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PREFACE

distinctive feature of this work is that the functions dis-

cussed are primarily not functions of a single variable direction

but functions of several independent directions. Functions of a

single direction emerge when the directions originally independent
become related, and a large number of elementary theorems of

differential geometry express in different terms a few properties

of a few simple functions ; since one of the objects of the essay is

to emphasise the coordinating power of the theory, the presence of

many results with which every reader will be thoroughly familiar

calls for no apology.

In the applications to the geometry of a single surface two

functions thought to be new are described. The first, studied in

Section 4, depends on two tangential directions, reduces to normal

curvature when these directions coincide, and is called here bilinear

curvature. I became acquainted with this function in 1911 and used

it in lectures early in 1914. The second, the subject of Section 6,

depends on three directions, and reduces to the cubic function as-

sociated with the name of .Laguerre; the function is symmetrical,

and because the equations of Codazzi can be read as asserting its

symmetry I have called the general function the Codazzi function.

The theory of multilinear functions does not merely coordinate.

It affords simple proofs of the relations between the cubic functions

of Laguerre and Darboux (6'231, 6'234) and of formulae (7'242,

7 '351, 7
-

352) for the twist of a family of surfaces, and it leads

\^ naturally to expressions (7'241) for the rates of change of the two

principal curvatures of a variable member of a family of surfaces at

5 the current point of an orthogonal trajectory of the family, expres-

uj
sions that are interesting because their existence was deduced by

gj Forsyth in 1903 from an enumeration of invariants.
<C

E. H. N.

June, 1920.
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NOTE

For the sake of brevity, the space considered is real, but the

restriction operates only to the same extent as in other branches

of differential geometry. If it is removed, the intrinsic distinction

between the positive square root and the negative square root of

a given uniform function has to be replaced by a more artificial

distinction based on a dissection that is to some extent arbitrary.

And there is always a possibility that results need modification

if isotropic lines or planes are involved
;
as a rule, nul vectors are

admissible as arguments but nul directions are not.
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MULTILINEAR FUNCTIONS OF DIRECTION
Preliminary Paragraphs

01. The association of a direction OR with a real number r,

which may be positive, zero, or negative, determines a vector

which will be denoted by rH ;
of this vector r will be called the

amount in the direction OR. The vector rR possesses in addition to

the direction OR the reverse direction, which we shall denote con-

sistently by OR', and the amount of rR in the direction OR' is r.

The zero vector has all directions, and its amount in every direction

is zero
;
a proper vector has only two directions and two amounts.

A vector of amount unity is called a unit vector or radial. The

vector 1^ has the direction OR' as well as the direction OR, but

there is no confusion in describing the direction OR as the direction

of the radial.

02. There is an infinity of angles between two directions in

space, but these angles all have the same cosine. If eRS is an angle

between directions OR, OS of two vectors r, s whose amounts in

these directions are r, s, the product rs cos eRS depends only on r

and s, not on any choice which is arbitrary when the vectors are

given; this product will be called the projected product* of r and

8 arid denoted by /rs. The projected product of a vector s and a

radial IR is the projection of 8 in the direction OR, and the pro-

jected product of two radials is the cosine of the angles between

their directions.

03. Any three vectors p 1

, p2
, p3 which are not coplanar form a

vector frame, in which the arbitrary vector r is determined by the

three scalars
, 77, such that

r = |p' + 7/p- + p3
.

*
Many writers have not hesitated to call this the scalar product, although the

function is the negative of that for which Hamilton designed the name. There

is no universal notation
;
to transfer the letter as well as the name rendered familiar

by Hamilton and to appropriate brackets of some special kind are courses equally

open to criticism, and if there is here a vacant role in the symbolism of vector

analysis it is one for which the initial of Gibbs and Grassmann may be cast with

peculiar fitness. Neither r . s nor rxs is quite secure from misunderstanding,
since Heaviside uses the one for a dyad and Gibbs the other for a vector product ;

I

am conservative enough to regard rs as denoting a quaternion.
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The polar of the frame pj p2p3
is the frame p^p3 such that

^p-Ttpfc js unity or zero according as h and k are the same or

different, that is to say, such that p 1
is at right angles to both p2

and p3 and d?p
lp l

is unity, p2
is at right angles to both p3 and p 1

and <^P
2P2

is unity, and p3
is at right angles to both p1 and p2

and </p
3p3

is unity. If

r = Xp 1 + yap
2 + vp\

then <^'rp
1 = X, c^rp

2 =
/i, c^rp

s =
i>,

and since the relation between the two vector frames is reciprocal,

considered as derived from the frame p l

p*p
3
,
the projected products

X, //,,
v are naturally called the polar coefficients of r.

0'4. When we have occasion to use a Cartesian frame of refer-

ence, we shall not assume it to be trirectangular. We shall use

a, /8, 7 for angles between the axes of reference and A, B, F for

angles between the planes, A being an angle from the second plane
to the third round the first axis just as a is an angle from the

second axis to the third in the first plane ; A, B, F are external

angles of the spherical triangle of which a, ft, 7 are sides. Also we
shall denote by T the sine of this triangle, that is, we shall write

T = sin /3 sin 7 sin A = sin 7 sin a sin B = sin a sin /3 sin F.

Then if x, y, z are the components and I, m, n the projections
of any vector,

0'41 F I = x + y cos 7 + z cos /3,

m = x cos 7 + y + z cos
,

n = x cos ft + y cos a + z,

and on the other hand

0'42
|~#
= /T-2 sin2 a + wT-1 cot F + jiT"1 cot B,

y = IT~1 cot F + mT~2 sin2
/3 + nT~ l cot A,

_z = IT- 1 cot B + wT- 1 cot A + nT~2 sin2

7.

The projected square of the vector, having the value Ix + my + nz,

can be expressed as a quadratic function of components alone by
means of 0'41 or of projections alone by means of 0'42

;
thus

0'43 r2 = a? + y"- + 2* + 2yz cos a + 2zx cos /3 + %xy cos 7,
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but in terms of projections alone r2
is most readily given by means

of a determinant
; eliminating x, y, z between 0'41 and

r2 = lx + my + nz

\ve have
1 cos 7 cos ft I = 0,

cos 7 1 cos a m

cos/3 cos a 1 n

that is

044

I

cos 7 cos /3 I

1 cos a m

cos/3 cos a 1 n

I in n

If OP is a direction perpendicular to each of two directions

OR, OS and if eBS is an angle from OR to OS round OP, the cosines

of OP are given in terms of the ratios of 0-R and OS by

0'45 (7p, mp, np) sin e^^T ^ yR

\ s Vs

and the ratios of OP in terms of the cosines of OR and 0$ by

046 (xp , yp , ZP) sin eAS
= T"1

|j

1R mR

|l
ls vis

The components a;, y, z, and the projections I, m, n, of a vector

r in the Cartesian frame OABC are the coefficients and the polar

coefficients of r in the vector frame composed of the radials

1,4) lfi !<: But it must be observed that the polar of this vector

frame is not as a rule the Cartesian frame polar to OABG but

consists of vectors of amounts T~' sin a, T"1 sin /3, T"1 sin 7.

0'5. For the comparison of directions in one plane actual angles

can be used, a definite direction of angular measurement being

adopted. An angle from OS to OT will be denoted by eST ;
this

angle is not free from ambiguity, for any restriction on the magni-
tude or sign of angles is not merely superfluous but irksome, but

cos eST and sin ST are determinate functions of the two directions

OS, OT, and so also is the rate of change of e,sr with respect to any
variable on which the directions depend in a regular manner.
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When axes of reference A'OA, B'OB are being used in the

plane, an angle eAB will be denoted by to. To deal simply and

symmetrically with a variable direction OT, angles <-AT ,
eTB are

both required ;
the sum AT + eTB must differ from &> by an integral

multiple of 27r, and or, /3, or if necessary aT , /3T ,
will be used for a

pair of angles eAT ,
eTB subject to the convention ot + /3= &>.

The theory of multilinear functions of direction in a plane per-

sistently associates with each direction one of the perpendicular

directions, and the direction which makes a positive right angle
with OT will be denoted by OE or by OET ;

for OES will be sub-

stituted OD.

06. A function F'(T) of the direction OT in a plane regarded
as a function F(eWT) of an angle to OT from a fixed direction OW,

requires for its study its derivative dF( WT)jdeWT . This derivative

is itself a function of eWT> that is, of the direction OT, but since it

does not really depend on W it may be called simply the angular
derivative of F(T) and will be denoted by daF(T) :

61 daF(T) = lim [{F(S)
-
F(T)}/eTS ].S+T

A function of a number of independent directions in a plane has

an angular derivative with respect to each of them, and the various

angular derivatives of F(Q, R, ...) will be written da Q F(Q, R, ...),

daRF(Q, R, ...), and so on.

If the directions OQ, OR, ... in a plane are made dependent on

a direction OT in that plane, the function F(Q, R, ...) becomes a

function of OT, having an angular derivative with respect to OT
given by ^^ dF deJVR

deWT d WR de ]rr

The dependence of OQ, OR, ... on OT is a dependence of angles

TQ, TR ,
... on OT, and since

WQ WT + TQ > WR = eWT + eT,R > >

the derivatives deWQ/deWT ,
deWR/de WT ,

... have the values

l+daeTQ , l+daeTR , ...,

and

0'62. The angular derivative with respect to OT of a function

F(Q, R, ...) of directions themselves dependent on OT is

(1 + daeTQ) daQF+(l + daeTR) daRF+ ....
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In particular

0'63. If the directions OQ, OR, ... make constant angles with OT,

the angular derivative of a function F(Q, R, ...) with respect to OT
is the sum of the several angular derivatives dagF, daRF,

An angular derivative in space is a function of two directions at

right angles. If ON is a direction at right angles to OT, the di-

rection of angular measurement in the plane to which ON is normal

is related to ON by the spatial convention
;
a function of direction

in space becomes by the restriction of its argument to the plane

normal to ON a function of direction in that plane, with an angular

derivative whose value at OT depends no less on ON than on OT.

1. Linear and Multilinear Functions

I'll. Intrinsically, a linear function of a variable vector is a

function whose value for the sum of two vectors, and therefore also

for the sum of any finite number of vectors, is the sum of its values

for the several components ;
a multilinear function is a function of

a number of independent vectors that is linear in each of them.

1'12. The value of any linear function for the argument rR is

r times the value of the same function for the argument 1^. If a

frame of reference OABC is used and the components of the variable

vector r are x, y, z, then since r is x\A + y\B f z\c ,
a function ^(r)

which is linear is necessarily expressible as

and conversely a function of r which is of the form xL + yM+zN
where L, M, N do not depend on r must be linear :

1 121. A linear function of the vector r is a function which is a

homogeneous linear function of the components ofr in any frame.

1'13. A function whose arguments are radials may be regarded
as a function simply of direction, and a function of direction is said

to be linear if the function of r and OR obtained by multiplying

its value for the direction OR by the number r is a linear function

of the vector rR . We can if we wish avoid the explicit mention of

vectors in the definition of a linear function of direction, either by

introducing implicitly the definition of the sum of two vectors or
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by using a frame of reference. A function of direction is linear if

given any two successive steps OQ, QR, of lengths p, q, whose

resultant OR has length r, the sum of p times the value of the

function for the direction OQ and q times the value of the function

for the direction QR is r times the value of the function for the

direction OR. And a function of direction is linear if it is expressible

as a homogeneous linear function of the ratios of the direction with

reference to any frame
;
with this last definition we have to notice

that a function of the direction ratios which is not given as a homo-

geneous linear function may in fact be expressible in this form in

virtue of the quadratic identity to which the ratios are necessarily

subject.

1'14. The definitions of linear and multilinear functions of

vectors and directions are designed to restrict as little as possible

the nature of the function. In the present work the ultimate

equations are scalar, but vectors and other functions are essential

to the processes.

1'21. For an arbitrary function of the k vectors rls r2 ,
... r^, the

natural notation is of the form F(rl} r2 ,
... rk ),

but for a function

that is multilinear there is more even than brevity to be gained

by substituting the form Pr^ ... rh ,
or P^r^ ... rk if the degree

of the function has to be made prominent, for this form emphasises
the identities such as

P (a + 1) r2 . . . rk = P sr2 . . . rk + P tra . . . rk

involved in the definitions. It must be remembered that the order

in which the vectors are written is not irrelevant unless the function

is symmetrical in its definition: a function defined unsymmetrically

may be in fact symmetrical, in which event the order of writing the

variables does not affect the truth of any formulae but the assertion

of the symmetry is in itself significant.

1'22. The function of direction PIA 1 B ... 1^- is often denoted by

PAB...K- Were an attempt made to deal with functions of direction

without mention of vectors this compact alternative would be used

throughout, but since as a rule the sum of two radials and the rate

of change of a variable radial are vectors that are not radials, the

operations that are most natural commonly involve functions of

directions and functions of vectors in one equation, and the effect



15

of too persistent a substitution of PAB ..K f r P^-A^-B ^K is un~

sightly.

T31. The advantages of detaching the symbol P from the group

Pr^ ... Tk are secured by the method of Russell: P denotes the

relation of a value of the function to the set of vectors on which

the value depends, and is called a multilinear relation. The relation

P will be described as the core of the function Pr^ . .. rk and of

the corresponding function of direction PAB ...K-

1-32. To prove that

1 321. The sum of any finite number of functions multilinear in

the same set of vectors is itself a multilinear function of the set

and that

1*322. The product of a multilinear function by any scalar is a

multilinear function

is easy. These propositions give further justification of the notation

we are using, and provide a basis for definitions of the addition of

cores and of the multiplication of a core by a scalar :

1-323 (SP)rir2 ... rk = ^(Pr.r, ... rk ),

1-324 (rP) rir2 ...rk = r(Pr1 r2 ... rk).

1'33. In a multilinear function of degree k any h of the variable

vectors or directions may play a parametric part. The function is

then regarded as multilinear in the remaining k h variables, with

a core which is a function of the h parameters, and we have only to

compare T323 with the original definition of a multilinear function

to see that this core is multilinear in the parameters ;
it is a multi-

linear function which is neither scalar nor vector. Thus the bilinear

function Prs or PRS yields two linear functions which are written

as (P*s) r and (Pr#) a or (P#s) R and (PR*) S ;
if the degrees of the

different functions are to be exhibited, the two linear functions of

direction subsidiary to P2

RS are shewn as (P
l

#s)
l

R and (P1

^*)
1

^-

1'41. If
%/t

1

, xh , x/t

3 are the coefficients of rh in a vector frame

P JP2P 3
,
the linearity of a function Pr^ ... r^r^ in rk implies the

equality

1-411 Pr1 ra ...rjfc
_

1
r

fc
=
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and the expansion of each of the variable vectors in turn in the

same way gives the result

1-412

where each of the affixes mlt m 2 ,
... mk _lt mk stands for one of the

three symbols 1, 2, 3, and the summation extends to the 3* possible

terms. To obtain a formula in terms of the projected products

c^r^p
1

, c^r^p
2
, <JfThp

s
,
all that is necessary is to remember that these

projected products are the coefficients p^
1

, ^2
, %A

3 of r^ in the frame

p!p
2p3

polar to p 1?2?3
,
whence

1413 Pr1
r2 ...rfc_1 r^ =

Particular cases of 1*412 and 1-413 are expressions for the multi-

linear function referred to a Cartesian frame, namely

1-421 Pi^r, ... rk = Sc^ic* ... ck
m*PMlMz ... Mt ,

where c*
1
,
cA

2
,
ch

3 are the components of rA and Mh stands for A, B,

or C according as mh stands for 1, 2, or 3, and

1-422 Prlr2 ...rk = Sp^i p2
m*

. . . pk
m*P k^k* . . . km*

,

where p^
1

, ph
z
, ph

3 are the projections of rh and k1

,
k2

, k3 are those

vectors normal to the planes OBC, OCA, OAB whose projections

on 0^.4, OB, 00 are unity.

1"43. From 1*412 follow two fundamental theorems :

1*431. The value of a multilinear function is known for every set

of vectors in space if it is given for every selection from any three

vectors that are not coplanar ;

1*432. A function that is multilinear is wholly symmetrical if it

is symmetrical with respect to any three vectors or any three direc-

tions that are not coplanar.

Because of the second of these results, any two groups of theorems

which express the complete symmetry of the same multilinear

function with respect to different sets of vectors may be regarded
as equivalent : this is one of the ways in which results diverse in

form are coordinated by the theory developed here.

The two theorems of the last paragraph assume the functions

involved to be defined for all sets of vectors or directions in space.



If only a single plane is in question, it is sufficient in 1*431 for the

selection to be made from two vectors in that plane but not collinear

and in 1'432 for the symmetry to be established for two such

vectors.

1-51. That

1*511. The projected product of two vectors is a bilinear function

of these vectors,

and that

1 512. The projection of a, constant vector on a variable direction

is a linear function of the direction,

follow from the elementary distributive property of the projected

product. The converse of these theorems is also true, for if a, b, o

are scalars, ax+by + cz is the projected product of the vector of

components x, y, z and the vector of projections a, b, c, and if the

former vector is the radial 1 T , the same sum represents the pro-

jection of the latter vector on OT:

T513. Every linear scalar function of the variable vector r can

be exhibited in one way only as the projected product of r and a

vector independent of r, and every linear scalar function of the

variable direction OT in one way only as the projection on OT of
a vector independent of OT.

It is convenient in both cases to call the vector the source of the

linear function.

1*52. The projected product of the sources of two linear functions

affords the simplest example of a scalar which depends only on

two cores, and if the cores are Q and R this projected product will

be denoted simply by QR. If Q and R themselves involve variables

QR is of course a function of these variables. Thus if from two

bilinear functions QAs, RCD are formed two linear functions

(QA*)B (R*D)C, the projected product QA# R#D is a function of the

directions OA, OD\ it is in fact a bilinear function, and so can be

used to form on the same principle an infinity of other functions,

such for example as Q^B Q^ R%D-

l -

53. Any two cores of the same degree give rise to a function

corresponding to the projected product of the sources of two

linear functions, but in the absence of a direct definition of this

function in general, we must describe the function defined in the

N. 2
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last paragraph in such a way as to indicate the line of extension.

Referred to a frame OABC, the linear function P r can be expressed
in the two forms

l
p
ccr + iu

p
yr 4- npzr , aflr -\- y

pmr + zpnr ,

where l
p

,
mp

,
np are the projections and of, y

p
,
zp the components

of the source, and since the value of the projected product of two

linear cores Q, R is given by the two sums

Pa* +my + nV2R
,

aft 1
R +fmR + z<*nR

,

not only are these sums equal but their value is independent of

the particular frame OABC. Similarly the multilinear function

Prjr2 ... Tk whatever its degree can be expanded with reference to

the frame OABC in the two forms

2 p
Pmim2 ...mk OC2

W<*
. . . Ck

m
*, 2 C

P
nim,... mjfc?W* . . . p*,

and if Q, R are any two cores of the same degree k the sums

2 nQ rn v CQ nR
**l? m1 i2--- wi ifc i[M 2 ...i> * m-imz ...m]c j

j ?n 1 wi 2 ...7/ij.

are equal and have a value independent of the frame OABC
;
this

common value defines the projected product of the cores Q, R, and

is denoted by QR.

1'54. When once the projected product QR is defined for cores

of arbitrary degree, a whole group of functions is seen to be

derivable from any two or more cores, or indeed from any one core

of degree not less than two. For example, from a trilinear core P
by regarding one direction OB as parametric we derive a bilinear

core P#Bt ,
and if Q is a bilinear core, the projected product P+^Q,

better denoted by P*jgtQ*t> i itself a linear function of OB and

gives rise by combination with any linear scalar core R to a pro-

jected product (P*t Q*t) -^
'>

without attempting to classify func-

tions of this kind we must recognise their nature when they

present themselves.

Symmetry reduces the number of distinct functions to which

a given multilinear function is related. For example, if Q^B> BCD
are unsymmetrical bilinear functions, the four bilinear functions

Q*s^*r> Q,s*^*r> Q*,s-^r*> Qs*Rr# are distinct, but if the original

functions are both symmetrical, the four derived functions coincide.

1'55. If two multilinear functions Qr1
r2 ...rfc , Rr^...^ of the

same degree are defined only for vectors in a particular plane, the
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projected product QR can be defined as in T53, with the sole

difference that the frame of reference is two-dimensional. More-

over, if one multilinear function Ql^r,...!^ is defined only for

vectors in a particular plane and another Rr^...^ of the same

degree is defined without restriction on r1; r2 ,
... rk ,

a projected pro-

duct is definable by the restriction of the arguments of R r^...!^
to the plane in which they can serve as arguments to Qrl rz ...rk

also, and no confusion can be caused by denoting this projected

product by QR ;
the only point to be remembered is that if by a

change in the definitions the restriction on the arguments of

Qr^.^Tk is subsequently removed, QR will be in danger of

acquiring a second meaning inconsistent with the first.

1*61. Should the function P r^. . . r^ involve any variables other

than the vectors rlt r2 ,
... r^, then if a change in these additional

variables is not necessarily accompanied by a change in the vectors

it is the core that is to be regarded as a function, and a limit of

Prir2 ...rfr for variations in which ru r2 ,
... rk are constant is a

function of r1} r2 ,
... r^ which if multilinear can be used to define

a limit of P. It is difficult to be more precise in this assertion

without placing undue restriction on its scope ;
the case which is

for us important affords the best commentary; if Pi^ra...!"* is a

scalar or a vector depending on a scalar variable t in such a way
that for each particular set of values of r1; r2 , ... r^ there is a

derivative d(Pr1 r2 ...rk)fdt, it follows from T321 and T322 that

this derivative is multilinear in r,, r2 ,
... rk ,

and dP/dt is defined

as the core of d (P r^ . . . rk)fdt.

1'62. It is on the assumption that the vectors r1; r2 ,
... rk not

only can be but are independent of t that d(Prl
r2 ...rk)fdt is

multilinear and introduces dP/dt. But this derived core is of no

less service in the evaluation of d(PTl r2 ...rk)fdt when the vectors

vary with t, the symbols, in consequence of 1/323 and the defini-

tions, grouping themselves in the familiar mariner

1-621 d (P I-, r2 . . . rk)/dt = (dP/dt) i\ r2 . . . rk + P (drjdt) r2 . . . r*

+ Pr, (dr^/dt) ...rk + ... +Prl
r.2 ... (drk/dt).

This identity is sometimes of service for the calculation of

(dPldt}rl r,,...rk ,
but there is nothing in the formula so used to

shew why the function obtained is multilinear.

22
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1'71. The multilinear functions of differential geometry are not

so much functions of directions in space as functions of directions

at a point; in other words, they are functions of direction with

cores depending on a variable point.

Let Pk
TJ r2 . . . r

fc
be such a function, dependent on the position

of a point Q, and suppose Q to be confined to a curve through a

particular point 0. On this curve Pk can be regarded as a function

of the arc s measured to Q from some fixed point, and to calculate

the rate of change dP
k
/ds a frame of reference may be used

;
then

1-711
dP* = 8P*d# dJPdy dPk dz

ds doc ds dy ds 'dz ds
'

that is,

1-712 dPk
jds

= P kxT + P k
yT + P kzT ,

where Pf, P2
k

,
P3

k are functions of position having no relation to

the curve described by Q and XT , yT ,
ZT are the direction ratios of

the tangent to this curve. Hence

1'713. The rate at which the core of a multilinear function depen-

dent on position changes at a point with respect to the arc ofa curve

through is the same for all curves whose direction at is the same,

and can be called simply the rate of change in the common

direction, and further

1'714. The rate of change of the core of a multilinear function in

a variable direction is a linear function of that direction.

If the rate of change of the core Pk in the direction OR is

dPh
/dsK ,

the function r(dP
lc

/dsR)rl T2 ...rk is linear in the vector

rs as well as in the k vectors r1} r2 ,
... rk and is therefore a multi-

linear function of degree k + 1
;

its core, which depends only on

the variation of Pk in space, is called the gradient of Pk and de-

noted by Pk+1
. Sometimes the function Pk+1 r

1
r2 ...rk rk+l is called

the gradient of the function P*!^ r2 ... rk .

That linear and bilinear functions have a part to play follows

from 1'511 and To 12, and on account of 1714 the appearance of

functions of higher degrees is inevitable, but it is not every useful

multilinear function that is derivable from some linear or bilinear

function by the formation of successive gradients.

1'72. If TJ, r2 ,
... rk instead of being independent variables are

definite functions of the position of the current point on a curve,
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the rate of change of the multilinear function Pk r
1
r2 ... T^ with

respect to a parameter t on the curve is given by

1-721 d (P
k r

x
r2 . . . rk)/dt = P*+1 rt ra . . . r,w

+ Pk
(drjdt) r2 . . . rk + Pk

r, (dr,/dt) ...rk + ... + Pk r
l
r2 ... (drk/dt),

where w is the velocity of with respect to t. In particular, the

rate of change of a function of direction Pk
AB...K along a curve in

the direction OL is given by

1-722 dPk

AB JdsL =P^ KL + PlB K (dlA/dsL )

the vector dlH/dsL is not as a rule a unit vector, nor is this vector

a linear function of OL unless the direction OH is independent of

the direction OL, so that in the majority of applications it is only

the first of the terms on the right of 1'722 that is itself a function of

direction, but if dlH/dsL can be put into the form

where OP, OQ, OR are known directions, then

1-723

and the multilinear function of direction whose core is Pk
reappears

with different sets of directions for arguments and with scalar

multipliers that do not depend on P*.

1"81. If the source of the linear function QT of direction in a

plane is the vector rR ,
then

1'811 QT = r cos eBT

and therefore

da QT
= r cos (eRT + \ TT)

= r cos eRE ,

that is,

1-812 daQT =QE :

The value of the angular derivative of a linear function in the

direction OT is the same as the value of the function itself in the

direction which makes a positive right angle with OT.

In other words

1'813. The angular derivative of a linear function QT of direction

in a plane is the linear function whose source is obtained by rotating

the source of QT through a positive right angle.

1"82. The partial angular derivatives of a multilinear function

of independent directions in a plane are given at once by T812, and



22

extension to functions multilinear in interdependent directions is

made by the use of 0'62 and 0'63. For example, if PST is bilinear,

1-821 dasPST = PDT ,
da TPST

= PSA.

,

1*822 daPTT = PET + PTE = -daPEE ,

1-823 daPTE = PEE
- PTT = daPET ;

from 1-822,

1'824. If PST is any bilinear function of directions in a plane,

the sum of the values of the quadraticfunction PTT for two directions

at right angles is constant;

1'823 shews that PTE
- PET also is constant, but this is merely a

second version of the same theorem, obtained by regarding PSE as

a function of OS and OT.

1'83. To look for the angular derivative in an arbitrary plane

of a scalar linear function of direction in space is to reach familiar

ground. Let RT be the linear function whose source is r, let ON
be any direction in space, and let s be the component of r at right

angles to ON; if OT is a direction at right angles to ON, the pro-

jection of r on OT is the projection of 8 on OT, and therefore the

source of JIT in the plane at right angles to ON is B
;

it follows

from 1*813 that the angular derivative of RT in this plane has for

its source the vector obtained by rotating 8 through a positive

right angle round ON, and this we recognise as the vector product
of r and 1N .

2. Fundamental Notions in the Kinematical Geometry
of Surfaces and Families of Surfaces

2'0. To prepare for geometrical applications of the theory of

multilinear functions it is necessary to examine the different vectors

of the form dlH/dsK ,
where each of the directions OH, OK is either

constantly normal or constantly tangential to a definite surface

through 0, and the rate of change is with respect to the arc of

some curve whose direction at is OK. It is assumed that by a

satisfactory convention one of the directions at right angles to the

surface is chosen to be called the normal direction, and that there

is a spatial convention by which the choice of the normal direction

determines the direction of angular measurement in the tangent

plane at 0. The normal direction is denoted by ON, and OR, OS,
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OT will be used for arbitrary tangential directions
;
for the rest,

the notation is that described in O'o.

2'11. The vector d\NjdsT is the velocity of the Gaussian image
of as moves along the surface in the direction OT; it is at

right angles to ON, and may be described either directly as due to

the spin of the tangent plane about the conjugate tangent or by

components or projections with respect to given tangential directions

The latter course has the advantages of involving no difficulties of

sign and of introducing two functions of prime importance : if the

velocity of the Gaussian image is resolved into a component along

the tangent and a perpendicular component, the amount of the

first of these in the direction OT' reverse to OT is the normal cur-

vature of the surface in the direction OT, and will be denoted by
xn ,

and the amount of the second in the direction OE' with which

OT makes a positive right angle is the geodesic torsion along OT,

for which
9,,

will be used. Symbolically

2111 dlN/dsT = tcn l T <fg
lE ,

and since the directions OT, OE are perpendicular

2112 Kn =

2113 ig
=

212. Because the direction ON depends only on the position of

0, not on the direction OT, the vector dl.N/dsT is a linear function

of the direction OT, and the projection of this vector in a direction

OS independent of OT is linear in both OS and OT. It follows that

2121. The normal curvature and the geodesic torsion of a surface

are quadratic functions of direction,

from which it is a corollary that

2122. Neither Kn nor 9^ can vanish along more than two tangents

at without vanishing in every direction through 0.

2'21. Analysis of the vector dl s/dsT for an arbitrary relation of

the tangential direction OS to the curve described by is illuminated

by the corresponding analysis of the particular vector d\ TldsT . This

latter is the vector of curvature of the curve, and being necessarily

at right angles to OT is determined by its projections in any two

directions normal to the curve. When the curve is being considered

in relation to a surface on which it lies, the directions on which the
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vector of curvature is projected are ON, the normal to the surface,

and OE, the tangential normal to the curve : the amount of the

normal projection is the normal curvature Kn ,
and the formula

2-211 Kn = /(dlT/dsr) 1N

is reconciled with 2*112 by the consideration that since \ T\N is

constant the sum S?(dl T/dt) 1^ + <(dIN/di) lr is zero whatever the

variable t
;
the amount of the tangential projection is the geodesic

curvature of the curve, and this will be denoted by K
g

:

2-212 Kg
= (dl T/dsT) 1E .

Because ON and OE are at right angles, and coplanar with the

vector of curvature,

2'213 dl T/dsT = Kn lN + Kfjl E .

2 -

22. The change in a tangential radial l s as moves on the

surface is partly a motion with the current tangent plane, and

partly a motion in this plane ;
the two components, of which the

first is wholly normal and the second wholly tangential, play equally

useful but dissimilar parts, and have no analytical resemblance.

2'31. The component of dls/dsT normal to the surface to which

OS and OT are tangential I propose to call, for reasons that will

become apparent, the bilinear curvature of the surface in the direc-

tions OS, OT, and to denote by KST :

2-311 KST = (dls/dsT) 1N .

This function must be recognised in a variety of different forms

which are readily found.

The motion of I s with the tangent plane is determined by the

spin of this plane, which if OC is a direction conjugate to OT is a

spin of a definite amount p about OC :

2*312. If OC is a direction conjugate to OT and the spin of the

surface along OT is of amount p round OC, then

KST = psm cs .

To avoid the use ofp, which cannot be made a single-valued function

of position and direction by any satisfactory convention, all that is

necessary is to resolve the vector pc along determinate directions.

Ifpc is resolved into a vector along OS and a perpendicular vector,

only the second of these components affects l s , and the rate of

change of ls as far as it is due to this component has the same
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amount in the direction ON as the component itself has in the

direction OD' with which OS makes a positive right angle round ON:

2 313. The bilinear curvature KST is the projection in the direction

with which OS makes a positive right angle of the spin of the current

tangent plane as moves in the direction OT.

Another aspect is presented if the spin of the tangent plane is

related to the velocity of the Gaussian image ;
the latter of these

vectors is obtained by rotating the former through a negative right

angle in the tangent plane and therefore

2'314. The bilinear curvature KST is the projection in the direction

reverse to OS of the velocity of the Gaussian image of with respect

to the arc of any curve in the direction OT.

This result can be expressed in symbols in the form

2-315 KsT = -(d\NldsT}ls ,

and is deducible algebraically from the definition 2'311, for since

c^l s lAT is always zero,

2-316. (dl s/dt) 1N + J(dIN/dt) 1,
= 0,

whatever the variable t.

2
-

32. The relation of bilinear curvature to normal curvature is

seen immediately from 2'211 and 2'311 :

2*321. The bilinear curvature of a surface reduces to the normal

curvature when the directions on which it depends coincide.

But the part to be played by the bilinear curvature in coordinating

properties of different functions of a single direction is better ap-

preciated after a comparison of 2'315 with 2'112 and 2'113; the

identity of KH with KTT appears again, and 9^ is seen to be KET :

2*322. If OE is the tangential direction making a positive right

angle with OT, the bilinear curvature KET is the geodesic torsion of
the surface along OT.

In virtue of 2*321 and 2'322/2-Hl may be written

2'323 d\NjdsT = KTT \ T KET\E ,

and it follows that if P r is any linear function of a vector,

2'324 P (d\NJdsT} = KTTPT KETPE = K^P*,
because OT and OE are at right angles.

2'33. The apparent duplicity of 2'312 has been removed in 2'313

by means of the definite directions 0$and OD: it may be removed
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otherwise by the use of OT and OE: since the spin along OTis the

sum of Kn about OE' and
9^ about OT,

2'331 KST = KU cos eST 9^ sin eST ,

a formula which in the form

2'332 KST= KTT sin eSE + KET sin er,

merely expresses the linearity of the function in the direction OS.

2'41. The tangential component of dl s/dsT being necessarily at

right angles to OS, its direction of measurement can be chosen and

an unambiguous scalar obtained; the amount of the tangential

component in the direction which makes a positive right angle with

OS I call the swerve of OS along OT and denote by a-/, or by tr
8
only

if the manner of the dependence on OT can be assumed:

2411 <rT
s = J(dl s/dsT)ID .

The swerve of OS along OT is the rate at which OS rotates about

ON as moves in the direction of OT; hence if OR, OS are any
two tangential directions dependent on the position of 0,

2 412 <TT
S - aT

R = deBS/dsT :

The swerve of OS in any direction exceeds the swerve of OR in the

Same direction by the rate of change of an anglefrom OR to OS.

From this theorem comes a method of evaluating cr
s
by means

of a curve in the direction of OT, for from 2'212 and 2'411 it follows

that aT
T

is Kg, that is, that

2'413. If OT is the current tangent to a curve on a surface the

swerve of OT along OT is the geodesic curvature of the curve,

and therefore

2-414 as = Ka + (deTS/ds).

The swerve as
is equal to /c

g
if eTS has any constant value, and

in particular

2415 <rT
E =Kg .

2'42. If the direction OS depends only on the position of 0, the

vector dl s/dsT is a linear function of OT, and therefore since the

swerve is the projection of this vector in a direction independent

ofOT,

2*421. The swerve along OT ofa tangential direction which depends

only on the position of is a linear function of OT.
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Hence

2'422 oy
5 sin w crA

s sin /3 + <rB
s sin a,

and so in particular

2'423 o-j
r sin &> = cr^

r sin /3 + <r
T sin or,

2'424 To"r'
4
sin > = "A

A sin $ + ov4
sin a,

[_<TT
B
sin to = <rA

B sin /3 -f <TB
R
sin a,

formulae which by 2'414 are equivalent to

2'425 K
g sin o> = [kg + (da/ds)} sin + {icg (dfifds)} sin a,

2'426 f
{ 7 (da/ds)} sin w = ^ sin ft + { ? (da/ds)} sin a,

[_{2 + (d/3/ds)} sin a) =
{/irp -f (d<o/ds)} sin /3 + tcg sin a,

where ^ ,
v

ff
are the geodesic curvatures of the curves of reference

and s, s are arcs of these curves. The last two formulae can be used

for isolated curves, but 2'425 supposes T to be known not merely

along a particular curve but along the reference curves also, and is

therefore available only in the discussion of the typical member of

a family ofcurves; in otherwords, 2'425 assumes a definite tangential

direction to be associated with every point on the surface and gives

the geodesic curvature at of the particular curve which passes

through and has at every one of its points the direction corre-

sponding to that point.

2'51. The definitions 2'311, 2'411 are combined in the equation

2'511 dl sfdsT
= KST 1N + 0"r

S
lyj>

which has for particular cases 2'213 and

2'512 dl K/dsT = <>glN K
g
l T .

The three formulae 2-213, 2'512, 2'111 express that

2513. Theframe OTEN has the spins sg ,
Kn ,

K
g ;

the calculation of the vector d1 sfdsT \>y means of this moving frame

reproduces 2'511, if KST and aT
s are regarded as defined by 2'331

and 2-414.

2'52. To the first writers on differential geometry, to associate

the curvatures and torsions of curves on a surface with the form of

the surface itself was the fundamental problem, and if the problem
has lost its interest with its difficulties, the solution is not the less

valuable. Supposing a curve and its tangential indicatrix both to be

free from stationary points, a choice of direction along the principal
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normal at a single point fixes the standard direction OP along

the current principal normal everywhere, and renders determinate

the binomial direction OB and the sign* of the curvature. The

fundamental trirectal OTPB has no spin about OP, and its spins

about OB and OT are the curvature K and the torsion 9 of the curve.

If a curve is on a given surface, a continuously varying angle,

determined by choice at a single point, from OP, the principal

normal of the curve, to ON, the normal to the surface, is called

the normal angle of the curve on the surface and denoted by or.

The spin of the trirectal OTEN differs from that of the trirectal

OTPB only by the addition of a component of amount dis/ds about

OT; hence the spin of OTEN is compounded of 9 + (d-sr/ds) about

OT and K about OB, and since the latter of these components is the

sum of K cos ix about OE' and K sin OT about ON, 2 5 13 shews that

2*521. The normal curvature, the geodesic curvature, and the

geodesic torsion, of a curve on a surface are related to the curvature

and torsion of the curve in space by the formulae

/cn K cos txr, Kg
= K sin -or, <;g

= 9 + (dv/ds),

where is 'is the normal angle.

2'61. In dealing with a family of surfaces it is necessary to con-

template the variation of normal and tangential radials when the

current point is no longer confined to a single surface. Since a rate

of change in any oblique direction can be calculated by means of

normal and tangential rates of change, the rates of change that have

now to be discussed are normal, that is, are rates of change as the

current point describes an orthogonal trajectory of the family, and

the arc of this curve will be denoted by n. The vectors to be

examined have the forms dls/dn and dlN/dn.

2'62. To suggest the evaluation oi'dls/dn presupposes that along
the particular orthogonal trajectory under consideration there is

associated with each position of a definite direction OS tangential

to the surface through 0; the vector d\ sldn is then a vector in the

plane ODN and is naturally described by its projections on OD and

ON. The vector dlNfdn is the vector of curvature of the trajectory

* The common convention that in solid geometry this sign must be positive is

mischievous beyond words. The curvature of a curve is in fact the amount of a

vector, positive if measured in one direction and negative if measured in the reverse.
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and is not itself dependent on particular tangential directions, but

to describe it by means of scalars reference to specific directions

must be made; by a choice of tangential directions having intrinsic

relations to the surface a purely intrinsic account of dlN/dn can be

given, but not only do applications involve the projection of dlN/dn
on an arbitrary tangential direction OS, but since the directions

OS, ON "are at right angles, this projection is the negative of the

projection <(dls/dn) 1N which is in any case required in connection

with dlg/dn.

2 -

71. The tangential component ofdl s/dn, which I call the swing
of OS round ON, is related to ON just as the swerve of OS along
OT is related to OT, and the notation of 2*41 can be adopted:

2-711 aN
s = (dIs/dn)lD .

In fact if OS and OD are directions depending only on the

position of 0, the projection ^(dl s/dfip) 1^ has the same value for

all curves in the direction OP, whether this direction is tangential,

oblique, or normal, and the function <TP
S defined by

2-712 <rP
s = (dl s/dsP)ID

is a linear function of OP.

The result expressed by 2'412 is true whatever the direction of

the curve involved, and in particular

2'713 <TN
S - aN

R = deRS/dn,

so that

2'714. If the angle between two tangential directions is constant

along a trajectory the directions have the same swing about the normal.

2'72. To use 2'713 for the calculation of swings, the swing of

some one direction must be known. Anticipating acquaintance with

the principal tangents of a surface, we observe that because these

tangents are at right angles on every surface, the four principal

directions have the same swing; this swing I call the twist of the

family and denote by -ST. From 2713,

2-721 <r/ = v+(dydn\

where is an angle to OS from a principal direction of the surface;

this formula breaks down at an umbilic, and is quite useless if the

family is composed of planes or spheres, when the principal directions
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are everywhere indeterminate, but in general the twist is the first

swing to be calculated.

Referring for a moment to a topic less elementary than will occupy
us in these pages, it may be mentioned that the vanishing of the

twist is the necessary and sufficient condition for a family not com-

posed of planes or spheres to be a Lame family, that is, to be one

of three families forming a triply orthogonal system.

273. We shall write

2-731 TS = t?(dls/dn)lx ,

and call the function rs the spread of the family along OS. Being a

linear function of OS, the spread is given with reference to any two

tangential directions OA, OB by a formula of the usual type:

2732 rs sino) = TA sm/3s + TB smcts .

2'74. Combining 2*731 with 2711, and noting that dl s/dn is

necessarily at right angles to 1 5 ,
we have

2-741 dls/dn =

2'81. As has been perceived in 2'62,

2-811 TS = -J(dly/dn)l s .

The tangential vector dl^/dn can be expressed by its projections

on any two tangential directions:

(dljf/dn) sin eST = {J(dlN/dri) 1D ]
1T - [<f(dly/dri)lx}

l s ,

that is,

2'812 (dly/dn) sin eST = rE l s
- rD 1 T .

In particular

2-813 dly/dn = -rs ls -rD lD ,

which combines with 2'741 to express that

2'814. With respect to the arc of the orthogonal trajectory, the

frame OSDN has spins rD ,
rs , try

5
.

With 2'741 and 2'813 can therefore be associated

2-815 dlD/dn = - a-/ ls + TD lx ,

but this is only another version of 2-741, for a-^ has the same value

as <rN
s

,
and OS makes a negative right angle with OD.

2"82. That dlN/dn is the vector of curvature of the trajectory
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must not be overlooked. Formulae giving the curvature in terms

of spreads are

2'821 K- sin2
eST = rs

- %TS TT cos eST + rr
2

,

which is general, and

2-822 2 = T/ + TD*,

where OD and OS are as usual perpendicular.

2 83. Comparison of 2'814 with 2'513 suggests a valuable out-

look on the functions <TN
S

,
TS . Suppose a surface drawn to contain

the trajectory under consideration and to have OS for a tangential

direction at every point of this curve; ONS is the tangent plane

to this surface at 0, and if OD is taken for the positive normal

direction, the relation of the frame ONSD to the trajectory regarded
as a curve on this surface shews that

2 831. On any surface containing the orthogonal trajectory and

having OD for current normal along the trajectory, this curve has

geodesic torsion <TNS , normal curvature TD, and geodesic curvature

3. Surfaces and Multilinear Functions associated with

a Function of Position in Space

3'11. Referred to a frame OABC, a function <J> of position in

space becomes a function of the coordinates x, y, z of the variable

point, and in all that follows it is assumed that the functions con-

cerned are not merely absolute constants, and are regular.

If <&Q denotes the value of <J> at the point Q, the aggregate of

points for which <l> has the particular value <&Q is the class of points

satisfying the equation

3111 <&>, y, *) = <&<,,

and is therefore in general a surface, the ^-surface through Q.

Singular points are omitted, and the region considered is one

throughout which the O-surfaces compose a family of which one

and only one member passes through any point.

Conversely, any one surface is given by a set of equations of the

form

3*112 x =f(u, v), y = g (u, v), z = h (11, v),
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and any family by a set of the same form in which the functions in-

volve in addition to u and v a parametric variable w. The eliminant

of u and v from the set of equations B'112 is a relation between

x, y, z, and w which within a sufficiently restricted domain can be

put into the form

3113 O (x, y, z)
= w.

Hence geometrical properties of a <E>-surface and a <E>-family, in

so far as they do not involve the function <I> itself, are properties of

all regular surfaces and families of surfaces.

3 21. Along a curve, defined by the expression of x, y, z as

functions of the arc s, the function <I> has a rate of change given by

d<& 9<> dx 9<l> dy d$> dz
32i |_

<Z_ J

ds dx ds dy ds dz ds'

that is, by

3*212 d<&/ds = QX^T + ^j/2/r + ^Z^T>

where <&x ,
3>y ,

<&z , the partial derivatives of <J>, are themselves

functions of position having no relation to the curve, while XT , yT>

ZT are the ratios of the direction OT of the curve. Thus

3*213. The rate of change of a regular scalar function ofposition

in space along any carve depends only on the direction of the curve

and is a linear function of that direction.

The linear function whose value in the direction OP is the rate

of change of <E> along any curve in that direction will be denoted

by 3?l

p, the corresponding function of the vector p being written

<& l

p; as with any other linear function,

3'214 typpp&p
and 4>J

lp is identical with <&*P .

3'22. The source of the linear function <f>
J

p is called the gradient*

of <I> at 0, and will be denoted by G :

3221 /GlP = '3>
1

p.

If G is everywhere the zero vector, then <E> is an absolute constant
;

this case excepted, the region under consideration, though in special

cases it may be broken into a number of separated parts, 'is not

*
It is not necessary to distinguish in practice between the source and the core

of a linear function.
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sensibly contracted by the omission of the points where G is zero.

The assumption is therefore made that G- is nowhere zero, it being
understood that the restriction implied is not on 4> but on the

domain throughout which results are asserted to hold. Within a

united region where G is nowhere zero, the two amounts of G are

separate single-signed functions of position, nowhere zero
;
one of

these functions, not necessarily the one that is positive, is chosen

and called the slope of <
;
the slope will be denoted by G.

323. At a point where G is not zero, the directions in which

the rate of change of <& is zero are the directions at right angles

to G. Hence

3 231. The tangent plane at to the ^-surface through is the

plane through at right angles to the gradient of 4> at 0,

and the directions of the normal to the <E>-surface are the directions

of G; of these directions the one in which G has the amount G is

determinate, and is called briefly the normal direction at 0. The

normal direction, denoted always by ON, varies regularly with the

position of
;
hence

3'232. Every ^-surface is bifacial within a united region where

<& is regular and the gradient of <J> is notuhere the zero vector,

and the choice of sign for the slope G determines implicitly the

direction of angular measurement in every tangent plane.

3 -

31. The gradient of the core O 1 of the linear function typ is

denoted by < 2
, and the bilinear function 4> 2

pQ is called the bilinear

rate of change of <> in the directions OP, OQ. Differentiation of

the sum <&xxp + <&yyp + ^Z ZP with respect to a variable which is

not involved in the ratios XP , yP ,
zp gives

3'311 < 2

PQ
= 2OMt,MpVC , u, v = x,y, z,

where the summation covers the nine possible terms
;
since the

second derivatives ^uv ,
3?vu are equal,

3'312. The bilinear rate of change of any regular function is

symmetrical in the two directions on which it depends.

3'32. If the direction OQ coincides with the direction OP, the

bilinear function <&'
2

PQ becomes a function 3? 2
pp which may be called

the quadratic rate of change of <i> in the direction OP. This function

must not be confused with the second order rate of change d2

<&/dsP
2

,

N. 3
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which is not the same for all curves in the direction OP : applica-
tion of 1-722 to

3-321 d&'dsp = &P

gives

3 322 d*/dsP
* = &PP + & (dlP/dsP)

=&PP + G (dl Pl!dsP),

and since dlP/dsP is the vector of curvature of the particular curve

along which the rate of change is being found, it is only when either

the curvature is zero or the principal normal is tangential to the

^-surface that the last term disappears from 3*322.

3"41. The conception of the bilinear rate of change, and the

fundamental theorem 3'312, are immediately extended. The core

4>2 has a gradient &, and so on, and the multilinear rate of

change of 4> of degree k is the function 3>kpQ...v, where for each

value of h in succession < A+1 is the gradient of 4>ft
. With a frame

of reference,

3'411 &PQ r = 23>^ ... w sP tQ ...w y , s,t,...w = a;,yi z,

the coefficients being the partial derivatives when <J> is expressed as

a function of x, y, z
;
hence

3*412. Every 'multilinear rate of change of a regular function of

position is symmetrical in the variable directions.

3'51. The rate of change of <E> along any curve on a <-surface

being zero,

3-511 <$>
l

s
=

if OS is restricted as usual to denote a direction tangential to the

4>-surface at ; on the other hand by the definition of the slope

3 512 4>\v = G.

From 3-511 and 3'512 together comes the expression for ^r when

r is arbitrary : if r is expressed as ps + qN where OS is tangential,

then because the function ^r is linear

3-513 4> r r = p&s + q 3>V,

and substitution from 3'511 and 3*512 gives

3-514 &r=Gq,
that is,

3515 &r = GJrlN ;

this formula is of course obvious from the definition of G.
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4. The Bilinear Curvature of a Surface ,

411. That

4111. The bilinear curvature of a surface is a bilinear function

of the two tangential directions on which it depends

is obvious equally in every expression given for KST in 2'3, and this

property alone implies such formulae as

4112 KST sin2
o) = KAA sin /3S sin /3r + KAB sin /3S sin r

+ KBA sm as sm @T + KBB sm as sm ar>

4113 daS KST = KDT ,
daTKST = KSE)

where OS, OT are independent of each other,

4114 daR KST = (1 + daR eRS) KDT + (1 + daR eRT} KSE ,

if OS, OT depend on a tangential direction OR, and in particular

4115 daKTT = KKT + KTE = daKEE ,

4116 da/cTE = KEE KTT = daKET ,

special cases of V822 and 1 823.

412. Dupin's theorem, that

4121. At any ordinary point of a surface the sum of the normal

curvatures in two directions at right angles is a constant, -

is shewn by 2'321 to be a case of T824, that is, to follow from the

simple fact that the normal curvature is a quadratic function.

The half of the constant sum KTT + KEK is the mean curvature of

the surface at 0, and will be denoted by B ;

4122 KTT + KEE = 2B.

The differences Kn B and B /cn are the excess and the defect

of curvature along OT. To write

4123 KEE = 2B-/cn

is to express KEE directly as a function of OT, and the function

KEE KTT> which appears in 4116 and in a number of other formulae,

is given by

4124 KEE KTT = 2 (5 *),

that is to say, is twice the defect of curvature.

3 -2
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An actual formula giving the mean curvature is easy to find,

for 4112 gives

4125 KTT sin2
<o = KAA sin2

ft + (KAB + KBA ) sin /3 sin a + KBB sin2
a,

and substitution of a + ^TT, # JTT for a, /& gives

4126 /c sin2
<u = KA A cos2

/3 (KAB 4- B^) cos # cos a + BB cos2
a,

whence by addition we have not only a trigonometrical proof of

Dupin's theorem but the explicit result

4127 IB sin2 &> = KAA (KAB + KBA ) cos o> + KBB .

4'21. But bilinearity alone does not account for the importance
of the function KST . Differentiation of 3'511 along a curve on a

<t>-surface gives

4-211 4>2
sT + O1

(dl s/dsT)
= 0,

and substituting from 3'515 we see from 2'311 that

4 212. The bilinear rate of change of a function <I> along two

directions 08, OT tangential to the ^-surface is connected with the

bilinear curvature KST of the surface in those directions by the equation

$>*ST +G KsT = 0,

where G is the slope of<&.

And this result not only enables the bilinear curvature to be calcu-

lated in specific cases, but taken with 3'312 shews that

4'213. At any ordinary point of any surface, the bilinear curva-

ture in two directions is a symmetric function of those directions.

From the combination of this result with 41 1 1 springs the whole

elementary theory of the curvature of a surface.

4'22. Since identically

4'221 sin /3,s
. sin aT sin as sin /3r = sin w sin eST ,

the necessary and sufficient condition for 4'213 to follow from the

explicit formula 4112 is the equality of the coefficients KAB ,
KBA :

4 222. The symmetry of the bilinear curvature for any one pair

of distinct directions at a point implies algebraically the symmetry

of this function for any other pair of directions at the same point.

With the substitution of KAB for KBA ,
4112 takes the form

4*223 KST sin2
o> = KAA sin fts sin /9r

+ KAU (sin /3,s
. sin a.T + sin as sin /3T) + KBB sin c^ sin aT>
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giving

4'224* KH sin2
<u = KAA sin2

ft + %KAB sin /3 sin a + /c BJ5 sin
2
a,

4'225 ^ sin2 w = KAA sin /3 cos /3 /c^ B sin (a /3)

-I- KBB sin a cos a,

and 4127 becomes

4*226 25 sin2
o> = /^ %KAB cos w + KBB

It need hardly be said that all relations between bilinear curvatures

of one surface in different pairs of directions at one point are de-

ducible from 4'223 by pure trigonometry, or that this method of

deduction has nothing to recommend it.

4'23. A simple case of 4'213 is the assertion that if KST , as de-

scribed in 2*3, is zero for a particular pair of directions, then so also

is KTS . To say that KST is zero is to assert that as moves in the

direction OT the tangent plane at rotates about OS', in other

words

4'231. A pair of directions for which the bilinear curvature is

zero is a pair of conjugate directions.

Hence 4'213 includes the familiar theorem that

4 232. If OS is conjugate to OT then OT is conjugate to OS,

and the application of 4'222 to this result takes the form that

4*233. If a surface is known to have a single pair of mutually

conjugate distinct tangents at a point, the symmetry of the bilinear

curvature at that point can be inferred.

4'24. By means of 2'331 the symmetry of the bilinear curvature

can be expressed as a relation between the normal curvatures and

geodesic torsions in two directions without explicit mention of the

bilinear function
; comparing the two formulae

4'241 /csr = KTT cos e,sr KKT sin eST ,

KTS = KSS cos e(Sr + KDS

we have

4'242 (KTT KSS ) COS ST=

* This formula shews that a geometrical theory without the bilinear curvature is

as incomplete as an analytical theory without the function for which If is used by

Scheffers, Forayth, writers in the Encyk. d. Math. Wiss., and others, D' by Bianchi,

and D'I*J(EG
- F 2

) by Gauss and Darboux.

458853
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or to use a notation convenient with reference curves

4*243 (KH
- Kn) cos a) = (90 + 90) sin &>,

a result given in other symbols and used again and again by Darboux.

4'31. The relation between geodesic torsions in perpendicular
directions is simpler in form than the relation between normal

curvatures asserted in Dupin's theorem, but belongs in fact to a

more advanced stage, depending as it does not on the bilinearity

alone but on the symmetry of the bilinear curvature. To write

down this relation from 4*225 or 4 -243 is of course simple enough,
but an appeal to first principles shews more clearly on what the

result depends. The linearity of KST in the direction OT implies

4'311 KSI> = -KST ,

and in virtue of the symmetry of the function this equation gives

4'312 KST + KT'S
~

j

hence in particular

4'313 KET + KT 'E = 0,

and since OT' is the direction making a positive right angle with

OE the function KT -E is the geodesic torsion along OE :

4'314. The sum of the geodesic torsions in two directions at right

angles is zero.

This result, like 4'232, is a special case of 4*213 and implies the

more general theorem in which it is included; thus 4*314 and

4*232 in spite of their diversity of form are theorems implying
each other, that is, are equivalent theorems, on account of the

bilinearity of the bilinear curvature.

4*32. Brevity is often achieved by the use of the function

| (KDT + KSE),
which is the symmetrical bilinear function of OS and

OT that reduces to the geodesic torsion KET when OS coincides

with OT; it is natural to write

4-321 9sr = (KDT + KSE)

and to call this function the bilinear torsion, but it must be

recognised that the function has none of the fundamental impor-
tance of the bilinear curvature. Identically,

4*322 9ir = KET = 90 ,

4*323 9jBT
= \ (KEE

- KTT)
= B KH ,



39

and 4'314 can be expressed in the form

4-324 9^=-v
Being bilinear and symmetrical, the function ?ST has its value

given in terms of directions of reference OA, OB by

4'325 SST sin2
<w = <fAA sin @s sin /3r

+ SAB (si*1 As sin r + sin os sin ftT) + <? sin $ sin ar .

But unlike the coefficients KAA ,
KAB , KBB ,

the coefficients <?AA , $AB ,

?SB are not numerically independent, for the sum $TT + <>EE is not

merely constant but is zero :

4-326 ?AA -2<iAB coaa> + <iBB = 0.

4'33. The angular derivatives of the normal curvature and

geodesic torsion are given in 4'115 and 4'116. Since KTE as well

as KET is
<?(,,

the first of these formulae becomes

4-331 daKn = 2?3 ,

a familiar result; 4*116 is equivalent to

4-332 dasg
= 2(B-Kn\

which is therefore more elementary than 4'331 since it is proved
without reference to the symmetry of KST . There is a temptation
to replace 4'331 by

4-333 da(Kn -B) = ^g

and to treat as correlative the geodesic torsion and the excess of

curvature, but the suggested analogy must not be pressed too far.

Written in the forms

daicTT = 2?rr ,
dciKET = 2?^r

4'331, 4-332 are seen to be corollaries of the more general theorem

that

4-334. //" OS is inclined to OT at a constant angle, then

an immediate deduction from 4'114.

4'41. A function of direction that is not a mere constant must

have at least one direction of maximum value and one of minimum.

If OT is a direction along which the value of tcn is a minimum,
then the value along OT' is the same minimum, while it follows

from Dupin's theorem that along OE and OE' the value is a

maximum. Hence unless KH has the same value in every direction
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from 0, there certainly are two distinct tangents along which the

value of Kn is stationary. On the other hand, 4'331 implies that a

tangent along which /cn is stationary is a tangent along which <tg
is

zero, and since sg is a quadratic function there cannot be more

than two of these tangents unless sg is zero in every direction.

4'411. At an ordinary point of a surface, either the normal

curvature is the same in all directions and the geodesic torsion is

zero in every direction, or there is one tangent along ivhich the

normal curvature has its least value and one along which the normal

curvature has its greatest value, these tangents are at right angles

and are the only tangents along which the geodesic torsion is zero,

and the normal curvature in a variable direction increases or de-

creases steadily as the direction rotates from one of these tangents

to the other.

A point at which the normal curvature has the same value in all

directions is an umbilic ; the constant value is of course equal to

the mean curvature B at the point.

442. From 4'332 and 4'333 it follows that the sum (*
-

B)- + ?/
does ncrt vary with OT but is a function only of the position of

on the surface, in general positive but zero if and only if is

umbilical. Spheres and planes are composed wholly of umbilics,

but from a surface that is neither plane nor spherical the umbilics

can be removed, for it can be proved that they are isolated points

or compose isolated curves. Throughout a region which is nowhere

umbilical, the two square roots of (*, B)* + <tg
z are separate single-

valued functions of position ;
one of these, selected and called the

amplitude of curvature, will be denoted by A :

4-421 (
- B)

z + ?/
= A 2

.

From 4 421 the extreme values of Kn at a point 0, corresponding
to the directions along which sg is zero, are B A and B + A

;

these are the principal curvatures of the surface at 0, and I write

4-422 ^ = B-A, x
s
= + A.

The principal tangents, that is, the tangents along which the

normal curvatures are #,, 2 ,
are individually determinate when

the sign of A has been chosen. To secure complete freedom from

ambiguity, definite directions along these tangents must be chosen

also; the choice along one principal tangent at one point is arbi-
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trary,and determines the standard direction along the corresponding

tangent at all neighbouring points ;
the standard direction along

the other principal tangent is then fixed by the convention that

4'423. One of the angles from the first principal direction to the

second is a positive right angle.

The principal directions at will be denoted by OCl} 00Z ,
but

as affixes I, z will be substituted for Cl} (7-.

4 43. The equation

4-431 KET =

which characterises the directions of curvature implies of course

4-432 *ET=O,
and is therefore equivalent to the combination of

4-433 KST =

with the condition that OS and OT are at right angles :

4-434. At any ordinary point that is not an umbilic, the principal

tangents are the only two conjugate tangents at right angles.

4'44. From the definitions and the convention of 4-423,

4'441 Ku = ji
l} KI. = 0, KK = .,

4-442 eB = iir.

Substitution in 4'223 gives for any two directions

4-443 KST = y
l cos s cos r + #3 sin s sin r ,

where denotes an angle to the variable direction from the first

principal direction; the forms corresponding to 4'224 and 4'225

which are special cases of 4'443 are

4-444 Kn = #
t cos

2 + x
z sin

2
,

4-445 sg
=

(x. T) cos sin
,

the formulae of Euler and Bonnet, of which the first was transformed

by Euler himself into the shape

4-446 Kn = B-A cos 2

and the second is

4-447 <;g
= A sin 2

A, B having the meanings assigned in 4'11 and 4*42. Corollaries

of 4-444 are

4'448 KH - yf
l
= 2A sin 2 #

B Kn = 2A cos2

f,
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which with 4 -447 give

4-449 ?/
=

( 8
- Kn) (K

-
<),

a relation which is otherwise evident from 4'421.

4'45. To relate 4'443 to the fundamental property of a direction

of curvature is a most instructive exercise, if 00 is a direction of

curvature and is the corresponding principal curvature KCC , the

spin along 00 is a vector of amount in the direction with which

00 makes a positive right angle, and therefore the projection of

this vector on the direction OE' with which OT makes a positive

right angle is cos eCT :

4'451. If 00 is a direction of curvature and is the correspond-

ing principal curvature, the bilinear curvature KCT has the value

x cos eCT .

Thus

4 g452 KIT = x
l cos r ,

KZT x
z sin r ;

because KST is linear in OS and the principal directions are at right

angles,

4'453 KST = KIT cos fs + KZT sin %s ,

and substitution from 4452 reproduces 4'443.

4'46. Nor is the proof of 4'443 just given the only use, or the

chief use, of 4'451
;

it is from 4'451 that come formulae for deter-

mining the principal curvatures and tangents in terms of magni-
tudes related to arbitrary tangential, directions of reference.

Because KAT and KTB are linear in OT,

4'461 V^AT sm w KAA sm @ + KAB sm a>

\_KTB sin co = KAB sin /9 + KBB sin a,

for any tangential direction, while from 4'451

4'462 KAC = y cos orc ,
K <:B

= cos /3C ,

for a principal direction 00. Hence

4'463. A direction of curvature in which the normal curvature

is is characterised by the pair of equations

VKAA sin (3 + KAB sin a = sin o> cos a,

\_KAB sin /3 + KBB sin a = sin CD cos /3.

Elimination of # reproduces the equation obtained more simply by



43

equating to zero the geodesic torsion as given by 4'225. On the

other hand, since identically

sin ft) cos a = sin ft + cos &> sin a, sin &> cos ft
= sin a + cos &> sin ft,

the equations of 4'463 can be written as

4 464 [(KAA *) in # + (KAB * cos o>) sin a = 0,

L(^B * c s &>) sin /3 + (KBB ) sin a = 0.

Elimination of the ratio sin ft : sin a yields an equation which x

must satisfy, and since this equation is quadratic, it has no roots

except t
and #

5 :

4'465. The principal curvatures of a surface are the roots of the

equation

(
~ KAA) O -

KBB} = O COS ft)
- KAB)

2
.

The equation of 4'465 expands to

4'466 2 sin2
&> x (KAA %KAB cos o> + KBB)

and therefore 25, which is the sum of the principal curvatures,

and the product of these curvatures, which is the specific or

absolute curvature of the surface at 0, and is denoted always by
K, are given by

4'467 2B sin2
a> = KAA IKAB cos w + KBB ,

which has been obtained already in 4'226, and

4'468 K sin2
&) = KAA KBB KAB

*
;

the amplitude of curvature is determined numerically from the

identity

4-469 &-A* = K.

4'47. The fluctuations of the geodesic torsion sg
are seen most

readily from Bonnet's formula 4'447;

4 -

471. The extreme values of 9^ are A and A, and these are

assumed in the directions midway between consecutive principal

directions.

The discussion of ? rr as the function defined by identifying OS
with OT in 4 -325 is parallel to the discussion of /crr as the function

given by identifying OS with T in 4'223, and therefore the extreme

values of 9Tr have for their sum (?AA 2>AB cos w + $BB) cosec
2
&> and
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for their product (9^ <?BJB <?^B
2
) cosec

2
<w. Thus 4'326 is reproduced,

and the amplitude of curvature is seen to be given by the equation

4-472 ,4 2 sin2
&> = 9^

4'48. If sin a. and sin /3 are both known, the direction OT is

determinate, but the ratio of the sines alone does not distinguish

OT from OT'. Thus in general when # has a definite one of its

possible values, either equation in 4'464 defines the corresponding

principal tangent but not the corresponding principal direction.

These formulae however render precise a detail left vague in 4'42.

If

4'481 sin a/p = sin f3/q
= sin o>/r,

where p, q, r are functions of position on the surface, then

4'482 r2 = p* + 2pq cos a> + q
9

-,

and throughout a region wherep and q do not vanish simultaneously,

r is a single-signed function determined everywhere by 4 482 if its

sign is known. Hence the choice of sign of a single radical deter-

mines the principal direction corresponding to the principal curva-

ture throughout the whole of a region provided that no points

are included where simultaneously

4 -483 KAA = *, KAB = * cos ci), KRB = v.

But

KAB = KAA COS w

implies that OA is a direction of curvature,

KAB = KBB cos <o

implies that OB is a direction of curvature, and since by hypothesis

OA, OB lie along distinct tangents, KAA and KBB are the extreme

values of the normal curvature, and the additional equality

KAA
~ K BB

implies that is umbilical: having excluded umbilical points for

the purpose of separating the principal curvatures, we have actually

obtained a region in which the various principal directions also are

separated.

4'49. On any surface, a curve whose tangent at every point is a

principal tangent of the surface there, or in other words whose

geodesic torsion is everywhere zero, is called a line of curvature of

the surface. Throughout a united region containing no singular or
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umbilical points, the two principal directions at are definite

directions depending regularly on the position of 0. It follows from

the theory of differential equations that over such a region there

are two distinct families of lines of curvature and that through each

point passes one and only one member of each family.

If F is a regular function of position of any kind on the surface,

the values at of the rates of change of F in the two positive

directions along the two lines of curvature through depend only

on the position of and define by their relations to two functions

ofposition which will be denoted by dF/ds l , dF/dsz . These functions

are not partial derivatives; if in order to use st and ss as actual

coordinates we go so far as to define the position of by its distances

from two selected trajectories measured along lines of curvature, it

is still impossible to secure that every curve along which sz has a

constant value is itself a line of curvature or has sl for its arc; thus

even in this case the partial derivative dF/dsl is not the rate of

change in the direction to which it does correspond and bears no

intrinsic relation to dF/ds { . It follows that although there are rates

of change d^F/ds?, d9
F/ds6d8i derivable from dF/dsl and rates of

change d^F/ds^s^, d2

F/dsz
2 derivable from dF/dss ,

there is no reason

to anticipate equality ofd^F/ds^Sz to d2

F/dszdsl ;
in point of fact it

is easy when Fis scalar to evaluate the difference between d-F/ds l dsi

and d2

F/dsz dsi and to recognise the rare cases in which this difference

vanishes.

4'51. A direction of curvature is a direction in which the geodesic
torsion is zero. If there are directions in which the normal curvature

is zero, these directions, which are called asymptotic, have properties

not less interesting than have the directions of curvature.

Since the normal curvature at varies continuously between its

extreme values t ,
*

z ,
the existence of asymptotic directions depends

on the relation between the signs of these two curvatures, that is,

depends on the sign of the product K. IfK is strictly positive, there

are no asymptotic directions and is said to be an elliptic point on

the surface. If K is zero, one if not both of the principal curvatures

vanishes, and is said to be parabolic. For both of the principal

curvatures to vanish, that is, for a point to be umbilical as well as

parabolic, is altogether exceptional on any surface but a plane. At
an ordinary parabolic point, one only of the principal curvatures
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vanishes, and the asymptotic directions are the corresponding direc-

tions of curvature. A developable is a surface composed wholly of

parabolic points, but on a surface that is not developable the para-
bolic points in general, if there are any, compose a curve or a number
of distinct curves separating regions throughout which K is positive
from regions throughout which K is negative. In discussing

asymptotic directions attention is confined in the first place to a

united region composed wholly of hyperbolic points, that is, of points
where K is strictly negative.

4 52. Between consecutive directions of curvature at a hyperbolic

point, there is one and only one direction in which Kn , changing in

sign from the sign of t to the sign of 5 ,
is zero; thus there are

four distinct asymptotic directions, and since the reverse of an

asymptotic direction is itself asymptotic these are the four directions

along two asymptotic tangents.

With a direction of curvature is associated the corresponding
normal curvature, which is a principal curvature of the surface. In

the case of an asymptotic direction it is the geodesic torsion that

survives, and this magnitude is called the asymptotic torsion

associated^ with the direction.

The fundamental relation of an asymptotic direction 01 to an

arbitrary direction OT corresponds to 4*451. The spin of the surface

as moves in the asymptotic direction 01 has no component at

right angles to 01 but is simply a spin of amount <?/z about 01, if

<?// is the asymptotic torsion along 07; the projection of this spin
in the direction OE' is therefore <?7/ sin e/r :

4*521. If 01 is an asymptotic direction and ?7/ is the correspond-

ing asymptotic torsion, the bilinear curvature KIT has the value

? /7 sin e/r .

If OJ, OK are two asymptotic directions at 0, the bilinear

curvature KJK is shewn by 4*521 to be expressible both as 9,/,/sin JK
and as SKK sin eKJ ;

it follows without reference to the principal

directions that

4*522. The two asymptotic torsions at a hyperbolic point of a

surface are equal in magnitude and of opposite sign,

and it follows also that if the existence of two distinct asymptotic

tangents is known 4*522 implies the complete symmetry of the
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bilinear curvature. To find the actual values of the asymptotic

torsions we have only to compare 4*521 with 4*451 : if 6 is an angle

from 01 to the first principal direction, then

4/523 9// sin 6 = Kn = w
t
cos 6,

and since 6 + ^TT is an angle from 01 to the second principal

direction,

4*524 9/7 cos d = KIZ
= x

r, sin 6;

the combination of 4*523 with 4*524 gives

4 525 9// = -is,
that is,

4*526. The square of the asymptotic torsions is the negative of

the specific curvature,

a theorem usually ascribed to Enneper but in fact announced by
Beltrami four years earlier than by Enneper.

4*53. For the determination of asymptotic directions from arbi-

trary directions of reference 4*521 is again useful. Comparing

4*531 KAI 9/7 sin 7 ,
KIB = 9// sin /?/,

which are implied by 4*521, with the general formulae 4*461, namely,

4 532 VKAT sin w = KAA in @ + KAB sin
>

[ KTK sin a) = KAB sin /3 + KBB sin a,

we find that

4*533. An asymptotic direction with asymptotic torsion 97/ is

characterised by the pair of equations

[K
AA sin /3 + (KAB + 9/z sin eo) sin a = 0,

(KAB tu sin G>) sin fi + KBB sin a = 0.

To eliminate 9// is to obtain the equation expressing that the

normal curvature is zero; the elimination of sin : sin a gives

4*534 9// sin2
&> = KAB

* - KAA KBB ,

a formula which 4'468 shews to be equivalent to 4*525.

4*54. Throughout a region where K is strictly negative, the

asymptotic tangents are distinguished by the asymptotic torsions,

which are separate functions of position. One of these square roots

of K is chosen and called the first asymptotic torsion : it will be

denoted by 9a ;
the second asymptotic torsion is 9. Since the

four quadrants -into which the tangent plane at is divided by



48

the principal tangents Cl'OCl ,
CZ'OCZ are distinct, and the four

asymptotic directions lie one in each of these quadrants, the

asymptotic directions also are distinct. One of the directions of

the first asymptotic tangent, chosen arbitrarily at one point and

in consequence determinate elsewhere, is called the first asymptotic
direction and denoted by OJ, and an angle from this direction to

the first principal direction will be denoted by |u. Thus

4'541 9a sin | v = x
l cos | v, ?a cost;= x( 8mi;,

implying

4-542 *
t cos

2

1 v + 8 sin
2

1 v = 0,

an equation which is of course deducible immediately from Euler's

formula 4'444. The direction making an angle \v with the first

principal direction is one of the directions of the second asymptotic

tangent, and is denoted by OK and called the second asymptotic
direction. The angle v is an angle from one asymptotic tangent
to the other, and is given with as little ambiguity as possible by
the equation

4-543 B - A cos v = 0,

a corollary of 4'446.

4'55. In the use of the asymptotic directions OJ, OK as direc-

tions of reference, there is an embarrassing choice, for the bilinear

curvature KJK and the asymptotic torsion ?a are connected by the

relation

4'551 KJK = - ?a sin v.

For any pair of tangential directions,

4-552 fcST sin2 v = KJK (sin eSK sin eJT + sin ejs sin eTK),

and for a single direction

4*553 Kn sin2 v = %KJK sin eTK sin eJT ,

4-554 90 sin
2 v = KJK sin (eTK - eJT);

the last formula can be replaced by

4-555 s^ sin v = 9 sin (eTK eJT).

The principal curvatures are given by

4'556 t
= 9a tan ?v, *

z
= 9 cot \ v,

and therefore

4-557 B = <?a cot v, A=sa cosec v, K = - ?a
2
.
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456. From asymptotic tangents are defined asymptotic lines;

these on a united anticlastic region without singular or parabolic

points compose two families, every point lying on one member of each

family. The relation of an asymptotic line to a surface is in a sense

more intimate than that of a line of curvature. If an asymptotic line

has curvature K and normal angle -OT, the normal curvature, which

is zero, is K cos w, and three cases are distinguishable : if K. is not

zero, then cos -cr must be zero; if a point where K is zero is a limit

of points where K is not zero, continuity requires cos CT to be zero

there also; if K is zero everywhere on the line, the line is straight,

and while as a curve in space it has no determinate principal normal

at any point, to assign it in its capacity as asymptotic line a definite

normal by the convention* that cos -ar is zero leads inevitably to

consistent interpretations of general theorems. Thus cos tn- is zero

at every point of any asymptotic line, and continuous variation of

or being on this account out of the question, there is far more gain
than loss Jn a further convention to fix absolutely the value of -EC,

which is taken to be %ir:

4'561. The normal angle of an asymptotic line on a surface is

everywhere a right angle.

In other words,

4'562. At every point of an asymptotic line on a surface the

principal normal to the line is its tangential normal and the bi-

normal is the normal to the surface;

further, because w is constant,

4 563. The torsion of an asymptotic line is its geodesic torsion,

that is, is the asymptotic torsion of the surface in the direction of

the line, and because & is a positive right angle,

4'564'f. The curvature of an asymptotic line is its geodesic curva-

ture,

in sign as well as in amount. In consequence of 4'563, theorems

concerning asymptotic torsions may be read narrowly as theorems
* A straight line on a surface is geodesic as well as asymptotic, and as a geodesic

has for principal normal the normal to the surface.

t This is one of the theorems to whose simplicity the convention that curvature

itself must be positive is fatal. The vanishing of cos w is consistent with a value
-

\it for w, and if the direction OP is predetermined by the sign of K, two cases have
to be admitted; either & itself, or a symbol for sin ta, must then be retained if the

cases are to be treated together.

N. 4
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concerning the torsions of asymptotic lines, and in particular 4'522

and 4'526 imply that

4*565. The torsions at a hyperbolic point of the two asymptotic

lines through are equal in magnitude and opposite in sign and

their product is the specific curvature of the surface at 0.

It is to be remarked that for an asymptotic line to be straight the

specific curvature of the surface need not be zero : as an asymptotic

line on a given surface containing it, a straight line has a definite

torsion which is the rate at which the tangent plane, which in

general varies from point to point, rotates about the line; on a

ruled surface the rotation disappears if the same plane is the tangent

plane at every point of the line, and this is precisely the degenerate
case in which K is zero along the whole line.

5. The Bilinear Rate of Change of a Function of Position

5*11. The equation

5 111 &s
=

\

is of course true only if OS is tangential to the ^-surface, but the

derived equation

5112 4>2

SP + & 1

(dl s/dsp)
=

involves no restriction on the direction OP, and leads not only to

5113 4>2
sr + GKST = 0,

the relation used to establish 4'213, but also in virtue of 3'515 and

2731 to

5114 &SN+ GTS
=

(),

where rs is the spread of the <3>-family along 08, or the negative
of the geodesic curvature of the O-orthogonal regarded as a curve

on a surface to which OS is tangential.

5'21. By means of 51 13 and 5114 the bilinear rate of change

<&*PQ can be transformed whenever the direction OP is tangential
to the <&-surface: if the vector l c is the sum qT + sN where OT is

tangential, then &SQ is q&ST + s&SN and therefore

5-211 4>2

SQ + G (qKST + srs )
= 0.



51

If OP is the normal direction ON the change is of another kind
;

from the definition of the slope,

5-212 &* = &,

and therefore along any curve in a direction OQ
5-213 d<blN/dsQ = Gl

Q ;

but by 1-722 and 3'515

5-214 d<Psld8q = <J>VQ +& (dlN/dsQ) =&yQ + G(dlN/dsQ ) 1N>

and since a rate of change of a radial is necessarily at right angles
to the radial itself, the last term vanishes and there remains the

formula

5-215 d^N/dsQ=^NQ ,

which taken with 5'213 shews that

5 216. Whatever the direction OQ,

***-<?.
5'22. The general relation of 5*216 is a synthesis of the par-

ticular relations

5-221 *V*=GV
5-222 <&Vs=GV

The first of these can be written in the form

5-223 &Ny = d*<bldn\

and suggests a reference to 3*32. The second can be compared
with 5-114, and since the bilinear rate of change is symmetrical

gives

5-224 Gl

s + GTS
= 0,

whence*

5-225 rs = - $d (log G*)/dss :

5'226. The spread of the ^-family in any tangential direction is

the negative of the rate of change -of the logarithmic slope of <I> in

that direction.

5'23. If application is to be made of 5'113, 5' 114 and 5'216 to

4>2
PQ when the directions OP, OQ are both oblique, the radials 1P ,

* Allowance must be made for the possibility that G is negative, and for this

reason the logarithmic slope is defined as ^ log G 2
.

42
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IQ must both be resolved into normal and tangential components.

Assuming

5-231 lp = ps + rN ,
! Q
= qT + SN ,

the bilinearity of the function implies

5-232 <I>
2
p

and according to the purpose in view the useful transformation

will be

5'233 <E>
2

PQ
- rs&xr = -G (psrs + qrrT + pq>cST )

or

5-234 &pQ -psG^ - qrG
l

T
- rsG lN = -pqGicST .

5-31. From 3'515

5-311 <'
(dl sldsp)

and since </l sIN is zero,

5-312 (dl s/dsf) 1

hence 5'112 is equivalent to

5-313 * O2
SP = G<?(dlN/d8p) ls ,

for an arbitrary direction OP and a tangential direction OS. In

contrast to this result, G(dlN/dsp) l^ is necessarily zero, but 3>Vp
is zero only in special cases : the tangency of OS is essential to the

truth of 5'313. Multiplication of 5'313 by a scalar shews that as

a linear function of a tangential vector s the bilinear function

<I>
2
pS is obtained by multiplying by G the projected product of

d\NjdsP and B. In particular, since a rate of change of the radial

Iff is necessarily tangential,

5-314 3>*p (dlN/dsQ )
= Gc?(dlN/dsP) (dlN/dsQ )

whatever the directions OP, OQ.

532. The function 4>>
p(cilj7/<jffg)

will reappear at a later stage;

5'314 shews that the function is in fact symmetrical in OP and

OQ and indicates the geometrical magnitudes with which it is

connected, which depend on the relations of OP and OQ to the

3>-surface. If OS, OT are tangential directions, dlN/dss , dl^/dsT

are the corresponding Gaussian velocities; dlN/dn is the vector of

curvature of the orthogonal trajectory. Since neither KST nor rT
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is defined except for tangential directions, the notation described

in 1*55 is applicable and it is possible to write

5 321 ^(dlff/dsg) (dlN/dsT) =

5'322 ^(dlNfdss) (dlN/dn) =

5-323 j'(ch. 2r/dny
t = TS;

the last of these functions is the square of the numerical curvature

of the trajectory. To discover analytical expressions in which the

same projected products are involved, let q(p) denote temporarily
the vector, dependent upon OP, which is such that for an arbi-

trary direction of OR the value of 3>2
PR is the projection of q(p> on

OR, and let this vector be resolved into a normal and a tangential

component. The projection of q(p) on ON, which by the definition

of q(p) is <&2
pN , is the projection of the normal component of q(p)

on ON, and therefore the normal component of q(p) is <&2PN 1N .

And from 5*313 the projection of the tangential component of q(p)

in any tangential direction is the same as the projection of

GdlN/dsp in that direction, whence since GdlN/dsP is itself tan-

gential the tangential component of q(p) is nothing but GdlN/dsP .

Thus,

5-324 q(p) = (dlN/dsP) +&PN 1N .

But if OP, OQ are any two directions the projected product

^qiPjqfQ) j s the bilinear scalar function of OP and OQ denoted by

^p**^*' and this is calculable with the greatest ease by means

of any frame of reference. Hence from 5"324 and the corresponding
formula giving q(<3)

5-325 4>a
p<I>

a

g#
= G2

(d\NldSp ) (dlN/dsQ) + &PN 3>2

QN .

The three distinct theorems comprehended in 5'325 can be ex-

pressed in a variety of forms
; among the results are

5-326 <E>
2

S# 4>2r* = G* (KStt r# + TS TT),

5-327 4V <D2^ = G*KS* r* + &8GV
5328 2V = (OV*)

2 -(SV)2
.

5'41. In 5'226 and 4'213 we have two distinct and independent
deductions from the symmetry of the bilinear rate of change of a

scalar function of position. It is important to observe that there

can be no deductions independent of these two, a result implied by
T432 : if OS, OT are distinct tangential directions and ON is
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normal, the complete symmetry of QZ

PQ is deducible from and

therefore involves no consequences independent of the set of

equalities

5411 &ST = &TS, <PNS = &SN, ^NT = ^TN,
of which the first is equivalent to 4'213, and the second and third

express for different directions the single theorem 5'226.

5'42. To suppose that such formulae as 5'll.S, 51 14 and 5*216

assist in the calculation of multilinear rates of change is completely
to misvalue these formulae. Whatever the system of coordinates,

the multilinear rates of change are among the functions most

easily found, and in application to particular surfaces and functions

it is rather for the sake of the other magnitudes involved that

results of this kind are desirable.

6. The Codazzi Function

6*11. The bilinear curvature KRS is not a function from which a

gradient can be formed, for as a rule if the position of is changed
the directions OR, OS cannot remain unaltered. But there is an

elegant function which plays as far as possible the part of a

gradient, and it is with this function that the present chapter is

concerned.

From the equation

6111 &BS+ 0*118 =

it follows that if OR, OS are specified functions of the position of

on a curve with direction OT on a ^-surface, then

6112 (d^RSjdsT) + GI

TKRS + G (dicRSldsT}
=

;

also by 1722 and 2-511

.6113

s (dlRfdsT) + <&E (dl s/dsT)

where OC, OD make positive right angles with OR, OS, and

therefore

6114
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on substitution from 5'216 and 4'212. Thus 6*112 gives

6115 C&RST + G*R KST + &s KRT + GI

T KRS + G\RST = 0,

where

6116 \RST = (dKRS/dsT)
- <rT

R KCS
- <TT

S KRD .

The function \RST defined by 6116, which I propose to call the

Codazzi function, belongs like the bilinear curvature to the geo-

metry of a single surface, for this definition contains no reference

to the function <. But 6115 is of value as shewing at once that

the value of \R$T depends only on the three directions OR, OS, OT,

not on the variation of OR, OS along any particular curve in the

direction OT, and moreover that

6117. The Codazzi function is linear in each of the three direc-

tions on which it depends.

As a formula for the calculation of the Codazzi function 6115

may be modified to

6118

612. The Codazzi function \RST takes special forms if two of

the directions on which it depends coincide or are perpendicular.

Whatever the angle between OS and OT,

6121 \SST (d/css/dsT)
- 2a-T

s
fcDS

6122 \STS = (d/fs-r/dss)
- O-S

S KDT - <TS
TKSE

= (dfST/dss)
- 2<7/9Sr

-
(^esr/c?ss) KSE ,

6123 \DST = (dKDS/dsT) + a-T
D KSS

- a-

6124 \DTS = (dtpT/dss) + O-^KST
- a-s

TKDE

613. More familiar functions are among those of a single direc-

tion OT which appear as degenerate forms of the Codazzi function

and can be regarded as defined by means of a single curve in the

direction OT; that the function depends only on the direction and

not on any particular curve is in no case self-evident. In the most

elementary notation,

6131 \TTf = (dKn/ds) %KgSg,

6132 \TET = (dsg/ds) + 2Kg (*n
-

B}.
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Thus \TTT ,
the simplest of cubic functions, is the function associ-

ated with the name of Laguerre who first shewed it to depend on

direction alone, and \TEf is the cubic function of Darboux. As

actually given by 6116,

6133 \EET = (dKEFJds) ^KgKw,
but on substitution from 4123, this becomes

6134 \EET = 2 (dB/ds)
-

{(dKn/ds)
-
2*^},

that is

O J.OO ^"EET ^~ -D JT A-yy<p

On account of the multilinearity of the Codazzi function, \TTE ,

\ETE bear to the direction OE the relations of \EET ,
\TET to OT]

hence

6136 ^TTE = %B1

E ^-EEE>

while \ETE is the negative of the Darboux function of the direction

OE
;
\EEE is of course the Laguerre function of this last direction.

614. Naturally it is when the three directions involved are all

principal or all asymptotic that the Codazzi function is most simply

expressed. If K
gl , tc^ are the geodesic curvatures of the lines of

curvature,

6141 O-!
1 = (T?

= K
gl ,

az
l = (TZ

Z =
Kg?.,

and therefore

6142 Xm = dy l/dsl ,
XISI

= 2A K
gl ,

\zzl
= d)il,lds l ,

6143 \llz
= d l/dsz ,

XI25
= - 2A/e^, \^ = dyz/dsz ,

where A denotes as before ^ (xz x^, the amplitude of curvature.

The corresponding functions for the asymptotic directions OJ, OK
are simplified by the relation

6144 KJK = 9a sin v
;

if KgJ ,
KgK are the geodesic curvatures, which are the actual curva-

tures, of the asymptotic lines,

6145

\7jj-
= -

ZsaKgj, ^JKJ= (dia/dsj) sin v, \KKJ = 2?a \tcgj+ (dv/dsj)},

6146

~^JJK = 2?a {KgK (dv/dsjf)}, \JKK = (dsa/dsx) sin v, \KKK ^aKgK -

6'21. We are now in a position to appreciate the fundamental

property of the Codazzi function, which is apparent from 6115 :



57

6 211. The Codazzi function is a symmetrical trilinear function

of the tangential directions on which it depends.

That the function XRST defined by 6'116 is linear in each of the

directions OR, OS, OT can be proved without difficulty from the

most elementary considerations*; indeed, it is by its linearity in

OT that A^ST first attracts attention in the geometry of a single

surface. The symmetry of \RST in the two directions OR, OS is

manifest from the symmetry of KBS in the same directions, but the

discovery that \RST depends on OT in the same way as on OR and

OS is both unexpected and fertile.

6'22. Because \BST is trilinear,

6'221 \jRST sin
3
<y

in PR sin Ps sin PT + ^BAA sin aR sin /9S sin /3r

sin /3B sin as sin j3T+ \AAB sin @R sin /3S sin a.T

+ \ABB sin /3R sin as sin a.T + \BAB sin R sin /3S sin r

+ ^-BBA sin a^ sin s sin /3r + XBB sin a^ sin as sin ar ,

and the complete symmetry of the function is implied by the tri-

linearity if the equalities

6*222 ^-BAA = ^ABA = ^AAB> ^ABB = ^BAB = ^BBA

are known for any one pair of distinct directions. On account of

the symmetry of KAB ,
there is no distinction between \BAA and \ABA

or between \ABB and \BAB , and therefore the equations necessary
to imply 6'211 are two only, namely
"223 ~^AAB = ^ABA > ^ABB = ~^BBA >

which on reference to 6121 and 6'122 are readily identified with

the equations associated with the name of Codazzi :

6'224. The Codazzi equations for any pair of families of curves

of reference express the symmetry of the Codazzi function for the

directions of reference and imply the complete symmetry of this

function,

and it is for this reason that I have proposed to attach Codazzi's

name to the function itself.

From 1-43,

6*225. Any two pairs of Codazzi equations are equivalent,

and this result adds interest to a comparison of different forms

which the equations assume.
* See 8-1 below.
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6'23. An important interpretation of the Codazzi equations comes

from 6136, which can now be read as a relation between \TET , the

Darboux function of OT, and \EEE> the Laguerre function of OE :

6*231. The sum of the Darboux function of any direction OT and

the Laguerre function of the perpendicular direction OE is a linear

function, equal to twice the rate of change in the latter direction of

the mean curvature of the surface.

Since the two equations

O'2o2 i^TTE = *-TET> ~^-TEE = \ET
differ only in the direction which is denoted by OT, 6'231 implies
them both*, and is equivalent to any pair of Codazzi equations.

Angular differentiation gives relations of another kind between

the functions of Laguerre and Darboux. If the variable directions

are independent,

6233 daT\RST = \RSE-

Hence because the Codazzi function is symmetrical,

O ^o4 CLQ/f^jiff
=

oA/jrjijj,

O ^Ov aa A*'TTE ~~* ~ TEE ~~
A^^TTy H* it rp tj^rprprp .

it is easy to express these results in words.

6'31. The Codazzi equations derived from 6142, 6143, and 6145,
6146 are

6'311 2A/c
gl
= dxjdsz ,

2A/c
gz
= dyfzfdsl ,

and

6-312 r 2sa {Kgj+(dvldsj)}
=

(d<;a/dsK)smv,

L 2?a [
K
9K
~

(dvldsK}\
= -

(dsajdsj) sin v,

and these are inevitably regarded as formulae for the calculation

of the geodesic curvatures which they involve. The same view may
be taken of the Codazzi equations in general, for although as a rule

each equation involves two geodesic curvatures, the pair of equations

"'313 ^-AAB = ^-ABA > ^ABB = ^BBA

is linear in the pair of geodesic curvatures icg ,
Kg ,

and has for its

discriminant <?AB
2

SAASBBI which has been seen in 4'472 to be

equal to A 2 sin2
&> and therefore vanishes only at an umbilic.

* Formulae equivalent to 6-232 were discovered in 1911 and announced to the

Fifth International Congress of Mathematics (Cambridge, 1912; Proceedings, vol. 2,

p. 34) ;
I have not hitherto published a proof.
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6'32. Since any two pairs of Codazzi equations are equivalent,

the geodesic curvatures in any one pair of families of reference

curves can be calculated from those in any other pair ;
this is in

accordance with 2'425 and 2'426, but if in illustration we deduce

KgJ from 6*31 1 we shall see the economy effected by the enlarging

of our ideas. Because the swerve <TT
S

is linear in the direction OT,

6'321 KgJ + (dv/dsj)
=

ffj
K =

<TI
K cos | u - <rz

K sin \ v

=
{"91 + 4 (dv/dst)} cos %v - {K^

- \ (dv/dsz)}
sin \v,

and therefore from 6'311

6-322

\dx l . dv .

4 -r cos * v A -^ sin * v
\dsz dsz

'

fd (?a cot i v) . dv

r-^r sm^ +i?^
ani/) , - dv

as anticipated. It would be rash to assume that every useful formula

for a geodesic curvature is given by some Codazzi equation ;
in fact

an example can be given to the contrary. Identically,

o v * .

-=- 2?a 5- cosec v = tan

con* a . o6'324 ^ I- 2? rt -j- cosec w = cot 2 * u
;

dsz

a
dsz dsz

utilising the relations

6-325 9 tt

2 cot4

1 v = 9a
3 cotH u/?a tan | u = - x

z / t ,

6-326 9a
2 tan4

1 u = 9
3 tan3

$ v/9a cot | v = - V/^ ,

it is easy to deduce from 6'312 the expression

6'327 KgJ
=

{d log ( Xz/x^/dst} sin | v cos2
1 u

+ {d log ( Vt*/*s)/<frt) cos |u sin2

|y,

of which Bonnet has made application, but 6'327 is not as it stands

a Codazzi equation.
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7. The Trilinear Rate of Change of a Function of Position

711. In the last section the trilinear rate of change played only

the subsidiary part of introducing to our notice the Codazzi function

and establishing its symmetry, and for this purpose the variable

directions were restricted to be tangential to the <l>-surface. The

next task is to investigate formulae involving the same trilinear

rate of change with one or more of the directions normal.

7*12. From the elementary formula

7121 &yp=G1

p,

since this implies for any variable t on which OP may depend

7122 3>V (dlpldt) = G1

(dlp/dt),

it follows that whatever the direction OQ,

7123 &m + &p (dlN/dsQ )
= GV

Here is a simple proof that the function <&2P (dlNldsQ) is sym-
metrical in the directions OP, OQ, a conclusion reached in 5'3, and

substitution from any of the formulae of 5'32 gives a corresponding
deduction from 7123. Thus 5'325 gives

7124 &N&XPQ + d>V*n* = G&PQ + &P &Q
in which no restriction is implied on OP or OQ, and 5'321, 5'322,

5-323 imply

7125

7126

7127

KP in 7127 denoting either value of the curvature of the orthogonal

trajectory.

713. The function 4>3

jvpQ ig involved not only in the rate of

change d<&2
NP}dsQ but also in the rate of change d^pqjdn, and

deductions from the symmetry of the trilinear function are to be

expected. If however OQ is normal, nothing is to be anticipated

that is not deducible from the symmetry of the bilinear function

G2

2fp', in fact we have from first principles

7131 d^Npfdn = ^NNP 4- 3>V (dlP/dm) + &P (dly/dn),

and since

7132 < V (dIP/dn) = G1

(dlp/dn),
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the comparison of 7131 with 7'123 yields only the identity

7133 d&p/dn = G*NP + G l

(d!P/dri).

But d^>2

ST/dn repays examination.

7'21. Expanding d<&2
ST/dn in the usual way and substituting

from 2741 we have

7-211 d& T dm

on the other hand, from 4'212,

7'212 d^2
STldn = d (GicST)fdn

= G (drcST/dn) G IN KST .

Hence from 4'212 and 5114

7213

&NST + G^KST + G {(dfcST/dn)
- (TNS KDT - <TN

TKSE
- 2rs rr}

= 0,

or in a form analogous to that of 6118,

7'214 (dKST/dn)
- <TN

S KDT O-N
TKSE

7'22. When 7*213 is compared with 7125 the function 3> itself

disappears, surviving only in the slope:

7-221 Ga
ST +GlyKST

+ G {(dfcST/dn)
- O-N

SKDT - O-N
TKSE

- 2rs rf - KSlt
ic
Tlt }

= 0.

An algebraical transformation reduces the number of terms in

this equation. Let T denote l/G, which is the arc function of the

trajectory with respect to the variable 4>, and has been called the

spaciousness of the family; then identically, for any directions OP,

OQ,

7-222 T*p = -G-*Gl

P ,

7-223 T2

PQ
= - G-I&PQ + 2G-3G 1pGl

Q ,

so that

7-224 GG*PQ
- 2G*P G*Q = - 7^3T2

Pg .

But for tangential directions OS, OT,

7-225 G*sGl

T =

Hence

7'226 (dtcSTldn)
- <TN

SKDT
- <TN
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or in another form, involving <!> but separating completely the

geometrical from the analytical terms,

7*227 (d/cST/dri) O-N
S KDT a^

1
'KSE

7'23. Particular cases of 7 '214 are

7'231 (dKTTfdri) *2o-N
T
sTT

7-232 (dtcET/dn)
- 2a-N

T
<iE

and the corresponding cases of 7 '226 are

7-233 (dKTT/dn)
- 2o-N

T
?TT

- KT^ = (T
2
TT +

7-234 (dicET[dn)
- 2<rN

T
?ET

-
KE* r* = (T

2
ET

to appreciate the last two formulae, we must recognise KT#
2 as

KTT
2 + KEJ?, the square of the amount of the spin of the tangent

plane along OT, and KE#KT# as KETKTT + KEE KTE ,
that is, as 2BKET .

7'24. Two symmetrical bilinear functions in a plane 0^15 are

identical if they are equal for the pair of directions OA, OA, for

the pair of directions OA, OB, and for the pair of directions OB, OB.

Hence any one group of three independent particular cases of 7'214

or 7'226 is equivalent to any other group.

If Or is a principal direction, KT^ is the square of the corre-

sponding principal curvature and <$TT is zero; hence*

7'241. If OC is a principal direction on a <&-surface and * is the

corresponding curvature, then

where T is the reciprocal of the slope of <E>, and the rate of change

of x along the orthogonal trajectory of the ^-family is given directly

* Since the truth of this theorem for one of the principal directions is not de-

ducible from its truth for the other, there are two independent formulae involved in

7'24l. These are the formulae whose existence was inferred by Forsytli in 1903

(Phil. Trans. Roy. Soc. Lond., Ser. A, vol. 202, p. 333) from an enumeration of

invariants; discovered by the methods described here and translated into a form to

require no explanation they were announced to the London Mathematical Society

(Proc. L.M.S., vol. 16, p. xxvii) in 1918.
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The form taken by 7'232 and 7 '234 for a principal direction, that

is, by 7'214 and 7'226 when OS, OT are principal directions at right

angles, is quite different; KIZ being zero on every surface, dt^/dri is

zero, and K^K^ ,
a multiple of K IZ ,

is zero also. Thus only two terms

of 7'234 and three of 7'232 survive, and since 9 IS is A, the amplitude

of curvature, and in the swings crN
l and 9jy

B
is to be recognised the

magnitude described as the twist of the family,

7'242. The twist m of the family of surfaces associated with a

function 3> is given in terms of 4> itself by

and in terms of the reciprocal of the slope of <E> by

Of the results of applying 7'214 and 7'226 to the asymptotic
directions OJ, OK the most elegant is

7-243 (dialdn) sin v - 9a
2 cos v = - T*JK/T,

which can easily be verified from 7'241 and 7'242.

7'31. To deduce from 7 '242 formulae for evaluating the twist

when <J> is given as a function of Cartesian coordinates ac, y, z is a

simple matter, but requires some preliminary investigations to which

the theory of multilinear functions is not essential.

By its definition, the gradient G of the function is the vector

whose projections are <$>x ,

the equation

7311 G- = -'

The slope G therefore satisfies

1
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The ratios of the normal direction are xa/G, yQ{G, za/G, where

XQ> y<*> za are the components of G and are therefore given by
formulae of which the first is

7313 cos 7 cos p
1 cos a

cos a 1

The direction whose ratios are XT , yT ,
ZT is tangential to the

^-surface if

7'314 $>x%T + 3>yy-I + zzT = 0>

and from 0'45 it follows that if the directions 08, OT are tangential

and eST is an angle from the first to the second, then

7-315 TG

Also if OE makes a positive right angle with OT round ON,
then OT makes a positive right angle with ON round OE and

therefore by 0'45

7"316 G (1E ,
mE , WE)

= T XQ ya ZQ

where xa> ya ,
ZQ have the values typified in 7'313, and by 0'46

7-317 TG(cE,yE , z^)= <bx $>y $>z

7'32. The bilinear curvature of the <J>-surface in the pair of

directions OS, OT is shewn by the comparison of 4'212 with 3'311

to be given by

7-321

GfCST = - (^xx, yy, zz, ^yz, 3>zx, ^xy^Sy Vs> ZS$XT, 2/r ZT\

so that in particular for the normal curvature in the direction OT,

7*322 G/cn = - (<&xx ,
3>yy ,

3>zz ,
3>

yz ,
<&zx ,

<b

Combining 7-321 with 7'317 we have

yT>

7-323 TG*KSE = 1

yzs

-f
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hence in terms of ratios alone

7.00/1 onr/n'2
I OAt & 1 (jr <? T

*S XT + yT COS 7 + ZT COS ^

s XT cos 7 + y-f + ZT cos a

s XT cos ft + yT cos a 4- -^r

Zy a?s + ys cos 7 4- zs cos /3

?r a?s cos 7 + 2/s + zs cos a

?r g cos @ + ys cos a 4- zs

and the geodesic torsion in the direction OT is given by

7-325

XZT XT + yT cos 7 4- ZT cos /3

,y^r a;r cos 7 4- t/r 4- ZT cos a

,^r r cos $ 4- 2/r cos a + ZT

I

cos 7

cos/3

It is convenient to write

7'326 T2
B,

XX =

yy

cos/3

cosa

1

cos 7

and so on, and to use H Z2/
,
H-1

'

2
, E 2^ as equivalent to Eyz

, E2
*, Ea'

y
;

with this notation, 7 '324 becomes

7-327

G2
5sr=T(S^ EW, E 22

, E^, E, E^a^s, ys ,
*s$>P ,yr , *r),

and 7'325 takes the form

7-328 G^g
= T (~

xx
, EM, E zz

, E,y
z

, Zzx
, E^^r.- 2/r. -^r)

2
-

7'33. There is no need of the theory of multilinear functions

in establishing the theorem that the principal curvatures of the

4>-surface are the roots of the equation

7331

G cos 7 + <b

G* cos /3 + <E>

G* cos 7 + 3>yx

G + yy

G cos a + <& z

(r COS /3 +

Gx cos a +

= 0.

x.



66

Applying to 7'321 the determinantal identity

7-332 RTS

RST

Rxx Rz

R
Ryy

Ry*

where on the left-hand side RPQ denotes

2 RUVUPVQ , u, v = x,y, z,

a'nd the nine coefficients of the form Ruv are arbitrary, we have in

virtue of 7*315

"7-QQQ /Y>2 ^4 V
I COO L Lr .n_

J> <J) <J) Q

which is also a corollary of 7*331, and applying the same identity

to 7*327, we have similarly

7'334 G6A*

ZZyz "tZ

in making these deductions we may take an arbitrary pair of tan-

gential directions and appeal to 4*468 and 4*472, or we may take a

pair of principal directions and remember that KIZ , <?, ?K all vanish.

7*34. For the calculation of the twist, or indeed of the value

of any symmetrical bilinear function when its arguments are the

principal directions of a <I>-surface, it is not necessary to calculate

the individual ratios of the principal directions
;
it is sufficient to

discover the values of the six combinations XiXz , y^yz , z\Zi, y\zz + z^yz ,

ZiXz + ^Zz, #iy5 + 2/t#s, and this we proceed to do.

It is easy to find five linear functions of these six combinations

which necessarily vanish : since K IZ is zero, 7*321 gives one such,

and because the principal directions are perpendicular,

x&i -I- yt 2/3 + z^z + (y^z + z^} cos a + (z^z + x^) cos /3
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also multiplying the conditions of tangency

*x art + ^yyl + ^zzl
= 0, 4^

by xZ) xl and adding we have

and similarly

y (yt*8

,
=

= 0,

= 0,

= 0.

Hence

7'341. With any Cartesian frame, the six expressions x
l
xz , yiyz ,

zizz> yi zz + ziyz, Zi%z + %izz> #i 2/s + 2/i#5 are proportional to the Jive-

rowed determinants of the matrix

111 cos a cos/3 cos 7

2^ 000 3>z <&y

2$>y <t>, <I>.

2^>2 <&y <&x

To find the factor which enables us to replace the proportionality

by equality, we remark that 7'341 implies that

7'342. For arbitrary values off, g, h, the determinant

f* g* A2

gh hf fg

1 cos a

3>7

cos 7

ts a multiple of the product (fxl 4- ^rj/t -f hz^ (fxz +gyz + hzz},

and we evaluate this product in another way.
If we write temporarily m, n for fxt + gy^ + hzlt faz -(- gyz + hzz ,

then identically

na?
t
- mxz

= g (x^yz
-
y,xz)

- h (zlms
- x^),

and therefore by 7 '31 5

TG (;i#i mxz)
= g<bz h<&y ;

similarly

TG (ny,
- myz)

= h x
- f&z ,

TG (nzt
- mzz) =/<Dv

-
g$>x .

52
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But because $ST is symmetrical and bilinear, to replace XT , yT ,

ZT by nxl mx~, nyl myz , nz^ mzz on the right of 7 '325 is to re-

place <fg by w2
<?tl 2wm? I5 + m2

?^ on the left of the same equation ;

recalling that ?, 5 I5 , 9^ have the values 0, A, and replacing the

product nm by its value we have the equation

7-343 - 2T3 G*A (fa, + gy, + hz (faz + gy, + hzz}

-f^z) cos 7
~ 9*) <*>** + (fv ~ 9*) cos

-
v cos 7

*,-f*,)
- 9*) *y + (fv ~9*) cos

It follows that the determinant in 7'342 is a multiple of the

determinant in 7 '343, and once attention is drawn to the existence

of a connection between them it is a simple matter to reduce the

former to the product of the latter by 2. We conclude that

7'344. The value of the determinant in 7'342 is

4T3 G*A (fa, + gy, + hz,} (fa, + gys + hzz),

and further that

7'345. The value of the symmetrical bilinear function RPQ of
which the expression in terms of Cartesian coordinates is

2 RUV UP VQ , u,v = x, y, z,

when the arguments of the function are the first and second principal

directions of the ^-surface, is given by

R**
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Determinants of the form occurring here were first used by

Darboux, who discovered them in his reaearches on triply-orthogonal

systems, and we shall call them Darboux determinants. We may
express 7 '345 briefly by saying that the value of the Darboux de-

terminant which has Ruv
for the typical element of its first row is

In passing we may mention another expression involving the

product (fai + gyi + hzl )(fxz + gyz + hzz ), interesting in itself but

as ill adapted as that in 7'343 to giving the value of a bilinear

function that is not a product. From the identity

7-346

Rss RTS fxs + g'ys + h'zs

Rxx Ryx Rzx
yszT- zsyn f

Rw Ryy Rzy ZSXT XS ZT g'

Rxz Ryz Rzz xsyT~ysxT h'

yszT -zsyT ZSXT -XS ZT xsyT -ysxT

f" g" h"

since Hn = 0, TSi5
= G2A, E^- = 0,

we have

7'347 26r4A (fx l + gyl + hzj (fxz + gyz + hzz)

= _ T3, xx -Syx <=zx ^ f

<|> <$> <|) o

/ g h o o

7'35. The application of 7'345 to 7'242 is immediate :

7'351. At a point which is not an umbilic of the ^-surface through

it, the twist TS of the ^-family is connected wilh the derivatives of <&

by the formula*
* The formula was first given, in terms of curvilinear coordinates and without

proof, to the Fifth International Congress of Mathematicians (Cambridge, 1912;

see Proceedings, vol. 2, p. 31). Results equivalent to 7'351 and 7
-352 in terms of

rectangular Cartesian coordinates were proved subsequently by Herman (Quarterly
Journal of Mathematics, vol. 46, pp. 284 et seq.). Algebraical transformations of the

determinant involved are to be found in Darboux's treatise on triply-orthogonal systems.
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8TM 2
<57 = - T3 T TJ-xx J yy Tyz

yz

T* zy

where

111 cos a cos ft cos 7

^ <bz 3>
?/

24^ <t>2 <J>a;

2<J>2 y <&x

T2

/T
2 = -

I
1 cos 7 cos ft &x

cos 7 1 cos a 3>
y

cos /3 cos a 1 4>2

a/id ^1 ? the amplitude of curvature of the ^-surface.

The value of A" in terms of derivatives of <I> is given in 7*334

above.

The alternative expression for the twist given by 7*242 is more

complicated, but gives the result explicitly in terms of third

derivatives of 4>. If xa , y ,
za have the meanings assigned in 7*31,

then G&NP is a linear function of OP in which the coefficient of

xp is

and G<&3
NPQ is a bilinear function of OP and OQ in which the

coefficient of XpXq is

7'352. If the typical element in the first row of a Darboux

determinant is

cos 7 cos ft

cos 7 cos a 3>

cos /3 cos a 1 *,

1 cos 7 cos ft

cos 7 cos a <&yuv

cos /3 cos a 1

1 cos 7 cos ft

cos 7 1 cos a <

cos ft cos a 1

yu

1 cos 7 cos ft <J>^
'

cos 7 1 cos a <&yv

cos/3 cos a 1 <J>ZC

the value of the determinant is 8T7GsA 2
vr.



71

It is to be remarked that the expression given in this enuncia-

tion is not in general simply the product of the second derivative

Tuv by T4
Cr

5
;
'the difference between the two is a function which

is such that its use as a typical element of the first row produces
a Darboux determinant that vanishes.

8. Functions of Direction on a Surface

811. The fundamental difficulty in applying the theory of

multilinear functions to problems connected with any single surface

other than a plane is due to the absence of genuine gradients.

The directions forming the arguments of such functions as the

bilinear curvature and the Codazzi function are essentially tan-

gential, and if the current point varies these tangential directions

are necessarily affected.

Suppose the surface to be referred to curvilinear coordinates

u, v and let a standard tangential direction W be associated with

each position of 0. Then a function F(Q, R, ...) of the tangential

directions OQ, OR, ... may be described explicitly as a function

F (u, v, ewq,
eWR , ...), and if the directions OQ, OR, ... vary in a

given manner with the position of on a curve in the direction

OT, the rate of change of F(Q, R, ...) along the curve is given by

dF dF du dF dv F deWQ ,
. F deWR

o ill
-j

=
^ -j 1- -j H aagf -j

* + aaR Ji j \- . . . ,

dsT ou dsT dv dsT dsT dsT

that is, by

, dF (dF du dF dv w]8112 - -=
\ J + -Z- -j (dagF+ daBF+ ...)<TT

W
\dsT (du dsT dv dsT

+ (o-T
QdaQF+o-T

RdaRF + ...).

Since u, v are merely particular functions of position on the surface,

the rates of change du/dsT , dv/dsT are the linear functions u l

T , v
l

T

of OT, and since OW is assumed to depend only on the position

of 0, the swerve a-T
w also is a linear function of OT. On the other

hand, neither the rates of change dF/dsT ,
daQ F, daR F, ... nor the

swerves <rT ,
<rT

R
,

... depend in any way on the actual choice of

coordinates u, v and initial direction W. Thus

8113. Associated with any function of direction F (Q, R, ...) on

a surface there is a function gdbrF which is linear in the direction
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OT and is such that the rate of change of F along any curve in the

direction OT is

gdbTF + crT
QdaQF+ <rT

RdaRF + ....

The function gdbTF will be called the Darboux gradient of F.

From 8112,

8114. In terms of coordinates u, v and an initial direction W,
the value of the Darboux gradient gdbTF is given by

gdbTF = (dF/du) u l

T + (dF/dv) v l

T
-
(daQF + daBF+...) aT

w
.

812. For a multilinear function PQBS ...,
the angular derivatives

daqP, daB P, ... have the values PBRS...> PQCS...> where OB,

00, . . . make positive right angles with OQ, OR, . . .
;
hence

8121 dPQBSJdsT = gdbTPQRS ...
+ PBRS ... <TT

Q + PQCS... *T
R +

There is another route, open only in the case of multilinear func-

tions, which leads to a similar formula and therefore shews a

different aspect of the Darboux gradient. If the function PFGH
was defined for all sets of directions, there would be a gradient

PFGH...K also defined for all sets of directions, and for tangential

directions OQ, OR, OS, ... OT we should have

8122 dPQBSJdsT = PQRS . T + PBRS <?T
Q + PQCS...*T

R +
+ PNRS.. KQT + PQNS... KRT+

If the functions PNRS..., PQXS..., which might, of course, be

different functions, were known, the function PQBS ..T could be

determined for tangential arguments by this formula
;

if PQBS was

given in the first place for tangential arguments only, the functions

PNRS...> PQNS..> could be assigned arbitrarily, and by comparing
8122 with 8121 we see that the Darboux gradient is the gradient

found by supposing the functions P^BS ..., PQNS..> - all to be

identically zero.

Nevertheless, the Darboux gradient is a disappointing function.

The Codazzi function is the Darboux gradient of the bilinear

curvature, and if 4> is a function of position on the surface and ^^
is the linear function d<$>/dsT , the Darboux gradient of <& 1

T is the

function {d3>
l

sjdsT} 3>l

D (rT
s

,
which is in fact symmetrical and is

valuable on account of its symmetry. But the Darboux gradients
of the Codazzi function and of the function (d^

l

sfdsT) <&I

D O-T
S

prove both to be unsymmetrical ; gradients with the symmetry
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that is desirable are not yielded by any simple general method,

and all that is possible is to discover special devices effective in

particular cases.

8 21. To define multilinear rates of change of a regular scalar

function of position <1> on the surface, we extend the function to

the whole of space in the neighbourhood of the surface by associating

with every point on the normal at the value of <I> at itself. If

two or more normals meet at a point Q, the function so defined may
be many-valued at Q', if however the surface has only ordinary

points there is a region of space within which no two normals inter-

sect, and within this region
< is not only single-valued but regular.

To assign the values of <& outside the surface in the way suggested
seems at first no less arbitrary a proceeding than to construct the

successive Darboux gradients by defining the functions <&l

y, ^Vr.

^NSTt " to be zero. But a number of considerations combine to

modify this impression: the multilinear rates of change formed by

extending the function in any regular way are necessarily sym-

metrical; throughout the whole of differential geometry the straight

line is much more than merely the simplest of curves; and the hypo-
thesis made is in fact equivalent only to the assumption that the

functions <&l

x, 4>Vjv> ^S
NNN> >

functions in which no arbitrary

directions are involved, are all zero.

822. If attention is concentrated upon the distribution of < on

the surface, <&l

x, ^"yy, ^XNN, figure as functions of position only,

^T> ^2
Ni> ^3

NNT> as linear functions of the one variable direction

OT, 4>2
sr ,

3
irsT> ^NNSTy- as bilinear functions of the pair of

variable directions OS, OT, and so on. The rate of change of any
one of these functions along a curve on the surface is expressible

by means of other functions in the set, the typical relation being

8-221 d

h+k+l
ffJ

l+k

N...NNPQ...RST
~~

r* N...N*PQ.. RS

A+ft ^
.xm . RS

,/*+*
+ ffr q>

h+k h+k
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where OP, OQ,... OR, OS, OT are k + 1 tangential directions and

OA, OB,... OD make positive right angles with OP, OQ,... 08. Com-

parison of 8-221 with 8-121 shews the relation of
3>^

+^P

to the Darboux gradient of <3> '.

N...NNPQ...RS

N...NNPQ...RST

none of the functions <&*XT , ^NXT, ^NNNT> vanish identically,

and therefore unless the surface is a plane, h must be zero for

hfcT+Q>N N Rs
to vanish, and k must be unity for the remaining

terms in the difference between the two functions to vanish. That

is to say, <E>
2
sr is the Darboux gradient of ^V, but there is no similar

relation between others of the multilinear functions with which we
are dealing unless either the surface is plane or the function <f> has

some special relation to the surface.

8'23. It is easy, accepting the assumptions

8-231 <*>V = 0, 4^ = 0, <&W = 0,...,

with the implications

8-232 d&N/dsT = 0, d&NN/dsT = 0, d 3
N2fN/dsT = 0, . . . ,

to arrange the formulae included under 8 '221 in such an order that

each of the multilinear functions is introduced without further

reference to space outside the surface than is implied in the occur-

rence of bilinear curvatures as factors. The first equation is

8-233 &
from which 4>J

r may be calculated from a curve lying wholly in the

surface. Then since

8-234 d$> lN/dsT = 4>Vr - *r*&*

identically, and the rate of change is zero,

8-235 <2>*yT
- KT*3% =

;

also because <&1N is zero,

8-236
'

<S>
8
sr + o-/4% = d&sld8T .
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Next come

8-237

8-238 fcVsr

8-239

in which the only fresh functions are 3?*NNT> ^NST> *&3
RST>

the process can be continued to any desired extent.

8 24. Emphatically the formulae of the last paragraph and their

successors are neither definitions of the multilinear functions nor

aids to their calculation. For the former part they are unsuitable

because neither the symmetry nor the multilinearity of the functions

is in evidence in the formulae, for the latter because the rates of

change and the swerves contain parts that are not multilinear which

it is superfluous to evaluate. To discuss the expression of these

multilinear functions by means of curvilinear coordinates on the

surface requires an analytical foundation which is beyond the range
of this pamphlet, and we must content ourselves with the observa-

tion that rather than calculate the functions directly from 8*221

we should combine 8'222 with 8114 and use the formula,

N...NNPQ...RST

r

^g^^^m _~ h+k - h '^ k

"'N...NNPB...RS
' '"~r ^

N...NNPQ...RD)

h+k

RS

but this is not the method actually to be recommended.

The very lack of symmetry which renders the formulae covered

by 8'221 unfit to serve as definitions implies that significant rela-

tions which do not themselves involve multilinear rates of change
are deducible from these formulae. To work out details is interest-

ing it will be found for example that 8'235 and 8*238 together

imply the symmetry of the Codazzi function but here we will



76

confine our attention to the simplest problem of the kind, and
examine only 8*236.

831. The bilinear function <>2

iST being symmetrical, we have

from 8-236,

8-311 (rte>y<for)
- <TT

S&D = (d<&Tld8s) - <rs
T3>l

E ;

involved in 8'311 'are really two families of curves and their

orthogonal trajectories, and the equality may be written in the

form

8-312
** -/* _ **

_***,
dsTdss dsD dss dsT dsE

or in a different notation as

0010 d-'<t> / do)\d^> d2

(, da)\d<S>8'313
-JT7-J-.

-
(Kg

-
-jr. ) -yr

=
jTjT.

-
(Kg + -j-. } -3^7 ,dsds \

' as) dm dsds \
9

ds) dm

where d/dm, d/dm indicate rates of change along the orthogonal

trajectories of the families. If the families of curves are everywhere

orthogonal, 8'313 becomes

8-314
d*

- = d* ^
dmds gm dm dsdm gs ds

'

where K
gs ,

Kgm denote the geodesic curvatures of a typical member
of a family and of an orthogonal trajectory of the same family.

8 -

32. We must not fail to observe that if what is being discussed

is the variation on a particular surface of a function already defined

throughout space, the formulae of 8'23 and the transformations of

8'31 are not usually valid. For example, in general when the function

and the surface are defined independently of each other,

8-321 d$>l

sfdsT
= &ST + <TT

S&D + KST <&
1N,

and for the last term to disappear either <&1

N must be zero or OS,

OT^must be conjugate directions. Of the cases in which the latter

condition is satisfied the most important is that in which the two

principal directions occur: without any hypothesis as to a relation

between 4> and the surface,

and so in particular the function TIZ which was shewn in 7'242

to be connected with the twist of the <3>-family is expressible
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as (d
2

TldszdSl)
-

Kgz (dT/ds,) or as (d^T/ds.ds^ + Kgl

although in general T1N is not zero and T'2ST differs from

(d*T/dsTdss)-o-T
s
(dTldsD} by KsT (dT/dn).

8'33. The cases of 8'311 which are most easily appreciated are

found in the application to two special families of curves on the

surface, the ^-curves and the <E>-orthogonals. The gradient of <E>

is a tangential vector G which is at right angles to the 3>-curve.

Points where the gradient is the zero vector being excluded, the

amounts of the gradient are separate single-valued functions of

position on the surface, and one of these is chosen to be called the

slope of <; the slope will be denoted by G. The direction in which

the gradient has the slope G is defined to be the standard direction

of the ^-orthogonal and of the tangential normal to the <l>-curve, and

will be denoted by OM. The direction OL with which OM makes

a positive right angle is the standard direction of the <I>-curve.

By definition

8-331 &L = 0, &M =G,
whence

8-332
^
3>2Mr = dG/dsT = G1

T ,

8-333 3>2LI- = -G(TT
L = -G

{icgT + (d TL/dsT)},

Thus

8"334. The geodesic curvature of the <&-curve is ^LL/^M>
and

8*335. The geodesic curvature ofthe ^-orthogonal can be expressed
both as - Q'LM/^M and as-^d (log G2

)/dsL .

It may be added that 8'335 is deducible from 2'831 and 5'224,

for with the convention by which <J> is extended into space a

<-surface is the ruled surface composed of the normals to the

original surface along a 3>-curve.

8 -

41. I have not succeeded in continuing satisfactorily the

sequence of geometrical functions of which the first two members
are the bilinear curvature and the Codazzi function. Differentiation

of 6'115 gives

8'411 &QRST + G*QT*BS + &RTKQS + G'ST^QR + G
2
RS KQT

G 1

Q\EST + G
l

R\Qsr + Gl

s\QRT
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where

8*412 PQRST gdb^qps KQTKB^ ffs#

and while 8'41 2 shews that ^QRST depends only on the form of the

<E>-surface, 8'411 shews that the function is a symmetrical quadri-

linear function of tangential directions. Thus there is no difficulty

in the construction of the third member of the sequence of functions,

and none is to be anticipated in repeating the process again and

again, but no general rule is apparent under which the constructions

fall, and it is evident that the formulae rapidly become too com-

plicated to be intelligible without some clue to their composition.
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Amount of a vector ... ... Ol

Amplitude of curvature, A ... 4-42

Angular derivative, da ... 0'6

Asymptotic angle, u ... ... 4'54

Asymptotic torsion, sn , sa 4'52, 4'54

Bilinear curvature, KST ... 2'31

Bilinear rate of change, <$
2
PQ ... 3'31

Bilinear torsion, SST 4'32

Codazzi function, \KST ... 6'11

Core 1-31

Darboux determinant ... ... 7 '34

Darboux function of

direction, \TET ... 6' 13

Darboux gradient, gdbT ... 8'11

Defect of curvature,

-#-, sET 4-12, 4'32

Geodesic curvature, KO ,
<rT

r
2'21, 2'41

Geodesic torsion, sg ,
KET 2*11, 2-32

Gradient of a core 1-71

Gradient of a scalar function, Gr 3'22

Laguerre function of

direction, \TTT ... 6*13

Linear function ... ... I'll

Mean curvature, B ... ... 4'12

Multilinear function I'll

Multilinear rate ofchange, *pQr 3'41

Normal angle, or 2'52

Normal curvature, *n ,
K TT 2'11, 2'32

Projected product of two cores 1-53

Projected product of two

vectors, c^rs ... O2
Radial, 1 K O'l

Slope, G 3-22

Source ... 1-51

Spaciousness, T . 7 '22

Spread, TS 273

Swerve, a-T
s

2-41

Swing, a-N
s

2'71
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