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MULTIDIMENSIONAL SCALING OF BINARY DATA
FOR HOMOGENEOUS GROUPS

Robert Redinger and Jagdish N. Sheth

INTRODUCTION

Inspired by measurement in the hard sciences, the first developed

techniques in multidimensional scaling (c.f., 20) required the input

data to be metric. However, the necessity of using metric data as input

required strong assumptions about the underlying psychological processes

(9, 11). One method of scaling psychological data while relaxing the

assumptions of the input data and the concomitant cognitive processes

is to collect lower order data (ordinal), find a function to transform

this data into a metric representation, and then input this transformed

data into existing metric multidimensional scaling techniques. Shepard

(13, 14) discusses the problems attendant with this approach and as an

alternative presents a method of multidimensional scaling (refined by

Kruskal (7, 8) ) that requires only ordinal data as input, yet produces

scales with metric properties.

The major advantage of nonmetric versus metric multidimensional

scaling is a relaxation in the assumptions of the underlying psychological

processes an individual uses in making judgements. As Shepard (11) noted,

qualitative judgements can be made with greater ease, assurance, validity,

and reliability than can quantitative judgements. However, several problems

can be identified with these nonmetric multidimensional scaling techniques.

First, an assumption of metric techniques is that the respondent be

consistent throughout the task with respect to the criteria used and the

quantification of that criteria. Nonmetric techniques, while they do not

require quantification, retain the assumption of consistancy of criteria.

Shepard (12) found that similarity judgements are likely to be influenced

by attention fluctuations, and Torgerson (18) reported that the judgements
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nay be affected by contextual effects.

Second, although the nonmetric methods require only ordinal properties

in the data, t.ie assumptions of ordint.lity must be met. If the basic

ordinal properties (properties that are empirically testable) are exhibited

by the data, the researcher is justified in using geometric models for

scaling. Thus, the use of nonmetric techniques depends on the validity

of the underlying ordinal assumptions (1). The more difficult the task,

the more likely it is the underlying assumptions of the psychological

process and of consistancy will not be met.

Task difficulty can be resolved primarily as a function of the number

of stimuli and the requirements of the task. As the number of stimuli

increases, the difficulty of the task increases. The rank ordering of

similarities of all possible pairs (990) of forty-five stimuli is a more

difficult task than the rank ordering of all possible pairs (45) of ten

stimuli. Rao and Katz (10) state that methods of collecting similarities

data (magnitude estimation, ranking of all possible pairs, n-dimensional

rank ordering) for large stimulus sets are cumbersome and may render judgements

meaningless.

Further, different techniques require different types of data. The

less invariant the data is to be (metric vs. ordinal), the more restrictive

the assumptions of the underlying process, and hence, the task will be more

difficult. For example, the question "How much greater is A than B?", which

would yield interval data, is a more difficult task than that represented by

the question "Which is greater, A or B?", which would yield ordinal data.

The third problem associated with nonmetric techniques is that these

methods require assumptions on the part of the researcher as to the dimension-

ality of the underlying process and the metric to be used for calculating

distances and scaling stimuli. The calculations in these techniques are
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based on the minimization of some criterion of error. Hence, if the under-

lying model (i.e., dimensionality and metric) is inappropriate, the procedures

will calculate results capitalizing on the noise in the data, making interpre-

tation difficult and statistical inferences to populations cr across similar

experiments unlikely (1).

What is needed then are simpler data collection procedures to handle

the first two problems and simpler analytic procedures (at least in terms of

fewest assumptions) to handle the third problem. Due to the large number of

stimuli necessary for many marketing studies, attention has focused en providing

alternative methods of collecting ordinal (similarities) data, methods which

basically involve a reduction in the number of judgements the individual must

make (10, ). However, en alternative solution is to reduce the difficulty

of the task by further relaxing the assumptions underlying the psychological

process implicit in the data collection technique. Rather than collecting

ordinal data, the researcher can obtain nominal (classifactory) data or,

in the simplest case of two classes, binary data. Green, Wind, and Jain (5)

analysed associative data by assuming the association frequency represented a

proximity measure of the stimuli and utilized existing geometric scaling

models to arrive at configurations. They found the technique resulted in

high dimensionality which was difficult to interpret. They met the first

condition of simpler data but not the second condition of simpler analytic

strategy which suggests that an alternative method of analysis for associative

data may also be appropriate.

The remainder of the paper describes a method of scaling associative

(specifically binary) data which (1) requires as input only binary similarities

data thereby increasing the consistancy of the data while relaxing the assumptions

of the underlying cognitive process, and (2) does not require prior specifi-

cation of a geometric model (dimensionality and metric). After a discussion
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of the technique, the method is applied to the scaling of soft drinks and the

results compered with the results from a standard multidimensional scaling

method. Finally, the unresolved problems associeated with this technique

and the implications of the technique for marketing research are discussed.

DESCRIPTION OP THE MODEL

Binary data may be collected in a variety of ways, ultimately represented

as the assignment of the stimuli to one of two groups. Judgements can be made

regarding an object's possession of an attribute, or an object belonging to

a group. To collect binary similarities data respondents would judge whether

a pair of stimuli were similar or not similar. Accumulating judgements over

individuals, a frequency distribution of similarity of stimulus-pairs is

obtained. Guttman (6) noted that a multivariate frequency distribution is

scalable if one can derive from the distribution a quantitative variable

with which to characterize the objects in the population so that each attribute

is a simple function of that quantitative variable. Justified by the

arguement that factor analysis can be legitimately applied to any symmetric

table, Burt (3! describes a technique by which qualitative data can be

factor analyzed. Sheth (15) has adapted this technique for the analysis of

brand loyalty.

Suppose we wish to estimate the attribute space of n products and

then scale the products within that space relying on binary similarities

data for input. The similarity judgements are obtained by asking M individuals

whether a product-pair is similar (coded 1) or not similar (coded 0) for each

of the N - n(n-l)/2 product-pairs. The data can be represented in an M x N

matrix Y, where each cell, y. . , represents the judgement of similarity of— i»k

product-pair k by individual i.
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product-pair (k)

1 2 . . . N

1 ... 1

1 1 ...

... 1

1

2

3

M

individual
(i)

In estimating the relevant attribute space, a necessary assumption is

that all the individuals use the same space in making judgements. To test

this assumption, a points of view analysis (22) using Eckart and Young's

theorem of matrix approximation (4) is performed. An individual by individual

matrix, C, is calculated

- M X K ifrlxN =• N x M

where each cell, c. ., represents the number of times individuals i and j

both rated a product-pair as similar. C turns out to be nothing more than a

square symmetric contingency table. These absolute joint frequencies are a

function of the number of product pairs rated. To eliminate this sample

size bias, the frequencies are standat Jized by computing the relative joint

frequencies, p . c. ./N . Dividing these relative joint frequencies by

the standard deviation (p.p.) results in a set of proportionate values
1 J

:
i,j - p

ifj ' (<vy c . / (c.c.r
3-.J i J

This is equivalent to pre- and post- multiplying C, the contingency table,

by a diagonal matrix £ 2 with elements l/(c.) . Thus, we obtain a square

symmetric matrix R, which is positive, semi-definite;

1.
'2 -Js ,-h ,-hR • D C D~* = D"' Y Y' D~' MM' where M « D "

' Y

and being symmetric, R has gramnian properties (2, 17). This standardization

yields l's in the diagonal, hence R may be directly applied to principal
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components analysis, resulting in each individual R being expressed as a

linear comination of factor scores, F.

R. a. „F„ + a. _ F_ + . . . + a. F
j j,l 1 j, 2 2 j,m m

Using the factor scores, groups of individuals with assumed similar psychological

attribute spaces can be formed. The subsequent scaling of products within

an attribute space should be applied separately to each homogeneous group.

Scaling by Factor Analysis

Summing over individuals, a product by product square symmetric

contingency table X is created for the group. Again, to eliminate sample size

bias, X is standardized by calculating relative frequencies and dividing by

the standard deviations.

x
i!j - x

i tj ' (x
i v

1*

This standardized matrix, X is positive, semi-definite, and being symmetrical

has grammian properties. Since the standardization yields l's in the main

diagonal, the matrix may be used directly in principal components analysis.

X may be directly factored into the product of principal components U and

A 2 •
a matrix of characteristic roots A_ in the following manner. Since X is

grammian, a matrix M can be found such that X «= MM'. Defining U and

W as transformation matricies such that U = U~ and W » W~ , let M U A W,

Thar * 2
' 21

=
ii £' * ( ^ d E ) (

Si' A u • ) » u A_ u •

Each variable, X. can then be expressed as a linear combination of scores on

the principal components r and the product-moment correlations between the

factors and the variables A.

X* - A F ; where A U A , and F = _A" U« X* .

The resulting principal component vectors, which are orthogonal, represent
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the underlying dimensions in the psychological process. Because the results are

unique only up to affine transformations, the principal component vectors may

be rotated to aid in identification, "hat is, a square symmetric matrix T

with the restriction that IT' * I can be found such that

• 2
X = U T A T'U' « A F , where A « U T A

Factor scores for each product on the underlying dimension can be calculated

using either the rotated solution

F « (T» A' A T )" T» A' X*

1
or the unrotated solution

t - ( a» a r 1^ 1 X* .

The factor scores represent the desired scale values of each of the products

on the underlying dimensions, and a geometrical representation can be

obtained from a plot of these scores. If the factor scores are computed

after rotation, the rotation must be non-distance destroying or the resultant

scale values will be meaningless.

There ~re several advantages o^ this method of scaling over the more

traditional nonmetric multidimensional algorithms. First, this technique is no

based on a criterion of error. Whereas geometric models attempt to best fit

the data, that is to find a solution with interpoint distances whose rank order

1 -1 •
This calculation is derived from the relationships A = U A_ and F = _A U* X

as follows:

LIS
1

H.

A' A _A
-1

= A' U

-1 -1
-A " (A* b) L

%

LL ' since ( A' A ) is invertible

-1 • -1 •
thus, F = (A* A) A' U U' X = (A 1 A) A' X because UU' « I.

Similarly for the rotated factors.
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most closely approximates the rank order of the original data, this factor

analytic technique attempts to explain the maximum amount of variation in the

data. Second, in multidimensional scaling algorithms, the resultant scales

on any dimension are dependent on the number of dimensions specified. However,

the scale values of an item on a factor is independent of the number of factors

specified because the factors are extracted sequentially in order of the amount

of variation explained. Finally, traditional methods can obtain a local minimum.

That is, the techniques are dependent on the initial configuration specified by

the researcher, even if it is only a random placement. Factor analysis requires

no such initial starting point.

AN APPLICATION

The products used for this experiment were fifteen soft drinks: Coke,

Pepsi, Royal Crown, Dr Pepper, Tab, Diet Pepsi, Seven-up, Sprite, Squirt,

Diet Seven-up, Root Beer, Grape, Cherry, orange, and Lemon-Lime. Soft

drinks were chosen because of subject experience with the product class,

recognition by brand name only was possible, and the set of all possible

soft drinks with which subjects were familiar was large.

A total of seventy subjects were divided into two equal groups. The

first group was presented a list of all possible pairs (105) of the fifteen

soft drinks and asked to indicate whether or not they considered the pair

to be similar cr not. The responses (yes for similar, no for not similar)

constituted the binary data. One month later, each member of the group was

presented a deck of cards, each card containing a pair of soft drinks. The

subjects were asked to rank order the cards so that the top card was the pair

judged most similar, the second card the next most similar, and so forth. It

was further suggested that the subjects use a stepwise procedure to complete
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the task, first sorting the cards into two piles of similar and disimilar

pairs, each p .le then sorted into two piles, and so forth. After eight

piles or so had been created, they were to rank the cards in each pile,

combine piles one at a time, check the ordering of the new complete pile,

and when completed, go through the deck one last time to be certain they

were satisfied with the ordering. At the end of the task, the subjects were

asked to describe the process arid the criteria they used in completing the

task, the perceived difficulty of the task, and their confidence in being able

to replicate the process consistently. Several subjects were then given a second

deck and asked to perform the task again as a measure of reliability. A similar

procedure was used with the second group, except the order of the tasks was

reversed (i.e., ordinal data were collected first). Thus, for each individual,

two sets of data were collected, namely a product by product matrix of binary

similarities data and a product by product matrix of rank order similarities data.

Although both techniques required judgements on 105 pairs of products

the binary data task took less than one-fourth the time to complete than the

rank order task. Further, the rank-roder task was perceived as more difficult

than the binary task. Alternative methods of collecting rank order data are

available, however, this stepwise method was chosen so that the results would

be as "accurate" as possible. Also, the respondents indicated they felt that

they were consistant in their use of criteria for judging similarities

throughout both the binary and the rank order tasks, however, the indepth

questioning concerning the rank order task indicated that they were not

consistent.

RESULTS AND DISCUSSION

Points of view analysis was performed on both sets of data, and in both

instances, only one group appeared with no outliers . If more than one group
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had appeared, then separate scaling would have been performed for each subgroup.

In this instance, all individuals were included in each analysis. Further, the

data were analyzed separately for each group to determine if the order of the tasks

had any effect on the results. There appeared to be no order effect, based on

visual comparison of the resulting maps, so the two groups were combined and

an analysis using the total sample was performed. Because of the similarity,

only the results from the analysis of the total sample is presented.

The Rank Order Data. A group similarities matrix was calculated with

cell entries consisting of the average rank order for that product-pairj

this matrix was used as input for TORSCA with the three dimensional results

presented in Figure 1. As previously mentioned, this technique requires the

prior specification of a model (metric and dimensionality) and of an initial

configuration. For this study the Euclidean distance function was chosen

and 2-, 3-, 4-, and 5- dimensional solutions calculated, each starting from

a random initial configuration. The scale values of a solution are dependent

on the number of dimensions, hence, a necessary task for the researcher in applying

these techniques is to choose the number of dimensions. A possible approach is

to choose the dimensionality based on interpretability and the information

provided. Stress values, measuring the goodness of fit of the data, can also

be used. Stress values for the 2-, 3-, and 4-dimensional configurations v/ere

.240, .160, and .107 respectively. Frimarily for the purpose of comparison with

the binary data solutions, the three dimensional solution is presented.

As is apparant from an examination of Figure 1, there is no easy 2nd

obvious interpretation of the results. This further demonstrates a problem with

geometric models , namely interpretation of the results. Several possible methods

to aid in the identification process include factor analyzing the data and usi: g

the factor loadings, ot to collect evaluations of each product on various

prespecified criteria and then fitting regression lines using this data to the
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obtained perceptual space. Also of interest in this example is that although

the stress value decreased for the 4- and 5-dimensional solutions, interpretation

was not enhanced by the addition of the extra dimensions. This leads us to

conclude the underlying model implicit in the technique may not be appropriate.

The recourse for the researcher is to continue to try additional models in

the hope of obtaining a meaningful solution.

The Binary Data . The method of analysis described in this paper was

applied to the group contingency table. The factor analysis procedure yielded

three factors which explained slightly more than 80% of the variance. The plots

of the rotated factor scores appear in Figure 2.

As opposed to the rank-order solutions, interpretation of these dim-

ensions seems relatively apparant. The first dimension appears to be a

cola (alternatively a dark-colored) dimension with seven products—Coke,

Pepsi, Royal Crown, Tab, Diet Pepsi, Dr Pepper , and Root Beer-*loading

heavily. (Note, interpretation is aided in this technique by the use of the

factor loadings). The second dimension appears to be an *un-cola" dimension

(a lemon-lime, citrus flavored dimension) with five products--Seven-up, Sprite,

Squirt, Diet Seven-up, and Lemon-lime, loading heavily. The third dimension

appears to be a fruit-flavored (other than lemon-lime) dimension with three

products--cherry, grape, and orange—loading heavily and two products—Root

Beer and Lemon-lime—loading slightly. Although not instructed to do so, the

subjects seem to have used flavor as a major criteria in judging similarities

resulting in three underlying flavor dimensions. Examination of the four

dimensional solution (which did not significantly increase the percent variance

explained) yielded the same three dimensions plus a diet dimension with

three products—Tab, Diet Pepsi, and Diet Seven-up—loading heavily on the

fourth factor.
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Discussion

The purpose of both scaling techniques is to obtain a geometrical repre-

sentation of the psychological space of soft drinks. In this study three

dimensions were chosen for both techniques (1) for the purpose of comparison,

(2) because three dimensions suited the criteria used in each technique, and

(3) because a priori, three dimensions seemed appropriate (although not the

resulting dimensions). As is evident from a quick, examination of Figures

1 and 2, the two methods did not yield similar results. Consequently, it is

desirable to explain why these differences exist and to determine which

mapping, if either
k
more nearly represents the true psychological space.

V;"e believe that the map resulting from the binary data provides a close

representation of the psychological space while the map from the rank order

data is relatively meaningless. This belief is substantiated through the

examination of several comparative criteria of validity: cross validity,

face validity, external validity, and predicting validity.

(1) The criterion of cross validity implies consistancy of results

across replications or across subgroups of the same population. In this

instance two separate sets of data applicable to each technique were

originally collected. When analysed separately the binary data yielded almost

identical three dimensional perceptual maps. However, the maps derived from

the two sets of rank order, while similar in the amount of dispersion exhibited,

were completely different with respect to the relationships between the

products. Thus, cross validation would support the binary technique since it

yielded consistent results, but not the rank order technique.

(2) Results of a study have face validity if on inspection they are

similar to what one might expect them to be. A priori, we hypothesized that

the psychological space would be represented by three dimensions: a cola (color)
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dimension with coke and seven-up at the opposite ends, a diet dimension,

and a fruit flavor dimension. As noted, the map from the rank-order data

was not interpretable , thus having no face validity. On the other hand, the

binary data resulted in a map very nearly representing our intuitive picture

of the space. If we would have considered the cola-~lemon dimension as being

actually two orthogonal dimensions, then the four-dimensional binary solution

would have almost exactly duplicated our a priori notions.

(3) As a measure of external validity, each subject was asked, after

completing the rank order task, to state the criteria used during that task

in the judgements of similarity. The most frequently mentioned criteria

were cola, lemon flavor (seven-up like), diet, and fruit flavored. The

technique using the binary data clearly extracted these dimensions, thus

reproducing the stated criteria of the subjects. However, the rank order

maps failed to even come close to these stated dimensions, eventhough these

external elicitations occurred immediately after the subjects performed the

rank order task.

(4) Finally, predictive validity of the model can be obtained by having

subjects produce geometric product spaces. Subjects were asked to physically

place the products in three dimensional product spaces. Again, most subjects'

traps were very nearly the same as those obtained by the binary scaling method.

The only exceptions being a few subjects whose maps w^re more nearly similar to

cur a priori dimensions of cola, fruit flavor, and diet.

The question then arises as to why a method utilizing weaker data (binary)

produced results which across a variety of criteria were judged superior to

those resulting from a technique utilizing stronger (ordinal) data. The

first reason could be due to the different analytic procedures of the two

methods. The traditional multidimensional scaling technique required prior
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specification of the model, and in this instance, our specification may have

been incorrect thereby yielding meaningless results. Further, the obtained

results may have been one of several local minimums, dependent on the

prespecified initial configuration. The factor analytic technique has

niether of these problems since it requires no prior specification of a

model or a starting configuration.

A second reason for the superiority of the binary data may be due to the

differences in the data collection techniques. Both methods require consistency

of criteria by the individual throughout the task and both must be applied to

homogeneous groups of individuals. Thus, both methods must have data that

is highly consistant both within and between individuals. In the collection of

the binary data, the task was rather simple. Subjects were able to complete

the task in about ten minutes and afterwards indicated that they were able to

use the same criteria in making judgements throughout the task. Further,

all subjects generally used the same criteria or at least judged the same

pairs to be similar most of the time. In contrast, the rank order task was

very difficult. On the average, the task required forty-five minutes to

complete and all the subjects stated that they might have changed criteria

during the course of the task. Subjects further indicated that they did not

believe they would be consistent over trials, a fact verified by repeat testing.

Thus, the rank order task resulted in data highly inconsistent within subjects.

To demonstrate the problem of between individual consistancy, the average

rank order (input to the TORSCA program;) and the range of the rank orderings

for each of the 105 product-pairs are presented in Table I. This represents

a major problem; however, even if the between individual differences could be

reduced, it is doubtful that meaningful results could be obtained from the rank

order data because of the within individual inconsistency. The consistancy

problem results directly from the number of stimuli and the difficulty of the task.
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CONCLUSION

Limitations of the Model

First, the technique presented is only applicable for group data.

While some traditional multidimensional scaling techniques can be applied

to similarities data for an individual as well as a group, this method requires

relative frequencies as input, hence analysis can only be performed on

group data. However, we are currently investigating a statistical pro-

cedure for mapping individual binary responses.

Second, this technique is only applicable in those instances where

binary responses are appropriate. Other forms of associative data are not

directly usable because of the need to form a frequency distribution of

responses. Further, preference type data, often used in marketing applications

of multidimensional scaling could not be scaled with this technique because

the responses would not be binary.

Finally, this method also suffers from the problem of lack of invariance

common in the nonmetric multidimensional scaling techniques. Since the results

of this technique are unique only up l 5 affine transformations, the axes

chosen are somewhat arbitrary. Further, there is no exact criteria for chosing

the number of dimensions. However, the criteria that do exist for this method

are perhaps better substantiated than in other methods.

Summary and Implications

The implications for marketing research are many. The costs associated

with binary data collection would be less. Less time is required per individual

and compliance to cooperate in the task is higher; both should yield lower

costs. Thus, even if binary data and ordinal data produced identical results,

the use of binary techniques would be advantageous from a cost-benefit point

of view.
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Somewhat similar to cost effectiveness is the task effectiveness of

this method. It is easier to maintain concentration for shorter tasks, all

things else being equal. Further, considerably more information can be

obtained in comparable time periods. Because the task difficulty is lower,

within individual consistency will be higher.

Third, nonmetric methods are based on a criterion that minimizes some

form of error, which results in a problem of statistical inference, especially

if the underlying model (dimensionality and metric) is incorrect. The use

of the frequency distributions of the binary data represents a method

whereby statistical inference theory is applicable, which, through sampling,

could result in generalizations to populations. In addition, if through points

of view analysis, subgroups with different psychological spaces are found,

statistical tests of differences between these subgroups are possible.

Finally, since marketing research typically involves large stimulus sets,

if scaling. is to provide useful analysis for the researcher, methodologies

must be employed which have underlying assumptions that can be met. If the

assumptions underlying a technique are not met, the validity of the results

is questionable. Binary scaling represents one technique with assumptions that

are more likely to be .-net, thus providing greater confidence in the validity

of the results.





TABLE I

MEAN AND RANGE OP RANK ORDER DATA

Drinks

Average
Rank
Order

Range of
Rank
Order j Drinks

Average
Rank
Order

Range of
Rank
Orders Drinks

Average
Rank
Order

Range of
Rank

Orders

2 1 49.933 19 _ 103 3 2 45.400 7 m 101 3 1 58.733 15 - 103

4 3 47.233 14 «» 102 4 2 50.700 10 - 102 4 1 60.300 7 - 99

5 4 61.300 25 tm 105 5 3 62.267 14 - 103 5 2 65.667 26 - 105

5 1 67.633 23 «• 104 6 5 70.467 40 m 105 6 4 65.167 24 - 100

6 3 62.400 26 - 96 6 2 55.500 16 - 102 6 1 18.200 2 - 70

7 6 20.433 4 - 69 7 5 70.000 12 - 103 7 4 67.467 8 - 103

7 3 58.483 6 - 93 7 2 54.967 5 - 104 7 1 11.333 1 - 40

8 7 17.900 3 - 42 8 6 31.967 6 mt 87 8 5 73.100 20 - 101

9 4 64.467 27 - 105 8 3 60.633 31 - 92 3 2 56.067 16 - 105

8 1 20.133 1 - 59 9 8 17.600 1 - 49 9 7 9.400 1 - 31

9 6 10.967 1 - 69 9 5 69.067 33 - 102 9 4 66.553 21 - 103

9 3 58.333 27 94 9 2 56.000 13 «#• 102 9 1 10.733 1 - 32

10 9 66.367 16 105 10 8 75.433 29 - 105 10 7 71.167 29 - 101

10 6 55.033 6 - 105 10 5 49.100 16 - 98 10 4 64.300 29 - 104

10 3 63.033 21 - 102 10 2 75.867 35 - 103 10 1 70.867 28 - 105

11 10 18.200 1 n 89 11 9 70.167 10 «* 102 11 8 74.900 29 - 105

11 7 63.767 9 i 102 11 6 52.800 4 - 104 11 5 42.300 12 - 104

11 4 65.967 24 - 105 11 3 58.667 9 - 99 11 2 72.100 23 - 103

11 1 74.833 24 - 104 12 11 45.067 14 «* 95 12 10 45.267 15 - 96

12 9 66.400 9 105 12 8 72.633 11 *» 104 12 7 71.033 24 - 105

12 6 72.700 33 - 104 12 5 43.600 7 - 100 12 4 58.967 27 - 105

12 3 49.033 4 - 102 12 2 71.200 37 -• 103 12 1 71.633 10 - 103

13 12 36.800 6 - 94 13 11 22.767 5 *» 101 13 10 19.367 4 - 86

13 9 63.433 13 - 103 13 8 73.733 25 - 105 13 7 64.967 22 - 102

13 6 66.567 19 *• 102 13 5 41.467 9 •* 105 13 4 64.333 37 - 102

13 3 60.200 18 - 94 13 2 73.600 45 — 103 13 1 69.367 14 - 101

14 13 7.367 1 - 26 14 12 33.733 2 •». 93 14 11 18.667 9 - 80

14 10 13.033 1 - 79 14 9 64.800 7 - 105 14 6 70.333 15 - 105

14 7 63.133 9 - 104 14 6 68.567 22 j» 103 14 5 39.900 4 - 103

14 4 65.467 29 104 14 3 55.500 17 - 105 14 2 70.233 42 - 102

14 1 62.467 25 i 105 15 14 8.867 1 - 93 15 13 12.067 1 - 90

15 12 38.400 3 - 94 15 11 20.367 3 - 99 15 10 18.033 2 - 92

15 9 62.600 8 M 1Q5 15 8 74.433 26 - 105 15 7 68.100 21 - 104

15 6 70.400 20 - 103 15 5 38.867 4 - 102 15 4 62.833 26 - 105

15 3 53.767 3 - 97 15 2 73.033 43 _ 105 15 1 74.467 30 - 104
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