going on to

the next section. (A good topic for

an essay would be whether
Newton's rules of reasoning are

applicable outside of science.)

Nature and Nature's laws lay hid in night:

God said. Let Newton be! and all was light.

As you will find by inspection, the Principia, written in Latin,

was filled with long, geometrical arguments and was difficult to

read. Happily, gifted popularizers wrote summaries that allowed a

wide circle of readers to learn of Newton's arguments and

conclusions. One of the most widely read of these popular books was
published in 1736 by the French philosopher and reformer Voltaire.

Readers of these books must have been excited and perhaps

puzzled by the new approach and assumptions. From ancient

Greece until well after Copernicus, the ideas of natural place and

natural motion had been used to explain the general position and

movements of the planets. From the time of the Greeks it was
widely believed that the planets moved in their orbits because that

was their "natural motion. " However, to Newton the natural motion

of a body was at a uniform rate along a straight line. Motion

in a curve was evidence that a net force was continuously
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accelerating the planets away from their natural motion along

straight lines. Yet the force acting on the planets was entirely

natural, and acted between all bodies in heaven and on the earth.

Furthermore, it was the same force that caused bodies on the earth

to fall. What a reversal of the assumptions about what was

"natural"!

8.3 The inverse-square law of planetary force

Newton believed that the natural path of a planet was a straight

line and that it was forced into a curved path by the influence of

the sun. He was able to show that Kepler's law of areas could be

true if. and only if, forces exerted on the planets were always

directed toward a single point. (Details of his argument for this

"central" force are given on the special pages. Motion under a

central force.) He showed also that the single point was the

location of the sun. The law of areas will be satisfied no matter

what the magnitude of the force is, as long as it is always directed

to the same point. So it was still necessary to show that a central

gravitational force would cause the precise relationship observed

between orbital radius and period. But how great was the

gravitational force, and how did it differ for different planets?

Newton proved that the centripetal accelerations of the six

known planets toward the sun decreased inversely as the square

of the planets' average distances from the sun. The proof for

circular orbits is very short. The expression for centripetal

acceleration a^. of a body moving uniformly in a circular path, in

terms of the radius R and the period T. is

47r-R
flc
—

jr~

(We derived this expression in Chapter 4.) As Kepler claimed in his

law of periods, there is a definite relation between the orbital

periods of the planets and their average distances from the sun:

T'^/Rav'' = constant

If we use the symbol k for the constant, we can write

T' = kR.,J

For circular orbits, i?,, is just R. Substituting kR' for T- in the

centripetal force equation gives

_ 4tt-R _ 4tt'-

^'~
kR' ~kR-

Since 4Tr^lk is a constant, we can write simply

1

a '^ —

This conclusion follows necessarily from Kepler's law of periods

and the definition of acceleration. If Newton's second law F ^ a
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holds for planets as well as for bodies on earth, then there must be

a centripetal force F^ acting on a planet, and it must decrease in

proportion to the square of the distance of the planet from the sun:

F ^ a holds for planets as well as for bodies on earth, then there

must be a centripetal force F^. acting on a planet, and it must

decrease in proportion to the square of the distance of the planet

from the sun:

Newton showed that the same result holds for ellipses—indeed

that any object moving in an orbit, that is a conic section (circle,

ellipse, parabola, or hyperbola), around a center of force is being

acted upon by a centripetal force that varies inversely with the

square of the distance from the center of force.

Newton had still more evidence from the telescopic observations

of Jupiter's satellites and Saturn's satellites. The satellites of

Jupiter obeyed Kepler's law of areas around Jupiter as a center, and

the satellites of Saturn obeyed it around Saturn as a center. For

Jupiter's satellites. Kepler's law of periods T- R^ = constant held,

but the value of the constant was different from that for the

planets around the sun. It held also for Saturn's satellites, but with

still a different constant. Therefore. Jupiter's satellites were acted

on by a central force directed toward Jupiter, and the force decreased

with the square of the distance from Jupiter and similarly for

Saturn's satellites and Saturn. So Newton was able to show that the

observed interactions of astronomical bodies could be accounted

for by a "1/R-" attractive central force.

Q1 What can be proved from the fact that the planets sweep

out equal areas with respect to the sun in equal times?

Q2 With what relationship can T^lRay^ ^constant be combined

to prove that the gravitational attraction varies as 1/R-?

Q3 What simplifying assumption was made in the derivation

given in this section?

Q4 Did Newton limit his own derivation by the same

assumption?

In Newton's time, four of Jupiter's

satellites and four of Saturn's

satellites had been observed.

SG 8.2

8.4 Law of universal gravitation

Subject to further evidences, we shall now accept that a central

force is holding the planets in their orbits. Furthermore, the

strength of this central force changes inversely with the square of

the distance from the sun. This strongly suggests that the sun is

the source of the force—but it does not necessarily require this

conclusion. Newton's results so far include no physical mechanism.

The French philosopher Descartes (1596-1650) had proposed a

theory in which all space was filled with a subtle, invisible fluid
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How will a moving body respond to a

central force? In order to follow Newton's

analysis, we shall need to remennber that

the area of a triangle equals t base x

altitude. Any of the three sides can be chosen

as the base, and the altitude is the

perpendicular distance to the opposite

corner.

Suppose that a body was initially

passing some point P, already moving at

uniform speed v along the straight line

through PQ. (See Fig. A below.) If it goes on

(A^

with no force acting, then in equal intervals

of time Af it will continue to move equal

distances, PQ, QR, RS, etc.

How will its motion appear to an

observer at some point O? Consider the

triangles OPQ and OQR in Fig. B below.

The triangles have equal bases, PQ = QR = RS,

and also equal altitudes, ON for all three.

Therefore the triangles OPQ and OQR have

equal areas. And therefore the line drawn from

an observer at point O to the body moving

at a uniform speed in a straight line PQR will

sweep over equal areas in equal times.

So, strange as it may seem at first,

Kepler's law of areas applies even to a body

on which there is no net force, and which

therefore is moving uniformly along a straight

line.

How will the motion of the object we
discussed in Fig. A be changed if, while

passing through point 0, it is exposed to a

brief force, such as a blow, directed toward

point O? (Refer to Fig. D below.)

(D)

First consider what happens if a body

initially at rest at point Q were exposed to

the same blow. The body would be accelerated

during the blow toward O. It would then

continue to move toward O at constant speed,

and after some definite time interval At, it will

have moved a definite distance to a new point

Q'. (See Fig. E on the next page.)



Now consider the effect of the blow on

the object that was initially moving toward

point R. The resultant motion is the combination

of these two components—to point R'. (See

Fig. F below.)

Earlier we found that the areas of the

triangles OPQ and OQR were equal. Is the

area of the triangle OQR' the same? Both

triangles OQR and OQR' have a common base,

00. Also, the altitudes of both triangles are

the perpendicular distance from line 00 to

line RR'. (See Fig. G.) Therefore, the areas of

triangles OQR and OQR' are equal.

If now another blow directed toward

were given at point R', the body would move

o (G)

to some point S", as indicated in Fig. H below.

By a similar analysis you can find that the

areas of triangles OR'S" and OR'S' are equal.

Their areas also equal the area of triangle

OPQ.

In this geometrical argument we have

always applied the force toward the same

point, O. A force always directed toward a

single point is called a central force. (Notice

that the proof has nothing to do with the

magnitude of the force, or how it changes

with distance from O.) Also, we have applied

the force at equal intervals Af. If each time

interval Af were made vanishingly small, so

that the force would appear to be applied

continuously, the argument would still hold.

We then have an important conclusion: If a

body Is acted upon by any central force, it will

move in accordance with Kepler's law of areas.
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SG 8.3

To us, who have heard about

gravity from our early school years,

this may not seem to have been a

particularly clever idea. But in

Newton's time, after centuries of

believing celestial events to be

completely different from earthly

events, it was the mental leap of a

genius. Newton had already

assumed the planets to be subject

to the earth's laws of motion when
he derived a 1/R- force law using

the formula for a,.. But it was a still

greater step to guess that the force

on planets was not some special

celestial force, but nothing other

than familiar old weight of everyday

objects.

which carried the planets around the sun in a huge whirlpool-hke

motion. This was a useful idea, and at the time it was widely

accepted. However, Newton was able to prove by an elaborate and

precise argument that this mechanism could not account for the

details of planetary motion summarized in Kepler's laws.

Kepler had made a different suggestion some years earlier. He
proposed that some magnetic force reached out from the sun to

keep the planets moving. His model was inadequate, but at least

he was the first to regard the sun as the controlling mechanical

agent behind planetary motion. And so the problem remained: was
the sun actually the source of the force? If so. on what characteristics

of the sun or the planets did the amount of the force depend?

As you read in Sec. 8.1, Newton had begun to think about the

planetary force during the years at home in the time of the Black

Plague. The idea came to him — perhaps while watching an apple

fall and perhaps not — that the planetary force was the same kind of

force that pulled objects down to the earth near its surface. He first

tried this idea on the earth's attraction for the moon. From the data

available to him, Newton knew that the distance between the

center of the earth and the center of the moon was nearly sixty

times the radius of the earth. If the attractive force varied as 1/R-,

the gravitational acceleration the earth exerts on matter at the

distance of the moon should be only 1/60^ (or 1/3600) of that exerted

upon matter (say, an apple) at the surface of the earth. From
observations of falling bodies it was long known that the

gravitational acceleration at the earth's surface was about 9.80

meters per second per second. Therefore, the moon should fall at

1/3600 of that acceleration value: (9.80/3600) meters per second per

second, or 2.72 x 10~^ m/sec^ Does it?

Newton started from the knowledge that the orbital period of the

moon was very nearly 277 days. The centripetal acceleration a^

of a body moving uniformly with period T in a circle or radius R
(developed in Sec. 4.6 of Unit 1) is a^ = 47r^RIT'-. When we put in

values for the known quantities R and T (in meters and seconds)

for the moon, and do the arithmetic, we find that the observed

acceleration is:

a, = 2.74 X 10-'' m/sec-

This is a very good agreement. From the values available to

Newton, which were close to these, he concluded that he had

. . . compared the force requisite to keep the moon in her
orbit with the force of gravity at the surface of the earth,

and found them to answer pretty nearly.

Therefore, the force by which the moon is retained in

its orbit becomes, at the very surface of the earth, equal

to the force of gravity which we observe in heavy bodies

there. And, therefore, (by Rules of Reasoning 1 and 2) the

force by which the moon is retained in its orbit is that

very same force which we commonly call gravity ....
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This was really a triumph: the same gravity that brings little

apples down from the tree also holds the moon in its orbit. This

assertion is the first portion of what is known as the Law of

Universal Gravitation and says: every object in the universe attracts

every other object with a gravitational force. If this is so, there

must be gravitational forces not only between a rock and the earth,

but also between the earth and the moon, between Jupiter and its

satellites — and between the sun and each of the planets.

But Newton did not stop by saying only that there is a

gravitational force between the planets and the sun. He further

claimed that the force is just exactly the right size to account

completely for the motion of every planet. No other mechanism is

needed — no whirlpools in invisible fluids, no magnetic forces.

Gravitation, and gravitation alone, underlies the dynamics of the

heavens.

Because this concept is so commonplace to us. we are in

danger of passing it by without really understanding what it was
that Newton was claiming. First, he proposed a truly universal

physical law. Guided by his Rules of Reasoning, which allowed him
to extend to the whole universe what he found true for its observable

Sun

\
Earth

The sun, moon, and earth each

pull on the other. The forces are in

matched pairs, in agreement with

Newton's third law of motion. As the

moon moves through space, the gravi-

tational attraction of the earth causes

the moon to fall " toward the earth.

The continuous combination of its

straight line inertial motion and its

"fall
" produce the curved orbit.

A drawing by which Descartes (1596-

1650) illustrated his theory of space

being filled with whirlpools of matter

that drive the planets along their

orbits.
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parts, he excluded no object in the universe from the effect of

gravity.

Less than a century before, it would have been fooHsh and even

dangerous to suggest that terrestrial laws and forces were the same
as those that regulated the whole universe. But Kepler and Galileo

had begun the unification of the physics of the heavens and earth

which Newton was able to carry to its conclusion. This extension of

the mechanics of terrestrial objects to explain also the motion of

celestial bodies is called the Newtonian synthesis.

A second feature of Newton's claim, that the orbit of a planet

is determined by the gravitational attraction between it and the

sun, was to move physics away from geometrical explanations and

toward physical ones. Most philosophers and scientists before

Newton had been occupied mainly with the question "What are the

motions?" Newton shifted this to ask, "What force explains the

motions?" In both the Ptolemaic system and Copernicus" system

the planets moved about points in space rather than about objects.

and they moved as they did owing to their "nature " or geometrical

shape, not because forces acted on them. Newton, on the other

hand, spoke not of points, but of things, of objects, of physical

bodies. Without the gravitational attraction to the sun to deflect

them continuously from straight-line paths, the planets would fly

out into the darkness of space. Thus, it was the physical sun which

was important, rather than the point at which the sun happened to

be located.

Newton's synthesis centered on the idea of gravitational force.

In calling it a force of gravity. Newton knew, however, that he was
not explaining why it should exist. When you hold a stone above the

surface of the earth and release it, it will accelerate to the ground.

Our laws of motion tell us that there must be a force acting on the

stone accelerating it toward the earth. We know the direction of

the force, and we can find the magnitude of the force by multiplying

the mass of the stone by the acceleration. We can give it a name:
weight, or gravitational attraction to the earth. But why there is

such an interaction between bodies remains a puzzle. It is still

an important problem in physics today.

Q5 What idea came to Newton while he was thinking about

falling objects and the moon's acceleration?

Q6 Kepler, too, believed that the sun exerted forces on the

planets. How did his view differ from Newton's?

Q7 The central idea of Chapter 8 is the "Newtonian

synthesis." What did Newton bring together?

8.5 Newton and hypotheses

Newton's claim that there is a mutual force (gravitational

interaction) between a planet and the sun raised a new question.
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How can a planet and the sun act upon each other at enormous

distances without any visible connections between them? On earth

you can exert a force on an object by pushing it or pulling it. We are

not troubled when we see a cloud or a balloon drifting across the

sky, even though nothing seems to be touching it; although air is

invisible, we know that it is actually a material substance which

we can feel when it blows against us. Objects falling to the earth

and iron objects being attracted to a magnet are more troublesome

examples, but the distances are small. However, the earth is over

90 million miles, and Saturn more than 2 billion miles, from the

sun. How could there possibly be any physical contact between such

distant objects? How can we account for such "action at a

distance"?

There were in Newton's time, and for a long time afterward, a

series of suggestions to explain how mechanical forces could be

exerted at such distances. Most of these involved imagining space

to be filled with some invisible substance that would transmit the

force. But, at least in public. Newton refused to speculate on

possible mechanisms, because he could find no way to devise an

experiment to test his private guess that an ether was involved. As

he said in a famous passage in the General Scholium which he

added in his second edition of the Principia (1713):

. . . Hitherto I have not been able to discover the cause of

those properties of gravity from phenomena, and I frame

no hypotheses; for whatever is not deduced from the

phenomena is to be called an hypothesis; and hypotheses,

whether metaphysical or physical, whether of occult

qualities or mechanical, have no place in experimental

philosophy .... And to us it is enough that gravity does

really exist, and act according to the laws which we have

explained, and abundantly serves to account for all the

motions of the celestial bodies, and of our sea.

We quoted Newton at length because one particular phrase is

frequently misquoted and misinterpreted. The original Latin reads:

hypotheses nonfingo. This means "I frame no hypotheses" or "I do

not feign hypotheses," in the sense of "I do not make false

hypotheses." We know that Newton did make numerous hypotheses

in his many publications, and his letters to friends contain many

other speculations which he did not publish. So his stern disavowal

of hypotheses in the General Scholium must be properly interpreted.

The lesson to be drawn (and it is equally useful today) is that there

are two main kinds of hypotheses or assumptions:

(1) The most frequently encountered kind is a proposal of some

hidden mechanism to explain observations. For example, after

looking at the moving hands of a watch, we can quickly invent or

imagine some arrangement of gears and springs that causes the

motion. This would be a hypothesis that is directly or indirectly

testable, at least in principle, by reference to phenomena. Our

hypothesis about the watch, for example, can be tested by opening

the watch or by x-raying it. Newton felt that the hypothesis of an
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invisible fluid that transmitted gravitational force, the so-called

"ether," has directly testable consequences quite apart from what

it was first invented to account for. Many experiments had been

tried to "catch" the ether; to see, for example, if any wind, or

pressure, or friction due to the ether remained in a bottle from

which air had been evacuated. Nothing of this sort worked (nor has

it since). So Newton wisely refrained from making a hypothesis that

he felt should be testable, but that was not at that time.

(2) A quite different type of assumption, often made in published

scientific work, both of Newton and of scientists to this day, is a

hypothesis of the sort which everyone knows is not directly testable,

but which is necessary nevertheless jwst to get started on one's

work. An example is such a statement as "nature is simple" or any

other of Newton's Four Rules of Reasoning. The commitment to

either the heliocentric system or the geocentric system was of the

same kind, since all "the phenomena" could be equally accommo-
dated in either. In choosing the heliocentric system over its rival, in

making the hypothesis that the sun is at the center of the universe,

Copernicus, Kepler, and Galileo were not proposing a directly

testable hypothesis; rather, they were adopting a point of view

which seemed to them more convincing, more simple, and as

Copernicus put it, more "pleasing to the mind." It was this kind of

hypothesis that Newton used without apology in his published work.

Every scientist's work involves both kinds of hypothesis. In

addition — and quite contrary to the commonly held stereotype of a

scientist — as a person who uses only deliberate, logical, objective

thoughts — the scientist feels quite free to consider any guess,

speculation, or hunch, whether it is yet provable or not, in the hope

it might be fruitful. (Sometimes these are dignified by the phrase

"working hypotheses.") But. like Newton, most scientists today do

not like to publish something which is still only an unproven hunch.

Q8 Did Newton explain the gravitational attraction of all

bodies?

Q9 What was the popular type of explanation for "action at a

distance"?

Q10 Why didn't Newton use this type of explanation?

Q11 What are two main types of hypotheses used in science?

8.6 The magnitude of planetary force

The general statement that gravitational forces exist universally

must now be turned into a quantitative law that gives an

expression for both the magnitude and direction of the forces any

two objects exert on each other. It was not enough to assert that

a mutual gravitational attraction exists between the sun and say,

Jupiter. To be convincing. Newton had to specify what quantitative

factors determine the magnitudes of those mutual forces, and how
they could be measured, either directly or indirectly.
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The first problem was defining precisely the distance R- should

it, for example, be taken as the distance between the surface of

the earth and the surface of the moon? For many astronomical

problems, the sizes of the interacting bodies are extremely small

compared to the distances between them; for these cases the

distance between the surfaces is practically the same as the

distance between the centers, or any other part of the bodies. (For

Newton's original case of the earth and the moon, the distance

between centers was about 2% greater than the distance between
surfaces.) Some historians believe that Newton's uncertainty about

a rigorous answer to this problem led him to drop the study for

many years.

Eventually Newton was able to prove that the gravitational

force exerted by a spherical body was the same as if all its mass
were concentrated at its center. Conversely, the gravitational force

exerted on a spherical body by another body is the same as would
be exerted on it if all its mass were concentrated at its center.

Therefore, the distance R in the Law of Gravitation is the distance

between centers.

This was a very critical discovery. It allows us to consider the

gravitational attraction between spherical bodies as though their

masses were concentrated at single points; in thought we can

replace the objects by mass-points.

If we believe that Newton's third law (action equals reaction) is

applicable universally, we must conclude that the amount of force

the sun exerts on the planet is exactly equal to the amount of force

the planet exerts on the sun. The claim that the forces are equal

and opposite, even between a very large mass and a small mass,

may seem contrary to common sense. But the equality is easy to

prove if we assume only that Newton's third law holds between

small chunks of matter: for example, that a 1-kg chunk of Jupiter

pulls on a 1-kg chunk of the sun as much as it is pulled by it.

Consider for example, the attraction between Jupiter and the sun,

whose mass is about 1000 times greater than Jupiter's. As the

figure in the right margin indicates, we could consider the sun as a

globe containing 1000 Jupiters. Let us call one unit of force the

force that two Jupiter-sized masses exert on each other when
separated by the radius of Jupiter's orbit. Then Jupiter pulls on the

sun (a globe of 1000 Jupiters) with a total force of 1000 units.

Because each of the 1000 parts of the sun pulls on the planet

Jupiter with one unit, the total pull of the sun on Jupiter is also

1000 units. Each part of the massive sun not only pulls on the

planet, but is also pulled upon by the planet. The more mass there

is to attract, the more there is to be attracted. (But although the

mutual attractive forces are equal in magnitude, the resulting

accelerations are not. Jupiter pulls on the sun as hard as the sun

pulls on Jupiter, but the sun responds to the pull with only 1/1000

of the acceleration -its inertia, remember, is 1000 times Jupiter's.)

In Sec. 3.8 of Unit 1, we developed an explanation for why
bodies of different mass fall with the same acceleration near the

PLa-ne-t-

The gravitational force on a planet

owing to the sun's pull is equal and

opposite to the gravitational force on

the sun owing to the planet.

Sun - lOOO Jopit-ers

UlilllUI
Jujoite-r joulLs or\ lOOO

pa-cts o-f t-hc. sun

\000 parts of tA^e. ^>on

pull on jL-ipit-cr
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earth's surface: the greater the inertia of a body, the more strongly

it is acted upon by gravity. Or, more precisely: near the earth's

surface, the gravitational force on a body is directly proportional to

its mass. Like Newton, let us generalize this earthly effect to all

gravitation and assume that the gravitational force exerted on a

planet by the sun is proportional to the mass of the planet.

Similarly, the gravitational force exerted on the sun by the planet

is proportional to the mass of the sun. Since the forces the sun and

a planet exert on each other are equal in magnitude, it follows that

the magnitude of the gravitational force is proportional to the mass
of the sun and to the mass of the planet. That is, the gravitational

attraction between two bodies is proportional to the product of their

SG 8.4 masses. If the mass of either body is tiipled. the force is tripled. If

the masses of both bodies are tripled, the force is increased by a

factor of 9. If we use the symbol F^^^v for the magnitude of the

forces we can write F„av oc Wpianet^sun-

Thus far we have concluded that the amount of attraction

between the sun and a planet will be proportional to the product of

SG 8.5 the masses. Earlier we concluded that the attraction also depends

universally on the square of the distance between the bodies. Once
again we combine the two proportionalities to find one force law

that now includes masses as well as distance:

J-,
"^planet'^sun

i' grav
°^

JJ2

Such an expression of proportionality can be written as an

equation by introducing a constant to allow for the units of

measurement used. Using G for the proportionality constant, we can

write the law of planetary forces as:

F-G -

This equation is a bold assertion that the force between the sun

and any planet depends only upon the masses of the sun and planet

SG 8.6 and the distance between them. This equation seems unbelievably

simple when we remember the observed complexity of the planetary

motions. Yet every one of Kepler's empirical Laws of Planetary

Motion, as we shall see, is consistent with this relation. More than

that, Kepler's empirical laws can be derived from this force law

together with Newton's second law of motion. But more important

still, the force law allowed the calculation of details of planetary

motion that were not possible using only Kepler's laws.

Newton's proposal that such a siinple equation describes

completely the forces between the sun and planets was not the final

step. He believed that there was nothing unique or special about

the mutual force between the sun and planets, or the earth and

apples: so that an identical relation should apply universally to any
two bodies separated by a distance that is large compared to the

dimensions of the two bodies — even to two atoms or two stars. That

is. he proposed that we can write a geiieral Law of Universal

Gravitation:
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where m, and m.^ are the masses of the bodies and R is the distance

between their centers. The numerical constant G, called the

constant of universal gravitation, Newton assumed to be the

same for all gravitational interaction, whether between two grains

of sand, two members of a solar system, or two stars in different

parts of the sky. As we shall see. the successes made possible by this

simple relationship have been so great that we have come to

assume that this equation applies everywhere and at all times, past,

present, and future.

Even before we gather more supporting evidence, the sweeping

majesty of Newton's theory of universal gravitation commands our

wonder and admiration. It also leads to the question of how such

a bold universal theory can be proved. There is no complete proof,

of course, for that would mean examining every interaction

between all bodies in the universe! But the greater the variety of

single tests we make, the greater will be our belief in the

correctness of the theory.

SG 8.7

SG 8.8

Q12 According to Newton's law of action and reaction, the

earth should experience a force and accelerate toward a falling

stone.

(a) How does the force on the earth compare with the force on

the stone?

(b) How does the earth's acceleration compare with the stone's

acceleration?

Q13 The top diagram at the right

represents two bodies of equal mass which

exert gravitational forces of magnitude F

on one another. What will be the magnitude

of the gravitational attractions in each

case?

•?

• -?

?•

^

Q14 A, B, C, and D are bodies with

equal masses. How do the forces of

attraction that A and B exert on each other

compare with the force that C and D exert

on each other?

(a) F^B = 3 X FcD

(b) Fab = 4 X Fc.„

(c) Fab = 9 X Fen

(d) F.,B = 16 X F<.o

V
U-

•••

© ®
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This photograph, taken from an un-

manned capsule orbiting the moon,
shows some latter-day evidence that

the laws of mechanics for heavenly

bodies are the same as for the earth:

the trails of two huge boulders that

rolled 1000 ft down a lunar slope.

8.7 Planetary motion and the gravitational constant

According to Newton's mechanics, if a planet of mass m„ is

moving along an orbit of radius R and period T, there is continually

a centripetal acceleration Oc = 4rr-RIT-. Therefore, there must
continually be a central force F,. = m^a^. == ^Tr-RmJT'^. If we identify

gravity as the central force, then

•* grav '
" c

or ^ R'

By simplifying this equation and rean-anging some terms, we
can get an expression for G:

G =
Air (R

m^,„AT-

We know from Kepler that for the planets' motion around the sun,

the ratio R VT^ is a constant; 47r'- is a constant also. If we assume
that the mass of the sun is constant, then all the factors on the

right of the equation for G are constant. So G must be a constant

for the gravitational effect of the sun on the planets. By similar

reasoning the value of G must be a constant for the effect of Jupiter

on its moons — and for the effect of Saturn on its moons — and for an

apple and the moon above the earth. But is it the same value of G
for all these cases?

It is impossible to prove that G is the same for the gravitational

interaction of all bodies. If. however, we assume that G is a

universal constant, we can get some remarkable new information —

the relative masses of the sun and the planets!
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We begin by again equating the centripetal force on the

planets with the gravitational attraction to the sun, but this time we
solve the equation for rrisun-

' grav

G nip TTtsun 4TT^Rmp
fi

477- R-^

GT'

If we write fesun for the constant ratio T'^IR\ we have

4tt^

m. GK

By similar derivation, mjup

TTts

TTlp

477^

'-''^Jupiter

477^

^'^Saturn

477=^

vj/tpnrth

where fejupiter. 'isatum. and feeartn are the known values of the constant

ratios T^/R^ for the satellites of Jupiter, Saturn, and the earth.

To compare Jupiter's mass to the mass of the sun, we have

only to divide the formula for mjupiter by the formula for rrisun

:

477^

Gfejuf

ms. 4772

Gfes

or
^WjUf

ms„n hiw

Similarly, the mass of any two planets can be compared if the

values of T^/R^ are known for them both -that is, if they both have

satellites whose motion has been carefully observed.

These comparisons are based on the assumption that G is a

universal constant. Calculations based on this assumption have led

to consistent results on a wide variety of astronomical data,

including the behavior of a space ship orbiting and landing on the

moon. Results consistent with this assumption were also found

when more difficult calculations were made for the small disturbing

effects that the planets have on each other. There is still no way

of proving G is the same everywhere and always, but it is a

reasonable working assumption until evidence to the contrary

appears.

If the numerical value of G were known, the actual masses of

the earth, Jupiter, Saturn, and the sun could be calculated. G is

defined by the equation F^rav = G rn.mJR-. To find the value of G it

is necessary to know values for all the other variables -that is, to

SG 8.9

Masses Compared to Earth

Earth 1

Saturn 95

Jupiter 318

Sun 333.000
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measure the force F^rav between two measured masses m, and m-,

when they are separated by a measured distance R. Newton knew

this, but in his time there were no instruments sensitive enough to

measure the very tiny force expected between any masses small

enough for experimental use.

Q15 What information can be used to compare the masses of

two planets?

Q16 What additional information is necessary for calculation

of the actual masses?

8.8 The value of G and the actual masses of the planets

Calculation of G from approximate

experimental values:

_^ Mm

_ F ,. R-

Mm
(10 ' N) (0.1 m)

(100 kg) (1 kg)

10" X 10 -

10-
N m/kg^

10 '" N m-/kg-

Nm7kg ' can be expressed as

m 7kg sec-

SG 8.10-8.13

The masses of small solid objects can be found easily enough

from their weights. Measuring the distance between solid objects

of spherical shape is also not a problem. But how is one to measure

the small mutual gravitational force between relatively small

objects in a laboratory, particularly when each is also experiencing

separately a huge gravitational force toward the tremendously

massive earth?

This serious technical problem of measurement was eventually

solved by the English scientist, Henry Cavendish (1731-1810). As

a device for measuring gravitational forces, he employed a torsion

balance in which the gravitational force of attraction between two

pairs of lead spheres twisted the wire holding up one of the pairs.

The twist of the wire could be calibrated by measuring the twist

produced by small known forces. A typical result for a 100 kg

sphere and a 1 kg sphere at a center-to-center distance of 0.1m

would be a force of about one-millionth of a newton! As the

calculations in the margin show, these data lead to a value for G
of about 10"'" (Nm^/kg-). This experiment has been progressively

improved, and the accepted value of G is now:

G = 6.67 X iO->' Nm-/kg-

Evidently gravitation is a weak force which becomes important

only when at least one of the masses is very great. The gravitational

force on a 1-kg mass at the surface of the earth is 9.8 newtons.

(which we know because, if released, it will fall with an acceleration

of 9.8 m/sec.) Substituting 9.8 newtons for F^rav and substituting

the radius of the earth for R. you can calculate the mass of the

earth! (See SG 8.11)

By assuming that the same value for G applies to all

gravitational interaction, we can calculate values for the masses of

bodies from the known values of T"-/fi ' for their satellites. Since

Newton's time, satellites have been discovered around all of the

outer planets except Pluto. The values of their masses, calculated

from m = 4tt-iG x R^jT-, are given in the table on the next page.

Venus and Mercury have no satellites, but values for their masses
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T

Cavendish's original drawing of his apparatus for

determining the value of G. To prevent disturbance from air

currents, he inclosed it in a sealed case. He observed the deflection

of the balance rod from outside w/ith telescopes.

are found by analyzing the slight disturbing effects each has on

other planets. Modem values for the actual masses of the planets

are listed in the margin. Notice that the planets taken together add
up to not much more than 1/ 1000th part of the mass of the solar

system. By far, most of the mass is in the sun, and this of course

accounts for the fact that the sun dominates the motion of the

planets, acting like an almost infinitely massive and fixed object.

In all justice to the facts, we should modify this picture a little.

Newton's third law tells us that for every pull the sun exerts on a

planet the sun itself experiences an equally strong pull in the

opposite direction. Of course the very much greater mass of the sun

keeps its acceleration to a correspondingly smaller value. But this

acceleration is, after all, not exactly zero. Hence, the sun cannot be

really fixed in space even in the heliocentric system, if we accept

Newtonian dynamics, but rather it moves a little about the point

that forms the common center of mass of the sun and the moving

planets that pull on it. This is true for every one of the 9 planets;

and since these generally do not happen to be moving all in one

line, the sun's motion is actually a complex superposition of 9 small

ellipses. Still, unless we are thinking of a solar system in which the

planets are very heavy compared to their sun, such motion of the

sun is not large enough to be of interest to us for most purposes.

Q17 Which of the quantities in the equation F„^v = G mim-JR^

did Cavendish measure?

Q18 Knowing a value for G, what other information can be

used to find the mass of the earth?

Schematic diagram of the device used

by Cavendish for determining the

value of the gravitational constant G.

Large lead balls of masses /W, and M.,

were brought close to small lead balls

of masses m, and m-i. The mutual

gravitational attraction between M,

and m, and between Mo and m.,, caused
the vertical wire to be twisted by a

measurable amount.

Actual M
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Q19 Knowing a value for G, what other information can be

used to find the mass of Saturn?

Q20 The mass of the sun is about 1000 times the mass of

Jupiter. How does the sun's acceleration due to Jupiters attraction

compare with Jupiter's acceleration due to the sun's attraction?

6OR

1/592 -~_j__

l/60'l
J

Tidal Forces.

The earth-moon distance indicated in

the figure is greatly reduced because

of the space limitations.

8.9 Further successes

Newton did not stop with the fairly direct demonstrations we

have described so far. In the Principia he showed that his law of

universal gravitation could account also for more complicated

gravitational interactions, such as the tides of the sea and the

perverse drift of comets across the sky.

The tides: The flooding and ebbing of the tides, so important to

navigators, tradesmen, and explorers through the ages, had

remained a mystery despite the studies of such men as Galileo.

Newton, however, through the application of the law of gravitation,

was able to explain the main features of the ocean tides. These he

found to result from the attraction of the moon and sun upon the

waters of the earth. Each day two high tides normally occur. Also,

twice each month, when the moon, the sun. and the earth are in

line, the tides are significantly higher than average.

Two questions about tidal phenomena demand special attention.

First, why do high tides occur on both sides of the earth, including

the side away from the moon? Second, why does the time of high

tide occur at a location some hours after the location has passed

directly under the moon?

Newton reahzed that the tides result from the difference

between the acceleration (due to the moon and sun) of the whole

solid earth and the acceleration of the fluid waters at the earth's

surface. The moon's distance from the earth's center is 60 earth

radii. On the side of the earth nearer the moon, the distance of the

water from the moon is only 59 radii. On the side of the earth, away

from the moon, the water is 61 earth radii from the moon. The

accelerations are shown in the figure at the left. On the side of the

earth nearer the moon, the acceleration of the water toward the

moon is greater than the acceleration of the earth as a whole -the

net effect is that the water is accelerated away from the earth.

On the side of the earth away from the moon, the acceleration of

the water toward the moon is less than that of the earth as a

whole -the net result is that the earth is accelerated away from the

water.

If you have been to the seashore or examined tide tables, you

know that high tide does not occur when the moon is highest in the

sky, but some hours later. To explain this even qualitatively, we

must remember that on the whole the oceans are not very deep. As

a result, the waters moving in the oceans in response to the moon's

attraction are slowed by friction with the ocean floors, especially in

shallow water, and consequently the time of high tide is delayed.
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In any particular place, the amount of the delay and the height of

the tides depends greatly upon the ease with which the waters can
flow. No general theory can be expected to account for all the

particular details of the tides. Most of the local predictions in the

tide tables are based on empirical rules using the cyclic variations

recorded in the past.

Since there are tides in the seas, you may wonder if there are

tides in the fluid atmosphere and in the earth itself. There are. The
earth is not completely rigid, but bends somewhat like steel. The
tide in the earth is about a foot high. The atmospheric tides are

generally masked by other weather changes. However, at heights of

about a hundred miles, where satellites have been placed in orbit,

the thin atmosphere rises and falls considerably.

Comets: Comets, whose unexpected appearances throughout

antiquity and the Middle Ages had been interpreted as omens of

disaster, were shown by Halley and Newton to be nothing more
than a sort of shiny, cloudy mass that moved around the sun

according to Kepler's laws, just as planets do. They found that

most comets were visible only when closer to the sun than the

distance of Jupiter. Several of the very bright comets were found

to have orbits that took them well inside the orbit of Mercury, to

within a few million miles of the sun, as the figure at the right

indicates. Many of the orbits have eccentricities near 1.0 and are

almost parabolas; these comets have periods of thousands or even

millions of years. Some other faint comets have periods of only five

to ten years.

Unlike the planets, whose orbits are nearly in a single plane,

the planes of comet orbits are tilted at all angles. Yet, like all

members of the solar system, they obey all the laws of dynamics,

including that of universal gravitation.

Edmund Halley applied Newton's concepts of celestial motions

to the motion of bright comets. Among the comets he studied were

those seen in 1531, 1607. and 1682. whose orbits he found to be

ver\' nearly the same. Halley suspected that these might be the

same comet, seen at intervals of about seventy-five years and

moving in a closed orbit. He predicted that it would return in about

1757 — which it did, although Halley did not live to see it. Halley's

comet appeared in 1833 and 1909 and is due to be near the sun

and bright again in 1985.

With the period of this bright comet known, its approximate

dates of appearance could be traced back in history. In the records

found in ancient Indian, Chinese, and Japanese documents, this

comet has been identified at all expected appearances except one

since 240 B.C. That the records of such a celestial event are

incomplete in Europe is a sad commentary upon the level of

interests and culture of Europe during the so-called Dark Ages. One
of the few European records of this comet is the famous Bayeux

tapestry, embroidered with seventy-two scenes of the Norman
Conquest of England in 1066; it shows the comet overhead and the

Comets orbit

Schematic diagram of the orbit of a

comet projected onto the ecliptic

plane; comet orbits are tilted at all

angles.

SG 8.18
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I f.^ i—iU^=4=J^^d^

A scene from the Bayeux tapestry,

which was embroidered about 1070.

The bright comet of 1066 can be seen

at the top of the figure. This comet

was later identified as being Haliey's

comet. At the right, Harold, pretender

to the throne of England, is warned

that the comet is an ill omen. Later

that year at the Battle of Hastings,

Harold was defeated by William the

Conqueror.

SG 8.19

frightened ruler and court cowering below. A major triumph of

Newtonian science was its use to explain that comets, which for

centuries had been fearful events, were regular members of the

solar system.

The scope of the principle of universal gravitation: Newton made

numerous additional applications of his law of universal

gravitation which we cannot consider in detail here. He investigated

the causes of the somewhat irregular motion of the moon and

showed that these causes are explainable by the gravitational

forces acting on the moon. As the moon moves around the earth,

the moon's distance from the sun changes continually. This

changes the resultant force of the earth and sun on the orbiting

moon. Newton also showed that other changes in the moon's

motion occur because the earth is not a perfect sphere, but has an

equatorial diameter twenty-seven miles greater than the diameter

through the poles. Newton commented on the problem of the

moon's motion that "the calculation of this motion is difficult. " Even

so. he obtained predicted values in reasonable agreement with the
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observed values available at that time, and even predicted some
details of the motion which had not been noticed before.

Newton investigated the variations of gravity at different

latitudes on the spinning and bulging earth. From the differences

in the rates at which pendulums swung at different latitudes, he
was able to derive an approximate shape for the earth.

In short, Newton had created a whole new quantitative

approach to the study of astronomical motion. Because some of

his predicted variations had not been observed, improved instru-

ments were built. These were needed anyway to improve the

observations which could now be fitted together under the grand

theory. Numerous new theoretical problems also clamored for

attention. For example, what were the predicted and observed

influences among the planets themselves upon their motions?

Although the planets are small compared to the sun and are very

far apart, their interactions are observable. As precise data have

accumulated, the Newtonian theory has permitted calculations

about the past and future states of the planetary system. For past

or future intervals up to some hundreds of millions of years (beyond

which the extrapolations become too uncertain) the Newtonian

theory tells us that the planetary system has been and will be about

as it is now.

What astonished Newton's contemporaries and increases our

own esteem for him was not only the scope and genius of his work

in mechanics, not only the great originality and the elegance of his

proofs, but the detail in which he developed the implications of

each of his ideas. Having satisfied himself of the correctness of his

principle of universal gravitation, he applied it to a wide range of

terrestrial and celestial problems, with the result that the theory

became more and more widely accepted. Nor has it failed us since

for any of the new problems concerning motion in the solar system;

for example, the motion of every artificial satellite and space probe

has been reliably calculated on the assumption that at every instant

a gravitational force is acting on it according to Newton's law of

universal gravitation. We can well agree with the reply given to

ground control as Apollo 8 returned from man's first trip to the

moon — ground control: "Who's driving up there?" Apollo 8: "I think

Isaac Newton is doing most of the driving right now."

Tiny variations from a 1/R^ centrip-

etal acceleration of satellites in orbit

around the moon have led to a map-
ping of "mascons" on the moon —
usually dense concentrations of mass
under the surface.

Beyond the solar system: We have seen how Newton's laws have

been applied to explain the motions and other observables about

the earth and the entire solar system. But now we turn to a new
and even more grandiose question. Do Newton's laws, which are

so useful within the solar system, also apply at greater distances,

for example among the stars?

Over the years following publication of the Principia, several

sets of observations provided an answer to this important question.

Toward the end of the 1700's, William Herschel, a British musician

turned amateur astronomer, was. with the help of his sister
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Paths of the outer three planets during

1969 (Diagrams reproduced from Sky

and Telescope magazine.)
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The planet Uranus was discovered in

1781 with a reflecting telescope. Dis-

turbances in Uranus' orbit observed

over many years led astronomers to

seek another planet beyond Uranus:

Neptune was observed in 1846 just

where it was expected to be from anal-

ysis of Uranus' orbit disturbance (by

Newtonian mechanics). A detailed

account of the Neptune story appears

in the Project Physics Supplementary

Unit, Discoveries in Physics. Dis-

turbances observed in Neptune's orbit

over many years led astronomers to

seek still another planet. Again the

predictions from Newtonian me-

chanics were successful, and Pluto

(too faint to be seen by eye even in the

best telescopes) was discovered in

1930 with a long time-exposure photo-

graph.
niGHT ASCENSION II9S0I
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Caroline, making a remarkable series of observations of the sky
through his homemade, but high quality telescopes. While
planning how to measure the parallax of stars due to the earth's
motion around the sun, he noted that sometimes one star had
another star quite close. He suspected that some of these pairs
might actually be double stars held together by their mutual
gravitational attractions rather than being just two stars in nearly
the same line of sight. Continued observations of the directions and
distances from one star to the other of the pair showed that in some
cases one star moved during a few years in a small arc of a curved
path around the other (the figure shows the motion of one of the two
stars in a system.) When enough observations had been gathered,
astronomers found that these double stars, far removed from the
sun and planets, also moved around each other in accordance with
Kepler's laws, and therefore, in agreement with Newton's law of
universal gravitation. Using the same equation as we used for

planets (see p. 103), astronomers have calculated that the masses
of these stars range from about 0.1 to 50 times the sun's mass.

A theory can never be completely proven; but it becomes
increasingly acceptable as it is found useful over a wider and
wider range of problems. No theory has stood this test better than
Newton's theory of universal gravitation as applied to the planetary
system. After Newton, it took nearly a century for physicists and
astronomers to comprehend, verify, and extend his work as applied
to the problems of planetary motion. After two centuries (in the late

1800's), it was still reasonable for leading scientists and philoso-

phers to claim that most of what had been accomplished in the
science of mechanics since Newton's day was but a development or

application of his work.

Q21 Why does the moon cause the water level to rise on both
sides of the earth?

Q22 In which of the following does the moon produce tides?

(a) the seas (b) the atmosphere (c) the solid earth

Q23 Why is the precise calculation of the moon's motion so

difficult?

Q24 How are the orbits of comets different from the orbits of
the planets?

Q25 Do these differences affect the validity of Newton's law of
universal gravitation for comets?

8.10 Some effects and limitations of Newton's work

Today we honor Newton and his system of mechanics for many
valid reasons. The content of the Principia historically formed the

basis for the development of much of our physics and technology.

Also, the success of Newton's approach to his problems became the

method used in all the physical sciences for the subsequent two
centuries.

Throughout Newton's work, we find his basic belief that

The motion over many years for one
of the two components of a binary

star system. Each circle indicates the

average of observations made over an
entire year.
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celestial phenomena can be explained by apphing quantitative

earthly laws. He felt that his laws had physical meaning and were

not just mathematical conveniences behind which unknow able

laws were hiding, but rather just the opposite: the natural physical

laws governing the universe were accessible to man. and the simple

mathematical forms of the laws were evidence of their reality.

Newton combined the skills and approaches of both the

experimental and the theoretical scientist. He made ingenious

pieces of equipment, such as the first reflecting telescope, and

performed skillful experiments, especially in optics. Yet he also

applied his great mathematical and logical powers to the creation of

explicit, testable predictions.

Many of the concepts which Newton used came from his

scientific predecessors and contemporaries. For example. Galileo

and Descartes had contributed the first steps to a proper idea of

inertia, which became Newtons First Law of Motion: Keplers

planetary laws were central in Newtons consideration of planetary

motions; Huygens. Hooke, and others clarified the concepts of force

and acceleration, ideas which had been evolving for centuries.

In addition to his own experiments. Newton selected and used

data from a large number of sources. Tycho Brahe was only one of

several astronomers whose observations of the motion of the moon
he used. When he could not complete his own measurements, he

knew whom he could ask.

Lastly, we must recall how exhaustively and how fruitfully he

used and expanded his own specific contributions. For instance,

in developing his theor>' of universal gravitation, he used his laws

of motion and his various mathematical inventions again and

again. Yet Newton was modest about his achievements, and he once

said that if he had seen further than others "it was by standing

upon the shoulders of Giants."

We recognize today that Newton's mechanics holds only within

a well-defined region of our science. For example, although the

forces within each galaxy appear to be New tonian. this may not be

true for forces acting between one galaxy and another. At the other

end of the scale, among atoms and subatomic particles, we shall see

that an entirely non-Newtonian set of concepts had to be developed

to account for the observations.

Even within the solar system, there are several small

discrepancies between the predictions and the observations. The

most famous is the angular motion of the axis of Mercury's orbit.

which is greater than the value predicted from Newton's laws by

about 1/80° per centun,'. For a while, it was thought that the error

might arise because gravitational force does not vary inversely

exactly with the square of the distance — perhaps, for example, the

law was F„Hv= 1,R- ""<""".

Such difficulties should not be hastily assigned to some minor

imperfection in the Law of Gravitation, which applies so well with

unquestionable accuracy to all the other planetary motions. It may
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be that the whole idea behind the theory is mistaken, as was the

idea behind the Ptolemaic system of epicycles. Out of many
studies has come the conclusion that there is no way that details of

Newtonian mechanics can be modified to explain certain

observations. Instead, these observations can be accounted for only

by constructing new theories based on some very different

assumptions. The predictions from these theories are almost

identical to those from Newton's laws for phenomena familiar to us,

but they are accurate in some extremes where the Newtonian
predictions begin to show inaccuracies. Newtonian science is

linked at one end with relativity theory, which is important for

bodies with ver>' great mass or moving at very high speeds. At the

other end Newtonian science approaches quantum mechanics.

which is important for particles of extremely small mass and size —

atoms, molecules, and nuclear particles. For a vast range of

problems between these extremes, the Newtonian theory gives

accurate results and is far simpler to use. Moreover, it was in

Newtonian mechanics that relativity theory and quantum
mechanics took root.

Newtonian mechanics refers to

the science of the motion of bodies,

based on Newton's work. It includes

his laws of motion and of gravitation

as applied to a range of bodies from

microscopic size to stars, and

incorporates developments of

mechanics for over two centuries

after Newton's own work.

SG 8.20-8.22
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EPILOGUE In this unit we started at the beginnings of recorded

history and followed the attempts of men to explain the cyclic

motions observed in the heavens. We had several purposes. The first

was to examine with some care the difficulties of changing from an

earth-centered view of the heavens to the modern one in which the

earth came to be seen as just another planet moving around the

sun. We also wanted to put into perspective Newton's synthesis of

earthly and heavenly motions. From time to time we have also

suggested that there was an interaction of these new world views

with the general culture. We stressed that each contributor was a

creature of his times, limited in the degree to which he could

abandon the teachings on which he was reared. Gradually, through

the successive work of many, a new way of looking at heavenly

motions arose. This in turn opened new possibilities for even further

new ideas, and the end is not in sight.

Still another purpose was to see how theories are made and

tested, what is the place of assumption and experiment, of

mechanical models and mathematical description. In later parts

of the course, we will come back to the same questions in more

recent context, and we shall find that the attitudes developed

toward theory-making during the seventeenth-century scientific

revolution are still immensely fruitful today.

In our study we have referred to scientists in Greece. Egypt.

Poland. Denmark, Austria. Italy. England, and other countries.

Each, as Newton said, stood on the shoulders of others. And for

each major success there are many lesser advances or. indeed,

failures. We see science as a cumulative intellectual activity not

restricted by national boundaries or by time. It is not inevitably and

relentlessly successful, but it grows more as a forest grows, new

growth replacing and drawing nourishment from the old. sometimes

with unexpected changes in its different parts. It is not a cold,

calculated pursuit, for it may involve passionate controversy,

religious convictions, esthetic judgments of what beauty is. and

sometimes wild private speculation.

It is also clear that the Newtonian synthesis did not put an end

to the study of science by solving all problems. In many ways it

opened whole new lines of investigations, both theoretical and

observational. In fact, much of our present science and also our

technology had their effective beginnings with the work of Newton.

New models, new mathematical tools, and new self-confidence

(sometimes misplaced, as the study of the nature of light will show)

encouraged those who followed, to attack the new problems. A

never-ending series of questions, answers, and more questions was

well launched. The modern view of science is that it is a continuing

quest into ever more interesting fields.

Among the many problems remaining after Newton's work was

the study of objects interacting not by gravitational forces, but by
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friction and collision. This led. as the next unit shows, to the
concepts of momentum and energy, and then to a much broader
view of the connection between different parts of science -physics,
chemistry, and biology. Eventiially. from this line of study, emerged
other statements as grand as Newton's law of universal
gravitation: the conservation laws on which so much of modem
science - and technology- - is based, especially the part having to

do with many interacting bodies making up a system. That account
will be the main subject of Unit 3.

Newton's influence was not. however, limited to science alone.

The centur>- following the death of Newton in 1727 was a period of

consolidation and further application of Newton's discoveries and
methods, whose eff"ects were felt especially in philosophy and
literature, but also in may other fields outside science. Let us round
our view of Newton by considering some of these effects.

During the 1700's. the so-called Age of Reason or Century of

Enlightenment, the viewpoint called the Newtonian cosmology
became firmly entrenched in European science and philosophy. The
impact of Newton's achievements may be summarized thus: he
had shown that man. by observing and reasoning, by considering

mechanical models and deducing mathematical laws, could

uncover the workings of the physical universe. Therefore, it was
argued, man should attempt by the same method to understand not

only nature but also society and the human mind. As the French
writer Fontenelle (1657-1757) expressed it:

The geometric spirit is not so bound
up with geometry that it cannot be

disentangled and carried into other

fields. A work of morals, or politics,

of criticism, perhaps even of eloquence,

will be the finer, other things being

equal, if it is written by the hand
of a geometer.

The EngUsh philosopher John Locke (1632-1704) was greatly

influenced by Newton's work and in turn reinforced Newton's

influence on others: he argued that the goal of philosophy should

be to solve problems, including those that affect our daily life, by

observation and reasoning. "Reason must be our best judge and

guide in all things. " he said. Locke thought that the concept of

"natural law " could be used in religion as well as in physics: and
indeed the notion of a religion "based on reason" appealed to many
Europeans who hoped to avoid a revival of the bitter religious wars

of the 1600s.

Locke advanced the theor\' that the mind of the new-bom
child contains no "innate ideas ": it is like a blank piece of paper on

which anything may be written. If this were true, it would be futile

to search within oneself for a God-given sense of what is true or

morally right. Instead, one must look at nature and society to

discover whether there are anv "natural laws " that mav exist.

Mf d

.
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The engraving of the French Academy
by Sebastian LeClerc (1698) reflects

the activity of learned societies at that

time. The picture does not depict an

actual scene, of course, but in al-

legory shows the excitement of com-
munication that grew in an informal

atmosphere. The dress is symbolic of

the Greek heritage of the sciences.

Although all the sciences are repre-

sented, the artist has put anatomy,

botany, and zoology, symbolized by

skeletons and dried leaves, toward the

edges, along with alchemy and theol-

ogy. Mathematics and the physical

sciences, including astronomy, oc-

cupy the center stage.

Conversely, if one wants to improve the quality of man's mind, one

must improve the society in which he lives.

Locke's view also implied an "atomistic" structure of society:

each person is separate from other individuals in the sense that he

has no "organic" relation to them. Previously, political theories had

been based on the idea of society as an organism in which each

person has a perscribed place, function and obligation. Later

theories, based on Locke's ideas, asserted that government should

have no function except to protect the freedom and property of the

individual person.

Although "reason" was the catchword of the eighteenth-century

philosophers, we do not have to accept their own judgment that

their theories about improving religion and society were necessarily

the most reasonable. Like most others, these men would not give up

a doctrine such as the equal rights of all men merely because they

could not find a strictly mathematical or scientific proof for it.

Newtonian physics, religious toleration, and republican government

were all advanced by the same movement; but this does not mean
there was really a logical connection among them. Nor. for that

matter, did many of the eighteenth-century thinkers in any field or

nation seem much bothered by another gap in logic and feeling;

they believed that "all men are created equal," and yet they did

little to remove the chains of black slaves, the ghetto walls

imprisoning Jews, or the laws that denied voting rights to women.
Still, compared with the previous century, the dominant theme

of the 1700's was moderation — the happy medium, based on
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toleration of different opinions, restraint of excess in any

direction, and balance of opposing forces. Even reason was not

allowed to ride roughshod over religious faith; atheism, which

some philosophers thought to be the logical consequence of

unlimited rationality, was still regarded with horror by most

Europeans.

The Constitution of the United States of America, with its

ingenious system of "checks and balances" to prevent any faction

from getting too much power, is one of the most enduring

achievements of this period. It attempts to establish in politics a

stable equilibrium of opposing trends similar to the balance

between the sun's gravitational pull and the tendency of a planet to

fly off in a straight line. If the gravitational attraction increased

without a corresponding increase in planetary speed, the planet

would fall into the sun; if its speed increased without a correspond-

ing increase in gravitational attraction, the planet would escape

from the solar system.

Just as the Newtonian laws of motion kept the earth at its

proper distance from the sun, so the political philosophers, some of

whom used Newtonian physics as a model of thought, hoped to

devise a system of government which would avoid the extremes of

dictatorship and anarchy. According to James Wilson (1742-1798),

who played a major role in drafting the American Constitution:

In government, the perfection of the whole depends on

the balance of the parts, and the balance of the parts

consists in the independent exercise of their separate

powers, and, when their powers are separately exercised,

then in their mutual influence and operation on one

another. Each part acts and is acted upon, supports and

is supported, regulates and is regulated by the rest.

It might be supposed, that these powers, thus mutually

checked and controlled, would remain in a state of

inaction. But there is a necessity for movement in human
aff"airs, and these powers are forced to move, though still

to move in concert. They move, indeed, in a line of

direction somewhat different from that, which each

acting by itself would have taken; but, at the same time,

in a line partaking of the natural directions of the

whole -the true line of public liberty and happiness.

A related effect of Newton's work in physics on other fields was

the impetus Newton as a person and Newton's writing gave to the

idea of political democracy. A former farm boy had penetrated to

the outermost reaches of the human imagination, and what he

found there meant, first of all, that God had made only one set of

laws for heaven and earth. This smashed the old hierarchy and

raised what was once thought base to the level of the noble. It was

an extension of a new democracy throughout the universe: Newton

had shown that all matter, whether of sun or of ordinary stone, was

created equal, was of the same order in "the Laws of Nature and of
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Nature's God," to cite the phrase used at the beginning of the

Declaration of Independence to justify the elevation of the colonists

to an independent people. The whole political ideology was heavily

influenced by Newtonian ideas. The Principia, many thought, gave

an analogy and extension direct support to the proposition being

formulated also from other sides that all men, like all natural

objects, are created equal before nature's creator. Some of these

important trends are discussed in articles in Reader 2.

In literature, too, many welcomed the new scientific viewpoint

as a source of metaphors, allusions, and concepts which they used

in their poems and essays. Newton's discovery that white light is

composed of colors was referred to in many poems of the 1700's

(see Unit 4). Samuel Johnson advocated that words drawn from the

natural sciences be used in literary works, defining such words in

his Dictionary and illustrating their application in his "Rambler"

essays.

Other writers distrusted the new cosmology and so used it for

purposes of satire. In his epic poem The Rape of the Lock,

Alexander Pope exaggerated the new scientific vocabulary for comic

effect. Jonathan Swift, sending Gulliver on his travels to Laputa,

described an academy of scientists and mathematicians whose
experiments and theories were as absurd as those of the Fellows

of the Royal Society must have seemed to the layman of the 1700's.

The first really powerful reaction against Newtonian cosmology

was the Romantic movement, begun in Germany about 1780 by

young writers inspired by Johann Wolfgang von Goethe. The most

familiar examples of Romanticism in English literature are the

poems and novels of Blake, Coleridge, Wordsworth, Shelley. Byron,

and Scott.

The Romantics scorned the mathematical view of nature, and

emphasized the importance of quality rather than quantity. They
preferred to study the unique element of an individual person or

experience, rather than make abstractions. They exalted emotion

and feeling at the expense of reason and calculation. In particular,

they abhorred the theory that the universe is in any way like a

clockwork, made of inert matter set into motion by a God who never

afterwards shows His presence. Reflecting this attitude, the

historian and philosopher of science, E. A. Burtt, has written

scathingly that:

This is, of course, a distortion of

what scientists themselves believe

— one of the wrong images of

science discussed in "The Seven
Images of Science" in Reader 3.

. . . the great Newton's authority was squarely behind that

view of the cosmos which saw in man a puny, irrelevant

spectator (so far as being wholly imprisoned in a dark

room can be called such) of the vast mathematical
system whose regular motions according to mechanical
principles constituted the world of nature. The gloriously

romantic universe of Dante and Milton, that set no
bounds to the imagination of man as it played over

space and time, had now been swept away. Space was
identified with the realm of geometry, time with the

continuity of number. The world that people had thought
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themselves living in -a world rich with color and sound,
redolent with fragrance, filled with gladness, love and
beauty, speaking everywhere of purposive harmony and
creative ideals — was crowded now into minute comers in

the brains of scattered organic beings. The really

important world outside was a world hard, cold,

colorless, silent, and dead; a world of quantity, a world of

mathematically computable motions in mechanical
regularity. The world of qualities as immediately
perceived by man became just a curious and quite minor
effect of that infinite machine beyond.

Because in their view, the whole (whether it be a single human
being or the entire universe) is pervaded by a spirit that cannot be

rationally explained but can only be intuitively felt, the Romantics
insisted that phenomena cannot meaningfully be analyzed and
reduced to their separate parts by mechanistic explanations.

Continental leaders of the Romantic movement, such as the

German philosopher Friedrich Schelling (1775-1854) proposed a

new way of doing scientific research, a new type of science called

"Nature Philosophy." (This term is not to be confused with the

older "natural philosophy," meaning mainly physics.) The Nature

Philosopher does not analyze phenomena such as a beam of white

light into separate parts or factors which he can measure

quantitatively in his laboratory — or at least that is not his primary

purpose. Instead, he tries to understand the phenomenon as a

whole, and looks for underlying basic principles that govern all

phenomena. The Romantic philosophers in Germany regarded

Goethe as their greatest scientist as well as their greatest poet, and

they pointed in particular to his theory of color, which flatly

contradicted Newton's theory of light. Goethe held that white light

does not consist of a mixture of colors but rather that the colors are

produced by the prism acting on and changing the light which was
itself pure.

In the judgment of all modem physicists, Newton was right and

Goethe wrong. Yet, in retrospect. Nature Philosophy was not simply

an aberration. The general tendency of Nature Philosophy did

encourage speculation about ideas which could never be tested by

experiment; hence, Nature Philosophy was condemned by most

scientists. But it is now generally agreed by historians of science

that Nature Philosophy played an important role in the historical

origins of some scientific discoveries. Among these was the general

principle of conservation of energy, which is described in Chapter

10. The recognition of the principle of conservation of energy came
in part out of the viewpoint of Nature Philosophy, for it asserted that

all the "forces of nature" -the phenomena of heat, gravity,

electricity, magnetism, and so forth — are manifestations of one

underlying "force" (which we now call energy).

Much of the dislike which Romantics (like some modern artists

and intellectuals) expressed for science was based on the mistaken

notion that scientists claimed to be able to find a mechanistic
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explanation for everything, including the human mind. If everything

is explained by Newtonian science, then everything would also be

determined in the way the motions of different parts of a machine

are determined by its construction. Most modern scientists no

longer believe this, but some scientists in the past have made

statements of this kind. For example, the French mathematical

physicist Laplace (1749-1827) said:

We ought then to regard the present state of the universe

as the effect of its previous state and as the cause of the

one which is to follow. Given for one instant a mind
which could comprehend all the forces by which nature

is animated and the respective situation of the beings

who compose it — a mind sufficiently vast to submit these

data to analysis -it would embrace in the same formula

the movements of the greatest bodies of the universe and

those of the lightest atom; for it, nothing would be

uncertain and the future, as the past, would be present

to its eyes.

Even the ancient Roman philosopher Lucretius (100-55 B.C.),

who supported the atomic theory in his poem On the Nature of

Things, did not go as far as this. In order to preserve some vestige

of "free will" in the universe, Lucretius suggested that the atoms

might swerve randomly in their paths. This was still unsatisfactory

to the Romantics and also to some scientists such as Erasmus

Darwin (grandfather of evolutionist Charles Darwin), who asked:

Dull atheist, could a giddy dance
Of atoms lawless hurl'd

Construct so wonderful, so wise.

So harmonised a world?

The Nature Philosophers thought they could discredit the

Newtonian scientists by forcing them to answer this question; to

say "yes," they argued, would be absurd, and to say "no" would be

disloyal to their own supposed beliefs. We shall see how successful

the Newtonians were in explaining the physical world without

committing themselves to any definite answer to Erasmus Darwin's

question. Instead, they were led to the discovery of immensely

SG 8.23, 8.24 powerful and fruitful laws of nature, discussed in the next units.



8.1 The Project Physics learning materials

particularly appropriate for Chapter 8 include:

Experiment
Stepwise Approximation to an Orbit

Activities

Model of the orbit of Halley's comet
Other comet orbits

Forces on a Pendulum
Haiku
Trial of Copernicus
Discovery of Neptune and Pluto

Reader Articles

Newton and the Principia

The Laws of Motion and Proposition I

Universal Gravitation

An Appreciation of the Earth
The Great Comet of 1965
Gravity Experiments
Space the Unconquerable
The Life Story of a Galaxy
Expansion of the Universe
Negative Mass
The Dyson Sphere

Flim Loops
Jupiter Satellite Orbit

Program Orbit I

Program Orbit II

Central forces -iterated blows

Kepler's Laws
Unusual Orbits

Transparency

Motion under central force

8.2 In the table below are the periods and

distances from Jupiter of the four large satellites,

as measured by telescopic observations. Does

Kepler's law of periods apply to the Jupiter system?

SATELLITE PERIOD DISTANCE FROM JUPITER'S
CENTER

(in terms of Jupiter's radius, r)

1
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What do you conclude from this about the

structure of the earth?

8.14 The manned Apollo 8 capsule (1968) was
put into a nearly circular orbit 1 12 km above the

moon's surface. The period of the orbit was 120.5

minutes. From these data calculate the mass
of the moon. (The radius of the moon is 1740 km.
Don't forget to use a consistent set of units.)

8.15 Why do you suppose there is no reliable

value for the mass of Pluto?

8.16 Mars has two satellites. Phobos and Deimos
— Fear and Panic. A science-fiction story was
once written in which the natives of Mars showed
great respect for a groove in the ground. The
groove turned out to be the path of Mars' closest

moon, "Bottomos."
(a) If such an orbit were possible, what would

the period be?
(b) What speed would it need to have in order

to go into such an orbit?

(c) What difficulties do you see for such an
orbit?

8.17 Using the values given in the table on p.

105 make a table of relative masses compared to

the mass of the earth.

8.18 The period of Halley's comet is about 75
years. What is its average distance from the sun?
The eccentricity of its orbit is 0.967. How far

from the sun does it go? How close?

8.19 Accepting the validity of F„av — GmtmJR',
and recognizing that G is a universal constant,
we are able to derive, and therefore to understand
better, many particulars that previously seemed
separate. For example, we can conclude:

(a) That a^ for a body of any mass m„ should be
constant at a particular place on earth.

(b) That a^ might be different at places on
earth at different distances from the earth's

center.

(c) That at the earth's surface the weight of a
body be related to its mass.

(d) That the ratio R^IT^ is a constant for all the

satellites of a body.

(e) That high tides occur about six hours apart.

Describe briefly how each of these conclusions
can be derived from the equation.

8.20 The making of theories to account for

observations is a major purpose of scientific study.

Therefore some reflection upon the theories

encountered thus far in this course will be useful.

Comment in a paragraph or more, with examples
from Units 1 and 2, on some of the statements
below. Look at all the statements and select at

least six, in any order you wish.

(1) A good theory should summarize and not
conflict with a body of tested observations.

(For example, Kepler's unwillingness to

explain away the difference of eight

minutes of arc between his predictions and
Tycho's observations.)

(2) There is nothing more practical than a

good theory.

(3) A good theory should permit predictions of

new observations which sooner or later

can be made.
(4) A good new theoiy should give almost the

same predictions as older theories for the

range of phenomena where they worked
well.

(5) Every theory involves assumptions. Some
involve also esthetic preferences of the

scientist.

(6) A new theory relates some previously

unrelated observations.

(7) Theories often involve abstract concepts
derived from observation.

(8) Empirical laws or "rules" organize many
observations and reveal how changes in

one quantity vary with changes in another
but such laws provide no explanation of

the causes or mechanisms.
(9) A theory never fits all data exactly.

(10) Predictions from theories may lead to the

observation of new effects.

(11) Theories that later had to be discarded

may have been useful because they

encouraged new observations.

(12) Theories that permit quantitative

predictions are preferred to qualitative

theories.

(13) An "unwritten text" lies behind the

statement of every law of nature.

(14) Communication between scientists is an
essential part of the way science grows.

(15) Some theories seem initially so strange that

they are rejected completely or accepted
only very slowly.

(16) Models are often used in the making of a

theory or in describing a theory to

people.

(17) The power of theories comes from their

generality.

8.21 What happened to Plato's problem? Was it

solved?

8.22 Why do we believe today in a heliocentric

system? Is it the same as either Copernicus' or

Kepler's? What is the experimental evidence? Is

the geocentric system disproved?

8.23 Is Newton's work only of historical interest,

or is it useful today? Explain.

8.24 What were some of the major consequences
of Newton's work on scientists' view of the
world?
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Chapter w Where is the Earth?—The Greek's Answers

EXPERIMENT 14 NAKED-EYE ASTRONOMY
(Continued from Unit 1, Experiment 1)

Weather permitting, you have been watch-

ing events in the day and night sky since this

course started. Perhaps you have followed the

sun's path, or viewed the moon, planets, or

stars.

From observations much like your own,

scientists in the past developed a remarkable

sequence of theories. The more aware you are

of the motions in the sky and the more you

interpret them yourself, the more easily you

can follow the development of these theories.

If you do not have your own data, you can use

the results provided in the following sections.

A. One Day of Sun Observations

One student made the following observa-

tions of the sun's position on September 23.

Eastern Daylight

Time (EDT)

Sun's

Altitude

Sun's

Azimuth

7:00 A.M.

8:00

9:00

10:00

11:00

12:00

1:00 P.M.

2:00

3:00

4:00

5:00

6:00

7:00

08°

19

29

38

45

49

48

42

35

25

14

03

097°

107

119

133

150

172

197

217

232

246

257

267

If you plot altitude (vertically) against

azimuth (horizontally) on a graph and mark
the hours for each point, it will help you to

answer these questions.

1. What was the sun's greatest altitude during

the day?

2. What was the latitude of the observer?

3. At what time (EDT) was the sun highest?

4. When during the day was the sun's direction

(azimuth) changing fastest?

iS^^M^^f

5. When during the day was the sun's altitude

changing fastest?

6. At what time of day did the sun reach its

greatest altitude? How do you explain the fact

that it is not exactly at 12:00? (Remember
that daylight time is an hour ahead.)

B. A Year of Sun Observations

One student made the following monthly

observations of the sun through a full year. (He

had remarkably clear weather!)

Dates

Sun's

Noon

Altitude

Sunset

Azimuth

Time Between

Noon and

Sunset

Jan 1

Feb 1

Mar 1

Apr 1

May 1

Jun 1

Jul 1

Aug 1

Sep 1

Oct 1

Nov 1

Dec 1

*h = hours, m

20°

26

35

47

58

65

66

61

52

40

31

21

= minutes.

238°

245

259

276

291

300

303

295

282

267

250

239

4h25,

4 50

5 27

6 15

6 55

7 30

7 40

7 13

6 35

5 50

5 00

4 30

Use these data to make three plots (differ-

ent colors or marks on the same sheet of graph
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40° -
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B.C. By John Hart

D. Locating the Planets

Table 1, Planetary Longitudes lists the

position of each major planet along the ecliptic.

The positions are given, accurate to the nearest
degree, for every ten-day interval. By interpo-

lation you can find a planet's position on any
given day.

The column headed "J.D." shows the cor-

responding Julian Day calendar date for each
entry. This calendar is simply a consecutive
numbering of days that have passed since an
arbitrary "Juhan Day 1" in 4713 B.C.: Sep-

tember 30, 1970, for example, is the same as

J.D. 2,440,860.

Julian dates are used by astronomers for

convenience. For example, the number of days
between March 8 and September 26 of this

year is troublesome to figure out, but it is easy
to find by simple subtraction if the Julian dates

are used instead.

Look up the sun's present longitude in the
table. Locate the sun on your SC-1 Constella-

tion Chart: The sun's path, the ecliptic, is the

curved line marked off in 360 degrees of

longitude.

A planet that is just to the west of the sun's

position (to the right on the chart) is "ahead of

the sun," that is, it rises and sets just before
the sun does. One that is 180° from the sun
rises near sundown and is in the sky all night.

When you have decided which planets may
be visible, locate them along the ecliptic shown
on your sky map SC-1. Unhke the sun, they are
not exactly on the ecliptic, but they are never
more than 8° from it. Once located on the Con-
stellation Chart you know where to look for a
planet among the fixed stars.

E. Graphing the Position of the Planets
Here is a useful way to display the infor-

mation in Table I, Planetary Longitudes. On
ordinary graph paper, plot the sun's longitude
versus time. Use Julian Day numbers along
the horizontal axis, beginning close to the
present date. The plotted points should fall

on a nearly straight line, sloping up toward the
right until they reach 360° and then starting

again at zero.

3()0f

CD

o

tt'me

How long will it be before the sun again
has the same longitude it has today? Would the

answer to that question be the same if it were
asked three months from now? What is the

sun's average angular speed (in degrees per
day) over a whole year? When is its angular
speed greatest?

Plot Mercury's longitudes on the same
graph (use a different color or shape for the

points). According to your plot, how far (in

longitude) does Mercury get from the sun?
(This is Mercury's "maximum elongation.")

At what time interval does Mercury pass the

sun?
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Table 1 Planet Longitudes at 10-Day Intervals

Yr.
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B.C. By John Hart

OF CELesnAUTHRJUS.

^^<r

By permission of John Hart and Field Enterprises, Inc.

Plot the positions of the other planets using

a different color for each one. The data on the

resulting chart is much like the data that puz-

zled the ancients. In fact, the table of longi-

tudes is just an updated version of the tables

that Ptolemy, Copernicus, and Tycho had

made.

The graph contains a good deal of useful

information. For example, when will Mercury

and Venus next be close enough to each other

so that you can use bright Venus to help you

find Mercury? Where are the planets, relative

to the sun, when they go through their retro-

grade motions?

A "full earth" photo-

graph from 22,300

miles In space.
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EXPERIMENT 15 SIZE OF THE EARTH
People have been telling you for many

years that the earth has a diameter of about

8000 miles and a circumference of about

25,000 miles. You've believed what they told

you. But suppose someone challenged you to

prove it? How would you go about it?

The first recorded calculation of the size of

the earth was made a long time ago — in the

third century B.C., by Eratosthenes. He com-

pared the lengths of shadows cast by the sun

at two different points in Egypt. The points

were rather far apart, but nearly on a north-

south line on the earth's surface. The experi-

ment you do here uses a similar method.

Instead of measuring the length of a shadow,

you will measure the angle between the verti-

cal and the sight line to a star or to the sun.

You will need a colleague at least 200

miles away, due north or south of your position,

to take simultaneous measurements. The two

of you will need to agree in advance on the

star, the date, and the time for your observa-

tions. See how close you can come to calculat-

ing the actual size of the earth.

Assumptions and Theory of the Experiment

The experiment is based on the assump-

tions that

1. the earth is a perfect sphere,

2. a plumb line points towards the center of

the earth, and

3. the distance from the earth to the stars and
sun is very great compared with the earth's

diameter.

The two observers must be located at

points nearly north and south of each other.

Suppose they are at points A and B, separated

by a distance s, as shown in Fig. 5-2. The ob-

server at A and the observer at B both sight on

the same star at the prearranged time, when
the star is on or near their meridian, and mea-
sure the angle between the vertical of the

plumb line and the sight line to the star.

Light rays from the star reaching locations

A and B are parallel (this is implied by assump-

tion 3).

You can therefore relate the angle ^a at A
to the angle ^b at B, and to the angle <A between

the two radii, as shown in Fig. 5-3.

In the triangle ABO

</> = (^A - ^b) (1)

If C is the circumference of the earth, and

s is an arc of the meridian, then you can make
the proportion

(2)
C 360°

Combining equations (1) and (2), you have

C= 360°
,

^A ~ ^B

where ^a and ^b are measured in degrees.

Fig. 5-2 Fig. 5-3
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Doing the Experiment

For best results, the two locations A and B
should be directly north and south of each

other, and the observations should be made
when the star is near its highest point in the

sky.

You will need some kind of instrument to

measure the angle 0. Such an instrument is

called an astrolabe. If your teacher does not

have an astrolabe, you can make one fairly

easily from a protractor, a small sighting tube,

and a weighted string assembled according to

the design in Fig. 5-4.

Align your astrolabe along the north-south

line and measure the angle from the vertical

to the star as it crosses the north-south line.

If the astrolabe is not aligned along the

north-south line or meridian, the star will be

observed before or after it is highest in the sky.

An error of a few minutes from the time of

crossing the meridian will make little differ-

ence in the angle measured.

An alternative method would be to mea-

sure the angle to the sun at local noon. This

means the time when the sun is highest in the

sky, and not necessarily 12 o'clock by standard

time. (Remember that the sun, seen from the

earth, is itself ^° wide.)

Uock

Fig. 5-4

DO NOT TRY SIGHTING DIRECTLY AT THE
SUN. You may damage your eyes. Instead, have
the sighting tube of your astrolabe pierce the

center of a sheet of cardboard so that sunlight

going through the sighting tube makes a bright

spot on a shaded card that you hold up behind

the tube.

An estimate of the uncertainty in your

measurement of 6 is important. Take several

measurements on the same star (at the same
time) and take the average value of 6. Use the

spread in values of 6 to estimate the uncer-

tainty of your observations and of your result.

Your value for the earth's circumference

depends also in knowing the over-the-earth

distance between the two points of observation.

You should get this distance from a map, using

its scale of miles. For a description of what
earth measurements over the years have dis-

closed about the earth's shape, see: "The Shape

of the Earth," Scientific American, October,

1967, page 67.

Ql How does the uncertainty of the over-the-

earth distance compare with the uncertainty

in your value for 6?

Q2 What is your calculated value for the cir-

cumference of the earth and what is the uncer-

tainty of your value?

Q3 Astronomers have found that the average

circumference of the earth is about 24,900

miles (40,000 km). What is the percentage

error of your result?

Q4 Is this acceptable, in terms of the uncer-

tainty of your measurement?

B.C. By John Hart

LIKE, WE'RE RI&HTHERE!

y

now; -WESAIUALLTHE
WAV AROUNDTO HBRE -

By permission o£ John Hart and Field Enterprl
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EXPERIMENT 16 THE HEIGHT OF
PITON, A MOUNTAIN ON THE MOON

Closeup photographs of the moon's surface

have been radioed back to earth from Lunar

Orbiter spacecraft (Fig. 5-10) and from Sur-

veyor vehicles that have made "soft landings"

on the moon (Fig. 5-11, p. 137), and carried back

by the Apollo astronauts. Scientists are discov-

ering a great deal about the moon from such
photographs, as well as from the landings

made by astronauts in Apollo spacecraft.

But long before the space age, indeed since

Galileo's time, astronomers have been learning

about the moon's surface without even leaving

the earth. In this experiment, you will use a

photograph (Fig. 5-5) taken with a 36-inch

telescope in California to estimate the height

of a mountain on the moon. You will use a

method similar in principle to one used by

Galileo, although you should be able to get a

more accurate value than he could working

with his small telescope (and without photo-

graphs!).

The photograph of the moon in Fig. 5-5

was taken at the Lick Observatory very near

the time of the third quarter. The photograph

does not show the moon as you see it in the sky

at third quarter because an astronomical tele-

scope gives an inverted image — reversing top-

and-bottom and left-and-right. (Thus north is

at the bottom.) Fig. 5-6 is a lOX enlargement of

the area within the white rectangle in Fig. 5-5.

Why Choose PIton?

Piton, a mountain in the moon's Northern

Hemisphere, is fairly easy to measure because

it is a slab-like pinnacle in an otherwise fairly

fiat area. When the photograph was made,

with the moon near third quarter phase, Piton

was quite close to the line separating the

lighted portion from the darkened portion of

the moon. (This line is called the terminator.)

You will find Piton to the south and west of

the large, dark-floored crater, Plato (numbered

230 on your moon map) which is located at a

longitude of —10° and a latitude of +50°.

Fig. 5-5 Fig. 5-6
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Assumptions and Relations

Fig. 5-7 represents the third-quarter moon
of radius r, with Piton P, its shadow of length

I, at a distance d from the terminator.

The rays of light from the sun can be con-

sidered to be parallel because the moon is a

great distance from the sun. Therefore, the

Soltth foi-£

Fig. 5-7

angle at which the sun's rays strike Piton will

not change if, in imagination, we rotate the

moon on an axis that points toward the sun. In

Fig. 5-8, the moon has been rotated just enough
to put Piton on the lower edge. In this position

it is easier to work out the geometry of the

shadow.

Fig. 5-9 shows how the height of Piton can
be found from similar triangles, h represents

the height of the mountain, I is the apparent

length of its shadow, d is the distance of the

mountain from the terminator; r is a radius of

the moon (drawn from Piton at P to the center

of the moon's outline at O.)

It can be proven geometrically (and you

can see from the drawing) that the small tri-

angle BPA is similar to the large triangle PCO.
The corresponding sides of similar triangles

are proportional, so we can write

h^d
I r

and h
ixd

All of the quantities on the right can be mea-

sured from the photograph.

Fig. 5-8

Fig. 5-9

The curvature of the moon's surface intro-

duces some error into the calculations, but as

long as the height and shadow are very small
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compared to the size of the moon, the error is

not too great.

Measurements and Calculations

Unless specifically instructed by your

teacher, you should work on a tracing of the

moon picture rather than in the book itself.

Trace the outline of the moon and the location

of Piton. If the photograph was made when the

moon was exactly at third quarter phase, then

the moon was divided exactly in half by the

terminator. The terminator appears ragged

because highlands cast shadows across the

lighted side and peaks stick up out of the

shadow side. Estimate the best overall straight

line for the terminator and add it to your trac-

ing. Use a cm ruler to measure the length of

Piton's shadow and the distance from the

terminator to Piton's peak.

It probably will be easiest for you to do all

the calculations in the scale of the photograph,

find the height of Piton in cm, and then finally

change to the real scale of the moon.

Ql How high is Piton in cm on the photograph

scale?

Q2 The diameter of the moon is 3,476 km.

What is the scale of the photograph?

Q3 What value do you get for the actual height

of Piton?

Q4 Which of your measurements is the least

certain? What is your estimate of the uncer-

tainty of your height for Piton?

Q5 Astronomers, using more complicated

methods than you used, find Piton to be about

2.3 km high (and about 22 km across at its

base). Does your value differ from the accepted

value by more than your experimental uncer-

tainty? If so, can you suggest why?

Fig. 5-10 A fifty square mile area of the moon's surface

near the large crater, Goclenius. An unusual feature of

this crater is the prominent rille that crosses the crater

rim.

Fig. 5-11 A four-inch rock photographed on the lunar

surface by Surveyor VII in 1968.
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MAKING ANGULAR MEASUREMENTS
For astronomical observations, and often

for other purposes, you need to estimate the

angle between two objects. You have several

instant measuring devices handy once you

calibrate them. Held out at arm's length in

front of you, they include:

1. Your thumb,

2. Your fist not including thumb knuck-

les,

3. Two of your knuckles, and

4. The span of your hand from thumb-tip

to tip of little finger when your hand is

opened wide.

For a first approximation, your fist is about
8° and thumb-tip to little finger is between
15° and 20°.

However, since the length of people's arms
and the size of their hands vary, you can cali-

brate yours using the following method.

To find the angular size of your thumb, fist,

and hand span at your arm's length, you make
use of one simple relationship. An object

viewed from a distance that is 57.4 times its

diameter covers an angle of 1°. For example,

a one-inch coin viewed from 57.4 inches away
has an angular size of 1°.

Set a 1" ruler on the blackboard chalk tray.

Stand with your eye at a distance of 572^" from

the scale. From there observe how many
inches of the scale are covered by your thumb,

etc. Make sure that you have your arm straight

out in front of your nose. Each inch covered

corresponds to 1°. Find some convenient mea-

suring dimensions on your hand.

A J inch diameter object placed at a distance

of 27.7 inches (call it 28 inches) from your eye,

would cut off an angle of 1°. At this same dis-

tance, 28 inches, a 1 inch diameter object

would cut off 2° and a 27 inch object 5°.

Now you can make a simple device that

you can use to estimate angles of a few degrees.

Fig. 5-12

Cut a series of step-wise slots as shown in

Fig. 5-12, in the file card. Make the slots ^inch
for 1°, one inch for 2°, and 22" inches for 5°.

Mount the card vertically at the 28 inch mark
on a yard stick. (If you use a meter stick, put

the card at 57 cm and make the slots 1 cm wide

for 1°, 2 cm for 2°, etc.) Cut flaps in the bot-

tom of the card, fold them to fit along the stick

and tape the card to the stick. Hold the zero

end of the stick against your upper lip — and
observe. (Keep a stiff upper lip!)

A Mechanical Aid

You can use a 3" x 5" file card and a meter
stick or yard stick to make a simple instrument

for measuring angles. Remember that when
an object with a given diameter is placed at a

distance from your eye equal to 57.4 times its

diameter, it cuts off an angle of 1°. This means
that a one inch object placed at a distance of

57.4 inches from your eye would cut off an
angle of 1°. An instrument 57.4 inches long

would be a bit cumbersome, but we can scale

down the measurements to a convenient size.

Things to Observe
1. What is the visual angle between the

pointers of the Big Dipper?

2. What is the angular length of Orion's Belt?
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B.C. By John Hart

By permission of John Hart and Field Enterprises, Inc.

3. How many degrees away from the sun is

the moon? Observe on several nights at sunset.

4. What is the angular diameter of the moon?
Does it change between the time the moon
rises and the time when it is highest in the sky

on a given day? To most people, the moon
seems larger when near the horizon. Is it?

See: "The Moon Illusion," Scientific Ameri-

can, July 1962, p. 120.

-T^. x
^

and 1 to 2 (one loop per two revolutions). To
change the ratio, simply slip the drive band to

another set of pulleys. The belt should be

twisted in a figure 8 so the deferent arm (the

long arm) and the epicycle arm (the short arm)
rotate in the same direction.

AX/S
I

1
jno

i--^..

EPICYCLES AND RETROGRADE MOTION
The hand-operated epicycle machine al-

lows you to explore the motion produced by two

circular motions. You can vary both the ratio

of the turning rates and the ratio of the radii

to find the forms of the different curves that

may be traced out.

The epicycle machine has three possible

gear ratios: 2 to 1 (producing two loops per

revolution). 1 to 1 (one loop per revolution)

Tape a light source (pen-light cell, holder

and bulb) securely to one end of the short,

epicycle arm and counter-weight the other end

of the arm with, say, another (unlit) light

source. If you use a fairly high rate of rotation

in a darkened room, you and other observers

should be able to see the light source move in

an epicycle.

The form of the curve traced out depends

not only on the gear ratio but also on the rela-

tive lengths of the arms. As the light is moved
closer to the center of the epicycle arm, the

epicycle loop decreases in size until it becomes
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Fig. 5-13

a cusp. When the hght is very close to the

center of the epicycle arm, as it would be for

the motion of the moon around the earth, the

curve will be a slightly distorted circle. (Fig.

5-14).

To relate this machine to the Ptolemaic

model, in which planets move in epicycles

around the earth as a center, you should really

stand at the center of the deferent arm (earth)

and view the lamp against a distant fixed back-

ground. The size of the machine, however,

does not allow you to do this, so you must view

the motion from the side. (Or, you can glue a

spherical glass Christmas-tree ornament at

the center of the machine; the reflection you

see in the bulb is just what you would see if

you were at the center.) The lamp then goes

into retrograde motion each time an observer

in front of the machine sees a loop. The retro-

grade motion is most pronounced with the

light source far from the center of the epicycle

axis.

Photographing Epicycles

The motion of the light source can be

photographed by mounting the epicycle ma-
chine on a turntable and holding the center

pulley stationary with a clamp (Fig. 5-15).

Alternatively, the machine can be held in

a burette clamp on a ringstand and turned

by hand.

Running the turntable for more than one

revolution may show that the traces do not

exactly overlap (Fig. 5-13). (This probably

occurs because the drive band is not of uni-

form thickness, particularly at its joint, or

because the pulley diameters are not in exact

proportion.) As the joining seam in the band

runs over either pulley, the ratio of speeds

changes momentarily and a slight displace-

ment of the axes takes place. By letting the

turntable rotate for some time, the pattern will

eventually begin to overlap.

A time photograph of this motion can re-

veal very interesting geometric patterns. You
might enjoy taking such pictures as an after-

class activity. Figures 5-16, a through d, show
four examples of the many diff'erent patterns

that can be produced.

Fig. 5-14

Fig. 5-15

turntable.

An epicycle dennonstrator connected to a
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Fig. 5-1 6a
Fig. 5-16b

Fig. 5-1 6c

CELESTIAL SPHERE MODEL*
You can make a model of the celestial

sphere with a round-bottom flask. With it, you

can see how the appearance of the sky changes

as you go northward or southward and how the

stars appear to rise and set.

To make this model, you will need, in ad-

dition to the round-bottom flask, a one-hole

rubber stopper to fit its neck, a piece of glass

tubing, paint, a fine brush (or grease pencil),

a star map or a table of star positions, and

considerable patience.

On the bottom of the flask, locate the point

opposite the center of the neck. Mark this point

and label it "N" for north celestial pole. With

a string or tape, determine the circumference

of the flask — the greatest distance around it.

This will be 360° in your model. Then, starting

at the north celestial pole, mark points that

*Adapted from You and Science, by Paul F. Brandwein, et

al., copyright 1960 by Harcourt, Brace and World, Inc.

Fig. 5-1 6d

are j of the circumference, or 90°, from the

North Pole point. These points lie around the

flask on a line that is the celestial equator. You
can mark the equator with a grease pencil

(china marking pencil), or with paint.

eouafor

Fig. 5-17
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To locate the stars accurately on your

"globe of the sky," you will need a coordinate

system. If you do not wish to have the coordi-

nate system marked permanently on your

model, put on the lines with a grease pencil.

Mark a point 23-|-° from the North Pole

(about i of 90°). This will be the pole of the

ecliptic marked E.P. in Fig. 5-17. The ecliptic

(path of the sun) will be a great circle 90° from

the ecliptic pole. The point where the ecliptic

crosses the equator from south to north is

called the vernal equinox, the position of the

sun on March 21. All positions in the sky, are

located eastward from this point, and north or

south from the equator.

To set up the north-south scale, measure
off eight circles, about 10° apart, that run east

and west in the northern hemisphere parallel

to the equator. These lines are like altitude on

the earth but are called declination in the sky.

Repeat the construction of these lines of de-

clination for the southern hemisphere.

A star's position, called its right ascension,

is recorded in hours eastward from the vernal

equinox. To set up the east-west scale, mark
intervals of l/24th of the total circumference

starting at the vernal equinox. These marks
are 15° apart (rather than 10°) — the sky turns

through 15° each hour.

From a table of star positions or a star

map, you can locate a star's coordinates, then

mark the star on your globe. All east-west

positions are expressed eastward, or to the

right of the vernal equinox as you face your

globe.

To finish the model, put the glass tube into

the stopper so that it almost reaches across the

flask and points to your North Pole point. Then
put enough inky water in the flask so that,

when you hold the neck straight down, the

water just comes up to the line of the equator.

For safety, wrap wire around the neck of the

flask and over the stopper so it will not fall

out (Fig. 5-18).

Now, as you tip the flask you have a model

of the sky as you would see it from different

latitudes in the Northern Hemisphere. If you

were at the earth's North Pole, the north celes-

tial pole would be directly overhead and you

would see only the stars in the northern half of

the sky. If you were at latitude 45°N, the north

€^ u fttor

Fig. 5-18



celestial pole would be halfway between the

horizon and the point directly overhead. You
can simulate the appearance of the sky at 45°N
by tipping the axis of your globe to 45° and
rotating it. If you hold your globe with the axis

horizontal, you would be able to see how the

sky would appear if you were at the equator.

HOW LONG IS A SIDEREAL DAY?
A sidereal day is the time interval it takes a

star to travel completely around the sky. To
measure a sidereal day you need an electric

clock and a screw eye.

Choose a neighboring roof, fence, etc., to-

wards the west. Then fix a screw-eye as an

eye-piece in some rigid support such as a post

or a tree so that a bright star, when viewed

through the screw-eye will be a little above the

roof (Fig. 5-19).

Record the time when the star viewed

through the screw-eye just disappears behind

the roof, and again on the next night. How long

did it take to go around? What is the uncer-

tainty in your measurement? If you doubt your

result, you can record times for several nights

in a row and average the time intervals; this

should give you a very accurate measure of a

sidereal day. (If your result is not exactly 24

hours, calculate how many days would be

needed for the error to add up to 24 hours.)

A scale model of the solar system
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The average distance between the earth

and sun is called the "astronomical unit" (AU).

This unit is used for describing distance within

the solar system.

BUILD A SUNDIAL
If you are interested in building a sundial,

there are numerous articles in the Amateur
Scientist section of Scientific American that

you will find helpful. See particularly the

article in the issue of August 1959. Also see the

issues of September 1953, October 1954,

October 1959, or March 1964. The book Sun-

dials by Mayall and Mayall (Charles T. Bran-

ford, Co., publishers, Boston) gives theory and

building instructions for a wide variety of

sundials. Encyclopedias also have helpful

articles.

PLOT AN ANALEMMA
Have you seen an analemma? Examine a

globe of the earth, and you will usually find a

graduated scale in the shape of a figure 8,

with dates on it. This figure is called an ana-

lemma. It is used to summarize the changing

positions of the sun during the year.

You can plot your own analemma. Place a

small square mirror on a horizontal surface so

that the reflection of the sun at noon falls on a

south-facing wall. Make observations each day
at exactly the same time, such as noon, and
mark the position of the reflection on a sheet

of paper fastened to the wall. If you remove
the paper each day, you must be sure to replace

it in exactly the same position. Record the date

beside the point. The north-south motion is

most evident during September-October and
March-April. You can find more about the

east-west migration of the marks in astronomy
texts and encyclopedias under the subject

Equation of Time.

STONEHENGE
Stonehenge (pages 1 and 2 of your Unit 2

Text) has been a mystery for centuries. Some
scientists have thought that it was a pagan
temple, others that it was a monument to

slaughtered chieftains. Legends invoked the

power of Merlin to explain how the stones were
brought to their present location. Recent
studies indicate that Stonehenge may have
been an astronomical observatory and eclipse

computer.

Read "Stonehenge Physics," in the April,

1966 issue of Physics Today: Stonehenge
Decoded, by G. S. Hawkins and J. B. White; or

see Scientific American, June, 1953. Make a

report and/or a model of Stonehenge for your

class.

MOON CRATER NAMES
Prepare a report about how some of the

moon craters were named. See Isaac Asimov's

Biographical Encyclopedia of Science and
Technology for material about some of the

scientists whose names were used for craters.

LITERATURE
The astronomical models that you read

about in Chapters 5 and 6, Unit 2, of the Text
strongly influenced the Elizabethan view of

the world and the universe. In spite of the ideas

of Galileo and Copernicus, writers, philoso-

phers, and theologians continued to use Aris-

totelian and Ptolemaic ideas in their works. In

fact, there are many references to the crystal-

sphere model of the universe in the writings

of Shakespeare, Donne, and Milton. The refer-

ences often are subtle because the ideas were
commonly accepted by the people for whom
the works were written.

For a quick overview of this idea, with

reference to many authors of the period, read

the paperbacks The Elizabethan World Pic-

ture, by E. M. W. Tillyard, Vintage Press, or

Basil Willey, Seventeenth Century Back-

ground, Doubleday. See also the articles by

H. Butterfield and B. Willey in Project Physics

Reader 1.

An interesting specific example of the

prevailing view, as expressed in literature, is

found in Christopher Marlowe's Doctor Faus-

tus, when Faustus sells his soul in return for

the secrets of the universe. Speaking to the

devil, Faustus says:
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".
. . Come, Mephistophilis, let us

dispute again

And argue of divine astrology.

Tell me, are there many heavens

above the moon?
Are all celestial bodies but one

globe.

As is the substance of this centric

earth? . . .

THE SIZE OF THE EARTH—SIMPLIFIED
VERSION

Perhaps, for lack of a distant colleague,

you were unable to determine the size of the

earth as described in Experiment 13. You may
still do so if you measure the maximum alti-

tude of one of the objects on the following list

and then use the attached data as described

below.

In Santiago, Chile, Miss Maritza Campu-
sano Reyes made the following observations

pf the maximum altitude of stars and of the

sun: (all were observed north of her zenith)

Antares (Alpha Scorpio) 83.0°

Vega (Alpha Lyra) 17.5

Deneb (Alpha Cygnus) 11.5

Altair (Alpha Aquila) 47.5

Fomalhaut (Alpha Pisces Austr.) 86.5

Sun: October 1 59.4°

15 64.8°

November 1 70.7°

15 74.8°

Since Miss Reyes made her observations when
the objects were highest in the sky, the values

depend only upon her latitude and not upon
her longitude or the time at which the observa-

tions were made.

From the map below, find how far north

you are from Santiago. Next, measure the

maximum altitude of one or more of these

objects at your location. Then using the reason-

ing in Experiment 13, calculate a value for the

circumference of the earth.
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FILM STRIP
RETROGRADE MOTION OF MARS

Photographs of the positions of Mars, from

the files of the Harvard College Observatory,

are shown for three oppositions of Mars, in

1941, 1943, and 1946. The first series of twelve

frames shows the positions of Mars before and

after the opposition of October 10, 1941. The
series begins with a photograph on August 3,

1941 and ends with one on December 6, 1941.

The second series shows positions of Mars
before and after the opposition of December 5,

1943. This second series of seven photographs

begins on October 28, 1943 and ends on Febru-

ary 19, 1944.

The third set of eleven pictures, which

shows Mars during 1945-46, around the opposi-

tion of January 14, 1946, begins with October

16, 1945 and ends with February 23, 1946.

The film strip is used in the following way:

1. The star fields for each series of frames

have been carefully positioned so that the star

positions are nearly identical. If the frames of

each series can be shown in rapid succession,

the stars will be seen as stationary on the

screen, while the motion of Mars among the

stars is quite apparent. This would be like

viewing a flip-book.

2. The frames can be projected on a paper

screen where the positions of various stars and

of Mars can be marked. If the star pattern for

each frame is adjusted to match that plotted

from the first frame of that series, the positions

of Mars can be marked accurately for the

various dates. A continuous line through these

points will be a track for Mars. The dates of

the turning points (when Mars begins and ends

its retrograde motion) can be estimated. From
these dates, the duration of the retrograde

motion can be found. By use of the scale (10°)

shown on one frame, the angular size of the

retrograde loop can also be derived.

During 1943-44 and again in 1945-46,

Mars and Jupiter came to opposition at ap-

proximately the same time. As a result, Jupiter

appears in the frames and also shows its retro-

grade motion. Jupiter's oppositions were:

January 11, 1943; February 11, 1944; March
13, 1945; and April 13, 1946. Jupiter's position

can also be tracked, and the duration and size

of its retrograde loop derived. The durations

and angular displacements can be compared
to the average values listed in Table 5.1 of the

Unit 2 Text. This is the type of observational

information which Ptolemy, Copernicus and
Kepler attempted to explain by their theories.

The photographs were taken by the routine

Harvard Sky Patrol with a camera of 6-inch

focal length and a field of 55°. During each

exposure, the camera was driven by a clock-

work to follow the daily western motion of the

stars and hold their images fixed on the photo-

graphic plate. Mars was never in the center of

the field and was sometimes almost at the edge

because the photographs were not made es-

pecially to show Mars. The planet just hap-

pened to be in the star fields being photo-

graphed.

The images of the stars and planets are

not of equal brightness on all pictures because

the sky was less clear on some nights and the

exposures varied somewhat in duration. Also,

the star images show distortions from limita-

tions of the camera's lens. Despite these

limitations, however, the pictures are adequate

for the uses described above.

From a purely artistic point of view, some
of the frames show beautiful pictures of the

Milky Way in Taurus (1943) and Gemini (1945).
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FILM LOOPS

FILM LOOP 10A RETROGRADE
MOTION OF MARS AND MERCURY

To illustrate the retrograde motions of all

the planets, the retrograde motions of Mercury
and Mars are shown. The changing positions

of each planet against the background of stars

are shown during several months by animated

drawings. Stars are represented by small disks

whose sizes are proportional to the brightness

of the stars.

Mercury first moves eastward, stops, and

moves westward in retrograde motion. During

the retrograde motion, Mercury passes be-

tween the earth and the sun, which has been

moving steadily eastward. Mercury stops its

westward motion and resumes its eastward

motion following the sun. Time flashes appear

for each five days. The star field includes por-

tions of the constellations of Aries and Taurus;

the familiar cluster of stars known as the

Pleiades is in the upper left part of the field.

Mars similarly moves eastward across the

star field, stops, moves westward in retrograde

motion, stops, and resumes its eastward mo-

tion. Time flashes appear for each ten days.

The star field included parts of the constella-

tions of Leo and Cancer. The open star cluster

at the upper right is Praesepe (the Beehive)

which is faintly visible on a moonless night

(and beautiful in a small telescope).

An angular scale (10°) allows the magni-

tude of the retrograde motions to be measured,

while the time flashes permit a determination

of the duration of those motions. The disks

representing the planets change in brightness

in the same manner as observed for the planets

in the sky.

FILM LOOP 10 RETROGRADE MOTION
-GEOCENTRIC MODEL

The film illustrates the motion of a planet

such as Mars, as seen from the earth. It was
made using a large "epicycle machine," as a

model of the Ptolemaic system.

First, from above, you see the character-

istic retrograde motion during the "loop" when
the planet is closest to the earth. Then the

studio lights go up and you see that the motion

is due to the combination of two circular mo-
tions. One arm of the model rotates at the end

of the other.

The earth, at the center of the model, is

then replaced by a camera that points in a fixed

direction in space. The camera views the mo-

tion of the planet relative to the fixed stars (so

the rotation of the earth on its axis is being

ignored). This is the same as if you were look-

ing at the stars and planets from the earth

toward one constellation of the zodiac, such as

Sagittarius.

The planet, represented by a white globe,

is seen along the plane of motion. The direct

motion of the planet, relative to the fixed stars,

is eastward, toward the left (as it would be if

you were facing south). A planet's retrograde

motion does not always occur at the same
place in the sky, so some retrograde motions

are not visible in the chosen direction of obser-

vation. To simulate observations of planets

better, an additional three retrograde loops

were photographed using smaller bulbs and

slower speeds.

Note the changes in apparent brightness

and angular size of the globe as it sweeps close

to the camera. Actual planets appear only as

points of light to the eye, but a marked change

in brightness can be observed. This was not

considered in the Ptolemaic system, which fo-

cused only on positions in the sky.

Another film loop, described on page 33,

Chapter 6 of this Handbook, shows a similar

model based on a heliocentric theory.



Chapter 6 Does the Earth Move?—The Work of Copernicus and Tycho

EXPERIMENT 17

THE SHAPE OF THE EARTH'S ORBIT

Ptolemy and most of the Greeks thought

that the sun revolved around the earth. But

after the time of Copernicus the idea gradually

became accepted that the earth and other

planets revolve around the sun. Although you

probably believe the Copemican model, the

evidence of your senses gives you no reason to

prefer one model over the other.

With your unaided eyes you see the sun

going around the sky each day in what ap-

pears to be a circle. This apparent motion of

the sun is easily accounted for by imagining

that it is the earth wiiich rotates once a day.

But the sun also has a yearly motion with

respect to the stars. Even if we argue that the

daily motion of objects in the sky is due to the

turning of the earth, it is still possible to think

of the earth as being at the center of the uni-

verse, and to imagine the sun moving in a

year-long orbit around the earth. Simple mea-

surements show that the sun's angular size

increases and decreases slightly during the

year as if it were alternately changing its

distance from the earth. An interpretation that

fits these observations is that the sun travels

around the earth in a slightly off-center circle.

The purpose of this laboratory exercise is

to plot the sun's apparent orbit with as much
accuracy as possible.

Plotting the Orbit

You know the sun's direction on each date

that the sun is observed. From its observed

diameter on that date you can find its relative

distance from the earth. So, date by date, you

can plot the sun's direction and relative dis-

tance. When you connect your plotted points by

a smooth curve, you will have drawn the sun's

apparent orbit.

Fig. 6-1 Frame 4 of the Sun Filmstrip.

For observations you will use a series of

sun photographs taken by the U.S. Naval Ob-

servatory at approximately one-month inter-

vals and printed on a film strip. Frame 4, in

which the images of the sun in January and in

July are placed adjacent to each other, has

been reproduced in Fig. 6-1 so you can see how

B.C. By John Hart

By permission of John Hart and Field Enterprises, Inc.
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much the apparent size of the sun changes

during the year. Then note in Fig. 6-2 how the

apparent size of an object is related to its dis-

tance from you.

Fig. 6-2 When an object is closer to your eye, it looks

bigger; it fills a larger angle as seen by your eye. In fact,

the angles 0.^ and ^b are inversely proportional to the

distances EA and EB:

0B^EA
dj, EB

In this drawing EB = f EA, so angle ^b = I angle 0^-

Procedure

On a large sheet of graph paper (16" x 20",

or four 82"" X 11 "pieces taped together) make a

dot at the center to represent the earth. It is

particularly important that the graph paper be

this large if you are going on to plot the orbit of

Mars (Experiments 17 and 19) which uses the

results of the present experiment.

Take the 0° direction (toward a reference

point among the stars) to be along the graph-

paper lines toward the right. This will be the

direction of the sun as seen from the earth on
March 21. (Fig. 6-3) The dates of all the photo-

graphs and the directions to the sun, measured
counterclockwise from this zero direction, are

given in the table below. Use a protractor in

order to draw accurately a fan of lines radiat-

ing from the earth in these different directions.

March 21

April 6

May 6

June 5

Julys

Aug. 5

Sept. 4

I

^mrci^ d ^

Direction

from earth

to sun

Date

Direction

from earth

to sun

000°

015

045

074

102

132

162

Oct. 4

Nov. 3

Dec. 4

Jan. 4

Feb. 4

March 7

191°

220

250

283

315

346

I
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Measure carefully the diameter of the pro-

jected image on each of the frames of the

film strip. The apparent diameter of the sun

depends inversely on how far away it is. You

can get a set of relative distances to the sun

by choosing some constant and then dividing it

by the apparent diameters. An orbit with a

radius of about 10 cm will be a particularly

convenient size for later use. If you measure

the sun's diameter to be about 50 cm, a con-

venient constant to choose would be 500, since

-^-= 10. A larger image 51.0 cm in diameter

leads to a smaller earth-sun distance:

500

51.0
= 9.8 cm.

Make a table of the relative distances for

each of the thirteen dates.

Along each of the direction lines you have

drawn, measure off the relative distance to

the sun for that date. Through the points lo-

cated in this way draw a smooth curve. This

is the apparent orbit of the sun relative to the

earth. (Since the distances are only relative,

you cannot find the actual distance in miles

from the earth to the sun from this plot.)

Ql Is the orbit a circle? If so, where is the

center of the circle? If the orbit is not a circle,

what shape is it?

Q2 Locate the major axis of the orbit through

the points where the sun passes closest to and

farthest from the earth. What are the approxi-

mate dates of closest approach and greatest

distance? What is the ratio of the largest dis-

tance to the smallest distance?

A Heliocentric System
Copernicus and his followers adopted the

sun-centered model because they believed that

the solar system could be described more
simply that way. They had no new data that

could not be accounted for by the old model.

Therefore, you should be able to use the

same data to turn things around and plot the

earth's orbit around the sun. Clearly there's

going to be some similarity between the two
plots.

You already have a table of the relative

distances between the sun and the earth. The
dates of largest and smallest distances from

the earth won't change, and your table of

relative distances is still valid because it

wasn't based on which body was moving, only

on the distance between them. Only the direc-

tions used in your plotting will change.

To figure out how the angles will change,

remember that when the earth was at the

center of the plot the sun was in the direction

0° (to the right) on March 21.

Q3 This being so, what is the direction of the

earth as seen from the sun on that date? See if

you can't answer this question for yourself

before studying Fig. 6-4. Be sure you under-

stand it before going on.

direct)an
of vet^nal

March

Fig. 6-4

At this stage the end is in sight. Perhaps

you can see it already without doing any more

plotting. But if not, here is what you can do.

If the sun is in the 0° direction from the

earth, then from the sun the earth will appear

to be in just the opposite direction, 180° away
from 0°. You could make a new table of data

giving the earth's apparent direction from the

sun on the 12 dates, just by changing all the

directions 180° and then making a new sun-

centered plot. An easier way is to rotate your

plot until top and bottom are reversed; this will

change all of the directions by 180°. Relabel

the 0° direction; since it is toward a reference

point among the distant stars, it will still be

toward the right. You can now label the center

as the sun, and the orbit as the earth's.
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EXPERIMENT 18

USING LENSES TO MAKE A TELESCOPE
In this experiment, you will first examine

some of the properties of single lenses. Then,

you will combine these lenses to form a tele-

scope, which you can use to observe the moon,

the planets, and other heavenly (as well as

earth-bound) objects.

The Simple Magnifier

You certainly know something about

lenses already — for instance, that the best way
to use a magnifier is to hold it immediately in

front of the eye and then move the object you

want to examine untU its image appears in

sharp focus.

Examine some objects through several

different lenses. Try lenses of various shapes

and sizes. Separate the lenses that magnify

from those that don't. Describe the difference

between lenses that magnify and those that

do not.

Ql Arrange the lenses in order of their magni-

fying powers. Which lens has the highest

magnifying power?

Q2 What physical feature of a lens seems to

determine its power or ability to magnify — is it

diameter, thickness, shape, the curvature of

its surface? To vary the diameter, simply put

pieces of paper or cardboard with various sizes

of holes in them over the lens.

Sketch side views of a high-power lens, of

a low-power lens, and of the highest-power and

lowest-power lenses you can imagine.

Real Images
With one of the lenses you have used,

project an image of a ceiling light or an out-

door scene on a sheet of paper. Describe all the

properties of the image that you can observe.

An image that can be projected is called a real

image.

Q3 Do all your lenses form real images?

Q4 How does the size of the image depend on

the lens?

Q5 If you want to look at a real image without

using the paper, where do you have to put your

eye?

Q6 The image (or an interesting part of it) may
be quite small. How can you use a second lens

to inspect it more closely? Try it.

Q7 Try using other combinations of lenses.

Which combination gives the greatest mag-

nification?

Making a Telescope

With two lenses properly arranged, you can

magnify distant objects. Figure 6-5 shows a

simple assembly of two lenses to form a tele-

scope. It consists of a large lens (called the

objective) through which light enters and

either of two interchangeable lenses for eye-

pieces.

The following notes will help you assemble

your telescope.

1. If you lay the objective down on a fiat clean

surface, you will see that one surface is more

curved than the other. The more curved sur-

face should face the front of the telescope.

2. Clean dust, etc., off the lenses (using lens

tissue or clean handkerchief) before assembl-

ing and try to keep fingerprints off it during

assembly.

3. Wrap rubber bands around the slotted end

of the main tube to give a convenient amount

OgJBCT
K&Al^

O' R/fV6r

LOUJ-P00^6.^
^yc piece

Fig. 6-5
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of friction with the draw-tube — tight enough

so as not to move once adjusted, but loose

enough to adjust without sticking. Focus by

shding the draw tube with a rotating motion,

not by moving the eyepiece in the tube.

4. To use high power satisfactorily, a steady

support (a tripod) is essential.

5. Be sure that the lens lies flat in the high-

power eyepiece.

Use your telescope to observe objects in-

side and outside the lab. Low power gives

about 12X magnification. High power gives

about 30X magnification.

Mounting the Telescope
If no tripod mount is available, the tele-

scope can be held in your hands for low-power

observations. Grasp the telescope as far for-

ward and as far back as possible (Fig. 6-6) and

brace both arms firmly against a car roof,

telephone pole, or other rigid support.

With the higher power you must use a

mounting. If a swivel-head camera tripod is

available, the telescope can be held in a

wooden saddle by rubber bands, and the saddle

attached to the tripod head by the head's stan-

dard mounting screw. Because camera tripods

are usually too short for comfortable viewing

from a standing position, it is strongly recom-

mended that you be seated in a reasonably

comfortable chair.

Fig. 6-6

Aiming and Focusing

You may have trouble finding objects,

especially with the high-power eyepiece. One
technique is to sight over the tube, aiming
slightly below the object, and then to tilt the

tube up slowly while looking through it and
sweeping left and right. To do this well, you

will need some practice.

Focusing by pulling or pushing the sliding

tube tends to move the whole telescope. To
avoid this, rotate the sliding tube while moving
it as if it were a screw.

Eyeglasses will keep your eye farther from

the eyepiece than the best distance. Far-

sighted or near-sighted observers are gen-

erally able to view more satisfactorily by

removing their glasses and refocusing. Ob-

servers with astigmatism have to decide

whether or not the distorted image (without

glasses) is more annoying than the reduced

field of view (with glasses).

Many observers find that they can keep

their eye in line with the telescope while aim-

ing and focusing if the brow and cheek rest

lightly against the forefinger and thumb. (Fig.

6-6) When using a tripod mounting, remove

your hands from the telescope while actually

viewing to minimize shaking the instrument.

Limitations of Your Telescope
You can get some idea of how much fine

detail to expect when observing the planets by

comparing the angular sizes of the planets

with the resolving power of the telescope. For

a telescope with a 1 inch diameter object lens,

to distinguish between two details, they must

be at least 0.001° apart as seen from the loca-

tion of the telescope. The low-power Project

Physics eyepiece may not quite show this

much detail, but the high power will be more
than sufficient.

The angular sizes of the planets as viewed

from the earth are:

Venus:
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eyepiece that gave a much smaller field of

view.) You should find it challenging to see

whether you can observe all the phenomena
he saw which are mentioned in Sec. 7.7 of

the Text.

Observations You Can Make
The following group of suggested objects

have been chosen because they are (1) fairly

easy to find, (2) representative of what is to

be seen in the sky, and (3) very interesting. You

should observe all objects with the low power

first and then the high power. For additional

information on current objects to observe, see

the paperback New Handbook of the Heavens,

or the last few pages of each monthly issue of

the magazines Sky and Telescope, Natural

History, or Science News.

Venus: No features will be visible on this

planet, but you can observe its phases, as

shown in the photographs below (enlarged to

equal sizes) and on page 72 of the Unit 2 Text.

When Venus is very bright you may need to

reduce the amount of light coming through the

telescope in order to tell the true shape of the

image. A paper lens cap with a round hole in

the center will reduce the amount of light (and

the resolution of detail!) You might also try

using sunglasses as a filter.

Venus, photographed at Yerkes Observatory with the

82-inch reflector telescope.

Saturn: The planet is so large that you can

resolve the projection of the rings beyond the

disk, but you probably can't see the gap be-

tween the rings and the disk with your 30x

Saturn photographed with the 100-inch telescope at

Mount Wilson.

telescope. Compare your observations to the

sketches on page 73 of the Text.

Jupiter: Observe the four satellites that Galileo

discovered. Observe them several times, a few

hours or a day apart, to see changes in their

positions. By keeping detailed data over

several months time, you can determine the

period for each of the moons, the radii of their

orbits, and then the mass of Jupiter. (See the

notes for the Film Loop, "Jupiter Satellite

Orbit," in Chapter 8 of this Handbook for direc-

tions on how to analyze your data.)

Jupiter is so large that some of the detail

on its disk — like a broad, dark, equatorial cloud

belt — can be detected (especially if you know
it should be there!)

Jupiter photographed with the 200-inch telescope at

Mount Palomar.

Moon: Moon features stand out mostly because

of shadows. Best observations are made about

the time of half-moon, that is, around the first

and last quarter. Make sketches of your ob-

servations, and compare them to Galileo's

sketch on page 66 of your Text. Look carefully

for walls, mountains in the centers of craters,

bright peaks on the dark side beyond the

terminator, and craters in other craters.
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B.C. By John Hart

By permission of John Hart and Field Enterprises, I

The Pleiades: A beautiful little star cluster,

this is located on the right shoulder of the

bull in the constellation Taurus. These stars

are almost directly overhead in the evening

sky in December. The Pleiades were among the

objects Galileo studied with his first telescope.

He counted 36 stars, which the poet Tennyson
described as "a swarm of fireflies tangled in a

sUver braid."

The Hyades: This group of stars is also in Tau-

rus, near the star Aldebaran, which forms the

bull's eye. Mainly, the Hyades look like a "v."

The high-power may show that several stars

are double.

The Great Nebula in Orion: Look about halfway

down the row of stars that form the sword of

Orion. It is in the southeastern sky during

December and January. Use low power.

Algol: This famous variable star is in the

constellation Perseus, south of Cassiopeia.

Algol is high in the eastern sky in December,

and nearly overhead during January. Generally

it is a second-magnitude star, like the Pole

Star. After remaining bright for almost 2j days,

Algol fades for 5 hours and becomes a fourth-

magnitude star, like the faint stars of the Little

Dipper. Then, the variable star brightens dur-

ing 5 hours to its normal brightness. From one

minimum to the next, the period is 2 days, 20

hours, 49 minutes.

Great Nebula in Andromeda: Look high in the

western sky in the early evening in December
for this nebula, for by January it is low on the

horizon. It will appear like a fuzzy patch of

light, and is best viewed with low power. The
light you see from this galaxy has been on its

way for two million years.

The Milky Way: This is particularly rich in

Cassiopeia and Cygnus (if air pollution in

your area allows it to be seen at all).

B.C.

I THINK TWe MOOH
AND TUB «JnJ are
GOlN6> TO OCASH .

yepI ..•THey are.

By John Hart

By permission of John Hart and Field Enterprises, Inc.
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Fig. 6-7 Observing sunspots with a telescope.

Observing sunspots: DO NOT LOOK AT THE
SUN THROUGH THE TELESCOPE. THE
SUNLIGHT WILL INJURE YOUR EYES.
Figure 6-7 shows an arrangement of a tripod,

the low-power telescope, and a sheet of paper

for projecting sunspots. Cut a hole in a piece

of cardboard so it fits snugly over the object

end of the telescope. This acts as a shield so

there is a shadow area where you can view the

sunspots. First focus the telescope, using the

high-power eyepiece, on some distant object.

Then, project the image of the sun on a piece

of white paper a couple of feet behind the eye-

piece. Focus the image by moving the draw-

tube slightly further out. When the image is

in focus, you may see some small dark spots

on the paper. To tell marks on the paper from

sunspots, jiggle the paper back and forth. How

The sunspots of April 7, 1947.

can you tell that the spots aren't on the lenses?

By focusing the image farther from the tele-

scope, you can make the image larger and not

so bright. It may be easier to get the best focus

by moving the paper rather than the eyepiece

tube.

Drawings of the projected image of the sun on Aug. 26 and Aug. 27, 1966, drawn by

an amateur astronomer in Walpole, Mass.
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ACTIVITIES

TWO ACTIVITIES ON FRAMES OF
REFERENCE
1. You and a classmate take hold of opposite

ends of a meter stick or a piece of string a

meter or two long. If you rotate about on one

fixed spot so that you are always facing him
while he walks around you in a circle, you will

see him moving around you against a back-

ground of walls and furniture. But, how do you

appear to him? Ask him to describe what he

sees when he looks at you against the back-

ground of walls and furniture. How do your

reports compare? In what direction did you see

him move — toward your left or your right? In

which direction did he see you move — toward

his left or his right?

2. The second demonstration involves a

camera, tripod, blinky, and turntable. Mount
the camera on the tripod (using motor-strobe

bracket if camera has no tripod connection)

and put the blinky on a turntable. Aim the

camera straight down.

Take a time exposure with the camera at

rest and the blinky moving one revolution in a

circle. If you do not use the turntable, move
the blinky by hand around a circle drawn
faintly on the background. Then take a second

print, with the blinky at rest and the camera
on time exposure moved steadily by hand
about the axis of the tripod. Try to move the

camera at the same rotational speed as the

blinky moved in the first photo.

Can you tell, just by looking at the photos

whether the camera or the blinky was moving?

Nubbin

HOW
HUMIUAtlNS/

jVg ^^^N MAKING
A COMf^BTg FOOL

OP MVggUF/
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FILM LOOP

FILM LOOP 11 RETROGRADE MOTION
—HELIOCENTRIC MODEL

This film is based on a large heliocentric

mechanical model. Globes represent the earth

and a planet moving in concentric circles

around the sun (represented by a yellow globe).

The earth (represented by a light blue globe)

passes inside a slower moving outer planet

such as Mars (represented by an orange globe).

Then the earth is replaced by a camera
having a 25° field of view. The camera points

in a fixed direction in space, indicated by an

arrow, thus ignoring the daily rotation of the

earth and concentrating on the motion of the

earth relative to the sun.

The view from the moving earth is shown
for more than 1 year. First the sun is seen in

direct motion, then Mars comes to opposition

and undergoes a retrograde motion loop, and
finally you see the sun again in direct motion.

Scenes are viewed from above and along

the plane of motion. Retrograde motion occurs

whenever Mars is in opposition, that is, when-

ever Mars is opposite the sun as viewed from

the earth. But not all these oppositions take

place when Mars is in the sector the camera

sees. The time between oppositions averages

about 2.1 years. The film shows that the earth

moves about 2.1 times around its orbit between

oppositions.

You can calculate this value. The earth

makes one cycle around the sun per year and

Mars makes one cycle around the sun every

1.88 years,

motion are:

So the frequencies of orbital

fearth = 1 cyc/yr and fn,ars = 1 cyc/1.88 yr

= 0.532 cyc/yr

The frequency of the earth relative to Mars is

f — f
•earth •^mars'

fearth " fmars "" 1-00 cyc/yr - 0.532 cyc/yr

= 0.468 cyc/yr

That is, the earth catches up with and passes

Mars nnrp pvprvMars once every

0.468
= 2.14 years.

Note the increase in apparent size and

brightness of the globe representing Mars
when it is nearest the earth. Viewed with the

naked eye. Mars shows a large variation in

brightness (ratio of about 50:1) but always

appears to be only a point of light. With the

telescope we can see that the angular size also

varies as predicted by the model.

The heliocentric model is in some ways
simpler than the geocentric model of Ptolemy,

and gives the general features observed for the

planets: angular position, retrograde motion,

and variation in brightness. However, de-

tailed numerical agreement between theory

and observation cannot be obtained using

circular orbits.

A film of a similar model for the geocentric

theory of Ptolemy is described on page 147,

Chapter 5 of this Handbook.
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EXPERIMENT 19 THE ORBIT OF MARS
In this laboratory activity you will derive

an orbit for Mars around the sun by the same
method that Kepler used in discovering that

planetary orbits are elliptical. Since the obser-

vations are made from the earth, you will need

the orbit of the earth that you developed in

Experiment 17, "The Shape of the Earth's

Orbit." Make sure that the plot you use for this

experiment represents the orbit of the earth

around the sun, not the sun around the earth.

If you did not do the earth-orbit experi-

ment, you may use, for an approximate orbit,

a circle of 10 cm radius drawn in the center of

a large sheet of graph paper (16" x 20" or four

82" X 11" joined). Because the eccentricity of

the earth's orbit is very small (0.017) you can

place the sun at the center of the orbit without

introducing a significant error in this experi-

ment.

From the sun (at the center), draw a line to

the right, parallel to the grid of the graph

paper (Fig. 7-1). Label the line 0°. This line is

directed toward a point on the celestial sphere

called the vernal equinox and is the reference

direction from which angles in the plane of the

earth's orbit (the ecliptic plane) are measured.

The earth crosses this line on September 23.

When the earth is on the other side of its orbit

on March 21, the sun is between the earth and

the vernal equinox.

Marcb
of I'eyntl

Fig. 7-1

Photographic Observations of Mars
You will use a booklet containing sixteen

enlarged sections of photographs of the sky

showing Mars among the stars at various dates

between 1931 and 1950. All were made with

the same small camera used for the Harvard

Observatory Sky Patrol. In some of the photo-

graphs Mars was near the center of the field.

In many other photographs Mars was near the

edge of the field where the star images are

distorted by the camera lens. Despite these

distortions the photographs can be used to

provide positions of Mars that are satisfactory

for this study. Photograph P is a double ex-

posure, but it is still quite satisfactory.

Changes in the positions of the stars

relative to each other are extremely slow. Only

a few stars near the sun have motions large

enough to be detected after many years obser-

vations with the largest telescopes. Thus you

can consider the pattern of stars as fixed.

Finding Mars' Location

Mars is continually moving among the

stars but is always near the ecliptic. From
several hundred thousand photographs at the

Harvard Observatory sixteen were selected,

with the aid of a computer, to provide pairs of

photographs separated by 687 days - the period

of Mars around the sun as determined by

Copernicus. Thus, each pair of photographs

shows Mars at one place in its orbit.

During these 687 days, the earth makes
nearly two full cycles of its orbit, but the in-

terval is short of two full years by 43 days.

Therefore, the position of the earth, from

which we can observe Mars, will not be the

same for the two observations of each pair. If

you can determine the direction from the earth

towards Mars for each of the pairs of observa-

tions, the two sight lines must cross at a point

on the orbit of Mars. (See Fig. 7-2.)

Coordinate System Used
When you look into the sky you see no

coordinate system. Coordinate systems are

created for various purposes. The one used

here centers on the ecliptic. Remember that

the ecliptic is the imaginary line on the celes-

tial sphere along which the sun appears to

move.
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Fig. 7-2 Point 2 is the position of the earth 687 days

after leaving point 1. In 687 days. Mars has made ex-

actly one revolution and so has returned to the same
point on the orbit. The intersection of the sight lines

from the earth determines that point on Mars' orbit.

Along the ecliptic, longitudes are always

measured eastward from the 0° point (the

vernal equinox). This is toward the left on star

maps. Latitudes are measured perpendicular

to the ecliptic north or south to 90°. (The small

movement of Mars above and below the

ecliptic is considered in the Activity, "The

Inclination of Mars' Orbit.")

To find the coordinates of a star or of Mars

you must project the coordinate system upon

the sky. To do this you are provided with trans-

parent overlays that show the coordinate sys-

tem of the ecliptic for each frame, A to P. The
positions of various stars are circled. Adjust

the overlay until it fits the star positions. Then
you can read off the longitude and latitude of

the position of Mars. Figure 7-3 shows how you

can interpolate between marked coordinate

lines. Because you are interested in only a

small section of the sky on each photograph,

you can draw each small section of the ecliptic

as a straight line. For plotting, an accuracy of

2"° is satisfactory.

In a chart like the one shown in Figure 7-4,

record the longitude and latitude of Mars for

each photograph. For a simple plot of Mars'

orbit around the sun you will use only the first

column -the longitude of Mars. You will use

the columns for latitude. Mars' distance from

the sun, and the sun-centered coordinates if

A^
• T

e^

Fig. 7-3 Interpolation between cooromate lines. In

the sketch, Mars (M), is at a distance y° from the 170°

line. Take a piece of paper or card at least 10 cm long.

Make a scale divided into 10 equal parts and label

alternate marks ), 1,2, 3, 4, 5. This gives a scale in j°

steps. Notice that the numbering goes from right to

left on this scale. Place the scale so that the edge passes

through the position of Mars. Now tilt the scale so that

the and 5 marks each fall on a grid line. Read off the

value of y from the scale. In the sketch, y = lf°, so that

the longitude of M is ^7^J°.

you do the Activity on the inclination, or tilt, of

Mars' orbit on page 165.

Finding Mars' Orbit

When your chart is completed for all eight

pairs of observations, you are ready to locate

points on the orbit of Mars.

1. On the plot of the earth's orbit, locate the

position of the earth for each date given in the

Frame
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Fig. 7-5

16 photographs. You may do this by interpo-

lating between the dates given for the earth's

orbit experiment. Since the earth moves
through 360° in about 365 days, you may use
±1° for each day ahead or behind the date

given in the previous experiment. For example,

frame A is dated March 21. The earth was at

166° on March 7: fourteen days later on March
21, the earth will have moved 14° from 166° to

180°. Always work from the earth-position date

nearest the date of the Mars photograph.

2. Through each earth-position point draw a

"0° line" parallel to the line you drew from the

sun toward the vernal equinox (the grid on the

graph paper is helpful). Use a protractor and a

sharp pencil to mark the angle between the

0° line and the direction to Mars on that date

as seen from the earth (longitude of Mars). The
two lines drawn from the earth's positions for

each pair of dates will intersect at a point. This

is a point on Mars' orbit. Figure 7-5 shows one

point on Mars' orbit obtained from the data of

the first pair of photographs. By drawing the

intersecting lines from the eight pairs of posi-

tions, you establish eight points on Mars' orbit.

3. You will notice that there are no points in

one section of the orbit. You can fill in the

missing part because the orbit is symmetrical

about its major axis. Use a compass and, by

trial and error, find a circle that best fits the

plotted points. Perhaps you can borrow a

French curve or long spline from the mechani-

cal drawing or mathematics department.

Now that you have plotted the orbit, you

have achieved what you set out to do: you have

used Kepler's method to determine the path of

Mars around the sun.

If you have time to go on, it is worthwhile

to see how well your plot agrees with Kepler's

generalization about planetary orbits.

Kepler's Laws from Your Plot

Ql Does your plot agree with Kepler's con-

clusion that the orbit is an ellipse?

Photographs of Mars made with a 60 inch reflecting telescope (Mount Wilson and Palomar Observatories) during clos-

est approach to the earth in 1956. Left: August 10; right: Sept. 11. Note the shrinking of the polar cao
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Q2 What is the average sun-to-Mars distance

in AU?
Q3 As seen from the sun, what is the direction

(longitude) of Mars' nearest and farthest

positions?

Q4 During what month is the earth closest to

the orbit of Mars? What would be the mini-

mum separation between the earth and Mars?

Q5 What is the eccentricity of the orbit of

Mars?

Q6 Does your plot of Mars' orbit agree with

Kepler's law of areas, which states that a line

drawn from the sun to the planet sweeps out

areas proportional to the time intervals? From
your orbit, you see that Mars was at point B'

on February 5, 1933, and at point C on April

20, 1933, as shown in Fig. 7-6. There are eight

such pairs of dates in your data. The time

intervals are different for each pair.

Connect these pairs of positions with a

line to the sun (Fig. 7-6). Find the areas of

squares on the graph paper (count a square

when more than half of it lies within the area).

Divide the area (in squares) by the number of

days in the interval to find an "area per day"

value. Are these values nearly the same?

Q7 How much (by what percentage) do they

vary?

Q8 What is the uncertainty in your area mea-

surements?

Q9 Is the uncertainty the same for large areas

as for small?

QIO Do your results bear out Kepler's law of

areas?

This is by no means all that you can do

with the photographs you used to make the

plot of Mars' orbit. If you want to do more, look

at the Activity, "The Inclination of Mars'

Orbit."

Fig. 7-6 In this example, the time interval is 74 days.

^/KRTi^'^ o/?g/:

APRIL ao. 1^33

Television picture of a 40 x 50 mile area just below Mars'

equator, radioed from the Mariner 6 Mars probe during

its 1969 fly-by.
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Fig. 7-7 Mercury, first quarter phase, taken June 7, 1 934 at the Lowell Observatory, Flagstaff, Ariz.

EXPERIMENT 20

THE ORBIT OF MERCURY
Mercury, the innermost planet, is never

very far from the sun in the sky. It can be seen

only close to the horizon, just before sunrise

or just after sunset, and viewing is made dif-

ficult by the glare of the sun. (Fig. 7-7.)

Except for Pluto, which differs in several

respects from the other planets. Mercury has

the most eccentric planetary orbit in our solar

system (e = 0.206). The large eccentricity of

Mercury's orbit has been of particular impor-

tance, since it has led to one of the tests for

Einstein's General Theory of Relativity. For a

planet with an orbit inside the earth's, there

is a simpler way to plot the orbit than by the

paired observations you used for Mars. In this

experiment you will use this simpler method to

get the approximate shape of Mercury's orbit.

Mercury's Elongations

Let us assume a heliocentric model for the

solar system. Mercury's orbit can be found

from Mercury's maximum angles of elonga-

tion east and west from the sun as seen from

the earth on various known dates.

^|\R.lH'^.pR8,j.

BARJH
Fig. 7-8 The greatest western elongation of Mercury.

May 25, 1964. The elongation had a value of 25' West.

The angle (Fig. 7-8), between the sun and

Mercury as seen from the earth, is called the

"elongation." Note that when the elongation

reaches its maximum value, the sight lines
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from the earth are tangent to Mercury's orbit.

Since the orbits of Mercury and the earth

are both elhptical, the greatest value of the

elongation varies from revolution to revolution.

The 28° elongation given for Mercury on page

14 of the Text refers to the maximum value.

Table 1 gives the angles of a number of these

greatest elongations.

TABLE 1 SOME DATES AND ANGLES OF GREATEST
ELONGATION FOR MERCURY (from the

American Ephemeris and Nautical Almanac)

Date
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Measure the greatest diameter of the orbit

along the Hne perihehon-sun-aphelion. Since

10.0 cm corresponds to one AU (the semi-

major axis of the earth's orbit) you can now
obtain the semi-major axis of Mercury's orbit

in AU's.

Calculating Orbital Eccentricity

Eccentricity is defined as e = da (Fig. 7-9).

Since c, the distance from the center of Mer-

cury's ellipse to the sun, is small on your plot,

you lose accuracy if you try to measure it

directly.

From Fig. 7-9, you can see that c is the

difference between Mercury's perihelion dis-

tance Rp and the semi-major axis a. That is:

a-Rr

So
c

e = —
a

a

a

You can measure Rp and a with reason-

able accuracy from your plotted orbit. Compute
e, and compare your value with the accepted

value, e == 0.206.

Kepler's Second Law
You can test Kepler's equal-area law on

your Mercury orbit in the same way as that

described in Experiment 19, The Orbit of Mars.

By counting squares you can find the area

swept out by the radial line from the sun to

Mercury between successive dates of observa-

tion, such as January 4 to February 14, and

June 13 to August 24. Divide the area by the

number of days in the interval to get the "area

per day." This should be constant, if Kepler's

law holds for your plot. Is it constant?

Fig. 7-9

THE WIZARD OF ID

YOO MADB AN eeSOfZ OH IVB UMMi.

THP 1?ELATIVE,5PFED...>I VAUUf^ TZ>

"THr FlPrK PIWVER. BATHFI? TWM Cl/BED.

VVtPF TfSiJe. WS WOULD
BE IN/ Tfcnwu
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By Parker and Hart

By permission of John Hart and Field Enterprises, Inc.



ACTIVITIES

165

THREE-DIMENSIONAL MODEL OF TWO
ORBITS

You can make a three-dimensional model
of two orbits quickly with two small pieces of

cardboard (or 3" x 5" cards). On each card draw
a circle or ellipse, but have one larger than the

other. Mark clearly the position of the focus

(sun) on each card. Make a straight cut to the

sun, on one card from the left, on the other

from the right. Slip the cards together until

the sun-points coincide. (Fig. 7-10) Tilt the two

cards (orbit planes) at various angles.

^CU9T\c9Uiv\\^ \

Fig. 7-10

INCLINATION OF MARS' ORBIT
When you plotted the orbit of Mars in Ex-

periment 17, you ignored the slight movement
of the planet above and below the ecliptic.

This movement of Mars north and south of the

ecliptic shows that the plane of its orbit is

slightly inclined to the plane of the earth's

orbit. In this activity, you may use the table of

values for Mars latitude (which you made in

Experiment 17) to determine the inclination

of Mar's orbit.

Do the activity, "Three-dimensional model

of two orbits," just before this activity, to see

exactly what is meant by the inclination of

orbits.

Theory

From each of the photographs in the set

of 16 that you used in Experiment 17, you can

find the observed latitude (angle from the

ecliptic) of Mars at a particular point in its

orbital plane. Each of these angles is mea-

sured on a photograph taken from the earth.

As you can see from Fig. 7-11, however, it is

the sun, not the earth, which is at the center

."^JAU

ill AU
d = /.,

Fig. 7-11

of the orbit. The inclination of Mars' orbit

must, therefore, be an angle measured at the

sun. It is this angle (the heliocentric latitude)

that you wish to find.

Figure 7-11 shows that Mars can be repre-

sented by the head of a pin whose point is

stuck into the ecliptic plane. We see Mars from

the earth to be north or south of the ecliptic,

but we want the N-S angle of Mars as seen

from the sun. The following example shows

how you can derive the angles as if you were

seeing them from the sun.

In Plate A (March 21, 1933), Mars was
about 3.2° north of the ecliptic as seen from
the earth. But the earth was considerably

closer to Mars on this date than the sun was.

Can you see how the angular elevation of Mars
above the ecliptic plane as seen from the sun

will therefore be considerably less than 3.2°?

For very small angles, the apparent angu-

lar sizes are inversely proportional to the

distances. For example, if the sun were twice

as far from Mars as the earth was, the angle

at the sun would be 7 the angle at the earth.

Measurement on the plot of Mars' orbit

(Experiment 17) gives the earth-Mars distance

as 9.7 cm (0.97 AU) and the distance sun-Mars

as 17.1 cm (1.71 AU) on the date of the photo-
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graph. The heUocentric latitude of Mars is

therefore

9.7

17.1
X 3.2°N = 1.8°N

You can check this value by finding the helio-

centric latitude of this same point in Mars'

orbit on photograph B (February 5, 1933). The
earth was in a different place on this date so

the geocentric latitude and the earth-Mars

distance will both be different, but the helio-

centric latitude should be the same to within

your experimental uncertainty.

Making the Measurements
Turn to the table you made that is like

Fig. 7-4 in Experiment 17, on which you re-

corded the geocentric latitudes \g of Mars. On
your Mars' orbit plot from Experiment 17, mea-
sure the corresponding earth-Mars and sun-

Mars distances and note them in the same table.

From these two sets of values, calculate

the heliocentric latitudes as explained above.

The values of heliocentric latitude calculated

from the two plates in each pair (A and B, C
and D, etc.) should agree within the limits of

your experimental procedure.

On the plot of Mars' orbit, measure the

heliocentric longitude K for each of the eight

Mars positions. Heliocentric longitude is mea-

sured from the sun, counterclockwise from the

0° direction (direction toward vernal equinox),

as shown in Fig. 7-12.

Complete the table given in Fig. 7-4,

Experiment 17, by entering the earth-to-Mars

Fig. 7-12 On February 5, the heliocentric longitude

(\h) of Point B on Mars' orbit is 150°; the geocentric

longitude (\,) measured from the earth's position

is 169°.

and sun-to-Mars distances, the geocentric and
heliocentric latitudes, and the geocentric and
heliocentric longitudes for all sixteen plates.

Make a graph, like Fig. 7-13, that shows
how the heliocentric latitude of Mars changes

with its heliocentric longitude.

310' LOVtflTUOe

5

Fig. 7-13 Change of Mars' heliocentric latitude with

heliocentric longitude. Label the ecliptic, latitude,

ascending node, descending node and inclination of

the orbit in this drawing.

From this graph, you can find two of the

elements that describe the orbit of Mars with

respect to the ecliptic. The point at which Mars
crosses the ecliptic from south to north is

called the ascending node. (The descending

node, on the other side of the orbit, is the point

at which Mars crosses the ecliptic from north

to south.)

The angle between the plane of the earth's

orbit and the plane of Mars' orbit is the inclina-

tion of Mars' orbit, i. When Mars reaches its

maximum latitude above the ecliptic, which
occurs at 90° beyond the ascending node, the

planet's maximum latitude equals the inclina-

tion of the orbit, i.

Elements of an Orbit

Two angles, the longitude of the ascending

node, n, and the inclination, i, locate the plane

of Mars' orbit with respect to the plane of the

ecliptic. One more angle is needed to orient the

orbit of Mars in its orbital plane. This is the

"argument of perihelion" a>. shown in Fig. 7-14

which is the angle in the orbit plane between

the ascending node and perihelion point. On
your plot of Mars' orbit measure the angle from

the ascending node H to the direction of peri-
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J

Fig. 8-2a Fig. 8-2b

J

Fig. 8-2c

You can now proceed to plot an approxi-

mate comet orbit if you will make these addi-

tional assumptions:

1. The force on the comet is an attraction

toward the sun.

2. The force of the blow varies inversely with

the square of the comet's distance from the

sun.

3. The blows occur regularly at equal time

intervals, in this case, 60 days. The magnitude

of each brief blow is assumed to equal the

total effect of the continuous attraction of the

sun throughout a 60-day interval.

Effect of the Central Force

From Newton's second law you know that

the gravitational force will cause the comet

to accelerate toward the sun. If a force F acts

for a time interval At on a body of mass m, you

know that

F =ma = TM-r— and therefore
At

At;=—Atm
This equation relates the change in the

body's velocity to its mass, the force, and the

time for which it acts. The mass m is constant.

So is At (assumption 3 above). The change in

velocity is therefore proportional to the force,

Ai^ SE f But remember that the force is not

constant in magnitude; it varies inversely with

the square of the distance from comet to sun.

Q4 Is the force of a blow given to the comet

when it is near the sun greater or smaller than

one given when the comet is far from the sun?

Q5 Which blow causes the biggest velocity

change?

In Fig. 8-2a the vector v^q represents the

comet's velocity at the point A. During the first

60 days, the comet moves from A to B (Fig.

8-2b). At B a blow causes a velocity change
AiJ!, (Fig. 8-2c). The new velocity after the blow

is t7, = i/q + Ax/j, and is found by completing the

vector triangle (Fig. 8-2d).

The comet therefore leaves point B with

velocity z^, and continues to move with this

velocity for another 60-day interval. Because
the time intervals between blows are always

the same (60 days), the displacement along the

path is proportional to the velocity, "v. You
therefore use a length proportional to the

comet's velocity to represent its displacement

during each time interval. (Fig. 8-2e.)

Each new velocity is found, as above, by

adding to the previous velocity the Az^given by

the blow. In this way, step by step, the comet's

orbit is built up.
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Scale of the Plot

The shape of the orbit depends on the ini-

tial position and velocity, and on the force

acting. Assume that the comet is first spotted

at a distance of 4 AU from the sun. Also as-

sume that the comet's velocity at this point is

v^2 AU per year (about 20,000 miles per hour)

at right angles to the sun-comet distance R.

The following scale factors will reduce the

orbit to a scale that fits conveniently on a

16" X 20" piece of graph paper. (Make this up

from four S"!"" x 11" pieces if necessary.)

1. Let 1 AU be scaled to 2.5 inches (or 6.5 cm)
so that 4 AU becomes 10 inches (or about

25 cm).

2. Since the comet is hit every 60 days, it is

convenient to express the velocity in AU per

60 days. Suppose you adopt a scale factor in

which a velocity vector of 1 AU/60 days is

represented by an arrow 2.5 inches (or 6.5 cm)
long.

The comet's initial velocity of 2 AU per

year can be given as 2/365 AU per day, or 2/365

X 60 = 0.33 AU per 60 days. This scales to an

arrow 0.83 inches (or 2.1 1 cm) long. This is the

displacement of the comet in the first 60 days.

Computing Ai^

On the scale and with the 60-day iteration

interval that has been chosen, the force field

of the sun is such that the Av given by a blow

when the comet is 1 AU from the sun is 1

AU/60 days.

To avoid computing At; for each value of i?,

you can plot Az; against i? on a graph. Then for

any value of R you can immediately find the

value of At;.

Table 1 gives values of R in AU and in

inches and in centimeters to fit the scale of

your orbit plot. The table also gives for each

value of R the corresponding value of Ai» in

AU/60 days and in inches and in centimeters

to fit the scale of your orbit plot.



Experiment 21 173

fru T!-

::; :r.z

^\\\\^^X\\\\^\

^4=^'A ce/sn^ OP FoRc e i l-i-i ! II , !

Fig. 8-4

You can use this curve as a simple graphi-

cal computer. Cut off the bottom margin of the

graph paper, or fold it under along the R axis.

Lay this edge on the orbit plot and measure
the distance from the sun to a blow point (such

as B in Fig. 8-4). With dividers or a drawing

compass pick off the value of Av corresponding

to this R and lay off this distance along the

radius line toward the sun (see Fig. 8-4).

Making the Plot

1. Mark the position of the sun S halfway up

the large graph paper (held horizontally) and

12 inches (or 30 cm) from the right edge.

2. Locate a point 10 inches (or 25 cm), 4 AU,
that is, to the right from the sun S. This is point

A where you first find the comet.

Vn

3. To represent the comet's initial velocity

draw vector AB perpendicular to SA. B is the

comet's position at the end of the first 60-day

interval. At B a blow is struck which causes a

change in velocity Av^.

4. Use your Ai; graph to measure the distance

of B from the sun at S, and to find Ax;, for this

distance (Fig. 8-4).

5. The force, and therefore the change in ve-

locity, is always directed toward the sun. From
B lay off Av'i toward S. Call the end of this

short line M. »

6. Draw the line BC, which is a continuation

of AB and has the same length as AB. That is
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where the comet would have gone in the next

60 days if there had been no blow at B.

7. The new velocity after the blow is the vector

sum of the old velocity (represented by BC)
and At! (represented by BM). To find the new

velocity v'l draw the line C'C parallel to BM

and of equal length. The line BC represents

the new velocity vector t?i, the velocity with

which the comet leaves point B.

i A

8. Again the comet moves with uniform

velocity for 60 days, arriving at point C. Its

displacement in that time is Ad, =Ty, x 60 days,

and because of the scale factor chosen, the

displacement is represented by the line BC.

9. Repeat steps 1 through 8 to establish point

D and so forth, for at least 14 or 15 steps (25

steps gives the complete orbit).

10. Connect points A, B, C . . . with a smooth

curve. Your plot is finished.

Prepare for Discussion

Since you derived the orbit of this comet, you

may name the comet.

Q6 From your plot, find the perihelion distance.

Q7 Find the center of the orbit and calculate

the eccentricity of the orbit.

Q8 What is the period of revolution of your

comet? (Refer to Text, Sec. 7.3.)

Q9 How does the comet's speed change with

its distance from the sun?

If you have worked this far, you have

learned a great deal about the motion of this

comet. It is interesting to go on to see how well

the orbit obtained by iteration obeys Kepler's

laws.

QIO Is Kepler's law of ellipses confirmed?

(Can you think of a way to test your curve to

see how nearly it is an ellipse?)

Qll Is Kepler's law of equal areas confirmed?

To answer this remember that the time

interval between blows is 60 days, so the comet

is at positions B, C, D . . . , etc., after equal time

intervals. Draw a line from the sun to each of

these points (include A), and you have a set of

triangles.

Find the area of each triangle. The area A
of a triangle is given by A = jab where a and b

are altitude and base, respectively. Or you can

count squares to find the areas.

More Things to Do
1. The graphical technique you have prac-

ticed can be used for many problems. You can

use it to find out what happens if different ini-

tial speeds and/or directions are used. You may
wish to use the 1/R- graph, or you may con-

struct a new graph. To do this, use a different

law (for example, force proportional to 1/R^, or

to 1/R or to R) to produce different paths; ac-

tual gravitational forces are not represented

by such force laws.

2. If you use the same force graph but reverse

the direction of the force to make it a repulsion,

you can examine how bodies move under such

a force. Do you know of the existence of any

such repulsive force?
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Spiral nebula in the constellation Leo. photographed by the 200-inch telescope at

Mount Palomar.
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ACTIVITIES
MODEL OF THE ORBIT OF HALLEY'S
COMET

Halley's comet is referred to several times

in your Text. You will find that its orbit has a

number of interesting features if you construct

a model of it.

Since the orbit of the earth around the sun

lies in one plane and the orbit of Halley's comet

lies in another plane intersecting it, you will

need two large pieces of stiff cardboard for

planes, on which to plot these orbits.

The Earth's Orbit

Make the earth's orbit first. In the center

of one piece of cardboard, draw a circle with a

radius of 5 cm (1 AU) for the orbit of the

earth. On the same piece of cardboard, also

draw approximate (circular) orbits for Mercury

(radius 0.4 AU) and Venus (radius 0.7 AU). For

this plot, you can consider that all of these

planets lie roughly in the one plane. Draw a

line from the sun at the center and mark this

line as 0° longitude.

The table on page 149 of this Handbook
lists the apparent position of the sun in the sky

on thirteen dates. By adding 180° to each of the

tabled values, you can get the position of the

earth in its orbit on those dates. Mark .these

positions on your drawing of the earth's orbit.

(If you wish to mark more than those thirteen

positions, you can do so by using the technique

described on page 160.)

The Comet's Orbit

Figure 8-9 shows the positions of Halley's

comet near the sun in its orbit, which is very

nearly a parabola. You will construct your own
orbit of Halley's comet by tracing Fig. 8-9 and
mounting the tracing on stiff cardboard.

Combining the Two Orbits

Now you have the two orbits, the comet's

and the earth's in their planes, each of which

contains the sun. You need only to fit the two

together in accordance with the elements of

orbits shown in Fig. 7-1 that you may have
used in the activity on the "Inclination of Mars
Orbit" in Chapter 7.

The line along which the comet's orbital

plane cuts the ecliptic plane is called the "line

of nodes." Since you have the major axis

drawn, you can locate the ascending node, in

the orbital plane, by measuring w, the angle

from perihelion in a direction opposite to the

comet's motion (see Fig. 8-9).

To fit the two orbits together, cut a narrow

slit in the ecliptic plane (earth's orbit) along

the line of the ascending node in as far as the

sun. The longitude of the comet's ascending

node n was at 57° as shown in Fig. 8-5. Then
slit the comet's orbital plane on the side of the

descending node in as far as the sun (see Fig.

8-6). Slip one plane into the other along the

cuts until the sun-points on the two planes

come together.

:r€fTjt3

Si-
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Fig. 8-6 hJOLJ&
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To establish the model in three dimen-

sions you must now fit the two planes together

at the correct angle. Remember that the in-

clination i, 162°, is measured upward (north-

ward) from the ecliptic in the direction of

n + 90° (see Fig. 8-7). When you fit the two

planes together you will find that the comet's

orbit is on the underside of the cardboard. The
simplest way to transfer the orbit to the top of

the cardboard is to prick through with a pin at

enough points so that you can draw a smooth
curve through them. Also, you can construct

a small tab to support the orbital plane in the

correct position.

Halley's comet moves in the opposite sense

to the earth and other planets. Whereas the

earth and planets move counterclockwise

when viewed from above (north of) the ecliptic,

Halley's comet moves clockwise.

If you have persevered this far, and your

model is a fairly accurate one, it should be easy

to explain the comet's motion through the sky

shown in Fig. 8-8. The dotted line in the figure

is the ecliptic.

With your model of the comet orbit you can

now answer some very puzzling questions

about the behavior of Halley's comet in 1910.

1. Why did the comet appear to move west-

ward for many months?

2. How could the comet hold nearly a station-

ary place in the sky during the month of April

1910?

Fig. 8-8 Motion of
NORTH

Fig. 8-7

3. After remaining nearly stationary for a

month, how did the comet move nearly half-

way across the sky during the month of May
1910?

4. What was the position of the comet in space

relative to the earth on May 19th?

5. If the comet's tail was many millions of

miles long on May 19th, is it likely that the

earth passed through part of the tail?

6. Were people worried about the effect a

comet's tail might have on life on the earth?

(See newspapers and magazines of 1910!)

7. Did anything unusual happen? How dense

is the material in a comet's tail? Would you

expect anything to have happened?

Halley's Comet in 1909-10.

llh lOh 2^h 23h
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The elements of Halley's comet are, approximately:

a (semi-major axis) 17.9 AU
e (eccentricity) 0.967

i (inclination Forbit plane) 162°

il (longitude of ascending node) 057°

&> (angle to perihelion) 112°

T (perihelion date) April 20, 1910

From these data we can calculate that the period is 76 years, and is 0.59 AU
the perihelion distance.
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OTHER COMET ORBITS
If you enjoyed making a model of the orbit

of Halley's comet, you may want to make
models of some other comet orbits. Data are

given below for several others of interest.

Encke's comet is interesting because it

has the shortest period known for a comet,

only 3.3 years. In many ways it is representa-

tive of all short-period comet orbits. All have

orbits of low inclination and pass near the

orbit of Jupiter, where they are often strongly

deviated. The full ellipse can be drawn at the

scale of 10 cm for 1 AU. The orbital elements

for Encke's comet are:

a = 2.22 AU
e = 0.85

i=15°

a = 335°

aj= 185°

From these data we can calculate that the

perihelion distance R^ is 0.33 AU and the

aphelion distance Ra is 4.11 AU.
The comet of 1680 is discussed extensively

in Newton's Principia, where approximate

orbital elements are given. The best parabolic

orbital elements known are:

T = Dec. 18, 1680

w = 350.7°

a = 272.2°

i = 60.16°

Ro = 0.00626 AU

April ^b April 27 April 30 May 2- May 3 May 4 May b

..May 15 May 25 May ze> June 5 June fo Jonc '^ June 11
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M. Babinet prevenu par sa portiere de la visite de la

comete. A lithograph by the French artist Honore

Daumier (1808-1879) Museum of Fine Arts, Boston.

Note that this comet passed very close to the

sun. At periheHon it must have been exposed

to intense destructive forces Hke the comet
of 1965.

Comet Candy (1960N) had the following

parabolic orbital elements:

T = Feb. 8, 1961

0)= 136.3°

n= 176.6

i= 150.9

Rp= 1.06 AU

FORCES ON A PENDULUM
If a pendulum is drawn aside and released

with a small sideways push, it will move in an
almost elliptical path. This looks vaguely like

Fig. 8-10

the motion of a planet about the sun. but there

are some differences.

To investigate the shape of the pendulum
orbit and see whether the motion follows the

law of areas, you can make a strobe photo with

the setup shown in Fig. 8-10. Use either an

electronic strobe flashing from the side, or use

a small light and AA battery cell on the pen-

dulum and a motor strobe disk in front of the

lens. If you put the tape over one slot of a 12-

slot disk to make it half as wide as the rest, it

will make every 12th dot fainter giving a

handy time marker, as shown in Fig. 8-11.

You can also set the camera on its back on the

floor with the motor strobe above it, and sus-

pend the pendulum overhead.

Are the motions and the forces similar for

the pendulum and the planets? The center of

force for planets is located at one focus of the

ellipse. Where is the center of force for the

Fig. 8-11
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(mi + 7n2)t n \-/R

R.

The arithmetic is greatly simplified if we
take the periods in years and the distances in

astronomical units (A.U.) which are both units

for the earth. The period of Kruger 60 is about

45 years. The mean distance of the com-

ponents can be found in seconds of arc from

the diagram above. The mean separation is

max + min 3.4 seconds +1.4 seconds

4.8 seconds = 2.4 seconds.

Earlier we found that the distance from the

sun to the pair is nearly 8.7 x 10^ A.U. Then the

mean angular separation of 2.4 seconds equals

2.4 X 8.7 X 10^ A.U.

2.1 X 10^
10 A.U.

or the stars are separated from each other by

about the same distance as Saturn is from the

sun.

Now, upon substituting the numbers into

the equation we have

(ttIi + m^X''pair
m,„n 45

1 ^ 10^

1

1000

2025
= 0.50,

or, the two stars together have about half the

mass of the sun.

We can even separate this mass into the

two components. In the diagram of motions

relative to the center of mass we see that one

star has a smaller motion, and we conclude

that it must be more massive. For the positions

of 1970 (or those observed a cycle earlier in

Peanuts

E h «° „ •

SECONDS OF ARC

Kruger 60's components trace elliptical orbits, indicated

by dots, around their center of mass, marked by a

double circle. For the years 1932 to 1975, each dot is

plotted on September 1. The outer circle is calibrated in

degrees, so the position angle of the companion may be

read directly, through the next decade. (Positions after

1965 by extrapolation from data for 1932 to 1965).

1925) the less massive star is 1.7 times farther

than the other from the center of mass. So the

masses of the two stars are in the ratio 1.7:1.

Of the total mass of the pair, the less massive

star has

1 + 1.7
X 0.5 = 0.18

the mass of the sun. while the other star has

0.32 the mass of the sun. The more massive

star is more than four times brighter than the

smaller star. Both stars are red dwarfs, less

massive and considerably cooler than the sun.

By Charles M. Schuiz

© 1961 United Features Syndicote, Inc.
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FILM LOOPS

FILM LOOP 12

JUPITER SATELLITE ORBIT
This time-lapse study of the orbit of Jupi-

ter's satellite, lo, was filmed at the Lowell

Observatory in Flagstaff, Arizona, using a

24-inch refractor telescope.

Exposures were made at 1-minute in-

tervals during seven nights in 1967. An almost

complete orbit of lo is reconstructed using all

these exposures.

The film first shows a segment of the orbit

as photographed at the telescope; a clock

shows the passage of time. Due to small er-

rors in guiding the telescope, and atmospheric

turbulence, the highly magnified images of

Jupiter and its satellites dance about. To
remove this unsteadiness, each image — over

2100 of them! -was optically centered in the

frame. The stabilized images were joined to

give a continuous record of the motion of lo.

Some variation in brightness was caused by

haze or cloudiness.

The four Galilean satellites are listed in

Table 1. On Feb. 3, 1967, they had the config-

uration shown in Fig. 8-12. The satellites move
nearly in a plane which we view almost edge-

on; thus they seem to move back and forth

along a line. The field of view is large enough
to include the entire orbits of I and II, but III

and IV are outside the camera field when they

are farthest from Jupiter.

The position of lo in the last frame of the

Jan. 29 segment matches the position in the

Business end of the 24-inch refractor at Lowell Ob-
servatory.

first frame of the Feb. 7 segment. However,

since these were photographed 9 days apart,

the other three satellites had moved varying

distances, so you see them pop in and out while

the image of lo is continuous. Lines identify

lo in each section. Fix your attention on the

steady motion of lo and ignore the comings and

goings of the other satellites.
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Fig. 8-12

Interesting Features of the Film

1. At the start lo appears almost stationary at

the right, at its greatest elongation; another

satellite is moving toward the left and over-

takes it.

2. As lo moves toward the left (Fig. 8-13), it

passes in front of Jupiter, a transit. Another

satellite, Ganymede, has a transit at about the

saroe^time. Another satellite moves toward the

^,«ght-apd disappears behind Jupiter, an occu-

^ lation: It is a very active scene! If you look

Nclo^eiy during the transit, you may see the

r

\

Fig. 8-13 Still photograph from Film Loop 12 showing

the positions of three satellites of Jupiter at the start of

the transit and occultation sequence. Satellite IV is out

of the picture, far to the right of Jupiter.

Fig. 8-14

shadow of Ganymede and perhaps that of lo,

on the left part of Jupiter's surface.

3. Near the end of the film, lo (moving toward

the right) disappears; an occulation begins.

Look for Jo's reappearance — it emerges from

an eclipse and appears to the right of Jupiter.

Note that lo is out of sight part of the time be-

cause it is behind Jupiter as viewed from the

earth and part of the time because it is in Jupi-

ter's shadow. It cannot be seen as it moves
from O to E in Fig. 8-14.

4. Jupiter is seen as a flattened circle because

its rapid rotation period (9 h 55 m) has caused

it to flatten at the poles and bulge at the

equator. The effect is quite noticeable: the

equatorial diameter 89,200 miles and the polar

diameter is 83,400 miles.

Measurements
1. Period of orbit. Time the motion between

transit and occulation (from B to D in Fig.

8-14), half a revolution, to find the period. The
film is projected at about 18 frames/sec, so that

the speed-up factor is 18 x 60, or 1080. How
can you calibrate your projector more accur-

ately? (There are 3969 frames in the loop.)

How does your result for the period compare
with the value given in the table?

2. Radius of orbit. Project on paper and mark
the two extreme positions of the satellite,
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farthest to the right (at A) and farthest to the

left (at C). To find the radius in miles, use

Jupiter's equatorial diameter for a scale.

3) Mass of Jupiter. You can use your values

for the orbit radius and period to calculate the

mass of Jupiter relative to that of the sun (a

similar calculation based on the satellite

Callisto is given in SG 8.9 of the Text). How
does your experimental result compare with

the accepted value, which is mj/ms = 1/1048?

FILM LOOP 13 PROGRAM ORBIT I

A student (right, Fig. 8-15) is plotting the

orbit of a planet, using a stepwise approxima-

tion. His teacher (left) is preparing the com-
puter program for the same problem. The
computer and the student follow a similar

procedure.

Fig. 8-15

The computer "language" used was
FORTRAN. The FORTRAN program (on a

stack of punched cards) consists of the "rules

of the game": the laws of motion and of gravi-

tation. These describe precisely how the cal-

culation is to be done. The program is trans-

lated and stored in the computer's memory
before it is executed.

The calculation begins with the choice of

initial position and velocity of the planet. The
initial position values of X and Y are selected

and also the initial components of velocity

XVEL and YVEL. (XVEL is the name of a

single variable, not a product of four variables

X, V, E, and L.)

Then the program instructs the computer

to calculate the force on the planet from the

sun from the inverse-square law of gravitation.

Newton's laws of motion are used to calculate

how far and in what direction the planet moves
after each blow.

The computer's calculations can be dis-

played in several ways. A table of X and Y
values can be typed or printed. An X-Y plotter

can draw a graph from the values, similar to

the hand-constructed graph made by the

student. The computer results can also be

shown on a cathode ray tube (CRT), similar to

that in a television set, in the form of a visual

trace. In this film, the X-Y plotter was the mode
of display used.

The dialogue between the computer and

the operator for trial 1 is as follows. The nu-

merical values are entered at the computer

typewriter by the operator after the computer

types the messages requesting them.

Computer: GIVE ME INITIAL POSITION IN
AU . . .

Operator: X = 4

Y =
Computer: GIVE ME INITIAL VELOCITY IN

AU/YR . . .

Operator: XVEL -
YVEL = 2

Computer: GIVE ME CALCULATION STEP
IN DAYS . . .

Operator: 60.

Computer: GIVE ME NUMBER OF STEPS
FOR EACH POINT PLOTTED . . .

Operator: 1.

Computer: GIVE ME DISPLAY MODE . . .

Operator: X-Y PLOTTER.
You can see that the orbit displayed on the

X-Y plotter, like the student's graph, does not

close. This is surprising, as you know that the

orbits of planets are closed. Both orbits fail to

close exactly. Perhaps too much error is intro-

duced by using such large steps in the step-by-

step approximation. The blows may be too

infrequent near perihelion, where the force is

largest, to be a good approximation to a con-

tinuously acting force. In the Film Loop,

"Program Orbit II," the calculations are based

upon smaller steps, and you can see if this ex-

planation is reasonable.
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FILM LOOP 14 PROGRAM ORBIT II

In this continuation of the film "Program
Orbit I," a computer is again used to plot a

planetary orbit with a force inversely propor-

tional to the square of the distance. The com-
puter program adopts Newton's laws of

motion. At equal intervals, blows act on the

body. We guessed that the orbit calculated in

the previous film failed to close because the

blows were spaced too far apart. You could

calculate the orbit using many more blows, but

to do this by hand would require much more
time and effort. In the computer calculation

we need only specify a smaller time interval

between the calculated points. The laws of

motion are the same as before, so the same
program is used.

A portion of the "dialogue" between the

computer and the operator for trial 2 is as

follows

:

Computer: GIVE ME CALCULATION STEP
IN DAYS . . .

Operator: 3.

Computer: GIVE ME NUMBER OF STEPS
FOR EACH POINT PLOTTED . . .

Operator: 7.

Computer: GIVE ME DISPLAY MODE . . .

Operator: X-Y PLOTTER.
Points are now calculated every 3 days (20

times as many calculations as for trial 1 on the

"Program Orbit I" film), but, to avoid a graph

with too many points, only 1 out of 7 of the

calculated points is plotted.

The computer output in this film can also

be displayed on the face of a cathode ray tube

(CRT). The CRT display has the advantage of

speed and flexibility and we will use it in the

other loops in this series, Film loops 15, 16 and

17. On the other hand, the permanent record

produced by the X-Y plotter is sometimes very

convenient.

Orbit Program
The computer program for orbits is written

in FORTRAN II and includes "ACCEPT"
(data) statements used on an IBM 1620 input

typewriter. (Example at the right.)

With slight modification it worked on a

CDC 3100 and CDC 3200, as shown in the film

PROORAM oRan

HAHVARD PROJECT PHYSICS ORBIT PROGRAM,
tMPIRlCAL VERIFICATION OF HEPLtRS LAWS
FROM NtWTONS LAW OF UNIVERSAL ORAVITATION.

G='>0.
« CALL HAHKF(0.«O.I
6 PRINT 7

7 FORMAT (9HG1VE ME Y )

X=0.
ACCEPT 5,Y
PRINT B

8 FORMAT (12HGIVE ME XVELl
5 FORMAT(F 10.6)

ACCEPT 5.XVEL
YVEL=0.
PRINT 9

9 FORMAT CgHGIVE ME DELTA IN OAYSt AND NUMBER BETWEEN PRINTS)
ACCEPT 5. DELTA
DELTA=DELTA/365.25
ACCEPT 5. PRINT
IPRINT = PRINT
INDEX =

NFALLS =

13 CALL MARKF (X.Y)
PRINT 10, X.Y

15 IFlSENSb SWITCH 3) 20,16
20 PRINT 21
10 FORMAT(2F7.3)

NFALLS = NFaLLS IPRINT
21 FORMAT (23HTURN OFF SFnSE SWITCH 3 )

22 CONTINUE
IF(SLNSE SWITCH 3) 22,'.

16 RADIUS = S0RTF(X»X Y«Y)
ACCEL = -6/(kA0IUS»RADIUS)
XACCtL = (X/RADIUS)«ACCEL
YACCEL = (Y/KADIUS)»ACCEL

FIRST TIME THROUGH WE WANT TO GO ONLY 1/2 DELTA
IF(lMbEX) 17,17,18

17 XVEL = XVEL 0.5 « XACCEL • JELTA
YVLL = YVLL 0.5 » YACC> L » DELTA
GO TO 19

DELTA V = ACCELLHATION TIMES DELTA T

18 XVEL = XVEL XACCEL » DELTA
YVEL = YVEL YACCEL « DELTA

DELTA X = XVELOCITY TIMtb DELTA T

19 X = X XVEL • DELTA
Y = Y YVtL » DELTA
INDEX = INDEX 1

IFdNDEX - NFhLLS) 15,15.13
cND

loops 13 and 14, "Program Orbit I" and "Pro-

gram Orbit II." With additional slight modifi-

cations (in statement 16 and the three suc-

ceeding statements) it can be used for other

force laws. The method of computation is the

scheme used in Project Physics Reader 1

"Newton's Laws of Dynamics." A similar pro-

gram is presented and explained in FORTRAN
for Physics (Alfred M. Bork, Addison-Wesley,

1967).

Note that it is necessary to have a sub-

routine MARK. In our case we used it to plot

the points on an X-Y plotter, but MARK could

be replaced by a PRINT statement to print

the X and Y coordinates.

FILM LOOP 15 CENTRAL FORCES-
ITERATED BLOWS

In Chapter 8 and in Experiment 19 and

Film Loop 13 on the stepwise approximation

or orbits we find that Kepler's law of areas

applied to objects acted on by a central force.

The force in each case was attractive and was

either constant or varied smoothly according
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to some pattern. But suppose the central force

is repulsive; that is, directed away from the

center? or sometimes attractive and some-

times repulsive? And what if the amount of

force applied each time varies unsystemati-

cally? Under these circumstances would the

law of areas still hold? You can use this film

to find out.

The film was made by photographing the

face of a cathode ray tube (CRT) which dis-

played the output of a computer. It is important

to realize the role of the computer program in

this film: it controlled the change in direction

and change in speed of the "object" as a re-

sult of a "blow." This is how the computer

program uses Newton's laws of motion to pre-

dict the result of applying a brief impulsive

force, or blow. The program remained the

same for all parts of the loop, just as Newton's

laws remain the same during all experiments

in a laboratory. However, at one place in the

program, the operator had to specify how he

wanted the force to vary.

Fig. 8-16

Random Blows

The photograph (Fig. 8-16) shows part of

the motion of the body as blows are repeatedly

applied at equal time intervals. No one decided

in advance how great each blow was to be.

The computer was programmed to select a

number at random to represent the magni-

tude of the blow. The directions toward or

away from the center were also selected at

random, although a slight preference for

attractive blows was built in so the pattern

would be likely to stay on the face of the CRT.

The dots appear at equal time intervals. The
intensity and direction of each blow is repre-

sented by the length of line at the point of the

blow.

Study the photograph. How many blows

were attractive? How many were repulsive?

Were any blows so small as to be negligible?

You can see if the law of areas applies to

this random motion. Project the film on a

piece of paper, mark the center and mark the

points where the blows were applied. Now
measure the areas of the triangles. Does the

moving body sweep over equal areas in equal

time intervals?

Force Proportional to Distance

If a weight on a string is pulled back and

released with a sideways shove, it moves in an

elliptical orbit with the force center (lowest

point) at the center of the ellipse. A similar

path is traced on the CRT in this segment of

the film. Notice how the force varies at dif-

ferent distances from the center. A smooth

orbit is approximated by the computer by

having the blows come at shorter time in-

tervals. In 2(a), 4 blows are used for a full or-

bit; in 2(b) there are 9 blows, and in 2(c), 20

blows which give a good approximation to

the ellipse that is observed with this force.

Geometrically, how does this orbit differ from

planetary orbits? How is it different physically?

Inverse-square Force

A similar program is used with two planets

simultaneously, but with a force on each

varying inversely as the square of the distance

from a force center. Unlike the real situation,

the program assumes that the planets do not

exert forces on one another. For the resulting

ellipses, the force center is at one focus (Kep-
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ler's first law), not at the center of the elHpse

as in the previous case.

In this film, the computer has done thou-

sands of times faster what you could do if you

had enormous patience and time. With the

computer you can change conditions easily,

and thus investigate many different cases and
display the results. And, once told what to do,

the computer makes fewer calculation errors

than a person!

FILM LOOP 16 KEPLER'S LAWS
A computer program similar to that used in

the film "Central forces — iterated blows"

causes the computer to display the motion of

two planets. Blows directed toward a center

(the sun), act on each planet in equal time in-

tervals. The force exerted by the planets on one

another is ignored in the program; each is at-

tracted only by the sun, by a force which varies

inversely as the square of the distance from

the sun.

Initial positions and initial velocities for

the planets were selected. The positions of the

planets are shown as dots on the face of the

cathode ray tube at regular intervals. (Many
more points were calculated between those

displayed.)

You can check Kepler's three laws by

projecting on paper and marking successive

positions of the planets. The law of areas can

be verified by drawing triangles and measur-

ing areas. Find the areas swept out in at least

three places: near perihelion, near aphelion,

and at a point approximately midway between

perihelion and aphelion.

Kepler's third law holds that in any given

planetary system the squares of the periods

of the planets are proportional to the cubes of

their average distances from the object around

which they are orbiting. In symbols,

T2 oc R 3

where T is the period and i?av is the average

distance. Thus in any one system, the value of

T^/Rav^ ought to be the same for all planets.

We can use this film to check Kepler's law

of periods by measuring T and for each of the

two orbits shown, and then computing T^/Rgv'

P

Fig. 8-17 The mean distance Ra,. of a planet P orbiting

about the sun is (Rp + F\J/2.

for each. To measure the periods of revolution,

use a clock or watch with a sweep second

hand. Another way is to count the number of

plotted points in each orbit. To find Rav for each

orbit, measure the perihelion and aphelion

distances (JRp and R^) and take their average

(Fig. 8-17).

How close is the agreement between your

two values of T-jR^^r'? Which is the greater

source of error, the measurement ofT or ofRav?

To check Kepler's first law, see if the orbit

is an ellipse with the sun at a focus. You can

use string and thumbtacks to draw an ellipse.

Locate the empty focus, symmetrical with

respect to the sun's position. Place tacks in a

Fig. 8-18
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board at these two points. Make a loop of string

as shown in Fig. 8-18.

Put your pencil in the string loop and draw

the ellipse, keeping the string taut. Does the

ellipse match the observed orbit of the planet?

What other methods can be used to find if a

curve is a good approximation to an ellipse?

You might ask whether checking Kepler's

laws for these orbits is just busy-work, since

the computer already "knew" Kepler's laws

and used them in calculating the orbits. But

the computer was not given instructions for

Kepler's laws. What you are checking is

whether Newton's laws lead to motions that

fit Kepler's descriptive laws. The computer

"knew" (through the program we gave it)

only Newton's laws of motion and the inverse-

square law of gravitation. This computation

is exactly what Newton did, but without the

aid of a computer to do the routine work.

FILM LOOP 17 UNUSUAL ORBITS
In this film a modification of the computer

program described in "Central forces — iterated

blows" is used. There are two sequences: the

first shows the effect of a disturbing force on

an orbit produced by a central inverse-square

force; the second shows an orbit produced by

an inverse-cube force.

The word "perturbation" refers to a small

variation in the motion of a celestial body

caused by the gravitational attraction of an-

other body. For example, the planet Neptune
was discovered because of the perturbation it

caused in the orbit of Uranus. The main force

on Uranus is the gravitational pull of the sun,

and the force exerted on it by Neptune causes

a perturbation which changes the orbit of

Uranus very slightly. By working backward,

astronomers were able to predict the position

and mass of the unknown planet from its small

effect on the orbit of Uranus. This spectacular

"astronomy of the invisible" was rightly re-

garded as a triumph for the Newtonian law of

universal gravitation.

Typically a planet's entire orbit rotates

slowly, because of the small pulls of other

planets and the retarding force of friction due

to dust in space. This effect is called "advance

of perihelion." (Fig. 8-19.) Mercury's perihelion

advances about 500 seconds of arc, (j°) per

century. Most of this was explained by per-

turbations due to the other planets. However,

about 43 seconds per century remained unex-

plained. When Einstein reexamined the nature

of space and time in developing the theory of

relativity, he developed a new gravitational

theory that modified Newton's theory in cru-

Flg. 8-19
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cial ways. Relativity theory is important for

bodies moving at high speeds or near massive

bodies. Mercury's orbit is closest to the sun

and therefore most affected by Einstein's

extension of the law of gravitation. Relativity

was successful in explaining the extra 43

seconds per century of advance of Mercury's

perehelion. But recently this "success" has

again been questioned, with the suggestion

that the extra 43 seconds may be explained

instead by a slight bulge of the sun at its

equator.

The first sequence shows the advance of

perihelion due to a small force proportional to

the distance R, added to the usual inverse-

square force. The "dialogue" between operator

and computer starts as follows:

PRECESSION PROGRAM WILL USE
ACCEL = GKR*R) + P*R

GIVE ME PERTURBATION P.

P= 0.66666.

GIVE ME INITIAL POSITION IN AU
X = 2.

Y = 0.

GIVE ME INITIAL VELOCITY IN AU/YR
XVEL = 0.

YVEL = 3.

The symbol * means multiplication in the

Fortran language used in the program. Thus
GKR*R) is the inverse-square force, and P*R
is the perturbing force, proportional to R.

In the second part of the film, the force is

an inverse-cube force. The orbit resulting from
the inverse-cube attractive force, as from
most force laws, is not closed. The planet

spirals into the sun in a "catastrophic" orbit.

As the planet approaches the sun, it speeds up,

so points are separated by a large fraction of a

revolution. Different initial positions and
velocities would lead to quite different orbits.

Man in observation chamber of the 200-inch reflecting telescope on Mt. Palomar.
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Johnson, Samuel, 118

Jupiter, 12, 14, 99

Galileo's observation of, 71-72

satellites of, 71

Kepler, Johannes, 4, 77

derives the orbit of the earth, 58

Dioptrice, 67

five perfect solids, 54

Harmony of the World (Har-

monices Mundi), 54, 66
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heliocentric theory, 55

Law of Areas, 57-59, 90, 93

Law of EUiptical Orbits, 60-61,

63
Law of Periods (Harmonic

Law), 66-67, 90, 91

Laws of Planetary Motion, 100

model explaining planetary

orbits, 56

New Astronomy (Astronomia

Nova), 56, 57, 66

new concept of physical law, 68
notion of world as "clockwork,"

68
relationship with Galileo, 69

Rudolphine Tables, 67

study of the orbit of Mars, 56

use of logarithms, 67

Laplace, Marquis de, 119

Law of Areas, 57-59, 90, 93
Law of Elliptical Orbits, 60-61, 63
Law of Periods, 66-67, 90, 91

Law of Universal Gravity, 89, 91,

94, 100-101

Leap years, 8

Le Clerc, Sebastian, 116

Locke, John, 115

Logarithms, 67
Lucretius, 120

Luther, Martin, 41

Mars, 12

orbit derived, 58, 59

retrograde motion of, 12-13, 14

Mass-points, 99
Mercury, 12, 14

orbit of, 61

retrograde motion of, 12, 13

Milton, John
Paradise Lost, 51, 69

Moon
and month, 1

motions of, 11-12

path in sky, 12

phases of, 1

1

and tides, 106

Motion
epicylic, 23
natural, 89-90
under a central force, 93

Muslims, 3, 15

Neptune, 12, 110

Newton, Sir Isaac, 4, 18, 52, 1 14,

115, 117

and the apple, 94

concept of gravitational force,

68

Constant of Universal Gravita-

tion (G), 102-104, 108-109

and eclipses, 91

and gravitational force, 86, 94,

95

and hypotheses, 96-97
Law of Universal Gravitation,

89,91,94, 100-101

magnitude of planetary force,

98-99
mechanics, 112, 113

and natural motion, 89-90

and planetary motion, 102-104

Principia, 77, 83, 87, 88, 89, 97,

106, 111, 112, 117

reflecting telescope, 85

relationship with Halley, 87
"Rules of Reasoning in Philos-

ophy," 88-89
study of optics, 87
synthesis of earthly and heav-

enly motions, 95, 114—120
Theory of Light and Colors, 87

and the tides, 106-107

North Celestial Pole, 9

North star (see Polaris)

On the Revolutions of the Heav-

enly Spheres (Copernicus), 29
Opposition, 12

Orbit eccentricity periods, 61

Orbit shape, 61

Orbital speed, a general explana-

tion of, 64-65
Origins of Modern Science (But-

terfield),41

Origin of Species (Darwin), 5

Pantheism, 76

Parallax, 20
Pepys, Samuel, 81

Perihelion, 69
Phenomena, observation of, 17

Planets

angular distance from sun, 14

brightness of, 14

eccentricities of orbits, 61

masses of, 104, 105-106
opposition to sun, 12

periods around the sun, 33, 34
retrograde motion of, 12-14
size and shape of their orbits, 35

Planetary force, 98-99
Planetary motion, 102-104
Plato, 18, 19, 23, 29, 76

explanation of the moon's
phases, 12

four elements, 16

problem, 15-16

Pluto, 12, 14, 110

Polaris, 9

Pope, Alexander, 89, 118

Pope Gregory, 8

Pope Urban VIII, 75
Principia (Newton), 77, 83, 87,

88, 89, 97, 106, 111, 112, 117

Principle of Parsimony, 88

Ptolemy, Claudius, 23, 24, 40, 95
Almagest, 21, 31, 45
assumptions, 21

differences between his system
and Plato's, 21-22

disagrees vidth Aristarchus, 21-
22

geocentric system, 21-25
limitations of his model, 26

successes of his model, 25-26
system sketched, 24

Pythagoreans, 17

Quadrant, 48
Quantum mechanics, 113

Quintessence, 16

Refraction of light, 49
Relativity theory, 113

Renaissance movement, 3, 5

Retrograde motion, 12, 14, 20, 32,

37
created by epicycle machine, 23
drawings of, 13

and epicycle, 24
and heliocentric view of uni-

verse, 19

Rudolph II, 67
Rules of Reasoning in Philosophy

(Newtons), 88-89

Sabatelh, Luigi, 74

Saturn, 12, 14

retrograde motion of, 12-13

Schelling, Friedrich, 119

Scholastics, 74

Scientific Revolution, 4

Sidereus Niincius (Galileo), 70
Sizzi, Francesco, 74

Solar Ephemeris, 41-42
Starry Messenger (see Sidereus

Nuncius)
Stars

fixed, 9, 10

movement of, 8-10

Stroboscopic photographs, 23
Stonehenge, 2

Sun, see also heliocentric view of

universe
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its motion, 7, 10-11 Trinity College, Cambridge Uni- Universal gravitation, 89, 91, 94,

path (ecliptic), 10, 13 versity, 85 100-101
solar year, defined, 8 Tycho Brahe, 36, 44, 45, 46, 47, Uraniborg, 41

Sunspots, 72 48, 57, 61, 67 instruments there, 46
calibration of his instruments, Uranus, 12, 110

Telescope, 20, 45, 47, 50 47-48,49
Vpniit; 19 14

adapted by Galileo, 69, 70-71 compromise system, 49, 51
veiiu:,, i^, i^

reflecting, 85 discovers a new star, 45 v i
•' in

Tides, and universal gravitation, observatory, 46
vernal equmox, 10

106-107 observes comet, 45, 47 Wilson, James, 117
Triangle, area of, 64 quadrant, 48 William the Conqueror, 108
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INDEX/HANDBOOK

Activities

build a sundial, 144

celestial sphere model, 141

conic-sections models, 168

demonstrating satellite orbits, 167

discovery of Neptune and Pluto, 181

epicycles and retrograde motion, 139

finding earth-sun distance from Venus photos,

168

forces on a pendulum, 179

Galileo, 168

haiku, 181

how long is a sidereal day?, 143

how to find the mass of a double star, 181-83

inclination of Mars' orbit, 165

literature, 144

making angular measurements, 138

measuring irregular areas, 168

model of the orbit of Halley's comet, 176

moon crater names, 144

other comet orbits, 179

plot an analemma, 144

scale model of the solar system, 143

size of the earth—simplified version, 145

Stonehenge, 144

three-dimensional model of two orbits, 165

trial of Copernicus, 181

two activities on frames of reference, 156

Algol, 154

Analemma, plotting of, 144

Andromeda, Great Nebula, 154

Angular measurements, 138-39

Astrolabe, 133-34

Astronomical unit, 143

Calendar, JuUan day, 130

Celestial sphere model, 141-43

Comets, orbit of, 170-74, 176-79

Constellations, 146

Computer program for orbits, 186-91

Conic-section models, 168

Coordinate system, 158-59

Copemican model, 148

Copernicus, mock trial of, 181

Crystal-sphere model of universe, 144

Declination, 142

Double star, mass of, 181-83

Earth, circumference of, 132-34

orbit, 148-50, 176

shape of, 134

size of, 145

Earth-sun distance, 168
Ecliptic, plane, 158

pole of, 141-42

Ellipse, pendulum motion in shape of orbit, 180

Epicycle machine, 139-40

Epicycles, photographing of, 140-41

Eratosthenes, 132

Experiments
height of Piton, a mountain on the moon, 135

naked-eye astronomy, 129

orbit of Mars, 158

orbit of Mercury, 162

shape of the earth's orbit, 148

size of the earth, 132

stepwise approximation to an orbit, 170

using lenses to make a telescope, 151

Film Strip : Retrograde Motion of Mars, 146

Film Loops

Central Forces—Iterated Blows, 187

Jupiter Satelhte Orbit, 184

Kepler's Laws, 189

Program Orbit I, 186

Program Orbit II, 187

Retrograde Motion—Geocentric Model, 147

Retrograde Motion—Heliocentric Model, 157

Retrograde Motion of Mars and Mercury, 147

Unusual Orbits, 190

Force

central, iterated blows, 187

inverse-square, 188

Frames of reference, 156

Galileo

moon observations, 135

Brecht's play, 167

Geocentric latitude and longitude, 166

Geocentric theory of Ptolemy, 157

Haiku, 181

Halley's comet, orbit, 176-78

Heliocentric latitude and longitude, 165-66

Heliocentric mechanical model, 157

Heliocentric system, 150

Irregular areas, measurement of, 168

Iteration of orbits, 170

Julian day calendar, 130

Jupiter, 147, 153

satelhte orbit, 184-86

Kepler's Laws
computer program for, 189-190

from orbital plot, 160-61

of areas, 161

second law, 164

Latitudes, measurement of , 159

Law of areas, Kepler's, 161

Laws of motion, Newton's, 170

Lenses, 151

Longitudes, measurement of, 159
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Mars, oppositions of, 147

orbit, 158-61

photographic observations of, 158

retrograde motion of, 146-47, 157

Mercury, elongations, 162-63

longitudes, 130

orbit, 162-63

retrograde motion of, 146-47

MilkyWay, 147, 154

Moon, 153

crater names, 144

height of a mountain on, 135

observations of, 129

phases of, 129

photographs of, 135, 137

surface of, 135-37

Naked-eye astronomy, 128-32

Neptune, predicting existence of, 181

Newton, laws of motion, 170

second law, 171

Objective lens, telescope, 151

Observations, moon, 129

sun's position, 128-29

Occultation, 185
Oppositions of Mars, 147

Orbit(s), comets, 170-80

computer program for, 186-91

earth, 148-50, 176

elements of, 166-67

Halley's comet, 176-79

Jupiter satellite, 184-86

Mars, 158-61

Mercury, 162-63

pendulum, 180-81

planetary, 158

satellite, 167-68, 170-76

sun, 148-50

three-dimensional model of , 165

Orbital eccentricity, calculation of, 164

Pendulum, orbit, 180-81

Piton, height of, 135-38

Planetary Longitudes Table, 130-31

Planet(s), location and graphing of, 130-32

orbits, 158

Pleiades, 146, 153

Pluto, predicting existence of, 181

Proper motion, 182

Ptolemaic model, 140

Ptolemy, geocentric theory of, 157

R^,., for an orbit, 163

Real image, 151

Retrograde motion, 139-40, 157

of Mars and Mercury, 146-47

Right ascension, 142

Satellite orbits, 167, 170-76

Saturn, 153

Semi-major axis, 163

Sidereal day, 143

Solar system, scale model of, 143

Stonehenge, 144

Sun, measurement of angle, 133-34

observations of position, 128-29

plotting orbit of, 148-50

Sundial, building of, 144

Sunspots, observation of, 154-55

Telescope, making and use of, 151-55

observations, 152-55

Terminator, 135

Transit, 185

Venus, 153, 168

Vernal equinox, 142
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Answers to End-of-Section Questions

Chapter 5

Q1 The sun would set 4 minutes later each day.

Q2 Calendars were needed to schedule agricultural

activities and religious rites.

Q3 The sun has a westward motion each day, an

eastward motion with respect to the fixed stars and

a north-south variation.

Q4

fsxil

|s+.^a'^r"N

than the planet. So the planet would appear to us to

be moving westward.

Q18 The direction to the stars should show an

annual shift—the annual parallax. (This involves a

very small angle and so could not be observed with

instruments available to the Greeks. It was first

observed in 1836 A. D.)

Q19 Aristarchus was considered to be impious

because he suggested that the earth, the abode of

human life, might not be at the center of the universe.

His system was neglected for a number of reasons:

^1) "Religious"— it displaced man from the center

of the universe.

(2) Scientific—stellar parallax was not observed.

(3) Practical— it predicted celestial events no better

than other, less offensive, theories.

3*^ onoritr

Q5 Eclipses do not occur each month, because

the moon and the earth do not have the same planes

of orbit.

Q6 Mercury and Venus are always found near the

sun, either a little ahead of it or a little behind it.

Q7 When in opposition, a planet is opposite the

sun; therefore the planet would rise at sunset and be

on the north-south line at midnight.

Q8 After they have been farthest east of the sun

and are visible in the evening sky.

Q9 When they are near opposition.

Q10 No, they are always close to the ecliptic.

Q11 How may the irregular motions of the planets

be accounted for by combinations of constant speeds

along circles?

Q12 Many of their written records have been

destroyed by fire, weathering and decay.

Q13 Only perfect circles and uniform speeds were

suitable for the perfect and changeless heavenly

bodies.

Q14 A geocentric system is an earth-centered

system. The yearly motion of the sun is

accounted for by assuming that it is attached to a

separate sphere which moves contrary to the motion

of the stars.

Q15 The first solution, as proposed by Eudoxus,

consisted of a system of transparent crystalline

spheres which turned at various rates around various

axes.

Q16 Aristarchus assumed that the earth rotated

daily—which accounted for all the daily motions

observed in the sky. He also assumed that the earth

revolved around the sun—which accounted for the

many annual changes observed in the sky.

Q17 When the earth moved between one of these

planets and the sun (with the planet being observed

in opposition), the earth would be moving faster

Chapter 6

Q1 The lack of uniform velocity associated with

equants was (1) not sufficiently absolute, (2) not

sufficiently pleasing to the mind.

Q2 (a) P, C
(b) P, C
(c)P

(d)C

(e) P. C
(f) C

Q3 The relative size of the planetary orbits as

compared with the distance between the earth and

the sun. These were related to the calculated periods

of revolution about the sun.

Q4 (b) and (d)

Q5 2° in both cases

Q6 No; precise computations required more small

motions than in the system of Ptolemy.

Q7 Both systems were about equally successful in

explaining observed phenomena.

Q8 The position of man and his abode, the earth,

were important in interpreting the divine plan of the

universe.

Q9 They are equally valid; for practical purposes

we prefer the Copernican for its simplicity.

Q10 He challenged the earth-centered world

outlook of his time and opened the way for later

modifications and improvements by Kepler, Galileo,

and Newton.

Q11 The appearance in 1572 of a "new star" of

varying brightness.

Q12 It included expensive equipment and facilities

and involved the coordinated work of a staff of

people.

Q13 They showed that comets were distant

astronomical objects, not local phenomena as had

been believed.

Q14 He made them larger and sturdier and devised

scales with which angle measurements could be

read more precisely.
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Q15 He analyzed the probable errors inherent in

each piece of his equipment; also he made

corrections for the effects of atmospheric refraction.

Q16 He kept the earth fixed as did Ptolemy and he

had the planets going around the sun as did

Copernicus.

Chapter 7

Q1 Finding out the correct motion of Mars through

the heavens.

Q2 By means of circular motion, Kepler could not

make the position of Mars agree with Tycho Brahe's

observations. (There was a discrepancy of 8 minutes

of arc in latitude.)

Q3 By means of triangulation, based on observa-

tions of the directions of Mars and the sun 687 days

apart, he was able to plot the orbit of the earth.

Q4 A line drawn from the sun to a planet sweeps

out equal areas during equal time intervals.

Q5 Where it is closest to the sun.

Q6 Mars has the largest eccentricity of the planets

Kepler could study.

Q7 (a) E

(b)A

(c) A + E (+ date of passage of perihelion, for

example)

Q8 The square of the period of any planet is

proportional to the cube of its average distance to

the sun.

Q9 Kepler based his laws upon observations, and

expressed them in a mathematical form.

Q10 Popular language, concise mathematical

expression.

Q11 Both the heliocentric and Tychonic theories.

Q12 The sunspots and the mountains on the moon
refuted the Ptolemaic assertion that all heavenly

bodies were perfect spheres.

Q13 Galileo's observations of the satellites of

Jupiter showed that there could be motions around

centers other than the earth. This contradicted basic

assumptions in the physics of Aristotle and the

astronomy of Ptolemy. Galileo was encouraged to

continue and sharpen his attacks on those earlier

theories.

Q14 No, they only supported a belief which he

already held.

Q15 Some believed that distortions in the telescope

(which were plentiful) could have caused the

peculiar observations. Others believed that

established physics, religion, and philosophy far

outweighed a few odd observations.

Q16 b, c (d is not an unreasonable answer since it

was by writing in Italian that he stirred up many
people.)

Chapter 8

Q1 The forces exerted on the planets are always

directed toward the single point where the sun is

located.

Q2 The formula for centripetal acceleration

Q3 That the orbit was circular

Q4 No, he included the more general case of all

conic sections (ellipses, parabolas and hyperbolas

as well as circles).

Q5 That one law would be sufficient to account for

both.

Q6 He thought it was magnetic and acted

tangentially.

Q7 The physics of motion on the earth and in the

heavens under one universal law of gravitation.

Q8 No, he thought it was sufficient to simply

describe and apply it.

Q9 An all pervasive ether transmitted the force

through larger distances.

Q10 He did not wish to use an hypothesis which

could not be tested.

Q11 Phenomenological and thematic

Q12 (a) The forces are equal.

(b) The accelerations are inversely propor-

tional to the masses.

Q13 (a) 2F

(b)3F

(c)6F

Q14 (b)F,3 = 4F^^

Q15 The values of the constant in Kepler's third law

T-/R^ = k as applies to satellites of each of the two

planets to be compared.

Q16 The numerical value of G
Q17 Fp^3^., m^, m,, R
Q18 The period of the moon and the distance

between the centers of the earth and the moon or

the ratio T^/R^.

Q19 Similar information about Saturn and at least

one of its satellites.

Q20 1/1000; that is, inversely proportional to the

masses.

Q21 On the near side the water is pulled away
from the solid earth; on the far side the solid

earth is pulled away from the water. Since F « 1 /R-

the larger R is, the smaller the corresponding F.

Q22 All of them

Q23 As the moon orbits its distance to the sun is

continually changing, thus affecting the net force on

the moon due to the sun and the earth. Also the

earth is not a perfect sphere.

Q24 (a), (b), and (c)

Q25 Influenceof sun and shape of earth

Q26 Comets travel on very elongated ellipses.

Q27 No
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Brief Answers to Study Guide Questions

Chapter 5

5.1 Information

5.2 Discussion

5.3 (a) 674 seconds

(b) 0.0021 %
5.4 Table

5.5 Discussion

5.6 Discussion

5.7 Discussion

5.8 102°, 78°, 78°, 102° starting with

the upper right quadrant.

5.9 (a) 15°

(b) Geometric proof and calcu-

lation; about 8000 miles.

5.10 a, b, c, d,e, f

5.11 Discussion

5.12 Discussion

Chapter 6
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