

UMIV.OF TOROFTO LIBRARY

ENCYKLOPÄDIE

DER

MATHEMATISCHEN WISSENSCHAFTEN

MIT EINSCHLUSS IHRER ANWENDUNGEN

ZWEITER BAND IN DREI TEILEN

ANALYSIS

REDIGIERT VON

H. BURKHARDT † (1896-1914)

M. WIRTINGER IN WIEN (1905-1912)

R. FRICKE IN BRAUNSCHWEIG

E. HILB IN WÜRZBURG

DRITTER TEIL ERSTE HÄLFTE

歪

21221

LEIPZIG
VERLAG UND DRUCK VON B.G.TEUBNER
1909—1921

ENCYKLOPÄDIE DER MATHEMATISCHEN WISSENSCHAFTEN

MIT EINSCHLUSS IHRER ANWENDUNGEN

ZWEITER BAND: ANALYSIS

Inhaltsverzeichnis zu Band II, 3. Teil, 1. Hälfte.

C. Nachträge.

1. Algebraische Analysis. Von Alfred Pringsheim in Mün	chen	
und Georg Faber in Karlsruhe, jetzt in München.		
, •	S	eite
Einleitung: Historisches		3
1. Potenzreihen. Der Konvergenzkreis		4
2. Verhalten von Potenzreihen auf dem Konvergenzkreise		9
3. Weitere Fundamentaleigenschaften von Potenzreihen		11
4. Rationale Funktionen und rekurrente Reihen		16
5. Der allgemeine binomische Satz		20
6. Die Exponentialreihe		25
7 Der natürliche Logarithmus und die allgemeine Potenz		27
8. Die logarithmische Reihe.		29
9. Die Berechnung der Logarithmen		32
10. Die Funktionen sin x und cos x.		33
11. Die zyklometrischen Funktionen		37
12. Unendliche Produkte für sin x und cos x		40
13. Partialbruchreihen für tg x , cot x , cosec x , sec x		42
14. Potenzreihen für $\lg x$, $\cot x$, $\csc x$, $\lg \frac{\sin x}{x}$, $\lg \cos x$.		44
14. Totolisielleli iti ig a, cora, coscele, see a, ig a, ig cosa		
15. Die hypergeometrische Reihe		45
(Abgeschlossen im November 1908.)		
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R		
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg.		
 Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Rin Göttingen und Fr. A. Willers in Charlottenburg. Numerische und graphische Quadratur. 	UNGE	50
 Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Rin Göttingen und Fr. A. Willers in Charlottenburg. Numerische und graphische Quadratur. 	UNGE	50
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden.	UNGE	53
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden.	UNGE	53 53
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. I. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes	UNGE	53 53 55
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. I. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes	UNGE	53 53 55 57
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Rin Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß	UNGE	53 53 55 57 58
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Rin Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen	UNGE	53 53 55 57 58 58
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Ri in Göttingen und Fr. A. Willers in Charlottenburg. I. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen b) Die Koeffizienten.	UNGE	53 53 55 57 58 58 64
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Ri in Göttingen und Fr. A. Willers in Charlottenburg. I. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen b) Die Koeffizienten.	UNGE	53 53 55 57 58 58 64 66
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen b) Die Koeffizienten c) Fehlerabschätzung 4. Spezielle Fälle der Gaußschen Formel	UNGE	53 55 57 58 58 64 66 71
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen b) Die Koeffizienten c) Fehlerabschätzung 4. Spezielle Fälle der Gaußschen Formel	UNGE	53 53 55 57 58 58 64 66 71
 Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. Rin Göttingen und Fr. A. Willers in Charlottenburg. Numerische und graphische Quadratur. Allgemeines. Methoden, die gegebene Abszissen verwenden Allgemeines. Formeln von Newton-Cotes Formeln von Mac Laurin Methode von Gauß Bestimmung der Abszissen Die Koeffizienten Fehlerabschätzung Spezielle Fälle der Gaußschen Formel φ(x) = 1 Φ(x) = (1 - x)^λ(1 + x)^μ 	UNGE	53 55 57 58 58 64 66 71 71
2. Numerische und graphische Quadratur und Integration gew licher und partieller Differentialgleichungen. Von C. R in Göttingen und Fr. A. Willers in Charlottenburg. 1. Numerische und graphische Quadratur. 1. Allgemeines. 2. Methoden, die gegebene Abszissen verwenden a) Allgemeines. b) Formeln von Newton-Cotes c) Formeln von Mac Laurin 3. Methode von Gauß a) Bestimmung der Abszissen b) Die Koeffizienten c) Fehlerabschätzung 4. Spezielle Fälle der Gaußschen Formel	UNGE	53 53 55 57 58 58 64 66 71

											Seite
	e) $\varphi(x) = \sqrt{\frac{1-x}{1+x}}$										75
	f) $\varphi(x) = V(x(x - \alpha)(x - \beta))$						•		٠	٠	76
	$g(x) = e^{-xx}$	•				•		•	٠		76
	h) $\varphi(x) = e^{-x}$	•				•	•				76
ŏ	verangemeinerung der Methode von Gaub								٠	٠	77
	a) Formeln von August	,		•	٠.		٠		•		77
	b) Verallgemeinerung von Christoffel .					٠	•		٠	٠	78
42	c) Mehrfache Integrale		•			•					82
ο. -	Methode von Massau	han			•				•	٠	83
٠.	a) Alleamaina	реп	511	101.	٠	٠			٠		86 86
	a) Allgemeines					•	•			٠	87
	$\phi(x)$ ist eine ungerade Funktion		•				•		٠		88
s	Formeln, die durch Kombination entstehen								•		90
q	Die Eulersche Formel	•		• .		•		•	•	•	91
10	Die Eulersche Formel	•	•	•					•		96
1 1	Annäherung durch mehrere Parabeln.		•			•			-	•	100
	Methoden der graphischen Quadratur						•		•		111
							•	•	•		111
	a) Allgemeines	iind	A1	hazis	 RATI				•	•	115
	c) Einzeichnung der Integralkurve	4110	21.	00011					•	•	120
	c) Einzeichnung der Integralkurve d) Erweiterungen und Ergänzungen		•			•	•		•		121
	e) Einige Anwendungen der graphischen	Qu	a dr	atur		Ċ					126
13.	Kubatur					Ċ	Ċ		·	Ĭ.	129
	a) Kubatur durch einfache Quadratur .								Ċ		129
	b) Allgemeine Betrachtungen										131
	e) Bestimmte Begrenzungen										132
	d) Zerlegung in Teilgebiete										135
	e) Graphische Methoden										137
4.	Differentiation										138
	a) Die numerische Differentiation					,					138
	b) Graphische Differentiation										139
	II. Numerische und graphische Inte	-		n g	ewe	ihn	lic	her			
	Differentialgleichu	nge	n.								
15.	Integration gewöhnlicher Differentialgleichu	nge	n								141
	a) Methode von E. Czuber										141
	b) Methode der Isoklinen										143
	c) Methode der Krümmungsradien										144
16.	Eine Reihe mehr rechnerischer Methoden										147
	a) Ältere Methoden										147
	b Methode von Runge-Heun-Kutta										148
	c) Methoden der Differenzenrechnung . Asymptotische Integration										150
17.	Asymptotische Integration										151
18.	Methode der sukzessiven Approximation . a) Graphische Methode .										152
	a) Graphische Methode						,				152
	b) Numerische Methoden										154
	e Methoden der Himmelsmechanik										157
1	II Granhischa und numanicalia Intornati	a.r.		.+i.a1	low	Th:	æ.		41		
•	II. Graphische und numerische Integrati	υп	pal	uer	ıeı,	171	ще	ren	ua	.1-	
	gleichungen.										
19.	Partielle Differentialgleichungen mit reeller	Ch	ara	kter:	istil	ζ.					159
	a) Lineare Differentialgleichung										160
	b) Dinerentialgleichungen zweiter Ordnu	$\mathbf{n}\mathbf{g}$									161
a.c.	c) System zweier simultanen linearen Di	ffere	enti	alol	eich	nn	oen				163
20.	Zur Integration der partiellen Differentialg	leic	hun	gen	\mathbf{m} i	t i	ma	gini	ire	n	
	Charakteristiken			: :							164
	a Methoden, die alle Kandbedingungen	app	rox	$_{ m imie}$	ren						164

Inhaltsverzeichnis zu Band II, 3. Teil, 1. Hälfte.	VII
b) Methoden, die eine Randbedingung streng erfüllen und das Integrationsnetz durch endliche Stücke approximieren	168 169 171 172 173 176
(Migosefficial III Tooldar 1919.)	
3. Neuere Entwicklung der Potentialtheorie. Konforme Abbildung. Von L. Lichtenstein in Berlin, jetzt in Leipzig.	
I. Definitionen und Bezeichnungen.	
1. Allgemeines über zwei- und dreidimensionale Gebiete	181 183 190 193
II. Allgemeine Sätze der Potentialtheorie.	
 Definition der Potentialfunktion Potential einer einfachen Belegung Potential einer Doppelbelegung Logarithmisches Potential einer ebenen Flächenbelegung Potential einer Volumladung Newtonsches Potential einer einfachen Linienbelegung Greensche Formeln Allgemeine Eigenschaften der Potentialfunktionen Die Cauchy-Riemannschen Differentialgleichungen 	197 199 204 206 210 210 214
III. Besondere Methoden für einzelne Klassen zwei- und drei- dimensionaler Gebiete. Spezielle Theorie der konformen Ab- bildung.	
12. Die erste und die zweite Randwertaufgabe. Problemstellung und Uni-	240
tätssätze 13. Explizite Lösung der ersten Randwertaufgabe für die Kreisfläche und den Kugelkörper a) Die Poissonschen Integrale b) Entwicklungssatz. Folgerungen	218 220 220 225
14. Kreisringfläche. Entwicklungssatz. Folgerungen 15. Positive Potentialfunktionen 16. Die Sätze von A. Harnack 17. Methode des arithmetischen Mittels	227 229 230 231
a) Allgemeine Ansätze und Resultate von C. Neumann und G. Robin b) Die grundlegende Wendung durch H. Poincaré c) Weiterführung der Poincaréschen Methoden	231 233 233 235 238
 18. Verhalten der Lösung des ersten Randwertproblems am Rande des Definitionsgebietes	242
legung	$244 \\ 246 \\ 250$

Inhaltsverzeichnis	zu	Band	II,	3.	Teil,	1.	Hälfte.
--------------------	----	------	-----	----	-------	----	---------

VIII

		Seite
22.	Konforme Abbildung einfach zusammenhängender Gebiete der Klasse ${\cal B}$	
	in & auf ein Kreisgebiet	253
23.	Gebiete der Klasse D in & Konforme Abbildung	255
24.	Kombinatorische Methoden	256
	a) Alternierendes Verfahren. Drei Grundtypen von Aufgaben	256
	b. Fhane Gabiete der Klasse E und M. Das erste Randwertproblem	259
	a Cabiete der Klasse E und M in E. Konforme Abbildung auf	
	analytische Gebiete. Das zweite Randwertproblem	260
	d) Lösungen mit vorgeschriebenen Periodizitätsmoduln	262
	e Zweidimensionale Gebiete auf einer Fläche im Raume. Konforme	
	Abbildung auf ebene Gebiete	263
	f Gebiete in G. Existenzsätze der Riemannschen Theorie	267
	Weitere Anwendung des alternierenden Verlangens	268
	h) Strömungspotential. Abbildung auf ein Schlitzgebiet.	268
	i) Gemischte Randbedingungen	269
	j) Weitere kombinatorische Methoden	272
25.	Kreispolygonflächen Polyeder	27 3
26.	Konvexe Gebiete. Rundungsschranke. Bedingungen für die Schlicht-	
	heit einer Abbildung	276
27.	Konforme Abbildung mehrfach zusammenhäugender Gebiete	277
28.	Das dritte Randwertproblem. Weitere Randwertaufgaben Die Poissonsche Differentialgleichung.	279
2 9.	Weitere Randwertaufgaben	282
30.	Die Poissonsche Differentialgleichung.	286
31	Einzelbetrachtung besonderer Gebiete	287
32	Wirkliche Bestimmung der Lösung von Kandwertaufgaben. Besondere	
	Ansätze	292
33.	Ansätze	294
	IV. Umfassende Methoden. Allgemeine Theorie der konformen Abbildung.	
24	Abbildung.	296
34. 35	Abbildung. Leitgedanken Heuristisches	296 298
35.	Abbildung. Leitgedanken Heuristisches	
35. 36.	Abbildung. Leitgedanken Heuristisches	298
35. 36. 37. 38.	Abbildung. Leitgedanken Heuristisches	298 300 302
35. 36. 37. 38.	Abbildung. Leitgedanken Heuristisches	298 300 302
35. 36. 37. 38.	Abbildung. Leitgedanken Heuristisches	298 300 302
35. 36. 37. 38.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur.	298 300 302
35. 36. 37. 38.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur.	298 300 302 303 306
35. 36. 37. 38. 40.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe. Über die Uniformisierung beliebiger analytischer Kurven	298 300 302 303 306 307 307 309
35. 36. 37. 38. 40.	Abbildung. Leitgedanken Heuristisches	298 300 302 303 306 307 307 309
35. 36. 37. 38. 39. 40.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur. Das Strömungspotential	298 300 302 303 306 307 307 309 315
35. 36. 37. 38. 40. 41. 42. 43.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fouctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe	298 300 302 303 306 307 307 309 315
35. 36. 37. 38. 40. 41. 42. 43.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in ©	298 300 302 303 306 307 307 309 315 319
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet	298 300 302 303 306 307 307 309 315 319
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet	298 300 302 303 306 307 307 309 315 316 319
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet	298 300 302 303 306 307 307 309 315 316 319
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet	298 300 302 303 306 307 307 309 315 316 319
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a. Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im	298 300 302 303 306 307 307 309 315 316 319 324 327 327
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a. Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im	298 300 302 303 306 307 307 309 315 316 319 324 327 327
35. 36. 37. 38. 39. 40. 41. 42. 43.	Abbildung. Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung. Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur. Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a) Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbil-	298 300 302 303 306 307 307 309 315 316 319 324 327 327 330
35. 36. 37. 38. 39. 40. 41. 42. 43. 44.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur. Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a. Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet	298 300 302 303 306 307 307 309 315 316 319 324 327 327 330 333
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur. Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a. Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet	298 300 302 303 306 307 307 309 315 316 319 324 327 330 338
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet Kontinuitätsmethode im Gebiete der konformen Abbildung. Funktionentheoretische Richtung	298 300 302 303 306 307 309 315 316 319 324 327 330 338 338 346 352
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet Kontinuitätsmethode im Gebiete der konformen Abbildung. Funktionentheoretische Richtung	298 300 302 303 306 307 307 309 315 316 319 324 327 327 330 338 338 338 338 338
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	Leitgedanken. Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in E auf ein Vollkreisgebiet Variationsmethoden a Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet Kontinuitätsmethode im Gebiete der konformen Abbildung. Funktionentheoretische Richtung Abbildung des Randes a) Besondere Klassen schlichter Gebiete	298 300 302 303 306 307 307 309 315 316 319 324 327 330 338 346 352 365
35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.	Abbildung. Leitgedanken Heuristisches H. A. Schwarz, Zur Theorie der Abbildung Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet Auflösung des ersten Randwertproblems in der Ebene Einfach zusammenhängende Gebiete der allgemeinsten Natur. a) H. Poincaré, Sur l'uniformisation des fonctions analytiques b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur Das Strömungspotential Das iterierende Verfahren von P. Koebe Konforme Abbildung eines p-fach zusammenhängenden Gebietes in © auf ein Vollkreisgebiet Variationsmethoden a Allgemeines b) Die ersten Arbeiten von D. Hilbert c) Auflösung des ersten Randwertproblems in der Ebene und im Raume d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet Kontinuitätsmethode im Gebiete der konformen Abbildung. Funktionentheoretische Richtung	298 300 302 303 306 307 307 309 315 316 319 324 327 330 338 346 352 365

4. Neuere Untersuchungen über Funktionen von komplexen Variablen. Von Ludwig Bieberbach in Frankfurt a. M.,	
jetzt in Berlin.	
Constant and the contract of t	(1.21.
	Seite
1. Definition des analytischen Charakters einer Funktion 2. Der Fundamentalsatz der Funktionentheorie 3. Die Integralformel 4. Erweiterungen 5. Begriff der analytischen Funktion 6. Riemannsche Mannigfaltigkeiten 7. Uniformisierung 8. Begriff der singulären Stelle 9 Begriff der Umgebung einer singulären Stelle 10. Eindeutige isolierte Singularitäten 11. Mehrdeutige isolierte Singularitäten 12. Der Monodromiesatz	382 384 386 387 389 396 401 403 404 405
13. Verteilung der Singularitäten bei eindeutigen Funktionen	406
Dan Black Lab Co.	
Der Picardsche Satz.	
14. Der Picardsche Satz 15. "Elementare" Methoden 16. Der Landausche Satz 17. Verallgemeinerungen 18. Der Schottkysche Satz 19. Erweiterungen	409 410 411 413 414 415
Weiteres über das Verhalten in der Nähe wesentlich singulärer	
Stellen.	
 20. Grundbegriffe 21. Geradlinige Annäherung an singuläre Stellen 22. Sätze von W. Groß 23. Werteverteilung in Winkelräumen 24. Ränderzuordnung bei konformer Abbildung 25. Der Fatousche Satz 	417 418 421 421 424 424
Ganze transzendente Funktionen.	
26. Weierstraß 27. Laguerre 28. Poincaré. Hadamard Borel 29. Grundbegriffe 30. Ordnung und Koeffizienten 31. Ordnung und Grenzexponent 32. Ausnahmefälle 33. Bestimmung des Geschlechtes aus den Koeffizienten 34. Das Geschlecht von Summe und Ableitung 35. Funktionen unendlicher Ordnung und Funktionen der Ordnung Null 36. Beziehungen zwischen dem Maximalbetrag einer ganzen Funktion und dem Betrag des größten Gliedes ihrer Potenzreihenentwicklung.	425 428 429 431 433 438 441 441 442
Analytische Fortsetzung.	
37. Die erste Methode Mittag-Lefflers 38. Methode der konformen Abbildung. 39. Modifikation der Methode durch Painlevé. 40. Der Hauptstern als Konvergenzstern 41. Zurückführung auf die Summation der geometrischen Reihe	445 447 450 451 451
42. Integraldarstellungen	453

Χ	Inhaltsverzeichnis zu Band II, 3. Teil, 1. Hälfte.	
		Seite
43. 44.	Eine neue Methode Mittag-Lefflers	$\frac{458}{459}$
	Zusammenhang zwischen den Koeffizienten eines Funktionselement	a c
	und den Singularitäten der durch dasselbe definierten Funktion.	
45.	Die Singularitäten auf dem Konvergenzkreis	460
46.	Die Singularitäten auf dem Konvergenzkreis Der Hadamardsche Multiplikationssatz	464
47.	Der Satz von Leau	465
18.	Der Satz von Leau	467
49.	Rekurrierende Reihen	470
50.	Untersuchungen von Darboux	$\frac{471}{472}$
õl.		+12
	Die Potenzreihen an der Konvergenzgrenze.	45.
52.	Der Abelsche Grenzwertsatz	$\frac{475}{477}$
55. 54	Weitere Summationsmethoden	480
55	Beziehungen zwischen den verschiedenen Summationsmethoden	481
56. 56	Das Wachstum der Funktion bei Annäherung der Variablen an die	101
., 0.	Konvergenzgrenze	487
	Reihen analytischer Funktionen.	
57.	Eigenschaften der Summen konvergenter Reihen von analytischen Funk-	
	tionen	491
ეგ. 59	Der Vitalische Satz	$\frac{494}{496}$
oe.	Therefore the first that the first t	200
	Funktionenfamilien.	
60.	Die Taylorkoeffizienten beschränkter Funktionen	500
61.	Jensens Verallgemeinerung des Schwarzschen Lemmas	506
62.	Die Funktionen $M(r)$, $\mu(r)$, $\mathfrak{M}(r)$	508
63.	Die Funktionen $M(r)$, $\mu(r)$, $\mathfrak{M}(r)$ Schwankungen	$\frac{509}{510}$
65	Familien, die schlicht und beschränkt zugleich sind	512
66.	Konvexe Familien	513
	Arithmetische Eigenschaften analytischer Funktionen.	
67.	Arithmetische Eigenschaften analytischer Funktionen	514
	Analytische Funktionen von mehreren komplexen Variabeln.	
	Definition des analytischen Charakters einer Funktion	517
	Die Konvergenz der Potenzreihen in zwei komplexen Veränderlichen .	519
70.	Die singulären Stellen der analytischen Funktionen von zwei komplexen	-00
- 4	Veränderlichen	$\begin{array}{c} 522 \\ 526 \end{array}$
11.	Meromorphe Funktionen	528
73	Analytische Abbildungen	529
	(Abgeschlossen am 1. Dezember 1920.)	
	5. Arithmetische Theorie der algebraischen Funktionen. Von	
	K. Hensel in Marburg a. L.	
	I. Der Körper $K(z)$ der rationalen Funktionen von z .	
1.	Untersuchung der rationalen Funktionen von z für eine Stelle dieser	
	Variables	526

	Inhaltsverzeichnis zu Band II, 3. Teil, 1. Hälfte	XI Seite
	Der Körper $K(\mathfrak{p})$ aller zur Stelle \mathfrak{p} gehörigen Potenzreihen und der Unterkörper $K(\mathfrak{p})$ der zu \mathfrak{p} gehörigen konvergenten Potenzreihen	539
ä.	Untersuchung der rationalen Funktionen von z für alle Stellen der ganzen Kugelfläche. Die rationalen Divisoren	539
	II. Der Körper $K(u, z)$ der algebraischen Funktionen einer Variablen.	
4. 5.	Allgemeine Sätze über die algebraischen Funktionen	542
c	einer Stelle p der unabhängigen Variablen	544
	Die Grundgleichung ist für den Bereich $K(\mathfrak{p})$ irreduktibel Allgemeiner Fall: Die Grundgleichung zerfällt innerhalb $K(\mathfrak{p})$ in meh-	545
8.	rere irreduktible Faktoren	548 - 550
9.	Direkte Berechnung der zu einer Stelle p gehörigen Wurzelzyklen. Das zu p gehörige Diagramm	551
10.	Untersuchung der algebraischen Funktionen des Körpers für alle Stellen	770
10 a	der Riemannschen Kugelfläche \mathfrak{A}_z . Die algebraischen Divisoren	$\begin{array}{c} 552 \\ 554 \end{array}$
	Teilbarkeit durch einen beliebigen Divisor	557
	Die algebraischen Systeme und ihre Elementarteiler Die eindeutigen Transformationen des Körpers $K(u, z)$ in den ihm glei-	562
	chen $K(y, x)$ bei beliebiger Annahme der unabhängigen Variablen x	567
14.	Die Einteilung der algebraischen Divisoren in Klassen	568
16.	Die ganzen Divisoren einer Klasse Q	570 - 572
	HI. Die zu dem Körper $K(y,x)$ gehörigen Abelschen Integrale.	
17. 18.	Die Abelschen Integrale	574
	soren	575
20.	Die Differentialklasse W	577
21.	Riemann-Rochsche Satz	$\begin{array}{c} 577 \\ 579 \end{array}$
22.	Spezialisierung für die Integrale mit rationalem Integranden	581
	IV. Die zum Körper $K(y,x)$ gehörigen algebraischen Kurven.	
23.	Die ebenen algebraischen Kurven und ihre singulären Punkte	581
24. 95	Der zur Kurve C gehörige Divisor der Doppelpunkte	583 587
26.	Die zu einer Gleichung $F(x, y)$ gehörigen Funktionenringe	590
27.	Darstellung der zum Körper K gehörigen Kurven durch homogene Koordi-	-04
28.	naten	591
2 9.	Geometrie. Die Plückerschen Formeln	$\begin{array}{c} 597 \\ 602 \end{array}$
	V. Die Klassen algebraischer Gebilde.	
	Die Hauptkurve eines Körpers und ihre Weierstraßpunkte	605
31.	9	605 609 613
31.	Die Hauptkurve eines Körpers und ihre Weierstraßpunkte Die Normalgleichungen und die Moduln der algebraischen Körper Die Normalgleichungen und die Moduln der allgemeinen Körper vom Geschlecht p	609
31. 32.	Die Hauptkurve eines Körpers und ihre Weierstraßpunkte Die Normalgleichungen und die Moduln der algebraischen Körper Die Normalgleichungen und die Moduln der allgemeinen Körper vom	609

XII	luhaltsverzeichnis zu Band II, 3. Teil, 1. Halfte.	
34.	Die Integrale dritter Gattung und der Satz von der Vertauschung von	Seite
35	Parameter und Argument	$\begin{array}{c} 618 \\ 621 \end{array}$
9.7	Fläche	$624 \\ 628$
38	Die Beziehungen zwischen den verschiedenen Fundamentalsystemen von Periodenwegen	629
39. 40	ihrer Unstetigkeitspunkte	630
	tionen	632
41	Das Abelsche Theorem als Additionsprinzip der Integrale	635
42. 43.	Die aus dem Abelschen Theorem tolgenden Reduktionsprobleme	638 640
	VII. (Anhang.) Arithmetische Theorie der algebraischen Zahlen.	
44.	Der Körper $\Re(1)$ der rationalen Zahlen und der Körper $K(p)$ der p -adi-	243
4 5.	schen Zahlen	642 643
46.	Untersuchung der rationalen Kongruenzkörper für den Bereich einer	010
	Primzahl n. Ihre Reduktion auf die p-adischen Kongruenzkörper	644
17.	Die p -adischen Kongruenzkörper und die ihnen isomorphen Körper $K(\mathfrak{P})$ der π -adischen algebraischen Zahlen	645
48.	Der zu einer vorgelegten Gleichung $F(x) = 0$ zugehörige Galoissche π -	010
	adische Zahlkörper	649
	(Abgeschlossen im März 1921.)	
(3. Arithmetische Theorie der algebraischen Funktionen zweier	
	unabhängigen Veränderlichen. Von Heinrich W. E. Jung	
	in Halle a. S.	
	I. Einleitung.	
	II. Der Körper der algebraischen Fuuktionen zweier Veränderlich	en.
1.	Die Darstellung der Funktionen des Körpers in der Umgebung einer	
	Kurve	653
2.	Stelle	654
3.	Stelle	656
	III. Primteiler und Divisoren.	
4.	Die Primteiler erster Stufe	658
ð.	Die Einteilung der Primteiler erster Stufe in zwei Arten	659 664
	Divisoren, Divisorenklassen	665
8.	Grad und Geschlecht einer Klasse	667
	Birationale Transformation	
10.	Fundamentalsysteme für die Vielfachen eines Divisors	670
	V. Die Zeuthen-Segresche Invariante und das numerische Geschle	eht.
11.	Die Fläche F	670
12.	Die Zeuthen-Segresche Invariante	$672 \\ 673$
15.	Das numerische oder arithmetische Geschlecht p_a von F (Abgeschlossen im April 1921.)	010

Übersicht

über die im vorliegenden Bande II, 3. Teil. 1. Hälfte zusammengefaßten Hefte und ihre Ausgabedaten.

C. Nachträge.

Heft 1. 129. I. 1909. 1 Pringsheim u. Faber: Algebraische Analysis.

Heft 2.
8. VIII. 1915.

2. Runge u. Willers: Numerische und graphische Quadratur und Integration gewöhnlicher und partieller Differentialgleichungen.

Heft 3. S. Lichtenstein: Neuere Entwicklung der Potentialtheorie. Kon-25. XII. 1919. Somme Abbildung.

Heft 4.
30. VI. 1921.
4. Bieberbach: Neuere Untersuchungen über Funktionen von komplexen Variablen.

Heft 5. | 5. Hensel: Arithmetische Theorie der algebraischen Funktionen. 30. VI. 1921. | 6. Jung: Arithmetische Theorie der algebraischen Funktionen zweier unabhängigen Veränderlichen.

Verbesserungen zu HC3, L. Lichtenstein.

- p. 229 Z. 3 v. u. $D_n(1, \alpha_1, \ldots, \alpha_n) > 0$ statt $D_n(1, \alpha_1, \ldots, \alpha_n) > 0$.
- p. 230 Z. 1 v. u., p. 231 Z. 1 v. o. des Haupttextes: positiver statt nicht negativer.
- Zu Nr. 21 und 22: P. Lévy hat seine Ergebnisse über das asymptotische Verhalten der Greenschen Funktionen am Rande des Definitionsgebietes ausführlich in Acta Math. 42 (1919), p. 207—267 veröffentlicht. Nach P. Lévy bedarf die Formel von Cisotti (p. 252) einer Verbesserung.
- Zu der Arbeit von Bieberbach, p. 363, 592 b) vgl. Bemerkungen von Bieberbach in dem Autoreferat F. d. M. 46 (1916—1918), p. 548, sowie eine demnächst in den Math. Ann. 90 erscheinende Arbeit von Rados.
- p. 372 Formel (1): 1 |Z| statt |1 Z(z)|.
- p. 375, 636): Durchmesser statt Länge. Vgl. R. Courant, Gött. Nachr. 1922, p. 69-70.

Berichtigungen zu HC4, L. Bieberbach.

- p. 385 Z. 4 v. o. lies: müssen ^{6, 1}) statt müssen. Zuzufügen 6, 1). Einige derselben kommen mit geringeren Voraussetzungen aus und sind in ihrem bewußten Abweichen von dem Riemannschen Beweisgang als Vorläufer des modernen Beweises anzusehen: C. J. Malmsten, Svenska Akads. Förhandl. Bd. 6 Nr. 3 (1865), G. Mittag-Leffler, a) Svenska Vet. Akads. Översikt 1873, b) Beweis für den Cauchyschen Satz Gött. Nachr. 1875, p. 65—73, Briot et Bouquet, Théorie des fonctions elliptiques 2. ed., Paris 1875, p. 128—132.
- p. 410 Note 62) zuzufügen: P. Montel, a. a. O. 77, 1); G. Julia, a. a. O. 81, 1);
 G. Valiron, a. a. O. 151 c) und Le théorème de M. Picard et les généralisations de M. Borel, Paris C. R. 168 (1920), p. 167—169.
- p. 412 Note 68 lies α statt a_{α} .
- p. 413 Mitte lies 1 statt $(-1)^m$; Z. 3 v. u. lies $r \le (A)^{k\hat{l}}$; Z. 2 v. u. hinter sein einzufügen: Das ist die wahre Schranke. Note 69a) zuzufügen: P. Montel, a. a. O. 77, 1).
- p. 415 Z. 5 v. o. lies log K(a₀, ρ) statt K(a₀, ρ). Am Schluß von 18. zuzufügen: P. Montel ^{77, 1} hat gezeigt, daß sich die Borelsche Methode ⁶³) zu einem Beweis des Schottkyschen Satzes verwenden läßt. Zuzufügen 77, 1) P. Montel, Sur les familles normales des fonctions analytiques, Ann. Éc. norm. (3) 33 (1916), p. 223—302. Vgl. hierzu ferner die in 62) und 65) genannten Arbeiten sowie: De la Vallée Poussin, Démonstration simplifiée du théorème fondamental de M. Montel sur les familles normales de fonctions. Ann. of math. (2) 17 (1915), p. 5.

- p. 416 Z. 3 v. u. zuzufügen: Er hat ihn später ⁸⁰⁹) auf die Umgebung einer wesentlich singulären Stelle ausgedehnt. Die Zahl der Ausnahmewerte ist da Min (3v, 2v²). Note 80: Zuzufügen q): Paris C. R. 170 (1920), p. 1557—1560; 171 (1920), p. 157—159; Th. Varopoulos, Paris C. R. 171 (1920), p. 991—992.
- p. 417. Ende von 19. zuzufügen: G. Julia ^{81, 1}) hat gezeigt, daß es bei jeder ganzen Funktion beliebig schmale an passende Kurven angelehnte Winkelräume gibt, in welchen die Funktion jeden Wert mit höchstens einer Ausnahme unendlich oft annimmt. Das Hilfsmittel der Untersuchung ist die Theorie der normalen Familien. Mit ihrer Hilfe hat Julia entsprechende tiefgreifende Untersuchungen auch über den Wertevorrat angestellt, den eine ganze Funktion in gewissen gegen unendlich sich häufenden diskreten Gebieten annimmt. Sie gehen aus einem derselben durch Multiplikation mit gewissen Zahlen σ_i hervor, für die |σ_i| → ∞ gilt. Zuzufügen: 81, 1) G. Julia, Paris C. R. 168—170 und ausführlicher: Sur quelques propriétés nouvelles des fonctions entières ou méromorphes. I, II, III, Ann. ec. norm. III 36 (1919), p. 93—125; 37 (1920), p. 165—218; 38 (1921), p. 165—181.
- p. 422 Note 90 zuzufügen: Nahe damit verwandte Untersuchungen finden sich gleichzeitig bei G. Valiron, Remarques sur le théorème de M. Picard, Bull. sc. math. (2) 44 (1921), p. 91—104.
- p. 424 Note 95 zuzufügen: Zu dieser letzteren Arbeit vgl. man die Bemerkungen von Fatou, Paris C. R. 168 (1919), p. 501-502.
- p. 425 Z. 1 v. o. Das Wort wahrscheinlich ist zu streichen. Am Ende von 25. ist zuzufügen: F. und M. Riesz 88) zeigen die Existenz der Randwerte bis

auf eine Nullmenge für Funktionen f'(z), deren $\int_{0}^{2\pi} |f(re^{i\varphi})| d\varphi$ im Einheits-

kreis beschränkt ist. Note 96 zuzufügen: Hier ist der Satz endlich bewiesen.

- p. 428 Note 107 zuzufügen: P. Montel, a. a. O. 77, 1).
- p. 442. 35. Z. 2 hinter Arbeiten einzufügen: insbesondere die von *Borel*. 112) Z. 5 lies: entwickelt. 147. 2) Zuzufügen 147, 2) G. Rémoundes, Paris C. R. 170 (1920), p. 829—832. Th Varopoulos, Paris C. R. 171 (1920), p. 613—614.
- p. 443 Z. 4 lies Hadamard (Paris C. R. 104, p. 1053; Borel, fonct. entières, p. 34; lies: A(r) der positiven Werte. Z. 5 lies: |a_m|r^m ≤ 4 Max (0, A(r)) 2 ℜ(a₀). Z. 8 lies: A(r) ≤ M(r). Z. 9 lies: A(r) ≤ M(r). 151, 1) zuzufügen c) Les théorèmes généraux de M. Borel dans la théorie des fonctions entières, Ann. Éc. norm. III 37 (1920), p. 219-253.
- p. 445 Ende von 36. zuzufügen: Aus seiner Theorie der normalen Funktionenfamilien hat P. Montel 77, 1) die Theorie der ganzen Funktion endlicher Ordnung entwickelt.
- p. 464 Note 194 zuzufügen: J. Soula, Paris C. R. 171 (1920), p. 541-543.
- p. 465 Z. 10 v. o. lies: singulär, wenn die α, β isoliert sind.
- p. 466 am Ende des kursiv gedruckten zuzufügen: J. Soula ¹⁹⁸) hat gezeigt, daβ man in c) statt einer ganzen Funktion irgendeine bei x = 0 und bei den x = a(n) reguläre Funktion nehmen kann. Note 198 anzufügen: J. Soula, Paris C. R. 171 (1920), p. 614-616.
- p. 468 Note 202. Die hier erwähnte Behauptung ist, wie Herr Pölya bemerkt hat, unrichtig.
- p. 479 Z. 10-12 v. o. der Satz "Chapman . . . seien" ist zu streichen.

- p. 492 Z. 2 v. u. lies: gezeigt. 271, 1) Zuzufügen 271, 1) Notwendige und hinreichende Bedingungen für den analytischen Charakter der Reihensumme hat auch J. Wolff angegeben. Paris C. R. 169 (1919), p. 566-569.
- p. 495 Z. 4 v. o. lies: einer, im Anschluß an Hilberts 275, 1) Arbeiten über das Dirichletsche Prinzip (1900) namentlich . . . Zuzufügen 275, 1) Hier tritt der Gedanke der Auswahlkonvergenz zum ersten Male auf.
- p. 501 am Ende des ersten Absatzes anzufügen: C. Carathéodory 292) gibt ein dem Schwarzschen analoges Lemma an für den Fall, daß f(z) statt einem inneren Punkt zwei Randpunkte, z. B. +1 und -1, festläßt. f(z) nimmt dann in jedem zur reellen Achse symmetrischen Kreisbogenzweieck mit den Ecken 1 nnd - 1 nur Werte aus dieser Sichel an. G. Julia 292, 1) endlich betrachtet den Fall, wo f(z) nur einen Randpunkt, z. B. + 1, festläßt. Dann gilt folgendes Lemma: w = f(z) sei in |z| < 1 regulär. Es sei daselbst |f(z)| < 1,

$$f(z) = 1$$
 und es existiere $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ für $|1+h| < 1$, dann

tolgendes Lemma:
$$w = f(z)$$
 set in $|z| < 1$ regular. Es set dasebst $|f(z)| < 1$, $f(z) = 1$ und es existiere $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ für $|1+h| < 1$, dann ist $\frac{1-ww}{1-|x||^2} > \frac{1}{f'(1)} \frac{1-z\overline{z}}{1-|x|^2}$. Zuzufügen 292, 1) G. Julia, a) Mémoire sur l'itération des fonctions rationnelles, J. de math. (8) 1 (1918), p. 47–245. b) Extension nouvelle d'un lemma de Schwarz, Acta math. 42 (1920), p. 349–355.

- p. 503 Z. 4 v. u. lies: gegeben, und nicht alle Null.
- p. 504 Z. 1 v. o. lies: $m \le n$ statt n.
- p. 505 Mitte lies: ist durch Bohr 305) im negativen Sinn erledigt. 301)
- p. 506 Mitte lies: 1899 statt 1895. Streiche: Nach Hurwitz. Lies: Sie findet sich . . . Jacobi. 809) Streiche Note 308.
- p. 509 in der letzten Formel sind unter dem arcsin Zähler und Nenner zu vertauschen.
- p. 526 Ende von 70. anzufügen: G. Julia hat gezeigt, daß die hier für den Regularitätsbereich einer analytischen Funktion angegebenen Eigenschaften auch denjenigen Bereichen zukommen, in welchen Familien von analytischen Funktionen mehrerer Variablen normal sein können. Hier erweisen sich jene Eigenschaften sogar als hinreichend zur Charakterisierung solcher Bereiche. 369, 1) Zuzufügen 369, 1) G. Julia, Sur les familles de fonctions de plusieurs variables, Paris C. R. 170 (1920), p. 791-793, 875-877, 1040-1042, 1234-1236, 1363-1365.
- p. 527 Z. 12 lies: zweidimensionale Ebene.
- p. 530 Z. 10 v. u. einzuschalten: "Ihre Resultante sei von Null verschieden."
- p. 531 Z. 11 v. o. hinter Entwicklung einzufügen: "Deren Resultante sei von Null verschieden." Z. 1 v. u hinter Bereiche einschalten: "durch am Rande noch reguläre Funktionen".
- p. 532 Note 383 hinter der Arbeit von T. Levi-Cività einschalten: C. Segre, Le rappresentazioni reali delle forme complesse egli enti iperalgebraici, Math. Ann. 40 (1892), p. 413-467. E. Study, Sugli enti analitici, Pal. Rend. 21 (1906), p. 345-359. Die drei letztgenannten Arbeiten enthalten Sätze über analytische Mannigfaltigkeiten, die bei Study zu voller Allgemeinheit ausgereift erscheinen. Dieser Arbeit, welche in Verallgemeinerungen der Schwarzschen Spiegelungssätze gipfelt, wohnt eine besondere grundlegende Bedentung inne.

4

II C 1. ALGEBRAISCHE ANALYSIS.

Von

ALFRED PRINGSHEIM UND GEORG FABER

IN MÜNCHEN.

IN KARLSRUHE.

Inhaltsübersicht.

Einleitung: Historisches.

- 1. Potenzreihen. Der Konvergenzkreis.
- 2. Verhalten von Potenzreihen auf dem Konvergenzkreise.
- 3. Weitere Fundamentaleigenschaften von Potenzreihen.
- 4. Rationale Funktionen und rekurrente Reihen.
- 5. Der allgemeine binomische Satz.
- 6. Die Exponentialreihe.
- 7. Der natürliche Logarithmus und die allgemeine Potenz.
- S. Die logarithmische Reihe.
- 9. Die Berechnung der Logarithmen.
- 10. Die Funktionen $\sin x$ und $\cos x$.
- 11. Die zyklometrischen Funktionen.
- 12. Unendliche Produkte für $\sin x$ und $\cos x$.
- 13. Partialbruchreihen für $\operatorname{tg} x$, $\cot x$, $\operatorname{cosec} x$, $\operatorname{sec} x$.
- 14. Potenzreihen für tg x, cot x, cosec x, sec x, $\lg \frac{\sin x}{x}$, $\lg \cos x$.
- 15. Die hypergeometrische Reihe.

Literatur.

Lehrhücher

- Leonhard Euler, Introductio in analysin infinitorum 1, Lausannae 1748. Deutsch von A. C. Michelsen (Berlin 1788) und von H. Maser (Berlin 1885).
- Augustin Cauchy, Cours d'Analyse de l'école polytechnique. I. Analyse algébrique, Paris 1821 (= Oeuvres (2). 3). Deutsch von B. Huzler (Königsberg 1828) und von C. Itzigsohn (Berlin 1885). (Die Originalausgabe zitiert als Cauchy An.)
- Résumés analytiques. Turin 1833 (= Oeuvres (2), 10).
- Martin Ohm, Versuch eines vollkommen konsequenten Systems der Mathematik 2, Berlin 1829.
- E. H. Dirksen, Organon der gesamten transzendenten Analysis, Berlin 1845. Encyklop. d. math. Wissensch. II 3.

- Oskar Schlömilch, Handbuch der algebraischen Analysis, Jena 1845 (5. Aufl. 1873). (Zitiert als Schlömilch).
- J. Dienger, Grundzüge der algebraischen Analysis, Karlsruhe 1851.
- M. A. Stern, Lehrbuch der algebraischen Analysis, Leipzig 1860.

Eugène Catalan, Traité élémentaire des séries, Paris 1860.

- H. Laurent, Théorie des séries, Paris 1862.
- G. Novi, Analisi algebrica, Firenze 1863.
- Charles Méray, Nouveau Précis d'analyse infinitésimale, Paris 1872; Leçons nouvelles sur l'analyse infinitésimale 1, Paris 1894; 2, 1895.

Karl Hattendorff, Algebraische Analysis, Hannover 1877.

Rudolph Lipschitz, Lehrbuch der Analysis; 1, Grundlagen der Analysis, Bonn 1877.

J. Thomae, Elementare Theorie der analytischen Funktionen, Halle 1880; 2. Aufl. 1898.

Richard Baltzer, Die Elemente der Mathematik 1 (7. Aufl.), Leipzig 1885.

Otto Stolz, Vorlesungen über allgemeine Arithmetik 1, 2, Leipzig 1885—86. (Zitiert als: Stolz 1 bezw. 2).

- u. J. A. Gmeiner, Theoretische Arithmetik, Leipzig 1902. (Zitiert als Stolz-Gmeiner A.)
- Einleitung in die Funktionentheorie, Leipzig 1902, 1904. (Zitiert als Stolz-Gmeiner F.)
- A. Capelli-G. Garbieri, Analisi algebrica, Padova 1886.
- A. Capelli, Istituzioni di analisi algebrica, Napoli 1902 (3. Aufl., 4. unter der Presse).

Jules Tannery, Introduction à la théorie des fonctions d'une variable, Paris 1886.2. éd. 1, Paris 1904.

Otto Biermann, Theorie der analytischen Funktionen, Leipzig 1887.

- Elemente der höheren Mathematik, Leipzig 1895.

Salvatore Pincherle, Analisi algebrica, Milano 1893.

Lezioni di algebra complementare. I. Analisi algebrica, Bologna 1906.

Joseph Bertrand et Henri Garcet, Traité d'algèbre 2, Paris 1894.

Ernesto Cesàro, Corso di analisi algebrica, Torino 1894. — Deutsche Ausgabe von G. Kowalewski unter dem Titel: Elementares Lehrbuch der algebraischen Analysis und der Infinitesimalrechnung. Leipzig 1904.

Maurice Godefroy, Théorie élémentaire des séries, Paris 1903.

Heinrich Burkhardt, Algebraische Analysis, Leipzig 1903.

Heinrich Weber und Josef Wellstein, Enzyklopädie der Elementarmathematik.

I. Elementare Algebra und Analysis, Leipzig 1903.

Alfred Pringsheim, Vorlesungen über die elementare Theorie der unendlichen Reihen und der analytischen Funktionen. (In Vorbereitung.)

(Die englische und amerikanische Literatur scheint keine Lehrbücher über algebraische Analysis zu enthalten. Alleufalls wäre der 2. Band von Chrystals Algebra hierzu zu rechnen. Im übrigen verwenden die englischen und amerikanischen Mathematiker auch in relativ elementaren Darstellungen stets die Hilfsmittel des "Calculus" d. h. der Differential- und Integralrechnung. So z. B. T. J. l'a Bromwich, An introduction to the theory of infinite series. London 1908. — William F. Osgood, Introduction to infinite series. Cambridge Mass. 1897 [2. Aufl. 1902].)

Monographien.

(Jean Robert Argand) Essai sur une manière de représenter les quantités imaginaires dans les constructions géométriques. 1° éd. (sans nom d'auteur) Paris 1806. 2° éd. (par J. Hoüel), Paris 1874.

Bernhard Bolzano, Der binomische Lehrsatz und als Folgerung aus ihm der polynomische und die Reihen, die zur Berechnung der Logarithmen und Exponentialgrößen dienen, genauer als bisher erwiesen, Prag 1816.

N. H. Abel, Untersuchungen über die Reihe $1 + \frac{m}{1}x + \frac{m(m-1)}{1 \cdot 2}x^2 + \cdots$, herausgeg. von A. Wangerin (Ostwalds Klassiker der exakten Wissenschaften, Nr. 71, Leipzig 1895) (= J. f. Math. 1 (1826), p. 31 = Oeuvres éd. Sylow-Lie 1, p. 219).

Einleitung: Historisches. Nachdem man gegen Ende des 17. Jahrhunderts mit Hilfe der Differential- und Integralrechnung die allgemeinen Grundlagen für eine Theorie der elementaren transzendenten Funktionen gewonnen hatte, machte sich schon sehr bald das Bestreben geltend, diese Theorie im Anschlusse an die Arbeiten der älteren Analysten ohne Benutzung des Infinitesimalcalcüls durch wesentlich algebraische Methoden zu begründen. Eulers introductio in analysin infinitorum (1748) ist der erste systematische Versuch zur Errichtung eines derartigen Lehrgebäudes, das sofort durch den von Euler entdeckten Zusammenhang zwischen $e^{\xi i}$ und $\cos \xi$, $\sin \xi$, somit schließlich durch die prinzipielle Einführung des gleichfalls der Algebra entlehnten Imaginären in die Analysis gegenüber den systematischen Darstellungen der ausschließlich mit reellen Veränderlichen arbeitenden Infinitesimalrechnung seinen besonderen Charakter erhielt und späterhin im Gegensatze zur letzteren als algebraische Analysis bezeichnet wurde. Gelang es auch Eulers rechnerischem Genie, zahlreiche in der angedeuteten Richtung erwachsende Probleme mit glücklichstem Erfolge zu behandeln, so blieb doch die strengere Begründung seiner zumeist durch rein formale Übertragung algebraischer Methoden auf sogenannte unendliche Algorithmen gewonnenen Resultate einer späteren Periode vorbehalten. Die entscheidende Wendung beginnt erst mit Cauchys Analyse algébrique (1821), einem auch für die Gegenwart in vieler Hinsicht noch mustergiltigen Werke, in welchem neben dem Bestreben nach strenger Behandlung des Grenz- und Stetigkeitsbegriffes die konsequente Ausdehnung des Funktionsbegriffes auf komplexe Veründerliche charakteristisch hervortritt. Weitere erhebliche Fortschritte bringen Abels Abhandlung über die Binomialreihe (1826) und Cauchys Résumés analytiques (1833). Sucht auch - unter dem Einflusse der sogenannten

kombinatorischen Schule (Hindenburg, Eschenbach, Rothe) zumal in der deutschen Lehrbuchliteratur (Ohm, Dirksen, Stern) - noch bis über die Mitte des 19. Jahrhunderts hinaus neben der durch Cauchy und Abel inaugurierten kritisch-exakten Behandlungsweise (Schlömilch) und teilweise im bewußten Gegensatze dazu eine Weiterbildung des Eulerschen Formalismus sich geltend zu machen, so gewinnt jene erstere doch schließlich die Oberhand und wird namentlich durch den Einfluß von Weierstraβ' Vorlesungen zur Vollendung gebracht (Lipschitz, Stolz). Freilich erreicht die algebraische Analysis damit gewissermaßen auch ihr Ende: sie geht in der von Weierstraß geschaffenen elementaren Theorie der analytischen Funktionen auf. Will man heute überhaupt noch von der Sonderexistenz einer algebraischen Analysis reden, so wird man sie allenfalls als eine Vorstufe zur Weierstraßschen Funktionenlehre auffassen können und ihr etwa die (besser als Gegenstand der "allgemeinen Arithmetik" zu bezeichnende) Lehre von den unendlichen Algorithmen (mit konstanten Termen) und von den allgemeinen Eigenschaften der Potenzreihen, sowie eine Anzahl spezieller Methoden zur Darstellung der Elementarfunktionen durch unendliche Reihen, Produkte und Kettenbrüche zuteilen. Nachdem nun die Lehre von den unendlichen Algorithmen mit konstanten Termen angemessener Weise bereits in dem der Arithmetik und Algebra gewidmeten Bande der Enzyklopädie (unter IA3 und IG3: Pringsheim) ihre Erledigung gefunden hat und bei dieser Gelegenheit auch schon diejenigen Arbeiten berücksichtigt worden sind, welche sich mit den Kettenbruchentwicklungen gewisser Elementarfunktionen beschäftigen (s. IA3, Nr. 55), so hat sich das folgende Referat auf die noch übrig bleibenden der genannten Gegenstände zu beschränken.

Dabei soll hier, im wesentlichen dem Vorgange Cauchys folgend und im Gegensatze zu einigen neueren Lehrbüchern (Cesàro, Godefroy, Burkhardt) durchweg der Begriff der komplexen Veränderlichen in den Vordergrund gestellt werden. Hiernach bedeutet im Folgenden das Zeichen x stets eine komplexe Veränderliche von der Form $\xi + i\eta$; bzw. $r(\cos\vartheta + i\sin\vartheta)$, wo man unter ξ , η , ϑ reelle Veränderliche, unter r eine positive reelle Veränderliche zu verstehen hat.

1. Potenzreihen: Der Konvergenzkreis. Der Konvergenzbereich einer "gewöhnlichen Potenzreihe"

$$\mathfrak{P}(x) = \sum_{n=0}^{\infty} a_n x^n$$

ist unter Zugrundelegung der üblichen Repräsentation einer komplexen Zahl $\xi+i\eta$ durch den Punkt mit den rechtwinkligen Koordinaten

 (ξ, η) allemal ein — eventuell auch unendlich großer oder in den Nullpunkt sich zusammenziehender — Kreis um den Nullpunkt, "der Konvergenzkreis", dessen Radius R eindeutig durch die Beziehung bestimmt wird¹):

(2)
$$R = (\overline{\lim} \sqrt[r]{a_r})^{-1}$$
(bzw. = $\overline{\lim} \frac{a_r}{a_{r+1}}$, wenn dieser Limes existicrt).

 $\mathfrak{P}(x)$ konvergiert alsdann für |x| < R, divergiert für |x| > R (geometrisch gesprochen: innerhalb, bzw. außerhalb des Kreises (0,R); über das Verhalten für |x| = R s. Nr. 2. In den beiden Grenzfällen $R = \infty$ (d. h. $\lim_{\longrightarrow \infty} \sqrt[r]{a_r} = 0$, also geradezu $\lim_{\longrightarrow \infty} \sqrt[r]{a_r} = 0$) und R = 0 (d. h. $\lim_{\longrightarrow \infty} \sqrt[r]{a_r} = \infty$) heißt die Reihe beständig 2) konvergent bzw. divergent. Konvergiert $\sum a_r x^r$ für einen gewissen Wert x = X oder weiß man nur, daß für irgend ein X und alle v: $|a_r X^r| < G$ bleibt, so konvergiert $\sum a_r x^r|$ zum mindesten für |x| < |X|. Man erschließt daraus, daß $\mathfrak{P}(x)$ für |x| < R stets absolut und für $|x| \le r$, wo r < R, auch gleichmäßig 4) konvergiert, also für |x| < R eine (eindeutige und) stetige 5) Funktion darstellt.

$$|f(x) - f(x_0)| < \varepsilon$$
 für $x - x_0 < \delta$

(nach Weierstraß, s. Pincherle a. a. O. 3) p. 246). Ist

$$f(x) = \varphi(\xi, \eta) + i \cdot \psi(\xi, \eta),$$

so zieht die Stetigkeit von f(x) an der Stelle x_0 diejenige der reellen Funktionen $\varphi(\xi,\eta)$, $\psi(\xi,\eta)$ an der Stelle (ξ_0,η_0) nach sich und umgekehrt. Das Analoge gilt, wenn man setzt:

$$x = r(\cos \vartheta + i \sin \vartheta)$$
 und: $\varphi(x) = \Phi(r, \vartheta) + i \cdot \Psi(r, \vartheta)$,

¹⁾ Cauchy, An., p. 286. Vgl. im übrigen I A 3, p. 81 Fußn. 167, 168; II B 1, p. 83 Fußn. 204). (NB. Die an letzterer Stelle gegebenen Hinweise auf Cauchy sind nicht ganz korrekt, sie beziehen sich lediglich auf den entsprechenden Satz für reelle Reihen.)

²⁾ Bezeichnung von Weierstraß.

³⁾ In der ersten Fassung für positive X bei Abel (J. f. Math. 1 (1826), p. 314 = Oeuvres 1, p. 223); anderer Beweis bei P. F. Arndt (Arch. f. Math. 25 (1855), p. 211), welcher den Abelschen Beweis irriger Weise für falsch hält (Arch. f. Math. 20 (1853), p. 464). In der zweiten Fassung (mit Benutzung der auch von Arndt angewendeten Schlußweise) wohl von $Weierstra\beta$: cf. S. Pincherle, Giorn. di mat. 18 (1880), p. 328. Der Konvergenzradius R erscheint dabei als obere Grenze der Zahlen X, für welche $a_{r}X^{r}$ endlich bleibt; cf. Pincherle a. a. O. p. 331.

⁴⁾ Pincherle a. a. O. 3) p. 333. Vgl. im übrigen II A 1, Nr. 17; II B 1, Nr. 6.

⁵⁾ Eine Funktion f(x) der komplexen Veränderlichen $x=\xi+\eta i$ heißt für $x=x_0=\xi_0+\eta_0 i$ (oder auch an der Stelle x_0) stetig, wenn f(x) für $x=x_0$ und eine gewisse Umgebung von $x=x_0$ eindeutig definiert ist und:

Werden x_0 und h beliebig, jedoch so angenommen, daß $|x_0| + |h| < R$ ist. so findet man mit Hilfe des Cauchyschen Doppelreihensatzes (s. 163, Nr. 4) die "Taylorsche Entwicklung": 6)

(3)
$$\mathfrak{P}(x_0 + h) = \mathfrak{P}(x_0) + \mathfrak{P}'(x_0) \frac{h}{1!} + \dots + \mathfrak{P}^{(n)}(x_0) \frac{h^n}{n!} + \dots$$

Die als n^{te} Derivierte (n = 1, 2, ...) von $\mathfrak{P}(x)$ bezeichneten Potenzreihen

(4)
$$\mathfrak{P}^{(n)}(x) = \sum_{n=1}^{\infty} \nu(\nu - 1) \cdots (\nu - n + 1) a_n x^{\nu - n}$$

besitzen denselben Konvergenzkreis wie $\mathfrak{P}(x)$ selbst⁷). Die Reihe (3) bzw. die durch Substitution von $x_0 + h = x$ daraus hervorgehende "aus $\mathfrak{P}(x)$ abgeleitete Reihe $\mathfrak{P}(x|x_0)^{a\,s}$, nämlich:

$$(5) \quad \mathfrak{P}(x|x_0) = \mathfrak{P}(x_0) + \, \mathfrak{P}'(x_0) \, \frac{x - x_0}{1!} + \dots + \, \mathfrak{P}^{(n)}(x_0) \, \frac{(x - x_0)^n}{n!} + \dots$$

konvergiert auf Grund der Herleitung zum mindesten für

$$|h| \equiv |x - x_0| < R - |x_0|,$$

kann aber auch einen $gr\ddot{o}eta eren$, also über den Kreis (0,R) hinausragenden Konvergenzkreis besitzen und liefert dann die analytische Fortsetzung) von $\mathfrak{P}(x)$. Im entgegengesetzten Falle heißt die Stelle $a=R\cdot\frac{x_0}{|x|}$, d. h. geometrisch, der in der Verlängerung des Strahles $\bar{O}x_0$ gelegene Peripheriepunkt von (0,R), eine $singul\ddot{a}re^{10}$). Der (wahre)

(wobei zur Erhaltung der Umkehrbarkeit für den Fall $x_0=0$ noch der Zusatz erforderlich ist, daß $\Phi(0,\vartheta)$, $\Psi(0,\vartheta)$ eindeutige, von ϑ unabhängige Werte besitzen müssen). Es kann also auch die Stetigkeit der reellen Funktion $\varphi(\xi,\eta)$, $\psi(\xi,\eta)$ bz w. $\Phi(r,\vartheta)$, $\Psi(r,\vartheta)$ als Definition der Stetigkeit von f(x) dienen (vgl. das Analogon in I G 3, Nr. 1); so z. B. durchweg bei Cauchy, bei dem freilich andererseits die Stetigkeit eines $\varphi(\xi,\eta)$ nicht ausreichend definiert erscheint (An., p. 37; vgl. hierzu II A 1, p. 48). Ist f(x) für $x=x_0$ stetig, so hat man:

$$\lim_{x=x_0} f(x) = f(x_0),$$

eine Beziehung, welche wieder auch umgekehrt, mit dem Zusatze, daß $f(x_0)$ endlich, als Definition der Stetigkeit dienen kann (vgl. II A 1, p. 9, Gl. (21), (22)).

6) Vgl. II A 2, Nr. 14.

7) Dies folgt unmittelbar aus der Herleitung von Gl. (3) oder auch unabhängig davon aus Gl. (2), vermöge der Beziehung;

$$\overline{\lim} \sqrt[r]{r(r-1)\cdots(r-n+1)|a_r|} = \overline{\lim} \sqrt[r]{|a_r|}.$$

8) Bezeichnung von Weierstraß: Pincherle, a. a. O. p. 347.

9) Grundlage des Begriffs der analytischen Funktion nach Weierstraß und Méray. als Weiterbildung von Lagranges "Fonctions analytiques"; vgl. II B 1, p. 40, Fußn. 77.

10) Eine solche singuläre Stelle a ist also dadurch charakterisiert, daß die

Konvergenzkreis (0, R) ist dann dadurch charakterisiert, daß auf ihm mindestens eine singuläre Stelle liegen muß¹¹). Es können aber auch sämtliche Stellen von (0, R) singuläre sein¹²), ja dieser Fall ist in Wahrheit sogar als der allgemeinere zu betrachten¹³). Die Konvergenzeigenschaften von Reihen der Form

(6)
$$\mathfrak{P}(x-x_0) = \sum_{0}^{\infty} a_r (x-x_0)^r, \quad \mathfrak{P}\left(\frac{1}{x}\right) = \sum_{0}^{\infty} a_r x^{-r}$$

ergeben sich aus den vorstehenden durch Substitution von $x-x_0$ bzw. x^{-1} anstelle von x; sodann durch Kombination auch diejenigen von

(7)
$$P(x) = \sum_{-\infty}^{+\infty} a_r x^r \text{ bzw. } P(x - x_0) = \sum_{-\infty}^{+\infty} a_r (x - x_0)^r.$$

Als Konvergenzbezirk erscheint in letzterem Falle ein Kreisring (dessen äußerer Grenzkreis eventuell unendlich groß werden, dessen innerer sich in den Nullpunkt bzw. den Punkt $x = x_0$ zusammenziehen kann)¹⁴).

Als typisch für die Potenzreihen mit p Variabeln

$$\mathfrak{P}(x_1 \, x_2 \, \dots \, x_p) = \sum_{0}^{\infty} r_1 \dots r_p \, a_{r_1 \dots \, r_p} \, x^{r_1} \dots \, x_p^{r_p}$$

kann der Fall p = 2, also

(8)
$$\mathfrak{P}(x,y) = \sum_{n=0}^{\infty} a_{n} x^n y^n$$

betrachtet werden; es gilt hier zunächst der Satz: Hat man für irgend ein von Null verschiedenes Wertepaar X, Y und alle μ, ν : $|a_{\mu\nu}X^{\mu}Y^{\nu}| < G$, so konvergiert $\mathfrak{P}(x,y)$ absolut für alle x,y, welche

untere Grenze für die Konvergenzradien der aus $\mathfrak{P}(x)$ ableitbaren Reihen in der Nähe von a den Wert Null hat: Weierstra β , s. Pincherle, a. a. 0.3 p. 353.

¹¹⁾ Dem wesentlichen Inhalte nach schon von Cauchy herrührend als Folgerung des nach ihm benannten Integralsatzes (vgl. IIB1, Nr. 7); in der vorliegenden Fassung von Weierstraß formuliert und elementar bewiesen: s. Pincherle, a. a. O. 3) p. 350; Stolz 2, p. 183; Stolz-Gmeiner, F. 1, p. 212.

¹²⁾ s. IIB1, p. 83, 84.

¹³⁾ Zuerst ausgesprochen und bewiesen von A. Pringsheim. Math. Ann. 44 (1894) p. 50. Andere Beweise bei Émile Borel (Par. C. R. 123 [1896], p. 1051; Acta math. 21 [1897], p. 243) und Eugène Fabry (Par. C. R. 124 [1897], p. 142; Acta math. 22 [1899], p. 65). Vgl. im übrigen Jacques Hadamard, la série de Taylor et son prolongement analytique, Paris 1901, p. 33, sowie auch IIB1, p. 84.

¹⁴⁾ Über Umformung von P(x) in eine $\Re(x, x_0)$ s. z. B. Stolz 2, p. 167.

8

der Bedingung genügen $|x| < |X|, |y| < |Y|^{15}$) und gleichmäßig für $|x| \le r, |y| \le r'$, sofern $|x| < |X|, |x'| < |Y|^{16}$) Ist $|\varrho|$ die kleinere der beiden Zahlen |X|, |Y|, so konvergiert also $|\Re(x,y)|$ absolut, wenn $|x| \ge |\varrho|$. Bedeutet $|\overline{R}|$ die obere Grenze der Zahlen $|\varrho|$, oder, was im wesentlichen dasselbe aussagt, setzt man:

(9)
$$R = \left(\lim_{n \to 1} \frac{n+1}{\sqrt{|a_{n}|}} \sqrt{|a_{n}|}\right)^{-1}$$

so wird auf Grund der Analogie mit Gl. (8) von manchen Autoren \overline{R} als der "wahre Konvergenzradius" von $\mathfrak{P}(x,y)$ bezeichnet 18). Zu einem allgemeineren Resultate führt die folgende Auffassung. Sind R, R' zwei positive Zahlen von der Art, daß $|a_{\mu r}| R^{\mu}R'^{\nu} < G$ für alle μ , ν , daß dagegen eine solche endliche Schranke G nicht mehr vorhanden ist, wenn nur eine der Zahlen R, R' beliebig wenig vergrößert wird, so konvergiert $\mathfrak{P}(x,y)$, wenn gleichzeitig |x| < R, |y| < R', divergiert, wenn gleichzeitig |x| > R, |y| > R'. R, R' heißen dann

Eine sehr eingehende Untersuchung auch der eventuell nur bedingten Konvergenz der Potenzreihen von zwei Veränderlichen sowohl bei der Anordnung als Doppelreihen als bei derjenigen nach Zeilen, Kolonnen oder Diagonalen gab neuerdings Friedrich Hartogs in zwei Abhandlungen: 1) Beiträge zur elementaren Theorie der Potenzreihen usw., Münchener Diss., Lpzg. 1904; 2) Math. Ann. 62 (1905), p. 1—88.

17) Ist $c_{\mu \, r}$ eine Doppelfolge positiver Zahlen, so bedeutet $\overline{\lim}_{\mu + r = \infty} c_{\mu \, r} \, \det$ oberen Limes der ("nach Diagonalen" geordneten) einfachen Folge:

$$c_{00}, c_{01}, c_{10}, \ldots, c_{0\mu}, c_{1,\mu-1}, \ldots, c_{\mu,0}, \ldots$$

(bei welcher alle Terme nach Gruppen mit konstantem $\mu + \nu$ geordnet sind), und darf nicht verwechselt werden mit dem oberen Limes der Doppelfolge, in Zeichen: $\overline{\lim}_{\mu, \ r=\infty} c_{\mu\nu}$ (vgl. Pringsheim, Math. Ann. 53 (1900), p. 296).

¹⁵⁾ Pincherle nach Weierstraß a. a. O. 9) p. 329.

¹⁶⁾ O. Biermann, Theorie der analyt. Funkt., p. 137 (in der freilich nicht korrekten Fassung, daß $\mathfrak{P}(x,y)$ für |x|<|X|,|y|<|Y| gleichmäßig konvergiere). — Man findet auch in Lehrbüchern, selbst in solchen, welche der neuesten Zeit angehören, den folgenden (nach Analogie eines für Potenzreihen einer Variabeln richtigen Satzes gebildeten) falschen Satz: "Konvergiert die Reihe $\mathfrak{P}(x,y)$ für ein gewisses Wertepaar x=X, y=Y, so konvergiert sie auch für |x|<|X|,|y|<|Y|." Aus der bloßen (d. h. eventuell nur bei bestimmter Anordnung vorhandenen) Konvergenz der Doppelreihe $\mathfrak{P}(X,Y)$ folgt nämlich keineswegs, daß die $|a_{\mu\nu}X^{\mu}Y^{\nu}|$ unter einer endlichen Grenze bleiben (vgl. IA3, p. 98 und insbesondere Pringsheim, München Ber. 27 (1897), p. 130). Der obige Satz ist vielmehr nur dann richtig, wenn man ausdrücklich diese letztere Eigenschaft oder auch die absolute Konvergenz von $\mathfrak{P}(X,Y)$ voraussetzt (was im Falle einer Veränderlichen keineswegs erforderlich ist).

^{18;} Biermann, Analyt. Funkt., p. 138; Math. Ann. 48 (1897), p. 394.

ein Paar assoziierter Konvergenzradien. Da im allgemeinen die Bedingung $|a_{\mu\nu}|R^{\mu}R'^{\nu} < G$ bei Verkleinerung von R eine Vergrößerung von R' zulassen wird — und umgekehrt —, so gibt es alsdann unendlich viele Paare assoziierter Konvergenzradien (unter denen das Paar R'=R den oben erwähnten "wahren" Konvergenzradius liefert). Als Verallgemeinerung der Beziehung (9) erscheint alsdann die folgende 20):

(10)
$$\lim_{\mu+\nu=\infty} R^{\mu+\nu} \sqrt{|a_{\mu\nu}| \binom{R'}{R}^{\nu}} \equiv \lim_{\mu+\nu=\infty} \sqrt{|a_{\mu\nu}| \cdot R^{\mu} R'^{\nu}} = 1.$$

2. Verhalten von Potenzreihen auf dem Konvergenzkreise. Auf dem Konvergenzkreise kann $\mathfrak{P}(x) = \sum a_i x^r$ noch durchweg, teilweise oder auch nirgends konvergieren. Im ersten der genannten Fälle konvergieren zwar die bekannteren Reihen zugleich absolut, doch gibt es auch allgemeine Typen von Reihen, welche auf dem Konvergenzkreise ausnahmslos, dennoch nur bedingt konvergieren 21). Bei teilweiser Konvergenz kann dieselbe allemal nur eine bedingte sein 22). Konvergiert $\mathfrak{P}(x)$ für eine gewisse Stelle X des Konvergenzkreises, so hat man^{23}):

(11)
$$\lim_{\varrho=1-0} \mathfrak{P}(\varrho X) = \mathfrak{P}(X)$$

$$a_{\nu} = (-1)^{\left[\sqrt{\nu}\right]} \cdot \frac{1}{\nu},$$

wo $[\sqrt[]{v}]$ die größte in $\sqrt[]{v}$ enthaltene ganze Zahl bedeutet).

23) Für reelle X ausdrücklich formuliert und bewiesen von Abel, J. f. Math. 1 (1826), p. 314 = Oeuvres 1, p. 223. Anderer Beweis von Dirichlet, J. de math. (2), 7 (1852), p. 253. Vgl. die Bemerkungen von Pringsheim, München Ber. 27 (1897), p. 344.

¹⁹⁾ Daß die Funktion $R' = \varphi(R)$, welche zu einem Konvergenzradius den assoziierten angibt, (im allgemeinen) stetig ist, bewiesen: A. Meyer, Stockh. Vet. Ak. Förh. Öfv. 40 (1883), Nr. 9, p. 15; Phragmén, ebenda Nr. 10, p. 17; F. Hartogs Diss. 16) p. 8. Eine weitere von E. Fabry (Paris C. R. 134 (1902) p. 1190—1192) als für die Funktion φ notwendig erkannte Bedingung wurde später von G. Faber (Math. Ann. 61 (1905), p. 300), sowie von F. Hartogs (Math. Ann. 62 (1905), p. 81) wiedergefunden und als für φ charakteristisch nachgewiesen. Vgl. das Referat von F. Hartogs, D. M.-V. 16, 1907, p. 231.

²⁰⁾ E. Lemaire, Darb. Bullet. (2), 20 (1896), p. 286.

²¹⁾ Pringsheim, Math. Ann. 25 (1885), p. 419; München Ber. 30 (1900), p. 68. Einfachstes Beispiel:

²²⁾ Ist Σa_r divergent, dagegen $\Sigma a_r - a_{r+1}|$ konvergent, so konvergiert $\Sigma a_r x^r$ bedingt für alle |x|=1 außer |x|=1, wie sich unmittelbar mit Hilfe der sog. Abelschen Transformation ergibt: s. I G 3 Nr. 4. Ebenda siehe auch einen besonderen, von Weierstraß hervorgehobenen Fall dieses Satzes.

10 H C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

und etwas allgemeiner:

$$\lim_{r'=X} \mathfrak{P}(x') = \mathfrak{P}(X).$$

falls x' aus dem Innern des Konvergenzkreises auf irgend einem Strahle²¹ (auf irgend einer den Konvergenzkreis nicht tangierenden Kurve²⁵) der Stelle X zustrebt. Die Konvergenz von $\mathfrak{P}(x)$ bleibt nämlich eine gleichmäßige im Innern und auf der Begrenzung jedes innerhalb (0,R) liegenden Dreiecks mit der Spitze X. ²⁶) Eine direkte Verallgemeinerung des Abelschen Satzes (11) bzw. (12) liefert der Satz von Frobenius²⁷), welcher besagt, daß:

(13)
$$\lim_{y=1-0} \mathfrak{P}(\varrho X) = \lim_{n=\infty} \frac{1}{n} \sum_{0}^{n} s_{i},$$

$$\text{bzw.}^{28}: \lim_{x'=X} \mathfrak{P}(a') = \lim_{n=\infty} \frac{1}{n} \sum_{0}^{n} s_{i}$$

$$(\text{wo: } s_{i} = a_{0} + a_{i} X + a_{i} X^{2} + \dots + a_{i} X^{i}),$$

falls der rechts stehende Grenzwert existiert. Auf Grund von (11) ist die Bedingung

$$\lim_{g=1-0} \mathfrak{P}(g|X) = A \quad \text{(d. h. endlich)}$$

eine notwendige für die Konvergenz von $\mathfrak{P}(X)$, übrigens keine hinreichende. Dies ist nicht einmal der Fall, wenn die weitere Bedingung hinzukommt ²⁹):

$$\lim a_n = 0,$$

wohl aber wenn 30):

(16)
$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n} \nu a_i X^i = 0,$$

- 24. Stolz, Zeitschr. Math. Phys. 20 (1875), p. 370; desgl. 29 (1884), p. 127; Allg. Arithm. 2, p. 157; Stolz-Gmeiner F. 2, p. 287.
- 25; E. Picard, Traité d'Analyse 2, p. 73 (2. Aufl., p. 77). Diese Fassung ist übrigens nur dann korrekt, wenn man unter "Kurve" schlechthin eine solche Linie versteht, die in X eine Tangente hat. Andernfalls müßte man sagen: auf einer Kurve, welche in der Nähe von X ganz innerhalb eines im Innern des Kreises (0. R) liegenden Winkels mit dem Scheitel X verläuft.
 - 26) In dieser Fassung bei Pringsheim a. a. O. p. 347.
- 27, J. f. Math. 89 (1880), p. 262. Weitere Verallgemeinerungen bei Hölder, Math. Ann. 20 (1882), p. 535. Vgl. auch. I A 3, p. 108, Fußn. 287.
- 28) Bezüglich dieses verallgemeinerten (d. h. ebenso wie bei Gl. (12) zu verstehenden Grenzüberganges) s. *Pringsheim*, München Ber, 31 (1901), p. 517.
 - 29) Pringsheim, a. a. O. 28) p. 505.

und zwar besteht die letztere Bedingung mit Sicherheit für alle X, wenn

$$\lim na_n = 0.$$

Andererseits ist für die Konvergenz von $\mathfrak{P}(X)$ an irgend einer einzelnen Stelle X außer der Bedingung (14) das Verhalten der "Randfunktion"

(18)
$$f(X) = \lim_{\varrho = 1 - 0} \mathfrak{P}(\varrho X)$$

längs des gesamten Kreises X=R maßgebend³¹). Für genauere Untersuchungen in der fraglichen Richtung erweisen sich die rein elementaren Hilfsmittel als unzureichend. Als zweckmäßige Grundlage dient alsdann die Darstellung der a_i in der Cauchyschen bzw. Fourierschen Integralform³²).

Ist $\Sigma a_r X^r$ eigentlich divergent, so hat man allemal 33):

(19)
$$\lim_{\varrho=1-0} \mathfrak{P}(\varrho X) = \infty.$$

3. Weitere Fundamentaleigenschaften von Potenzreihen. Kon-

vergiert $P(x) = \sum_{-\infty}^{+\infty} a_x x^x$ gleichmäßig für alle x mit dem absoluten

Betrage |x| = r und ist $|P(x)| \le M$, so besteht für jedes r die

 $\mathfrak{P}(x)$ für kein einziges X zu konvergieren. Beispiel:

$$\frac{1}{(x-1)^2}e^{\frac{1}{x-1}}$$

(Pringsheim, München Ber. 30 (1900), p. 39; vgl. auch Math. Ann. 44 (1894), p. 54).

32) Literatur: L. W. Thomé, J. f. Math. 87 (1879), p. 333; desgl. 95 (1883), p. 97; desgl. 100 (1887), p. 167; G. Darboux, J. de math. (3), 4 (1878), p. 13; J. Hadamard, J. de math. (4) 8 (1892), p. 169; A. Tauber, Monatshefte f. Math. 2 (1891), p. 79; desgl. 6 (1895), p. 118; Pringsheim, München Ber. 25 (1895), p. 337; desgl. 30 (1900), p. 54, 79; K. Knopp, Dissert. Berlin 1907; Versuch einer zusammenfassenden Darstellung: K. Juhraus, Progr. des Gymn. Ludwigshafen a. Rh. 1901 2. — Vgl. auch II A 11.

33) Ein besonderer Fall schon bei Abel, Oeuvres 2, p. 203; allgemeiner bei Stolz, 2, p. 159; genauer Pringsheim, München Ber. 30 (1900), p. 41. Bei Stolz a. a. O. sind auch gewisse Fälle uneigentlicher Divergenz behandelt; Stolz-Gmeiner, F. 2, p. 289.

³⁰⁾ A. Tauber, Monatsh. f. Math. 8 (1897), p. 273. — Pringsheim, München Ber. 30 (1900), p. 51. — Andere Bedingungsformen bei Konrad Knopp, Palermo Rend. 25 (1908), p. 237.

³¹⁾ Selbst wenn $\lim_{x'=X} \mathfrak{P}(x')$ für alle X endlich und bestimmt ausfällt, braucht

12 II C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

Beziehung:

$$(20) a_r < M \cdot r^{-r}$$

(sog. Cauchyscher Koeffizientensatz 34)).

Entsprechend hat man im Falle $|P(x,y)| \leq M$:

(21)
$$a_{\mu\nu} | \leq M r^{-\mu} r'^{-\nu 35}$$
).

Ist für unendlich viele x mit der Häufungstelle 0: $\sum_{0}^{\infty} a_{\nu} x^{\nu} = 0$, so ist $a_{\nu} = 0$ für jedes ν . ³⁶) Der Satz gilt auch noch, wenn die Stellen, für welche $\sum_{0}^{\infty} a_{\nu} x^{\nu} = 0$ ist, eine beliebige im Innern³⁷) des Konvergenzkreises gelegene Häufungsstelle a besitzen³⁸). Hieraus

³⁴⁾ Bei Cauchy als Folgerung aus seinem Integralsatze Exerc. d'anal. 2 (1841), p. 53 (Wiederabdruck aus einer lithographierten Turiner Abhandlung von 1831). Elementar bewiesen von Weierstraß: Werke 1, p. 67 (aus einer nicht publizierten Abhandlung von 1841); s. a. Pincherle, a. a. O. p. 353. Mit Hilfe einer schon von Cauchy herrührenden (Exerc. d'an. 1 (1840), p. 278), die Integraldarstellung der Koeffizienten durch elementare Mittelwerte ersetzenden Methode im wesentlichen bewiesen von E. Rouché, Journ. de l'éc. polyt. cah. 39 (1862), p. 198); Jusführlicher bei J. A. Serret, Cours d'algèbre 1 (5^{me} éd. 1885), p. 468. Exakte Begründung und zweckmäßige Weiterbildung dieser Methode bei Pringsheim, Math. Ann. 47 (1896), p. 121; München Ber. 26 (1896), p. 167.

³⁵⁾ Weierstra β , a. a. O. ³⁴) p. 68; Pincherle, a. a. O. ³) p. 336.

³⁶⁾ Früher gewöhnlich so ausgesprochen, daß die Voraussetzung $\sum a_{\nu}x'=0$ für alle $|x|<\varrho$ gefordert wurde, oft auch nach Eulers Vorgange (Introductio 1, art. 214) unstreng bewiesen (durch Einsetzen von x=0, Division mit x, Einsetzen von x=0 usw.). Strenger Beweis basiert auf der Stetigkeit der Potenzreihe, vgl. Stolz, 1, p. 183; 2, p. 160; Stolz-Gmeiner, F. 1, p. 180. Anderer, noch anschaulicherer Beweis nach Weierstraß mit Hilfe des Koeffizientensatzes bei Pincherle³), p. 344. — Der Satz läßt sich auf beliebig viele Veränderliche ausdehnen; s. z. B. Stolz-Gmeiner, F. 1, p. 226.

³⁷⁾ Das ist wesentlich; besitzen die Stellen x', für welche $\mathfrak{P}(x')=0$, eine Häufungsstelle nur auf dem Konvergenzkreise, so braucht $\mathfrak{P}(x)$ nicht identisch zu verschwinden. (Beispiel: $\mathfrak{P}(x)=\sin\frac{\pi}{x-1}$).

³⁸⁾ Unter der engeren Voraussetzung, daß $\sum a_y x^y = 0$ für alle x zwischen zwei positiven Zahlen, als zu beweisendes Theorem aufgestellt von Abel, J. f. Math. 2 (1827), p. 286 = Oeuvres 1, p. 618. — Der Beweis des Satzes in der allgemeineren Form beruht auf der Umformung von $\mathfrak{P}(x)$ in $\mathfrak{P}(x|a)$ und dem folgenden von Weierstraß formulierten Fundamentalsatze: Konvergieren $\mathfrak{P}_1(x-a)$ und $\mathfrak{P}_2(x-b)$ in T und ist $\mathfrak{P}_1(x-a) = \mathfrak{P}_2(x-b)$ für unendlich viele x mit einer im Innern von T gelegenen Häufungsstelle, so besteht jene Gleichheit für alle x von T Pincherle, a. a. 0.3 p. 329; Stolz-Gmeiner, F. 1, p. 198).

folgt die *Identität* von $\sum_{0}^{\infty} a_{\nu} x^{\nu}$, $\sum_{0}^{\infty} b_{\nu} x^{\nu}$, wenn *Gleichheit* besteht für unendlich viele x mit einer im *Innern* des gemeinsamen Konvergenzbezirkes gelegenen Häufungsstelle ³⁹).

Auf dieser "Eindeutigkeit" der Potenzreihenentwicklung beruht die Berechtigung der von den älteren Analysten meist ohne hinlängliche Begründung benützten überaus fruchtbaren Methode der unbestimmten Koeffizienten⁴⁰).

Die Anwendung der für beliebige konvergente Reihen geltenden Additions- und Multiplikationsregeln liefert das Resultat, daß $P_1(x) \pm P_2(x)$, $P_1(x) \cdot P_2(x)$ wieder in der Form P(x) darstellbar sind $P_1(x)$. Dasselbe gilt dann von $(P_1(x))^n$ und schließlich von jeder ganzen

39) Gilt auch für
$$\sum_{-\infty}^{+\infty} a_{\nu} a^{\nu}$$
, $\sum_{-\infty}^{+\infty} b_{\nu} x^{\nu}$. Beweis mit Hilfe des Satzes in

Fußn. 38 und des Koeffizientensatzes nach Weierstraß; s. z. B. Stolz, 2, p. 167-173

40) Im Principe 1637 von *Descartes* ausgesprochen (Geometria, ed. Schooten (1659), p. 45), seit Ende des 17. Jahrhunderts zur Auffindung von Potenzreihenentwicklungen gegebener Funktionen sowie zur Integration von Differentialgleichungen vielfach angewandt.

41) Cauchy, An., p. 156—157. — Sind R_1 , R_2 , R die Konvergenzradien von \mathfrak{P}_1 , \mathfrak{P}_2 , \mathfrak{P} , wo $\mathfrak{P}=\mathfrak{P}_1\pm\mathfrak{P}_2$, so ist R mindestens gleich der kleineren der Zahlen R_1 , R_2 , und zwar stets genau gleich der kleineren dieser beiden Zahlen, falls R_1 und R_2 verschieden sind. Ist aber $R_1=R_2$, so kann R beliebig viel größer sein.

Beispiele:
$$\sum_{0}^{\infty} x^{r} \pm \sum_{0}^{\infty} \left(\frac{x}{2}\right)^{r} = \sum_{0}^{\infty} \left(1 \pm \left(\frac{1}{2}\right)^{r}\right) x^{r},$$

also:

$$R_1 = 1, R_2 = 2, R = R_1 = 1.$$

Dagegen:

$$\sum_{0}^{\infty} x^{\nu} + \sum_{0}^{\infty} {1 \choose v!} - 1 x^{\nu} = \sum_{1}^{\infty} \frac{x^{\nu}}{\nu!}, \text{ also: } R_1 = R_2 = 1, R = \infty$$

Anders liegt die Sache im Falle $\mathfrak{P}=\mathfrak{P}_1\cdot\mathfrak{P}_2$. Auch hier ist zwar stets R mindestens gleich der kleineren der Zahlen R_1 , R_2 , dagegen kann R auch gleich der $gr\ddot{o}\beta eren$ der Zahlen R_1 , R_2 , sowie beliebig viel $gr\ddot{o}\beta er$ sein als R_1 und R_2 , gleichgiltig, ob R_1 und R_2 einander gleich oder rerschieden sind.

Beispiele:

$$\begin{split} \mathfrak{P}_1 &= \frac{1}{1-x}, \quad \mathfrak{P}_2 = \frac{1}{2-x}, \quad \text{also:} \quad R_1 = 1, \quad R_2 = 2, \quad R = R_1 = 1, \\ \mathfrak{P}_1 &= \frac{1}{1-x}, \quad \mathfrak{P}_2 = \frac{1-x}{2-x}, \quad \text{also:} \quad R_1 = 1, \quad R_2 = 2, \quad R = R_2 = 2, \\ \mathfrak{P}_1 &= \frac{1}{1-x}, \quad \mathfrak{P}_2 = \frac{1}{1+x}, \quad \text{also:} \quad R_1 = R_2 = R = 1. \end{split}$$

14 H C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

rationalen Funktion $y(P_1(x))$. Die Anwendbarkeit der Additionsregel auch für unendlich viele $P_u(x) = \sum_{-\infty}^{+\infty} a_v^{(a)} x^v \quad (u=1,\,2,\,3,\,\ldots)$ ergibt sich für $R_0 < x < R$ aus dem Cauchyschen Doppelreihensatze (s. I G 3, Nr. 5). falls nicht nur $\sum_{1}^{\infty} \sum_{-\infty}^{+\infty} a_v^{(a)} x^v$, sondern auch $\sum_{1}^{\infty} \sum_{-\infty}^{+\infty} |a_v^{(a)} x^v|$ konvergiert. Eine weitere Bedingung gibt der Weierstraßsche Doppelreihensatz⁴²), welcher nur die gleichmüßige Konvergenz von $\sum_{1}^{\infty} \sum_{-\infty}^{+\infty} a_v^{(a)} x^v$ auf jedem Kreise |x| = r, wo $R_0 < r < R$, verlangt⁴³). Als Folgerung ergibt sich die Darstellbarkeit von $\mathfrak{P}_2(\mathfrak{P}_1(x))$ in der Form $\mathfrak{P}(x)$, falls $\mathfrak{P}_1(0)$ kleiner ist als der Konvergenzradius von $\mathfrak{P}_2(y)^{44}$) (u. a. allemal dann, wenn $\mathfrak{P}_1(0) = 0$ oder $\mathfrak{P}_2(y)$ beständig konvergiert), endlich auch diejenige von $\frac{\mathfrak{P}_1(x)}{\mathfrak{P}_2(x)}$, sofern $\mathfrak{P}_2(0) > 0$. Da hiernach im Falle $b_0 > 0$ eine Entwicklung von der Form

$$\frac{\mathfrak{P}_{1}(x)}{\mathfrak{P}_{2}(x)} \equiv \frac{\sum_{0}^{\infty} a_{\nu} x^{\nu}}{\sum_{0}^{\infty} b_{\nu} x^{\nu}} = \sum_{0}^{\infty} c_{\nu} x^{\nu}$$

für hinlänglich kleine x stets und nach dem zuvor Gesagten nur auf eine Weise möglich ist, so gewinnt man durch Multiplikation mit $\sum b_x x_x$ und Koeffizientenvergleichung zur Berechnung der unbekannten

$$\mathfrak{F}_1 = \frac{1+x}{1-x}$$
. $\mathfrak{F}_2 = \frac{1-x}{1+x}e^x$, also: $R_1 = R_2 = 1$, $R = \infty$.

$$\mathfrak{P}_1 = \frac{2-x}{1-x}, \quad \mathfrak{P}_2 = \frac{1-x}{2-x}e^x, \quad \text{also:} \quad R_1 = 1, \quad R_2 = 2, \quad R = \infty.$$

Vgl. auch 1. Pringsheim, Americ. Math. Soc. Transact. 2 (1901), p. 405. —

Analoge Betrachtungen gelten für Potenzreihen von der Form $P_1(x)$, $P_2(x)$, 42 Schon in der Fußn. 34 zitierten Abhandlung von 1841 (und zwar für beliebig viele Veränderliche), p. 70. Außerdem Berlin Ber. 1880, p. 723 = Werke 2, p. 205. Vgl. auch Stolz, Math. Ann. 24 (1884). p. 169; Pringsheim, Math. Ann. 47 1896, p. 144. — Im übrigen s. II B 1, p. 21.

43 Auch die gleichmäßige Konvergenz ist lediglich eine hinreichende, keine notwendige Bedingung: C. Runge, Acta math. 6 (1885), p. 245; C. Arzelà, Rendic. Accad. Bologna 1888.

44) Cauchy, Rés. analyt. (1835), p. 65, 161; Pincherle, a. a. O. ⁵) p. 339 (ebendaselbst auch für beliebig viele Veränderliche). S. z. B. auch Stolz 1, p. 284, 294: 2, p. 160.

Koeffizienten c_{r} die Rekursionsformel:

(23)
$$b_0c_r + b_1c_{r-1} + \cdots + b_rc_0 = a_r \quad (r = 0, 1, 2, \ldots).$$
 Der Konvergenzkreis der Reihe $\sum c_r x^r$ reicht bis zu der dem Nullpunkte nächst gelegenen singulären Stelle von $\mathfrak{P}_1(x)$ (s. Nr. 1); insbesondere bis zu der dem Nullpunkte nächst gelegenen Nullstelle α von $\mathfrak{P}_2(x)$, wenn die Konvergenzradien von $\mathfrak{P}_1(x)$, $\mathfrak{P}_2(x)$ größer als $|\alpha|$ und $|\mathfrak{P}_1(\alpha)| > 0^{45}$). Dabei hat man $\lim_{r = \infty} \frac{c_r}{c_{r+1}} = a$, falls nur eine einzige Nullstelle mit dem absoluten Betrage α vorhanden ist α 0. Für den Fall α 2 vorhanden ist α 3 vorhanden ist α 4 vorhanden ist α 5 vorhanden ist α 6 vorhanden ist α 6 vorhanden ist α 7 vorhanden ist α 8 vorhanden ist α 9 vo

Zu den mit algebraisch-elementaren Hilfsmitteln zu erweisenden wichtigen Eigenschaften der Potenzreihe $y=\sum_{0}^{\infty}a_{r}x^{r}$ gehört noch deren $Umkehrbarkeit^{48}$). Danach hat man 49), wenn $|a_{1}|>0$ und nur in diesem Falle: $x=\sum_{1}^{\infty}b_{r}(y-a_{0})^{r}$ für eine gewisse Umgebung der Stelle $y=a_{0}$; die b_{r} können aus den a_{r} nach der Methode der unbestimmten Koeffizienten rekursorisch berechnet werden 50). Der Satz ist ein spezieller Fall des folgenden 51): "Konvergiert $\sum_{n=1}^{\infty}\sum_{n=1}^{\infty}a_{n}x^{n}y^{n}$

⁴⁵⁾ Für den Fall, daß $\mathfrak{P}_1(x)$, $\mathfrak{P}_2(x)$ sich auf Polynome reduzieren, schon bei *Cauchy*, An., p. 397. Für den allgemeinen Fall ebenfalls zuerst bei *Cauchy*, s. Fußn. 11.

⁴⁶⁾ Julius König, Math. Ann. 23 (1884), p. 448. Weiteres s. Jacques Hadamard, La série de Taylor et son prolongement analytique, p. 19, 39. Vgl. im übrigen II B 1, Nr. 35, 36.

⁴⁷⁾ S. IB 3a, Nr. 13.

⁴⁸⁾ Das Problem der *Umkehrung* einer Potenzreihe zuerst bei *Newton*, De analysi per aequationes numero terminorum infinitas (1669, publ. 1704), cap. VII = Opuscula 1 (1744), p. 20.

⁴⁹⁾ Strenger Beweis mit Benützung eines Cauchyschen Konvergenzprinzips (Exerc. d'anal. 1 (1840), p. 355, § III) wohl nach Weierstraß bei Thomae. El. Theorie der analyt. Funkt. (1880), p. 107 = 2. Aufl. (1898), p. 137. S. auch Fußn. 51.

 ⁵⁰⁾ Methode zur expliziten Darstellung der b_r bei C. G. Jacobi, Journ. f. Math.
 6 (1830), p. 267 = Werke 6, p. 38.

Konvergenzbeweis bei Stolz, Math. Ann. 8 (1875), p. 418; Allg. Arithm.
 p. 296; Stolz-Gmeiner, F. 1, p. 229; Thomae, a. a. O. p. 109 bzw. 139.

absolut für eine gewisse Umgebung der Stelle x = 0, y = 0, so hat die Gleichung

$$\sum_{0}^{\infty} \sum_{n=0}^{\infty} a_{nn} x^n y^n = 0$$

in der Umgebung von x = 0 stets eine und nur eine Auflösung von der Form:

$$y = \sum_{i=1}^{\infty} b_{i} x^{i},$$

falls $a_{00}=0$, $a_{01}>0$." Ein analoger Satz gilt für Potenzreihen mit beliebig vielen Veränderlichen 52) und kann schließlich als spezieller Fall eines noch allgemeineren, für die Theorie der analytischen Funktionen mehrerer Variablen grundlegenden Satzes von Weierstra $\beta^{52\,a}$) (des sog. "Weierstra β schen Vorbereitungssatzes") angesehen werden.

4. Rationale Funktionen und rekurrente Reihen. Reduzieren sich die in Gl. (22) mit $\mathfrak{P}_1(x)$, $\mathfrak{P}_2(x)$ bezeichneten Potenzreihen auf Polynome m^{ten} bzw. n^{ten} Grades ohne gemeinsamen Teiler:

$$\sum_{i=0}^{m} a_{i} x^{i} = f(x), \quad \sum_{i=0}^{n} b_{i} x^{i} = g(x) \text{ (wo } b_{0}! > 0),$$

so daß also für die (irreduzible) rationale Funktion $\frac{f(x)}{g(x)}$ eine Entwicklung von der Form besteht:

(24)
$$\frac{f(\mathbf{x})}{g(\mathbf{x})} = \sum_{0}^{\infty} c_{\mathbf{x}} \mathbf{x}^{\mathbf{y}},$$

so genügen nach Gl. (23) die c_r für $v \ge p$ (wo p die größere der beiden Zahlen m+1 und n, eventuell p=m+1=n) der folgenden (n+1)-gliedrigen, linearen homogenen Relation mit unveränderlichen Koeffizienten:

$$(25) b_0 c_r + b_1 c_{r-1} + \dots + b_n c_{r-n} = 0.53$$

52 Beweis — wiederum mit Benützung eines von Cauchy und Weierstraβ herrührenden Grundgedankens — bei Stolz, Grundz. d. Diff.- u. Integr.-Rechnung 1/1893, p. 162.

52^a) Weierstraβ, Abh. aus der Funktionenlehre (1886), p. 107 = Werke 2, p. 135 (vgl. HB1, p. 105, Nr. 45). Ebendaselbst (p. 111 bzw. 139) gibt auch W. eine Verallgemeinerung der *Jacobi*schen Koeffizientendarstellung ⁵⁰).

53) Man findet Gl. 25) vermöge der Substitution — $\frac{b_{\lambda}}{b_0} = B_{\lambda} \ (\lambda = 1, 2, ..., n)$ häufig auch in die Form gesetzt:

$$(25^{\rm a}) \qquad \qquad c_{\rm r} = \sum_{\rm i}^{\rm n} B_{\lambda} c_{{\rm r}-\lambda}. \label{eq:cross}$$

Die Reihe $\sum e_{\nu}x^{\nu}$ wird alsdann nach dem Vorgange von Abraham de Moivre⁵⁴) als eine rekurrente (nach Lagrange⁵⁷) mit dem Zusatze n^{ter} Ordnung), der Zahlenkomplex (b_0, b_1, \ldots, b_n) als deren Skala ("scala relationis", "échelle de relation") bezeichnet. Umgekehrt kann man zu jeder rekurrenten Reihe mit der Skala (b_0, b_1, \ldots, b_n) die "erzeugende Funktion" ("fonction génératrice"), d. h. eine zu ihr in der Beziehung (24) stehende rationale Funktion mit dem Nenner:

(26)
$$g(x) = b_0 + b_1 x + \dots + b_n x^n$$

angeben⁵⁵). Daraus folgt, daß jede rekurrente Reihe *eo ipso* einen von Null verschiedenen Konvergenzbereich besitzt⁵⁶).

Das schon von Moivre und Euler behandelte Hauptproblem, bei gegebenen oder willkürlich angenommenen Anfangswerten $v_0, e_1, \ldots, e_{n-1}$ einen independenten Ausdruck für jedes beliebige c_{ν} ($\nu \geq n$) herzustellen, wurde von Lagrange⁵⁷) als identisch mit der Integration einer

(Bei dieser Schreibweise pflegt man dann (B_1, \ldots, B_n) als die Skala der Reihe zu bezeichnen.)

54) Lond. Phil. Trans. 32 (1722), p. 176. Die daselbst zunächst ohne Beweise mitgeteilten Resultate erscheinen zu einer verhältnismäßig vollständigen formalen Theorie der rekurrenten Reihe verarbeitet in den Miscell. analyt. (London 1730), p. 27ff. Die in neueren Arbeiten ⁶³), ⁶⁵) auftretende irreführende Bemerkung, es habe schon Giovanni Domenico Cassini 1680 sich mit rekurrenten Reihen beschäftigt, reduziert sich auf das unerhebliche Faktum, daß dieser letztere gelegentlich einige ganz spezielle arithmetische Eigenschaften der ganzzahligen, allerdings unter das Rekursionsgesetz (25) fallenden Zahlenfolge: $c_v = c_{v-1} + c_{v-2}$ (wo $c_1 = c_0$ eine beliebige natürliche Zahl) hervorgehoben hat (Paris Hist. Acad. 1666—1686, publ. 1733, p. 201).

55) Das Problem der Summation einer rekurrenten Reihe bei Moicre, Miscell., p. 72 ff.; auch bei Euler, Introd. 1, art. 231—233. In moderner Darstellung z. B. bei Stolz, 1, p. 292.

56) Dies kann auch leicht direkt nachgewiesen werden: vgl. van Vleck, Am. M. S. Trans. 1 (1900), p. 294, wo der etwas allgemeinere Fall

$$c_{\scriptscriptstyle V} = \sum_{\scriptscriptstyle \lambda}^{\lambda} B_{\scriptscriptstyle \lambda}^{({\scriptscriptstyle V})} c_{\scriptscriptstyle V\,-\,\lambda}, \ \lim_{\scriptscriptstyle V\,=\,\infty} B_{\scriptscriptstyle \lambda}^{({\scriptscriptstyle V})} = B_{\scriptscriptstyle \lambda}$$

behandelt wird. Im Anschlusse daran einige Konvergenzkriterien für Potenzreihen, deren Koeffizienten gewissen linearen Relationen genügen. Vgl. auch D'Ocagne 65), p. 189.

57) Miscell. Taur. 1 (1759) = Oeuvres 1, p. 23; elementarer und ausführlicher Berlin Nouv. Mém. 1775 = Oeuvres 4, p. 151. Lagrange behandelt auch den

etwas allgemeineren Fall: $\sum_{\nu=0}^{n} b_{\lambda} c_{\nu-\lambda} = \gamma_{\nu}$ (entsprechend der linearen Differenzen-

gleichung "mit einem zweiten Teil"). Auch gibt er in der zweiten Abhandlung eine ausführliche Theorie der in anderer Weise schon von Laplace (Paris Mém.

linearen Differenzengleichung n^{ter} Ordnung⁵⁸) erkannt. Die Lösung hängt daher (wie bereits auch Moivre und Euler auf anderem Wege erkannt hatten⁵⁹)) naturgemäß⁵⁸) von den Wurzeln der Gleichung (équation génératrice)

(27)
$$G(y) \equiv y^n \cdot y\left(\frac{1}{y}\right) = 0$$

ab. Besitzt dieselbe *n verschiedene* Wurzeln $\alpha_1, \ldots, \alpha_n$, so ergibt sich:

$$(28) c_r = \sum_{1}^{r} P_{\lambda} \alpha_{\lambda}^{r},$$

wo die P_{λ} von den Anfangswerten e_0, \ldots, e_{n-1} und von α_{λ} abhängige Konstanten bedeuten. Ist dagegen α_{λ} eine \varkappa_{λ} -fache Wurzel von G(y) = 0, so tritt an die Stelle von P_{λ} ein bestimmtes Polynom $P_{\varkappa_{\lambda}}(v)$ $(\varkappa_{\lambda} - 1)^{\text{ten}}$ Grades in $v.^{60}$)

Lagranges in gewissem Sinne vollständige Lösung des fraglichen Problems leidet an dem prinzipiellen Übelstande, daß sie die im allgemeinen nicht erreichbare Kenntnis der Wurzeln α_{λ} voraussetzt⁶¹). Dazu kommt noch, daß die Form jener $P_{\varkappa_{\lambda}}(\nu)$ mit \varkappa_{λ} variiert⁶²) und ihre Komplikation mit wachsender Multiplizitätsziffer \varkappa_{λ} rapid zunimmt. Aus diesen Gründen haben in neuerer Zeit Désiré André und Maurice d'Ocagne jenes Problem wieder aufgenommen.

André⁶³) legt seinen Untersuchungen eine allgemeinere Rekursionsformel, als die unter (25) bzw. (25°) angegebene, zugrunde, nämlich:

(29)
$$c_{r} = \beta_{r} + \sum_{1}^{n_{r}} B_{\lambda}^{(r)} e_{r-\lambda},$$

und unterscheidet acht verschiedene Typen von Reihen, je nachdem er $B_{\lambda}^{(\nu)}$ als mit λ und ν oder nur mit einem dieser beiden Indizes oder endlich gar nicht veränderlich, sodann n_{ν} als mit ν veränderlich oder

sav. étr. 6 [1774], p. 353 = Oeuvres 8, p. 5; ebendas. 7, 1773 [1776] = Oeuvres 8, p. 69) behandelten rekurrenten Doppelreihen ("séries récurro-récurrentes").

⁵⁸⁾ Vgl. IE, Nr. 15.

⁵⁹⁾ Moivre, Misc., p. 33; Euler, Introd., art. 215 (p. 177).

⁶⁰⁾ Auf diesen Fall der mehrfachen Wurzeln kommt Lagrange später noch ausführlicher zurück Berlin Nouv. Mém. 1792—93 = Oeuvres 5, p. 625.

⁶¹⁾ Selbstverständlich könnte man c_{ν} als Lösung eines linearen Gleichungssystems ohne weiteres in der Form von Quotienten zweier Determinanten anschreiben. Damit wäre aber in Wahrheit nicht viel gewonnen.

⁶²⁾ Über eine von *Lagrange* 60), p. 640 ohne Beweis mitgeteilte, diesen Mangel beseitigende Formel s. *G. Jacobi*, Dissert Berol. 1825 = Werke 3, p. 3 ff. (speziell Art. 9).

⁶³⁷ Ann. cc. norm. (2) 7 (1878), p. 375.

konstant annimmt⁶⁴). Mit Hilfe kombinatorischer Betrachtungen entwickelt er sodann für den allgemeinsten Fall einen aus den β_i , $B_i^{(i)}$ zusammengesetzten Ausdruck für c_r , der für die einzelnen Spezialtypen verschiedene, entsprechend vereinfachte Formen annimmt. D'Ocagne 65) beschränkt sich im wesentlichen auf die gewöhnlichen rekurrenten Reihen und vereinfacht vor allem die nach Lagranges Vorgange ihm wiederum als Grundlage dienende Integration einer linearen Differenzengleichung durch den Nachweis, daß es in der Hauptsache genügt, diese Aufgabe für die zur Skala (B_1, \ldots, B_n) gehörige "Fundamentalreihe", d. h. diejenige mit den Anfangswerten $c_0 = \cdots = c_{n-1} = 0$, $c_n = 1$, zu lösen. Er gelangt auf diesem Wege sowohl zu dem Andréschen Ausdrucke für c_{ν} , als auch zu einer wesentlich vereinfachten und verbesserten Darstellung durch die Wurzeln von G(y) = 0, sowie zu einem Konvergenzkriterium und einer Summationsformel für $\sum c_r$. Der nämlichen Darstellung der c_y durch die Wurzeln von G(y) = 0 hat sich auch A. Capelli65a) bedient, um die im wesentlichen schon von Daniel Bernoulli und Euler 65 b) stammenden Betrachtungen über die eventuelle Existenz des Grenzwertes $\lim_{\nu = \infty} \frac{e_{\nu+1}}{e_{\nu}}$ und dessen Bedeutung als numerisch größte Wurzel der Gleichung g(x) = 0 zu vereinfachen und zu vervollständigen.

Die rekurrenten Reihen stehen in enger Beziehung zu der Entwicklung einer rationalen Funktion in Partialbrüche⁶⁶). Ist a eine k-fache Nullstelle von g(x), etwa $g(x) = (x-a)^k \cdot g_1(x)$, und $f(x) = f_1(x-a)$ (wo $|f(a)| \equiv |f_1(0)| > 0$), so ergibt sieh mit Benützung von (24):

(30)
$$\frac{f(x)}{g(x)} = \frac{f_1(x-a)}{(x-a)^k \cdot g_1(x-a)} = \frac{1}{(x-a)^k} \cdot \sum_{n=0}^{\infty} c'_n(x-a)^n,$$

so daß also die Terme $e'_{\nu}(x-a)^{\nu-k}$ $(\nu=0,1,\ldots,k-1)$ die von der Wurzel x=a herrührenden Partialbrüche liefern⁶⁷).

⁶⁴⁾ Die Annahme $n_{\nu} = n$, $B_{\lambda}^{(r)} = B_{\lambda}$ für $r \geq n$ (bei A. = Typus VI, p. 399) liefert die in Fußn. 57 erwähnten allgemeineren $\overline{Lagrange}$ schen und, wenn noch $\beta_{\nu} = 0$ für $\nu \geq n$, die gewöhnlichen rekurrenten Reihen.

⁶⁵⁾ J. éc. polyt. 64 (1894), p. 151. Auf p. 222 eine geometrische Konstruktion für die c_r einer rekurrenten Reihe.

^{65&}lt;sup>a</sup>) Napoli Rend. (3), 1 p. 194. Auch A. Capelli, Anal. algebr. 1902, p. 538.
65^b) D. Bernoulli, Comment. Acad. Petrop. 3 ad ann. 1728 [1732], p. 85;

Euler, Introd. art. 332 (p. 276). Vgl. I B 3a, Nr. 13. 66) Vgl. II A 2, Nr. 26.

⁶⁷⁾ S. z. B. Lipschitz, Algebr. Anal., p. 415; Stolz, 2, p. 164. — Der um-

5. Der allgemeine binomische Satz. Der binomische Satz für einen ganzen positiven Exponenten m:

$$(1+\xi)^m = \sum_{n=0}^m m_n \xi^n$$

tindet sich schon in *Michael Stifels* Arithmetica integra ⁶⁸), jedoch nur in dem Sinne, daß daselbst ohne Beweis die *sukzessive* Berechnung der *m*, mit Hilfe der Rekursionsformel:

$$(32) m_r = (m-1)_r + (m-1)_{r-1}$$

gelehrt wird. Über diese additive Zusammensetzung der Binomialkoeffizienten ist man länger als ein Jahrhundert kaum hinausgekommen ⁶⁹). Den bekannten independenten Ausdruck:

$$m_{i} = \frac{m(m-1)\dots(m-\nu+1)}{1\cdot 2\dots \nu}$$

hat erst Isaac Newton auf Grund einer glücklichen Induktion auf-

gekehrte Weg, die rekurrente Reihe $\sum c_i x^i$ aus der Partialbruchzerlegung von $\frac{f(x)}{g(x)}$ herzuleiten, bei *Euler*, Introd., Art. 212; *Cauchy*, An., p. 396.

- 68) Nürnberg 1544, Fol. 44b.
- 69) Vgl. Cantor, 2, p. 688; 3, p. 66. Nach Hutton, Phil. and math. dictionary (London 1815) 1, p. 230 soll Henry Briggs (in seiner mir nicht erreichbaren Arithmetica logarithmica, Lond. 1624) bereits in Worten ein mit der Formel (33) übereinstimmendes Verfahren zur Berechnung der m_{ν} angegeben haben. Ferner ist ein von Petrus de Fermat (Brief an Roberval vom 4. Dez. 1636 = Opera, Tolosae 1679, p. 146; Anmerkung zu Diophantus, De numeris multangulis, Tol. 1670, p. 16) ohne Beweis mitgeteilter Satz über figurierte Zahlen inhaltlich gleichwertig mit der Formel: $(r+1)\cdot (n+\nu)_{\nu+1}=n\,(n+\nu)_{\nu}$, anders geschrieben: $(\nu+1)\cdot m_{\nu+1}=(m-\nu)\cdot m_{\nu}$, welche bei wiederholter Anwendung gleichfalls auf den Newtonschen Ausdruck (33) führt.
- 70) Die Bezeichnung m_n wohl zuerst bei Rothe (Theorie der kombinatorischen Integrale, Nürnberg 1820, p. 44), dann bei Abel (J. f. Math. 1 [1826], p. 318 = Oeuvres 1, p. 226). Ähnlich $(m)_n$ bei Cauchy (Rés. analyt., p. 5) und $(m)^n$ schon bei Condorcet in der Encyclop, méthodique 1 (1784), p. 309. Euler (Petrop. Acta, 5, 1781 [1784], p. 89) schreibt $\left\lceil \frac{m}{n} \right\rceil$, woraus wohl die heute zumeist übliche, jedoch bei einem m in Bruchform unzweckmäßige Bezeichnung $\binom{m}{n}$ hervorgegangen ist. Andere Bezeichnungen sind: m? bei Hindenburg nach Klügel, 1, p. 309; m? bei Thibaut (Grundr. d. allg. Arithm., Göttingen 1809, p. 44, auch noch bei Stern (Algebr. Anal., p. 44); C_m^n , der Kombinatorik entlehnt, noch heute, namentlich bei französischen Autoren, in Gebrauch. Für den Koeffizienten von \S^n in der Entwickelung von $(1-\S)^{-m}$, also für $m(m+1)\cdots(m+\nu-1)$ schreibt Cauchy $[m]_\nu$ (Rés. analyt. p. 82).

gefunden ⁷¹) und damit tatsächlich auch erst die vollkommene analytische Formulierung des (gewöhnlichen) binomischen Satzes (31) ("der Newtonschen Formel") geliefert ⁷²). Zugleich aber gewinnt er durch Aufstellung des für jedes beliebige m wohldefinierten Ausdruckes (33) die Möglichkeit, die binomische Entwicklung in der allgemeineren (für positive ganze m mit (31) zusammenfallenden) Form:

(34)
$$(1+\xi)^m = \sum_{0}^{\infty} m_* \xi^r \quad ("Binomische Reihe")$$

auf beliebige reelle m zu übertragen, freilich ohne Beuris, lediglich mit Hilfe einer sehr unvollkommenen, auf der rechnerischen Verifikation weniger Spezialfälle beruhenden Induktion. Der Satz, dessen universelle Bedeutung für die Analysis bald allgemein erkannt wurde, blieb trotz zahlreichster Anwendungen fast ein volles Jahrhundert ohne ausreichenden Beweis. Die zunächst vorliegenden Versuche, den Satz mit Hilfe der Differentialrechnung zu beweisen, sind teils unzulänglich⁷³), teils enthalten sie einen vollständigen eireulus vitiosus⁷⁴). Erst

⁷¹⁾ Brief an *Oldenburg* vom 24. Okt. 1676 (= Opuscula, Ed. Castilloneus, 1 [1784], p. 328), weniger deutlich schon in dem vorangehenden Briefe vom 13. Juni 1676 (= Opuscula, p. 307).

⁷²⁾ Die heute zumeist übliche, auf der Bestimmung der m_r als Kombinationsanzahl beruhende Beweismethode (vgl. 1A2, Nr. 2, 13) wird Jacob Bernoulli zugeschrieben. Eine sehr elegante Form derselben bei Cauchy, Rés. anal., p. 5, wo durch eine nur wenige Worte erfordernde kombinatorische Betrachtung die Rekursionsformel: $v \cdot m_v = m \cdot (m-1)_{v-1}$ hergeleitet wird, die bei v-maliger Anwendung den Ausdruck (33) liefert. Eine in Lehrbüchern nicht selten anzutreffende Beweisart, bei welcher aus den Spezialfällen $(1+c)^2$, $(1+x)^3$, $(1+x)^4$ die Form (33) "vermutet" (?) und sodann durch vollständige Induktion erwiesen wird, liefert lediglich eine Verifikation, keinen wirklich befriedigenden Beweis. Vervollkommneter Induktionsbeweis bei Hattendorff. Algebr. Anal., p. 84. Ein auf der Relation $\lim_{h \to 0} \frac{1}{h} \left\{ (1+x+h)^m - (1+x)^m \right\} = m(1+x)^{m-1}$ berühender Be-

weis (s. z. B. Schlömilch, p. 146) gehört in Wahrheit der Differentialrechnung an. 73) Sie berühen auf dem Ansatze mit unbestimmten Koeffizienten, setzen also von vornherein die erst zu beweisende Existenz der Entwicklung voraus; so z. B. John Colson, Kommentar zu Newtons Method of fluxions (London 1739), p. 309; Colin Mac Laurin, Treatise of fluxions (Edinburgh 1742), p. 607. Eine wirklich ausreichende Herleitung des Satzes mit Hilfe der Differentialrechnung wurde erst durch die strengere Begründung der Taylorschen Formel Lagrange, Cauchy — s. H A 2, Nr. 11) ermöglicht.

⁷⁴⁾ Indem zunächst die binomische Reihe zur Differentiation der Potenz mit beliebigem Exponenten benützt wird (*Euler*, Instit. calc. diff. [Petrop. 1755], p. 124) und sodann die Differentialquotienten von $(1+\xi)^m$ zur Herstellung der betrettenden *Mac Laurins*chen Reihe dienen (ebendas. p. 360). *Euler* hat diesen

1774 gab $Euler^{75}$) einen vollgültigen, überdies durchaus elementaren Beweis, der, ganz abgesehen von der Wichtigkeit des Resultates, durch Neuheit und Fruchtbarkeit der Methode bedeutsam erscheint. Euler macht die Lösung der Aufgabe, statt wie bisher von der Entwicklung des Ausdruckes $(1 + \xi)^m$, von der Sammicrung der Reihe $\sum m_*\xi^r$ abhängig, zeigt vermittelst des sog. Additionstheorems der Binomial-koeffizienten 76):

(35)
$$\sum_{n=0}^{\infty} m_{n} n_{n-n} = (m+n)_{n}.$$

daß $\sum m_r \xi^r$ als f(m) betrachtet der Funktionalgleichung:

$$(36) f(m) \cdot f(n) = f(m+n)$$

genügt⁷⁷), und daß diese andererseits die einzige eindeutige Lösung⁷⁸) $[f(1)]^m$, also im vorliegenden Falle $(1+\xi)^m$, zuläßt.

Fehler späterhin ⁷⁵) selbst erkannt. — In der *Introductio*, deren wesentlichste Entwicklungen mit der binomischen Reihe stehen und fallen, findet sich merkwürdigerweise nicht die leiseste Andeutung eines Beweises: der Satz wird ohne jede nähere Erklärung als ein ... *Theorema universale*" (Art. 71) angeführt und in ausgiebigster Weise verwertet.

75) Petrop. Comment. 19 ad a. 1774 [1775]. p. 103. Ein daselbst mit einiger Anerkennung zitierter Beweis von Aepinus (Petrop. Comment. 8 ad a. 1760 [1763], p. 169) ist gänzlich mißglückt. Ein angeblicher zweiter Eulerscher Beweis (vom Jahre 1776, erst nach Eulers Tode veröffentlicht: Petrop. Nova Acta 5 [1787]) beruht wiederum auf dem Ansatze mit unbestimmten Koeffizienten nebst Auflösung der Rekursionsformel (32) durch eine Art Probiermethode.

76) Beweis nach Euler a. a. O. zunächst für positive ganze m, n durch Koeffizientenvergleichung aus $(1+x)^m \cdot (1+x)^n = (1+x)^{m+n}$ (bei Cauchy, An. p. 98 mit Hilfe einer kombinatorischen Betrachtung), woraus dann Euler ohne weiteres (strenger Cauchy mit Hilfe des bekannten Identitätssatzes für ganze Funktionen) auf die vollkommene formale Identität der beiden Ausdrücke (35) schließt. Beweis durch vollständige Induktion bei Simon L'Huilier (Calc. diff. et integr. expositio element., Tubingae 1795, p. VI) und de Stainville (Gerg. Ann. 9 [1818—19], p. 230, welche den Eulerschen Beweis des binomischen Satzes von neuem aufgefunden zu haben scheinen. Beweis durch direkte Umrechnung (im wesentlichen schon bei Euler in der Abhandlung über die Binomialkoeffizienten 70)) s. z. B. Schlömilch, p. 154: Baltzer, 1, p. 219.

77) Die bei Euler selbstverständlich fehlende Feststellung der Konvergenz für $\xi \mid < 1$ bei Cauchy, An., p. 153. Letzterer zeigt auch, daß im Falle $f^{(1)} > 0$, stets auch $[f^{(1)}]^m > 0$. also $(1 + \xi)^m$ den (einzigen) positiven Wert der Potenz bedeutet.

78, Gilt zunächst nur für rationale m; für irrationale, wenn man mit Cauchy (An., p. 104) f(m) als stetig voraussetzt — eine Bedingung, die mit Benützung einer (auf die Funktionalgleichung f(m) + f(n) = f(m+n) bezüglichen) Bemerkung von Gaston Darboux (Math. Ann. 17 [1880], p. 56), auch durch eine weniger enge ersetzt werden kann: s. Stolz-Gmeiner, A., p. 208. Über unstetige

Um die Summierung der Binomialreihe mit Festhaltung der Eulerschen Beweismethode auf den Fall einer komplexen Veränderlichen x zu übertragen, definiert Cauchy zunächst unter der Voraussetzung, daß:

(37)
$$a = \alpha + \beta i = \varrho(\cos\varphi + i\sin\varphi), \quad (-\pi < \varphi \le \pi),$$

die Potenz am durch die Beziehung 79):

(38)
$$a^{m} = \varrho^{m}(\cos m\varphi + i \sin m\varphi) \cdot ((1))^{m/80}$$
$$= \varrho^{m}(\cos m(\varphi + 2k\pi)) + i \sin m(\varphi + 2k\pi)$$
$$(k = 0, +1, +2, ...).$$

Diese Definition erweist sich als die allgemeinste, welche die Fundamentaleigenschaften der Potenz mit positiver Basis und positivem Exponenten, insbesondere die Funktionalgleichung (36), bestehen läßt^{s1}). Das so definierte a^m ist einwertig, q-wertig, ∞ -vielwertig, je nachdem m ganzzahlig, gebrochen und zwar als reduzierter Bruch $= \frac{p}{q}$, irrational. Bezeichnet man den aus (38) für k=0 resultierenden Wert als den $Hauptwert^{80}$) von a^m , so folgt⁸²):

Lösungen jener Funktionalgleichung s. G. Hamel, Math. Ann. 60, p. 461. — Unzulänglich ist bekanntlich Cauchys Beweis für die Stetigkeit unendlicher Reihen (An., p. 131; vgl. II A 1, Nr. 17, Fußn. 178), mithin auch der daraus gezogene Schluß (a. a. O. p. 165) auf die Stetigkeit von $\sum m_i \xi^r$ als Funktion von m; derselbe kann indessen leicht durch den Nachweis ergänzt werden, daß die fragliche Reihe für |m| < M, $|\xi| < \varrho < 1$ gleichmäßig konvergiert s. z. B. Stolz. 1, p. 307). Das absprechende Urteil, welches Stern in der Vorrede seines Lehrbuches aus Anlaß dieser einen Beweislücke über Cauchys gesamte Analyse algebrique fällt, erscheint um so unberechtigter, als er jenen falschen, aber einfachen und durchsichtigen, infolgedessen auch relativ leicht zu komplettierenden Beweis Cauchys durch einen ebenso falschen, nur viel weitschweifigeren und äußerst konfusen ersetzt (a. a. O. p. 87; vgl. auch p. 395—399).

- 79) An., p. 223. Die nämliche Definition übrigens schon bei Euler: Berlin Hist, Acad. 5 (1749), p. 266.
- 80) Über die Bedeutung eines Symbols von der Form $((1))^m$ und die Bezeichnung des sog. Hauptwertes mehrdeutiger Ausdrücke s. Fußn. 98.
- 81) Das analoge Prinzip (nach heutiger, von Hermann Hankel [Theorie der kompl. Zahlensysteme. Leipzig 1867, p. 10] herrührender Bezeichnung: Prinzip der Permanenz formaler Gesetze; bei G. Peacock, Brit. assoc. rep. 3, 1834, p. 198: "principle of equivalent forms") wird von Cauchy in der Anal. algébr. für die Übertragung der elementaren Transzendenten auf das komplexe Gebiet durchweg angewendet.
- 82) An., p. 296. Der Grenzfall |x| = 1 wird von Cauchy in der Anal. algebr. nicht behandelt. Dagegen zeigt er in den Exerc. de math. 1 (1826), p. 8 (= Oeuvres [2], 6, p. 19), daß die binomische Reihe noch für x = -1 konvergiert, wenn m positiv ist. Bolzano, der in seiner Abhandlung über den binomischen Lehrsatz (s. das Lit.-Verz unter "Monographien") sich durchweg auf

Die Reihe $\sum_{0}^{\infty} m_{r} x^{r}$ konvergiert für |x| < 1 nach dem Hauptwerte von $(1+r)^{m}$, d. h. man hat, für $x = r(\cos \varphi + i \sin \varphi)_{r}$ r < 1:

(39)
$$\sum_{n=0}^{\infty} m_{n} x^{n} = \varrho^{m} (\cos m \psi + i \sin m \psi),$$

wo:

(40)
$$\begin{cases} 1 + x = \varrho(\cos\psi + i\sin\psi), \\ \text{d. h.: } \varrho = \sqrt{1 + 2r\cos\varphi + r^2}, \text{ tg } \psi = \frac{r\sin\varphi}{1 + r\cos\varphi} \\ \left(-\frac{\pi}{2} < \psi \le \frac{\pi}{2}\right). \end{cases}$$

Die Ausdehnung dieses Resultates auf komplexe $m = \varkappa + \lambda i$ nebst vollständiger Diskussion des Grenzfalles |x| = 1 gibt $Abel^{83}$), dessen Abhandlung über die binomische Reihe nicht nur durch ihr Endresultat, sondern namentlich durch exakte Behandlung der Frage nach der Stetigkeit einer Reihensumme erheblich über Cauchy hinausgeht 84). Durch geeignete Erweiterung des Eulerschen Beweisverfahrens 85) gewinnt er das folgende Resultat:

reelle x und m beschränkt, behauptet noch, daß die binomische Reihe für $x=\pm 1$, abgesehen von dem Fall eines ganzzahligen positiven m immer divergire. 83) J. f. Math. 1 (1826), p. 311 = Oeuvres 1, p. 219; s. auch das Lit.-Verz. unter "Monographien".

⁸⁴⁾ Über den Satz betr. die Stetigkeit einer Potenzreihe s. Nr. 2, Fußn. 23. Ein anderer Stetigkeitssatz (Oeuvres 1, p. 223, Théorème V) ist zwar in der von Abel gegebenen Fassung zunächst nicht vollständig bewiesen (s. L. Sylow, Zus. z. Abel, Oeuvres 2, p. 303), ja sogar nachweisbar unrichtig (Pringsheim, München Ber. 27 [1897], p. 35), unter geeigneten Einschränkungen jedoch haltbar (vgl. Sylow, Pringsheim a. a. O.). Abels Beweise und Resultate wurden übrigens von vielen Mathematikern jener Zeit nicht verstanden (vgl. die unzutreffende Kritik Arndts³) und Björlings (Nova Acta Upsal. 13 [1847], p. 66, 156), sowie die vielfach unternommenen, als mißglückt zu bezeichnenden Versuche, die Abelschen Resultate einfacher abzuleiten, s. z. B. Crelle, J. f. Math. 4 (1829), p. 305; 5 (1830), p. 187: Grunert, Arch. f. Math. 8 (1846), p. 272 (auch: Supplem. zu Klügels Wörterb. der reinen Math. 1 (1833), p. 283); Björling, a. a. O. p. 81—86, p. 143—186.

⁸⁵⁾ Abel operiert dabei ausschließlich mit Funktionalgleichungen zwischen Funktionen reeller Veränderlicher, die er durch Trennung des reellen und imaginären Teils erhält; durch Benützung komplexer Funktionalgleichungen, unter Berücksichtigung des "analytischen" Charakters der betreffenden Funktionen, läßt sich die Beweisführung erheblich zusammenziehen; s. Stolz, 2, p. 206; Stolz-Gmeiner, F. 2, p. 340.

Die Reihe $\sum_{0}^{\infty} (z + \lambda i)_{r} \cdot x^{r}$ konvergiert absolut nicht nur für |x| < 1, sondern im Falle z > 0 auch noch für |x| = 1; ist $-1 < z \le 0$, so konvergiert sie für |x| = 1 noch bedingt, mit Ausnahme von x = -1, während sie im Falle $z \le -1$ für |x| = 1 ausnahmslos divergiert, Soweit die Reihe konvergiert, hat man:

(41)
$$\sum_{0}^{\infty} (\varkappa + \lambda i)_{r} \cdot x^{s}$$

= $\varrho^z \cdot (\cos z \psi + i \sin z \psi) \cdot e^{-\lambda \psi} \cdot (\cos (\lambda \lg \varrho) + i \cdot \sin (\lambda \lg \varrho))^{8?}$ (wo ψ , ϱ durch Gl. (40) definiert sind).⁸⁸)

6. Die Exponentialreihe. Die Exponentialreihe ergibt sich zunächst für eine reelle Veränderliche ξ , indem man $\left(1+\frac{\xi}{n}\right)^n$ in die binomische Reihe entwickelt⁸⁹):

(42)
$$\left(1 + \frac{\xi}{n}\right)^n = \sum_{0}^{\infty} n_{\nu} \left(\frac{\xi}{n}\right)^{\nu}$$

und dann *n* unendlich werden läßt (s. (43°)); die auf der rechten Seite dieser Gleichung erforderliche, von *Euler* und zunächst auch von *Cauchy* ⁹⁰) ohne ausreichende Begründung ⁹¹) vorgenommene Ver-

⁸⁶⁾ Der bei Abel noch recht weitläufige Konvergenzbeweis für x=1 erledigt sich am einfachsten mit Hilfe der Weierstraßschen Kriterien (s. 163, Nr. 3, 4 und Fußn. 151 des vorliegenden Artikels). Eine in viele Lehrbücher übergegangene einfache Behandlung des Falles x=1 für reelle m gibt E. Heine, J. f. Math. 55 (1858), p. 279.

⁸⁷⁾ J. f. Math. 1, p. 239 = Oeuvres 1, p. 238. Vgl. auch Nr. 7. — Aus Gl. (41) gewinnt Abel durch Trennung des Reellen und Imaginären, insbesondere für |x|=1, Formeln zur Summation gewisser trigonometrischer Reihen, sowie zur Entwicklung von $(\cos x)^{\lambda}$, $(\sin x)^{\lambda}$.

⁸⁸⁾ Über Restabschätzung und Anwendung der binomischen Reihe zur numerischen Berechnung von Wurzeln s. z. B. Sehlömilch, p. 164: Stolz, 1, p. 308, 313. — Bezüglich einer anderen elementaren Herleitung des allgemeinen binomischen Satzes s. Fußn. 110, 111.

⁸⁹⁾ Es ist nicht nötig n ganzzahlig zu denken.

⁹⁰⁾ Euler, Introd., p. 85 (vorher ohne Beweis: Misc. Berol. 7 (1743), p. 177); Cauchy, An., p. 167. — Die Beziehung (44) war schon 1728 Dan. Bernoulli bekannt (Corresp. math. [Fuß], p. 247); die Potenzreihe für e^{ξ} , ebenso für sin ξ , cos ξ , arcsin ξ wurde zuerst von Newton gefunden (s. M. Cantor, Gesch. d. Math. 3, p. 73—74; A. v. Braunmühl, Gesch. d. Trigonometrie 2, p. 61—62).

⁹¹⁾ Bedenken hiergegen äußerte wohl zuerst J. Liouville, J. de math. (1840), p. 280, worauf J. A. Grunert (Arch. f. Math. 1 (1841), p. 204) einen auf dem Nachweis der gleichmäßigen Konvergenz beruhenden — der Begriff in seiner

tauschung zweier Grenzübergänge rechtfertigt sich dadurch, daß die betreffende Reihe für alle $|\xi| \leq R$ (R beliebig groß) und $n \geq n_R$ gleichmäßig konvergiert. Für $\lim n = \infty$ geht dann die Beziehung (42) in die folgende über ⁹⁰)

$$\lim_{n \to \infty} \left(1 + \frac{\xi}{n} \right)^n = \sum_{0}^{\infty} \frac{\xi^{\nu}}{\nu!}$$

$$=e^{\xi},^{92}$$

wenn

$$\lim_{n = \infty} \left(1 + \frac{1}{n} \right)^n = \sum_{n = \infty}^{\infty} \frac{1}{n!}$$

mit e bezeichnet wird.

Der Grenzwert und die Reihe auf beiden Seiten von (43°) bleiben konvergent, wenn man ξ durch die komplexe Zahl $x = \xi + i\eta$ ersetzt, und liefern dann zwei Definitionen ⁹³) der komplexen Potenz:

Allgemeinheit fehlt natürlich bei Grunert — Beweis von (44) gab. Strenger Beweis der allgemeinen Formel (43°) bei Cauchy, Exerc. d'an. 4 (1847), p. 237 und in allen modernen Lehrbüchern, besonders einfach (nach G. Darboux) bei Taunery et Molk, Théorie des fonctions ellipt. 1, p. 101, 102 (auch für komplexe x). Ein durch Schärfe und Klarheit ausgezeichneter Beweis schon bei S. L'Huilier, Princ. calc. diff. et int. expos. element., Tubingae 1795, p. 92.

Einen direkten (nicht auf der Umformung in die Reihe beruhenden) Beweis für die Beziehung $\lim_{n = \infty} \left(1 + \frac{\hat{s}}{n}\right)^n = e^{\hat{s}}$ gibt Cauchy, Résumés des leçons etc. (1823), p. 2; vgl. I A 3, Nr. 17. (Entsprechende Herleitung der Formel $\lim_{n = \infty} n \binom{n}{\sqrt{a} - 1}$ = $\lg a$ bei Schlömilch p. 35, exakter bei Ph. Wulf, Monatsh. f. Math. 8 (1897), p. 49.

92) Die Berechtigung zur Gleichsetzung der Ausdrücke (43°) und (43°) folgt aus der definierenden Gleichung $\lim_{\omega \to \infty} \left(1 + \frac{1}{\omega}\right)^{\omega} = e$ durch die Substitution $\omega = \frac{\xi}{n}$ und Benützung der Relation $\lim_{\omega \to \infty} \left(1 + \frac{1}{\omega}\right)^{\omega} = e$ durch die Substitution $\omega = \frac{\xi}{n}$ und Benützung der Relation $\lim_{\omega \to \infty} \left(1 + \frac{1}{\omega}\right)^{\varepsilon}$ (d. h. also der Stetigkeit der Potenz) oder auch des Umstandes, daß die linke bzw. die damit identische rechte Seite von (43°) der charakteristischen Funktionalgleichung der Potenz $f(\xi) \cdot f(\eta) = f(\xi + \eta)$ genügt (bezüglich der linken Seite: Cauchy, Résumés analyt., p. 118 und Exerc. d'an. 4, p. 239 [zugleich für komplexe x]; bezüglich der rechten: vgl. Cauchy, An., p. 168 und ⁹³)).

93) Die Reihendefinition bei Cauchy, An., p. 309; die Grenzwertdefinition bei Schlömilch, p. 237. — Eine andere Methode zur Einführung von e^x für komplexe x besteht darin, diejenige Potenzreihe (durch den Ansatz mit unbestimmten Koeffizienten) zu suchen, welche identisch die Funktionalgleichung $f(x) \cdot f(y) = f(x+y)$ mit der Nebenbedingung f(1) = e befriedigt: S. L'Huilier, Princ. calc. diff. et int. expos. elem., p. 87—90; Stainville, Gergonne Ann. 9 (1818), p. 239; Ohm, System d. Math. 2, p. 203; Thomae, Elem. Theorie, p. 249; Stolz, 2, p. 199; Stolz-Gmeiner, F. 2, p. 343. — Auch das Problem, die einfachste

$$e^x = e^{\xi + i\eta}$$
; die Zerlegung der Reihe $\sum_{i=1}^{\infty} \frac{x^i}{v!}$ bzw. des $\lim_{n=\infty} \left(1 + \frac{\xi + i\eta}{n}\right)^n$

in den reellen und imaginären Bestandteil 94) ergibt:

(45)
$$e^{\xi + i\eta} = e^{\xi} (\cos \eta + i \sin \eta)^{95}).$$

In dieser Darstellung wird dann die Periodizität von e^r mit der Periode $2\pi i$ ersichtlich als Folge der Periodizität der trigonometrischen Funktionen mit der Periode $2\pi^{96}$).

7. Der natürliche Logarithmus und die allgemeine Potenz. Jede der (unendlich vielen) Wurzeln y der Gleichung $c^y = x$ (x und y komplex) wird nach Analogie der für positive x und reelle y geltenden Definition als zur Basis c gehöriger oder natürlicher Logarithmus von x bezeichnet, in Zeichen: $y = \lg x$. Durch Auflösung von (45) ergibt sich 97):

(46)
$$\lg x = \lg r + i\varphi + 2k\pi i \quad (k = 0, +1, +2...),$$

wo

$$x = r(\cos \varphi + i \sin \varphi) \quad (-\pi < \varphi \le \pi)$$

ganze transzendente Funktion ohne Nullstellen zu suchen (Weierstraß), führt auf $\sum_{i=1}^{\infty} \frac{x^i}{v!}$.

- 94) Cauchy, An., p. 300; Schlömilch, p. 239. Diese Zerlegung wird zunächst bei endlichem (ganzzahligem) n ausgeführt, worauf man im absoluten Betrage und Argument des Resultats n nnendlich werden läßt.
- 95) Cauchy, An., p. 300; die Formel $e^{i_1 i} = \cos \eta + i \sin \eta$ bei Euler, Introductio, p. 104; damit ăquivalente schon vorher: Misc. Berol. 7 (1743, p. 177 und nach Eneström (Bibl. math. (1897), p. 48) in einem Briefe vom 20. Jan. 1740 an Joh. Bernoulli; die Formel (45): Berlin Hist. Ac. 5 (1749), p. 179. S. a. Fußn. 97.
- 96) Näheres über die Werteverteilung der Funktion e^x in den funktionentheoretischen Lehrbüchern, z. B. Thomae, p. 59; Burkhardt, Analytische Funktionen § 41. Über den zahlentheoretischen Charakter (Irrationalität und Transzendenz) von e^x bei algebraischem x s. I C 3, Nr. 7, p. 667—674. Einen auf der Reihe (43°) basierenden sehr einfachen Irrationalitätsbeweis für e^ξ bei rationalem § gibt Hermite: Rep. Brit. ass. 1873; mit analogem Verfahren beweist er die Irrationalität von π : Cours lithogr. (1882), p. 74, 75; auch bei Godefroy, Théorie élém., p. 153—155.
- 97) Euler, Berlin Hist. Ac. 5 (1749), p. 165, 277; Cauchy, An., p. 317. Die Formel $\log(\cos \xi + i \sin \xi) = \xi i$ nach v. Braunmühl a. a. O. 2, p. 108 schon bei R. Cotes, Harmonia mensurarum (1702); vgl. auch Fußn. 95. Euler beendete durch die von ihm zuerst erkannte Unendlich-Vieldeutigkeit der mit $\lg x$ zu bezeichnenden Funktion den historisch interessanten, besonders zwischen Leibniz und Joh. Bernoulli geführten Streit über die Logarithmen negativer und imaginärer Zahlen. Vgl. Cantor, a. a. O. 3, p. 722.

und $\lg r$ der einzige reelle Logarithmus der positiven Zahl r ist. Der für k=0 resultierende Logarithmus heißt der $Hauptwert^{98}$), in Zeichen: $\lg x$: für positive x stimmt also derselbe mit dem gewöhnlichen reellen Logarithmus überein. Der allgemeine Logarithmus genügt wie der reelle der Funktionalgleichung:

(47)
$$\lg (xy) = \lg x + \lg y$$

und zwar in dem Sinne, daß jedem der unendlich vielen Werte der rechten Seite ein solcher der linken entspricht und umgekehrt, doch nicht immer der Summe zweier Hauptwerte rechts ein Hauptwert links 400.

Die (wegen der Willkür von k in Gl. (46)) unendlich vielen Funktionen $e^{x \lg a}$ bilden in ihrer Gesamtheit die allgemeine x^{te} Potenz von a, in Zeichen a^x ; es ist also, wenn

$$x = \xi + i\eta \quad \text{and} \quad a = A(\cos e + i\sin e) \quad (-\pi < e \le \pi)$$

$$(48) \qquad \qquad a^x = 4$$

 $A^{\xi}(\cos\xi(\alpha+2k\pi)+i\sin\xi(\alpha+2k\pi)).\ e^{-\eta(\alpha+2k\pi)}(\cos\eta\lg A+i\sin\eta\lg A).$

⁹⁸⁾ Cauchy, An., p. 314 nur für x mit positivem Realteil; ohne diese Einschränkung: Exerc. d'an. 3 (1844), p. 380; 4 (1847), p. 347; Björling, Acad. Stockh. 1845 = Arch. f. Math. 9 (1847). - Durch die Definition von Hauptwerten wird nach moderner funktionentheoretischer Auffassung ein mit einem Schnitt versehenes Blatt auf der Riemannschen Fläche der mehrdeutigen Funktion ausgezeichnet, und zwar bei den elementaren Funktionen (dem Logarithmus, der Potenz, den zyklometrischen) derjenige Zweig, der für positive oder reelle Variable schon durch die elementare Arithmetik oder Geometrie definiert ist. Die bei verschiedenen Autoren auftretenden verschiedenen Annahmen der Hauptwerte beruhen lediglich auf verschiedener Wahl jener Schnitte. In der Anal. algébr, sind zum ersten Male besondere unterscheideude Zeichen für die vielwertigen Funktionen, wie $l(x), l(a))^x, \sqrt[a]{a}$, arcsin l(x) usw. und andererseits für ihre Hauptwerte l(x), a^x $\sqrt[n]{a}$, arcsin x usw. eingeführt, die teilweise von Stolz-Gmeiner adoptiert wurden, neben der *Peanosc*hen Bezeichnungsweise: $\sqrt[n]{*}a$ und $\sqrt[n]{a}$ (Formulaire de la Rivista 4, p. 220). In der Allgem. Arithmetik schrieb Stolz in entsprechendem Sinne: Lx bzw. lx; Arctg x bzw. arctg x. Die im Text angewendete Bezeichnung Ig x ist die der Weierstraßschen Vorlesungen. Die Benennung Hauptwert (valor principalis, potentia principalis usw.) geht auf Björling zurück: Arch. f. Math. 9 (1847), z. B. p. 393, 421; ibid. 11 (1848), z. B. p. 49.

⁹⁹⁾ Über diese und weitere Beziehungen zwischen Logarithmen, insbesondere über die Gültigkeit der Funktionalgleichung $\lg x^n = n \lg x$ s. Cauchy, An., p. 328: Résumés analyt., p. 159; Björling, a. a. 0.98); Stolz, 2, p. 201; Stolz-Gmeiner. F., p. 366—370.

¹⁰⁰⁾ Euler, Berlin Hist. Ac. 5 (1749), p. 273. — Cauchy ließ zunächst (An., p. 310) nur positives a zu, später (Exerc. d'An. 3, p. 385; 4, p. 255) fand er die Eulersche Definition wieder, ungefähr gleichzeitig mit Björling (Arch. f. Math. 9

Der hieraus für k=0 resultierende Wert, welcher also mit $e^{r \lg a}$ identisch ist, heißt der Hauptwert der Potenz a^x .

Hiernach läßt sich die Abelsche Summation der Binomialreihe

(s. Nr. 5 am Schluß) so formulieren: Die Reihe $\sum_{i=0}^{\infty} m_{\nu} x^{\nu}$ hat, wenn sie konvergiert, den Hauptwert von $(1+x)^m$ zur Summe.

Die Funktionalgleichungen:

(49)
$$a^{x} \cdot a^{y} = a^{x+y}$$
$$(a^{x})^{y} = a^{x \cdot y},$$

wo beiderseits allgemeine Potenzen stehen, gelten nur insofern, als jedem Werte der rechten Seite auch ein solcher der linken entspricht, aber nicht umgekehrt. Dagegen ist in der Gleichung

$$(50) a^x \cdot b^x = (a \cdot b)^x$$

der Wertvorrat der linken Seite der nämliche, wie derjenige der rechten 101).

8. Die logarithmische Reihe. Die reellen Logarithmen positiver Zahlen wurden vor Erfindung der Infinitesimalreehnung nach Methoden berechnet, die auf eine wirkliche Herstellung der heutzutage zur Definition derselben benutzten konvergenten Folgen hinauslaufen ^{101 a}). So besteht das von Briggs und Vlack ¹⁰²) zur Konstruktion ihrer Tafeln angewandte Verfahren ¹⁰³) dem Sinne nach darin, daß durch Quadrat-

^{(1847),} p. 414. Cauchy und Björling (a. a. O.) definieren auch den zur komplexen Basis b gehörigen Logarithmus von x: $\log x = \frac{\lg x}{\lg b}$.

¹⁰¹⁾ Über die "Vollständigkeit" (d. h. Gleichheit des Wertevorrats auf der rechten und linken Seite) dieser und anderer Gleichungen zwischen Potenzen, sowie deren Gültigkeit für Hauptwerte s. Cauchy, Exerc. d'An. 3, p. 376; Björling a. a. O. ⁹⁸); Stolz, 2, p. 203 und am ausführlichsten Stolz-Gmeiner, F., p. 370—377.

¹⁰¹ a) S. z. B. Stolz, 1, p. 143; Stolz-Gmeiner, F., p. 210.

¹⁰²⁾ Arithmetica logarithmica 1624 von Briggs herausgegeben, zweite vervollständigte Ausgabe von Vlack; der Grundgedanke des Verfahrens schon im Appendix zu Nepers Tafeln (Lugduni 1620), p. 39. — Die Auffassung des Logarithmus als Umkehrung der Potenz hat sich erst im 18. Jahrhundert allmählich Bahn gebrochen; bei den ersten Berechnern von Logarithmentafeln (J. Neper. Mirifici logarithmorum canonis descriptio, Lugduni 1614 und J. Bürgi, Arithm. u. geom. Progreßtabulen, Prag 1620) sind die Logarithmen aufgefaßt als eine arithmetische Reihe, die einer geometrischen (den numeris) zugeordnet ist. Vgl. Cantor, Gesch. der Math. 2, p. 662.

¹⁰³⁾ Davon ist nur in der Anordnung verschieden das von Euler (Introd., p. 76) zitierte und an einem Beispiel erklärte Verfahren, bei welchem als Logarithmus des geometrischen Mittels zweier Zahlen das arithmetische ihrer Loga-

wurzelausziehen die Zahlen

(51)
$$\sqrt{10} = 10^{\frac{1}{2}}, \sqrt{\sqrt{10}} = 10^{\frac{1}{4}} \dots$$

berechnet wurden, und die beliebige Zahl n in der Form

$$n = 10^m \, 10^{\frac{1}{2^{n_1}}} \cdot 10^{\frac{1}{2^{n_2}}} \dots$$

dargestellt wird (was stets und nur auf eine Weise möglich ist); es folgt dann in Form eines dyadischen Bruches 103a):

(52)
$$\log n = m + \frac{1}{2^{n_1}} + \frac{1}{2^{n_2}} + \cdots$$

In ähnlicher Weise kann man $\log n$ in Form eines *Dezimalbruchs* herstellen mit Hilfe einer Tafel der Potenzen von 10 zu den Exponenten $\frac{1}{10^k}, \frac{2}{10^k}, \ldots, \frac{9}{10^k}$ $(k = 1, 2, \ldots)^{104}).$

Die Potenzreihe für $\lg (1 + \xi)$ findet sich auf Grund von Integralbetrachtungen zuerst bei *Nicolaus Mercator*¹⁰⁵), wurde aber bald auch auf elementare Weise aus der binomischen Reihe abgeleitet von $Edmond\ Halley$ ¹⁰⁶).

Diese Ableitung wurde später von $Euler^{107}$) wiedergefunden, von $Cauchy^{108}$) strenger gestaltet und ist noch heute die übliche; sie basiert auf der zunächst für reelle ξ und δ geltenden Beziehung¹⁰⁹):

(53)
$$\lim_{\delta \to 0} \frac{(1+\xi)^{\delta} - 1}{\delta} = \lg(1+\xi)$$

rithmen erscheint. Weitere historische Angaben bei J. W. L. Glaisher, Artikel "Logarithm" in der Encyclop. Brit.

103°) S. z. B. *Hočevar*, Lehrbuch der Arithmetik und Algebra für Obergymnasien (Wien und Prag 1902), p. 134.

104) Eine solche Tafel wurde nach Stolz, 1, p 339 von Kramp durch Ausziehen von zweiten und fünften Wurzeln berechnet; eine andere bei Egen, Handbuch der allgemeinen Arithmetik (Berlin 1846), 1, p. 245—249.

105) Logarithmotechnia, London 1668.

106) Phil. Trans. 1695, p. 60.

107) Introd., p. 88.

108) An., p. 169; Schlömilch, p. 33, 180. — Dem Cauchyschen Beweise fehlt zur völligen Strenge hauptsächlich der Begriff der gleichmäßigen Konvergenz. — Eine andere elementare Herleitung durch Mittelwerte nach Analogie

der Integralbeziehung $\lg (1+\xi) = \int_{-1}^{\xi} \frac{d\xi}{1+\xi}$ bei Cauchy, Résumés analyt., p. 77

und bei Schlömilch, p. 62-66. — Thomae (Elem. Theorie, p. 67) gewinnt die logarithmische Reihe aus der Funktionalgleichung (47), was nach Cantor. 3, p. 87 schon Moirre (Phil. Trans. 1699) versucht hatte.

109) Euler, Comm. Ac. Petrop. (1730—31). Beweis nach $Wulf^{(91)}$ bei Stolz-Gmeiner, F., p. 219 (vgl. auch p. 379).

wo $(1+\xi)^{\delta}$ in die binomische Reihe entwickelt und sodann in allen Gliedern $\lim \delta = 0$ gesetzt wird (was wiederum wegen der gleichmäßigen Konvergenz der Reihe für alle $\xi \mid \leq \varrho < 1$ und alle $\delta \leq \delta'$ erlaubt ist). So ergibt sich:

(54)
$$\lg(1+\xi) = \sum_{r}^{\infty} \frac{(-1)^{r+1} \xi^{r}}{r} \qquad (-1 < \xi \le 1),$$

speziell

(55)
$$\lg 2 = \sum_{1}^{\infty} \frac{(-1)^{r+1}}{\nu} \cdot$$

Eine von Cauchy ¹¹⁰) herrührende Modifikation dieser Ableitung geht von der Beziehung aus:

$$(56) \qquad \sum_{0}^{\infty} m_{\nu} \, \xi^{\nu} = (1+\xi)^{m} = e^{m \lg (1+\xi)} = \sum_{0}^{\infty} \frac{m^{\nu} \, (\lg \, (1+\xi))^{\nu}}{\nu \, !} \qquad (|\xi| < 1),$$

wobei die Vergleichung der Koeffizienten von m auf beiden Seiten von (56) unter Benutzung des Cauchyschen Doppelreihensatzes wieder die Entwicklung (54) liefert.

Die beiden Ableitungen gelten auch für komplexe x.111). Die Reihe

110) An., p. 546. Umgekehrt gewinnt Cauchy (Résumés analyt., p. 81),

indem er in dem Ausdrucke
$$(1+\hat{\xi})^m = e^{m\lg(1+\hat{\xi})} = \sum_{0}^{\infty} r \frac{m^{\nu} (\lg (1+\hat{\xi}))^{\nu}}{\nu!}$$
 die

durch Mittelwerte 108) gefundene logarithmische Reihe einsetzt und unter Anwendung seines Doppelreihensatzes nach Potenzen von ξ ordnet, auf sehr einfache Weise den binomischen Satz zunächst für reelle ξ und m, den er dann auf komplexe x ausdehnt (s. die folgende Note).

111) Bezüglich der ersten Ableitung s. Cauchy, An., p. 305. Cauchy hebt übrigens in der Anal. algébr. die Übereinstimmung der von ihm summierten

Reihe
$$\sum_{0}^{\infty} (-1)^{v+1} \frac{\varrho^{v}}{v} (\cos v \vartheta + i \sin v \vartheta)$$
 mit dem von ihm an späterer Stelle

(p. 314) definierten $\lg (1 + \varrho (\cos \vartheta + i \sin \vartheta))$ nicht ausdrücklich hervor (ebensowenig Schlömilch, s. p. 270—272). Die modifizierte Ableitung ¹¹⁶) für komplexe x bei Stolz, 2, p. 207; Stolz-Gmeiner, F. 2, p. 358. — Ohne Benutzung der binomischen Reihe folgert Cauchy (Résumés analyt., p. 163, 164) aus seinem Doppelreihensatze, daß die im reellen Gebiete für $\xi < 1$ festgestellte ¹⁰⁸) Identität

$$1 + \dot{\xi} = e^{\lg (1+\xi)} = \sum_{n=1}^{\infty} \frac{\left(\frac{\xi}{1} - \frac{\xi^2}{2} + \frac{\dot{\xi}^3}{3} - \cdots\right)^n}{\nu!}$$

auch für komplexe x gelten muß, daß also die Reihe $\sum_{i=1}^{\infty} (-1)^{r-1} \frac{x^r}{r}$ für $x_i < 1$

 $\sum_{1}^{\infty} (-1)^{r+1} \frac{x^r}{r} \text{ konvergiert im Innern und auf der Begrenzung des}$ Einheitskreises mit Ausnahme des Punktes x = -1 nach dem Hauptwerte $\log (1+x)^{112}$).

9. Die Berechnung der Logarithmen. Zur Berechnung der Logarithmen ist die Reihe (54) wegen ihrer schwachen Konvergenz und ihres beschränkten Konvergenzgebietes¹¹³) direkt nicht geeignet. Brauchbarer ist die Reihe

(57)
$$\lg \frac{a}{b} = 2 \sum_{r=1}^{\infty} \frac{1}{2r+1} \left(\frac{a-b}{a+b} \right)^{2r+1} 114 \right),$$

welche vermittelst der Beziehung

nach einem Werte der vieldeutigen Funktion $\lg{(1+x)}$ konvergiert, der aus Stetigkeitsgründen nur der Hauptwert sein kann. Das so gewonnene Resultat

verwendet er dann zur Summation der binomischen Reihe $\sum_{0}^{\infty} m_{_{Y}} x^{Y}$ (a. a. O. p. 165;

vgl. 110), wobei die Voraussetzung eines reellen m ohne weiteres durch die eines komplexen ersetzt werden könnte.

112) Über die Entstehung des allgemeinen $\lg (1+x)$ durch analytische

Fortsetzung des Funktionselements $\sum_{1}^{\infty} (-1)^{r-1} \frac{x^r}{v}$ s. z. B.: Thomae, Elem.

Theorie, p. 70 (2. Aufl., p. 100).

113) Der letztere Grund ist nicht wesentlich; theoretisch reicht die Reihe in Verbindung mit der Funktionalgleichung $\lg \xi = -\lg \frac{1}{\xi}$ zur Berechnung der Logarithmen aller positiven Zahlen aus; s. Schlömilch, p. 181; der Gedanke nach Cantor, 3, p. 62 möglicherweise, wenn auch nicht recht deutlich, schon bei Wallis, Phil. Trans. 2 (1668), p. 753-756.

114) Von J. Gregory, Exercitationes geometricae (1668) geometrisch abgeleitet; in der im Text angegebenen Weise von Halley, Phil. Trans. 1695, p. 62. Gl. (57) liefert speziell für a=b+1 eine zur sukzessiven Berechnung der Logarithmen ganzer Zahlen verwendbare Formel. Eine für die Rechnung vorteilhafte Kombination von (57) mit einer passenden Zerlegung des Numerus in ein Produkt benutzt Euler (Introd., p. 91) bei Berechnung eines Beispiels, systematisch Adams, Proceed. Roy. Soc. 27 (1878), p. 91. Auf ähnlichem Gedanken beruht das nach J. W. L. Glaisher (Art. Logarithm in Encyclop. Brit.) in England sog. Weddlesche Verfahren (The mathematician, Nov. 1845), das in seinen Hauptpunkten schon Briggs (Arithmetica logarithmica 1624) bekannt war. (Weitere Literatur in I F (Mehmke), Nr. 27, 28; s. auch Stolz, 1, p. 316—325.) Zwei elementare, nicht auf Anwendung der logarithmischen Reihe beruhende Berechnungsmethoden s. Hermann Schubert, Element. Berechnung der Logarithmen, Leipzig 1903.

$$\lg\frac{1-x}{1+x} = \lg\left(1-x\right) - \lg\left(1+x\right) = -2\sum_{0}^{\infty} \frac{1}{2\,\nu+1}\,x^{2\,\nu+1}$$

und der Substitution $\frac{1-x}{1+x} = \frac{a}{b}$ (also $x = \frac{b-a}{b+a}$) erhalten wird 115).

Die Berechnung von Logarithmen mit anderer Basis als e ist auf die der natürlichen durch die Funktionalgleichung

$$\log b = M \lg b,$$

zurückgeführt, wo

$$M = \frac{1}{\lg a} = \log e$$

der Modul des Logarithmensystems mit der Basis a heißt. Für die in der Praxis allein gebräuchlichen dekadischen oder gemeinen Logarithmen ist

(60)
$$M = \frac{1}{\lg 2 + \lg 5} = \frac{1}{2,3025850230...} = 0,4342944819...^{115a}$$

10. Die Funktionen sin x und $\cos x$. Aus den Formeln $e^{\pm \frac{\pi}{5}i} = \cos \xi + i \sin \xi^{116}$ (vgl. (45)) folgen durch Addition resp. Sub-

115) Durch andere Variabelntransformationen gelangte schon Halley zu noch rascher konvergenten Berechnungsformeln (Phil. Trans. 1695, Nr. 216), welche in der Folgezeit vielfach vermehrt wurden (s. Klügel, Math. Wörterbuch 3, Art. Logarithmus, p. 530: Geschichte der Logarithmotechnie). Beispiel: Die bei der Berechnung der Tables du Cadastre für die Primzahllogarithmen angewandte Formel:

$$\log x = \frac{1}{2} \log (x+1) + \frac{1}{2} \log (x-1) + M \sum_{n=0}^{\infty} \frac{1}{2 \nu + 1} \left(\frac{1}{2 x^2 - 1}\right)^{2 \nu + 1}$$

(Lefort, Paris Ann. de l'Observat. 4 (1858), p. 130).

115 a) Von J. C. Adams (London R. Soc. Proc. 27 [1878], p. 91) auf 260 Stellen berechnet. Vgl. auch Glaisher a. a. O. 103).

116) Die ursprüngliche *Euler*sche Ableitung dieser fundamentalen Formeln (Introd., p. 98 ff.) unterscheidet sich von der Nr. 6 angedeuteten *Cauchy*schen nur durch andere Anordnung der Grenzübergänge. *Euler* geht von dem *Moivres*chen Satze (65) in der Form:

$$\cos n\xi = \frac{(\cos \xi + i \sin \xi)^n + (\cos \xi - i \sin \xi)^n}{2}$$
$$\sin n\xi = \frac{(\cos \xi + i \sin \xi)^n - (\cos \xi - i \sin \xi)^n}{2i}$$

aus, läßt hier n unendlich werden, während $n\xi$ endlich bleibt, und benutzt wie auch Cauchy die geometrischen Beziehungen $\lim_{\xi \to 0} \frac{\sin \xi}{\xi} = \lim_{\xi \to 0} \cos \xi = 1$. (Die rein formale Übereinstimmung der beiden aus der Infinitesimalrechnung bekannten Reihenentwicklungen für $2\cos \xi$ und $e^{\xi i} - e^{-\xi i}$ war Euler schon früher Encyklop. d. math. Wissensch. II 3.

34 II C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

traktion die Beziehungen:

(61)
$$\cos \xi = \frac{e^{\xi i} + e^{-\xi i}}{2},$$

(62)
$$\sin \xi = \frac{e^{\xi i} - e^{-\xi i}}{2i},$$

und vermöge (43) die Reihenentwicklungen:

(63)
$$\cos \xi = \sum_{n=1}^{\infty} \frac{(-1)^{\nu} \xi^{2\nu}}{(2\nu)!},$$

(64)
$$\sin \xi = \sum_{0}^{\infty} r \frac{(-1)^{\nu} \xi^{2\nu+1}}{(2\nu+1)!}.$$

Diese beständig konvergenten Reihen oder auch die damit äquivalenten Ausdrücke auf den rechten Seiten von (61) und (62) liefern für komplexe x (an Stelle von ξ) die Definition 117) der Funktionen $\sin x$ und $\cos x$, die durch elementargeometrische Betrachtungen nur für reelle ξ definiert sind. Die Additions- und Periodizitätstheoreme der trigonometrischen Funktionen bleiben auch im komplexen Gebiete in Gültigkeit, insbesondere auch der Moivresche Satz 118):

(65)
$$(\cos x + i \sin x)^n = \cos nx + i \sin nx.$$

Durch Entwicklung der linken Seite von (65) bei ganzzahligem n>0 in die endliche binomische Reihe und Berücksichtigung von

aufgefallen (s. Eneström, Bibl. math. 1897, p. 48)). Ein anderer Standpunkt vermeidet aus Gründen arithmetischer Konsequenz den Gebrauch geometrischer Begriffe. Für die dann durch die Reihen (63), (64) als definiert zu betrachtenden ganzen transzendenten Funktionen kann die Übereinstimmung mit den gewöhnlichen trigonometrischen Funktionen sin ξ, cos ξ für reelle ξ nachträglich erwiesen werden, da jene Funktionen den für sin ξ, cos ξ charakteristischen Funktionalgleichungen (Additionstheoremen) genügen; s. Thomae, Elem. Theorie, p. 55 (der dem Hauptschluß zugrunde liegende Halbierungsprozeß schon bei Cauchy, An., p. 113 ff.); andere Methode bei Tannery, Introduction, p. 147—152 (2° éd. p. 312—316). — Dieselbe Problemstellung tritt auf bei den Versuchen, den Satz vom Parallelogramm der Kräfte auf einfachere Axiome zurückzuführen; s. IV 1 (Voβ), Nr. 19. — Vgl. auch die (nur skizzierte) Ableitung der trigonometrischen und zyklometrischen Reihen aus den Additionstheoremen bei Jack, Proceed. Edinb. Math. Soc. 1894—95, p. 132—135.

117) Euler, Berlin Hist. Ac. 5 (1749), p. 279; Cauchy, An., p. 311. — Über den Verlauf der Funktionen sin x und cos x s. die Lehrbücher, z. B. Thomae, Elem. Theorie, p. 61 (2. Aufl., p. 88); Burkhardt, Funktionentheorie, p. 119 (3. Aufl., p. 140).

118) Moivre, Misc. analyt. 1730; vorher (nach A. v. Braunmühl, Bibl. math. 2 (1901), p. 97—102) schon Phil. Trans. 1707 u. 1722. — Die Gültigkeit für komplexe x hebt Cauchy (Exerc. d'an. 4, p. 279) hervor.

$$(66) \qquad \qquad \sin^2 x + \cos^2 x = 1$$

ergeben sich die Formeln¹¹⁹):

a) für gerades n:

 $\sin nx =$

$$\cos x \left(n \cdot \sin x + \sum_{1}^{\frac{n}{2} - 1} (-1)^{\nu} \frac{n \cdot (n^2 - 2^2) \cdot (n^2 - 4^2) \cdot \dots \cdot (n^2 - 2^{\nu^2})}{(2\nu + 1)!} \sin^{2\nu + 1} x \right),$$

(68)
$$\cos nx = 1 + \sum_{1}^{\frac{n}{2}} (-1)^{\nu} \frac{n^{2}(n^{2}-2^{2})(n^{2}-4^{2})\cdots(n^{2}-2^{2})}{(2\nu)!} \sin^{2\nu} x;$$

b) für ungerades n:

(69)
$$\sin nx = n \sin x + \sum_{1}^{\frac{n-1}{2}} (-1)^{r} \frac{n(n^{2}-1)(n^{2}-3^{2})\cdots(n^{2}-2(r-1)^{2})}{(2(r+1)!)} \sin^{2(r+1)}x,$$

119) Schon Vieta gibt in einer um 1590 verfaßten, 1615 von Alexander Anderson mit hinzugefügten Beweisen publizierten Abhandlung die Formeln (68), (69) und an Stelle von (67), (70) analoge, nach Potenzen von cos x fortschreitende, in geometrischer Einkleidung für die Spezialwerte bis zu n=10, nebst Methode zur Berechnung der Coeffizienten (s. Vieta, Opera 1646, p. 295, 297, 299). Eine allgemeine Formel der vorliegenden Art, und zwar diejenige Reihenentwicklung, welche für ganzzahlige n sich auf die Formel (69) reduziert, zuerst wohl bei Isaac Newton (Brief an Oldenburg vom 13. Juni 1676 = Opuscula, ed. Castillioneus 1 [1744], p. 315), der bei dieser Gelegenheit von der betreffenden Formel als einer für ganzzahlige n allgemein bekannten spricht, ohne freilich die Gültigkeit der von ihm für beliebige n (mit Hülfe seiner Methode der Reihenumkehrung) abgeleiteten Formel wirklich zu beweisen (im übrigen vgl. hierzu Fußn. 121). — Euler benützt in der Introductio (Nr. 132) die Gleichung (65) lediglich zur Darstellung von $\cos nx$, $\sin nx$ durch Aggregate von der Form $\sum c_v \cdot \cos^v x \cdot \sin^{u-v} x$, während er die Formeln (67), (69) (a. a. O. Nr. 236, 238) und an Stelle von (68), (70) analoge, nach Potenzen von cos x fortschreitende (Nr. 235, 243) durch ein rekursorisches Verfahren aus dem Additionstheorem ableitet. Das nämliche Verfahren kürzer und durchsichtiger bei Lagrange (Leçons sur le calcul des fonctions, Paris 1808, Leçon XI = Oeuvres, 10, p. 113ff., welcher alle hierher gehörigen Formeln (d. h. außer (67)-(70)), auch die nach Potenzen von cos x fortschreitenden (letztere überdies auch noch nach fallenden Potenzen geordnet), zusammenstellt. Die im Texte angedeutete Herleitung findet sich bei Cauchy, An., p. 230. Andere an die Additionstheoreme von $\cos x$, $\sin x$ anknüpfende Ableitungen s. Schlömilch, p. 185; Hattendorff, p. 122.

Bei Euler (a. a. O. p. 220, ferner Nov. Comm. Ac. Petrop. 5 (1754—55), p. 164) finden sich auch die Auflösungen der Gleichungen (67) bis (70), durch welche die Potenzen der trigonometrischen Funktionen als Summen der Funktionen der Vielfachen des Arguments dargestellt werden. Die entsprechenden Formeln für beliebige reelle n bei Abel, Journ. f. Math. 1 (1826), p. 338 = Oeuvres, éd. Sylow-Lie, 1, p. 249. Vgl. im übrigen II A, 11 a.

(70)
$$\cos nx = \cos x \left(1 + \sum_{1}^{\frac{n-1}{2}} (-1)^{\nu} \frac{(n^2 - 1)(n^2 - 3^2) \cdots (n^2 - 2\nu - 1^2)}{(2\nu)!} \sin^{2\nu} x\right).$$

Da die Nullstellen der auf den rechten Seiten von (67) bis (70) stehenden Polynome in sin x bekannt sind, so ergeben sich aus diesen Formeln zugleich die Produktentwicklungen 120):

a) für gerades n:

(71)
$$\sin nx = n \cdot \sin x \cdot \cos x \prod_{1}^{\frac{n}{2}-1} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{2\nu\pi}{n}} \right),$$

(72)
$$\cos nx = \prod_{1}^{\frac{n}{2}} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{2\nu - 1}{2n} \pi} \right);$$

b) für ungerades n:

(73)
$$\sin nx = n \cdot \sin x \prod_{1}^{\frac{n-1}{2}} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{2 \nu \pi}{n}} \right).$$

(74)
$$\cos nx = \cos x \prod_{1}^{\frac{n-1}{2}} \left(1 - \frac{\sin^2 x}{\sin^2 \frac{2\nu - 1}{2n} \pi} \right).$$

Ist n eine ganz beliebige (auch komplexe) Zahl, so treten an die Stelle der Summen auf den rechten Seiten von (67) bis (70) die entsprechenden unendlichen Reihen, welche in der vermittelst der Ungleichung

$$(75) \sin x \le 1$$

definierten Umgebung des Nullpunkts (und zwar bei den aus (67) und (70) resultierenden Entwicklungen noch mit Ausschluß von $x = \pm \frac{\pi}{2}$) nach sin nx bzw. cos nx konvergieren ¹²¹) und die anderer-

¹²⁰⁾ Euler a. a. O. 119). Durch Vergleichung der symmetrischen Funktionen der Nullstellen mit den Koeffizienten der Polynome (67) bis (70) gewinnt Euler mannigfache Relationen; s. auch Cauchy, An., p. 556. Eine elegante Anwendung der Formeln (69), (73) zum Beweise des Reziprozitätsgesetzes der quadratischen Reste bei Gotthold Eisenstein, Journ. f. Math. 29 (1845), p. 122.

¹²¹⁾ Über mangelhafte Herleitungen bei Newton 119), Moivre, Johann und Jacob Bernoulli s. v. Braunmühl, Gesch. der Trigonometrie 2 (1903), p. 6. Ableitung auch bei Cauchy, An., p. 548 (und zwar nur für reelle §) unvollständig; besser bei Lagrange 119), Leçon XI, mit Hilfe der nach ihm benaunten Reihe;

seits für ganzzahlige n bei $\nu = \frac{n}{2} - 1$ bzw. $\frac{n}{2}$, $\frac{n-1}{2}$ abbrechen, also wiederum in die endlichen Summen (67)—(70) übergehen.

Für die Quotienten und reziproken Werte der Funktionen sin x und $\cos x$ existieren auch für komplexe x die zunächst im reellen Gebiet (von der Trigonometrie her) üblichen besonderen Bezeichnungen 122):

(76)
$$\frac{\sin x}{\cos x} = \operatorname{tg} x = \frac{1}{\cot x}, \ \frac{1}{\sin x} = \csc x, \ \frac{1}{\cos x} = \sec x.$$

11. Die zyklometrischen Funktionen. Genügt x der Gleichung:

(77)
$$tg \ y \equiv \frac{e^{yi} - e^{-yi}}{i \left(e^{yi} + e^{-yi} \right)} \equiv i \frac{1 - e^{2yi}}{1 + e^{2yi}} = x,$$

so heißt y ein Wert der Funktion Arcustangens von x, in Zeichen $y = \operatorname{arctg} x$; die Auflösung von (77) nach y liefert alsdann:

(78)
$$\operatorname{arctg} x = \frac{i}{2} \lg \frac{1 - xi}{1 + xi};^{123})$$

die unendlich vielen Werte der Funktion arctg x unterscheiden sich

ganz unzulänglich bei Schlömilch, p. 263; richtig, aber äußerst umständlich bei Hattendorff, p. 128, 189. Strenger und einfacher Beweis mit den Hilfsmitteln der elementaren Funktionentheorie bei Thomae, Elem. Theorie, p. 106 (2. Aufl., p. 136); Stolz 2, p. 221—224; Stolz-Gmeiner, F. 2, p. 382; andere Herleitung bei Weierstraß, Journ. f. Math. 51 (1856), p. 59 = Werke 1, p. 219.

Zur Bestimmung des Konvergenzbereiches der entstehenden unendlichen Reihen eignet sich das Weierstraβsche Kriterium (s. I G 3, Nr. 3, 4).

Andere Reihen für $\sin x$ und $\cos x$ (z. B.

$$\cos x = 1 - \frac{4\,x^2}{1 \cdot 2 \cdot \pi^2} + \frac{4\,x^2(4\,x^2 - 2^2\pi^2)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \pi^4} - \frac{4\,x^2(4\,x^2 - 2^2\pi^2)\,(4\,x^2 - 4^2\pi^2)}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot \pi^6} + \cdots)$$

bei David, Paris Soc. math. Bull. 11 (1883), p. 72.

122) Trennung des Reellen und Imaginären in $tg(\xi + i\eta)$ bei Euler, Berlin Hist. Ac. 5 (1749). Die Bezeichnungen $\sec x$, $\csc x$ sind nicht mehr recht gebräuchlich; ganz veraltet ist sinusversus x (siv x) und cosinusversus x (cosiv x) für $1 - \cos x$ resp. $1 - \sin x$. — Über die von Y. Riccati (Opuscula 1, Bononiae 1757, p. 70) eingeführten hyperbolischen Funktionen:

$$\sin h x = \frac{\sin ix}{i}, \cos h x = \cos ix$$

s. die Monographien von C. A. Laisant, Essai sur les fonctions hyperbol., Paris 1874, und S. Günther, Die Lehre von den gewöhnlichen und verallgemeinerten Hyperbelfunktionen, Halle 1881.

123) Euler, Introd., p. 105 (x reell gedacht); für komplexe x bei Cauchy, Exerc. d'an. 4, p. 271; Stolz, p. 211; Stolz-Gmeiner, F. 2, p. 365. Zerlegung von arctg x in seinen reellen und imaginären Bestandteil Euler, Berlin Hist. Ac. 5 (1749), p. 286. Der Zusammenhang zwischen arctg und lg war schon 1702 (Paris Mém. Ac. Sc.) Joh. Bernoulli bekannt (s. Opera 1, p. 393—400).

voneinander um Multipla von π ; der Wert $\frac{i}{2}$ lg $\frac{1-xi}{1+xi}$, dessen Realteil \Re also der Ungleichung

$$-\frac{\pi}{2} \le \Re < \frac{\pi}{2}$$

genügt, heißt der $Hauptwert^{124}$): arctg x und wird für alle $|x| \le 1$, ausgenommen x = +i, 125) dargestellt durch die Reihe:

(80)
$$\overline{\operatorname{arctg}} \ x = \left(\frac{i}{2} \overline{\lg} (1 - xi) - \frac{i}{2} \lg (1 + xi)\right)$$
$$= \sum_{n=1}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} {}^{126} \right) :$$

insbesondere ergibt sich für x = 1 die sog. Leibnizsche Reihe:

(81)
$$\arctan 1 = \frac{\pi}{4} = \sum_{n=1}^{\infty} \frac{(-1)^n}{2\nu + 1} \cdot {}^{127}$$

Zur Berechnung von π ist dieselbe wegen ihrer schwachen Konvergenz ungeeignet; zu rascher konvergenten Formeln gelangt man entweder durch geeignete Transformation von $(81)^{128}$), oder indem man den Bogen $\frac{\pi}{2}$ mit Hilfe des sog. Additionstheorems der Funktion aretg:

(82)
$$\operatorname{aretg} x + \operatorname{aretg} y = \operatorname{aretg} \frac{x+y}{1-xy}$$

in Teilbögen mit rationaler Tangente zerlegt, z. B. 129):

$$\operatorname{arctg} x = \left(k - \frac{1}{2}\right) \pi - \sum_{0}^{\infty} \left(-1\right)^{r} \frac{x^{-2r-1}}{2r+1} \qquad (k = 0, \pm 1, \pm 2, \cdots).$$

$$\arctan t = \frac{t}{1+t^2} \left(1 + \frac{2}{3} \frac{t^2}{1+t^2} + \frac{2 \cdot 4}{3 \cdot 5} \left(\frac{t^2}{1+t^2} \right)^2 + \cdots \right)$$

¹²⁴⁾ Cauchy, Exerc. d'an. 4, p. 271.

¹²⁵⁾ Die Punkte $x=\pm i$ sind die einzigen singulären der Funktion aretgx; um den Punkt ∞ gelten die Entwicklungen:

^{126,} Euler, Introd., p. 105 (x reell gedacht); für komplexe x z. B. Stolz, p. 211: Stolz-Gmeiner, F. 2, p. 364. — Andere elementare Ableitungen im reellen Gebiet: Cauchy, An., p. 307 ebenfalls aus der logarithmischen Reihe: Schlömilch, p. 70 durch Mittelwerte; Hattendorff, p. 148 aus der in Fußnote 129 zitierten Reihe.

¹²⁷⁾ Brief an Oldenburg vom 27. Aug. 1786, Acta erudit. 1682, p. 11; schon vorher (1671) sind die Reihen (80), (81) von J. Gregory gefunden (Commerc. epist., p. 78, 79).

¹²⁸⁾ S. IA3, 37, besonders Fußnote 266.

¹²⁹⁾ J. Machin in Jones' Synopsis 1706. Ähnliche Zerlegungen mehrfach bei Euler, z. B. die besonders mit Hilfe der Reihe

(83)
$$\frac{\pi}{4} = 4 \overline{\operatorname{arctg}} \frac{1}{5} - \overline{\operatorname{arctg}} \frac{1}{239},$$

und dann die Reihenentwickelung (80) benützt.

Die Auflösung der Gleichung

(84)
$$\sin y = \frac{e^{yi} - e^{-yi}}{2i} = x$$

nach y ergibt:

(85)
$$y = \arcsin x = \frac{1}{i} \lg (xi \pm \sqrt{1 - x^2})^{130}$$

Bedeutet \overline{y} irgend einen bestimmten dieser unendlich vielen Werte, so teilt sich die Gesamtheit in die zwei Gruppen:

$$y = \bar{y} \pm 2n\pi$$
 und $\pi - y$.

Der Hauptwert 131) arcsin & wird durch die Vorschrift:

[Ableitung aus (67] durch Grenzübergang n=0 und Substitution $t=\operatorname{tg} x$ z. B. bei Schlömilch, p. 266; Hattendorff, p. 144] sehr bequem auszuwertende Formel

$$\pi = 20 \overline{\operatorname{arctg}} \, \frac{1}{7} + 8 \overline{\operatorname{arctg}} \, \frac{3}{79}$$

(Nova Acta Ac. Petrop. 11 (1793), p. 133 in einer Arbeit von 1779, vorher (1776) schon bei Ch. Hutton, Phil. Trans. 476). Unbegrenzte Fortsetzung dieses Zerlegungsverfahrens: Euler, Comm. Ac. Petrop. 9 (1727), p. 100; Nov. Comm. Ac. Petrop. 9 (1762—63), p. 40—52. Die vollständige Lösung der Gleichung

$$m_1 \operatorname{arctg} \frac{1}{x_1} + m_2 \operatorname{arctg} \frac{1}{x_2} = k \cdot \frac{\pi}{4}$$

in ganzen Zahlen m_1 , m_2 , x_1 , x_2 , k gibt C. Störmer, Christ. Vidensskabsselskabsskrift. 1895 und Paris Soc. math. Bull. 27 (1899), p. 160; er untersucht auch den allgemeineren Fall m_1 arctg $\frac{1}{x_1} + m_2$ arctg $\frac{1}{x_2} + \cdots + m_n$ arctg $\frac{1}{x_n} = k \cdot \frac{\pi}{4}$, Paris C. R. 1896, Nr. 4, 5; Arch. for Math. og Nat. 1896.

Die Berechnung der Zahl π wurde so auf immer mehr Dezimalstellen hinausgeführt (schließlich über 700). S. darüber die Schrift von Rudio: Archimedes, Huygens, Lambert, Legendre (Lpzg. 1892). Über die Beweise der Irrationalität und Transzendenz von π s. I C 3, 7 und Fußnote 96 des vorliegenden Artikels. Vgl. auch F. Klein, Vorträge über Elementargeometrie (Lpzg. 1896), p. 53.

130) Trennung des reellen und imaginüren Teils von arcsin x: Euler, Berlin Hist. Ac. 5 (1749), p. 283; Cauchy, An., p. 325. Formel (85) z. B. bei Cauchy, Exerc. d'an. 4, p. 281; Stolz, 2, p. 213.

131) Cauchy unter gesonderter Betrachtung des reellen und imaginären Bestandteils: An., p. 325, 327 und präziser Exerc. d'an. 3, p. 385 (Cauchy führt die Untersuchung aus an der Funktion $\arccos x = \frac{\pi}{2} - \arcsin x$ für allgemeinen und Hauptwert). — Stolz, 2, p. 213 und Stolz-Gmeiner, F. 2, p. 370 unterscheiden in jeder der obigen zwei Wertgruppen eigene Hauptwerte, deren Realteile dann zwischen — π und π liegen.

40 H C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

$$(86) -\frac{\pi}{2} < \Re(\arcsin x) \le \frac{\pi}{2}$$

ausgesondert, wobei an den Grenzen das Vorzeichen des imaginären Teils von $\arcsin x$ noch willkürlich 132) festzusetzen ist.

Durch Vergleichung der Koeffizienten von n auf beiden Seiten von (69) gelangt Cauchy zu der für alle $|x| \le 1$ gültigen Reihe¹³³):

(87)
$$\overline{\arcsin} x = x + \sum_{1}^{\infty} \frac{1 \cdot 3 \cdots (2r-1)}{2 \cdot 4 \cdots 2r} \frac{x^{2r+1}}{2r+1}$$

Hieraus speziell für $x = \pm 1$:

$$\pm \frac{\pi}{2} = \pm \left(1 + \sum_{1}^{\infty} \frac{1 \cdot 3 \cdot \cdot \cdot (2 \cdot v - 1)}{2 \cdot 4 \cdot \cdot \cdot 2 \cdot v} \cdot \frac{1}{2 \cdot v + 1}\right) \cdot {}^{134}\right)$$

12. Unendliche Produkte für $\sin x$ und $\cos x$. Die Produktentwicklung

(88)
$$\frac{e^x + e^{-x}}{2} = x \int_{1}^{\infty} \prod_{1} \left(1 + \frac{x^2}{r^2 \pi^2}\right)$$

findet Euler 135), indem er den Ausdruck

$$\frac{\left(1+\frac{x}{n}\right)^n-\left(1-\frac{x}{n}\right)^n}{x}$$

132) Z. B. positiv: Cauchy, Exerc. d'an. 3, p. 385. Der so definierte Hauptwert entspricht dann dem positiven Zeichen vor dem Hauptwerte der Quadratwurzel und dem Hauptwerte des lg in (85), Cauchy, Exerc. d'an. 4, p. 281.

133) An., p. 549 (daselbst durch Vergleichung der höheren Potenzen von n auch Reihen für $(\arcsin x)^2$ usw.; die Reihe für $(\arcsin x)^2$ hatte Euler schon 1737 auf anderem Wege gefunden: s. G. Eneström, Bibl. math. (3) 5 [1904], p. 270: P. Stäckel, ebendas. 8 [1907], p. 45). Der Cauchysche Beweis ist für reelle \S gedacht, läßt sich aber ohne weiteres auf komplexe x übertragen. s. Thomae, p. 106; Stolz, 2, p. 224. Andere Herleitung von (87) aus der arctg-Reihe bei Cauchy (An., p. 545 im reellen Gebiete), ferner durch elementare Darstellung der in der Infinitesimalrechnung üblichen Methoden bei Schlömilch, p. 220 Ersetzung von

$$\int_{0}^{\xi} \frac{d\xi}{\sqrt{1-\xi^{2}}}$$
 durch einen Mittelwert) und $Stolz$, 2, p. 216 (Benützung der Rela-

tion D_x arcsin $x=\frac{1}{\sqrt{1-x^2}}$) — Beschreibung der *Riemanns*chen Fläche des arcsin bei *Thomae*, Elem. Theorie, p. 104—106 (nur in der 1. Aufl.; vgl. 2. Aufl., p. 135).

134) Die Konvergenz dieser Reihe wird am einfachsten mit Hilfe des Raabeschen Kriteriums (s. I A 3, 27) erkannt.

135) Introd. p. 118; strenge Fassung des *Eulers*chen Beweises bei *Stolz 2*, p. 322 angedeutet, ausführlicher bei *Stolz-Gmeiner*, F. 2, p. 439. (Vgl. auch *L'Huilier*, Princ. calc. diff. et int., p. 141.)

in Faktoren zweiten Grades von der Form:

$$1 + \frac{x^2}{n^2} \frac{1 + \cos\frac{2k\pi}{n}}{1 - \cos\frac{2k\pi}{n}} \left(= 1 + \frac{x^2}{\left(n \operatorname{tg}\frac{k\pi}{n}\right)^2} \right) \quad (k = 1, 2, \ldots)$$

zerlegt und dann zur Grenze $n=\infty$ übergeht. Die Substitution von ix anstelle von x ergibt sodann

(89)
$$\sin x = x \prod_{1}^{\infty} \left(1 - \frac{x^2}{v^2 \pi^2}\right) = x \prod_{1}^{\infty} \left(1 + \frac{x}{v \pi}\right) \left(1 - \frac{x}{v \pi}\right).$$

In ähnlicher Weise gelangt Euler zu

(90)
$$\cos x = \int_{0}^{\infty} \left(1 - \frac{4x^{2}}{(2\nu + 1)^{2}\pi^{2}}\right)^{136}.$$

Cauchy¹³⁷) geht bei seiner von den meisten Lehrbüchern acceptierten Ableitung von dem endlichen Produkte (73) für sin nx aus und läßt daselbst n unendlich werden, während nx endlich bleibt.

Aus (89) folgt speziell für $x = \frac{\pi}{2}$ die Wallissche 138) Formel:

(91)
$$\frac{\pi}{2} = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots,$$

136) Introd., p. 131 f. Daselbst auch in ähnlicher Weise abgeleitet Produkte für $ae^x + be^{-x}$ u. a. Unvollkommnere Herleitung des sin- und cos-Produkts sowie der Relationen (93) schon Comm. Ac. Petrop. 7 (1734), p. 123-134.

137) An., p. 565; vereinfacht von Schlömilch, p. 204. (Durch Trennung des Reellen und Imaginären gewinnt Cauchy (An. p. 573; Schlömilch, p. 274—77) weitere Produkt- und Reihenformeln.) Noch elementarere Herleitung von Schröter (Zeitschr. Math. Phys. 13 (1868), p. 257) durch iterierte Anwendung der Formel:

$$\sin x = 2 \sin \frac{x}{2} \sin \frac{x + \pi}{2},$$

Nach der Weierstraßschen Theorie der Zerlegung ganzer Funktionen in ihre Primfaktoren (s. II B 1, 31) ergibt sich das sin-Produkt aus den bekannten Nullstellen der Funktion sin x (vgl. Euler, Misc. Berol. 7 (1748); Euler zeigt bereits, daß außer $n\pi$ keine andern Nullstellen existieren) in der Form:

$$\sin x = e^{g\left(x\right)} \cdot x \overline{\prod_{r=\infty}^{+\infty}}' \left(1 - \frac{x}{r\pi}\right) e^{\frac{x}{r}} = e^{g\left(x\right)} \cdot x \overline{\prod_{1}^{\infty}} \left(1 - \frac{x^{2}}{r^{2}\pi^{2}}\right),$$

worauf nur noch der Nachweis $e^{g(x)} \equiv 1$ durch zweimalige Ableitung (Weierstraß; vgl. Frenzel, Zeitschr. Math. Phys. 24 (1879), p. 325) oder auf Grund eines allgemeinen Hadamardschen Satzes (Journ. de math. (4) 9 [1893], p. 209) über das infinitäre Verhalten ganzer Funktionen (vgl. z. B. Émile Borel, Leçons sur les fonctions entières, p. 82; A. Pringsheim, Math. Ann. 58 (1904), p. 328) zu erbringen ist.

138) Arithmetica infinit. 1659.

42 II C 1. Alfred Pringsheim und Georg Faber. Algebraische Analysis.

welche u. a. zur elementaren Herleitung der Stirlingschen 139) Formel:

(92)
$$n! = \sqrt{2\pi n} \cdot n^n e^{-n + \frac{\vartheta}{12n}} \quad (0 < \vartheta < 1)$$
 dienen kann ¹⁴⁰).

Die Entwicklung der rechten Seite von (89) in eine Potenzreihe und die Vergleichung der Koeffizienten derselben mit denjenigen von (64) führt *Euler* auf die Relationen: ¹⁴¹

(93)
$$\sum_{1}^{\infty} \frac{1}{v^{2}} = \frac{\pi^{2}}{6},$$

$$\sum_{1}^{\infty} \frac{1}{v^{4}} = \frac{\pi^{4}}{90},$$

allgemein ist

(94)
$$\sum_{1}^{\infty} \frac{1}{v^{2k}} = \frac{2^{2k-1}B_k}{(2k)!} \pi^{2k},$$

wo B_k die k^{te} Bernoullische Zahl bedeutet ¹⁴²).

13. Partialbruchreihen für tg x, cot x, cosec x, sec x. Aus (90) findet $Euler^{143}$) durch Substitution von x - y anstelle von x

139) Methodus differentialis, London 1730.

140) J. A. Serret, Cours d'algèbre (5. Aufl.) 2, p. 219 (deutsche Übers. v. Wertheim 2, p. 178); noch einfacher bei Cesàro, Anal. algebr., p. 271, 480.

141) Introd. p. 136; vorher (p. 129) zeigt Euler ganz allgemein: Ist

$$\prod_{1}^{\infty} (1 + \alpha_{\nu} x) = \sum_{1}^{\infty} c_{1} x^{\nu}.$$

so gelten genau wie im Falle endlicher Produkte und Reihen die Beziehungen:

$$\sum_{i=1}^{\infty} \alpha_{i} = c_{1}, \quad \sum_{i=1}^{\infty} \alpha_{i}^{2} = c_{1}^{2} - 2c_{2} \text{ usw.}$$

Zur Vervollständigung der Eulerschen formalen Betrachtungsweise ist die Voraussetzung der absoluten Konvergenz des Produktes hinreichend (nicht notwendig). Vgl. im übrigen I A 3, 43. Über die Entstehungsgeschichte der Formeln (93) und verwandte Eulersche Untersuchungen s. P. Stäckel, Bibl. math. (3) 8 (1907), p. 37—60.

142) Nüheres über die *Bernoullis*chen Zahlen s. II A 3, 18; vgl. auch im Texte 14. — Produktdarstellungen des log, arcsin usw. bei *L. Seidel*, J. f. Math. 73 (1871), p. 273.

143) Introd., p. 126, 134; einwandfreie Darstellung bei Stolz, 2, p. 252, 323; Stolz-Gmeiner, F., p. 444; ähnliche Ableitung bei Schlömilch, p. 206—209. Die Vergleichung der höheren Potenzen von y (Euler a. a. 0.) liefert Partialbruchreihen für ($tg \ x$)² usw. und durch Spezialisierung die Summation violer merkwürdiger Reihen, darunter die im Texte (106) erwähnten.

und Division mit cos x:

und sodann durch Entwicklung nach Potenzen von y und Vergleichung der Koeffizienten von y die Partialbruchreihe:

(96)
$$\operatorname{tg} x = -2 \sum_{0}^{\infty} \left(\frac{1}{2x + (2r+1)\pi} + \frac{1}{2x - (2\nu+1)\pi} \right)$$

$$= \sum_{1}^{\infty} \frac{8x}{(2\nu-1)^2\pi^2 - 4x^2}.$$

Auf ähnliche Weise oder einfacher durch Substitution von $\frac{\pi}{2}$ — x für x folgt:

(97)
$$\cot x = \frac{1}{x} + \sum_{1}^{\infty} \left(\frac{1}{x - \nu \pi} + \frac{1}{x + \nu \pi} \right) = \frac{1}{x} - \sum_{1}^{\infty} \frac{2x}{\nu^2 \pi^2 - x^2},$$

ferner wegen $\cot \frac{x}{2} - \cot x = \csc x$:

(98)
$$\cos x = \frac{1}{x} + \sum_{1}^{\infty} \left(\frac{(-1)^{r}}{x - r\pi} + \frac{(-1)^{r}}{x + r\pi} \right)$$
$$= \frac{1}{x} + \sum_{1}^{\infty} (-1)^{r-1} \frac{2x}{r^{2} - x^{2}}$$

und hieraus durch Substitution von $\frac{\pi}{2}$ — x für x:

(99)
$$\sec x = 2 \sum_{1}^{\infty} v \left(\frac{(-1)^{r-1}}{(2r-1)\pi - 2x} + \frac{(-1)^{r-1}}{(2r-1)\pi + 2x} \right)$$
$$= \sum_{1}^{\infty} v (-1)^{r-1} \frac{4(2\nu - 1)\pi}{(2r-1)^2 \pi^2 - 4x^2}.$$

Jede dieser Partialbruchreihen konvergiert gleichmüßig in jedem endlichen, von Nullstellen der Nenner freien, abgeschlossenen Bereich der komplexen Ebene; unbedingte Konvergenz findet aber immer nur bei paarweiser Zusammenfassung der Partialbrüche statt 144).

¹⁴⁴⁾ Alle diese Reihen lassen sich durch Addition von Konstanten in

14. Potenzreihen für tg x, cot x, cosec x, sec x; $\lg \frac{\sin x}{x}$, $\lg \cos x$. 145) Die in Nr. 19 eingeführten Bernoullischen Zahlen treten auf Grund der Gleichung (94) wieder auf als Reihenkoeffizienten in den aus den Partialbruchreihen (96), (97), (98) abzuleitenden Potenzreihen für tg x, cot x, cosec x, 146) sowie in den durch gliedweise Logarithmierung aus den unendlichen Produkten (89), (90) folgenden Potenzreihen für $\lg \frac{\sin x}{x}$, $\lg \cos x$: 147)

(100)
$$\operatorname{tg} x = \sum_{r}^{\infty} \frac{2^{2r} (2^{2r} - 1)}{(2r)!} B_r x^{2r-1} (|x| < \frac{\pi}{2}),$$

(102)
$$x \operatorname{cosec} x = 1 + 2 \sum_{1}^{\infty} \frac{(2^{2r} - 1)}{(2\nu)!} B_{\nu} x^{2r} (|x| < \pi),$$

(103)
$$\lg \frac{\sin x}{x} = -\sum_{r=1}^{\infty} \frac{1}{r} \frac{2^{2r-1}}{(2r)!} B_r x^{2r} \qquad (|x| < \pi),$$

(104)
$$\lg \cos x = -\sum_{1}^{\infty} \frac{(2^{2r} - 1) 2^{2r - 1}}{(2r)! r} B_r x^{2r} \qquad (|x| < \frac{\pi}{2}).$$

Die II A 3, 18 erwähnten Rekursionsformeln für die Bernoullischen Zahlen ergeben sich großenteils durch "Koeffizientenvergleichung" (vgl. Nr. 3) nach Einsetzen einerseits der Entwicklungen (100) bis (104), andererseits der Reihen für sin x und $\cos x$ in die mannigfachen Relationen, welche eine trigonometrische Funktion als Produkt zweier anderen darzustellen erlauben.

Zur Einführung einer verwandten Gattung ganzer Zahlen — Sekantenkoeffizienten oder Eulersche Zahlen $^{148})$ E_r hat die Reihe

absolut konvergente mit linearen Partialbrüchen verwandeln (besonderer Fall des Mittag-Lefflerschen Theorems; s. II B 1, 32).

Andere elementare Ableitungen der obigen Partialbruchreihen (z. T. nur für reelle x) bei Cauchy, An., p. 573; Schröter, Zeitsehr. Math. Phys. 13 (1868), p. 257; Thomae, Elem. Theorie, p. 90; Hattendorff, Algebr. Anal., p. 256; Osgood, Lehrb. der Funktionentheorie 1, p. 519.

145) Die meisten dieser Reihen (wenigstens die ersten Koeffizienten) finden sich schon bei J. Gregory (s. v. Braunmühl, Gesch. d. Trigon. 2, p. 63).

146) Euler, Introd., p. 160.

147) ibid. p. 152.

148) Die zweite Benennung von Raabe, J. f. Math. 42 (1851), p. 366. — Über

(105)
$$\sec x = \sum_{0}^{\infty} \frac{E_{r}}{(2r)!} x^{2r} \qquad \left(|x| < \frac{\pi}{2}\right)$$

Anlaß gegeben; Rekursionsformeln zur Berechnung der E_r liefert alsdann die Beziehung sec $x \cdot \cos x = 1$. Da sich die Reihe (105) andererseits auch durch Entwicklung der rechten Seite von (99) nach Potenzen von x ergeben muß, so gelten die Beziehungen

(106)
$$\sum_{\nu=1}^{\infty} \frac{(-1)^{\nu-1}}{(2\nu-1)^{2k+1}} = \frac{\pi^{2k+1}}{2^{2k+2}} \frac{E_k}{(2k)!} \cdot {}^{149})$$

Die Potenzreihen (100), (101), (102), (105) divergieren, wie ihre Herleitung aus den Partialbruchreihen unmittelbar erkennen läßt, in allen Punkten ihres Konvergenzkreises, während die Reihen (103), (104) für alle nicht reellen $|x| = \pi$ bzw. $|x| = \frac{\pi}{2}$ noch konvergieren.

15. Die hypergeometrische Reihe. Fast alle in der algebraischen Analysis auftretenden Potenzreihen erweisen sich als Spezial- oder Grenzfälle der sog. $Gau\beta$ schen 150) hypergeometrischen Reihe:

(107)
$$F(\alpha \beta \gamma x) = 1 + \frac{\alpha \cdot \beta}{1 \cdot \gamma} x + \frac{\alpha(\alpha + 1) \beta(\beta + 1)}{1 \cdot 2 \cdot \gamma(\gamma + 1)} x^2 + \cdots, {}^{151}$$

die Eulerschen Zahlen und ihren Zusammenhang mit den Bernoullischen vgl. II A 3, 18 und insbesondre Saalschütz, Vorles. über die Bernoullischen Zahlen, Berlin 1893.

- 149) Zuerst von Euler in anderem Zusammenhang bewiesen; s. Fußn 143.
- 150) Disquis. gen. circa seriem infinitam, 1812 (= Werke 3, p. 134, deutsche Ausgabe von Heinrich Simon, Berlin 1888). Der Name "hyperg. Reihe" in etwas anderer Bedeutung rührt von Wallis her (Arithmetica infinitorum = Opera math. 1, Oxoniae 1645, p. 466); die Reihe selbst findet sich schon bei Euler (Nov. Act. Petrop. 12 (1794), p. 58), der auch die Differentialgleichung zweiter Ordnung der hypergeometrischen Funktion und daraus die Transformation $F(\alpha, \beta, \gamma, x) = (1-x)^{\gamma-\alpha-\beta} F(\gamma-\alpha, \gamma-\beta, \gamma, x)$ ableitet und zum Schluß eine Anwendung auf die Darstellung gewisser in der Theorie der Anziehung vorkommender Fourierscher Reihenkoeffizienten macht. Sonstige histor. Bemerkungen s. L. Jecklin, Hist.-krit. Untersuchung über die Theorie der hypergeom. Reihe, Dissert. Bern, 1901.
- 151) Die Frage nach der Konvergenz der hypergeometrischen Reihe wurde im reellen Gebiete von $Gau\beta^{150}$) mit Hilfe besonderer nach ihm benannter Kriterien (s. I A 3, 22 und Fußn. 190), im komplexen von $Weierstra\beta$ (s. ebendas. Fußn. 161 und I G 3, 3) erledigt: Der Einheitskreis ist Konvergenzkreis; auf demselben bestehen die drei Möglichkeiten: 1) absolute Konvergenz für alle |x|=1, wenn $\Re(\gamma-\alpha-\beta)>1$; 2) bedingte Konvergenz für alle |x|=1 außer x=1, wenn $1\geq\Re(\gamma-\alpha-\beta)>0$; 3) Divergenz, wenn $0>\Re(\gamma-\alpha-\beta)$, (s. z. B. Pringsheim, Archiv Math. 3 (4) (1902), p. 19). Die Annahme: $\beta=\gamma$, $\alpha=-m$, $\alpha=-y$ liefert die betr. Resultate für die binomische Reihe. Bei $Gau\beta$ (Werke

die dann auch besonders geeignet ist, um für diese Funktionen konvergente Kettenbrüche 152) zu gewinnen. In letzteren tritt der arithmetische Charakter der elementaren Funktionen, insbesondere die Irrationalität von e^x und tg x bei rationalem x 153) deutlicher hervor als in den Reihen.

Die Theorie der hypergeometrischen Reihe überschreitet indes die Hilfsmittel der algebraischen Analysis und gehört ihrer Natur nach der eigentlichen Funktionentheorie¹⁵⁴) und der Lehre von den linearen Differentialgleichungen an.

(Abgeschlossen im November 1908.)

^{3,} p. 127) sind 23 Darstellungen bekannter Funktionen durch die hypergeometrische Reihe angegeben.

¹⁵²⁾ Über die Umformung der hypergeometrischen Reihe in einen Kettenbruch und die Konvergenz des letzteren s. I A 3 55. — Einen elementaren Konvergenzbeweis gab neuerdings van Vleck, Ann. of math. (2) 3, 1901; Am. Soc. Transact. 5 (1904), p. 253.

¹⁵³⁾ s. IA3 9 u. 55 u. IC3 7, p. 669.

¹⁵⁴⁾ Eine Behandlung der hypergeometrischen Reihe mit den Hilfsmitteln der elementaren Funktionenlehre gibt *Thomae*, Zeitschr. Math. Phys. 26 (1881), p. 314; 27 (1882), p. 41.

II C2. NUMERISCHE UND GRAPHISCHE QUADRA-TUR UND INTEGRATION GEWÖHNLICHER UND PARTIELLER DIFFERENTIALGLEICHUNGEN.

Von

FR. A. WILLERS C. RUNGE UND

GÖTTINGEN.

CHARLOTTENBURG.

Inhaltsübersicht.

I. Numerische und graphische Quadratur.

- 1. Allgemeines.
- 2. Methoden, die gegebene Abszissen verwenden.
 - a) Allgemeines.
 - b) Methode von Newton-Cotes.
 - c) Methode von Mac Laurin.
- 3. Methode von Gauß.
 - a) Bestimmung der Abszissen.
 - b) Die Koeffizienten.
 - c) Fehlerabschätzung.
- 4. Spezielle Fälle der Gaußschen Formel.
 - a) $\varphi(x) = 1$.

 - b) $\varphi(x) = (1 x)^{\lambda} (1 + x)^{\alpha}$. c) $\varphi(x) = \frac{1}{\sqrt{1 x^2}}$
 - d) $\varphi(x) = \sqrt{1 x^2}$.
 - e) $\varphi(x) = \sqrt{\frac{1-x}{1+x}}$.
 - f) $\varphi(x) = \sqrt{x(x-\alpha)(x-\beta)}$.
 - $g(x) = e^{-x^2}$
 - h) $\varphi(x) = e^{-x}$.
- 5. Verallgemeinerung der Methode von Gauß.
 - a) Formeln von August.
 - b) Verallgemeinerung von Christoffel.
 - c) Mehrfache Integrale.
- 6. Methode von Massau.
- 7. Methoden, bei denen die Koeffizienten gegeben sind.
 - a) Allgemeines.
 - b) $\varphi(x)$ ist eine gerade Funktion.
 - c) $\varphi(x)$ ist eine ungerade Funktion.

- 48 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.
 - 8. Formeln, die durch Kombination entstehen.
 - 9. Die Eulersche Formel.
- 10. Formeln der Differenzenrechnung.
- 11. Annäherung durch mehrere Parabeln.
- 12. Methoden der graphischen Quadratur.
 - a) Allgemeines.
 - b) Bestimmung der mittleren Ordinaten und Abszissen.
 - c) Einzeichnen der Integralkurve.
 - d) Erweiterungen und Ergänzungen.
 - e) Einige Anwendungen.

13. Kubatur.

- a Kubatur durch eine Quadratur.
- b) Allgemeine Betrachtungen.
- c) Rechteckige und kreisförmige Begrenzung.
- d) Zerlegung in Teilgebiete.
- e) Graphische Methoden.

14. Differentiation.

- a) Numerische Methoden.
- b) Graphische Methoden.

II. Numerische und graphische Integration gewöhnlicher Differentialgleichungen.

- 15. Graphische Methoden.
 - a) Methode von Czuber.
 - b) Methode der Isoklinen.
 - c) Methode der Krümmungsradien.
- 16. Numerische Methoden.
 - a) Darstellung um einen Punkt.
 - b) Methoden von Runge-Heun-Kutta.
 - c) Methoden der Differenzenrechnung.
- 17. Asymptotische Integration.
- 18. Methode der sukzessiven Approximation.
 - a) Graphische Methode von Runge.
 - b) Numerische Methoden von Cotton, Bärwald usw.
 - c) Methoden der Himmelsmechanik.

III. Graphische und numerische Integration partieller Differentialgleichungen.

- 19. Methoden, welche die reellen Charakteristiken bestimmen.
 - a) Gleichungen erster Ordnung.
 - b) Gleichungen zweiter Ordnung.
 - c) Systeme simultaner Gleichungen.
- Graphische Methoden zur Integration der Gleichungen mit imaginären Charakteristiken.
 - a) Methode von Maxwell, angenäherte Erfüllung der Randbedingungen.
 - b) Methoden, die der Differentialgleichung in endlichen Stücken möglichst genügen und eine Randbedingung streng erfüllen.

Literatur.

- e) Methoden, die durch endliche Stücke approximieren und alle Randbedingungen streng erfüllen.
- d) Infinitesimal approximierende Methoden mit strenger Erfüllung der Randbedingungen.
- 21. Numerische Methoden.
 - a) Übertragung der Methoden von Runge-Heun-Kutta.
 - b) Ersetzung der Differentialgleichung durch eine Differenzengleichung.
 - c) Methode von Rayleigh-Ritz.
- 22. Experimentelle Methoden.

Literatur.

Da die hier in Betracht kommende Literatur vielfach in technischen und anderen Abhandlungen zerstreut und daher schwer auffindbar ist, werden sicher die Literaturangaben nicht vollständig sein; doch hoffen wir Wesentliches nicht übersehen zu haben. Die einzelne Gegenstände betreffenden Abhandlungen sind in den Fußnoten zitiert; hier sind nur zusammenfassende Darstellungen genannt. Bailaud, Mémoires de l'Académie des Sciences de Toulouse (8) 5 (1883), p.161—190.

— Annales de l'observatoire de Toulouse 2 (1887), p. 1—36. Berger, Nova Acta Regiae Societatis Scientiarum Upsaliensis (3) 16 (1893).

Bertrand, Traité de calcul différentiel et de calcul intégral II, Paris 1870, p. 331—52. Biermann, Vorlesungen über mathematische Näherungsmethoden, Braunschweig 1905.

Boole, A treatise on the calculus of finite differences, London 1880, Kap. III, p. 46-61.

Bruns, Grundlinien des wissenschaftlichen Rechnens, Leipzig 1903.

Dirksen, Abhandl. d. kgl. Akad. d. Wiss. zu Berlin aus dem Jahre 1831, Berlin 1832, p. 117—159.

Heine, Handbuch der Kugelfunktionen 2, Berlin 1881.

Klügel, Mathematisches Wörterbuch II 1805, Integralgleichungen, p. 919-922, IV. 1823, Quadratur, p. 132-165.

Kriloff, Vorlesungen über angenäherte Rechnungen, Petersburg 1911.

Mansion, Mathesis 1 (1881), Supplement, p. 1-62.

Massau, Mémoire sur l'integration graphique et ses applications, Paris-Liège 1885.

- Appendice au mémoire ..., Paris 1890.
- Mémoire sur l'intégration graphique des équations aux derivées partielles, Gand 1900—1903.

Markoff, Differenzenrechnung. Petersburg 1891, (deutsch von Prümm u. Friesendorff) Leipzig 1896.

Merrifield, Report on the Present State of Knowledge of the Application of Quadratures and Interpolation to Actual Data. Report of the 50. meeting of the British Association for the Advancement of Science, London 1880.

de Montessus et d'Adhemar, Calcul numérique, Paris 1911.

Moors, Valeur approximative d'une intégrale définie, Paris 1905.

Nehls, Über graphische Integration und ihre Anwendung in der graphischen Statik, Leipzig 1885.

D'Ocagne, Calcul graphique et nomographie, Paris 1908.

Pascal, Calcolo delle variazione e calcolo delle differenze finite, Milano 1897.

Possé, Sur quelques applications des fractions continues algébriques, Petersburg 1886.

Radau. Journal de Mathématique (3) 6 (1880), p. 283-336.

- Études sur les formules d'interpolation, Paris 1891, Teil IV, p. 84-96.

Runge, Graphical methods. A course of lectures delivered in Columbia University, New York 1912. Erscheint Ende 1914 in einer vom Autor bearbeiteten deutschen Ausgabe im Verlage von B. G. Teubner, Leipzig.

- Numerisches Rechnen. Autographierte Vorlesung, Göttingen 1912/13.

v. Sanden, Praktische Analysis (Handbuch der angewandten Mathematik 1), Leipzig 1914.

Schlömilch, Theorie der Summen und Differenzen, Halle 1848, Teil II, § 11—13. Sonine, Warschauer Nachrichten 1887, p. 1—76.

Thiele. Interpolationsrechnung, Leipzig 1909, § 10, 11.

Todhunter, An elementary Treatise on Laplace's Functions. Lame's Functions and Bessel's Functions, London 1875, p. 96—109.

Vahlen, Konstruktionen und Approximationen, Leipzig 1911.

I. Numerische und graphische Quadratur.

1. Allgemeines (vgl. II A 2 (A. Voss) Differential- und Integralrechnung Nr. 50—55). Bei der numerischen Quadratur handelt es sich darum, den Flächeninhalt eines durch eine Kurve y = f(x), zwei Ordinaten und die Abszissenachse begrenzten Gebietes als Mittelwert einer endlichen Anzahl n von mit entsprechenden Gewichten A_i genommenen Ordinaten $f(x_i)$ auszudrücken. Allgemeiner heißt das, man soll den Wert eines bestimmten Integrales

(1)
$$I = \int_{a}^{a} f(x) \varphi(x) dx$$

aus den Werten von f(x) für eine bestimmte endliche Anzahl n von Abszissen x_i und aus einer gleichen Anzahl von Koeffizienten A_i möglichst genau durch einen Ausdruck der Form

(2)
$$A = [A_1 f(x_1) + A_2 f(x_2) + A_3 f(x_3) + \dots + A_n f(x_n)]$$

darstellen. Der reguläre Fall ist $\varphi(x)=1$; aber es soll hier gleich der allgemeinere ins Auge gefaßt werden. Dabei ist vorausgesetzt, daß sich f(x) für $a \le x \le \beta$ mit ausreichender Genauigkeit durch eine ganze rationale Funktion hinreichend hohen Grades m, der erheblich größer sein kann als n

$$c_0 + c_1 x + c_2 x^2 + c_3 x^3 \dots c_{m-1} x^{m-1} + c_m x^m$$

ersetzen läßt, während $\varphi(x)$ nur integrierbar zu sein braucht, also z. B. eine endliche Anzahl von Unstetigkeitsstellen haben kann. Für die Zahl n und die Lage x_i der zu benutzenden Ordinaten wird vor allem der Um-

stand maßgebend sein, daß man eine möglichst große Genauigkeit erreichen will; gelegentlich können aber für die Wahl des n und der x_i auch andere Gründe mitsprechen, etwa daß man bequeme Werte für die A_i oder die x_i zu haben wünscht, oder daß man eine bequeme Formel wünscht, deren Genauigkeit die der durch Beobachtung gewonnenen Werte $f(x_i)$ nicht überschreitet usw. Die Grenzen α , β kann man durch die Substitution:

$$x = \frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\xi, \ x_k = \frac{\alpha+\beta}{2} - \frac{\alpha-\beta}{2}\xi_k, \ A_k = -\frac{\alpha-\beta}{2}\bar{A}_k$$

auf — 1 und + 1 resp. durch ähnliche Substitutionen auf — $\frac{1}{2}$ und + $\frac{1}{3}$ oder auf 0 und 1 zurückführen.

Setzt man

(3)
$$a_r = \int_a^x x^r \varphi(x) dx,$$

so ist

(4)
$$\begin{cases} I - A = c_0 a_0 + c_1 a_1 + c_2 a_2 + \dots + c_k a_k + \dots \\ - A_1 (c_0 + c_1 x_1 + c_2 x_1^2 + \dots + c_k x_1^k + \dots) \\ - A_2 (c_0 + c_1 x_2 + c_2 x_2^2 + \dots + c_k x_2^k + \dots) \\ \dots & \dots & \dots \\ - A_n (c_0 + c_1 x_n + c_2 x_n^2 + \dots + c_k x_n^k + \dots) \\ = c_0 \delta_0 + c_1 \delta_1 + c_2 \delta_2 + \dots + c_k \delta_k + \dots \end{cases}$$

wo zur Abkürzung gesetzt ist:

$$\begin{cases} \delta_0 = a_0 - (A_1 + A_2 + A_3 + \dots + A_n) \\ \delta_1 = a_1 - (A_1 x_1 + A_2 x_2 + \dots + A_n x_n) \\ \delta_2 = a_2 - (A_1 x_1^2 + A_2 x_2^2 + \dots + A_n x_n^2) \\ \vdots & \vdots & \vdots \\ \delta_k = a_k - (A_1 x_1^k + A_2 x_2^k + \dots + A_n x_n^k) \end{cases}$$

Man nimmt nun an, daß in der für f(x) gesetzten Funktion die c_r sehr schnell abnehmen, so daß die Annäherung um so besser wird, je mehr der δ man, von δ_0 ausgehend, zu Null macht. Wir sehen hier davon ab, daß dies bei empirisch gefundenen Kurven durchaus nicht der Fall zu sein braucht, sondern daß hier mit hohem Index versehene Werte c_i gelegentlich den Lauf der Kurve wesentlich bestimmen können. In einem solchen Falle wird unter Umständen eine Formel von geringerem Genauigkeitsgrad eine bessere Annäherung liefern können (vgl. Nr. 11). Werden die p ersten δ Null, so sagt man nach $Radau^1$), die Formel habe den Genauigkeitsgrad p-1; d. h. also eine

¹⁾ Radau, J. de math. (3) 6 (1880), p. 283-336.

ganze Funktion $(p-1)^{\text{ten}}$ Grades wird durch die Formel exakt integriert. Da man n Werte A_i und n Werte x_i zur Verfügung hat, kann man mit $Gau\beta^{48}$) den Genauigkeitsgrad 2n-1 erreichen; bei n gegebenen Abszissen erreicht man im allgemeinen den Genauigkeitsgrad n-1; bei n gegebenen Koeffizienten, für die $\delta_0=0$ sein muß, den Genauigkeitsgrad n.

Wählt man zur Intervallmitte symmetrische Ordinaten, so muß $x_n + x_1 = x_{n-1} + x_2 = \cdots = \beta + \alpha$,

d. h. 1 bei den Grenzen 0 und 1, und 0 bei den Grenzen — 1 und + 1 sein. Wenn wir der Bequemlichkeit wegen den letzten Fall betrachten (in der Wahl der Grenzen liegt keine wesentliche Spezialisierung) und weiter annehmen, $\varphi(x)$ sei eine gerade Funktion, etwa gleich 1, so wird

(6)
$$\sum A_i x_i^{2h-1} = 0$$
 (oder $\sum (A_i - A_{n-i+1}) x_i^{2h-1} = 0$).

Man kann diese Gleichungen durch $A_i=A_{n-i+1}$ erfüllen; soll der Genauigkeitsgrad n-1 erreicht werden, so ist nur diese Lösung möglich. Auf anderem Wege als $Radau^1$) weisen $Grunert^2$), $Jung^3$), $Todhunter^4$) u. a. die Gleichheit der zu symmetrisch liegenden Ordinaten gehörenden Koeffizienten nach, die natürlich auch für die Grenzen α , β gilt. Wir haben also, falls wir der Symmetrie wegen nur das halbe Intervall betrachten, die Gleichungen:

(7)
$$\begin{cases} \frac{1}{2}A_0 + A_1 + A_2 + \dots + A_i - a_0 = -\delta_0, \\ A_1x_1^2 + A_2x_2^2 + \dots + A_ix_i^2 - a_2 = -\delta_2, \\ \vdots \\ A_1x_1^{2i} + A_2x_2^{2i} + \dots + A_ix_i^{2i} - a_2 = -\delta_2, \end{cases}$$

für n=2i+1; für n=2i ist nur $A_0=0$ zu setzen. Sind also für 2i+1 oder 2i+2 symmetrische Abszissen die Funktionswerte gegeben, wie z. B. bei den Methoden von Newton-Cotes und Mac Laurin, so kann man im allgemeinen in beiden Fällen mindestens den Genauigkeitsgrad 2i+1 erreichen. Da alle x_p voneinander verschieden sein müssen, sind durch obige Gleichungen die A_i eindeutig bestimmt. Denselben Genauigkeitsgrad kann man erreichen, wenn man 2i+1 oder 2i willkürlich gewählte, paarweise gleiche Koeffizienten vorschreibt, wie es z. B. Tschebyscheff tut. Die vorgeschriebenen Koeffizienten müssen natürlich der ersten Gleichung (7) genügen, falls man $\delta_0=0$ setzt.

²⁾ Grunert, Arch. für Math. u. Phys. 14 (1850), p. 225-317.

³⁾ Jung, Rozpravy 8, Nr. 17, (12 S.) [1899].

⁴⁾ Todhunter, An elementary Treatise on Laplace's Functions, Lamé's Functions and Bessel's Functions, London 1875, p. 96—109.

Ist dagegen $\varphi(x)$ eine ungerade Funktion, so ist $\sum A_p x_p^{2h} = 0$, also $A_p = -A_{n-p+1}$, $A_0 = 0$. Es kommt dann nur eine gerade Zahl von Ordinaten in Betracht.

2. Methoden, die gegebene Abszissen verwenden. a) Allgemeines. Bei gegebenen Abszissen ist die Koeffizientenbestimmung das rein algebraische Problem, die Gleichungen (5) resp. (7) zu lösen, wenn die δ gleich Null gesetzt werden, was bei verschiedenen Abszissenwerten immer möglich ist. Man erhält so die A_p als Quotienten zweier Determinanten.⁵) $Moors^6$) bezeichnet mit s_r die symmetrische Funktion r^{ten} Grades der x_p^2 und mit s_r^p die entsprechende Funktion ohne x_p^2 ; er erhält dann aus (7)

$$\begin{cases} A_p = \frac{a_{2i-2} - a_{2i-4}s_1^p + a_{2i-6}s_2^p \dots (-1)^{i-1}a_0s_{i-1}^p}{x_p^{2i-2} - x_p^{2i-4}s_1^p + x_p^{2i-6}s_2^p \dots (-1)^{i-1}s_{i-1}^p}, \\ = \frac{a_{2i-2} - a_{2i-4}s_1^p + a_{2i-6}s_6^p \dots (-1)^{i-1}a_0s_{i-1}^p}{(x_p^2 - x_1^2)(x_p^2 - x_2^2) \dots / \dots (x_p^2 - x_i^2)}. \end{cases}$$

Der / soll bedeuten, daß $x_p^2 - x_p^2$ fehlt. $Jacobi^7$) bestimmt die Koeffizienten mittels der Lagrange schen Interpolationsformel.⁸) Sind die Abszissen Wurzeln der Gleichung $F_n(x) = 0$, so ist

$$(9) \int_{a}^{b} \varphi(x) f(x) dx = \sum_{1}^{n} \int_{a}^{b} \frac{F_{n}(x) \varphi(x)}{F'_{n}(x_{k})(x - x_{k})} dx \cdot f(x_{k}) + c_{n} \delta_{n} + c_{n+1} \delta_{n+1} \dots$$

 $Jacobi^7$) schreibt den Ausdruck für die Koeffizienten in der Form $(\varphi(x)=1)$

$$A_k = \frac{1}{F_n'(x_k)} \int_{\alpha}^{\beta} F_n'(x_k) \, dx_k.$$

Diese Formel kann man nach $Radau^1$) auch unabhängig von der Lagrangeschen Formel durch den Ansatz $f(x) = \frac{F_n(x)}{x-x_k}$ erhalten. Sind die gegebenen Abszissen sowie die Funktion $\varphi(x)$ symmetrisch zur Intervallmitte, so kann man aus (9) leicht ablesen, daß die Koeffizienten paarweise gleich sind. Bezeichnet man mit $Radau^1$) den ganzen Teil einer Funktion mit E_n , so besteht die Gleichung, falls x_k

Blacck, Sitzungsberichte der böhmischen Gesellschaft der Wissenschaften, Prag 1879, p. 167—175.

⁶⁾ Moors, Nieuw. Archief, Amsterdam 20 (1893), p. 129-214.

⁷⁾ Jacobi, Journ. für Math. 1 (1825), p. 301-308.

⁸⁾ Lagrange, Leçons élémentaires (1795), Oeuvres 7, p. 284—287 und Sur l'interpolation, Oeuvres 7, p. 535—553. Deutsch von Schultze im Astronomischen Jahrbuch 1783.

54 II C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

keine Wurzel von F_n ist,

(10)
$$E\frac{F_n(x)}{x-x_k} = E\frac{F_n(x_k)}{x_k-x}.$$

Konvergiert x_i gegen eine Wurzel, so läßt sich $F_n(x)$ durch $x - x_k$ dividieren. Für $\varphi(x)$ gleich eins, ist also

$$(11) \int_{a}^{\beta} \frac{F_{n}(x)}{x - x_{k}} dx = EF_{n}(x_{k}) \int_{a}^{\beta} \frac{dx}{x_{k} - x} = E\left[F_{n}(x_{k}) \left(\lg \frac{x_{k} - \alpha}{x_{k} - \beta}\right)\right] = Z_{n}(x_{k}),$$

so daß man für die Grenzen +1 und -1 aus (9)

$$(12) \ A_i = \frac{2}{F_n'(x_i)} E \Big[F_n(x_i) \Big(\frac{1}{x_i} + \frac{1}{3x_i^3} + \frac{1}{5x_i^5} \cdots \Big) \Big] = \frac{1}{F_n'(x_i)} Z_n(x_i)$$

erhält, einen Ausdruck, der sich z. B. bei Schellbach⁹), Radau¹), Hermite¹⁰) u. a. findet.

Die Korrektion gibt Moors⁶) in der Form

(13)
$$c_{2i}\delta_{2i} + c_{2i+2}\delta_{2i+2} \cdots = \{a_{2i} - a_{2i-2}s_1 + a_{2i-4}s_2 - \cdots (-1)^i a_0 s_i\} c_{2i} + \{a_{2i+2} - (a_{2i} - \delta_{2i}) s_1 + a_{2i-2}s_2 \cdots (-1)^i a_2 s_i\} c_{2i+2}.$$

Den Rest kann man auch wie $Markoff^{(1)}$ mit Hilfe des Restgliedes der Lagrangeschen Formel finden. $Bertrand^{(103)}$ gibt eine Tabelle der verschiedenen Werte δ für die Formeln von Newton-Cotes.

Gewöhnlich dividiert man f(x) durch $F_n(x)$, so daß

$$f(x) = P(x) + Q(x) \cdot F_n(x)$$

wird, woraus dann für die Glieder höherer Ordnung

(15)
$$\int_{a}^{\beta} \varphi(x) \cdot Q(x) \cdot F_{n}(x) dx = c_{n} \delta_{n} + c_{n+1} \delta_{n+1} + c_{n+2} \delta_{n+2} \dots$$

folgt. Also ist

(16)
$$\delta_{n+s} = \int_{0}^{s} \varphi(x) \cdot F_{n}(x) \cdot dx \cdot E \frac{x^{n+s}}{F_{n}(x)},$$

Terme, die mit den Koeffizienten von $\frac{1}{z^{n+s+1}}$ in der Entwicklung von

(17)
$$\frac{1}{F_n(z)} \int_{-\infty}^{\beta} \varphi(x) \frac{F_n(x)}{z-x} dx$$

nach fallenden Potenzen von x identisch sind. Man bezeichnet daher diese Funktion nach $Heine^{12}$) als erzeugende Funktion des Fehlers.

⁹⁾ Schellbach, Journ. für Math. 1 (1825), p. 301-308.

¹⁰⁾ Hermite, Cours d'analyse, Paris 1873, p. 439-453.

¹¹⁾ Markoff, Differenzenrechnung (deutsch von Prümm u. Friesendorff), Leipzig 1896, p. 50-61.

¹²⁾ Heine, Handbuch der Kugelfunktionen 2, Berlin 1881.

Neuerdings hat $Peano^{13}$) das Restglied der Quadraturformeln unter Benutzung eines Diskontinuitätsfaktors¹⁴) in Form eines bestimmten Integrales zwischen den Grenzen — ∞ und + ∞ dargestellt.

b) Formeln von Newton-Cotes. Im allgemeinen wählt man nun die gegebenen Ordinaten äquidistant. Unter Benutzung der End- und der Teilordinaten wird bei Einteilung in n-1 gleiche Teile für die Grenzen 0 und +1

$$x_1 = 0; \quad x_2 = \frac{1}{n-1}; \quad x_3 = \frac{2}{n-1}; \cdots; \quad x_n = \frac{n-1}{n-1} = 1.$$

In diesem Falle hat man nach Gauß 48), Grunert2), Markoff11) u. a.

$$A_k = \frac{(-1)^{n-k}}{k! (n-k+1)!} \int_0^1 \frac{(nx-x)(nx-x-1)\cdots(nx-x-n+1)}{nx-x-k+1} dx,$$

und das erste Fehlerglied läßt sich in der Form

$$\delta_{n} = \int_{0}^{1} x \left(x - \frac{1}{n-1} \right) \left(x - \frac{2}{n-1} \right) \cdots (x-1) dx$$

schreiben ¹⁵), woraus unmittelbar durch Vertauschung von x mit 1-x folgt $\delta_n = (-1)^n \delta_n$, d. h. $\delta_n = 0$ für ungerade n. Den ersten Versuch, den Inhalt durch äquidistante Ordinaten auszudrücken, macht Cavalieri ¹⁶), der als sog. Faßregel (s. Nr. 13a) einen speziellen Fall der Formel für n=3 gibt. Später findet sich bei Jacob Gregorius ¹⁷) allgemein die Formel für n=3, d. h. die für Parabeln zweiter Ordnung exakte Formel; er erkennt aber nicht, daß diese Formel auch für den Fall n=4 gilt, sondern gibt für Parabeln dritter Ordnung eine Formel, die nur für $y=ax^3+b$ richtig ist. ¹⁸) Auf Parabeln vierter und fünfter Ordnung weist er ohne Formeln hin. Die erste allgemeine Lösung deutet Newton zuerst in einem Brief an Leibniz vom 24. X. 1676, dann in

¹³⁾ Peano, Atti della R. Accad. dei Lincei (5) 22 (1913), p. 562-69 und Mathesis (4) 4 (1914), p. 5-10.

¹⁴⁾ Mansion, Mathesis (4) 4 (1914), p. 169-174.

¹⁵⁾ Berger, Nova acta Regiae societatis scientiarum Upsaliensis (3) 16 (1893), (52 S.).

¹⁶⁾ Cavalieri, Una Centuria di varii Problemi in der Prattica Astrologica. Bologna 1639. In Problema 80 findet sich auf p. 446 die Angabe: Si adunque moltiplicaremo la terza parte di IM lunghezza della Botte BDFH in due cerchi maggiore CG e uno de minori BH, DF come in BH, ci verrà la capacità di detta Botte.

¹⁷⁾ Jacob Gregorius, Exercitationes geometricae, London 1668, p. 25—27. Methodus facilis et accurata componendi Secantes et Tangentes artificiales.

¹⁸⁾ Heinrich, Bibliotheca mathematica (3) 1 (1900), p. 90-92.

den Prinzipien an und führt sie später weiter aus. ¹⁹) Er gibt die Formel für n=4. Cotes gibt dann ohne Ableitung die Koeffizienten von n=3 bis 11^{20}), ferner finden sie sich bei $Simpson^{209}$) bis n=7, bei $Atwood^{21}$) bis n=9, bei $Merrifield^{22}$) und in vielen anderen Abhandlungen.

Ansätze zu den Cotesschen Formeln finden sich übrigens auch bei Lumbert. $^{23})$

Unabhängig kommt $Kramp^{24}$) zu ähnlichen Formeln unter Benutzung einer Methode von $Obenheim.^{25}$) Er teilt das Intervall in zwölf gleiche Teile, trägt den Inhalt der durch die Endpunkte von t äquidistanten Ordinaten bestimmten Sehnenpolygone als Ordinaten zu $x=\frac{1}{t}$ auf und legt durch die erhaltenen Punkte eine Parabel, die für x=0 die gewünschte Formel gibt. $Gergonne^{26}$) ersetzt die Trapeze durch Rechtecke und erhält so eine obere Fehlergrenze. $Kramp^{27}$) gibt dann noch eine zweite Ableitung, bei der er die Kurve selbst durch eine Parabel n^{ter} Ordnung ersetzt, die er durch n äquidistante Ordinaten bestimmt und integriert. $B\acute{e}rard^{28}$) erhält die Koeffizienten durch Anwendung des Ansatzes auf spezielle Parabeln. Er gibt, wie Kramp die Koeffizienten bis n=13, außerdem auch noch für n=25. Für n=13 sind die Werte verschieden; infolgedessen findet eine Auseinandersetzung zwischen $Kramp^{29}$), $Servois^{30}$), $Ampère^{31}$) statt, in der $Kramp^{32}$) schließlich seine Formel als falsch erkennt.

¹⁹⁾ Newton, Philosophiae naturalis principia mathematica 3 (1687), Prop. XL Lemma 5. Newton, Invenire lineam curvam generis parabolici quae per data quotcunque puncta transibit 1711, abgedruckt: Opuscula, 1. Ausgabe von Horsley 1778, p. 521—531.

²⁰⁾ Cotes, Harmonia mensurarum, Cantabrigiae 1722. Anhang: Opera miscelanea, De methodo differentiali Newtonia.

²¹⁾ Atwood, A Disquisition on the Stability of Ships. Philosophical Transactions 1798, p. 201-310 (die Koeffizienten finden sich p. 262).

²²⁾ Merrifield, Report of the 50. meeting of the British Association for the Advancement of science 1880, p. 321-48.

²³⁾ Lambert, Beyträge zum Gebrauch der Mathematik und deren Anwendungen 2, Berlin 1770, p. 250—313. Quadratur und Rektifikation der krummen Linien durch geradlinigte Vielecke, welche um dieselben und in dieselben beschrieben werden können.

²⁴⁾ Kramp, Annales de Gergonne 6 (1815/16), p. 281-302.

²⁵⁾ Obenheim, Balistique, Straßbourg 1816.

²⁶⁾ Gergonne, Annales de Gergonne 6 (1815/16) p. 303-320.

²⁷⁾ Kramp, Annales de Gergonne 6 (1815/16), p. 372-387.

²⁸⁾ Bérard, Annales de Gergonnes 7 (1816/17), p. 101-116.

²⁹⁾ Kramp, Annales de Gergonne 7 (1816/17), p. 241-252.

³⁰⁾ Servois, Annales de Gergonne 8 (1817/18), p. 73-115.

Ein Korrektionsglied gibt als erster $Stirling^{33}$) an für n=3, 5, 5, 7, 9, und zwar nimmt er die Differenz zwischen der Formel für 2i-1 und einer Formel mit 2i+1 Ordinaten, bei der die von den Grenzordinaten um $\frac{1}{n-1}$ nach außen liegenden Ordinaten mit benutzt werden, eine Methode, die sich allgemein bei $Lobatto^{34}$) und besonders bei $Grunert^2$) durchgeführt findet. Abschätzungen des Fehlers mittels der Taylorschen Reihe oder der Eulerschen Formel finden sich zuerst wohl bei $Mac\ Laurin$ (bis $n=5)^{35}$), ferner bei $Gau\beta^{48}$), $Enke^{36}$), $Heine^{12}$), $Fonténé^{37}$), $Jung^3$), $Moors^{38}$) u. 6) und anderen. Enke wendet die von $Jacobi^7$) für die $Gau\beta$ schen Formeln (s. § 3) gegebene Methode zur Fehlerabschätzung auf die Newton-Cotesschen Formeln an. $Peano^{13}$) erläutert seine Restabschätzung mittels eines bestimmten Integrales mit Diskontinuitätsfaktors an dem Falle n=3. $Quarra^{39}$) wendet sie auf den Fall n=4 an.

c) Formeln von Mac Laurin. Mac Laurin⁴⁰) benutzt nicht die Endordinaten der einzelnen Teilintervalle, sondern die Mittelordinaten, setzt also bei n gleichen Teilen und den Grenzen 0 und + 1

$$x_1 = \frac{1}{2n}; \quad x_2 = \frac{3}{2n}; \dots; \quad x_n = \frac{2n-1}{2n}.$$

Die Koeffizienten haben für diesen Fall die Form:

$$\frac{(-1)^{n-k}}{2^{n-1}k!(n-k+1)!} \int_{0}^{1} \frac{(2nx-1)(2nx-3)\cdots(2nx-2n+1)}{2nx-2k+1} dx,$$

und das erste Korrektionsglied wird

$$\delta_n = \int_0^1 \left(x - \frac{1}{2n}\right) \left(x - \frac{3}{2n}\right) \cdots \left(x - \frac{2n-1}{2n}\right) dx,$$

³¹⁾ Ampère, Annales de Gergonne 8 (1817/18), p. 117-124.

³²⁾ Kramp, Annales de Gergonne 9 (1818/19), p. 373-396.

³³⁾ Stirling, Methodus differentialis sive tractatus de summatione et interpolatione serierum infinitarum, London 1730, prop. 31.

³⁴⁾ Lobatto, Lessen over Integral-Rekening, La Haye 1852 § 198/99.

³⁵⁾ Mac Laurin, Treatise of Fluxion 2, Edinburg 1742, § 848,49.

³⁶⁾ Enke, Berliner astronomisches Jahrbuch 1863. Abdruck: Gesammelte Abhandlungen 1, p. 100-124.

³⁷⁾ Fonténé, Nouv. Ann. (4) 10 (1910), p. 87-90.

³⁸⁾ Moors, Valeur approximative d'une intégral définie, Paris 1905.

³⁹⁾ Quarra, Atti della R. Accad. della scienze di Torino 43 (1912-13), p. 643-53.

⁴⁰⁾ Mac Laurin, Treatise of Fluxion 2, Edinburg 1742, § 832.

woraus wie oben für ein ungerades n $\delta_n = 0$ folgt. (5) Moors (8) gibt die Koeffizienten von n=1 bis 10 und die zugehörigen Korrektionsglieder. Daß der Fehler für n = 2i + 1 und n = 2i + 2 sowohl für die Newton-Cotesschen wie für die Mac Laurinschen Formeln von derselben Ordnung ist, daß also die Parabel 2iter Ordnung auch eine Funktion $2i + 1^{\text{ter}}$ Ordnung exakt zu quadrieren gestattet, wird häufig betont, so von Dirksen⁴¹), Catalan⁴²), Maleyx⁴³), Skutsch⁴⁴), Schoute⁴⁵), Korteweg⁴⁶), Mannoury⁴⁷) u. a.

3. Methode von Gauß. a) Bestimmung der Abszissen. Der Gedanke, daß man durch passende Wahl der Funktionswerte mehr Fehlerglieder zum Verschwinden bringen kann, findet sich vielleicht zuerst bei Buzengeiger 138) verwandt. Wirklich ausgenutzt wird dieser Gedanke dann in einer 2 Jahre später der Göttinger Gesellschaft der Wissenschaften vorgelegten Abhandlung von Gauß. 48)

Will man mit n Funktionswerten den Genauigkeitsgrad 2n-1erreichen, so muß man außer den Fehlergliedern $\delta_0 \dots \delta_{n-1}$ auch noch $\delta_n \dots \delta_{2n-1}$ in den Gleichungen (5) zum Verschwinden bringen. Die Bestimmung der n Wurzeln und der n Koeffizienten aus den 2n Gleichungen ist ein rein algebraisches Problem.⁴⁹) Sind die Größen $x_1, x_2, ..., x_n$ Wurzeln der Gleichung

(18)
$$F_n(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_1 x + b_0$$

und multipliziert man mit Joachimsthal⁵⁰) die ersten n+1 Gleichungen (5) $(\delta = 0)$ mit b_0, b_1, \ldots, b_n , und addiert sie, verfährt genau so mit der 2^{ten} bis $n+2^{\text{ten}}$ usw., so erhält man, wenn man beachtet, daß

$$(19) A_s x_s^n (b_0 + b_1 x_s + b_2 x_s^2 + \dots + b_n x_s^n) = 0$$

⁴¹⁾ Dirksen, Abh. d. kgl. Akad. d. Wiss. zu Berlin aus dem Jahre 1831. Berlin 1832, p. 117-159.

⁴²⁾ Catalan, Nouvelle correspondance mathématique 6 (1880), p. 396-402. Nouv. Ann. 16 (1857), p. 312. Manuel des Candidats de l'école polytechnique 2, p. **2**95.

⁴³ Maleyx, Nouv. Ann. (2) 19 (1880), p. 529-551.

⁴⁴⁾ Skutsch, Arch. Math. Phys. (2) 12 (1893), p. 111/12.

⁴⁵⁾ Schoute, Paris C. R. 122 (1896), p. 1113-1115.

⁴⁶ Korteweg, Paris C. R. 122 (1896), p. 1399.

⁴⁷ Mannoury, Paris C. R. 122 (1896), p. 1399-1400.

⁴⁸⁾ Gauβ, Methodus nova integralium valores per approximationem inveniendi. Commentationes societatis regiae scientiarum Gottingensis recentiores 3 (1816). Abgedruckt: Gesammelte Werke 3, p. 163-196.

⁴⁹⁾ Bretschneider, Programm d. Herzogl. Realgymnasiums zu Gotha 1849 (12 Seiten).

⁵⁰ Joachimsthal, Journ. f. Math. 48 (1854), p. 386-416.

ist, die Gleichungen

$$(20) a_k b_0 + a_{k+1} b_1 + \dots + a_{k+n} b_n = 0$$

für k = 0, 1, 2, ..., n - 1. Unter Hinzunahme der Gleichung (18) erhält man daraus für $F_n(x)$ die Gleichung

(21)
$$F_{n}(x) = \begin{vmatrix} 1 & x & x^{2} & \dots & x^{n} \\ a_{0} & a_{1} & a_{2} & \dots & a_{n} \\ a_{1} & a_{2} & a_{3} & \dots & a_{n+1} \\ a_{2} & a_{3} & a_{4} & \dots & a_{n+2} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{n-1} & a_{n} & a_{n+1} & \dots & a_{2n-1} \end{vmatrix} = 0.$$

Ähnlich verfahren Ligowski⁵¹), Andrae⁵²), Oppermann⁵³), Baillaud⁵⁴), Lampe⁵⁵), Heun⁵⁶), Moors³⁸) u. a.

 $Ligowski^{51}$) findet für $\varphi(x)=1$ die Koeffizienten unter Benutzung von Sätzen der Determinantentheorie

$$b_{\varrho} = (-1)^{n-\varrho} \frac{(n!)^{2} (n+\varrho!)}{(\varrho!)^{2} (n-\varrho)! 2n!}$$

für die Grenzen 0 und 1.

Christoffel⁵⁷), Scheibner⁵⁸), Baillaud⁵⁹) u. a. erhalten die Gleichungen (20) dadurch, daß sie

(22)
$$\sum_{k=1}^{n} \frac{A_k}{x - x_k} = \frac{\psi(x)}{F_n(x)}$$

nach fallenden Potenzen von x entwickeln, mit $F_n(x)$ multiplizieren und die Koeffizienten gleicher Potenzen von x gleichsetzen. Ein anderer Weg findet sich bei $August^{60}$) angegeben (s. u. 4).

Vielfach werden aus der Gleichung (21) direkt die Wurzeln ausgerechnet; so tut es $Gau\beta^{48}$) § 16 im Falle $\varphi(x) = 1$ für n = 2, 3, 3

⁵¹⁾ Ligowski, Arch. f. Math. u. Phys. 36 (1861), p. 181-85.

⁵²⁾ Andrae, Oversight over det Kongelige Danske Vedenskabernes Selskabs Vorhadlingar 1867, p. 165-201.

⁵³⁾ Oppermann, Zeuthen Tidsskrift (3) 1 (1871), p. 11-27.

⁵⁴⁾ Baillaud, Paris C. R. 90 (1880), p. 974-976.

⁵⁵⁾ Lampe, Jahresb. d. Deutsch. Math.-Ver. 3 (1894), p. 102-106.

⁵⁶⁾ Heun, Programmabhandl. Nr. 108, Berlin 1892 (19 S.).

⁵⁷⁾ Christoffel, Journ. f. Math. 55 (1858), p. 61-82.

⁵⁸⁾ Scheibner, Leipz. Ber. 8 (1856), p. 65-76.

⁵⁹⁾ Baillaud, Mémoires de l'Académie des sciences de Toulouse (8) 5 (1883. p. 161-190.

⁶⁰⁾ August, Arch. f. Math. u. Phys. 67 (1881), p. 72-93.

60 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

 $Ligowski^{61}$) für n=1, 3, 5 (vgl. auch die Arbeiten von $Lampe^{55}$), $Voqel^{62}$) u. a.).

Für größere Werte benutzt $Gau\beta^{48}$) die Kettenbruchentwicklung, um sukzessive die Gleichungen für n=4, 5 usw. aufzustellen. Die allgemeine Gleichung für n bestimmt er schließlich durch Induktion. Joachimsthal⁵⁰) bestimmt die Lage und Realität der Wurzeln von Gleichungen (21) für den Fall $\varphi(x)=1$ nach dem Sturmschen Prinzip.⁶³)

Scheibner⁵⁸) benutzt zur Lösung Sätze von $Pfaff^{64}$) und $Heine^{65}$) und findet, daß die x_p Wurzeln einer hypergeometrischen Reihe sind, die $Baillaud^{59}$) für die Grenze 0 und + 1 als

(23)
$$F(n+1, -n, 1, x) = 0$$
 angibt.

Häufig geht man, um die Gleichung (18) zu finden, auch von den Gleichungen (16) aus. Soll $\delta_n \dots \delta_{2n-1}$ verschwinden, so folgt aus den Gleichungen (16)

(24)
$$\int_{a}^{x} \varphi(x) F_{n}(x) x^{k} dx = 0 \text{ für } (k = 0, 1, ..., n-1).$$

Auf anderm Wege kommt $Markoff^{66}$) zu der Gleichung (24). Er benutzt die von $Hermite^{67}$) gegebene erweiterte Lagrangesche Interpolationsformel für den Fall, daß in den durch die Wurzeln von $F_n(x)$ bestimmten Punkten die Funktionswerte nebst ihren ersten Ableitungen gegeben sind. Er erhält so die Formel

(25)
$$\int_{\alpha}^{\beta} \varphi(x) f(x) dx = \sum_{1}^{n} A_{i} f(x_{i}) + \sum_{1}^{n} B_{i} f'(x_{i}) + c_{2n} \delta_{2n} + \cdots$$

und stellt nun die Bedingungen dafür auf, daß sämtliche

(26)
$$B_{i} = \frac{1}{(F'_{n}(x_{i}))^{2}} \int_{x}^{\beta} \frac{(F_{n}(x))^{2}}{x - x_{i}} \varphi(x) dx$$

zu Null werden. Da $F_n(x)$ durch $x-x_i$ teilbar ist, so muß für jede

⁶¹⁾ Ligowski, Arch. f. Math. u. Physik 32 (1859), p. 241--49.

⁶²⁾ Vogel, Kiewer Nachr. 1887, p. 173-186.

⁶³⁾ Sturm, Mémoires présentés par divers savants à l'Académie des Sciences 6 (1835).

⁶⁴⁾ Pfaff, Nova acta Petropolitana 11 (1797) im Supplément à l'histoire, p. 51.

⁶⁵⁾ Heine, Journ. f. Math. 32 (1846), p. 205-210 und 34 (1847), p. 285-328.

⁶⁶⁾ Markoff, Mathem. Ann. 25 (1885), p. 427-432.

⁶⁷⁾ Hermite, Journ. f. Math, 84 (1878), p. 70-79, insbesondere: Postscriptum.

beliebige Funktion $\theta_{n-1}(x)$ von nicht mehr als $n-1^{\text{tem}}$ Grade

(27)
$$\int_{\varphi}^{\varphi} \varphi(x) F_n(x) \theta_{n-1}(x) dx = 0$$

sein. Das führt zu den Gleichungen (24).

Von diesen Gleichungen gehen Christoffel ⁶⁸) und Stieltjes ⁶⁹) aus und weisen nach, daß für positive integrable Funktionen $\varphi(x)$ immer ein Polynom $F_n(x)$ existiert, dessen sämtliche n Wurzeln reell und ungleich sind und zwischen den Grenzen α und β liegen. Für diese Polynome besteht die Gleichung ⁷⁰)

$$F_{n+1}(x) = (x - k_n)F_n(x) - \lambda_n F_{n-1}(x),$$

wo

$$k_{n} = \frac{\int\limits_{\alpha}^{\beta} x \, F_{n}^{\,2}(x) \, \varphi \left(x \right) dx}{\int\limits_{\alpha}^{\beta} F_{n}^{\,2}(x) \, \varphi \left(x \right) dx} \quad \text{und} \quad \lambda_{n} = \frac{\int\limits_{\alpha}^{\beta} F_{n}^{\,2}(x) \, \varphi \left(x \right) dx}{\int\limits_{\alpha}^{\beta} F_{n-1}^{\,2}(x) \, \varphi \left(x \right) dx}$$

ist. Mittels dieser Gleichung lassen sich sukzessive die $F_n(x)$ berechnen. Ferner läßt sich mittels derselben zeigen, daß wie bei den Kugelfunktionen, in die, wie wir nachher (35) zeigen werden, die $F_n(x)$ für den Fall $\varphi(x) = 1$ übergehen, die Wurzeln von $F_{n-1}(x)$ die von $F_n(x)$ trennen.

Diese Funktionen sind nach *Christoffel* ⁶⁸) bis auf einen konstanten Faktor die Nenner der Näherungsbrüche der Kettenbruchentwicklung ⁷¹) von

(28)
$$K(z) = \int_{a}^{z} \frac{\varphi(x) dx}{z - x} = \frac{c_{1}}{q_{1} - c_{2}} \frac{c_{3}}{q_{2} - c_{3}},$$

wo die q lineare Funktionen von z sind. The Bezeichnet man den n^{ten} Näherungsbruch mit $\frac{Z_n}{F_n}$, wo F_n eine Funktion n^{ten} Grades von z ist, so ist

$$Z_{n+1} = q_{n+1} Z_n - c_{n+1} Z_{n-1},$$

$$F_{n+1} = q_{n+1} F_n - c_{n+1} F_{n-1},$$

⁶⁸⁾ Christoffel, Annali di matematiche (2) 8 (1877), p. 1-10 und 57).

⁶⁹⁾ Stieltjes, Annales de l'école normale (3) 1 (1884), p. 409-426.

⁷⁰⁾ Stieltjes, Paris. C. R. 98 (1883), p. 798-799.

⁷¹⁾ Über Kettenbrüche siehe z. B: Günther, Darstellung der Näherungswerte von Kettenbrüchen in independenter Form, Erlangen 1873, und die dort angegebene Literatur. Ferner Perron, Die Lehre von den Kettenbrüchen, Leipzig 1913, vgl. auch I A 3 Nr. 45-57.

⁷²⁾ Heine, Journ. f. Math. 67 (1876), p. 315-326 und Handbuch der Kugelfunktionen 1 (2. Aufl.), Berlin 1878, Kap. V.

62 Il C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

woraus sich ableiten läßt

(29)
$$K(z) - \frac{Z_n(z)}{F_n(z)} = \frac{c_1 \cdot c_2 \dots c_{n+1}}{(F_n \psi_n - F_{n-1} c_{n+1}) F_n} = R_n(z),^{73,74}$$

wo ψ_n den Teil des Kettenbruches von q_{n+1} ab bezeichnet und R_n mit wachsendem n beliebig klein wird. Der erste Term der Entwicklung des Ausdruckes rechts nach fallenden Potenzen von z wird von einem Grade $\leq -(2n+1)$ sein. Läßt sich umgekehrt ein rationaler Bruch $\frac{Z_n}{F_n}$ finden, so daß $K(z) - \frac{Z_n}{F_n}$ nach negativen Potenzen von z entwickelt, mit einer Potenz $\leq -(2n+1)$ beginnt, so muß $\frac{Z_n}{F_n}$ ein Näherungsbruch n^{ter} Ordnung sein. Aus (28) und (29) folgt unmittelbar

$$(30) \int_{a}^{\beta} \frac{F_{n}(z) - F_{n}(x)}{z - x} \varphi(x) dx + \int_{a}^{\beta} \frac{F_{n}(x)}{z - x} \varphi(x) dx = Z_{n}(z) + R_{n}(z) F_{n}(z),$$

woraus man durch Gleichsetzung des ganzen und des gebrochenen Teiles erhält:

(31)
$$Z_n(z) = \int_{z}^{z} \frac{F_n(z) - F_n(x)}{z - x} \varphi(x) dx,$$

(32)
$$R_n(z) = \frac{1}{F_n(z)} \int_{a}^{\beta} \frac{F_n(x)}{z - x} \varphi(x) dx.$$

Die letzte Gleichung gibt die erzeugende Fehlerfunktion⁴)¹²); durch Reihenentwicklung derselben nach fallenden Potenzen von z, erhält man aber, da $R_n(z)$ mit der Potenz $\frac{1}{z^{2n+1}}$ anfangen muß, gerade wieder die Gleichungen (24) resp. (27), durch die bis auf einen Faktor $F_n(x)$ bestimmt ist und aus der sich die Sätze über die Wurzeln leicht ergeben, falls man $\varphi(x)$ als positiv im betrachteten Intervall annimmt.

Diese Sätze leitet man meist folgendermaßen ab. Angenommen $F_n(x)$ hätte eine imaginäre Wurzel x=a+bi, so müßte auch die konjugierte Wurzel vorkommen, und man könnte setzen

$$F_n(x) = ((x-a)^2 + b^2) M_{n-2}(x),$$

wo M_{n-2} eine Funktion $n=2^{\mathrm{ten}}$ Grades ist; setzt man in (27) nun

⁷³⁾ Stieltjes, Paris. C. R. 108 (1889), p. 1297-1298.

⁷⁴⁾ Possé, Nouv. Ann. (2) 14 (1875), p. 49-62.

⁷⁵⁾ Possé, Sur quelques applications des fractions continues algébriques, Petersbourg 1886.

 $\theta_{n-1}(x) = M_{n-2}(x)$, so müßte sein

$$\int_{a}^{\beta} ((x-a)^2 + b^2) M_{n-2}^2(x) \varphi(x) dx = 0,$$

was unmöglich ist, da alle Elemente des Integranden positiv sind, s. z. B. $Posse^{75}$), $Weber^{76}$) usw. Also sind alle Wurzeln von $F_n(x)$ reell. Ähnlich weist man nach, daß keine Doppelwurzeln vorhanden sind und daß keine der Wurzeln außerhalb der Grenzen α und β liegen kann. The single properties of the sin

Die Gleichungen (24) lassen sich direkt folgendermaßen zur Bestimmung von $F_n(x)$ verwenden. Transformiert man sie so, wie $Jacobi^7$) es für den Fall $\varphi(x) = 1$ tut, so findet man, daß sie gleichbedeutend sind mit den Gleichungen

(33)
$$\int_{a}^{\beta} \varphi(x) F_{n}(x) dx = 0 \int_{a}^{\beta} \int_{a}^{x} \varphi(x) F_{n}(x) dx^{2} = 0 \dots$$

$$\int_{a}^{\beta} \int_{a}^{x} \cdots \int_{x}^{x} \varphi(x) F_{n}(x) dx^{n} = 0,$$

woraus sich genau so folgern läßt12)

(34)
$$F_n(x) = \frac{k}{\varphi(x)} \frac{d^n}{dx^n} \psi(x) (x - \alpha)^n (x - \beta)^n.$$

 $\psi(x)$ ist hier so zu wählen, daß der n^{te} Differentialquotient durch $\varphi(x)$ dividiert, eine ganze Fuuktion n^{ten} Grades ergibt. In den gewöhnlich betrachteten Fällen

$$\varphi(x) = 1, (x - \alpha)^2, (\beta - x)^u, (x - \alpha)^2(\beta - x)^u,$$

wo $\lambda>-1,\,\mu>-1$ ist, sieht man leicht, daß man $\psi(x)=\varphi(x)$ zu setzen hat.

Für $\varphi(x) = 1$ wird also

(35)
$$F_n(x) = \frac{n!}{(2n)!} \frac{d^n}{dx^n} (x - \alpha)^n (x - \beta)^n,$$

wo die Konstante so bestimmt ist, daß der Koeffizient von x^n gleich 1 ist. Da diese Funktion bis auf einen Faktor mit dem Legendreschen Polynom identisch ist, hat man hier sofort den Satz, daß alle Wurzeln von $F_n(x)$ reell sind, zwischen α und β liegen und alle voneinander verschieden sind 77, eine Tatsache, die sich aus dem Rolleschen Theorem leicht folgern läßt 78 (vgl. II A 10). Für die Grenzen + 1 und - 1

⁷⁶⁾ Weber, Arch. f. Math. u. Phys. (3) 17 (1910/11), p. 113-117.

⁷⁷⁾ Für gerade n zuerst bewiesen: Legendre, Memoire de l'Académie 1784, p. 387, für ungerade n: Legendre, Exercices de Calcul intégral 2 (1806), p. 254.

⁷⁸⁾ Rolle, Traité de l'algèbre 1690, p. 125 ff.

64 II C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

wird also

$$(36) F_n(x) = x^n - \frac{n(n-1)}{2(2n-1)}x^{n-2} + \frac{n(n-1)(n-2)(n-3)}{2 \cdot 4(2n-1)(2n-3)}x^{n-4} \dots;$$

werden die Grenzen 0 und 1, so wird

(37)
$$F_{n}(x) = x^{n} - \frac{n^{2}}{2n}x^{n-1} + \frac{n^{2}(n-1)^{2}}{1 \cdot 2 \cdot 2n(2n-1)}x^{n-2} - \frac{n^{2}(n-1)^{2}(n-2)^{2}}{1 \cdot 2 \cdot 3 \cdot 2n(2n-1)(2n-2)}x^{n-3}...$$

Für n=4, 5 gibt das eine quadratische, für n=6, 7 eine kubische ⁷⁹) für n=8, 9 eine Gleichung vierten Grades ⁸⁰) usw. Schellbach ⁷⁹) erhält die Gleichung (35) dadurch, daß er für $F_n(x)$ diesen Ansatz macht und ihn unter Benutzung der Gleichungen (5) und (19) verifiziert.

b) Die Koeffizienten. Wählt man also jetzt in (9) für die x_i die n Wurzeln des Polynoms $F_n(x)$, so erhält man mit Beachtung von (31) die Gleichung

(38)
$$\int_{a}^{\beta} f(x) \varphi(x) dx = \sum_{k=1}^{n} A_{k} f(x_{k}) + c_{2n} \delta_{2n} \dots,$$

wo die

(39)
$$A_{k} = \int_{a}^{b} \frac{F_{n}(x)\varphi(x)}{(x - x_{k})F'_{n}(x_{k})} dx = \frac{Z_{n}(x_{k})}{F'_{n}(x_{k})}$$

sind. Führt man für $f(x) = F_n(x) \, \theta_{n-1}(x) + 1$ ein, so sieht man, daß

(40)
$$\sum_{k=1}^{n} A_{k} = \int_{\alpha}^{\beta} \varphi(x) dx$$

ist. §1) Die A_k sind sämtlich positiv, und es ist wie z. B. Stieltjes §1) zeigt

(41)
$$\begin{cases} A_1 + A_2 + \dots + A_k > \int_a^{x_k} \varphi(x) dx, \\ A_1 + A_2 + \dots + A_k < \int_a^{x_{k+1}} \varphi(x) dx. \end{cases}$$

Die Koeffizientenberechnung ist an und für sich eine algebraische Aufgabe, worauf besonders Heun⁵⁶) hinweist. Er berechnet die Koeffizienten auf rein algebraischem Wege aus den Gleichungen (5) und

⁷⁹⁾ Schellbach, Über mechanische Quadratur, 2. Aufl., Berlin 1884.

⁸⁰⁾ Strehlke, Arch. f. Math. u. Phys. 32 (1859), p. 433-434.

⁸¹⁾ Stieltjes, Paris. C. R. 99 (1884), p. 850-851.

findet

$$Z_n(x) = l_{n-1}x^{n-1} + l_{n-2}x^{n-2} + \dots + l_1x^1 + l_0,$$

$$l_{n-r} = a_1b_{n-r+1} + a_2b_{n-r+2} + \dots + a_rb_r$$

wo

 $Hurwitz^{82}$) besteht der algebraische Charakter o

ist. Nach $Hurwitz^{82}$) besteht der algebraische Charakter des Problems darin, eine binäre Form $2n-1^{\text{ter}}$ Ordnung mit den Koeffizienten $a_0, a_1, \ldots, a_{2n-1}$ als Summe von Quadraten von n linearen Formen darzustellen. Ähnlich verfährt $Bretschneider^{49}$), der für die Koeffizienten den durch sukzessive Elimination gefundenen Ausdruck

$$A_k = \frac{\frac{1}{n} - \frac{1}{n-1} C_1^{n-1} + \frac{1}{n-2} C_2^{n-1} \cdots + (-1)^{n-1} C_{n-1}^{n-1}}{(x_k - x_1)(x_k - x_2) \dots} \cdots (x_k - x_n)}$$

angibt, wo C_r^{n-1} die Summe der Kombinationen ohne Wiederholung aus den n-1 Elementen x_1, x_2, \ldots, x_n zur r^{ten} Klasse ist. Man kann zur Berechnung der Koeffizienten auch von Gleichungen (8), (9) oder (12) ausgehen. Nach $Tschebyscheff^{*ss}$) läßt sich die in (9) auftretende Funktion in der Form

$$(42) \frac{F_n(x)}{x - x_i F_n'(x_i)} = g_1 + g_2 F_1(x) F_1(x_i) + \dots + g_n F_{n-1}(x) F_{n-1}(x_i)$$

darstellen, wo die g_i die Faktoren von x in den q_i der (28) gegebenen Kettenbruchentwicklung sind. Daraus leitet er für eine beliebige Funktion n^{ten} Grades $\psi(x)$, die an den Stellen x_1, x_2, \ldots, x_n die Werte $\psi(x_1)$, $\psi(x_2), \ldots, \psi(x_n)$ hat, die Darstellung

(43)
$$\Phi(x) = \sum_{1}^{n} \frac{F_{n}(x)}{(x - x_{v})F'_{n}(x_{v})} \psi(x_{v}) = g_{1} \sum_{1}^{n} \psi(x_{v})$$

$$+ g_{2}F_{1}(x) \sum_{1}^{n} F_{1}(x_{v}) \psi(x_{v}) + \dots + g_{n}F_{n-1}(x) \sum_{1}^{n} F_{n-1}(x_{v}) \psi(x_{v})$$

ab. Die k ersten Glieder dieser Entwicklung erhält man nach $Heine^{12}$), wenn man eine Funktion y k^{ten} Grades sucht, die das Integral

(44)
$$\int_{-\infty}^{z} (y - \psi(x))^2 \varphi(x) dx$$

zu einem Minimum macht, ein Satz, der für $\varphi(x) = 1$ und die Grenzen -1 und +1 schon von $Plarr^{84}$) bewiesen wurde.

Eine ähnliche Entwicklung gibt *Christoffel* ⁵⁷) für die in (11) auftretende Funktion $Z_k(x)$ für den Fall $\varphi(x) = 1$. $Z_n(x)$ genügt der

⁸²⁾ Hurwitz, Fortschritte der Math. 24 (1892), p. 271-72.

⁸³⁾ Tschebyscheff, Journ. f. Math. 53 (1857), p. 286. J. de mathématique (2) 3 (1858), p. 289-323.

⁸⁴⁾ Plarr, Paris. C. R. 44 (1857), p. 835-837, 484-486.

66 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

z. B. von Bauer 85) gegebenen Gleichung

(45)
$$\frac{d}{dx}(x^2-1)\frac{dZ_n(x)}{dx} - n(n+1)Z_n(x) + 4\frac{dF_n(x)}{dx} = 0,$$

woraus sich unter Beachtung der Gleichung

(46)
$$F'_{n+1}(x) - F'_{n-1}(x) = (2n+1)F_n(x)$$

folgern läßt

$$(47) Z_n(x) = 2 \left[\frac{2n-1}{1+n} F_{n-1}(x) + \frac{2n-5}{3\cdot(n-1)} F_{n-3}(x) + \frac{2n-9}{5(n-2)} F_{n-5}(x) \dots \right].$$

Eine andere Darstellung der Koeffizienten erhält man, wenn man $G(x) = \frac{F_n(x)}{x - x_k}$ setzt; dann ist $F'_n(x_k) = G(x_k)$, $F''_n(x_k) = 2 G'(x_k)$; macht man nun in der Gleichung (38) f(x) = 2 G(x) G'(x), so erhält man für $\varphi(x) = 1$ und die Grenzen — 1 und + 1, falls $F_n(+1) = F_n(-1)$ ist, was für symmetrische x-Werte immer der Fall ist,

(48)
$$A_{k} = \frac{4x_{k}}{(1 - x_{k}^{2})^{2}} \frac{F_{n}^{2}(1)}{F_{n}^{\prime}(x_{k})} F_{n}^{\prime\prime}(x_{k}),$$

wo $F_n(x)$ der Gleichung für die Kugelfunktionen

$$(49) (x^2 - 1) F_n''(x) + 2x F_n'(x) = n(n+1) F_n(x)$$

genügen muß. Wenn die Konstante so bestimmt ist, daß $F_n(+1) = 1$ ist, wird

$$A_k = \frac{2}{(1 - x_k^2)(H_p'(x_k))^2},$$

ein Ausdruck, der sich bei $Gau\beta^{48}$), Christoffel⁵⁷), Hermite¹⁰), Tod-hunter⁴), Radau¹), Weber⁷⁶) und anderen findet. Ist n ungerade, findet man daraus für k=0

$$(51) A_0 = 2\left(\frac{2\cdot 4\cdot 6\cdots n-1}{3\cdot 5\cdots n}\right)^2.$$

Scheibner⁵⁸) schreibt (50) unter Benutzung der Formel für die hypergeometrische Reihe. Aus (11) und (50) folgt $(1-x_k^2)Z_n(x_k)F'(x_k)=2$, also

(52)
$$A_{k} = \frac{(1 - x_{k}^{2})}{2} Z_{n}^{2}(x),$$

eine Formel, die sich z. B. bei Christoffel⁵⁷), Radau¹) u. a. findet.

c) Fehlerabschätzung. Was die Genauigkeit betrifft, so gibt die Formel (38) nach Stieltjes⁸⁶) mit wachsendem n unbegrenzte Annäherung. Setzt man nämlich

$$V(x) = c_{2n}x^{2n} + c_{2n+1}x^{2n+1} + \cdots,$$

⁸⁵⁾ Bauer, Habilitationsschrift München 1858.

⁸⁶⁾ Stieltjes, Paris. C. R. 97 (1883), p. 740-742.

so wird das Korrektionsglied

(54)
$$\int_{a}^{\beta} \varphi(x) V(x) dx = \sum_{k=1}^{n} A_{k} V(x_{k}).$$

Ist V(x) für jeden Wert des betrachteten Intervalles kleiner als ε , so ist bei Beachtung von (40)

(55)
$$\sum_{1}^{n} A_{k} V(x_{k}) < \varepsilon \int_{a}^{\beta} \varphi(x) dx$$

und auch

(56)
$$\int_{a}^{\beta} V(x) \varphi(x) dx < \varepsilon \int_{a}^{\beta} \varphi(x) dx,$$

d.h. also

(57)
$$\int_{a}^{\beta} f(x) \varphi(x) dx - \sum_{i}^{n} A_{i} f(x_{i}) < 2 \varepsilon \int_{a}^{\beta} \varphi(x) dx,$$

da $\varphi(x)$ integrabel und die Reihe für f(x) konvergent ist, kann man mit wachsendem n den Fehler beliebig klein machen. Um die Größe des Fehlers abzuschätzen, geht man nach $Markoff^{66}$), $Posse^{75}$) u. a. praktisch von dem Fehlerglied der $Hermiteschen^{67}$) Interpolationsformel aus. Ist $\Phi(x)$ eine ganze Funktion vom Grade σ , die für z_1 mit $f(z_1)$ nebst den $\alpha-1$ ersten Ableitungen, für z_2 mit $f(z_2)$ nebst den $\beta-1$ ersten Ableitungen usw. übereinstimmt, so ist

(58)
$$f(x) - \Phi(x) = \frac{\psi(x)}{\alpha! \, \beta! \dots \lambda!} \int_{0}^{1} dt_{n} \int_{0}^{t_{n}} dt_{n-1} \dots \int_{0}^{t_{2}} f^{(\sigma)}(u) \, \theta \, dt_{1},$$
wo
$$\psi(x) = (x - z_{1})^{\alpha} (x - z_{2})^{\beta} \dots (x - z_{n})^{\lambda},$$

$$u = (x - z_{1})t_{1} + (z_{1} - z_{2})t_{2} \dots (z_{n-1} - z_{n})t_{n} + z_{n},$$

$$\theta = (t_{2} - t_{1})^{\alpha - 1} (t_{3} - t_{2})^{\beta - 1} \dots (1 - t_{n})^{\lambda - 1},$$

$$\sigma = \alpha + \beta + \gamma \dots \lambda$$

ist. Ableitungen dieser Formel aus der Newtonschen Interpolationsformel finden sich z. B. bei Mansion 87), Lipschitz 88) usw. Für unsern Fall, wo $\Phi(x)$ und f(x) in den 2n Werten $f(x_k) = \Phi(x_k)$ und $f'(x_k) = \Phi'(x_k)$ übereinstimmen, wird, wenn ξ ein bestimmter Mittelwert zwischen α und β ist, das Integral (58)

(59)
$$\frac{F_n^2(x)}{(2n)!} f^{(2n)}(\xi),$$

⁸⁷⁾ Mansion, Paris. C. R. 104 (1887), p. 488-490.

⁸⁸⁾ Lipschitz, Paris. C. R. 86 (1878), p. 119-121.

68 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

also wird

(60)
$$\int_{a}^{\beta} f(x) \varphi(x) dx = \sum_{k=1}^{n} A_{k} f(x_{k}) + \frac{f^{(2n)}(\xi)}{(2n)!} \int_{a}^{\beta} F_{n}^{2}(x) \varphi(x) dx;$$

ist im Intervall α bis β $m < f^{(2n)}(\xi) < M$, so liegt die Korrektion zwischen

(61)
$$\frac{M}{2n!} \int_{-\pi}^{\beta} F_n^2(x) \varphi(x) dx \quad \text{und} \quad \frac{m}{(2n)!} \int_{-\pi}^{\beta} F_n^2(x) \varphi(x) dx,$$

eine Formel, die z. B. Markoff 66.89), Possé 75), Deruyts 90), der sie durch Verallgemeinerung der Betrachtungen von Mansion 92) ableitet, Teixeira 91) geben.

Ändert f(x) in dem Intervall das Vorzeichen nicht, so hat man damit das Vorzeichen der Korrektion gefunden. Für $\varphi(x) = 1$ folgt aus obiger Gleichung

(62)
$$\frac{(\beta - \alpha)^{2n+1}}{2n+1} \left[\frac{n!}{(n+1)(n+2)\cdots 2n} \right]^{2} \frac{f^{(2n)}(\xi)}{(2n)!},$$

ein Ausdruck, den man bei *Scheibner* ¹⁸), *Markoff* ⁶⁶), *Mansion* ⁹²), der ihn mittels der *Ampère* schen Interpolationsfunktion ableitet, *Raffy* ⁹³) u. a. findet.

Von der (15) gegebenen Form des Fehlergliedes geht $Jacobi^7$) aus und findet für $\varphi(x)=1$

$$(63) \int_{0}^{1} F_{n}(x) Q(x) dx = \frac{(-1)^{n} n!}{(2n)!} \int_{0}^{1} (1-x)^{n} x^{n} \frac{d^{n} Q(x)}{dx^{n}} dx$$

$$= \frac{(n!)^{2}}{(2n)!} \int_{0}^{1} \int_{0}^{x} \cdots \int_{0}^{x} x^{n} \frac{d^{n} Q}{dx^{n}} dx^{n+1}$$

$$= \frac{(n!)^{4}}{(2n!)^{2}} \left\{ A' c_{2n} + \left(\frac{(n+1)^{2}}{1 \cdot (2n+2)} A' + A'' \right) c_{2n+1} + \left(\frac{(n+1)^{2}(n+2)^{2}}{1 \cdot 2(2n+2)(2n+3)} A' + \frac{(n+1)^{2}}{1 \cdot (2n+2)} A'' + A''' \right) c_{2n+1} \dots \right\},$$

89) Markoff, Sur quelques applications des fractions continues algébriques, St. Pétersbourg 1884.

90) Deruyts, Bull. de la société mathématique de France 14 (1885—86), p. 151—56.

91) Teixeira, Annaes scientificos da Academia Polytechnica do Porto 5 (1910), p. 220—223.

92) Mansion, Société des sciences de Bruxelles 15 A (1891), p. 57-59. Paris. C. R. 102 (1886), p. 412-415. Bull. de l'Acad. royale de Belgique (3) 11 (1886), p. 293-307. Bericht darüber von Catalan ebendort p. 270-73.

93) Raffy, Nouv. ann. (3) 15 (1896), p. 249-262.

wo die A', A'' . . . die Zähler von x^{-n} , x^{-n-1} usw. in der Entwicklung von $\frac{1}{F_n(x)}$ sind, sich also aus den Gleichungen

$$1 = A', \quad 0 = A' \frac{n^2}{1 \cdot 2n} + A'', \quad 0 = A' \frac{n^2(n-1)^2}{1 \cdot 2 \cdot 2n(2n-1)} - A'' \frac{n^2}{2n} + A''',$$

usw. bestimmen. Zu einem ganz ähnlichen Resultat kommen $Heine^{12}$) und $Todhunter^4$) für die Grenzen — 1 und + 1, wobei ersterer von der erzeugenden Fehlerfunktion (17) bzw. (32) ausgeht. Sie finden für $\varphi(x) = 1$

$$(64) \, R_{\mathbf{n}}(\mathbf{z}) = \frac{2}{2\,n+1} \left[\frac{n!}{1\cdot 3\cdots (2\,n-1)} \right]^2 \mathbf{z}^{-2n-1} \frac{F\left(\frac{1}{2} + \frac{1}{2}\,n,\, 1 + \frac{1}{2}\,n,\,\,\frac{3}{2} + n,\,\frac{1}{z^2}\right)}{F\left(\frac{1}{2} - \frac{1}{2}\,n,\, -\frac{1}{2}\,n,\,\,\frac{1}{2} - n,\,\frac{1}{z^2}\right)},$$

die Fehlerglieder werden also

$$\begin{split} c_{2n}\delta_{2n} + c_{2n+2}\delta_{2n+2} \cdots &= \frac{2}{2n+1} {\begin{bmatrix} n! \\ 3 \cdot 5 \cdots (2n-1) \end{bmatrix}}^2 \cdot \\ & \left[c_{2n} + \frac{1}{2} \left(\frac{(n+1)(n+2)}{2n+3} + \frac{n(n-1)}{2n-1} \right) c_{2n+2} \cdots \right]. \end{split}$$

Callendreau⁹⁴) gibt einen Ausdruck für das Fehlerglied für den Fall, daß $\omega = \frac{c_{2\,m}+1}{c_{2\,m}}$ mit wachsendem m bei gleichbleibendem Zeichen abnimmt. In diesem Falle ist der Ergänzungsterm

(65)
$$< c_{2,n} x^{2n} (\varepsilon + \varepsilon' \omega x + \varepsilon'' \omega^2 x^2 \ldots).$$

Unter Benutzung einer zu (64) analogen und einer anderen von $Gau\beta^{95}$) gegebenen Formel findet er, wenn er $\omega x = \frac{4y}{1+y^2}$ setzt, für den Rest

$$(66) 2\pi e_{2n} \left(\frac{y}{\omega}\right)^{2n+1}.$$

Liwenzoff⁹⁶) geht von der Formel (26)

$$\int_{z-x}^{\beta} \frac{\varphi(x)}{x-x} \, dx = \frac{Z_n(z)}{F_n(z)} + R_n(z)$$

aus, multipliziert dieselbe mit f(z) und integriert über einen Kreis, dessen Radius ϱ größer ist als der Modul der größten Wurzel von $F_n(z)$. Unter Anwendung des Satzes von den Residuen und Beach-

⁹⁴⁾ Callandreau, Paris. C. R. 90 (1880), p. 1067-1069.

⁹⁵⁾ $Gau\beta$, Disquisitiones generales circa seriem infinitam etc. Commentationes regiae societatis scientiarum Gottingensis recentiores 2 (1813). Abgedruckt: Gesammelte Werke 3, p. 123—166.

⁹⁶⁾ Liwenzoff, Math. Sammlung, herausgegeben von der Moskauer math. Gesellschaft 9 (1878), p. 569—573.

70 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

tung von (32) erhält er

(67)
$$2i\pi \int_{0}^{3} \varphi(x)f(x)dx = 2i\pi \sum_{i=1}^{n} \frac{Z_{n}(x_{i})}{F'_{n}(x_{i})}f(x_{i}) + \int_{2}^{3} \frac{f(z)}{F_{n}(z)}dz \int_{0}^{3} \frac{f'(x)\varphi(x)dx}{z-x}$$

Da mod $\frac{1}{z-x} < \frac{1}{\varrho-x}$, so wird im Rest $2i\pi \Delta$, wenn man

(68)
$$\int_{0}^{\beta} \frac{F_{n}(x)\varphi(x)}{z-x} dx = m \int_{0}^{\beta} \int_{0}^{\beta} \frac{\varphi(x)}{z-x} dx$$

setzt und mit M den Maximalwert von f(z) und mit μ einen Mittelwert von $F_n(z)$ bezeichnet,

(69)
$$\mod \Delta < \frac{\varrho Mm}{\mu} \int_{0}^{\sqrt{2}} \frac{\varphi(x)}{\varrho - x} dx.$$

Callendreau⁹⁷) formt das Restglied in (67) durch n-malige partielle Integration für den Fall q(x) = 1 und die Grenzen 0 und 1 um in

(70)
$$\Delta = (-1)^n \int_{-T_n(z)}^{1} f(z) dz \int_{-T_n(z)}^{1} \frac{[x(x-1)]^n}{(z-x)^{n+1}} dx,$$

woraus sich ergibt

(71)
$$2\pi \varrho M \int_{0}^{1} \frac{(x(x-1))^{n} dx}{(\varrho-x)^{n+1}},$$

wo M das Maximum des Moduls von f(z) auf dem Kreise mit dem Radius ϱ ist.

Zum Schluß sei noch darauf hingewiesen, daß man die $Gau\beta$ sche Quadraturformel nach $Heun^{56}$) u. ⁹⁸) nicht nur zur numerischen Berechnung eines bestimmten Integrales, sondern auch zur angenäherten Darstellung physikalischer Gesetze verwenden kann. Auch zeigt $Heun^{56}$), wie man die $Gau\beta$ schen Formeln anwenden kann zur Berechnung der Integrale, die auftreten, wenn man nach der Methode der Variation der Konstanten von dem Integral der homogenen linearen Differentialgleichung zu dem der nicht homogenen übergehen will.

Von weitern Arbeiten über die Gaußsche Formel seien noch die von Hall ⁹⁹), Kubicek ¹⁰⁰), Maurer ¹⁴¹) und besonders die von Biermann erwähnt, der die verschiedenen Quadraturmethoden vom Stand-

⁹⁷⁾ Callendreau, Comptes rendues 84 (1877), p. 1225-1227.

⁹⁸⁾ Heun, Nachrichten der kgl. Wissenschaften zu Göttingen 1891, p.154-58.

⁹⁹⁾ Hall, The Analyst 3 (1876), p. 1-10.

¹⁰⁰⁾ Kubicek, Programm Neuhaus 1910, p. 3-19.

punkt der Theorie der kleinsten Quadrate aus betrachtet. Er findet, daß der Fehler für die $Gau\beta$ schen Abszissenwerte einen Extremwert, der jedenfalls kein Maximum ist, annimmt.³⁸⁰)

- 4. Spezielle Fälle der Gaußschen Formel. Dem $\varphi(x)$ hat man mannigfache Werte gegeben, von denen die wichtigsten hier besprochen werden sollen.
- a) Der ursprünglich von $Gau\beta$ behandelte wichtigste Fall ist $\varphi(x)=1$, der in der vorhergehenden Nummer schon erörtert ist. Abszissen, Koeffizienten und Korrektionsglieder für diesen Fall finden sich unter andern bei $Gau\beta^{48}$) selbst für die Grenzen 0 und 1 bis zu 7 Termen auf 16 Dezimalen, bei $Heine^{12}$) für die Grenzen -1 und +1 ebenfalls bis zu 7 Termen auf 16 Dezimalstellen, bei $Radau^1$) u. 101) für die Grenzen 0 und 1 wie für -1 und +1 bis zu 10 Termen auf 8 bzw. 10 Dezimalstellen. Bei $Perrot^{102}$) für die Grenzen 0 und 1 für 8, 9 und 10 Terme auf 16 Dezimalstellen, bei $Moors^{38}$) für die Grenzen -1 und +1 bis zu 10 Termen auf 16 Dezimalstellen. $Bertrand^{103}$) gibt bis zu 6 Termen Abszissen und Koeffizienten für die Grenzen 0 und +1. Für dieselben Grenzen finden diese Größen sich auf 16 Dezimalen bei $Todhunter^4$).

Die Fehlerbetrachtungen der vorhergehenden Nummer nehmen an, daß die Wurzeln mit beliebiger Genauigkeit bei der Berechnung der Funktionswerte benutzt werden können. Oft ist das nicht der Fall, sondern man kann aus praktischen Gründen die Wurzeln nur bis zu einer beschränkten Anzahl Dezimalstellen benutzen. Dann sind natürlich im allgemeinen die Formeln von Nr. 3 nicht genauer als die von Nr. 2. $Moors^{38}$) hat nun Formeln so bestimmt, daß er n-2 Werte x aus den $Gau\beta$ schen Tafeln bis auf 8 Dezimalen entnimmt, die übrigen 2 auch bis auf 8 Dezimalen nach den in nächster Nummer angegebenen Methoden so bestimmt, daß der Fehler möglichst klein wird. Von den möglichen Fällen gibt er bis zu 8 Termen in den günstigsten die Abszissen, Koeffizienten und Korrektionsglieder an. In letztere gehen zwar dieselben Glieder der Entwicklung von f(x) ein, wie bei Newton und MacLaurin, aber die Faktoren dieser Glieder sind hier wesentlich kleiner. Neuerdings¹⁰⁴) geht Moors sogar noch

¹⁰¹⁾ Radau, Paris C. R. 90 (1880), p. 913-915.

¹⁰²⁾ Perrot, Quarterly Journ. 25 (1891), p, 200-202.

¹⁰³⁾ Bertrand, Calcul intégral, Paris 1870, p. 331-352.

¹⁰⁴⁾ Moors, Verhandlingen der Koninklijke Akademie van Wetenschappen te Amsterdam (I Sectie) Deel XI, Nr. 6 (43 p.) 1913. Bericht darüber von Kaptein und Kluyver: Verslag van de Gewone Vergaderingen van de wis-en natuurkundige

weiter, rundet auf 2 Dezimalen ab und sucht durch die Anzahl der benutzten Ordinaten die Genauigkeit zu erhöhen. Insbesondere wenn die ersten Glieder der Entwicklung von f(x) verschwinden, sind die letzten Dezimalen der Abszissenwerte ohne Wert.

b) Ein anderer Fall wird von Mehler 105) behandelt. Er setzt $\alpha=-1$, $\beta=+1$ und $\varphi(x)=(1-x)^{\lambda}(1+x)^{\mu}$, wo $\lambda>-1$, $\mu>-1$ sein muß. Dann sind die x_k nach (34) Wurzeln der Gleichung

(72)
$$F_n(x) = \frac{\Gamma(n+\lambda+\mu)}{\Gamma(2n+\lambda+\mu)} (1-x)^{-\lambda} (1+x)^{-\mu} \frac{d^n (1-x)^{n+\lambda} (1+x)^{n+\mu}}{dx^n} = 0,$$

und der allgemeine Ausdruck (9) für A_k läßt sich umformen in

(73)
$$A_k = \frac{2^{2n+\lambda+\mu+1}}{(1-x_k^2)(F'(x_k))^2} \frac{\Gamma(n+\lambda)\Gamma(n+\mu)\Gamma(n)\cdot\Gamma(n+\lambda+\mu)}{[\Gamma(2n+\lambda+\mu)]^2}.$$

 $Heine^{12}$) betrachtet denselben Fall für die Grenzen 0 und 1 und findet $F_n(z)$ aus der Kettenbruchentwicklung

(74)
$$\sigma = \int_{0}^{1} \frac{z^{\mu}(1-z)^{\lambda}}{x-z} dz = \frac{1}{x} \frac{\Gamma(\lambda+1) \Gamma(\mu+1)}{\Gamma(\mu+\lambda+2)} F(1, \mu+1, \mu+\lambda+2, \frac{1}{x}),$$

deren Näherungsnenner

(75)
$$F_n(x) = x^n F(-n, -n - \mu, -2n - \lambda - \mu, \frac{1}{x})$$

sind, während das Restglied sich bestimmen läßt aus

(76)
$$R_{n}(x) = \frac{\Gamma(n+\lambda+1)\Gamma(n+\mu+1)\Gamma(n+\mu+\lambda+1)\Gamma(n+1)}{\Gamma(2n+\mu+\lambda+2)\Gamma(2n+\mu+\lambda+1)} \frac{1}{x^{n+1}F_{n}(x)} \cdot F(n+1, n+\lambda+1, 2n+\mu-\lambda+2, \frac{1}{x}).$$

c) Der wichtigste Spezialfall obiger Formel, den Mehler schon betrachtet, und der eingehend von Tschebyscheff ¹⁰⁶) und Hermite ¹⁰⁷) u. ¹⁰) behandelt ist, ist $\lambda = \mu = -\frac{1}{2}$, also $\varphi(x) = \frac{1}{\sqrt{1-x^2}}$. Die Gleichung (72) kann man nach Hermite in diesem Falle ersetzen durch $F_x(x) = 2^{1-n} \cos(n \arccos x) = 0$,

während Tschebyscheff 106) den Ausdruck in der Form gibt

(78)
$$F_{n}(x) = E e^{n \lg \frac{x - \sqrt{x^{2}} - 1}{2}}.$$

Afdeeling: Koninlijke Akademie van Weetenschappen te Amsterdam 21 (1912), p. 527-29.

105) Mehler, Journ. f. Math. 63 (1863), p. 152-157.

106) Tschebyscheff, Journ de math. (2) 19 (1874), p. 19-34.

107) Hermite, Math. Ann. 10 (1876), p. 287-288.

 $Berger^{15})$ zeigt, daß die sukzessiven \boldsymbol{F}_n sich aus der Gleichung

(79)
$$F_{n+1}(x) = 2xF_n(x) - F_{n-1}(x)$$

berechnen lassen. Er gibt für diesen Fall die Formeln bis n=4. Die Koeffizienten werden alle untereinander gleich

$$A_k = \frac{\pi}{n}.$$

Posse⁷⁵), der das F_n mit Hilfe der Kettenbruchentwicklung

(81)
$$\int_{-1}^{+1} \frac{dy}{\sqrt{1-y^2(z-y)}} = \frac{\pi}{z-\frac{1}{2z-\frac{1}{2z-1}}}$$

findet, zeigt, daß man bei gleichen Koeffizienten nur in diesem Falle den Genauigkeitsgrad 2n-1 erreichen kann.

Des öfteren kommt man zu diesen Formeln dadurch, daß man von einer Entwicklung von f(x) in eine Fourierreihe ausgeht. Ist

(82)
$$y = a_0 + a_1 \cos x + a_2 \cos 2x + \dots + a_m \cos mx + \dots,$$

 $+ b_1 \sin x + b_2 \sin 2x + \dots + b_m \sin mx + \dots,$

so kann man z. B. wie Baillaud, der sowohl den Fall gerader ⁵⁹) wie ungerader ¹⁰⁸) n behandelt, von einer von $Gau\beta^{109}$) aufgestellten Interpolationsformel

(83)
$$y = \sum_{1}^{n} \frac{\sin \frac{x - x_{1}}{2} \sin \frac{x - x_{2}}{2} \cdots / \cdots \sin \frac{x - x_{n}}{2}}{\sin \frac{x_{k} - x_{1}}{2} \sin \frac{x_{k} - x_{2}}{2} \cdots / \cdots \sin \frac{x_{k} - x_{n}}{2}} y_{k}$$

ausgehen, wo der Rest den Faktor

(84)
$$\sin \frac{x-x_1}{2} \sin \frac{x-x_2}{2} \cdots \cdots \sin \frac{x-x_n}{2}$$

hat. Will man nun die Genauigkeit steigern, so kann man, da

$$\int_{0}^{2\pi} y \, dx = \int_{0}^{2\pi} a_0 \, dx$$

ist, noch weiter die Glieder mit den Koeffizienten von a_m bis a_{2m-1} und b_m bis b_{2m-1} zum Verschwinden bringen. Für die Abszissenwerte x_r erhält man daraus die Gleichung

$$(85) z^n - a = 0,$$

wo $z = e^{ix}$ ist. Setzt man a gleich einer Größe mit dem Modul 1,

¹⁰⁸⁾ Baillaud, Annales de l'Observatoire de Toulouse 2 (1887), p. 1-36.

¹⁰⁹⁾ $Gau\beta$, Theoria Interpolationis Methodo nova tractata; Gesammelte Werke, Bd. 3, p. 265-330.

74 II C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

so sind also

(86)
$$x_1 = \frac{\theta}{n}, x_2 = \frac{\theta}{n} + \frac{2\pi}{n}, x_3 = \frac{\theta}{n} + 2\frac{2\pi}{n}, ..., x_n = \frac{\theta}{n} + (n-1)\frac{2\pi}{n}$$

 θ kann man noch so bestimmen, daß irgend eine Bedingung erfüllt wird. Andere Ableitungen finden sich in einer andern Arbeit von $Baillaud^{110}$) sowie bei $Daucidoff^{111}$). Ist y eine gerade Funktion, so hat man in der Entwicklung nur die Glieder mit a_i . Dann ist also

(87)
$$\int_{0}^{2\pi} f(\cos z) dz = \frac{\pi}{m} \sum_{1}^{m} f\left[\cos\left(\frac{\theta}{2m} + k\frac{\pi}{m}\right)\right].$$

Führt man hierin $\theta = 0$ und $z = \arccos x$ ein, so wird, da

$$\int_{0}^{\pi} = \int_{\pi}^{2\pi}$$

ist, das Integral

$$\int_{-1}^{+1} \frac{f(x) dx}{\sqrt{1-x^2}}.$$

Das ist aber gerade die oben betrachtete Form. Mehler 105) gibt dem θ den Wert π , die Astronomen wählen gewöhnlich $\theta=0^{112}$). Der Fehler hat allgemein die Form

(88)
$$\Delta = -\sum_{1}^{\infty} (2\pi a_{m,2n} \cos m\theta + 2\pi b_{m,2n} \sin m\theta).$$

Deruyts 90) und Markoff 178) geben nach (61) als Restglied

(89)
$$\frac{f^{(2n)}(\xi)}{(2n)!} \frac{\pi}{2^{2n-1}},$$

während Livenzoff 96) nach (69) gibt

$$\pmod{\Delta} < \frac{\pi M\varrho}{u \sqrt{\varrho^2 - 1}}.$$

Tisserand 113) verallgemeinert diese Betrachtungen auf den Fall einer geraden periodischen Funktion von zwei Variabeln.

d) Ein anderer in der *Mehler* schen Formel enthaltener Spezialfall ist $\alpha = -1$, $\beta = +1$ und $\varphi(x) = \sqrt{1-x^2}$, d. h. $\lambda = \mu = \frac{1}{2}$.

¹¹⁰⁾ Baillaud, Paris C. R. 90 (1880), p. 974-976.

¹¹¹⁾ Davidoff, Journ. de math. (3) 8 (1881), p. 389-412.

¹¹²⁾ Bruns, Grundlinien des wissenschaftlichen Rechnens, Leipzig 1903, § 81.

¹¹³⁾ Tisserand, Paris C. R. 68 (1869), p. 1101-1104.

Nach Hermite¹⁰) ist in diesem Falle (vgl. (34))

(91)
$$F_n(x) = \frac{(-2)^{-n} (n+1)}{1 \cdot 3 \cdot 5 \cdots (2n+1) \sqrt{1-x^2}} \frac{d^n}{dx^n} (1-x^2)^{n+\frac{1}{2}},$$

was bis auf einen Faktor übereinstimmt mit

(92)
$$F_n(x) = 2^{-n} \frac{\sin((n+1)\arccos x)}{1/1 - x^2}.$$

Diesen Ausdruck kann man nach $Poss\acute{e}^{74}$) u. 75) auch als Näherungsnenner des Kettenbruches

(93)
$$\int_{-1}^{+1} \frac{\sqrt{1-x^2}}{z-x} dx = \frac{\pi}{z+\sqrt{z^2-1}} = \frac{\pi}{2z-\frac{1}{2z-\frac{1}{2z-1}}}$$

erhalten. Nach $Berger^{15}$) genügt dieses $F_n(x)$ auch der Gleichung (79). $Moors^{38}$) behandelt diesen Fall elementar unter Benutzung der Gleichungen (7). Man erhält hier die Formel

(94)
$$\int_{-1}^{+1} f(x) \sqrt{1-x^2} dx = \frac{\pi}{n+1} \sum_{1}^{n} \sin^2 \frac{k\pi}{n+1} f(\cos \frac{k\pi}{n+1})$$
$$= \frac{\pi}{n+1} \sum_{1}^{n} (1-x_k^2) f(x_k),$$

bis zum Werte n=4 finden sich die Zahlenwerte bei $Berger^{15}$).

e) $Posse^{75}$) behandelt noch einen andern Spezialfall der Mehlerschen Formeln. Er setzt $\lambda=\frac{1}{2}$, $\mu=-\frac{1}{2}$, also wird $F_n(x)$ hier Näherungsnenner des Kettenbruchs

(95)
$$\int_{-1}^{+1} \sqrt{\frac{1-x}{1+x}} \frac{dx}{z-x} = \pi \left(1 - \sqrt{\frac{z-1}{z+1}}\right) = \frac{2\pi}{2z+1 - \frac{1}{2z-\frac{1}{2z-1}}},$$

und zwar wird, wenn man $z = \cos \omega$ setzt,

(96)
$$F_n(z) = \frac{\sin \frac{2n+1}{2}\omega}{\sin \frac{\omega}{2}}, \quad z_k = \cos \frac{2k\pi}{2n+1};$$

man erhält so die Formeln

$$(97) \int_{-1}^{+1} \sqrt{\frac{1-x}{1+x}} f(x) dx = \frac{2\pi}{2n+1} \sum_{1}^{n} \left(1 - \cos\frac{2\pi\pi}{2n+1}\right) f\left(\cos\frac{2\pi\pi}{2n+1}\right)$$
$$= \frac{2\pi}{2n+1} \sum_{1}^{n} (1-x_k) f(x_k).$$

f) Heine 12) betrachtet weiter noch den Fall

$$\varphi(x) = \sqrt{x(x-\alpha)(x-\beta)},$$

wo die Koeffizienten von $F_n(x)$ ganze Funktionen eines Quotienten aus einem ganzen elliptischen Integral erster und einem zweiter Gattung werden. Die $F_n(x)$ genügen einer linearen Differentialgleichung zweiter Ordnung. Auch *Christoffel* ⁶⁸) erwähnt diesen Fall. Weiter weist letzterer noch auf $\varphi(x) = x$ hin, wo nur gerade n in Betracht kommen, da

$$F_{2n}(x) = F_{2n+1}(x) = \frac{1}{x} P_{2n+1}(x)$$

wird, ferner auf $\varphi(x) = |x|$ und $\varphi(x) = \frac{1}{x^2 + a^2}$. Den Fall $\varphi(x) = x^2$ behandelt *Moors*³⁸) elementar auf Grund der Gleichung (7).

g) Gourier 114), Gram 114a) und Deruyts 115) betrachten den Fall

$$\alpha = -\infty$$
, $\beta = +\infty$, $\varphi(x) = e^{-x^2}$.

Hier ist

(98)
$$F_n(x) = U_n(x) = e^{x^2} \frac{d^n}{dx^n} e^{-x^2},$$

also bis auf einen konstanten Faktor das sogenannte Polynom von *Hermite*¹¹⁶). Nach *Deruyts*¹¹⁵) erhält man hier

(99)
$$\int_{-\infty}^{+\infty} e^{-x^2} f(x) dx = 2^{n+1} n! \sqrt{\pi} \sum_{1}^{n} \frac{f(x_k)}{(F'_n(x_k))^2}.$$

Bis zu n = 4 gibt $Berger^{15}$) die Zahlwerte.

h) Anknüpfend an Gourier behandelt Radau 117) den Fall

$$\alpha = 0$$
, $\beta = \infty$, $\varphi(x) = e^{-x}$.

Hier ist

$$F_n(x) = (-1)^n e^x \frac{d^n}{dx^n} (e^{-x} x^n) = 1 - nx$$

$$+ \frac{n(n-1)}{1 \cdot 4} x^2 - \frac{n(n-1)(n-2)}{1 \cdot 4 \cdot 9} x^3 \dots$$

Radau gibt die Koeffizienten in der Form

$$A_{\mathbf{k}} = \frac{1}{F_n'(\mathbf{x_k})} \, E\big(F_n(\mathbf{x_k}) \, e^{-\mathbf{x_k}}\big).$$

Für den allgemeineren Fall

$$\varphi(x) = e^{-x} x^{p-1}$$

¹¹⁴⁾ Gourier, Paris C. R. 97 (1883), p. 79-82.

^{114&}lt;sup>a</sup>) Gram, Tidsskrift for Mathematik (5) 1 (1884), p. 65-72.

¹¹⁵⁾ Deruyts, Bull. de l'Acad. royale de Belgique (3) 11 (1886), p. 307—311. Bericht darüber von Le Paige, ebendort p. 279—80.

¹¹⁶⁾ Hermite, Paris C. R. 58 (1864), p. 93-100; 266-273.

¹¹⁷⁾ Radau, Paris C. R. 97 (1883), p. 157-158.

findet Deruyts 115)

$$F_n(x) = e^x x^{1-p} \frac{d^n}{dx^n} (e^{-x} x^{n+p-1}).$$

Hier findet man

(100)
$$\int_{0}^{\infty} e^{-x} x^{p-1} f(x) dx = n! (n+p-1)! \sum_{1}^{n} \frac{f(x_k)}{x_k [F'_n(x_k)]^2}.$$

Ähnliche Formeln finden sich bei Sonine¹¹⁸).

5. Verallgemeinerungen der Methode von Gauß. a) Formeln von August. Die Ansätze von $Gau\beta$ erweitert $August^{60}$) auf den Fall, wo

(101)
$$\varphi(x) = 1$$
, $f(x) = c_1 x^{\mu - 1} + c_2 x^{\mu - 1 + \delta} + c_3 x^{\mu - 1 + 2\delta}$

ist (μ und δ positive sonst beliebige Zahlen). Setzt man

$$x = h \sqrt[d]{\xi}, \quad \frac{\mu}{\delta} = \varepsilon, \quad c_{\epsilon} h_{\epsilon}^{(\epsilon-1)\delta} = \gamma_{\epsilon},$$

so wird

$$\bar{f}(\xi) = h^{\mu - 1} \xi^{\epsilon - \frac{1}{\delta}} (\gamma_1 + \gamma_2 \xi + \gamma_3 \xi^2 + \cdots) = h^{\mu - 1} \xi^{\epsilon - \frac{1}{\delta}} \bar{f}(\xi).$$

Durch Übertragung der Entwicklung von $Jacobi^7$) findet er für die Grenzen 0 und 1

(102)
$$F_n(\xi) = \frac{\xi^{1-\varepsilon}}{(\varepsilon - 1 + 2n)(\varepsilon - 2 + 2n)\dots(\varepsilon - n)} \frac{d^n \left[\xi^{\varepsilon - 1 + n} (\xi - 1)^n\right]}{d \xi^n}.$$

Noch auf zwei andern Wegen leitet August die Gleichung für $F_n(\xi)$ ab; der eine entspricht dem von $Scheibner^{58}$) gegebenen, beim andern folgert er aus

$$\sum_{1}^{n} \gamma_{i} = \frac{1}{\varepsilon}, \quad \sum_{1}^{n} \gamma_{i} \xi_{i} = \frac{1}{\varepsilon + 1}, \quad \sum_{1}^{n} \gamma_{i} \xi_{i}^{2} = \frac{1}{\varepsilon + 2}, \dots, \quad \sum_{1}^{n} \gamma_{i} \xi_{i}^{2n-1} = \frac{1}{\varepsilon + 2n - 1}$$
 die n Gleichungen

(103)
$$\begin{vmatrix} 1 & 1 & \dots & 1 & \frac{1}{\varepsilon + \varkappa} \\ \xi_1 & \xi_2 & \dots & \xi_n & \frac{1}{\varepsilon + \varkappa + 1} \\ \dots & \dots & \dots & \dots \\ \xi_1^n & \xi_2^n & \dots & \xi_n^n & \frac{1}{\varepsilon + \varkappa + n} \end{vmatrix} = 0 \qquad \varkappa = (0, 1, 2, \dots, n-1).$$

Nun sind die § Wurzeln der Gleichung

(104)
$$\begin{vmatrix} 1 & 1 & \dots & 1 & 1 \\ \xi_1 & \xi_2 & \dots & \xi_n & \xi \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \xi_1^n & \xi_2^n & \dots & \xi_n^n & \xi^n \end{vmatrix} = 0.$$

¹¹⁸⁾ Sonine, Warschauer Nachrichten 1887, p. 1-76.

Entwickelt er diese n Gleichungen (103) und (104) nach Elementen der letzten Spalte, so erhält man als Lösung der entstehenden n Gleichungen

(105)
$$F_n(\xi) = \begin{vmatrix} 1 & \xi & \dots & \xi^n \\ \frac{1}{\varepsilon} & 1 & \dots & \frac{1}{\varepsilon+n} \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ \frac{1}{\varepsilon+n-1} & \frac{1}{\varepsilon+n} & \dots & \frac{1}{\varepsilon+2n-1} \end{vmatrix} = 0.$$

Die Wurzeln dieser Gleichung sind alle reell, voneinander verschieden und liegen zwischen 0 und 1. Der Rest hat nach August⁶⁰) die Form

$$(106) \ \Delta = \frac{h^{n+2\,n\,\delta}}{\delta} \left[\gamma_{2\,n+1} \left(\frac{1}{\varepsilon + 2\,n} - B_{2\,n} \right) + \gamma_{2\,n+2} \left(\frac{1}{\varepsilon + 2\,n + 1} - B_{2\,n+1} \right) \dots, \right.$$

$$\begin{split} B_{2\,n} - \frac{\varepsilon + n - 1}{\varepsilon + 2\,n - 1} \binom{n}{1} \frac{1}{\varepsilon + 2\,n - 1} \\ & \dots (-1)^n \frac{(\varepsilon + n - 1)\,(\varepsilon + n - 2)\dots\varepsilon}{(\varepsilon + 2\,n - 1)\,(\varepsilon + 2\,n - 2)\dots(\varepsilon + n)} \binom{n}{n} \frac{1}{\varepsilon + n} = 0, \\ B_{2\,n + 1} - \frac{\varepsilon + n - 1}{\varepsilon + 2\,n - 1} \binom{n}{1} B_{2\,n} + \frac{(\varepsilon + n - 1)\,(\varepsilon + n - 2)}{(\varepsilon + 2\,n - 1)\,(\varepsilon + 2\,n - 2)} \binom{n}{2} \frac{1}{\varepsilon + 2\,n - 1} \\ & \dots (-1)^n \frac{(\varepsilon + n - 1)\,(\varepsilon + n - 2)\dots\varepsilon}{(\varepsilon + 2\,n - 1)\,(\varepsilon + 2\,n - 2)\dots(\varepsilon + n)} \binom{n}{n} \frac{1}{\varepsilon + n + 1} = 0 \end{split}$$

ist. Vorzüge hat die Methode erstens für große Werte von μ , d. h. wenn die ersten Glieder der Taylorschen Reihe fehlen und zweitens, wenn δ nicht gleich 1 ist. Z. B. braucht man für $\mu=2$, $\delta=2$, also für ungerade Funktionen im allgemeinen bei gleicher Annäherung nur die Hälfte der Funktionswerte, die $Gau\beta$ nötig hat. Ähnliche Fälle behandelt $Radau^1$) und eine von Pujet der Faculté des sciences 1878 vorgelegte These.

b) Verallgemeinerung von Christoffel. Eine andere Verallgemeinerung rührt von Christoffel 57) her. Er nimmt an, daß für die Werte x_1, x_2, \ldots, x_r die Funktionswerte gegeben sind, und daß nun weitere n Abszissen $x_{r+1}, x_{r+2}, \ldots, x_{r+n}$ so zu suchen sind, daß die Annäherung bei Benutzung der zugehörigen n+r Funktionswerte möglichst gut werde. Damit hat man die Möglichkeit, bei Integration einer gegebenen Funktion alle Vorteile zu vereinen, die aus der Berücksichtigung ihres numerischen Verlaufs $(x_1, x_2, \ldots, x_r$ kann man so wählen, daß f(x) dort besonders leicht zu berechnen ist, oder solche Werte hat, deren Einfluß auf das Integral als sehr groß zu erwarten ist) und der Verwendung der $Gau\beta$ schen Methode entspringen.

Setzt man die Kettenbruchentwicklung von

(107)
$$\int_{a}^{\beta} \varphi(x) \prod_{i=1}^{n} (x - x_{i}) - \frac{1}{z - x} dx$$

an, so folgt ähnlich wie oben, daß der Kettenbruch regulär ist. Bezeichnet man den n^{ten} Näherungsnenner und -zähler mit $N_n(z)$ bzw. $\overline{Z}_n(z)$, so folgt, daß

(108)
$$\int_{a}^{\beta} \varphi(x) \prod_{i=1}^{n} (x - x_i) N_n(x) \theta_{n-1}(x) dx = 0,$$

wo $\theta_{n-1}(x)$ irgendeine ganze rationale Funktion $(n-1)^{\text{ten}}$ Grades von x ist. Wählen wir also die n Wurzeln von $N_n(z)$, die, falls die Quadratur ausführbar sein soll, reell alle verschieden sein und zwischen α und β liegen müssen als Abszissen $x_{r+1}, x_{r+2}, \ldots, x_{r+n}$, so haben wir den Genauigkeitsgrad r+2n erreicht. Man gewinnt so die Darstellung

(109)
$$\int_{a}^{\beta} \varphi(x) f(x) dx = \sum_{1}^{n+r} \int_{a}^{\beta} \varphi(x) \frac{N_{n}(x) \prod_{k=1}^{n-r} (x - x_{k})}{(x - x_{k}) (N_{n}(x) \prod_{k=1}^{n-r} (x - x_{k}))'_{x = x_{k}}}$$

$$= \sum_{1}^{n+r} \frac{\bar{Z}_{n}(x_{t})}{(\prod_{k=1}^{n-r} (x - x_{k}) N_{n}(x))'_{x = x_{t}}} f(x_{t}) + \varepsilon,$$

 $\varepsilon = c_{2n+r} \left[\int_{\alpha}^{\beta} \varphi(x) x^{2n+r} dx - \sum_{1}^{n+r} \frac{\bar{Z}_{n}(x_{t})}{\left(\prod_{k=1}^{k=r} (x - x_{k}) N_{n}(x_{t}) \right)'_{x=x_{t}}} \cdot x_{t}^{2n+r} \right] + \cdots$

ist. Die erzeugende Fehlerfunktion ist hier

(110)
$$\frac{1}{N_{n}(z) \prod_{k=1}^{k=r} (z-z_{k})} \int_{\alpha}^{z} \frac{\prod_{k=1}^{k=r} (x-x_{k}) N_{n}(x)}{\varphi(x)^{\frac{k}{2}} \frac{1}{z-x}} dx.$$

Gegenbauer¹⁰⁹) zeigt, daß die N_n und \overline{Z}_n sich durch die F_n und Z_n der Kettenbruchentwicklung von $\int \frac{\varphi(x) dx}{z-x}$ ausdrücken lassen. Man kann jede Funktion $n+r^{\text{ten}}$ Grades nach $F_0 \dots F_{n+r}$ entwickeln.

¹¹⁹⁾ Gegenbauer, Wien Ber. 78 (1878), p. 768-778.

SO HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

Aus der Gleichung (108) folgt aber, daß in der Entwicklung von $\prod_{k=1}^{k=r} (x-x_k) \, N_n(x) \quad \text{die Funktionen} \quad F_0 \, \dots \, F_{n-1} \quad \text{nicht vorkommen}$ dürfen, also wird

(111)
$$\prod_{k=1}^{k=r} (x - x_k) N_n(x) = A F_n(x) + B F_{n+1}(x) + \dots + R F_{n+r}(x)$$

Verbindet man das mit den r Gleichungen

(112)
$$0 = AF_n(x_i) + BF_{n+1}(x_i) + \dots + RF_{n+r}(x_i)$$
 $\iota = (1, 2, \dots, r)$, so erhält man, falls die Gleichungen voneinander unabhängig sind,

$$(113) \quad \prod_{k=1}^{k=r} (x-x_k) N_n(x) = C \begin{bmatrix} F_n(x) & F_{n+1}(x) & \dots & F_{n+r}(x) \\ F_n(x_1) & F_{n+1}(x_1) & \dots & F_{n+r}(x_1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ F_n(x_r) & F_{n+1}(x_r) & \dots & F_{n+r}(x_r) \end{bmatrix}.$$

Aus dieser Gleichung läßt sich \overline{Z}_n und \overline{R}_n berechnen. Ähnlich und noch etwas allgemeiner finden sich diese Entwicklungen in einer zweiten Arbeit von Gegenbauer.¹²⁰)

Man kann auch einen Ausdruck für $\prod_{k=1}^{\kappa=r} (x-x_k)N_n(x)$ erhalten, wenn man von den aus (108) folgenden Gleichungen

(114)
$$\int_{a}^{x} \prod_{k=1}^{k=r} (x-x_{k}) N_{n}(x) \varphi(x) x^{m} dx = 0 \qquad (m=0,1,...,n-1).$$

ausgeht und für

$$N_n(x) = C_n x^n + C_{n-1} x^{n-1} + \cdots + C_0$$

setzt, woraus man durch Elimination der C nach Christoffel⁵⁷)

¹²⁰⁾ Gegenbauer, Wien Ber. 100 (1891), p. 635-703.

erhält. Transformiert man die Gleichung (114) nach $Jacobi^{7}$), so erhält man daraus

(116)
$$\prod_{1}^{n} (x - x_{k}) N_{n}(x) \varphi(x) = \frac{d^{n}}{dx^{n}} (x - u)^{n} (x - \beta)^{n} X_{r}.$$

Durch Umformung der Gleichung (113) erhält man nach Christoffel 57) für den Fall $\varphi(x) = 1$ bis auf eine Konstante

$$(117) \ X_r = \frac{d^{r+n}}{dx_1^n dx_2^n \dots dx_r^n} [(x_1 - \alpha)^n (x_1 - \beta)^n (x_2 - \alpha)^n (x_2 - \beta)^n \dots (x_r - \alpha)^n (x_r - \beta)^n]$$

$$\begin{bmatrix} x^n & x^{n-1} \dots x & 1 \\ x_1^n & x_1^{n-1} \dots x_1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ x_r^n & x_r^{n-1} \dots x_r & 1 \end{bmatrix}.$$

Man sight aus (116) sofort, daß im Falle $x_1 = \alpha$, $X_r = x - \alpha$, $x_1 = \beta$, $X_r = x - \beta$ und $x_1 = \alpha$, $x_2 = \beta$, $X_r = (x - \alpha)(x - \beta)$ ist. Ferner sieht man aus dieser Gleichung durch Anwendung des Rolleschen Satzes 78): Sind die Wurzeln von X_c alle reell und liegen zwischen α und β , so müssen auch die Wurzeln von $N_n(x)$ reell, voneinander verschieden sein und zwischen α und β liegen. Ferner sieht man, daß, wenn X, reell ist oder durch Multiplikation mit einer Konstanten reell wird, mindestens n reelle verschiedene Wurzeln zwischen α und β liegen müssen. Liegen also die gegebenen Werte außerhalb des Bereichs, oder sind sie Grenzen, so liegen die gesuchten n Wurzeln im Bereich. Weiter lassen sich folgende Sätze beweisen: Liegt eine der gegebenen Abszissen zwischen α und β , so sind alle Wurzeln von $N_{r}(x)$ reell und verschieden, und höchstens eine liegt außerhalb α und β . Liegen l der gegebenen Abszissen zwischen α und β , so sind bei geradem l höchstens l, bei ungeradem höchstens l-1 Wurzeln komplex oder fallen zu zweifachen, vierfachen usw. Wurzeln zusammen. Höchstens l liegen außerhalb des Intervalles.

Der Fall $x_1 = \alpha$ ist von $Lampe^{121}$) behandelt worden; im Fall $x_1 = \alpha$, $x_2 = \beta$ findet sich für n = 4 die Formel nebst Korrektionsglied bei $Klägel^{122}$), der sich aber nicht auf allgemeine Betrachtungen einläßt. Allgemeiner behandelt wird dieser Fall z. B. von $Turazza^{123}$),

¹²¹⁾ Lampe, Jahresber. d. Deutsch. Math.-Ver. 3 (1892 3), p. 102—106. (Bei n=4 sind versehentlich imaginäre Wurzeln angegeben.) Verh. d. Ges. Deutscher Naturforscher Nürnberg 2 (1894), p. 4—8.

¹²²⁾ Klügel, Math. Wörterbuch IV 1823, Artikel: Quadratur Nr. 145.

¹²³⁾ Turazza, Memorie dell' I. R. Istituto Veneto 5 (1855), p. 277—98. Turazza gibt an, daß nach seiner Methode auch die allgemeinere später von Christoffel behandelte Aufgabe gelöst werden kann.

der die Formeln ohne Korrektionsglied bis n=7 gibt, ferner von Catalan¹²⁴), Peano¹²⁵) u. a. In den schon öfters erwähnten Arbeiten von Radau¹) und Moors³⁸) sind die Abszissen, Koeffizienten und das Korrektionsglied bis n=11 angegeben. Die Fehlerglieder (δ) stehen in diesem Falle zu denen der $Gau\beta$ schen Formel δ in der Beziehung¹)

$$(118) \quad (\delta_{2n}) = -\frac{n+1}{n} \delta_{2n}, \quad (\delta_{2n+2}) = -\frac{(n+1)^2}{n(n+1)-1} \delta_{2n+2}.$$

Für $x = \frac{\alpha + \beta}{2}$ erhält man die $Gau\beta$ schen Abszissen für ungerade n. Für $x = \alpha$. $x = \beta$, $x = \frac{\alpha + \beta}{2}$ erhält man die oben erwähnten zuerst von Turazza aufgestellten Formeln für ungerade n. Für n = 2 findet sich der letzte Fall bei $Catalan^{126}$) ohne, bei $Liyowski^{127}$) mit Restglied behandelt (s. $a.^{34}$).

c) Mehrfache Integrale. Schließlich wurde von Pujet¹²⁸) zur Bestimmung des Restgliedes der Taylorschen Reihe die Gaußsche Methode zuerst auf die Berechnung mehrfacher Integrale von Funktionen einer Veränderlichen ausgedehnt. Neuerdings hat sich Willers 129) mit diesen Fragen beschäftigt, der die Methoden von Newton-Cotes 19), die auch Merrifield²²) überträgt, die später zu erwähnende von Tschebyscheff¹⁰⁶), insbesondere aber die von Gauβ⁴⁸) auf mehrfache Integrale überträgt. Er findet, daß die meisten für einfache Integrale geltenden Sätze ihre Gültigkeit für m-fache Integrale behalten, so die über die Lage der Wurzeln: ferner läßt sich zeigen, daß alle Koeffizienten positiv sind, Betreffs der Lage der n Funktionswerte, die zur angenäherten Berechnung eines (m-1)-fachen und eines m-fachen Integrales nötig sind, ergibt sich für den Fall $\varphi(x) = 1$, daß erstere und der Funktionswert im Anfangspunkt durch die letzteren getrennt werden, so daß mit wachsendem m die Werte immer mehr um den Anfangspunkt zusammenrücken. Auch die Methoden der Restabschätzung, wie die von Jacobi⁷) oder Markoff¹⁷⁸) lassen sich entsprechend verallgemeinern. Bis zu n=3 und m=4 werden in der Arbeit Abszissen, Koeffizienten und Restglied für alle drei Methoden gegeben.

¹²⁴⁾ Catalan, Mémoire de l'Acad. royale de Belgique (in 4°) 43 (1882) (9 Seiten).

¹²⁵⁾ Peano, Atti della R. Accad. delle scienze di Torino 27 (1891—92), p. 608—12.

¹²⁶⁾ Catalan, Nouvelle correspondance mathématique 6 (1880), p. 396-402.

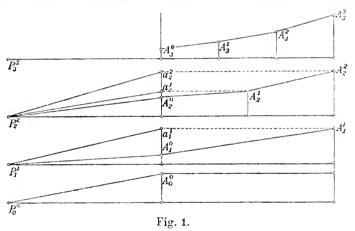
¹²⁷⁾ Ligowski, Arch. Math. Phys. 58 (1875), p. 49-83; Revue Maritime et Colon. 51 (1876), p. 159-174, ferner: Neue Näherungsformeln zur Berechnung bestimmter Integrale, Kiel 1875..

^{128]} Pujet, Paris C. R. 84 (1877), p. 1071-1073.

¹²⁹⁾ Willers, Zeitschr. Math. Phys. 1915 oder 16.

6. Methode von Massau. Massau¹³⁰) hat eine graphische Methode angegeben, die in gewisser Weise eine Übertragung der Methoden von Newton-Cotes bzw. Gauβ ins Graphische ist. Sie erlaubt durch n beliebige, eventuell mit zugehöriger Tangentenrichtung gegebene Punkte eine Parabel entsprechender Ordnung zu legen und diese für ein beliebiges Intervall beliebig oft zu integrieren.

Ist P_i ein Polygon, dessen i+1 Ecken $A_i^0, A_i^1, \ldots, A_i^i$ auf äquidistanten Parallelen zur Y-Achse liegen, projizieren wir ferner diese Ecken auf die Y-Achse nach a_i^0, \ldots, a_i^i und verbinden die Punkte a mit einem Integrationspol P_i^i , so können wir ein neues Polygon P_{i+1} zeichnen so, daß wir das Intervall in i+1 gleiche Teile teilen und von einem Punkte A_{i+1}^0 ausgehend ein neues Polygon zeichnen, dessen Ecken $A_{i+1}^0, A_{i+1}^1, \ldots, A_{i+1}^{i+1}$ auf aufeinanderfolgenden Parallelen liegen und dessen Seiten den Strahlen $P_i^i a_i^0, P_i^i a_i^i, \ldots, P_i^i a_i^i$ sukzessive parallel sind 131). Die Figur 1 veranschaulicht das von



 P_0 bis P_3 ; die Integrationsbasis λ (vgl. 12a) kann dabei für jedes Polygon beliebig genommen werden. Ist y_n die Ordinate von A_n , so läßt sich mit Hilfe der Differenzenrechnung zeigen, daß

$$(119) \ y_{n}^{i} = y_{n}^{0} + \frac{i}{1} \frac{y_{n-1}^{0}}{n} x + \frac{i(i-1)}{1 \cdot 2} \frac{y_{n-2}^{0}}{n(n-1)} x^{2} \cdots + \frac{i(i-1) \dots 2 \cdot 1}{1 \cdot 2 \dots (i-1)i} \frac{y_{n-i}^{0}}{n(n-1) \dots (n-i+1)} x^{i \cdot 132}$$

¹³⁰⁾ Massau²⁷⁸): Mémoire sur l'int. gr. et ses applications II 2, § 1, Buch II, Kap. 2, § 1.

¹³¹⁾ Massau, Appendice au Memoire sur l'intégration graphique et ses applications. Paris 1890, Note V—IX insbesondere VIII.

¹³²⁾ Vgl. auch d'Ocagne, Calcul graphique et Nomographie 38-40.

ist, was für n = i mit der Mac-Laurinschen Formel identisch ist. Der durch lineare Konstruktion gefundene Punkt A, gehört also einer Parabel n^{ter} Ordnung H_n an, die das Integral n^{ter} Ordnung von H_0 ist, und für die $y_1^0 \dots y_n^0$ die Integrationskonstanten sind. Die Seiten $A_n^0 A_n^{-1}$ und $A_n^{n-1} A_n^{-n}$ sind Tangenten von Π_n in A_n^0 und A_n^n . Die Konstruktion läßt sich für links wie rechts der Y-Achse gelegene Punkte durchführen. P_n heißt der Integrant (intégrant) von H_n . Eine ganz ähuliche Konstruktion gibt unabhängig von Massau Muirhead 133). Massau 134) zeigt, daß die Integranten von Parabeln gleicher Ordnung, die in A_{\bullet}^{0} eine *i*-fache Berührung haben, in den *i* ersten Seiten den Integranten ein und desselben Parabelbogens bilden; also sich zu einem Integranten vereinen lassen. Dabei ist dieser für einen Kontakt $i + 1^{\text{ter}}$ Ordnung dem für einen Kontakt i^{ter} Ordnung umbeschrieben. Gehen die Parabeln von A,0 aus nach derselben Seite, so stimmen sie in den ersten Seiten überein. Das gilt auch für Parabeln verschiedener Ordnung Π_n und Π_m , falls man den Integranten der Parabel II, niederer Ordnung ebenfalls durch n-Integrationen konstruiert, dabei aber y_0^0 bis y_{n-m+1}^0 gleich Null setzt. d'Ocagne¹³²) weist darauf hin, daß die Ordinate des Schwerpunktes von P_{n-1} durch ein dem obigen analoges Verfahren die Sehne $A_n^0 A_n^n$ bestimmt.

Da $y_n^0 \dots y_n^n$ durch $y_0^0 \dots y_n^0$ linear auszudrücken sind, so ist die Parabel H_n durch P_n vollkommen bestimmt. Aus dem Integranten eines Punktes mit der Abszisse x läßt sich leicht der jedes andern $(x + \Delta x)$ durch lineare Operationen konstruieren. Setzt man in obige Formel für x, $x + \Delta x$ ein, so findet man nach einigen Umformungen für die Ordinate der i^{ten} Ecke des Polygons

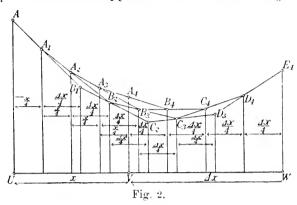
(120)
$$Y_{n}^{i} = \left(1 + \frac{\Delta x}{x}\right)^{i} y_{n}^{i} - \frac{\iota}{1} \frac{\Delta x}{x} \left(1 + \frac{\Delta x}{x}\right)^{i-1} y_{n}^{i-1} \dots \left(-1\right)^{i} \frac{\iota^{i} \iota + 1 \dots 1}{1 \cdot 2 \dots (\iota + 1) \iota} \left(\frac{\Delta x}{x}\right)^{i} y_{n}^{0}.$$

Die Ausführung der Konstruktion zeigt Figur 2 für n=4. Man verlängert jede Seite A_iA_{i+1} , so daß die Abszisse um $\frac{\Delta x}{n}$ wächst, und erhält so das Polygon $AB_1\ldots B_n$, mit dem man von B_1 aus genau so verfährt usw. Das Polygon $AB_1C_2\ldots R_n$ ist der gesuchte Integrant für den Punkt mit der Abszisse $x+\Delta x^{132}$) Dabei ist A_n, B_n, \ldots, R_n der Integrant zwischen A_n und R_n .

¹³³⁾ Muirhead, Proceedings of the Edinburgh Mathematical Society XXIX 1910/11, p. 78-82.

¹³⁴⁾ Massau 278) I, Buch V, Kap. I, § 2.

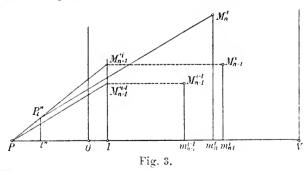
 $Massau^{135}$) gibt nun weiter Methoden, wie man aus einer Anzahl gegebener Punkte und gegebener Ableitungen in denselben, den Integranten P_n der die Kurve approximierenden Parabel H_n finden kann.



Durch die inverse Segnersche Transformation ¹³⁶), n-1 mal angewandt, stellt man aus den gegebenen Stücken die Ausgangsgerade her und wendet auf diese dann wieder die direkte Segnersche Transformation an. Da H_1 mit P_1 identisch ist, so kommt es im wesentlichen nur darauf an, aus dem Integranten P_{n-1} von H_{n-1} den von H_n für irgendein Intervall zu konstruieren, indem man von irgendeinem Anfangspunkt aus auf P_{n-1} die direkte Segnersche Transformation anwendet. Sind u und v die Abszissen der Endpunkte des betrachteten Intervalles, so ist nach Fig. 3

$$(121) \ y_{n}' = \frac{n-\iota}{n} u y_{n-1}^{\iota} + \left[\frac{\iota}{n} (v-u) + \frac{\iota}{n} u \right] y_{n-1}^{\iota-1} = \overline{P\iota''} y_{n-1}^{\iota} + \iota'' \overline{m_{n}^{\iota}} y_{n-1}'^{-1}.$$

Hat man eine gegebene Kurve so durch eine Parabel Π_n mit dem Integranten P_n angenähert, so ist die Konstruktion eines Integrales



¹³⁵⁾ Massau 131) I.

¹³⁶⁾ Segner, Acad. Petrop. Novi Comment. VII 1758 59, p. 211.

für ein beliebiges Intervall leicht möglich. 137) Auch der begangene Fehler ist abzuschätzen.

7. Methoden, bei denen die Koeffizienten gegeben sind. a) Allgemeines. Bisweilen wird die Aufgabe behandelt: es ist eine Anzahl Koeffizienten und Abszissen gegeben, und es ist eine andere Anzahl Koeffizienten und Abszissen so zu bestimmen, daß die Annäherung möglichst gut wird. Insbesondere setzt man eine Anzahl Koeffizienten gelegentlich gleich null. Elementare Betrachtungen über diesen Fall finden sich z. B. bei Buzengeiger¹³⁸) Lampe¹³⁹), Maleyx⁴³), Moors¹⁴⁰) und Maurer 141), der auf diesem Wege höchst elementar ohne Benutzung von Kugelfunktionen oder Reihenentwicklung die Gaußschen Formeln herleitet 141a). Moors behandelt ausgehend von den Gleichungen (7) die Aufgabe: bei 2m beliebig vorgeschriebenen paarweise gleichen Koeffizienten und gegebenem x_1^2 durch sukzessive Approximation die m-1 zugehörigen Werte x_i^2 zu finden, wobei sich der Genauigkeitsgrad 2m-1 erreichen läßt. Auch $Radau^1$) deutet an, wie man eine derartige Aufgabe behandeln kann. Den höchst möglichen Genauigkeitsgrad kann man dabei leicht mit Hilfe der Gleichungen (5) oder (7) feststellen.

Der wichtigste Fall gegebener Koeffizienten ist der, daß alle den gleichen numerischen Wert haben. Diese Art der angenäherten Integration ist immer dann vorteilhaft, wenn es sich um durch Beobachtung gewonnene, also mit einem gewissen Fehler behaftete Funktionen handelt, da bei gleichen Koeffizienten der mittlere Fehler ein Minimum wird. Dieser Fall ist unabhängig von Andrae⁵²), Ligowski¹²⁷) und Tschebyscheff¹⁰⁶) behandelt worden; die Formeln werden nach Lampes Angabe besonders gern im Schiffsbau benutzt. Auf dieses Gebiet wurde sie wohl zuerst von Afonasjeff¹⁴²) angewandt, jetzt findet sie sich in fast allen den Gegenstand behandelnden Werken¹⁴⁸).

¹³⁷⁾ Massau 131) VIII, § 1.

¹³⁸⁾ Buzengeiger, v. Zachs Monatliche Korrespondenz 26 (1812), p. 285-94.

¹³⁹⁾ Lampe, Bericht der Berliner mathematischen Gesellschaft 2 (1903), p. 29—35. Unter anderm stellt Lampe hier acht Formeln mit zwei symmetrischen Ordinaten und der Mittelordinate auf, deren Koeffizienten nicht viel unbequemer wie die der Simpsonschen Formel (vgl 11, 13), und deren Fehler sämtlich von fünfter Ordnung sind. Es zeigt sich, daß die Simpsonsche Formel von diesen die schlechteste Annäherung gibt.

¹⁴⁰⁾ Moors, Nieuw Archief Amsterdam (2) 3 (1898), p. 285-91.

¹⁴¹⁾ Maurer, Arch. Math. Phys. (3) 18 (1911), p. 40-43.

^{141°)} S. u. a. auch Sainte-Laguë, Revue de mathématiques spéciales 11 (1910-12), p. 433-34.

b) $\varphi(x)$ ist eine gerade Funktion. Ist zunächst $\varphi(x)$ eine gerade Funktion, so kann man allen A_k das gleiche Vorzeichen geben und aus ähnlichen Überlegungen, wie die, welche zu (40) führen, folgt dann

(122)
$$A_k = \frac{1}{n} \int_{a}^{b} \varphi(x) \, dx.$$

Da sich aus den Gleichungen (5) bzw. (7) leicht die symmetrischen Funktionen der Wurzeln entnehmen lassen, kann man sofort die Gleichung für $F_n(x)$ aufstellen. Man erhält nach $Andrae^{52}$) und $Ligowski^{127}$) für die Koeffizienten derselben die rekurrierenden Formeln

$$(123) b_n a_\mu + b_{n-1} a_{\mu-1} + \dots + b_{n-\mu+1} a_1 = -\mu b_{n-\mu}.$$

Zur Bestimmung des Fehlergliedes setzt man am besten obige Koeffizientenberechnung fort, oder man bestimmt nach Radau¹)

$$\delta_{m+n} = \int_{a}^{\beta} x^{m} F_{n}(x) dx \ (m = 2 \text{ für gerade, } m = 1 \text{ für ungerade } n).$$

 $\mathit{Tschebyscheff}^{\text{-106}})$ kommt zu der Gleichung $F_{n}(x)=0$ auf anderm Wege. Aus

(124)
$$\int_{a}^{\frac{s}{2}} \frac{\varphi(x)}{z-x} dx = A_{k} \sum_{1}^{n} \frac{1}{z-x_{k}} + \frac{\delta_{n+1}}{z^{n+2}} \cdots$$

folgt durch Integration nach z

(125)
$$\int_{\alpha}^{\delta} \varphi(x) \lg(z-x) dx = A_k \lg F_n(z) - \frac{1}{n+1} \int_{z^{n+1}}^{\delta_{n+1}} \cdots,$$
 also ist

(126)
$$F_{-}(z) = Ee^{\frac{1}{A_k} \left(\int_{\alpha}^{\beta} \varphi(z) \lg(z-x) dx + \frac{1}{n+1} \frac{\delta_{n+1}}{z^{n+1}} \cdots \right)}$$

woraus sich für $\alpha = -1$, $\beta = +1$, $\varphi(x) = 1$ ergibt

(127)
$$F_n(z) = E z^n e^{\frac{n}{2 \cdot 3} z^2 + \frac{n}{4 \cdot 5} z^4 \cdots}.$$

Das Fehlerglied kann fortbleiben, da es sicher keinen Beitrag zu der ganzen Funktion liefert. Die Abszissenwerte werden angegeben von $Andrae^{52}$) für die Grenzen $-\frac{1}{2}$ bis $+\frac{1}{2}$ von n=1 bis n=6 nebst

¹⁴²⁾ Mitteilungen aus dem Gebiete des Seewesens 2 (1874), p. 527-36, 583-97. Nach einer Mitteilung von Afonasjeff im "Morskoi sbornik".

¹⁴³⁾ Z. B. Johow, Hifsbuch für den Schiffsbau, Berlin 1902, p. 313-15. Pollard et Dudebout, Théorie du navire IV, Paris 1894, Note 8: Méthode de calcul de M. Kriloff, p. 404-13.

einem Fehlerglied, $Ligowski^{127}$) für die Grenzen 0 und 1 von n=1 bis n=5 ohne Fehlerglied, $Tschebyscheff^{106}$) für die Grenzen -1 und +1 von n=0 bis n=7 ebenfalls ohne Fehlerglied, $Radau^1$) und $Moors^{144}$) für die Grenzen -1 und +1 von n=1 bis n=9 mit Fehlerglied. Für n=8 und n=10 werden eine Anzahl Wurzeln imaginär, hier kann man daher δ_n nicht zu null machen, sondern muß, wenn die Formeln brauchbar bleiben sollen, δ_n einen gewissen Minimalwert geben. $Moors^{144}$) zeigt, daß es unter Umständen vorteilhaft ist, δ_{2m} so zu bestimmen, daß zwei, etwa die mittleren oder vier symmetrische Wurzeln zu zweien zusammenfallen. Die betreffenden Ordinaten haben dann natürlich einen doppelt so großen Koeffizienten wie die andern. Eine Reihe solcher Formeln findet sich bei $Moors^{144}$) in der Tabelle G zusammengestellt.

Bei angenäherter Integration mehrfacher Integrale tritt der Fall, daß Wurzeln imaginär werden, schon für kleinere Werte von n ein. 129)

e) $\varphi(x)$ ist eine ungerade Funktion. Ist $\varphi(x)$ eine ungerade Funktion, so nimmt man am besten eine gerade Anzahl von Ordinaten und gibt der Hälfte der Koeffizienten ein negatives Vorzeichen. Z. B. kann man setzen

(128)
$$\int_{a}^{\beta} \varphi(x) f(x) dx = A \sum [f(x_n) - f(-x_n)].$$

Statt der Gleichungen (7) erhält man dann, falls man ein zum Nullpunkt symmetrisches Intervall wählt,

(129)
$$A \sum_{i=1}^{n} x_{i}^{2k+1} = a_{2k+1} \qquad \sum_{i=1}^{n} x_{i}^{2k} = 0.$$

Die Koeffizienten der die Abszissen bestimmenden Gleichung

$$F_n(x) = 0 \qquad (n = 2i)$$

lassen sich mittels der Gleichungen (123) als Funktionen von $\sum_{i=1}^{n} x_{i} = s$ ausdrücken. Im Falle $\varphi(x) = x$ z. B. findet man

(130)
$$\frac{1}{4} = 3s = 5s_3 \cdot \cdot \cdot = (n+3)s_{n+1},$$

wo $s_r = \sum_{1}^{n} x_r^r$ ist. Ähnliche Gleichungen erhält man für andere $\varphi(x)$. Ferner erhält man aus (123) eine Gleichung für s, und jedem Lösungs-

¹⁴⁴⁾ Moors, Valeur approximative d'une intégrale définie, Paris 1905, Kapitel III.

wert s entspricht ein Wert von A und ein System von Abszissen, die sich aus der Gleichung $F_n(x)=0$ ergeben. Radau 145) behandelt die Fälle

$$\varphi(x) = x$$
 and $\varphi(x) = \frac{x}{1/1 - x^2}$,

wo

$$A \sum_{i=1}^{n} x_{i}^{2h+1} = \frac{1}{2h+3} \quad \text{bzw.} \quad A \sum_{i=1}^{n} x_{i}^{2h+1} = \frac{1 \cdot 3 \cdots (2h+1)}{2 \cdot 4 \cdots (2h+2)} \frac{\pi}{2}$$

wird. Er gibt die Abszissen für n=2,4,6. Für n=8 erhält er im ersten Falle eine Gleichung 14. Grades. Tschebyscheff 106) faßt die Wurzeln, deren Funktionswerte in den angenäherten Integralwert mit positiven Zeichen eingehen, zu $F_+(x)$, und die mit negativen Zeichen zu $F_-(x)$ zusammen. Dann ist $F_n(x)=F_+(x)\cdot F_-(x)$ und nach (124)

$$\frac{F_+(x)}{F_-(x)} = e^{\frac{1}{A} \left(\int\limits_{\alpha}^{\gamma} \varphi(x) \lg (z-x) dx + \frac{\delta_{2\ell+2}}{(2\ell+2) z^2 \ell+2} + \cdots \right)}.$$

Er entwickelt rechts in einen Kettenbruch und setzt im Näherungsbruch i^{ter} Ordnung (n=2i) den Koeffizienten von $\frac{1}{z}$ gleich null, was ihm A liefert.

Statt

$$\int_{a}^{\beta} f(x) \frac{x}{\sqrt{1-x^2}} \, dx$$

kann man auch

$$\int_{0}^{\pi} f(\cos \vartheta) \cos \vartheta \, d\vartheta$$

betrachten. $\mathit{Tschebyscheff}^{\text{106}}$) und $\mathit{Radau}^{\text{145}}$) betrachten anstatt dessen allgemeiner

$$\int_{0}^{\pi} f(\cos \vartheta) \cos \lambda \vartheta d\vartheta,$$

wo λ eine ganze Zahl ist. Daraus findet man als Bedingungsgleichungen

$$\sum A_{\iota} \cos h \, \alpha_{\iota} = 0$$
 wenn $h \gtrless \lambda$, $\sum A_{\iota} \cos h \, \alpha_{\iota} = \frac{\pi}{2}$ für $h = \lambda$.

Auch hier werden die A_i einander gleich und haben alternierendes Zeichen, und es wird (n=2i)

$$\alpha_l = \frac{a_r + k\pi}{\lambda} \qquad \begin{pmatrix} k = 0, 1, 2, \dots, 2\lambda - 1 \\ r = 1, 2, \dots, i \end{pmatrix}.$$

¹⁴⁵⁾ Radau, Paris C. R. 90 (1880), p. 520-523.

wo die A und a, sich aus dem Bedingungen

$$\sum \cos 3a_r = \sum \cos 5a_r \cdots = \sum \cos (2i+1)a_r = 0,$$

$$A \sum \cos a_r = \frac{\pi}{4\lambda}$$

bestimmen. Man erhält nach Radau 145) so

(131)
$$\int_{0}^{\pi} f(\cos \vartheta) \cos \lambda \vartheta \, d\vartheta = A \sum_{r=1}^{t} \sum_{k=0}^{2\lambda - 1} (-1)^{k} f\left(\cos \frac{a_{r} + k\pi}{\lambda}\right)$$

Die Formeln von Tschebyscheff und Moors eignen sich besonders zur Bestimmung der mittleren Ordinaten (s. 12) bei graphischer Integration, wenn man die Abszissenbestimmung etwa mittels eines ein für allemal für das betreffende n auf durchsichtiges Papier gezeichneten Strahlenbüschels vornimmt. Dieses entwirft man etwa so, daß ein durch den einen Endpunkt des Intervalles oder besser ein durch die Mitte gehender Strahl senkrecht zur Abszissenachse steht.

S. Formeln, die durch Kombination entstehen. Bisweilen hat man den Genauigkeitsgrad von Quadraturformeln dadurch zu erhöhen versucht, daß man durch Kombination zweier Formeln A und B von gleicher Genauigkeit das oder die ersten Glieder des Fehlers fortzuschaffen suchte. Dabei pflegt man die Formeln so zu wählen, daß die eine größere, die andere kleinere Werte als das gesuchte Integral gibt. Insbesondere stellt Ligowski¹²⁷) zahlreiche solche Kombinationen

$$A + aB = (1 + a)C$$

auf. Auch $Radau^1$) gibt eine solche Kombinationsformel aus der Gaußschen und der von ihm berechneten, gleicher Ordnung, die die Grenzabszissen mit enthält. $Shutsch^{147}$) zeigt nun, daß, wenn A eine Gaußsche Formel für m Ordinaten ist, die Komplementärformel B mindestens m+1 Ordinaten haben muß, die im allgemeinen nicht mit den m Ordinaten von A zusammenfallen. Läßt man die m Ordinaten von A mit in B eingehen, so kann C, wenn m gerade ist, höchstens den Genauigkeitsgrad, 3m+1, wenn m ungerade 3m+2 erreichen. Man darf also den Wert solcher Kombinationen nicht überschätzen, da man mit 2m+1 Ordinaten nach Gauß den Genauigkeitsgrad 4m+1 erreichen kann. Kann man a so wählen, daß in der Kombinationsformel eine oder zwei Ordinaten verschwinden, so kann aller-

¹⁴⁶⁾ Mae Laurin, Treatise of fluxions 40, 849, findet auf diese Art aus der Simpsonschen Formel für das Ungeteilte und das in zwei Teile geteilte Intervall die Cotessche Formel für n=5.

¹⁴⁷ Skutsch, Arch. Math. Phys. (2) 13 (1894), p. 78-83.

dings eine derartige Kombination unter Umständen ganz brauchbar sein. Z. B. gibt $Ligowski^{127}$) eine Reihe solcher Formeln. Er zeigt, wie man durch Kombination mehrerer Formeln mit symmetrischen, vorläufig unbestimmten Abszissen die Gaußschen Formeln durch Elimination der Fehlerglieder herleiten kann. Auch in anderen Fällen kann man durch solche Kombinationen brauchbare Formeln erhalten, z. B. wenn man aus auf mehrere Intervalle angewandten Newton-Cotesschen Formeln das erste Fehlerglied eliminiert. So gibt bei 6 Teilintervallen die Formel für n=3 (1. Simpsonsche) und n=4 (2. Simpsonsche) (vgl. Nr. 11, 13 und 14) die Formel von $Weddle^{262}$). Diese und die Cotessche Formel für n=5 auf 12 Teilintervalle angewandt eine ziemlich einfache von $Woolsey^{147a}$) gegebene Formel, in der allerdings negative Koeffizienten auftreten.

9. Die Eulersche Formel (vgl. auch I A 3 (A. Pringsheim) Irrationalzahlen unendlicher Prozesse, Nr. 38 und I E (D. Seliwanoff) Differenzenrechnung, Nr. 11). Vielfach wird für die angenäherte Quadratur die Eulersche Formel 148) benutzt, die auch gute Dienste bei der Fehlerabschätzung 149) leistet, wenn man den zu integrierenden Bogen nicht durch eine Parabel annähert, sondern ihn in eine Anzahl gleich breiter Streifen teilt, und in jedem Streifen durch Parabeln gleicher Ordnung annähert. Die Formel wurde von Euler 148) aufgestellt und vielleicht 150) von Mac Laurin 151) übernommen. Die Koeffi-

¹⁴⁷a) Woolsey, The Quarterly Journal of pure and applied mathematics 43 (1912), p. 380—84 und Proceedings of the U. S. Naval Institute 37, p. 871.

¹⁴⁸⁾ Euler, Commentarii academiae Petropolitanae 6 (1732—3), Petersburg 1738, p. 68—97 und 8 (1736), Petersburg 1741, p. 9—22. Institutionum calculi differentialis pars posterior Petersburg 1757, p. 430 ist die Formel bis zu $\frac{d^{29}y}{dx^{29}}$ gegeben. Zur angenäherten Berechnung bestimmter Integrale verwendet Euler die Formeln z. B. in Institutionum calculi integralis volumen primum Teil I, Kap. 7 (3. Aufl. Petersburg 1824), p. 178—202.

¹⁴⁹⁾ Z. B. *Ligowski*, Arch. Math. Phys. 55 (1873), p. 219—21; Arch. Math. Phys. 59 (1876), p. 329—33; Arch. Math. Phys. 60 (1877), p. 336. *Bertrand*: Calcul intégral, Paris 1870, p. 331—352.

¹⁵⁰⁾ Zur Prioritätsfrage: Murdoch, Biographie von Mac-Laurin in Mac-Laurin, Account of Sir Isaac Newtons philosophical discoveries, London 1748: Eneström, Öfversight af Kongl. Vetenskap-Akademiens Förhandlingar 36 (1879), Nr. 10, p. 3—17; Reif, Geschichte der unendlichen Reihen, Tübingen 1889, p. 87; Cantor, Vorlesungen über Geschichte der Mathematik 3, 2. Aufl., Leipzig 1901, p. 663; Schlömilch, Vorlesungen über einzelne Teile der höheren Analysis, Braunschweig 1866, p. 226. Moors 38), p. 165—175.

¹⁵¹⁾ Mac Laurin, Treatise of fluxion II, Kap. IV, p. 663-693, Edinburg 1742, vgl. auch Lubbock, Cambr. Trans. 3 (1830), p. 323.

zienten der Formel stehen in engem Zusammenhang mit den Bernoullischen Zahlen (vgl. II A 3 Nr. 18), die bis zur 31. sich z. B. bei Ohm 152) finden.

Verschiedentlich wird die Formel abgeleitet, natürlich in zahlreichen Lehrbüchern, wie $Lacroix^{153}$), de $Morgan^{154}$), $Hou\ddot{e}l^{155}$) usw., ferner außer den hier sonst zitierten Abhandlungen mittels partieller Integration, z. B. bei $Schl\ddot{o}milch^{156}$), $Callendreau^{157}$), $Kinkelin^{158}$) u. a. von der Taylorschen Reihe ausgehend, z. B. bei $Tortolini^{159}$), $Genocchi^{160}$), $Schellbach^{79}$) u. a. $Imschenetzky^{161}$) zeigt, daß die Formel sich unter gewissen Bedingungen mittels Parabeln höherer Ordnung ableiten läßt. Die beiden meist gebrauchten Formen der Eulerschen Formel sind

$$(132) \int_{\alpha}^{\beta} f(x) dx = \omega M - \frac{\omega^{2}}{12} (f'(\beta) - f'(\alpha)) + \frac{\omega^{4}}{720} (f'''(\beta) - f'''(\alpha)) - \frac{\omega^{6}}{30240} (f^{(V)}(\beta) - f^{(V)}(\alpha)) \dots,$$

die sich nebst andern Formeln besonders bei Euler 148) findet, und

$$(133) \int_{\alpha}^{\beta} f(x) dx = \omega N + \frac{\omega^{2}}{24} (f'(\beta) - f'(\alpha)) - \frac{7\omega^{4}}{5760} (f'''(\beta) - f'''(\alpha)) + \frac{31\omega^{6}}{967680} (f^{(V)}(\beta) - f^{(V)}(\alpha)) \dots,$$

die z.B. Mac Laurin¹⁵¹) (831) gibt, und die sich aus (132) leicht ableiten läßt (s. z.B. Hardy). Hier ist

¹⁵²⁾ Ohm, Journ. für Math. 20 (1840), p. 11-12; s. auch Trans. of Cambridge (1873), p. 384-91.

¹⁵³⁾ Lacroix, Traité du calcul différentiel et du calcul intégral, Deutsch nach der 4. Aufl. 1828 von Baumann, Berlin 1831.

¹⁵⁴⁾ de Morgan, Differential and Integral Calculus, London 1842, p. 313.

¹⁵⁵⁾ *Houel*, Cours du calcul infinitésimal, Anhang zu I, p. 331-335, Paris 1871.

¹⁵⁶⁾ Schlömilch, Berichte der Kgl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig 9 (1857), p. 11—17.

¹⁵⁷⁾ Callendreau, Paris C. R. 86 (1878), p. 589-592.

¹⁵⁸⁾ Kinkelin, Programm der Ober-Realschule zu Basel 1902 (30 Seiten).

¹⁵⁹⁾ Tortolini, Annali di science matematiche e fisiche 4 (1853), p. 209—231, vgl. auch eine Anzahl dort zitierter Abhandlungen.

¹⁶⁰⁾ Genocchi, Paris C. R. 86 (1878), p. 466—469 u. Annali di science matematiche e fisiche 1855.

¹⁶¹⁾ Imschenetzky, Petersburger Abhandlungen 62 (1890), p. 45-52.

¹⁶²⁾ Hardy, Journ. of the Institut of Actuaries 24 (1883), p. 95-110.

$$M = \frac{1}{2}f(\alpha) + f(\alpha + \omega) + f(\alpha + 2\omega) + \cdots + f(\beta - \omega) + \frac{1}{2}f(\beta),$$

$$(134) \quad N = f(\alpha + \frac{\omega}{2}) + f(\alpha + \frac{3\omega}{2}) + f(\alpha + \frac{5\omega}{2}) + \cdots + f(\beta - \frac{3\omega}{2}) + f(\beta - \frac{\omega}{2}).$$

Bisweilen läßt man die Terme $f'(\alpha)$, $f'''(\alpha)$, ... fort und fügt anstatt dessen eine Konstante C bei, z. B. $Glaisher^{163}$). Von diesen beiden Formeln ausgehend macht $Legendre^{164}$) darauf aufmerksam, daß, falls alle ungeraden Ableitungen an den Intervallenden null sind, M=N für beliebige Unterteilung sein müßte, während sich auch in diesem Falle nachweisen läßt, daß die Genauigkeit von M und N mit n wächst.

Der erste von Erchinger¹⁶⁵) gemachte Versuch, ein Restglied für die Eulersche Formel aufzustellen, der von Eytelwein¹⁶⁶) und Ettinghausen¹⁶⁷) übernommen ist, befriedigt nach Malmsten¹⁶⁸) wenig, weil Erchinger von einer Differentialgleichung ausgeht, die nur für den Fall konvergenter Reihen gilt. Ausgehend von der Fourierschen Entwicklung gibt Poisson¹⁶⁹) als Restglied von (132)

(135)
$$R_{2m} = 2(-1)^{m+1} \left(\frac{\omega}{2\pi}\right)^{2m} \sum_{\alpha=1}^{\infty} \frac{1}{\varrho^{2m}} \int_{\alpha}^{2\pi} f^{2m}(x) \cos \frac{2\pi \varrho (x-\alpha)}{\omega} dx$$

und zeigt, daß in dem von Legendre betrachteten Falle $R_m = R_{m+1}$ ist, d. h. die Genauigkeit nur mit der Abnahme von ω wächst. $Raabe^{170}$) zeigt mit Hilfe dieses R, daß, wenn $f^{2m}(x)$ in dem betrachteten Gebiet sein Zeichen nicht ändert, der Fehler immer kleiner als das letzte berechnete Glied ist. Das erlaubt ihm die Intervall-

$$\frac{a}{b(b+d)} + \frac{a}{(b+2d)(b+3d)} + \frac{a}{(b+4d)(b+5d)} + \cdots;$$

Vimariae 1818, p. 57-64.

¹⁶³⁾ Glaisher, Proceedings of the Lond. Math. Soc. 4 (1871-73), p. 48-56.

¹⁶⁴⁾ Legendre, Traité des fonctions elliptiques et des intégrals eulériennes 2, Paris 1826, p. 572—596.

¹⁶⁵⁾ Mitgeteilt nach Briefen von Erchinger in: Schrader, Commentatio de summatione seriei

¹⁶⁶⁾ Eytelwein, Grundlehren der höheren Analysis 2, § 696, Berlin 1824.

¹⁶⁷⁾ Ettinghausen, Vorlesungen über die höhere Mathematik 1, p. 429, Wien 1827.

¹⁶⁸⁾ Malmsten, Journ. für Math. 35 (1847), p. 55-82.

¹⁶⁹⁾ Poisson, Mém. Inst. Acad. Paris 4 (1823), p. 571-602. Nouv. Bull. des sc. de la Soc. philom. Paris 1826, p. 161, 162.

¹⁷⁰⁾ Raabe, Journ. für Math. 18 (1838), p. 75-99.

größe bei vorgeschriebenem Maximalfehler abzuschätzen ¹⁷⁰a). Wird eine der niederen Ableitungen an den Grenzen null, so müssen Nullstellen der höheren Ableitungen dazwischen liegen. Das Intervall muß unterteilt werden, und das zur Erreichung derselben Genauigkeit nötige ω wird kleiner. Ferner untersucht Raabe, wie sich eine Ungenauigkeit in der Wurzelbestimmung von $f^{2m}(x) = 0$ auf die Bestimmung von ω geltend macht.

Aus der Poissonschen Form des Restgliedes kann man, wie es z. B. Kronecker 180) und Franel 171) tun, eine unter Benutzung der Taylorschen Reihe von Jacobi 172) gegebene Form des Restgliedes ableiten

(136)
$$R_{2m} = -\int_{0}^{1} \omega^{2m+1} C_{m}(\nu) \sum_{r=1}^{n} f^{2m} (\alpha + r\omega - \nu \omega) d\nu,$$

wo C_m eng mit der Bernoullischen Funktion ¹⁷³) zusammenhängt. Daraus ergibt sich als Abschätzung, da C_m von 0 bis 1 sein Zeichen nicht ändert,

(137)
$$\begin{split} R_{2m} &= (-1)^m \frac{B_m}{(2m!)} \omega^{2m+1} \sum_{1}^{n} f^{2m} (\alpha + r\omega - \nu' \omega) \\ &= (-1)^m \frac{\varepsilon}{2} \frac{B_m}{m!} \omega^{2m} (\beta - \alpha) M, \end{split}$$

wo $\varepsilon | < 1$. B_m die entsprechende Bernoullische Zahl, M der Maximalwert von f^{2m} und 0 < v < 1 ist. 174) Malmsten 168) und Hermite 175) geben diesem Ausdruck, falls es sich um ein Intervall handelt, die Form

(138)
$$R_{2m} = \vartheta(-1)^m \frac{B_m}{2m!} C\omega^{2m} (f^{2m-1}(\beta) - f^{2m-1}(\alpha)),$$

wo $0 < \vartheta < 1$, und, falls die $2m^{\text{te}}$ und $2m + 2^{\text{te}}$ Ableitung im ganzen Intervall unverändertes, entgegengesetztes Vorzeichen haben,

$$C = \frac{2^{\frac{2m-1}{m-1}} - 1}{2^{\frac{2m-1}{m-1}}},$$

falls sie gleiches Vorzeichen haben, C=-1 ist. Nach Schlömilch 177) und Scheibner 1776), die aber von der Poissonschen Form des Restgliedes

^{170°)} Siehe auch *Mansion*, Annales de la Société scientifique de Bruxelles 36 A (1912), p. 117—19.

¹⁷¹⁾ Francl, Math. Ann. 47 (1896), p. 433-440.

¹⁷²⁾ Jacobi, Journ. für Math. 12 (1834), p. 263-272.

¹⁷³⁾ Bernoulli, Ars conjectandi 2, Kap. III, Basel 1713.

¹⁷⁴⁾ S. a. de la Vallée-Poussin, Cours d'Analyse, Paris et Louvain.

¹⁷⁵⁾ Hermite, Journ. für Math. 84 (1878), p. 64-69.

¹⁷⁶⁾ Scheibner, Berichte der Kgl. Sächsischen Gesellschaft der Wissenschaften zu Leipzig 9 (1857), p. 190-198.

¹⁷⁷⁾ Schlömilch, Zeitschr. Math. Phys. 1 (1856), p. 193-211.

ausgehen, $Markoff^{178}$) u. a. erhält man einen ganz ähnlichen Ausdruck auch für eine beliebige Anzahl von Intervallen, falls nur für sämtliche Intervalle die obige Vorzeichenregel gilt. Ändert f^{2m} in dem Gebiete sein Zeichen nicht, so kann man den Mittelwertsatz auch so verwenden, daß man setzt

$$\begin{array}{ll} (139) & R_{2\,m} = - \ C_m(\nu') \omega^{2\,m} (f^{\,2\,m\,-\,1}(\beta) - f^{\,2\,m\,-\,1}(\alpha)) & 0 < \nu' < 1 \,, \\ \text{woraus nach } \textit{Charlier}^{179}) & \text{folgt} \end{array}$$

$$|R_{2m}| \leq \omega^{2m} 2 \frac{B_m}{(2m)!} (f^{2m-1}(\beta) - f^{2m-1}(\alpha)),$$

d. h. also der Fehler ist kleiner als der doppelte Wert des ersten vernachlässigten Gliedes. Da die Reihen oft divergent sind, hat man so also ein Mittel, die Berechnung an der richtigen Stelle abzubrechen. Scheibner 176) erhält durch partielle Integration einen ähnlichen Ausdruck, in dem aber $f^{2m+2}(\xi)$ anstatt der Differenz auftritt. Zwei andere Formen des Restgliedes finden sich bei Kronecker. 180) Ist $\sum f^{2m}(\alpha + r\omega - \nu\omega)$ im ganzen Gebiet steigend oder fallend, so wird

(141)
$$R_{2m} = - \omega^{2m+1} C'_{m+1}(\nu_0) \big(f^{2m}(\beta) - f^{2m}(\alpha) \big),$$
 wo

$$C'_m(\nu_0) = (-1)^{m-1} \sum_{k=1}^{\infty} \frac{2 \sin 2k \nu_0 \pi}{(2k\pi)^{2m-1}}$$

und $0 \le \nu_0 \le 1$ ist.

Falls f^{2m} von 0 bis ν wächst und von ν bis 1 fällt oder umgekehrt, so wird

$$(142) \ R_{2m} = -(-1)^m \frac{2(1-2^{-2m})}{(2m)!} B_m \omega^{2m} \left| \sum_{1}^n f^{2m-1} (\alpha + r\omega - \nu \omega) \right|_{\nu'}^{\nu''},$$

wo $0 \le \nu' \le \frac{1}{2} \le \nu'' \le 1$ ist. Ein ähnlicher Ausdruck findet sich bei $Sonine^{181}$).

Für die Reihe (133) gibt Ostrogradsky¹⁸²) als Rest

(143)
$$\begin{split} R_{2m} &= -\left(\frac{\omega}{2}\right)^{2m+1} \int\limits_{0}^{1} X_{m-1} dz \sum_{1}^{n} \left[f^{2m} \left(\alpha + r\omega - \frac{\omega z}{2}\right) \right. \\ &\left. + f^{2m} \left(\alpha + (r-1)\omega + \frac{\omega z}{2}\right) \right], \end{split}$$

¹⁷⁸⁾ Markoff, Differenzenrechnung, Petersburg 1891, deutsch Leipzig 1896, Kap. IX und X.

¹⁷⁹⁾ Charlier, Mechanik des Himmels 2, Leipzig 1907, p. 3-86.

¹⁸⁰⁾ Kronecker, Vorlesungen über Mathematik 1, bearbeitet von Netto, Leipzig 1894, p. 130-144.

¹⁸¹⁾ Sonine, Paris C. R. 108 (1889), p. 725—727. Ann. de l'Éc. Norm. (3) 6 (1889), p. 257—62.

wo

$$X_m = \frac{D_m z^2}{2!} + \frac{D_{m-1} z^4}{4!} + \dots + \frac{D_1 z^{2m}}{(2m)!} - \frac{z^{2m+1}}{(2m+2)!}$$

und die D sich bestimmen aus

$$D_1 - \frac{1}{3!} = 0$$
, $D_2 + \frac{D_1}{3!} - \frac{1}{5!} = 0 \dots$

Falls f^{2m} sein Vorzeichen nicht ändert, folgert er daraus

$$R_{2m} = D_m(\beta - \alpha) \left(\frac{\omega}{2}\right)^{2m} f^{2m}(\xi),$$

wo ξ ein Wert zwischen α und β ist.

Für komplexe Werte untersucht $Darboux^{183}$) von einer allgemeineren Reihe ausgehend die Eulersche Reihe und findet als Restglied

(144)
$$R_{2m} = (-1)^m \frac{\lambda B_m \omega^{2m+1}}{(2m)!} f^{2m} (x + \theta \omega),$$

wo λ eine Größe ist, deren Modul kleiner ist als eins. Er findet als notwendige, aber nicht hinreichende Bedingung für die Konvergenz, daß

$$\int_{-\frac{\omega}{2}}^{+\frac{\omega}{2}} f(x) dx$$

in eine Potenzreihe entwickelt, für alle ω konvergiert. Die Differentialquotienten sind oft unbequem oder überhaupt nicht zu berechnen; $Corey^{184}$) umgeht dieselben so, daß er das Intervall zuerst in 1, dann in 2 usw. gleiche Teile teilt, für jede Teilung die Eulersche Formel aufstellt und aus diesen die ersten Differentialquotienten eliminiert.

Eine Übertragung der Eulerschen Formel auf mehrfache Integrale findet sich z. B. bei Bellavitis¹⁸⁵).

10. Formeln der Differenzenrechnung (vgl. auch I D 3 (*J. Bauschinger*) Interpolation, Nr. 8 und I E (*D. Scliwanoff*) Differenzenrechnung, Nr. 7). Führt man in die Eulersche Formel statt der Differentialquotienten die entsprechenden Differenzen ein, so erhält man eine Formel, die wohl zuerst *Lagrange* 186), später in bequemerer Form

¹⁸²⁾ Ostrogradsky, Mém. de l'Acad. des sciences de S^t. Pétersbourg 1841, p. 309—336.

¹⁸³⁾ Darboux, Journ. de math. (3) 2 (1876), p. 291-312.

¹⁸⁴⁾ Corey, The American math. Monthly 13 (1906).

¹⁸⁵⁾ Bellavitis, Ann. Soc. Lomb. Veneto 4 (1834), p. 10-19; Memorie dell' I. R. Istituto Veneto di scienze lettere et arti 6 (1856), p. 91-110.

¹⁸⁶⁾ Lagrange, Mémoire de l'Acad. de Berlin 1772.

z. B. Laplace 187) gibt.

$$(145) \frac{1}{\omega_0} \int_0^n y \, dx = M - \frac{1}{12} (\Delta y_n - \Delta y_0) + \frac{1}{24} (\Delta^2 y_n + \Delta^2 y_0) - \frac{19}{720} (\Delta^3 y_n - \Delta^3 y_0) + \frac{3}{160} (\Delta^4 y_n + \Delta^4 y_0) \dots,$$

oder wenn man nur Differenzenwerte benutzen will, die sich aus den Funktionswerten y_1, y_2, \ldots, y_n bilden lassen,

(146) =
$$M - \frac{1}{12} (\Delta y_{n-1} - \Delta y_0) - \frac{1}{24} (\Delta^2 y_{n-2} + \Delta y_0)$$

- $\frac{19}{720} (\Delta^3 y_{n-3} - \Delta^3 y_0) - \frac{3}{160} (\Delta^4 y_{n-4} + \Delta^4 y_0) \dots$

Ableitungen der einen oder der andern Reihe finden sich z. B. bei $Lacroix^{158}$), $Pont\'ecoulant^{188}$), $Grunert^{189}$), $Dienger^{190}$) u. a. Ebenso läßt sich die zweite Formel übertragen

$$(147) \frac{1}{\omega} \int_{-\frac{1}{2}}^{n+\frac{1}{2}} y \, dx = N + \frac{1}{24} (\Delta y_{n-1} - \Delta y_0) - \frac{1}{24} (\Delta^2 y_{n-2} + \Delta^2 y_0) + \frac{223}{5670} (\Delta^3 y_{n-3} - \Delta^3 y_0) - \frac{103}{2880} (\Delta^4 y_{n-4} + \Delta^4 y_0) \dots$$

Die Koeffizienten der beiden Formeln gibt z. B. Clausen¹⁹¹) bis zum zwölften.

Diese Formeln benutzen Differenzen, die in dem Differenzenschema in einer Diagonale liegen. Oft werden auch Formeln benutzt, die in einer Zeile liegende Differenzen verwenden. Für Hauptwerte gilt so, wenn man die *Bruns*sche 112) Bezeichnung benutzt

$$(148) \quad \int_{\omega}^{a+\left(s+\frac{1}{2}\right)\omega} y dx = \left[a+s+\frac{1}{2},-1\right] - \left[a-\frac{1}{2},-1\right] \\ \quad + \frac{1}{24} \left\{ \left[a+s+\frac{1}{2},+1\right] - \left[a-\frac{1}{2},+1\right] \right\} \\ \quad - \frac{17}{5760} \left\{ \left[a+s+\frac{1}{2},+3\right] - \left[a-\frac{1}{2},+3\right] \right\} \cdots \\ \quad + A_{2m-2} \left\{ \left[a+s+\frac{1}{2},2m-3\right] - \left[a-\frac{1}{2},2m-3\right] \right\} + R_{m},$$

¹⁸⁷⁾ Laplace, Mécanique céleste 4 (1805), Buch IV, Nr. 5.

¹⁸⁸⁾ Pontécoulant, Théorie analytique du système du monde 2, Paris 1834, p. 105.

¹⁸⁹⁾ Grunert, Arch. Math. Phys. 20 (1853), p. 361-418.

¹⁹⁰⁾ Dienger, Differential- und Integralrechnung, Stuttgart 1857—62, Bd. 1, § 65, der 3. Aufl. 1868.

¹⁹¹⁾ Clausen, Journ. für Math. 6 (1830), p. 287-289.

98 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

und für Zwischenwerte

$$(149) \frac{1}{\omega} \int_{a}^{a+s\omega} y dx = [a+s,-1] - [a,-1] - \frac{1}{12} \{ [a+s,+1] - [a,1] \}$$

$$+ \frac{11}{720} \{ [a+s,3] - [a,3] \} \cdots$$

$$+ B_{2m-2} \{ [a+s,2m-3] - [a,2m-3] \} + R_{m}.$$

Das Restglied gibt Nielsen 192) in der Form

$$B_{2m}\omega^{2m}\sum_{0}^{s-1}f^{2m}(a+r\omega+\tfrac{1}{2}\omega\pm\vartheta_{r}(m-\tfrac{1}{2})\omega),$$

wo $0 \le \vartheta_r \le 1$ ist. Im übrigen sei auf Abschnitt 9 verwiesen. Quarra *9) zeigte neuerdings, wie sich mittels der von Peano *13) gegebenen Form des Restgliedes auch für diese Formeln der Fehler abschätzen läßt.

Es sind noch eine ganze Reihe derartiger Formeln im Gebrauch, die man am einfachsten erhält, wenn man von einer Interpolationsformel, etwa der von Newton, Gauβ, Bessel, Stirling usw., ausgeht und integriert. Ableitungen finden sich z. B. bei Encke¹⁹³), der die Formeln bei Gauβ¹⁹⁴) kennen gelernt und mit dessen Erlaubnis veröffentlicht hat, Airy¹⁹⁵), Terquem und Laffon¹⁹⁶), Oppholzer¹⁹⁷), Hansen¹⁹⁸), Charlier¹⁷⁹), Nielsen¹⁹²), Tisserand¹⁹⁹), Watson²⁰⁰), Radau²⁰¹), Valentiner²⁰²), Thiele²⁰³) u. a. Die Koeffizienten sind in fast allen Tafelsammlungen für Astronomie und Geodäsie gegeben, z. B. bei Bauschinger²⁰⁴), Oppolzer¹⁹⁷).

Diese Formeln verwenden Differenzen an den Enden des Inte-

¹⁹²⁾ Nielsen, Arkiv för Mathematik, Astr. und Fys. 4 (21), Stockholm 1908.

¹⁹³⁾ Encke, Berliner astronomisches Jahrbuch 1837 und 1862 abgedruckt. Gesammelte Abhandlungen 1, p. 21-60 u. 61-99, Berlin 1888; Astronomische Nachrichten 1852, Nr. 791, 792, 814.

¹⁹⁴⁾ Gauβ, Brief an Encke vom 13./10. 1834, Gesammelte Werke 7, p. 433.

¹⁹⁵⁾ Airy, Nautical almanac 1856, Anhang.

¹⁹⁶⁾ Terquem u. Laffon, Nouvelle méthode pour calculer les perturbations des planètes par M. Encke, Nancy 1858.

¹⁹⁷⁾ Oppholzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten 2, Leipzig 1880.

¹⁹⁸⁾ Hansen, Abhandlung der mathematisch-physikalischen Klasse der Kgl. Sächsischen Gesellschaft der Wissenschaften 7 (1864).

¹⁹⁹⁾ Tisserand, Traité de mécanique céleste 1-4, Paris 1889-1896.

²⁰⁰⁾ Watson, Theoretical astronomy, Philadelphia 1885, p. 435-93.

²⁰¹⁾ Radau, Études sur les formules d'interpolation, Paris 1891, Teil IV,

²⁰²⁾ Valentiner, Handwörterbuch der Astronomie 1-3, Breslau 1897-99.

²⁰³⁾ Thiele, Interpolations rechnung, Leipzig 1909, § 10, 11.

²⁰⁴⁾ Bauschinger, Tafeln zur theoretischen Astronomie.

grationsintervalles. Shovelton 205) gibt eine Formel, die Differenzen in der Mitte verwendet.

$$(150) \int_{-m\omega}^{+m\omega} y dx = 2\omega(m[a, 0]) + \frac{[a, 2]}{2!} \frac{m^3}{3} + \frac{[a, 4]}{4!} \left(\frac{m^5}{5} - \frac{m^3}{3}\right) + \frac{[a, 6]}{6!} \left(\frac{m^7}{7} - 5\frac{m^5}{5} + 4\frac{m^3}{3}\right) \cdot \cdot \cdot + \frac{[a, 2m]}{(2m)!} \int_{\omega^2 m+1}^{m\omega} x^2 (x^2 - \omega^2) \cdot \cdot \cdot (x^2 - (m-1)^2 \omega^2) dx + \frac{1}{2} \int_{-m\omega}^{+m\omega} \frac{x^2 (x^2 - \omega^2) \cdot \cdot \cdot (x^2 - m^2 \omega^2)}{(2m+1)!} f^{2m+1}(\xi) dx.$$

Diese Entwicklungen lassen sich ohne weiteres auf mehrfache Integrale übertragen, und man erhält so für die Anfangsglieder des Doppelintegrales bei Benutzung von in einer Zeile liegenden Hauptwerten

$$\int_{-\frac{1}{240}}^{a+\iota \omega} f(x) dx^{2} = \omega^{2} \Big[(a+\iota, -2) + \frac{1}{12} (a+\iota, 0) - \frac{1}{240} (a+\iota, +2) + \frac{31}{60480} (a+\iota, +4) \cdots \Big] + C$$

und bei Benutzung von Zwischenwerten

$$\int_{-1}^{a+(\iota+\frac{1}{2})\omega} f(x)dx^{2} = \omega^{2} \left[\left(a + \iota + \frac{1}{2}, -2 \right) - \frac{1}{24} \left(a + \iota + \frac{1}{2}, 0 \right) + \frac{17}{1920} \left(a + \iota + \frac{1}{2}, +2 \right) - \frac{367}{193536} \left(a + \iota + \frac{1}{2}, +4 \right) \cdots \right] + C.$$

Ähnlich findet man für dreifache Integrale bei Benutzung von Hauptwerten

$$\int \int \int f(x) dx^{3} = \left[\left(a + \iota + \frac{1}{2}, -3 \right) + \frac{1}{8} \left(a + \iota + \frac{1}{2}, -1 \right) - \frac{7}{1920} \left(a + \iota + \frac{1}{2}, +1 \right) + \frac{457}{967680} \left(a + \iota + \frac{1}{2}, +3 \right) \cdots \right] + C,$$

und von Zwischenwerten

$$\int \int \int \int f(x) dx^3 = \omega^3 \Big[(a+\iota, -3) + 0 + \frac{1}{240} (a+\iota, +1) - \frac{31}{30240} (a+\iota, +3) \cdots \Big] + C.$$

Für vierfache Integrale finden sich die Formeln z. B. bei *Bellavitis* ¹⁸⁵). Zur Feststellung der Koeffizienten dieser Reihen finden sich rekurrente Beziehungen bei *Baillaud* ²⁰⁶), die die von *Oppholzer* ¹⁹⁷) und

²⁰⁵⁾ Shovelton, The Messenger of math. 38 (1908-09), p. 49-57.

²⁰⁶⁾ Baillaud, Paris C. R. 124 (1897), p. 737-39.

Gruey 207) gegebenen umfassen. Die Konstante wird im allgemeinen so bestimmt, daß die Integrale an irgendeiner vorgeschriebenen Stelle null werden, was man nach Bruns dadurch erreicht, daß man in der Summenreihe "das Anfangsglied gleich der umgekehrten Verbesserung" macht, die man an dem Summenglied anbringen muß, um das Integral zu erhalten. Strömgreen 208) zeigt, wie die Konstanten zu bestimmen sind, wenn die aufeinanderfolgenden Integrale an dieser Stelle nicht null werden, sondern einen bestimmten endlichen Wert haben sollen.

11. Annäherung durch mehrere Parabeln (vgl. auch I E Nr. 7). Den ersten bewußten Versuch, die Genauigkeit durch Unterteilung des Intervalles zu vermehren, macht wohl $Simpson^{209}$). $Radau^1$), $Bugajew^{210}$) u. a. zeigen, daß bei Einteilung in n gleiche Teile und bei Annäherung vom Genauigkeitsgrade p-1 durch voneinander unabhängige Parabeln gleicher Ordnung in den n Teilen Intervallen

$$\int_{0}^{1} f(x)dx = \sum_{n=1}^{n-1} \int_{\frac{r}{n}}^{\frac{r+1}{n}} f(x_{r})dx = \frac{1}{n} \sum_{0}^{n-1} \sum_{x} A_{x} f\left(\frac{1+x_{tx}}{n}\right) + \frac{c_{p}\delta_{p}}{n^{p}}$$
$$\frac{c_{p+1}}{n^{p+1}} \left(\delta_{p+1} + (p+1)\frac{n-1}{n}\delta_{p}\right) \cdots$$

wird, der Fehler also auf den $n^{p ext{ten}}$ Teil herabgedrückt wird. Daß vom Standpunkt der Theorie der kleinsten Quadrate aus die Teilung in gleiche Teile die günstigste ist, zeigt $Biermann^{379}$).

Über die auf diese Weise aufgestellten zahlreichen Formeln findet sich eine Übersicht bei *Mansion* ²¹¹). Zur Fehlerabschätzung kann man entweder die *Euler* sche Formel oder die *Taylor* sche Reihe benutzen. Im folgenden sind für die bekannteren Formeln die Korrektionsglieder in beiden Formen angegeben, und außerdem steht hinter jeder Formel die Zahl der benutzten Ordinaten, um besser den Wert der Formel übersehen zu können. ²¹²)

²⁰⁷⁾ Gruey, Ann. de l'Éc. norm. 5 (1868), p. 161-227.

²⁰⁸⁾ Strömgreen, Oversight af Kgl. Vetenskap-Academiens Förhandlingar. Stokholm Nr. 4 (1900), p. 443—54.

²⁰⁹⁾ Simpson, Mathematical dissertations of a variety of physical and analytical subjects, London 1743, p. 109—119.

²¹⁰⁾ Bugajew, Nachrichten der physik.-math. Gesellschaft an der Kaiserl. Universität zu Kasan (2) 7 (1897), p. 95—117.

²¹¹⁾ Mansion, Supplement zu Mathesis 1 (1881), (62 Seiten) und Ann. de la soc. sc. de Bruxelles 5 (1881), p. 231—290.

²¹²⁾ Für schnelle und genaue Messung der erforderlichen Ordinaten bei

1. Die gebräuchlichste Formel — und nach Kronecker 180) ist diese sehr alte Methode trotz aller späteren Untersuchungen noch immer die bequemste — ist die Trapezformel, auch französische Regel, da sie besonders von den französischen Schiffsbauern gern angewandt wird 213) oder Regel von Borda oder Bezout genannt 214). Sie nähert in den einzelnen Teilintervallen durch Parabeln erster Ordnung (Gerade) an, die durch die Endpunkte der gegebenen Teilordinaten gehen.

(151)
$$I_1 = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{y_0 + y_n}{2} \right] \left(\frac{n}{2} + 1 \text{ Ordinaten} \right),$$

wo die Länge des ganzen Intervalles mit H bezeichnet ist; man liest aus der Formel (132) sofort das Korrektionsglied ab.

$$\begin{split} K_{1} &= \alpha_{2} \left(\frac{2\,H}{n}\right)^{2} \! (y_{n}^{'} - y_{0}^{'}) + \alpha_{4} \! \left(\frac{2\,H}{n}\right)^{4} \! (y_{n}^{'''} - y_{0}^{'''}) + \alpha_{6} \! \left(\frac{2\,H}{n}\right)^{6} \! (y_{n}^{\mathrm{V}} - y_{0}^{\mathrm{V}}) \dots \\ \alpha_{2} &= -\frac{1}{12}, \quad \alpha_{4} = \frac{1}{720}, \quad \alpha_{6} = -\frac{1}{30240} \, . \end{split}$$

Nach der Taylorschen Reihe erhält man

$$K_{1} = -\frac{n}{3} \left(\frac{H}{n}\right)^{3} y_{0}^{"} - \frac{n^{2}}{6} \left(\frac{H}{n}\right)^{4} y_{0}^{"} - \left(\frac{n^{3}}{18} - \frac{n}{45}\right) \left(\frac{H}{n}\right)^{5} y_{0}^{\text{IV}} - \left(\frac{n^{4}}{72} - \frac{n^{2}}{90}\right) \left(\frac{H}{n}\right)^{6} y_{0}^{\text{V}} \cdots$$

2. Eine andere etwas genauere Methode, die ebenfalls in den einzelnen Intervallen die Bogen durch eine Gerade, nämlich durch die Tangente im Endpunkte der Mittelordinate ersetzt, rührt von *Mac Laurin* ²¹⁵) her

(152)
$$I_2 = \frac{2H}{n} \sum_{n=1}^{p} y_{2m-1} \qquad \left(\frac{n}{2} \text{ Ordinaten}\right).$$

Das Korrektionsglied liest man aus (133) ab.

$$\begin{split} K_2 = & -\frac{1}{2} \, \alpha_2 \, \Big(\frac{2 \, H}{n}\Big)^2 (y_n{}' - y_0{}') \, - \, \frac{7}{8} \, \alpha_4 \Big(\frac{2 \, H}{n}\Big)^4 (y_n{}''' - y_0{}''') \\ & - \, \frac{31}{32} \, \alpha_6 \, \Big(\frac{2 \, H}{n}\Big)^6 (y_n{}^{\, \mathrm{V}} - y_0{}^{\, \mathrm{V}}) \dots \end{split}$$

graphisch gegebenen Kurven sind mehrfach Methoden angegeben, so z. B. von Gramberg, Technische Messungen insbesondere bei Maschinenuntersuchungen, Berlin 1905, p. 31, der eine parallel liniierte Platte, oder von v. Sanden, Praktische Analysis, Leipzig 1914, p. 83, der ein Meßrädchen benutzt.

²¹³⁾ Z. B. Bougner, Traité du Navire . . ., Paris. 1746, p. 212.

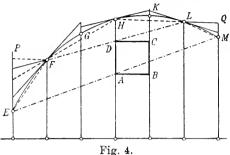
²¹⁴⁾ Johow, Hifsbuch für den Schiffsban, Berlin 1902, p. 312.

²¹⁵⁾ Mac-Laurin, Treatise of fluxions 2, Kap. IV, 632, Edingbourg 1742; vgl. auch Cantor, Vorlesungen über Geschichte der Mathematk IV, Leipzig 1908, p. 735.

Nach der Taylorschen Reihe wird

$$\begin{split} K_2 &= \frac{n}{6} \left(\frac{H}{n} \right)^3 y_0'' + \frac{n^2}{12} \left(\frac{H}{n} \right)^4 y_0''' + \left(\frac{n^3}{36} - \frac{7n}{360} \right) \left(\frac{H}{n} \right)^5 y_0^{\text{IV}} \\ &\quad + \left(\frac{n^4}{144} - \frac{7n^2}{720} \right) \left(\frac{H}{n} \right)^6 y_0^{\text{V}} \cdot \cdot \cdot \end{split}$$

Zahlreich sind die Versuche, diese beiden Formeln dadurch zu verbessern, daß man die Ordinaten an den Enden des Intervalles H



besonders berücksichtigt. Einige bekanntere seien hier mit den M Korrektionsglied nach Taylor gegeben.

3. Die bekannteste Formel dieser Art ist von *Poncelet* ²¹⁶) allerdings ohne Restglied gegeben worden. Er kommt auf diese Formel durch Mittelbildung aus einem umgeschrie-

benen Polygon mit dem Inhalte M (in Fig. 4 ausgezogen) und einem eingeschriebenen mit dem Inhalte m (gestrichelt).²¹⁷)

(153)
$$I_{3} = \frac{M+m}{2} = \frac{2H}{n} \left[\sum_{1}^{p} y_{2m-1} + \frac{y_{0} + y_{n}}{8} - \frac{y_{1} + y_{n-1}}{8} \right] \left(\frac{n}{2} + 2 \text{ Ordinaten} \right).$$

Daraus ergibt sich, daß der Fehler kleiner als $\frac{M-m}{2}$ ist, wenn die Krümmung ihr Vorzeichen nicht ändert. Nach Taylor ist das Korrektionsglied

$$\begin{split} K_3 = & - \left(\frac{n}{12} - \frac{1}{4}\right) \left(\frac{H}{n}\right)^3 y_0^{"} - \left(\frac{n^2}{24} - \frac{n}{8}\right) \left(\frac{H}{n}\right)^4 y_0^{"} \\ & - \left(\frac{n^3}{72} - \frac{n^2}{16} + \frac{11}{180} - \frac{1}{48}\right) \left(\frac{H}{n}\right)^5 y_0^{\text{IV}} \dots \end{split}$$

Diese Formel findet man vielfach; sie wird z. B. im Dictionaire math. appl. als besonders gut bezeichnet 218).

4. Eine Verbesserung dieser Formel geben fast gleichzeitig *Piobert*²¹⁹), der von der Annäherung der Kurvenstücke durch zwei

217) Sonnet, Traité élémentaire de mécanique, Paris 1851.

219) Piobert, Nouv. Ann. 13 (1854), p. 323-331.

²¹⁶⁾ Die Formel wurde von *Poncelet* in Vorlesung gegeben, später von *Kretz* aufgenommen in die Introduction à la mécanique industrielle, 2. Aufl., Metz 1839, 3. Ausg. Paris 1870, p. 197—201.

²¹⁸⁾ Sonnet, Dictionaire des mathématiques appliquées, Paris 1864. Artikel Quadrature.

Kreisbogen, und *Parmentier* ²²⁰), der zunächst mehr gefühlmäßig später ²²¹) auf Grund der Darstellung durch Parabelbogen auf diese Formel kommt.

(154)
$$I_4 = \frac{2M+m}{3} = \frac{2H}{n} \left[\sum_{1}^{p} y_{2m-1} + \frac{y_0 + y_n}{12} - \frac{y_1 + y_{n-1}}{12} \right]$$
$$\left(\frac{n}{2} + 2 \text{ Ordinaten} \right) .$$

Der Fehler ist, falls der zweite Differentialquotient sein Vorzeichen nicht ändert, absolut genommen hier kleiner als $\frac{2}{3}(M-m)$. Da in der Ponceletschen Formel die obere Fehlergrenze kleiner ist als in der Formel von Piobert-Parmentier, gibt man gelegentlich der ersteren den Vorzug. Daß letztere im allgemeinen besser annähert, zeigt das Korrektionsglied, wie es z. B. Chevilliet 222) gibt.

$$K_4 = \frac{1}{6} \left(\frac{H}{n} \right)^3 y_0'' + \frac{n}{12} \left(\frac{H}{n} \right)^4 y_0''' + \left(\frac{n^2}{24} - \frac{17n}{360} + \frac{1}{72} \right) \left(\frac{H}{n} \right)^5 y_0^{\text{IV}} \dots$$

Die Formel, die auf Grund falscher Voraussetzung gelegentlich angegriffen wurde ²²³), findet sich vielfach z. B. bei *Jorini* ²²⁴), *Harnack* ²²⁵), *Francke* ²²⁶), *Martinenq* ²²⁷) usw.

5. Zwei weitere Korrektionsglieder bringt *Dupain* ²²⁸), der von der *Taylor* schen Reihe ausgeht, zum Verschwinden

(155)
$$I_{5} = \frac{2H}{n} \left[\sum_{1}^{p} y_{2m-1} + \frac{n}{n-1} \left(\frac{y_{0} + y_{n}}{12} - \frac{y_{1} + y_{n+1}}{12} \right) \right]$$

$$\left(\frac{n}{2} + 2 \text{ Ordinaten} \right)$$

$$K_{5} = + \left(\frac{n^{2}}{72} - \frac{n}{30} \right) \left(\frac{H}{n} \right)^{5} y_{0}^{\text{IV}} + \left(\frac{n^{3}}{144} - \frac{n^{2}}{60} \right) \left(\frac{H}{n} \right)^{6} y_{0}^{\text{V}} \dots$$

²²⁰⁾ Parmentier, Mémoriales de l'officier du génie 1854, p. 290 ff.; Nouv. Ann. 14 (1855), p. 370-84.

²²¹⁾ Parmentier, Nouv. Ann. (2) 15 (1876), p. 241-251; Ann. des ponts et chaussées 11 (1876), p. 631-32.

²²²⁾ Chevilliet, Paris C. R. 80 (1875), p. 823-26.

²²³⁾ Nouv. Ann. 16 (1857), p. 11—12. Antwort v. Parmentier auf den folgenden Seiten.

²²⁴⁾ Jorini, Il Politecnico 41 (1893), p. 432-36.

²²⁵⁾ Harnack, Civilingenieur 28 (1882), p. 257-70. (Bericht über die Arbeit von Mansion.)

²²⁶⁾ Francke, Zeitschr. des Architekten- und Ingenieurvereins zu Hannover 21 (1875), p. 177—184. Hier findet sich auch eine Formel von etwa gleicher Genauigkeit, die zwei Ordinaten außerhalb des Integrationsintervalles benutzt.

²²⁷⁾ Martinenq, Aide mémoire du constructeur des navires, Paris 1891, p. 62.

²²⁸⁾ Dupain, Nouv. ann. 17 (1858), p. 288-95.

104 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

6. Später gibt *Parmentier* ²²⁹) eine Formel, die ungefähr dieselbe Genauigkeit hat ²¹¹),

$$(156) I_{6} = \frac{2H}{n} \left[\sum_{1}^{p} y_{2m-1} + \frac{1}{8} (y_{0} + y_{n}) - \frac{1}{6} (y_{1} + y_{n-1}) + \frac{1}{24} (y_{2} + y_{n-2}) \right]$$

$$\left(\frac{n}{2} + 4 \text{ Ordinaten} \right)$$

$$K_{6} = \left(\frac{13 n}{360} - \frac{1}{12} \right) y_{0}^{\text{IV}} \left(\frac{H}{n} \right)^{5} + \left(\frac{13 n^{2}}{720} - \frac{n}{24} \right) y_{0}^{\text{V}} \left(\frac{H}{n} \right)^{6} \cdots$$

7. Eine ähnliche Formel findet sich bei *Francke* allerdings ohne Restglied.²²⁶)

$$(157) I_{7} = \frac{2H}{n} \left[\sum_{1}^{p} y_{2m-1} + \frac{1}{9} (y_{0} + y_{n}) - \frac{1}{8} (y_{1} + y_{n-1}) + \frac{1}{72} (y_{3} + y_{n-3}) \right]$$

$$\left(\frac{n}{2} + 2 \text{ Ordinaten} \right)$$

$$K_{7} = \left(\frac{23 n}{360} - \frac{1}{6} \right) y_{0}^{\text{IV}} \left(\frac{H}{n} \right)^{5} + \left(\frac{23 n^{2}}{720} - \frac{n}{12} \right) y_{0}^{\text{V}} \left(\frac{H}{n} \right)^{6} \cdots$$

8. Während die bisher angeführten Formeln von der Mac-Laurinschen Formel ausgehen, also in der Hauptsache nur Ordinaten mit ungeradem Index benutzen, sind die nun folgenden Formeln im Anschluß an die Trapezregel aufgestellt. Ähnlich wie die Ponceletsche Formel aus der Mac Laurinschen abgeleitet ist, kann man aus der Trapezregel die sog. verbesserte Trapezregel herleiten.²¹⁴)

(158)
$$I_{8} = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{5}{8} (y_{0} + y_{n}) + \frac{y_{2} + y_{n-2}}{8} \right]$$

$$\left(\frac{n}{2} + 1 \text{ Ordinaten} \right)$$

$$K_{8} = -\left(\frac{n}{12} + \frac{1}{4} \right) \left(\frac{H}{n} \right)^{3} y_{0} " - \left(\frac{n^{2}}{24} + \frac{n}{8} \right) y_{0} " \left(\frac{H}{n} \right)^{4} \cdots$$

9. In Analogie zur Formel 6. hat *Parmentier* ²²⁹) an der Trapezregel dieselbe Verbesserung vorgenommen.

(159)
$$I_{9} = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{3}{4} (y_{0} + y_{n}) + \frac{1}{3} (y_{1} + y_{n-1}) - \frac{1}{12} (y_{2} + y_{n-2}) \right]$$

$$\left(\frac{n}{2} + 3 \text{ Ordinaten} \right)$$

$$K_{9} = -\left(\frac{4n}{45} - \frac{1}{6} \right) y_{0}^{\text{IV}} \left(\frac{H}{n} \right)^{5} - \left(\frac{2n^{2}}{45} - \frac{n}{12} \right) y_{0}^{\text{V}} \left(\frac{H}{n} \right)^{6} \cdots$$

²²⁹⁾ Parmentier, Association française pour l'avancement des sciences Session Grenoble 1882.

10. Als Analogie zur Dupainschen Formel 5. gibt Mansion 230)

$$(160) I_{10} = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{y_{0} + y_{n}}{2} + \frac{n}{n+1} \left(\frac{y_{1} + y_{n-1}}{2} - \frac{y_{0} + y_{n}}{3} - \frac{y_{2} + y_{n-2}}{6} \right) \right]$$

$$\left(\frac{n}{2} + 3 \text{ Ordinaten} \right)$$

$$K_{10} = \left(\frac{n^{2}}{n} - \frac{51n}{3} + \frac{2n}{n+1} \right) \left(\frac{H}{n} \right)^{5} y_{1} \text{ IV}$$

$$K_{10} = \left(\frac{n^2}{36} - \frac{51 \, n}{180} + \frac{2 \, n}{3 \, (n+1)}\right) {H \choose n}^5 y_0^{\text{IV}} + \left(\frac{n^3}{72} - \frac{51 \, n^2}{360} + \frac{n}{3} - \frac{n}{3 \, (n+1)}\right) {H \choose n}^6 y_0^{\text{V}} \dots$$

11. Schließlich sind noch Formeln aufgestellt, die das auf den Ordinaten y_2 und y_{n-2} durch die Tangenten in den Endpunkten abgeschnittene Stück Y_2 und Y_{n-2} von der X-Achse aus gerechnet benutzen; so die als Poisson sche Regel bezeichnete Formel, die man gewöhnlich in der Form schreibt $^{214})^{231}$)

(161)
$$I_{11} = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{y_{0} + y_{n}}{2} + \frac{H}{4n} (\operatorname{tg} \alpha_{0} - \operatorname{tg} \alpha_{n}) \right] \left(\frac{n}{2} + 3 \text{ Ordinaten} \right)$$

$$K_{11} = -\frac{n}{6} y_{0}^{"} \left(\frac{H}{n} \right)^{3} - \frac{n^{2}}{12} y_{0}^{"} \left(\frac{H}{n} \right)^{4} \cdots$$

12. Eine Verbesserung dieser Formel findet sich bei Mansion 232)

(162)
$$I_{12} = \frac{2H}{n} \left[\sum_{0}^{p} y_{2m} - \frac{7}{12} (y_0 + y_n) + \frac{1}{12} (Y_2 + Y_{n-2}) \right]$$

$$\left(\frac{n}{2} + 3 \text{ Ordinaten} \right)$$

$$K_{12} = \frac{n}{45} y_0^{\text{IV}} \left(\frac{H}{n} \right)^5 + \frac{n^2}{90} y_0^{\text{V}} \left(\frac{H}{n} \right)^6 \cdots$$

13. Eine der ältesten und wichtigsten von allen in dieser Nummer angeführten Formeln ist die von Simpson²⁰⁹), die in den einzelnen Intervallen durch Parabeln zweiter Ordnung annähert

(163)
$$I_{13} = \frac{H}{3n} \left[2 \sum_{n=0}^{p} y_{2m} + 4 \sum_{n=0}^{p} y_{2m-1} - (y_0 + y_n) \right] (n+1)$$
 Ordinaten).

Sie findet sich in zahlreichen Arbeiten besonders bei Schiffsbauern, wie de Chapmann³⁴³), Woolley²⁴⁰), Rankine²⁴⁶) usw. dann auch, z. B. bei Steen²³³), der sie auf Grund einer Exhaustionsmethode, bei Witt-

²³⁰⁾ Mansion, Mathesis 7 (1887), p. 77-84.

²³¹⁾ Mansion, Mathesis 1 (1881), p. 17-22, 33-36.

²³²⁾ Mansion, Ann. de la société scientifique de Bruxelles 8 B (1884), p. 11-24. Bericht darüber von Le Paige, daselbst 8 A (1884), p. 51-52.

²³³⁾ Steen, Nouv. ann. (20) 10 (1871), p. 301-304 und Zeuthen Tidsskr. (3) 1 (1870), p. 90.

stein ²³⁴), der sie durch Betrachtung flacher Kreisbogen ableitet, ferner bei Cousinery ²³⁵), Lacroix ¹⁵³), Houel ¹⁵⁵), Kubiček ²³⁶) Peano ²³⁷), Kinkelin ¹⁵⁸), Jung ²³⁸), Shaxby ²³⁹) u. a. Gelegentlich wurde über den Wert der Formel gestritten. ²⁴⁰) So zeigt Crotti ²⁴¹) an einem Beispiel, daß das verschiedene Gewicht der geraden und ungeraden Ordinaten ein Nachteil ist: daran knüpft sich eine Erörterung zwischen Jadanza ²⁴²), Crotti ²⁴³), Bardelli, Peano ²⁴⁴) und Maggi ²⁴⁵). In der Tat kann ja auch, wenn die Kurve im Integrationsintervall bald konvex, bald konkav gegen die X-Achse ist, unter Umständen die Trapezregel oder die Mac Laurinsche Formel einen genaueren Wert geben.

Mehrfach wird versucht, die nur für eine gerade Anzahl von Intervallen geltende Formel auf eine ungerade Zahl zu übertragen, so fügt $Mansion^{211}$) für das überzählige Intervall zwischen y_{n-1} und y_n hinzu $\frac{1}{12}h$ (— $y_{n-2} + 8y_{n-1} + 5y_n$), eine Formel, die gelegentlich als Fünf-Acht-Regel bezeichnet wird y_n von y_n ausgehend, fügt er eine analoge Formel für das Intervall y_0 bis y_1 bei und bildet dann das Mittel. $Per-rodil^{247}$) setzt für das überzählige Intervall y_0, y_1 an h ($\frac{1}{2}y_0 + \frac{1}{3}y_1 + \frac{1}{6}Y_1$), wo Y_1 das von der Tangente im Eudpunkte von y_0 auf y_1 abgeschnittene Stück ist, gerechnet von der X-Achse aus.

Das Korrektionsglied nach der Taylorschen Reihe ist

$$K_{13} = -\frac{n}{180} \left(\frac{H}{n}\right)^5 y_0^{\text{IV}} - \frac{n^2}{360} \left(\frac{H}{n}\right)^0 y_0^{\text{V}} - \left(\frac{n^3}{1080} - \frac{n}{1512}\right) \left(\frac{H}{n}\right)^7 y_0^{\text{VI}} \dots$$

und nach der Eulerschen Formel, wie es z. B. Fontené gibt

$$K_{13} = -\frac{1}{180} \left(\frac{H}{n}\right)^4 (y_n^{\text{III}} - y_0^{\text{III}}) + \frac{1}{1512} \left(\frac{H}{n}\right)^6 (y_n^{\text{V}} - y_0^{\text{V}}) \dots$$

²³⁴⁾ Wittstein, Arch. Math. Phys. 39 (1862), p. 12—18. Genaueres darüber findet sich bei Vahlen, Konstruktionen u. Approximationen, Leipzig 1911, p. 195—96.

²³⁵⁾ Cousinery, Le calcul par le trait, Paris 1840, p. 84-86.

²³⁶⁾ Kubiček, Programm d. k. k. böhm. Gymn. Budweis 1897 (22 Seiten).

²³⁷⁾ Peano, Applicationi geometrique del calcolo infinitesimale, p. 206.

²³⁸⁾ Jung, Časopis pro pestovani Mathematiky a fysiky 35 (1906), p. 23-32.

²³⁹⁾ Shaxby, Lond. Roy. Soc. Proc. A. 82 (1909), p. 331-335.

²⁴⁰⁾ Z. B. Fincham, History of Naval Architecture 1851 (Introduction p. 14) und Woolley, Transactions of the Institution of Naval Architects 1 (1860), p. 16, 17.

²⁴¹⁾ Crotti, Il Politecnico 33 (1885), p. 193-207.

²⁴²⁾ Jadanza, Il Politecnico 41 (1893), p. 354-361.

²⁴³⁾ Crotti, Il Politecnico 41 (1893), p. 361-362.

²⁴⁴⁾ Jadanza, Bardelli, Peano, Rivista di matematica 3 (1893), p. 15-18.

²⁴⁵⁾ Maggi, Rivista di matematica 3 (1893), p. 60-61.

²⁴⁶⁾ Rankine, Watts, Burnes, Napier, Shipbuilding, theoretical and practical, London 1866, Teil I, Kap. II. Johow, Hilfsbuch für den Schiffsbau, Berlin 1902, p. 311, 312.

²⁴⁷⁾ Perrodil, Annales des ponts et chaussées 1885, p. 122-128.

Gibt man nur das erste Glied dieser Korrektion, wie z. B. Chevilliet 248) an, so muß man, um ein wirkliches Maß für den Fehler zu haben, hinzufügen, daß das Zeichen von $f^{\text{IV}}(x)$ sich in dem Gebiet nicht ändern darf. Des öftern wird darauf hingewiesen, daß das Korrektionsglied erst mit y^{IV} beginnt, so von Catalan 42), Petit-Bois 249), Laquière und Fénéon²⁵⁰), Dupain²⁵¹), Ligowski²⁵²) u. a. Eine andere Form für das Korrektionsglied gibt Schlömilch 258) $\frac{1}{288}h^4 \varrho (f'''(\beta) - f'''(\alpha))$, wo $-4 \le \rho \le +1$, falls f^{IV} sein Zeichen nicht ändert. Nach Hočevar²⁵⁴) kann man das durch Addition von cx^4 verhindern, so daß dann das Intervall nicht geteilt zu werden braucht. Die von Mansion²¹¹) gegebene Korrektion $\frac{2}{3} \varrho D(-\frac{1}{2} < \varrho < +1)$, wo D die Differenz zwischen um- und eingeschriebenem Polygon ist, hat den Nachteil, daß sie die Simpsonsche Regel mit der Trapezmethode usw. auf Wiecke²⁵⁵) fügt als Korrektur für ein Intervall eine Stufe stellt. $E=-rac{4h}{45}\Delta^4y_0$ hinzu, wo Δ^4y_0 aus den Werten $f(x_0), f\left(x_0+rac{h}{2}
ight)$ usw. zu berechnen ist. Diese Formel fordert also außer den n+1 Ordinaten der Simpsonschen Regel noch weitere n Ordinaten.

Nach Hočevar 254) läßt sich das vermeiden, wenn man

$$E = -\frac{h}{90}(2\Delta^4 y_0 + \Delta^4 y_3 \cdots \Delta^4 y_{n-7} + 2\Delta^4 y_{n-4})$$

setzt, was zwar ungenauer ist, wo aber nur die Ordinaten der Simpsonschen Regel verwandt werden. Ein ähnliches Korrektionsglied gibt Dienger. ¹⁹⁰)

In dem Falle, wo die Begrenzungskurve parallel zur Y-Achse wird, versagt natürlich die Regel. Für dies Intervall nähert man nicht durch eine Parabel, sondern nach Hocevar 254) und Lodges durch eine Kurve $y=a+bx^2+cx^{2+1}$, wo man etwa $\lambda=\frac{1}{2}$ setzt. Ähnlich schlägt Edwards vor, hier durch $y=a+bx+c\sqrt{x}$ anzunähern. Petit-Bois 257) will durch eine Hyperbel in dem betreffenden Intervall annähern, deren eine Achse parallel zur y-Achse ist.

Auf Annäherung durch Parabeln zweiter Ordnung beruht auch die von $Lambert^{23}$) gegebene Formel (n=3p)

²⁴⁸⁾ Chevilliet, Paris. C. R. 78 (1874), p. 1841-1843.

²⁴⁹⁾ Petit-Bois, Mémoires de la société Royal de Liège (2) 18 (1895).

²⁵⁰⁾ Laquière et Fénéon, Nouv. ann. 17 (1858), p. 5-6.

²⁵¹⁾ Dupain, Nouv. ann. 17 (1858), p. 207-208.

²⁵²⁾ Ligowski, Arch. Math. Phys. 55 (1873), p. 219-221.

²⁵³⁾ Schlömilch, Kompendium der höheren Analysis 1, § 82, p. 376-381.

²⁵⁴⁾ Hočevar, Wiener Ber. 90 (1884), p. 908-922.

²⁵⁵⁾ Wiecke, Zeitschr. deutsch. Ingenieure 23 (1879), p. 83-89.

²⁵⁶⁾ Edwards, The Messenger of Mathematics (2) 34 (1904), p. 121-126.

²⁵⁷⁾ Petit-Bois, Mathesis 5 (1885), p. 5-7, 27-31.

$$I = \frac{3}{4} \frac{H}{n} \Big(\sum_{0}^{p-1} y_{3m} + 3 \sum_{0}^{p-1} y_{3m+2} \Big).$$

Den Fehler gibt z.B. Buzengeiger 138) für ein Intervall (p=1) an

$$+\frac{H^4}{36}\cdot\frac{1}{3!}y_0'''+\frac{7H^5}{135}\cdot\frac{1}{4!}y_0^{\text{IV}}.$$

14. Catalan ²⁵⁸) sucht die Simpsonsche Formel dadurch zu verbessern, daß er von den durch die Endpunkte dreier aufeinanderfolgender Ordinaten gehenden Parabeln immer nur die erste Hälfte benützt. Nur bei den letzten beiden Teilen benützt er die ganze Parabel. Führt man das von beiden Seiten aus durch und nimmt das arithmetische Mittel, so erhält man ²⁵⁹)

$$(164) \left\{ \begin{array}{l} I_{14} \! = \! \frac{H}{n} \! \Big[\sum y - \! \frac{5}{8} (y_0 \! + \! y_n) \! + \! \frac{1}{6} (y_1 \! + \! y_{n-1}) \! - \! \frac{1}{24} (y_2 \! + \! y_{n-2}) \Big] \\ (n+1 \ \, \text{Ordinaten}). \\ K_{14} \! = \! - \! \Big(\! \frac{19}{720} \! - \! \frac{1}{24} \! \Big) y_0^{\text{IV}} \! \Big(\! \frac{H}{n} \! \Big)^5 \! - \! \Big(\! \frac{19}{1440} \! - \! \frac{n}{48} \! \Big) \! \Big(\! \frac{H}{n} \! \Big)^6 y_0^{\text{V}} \ldots \right.$$

15. Subtrahiert man von dem Zweifachen der Catalanschen Formel die Simpsonsche, so erhält man eine von Parmentier²²⁹) gegebene Formel, bei der das Gewicht der Ordinaten gerade umgekehrt ist wie bei der Simpsonschen,

$$(165) \begin{cases} I_{15} = \frac{H}{3n} \left[4 \sum_{0}^{p} y_{2m} + 2 \sum_{1}^{p} y_{2m-1} - \frac{11}{4} (y_{0} + y_{n}) + (y_{1} + y_{n-1}) - \frac{1}{4} (y_{2} + y_{n-2}) \right] \\ + (n + 1 \text{ Ordinaten}). \\ K_{15} = -\left(\frac{17n}{360} - \frac{1}{12}\right) y_{0}^{\text{IV}} \left(\frac{H}{n}\right)^{5} - \left(\frac{17n^{2}}{720} - \frac{n}{24}\right) y_{0}^{\text{V}} \left(\frac{H}{n}\right)^{6} \cdots \end{cases}$$

16. Ähnlichkeit mit der *Catalan*schen Formel hat eine schon von *Mac Laurin* ²⁶⁰) mit Korrektionsglied nach *Euler* gegebene Formel ¹²²)

$$(166) \begin{cases} I_{16} = \frac{nH}{(n-1)(n+1)} \Big[\sum y - \frac{n+1}{n} \frac{y_0 + y_n}{2} \Big] \\ (n+1 \text{ Ordinaten}). \\ K_{16} = -\frac{n^2}{720} \Big(\frac{H}{n}\Big)^4 (y_n''' - y_0''') + \frac{n^4 + n^2}{30240} \Big(\frac{H}{n}\Big)^6 (y_n^{\text{V}} - y_0^{\text{V}}) \cdots \\ = -\frac{n^3}{720} \Big(\frac{H}{n}\Big)^5 y_0^{\text{IV}} - \frac{n^4}{1440} \Big(\frac{H}{n}\Big)^6 y_0^{\text{V}} \dots \end{cases}$$

²⁵⁸⁾ Catalan, Nouv. ann. 10 (1851), p. 412-415.

²⁵⁹⁾ Lacroix, Traité des différences et des séries 1800.

²⁶⁰⁾ Mac-Laurin, Treatise of fluxions 2, Edinbourg 1742, p. 848.

17. Ist n = 3p, so kann man in den p Teilintervallen durch Parabeln dritter Ordnung annähern. 21) Man erhält so eine Formel, die gewöhnlich als Newtonsche, zweite Formel von Simpson oder als Drei-Acht-Regel²⁴⁶) bezeichnet wird

$$(167) \ \ I_{17} = \frac{3H}{8n} \Big[2 \sum_{0}^{p} y_{3m} + 3 \sum_{0}^{p-1} y_{3m+1} + 3 \sum_{0}^{p-1} y_{3m+2} - (y_{0} + y_{n}) \Big]$$

$$(n+1 \ \text{Ordinaten}).$$

Der Fehler ist von derselben Größenordnung wie bei den letzten Formeln

$$K_{17} = -\frac{1}{80} \left(\frac{H}{n}\right)^4 \left(y_n''' - y_0'''\right) + \frac{1}{336} \left(\frac{H}{n}\right)^6 \left(y_n^{\text{V}} - y_0^{\text{V}}\right) \dots$$

$$= -\frac{n}{80} \left(\frac{H}{n}\right)^5 y_0^{\text{IV}} - \frac{n^2}{160} \left(\frac{H}{n}\right)^6 y_0^{\text{V}} \dots$$

18. Durch Parabeln vierter Ordnung (n = 4p) nähert in den einzelnen Teilintervallen eine Formel an, die auf Villarceau 269) oder Boole 240) und Moulton zurückgeführt wird.

$$(168) \begin{cases} I_{18} = \frac{4H}{45n} \left[7 \sum_{0}^{p} y_{4m} + 16 \sum_{0}^{p-1} y_{4m+1} + 6 \sum_{0}^{p-1} y_{4m+2} + 16 \sum_{0}^{p-1} y_{4m+3} - \frac{7}{2} (y_0 + y_n) \right] \\ + 16 \sum_{0}^{p-1} y_{4m+3} - \frac{7}{2} (y_0 + y_n) \right] \\ K_{18} = -\frac{2}{945} \left(\frac{H}{n} \right)^6 (y_n^{\text{V}} - y_0^{\text{V}}) \dots \\ = -\frac{2n}{945} \left(\frac{H}{n} \right)^7 y_0^{\text{VI}} - \frac{n^2}{945} \left(\frac{H}{n} \right)^8 y_0^{\text{VII}} \end{cases}$$

19. Etwa dieselbe Genauigkeit hat die sogenannte Formel von Weddle 262), die z. B. Boole 261), Mansion 211), Sheppard 263) usw. geben.

$$Weddle^{262}), \text{ die z. B. } Boole^{261}), Mansion^{211}), Sheppard^{263}) \text{ usw. geben.}$$

$$\begin{cases} I_{19} = \frac{3H}{10n} \left[2 \sum_{0}^{p} y_{6m} + 5 \sum_{0}^{p-1} y_{6m+1} + \sum_{0}^{p-1} y_{6m+2} + 6 \sum_{0}^{p-1} y_{6m+3} \right. \\ \left. + \sum_{0}^{p-1} y_{6m+4} + 5 \sum_{0}^{p-1} y_{6m+5} - (y_{0} + y_{n}) \right] \\ \left. (n+1 \text{ Ordinaten}). \right. \\ K_{19} = -\frac{1}{840} \left(\frac{H}{n} \right)^{6} (y_{n}^{V} - y_{0}^{V}) \dots \\ = -\frac{2n}{840} \left(\frac{H}{n} \right)^{7} y_{0}^{VI} - \frac{n^{2}}{1680} \left(\frac{H}{n} \right)^{8} y_{0}^{VII} \dots \\ \hline 261) \text{ Boole, Grundlehren der endlichen Differenzen- und Summenrechnung,} \end{cases}$$

²⁶¹⁾ Boole, Grundlehren der endlichen Differenzen- und Summenrechnung, Deutsch von Schnute, Braunschweig 1867, p. 38-43.

20. Sheppard ²⁶³) gibt noch eine große Zahl weiterer Näherungsformeln ²⁶⁴), die er aus dem Ausdruck $I = \frac{pA_1 + qA_2 + rA_3}{p + q + r}$ ableitet, wo p, q, r bestimmte Zahlen sind, die so gewählt werden, daß möglichst viele Glieder der Eulerschen Formel richtig dargestellt werden, und wo $A_1, A_2, A_3 \ldots$ die Trapez- oder Mac Laurinschen Formeln für die Intervallbreite $h, 2h, 3h \ldots$ sind; ähnlich verfährt Becker ²⁶⁵). Mit Einführung der Zentraldifferenzen ²⁶⁶) gibt dann Buchanan ²⁶⁷) unter Benützung einer Interpolationsformel von Everett ²⁶⁸) andere Ausdrücke für die Fehlerglieder.

Während die bisher angeführten Formeln äquidistante Ordinaten benützen, hat man 281) auch wohl die $Gau\beta$ sche Formel, z. B. für n=2, auf mehrere Intervalle übertragen. $Radau^{269}$) überträgt die Tschebyscheffsche Formel für 4 Ordinaten auf mehrere Intervallen. Da die Abszissen dieser Formeln sehr wenig von 0,1, 0,4, 0,6, 0,9 verschieden sind, wählt er die Ordinaten für diese Abszissenwerte und setzt die Koeffizienten gleich $\frac{22}{90}$ bzw. $\frac{23}{90}$. Er findet

$$(170) \quad I = \frac{H}{4n} \sum (y_{0,1} + y_{0,4} + y_{0,6} + y_{0,9}) + \frac{H}{180n} \sum (y_{0,4} + y_{0,6} - y_{0,1} - y_{0,9}) - \frac{c_4 H^5}{15000 n^4}.$$

Die in dieser Nummer angegebenen Formeln setzen voraus, daß die einzelnen Ordinaten exakt gegeben sind. Ist das nicht der Fall, sondern hat jede einen bestimmten wahrscheinlichen Fehler, so kann eine hier als schlechtere Annäherung erscheinende Formel bessere Resultate liefern, je nachdem der Beobachtungsfehler oder der Rechnungsfehler größeren Einfluß hat.²⁷⁰) Insbesondere werden in diesem Falle die unter 1) und 2) gegebenen Formeln gute Annäherungen geben.

²⁶²⁾ Weddle, Cambridge and Dublin mathematical Journal 9 (1854), p. 79, 80.

²⁶³⁾ Sheppard, Proc. of the Lond. math. soc. 32 (1900), p. 258-277.

²⁶⁴⁾ S. a. Le Brun, Le génie civil 11 (1887), p. 340 Lambert II. 28), Klügel 122), Buzengeiger 188) etc.

²⁶⁵⁾ Becker, Philosophical Magazine (6) 22 (1911), p. 342-353. Amer. J. of science 31, p. 117-126.

²⁶⁶⁾ Sheppard, Proc. of the Lond. math. soc. 31 (1899), p. 449—488; Everett, Quart. Journ. of math. 31 (1900), p. 357—376; Hansen, Abhandlungen d. kgl. sächsischen Gesellschaft der Wissenschaften 11 (1865), p. 505—583.

²⁶⁷⁾ Buchanan, Proc. of Royal Soc. of Lond. 34 (1902), p. 335-345.

²⁶⁸⁾ Everett, Journ. of the Institute of Actuaries 35, p. 452.

²⁶⁹⁾ Radau, Journ. de math. (3) 6 (1880), § 23.

²⁷⁰⁾ Darwin, The Messenger of Math. (2) 6 1877, p. 134-136; Report of the British Association for the Advancement of Science 1876, p. 13.

Schließlich sei noch erwähnt, daß es für die Durchführung von Rechnungen mit obigen Formeln von der größten Wichtigkeit ist, die Rechnung praktisch in Tabellen anzuordnen. Beispiele für eine praktische Anordnung finden sich z. B. bei *Merrifield*²²) und besonders in der schiffsbautechnischen Literatur.²⁷¹)

12. Methoden der graphischen Quadratur (vgl. II A 2 (A. Voss) Differential- und Integralrechnung, Nr. 61). a) Allgemeines. Bei der graphischen Quadratur handelt es sich darum zu einer gegebenen Kurve y = f(x) (sog. Differentialkurve) durch zeichnerische Methoden die Integralkurve

$$Y = \int_{a}^{x} f(x) \, dx^{272}$$

zu finden. Die Einheiten, in denen Abszisse und Ordinate gemessen sind, werden im allgemeinen unabhängig voneinander gewählt, d. h. bei der Integralkurve ist die Differenz zweier Ordinaten multipliziert mit einer konstanten Strecke, der sog. Integrationsbasis, dem Inhalte des Flächenstückes gleich, das von der Differentialkurve, den korrespondierenden Ordinaten und der Abszissenachse eingeschlossen wird; die Neigung der Tangente der Integralkurve ist daher der korrespondierenden Ordinate der Differentialkurve proportional.

Die Konstruktion der Integralkurve umgeht die sog. Methode von A. Wiener²⁷³), die die zu integrierende y-Kurve stückweise durch eine z-Kurve ersetzt, so daß $y\Delta x = z\Delta z$ wird, d.h. die Ordinate der y-Kurve

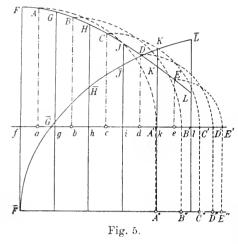
²⁷¹⁾ Z. B. Transactions of the Institution of Naval Architects II, p. 163; V, p. 9; VI, p. 51 etc.

²⁷²⁾ Der Zusammenhang von Differential- und Integralkurven findet sich eingehend in einem Aufsatz von Leibniz in den Acta Erudita 1693. (Wiedergegeben in Ostwalds Klassikern Nr. 162, S. 24—34.) Ob aber Leibniz die graphische Integration durch kleinste Elemente schon verwandt hat, wie Massau meint (Massau: Appendice du Mémoire sur l'intégration graphique et ses applications, Paris 1890, Note XI), scheint uns zweifelhaft. Verwendet wurde die Integralkurve von Rossin in seinen Vorlesungen an der École d'application du Génie maritime in Paris, wie sie überhaupt im Schiffsbau viel benutzt wird; vgl. auch die Literaturangaben bei Massau in der oben zitierten Arbeit, wie auch bei Bitterli im Anhang zur deutschen Ausgabe von Abdank-Abakanowitz: Die Integraphen. Leipzig 1889. Abgesehen von den im folgenden zitierten Arbeiten, sind von Arbeiten über die Integralkurven noch zu erwähnen:

Louis Straszewicz: La courbe intégrale etc. Thèse presentée à la faculté des sciences de l'université de Genève. Imprimerie Charles Schuchardt Genève 1884. Terrier, L'intégration graphique. Anhang zu Kap. XII in der französischen Übersetzung von Favaro, Leçons de statique graphique 2, Paris 1885, p. 367.

²⁷³⁾ Oesterreicher, Zeitschrift deutscher Ingenieure 44 (1900), p. 155-56.

wird Subnormale der z-Kurve. Der Inhalt ist dann gleich dem halben Quadrat der Endordinate vermindert um das halbe Quadrat der Anfangsordinate (Fig. 5). Dabei konstruiert man die transformierte Kurve



durch Kreisbogen, wie das Fig. 5 im einzelnen zeigt. Anwendungen der Methode gibt Werner²⁷⁴). Auch Chapel²⁷⁵) umgeht die gewöhnliche Konstruktion der Integralkurve; er konstruiert mit Hülfe einer ausgeschnittenen Kurve $y = \Phi(x)$ eine Kurve, die bestimmt ist durch $\frac{\Delta y}{\Delta x} = \frac{1}{\Phi(f(x))}$.

Stellen die Strecken x, y, z gemessen in den Einheiten a, b, c die Größen X, Y, Z dar, und ist y die Ordinate der Ausgangskurve, z die der Integralkurve,

beide auf dieselben recht- oder schiefwinkligen Koordinaten bezogen, so ist

(171)
$$\frac{dZ}{dX} = Y \quad \text{also} \quad \frac{dz}{dx} = \frac{y}{\frac{ab}{c}} = \frac{y}{\lambda},$$

wo à als "Integrationsbasis" bezeichnet wird ²⁷⁶). Zur graphischen Auffindung der Integralkurve kann die gegebene Kurve durch eine Stufenkurve ersetzt werden, deren einzelne Stücke parallel den Achsen sind, und die bis zu bestimmten Ordinaten denselben Inhalt wie die Ausgangskurve hat. Diese kann dann durch einen Zug aneinanderschließender Geradenstücke integriert werden, deren Neigung und Länge bekannt ist. Die Stufenkurve kann auf zwei Arten bestimmt werden, je nachdem man die Integralkurven durch ein Sehnen- oder ein Tangentenpolygon annähern will.

Im ersten Falle teilt man durch passend gewählte Ordinaten im Abstande $\Delta_n x$ die Differentialkurve in eine Anzahl von Teile und ersetzt jeden Teil durch ein inhaltsgleiches Rechteck, so daß

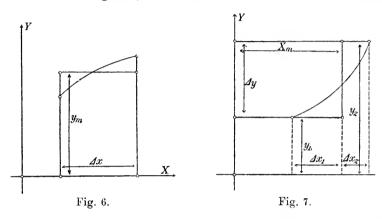
²⁷⁴⁾ Werner, Zeitschrift deutscher Ingenieure 21 (1877), p. 365-71.

²⁷⁵⁾ Chapel, Revue d'Artillerie 34 (1889), p. 330-43.

²⁷⁶⁾ Über Maßbestimmungen siehe auch: Rudolf, Zeitschrift für Elektrotechnik und Maschinenbau 1909, p. 154 ff.

ist, wo y_m als "mittlere Ordinate" bezeichnet wird (Fig. 6). In den Teilpunkten sind die Ordinaten des integrierenden Polygons und der Integralkurve gleich, so daß man ein Sehnenpolygon erhält. In diesem Falle sind also die von Ausgangskurven und Stufenkurven eingeschlossenen krummlinigen Dreiecke, die denselben Parallelen zur X-Achse anliegen, gleich zu machen.

Macht man dagegen die derselben Parallelen zur Y-Achse anliegenden Dreiecke gleich, d. h. ersetzt man jedes der Flächenstücke



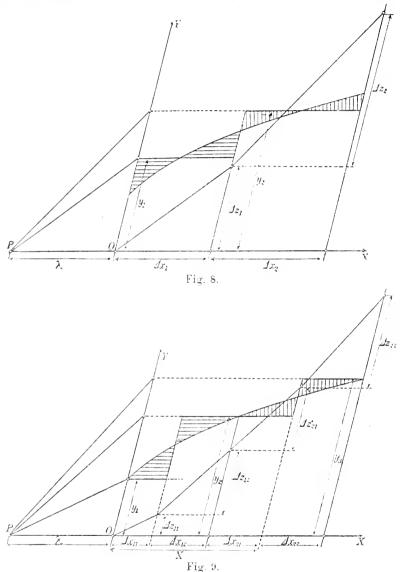
durch zwei Parallelogramme, deren eine Seite gleich je einer der Endordinaten des Flächenstückes ist, so daß

(173)
$$\Delta z = \Delta z_1 + \Delta z_2 = \frac{y_1 \Delta x_1}{1} + \frac{y_2 \Delta x_2}{1}$$

ist — die Abszisse $x_{n-1} + \varDelta x_{n,1} = \bar{x}_n$, wo $\Delta x_{n,1}$ die oben mit Δx_1 bezeichnete Größe im n^{ten} Intervall ist, wird als "mittlere Abszisse" (Fig. 7) bezeichnet —, so haben in den Teilungsordinaten das Integrationspolygon und die Integralkurve gleiche Ordinaten und gleiche Neigungen, so daß man zur Bestimmung der Integralkurve ein Tangentenpolygon nebst den Berührungspunkten erhält. Im allgemeinen ist daher die letzte Methode vorzuziehen. Zur graphischen Durchführung der Konstruktion benutzt man ein Richtlinienbüschel mit dem Träger P. Einzelheiten gehen aus den Figuren 8 (mittlere Ordinaten) und 9 (mittlere Abszissen) hervor. Hat man beliebig verschlungene Kurven zu integrieren, so hat man nur darauf zu achten, daß die Integration im Sinne der Umfahrung auf der Kurve fortschreitet. Der Bequemlichkeit wegen eingeschaltete Kurvenstücke müssen dabei durch entgegengesetztes Darüber-hin-integrieren herausfallen.

²⁷⁷⁾ Mansion, Mathesis 2 (1882), Anhang p. 6-8; Lisleferme, Ann. de la société scientifique de Bruxelles B 6 (1881-82), p. 242-46.

Die bei der Quadratur auftretende Konstante bestimmt sich dadurch, daß man einen Punkt der Integralkurve gibt. Einer der Teilungsordinaten erteilt man dieselbe Abszisse, die dieser Punkt hat; von



ihm aus wird dann das Integrationspolygon nach rechts und nach links gezeichnet. Durch Verschiebung der X-Achse kann man das Integral um jede beliebige Konstante, die den der Verschiebung entgegengesetzt gleichen Betrag hat, verändern.

b) Bestimmung der mittleren Ordinaten und Abszissen. Um die Ausgangskurve exakter durch eine Stufenkurve ersetzen zu können, kann man die einzelnen Kurvenbogen durch Parabelbogen passender Ordnung ersetzen und für diese die exakten mittleren Abszissen oder Ordinaten konstruieren.

Es kommen da in der Hauptsache die im vorigen Paragraphen angeführten Formeln in Betracht. Aus den dort gegebenen Korrektionsgliedern ist auch der Grad der hier erreichten Genauigkeit zu entnehmen.

- 1) Überträgt man die Trapezregel, so ist die mittlere Abszisse gleich dem Mittelwert der Endabszissen, die mittlere Ordinate gleich dem Mittelwert der Endordinaten des Teilintervalles. Die recht häufig verwandte Methode findet sich in der einen oder in der anderen Form bei Massau²⁷⁸), Solin²⁷⁹), Abdank-Abakanowicz²⁸⁰), Nehls²⁸¹), Collignon²⁸⁸), Merrifield²⁸²) etc.
- 2) Nehls überträgt die Methode von Mac-Laurin 215) ins Graphische, eine Methode, die auch Baldermann 331) verwendet. Dieselbe Methode verwendet Saviotti 283) bei der Bestimmung der sog. Integralpunktreihen 284) zur Ermittlung der mittleren Abszissen.

Eine obere Grenze für den Fehler der so gewonnenen Näherung erhält man, falls die Krümmungsmittelpunkte stets auf derselben Seite der gegebenen Kurve liegen nach $Massau^{278}$) folgendermaßen. In Fig. 10 gibt das Sehnenpolygon $A_1C_1E_1G_1$ einen zu großen, das Tangentenpolygon $A_2tB_1C_1E_1rG_1$ einen zu kleinen Wert für das Integral.

²⁷⁸⁾ Bericht über Massaus Vortrag im Bulletin mensuel de l'Association des ingénieurs sortis de l'École de Gand, décembre 1877, weiter ausgeführt in J. Massau: Mémoire sur l'Intégration graphique et ses applications. Buch I u. II erschienen Bruxelles 1878, in Annales de l'Association des Ingenieurs sortis de l'École de Gand, das gauze als Extrait de la Revue universelle des Mines etc. t. XVI 1884, Paris-Liège 1885. Hier kommt in Betracht Kap. III, § 1.

²⁷⁹⁾ Solin, Über graphische Integration. Ein Beitrag zur Arithmographie, Abhandlungen der k. böhm. Gesellschaft der Wissenschaften, 6. Folge, Bd. 5, Prag 1872.

²⁸⁰⁾ Abdank-Abakanowitz, Die Integraphen und ihre Anwendung, Original 1886, erweitert deutsch Leipzig 1889.

²⁸¹⁾ Nehls, Über graphische Integration und ihre Anwendung in der graphischen Statik. 1. Aufl., Leipzig 1877. 2. Aufl., Leipzig 1882.

²⁸²⁾ Merrifield, Philosophical Magazine (4) 35 (1868), p. 420-23.

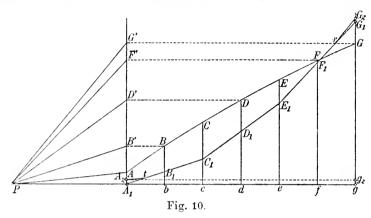
²⁸³⁾ Saviotti, Giornale del Genio civile XX, Rom 1882 und Revue universelle des mines etc. (2) XIII, 1883.

²⁸⁴⁾ Die Integralpunktreihen Saviottis sind bestimmt durch die Schnittpunkte der Taugenten der Integralkurven mit einer zur Integrationsbasis senkrechten Geraden vgl. Bitterli, Anhang I zu Abdank 280): Integraphen.

116 II C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

Nimmt man als Wert $\frac{gG_1 + g_2G_2}{2}$, so ist $\frac{gg_2 - G_1G_2}{2}$ eine obere Greuze für den Fehler.

3) Ersetzt man den Bogen durch eine Parabel zweiter Ordnung (Annäherung wie bei der Simpsonschen Regel) und gehören als



Koordinaten der gegebenen Kurve zusammen $x, y_0; x + \frac{\Delta x}{2}, y_1; x + \Delta x, y_2$, so ist $y_m = \frac{y_0 + 4y_1 + y_2}{6}.$

Graphisch konstruiert man den Punkt, indem man die Strecke, die auf der Ordinate in der Mitte des Intervalles von Sehne und Bogen ausgeschnitten wird, in drei Teile teilt; der nach dem Bogen zu gelegene

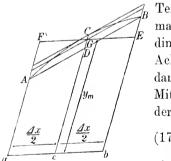


Fig. 11.

Teilpunkt gibt y_m^{278}) (Fig. 11). Genau so findet man, wenn man die Abszissen mit den Ordinaten vertauscht, die mittlere Abszisse. Die Achse der approximierenden Parabel liegt dann parallel zur Abszissenachse; von der Mitte aus gerechnet ist nach Goldziher 295) der Wert der mittleren Abszisse

(175)
$$X = \frac{1}{3} \frac{(y_2 + y_0 - 2y_1)\Delta x}{y_2 - y_0},$$

eine Formel, die natürlich auch für Parabeln 3 Ordnung richtig ist. Ist es angebrachter,

durch eine Parabel mit Achse parallel der Ordinatenachse zu approximieren, so konstruiert man zunächst die mittlere Ordinate, zieht durch ihren Endpunkt eine Parallele zur Sehne des Bogens und durch den Mittelpunkt der Sehne des Bogens eine Parallele zur X-Achse. Der Schnittpunkt beider ist der Endpunkt der mittleren Abszisse²⁸⁵) (Fig.12).

Diese Methode wird am meisten verwandt, so von Massau³⁵⁶), Solin²⁸⁷), Nehls²⁸¹), Collignon²⁸⁸), Runge²⁸⁹), Pickering²⁹⁰). Um eine Konstruktion zu erhalten, bei der alle Ordinaten in gleicher Weise berücksichtigt werden, schlagen Merrifield und Russel²⁹¹) vor, jeden Ordinatenendpunkt mit dem übernächsten zu verbinden, das auf der nächsten Ordinate abgeschnittene Stück zwischen Sehne und Kurve in sechs gleiche Teile zu teilen und auf die durch die der Kurve zunächstgelegenen Teilpunkte begrenzten Ordinaten die Trapezregel anzuwenden. Schwierigkeiten entstehen da natürlich bei den Grenzordinaten. Collignon²⁸⁸) gibt eine Methode, die mittleren Ordinaten der Teilgebiete sukzessive zusammenzusetzen und so die mittlere Ordinate des Gesamtgebietes zu finden. Er verbindet die Endpunkte der mittleren Ordinaten zweier an einander stoßenden Gebiete und trägt die

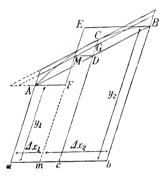


Fig. 12.

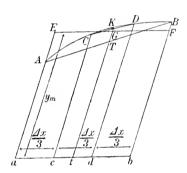


Fig. 13.

auf dieser Geraden gemessene Strecke vom Endpunkt der einen Ordinate bis zur Trennungslinie vom Endpunkt der andern aus auf der Verbindungslinie ab. Der so gefundene Punkt ist der Endpunkt der mittleren

²⁸⁵⁾ Lisleferme, Annales de la Société scientifique de Bruxelles, B 6 (1881—82), p. 242—46.

²⁸⁶⁾ Massau²⁷⁸), Buch I, Kap. III, § 3; Bitterli, Anhang I zu Abdank, Die Integraphen; Willers, Z. f. Math. u. Phys. 55, 1907.

²⁸⁷⁾ Solin, Beitrag zur graphischen Integration. Sitzungsberichte der Kgl. böhmischen Gesellschaft der Wissenschaften, März 1879.

²⁸⁸⁾ Collignon, Annales des ponts et chaussées XIII (1887), p. 9-30 und Bulletin de la société mathématique de Frances XV (1886/87), p. 145/46.

²⁸⁹⁾ Runge, Graphical methods. A course of lectures delivered in Columbia University, New York 1912.

²⁹⁰⁾ Pickering, Proceedings of the american Academy of arts and sciences (2) II (1875), p. 79—81. Die Kurve dient hier allerdings nur dazu, aus den nicht äquidistanten Ordinaten äquidistante zu gewinnen.

²⁹¹⁾ Merrifield, Transactions of the Institution of Naval Architects 6 (1865), p. 51-63; Russel, The modern system of naval architecture, London p. 117-147.

Ordinate des ganzen Gebietes. Die Methode ist natürlich unabhängig von der Bestimmung der mittleren Ordinate.

4) Ersetzt man durch eine Parabel dritter Ordnung und gehören die Koordinatenpaare (x, y_0) ; $\left(x + \frac{\Delta x}{3}, y_1\right)$; $\left(x + \frac{2\Delta x}{3}, y_2\right)$; $\left(x + \Delta x, y_3\right)$ zusammen, so ist $y_m = \frac{y_0 + 3y_1 + 3y_2 + y_3}{8}.$

Zur graphischen Konstruktion verbindet man die Endpunkte von y_0y_3 und y_1y_2 durch Sehnen und teilt die Strecke, welche diese auf der Ordinate in der Mitte abschneiden, in vier gleiche Teile. Der nach dem Bogen zu gelegene Teilpunkt gibt die mittlere Ordinate ²⁷⁸). (Fig. 13.)

Durch Vertauschung der Ordinaten und Abszissen findet man wieder die mittlere Abszisse.

- 5) Approximation der Kurven durch Parabeln höherer Ordnung gibt in dieser Art keine einfachen Konstruktionen.²⁷⁸)
- 6) Während obige Methoden, die Übertragungen der von Cotes angegebenen Formeln ins Graphische sind, die Mindestzahl der Ordinaten benutzen, schlägt Nehls²⁸¹) vor zur Erreichung einer größeren Einfachheit der Konstruktion auf Kosten der möglichen Genauigkeit mehr Ordinaten einzuführen. So erhält er z. B. eine Übertragung der sog. Weddleschen Formel.²⁶²)
- 7) $Nehls^{281}$) schlägt weiter die Benutzung nicht äquidistanter Ordinaten vor. Insbesondere überträgt er eine der in Abschnitt 5 b besprochenen Formel 123) für n=4. Wenn

$$(x, y_0), (x + (\frac{1}{2} - \frac{1}{2} \sqrt{\frac{1}{5}}) \Delta x, y_1), (x + (\frac{1}{2} + \frac{1}{2} \sqrt{\frac{1}{5}}) \Delta x, y_2), (x + \Delta x, y_3)$$

zusammengehören, und man dann

$$y_{\scriptscriptstyle M} = \frac{y_{\scriptscriptstyle 0} + 5y_{\scriptscriptstyle 1} + 5y_{\scriptscriptstyle 2} + y_{\scriptscriptstyle 3}}{12}$$

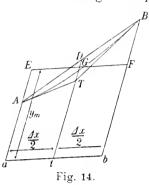
setzt, so ist der Fehler von siebenter Ordnung; bis auf Glieder höherer Ordnung ist etwa

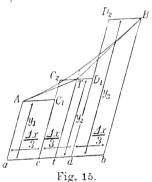
$$F = -f^{(VI)}(x) \frac{Jx^7}{6!} 0,00047619.$$

8) Die Benutzung der Tangenten im Endpunkt ²⁹²) ist besonders dann vorteilhaft, wenn es sich um Konstruktion eines zweiten oder höheren Integrals handelt. Hat man eine Parabel zweiter Ordnung, so schneiden sich die Tangenten auf der Ordinate in der Mitte des Intervalles. Die

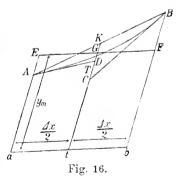
²⁹²⁾ Cousinery, Le calcul par le trait. Paris 1840, p. 66-88

Strecke zwischen diesem Punkt und dem Schnittpunkt der Sehne ist in drei gleiche Teile zu teilen, der nach der Sehne zu liegende Teilpunkt gibt nach bekannten Parabelsätzen die mittlere Ordinate (Fig. 14). Eine ganz ähnliche Konstruktion gibt $Lambert^{293}$), der den dem Schnittpunkt der Tangenten zu gelegenen Teilpunkt mit A und B verbindet (Fig. 14) und so die Kurve durch zwei Trapeze ersetzt. Man kann auch benutzen, daß in Fig. 15 $\frac{ab}{3} \cdot aA + \frac{ab}{3} tT + \frac{ab}{3} bB$ gleich dem Inhalt des krummlinigen Trapezes ist. 278)





- 9) Bei Approximation durch eine Parabel dritter Ordnung halbiert man die Strecke, welche die Tangenten im Endpunkte auf der Ordinate in der Mitte ausschneiden, und verfährt weiter wie oben, indem man diesen Punkt für den Schnittpunkt der Tangenten setzt.²⁷⁸) (Fig.16.)
- 10) Nehls ²⁸¹) gibt noch zwei andere Konstruktionen, die bestimmt sind durch die beiden ersten Glieder der Euler-Mac Laurinschen Formel, wie sie in (132) und (133) gegeben ist.
- 11) Einen Satz, der zu noch genauerer Konstruktion der mittleren Ordinate dienen kann, gibt Baur²⁹⁴), allerdings etwas anders, an. Hat man die Tangente in den Endpunkten des Bogens und bezeichnet auf der Ordinate in der Mitte gemessen



den Abstand zwischen dem Halbierungspunkt ihrer Schnittpunkte mit dieser Ordinate und dem der Sehne mit H und ferner auf derselben

²⁹³⁾ Lambert, Beiträge zum Gebrauch der Mathematik und der Anwendungen III, Berlin 1772, p. 56-65.

²⁹⁴⁾ Baur, Zeitschr. Math. Phys. 12 (1867), p. 355; vgl. dazu Vahlen, Konstruktionen und Approximationen, Leipzig 1911, p. 193.

Ordinate gemessen den Abstand Sehne-Bogen mit h, so ist der Inhalt des von Sehne und Bogen begrenzten Flächenstückes bis auf Glieder sechster Ordnung

(178)
$$F = \frac{8h + H}{15} \cdot \Delta x.$$

Ähnlich findet Goldziher ²⁹⁵) für die mittlere Abszisse eines Parabelbogens vierter oder fünfter Ordnung

(179)
$$d = \frac{\Delta x}{15} \frac{(y_2 - y_0) \frac{\Delta x}{2} + 8(y_0 + y_2 - 2y_1)}{2(y_2 - y_0)},$$

wo d von der Mitte aus gerechnet ist.

Eine graphische Fehlerabschätzung für eine Reihe der in diesem und im vorigen Paragraphen gegebenen Methoden gibt Mansion 296). Aus Figur 4 folgt unmittelbar, daß das Flächenstück zwischen einer nach der x-Achse konkaven Kurve und dieser Achse ein Mittel ist zwischen dem Sehnenpolygon für gleiche Sehnenprojektionen und demselben nach Substitution der zweiten und vorletzten Ordinate für die erste und letzte. Also läßt sich der Fehler mittels der beiden Enddreiecke oder des Rechtecks ABCD abschätzen. Mansion findet folgende obere Fehlergrenzen für die Formeln von Poncelet $<\frac{1}{2}hd$, Parmentier $<\frac{2}{3}hd$, Dupain $<\frac{2}{3}hd$, Trapezformel < hd, Simpson $<\frac{2}{3}hd$, Cattalan $<\frac{3}{4}hd$, Mansion $<\frac{4}{3}hd$. Ähnliche Methoden der Fehlerabschätzung sollen sich nach Merrifields 22) Angaben bei Woolhouse und Leclert finden. 297)

e) Einzeichnung der Integralkurve. Will man die Integralkurven als Parabelbogen zweiter Ordnung in das Tangentenpolygon einzeichnen, so kann man leicht weitere Tangenten und Berührungspunkte nach dem Satz konstruieren: Eine beliebige Tangente der Parabel teilt die Stücke zweier festen Tangenten zwischen ihrem Scheitelpunkt und den Berührungspunkten in umgekehrtem Verhältnis. Dieses ist ferner gleich demjenigen, in dem der vom Berührungspunkt der dritten Tangente ausgehende Durchmesser die Berührungssehne der festen Tangenten teilt.²⁹⁸) Die Anordnung der Konstruktion

²⁹⁵⁾ Goldziher, Proceedings of the Edinburgh Mathematical Society 30 (1911/12), p. 49-53.

²⁹⁶⁾ Mansion, Paris C. R. 95 (1882), p. 384-86 (Mathesis I).

²⁹⁷⁾ Woolhouse, Assurance Magazine 11 (1865), p. 308; Leclert, Génie civil 8 (1885), p. 630.

²⁹⁸⁾ Z. B. Schilling, Darstellende Geometrie, autographiertes Vorlesungsheft, Danzig 1910. d'Ocagne: Génie civil 9, 1886.

zeigt Fig. 17. — Hat die Kurve einen Wendepunkt, so approximiert man durch eine Parabel dritter Ordnung, wo $CD=\frac{A}{8}\frac{T}{8}$ ist, wenn

BD = DT ist (Fig. 18). Für die Konstruktion der Krümmungsradien der Integralkurven gibt $Nehls^{281}$) eine etwas umständliche Konstruktion. Eine einfachere

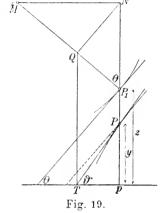


Fig. 17.

Fig. 18.

Konstruktion, die zugleich den Krümmungsmittelpunkt gibt, findet sich bei d'Ocagne. 299) Der Krümmungsradius ist nämlich

(180)
$$R = \frac{(1+z'^2)^{\frac{3}{2}}}{z''} = \frac{(1+z'^2)^{\frac{3}{2}}}{y'} \lambda = \frac{(1+z'^2)^{\frac{3}{2}}}{z'} \frac{y}{y'}$$
$$R \cdot \operatorname{tg} \vartheta = \frac{y}{\cos^2 \theta \sin \theta},$$

wo θ der Neigungswinkel der Integralkurve, ϑ der der gegebenen Kurve ist. Die Konstruktion zeigt Fig. 19.

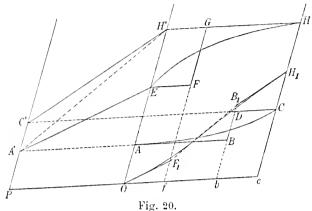
- d) Erweiterungen und Ergänzungen.³⁰⁰)
- a) Beziehung der Kurven auf beliebige Linien. Will man die Integralkurven auf andere Achsen beziehen, so macht eine Parallelverschiebung nichts aus; eine Drehung fordert eine gleiche Drehung des Richtlinienbüschels.

Ist die Ausgangskurve auf eine Kurve bezogen, d. h. sind ihre Ordinaten nicht von der X-Achse, sondern von einer beliebig gegebenen Kurve aus abgetragen, so ist die Richtung der integrierenden Tangenten so zu bestimmen, daß man die Punkte der Ausgangskurve auf die Y-Achse, die der Bezugskurve auf eine Parallele zur Y-Achse im Abstande λ überträgt. Die Verbindungsgeraden entsprechender Punkte der Y-Achse und der Parallelen geben die Tangentenrichtungen

²⁹⁹⁾ d'Ocagne, Nouv. Ann. de Math. (3) 7 (1888), p. 438-42. Deutsch als Anhang II zu Abdank, Die Integraphen.

³⁰⁰⁾ Massau 278), Buch I, Kap. VI.

der Integralkurve. Die Quadratur durch mittlere Ordinaten ist unmittelbar einleuchtend, die durch mittlere Abszissen zeigt Fig. 20.



Soll die Integralkurve auf eine Kurve bezogen werden, so verschiebt sich der Pol wieder auf einer Parallelen zur Y-Achse im Abstande A, und zwar bestimmt er sich durch die Parallele durch O zur Tangente in dem betreffenden Punkte der Bezugskurve.

β) Änderung der Integrationsbasis. 300) Die Integrationsbasis ist $\lambda = \frac{ab}{c}$; werden beide Kurven mit demselben Maßstab b = c gemessen, so ist $\lambda = a$. Ist $\lambda = \frac{a}{n}$, so wird die Integralkurve n-fach überhöht. λ findet man durch Rechnung oder Konstruktion der vierten Proportionalen. Für die praktische Durchführung zeichnet man die Integralkurve zunächst probeweise so ein, daß sie den zur Verfügung stehenden Raum ungefähr ausfüllt. Danach bestimmt sich angenähert c. Für die wirkliche Durchführung wählt man für c eine ganze Zahl in der Nähe des so bestimmten Wertes. Multiplikation des Integrals mit einer Konstanten k macht sich in entgegengesetzter Änderung des Maßstabes $e' = \frac{e}{h}$ oder der Basis geltend. Hat man ein Integral $\int f \cdot f_1 \cdot f_2 dx$ zu bilden und liegt $f_1 f_2 \dots$ gezeichnet vor, so empfiehlt es sich bisweilen, eine der Kurven mit variabler Basis zu integrieren, die sich mit Hilfe der andern Kurven bestimmt. 301) d'Ocagne zeigt das im einzelnen an $\int y y_1 dx^{302}$) und Nehls²⁰³) an $\int \frac{\varphi x}{\psi x} dx$, wenn $\varphi(x)$ und $\psi(x)$ gezeichnet vorliegen.

³⁰¹⁾ Massau 254), Buch V, Kap. I, § 3.

³⁰²⁾ d'Ocagne, Calcul graphique et Nomographie 37, Paris 1908.

³⁰³⁾ Nehls 257) zeigt, daß mit Hilfe seiner Methoden nur eine Übereinstim-

 γ) Transformationen. Was die Transformation des Richtlinienbüschels 300) betrifft, so sind von der allg. durch $\overline{y} = \frac{ay+b}{cy+d}$ bestimmten projektiven Transformation zwei von Bedeutung. Erstens die, durch welche der Pol von $(-\lambda,0)$ nach $(a\lambda,b)$ verschoben wird; aus $y = \int f(x) \, dx$ entsteht dann

$$\overline{y} = -\frac{1}{a} \int (f(x) - b) dx + b = -\frac{1}{a} y + \frac{b}{a} x + b.$$

Die Affinitätsachse dieser Transformation ist $y=\frac{b}{1+a}x+\frac{ab}{1+a}$. Sie ist parallel der Richtung der Polverschiebung. Entsprechende Sehnen, Tangenten usw. der beiden Kurven schneiden sich also auf dieser Geraden. Zweitens ist die Transformation wichtig, die bestimmt ist durch $\bar{y}=\frac{1}{y}$. Man braucht dann nur durch die Orthogonalstrahlen des Richtlinienbüschels zu integrieren. Die mittleren Ordinaten und Abszissen lassen sich dabei nicht, wie es gelegentlich versucht ist, 38 durch eine einfache Konstruktion übertragen.

δ) Benutzung einer ungleichmäßigen Skala auf der Abszissenachse. Hat man das Integral

$$\int f(x)\,\varphi'(x)\,dx$$

zu bilden, so ist es oft vorteilhaft, f(x) durch Parallelverschiebung der Ordinaten als Funktion von $\varphi(x)$ zu zeichnen und dann

$$\int f(x) d(\varphi(x))$$

zu bilden. 304) Angewandt wird dies z. B. von $Runge^{305}$) zur Bestimmung der Integrale $\int_{-\pi}^{+\pi} f(x) \cos(ax) dx$ und $\int_{-\pi}^{+\pi} f(x) \sin ax dx$, die in dem Koeffi-

mung bis zum zweiten Gliede der Taylorschen Reihe zu erreichen ist, so daß Integrationsmethoden, die dieses auch geben, hier ausreichen.

305) Runge, Vorlesungen über graphische Methoden. Ausarbeitung im math. Lesezimmer in Göttingen und 289).

³⁰⁴⁾ Vgl. z. B. Massau²⁷⁸). Buch IV, Kap. I. § 2 auch Collignon: Méthode géometrique d'évaluation de certaines intégrales doubles 1874. Zahlreiche andere Methoden sind zur angenäherten Berechnung derartiger Integrale ausgebildet worden, die insbesondere zur Berechnung der Fourierkoeffizienten dienen (vgl. II A 9a, II A 2 Nr 60). Von neueren Arbeiten seien hier erwähnt Pichelmayer und Schutka, Elektrotechnische Zeitschrift 1913, p. 129 ff.: Meurer, Elektrotechnische Zeitschrift 1913, p. 121 ff.; v. Sanden, Archiv für Elektrotechnik 1 (1913), p. 42—46: 2 (1914), p. 393—94; Slaby, Archiv für Elektrotechnik 2 (1914), p. 19—21 und Zeitschrift des Vereins deutscher Ingenieure 58 (1914), p. 1348—49.

124 II C 2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

zienten der Fourierschen Reihen auftreten. Ist

$$\varphi(x) = f(x) + f(-x), \quad \psi(x) = f(x) - f(-x),$$

so gilt für gerade β

$$a_{\beta} = +\frac{1}{\beta \pi} \int_{0}^{\frac{\pi}{2}} [\varphi(x) + \varphi(\pi - x)] d(\sin \beta x),$$

$$b_{\beta} = -\frac{1}{\beta \pi} \int_{\cdot}^{\frac{\pi}{2}} [\psi(x) - \psi(\pi - x)] d(\cos \beta x)$$

und für ungerade β

$$a_{\beta} = + \frac{1}{\beta \pi} \int_{0}^{\frac{\pi}{2}} [\varphi(x) - \varphi(\pi - x)] d(\sin \beta x),$$

$$b_{\beta} = -\frac{1}{\beta\pi} \int\limits_{0}^{\frac{\pi}{2}} \left[\psi(x) + \psi(\pi - x) \right] d(\cos\beta x). \label{eq:beta}$$

Man zeichnet die Kurven f(x) auf durchsichtiges Millimeterpapier und bildet durch Zusammenfalten obige Werte. Durch entsprechende Parallelverschiebung der Ordinaten überträgt man diese Kurven auf die ungleichmäßige Abszissenskala sin βx bzw. $\cos \beta x$. Man könnte auch die Kurven mit äquidistanten Ordinaten auf einen Zylinder vom Umfang $\frac{2\pi}{\beta}$ aufwickeln und dann einfach parallel projizieren und findet durch einfache Integration dieser zwischen — 1 und + 1 hinund herlaufenden Kurven obige Integrale. 306)

Hat die zu integrierende Kurve in x=a eine Unendlichkeitsstelle 307) derart, daß $(x-a)^{\frac{m-1}{m}}f(x-a)$ endlich bleibt, so trägt man die Kurven $w^{m-1}f(w^m)$ zur Abszisse $w=(x-a)^{\frac{1}{m}}$ auf; dann ist

(181)
$$F(x) = \int f(x) dx = m \int f(w^m) w^{m-1} dw = F(w^m).$$

Die auf eine ungleichmäßige Skala für x bezogene Integralkurve läßt sich leicht auf eine gleichmäßige Skala übertragen. Bei diesen Methoden läßt sich gelegentlich eine von $Nehls^{308}$) gegebene Konstruktion

³⁰⁶⁾ Perry, The Electrician 35 (1895), p. 285/86. Phil. Mag. (5) 40 (1895), p. 506—11; Nature 52 (1895), p. 654.

³⁰⁷⁾ Willers, Über die Steighöhe von Drachen, Zeitschr. Math. Phys. 57 (1909), p. 158-73.

³⁰⁸⁾ Nehls, Über den Amslerschen Polarplanimeter und über graphisch-

verwenden, aus einzelnen Kurven $f_1, f_2 \dots$ die Kurven

$$f_n(f_{n-1}(f_{n-2}), \dots (f_1)) \dots)$$

graphisch zu finden.

- ε) Integrationskonstanten.^{2:8}) Bei einfacher Integration kann man der Konstanten durch Parallelverschiebung der Achsen jeden beliebigen Wert geben. Bei n-fachen Integralen hat man die Integralkurve auf irgendeine Parabel (n-1). Ordnung zu beziehen. Vorgegebene Integrationskonstanten geben n Bedingungen für diese Parabel und bestimmen sie dadurch. Wie derartige Parabeln graphisch zu konstruieren sind, zeigt Massau in dem oft zitierten Buch und noch allgemeiner im Anhang dazu.³⁰⁹)
- ξ) Die oben auseinander gesetzten Methoden hat $Wasteels^{310}$) auf Polarkoordinaten übertragen, wobei sowohl r wie φ unabhängige Variable sein kann. Er gibt Methoden an, die mittere Anomalie und den mittleren Fahrstrahl zu finden. Diese Methoden können nach $Merrifield^{22}$) bei der Inhaltsberechnung von Spantenrissen usw. gelegentlich von Nutzen sein. Planimeter für in Polarkoordinaten gezeichnete Kurven wurden übrigens von $Price^{311}$), $Pascal^{417}$) und $Guarducci^{312}$) angegeben.
- η) Obige Methoden sind nur für reelle Variable anwendbar. Für die Funktion einer komplexen Variablen z=x+iy, die durch zwei Scharen von Kurven u und v dargestellt ist, erhält man das Integral

$$X = \int_{0}^{x_{n}} u_{y=0}(x) dx - \int_{0}^{y_{n}} v_{x=x_{n}}(y) dy, \ Y = \int_{0}^{x_{n}} v_{y=0}(x) dx + \int_{0}^{y_{n}} u_{x=x_{n}}(y) dy.$$

Unter Umständen kann es allerdings vorteilhafter sein, Polarkoordinaten

mechanisches Integrieren im allgemeinen: Ergänzter Separatabdruck aus dem Zivilingenieur XX, Leipzig 1874.

³⁰⁹⁾ Massau 278), Buch II, Kap. 4 und Appendice au mémoire sur l'intégration graphique et ses applications (Note I), Paris 1890.

³¹⁰⁾ Wasteels, Handelingen von het elfde vlaamsck Natuur en Geneeskundig Congres (1908), p. 56-68.

³¹¹⁾ Price, The electrician 36 (1895/6), p. 73/74.

³¹²⁾ Guarducci, Memorie della R. Accademia delle science dell' istituto di Bologna (6) 8 (1911), p. 297-300.

³¹³⁾ D. Killam, Über graphische Integration von Funktionen einer komplexen Variablen mit speziellen Anwendungen, Dissertation Göttingen 1912

zu benutzen. In jedem Falle erhält man die Funktion $Z = \int_0^z f(z) \, dz$ dargestellt durch zwei Kurvenscharen X und Y.

e) Einige Anwendungen der graphischen Quadratur. 314)

 $\alpha)$ Momente ebener Flächen. Nach Collignon $^{315})$ wird das Moment $n^{\rm ter}$ Ordnung

$$\int_{0}^{x} (x-\xi)^{n} y(\xi) d\xi$$

in bezug auf eine Parallele zur Y-Achse so bestimmt, daß man die Segnersche Transformation³¹⁶) n mal anwendet und dann eine einfache Integration ausführt. Der Nachteil dabei ist, daß man die Operation für jede Bezugsgerade von neuem durchführen muß³¹⁷).

 $Massau^{318}$) benutzt die Tatsache, daß sich das Moment $n^{\rm ter}$ Ordnung bezogen auf die Endordinate

$$\mu_n = \int_0^x (x - \xi)^n y(\xi) d\xi$$

durch die Ordinate y_{n+1} des Integrals $(n+1)^{\mathrm{ter}}$ Ordnung ausdrückt

$$y_{n+1} = \frac{\mu_n}{n!} + P_n,$$

wo P_n eine Parabel $n^{\rm ter}$ Ordnung ist, die im Anfangspunkt mit der $(n+1)^{\rm ten}$ Integralkurve, eine nfache Berührung hat. Hat man das Moment $n^{\rm ter}$ Ordnung in bezug auf die Endordinate einer von zwei Kurven eingeschlossenen Fläche zu nehmen, so ist dies durch das auf der Endordinate von den beiden Integralkurven $(n+1)^{\rm ter}$ Ordnung abgeschnittene Stück bestimmt, falls die Integralkurven gleicher Ordnung von demselben Punkt ausgehen und denselben Pol haben. Das Moment bezogen auf irgendeine Parallele zur Y-Achse bestimmt sich mittels des Abschnittes, den zwei Parabeln $n^{\rm ter}$ Ordnung liefern, die mit den Integralkurven $(n+1)^{\rm ter}$ Ordnung eine nfache Berührung im Endpunkte haben.

^{314,} S. a. c. Sanden, Praktische Analysis, Leipzig 1914, p. 98-102.

³¹⁵⁾ Collignon, Compléments du cours d'analyse, Paris 1879.

³¹⁶⁾ Segner, Acad. Petrop. Novi Comment 7, pro 1758/59, p. 211.

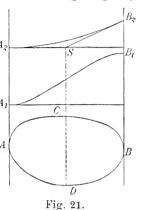
³¹⁷⁾ Eine ähnliche Methode gibt Nehls vgl. 281) und Nehls, Über graphischmechanisches Integrieren. Zivilingenieur 21 (1875) p. 185 ff., 199 ff., 261 ff.

³¹⁸⁾ Massau²⁷⁸), Buch II, Kap. V, § 1 u. 2 und Appendice, Note III, wo besonders der Zusammenhang mit dem Restglied der Taylorschen Reihe behandelt wird.

Insbesondere findet man die Abszisse des Schwerpunktes (Statisches Moment = Moment erster Ordnung = Null) durch den Schnitt der Tangenten im Endpunkt der Integralkurve zweiter Ordnung (Fig. 21),

eine Tatsache, die von Froude³¹⁹) dazu benutzt wird, einen die Integralkurven annähernden Tangentenzug zu konstruieren, wenn für die Az Integration die Trapezregel verwandt wird.³²⁰) Zahlreiche spezielle Ausführungen dazu finden sich bei Massau³¹⁸), Nehls³²¹), Sheppard³²²), Az der Integralkurve dritter Ordnung läßt sich leicht das Trägheitsmoment bestimmen.³²⁵)

Um die *Bogenlünge einer Kurve* festzustellen, gibt *Nehls*³²¹) zwei Methoden, deren eine den Differenzenquotienten benutzt, während die andere die Konstruktion des Differential-



quotienten fordert. Ferner finden sich dort zwei Methoden zur Integration der Gleichung

$$\frac{dy}{ds} = \psi(x),$$

die auf den beiden vorigen beruhen. Eine andere Methode zur Bestimmung von Bogenlänge und Moment einer Kurve bezüglich der X-Achse gibt Collignon. Bei rechtwinkligen Koordinaten und a = b ist (Fig. 22)

(183)
$$s = \int \frac{dx}{\cos \theta} = \frac{1}{k} \int MM' dx = z_1,$$

wo mit der Konstanten MK = k die Kurve A'B' konstruiert ist. Das Moment ist

(184)
$$u = \int y ds = \int M N dx = \int M M'' dx = z_2.$$

Man hat also die beiden Flächen ABB'A' und ABB''A'' zu integrieren. Die Abszisse des Schwerpunktes des Bogens AB ist dieselbe wie die der Fläche AA'B'B, seine Ordinate $Y = \frac{z_2}{s} = \frac{z_2}{z_1}k$. d'Ocagne 323)

³¹⁹⁾ Froude, Trans. Nav. Arch. 16 (1875).

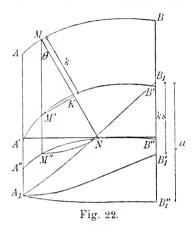
³²⁰⁾ Johow, Hilfsbuch für den Schiffsbau, Berlin 1902, p. 329-331; Pollard-Dudebout, Théorie du navire I, Paris 1890, p. 57-60.

³²¹⁾ Nehls, Zivilingenieur 20 (1874), p. 71—124, 295—300; 21 (1875), p. 131—148, 199—222, 261—272; Zeitschrift für Bauwesen 29 (1879), p. 259—282; 39 (1889), p. 244—310.

³²²⁾ Sheppard, The mathematical Gazette 4 (1908), p. 325/26.

³²³⁾ d'Ocagne, Nouv. Ann. (4) 5 (1905), p. 43-45.

gibt eine Konstruktion für die Tangenten der Kurven A'B' und A''B', falls die Krümmungsmittelpunkte von AB bekannt sind (s. Fig. 22).



Noch eine ganze Reihe anderer Regeln für die Rektifikation sind gegeben worden; so hat *Tschebyscheff* eine Methode zur Rektifikation von Raumkurven aufgestellt ³²⁴); für ebene Kurven finden sich weitere Methoden bei *Lambert* ³²⁵), *Euler* ³²⁶), *Resal* ³²⁷), *Pellet* ³²⁸) u. a. Umgekehrt wie d'*Ocagne* drückt *Grunert* ³²⁹) unter Benutzung eines Satzes von *Heuraet* ³³⁰) den Inhalt eines Flächenstückes durch eine Bogenlänge aus.

β) Eine wichtige Anwendung findet die graphische Integration in der Lehre von der Zusammensetzung der Krüfte und

vom Gleichgewicht elastischer Körper. Beim kontinuierlich belasteten geraden Balken z. B. ist das Integral erster Ordnung die Scherkraftlinie, das zweiter Ordnung die Momentenlinie, das dritter Ordnung gibt die Neigungen des Balkens, das vierter Ordnung bei sehr kleiner Ausbiegung die elastische Linie. Die Lagerungsbedingungen bestimmen nur die Bezugslinie. Bei Einzelkräften hat man entsprechende Unstetigkeiten der Ordinaten der Scherkraftlinie einzufügen.

Ausführliche Darstellungen der graphischen Statik unter Verwendung der Sätze über die graphische Integration geben Massau²⁷⁸), Nehls³²¹), Baldermann³³¹), vgl. auch Culmann³³²).

³²⁴⁾ Grave, Bull. de St Pétersbourg 3 (1895), p. 131-34.

³²⁵⁾ Lambert, Beiträge zum Gebrauch der Mathematik und deren Anwendungen 2, Berlin 1770, Bogen gleich Summe der Tangentenabschnitte plus der doppelten Sehne durch 4; vgl. auch Vahlen, Konstruktionen und Approximationen, Leipzig 1911, p. 211.

³²⁶⁾ Euler, De reductione linearum curvarum ad arcus circulares Comm. Nov. Act. Petrop. II.

³²⁷⁾ Resal, Paris C. R. 94 (1882), p. 1375—77; 80 (1875), p. 1185—89. Mémoires de la Société mathématique de France 1874.

³²⁸⁾ Pellet, Paris C. R. 110 (1890), p. 778.

³²⁹⁾ Grunert, Arch. Math. Phys. 26 (1856), p. 48-57.

³³⁰⁾ Heuraet, Epistola de transmutationes curvarum linearum in rectas, abgedruckt in "Renati Descartes" Geometria, Frankfurt a/M. 1695, p. 517. Nach Cantors Angabe (Gesch. d. Math. II, p. 920—21) ist Heuraet der erste, der die Bogenlänge durch eine Fläche ausdrückt (Brief v. 13. I. 1659), ähnlich verfahren auch Neil bei der Parabel und Fermat in De linearum curvarum lineis rectis comparatione 1660.

Andere Anwendungen sind zahlreich, so insbesondere in der Schiffbautechnik 333), können hier aber nicht erwähnt werden. 334)

- 13. Kubatur. Das Volumen eines Körpers kann man durch eine zweifache Quadratur erhalten. Bezeichnet z. B. Q(x) den Querschnitt senkrecht zur x-Achse an der Stelle x, den man für jedes x durch Quadratur ermitteln kann, so ist das Volumen durch die Quadratur der Kurve zu erhalten, deren Ordinate gleich Q(x) ist.
- a) Kubatur durch einfache Quadratur. Auf Formeln der angenäherten Quadratur ist daher eine Reihe von Formeln zurückzuführen 325), die den Inhalt zweier durch parallele ebene Flächen begrenzten Körper durch den Inhalt dieser oder durch den Inhalt zu ihnen paralleler Schnitte ausdrücken, wie sie zum Teil zusammengestellt sind bei Vega 336), Matzka 337), Kinkelin 158), Fonténé 338), d'Ocagne 339), Finsterbusch 340) u. a. Die der Simpsonschen Regel entsprechende Formel (règle des trois niveaux) wird gelegentlich auf Mascheroni 341) zurückgeführt, findet sich aber schon bei Cavalieri 16). Sie wird je nach der Körperform, auf die man sie anwendet, als Lambertsche 342) Faßregel 343a) oder Prismoidal-

³³¹⁾ Baldermann, Försters allgemeine Bauzeitung (Wien) 46 (1881), p. 24—27, 33—41, 49—54, 97.

³³²⁾ Culmann, Graphische Statik, 2. Aufl., Zürich 1875.

³³³⁾ Dietze, Zeitschr. d. Ver. deutsch. Ingenieure 38 (1894), p. 1234-1238; Pollard-Dudebout, Theorie du navire I, Paris 1890, chap. III, p. 44-60.

³³⁴⁾ Z. B. Massau, Note sur la résolution graphique des équations du premier degrée, Gand 1889; Massau²⁷⁸), Buch III u. IV; Massau, Calcul des cotisations des sociétés de secours mutuels, Gand 1887; Abdank-Abakanowitz, Die Integraphen, Kap. V, Leipzig 1889; Brauer, Anwendung der Integralkurven zur Volumeinteilung, Z. f. Math. u. Phys. 42 (1897); Arnold, Erdbewegung während der ersten Vorläufer eines Bebens, Diss. Gött. 1909, und Beiträge zur Geophysik, 5 (1909); ferner eine Anzahl der schon zitierten Abhandlungen.

³³⁵⁾ Lampe, Arch. Math. Phys. (3) 16 (1910), p. 270-274.

³³⁶⁾ Vega, Vorlesungen über die Mathematik, 7. Aufl. bearbeitet von Matzka, Wien 1835.

³³⁷⁾ Matzka, Arch. Math. Phys. 33 (1859), p. 121-165.

³³⁸⁾ Font'en'e, Nouv. ann. (4) 8 (1908), p. 385—389; Nouv. ann. (4) 9 (1909), p. 289—293.

³³⁹⁾ d'Ocagne, Nouv. ann. (4) 9 (1909), p. 50-51.

³⁴⁰⁾ Finsterbusch, Verhandlungen des dritten internationalen Mathematikerkongresses 1905, p. 687—706.

³⁴¹⁾ Mascheroni, Problemi di geometria colle dimostrazioni, Milano 1800. Französisch Paris 1803.

³⁴²⁾ Lambert, Beiträge zum Gebrauch der Mathematik und deren Anwendungen I, Berlin 1765, p. 314-368.

^{343°)} Cantor, Vorlesungen über Geschichte der Mathematik 4, Leipzig 1908, p. 370-75.

formel, gelegentlich auch als Formel von de Chapman³⁴³) oder Sarrus bezeichnet. Sie findet sich z. B. bei Atwood²¹), Brix³⁴⁴), Finck³⁴⁵), Brettschneider³⁴⁶), Steiner³⁴⁷), Grunert³⁴⁸), Ligowski³⁴⁹), Wittstein³⁵⁰), Rouché und Levy³⁵¹), Haielecourt³⁵²), Trautwine³⁵³), Francke³⁵⁴), Lombard³⁵⁵) u. a. Grunert³⁵⁶) gibt als Korrektion dazu

$$(185) \qquad \qquad -\frac{2}{15} \left(f\left(\frac{h}{2}\right) - f(0) \right) h.$$

Mit der Aufgabe, Oberflächen zu finden, die ein Volumen einschließen, das durch obige Formel exakt dargestellt wird, beschäftigt sich Schubert^{356a}); sie führt nach Hayashi³⁵⁷) auf eine Integralgleichung erster Art, die er für spezielle Fälle löst. Eine Erweiterung der Formel in der Form

(186)
$$V = \frac{h}{6} \left\{ \frac{3x - h}{x} f(0) - \frac{2h - 3x}{h - x} f(h) + \frac{h^2}{h(h - x)} f(x) \right\},\,$$

wo h die Höhe des Körpers, f(x) der Inhalt des Querschnitts in der Höhe x ist, geben $Schubert^{357a}$) und $Groenemann.^{358}$) Eine andere auch

- 343) Chapman, Traité de la construction des Vaisseaux..., aus dem Schwedischen von Vial de Clairbois, Brest et Paris 1781, p. 3-5.
- $344)\ Brix,$ Elementarlehrbuch der dynamischen Wissenschaften, Berlin 1831, p. 130—148.
 - 345) Finck, Nouv. ann. 7 (1848), p. 241-46.
- 346) Brettschneider, Lehrgebäude der niederen Geometrie, Jena 1844, und Arch. Math. Phys. 36 (1861), p. 18-21.
- 347) Steiner, Journ. f. Math. 23 (1843), p. 275—284. Abgedruckt Werke II, p. 311—320.
 - 348) Grunert, Arch. Math. Phys. 10 (1847), p. 260-283.
- 349) Ligowski, Über die Inhaltsberechnung der Körper nach einer einzigen Formel, Berlin 1847 und Arch. Math. Phys. 26 (1856), p. 204 -212.
- 350) Wittstein, Das Prismatoid. Eine Erweiterung der elementaren Stereometrie, Hannover 1860 und Arch. f. Math. u. Phys. 39 (1862), p. 1—12.
 - 351) Rouché und Levy, Traité d'analyse infinitésimale.
 - 352) Haielecourt, Revue des sociétés savantes 1868 und 1876.
- 353) Trautwine, Civilingeneers pocket book, gibt die Formel als Entdeckung von Morris um 1840 an.
 - 354) Francke, Zeitschr. d. Arch. u. Ing.-Ver. zu Hannover 20 (1874).
 - 355) Lombard, Nouv. ann. 16 (1857), p. 131-35.
- 356) Grunert, Arch. f. Math. u. Phys. 20 (1853), p. 301 ff. und 23 (1854), p. 207-216.
- 356 a) Schubert, Auslese aus meiner Unterrichts- und Vorlesungspraxis III, Leipzig 1906, p. 160-178.
 - 357) Hayashi, Arch. Math. Phys. (3) 18 (1911), p. 102-104.
- 357 a) Schubert, Auslese aus meiner Unterrichts- und Vorlesungspraxis I, Leipzig 1905, p. 122-136.
 - 358) Groenemann, Nieuw. Archief Amsterdam (2) 6 (1905), p. 365-367.

wohl als Formel von Sarrus bezeichnete, ist

(187)
$$V = \frac{h}{4} \left(f(0) + 3f(\frac{2}{3}h) \right).$$

Sie ist noch für Funktionen 2. Grades genau und findet sich bei Lambert²³), Halsted³⁵⁹), Kinkelin³⁶⁰) u. a. Erweitert wird diese Formel zu

(188)
$$V = \frac{h}{1+\lambda} \left(f(0) + 2f \left(\frac{\lambda h}{1-\lambda} \right) \right)$$

und von Rudio 362) zu

$$(189) V = \frac{1}{2} h \left\{ \left(1 + \frac{1}{\lambda} \right) f \left(\frac{\lambda h}{1 + \lambda} \right) + \left(1 - \frac{1}{\lambda} \right) f(0) \right\}.$$

 $Koppe^{363}$) gibt für das Prismatoid eine auch schon von $Mascheroni^{341}$) gefundene Form

(190)
$$V = hf(\frac{h}{2}) + P_{12}^{h},$$

wo *P* der Inhalt eines den Grundflächen ähnlichen Vielecks ist, dessen Seiten gleich der Differenz der Seiten der Grundflächen sind. Bei *Mac-Laurin* ³⁶⁴), *Ligowski* ³⁶⁵), *Desboves* ³⁶⁶), *Gabriel Marie* ³⁶⁷) findet sich für Rotationsellipsoide bzw. Kugeln die Formel

(191)
$$V = hf(\frac{h}{2}) + \frac{ah^3}{12}.$$

Zahlreiche andere Formeln, so bei *Grcbe* ³⁶⁸), *Maleyx* ³⁶⁹), *Finsterbusch* ³⁴⁰), *Barbarin* ³⁶¹), *Schubert* ^{357a}), *Hayushi* ³⁷⁰), sind nichts anderes als Quadraturformeln von *Gauβ*, *Radau*, *Ligowski* u. a. ³⁷¹).

b) Allgemeine Betrachtungen. Bei der eigentlichen Kubatur handelt es sich um Berechnung eines Doppelintegrales einer Funktion von zwei Variabeln, d. h. um gleich den allgemeinen Fall zu nehmen, um Berechnung von

$$\iint \varphi(x,y)f(x,y)\,dx\,dy,$$

³⁵⁹⁾ Halsted, Rational Geometry New-York 1904, p. 186.

³⁶⁰⁾ Kinkelin, Arch. Math. Phys. 39 (1862), p. 181-186.

³⁶¹⁾ Barbarin, Procès verbaux des scéances de la société des sciences physiques et naturelles de Bordeaux 1907/8, p. 109—111.

³⁶²⁾ Rudio, Zeitschr. Math. Phys. 47 (1901), p. 126-127.

³⁶³⁾ Koppe, Journ. f. Math. 18 (1838), p. 275-277.

³⁶⁴⁾ Mac-Laurin, Treatise of fluxions, Edinburg 1742.

³⁶⁵⁾ Ligowski, Arch. Math. Phys. 32 (1869), p. 241-249.

³⁶⁶⁾ Desboves, Questions algèbre 1873 und Nouv. ann. 1877.

³⁶⁷⁾ Gabriel Marie, Géometrie 1875.

³⁶⁸⁾ Grebe, Arch. Math. Phys. 39 (1862), p. 93-97.

³⁶⁹⁾ Maleyx, Nouv. ann. (2) 19 (1880), p. 529-551.

³⁷⁰⁾ Hayashi, Arch. Math. Phys. (3) 16 (1910), p. 267-269.

³⁷¹⁾ Lampe, Arch. Math. Phys. (3) 16 (1910), p. 270-74.

wo f(x, y) sich nach Taylor entwickeln läßt, φ eine integrierbare Funktion sein muß und das Integrationsgebiet im allgemeinen nicht unendlich sein darf. Man kann hier genau wie bei der Quadratur von den (5) entsprechenden Gleichungen ausgehen

(192)
$$\delta_{\mu\nu} = A_1 x_1^{\mu} y_1^{\nu} + A_2 x_2^{\mu} y_2^{\nu} + \cdots \\ \cdots + A_n x_n^{\mu} y_n^{\nu} - \iint \varphi(x, y) x^{\mu} y^{\nu} dx dy.$$

Die A kann man für beliebige Werte x_i , y_z so bestimmen, daß n Werte δ Null werden, daß also eine Funktion $p^{\rm ten}$ Grades $n=\frac{(p+2)(p+1)}{2}$ exakt integriert wird. Wählt man außerdem noch wie bei der Methode von $Gau\beta$ die x_i , y_z passend, so kann man 3n Werte δ zu Null machen; vorausgesetzt ist dabei, daß die Gleichungen verträglich sind, reelle, im Integrationsgebiet und nicht auf einer Kurve $p^{\rm ter}$ Ordnung liegende Werte liefern.

Überträgt man die Entwicklungen des 3. Abschnittes, so erhält man hier anstatt der Gleichung (24)

(193)
$$\iint U(x,y) x^i y^j \varphi(x,y) dx dy = 0,$$

wo das Integral über das betreffende Gebiet zu erstrecken ist. Ausgehend von Arbeiten von *Hermite* ³⁷²), *Didon* ³⁷³) und eignen Arbeiten ³⁷⁴) zeigt *Appell* ³⁷⁵), daß es Polynome gibt, für die

(194)
$$\iint \varphi(x,y) U_{m,n}(x,y) U_{\mu,\nu}(x,y) dx dy = 0 \quad (m \ge \mu, n \ge \nu)$$

ist. Falls man diese Polynome für das betreffende Gebiet kennt, spielen dieselben für die Kubatur eine ähnliche Rolle wie die Funktionen $F_n(x)$ bei der Quadratur.

c) Bestimmte Begrenzungen. Am häufigsten behandelt wird der Fall rechteckiger Begrenzung. Hier reduzieren sich die Gleichungen (192) wegen der Symmetrie, ähnlich wie das bei (7) der Fall ist. Im Fall von vier symmetrischen Punkten erhält man z. B., wenn $\varphi = 1$ und die Seitenlängen des Rechtecks 2h und 2k sind,

(195)
$$A_1 = 1, \quad x_1 = +\frac{1}{3}\sqrt{3}h, \quad y_1 = +\frac{1}{3}\sqrt{3}k$$

³⁷²⁾ Hermite, Journ. f. Math. 64 (1865), p. 294—96; Paris C. R. 60 (1865), p. 370—77, 432—40, 461—66, 512—18.

³⁷³⁾ Didon, Ann. l'Éc. norm. 5 (1868). p. 228—310 und 7 (1870), p. 89—98 und p. 247—268.

^{374,} Appell, Paris C. R. 90 (1880), p. 296—298, 731—734, 977—979; 91 (1880), p. 364—366; Arch. Math. Phys. 66 (1881), p. 238—245.

³⁷⁵⁾ Appell, Annales de Toulouse 4 (1890), (20 Seiten).

mit der Korrektion

$$\frac{1}{4!} \frac{16}{45} \left(\frac{\partial^4 f}{\partial x^4} h^5 k + \frac{\partial^4 f}{\partial y^4} h k^5 \right) \cdots$$

Burnside³⁷⁶) betrachtet den Fall von acht symmetrischen Punkten, hier erhält er

(196)
$$A_{1,2} = \frac{40}{49}$$
, $A_3 = \frac{9}{49}$, $x_1 = \pm \sqrt{\frac{7}{15}}h$, $y_1 = 0$, $x_2 = 0$, $y_2 = \pm \sqrt{\frac{7}{15}}k$, $x_3 = \pm \sqrt{\frac{7}{9}}h$, $y_3 = \pm \sqrt{\frac{7}{9}}k$.

Die Korrektion wird

$$+ \tfrac{1}{6!} \tfrac{848}{14175} \left(\tfrac{\partial^6 f}{\partial x^6} h^7 k + \tfrac{\hat{\sigma}^6 f}{\hat{\sigma} y^6} h k^7 \right) - \tfrac{32}{6!27} \left(\tfrac{\hat{\sigma}^6 f}{\partial x^4 \partial y^2} h^5 k^3 + \tfrac{\hat{\sigma}^6 f}{\partial x^2 \hat{\sigma} y^4} h^3 k^5 \right) \cdot$$

 $Maxwell^{377}$) behandelt den speziellen Fall, daß sich f(x,y) als Funktion von a + bx + cy darstellt, und gibt für 13 Funktionswerte Wurzeln und Koeffizienten. Er dehnt seine Betrachtung auch auf das dreifache Integral aus; ein von ihm behandelter Spezialfall führt aber auf eine Lösung, die auch Punkte außerhalb des Integrationsgebietes enthält.

Des öfteren hat man die Quadraturformeln so übertragen, daß man längs jeder Parallelen zur y-Achse $x_0 + \mu \frac{x_1 - x_0}{m}$ auf die n Werte $y_0 + \nu \frac{y_1 - y_0}{n}$ die betreffende Quadraturformel anwendet, die so erhaltenen Werte als Ordinaten von $x_0 + \mu \frac{x_1 - x_0}{m}$ wählt und diese wieder nach der entsprechenden Quadraturformel zusammensetzt. Doch ist zu beachten, daß dabei mehr Ordinaten als nötig verwandt sind, falls man durch ein Paraboloid entsprechenden Grades annähern will. Man würde mit $\frac{n(n+1)}{2}$ Ordinaten für ein Paraboloid $n-1^{\text{ter}}$ Ordnung ausreichen. Setzt man mit $Biermann^{378}$) die erweiterte Lagrangesche Interpolationsformel an

(197)
$$g(x,y) = \sum_{1}^{n} \frac{(x-x_{1})(x-x_{2})\dots(x-x_{n})}{(x_{\mu}-x_{1})(x_{\mu}-x_{2})\dots/\dots(x_{\mu}-x_{n})} \cdot \sum_{1}^{n} \frac{(y-y_{1})(y-y_{2})\dots/\dots(y-y_{n})}{(y_{\nu}-y_{1})(y_{\nu}-y_{2})\dots/\dots(y_{\nu}-y_{n})} z_{\mu\nu},$$

³⁷⁶⁾ Burnside, The Messenger of Mathematics (2) 37 (1908), p. 166-167.

³⁷⁷⁾ Maxwell, Proc. of Cambridge Phil. Soc. 3 (1877), p. 39-74.

³⁷⁸⁾ Z. B. Biermann, Vorlesungen über math. Näherungsmethoden, Braunschweig 1905.

134 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

so müssen $\frac{n(n-1)}{2}$ Relationen zwischen den $z_{\mu\nu}$ bestehen. Setzt man ferner $^{379})$

$$G(x, y) = g(x, y) + \omega_1(x)\varphi(x, y) + \omega_2(y)\psi(x, y),$$

$$\omega_1(x) = \prod_1^n (x-x_\mu), \qquad \omega_2(y) = \prod_1^n (y-y_\nu),$$

so kann man durch passende Wahl der x und y weitere n(n+1) Größen im Integral der beiden Seiten zur Übereinstimmung bringen. Man erhält so für die ω die Bedingungen 350)

$$(199) \int_a^{\alpha} \int_b^{\beta} \omega_1(x) \vartheta_{m-1}(x, y) dx dy = 0, \quad \int_a^{\alpha} \int_b^{\beta} \omega_2(y) \vartheta_{m-1}(x, y) dx dy = 0.$$

Man könnte nun z.B. die Glieder

$$\iint\limits_{a}^{\alpha} \int\limits_{b}^{\beta} \omega_1(x) \, \eta_{m-1}(x) \, dx \, dy = 0 \quad \text{und} \quad \iint\limits_{a}^{\alpha} \int\limits_{b}^{\beta} \omega_2(y) \, \eta_{m-1}(y) \, dx \, dy = 0$$

aus (199) herausgreifen. Setzt man

$$\frac{x_{\mu}-a}{\alpha-a}=t_{\mu}, \quad \frac{y_{\mu}-b}{\beta-b}=\tau_{\mu},$$

so sind t und τ Wurzeln von $U(t) = \frac{d^m}{d\,t^m}(t^m(t-1)^m)$. Weitere Bedingungen können an die t und τ nicht gestellt werden, man kann die Wurzeln also beliebig zu Paaren verbinden. Fehlerangaben dazu finden sich bei $Minding^{351}$) und $Biermann^{350}$), ferner bei $L\"owenstern^{382}$), der die Betrachtung auf n Variable ausdehnt.

Für ein kreisförmiges Gebiet gibt *Bourget* ³⁸³) anschließend an *Appell* ³⁷⁵) die Punkte und Koeffizienten für die vier einfachsten Fälle an. Die Funktionswerte sind da für die Schnittpunkte der Kurven

(200)
$$\frac{\partial^n (x^2 + y^2 - 1)^n}{\partial x^n} = 0, \quad \frac{\partial^n (x^2 + y^2 - 1)^n}{\partial y^n} = 0$$

zu nehmen, um die Glieder bis zu denen $(2n-1)^{\rm ter}$ Ordnung aus der Korrektion zum Verschwinden zu bringen. Diese Kurven sind übrigens schon von $Hermite^{372}$), $Didon^{373}$) und $Appell^{374}$) behandelt.

³⁷⁹⁾ Biermann, Monatshefte Math. Phys. 14 (1913), p. 211-225.

³⁸⁰⁾ Biermann, Monatshefte Math. Phys. 14 (1913), p. 226-242.

³⁸¹⁾ Minding, De valore integralium duplicium quam proxime inveniendo, Dissertation Halle 1829 und Journ. f. Math. 6 (1830), p. 91—95.

³⁸²⁾ Löwenstern, Mémoires presentées à l'Académie impériale des sciences de St. Pétersbourg par divers savants 3 (1837), p. 279—289.

³⁸³⁾ Bourget, Paris C. R. 126 (1898), p. 634-636.

d) Zerlegung in Teilgebiete. Wie man die Genauigkeit der Quadraturformel durch Zerlegen des ganzen Gebietes in Teilgebiete erhöht, so hat man auch vorgeschlagen, bei zweifachen Integralen das Gebiet in gleiche Rechtecke einzuteilen und auf jedes dieselbe Kubaturformel anzuwenden. Wir geben hier nur die Formeln für ein Rechteck mit den Ecken (0, 0), (0, 1), (1, 0), (1, 1). Hat man $m \cdot n$ Recktecke, so tritt im Korrektionsglied zu $\frac{\partial^{n+r} f(x, y)}{\partial x^n \partial y^n}$ der Faktor $\frac{1}{m^n n^n}$

Abgesehen von den Abschnittsprismen von $Biermann^{3-1}$) sind die einfachsten Formeln die von $Bugajev^{385}$)

(201)
$$1 (z_{00} + z_{01} + z_{10} + z_{11})^{\frac{k+h}{4}}$$

mit der Korrektion

$$-\frac{1}{2!6}\left(\frac{\hat{\epsilon}^2 f}{\hat{\epsilon} x^2}h^3k + \frac{\hat{\epsilon}^2 f}{\hat{\epsilon} y^2}hk^3\right)$$

$$-\frac{1}{3!4}\left(\frac{\hat{\epsilon}^3 f}{\partial x^3}h^4k + \frac{\partial^3 f}{\partial x^2\partial y}h^3k^2 + \frac{\hat{\epsilon}^3 f}{\partial x\partial y^2}h^2k^3 + \frac{\hat{\epsilon}^3 f}{\partial y^3}hk^4\right) - \cdots,$$

die für das Tangentenprisma 384)

(202) II
$$hk \cdot z_1, \frac{1}{2}, \frac{1}{2}$$

mit der Korrektion

$$+\frac{1}{2!12}\left(\frac{c^2f}{\partial x^2}h^3k+\frac{\hat{c}^2f}{\hat{c}y^2}hk^3\right)$$

$$+\frac{1}{3!8}\left(\frac{\hat{c}^3f}{\partial x^2}h^4k+\frac{\hat{c}^3f}{\partial x^2\hat{c}y}h^3k^2+\frac{\hat{c}^3f}{\partial x^2\hat{c}y^2}h^2k^3+\frac{\hat{c}^3f}{\partial y^3}hk^4\right)+\cdots$$

und die Formel von Mansion 386)

(203) III
$$\left(z_{0,\frac{1}{2}} + z_{\frac{1}{2},0} + z_{1,\frac{1}{2}} + z_{\frac{1}{2},1}\right) \frac{kh}{4}$$

mit der Korrektion

$$-\frac{1}{2!24}\left(\frac{\hat{c}^{2}f}{\hat{c}x^{2}}h^{3}k+\frac{\hat{c}^{2}f}{\hat{c}y^{2}}hk^{3}\right)$$

$$-\frac{1}{3!16}\left(\frac{\hat{c}^{3}f}{\hat{c}x^{3}}h^{4}k+\frac{\hat{c}^{3}f}{\partial x^{2}\partial y}h^{3}k^{2}+\frac{\hat{c}^{3}f}{\partial x}\partial y^{2}h^{2}k^{3}+\frac{\hat{c}^{3}f}{\partial y^{3}}hk^{4}\right)-\cdots$$

Aus II und III ergibt sich eine von Wooley387) gegebene Formel

(204) IV =
$$\frac{1}{3}$$
 (2·III + II) $\frac{\hbar k}{6} \left(z_{0,\frac{1}{2}} + z_{\frac{1}{2},0} + z_{1,\frac{1}{2}} + z_{\frac{1}{2},0} + 2z_{\frac{1}{2},\frac{1}{2}} \right)$

mit der Korrektion

$$-\frac{1}{4!5!}\frac{\partial^4 f}{\partial x^4}h^5k+\frac{1}{4!24}\frac{\partial^4 f}{\partial x^2\partial y^2}h^3k^3-\frac{1}{4!5!}\frac{\partial^4 f}{\partial y^4}hk^5\cdots$$

³⁸⁴⁾ Biermann, Monatshefte Math. Phys. 20 (1909, p. 321-326.

³⁸⁵⁾ Bugajer, Moskauer math. Sammlung 20 (1898), p. 451-471.

³⁸⁶⁾ Mansion, Annales de la soc. scient. de Bruxelles 6 B 1882, p. 228=32; Paris C. R. 95 (1882), p. 384—386. Mathesis II (1882) Anhang p. 1—6.

³⁸⁷⁾ Mechanics' Magazine 1851, p. 262-68.

Zuerst findet sich die Formel (1851). Später wird sie besonders von englischen Schiffsbauern verwandt, so findet sie sich bei Woolley selbst³⁸⁸), Merrifield³⁸⁹), der sie auf die Berechnung der Momente erweitert³⁹⁰), Russel³⁹¹); ferner findet sie sich bei Mansion³⁸⁶) u. a. Aus I und II folgt eine von Woolley, Mansion³⁸⁶) und Rimondini³⁹²) gegebene Formel

(205)
$$V = \frac{1}{3}(2II + I) = \frac{hk}{12}(z_{00} + z_{01} + z_{10} + z_{11} + 8z_{\frac{1}{2}, \frac{1}{2}})$$

mit der Korrektion

Aus den letzten beiden Formel
n folgert man sogleich die verallgemeinerte Simpson sche Formel
 $^{379})$ $^{393})$

$$\begin{split} &\text{(206)} & \text{VI} = \frac{1}{3} \left(\text{V} + 2 \, \text{IV} \right) \\ &= \frac{kh}{36} \Big[(z_{00} + z_{01} + z_{10} + z_{11}) + 4 \Big(z_{0,\frac{1}{2}} + z_{\frac{1}{2},0} + z_{1,\frac{1}{2}} + z_{\frac{1}{2},1} \Big) + 16 z_{\frac{1}{2},\frac{1}{2}} \Big] \end{split}$$

mit der Korrektion

$$--\frac{1}{4!\,5!}\frac{\partial^4 f}{\partial x^4}h^5k-\frac{1}{4!\,5!}\frac{\partial^4 f}{\partial y^4}hk^5.$$

Biermann 378) weist darauf hin, daß die hier auftretenden neun Ordinaten durch weniger ersetzt werden können, wenn man die Aufgabe so stellt: es ist durch ein Paraboloid anzunähern. Die Formel geht dann z. B. über in

(207) VII =
$$\frac{kh}{36} \left[12z_{00} - 12\left(z_{0,\frac{1}{2}} + z_{\frac{1}{2},0}\right) + 36z_{\frac{1}{2},\frac{1}{2}} + 6(z_{0,1} + z_{1,0}) \right],$$

wenn man nur die in dem von einer Diagonale begrenzten Dreieck liegenden Punkte benutzen will. Die Korrektion wird

$$+\frac{1}{3!8} \left(\frac{\partial^{3} f}{\partial x^{2} \partial y} h^{3} k^{2} + \frac{\partial^{3} f}{\partial x \partial y^{2}} h^{2} k^{3} \right)$$

$$+\frac{1}{4!120} \left(-\frac{\partial^{4} f}{\partial x^{4}} h^{5} k + 30 \frac{\partial^{4} f}{\partial x^{3} \partial y} h^{4} k^{2} + 35 \frac{\partial^{4} f}{\partial x^{2} \partial y^{2}} h^{3} k^{3} \right)$$

$$+30 \frac{\partial^{4} f}{\partial x \partial y^{3}} h^{2} k^{4} - \frac{\partial^{4} f}{\partial y^{4}} h k^{5} \right) \dots$$

³⁸⁸⁾ Woolley, Transactions of the Institution of Naval Architects I (1860), p. 17.

³⁸⁹⁾ Merrifield, Transactions of the Institutions of Naval Architects VI (1865), p. 40-48.

³⁹⁰⁾ Merrifield, Transaction of the Institutions of Naval Architects VIII (1867), p. 210—12.

³⁹¹⁾ Russel, The modern system of naval architecture, London, Chap. XIX, p. 117-147.

³⁹²⁾ Rimondini, Atti della R. Accad. di Torino 40 (1905), p. 168-177.

³⁹³⁾ Rimondini, Atti della R. Acad. di Torino 41 (1906), p. 728-738.

Wolley³⁸⁷) leitet seine Formel IV durch ähnliche Betrachtungen aus der Formel VI ab. Für die Formeln III—V gibt Mansion³⁹⁴) ganz ähnliche Ausdrücke für die oberen Fehlergrenzen, wie sie an anderer Stelle²⁹⁶) von ihm für die Quadraturformeln gegeben sind.

Mehr noch als bei der Quadratur ist bei Anwendung der Kubaturformeln eine praktische Anordnung der Rechnung nötig. Beispiele einer praktischen Anordnung sowohl für die Volumberechnung, wie für die Berechnung des Flächeninhaltes krummer Flächen, die nach denselben Formeln ausgeführt werden kann 395), finden sich besonders wieder in der schiffsbautechnischen Literatur 395a).

Merrifield 389) überträgt die Betrachtungen die von der verallgemeinerten Simpsonschen zur Woolleyschen Formel geführt haben auf dreifache Integrale und zeigt, daß die ursprünglich auftretenden 27 Ordinaten sich auf 6 reduzieren lassen; und zwar ist der Wert des Integrales gleich der Summe der 6 Werte, die die Funktion in der Mitte der Grenzflächen des Parallelepipedes von den Kantenlängen 2h, 2k und 2l annimmt, multipliziert mit $\frac{4}{3}k \cdot h \cdot l$. $Purkiss^{396}$) erweitert diese Formeln auf n fache Integrale von Funktionen von n Variabeln.

e) Graphische Methoden. Um ein Doppelintegral in einem endlichen Bereich graphisch auszuwerten, kann man, falls f(x, y) in kotierter Projektion gegeben ist, eine ähnliche Methode anwenden, wie sie die Geographen zur Bestimmung der mittleren Höhe eines Gebietes verwenden 397). Durch Integration stellt man den Inhalt der einzelnen Höhenkurven fest, und zwar nimmt man am besten stets dieselbe Integrationsbasis. Die Endordinaten dieser Integralkurven trägt man als Ordinaten zu den dazu gehörenden Höhen als Abszissen auf, legt durch die Endpunkte eine glatte Kurve und integriert diese abermals. Die Endordinate dieser Integralkurve ist ein Maß für den Wert obigen Integrals in dem betrachteten Gebiet. Man kann auch zunächst

$$z_1 = \int f(x, y_1) dx, \quad z_2 = \int f(x, y_2) dx, \dots$$

³⁹⁴⁾ Mansion, Mathesis II (1882) Anhang p. 1-6; Mathesis IV (1884) Anhang p. 15-18.

³⁹⁵⁾ Merrifield, Transactions of the Institution of Naval Architects 6 (1865), p. 64-72.

³⁹⁵ a) Z. B. Napier, Rankine, Barnes and Watts, Shipsbuilding, theoretical and practical p. 46. Besonders aber vgl. die verschiedenen Jahrgänge der Trans. of the Inst. of Nav. Arch.

³⁹⁶⁾ Purkiss, Trans. of the Inst. of Naval Architects VI (1865), p. 48-50.

³⁹⁷⁾ Z. B. Leidner, Orometrie des Harzgebirges, Dissertation Halle 1886; Dittenberger, Zur Kritik der neueren Fortschritte der Orometrie, Halle 1903; Wagner, Orometrie des ostfälischen Hügellandes links der Leine, Stuttgart 1904.

in den zugehörigen Grenzen integrieren, z_n als Ordinate zu y_n auftragen und die durch die Endpunkte gelegte glatte Kurve integrieren. Wesentlich schneller führt eine von $Bjerkness^{409}$) angegebene ähnliche Methode zum Ziel, doch ist dieselbe bedeutend ungenauer. Ähnlich schlägt Solin vor 279), zur Berechnung einer Fläche z, die durch das totale Differential dz = M dx + N dy bestimmt ist, wo $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ ist, vom Punkt x, y, z aus zunächst durch Quadratur $z = \int M(x, y_0) dx$ zu bestimmen und dann in den dazu senkrechten Ebenen durch Quadratur der Reihe nach $z = \int N(x_0, y) dy$, $z = \int N(x_1, y) dy$ usw., indem man $z = \int M(x, y_0) dx$ als Leitlinie benutzt.

Ist f(x, y) eine homogene algebraische Funktion, so gibt es Methoden, aus Kurven, die diese Funktion bestimmen, und aus der Grenzkurve des Bereiches durch punktweise Konstruktion neue Kurven herzuleiten, deren Flächeninhalt dem Integral entspricht, so daß nur eine Integration nötig ist. Derartige Methoden sind besonders zur Konstruktion von Trägheitsmomenten usw. benutzt worden. ³⁹⁸)

14. Differentiation. a) Die numerische Differentiation (vgl. I D 3 (J. Bauschinger) Interpolation, Nr. 8) besitzt ein sehr beschränktes Anwendungsgebiet, weil man bei analytisch gegebenen Funktionen im allgemeinen die direkte Ausführung vorziehen wird, und weil es bei empirisch gegebenen Funktionen nicht immer unbedenklich ist, aus einzelnen Punkten auf den Differentialquotienten zu schließen.

Sind äquidistante Punkte gegeben, so benutzt man die Differenzenmethode, und zwar verwendet man auch hier meist in einer Zeile gelegene Differenzen. Man erhält so z.B. für den ersten und zweiten Differentialquotienten

$$\omega f'\left(a+\frac{1}{2}\omega\right) = \left[a+\frac{1}{2},1\right] - \frac{1}{24}\left[a+\frac{1}{2},3\right] + \frac{3}{640}\left[a+\frac{1}{2},5\right] \dots$$

$$\omega^2 f''\left(a+\frac{1}{2}\omega\right) = \left[a+\frac{1}{2},2\right] - \frac{5}{24}\left[a+\frac{1}{2},4\right] + \frac{259}{5760}\left[a+\frac{1}{2},6\right] \dots$$

Ableitungen dieser und ähnlicher Formeln finden sich in den in Nr. 10 angegebenen Abhandlungen; vgl. auch die Arbeiten von Everett³⁹⁹), Runge⁴⁰⁰) und Sheppard.⁴⁰¹) Die Koeffizienten findet man in den Tafeln von Bauschinger.²⁰⁴) Sind die Kurven punktweise etwa durch Ver-

³⁹⁸⁾ Z. B. Lewicki, Civilingenieur 1879; d'Ocagne, Bull. de la Soc. math. de France 12 (1884); Assur, Zeitschr. Math. Phys. 60 (1911), p. 1-60.

³⁹⁹⁾ Everett, Nature 60 (1899), p. 271.

⁴⁰⁰⁾ Runge, Nature 60 (1899), p. 365-366.

⁴⁰¹⁾ Sheppard, Nature 60 (1899), p. 390-391.

suche bestimmt, so hat man durch sie eine glatte Kurve zu legen, die allerdings oft nicht durch alle Punkte gehen wird. Rechnerisch kann man das dadurch ausführen⁴⁰²), daß man in einem Polynom

$$P(x) = a_0 + a_1 x \dots a_n x^n$$

die a so bestimmt, daß

$$M = \int_{x_1}^{x_2} [f(x) - P(x)]^2 dx$$

ein Minimum wird, falls f(x) die wahre Gleichung der Kurve ist. Das liefert n+1 lineare Gleichungen, aus denen sich die a bestimmen

lassen. Das konstante Glied, das die Form $\int_{x_1}^{x_2} x^r f(x) dx$ hat, kann man durch angenäherte Quadratur berechnen. Um den Differential-quotienten zu finden, wird man dann P(x) statt f(x) differentiieren. Die Differentiation wird so also auf Integrationen zurückgeführt.

Sind die Kurven durch physikalische Untersuchungen festgestellt, so muß man ferner bedenken, daß gewisse Meßinstrumente eine Integration vornehmen, und daß man, um die wirklichen Werte zu erhalten, eine Art Differentiation vornehmen muß. Allgemeine Regeln lassen sich darüber nicht aufstellen. Den Fall bolometrischer Messungen im Spektrum haben $Strutt^{403}$) und $Runge^{404}$) behandelt.

⁴⁰²⁾ v. Sanden, Archiv für Elektrotechnik 2 (1914), p. 52-57.

⁴⁰³⁾ Strutt, Philosophical Magazine 42 (1871), p. 441-444.

⁴⁰⁴⁾ Runge, Zeitschr. Math. Phys. 42 (1897), p. 205-213.

⁴⁰⁵⁾ Vgl. z. B. Solin-Baldermann u. A. Interessant ist ferner eine von Casse-baum (Diss. Göttingen 1910) angegebene Methode, die erlaubt, die Differentialkurve graphisch zu bestimmen, wenn die Integralkurve zu einer logarithmischen Skala aufgetragen ist.

⁴⁰⁶⁾ Slaby, Zeitschr. d. Ver. deutsch. Ingenieure 58 (1913), p. 821 verwendet die erste Methode, die zweite findet sich z. B. bei Christmann-Baer, Grundzüge der Kinematik, Berlin 1910, p. 84—86.

⁴⁰⁷⁾ Reusch, Carls Repertorium für experimentelle Physiologie 16 (1880), p. 255; Mack, Zeitschr. Math. Phys. 52 (1905), p. 435—36.

Am besten geht man bei der graphischen Bestimmung der Tangenten nicht von bestimmten Kurvenpunkten aus, sondern nimmt ein passendes Richtlinienbüschel an. Benutzt man quadriertes Papier, so ist es praktisch, die Richtlinien die Y-Achse in Punkten der Quadrierung treffen zu lassen. Parallel zu jeder dieser Richtlinien zieht man eine Anzahl Sehnen der Kurve nahe der Stelle, wo die Kurventangente der betreffenden Richtlinie parallel läuft, wie das Fig. 23 zeigt. Verbindet

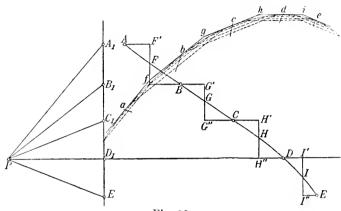


Fig. 23.

man die Mitten dieser Sehnen durch eine glatte Kurve, so kann man den Punkt extrapolieren, dessen Tangente parallel zur entsprechenden Richtlinie ist. Auf diese Weise findet man einen Tangentenzug⁴¹¹). Als Anhalt für die Differentialkurve erhält man eine Stufenkurve, deren Parallelen zur Y-Achse durch die Schnitte aufeinander folgender Tangenten gehen und deren Parallelen zur X-Achse durch den Schnitt der entsprechenden Richtlinie mit der Y-Achse bestimmt sind. In diese Stufenkurve muß die Differentialkurve eingezeichnet werden, und zwar so, daß die zur X-Achse parallelen Stücke der Stufenkurve in Punkten geschnitten werden, die dieselbe Abszisse haben wie die Berührungspunkte der zugehörigen Tangenten, und daß die krummlinigen Dreiecke, die ein und derselben Parallelen zur Y-Achse anliegen, möglichst inhaltsgleich sind.⁴¹²) Selbstverständlich wird im allgemeinen die so gefundene Kurve möglichst glatt verlaufen müssen.

⁴⁰⁸⁾ Wagener, Auswerten und Indizieren von Kurbelweg- und Zeitdiagrammen, Berlin 1906, p. 72—80.

⁴⁰⁹⁾ Bjerkness, Dynamische Meteorologie und Hydrographie II, Braunschweig 1913 (deutsch von Kirchner) Kap. 9, p. 93—124.

⁴¹⁰⁾ Pflüger, Zeitschrift des Vereins dentscher Ingenieure 58 (1914), p. 880-81.

⁴¹¹⁾ Lambert, Beiträge zum Gebrauch der Mathematik und deren Anwendungen II, Berlin 1770, 2. Abhandlung, § 21.

Betrachtungen über die Differentiation im durch kotierte Projektion dargestellten Felde eines Skalars, das durch Isogonen, oder eines Vektorfeldes, das durch Isogonen und Vektorlinien gegeben ist, finden sich bei Bjerkness 409). Die Genauigkeit der dort gegebenen Methoden, die etwa die der Trapezregel ist, würde sich sehr leicht erhöhen lassen. Da aber Bjerkness seine Methoden auf Wetterkarten anwendet, wo eine sehr große Anzahl solcher Operationen gemacht werden muß, würde eine genauere Methode zu langwierig sein, zumal auch die Daten nur sehr ungenau gegeben sind. Bjerkness zeigt auch, wie man auf zeichnerischem Wege die Divergenz und den curl eines solchen Feldes bildet.

II. Numerische und graphische Integration gewöhnlicher Differentialgleichungen. 413)

- 15. Bei der Integration gewöhnlicher Differentialgleichungen führen die graphischen Methoden am schuellsten zum Ziel und sind am übersichtlichsten; sie mögen daher hier zuerst besprochen werden.
- a) Die Methode von E. Czuber 414) ist zunächst auf lineare Gleichungen erster Ordnung anwendbar. Sie benutzt die Tatsache, daß bei einer Gleichung

(206)
$$y' + yP(x) + Q(x) = 0$$

alle Linienelemente, die auf einer Parallelen zur Y-Achse liegen, von ein und demselben Punkte ausstrahlen. Alle diese Punkte liegen auf einer Kurve

(207)
$$\xi = x + \frac{1}{P(x)}, \quad \eta = -\frac{Q(x)}{P(x)}.$$

Man zeichnet die zu den einzelnen Parallelen zur Y-Achse gehörenden Punkte und kann dann die Integralkurve, deren Anfangspunkt oder Anfangsrichtung gegeben ist, leicht aus Geraden oder Parabelstücken zusammensetzen. Bei Annäherung durch Parabeln zweiter Ordnung schneiden sich dabei die Tangenten der Punkte auf den Parallelen auf den Mittellinien dieser Parallelen (Fig. 24). Eine andere Methode zur möglichst genauen Einzeichnung der Integralkurve unter Benutzung einer Integralkurve der Gleichung y' + P(x)y = 0 gibt Sobotka.⁴¹⁵)

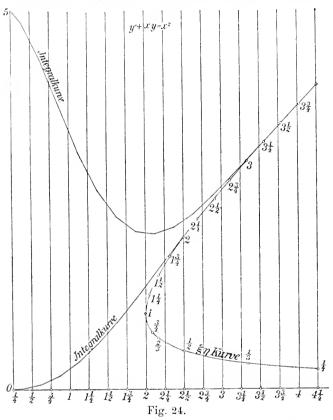
⁴¹²⁾ Z. B. Holzer, Zeitschrift für das gesamte Turbinenwesen 10 (1913), p. $455{-}56.$

⁴¹³⁾ Über Gleichungen, die durch wiederholte Quadratur zu integrieren sind, soll hier nicht gesprochen werden. Näheres über solche Gleichungen findet sich: Nehls, Über graphisch-mechanisches Integrieren, Zivilingenieur XXI, (1875) 199 ff.

⁴¹⁴⁾ E. Czuber, Zeitschr. Math. Phys. 44 (1899), p. 41-49.

⁴¹⁵⁾ Sobotka, Časopis pro pestovani Mathematiky a fysiky 31, Prag 1902, p. 10-23, 97-105, 177-188, 265-273.

Ist P(x) konstant, so haben die Parallelen und die Punkte ξ , η immer gleichen Abstand, so daß es genügt, die Kurve zu zeichnen, ohne die einzelnen Punkte zu markieren. Wir haben damit auch das Prinzip,



auf dem der Pascalsche Integrator aufgebaut ist. 416) Wählt man die Integralkurven als neue ξ , η -Kurve, so kann man durch wiederholte Ausführung obiger Operation gewisse lineare Differentialgleichungen beliebig hoher Ordnung integrieren; doch muß man dann eine jedesmalige Umzeichnung der Integralkurven vornehmen. Will man das nicht, so kann man nur bestimmte lineare Differentialgleichungen mit konstanten Koeffizienten oder solche, deren Koeffizienten sich alle in bestimmter Weise durch eine Funktion ausdrücken lassen, integrieren. 417)

⁴¹⁶⁾ E. Pascal, Rendiconti della R. Accademia dei Lincei (5) XVIII (1909) u. Giorn. di Mat. di Battaglini (3) 48 (1910), p. 16 ff.

⁴¹⁷⁾ A. Potier, Anhang 4 zu Abdank-Abakanowitz, Die Integraphen, Leipzig 1889. Fr. A. Willers, Zum Integrator von E. Pascal, Zeitschr. Math. Phys. 59 (1910), p. 36 ff. E. Pascal, Giorn. di Mat. di Battaglini (3) 49 (1911), p. 155 ff.;

Ähnliche durch Umformung des sog. Stangenplanimeters, wie es $Prytz^{418}$), $Runge^{419}$), $Klerit^{420}$) u. a. beschrieben haben, gewonnene Integraphen haben $Petrovitch^{421}$) und $Jakob^{422}$) angegeben. 423)

Die Methode von Czuber erweitert Sobotka 115) auf Gleichungen der Form

$$(208) \qquad (L(x) \cdot y - M(x))y' + P(x) \cdot y = Q(x)$$

wo L, M, P und Q einwertige Funktionen von x sind. Die Richtungen, die zu den Punkten einer zur Y-Achse parallelen Geraden gehören, sind dann Tangenten einer Parabel, deren Brennpunkt die Koordinaten

(209)
$$\xi = x + \frac{PM + LQ}{P^2 + L^2}; \quad \eta = \frac{QP - ML}{P^2 + L^2}$$

hat. Die Konstruktion ist im einzelnen aus nebenstehender Figur 25 zu ersehen.

Weiter wäre hier noch die Methode von *Láska*⁴²⁴) zu erwähnen, der Gleichungen der Form

$$f\left(x + y\frac{dy}{dx}, y\right) = 0$$

mittels der Kurve $f(\xi, \eta) = 0$ integriert, wo $\xi = x + y \frac{dy}{dx}$ und $\eta = y$ ist. Da die Normale

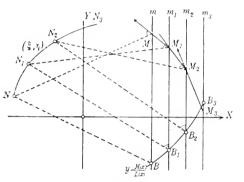


Fig. 25.

der Integralkurve also durch $\frac{dx}{dy} = \frac{y}{\xi - x}$ bestimmt ist, und da $\Delta y = \Delta \eta$ ist, kann man sie annäherungsweise aus einzelnen Geradenstücken leicht zusammensetzen.

b) In der Geophysik, besonders häufig in der Hydrographie 425) und

^{50 (1912),} p. 265—83, 354. Rend. del Reale Accademia delle scienze di Napoli (3) 17 (1911), p. 405—10; (3) 18 (1912), p. 19—24; (3) 19 (1913); Rend. d. R. Accademia da Lincei (5) 22 (1913), (von 31. V.). Ajello, Rend. del Reale Accademia delle scienze di Napoli (3) 18 (1912), p. 25—28 (vgl. auch II A 2, Nr. 56—59).

⁴¹⁸⁾ Prytz, Tidsskrift for Opmaalings og Matrikulvalsem. 1895, p. 383-92.

⁴¹⁹⁾ Runge, Zeitschrift für Vermessungswesen 24 (1895), p. 321 ff.

⁴²⁰⁾ Klerit, Dinglers polytechnisches Journal 305 (1897).

⁴²¹⁾ Petrovitch, Bull. de la soc. math. de France 27 (1899), p. 200-205.

⁴²²⁾ Jacob, Le calcul mécanique, Paris 1911 (s. auch die Literaturangaben).

⁴²³⁾ Galle, Mathematische Instrumente, Leipzig 1912.

⁴²⁴⁾ Láska, Sitzungsberichte d. kgl. böhm. Gesellschaft d. Wiss. (Math.-Nat. Klasse) 1 (1890), p. 222-25.

⁴²⁵⁾ Sandström, Windströme im Gullmarfjord, Svenska Hydrographisk Biologiska Kommissionensskrifter, Gotenburg 1905.

der Meteorologie wird die Methode der Kurven gleicher Neigung (Isoklinen, Isogonen) 426) verwandt. Sie läßt sich zur Integration gewöhnlicher Differentialgleichungen erster Ordnung verwenden. Ist $F(x, y, \frac{dy}{dx}) = 0$ die gegebene Gleichung, so zeichnet man die Kurven gleicher Neigung F(x, y, a) = 0. Um die Isogonen mit kurzen Richtungslinien in großer Zahl zu versehen und dadurch die Konstruktion der Integralkurven zu erleichtern, hat Söderberg 426) einen Apparat konstruiert. Eine Abänderung desselben für Karten in Kegelprojektion gibt Bjerkness an. Einfacher schneidet man die Isoklinen nach d'Ocagnes Vorschlag 428) mit der Direktrix F(xyy), projiziert die Schnittpunkte auf die y Achse und verbindet die Projektionen mit einem Pol. Diese Verbindungslinien geben die zugehörigen Richtungen. Die Ordinate des Anfangspunktes kann als Integrationskonstante dienen. Gehören zu ihr mehrere Richtungen, so erhält man eine entsprechende Zahl von Integralkurven. An der Hand der Kurven gleicher Neigung lassen sich die Singularitäten der Integrale von Differentialgleichungen erster Ordnung sehr gut diskutieren. 427) Eine große Zahl von Kurvenbildern hat Sandström 429) unter Benutzung des Apparates von Söderberg gezeichnet.

Die Integralkurven erhält man dadurch, daß man Kurven einzeichnet, die auf jeder Isokline möglichst die vorgeschriebene Neigung haben (Fig. 30). Solin⁴²⁷) schlägt vor, die Ecken des umschriebenen Polygons möglichst in die Mitte zwischen die Schnittpunkte mit den Kurven gleicher Neigung zu legen. d'Ocagne⁴²⁸) gibt eine Methode, um die Integralkurven durch Parabelbogen zweiter Ordnung anzunähern, die darauf beruht, daß die Parallelen zur Y-Achse durch die Berührungspunkte und den Schnittpunkt der Tangenten äquidistant sein müssen. Das Nähere gibt Fig. 26.

c) Sehr häufig wird auch die für Differentialgleichungen zweiter Ordnung besonders bequeme, allerdings nicht rein graphische *Methode der Krümmungsradien* angewandt. Die Gleichung wird dabei so umgeformt, daß der Krümmungsradius der Integralkurve als Funktion des Ortes und der Richtung erscheint; die Kurve wird dann Stück

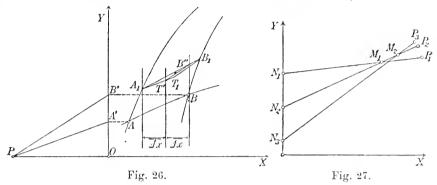
⁴²⁶⁾ Bjerknes, Dynamische Meteorologie und Hydrographie II, Braunschweig 1913, Kap. VII, p. 59-64.

⁴²⁷⁾ Massau I, Buch V, Kap. III u. IV. Angewandt auf den Fall, wo die Gleichung der Isoklinen $x^5y^3=x-y$ ist. Solin, Über graphische Integration, Prag 1872. Angewandt auf die Gleichung $\frac{dy}{dx}=x^2+y^2$. Nehls 257).

⁴²⁸⁾ d'Ocagne, Calcul graphique et Nomographie Paris 1908, Nr. 41-43.

⁴²⁹ Sandström, Annalen der Hydrographie und der maritimen Meteorologie 1909, p. 242—254.

für Stück aus Kreisbogen zusammengesetzt. Die Methode benutzen z. B. Thomson für die Kapillaritätsgleichung und für gewisse Fälle des Drei-Körperproblems. Wiechert zur Bestimmung des Weges der Erdbebenwellen aus der Laufzeitkurve, Lanchester.



mung der Bahnkurve eines Aeroplans usw. Man vermag, wenn man bei einiger Übung für die Krümmungsradien passende Mittelwerte wählt, eine in den meisten Fällen ausreichende Genauigkeit zu erzielen. Wegen der Schnelligkeit der Ausführung ist die Methode sehr brauchbar, besonders in der von $Boys^{435}$) angegebenen Form für die Kapillaritätsgleichung. Hier handelt es sich nämlich, wenn P die Punkte der Kurve, M die Mittelpunkte der Krümmungskreise und N die Schnitte der Normalen mit der Rotationsachse sind, um die Gleichung:

(210)
$$\frac{1}{P_2 M_2} = \frac{1}{P_1 M_1} + \frac{1}{P_1 N_1} - \frac{1}{P_1 N_2} + \beta (y_2 - y_1).$$

Boys stellt nun die Strecke PN durch ein Lineal dar, auf dem eine Skala für $\frac{1}{PN}$ angebracht ist. Dadurch wird die Bestimmung von P_2M_2 aus P_1N_1 sehr erleichtert. Der Drehpunkt wird durch einen kleinen Dreifuß festgelegt, dessen einer Fuß auf den betreffenden Punkt der Skala des Lineales, dessen beiden andere Füße auf das Papier gesetzt werden.

⁴³⁰⁾ Nach *Cranz*, Lehrbuch der Ballistik 1, p. 174, 75 soll diese Methode zur Konstruktion der Ballistischen Kurven schon von *Poncelet*, Leçons de mécanique industrielle II, Metz 1828/29, p. 55 und *Didion*, Traité de balistique Paris 1848, 1860, p. 196 angewandt worden sein.

⁴³¹⁾ Thomson, Popular lectures and adresses I, p. 1 ff.

⁴³²⁾ Lord Kelvin, Brit. Ass. Rep. Edinb. 62 (1892), p. 648—52. Philosophical Magazine (5) 34 (1892), p. 443—448.

⁴³³⁾ Wiechert u. Zöppritz, Über Erdbebenwellen I, § 20, Gött. Nachr. 1907.

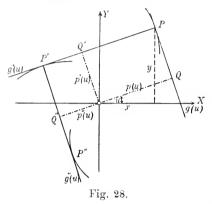
⁴³⁴⁾ Lanchester, Aerodonetics Chap. III, London 1908, deutsch von C. u. A. Runge, Leipzig 1911.

⁴³⁵⁾ C. V. Boys, Phil. Mag. V, 36 (1893), p. 75. Nature 48 (1893), p. 116.

Vereinfacht hat $Mei\beta ner^{436}$) diese Methode dadurch, daß er statt der Punktkoordinaten x, y Linienkoordinaten u, p einführt, die mit x, y durch die Gleichung

$$(211) x \cdot \cos u + y \cdot \sin u - p = 0$$

zusammenhängen. Man erhält so für jede Funktion p(u) unendlich viele Gerade, die eine Kurve C umhüllen, durch deren Verlauf p(u)



bestimmt ist. Da p'(u) der Nullpunktsabstand der Normalen im Berührungspunkte der Geraden p(u) mit der Kurve C ist, dasselbe für p''(u) hinsichtlich p'(u) und der entsprechenden Kurve C' gilt usw., so sieht man, daß der Krümmungsradius der Kurve C

(212)
$$\varrho(u) = p''(u) + p(u)$$

ist, daß also hier der Zusammenhang von o mit den Ableitungen wesentlich einfacher ist als bei ge-

wöhnlichen Punktkoordinaten. Für die Ausführung empfiehlt es sich, die Winkeländerungen immer gleich zu nehmen, falls nicht besondere Gründe eine Änderung nötig erscheinen lassen. Man zeichnet zunächst mit ϱ_0 einen Bogen mit der Winkelöffnung Δu , für den so gefundenen Punkt berechnet man ϱ_1^* und ersetzt den ersten Bogen durch einen solchen mit dem Radius $\frac{\varrho_0 + \varrho_1^*}{2}$, das wiederholt man, bis keine Änderung mehr eintritt. $Mei\betaner$ deutet an wie sich die Methode auf Differentialgleichungen höherer Ordnung übertragen läßt.

d) Zur graphischen Integration spezieller Differentialgleichungen gibt es natürlich noch besondere Methoden, die auf speziellen Eigenschaften der betreffenden Integralkurven beruhen. Insbesondere lassen sich alle die Eigenschaften von Kurven, die zur Konstruktion von Apparaten zum Zeichnen der Kurven gedient haben, auch zur graphischen Integration der zugehörigen Differentialgleichungen verwenden.⁴³⁷) Ferner sei auf die graphischen und numerischen Methoden der Ballistik hingewiesen.⁴³⁸)

⁴³⁶⁾ Meißner, Schweizer Bauzeitung 62 (1913), Nr. 15, 16.

⁴³⁷⁾ Z. B. Schimmack, Ein kinematisches Prinzip und seine Anwendung zu einem Katenographen, Zeitschr. Math. Phys. 52 (1905), p. 341—47; Schilling, Über neue kinematische Modelle, Zeitschr. Math. Phys. 44 (1899), 51 (1904) und 54 (1906); ferner Jahresber. d. Deutsch. Math.-Ver. XI (1902).

⁴³⁸⁾ Cranz, Lehrbuch der Ballistik 1, Leipzig 1910.

- 16. Eine Reihe mehr rechnerischer Methoden suchen in aufeinanderfolgenden Intervallen möglichst viele Glieder der in eine Taylorsche Reihe entwickelten Lösung darzustellen.
- a) Ältere Methoden. Die ältesten Versuche dieser Art, die allerdings den ganzen Verlauf der Kurve durch eine Reihe darstellen wollen, ohne sich weiter um deren Konvergenz zu kümmern, suchen, wie es z. B. Neuton⁴³⁹), Leibniz⁴⁴⁰), Kästner⁴⁴¹), Enler⁴⁴²) u. a. tun, die Lösung in einer Potenzreihe darzustellen, deren Konstanten man durch Einsetzen in die Gleichung und Nullsetzen der Koeffizienten der einzelnen Potenzen von x nacheinander bestimmt. Diese Methode ist von Lagrange⁴⁴³) auf die Entwicklung der Lösung in einen Kettenbruch übertragen worden. Ähnlich verfährt auch Kramp⁴⁴⁴), der vorschlägt, den ganzen Verlauf der Integralkurve durch eine Reihe

(213)
$$y = \varphi(x) = A + Bx + Cx^2 + Dx^3 + \dots + Rx^n$$

darzustellen und die Koeffizienten der Reihe dadurch zu bestimmen, daß man diesen Wert von y und die daraus gebildeten Werte y', y'', etc. in die gegebene Gleichung

(214)
$$F(x, y, y', y'', \dots y^{(n)}) = 0$$

einsetzt; man erhält so eine Gleichung zwischen den Größen x, A, B, ..., R. In diese setzt man der Reihe nach für passend gewählte ε statt x die Werte a, $a + \varepsilon$, $a + 2\varepsilon$, etc. ein. So kann man m - n + 1 Gleichungen zwischen den Koeffizienten A, B, C, ... erhalten, aus denen diese berechnet werden können, wenn man noch die n durch die Anfangswerte gegebenen Bedingungen hinzunimmt. Man erhält so eine angenäherte Lösung für die Umgebung des Punktes x = a, die den vorgeschriebenen Anfangsbedingungen genügt. Kramp zeigt die Genauigkeit seiner Methode an einer Reihe von Gleichungen erster

⁴³⁹⁾ Newton, Brief an Oldenburg vom 24. X. 1676 siehe: Gerhardt, Brief-wechsel vou G. W. Leibniz mit Mathematikern, Berlin 1899. Ferner Newton, Principia philosophiae naturalis Buch II, vgl. auch Poincaré, Wissenschaft und Methode, deutsch von F. u. L. Lindemann, Leipzig 1914, p. 264.

⁴⁴⁰⁾ Z. B. *Leibniz*, Acta eruditorum 1693, abgedruckt, Oswalds Klassiker Nr. 162, p. 19 ff.

⁴⁴¹⁾ Kästner, Anfangsgründe der Analysis des Unendlichen (1. Aufl. 1761) 2. Aufl., Göttingen 1770, p. 404—27. Kästner teilt § 465 mit. daß in Briefen aus dem Jahre 1733 und 36 von Nikolaus Bernoulli an Stirling und Cramer diese Methode angegeben werde.

⁴⁴²⁾ Euler, Institutionum calculi integralis Vol. 1, Teil 2, Kap. 7, § 655, Petersburg 1768 (3, Aufl. 1824); Vol. 2, Teil 1, Kap. 7 und 8 3, Aufl. 1827.

⁴⁴³⁾ Lagrange, Nouveaux mémoires de l'Acad. roy. à Berlin 1776, p. 236-64.

⁴⁴⁴⁾ Kramp, Annales de mathematique de Gergonne 10 (1819/20), p. 1-33.

Ordnung, die sich auch in geschlossener Form integrieren lassen. 445) Angewandt ist diese Methode sonst wohl kaum.

Etwas anders verfahren *Euler* ⁴⁴⁶), *Lacroix* ⁴⁴⁷) u. a., die die höheren Ableitungen in einem Punkte mittels der Gleichung durch die ev. als Anfangsbedingungen gegebenen niederen Ableitungen bestimmen und für die Lösung eine Taylorsche Reihe ansetzen.

b) Methode von Runge-Heun-Kutta. Die einfachste Methode, die wirklich in Intervalle teilt, ist die Cauchysche Differenzenmethode 448), die die Gleichung $\frac{dy}{dx} = f(x,y)$ einfach durch die Differenzengleichung $\Delta y = f(x,y) \Delta x$ ersetzt (vgl. II A 4a (P. Painlevé) Gewöhnliche Differentialgleichungen; Existenz der Lösungen, Nr. 3—8). Präzisiert und vereinfacht ist diese Methode, die ursprünglich zum Existenzbeweis dient, von Lipschitz 449); daß man sie zur Berechnung verwenden kann, zeigt z. B. Painlevé. 450) Ein durchgerechnetes Beispiel findet sich bei d'Adhémar 451); zur graphischen Konstruktion verwendete sie Froude 452), Picciati 453) u. a. Häufig findet man diese Methode in der Technik. 454) Sie ist dadurch wesentlich verbessert worden, daß man eine Reihe der im vorigen Abschnitt besprochenen Quadraturformeln auf die Differentialgleichungen übertragen hat. 455) Eine Reihe so gefundener Formeln geben Runge 456), Heun 457) und Kutta 458). Diese sind ursprünglich für

⁴⁴⁵⁾ Kramp, Annales de mathématique de Gergonne 10 (1819/20), p.317-41 und 361-79.

⁴⁴⁶⁾ Euler, Institutionum calculi integralis Vol. 1, Petersburg 1768 (3. Aufl. 1824) Abschnitt II, Kap. 7, § 656—67; Vol. 2 (3. Aufl. 1827) Kap. 12, p. 282—98.
447) Lacroix, Integralrechnung, p. 284—96.

⁴⁴⁸⁾ Cauchy, Leçons (herausgegeben von Moigno) 1844 als Vorlesung über die Integralrechnung übersetzt von Schnuse, Braunschweig 1876, insbesondere

Vorlesung 25—28, p. 279—323.

449) Lipschitz, Lehrbuch der Analysis II, Differential- und Integralrechnung,
Bonn 1880, p. 500 tf. s. a. Picard, Traité d'Analyse II, Paris 1905, p. 322 tf.

Bonn 1880, p. 500 ff., s. a. Picard, Traité d'Analyse II, Paris 1905, p. 322 ff. 450) Painlevé, Paris C. R. 128 (1899), p. 1505—8.

⁴⁵¹⁾ Montessus et d'Adhémar, Calcul numérique, Paris 1911, p. 218-20.

⁴⁵²⁾ Froude, Transactions of the Institution of Naval Architects 16 (1875), p. 57-70.

⁴⁵³⁾ Picciatti, Il Politechnico 41 (1893), p. 493-503, 537-545.

⁴⁵⁴⁾ Z. B. Keller, Berechnung gewölbter Platten. Zeitschrift des Vereins deutscher Ingenieure 1912, p. 1988 fl. (Forschungsarbeiten 124). Berechnung von Radscheiben, Schweizerische Bauzeitung 1909, p. 307; Die Turbine 1909, p. 88, Fankhauser, Die Festigkeit von kegel- und kugelförmigen Böden und Deckeln. Zeitschrift des Vereins deutscher Ingenieure 58 (1914), p. 840—44, 922—28.

⁴⁵⁵⁾ S. a. Durand, Annals of Mathematics 12 (1898), p. 110-117.

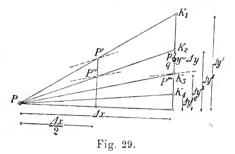
⁴⁵⁶⁾ Runge, Math. Ann. 46 (1895), p. 167-78. Diese Methode ist eine Erweiterung der Simpsonschen Regel.

die numerische Auswertung gedacht⁴⁵⁹), lassen sich aber auch sehr gut graphisch verwenden. Besonders brauchbar ist eine der von Kutta aufgestellten Formeln⁴⁶⁰). Ist y' = f(xy), so setzt man

(215)
$$\Delta' y = f(xy) \cdot \Delta x, \\ \Delta'' y = f(x + \frac{1}{2}\Delta x, y + \frac{1}{2}\Delta' y) \cdot \Delta x, \\ \Delta''' y = f(x + \frac{1}{2}\Delta x, y + \frac{1}{2}\Delta'' y) \cdot \Delta x, \\ \Delta^{(4)} y = f(x + \Delta x, y + \Delta''' y) \Delta x, \\ p = \frac{1}{2}(\Delta y' + \Delta^{(4)}y), \quad q = \frac{1}{2}(\Delta'' y + \Delta''' y), \\ \Delta y = q + \frac{1}{3}(p - q).$$

Die graphische Ausführung dieser Methode zeigt Fig. 29. Die graphische Methode ist besonders dann zu empfehlen, wenn man die Richtungen

in jedem beliebigen Punkte zeichnerisch leicht erhalten kann. Hat man so den Punkt $x + \Delta x$, $y + \Delta y$ konstruiert, so fährt man in gleicher Weise fort. Allgemeine Untersuchungen über Aufstellung derartiger Formeln hat neuerdings $Runge^{462}$) angestellt. Eine große Mannigfaltigkeit von



457) Heun, Zeitschr. Math. Phys. 45 (1900), p. 23—38 sucht die $Gau\beta$ schen Formeln zu verallgemeinern.

458) Kutta, Zeitschr. Math. Phys. 46 (1901), p. 435—52 und Dissertation, München 1901.

459) Vgl. auch W. F. Sheppard, A Method for Extending the Accuracy of certain Mathematical Tables. Proceedings of the London Mathematical Society XXXI (1899), p. 423-48.

460) Koch, Über die praktische Anwendung der Runge-Kuttaschen Methode zur numerischen Integration von Differentialgleichungen. Diss. Göttingen 1909.

461) Ein ähnlicher Gedanke findet sich in Nehls, Über graphische Integration § 10. Dort wird die Integration von

$$\frac{dy}{dx} = f(x) + \varphi(y) = y_1$$

so vorgenommen, daß

$$\Delta y = y_1 \Delta x + y_1' \frac{\Delta x^2}{2} = (f(x) + \varphi(y)) \Delta x + [f'(x) + \varphi'(y) (f(x) + \varphi(y))] \frac{\Delta x^2}{2}$$

$$(=) [f(x) + f(x + \Delta x) + 2\varphi(y)] \frac{\Delta x}{2} + [f(x) + \varphi(y)] \left\lceil \frac{\varphi(y + \delta) - \varphi(y)}{\delta} \right\rceil \frac{\Delta x^2}{2}$$

gesetzt und das letzte Glied vernachlässigt wird. Ähnlich wird die Gleichung

 $\frac{dy}{dx} = f(x) \cdot \varphi(y)$ behandelt. 462) Runge, Numerisches Rechnen. Autographiertes Vorlesungsheft, Göttingen 1912/13, p. 219—248. Formeln haben dieselbe Genauigkeit wie die obige; sie geben die Glieder der Taylorschen Reihe, vierter Ordnung einschließlich richtig wieder. Formeln nicht so wählen, daß sämtliche Glieder fünfter Ordnung richtig dargestellt werden. Es läßt sich dies nur für einzelne erreichen z. B. für die von $\frac{\partial f}{\partial y}$ freien Glieder fünfter und sechster Ordnung. Die Formeln, die man so erhält, sind dann von Vorteil, wenn f(x, y) sich mit y nur wenig ändert. An einem allgemeinen großen Gesichtspunkt fehlt es bier aber. Das Gesetz, nach dem sich der Fehler fortpflanzt, hat Runge aufgestellt. Formeln, die man so erhält,

Kutta⁴⁶⁵) hat später gezeigt, daß der Ansatz sich auch auf Systeme von simultanen Differentialgleichungen erster Ordnung ausdehnen läßt und damit auch auf gewöhnliche Differentialgleichungen beliebiger Ordnung, die sich stets in ein System simultaner Gleichungen erster Ordnung verwandeln lassen. Graphisch hat man dann die obige Zeichnung gleichzeitig in ebensoviel Ebenen durchzuführen, als Gleichungen vorhanden sind.

Verwandt sind diese Methoden z. B. von Boltze⁴⁶⁶) bei der Berechnung der Grenzschichten an Rotationskörpern in Flüssigkeiten mit kleiner Reibung, von Koch⁴⁶⁰) auf Kapillaritätskurven und auf einen Fall des Dreikörperproblems, von Hackett⁴⁶⁷) auf das Problem dreier Punkte, die einander mit konstanter Geschwindigkeit verfolgen (Formel von Runge), von Hort^{467a}) auf die Untersuchung des Bewegungsverlaufes in Einzylindermaschinen (ebenfalls Formel von Runge) von Huber und Fuchs⁴⁶⁸) zur Berechnung der Hauptspannungstrajektorien bei der Deformation zweier aufeinander gepreßter Kreiszylinder (eine der Heunschen Formeln).

c) Methoden der Differenzenrechnung. Möglichst gut in Intervallen die Reihenentwicklung der Lösung anzunähern, versuchen auch die auf den Formeln von § 10 beruhenden, vielfach in der Himmelsmechanik angewandten Methoden. Es kommt bei diesen vor allem darauf an,

⁴⁶³⁾ Kutta gibt in der 458) zitierten Arbeit Absatz V genauer an, wie sich die Abweichungen auf die einzelnen Glieder von der fünften Ordnung verteilen. Nicht die obige Formel, sondern eine Formel, die die Werte für $\frac{\Delta x}{2}$, $\frac{\Delta x}{3}$ und

 $[\]frac{2\Delta x}{2}$ benutzt, gibt die bessere Annäherung.

⁴⁶⁴⁾ Runge, Göttinger Nachrichten 1905, p. 252-57.

⁴⁶⁵⁾ Emden, Gaskugeln, Leipzig 1907, p. 92.

⁴⁶⁶⁾ Boltze, Dissertation, Göttingen 1908.

⁴⁶⁷⁾ Hackett, John Hopkins Univ. Circ. 208 (1908) Nr. 7, p. 135-37.

⁴⁶⁷ a) Hort, Die Differentialgleichungen des Ingenieurs, Berlin 1914, p. 135-63.

⁴⁶⁸⁾ Huber and Fuchs, Physikalische Zeitschrift 15 (1914), p. 298-303.

den Anfang des Schemas festzulegen. Dazu lößt man die Differentialgleichung nach der höchsten vorkommenden Ableitung, etwa der n^{ton} ,
auf und berechnet mit den gegebenen Anfangswerten für dieselbe
einen angenäherten Wert. Diesen benutzt man zur vorläufigen Herstellung eines Differenzenschemas, aus dem man nun nach den in Nr. 10
gegebenen Formeln verbesserte Werte der abhängigen Variablen ausrechnet. Diese führt man in die entsprechend umgeformte Differentialgleichung ein und findet einen neuen Wert für die n^{te} Ableitung, den
man wiederum zur Herstellung eines Differenzenschemas benutzt. Dies
setzt man so lange fort, bis keine Änderung mehr eintritt. Beim nächsten
Integralwert verfährt man genau so und geht so Schritt für Schritt
weiter. Die besondere Form der Gleichung erleichtert dabei oft die
Rechnung wesentlich. Beispiele zu dieser Methode finden sich in den
in Nr. 10 angeführten Lehrbüchern.

17. Asymptotische Integration. Sehr brauchbar für die angenäherte Berechnung eines Integrales können unter Umständen die Methoden der asymptotischen Integration sein. Hängen in einer linearen Differentialgleichung die Koeffizienten der verschiedenen Ableitungen außer von der unabhängigen Variablen x noch von einem Parameter b ab, so besteht das Problem der asymptotischen Integration darin, Funktionen von x und b zu suchen, die, wenn |b| groß gegenüber dem a wird, die gesuchten Integrale immer besser annähern. Der einfachste Fall

$$y'' + (b + a(x))y = 0$$

findet sich schon bei *Liouville*⁴⁶⁹) behandelt. Allgemein haben *Horn*⁴⁷⁰), *Schlesinger*⁴⁷¹), *Birkhoff*⁴⁷²) und *Love*⁴⁷³) diesen Fall behandelt, während *Blumenthal* die Methode nach der Seite der praktischen Anwendbarkeit ausgestaltet hat.⁴⁷⁴) Er betrachtet z. B. eine Gleichung

$$y^{(n)} + a_1 y^{(n-1)} + \cdots + (a_n(x) + b^n) y = 0,$$

integriert statt dessen $y^{(n)} + b^n y = 0$ und schätzt den Fehler, der von der Größenordnung $\left| \frac{e^{\lambda x}}{b} \right|$ ist, wo λ eine Wurzel von $\lambda^n + b = 0$ ist, nach einem auf *Liouville* zurückgehenden Verfahren ab. Für gewisse Punkte, in denen oft gerade durch Bedingungen das gesuchte Integral fest-

⁴⁶⁹⁾ Liouville, J. de math. 2 (1837).

⁴⁷⁰⁾ Horn, Ann. Math. 52 (1899), p. 271-92, 340-62.

⁴⁷¹⁾ Schlesinger, Ann. Math. 63 (1907), p. 277-300.

⁴⁷²⁾ Birkhoff, Transactions of the american mathematical society 9 (1908), p. 219-31.

⁴⁷³⁾ Love, Amer. Journ. of math. 36 (1914), p. 151-60 (Literaturangaben).

⁴⁷⁴⁾ Blumenthal, Arch Math. Phys. (3) 19 (1912), p. 136-47.

gelegt ist, gilt bisweilen die gefundene Darstellung nicht. Wie man sich da auf verschiedene Art helfen kann, führt *Blumenthal* in verschiedenen Arbeiten aus, in denen er seine Methode auf asymptotische Darstellung der Kugelfunktionen⁴⁷⁴), Berechnung der Spannung in einer Kugelschale⁴⁷⁵) und auf das Turbulenzproblem anwendet.⁴⁷⁶)

18. Methode der sukzessiven Approximation (vgl. II A 4a (P. $Painlev\acute{e}$) Gewöhnliche Diffentialgleichungen; Existenz der Lösungen, Nr. 9 u. 10). a) Graphische Methode. Ausgehend von der Methode der sukzessiven Approximation, die $Picard^{477}$) und $Lindel\"{o}ff^{478}$) zum Beweise der Existenz der Lösungen einer gewöhnlichen Differentialgleichung benutzen, hat $Runge^{479}$) eine Methode angegeben, bei Differentialgleichungen erster Ordnung auf graphischem Wege aus einer Näherungskurve, die etwa nach einer der obigen Methoden gefunden sein kann, durch sukzessive Verbesserung die Lösung mit der graphisch erreichbaren Genauigkeit zu finden. Ist y die Lösung der Differentialgleichung $\frac{dy}{dx} = f(x,y), \ y_z$ die z^{te} Näherung, ε_z der Fehler derselben, und gehen alle Näherungen durch den Punkt x_0, y_0 , so wird y_z so bestimmt, daß

(216)
$$\frac{dy_z}{dx} = f(x, y_{z-1})$$
 ist, also

$$(217) \hspace{1cm} y-y_{z}=\int\limits_{x_{0}}^{x_{1}}\frac{f(x,y)-f(x,y_{z-1})}{y-y_{z-1}}(y-y_{z-1})dx$$

$$\leq D(x_{1}-x_{0})\frac{\int\limits_{x_{1}-x_{0}}^{\varepsilon_{z-1}}dx}{x_{1}-x_{0}}=D(x_{1}-x_{0})\cdot \text{Mittelwert }\varepsilon_{z-1},$$

wo $D = \max \frac{f(x,y) - f(x,y_{\varkappa-1})}{y - y_{\varkappa-1}}$ in dem betrachteten Teile der xy-Ebene ist. Dabei ist D kleiner, höchstens gleich dem größten Werte von $\frac{df}{dv}$.

Damit dieser Ausdruck nicht zu groß werde, kann man bei jeder Integration das Koordinatensystem entsprechend legen. 480) Die Ausführung

⁴⁷⁵⁾ Blumenthal, Zeitschr. Math. Phys. 62 (1913-14), p. 343-58.

⁴⁷⁶⁾ Blumenthal. Sitzungsberichte der math.-phys. Klasse der kgl. bayrischen Akademie der Wissenschaften 1913, p. 563--95.

⁴⁷⁷⁾ Picard, J. de math. 1890 usw. vgl. Picard, Traité d'Analyse 2. Aufl. Paris 1905, Kap. XI, III.

⁴⁷⁸⁾ Lindelöff, J. de math. (4) 10 (1894), p. 117-28.

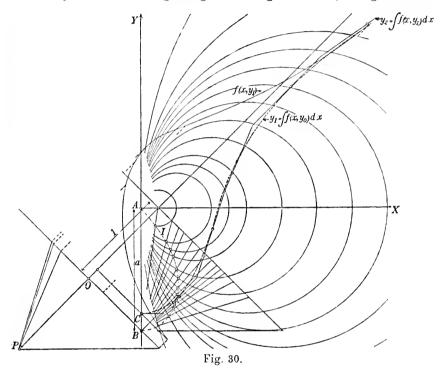
⁴⁷⁹⁾ Runge, Jahresber. d. Deutsch. Math.-Ver. 16 (1907), p 270-72.

⁴⁸⁰⁾ v. Sanden, Praktische Analysis, Leipzig 1914, p. 156; Archiv für Elektrotechnik 2 (1914), Heft 7, p. 288-98.

im einzelnen zeigt Fig. $30.^{481}$) Wenn die Maßstäbe für x und y einander gleich genommen sind, so bilden die Isoklinen

$$(218) f(x, y) = Const.$$

und die jeder Isokline zugehörige Richtung die Daten, die ganz unab-



hängig davon sind, wie die Koordinatenachsen gewählt werden. Das Verfahren konvergiert, wenn $D(x_1-x_0)<1$ ist. Dann ist

$$|\varepsilon_{\mathbf{z}}| \leq (D(x_1 - x_0))^{\mathbf{z} - 1} \max |\varepsilon_1|.$$

Falls zwei aufeinanderfolgende Näherungskurven nicht merklich voneinander abweichen, ist die Lösung mit der Genauigkeit der Zeichnung gefunden. Ist $\frac{dy_z}{dx} = f(x, y_z) + F_z$, so gilt als Fehlerfortpflanzungsgesetz

(220)
$$|\varepsilon_{\varkappa}| \leq \max |F_{k}| e^{D(x-x_{0})} |x-x_{0}|.$$

Auch diese Methode läßt sich auf Systeme von simultanen linearen Differentialgleichungen und Differentialgleichungen beliebig hoher Ord-

⁴⁸¹⁾ Die Fig. 30 zeigt zwei aufeinanderfolgende Näherungskurven der Gleichung $\frac{dy}{dx} = \frac{2ax}{x^2 + y^2}$.

154 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

nung übertragen. Haben wir z. B. die drei Gleichungen

(221)
$$\frac{dx}{dt} = f(x, y, z, t),$$

$$\frac{dy}{dt} = g(x, y, z, t),$$

$$\frac{dz}{dt} = h(x, y, z, t),$$

so benutzt man die drei Ebenen xt, yt und zt, die man sich auch mit gemeinsamer t-Achse übereinander gelegt denken kann. Man zeichnet nun von ersten Approximationen $x_1(t)$, $y_1(t)$ und $z_1(t)$ ausgehend, in den drei Ebenen die Kurven mit den Ordinaten

$$f(x_1(t), y_1(t), z_1(t), t)$$
 usw.

integriert sie graphisch und findet die zweiten Approximationen

$$x_2(t), y_2(t) \text{ und } z_2(t),$$

mit denen man neue Kurven f, g und h zeichnet usw. Die Funktionen f, g, h können dabei in mannigfacher Weise auch graphisch z. B. durch Nomogramme⁴⁸²) gegeben sein.

b) Numerische Methoden. Auch rechnerisch wird die Methode zur Aufsuchung einer Funktionenreihe verwandt, die das Integral approximiert, so z. B. von $Davidoglou^{483}$) zur Berechnung des Integrales von $\frac{d^4y}{dx^4} = \varphi(x) \cdot y$. Systematisch aber hat Cotton diese Methode entwickelt, ausgehend von einer Reihe von Arbeiten von Severini über die angenäherte Integration von Differentialgleichungen erster Ordnung 484), wie über Systeme von solchen Gleichungen mit willkürlichem Parameter 485). Er geht davon aus, daß ein ähnliches System von Gleichungen eine der gesuchten Lösung C_x benachbarte Lösung C_y gibt 486), die man anstatt der von Picard-Lindelöff benutzten Konstanten als Ausgangsfunktion benutzt. Wie man solche angenäherten Lösungen für bestimmte lineare Differentialgleichungen zweiter Ordnung finden kann, zeigt z. B. de $Sparre^{487}$). Um eine solche Lösung C_x kann man ein

⁴⁸²⁾ Betreffs der Methoden der Nomographie sei verwiesen auf die beiden Werke: d'Ocagne, Traité de Nomographie, Paris 1899 und d'Ocagne, Calcul graphique et Nomographie, Paris 1908 und die dort angegebene Literatur.

⁴⁸³⁾ Davidoglou, Paris C. R. 130 (1900), p. 692-695, 1241-1243.

⁴⁸⁴⁾ Severini, Rendiconti del Reale Istituto Lombardo (2) 31 (1898), p. 950 ff. und (2) 32 (1899), p. 1427-37.

⁴⁸⁵⁾ Severini, Rendiconti del Reale Istituto Lombardo (2) 33 (1900), p. 825 -839.

⁴⁸⁶⁾ Cotton, Acta mathematica 31 (1908), p. 107-126.

⁴⁸⁷⁾ de Sparre, Rend. d. R. Accad. dei Lincei (5) 7, 2 (1898), p. 111—117 und Brux. Soc. sc. 23 B (1899), p. 176—187.

Gebiet G konstruieren, das die exakte Integralkurve sicher enthält. Die Dimensionen δ von G sind Funktionen der unabhängigen Variablen t; und man findet die Dominanten Δ zu diesen Dimensionen δ durch Integration eines Systems linearer Differentialgleichungen

$$\frac{d\Delta_1}{dt} = a_{i1}\Delta_1 + a_{i2}\Delta_2 + \dots + a_{in}\Delta_n + b_i,$$

deren Koeffizienten dominant zu denjenigen sind, die sich aus dem gegebenen Gleichungssystem mittels der Lipschitzschen Bedingungen konstruieren lassen, und wo b_i dominant zum Fehler der angenäherten Lösung des benachbarten Gleichungsystemes

$$b_{\iota}' = \frac{d y_{\iota}}{d t} - f_{\iota}(t, y_1, y_2, \dots, y_n)$$

ist, also Null wird, wenn dasselbe sich exakt lösen läßt. 488) Man kann bei dieser Art der Abschätzung den verschiedenen Vorzeichen der Koeffizienten nicht Rechnung tragen und erhält daher ein meist zu großes Gebiet.

Wesentlich besser wird die Gebietsabschätzung, wenn man die von Cauchy angegebene Methode benutzt, von einem vollständig gegebenen Lösungssystem der homogenen Differentialgleichung zu dem der inhomogenen überzugehen. Sind die x_i die gesuchten Lösungen des Systems

$$(222) \frac{dx_{i}}{dt} - (A_{i,1}x_{1} + A_{i,2}x_{2} + \cdots + A_{i,n}x) = h_{i}(t, x_{1}, x_{2}, \dots, x_{n}),$$

wo die $A_{\iota \varkappa}$ so bestimmt sind, daß sie gleich oder nahe gleich $\frac{df_{\iota}}{dx_{\varkappa}}$ nach der Substitution der angenäherten Lösung y_{ι} sind, und ist $g_{\iota}(t)$ definiert durch

(223)
$$\frac{dy_{i}}{dt} - (A_{i,1}y_{1} + A_{i,2}y_{2} + \dots + A_{i,n}y_{n}) = g_{i}(t),$$

so gilt für den Fehler die Gleichung

$$(224)\frac{d\,\delta_{\iota}}{d\,t}-(A_{\iota,1}\delta_1+A_{\iota,2}\delta_2+\cdots+A_{\iota,n}\delta_n)=h_{\iota}(t,x_1,x_2\ldots x_n)-g_{\iota}(t)=B_{\iota}(t).$$

Sind ferner $\varphi_{\varkappa,1}(t,\alpha)\ldots \varphi_{\varkappa,n}(t,\alpha)$ n Systeme von Lösungen der homogenen Gleichung, so daß $\varphi_{\varkappa,\varkappa}(\alpha,\alpha)=1$, $\varphi_{k,\iota}(\alpha,\alpha)=0$ ist, und sind die $\Phi_{\varkappa\iota}$ den $\varphi_{\varkappa\iota}$, die β_ι den B_ι dominant, so erhält man eine wesentlich engere obere Fehlergrenze, wenn man

$$(225) \Delta_{\varkappa} t = \int_{t_0}^{t} [\beta_1(\alpha) \Phi_{\varkappa,1}(t,\alpha) + \beta_2(\alpha) \Phi_{\varkappa,2}(t,\alpha) + \dots + \beta_n(\alpha) \Phi_{\varkappa,n}(t,\alpha)] d\alpha$$
 setzt. ⁴⁹⁰)

⁴⁸⁸⁾ Cotton, Paris C. R. 140 (1905), p. 494-496.

⁴⁸⁹⁾ Cotton, Paris C. R. 141 (1905), p. 177-179.

⁴⁹⁰⁾ Cotton, Paris C. R. 146 (1909), p. 274-276.

Besser⁴⁹¹) noch wendet man sukzessive Approximation an, um aus einer angenäherten Integralkurve C_y eine neue C_y zu finden, nebst einem engeren Gebiet G_2 , das auch die exakte Integralkurve enthalten muß. Dazu wertet man jeden Faktor unter dem Integrale

(226)
$$\delta_{z}(t) = \int_{t_{0}}^{t} \left[B_{1}(\alpha) \varphi_{z,1}(t,\alpha) + \dots + B_{n}(\alpha) \varphi_{z,n}(t,\alpha) \right] d\alpha$$

aus. Allerdings ist B_i nicht genau bekannnt, aber leicht zu schätzen, wenn man roh G kennt. Setzt man B_i' für B_i ein, und ist

$$(227) \quad B_{\iota} - B_{\iota}' = h_{\iota}(t, x_{1}, x_{2} \dots x_{n}) - h_{\iota}(t, y_{1}^{\mathbf{I}}, y_{1}^{\mathbf{I}} \dots y_{n}^{\mathbf{I}})$$

$$= \Xi_{\iota}(t) < \tau_{\iota, 1} \Delta_{1}^{\mathbf{I}} + \tau_{\iota, 2} \Delta_{2}^{\mathbf{I}} + \dots + \tau_{\iota, n} \Delta_{n}^{\mathbf{I}}$$

wo $\tau_{\iota,\varkappa}=\frac{\partial h_{\iota}}{\partial x_{\varkappa}}$ ist, so wird die Korrektion für die Werte y_{\varkappa}^{1}

(228)
$$\delta_{\mathbf{x}}^{\mathbf{I}} = \int_{t_0}^{t} [B_{\mathbf{I}}'(\alpha)\varphi_{\mathbf{x},\mathbf{I}}(t,\alpha) + \cdots + B_{\mathbf{n}}'(\alpha)\varphi_{\mathbf{x},\mathbf{n}}(t,\alpha)]d\alpha,$$

und zur Berechnung der Grenze G2 hat man

$$(229) \mid \delta_{\varkappa} - \delta_{\varkappa}^{\mathsf{I}} \mid < \int_{t_{n}}^{t} \left[\Xi_{\mathsf{I}}(\alpha) \Phi_{\varkappa,\mathsf{I}}(t,\alpha) + \dots + \Xi_{\mathsf{I}}(\alpha) \Phi_{\varkappa,\mathsf{I}}(t,\alpha) \right] d\alpha = \Delta_{\varkappa}^{\mathsf{II}}(t).$$

So kann man fortfahren und weitere Korrektionen an dem Näherungswert anbringen. Die so gefundenen Reihen konvergieren in einem bestimmten Gebiet. (1911) Cotton zeigt die praktische Durchführung einer solchen Integration an der Gleichung des sphärischen Pendels; nur der letzte Fall gibt hier eine ausreichende Genauigkeit. (1922)

Ähnlich verfährt $B\ddot{a}rwald^{493}$); er bringt die Gleichung auf die Form

$$(230) y^{(n)} + Ay^{(n-1)} + \dots + Ay = F(y^{(n-1)}, y^{(n-2)} \dots y, x),$$

wo die A Konstante oder Funktionen von x sind, und integriert zunächst die homogene Gleichung, indem er F=0 setzt. Diesen Lösungswert y_0 setzt er in F ein, erhält so eine Funktion von x auf der rechten Seite. Die nicht homogene Gleichung integriert er nach der Lagrangeschen Methode⁴⁹⁴) der Variation der Konstanten und verfährt mit dem Lösungswert y_1 genau wie mit y_0 . Ausführlich untersucht

⁴⁹¹⁾ Cotton, Bulletin de la société math. de France 36 (1908), p. 225-246.

⁴⁹²⁾ Cotton, Ann. de Grenoble 21 (1909), p. 99-115.

⁴⁹³⁾ $B\ddot{a}rwald$, Arkiv för Matematik, Astronomi och Fysik 9 (1913), Nr. 20 (15 S.).

⁴⁹⁴⁾ Lagrange, Nouv. Mem. de l'Acad. de Berlin 1783 (Ges. Abh. V. p. 492 —514).

er Genauigkeit und Fehler. Derartige Methoden werden in der Physik z. B. gelegentlich verwandt. 495)

Die Methode der sukzessiven Approximation wurde von Sibarini⁴⁹⁶) u. a. auf partielle Differentialgleichungen von parabolisch-hyperbolischem Typ und von Picard⁴⁹⁷) und Lalesco⁴⁹⁸) auch auf Integralgleichungen übertragen. Sicher wird sich auch anschließend an diese Untersuchungen eine Methode entwickeln lassen, die nicht nur die Existenz der Lösungen in einem gewissen Bereich nachzuweisen gestattet, sondern auch erlaubt, dieselben numerisch oder graphisch anzunähern.^{498a})

- c) Methoden der Himmelsmechanik. Die ältesten, mit großer Mühe und viel Scharfsinn ausgebildeten Methoden zur angenäherten Integration gewöhnlicher Differentialgleichungen sind von der theoretischen Astronomie zur Behandlung des Störungsproblems entwickelt. Hier können wir nur kurz darauf hinweisen. Ausführlicheres findet sich im sechsten Band der Enzyklopädie. Ferner ist die Literatur für die Zeit von 1868—98 von Whittacker⁴⁹⁹) zusammengestellt, und die Hauptmethoden sind von Poincare⁵⁰⁰) auf ihre Konvergenz untersucht worden, der sie zur Behandlung des folgenden, das n Körperproblem enthaltenden sog. allgemeinen Problems der Dynamik verwendet: Ein mechanisches System hänge von einem Parameter μ ab und sei auf die kanonischen Veränderlichen $x_1, x_2, ..., x_n$ und $y_1, y_2, ..., y_n$ bezogen. Die Energie F enthalte die Zeit nicht explizit und habe als Funktion von μ , x_i , y_i folgende drei Eigenschaften.
- 1) F sei an der Stelle $\mu = 0$ nach ganzen positiven Potenzen von μ entwickelbar, $F = F_0 + \mu F_1 + \mu^2 F_2 \dots$,
 - 2) F habe in bezug auf $x_1, x_2, ..., x_n$ die Periode 2π ,
 - 3) F_0 hänge nicht von x_1, x_2, \ldots, x_n ab.

Es sind die kanonischen Bewegungsgleichungen der Mechanik zu behandeln

(231)
$$\frac{d x_{\iota}}{d t} = \frac{\partial F}{\partial y_{\iota}} = Y_{\iota}(x_{\iota}, \mu), \quad \frac{d y_{\iota}}{d t} = -\frac{\partial F}{\partial x_{\iota}}.$$

⁴⁹⁵⁾ Z. B. Routh, Dynamik der Systeme starrer Körper (deutsch von Schepp) 2, Leipzig 1898, p. 258—66; Plank, Debye usw., Vorträge über die kinetische Theorie der Materie und der Elektrizität, Leipzig 1914, p. 22.

⁴⁹⁶⁾ Sibarini, Lombardo Rend. del R. Istituto (2) 42 (1909), p. 375-390.

⁴⁹⁷⁾ Picard, Paris C. R. 139 (1904), p. 245-48.

⁴⁹⁸⁾ Lalesco, Journ. de math. (6) 4 (1908), p. 125-202.

^{498°)} Vgl. z. B. *Trefftz*, Über die Kontraktion kreisförmiger Flüssigkeitsstrahlen. Dissertation Straßburg 1914.

⁴⁹⁹⁾ Whittaker, Report of the British Association 1899, p. 121-159.

⁵⁰⁰⁾ *Poincaré*, Les méthodes nouvelles de la mécanique céleste 1-3, Paris 1892-1898.

Alle diese Methoden versuchen die exakte Lösung $\varphi_{\iota}(t,\mu)$ bis auf Glieder p^{ter} Ordnung durch eine Funktion $\varphi_{\iota}^{(p)}(t,\mu)$ zu approximieren, die für t=0 mit $\varphi_{\iota}(t,\mu)$ zusammenfällt, und die bis auf Glieder von mehr als p^{ter} Ordnung der Bewegungsgleichung genügt; d. h. an der Stelle $\mu=0$ ist $\frac{\partial \varphi_{\iota}^{(p)}}{\partial t}-Y_{\iota}(\varphi_{z}^{(p)},\mu)$ nach Potenzen von $\mu^{\frac{1}{n}}(n\geq 0)$ entwickelbar und durch $\mu^{p+\frac{1}{n}}$ teilbar.

Von älteren Methoden, die noch heute meist benutzt werden, seien die von *Lagrange*⁵⁰¹), *Laplace*⁵⁰²), *Poisson*⁵⁰³) usw. entwickelten erwähnt, die den Ansatz

(232)
$$\varphi^{(p)} = \varphi_0(t) + \mu \varphi_1(t) + \dots + \mu^p \varphi_p(t)$$

machen. Während diese älteren Methoden den Nachteil haben, daß in ihnen die sog. Säkularglieder, d. h. Glieder, in denen t außerhalb der periodischen Funktionen steht, auftreten, ist es der Vorzug der neueren, daß diese Glieder fehlen. Die ersten wichtigeren Arbeiten in dieser Richtung stammen von Delaunay 504), $Hill^{505}$), $Newcomb^{506}$) u. a. Die umfassendste Methode ist von Gylden angegeben, der die durch verschiedene Umformungen erhaltenen Gleichungen schließlich auch durch sukzessive Approximation löst. 507) Einfacher ist die Methode von $Lindstedt^{508}$), der den Ansatz macht

(233)
$$\varphi^{(p)} = \varphi_0(t) + \mu \varphi_{p,1}(\mu,t) + \mu^2 \varphi_{p,2}(\mu,t) + \dots + \mu^p \varphi_{pp}(\mu,t).$$

Diese Reihe, die sich auf die von *Lagrange* zurückführen läßt, ist im allgemeinen anwendbar. Um die bei nahezu kommensurablen Umläufen auftretenden kleinen Nenner zu vermeiden, macht *Bohlin* ⁵⁰⁹) den Ansatz

(234)
$$\varphi^{(p)} = \varphi_0(t) + \mu^{\frac{1}{2}} \varphi_{p,1}(t, \mu^{\frac{1}{2}}) + \dots + \mu^p \varphi_{p, 2p}(t, \mu^{\frac{1}{2}}),$$

⁵⁰¹⁾ Lagrange, Prix de l'Académie Royale des sciences de Paris 1766/72, Werke, Band 6 Z.B., p. 227-381.

⁵⁰²⁾ Laplace, Mécanique céleste 1, Paris 1796.

⁵⁰³⁾ Poisson, Mém. de l'Acad. de Paris 13 (1835), p. 209-335.

⁵⁰⁴⁾ Delaunay, Théorie du mouvement de la Lune, Paris 1860/67.

⁵⁰⁵⁾ Hill, Am. Journ. of Math. 1 (1878), p. 5-27, 129-48, 245-51; Acta Math. 8 (1886), p. 1-36 usw.

⁵⁰⁶⁾ Newcomb, Smithsonian contribution to Knowledge 1874.

^{507,} Gylden, Zahlreiche Arbeiten, insbesondere kämen hier in Betracht: Acta mathematica 1, 9, 15, 17 usw.

⁵⁰⁸⁾ Lindstedt, Mém de l'Acad. de St. Pétersbourg 31 (1882), Nr. 4.

⁵⁰⁹⁾ Bohlin, Bihang till K. Svenska Vet.-Akad. Handlingar 14 (1888), Nr. 5. Nova acta regiae societatis scientiarum Upsaliensis (3) 17, 2 (1898), Nr. 2, p. 1—225. Astronomika Jaktagelser och undersökningar Stokholm 1908/12; Arch. Mat. Astr. och Fysik (8) 35 (1913) (28 Seiten).

wo aber wiederum bei gewissen Gliedern die Konvergenz gefährdende große Faktoren vorkommen.

Diese Methoden liefern meist semikonvergente Reihen. Daß man mit derartigen Reihen rechnen kann, hat *Poincaré* gezeigt 510); er findet, daß für $0 \le t \le \tau(\mu)$, wo $\lim_{n \to 0} \tau(\mu) = a$ ist, für den Fehler

(235)
$$\xi_{\iota} = \varphi_{\iota}(\mu, t) - \varphi_{\iota}^{(p)}(\mu, t)$$
 die Ungleichung
$$|\xi_{\iota}| < a(e^{\iota \cdot (u)t} - 1)\mu^{p + \frac{1}{n}}$$

gilt, wo a > 0 und $\lim b(\mu) > 0$ ist, und daß

(237)
$$\lim_{\mu \to 0} \frac{\varphi_{\ell}(t, \mu) - \varphi_{\ell}^{(p)}(t, \mu)}{\mu^{p}} = 0$$

ist. Allgemein wird der Fehler mit μ kleiner, doch wird nicht immer für unendlich wachsende p auch bei kleinem μ der Fehler Null. Obige Methoden lassen sich natürlich auch auf andere Probleme wie die der Störungstheorie anwenden. Unter anderen hat das Horn an der Theorie der kleinen, aber endlichen Schwingungen von Systemen mit einem Freiheitsgrad allgemein auseinandergesetzt. Ein ähnliches Verfahren hat Korteweg zur Behandlung der Lichtemission benutzt. Behrens hat ein Problem aus der Turbinentheorie, $Burkhardt^{512}$) das Problem der Schwingungen unter Einfluß einer dem Quadrat der Geschwindigkeit proportionalen Dämpfung nach diesen Methoden behandelt.

III. Graphische und numerische Integration partieller Differentialgleichungen.

19. Bei partiellen Differentialgleichungen mit reeller Charakteristik (vgl. II A 5 (E. v. Weber) Partielle Differentialgleichungen, Nr. 43—48) ist die Methode der Integration durch aufeinanderfolgende Elemente nur anwendbar, wenn die Anfangskurven analytisch sind, was in den Fällen, die für die Praxis von Bedeutung sind, oft nicht der Fall ist. Unstetigkeiten der Anfangskurve und ihrer Ableitungen pflanzen sich aber nach Monge, Ampère, Cauchy, Darboux, Lie⁵¹⁵)

⁵¹⁰⁾ Z. B. Poincaré, Acta mathem. 8 (1886), p. 295-344.

⁵¹¹⁾ Horn, Zeitschr. Math. Phys. 47 (1902), p. 400-428; 48 (1903), p. 400-434; 49 (1903), p. 246-69.

⁵¹²⁾ Korteweg, Amsterd. Verhandel. 5 (1897) (32 Seiten); franz. arch. néerl. (2) 1 (1898), p. 229—60.

⁵¹³⁾ Behrens, Zeitschr. Math. Phys. 59 (1911), p. 337-390.

⁵¹⁴⁾ Burkhardt, Zeitschr. Math. Phys. 63 (1914), p. 303-11.

⁵¹⁵⁾ Monge: Application de l'Analyse à la Géométrie, 5. Aufl. Paris 1850 Encyklop. d. math. Wissensch. II 3.

und andern längs der Charakteristiken entsprechender Ordnung fort. Massau⁵¹⁶) hat eine Methode ausgearbeitet, durch approximative Integration die Charakteristiken zu finden und so das reguläre Integral anzunähern durch ein Polyeder, dessen Kanten Charakteristiken, dessen Facetten reguläre Integrale sind. Die Methode läßt sich auf alle Gleichungen und Gleichungssysteme mit zwei unabhängigen Variablen beliebiger Ordnung mit reeller Charakteristik anwenden, nur wächst die Zahl der von einem Punkt ausgehenden Charakteristiken mit der Ordnung der Gleichung und der Zahl der abhängigen Unbekannten. Im einzelnen ist folgendes zu bemerken.

a) Die lineare Differentialgleichung

$$F \equiv Ap + Bq - C = 0 \left(p = \frac{\partial z}{\partial x}, \ q = \frac{\hat{c}z}{\partial y} \right)$$

hat eine Charakteristik nullter Ordnung

$$\frac{dx}{A} = \frac{dy}{B} = \frac{dz}{C},$$

die Charakteristik erster Ordnung ist bestimmt durch

(239)
$$\frac{dx}{A} = \frac{dy}{B} = \frac{dz}{C} = -\frac{dp}{\frac{\partial F}{\partial x} + \frac{\partial F}{\partial z}p} = -\frac{dq}{\frac{\partial F}{\partial y} + \frac{\partial F}{\partial z}q}$$

usw. Die Änderungen der Variablen lassen sich schrittweise längs der Charakteristiken bestimmen. Sind A, B und C nicht rationale Funktionen, so treten Besonderheiten auf, z. B. Gebiete mit doppelter Überdeckung und solche mit imaginärer Charakteristik.

Für die allgemeine Gleichung erster Ordnung F(x, y, z, p, q) gibt es eine Charakteristik nullter Ordnung nur dann, wenn sie in lineare Faktoren zerlegt werden kann. Die erster Ordnung bestimmt sich durch

$$(240) \quad \frac{\frac{d\,x}{\partial\,F}}{\frac{\partial\,F}{\partial\,p}} = \frac{d\,y}{\frac{\partial\,F}{\partial\,q}} = \frac{d\,z}{\frac{\partial\,F}{\partial\,p}} + \frac{\partial\,F}{\partial\,q}\,q = -\frac{d\,p}{\frac{\partial\,F}{\partial\,x} + \frac{\partial\,F}{\partial\,z}\,p} = -\frac{d\,q}{\frac{\partial\,F}{\partial\,y} + \frac{\partial\,F}{\partial\,z}\,q} \cdot$$

Das ist ein System gewöhnlicher simultaner linearer Differentialgleichungen, aus dem sich zu gegebenen Anfangswerten x_0, y_0, z_0, p_0 , die y, z, p, q als Funktionen von x nach einer der oben gegebenen

von Liouville besorgt (unveränderter Abdruck der von Monge besorgten 4. Aufl. 1809). Insbesondere Anhang S. 421—473 De l'intégration aux différences partielles du premier ordre entre trois variables. Die Literatur findet man in dem Artikel über partielle Differentialgleichungen von E. von Weber, Encyklopädie d. math. Wiss. II A 5, p. 294—399.

⁵¹⁶⁾ Massau, Mémoire sur l'intégration graphique des équations aux dérivées partielles. Gand 1900, 1902, 1903. Besonders werden hier auch Rückkehrkante, Enveloppe und andere Singularitäten der Charakteristiken diskutiert.

Methoden finden lassen. Indem man die Anfangsbedingung durch genügend kleine Kurvenstücke ersetzt, die mit einer Unstetigkeit in der zweiten Ableitung ineinander übergehen, können die Charakteristiken dabei so eng gelegt werden, daß die Integralfläche durch sie genügend approximiert wird. Unstetigkeiten in der Tangente der Anfangskurve geben zwei Integralflächen, die durch einen Pseudokegel von Charakteristiken verbunden sind. Auch hier kann es Gebiete mit imaginären Charakteristiken geben.

b) Von den Differentialgleichungen zweiter Ordnung sind die linearen

$$(241) Rr + Ss + Tt = U$$

am wichtigsten $\left(r = \frac{\partial^2 z}{\partial x^2}, \ s = \frac{\partial^2 z}{\partial x \partial y}, \ t = \frac{\partial^2 z}{\partial y^2}\right)$. Sind R, S, T, U Funktionen von x, y, z, p, q, so gelten für die Charakteristiken erster Ordnung die beiden Gleichungen

(242)
$$Rdy^2 - Sdx dy + Tdx^2 = 0,$$

$$Rdp dy + Tdq dx = Udx dy.$$

Die erste der beiden Gleichungen hat nur dann zwei reelle voneinander verschiedene Wurzeln λ und μ , wenn $S^2 - 4RT > 0$ d. h. die Gleichung vom hyperbolischen Typ ist. In diesem Falle gibt es zwei Scharen von Charakteristiken; die erste ist bestimmt durch

(243)
$$dy = \lambda dx$$
, $dz = p dx + q dy$; $\frac{dp}{dx} + \mu \frac{dq}{dx} = \frac{U}{R}$, $z = \varphi(x)$. Für die zweite gilt

(244)
$$\delta y = \mu \delta x$$
, $\delta z = p \delta x + q \delta y$; $\frac{\delta p}{\delta x} + \lambda \frac{\delta q}{\delta x} = \frac{U}{R}$, $z = \varphi_1(x)$.

Die Funktionen $\varphi(x)$ und $\varphi_1(x)$ werden durch die näheren Bedingungen des Problems bestimmt. Das Integral kann man entweder mit Hilfe einer Schar von Charakteristiken approximieren, wobei man Streifen erhält, oder man kann beide Scharen benutzen, so daß man ein Polyeder erhält, dessen Kanten Charakteristiken sind. Man nimmt dann die Bogenstücke für y, z, p, q so klein, daß sie angenähert als Gerade betrachtet werden können. Aus dem Punkte $A_1(x_1, y_1, z_1, p_1, q_1)$ und $A_2(x_2, y_2, z_2, p_2, q_2)$ ist dann $A_3(x_3, y_3, z_3, p_3, q_3)$ zu bestimmen (Fig. 31). Dazu ersetzt Massau die Differentialgleichungen durch Diffe-

⁵¹⁷⁾ Ist die Gleichung parabolisch, d. h. $S^2-4RT=0$, so gibt es nur eine Schar von Charakteristiken, auf die sich obige Methode auch anwenden läßt Nur wenn die Gleichung elliptisch ist $(S^2-4RT<0)$, läßt sich natürlich die Methode nicht verwenden, da dann die Charakteristiken imaginär sind. Siehe die folgenden Abschnitte.

renzengleichungen und bestimmt graphisch oder rechnerisch

Man führt dann die Zeichnung resp. Rechnung nochmal mit Mittelwerten aus den so berechneten und denen im Punkte A, resp. A,

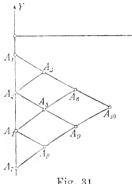


Fig. 31.

aus und wiederholt das, bis keine Anderung mehr eintritt. Die beiden letzten Gleichungen führen bis auf Größen von höherer als der zweiten Ordnung auf denselben Wert z_3 .⁵¹⁸)

Ein Spezialfall ist der, daß λ und μ von p und q nicht abhängen, dann hat man eine Charakteristik nullter Ordnung. Sind & und u außerdem noch von z unabhängig, wie das insbesondere für konstante Koeffizienten der Fall ist, so ist ihre Projektion auf die xy-Ebene unabhängig von den Anfangsbedingungen. Für einen einfachen Fall dieser Art

hat Runge⁵¹⁹) eine der obigen ähnliche, aber bedeutend genauere Methode Es handelt sich in Polarkoordinaten um die Gleichung

$$(246) \qquad \frac{\hat{c}^2 \chi}{\partial w^2} + \frac{\partial^2 \chi}{\hat{c} \theta^2} \left(\frac{1}{w^2} - \frac{1}{c^2} \right) + \frac{\partial \chi}{\partial w} \left(\frac{w}{w^2} - \frac{w}{c^2} \right) = 0,$$

deren Charakteristiken bestimmt sind durch

$$\frac{d\theta}{dw} = \pm \sqrt{\frac{1}{c^2} - \frac{1}{w^2}},$$

eine Gleichung, die sich durch bekannte Funktionen integrieren läßt. Diese Charakteristiken werden als neue krummlinige Koordinaten eingeführt, so daß die Gleichung die Form

(248)
$$\frac{\partial^2 \chi}{\partial \alpha \delta \beta} = \mp \left(\frac{\partial \chi}{\partial \alpha} + \frac{\partial \chi}{\hat{\epsilon} \beta} \right) K$$

erhält, die, falls man z.B. nur das obere Vorzeichen berücksichtigt und die Länge der Quadratseite mit 2h bezeichnet, bis auf Glieder

⁵¹⁸⁾ Massau 516) Nr. 23.

⁵¹⁹⁾ Steichen, Beiträge zur Theorie der zweidimensionalen Bewegungsvorgänge in einem Gase, das mit Überschallgeschwindigkeit strömt. Diss. Göttingen 1909.

vierter Ordnung in h ersetzt werden kann durch

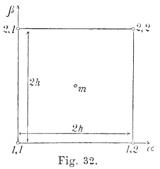
(249)
$$\chi_{22} = \frac{\chi_{21} + \chi_{12}}{1 + 2h K_m} - \chi_{11} \frac{1 - 2h K_m}{1 + 2h K_m} \quad (Fig. 32).$$

Die Genauigkeit der Rechnung prüft Runge dadurch, daß er sie für ein Netz durchführt, dessen Maschen statt 2h nur die Seitenlänge h

haben. Für den einzelnen Schritt ist der begangene Fehler von vierter Ordnung; für das Netz daher von der dritten Ordnung. Auch Massau selbst hat seine Methode in der weiter oben angegebenen Form für einen Spezialfall angewandt.⁵²⁰)

Handelt es sich um nicht-lineare Differentialgleichungen zweiter Ordnung, so kann man für solche von der Form

(250)
$$rt - s^2 + Hr + 2Ks + Lt + M = 0$$



(Gleichungen von Monge und Ampère) Charakteristiken erster Ordnung finden, deren graphische Behandlung genau so wie bei den linearen Gleichungen ist. Für allgemeine Gleichungen zweiter Ordnung muß man Charakteristiken zweiter Ordnung benutzen. Die graphische Behandlung ist auch dann noch wie oben, nur daß man für jeden Punkt elf Gleichungen anstatt der obigen sechs erhält.

c) Ein System zweier simultanen linearen Differentialgleichungen

(251)
$$A p + B q + C p_1 + D q_1 = E,$$
$$A_1 p + B_1 q + C_1 p_1 + D_1 q_1 = E_1,$$

wo A, B, ..., E_1 Funktionen von x, y, z, z_1 sind, hat zwei Scharen von Charakteristiken nullter Ordnung auf jeder der beiden zugehörigen Integralflächen.

(252)
$$\begin{aligned} dy &= \lambda_1 dx; & dz + a_1 dz_1 = b_1 dx; & z = \varphi_1(x), \\ \delta y &= \lambda_2 \delta x; & \delta z + a_2 \delta z_1 = b_2 \delta x; & z = \varphi_2(x), \end{aligned}$$

wo λ₁ und λ₂ die Wurzeln der Gleichung

(253)
$$\frac{A\,dy - B\,dx}{C\,dy - D\,dx} = \frac{A_1\,dy - B_1\,dx}{C_1\,dy - D_1\,dx}$$

sind und wo

$$(254) \quad a = \frac{CD_1 - C_1D}{AB_1 - A_1B} \cdot \frac{Ady - Bdx}{Cdy - Ddx} = \frac{CD_1 - C_1D}{AB_1 - A_1B} \cdot \frac{A_1dy - B_1dx}{C_1dy - D_1dx}$$

⁵²⁰⁾ Massau, Note sur l'équation des cordes vibrantes. Mons 1905, vgl. auch $Monge^{515}$) Anhang II.

und

(255)
$$bdx = -E \frac{A_1 dy - B_1 dx}{AB_1 - A_1 B} + E_1 \frac{Ady - Bdx}{AB_1 - A_1 B}$$

ist. Die graphische oder rechnerische Ausführung ist wie bei den Gleichungen zweiter Ordnung. Bei konstanten Koeffizienten lassen sich die Gleichungen integrieren. Die Projektionen der Charakteristiken werden dann parallele Gerade und die Facetten Ebenen. Massau⁵⁹¹) hat diese Methoden auf die variierte Bewegung fließenden Wassers und auf das Problem des Erddruckes angewandt.

- 20. Zur Integration der partiellen Differentialgleichungen mit imaginären Charakteristiken sind eine Reihe verschiedener Methoden angegeben, von denen hier zunächst die Graphischen Methoden folgen mögen, und zwar geordnet nach der Art, wie sie die gesuchte Lösung approximieren.
- a) Methoden, die alle Randbedingungen approximieren. Eine sehr einfache Methode der graphischen Integration partieller linearer homogener Differentialgleichungen rührt von Maxwell⁵²²) her. Hat man auf irgendeine Weise zwei voneinander unabhängige Lösungen $u_1 = c$ und $u_2 = k$ der gegebenen Gleichung gefunden, die beliebigen verschiedenen Randbedingungen genügen, so zeichnet man die Liniensysteme $u_1 = c$, $u_2 = k$ ein, indem man c immer um dasselbe Δc , k um dasselbe Δk wachsen läßt. Zeichnet man in dieses Parallelogrammnetz die Diagonalen ein, so haben diese die Gleichung $u_1 + \frac{\Delta c}{\Delta L} u_2 = C$ und sind somit wieder Lösungen der gegebenen Differentialgleichung. Man sucht nun durch passende Kombination der verschiedenen Lösungen brauchbare Randbedingungen zu erhalten. Diese Methode ist mehrfach von englischen Physikern angewandt auf die Gleichung $\Delta u = 0^{523}$) und $\Delta u + \frac{1}{k} \frac{\partial u}{\partial x} = 0^{524}$), um die Potentialströmung um schiffs- oder fischähnliche Körper zu erhalten. Als Ausgangslösungen benutzte man dabei besonders

(256)
$$y = b$$
 und $y = \operatorname{arc} \operatorname{tg} \frac{a - x}{y} + \operatorname{arc} \operatorname{tg} \frac{a + x}{y}$.

Ferner wird sie zur Konstruktion der Kraftlinien elektrischer und magnetischer Felder gelegentlich verwandt, so z.B. von *Mallik* 525).

⁵²¹⁾ Massau 518) insbesondere die Mitteilungen 2 und 3.

⁵²²⁾ Maxwell, On a Method of Drawing the Theoretical Forms of Faradays Lines of Force without Calculation. Report of the British Association 1856.

⁵²³⁾ Rankine, On plane water-lines in two dimensions (Phil. Transact. of the Royal Society, Vol. 154, 1864, p. 369—391 und auch Phil. Transact. 1872).

⁵²⁴⁾ Taylor, On ship-shaped stream forms. Transaction of the inst. of Naval Architects 1894, p. 384-405.

b) Methoden, die eine Randbedingung streng erfüllen und das Integrationsnetz durch endliche Stücke approximieren. Andere Methoden gehen davon aus, wenigstens auf einer Seite die Randbedingungen streng zu erfüllen, während die Bedingungen an den andern Begrenzungen nur mit möglichster Genauigkeit approximiert werden. Runge⁵²⁶) hat eine derartige Methode zur Integration der Gleichung $\Delta u = 0$ angegeben, um die Flüssigkeitsströmung über ein Wehr darzustellen. 527) Als gegeben wird die freie Oberfläche des Wassers angenommen, die eine Linie u = konst. ist. Die Geschwindigkeit auf ihr ist dann eine Funktion der Höhe und somit durch Integration das Potential v auf ihr bestimmbar. Daraus läßt sich das Stromlinienbild eindeutig herstellen, als Begrenzung im Innern wird eine Stromlinie gewählt, die sich dem Wehr passend annähert. Mises 528) dagegen konstruiert die Strömung des Wassers in einer Turbine so, daß er eine der einen Begrenzung u = c naheliegende Stromlinie passend annimmt, dann die Strom- und Potentiallinien konstruiert bis zum andern Rande u = c. Fällt mit diesem keine Stromlinie zusammen, so korrigiert er, ebenso wie Runge, die erste angenommene Stromlinie passend. Das wird fortgesetzt, bis das Zusammenfallen erreicht ist. Das Verfahren ist auch auf die nicht-wirbelfreie Bewegung, sowohl in ebenen, meridionalen, wie axialsymmetrischen Schichten anwendbar; im letzteren Falle werden die Durchstoßpunkte der Stromlinien mit der Meridianebene dargestellt. Selbst für zähe Flüssigkeiten würde sich, wenn man nächst dem Rande drei Stromlinien annimmt, die Konstruktion theoretisch durchführen lassen, doch scheint die praktische Ausführbarkeit sehr umständlich zu sein.

Diese Methoden sind, was die Konstruktion des Integrationsnetzes anbetrifft, dadurch charakterisiert, daß sie die durch die Gleichung vorgeschriebene Bedingung für endliche Stücke möglichst genau zu befriedigen suchen. $Runge^{529}$) betrachtet auf einer Kurve v = konst.

⁵²⁵⁾ Mallik, Lines of Force due to given Static Charges. Philosophical Magazine (6) 22 (1911), p. 177-90.

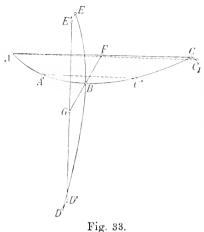
⁵²⁶⁾ Blasius, Funktionentheoretische Methoden in der Hydrodynamik. Zeitschr. Math. Phys. 58, 1910, S. 90—110.

⁵²⁷⁾ Der Vorschlag, bei Strömung über ein Wehr die Strömungslinien durch zeichnerische Methoden aufzusuchen, ist wohl zuerst von Forchheimer gemacht. Encyklopädie d. math. Wissenschaften IV, Art. 20, S. 414; Blasius, Zeitschr. Math. Phys. 59 (1910), p. 43-44.

⁵²⁸⁾ v. Mises, Theorie der Wasserräder. Zeitschr. Math. Phys. 57 (1909), p. 1-120.

⁵²⁹⁾ Runge, Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Göttingen 1911, p. 431—448.

entsprechend den Werten $u - \delta$, u, $u + \delta$ die drei Punkte A, B, C und auf der durch B gehenden Kurve u = konst. die weiteren Punkte



D und E entsprechend $v - \delta$ und $v + \delta$. Verbindet man dann A mit C und D mit E und halbiert diese Strecken in F und G, so geht bis auf Glieder vierter Ordnung in δ die Verbindungslinie GF durch B, und es ist mit derselben Genauigkeit BF = BG. Dreht man dann den Vektor AC um den Punkt B, nach D'E', so daß D'E' senkrecht auf AC steht, so fällt bis auf Glieder dritter Ordnung D'E' mit DE zusammen. Will man auch hier eine Genauigkeit bis zu Gliedern vierter Ordnung erreichen, so muß man die

den Werten $u + \frac{\delta}{2}$ und $u - \frac{\delta}{2}$ entsprechenden Punkte A' und C' zur Hilfe nehmen; zieht man AC, parallel A'C' und macht $AC_1 = 2A'C'$, so ist der Vektor $|EE'| = \frac{4}{3} |CC_1|$, und diese beiden Vektoren stehen bis auf Glieder vierter Ordnung senkrecht aufeinander. Neuerdings wurden diese Betrachtungen von $Trefftz^{498a}$) auf die Gleichung

$$\frac{\hat{c}^2 u}{\hat{c} x^2} + \frac{\hat{c}^2 u}{\hat{c} y^2} + \frac{\partial u}{\partial x} = 0$$

erweitert und zur Konstruktion des Strömungsbildes eines aus kreisrunder Öffnung fließenden Flüssigkeitsstrahles benutzt.

Die Methode von *Mises* ist weniger genau, ermöglicht jedoch die nicht wirbelfreie Bewegung zu behandeln und integriert daher die Differentialgleichung

(257)
$$\frac{\partial}{\partial x} f(xy) \frac{\partial u}{\partial x} + \frac{\partial}{\partial y} f(xy) \frac{\partial u}{\partial y} = 0.$$

Aus nebenstehender Figur 34 erkennt man für ebene Strömung 530), daß

$$(258) \Delta \vartheta = \frac{aa_1}{ab} - \frac{bb_1}{bc} = \left[\left(\frac{1}{f(xy)} \right)_{m_1} - \left(\frac{1}{f(xy)} \right)_{m_2} \right] \frac{\Delta v}{\Delta u} = \frac{ab \cdot aa_1}{\Delta} \left(\frac{\partial c}{\partial n} - \frac{c}{\varrho} \right) + \frac{2\lambda}{\Delta} ab \cdot aa_1$$

ist. Mises bezeichnet den Ausdruck $\frac{\Delta \vartheta}{ab \cdot aa_1}$ als spezifische Form-

⁵³⁰⁾ Mises, Theorie der Wasserräder, § 5, 4.

differenz. Da dieser in seinem Falle der Wirbelstärke λ proportional ist, so hat er ein Netz zu konstruieren, derart, daß längs der Stromlinien u = konst., die spezifische Formdifferenz konstant ist. Bei dieser Konstruktion geht er von den Stromlinien in genügender Entfernung von

der Turbine, die er auf beiden Seiten als bekannt annimmt, aus, so daß Anfangs- und Endpunkt der einzelnen Stromlinien festgelegt sind.

Bei der meridionalen Strömung wird $\frac{a a_1}{r + a h}$ als Form bezeichnet, dann ist die spezifische Formdiffe-

renz τ , die durch $r \cdot ab \cdot aa_1$ dividierte Änderung dieses Quotienten

(259)
$$\tau = \frac{2}{\sqrt{u}} \frac{\lambda}{r}.$$

Ist endlich bei der axialsymmetrischen Bewegung die Gleichung der Leitflächen

$$(260) f(rz) = k,$$

so gilt für die Stromlinien die Gleichung

$$(261) \ \frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial z^2} - \frac{1}{r} \frac{\partial u}{\partial z} = - \ r \left(\frac{\partial f}{\partial r} \frac{\partial n}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial n}{\partial r} \right) + r^2 F(u) = 2 \ r \ \lambda_m$$

wo λ_m die senkrecht zur Meridianebene stehende Wirbelkomponente ist und wo

(262)
$$n(rz) = r \left(\frac{\partial f}{\partial r} \cdot \frac{\partial u}{\partial z} - \frac{\partial f}{\partial z} \frac{\partial u}{\partial r} \right) + r^2 \omega$$

(ω Winkelgeschwindigkeit der rotierenden Leitflächen) ist. Ist nun σ der Inhalt der von den f- und u-Linien, σ' der von den f- und n-Linien eingeschlossenen Parallelogramme, so ist die spezifische Formdifferenz

(263)
$$\tau + \frac{1}{r\sigma} \frac{\Delta f \Delta n}{\Delta u} = \frac{F(u)}{\Delta u}$$

und

$$(264) n - r^2 \omega = r \frac{\Delta f \Delta u}{\sigma} \cdot {}^{531})$$

Mit Hilfe dieser Gleichungen lassen sich die Meridiankurven der n-Flächen zeichnen.

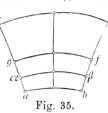
Indem Mises 532) eine Betrachtung von Runge 533), die sich auf gewöhnliche Differentialgleichungen bezieht, überträgt, gewinnt er einen Überblick über die Konvergenz seines Verfahrens.

⁵³¹⁾ Mises, Theorie der Wasserräder, § 14 findet sich ein durchgeführtes Beispiel.

⁵³²⁾ Mises, Theorie der Wasserräder, § 5, 6.

⁵³³⁾ Runge, Math. Ann. 44 (1894), p. 437-48.

e) Eine Methode, die alle Randbedingungen streng erfüllt und durch endliche Stücke approximiert, findet sich z. B. bei Richardson. 534) Er zeichnet die u- und v-Linien nach Gutdünken ein und verbessert durch Probieren so, daß das Seitenverhältnis der entstehenden Rechtecke möglichst genau stimmt. Ähnlich verfährt Lehmann 535), um den Kraftlinienverlauf in Luft zu bestimmen, der



der Gleichung $\Delta u = 0$ genügt. Zur Festlegung des u, v-Netzes benutzt er die Mittellinien der Maschen. Dabei wird die vierte gesuchte Seite schrittweise festgelegt, so daß $a\alpha = \frac{1}{4}ab$, dann $\alpha g = \frac{1}{4}\alpha\beta$ und endlich $gc = \frac{1}{2}gf$ gemacht wird, wobei der Bogen durch die Sehne ersetzt wird, um das Abmessen mit dem Zirkel machen zu

Nun werden Flächenstücke betrachtet, die begrenzt sind durch 2 Linien $v = c_1$, $v = c_2$ und zwei Linien $u = z_1$, $u = z_2$. Versuchsweise wird eine Linie $v = \frac{c_1 + c_2}{2}$ eingezeichnet; diese wird nun so lange sinngemäß verschoben, bis sie von den für die beiden entstehenden Streifen nach obiger Methode getrennt konstruierten Linien $u = z_1 + \frac{c_2 - c_1}{2}$, $u = z_1 + 2\frac{c_2 - c_1}{2}$ usw. in denselben Punkten getroffen wird; dabei müssen sich natürlich alle Linien orthogonal schneiden. Dann wird eine weitere Unterteilung eingezeichnet usw. Kennt man c_1 , c_2 und z_1 , z_2 , was freilich meist nicht der Fall ist, so hat man, da $z_2 = z_1 + n \frac{c_2 - c_1}{2}$ — bei n Quadraten in jedem Streifen sein muß (n wird im allgemeinen keine ganze Zahl sein), ein Maß für die Genauigkeit der Zeichnung. Betreffs Vereinfachung durch Aufsuchen von Symmetrielinien, Durchführung der Konstruktion bei einspringenden Ecken, und ins Unendliche gehenden Feldern usw. sei auf die Arbeit selbst verwiesen. 580) Das so konstruierte Netz läßt sich nun entweder nach der Methode von Runge⁵²⁹) oder dadurch verbessern, daß man ein genau konstruierbares u, v,-Netz einer der Gleichung $\Delta u = 0$ genügenden Funktion herstellt; das sich dem gesuchten Netz an einer Stelle anschmiegt; dieses Netz wird auf das vorläufig kon-

⁵³⁴⁾ L. F. Richardson: A Freehand Graphic way of the determining Stream Lines and Equipotentials. Phil. Mag. 1908, 6. Serie, Vol. XII. Die Arbeit ist auch insofern interessant, als Richardson zeigt, in welcher Weise sich für räumliche Probleme bei gewissen Symmetrien das Seitenverhältnis der Rechtecke bestimmt. Z. B. zeigt er, wie man auf einem Stück der Kugelfläche, das man durch Merkatorprojektion abbildet, die Gleichung $\Delta u = 0$ integrieren kann. Ferner geht er auf Verhältnisse ein, bei denen Schraubensymmetrie herrscht.

⁵³⁵⁾ Th. Lehmann: Graphische Methoden zur Bestimmung des Kraftlinienverlaufes in der Luft. Elektrotechn. Zeitschr. 1909, S. 995ff und S. 1019ff.

struierte Netz entsprechend aufgelegt und dann die Linien $u - u_1$; $v-v_1$ bezogen. Die so entstehenden Maschen müssen wieder quadratisch sein. Ist das nicht der Fall, so muß man entsprechende Korrekturen vornehmen.⁵³⁶) Die Methode läßt sich für die Integration der Gleichung

 $\frac{\partial}{\partial x} \left(f(xy) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(f(x,y) \frac{\partial u}{\partial y} \right) = 0$ (265)

verallgemeinern.

d) Methoden, die die Randbedingungen streng erfüllen und das Netz infinitesimal approximieren. Runge hat eine Methode angegeben zur Integration der Differentialgleichung

(266)
$$\frac{\partial}{\partial x} \left(f(xy) \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(f(xy) \frac{\partial u}{\partial y} \right) = 0$$

und der adjungierten

(267)
$$\frac{\partial}{\partial x} \left(\frac{1}{f(xy)} \frac{\partial v}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{1}{f(xy)} \frac{\partial v}{\partial y} \right) = 0,$$

die unter strenger Erfüllung der Randbedingungen den beiden Differentialgleichungen durch sukzessive Approximation im Infinitesimalen zu genügen sucht. Die von den u- und v-Kurven

gebildeten Rechtecke haben das Seitenverhältnis

$$\lim \frac{\Delta a}{\Delta b} = f(x, y) \frac{d u}{d v}.$$

Man zeichnet nun unter Erfüllung der gegebenen Randbedingungen ein Kurvennetz ein, das nach Möglichkeit in den endlichen Rechtecken der vor-

Fig. 36.

geschriebenen Bedingung genügt, entnimmt dann längs einer Kurve v= konst. aus der Zeichnung die Werte $\frac{1}{f(x^I,\,y^I)}\left(\frac{d\,v}{d\,b}\right)^I$, die man als Funktion der Bogenlänge graphisch integriert, so erhält man

(268)
$$u^{II} = \int_{a_0}^{a_1} \frac{1}{f(x^I, y^I)} \left(\frac{dv}{db}\right)^I da^I.$$

Die so bestimmten Punkte geben einen Anhalt für die Korrektion der Kurven u = konst. Nach dieser Korrektion verfährt man genau so für die Kurven v = konst. usw. Man kann sich auch auf die Korrektion der einen Kurvenschar beschränken und die andere Schar nur orthogonal dazu legen. Wenn dann ϱ^I der Krümmungsradius⁵³⁷)

⁵³⁶⁾ Rottsieper, Graphische Lösung einer Randwertaufgabe der Gleichung $\Delta u = 0$, Dissertation Göttingen 1914.

⁵³⁷⁾ Methoden zur Bestimmung des Krümmungsradius gibt z. B. Bjerknes, Dynamische Meteorologie und Hydrographie, II. Kap. IX § 82 (Deutsch von Kirchner) Braunschweig 1913.

170 HC2. C. Runge-Fr. A. Willers. Numerische und graphische Integration.

von u^I ist, so ist

(269)
$$u^{II} = c \int_{a_0}^{a} \frac{1}{f(x^I, y^I)} e^{\int_{a_0}^{a_1} \frac{1}{Q^I} da^I} da^I,$$

wo r so zu bestimmen ist, daß $u_1^H - u_0^H$ den vorgeschriebenen Wert hat. Meist sind die u- und v-Kurven in genügender Entfernung von der zu untersuchenden Stelle bekannt, bisweilen liegt auch an der betrachteten Stelle aus Symmetriegründen eine der Kurven v = konst. fest. Konvergenzbetrachtungen über das Verfahren fehlen noch ganz. In den ausgeführten Fällen

(270)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \pm \frac{1}{y} \frac{\partial u}{\partial y} = 0^{538}$$
 und $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \pm \frac{3}{y} \frac{\partial u}{\partial y} = 0^{539}$) war die Konvergenz gut.⁵⁸¹)

Runge gibt für die Differentialgleichung $\Delta u = 0$ noch eine andere graphische Methode ⁵²⁹), um bei einem einfach zusammenhängenden Bereich die Greensche Funktion zu konstruieren und damit Randwertaufgaben zu lösen. Zunächst wird angenommen, daß die Greensche Funktion G gegeben ist, die an einem bestimmten Punkte im Innern des Bereiches logarithmisch unendlich wird und auf dem Rande verschwindet. Sie bildet den reellen Teil einer analytischen Funktion $G + G_1i$. Diese wird graphisch dargestellt durch ein Netz von Linien G_1 = const. und G = const. die "Quellstromlinien" und die "Zirkulationsstromlinien". Sind die Werte einer Funktion f, die der Gleichung $\Delta u = 0$ im Innern genügt, auf dem Rande gegeben, so ist der Wert in dem Punkte, wo G logarithmisch unendlich wird, dargestellt durch

$$\frac{1}{2\pi} \int f dG_1$$

integriert über den Rand. Wenn man also die Werte von G_1 auf dem Rande kennt, so braucht man nur die Werte von f als Ordinaten zur Abszisse G_1 aufzutragen und erhält den Wert von f als Mittelwert. Es wird dann ferner gezeigt, wie dieselbe Figur auch den Wert von f in jedem beliebigen andern Netzpunkte des Bereiches liefert. Man führt zu dem Ende statt G_1 eine andere Veränderliche G_1 * ein, eine Funktion von G_1 , die sich aus der konformen Abbildung eines Kreises auf sich selbst ergibt. Graphisch besteht diese Transformation darin, daß auf die Abszissenachse eine gewisse Skala gelegt wird, die längs

⁵³⁸⁾ Jäger: Graphische Integrationen in der Hydrodynamik. Dissertation Göttingen 1909.

⁵³⁹⁾ Willers: Die Torsion eines Rotationskörpers um seine Achse. Zeitschr. Math. Phys. 55 (1907), p. 225—63.

ihr verschoben werden kann. Mechanisch läßt sie sich zugleich mit der Integration mittels eines von *Rottsieper* ⁵³⁶) konstruierten Integrators ausführen.

Das Verfahren, durch das man das Kurvennetz G = const. und $G_1 = \text{const.}$ findet, besteht darin, daß zunächst nach Gutdünken ein Netz in den Bereich eingezeichnet und dieses durch Anwendung des obigen Satzes sukzessive verbessert wird.

Angewandt ist dies Verfahren von v. Sanden⁵⁴⁰) zur Berechnung des Auftriebs, den Platten erfahren, die in der Nähe des Erdbodens dem natürlichen Winde ausgesetzt sind, und von Rottsieper⁵³⁶) zur Berechnung der Spannungen in einem um seine Längsachse verwundenen Stabe von kreuzförmigem Querschnitt, ein Problem, das Runge⁵⁴⁹) noch auf andere Weise behandelt hat. v. Sanden wie Rottsieper berichten über mit dem Verfahren gemachte Erfahrungen und über Einzelheiten der Ausführung.

Eine ähnliche Methode hat Deutsch⁵⁴¹) zur Berechnung der elektrischen Kapazität zweier paralleler Zylinder anschließend an die Untersuchungen von Neumann⁵⁴²) über die Methode des arithmetischen Mittels entwickelt (vgl. II A 7b (H. Burkhardt und W. F. Meyer) Potentialtheorie, und II A 7c (A. Sommerfeld) Randwertaufgaben in der Theorie der partiellen Differentialgleichungen). Er geht von mathematisch leicht berechenbaren logarithmischen Potentialen aus, die auf einer die gegebene Begrenzung annähernden Kurve konstant sind. Wie sich derartige Potentialfunktionen für komplizierte Bereiche angeben lassen, zeigt Rottsieper⁵³⁶). Man berechnet die sich so auf der Kontour ergebenden Potentialwerte und verbessert diese Werte nach dem Mittelwertsatz von Neumann so lange, bis mit genügender Genauigkeit das Potential auf der ganzen Kontour den gleichen Wert hat.

Schließlich sei noch erwähnt, daß auch das Schwarzsche alternierende Verfahren 543) bei entsprechend begrenzten Gebieten (z. B. kreuzförmige Begrenzung) sich gut zur graphischen oder numerischen Lösung der Gleichung $\Delta u = 0$ eignet 536).

21. Zur numerischen Integration partieller Differentialgleichungen hat man Methoden, die zur Quadratur oder zur Integration gewöhnlicher Gleichungen dienen, übertragen. So benutzt Biermann 544)

⁵⁴⁰⁾ v. Sanden, Zeitschr. Math. Phys. 61 (1913), p. 225-245.

⁵⁴¹⁾ Deutsch, Archiv für Elektrotechnik 2 (1914), p. 435-42.

⁵⁴²⁾ Neumann, Untersuchungen über das logarithmische und Newtonsche Potential, Leipzig 1877, Kap. 5.

⁵⁴³⁾ Schwarz, z.B. Gesammelte mathematische Abhandlungen 2, Berlin 1890, p. 133-71. Siehe auch die eben genannten Referate II A 7b und c.

eine Erweiterung der von ihm zur Kubatur aufgestellten Formeln des Abschnitts- und Tangentenprismas zur genäherten Integration der Gleichung $\frac{\partial^z z}{\partial x \partial y} = \varphi(x, y, z)$.

a) Übertragung der Methoden von Runge-Heun-Kutta. Gans⁵⁴⁵) überträgt die von Runge⁴⁵⁶) gegebene Formel auf partielle Gleichungen beliebiger Ordnung und gibt die Formeln zur Integration der Gleichungen erster und zweiter Ordnung. Wie die Formeln von Runge nähern auch seine Formeln bis einschließlich der Glieder dritter Ordnung die in eine Taylorsche Reihe entwickelte Lösung an. Es liegt nun nahe, die ein Glied weiter annähernde Kuttasche Formel⁴⁵⁷) zu übertragen, was unabhängig von Runge⁵⁴⁶) und Willers⁵⁴⁷) geschah.

Runge faßt die partielle Differentialgleichung als System von unendlich vielen gewöhnlichen Gleichungen mit unendlich vielen Variabeln und erhält dadurch eine unmittelbare Übertragung der Formeln (215). Man kann aber auch z. B. zur Integration von $\frac{\partial z}{\partial y} = f(x, y, z, \frac{\partial z}{\partial x})$, falls man $u = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial z} \frac{\partial z}{\partial x} + \frac{\partial f}{\partial z'} \frac{\partial^2 z}{\partial x^2}$ nimmt, setzen:

$$(272) \begin{cases} \Delta^{\text{I}} z = f\left(x, y, z, \frac{\partial z}{\partial x}\right) \Delta y, \\ \Delta^{\text{II}} z = f\left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta' z}{2}, \frac{\partial z}{\partial x} + u \frac{\Delta y}{2}\right) \Delta y, \\ \Delta^{\text{III}} z = f\left(x, y + \frac{\Delta y}{2}, z + \frac{\Delta^{\text{II}} z}{2}, \frac{\partial z}{\partial x} + \left(u + \frac{du \Delta y}{dy 2}\right) \frac{\Delta y}{2}\right) \Delta y, \\ \Delta^{\text{IV}} z = f\left(x, y + \Delta y, z + \Delta^{\text{III}} z, \frac{\partial z}{\partial x} + \left(u + \frac{du \Delta y}{dy 2} + \frac{\partial^{2} u \Delta^{2} y}{\partial y^{2} 2}\right) \Delta y\right) \Delta y, \\ S = \frac{\Delta' z + \Delta^{\text{IV}} z}{2} T = \frac{\Delta^{\text{II}} z + \Delta^{\text{III}} z}{2} \Delta z = \frac{2T + S}{3}. \end{cases}$$

Den Fehler, der von fünfter Ordnung ist, kann man durch direkte Berechnung bestimmen, doch müßte man dann mindestens die sämtlichen fünften Ableitungen bilden; besser ist es, zur Fehlerabschätzung die Rechnung auch mit halben Intervallen durchzuführen; der Fehler ist dann etwa $\frac{1}{16}$ der Differenz. Da sich die Formeln auf Systeme linearer Gleichungen übertragen lassen, ist damit auch die Möglichkeit gegeben, partielle Differentialgleichungen höherer Ordnung zu integrieren; doch müssen an der Ausgangsbegrenzung z. B. für Gleichungen zweiter Ordnung die Funktion selbst und eine Ableitung gegeben sein, wie das

⁵⁴⁴⁾ Biermann, Monatshefte Math. Phys. 20 (1909), p. 321-326.

⁵⁴⁵⁾ Gans, Zeitschr. Math. Phys. 48 (1903), p. 394-399.

⁵⁴⁶⁾ Runge, Numerisches Rechnen. Autographierte Vorlesung, Göttingen 1912/13, p. 248-252.

⁵⁴⁷⁾ Nicht veröffentlicht.

etwa beim Problem der schwingenden Saite der Fall ist, während sich auf Probleme, wie sie meist bei der Gleichung $\Delta u = 0$ auftreten, diese Methode im allgemeinen nicht anwenden läßt.

- b) Eine andere Methode ersetzt die Differentialgleichung durch eine Differenzengleichung. Man überzieht das Integrationsgebiet mit einem Netz quadratisch gelegener Punkte und wendet auf die Funktionswerte in diesen die durch eine Differenzengleichung ersetzte Differentialgleichung an. Man erhält so für jeden Punkt eine Gleichung, die den Funktionwert in dem Punkte mit denen der benachbarten Punkte oder mit den Grenzwerten verbindet. Von Richardson⁵⁴⁸) und von Runge⁵⁴⁹) ist diese Methode auf lineare Gleichungen angewandt worden. Richardson betrachtet die sämtlichen aufgestellten Gleichungen gleichzeitig und entwickelt eine Methode, aus einem die Gleichungen annähernd erfüllenden Funktionssystem sie besser befriedigende Werte abzuleiten. Angewandt hat er seine Rechnungen zur Bestimmung der Spannungen in einem Staudamm. Runge geht bei der Aufstellung der Gleichungen von einer Begrenzung aus, führt die Funktionswerte in der ersten bzw. ersten und zweiten parallelen Punktreihe als Unbekannte ein und gibt immer die Funktionswerte einer zu dieser parallelen Reihe von Netzpunkten als Funktionen der Werte in den vorhergehenden Reihen an. Auf diese Weise bekommt er schließlich nur so viel Gleichungen, als Netzpunkte parallel zu dieser Begrenzung in einer bzw. zwei Reihen liegen. Im einzelnen ergeben sich dabei bedeutende Vereinfachungen. Auch Runge bestimmt nicht gleich die endgültigen Werte, sondern erst angenäherte Werte, die er dann verbessert. Angewandt hat er seine Methode auf Berechnung der Spannung bei Torsion zylindrischer Stäbe.
- c) Methode von Rayleigh-Ritz. Die besonders für physikalische und technische Probleme wichtigste Integrationsmethode ist von Rayleigh 550) angegeben und unabhängig davon von Ritz 551) systematisch ausgebildet. Rayleigh 552) benutzt diese Methode z.B. zur Berechnung der Schwingungen am offenen Ende einer Pfeife. 553) Sie läßt sich in gleicher Weise zur Integration gewöhnlicher wie partieller Differential-

⁵⁴⁸⁾ Richardson, Philosophical transactions of the Royal Society of London A 210 (1910), p. 307-357.

⁵⁴⁹⁾ Runge, Zeitschr. Math. Phys. 56 (1908), p. 225-232.

⁵⁵⁰⁾ Rayleigh, Philosophical Magazine (5) 47 (1899), p. 566-72.

⁵⁵¹⁾ Ritz, Nachrichten der Kgl. Gesellschaft der Wissenschaften zu Göttingen 1908. p. 236-48. Journ. f. Math. 135 (1908), p. 1-61.

⁵⁵²⁾ Rayleigh, Philosophical Magazine (6) 22 (1911), p. 225-229.

⁵⁵³⁾ Rayleigh, Theorie of Sound (z.B. II. Anhang 1, p. 291—295), London 1878 u. Philosophical Transactions 161 (1870), p. 77—118.

gleichungen verwenden, je nachdem man es mit von einer oder mehreren Variablen abhängigen Problemen zu tun hat; Bedingung ist nur, daß sich die Aufgabe als Variationsproblem darstellen läßt. Die Methode geht nämlich nicht von der Differentialgleichung mit den Randbedingungen aus, sondern von einem in der Hauptsache mit der potentiellen Energie des im Gleichgewicht befindlichen, isolierten Systems zusammenfallenden Integrale, aus dem nach dem Prinzip der kleinsten Wirkung, also durch Variation die Gleichungen nebst Randbedingungen gewonnen werden können. 554) Für elastische Probleme ist das Variationsprinzip nach Lorenz⁵⁵⁵) der Satz von Castigliano⁵⁵⁶) über die kleinste Formänderungsarbeit. Hier muß der Ausdruck L_{ι} — $2\,L_{\scriptscriptstyle A}$ einen ausgezeichneten Wert haben $^{557}),$ wo L_{ι} die elastische Energie des Systems als Funktion der Deformationsgrößen, La die Summe aus den halben Produkten der äußeren Kräfte und der Verschiebung ihrer Angriffspunkte ist. 558) Die Methode von Ritz besteht nun darin, die gesuchte Lösung durch eine Reihe $w_n = \sum_{i} a_i P_i$ zu approximieren, wo die P. Funktionen sind, die den Rand- und Symmetriebedingungen genügen, während die konstanten Koeffizienten a, so bestimmt werden, daß die potentielle Energie als Funktion der a, ein Minimum wird. Diese Bedingung liefert im allgemeinen für jede Annäherungsfunktion w_n ein System von n linearen nicht homogenen Gleichungen mit

$$\int\int \frac{E'h'^{\frac{2}{3}}}{3} \left[\left(\frac{\hat{c}^{\frac{2}{3}}w}{\hat{c}^{\frac{2}{3}}x^{\frac{2}{3}}} + \frac{\hat{c}^{\frac{2}{3}}w}{\hat{c}^{\frac{2}{3}}y^{\frac{2}{3}}} \right)^{2} - 2(1-\nu) \left(\frac{\hat{c}^{\frac{2}{3}}w}{\hat{c}^{\frac{2}{3}}x^{\frac{2}{3}}} \cdot \left(\frac{\hat{c}^{\frac{2}{3}}w}{\hat{c}^{\frac{2}{3}}x^{\frac{2}{3}}} + \left(\frac{\hat{c}^{\frac{2}{3}}w}{\hat{c}^{\frac{2}{3}}x^{\frac{2}{3}}} \right)^{2} \right) \right] dx dy$$

ist, wie ihn Ritz auch in der Annalenarbeit benutzt hat. Der Ausdruck

$$\iint_{\mathbb{R}^2} \frac{E'h'^2}{2} \left[\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} \right]^2 dx dy,$$

der in den oben zitierten Arbeiten benutzt wird, ist nur dann richtig, wenn

$$\iint_{\delta} \left[\frac{\partial^2 w}{\partial x^2} \cdot \frac{\partial^2 w}{\partial y^2} - \left(\frac{\partial^2 w}{\partial x \partial y} \right)^2 \right] dx dy = 0$$

ist, wo der Klammerausdruck das Krümmungsmaß $\frac{1}{\varrho_1} \varrho_2$ angibt. Dies ist in dem dort behandelten Problem der eingespannten Platte tatsächlich der Fall.

555) Lorenz, Zeitschr. d. Ver. deutsch. Ing. 57 (1913), p. 543—545. Physik. Zeitschr. 14 (1913), p. 71—74.

556) Castigliano, Memorie della Reale Accademia delle Scienze di Torino 27 (1875). Atti della R. Accad. delle Scienze di Torino 10 (1875), p. 380—423; 11 (1876), p. 127—286.

557) Pösehl, Pysik. Zeitschr. 14 (1913), p. 410-412.

558) v. Karman, Physik. Zeitschr. 14 (1913), p. 253, 254.

⁵⁵⁴⁾ Bei den Arbeiten von $Ritz^{551}$) ist zu beachten, daß der eigentliche Ausdruck für die elastische Deformationsarbeit

nicht verschwindender Determinante, deren Koeffizienten sich durch Quadraturen bestimmen. Ritz hat gezeigt, unter Benutzung von Untersuchungen von Hilbert 559) und Levi 560), daß abgesehen von einigen für die Praxis kaum in Betracht kommenden Fällen 551), bei wachsendem n die Reihe der w, gegen einen Grenzwert konvergiert, und daß dieser die gesuchte Funktion ist. Letzteres hat Jüger 561) noch etwas allgemeiner gezeigt. Die Methode ergibt also ein konvergentes Verfahren zur Integration. 562) Das Verfahren von Ritz hängt eng mit der Methode zur Behandlung statisch unbestimmter Fachwerke von Mohr zusammen. 563) Da fast alle in der Technik vorkommenden Gleichgewichtsprobleme sich aus einem Variationsproblem ableiten lassen, ist die Methode von Ritz außerordentlich brauchbar, und zahlreiche Probleme, besonders der Elastizitätstheorie, sind mittels derselben behandelt. So behandelt Ritz⁵⁶⁴) selbst die rechteckige Platte, mit der sich dann weiter Lorenz⁵⁶⁵), der allerdings nur ein Glied bestimmt, Nadai⁵⁶⁶), Kalähne⁵⁶⁷) und Timoschenko⁵⁶⁸) beschäftigen. Letzterer hat insbesondere für eine Reihe von Problemen die kritische Belastung bestimmt. 569) Weiter behandelt Nadai die kritische Beanspruchung bei kreisrunden Platten. 569a) Ähnlich bestimmt Stodola 570) die kritische Umlaufsgeschwindigkeit für die Transversalschwingungen von Dampfturbinenrädern. In den letzterwähnten Fällen erhält man zur Bestimmung der a, ein System von n homogenen linearen Gleichungen, die also nur Werte von a, liefern, falls die Determinante verschwindet.

⁵⁵⁹⁾ Hilbert, Mathem. Ann. 59 (1904), p. 161—86 u. Festschrift d. Kgl. Ges. d. Wiss. zu Göttingen, math.-phys. Klasse, Berlin 1901.

⁵⁶⁰⁾ *Levi*, Rendiconti del circolo mathematico di Palermo 22 (1906), p. 293 —360, 387—394.

⁵⁶¹⁾ Jäger, Paris C. R. 158 (1914), p. 1160, 1161.

⁵⁶²⁾ Pöschl, Sitzgsb. d. Kgl. Akad. d. Wiss. zu Wien 121, H 2a (1912), p. 1235—60.

⁵⁶³⁾ Mohr, Zeitschr. des Ingen.- u. Architektenvereins zu Hannover 20 (1874), p. 509—526, 21 (1875), p. 17—38.

⁵⁶⁴⁾ Ritz, Ann. d. Physik (4) 28 (1909), p. 737—786.

⁵⁶⁵⁾ Lorenz, Zeitschr. d. Ver. deutsch. Ingen. 57 (1913), p. 623-625.

⁵⁶⁶⁾ Nadai, Zeitschr. d. Ver. deutsch. Ingen. 58 (1914), p. 487-494, 540-550.

⁵⁶⁷⁾ Kalähne, Grundzüge der math.-phys. Akustik 2, Leipzig 1913.

⁵⁶⁸⁾ Timoschenko, Annales des Ponts et Chaussées (9) 15 (1913), p. 496-566, 16 (1913), p. 73-123 u. 372-412 auch die dort zitierte Literatur.

⁵⁶⁹⁾ Hager, Berechnung ebener rechteckiger Platten mittels trigonometr. Reihen, Berlin-München 1911 scheint ühnliche Gedanken zu verfolgen.

⁵⁶⁹a) Nadai, Zeitschr. d. Ver. deutsch. Ingen. 59 (1915), p. 169-174.

⁵⁷⁰⁾ Stodola, Revue de mécanique 34 (1914), Nr. 3, p. 244-263; Schweizerische Bauzeitung 1914, p. 251.

Diese Bedingung liefert dann gerade die kleinste kritische Belastung bzw. Umlaufszeit.

Ferner sind nach dieser Methode behandelt: die Biegung krummer, dünnwandiger Rohre⁵⁷¹), die Spannung in zylindrischen Behältern mit veränderlicher Wandstärke⁵⁷²), in mit Versteifungsringen versehenen Rohren⁵⁷³), in rotierenden Scheiben von variabler Dicke⁵⁷⁴), in zylindrischen Hängeböden bei unvollkommener Einspannung⁵⁷⁵), in flachen Kugelschalen⁵⁷⁶), das Problem der Geschwindigkeitsverteilung in einem Rohr mit quadratischem Querschnitt⁵⁷⁷) usw.

22. Experimentelle Methoden. Schließlich sei noch erwähnt, daß man auch versucht hat, gewissermaßen experimentell partielle Differentialgleichungen zu lösen; so hat Förster 578) die Greensche Funktion für die Gleichung $\Delta u = 0$, in dem Fall, wo an einem Teil des Randes $u_1 = c_1$, $u_2 = c_2$ usw., an einem anderen $\frac{\partial u}{c\,n} = 0$ ist, durch Messung elektrischer Ströme bestimmt. Dabei stellt er das Gebiet durch eine entsprechend von Leitern und Nichtleitern begrenzte Kupfersulfatlösung dar und benutzt den bekannten Neumannschen Mittelwertsatz. Wieghardt 579) hat durch Ausmessen einer dünnen deformierten elastischen Platte, eine angenäherte Lösung der Gleichung $\Delta \Delta u$ für bestimmte Randbedingungen zu finden versucht. 580) 581)

⁵⁷¹⁾ v. Karman, Zeitschr. d. Ver. deutsch. Ingen. 55 (1911), p. 1889-1895.

⁵⁷²⁾ Pöschl, Armierter Beton 5 (1912), p. 169—175, 210—217, 328, 360. Pöschl u. Terzaghi, Berechnung von Behältern nach neuen analytischen und graphischen Methoden, Berlin 1913 (80 Seiten).

⁵⁷³⁾ Albenga, Atti della R. Accad. delle scienze di Torino 49 (1914), p. 289-97.

⁵⁷⁴⁾ Pöschl, Zeitschr. für das gesamte Turbinenwesen 10 (1913), p. 70-72, 90-92.

⁵⁷⁵⁾ Pöschl, Zeitsch, d. öster, Ingen.- u. Architektenvereins 64 (1912), p. 550-52.

⁵⁷⁶⁾ Federhofer, Sitzgsber. d. Kgl. Akad. d. Wiss. zu Wien 121, II 2 a p. 2143—2161.

⁵⁷⁷⁾ Paschoud, Paris C. R. 159 (1914), p. 158-160.

⁵⁷⁸⁾ Förster, Archiv für Elektrotechnik 2 (1914), p. 175-81.

⁵⁷⁹⁾ K. Wieghardt: Über ein neues Verfahren, verwickelte Spannungsverteilungen in elastischen Körpern auf experimentellem Wege zu finden. Mitteilungen des Vereins deutscher Ingenieure, Berlin 1908.

⁵⁸⁰⁾ Auf räumliche Probleme mit Rotationssymmetrie ist diese Methode neuerdings von *Kuhlmann*, Archiv für Elektrotechnik 3 (1915), p. 203—25 übertragen.

⁵⁸¹⁾ Flügel, Zeitschrift für das gesamte Turbinenwesen 12 (1915), p. 73—77, 89—91, 100—103 bestimmt mittels eines ganz ähnlichen Verfahrens den Verlauf der Strömung idealer Flüssigkeiten in Kreiselrädern.

IIC3. NEUERE ENTWICKLUNG DER POTENTIAL-THEORIE. KONFORME ABBILDUNG.*)

Von

L. LICHTENSTEIN

in BERLIN.

In den siebzehn Jahren seit dem Erscheinen des Artikels II A 7 b von H. Burkhardt und W. F. Meyer ist die Potentialtheorie durch neue weittragende Methoden bereichert und in ihren Grundlagen befestigt worden. Es erschien darum notwendig, sowohl die Hauptsätze der allgemeinen Potentialtheorie als auch die von H. A. Schwarz, C. Neumann und H. Poincaré begründeten älteren Theorien erneut einer Besprechung zu unterziehen (zweiter und dritter Abschnitt). In dem ersten, einleitenden Abschnitte werden, um die Wege für dieses Referat und einen späteren Artikel über partielle Differentialgleichungen vom elliptischen Typus zu ebnen, die wichtigsten benutzten Begriffe, Bezeichnungen und Abkürzungen in einheitlicher Weise festgelegt. Die neueren Methoden bilden neben der allgemeinen Theorie der konformen Abbildung den Inhalt des letzten, vierten Abschnittes, sofern sie nicht, wie die sich der linearen Integralgleichungen bedienenden Verfahren, in dem dritten Abschnitte Platz gefunden haben

Die im dritten und hauptsächlich im vierten Abschnitte zur Darstellung gelangende konforme Abbildung gehört in den meisten Arbeiten der älteren Schule sowie in zahlreichen Untersuchungen der neueren Zeit methodisch in das Gebiet der Potentialtheorie hinein. Eine eingehende Darstellung der Potentialtheorie unter Ausschluß der konformen Abbildung und die Zusammenfassung dieser in einem besonderen Artikel würde daher nicht gut ausführbar sein. Das Referat über die konforme Abbildung würde seinerseits natürlich unvollständig bleiben, wollte man die neuerdings ausgebildeten independenten funktionentheoretischen und Kontinuitätsmethoden an dieser Stelle außer Betracht lassen. In der vorliegenden Darstellung sind darum die verschiedenen Richtungen tunlichst dem historischen Entwicklungsgange folgend gleichmäßig berücksichtigt worden.

^{*)} Für die Mitwirkung bei der Korrektur dieses Referates und für verschiedene Verbesserungs- und Ergänzungsvorschläge bin ich außer der Redaktion den Herren Bieberbach, Carathéodory, Courant, Hilb und Koebe zum größten Danke verpflichtet.

Inhaltsübersicht.

I. Definitionen und Bezeichnungen.

- 1. Allgemeines über zwei- und dreidimensionale Gebiete.
- 2. Spezielle Klassen zwei- und dreidimensionaler Gebiete.
- 3. Ortsfunktionen.
- 4. Allgemeines über unendlichvielblättrige schlichtartige Gebiete.

II. Allgemeine Sätze der Potentialtheorie.

- 5. Definition der Potentialfunktion.
- 6. Potential einer einfachen Belegung.
- 7. Potential einer Doppelbelegung.
- S. Logarithmisches Potential einer ebenen Flächenbelegung. Potential einer Volumladung.
- 9. Newtonsches Potential einer einfachen Linienbelegung.
- 10. Greensche Formeln. Allgemeine Eigenschaften der Potentialfunktionen.
- 11. Die Cauchy-Riemannschen Differentialgleichungen.

III. Besondere Methoden für einzelne Klassen zwei- und dreidimensionaler Gebiete. Spezielle Theorie der konformen Abbildung.

- Die erste und die zweite Randwertaufgabe. Problemstellung und Unitätssätze.
- Explizite Lösung der ersten Randwertaufgabe für die Kreisfläche und den Kugelkörper.
 - a) Die Poissonschen Integrale.
 - b) Entwicklungssatz. Folgerungen.
- 14. Kreisringfläche. Entwicklungssatz. Folgerungen.
- 15. Positive Potentialfunktionen.
- 16. Die Sätze von Harnack.
- 17. Methode des arithmetischen Mittels.
 - a) Allgemeine Ansätze und Resultate von C. Neumann und G. Robin.
 - b) Grundlegende Wendung durch H. Poincaré.
 - c) Weiterführung der Poincaréschen Methoden.
 - d) Zurückführung auf eine lineare Integralgleichung.
- Verhalten der Lösung des ersten Randwertproblems am Rande des Definitionsgebietes.
- 19. Lösung der ersten Randwertaufgabe als Potential einer einfachen Belegung.
- 20. Stetig gekrümmte Gebiete. Greensche Funktion. Greensche Formel.
- 21. Stetig gekrümmte Gebiete. Greensche Funktionen zweiter Art.
- 22. Konforme Abbildung einfach zusammenhängender Gebiete der Klasse B in auf ein Kreisgebiet.
- 23. Gebiete der Klasse D in E. Konforme Abbildung.
- 24. Kombinatorische Methoden.
 - a) Alternierendes Verfahren. Drei Grundtypen von Aufgaben.
 - b) Ebene Gebiete der Klasse E und M. Das erste Randwertproblem.
 - c) Gebiete der Klasse E und M in \mathfrak{E} . Konforme Abbildung auf analytische Gebiete. Das zweite Randwertproblem.
 - d) Lösungen mit vorgeschriebenen Periodizitätsmoduln.
 - e) Zweidimensionale Gebiete auf einer Fläche im Raume. Konforme Abbildung auf ebene Gebiete.

- f) Gebiete in \mathfrak{E}_m . Existenzsätze der Riemannschen Theorie.
- g) Weitere Anwendungen des alternierenden Verfahrens.
- h) Strömungspotential. Abbildung auf ein Schlitzgebiet.
- i) Gemischte Randbedingungen.
- j) Weitere kombinatorische Methoden.
- 25. Kreispolygonflächen. Polyeder.
- 26. Konvexe Gebiete. Rundungsschranke. Bedingungen für die Schlichtheit einer Abbildung.
- 27. Konforme Abbildung mehrfach zusammenhängender Gebiete.
- 28. Das dritte Randwertproblem.
- 29. Weitere Randwertaufgaben.
- 30. Die Poisson sche Differentialgleichung.
- 31. Einzelbetrachtung besonderer Gebiete.
- 32. Wirkliche Bestimmung der Lösung von Randwertaufgaben. Besondere Ansätze.
- 33. Lösung in Abhängigkeit von der Begrenzung.
- IV. Umfassende Methoden. Allgemeine Theorie der konformen Abbildung.
- 34. Leitgedanken. Heuristisches.
- 35. H. A. Schwarz, Zur Theorie der Abbildung.
- 36. Ergebnisse von A. Harnack. Méthode de balayage von H. Poincaré.
- 37. H. Poincaré. Sur un theorème de la théorie générale des fonctions.
- 38. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet.
- 39. Auflösung des ersten Raudwertproblems in der Ebene.
- 40. Einfach zusammenhängende Gebiete der allgemeinsten Natur.
 - a) H. Poincaré, Sur l'uniformisation des fonctions analytiques.
 - b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven.
- 41. Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur.
- 42. Strömungspotential.
- 43. Das iterierende Verfahren von P. Koebe.
- 44. Konforme Abbildung eines p-fach zusammenhängenden Gebietes in $\mathfrak E$ auf ein Vollkreisgebiet.
- 45. Variationsmethoden.
 - a) Allgemeines.
 - b) Die ersten Arbeiten von D. Hilbert.
 - c) Auflösung des ersten Randwertproblems in der Ebene und im Raume.
 - d) Strömungspotential. Der Hilbert sche Ansatz. Konforme Abbildung auf ein Schlitzgebiet.
- 46. Kontinuitätsmethode im Gebiete der konformen Abbildung.
- 47. Funktionentheoretische Richtung.
- 48. Abbildung des Randes.
 - a) Besondere Klassen schlichter Gebiete.
 - b) Allgemeine Theorie.
- 49. Variable Gebiete.

Literatur.

Ältere Literatur vgl. bei *H. Burkhardt* und *W. Franz Meyer*, Potentialtheorie, II A 7 b, p. 465-466. Öfter genannt werden im folgenden namentlich:

A. Harnack, Die Grundlagen der Theorie des logarithmischen Potentiales und

- der eindeutigen Potentialfunktion in der Ebene, Leipzig 1887 (abgekürzt, A. Harnack, Grundlagen).
- A. Korn, Lehrbuch der Potentialtheorie, zwei Bände, Berlin 1899 (A. Korn, Potentialtheorie).
- H. Poincare, Théorie du potentiel Newtonien, 1894 95, réd. par E. Le Roy et C. Vincent, Paris 1899 (H. Poincaré. Potentiel).

Weitere Literatur:

- O. Hölder, Beiträge zur Potentialtheorie, Inaugural-Dissertation, Stuttgart 1882.
- G. Holzmüller, Einführung in die Theorie der isogonalen Verwandtschaften und der konformen Abbildungen, verbunden mit Anwendungen auf mathematische Physik, Leipzig 1882.
- C. Neumann, Über die Methode des arithmetischen Mittels, zwei Abhandlungen. Leipzig 1887/88 (Aus dem 13. und 14. Bande der "Abh. d. Kgl. Sächs. Ges. d. Wiss." Nr. IX und XIII). (C. Neumann, Abhandlungen).
 - Vorlesungen über *Riemann's* Theorie der *Abel*schen Integrale, zweite Auflage, Leipzig 1887 (C. Neumann, Abelsche Integrale).
- A. H. Schwarz, Gesammelte mathematische Abhandlungen, zwei Bände, Berlin 1890 (H. A. Schwarz, Ges. Abh.). [1910.
- E. B. Christoffel, Gosammelte mathematische Abhandlungen, zwei Bände, Leipzig
- F. Klein, Über Riemann's Theorie der algebraischen Funktionen und ihrer Integrale, Leipzig 1882 (F. Klein, Algebraische Funktionen).
- Riemannsche Flächen (lith.), Göttingen 1892.
- Über die hypergeometrische Funktion (lith.), Göttingen 1894.
- L. Schlesinger, Haudbuch der Theorie der linearen Differentialgleichungen, zwei Bände, Leipzig 1895—1898.
- R. Frieke und F. Klein, Vorlesungen über die Theorie der automorphen Funktionen, Leipzig und Berlin, Bd. I, 1897; Bd. II, 1900 bis 1912 (R. Frieke und F. Klein. Automorphe Funktionen).
- É. Picard, Traité d'Analyse, zweite Auflage, Paris, Bd. I. 1901; Bd. II, 1905; Bd. III, 1908 (É. Picard, Traité).
- A Korn, Fünf Abhandlungen zur Potentialtheorie. Berlin 1902 (A. Korn, Abhandlungen).
- J. Hadamard, Leçons sur la propagation des ondes et les équations de l'hydrodynamique, Paris 1903 (J. Hadamard, Leçons.
- E. R. Neumann, Studien über die Methoden von C. Neumann und G. Robin zur Lösung der beiden Randwertaufgaben der Potentialtheorie, Leipzig 1905 (E. R. Neumann, Studien).
- V. Volterra, Leçons sur l'intégration des équations différentielles aux dérivées partielles professées à Stockholm, Upsala 1906; zweite Auflage 1914.
- R. d'Adhémar, Exercices et leçons d'Analyse, Paris 1908.
- L'équation de Fredholm et les problèmes de Dirichlet et de Neumann, Paris 1909.
- A. Wangerin, Theorie des Potentials und der Kugelfunktionen, Bd. I. Leipzig 1909.
- H. Poincaré, sechs Vorträge über ausgewählte Gegenstände aus der reinen Mathematik und mathematischen Physik, Leipzig 1910.
- Leçons de mécanique céleste, Bd. III, Paris 1910.
- J. Hork, Einführung in die Theorie der partiellen Differentialgleichungen, Leipzig 1910 (J. Horn, Partielle Differentialgleichungen).
- J. Plemelj, Potentialtheoretische Untersuchungen, Leipzig 1911 (J. Plemelj, Untersuchungen)

F. Prym und G. Rost, Theorie der Prymschen Funktionen I. Ordnung. Leipzig 1911 (F. Prym und G. Rost, Prymsche Funktionen).

D. Hilbert, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen,

Leipzig 1912 (D. Hilbert, Grundzüge).

- H. Weber, Die partiellen Differentialgleichungen der mathematischen Physik, fünfte Auflage, Braunschweig, Bd. I, 1910; Bd. II, 1912 (H. Weber, Partielle Differentialgleichungen).
- E. R. Neumann, Beiträge zu einzelnen Fragen der höheren Potentialtheorie, Leipzig 1912 (E. R. Neumann, Beiträge).
- W. F. Osgood, Lehrbuch der Funktionentheorie, zweite Auflage, Leipzig 1912, Bd. I.
- É. Goursat, Cours d'Analyse mathématique, zweite Auflage, Paris, Bd. I, 1910; Bd. II, 1911; Bd. III, erstes Heft 1913, zweites Heft 1914 (É. Goursat, Cours).
- L. Lewent, Konforme Abbildung, mit einem Beitrag von W. Blaschke, Leipzig 1912.

E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie:

- Heft, Ebene analytische Kurven und zu ihnen gehörige Abbildungen, Leipzig 1911.
- 2. Heft, Konforme Abbildung einfach-zusammenhängender Bereiche. Herausgegeben unter Mitwirkung von W. Blaschke, Leipzig 1913.

H. Weyl, Die Idee der Riemannschen Fläche, Leipzig 1913.

- G. Herglotz, Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, Leipzig 1914.
- L. Bieberbach, Einführung in die konforme Abbildung, Berlin und Leipzig 1915 (L. Bieberbach, Konforme Abbildung).
- T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Inaugural-Dissertation, Upsala 1916.

I. Definitionen und Bezeichnungen.

1. Allgemeines über zwei- und dreidimensionale Gebiete. Se (M) eine Punktmenge in einer schlichten (d. h. einfach bedeckten) Ebene (in \mathfrak{E}) oder auf einem die Gesamtebene oder einen Teil dieser nach Art einer geschlossenen Riemannschen Fläche ganz oder zum Teil mehrfach überdeckenden flächenhaften Gebilde (in \mathfrak{E}_m). Dieses kann (eine endliche Anzahl im Innern gelegener) Windungspunkte (endlicher Ordnung) haben.¹) Besteht eine allseitige Umgebung eines Punktes P von (M) aus lauter Punkten der Menge, so ist P ein "innerer" Punkt.

Eine Punktmenge (M) wird "Gebiet" genannt, wenn 1^0) alle ihre Punkte innere Punkte sind, 2^0) zwei beliebige ihrer Punkte durch einen geradlinigen Streckenzug (von endlicher Seitenzahl), dessen alle Punkte der Menge angehören, verbunden werden können.²) Es sei (M')

- 1) Die Ebene \mathfrak{E} sowie jedes im Unendlichen einfache Blatt vom \mathfrak{E}_m wird durch einen "unendlich fernen Punkt" geschlossen gedacht. Hängen im Unendlichen mehrere Blätter der Fläche \mathfrak{E}_m zusammen, so wird diesen ein unendlich ferner Punkt (Windungspunkt) zugeordnet.
- 2) Wir nennen also "Gebiet", was gelegentlich "offenes Gebiet" genannt wird. Die Begriffe "das Gebiet" und "das Innere des Gebietes" sind völlig in-

die erste Ableitung von (M). Die Menge (M'-M) ist die Begrenzung oder der Rand S von T.

Hat die Entfernung der Punkte eines Gebietes von dem Koordinatenursprung eine endliche obere Grenze, so heißt das Gebiet "beschränkt". Ist T ein beschränktes Gebiet in $\mathfrak E$, ist ferner S sein Rand, so wird die Punktmenge $\mathfrak O - (T+S)$, unter $\mathfrak O$ die Gesamtheit der Punkte von $\mathfrak E$ verstanden, das "Äußere" von T und, wenn sie ebenfalls ein Gebiet darstellt, das "Außengebiet" T_a von T genannt. Im letzteren Falle wird T gelegentlich als das "Innengebiet" T_a bezeichnet.

Die abgeschlossene Punktmenge T + S wird "Bereich" genannt. Vgl. den Artikel von L. Zoretti und A. Rosenthal Nr. 10.

In einer ganz ähnlichen Weise werden die Begriffe "Gebiet", "beschränktes Gebiet" und "Bereich" im Raume erklärt.")

haltsgleich. Das gleiche gilt von den Ausdrücken: "ein Punkt des Gebietes T", "ein Punkt im Innern von T", oder noch kürzer, "ein Punkt in T".

Es sei bemerkt, daß wir die Bezeichnung "Kreis" und "Kugel" für die Kreislinie und Kugelfläche vorbehalten. Das von einem Kreise (mit C, C_1 , C', C^* , \mathbb{C} usf. bezeichnet) begrenzte endliche Flächenstück (in \mathbb{C}) heißt "Kreisfläche" oder "Kreisgebiet" (entsprechend mit K, K_1 , K', K^* , \mathbb{R} usf. bezeichnet). In ähnlichem Sinne sprechen wir von dem "Kugelkörper". Ein geschlossener, sich selbst nicht durchschneidender geradliniger Streckenzug (von endlicher Seitenzahl) in \mathbb{C} oder \mathbb{C}_m heißt "Polygon". Ein von ihm begrenztes endliches oder unendliches Gebiet nennen wir eine "Polygonfläche" oder ein "Polygongebiet". In Übereinstimmung mit der Definition eines Gebietes wird nirgends von Punkten "im Innern eines Kreises" oder allgemeiner "einer Kurve" gesprochen.

- 3) Bei der Bildung von (M') hat man sich eine Umgebung eines jeden unendlich fernen Punktes oder Windungspunktes durch Vermittelung einer $-\frac{1}{m}(m \ge 1)$ oder $z^{\frac{m}{m}}(m > 1)$ auf ein beschränktes schlichtes Gebiet übertragen zu denken. Außer wenn (M) aus der Gesamtheit der Punkte der Ebene $\mathfrak E$ oder einer geschlossenen Riemannschen Fläche $\mathfrak R$ besteht (geschlossenes Gebiet), ist (M') von (M) verschieden.
- 4) Auch unendlich ferne Punkte können zum Rande eines Gebietes gehören. Windungspunkte am Rande werden nur bei Betrachtung der konformen Abbildung von Kreispolygonflächen (Nr. 25) eingeführt. Sie bleiben im übrigen ausgeschlossen. Ein Gebiet in $\mathfrak{E}, \mathfrak{E}_m$ oder im Raume wird im folgenden in der Regel mit T, T_1, T', T^*, Θ u. dgl., sein Rand entsprechend mit S, S_1, S', S^*, Σ u. dgl. bezeichnet.
- 5) Dies entspricht ganz dem allgemeinen Begriff einer beschränkten Punktmenge.
- 6) Allgemeiner sprechen wir, wenn $\Theta (T+S)$ in eine endliche Anzahl von Gebieten zerfällt, von den zu T gehörigen Außengebieten. Eins von diesen enthält den unendlich fernen Punkt.
- 7) Auch den Raum denken wir uns durch einen unendlich fernen Punkt geschlossen Raumverzweigungen werden im allgemeinen nicht zugelassen.

Wir sagen, eine Eigenschaft gelte "in T" (auch "im Innern von T"), wenn sie in allen Punkten von T gilt. Soll die Berandung S mit einbezogen werden, so sagen wir, die betrachtete Eigenschaft gelte "in T und auf S" (auch "im Innern und auf dem Rande von T"), kürzer "in T+S", oder "im Bereiche T+S". Ist ein Bereich T_1+S_1 in T gelegen, so besteht S_1 aus lauter Punkten von T. Ist dagegen ein Gebiet T_1 in T enthalten, so kann S_1 Punkte mit S gemeinsam haben.

Ein Gebiet in \mathfrak{E}_m heißt (nach $P.\ Koebe$) "schlichtartig", wenn es durch jedes in ihm gelegene Polygon zerstückelt wird.

Ein schlichtes oder schlichtartiges berandetes Gebiet wird "p-fach zusammenhängend" genannt, wenn sein Rand aus p "Komponenten" besteht.⁸)⁴) Ist die Anzahl der Randkomponenten unendlich, so heißt T "unendlichvielfach zusammenhängend." 9)

Sei T ein nicht schlichtartiges berandetes Gebiet in \mathfrak{E}_m , das durch q+1 ($q\geq 1$) einander nicht schneidende Polygone allemal zerstückelt wird, während es ein System¹⁰) von q Polygonen gibt, das T nicht zerstückelt. Ist p die Anzahl der Randkomponenten von T, so nennen wir $T\ldots_n(p+2q)$ -fach zusammenhängend".⁴)

2. Spezielle Klassen ebener und räumlicher Gebiete. Unter einer "einfachen Kurve in E" verstehen wir eine Punktmenge, die, durch stereographische Projektion auf eine Kugel übertragen, umkehrbar eindeutig und stetig auf den Einheitskreis C abgebildet werden kann. Sie wird, wenn sie beschränkt ist, "Jordansche Kurve" genannt; das von ihr begrenzte beschränkte Gebiet heißt "Jordansches Gebiet". Die Koordinaten x und y der Punkte einer Jordanschen Kurve lassen sich als stetige Funktionen der Bogenlänge t von C mit der Periode 2π darstellen. Ein zusammenhängender, mehr als einen Punkt enthaltender Teil einer Jordanschen Kurve wird "Jordansches Kurvenstück" genannt. Eine "einfache Kurve in \mathfrak{E}_m " heißt eine Punktmenge in \mathfrak{E}_m , die folgende Eigenschaften hat: 1. Sie kann, auf eine ganz oder teilweise mehrfach überdeckte Kugel übertragen, umkehrbar eindeutig und stetig auf C abgebildet werden. 2. Sie enthält keinen Windungspunkt. 3. Sie kann aus einer endlichen Anzahl an-

⁸⁾ Vgl. F. Hausdorff, Grundzüge der Mengenlehre, Leipzig 1914, S. 351 ff. An der bezeichneten Stelle ist nur von beschränkten Gebieten in E die Rede. Bei nicht beschränkten Gebieten ist die Vorschrift der Fußnote 3 zu beachten.

^{9) &}quot;Mehrfach zusammenhängende" Gebiete haben eine endliche Zusammenhangszahl > 1.

¹⁰⁾ Und darum auch unendlichviele Systeme.

einandergereihter Stücke einfacher Kurven in & zusammengesetzt werden.¹¹)

Sei S eine rektifizierbare Jordansche Kurve. Die von einem willkürlichen Anfangspunkte ab gemessene Länge eines Bogens der Kurve wird in der Regel mit s12) bezeichnet. Sein Endpunkt wird ebenfalls s genannt. Den wachsenden s soll der positive Umlaufssinn des von S begrenzten beschränkten Gebietes T entsprechen: dieses bleibt dabei links liegen. Außer höchstens in einer Menge von Punkten vom Lebesqueschen Maße Null, hat S eine bestimmte Tangente. 13) Ist in s eine Normale vorhanden, so wird diese, in das Innere von T gerichtet, mit (n), oder, wenn der Fußpunkt hervorgehoben werden soll, $mit(n_s)$ bezeichnet.

Auf S möge eine stetige Folge reeller Werte gegeben sein. Als Funktion der Bogenlänge betrachtet, sei diese mit $\varphi(s)$ bezeichnet. Offenbar ist $\varphi(l) = \varphi(0)$, unter l die Länge von S verstanden.14)

Die vorstehenden Festsetzungen werden in leicht ersichtlicher Weise auf ein mehrfach zusammenhängendes, von lauter beschränkten rektifizierbaren einfachen Kurven in & oder &, begrenztes Gebiet übertragen.4) So wird z.B. in naheliegender Abkürzung für die Gesamtheit der auf den einzelnen Komponenten von S gegebenen stetigen Wertfolgen die Bezeichnung $\varphi(s)$ gebraucht.

Im ähnlichen Sinne werden wir allgemeiner etwa von einer auf S gegebenen (nicht notwendig beschränkten) integrierbaren 15 Funktion $\varphi(s)$ sprechen.

Sei S eine beschränkte rektifizierbare einfache Kurve in & oder & Ihre Gleichungen mögen

 $x = x(\hat{s}), y = y(\hat{s}), (x(\hat{s} + l) = x(\hat{s}), y(\hat{s} + l) = y(\hat{s}))$ heißen, unter \hat{s} die Bogenlänge verstanden. Sind die Funktionen $\frac{dx}{d\hat{s}}, \frac{dy}{d\hat{s}}$ stetig, so sagen wir, & habe eine stetige Tangente oder gehöre der Klasse A an. 16)

¹¹⁾ Beschränkte einfache Kurven (insbesondere Jordansche Kurven) bilden in dem folgenden die Regel.

¹²⁾ Nach Bedarf auch mit t oder o.

¹³⁾ H. Lebesgue, Leçons sur l'intégration et la recherche des fonctions primitives, Paris 1904, p. 125-129.

¹⁴⁾ Läßt man beliebige reelle Werte der Bogenlänge zu (entsprechend wiederholten Umläufen um S), so wird $\varphi(s)$ eine periodische Funktion mit der Periode 1.

¹⁵⁾ Im üblichen Sinne oder nach Lebesgue.

¹⁶⁾ Sei & eine Kurve der Klasse A in G. P ein Punkt auf E, (n) die Normale in P Es läßt sich ein Wert $\delta > 0$ angeben, so daß derjenige Teil von E, der

 \mathfrak{S} kann in eine endliche Anzahl von Stücken zerlegt werden, so daß in einem jeden entweder y eine eindeutige Funktion von x ist, die eine stetige Ableitung hat, oder x eine ebensolche Funktion von y darstellt.

Sind auch noch $\frac{d^2x}{ds^2}$, $\frac{d^2y}{ds^2}$ vorhanden und stetig, so sagen wir, \mathfrak{S} sei stetig gekrümmt oder gehöre der Klasse B an.¹⁷)

Gehören alle Komponenten des Randes eines einfach oder mehrtach zusammenhängenden Gebietes in \mathfrak{E} oder \mathfrak{E}_m der Klasse A, B oder B' an, so heißt dieses ein Gebiet der Klasse A, B oder B'.¹⁷)

Erfüllt die Kurve $\mathfrak S$ der Klasse A eine Beziehung der Form $\theta < \bar{\delta} \Delta^{2}, 0 < \lambda < 1 \ (\bar{\delta} \ \text{konstant}), \ \text{so gehört sie der Klasse} \ Ah \ \text{an.}$ Die Ableitungen $\frac{dx}{d\hat{s}}, \frac{dy}{d\hat{s}}$ genügen Ungleichheiten von der Form

$$\| \frac{d}{d\tilde{\mathfrak{s}}} x(\tilde{\mathfrak{s}} + h) - \frac{d}{d\tilde{\mathfrak{s}}} x(\tilde{\mathfrak{s}}) \|, \| \frac{d}{d\tilde{\mathfrak{s}}} y(\tilde{\mathfrak{s}} + h) - \frac{d}{d\tilde{\mathfrak{s}}} y(\tilde{\mathfrak{s}}) \| < \delta_1 \| h \|^2,$$
 ($\delta_1 \text{ koustant}$).

Gelten analoge Beziehungen für $\frac{d^2x}{d\tilde{s}^2}$, $\frac{d^2y}{d\tilde{s}^2}$, so ordnen wir \mathfrak{S} der Klasse Bh zu.

Einen abgeschlossenen, doppelpunktlosen (Windungspunkte nicht enthaltenden) Bogen einer (reellen) analytischen Linie in $\mathfrak E$ oder $\mathfrak E_m$

im Innern der Kreisfläche vom Halbmesser d um P enthalten ist, von einer jeden zu (n) parallelen Geraden in einem und nur einem Punkte geschnitten wird, und zwar, wie auch P auf $\mathfrak S$ gewählt sein mag. Vgl. \acute{E} . Goursat, loc. cit. 20) und L. Lichtenstein, Jahresber, der Deutschen Math. Ver. 21 (1912), p. 167—173.

17) Gelegentlich werden in der Potentialtheorie (beschränkte) Kurven $\mathfrak S$ mit stetiger Tangente (in $\mathfrak S$) betrachtet, die so beschaffen sind, daß, unter Δ die längs $\mathfrak S$ gemessene Entfernung zweier Punkte der Kurve, θ den von den zugehörigen Innennormalen eingeschlossenen Winkel, δ' eine geeignete Konstante verstanden, $\theta < \delta' \Delta$ ist. Außer höchstens in einer Punktmenge (N) vom Lebesgueschen Maße Null, sind $\frac{d^2x}{d\tilde{s}^2}$, $\frac{d^2y}{d\tilde{s}^2}$ vorhanden. In den Punkten der Menge $\mathfrak S - (N)$ hat $\mathfrak S$ eine bestimmte Krümmung $k \leq \delta'$. Kurven dieser Art werden wir als Kurven der Klasse B' (in $\mathfrak S$) bezeichnen. Eine einfache Kurve in $\mathfrak S_m$ gehört der Klasse B' an, wenn sie sich in eine endliche Anzahl aneinandergereihter Stücke von Kurven der Klasse B' in $\mathfrak S$ zerlegen läßt. Dieser Klasse gehören insbesondere Kurven mit stetiger Tangente an, die eine beschränkte nicht notwendig stetige) Krümmung haben.

Sei $\mathfrak S$ eine Kurve der Klasse B oder B' in $\mathfrak S$, P ein Punkt auf $\mathfrak S$. Es läßt sich ein Wert $\delta'' > 0$ angeben, so daß jeder Kreis um P vom Halbmesser $\leq \delta''$ die Kurve in zwei Punkten trifft, dies zwar, wie auch P auf $\mathfrak S$ gewählt sein mag. (Vgl. L. Lichtenstein, loc. cit. 16.) Dort werden Kurven der Klasse B in $\mathfrak S$ betrachtet.)

Diese sowie die in der Fußnote 16) angegebene Eigenschaft der Kurven der Klasse B' werden manchmal als besondere Voraussetzungen eingeführt.

nennen wir regulär, wenn er singularitätenfrei ist. Er läßt sich über seine beiden Endpunkte analytisch fortsetzen.

Sind alle Randkomponenten eines einfach oder mehrfach zusammenhängenden Gebietes in $\mathfrak E$ oder $\mathfrak E_m$ (geschlossene) analytische und reguläre Linien, so soll dieses ein Gebiet der Klasse C heißen. Der Klasse D(L oder M) wird ein Gebiet in $\mathfrak E$ oder $\mathfrak E_m$ zugeordnet, wenn es vom endlichen Zusammenhang ist und wenn jede Komponente des Randes aus einer endlichen Anzahl Stücke analytischer und regulärer Linien (oder statt dessen der Kurven der Klasse A oder B) besteht, die Ecken oder nach innen gerichtete Spitzen einschließen. Die von je zwei Nachbarseiten eingeschlossenen Winkel sind somit > 0 und $\leq 2\pi$. Liegen auch nach außen gerichtete Spitzen vor, so sprechen wir von einem Gebiete der Klasse E(N) oder Q). 18

Es sei jetzt S eine (geschlossene) Jordansche Fläche, die folgende Eigenschaften hat: Man kann eine endliche Anzahl zusammenhängender Stücke $\Sigma_1, \ldots \Sigma_m$ von S angeben, so daß jeder Punkt der Fläche dem Innern von mindestens einem Σ_k angehört. 19) Von einem jeden Teilgebiete Σ_{k} wird angenommen, daß es durch Vermittelung einer Transformation $x = x_k(\nu, \omega), y = y_k(\nu, \omega),$ $z = z_k(\nu, \omega)$, unter $x_k, y_k, z_k (k = 1, \dots m)$ gewisse nebst ihren partiellen Ableitungen erster Ordnung stetige Funktionen verstanden, umkehrbar eindeutig auf ein ebenes Gebiet bezogen werden kann. Eine weitere Voraussetzung ist, daß die Jacobischen Determinanten $\frac{\partial x_k(\mathbf{v}, \mathbf{\omega})}{\partial (\mathbf{v}, \mathbf{\omega})}, \ \frac{\partial y_k(\mathbf{v}, \mathbf{\omega})}{\partial (\mathbf{v}, \mathbf{\omega})}, \ \frac{\partial z_k(\mathbf{v}, \mathbf{\omega})}{\partial (\mathbf{v}, \mathbf{\omega})} \ \text{nicht gleichzeitig verschwinden.} \ \text{Die Fläche} \ S$ kann in eine endliche Anzahl Teile zerlegt werden, so daß in einem jeden entweder z als eine eindeutige, nebst ihren partiellen Ableitungen erster Ordnung stetige Funktion von x und y, oder etwa y als ebensolche Funktion von x und z dargestellt werden kann. Die Fläche S bezeichnen wir als eine Fläche der Klasse A. Sie hat augenscheinlich eine stetige Tangentialebene.

Haben die vorhin eingeführten Funktionen $x_k, y_k, z_k (k=1, \dots m$ auch noch stetige partielle Ableitungen zweiter Ordnung, so sprechen wir von einer Fläche der Klasse B^{20})

Gelegentlich werden Flächen der Klasse A betrachtet, die so beschaffen sind daß, wenn $\overline{\Delta}$ die geradlinige Entfernung zweier Punkte

¹⁸⁾ Es sei darauf hingewiesen, daß bei den vorhin betrachteten Klassen von Gebieten punktförmige Randkomponenten ausgeschlossen sind.

^{19) &}quot;Dachziegelartige Überdeckung" von S durch $\Sigma_k (k = 1, ... m)$.

²⁰⁾ Der in der Fußnote 16) angegebene Satz gilt mutatis mutandis im Raume (vgl. É. Goursot, Bull. de la Soc. math. de France 38 (1910), p. 139—144).

der Fläche, θ den von den zugehörigen Normalen eingeschlossenen Winkel bezeichnet, $\theta < \delta_2 \overline{\Delta}$ (δ_2 konstant) ist. Flächen dieser Art ordnen wir der Klasse B' zu. Gilt statt $\theta < \delta_2 \overline{\Delta}$ eine Beziehung der Form $\theta < \delta_3 \overline{\Delta}^\lambda$, $0 < \lambda < 1$ (δ_3 konstant), so wird S der Klasse Ah zugeordnet. Die Funktionen x_k, y_k, z_k ($k = 1, \ldots m$) können so gewählt werden, daß $\frac{\partial x_k}{\partial \nu}$, $\frac{\partial x_k}{\partial \omega}$... Beziehungen von der Form

$$\left(\frac{\partial}{\partial \mathbf{r}} x_k(\mathbf{r} + l, \omega + l') - \frac{\hat{c}}{\hat{c} \mathbf{r}} x_k(\mathbf{r}, \omega)\right) < \delta_4 \left(\left|l\right| + \left|l'\right|\right)^k \left(\delta_4 \text{ konstant}\right)$$

genügen. Können x_k, y_k, z_k so gewählt werden, daß sie stetige partielle Ableitungen zweiter Ordnung haben, die der soeben hingeschriebenen Ungleichheit analoge Beziehungen erfüllen, so gehört S der Klasse Bh an.

Flächen der Klasse A, die analytisch und regulär sind, ordnen wir der Klasse C zu. Die Funktionen $x_k, y_k, z_k \ (k = 1, \dots m)$ können hier analytisch und regulär angenommen werden.

Besteht der Rand eines dreidimensionalen Gebietes T aus einer endlichen Anzahl Komponenten, die sämtlich Flächen der Klasse A(B, B', Ah) oder Bh) sind, so soll T ein Gebiet der Klasse A(B, B', Ah) oder Bh) heißen. Sind alle Komponenten Flächen der Klasse C, so wird C0 der Klasse C1 zugeordnet. Besteht jede Randkomponente aus einer endlichen Anzahl einander nirgends berührender Stücke der Flächen der Klasse C3, so soll C4 der Klasse C5 angehören. Die Begrenzung C5 hat in diesem Falle eine endliche Anzahl Kanten und räumlicher Ecken. In diesen läuft allemal eine endliche Anzahl Flächenstücke zusammen; die Flächenwinkel sind sämtlich von Null verschieden. Sind unter sonst gleichen Bedingungen die einzelnen Bestandteile jeder Randkomponente Flächenstücke der Klasse C6, so sollen C7 und C8 und C8 der Klasse C8 angehören.

In Verallgemeinerung der durch stereographische Projektion von & auf eine Riemannsche Kugel gewonnenen Gebiete werden zweidimensionale über einer beliebigen ²²) Fläche der Klasse Ah ausgebreitete Gebiete eingeführt. Auch kann man der Betrachtung Flächen der Klasse D, allgemeiner Flächen, die eine derartige dachziegelartige Überdeckung zulassen, daß jedes der überdeckenden Flächenstücke auf ein Gebiet in & konform abgebildet werden kann (Nr. 24e), zugrunde legen. Dies trifft z. B. bei Flächen zu, die aus einer endlichen Anzahl Stücke der Klasse C bestehen, wobei, im Gegensatz zu der vorhin

²¹⁾ Im Gegensatz zu zweidimensionalen Gebieten werden hier (ebenso wie bei Gebieten der Klasse D) Randstücke, die einander berühren, nicht zugelassen.

²²⁾ Gelegentlich ganz oder teilweise mehrfach überdeckten.

eingeführten Festsetzung, einzelne Teile einander längs in sich zurückleufender Kanten berühren können.23) Von hier aus gelangt man naturgemäß zu über & oder &, ausgebreiteten Gebieten mit endlich vielen "Rückkehrfalten" sowie zu Gebieten, die sich über die beiden Seiten von & (E,) erstrecken. 24) Als regulatives Prinzip bei dieser und ähnlichen Verallgemeinerungen erscheint wieder die Forderung, daß sich T von einer endlichen Anzahl Gebiete (in E, C, E*, E*) dachziegelartig überdecken läßt, die sich einzeln auf schlichte Gebiete konform abbilden lassen (Nr. 24e). Es steht so beispielsweise nichts im Wege, Gebiete über den einseitigen Flächen²⁵) zu betrachten.

Für viele funktionentheoretische Fragen, insbesondere in der Theorie der algebraischen Funktionen, sind geschlossene Flächen, etwa der Klasse Ah oder D von besonderer Wichtigkeit.

In der Ebene der komplexen Variablen z sei ein einfach zusammenhängendes Gebiet Θ gegeben, dessen Rand Σ aus einer endlichen Anzahl Stücke analytischer und regulärer Kurven besteht (Gebiet der Klasse E). Die einzelnen Seiten der Berandung seien in geeigneter Reiheufolge durch analytische und reguläre Substitutionen A_1, \ldots, A_n paarweise einander zugeordnet. Die Reihenfolge sei so gewählt, daß, wenn man die zusammengehörigen Seitenpaare nach einer Faltung der Ebene zusammenheftet, sich eine geschlossene Fläche im Raume ergibt. Für eine jede in $\Theta + \Sigma$, mit etwaiger Ausnahme der Ecken und Spitzen sowie möglicherweise einer endlichen Anzahl weiterer Punkte, reguläre analytische Funktion, die in den zusammengehörigen Punktepaaren des Randes dieselben Werte annimmt, hat @ den Charakter eines "ideal" geschlossenen Gebietes, d. h. eines Gebietes ohne Rand. Die einzelnen Seitenpaare von 2 sind durch die Substitutionen A_1, \ldots, A_n "ideal" miteinander verbunden. Der Begriff eines ideal geschlossenen Gebietes ist für den allmählichen Ausbau des Begriffes einer Riemannschen Mannigfaltigkeit von großer Wichtigkeit gewesen.

- 23) In räumlichen Ecken sollen sich diese Flächen jedoch wie Flächen der Klasse D verhalten.
- 24) Die beiden Seiten der Fläche hängen längs einer endlichen Anzahl einfacher Kurven oder Kurvenstücke zusammen. Gebiete dieser Art werden wir der Einfachheit halber künftig als Gebiete in E* oder Em bezeichnen.
- 25) Z. B. dem Möbiusschen Bande, Werke, II, p. 484—485 und p. 519—521 (Vgl. auch H. Weyl, die Idee der Riemannschen Fläche, Leipzig 1913, p. 26-27.)
- 25 a) Flächenstücke, die durch analytische Substitutionen ideal verbunden sind und in einer Ebene liegen oder auf Polyedern ausgebreitet sind, die aus Stücken von Ebenen und Kugelflächen bestehen, kommen schon bei H. A. Schwarz vor. Vgl. H. A. Schwarz, Gesammelte Abhandlungen, 2, p. 161. S. ferner R. Dedekind, J. f. Math. 83 (1877), p. 274. — Spezielle ideal geschlossene Gebiete in Em hat noch früher Riemann betrachtet. (Vgl. die Fußnote 25°.)

F. Klein, der seit 1878 als erster "ideal" geschlossene Gebiete systematisch betrachtete, spricht von einem "Fundamentalbereich". (Vgl. R. Fricke, II B 4 Nr. 14.)^{25 b}) Die ideal geschlossenen Gebiete, von denen das vorhin betrachtete Gebiet nur ein Beispiel darstellt, sind namentlich in der Theorie der automorphen Funktionen und der linearen Differentialgleichungen zweiter Ordnung von grundlegender Bedeutung Dort werden die verbindenden Substitutionen durch lineare gebrochene Funktionen vermittelt.^{25 c})^{25 a}

25^b) Siehe F. Klein, a. Neue Beiträge zur Riemannschen Funktionentheorie. Math. Ann. 21 (1883), p. 141-218 passim., insbes. p. 141-155 sowie die vorläufigen Mitteilungen: b) Math. Ann. 19 (1882), p. 159-160; e) a. a. O. p. 565 bis 568; d) Math. Ann. 20 (1882), p. 49-51. Man vergleiche ferner e) F. Klein, Riemannsche Flächen. und die vorbereitenden Ausführungen in der Schrift f) Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale, Leipzig 1882, insbes. p. 61-63. Von großer Wichtigkeit ist die in der zuletzt genannten Schrift p. 72-82 angebahnte Betrachtung symmetrischer Flächen. Nach H. A. Schwarz kann man jedes berandete Gebiet T (etwa der Klasse C in E) zu einer geschlossenen Fläche erweitern. Man schließt an T das Gebiet T an, das aus der Gesamtheit der Punkte besteht, die auf der Rückseite von T liegen. Das Gebiet T+T+S ist geschlossen und symmetrisch. Vgl. F. Klein, loc. cit. f) p. 79.

In der Hauptarbeit a) finden sich p. 149—151 weitere spezielle Beispiele ideal geschlossener Gebiete, darunter 1. die "Riemannsche Parallelogrammfigur" (vgl. B. Riemann, Gesammelte mathematische Werke und wissenschaftlicher Nachlaß, 2. Aufl. 1892, Theorie der Abelschen Funktionen, Nr. 12, p. 119—122 und 2. das von 2p-Kurven der Klasse C begrenzte 2p-fach zusammenhängende Gebiet (der Klasse C) in E. (In dem besonderen Falle, wenn die Begrenzung aus lauter Kreisen besteht, sind diese Gebiete zuerst von F. Schottky, J. f. Math 83 (1877), p. 300—351. betrachtet worden. Weitere Ausführungen und Ergänzungen gibt F. Klein in der Abhandlung, Über den Begriff des funktionentheoretischen Fundamentalbereiches, Math. Ann. 40 (1891), p. 130—139. Der Begriff (auch der Name) eines Fundamentalpolygons ist übrigens von Klein schon einige Jahre vor dem Erscheinen der an erster Stelle zitierten Hauptarbeit eingeführt worden. Man vgl. F. Klein, Math. Ann. 14 (1879), p. 111—172.

25°) Ein Fundamentalbereich Θ braucht keineswegs stets über einer schlichten Ebene ausgebreitet zu sein. Es können Verzweigungspunkte in Θ , in den Ecken der Randkurve sowie in Punkten, die bei beliebig oft wiederholter Anwendung der Grundsubstitutionen nicht erreicht werden, vorliegen.

25^d) F. Klein hat als erster frei im Raume gelegene geschlossene Flächen als "Riemannsche Flächen" aufgefaßt und der Theorie der algebraischen Funktionen zugrunde gelegt. (Vgl. F. Klein, loc. cit. 25^b) f).) Den ersten Anstoß zu dieser Auffassung hat eine gelegentliche Bemerkung von F. Prym (1874) gegeben (vgl. F. Klein, loc. cit. 25^b) f) p. IV). Schon frühzeitig hat Klein den Begriff einer Riemannschen Fläche wesentlich verallgemeinert. Vgl. F. Klein, Math. Ann. 7 (1874), p. 558—566; 10 (1876), p. 398—446 sowie loc. cit. 25^b) a) p. 146—149 und p. 153—155; f) p. 61—63, ferner F. Klein, Riemannsche Flächen, Wintersemester, zweiter Teil Ia B. Siehe auch die Ausführungen des

3. Ortsfunktionen.²⁶) Sei T irgendein beschränktes Gebiet in $\mathfrak{E}(\mathfrak{E}_{m})$ oder im Raume, T* ein Gebiet, das T+S enthält. Auf S sei eine beliebige stetige Wertfolge gegeben. Nach H. Lebesgue kann man (in unendlich mannigfaltiger Weise) eine in T* stetige Funktion bestimmen, die auf S die nämlichen Werte annimmt.²⁷) Ist S eine einfache Kurve, so kann man die Randwerte auf den Einheitskreis Cverpflanzen. Man erhält so, unter t die Bogenlänge auf C verstanden, eine stetige Funktion f(t) mit der Periode 2π . Ist die durch Verpflanzung gewonnene Funktion f(t) abteilungsweise stetig, so wollen wir auch die Randfunktion abteilungsweise stetig nennen.²⁸) Eine in einem ebenen oder räumlichen Bereiche T+S der Klasse C^{29}) erklärte Funktion F nennen wir abteilungsweise stetig, wenn sich T+Sin eine endliche Anzahl Bereiche zerlegen läßt, so daß in jedem von diesen F nach Festsetzung geeigneter Randwerte zu einer stetigen Funktion wird. Eine in einem beliebigen Gebiete T³⁰) erklärte Funktion nennen wir abteilungsweise stetig, wenn sie in jedem in T enthaltenen Bereiche der Klasse C abteilungsweise stetig ist. Sie heißt beschränkt, wenn ihr absoluter Betrag unterhalb einer endlichen Schranke liegt.

Zur Vereinfachung werden bei Ortsfunktionen von zwei oder drei unabhängigen Variablen, wenn es auf die Richtung, in bezug auf die differentiiert wird, nicht ankommt, partielle Ableitungen erster und zweiter Ordnung künftig mit D_1 und D_2 bezeichnet.

Es sei f(x,y) eine in einem beschränkten Bereiche T+S der Klasse A in $\mathfrak E$ erklärte Funktion. Ist

Textes über Fundamentalbereiche und die Fußnote 25 b). Bei Klein handelt es sich immer nur um geschlossene Gebiete. Durch Randsubstitutionen verbundene Flächenstücke kommen als Bestandteile nicht geschlossener Gebiete allgemeiner Natur (Nr. 4) wohl erst bei Koebe vor. Vgl. P. Koebe, Gött. Nachr. 1908, p. 337 bis 358 (p. 338-339, Fußnote). Über die Entwicklung des Begriffes einer allgemeinen Riemannschen Mannigfaltigkeit siehe H. Weyl, Die Idee der Riemannschen Fläche, Vorwort sowie p. 1-68, insbes. p. 34-36. Man vergleiche hierzu Nr. 4, insbes. die Fußnote 43) sowie die Ausführungen der Nr. 47 p. 359-360.

- 26) In diesem Abschnitte ist ausschließlich von reellen Funktionen die Rede. Wenn nicht das Gegenteil ausdrücklich vermerkt wird, sind diese eindeutig erklärt.
- 27) H. Lebesgue, Rend. del Circ. mat. di Palermo 24 (1907), p. 371—402 [p. 379—380]. Dort werden Gebiete in & betrachtet.
- 28) Diese Festsetzung läßt sich in leicht ersichtlicher Weise auf mehrfach zusammenhängende Gebiete in $\mathfrak E$ oder $\mathfrak E_m$ übertragen, deren Randkomponenten lauter einfache Kurven sind.
- 29) Mit Ausschluß einer endlichen Anzahl Stücke von Kurven (Flächen) der Klasse C.
- 30) Mit Ausschluß abzählbar vielen Stücken von Kurven (Flächen) der Klasse C. die sich nur am Rande häufen können.

$$\begin{split} |f(x_1, y_1) - f(x_2, y_2)| &< c_1 \varrho_{12}^{\lambda}, \, 0 < \lambda < 1, \, \varrho_{12}^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2 \\ & (c_1 \text{ konstant}), \end{split}$$

unter (x_1, y_1) , (x_2, y_2) zwei Punkte in T + S verstanden, so sagen wir, f(x, y) genüge in T + S einer $H\ddot{o}lder$ schen, kürzer einer H-Bedingung (auch einer H-Bedingung mit dem Exponenten λ). Die vorstehende Ungleichheit ist, wie leicht ersichtlich, einer Ungleichheit

$$|f(x+h_1,y+h_2)-f(x,y)| < c_2 \{|h_1|+|h_2|\}^{\lambda} \ (c_2 \text{ konstant})$$
 äquivalent. Gilt diese Beziehung für einen bestimmten Wert des Exponenten λ , so gilt sie (nötigenfalls nach einer Änderung des konstanten Faktors) für alle kleineren positiven λ .

Eine Funktion f(x, y) genügt in T einer H-Bedingung mit dem Exponenten λ , wenn sie diese in jedem Bereiche T' + S' in T erfüllt. Konvergiert T' gegen T, so kann c_1 dabei über alle Grenzen wachsen.³¹)

Ganz analoge Festsetzungen wollen wir bei Funktionen mit drei unabhängigen Variablen treffen.³²)

Es sei T ein beschränktes einfach oder mehrfach zusammenhängendes Gebiet in $\mathfrak E$ und (x,y) ein Punkt in T; f(x,y) sei eine in T und auf S stetige Funktion, die partiellen Ableitungen $D_1 f$ seien in T stetig. Die partielle Ableitung in einer Richtung (l), die mit der x-Achse einen Winkel α einschließt, hat den Wert

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x} \cos \alpha + \frac{\partial f}{\partial y} \sin \alpha.$$

Es sei jetzt s ein Punkt auf S, in dem S eine bestimmte Tangente oder zwei getrennte Tangenten (eine Ecke) hat. Konvergiert $\frac{\partial}{\partial l}f(x,y)$ bei der Annäherung an s längs einer beliebigen S in s nicht berührenden Geraden G in T gegen einen bestimmten endlichen, von G unabhängigen Grenzwert, und zwar auf jeder abgeschlossenen Menge der Geraden G gleichmäßig, so sagen wir, in s sei die partielle Ableitung $\frac{\partial f(s)}{\partial l}$ vorhanden. s

³¹⁾ Läßt sich im Gegensatz hierzu für c_1 eine obere Schranke angeben, so genügt, zu mindest wenn T der Klasse C angehört, f(x,y) in T+S einer H-Bedingung mit dem Exponenten λ . Vgl. Ch. H. $M\ddot{u}ntz$, Journ. f. Math. 139 (1910), p. 5—32 [p. 8—9]. Dort wird ein Kreisbereich betrachtet.

³²⁾ Die zuletzt betrachteten Ungleichheiten sind in die Potentialtheorie von O. Hölder eingeführt worden (vgl. O. Hölder, Beiträge zur Potentialtheorie, Stuttgart 1882). In der Theorie der trigonometrischen Reihen einer Veränderlichen ist eine analoge Beziehung bereits früher von R. Lipschitz betrachtet worden. Der Einfachheit halber werden wir uns auch bei Funktionen einer Variablen der abkürzenden Bezeichnung einer H-Bedingung bedienen.

³³⁾ Diese ist, was künftig nicht besonders hervorgehoben werden soll, endlich. Um Mißverständnisse zu vermeiden, sei bei dieser Gelegenheit bemerkt, daß im

192

Es sei T ein beschränktes Gebiet der Klasse A und es sei etwa $\frac{ef(s)}{\hat{e}.x}$ für alle s auf S vorhanden, es möge ferner $\frac{\partial}{\partial x}f(x,y)$ sich seinem Grenzwerte auf S gleichmäßig nähern. Eine Funktion, die in T gleich $\frac{\hat{e}}{\hat{e}.x}f(x,y)$, auf S gleich $\frac{\partial f(s)}{\hat{e}.c}$ ist, ist in dem Bereiche T+S stetig. Wird im folgenden von einer Funktion f(x,y) behauptet, sie sei in T+S nebst ihren partiellen Ableitungen erster Ordnung stetig, so besagt dies, daß sich $\frac{ef}{\hat{e}x}$ und $\frac{\hat{e}f}{\hat{e}y}$ wie vorhin auseinandergesetzt verhalten. Es genügt hierzu, daß die partiellen Ableitungen $\frac{\hat{e}}{\partial x}f(x,y)$ und $\frac{\hat{e}}{\hat{e}y}f(x,y)$ bei der Annäherung an den Rand längs der Normalen an S gleichmäßig konvergieren.

Es sei wie vorhin T ein beschränktes einfach oder mehrfach zusammenhängendes Gebiet in $\mathfrak E$ und es möge S in s eine bestimmte Tangente haben. Es sei (x,y) ein Punkt in T auf (n); seine Entfernung von s sei gleich h. Unter der Ableitung der Funktion f(x,y) in der Richtung der Innennormale (n) in s, kürzer der "Normalableitung", mit $\frac{\partial f}{\partial n}$, $\frac{\partial f}{\partial n}$, auch $\frac{\partial f}{\partial n}$ bezeichnet, verstehen wir den als vorhanden vorausgesetzten Grenzwert $\lim_{k \to 0} \frac{\delta}{\partial n} f(x,y)$. Wie leicht ersicht-

lich, ist
$$\frac{ef(s)}{\partial n} = \lim_{h \to 0} \frac{f(x, y) - f(s)}{h}$$

Es sei T ein beschränktes Gebiet der Klasse A in $\mathfrak E$ und f(x,y) eine in T und auf S stetige Funktion, die in T stetige partielle Ableitungen erster Ordnung hat. Wir sagen, f(x,y) habe eine auf S "stetige Normalableitung", wenn $\frac{\partial f(s)}{\partial n}$ existiert und $\frac{\partial}{\partial n} f(x,y)$ gegen $\frac{\partial f(s)}{\partial n}$ gleichmäßig konvergiert. Dies kann eintreten, auch wenn $\frac{\partial f(s)}{\partial x}$, $\frac{\partial f(s)}{\partial y}$ nicht vorhanden sind.

Es sei T insbesondere einfach zusammenhängend. Wir werden gelegentlich neben in T+S erklärten stetigen Funktionen weitere Funktionen zu betrachten haben, die in dem Außengebiete T_a mit Einschluß des Randes und höchstens mit Ausnahme des unendlich fernen Punktes stetig sind. Die Randwerte werden dann entsprechend

folgenden von Bezeichnungen wie $\lim_{n = \infty} u_n = +\infty$, $\lim_{x = +\infty} f(x) = +\infty$ u. dgl. kein Gebrauch gemacht wird. Ist ein Grenzwert vorhanden, so ist damit zugleich ausgesagt, daß er auch endlich ist.

³⁴⁾ Und darum überhaupt alle $D_1 f$.

etwa mit $f(s^+)$ und $f(s^-)$, die Werte der Normalableitungen, falls diese vorhanden sind, mit $\frac{\partial}{\partial u} f(s^+)$, $\frac{\partial}{\partial n} f(s^-)$ bezeichnet.³⁵)

Analoge Festsetzungen gelten für Gebiete auf \mathfrak{G}_m und im Raume. (36)

4. Allgemeines über unendlichvielblättrige schlichtartige Gebiete. Eine Folge von Gebieten $T_n(n=1,2,\ldots)$ der Klasse D (allgemeiner etwa der Klasse E oder Q) in $\mathfrak E$ oder $\mathfrak E_m$ heißt "ineinandergeschachtelt", $T_1 < T_2 < T_3 < \cdots$, wenn T_n für alle n in T_{n+1} liegt, während es Punkte von T_{n+1} gibt, die in T_n nicht enthalten sind; T_n und T_{n+1} können Teile des Randes gemeinsam haben. Ist dies für keinen Wert von n der Fall, so sind die Gebiete im "engeren Sinne ineinandergeschachtelt".

Jedes Gebiet T in $\mathfrak E$ oder $\mathfrak E_m$, das mindestens einen Randpunkt hat, kann als Limes einer Folge ineinandergeschachtelter Gebiete $T_n(n=1,2,\ldots)$ der Klasse ℓ' dargestellt werden. Jeder Bereich in T ist von einem gewissen n an in allen T_n enthalten. $^{37})^{38})$

Es sei $T_1 < T_2 < T_3 < \cdots$ eine Folge ineinandergeschachtelter Gebiete in \mathfrak{C}_n , deren Blätterzahl mit n ins Unendliche wächst. 39)

Wir sagen, die Folge $T_n(n=1,2,\ldots)$ definiert eine (unendlichvielblättrige) Punktmannigfaltigkeit $\mathfrak{T}=\lim_{n\to\infty}T_n$, die aus der Gesamt-

35) Es gilt dabei die Definitionsgleichung $\frac{\hat{\ell}}{\partial n}f(s^-) = \lim_{h = 0} \frac{\ell}{\partial n}f(x,y)$, unter $\frac{\ell}{\hat{\ell} n}$ die Ableitung in der Richtung der *Innennormale*, h die Entfernung des Punktes (x,y) auf (n) in T_a von s verstanden.

36) Die Umgebung eines jeden unendlich fernen Punktes oder Windungspunktes hat mau sich durch Vermittelung einer Funktion von der Form $z^{-\frac{1}{m}}$ $(m \ge 1)$ oder $z^{\frac{1}{m}}$ (m > 1) auf die Fläche eines Kreises übertragen zu denken.

37) Ist d_n das Maximum des Abstandes eines Randpunktes des Gebietes T_n von S, so ist $\lim d_n = 0$. Vgl. z. B. W.S. Osgood, Funktionentheorie, p. 156—158.

38) Gebiete $T_n (n=1,2,\ldots)$ kann man übrigens im engeren Sinne ineinandergeschachtelt wählen. Über den allgemeineren Begriff des "Kernes" einer Folge von Gebieten vergleiche bei C. Carathéodory, loc. cit. 577) (Nr. 47).

39) Auch die Zahl der Windungspunkte in T_n , oder der Höchstwert ihrer Ordnung (oder auch beides) können mit n zugleich unendlich werden. Folgen ineinander geschachtelter Gebiete $T_1 < T_2 < \cdots$, die so beschaffen sind, daß die Blätterzahl von T_n für alle n unterhalb einer festen Schranke liegt, während die Zahl der Windungspunkte für $n=\infty$ unendlich wird, werden, da sie bei schlichtartigen Gebieten nicht vorkommen, an dieser Stelle nicht näher betrachtet. Das Gebiet $\mathfrak{T}=\lim_{n\to\infty}T_n$ hat in diesem Falle eine endliche Anzahl von Blättern,

jedoch unendlichviele Windungspunkte endlicher Ordnung).

194

heit der Punkte besteht, die für ein (und darum unendlichviele) n in einem Gebiete der Folge enthalten sind. Die Folgen $T_1 < T_2 < \cdots$ und $T_1' < T_2' < \cdots$ definieren dieselbe Mannigfaltigkeit \mathfrak{T} , wenn jedem n ein n^* , jedem ν ein ν^* zugeordnet werden kann, so daß T_n in T_n' und T_n' in T_n enthalten ist. Alle Punkte von \mathfrak{T} sind innere Punkte der Mannigfaltigkeit. Zwei Punkte von \mathfrak{T} können durch einen geradlinigen Streckenzug von endlicher Seitenzahl, dessen sämtliche Punkte der Mannigfaltigkeit angehören, verbunden werden. Man ist darum berechtigt, \mathfrak{T} als ein (unendlichvielblättriges) Gebiet zu bezeichnen. 40

Ein Gebiet $\mathfrak T$ heißt "schlichtartig", wenn es durch jedes in ihm gelegene Polygon zerstückelt wird. Notwendig und hinreichend ist hierfür, daß alle T_n schlichtartig sind.

Es mögen zunächst die ein schlichtartiges Gebiet $\mathfrak T$ bestimmenden Gebiete der Folge $T_n(n=1,2,\ldots)$ im engeren Sinne ineinandergeschachtelt sein. Sei $S_n^{(j_n)}$ irgendeine Komponente von S_n . Das Gebiet $T_{n+1}-T_n$ zerfällt in eine endliche Anzahl Teile $\Theta_1,\Theta_2,\ldots\Theta_r$. Eine Komponente $S_{n+1}^{(j_{n+1})}$ von S_{n+1} sei jetzt so gewählt, daß $S_n^{(j_n)}$ und $S_{n+1}^{(j_{n+1})}$ beide dem Rande desselben Teilgebietes, etwa Θ_j , angehören. Es gibt mindestens eine unendliche Folge $S_n^{(j_n)}$ $(n=1,2,\ldots)$. Jede Folge dieser Art bestimmt per definitionem eine Komponente

$$S^{(j)} = (S_1^{(j_1)}, S_2^{(j_2)}, \ldots)$$

"des Randes" von \mathfrak{T} .⁴¹) Man kann \mathfrak{T} stets in der Form $\mathfrak{T} = \lim_{n = \infty} \overline{T}_n$ darstellen, so daß alle Folgen $S_n^{(G_n)}$ (n = 1, 2, ...) unendlich sind ("kanonische Darstellung").

Ein "einfacher Weg in \mathfrak{T} " heißt eine Punktmenge, deren in T_n gelegener Teil für alle n, von einem bestimmten an, ein Stück einer einfachen Kurve, oder eine einfache Kurve schlechtlin (geschlossener Weg) darstellt. Trifft ein einfacher Weg alle $S_n^{(j_n)}$ von einem bestimmten n an, so sagen wir, er "endigt an der Randkomponente $S^{(j)}$ ".

⁴⁰⁾ Unendlichvielblättrige Gebiete sind zuerst von H. A. Schwarz (in mündlichen Mitteilungen an F. Klein und H. Poincaré) betrachtet worden (vgl. den Artikel II B 4 von R. Fricke Nr. 39). In der Literatur treten sie zuerst in einer gegen H. A. Schwarz verallgemeinerten Auffassung bei H. Poincaré loc. cit. 434) auf (Nr. 37). Man vergleiche ferner H. Poincaré loc. cit. 453), P. Koebe, loc. cit. 437), R. Courant, loc. cit. 547). Gebiete dieser Art werden wir in der Folge mit $\mathfrak{T}, \mathfrak{T}_1, \mathfrak{T}', \mathfrak{T}^*$ u. dgl. bezeichnen.

⁴¹⁾ Die so definierten Randkomponenten brauchen keineswegs einen Rand im eigentlichen (anschaulichen) Sinne des Wortes zu bilden. Vgl. die Fußnote ⁵⁹⁸).

[&]quot;Windungspunkte unendlich hoher Ordnung" von I sind offenbar stets Randpunkte des Gebietes.

Endigt ein einfacher Weg beiderseits am Rande von X, so heißt er "Querschnitt". (Vgl. C. Carathéodory loc. cit. 599, a) p. 314—315, b) p. 325—326. Dort werden beschränkte Gebiete in & betrachtet.)

Wir nennen das Gebiet $\mathfrak{T}\dots p$ -fach zusammenhängend, wenn sein Rand p Komponenten hat. Notwendig und hinreichend hierzu ist, wenn die Darstellung $\mathfrak{T}=\lim_{n=\infty}T_n$ kanonisch ist, daß alle T_n von einem n an p-fach zusammenhängend sind. Ist das Gebiet $\mathfrak{T}\dots p$ -fach zusammenhängend, so wird es durch p Querschnitte allemal zerstückelt, während es Systeme von (p-1) Querschnitten gibt, die \mathfrak{T} zusammenhängend lassen.

Läßt sich eine kanonische Darstellung der vorhin genannten Art für kein p gewinnen, so heißt $\mathfrak T$ unendlichvielfach zusammenhängend. Eine unendliche Folge von Randkomponenten

$$S^{(m)} = (S_1^{(m_1)}, S_2^{(m_2)}, \ldots) (m = 1, 2, \ldots)$$

"konvergiert" gegen eine "Häufungskomponente" $S^{(h)} = (S_1^{(h_1)}, S_2^{(h_2)}, \ldots)$, wenn jedem N eine Zahl $\mu(N)$ zugeordnet werden kann, so daß für alle $m > \mu(N) \ldots S_l^{(m_l)} = S_l^{(h_l)} (l=1,\ldots N)$ gilt. Eine Randkomponente $S^{(l)} = (S_1^{(l_1)}, S_2^{(l_2)}, \ldots)$ heißt isoliert, wenn es keine Folge $S^{(m)}(m=1,2,\ldots)$ gibt, die gegen $S^{(l)}$ konvergiert. Hierzu ist, wenn die Darstellung $\mathfrak{T} = \lim_{n = \infty} T_n$ kanonisch ist, notwendig und hinreichend, daß von einem n = N ab $S_n^{(j_n)}$ und $S_{n+1}^{(j_{n+1})}$ allemal die vollständige Begrenzung eines (zweifach zusammenhängenden) Gebietes bilden. Es gibt, wenn \mathfrak{T} unendlichvielfach zusammenhängend ist, mindestens eine Häufungskomponente.

Die den Rand und die Zusammenhangszahl betreffenden Festsetzungen lassen sich in ähnlicher Weise treffen, wenn die ein schlichtartiges Gebiet $\mathfrak T$ bestimmenden Gebiete $T_n(n=1,\,2,\,\ldots)$ schlechthin ineinandergeschachtelt sind.⁴²)

In naheliegender Verallgemeinerung der vorstehenden Betrachtungen werden Folgen ineinandergeschachtelter Gebiete $T_1 < T_2 < \dots$ über Flächen der Klasse Lh, oder in $\mathfrak{S}^*(\mathfrak{S}_m^*)$ eingeführt. Das Gebiet $\lim_{n\to\infty} T_n$ kann Rückkehrfalten haben, ganz oder teilweise über den beiden Seiten einer Fläche (insbesondere einer Ebene), oder auch über einer einseitigen Fläche ausgebreitet sein. Die Gebiete T_n können auch aus

$$T'_n(n=1,2,\ldots)$$
 ($\lim_{n\to\infty}T'_n=\mathfrak{T}$)

⁴²⁾ Wie leicht ersichtlich, kann man übrigens von der Folge $T_n(n=1,2,\ldots)$ in unendlich mannigfaltiger Weise zu einer anderen Folge von Gebieten

übergehen, die im engeren Sinne ineinandergeschachtelt sind.

einer endlichen Anzahl untereinander ideal verbundener Teile bestehen. (Vgl. die Ausführungen der Nr. 2 über ideal geschlossene Gebiete sowie die Betrachtungen der Nr. 47 p. 358.)

Alle diese besonderen Arten von Gebieten ordnen sich dem allgemeinen Begriffe einer Riemannschen Mannigfaltigkeit (nach H. Weyl, "Riemannschen Fläche") unter. In der Nr. 47 p. 359—360 wird nach Koebe (J. f. Math. 147 (1917), p. 67—101 (p. 70—73) eine allgemeine Definition der Riemannschen Mannigfaltigkeit gegeben. Man vergleiche hierzu P. Koebe, loc. cit. 457) p. 198 insb. die Fußnote 1); Annali di Mat. (3) 21 (1913), p. 57—64 (p. 60—61); Phys. Zeitschr. 13 (1912), p. 1064: H. Weyl, Die Idee der Riemannschen Fläche, Leipzig 1913, p. 16—77; L. Bieberbach, Math. Ann. 78 (1918), p. 312—331.⁴³)

Der Übersichtlichkeit halber sollen jetzt die wichtigsten bisher benutzten Bezeichnungen kurz zusammengestellt werden.

& bezeichnet eine schlichte Ebene.

 \mathfrak{E}_m ist eine ganz oder teilweise mehrfach überdeckte Ebene (p. 181). Die Klasse A(B) umfaßt einfach oder mehrfach (d. h. endlich vielfach) zusammenhängende Gebiete in \mathfrak{E} oder \mathfrak{E}_m , deren sämtliche Randkomponenten (beschränkte) einfache Kurven (p. 183) mit stetiger Tangente (Krümmung) sind.

Die Klasse C umfaßt Gebiete der Klasse A, deren sämtliche Rand-komponenten geschlossene analytische und reguläre Linien sind.

Die Klassen D(L,M) umfassen einfach oder mehrfach zusammenhängende Gebiete in $\mathfrak E$ oder $\mathfrak E_m$, deren alle (beschränkten) Randkomponenten aus einer endlichen Anzahl Stücke analytischer und regulärer Linien (Kurven mit stetiger Tangente, stetiger Krümmung) bestehen und keine nach außen gerichteten Spitzen haben. Kommen auch noch nach außen gerichtete Spitzen vor, so gehören die fraglichen Gebiete entsprechend in die Klassen E(N,Q) hinein.

Gebiete der Klasse Ah sind Gebiete der Klasse A, deren sämt-

Auch bei Weyl und Bieberbach wird der Begriff der Zusammenhangszahl lediglich für einfach zusammenhängende Gebiete erklärt. Auch Koebe betrachtet in der im Text an erster Stelle genannten ausführlichen Arbeit nur einfach zusammenhängende Mannigfaltigkeiten

⁴³⁾ Eine von einer Folge ineinandergeschachtelter Gebiete elementarer Natur unabhängige Definition über der schlichten Ebene ausgebreiteter allgemeiner Gebiete, namentlich einfach zusammenhängender unendlichvielblättriger Gebiete gibt W. Blaschke. Vgl. E. Study, loc. cit. 148). Ebendort findet sich p. 17—19 der Beweis der Äquivalenz der fraglichen Definition (einfach zusammenhängender Gebiete) mit derjenigen des Textes. Gebiete von höherem Zusammenhang bleiben dem Programm der Schrift gemäß außer Betracht. Eine Erklärung der Zusammenhangszahl, sofern diese > 1 ist, wird darum nicht gegeben.

liche Randkurven überdies den Ungleichheiten von der Form

$$\frac{d}{d\mathfrak{s}}\,x(\mathfrak{\tilde{s}}+h) = \frac{d}{d\mathfrak{\tilde{s}}}\,x(\mathfrak{\tilde{s}}) \ , \quad |\frac{d}{d\mathfrak{\tilde{s}}}\,y(\mathfrak{\tilde{s}}+h) = \frac{d}{d\mathfrak{\tilde{s}}}\,y(\mathfrak{\tilde{s}})| < \delta_1 \ h^{-\lambda}$$

$$(0 < \lambda < 1)$$

genügen.

Näheres über Gebiete der Klassen B', Bh vergleiche p. 185.

Im Raume umfaßt die Klasse A(B) einfach oder mehrfach zusammenhängende Gebiete, deren sämtliche (beschränkte) Randkomponenten geschlossene Flächen mit stetiger Normale (Krümmung) sind (p. 186).

Die Klasse C umfaßt Gebiete der Klasse A. deren sämtliche Randkomponenten geschlossene analytische und reguläre Flächen sind.

Näheres über die Flächen der Klassen B', Ah, Bh, D, Lh vergleiche p. 187.

II. Allgemeine Sätze der Potentialtheorie.44)

5. Definition der Potentialfunktion. Eine in einem beschränkten Gebiete T in \mathfrak{E} , oder im Raume nebst ihren partiellen Ableitungen erster und zweiter Ordnung stetige Lösung der Differentialgleichung

(1)
$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{e^2 u}{\partial y^2} = 0 \text{ in der Ebene,}$$

(2)
$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0 \text{ im Ranne}$$

wird eine in T reguläre Potentialfunktion genannt. 45)

Ist T ein Gebiet in $\mathfrak E$ oder im Raume, das den unendlich fernen Punkt enthält, so wird darüber hinaus festgesetzt, daß in $\mathfrak E$

(3)
$$\lim_{R=\infty} u(x, y) = c$$
, $\lim_{R=\infty} RD_1 u = 0$, c konstant), $R^2 = x^2 + y^2$.

im Raume

(4)
$$\lim_{R \to \infty} u(x, y, z) = c$$
, $\lim_{R \to \infty} R^2 D_1 u = 0$, (c konstant), $R^2 = x^2 + y^2 + z^2$

gilt. Ist für hinreichend große R in &

(5)
$$u = M \log_{R}^{1} + \text{eine reguläre Potential funktion},$$

44) Geschichtliches vergleiche den Artikel II A 7 b von H. Burkhardt und W. F. Meyer Nr. 1—5.

45) In der Ebene spricht man gelegentlich von dem logarithmischen, im Raume von dem Newtonschen Potential. Es erscheint zweckmäßiger, die Bezeichnung "Potential" ausschließlich für das Potential einer bestimmten Belegung zu reservieren. Bei einer Volumladung z. B. genügt das Potential im Innern des mit Masse belegten Gebietes nicht der Laplaceschen, sondern unter bestimmten Voraussetzungen der Poissonschen Differentialgleichung (Nr. 8).

198

im Raume

(6)
$$u = \frac{M}{R} + \text{eine reguläre Potentialfunktion},$$

so heißt M "die Gesamtmasse" von u.46)

Nach C. Neumann (vgl. E. R. Neumann, Beiträge, p. XII) ist die Bedingung (3) erfüllt, sobald $\lim_{R\to\infty} u(x,y)=c$ ist. Im Raume folgt aus $\lim_{R\to\infty} u(x,y,z)=c$ nur. daß die Funktionen R^2D_1u beschränkt sind. 464)

46°) Der Beweis läßt sich nach einer mündlichen Mitteilung von Koebe z. B. wie folgt führen. Die Funktion v = u - c verschwindet im Unendlichen und nimmt auf einer Kugel C von hinreichend großem Radius eine stetige Folge von Werten $\varphi(s)$ an. Es sei v' die durch das Poissonsche Integral (Nr. 13) für das unendliche von C begrenzte Gebiet K_a unter Zugrundelegung der Randwerte $\varphi(s)$ dargestellte Potentialfunktion. Die Differenz v' - v ist sowohl auf C als auch im Unendlichen gleich Null. Sie verschwindet darum in K_a identisch. Aus dem Poissonschen Integral folgt aber leicht, daß die Funktionen R^2D_1u beschränkt sind.

Man kann übrigens auch anders vorgehen.

Daß aus $\lim_{R\to\infty}u(x,y,z)=c$ nicht notwendig $\lim_{R\to\infty}R^zD_1u=0$ folgt, zeigt das einfache Beispiel $u=\frac{1}{D}$.

In der Ebene führt die folgende Überlegung rasch zum Ziele.

Es sei $x' = \frac{x}{R^2}$, $y' = \frac{y}{R^2}$, u'(x', y') = u(x, y). Die Funktion u'(x', y') ist in einer Kreisfläche & um den Koordinatenursprung stetig und mit etwaiger Ausnahme des Mittelpunktes regulär. Sie ist darum in & regulär (Nr. 14) und gestattet eine Entwicklung von der Form $u'(x', y') = \sum_{n=0}^{\infty} R'^n(b_n \cos n\varphi + a_n \sin n\varphi)$ ($R'^2 = x'^2 + y'^2$, $x' = R' \cos \varphi$, $y' = R' \sin \varphi$). Man schließt hieraus leicht, daß, in der Tat, $\lim_{R \to \infty} RD_1 u = 0$ ist.

⁴⁶⁾ Wir folgen der Darstellung von J. Plemelj, Untersuchungen, p. 3-5, die von der herkömmlichen (vergleiche etwa bei C. Neumann, Abhandlungen, I. Abhandlung, p. 725-731; A. Korn, Potentialtheorie I, p. 180-181; II, p. 128 bis 129: J. Plemelj, Monatshefte f. Math. u. Phys. 15 (1904) p. 337-412 [p. 366 bis 371]) abweicht und in mancher Hinsicht Vorteile bietet. Andere gegenüber den üblichen vereinfachte Festsetzungen hat E. R. Neumann vorgeschlagen. (E. R. Neumann, Beiträge, p. 5-10.) Voraussetzungen über das Verhalten von D_iu im Unendlichen werden dabei ganz vermieden. Aus der im vorstehenden schlechthin als Potentialfunktionen bezeichneten Klasse von Funktionen werden in der Literatur (namentlich der älteren) öfter bestimmte Arten als "Fundamentalfunktionen", "harmonische Funktionen", "vollständige" sowie "allgemeine Potentialfunktionen" usw. je nach dem Verhalten im Unendlichen und am Rande des Definitionsgebietes (das von dem Regularitätsgebiete verschieden sein kann) herausgehoben (vgl. z. B. C. Neumann, a. a. O.; A. Korn, Potentialtheorie, passim; E. R. Neumann, a. a. O.). In dem vorliegenden Referat wird von jenen Bezeichnungen nirgends Gebrauch gemacht.

Sei T jetzt ein Gebiet in \mathfrak{E}_m . Die vorstehende Definition einer regulären Potentialfunktion bedarf noch einer Ergänzung, wenn T Windungspunkte hat. Ist $z_0 = x_0 + y_0 i$ ein Windungspunkt p-er Ordnung, so wird gefordert, daß u(x,y), in die Ebene z' den Glei-

chungen $z' = (z - z_0)^{\frac{1}{p+1}}$, $u'(x', y') = u(x, y)^{47}$ gemäß verpflanzt, sich in der Umgebung des Koordinatenursprunges⁴⁸) der Ebene z' regulär verhält. Die Ausdehnung der Definition auf unendlichvielblättrige Gebiete der Art $\mathfrak T$ ist naheliegend, bei der Ausdehnung auf eine beliebige *Riemann*sche Mannigfaltigkeit sind die Ergebnisse der Nr. 24 ezu berücksichtigen.

6. Potential einer einfachen Belegung.⁴⁹) Sei T ein Gebiet der Klasse B in \mathfrak{G}^{50}). Es bezeichne $\mu(s)$ eine auf S erklärte stetige Funktion⁵¹), (x,y) einen nicht auf S gelegenen Punkt, r_s, r_t, r_{st} entsprechend Entfernungen der Punktepaare (x,y), s; (x,y), t; s, t.

Das Integral

(1)
$$V(x,y) = \int_{S} \mu(t) \log \frac{1}{r_t} dt$$

bezeichnet man als Potential einer einfachen Schicht oder Belegung Ihre Dichte ist $\mu(s)$, $\int\limits_{s_0}^{s} \dot{\mu}(t)\,dt$ ist die auf dem Bogen $(s-s_0)$ ausgebreitete Masse. 52)

In einer ganz analogen Weise wird das Newtonsche Potential einer einfachen Flächenbelegung im Raume

(3)
$$V(x, y, z) = \int_{S} \mu(t) \frac{1}{r_t} dt$$

- 47) Oder, wenn ein unendlich ferner Punkt Verzweigungspunkt ist, den Gleichungen $z'=z^{\frac{1}{p+1}}$, u'(x',y')=u(x,y) gemäß.
 - 48) Oder des unendlich fernen Punktes.
 - 49) Vgl. den Artikel II A 7 b von H. Burkhardt und W. F. Meyer Nr. 5
 - 50) Allgemeiner könnte man T von der Klasse A oder N annehmen.
- 51) Allgemeiner eine nicht notwendig beschränkte, integrierbare Funktion (im üblichen Sinne oder nach Lebesgue).
- 52) Eine für manche Zwecke nützliche Verallgemeinerung hat J. Plemelj, Untersuchungen, p. 17—18, angegeben. Sei $\chi(s)$ eine auf S erklärte stetige Funk-

tion. Das Stieltjessche Integral (2)
$$V'(x,y) = \int \log \frac{1}{r_t} d\chi(t)$$
 kann als loga-

rithmisches Potential einer auf S verteilten einfachen Schicht aufgefaßt werden Die auf $(s-s_0)$ ausgebreitete Masse hat den Wert $\chi(s)-\chi(s_0)$.

definiert, unter S eine Fläche der Klasse B, unter dt das Flächenelement, $\mu(t)$ die Dichte der Belegung verstanden.⁵³)

Das Verhalten des Potentials einer einfachen Schicht und seiner partiellen Ableitungen auf der belegten Kurve oder Fläche und in deren Nachbarschaft bildet den Gegenstand einer bis in die neueste Zeit heranreichenden langen Reihe von Arbeiten. Die ersten über die klassischen Ergebnisse beträchtlich hinausgehenden Resultate dieser Art sind von O. Hölder und A. Liapounoff abgeleitet worden. hre Untersuchungen sind vorbildlich geworden. Die Ergebnisse von Hölder und Liapounoff sind namentlich von A. Korn und J. Plemelj weitergeführt und vervollkommnet worden. Von Korn ist insbesondere eine Reihe hinreichender Bedingungen für die Existenz (und Stetigkeit) gewisser partieller Ableitungen angegeben und bewiesen worden. Diesen Arbeiten parallel laufen die etwa 1899 begonnenen Veröffentlichungen von H. Petrini, die auf die Auffindung notwendiger und zugleich hinreichender Bedingungen hinzielen. Seine Ergebnisse hat Petrini in zwei außerordentlich eingehenden, umfangreichen Abhandlungen zusämmenge-

- 53) Allgemeiner kann man T etwa von der Klasse A voraussetzen sowie Kanten und räumliche Ecken zulassen. Nach Plemelj kann man ferner der Betrachtung ein Integral $V'(x,y,z) = \int \frac{1}{r_t} d\chi(t)$ zugrunde legen.
- 54) Vgl. O. Hölder, Beiträge zur Potentialtheorie, Inaug.-Diss. Stuttgart 1882, p. 1—71 [p. 20—20]: A. Liapounoff, a) Journ. de Math. (5) 4 (1898), p. 241—311 (vorl. Mitt. C. R. 125 (1897), p. 694—696; p. 808—810); b) Commun. de la Soc. math. de Kharkow 1902. Hölder legt seinen Untersuchungen Gebiete der Klasse Ah (im Raume) zugrunde. Auch Liapounoff betrachtet loc. cit. a) zum Teil Gebiete dieser Art.
- 55) J. Plemelj, Monatshefte f. Math. u. Phys. 15 (1904), p. 337—411 [p. 337 bis 362]; A. Korn, a) Potentialtheorie; b) C. R. 30 (1900), p. 1238—1241; c) Abhandlungen, Abh. 1 u. 2; d) Münch. Ber. 33 (1903), p. 3—26; e) Münch. Ber. 36 (1906), p. 3—36; f) Ann. de l'Éc. Norm. (3) 24 (1907), p. 9—75 [p. 12—30], wo die wichtigsten Ergebnisse (für das Newtonsche Potential) zusammengefaßt sind; g) Nova Acta, Abh. d. Kais. Leop.-Carol. Deutschen Ak. d. Nat. 88 Nr 2 (1908), p. 151—173 [154—157]; h) Über Minimalflächen, deren Randkurven wenig von ebenen Kurven abweichen, Ber. Abh. 1909, Anhang, p. 1—37 [6—32]; i) Math. Ann. 75 (1914), p. 497—544 [p. 499—502]. In den vorstehenden Arbeiten wird meist zugleich das Verhalten des Potentials einer Doppelbelegung (Nr. 7) sowie einer ebenen oder räumlichen Massenverteilung (Nr. 8) untersucht. Im Gegensatz zu den Annahmen des Textes macht Korn die weitere einschränkende Voraussetzung, daß die 'ebenen oder räumlichen' Randkomponenten mit einer jeden Geraden, die sie trifft, nur eine endliche Anzahl Punkte gemeinsam haben.

faßt. 56) Bevor wir auf diese näher eingehen, wollen wir einige für die Anwendungen wichtigen Sätze wiedergeben.

1. Die Normalableitungen $\frac{\partial}{\partial n}V(s^+)$, $\frac{\partial}{\partial n}V(s^-)$ sind stetig. In der Ebene ist ferner

$$\frac{\frac{\partial}{\partial n}V(s^{+}) - \frac{\partial}{\partial n}V(s^{-}) = -2\pi\mu(s),}{\frac{\partial}{\partial n}V(s^{+}) + \frac{\partial}{\partial n}V(s^{-}) = 2\int_{\mathbb{R}^{3}}\mu(t)\frac{\partial}{\partial n_{s}}\left(\log\frac{1}{r_{st}}\right)dt.^{57})$$

2. Es ist

$$V(s) - V(t) < \text{Max } \mu(s) \ (A|r_{s'} \ \log r_{st} + A') \ (A, A' \ \text{konstant}).$$
⁵⁸)

$$\mu(s) - \mu(t) < Br_{st}^{\lambda}, \ 0 < \lambda < 1 \quad (B \text{ konstant}),$$

so hat V im Innern und auf dem Rande sowohl des Innen-, als auch jedes Außengebietes stetige partielle Ableitungen erster Ordnung.⁵⁹) Die Ableitung in der Richtung der Tangente geht durch S stetig durch, die anderen Ableitungen erster Ordnung erleiden auf S einen Sprung. Für alle (x_1, y_1) . (x_2, y_2) in T + S ist ferner

$$\begin{array}{ll} (3^*) & D_1 V(x_1,y_1) - D_1 V(x_2,y_2) \\ & d_{12}^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2, \; c_1(\lambda) > 0 \;, \; c_2(\lambda) > 0 \;. \end{array}$$

Eine ganz analoge Beziehung gilt im Raume. 60)

- 56) H. Petrini, a) Acta Math. 31 (1908, p. 127—332; b) Journ. de Math. (6) 5 (1909), p. 127—223. Die älteren Arbeiten sind zumeist in den Öfversigt af Kongl. Svenska Vetenskaps-Akademiens Förhandlingar veröffentlicht.
- 57) Im Raume gelten analoge Formeln. Den Beweis vgl. etwa bei J. Plemelj, loc. cit. 55) p. 349—353. Für das logarithmische Potential gibt J. Plemelj, Untersuchungen, p. 24—25 eine besonders einfache Ableitung an. Vgl. ferner É. Picard, Ann. de l'Éc. Norm. (3) 23 (1906), p. 503—508 sowie einen Beweis von G. Darboux bei J. Horn, Part. Diffgl., p. 293—298. Der Satz 1 gilt übrigens auch bei Gebieten der Klasse Ah.
- 58) Dieser Satz gilt, auch wenn $\mu(s)$ lediglich beschränkt und integrierbar ist. A. Korn, Potentialtheorie 1, p. 388—389; loc. cit. 55) f), p. 13—14 gibt einen analogen etwas weniger weit reichenden Satz an. Auf der rechten Seite der Ungleichheit steht bei Korn ein Ausdruck von der Form Max $\mu(s)$ $A(\lambda) r_{st}^{\lambda} (\lambda > 0)$ beliebig klein). In der zuletzt angegebenen Fassung gilt der Satz 2. bei Gebieten der Klasse Ah. Der Wert λ ist dann der $H\ddot{o}lder$ sche Exponent von S.
- 59) Vgl. O. Hölder, loc. cit. 54) [p. 36—42]. Hölder beweist die Existenz der partiellen Ableitungen am Rande bei Gebieten der Klasse Ah im Raume. Daß der Grenzübergang gleichmäßig ist, folgt auß Betrachtungen von Hölder fast unmittelbar. Man vergleiche ferner A. Liapounoff, loc. cit. 54) a., p. 255—260, und A. Korn, loc. cit. 55) a) sowie c) Abh. 1. Auch Liapounoff betrachtet Gebiete der Klasse Ah im Raume.
- 60) Vgl. A. Korn, loc cit. 55) f), p. 15, wo Gebiete im Raume, sowie loc. cit. 55) h, p. 7—14, wo Kreisgebiete betrachtet werden. Der Satz (3*) gilt übrigens bei Gebieten der Klasse Ah.

4. Es sei T ein ebenes Gebiet der Klasse C; $[\mu(s)]^2$ sei im Lebesgueschen Sinne integrierbar. Abgesehen höchstens von einer Menge (N) von Randpunkten vom Maße Null, sind $\frac{\partial}{\partial x}V(s)$, $\frac{\dot{c}}{\partial y}V(s)$, $\frac{\dot{d}}{ds}V(s)$ vorhanden. Sie stellen auf der Menge S-(N) Funktionen dar, die nebst ihren Quadraten im Sinne von Lebesgue integrierbar sind. Es ist schließlich $\int_{-L}^{s} \frac{d}{dt}V(t)dt = V(s)-V(s_0).$

5. Sei T ein Gebiet der Klasse Bh, λ_1 der zugehörige $H\"{o}lder$ sche Exponent. Ist $\frac{d}{ds} \mu(s)$ vorhanden und ist

$$\frac{d}{ds}\mu(s) = \frac{d}{dt}\mu(t) < Cr_{st}^{\lambda_2}, \ 0 < \lambda_2 < 1 \quad (C \text{ konstant}),$$

so sind D_2V im Innern und auf dem Rande des Innen- und jedes Außengebietes vorhanden und stetig. Es ist ferner für alle (x_1, y_1) und (x_2, y_2) in T + S

$$\begin{split} D_2 V(x_1, \, y_1) - D_2 V(x_2, \, y_2) &< \left(c_3(\lambda') \, C + c_4(\lambda') \, \operatorname{Max} \, |\frac{d}{ds} \mu(s) \right| \right) \, d_{12}^{\lambda'} \,, \\ \lambda' &= \operatorname{Min} \, (\lambda_1, \, \lambda_2)^{.62} \, |$$

Ein ähnlicher Satz gilt im Raume. Analoge Sätze lassen sich für Ableitungen höherer Ordnung aufstellen.⁶³)

Ist T ein Gebiet der Klasse C und ist $\mu(s)$ analytisch und regulär, so sind V(x,y) und V(x,y,z) in T+S sowie im Innern und auf dem Rande jedes Außengebietes, höchstens mit Ausnahme des unendlich fernen Punktes (in der Ebene) analytisch und regulär. 64)

⁶¹⁾ L. Lichtenstein, Journ. f. Math. 141 (1912), p. 12-42 [p. 29-34]; 142 (1913), p. 189-190 leitet den Satz 4. für ein Kreisgebiet ab. Durch eine geeignete konforme Abbildung gelangt man zu der allgemeineren Aussage des Textes.

⁶²⁾ A. Korn, loc. cit. 55 h), p. 7-14 [22-24]. An der bezeichneten Stellewird ein Kreisgebiet betrachtet.

⁶³⁾ E. Schmidt, Schwarz-Festschrift, p. 365—383, beweist den folgenden, etwas weniger weit reichenden Satz: Haben x(s), y(s) (im Raume $x(v, \omega), y(v, \omega), z(v, \omega)$) (Nr. 2) stetige Ableitungen bis zur Ordnung k+1 ($k \ge 2$) einschließlich, hat $\mu(s)$ stetige Ableitungen der ersten k Ordnungen, so sind $D_1 V, \ldots, D_k V$ in T+S sowie in allen Außenbereichen stetig. (Es genügt übrigens die Ableitungen der höchsten Ordnung abteilungsweise stetig vorauszusetzen.) A. a. O. finden sich Ausdrücke für den Sprung der partiellen Ableitungen auf S. Man vergleiche weiter A. Korn, Potentialtheorie 1, p. 45—51.

⁶⁴⁾ Dieser Satz rührt von *H. Bruns*, Inaugural-Dissertation, Berlin 1871, Journ. f. Math. 81 (1876), p. 349—356 her. Einen einfachen Beweis hat *E. Schmidt*, Math. Ann. 68 (1910), p. 107—118 gegeben.

Wie bereits erwähnt, hat *H. Petrini* im Gegensatz zu den bis jetzt besprochenen Untersuchungen sich zur Aufgabe gestellt, möglichst umfassende notwendige und zugleich hinreichende Kriterien für die Existenz und Stetigkeit partieller Ableitungen des Potentials aufzufinden. Die auf das Potential einer einfachen Belegung sich beziehenden Resultate erstrecken sich sowohl auf geschlossene Kurven (Flächen), als auch auf Stücke von diesen. Das mit Masse belegte Gebilde kann Ecken und Spitzen (konische Punkte) haben. Das Verhalten der partiellen Ableitungen wird sowohl auf dem Träger der Belegung selbst, als auch bei der Annäherung an diesen, insbesondere an etwaige Endpunkte (im Raume Randlinien, auch Ecken oder Spitzen auf diesen) untersucht. Als charakteristisches Beispiel betrachten wir das folgende *Petrini* sche Ergebnis:

Das mit Masse belegte Gebilde S sei ein beschränktes Gebiet in der Ebene z=0, die Koordinaten des Punktes s in S seien mit x_0 und y_0 bezeichnet, u(s) sei beschränkt und integrierbar. Damit die partielle Ableitung $\lim_{h\to 0}\frac{1}{h}\left[V(x_0+h\cos\varphi,\,y_0+h\sin\varphi,\,0)-V(x_0,\,y_0,\,0)\right]$ in derjenigen Richtung l_s , die mit der x-Achse den Winkel φ einschließt, existiert, ist nach Petrini notwendig und hinreichend, daß der Grenzwert $\lim_{\phi\to 0}\int_{-\infty}^s u(t)\,\frac{\partial}{\partial l_s}\left(\frac{1}{r_{st}}\right)dt$ existiert. Unter S_0 ist die Fläche eines

Kreises um $(x_0,\,y_0)$ vom Halbmesser δ zu verstehen. $^{65})$ $^{66})$

65) Es sei
$$f(w) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{-\sqrt{w^2+t^2}}}{\sqrt{w^2+t^2}} dt = \log \frac{1}{w} + \text{eine reguläre Funktion ge-}$$

setzt. Die Funktion f(kR), $(R^2=x^2+y^2)$ genügt der Differentialgleichung $\Delta u-k^2u=0$ und spielt in ihrer Theorie dieselbe Rolle, wie die Funktion $\log\frac{1}{R}$ in der Theorie

der Laplaceschen Gleichung. Im Raume entspricht ebenso der Funktion
$$\frac{1}{R}$$
 $(R^2 = x^2 + y^2 + z^2)$ der Ausdruck $\frac{e^{-kR}}{R}$. Die Integrale $\int u(t)\bar{f}(kr) dt$, $\int u(t)\frac{e^{-kr_t}}{r_t} dt$

werden als verallgemeinerte Potentiale einer einfachen Linien- oder Flächenbelegung bezeichnet. Ihre Eigenschaften sind denjenigen der im Text betrachteten Potentiale analog. Vgl. C. Neumann, Allgem. Unters. über das Newtonsche Prinzip der Fernwirkung, Leipzig 1896, p. 252; S. Zaremba, Ann. de l'Éc. Norm. 3\16 (1899), p. 427—464; Ann. de Toulouse (2) 3 (1901). p. 5—21; Journ. de Math. (5) 8 (1902), p. 59—117 [61]; ebendort (5) 10 (1904), p. 395—444 [405—410]; Bull. de l'Acad. d. Sc. de Cracovie 1905, p. 69—168 [77—86]; A. Korn, loc. cit. 55). c) Abh. 5 [p. 8—18]; A. Hoborski. Prace matematyczno-fizyczne, Warschan, 20 (1909), p. 1—141 [5—36].

66) Weitere Literatur über das Potential einer einfachen Belegung: H. Poincaré, Potentiel, p. 92-117: p 119; T. Lalesco, Bull. de Sc. Math. (2) 31 (1907),

7. Potential einer Doppelbelegung. 67) Es sei T ein Gebiet der Klasse B in $\mathfrak G$ oder im Raume, v(s) eine auf S erklärte stetige Funktion. 68) Die Integrale

$$W(x,y) = \int_{\mathcal{S}} r(t) \frac{\epsilon}{\partial n_i} (\log \frac{1}{r_i}) dt, \quad W(x,y,z) = \int_{\mathcal{S}} v(t) \frac{\hat{\epsilon}}{\partial n_i} (\frac{1}{r_t}) dt$$

bezeichnet man als Potentiale von Doppelschichten oder Doppelbelegungen.

1. W ist in T+S sowie in jedem Außenbereiche stetig. In der Ebene ist

(1)
$$W(s^{+}) - W(s^{-}) = 2\pi \nu(s),$$

$$2) \qquad W(s^{+}) + W(s^{-}) = 2 \int \nu(t) \frac{\partial}{\partial n_{i}} \Big(\log \frac{1}{r_{si}}\Big) dt = 2 W(s).^{69}$$

Die Normalableitungen $\frac{\partial}{\partial n}W(s^{\pm})$ und $\frac{\partial}{\partial n}W(s^{-})$ sind im allgemeinen nicht vorhanden. Indessen es gilt der Satz:

2. Es bezeichnen $s^{+\epsilon}$ und $s^{-\epsilon}$ die Punkte in T und in einem Außengebiete auf der Normalen (n) in s, deren Entfernung von s den Wert ϵ hat. Es gilt dann

$$\lim_{\epsilon \to 0} \left[\frac{\hat{c}}{\hat{\sigma}n} W(s^{+\epsilon}) - \frac{\hat{c}}{\hat{\sigma}n} W(s^{-\epsilon}) \right] = 0.$$

Der Grenzübergang ist für alle s auf S gleichmäßig. Ist somit eine der beiden Normalableitungen $\frac{\partial}{\partial n}W(s^+)$, $\frac{\partial}{\partial n}W(s^-)$ vorhanden, so existiert auch die andere und ist der ersteren gleich. 70

p. 77—79; G. Pucciano, Rend. del Circ. Mat. di Palermo 23 (1907), p. 347—393; 28 (1909), p. 97—112; Atti del 4. Congr. Int. dei Mat. Roma 2 (1909), p. 150—155; M. Olivo, Atti del R. Ist. Veneto di sc. lett. ed arti (8) 70 (1913), p. 519—546; T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken. Inaug.-Diss. Upsala 1916, p. 1—7.

⁶⁷⁾ Vgl. den Artikel II A 7 b von H. Burkhardt und F. W. Meyer Nr. 6.

⁶⁸⁾ Allgemeiner kann man T etwa von der Klasse Ah oder Q annehmen. Die Dichte der Belegung v(s) kann eine beliebige, nicht notwendig beschränkte, integrierbare Funktion sein (im üblichen Sinne oder nach Lebesque).

⁶⁹⁾ Im Raume gilt eine ganz analoge Formel. Vgl. etwa A. Korn, Potentialtheorie 1, p. 34—36 sowie p. 73; 2, p. 26—28 sowie p. 61: J. Plemelj, loc. cit. 55) p. 355—357 sowie namentlich, Untersuchungen, p. 22. S. ferner J. Horn, Partielle Differentialgleichungen, p. 289—293; É. Goursat, Cours 3, p. 175—178. Der Satz 1. gilt unverändert bei Gebieten der Klasse Ah. Ist T ein Gebiet der Klasse Q in \mathfrak{S} , s ein Eckpunkt ($\alpha\pi$ der eingeschlossene Winkel), so ist (2 durch $W(s^+) + W(s^-) = 2W(s) + 2\pi(1-\alpha)v(s)$ zu ersetzen.

⁷⁰⁾ Den ersten Beweis dieses Satzes verdankt man A. Tauber, Monatshefte f. Math. u. Phys. 8 (1897), p. 79-86 sowie 9 (1898), p. 74-88 [p. 77-83] (eine

3. Es ist

$$|W(s) - W(t)| < \text{Max } \nu(s) (c_1 | r_{st} | \log r_{st} + c_2) (c_1, c_2 | \text{konstant}).^{71}$$

4. Setzt man entsprechend

$$\overline{W}(s) = \int_{s} \nu(t) \frac{\partial}{\partial n_s} \left(\log \frac{1}{r_{s'}} \right) dt, \quad W(s) = \int_{s} \nu(t) \frac{\epsilon}{\partial n_s} \left(\frac{1}{r_{s'}} \right) dt.$$

so findet man

$$|\overline{W}(s) - \overline{W}(t)| < \operatorname{Max} ||r(s)| (c_3|r_{st}||\log r_{st}||+|c_4|) (c_3, c_4||\operatorname{konstant}).^{72})$$

5. Is

$$|\nu(s) - \nu(t)| < Ar_{st}^{\lambda}, \ 0 < \lambda < 1 \quad (A \text{ konstant}),$$

so ist $\frac{d}{ds}W(s)$ vorhanden und stetig. Ferner ist

$$\frac{d}{ds}W(s) = \frac{d}{dt}W(t) < c'(\lambda)Ar_{s'}^{\lambda} - (c'(\lambda) > 0)^{73})$$

6. Ist $\frac{d}{ds}\nu(s) = \nu'(s)$ vorhanden und stetig, ist ferner

$$|r'(s) - r'(t)| < Br_{st}^{\lambda}, \ 0 < \lambda < 1 \ (B \text{ konstant}),$$

so sind D_1W sowohl in T+S, als auch in jedem Außenbereiche vorhanden und stetig. Es ist ferner beispielsweise für alle (x_1, y_1) und (x_2, y_2) in T+S:

$$|D_1 W(x_1, y_1) - D_1 W(x_2, y_2)| < (c''(\lambda)B + c'''(\lambda) \max |\nu'(s)|) d_{t_2}'$$

$$(c''(\lambda > 0, c'''(\lambda) > 0).^{74})$$

Darstellung gibt J. Horn, loc. cit. 69, p. 298—302, und A. Liapounoff, loc. cit. 54) a), p. 293—299. Vgl. ferner J. Plemelj. loc. cit. 55), p. 358—360. Hinreichend für die Existenz der Normalableitungen ist in der Ebene beispielsweise die Beziehung $|\boldsymbol{v}(s') + \boldsymbol{v}(s'') - 2\boldsymbol{v}(s)| < \overline{c} \varrho^{1+\beta}$, $(\overline{c}, \beta \text{ konstant und } > 0)$, unter s' und s' die beiden von (n) um ϱ entfernten Punkte auf S verstanden. Vgl. A. Liapounoff, loc. cit. 54) a), p. 293—299. Im Raume gilt ein ganz analoger Satz.

- 71) J. Plemelj, loc. cit. 55), p. 361—362. Einen analogen, weniger weit reichenden Satz hat früher A. Korn, loc. cit. 55b) bewiesen. Bei Korn steht auf der rechten Seite der Ungleichheit ein Ausdruck von der Form \overline{c}_1 Max $\nu(s) | r_{st}^{\frac{1}{2}}$. Liapounoff hat diesen, loc. cit. 54) b) durch $\overline{c}_1(\lambda)$ Max $\nu(s) | r_{st}^{\lambda}(\lambda > 0)$ ersetzt. In der zuletzt angegebenen Fassung gilt der Satz 4. bei Gebieten der Klasse Ah: der Wert λ ist der Höldersche Exponent der Kurve (Fläche) S.
- 72) J. Hadamard, Leçons, p. 19—22; J. Plemelj, loc. cit. 55), p. 353—354. Gehört T der Klasse Ah an, so tritt rechter Hand $c_3'r_{st}^\lambda$ ein, unter λ den Hölderschen Exponenten von S verstanden. Vgl. J. Hadamard a. a. O., p. 22. (Einen etwas weniger weit reichenden Satz gibt A. Liapounoff, loc. cit. 54) a), p. 260—265 an.)
 - 73) A. Korn, loc. cit. 55) f), p. 19-22
- 74) A. Korn, loc. cit. 55) f), p. 17—18; O. D. Kellogg beweist (Trans. of the Amer. Math. Soc. 9 (1908), p. 38—50) den folgenden Satz: Ist T ein Gebiet der

206

Ein ganz analoger Satz gilt im Raume. Ähnliche Sätze lassen sich für Ableitungen höherer Ordnung aufstellen.⁷⁵)

- 7. Ist P ein Gebiet der Klasse C und ist $\nu(s)$ analytisch und regulär, so ist W in T+S und jedem Außenbereiche analytisch und regulär. Notwendige und hinreichende Bedingungen sehr umfassender Natur für die Existenz und Stetigkeit von D_1W hat H. Petrini in den in der Nr. 6 genannten Arbeiten angegeben. Insbesondere gelingt es Petrini, notwendige und hinreichende Bedingungen für die Existenz von $\frac{\partial}{\partial n}W(s^+)$ aufzufinden. $^{77})^{78})^{79}$
- 8. Logarithmisches Potential einer ebenen Flächenbelegung. Potential einer Volumladung. 80) Es sei T ein beschränktes Geb iet

Klasse Ah, sind v(s) und v'(s) stetig und konvergiert der als vorhanden vorausgesetzte Grenzwert

$$\lim_{s \to 0} \int_{t}^{t} v'(s+t) - v'(s-t) dt$$

für $\eta=0$ gleichmäßig gegen Null, so sind D_1W in T+S vorhanden und stetig. Vgl. hierzu O. D. Kellogg, Trans. of the Amer. Math. Soc. 13 (1912), p. 109—132. Dort werden analoge Sätze für höhere Ableitungen bewiesen.

- 75) E. Schmidt beweist loc. cit. 63) den folgenden, etwas weniger weit reichenden Satz: Haben x(s), y(s), v(s) (im Raume $x(v,\omega)$, $y(v,\omega)$, $z(v,\omega)$, v(s)) stetige Ableitungen bis zur Ordnung k+1 ($k\geq 2$) einschließlich, so sind $D_jW(j=1,\ldots k)$ in T+S und in jedem Außenbereiche vorhanden und stetig. Es genügt übrigens die Ableitungen D_{k+1} abteilungsweise stetig vorauszusetzen.
- 76) Dieser Satz rührt von H. Bruns her, loc. cit. 64). Einen einfachen Beweis hat E. Schmidt, loc. cit. 64) gegeben.
 - 77) H. Petrini, loc. cit. 56), a) p. 310-320; b) p. 211-222.
 - 78) Die Ausdrücke $\int_{S} v(t) \frac{\partial}{\partial n_t} (\overline{f}(kr_t)) dt$, $\int_{S} v(t) \frac{\epsilon}{\partial n_t} \left(\frac{e^{-kr_t}}{r_t} \right) dt$ werden als

verallgemeinerte Potentiale einer auf einer Kurve oder Fläche ausgebreiteten Doppelschicht bezeichnet. Ihre Eigenschaften sind deujenigen der Funktionen Wanalog. Wegen Literatur vergleiche die Fußnote 65).

- 79) Spezielle Newtonsche Potentiale der Form $\int_{\mathcal{S}} v(t) \frac{\partial}{\partial t} \left(\frac{1}{r_t}\right) dt$ kommen bei
- G. Herglotz, Über die analytische Fortsetzung des Potentials ins Innere der anziehenden Massen, Leipzig 1914 [p. 23—24], andere Doppelbelegungen besonderer Art bei A. Wangerin, Abh. d. kais. Leop. Carol. Deutschen Akad. der Naturf., Halle 1915, Bd. 100, Nr. 1 [p. 33—35] vor. Ebendort [p. 38—40] werden Potentiale gewisser dreifacher Flächenbelegungen betrachtet.

Weitere Literatur: H. Poincaré, Potentiel, p. 215-259; G. Pucciano, loc. cit. 66); M. Olivo, loc. cit. 66).

80) Vgl. den Artikel II A 7b von H. Burkhardt und W. F. Meyer Nr. 1, 2, 8.

in \mathfrak{E} oder im Raume, K ein Kreisgebiet (Kugelkörper), das T+S enthält, q eine in K+C erklärte beschränkte, integrierbare Funktion.

1. Die Funktionen

$$P(\xi, \eta) = \int_T q(x, y) \log \frac{1}{\varrho} dx dy,$$

$$(\varrho^2 = (\xi - x)^2 + (\eta - y)^2) \text{ in der Ebene,}$$

$$P(\xi, \eta, \zeta) = \int_T q(x, y, z) \frac{1}{\varrho} dx dy dz,$$

$$(\varrho^2 = (\xi - x)^2 + (\eta - y)^2 + (\xi - z)^2) \text{ im Raume,}$$

die Integrale, falls S nicht integrierbar ist, als "innere Integrale" aufgefaßt, sind nebst ihren partiellen Ableitungen erster Ordnung im Endlichen

stetig. Es ist beispielsweise
$$\frac{\partial}{\partial \, \xi} P(\xi, \, \eta) = \int_{\dot{r}} \dot{q}(x, \, y) \, \frac{\partial}{\partial \, \xi} \left(\log \frac{1}{\varrho} \right) dx dy.^{81}$$

2. Für alle
$$(\xi_1, \eta_1)$$
, (ξ_2, η_2) in $T + S$ ist
$$|D_1 P(\xi_1, \eta_1) - D_1 P(\xi_2, \eta_2)| < \{q\} (A_1 \delta_{12} |\log \delta_{12}| + A_2),$$

$$\delta_{12}^2 = (\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2, \ (A_1, A_2 \text{ konstant}).^{\$2})$$

Im Raume gilt eine ganz analoge Formel.

Sind q und D_1q in T stetig, so sind, wie bereits C. F. $Gau\beta$ gezeigt hatte, in T auch D_2P vorhanden und stetig. Es ist ferner in der Ebene $\Delta P = -2\pi q$, im Raume $\Delta P = -4\pi q$. Nach O. $H\"{o}lder$ genügt es für die Existenz der Ableitungen D_2P im Punkte (ξ_0, η_0) in T, wenn

$$q(\xi_0 + h', \eta_0 + h'') - q(\xi_0, \eta_0)| < c(|h| + |h'|)^{\lambda}, 0 < \lambda < 1$$
 (c konstant) ist.⁸³) Ist q eine Funktion von x oder von y allein, so genügt bereits,

81) O. Hölder, Beiträge zur Potentialtheorie, Inaugural-Dissertation, Stuttgart 1882, p. 1—71 [6—8]. Einen besonders einfachen Beweis gibt E. Schmidt, loc. cit. 63) p. 368—372. Vgl. ferner H. Petrini, loc. cit. 56) und D. Pompeiu, Annaes scientificos da Ac. polyt. do Porto, Bd. 8, Nr. 4, 1913, p. 226—241.

In T+S ist (im Raume) $|P| \le 2\pi \left(\frac{3v}{4\pi}\right)^3 \{q\}$, $|D_1P| \le 4\pi \left(\frac{3v}{4\pi}\right)^3 \{q\}$, unter v das (innere) Volumen, $\{q\}$ die obere Grenze von |q| verstanden. (Man vergleiche hierzu E. Schmidt, loc. cit. 63), p. 368—372).

82) U. Dini, Acta math. 25 (1902), p. 185-230 [p. 192-196].

83) O. Hölder, loc. cit. 81) p. 9—19. Allgemeiner genügt es vorauszusetzen, daß q in (ξ_0,η_0) stetig ist, das Integral

$$J(h) = \int_{0}^{h} \frac{|q(\xi, \eta) - q(\xi_0, \eta_0)|}{\varrho_0} d\varrho_0, \ \varrho_0^2 = (\xi - \xi_0)^2 + (\eta - \eta_0)^2,$$

genommen längs eines jeden durch $(\xi_0,\,\eta_0)$ gelegten Halbstrahles eine bestimmte

wenn diese in (ξ_0,η_0) stetig ist.⁸⁴) Im allgemeinen reicht die Stetigkeit von q in (ξ_0,η_0) nicht aus, um die Existenz von D_2P zu gewährleisten.⁸⁵ Notwendige und zugleich hinreichende Kriterien sind zuerst von Petrini angegeben worden. Sei q in (ξ_0,η_0) stetig. Damit $\frac{\partial^2}{\partial \eta^2}P(\xi_0,\eta_0)$ und $\frac{\partial^2}{\partial \eta^2}P(\xi_0,\eta_0)$ existieren, ist nach Petrini notwendig und hinreichend, daß, unter K^* das Gebiet $(x-\xi_0)^2+(y-\eta_0)^2< h^2$ verstanden.

$$\lim_{\substack{k=0\\ r=k}} \int_{k=0}^{\bullet} q(x,y) \frac{\partial^2}{\partial \xi^2} \left(\log \frac{1}{\varrho}\right) dx dy$$

existiert. Es gilt $\Delta P(\xi_0, \eta_0) = -2\pi q(\xi_0, \eta_0).^{86}$

Einen Satz, der über die Existenz von $D_2P(\xi_0,\eta_0)$ in einem vorgegebenen Punkte in T zwar nicht zu entscheiden vermag, jedoch über die Verteilung der Stellen, in denen $D_2P(\xi,\eta)$ existieren, Aufschluß gibt, hat L. Lichtenstein angegeben:

Sei K ein T+S enthaltendes Kreisgebiet und q(x,y) eine in K+C erklärte nebst ihrem Quadrate im Lebesgueschen Sinne integrierbare Funktion. Außer höchstens in einer Punktmenge (M) vom Maße Null, sind D_2P vorhanden. Auf der Menge T-(M) sind D_2P nebst ihrem Quadrate im Lebesgueschen Sinne integrierbar. In jedem Punkte von T-(M) ist $\Delta P=-2\pi q.^{57}$

3. Ist q in (ξ_0, η_0) stetig, so gilt nach Petrini

$$\begin{split} \lim_{\boldsymbol{h} \to 0} \frac{1}{h} \left\{ & \frac{\hat{c}}{\hat{c}\, \boldsymbol{\xi}} P(\boldsymbol{\xi}_0 + \boldsymbol{h}, \, \boldsymbol{\eta}_0) - \frac{\hat{c}}{\hat{c}\, \boldsymbol{\xi}} P(\boldsymbol{\xi}_0, \, \boldsymbol{\eta}_0) + \frac{c}{\hat{c}\, \boldsymbol{\eta}} P(\boldsymbol{\xi}_0, \, \boldsymbol{\eta}_0 + \boldsymbol{h}) - \frac{\hat{c}}{\hat{c}\, \boldsymbol{\eta}} P(\boldsymbol{\xi}_0, \, \boldsymbol{\eta}_0) \right\} \\ &= - \, 2\pi q(\boldsymbol{\xi}_0, \, \boldsymbol{\eta}_0). \, ^{88}) \end{split}$$

Bedeutung hat und $J\langle h|$ für h=0 gleichmäßig gegen Null konvergiert. Siehe U. Dini, loc. cit. 82, p. 197 - 204. Vgl. hierzu E. Morera, Reale Ist. Lomb. di sc. e lett. Rend. (2) 20 (1887), p. 543. Analoge Sätze gelten im Raume.

- 84) H. Petrini, loc. cit. 56) b), p. 134-137.
- 85) H. Petrini, loc. cit. 56) b), p. 137-138.
- 86) H. Petrini, loc. cit. 56) b), p. 131—133, im Raume loc. cit. 56) a), p. 129 bis 134. Vgl. ferner T. J. P.A. Bromwich, Proc. of the London. Math. Soc. (2) 3 (1905), p. 435—470. Petrini nimmt übrigens allgemeiner an, daß q lediglich auf jedem Halbstrahle durch (ξ_0, η_0) stetig ist, und gibt ferner notwendige und hinreichende Bedingungen für die Existenz und Stetigkeit von $D_2P(\xi, \eta)$.
- 87 L. Lichtenstein, loc. cit. 61), p. 34-42. Die partielle Ableitung $\frac{\partial^2 P}{\partial \xi \partial \eta}$ wird dabei in einer von der üblichen teilweise abweichenden Art erklärt. Ein ganz analoger Satz gilt höchst wahrscheinlich im Raume.
- 88) H. Petrini, loc. cit. 56) b), p. 137. Dort findet sich auch eine Reihe allgemeinerer Beziehungen. Analoge Sätze gelten im Raume. Siehe H. Petrini, loc. cit. 56) a), p. 182. Man vergleiche hierzu S. Zaremba, loc. cit. 117).

4. Es möge jetzt T insbesondere der Klasse B angehören. Ist in T+S

$$\begin{split} q(x_1,y_1) &= q(x_2,y_2) \, | < N d_{12}^{\lambda}, \, 0 < \lambda < 1, \\ d_{12}^2 &= (x_1 - x_2)^2 + (y_1 - y_2)^2, \, (N \text{ konstant}) \end{split}$$

so ist D_2P in T und auf S stetig. Ferner ist in T+S

$$|D_2(\xi,\eta)| < \alpha_1(\lambda)M + \beta_1(\lambda)N,$$

$$\begin{split} |\,D_2(\xi_1,\,\eta_1) - D_2(\xi_2,\,\eta_2)\,| &< (\alpha_2(\lambda)\,M + \beta_2(\lambda)\,N)\,\delta_{12}^\lambda,\,\,M = \mathrm{Max}\,\,|\,q\,|\,, \\ \delta_{12}^\lambda &= (\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2\,{}^{89}) \end{split}$$

Ein ganz ähnlicher Satz gilt im Raume.

5. Analoge Sätze lassen sich für partielle Ableitungen höherer Ordnung aufstellen. Gehört T der Klasse C an und ist q in T und auf S analytisch und regulär, so ist P sowohl in T+S. als auch in jedem Außenbereiche, in der Ebene im allgemeinen mit Ausnahme des unendlich fernen Punktes, analytisch und regulär. 90)

Mit der analytischen Fortsetzung des logarithmischen Potentials einer homogenen Flächenbelegung, deren Begrenzung algebraisch ist, sowie mit dem analogen Problem für Volumladungen, die von gewissen algebraischen Rotationsflächen begrenzt sind. hat sich in der neuesten Zeit G. Herglotz beschäftigt. Bei dem zweidimensionalen Problem läßt sich das Potential in den Außengebieten als Potential geeigneter homogener einfacher und doppelter Linienbelegungen, zu denen im allgemeinen noch gewisse Massenpunkte hinzutreten, auffassen. Die Lage der anziehenden Punkte und Linien hängt aufs engste mit der Lage der ordentlichen und außerordentlichen Brennpunkte des algebraischen Randes zusammen. Im Raume gelten ähnliche Beziehungen. 92)

⁸⁹⁾ A. Korn, loc. cit. 55; f), p. 29-30; loc. cit. 55) h), p. 25-32.

⁹⁰⁾ Dieser Satz rührt von *H. Bruns* her, loc. cit. 64). Einen einfachen Beweis hat *E. Schmidt*, loc. cit. 64), p. 118, gegeben. Spezielle Entwicklungen zur analytischen Fortsetzung vergleiche II A 7b Nr. 9.

⁹¹⁾ G. Herglotz, loc. cit. 79). Man vergleiche ferner die gleichzeitigen Untersuchungen von A. Wangerin, loc. cit. 79) sowie Abh. d. kais. Leop. Carol. Deutschen Akad. der Naturf., Halle 1917, Bd. 102 Nr. 3. Dort finden sich p. 3 Hinweise auf die einschlägigen Arbeiten von C. Neumann aus den Jahren 1907—1909.

⁹²⁾ Weitere Literatur: J. G. Leathem, Proc. of the London math. Soc. 2: 8 (1910), p. 200-212: C.W. Oseen, Rend. del Circolo Mat. di Palermo, 38 (1914), p. 167-179.

Sei T ein mit Masse erfülltes, beschränktes Gebiet (etwa der Klasse C). Betrachtungen darüber, welche Änderungen der Massendichte die Anziehung des Körpers im Außenraume nicht beeinflussen (Bestimmung der Massenverteilung von der Anziehung Null) hat P. Pizzetti, Atti della R. Acc. dei Lincei, Rend. (5) 18, p. 211-215 angestellt. Man vergleiche ferner G. Lauricella, ebendort (5) 20, p. 99-107 sowie U. Crudeli, am gleichen Ort (5) 21, p. 407-411; p. 822-825.

9. Newtonsches Potential einer einfachen Linienbelegung. Es sei Γ ein Stück einer doppelpunktlosen analytischen und regulären Kurve (oder auch einer Kurve allgemeinerer Natur) in $\mathfrak E$ oder im Raume. Mit dem Verhalten des Integrals $\int_{\Gamma} \chi(t) \frac{1}{r_i} dt$, unter $\chi(t)$ eine

auf Γ erklärte analytische und reguläre (oder auch gewissen Stetigkeitsbedingungen allgemeineren Charakters genügende) Funktion verstanden, beschäftigen sich H. Poincaré⁹³), T. Levi-Civita⁹⁴), A. Viterbi⁹⁵), G. Pavanini⁹⁶), U. Cisotti⁹⁷), A. Tonolo⁹⁸). G. Piccoti^{98 a}) bestimmt das Newtonsche Potential einer unbegrenzten homogenen Schraubenlinie.

10. Greensche Formeln. Allgemeine Eigenschaften der Potentialfunktionen. Sei T ein beschränktes Gebiet der Klasse Q in \mathfrak{E} ; U(x,y) und V(x,y) mögen in T+S nebst ihren partiellen Ableitungen erster Ordnung stetige Funktionen bezeichnen. In T sollen überdies $\frac{\partial^z U}{\partial x^2}$, $\frac{\partial^z V}{\partial y^2}$, $\frac{\partial^z V}{\partial x^2}$, $\frac{\partial^z V}{\partial y^2}$ vorhanden und stetig sein. Es ist dann

$$(1) \quad -\int\limits_{T} \left(\frac{\partial U}{\partial x}\frac{\partial V}{\partial x} + \frac{\partial U}{\partial y}\frac{\partial V}{\partial y}\right) dx \, dy - \int\limits_{T} U\frac{\partial V}{\partial n} \, ds = \int\limits_{T} U\Delta V \, dx \, dy,$$

(2)
$$\int_{T} (U\Delta V - V\Delta U) dx dy = -\int_{S} \left(U \frac{eV}{\partial n} - V \frac{\partial U}{\partial n} \right) ds.^{100})$$

Ganz analoge Formeln gelten für Gebiete der Klasse B oder D im Raume.

Mit dem Ausdruck $\int_{T} \int_{T} q(x, y, z) q(\xi, \eta, \xi) \frac{1}{\varrho} dx dy dz d\xi d\eta d\xi$ ("Potential von T auf sich selbst") beschäftigt sich O. Hölder, loc. cit. 81), p. 51–66. Über den "Körper größter Anziehung" vergleiche II A 7 b Fußnote 113). (Für die neuere Literatur sei auf, Fort. d. Math., verwiesen.)

93) H. Poincaré, Potentiel, p. 32-39 sowie p. 121-132; Acta Math. 22 (1899), p. 89-178.

94) T. Levi-Civita, Rend della R. Acc. dei Lincei (5) 17 (1908), p. 3-15; p. 413-426; p. 535-551; Rend. del Circ. Mat. di Palermo 33 (1912), p. 354-374.

95) A. Viterbi, Rend. del. R. Ist. Lomb. (2) 42 (1908), p. 913-928.

96) G. Pavanini, Rend. della R. Acc. dei Lincei (5) 19 (1910), p. 394-401.

97) U. Cisotti, Rend. del Circolo Mat. di Palermo 31 (1911), p. 201-233 p. 204-211).

98) A. Tonolo, Math. Ann. 72 (1912), p. 78-106.

98 a) G. Piccati, Atti della R. Acc. dei Lincei, Rend. (5, 13 '1904), p. 595 bis 603.

99) Vergleiche das Referat II A 7b von H. Burkhardt und W. F. Meyer Nr. 12 sowie den Artikel II A 2 von A. Voß Nr. 47.

100) Vgl. etwa *C. Jordan*, Cours d'Analyse, 2. Auflage, Bd. 2, p. 132—136. Dort werden rektifizierbare Randkurven betrachtet, die mit einer jeden Geraden x = const. eder y = const. die sie trifft, nur eine endliche Anzahl Strecken oder

Es möge jetzt T der Klasse B (in $\mathfrak E$) angehören. Die Beziehung (2) gilt nach einer Bemerkung von A. Liapounoff für jedes Paar in T+S stetiger Funktionen U, V, wenn D_1 U, D_1 V, D_2 U, D_2 V in T; $\frac{\partial U}{\partial u}$, $\frac{\partial V}{\partial u}$ auf S vorhanden und stetig sind. 101) 102)

Die Existenz stetiger Normalableitungen kann übrigens durch folgende etwas weniger weitgehende Voraussetzungen ersetzt werden: Die Ableitungen $\frac{\partial}{\partial n}U(x,y)$, $\frac{\partial}{\partial n}V(x,y)$ sind beschränkt, die Normalableitungen $\frac{\partial}{\partial n}U(s)$, $\frac{\partial}{\partial n}V(s)$ sind, außer höchstens in einer Menge von Punkten auf S vom Maße Null, vorhanden. Ganz analoge Sätze gelten für Gebiete der Klasse B im Raume. 108)

Punkte gemeinsam haben. Weitergehende nahe verwandte Sätze finden sich in der Fußnote 103) angegeben. In einzelnen Punkten (x_k,y_k) des Randes (z. B. in den Eckpunkten) dürfen $\frac{\partial U}{\partial x}$, $\frac{\partial U}{\partial y}$, $\frac{\partial V}{\partial x}$, $\frac{\partial V}{\partial y}$ einer Beziehung von der Form

$$\frac{1}{\partial U} \cdot , \quad \left| \frac{\partial U}{\partial x} \cdot , \quad \left| \frac{\partial U}{\partial y} \cdot , \quad \frac{\partial V}{\partial x} \cdot , \quad \frac{\partial V}{\partial y} \cdot < \frac{\mathrm{Const.}}{r_k^{H}} \quad (0 < \mu < 1, \quad r_k^2 = (x - x_k)^2 + (y - y_k)^2)$$

gemäß unendlich werden $Vgl.\ W.\ F.\ Osgood$ und $E.\ H.\ Taylor$, loc. cit 598, p. 278-279.

101) Die Existenz von $\frac{\partial^2 U}{\partial x \partial y}$ und $\frac{\partial^2 V}{\partial x \partial y}$ wird nicht vorausgesetzt.

102) A. Liapounoff, loc. cit. 54) a), p. 285—286. Vgl. ferner J. Plemelj, Untersuchungen, p. 9—10.

103) Weitreichende Sätze über die Gültigkeit der Formel

(1*)
$$\int_{T} \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} \right) dx dy = \int_{S} u dy - r dx ,$$

aus der (1) durch die Substitution: $u=U\frac{\partial V}{\partial x}$. $v=U\frac{\partial V}{\partial y}$ formell hervorgeht, geben P. Montel, Thèse, Ann. de l'Éc. Norm. (3) 24 (1907), p. 233 – 334 [p. 283–293]; Ch. J. de la Vallée Poussin, Bull de l'Ac. roy. de Belgique 1910. Nr. 11, p. 763 bis 798 [790—792], Ida Barney, Amer. Journ. of Math. 36 (1914), p. 137—150. (daselbst am Schluß die ältere Literatur) und W. $Gro\beta$, Monatsh. f. Math. u. Phys. 27 (1916), p. 70—120 [p. 75—79] an. W. $Gro\beta$ zeigt durch ein verallgemeinerungsfähiges Verfahren, daß es genügt, vorauszusetzen, daß T beschränkt und endlich vielfach zusammenhängend und S rektifizierbar ist, daß ferner u und v in T und auf S stetig und $\frac{\delta u}{\partial x}$ und $\frac{\delta v}{\partial y}$ vorhanden (vgl. die Fußnote 33) und im Lebesgueschen Sinne integrierbar (sommable) sind. Die Integrale rechter Hand sind als Stieltjessche Integrale aufzufassen. Nach de la Vallée Poussin genügt es übrigens anzunehmen, daß in T+S die Funktion u in bezug x, die Funktion v in bezug auf y endliche im Lebesgueschen Sinne integrierbare Derivierte (nombres dérivées) habe. Außer höchstens in einer Menge (M) vom Maße Null, sind dann $\frac{\partial u}{\partial x}$ und $\frac{\partial v}{\partial y}$ vorhanden. Das Doppelintegral ist über T-(M) zu erstrecken. Nach Ida Barney gilt der Satz (1*) für gewisse nicht rektifizier

Es möge T wie zuletzt ein beschränktes Gebiet der Klasse B in $\mathfrak E$ bezeichnen; U(x,y) sei eine in T+S stetige, in T reguläre Potentialfunktion, die auf S etwa eine stetige Normalableitung hat Aus (2) folgt in bekannter Weise für alle (x,y) in T

$$(3 U(x, y) = \frac{1}{2\pi} \int_{\mathcal{S}} \left\{ U(t) \frac{\partial}{\partial n_i} \left(\log \frac{1}{r_i} \right) - \frac{\partial U}{\partial n_i} \log \frac{1}{r_i} \right\} dt.$$

Im Raume tritt unter dem Integralzeichen $\frac{1}{r_t}$ für $\log \frac{1}{r_t}$, vor diesem $\frac{1}{4\pi}$ für $\frac{1}{2\pi}$ ein. 104) Analoge Formeln gelten für reguläre Potentialfunktionen in Gebieten, die den unendlich fernen Punkt enthalten. Aus diesen folgt, daß die Ausdrücke:

in der Ebene
$$R^2D_1U$$
 $(R^2 = x^2 + y^2)$.
im Raume R^3D_1U $(R^2 = x^2 + y^2 + z^2)$

beschränkt sind. (3) schließt man in bekannter Weise, daß jede Potentialfunktion in ihrem Regularitätsgebiete analytisch und regulär ist. (106)

Sei U(x,y) eine in einem Kreisgebiete K vom Halbmesser h um (x_0,y_0) reguläre, in K+C stetige Potentialfunktion. Von (3) ausgehend findet man durch einen geeigneten Grenzübergang

bare Randkurven. Weitere Literatur: C. Poli. Torino Atti, 49 (1914), p. 248—260: L. Lichtenstein. Arch. der Math. u. Phys. (3) 27 (1918), p. 31—37. Hier wird für Gebiete der Klasse A im Raume eine zu (1*) analoge Formel abgeleitet. Von den drei Funktionen u, v und w wird vorausgesetzt, daß sie in einem T+8 enthaltenden Gebiete stetig sind und endliche, im Lebesgueschen Sinne integrierbare Derivierte entsprechend in bezug auf x, y und z haben.

¹⁰⁴⁾ Führt man rechter Hand für U/t und $\frac{\partial U}{\partial n_t}$ die sich aus (3) ergebenden

Ausdrücke in geeigneter Weise ein. so gewinnt man neue Darstellungsformeln für U. Vgl. H. Petrini, Archiv för Mat., Astr. och Fys. 8, Nr. 24 sowie 9, Nr. 17.

¹⁰⁵⁾ Dies besagt mehr als die Definitionsbeziehungen der Nr. 5. Vgl. $J.\ Plemelj,\ Untersuchungen,\ p.\ 14.$

^{106.} Vgl. das Referat von H. Burkhardt und W. F. Meyer II A 7 b Nr. 12. Ist bekannt. daß U und D_1U in einem Gebiete T in $\mathfrak E$ stetig sind, daß ferner $\frac{\partial^2 U}{\partial x^2}$, $\frac{\partial^2 U}{\partial y^2}$, außer höchstens in einer Punktmenge (M) vom Flächenmaße Null, existieren, in T-(M) beschränkt sind und die Beziehung $\Delta U=0$ erfüllen, so ist U eine in T reguläre Potentialfunktion. Ein analoger Satz gilt im Raume. Vgl. P. Montel, loc. cit. 103), p. 233—234. Ebendort findet sich eine Reihe weitergehender Sätze.

10. Greensche Formeln. Allgemeine Eigenschaften der Potentialfunktionen. 213

$$U(x_0, y_0) = \frac{1}{2\pi h} \int_C U(t) dt.^{107}$$

Sei T ein ebenes oder räumliches Gebiet der Klasse B und U eine in T und auf S stetige, in T reguläre Potentialfunktion, es möge ferner etwa $\frac{\partial}{\partial n}U(s)$ auf S existieren und sich stetig verhalten, dann ist, wie aus (1) geschlossen werden kann,

$$\int_{S} \frac{\partial U}{\partial n} ds = 0.108$$

Man findet ferner

$$\int_{\hat{x}} \left[\left(\frac{\partial U}{\partial x} \right)^2 + \left(\frac{\partial U}{\partial y} \right)^2 \right] dx dy = - \int_{\hat{x}} U \frac{\partial U}{\partial y} ds,$$

Aus (4) kann geschlossen werden, daß eine Potentialfunktion, außer wenn sie sich auf eine Konstante reduziert, in ihrem Regularitätsgebiete weder Maximum, noch Minimum annehmen kann.¹⁰⁹)

Die W. Thomsonsche Transformation

$$x' = \frac{x}{R^2}, \ y' = \frac{y}{R^2}, \ U'(x',y') = U(x,y)$$
 in der Ebene,

$$z'=\frac{x}{R^z},\,y'=\frac{y}{R^z},\,z'=\frac{z}{R^z},\,U'(x',y',z')=R\,U(x,y,z)$$
im Raume

tührt eine in einer Kreisfläche um den Koordinatenursprung reguläre Potentialfunktion U in eine Potentialfunktion U' über, die in einem unendlichen von einem Kreise begrenzten Gebiet (im Raume im allgemeinen mit Ausschluß des unendlich fernen Punktes) regulär ist (vgl. H. Burkhardt und W. F. Meyer II A 7 b Nr. 16; Poincaré, Potentiel, p. 192—200.) Man schließt unter Zuhilfenahme der Thomsonschen Transformation fast unmittelbar, daß eine in der gesamten Ebene oder im Raume (mit Einschluß des unendlich fernen Punktes) reguläre Potentialfunktion sich auf eine Konstante reduziert. Eine in $\mathfrak S$ oder im Raume erklärte, im Endlichen reguläre, positive (und a fortiori beschränkte)

¹⁰⁷⁾ Vgl. H. A. Schwarz, Ges. Abh. 2, p. 175—210 [181—185]. Im Raume gilt eine analoge Formel.

¹⁰⁸⁾ Ist T ein ganz im Innern des Regularitätsgebietes gelegenes Gebiet der Klasse N in $\mathfrak E$ oder der Klasse A im Raume, so gilt auch jetzt noch $\int \frac{\partial U}{\partial n} \, ds = 0 \; .$

¹⁰⁹⁾ Auch nicht in dem weiteren, durch die Zeichen ≥ oder ≤ bestimmten Sinne. Auch der unendlich ferne Punkt macht keine Ausnahme. Vgl. J. Plemelj, Untersuchungen p. 15—17.

¹¹⁰⁾ Vgl. bsp. bei J. Plemelj, Untersuchungen p. 15-17, wo sich noch einige weitergehende Sätze finden.

Potentialfunktion ist eine Konstante. (Vgl. É. Goursat, Cours 3, p. 185, p. 260.)

Weitere allgemeine Eigenschaften zwei- und dreidimensionaler Potentialfunktionen, insbesondere grundlegende Entwicklungssätze vergleiche Nr. 13 und 14, insbesondere die Fußnoten 149) und 153) bis 159).

Das analytische Verhalten der Potentialfunktionen im Raume ist demjenigen in der Ebene vielfach analog.¹¹¹)

Besteht zwischen den Abteilungen D_1u einer Potentialfunktion im Raume eine Gleichung, so ist diese nach J. Weingarten, wenn man $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial u}{\partial z}$ als Koordinaten eines Punktes im Raume deutet, die Gleichung einer Minimalfläche. 112)

Allgemeine Untersuchungen über die Reduktion dreidimensionaler Potentialfunktionen auf Funktionen von zwei unabhängigen Veränderlichen sind von *T. Levi-Civita* und *U. Amaldi* unter Benutzung der Methoden der Theorie kontinuierlicher Transformationsgruppen durchgeführt worden.¹¹³)

11. Die Cauchy-Riemannschen Differentialgleichungen. u(x, y) eine in einem beschränkten, einfach zusammenhängenden Ge-

111) Vgl. Poinearé, Potentiel, p. 200—203, wo das Verhalten im Unendlichen untersucht wird, sowie namentlich P. Appell, Acta Math. 4 (1884), p. 313—374 [p. 313 bis 346], wo u. a. ein Analogon zu dem Mittag-Lefflerschen Satze über meromorphe Funktionen abgeleitet wird, ferner P. Appell, Acta Math. 8 (1886), p. 265—294. Dort findet sich eine analytische Darstellung von Potentialfunktionen, die sich in Räumen regulär verhalten, deren Begrenzung aus Stücken von Kugelflächen besteht. Man vergleiche überdies L. de Sanetis, Annali di Mat. (3) 4 (1900), p. 161—197. Betrachtungen über allgemeine und gewisse partikulare Lösungen der Differentialgleichung $\Delta u = 0$ im Raume finden sich bei E. T. Whittaker, Math. Ann. 57 (1903), p. 333—355. Nach Whittaker läßt sich jede Potentialfunktion im Raume in der Form

 $\int_{0}^{z} f(z+ix\cos u+iy\sin u, u) du$

darstellen. Man vergleiche hierzu A. L. Dixon, Mess. of Math. 33 (1903/4), p. 172—76 sowie G. N. Watson, Mess. of Math. 36 (1906/7), p. 98—106. Weiteres über das analytische Verhalten dreidimensionaler, insbesondere mehrdeutiger Potentialfunktionen siehe bei A. C. Dixon, Proc. of the London Math. Soc. (2) 1 (1903/04), p. 415—436.

112) J. Weingarten, Gött. Nachr. 1890, p. 313—335. Man vergleiche hierzu G. Frobenius, Gött. Nachr. 1891, p. 323—338 sowie F. Schottky, Berl. Sitzungsber. 1909, p. 1152—1157.

113) T. Levi-Civita, Mem. della R. Acc. d. sc. di Torino (2) 49 (1899), p. 105 bis 152; U. Amaldi, Rend. del. Circ. Mat. di Palermo 16 (1902), p. 1—45. Siehe ferner loc. cit. 411).

114) Vgl. II A 7 b Nr. 8, II B 1 Nr. 2, 3 und 19. Siehe ferner den Artikel von L. Bieberbach über Funktionentheorie, wo beim Begriff des analytischen Charakters diese Dinge besprochen werden.

biete T in & reguläre Potentialfunktion. Durch die Gleichungen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

wird u(x, y) eine bis auf eine willkürliche Konstante bestimmte, in T reguläre, zu u(x, y) "konjugierte" Potentialfunktion v(x, y) zugeordnet; u(x, y) + iv(x, y) ist eine in T reguläre analytische Funktion der komplexen Veränderlichen x + iy.

Sei u(x, y) und v(x, y) ein Paar in T erklärter, nebst ihren partiellen Ableitungen erster Ordnung stetiger; den Cauchy-Riemann-schen Differentialgleichungen (1) genügender Funktionen. Wie bereits B.Riemann gezeigt hat, sind u(x, y) und v(x, y) in T reguläre Potential-funktionen; sie haben darum stetige partielle Ableitungen aller Ordnungen. Ersetzt man also die Differentialgleichung $\Delta u = 0$ durch das System (1), so gewinnt man den Satz, daß u(x, y) analytisch und regulär ist, sowie man voraussetzt, daß $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$ vorhanden und stetig sind.

Man kann bei der Definition der Potentialfunktion partielle Ableitungen zweiter Ordnung auch dadurch entbehrlich machen, daß man von geeigneten Integraleigenschaften ausgeht. Diese Bemerkung gilt sowohl in der Ebene, als auch im Raume.

Sei T ein beschränktes Gebiet in $\mathfrak E$ oder im Raume. Ist u eine in T nebst ihren partiellen Ableitungen erster Ordnung stetige Funktion und ist $\int \frac{\partial u}{\partial n} ds = 0$, unter C einen beliebigen Kreis (Kugel) in

T verstanden, so ist u eine in T reguläre Potentialfunktion. 116)

Sei u eine in T stetige Funktion. Ist der Mittelwertsatz (4) Nr. 10 erfüllt, so ist u eine in T reguläre Potentialfunktion. 117)

durchweg
$$\lim_{\varrho=0} \frac{1}{\varrho^2} \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} u(\xi + \varrho \cos \theta, \eta + \varrho \sin \theta) d\theta - u(\xi, \eta) \right\} = 0$$
 ist. Einen

verwandten Satz hat übrigens beträchtlich früher S. Zaremba, Rend. del Circ.

¹¹⁵⁾ B. Riemann, Inaugural - Dissertation, Ges. Math. Werke, p. 3-48 [23-24].

¹¹⁶⁾ Vgl. P. Koebe, Sitzungsber. d. Berl. Math. Ges. 5 (1906), p. 39-42;
M. Bôcher, Proc. of the Amer. Ac. of. Arts and Sciences Bd. 41, Nr. 26 (1906),
p. 577-583.

¹¹⁷⁾ P. Koebe, loc. cit. 116). Eine modifizierte und teilweise erweiterte Fassung findet sich bei E. E. Levi, Rendiconti della R. Acc. dei Lincei (5) 18 (1909), p. 10—15 und H. Lebesgue, Bull. de la Soc. math. de France 40 (1912), p. *16—*17. Nach M. Plancherel, Ann. de l'Éc. Norm. (3) 31 (1914), p. 223—262 [p. 245] (vgl. auch W. Blaschke, Leipz. Ber. 68 (1916), p. 3—7) genügt es bereits, wenn in T

Wie neuere Untersuchungen gezeigt haben, lassen sich die Riemannschen Voraussetzungen nicht unbeträchtlich reduzieren. Nach \acute{E} . Goursat genügt es anzunehmen, daß a(x,y) und v(x,y) sich in T stetig verhalten sowie dort bestimmte, den Gleichungen (1) genügende partielle Ableitungen erster Ordnung haben, und daß überdies der Satz von der vollständigen Differentiierbarkeit

$$du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy, \quad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy$$

gilt. In der Symbolik der Funktionentheorie lauten diese Voraussetzungen einfacher: Ist f(z) in T stetig und ist $\frac{d}{dz}f(z)$ daselbst vorhanden, so ist f(z) in T analytisch und regulär. (118)

Nach P. Montel kann man statt dessen von den Voraussetzungen ausgehen, daß a und v in T stetig sind, $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ in T existieren sowie beschränkt sind und die Gleichungen (1), alles mit Ausnahme einer gewissen Menge von Punkten vom Maße Null, erfüllen. 119)

Ein anderes System von Voraussetzungen hat Ch de la Vallée Poussin angegeben. Die Funktionen u(x,y) und v(x,y) sind in T stetig und haben daselbst endliche micht notwendig beschränkte), im Lebesgueschen Sinne integrierbare Derivierte (außer höchstens in einer Punktmenge vom Maße Null, sind alsdann $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ gewiß vorhanden). Außer höchstens in einer Nullmenge sind die Gleichungen (1) erfüllt. 120)

Ist f(z) stetig, ist für alle (x,y) in T und alle positiven, hinreichend kleinen h der Ausdruck

$$\begin{split} u(z,h) &= \frac{1}{h} \left[i \delta_x f(z) - \delta_y f(z) \right], \ \delta_x f(z) = f(z+h) - f(z). \\ \delta_y f(z) &= f(z+i \dot{h}) - f(z) \end{split}$$

Mat. di Palermo 19 (1905), p. 140 150 angegeben. Ist u in T stetig and ist daselbst $\lim_{h\to 0} \frac{1}{h^2} [f(x+h,y) + f(x-h,y) + f(c,y+h) + f(x,y-h) - 4f(x,y)] = 0$, so ist in $T \dots \Delta u = 0$.

118) É. Goursat, Acta Math. 4 (1884), p. 197-200; Trans. of the Amer. Math. Soc. 1 (1900), p. 14-16; E. H. Moore, ebendort, p. 499-506; A. Pringsheim, Trans. of the Amer. Math. Soc. 2 (1901), p. 413-421; Münch. Ber. 33 (1903), p. 673-682; Bibl Math. (3) 1 (1900), p. 433-479; L. Heffter, Gött. Nachr. 1902, p. 115-140; 1903, p. 312-316; 1904, p. 196-200.

119) P. Montel, loc. cit. 103), p. 293 – 295. Dort finden sich noch andere, zum Teil äquivalente, zum Teil allgemeiner gefaßte Aussagen. In einer späteren Note, C. R. 156 (1913), p. 1820—1822, gibt Montel ohne Beweis einen über den vorstehenden erheblich hinausgehenden Satz an.

120) Ch. de la Vallée Poussin, loc. cit. 103), p. 793-798.

beschränkt, ist ferner

$$\lim_{h=0} u(z,h) = 0,$$

so ist f(z) eine in T reguläre analytische Funktion. Die Zahl der reellen Grenzwerte, deren Existenz in jedem Punkte vorausgesetzt wird, die sonst vier beträgt, wird hier auf zwei reduziert.

Sei T ein Jordansches Gebiet in der Ebene der komplexen Variablen z = x + iy. Durch Vermittlung der in T + S stetigen Funktionen $x' = x'(x, y), \quad y' = y'(x, y)$

sei T auf ein Jordansches Gebiet T' in der Ebene der Variablen z'=x'+iy' umkehrbar eindeutig und stetig bezogen. Es sei weiter bekannt, daß die Abbildung "streckentreu" ist, d. h. daß in allen Punkten z_0 in T der Grenzwert

 $\lim_{z=z_0} \frac{z'-z'_0}{z-z'_0}$

vorhanden und von Null verschieden ist. Bleibt endlich der Umlaufssinn erhalten, so ist, wie H. Bohr neuerdings bewiesen hat, z' eine in T reguläre analytische Funktion von z. Die Abbildung ist konform. L^{122} L^{123}

Im Raume entsprechen den konjugierten Potentialfunktionen gewisse Funktionen von Linien im Sinne von V. Volterra. 124) 125) 126)

¹²¹⁾ L. Lichtenstein, U. R. 150 1910, p. 1109; Sitzungsb. d. Berl. Math. Ges. 9 1910, p. 84—100 [p. 84—96].

¹²²⁾ Vgl. H. Bohr, Math. Zeitschr. 1 (1918), p. 403-420. S. auch H. Rade-macher, Math. Zeitschrift 3 (1919).

¹²³⁾ Systematische Betrachtungen über "winkeltreue" und "streckentreue" Abbildung an einem Punkte und in der Ebene sind einige Jahre früher von R. Remak angestellt worden. Vgl. R. Remak. Rend. del Circ. Mat. di Palermo 38 (1914), p. 193—246.

¹²⁴⁾ V. Volterra, Leçons sur l'intégration des équations différentielles aux dérivées partielles, Upsala 1906. Man vergleiche ferner A. C. Dixon. The Quarterly Journal of pure and appl. Math. 35 (1904), p. 283—296 sowie M. Lagally, Münch. Ber. 1914, p. 157—190.

¹²⁵⁾ Weitere Literatur über die Cauchy-Riemann schen Differentialgleichungen und den Cauchyschen Integralsatz: C. Pucciano, Giorn. di Mat. 47 (1909), p. 55-64; D. Pompéiu, Nouv. Ann. de Math. (4) 10 (1910), p. 221-227; C. R. 153 (1911), p. 624-626; Wiener Ber. 120 (1911), p. 1249-1252; F. Schottky, Berlin Sitzgsber. 1915, p. 790-98; Journ. f. Math. 146 (1916), p. 234-244.

¹²⁶⁾ Über die analytische Fortsetzung von Potentialfunktionen durch das komplexe Gebiet hindurch vgl. E. Study, Math. Ann. 63 (1906), p. 239—245; 66 (1909), p. 331—336; Vorlesungen über ausgewählte Gegenstände der Geometrie, 1. Heft; Ebene analyt. Kurven und zu ihnen geh. Abbild., Leipzig 1911, p. 105—113. Allgemeine Betrachtungen über konforme Abbildung und Krümmung finden sich bei A. Voβ, Münch. Ber. 37 (1907), p. 77—112.

III. Besondere Methoden für einzelne Klassen zwei- und dreidimensionaler Gebiete.

Spezielle Theorie der konformen Abbildung.

12. Die erste und die zweite Randwertaufgabe. Problemstellung und Unitätssätze. Es sei T irgendein berandetes Gebiet in \mathfrak{E} oder \mathfrak{E}_m . Auf dem Rande S von T sei eine beliebige stetige Wertfolge gegeben. Potentialfunktionen, die auf S diese Werte annehmen, zu bestimmen, bezeichnet man als die erste Randwertaufgabe der Potentialtheorie. Sie kann nicht mehr als eine Lösung haben. Wären u_1 und u_2 zwei verschiedene Lösungen, so müßte nach C. Neumann u_1-u_2 auf S verschwinden und, da (Nr. 10) ein Extremum in T ausgeschlossen ist, identisch gleich Null sein. \mathbb{R}^{128}

Sei T insbesondere ein von einer endlichen Anzahl einfacher Kurven begrenztes Gebiet. Die Randfunktion kann jetzt allgemeiner abteilungsweise stetig¹²⁹) angenommen werden. Von der zu bestimmenden Potentialfunktion wird gefordert, sie sei beschränkt, in jedem die Unstetigkeitspunkte auf S nicht enthaltenden Bereiche in T+S stetig und in T regulär. Die Randwertaufgabe hat auch jetzt nicht mehr als eine Lösung.¹³⁰)

Sei noch spezieller T ein beschränktes, einfach zusammenhängendes Gebiet der Klasse B (oder Ah) in $\mathfrak E$ oder $\mathfrak E_m$. Man kann jetzt die Randwerte f(s) im Lebesgueschen Sinne integrierbar annehmen. Es sei (ξ,η) irgendein Punkt in T und es möge $G(\xi,\eta;x,y)$ die auf S verschwindende Greensche Funktion von T bezeichnen

127) Die Umgebung der unendlich fernen Punkte hat man sich hierbei, sofern diese auf S liegen, durch stereographische Projektion auf die Riemannsche Kugel übertragen zu denken. Windungspunkte auf S werden, wie bereits erwähnt, (vgl. die Fußnote 4)) im allgemeinen nicht zugelassen.

128] Sei T insbesondere vom endlichen Zusammenhang. Der Unitätssatz gilt unverändert, wenn über das Verhalten der nun als beschränkt vorauszusetzenden Lösung u in endlich vielen Punkten A_j ($j=1,\ldots n$) der nicht punktförmigen Komponenten von S keinerlei Festsetzungen vorliegen. In jedem die Ausnahmepunkte nicht enthaltenden Bereiche in T+S soll die Lösung wie vorhin stetig sein. Es genügt noch allgemeiner vorauszusetzen, daß, unter P einen Punkt in T verstanden, (in der Ebene) $\lim_{\overline{A_iP}=0} \frac{u(P)}{\log A_iP} = 0$ ist. S. Zaremba

(Bull. de l'Ac. des Sc. de Cracovie 1909, p. 501—504) teilt für diesen Satz einen völlig elementaren Beweis mit. (Eine Darstellung findet sich bei É. Goursat, Cours, 3, p. 205—206). Man vergleiche ferner J. Plemelj, Untersuchungen, p. 41—42.

129) Oder auch nur beschränkt und bis auf eine endliche Anzahl Punkte stetig
130) Vergleiche die Fußnote 128). Für das Kreisgebiet ist dieser Satz auf einem anderen Wege zuerst von H. A. Schwarz, Ges. Abh. 2, p. 190—201, bewiesen worden. Siehe ferner É. Picard. Traité 2, p. 48—49.

(Nr. 20). Für hinreichend kleine δ sind die Kurven S_{δ} ,

$$G(\xi, \eta; x, y) \stackrel{\circ}{=} \delta$$

geschlossene, doppelpunktlose, analytische und reguläre Linien. Die gesuchte Lösung soll in T regulär sein und, außer höchstens in einer Menge von Randpunkten vom Maße Null, bei der Annäherung an S längs der orthogonalen Trajektorien der Schar S_{δ} gegen f(s) konvergieren. Verlangt man schließlich, daß $\lim_{\delta = 0} \int\limits_{S_{\delta}} |u| \, ds = \int\limits_{S} |f| \, ds$ gilt,

so kann das Problem auch jetzt nicht mehr als eine Lösung haben. 131)

Im Raume wird das erste Randwertproblem, wenn die Randwerte durchweg stetig sind, genau so wie in der Ebene gestellt. Der Unitätsbeweis von C. Neumann gilt ohne jede Änderung. Es sei T insbesondere ein Gebiet der Klasse B und es mögen die vorgeschriebenen Randwerte abteilungsweise stetig sein. Die Schlußweise von S. Zarembaliefert auch jetzt noch in der einfachsten Weise den Unitätssatz. 133)

Es sei T ein Gebiet der Klasse B in $\mathfrak E$ oder $\mathfrak E_m$, das nicht beschränkt zu sein braucht, f(s) eine auf S erklärte, der Bedingung $\int f(s) ds = 0$ genügende stetige Funktion. Die Aufgabe, die etwa vorhandenen in T und auf S stetigen, in T regulären (eindeutigen) Potentialfunktionen u(x,y) zu bestimmen, die auf S stetige Normalableitung haben und der Bedingung $\frac{\partial u(s)}{\partial n} = f(s)$ genügen, bildet das zweite Randwertproblem der Potentialtheorie. 134) Ist f(s) abteilungsweise stetig, so wird man $\frac{\partial}{\partial n} u(x,y)$ beschränkt annehmen und über-

¹³¹⁾ Vgl. M. Plancherel, Bull. des Sc. Math. (2) 34 (1910), p. 111—114 sowie O. D. Kellogg, Transc. of the Amer. Math. Soc. 13 (1912), p. 109—132 (p. 127—132).

Abgesehen von jener Nullmenge, konvergiert die Lösung bei der Annäherung an S längs einer beliebigen S nicht berührenden Geraden in T gegen f(s). Ist f(s) beschränkt, so genügt es, um die Unität zu gewährleisten, u(x,y) beschränkt vorauszusetzen.

¹³²⁾ Auch im Raume braucht man übrigens die Randfunktion nicht notwendig beschränkt anzunehmen. Um nur das einfachste zu erwähnen, so dürfte das Kriterium von M. Plancherel loc. cit. 131), wenn f(s) etwa in isolierten Punkten oder längs einer endlichen Anzahl von stetig gekrümmten Kurven auf S unendlich wird, sinngemäß übertragen, eine hinreichende Unitätsbedingung liefern.

¹³³⁾ Vgl. J. Plemelj, Untersuchungen, p. 42 (Fußnote).

¹³⁴⁾ Die Beziehung $\int_{s}^{s} f(s) ds = 0$ entspricht der Integralbeziehung (5) der

Nr. 10. Es genügt übrigens $\frac{\partial}{\partial n}u(x,y)$ beschränkt anzunehmen. Daß der Grenzübergang $\lim \frac{\partial}{\partial n}u(x,y)=\frac{\partial u(s)}{\partial n}=f(s)$ auf S gleichmäßig ist, wird sich nachträglich von selbst ergeben.

220

dies festsetzen, daß $\frac{\partial}{\partial n}u(x,y)$ sich dem Grenzwerte $\frac{\partial u(s)}{\partial n}$ auf jedem die Unstetigkeitspunkte von f(s) nicht enthaltenden abgeschlossenen Bogen von S gleichmäßig nähern soll. Hat das Problem überhaupt eine Lösung, so erhält man alle Lösungen durch Hinzufügung einer willkürlichen Konstanten. 135)

Die vorstehende Definition der zweiten Randwertaufgabe läßt sich auf ebene Gebiete der Klasse A und allenfalls der Klasse N ausdehnen (Nr. 2). Beachtet man aber, daß unter geeigneten Voraussetzungen $\frac{e\,u(s)}{e^{\frac{i}{s}}}=-\frac{\hat{e}\,v\,(s)}{\hat{e}\,s}$ ist, so findet man, daß das zweite Randwertproblem, sofern das (beschränkte) Gebiet T einfach zusammenhängend ist, im wesentlichen denselben Grad der Allgemeinheit, wie das erste erlangt, wenn man es so faßt:

Es ist eine in T reguläre Potentialfunktion u(x, y) zu bestimmen. die so beschaffen ist, daß die konjugierte Potentialfunktion v(x, y)auf S eine bis auf eine additive Konstante vorgeschriebene stetige Wertfolge annimmt. Das zweite Randproblem läßt sich demnach in der Ebene auf das erste zurückführen. 136) Nach Bestimmung von v(x, y) hat nunmehr eine Untersuchung des Verhaltens der Werte u und $\frac{\tilde{c}u(s)}{\tilde{c}n}$ auf S einzusetzen.

Eine ganz analoge Bedeutung und Allgemeinheit hat das zweite Randproblem im Raume. Im Gegensatz zu dem zweidimensionalen Falle läßt es sich hier nicht in einer so unmittelbaren Weise auf die erste Randwertaufgabe zurückführen.

13. Explizite Lösung der ersten Randwertaufgabe für die Kreisfläche und den Kugelkörper. a) Die Poissonschen Integrale. 187) Es mögen u und φ Polarkoordinaten in einer Ebene bezeichnen. Sei C

¹³⁵⁾ Vgl. etwa bei J. Plemelj, Untersuchungen, p. 43. Man kann allgemeiner f(s) beschränkt und im Lebesgueschen Sinne integrierbar voraussetzen. Man wird dann $\frac{\partial}{\partial x}u(x,y)$ beschränkt annehmen und, außer höchstens auf einer Punktmenge vom Maße Null. $\lim \frac{\hat{\ell}}{\partial n} u(x, y) = \frac{\hat{\ell} u(\hat{s})}{\partial n} = f(\hat{s})$ festsetzen. Das zweite Randwertproblem hat übrigens auch dann noch einen Sinn, wenn fist eine gewissen Bedingungen genügende nicht beschränkte Funktion ist.

¹³⁶⁾ Ist T ein mehrfach zusammenhängendes Gebiet in $\mathfrak E$ und hat T keine punktartigen Randkomponenten, so hat v(x, y) vorgeschriebene Periodizitätsmoduln und auf jeder Randkomponente bis auf je eine additive Konstante vorgegebene Werte. Alle Konstanten, bis auf eine. bestimmen sich aus der Forderung, daß u(x, y) eindeutig sein soll. Vgl. z. B. J. Hadamard, Leçons, p. 11—13. Die Zurückführung mehrdeutiger Potentiale auf eindeutige vgl. Nr. 24d.

¹³⁷⁾ Vgl. das Referat II A 7 b von H. Burkhardt und W. F. Meyer Nr. 19, 20 und 21. In den Fußnoten 133) bis 145\ a. a. O. findet sich die ältere Liter atur.

der Kreis um den Anfangspunkt vom Halbmesser R; R und θ seien laufende Koordinaten eines Punktes auf C, $f(\theta)$ eine stetige Funktion mit der Periode 2π . Für diejenige in K und auf C stetige, in K reguläre Potentialfunktion $u(r, \varphi)$, die auf C den Wert $f(\theta)$ annimmt, hat S. Poisson den Ansdruck

den Ausdruck (1) $u(r,\varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - r^2}{R^2 - 2R^2 \cos(\varphi - \theta) + r^2} f(\theta) d\theta$

abgeleitet. In seinen grundlegenden Arbeiten über die Differentialgleichung $\Delta u = 0$ hat H. A. Schwarz durch Betrachtungen, die seitdem vorbildlich geworden sind, als erster streng bewiesen, daß $u(r,\varphi)$ auf C tatsächlich den Wert $f(\theta)$ annimmt. Durch (1) ist die erste Randwertaufgabe für ein Kreisgebiet unter der Voraussetzung, daß die Randwerte stetig sind, vollständig gelöst; sie hat keine weiteren Lösungen (Nr. 12). Das gleiche beweist Schwarz, wenn $f(\theta)$ abteilungsweise stetig ist, unter der weiteren Annahme, daß $u(r, \varphi)$ in K beschränkt namentlich die Arbeiten von C. Neumann, F. Prym und H. A. Schwarz. Man vergleiche ferner U. Dini, Annali di Mat. (2) 5 (1871/73), p. 305-345. Von den neueren Arbeiten sind zunächst die Abhandlung von U. Dini, Acta Math. 25 (1902), p. 185 bis 230 sowie eine Reihe von Aufsätzen von C. Neumann in den Leipz. Berichten, 1906 bis 1915, namentlich 64 (1912), p. 273-339 sowie p. 340-398, zu nennen. Zusammenhängende Darstellungen finden sich u. a. bei É. Picard, Traité, Bd. I, p. 268-275, Bd. II, p. 15-17; W. F. Osgood. Funktionentheorie, p. 633-641: H. Weyl, Die Idee der Riemannschen Fläche, p. 82-91; É. Goursat, Cours, 3, p. 183—189. Eine eingehende Theorie des Poissonschen Integrals (1) geben ferner F. Prym und G. Rost (Prymsche Funktionen, p. 1-47).

138) H. A. Schwarz, a) Berl. Monatsber. 1870, p. 767—795; Ges. Abh. 2, p. 144—171; b) Journ. f. Math. 74 (1872), p. 218—253; Ges. Abh. 2, p. 175—210. An dem zuletzt genannten Ort finden sich p. 184 und 189 Notizen über ältere Beweise der Poissonschen Integrale. Die Abhandlungen von H. A. Schwarz enthalten unter anderem eine systematische Theorie der Potentialfunktionen in der Ebene: Darstellung durch unendliche Reihen, analytische Fortsetzung usw. Von prinzipieller Wichtigkeit ist die Bemerkung, daß sich das Poisson sche Integral (1) auf die $Gau\beta$ sche Mittelwertformel (4) Nr. 10 zurückführen läßt. Es genügt hierzu K durch eine lineare Substitution derart auf sich selbst zu beziehen, daß (r, φ) in den Anfangspunkt übergeht. Vgl. M. Bôcher, Bull. of Amer. Math. Soc. (2) 4 (1897/98) sowie Annals of Math. (2) 7 (1906); man vergleiche ferner die unter 106) zitierte Note von P. Koebe.

Geometrische Betrachtungen im Anschluß an das Poisson sche Integral gibt G. Darboux, Bull. des Sc. math. (2) 34 (1910), p. 287—300. Das Poisson sche Integral (1) findet sich, aus den allgemeinen Fredholm schen Auflösungsformeln (Nr. 17d) abgeleitet, bei J. Plemelj, Untersuchungen, p. 68—69. Weitere Literatur: T. Boggio, a) Rend. del Circ. Mat. di Palermo 22 (1906), p. 220—232; H. Villat, Bull. de la Soc. math. de France 39 (1911), p. 443—456; Ann. de l'Éc. Norm. (3) 28 (1911), p. 203—311; T. Boggio, b) Atti d. R. Acc. d. Sc. di Torino 47 (1911), p. 22—37; W. Küstermann, Bull. of the Amer. Math. Soc. (21) 2 (1914/15), p. 120—123; W. Groß, Math. Zeitschr. 2 (1918), p. 242—294; ebendort 3 (1919).

und in jedem die Unstetigkeitspunkte von $f(\theta)$ nicht enthaltenden Bereiche in K+C stetig ist. Die Lösung ist wieder durch (1) gegeben. 139)

Es sei Σ ein Stück einer Kurve der Klasse A, das zwei Punkte P und Q auf C verbindet, abgesehen von seinen Endpunkten ganz in K verläuft und C nicht berührt. Es sei $u_0(r,\varphi)$ diejenige beschränkte, in K reguläre Potentialfunktion, die auf dem einen Kreisboden (PQ) gleich 1, auf C = (PQ) gleich 0 ist. Ist $u_0 = \text{Max } u(r,\varphi)$ auf Σ , so ist $u_0 < q < 1$ (der Schwarzsche Hilfssatz). 140)

Der Schwarzsche Beweis des Poissonschen Integrals (1) läßt sich (wenn die Randfunktion stetig ist) ohne weiteres auf den Fall eines Kugelkörpers übertragen. (447)

Setzt man in (1) vor dem Integral das Zeichen —, so erhält man das Poissonsche Integral für das unendliche von C begrenzte Gebiet K_a . Die Funktion u(x,y) ist dann diejenige in K_a+C stetige, in K_a reguläre Potentialfunktion, die auf C die Werte $f(\theta)$ annimmt.* Im Raume erhält man auf diese Weise das Poissonsche Integral für das von einer Kugel C begrenzte unendliche Gebiet K_a , d. h. diejenige in K_a+C stetige, im Unendlichen verschwindende, in K_a (im allgemeinen mit Ausschluß des unendlich fernen Punktes) reguläre Potentialfunktion, die auf C die vorgeschriebenen Werte annimmt.

Eine Reihe weitgehender Resultate über das *Poisson* sche Integral (1) hat *P. Fatou* unter Zuhilfenahme des *Lebesgue* schen Integralbegriffes abgeleitet.¹¹²) Wir heben zunächst die folgenden Sätze hervor:

Betrachtungen über das Verhalten einer in einem ebenen Bereiche der Klasse D oder E beschränkten und bis auf endlich viele Randpunkte stetigen, im Innern regulären Potentialfunktion in der Umgebung der Ecken oder Spitzen, wenn die Folge der Randwerte dort einen Sprung erleidet, finden sich bei H.A. Schwarz, Ges. Abh. 2, p. 152—154. Man vergleiche hierzu A. Harnack, Grundlagen, p. 12—20.

¹³⁹⁾ H. A. Schwarz, Ges. Abh. 2, p. 190-200.

¹⁴⁰⁾ H. I. Schwarz, Ges. Abh. 2, p. 156 und p. 190—200. Der Beweis von Schwar: gilt für alle einfach zusammenhängenden Gebiete der Klasse A, sobald für diese das erste Randwertproblem bei durchweg stetigen Randwerten gelöst ist (vgl. \dot{E} . Picard, Traité, 2, p. 57 sowie weiter unten Nr. 24a Fußnote 282)). Schwarz zerlegt allgemeiner C in 2p zusammenhängende Bögen $C_1,\ldots C_{2p}$, nimmt $f(\theta)$ auf $C_{2j-1}(j=1,\ldots p)$ gleich 1, auf $C_{2j}(i-1,\ldots p)$ gleich 0 an: Σ verbindet zwei beliebige Teilpunkte von C. Darüber hinaus läßt Schwarz mehrfach zusammenhängende Gebiete und gewisse Gebiete mit Ecken und Spitzen zu.

¹⁴¹⁾ Auch diese Formel ist zuerst von S. Poisson angegeben worden. Einen nach Schwarz geführten Beweis findet man beispielsweise bei C. Jordan. Cours d'Analyse 2 (1894). p. 217—218 und É. Picard, Traité 1, p. 161—167.

¹⁴²⁾ P. Fatou, Acta math. 30 (1906), p. 335—400. Dieser ausführlichen Arbeit sind verschiedene Noten in den C. R. vorausgegangen.

1. Sei $f(\theta)$ eine beliebige im Lebesgueschen Sinne integrierbare Funktion $(f(\theta + 2\pi) = f(\theta))$. Bekanntlich ist, außer höchstens auf

einer Menge (M) vom Maße Null, $f(\theta_0) = \lim_{h \to 0} \frac{1}{h} \int f(\tau) d\tau$. Nach Fatou

konvergiert $u(r,\varphi)$ bei der Annäherung an (R,θ_0) längs einer beliebigen C nicht berührenden Geraden in K gegen $f(\theta_0)$ allemal, wenn θ_0 der Menge C—(M) angehört. 143 Ist insbesondere $f(\theta)$ beschränkt, so ist $u(r,\varphi)$ die einzige beschränkte, in K reguläre Potentialfunktion, die auf C, außer höchstens auf einer gewissen Nullmenge, die Werte $f(\theta)$ annimmt (Nr. 12).¹⁴¹)

- 2. Ist in (R, θ_0) die Ableitung $f'(\theta_0)$ vorhanden, so konvergiert $rac{\hat{c}}{\hat{c}\,oldsymbol{arphi}}\,u\,(r,\,oldsymbol{arphi})$ bei der vorerwähnten Annäherung an den Rand gegen $f'(\theta_0)$. 145)
- 3. Es sei $f(\theta)$ stetig und es möge $v(r,\varphi)$ eine zu $u(r,\varphi)$ konjugierte Potentialfunktion bezeichnen. Eine notwendige und hinreichende Bedingung für das Vorhandensein des Grenzwertes lim $v(r, \theta_0)$ ist, daß

$$\lim_{r \to 0} \int_{\epsilon}^{\pi} [f(\theta_0 + \theta) - f(\theta_0 - \theta)] \cot \frac{\theta}{2} d\theta \text{ existient. Es ist}$$

$$r(r, \varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{R^2 - r^2}{R^2 - 2Rr\cos(\varphi - \theta) + r^2} g(\theta) d\theta,$$

$$(2) \lim_{r=R} v(r,\theta_0) = g(\theta_0) = -\frac{1}{2\pi} \lim_{\epsilon=0} \int_{\epsilon}^{\pi} [f(\theta_0 + \theta) - f(\theta_0 - \theta)] \cot \frac{\theta}{2} d\theta + \frac{1}{2\pi} \int_{0}^{2\pi} g(\theta) d\theta.$$

143) P. Fatou, loc. cit. 142), p. 339-363 und 373.

144) P. Fatou, loc. cit. 142), p. 340. Man vergleiche M. Plancherel, loc. cit. 131).

145) P. Fatou, loc. cit. 142), p. 346 und 357. Aus den Ergebnissen von Futou läßt sich leicht der folgende Satz ableiten: (I) Ist $f(\theta)$ stetig, $f'(\theta)$ nach Lebesgue integrierbar und in θ_0 stetig, ist ferner

$$\int_{\theta_0}^{\theta} f'(\theta) d\theta = f(\theta) - f(\theta_0) \ (\theta_0 \le \theta \le \theta_0 + 2\pi)$$

 $\int\limits_{\theta_0}^{\pi}f'(\theta)d\theta=f(\theta)-f(\theta_0)\ (\theta_0\leq\theta\leq\theta_0+2\pi)$ und existiert der Grenzwert $\lim\limits_{\varepsilon=0}\int\limits_{\varepsilon}^{\pi}[f'(\theta_0+\theta)-f'(\theta_i-\theta)]\cot\frac{\theta}{2}d\theta$, so ist die

Normalableitung — $\lim_{r=R} \frac{\partial}{\partial r} u(r, \theta_0)$ vorhanden. Die Sätze 2. und (I) enthalten insbesondere gewisse Resultate von U. Dini, loc. cit. 137), p. 221-229.

146) P. Fatou, loc. cit. 142), p. 360. Man vergleiche auch J. Plemelj,

224 HC3. L. Lichtenstein. Potentialtheorie. Konforme Abbildung

$$\begin{array}{l} \text{Ist } |f(\theta+h)-f(\theta)| < \text{Const.} |h|^{\lambda} (0 < \lambda < 1), \text{ so ist auch} \\ \cdot |g(\theta+h)-g(\theta)| < \text{Const.} |h|^{\lambda}.^{147}) \end{array}$$

Monatshefte f. Math u. Phys. 19 (1908), p. 205—210; C. Neumann, Leipz Ber. 65 (1915), p. 144—183 sowie W. $Gro\beta$, Monatsh. f. Math. u. Phys. 28 (1917), p. 238—242. D. Hilbert mimmt (Gött. Nachr. 1904, p. 213—259 [p. 250—255], Grundzüge, p. 73—77) $f'(\theta)$ und $f''(\theta)$ stetig an und leitet die wichtigen Umkehrungsformeln ab:

$$\begin{split} u(s) &= \frac{1}{2\pi R} \int_{t'}^{t} v(t) \cot s \, \frac{t-s}{2R} \, dt + \frac{1}{2\pi R} \int_{t'}^{t} u(t) \, dt, \\ v(s) &= -\frac{1}{2\pi R} \int_{t'}^{t} u(t) \cot s \, \frac{t-s}{2R} \, dt + \frac{1}{2\pi R} \int_{t'}^{t} v(t) \, dt. \end{split}$$

Diese Formeln sind in den älteren Ergebnissen von *Tauber* als Spezialfälle enthalten. Vgl. A. Tauber, Monatsh. f. Math. u. Phys. 2 (1891), p. 79—118. Siehe auch A. Pringsheim, Münch. Ber. 30 (1900), p. 37—100.

Entsprechende Formeln für beliebige beschränkte Gebiete der Klasse B finden sich bei D. Hilbert, Gött. Nachr. 1905, p. 1—32 [p. 1—5]; Grundzüge, p. 81—86. Man vergleiche ferner O. Kellogg, Math. Ann. 58 (1904), p. 441—456 sowie Bull. of the Amer. Math. Soc. (2) .13, p. 168—170 und Ch. Haseman, Inaugural-Dissertation, Göttingen 1907 sowie Math. Ann. 66 (1909), p. 285—272.

Es genügt übrigens vorauszusetzen, daß $f(\theta)$ im Lebesgue schen Sinne integrierbar und nur in θ_0 stetig ist (vgl. L. Lichtenstein, loc. cit. 61), p. 27–28).

147) Anders geartete Sätze hat Lichtenstein angegeben: (II) Ist $[f(\theta)]^2$ nach Lebesgue integrierbar, so konvergiert $v(r,\theta)$ bei der Annäherung an den Rand längs einer beliebigen C nicht berührenden Geraden in K, außer höchstens in einer gewissen Nullmenge (M), gegen einen endlichen Wert $g(\theta_0)$. Das Integral

$$\int_{0}^{\pi} [g(\theta_0)]^2 d\theta_0 \text{ existiert [I.. $Lichtenstein$, loc. cit. 61), p. 23]}.$$

iIII ist $f(\theta)$ stetig, $[f'(\theta)]^{\sharp}$ im Lebesgueschen einne integrierbar und

$$\int_{a}^{\theta} f'(\theta) d\theta = f(\theta) - f(\theta_0),$$

so ist, außer höchstens in einer gewissen Menge der Punkte θ_0 vom Maße Null, der Grenzwert $\lim_{\substack{r=R\\ p=0}} \frac{\partial}{\partial r} u(r, \varphi) = \chi(\theta_0)$ bei der Annäherung an (R, θ_0) längs einer

beliebigen C nicht berührenden Geraden in K vorhanden. Das Integral $\int_{-\pi}^{\pi} [\chi(\theta_0)]^2 d\theta_0$ existiert. [L. Lichtenstein a. a. O., p. 25—26 sowie Journ. f.

Math. 142 (1913), p. 189-190]. (IV) Sei $f(\theta)$ nach Lebesgue integrierbar. In allen

Punkten
$$\theta_0$$
, in denen $f(\theta_0) = \lim_{h \to 0} \frac{1}{h} \int_{\theta_0}^{\theta_0 + h} f(\tau) d\tau$ ist, ist

$$\lim_{\begin{subarray}{c} r=R\\ \varphi=\theta_0 \end{subarray}} (R-r) \frac{\partial}{\partial r} u(\mathbf{r}, \varphi) = 0 \,, \quad \lim_{\begin{subarray}{c} r=R\\ \varphi=\theta_0 \end{subarray}} (R-\mathbf{r}) \frac{\hat{o}}{\partial \varphi} u(\mathbf{r}, \varphi) = 0 \,.$$

Mit Rücksicht auf eine spätere Anwendung sei noch der folgende Satz von Fatou erwähnt: 4. Ist $f(z) = f(re^{i\varphi})$ eine in K reguläre und beschränkte Funktion, so ist, außer höchstens in einer Menge von Punkten θ_0 vom Maße Null, $\lim_{z\to R} f(re^{i\theta_0})$ vorhanden.¹⁴⁸)

b) Entwicklungssatz. Folgerungen. Ist $f(\theta)$ im Lebesgueschen Sinne integrierbar, so folgt aus (1) die Entwicklung

$$u(r,\varphi) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta) d\theta + \frac{1}{\pi} \sum_{n}^{1...\infty} \frac{r^{n}}{R^{n}} \left(\cos n\varphi \int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta + \sin n\varphi \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta\right) = \frac{b_{0}}{2} + \sum_{n}^{1...\infty} \frac{r^{n}}{R^{n}} \left(b_{n} \cos n\varphi + a \sin n\varphi\right)^{149}$$

Es ist weiter

Ist $f(\theta)$ stetig, so ist der Grenzübergang gleichmäßig. Ist $f(\theta)$ beschränkt, so sind auch die Ausdrücke hinter dem Limeszeichen beschränkt. Vgl. A. Liapounoff, loc. cit. 54) a), p. 266–267; S. Zaremba, Bull. de l'Ac. des Sc. de Cracovie 1905, p. 70–78; A. Hoborski, loc. cit. 65); L. Lichtenstein, Ber. d. Berl. Mat. Ges. 8 (1909), p. 125–133 sowie loc. cit. 61), p. 20–22. Weitere Sätze über das Verhalten der partiellen Ableitungen des Poissonschen Integrals (1) auf C finden sich bei P. Fatou, loc. cit. 142) passim; J. W. Lindeberg, Ann. de l'Éc. Norm. (3) 18 (1901), p. 127–142; U. Dini, loc. cit. 137); L. Lichtenstein, loc. cit. 61), p. 17–20 sowie Ber. d. Berl. Math. Ges. 8 (1909), p. 125–133 (dort handelt es sich namentlich um partielle Ableitungen höherer Ordnung); A. Korn, loc. cit. 55) h) [p. 15–24]).

148) P. Fatou, loc. cit 142), p. 366-368. Allgemeiner ist dort (in der vorhin benutzten Schreibweise) $\lim_{\substack{r=R\\ \alpha=\theta}} f(re^{i\phi}) = \lim_{\substack{r=R\\ \alpha=\theta}} f(re^{i\theta_0})$ (vgl. E. Study, Vor-

lesungen über ausgewählte Gegenstände der Geometrie, 2. Heft, Konforme Abbildung einfach-zusammenhängender Bereiche, herausgegeben unter Mitwirkung von W. Blaschke, Leipzig 1913, p. 50—55). Nach C. Carathéodory muß, wenn f(z) nicht konstant ist, die Menge der Limeswerte auf jedem Bogen von C mindestens drei verschiedene Werte enthalten (Math. Ann. 73 (1913), p. 305—320 [p. 307—312]. Dort sowie Gött. Nachr. (1913), p. 509—518 [p. 513—518] findet sich auch ein Beweis des Fatouschen Satzes).

149) Schon H. A. Schwarz folgerte hieraus gewisse Sätze über die Fourierschen Reihen stetiger Funktionen. Umgekehrt führen die Elemente der Theorie Fourierscher Reihen zu einem vollständigen Beweise der Poissonschen Integraldarstellung (1) (vgl. z. B. H. Lebesgue, Leçons sur les séries trigonométriques, Paris 1906, p. 48—54). Weitere an (3) anschließende Entwicklungen (analytische Fortsetzung, natürliche Grenze usw.) finden sich beispielsweise bei É. Picard, Traité 2, p. 51 u. ff.; F. W. Osgood, Funktionentheorie, p. 641 u. ff.; p. 655 u. ff.; É. Goursat, Cours 3, p. 192—195. Über die analytische Darstellung regulärer Potentialfunktionen in der Ebene vergleiche M. Böcher, Trans. of the Amer. Math. Soc. 10 (1909), p. 271—278.

226 II C 3. L. Lichtenstein. Potentialtheorie. Konforme Abbildung.

(4)
$$v(r,\varphi) = v(0,\varphi) + \frac{1}{\pi} \sum_{n=-\infty}^{\infty} \frac{r^{n}}{R^{n}} \left(-\cos n\varphi \int_{-\pi}^{\pi} f(\theta) \sin n\theta d\theta + \sin n\varphi \int_{-\pi}^{\pi} f(\theta) \cos n\theta d\theta \right).$$

Das "Dirichletsche Integral"

$$D_K(u) = \lim_{K' = K} \int_{K'} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy^{150}$$

konvergiert, auch wenn $f(\theta)$ stetig ist, im allgemeinen nicht.¹⁵¹) Eine notwendige und hinreichende Bedingung dafür, daß $D_K(u)$ einen end-

lichen Wert hat, ist, daß $\sum_{n}^{1...\infty} n(a_n^2 + b_n^2)$ konvergiert. Ist sie erfüllt, so ist

$$D_{K}(u) = \lim_{r=R} \int_{0}^{2\pi} u^{\frac{\partial u}{\partial r}} r d\varphi = \sum_{n}^{1...\infty} n(a_{n}^{2} + b_{n}^{2}).^{152}$$

Ist $f(\theta)$ stetig, so ist $D_K(u)$ vorhanden, wenn es auch nur eine in K und auf C stetige Funktion $\overline{u}(r,\varphi)$ gibt, die in K stetige partielle Ableitungen erster Ordnung besitzt und auf C den Wert $f(\theta)$ annimmt, so daß $D_K(\overline{u})$ existiert.

Es ist $D_K(\overline{u}) \geq D_K(u)$, wobei das Gleichheitszeichen nur für $\overline{u} = u$ gilt. 153)

Viele der im vorstehenden angegebenen Sätze lassen sich auf

¹⁵⁰⁾ Unter K' die Kreisfläche um den Koordinatenursprung vom Radius R' < R verstanden.

¹⁵¹⁾ F. Prym, Journ. f. Math. 73 (1871), p. 340—364, abgedruckt in F. Prym und G. Rost, Prymsche Funktionen, p. 227—250 [p. 246—250]; J. Hadamard, Bull. de la Soc. math. de France 34 (1906), p. 135—139.

¹⁵²⁾ J. Hadamard, loc. cit. 151), p. 136; $f(\theta)$ braucht dabei nicht notwendig stetig zu sein. Um so weniger wird im allgemeinen die Normalableitung $-\lim_{r \to R} \frac{\partial u(r, \varphi)}{\partial r}$ existieren.

¹⁵³⁾ Dieser Satz folgt fast unmittelbar aus den Betrachtungen von J. Hadamard, loc. cit. 151). Siehe ferner S. Zaremba, Bull. de l'Acad. des Sc. de Cracovie 1909, p. 197—264 [p. 206—208], wo der analoge Satz im Raume betrachtet wird. (Eine Darstellung findet sich bei H. Weyl, Die Idee der Riemannschen Fläche, p. 84—86.) Man vergleiche hierzu die allgemeinen Ergebnisse von S. Zaremba a. a. O., p. 125—195 [p. 150—151]. Einen Beweis für das Kreisgebiet gibt weiter R. Courant, Math. Ann. 72 (1912), p. 517—550 [p. 523—524]. In einer späteren Arbeit, Journ. f. Math. 144 (1914), p. 190—211 [p. 194—195] beweist Courant denselben Satz mit elementaren Mitteln für beliebige beschränkte Gebiete in & (Nr. 34).

den Kugelkörper übertragen. Durchgeführt sind diese Betrachtungen nur zum Teil. 154)

Aus dem Poissonschen Integral (1) werden verschiedene wichtige Ungleichheiten abgeleitet. H. A. Schwarz findet z. B.

$$|u(r, \varphi) - u(0, \varphi)| \le \frac{4}{\pi} \operatorname{Max} |f(\theta)| \operatorname{Arc sin} \frac{r}{R} \cdot {}^{155}$$

14. Kreisringfläche. Entwicklungssatz. Folgerungen. Eine in einem Kreisringgebiete $R_2 < r < R_1$ reguläre Potentialfunktion läßt sich daselbst (auf eine einzige Weise) in der Form

$$u(r,\varphi) = \frac{1}{2} (B_0 + B_0' \log r)$$

$$+ \sum_{n=1}^{\infty} \{ (A_n r^n + A_{-n} r^{-n}) \sin n\varphi + (B_n r^n + B_{-n} r^{-n}) \cos n\varphi \}$$

darstellen. Die unendliche Reihe rechter Hand konvergiert für $R_2 < R'_2 \le r \le R'_1 < R_1$ unbedingt und gleichmäßig. Ist insbesondere $u(r,\varphi)$ für $0 < r < R_1$ regulär, so gilt die Entwicklung für alle positiven $r < R_1$. Ist $u(r,\varphi)$ überdies in einem Gebiete $0 < r \le R'_1 < R_1$ beschränkt, so findet man $A_{-m} = B_{-m} = 0$ $(m \ge 1)$, $B_0' = 0$. Eine in einem beschränkten Gebiete T in & beschränkte, außer höchstens in isolierten Punkten, reguläre Potentialfunktion, ist mithin in T regulär. Ist $u(r,\varphi)$ im Innern und auf dem Rande einer Kreisfläche K, außer höchstens in ihrem Mittelpunkte, regulär, ist $D_K(u)$ vorhanden, so ist $u(r,\varphi)$ in K regulär. Ist allgemeiner $|r''u(r,\varphi)| < C, u > 0$ C kontaktens in C0 in C1 stallgemeiner C2 of C3 kontaktens in C3 stallgemeiner C4 in C5 kontaktens in C6 kontaktens in C6 kontaktens in C7 kontaktens in C8 kontaktens in C9 in C9 in C9 kontaktens in C9 in C9 in C9 in C9 in C9 in C9 kontaktens in C9 in C9

154) Der Schwarzsche Hilfssatz ist von A. Korn auf dreidimensionale Gebiete (der Klasse B) übertragen worden. Vergleiche die Fußnote 281).

155) H. A. Schwarz, Ges. Abh. 2, p. 175—210 [p. 190]. Andere Ungleichheiten geben C. Neumann, Abelsche Funktionen, p. 412—417; F. Schottky, Journ. f. Math. 117 (1897), p. 225—253, wo allgemeiner mehrfach zusammenhängende Gebiete der Klasse C in & betrachtet werden; G. Darboux, loc. cit. 141) [p. 297] (siehe auch T. Boggio, loc. cit. 141) b)); F. Prym und G. Rost, Prymsche Funktionen, p. 31—47 an.

Im Zusammenhang hiermit stehen grundlegende Ungleichheitsbeziehungen der Theorie analytischer Funktionen, die von J. Hadamard, E. Borel, E. Landau, C. Carathéodory, F. Schottky, E. Lindelöf, P. Koebe und anderen Forschern angegeben worden sind.

156) Vgl. z. B. H. A. Schwarz, Ges. Abh. 2, p. 204—210. Analoge Entwicklungen im Raume (auch für unendliche, von einer Kugel begrenzte Gebiete) siehe *Poincaré*, Potentiel, p. 204—210.

157) H. A. Schwarz, loc. cit. 156), p 209. Im Raume vergleiche Poincaré, Potentiel, p. 211.

158) D. Hilbert, Über das Dirichletsche Prinzip, Festschrift zur Feier des 150-jährigen Bestehens der Kgl. Ges. der Wiss. zu Göttingen, Berlin 1901, abgedruckt in den Math. Ann. 59 (1904). p. 161—186 [p. 184-186]. Unter $D_K(u)$ ist

228

stant), so enthält (1) nur eine endliche Anzahl Glieder mit negativem Exponenten. Ist die Funktion $u(r, \varphi)$ für $0 < r < R_1$ regulär und wird sie für r = 0 entweder gleich $+\infty$ oder $-\infty$, so ist

$$u(r, \varphi) = k \log r + \text{eine reguläre Potential funktion} \quad (k + 0).$$
 159)

Auch für die Lösung der ersten Randwertaufgabe in einem Kreisringgebiete läßt sich eine Reihenentwicklung unter Zuhilfenahme trigonometrischer Funktionen augeben.¹⁶⁰)

der als vorhanden vorausgesetzte Grenzwert

$$\lim_{K_0=0} \int_{K-K_0-C_0}^{K} \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy$$

 K_0 eine Kreisfläche um den Mittelpunkt von K) zu verstehen

159) M. Bôcher, Bull. of. Amer. Math. Soc. (2) 9 (1903), p. 455-465.

160) Vgl. C. Neumann, Journ. f. Math 59 (1861), p. 335—366; H. A. Schwarz, Ges. Abh. 2, p. 175—210 [p. 204—210]; É. Picard, Traité 2, p. 105—108; F. Prym und G. Rost, Prymsche Funktionen, p. 78—91, wo von einem kombinatorischen Verfahren Gebrauch gemacht wird (Nr. 24 a) Fußnote 316); É. Goursat, Cours 3, p. 190—191. Man vergleiche ferner U. Dini, Ann. di Math. (2) 4 (1870/71), p. 159—174; H. Villat, C. R. 152 (1911), p. 680—682; 153 (1911), p. 518—520; Xenia, Hommage internationale à l'Université de Grèce, Athènes 1912, p. 359—380; Journ. de Math. (6) 7 (1911), p. 353—408; Ann. de l'Éc. Norm. 3 28 (1911), p. 203—311; (3) 29 (1912), p. 127—197; Red. del. Circ. Mat. di Palermo 33 (1912), p. 134—175; U. Dini, ebendort 36 (1913), p. 1—28. In den neun zuletzt genannten Arbeiten wird von den elliptischen Funktionen Gebrauch gemacht.

Eine eingehende Behandlung des Kreisringgebietes gibt unter durchgehender Benutzung elliptischer Funktionen, zum Teil in Ausführung früherer Mitteilungen neuerdings H. Villat, Acta Math. 40 (1915), p. 101-178. Es werden u. a. explizite Ausdrücke für eine im Gebiete $R_2 < r < R_1$ reguläre analytische Funktion n+iv gegeben, wenn 1. auf $C_2(r=R_2)$ und $C_1(r=R_1)u$ (das erste Randwertproblem), 2. auf C_2 und $C_1 \dots \frac{\partial u}{\partial n}$ (das zweiten Randwertproblem), 2. auf $C_2 \dots u$, auf $C_1 \ldots v$, 4. auf $C_2 \ldots u$, auf $C_1 \ldots \frac{\partial u}{\partial n}$, 5. auf $C_2 \ldots$, auf $C_1 \ldots \frac{\partial u}{\partial n}$ vorgeschriebene Werte haben. (Man vergleiche hierzu namentlich U. Dini an dem zuletzt a. O.) Ferner werden gewisse Sätze von P. Fatou und L. Lichtenstein (Nr. 13) auf ein Kreisringgebiet übertragen. U. Dini gibt in seinen Arbeiten zugleich explizite Formeln für die Lösung des ersten Randwertproblems für das von zwei konzentrischen Kugeln begrenzte Volumen. Nach P. Koebe, Leipz. Ber. 65 (1913), p. 210—213 läßt sich die Lösung des ersten Randwertproblems für das Kreisringgebiet durch elementare Abbildungen auf das Poissonsche Integral zurückführen. Das gleiche gilt für die Fläche eines Rechtecks und einer Ellipse (man vergleiche hierzu Nr. 47 Fußnote 592).

15. Positive Potentialfunktionen. 160 a) Damit die unendliche Reihe

(1)
$$\frac{1}{2} + \sum_{k=1}^{\infty} r^k (a_k \cos k\varphi + \bar{a}_k \sin k\varphi) = \Re f(z)$$
 eine für $r < 1$ reguläre und positive Potentialfunktion darstellen kann, muß wie C . Carathéodory gezeigt hat, der Punkt a_k , \bar{a}_k $(k=1,\ldots n)$ des $2n$ -dimensionalen Raumes für alle n im Innern oder auf der Begrenzung des kleinsten konvexen $2n$ -dimensionalen Körpers K_{2n} liegen, der die sphärische Normalkurve $x_k = \cos k\theta$, $\bar{x}_k = \sin k\theta$ $(k=1,\ldots n)$ $(0 \le \theta \le 2\pi)$ enthält. 161 Jedes Gebiet K_{2n} ist die "Projektion" des

Eine von Carathéodory angegebene Umkehrung dieses Satzes lautet: Liegt der Punkt $a_1, \bar{a}_1, \ldots a_n, \bar{a}_n$ im Innern oder auf dem Rande von K_{2n} , so gibt es mindestens eine für r < 1 konvergierende Reihe der Form (1), die mit der Zahl $\frac{1}{2}$ beginnt, $a_1, \bar{a}_1, \cdots a_n, \bar{a}_n$ zu 2n ersten Koeffizienten hat und eine für r < 1 reguläre positive Potentialfunktion darstellt. Liegt der Punkt $a_1, \cdots a_n$ auf dem Rande, so ist die Funktion f(z) vollkommen bestimmt und zwar rational.

160 a) Vgl. den Artikel von L. Bieberbach über Funktionentheorie.

161) Vgl. C. Carathéodory, a) Math. Ann. 64 (1907), p. 95—115; b) Rend. del Circ. Mat. di Palermo 32 (1911), p. 193—217; c) C. Carathéodory und L. Fejér, an dem zuletzt a. O., p. 218—239. Siehe ferner d) O. Toeplitz, a. a. O., p. 191—192; E. Fischer. a. a. O., p. 240—256; f) J. Schur, Berl. Sitzungsber. 1912, p. 4—15; g) Journ. f. Math. 147—1917), p. 205—232; 148—1918), p. 122—145; h) G. Frobenius, Berl. Sitzungsber. 1912, p. 16—31; i. G. Herglotz, Leipz. Ber. 63 (1912), p. 501—511; k) F. Rieß, Ann. de l'Éc. Norm. (3) 28 (1911), p. 33—62; l) Les systèmes d'équations linéaires à une infinité d'inconnues, Paris 1913, p. 171—180; m) Journ. f. Math. 146 (1915), p. 83—87; n) L. Fejér, Journ. f. Math. 146 (1915), p. 53—82; o) G. Hamel, Math. Ann. 78 (1918), p. 257—269; p) O. Szász, Math. Zeitschr. 1 (1918), p. 149—162; q) Math. Zeitschr. 1 (1918), p. 163—183. Man vergleiche ferner G. Pick, loc. cit. 163). Für die Begrenzung von K_{2n} gibt Carathéodory eine Parameterdarstellung mittelst trigonometrischer Polynome. Nach O. Toeplitz ist in den Punkten der Begrenzung

$$D_n(1, \alpha_1, \alpha_2, \dots \alpha_n) = 0,$$

$$1, \quad \alpha_1, \quad \alpha_2, \dots \alpha_k$$

$$\alpha_{-1}, \quad 1, \quad \alpha_1, \dots \alpha_{k-1}$$

$$D_k = \bigcup_{i=1}^{n} \alpha_i + i\bar{\alpha}_1, \quad \alpha_{-1} = a_i - i\bar{\alpha}_1.$$

 α_{-k} , $\alpha_{-(k-1)}$, ... 1

nächstfolgenden Gebietes K_{2n+2} .

Im Innern von K_{2n} ist $D_k(1, \alpha_1, \ldots, \alpha_k) > 0$ $(k = 1, \ldots, n)$, auf dem Rande $D_k(1, \alpha_1, \ldots, \alpha_k) \ge 0$ $(k = 1, 2, \ldots, (n-1))$.

Damit die Reihe $\Re f(z)$ für r < 1 konvergiere und daselbst positiv sei, ist notwendig (und hinreichend), daß für alle $n \cdots D_n(1, \alpha_1, \ldots \alpha_n) \ge 0$ ist (vgl. O. Toeplits, loc. cit. d).

162) C. Carathéodory, loc. cit. 161) b).

Jedem Punkte z in dem Einheitskreise ordnet nach G. Pick die Gesamtheit der durch (1) erklärten Funktionen f(z) ein Kreisgebiet zu. 163)

Ein anderer Umkehrungssatz lautet: Liegt der Punkt a_1 , \bar{a}_1 , ... a_n , \bar{u}_* für jedes n im Innern oder auf dem Rande von K_{2n} , so konvergiert (1) für r < 1 und stellt eine für r < 1 reguläre positive Potentialfunktion dar. 163) 164)

Die vorstehenden Sätze benutzen C. Carathéodory und L. Fejér zur Beantwortung verschiedener Fragen über Maxima und Minima von Potentialfunktionen. 165)

Einen Abschätzungssatz über positive Potentialfunktionen im Raume gibt G. Pick166) an.

- 16. Die Sätze von A. Harnack. Sei T ein beschränktes Gebiet in &(E, a) oder im Raume. Aus der Tatsache, daß eine Potentialfunktion in ihrem Regularitätsgebiete weder Maximum noch Minimum haben kann, ergibt sich unter Zuhilfenahme der Poissonschen Integrale der folgende wichtige Satz:
- 1. Sei $u_i(j=1, 2, ...)$ eine Folge in T und auf S stetiger, in T regulärer Potentialfunktionen, die auf S gleichmäßig konvergiert Sie konvergiert alsdann in dem Bereiche T + S gleichmäßig. Die Funktion $u = \lim u_i$ ist eine in T + S stetige, in T reguläre Potentialfunktion. Die partiellen Ableitungen $D_n u_i (n \ge 1)$ konvergieren in jedem Bereiche in T gleichmäßig gegen $D_n u^{.167}$

Da jede stetige Funktion einer oder mehrerer Variablen durch analytische Funktionen dieser Variablen beliebig gleichmäßig approximiert werden kann, so kann man das erste Randwertproblem grundsätzlich als gelöst betrachten, wenn es gelingt, dieses für gewisse besonders einfache Randfunktionen zu erledigen. So könnte man bei ebenen Gebieten der Klasse A die Randfunktion f(s) analytisch annehmen.

- 2. Sei u_1, u_2, \ldots eine unendliche Folge in T regulärer, nicht
- 163) G. Pick, Math. Ann. 77 (1915), p. 7-23. Daselbst eine Verallgemeinerung der im Text besprochenen Ergebnisse. Man vergleiche ferner G. Pick, Math. Ann. 77 (1915), p. 1-6; 78 (1918), p. 270-275.
- 164) Ist unter den Voraussetzungen des Satzes etwa $D_p(1, \alpha_1, \ldots \alpha_n) = 0$ so ist $D_{n+k} = 0 \ (k = 1, 2, \cdots)$ und es gibt nur eine Funktion f(z) dieser Art; f(z) ist rational.
- 165) Vgl. loc. cit. 161) c). Hierzu ferner T. H. Gronwall, Annals of Math. (2) 16 (1914), p. 77-81.
- 166) G. Pick, Jahresb. d. Deutschen Math. Ver. 24 (1915), p. 329-332. Man vergleiche ferner G. Pick, Math. Zeitschr. 1 (1918), p. 44-51.
- 167) A. Harnack, Grundlagen, p. 65-67. Vgl. etwa É. Picard, Traité 2, p. 59-60; É. Goursat, Cours 3, p. 189-190.

negativer Potentialfunktionen. Ist die Reihe $\sum_{j}^{1...\infty} u_j$ auch nur in einem Punkte in T konvergent, so konvergiert sie in jedem Bereiche in T gleichmäßig und zwar gegen eine in T reguläre Potentialfunktion. 168)

Zur Auflösung des ersten Randwertproblems hat *C. Neumann* Anfang der siebziger Jahre eine Methode ersonnen, die für die Entwicklung der Potentialtheorie im Laufe der Zeit von der größten Wichtigkeit geworden ist. Die von *C. Neumann* angegebene "Methode des arithmetischen Mittels" sucht die Lösung in der Form des Potentials einer Doppelbelegung zu gewinnen. Dies gelingt, wie spätere Untersuchungen gezeigt haben, z. B. für alle Gebiete der Klasse *Ah*.

17. Methode des arithmetischen Mittels. a) Allgemeine Ansätze und Resultate von C. Neumann und G. Robin. Es sei T ein ebenes Gebiet der Klasse B. Die Gesamtheit der m Außengebiete ($m \ge 1$) heiße T_{σ} . Eins von diesen enthält den unendlich fernen Punkt. Auf S sei eine abteilungsweise stetige (allgemeiner im Lebesgueschen Sinne integrierbare) Wertfolge f(s) gegeben. C. Neumann stellt sich die Aufgabe¹⁷⁰), zwei Doppelbelegungen $\frac{1}{\pi} v_1(s)$ und $\frac{1}{\pi} v_2(s)$ auf S so zu bestimmen, daß die zugehörigen Potentialfunktionen

$$(1) \qquad \qquad \frac{1}{\pi} \int\limits_{\mathcal{S}} \nu_1(t) \frac{\partial}{\partial n_t} \Big(\log \frac{1}{r_t} \Big) dt \,, \quad \frac{1}{\pi} \int\limits_{\mathcal{S}} \nu_2(t) \frac{\partial}{\partial n_t} \Big(\log \frac{1}{r_t} \Big) dt$$

entsprechend auf der Innen- und der Außenseite von S den Wert f(s) annehmen. In einer völlig analogen Weise wird das Neumannsche Problem im Raume erklärt.¹⁷¹)

Die besondere Wichtigkeit des Neumannschen Ansatzes beruht darin, daß er die Lösung in einer Form liefert, aus der sich verschiedene ihrer Eigenschaften leicht ablesen lassen. So ist die Neumannsche Methode, außer bei ebenen Gebieten der Klasse C. D und E, bis jetzt die

¹⁶⁸⁾ A. Harnack, loc. cit. 167), p. 67-68. Eine Darstellung gibt u. a. É. Picard, Traité 2, p. 59-61. Vgl. ferner É. Goursat, Cours 3, p. 191-192.

Nützliche Hilfssätze über unendliche Folgen nicht negativer Potentialfunktionen gibt S. Johansson, Acta Soc. Sc. Fenn. Bd. 40 Nr. 2, p. 1—29 [p. 1—7, sowie Bd. 41 Nr. 2, p. 1—39 [p. 1—8] an.

¹⁶⁹⁾ Vgl. das Referat II A 7 b von H. Burkhardt und W. F. Meyer Nr. 27. Dort findet sich in den Fußnoten 170) bis 181) die ältere Literatur. Siehe namentlich G. Kirchhoff, Acta Math. 14 (1890/91), p. 179—183. Man vergleiche ferner die von D. Hilbert in seinen Vorlesungen mitgeteilten Bemerkungen bei E. R. Neumann, Math. Ann. 55 (1901), p. 1—52. Siehe ferner H. Liebmann, Münch. Ber. 1914, p. 369—376.

¹⁷⁰⁾ Zuerst Leipz. Ber. 22 (1870), p. 49-56, abgedruckt in den Math. Ann. 11 (1877), p. 558-566.

¹⁷¹⁾ Vor dem Integralzeichen tritt in diesem Falle der Faktor $\frac{1}{2\pi}$ ein.

einzige, die weitgehende Aufschlüsse über das Verhalten partieller Ableitungen der Lösung am Rande liefert. Dieser Vorteile seines Verfahrens war sich C. Neumann voll bewußt. Das Bestreben, die Lösung des ersten Randwertproblems in einer für die Diskussion geeigneten Form zu gewinnen, war überhaupt von Anfang an ein leitender Gedanke seiner Untersuchungen.¹⁷²)

Es möge das Gebiet T insbesondere einfach zusammenhängend und konvex sein. 173) Um Vorstellungen zu fixieren, nehmen wir es räumlich an. C. Neumann beweist unter Benutzung einer dem Gebiete eigentümlichen "Konfigurationskonstanten" $\alpha < 1$, daß die unendliche Reihe

$$(2) \qquad (\omega_0 - \omega_1) + (\omega_2 - \omega_3) + \cdots,$$

$$f_j(s) = \frac{1}{2\pi} \int_{S} f_{j-1}(t) \frac{\partial}{\partial n_i} \left(\frac{1}{r_{st}}\right) dt (j=1,2,\ldots), \quad \omega_j(x,y,z) = \frac{1}{2\pi} \int_{S} f_j(t) \frac{\partial}{\partial r_t} \left(\frac{1}{r_t}\right) dt,$$

$$f_0(s) = f(s)$$

in T und auf S gleichmäßig konvergiert und auf S den Wert $f_0(s)$ — N annimmt, unter N einen bestimmten von $f_0(s)$ und S abhängigen Wert verstanden. Eine analoge Entwicklung erhält man für das Außengebiet.

Es hat einer langen Reihe von Untersuchungen benötigt, bis die Konvergenz der Neumannschen Reihen und damit die Anwendbarkeit der Methode für Gebiete von hinreichend allgemeiner Natur, inbesondere für Gebiete der Klasse B sichergestellt war. Insbesondere sind, worauf wir bald zurückkommen werden, durch die Theorie linearer Integralgleichungen Zusammenhänge von überraschender Eleganz und Durchsichtigkeit aufgedeckt worden. Bekanntlich war es das Neumannsche Problem in der Poincaréschen Fassung

¹⁷²⁾ Vgl. C. Neumann, Abhandlungen. In der zweiten dieser beiden Abhandlungen nimmt C. Neumann die Untersuchung des Verhaltens partieller Ableitungen der Lösung am Rande in Angriff.

¹⁷³⁾ Den fundamentalen Untersuchungen von C. Neumann liegen gewisse konvexe, einfach zusammenhängende Gebiete, deren Begrenzung auch gewisse sprungweise Unstetigkeiten (Kanten, Ecken u. dgl.), aufweisen kann, die aber nicht "zweisternig" sein dürfen, zugrunde. Dies besagt, daß die Tangenten (Tangentialebenen) von S nicht alle durch den einen oder den anderen von zwei festen Punkten (wie etwa bei einem Rechteck oder Doppelkegel) hindurchgehen sollen.

Allgemeiner kann man sowohl in der Ebene, als auch im Raume der Betrachtung ein System von endlich vielen Gebieten der Klasse B ohne gemeinsame Randpunkte zugrunde legen. Der "Außenraum" zerfällt in eine Anzahl von Gebieten, von denen das den unendlich fernen Punkt enthaltende mehr als eine Randkomponente hat und somit mehrfach zusammenhängend ist.

(Nr. 17b), das für *J. Fredholm* eine Veranlassung zu seiner bahnbrechenden Entdeckung gab.¹⁷⁴) Eine sehr vollständige und tiefgehende Behandlung des *Neumann* schen und des damit eng verwandten *Robin*-schen Problems auf dieser Basis verdankt man *J. Plemelj.*¹⁷⁵)

Im Anschluß an *C. Neumann* hat *G. Robin* das Problem der elektrischen Verteilung auf leitenden Flächen behandelt.¹⁷⁶) Dieses Problem bildet einen Spezialfall der allgemeineren Randwertaufgabe, die in der Ebene wie folgt lautet:

Es sind zwei einfache Belegungen $\frac{1}{\pi}\mu_1(s)$ und $\frac{1}{\pi}\mu_2(s)$ so zu bestimmen, daß die zugehörigen Potentiale

(3)
$$\frac{1}{\pi} \int u_1(t) \log \frac{1}{r_i} dt, \quad \frac{1}{\pi} \int u_2(t) \log \frac{1}{r_i} dt$$

entsprechend in T und in T_a die Normalableitung gleich f(s) haben. Im Raume gilt eine analoge Problemstellung.

b) Die grundlegende Wendung durch H. Poincare. Einen Wendepunkt in der Entwicklung des Neumannschen und des Robinschen Problems bezeichnet das Erscheinen einer berühmten Abhandlung von H. Poincaré. Vor allem erweitert Poincaré die Fragestellung durch die Einführung eines Parameters. Es handelt sich nun um die Bestimmung des Potentials einer Doppelschicht W sowie des Potentials einer einfachen Belegung V, so daß einmal

(1)
$$\frac{1}{2} \left(W(s^+) - W(s^-) \right) + \frac{\lambda}{2} \left(W(s^+) + W(s^-) \right) = \pi f(s),$$

$$(2) \qquad -\frac{1}{2}\left(\frac{\partial}{\partial n}V(s^{+})-\frac{\dot{c}}{\partial n}V(s^{-})\right)+\frac{\lambda}{2}\left(\frac{\partial}{\partial n}V(s^{+})+\frac{\partial}{\partial n}V(s^{-})\right)=\pi f(s)$$

gilt. Für $\lambda = 1$ geben (1) und (2) als Randbedingungen entsprechend

$$W(s^+) = \pi f(s), \quad \frac{\partial}{\partial n} V(s^-) = \pi f(s),$$

für $\lambda = -1$

$$W(s^-) = - \ \pi f(s), \quad \frac{\partial}{\partial \, n} V(s^+) = - \ \pi f(s).$$

Das Gebiet T wird, und dies ist wesentlich, nicht mehr als konvex

174) J. Fredholm, Oefversigt af Kongl. Svenska Vet. Akad. Förh. 57 (1900), p. 39-46; C. R. 134 (1902), p. 219-222; p. 1561-1564; Acta math. 27 (1903), p. 365-390.

175) J. Plemelj, loc. cit. 55) sowie Monatsh. für Math. und Physik 18 (1907), p. 180—211, ferner, Untersuchungen, passim.

176) Vgl. G. Robin, Ann. de l'École Normale 3 (3), Supplément, p. 3-58; C. R. 104, p. 1834-1836; C. R. 106, p. 413-416; Oeuvres 1, Paris 1899.

177) H. Poincaré, La méthode de Neumann et le problème de Dirichlet. Acta math. 20 (1897), p. 59-142 (gedruckt Ende 1895). vorausgesetzt. Angenommen wird nur, daß T ein einfach zusammenhängendes Gebiet der Klasse B ist, und daß es eine umkehrbar eindeutige Abbildung des Gesamtraumes auf sich selbst,

$$x' = x'(x, y, z), \ldots; \quad x = x(x', y', z'), \ldots$$

gibt, die den unendlich fernen Punkt ungeändert läßt und S einer Kugel zuordnet. Die Funktionen

(3)
$$x'(x, y, z), \ldots; x(x', y', z'), \ldots$$

haben stetige Ableitungen erster und zweiter Ordnung. Setzt man für kleine Werte von $\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}, \dots \frac{1}{x'} = \xi'\left(\frac{1}{x}, \frac{1}{y}, \frac{1}{z'}\right), \dots, \frac{1}{x'} = \xi\left(\frac{1}{x'}, \frac{1}{y'}, \frac{1}{z'}\right), \dots, \frac{1}{x'} = \xi\left(\frac{1}{x'}, \frac{1}{y'}, \frac{1}{z'}\right), \dots$ so haben auch ξ' , η' , ξ' ; ξ , η , ξ stetige Ableitungen der beiden ersten Ordnungen. Im Unendlichen sind die partiellen Ableitungen erster und zweiter Ordnung der Funktionen (3) gleich Null, außer $\frac{\partial x}{\partial x'}, \frac{\partial y}{\partial y'}, \frac{\partial z'}{\partial z'}; \frac{\partial x'}{\partial x'}, \frac{\partial y'}{\partial y'}, \frac{\partial z'}{\partial z'}$, die dort den Wert 1 haben. Poincaré entwickelt nun die Lösung nach Potenzen von λ , bildet die zu den Potentialen ω_0 , ω_1 , ω_2 , ... gehörigen Dirichletschen Integrale des Innen- und des Außengebietes und gelangt durch Überlegungen, die mit der von H. A. Schwarz zuerst in seiner berühmten Festschrift angewandten Schlußweise 180) mannigfaltige Berührungspunkte haben, daneben aber auch eine Reihe neuer Hilfsmittel einführen, zu dem fundamentalen Satze, daß die Neumannschen und die Robinschen Reihen gleichmäßig konvergieren, sofern die Funktion f(s) nebst ihren Ableitungen bis zu einer gewissen endlichen Ordnung stetig ist. 181)

 $M_1 \leq \frac{D_T(V)}{D_{T_a}(V)} \leq M_1 \quad (M_1, M_2 \text{ konstant}).$

Ist die Masse der Belegung gleich 0, so ist $M_1 > 0$, sonst gilt $M_1 = 0$.

2. Ist W das Potential einer auf S ausgebreiteten Doppelbelegung, die so beschaffen ist, daß $D_T(W)$ und $D_{T_G}(W)$ existieren, so ist

$$0 < M_{\rm S} \leq \frac{D_T(W)}{D_{T_a}(W)} \leq M_{\rm A} \quad (M_{\rm S}, \ M_{\rm A} \ {\rm konstant}).$$

¹⁷⁸⁾ Poincarr betrachtet übrigens ausschließlich den (schwierigeren) Fall des Raumes,

¹⁷⁹⁾ Ob die Voraussetzung, T gehöre der Klasse B an, zur Durchführung aller von $Poincar\acute{e}$ angedeuteten Überlegungen genügt, erscheint nicht ganz sicher.

¹⁸⁰ Vgl. H. A. Schwarz, Ges. Abh. 1, p. 223—269. Siehe auch HA7c Nr. 10.

¹⁸¹⁾ Poincaré nimmt der Einfachheit halber die Existenz und Stetigkeit der Ableitungen aller Ordnungen an. Eine wesentliche Rolle spielen bei Poincaré die beiden folgenden Sätze:

^{1.} Ist V das Potential einer beliebigen auf S ausgebreiteten einfachen Belegung, so ist $D_{\mathcal{T}}(V)$

In dem VI. Kapitel seiner Abhandlung führt *Poincaré* die "Fundamentalfunktionen" ein, d. h. Potentiale einfacher Belegungen, die für eine bestimmte, abzählbar unendliche Menge reeller Werte von λ Beziehungen genügen, die man erhält, wenn man in (2) die Funktion f(s) gleich Null setzt. Sodann werden Reihenentwicklungen willkürlicher Funktionen nach den "Fundamentalfunktionen" betrachtet. 182)

c) Weiterführung der Poincaréschen Methoden. Die im vorstehenden besprochene Arbeit von Poincaré ist der Ausgangspunkt einer langen Reihe von Untersuchungen anderer Forscher geworden. Als erste haben E. Le Roy 184), W. Stekloff 185) und A. Korn 186) die Poincaréschen Ideen weiter entwickelt. Unter der Annahme, das räumliche einfach zusammenhängende Gebiet T sei in bezug auf wenigstens einen seiner Punkte konvex 187), d. h. jeder durch diesen Punkt ge-

Bei dem Beweise der Ungleichheiten (5) nimmt *Poincaré* an, daß die Existenz der Lösung des ersten Randwertproblems bereits feststeht. Diese Voraussetzung liegt somit auch seinen Ergebnissen über die *Neumann* schen Reihen zugrunde. Bei der Betrachtung der *Robin* schen Reihen kann man demgegenüber Annahmen dieser Art entbehren.

- 182) Dieser Teil der *Poincaré* schen Abhandlung enthält keinerlei strenge Beweise, begnügt sich vielmehr mit einer allgemeinen Übersicht über die zu erwartenden Gesetzmäßigkeiten.
- 183) Vgl. das Referat II A 7 b von H. Burkhardt und W. F. Meyer Nr. 27, Fußnoten 175) bis 178).
- 184) E. Le Roy, Ann. de l'Éc. Norm. (3) 15 (1898), p. 9-178. Vgl. p. 285. 185) Vgl. W. Stekloff, C. R. 125 (1897), p. 1026-1029, woselbst noch konvexe Flächen betrachtet werden, sowie namentlich C. R. 128 (1899), p. 588-591 und p. 808-810. Hier werden Flächen der Klasse B' betrachtet; die Poincarésche Beziehung (4) (Fußnote 181) wird postuliert, worauf ohne weitere Einschränkungen mit Hilfe des Robinschen Verfahrens die Existenz der natürlichen Belegung sowie der Poincaréschen Fundamentalfunktionen bewiesen und das zweite Randwertproblem gelöst wird. In der Note C. R. 130 (1900), p. 396-399 (s. hierzu auch C. R. 130 (1900), p. 480--483) beweist Stekloff für räumliche Gebiete der gleichen Natur die Gültigkeit der Neumannschen Reihen, sofern die Randfunktion gewissen Stetigkeitsbedingungen genügt. Das erste Randwertproblem wird darauf für schlechthin stetige Randwerte erledigt. Man vergleiche schließlich A. Stekloff, C. R. 130 (1900), p. 826-827; p. 1599-1601 und C. R. 131 (1900), p. 870-873; p. 1182-1185 sowie A. Korn, C. R. 130 (1900), p. 557; p. 1238-1240 und C. R. 131 (1900), p. 26-27. Ausführliche vervollkommnete Darstellung seiner Untersuchungen gibt Stekloff in den Arbeiten Ann. de l'Éc. Norm. (3) 19 (1902), p. 191-259; p. 455-490 sowie Ann. de Toulouse (2) 2 (1900), p. 207-272; (2) 6 (1904), p. 351—475.
- 186) A. Korn, Potentialtheorie 1 und 2 passim, in vervollkommneter Form loc. cit. 55) c) Abh. 1. Siehe ferner A. Korn, Math. Ann. 53 (1900), p. 593—608 sowie C. Neumann, Math. Ann. 54 (1901), p. 1—48.
- 187) In der schlichten Ebene sogar für ein beliebiges beschränktes einfach zusammenhängendes Gebiet der Klasse B.

zogene Halbstrahl S in einem und nur einem Punkte treffe, beweist Korn nach Poincaré die Konvergenz der Neumannschen und der Robinschen Reihen, ohne die Existenz der Lösung vorauszusetzen. Dies gelingt dadurch, daß das Neumannsche Problem auf das Robinsche zurückgeführt wird. Eine Poincarésche Transformation wird explizite angeben.

Von der Funktion f(s) wird lediglich vorausgesetzt, daß sie abteilungsweise stetig ist. Damit sind auch das erste und das zweite Randwertproblem für einfach zusammenhängende, in bezug auf einen Punkt konvexe Gebiete erledigt. Durch kombinatorische Methoden (Nr. 24a) gelangt sodann Korn auch im Raume zu der Lösung der beiden Randwertprobleme für beliebige Gebiete der Klasse B.

Den ersten vollständigen Beweis für die Gültigkeit der Methode des arithmetischen Mittels hat unter Zugrundelegung beliebiger Gebiete der Klasse B in $\mathfrak G$ oder im Raume für beliebige abteilungsweise stetige Randwerte S. Zaremba gegeben. 189)

Wesentlich ist bei Zaremba die Betrachtung verallgemeinerter Potentiale einfacher und doppelter Belegungen (Nr. 6), für die zugleich Sätze gewonnen werden, die denjenigen der Neumann-Poincareschen und Robin-Poincaréschen Theorie ganz analog sind. Sie leisten in der Theorie der Differentialgleichung $\Delta u = k^2 u = 0$ dasselbe, wie jene in der Theorie der Differentialgleichung $\Delta u = 0$. Im übrigen lehnt sich der Beweis an die klassische Schlußweise der Poincaréschen Palermo-Arbeit an. 190) Neben dem Konvergenzbeweise der eigentlichen und verallgemeinerten Neumann-Robinschen Reihen liefern die Zarembaschen Untersuchungen einen Existenzbeweis der Poincaréschen Fundamentalfunktionen. 191)

¹⁸⁸⁾ Loc. cit. 55, c) Abh. 2 gibt Korn einen Beweis der Gültigkeit der Neumannschen Methode für einfach oder mehrfach zusammenhängende Gebiete der Klasse M (ohne Spitzen). Die Randfunktion f(s) hat hierbei gewissen besonderen Bedingungen zu genügen. Über die Auflösung des ersten und des zweiten Randwertproblems, wenn T über \mathfrak{E}_m ausgebreitet ist, vergleiche im Anschluß hieran bei A. Korn, C. R. 135 (1902), p. 94—95 sowie p. 231—232.

¹⁸⁹⁾ Eine erste Mitteilung findet sich im Bulletin de l'Ac. d. Sc. de Cracovie 1901, p. 171—189; vollständig durchgeführt ist die Methode für den Fall des Raumes in der Abhandlung Journ. de Math. (5) 8 (1902), p. 59—177. Man vgl. ferner S. Zaremba, Ann. de l'Éc. Norm. (3) 16 (1899), p. 427—464; (3) 20 1963), p. 9—26 sowie loc. cit. 195). Siehe auch A. Korn, loc. cit. 55) c) 5 Abh.

¹⁹⁰⁾ II. Poincaré, Rend. del Circolo Mat. di Palermo 8 (1894), p. 57-156. Vgl. ferner den Artikel II A 7 c von A. Sommerfeld Nr. 10.

¹⁹¹⁾ Entscheidend für den Erfolg ist der folgende Hilfssatz von Zaremba. Es seien $H_r(s)$ (r=1, 2, ...) gegebene auf S erklärte abteilungsweise stetige Funk-

Einen auf den Zarembaschen Hilfssatz (vgl. die Fußnote 191) und die Poincarésche Schlußweise gestützten vollständigen Beweis der Gültigkeit der Neumann-Robinschen Methode hat 192) A. Korn geliefert. 193) In einer späteren Abhandlung 194) gibt Korn einen anderen von dem Zarembaschen Hilfssatze unabhängigen, sich wie alle diese Untersuchungen an die Poincarésche Palermo-Arbeit anlehnende Beweisführung.

Von besonderer Wichtigkeit ist eine 1904 erschienene Abhandlung von Zaremba. 195) In dieser wird der Betrachtung ein beliebiges beschränktes Gebiet der Klasse M (ohne Spitzen) in $\mathfrak E$ zugrunde gelegt. Es sei θ irgendein von zwei Nachbarseiten von S eingeschlossener Winkel, $0 < \theta < 2\pi$. Im Gegensatz zu Korn 196) werden über die Randfunktion keine wesentlich einschränkenden Annahmen gemacht; sie wird einfach abteilungsweise stetig vorausgesetzt. 197) Auch jetzt geht Zaremba von den verallgemeinerten Potentialen aus und beweist außer der Gültigkeit der eigentlichen und verallgemeinerten Neumannschen und Robinschen Reihen, unter anderem, daß für alle Werte des Parameters λ , so daß

 $\lambda < R = \text{Min} - \frac{\pi}{2}$

ist, die Lösungen des Neumann-Poincaréschen und Robin-Poincaréschen Problems meromorphe Funktionen von λ darstellen. 198) 199

tionen und $\alpha_1, \dots \alpha_p$ reelle Konstanten. Wir setzen (im Raume) $V_r = \int H_r(t) \frac{dt}{r_t}$,

 $V = \sum_{n=1}^{\infty} \alpha_n H_n$. Bei hiureichend großem p kann man es durch geeignete Wahl der

Zahlen $\alpha_1, \ldots \alpha_p$ erreichen, daß

$$\frac{1}{1+L_p} \leq \frac{D_T(V)}{D_{T_2}(V)} \leq 1 + L_p, \quad L_p = \frac{c^2}{\sqrt[p]{(p-1)^3}}$$

wird, unter c^2 einen nur von S abhängigen Wert verstanden.

192) Noch vor dem Erscheinen der unter 189) zitierten ausführlicheren Arbeiten von Zaremba.

193) loc. cit. 55) c) 5. Abh. Diese Arbeit enthält auch gewisse Entwicklungssätze nach Poincaréschen Fundamentalfunktionen.

194) loc. cit. 55) g).

195) Journ. d. Math. (5) 10 (1904), p. 395-444; vorläufige Mitteilung, C. R. 137 (1903), p. 39-40.

196) Vgl. die Fußnote 188).

197) Auch gewisse weitere Unstetigkeiten werden zugelassen. Die einzelnen Seiten der Randlinie nimmt übrigens Zaremba von der Klasse B' an.

198) Einen übersichtlichen Beweis der Zarembaschen Resultate gibt T. Carleman, Über das Neumann-Poincarésche Problem für ein Gebiet mit Ecken, Inaug.-Diss. Upsala 1916, p. 8-16. A. a. O. [p. 31-39] werden auch Gebiete im Raume betrachtet (vgl. die Fußnote 296).

Durch ein mit dem Zarembaschen verwandtes Verfahren wird von R. Bür

Eine weitere von der Fredholmschen Methode unabhängige Behandlungsweise des Neumannschen und des Robinschen Problems hat E.R. Neumann geliefert. 200 E.R. Neumann legt seinen Untersuchungen in der an der drittletzten Stelle zitierten ausführlichen Arbeit Gebiete der Klasse B (im Raume) zugrunde und führt als neues Hilfsmittel die mit den Greenschen Funktionen (Nr. 20) nahe zusammenhängenden "Polarfunktionen" ein. Insbesondere wird so die Existenz des Potentials der natürlichen Belegung (Nr. 17 d) erschlossen. Daß dieses sich als Potential einer einfachen Belegung darstellen läßt, wird, wie früher von W. Stekloff (loc. cit. 185), unter Zuhilfenahme des "Poincaréschen Prinzips" bewiesen. 201 In den "Beiträgen" wird später die Existenz der natürlichen Belegung in der Ebene ohne dieses Hilfsmittel dargetan.

d) Zurückführung auf eine lineare Integralgleichung. Es sei T ein beschränktes Gebiet der Klasse B in $\mathfrak E$. Aus den Formeln der Nr. 6 und 7 folgt nach J. Fredholm

die am Rande verschwindende Greensche Funktion $G(\xi,\eta;x,y)$ (Nr. 20) für Gebiete der Klasse M (ohne Spitzen) gewonnen. (R. Bär, Über Greensche Randwertaufgaben bei der Schwingungsgleichung, Inaug.-Diss., Würzburg 1915, p. 1 bis 37 [p. 1-8].) Für die Greensche Funktion der Differentialgleichung $\Delta u - k^2 u = 0$ wird unter Zuhilfenahme des verallgemeinerten Potentials einer Doppelbelegung eine zu (1) Nr. 17 d analoge Integralgleichung aufgestellt, die sich für hinreichend große k^2 durch sukzessive Approximationen auflösen läßt. Zur Bestimmung von $G(\xi,\eta;x,y)$ erhält man sodaun eine der Fredholmschen Theorie zugängliche Integralgleichung. In ähnlicher Weise lassen sich sowohl die zu der zweiten und der dritten Randwertaufgabe (Nr. 21 und 28) gehörigen Greenschen Funktionen bestimmen [p. 18—21], als auch alle drei vorhin erwähnten Randwertaufgaben betrachtet (Nr. 29).

Man vergleiche ferner O. D. Kellogg, loc. cit. 146, p. 451-456.

- 199) Die zugehörige Integralgleichung (Nr. 17 d) ist im allgemeinen eine Integralgleichung mit singulärem Kerne. Siehe J. Blumenfeld und W. Mayer. Wiener Berichte 123 (1914), p. 2011—2047 [p. 2045—2047], wo eins der beiden von einer Lemniskate mit Doppelpunkt und aufeinander senkrechten Ästen begrenzten beschränkten Gebiete betrachtet wird. Man vergleiche ferner T. Carleman, Über das Neumann-Poincurésche Problem für ein Gebiet mit Eckenlnaug.-Diss. Upsala 1916, passim. Carleman betrachtet beliebige Gebiete der Klasse M (ohne Spitzen) und gibt, gestützt auf die Theoric der singulären Integralgleichungen, zum ersten Male eine Behandlung des Neumann-Poincaréschen Problems für alle Werte des Parameters λ .
- 200) E. R. Neumann, Mat. Ann. 55 (1901), p. 1—52 sowie 56 (1903), p. 49 bis 113; kurze Mitteilungen: Gött. Nachr. 1899, p. 291—201 sowie 1902, p. 242—258; ausführliche Darlegung und Weiterführung: Studien, passim; Beiträge p. 1 bis 42 sowie p. 155—188.
- 201) E. R. Neumann bezeichnet so den in der Fußnote 181) unter 1. genannten Satz für den Fall, daß die Gesamtmasse der Belegung verschwindet.

(1)
$$\begin{split} \nu(s) + \frac{\lambda}{\pi} \int_{s}^{s} \nu(t) \frac{\partial}{\partial n_{t}} \left(\log \frac{1}{r_{st}} \right) dt &= f(s), \\ \mu(s) + \frac{\lambda}{\pi} \int_{s}^{s} \mu(t) \frac{\partial}{\partial n_{s}} \left(\log \frac{1}{r_{st}} \right) dt &= f(s).^{202} \end{split}$$

Ganz analoge Formeln gelten im Raume. 203 Das Neumann-Poincaresche sowie das Robin-Poincarésche Problem einerseits, die Auflösung der beiden zueinander adjungierten Integralgleichungen (1) anderseits sind zwei völlig äquivalente Probleme.

Der Kern $\frac{1}{2\pi} \frac{\partial}{\partial n_i} \left(\frac{1}{r_{,i}}\right)$ ist "symmetrisierbar", der Kern $\frac{1}{\pi} \frac{\partial}{\partial n_i} \left(\log \frac{1}{r_{,i}}\right)$ ist mit einem solchen nahe verwandt.²⁰⁴) ²⁰⁵)

202) J. Fredholm, loc. eit. 174). Man vergleiche ferner J. Plemelj. loc. eit. 175), namentlich, Untersuchungen, passim sowie O. D. Kellogg, Trans. of the Amer. Math. Soc. 9 (1908). p. 51—66 (Kellogg betrachtet übrigens Gebiete der Klasse Ah (in \mathfrak{S}), Plemelj diejenigen der Klasse B'). Eine kurze Darstellung findet sich bei J. Horn, Partielle Differentialgleichungen, p. 304—312 und É. Goursat, Cours 3, p. 507—518.

203) Der Kern $\frac{1}{\pi}\frac{\partial}{\partial n_t}\left(\log\frac{1}{r_{st}}\right)$ ist stetig. Im Raume wird der entsprechende Kern $\frac{1}{2\pi}\frac{\partial}{\partial n_t}\left(\frac{1}{r_{st}}\right)$ für s=t wie $\frac{1}{r_{st}}$ unendlich. Der zweite iterierte Kern ist auch hier stetig. Die Integralgleichungen des Problems sind in der Ebene und im Raume der Fredholm schen Methode zugänglich (übrigens auch wenn T der Klasse Ah angehört).

204) Die wesentliche Symmetrieeigenschaft findet sich beispielsweise bei J. Plemelj, Untersuchungen, p. 27.

205) Vgl. J. Blumenfeld und W. Mayer, Wiener Ber. 123 (1914), p. 2011 bis 2047. Die von J. Marty (C. R. 150 (1910), p. 515—518; 603—606; 1031—1033; 1499—1502) nach dem Vorbild der E. Schmidt schen Theorie der Integralgleichungen mit symmetrisierbarem Kerne durchgeführte Theorie der Integralgleichungen mit symmetrisierbarem Kerne liefert, wie die Verfasser zeigen, sinngemäß durchgebildet, sowohl im Raume, als auch in der Ebene die Existenz der singulären Werte des Parameters λ und der Nulllösungen der Gleichungen (1). Die zugehörigen Potentiale einer einfachen Belegung sind die Poincaré schen Fundamentalfunktionen. Man gewinnt gleichzeitig unter anderem gewisse, von Poincaré postulierte Entwicklungssätze (Nr. 17b)

Ein ähuliches Verfahren hat A. Korn, Rend. del. Circ. Mat. di Palermo 35 (1913), p. 317—323 angegeben. Korn ordnet die vorliegenden Integralgleichungen einer Klasse der Integralgleichungen mit "pseudosymmetrischem Kerne" zu, deren Theorie er in Anschluß an die Methoden der Poincaréschen Palermo-Arbeit (II A 7 c Nr. 10) entwickelt hatte (C. R. 153 (1911), p. 171—173; 327—328; 539—541; 156 (1913), p. 1965—1967; Töhoku math. Journ. 1 (1912), p. 159—186; 2 (1912), p. 117—136; Archiv d. Math. u. Phys. 25 (1916), p. 148—172; 27 (1918), p. 97—120). Man gewinnt wieder die Existenz der Eigenwerte und der Poincaréschen Fundamentalfnuktionen sowie gewisse Entwicklungssätze. Wie bereits in der Nr. 17 c

Nach J. Plemelj läßt sich die Gültigkeit der Neumannschen und der Robinschen Reihen aus der Fredholmschen Theorie fast unmittelbar ableiten. 206) Ein außerordentlicher Vorteil dieses Verfahrens ist darin zu erblicken, daß Konvergenzbetrachtungen sich nunmehr fast völlig vermeiden lassen.207) Die Lösungen der beiden Integralgleichungen (1) lassen sich in einfacher Weise aufeinander zurückführen. 208) Die singulären Parameterwerte sind sämtlich reell und dem absoluten Betrage nach ≥ 1 . Sie sind einfache Pole des lösenden Kernes H(s,t). 209)

Der dem absoluten Betrage nach kleinste singuläre Wert ist $\lambda = -1$. Der Wert $\lambda = 1$ ist nicht singulär, wenn, wie vorausgesetzt werden soll, T einfach zusammenhängend ist. In der Umgebung des Wertes $\lambda = -1$ kann in der Ebene

(2)
$$H(s,t) = \frac{m(s)}{1+\lambda} + \mathfrak{H}(s,t), \quad (\mathfrak{H}(s,t) \text{ regular}), \quad \int m(t)dt = 1$$
 gesetzt werden. (2) Das Potential

$$\Gamma(x, y) = \int_{S} m(t) \log \frac{1}{r_t} dt$$

erwähnt, sind zum Teil beträchtlich früher, unabhängig von der allgemeinen Theorie der linearen Integralgleichungen, gewisse Existenz- und Entwicklungssätze von W. Stekloff, A. Korn, S. Zaremba und E. R. Neumann abgeleitet worden Eine Theorie der symmetrisierbaren Integralgleichungen unter besonderer Berücksichtigung der Integralgleichungen (1) gibt neuerdings T. Carleman, loc. cit. 198) p. 147-166. Man vergleiche die dieser umfangreichen Arbeit gewidmeten Ausführungen der Fußnoten 198, und 199).

206) J. Plemelj. Untersuchungen. p. 46-68. Eine erste Darstellung hat Plemeli bereits in der unter 55) zitierten Arbeit gegeben. In der neuen Darstellung vertritt Plemelj mit vollem Erfolge den Standpunkt, daß es zur Durchführung der Methode, insbesondere zur Aufstellung der Integralgleichungen (1) und zum Nachweise der Aquivalenz des Ausgangsproblems mit der sich nunmehr ergebenden Aufgabe nur ganz elementarer Hilfsmittel der Potentialtheorie bedarf. Von den in den Nr. 6 und 7 angegebenen Hilfsmitteln werden nur die wenigsten gebraucht.

207; In allen Einzelheiten sind die fraglichen Entwicklungen von Plemelj an dem am Anfang der Fußnote 206) bezeichneten Ort für den zweidimensionalen Fall angegeben worden. Sie lassen sich auch in dem Falle des Raumes vollständig durchführen. Vgl. J. Plemelj, loc. cit. 55. Siehe auch Fußnote 214).

208) J. Plemelj, Untersuchungen, p. 48-50: J. Blumenfeld und W. Mayer, loc. cit. 205) passim. Über den Zusammenhang der Neumannschen und der Robinschen Methode siehe ferner die Nr. 17c besprochenen Arbeiten von W. Stekloff, A. Korn, S. Zaremba und E. R. Neumann.

209) J. Plemelj, Untersuchungen, p. 52-53. Man vergleiche ferner T. Carleman, loc. cit. 198) p. 26. Dort werden Gebiete der Klasse M (ohne Spitzen)

210) Wir betrachten im folgenden ausführlicher nur den zweidimensionalen Fall.

nimmt auf S einen konstanten Wert an. Seine Masse ist wegen (2) gleich 1; $\Gamma(x, y)$ stellt augenscheinlich die Lösung eines fundamentalen Problems der Elektrostatik dar. 211)

Die "natürliche Belegung" m(s) ist die (einzige) der Beziehung (2) gemäß normierte Lösung der Integralgleichung

(3)
$$m(s) = \frac{1}{\pi} \int m(t) \frac{\partial}{\partial n_t} \left(\log \frac{1}{r_{st}} \right) dt.^{312}$$

Setzt man

(4)
$$h_{0}(s,t) = \frac{1}{\pi} \frac{\partial}{\partial n_{t}} \left(\log \frac{1}{r_{st}} \right), \quad h_{k+1}(s,t) = \int_{S} h_{k}(s,\theta) h_{0}(\theta,t) d\theta,$$

$$f_{0}(s) = f(s), \quad f_{k}(s) = \int_{S} f_{k-1}(t) h_{0}(t,s) dt,$$

so ist in jedem Bereiche $|\lambda| \leq \bar{\lambda} < 1$ gewiß

(5)
$$H(s,t) = \sum_{k}^{0,\ldots,\infty} (-1)^k \lambda^k h_k(s,t).$$

Aus (2) und (5) folgt für alle λ in einem Kreisgebiete um den Koordinatenursprung vom Radius > 1

(6)
$$\mathfrak{H}(s,t) = \sum_{k}^{6.1.5} (-1)^{k} \lambda^{k} [h_{k}(s,t) - m(s)],$$
 mithin
(7)
$$m(s) = \lim_{k \to \infty} h_{k}(s,t).^{213}$$

211) Das analoge Potential im Raume löst das Problem der elektrischen Verteilung eines isolierten leitenden Körpers. Neuere von der Fredholmschen Theorie unabhängige Behandlung dieses Problems findet sich bei A. Liapounoff, loc. cit. 54) a); A. Korn, Potentialtheorie, passim; F. R. Neumann, Studien, passim. Vgl. ferner E. R. Neumann, Beiträge, p. 155—188, wo natürliche Belegungen in der Ebene betrachtet werden.

Den Zusammenhang der "natürlichen Belegung" m(s) mit der Greenschen Funktion (Nr. 20) vgl. etwa bei A. Korn, Potentialtheorie 2, p. 285—297. Dort findet sich im Anschluß an C. Neumann ein Beweis, daß m(s) > 0 ist.

212) Auch im Raume ist nach A. Korn, Münch. Ber. 31 (1901), p. 425—434, m(s) > 0.

213) Legt man der Betrachtung ein System von n getrennt liegenden einfach zusammenhängenden Gebieten der Klasse B zugrunde, so gibt es n linear unabhängige Lösungen $m^{(1)}(s), \ldots, m^{(n)}(s)$ von (3). Sie sind die "natürlichen Belegungen". Das Potential $\Gamma_k(x,y) = \frac{1}{\pi} \int\limits_S^s m^{(k)}(t) \log \frac{1}{r_t} dt$, unter S die Gesamtheit der Randkurven $S_k(k=1,\ldots n)$ verstanden, hat auf einer jeden Randkurve einen konstanten Wert. Es ist ferner $\int\limits_{S_k}^s m^{(k)}(t) dt = 1$, $\int\limits_{S_j}^s m^{(k)}(t) dt = 0$ $(j \neq k)$. (J. Plemelj, Untersuchungen, p. 56-57.) Ebenso erledigt sich der allgemeinere Encyklop. d. math. Wissensch. II 3.

Durch sehr einfache, der soeben skizzierten analoge Überlegungen werden nunmehr die *Neumann* schen und *Robin* schen Reihen abgeleitet. Im Raume erfordert der Umstand, daß der Kern $\frac{1}{2\pi} \frac{\partial}{\partial n_t} (\frac{1}{r_{st}})$ für s = t unendlich wird, einige ergänzende Betrachtungen. ²¹⁴)

Es liege ein System von n einfach zusammenhängenden beschränkten Gebieten der Klasse B vor. Ohne jegliche Schwierigkeit ergibt sich auf diesem Wege die Lösung der beiden Aufgaben:

- 1. Es ist ein Leiterpotential V im Außengebiete zu bestimmen, das auf jeder Randkurve eine vorgegebene Masse hat.
- 2. Es ist ein Leiterpotential im Außengebiete zu bestimmen, das eine gegebene Gesamtmasse und auf jeder Randkurve einen vorgegebenen konstanten Wert hat.²¹⁵)

Durch die vorstehenden Betrachtungen ist insbesondere das erste und das zweite Randproblem für beschränkte und nicht beschränkte Gebiete der Klasse B (Ah) in & oder im Raume unter Zugrundelegung abteilungsweise stetiger (allgemeiner beschränkter und im Lebesgueschen Sinne integrierbarer) Randwerte oder Werte der Normalableitung erledigt. 216)

18. Verhalten der Lösung des ersten Randwertproblems am Rande des Definitionsgebietes. Es sei T ein beschränktes Gebiet der

Fall, wenn wenigstens ein Gebiet des Systems mehrfach zusammenhängend ist. Alsdann ist auch der Wert $\lambda = 1$ singulär. Vgl. J. Plemelj, loc. cit. 55) p. 383 bis 389, wo der dreidimensionale Fall betrachtet wird.

²¹⁴⁾ Vgl. J. Plemelj, Untersuchungen, p. 66-67, wo in bekannter Weise die Anwendbarkeit der Fredholmschen Methode gezeigt wird. Daß man auch im Raume, wie in der Ebene, auf die Neumannschen und Robinschen Reihen geführt wird, bedarf darüber hinaus eines Nachweises, der sich jedoch ohne Schwierigkeit führen läßt.

²¹⁵⁾ J. Plemelj, Untersuchungen, p. 63—65 sowie loc cit. 55), p. 389—392, wo analoge Probleme im Raume betrachtet werden. Man vergleiche hierzu die von der Fredholmschen Theorie unabhängige Behandlung bei S. Zaremla, Bull. de l'Acad. de Sc. de Cracovie 1902 sowie die in der Nr. 17c wiederholt genannten Arbeiten von A. Liapounoff, W. Stekloff, A. Korn, S. Zaremba und E. R. Neumann. Einen vollständigen Existenzbeweis der Lösung des allgemeinen elektrostatischen Problems im Raume gibt J. Plemelj, Monatsh. f. Math. u. Phys. 18 (1907), p. 180—211 [p. 188—193]; dort p. 194—199 findet sich auch die Lösung des Problems der stationären elektrischen Strömung. Allgemeine Betrachtungen über die mathematischen Probleme der Elektrostatik, der Theorie des Magnetismus und der Elektrodynamik finden sich nebst zahlreichen Beispielen bei H. Weber, Part. Diff. d. Math. Phys. 1, p. 319—527. Man vergleiche ferner die beiden Artikel V 15 und V 17, passim.

²¹⁶⁾ Vgl. etwa J. Plemelj, Untersuchungen, p. 66. Auch gewisse nicht beschränkte Randfunktionen können zugelassen werden. Vgl. z. B. J. Plemelj, loc. cit. 55) p. 374.

Klasse B in \mathfrak{E} . Aus den Formeln und Resultaten der Nr. 7 und 17 ergeben sich wichtige Sätze über das Verhalten der Lösung des ersten Randwertproblems und ihrer Ableitungen am Rande. Untersuchungen dieser Art sind zuerst von C. Neumann in Angriff genommen worden. ²¹⁷) Sie sind später namentlich von A. Liapouno (\mathbb{C}^{218}) und A. Korn \mathbb{C}^{219}) gefördert worden.

1. Ist f(s) stetig und ist ferner

$$|f(s)-f(t)| < Ar_{st}^{\lambda}, \quad 0 < \lambda < 1 \quad (A \text{ konstant}),$$

'so ist in T+S

$$|u(x_1,y_1) - u(x_2,y_2)| < c_1(\lambda) A d_{12}^{\lambda}, \quad d_{12}^2 = (x_1 - x_2)^2 + (y_1 - y_2)^2.$$
²²⁰

2. Sind f(s) und $\frac{df}{ds} = f'(s)$ stetig und ist überdies

$$|f'(s) - f'(t)| < Br_{it}^{\lambda}$$
, $0 < \lambda < 1$ (B konstant),

so sind D_1u in T+S stetig und genügen der Beziehung

$$|\,D_{\mathbf{1}} u(x_{\!\scriptscriptstyle \mathbf{1}},y_{\!\scriptscriptstyle \mathbf{1}}) - D_{\mathbf{1}} u(x_{\!\scriptscriptstyle \mathbf{2}},y_{\!\scriptscriptstyle \mathbf{2}})\,| < c_{\!\scriptscriptstyle \mathbf{3}}(\lambda) B d_{\scriptscriptstyle \mathbf{12}}^{\lambda} \cdot {}^{\scriptscriptstyle \mathbf{221}})^{\,\,\mathbf{222}})$$

3. Es sei jetzt T ein Gebiet der Klasse Bh. Der $H\"{o}lder$ sche Exponent von S heiße λ . Sind f(s), f'(s) und $\frac{d^2f}{ds^2} = f''(s)$ stetig und ist

$$|f''(s) - f''(t)| < Cr_{st}^{\lambda},$$

so sind D_2u in T+S stetig und genügen der Beziehung

220) A. Korn, loc. cit. 55) f), p. 23—25. Dieser Satz gilt übrigens auch bei beschränkten Gebieten der Klasse Ah (vom Exponenten λ).

221) A. Korn, loc. cit. 55) f), p. 25. Damit, wenn f(s) stetig vorausgesetzt wird, $\frac{\partial u(s)}{\partial n}$ existiere und sich auf S stetig verhalte, ist notwendig und hin-

reichend, daß $\int_{S} f(t) \frac{\partial}{\partial n_t} \left(\log \frac{1}{r_{st}} \right) dt$ auf S stetige Normalableitung hat. Vgl.

A. Liapounoff, loc. cit. 54) a), p. 284—293 sowie p. 299. Liapounoff betrachtet übrigens den analogen Satz im Raume.

222) O. D. Kellogg betrachtet loc. cit. 202) Gebiete der Klasse Ah und beweist den Satz: Sind f(s) und f'(s) stetig und konvergiert der Ausdruck

$$\lim_{t\to 0} \int_{-t}^{\eta} \left| \frac{f'(s+t) - f'(s-t)}{t} \right| dt \text{ für } \eta = 0 \text{ gleichmäßig gegen Null, so sind } D_1 u$$

in T+S vorhanden und stetig. (Man vergleiche hierzu O. D. Kellogg, loc. cit. 224).)

²¹⁷⁾ Vgl. C. Neumann, Abhandlungen [2. Abh., passim].

²¹⁸⁾ A. Liapounoff, loc. cit. 54) a).

²¹⁹⁾ A. Korn, Potentialtheorie, passim; Math. Ann. 53 (1900), p. 593—608 sowie loc cit. 55) d), p. 15—20; f), p. 23—26. Vergleiche ferner S. Zaremba, Bulletin de l'Ac. d. Sc. de Cracovie 1905, p. 69—168; 1910, p. 313—344; A. Hoborski, loc. cit. 65).

$$|D_2 u(x_1, y_1) - D_2 u(x_2, y_2)| < c_3(\lambda) C d_{12}^{\lambda}.^{223})$$

Analoge Sätze gelten für partielle Ableitungen höherer Ordnung²²¹), zweidimensionale Gebiete auf E_m und im Raume.

Unter Zuhilfenahme der konformen Abbildung (Nr. 22) lassen sich die in der Nr. 13 für das Kreisgebiet angegebenen Sätze auf beliebige Gebiete der Klasse B oder Bh (in $\mathfrak E$) ausdehnen. Insbesondere gilt der Schwarzsche Hilfssatz (Nr. 13) für alle einfach zusammenhängenden Gebiete der Klasse B (in $\mathfrak E$). 225)

Besteht (in der Ebene) ein Stück der Begrenzung aus einem Bogen Σ einer analytischen und regulären Kurve und ist auf diesem f(s) analytisch und regulär, so läßt sich nach H. A. Schwarz u über Σ hinaus analytisch fortsetzen. E16) Ist insbesondere Σ ein Kreisbogen und u auf Σ gleich 0, so entsprechen den in bezug auf Σ konjugierten Punkten entgegengesetzt gleiche Werte von u. Analytisch fortsetzbar ist u natürlich auch, wenn $\frac{\partial u(s)}{\partial n}$ auf Σ analytisch und regulär ist. Ist Σ ein Kreisbogen und $\frac{\partial u(s)}{\partial n} = 0$, so nimmt u in den konjugierten Punkten gleiche Werte an.

Analoge Sätze gelten im Raume.

19. Lösung des ersten Randwertproblems als Potential einer einfachen Belegung. Sei T ein beschränktes einfach zusammenhängendes Gebiet der Klasse B in $\mathfrak C$. Die im vorstehenden besprochenen Methoden liefern die zu einer vorgegebenen Randfunktion f(s) gehörigen Lösungen des ersten Randwertproblems in dem Innen- und dem Außengebiet in der Form

$$\inf_{\mathbf{x}} f(t) P_{\mathbf{1}}(\mathbf{x},\,\mathbf{y};\,t) dt \quad \text{and} \quad \inf_{\mathbf{x}} f(t) P_{\mathbf{2}}(\mathbf{x},\,\mathbf{y};\,t) \, dt \,,$$

²²³⁾ A. Korn, loc. cit. 55) f), p. 25.

²²⁴⁾ Vgl. O. D. Kellogg, Trans. of the Amer. Math. Soc. 13 (1912), p. 109—123; dort werden überdies die in den Fußnoten 74) und 222) angegebenen Sätze verallgemeinert. Man vergleiche hierzu die älteren Ergebnisse von P. Painlevé. C. R. 112 (1891), p. 653—657.

²²⁵⁾ Der Beweis kann (in der Ebene) auch ohne konforme Abbildung geführt werden (vgl. Nr. 24 a Fußnote 282)). Im Raume ist das Analogon des Schwarzschen Hilfssatzes von A. Korn unter Zuhilfenahme der Neumannschen Reihe für alle in bezug auf einen Punkt konvexen Gebiete der Klasse B (Potentialtheorie, 1; loc. cit. 55) c) Abh. I) abgeleitet worden. Der Kornsche Beweis gilt nach Nr. 17 für alle (räumlichen) Gebiete der Klasse B.

²²⁶⁾ H. A. Schwarz, Ges. Abh. 2, p. 66-68 sowie p. 149-151. Vgl. ferner \acute{E} . Picard, Traité, 2, p. 298-301; W. F. Osgood, Funktionentheorie, p. 665-673 sowie II B 1 Nr. 20.

unter P, und P₂ zwei ganz bestimmte, voneinander verschiedene Funktionen verstanden. 227) Untersuchungen von C. Neumann machten es wahrscheinlich, daß es möglich sein dürfte, diese Lösungen unter Zuhilfenahme einer einzigen Funktion von der Form P(x, y; t) zu beherrschen.²²⁸) Wird die Aufgabe so allgemein gefaßt, so läßt sie sich ohne wesentliche Schwierigkeiten lösen. 229) Wird jedoch darüber hinaus verlangt, die Lösung in der Form des Potentials einer einfachen Belegung darzustellen, so liegt die Sache anders.

Die so gestellte Aufgabe ist ohne Einschränkung nicht lösbar; in der Ebene hat in der Tat (Nr. 6) die Randfunktion eine im Sinne von Lebesgue quadratisch integrierbare Ableitung, sobald die Belegungsdichte auch nur quadratisch integrierbar ist. 230) 231)

Nach E. R. Neumann lassen sich die C. Neumannschen Reihen im Raume als Potentiale einer einfachen (übrigens für das Innenund das Außenproblem derselben) Belegung erst nach Abtrennung der ersten beiden Glieder darstellen.232) Ein zum Teil weiter reichendes Resultat gewinnt J. Plemelj für den Fall der Ebene durch Ein-

²²⁷⁾ Im Raume gelten zwei völlig analoge Formeln; P_1 und P_2 hängen mit den Greenschen Funktionen des Innen- und des Außengebietes (Nr. 20) eng

²²⁸⁾ Vgl. C. Neumann, Leipz. Ber. 58 (1906), p. 483-559. Näheres über die bezüglichen, zum Teil weit zurückliegenden Untersuchungen von C. Neumann findet sich bei E. R. Neumann, Rend. del Circ. Mat. di Palermo 24 (1907), p. 333 bis 370 [p. 333-343] sowie, Beiträge, insbesondere p. VII, Fußnote *).

²²⁹⁾ Vgl. J. Plemelj, Untersuchungen, passim.

²³⁰⁾ Die Frage, ob sich die Lösung des ersten Randwertproblems als Potential einer einfachen Belegung darstellen läßt, ist (für räumliche Gebiete) bereits von A. Liapounoff, loc. cit. 54) a) erörtert worden.

²³¹⁾ Notwendige und hinreichende Bedingungen dafür, daß sich eine in einem Kreisbereiche stetige, in seinem Innern reguläre Potentialfunktion als Potential einer einfachen Belegung mit quadratisch integrierbarer Dichte darstellen läßt, gibt É. Picard, C. R. 148 (1909), p. 1563-1568; Rend. del Circ. Mat. di Palermo 29 (1910), p. 79-97 [p. 93-97] an. Vgl. ferner L. Lichtenstein, loc. cit. 61).

²³²⁾ Vgl. E. R. Neumann, a) Rend. del Circ. Mat. di Palermo 24 (1907), p. 333 bis 370. (Die allgemeinen Ergebnisse dieser und einiger seiner anderen Arbeiten wendet E. R. Neumann zum Schluß auf den besonderen Fall eines Kugelkörpers an. Für alle in Betracht kommenden Funktionen werden geschlossene Ausdrücke gewonnen); b) Beiträge, passim [insbesondere p. 43-89]. Dort wird p. 117-154 der besondere Fall eines Kreisgebietes, einer Ellipsenfläche und eines Kugelkörpers betrachtet. Von weiteren Ergebnissen dieser umfangreichen Arbeit seien die Beziehungen der "Grundrestbelegungen" ebener und räumlicher Gebiete, die durch Transformation mittelst reziproker Radien auseinander hervorgehen, hervorgehoben [p. 90-116]. Man vergleiche hierzu auch C. Neumann, Leipz. Ber. 62 (1910), p. 87-169 [p. 151-159].

führung der Stieltjesschen Integrale (Nr. 6). Es gibt eine nur von S abhängige symmetrische Funktion Q(s,t), so daß, wenn man

$$u(x,y) = \int_{S} \log \frac{1}{r_t} d\chi(t), \quad \chi(s) = \int_{S} Q(s,t) df(t)$$

20. Stetig gekrümmte Gebiete. Greensche Funktion. Greensche Formel. 235) Es sei T ein beschränktes Gebiet der Klasse B in $\mathfrak E$ und (ξ,η) ein Punkt in T. Die Sätze der Nr. 17 d gewährleisten die Existenz derjenigen, außer in (ξ,η) (dem Aufpunkte), in T+S stetigen, in T regulären, auf S verschwindenden Potentialfunktion $G(\xi,\eta;x,y)$, die sich in der Umgebung von (ξ,η) wie

(1) $\log \frac{1}{\varrho}$ + eine reguläre Potentialfunktion, $(\varrho^2 = (\xi - x)^2 + (\eta - y)^2)$

verhält; $G(\xi, \eta; x, y)$ wird die zu dem ersten Randwertproblem gehörige *Green* sche Funktion, auch *Green* sche Funktion schlechthin ²³⁶) genannt. ²³⁷)

233) Vgl. J. Plemelj, Untersuchungen, passim.

234) Daß die Lösung des zweiten Randwertproblems, sofern sie existiert, sich sowohl in dem Innen- als auch in dem Außengebiete als das Potential einer und derselben Doppelbelegung darstellen läßt, ist einleuchtend. Eine Bestimmung der Dichte der Belegung findet sich bei E. R. Neumann, Beiträge, p. 43—66.

234°) Man vergleiche im Anschluß an die Ansführungen dieser Nummer die

Nr. 29 p. 233 besprochenen Arbeiten von H. Poincaré und R. Bär.

235) Vgl. den Artikel II A 7 b von H. Burkhardt und W. F. Meyer Nr. 18; S. Zaremba, Bull. de la Soc. math. de France, 24 (1896), p. 19—24; E. Goursat, Cours 3, p. 217—224; p. 270—271.

236) Gelegentlich auch Riemannsche Greensche Funktiou.

237) Gelegentlich wird übrigens $g(\xi,\,\eta;\,x,\,y)=G(\xi,\,\eta;\,x,\,y)-\log\frac{1}{\varrho}$ als Greensche Funktion bezeichnet.

Handelt es sich insbesondere um die Kreisfläche K vom Halbmesser R um den Koordinatenursprung, so ist

$$G(\xi,\,\eta;\;x,y) = \log\frac{\varrho'\;d}{\varrho\;R}\;,\quad \varrho'^{\,2} = (\xi'-x)^{\,2} + (\eta'-y)^{\,2},\quad d^{\,2} = \xi^{\,2} + \eta^{\,2}\;,$$

unter (ξ', η') den zu (ξ, η) in bezug auf C konjugierten Punkt verstanden. Die Greensche Funktion des Kugelkörpers vom Halbmesser R um den Koordinatenursprung ist in analoger Bezeichnungsweise $G(\xi, \eta, \xi; x, y, z) = \frac{1}{\varrho} - \frac{1}{\varrho'} \frac{R}{d}$. Explizite Darstellung der Greenschen Funktion einer Ellipsenfläche und des Außengebietes der Ellipse gibt u. a. E.R. Neumann (Beiträge, p. 140–151) an. Weitere daran

Den Sätzen der Nr. 18 zufolge sind D_1G auf S stetig. 238) Der Greensche Satz (2) Nr. 10, der hier anwendbar ist, liefert die Beziehung

(3) $G(x_1, y_1; x_2, y_2) = G(x_2, y_2; x_1, y_1)$, unter (x_1, y_1) , (x_2, y_2) zwei beliebige voneinander verschiedene Punkte in T verstanden. Setzt man für (ξ, η) auf S und alle (x, y) in $T + S \dots G(\xi, \eta; x, y) = 0$, so ist nunmehr G für alle voneinander verschiedenen Punktepaare (ξ, η) und (x, y) in T + S erklärt. Und (x, y) in (x, y)

Es sei (ξ, η) wieder ein Punkt in T. Für alle (x, y) in T ist $G(\xi, \eta; x, y) > 0$. Wesentlich ist ferner die Bemerkung, daß

$$\frac{\partial}{\partial n_t}G(\xi,\eta;t) > 0$$

ist. 241) Für alle (ξ, η) und (x, y) in T + S ist

(4)
$$|G(\xi, \eta; x, y)| < \log \frac{1}{\rho} + A_0 \quad (A_0 \text{ konstant})^{242}$$

In Gebieten der Klasse Bh ist der Nr. 18 zufolge auch D_2G auf S stetig. $^{243})$

anknüpfende Betrachtungen finden sich bei G. Wiarda, Über gewisse Integralgleichungen erster Art, besonders aus dem Gebiete der Potentialtheorie, Inaugural-Dissertation, Marburg 1915.

238) Das Zeichen D_1 (wie später D_2) bezieht sich hier wie in den Ungleichheiten (2) und (5) zunächst auf das Variabelnpaar (x, y). In jedem (ξ, η) nicht enthaltenden Bereiche $T+\overline{S}$ in T+S ist

(2)
$$|D_1 G(\xi, \eta; x_1, y_1) - D_1 G(\xi, \eta; x_2, y_2)| < A_1 d_{12}^{\lambda}, \quad 0 < \lambda < 1, \\ d_{12}^{2} = (x_1 - x_2)^{2} + (y_1 - y_2)^{2}.$$

 $(A_1 > 0 \text{ hängt von } \overline{T} \text{ und } \lambda \text{ ab}).$

239) Den ersten strengen Beweis für Gebiete der Klasse B (im Raume) hat A. Liapounoff, loc. cit. 54) a), p. 307, gegeben.

240) Zur Vereinfachung wird, wenn (x, y) in den Punkt t auf S fällt, für $G(\xi, \eta; x, y)$ kürzer $G(\xi, \eta; t)$ gesetzt. Was der Ausdruck G(s, t) bedeutet, ist ohne weiteres klar.

241) C. Neumann, loc. cit. 217), zweite Abhandlung, p. 662-705 und A. Korn, Potentialtheorie 2, p. 348-354, bewiesen diesen Satz unter gewissen weiteren einschränkenden Voraussetzungen über die Natur der Randkurve. Der Satz gilt indessen allgemein. Vgl. L. Lichtenstein, Math. Ann. 67 (1909), p. 559-575 [p. 561-563], wo ein beliebiges einfach zusammenhängendes Gebiet der Klasse B betrachtet wird, sowie O. D. Kellogg, loc. cit. 224), p. 121-123, wo allgemeiner (mehrfach zusammenhängende) Gebiete der Klasse Ah in E betrachtet werden. Ein ganz analoger Satz gilt bei Gebieten der Klasse Ah im Raume. Vgl. L. Lichtenstein, Berliner Sitzungsberichte, vorgelegt am 17. 10. 1918.

242) Vgl. z. B. H. Poincaré, loc. cit. 190), p. 62-65.

243) In jedem Bereiche $\overline{T} + \overline{S}$ ist ferner

$$|D_2 G(\xi, \eta; x_1, y_1) - D_2 G(\xi, \eta; x_2, y_2)| < A_2 d_{12}^{\lambda},$$

unter λ den $H\"{o}lder$ schen Exponenten von S, unter A_2 einen von \bar{T} und λ abhängigen positiven Wert verstanden.

Ganz analoge Sätze gelten in unendlichen Gebieten sowie im Raume. Für $\log \frac{1}{\varrho}$ tritt im Raume in (1) und (4) der Ausdruck $\frac{1}{\varrho}$ ein. Es gilt ferner in der Ebene

(6)
$$|D_{\bf 1}G(\xi,\eta;x,y)| < A_3 \frac{\bf 1}{\varrho} \quad (A_3>0 \ \ {\rm konstant}),$$
 im Raume

(7)
$$|D_1G(\xi, \eta, \xi; x, y, z)| < A_4 \frac{1}{\varrho^2} \quad (A_4 > 0 \text{ konstant}).^{244}$$

Den vorstehenden Formeln kann man wegen (3) analoge Ungleichheiten für die partiellen Ableitungen in bezug auf ξ und η zur Seite stellen. Ähnliche Sätze gelten für die Differentialquotienten höherer Ordnung.

Es sei s_0 ein Punkt auf S (in \mathfrak{E}); C_1 und C_0 seien zwei Kreise um s_0 vom Halbmesser d_1 und $d_0 < d_1$, K_1 und K_0 seien die von ihnen begrenzten Kreisscheiben, \mathfrak{R}_1 und \mathfrak{R}_0 die entsprechend T und K_1 , T und K_0 gemeinsamen Gebiete. Jedem $\varepsilon > 0$ läßt sich nach Festsetzung von d_1 ein Wert d_0 so zuordnen, daß für alle (ξ, η) im Innern und auf dem Rande von \mathfrak{R}_0 sowie alle (x, y) im Innern und auf dem Rande von $T - \mathfrak{R}_1$

(8)
$$G(\xi, \eta; x, y) < \varepsilon$$

gilt.245) Ein ganz analoger Satz gilt im Raume.

Das Gebiet T (in $\mathfrak E$) wird jetzt der Einfachheit halber einfach zusammenhängend vorausgesetzt. Es mögen S_1 und S_2 Parallelkurven von S entsprechend in T und T_a in einem Abstande δ , der so klein ist, daß die beiden Kurven doppelpunktlos ausfallen, bezeichnen. Ist (ξ,η) ein Punkt in dem von S und S_1 begrenzten Ringgebiete τ , (ξ',η') sein Spiegelbild in bezug auf S, so ist für alle (ξ,η) im Innern und auf dem Rande von τ und alle (x,y) in T+S

(8*)
$$G(\xi, \eta; x, y) = \log \frac{\varrho'}{\varrho} + \text{ eine stetige Funktion von } (\xi, \eta) \text{ und } (x, y).^{246}$$

²⁴⁴⁾ Beim Beweise wird man sich im Raume der Betrachtungen der Nr. 17 bedienen. In der Ebene erscheint es einfacher, zunächst durch konforme Abbildung (Nr. 22) zu einem Gebiete der Klasse C (wenn T einfach zusammenhängend ist, zu einem Kreisgebiete) überzugehen.

²⁴⁵⁾ Vgl. z. B. A. Paraf, Ann. de Toulouse 6 (1892), H, p. 1-75.

²⁴⁶⁾ Durch die Formel (8*) ist das asymptotische Verhalten der Green schen Funktion, wenn (ξ, η) und (x, y) sich demselben Punkte auf S nähern, charakterisiert. Weiter reichende Sätze geben P. Lévy, Bull. des Sc. Math. (2) 34 (1910), p. 186—190; C. R. 158 (1914), p. 1008—1010 sowie J. Hadamard, C. R. 185 (1914), p. 1010—1011 an. Nach P. Lévy ist in Gebieten der Klasse C in $\mathfrak E$

Alle vorhin angegebenen Sätze lassen sich auf schlichtartige Gebiete der Klasse B in \mathfrak{C}_m sinngemäß übertragen (Nr. $24\,\mathrm{f}$).

Es sei T ein beschränktes Gebiet der Klasse B in \mathfrak{E} ; es sei ferner f(s) eine auf S erklärte abteilungsweise stetige Funktion und u diejenige beschränkte, in T reguläre Potentialfunktion, die auf S den Wert f(s) annimmt. Es gilt die Fundamentalformel

(9)
$$u(\xi,\eta) = \frac{1}{2\pi} \int_{S} f(t) \frac{\dot{c}}{\partial n_t} G(\xi,\eta;t) dt.^{248}$$

Sie läßt sich, wenn $\frac{df(s)}{ds}$, $\frac{d^2f(s)}{ds^2}$ vorhanden und stetig sind, da dann auch (Nr. 18) D_1u auf S stetig sind, leicht aus der Greenschen Formel (2) Nr. 10 ableiten. Trifft die zuletzt genannte Voraussetzung nicht zu, so wird man f(s) durch analytische Funktionen approximieren und Grenzwertsätze der Nr. 16 anwenden. Liegt ein schlichtartiges Gebiet der Klasse B in \mathfrak{E}_m vor, so wird man dieses auf ein schlichtes Gebiet konform abbilden (Nr. 24f). Man findet auf diese Weise, daß die Formel (9) auch jetzt noch gilt.

Über die *Green*sche Funktion eines beliebigen beschränkten einfach zusammenhängenden Gebietes vergleiche weiter unten Nr. 38.²¹⁹)

$$G(\xi,\eta;\ x,y) = \log\frac{1}{\varrho} - \frac{1}{2\pi} \int_{\xi}^{\bullet} \frac{\hat{\varrho}}{\hat{\varrho}n_{t}} (\log\varrho_{t} \cdot \log r_{t}) dt +$$

eine in T+S analytische und reguläre Funktion von (ξ, η) , (x, y). Mit $\varrho_t(r_t)$ wird hier die Entfernung der Punkte (ξ, η) und t ((x, y) und t) bezeichnet.

247) Ist $(\xi,\,\eta)$ ein Windungspunk
tm-terOrdnung, so ist in der Umgebung von
 $(\xi,\,\eta)$

(8**) $G(\xi,\eta;\,x,y)=\frac{1}{m+1}\,\log\,\frac{1}{\varrho}+\text{eine reguläre Potentialfunktion.}$ 248) Im Raume ist

(10)
$$u(\xi,\eta,\zeta) = \frac{1}{4\pi} \int_{\mathcal{S}} f(t) \frac{\dot{\epsilon}}{\partial n_t} G(\xi,\eta,\zeta;t) dt.$$

249) Die Formel (10) ist zum ersten Male (für durchweg stetige Randwerte) von A. Liapounoff, loc. cit. 54) a), p. 307—311, auf anderem Wege streng bewiesen worden. Ist T insbesondere ein Kreisgebiet oder Kugelkörper, so sind die Formeln (9) und (10) mit den Poissonschen Integralen der Nr. 13 identisch. Ist T ein beliebiges einfach zusammenhängendes Gebiet der Klasse B in $\mathfrak E$ oder $\mathfrak E_m$, so kann man umgekehrt (9) aus dem Poissonschen Integral durch konforme Abbildung gewinnen. Sie gilt daher jedesmal, wenn f(s) im Lebesgueschen Sinne integrierbar ist und die Unität der Lösung feststeht (vgl. G. D. Kellogg, loc. cit. 224), p. 125—127). Die Beziehungen (9) und (10) lassen sich ferner aus den Gleichungen (1) Nr. 17 d unter Zuhilfenahme der Fredholmschen Umkehrungsformeln ableiten (vgl. J. Plemelj, loc. cit. 55), passim; Untersuchungen, passim). Die Formel (9) gilt übrigens unverändert bei ebenen Gebieten beträchtlich allgemeinerer Natur (Nr. 24c).

Weitere Literatur: G. Léry, C. R. 152 (1911), p. 843-844 sowie Ann. de l'Éc.

21. Stetig gekrümmte Gebiete. Greensche Funktionen zweiter Art. 250) Es sei T ein beschränktes Gebiet der Klasse B in $\mathfrak E$ und (ξ,η) ein Punkt in T. Die Sätze der Nr. 17 d sichern die Existenz einer Green schen Funktion zweiter Art $G^{\Pi}(\xi,\eta;x,y)$ (der Neumannschen "charakteristischen Funktion"), die folgende Eigenschaften hat: Sie ist diejenige, außer in (ξ,η) , in T und auf S stetige, in T reguläre Potentialfunktion, die sich in (ξ,η) wie $\log \frac{1}{2}$ + eine reguläre

(1)
$$\frac{\partial}{\partial n_t} G^{\mathrm{II}}(\xi, \eta; t) = \frac{2\pi}{l},$$

(1*)
$$\int G^{\pi}(\xi, \eta; t) dt = 0$$

genügt. Unter l wird die Gesamtlänge von S verstanden. Die Greensche Formel (2) Nr. 10 liefert den Reziprozitätssatz

(2)
$$G^{\text{II}}(x_1, y_1; x_2, y_2) = G^{\text{II}}(x_2, y_2; x_1, y_1).$$

Potentialfunktion verhält und auf S den Bedingungen

Die partiellen Ableitungen $D_1 G^{\Pi}$ sind auf S stetig. ES Gehört T der Klasse Bh an, so sind auch $D_2 G^{\Pi}$ auf S stetig. In einer ganz analogen Weise wird die *Green*sche Funktion zweiter Art für unendliche Gebiete und im Raume erklärt. Für (1) tritt im Raume

(4)
$$\frac{\partial}{\partial n} G^{II}(\xi, \eta; t) = \frac{4\pi}{D},$$

unter D den Flächeninhalt von S verstanden, ein. 254)

Norm. (3) 32 (1915), p. 49—136 (*Greensche Funktion eines von einer algebraischen Kurve begrenzten Gebietes*) und A. Viterbi, Rend. del R. Ist. Lomb. dei sc. e. lettere (2) 47 (1914/15), p. 763—796.

250) Vgl. die in der Fußnote 235) angegebene Literatur, ferner D. Hilbert, Gött. Nachr. 1905, p. 1-32 [p. 3-8]; Grundzüge, p. 83-88; J. Plemelj, loc. cit. 175).

251) Gelegentlich wird $G^{II} = \log \frac{1}{\varrho}$ als die *Green*sche Funktion zweiter Art bezeichnet.

252) Hier sowie in den Formeln (3), (5) und (6), beziehen sich die Zeichen D_1 , D_2 zunächst auf die Variablen x und y. In jedem (ξ,η) nicht enthaltenden Bereiche $\overline{T}+\widetilde{S}$ in T+S ist

$$\begin{array}{c} \mid D_1 \; G^{\rm II}(\xi,\eta;\; x_{\rm I},y_{\rm I}) - D_1 \; G^{\rm II}(\xi,\eta;\; x_{\rm z},y_{\rm Z}) \mid < A_3 \, d_{1z}^{\lambda} \; , \\ 0 < \lambda < 1 \quad (A_{\rm S} > 0 \; {\rm von} \; \; \overline{T}, \; \lambda \; {\rm abhängig}). \end{array}$$

253) Und genügen in $T+\overline{S}$ einer Hölderschen Bedingung mit dem Exponenten λ (dem Hölderschen Exponenten von S).

254) Die zu dem zweiten Randwertproblem gehörige Greensche Funktion eines Kreisgebietes gibt U. Dini, Annali di Mat. pura ed applicata (5) 2 (1871), p. 305-345; diejenige eines Kugelvolumens C. A. Bjerknes, Acta Soc. Sc. Christiania (1871); Beltrami, Bol. mem. 3 (1873), p. 370-371 an. Vgl. ferner J. Hadamard, Leçons, p. 44-47 und H. Weber, Part. Diff. d. Math. Phys. 1, p. 480-483. Hadamard

Für alle (ξ, η) und (x, y) in T + S ist in der Ebene

(5)
$$|G^{\Pi}| < 2 \left| \log \frac{1}{\varrho} \right| + A_4, |D_1 G^{\Pi}| < \frac{A_4'}{\varrho},$$

im Raume

(6)
$$|G^{\text{II}}| < \frac{2}{\varrho} + A_5 \left| \log \frac{1}{\varrho} \right| + A_5', |D_1 G^{\text{II}}| < \frac{A_5''}{\varrho^2}, (A_4, A_4', A_5, A_5', A_5'' \text{ konstant}).$$

Es sei f(s) eine abteilungsweise stetige, der Beziehung $\int_{s}^{s} f(s) ds = 0$ genügende Funktion auf S. Für diejenigen beschränkten, in T regulären Potentialfunktionen u, deren Normalableitung auf S den Wert f(s) hat, erhält man unter Zuhilfenahme des *Green* schen Satzes (2) Nr. 10 den Ausdruck

(7)
$$u(\xi, \eta) = -\frac{1}{2\pi} \int G^{II}(\xi, \eta; t) f(t) dt + \frac{1}{l} \int u(t) dt.^{255}$$

Die Funktion G^{II} kann durch andere "Greensche Funktionen" ersetzt werden.

Es seien (ξ, η) , (ξ', η') , (x', y') drei verschiedene Punkte in T. F. Klein betrachtet diejenige, außer in (ξ, η) und (ξ', η') , in T+S stetige, in T reguläre Potentialfunktion $K(\xi, \eta; \xi', \eta'; x', y'; x, y)$, die sich in (ξ, η) und (ξ', η') entsprechend wie $\log \frac{1}{\varrho} + \text{eine}$ reguläre Potentialfunktion und $-\log \frac{1}{\varrho'} + \text{eine}$ reguläre Potentialfunktion verhält und überdies den Bedingungen

(8)
$$K(\xi, \eta; \xi', \eta'; x', y'; x', y') = 0, \quad \frac{\partial K}{\partial n} = 0$$

genügt.²⁵⁶) Läßt man (ξ', η') gegen (ξ, η) konvergieren, so wird man auf das von *Klein* zuerst systematisch betrachtete "Strömungspotential" $\Re(\xi, \eta; x, y)$ geführt, das sich in (ξ, η) wie

$$\Re\left[\frac{1}{z-\zeta}+(z-\zeta)\,\Re(z-\zeta)\right],\ \ z=x+iy,\ \ \zeta=\xi+i\eta$$

verhält und überdies der Randbedingung

(9)
$$\frac{\partial}{\partial n_t} \, \widehat{\mathbf{x}}(\boldsymbol{\xi}, \, \boldsymbol{\eta}; \, t) = 0$$

gibt a. a. O. p. 47 einen Ausdruck für die *Green*sche Funktion zweiter Art des Außenraumes eines Kugelvolumens; ebendort wird p. 47—53 das von zwei konzentrischen Kugeln eingeschlossene Gebiet betrachtet.

255) In einem unendlichen Gebiete sowie im Raume gelten analoge Ausdrücke. Die Theorie der Nr. 17d führt auf analoge Formeln. Vgl. J. Plemelj, Untersuchungen, p. 99—100.

256) Vgl. F. Pockels, Über die partielle Differentialgleichung $\Delta u + k^2 u = 0$ usw., Leipzig 1891, p. 253; J. Hadamard, Leçons, p. 35-37. S. ferner F. Klein, Riemannsche Flächen 1, p. 4-16. An der bezeichneten Stelle betrachtet Klein lediglich geschlossene Flächen, so daß die Bedingung $\frac{\partial K}{\partial n} = 0$ nicht vorkommt.

genügt. 257) (24 h) E. R. Neumann ersetzt die Bedingung (1*) durch

(10)
$$\frac{\partial}{\partial n_t} N(\xi, \eta; t) = 2\pi m(t), \quad \int N(\xi, \eta; t) m(t) dt = 0,$$

unter m(s) die natürliche Belegung (Nr. 17 d) verstanden. ²⁵⁸) W. Stekloff bedient sich einer Funktion $S(\xi, \eta; x, y)$, die, außer in (ξ, η) , in T + S stetig, in T analytisch und regulär ist, sich in (ξ, η) wie $\log \frac{1}{\varrho}$ + eine analytische und reguläre Funktion verhält und den Bedingungen

(11)
$$\Delta S = \frac{2\pi}{P}, \quad \frac{\epsilon}{\partial n_t} S(\xi, \eta; t) = 0, \quad \int_T S(\xi, \eta; x, y) dx dy = 0$$

 $(P = \text{Flächeninhalt von } T) \text{ genügt.}^{259})$

In ähnlicher Weise werden Greensche Funktionen zweiter Art unendlicher Gebiete, Gebiete in \mathfrak{E}_m , oder allgemeiner auf einer Fläche der Klasse Lh (insbesondere geschlossener Gebiete) und Gebiete im Raume erklärt. Sie erfüllen sämtlich eine Symmetriebeziehung und führen auf gewisse, zu (7) analoge, Integralformeln.

Einen Ausdruck für das asymptotische Verhalten der Funktion $G^{11}(\xi, \eta; x, y)$ in der Nachbarschaft des Randes gab E. E. Levi an. Für alle (ξ, η) im Innern und auf dem Rande von τ (vgl. p. 248) sowie alle (x, y) in T und auf S ist

(12)
$$G^{\mathrm{n}}(\xi, \eta; x, y) = \log \frac{1}{\varrho \varrho'} + \text{eine stetige Funktion von } (x, y) \text{ und } (\xi, \eta)^{261}$$

Ein zum Teil weiter reichendes Resultat hat *U. Cisotti*, von den Formeln der *Robin-Fredholm* schen Theorie ausgehend, abgeleitet. ²⁶²) Es gilt, unter σ einen Punkt auf S (im Raume) verstanden,

$$G^{\Pi}(\sigma; x, y, z) = \frac{2}{r_{\sigma}} - \frac{C}{2} \log (r_{\sigma} + h) + \psi(x, y, z).$$

In dieser Formel bezeichnen: r_{σ} den Abstand der Punkte (x, y, z) und

²⁵⁷⁾ Vgl. F. Klein, Algebraische Funktionen, passim; Riemannsche Flächen 1, p. 4—16. An den bezeichneten Stellen betrachtet Klein lediglich Strömungen auf geschlossenen Flächen, so daß die Randbedingung (9) nicht vorkommt.

²⁵⁸⁾ E. R. Neumann, Beiträge.

²⁵⁹⁾ W. Stekloff, Ann. de l'Éc. Norm. (3) 19 (1902), p. 191—259; p. 455—490 [p. 247—248] Man vergleiche ferner D. Hilbert, Gött. Nachr. 1904, p. 213—259 sowie Grundzüge, p. 39—81, wo in Verallgemeinerung der Beziehungen (11) gewisse "Greensche Funktionen im erweiterten Sinne" betrachtet werden.

²⁶⁰⁾ E. E. Levi, Gött. Nachr. 1908, p. 249-252.

²⁶¹⁾ Aus (12) folgt insbesondere $G^{11}(s,t)=2\log\frac{1}{r_{st}}+$ eine stetige Funktion von s und t.

²⁶²⁾ U. Cisotti, Rend. del. Circolo Mat. di Palermo 31 (1911), p. 201-233.

 σ , C die Summe der Hauptkrümmungsradien in σ , h die Projektion des Vektors ($\sigma \longrightarrow x, y, z$) auf die Innennormale, $\psi(x, y, z)$ eine in T + S stetige Funktion.²⁶³)

Es sei λ ein nicht singulärer Wert des in (1) Nr. 17d auftretenden Parameters. Sowohl die Neumann-Poincarésche als auch die Robin-Poincarésche Randwertaufgabe sind eindeutig lösbar. Für die Lösungen lassen sich Integralausdrücke, die zu (9) Nr. 20 analog sind, angeben.²⁶¹)

Durch Aufstellung der *Green*schen Funktion (Nr. 20) ist zugleich die Aufgabe gelöst, ein beschränktes, einfach zusammenhängendes Gebiet der Klasse B (oder Ah) in $\mathfrak E$ auf ein Kreisgebiet konform abzubilden.

22. Konforme Abbildung einfach zusammenhängender Gebiete der Klasse B in $\mathfrak E$ auf ein Kreisgebiet. Es sei T ein beschränktes einfach zusammenhängendes Gebiet in einer schlichten Ebene. Die Aufgabe, T auf das Gebiet |Z| < 1 konform abzubilden, so daß einem Punkte $\xi = \xi + i\eta$ in T der Kreismittelpunkt, einer willkürlich vorgeschriebenen Richtung durch ξ die Richtung der wachsenden x entspricht, kann, wie H. Poincaré gezeigt hat, nicht mehr als eine Lösung haben. (266)

Man findet leicht, daß $Z(z)=e^{-(U+iV)}$ gesetzt werden kann, unter U die zu T gehörige Greensche Funktion $G(\xi,\eta;x,y)$ verstanden. $g(\xi,\eta;x,y)$

263) Cisotti setzt $\psi = \psi_1 + \psi_2$. Dabei bezeichnet ψ_1 einen expliziten analytischen Ausdruck, ψ_2 eine nebst ihren partiellen Ableitungen erster Ordnung in T+S stetige Funktion.

Weitere Sätze finden sich bei P. $L\acute{e}vy$, loc. cit. 246). Bei Gebieten der Klasse C in $\mathfrak E$ gilt nach P. $L\acute{e}vy$ die Formel

$$G^{\rm II}(\xi,\eta;x,y) = \log\frac{1}{\varrho} + \frac{1}{2\pi} \int \frac{\partial}{\partial n_t} (\log \varrho_t \cdot \log r_t) dt + \text{ eine in } T + S$$

analytische und reguläre Funktion von (ξ, η) und (x, y).

264) Vgl. J. Plemelj, loc. cit. 55), p. 392 u. ff. Dort werden gewisse weitere "Greensche Funktionen" eingeführt.

265) "Konform" bedeutet in diesem Referat, wenn nichts anderes vermerkt wird, stets: "eindeutig umkehrbar und konform".

Literatur: W. F. Osgood II B 1 Nr 19; A. Korn, Potentialtheorie 2, p. 265—275; É. Picard, Traité 2, p. 301—305; W. F. Osgood, Funktionentheorie, p. 673—676; p. 681—687; É. Goursat, Cours 3, p. 212—217.

266) H. Poincaré, Acta math. 4 (1884), p. 200-312 [p. 231-232]. Nicht wesentlich hiervon verschieden ist der Beweis bei C. Carathéodory, Math. Ann. 72 (1912), p. 107-144 [p. 111].

267) Vgl. etwa \acute{E} . Picard, Traité 2, p. 301—302. Die Greensche Funktion $G(\xi, \eta; x, y)$ wird für beliebige beschränkte Gebiete in $\mathfrak E$ genau so wie in der Nr. 20 für Gebiete der Klasse B definiert.

Es möge jetzt insbesondere T der Klasse B (oder Ah) angehören. Der Nr. 20 zufolge ist in $T \ldots U(x,y) = G(\xi,\eta;x,y) > 0$. Ferner ist auf S (Nr. 20)

(1)
$$\frac{\hat{c}}{\partial n}U(s) = -\frac{\hat{c}}{\partial s}V(s) > 0.$$

Die Gleichung U(x,y)=a>0 stellt eine geschlossene, doppelpunktlose, analytische und reguläre Kurve Σ dar. Das von Σ begrenzte, beschränkte Gebiet Θ enthält den Punkt ξ . Auf Σ ist die Normalableitung $\frac{\partial U}{\partial x}>0$. Darum ist auf Σ durchweg

$$\frac{\partial V}{\partial \sigma} < 0.$$

In der Ebene Z entspricht Σ umkehrbar eindeutig der Kreis um den Koordinatenursprung vom Halbmesser e^{-a} . Man überzeugt sich so leicht, daß Z(z) in der Tat T auf die Fläche K des Einheitskreises C konform abbildet. Wegen (1) entsprechen aber auch S und C einander umkehrbar eindeutig und stetig. Die Ableitung $\frac{dZ}{dz}$ ist auch noch auf S stetig. In T+S ist $\left|\frac{dZ}{dz}\right|>0$. Es gilt ferner (wenn T der Klasse B angehört)

(3)
$$\frac{d}{dz}Z(z_1) - \frac{d}{dz}Z(z_2) \Big| < c'(\lambda) |z_1 - z_2|^{\lambda}$$

$$(0 < \lambda < 1).$$

Gehört T der Klasse Bh an, so ist auch $\frac{d^2Z}{dz^2}$ auf S stetig. Ist λ der $H\ddot{o}lder$ sche Exponent von S, so ist in T+S

(4)
$$\frac{d^2}{dz^2} Z(z_1) - \frac{d^2}{dz^2} Z(z_2) | \langle c_2(\lambda) | z_1 - z_2 |^{\lambda}.$$

Analoge Sätze gelten für Ableitungen höherer Ordnung.²⁶⁹)

Enthält S einen Bogen einer analytischen und regulären Kurve, so läßt sich Z(z) über diesen hinaus analytisch fortsetzen. 270)

268) Die zu Θ gehörige in ζ unendliche Greensche Funktion ist nämlich gleich $G(\xi, \eta; x, y) = a$.

269) Die Gleichungen von S mögen x = x(s), y = y(s) heißen. Sind die Funktionen x(s) und y's) nebst ihren Ableitungen bis zur Ordnung m(m > 1) einschließlich stetig, während $\frac{d^m x}{ds^m}$, $\frac{d^m y}{ds^m}$ einer H-Bedingung mit dem Exponenten

1 genügen, so sind $\frac{d^k Z}{dz^k}(k=1,\ldots m)$ auf S stetig. Ferner ist in T+S

$$\frac{d^m}{dz^m}Z(z_1) - \frac{d^m}{dz^m}Z(z_2) \left| \langle c_m(\lambda) | z_1 - z_2 | \lambda \right|.$$

Man vergleiche hierzu die älteren Ergebnisse von P. Painleré, loc. cit. 224)

270) Vgl. H. A. Schwarz, Ges. Abh. 2, p. 149—151. Siehe ferner loc. cit. 288) (Nr. 24b). Ein ganz analoger Satz gilt, wenn der Rand eines einfach zusammenhängenden Gebietes in $\mathfrak E$ oder $\mathfrak E_m$ (oder selbst eines unendlich vielblättrigen

Liegt ein einfach zusammenhängendes Gebiet der Klasse B in \mathfrak{E} , das den Punkt $z=\infty$ enthält, vor, so wird dieses zuvörderst durch eine lineare gebrochene Substitution in ein beschränktes Gebiet transformiert.

Konforme Abbildung eines einfach zusammenhängenden Gebietes der Klasse B in \mathfrak{E}_m auf ein Kreisgebiet vergleiche Nr. 24 f, funktionentheoretische Behandlungsweise Nr. 47.

Mehrfach zusammenhängende Gebiete der Klasse B in \mathfrak{E} lassen sich durch wiederholte Anwendung der im vorstehenden betrachteten Abbildung in unendlich mannigfaltiger Weise auf Gebiete der Klasse C konform abbilden. Das Verhalten der die Abbildung vermittelnden Funktion auf S ist demjenigen der Funktion Z(z) analog.

23. Gebiete der Klasse D in \mathfrak{E} . Konforme Abbildung. Es sei T ein einfach zusammenhängendes Gebiet der Klasse D in der Ebene z. Wendet man auf T in geeigneter Reihenfolge eine Anzahl passend gewählter elementarer konformer Abbildungen von der Form

(1)
$$Z = Z_1^{\frac{1}{\alpha}}, \quad Z_1 = z + \sum_{k=1}^{2 \dots \infty} A_k z^k, \quad 2 \ge \alpha > 0$$
:
(2) $Z = \left(z^{\frac{1}{\alpha}} - z^*\right)^{\alpha}$

mit explizite angebbaren Koeffizienten $A_k(k=2,3,\ldots)$ und Konstanten α und $z^{*\,271}$) an, so läßt sich T auf ein Gebiet \overline{T} der Klasse B' konform abbilden. Hierdurch ist nach Nr. 22 zugleich die konforme Abbildung von T auf ein Kreisgebiet gewonnen. Augenscheinlich ist die Abbildung auch noch auf S umkehrbar eindeutig und stetig. In Verallgemeinerung gewisser Resultate von H. A. Schwarz (Nr. 25) zeigt sich hierbei, daß die die Abbildung vermittelnde Funktion F(z) sich in der Umgebung einer Ecke z_0 vom Öffnungswinkel $\alpha\pi$ in der Form

$$(3) \quad F(z) = (z - z_0)^{\frac{1}{\alpha}} f_1(z) \,, \qquad (4) \quad \frac{dF(z)}{dz} = (z - z_0)^{\frac{1}{\alpha} - 1} f_2(z) \,, \\ f_1(z), \quad f_2(z) \text{ stetig}, \quad f_2(z_0) \neq 0 \,.$$

Gebietes) einen Bogen einer analytischen und regulären Kurve enthält, sonst aber beliebig beschaffen ist. Vgl. P. Koebe, Gött. Nachr. 1907, p. 633-669 [p. 657-668] (Nr. 40b); C. Carathéodory, Schwarz Festschrift, Berlin 1914, p. 19-41 [p. 32-36]; P. Koebe, Journ. f. Math. 145 (1915), p. 177-223 [p. 205-209] (Nr. 47).

271) $\alpha\pi$ bezeichnet jedesmal den von zwei Nachbarseiten der Begrenzung eingeschlossenen Winkel.

272) Vgl. L. Lichtenstein, Journ f. Math. 140 (1911), p. 100—119 [p. 100—110]. Die Begrenzung \overline{S} von \overline{T} besteht aus Stücken einander berührender analytischer und bis auf die Endpunkte regulärer Linien. In den Berührungspunkten erleidet die von Null verschiedene Krümmung von \overline{S} einen Sprung.

darstellen läßt. Ist a irrational, so läßt sich leicht zeigen, daß für alle m

$$\frac{d^m F}{dz^m} = (z - z_0)^{\frac{1}{\alpha} - m} \cdot \text{ stetige Funktion}$$

gesetzt werden kann.²⁷³)

Weitere Entwicklungen zur konformen Abbildung von Ecken und Spitzen vergleiche Nr. 24c und 48a.

Die bisher betrachteten Methoden zur Lösung der ersten und der zweiten Randwertaufgabe, insbesondere die Methode des arithmetischen Mittels, sind in ihrer Anwendbarkeit auf Gebiete in $\mathfrak S$ beschränkt. Für die Behandlung der Gebiete in $\mathfrak S_m$, namentlich für die Riemannsche Theorie der algebraischen Funktionen haben sich die zuerst von H. A. Schwarz und C. Neumann systematisch betrachteten kombinatorischen Methoden, vor allem das Schwarzsche alternierende Verfahren als grundlegend erwiesen.

24. Kombinatorische Methoden. 274) a) Alternierendes Verfahren. Drei Grundtypen von Aufgaben. Es seien T_1 und T_2 zwei beschränkte, einfach zusammenhängende Gebiete der Klasse B in \mathfrak{S} , deren Randkurven S_1 und S_2 einander in zwei Punkten schneiden (nicht berühren). Die beiden Gebiete haben ein Gebiet \overline{T} gemeinsam. Den Entwicklungen der Nr. 17 gemäß hat die Randwertaufgabe in T_1 und T_2 eine und nur eine Lösung, dies zwar wie auch die (abteilungsweise stetigen) Randwerte auf S_1 und S_2 gewählt sein mögen. H. A. Schwarz bestimmt nun diejenige im Innern und auf dem Rande S^* von $T^* = T_1 + T_2 - \overline{T}$ stetige, in T^* reguläre Potentialfunktion, die auf S^* eine beliebig vorgegebene stetige Wertfolge $f(s)^{275}$) annimmt, durch das folgende, von ihm so benannte "alternierende Verfahren". 276)

Dieser Satz gilt fraglos für alle $\alpha(>0)$, läßt sich jedoch für rationale α auf dem a. a. O. angegebenen Wege nicht beweisen.

275) Die Voraussetzung, T_1 und T_2 seien einfach zusammenhängend, ist für das Gelingen des Verfahrens nicht wesentlich.

²⁷³⁾ Vgl. L. Lichtenstein, loc. cit. 272), p. 108-110.

W. F. Osgood und E. H. Taylor leiten die Formel (3) auf einem anderen Wege ab (vgl. Trans. of the Amer. Math. Soc. 14 (1913), p. 277—298 [p. 282—283]). Nach Osgood und Taylor ist auch $f_1(z_0) \neq 0$.

²⁷⁴⁾ Vgl. H. Burkhardt und W. F. Meyer II A 7 b Nr. 28. Dort finden sich Angaben über die ältere Literatur, insbesondere über die Untersuchungen von R. Murphy und H. Lipschitz.

²⁷⁶⁾ H. A. Schwarz, a) Vierteljahr. d. Naturfor. Ges. in Zürich, 15. Jahrg., p. 272—286; Ges. Abh. 2, p. 133—143; b) Berl. Monatsber. 1870, p. 767—795; Ges. Abh. 2, p. 144—171; c) Math. Ann. 21 (1883), p. 157—160; Ges. Abh. 2, p. 303—306. Eine Darstellung des alternierenden Verfahrens geben u. a. A. Harnack, Grundlagen, p. 109—113; J. Riemann, Thèse, Paris 1888;

Es sei S_{12} derjenige Teil von S_1 , der in T_2+S_2 liegt; desgleichen sei S_{21} der in T_1+S_1 gelegene Teil von S_2 . Nach Schwarz werden zwei Folgen beschränkter, entsprechend in T_1 und T_2 regulärer Potentialfunktionen u_k', u_k'' $(k=1,2,\ldots)$ gebildet, so daß, unter $\bar{f}(s)$ eine beliebige auf S_{12} erklärte stetige, sich f(s) stetig anschließende Wertfolge verstanden, auf $S_1-S_{12}\ldots u_k'=f(s)$, auf $S_2-S_{21}\ldots u_k''=f(s)$ $(k=1,2,\ldots)$, auf $S_{12}\ldots u_1'=\bar{f}(s)$, $u_k'=u_{k-1}'$ (k>1), auf $S_{21}\ldots u_{k}''=u_k'$ $(k=1,2,\ldots)$ gilt. Die Folgen u_k', u_k'' konvergieren entsprechend in T_1+S_1 und T_2+S_2 gleichmäßig. In $\bar{T}+\bar{S}(\bar{S}=S_{12}+S_{21})$ ist $\lim_{k=\infty}u_k''=\lim_{k=\infty}u_k''$. Setzt man $u=\lim_{k=\infty}u_k'$ in T_1+S_1 , $u=\lim_{k=\infty}u_k''$ in T_2+S_2 , so ist u die Lösung der Randwertaufgabe. Der Beweis beruht wesentlich auf dem Schwarzschen Hilfssatz (Nr. 13 p. 221). 277)

In ähnlicher Weise läßt sich mit C. Neumann das erste Randwertproblem für das Gebiet \overline{T} auflösen. Es sei $\varphi(s)$ eine auf \overline{S} erklärte stetige Funktion. Wir bilden, unter $\overline{\varphi}(s)$ eine beliebige stetige, sich $\varphi(s)$ stetig anschließende Funktion auf S_1-S_{12} verstanden, zwei Folgen beschränkter, entsprechend in T_1 und T_2 regulärer Potentialfunktionen $u_k', u_k''(k=1,2,\ldots)$, so daß zunächst u_1' auf S_{12} gleich φ , auf S_1-S_{12} gleich $\overline{\varphi}$, ferner

auf
$$S_{21} \dots u_k'' = \varphi - u_k'$$
, auf $S_2 - S_{21} \dots u_k'' = 0$ $(k = 1, 2, \dots)$, auf $S_{12} \dots u_k' = \varphi - u_{k-1}''$, auf $S_1 - S_{12} \dots u_k' = 0$ $(k = 2, 3, \dots)$ gilt. Jede der beiden Funktionenfolgen konvergiert in $\overline{T} + \overline{S}$ gleichmäßig; $u = \lim_{k = \infty} u_k' + \lim_{k = \infty} u_k''$ ist die Lösung der Randwertaufgabe. 278)

Es sei T ein beschränktes einfach zusammenhängendes Gebiet der Klasse B in \mathfrak{C} , S' eine Kurve der Klasse B in T, T' das von S'

A. Korn, Potentialtheorie, passim; É. Picard, Traité, 2, p. 81—88 sowie p. 508 bis 546; W. F. Osgood, Funktionentheorie, p. 689—703; É. Goursat, Cours 3, p. 207—212. Man vergleiche ferner C. Neumann, Abelsche Integrale, p. 432—471 [p. 446—452] sowie die II A 7 b Nr. 28 zitierten älteren Arbeiten von C. Neumann.

²⁷⁷⁾ Auf T_1 und S_{21} angewandt, lautet dieser etwa so. Ist u_0 diejenige beschränkte, in T_1 reguläre Potentialfunktion, die auf $S_1 - S_{12}$ gleich 0, auf S_{12} gleich 1 ist, so ist auf S_{21} gewiß $u_0 < q < 1$.

²⁷⁸⁾ Vgl. C. Neumann. Leipz. Ber. 22 (1870), p. 264-321; A. Korn, Potentialtheorie 2, p. 224-226. Der Konvergenzbeweis stützt sich wieder wesentlich auf den Schwarzschen Hilfssatz. Eine auf einem verwandten Gedanken beruhende ("disjunktive") Methode zur Lösung der ersten Randwertaufgabe für ein von endlich vielen Kreisen begrenztes Gebiet in E gibt C. Neumann, Abelsche Integrale, p. 436-446, an. Durch ein verwandtes Verfahren gewinnen F. Prym und G. Rost die Lösung des ersten Randwertproblems für ein Kreisringgebiet (Prymsche Funktionen, p. 78-91).

begrenzte beschränkte Gebiet, S'' eine Kurve der Klasse B in T'. Das von S und S" begrenzte beschränkte Gebiet heiße T^* . Ist das erste Randwertproblem für T' und T^* gelöst, so läßt sich die Lösung derselben Aufgabe für das Gebiet T durch ein zu dem zuerst betrachteten völlig analoges Verfahren ("der gürtelförmigen Verschmelzung") bestimmen. 279)

In ähnlicher Weise lassen sich unendliche Gebiete behandeln. 280) Ist einmal das Analogon des Schwarzschen Hilfssatzes im Raume bewiesen, so macht eine Übertragung der vorstehenden Ergebnisse auf räumliche Gebiete keine Schwierigkeiten. Beides ist von A. Korn durchgeführt worden.²⁸¹) ²⁸²) ²⁸³)

Analoge Bemerkungen gelten im Raume.

283) Es mögen $T_k(k=1,\ldots n)$ beschränkte Gebiete in & bezeichnen, die so beschaffen sind, daß 1. das erste Randwertproblem in einem jeden Gebiete gelöst werden kann (weshalb (Nr. 45c) jedenfalls Punkte als Randkomponenten ausgeschlossen sind), 2. zwei verschiedene Randkomponenten höchstens endliche viele Punkte miteinander gemeinsam haben, 3. diese Punkte allemal nur zwei Randkomponenten angehören, 4. die Gesamtheit der Punkte, die in einem (oder mehreren) T_k liegen, ein Gebiet T bildet. Sei f_1 eine in T+S stetige Funktion. Es liegt die Frage nahe, ob das erste Randwertproblem in T (Randfunkion f_1) wie folgt gelöst werden kann: Man bestimme die zu f_1 als Randfunktion gehörige Lösung u_1 der ersten Randwertaufgabe in T_1 , sodann die zu f_2 gehörige Lösung u_2 in $T_2(f_2=f_1$ in $T-T_1$, $f_2=u_1$ in T_1), zu f_3 gehörige Lösung u_3 in T_3 ($f_3 = f_2$ in $T - T_2$, $f_3 = u_2$ in T_2) usw., wobei auf T_n jedesmal T, folgt. Nach H. Lebesgue (Rend. del Circolo Mat. di Palermo 24 (1907), p. 371 bis 402 [p. 399-402] (Nr. 45c) ist die Folge $f_k(k=1, 2, \ldots)$ in T+S gleichmäßig konvergent: $u = \lim f_k$ ist die Lösung des Randwertproblems. Die Ergebnisse von Lebesgue gelten übrigens unter noch allgemeineren Voraussetzungen. (Vgl. a. a. O).

Auch in dem besonderen Falle von zwei Gebieten der Klasse B reicht das Lebesque-

²⁷⁹⁾ Der Name rührt von C. Neumann her. Der Beweis ist diesmal besonders einfach und stützt sich auf die elementare Tatsache der Nichtexistenz eines Extremums im Regularitätsgebiete. Man vergleiche H. A. Schwarz, loc. cit. 276, passim; C. Neumann, Abelsche Integrale, p. 452-454; A. Korn, Potentialtheorie 1, p. 306-309; 2, p. 226-227.

²⁸⁰⁾ Vgl. H. A. Schwarz, loc. cit. 276), passim; A. Korn, Potentialtheorie 2, p. 226-227.

²⁸¹⁾ Vgl. A. Korn, Potentialtheorie 1, p. 295-299 sowie p. 299-320; loc. cit. 55) c) 1. Abh.

²⁸²⁾ Die eingangs eingeführten Voraussetzungen über T_1 und T_2 kann man durch die folgenden weiter reichenden ersetzen: 1. Das erste Randwertproblem hat für jedes dieser Gebiete eine Lösung. 2. S1 und S2 haben zwei Punkte P₁ und P₂ gemeinsam und in diesen je eine, oder zwei Tangenten (einen Eekpunkt). Außer in P1 und P2 braucht die Existenz der Tangenten nicht vorausgesetzt zu werden. 3. Der Bogen $S_{12}(S_{21})$ liegt in $T_2 + S_2(T_1 + S_1)$ und berührt $S_2(S_1)$ nicht. Das Gebiet $T_1 + T_2 - \hat{T}$ hat in P_1 und P_2 je eine Ecke oder allenfalls eine nach innen gerichtete Spitze. In der Tat läßt sich der Schwarzsche Hilfssatz jetzt ähnlich wie in der Nr. 13 beweisen.

b) Ebene Gebiete der Klasse E und M. Das erste Randwertproblem. Die Bemerkungen der Fußnote 282) gestatten eine wiederholte Anwendung der Nr. 24a betrachteten Verfahren. Das Schwarzsche alternierende Verfahren führt bei einmaliger Anwendung auf ein Gebiet der Klasse M in & mit zwei einspringenden Ecken (die eingeschlossenen Winkel α_1 , $\alpha_2 > \pi$ und $< 2\pi$), die Nr. 24a an zweiter Stelle betrachtete Methode auf ein Gebiet derselben Klasse mit zwei nach außen gewandten Ecken $(\alpha_1, \alpha_2 > 0 \text{ und } < \pi)$. Von hier aus kann man zur Auflösung des ersten Randwertproblems für beliebige Gebiete T der Klasse M in $\mathfrak E$ gelangen. Es genügt hierzu T von einer endlichen Anzahl Gebiete der Klasse B, oder der soeben erwähnten Elementargebiete mit nur zwei Ecken in geeigneter Weise "dachziegelartig" zu überdecken (Nr. 2 Fußnote 19) und diese durch alternierendes Verfahren sukzessive miteinander zu verschmelzen (vgl. W. F. Osgood, II B 1 Nr. 27, insbesondere die Fig. 6 und 7 sowie W. F. Osgood, Funktionentheorie, p. 697—699). 284) 285)

In einer ganz ähnlichen Weise kann man im Raume vorgehen. Man findet so die Lösung des ersten Randwertproblems für räumliche Gebiete der Klasse $Lh^{\,286}$) und beliebige stetige Randwerte.

Es sei S ein einfach zusammenhängendes Flächenstück der Klasse B, dessen Randlinie auf einer anderen, die erste nicht berührenden Fläche der gleichen Klasse liegt (somit die Schnittlinie zweier Flächen dieser Art darstellt). Man kann durch ein alternierendes Verfahren diejenige stetige, außer auf S, überall (auch im Unendlichen) reguläre Potentialfunktion bestimmen, die auf dem doppelt

sche Resultat insofern über das Schwarzsche hinaus, als die Randkurven nunmehr einander berühren dürfen. Lebesgue bedient sich bei seinen Untersuchungen der Hilfsmittel der Variationsmethoden (Nr. 45 c). Diese spielen auch bei gewissen verwandten Betrachtungen von S. Zaremba (loc. cit. 543) b) und c)) eine Rolle. Man vergleiche auch die Bemerkungen von R. Courant, loc. cit. 556), p. 549—550. Über den Zusammenhang des alternierenden Verfahrens mit der Poincaréschen Méthode der balayage vergleiche Nr. 36.

²⁸⁴⁾ An der bezeichneten Stelle werden übrigens Gebiete der Klasse D betrachtet, die angewandte Methode ist von der im Text angegebenen verschieden. Man vergleiche hierüber die Ausführungen weiter unten.

²⁸⁵⁾ Das erste Randwertproblem für Gebiete der Klasse *M* (ohne Spitzen) in E läßt sich nach *S. Zaremba* durch *Neumann* sche Reihen (Nr. 17 c, insbesdie Fußnote 198) direkt auflösen. Das soeben auseinandergesetzte indirekte Verfahren leistet insofern mehr, als nunmehr auch einspringende Spitzen zugelassen werden können.

²⁸⁶⁾ A. Korn gewinnt so die Lösung des ersten Randwertproblems für räumliche Gebiete der Klasse B, indem er von Gebieten der gleichen Klasse, die in bezug auf einen Punkt konvex sind, ausgeht. Vgl. Nr. 17 c.

gezählten Flächenstücke S eine vorgeschriebene stetige Wertfolge annimmt. 287

Bereits um die Mitte der siebziger Jahre war H. A. Schwarz zu einer vollständigen Auflösung des ersten Randwertproblems für Gebiete der Klasse E in \mathfrak{E} oder \mathfrak{E}_m gelangt. Es seien $x = \mathfrak{P}_1(t)$, $y = \mathfrak{P}_{\mathbf{s}}(t)$ Gleichungen eines (doppelpunktlosen) analytischen und regulären Kurvenstückes Σ in & (vgl. Nr. 2). Durch Vermittelung der Funktion $z_1(t) = \mathfrak{P}_1(t) + i\mathfrak{P}_2(t)$ läßt sich ein in der komplexen z-Ebene gelegenes, S enthaltendes Gebiet auf ein Gebiet der t-Ebene konform abbilden, so daß Σ einem Stück der Achse des Reellen entspricht. 288) Man kann mithin gewiß ein Gebiet der Klasse D in Tangeben, dessen Rand einen zusammenhängenden Teil einer Seite der Begrenzung von T (mit Einschluß eines ihrer Endpunkte) mit S gemeinsam hat und auf ein Kreissegment, also auch auf eine Kreisfläche konform abgebildet werden kann. Liegen nach außen gerichtete Spitzen nicht vor, so läßt sich T von einer endlichen Anzahl Elementargebiete, für die das erste Randwertproblem gelöst werden kann, in geeigneter Weise dachziegelartig überdecken. Das alternierende Verfahren (Nr. 24a, erste Grundform) führt zu einer vollständigen Lösung der ersten Randwertaufgabe (vgl. Osgood, HB 1 Nr. 21). Für den Fall, daß nach außen gerichtete Spitzen vorkommen, liegen Veröffentlichungen von H. A. Schwarz nicht vor. (Vgl. übrigens Nr. 24c, insbesondere die Fußnote 289.) Sind die Krümmungsradien der beiden Nachbarseiten von S in dem Scheitel der Spitze voneinander verschieden, so läßt sich ein geeignetes Elementargebiet, von einer Kreisbogenspitze in der Ebene t ausgehend, bestimmen (vgl. Osgood, HB1 Nr. 21 Fig. 8).

c) Gebiete der Klasse E und M in $\mathfrak E$. Konforme Abbildung auf analytische Gebiete. Das zweite Randwertproblem. Es sei T ein einfach zusammenhängendes Gebiet der Klasse E oder M in $\mathfrak E$. Den Ausführungen der Nr. 24 b gemäß ist die Existenz der zu T gehörigen Greenschen Funktion $G(\xi, \eta; x, y)$ sichergestellt. Außer in den Ecken

Untersuchungen über durch analytische Funktionen vermittelte ("konforme") Beziehungen analytischer und regulärer Kurven sind neuerdings von *E. Kasner*, Fifth intern. Congr. of Math., Cambridge 1 (1913), p. 81-87; Trans. of the Amer. Math. Soc. 16 (1915), p. 333-349 und *G. A. Pfeiffer*, Amer. Journ. of Math. 37 (1915), p. 395-430 angestellt worden.

²⁸⁷⁾ Vgl. die Fußnote 326) (Nr. 24i).

²⁸⁸⁾ Vgl. H. A. Schwarz, Ges. Abh. 2, p. 149—151; É. Picard, Traité 2 p. 297—301. Siehe ferner Osgood, Il B 1 Nr. 20. Die konjugiert komplexen Werten von t entsprechenden Punkte der Ebene z_1 nennt Schwarz "symmetrisch". Die Symmetriebeziehung ist von der Wahl des Parameters t unabhängig.

und Spitzen ist auch jetzt noch $\frac{\partial}{\partial n}G(\xi,\eta;s)$ vorhanden, stetig und > 0. Durch Vermittelung der Funktion

(1) $Z = Z(z) = e^{-(U+iV)}$ ($U(x, y) = G(\xi, \eta; x, y)$, V zu U konjugiert) wird T+S auf den Bereich $K+C(|Z|\leq 1)$ konform abgebildet. Der Beweis läuft dem in der Nr. 20 angedeuteten völlig parallel. Wegen $\frac{\partial}{\partial n} G(\xi, \eta; s) > 0$ wird S, höchstens mit Ausnahme der Ecken und Spitzen, auf den Einheitskreis umkehrbar eindeutig und stetig bezogen. Für Gebiete der Klasse E hat H. A. Schwarz gezeigt, daß auch Ecken und Spitzen keine Ausnahme bilden. 289) Einen von diesem ganz verschiedenen Beweis gibt É. Picard. 290) Die folgende einfache Überlegung rührt von P. Koebe her und stellt eine Modifikation der Picard schen Schlußweise dar. 291) Das Gebiet T möge etwa in Peine einzige Ecke haben. Wegen $\frac{\partial}{\partial n}G(\xi, \eta; s) > 0$ entspricht S (nach Fortnahme von P) in der Ebene Z gewiß ein zusammenhängender (offener) Kreisbogen C*. Es sei C - C* ebenfalls ein Kreisbogen und es sei $\overline{T} + \overline{S}$ irgendein einfach zusammenhängender Bereich in K + C, dessen Rand C — C* (Endpunkte eingeschlossen) enthält. Konvergiert $\overline{T}+\overline{S}$ gegen $C=C^*$, so muß das \overline{T} in der Ebene z entsprechende Gebiet gegen P konvergieren. Die Funktion z(Z) hätte auf $C-C^*$ einen konstanten Wert, was ausgeschlossen ist. Es ist also C -- C* ein Punkt. Man findet zugleich, daß Z(z) auch in P stetig ist.

Dieser Beweis gilt für alle Gebiete der Klasse $E,\ M$ oder $Q^{292})$ in $\mathfrak{C}.$

²⁸⁹⁾ Den Beweis hat Schwarz in seinen Vorlesungen an der Berliner Universität wiederholt vorgetragen, jedoch nicht veröffentlicht.

²⁹⁰⁾ Vgl. É. Picard, Traité 2, p. 305–307, zuerst im Jahre 1888 in den Pariser Vorlesungen mitgeteilt. (Man vergleiche auch W. F. Osgood, Funktionentheorie, p. 673–676 sowie p. 681–687.) Eine andere Fassung gibt C. Carathéodory, Schwarz Festschrift, Berlin 1914, p. 19–41 [p. 37–38]. Carathéodory betrachtet Ecken, deren Seiten, außer höchstens im Eckpunkte selbst, analytisch und regulär sind, in diesem aber je eine stetige Tangente haben. Seine Betrachtungen gelten für Gebiete der Klasse Q. Mau vergleiche ferner P. Koebe, Journal f. Math. 145 (1915), p. 177–223 [p. 209–212]. C. Carathéodory beweist an gleicher Stelle den (von ihm erweiterten) Satz von P. Painlevé (C. R. 112 (1891), p. 653 bis 657), daß in einem Punkte, in dem die Randkurve eine oder zwei Tangenten hat (der eingeschlossene Winkel > 0 und $\leq 2\pi$), die Abbildung "quasikonform" ist (vgl. Nr. 48a, insbesondere die Fußnote 595). Dort findet sich auch ein Hinweis auf gewisse neue Ergebnisse von W. $Gro\beta$)

²⁹¹⁾ Vgl. P. Koebe, Gött. Nachr. 1907, p. 633-669 [p. 666-667].

²⁹²⁾ Das letztere, sobald die Existenz der Greenschen Funktion erbracht ist (Nr. 38).

Wie in der Nr. 22 ist hiermit zugleich gezeigt, daß jedes mehrfach zusammenhängende Gebiet der Klasse E, M oder Q^{292}) in $\mathfrak E$ auf ein Gebiet der Klasse C in $\mathfrak E$ konform abgebildet werden kann. Da die Greensche Funktion der konformen Abbildung gegenüber invariant ist, so gilt insbesondere der Reziprozitätssatz (3) Nr. 20 für alle Gebiete der Klasse E, M oder Q^{292}). Da auch der Ausdruck $\frac{\partial}{\partial n_t} G(\xi, \eta; t) dt$ invariant bleibt, so gilt die Fundamentalformel

(2)
$$u(\xi,\eta) = \frac{1}{2\pi} \int_{S} f(t) \frac{\partial}{\partial n_t} G(\xi,\eta;t) dt$$

für alle Gebiete der Klasse E, M oder Q^{292}) in \mathfrak{E} und beliebige abteilungsweise stetige $f(s)^{293}$).

Es sei T ein Gebiet der Klasse E, M oder $Q^{.292}$) Um das zweite Randwertproblem unter Zugrundelegung beliebiger abteilungsweise stetiger Werte der Normalableitung zu erledigen, erscheint es am einfachsten, T auf ein Gebiet der Klasse C in $\mathfrak E$ konform abzubilden. Für diesen ist sodann das zweite Randwertproblem aufzulösen. Die neuen Werte der Normalableitung sind unbedingt integrierbar und, außer höchstens in einer endlichen Anzahl isolierter Punkte $P_j(j=1,\ldots n)$, abteilungsweise stetig. Die Lösung (Nr. 17) erscheint in der Form des Potentials einer einfachen Belegung, deren Dichte unbedingt integrierbar und, außer in $P_j(j=1,\ldots n)$, abteilungsweise stetig ist. Ob die Lösung selbst in jenen Punkten stetig ist, kann erst eine weitere Untersuchung zeigen. Hei einem Gebiete der Klasse M^{295}) führt übrigens nach S. Zaremba die Robinsche Methode direkt zum Ziele (Nr. 17c). Die Lösung ist in T+S stetig.

Eine vollständige Behandlung des zweiten Randwertproblems in dreidimensionalen Gebieten mit Kanten und körperlichen Ecken, z.B. den Gebieten der Klasse D, liegt zur Zeit nicht vor. Eine Lösungsmöglichkeit dürften die Variationsmethoden sowie die Untersuchungen von S. Zaremba, R. Bär und T. Carleman 296) bieten.

d) Lösungen mit vorgeschriebenen Periodizitätsmoduln. Unter den weiteren Problemen, die durch alternierendes Verfahren gelöst werden

²⁹³⁾ Das Integral rechter Hand ist unbedingt konvergent. Man vergleiche die Fußnote 249).

²⁹⁴⁾ Bei Gebieten der Klasse D ist dies den Sätzen der Nr. 23 zufolge gewiß der Fall (vgl. L. Lichtenstein, loc. eit. 272), p. 110-112).

²⁹⁵⁾ Ohne (nach innen gerichtete) Spitzen.

²⁹⁶⁾ Vgl. R. Bär, loc. cit. 199), p. 18—19 und T. Carleman, loc. cit. 198), p. 31—38. Carleman betrachtet a. a. O. Gebiete (im Raume), deren Rand aus

können, sei zunächst die Bestimmung derjenigen in einem mehrfach zusammenhängenden Gebiete T der Klasse B (allgemeiner der Klasse E oder M) in $\mathfrak E$ regulären Potentialfunktion genannt, die auf S vorgeschriebene Werte 297) annimmt und vorgegebene Periodizitätsmoduln hat. 298) Im übrigen läßt sich dieses Problem durch Subtraktion eines geeigneten Ausdruckes von der Form $\sum_h A_h$ arctg $\frac{y-\beta_h}{x-\alpha_g}$ auf die

Bestimmung einer eindeutigen Potentialfunktion zurückführen. ²⁹⁹) Anders verhält es sich bei dem analogen Problem auf \mathfrak{E}_m oder im Raume; hier leistet das alternierende Verfahren wesentliche Dienste. ³⁰⁰)

e) Zweidimensionale Gebiete auf einer Fläche im Raume. Konforme Abbildung auf ebene Gebiete. Es sei $\mathfrak S$ ein einfach zusammenhängendes Gebiet auf einer Fläche der Klasse Ah:

(1)
$$x = x(\nu, \omega), \quad y = y(\nu, \omega), \quad z = z(\nu, \omega),$$

(2)
$$dl^2 = dx^2 + dy^2 + dz^2 = E dv^2 + 2F dv d\omega + G d\omega^2.$$

Man kann in unendlich manuigfaltiger Weise nebst ihren partiellen Ableitungen erster Ordnung stetige Funktionen

(3)
$$\xi = U(\nu, \omega), \quad \eta = V(\nu, \omega)$$

bestimmen, so daß \mathfrak{S} durch $\xi + i\eta$ auf ein Gebiet Θ der Ebene (ξ, η) konform abgebildet wird. Dies besagt, daß $dl^2 = \psi(\nu, \omega) [d\xi^2 + d\eta^2]$ gesetzt werden kann und im Innern und auf dem Rande von \mathfrak{S} die Funktion ψ stetig und > 0 ist. Die partiellen Ableitungen $D_1 \xi, D_1 \eta$

einer endlichen Anzahl Flächenstücke der Klasse B besteht, die einander nirgends berühren. Körperliche Ecken sind ausgeschlossen.

²⁹⁷⁾ Ist f(s) eine Randfunktion, so gilt f(s+l)=f(s)+c, unter l die Länge der jeweiligen Randkomponente, unter c eine Konstante verstanden; f(s) kann etwa stetig vorausgesetzt werden.

²⁹⁸⁾ H. A. Schwarz, Math. Ann. 21 (1883), p. 157—160; Ges. Abh. 2, p. 303 bis 306; É. Picard, Traité 2, p. 508—513.

²⁹⁹⁾ Vgl. J. Riemann, Thèse, Paris 1888; É. Picard, Traité 2, p. 513.

³⁰⁰⁾ Doppeltperiodische Greensche Funktion in & führt M. Mason, Trans. of the Amer. Math. Soc. 6 (1905), p. 159—164 ein. Dreifach periodische Potential unktionen im Raume sind von P. Appell, Acta Math. 4 (1884), p. 313—374 [p. 347—371] untersucht worden. Man vergleiche ferner P. Appell, Acta Math. 8 (1886), p. 265—294; Rend. del Circ. Mat. di Palermo 22 (1906), p. 361—370. Doppeltperiodische Potentialfunktionen im Raume betrachtet Isabella Crespi, Giorn. di Matem. 145 (1907), p. 129—152.

sind in diesem Bereiche stetig und genügen einer Hölderschen Bedingung. Auch $\psi(\nu, \omega)$ genügt einer H-Bedingung. 301)

Es sei jetzt S ein über einer Fläche der Klasse D ausgebreitetes einfach zusammenhängendes Gebiet, das eine und nur eine Kante 802) enthält. Die an die Kante anschließenden Seitenflächen heißen S, und S, Es seien $\xi_1 = \xi_1 + i\eta_1$ und $\xi_2 = \xi_2 + i\eta_2$ Funktionen, durch deren Vermittelung zwei sich längs eines Bogens Σ der Kante schneidende Stücke der (über Σ fortgesetzt gedachten) Seitenflächen \mathfrak{S}_1 und \mathfrak{S}_2 derart auf ebene Gebiete abgebildet werden, daß Z allemal ein Stück der Geraden $\eta = 0$ entspricht. Aus der von C. F. Gauß entwickelten Theorie 303) folgt, daß 52 auf einem zusammenhängenden Stück der Geraden $\eta = 0$ und einer Umgebung dieses als eine analytische und reguläre Funktion von ζ_1 aufgefaßt werden kann: $\zeta_2 = \Phi(\zeta_1)$. Durch Vermittelung der Funktionen ξ_2 auf \mathfrak{S}_2 , $\Phi(\xi_1)$ auf \mathfrak{S}_1 wird ein auf beiden Seiten von Z ausgebreiteter Bereich in S auf einen ebenen Bereich konform abgebildet.304)

$$(4) \quad \frac{\partial \eta}{\partial \nu} = \left[F \frac{\partial \xi}{\partial \nu} - E \frac{\partial \xi}{\partial \omega} \right] \frac{1}{\Pi}, \quad \frac{\partial \eta}{\partial \omega} = \left[G \frac{\partial \xi}{\partial \nu} - F \frac{\partial \xi}{\partial \omega} \right] \frac{1}{\Pi}, \quad \Pi = V E F - G^{2}.$$

Liegt insbesondere eine Fläche der Klasse B vor, so genügen ξ und η der sich selbst adjungierten partiellen Differentialgleichung zweiter Ordnung vom elliptischen Typus

$$(5) \ \Delta_{\mathbf{z}} \, \xi = \frac{\partial}{\partial \, \nu} \, \Big\{ \Big[\, G \frac{\partial \, \xi}{\partial \, \nu} - F \frac{\partial \, \xi}{\partial \, \omega} \, \Big] \frac{\mathbf{1}}{H} \Big\} + \frac{\partial}{\partial \, \omega} \Big\{ \Big[- \, F \frac{\partial \, \xi}{\partial \, \nu} + E \frac{\partial \, \xi}{\partial \, \omega} \, \Big] \frac{\mathbf{1}}{H} \Big\} = 0 \,, \quad \Delta_{\mathbf{z}} \, \eta = 0 \,.$$

Für Flächenstücke der Klasse C ist die Möglichkeit der konformen Abbildung auf schlichte Gebiete bereits von C. F. Gauß bewiesen worden (Werke 4, p. 193 bis 216). In dem besonderen Falle, daß die Funktionen (1) stetige partielle Ableitungen der drei ersten Ordnungen haben und die Ableitungen dritter Ordnung der Hölder schen oder, allgemeiner, einer verwandten Dinischen Bedingung genügen, folgt diese Möglichkeit aus den Untersuchungen von E. E. Levi (Rend. del. Circolo Mat. di Palermo 24 (1907), p. 275-317) und D. Hilbert, Gött. Nachr. 1910, p. 1-65 [p. 8-34]; Grundzüge, p. 219-242. Für Flächenstücke der Klasse B' ist der Beweis von L. Lichtenstein gegeben worden (Berl. Abh. 1911, Anhang). Einen anderen Beweis hat A. Korn für Flächenstücke der Klasse Bh geliefert (Schwarz Festschrift 1914, p. 215-229). In dem Umfange des Textes ist der betrachtete Satz neuerdings von L. Lichtenstein bewiesen worden (Bulletin de l'Acad. de Sc. de Cracovie 1916, p. 192-217).

³⁰¹⁾ Die Funktionen gund η genügen den simultanen partiellen Differentialgleichungen vom elliptischen Typus

³⁰²⁾ Daher gewiß keine räumliche Ecke.

³⁰³⁾ Vgl. loc. cit. 301).

³⁰⁴⁾ Die Abbildung ist auch längs der Kante konform. Der im Text angedeutete Beweis geht auf H. A. Schwarz zurück, dem die Möglichkeit der fraglichen konformen Abbildung schon im Jahre 1870 bekannt war. Vgl. H. A. Schwarz, Berl. Monatsberichte 1870, p. 767-795; Ges. Abh. 2, p. 144-171

In ähnlicher Weise wird man vorgehen, wenn mehrere Kanten vorliegen. Enthält \mathfrak{S} eine räumliche Ecke, so bietet eine konforme Abbildung auf ein schlichtes Gebiet in \mathfrak{E} Schwierigkeiten, die erst durch P. Koebe überwunden worden sind. Die eindeutig umkehrbare Beziehung von \mathfrak{S} und \mathfrak{O} ist jetzt überall stetig und, außer in dem Eckpunkt selbst, konform. Mit dem besonderem Falle, wenn die in der Ecke zusammenstoßenden Flächen ebene oder sphärische Flächen sind, hat sich bereits H. A. Schwarz beschäftigt. Tür körperliche Ecken, deren Seitenflächen der Klasse C angehören, ist die Möglichkeit der erwähnten konformen Abbildung zuerst von P. Koebe bewiesen worden (Nr. 41). 306)

Jede Fläche S der Klasse D (und voraussichtlich auch Lh) läßt sich mithin von einer endlichen Anzahl Gebiete, deren jedes auf eine Kreisfläche konform abgebildet werden kann, dachziegelartig überdecken. Es sei \mathfrak{S}^* ein über S ausgebreitetes einfach zusammenhängendes Gebiet, dessen Begrenzung mit den Kanten endlich viele Punkte oder Bögen gemeinsam hat und aus einer endlichen Anzahl Stücke von Kurven mit stetiger Tangente besteht, die Ecken, jedoch keine Spitzen miteinander einschließen. \mathfrak{S}^{307} Durch alternierendes Verfahren läßt sich \mathfrak{S}^* auf die Fläche eines Einheitskreises in einer schlichten Ebene konform abbilden. Hiermit ist auch die erste und die zweite Randwertaufgabe der Differentialgleichung $\Delta_2 u = 0$ 308) für das Gebiet \mathfrak{S}^* erledigt.

[[]p. 161-162]. Einen anderen Beweis gibt R. $K\ddot{o}nig$, Math. Ann. 71 (1911), p. 184 bis 205 [185-189] an. Der betrachtete Satz gilt voraussichtlich auch bei Gebieten, die über Flächen der Klasse Lh ausgebreitet sind. Der Beweis wäre indessen anders zu führen.

³⁰⁵⁾ Vgl. die Andeutungen von *H. A. Schwarz*, a) Journ. f. Math. 70 (1869), p. 105—120; Ges. Abh. 2, p. 65—83 [p. 80—83]; b) Berl. Monatsber. 1870, p. 767 bis 795; Ges. Abh. 2, p. 144—171 [p. 167].

³⁰⁶⁾ P. Koebe, Gött. Nachr. 1908, p. 359—360 sowie loc. cit. 582) d) p. 95—103 [s. die Ausführungen der Nr. 47 p. 360—361]. Vgl. ferner R. König, Gött. Nachr. 1910, p. 130—132 sowie loc. cit. 304). Diese Beweise gelten wahrscheinlich unverändert, auch wenn die Seitenflächen der Klasse Ah angehören, sowie erst die am Schluß der Fußnote 304) behauptete Möglichkeit feststeht.

³⁰⁷⁾ Die Berandung Σ^* von \mathfrak{S}^* wird durch eine (endliche) Anzahl Gleichungen von der Form $\nu = \nu(\omega)$ oder $\omega = \omega(\nu)$ bestimmt. Es wird vorausgesetzt, daß die Funktionen $\nu(\omega)$ und $\omega(\nu)$ stetige, der Hölder schen Bedingung genügende Ableitung haben, und überdies Σ^* keinen körperlichen Eckpunkt von S enthält.

³⁰⁸⁾ Vgl. H. A. Schwarz, Ges. Abh. 2, p. 144—174 [p. 161—162]. Schwarz betrachtet ein über einer Fläche der Klasse D ausgebreitetes Gebiet, dessen Rand aus einer endlichen Anzahl Stücke analytischer und regulärer Kurven besteht. Die Möglichkeit der konformen Abbildung einer körperlichen Ecke wird postuliert. In dem allgemeineren Falle einer Fläche der Klasse Lh erscheint es bei der

Es sei s_0 ein Punkt auf einer Seitenfläche von S und $\xi = \xi + i\eta$ eine Funktion, durch deren Vermittelung ein s_0 enthaltendes Gebiet auf S auf ein schlichtes Gebiet in $\mathfrak E$ konform abgebildet wird. Wir setzen $\xi(s_0) = \xi_0$.

Ist die Fläche S schlichtartig, so kann man sie auf eine Kugel derart konform abbilden, daß drei vorgeschriebenen Punkten auf S ebenso viele vorgegebene Punkte der Kugel entsprechen. ³⁰⁹)

Der Beweis ist erbracht, sobald die Existenz einer auf S, außer in s_0 , regulären Lösung U der Differentialgleichung $\Delta_2 u = 0$, die sich in der Umgebung von s_0 wie $\Re\left[\frac{1}{\xi-\xi_0}+(\xi-\xi_0)\,\Re(\xi-\xi_0)\right]$ verhält, feststeht. Der Existenzbeweis läßt sich nach der Methode der gürtelförmigen Verschmelzung, in einer von der Nr. 24 a auseinandergesetzten abweichenden Gestalt, durchführen. Das Potential U ist als "Strömungspotential" zuerst von F. Klein systematisch betrachtet worden. Der Stromungspotential" zuerst von F. Klein systematisch betrachtet worden.

Ist V die zu U konjugierte Lösung der Gleichung $\Delta_2 u = 0$, so wird S durch Vermittelung der Funktion U+iV auf die schlichte Ebene, mit Einschluß des unendlich fernen Punktes, konform abgebildet. Von hier aus gelangt man durch stereographische Projektion auf die Einheitskugel. Allgemeiner läßt sich in derselben Weise die Existenz einer auf S, außer in $s_j(j=1,\ldots m)$, regulären Lösung der Differentialgleichung $\Delta_2 u = 0$ dartun, die in der Umgebung von s_j sich

Formulierung der Randwertaufgabe notwendig, die Gleichung $\Delta_2 u = 0$ durch die simultanen Differentialgleichungen (4) zu ersetzen, dies weil die Existenz der Ableitungen $D_2 \xi$, $D_2 \eta$ nicht feststeht. Längs der Kanten werden, auch wenn S der Klasse D angehört, $D_2 u$ im allgemeinen sich sprungweise ändern. In den körperlichen Ecken wird u schlechthin stetig vorausgesetzt.

³⁰⁹⁾ Vgl. die Fußnote 308). Ein anderes Verfahren zur konformen Abbildung geschlossener, schlichtartiger Gebiete, insbesondere geschlossener, schlichtartiger Riemannscher Flächen aut eine Kugel findet sich bei P. Koebe, loc. cit. 582) d) p. 77—83. Man vergleiche die Ausführungen der Nr. 47 p. 360 und 363.

³¹⁰⁾ Vgl. H. A. Schwarz, loc. eit. 276), insb. Ges. Abh. 2, p. 167—171. Man vergleiche ferner H. A. Schwarz, Math. Ann. 21 (1883), p. 157—160; Ges. Abh. 2, p. 303—306, wo die Existenz Abelscher Integrale erster Art auf einer geschlossenen Riemannschen Fläche bewiesen wird, und C. Neumann, Abelsche Integrale, p. 432—471 [p. 466—471] (die Schwarzsche Methode findet sich unter anderem bei É. Picard, Traité 2, p. 508—522 und 538—546 im Zusammenhang dargestellt). Man vergleiche ferner W. F. Osgood, HB1 Nr. 22. Die Methode der gürtelförmigen Verschmelzung lüßt sich auch durch ein von L. Lichtenstein angegebenes verallgemeinerungsfähiges Verfahren ersetzen (vgl. Nr. 24j).

³¹¹⁾ Vgl. F. Klein, Algebraische Funktionen, passim; Riemannsche Flächen 1, p. 4—16.

wie
$$\Re\left[\sum_{k}^{1...k_{j}} \frac{A_{jk} + B_{jk}i}{(\xi - \xi_{j})^{k}} + (A_{j} + B_{j}i)\log\left(\xi - \xi_{j}\right)\right]$$
 verhält, sofern nur
$$\sum_{i} (A_{j} + B_{j}i) = 0 \text{ ist.}$$

f) Gebiete in \mathfrak{E}_m . Existenzsäitze der Riemannschen Theorie. Sei T ein einfach zusammenhängendes Gebiet der Klasse B in \mathfrak{E}_m oder \mathfrak{E}_m^* (p. 188). Wiederholte Anwendung des alternierenden Verfahrens liefert die Lösung des ersten Randwertproblems. Man gewinnt so ferner die Greensche Funktion $G(\xi,\eta;x,y)$ des Gebietes T und die konforme Abbildung dieses auf ein Kreisgebiet. Jedes beliebige mehrfach zusammenhängende schlichtartige Gebiet in \mathfrak{E}_m läßt sich durch Hinzufügung einer Anzahl weiterer Gebiete zu einem einfach zusammenhängenden ergänzen, folglich auf ein schlichtes Gebiet konform abbilden. Die Sätze der Nr. 20 lassen sich in naheliegender Weise auf schlichtartige Gebiete in \mathfrak{E}_m übertragen.

Es sei \Re eine über der z-Ebene ausgebreitete geschlossene Riemannsche Fläche. Durch eine weitere Ausgestaltung der Nr. 24a) bis e) besprochenen Methoden gelangt man zu einer der wichtigsten Anwendungen der kombinatorischen Methoden, nämlich zu einem Beweise der auf \Re bezüglichen Riemannschen Existenzsätze und damit zu einer Begründung der Riemannschen Theorie der algebraischen Funktionen (vgl. W. F. Osgood, II B 1 Nr. 22, W. Wirtinger, II B 2 Nr. 12). Statt einer geschlossenen Riemannschen Fläche kann man der Betrachtung eine beliebige geschlossene Fläche S der Klasse D (und voraussichtlich auch Lh) zugrunde legen (W. F. Osgood, II B 1 Nr. 22). 314)

Es sei $s_j(j=1,\ldots m)$ wie vorhin eine Anzahl von Punkten auf S. Es sei $W_0=U_0+iV_0$ irgendeine auf S erklärte, bis auf jene Punkte,

wo sie sich wie $\sum_{k}^{1...k_{j}} \frac{A_{jk} + B_{jk}i}{(\xi - \xi_{j})^{k}}$ verhält, reguläre eindeutige Funktion.

Durch Vermittelung von W_0 wird S auf eine über der $U_0 + iV_0$

³¹²⁾ Enthält T Windungspunkte, so wird man sich bei der "dachziegelartigen" Überdeckung auch mehrblättriger, etwa von einem mehrfach umfahrenen Kreise begrenzter Teilgebiete, bedienen. Etwa vorhandene Faltungslinien werden als Kanten aufgefaßt.

³¹³⁾ Vgl. z. B. P. Koche, Jahresb. d. Deutschen Math. Ver. 15 (1906), p. 142—153 [p. 150—153]. Dort finden sich p. 152 entsprechende Sätze über nichtschlichtartige Gebiete.

³¹⁴⁾ Vgl. F. Klein, Algebraische Funktionen, ferner F. Klein, Riemannsche Flächen; É. Picard, Traité 2, p. 508—546; R. Fricke und F. Klein, Automorphe Funktionen 1.

Ebene ausgebreitete geschlossene Riemannsche Fläche \Re umkehrbar eindeutig und stetig und, bis auf die körperlichen Ecken und Windungspunkte, konform abgebildet. Randwertprobleme der Theorie der Differentialgleichung $\Delta_2 u = 0$ auf S werden hierdurch auf analoge Aufgaben der Gleichung $\Delta u = 0$ auf \Re zurückgeführt.

Ist W_1 eine andere Funktion auf S vom gleichen Charakter, so ist $f(W_0,W_1)=0$, unter f eine ganze rationale Funktion mit konstanten Koeffizienten verstanden. Jeder geschlossenen Fläche der hier betrachteten Art entspricht eine Klasse algebraischer Funktionen. Näheres über die sich daran anschließenden Betrachtungen findet sich in der unter 314) an erster Stelle zitierten Schrift von F. Klein.

Existenzbeweis Abelscher Integrale auf geschlossenen Riemannschen Flächen und damit eine Begründung der Theorie algebraischer Funktionen durch Variationsbetrachtungen vergleiche Nr. 45, funktionentheoretische Begründung Nr. 47.

- g) Weitere Anwendungen des alternierenden Verfahrens. Durch geeignete Ausgestaltung des dem alternierenden Verfahren zugrunde liegenden methodischen Gedankens läßt sich ein Existenzbeweis verschiedener Klassen im Sinne von B. Riemann durch ihre Grenz- und Unstetigkeitsbedingungen erklärter Potential- und analytischer Funktionen erbringen. Hervorzuheben sind namentlich ein Existenzbeweis der zu einem vorgegebenen Fundamentalbereich gehörigen automorphen Potentialfunktionen 315) und ein Beweis der Fundamentalsätze der Theorie der Prymschen Funktionen. Anwendungen in der neueren Theorie der konformen Abbildung vergleiche Nr. 40.
 - h) Strömungspotential. Abbildung auf ein Schlitzgebiet. Es sei T
- 315) Vgl. R. Fricke, II B 4 Nr. 14; R. Fricke und F. Klein, Automorphe Funktionen 2, p. 8-14 und E. Phragmén, Acta Math. 14 (1890,91), p. 225-232 (p. 228-229). Siehe ferner F. Klein, Math. Ann. 24 (1883), p. 141-218 passim; E. Ritter, Gött. Nachr. 1892, p. 283 u. ff.; Math. Ann. 41 (1892), p. 1-82; 45 (1894), p. 473-544; 46 (1895), p. 200-248; L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Bd. II 1, p. 323-335. (Doppeltperiodische Potentiale s. bei É. Picard, Traité 2, p. 537-538).

Ein anderer Beweis der Existenz automorpher Potentialfunktionen mit beliebiger Grenzkreisgruppe findet sich bei S. Johansson. Acta soc. sc. Fenn. 41 Nr. 2 (1912), p. 1-39.

316) Vgl. F. Prym und G. Rost, Prymsche Funktionen, p. 92—152. Prym und Rost bedienen sich des in geeigneter Weise ausgestalteten alternierenden Verfahrens zur Bestimmung von analytischen Funktionen durch gewisse Randbedingungen, in die der reelle und der imaginäre Teil der zu bestimmenden Funktion gleich eitig eingehen. Vgl. Frym und Rost a. a. O. p. 103 ff. Eine andere sich der Variationsmeloden bedienende Behandlungsweise gibt O. Haupt, Math. Ann. 77 (1915), p. 24—64 [p. 44—48 sowie p. 59—60] (vgl. Nr. 45 d).

ein Gebiet der Klasse B in $\mathfrak E$. Das mit T kongruente, auf der anderen Seite der Ebene gelegene Gebiet heiße T_* . Denkt man sich T und T_* längs des Randes S zusammenhängend, so kann man $T+T_*+S$ als ein geschlossenes Gebiet in $\mathfrak E^*$ (p. 188) auffassen. Es seien $\xi=\xi+i\eta$, z=x+iy irgendwelche Punkte in T,

$$\xi_* = \xi_* + i \eta_*, \quad z_* = x_* + i y_*$$

die mit ihnen zusammenfallenden Punkte in T_* . Wie vorhin kann man durch alternierendes Verfahren eine, außer in ξ und ξ_* , in $T+T_*+S$ reguläre Potentialfunktion bestimmen, die sich in ξ und ξ_* entsprechend wie $\Re \frac{1}{z-\xi}$ und $\Re \frac{1}{z_*-\xi_*}$ verhält. Es gilt $u(x,y)=u(x_*,y_*)$, daher auf $S \cdots \frac{\partial u(s)}{\partial n}=0$. S17)

Allgemeiner könnte man annehmen, daß T in \mathfrak{E}_m liegt und der Klasse D angehört.

Wir wollen an der zuletzt erwähnten Annahme festhalten und überdies voraussetzen, daß T schlichtartig ist. Wegen $\frac{\partial u(s)}{\partial n} = 0$ ist die zu u konjugierte Potentialfunktion v eindeutig. Durch Vermittelung der Funktion Z = u + iv wird T auf ein von geradlinigen Strecken (Schlitzen) parallel zur Achse des Reellen begrenztes Gebiet in \mathfrak{E} , das den unendlich fernen Punkt enthält, abgebildet. \mathfrak{I}

i) Gemischte Randbedingungen. Es sei T ein schlichtartiges zweifach zusammenhängendes Gebiet der Klasse B^{319}) in \mathfrak{S}_m . Eine weitere Anwen-

319) Allgemeiner der Klasse D (oder M ohne Spitzen).

³¹⁷⁾ Vgl. P. Koebe, Math. Ann. 69 (1910), p. 1-81 [p. 43-46] (vgl. Nr. 24i). Die Auffassung des Gebietes $T+T_*+S$ als einer geschlossenen Fläche geht auf H. A. Schwarz zurück. (Vgl. die Fußnote 25 b.)

³¹⁸⁾ Das Bildgebiet muß überall gleichvielblättrig sein. Da der unendlich ferne Punkt jedenfalls einfach bedeckt ist, so ist das Bildgebiet schlicht. Vgl. P. Koebe, loc. cit. 478), p. 348. Der betrachtete Abbildungssatz (für Gebiete der Klasse C in E) findet sich bereits erwähnt bei F. Schottky, Journ. f. Math. 83 (1877), p. 300-351 (p. 330). Man vergleiche weiter F. Schottky, Journ. f. Math. 117 (1897), p. 225-253 [p. 244-250], wo T auf ein von einer Anzahl konzentrischer Kreisbögen begrenztes Gebiet in & abgebildet wird. Läßt man den Mittelpunkt durch eine lineare Transformation ins Unendliche rücken, so gelangt man zu der im Text betrachteten Abbildung. Man vergleiche ferner F. Cecioni, Rend. del Circolo Mat. di Palermo 25 (1908), p. 1-19 und die Darstellung bei W. F. Osgood, Annals of Math. (24) 2 (1913), p. 143-162 [p. 145—148]. Vom Standpunkte der Variationsmethoden behandeln die Aufgabe D. Hilbert, Gött. Nachr. 1909, p. 314-323 und R. Courant, Inaugural-Dissertation, Göttingen 1910, p. 1-44, abgedruckt in den Math. Ann. 71 (1912), p. 145 bis 183 (Nr. 45d). Eine funktionentheoretische Behandlung dieser und einer Reihe verwandter Abbildungsaufgaben (unter Ausschaltung des Integralbegriffs) gibt Koebe in einer vor kurzem erschienenen Arbeit. Vgl. loc. cit. 582) e).

dung des alternierenden Verfahrens bietet die Bestimmung derjenigen beschränkten, in T regulären Potentialfunktion u(x,y), die den Bedingungen: $u(s)=f_1(s)$ auf S_1 , $\frac{\partial u(s)}{\partial n}=f_2(s)$ auf S_2 genügt, unter S_1 und S_3 die beiden Komponenten von S, unter f_1 und f_3 abteilungsweise stetige Funktionen verstanden. Es sei v(x,y) irgendeine in T+S stetige, in T reguläre, der Bedingung $\frac{\partial v(s)}{\partial n}=f_2(s)$ auf S_3 genügende Potentialfunktion. Die Differenz u-r=u bestimmt sich durch alternierendes Verfahren als diejenige beschränkte in $T+T_3+S_3$ reguläre Potentialfunktion, die auf der doppelt zu zählenden Randkurve S_1 den Wert $f_1(s)-v(s)$ annimmt.

Es sei T ein einfach zusammenhängendes Gebiet der Klasse D in \mathfrak{S}_m . Die Randkurve S denken wir uns in endlich viele Bögen (S') der ersten und (S'') der zweiten Kategorie zerlegt. Gesucht wird eine beschränkte, in T reguläre Potentialfunktion u(x,y), so daß auf S' (etwaige Sprungstellen von f(s) ausgenommen) u(s) = f(s), auf S'' (die Endpunkte sowie etwaige Ecken ausgenommen) $\frac{\partial u(s)}{\partial n} = 0$ ist. Unter f(s) wird eine abteilungsweise stetige Funktion verstanden. Durch Hinzunahme des (mit T längs S'' zusammenhängenden) Gebietes T_* wird die Aufgabe auf die Auflösung des ersten Randwertproblems in $T+T_*+S''$ zurückgeführt. Sie hat nur eine Lösung. S^{21}

³²⁰⁾ T und T_* sind jetzt nur längs S_* zusammenhängend zu denken.

³²¹⁾ Vgl. P. Koebe, Journ. f. Math. 138 (1910), p. 192—253 [p. 211—216]. Es sei T ein beschränktes Gebiet der Klasse D in $\mathfrak E.$ Ist auf S'' (Endpunkte sowie etwaige Ecken ausgenommen) $\frac{\partial u(s)}{\partial n} = \varphi(s)$ vorgeschrieben ($\varphi(s)$ abteilungs-

weise stetig, so wird zuvörderst u=U-w gesetzt: $\Delta w=0$, $\frac{\partial w(s)}{\partial n}=\varphi(s)$ auf S" (vgl. P. Koebe a. a. O). Die zuletzt eingeführten Randbedingungen kann man auch so fassen: Auf S' (etwaige Sprungstellen von f(s) ausgenommen) ist u(s) = f(s), auf jedem Bogen von S'' ist $v(s) = \overline{f(s)} + \text{const.}$, unter v(s) die zu u(s) konjugierte Potentialfunktion, unter f(s) eine vorgegebene stetige Funktion, die eine abteilungsweise stetige Ableitung hat, verstanden. Vgl. hierzu V. Volterra, Ann. di Mat. (2) 11 (1883), p. 1-55 sowie die kritischen Bemerkungen von H. A. Schwarz, Fortsehr. d. Math. 15, p. 358-364. Eine andere Behandlung des zuletzt erwähnten Problems für einfach zusammenhängende Gebiete der Klasse C in & findet sich im Anschluß an D. Hilbert (Verh. des 3. intern. Kongr. d Math. in Heidelberg 1904, p. 233-240; Gött. Nachr. 1905, p. 1-32 [p. 1-3]; Grundzüge, p. 81 — 83) bei Ch. Haseman, Inaugural-Dissertation, Göttingen 1907; Math. Ann. 66 (1909), p. 258-272. Mit dem besonderen Falle eines Kreisgebietes beschäftigt sich C. Neumann, Leipz. Ber. 61 (1909), p. 156-170, eines Rechteck- und eines Kreisgebietes H. Villat, C. R. 153 (1911), p. 758-761; Acta Math. 40 (1915), p. 101-178 [p. 149-176]. Weitere Literatur: A. Signorini, Annali di Matematica (3) 25 (1916), p. 263-279.

Es sei insbesondere T ein beschränktes Gebiet der Klasse D in \mathfrak{E} . Auf ähnliche Weise wird die Existenz einer, außer in einem Punkte (ξ, η) in T, in T + S stetigen, in T regulären Potentialfunktion $G^*(\xi, \eta; x, y)$ bewiesen, die sich in (ξ, η) wie $\log \frac{1}{\varrho}$ verhält und den Bedingungen $G^*(\xi, \eta; s) = 0$ auf S', $\frac{\hat{e}}{\hat{e}n_s}G^*(\xi, \eta; s) = 0$ auf S'' genügt. Für die Lösung u(x, y) der in der Fußnote 321) genannten Aufgabe gewinnt man den Ausdruck

$$u(\xi,\eta) = \frac{1}{2\pi} \int\limits_{\mathcal{S}} f(t) \frac{\partial}{\partial n_t} G^*(\xi,\eta;t) dt - \frac{1}{2\pi} \int\limits_{\mathcal{S}''} \varphi(t) G^*(\xi,\eta;t) dt.^{322})$$

Die im vorstehenden besprochene Methode ist im Raume nicht anwendbar. Gehört zu einer Randkomponente, die alle der Klasse B angehören mögen, allemal eine Randbedingung einer Art, so gewinnt man die Lösung ohne Mühe z. B. durch das Nr. 24 j skizzierte Verfahren von L. Lichtenstein. Schwieriger ist der Fall, wenn auf einzelnen Randflächen Bedingungen beiderlei Art vorkommen. Unter gewissen einschränkenden Voraussetzungen über f(s) ist die Existenz der Lösung von S. Zaremba dargetan worden. Zaremba bestimmt zunächst eine einfache Belegung auf Zaremba deren Dichte auf Zaremba deren vorgegebenen Wert hat, und deren Potential auf Zaremba verschwindet. Diese Aufgabe ist der anderen äquivalent, eine durchweg stetige, außer auf dem doppelt zu zählenden Flächenstück Zaremba im Unendlichen) reguläre Potentialfunktion zu bestimmen, die auf Zaremba

$$\frac{\partial G^*}{\partial x} = \frac{1}{\left(r_{s,s}(r)\right)^{1-\frac{1}{2-\epsilon}}} \cdot \text{eine stetige Funktion}.$$

³²²⁾ Außer in den Endpunkten $s^{(i)}$ von S' und S'' sind $\frac{\partial G^*}{\partial x}$, $\frac{\partial G^*}{\partial y}$ auf S stetig. In der Umgebung von $s^{(r)}$ ist, sofern $s^{(i)}$ nicht zugleich eine Ecke oder eine Spitze ist, z. B. $\frac{\partial G^*}{\partial x} = \frac{1}{\sqrt{r_{ss}(r)}} >$ eine stetige Funktion.

lst $s^{(r)}$ ein Eckpunkt (der eingeschlossene Winkel $= \alpha \pi$), so gilt z. B.

Vgl. L. Lichtenstein, Journ. f. Math. 143 (1913), p. 51-105 [p. 93-105], we allgemeinere lineare partielle Differentialgleichungen zweiter Ordnung betrachtet werden.

³²³⁾ S. Zaremba gibt, Bull. de l'Ac. d. Sc. de Cracovie 1910, p. 313-344 [p. 341-344], ein auderes der Neumann-Robinschen Methode verwandtes Verfahren au.

³²⁴⁾ Vgl. die Bemerkungen von J. Hadamard, Leçons, p. 55-57.

³²⁵⁾ Vgl. S. Zaremba, loc. cit. 323).

eine vorgegebene stetige Wertfolge annimmt. 326) Nachdem die zu der zuletzt erwähnten Randwertaufgabe gehörige Greensche Funktion gebildet worden ist, wird das Problem auf die Auflösung einer Fredholmschen Integralgleichung zurückgeführt. 327)

j) Weitere kombinatorische Methoden. Die Nr. 24a besprochene Methode der gürtelförmigen Verschmelzung läßt sich durch das folgende von L. Lichtenstein angegebene verallgemeinerungsfähige Verfahren ersetzen: Es sei f(s) der vorgegebene Randwert der Lösung. Wir setzen X(s) = u(x, y) auf S' und Y(s) = u(x, y) auf S''. Die Formel (9) Nr. 20, angewandt auf T' und T^* , liefert in leicht ersichtlicher Bezeichnungsweise die Gleichungen

$$X(s) = \frac{1}{2\pi} \int_{\mathcal{S}} f(t) \frac{\partial}{\partial n_t} G^*(s, t) dt + \frac{1}{2\pi} \int_{\mathcal{S}} Y(t) \frac{\partial}{\partial n_t} G^*(s, t) dt,$$

$$(1)$$

$$Y(s) = \frac{1}{2\pi} \int_{\mathcal{S}} X(t) \frac{\partial}{\partial n_t} G'(s, t) dt.$$

Die Beziehungen (1) bilden ein System simultaner Integralgleichungen mit stetigen Kernen zur Bestimmung von X(s) und Y(s). Das Problem ist damit im wesentlichen gelöst. Die Methode läßt sich (zum Teil modifiziert) auf verschiedene andere Randwertprobleme, wie z. B. gewisse Aufgaben mit gemischten Randbedingungen (Nr. 24i), anwenden und auf die allgemeinsten linearen partiellen Differentialgleichungen zweiter Ordnung vom elliptischen Typus ausdehnen. In ähnlicher Weise läßt sich ferner der Existenzbeweis des Strömungspotentials auf einer geschlossenen Fläche (Nr. 24h), der automorphen Potentiale des Schottkyschen Typus usw. gewinnen. 328)

³²⁶⁾ Zaremba findet sie durch ein besonders geartetes alternierendes Verfahren.

³²⁷⁾ Eine ganz andere auf dem Gebrauch geeigneter Reihenentwicklungen beruhende Behandlung der Randwertaufgabe mit gemischten Randbedingungen ist von M. Brillouin skizziert worden (C. R. 150 (1910), p. 460-464 sowie p. 611-614). Die Methode von Brillouin dürfte sich auf verschiedene weitere Randwertprobleme der mathematischen Physik ausdehnen lassen. In einer C.R. 161 (1915), p. 437-440 erschienenen Note teilt Brillouin ein auf demselben Prinzip beruhendes Verfahren zur Lösung des ersten und des zweiten Randwertproblems für das vorhin betrachtete, von dem doppelt zu zählenden Flächenstück S^{\prime} begrenzte Gebiet mit.

³²⁸⁾ Vgl. L. Lichtenstein, Prace Mat. Fiz., Warschau, 21 (1910), p. 7-16; Bull. de l'Ac. de Sc. de Cracovie 1911, p. 219-254; Journ. f. Math. 143 (1913), p. 51-105.

Ein Verfahren, das sich funktionentheoretisch begründen läßt und geeignet ist, das alternierende Verfahren bei manchen Problemen der konformen Abbildung zu ersetzen, das insbesondere gestattet, einfach zusammenhängende Gebiete in \mathfrak{E}_m auf Gebiete in \mathfrak{E} abzubilden, ist neuerdings von C. Carathéodory angegeben worden (Nr. 47 p. 358—359). Als wesentliches Hilfsmittel erscheint dabei das Schwarzsche Spiegelungsprinzip.

Dasselbe leistet ein auf einer ganz anderen Grundlage beruhendes um dieselbe Zeit bekanntgegebenes Verfahren von Koebe, das, worauf Koebe besonderen Wert legt, sich potenzreihentheoretisch begründen läßt. 330)

25. Kreispolygonflächen. Polyeder. 331) Es sei T ein einfach zusammenhängendes, von einem Kreispolygon begrenztes Gebiet in \mathfrak{E}_m . Zur Bestimmung einer Funktion z=z(Z'), durch deren Vermittelung T auf die Halbebene $\mathfrak{F}(Z')>0$ konform abgebildet wird, gibt H. A. Schwarz eine Differentialgleichung dritter Ordnung

(1)
$$\{z, Z'\} = \frac{d^z}{dZ'} \log \frac{dz}{dZ'} - \frac{1}{2} \left(\frac{d}{dZ'} \log \frac{dz}{dZ'}\right)^z = F(Z')$$

an, unter F(Z') eine bis auf eine Anzahl zu bestimmender Konstanten bekannte rationale Funktion verstanden.³³²) ³³³)

Die Schwarz sche Derivierte $\{z,Z'\}$ läßt sich in der Umgebung eines Eckpunktes $z_1=z(Z_1')$ (der eingeschlossene Winkel $=\alpha\pi$) in der Form

$$\frac{1}{2} \frac{1 - \alpha^2}{(Z' - Z'_1)^2} + \frac{\delta_{-1}}{Z' - Z'_1} + \delta_0 + \delta_1(Z' - Z'_1) + \cdots \quad (\delta_{-1}, \ \delta_0, \ \delta_1, \ \dots \ \text{reell})$$

darstellen. Eine analoge Entwicklung gilt in der Umgebung eines Windungspunktes der Ordnung $m \geq 1$ in T (für α tritt dabei m+1 ein, δ_{-1} , δ_{0} , . . . erhalten komplexe Werte).

333) Mit mehrfach zusammenhängenden Gebieten in E, die von Kreispolygonen, insbesondere Vollkreisen begrenzt sind, beschäftigt sich F. Schottky, loc. cit. 352), p 331-351 (vgl. Nr. 27). Man vergleiche ferner das fundamentale Fragment von B. Riemann, Ges. Math. Werke, p. 440-444.

³²⁹⁾ C. Carathéodory, Schwarz Festschrift, Berlin 1914, p. 19-41 [p. 32 bis 41]. Eine Darstellung findet sich bei L. Bieberbach, Konforme Abbildung, p. 120-126 sowie bei P. Koebe, loc. cit. 582) d) p. 75-77.

³³⁰⁾ Vgl. P. Koebe, Leipziger Berichte 1914, p. 67--75.

³³¹⁾ Vgl. H. Burkhardt und W. F. Meyer, IIA7b Nr. 26: W. F. Osgood, IIB1 Nr. 21, R. Fricke, IIB4 und E. Hilb, IIB5 passim.

³³²⁾ H. A. Schwarz, a) Journ. f. Math. 70 (1869), p. 105—120; Ges. Abh. 2, p. 65—83 [p. 78—80], b) Journ. f. Math. 70 (1869), p. 121—126; Ges. Abh. 2, p. 84—101, c) Journ. f. Math. 75 (1873), p. 292—335; Ges. Abh. 2, p. 211—259.

Die Funktion z(Z') kann man als den Quotienten von zwei linear unabhängigen Lösungen einer linearen Differentialgleichung zweiter Ordnung der Fuchsschen Klasse auffassen. Als singuläre Punkte erscheinen dabei die Ecken und Spitzen der Randkurve S sowie die Windungspunkte; den letzteren entsprechen außerwesentlich singuläre Punkte (Nebenpunkte nach F. Klein). 334) Ist S ein Kreisbogendreieck in \mathfrak{E} , so ist z(Z') der Quotient zweier linear unabhängigen Lösungen der hypergeometrischen Differentialgleichung. 335)

Ist S insbesondere ein geradliniges Polygon, so vereinfacht sich die Betrachtung. Von E. B. Christoffel und H. A. Schwarz sind für z(Z') Integralformeln angegeben worden. 336)

Für die Funktion z(Z), durch deren Vermittelung T auf eine Kreisfläche K vom Radius R in der Ebene Z konform abgebildet wird, erhält man, wenn der Bereich T+S beschränkt ist und keinen Windungspunkt enthält 387), den Ausdruck

(2)
$$z(Z) = C_1 + C_2 \int_0^Z (Z - RZ_1)^{-2\lambda_1} \dots (Z - RZ_n)^{-2\lambda_n} dZ,$$

unter $z(RZ_k)$ ($|Z_k|=1, k=1, \ldots n$) die Eckpunkte, $2\pi\lambda_k$ ($k=1,\ldots n$) die beim Umfahren des Polygons im positiven Sinne aufeinanderfolgenden Außenwinkel, C_1 und C_2 komplexe Konstanten verstanden. Ist T konvex, so sind alle λ_k positiv; in allen Fällen ist

³³⁴⁾ Dies gilt auch, wenn, entgegen der allgemeinen Festsetzung der Nr. 1, Windungspunkte auf S vorkommen. Liegen Windungspunkte in T+S nicht vor, so ist die Differentialgleichung (1) reell.

³³⁵⁾ Vgl. H. A. Schwarz, Ges. Abh. 2, p. 80. Man vergleiche ferner F. Klein, Über die hypergeometrische Funktion, Leipzig 1894, passim; L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Bd. II 2, p. 32—49.

³³⁶⁾ Vgl. E. B. Christoffel, Ann. di Mat. (2) 1 (1868), p. 89—103; (2) 4 (1870/71), p. 1—9; Gött. Nachr. 1870, p. 283—298; p. 359—369; 1871, p. 435—453; Ges. Abh. 1 und 2); H. A. Schwarz, Ges. Abh. 2, p. 70—76. An der zuletzt genannten Stelle gibt Schwarz insbesondere eine Anzahl spezieller Beispiele. Die fraglichen Resultate sind im Frühjahr 1864 im mathematischen Seminar der Berliner Universität vorgetragen und im August 1866 durch K. Weierstraß der Berliner Akad. der Wiss. mitgeteilt worden.

Eine Darstellung findet sich bei G. Darboux, Theorie des surfaces 1; H. Weber, Partielle Differentialgleichungen 1. Man vergleiche ferner E. Study loc. cit. 148), p. 72—94.

³³⁷⁾ Dabei die Ebene z doch sehr wohl teilweise mehrfach überdecken kaun.

 $\sum \lambda_k = 1.^{338}$) Die Zahl der verfügbaren reellen Konstanten ist n+4, die der Bestimmungsstücke des Polygons S beträgt n + 1. Gibt man die Werte z(Z) und Arg $\frac{dz}{dZ}$ für Z=0 vor, so sind alle diese Konstanten, da z(Z) nunmehr festliegt, eindeutig bestimmt. Ist T die Fläche eines ebenen Dreiecks, so macht die Ermittelung von Z_1, Z_2, Z_3 keine Schwierigkeiten. Auch wenn T von drei Kreisbögen begrenzt ist, deren Halbmesser nicht alle unendlich groß sind, lassen sich die Konstanten der Differentialgleichung ohne Auflösung transzendenter Gleichungen angeben. 338a) Für die Fläche eines geradlinigen Polygons ist die Möglichkeit der Konstantenbestimmung unabhängig von dem alternierendenVerfahren von H. A. Schwarz für n=4 bewiesen worden.³³⁹) Für alle n ist ein Beweis H. A. Schwarz von K. Weierstraß mitgeteilt worden. 340) Ein vollständiger Beweis ist in den Arbeiten von L. Schläfli und E. Phragmén enthalten. 341) Einen anderen sich einer Kontinuitätsmethode bedienenden Beweis hat neuerdings L. Bieberbach veröffentlicht,³⁴²) (Vgl. Nr. **46** p. 352.)

Eine zu (2) analoge Formel gilt nach H. A. Schwarz für die Funktion z(Z), durch deren Vermittelung die Ebene Z auf ein schlichtartiges Polyeder konform abgebildet wird. (343)

Es ist $z(Z) = C \int_0^z \Pi(Z - Z_\nu)^{\alpha_\nu - 1} dZ + C''$, unter $z(Z_\nu)$ ($\nu = 1, ...n$) die Ecken, $\alpha_\nu \pi$ die Summe der in $z(Z_\nu)$ zusammenstoßenden Kanten-

³³⁸⁾ Die Formel (2) gilt auch, wenn der unendliche ferne Punkt ein Eckpunkt (etwa z_1) ist. Sind die zugehörigen Polygonseiten parallel, so ist $\lambda_1 = \frac{1}{2}$, andernfalls ist $\lambda_1 > \frac{1}{2}$. C. Caratheodory, Ann. de la soc. sc. de Bruxelles 37 (1913), p. 5-14 [p. 5-6] und E. Study, loc. cit. 336), p. 77-83 betrachten nach Zulassung des unendlich fernen Eckpunktes (konvexe) Polygone mit weniger als drei Seiten. In allen Fällen (n=2, 1, 0) gilt die Formel (2).

³³⁸a) Vgl. H. A. Schwarz, Ges. Abh. 2, p. 80.

³³⁹⁾ Vgl. H. A. Schwarz, Ges. Abh. 2, p. 77.

³⁴⁰⁾ Vgl. H. A. Schwarz, loc. cit. 339). Dieser Beweis ist nicht veröffentlicht worden.

³⁴¹⁾ Vgl. L. Schläfli, Journ. f. Math. 78 (1874), p. 63-80; E. Phragmén, Acta math. 14 (1890), p. 225-232 [p. 229-232], wo eine in den Betrachtungen von Schläfli gebliebene Lücke ausgefüllt ist.

³⁴²⁾ Vgl. *L. Bielerbach*, Gött. Nachr. (1913), p. 552—564; Rend. del. Circ. Mat. di Palermo 38 (1914), p. 98—112 [p. 102—104].

³⁴³⁾ H. A. Schwarz, Ges. Abh. 6, p. 81-83. Das Polyeder hat man sich dabei auf die Ebene z zu einem "Netz" ausgebreitet zu denken. Die Abbildung ist stetig und bis auf die Ecken konform.

winkel, C' und C'' komplexe Konstanten verstanden. Entspricht $Z = \infty$ keiner Ecke des Polyeders, so ist $\sum_{i=1}^{n} (a_i - 1) = -2$.

Einen vollständigen, von dem alternierenden Verfahren unabhängigen Beweis für die Möglichkeit der Konstantenbestimmung führt H. A. Schwarz für den besonderen Fall eines Tetraeders nach einem Kontinuitätsverfahren aus. Handelt es sich insbesondere um reguläre Polveder, so lassen sich die Konstanten vollständig bestimmen. 45)

26. Konvexe Gebiete. Rundungsschranke. Bedingungen für die Schlichtheit einer Abbildung. Es sei z(Z) eine in dem Kreisgebiete $K\ldots \mid Z < R$ reguläre Funktion. Damit K durch z(Z) auf ein konvexes Gebiet konform abgebildet wird, ist nach E. Study notwendig und hinreichend, daß in K die Funktion

(1)
$$\Phi(Z) = 1 + Z \frac{d}{dZ} \left(\log \frac{dz}{dZ} \right)$$

sich regulär verhalte und

$$\Re \Phi(Z) > 0$$

sei. Ist $\Re \Phi(Z)$ für |Z| < R nicht durchweg > 0, so gibt es einen Wert $R_1 < R$, die "Rundungsschranke" der Potenzreihe nach E. Study, so daß die Bedingung (2) für $|Z| < R_1$ erfüllt ist. Allen Kreisen $|Z| = R_2 < R_1$ entsprechen in der Ebene z konvexe (analytische und reguläre) Kurven. $|Z| = R_2 < R_1$ entsprechen in der Ebene z konvexe (analytische und reguläre) Kurven. $|Z| = R_2 < R_1$ entsprechen in der Ebene z konvexe (analytische und reguläre) Kurven.

Es seien die (n+2) ersten Koeffizienten a_0 , $a_1 \neq 0, \ldots, a_{n+1}$ einer Potenzreihe $z(Z) = \sum a_k Z^k$ gegeben. C. Carathéodory zeigt, daß man ein und nur ein System von Werten a_{n+2}, a_{n+3}, \ldots bestimmen kann, so daß K durch z(Z) auf das Gebiet eines konvexen Polygons mit nicht mehr als n Seiten konform abgebildet wird. Es sei z(Z) irgendeine in dem Gebiete |Z| < R konvergierende Potenzreihe mit den gleichen (n+2) ersten Koeffizienten, R ihre Rundungsschranke.

344) H. A. Schwarz, Journ. f. Math. 70 (1869), p. 121—136; Ges. Abh. 2, p. 84—101. Vgl. II B 3 Nr. 7b.

345) H. A. Schwarz, Ges. Abh. 2, p. 82 sowie p. 248-254.

346) Vgl. E. Study, Proc. of the fifth int. Congress of Math., Cambridge 1913, p. 122—125 sowie loc. cit. 336), p. 103—121. Study betrachtet konvexe Gebiete der Klasse C. Nach C. Carathéodory, loc. cit. 338), p. 5—14 gilt dieser Satz bei beliebigen (selbst sich ins Unendliche erstreckenden) konvexen Gebieten. Nach G. H. Gronwall, C. R. 162 (1916), p. 316—318, ist für schlicht abbildende

Funktionen $rac{R_1}{R} > 2 - \sqrt{3}$. Das Gleichheitszeichen gilt nur bei der Funktion

$$\frac{Z}{\left(1-e^{\alpha\,i}\,\frac{Z}{R}\right)^2} \ (\alpha \ \text{reell}).$$

347) C. Carathéodory, loc. cit. 338).

Es ist stets $\overline{R} \leq R$. Der Wert $\overline{R} = R$ entspricht der soeben erwähnten Polygonfläche.

Ein Verfahren zur Bestimmung der Scheitel der Bildkurven $z(\varrho e^{i\varphi})$ (ϱ konstant) gibt G. Pick an.³⁴⁸)

Es sei $z(Z) = Z + a_2 Z^2 + \cdots$ eine für |Z| < 1 konvergierende Potenzreihe. A. Hurwitz hat hinreichende Bedingungen dafür angegeben, daß das durch z(Z) entworfene Bild des Kreisgebietes |Z| < 1 über der Ebene z einfach ausgebreitet ist. Eine notwendige und hinreichende Bedingung leitet neuerdings L. Bieberbach ab. z

27. Konforme Abbildung mehrfach zusammenhängender Gebiete. St.) Während zwei einfach zusammenhängende Gebiete etwa der Klasse B in $\mathfrak E$ stets aufeinander konform abgebildet werden können, bedarf es hierzu, wenn der Grad des Zusammenhängens p größer als 1 ist, des Erfülltseins besonderer Bedingungen. p

Es seien T und T' zwei entsprechend von den Vollkreisen S_1 und S_2 ; S_1' und S_2' begrenzte Gebiete in \mathfrak{S} . Damit T auf T' konform abgebildet werden kann, ist notwendig und hinreichend, daß das Doppelverhältnis der vier Punkte, in denen S_1 und S_2 von irgendeinem Orthogonalkreise geschnitten werden, dem entsprechend gebildeten Wert für S_1' und S_2' gleich sei. Liegen insbesondere Kreisringflächen vor, so müssen diese ähnlich sein. S_1'

³⁴⁸⁾ G. Pick, Rend. del Circ. Mat. di l'alermo 87 (1914), p. 341-344.

³⁴⁹⁾ A. Hurwitz, Verh. d. ersten intern. Kongr. in Zürich 1898, p. 109 u. ff. Vgl. auch J. W. Alexander, Ann. of Math. (2) 17 (1915), p. 12-22.

³⁵⁰⁾ Vgl. L. Bieberbach, a) Berl. Sitzungsber. 38 (1916), p. 940-955. Bieberbach drückt die fragliche notwendige und hinreichende Bedingung so aus: Es gibt eine unendliche Folge beschrünkter, einfach zusammenhängender 2(j-1)-dimensionaler Gebiete $B_j(j=2,3,\cdots)$, so daß durch z(Z) das Kreisgebiet |Z|<1 dann und nur dann auf ein schlichtes Gebiet abgebildet wird, wenn der Punkt $a_2', a_2''; \cdots; a_j', a_j'' (a_k=a_k'+ia_k'')$ für alle j im Innern oder auf dem Rande von B_j enthalten ist. Die Begrenzung von B_j wird nicht näher charakterisiert. Unter den Einzelresultaten der Arbeit sci zunächst die Beziehung $|a_2| \le 2$ hervorgehoben. Die einzige das Gebiet $|Z| \le 1$ schlicht abbildende Funktion, für die $|a_2|$ den Wert 2 hat, ist $\frac{Z}{(1-Ze^{id})^2}$ (α konstant). Bieberbach vermutet, daß überhaupt $|a_k| \le k$ gilt. [Man vergleiche a. a. O. sowie b) Math. Zeitschr. 2 (1918), p. 158 bis 170; c) ebendort 3 (1919), wo verschiedene weitere Ergebnisse abgeleitet werden]. Es sei ferner der folgende Satz genannt: Bildet die Funktion $z + \sum a_n \frac{1}{z^n}$ das Gebiet |z| > 1 auf ein schlichtes Gebiet ab, so ist $\sum n|a_n|^2 \le 1$.

³⁵¹⁾ Vgl. IIB1 Nr. 23 sowie die Bemerkungen am Schluß der Nr. 22 des vorliegenden Referates.

³⁵²⁾ F. Schottky, Inaugural-Dissertation, Berlin 1875, abgedruckt in dem J. f. Math. 83 (1877), p. 300—351.

³⁵³⁾ Eine notwendige und hinreichende Bedingung gab zuerst F. Schottky.

Zwei von $p(p \ge 2)$ Vollkreisen begrenzte schlichte Gebiete T und T' können, wenn überhaupt, nur durch Vermittelung einer linearen Funktion aufeinander konform abgebildet werden.³⁵⁴)

Es sei jetzt T ein beliebiges p-fach zusammenhängendes Gebiet etwa der Klasse C in E. Nach F. Schottky kann man in unendlich mannigfaltiger Weise Paare in T+S stetiger, in T bis auf polare Unstetigkeiten regulärer, eindeutiger, auf S reeller analytischer Funktionen u(z) und v(z) bestimmen, so daß jede beliebige Funktion dieser Art sich durch u und v rational mit reellen Koeffizienten ausdrücken läßt. Die Funktionen u und v sind durch eine algebraische Gleichung vom Range p-1 mit reellen Koeffizienten, G(u,v)=0, verbunden. Zwei zu beliebigen Funktionenpaaren u, v; u', v' der im vorstehenden gekennzeichneten Art gehörige charakteristische Gleichungen lassen sich durch eine reelle birationale Transformation ineinander überführen. 355) Zwei p-fach zusammenhängende Gebiete T. und T, der Klasse C in & lassen sich dann und nur dann aufeinander entweder konform oder konform mit Umlegung der Winkel abbilden, wenn ein Paar (und darum auch jedes beliebige Paar) charakteristischer Gleichungen von T_1 und T_2 durch eine reelle birationale Transformation zusammenhängt. 356)

Journ. f. Math. 83 (1877), p. 300-351 [p. 325-326] an. Ebendort p. 327-328 wird das gleiche Problem für das von zwei konfokalen Ellipsen begrenzte Gebiet erledigt. Die im Text mitgeteilte Fassung rührt von Koebe her. Vgl. P. Koebe, Ber. d. Deutschen Math. Ver. 15 (1906), p. 142-153 [p. 142-144]. Eine auf methodische Einheitlichkeit (vgl. Nr. 47) hinzielende eingehende Behandlung des Kreisringgebietes (auch der Fälle, wenn einer der beiden Kreise oder alle beide in Punkte, darunter auch den unendlich fernen Punkt, ausarten) findet sich bei P. Koebe, Journ. f. Math. 145 (1914), p. 177-223 [p. 195-200].

³⁵⁴⁾ Vgl. P. Koebe, loc. cit. 353), p. 145—149. Werden nämlich T und T', die beschränkt vorausgesetzt werden können, an allen inneren Begrenzungskreisen gespiegelt, die sich ergebenden erweiterten Vollkreisgebiete T_1 und T'_1 in der gleichen Weise behandelt und dieses Verfahren ins Unendliche fortgesetzt, so läßt sich der Variabilitätsbereich von z und z' über die von den äußeren Kreisen von T und T' begrenzten beschränkten Gebiete Θ und Θ' mit Ausschluß je einer (für p>2) nicht abzählbaren Punktmenge (M) und (M') ausdehnen. Die Funktion z'(z) ist in Θ stetig, in $\Theta-(M)$ regulär. Durch eine Anwendung des Cauchyschen Integralsatzes auf das durch j Spiegelungen gewonnene Gebiet T_j und durch Übergang zur Grenze, $j=\infty$ wird gezeigt, daß z'(z) in Θ regulär und darum linear ist. (Man vergleiche hierzu die Ausführungen der Nr. 43, wo analoge Unitätsbeweise besprochen werden.)

³⁵⁵⁾ F. Schottky, loc. cit. 353).

³⁵⁶⁾ F. Schottky, loc. cit. 353), p. 320—323. Eine ausführliche Darstellung der Schottkyschen Arbeit gibt R. Le Vavasseur, Ann. de Toulouse (2) 4 (1902), p. 45—100. Eine vereinfachte Ableitung der im Text besprochenen

Weiteres über die fundamentalen Ergebnisse von F. Schottky vergleiche Osgood, II B 1 Nr. 23.

Nach Schottky hängt ein schlichtes Gebiet T der Klasse C, dessen Rand ϱ Komponenten hat, von $3\varrho-3$ wesentlichen reellen Konstanten ab. Stanten ab. Von ebenso vielen wesentlichen Parametern hängt das allgemeinste von ϱ Vollkreisen begrenzte Gebiet \Re in $\mathfrak E$ ab. Es ist darum zu erwarten, daß T auf ein Gebiet der Art \Re sich wird konform abbilden lassen. Schottky formuliert dieses neue Problem als ein Problem der Theorie linearer Differentialgleichungen zweiter Ordnung mit algebraischen Koeffizienten. Der vollständige Beweis für die Möglichkeit der fraglichen konformen Abbildung ist erst in der neueren Zeit von P. Koche erbracht worden (vgl. Nr. 44, wo sich auch weiteres über die konforme Abbildung mehrfach zusammenhängender Gebiete findet).

28. Das dritte Randwertproblem. 359) Es sei T ein Gebiet der Klasse B in $\mathfrak S$. Es mögen f(s) und g(s) abteilungsweise stetige Funktionen auf S bezeichnen. 360) Das dritte Randwertproblem beschäftigt sich mit der Bestimmung der etwa vorhandenen beschränkten, in T regulären Potentialfunktionen, die beschränkte Ableitung $\frac{\partial}{\partial n}u(x,y)$ haben und auf S, außer in den Unstetigkeitspunkten von f und g, der Beziehung $\frac{\partial u(s)}{\partial n} + f(s)u(s) = g(s)$ genügen. 361) 362 Setzt man

$$u(x, y) = \int_{S} \theta(t) \log \frac{1}{r_t} dt^{363},$$

Schottkyschen Resultate findet sich bei É. Picard, Traité 2, p. 545-546 sowie Ann. de l'Éc. Normale (3) 30 (1913), p. 483-487.

357) F. Schottky, loc. cit. 352), p. 322. Das gleiche gilt, wenn T ein beliebiges schlichtartiges Gebiet in \mathfrak{E}_m ist, dessen Rand \mathfrak{o} Komponenten hat.

358) F. Schottky, loc. cit. 353), p. 331-351. Man vergleiche hierzu das fundamentale Fragment von B. Riemann, Ges. Math. Werke, p. 440-444.

359) Vgl. H. Burkhardt und W. F. Meyer, HA7b Nr. 17 und 18; É. Goursat, Cours 3, p. 518-525.

360) Allgemeiner kann man f(s) und g(s) beschränkt und im Lebesgurschen Sinne integrierbar annehmen. Auch können gewissen Bedingungen genügende nicht beschränkte Funktionen zugelassen werden.

361) Sind f und g der Fußnote 360) gemäß gewählt, so ist eine gewisse Nullmenge von Punkten auf S auszuschließen.

362) Sind f und g abteilungsweise stetig, so konvergiert, wie sich nachträglich zeigt, $\frac{\partial}{\partial n}u(x,y)$ gegen $\frac{\partial u(s)}{\partial n}$ auf jedem von Unstetigkeiten freien Bogen von S gleichmäßig.

363) Der Einfachheit halber wird angenommen, daß es keine einfache Belegung auf S gibt, deren Potential in T identisch verschwindet. Sollte, wie beim

so erhält man die Integralgleichung

(1)
$$\begin{aligned} \theta(s) &= \frac{1}{\pi} \int_{s} \theta(t) \frac{\partial}{\partial n_{s}} \left(\log \frac{1}{r_{st}} \right) dt \\ &+ \frac{1}{\pi} f(s) \int_{s} \theta(t) \log \frac{1}{r_{st}} dt - \frac{1}{\pi} g(s).^{364} \end{aligned}$$

Entweder hat das eingangs gestellte Problem eine und nur eine Lösung 365), oder das zugehörige homogene Problem

$$\frac{\partial u(s)}{\partial n} + f(s)u(s) = 0$$

hat eine endliche Anzahl linear unabhängiger Lösungen. Im ersteren Falle existiert die zugehörige Greensche Funktion $\mathfrak{G}(\xi, \eta; x, y)$.

Es ist

(2)
$$\frac{\hat{\sigma}}{\hat{\sigma}^{n_s}} \mathfrak{G}(\xi, \eta; s) + f(s) \mathfrak{G}(\xi, \eta; s) = 0, \\ \mathfrak{G}(x_1, y_1; x_2, y_2) = \mathfrak{G}(x_2, y_2; x_1, y_1).^{566})$$

Ist die homogene Randwertaufgabe lösbar, so gibt es eine Greensche Funktion "im erweiterten Sinne." 367)

In einer ganz analogen Weise wird man im Raume vorgehen. Den Betrachtungen der Nr. 21 gemäß ist

Einheitskreise, diese Annahme nicht zutreffen, so würde man zuvörderst eine Transformation $x' = \alpha x$, $y' = \alpha y$ (0 $< \alpha + 1$) vornehmen. Vgl. L. Lichtenstein Ber. d. Berl. Math. Ges. 9 (1909), p. 19-28 [p. 22].

364) Vgl. É. Picard, Rend. del Circ. Mat. di Palermo 22 (1906), p. 241—259 [p. 250]; J. Plemelj, Monatsh. f. Math. u. Phys. 18 (1907), p. 180—211 [p. 199—211]; L. Lichtenstein, loc. cit. 363); É. Goursat, Cours 3, p. 518—519; T. Carleman, loc. cit. 198, p. 27—31. Carleman betrachtet Gebiete der Klasse M (ohne Spitzen) in G. Was die ältere Behandlungsweise des dritten Randwertproblems betrifft, vergleiche z. B. A. Korn, loc. cit. 55) c), Abh. 3; W. Stekloff, Ann. de l'Éc. Norm. (3) 19 (1902), p. 191—259; p. 455—490 [p. 218—232]. Sie geht von dem Randwertproblem

$$\frac{\partial u}{\partial n} + \lambda f u = g$$
 (λ ein reeller Parameter, $f < 0$)

aus und bedient sich der im Anschluß an die *Poincaré* sche Palermoarbeit (loc. cit. 1901) ausgebildeten Methoden. Explizite Formeln für u (f < 0 konstant) in einem Kreisgebiete gibt T. Boggio, loc. cit. 141) b) an.

365) Dies trifft z. B. zu, wenn
$$f(s) \le 0$$
, $\int f(s) ds = 0$ ist.

366) Genügen f und g einer $H\ddot{o}lder$ schen Bedingung mit dem Exponenten λ , so sind D_1u auf S vorhanden und stetig und genügen in T+S einer H-Bedingung mit dem gleichen Exponenten. Auch $\frac{\partial \mathfrak{G}}{\partial x}$, $\frac{\partial \mathfrak{G}}{\partial y}$ genügen in jedem (ξ, η) nicht enthaltenden Bereiche derselben Bedingung (L. Lichtenstein, loc. cit. 363), p. 23).

367) L. Lichtenstein, loc. cit. 363), p. 26.

(3)
$$u(\xi,\eta) = -\frac{1}{2\pi} \int_{S} G^{n}(\xi,\eta;t) \frac{\partial u}{\partial n} dt + \frac{1}{l} \int_{S} u(t) dt,$$
darum

(4) $u(s) = \frac{1}{2\pi} \int \left[G^{\Pi}(s,t) f(t) + \frac{1}{l} \right] u(t) dt - \frac{1}{2\pi} \int G^{\Pi}(\xi,\eta;t) g(t) dt$

Diese Integralgleichung könnte ebenfalls zum Ausgangspunkte der Theorie genommen werden.³⁶⁸)

Es möge jetzt das der Betrachtung zugrunde liegende Gebiet T der Klasse D angehören. Geht man durch konforme Abbildung zu einem Gebiete T' der Klasse C über, so gewinnt man für u'(x',y')=u(x,y) eine Randbedingung von der Form $\frac{\partial u'(s')}{\partial n'}+j(s')u'(s')=k(s')$. Die Funktionen j(s') und k(s') sind, außer in den Bildpunkten der Ecken, abteilungsweise stetig und genügen in der Umgebung der ausgeschlossenen Punkte \bar{s}' Ungleichheiten von der Form $|j(s')|, |k(s')| < C|s' - \bar{s}'|^{\alpha-1}$ (C konstant, $\alpha\pi =$ dem Öffnungswinkel der Ecke \bar{s}). Auch jetzt wird man von der Integralgleichung (1) ausgehen und gelangt bei einiger Vorsieht zu analogen Existenz- und Unitätssätzen. C

Eine vollständige Behandlung des dritten Randwertproblems in räumlichen Gebieten mit Kanten und körperlichen Ecken liegt zur Zeit nicht vor. Einen Weg zur Lösung dürften unter geeigneten Voraussetzungen die Variationsmethoden (Nr. 45) sowie die Untersuchungen von S. Zaremba, R. Bär und T. Carleman bieten. 370)

368) Vgl. D. Hilbert, Gött. Nachr. 1904, p. 213—259 [p. 255—256]. Dieser Weg empfiehlt sich namentlich, wenn es sich um nicht schlichtartige Gebiete handelt.

369) Vgl. L. Lichtenstein, loc. cit. 272) [p. 112—119]. Ebenso wird man vorgehen, wenn ein beliebiges schlichtartiges Gebiet der Klasse D in \mathfrak{E}_m vorliegt. Ist T nicht schlichtartig, so kann man sich mit Vorteil der in geeigneter Weise modifizierten kombinatorischen Methode von L. Lichtenstein (Nr. 24j) bedienen. Das gleiche gilt, wenn S aus mehreren Komponenten besteht, und auf einigen von diesen die Randbedingung $u = \varphi$, oder $\frac{\partial u}{\partial n} = \psi$, auf den übrigen die Bedingung $\frac{\partial u}{\partial n} + fu = g$ vorgeschrieben ist. Eine andere Möglichkeit, das dritte Randwertproblem für Gebiete der Klasse M (ohne Spitzen) in \mathfrak{E} aufzulösen, bietet die Methode von S. Zaremba und R. Bär. Vgl. R. Bär, loc. cit. 198), p. 19—21. In gleicher Weise läßt sich allgemeiner das Randwertproblem

$$\frac{\partial u(s)}{\partial n} + f(s)u(s) + \int_{S} K(s,t) u(t) dt = g(s) \quad (K(s,t) = K(t,s) \text{ stetig})$$

behandeln (R. Bär, a. a. O., p. 21—22. S. auch T. Carleman, loc. cit. 198), p. 38 bis 41). Eine vollständige Behandlung des dritten Randwertproblems für Gebiete. der Klasse M (ohne Spitzen) in & hat neuerdings T. Carleman geliefert. Vgl. T. Carleman, loc. cit. 364).

370) Vgl. R. Bär, loc. cit. 198) sowie namentlich T. Carleman, loc. cit. 198). p. 31-38.

Es sei T ein einfach zusammenhängendes Gebiet der Klasse B in \mathfrak{S} . Wie in der Nr. 24 i, möge S in Bögen S' und S'' zerfallen. Auf S' sei die Randbedingung $u(s) = \varphi(s)$, auf S'' die Bedingung

$$\frac{\partial u(s)}{\partial n} + f(s)u(s) = g(s)$$

 (f, g, φ) abteilungsweise stetig) vorgeschrieben. Man gewinnt jetzt zur Bestimmung von u(s) auf S'' die Integralgleichung

$$\begin{split} u(s) &= F(s) + \frac{1}{2\pi} \int_{S''} f(t) u(t) \, G^*(s,t) \, dt - \frac{1}{2\pi} \int_{S''} g(t) \, G^*(s,t) \, dt, \\ (5) &\qquad F(s) = \frac{1}{2\pi} \int_{S''} \varphi(t) \, \frac{\hat{o}}{\partial \, n_t} G^*(s,t) \, dt. \end{split}$$

Die Integralgleichung (5) ist der Fredholmsehen Methode zugänglich. In ähnlicher Weise wird man verfahren, wenn <math>T der Klasse D in $\mathfrak E$ angehört.

29. Weitere Randwertaufgaben. Die bis jetzt betrachteten Randbedingungen sind zumeist als besondere Fälle in der Formel

(1)
$$h(s) \frac{\partial u(s)}{\partial n} + f(s) u(s) = g(s)$$

enthalten. Betreffs einer Verallgemeinerung durch Hinzunahme eines Gliedes von der Form $\int K(s,t)u(t)\,dt$ linker Hand vergleiche die Fußnote 369).

R. Bär löst für einfach zusammenhängende Gebiete der Klasse B in $\mathfrak E$ das Randwertproblem

$$u(s) = \frac{\partial}{\partial n} u\left(s + \frac{l}{2}\right),$$

= Länge von S) auf.³⁷¹)

Es möge jetzt T ein einfach zusammenhängendes Gebiet der Klasse C in $\mathfrak E$ bezeichnen. H. Poincaré bestimmt diejenige in T+S stetige, in T reguläre Potentialfunktion u(x,y), die auf S der Bedingung

$$\frac{\partial u(s)}{\partial n} + k(s) \frac{\partial u(s)}{\partial s} + l(s)u(s) = g(s)$$

genügt, unter k(s), l(s), g(s) analytische und reguläre Funktionen verstanden. 372)

$$(2) \qquad u\left(s+\frac{l}{2}\right) = \frac{\partial u(s)}{\partial n} + \int_{S} A(s,t) u(t) dt, \quad \frac{\partial}{\partial n} u\left(s+\frac{l}{2}\right) = u(s) \quad \left(0 \le s \le \frac{l}{2}\right)$$

$$(A(s,t) = A(t,s) \text{ stetig}).$$

372, H. Poincaré, Sechs Vorträge aus der reinen Mathematik und mathe-

³⁷¹⁾ R. $B\ddot{a}r$, loc. cit. 198), p. 22—24. Dort findet sich auch die allgemeinere Randwertaufgabe

Die Lösung wird als Potential einer einfachen Belegung angesetzt. Ihre Dichte genügt einer Integralgleichung zweiter Art, deren Kern für s=t wie $k(s)\frac{1}{r_{st}}+l(s)\log\frac{1}{r_{st}}$ unendlich wird. Nach einer Iteration und einer Umformung unter Benutzung der Integrationswege im Komplexen gelangt man von hier aus zu einer der Fredholmschen Theorie zugänglichen Integralgleichung.

R. Bär macht zur Bestimmung der auf dem Rande verschwindenden Greenschen Funktion eines Gebietes der Klasse C in $\mathfrak E$ den Ansatz

(4)
$$G(\xi, \eta; x, y) = \log \frac{1}{\varrho} - \int_{\dot{s}} \mu(t) \log \frac{1}{r_t} dt$$

und erhält für $\int_{0}^{t} \mu(t)dt = \mu(s)$ eine Integralgleichung zweiter Art, die im Anschluß an die soeben erwähnten Untersuchungen von *Poincaré* gelöst wird.³⁷³)

Es sei T' ein- einfach zusammenhängendes Gebiet der Klasse B in $\mathfrak{E}, T+S$ ein Bereich der Klasse B in T'; es sei ferner (ξ,η) ein Punkt in T. \acute{E} . Picard behandelt das folgende Problem: Es sind die etwa vorhandenen, in jedem (ξ,η) nicht enthaltenden Bereiche in T+S und in T'-T+S' stetigen, außer vielleicht am Rande, regulären Potentialfunktionen u und u' zu bestimmen, die so beschaffen sind, daß u sich in (ξ,η) wie $\log\frac{1}{\varrho}$ verhält und folgende Randbedingungen erfüllt sind:

(5)
$$a(s) U(s) + b(s) V(s) + c(s) = 0$$

matischen Physik, Leipzig 1910, Zweiter Vortrag, p. 15-19; Leçons de mécanique céleste 3 (1910), p. 251-261. Man vergleiche hierzu A. Blondel, C. R. 152 (1911). p. 1287-1290, wo speziell das Kreisgebiet betrachtet wird.

³⁷³⁾ R. Bär, loc. cit. 198), p. 11-18.

Die Randwertaufgabe (3) läßt sich, worauf auch Poincaré hinweist, leicht mit Hilfe eines im Anschluß an D. Hilbert von O. D. Kellogg, loc. cit 146), angegebenen Verfahrens erledigen. Es genügt, T von der Klasse B, die Funktion k(s) nebst ihrer Ableitung stetig, l(s), g(s) etwa schlechthin stetig vorauszusetzen. Randwertaufgaben verwandter Natur sind von D. Hilbert, Verhandlungen des 3. intern. Kongr. in Heidelberg 1904, p. 233-240; Gött. Nachr. 1905, p. 1-32; Grundzüge, p. 81-108 und im Anschluß daran von Ch. Haseman, loccit. 146, betrachtet worden. Es handelt sich zunächst um die Bestimmung einer in einem einfach zusammenhängenden Gebiete der Klasse C in $\mathfrak E$ analytischen und regulären Funktion f(z) = U + iV, wenn auf S

gilt, unter a, b, c auf S erklärte, bis auf eine endliche Anzahl Punkte, nebst ihren Ableitungen erster Ordnung stetige, gewissen weiteren Einschränkungen unterworfene Funktionen verstanden; f(z) wird auf S nicht notwendig überall

(7)
$$\frac{\partial u'}{\partial n'} = h(s')u'(s') \text{ auf } S',$$

$$-k_1(s)\frac{\partial u}{\partial n} = -k_2(s)\frac{\partial u'}{\partial n} = q(s)(u'-u) \text{ auf } S.$$

Die Funktionen h(s'), $k_1(s)$, $k_2(s)$, q(s) sind stetig und positiv. Picard setzt $u = \log \frac{1}{\varrho} + \int_{s}^{u} \frac{\mu(t) dt}{r_t}$, $u' = \int_{s+s'}^{u} u'(t) \frac{dt}{r_t'}$ und erhält zur

Bestimmung von μ und μ' ein System von zwei der Fredholmschen Theorie zugänglichen Integralgleichungen.³⁷⁴)

Probleme der mathematischen Physik führen vielfach auf die Bestimmung von Funktionen, die in verschiedenen Gebieten denselben oder verschiedenen Differentialgleichungen genügen und an den gemeinsamen Randkurven oder Randflächen durch geeignete Verknüpfungsgleichungen zusammenhängen. 375 376 In diese Gruppe von Aufgaben fallen die bereits Nr. 17 b erwähnten Probleme von Neumann-Poincaré und Robin-Poincaré.

Es sei T ein einfach zusammenhängendes Gebiet der Klasse C im Raume. \acute{E} . Le Roy betrachtet Potentialfunktionen u und u_a , die entsprechend in T+S und in dem Außenbereiche T_a+S stetig, in T und T_a regulär sind und auf S den Bedingungen

(8)
$$u(s^+) = u_{\sigma}(s^-), \quad \frac{\partial}{\partial n} u(s^+) - \frac{\partial}{\partial n} u_{\alpha}(s^-) = \lambda k(s) u(s^+) + g(s)$$

$$(\lambda \text{ reell, } k(s) > 0, \ g(s) \text{ stetig})$$

stetig ausfallen. Des weiteren werden unter gewissen Voraussetzungen zwei in T analytische und reguläre Funktionen f(z) und $f^*(z)$ bestimmt, wenn auf S

(6) $a_r U + b_r V + a_r^* U^* + b_r^* V^* + c_r = 0$ (r=1,2) gilt. Die Lösung wird unter Zuhilfenahme der in der Fußnote 146) angegebenen Umkehrungsformeln gewonnen. Auf ähnliche Weise gelingt die Bestimmung eines Paares in T und T_a analytischer und regulärer Funktionen f(z) und $f_a(z)$, wenn auf S eine Beziehung von der Form $f_a(s) = c(s) f(s)$ (Hilbert a. a. O., vergleiche auch J. Plemelj, loc. cit. 146), p. 210), oder $f_a(s) = c(s) f(s)$ (Haseman a. a. O.) vorgeschrieben ist. Durch einen weiteren Ausbau seiner Methode gelingt D. Hilbert die Lösung des Riemannschen Problems der Bestimmung der Funktionensysteme mit vorgeschriebener Monodromiegruppe, Gött. Nachr. 1905, p. 1—32; Grundzüge p. 81—108. (Man vergleiche hierzu J. Plemelj, Monatsh. f. Math. u. Phys. 19 (1908), p. 211—246 sowie E. Hilb, II B 5 Nr. 14.)

374) É. Picard, C. R. 156 (1913), p. 1119—1124. Es handelt sich hier um das Problem des thermischen Gleichgewichts zweier Medien mit Wärmeausstrahlung und Temperatursprung. Man vergleiche ferner É. Picard, Rend. del Circ. Mat. di Palermo 37 (1914), p. 249—261 sowie C. R. 142 (1906), p. 861—865.

375) Vgl. die Bemerkungen von A. Sommerfeld, II A 7c, p. 505-508.

376) Man vergleiche als Beispiel die Behandlung des allgemeinen elektrostatischen Problems bei J. Plemelj, loc. cit. 215). Weitere Beispiele finden sich bei H. Weber, Partielle Differentialgleichungen, 1, p. 319-527; 2, p. 168-198 sowie p. 438-450. Siehe ferner u. a. V 24 Nr. 58-70.

genügen.³⁷⁷) Diese und andere analoge Aufgaben, insbesondere das durch Einführung eines Parameters erweiterte dritte Randwertproblem sollen in einem weiteren Referat über partielle Differentialgleichungen vom elliptischen Typus besprochen werden.

Eine Randwertaufgabe besonderer Art behandelt O. Hölder. Sind f(s) und g(s) beliebige auf dem Einheitskreise C erklärte stetige Funktionen, so gibt es im allgemeinen keine in einem Gebiete

$$0 < R^2 < x^2 + y^2 < 1$$
, oder $1 < x^2 + y^2 < R^2$

reguläre Potentialfunktionen, so daß auf C: u(s) = f(s), $\frac{\partial u(s)}{\partial n} = g(s)$ wäre. Hölder gibt notwendige und hinreichende Bedingungen dafür an, daß in jedem der beiden Kreisringgebiete bei vorgegebenem R eine Potentialfunktion dieser Art existiert. ³⁷⁸) ³⁷⁹ a).

$$Px^{2}\frac{\partial^{2}u}{\partial x^{2}} + 2Qxy\frac{\partial^{2}u}{\partial x\partial y} + Ry^{2}\frac{\partial^{2}u}{\partial y^{2}} = F$$

auf seinem Rande, angegeben werden. Unter P, Q, R, F werden stetige, gewissen Bedingungen genügende Funktionen verstanden. Man vergleiche hierzu M. Bottasso, Atti della R. Acc. delle Sc. di Torino 50 (1915), p. 417—440.

379°) O. Blumenthal behandelt neuerdings das Gleichgewicht einer rechteckigen Membran T von der Breite 2b und der Länge a, die an einer Breitseite festgehalten, an der anderen frei ist und deren beide Längsseiten von elastischen, durch stetige Kräfte senkrecht zur Membran beanspruchten und in einem beliebigen Punkte ($c \le a$) gestützten Balken gebildet werden. Das Problem wird auf die Bestimmung derjenigen in T+S stetigen, in T regulären Potentialfunktion w zurückgeführt, die an den Längsseiten Randbedingungen von der Form

$$\frac{\partial w}{\partial n} = G(x) + \lambda \int_{0}^{a} Q(\xi, x) w(\xi) d\xi,$$

an den Breitseiten x=0 und x=a der Form w=0 und $\frac{\partial w}{\partial n}=0$ genügt. Der Ausdruck $Q(\xi,x)$ ist eine stetige, nicht symmetrische Funktion, die für alle x, als Funktion von ξ aufgefaßt, eine aus zwei Geradenstücken bestehende gebrochene Linie darstellt. Die Aufgabe, die sich auch auf eine Integralgleichung mit unsymmetrischem Kern zurückführen ließe, wird durch einen Fourier-Ansatz gelöst. Die Eigenwerte werden als Wurzeln einer transzendenten Gleichung mittels einer asymptotischen Methode bestimmt. Es wird das Vorhandensein

³⁷⁷⁾ É. Le Roy, Ann. de l'Éc. Norm. (3) 15 (1898), p. 9-178. Man vergleiche hierzu S. Zaremba, Ann. de l'Éc. Norm. (3) 20 (1903), p. 9-26 sowie T. Levi-Civita, Bull. de l'Ac. de Cracovie, 1902, p. 263-270.

³⁷⁸⁾ O. Hölder, Leipz. Ber. 63 (1911), p. 477-500

³⁷⁹⁾ Weitere Literatur: T. Carleman, loc. cit. 198), p. 38—41; H. A. v. Beckh Widmansteller, Monatsh. f. Math. u. Phys. 23 (1912), p. 240—256, wo, in Verallgemeinerung gewisser Betrachtungen von W. Wirtinger, Ansätze zur Behandlung der Raudwertaufgabe: $\Delta u = 0$ in der Fläche des Einheitskreises,

30. Die Poissonsche Differentialgleichung. Es sei T ein beschränktes Gebiet der Klasse B in \mathfrak{E}_m , p(x,y) eine in T+S stetige, in T einer H-Bedingung genügende Funktion. Es gibt eine und nur eine in T+S stetige Funktion u, so daß D_1u und D_2u in T stetig sind, in $T \dots \Delta u = p$, auf $S \dots u(s) = \varphi(s)$ ($\varphi(s)$ abteilungsweise stetig) gilt. Man findet (in \mathfrak{E} am einfachsten von der Greenschen Formel (2) Nr. 10 ausgehend)

(1)
$$\begin{split} u(\xi,\eta) &= -\frac{1}{2\pi} \int_{T} p(x,y) \, G(\xi,\eta;x,y) dx dy \\ &+ \frac{1}{2\pi} \int_{T} \varphi(t) \frac{\partial}{\partial n_{t}} G(\xi,\eta;t) dt. \end{split}$$

Von besonderer Wichtigkeit ist die auf S verschwindende Lösung

(2)
$$\bar{u}(\xi,\eta) = -\frac{1}{2\pi} \int_{\hat{T}}^{*} p(x,y) G(\xi,\eta;x,y) dx dy.^{381}$$

1. In T + S ist

(3)
$$D_1 \overline{u}(x_1, y_1) - D_1 \overline{u}(x_2, y_2) | < A'(\lambda) \operatorname{Max} | p | d_{12}^{\lambda} | (0 < \lambda < 1)$$

 $d_{12}^{\lambda} = (x_1 - x_2)^2 + (y_1 - y_2)^2.$

2. Gehört T der Klasse Bh an und ist λ der zugehörige $H\"{o}lder$ sche Exponent, ist ferner in $T+S\ldots \mid p(x_1,y_1)-p(x_2,y_2)\mid < Nd_{12}^{\lambda}$, so sind D_2u in T+S stetig. Es gilt ferner daselbst

von unendlich vielen negativen und unendlich vielen komplexen Eigenwerten mit negativem Realteil festgestellt. Sonstige Eigenwerte können nur in endlicher Anzahl vorhanden sein. (Vgl. 0. Blumenthal, Math. Zeitschr. 3 (1919).

380) Ist das Gebiet T schlicht, so wird man zum Beweise am einfachsten $u(\xi, \eta) = -\frac{1}{2\pi} \int_{\eta}^{\eta} p(x, y) \log \frac{1}{\ell} dx dy + U(\xi, \eta)$ setzen. Ist T schlichtartig, so

kann man durch konforme Abbildung zu einem schlichten Gebiete übergehen. Andernfalls wird man etwa, wenn \overline{T} irgendein Gebiet der Klasse B bezeichnet,

das
$$T+S$$
 enthült. $u(\xi,\eta)=-\frac{1}{2\pi}\int_{\eta}^{\bullet}p(x,y)\,\overline{G}(\xi,\eta;\,x,y)\,dx\,dy+U(\xi,\eta)$ setzen,

unter \overline{G} die zu \overline{T} gehörige Green sche Funktion verstanden. Der Existenz- und Unitätssatz gelten bei beliebigen mehrfach (und selbst unendlichvielfach) zusammenhängenden beschränkten Gebieten in \mathfrak{E}_m , deren Rand keine punktartigen Komponenten hat (Nr. 39 und 45 e).

381/ Die Formel (1) gilt unverändert auch noch, wenn T der Klasse Q angehört. Ein analoger Ausdruck ergibt sich bei einem Gebiet der Klasse B im Raume. Die Formel (2) gilt für alle beschränkten einfach oder mehrfach zusammenhängenden Gebiete in \mathfrak{E}_m , deren Raud keine punktartigen Komponenten hat. Vgl. L. Lichtenstein, Ber. d. Berl. Math. Ges. 15 (1916), p. 92—96. Dort werden beschränkte, einfach zusammenhängende Gebiete in \mathfrak{E} betrachtet.

(4)
$$|D_2 \overline{u}(x_1, y_1) - D_2 \overline{u}(x_2, y_2)| < \{A_1 \operatorname{Max} |p| + A_2 N\} d_{12}^{\lambda}$$

 $(A_1 > 0, A_2 > 0 \text{ konstant}).^{382})$

Analoge Sätze gelten für partielle Ableitungen höherer Ordnung sowie im Raume.

Ist p eine abteilungsweise stetige, oder allgemeiner beschränkte und im Lebesgueschen Sinne integrierbare Funktion, so sind $D_1\bar{u}$, sofern T der Klasse B angehört, immer noch in T+S stetig und genügen der Beziehung (3). Genügt p in einem Punkte in T einer der in der Nr. 8 angegebenen Bedingungen, so hat \bar{u} dort stetige partielle Ableitungen zweiter Ordnung und genügt der Differentialgleichung (5) $\Delta u = p$. Ist $[p(x,y)]^2$ in T im Lebesgueschen Sinne integrierbar, so hat $\bar{u}(x,y)$ nach L. Lichtenstein in T, außer höchstens auf einer gewissen Menge von Punkten vom Maße Null, partielle Ableitungen $\frac{\partial^2 u}{\partial x^2}$, $\frac{\partial^2 u}{\partial y^2}$ und genügt der Differentialgleichung (5) (vgl. Nr. 8). 383)

31. Einzelbetrachtung besonderer Gebiete. Spezielle Untersuchungen über die Kreisfläche, Kreisringfläche sowie den Kugelkörper sind ihrer besonderen Wichtigkeit wegen in den Abschnitten Nr. 13 und 14 eingehend besprochen worden. (Vgl. überdies die Fußnoten 237 und 254.) Untersuchungen über das Gebiet einer Ellipse sind in der neueren Zeit von C. Neumann³⁸⁴), E. R. Neumann³⁸⁵), J. Plemelj³⁸⁶), G. Wiarda²³⁷), G. Léry³⁸⁷), J. Blumenfeld und W. Mayer²⁰⁵) angestellt worden. Mit dem Ellipsoidkörper beschäftigen sich G. Morera, C. Somigliana, A. Wangerin, G. Wiarda und S. Brodetsky.³⁸⁸) Die Anziehung und

³⁸²⁾ Vgl. A. Korn, loc. cit. 55) h), p. 31-32; Ch. H. Müntz, loc. cit. 31) [p. 9-20]. Man beachte insbesondere die Bemerkung auf p. 20.

³⁸³⁾ L. Lichtenstein, loc. cit. 61), p. 34-42. Weitere Literatur: A. Paraf, loc. cit. 245); dort sowie bei \acute{E} . Picard, Acta math. 25 (1902), p. 121-137, findet sich insbesondere die Darstellung der Lösung \bar{u} im Kreisgebiete durch trigonometrische Reihen. Man vergleiche ferner U. Dini, loc. cit. 137); L. Lichtenstein, Math. Ann. 67 (1909), p. 559-575 [p. 559-565]; W. Oscen, Rend. del Circolo Mat. di Palermo 38 (1914), p. 167-179.

³⁸⁴⁾ C. Neumann, Leipz. Ber. 62 (1910), p. 87-169 [p. 103-108].

³⁸⁵⁾ E. R. Neumann, Beiträge, p. 140—151 (a. a. O. wird auch das Außengebiet einer Ellipse betrachtet).

³⁸⁶⁾ J. Plemelj, Untersuchungen, p. 71-74; p. 88-90; p. 95-97.

³⁸⁷⁾ G. Léry, a) C. R. 142 (1906), p. 951—953; b) ebendort p. 1406—1407 sowie c) C. R. 152 (1911), p. 834—844. Léry stellt die Greensche Funktion einer Ellipsenfläche als das Potential einer gewissen unendlichen Menge von Massenpunkten dar. Dieses Resultat ist später unabhängig von E. R. Neumann, Eeiträge, p. 125—141 angegeben worden (Vgl. auch G. Wiurda, loc. cit. 237).)

³⁸⁸⁾ G. Morera, Atti della R. Acc. della Sc. di Torino 39, p. 252—258; p. 258—261; 41, p. 520—531; p. 538—541; Torino Mem. (2) 55 (1905), p. 1—25: Atti della R. Acc. dei Lincei, Rendiconti (5) 15, p. 669—678; (5) 17, p. 378—390:

288

das Potential hyperboloidischer Schalen bestimmt *E. Steinitz.*³⁸⁹) Mit der Anziehung eines homogenen Körpers, der von zwei Tripeln konfokaler Flächen zweiten Grades begrenzt ist, die durch zwei gegebene Punkte als Gegenecken hindurchgehen, beschäftigt sich *F. de Salvert*³⁹⁰), mit der Anziehung eines homogenen Kugelsegmentes *G. W. Hill.*³⁹¹) Das von zwei Kreisbögen begrenzte einfach zusammenhängende Gebiet haben *C. Neumann* und *T. Carleman* betrachtet.³⁹²) Eine neue Behandlung des Potentials und der Anziehung homogener Polyeder gibt *P. Appell.*^{392a})

Über ebene Gebiete, die von algebraischen Kurven begrenzt sind, liegen Arbeiten von G. Léry 393) und G. Herglotz 394) vor. G. Léry betrachtet die Greensche Funktion und weist u. a. auf die Bedeutung der Brennpunkte hin. Herglotz bestimmt allgemein das logarithmische Potential des mit homogener Masseschicht belegten Gebietes und zeigt, daß sich dieses stets auf das Potential gewisser einfacher und doppelter Linienbelegungen sowie einzelner Massenpunkte zurückführen läßt. Die Lage dieser Massen hängt innig mit der Lage der ordentlichen und außerordentlichen Brennpunkte des algebraischen Randes zusammen. Ins einzelne durchgeführt ist die Theorie für bizirkulare Kurven vierter Ordnung. Als Grenzfälle ergeben sich Sätze über Inversionskurven einer Ellipse

C. Somigliana, Rend. del Circ. Mat. di Palermo 31 (1911), p. 387—391; A. Wangerin, Ber. d. Deutschen Math. Ver. 23 (1914), p. 389—391; G. Wiarda, loc. cit. 237), p. 57—63; S. Brodetsky, The quarterly Journ., 46 (1915), p. 297—317 gibt eine direkte Ableitung der bekannten Formeln für das Potential eines homogenen Ellipsoidkörpers. A. a. O. finden sich auch allgemeine Formeln für das Potential homogener konvexer Körper mit einer Symmetrieebene. Potential gewisser nicht homogener Ellipsoidkörper gibt G. Prasad, Mess. of Math. 30 (1900/01), p. 8—15 an. Es sei zuletzt auf die Behandlung des Ellipsoidkörpers bei H. Poincaré, Figures d'équilibre d'une masse fluide, Paris 1902, p. 113—192, insbes. p. 136—142, und bei C. Jordan, Cours d'Analyse, Bd. 3, 2. Aufl., Paris 1896, p. 422—435 hingewiesen. 389) E. Steinitz, Journ. f. Math. 129 (1905), p. 294—316.

³⁹⁰⁾ F. de Salvert, Annales de la soc. sc. de Bruxelles 21 und 30, auch als Monographie bei Gauthier-Villars, Paris, erschienen. Für spezielle Lagen des angezogenen Punktes werden explizite Formeln angegeben.

³⁹¹⁾ G. W. Hill, Amer. Journ. 29 (1907), p. 345-362.

³⁹²⁾ Vgl. C. Neumann, Leipz. Ber. 62 (1910), p. 307—367, wo namentlich die natürliche Belegung bestimmt wird, und T. Carleman, loc. cit. 198), p. 47—86. Weitere spezielle Gebiete siehe bei C. Neumann, a. a. O., p. 368—376 sowie Leipz. Ber. 63 (1911), p. 240—248. Man vergleiche überhaupt die in den Jahren 1906—1917 a. a. O veröffentlichten Abhandlungen von C. Neumann.

³⁹²a) Vgl. P. Appell, Rend. del Circ. Mat. di Palermo 35 (1913), p. 79—81. 393) Vgl. G. Léry, loc. cit. 387) a) b) c) sowie Ann. de l'Éc. Norm. (3) 32 (1915), p. 49—136.

³⁹⁴⁾ Vgl. G. Herglotz, loc. cit. 79).

5

sowie einer Hyperbel, die gewisse von *C. Neumann* entdeckte Theoreme umfassen.³⁹⁵) An gleicher Stelle wird das *Newton* sche Potential homogener, von bizirkularen, symmetrischen Flächen vierter Ordnung begrenzter Rotationskörper behandelt. Das *Newton* sche Potential homogener Körper, deren Begrenzung aus Rotationsellipsoiden durch Inversion an einem beliebigen Punkte der Umdrehungsachse entsteht, bestimmt *A. Wangerin*.³⁹⁶)

Das Neutonsche Potential einer homogenen Kreisscheibe und einer homogenen Halbkugel sowie gewisser nichthomogener Belegungen der beiden Gebiete hat T. J. T.A. Bromwich ermittelt. 397)

Das erste Randwertproblem für das von der Hälfte einer Lemniskate mit Doppelpunkt begrenzte beschränkte Gebiet wird unter Zugrundelegung der *Neumann-Fredholms*chen Theorie von *J. Blumenfeld* und *W. Mayer* erledigt.²⁰⁵)

Eine (zweidimensionale) Greensche Funktion (im erweiterten Sinne) der Kugelfläche hat E. Zermelo angegeben. Mit den Greenschen Funktionen des Körpers eines unbegrenzten geraden Kreiszylinders beschäftigen sieh P. Lévy und G. Bouligand. 390)

Eine Formel für die Greensche Funktion des zwischen zwei paral-

395) C. Neumann, Leipz. Ber. 59 (1907), p. 278-312; 60 (1908), p. 53-56 sowie p. 240-247. Siehe auch H. Liebmann, ebendort, p. 378-386.

396) A. Wangerin, loc. cit. 91). Dort werden noch weitere Sonderfälle behandelt. Durch Spezialisierung werden Ausdrücke für das Potential des Körpers, das durch Rotation einer Kreisfläche um eine Tangente entsteht, gewonnen (zuerst von H. Bruns, Inaugural-Dissertation, Berlin 1871, bestimmt).

397) T. J. I'A. Bromwich. Proc. of the London Math. Soc. (2) 12 (1912-13), p. 100—125. Die Verteilung der Elektrizität auf einer leitenden elliptischen Platte, insbesondere einer Kreisscheibe findet sich bei H. Weber, Partielle Differentialgleichungen 1, p. 338—342. Man vergleiche auch R. Gans, Zeitschrift f. Math. und Phys. 53, p. 434—437.

398) E. Zermelo, Zeitschr. f. Math. und Phys. 47 (1902), p. 201–237. Die fragliche Greensche Funktion ist eine auf der Kugelfläche, außer in einem vorgegebenen Punkte, wo sie logarithmisch unendlich wird, analytische und reguläre Lösung der Differentialgleichung $\Delta_2 u = \text{Const.}$ Man vergleiche hierzu J. Hadamard, Leçons, p. 50–52; D. Hilbert, Gött. Nachr. 1904, p. 241–242; Grundzüge, p. 65–66.

Die (zweidimensionale) Green sche Funktion einer Kugelkalotte gibt V. Amato, Giornale di Mat. 44 (1906), p. 18-24, an.

399) P. Lévy, C. R. 154 (1912), p. 1405—1407; Rend. del Circ. Mat. di Palermo 34 (1912), p. 187—219, betrachtet die Greensche Funktion erster und zweiter Art. G. Bouligand, C. R. 156 (1913), p. 1361—1363, betrachtet einige Eigenschaften der Greenschen Funktion erster Art, insbesondere ihren Zusammenhang mit der Greenschen Funktion des Normalschnittes. Man vergleiche die Bemerkungen von J. Hadamard zu der vorstehenden Note (C. R. 156 (1913), p. 1364).

lelen Ebenen eingeschlossenen seitlich unbegrenzten Körpers gibt T. Boggio, für den Körper eines rechteckigen Parallelepipedons L. Orlando an. 400)

Mit dem Problem des elektrischen Gleichgewichts eines Systems von zwei leitenden Kugeln beschäftigen sich im Anschluß an eine ältere Poissonsche Behandlung des gleichen Gegenstandes J. B. Goebel, M. Lange und G. Darboux. (401) Spezielle in das Gebiet der Potential-

400) T. Boggio, Rend. del R. Ist. Lomb. (2) 42 1909), p. 611—624. L. Orlando. Rend. del Circ. Mat. di Palermo 19 (1905), p. 62—65. Eine Auflösung der beiden ersten Randwertprobleme für den Körper eines rechteckigen Parallelepipedons gibt P. Alibrandi, Giorn. di Mat. 41 (1913), p. 230—241, an. Es sei an dieser Stelle auf die älteren umfassenden Untersuchungen von P. Appell, loc. cit. 300), hingewiesen. Appell gibt allgemein einen Ausdruck für eine Greensche Funktion zweiter Art des Körpers eines Polyeders an, das so beschaffen ist, daß die durch unbegrenzt wiederholte Spiegelung entstehenden Polyeder nicht ineinander eindringen.

Das elektrische Feld in Systemen von regelmäßig angeordneten Punktladungen bestimmen P. P. Ewald, Inaug.-Diss., München 1912; M. Born, Dynamik der Kristallgitter, Leipzig 1915 und E. Madelung, Phys. Zeitschrift 19 (1918), p. 524-532.

In diesem Zusammenhang sei ferner eine Arbeit von M. Hafen, Math. Ann. 69 (1910). p. 517—537, genannt. Hafen bestimmt u. a. für spezielle Werte der Randfunktion die Lösung des ersten Randwertproblems 1. in dem von einer (doppelt zu zählenden) Kreisfläche begrenzten dreidimensionalen) Gebiete, 2. in einem Raumgebiete, das von zwei doppelt zu zählenden parallelen Kreisflächen, deren Mittelpunkte auf einer auf diesen Flächen senkrechten Geraden liegen, begrenzt ist. Man gewinnt so insbesondere eine strenge Lösung des Kondensatorproblems.

401) J. B. Goebel, Journ. f. Math. 124 (1902), p. 157—164; 125 (1903), p. 267—281; M. Lange, Journ. f. Math. 132 (1907), p. 69—80; G. Darboux, Bull. des sc. math. (2) 31 (1907), p. 17—28.

Goebel behandelt insbesondere den auch sehon von Poisson betrachteten Fall zweier sich berührenden Kugeln. Lange bestimmt die Verteilung der Elektrizität auf zwei einander nicht umschließenden und nicht berührenden leitenden Kugeln in einem in bezug auf die Verbindungsgerade der Mittelpunkte symmetrischen Felde. Hieran anschließend wird die elektrische Verteilung auf drei leitenden Kugeln, deren Mittelpunkte auf einer Geraden liegen, behandelt.

Mit der *Poisson*schen Theorie hat sich auch *E. R. Neumann* beschäftigt. Vgl. Leipz. Ber. 48 (1896), p. 634—648; Journ. f. Math. 120 (1899), p. 60—98; p. 277—304. In diesen Arbeiten wird unter anderem die Verteilung der Elekrizität auf einer schlichtartigen leitenden Fläche bestimmt, die aus Teilen von drei Kugeln besteht, von denen eine auf den beiden anderen orthogonal ist.

Weitere Literatur: T. J. I'A. Bromwich, Mess. of Math. 35 (1905/06), p. 1-12; E. W. Barnes, Quarterly Journ. 35 (1904), p. 155-175; A. Guillet et Aubert, C. R. 155 (1912), p. 708-711; F. Schmidt, Beiträge zur Verteilung der Elektrizität auf zwei leitenden Kugeln, insbesondere für den Fall der Berührung, lnaugural-Dissertation, Ilalle 1912, p. 1-46. Ältere Literatur zum Problem der zwei Kugeln vgl. V 15 Nr 13.

theorie fallende Randwertaufgaben der mathematischen Physik finden sich u. a. bei *H. Weber*, Partielle Differentialgleichungen, 1, p. 319—527; 2, p. 168—198; p. 438—450 sowie *C. Jordan*, Cours d'Analyse, Bd. 3, zweite Auflage, Paris 1896, p. 380—458.^{401a})

Explizite Formeln für die konforme Abbildung spezieller einfach zusammenhängender Gebiete in & auf ein Kreisgebiet sowie spezieller schlichtartiger Polyeder auf eine Kugel finden sich in großer Zahl in den Abhandlungen von H. A. Schwarz. Man vergleiche ferner G. Holzmüller, Einführung in die Theorie der isogonalen Verwandtschaft und der konformen Abbildung mit Anwendung auf mathematische Physik, Leipzig 1882, sowie die in der Literaturübersicht angeführten Bücher über konforme Abbildung von L. Lewent, L. Bieberbach und E. Study. Verschiedene Beispiele sind von T. Levi-Civita, U. Cisotti und H. Villat bei Behandlung hydrodynamischer Probleme betrachtet worden.

Explizite Formeln für die konforme Abbildung des Gebietes, das übrig bleibt, wenn man aus einer Halbebene eine unendliche Anzahl von Halbkreisflächen, deren geradliniges Randstück allemal auf der reellen Achse liegt, entfernt, auf eine Halbebene gibt unter gewissen einschränkenden Voraussetzungen G. Cassel.⁴⁰¹)

Mit der konformen Abbildung des von zwei aufeinander senkrechten geradlinigen Schlitzen begrenzten zweifach zusammenhängenden Gebietes in $\mathfrak E$ auf ein Kreisringgebiet beschäftigen sich E. $B\ddot{a}hr^{405}$) und J. Thomae. 106) 407)

Besondere durch elliptische Funktionen ausführbare konforme Abbildungen vgl. bei R. Fricke, II B 3 Nr. 76.

- 401^a) Weitere Literatur: *H. Petrini*, Arkiv för Mat. Bd. 11 (1916) Nr. 13. 402) *H. A. Schwarz*, Ges. Abh. 2, p. 65-83; p. 84-101; p. 102-107; p. 211 bis 259; p. 320-326.
- 403) Vgl. etwa T. Levi-Civita, Rend. del Circ. Mat. di Palermo 23 (1907), p. 1-3; U. Cisotti, ebendort, 25 (1908), p. 145-179; H. Villat, loc. cit. 160).
- 404) T. Cassel, Acta math. 15 (1891), p. 33-44. Der besondere Fall, wenn die Zahl der Kreise endlich ist, ist bereits früher von H. Weber. Gött. Nachr. 1886, p. 359-370, betrachtet worden.
 - 405) E. Bähr, Inaugural-Dissertation, Jena 1905.
 - 406) J. Thomae, Leipz. Berichte 58 (1906), p. 172-191.
- 407) Mit weiteren besonderen Fällen beschäftigen sich F. Lindemann, Münch. Ber. 24 (1894), p. 403-422; 25 (1895), p. 219-237; 26 (1896), p. 401-424; J. Goettler, Münch. Ber. 30, p. 165-185; F. J. Müller, Abbildung eines Sphäroidstreifens auf die Ebene, Inaugural-Dissertation, Würzburg; L. Wayland Dowling, Ann. of Math. (2) 6, p. 69-85; J. Nauenberg, Die konforme Abbildung eines Flächenstückes, das von einer algebraischen Kurve 2n Ordnung begrenzt wird, Inaugural-Dissertation, Erlangen.

32. Wirkliehe Bestimmung der Lösung von Randwertproblemen. Besondere Ansätze. Für die wirkliche Bestimmung der Lösung eines Randwertproblems kommen vor allem Reihenentwicklungen in Frage. Für eine Anzahl ebener und räumlicher Gebiete einfacher Natur gelingt es, unendliche Reihen aufzustellen, die sich für die Darstellung der Lösung besonders eignen und namentlich in der mathematischen Physik eine große Rolle spielen. Die zum Teil weit ausgebildete Theorie bildet den Gegenstand einer besonderen Lehre von den Reihenentwicklungen der Potentialtheorie. 408) 409) Eine ähnliche Rolle, wie die Kugelfunktionen für den Kugelkörper spielen bei einem beliebigen dreidimensionalen Gebiete der Klasse B die wiederholt erwähnten von H. Poincaré eingeführten Fundamentalfunktionen (Nr. 17).410)

Für die wirkliche Berechnung der Lösung der beiden ersten Randwertaufgaben hat S. Zaremba das folgende einfache Verfahren angegeben. 412) Es sei T ein beschränktes, der Einfachheit halber einfach zusammenhängendes Gebⁱet der Klasse B in $\mathfrak E$. Es sei (x_0, y_0) ein beliebig gewählter fester Punkt. Man geht von der unendlichen Folge regulärer Potentialfunktionen

$$\begin{array}{l} u(x,y) = \frac{1}{2} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} + \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} - \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} + \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} + \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} + \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} + \{ (x-x_0) - i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big], \\ u(x,y) = \frac{1}{2i} \big[\{ (x-x_0) + i(y-y_0) \}^{h+1} \big$$

⁴⁰⁸⁾ Es handelt sich hier vor allem um Entwicklungen, die nach den Kugel- und verwandten Funktionen fortschieiten. Man vergleiche H. Burkhardt und W. F. Meyer, II A 7 b Nr. 14, 20, 21, 22; A. Wangerin, II A 10; M. Bôcher, Reihenentwicklungen der Potentialtheorie, Leipzig 1894 (weitere Ausführung einer Göttinger Preisschrift, 1893); E. Hilb, Math. Ann. 63 (1907), p. 38—83 sowie den Artikel über allgemeine Reihenentwicklungen von E. Hilb und O. Szász.

⁴⁰⁹⁾ Man vergleiche hierzu auch die in der Fußnote 388) genannten Arbeiten von G. Morera und C. Somigliana.

⁴¹⁰⁾ Vgl. z. B. J. Blumenfeld und W. Mayer, loc. cit. 205).

⁴¹¹⁾ Für die wirkliche Berechnung der Lösung erscheint es vom Vorteil, die Laplacesche Gleichung in besonderen Fällen auf einfachere Differentialgleichungen zurückzuführen. Man vergleiche in diesem Zusammenhang loc. cit. 113) sowie A. Wangerin, Berl. Monatsber. 1878, p. 152—166; E. R. Haentzschel, Inaugural-Dissertation, Berlin 1893; F. H. Safford, Archiv der Math. u. Phys. (3) 13 (1906), p. 223—226; R. Forster, Archiv der Math. u. Phys. (3) 22 (1914), p. 314 bis 319 sowie p. 319—322; O. Tedone, Atti del 4. Congr. Intern. dei Mat. 3 (1969), p. 158—168.

⁴¹²⁾ S. Zaremba, Bull. de l'Acad. des Sc. de Cracovie 1909, p. 125—195. Die Ergebnisse von Zaremba enthalten als Spezialfall die etwas später veröffentlichten Resultate von S. Bernstein, C. R. 148 (1909), p. 1306—1308.

$$v_1 = c_{1,0} + c_{1,1}u_1, \ v_k = c_{k,0} + \sum_{j=1}^{k-1} c_{k,j}v_j + c_{k,k}u_k \ (k = 2, 3, \ldots)$$

und bestimmt $c_{k,j}$ so, daß

$$\int\limits_{\mathcal{S}} v_k ds = 0, \ \int\limits_{\mathcal{S}} v_k \frac{\partial v_k}{\partial n} ds = -1 \ (k=1,2,\ldots), \ \int\limits_{\mathcal{S}} v_j \frac{\partial v_k}{\partial n} ds = 0 \ (j+k)$$

gilt. Jede in T+S stetige, in T reguläre Potentialfunktion u, die so beschaffen ist, daß das Dirichletsche Integral $D_T(u)$ existiert (Nr. 45), läßt sich in eine unendliche Reihe

$$u = \frac{1}{l} \int u ds - \sum_{k=1}^{1 \dots \infty} v_k \int u \frac{\partial v_k}{\partial n} ds \quad (l = \text{Länge von } S)$$

entwickeln. Diese konvergiert in jedem Bereiche in T unbedingt und gleichmäßig⁴¹³) und dürfte zumindest, wenn T und die vorgeschriebenen Randwerte geeigneten Stetigkeitsbedingungen genügen, eine praktisch brauchbare Darstellung der Lösung bilden. In ähnlicher Weise wird man vorgehen, wenn T mehrfach zusammenhängend ist oder den unendlich fernen Punkt enthält. Auch gewinnt man auf diesem Wege fast unmittelbar eine Darstellung der Lösung des zweiten Randwertproblems. Analoge Entwicklungen gelten im Raume.

Die vorstehenden Betrachtungen von Zaremba berühren sich mit einigen späteren Ansätzen von M. Brillouin.⁴¹⁴)

Eine ganz andere Methode zur rechnerischen Bestimmung der Lösung von Randwertaufgaben ist von W. Ritz vorgeschlagen worden. Wir kommen auf diese in einem anderen Zusammenhange weiter unten (Nr. 45) zu sprechen.

Ein Verfahren, das wenigstens im Prinzip gestattet, die konforme Abbildung ausgedehnter Klassen einfach zusammenhängender beschränkter Gebiete in & auf ein Kreisgebiet rechnerisch mit beliebiger Annäherung durchzuführen, ist neuerdings von L. Bieberhach angegeben worden (Nr. 47 p. 358). Auch die neueren Quadratwurzelverfahren (Nr. 47, p. 358—356) kommen für diesen Zweck in Betracht.

Es ist zu erwarten, daß, zumindest bei gewissen speziellen Gebieten, die *Cauchy*sche Integrationsmethode (Ersatz der Differentialgleichung durch eine Differenzengleichung und Übergang zur Grenze) sich auf die *Laplace* sche Differentialgleichung wird übertragen lassen. 415)

⁴¹³⁾ Ohne notwendigerweise in T + S zu konvergieren.

⁴¹⁴⁾ Vgl. M. Brillouin, loc. cit. 327) sowie C. R. 161 (1915), p. 775-778.

⁴¹⁵⁾ Vgl. G. Fubini, Rend. del. Circolo Mat. di Palermo 17 (1903), p. 222 bis 235 [p. 235], wo die Fläche eines Rechtecks betrachtet wird, sowie J. Le Roux, C. R. 156 (1913), p. 437—440; p. 670—672 sowie Journ. de Math.

33. Lösung in Abhängigkeit von der Begrenzung. Es sei $T_n(n=1,2,\ldots)$ eine unendliche Folge beschränkter Gebiete der Klasse B in $\mathfrak S$, die gegen ein Gebiet T derselben Natur konvergieren. (Ist d_n Maximum des Abstandes eines Randpunktes des Gebietes T_n von S, so ist lim $d_n=0$.) Es sei K^* ein Kreisgebiet, das T und $T_n(n=1,2,\ldots)$ enthält, f eine in K^* erklärte stetige Funktion, u und u_n die entsprechend in T+S und T_n+S_n stetigen, in T oder T_n regulären Potentialfunktionen, die auf S bzw. S_n gleich f sind.

Aus den Entwicklungen der Nr. 17 läßt sich leicht die Beziehung $\lim_{n\to\infty}u_n=n$ (der Grenzübergang in jedem Bereiche in T gleichmäßig) ableiten: Die Lösung des ersten Randwertproblems ändert sich mit dem Gebiete stetig. Eine Reihe sehr weit gehender Sätze verwandter Natur wird weiter unten, Nr. 49 (siehe auch Nr. 34), besprochen. An dieser Stelle wollen wir zunächst in aller Kürze auf gewisse auf J. Hadamard zurückgehende Ausätze hinweisen, die mit den bekannten Betrachtungen der Volterraschen Theorie der Funktionen von Linien zusammenhängen.

Es sei etwa T ein beschränktes Gebiet der Klasse B in \mathfrak{E} , \bar{T} ein variables Gebiet derselben Natur, das gegen T konvergiert. Bis auf unendlich kleine Größen höherer Ordnung ist in T

$$(1) \quad G(\xi,\eta;x,y) = \frac{1}{2\pi} \int_{\mathcal{S}} \frac{\partial}{\partial n_t} G(\xi,\eta;t) \frac{\partial}{\partial n_t} G(x,y;t) \delta n_t dt,$$

unter (ξ, η) und (x, y) beliebige Punkte in T, unter δn_t den als unendlich klein vorausgesetzten Abstand des Punktes t auf S von \overline{S} verstanden. Liegt eine von einem Parameter α stetig abhängende Schar von Gebieten der Klasse B vor, so ist nach (1), sobald gewisse leicht angebbare Bedingungen erfüllt sind,

Ist die Greensche Funktion eines Gebietes der Schar bekannt, so bietet die Formel (2) eine Möglichkeit dar, diese für ein beliebiges Gebiet der Schar zu bestimmen. Schaltet man etwa zwischen ein

$$G^{II}(\xi, \eta; x, y) - \bar{G}^{II}(\xi, \eta; x, y).$$

^{(6) 10 (1914),} p. 189-230. Weitere Literatur: E. E. Levi, I problemi dei valori al contorno per le equazioni lineari totalmente ellittiche alle derivate parziali, Mem. della Soc. ital. delle Science (3) 16 (1909), p. 1-112 [p. 1-16]; A. Viterbi, Rend. del R. Istit. Lomb. di Sc. e Lett. (2) 47 (1914/15), p. 763-796.

⁴¹⁶⁾ Vgl. etwa J. Hadamard, Leçons sur le Calcul des Variations, Paris 1916, p. 303-305. Dort findet sich p. 307-312 eine Formel für

Kreisgebiet und ein beliebiges einfach zusammenhängendes Gebiet der Klasse B in $\mathfrak E$ eine geeignete stetige Schar von Gebieten ein, so kann man auf diesem Wege u. a. eine neue Auflösung des ersten Randwertproblems gewinnen.⁴¹⁷)

Der soeben skizzierte methodische Gedanke läßt sich auch wie folgt anders durchführen.

Es sei T ein Gebiet der Klasse Bh in \mathfrak{G} , T' das durch die Transformation

(3)
$$\xi = x + \varepsilon \mathfrak{P}_1(x, y), \quad \eta = y + \varepsilon \mathfrak{P}_2(x, y),$$

unter \mathfrak{P}_1 und \mathfrak{P}_2 beständig konvergierende Potenzreihen verstanden, für einen dem absoluten Betrage nach hinreichend kleinen Wert des reellen Parameters ε aus T abgeleitete Gebiet (der Klasse Bh). Die Differentialgleichung

$$\frac{\partial^2 u}{\partial \xi^2} + \frac{\partial^2 u}{\partial \eta^2} =$$

geht vermöge (3) in eine Differentialgleichung

(5)
$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \varepsilon \mathfrak{P}_3\left(x, y, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial^2 u}{\partial x^2}, \frac{\partial^2 u}{\partial x \partial y}, \frac{\partial^2 u}{\partial y^2}, \varepsilon\right)$$

über, unter $\mathfrak{P}_3(x,y,p,q,r,s,t,\varepsilon)$ eine für hinreichend kleine ε , alle (x,y) in T+S und alle p,q,r,s,t reguläre Funktion ihrer acht Argumente verstanden. Es sei f'(s') eine nebst ihren Ableitungen erster und zweiter Ordnung stetige Funktion auf S', und es möge $\frac{d^s f'(s')}{ds'^s}$ einer H-Bedingung genügen. Der Funktion f'(s') wird durch (3) eine Funktion f(s) derselben Natur auf S zugeordnet. Die Auflösung des ersten Randwertproblems der Potentialtheorie in T' (Randwerte f'(s')) ist der Bestimmung derjenigen in T+S stetigen, in T regulären Lösung der Differentialgleichung (5), die auf S gleich f(s) ist, äquivalent. Die zuletzt erwähnte Aufgabe läßt sich, wenn das erste Randwertproblem der Potentialtheorie in T als gelöst angenommen wird, für hinreichend kleine ε etwa durch sukzessive Approximationen auf-

⁴¹⁷⁾ Vgl. die Andeutungen von J. Hadamard, loc. cit. 416), p. 251 sowie seine eingehenden Ausführungen über die Greensche Funktion der Gleichung $\Delta\Delta u=0$ (J. Hadamard, Mémoire sur le problème d'analyse relatif à l'équilibre des plaques élastiques encastrées, Mémoires présentés par divers savants à l'Acad des Sc. 33 (1908), p. 1--128). Man vergleiche ferner P. Lévy, Sur les équations intégro-différentielles définissant des fonctions de lignes, Thèse, Paris 1911, p. 1-120, abgedruckt im Journ. de l'Éc. polyt. (2) 17 (1913), p. 1-120; Rend. del Circ. Mat. di Palermo 33 (1912), p. 281-312; 34 (1912), p. 187-229; 37 (1914), p. 113-168, ferner eine lange Reihe von Arbeiten von V. Volterra und seinen Schülern.

lösen. 418) Man gewinnt damit eine Darstellung der Lösung für eine Schar von Gebieten in einer Umgebung von T^{419}

Es ist zu erwarten, daß man, wenn nötig, nach einer mehrfachen Wiederholung des soeben besprochenen Verfahrens, zumindest unter gewissen Voraussetzungen, beispielsweise von einem Kreisgebiete zu einem beliebig vorgegebenen Gebiete allgemeinerer Natur gelangen wird.

IV. Umfassende Methoden. Allgemeine Theorie der konformen Abbildung.

34. Leitgedanken. Heuristisches. Es sei T ein beschränktes Gebiet in $\mathfrak{E}(\mathfrak{E}_{m})$ oder im Raume; es sei f eine in T+S stetige Funktion. Es sei $T_n(n=1, 2, ...)$ irgendeine Folge ineinandergeschachtelter Gebiete der Klasse B, die gegen T konvergieren (vgl. Nr. 4, insb. die Fußnote 37). Es möge u_n diejenige in $T_n + S_n$ stetige, in T_n reguläre Potentialfunktion bezeichnen, die auf Sagleich f ist. Den Sätzen der Nr. 12 zufolge kann es höchstens eine in T + S stetige, in T reguläre Potentialfunktion u geben, die auf S den Wert f annimmt. Ist u vorhanden, so läßt sich aus Stetigkeitsgründen jedem $\varepsilon > 0$ ein $n(\varepsilon)$ zuordnen, so daß für $n > n(\varepsilon)$ auf $S_n \dots |u-f| < \varepsilon$, daher in $T_n + S_n \dots |u - u_n| < \varepsilon$ wird. Es gilt mithin

$$(1) u = \lim_{n \to \infty} u_n.$$

In jedem Bereiche in T ist der Grenzübergang gleichmäßig.

Bei unendlich vielblättrigen Gebieten (wie bei den zweidimensionalen Gebieten der allgemeinsten Natur überhaupt) hat man sich, sofern es sich um das erste Randwertproblem handelt, durch Fragestellungen der Theorie der konformen Abbildung und der automorphen Funktionen veranlaßt, auf die Bestimmung von Potentialfunktionen beschränkt, die in einem vorgeschriebenen Punkte (ξ_0, η_0) in T_1 eine

$$\xi^2(1-\varepsilon) + \eta^2 = 1 \ (\varepsilon < 1)$$

auf die Auflösung der ersten Randwertaufgabe der Differentialgleichung

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = \varepsilon \frac{\partial^2 u}{\partial x^2}$$

für das Gebiet des Einheitskreises zurück. Hier führen die sukzessiven Approximationen für alle $\varepsilon < 1$ zum Ziele.

⁴¹⁸⁾ Vergleiche A. Korn, loc. cit. 55) h) sowie, Schwarz Festschrift, Berlin 1914, p. 215-229; Ch. H. Müntz, loc. cit. 31). Siehe ferner S. Bernstein, Math. Ann. 62 (1906), p. 253-271; 69 (1910), p. 82-136; L. Lichtenstein, Monatshefte f. Math. u. Physik 28 (1917), p. 3-51.

⁴¹⁹⁾ In der in der Fußnote 418) an zweiter Stelle genannten Arbeit führt Korn das erste Randwertproblem für das Gebiet der Ellipse

gewisse vorgegebene Unstetigkeit aufweisen und am Rande verschwinden.⁴²⁰) Augenscheinlich ist auch jetzt noch, falls *u* existiert,

$$(2) u = \lim_{n \to \infty} u_n,$$

sofern u_n in (ξ_0, η_0) die vorgeschriebene Unstetigkeit hat und auf S_n verschwindet.

Wir kehren zu den eingangs eingeführten Annahmen zurück. Es mögen überdies $D_1 f$ in T stetig sein und es möge das "Dirichletsche Integral" $D_T(f) = \lim_{n = \infty} \int \left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right] dx dy$

existieren. Für alle n ist $D_{T_n}(u_n)$ vorhanden und $\leq D_{T_n}(f) \leq D_T(f)$. Ist u vorhanden, so folgt aus (1) leicht

(3)
$$D_{T_n}(u) = \lim_{m \to \infty} D_{T_n}(u_{n+m}); \ D_{T_n}(u_{n+m}) \le D_{T_{n+m}}(u_{n+m}) \le D_T(f).$$

Also ist $D_T(u)$ vorhanden und $\leq D_T(f)$. Das Gleichheitszeichen gilt nur, wenn $u \equiv f$ ist.⁴²¹).

Für die Auflösung des ersten Randwertproblems ergeben sich hiernach zunächst die beiden folgenden Wege.

- 1. Man bestimmt wie vorhin die approximierenden Potentialfunktionen u_n . Hat die Aufgabe eine Lösung u, so muß der Grenzwert $\lim_{n=\infty} u_n$ existieren. Es gilt $u=\lim_{n=\infty} u_n$. Es dürfte also möglich sein, zumindest wenn T und f gewissen Voraussetzungen genügen und die Folge $T_n(n=1,2,\cdots)$ in geeigneter Weise gewählt ist, die Beziehungen $u=\lim_n u_n$ und u=f auf S zu beweisen.
- 2. Es sei f so gewählt, daß D_1f in T stetig sind und $D_T(f)$ existiert. Es sei \overline{u} irgendeine in T+S stetige Funktion, so daß $D_1\overline{u}$ in T stetig sind, auf $S\cdots\overline{u}=f$ ist und $D_T(\overline{u})$ existiert.

Die untere Grenze aller Werte $D_T(\overline{u})$ heiße d. Man geht von einer Folge wie \overline{u} beschaffener Funktionen $u^{(1)}, u^{(2)}, \ldots$ aus, so daß $\lim_{n \to \infty} D_T(u^{(n)}) = d$ gilt. Hat das Randwertproblem eine Lösung, so ist $D_T(u) = d$.

Man wird darum versuchen, von der Folge $u^{(1)}, u^{(2)}, \ldots$ durch geeignete Operationen zu u zu gelangen (Nr. 45).

Analoge Ansätze bieten sich bei der zweiten und der dritten Randwertaufgabe. Auch liegt es nahe, in manchen Fällen Gebietsfolgen einzuführen, die das gegebene Gebiet von außen approximieren.

⁴²⁰⁾ Dies besagt, daß jedem $\delta > 0$ ein $n(\delta)$ zugeordnet werden kann, so daß für alle $n > n(\delta)$ in $\mathfrak{T} - T_{\pi} \dots |u| < \delta$ ist.

⁴²¹⁾ Vgl. loc. cit. 153), namentlich R. Courant, Journ. f. Math. 144 (1914), p. 190-211 [p. 194-195].

Liegen vorgeschriebene, wenn auch nur logarithmische Unstetigkeiten (in der Ebene) vor, so ist $D_{T_n}(u)$ nicht mehr vorhanden. Man wird in diesem Falle versuchen, nach Abtrennung eines geeigneten Summanden, zu einer Funktion überzugehen, deren Dirichletsches Integral einen endlichen Wert hat. Die neue zu bestimmende Funktion braucht nicht notwendig der Gleichung $\Delta u = 0$ zu genügen (Nr. 45d).

Insbesondere wird man die vorhin angedeuteten Methoden auf die Bestimmung der Greenschen Funktion $G(\xi, \eta; x, y)$ und des Strömungspotentials $\Re(\xi, \eta; x, y)^{422}$) anwenden (Nr. 40, 42 und 45 d). Handelt es sich um ein einfach zusammenhängendes Gebiet⁴²³), so wird man, wenn $G(\xi, \eta; x, y) = U(x, y)$ vorhanden ist, erwarten, daß dieses durch Vermittlung der Funktion $e^{-(U+iV)}$ (V zu U konjugiert) auf die Fläche des Einheitskreises konform abgebildet wird. Liegt noch spezieller ein beschränktes Gebiet T in \mathfrak{E}_m vor, so entsteht die weitere Aufgabe, zu untersuchen, ob und wann T+S ümkehrbar eindeutig und stetig auf K+C bezogen wird. Liegt dieser Fall vor, so läßt sich das erste Randwertproblem, wie leicht ersichtlich, auf die erste Randwertaufgabe in K zurückführen und mithin vollständig erledigen.421)

Geht man von dem Strömungspotentiale aus, so wird man in Verallgemeinerung der elementaren Ergebnisse der Nr. 24h eine Abbildung auf ein "Schlitzgebiet" erwarten.

Über die funktionentheoretischen Methoden der konformen Abbildung vgl. Nr. 47, über die Kontinuitätsmethode Nr. 46.

35. H. A. Schwarz, Zur Theorie der Abbildung. Die vorhin skizzierten Betrachtungen sind seit dem Erscheinen der grundlegenden Abhandlung von H. A. Schwarz, Zur Theorie der Abbildung 425), mit steigendem Erfolge angewandt worden. In dieser Arbeit stellt sich

$$\Re(\xi, \eta; x, y) = \lim_{n = \infty} K_n(\xi, \eta; x, y),$$

unter (ξ, η) einen Punkt in T_1 , unter K_n das Strömungspotential in T_n verstanden, sofern dieser Grenzwert existiert. Diese Definition nimmt P. Koche zum Ausgangspunkt (Nr. 42). Eine andere allgemeine Definition vergleiche Nr. 42 und 45 d.

423) Das im übrigen von der allgemeinsten Natur sein kann.

424) Gelingt es, die konforme Abbildung von T auf K auf einem von den unter 1. und 2. angegebenen Verfahren unabhängigen Wege zu erhalten (vgl. Nr. 47), so gewinnt man ein neues Verfahren zur Auflösung des ersten Randwertproblems. Dieser Gedanke läßt sich auch auf mehrfach zusammenhängende Gebiete ausdehnen. Vgl. die Fußnoten 592) und 160).

425) Programm d. eidg. polyt. Schule in Zürich f. d. Schuljahr 1869—1870; Ges. Abh. 2, p. 108-132.

⁴²²⁾ Die am nächsten liegende Definition von & wäre:

H. A. Schwarz die Aufgabe, irgendein beschränktes, einfach zusammenhängendes konvexes Gebiet T in der Ebene z auf die Fläche K des Einheitskreises C in der Ebene Z konform abzubilden. Es sei z_0 ein Punkt in T. Das Gebiet T wird durch eine Folge von Gebieten $T'_n(n=1,2,\cdots)(T'_n+S'_n>T'_{n+1}+S'_{n+1})$, deren Rand allemal aus Strecken parallel zu der x- oder der y-Achse besteht, von außen approximiert. Es sei $z'_n(Z)$ diejenige Funktion, durch deren Vermittlung K auf T'_n konform abgebildet wird, sodaß $z'_n(0)=z_0$, $\frac{dz'_n(0)}{dZ}$ reell und > 0 ist.

Unter fast ausschließlicher Verwendung funktionentheoretischer Hilfsmittel beweist nun Schwarz, daß die Funktionen $z'_n(Z)$ in K gegen eine daselbst reguläre Funktion z(Z) gleichmäßig konvergieren. Durch Vermittlung von z(Z) wird K auf T konform abgebildet. Der Beweis stützt sich wesentlich auf den folgenden einfachen Hilfssatz:

Es sei f(Z) eine für |Z| < 1 reguläre und für $|Z| \le 1$ stetige, den Bereich $|Z| \le 1$ schlicht abbildende Funktion. Ist f(0) = 0 sowie für |Z| = 1, $\varrho_1 \le f(Z)| \le \varrho_2$, so ist für $|Z| \le 1 \dots \varrho_1|Z| \le |f(Z)| \le \varrho_2|Z|^{427}$

Die Ergebnisse von Schwarz liefern insbesondere einen Existenzbeweis der zu T gehörigen Greenschen Funktion $G(\xi, \eta; x, y)$, indessen nicht ohne weiteres auch die Lösung des ersten Randwertproblems.⁴²⁸

⁴²⁶⁾ Weitere Voraussetzungen bezüglich der Randkurve S werden nicht gemacht; sie kann darum z. B. unendlich viele Ecken haben.

⁴²⁷⁾ C. Carathéodory teilt (Math. Ann. 72 (1912), p. 107—144 [p. 110]) im wesentlichen nach H. Poincaré (Acta Math. 4 (1884), p. 201-312 [p. 231-232] einen funktionentheoretischen Beweis für den folgenden von ihm als das "Schwarzsche Lemma" bezeichneten, dem Hilfssatze des Textes nahe verwandten Satz mit: Es sei f(Z) im Gebiete |Z| < 1 regulär und es sei daselbst $|f(Z)| \le 1$. Ist f(0) = 0, so ist entweder $f(Z) = e^{i\alpha} Z(\alpha \text{ konstant})$, oder es ist tür |Z| < 1, |f(Z)| < |Z|. Offenbar ist dann auch |f'(0)| < 1. In derselben Abhandlung [p. 111-118] sowie loe, cit. 290; [p. 21-25], an letzter Stelle zum Teil unter Benutzung einer brieflichen Mitteilung von J. Plemelj, gibt Carathérdery eine Reihe wichtiger Verallgemeinerungen dieses für die Theorie der konformen Abbildung außerordeutlich nützlichen Satzes. Nach einer anderen Richtung gehende Verallgemeinerungen finden sich bei E. Lindelöf, Acta Soc. Sc. Fenn. 35 (1908) Nr. 7, p. 1-35. W. Blaschke. Leipz. Berichte 67 (1915), p. 194-200 [p. 198 sowie p. 200], betrachtet den allgemeineren Fall, daß f(Z) in dem Gebiete |Z| < 1 mehrere (auch unendlich viele) vorgegebene Nullstellen hat. Man vergleiche ferner G. Pick, Mat. Ann. 77 (1915), p. 1-6 sowie P. Koebe, Acta Math. 40 (1915), p. 251—290 [p. 262—266].

⁴²⁸⁾ Ist $G(\xi, \eta; x, y)$ einmal bestimmt, so läßt sich auf einem Umwege auch die Lösung des ersten Randwertproblems gewinnen (Nr. 39). Vgl. L. Lichtenstein, Ber. d. Berl. Math. Ges. 15 (1916), p. 92—96.

Die Bedeutung der betrachteten Abhandlung von H. A. Schwarz beruht einmal in der scharfen Trennung zwischen dem Problem der konformen Abbildung des Inneren eines Gebietes auf das Innere einer Kreisfläche und dem Problem des Anschlusses dieser Abbildung an den Rand, sodann in der Benutzung einer Folge approximierender Gebiete.

Beide methodischen Gedanken kommen an dieser Stelle zum ersten Male vor.

36. Ergebnisse von A. Harnack. Méthode de balayage von H. Poinearé. Es sei T ein beschränktes, einfach zusammenhängendes Gebiet in \mathfrak{E} und $T_n(n=1,2,\ldots)$ eine Folge ineinander geschachtelter Polygonflächen, die gegen T konvergieren. Es sei (ξ, η) ein Punkt in T_1 und $G_n(\xi, \eta; x, y)$ die zu T_n gehörige Greensche Funktion. Offenbar ist in $T_n \ldots G_n > 0$, darum auf S_n für alle $p \ldots G_{n+n} - G_n > 0$, folglich in $T_n + S_n \dots G_{n+p} > G_n$. Die unendliche Reihe $(G_2 - G_1)$ $+ (G_3 - G_2) + \cdots$ ist dem Harnackschen Satze über positive Potentialfunktionen (Nr. 16) zufolge, wegen der Existenz einer leicht angebbaren Majorante, gleichmäßig konvergent. Gelingt es nachzuweisen, daß lim $G_{\mathfrak{a}}(\xi,\eta;x,y)=G(\xi,\eta;x,y)$ in T+S, außer im Punkte (ξ, η) , stetig ist und auf S verschwindet, so ist $G(\xi, \eta; x, y)$ die zu T gehörige Greensche Funktion. Die vorstehenden Überlegungen stammen von A. Harnack her. 429) Es sei P ein Punkt auf S und es sei möglich, eine Polygonfläche artheta anzugeben, deren Begrenzung arLetamit T+S nur den Punkt P gemeinsam hat, während T in Θ liegt. Ist Γ die zu Θ gehörige Greensche Funktion (Nr. 24b), so zeigt nunmehr Harnack, daß $G \leq \Gamma$, mithin in $P \dots G = 0$ ist. Damit ist beispielsweise die Existenz der Greenschen Funktion für alle Gebiete der Klasse N ohne nach innen gerichtete Spitzen, die indessen durch eine elementare konforme Abbildung leicht zu eliminieren sind, erwiesen. 430)

Das Verfahren läßt sich auf den Raum ausdehnen.

Es sei T ein beschränktes Gebiet in $\mathfrak E$ oder im Raume, K ein Kreisgebiet (Kugelkörper), das T+S enthält, f eine in K+C stetige

⁴²⁹⁾ A. Harnack, Grundlagen, p. 116-121. Vgl. auch A Harnack, Leipz. Ber. 38 (1886), p. 144-169.

⁴³⁰⁾ Ist z die (einzige) nach innen gekehrte Spitze von S, so wende man z. B. die durch die Funktion $\sqrt{z-z_0}$ vermittelte Abbildung an. Man kann sich auch einer Polygonfläche Θ bedienen, die in z_0 einen Winkel $\alpha\pi > 2\pi$ einschließt. Ist $\alpha > 2$, so überdeckt $\Theta + \Sigma$ die Ebene teilweise mehrfach. Majoranten dieser Art benutzt häufig P. Koebe in seinen Arbeiten zur Theorie der Uniformisierung. A. Paraf bedient sich des von einer Ellipse und der Verbindungsgeraden ihrer Brennpunkte begrenzten zweifach zusammenhängenden Gebietes (vgl. A. Paraf, loc. cit. 431); E. Picard, Traité 2, p. 100—101).

Funktion. Zur Bestimmung derjenigen in T+S stetigen, in T regulären Potentialfunktion u, die auf S gleich f ist, hat Poincaré zuerst im Jahre 1887 ein bemerkenswertes Verfahren angegeben (H. Burkhardt und W. F. Meyer, HA7b Nr. 31). 431). Das Wesen der Methode läßt sich wie folgt zusammenfassen. Man darf vor allem in K+Cdie Funktionen f, $D_1 f$, $D_2 f$ stetig und $\Delta f \leq 0$ voraussetzen.⁴³²) Es sei:

in der Ebene
$$\Phi(\xi, \eta) = -\frac{1}{2\pi} \int_{K} \Delta f \log \frac{1}{\varrho} dx dy$$
, im Raume $\Phi(\xi, \eta, \xi) = -\frac{1}{4\pi} \int_{K} \Delta f \frac{1}{\varrho} dx dy dz$.

In T ist augenscheinlich $\Delta(\Phi - f) = 0$. Das Gebiet T wird nun durch abzählbar unendlichviele Kreisflächen (Kugelkörper) $K_n(n=0)$ 1, 2, ...), die sich nur in der Umgebung des Randes häufen, ausgeschöpft. Man ordne sie in eine Reihe $K^{(n)}(n=0,1,2,\ldots)$ so an, daß jedes Individuum unendlich oft vorkommt, etwa K_0, K_1, K_0, K_1 K_2, K_0, \ldots Es wird nun eine Folge in T stetiger Funktionen $u^{(n)}(n=0)$ 1, 2, ...) durch die folgenden Festsetzungen bestimmt: $\Delta u^{(0)} = 0$ in $K^{(0)}$, $u^{(0)} = \Phi$ in $K - K^{(0)}$; $\Delta u^{(1)} = 0$ in $K^{(1)}$, $u^{(1)} = u^{(0)}$ in $K - K^{(1)}$; $\Delta u^{(2)}$ = 0 in $K^{(2)}$, $u^{(2)} = u^{(1)}$ in $K - K^{(2)}$ usf.⁴³³) Es ist $u^{(0)} > u^{(1)} > u^{(2)} > \cdots$ Die Folge $u^{(n)}$ (n = 0, 1, 2, ...) konvergiert in jedem Bereiche in T gleichmäßig gegen eine daselbst reguläre Potentialfunktion. Funktion $u = \lim u^{(n)} - \Phi + f$ ist die Lösung der Randwertaufgabe. Man kann diese, wie man sieht, gewinnen, ohne andere Hilfsmittel als die Poissonschen Integrale zu benutzen. Poincaré faßt, von u⁽⁰⁾

$$f_1 = - \; \frac{1}{2 \, \pi} \int\limits_K^{\bullet} \! \! \psi_1 \log \frac{1}{\varrho} \; dx \, dy, \quad f_2 = - \; \frac{1}{2 \, \pi} \int\limits_K^{\bullet} \! \! \psi_2 \log \frac{1}{\varrho} \; dx \; dy.$$

Es gilt $\Delta f_3 = \Delta [f - (f_1 - f_2)] = 0$. Die Funktion f_3 kann als bekannt gelten. Die Funktionen f_1 , f_2 , $D_1 f_1$, $D_1 f_2$, $D_2 f_1$, $D_2 f_2$ sind stetig, ferner ist $\Delta f_1 \leq 0$, $\Delta f_2 \leq 0$. Es genügt, das Randwertproblem unter Zugrundelegung der Funktionen f_1 und f_2 aufzulösen.

433) In dieser Fassung erscheint die Balayage-Methode mit dem alternierenden Verfahren verwandt.

⁴³¹⁾ Vgl. H. Poincaré, C. R. 104 (1887), p. 44-46; Amer. Journ. of Math. 12 (1890), p 211-294 [p. 216-227]; Potentiel, p. 260-288. Poincaré legt seinen Betrachtungen das Newtonsche Potential zugrunde. Auf das logarithmische Potential ist sein Verfahren von A. Paraf übertragen worden, Annales de Toulouse 6 (1892), H, p. 1-75; siehe auch É. Picard, Traité 2. p. 89-108.

⁴³²⁾ Der Nr. 16 gemäß darf man f in K+C analytisch und regulär voraussetzen. Es sei in einem Teile Θ_1 von $K \dots \Delta f < 0$, in $K - \Theta_1$ hingegen $\Delta f > 0$. Wir setzen $\Delta f = \psi_1 - \psi_2$; $\psi_1 = \Delta f$ in Θ_1 , $\psi_2 = 0$ in $K - \Theta_1$; $\psi_2 = 0$ $-\Delta f$ in $K - \Theta_1$, $\psi_2 = 0$ in Θ_1 . Es sei (in \mathfrak{E})

302

ausgehend, alle $u^{(n)}$ als Potentiale gewisser Massenbelegungen auf und geht von $u^{(n)}$ zu $u^{(n+1)}$ über, indem er die in $K^{(n)}$ befindlichen Massen durch geeignete auf $C^{(n)}$ verteilte Massen ersetzt ("balayage" von $K^{(n)}$). Die Balayage-Methode führt auf eine in T reguläre Potentialfunktion, wie die Begrenzung des (als beschränkt vorausgesetzten) Gebietes (und damit zugleich sein Zusammenhang) auch beschaffen sei. Ob u die Randbedingung erfüllt, bedarf einer besonderen Untersuchung.

Eine Anwendung der Balayage-Methode auf unendlichvielblättrige Gebiete vgl. Nr. 40.

37. H. Poincaré, Sur un theorème de la théorie générale des fonctions. Betrachtungen von *Harnack* (Nr. 36) berühren sich mit den fundamentalen Entwicklungen der *Poincaré* schen Abhandlung, Sur un theorème de la théorie générale des fonctions. 434)

In Verallgemeinerung der zuerst von H. A. Schwarz Anfang der achtziger Jahre in mündlichen Mitteilungen an F. Klein und H. Poincaré angegebenen Idee einer zu einer geschlossenen Riemannschen Fläche gehörigen Überlagerungsfläche, führt Poincaré eine zu einem System beliebiger analytischer Funktionen $f_1(z), \ldots, f_n(z)$ gehörige Überlagerungsfläche I durch folgende Festsetzungen ein: Ein in der schlichten Ebene z geschlossener Weg Γ , auf dem f_1, \ldots, f_m sich regulär verhalten, gilt auf I dann nur und nur dann als geschlossen, wenn: 1. alle Funktionen f_1, \ldots, f_m nach Umlauf von Γ zu den Ausgangswerten zurückkehren, 2. I durch stetige Deformation auf einen Punkt reduziert werden kann, ohne daß unterdessen die Eigenschaft 1. aufhört zu gelten. Das Gebiet I ist einfach zusammenhängend. Gelingt es I auf ein Gebiet in E konform abzubilden, so ist damit, wie zuerst H. A. Schwarz in dem einfachsten Falle einer algebraischen Funktion bemerkt hat, eine Uniformisierung der Funktionen $f_1(z), \ldots,$ $f_m(z)$ geleistet. (435)

Es sei z=z(Z) irgendeine automorphe Funktion mit Grenzkreis (Einheitskreis) in der Ebene Z. Durch Vermittlung der inversen Funktion Z=Z(z) wird ein gewisses über der z-Ebene ausgebreitetes Gebiet \mathfrak{T}_0 auf die Fläche des Einheitskreises konform abgebildet. Die Funktion U_0 =log $\frac{1}{|Z|}$

^{434,} Bull. de la soc. math. de France, 11 (1883), p. 112-125.

⁴³⁵⁾ Vgl. die historischen Bemerkungen bei P. Koebe, Math. Ann. 67 (1909) p. 145-224 [p. 147] sowie das Referat von R. Fricke, II B 4 Nr. 39 [p. 455-456]. Dort findet sich auch nüheres über das Problem der Uniformisierung, insbesondere über die Normierung der uniformisierenden Variablen. Was die Konstruktion der Überlagerungsfläche betrifft, vergleiche u. a. P. Koebe, Journal für Math. 1910 (138), p. 192-253; 1911 (139), p. 251-292; H. Weyl, loc. cit. 560) p. 1-68 L. Bieberbach, Math. Ann. 78 (1918), p. 312-331.

ist eine in \mathfrak{T}_0 , außer in dem Punkte $\xi=z(0)$, reguläre positive Potentialfunktion; die Funktion z=z(Z) wird so gewählt, daß ξ in das Innere der zu f_1,\ldots,f_m gehörigen Riemannschen Fläche \mathfrak{T} fällt. Es sei \mathfrak{T}^* eine zu f_1,\ldots,f_m,Z gehörige Überlagerungsfläche. Als Ortsfunktion auf \mathfrak{T}^* aufgefaßt, ist U_0 eine, außer in $\xi=(\xi,\eta)$ und im allgemeinen (abzählbar) unendlichvielen hierzu homologen Punkten, reguläre, positive Potentialfunktion.

Als solche sei sie mit \overline{U}^* bezeichnet.

Poincaré bedient sich an der betrachteten Stelle einer Funktion z(Z), die drei Werte ausläßt.⁴³⁶) Die Scheitel des Fundamentalpolygons liegen sämtlich auf dem Grenzkreise.

Das Gebiet \mathfrak{T}^* wird (Nr. 4) als Grenze einer Folge ineinandergeschachtelter Gebiete $\overline{T}_1, \overline{T}_2, \ldots$ der Klasse D dargestellt. Es sei $\overline{G}_n(\xi, \eta; x, y)$ die zu \overline{T}_n gehörige klassische Greensche Funktion. Es ist, da \overline{U}^* für alle n auf S_n positiv ist, $\overline{G}_1 < \overline{G}_2 < \cdots < \overline{U}^*$. Durch Vermittlung der Funktion $\tau = e^{-(G^* + i H^*)} (\overline{G}^* = \lim_{n = \infty} G_n, \overline{H}^*$ zu \overline{G}^* konjugiert), wird, wie Poincaré zuletzt zeigt, \mathfrak{T}^* auf ein Gebiet in \mathfrak{E} konform abgebildet. Offenbar ist $\tau \leq 1$. Wird von den drei ausgelassenen Punkten abgesehen, so werden durch die Beziehungen $z = F_0(\tau), f_1(z) = F_1(\tau), \ldots, f_m(z) = F_m(\tau)$ die Funktionen f_1, \ldots, f_m uniformisiert.

Wenngleich das Problem der Uniformisierung beliebiger analytischer (ja selbst algebraischer) Funktionen in der betrachteten Arbeit von *Poincaré* in wesentlichen Stücken unerledigt blieb, so ist doch diese Abhandlung, durch die weiten Perspektiven, die sie der Forschung eröffnet hatte, für die Folge von der größten Wichtigkeit geworden.⁴³⁸)

38. Einfach zusammenhängende schlichte Gebiete. Greensche Funktion. Konforme Abbildung auf ein Kreisgebiet. Es sei T ein beschränktes, einfach zusammenhängendes Gebiet in \mathfrak{E} . Der erste vollständige Existenzbeweis der zu T gehörigen Greenschen Funktion ist in Weiterverfolgung der Gedanken von $Poincar\acute{e}$ und Harnack von $W.\ F.\ Osgood$ gegeben worden. Die Funktion $G(\xi,\eta;x,y)$ wird ähnlich wie bei Harnack gebildet. Wesentlich ist nur der Beweis, daß $G(\xi,\eta;x,y)$ auf S verschwindet.

Es seien a, b, c drei beliebige Punkte auf S. Längs des Kreisbogens von a über b nach c denken wir uns in der Ebene z einen

⁴³⁶⁾ Sie wird mit Hilfe der elliptischen Modulfunktion gebildet.

⁴³⁷⁾ Ob durch das Bild von Σ* in der Ebene τ die Fläche des Einheitskreises ausgefüllt wird, wird von *Poincaré* nicht weiter untersucht.

⁴³⁸⁾ Vgl. die Fußnote 435).

⁴³⁹⁾ W. F. Osgood, Trans. of the Amer. Math. Soc. 1 (1900), p. 310--314.

Schnitt \mathfrak{S} gelegt. Es sei $Z_1(z)$ eine Funktion, durch deren Vermittlung das von dem doppelt gezählten Bogen & begrenzte (nicht beschränkte) Gebiet in der z-Ebene auf die Fläche eines Kreisbogenvierseits in der Ebene Z, das aus einem Kreisbogendreieck mit paarweise einander berührenden Seiten durch Spiegelung an einer Seite entsteht, konform abgebildet wird, so daß die Eckpunkte einander entsprechen (Nr. 25). Durch Vermittlung der Funktion $z(Z_1)$ wird das Innere der dem Vierseit umschriebenen Kreisfläche K_1 auf das Innere eines Gebietes \mathfrak{T}_{o} abgebildet, das in a,b,c sowie den unendlichvielen durch fortgesetzte Spiegelung hieraus entstehenden Punkten Windungspunkte unendlich hoher Ordnung hat. 410) Es sei $T_1(X_1, Y_1)$ $=G_1(\Xi_1, H_1; X_1, Y_1)$ die zu K_1 gehörige Greensche Funktion. Die Funktion $t(x, y) = T_1(X_1, Y_1)$ ist in \mathfrak{T}_0 , außer in (ξ, η) , regulär und positiv und wird in (ξ, η) wie $\log \frac{1}{a}$ unendlich. Ist $(a^{(n)}, y^{(n)})$ $(n = 1, 2, \cdots)$ irgendeine Folge von Punkten, die gegen a, b oder c konvergieren, so ist lim $t(x^{(n)}, y^{(n)}) = 0$. Man sieht jetzt leicht ein, daß in $T \dots G(\xi, \eta; x, y) \leq t(x, y)$, darum

$$\lim_{n \to \infty} G(\xi, \eta; x^{(n)}, y^{(n)}) = 0$$

ist. Für das Gelingen des Beweises ist wesentlich allein, daß \mathfrak{T}_0 in a einen Windungspunkt unendlich hoher Ordnung hat und, wenn man irgendeinen Punkt in T in ein bestimmtes Blatt von \mathfrak{T}_0 versetzt, T ganz in das Innere von \mathfrak{T}_0 fällt. Es genügt darum, statt \mathfrak{T}_0 die zu $\log (z-a)$ gehörige Riemannsche Fläche \mathfrak{T}^0 zu betrachten und den durch |z-a| < d (d) größte Sehne von T) bestimmten Teil von \mathfrak{T}^0 auf die Fläche eines Einheitskreises K' in der Ebene z' abzubilden, was durch elementare Funktionen gelingt. Das Gebiet T wird hierdurch auf ein Gebiet T' konform abgebildet. Es gilt

$$G(\xi, \eta; x, y) = G'(\xi', \eta'; x', y').$$

Mit der einzigen Ausnahme desjenigen Punktes a', der a entspricht, liegt T' + S' in K'. Der Punkt a' ist von außen geradlinig erreichbar. Nach Harnack ist $\lim_{\longrightarrow} G'(\xi', \eta'; x', y') = 0$, also ist auch

$$\lim_{z=a} G(\xi, \eta; x, y) = 0.441)$$

Damit ist die Existenz der Greenschen Funktion bewiesen. Durch Betrachtungen, die den in der Nr. 22 durchgeführten analog sind, läßt sich jetzt zeigen, daß durch Vermittlung der Funktion $Z = e^{-G-iH}$

⁴⁴⁰⁾ Die Funktion $z(Z_1)$ hängt mit der von *Poincaré* benutzten elliptischen Modulfunktion (Nr. 37) eng zusammen.

⁴⁴¹⁾ W. F. Osgood, Funktionentheorie, p. 699-703.

 $(H \ {\it zu} \ G \ {\it konjugiert})$ das Innere des Gebietes T auf das Innere eines Einheitskreises konform abgebildet wird.

Es sei bereits bekannt, daß das Bild Θ von T schlicht ist. Man kann sich dann auch des folgenden schon früher von P. Koebe angegebenen Verfahrens bedienen 442) (vgl. Nr. 40b). Augenscheinlich liegt kein Punkt von Θ außerhalb der Fläche K... $Z \leq 1$. Daß K von Θ vollständig ausgefüllt wird. zeigt Koebe so. Es sei A der dem Koordinatenursprung am nächsten liegende Punkt des Randes Σ von Θ . Das Gebiet Θ ist ein Teil des Gebietes H, das man erhält, wenn man aus einem Blatte der zu $\sqrt{Z} - A$ gehörigen Riemannschen Fläche eine über K gelegene Kreisfläche entfernt. Ist $\omega^*(X,Y)$ die zu H gehörige, im Punkt Z=0 des übrig gebliebenen Blattes unendliche, elementar darstellbare Greensche Funktion, so ist

$$0 \le G(\xi, \eta; x, y) = \omega(X, Y) \le \omega^*(X, Y).$$

In A ist mithin $\omega = 0$. Darum ist |A| = 1.

Weitere Beweise des vorhin betrachteten Abbildungssatzes vgl. Nr. 40 und 45.

Aus $G_n(x_1, y_1; x_2, y_3) = G_n(x_2, y_2; x_1, y_1)$ folgt durch Grenzübergang $G(x_1, y_1; x_2, y_2) = G(x_2, y_2; x_1, y_1)$. Die Beziehungen (4) und (8) Nr. 20 gelten auch jetzt noch.⁴⁴³)

Wir nehmen jetzt, was keine Einschränkung der Allgemeinheit bedeutet, an, daß das Gebiet T den Koordinatenursprung in seinem Innern enthält. Der Abstand dieses Punktes von S sei d. Es sei $P(z_0)$ ein Punkt auf S, so daß $|z_0| = d$ ist. Wir setzen

$$G(0, 0; x, y) = \log \frac{1}{x} + a + g(x, y), \quad r^2 = x^2 + y^2, \quad g(0, 0) = 0.$$

Zwischen a und d besteht nach P. Koebe ein Zusammenhang folgender Art: Einer jeden Zahl d^* läßt sich ein Wert a^* zuordnen, so daß für alle $d \le d^*$ auch $a \le a^*$ ist. Ist d > 1, so ist a > 0. Ist T in der Fläche K des Einheitskreises enthalten (und dabei von K selbst verschieden), so ist a < 0.444)

⁴⁴²⁾ P. Koebe, Gött. Nachr. 1907, p. 633-699 [p. 644].

⁴⁴³⁾ Durch die im Text besprochenen Betrachtungen von Osgood ist, wie man ohne Schwierigkeit sieht, die Existenz der Greenschen Funktion für beschränkte mehrfach und selbst unendlichvielfach zusammenhängende Gebiete in E, die keine Punkte zu Randkomponenten haben, dargetan.

Die Greensche Funktion eines von unendlichvielen Kreisen begrenzten beschränkten Gebietes in E findet sich bei S. Johansson, Acta soc. Sc. fenn. Bd. 41, Nr. 2 (1912), p. 1-39 (p. 13-14).

⁴⁴⁴⁾ Vgl. P. Koebe, Math. Ann. 67 (1909), p. 145—224 [p. 208—216], ferner R. Fricke und F. Klein, Automorphe Funktionen 2, p. 458—464; W. F. Osgood, Funktionentheorie, p. 726—730; E. Study loc. cit. 148), p. 21—26. Dieser Satz

Encyklop. d. math. Wissensch. II 3.

39. Auflösung des ersten Randwertproblems in der Ebene. Das erste Randwertproblem ist unter Zugrundelegung eines beliebigen beschränkten, einfach, mehrfach oder selbst unendlich vielfach zusammenhängenden ebenen Gebietes, das keine punktförmige Randkomponenten hat, zuerst von H. Lebesque durch Variationsbetrachtungen gelöst worden (Nr. 45 c).445)

Zu demselben Resultat führt auch die folgende an die Methoden der Nr. 38 anknüpfende Überlegung.446)

Es sei T ein beschränktes, etwa einfach zusammenhängendes Gebiet in & oder im Raume, T^* ein Gebiet der Klasse B, das T+S enthält, f eine willkürliche analytische und reguläre Funktion in T^* . Der Nr. 16 gemäß ist das erste Randwertproblem als erledigt zu betrachten, sobald es gelingt, diejenige in T + S stetige, in T reguläre Potentialfunktion u zu bestimmen, die auf S gleich f ist. Wir bilden (Nr. 34) die Folge $u_n(n=1, 2, ...)$, setzen $u_n=f+U_n$ und erhalten $\Delta U_n = F = -\Delta f$, $U_n = 0$ auf S_n . Es sei $F = \overline{F} - \overline{F}$, $\overline{F} \ge 0$, $F \ge 0^{445}$), $U_n = \overline{U}_n - U_n$, $\Delta \overline{U}_n = \overline{F}$, $\Delta \overline{U}_n = F$, $\overline{U}_n = \overline{U}_n = 0$ auf S_n . Für alle n ist nunmehr

$$\tilde{U}_{\mathbf{A}} \leq 0$$
, $U_{\mathbf{A}} \leq 0$.

darum für alle p in $T_n \dots \overline{U}_n - \overline{U}_{n+p} \ge 0$, $U_n - U_{n+p} \ge 0$. Die Folgen \overline{U}_n , $U_n(n=1,2,\ldots)$ sind nicht zunehmend. Man beweist leicht, daß sie in jedem Bereiche in T gleichmäßig konvergieren.

Hat das erste Randwertproblem eine Lösung, so ist diese (Nr. 34) einfach gleich $f + \lim_{n = \infty} \overline{U}_n - \lim_{n = \infty} \overline{U}_n$. Daß $\lim_{n = \infty} U_n$ auf S verschwindet, läßt sich, wenn T ein ebenes Gebiet ist, wie in der Nr. 38, durch den Übergang zu der Riemannschen Fläche To und die konforme Abbildung auf T' zeigen. 446) Steht übrigens die Existenz der Greenschen Funktion $G(\xi, \eta; x, y)$ einmal fest, so läßt sich, wie bereits in Nr. 35

steht mit einigen anderen von P. Koche angegebenen Sätzen, insbesondere dem wichtigen "Verzerrungssatze" (Nr. 43) im Zusammenhang. Koebe nimmt an, daß in dem im Text zuletzt erwähnten Falle (T < K) die genaue obere Schranke a^* demjenigen Gebiete entsprechen wird, das man erhält, wenn man K längs der Normale von P auf C aufschneidet (vgl. hierzu E. Study loc. cit. 148), p. 22-23. Die Koebesche Vermutung ist von L. Bieberbach als richtig nachgewiesen worden. Vgl. L. Bieberbach, Math. Ann. 77 (1916), p. 153-172.

445) Die Resultate von Lebesque gelten mutatis mutandis wohl auch für den Raum.

446) Vgl. L. Liehtenstein, Berichte der Berl. Math. Ges. 15 (1916), p. 92-96.

447) Die Funktionen F und F können in $T^* + S^*$ stetig und abteilungsweise analytisch angenommen werden.

angedeutet, diejenige der Lösung des ersten Randwertproblems hieraus leicht erschließen. 418) 449)

Im Raume erfordert der Nachweis, daß auf $S \dots \lim_{n \to \infty} U = 0$ ist, andere Hilfsmittel (Nr. 45c).

Das von *Poincaré* in der Nr. 37 besprochenen Abhandlung behandelte Problem ist, nachdem mittlerweile *Hilbert*⁴⁵⁰) erneut die Aufmerksamkeit auf diesen Gegenstand hingelenkt hatte, nach Vorbereitungsarbeiten von *T. Broden*⁴⁵¹) und *S. Johansson*⁴⁵²) im Jahre 1907 unabhängig voneinander von *H. Poincaré* und *P. Koebe* gelöst worden.

In dem jetzt folgenden Abschnitte werden wir vor allem die Ergebnisse von *Poincaré* und *Koebe*, soweit sie in das Gebiet der konformen Abbildung hineingehören, eingehend besprechen.

- 40. Einfach zusammenhängende Gebiete der allgemeinsten Natura) H. Poincaré, Sur l'uniformisation des fonctions analytiques. 453) In dem ersten Teile der vorliegenden Abhandlung kehrt Poincaré zu den Ideen seiner Arbeit vom Jahre 1883 zurück (Nr. 37). Das Fundamentalpolygon der Funktion z(Z) wird jetzt ganz im Innern der Fläche des Einheitskreises (Grenzkreises) gewählt. Man könnte nun wieder die Funktionen G_n (Nr. 37) bilden und wie in der ersten Arbeit schließen, daß in \mathfrak{T}^* ... $\lim_{n=\infty} G_n = G^*$ existiert. Poincaré bedient sich statt dessen der in geeigneter Weise ausgestalteten Balayage-Methode (Nr. 36). 454) Der Punkt ξ wird im Innern der Kreisfläche $K^{(0)}$ (Nr. 36) gewählt, die Funktion $u^{(0)}$ wird außerhalb $K^{(0)}$ gleich 0, in $K^{(0)} + C^{(0)}$ gleich der in ξ unendlichen, auf $C^{(0)}$ verschwindenden Greenschen Funktion gesetzt; $u^{(0)}$ ist das logarithmische Potential einer
 - 448) Vgl. L. Lichtenstein, loc. cit. 446) p. 95-96.
- 449) In ähnlicher Weise gewinnt man die Lösung des ersten Randwertproblems für beschränkte mehrfach und selbst unendlichvielfach zusammenhängende Gebiete in \mathfrak{E}_m , die keine Punkte zu Randkomponenten haben.
- 450) In seinem Pariser Vortrage, Mathematische Probleme, Gött. Nachr. 1900, p. 253-297 [p. 290-291], abgedruckt im Archiv der Math. (3) 1 (1901), p. 44-63, p. 213-237.
- 451) T. Broden, Bemerkung über die Uniformisierung analytischer Funktionen, Lund 1905.
- 452) S. Johansson, a) Acta Soc. Sc. Fenn. 33, Nr. 7 (1905), p. 1—29; b) Math. Ann. 62 (1906), p. 177—183; e) ebendort p. 184—193. In diesen Arbeiten wird die Uniformisierung algebraischer Kurven angestrebt. Die Betrachtungen von Johansson sind a. a. O. nicht in allen Punkten stichhaltig. (Vgl. P. Koebe, Gött. Nachr. 1907, p. 177—190 (p. 189); loc. cit. 464) p. 148.)
 - 453) Acta mathematica 31 (1907), p. 1-63.
- 454) Um jeden Windungspunkt in \mathfrak{T}^* wird dabei ein von einer mehrfach umfahrenen Kreislinie umschlossenes Gebiet abgegrenzt. Diese Gebilde bilden neben weiteren geeigneten schlichten Kreisgebieten die Folge $K_n(n=1,2,\ldots)$

308

punktförmigen Belegung = 1 in ξ und einer auf $C^{(0)}$ verteilten negativen Linienbelegung von der Gesamtmasse — 1. Bei der Durchführung des Auskehrprozesses bleibt die in ξ befindliche Masse unberücksichtigt. Da $l^{-*} = \log \frac{1}{Z(z)}$ durchweg positiv ist, so ist, wie sich leicht zeigen läßt, für alle $n \dots u^{(n)} < \overline{U}^*$. Die Folge $u^{(0)}, u^{(1)}, \dots$ kon-Es sei (1) $\lim u^{(n)} = \overline{G}^*(\xi, \eta; x, y)$. Sind $G_n(\xi, \eta; x, y)$ vergiert. (n = 1, 2, ...) die in analoger Weise für eine Folge von Gebieten $T_n(n=1,2,\ldots)$, $(\lim_{n=\infty}T_n=\mathfrak{T}^*,\ T_n$ von einer endlichen Anzahl Bögen der Kreise C(k) begrenzt) gebildeten Funktionen, so ergibt sich nunmehr leicht die Grenzbeziehung (2) $\overline{G}^* = \lim_{n = \infty} G_n$. Durch Vermittelung der Funktion (3) $\tau = e^{-(\overline{G}^* + iH^*)}$ (\overline{H}^* konjugiert zu \overline{G}^*) wird Σ* auf die Fläche des Einheitskreises in der Ebene τ konform abgebildet. Daß das Bild die Fläche $|\tau| \leq 1$ voll ausfüllt, beweist Poincaré einmal in Anlehnung an Osgood (Nr. 38), das andere Mal ohne Zuhilfenahme der Modulfunktion. Durch die Beziehungen $z = F_0(\tau)$, $f_1(z) = F_1(\tau), \ldots, f_m(z) = F_m(\tau)$ werden die Funktionen f_1, \ldots, f_m uniformisiert, wobei Ausnahmestellen nicht mehr vorkommen.

Die Funktionen F_0, F_1, \ldots, F_m bleiben bei linearen Substitutionen einer gewissen unendlichen Gruppe $\left(\tau, \frac{\alpha, \tau + \beta_r}{\gamma, \tau + \delta_r}\right) (\nu = 1, 2, \ldots)$, die den Einheitskreis in sich überführen, invariant. Der Riemannschen Fläche $\mathfrak T$ der Funktionen f_1, \ldots, f_m entspricht in der Ebene τ die Fläche eines Fundamentalpolygons J mit paarweise linearer Zuordnung der Ränder.

Ist das unendliche Produkt $\prod \left(\frac{\alpha_r \tau + \beta_r}{\gamma_r \tau + \delta_r}\right)$ konvergent, so existiert die zu $\overline{\mathfrak{T}}$ (Nr. 37) gehörige, in ξ logarithmisch unendliche *Greens*che Funktion $G(\xi, \eta; x, y)$. Es ist

(4)
$$G(\xi, \eta; x, y) = \log \frac{1}{\prod_{\substack{\alpha, \tau + \beta_{\nu} \\ \gamma, \tau + \delta_{\lambda}}}}$$

Das vorstehende (notwendige und hinreichende Kriterium) kann auf die Form gebracht werden: die Reihe $\sum_{(\gamma_{\nu}\tau}\frac{1}{+\delta_{\nu})^2}$ muß konvergieren. Oder, wenn man mit h den Flächeninhalt einer um τ in J beschriebenen Kreisfläche, mit $h_{\nu}(\nu=1,2,\ldots)$ den Inhalt der homologen Gebiete bezeichnet, die Reihe $\sum Vh_{\nu}$ muß konvergieren.

Ist $\sum \sqrt{h_{\nu}}$ konvergent, so wird \mathfrak{T} durch Vermittlung der Funktion $e^{-(G+iH)}$ auf die Fläche des Einheitskreises abgebildet. Um auch den

Fall zu erledigen, wenn die Reihe $\sum Vh$, divergiert, schlägt Poincaré einen anderen Weg ein.

Es sei & + C ein Kreisbereich in T, der ; nicht enthält. Durch direkte potentialtheoretische Betrachtungen beweist Poincaré, daß der im vorstehenden wiedergegebene Balayage-Prozeß im Gebiete $\mathfrak{T}_1=\mathfrak{T}$ $-(\Re + \Im)$ konvergiert und zu einer auf dem Rande \Im von \Re verschwindenden (Greenschen) Funktion $\gamma_1(\xi, \eta; x, y)$ führt. Nunmehr wird aus Σ, durch einen von C ausgehenden, ξ nicht treffenden Querschnitt ein einfach zusammenhängendes Gebiet I, abgeleitet. Das Balayage-Verfahren liefert, auf 🗓 angewandt, eine bestimmte Funktion $\gamma_2(\xi, \eta; x, y)^{.455}$) Durch Vermittlung der Funktion $e^{-(\gamma_2 + i\chi_2)}$ (χ_2 zu γ_2 konjugiert) wird I, auf die Fläche des Einheitskreises konform abgebildet. Dem aus C und den beiden Rändern der Schnittlinie bestehenden Linienzuge entspricht ein (offener) Bogen des Einheitskreises. Ist dieser Bogen $< 2\pi$, so läßt sich \mathfrak{T}_1 auf die Fläche eines Kreisringes, I auf diejenige des Einheitskreises konform abbilden. Ist aber jener Bogen = 2π , so gewinnt man entsprechend als Bild von I, eine Kreisfläche mit Ausschluß des Mittelpunktes, als Bild von I die Gesamtebene mit Ausschluß des unendlich fernen Punktes. Für das \$\overline{\mathbb{I}}\$, betreffende Resultat gibt Poincaré mehrere zum Teil indirekte Beweise. Der Übergang von T, zu T wird mit H. A. Schwarz durch gürtelförmige Verschmelzung vollzogen. 456)

b) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven. Es sei $\mathfrak{T}=\lim_{n=\infty} T_n$ irgendein über der z-Ebene ausgebreitetes (nicht geschlossenes) einfach zusammenhängendes Gebiet. Es sei $P(\xi,\eta)$ ein Punkt in T_1 , u_n diejenige auf S_n verschwindende Greensche Funktion von T_n , die sich in der Umgebung von P wie $\log \frac{1}{q} + c_n + \cdots$, $(\varrho^2 = (\xi - x)^2 + (\eta - y)^2)$ verhält. In T_n ist für alle n und $p \ldots u_n > 0$, $u_{n+p} - u_n > 0$. Darum ist $c_1 < c_2 < c_3 < \cdots$. Läßt \mathfrak{T} etwa drei Punkte der z-Ebene unbedeckt, so konvergiert die Folge u_n in jedem (ξ,η) nicht enthaltenden Bereiche T + S in \mathfrak{T}

⁴⁵⁵⁾ Bei der Bildung von γ_2 wird γ_1 als Majorante benutzt.

⁴⁵⁶⁾ Der Gedanke, sich durch Herausschneiden eines einfach zusammenhängenden Teilgebietes eine Randlinie zu verschaffen, kommt, angewandt auf eine geschlossene Riemannsche Fläche, zuerst bei H. A. Schwarz vor (Nr. 24e.). Vgl. loc. cit. 310).

⁴⁵⁷⁾ Gött. Nachr. 1907, p. 191-210.

⁴⁵⁸⁾ Mit Koebe legen wir der Betrachtung ein unendlichvielblättriges Gebiet zugrunde. Seine Methodo und ihre Ergebnisse gelten für beliebige nicht geschlossene einfach zusammeuhängende Riemannsche Mannigfaltigkeiten.

gleichmäßig. Es sei $u=\lim_{n\to\infty}u_n$, v die zu u konjugierte Potential-funktion. Durch Vermittelung der Funktion $Z=e^{-(u+iv)}$ wird $\mathfrak X$ auf die Fläche eines Einheitskreises konform abgebildet (Nr. 37 und 38). 459) Ist die Folge c_n konvergent, so konvergiert u_n dem Harnackschen Satze über positive Potentialfunktionen zufolge wie vorhin in $\overline{T}+\overline{S}$ gleichmäßig, auch wenn die Poincarcsche Bedingung nicht erfüllt ist. Auch jetzt gilt der gleiche Abbildungssatz. Auf einen Beweis der zuletzt genannten Eigenschaft geht Kocbe an der betrachteten Stelle nicht näher ein.

Ist aber $\lim_{n=\infty} \frac{1}{c_n} = 0$, so läßt sich $\mathfrak T$ auf die ganze Ebene mit Ausschluß des unendlich fernen Punktes abbilden. Nimmt man den Fall einer geschlossenen *Riemann* schen Fläche (Nr. 24 e) hinzu, so findet man wie vorhin (Nr. 40a), daß jedes einfach zusammenhängende Gebiet entweder: 1. auf eine Kreisfläche (Kugelkalotte), 2. auf eine Ebene mit Ausschluß des unendlich fernen Punktes (punktierte Kugel), oder schließlich 3. auf eine geschlossene Ebene (Kugel) konform abgebildet werden kann. 460)

Das vorstehende Kriterium ist von *P. Koebe* angegeben worden, der den Abbildungssatz unabhängig von *Poincaré* aufgestellt und bewiesen hat.⁴⁶¹) (Weitere Kriterien von zum Teil spezieller Natur vgl. die Fußnote 409.)

459) Das gleiche gilt offenbar, wenn es gelingt, T auf ein Gebiet T* konform abzubilden, das die *Poincarés*che Bedingung erfüllt. In der Note, Zur Uniformisierung der algebraischen Kurven, Gött. Nachr. 1907, p. 410—414 beweist *P. Koebe* mit Bezugnahme auf die in der Fußnote 452) zitierten Arbeiten von *Johansson* auf diesem Wege gewisse mit der Uniformisierung algebraischer Kurven vom Range <2 zusammenhängende Abbildungssätze.

460) Die unter 2. und 3. genannten Gebiete werden durch die Riemannschen Flächen erschöpft, die zu den Umkehrungen meromorpher bzw. rationaler Funktionen gehören (vgl. E. Study loc. cit. 148), p. 11-12).

461) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. 1907, p. 191—210, vorgelegt am 11. Mai 1907. Die in der Nr. 40 a besprochene Abhandlung von H. Poincaré erschien im November 1907 (gedruckt im März 1907). In späteren Arbeiten hat Koebe für den fraglichen Satz eine Reihe weiterer Beweise gegeben (s. weiter unten). Über die Bedeutung dieser Untersuchungen für die Theorie der Uniformisierung beliebiger, insbesondere algebraischer Funktionen vergleiche das Referat von R. Fricke, II B 4 Nr. 39. Die besonderen, die Uniformisierung reeller algebraischer Kurven betreffenden Sätze sind von Koebe von den vorliegenden Betrachtungen unabhängig schon früher bewiesen worden (Gött. Nachr. 1907, p. 177—190, ausführliche vertiefte Darstellung später Math. Ann. 67 (1909), p. 145—244 [p. 206—213]. Das Gebiet X (die einfach zusammenhängende Überlagerungsfläche der in geeigneter Weise zer-

Es sei also $\lim_{n=\infty} \frac{1}{c_n} = 0$ und es möge U_n diejenige, außer in (ξ, η) , in T_n und auf S_n stetige, in T_n reguläre, auf S_n verschwindende Potentialfunktion, die in (ξ, η) sich wie $\Re \frac{1}{z-\xi}$ verhält, bezeichnen. In jedem Bereiche in \mathfrak{T} , der (ξ, η) nicht enthält, ist die Folge U_n gleichmäßig konvergent. Der sehr einfache Beweis stützt sich wesentlich auf den folgenden, auch an sich wichtigen Hilfssatz: Es sei Θ ein beschränktes Gebiet in \mathfrak{S} , das den Nullpunkt enthält, $\widetilde{\Theta}$ die Gesamtheit aller beschränkten Gebiete in \mathfrak{S} , die den Punkt z=0 enthalten und auf Θ derart konform abgebildet werden können, daß der Nullpunkt in sich selbst übergeht und das Vergrößerungsverhältnis für z=0 den Wert 1 hat. Es gibt dann eine Kreisfläche vom Halbmesser $R_1>0$, die in allen $\widetilde{\Theta}$ enthalten ist. 462)

schnittenen Riemannschen Fläche der Kurve) hat hier gewisse Symmetrieeigenschaften, wodurch die Aufstellung einer Majorante für u_n wesentlich erleichtert wird. Eine Darstellung dieser Betrachtungen gibt R. Fricke, Automorphe Funktionen, 2, p. 469—483, insbes. 2, p. 472—478.

462) P. Koebe, loc. cit. 461), S. 204—205; dort findet sich auch eine andere Fassung desselben Satzes. Vgl. ferner P. Koebe, Math. Ann. 67 (1909), p. 145—224 [p. 215—216] und loc. cit. 582d) [p. 88—95]. Wie Koebe ferner (Math. Ann. 69 (1910), p. 1—81 ["Hilfssatz III", p. 48—50]) gezeigt hat, liegt das Bild Σ' eines beliebigen ganz im Innern von Θ enthaltenen Jordanschen Kurvenstückes Σ bei allen möglichen Abbildungen $\widetilde{\Theta}$ im Innern einer festen Kreisfläche vom Radius R_2 . Dieser hängt nur von Θ und Σ ab. Einen Beweis des betrachteten Satzes gibt auch S. Johansson, Acta soc. sc. Fenn., Bd. 40, Nr. 1 (1910), p. 1—32 [p. 4 bis 9]. Man vergleiche ferner E. Study, loc. cit. 148), p. 122—124.

Der "Hilfssatz III" ist bei Koebe a. a. O. ein Ausgangspunkt beim Beweise des sog. Verzerrungssatzes (Nr. 42, insb. die Fußnote 494), er kann aber anderseits unschwer aus jenem abgelesen werden. Die fraglichen Sätze hängen mit den Untersuchungen, die im Anschluß an den Picardschen Satz in den letzten 14 Jahren von E. Landau, C. Carathéodory, F. Schottky, E. Lindelöf und anderen Mathematikern durchgeführt worden sind, eng zusammen. Vgl. P. Kobe, Jahresber. der Deutschen Math.-Ver. 19 (1910), p. 339-348 [p. 347-348]. Wie E. Landau neuerdings gezeigt hat, lüßt sich der im Text genannte Koebesche Satz aus dem Picard-Landauschen Satze mit Leichtigkeit ableiten. Vgl. E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin 1916, p. 14-110 [p. 100]. J. Plemelj, Monatshefte f. Math. u. Phys. 23 (1912), p. 297-304 [p. 303-304] nimmt speziell für Θ eine Kreisfläche vom Radius R und findet $R_1 > \frac{R}{10}$ (s. auch E. Landau a. a. 0, p. 98-99).

Es sei $\lim_{n=\infty}^{\infty} U_n = U$. Die Funktion $\frac{1}{U+iV}$, unter V eine zu U konjugierte Funktion verstanden, liefert die gewünschte Abbildung. Der Beweis verläuft indirekt und stützt sich, wie an einer analogen Stelle bei $Poincare^{463}$), auf die Resultate von Osgood (Nr. 38).

Seinem ersten Beweise des Abbildungssatzes gab Koebe später eine ins einzelne ausgearbeitete, teilweise abgeänderte Fassung. In dem ersten Hauptfalle wird der Harnacksche Satz über positive Potentialfunktionen nicht benutzt. Es führt vielmehr eine vertiefte Betrachtung der konvergenten Folge $c_1 < c_2 < c_3 < \cdots$ auf eine Abschätzung der Differenz $u_{n+r} - u_n$, durch die sowohl die gleichmäßige Konvergenz der Folge u_n klar hervortritt, als auch evident wird, daß durch Vermittlung von $e^{-(u+ir)}$ das Gebiet $\mathfrak T$ auf die Fläche des Einheitskreises konform abgebildet wird. Auch in dem zweiten Hauptfalle wird der Beweis des Abbildungssatzes im einzelnen durchgeführt. Die Resultate von Osyood werden diesmal nicht gebraucht.

Einen in Einzelheiten von den vorerwähnten verschiedenen, die in der Fußnote 170) erwähnten Hilfssätze wesentlich benutzenden Beweis hat S. Johansson geliefert.⁴⁶⁵) Eine Modifikation des ersten

(1916), p. 153-172 bestätigt worden. Man vergleiche ferner L. Bieberbach, loc. cit. 350; G. Faber, Münch. Ber. 1916, p. 39-42; G. H. Gronwall, C. R. 162 (1916), p. 249-252 sowie p. 316-318; G. Pick, loc. cit. 494) sowie Wiener Ber. 126 (1917), S 247-263. Im Zusammenhang mit dem im Text betrachteten Hilfssatze stehen einige Sätze über die konforme Abbildung einfach zusammenhängender konvexer Gebiete bei E. Study, loc. cit. 148), p. 116-121.

463) loc. cit. 453) p. 32-35.

464) Math. Ann. 67 (1909), p. 145—224 [p. 205—224]. Eine Darstellung findet sich bei E. Study, loc. cit. 148), p. 27—34. Ein in allen wesentlichen Punkten auf Koebeschen Methoden beruhender, ins einzelne ausgearbeiteter Beweis des Poincaré-Koebeschen Satzes findet sich bei G. Fubini, Introduzione alla teoria dei gruppi discontinui e delle funzioni automorphe, Pisa 1908, p. 367—392 und W. F. Osgood, Funktionentheorie, p. 710—747. Eine eingehende Darstellung widmet den speziell auf das Haupt- und Grenztheorem bezüglichen Koebeschen Betrachtungen R. Fricke, Automorphe Funktionen, 2, p. 439—494.

465) S. Johansson, loc. cit. 494), p. 9—14. Dort findet sich p. 18—32 ein anderer Beweis des Satzes von Poincaré und Koebe. Es sei (ξ', η') ein von (ξ, η) verschiedener Punkt in T_1 , u'_n die in (ξ', η') logarithmisch unendliche, auf S_n verschwindende Greensche Funktion von T_n . Johansson zeigt, daß $\lim_{n\to\infty} (u_n-u'_n)$

in allen Fällen existiert. Durch Vermittlung der Funktion $e^{-(i\gamma+i\bar{\phi})}(\omega=\lim_{n=\infty}(u_n-u_n'),$

ω zu ω konjugiert) wird I auf das von einem doppelt zu zählenden Bogen des Einheitkreises, der sich auch auf einen Punkt reduzieren kann, begrenzte unendliche Gebiet in & konform ε ogebildet. Koebeschen Beweises gibt ferner J. Plemelj. In dem ersten Hauptfalle findet Plemelj, wenn $\lim_{n=\infty} c_n = c$ gesetzt wird, durch eine über-

aus einfache Betrachtung die Ungleichheiten

$$u_{n+1}-u_n<[3+(c-c_n)]/c-c_n \text{ in } T_n \text{ und } u<[3+(c-c_n)]/c-c_n \text{ in } \mathfrak{T}-(T_n+S_n).$$

Die erste Ungleichheit gibt ein Maß dafür, wie rasch u_a gegen u konvergiert. Aus der zweiten folgt leicht, daß $\mathfrak T$ durch $e^{-(u+ic)}$ in der Tat auf die Fläche des Einheitskreises konform abgebildet wird.

In einer kürzlich erschienenen Abhandlung (loc. cit. 582 d) [p. 83 – 95]) teilt Koebe eine neue auf funktionentheoretischer Basis (unter Ausschaltung des Integralbegriffes) gestellte Bearbeitung seines ersten Beweises mit. Die beim Beweise gebrauchten Hilfssätze werden sämtlich auf das Schwarzsche Lemma zurückgeführt.

Im engen Anschluß an die Poincarésche Abhandlung (Nr. 40a) gibt Koebe in einer zweiten Mitteilung, Über die Uniformisierung beliebiger analytischer Kurven 467), einen zweiten Beweis des Abbildungssatzes. Wie bei Poincaré wird aus T eine Kreisfläche & herausgeschnitten. Sodann wird unter Zuhilfenahme des Harnackschen Satzes über positive Potentialfunktionen die Konvergenz der Folge u $(u'_n = \text{der zu } T_n - (\Re + \Im) \text{ gehörigen, in } \xi \text{ unendlichen } Greenschen}$ Funktion) in $\mathfrak{T}' = \mathfrak{T} - (\mathfrak{K} + \mathfrak{C})$ auf indirektem Wege erschlossen. Es sei lim u' = u'. Nunmehr wird zu der zu \mathfrak{T}' gehörenden einfach zusammenhängenden Überlagerungsfläche \mathfrak{T}' übergegangen. Ist \bar{u}_s (n = 1, 2, ...) eine der Folge $u_n(n = 1, 2, ...)$ des ersten Koebeschen Beweises analoge Folge von Greenschen Funktionen auf $\overline{\mathfrak{T}}'$, so ist für diese die Funktion u' eine Majorante. Durch Vermittlung der Funktion $\bar{z}' = e^{-(u'+iv')}$, $(\bar{u}' = \lim \bar{u}'_n)$, \bar{v}' zu \bar{u}' konjugiert) wird \mathfrak{T}' auf die Fläche des Einheitskreises \overline{K}' abgebildet. 468) Der Fläche \mathfrak{T}' entspricht hierbei ein einfach zusammenhängendes Teilgebiet H von K', dessen Begrenzung einen Bogen \mathfrak{S}' des Einheitskreises \bar{C}' sowie zwei durch eine \overline{K}' in sich selbst überführende lineare Substitution aufeinander bezogenen Linien enthält (II ist ein im Sinne von F. Klein geschlossener zweifach zusammenhängender Fundamentalbereich).

Je nachdem \mathfrak{S}' < oder = \overline{C}' ist, ist jene Substitution hyper-

⁴⁶⁶⁾ J. Plemelj. loc. cit. 462).

⁴⁶⁷⁾ Gött. Nachr. 1907, p. 633-669.

⁴⁶⁸⁾ Augenscheinlich liegt kein Punkt des Bildes $\overline{\Theta}'$ von $\overline{\mathfrak{T}}'$ außerhalb \overline{K}' . Daß $\overline{\Theta}'$ die Fläche \overline{K}' voll ausfüllt, zeigt Koebe nach dem in der Nr. 38 wiedergegebenen Verfahren.

314

bolisch oder parabolisch. Durch geeignete elementare Funktionen wird nunmehr \mathfrak{T}' auf die Fläche eines Kreisringes, oder eines aus einer Kreistläche durch Ausschluß des Mittelpunktes entstandenen Gebietes abgebildet. Durch gürtelförmige Verschmelzung gelangt man endlich von hier aus wie bei *Poincaré* (Nr. 40a) zu dem Hauptsatze der Theorie. 469)

Der Fall einer punktierten Ebene (Kugel) erscheint in demjenigen einer Kreisfläche (Kugelkalotte) als Grenzfall enthalten, sobald man nicht den Halbmesser des Kreises, sondern das Vergrößerungsverhältnis im Kreismittelpunkt bei der Normierung festhält, etwa gleich 1 annimmt. Setzt man, unter u_n die Potentiale des ersten Kocheschen Beweises verstanden, $v_n^* = u_n - c_n$, so ist die Folge u_n^* stets konvergent. Durch Vermittlung der Funktion $e^{-(u^*+iv^*)}$ ($u^*=\lim_{n\to\infty}u_n^*$, v^* zu u^* konjugiert) wird $\mathfrak T$ auf eine Kreisscheibe vom endlichen oder unendlich großen Radius konform abgebildet. Dei den weiter unten besprochenen, im Anschluß an D. Hilbert ausgebildeten Variationsmethoden erscheinen die beiden Hauptfälle, dank der von vornherein zweckmäßig gewählten Normierung stets als nur quantitativ verschieden (Nr. 42 und 45 d. Man vergleiche ferner die Ausführungen der Nr. 41).

Einen anderen, an Poincar'e anknüpfenden Beweis des Poincar'e-Koebeschen Satzes hat S. $Johansson^{471}$) gegeben. Bezeichnet man mit

⁴⁶⁹⁾ Die Alternative $\mathfrak{S}' < \text{oder} = C'$, oder, was dasselbe besagt, hyperbolische oder parabolische Substitution bildet ein (freilich indirektes) Kriterium zur Unterscheidung der beiden Hauptfälle. Enthält der Rand des Gebietes I ein Jordansches Kurvenstück E, so läßt sich T stets auf eine Kreisfläche konform abbilden, wobei S ein Kreisbogen entspricht. Für diesen Satz gibt Koebe loc. cit. 467) S. 657-668 vier verschiedene Beweise. Bei den beiden ersten wird der Abbildungssatz als bekannt angenommen und es wird ferner vorausgesetzt, daß € der Klasse E angehört (in den Eckpunkten und Spitzen wird dabei übrigens nur die Existenz der Tangenten gefordert). Koebe zeigt insbesondere, daß die die Abbildung vermittelnde Funktion über die regulären Stücke von S hinaus fortgesetzt werden kann. Die beiden anderen Beweise sind von dem Hauptsatze unabhängig und liefern eine Majorante für die Funktionen u_n des ersten Koebeschen Beweises, auch wenn I vom mehrfachen oder selbst unendlichhohen Zusammenhange ist. (Einen Beweis dieses Satzes gibt auch H. Poincaré, loc. eit. 453), p. 46-48.) Weitere Ausführungen über die Alternative - punktierte Kugel oder Kugelkalotte - finden sich bei P. Koebe, Journ. f. Math. 139 (1911), p. 251-292 [p. 280-289]; s. hierzu auch die Bemerkungen bei E. Study, loc. eit. 148), p. 35-37. Man vgl. ferner S. Johansson, loc. cit. 465).

⁴⁷⁰⁾ Vgl. P. Koebe, loc. cit. 457) p. 206-207; J. Plemelj, loc. cit. 462), p. 302-304.

⁴⁷¹⁾ S. Johansson, Acta soc. sc. Fenn., Bd. 40, Nr. 2 (1910), p. 1-29.

 γ_1 wieder die zu $\overline{\mathfrak{T}}_1$ gehörige *Greensche* Funktion (Nr. 40a), so gilt $\alpha = \frac{1}{2\pi} \int_0^{\mathfrak{J}_1} ds \leq 1$. Ist $\alpha < 1$, so läßt sich $\overline{\mathfrak{T}}_1$ auf das von einem

Kreise und einem kreisförmigen Schlitze um den Koordinatenursprung begrenzte beschränkte Gebiet, oder auch auf die Fläche eines Kreisringes konform abbilden. Ist $\alpha=1$, so gehen jene Gebiete in eine punktierte Kreisfläche über. Der Beweis stützt sich wesentlich auf einige von Johansson angegebene, auch an sich interessante Hilfssätze. Zu \mathfrak{T} wird wieder durch gürtelförmige Verschmelzung übergegangen.

41. Zweidimensionale schlichtartige Gebiete der allgemeinsten Natur. In einer dritten Mitteilung über die Uniformisierung beliebiger analytischer Kurven⁴⁷²) beweist *Koebe*, daß ein beliebiges schlichtartiges einfach oder mehrfach, auch unendlichvielfach zusammenhängendes Gebiet der allgemeinsten Natur auf ein Gebiet in © konform abgebildet werden kann.

Es sei $\mathfrak{T}=\lim_{n\to\infty}T_n$ (Nr. 4) ein beliebiges über der z-Ebene ausgebreitetes schlichtartiges Gebiet. Es sei $Z_n(z)$ eine Funktion, durch deren Vermittlung T_n auf ein Gebiet F_n in der Ebene Z konform abgebildet wird. Es wird angenommen, daß Z=0 außerhalb F_n liegt und $Z_n(z)$ in der Umgebung eines bestimmten Punktes z_0 in T_1 eine Entwicklung von der Form $\frac{1}{z-z_0}$ + eine reg. Funkt. gestattet. Existenz beliebig vieler Funktionen dieser Art steht den Betrachtungen der Nr. 24 gemäß fest. Aus der Folge $Z_n(z)$ $(n=1,2,\ldots)$ läßt sich eine Teilfolge aussondern, die in jedem Bereiche in \mathfrak{T} , der z_0 nicht enthält, gleichmäßig konvergiert. Die Grenzfunktion Z(z) vermittelt die Abbildung von \mathfrak{T} auf ein schlichtes Gebiet F.

Der Hilfssatz der ersten Mitteilung ist der folgenden Aussage gleichwertig: Es sei Φ irgendein einfach zusammenhängendes Gebiet in der Ebene Z, das den Punkt $Z=\infty$ enthält. Der Punkt Z=0 soll außerhalb Φ liegen. Es sei Φ' irgendein Gebiet von gleichen Eigenschaften, das auf Φ konform abgebildet werden kann, so daß im Unendlichen die Entwicklung $Z'=Z+\Re\left(\frac{1}{Z}\right)$ gilt. Die Begrenzung von Φ' liegt dann in einer Kreisfläche um den Koordinatenursprung, deren Halbmesser nur von Φ abhängt.

⁴⁷²⁾ Gött. Nachr. 1908, p. 337—358. Siehe auch C. R. 148 (1909), p. 824 bis 828.

⁴⁷³⁾ Die folgenden Betrachtungen gelten mutatis mutandis für beliebige schlichtartige Riemann sche Mannigfaltigkeiten.

⁴⁷⁴⁾ P. Koebe, loc. eit 472), p. 348

316

ein Kreisgebiet um z_0 in T_1 . Durch $Z_1(z)$ möge K^* auf Φ_1 , durch $Z_n(z)$ auf Φ_n abgebildet werden. Dem soeben genannten Hilfssatze zufolge ist auf C^* für alle $n \dots Z_n(z) < \mu$ (μ konstant). Diese Beziehung gilt offenbar für alle z in $T_n - (K^* + C^*)$.

Der Konvergenzbeweis stützt sich auf den folgenden zuerst von P. Montel angegebenen und bewiesenen Satz: Aus jeder Folge von Funktionen $f_n(z)$, die in einem Gebiete \mathfrak{T} regulär sind und einer Ungleichheit $f_n(z)| < M$ genügen, läßt sich eine Teilfolge aussondern, die in jedem Bereiche in \mathfrak{T} gleichmäßig konvergiert. Aus $Z_n(z)$ $(n=1,2,\ldots)$ läßt sich wegen $Z_n(z) < \mu$ demnach eine Teilfolge $Z^{(n)}(z)$ $(n=1,2,\ldots)$ extrahieren, die, wie man leicht sieht, in jedem z_0 nicht enthaltenden Bereiche in \mathfrak{T} gleichmäßig konvergiert. Die Grenzfunktion ist von einer Konstanten verschieden; sie bildet \mathfrak{T} auf ein schlichtes Gebiet F ab.

Ist insbesondere \mathfrak{T} einfach zusammenhängend, so wird F entweder aus der ganzen Ebene mit Ausschluß des einen Punktes Z=0, oder eines Punktkontinuums bestehen. In dem zuletzt genannten Falle läßt sich F auf eine Kreisfläche konform abbilden (Nr. 38). Man gewinnt so den Satz von H. Poincaré und P. Koebe (Nr. 40) wieder. Als eine Anwendung der vorstehenden Ergebnisse gibt Koebe in aller Kürze ein Verfahren zur konformen Abbildung der Oberfläche einer analytischen körperlichen Ecke auf ein ebenes Gebiet an. Eine ausführliche, auf funktionentheoretische Basis gestellte Darlegung eines anderen Verfahrens enthält eine spätere Arbeit von Koebe (loc. cit. 582d) p. 95—103. Vgl. Nr. 47, p. 360—361).

42. Das Strömungspotential. Eine Normierung der Abbildungsfunktion wird auf dem in der Nr. 41 skizzierten Wege erst gewonnen, wenn über $Z_n(z)$ geeignete weitere Bestimmungen getroffen werden. Zu besonders bemerkenswerten Ergebnissen gelangt man, wie

⁴⁷⁵⁾ P. Montel, Ann. de l'Éc. Norm. (3) 24 (1907), p. 233-334 [p. 298-302]; Leçons sur les séries de polynomes à une variable complexe, Paris 1910, p. 1-128 [p. 20-25]. Für diesen oder vielmehr einen unwesentlich allgemeineren Satz gibt Koebe, loc. cit. 472), p. 349-353 (vgl. auch Math. Ann. 69 (1910), p. 1 bis 81 [p. 71-75]) einen anderen, an gewisse auf Ascoli zurückgehende Konvergenzsätze (Nr. 45) sich anlehnenden Beweis.

⁴⁷⁶⁾ loc. cit. 472), p. 354-357 gibt Koebe noch eine andere mit dem Montelschen Satze und der "gürtelförmigen Verschmelzung" operierende Methode. Ist die Zusammenhangszahl endlich, so läßt sich, wie Koebe a. a. O. zeigt, der Abbildungssatz auch durch ein geeignetes kombinatorisches Verfahren aus den Resultaten der Nr. 40b ableiten.

⁴⁷⁷⁾ Gött. Nachr. 1908, p. 359-360.

Koebe, durch gewisse Aufstellungen von Hilbert477*) veranlaßt, in einer vierten Mitteilung über die Uniformisierung beliebiger analytischer Kurven⁴⁷⁸) zeigt, wenn man für $Z_n = U_n + iV_n$ diejenige in T_n , außer in z_0 , reguläre Funktion wählt, die sich in z_0 wie $\frac{1}{Z-z_0}+(Z-z_0)\Re(Z-z_0)$ verhält und überdies so beschaffen ist, daß V, auf jeder einzelnen Randlinie einen konstanten Wert hat. 479) Durch Vermittlung von Z_n wird T_n auf ein schlichtes Gebiet ab gebildet, das von einer endlichen Anzahl zur Achse des Reellen paralleler Strecken begrenzt ist und den unendlich fernen Punkt enthält (Nr. 24 h). Der Gedankengang der dritten Mitteilung läßt sich jetzt nicht ohne weiteres anwenden. Indessen zeigt Koebe durch elementare Abschätzungen, daß in $T_n - (K^* + C^*)$ für alle $n \dots$ $|U_n| < \mu'$ (μ' konstant) ist. 480) Aus einem dem *Montel*schen analogen Konvergenzsatze für Potentialfunktionen folgt, daß ans $U_n (n = 1, 2, ...)$ eine Teilfolge $U^{(n)}(n=1,2,...)$ extrahiert werden kann, die in jedem Bereiche in $\mathfrak{T} - (K^* + C^*)$ und daher auch in jedem z_0 nicht enthaltenden Bereiche in $\mathfrak T$ gleichmäßig konvergiert. Die Grenzfunktion U verhält sich in z_0 wie $\Re\left(\frac{1}{Z-z_0}+(Z-z_0)\, \Re(Z-z_0)\right)$ und erfüllt die folgende, von Hilbert angegebene Minimumsbeziehung (Nr. 45d). Es sei w irgendeine in \mathfrak{T} — $(K^* + C^*)$ nebst ihren partiellen Ableitungen erster Ordnung stetige, ferner auch noch auf C* stetige und dort verschwindende Funktion, die so beschaffen ist, daß das Dirichletsche Integral $D_{\mathfrak{T}-(K^*+C^*)}(w)$ existiert. Alsdam ist $D_{\mathfrak{T}-(K^*+C^*)}(U+w)$ $> D_{\mathfrak{T}-(K^*+C^*)}(U)$. Durch diese Eigenschaft, die sich übrigens zu $D_{\mathfrak{T}-(K^*+C^*)}(U+w) = D_{\mathfrak{T}-(K^*+C^*)}(U) + D_{\mathfrak{T}-(K^*+C^*)}(w)$ verschärfen läßt, und das vorhin gekennzeichnete Verhalten in z_0 ist U vollständig bestimmt. Hieraus folgt aber, daß $U = \lim U_n$ gesetzt werden kann.

Die Existenz des Potentials U, des Strömungspotentials, ist durch die im vorstehenden angedeuteten Betrachtungen für die allgemeinsten, nicht notwendig schlichtartigen Gebiete bewiesen. An der gleichen Stelle gibt Kocbe noch einen andern, von dem Montelschen Satze unabhängigen Existenzbeweis des Strömungspotentials. Dieser Beweis

^{477°)} Vgl. *D. Hilbert*, Gött. Nachr. 1909, p. 314—323 (s. Nr. 45d, p. 338 bis 339).

⁴⁷⁸⁾ P. Koebe, Gött. Nachr. 1909, p. 324-361.

⁴⁷⁹⁾ Auf S_n ist $\frac{\partial U_n}{\partial n} = 0$. Die Funktion U_n ist durch diese Festsetzungen völlig bestimmt (Nr. 24h).

⁴⁸⁰⁾ P. Koebe, loc. cit. 478), p. 328. Vgl. ferner P. Koebe, C. R. 148 (1909), p. 824—828 sowie Journ. f. Math. 138 (1910), p. 192—253 [p. 233—235].

geht von einer zweiten Fassung des Hilbertschen Variationsproblems (Nr. 45 d) aus und berührt sieh vielfach mit analogen Betrachtungen von R. Courant. Er findet seinen Platz in dem Abschnitt über die Variationsmethoden (Nr. 45 d).⁴⁸¹)

Ist das Gebiet \mathfrak{T} schlichtartig, so wird es durch Vermittlung der Funktion Z=U+iV auf ein Gebiet Ψ der Z-Ebene konform abgebildet, das den unendlich fernen Punkt enthält und von lauter zur Achse des Reellen parallelen Strecken begrenzt ist.⁴⁸²) Dies besagt, im Einklang mit den Ausführungen der Nr. 4, daß $\Psi=\lim_{n\to\infty}\Psi_n$ gesetzt werden kann, unter $\Psi_n(n=1,2,\ldots)$ gewisse schlichte, den unendlich fernen Punkt enthaltende Gebiete verstanden, so daß, wenn man mit m_n den Höchstwert der Schwankung von V_n auf den einzelnen Randkomponenten von Ψ_n bezeichnet, $\lim m_n=0$ ist.⁴⁸³)

Der vorstehende Satz ist zuerst von D. Hilbert ausgesprochen ¹⁸⁴) und in dem besonderen Falle eines endlich vielfach zusammenhängenden Gebietes bewiesen worden. ⁴⁸⁵) Der allgemeine Fall eines unendlichvielfach zusammenhängenden Gebietes ist von P. Koebe und R. Courant erledigt worden. Ihre Beweise stützen sich wie derjenige von Hilbert wesentlich auf die Hilbertsche Minimumseigenschaft der Funktion U. Sie sollen weiter unten (Nr. 45 d) besprochen werden. Nach Koebe hat die Berandung des Gebietes Ψ den Inhalt Null. Sie läßt sich mit anderen Worten in eine endliche Anzahl getrennter einfach zusammenhängender Gebiete der Klasse U von beliebig kleinem Gesamtflächeninhalt einschließen. ⁴⁸⁶)

In ähnlicher Weise kann man nach Kocbe eine Abbildung eines beliebigen schlichtartigen Gebietes $\mathfrak T$ auf ein den unendlich fernen Punkt

⁴⁸¹⁾ Das gleiche gilt für eine spätere, modifizierte Fassung dieses Beweises. Vgl. P. Koebe, Journ. f. Math. 138 (1910), p. 192—253 [p. 207—242].

⁴⁸²⁾ Jede einzelne Strecke kann sich auf einen Punkt reduzieren.

⁴⁸³⁾ Vgl. P. Koebe, loc. cit. 478), p. 348—349 sowie loc. cit. 481), p. 207—209, insbes. p. 208. Dort finden sich noch andere Fassungen für den Begriff eines "Schlitzgebietes".

⁴⁸⁴⁾ D. Hilbert, Gött. Nachr. 1909, p. 314-323.

⁴⁸⁵⁾ In der im Sommersemester 1909 gehaltenen Vorlesung über konforme Abbildung. Vgl. P. Koebe, Gött. Nachr. 1910, p. 59—74 [p. 60]. Für einfach zusammenhüngende Gebiete hat schon früher P. Koebe einen (indirekten) Beweis gegeben [loc. cit. 457), p. 206—207]. Vgl. die Ausführungen am Schluß der Nr. 40 b.

⁴⁸⁶⁾ P. Koebe, loc. cit. 478), p. 352—353; loc. cit. 481), p. 211 und p. 241 bis 242. Vgl. auch R. Courant, Inaugural-Dissertation, Göttingen 1910, p. 1-41 [p. 33—34]; Math. Ann. 71 (1912), p. 145—183 [p. 169—173]. Eine charakteristische Eigenschaft einfach zusammenhängender Schlitzgebiete hat L. Bieberbach

enthaltendes Gebiet in & gewinnen, dessen Rand entweder aus lauter geradlinigen Strecken, die verlängert durch den Koordinatenursprung hindurchgehen, oder aus lauter Kreisbögen um den Anfangspunkt besteht. Es seien $O_1(\xi_1,\eta_1)$ und $O_2(\xi_2,\eta_2)$ zwei von den Windungspunkten verschiedene Punkte in $\mathfrak T$. In dem zuerst genannt in Falle lautet die Unstetigkeitsbedingung für U wie folgt. In der Umgebung von (ξ_1,η_1) und (ξ_2,η_2) ist $U=\log\frac{1}{\varrho_1}+$ eine reguläre Potentialfunktion und $U=-\log\frac{1}{\varrho_2}+$ eine reguläre Potentialfunktion. Es gilt ferner $Z(z)=e^{U+iV}$. In dem anderen Falle ist in (ξ_1,η_1) und $(\xi_2,\eta_2)\ldots U=$ aretg $\frac{y-\eta_1}{x-\xi_1}+$ eine reguläre Potentialfunktion und U=- arctg $\frac{y-\eta_2}{x-\xi_1}+$ eine reguläre Potentialfunktion. Es gilt ferner $Z(z)=e^{i(U+iV)\cdot 487}$. Auch hier gilt der Satz von dem Verschwinden des Inhaltes der Berandung des schlichten Bildbereiches.

Wie bereits erwähnt, ist die Existenz des Strömungspotentials U und damit auch eines konjugierten Potentials V für das allgemeinste nicht notwendig schlichtartige Gebiet $\mathfrak T$ sichergestellt. D. Hilbert hat einen Satz über die durch die Funktion U+iV vermittelte konforme Abbildung angegeben. Neben den Randstrecken endlicher Länge treten nunmehr, von der negativen Seite aus dem Unendlichen kommend, Strecken auf, deren Ufer paarweise einander zugeordnet sind. Gewisse diese Strecken kreuzende Wege sind unter Überspringen der eingeschlossenen Flächenstreifen fortzusetzen. 488)

43. Das iterierende Verfahren von P. Koebe. (488a) Seit Anfang 1908 hat *Koebe* ein vielseitiger Anwendungen fähiges Verfahren ausgebildet, das sieh rein funktionentheoretisch begründen läßt und von ihm als ein "Grenzübergang durch iterierendes Verfahren" bezeichnet worden

angegeben. Unter allen einfach zusammenhängenden Gebieten in \mathfrak{E} , die den unendlich fernen Punkt enthalten und aufeinander durch Vermittlung von Funktionen der Form $f(z) = z + a_0 + a_1 \frac{1}{z} + \cdots$ konform abgebildet werden können, ist das Schlitzgebiet dadurch ausgezeichnet, daß das Maximum der Entfernung zweier Randpunkte den höchsten Wert hat. Vgl. L. Bieberbach, Math. Ann. 77 (1916), p. 153–172. Dort finden sich noch weitere Sätze ähnlicher Natur.

⁴⁸⁷⁾ P. Koche, loc. eit. 478), p. 354-360. Bei Gebieten der Klasse C in E ist diese Abbildung zuerst von F. Schottky betrachtet worden. Siehe etwa loc. eit. 155) passim.

⁴⁸⁸⁾ D. Hilbert loc. cit. 484), p. 319—320. In dem besonderen Falle eines Gebieten vom endlichen Geschlecht ist der fragliche Satz in vervollständigter Gestalt neuerdings von R. Courant bewiesen worden. Vgl. R. Courant, Math. Zeitschrift 3 (1909).

⁴⁸⁸a) Vgl. R. Fricke, HB 4 Nr. 39, p. 459-460.

ist. 489) Das Wesen der Methode wollen wir an dem folgenden, der Uniformisierungstheorie algebraischer Kurven entnommenen Beispiele auseinandersetzen. Es sei R eine geschlossene Riemannsche Fläche vom Range p > 1. Auf \Re möge ein System von p einander nicht treffender, \Re nicht zerstückelnder Rückkehrschnitte $\Sigma_k(k=1,\ldots,p)$ gegeben sein. 490) Es handelt sich darum, das durch Aufschneiden von \Re längs $\Sigma_k(k=1,\ldots,p)$ gebildete 2p-fach zusammenhängende schlichtartige Gebiet @ auf ein Gebiet T in der Ebene Z derart konform abzubilden, daß den doppelt zu zählenden Kurven Σ_{k} Randkomponenten entsprechen, die durch lineare Substitutionen aufeinander bezogen sind; den auf R koinzidierenden Punkten der Begrenzung von Ø sollen Punktepaare entsprechen, die durch jene lineare Substitutionen aufeinander bezogen sind. 491) Den Betrachtungen der Nr. 24f gemäß läßt sich Φ auf ein von p Kurvenpaaren $L_{11}, L'_{11}; L_{12}, L'_{12}; \ldots; L_{1n}, L'_{1n}$ begrenztes 2p-fach zusammenhängendes Gebiet Θ_1 der Klasse C in der Ebene z, das den unendlich fernen Punkt enthält, abbilden. Die Randlinien von Φ_1 sind einander paarweise regulär analytisch zugeordnet. Diese Zuordnung ist also durch konforme Abbildung in eine lineare Zuordnung umzuwandeln.

Die die Abbildung vermittelnde Funktion Z(z) ist, sofern überhaupt vorhanden, bis auf eine lineare Substitution vollkommen bestimmt. Es sei Z'(z) eine andere Lösung des Problems. Durch Vermittlung von Z'(Z) läßt sich T auf ein weiteres Gebiet T' mit linearer Ränderzuordnung abbilden.

Unter Zuhilfenahme der noch unbekannten Randsubstitutionen läßt sich der Variabilitätsbereich von Z auf die ganze Ebene mit Ausnahme einer nicht abzählbaren Menge von Punkten von der Mächtigkeit des Kontinuums ausdehnen. Diesem Gebiete entspricht ein ebenso beschaffenes Gebiet in der Ebene Z'. Hieraus läßt sich

⁴⁸⁹⁾ P. Koebe: a) Gött. Nachr. 1908, p. 112—116; b) Gött. Nachr. 1909, p. 68—76; c) Gött. Nachr. 1910, p. 180—189; d) Math. Ann. 69 (1910), p. 1—81 [p. 60—65]; e) Math. Ann. 72 (1912), p. 437—516; f) Jahresb. d. Deutsch. Math. Ver. 19 (1910), p. 339—348; g) a. a. O. 21 (1912), p. 157—163; h) Atti del IV. Congresso intern. dei Mat., Roma 2 (1909), p. 25—30.

⁴⁹⁰⁾ Der Einfachheit halber werden
 \varSigma_k als Kurven der Klasse Dvorausgesetzt.

⁴⁹¹⁾ Über die Bedeutung dieses Problems für die Theorie der Uniformisierung algebraischer Kurven vgl. das Referat von R. Fricke, II B 4 Nr. 39 sowie R. Fricke und F. Klein, Automorphe Funktionen, passim; ferner P. Koebe, loc. cit. 489) a, b, c, d, e; Math. Ann. 75 (1914), p. 42—129; R. Courant, a) Inaugural-Dissertation, Göttingen 1910, p. 1—44 [p. 34—41]; b) Math. Ann. 71 (1912), p. 145—183 [p. 174—180].

durch geeignete Benutzung des Cauchyschen Integralsatzes folgern, daß Z'(Z) eine lineare Funktion sein muß. Das Verfahren ist dem in der Nr. 27 besprochenen Koebeschen Unitätsbeweise analog. ⁴⁹²) Für sein Gelingen ist der folgende von Koebe angegebene fundamentale "Verzerrungssatz" wesentlich. ⁴⁹³)

Es sei $\varphi(z)$ irgendeine im Gebiete |z| < R reguläre, dieses auf ein schlichtes, den unendlich fernen Punkt nicht enthaltendes Gebiet abbildende Funktion. Sind z_1 und z_2 zwei beliebige Punkte in dem Kreisbereiche $|z| \le \varrho < R$, so gibt es einen nur von ϱ abhängigen positiven Wert $q(\varrho) > 1$, so daß

$$\left| \frac{d\varphi(z_1)}{dz} \right| < q(\varrho) \left| \frac{d\varphi(z_2)}{dz} \right|$$

gilt. Für die Kreisfläche |z| < R kann man allgemeiner irgendein beschränktes Gebiet Θ , für den Kreisbereich $|z| \le \varrho < R$ einen in Θ gelegenen Bereich Θ' setzen.⁴⁹⁴) Aus dem Verzerrungssatze leitet

492) Vgl. P. Koebe: loc. cit. 489) b) p. 70—71; c) p. 186—187; d) p. 26 bìs 39; Journ. f. Math. 138 (1910), p. 192—253 [p. 247—253]. Einen anderen Unitätsbeweis gab R. Courant, loc. cit. 491) a) p. 37—40 an. (Vgl. die Ausführungen am Schluß dieser Nummer.)

493) Im vorliegenden Falle genügt übrigens bereits ein Spezialfall des Verzerrungssatzes ("Verzerrungssatz für lineare Funktionen", vgl. P. Koebe, loc. eit. 489) d) p. 26—27).

494) P. Koebe, loc. cit. 489) b) p. 73-74 leitet den Verzerrungssatz indirekt mit Hilfe des Montelschen Konvergenzsatzes ab. Einen direkten Beweis gibt Koebe loc. cit. 489) d) p. 46-52 (dort sowie Journ. f. Math. 138 (1910), p. 248 finden sich einige wichtige naheliegende Folgerungen des Verzerrungssatzes), für lineare Funktionen a. a. O. p. 26-27. Man vergleiche schließlich P. Koche, loc, cit, 582) f.) Eine Darstellung findet sich bei E. Study loc, cit, 148), p. 121-127. Einen weiteren Beweis, zugleich eine Schranke für q(o) geben S. Johansson, Acta soc. sc. Fenn. Bd. 40, Nr. 1 (1910), p. 1-32 [p. 15-17]; R. Fricke, Automorphe Funktionen, 2, dritte Lieferung (1912), p. 496-518; L. Bieberbach, Konforme Abbildung, p. 85 - 94; J. Plemelj (in einem Vortrage auf der Wiener Jahresversammlung der Deutschen Math.-Ver. 1913, nicht veröffentlicht, vgl. hierüber bei G. Pick, an dem weiter unten a. O. p. 64) und G. Pick, Leipz. Ber. 68 (1916), p. 58-64. Plemelj und Pick geben für q(g) Formeln an, in denen nur noch eine numerische Konstante unbekannt bleibt. Diese Konstante läßt sich nach Bieberbach aus seinen in der Fußnote 350) besprochenen Resultaten ableiten. Vgl. L. Bieberbach, loc. cit. 350) a) p. 946 Fußnote 2). Die genauen Schranken für $q(\varrho)$ sind unabhängig hiervon von G. H. Gronwall angegeben worden, wobei eine Vermutung von Pick ihre Bestätigung fand. (Vgl. G. H. Gronwall, C. R. 162 (1916), p. 249-251.) Gronwall beweist den folgenden Satz: Es sei $w = z + a_1 z^2 + \cdots$ eine für |z| < 1reguläre analytische Funktion, durch deren Vermittlung das Gebiet des Einheitskreises auf ein schlichtes Gebiet T konform abgebildet wird. Es gilt

$$\frac{1-|z|}{(1+|z|)^5} \le \left| \frac{dw}{dz} \right| \le \frac{1+|z|}{(1-|z|)^5}, \qquad \frac{|z|}{(1+|z|)^2} \le |w| \le \frac{|z|}{(1-|z|)^2}.$$
 Encyklop, d. math. Wissensch. II 3.

Koebe insbesondere den folgenden bemerkenswerten Satz ab: Auf der Einheitskugel seien unendlichviele, einander nicht überdeckende Gebiete $\Theta^{(1)}$, $\Theta^{(2)}$, $\Theta^{(3)}$, ..., die alle auf $\Theta^{(1)}$ konform abgebildet werden können, gegeben. Es sei $L^{(1)}$ irgendein Stück einer rektifizierbaren Kurve ganz im Innern von $\Theta^{(1)}$. Bezeichnen $l^{(1)}$, $l^{(2)}$, ... die Längen seiner Bilder in $\Theta^{(1)}$, $\Theta^{(2)}$, ..., so ist die Reihe $\sum l_k^2$ konvergent. $l^{(495)}$

Der vorstehende Satz läßt sich übrigens auch aus dem in der Nr. $45\,\mathrm{d}$ besprochenen Hilfssatze von R. Courant und P. Koebe herleiten.

Ist p=1, so läßt sich das eingangs gestellte Abbildungsproblem, dem der Charakter einer Grundaufgabe zukommt, durch Vermittlung

Die Gleichheitszeichen gelten nur für

$$w = \frac{z}{(1 - e^{i\alpha}z)^2} \quad \text{und} \quad z = \pm |z|e^{-\alpha i}.$$

Ist T konvex, so ist

$$\frac{1}{(1+|z|)^2} \le \left| \frac{dw}{dz} \right| \le \frac{1}{(1-|z|)^2}, \qquad \frac{|z|}{1+|z|} \le |w| \le \frac{|z|}{1-|z|}.$$

Die Gleichheitszeichen gelten hier für

$$w = \frac{z}{1 - e^{\alpha i} z}, \quad z = \pm |z| e^{-\alpha i}.$$

Weitere Entwicklungen finden sich bei G. H. Gronwall, C. R. 162 (1916), p. 316-318.

Einen Beweis der Beziehungen (*) und (**) hat kürzlich K. Löwner veröffentlicht (Leipz. Ber. 69 (1917), p. 89—106). Dort finden sich noch einige allgemeinere Betrachtungen. Sätze über die konforme Abbildung einer Kreisfläche auf ein schlichtes in einer Kreisfläche oder einer Halbebene gelegenes Gebiet, welche verschiedene im vorstehenden sowie in der Fußnote 462) genannten Sätze als besondere Fälle enthalten, hat neuerdings G. Pick angegeben (Wien. Ber. 126 (1917), p. 247—263).

Man vergleiche weiter *L. Bieberbach*, Archiv d. Math. u. Physik (3) 21 (1912), p. 155—161 [p. 158]; Math. Ann. 77 (1916), p. 153—172 und *E. Landau*, loc. cit. 462), p. 98—103. Weitere Literatur: *W. F. Osgood*, Annals of Math. (2) 14 (1913), p. 143—162. Man vergleiche ferner die Ausführungen der Fußnote 462).

Es sci f(z) eine Funktion, durch deren Vermittelung das Gebiet |z| > 1 auf ein schlichtes, den unendlich fernen Punkt enthaltendes Gebiet abgebildet wird. Für den Quotienten $\left|\frac{f'(z)}{f'(\infty)}\right|$ leitet K. Löwner genaue Abschätzungsformeln ab. Vgl. K. Löwner, Math. Zeitschr. 3 (1919). Eine Anwendung der Verzerrungssätze auf ein hydrodynamisches Problem findet sich bei Ph. Frank und K. Löwner, Math. Zeitschr. 3 (1919).

495) Die Summe der Quadrate der Längen der Randkurven von $\Theta^{(k)}(k=1,2,\ldots)$ (sofern diese rektifizierbar sind), kann dabei beliebig stark divergieren. Sind $\Theta^{(k)}$ einfach zusammenhängend, so gilt der vorstehende Satz natürlich ohne jede Einschränkung. Vgl. P. Koebe, loc. cit. 489) b) p. 74; d) p. 52—53. Dort findet sich p. 27—29 derselbe Satz für lineare Abbildungsfunktionen. Für den im Text betrachteten Unitätsbeweis genügt übrigens dieser Spezialfall des allgemeinen Satzes. Vgl. ferner P. Koebe, Journ. f. Math. 138 (1910), p. 248—249; W. F. Osgood, loc. cit. 494), p. 156—162.

eines elliptischen Integrals erster Art und einer Exponentialfunktion leicht auflösen. Auf das von L_{11} und L'_{11} begrenzte, Φ_1 enthaltende zweifach zusammenhängende Gebiet werde nun eine Abbildung dieser Art angewandt. Wir wollen sie dadurch zu einer völlig bestimmten machen, daß wir festsetzen, drei bestimmte Punkte in Φ_1 behalten ihre Lage. Das Gebiet Φ_1 möge hierdurch in ein Gebiet Φ_2 übergehen. Seine Randlinien heißen L_{21} , L'_{21} ; ...; L_{1p} , L'_{2p} . Von diesen sind L_{21} und L'_{21} linear, die übrigen Kurvenpaare analytisch aufeinander bezogen. Man löst jetzt die Grundaufgabe unter Bevorzugung des Kurvenpaares L_{22} , L'_{22} auf und gewinnt das Gebiet Φ_3 : L_{31} , L'_{31} ; ...; L_{3p} , L'_{3p} . Das Verfahren wird unter jedesmaliger Bevorzugung eines anderen Kurvenpaares ins Unendliche fortgesetzt. Pas Gebiet Φ_n konvergiert gegen ein Gebiet T, das die Aufgabe löst. Der Beweis stützt sich wesentlich auf den Verzerrungssatz. Man findet, daß das iterierende Verfahren wie eine geometrische Reihe konvergiert.

Das soeben betrachtete Abbildungsproblem gestattet noch eine andere Behandlung. Durch passendes Zusammenheften unendlich vieler Exemplare der Fläche Θ wird ein schlichtartiges unendlichvielfach zusammenhängendes Gebiet $\mathfrak T$ gebildet. Den Ergebnissen der Nr. 41 zufolge läßt sich dieses auf ein schlichtes Gebiet Ψ konform abbilden. Dem Übergang von Θ zu einem anderen Exemplare Θ_k in $\mathfrak T$ entsprechen gewisse, eine Gruppe bildende Abbildungen von Ψ auf sich selbst. Durch eine dem vorstehend skizzierten Unitätsbeweise analoge Überlegung wird gezeigt, daß die Abbildungen der Gruppe durch lineare Substitutionen vermittelt werden.

⁴⁹⁶⁾ Vgl. P. Koebe, loc. cit. 489) d) p. 61.

⁴⁹⁷⁾ Auf $L_{p\,p},\,L_{p\,p}^{\prime}$ folgt $L_{p\,+\,\mathbf{1},\,\mathbf{1}}\,,\,L_{p\,+\,\mathbf{1},\,\mathbf{1}}^{\prime}\,.$

⁴⁹⁸⁾ Vgl. P. Koebe, loc. cit. 489) c) p. 189. Dort finden sich auch Anwendungen des iterierenden Verfahrens auf einige weitere durch die Uniformisierungstheorie algebraischer Funktionen dargebotene Probleme der konformen Abbildung. Das folgende Problem sei hervorgehoben. Es sei ein p-fach zusammenhängendes Gebiet T der Klasse C in $\mathfrak E$ gegeben. Auf jeder Randkomponente von T wird eine endliche Anzahl Punkte A_j willkürlich markiert. Jedem Punkte A_j isteine ganze Zahl $q_j \geq 2$ zugeordnet; sie kann auch ∞ gesetzt werden. Es wird eine Abbildung von T auf ein p-fach zusammenhängendes Gebiet T' in $\mathfrak E$ gesucht, die folgende Eigenschaften hat. Jede Komponente von T' ist ein Kreisbogenpolygon mit Orthogonalkreis, der in Ausnahmefällen punktförmig oder imaginär werden kann. Die Punkte A_j sollen in die Eckpunkte A'_j des Polygons

übergehen. Der in A'_j eingeschlossene Winkel soll gleich $\frac{\pi}{q_j}$ sein. Bemerkenswert hierbei ist das Auftreten unendlich vieler Grenzkreise bei Ausübung des Spiegelungsprozesses, wie bei noch allgemeineren Kleinschen Fundamentaltheoremen (\mathbf{vgl} . R. Fricke, II B 4).

Damit ist der Satz bewiesen. 499)

 $R.\ Courant^{500})$ bedient sich in seiner späteren Behandlung des Problems zur Abbildung der Fläche $\mathfrak T$ auf ein schlichtes Gebiet der Funktion Z=U+iV, unter U das in der Nr. 42 betrachtete Strömungspotential verstanden. Die soeben besprochene charakteristische Eigenschaft der Abbildung wird aus der Tatsache gefolgert, daß es, bis auf einen konstanten Summanden, nur eine in $\mathfrak T$, mit Ausnahme des Punktes z_0 , reguläre, sich in z_0 wie $\frac{1}{z-z_0}+\mathfrak P(z-z_0)$ verhaltende eindeutige analytische Funktion $f=f_1+if_2$ gibt, wenn überdies verlangt wird, daß $D_{\mathfrak T-K^*-c^*}(f_1)$ eine bestimmte Bedeutung hat.

44. Konforme Abbildung eines p-fach zusammenhängenden Gebietes in & auf ein Vollkreisgebiet. Eine wichtige Anwendung der in der Nr. 43 besprochenen Methoden bildet der zuerst von P. Koebe geführte Beweis für die Möglichkeit, ein gegebenes p-fach $(p \geq 2)$ zusammenhängendes schlichtartiges Gebiet auf ein von p Vollkreisen begrenztes Gebiet in & konform abzubilden. Den Ergebnissen der Nr. 40 und 41 zufolge bildet es keine Einschränkung der Allgemeinheit, das gegebene Gebiet schlicht und von der Klasse D vorauszusetzen. Die Aufgabe läßt, wenn von einer linearen Substitution abgesehen wird, nicht mehr als eine Lösung zu (Nr. 27). Der Fall p=2 ist in der Nr. 27 besprochen worden. Der besondere

⁴⁹⁹⁾ Seinen Beweis hat Koele zum ersten Male in der Sitzung der Gött. Math. Ges. am 25. 2. 1908 bekannt gegeben. S. die Ber. der Deutschen Math.-Ver. 17 (1908), Anhang, p. 50. Ausführliche Darstellungen vgl. P. Koele, loc. cit. 489) b) p. 71—74; loc. cit. 489) d) p. 42—60 (a. a. 0. [p. 60—65] Ausführungen über den Zusammenhang des iterierenden Verfahrens mit der Methode der Überlagerungsfläche); eine kürzere Darlegung s. Journ. f. Math. 138 (1910), p. 246—249. Man vergleiche ferner die in den Einzelheiten abweichenden Bearbeitungen bei R. Fricke und F. Klein, Automorphe Funktionen, 2, dritte Lieferung, p. 495 bis 552 und W. F. Osgood, loc. cit. 494) sowie die Ausführungen bei L. Bieberbach, Arch. d. Math. u. Phys. (3) 21 (1912), p. 155—161 [p. 158—160].

⁵⁰⁰⁾ R. Courant, Inaugural-Dissertation, Göttingen 1910, p. 1—44 [p. 34—41]; Math. Ann. 71 (1912), p. 145—183 [p. 174—180].

⁵⁰¹⁾ Der Punkt z_0 (Nr. 42) wird außerhalb der Rückkehrschnitte auf \Re angenommen.

⁵⁰²⁾ Jeder einzelne Kreis kann sich auf einen Punkt (darunter den unendlich fernen Punkt) reduzieren.

⁵⁰³⁾ Jede einzelne Randkomponente des gegebenen Gebietes kann sich auf einen Punkt reduzieren. Augenscheinlich kann man indessen punktförmige Stücke der Begrenzung außer Betracht lassen.

Fall eines in bezug auf die Achse des Reellen symmetrischen Gebietes. dessen Randkomponenten sämtlich Punkte auf der Achse des Reellen haben, ist von Koebe im Jahre 1907 noch vor dem Beweise des Poincaré-Koebeschen Abbildungssatzes erledigt worden. 504) Jedes dreifach zusammenhängende schlichte Gebiet der Klasse D läßt sich auf eine von drei Stücken der Achse des Reellen begrenzte Ebene konform abbilden. Damit ist dieser Fall auf den vorerwähnten zurückgeführt 504 a). Den allgemeinen Fall $p \geq 3$ erledigt Koebe einmal unter Benutzung einer Überlagerungsfläche, das andere Mal durch iterierendes Verfahren. Es möge der Einfachheit halber das in der Ebene z gegebene Gebiet T den unendlich fernen Punkt enthalten. Ist etwa Θ das gesuchte von p Kreisen begrenzte Gebiet in der Ebene Z, so kann der Variabilitätsbereich von Z durch fortgesetzte Spiegelung über die ganze Ebene, mit Ausnahme einer gewissen Menge von Punkten, ausgedehnt werden. Der Veränderlichen z wird dabei ein vollkommen bestimmtes schlichtartiges Gebiet Z zugewiesen, das aus unendlichvielen kongruenten Exemplaren von T besteht, die paarweise längs einer Randkomponente zusammengeheftet sind und dort also eine geschlossene Faltungslinie bilden. 505) Den Betrachtungen der Nr. 41 gemäß läßt sich ${\mathfrak T}$ auf ein schlichtes Gebiet Π konform abbilden. Dem Gebiete T entspricht dabei, wie unter Zuhilfenahme des Verzerrungssatzes durch Betrachtungen, die den in der Nr. 43 angedeuteten analog sind, gezeigt wird, ein von Vollkreisen begrenztes Gebiet.

 $R.\ Courant$ bildet zunächst T auf ein von p der Achse des Reellen parallelen Strecken begrenztes Gebiet ab und gewinnt durch Zusammen-

⁵⁰⁴⁾ Jahresb. d. Deutsch. Math. Ver. 16 (1907), p. 116-130. Die Aufgabe wird auf die Abbildung eines in bezug auf die Achse des Reellen symmetrischen, aus unendlichvielen aneinander gehefteten Halbebenen bestehenden einfach zusammenhängenden Gebietes auf eine Halbebene zurückgeführt. Für die wie in der Nr. 40b zu bildende Greensche Funktion wird eine Majorante augegeben. (Vgl. die Fußnote 461).)

^{504°)} Vgl. loc. cit. 504), p. 120. In der in der Fußnote 582) an fünfter Stelle zitierten neuesten Arbeit beweist Koebe auf einem anderen Wege, daß jedes dreifach zusammenhängende Gebiet T in E ohne punktförmige Randkomponenten durch drei analytische und in T reguläre Querschnitte in zwei zu einander im analytischen Sinne in bezug auf diese Querschnitte symmetrische einfach zusammenhängenhe Teile zerlegt werden kann. Vgl. den Schluß des § 5. Dieser Satz ist von dem im Text zuletzt betrachteten Satz nicht wesentlich verschieden.

⁵⁰⁵⁾ Wie Koebe loc. cit. 489) f) p. 342-343 bemerkt, kann man das Gebiet I statt dessen über die beiden in geeigneter Reihenfolge unendlich oft durchlaufenen Seiten der Ebene z ausbreiten.

326

heften eine von Faltungslinien freie Überlagerungsfläche.⁵⁰⁶) Die weiteren Entwicklungen sind den am Schluß der Nr. 43 besprochenen Betrachtungen ähnlich.

Es seien $S_1^{(1)}, \ldots, S_p^{(1)}$ die Randkomponenten von $T = T^{(1)}$ und es sei $T_1^{(1)}$ das von $S_1^{(1)}$ begrenzte unendliche Gebiet. Das "iterierende Verfahren" von Kocbe läßt sich kurz so beschreiben. Man bildet $T_1^{(1)}$ auf ein von einem Kreise begrenztes unendliches Gebiet derart ab, daß in dem unendlich fernen Punkte die Entwicklung

$$Z = z + \frac{1}{z} \Re \left(\frac{1}{z} \right)$$

gilt. Dabei geht $T=T^{(1)}$ in ein Gebiet $T^{(2)}$, das von $S_1^{(2)},\ldots,S_p^{(2)}$ begrenzt ist, über. Das Gebiet $T^{(2)}$ wird sodann, unter Bevorzugung der Randkomponente $S_2^{(2)}$, wie vorhin $T^{(1)}$, behandelt. Das Verfahren wird ins Unendliche fortgesetzt und liefert in der Grenze das gesuchte Vollkreisgebiet. $S_2^{(2)}$

Wie Koebe bemerkt, ist das vorliegende Problem dem in der Nr. 43 betrachteten nahe verwandt. Spiegelt man nämlich $T^{(2)}$ an $S_1^{(2)}$, so gewinnt man, wenn, wie vorausgesetzt werden soll, T der Klasse C angehört, ein 2(p-1)-fach zusammenhängendes Gebiet mit analytischer Ränderzuordnung, das auf ein Gebiet mit linearer Ränderzuordnung abgebildet werden soll. 508)

In den Untersuchungen von P. Koebe und R. Courant ist auch der folgende Koebesche Satz enthalten. Läßt ein p-fach zusammenhängendes Gebiet der Klasse C in $\mathfrak E$ eine unendliche Folge analytischer Spiegelungen zu, die Spiegelungen eines von Kreisen begrenzten Gebietes im Sinne der Analysis Situs äquivalent sind, so ist das betrachtete Gebiet ein Vollkreisgebiet. Ein analoger Satz gilt für 2p-fach zusammenhängende Gebiete in $\mathfrak E$ mit analytischer Zuordnung von Randlinienpaaren. 509

In dieselbe Gruppe von Sätzen gehört auch der folgende Satz. Läßt sich ein Jordanscher Bereich T+S auf den zugehörigen Außenbereich T'+S derart stetig und in T konform, unter Umlegung der Winkel, abbilden, daß alle Punkte auf S in sich selbst übergehen, so ist T ein Kreisgebiet, die Abbildung ist eine Transformation durch reziproke Radien. Gilt die betrachtete Beziehung nur für eine gewisse (beider-

⁵⁰⁶⁾ R. Courant, Inaugural-Dissertation, Göttingen 1910, p. 41-44; Math. Ann. 71 (1912), p. 145-183.

⁵⁰⁷⁾ P. Koebe, Journ. f. Math. 138 (1910), p. 250-252.

⁵⁰⁸⁾ P. Koebe, loc. cit. 507) p. 250-251.

⁵⁰⁹⁾ P. Koebe, loc. cit. 507), p. 252-253.

seitige) Umgebung von S, so ist T ein Gebiet der Klasse C, die Abbildung eine Schwarzsche Spiegelung an S^{510})

Als Desideratum stellt Koebe die Abbildung eines beliebigen unendlichvielfach zusammenhängenden Gebietes Θ in $\mathfrak E$ auf ein von lauter
Kreisen begrenztes Gebiet auf.⁵¹¹) Ist Θ insbesondere ein von unendlichvielen in bezug auf die Achse des Reellen symmetrischen Kurven ⁵¹²), die sämtlich reelle Punkte haben, begrenztes Gebiet, so läßt
sich ein Beweis für die Möglichkeit der gewünschten Abbildung nach
Angaben von Koebe durch die in der Nr. 40 b Fußnote 461) angedeuteten Betrachtungen gewinnen.⁵¹³) Eine Abbildung der vorgenannten
Art existiert ferner, wie neuerdings bewiesen worden ist, wenn die einzelnen Komponenten der Begrenzung nur eine Häufungskomponente
und zwar einen Häufungspunkt haben und wenn überdies gewisse
metrische Bedingungen erfüllt sind.⁵¹⁴)

45. Variationsmethoden. a) Allgemeines. Es sei T ein beschränktes, einfach zusammenhängendes Gebiet in $\mathfrak E$ und u diejenige in T und auf S stetige, in T reguläre Potentialfunktion, die auf S gleich einer vorgegebenen stetigen Funktion f(x,y) ist. Ist das "Dirichletsche Integral"

$$D_T(u) = \int_T \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial u}{\partial y} \right)^2 \right] dx dy$$

vorhanden, so ist $D_T(u) < D_T(\bar{u})$, unter \bar{u} irgendeine von u verschiedene, in T und auf S stetige Funktion verstanden, die in T abteilungsweise stetige partielle Ableitungen erster Ordnung hat 515), auf

⁵¹⁰⁾ P. Koebe, Journ. f. Math. 145 (1915), p. 177-223 [p. 219-221].

^{• 511)} P. Koebe, loc. cit. 489) h) p. 30. Jeder einzelne Kreis kann sich insbesondere auf einen Punkt reduzieren.

⁵¹²⁾ Der Klasse D, sofern die betrachtete Komponente der Berandung keine Häufungskomponente ist.

⁵¹³⁾ Vgl. A. Fischer, Über die konforme Abbildung symmetrischer unendlichvielfach zusammenhängender schlichter Bereiche, Inaugural-Dissertation, Jena 1915, p. 1—33.

⁵¹⁴⁾ Vgl. K. Georgi, Über die konforme Abbildung gewisser nicht symmetrischer unendlichvielfach zusammenhängender schlichter Bereiche auf Kreisbereiche, Inaugural-Dissertation, Jena 1915, p. 1—44.

⁵¹⁵⁾ Allgemeiner könnte man voraussetzen, daß $\left(\frac{\partial \overline{u}}{\partial x}\right)^2$, $\left(\frac{\partial \overline{u}}{\partial y}\right)^2$ in T im Lebesgueschen Sinne integrierbar sind, während die unbestimmten Integrale $\int \frac{\partial \overline{u}}{\partial x} dx$, $\int \frac{\partial \overline{u}}{\partial y} dy$, höchstens mit Ausnahme gewisser Nullmengen von Geraden $y = y^*$, $x = x^*$, existieren und gleich u + Const. sind. Vgl. B. Levi, loc. cit. 529) a) [p. 301-303]; G. Fubini, loc. cit. 532) a) [p. 65].

S mit f(x, y) übereinstimmt und überdies so beschaffen ist, daß $D_T(\bar{u})$ existiert (Nr. 34).

Die Funktion *u* ist somit die Lösung eines bestimmten Variationsproblems. Auch bei manchen anderen Randwertproblemen ist die Lösung zugleich Lösung einer gewissen Aufgabe der Variationsrechnung. Auch wenn vorgeschriebene Unstetigkeiten vorliegen, läßt sich nicht selten aus der Lösung der Randwertaufgabe diejenige eines Variationsproblems ableiten.

Bekanntlich glaubte B. Riemann nach dem Vorgange von C. F. Gau β , W. Thomson und P. G. Lejeune-Dirichlet aus dem Vorhandensein einer unteren Grenze des Integrals $D_T(u)$ unmittelbar auf die Existenz der Potentialfunktion u schließen zu können (II A 7 b Nr. 23 bis 25). Nachdem K. Weierstra β nachdrücklich darauf hingewiesen hat, daß diese meist mit dem Namen "Dirichletsches Prinzip" bezeichnete Schlußweise nicht als beweiskräftig angesehen werden kann 516), hielt man es lange Zeit für unmöglich, aus den Variationsbeziehungen für die Existenz der Lösung bindende Schlüsse zu ziehen. Erst D. Hilbert war es am Anfang dieses Jahrhunderts gelungen, auf die Minimalbeziehungen einen strengen Existenzbeweis der Lösung zu gründen. An die Arbeiten von Hilbert schließt eine lange Reihe von Arbeiten anderer Mathematiker an; heute gehören Variationsmethoden zu den einfachsten und weittragendsten Hilfsmitteln der Analysis.

Der Grundgedanke der Variationsmethoden läßt sich am einfachsten an Hand des eingangs betrachteten Beispiels erläutern. Für alle \bar{u} ist $D_T(\bar{u}) > 0$. Die Werte $D_T(\bar{u})$ haben also eine endliche untere Grenze d. Aus der Gesamtheit (Ω) der Funktionen \bar{u} wird eine Folge $\bar{u}_1, \bar{u}_2, \ldots$ ausgesondert, so daß (1) $D_T(\bar{u}_a) \geq d$, (2) $\lim_{n = \infty} D_T(\bar{u}_a) = d$ ist. Jede Folge \bar{u}_n dieser Art wird eine "Minimalfolge" genannt. Nunmehr wird meist durch geeignete Operationen, unter wesentlicher Benutzung der Beziehungen (1) und (2) eine neue Minimalfolge $u_a(n=1,2,\ldots)$ abgeleitet, die in T, oder in T und auf S gegen eine Funktion u gleichmäßig konvergiert. Von dieser Funktion wird bewiesen, daß sie der Beziehung $D_T(u) = d$ genügt, somit das Variationsproblem auflöst. In T verhält sich die Funktion u nebst ihren partiellen Ableitungen der beiden ersten Ordnungen stetig und genügt der Differentialgleichung $\Delta u = 0$. Sie erfüllt, zumindest wenn T gewissen einschränkenden Bedingungen genügt, die Randbedingung,

⁵¹⁶⁾ Vgl. H. Burkhardt und W. F. Meyer, II A 7 b die Fußnote 157). Einfache Beispiele, welche die Unzulässigkeit des "Dirichletschen Prinzips" beleuchten, gibt J. Hadamard, Leçons, p. 9-11 an. Vgl. auch G. Fubini, loc. cit. 532) a) p. 59.

ist also die Lösung der Randwertaufgabe. Mitunter wird nicht u(x,y), sondern ein Doppelintegral über u(x,y) als Grenze einer gleichmäßig konvergierenden Funktionenfolge abgeleitet. Die Lösung ergibt sich zuletzt etwa durch wiederholte Differentiation.

In analoger Weise läßt sich eine Reihe anderer sehr allgemeiner Randwertaufgaben der Potentialtheorie behandeln. Je nach den besonderen Rand- oder Unstetigkeitsbedingungen 517) wird das zugeordnete Variationsproblem und die Funktionenklasse (Ω) verschieden ausfallen.

Es wird auch heute noch manchmal behauptet, durch die jetzt zu besprechenden Arbeiten sei das "Dirichletsche Prinzip" gerettet worden. Dies ist natürlich nicht der Fall; der Weierstraßsche Einwand besteht nach wie vor zu recht. Es erscheint darum nicht richtig, die vorliegenden Verfahren unter dem Namen "Methoden des Dirichletschen Prinzips" zusammenzufassen. Das Kennzeichnende der betrachteten Methoden ist lediglich die Benutzung einer geeigneten Minimalfolge als Operationsbasis und ein möglichst weitgehender Gebrauch der Beziehungen (1) und (2) bei der Beweisführung.

Der soeben skizzierte Gedankengang läßt sich im einzelnen in verschiedener Weise durchführen. Im allgemeinen stellt das Vorhandensein einer Randbedingung eine Erschwerung dar. Wie schon F. Prym und später J. Hadamard bemerkt haben, hat das Dirichletsche Integral $D_T(u)$, unter u die Lösung des Randwertproblems verstanden. nicht immer einen Sinn. 518) Die Randfunktion f(x, y) muß demnach, damit $D_T(u)$ existiere, gewissen über die bloße Stetigkeit hinausgehenden Einschränkungen genügen 519) (Nr. 34). Wie wir ferner bereits gesehen haben, hat bei beschränkten, mehrfach zusammenhängenden Gebieten das erste Randwertproblem nicht notwendig eine Lösung (Nr. 45c). So hat die Aufgabe, eine in dem Gebiete $0 < x^2 + y^2 < 1$ reguläre Potentialfunktion zu bestimmen, die auf dem Einheitskreise gleich 1, für x = y = 0 gleich 0 wäre, keine Lösung. 520) Auch nach dieser Richtung hin sind also Einschränkungen nötig. 531) Endlich bedarf der Nachweis, daß die Grenzfunktion u den Randbedingungen genügt, in der Regel einer besonderen Untersuchung. Im Interesse der Einheitlichkeit erscheint es wünschenswert, auch diesen Teil der

⁵¹⁷⁾ Bei unendlichvielblättrigen Gebieten können Randbedingungen (wie bei geschlossenen Riemannschen Flächen) auch ganz fehlen.

⁵¹⁸⁾ Vgl. loc. cit. 151) und 152).

⁵¹⁹⁾ Vgl. p. 226 sowie loc. cit. 153).

⁵²⁰⁾ Vgl. S. Zaremba, loc. cit. 543) c) p. 199-200.

⁵²¹⁾ Vgl. H. Lebesgue, loc. cit. 535) 2) (vgl. 45c)

Betrachtung möglichst unter alleiniger Benutzung der Beziehungen (1) und (2) zu führen.

Vom Standpunkte der Methodik wird man naturgemäß danach streben, die Betrachtung in allen Einzelheiten auf den Boden der Variationsgedanken zu stellen. Man wird insbesondere versuchen, von der Benutzung bekannter Lösungen des ersten Randwertproblems für spezielle Gebiete abzusehen. Die so weit gehende methodische Reinheit darf allerdings, wenn das Ergebnis befriedigen soll, nicht auf Kosten der Einfachheit und Übersichtlichkeit erkauft sein. Die Lösung u wird man als Grenze einer in T oder noch besser in T+S gleichmäßig konvergierenden Minimalfolge zu bestimmen suchen. Demgegenüber dürfte ein Übergang über die Integrale $\int \overline{u} \, dx \, dy$ mit nachträglicher Differentiation als ein Umweg erscheinen.

Was die Existenz einer Folge \bar{u}_n betrifft, so bedarf diese, wenn man sich auf das Zermelosche Auswahlprinzip stützt, keines Beweises. In manchen Fällen gelingt es übrigens, eine Folge \bar{u}_n zu bilden, ohne den Gedankenkreis der Minimalbetrachtungen zu verlassen. 522)

b) Die ersten Arbeiten von D. Hilbert. Die Grundgedanken seiner Methode hat Hilbert zuerst in einem auf einer Jahresversammlung der Deutschen Mathematiker-Vereinigung gehaltenen Vortrage an dem Beispiele der geodätischen Linie und des ersten Randwertproblems für ein einfach zusammenhängendes Gebiet der Klasse B in E skizziert. Detrachten wir kurz das an zweiter Stelle genannte Beispiel.

Von der Randfunktion wird vorausgesetzt, daß sie stetig ist und stetige Ableitungen der beiden ersten Ordnungen hat. Es gibt dann eine Folge $\bar{u}_n(n=1,2,\ldots)$ in T und auf S nebst ihren partiellen Ableitungen erster Ordnung stetiger, in T abteilungsweise analytischer Funktionen, so daß lim $D_T(\bar{u}_n)=d$ ist. Nach Hilbert wird von \bar{u}_n

zu einer anderen Minimalfolge $\overline{u}_n(n=1,2,\ldots)$ übergegangen derart, daß die Funktionen \overline{u}_n sich in T und auf S wie \overline{u}_n verhalten, während für alle $n\ldots(1)\mid D_1\overline{u}_n\mid < M_1$ (M_1 konstant), darum auch (2) $\overline{u}_n\mid < M_2$ (M_2 konstant) gilt.

Nunmehr wird aus \overline{u}_n unter Zuhilfenahme des bekannten Diagonalverfahrens eine Teilfolge $u_n(n=1,2,\ldots)$ ausgesondert, die in allen Punkten in T mit rationalen Koordinaten konvergiert. Aus (1)

⁵²²⁾ Vgl. weiter unten die Betrachtungen von R. Courant, P. Koebe und W. Ritz.

⁵²³⁾ Jahresb. d. Deutsch. Math. Ver. 8 (1900), p. 184ff., abgedruckt in dem Jonrn. f. Math. 129 (1905), p. 63-67.

ergibt sich nach einem auf Ascoli zurückgehenden Konvergenzsatze, daß die Folge u_n in T und auf S gleichmäßig konvergiert. Die Grenzfunktion u ist die Lösung der Randwertaufgabe.

Eine an ein anderes Beispiel anknüpfende ausführliche Darlegung seines Verfahrens hat *Hilbert* in der Festschrift zur Feier des 150jährigen Bestehens der Kgl. Ges. d. Wiss. zu Göttingen im Jahre 1901 gegeben.⁵²⁵)

Es sei \Re eine geschlossene Riemannsche Fläche, \Im ein aus Strecken, die teils der x-, teils der y-Achse parallel sind, bestehendes Polygon, das \Re nicht zerstückelt und durch keinen Verzweigungspunkt hindurchgeht. Das Gebiet, das entsteht, wenn man \Re längs \Im zerschneidet, heiße \Re *. Gesucht wird diejenige in \Re * und auf dem (doppelt zu zählenden Linienzuge \Im) reguläre Potentialfunktion, die beim Übergang durch \Im 0 einen Sprung gleich 1 erleidet. Die Menge \Im 1 besteht hier aus der Gesamtheit der in \Im 2 stetigen, abteilungsweise analytischen Funktionen \overline{u}_n , die beim Übergang durch \Im 3 einen Sprung gleich 1 erleiden. Die Funktionen \Im 4 werden nötigenfalls durch Hinzufügung geeigneter Konstanten so normiert, daß (3) \Im 2 $\overline{u}_n dx = 0$ wird, unter \Im 3 eine feste, zu der x-Achse parallele Strecke verstanden.

Es sei (L) die Gesamtheit aller ein schlichtes, beschränktes Gebiet in \Re^* begrenzenden Rechtecke, deren Eeken rationale Koordinaten haben und deren Seiten den Koordinatenachsen parallel sind. Diese Menge ist abzählbar; sie kann also zu einer Folge L_1, L_2, \ldots geordnet werden. Die Flächen dieser Rechtecke heißen A_1, A_2, \ldots Nun zeigt Hilbert, daß für alle n

(4)
$$\left| \int_{u_n} \overline{u}_n dx dy \right| < \overline{M}_k \ (\overline{M}_k \ \text{konstant})$$

ist. Unter Zuhilfenahme des vorhin erwähnten G. Cantorschen Diagonalverfahrens kann man darum aus \overline{u}_n eine Teilfolge $\overline{\overline{u}}_n$ aussondern, so daß für alle k der Grenzwert

$$\lim_{n \to \infty} \int_{J_k}^{\infty} \overline{\overline{u}}_n dx dy$$

524) Der fragliche Satz lautet etwa so. Es sei T_0 ein beschränktes Gebiet der Klasse B in $\mathfrak E$ und v_n $(n=1,2,\ldots)$ eine Folge von Funktionen, die in T_0+S_0 nebst ihren partiellen Ableitungen erster Ordnung stetig sind. Für alle n sei ferner $|D_1v_n| < A$ (A konstant). Ist nun die Folge v_n in jedem Punkte einer in T_0+S_0 überall dichten Menge konvergent, so konvergiert sie in T_0 und auf S_0 überall und zwar gleichmäßig. Siehe D. Hilbert, loc. cit. 525) p. 165—166. Man vergleiche hierzu Ascoli, Memorie della R. Acc. dei Lincei 18 (1883), p. 521—586 sowie Arzela, Memorie delle R. Acc. dell' Ist. di Bologna (5) 5 (1893), p. 225—248.

525) Abgedruckt in den Math. Ann. 59 (1905), p. 161-186. Man vergleiche hierzu das Referat II A 8 a von E. Zermelo und H. Hahn, Nr. 6.

332

existiert. Es sei L irgendein Rechteck der Menge (L) und es sei (a,b) einer seiner Eckpunkte. Das von L begrenzte beschränkte Gebiet heiße Δ . Wie sich zeigen läßt, liegt der absolute Betrag des Integrals $\int \overline{\hat{u}}_n \, ds$, erstreckt über irgendeine der x- oder der y-Achse parallele Strecke in L, für alle n unterhalb einer endlichen Schranke. Aus dem Ascolischen Konvergenzsatze wird darum geschlossen, daß die Folge

(6)
$$u_n^* = \int_a^x \int_a^y u_n dx \, dy \ (n = 1, 2, \ldots)$$

im Innern und auf dem Rande von A gleichmäßig konvergiert. Ist (7) $u^* = \lim_{n \to \infty} \overline{u}_n^*$, so ist, wie zuletzt gezeigt wird,

(8)
$$u(x,y) = \frac{\partial^2 u^*}{\partial x \, \partial y}$$

die Lösung des Problems. Eine wesentliche Rolle spielt bei der Ableitung dieses Schlußergebnisses der Satz: Ist ξ irgendeine in Δ und auf L nebst ihren partiellen Ableitungen erster Ordnung stetige, abteilungsweise analytische, auf L verschwindende Funktion, so ist

(9)
$$\lim_{n=\infty} \int_{\mathcal{A}} \left\{ \frac{\partial \xi}{\partial x} \frac{\partial n_{\mu}}{\partial x} + \frac{\partial \xi}{\partial y} \frac{\partial u_{\eta}}{\partial y} \right\} dx dy = \lim_{n=\infty} D \quad (\xi, u_n) = 0.$$

Diese Gleichung entspricht der Forderung des Verschwindens der ersten Variation. ⁵²⁶)

An die Hilbertsche zweite Abhandlung schließt sich eine beträchtlich später entstandene Arbeit von W. Ritz an. Sei T ein einfach zusammenhängendes Gebiet in \mathfrak{E} . Die Gleichung seiner Randkurve S heiße F(x,y)=0. Es wird angenommen, daß in $T+S\cdots F$ und $\frac{\partial^{m+n}F}{\partial x^m\partial y^n}$ (m,n=0,1,2) sich stetig verhalten, in $T\cdots F\neq 0$ ist, auf S schließlich $\frac{\partial F}{\partial x}$ und $\frac{\partial F}{\partial y}$ nicht ideutisch verschwinden. Das erste Randwertproblem führt Ritz zunächst auf die Bestimmung derjenigen in T+S nebst ihren partiellen Ableitungen

⁵²⁶⁾ Den Übergang von (9) zu (8) siehe E. Zermelo und H. Hahn, II A 8 a Nr. 6. Man vergleiche ferner M. Mason, Math. Ann. 61 (1905), p. 450-452.

⁵²⁷⁾ W. Ritz a) Gött. Nachr. 1908, p. 236—248; Oeuvres, p. 251—264; b) Journ. f. Math. 135 (1909), p. 1—61; Oeuvres, p. 192—250. Außer dem ersten Randwertproblem der Potentialtheorie für gewisse beschränkte Gebiete in & werden a. a. O. Aufgaben der Elastizitätstheorie sowie gewisse eindimensionale Variationsprobleme betrachtet. Man vergleiche ferner W. Ritz c) Annalen der Physik (4) 28 (1909), p. 737—786; Oeuvres, p. 265—316. Eine Darstellung findet sich bei H. Poincaré. Legons de Mécanique Céleste, Paris 1910, p. 297—308.

erster Ordnung stetigen, in T regulären, auf S verschwindenden Funktion w zurück, die den Ausdruck

(10)
$$J^* = D_T(w) - 2 \int_T w f(x,y) dx dy$$
 ($f(x,y), D_1 f$ in $T+S$ stetig) zum Minimum macht. Nunmehr wird die Existenz einer unendlichen Folge in $T+S$ nebst ihren Ableitungen $\frac{\partial^{m+n}\psi_k}{\partial x^m\partial y^n}$ ($m, n=0,1,2$) stetigen, auf S verschwindenden Funktionen $\psi_k(k=1,2,\ldots)$ postuliert, so daß $\sum_k a_k \psi_k$ für alle p , nur wenn $a_k=0$ ($k=1,\ldots p$) ist, identisch verschwindet und jede nebst ihren Ableitungen $\frac{\partial^{m+n}\Pi}{\partial x^m\partial y^n}$ ($m, n=0,1,2$) in $T+S$ stetige, auf S verschwindende Funktion Π sich durch einen Ausdruck der Form $\sum_k a_{kp} \psi_k$ beliebig gleichmäßig approximieren läßt, während zugleich in $T+S$ gleichmäßig

$$\frac{\partial^{m+n} \Pi}{\partial x^m \partial y^n} = \lim_{p = \infty} \left[\sum_{k=0}^{1 \dots p} a_{kp} \frac{\partial^{m+n} \psi_k}{\partial x^m \partial y^n} \right]$$

gilt.

Sodann wird in J^* für w der Ausdruck $\sum_{k}^{1...p} a_k \psi_k$ eingesetzt und es wird dasjenige System $a_k^{(p)}$ $(k=1,\ldots,p)$ bestimmt, das den gewonnenen Ausdruck zum Minimum macht. Die Folge $w_p = \sum_{k}^{1...p} a_k^{(p)} \psi_k$ $(p=1,2,\ldots)$ ist eine Minimalfolge des Problems. Die Integrale $\int_{-\infty}^{x} w_p dx$, $\int_{-\infty}^{y} w_p dy$ konvergieren in T+S gleichmäßig. Von hier aus wird zu der Lösung des Ausgangsproblems wie bei Hilbert übergegangen. Das wesentliche und namentlich für die Anwendungen wichtige der Ritzschen Methode besteht in der expliziten Darstellung einer Minimalfolge. 528)

c) Auflösung des ersten Randwertproblems in der Ebene und im Raume. Bei dem von Hilbert in seiner zweiten Arbeit behandelten

⁵²⁸⁾ Das Verfahren von Ritz ist seither vielfach zur angenüherten Behandlung verschiedener Probleme der Elastizitätstheorie und der Festigkeitslehre herangezogen worden. Ein sich mit der Ritzschen Methode berührendes Verfahren zur Auflösung gewisser nichtlinearer ein- und mehrdimensionaler Existenzprobleme der Variationsrechnung hat L. Lichtenstein angegeben. Vgl. L. Lichtenstein, C. R. 157 (1913), p. 689-672; Journ. f. Math. 145 (1914), p. 24-85; C. R. 157 (1913), p. 1508-1511; Acta math. 40 (1914), p. 327-360. Der Konvergenzbeweis wird a. a. O. auf einem ganz anderen Wege geführt.

334

Problem lag eine eigentliche Randbedingung nicht vor; der in der ersten Veröffentlichung beschrittene Weg dürfte sich aber nur bei Gebieten spezieller Natur als gangbar erweisen. In der Verfolgung der von Hilbert gegebenen Anregung ist man indessen bald dazu gelangt, das erste Randwertproblem für allgemeinere Klassen ebener Gebiete und schließlich mit H. Lebesque für die schlechthin allgemeinsten beschränkten einfach und mehrfach zusammenhängenden ebenen Gebiete durch Variationsbetrachtungen aufzulösen.

B. Levi bestimmt die Lösung des ersten Randwertproblems für ein beschränktes einfach zusammenhängendes Gebiet T in E, dessen Rand S mit einer jeden Geraden, die ein (im übrigen beliebig kleines) festes Kreisgebiet in T trifft, nur zwei Punkte gemeinsam hat. 529) Die Randkurve S ist rektifizierbar und hat darum, außer höchstens in einer Menge der Randpunkte vom Maße Null, eine bestimmte Tangente. Die vorgeschriebene Randfunktion $\varphi(s)$ soll stetig sein und eine beschränkte Ableitung erster Ordnung haben.

Aus der Minimalfolge \bar{u}_{e} gewinnt B. Levi durch zweimalige Anwendung eines geeigneten Prozesses der Mittelwertbildung eine neue in T und auf S gleichmäßig konvergierende Minimalfolge. Die Grenzfunktion ist die gesuchte Potentialfunktion. Der Beweis stützt sich wesentlich auf den seitdem viel gebrauchten B. Levischen Hilfssatz: Sind \overline{u}_1 und \overline{u}_2 zwei Funktionen aus (Ω) und ist

(1)
$$D_T(\overline{u}_1) < d + \varepsilon$$
, $D_T(\overline{u}_2) < d + \varepsilon$, so ist (2) $D_T(\overline{u}_1 - \overline{u}_2) < 4\varepsilon$. 500

Der Erfolg des B. Levischen Verfahrens hängt ganz wie derjenige der zweiten Hilbertschen Methode vor allem mit dem Übergange zu gewissen Doppelintegralen über \overline{u}_n zusammen. Dieser Übergang ist hier in einer anderen Weise durchgeführt, so daß das nachträgliche Differentiieren vermieden wird.

Die Betrachtungen lassen sich vereinfachen, wenn man mit G. Fubini von einer Minimalfolge \bar{u}_n ausgeht, die so beschaffen ist, daß, wenn man $D_T(\bar{u}_n)=d+rac{arepsilon_n}{6}$ setzt, $1>arepsilon_1>arepsilon_2>\cdots$ ist, und die Reihe

⁵²⁹⁾ B. Levi, Rend. del Circ. Mat. di Palermo a) 22 (1906), p. 293-360: b) ebendort p. 387-394.

⁵³⁰⁾ B. Levi, loc. cit. 529) a) p. 425-426; G. Fubini, loc. cit. 531) a) p. 64; S. Zaremba, loc. cit. 543) c) p. 241; H. Weyl, Die Idee der Riemannschen Flüche, Leipzig 1913, p. 101. Die von B. Levi und G. Fubini gegebenen Beweise liefern übrigens nur $D_T(\bar{u}_1 - u_2) < 6 \varepsilon$.

⁵³¹⁾ Vgl. G. Fubini, loc. cit. 532) a) p. 70-71. Siehe ferner G. Fubini, Atti della R. Acc. dei Lincei, Rendiconti (5) 19 (1910), p. 796-801. Man vergleiche hierzu die weiter unten besprochene Methode von S. Zaremba.

 $\sum_{n} \varepsilon_{n}^{\frac{1}{3}}$ konvergiert. Sowohl bei der von B. Levi betrachteten Randwertaufgabe, als auch bei dem von Hilbert in der zweiten Arbeit untersuchten Problem konvergiert nunmehr die Folge \overline{u}_{n} in T (auf \Re), außer höchstens in einer Menge von Punkten, die auf einem jeden Kurvenstücke der Klasse C in T (auf \Re) vom Maße Null ist, gegen eine stetige Funktion u. Für diese gilt $D_{T}(u) = d$.

Die Entwicklungen von B. Levi und G. Fubini lassen sich auf gewisse allgemeinere partielle Differentialgleichungen vom elliptischen Typus zweiter und höherer Ordnung übertragen.⁵³³)

Wir gehen nunmehr zur Besprechung der grundlegenden Untersuchungen von H. Lebesgue über, durch die das erste Randwertproblem in der Ebene für einfach, mehrfach und selbst unendlich-vielfach zusammenhängende Gebiete zum ersten Male vollständig erledigt wurde. 531) Seine Methode dürfte auch im Raume zu einer vollständigen Lösung des ersten Randwertproblems führen. In der Ebene leistet übrigens das in der Nr. 39 besprochene Verfahren das gleiche. Lebesgue legt seinen Betrachtungen 535) ein beliebiges beschränktes einfach, mehrfach oder unendlich vielfach zusammenhängendes Gebiet T in $\mathfrak E$ zugrunde, das so beschaffen ist, daß jeder Punkt, um den sich in beliebiger Nähe Kurven der Klasse C beschreiben lassen, die ganz in T liegen, auch selbst T angehört 536), und beweist vor allem den folgenden fruchtbaren Konvergenzsatz:

Es sei Φ eine auf S erklärte stetige Wertfolge; \overline{U}_n $(n=1,2,\ldots)$ sei eine unendliche Folge von Funktionen, die in T+S stetig und

⁵³²⁾ G. Fubini, Rend. del Circ. Mat. di Palermo a) 23 (1907), p. 58-84; b) 23 (1907), p. 300-301. Diesen Arbeiten sind einige kürzere Notizen vorausgegangen.

In der Arbeit, Annali di Mat. pura ed applicata (3) 14 (1908), p. 113—141 behandelt *Fubini* das zweite Randwertproblem (im Raume). Allgemeine Bemerkungen über die Variationsmethoden vgl. bei *G. Fubini*, Annali di Mat. pura ed applicata (3) 15 (1908), p. 121—129.

⁵³³⁾ Vgl. B. Levi, loc. cit. 529) b) p. 390—394; G. Fubini, loc. cit. 532) a) p. 78—84.

⁵³⁴⁾ Eine andere sich ebenfalls der Variationsmethoden bedienende Lösung, die mit der *Lebesgue*schen Berührungspunkte hat, hat später *R. Courant* gegeben (siehe weiter unten p. 345).

⁵³⁵⁾ Ausführliche Darstellung a) Rend. del Circ. Mat. di Palermo 24 (1907), p. 371—402; in Einzelheiten abweichende kurze Darlegung b) C. R. 144 (1907) p. 316—318 sowie c) p. 622—623. Weitere Bemerkungen zu dem ersten Randwertproblem: d) C. R. 154 (1912), p. 335—337; e) C. R. 155 (1912), p. 699—701.

⁵⁵⁶⁾ Gebiete, die Punkte zu Randkomponenten haben, werden also von der Betrachtung ausgeschlossen. Einschränkungen ähnlicher Art müßte man bei Behandlung des ersten Randwertproblems im Raume einführen.

monoton und auf S gleich Φ sind. St. Es wird ferner vorausgesetzt, daß \overline{U}_n in T stetige partielle Ableitungen erster Ordnung haben haben so gewählt sind, daß für alle $n \dots (3)$ $D_T(\overline{U}_n) < H_0$ (H_0 konstant) ist. Alsdann läßt sich aus \overline{U}_n eine Teilfolge aussondern, die in T+S (gegen eine stetige Funktion) gleichmäßig konvergiert.

Der Beweis wird indirekt geführt. Es wird mit Hilbert aus \overline{U}_n eine Folge extrahiert, die in allen rationalen Punkten von T konvergiert. Sollte diese Folge nicht in T+S gleichmäßig konvergieren, so müßte, wie durch eine einfache Überlegung gezeigt wird, die Wertfolge $D_T(\overline{U}_n)$ $(n=1,2,\ldots)$ beliebig große Werte annehmen können.

Es sei jetzt $\varphi(x,y)$ eine in T+S stetige Funktion, die in T stetige Ableitungen erster Ordnung hat und so beschaffen ist, daß das Dirichletsche Integral $D_T(\varphi)$ existiert. Lebesgue betrachtet die Gesamtheit (Ω) der in T+S stetigen und monotonen Funktionen \overline{u}_n , die so beschaffen sind, daß, höchstens mit Ausnahme gewisser Nullmengen von Punkten und Linien, $D_1\overline{u}_n$ sich in T stetig verhalten, auf $S\ldots\overline{u}_n=\varphi$ ist und $D_T(\overline{u}_n)$ existiert. \overline{u}_n Es sei \overline{u}_n eine Folge aus Ω , so daß $\lim_{n\to\infty}D_T(\overline{u}_n)$ gleich der unteren Grenze der Werte $D_T(\overline{u})$ ist.

Aus \overline{u}_n läßt sich, dem vorhin besprochenen Lebesgueschen Hilfssatze gemäß, eine gleichmäßig konvergierende Teilfolge u_n aussondern. Es sei $u = \lim_{n = \infty} u_n$. Aus einem zuvor bewiesenen Unitätssatze folgt, daß jede zu u analoge Teilfolge aus (Ω) gegen u gleichmäßig konvergiert. Ersetzt man jetzt u_n in einer beliebigen Kreisfläche \Re in T durch diejenige in $\Re + \mathbb{C}$ stetige, in \Re reguläre Potentialfunktion, die auf

^{537,} Es sei $\Theta + \Sigma$ irgendein Bereich in T(T+S). Eine in T(T+S) stetige Funktion wird "in T(T+S) monoton" genannt, wenn ihre obere und untere Grenze in $\Theta + \Sigma$ stets den entsprechenden Werten auf Σ gleich sind. Eine in T+S stetige, in T monotone Funktion ist in T+S monoton. Offenbar ist für alle $n \ldots |U_n| < H_1$ (H_1 konstant).

⁵³⁸⁾ Gewisse Mengen von Punkten oder Kurvenstücken können ausgenommen werden.

⁵³⁹⁾ Ist für alle $n,\ldots,\overline{U_n} < H_1$, ohne daß alle $\overline{U_n}$ auf S dieselben Werte annehmen, so konvergiert auch jetzt noch eine Teilfolge in jedem Bereiche in T gleichmäßig. Die Voraussetzungen des Textes kann man nach Lebesgue auch dahin abändern, daß $\overline{U_n}$ in T+S stetig, jedoch nur in $\overline{T_n}(\lim_{n\to\infty} \overline{T_n}=T)$ monoton

sind, wenn darüber hinaus angenommen wird, daß für alle $n \dots |U_n| < H_1$ und auf $S \dots \overline{U}_n = \Phi$ ist, ohne daß an der Aussage des Textes sonst irgendetwas zu ändern wäre.

⁵⁴⁰⁾ Daß die Menge (2) existiert, wird besonders bewiesen.

 ${\mathfrak C}$ gleich u_n ist, so überzeugt man sich leicht, daß u die Lösung des Randwertproblems darstellt.

Damit ist das erste Randwertproblem für die schlechthin allgemeinsten beschränkten Gebiete in E, die den vorhin erwähnten Bedingungen genügen, erledigt (vgl. Nr. 39).⁵⁴¹) Ein ganz analoger Satz gilt voraussichtlich im Raume von drei oder mehr Dimensionen.

Ein besonders einfaches Verfahren zur Lösung des ersten Randwertproblems hat S. $Zaremba^{543}$) gegeben. Es sei T wie vorhin ein beschränktes Gebiet in $\mathfrak E$ und φ eine auf S erklärte stetige Funktion, Es wird vorausgesetzt, daß es in T+S stetige Funktionen $\overline u$ gibt, die in T stetige partielle Ableitungen erster Ordnung haben, auf S mit φ übereinstimmen und so beschaffen sind, daß $D_T(\overline u)$ existiert. Die Gesamtheit dieser Funktionen bildet die Menge (Ω) . Jedem Punkte (ξ,η) in T wird nun ein Wert ϱ willkürlich, jedoch so zugeordnet. daß die Kreisfläche k_ϱ vom Radius ϱ um (ξ,η) ganz in T liegt. Setzt man

541) Der Übergang zu einer schlechthin stetigen Funktion φ sowie zu Gebieten, die den unendlich fernen Punkt enthalten, macht nicht die geringsten Schwierigkeiten (Nr. 16).

542) Es möge in T eine unendliche Folge von Gebieten \overline{T}_n , die der vorhin genannten Bedingung genügen und so beschaffen sind, daß jeder Punkt von T mindestens einem \overline{T}_n angehört, gegeben sein. Es wird vorausgesetzt, daß Randlinien \overline{S}_n eine nirgends dichte Punktmenge bilden, die auf jedem Kreise in T, höchstens mit Ausnahme von abzählbar vielen, reduzierbar ist, sowie daß zwei beliebige Randlinien \overline{S}_k und \overline{S}_j nur endlich viele Punkte gemeinsam haben; diese gehören jedesmal auch nur jenen beiden Randlinien an. Es sei f eine in dem Bereiche T+S stetige Funktion. Die Gebiete \overline{T}_n seien irgendwie so in eine Reihe \overline{T}_a geordnet, daß jedes \overline{T}_n unendlich oft vorkommt.

Es sei jetzt f_k $(k=1,2,\ldots)$ eine Folge in T+S stetiger Funktionen, so daß $f_1=f$ in $T-\overline{T_1}$, $\Delta f_1=0$ in T_1 ; $f_2=f_1$ in $T-\overline{T_2}$, $\Delta f_2=0$ in $\overline{T_2}$ usf. gilt. Die Folge f_k konvergiert in jedem Bereiche in T gleichmäßig gegen diejenige in T+S stetige, in T reguläre Potentialfunktion, die auf S gleich f ist. Dieser Satz stellt eine weitgehende Verallgemeinerung des Schwarzschen alternierenden Verfahrens (Nr. 24 a) dar. Er steht ferner, wie leicht ersichtlich, in naher Beziehung zu der Poincaréschen Méthode de balayage (Nr. 36). Vgl. H. Lebesgue, loc. cit. 535) a) p. 399—402. Das Lebesguesche Ergebnis enthält gewisse Resultate von S. Zaremba, loc. cit. 543) b) und c) und R. Courant, loc. cit. 556) p. 549—550 über das alternierende Verfahren und die Méthode de balayage. In dem besonderen Falle, wenn die Anzahl der Teilgebiete T_k endlich ist, konvergiert die Folge f_k in T+S gleichmäßig.

543) S. Zaremba, a) Atti del 4. Congr. Intern. dei Mat. 2 (1909), p. 194—199; b) Bull. de l'Acad. de Sc. de Cracovie 1909, p. 197—264; c) Acta mat. 34 (1911), p. 293—316. Zaremba nimmt T einfach oder mehrfach zusammenhängend und im Jordanschen Sinne quadrierbar an. Es genügen wohl die von Lebesgue eingeführten Voraussetzungen.

$$u_n(\xi,\eta) = \frac{1}{\pi \varrho_{k_0}^2} \int_{\overline{u}_n} \overline{u}_n(x,y) dx dy,$$

so konvergiert die Folge u_n in jedem Bereiche in T gleichmäßig gegen eine in T reguläre Potentialfunktion u. Es gilt $D_T(u) = d$. Der Beweis stützt sich auf die B. Levische Ungleichheit und den Hilfssatz: Ist F eine in T und auf S stetige, auf S verschwindende Funktion, die in T, außer auf einer abzählbaren Menge von Kreisen, die sich nur am Rande häufen können, stetige Ableitungen erster Ordnung hat, und ist $D_T(F)$ vorhanden, so ist $\int_T F^2 dx \, dy \leq L^2 D_T(F)$

unter L den Höchstwert des Abstandes zweier Punkte in T+S (den Durchmesser des Bereiches T+S) verstanden. Gibt es in (Ω) eine Funktion w, so daß $D_T(w)=d$ gilt, so ist u=w. Des weiteren beweist Zaremba, daß, wenn h irgendeine in T reguläre Potentialfunktion bezeichnet, so daß $D_T(h)$ existiert, und f irgendeine Funktion aus (Ω) ist, $D_T(f,h)=D_T(u,h)$ gilt. Diese Beziehung ist als Ersatz für die Randbedingung gedacht. Daß u diese tatsächlich erfüllt, beweist Zaremba für gewisse spezielle Gebiete und zwar unter Zuhilfenahme einer Vergleichsfunktion, so beispielsweise im Raume in jedem Punkte des Randes, den man als Spitze eines Kreiskegels annehmen kann, der sonst ganz außerhalb T liegt.

Daß u auf S gleich φ ist, ließe sich wohl am bequemsten nach dem Verfahren von R. Courant, loc. cit. 557, von der Beziehung $D_T(u) = d$ ausgehend, zeigen.

d) Strömungspotential. Der Hilbertsche Ansatz. Konforme Abbildung auf ein Schlitzgebiet. In einem bei Gelegenheit der Anwesenheit von H. Poincaré in der Göttinger Math. Gesellschaft gehaltenen Vortrage hat Hilbert sein Verfahren in einer modifizierten Gestalt auf die Bestimmung des Strömungspotentials angewandt und damit den Variationsmethoden einen neuen aussichtsreichen Weg gewiesen. 544)

Es sei $\mathfrak T$ ein beliebiges über der Ebene z ausgebreitetes endlichoder unendlichvielblättriges Gebiet. Es sei $z_0=x_0+iy_0$ ein von einem Windungspunkte verschiedener Punkt in $\mathfrak T$ und K^* das von einem Kreise C^* um z_0 von hinreichend kleinem Radius begrenzte beschränkte Gebiet. Als Strömungspotential wird diejenige in $\mathfrak T$, außer in z_0 , reguläre Potentialfunktion U bezeichnet, die sich in z_0 wie

(1)
$$\Re\left(\frac{1}{z-z_0}+(z-z_0)\,\Re(z-z_0)\right)$$

⁵⁴⁴⁾ D. Hilbert, Gött. Nachr. 1909, p. 314-323

verhält, wenn überdies $D_{\mathfrak{T}-K^*-C^*}(U) \leq D_{\mathfrak{T}-K^*-C^*}(U_0)$ ist, unter U_0 eine beliebige in \mathfrak{T} und auf C^* nebst ihren partiellen Ableitungen erster Ordnung stetige, auf C^* mit U übereinstimmende Funktion verstanden. ⁵¹⁵)

Die Bestimmung des Strömungspotentials läßt sich nach Hilbert auf die Lösung des folgenden Variationsproblems zurückführen. Es ist diejenige in $\mathfrak T$ nebst ihren partiellen Ableitungen erster Ordnung stetige Funktion U zu bestimmen, die dem Doppelintegral

(2)
$$\int \left\{ \left(\frac{\partial U}{\partial x} - \alpha \right)^2 + \left(\frac{\partial U}{\partial y} - \beta \right)^2 \right\} dx dy$$

den kleinsten Wert erteilt; α und β bezeichnen bestimmte, außerhalb eines gewissen beschränkten Gebietes der Klasse C um z_0 identisch verschwindende, in $\mathfrak T$ nebst ihren partiellen Ableitungen erster Ordnung stetige Funktionen. Die Existenz der Lösung und damit des Strömungspotentials kann mit Hilbert in ähnlicher Weise wie in der Nr. 45 b diejenige eines Abelschen Integrals erster Art erschlossen werden. 546)

Es sei $\mathfrak{T}=\lim_{n\to\infty}T_n$; es sei z_0 ein Punkt in T_1 und $U^{(n)}$ das zu T_n gehörige, in z_0 wie (1) unendliche Strömungspotential. In seiner Anfang 1910 erschienenen Dissertation beweist R. Courant den folgenden Satz:

Die Folge $U^{(n)}$ $(n=1,2,\ldots)$ ist in jedem z_0 nicht enthaltenden Bereiche in $\mathfrak T$ gleichmüßig konvergent. Die Grenzfunktion ist das zu $\mathfrak T$ gehörige Strömungspotential. Der Beweis stützt sich wesentlich auf den folgenden wichtigen Hilfssatz:

Es sei u(x,y) eine für alle (x,y) in der Kreisfläche $K(|z-z_0| < R)$ reguläre Potentialfunktion. Ist $D_K(u) < A^2$ (A konstant), so ist für alle (x,y) im Gebiete $K'(|z-z_0| < R' < R)$

⁵⁴⁵⁾ Gilt $D_{\mathfrak{T}-K'}-c^*(U) \leq D_{\mathfrak{T}-K'}-c^*(U_0)$ für eine spezielle Kreisfläche K^* , so gilt sie für jedes beliebige Kreisgebiet um z_0 in K^* . Vgl. P. Koebe, loc. cit. 478) p. 333 Fußnote 1).

⁵⁴⁶⁾ Im engen Anschluß an Hilbert gibt R. König (Gött. Nachr. 1910, p. 130—132; Math. Ann. 71 (1911), p. 189—205) ein Verfahren zur konformen Abbildung der Oberfläche einer analytischen körperlichen Ecke auf ein ebenes Gebiet. (Vgl. Nr. 24e die Fußnote 306.) Der reelle Teil der die fragliche Abbildung vermittelnden Funktion wird als die Lösung eines Variationsproblems, das dem im Text betrachteten analog ist, bestimmt. Durch eine besondere Überlegung wird sodann gezeigt, daß die konjugierte Lösung der Differentialgleichung $\Delta_s u = 0$ sich auch noch in dem Eckpunkt stetig verhält.

⁵⁴⁷⁾ R. Courant, a) Inaugural-Dissertation, Göttingen 1910, p. 1-44 [p. 26 bis 29]; b) Math. Ann. 71 (1912), p. 145-183 [p. 166-169].

340 II C 3. L. Lichtenstein. Potentialtheorie. Konforme Abbildung.

$$(3) \qquad \qquad \left(\frac{\partial u}{\partial x}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2 < A^2 C(R', R),$$

unter C(R', R) eine nur von R' und R abhängige Funktion verstanden. Für alle $(x_1, y_1), (x_2, y_2)$ in K' ist

$$(4) u(x_1, y_1) - u(x_2, y_2) < AC'(R', R).^{548})$$

Die Funktionen $U^{(n)}$ denkt sich dabei Courant ganz wie vorhin U durch eine aus den Variationsmethoden resultierende Konstruktion bestimmt. Demgegenüber bestimmt P. Koebe (loc. cit. 478)) die approximierenden Strömungspotentiale als Lösungen einer Randwertaufgabe $\frac{\partial U^{(n)}}{\partial n} = 0$ (Nr. 24h) und gewinnt unter Benutzung des soeben betrachteten Hilfssatzes das gesuchte Strömungspotential durch die Grenzbeziehung $U = \lim_{n \to \infty} U^{(n)}$. (Man vergleiche die Betrachtungen der Nr. 42 sowie P. Koebe, loc. cit. 478) passim.)

Eine mit der vorstehenden verwandte Auffassung vertritt Koebe in einer späteren Darstellung. (Journ. f. Math. 138 (1910), p. 192 bis 253 (p. 207—229). Durch kombinatorische Methoden wird diejenige in $T_n - K^* + S_n$ stetige, in $T_n - K^* - C^*$ reguläre Potentialfunktion U_n^* bestimmt, die auf C^* beliebige vorgeschriebene Werte annimmt und auf dem Rest der Begrenzung der Bedingung $\frac{\partial U_n^*}{\partial n} = 0$ genügt. In jedem Bereiche in $\mathfrak{T} - K^* - C^*$ ist die Folge U_n^* gleichmäßig konvergent. Es sei $U^* = \lim_{n \to \infty} U_n^*$. Von U^* aus gelangt man zu dem Strömungspotential U durch gürtelförmige Verschmelzung.

Es sei V eine zu U konjugierte Potentialfunktion. Betrachten wir die durch Z = U + i V vermittelte konforme Abbildung von \mathfrak{T} .

548; Vgl. R. Courant, loc. cit. 547) a) p. 23—26; b) p. 525—526 sowie P. Kocbe, loc. cit. 478, p. 339—340; loc. cit. 507), p. 222—223). Dem fraglichen Hilfssatz gibt Courant noch die folgende allgemeinere Fassung: Es sei $\varphi(z)$ irgendeine in einem beschränkten Gebiete Θ (in E) reguläre analytische Funktion. Ist der innere Flächeninhalt des durch $\varphi(z)$ vermittelten Bildgebietes $<\tau$, sind z_1 und z_2 zwei Punkte in Θ' , unter Θ' ein nebst seinem Rande in Θ enthaltenes Gebiet verstanden, so ist der Abstand (5) $\varphi(z_1) - \varphi(z_2) | < \gamma \tau$, wobei γ einen nur von Θ und Θ' abhängenden Wert bezeichnet. Man vergleiche ferner T. H. Gronwall, Annals of Math. (2) 16 (1914), p. 72—76. Gronwall betrachtet die zu u gehörige, in K reguläre analytische Funktion f(z) und findet, R=1 gesetzt,

$$f(z) - f(z_0) \le \sqrt{\frac{D_K(u)}{\pi}} \sqrt{\log \frac{1}{1 - z_1^2}}, \quad D_K(u) = \int_K |f'(z)|^2 dx dy.$$

sowie

$$f'(z) \leq \sqrt{\frac{D_K(u)}{\pi} \cdot \frac{1}{1 - |z|^2}}.$$

In seiner vierten Mitteilung über die Uniformisierung beliebiger analytischer Kurven zeigt Koebe vor allem, daß, wenn der Rand von $\mathfrak T$ ein Stück $\mathfrak S$ einer Kurve der Klasse E enthält, U sich auf dieser stetig und, Ecken und Spitzen ausgenommen, regulär verhält. Auf einem jeden regulären Bogen von $\mathfrak S$ ist ferner $\frac{\partial U}{\partial n} = 0$. In (isolierten) Randpunkten verhält sich U regulär. $\frac{\partial U}{\partial n} = 0$.

Durch Vermittlung der Funktion $Z_n = U_n + i V_n$ wird T_n auf ein von einer endlichen Anzahl zur Achse des Reellen paralleler Strecken begrenztes, den unendlich fernen Punkt enthaltendes schlichtes Gebiet abgebildet (Nr. 24h). Aus $Z = \lim_{n = \infty} Z_n$ folgt, daß $\mathfrak T$ durch Vermittlung von Z auf ein Gebiet Ψ abgebildet wird, daß die Ebene nirgends mehrfach bedeckt. Auf indirektem Wege wird nun, wie übrigens schon bei dem Beweise der zuletzt genannten Sätze, unter Benutzung der Hilbertschen Minimumseigenschaft, gezeigt, daß $\Psi = \lim_{n = \infty} \Psi_n$ und $\lim_{n = \infty} m_n = 0$ (Nr. 42 p. 318) ist, womit der Abbildungssatz bewiesen ist. 550) Die den Inhalt der Begrenzungsmannigfaltigkeit betreffende Eigenschaft der Abbildung (Nr. 42 p. 318) wird einmal unter Benutzung der Beziehung $U = \lim_{n = \infty} U_n$, das andere Mal aus der Minimumseigenschaft von U direkt abgeleitet. 551)

Während so die Haupteigenschaften der Funktion Z durch eine Verknüpfung verschiedener methodischer Gedanken erschlossen wurden, unternimmt es Koebe, im Anschluß an Hilbert an einer anderen Stelle 552), wie gleichzeitig mit ihm Courant (s. weiter unten), diese als eine Folge der fundamentalen Hilbertschen Minimumsbeziehung darzustellen. Dies hat Koebe allgemein, Courant, ohne Zurückgreifen auf die Beziehung $U = \lim_{n = \infty} U_n$, in dem besonderen Falle einfach und mehrfach zusammenhängender Gebiete durchgeführt. Wie schon erwähnt (Nr. 42), hat diesen Weg in dem besonderen Falle einfach und mehrfach zusammenhängender Gebiete bereits D. Hilbert in seiner Vorlesung über konforme Abbildung (Sommersemester 1909) eingeschlagen. Koebe schließt wie folgt:

⁵⁴⁹⁾ P. Koebe, loc. cit. 478) p. 343—355. Die Beziehung $\frac{\partial U}{\partial n} = 0$ gilt übrigens auch noch, wenn $\mathfrak E$ der Klasse B angehört. Vgl. hierzu auch P. Koebe, loc. cit. 507), p. 236—237.

⁵⁵⁰⁾ P. Koebe, loc. cit. 478) p. 347-352.

⁵⁵¹⁾ Vgl. P. Koebe, loc. cit. 486).

⁵⁵²⁾ Vgl. P. Koebe, Gött. Nachr. 1910, p. 59—74 sowie loc. cit. 481) p. 238—242.

342

Es liege zunächst ein einfach zusammenhängendes Gebiet vor. Offenbar gibt es keine geschlossene oder beiderseits ins Unendliche mündende Linie $U = U^{(0)}$ ($U^{(0)} = \text{konstant}$), die z_0 nicht Sonst könnte bei einer geeigneten Wahl von K* der Ausdruck $D_{\mathfrak{T}-K^*-c^*}(U)$ dadurch verkleinert werden, daß man U in einem Teile von $\mathfrak T$ durch $U^{(0)}$ ersetzt. Aus gleichem Grunde muß |U| in $\mathfrak{T} - K^* - C^*$ eine endliche obere Schranke haben, ferner müssen vielfache Punkte auf $U = U^{(0)}$ dort ausgeschlossen sein. Die Linien $U = U^{(0)}$ und $V = V^{(0)}$ ($V^{(0)}$ konstant) sind mithin in jedem Bereiche in \mathfrak{T} , der zo nicht enthält, regulär. Die ersteren verlaufen von zo entweder nach zo zurück oder nach dem Rande. Die Annahme, daß eine Linie $V = V^{(0)}$ einen z_0 nicht treffenden geschlossenen oder beiderseits ins Unendliche verlaufenden Zug bildet, führt, wie die Untersuchung einer geeigneten speziellen Variation zeigt, auf einen Widerspruch. Durch jeden Punkt in \mathfrak{T} geht eine und nur eine Linie V = Const., die beidersèits in zo, oder einerseits in zo, anderseits in den Rand einmündet. Die Untersuchung einer speziellen Variation zeigt, daß die Annahme, es gebe mehr als zwei Linien V = Const. der zuletzt genannten Art, widersinnig ist. Das Bild des Gebietes I ist demnach die von einer endlichen Strecke parallel zu der Achse des Reellen oder von einem Punkte begrenzte Ebene.

In ähnlicher Weise wird von Koebe der allgemeine Fall eines mehrfach oder unendlichvielfach zusammenhängenden schlichtartigen Gebietes behandelt. Mit Hilbert wird dabei aus den Variationsbeziehungen selbst erschlossen, daß V eindeutig ist, was bei einem einfach zusammenhängenden Gebiete selbstverständlich ist.

Wie bereits erwähnt, ist die Abbildungseigenschaft der Funktion $U+i\,V$ auch von R. Courant als direkte Folge der Minimumseigenschaft nachgewiesen worden. Courant betrachtet zunächst ein beschränktes einfach zusammenhängendes Gebiet T in $\mathfrak E$ und beweist unter Zuhilfenahme spezieller Variationen direkt, daß

(6)
$$|V(P_1) - V(P_2)| < g(\varepsilon), \quad \lim_{\varepsilon \to 0} g(\varepsilon) = 0$$

gilt, unter P_1 und P_2 zwei beliebige Punkte in T, deren Abstand von S kleiner ist als ε , verstanden. Da die Funktion V eindeutig und das Bildgebiet schlicht ist, so besteht dieses aus der gesamten von einer zu der Achse des Reellen parallelen Strecke begrenzten Ebene. 554) Bildet man dieses auf die Fläche des Einheitskreises ab, so gewinnt

⁵⁵³⁾ R. Courant, loc. cit. 547).

⁵⁵⁴⁾ Der Rand kann sich hier nicht auf einen Punkt reduzieren, da sonst die Funktion z(Z) konstant sein würde.

man das Osgoodsche Resultat (Nr. 38). Den allgemeineren Fall eines beliebigen mehrfach zusammenhängenden schlichtartigen Gebietes erledigt Courant durch Betrachtung der Linien U= Const. Im Gegensatz zu Koebe, der bei diesen Betrachtungen eine Zurückführung ad absurdum bevorzugt, wird wie vorhin durch geeignete spezielle Variationen direkt gezeigt, daß V auf jeder Randkomponente konstant ist. Ist das Gebiet insbesondere einfach zusammenhängend, so gewinnt man den Abbildungssatz von H. Poincaré und P. Koebe. Den Fall eines unendlichvielfach zusammenhängenden Gebietes erledigt Courant in ähnlicher Weise unter Zuhilfenahme der Beziehung $\mathfrak{T}=\lim_{n=\infty} T_n$. Die Ungleichheit (6) wird in geeigneter Weise auf die zu T_n gehörenden Potentiale $V^{(n)}$ angewendet. Durch einen Grenzübergang erhält man eine analoge Ungleichheit für V und damit den zu beweisenden Satz. 555)

Es sei T ein den unendlich fernen Punkt enthaltendes Gebiet in \mathfrak{S} , dessen sämtliche Randkomponenten aus Strecken bestehen, die der Achse des Reellen parallel sind. Jede einzelne Strecke kann sich auch auf einen Punkt reduzieren.

Zwei Gebiete dieser Art kann man, wenn sie von endlichem Zusammenhang sind, nur dann durch Vermittlung einer Funktion, die im Unendlichen sich wie

$$z_1(z) = z + \frac{1}{z} \, \mathfrak{P}\left(\frac{1}{z}\right)$$

verhält, aufeinander abbilden, wenn sie zusammenfallen $(z_1(z)=z)$. Ein analoger Satz gilt, wie Koebe durch ein Beispiel zeigt, für unendlich vielfach zusammenhängende Gebiete nicht. (Vgl. P. Koebe, Gött. Nachr. 1918, vorgelegt am 17. 12. 1917). Dort wird ein von Strecken, die zu der Achse des Reellen parallel und in bezug auf diese symmetrisch sind sowie von gewissen Punkten auf der y-Achse begrenztes unendlich vielfach zusammenhängendes Gebiet T_1 durch Vermittlung einer sich im Unendlichen wie (*) verhaltender Funktion auf ein Gebiet T_2 abgebildet, dessen Berandung aus einer nicht abzählbaren Menge von Punkten auf der y-Achse besteht. Der Inhalt der beiden Begrenzungsmannigfaltigkeiten S_1 und S_2 hat den Wert Null. Der lineare äußere Inhalt von S_2 ist von Null verschieden, derjenige der Projektion von S_1 auf die y-Achse ist gleich Null.

Aus der Gesamtheit der Schlitzgebiete hebt Koebe die Klasse der

⁵⁵⁵⁾ Bei P. Koebe, loc. cit. 552) wird, wie bereits erwähnt, das Zurückgreifen auf die Beziehung $U+i\,V=\lim_{n=-\infty}(U_n+i\,V_n)$ auch in dem Falle eines unendlichvielfach zusammenhängenden Gebietes vermieden.

"minimalen" Schlitzgebiete durch folgende Festsetzungen heraus. Es sei (Θ) irgendein Gebiet der Klasse C, das S enthält. Das von Σ und S begrenzte Teilgebiet von T heiße T^* . Es sei w irgendeine in jedem Bereiche in $T^* + \Sigma$ abteilungsweise analytische, auf Σ verschwindende Funktion, die überdies so beschaffen ist, daß D_{T^*} w) existiert. Dann ist T ein minimales Schlitzgebiet, wenn

$$(**) D_{T^*}(x + w) \ge D_{T^*}(x) = F^*$$

gilt, unter F^* den inneren Flächeninhalt von T^* verstanden. Ist T^*_n $(n=1,2,\ldots)$ eine Folge von Gebieten der Klasse C, die gegen T^* konvergieren, so läßt sich die Bedingung (**) auf die Form bringen

 $\lim_{n=\infty} \int_{S_*^*} w \, dy = 0.$

Zwei minimale Schlitzgebiete lassen sich aufeinander durch Vermittlung einer Funktion, die sich im Unendlichen wie (*) verhält, nur dann abbilden, wenn sie zusammenfallen. Jedes Gebiet, das durch ein Strömungspotential entworfen wird, ist ein minimales Schlitzgebiet. Jedes Schlitzgebiet T hat die Eigenschaft, daß seine Berandung den Inhalt Null hat. Diese Bedingung genügt indessen nicht, um ein minimales Schlitzgebiet zu charakterisieren. Eine hinreichende (und wahrscheinlich auch notwendige) Bedingung bildet die Forderung, daß die Projektion von S auf die y-Achse überdies den linearen Inhalt Null haben soll. Das vorhin betrachtete Gebiet T_1 ist ein minimales Schlitzgebiet, das Gebiet T_2 ist es nicht.

In seiner 1912 erschienenen Habilitationsschrift hat Courant ein neues Verfahren zur Lösung der Randwertaufgaben der Potentialtheorie für Gebiete allgemeiner Natur angegeben. Es möge sich etwa um das erste Randwertproblem in einem von einer endlichen Anzahl Strecken parallel der x- oder der y-Achse begrenzten einfach zusammenhängenden Gebiete T in Ehandeln. Es sei K^* eine T+S enthaltende Kreisfläche, φ eine in K^* erklärte analytische und reguläre Funktion. Die Menge (Ω) besteht aus allen Funktionen, die in T+S stetig sind, auf S mit φ übereinstimmen und einer Reihe weiterer Bedingungen genügen, durch die insbesondere die Existenz von $D_T(\overline{u})$ gewährleistet wird. Das Gebiet T wird nun in passender Weise in eine endliche Anzahl Rechteckgebiete zerlegt. Es sei jetzt \overline{u}_n $(n=1,2,\ldots)$ eine Minimalfolge. Courant ersetzt \overline{u}_n im Innern

⁵⁵⁶⁾ Vgl. R. Courant, Math. Ann. 72 (1912), p. 517—550 (Voranzeige Gött. Nachr. 1910, p. 154—160).

eines jeden Rechteckgebietes Λ durch diejenige in $\Lambda+L$ stetige, in Λ reguläre Potentialfunktion, die auf dem Rande L von Λ mit \overline{u}_n übereinstimmt. Aus der neuen "normierten" Folge u_n wird endlich durch einen Auswahlprozeß eine gegen die gesuchte Potentialfunktion konvergierende Minimalfolge extrahiert. Zu allgemeineren Gebieten gelangt man über eine Folge approximierender Gebiete durch einen geeigneten Grenzübergang.

Eine wesentlich vereinfachte Gestalt erhielt die vorstehende Methode in einer zwei Jahre später erschienenen Arbeit von Courant. 557) Es sei T irgendein beschränktes Gebiet in E und \varphi eine in T und auf S stetige Funktion, die im Innern von T abteilungsweise stetige partielle Ableitungen erster und zweiter Ordnung hat; die etwa vorhandenen Unstetigkeitslinien sind der x- oder der y-Achse parallel; das Dirichletsche Integral $D_T(\varphi)$ existiert. Das Gebiet T wird irgendwie in abzählbar unendlichviele Rechteckflächen A, deren Seiten den Koordinatenachsen parallel sind, zerlegt, so daß die Eckpunkte sich nar am Rande häufen. Die Menge (2) besteht aus der Gesamtheit der Funktionen, die in T+S sich wie φ verhalten und auf S gleich φ sind. Ist $\bar{u}_{s}(n=1,2,\ldots)$ eine Minimalfolge, so wird wie vorhin zu einer normierten Folge übergegangen. Diese ist in jedem in einer Rechteckfläche A enthaltenen Bereiche gleichmäßig konvergent. Die einzelnen Grenzfunktionen schließen sich zu einer in T regulären Potential funktion u zusammen. Es ist $D_T(u) = d$. Nunmehr zeigt Courant durch Betrachtung des Integrals $D_{\tau}(u)$ auf direktem Wege, daß u in T+S stetig ist und auf einer jeden Randkomponente, die aus mehr als einem Punkte besteht, den Wert \(\varphi \) annimmt. Damit ist das Lebesguesche Resultat (Nr. 45c) noch einmal gewonnen. Zugleich ergibt sich eine interessante Abschätzung für die Geschwindigkeit, mit der u gegen den Randwert konvergiert. 558)

Wie das Lebesguesche Verfahren (Nr. 45c), so liefert auch die vorliegende Methode voraussichtlich die vollständige Lösung des ersten Randwertproblems für die allgemeinsten beschränkten Gebiete im Raume von drei und mehr Dimensionen. In ähnlicher Weise lassen sich Existenzsätze der Riemannschen Theorie algebraischer Funktionen sowie die Existenz des Strömungspotentials beweisen. 559)

Wie H. Weyl gezeigt hat, läßt sich das Verfahren von Zaremba

⁵⁵⁷⁾ R. Courant, Journ. f. Math. 144 (1914), p. 190--211.

⁵⁵⁸⁾ R. Courant, loc. cit. 557) p. 203.

⁵⁵⁹⁾ In der zuletzt betrachteten Abhandlung bedient sich dabei Courant des von H. Weyl angegebenen Ansatzes (s. weiter unten).

346

(Nr. 45c) auf die Bestimmung des Strömungspotentials anwenden. 560) Den *Hilbert*schen Ansatz ersetzt *Weyl* durch den folgenden einfacheren Ansatz:

Es sei K_0 eine schlichte Kreisfläche um z_0 vom Halbmesser α_0 ; ihr Rand heiße C_0 . Es sei (Ω) die Gesamtheit der Funktionen \overline{u} , die in K_0+C_0 und in jedem Bereiche in $\mathfrak{T}-K_0$ stetig sind, auf C_0 einen Sprung gleich (7) $\Phi=\frac{x-x_0}{(x-x_0)^2+(y-y_0)^2}+\frac{x-x_0}{\alpha_0^2}$ erleiden, in \mathfrak{T} stetige partielle Ableitungen erster Ordnung haben und überdies so beschaffen sind, daß $D_{\mathfrak{T}}(\overline{u})$ existiert.

Unter den Funktionen \bar{u} ist nun diejenige zu bestimmen, die $D_{\bar{z}}(\bar{u})$ den kleinsten Wert erteilt. Ist u diese Funktion, so ist

$$(8) \hspace{1cm} U = \left\{ \begin{matrix} u & \text{in } \mathfrak{T} - K_0, \\ u + \varPhi & \text{in } K_0 \end{matrix} \right.$$

das in ε_0 une
ndliche Strömungspotential.

Ein ganz analoger Ansatz führt zum Beweise der *Riemann*schen Existenzsätze.

Wie O. Haupt gezeigt hat, läßt sich in ähnlicher Weise die Theorie der Prymschen Funktionen begründen. 561)

Zum Schluß des Abschnittes über Variationsmethoden sei der folgende kürzlich von *T. Carleman* bewiesene Satz erwähnt. Unter allen unbegrenzten Zylinderkondensatoren, deren beide Randflächen vorgegebenen Inhalt des Normalschnittes haben, hat derjenige die kleinste Kapazität, der aus zwei konzentrischen geraden Kreiszylindern besteht. (Vgl. *T. Carleman*, Math. Zeitschrift 1 (1918), p. 208—212.)

46. Kontinuitätsmethode im Gebiete der konformen Abbildung. Es seien Ω' und Ω'' zwei Mengen zweidimensionaler Gebiete, die so beschaffen sind, daß 1. ein beliebiges Gebiet T' aus Ω' auf ein und nur ein Gebiet der Menge Ω'' , etwa auf T'', vorgegebenen Bedingungen gemäß konform abgebildet werden kann, 2. ein beliebiges Gebiet aus Ω'' , wenn überhaupt, dann höchstens auf ein Gebiet der Menge Ω' konform abgebildet werden kann. Hängen sowohl Ω' als auch Ω'' von p reellen Parametern stetig ab 562), so wird man erwarten, daß die Aussage 2. sich zur Behauptung der Möglichkeit, ein beliebiges Gebiet aus Ω'' auf ein Gebiet der Mannigfaltigkeit Ω' konform abzu-

⁵⁶⁰⁾ H. Weyl, Die Idee der Riemannschen Flüche, Leipzig 1913, p. 78—107. 561) Siehe O. Haupt, Math. Ann. 77 (1915), p. 24—64 [p. 44—48 sowie p. 59—60]. Vgl. die Fußnote 316.)

⁵⁶²⁾ Die Menge Ω' hängt von den Parametern stetig ab, heißt nichts anderes, als daß die Individuen von Ω' sich mit den Parametern stetig ändern.

bilden, wird steigern lassen. Diese im wesentlichen auf einer Abzählung der Konstanten beruhende heuristische Schlußweise bedarf natürlich in jedem Falle erst einer strengen Begründung.

Im allgemeinen wird sich, was vor allem in jedem besonderen Falle festgestellt werden muß, T'' mit T' stetig ändern. Da auch Ω' und Ω'' von ihren Parametern stetig abhängen, so wird man versuchen, von der Analogie zu der bekannten Eigenschaft stetiger Funktionen geleitet, zu zeigen, daß umgekehrt jedem beliebigen Gebiete T'' ein T' entspricht. Dieser Kernpunkt der ganzen Betrachtung wird, je nach der besonderen Natur von Ω' und Ω'' , auf verschiedenen Wegen zu erweisen sein.

Es mögen jetzt Ω' und Ω'' Gebiete sein. 563) Eine besondere Rolle wird, wie zunächst zu erwarten ist, ihrer Berandung zufallen, wobei in jedem besonderen Falle zu entscheiden ist, ob auch den Randpunkten bestimmte Individuen entsprechen oder nicht, somit ob man mit abgeschlossenen oder offenen Kontinuen in dem p-dimensionalen Raume R_p zu tun hat.

Auf Kontinuitätsbetrachtungen beruhende Beweisordnungen im Gebiete der konformen Abbildung sind bereits von K. Weierstraβ und H. A. Schwarz (Nr. 25) angewandt worden. 564)

Von der größten Bedeutung wurde die von *F. Klein* so benannte Kontinuitätsmethode jedoch erst, seitdem *F. Klein* und *H. Poincaré* diese zum Beweise der Fundamentaltheoreme der Uniformisierungstheorie algebraischer Funktionen herangezogen haben.⁵⁶⁵) Der Grund-

563) Unter $\mathfrak Q'$ und $\mathfrak Q''$ werden die als Gebiete vorausgesetzten Mengen der in Betracht kommenden Parameterwerte im Raume R_p von p Dimensionen verstanden.

564) Man vergleiche ferner die Betrachtungen von L. Schläfti und E. Phragmen, loc. eit. 341).

565) Vgl. das Referat über automorphe Funktionen und Modulfunktionen von R. Fricke, IIB4 Nr. 37. Dort finden sich nähere Angaben über die Arbeiten von L. E. J. Brouwer und die ersten Arbeiten von P. Koebe. Siehe L. E. J. Brouwer, Gött. Nachr. 1912, p. 603-604; p. 803-806; P. Koebe, Gött. Nachr. 1912, p. 879-886. Man vergleiche ferner die Untersuchungen von E. Ritter, loc. cit. 315); R. Fricke, Automorphe Funktionen 2, p. 283-438; Verhandl. über automorphe Funktionen auf der Jahresvers. Deutsch. Naturforsch. u. Ärzte in Karlsruhe 1911 (Ber. d. Deutsch. Math. Ver. 21 (1912), p. 153-164) sowie die historischen und kritischen Bemerkungen bei P. Koebe, Math. Ann. 75 (1914), p. 42 bis 129 [p. 43-51]. Über weitere mit der Kontinuitätsmethode zusammenhängende Fragen der Theorie linearer Differentialgleichungen und automorpher Funktionen vergleiche das Referat II B 5 von E. Hilb, namentlich Nr. 14 b und Nr. 17 [an der zuerst genannten Stelle finden sich Angaben über die einschlägigen Arbeiten von L. Schlesinger]; F. Klein, Ausgewählte Kapitel aus der Theorie der linearen Differentialgleichungen zweiter Ordnung, II. Vorlesungen,

gedanke der von den beiden Autoren in Aussicht genommenen Methoden sowie der neuerdings von Erfolg gekrönten Untersuchungen von L. E. J. Brouwer und P. Koebe läßt sich mit Koebe bequem an der folgenden, auf Poincaré zurückgehenden Aufgabe erläutern. 566)

Die Fläche des Einheitskreises |Z| < 1 soll derart auf die Fläche eines von vier Orthogonalkreisen des Einheitskreises |z| < 1 gebildeten Vierseits Π konform abgebildet werden, daß den Spitzen — 1, — $i, +1, \beta = e^{\omega i} \ (0 < \omega < \pi)$ die Punkte — $1, -i, +1, \alpha = e^{\nu i} \ (0 < \nu < \pi)$ entsprechen. Der Punkt α ist vorgegeben, β ist natürlich, falls die Abbildung sich überhaupt als möglich erweist, erst zu bestimmen.

Einem irgendwie vorgegebenen β $(0 < \omega < \pi)$ entspricht gewiß ein und nur ein α $(0 < \nu < \pi)$.

Man zeigt, daß α sich mit β stetig ändert, sowie daß zu einem α höchstens ein β gehört. Dem (offenen) Halbkreis $0 < \omega < \pi$ entspricht also ein (offener) Bogen des Halbkreises $0 < \nu < \pi$. Um zu zeigen, daß dieser den Halbkreis $0 < \nu < \pi$ ganz ausfüllt, womit das Problem gelöst sein wird, betrachtet *Poincaré* die beiden Grenzfälle $\beta = 1$ und $\beta = -1$, d. h. das spitzwinklige Dreieck mit den Ecken -1, -i, +1, denen offenbar $\alpha = 1$ und $\alpha = -1$ entspricht, und beweist, daß $\alpha(\beta)$ sich noch in den Endpunkten des Halbkreises $0 < \omega < \pi$ stetig verhält. Hier werden abgeschlossene Kontinuen der Betrachtung zugrunde gelegt. Bei der Anwendung auf das allgemeine Grenzkreistheorem 567) führt dieses Verfahren wegen der Notwendigkeit, den Rand der Polygonmannigfaltigkeit (Grenzpolygone) zu erforschen, auf beträchtliche Schwierigkeiten.

Im Gegensatz zu H. $Poincar\acute{e}$ sucht F. Klein aus dem Verhalten der Abbildung im Innern der beiden Mannigfaltigkeiten allein zwingende Schlüsse zu ziehen (Methode der offenen Kontinuen 568). Diese Methode, welche von der von $Poincar\acute{e}$ als unentbehrlich hingestellten Erforschung des Randes von Ω' und Ω'' absieht, wurde erst in neuerer Zeit von P. Koebe völlig herausgearbeitet und im vollen Umfange zur

gehalten im Sommersemester 1891 (lith., nicht im Buchhandel); Über Lineare Differentialgleichungen der zweiten Ordnung, Göttingen 1894 (lith.); E. Hilb, Gött. Nachr. 1908, p. 231—235; 1909, p. 230—234; Math. Ann. 66 (1908), p. 215 bis 256; 68 (1910), p. 24—74; Schwarz Festschrift, 1904, p. 98—115.

⁵⁶⁶⁾ Vgl. H. Poincaré, Acta Math. 4 (1884), p. 201-312; L. Schlesinger, Handbuch der Theorie der linearen Differentialgleichungen, Leipzig 1898, Bd. II 2, p. 255-258; P. Koebe, loc. cit. 565 d), p. 44-45.

⁵⁶⁷⁾ Das übrigens von H. Poincaré allein betrachtet wurde.

⁵⁶⁸⁾ F. Klein, Math. Ann. 21 (1883), p. 141—218. Die Andeutungen von Klein erstrecken sich auf alle von ihm aufgestellten Fundamentaltheoreme.

Durchführung gebracht. Als ein wesentliches Hilfsmittel benutzt Koebe den von ihm entdeckten Verzerrungssatz (Nr. 43, p. 321). 569) In dem vorhin betrachteten Poincaréschen Beispiele gestattet dieser Satz den Schluß, daß, wenn den in einem (offenen) Intervalle $0 < \nu_1 < \nu < \nu_2 < \pi$ enthaltenen Werten von ν überhaupt Werte von ω entsprechen, diese in einem gewissen (offenen) Intervalle $0 < \omega_1 < \omega < \omega_2 < \pi$ enthalten sein müssen. Hieraus folgt aber leicht, ohne daß man es nötig hat, die Randpunkte überhaupt zu betrachten, daß die Aufgabe eine (und nur eine) Lösung hat.

In der in der Fußnote 569) unter d) zitierten Arbeit gibt Koebe eine ausführliche Darstellung seiner Methode für alle Kleinschen Fundamentaltheoreme der Uniformisierungstheorie der algebraischen Flächen unter Voranstellung des bereits Nr. 43 betrachteten Problems der konformen Abbildung eines 2p-fach zusammenhängenden Gebietes Φ der Klasse C in $\mathfrak E$ mit analytischer und regulärer Ränderzuordnung auf ein ebensolches Gebiet mit linearer Ränderzuordnung. 570)

Die Hauptpunkte der Koebeschen Beweisführung sind: Jedes Individuum Φ der Menge Ω'' aller 2p-fach zusammenhängenden Gebiete der Klasse C in $\mathfrak E$ (mit analytischer und regulärer Ränderzuordnung) läßt sich durch eine stetige Änderung der Randkurven und der Begrenzungssubstitutionen, ohne Ω'' zu verlassen, in jedes beliebige andere Individuum der Menge Ω'' überführen (Existenz einer "Überführungslinie"). Es sei φ dasjenige p-fach zusammenhängende Gebiet das aus Φ entsteht, wenn man jedes Paar zusammengehöriger Randkurven durch einen Querschnitt verbindet. Durch ein geeignetes Abelsches Integral erster Art wird φ auf ein gewisses p-fach zusammenhängendes mehrblättriges Gebiet H abgebildet, das (2p-2) Win-

⁵⁶⁹⁾ Vgl. P. Koebe, a) Jahresb. d. Deutsch. Math.-Ver. 21 (1912), p. 157—163; b) Gött. Nachr. 1912, p. 879—886; c) Leipz. Ber. 64 (1912), p. 59—62, wo das Wesen der Methode an dem besonders einfachen Beispiele der konformen Abbildung eines Rechteckes auf eine Halbebene auseinandergesetzt wird; d) Math. Ann. 75 (1914), p. 42—129; e) Gött. Nachr. 1916, vorgelegt am 9. 12. 1916; f) Gött. Nachr. 1917, vorgelegt am 7. 12. 1917; g) Math. Zeitschrift 2 (1918), p. 198—236; h) Gött. Nachr. 1917, vorgelegt am 26. 10. 1917. Hier wird ein Kontinuitätsbeweis für den Fundamentalsatz der Algebra geliefert.

⁵⁷⁰⁾ Diese Aufgabe stellt eine besondere Einkleidung des Problems dar, eine algebraische Kurve nach Vorgabe eines Schnittsystems der zugehörigen Riemannschen Fläche durch automorphe Funktionen des Schottkyschen Typus zu uniformisieren ("Rückkehrschnittheorem", vgl. R. Fricke, II B 4 Nr. 36). Die Grundgedanken der Methode finden sich in der loc. cit. 569) unter b) genannten Arbeit zusammengefaßt.

Der Einfachheit halber wird angenommen, daß alle Φ den unendlich fernen Punkt enthalten.

dungspunkte erster Ordnung hat. Von diesen liegt einer im Koordinatenursprung. Die Begrenzung von Π besteht aus p parallelogrammartigen Rahmen, deren je vier Seiten überkreuz durch p feste und p mit Φ veränderliche Substitutionen der Form (z,z+a) (a konstant) verbunden sind ("Riemannsche Parallelogrammfigur"). Das Gebiet Π hängt in einer Umgebung der betrachteten Lage von Φ von 6p-6 reellen Parametern stetig ab und ändert sich mit Φ zugleich ebenfalls stetig.

Es sei Ψ ein "normiertes" Gebiet der Art Φ , dessen Randkomponenten paarweise durch Substitutionen der Form

$$z' = \mu_1 z, \ \frac{z' - a_z}{z' - b_k} = \mu_k \frac{z - a_k}{z - b_k} \ (k = 2, \dots, p, a_2 = 1)$$

zusammenhängen (ein Individuum der Menge Ω'). Ist Θ die zu Tr gehörige Riemannsche Parallelogrammfigur, so hängen deren Parameter von den 6p-6 reellen Parametern der Substitutionen in der Umgebung der betrachteten Lage stetig ab. Aus dem Unitätssatze (Nr. 43) wird geschlossen, daß die beiderseitigen Parameter einander umkehrbar eindeutig zugeordnet sind.

Aus dem fundamentalen, als Desideratum für den Kontinuitätsbeweis von R. Fricke auf dem 3. intern. Math. Kongr. zu Heidelberg 1904 formulierten Satze von L. E. J. Brouwer über die Invarianz des Gebietes folgt nunmehr, daß einer allseitigen Umgebung von Ψ eine allseitige Umgebung von Θ entspricht. 571)

Es sei jetzt $\Phi_0 (= \Psi_0)$ ein Gebiet aus Ω'' . Wir denken uns dieses mit Φ durch eine Überführungslinie $\overline{\Omega}$ verbunden. Ist Φ^* ein Gebiet auf Ω , das auf ein Gebiet Ψ^* der Menge Ω' konform abgebildet werden kann, so haben alle Gebiete auf Ω in einer Umgebung von Φ^* dieselbe Eigenschaft. Dies ergibt sich aus dem zuletzt betrachteten Satze durch einen Übergang von Ψ^* und Φ^* zu den zugehörigen (im wesentlichen identischen) Riemannschen Parallelogrammfiguren. Da $\Phi_0 = \Psi_0$ ist, so müßte es nunmehr, falls der zu beweisende Abbildungssatz nicht richtig sein sollte, auf Ω ein Gebiet Φ geben, in dessen beliebiger Nähe auf Ω Gebiete (in Ω'') liegen, die auf geeignete Gebiete in Ω' abbildbar sind, während das gleiche für Φ selbst nicht gilt. Dieses ist indessen, wie unter wesentlicher Benutzung des Verzerrungssatzes gezeigt wird, nicht möglich. Damit ist der Beweis erbracht. Nachträglich wird gezeigt, daß auch zwei Individuen der Menge Ω' durch eine Überführungslinie in Ω' verbunden werden kön-

⁵⁷¹⁾ Koebe zeigt übrigens, daß sich mengentheoretische Betrachtungen an dieser Stelle umgehen lassen (loc. cit. 569 d) p. 82), indem er die von F. Klein postulierte analytische Abhängigkeit der Parameter nachweist.

nen, so daß auch \mathcal{Q}' ein Gebiet (in einem Raume von 6 p — 6 Dimensionen) darstellt.

An gleicher Stelle hehandelt Koebe eingehend unter anderem das Hauptkreistheorem sowie die allgemeinen Kleinschen Fundamentaltheoreme (vgl. R. Fricke, IIB 4 Nr. 36 und 37).572) In der in der Fußnote 569) unter b) genannten Note skizziert Koebe einen auf Kontinuitätsbetrachtungen beruhenden Beweis einer Verallgemeinerung des Parallelschlitztheorems für mehrfach zusammenhängende Gebiete in & (Nr. 24h), dahingehend, daß jeder einzelne Schlitz nunmehr eine vorgegebene Richtung erhält. 573) Ausführliche Darlegung bringt die in der Fußnote 569) unter g) zitierte vor kurzem veröffentlichte Abhandlung von Koebe. Wesentliche Verallgemeinerungen des zuletzt genannten Abbildungssatzes finden sich in den in der Fußnote 569) unter e) und f) zitierten Arbeiten von Koebe angedeutet. Hier handelt es sich um die konforme Abbildung eines mehrfach zusammenhängenden Gebietes in & auf ein ebensolches Gebiet, wobei eine jede Randkomponente in ein gewisses sternförmiges (geradliniges oder spiralliniges), allgemeiner baumartig verästeltes Liniensystem übergeht. Man vergleiche ferner P. Koebe, Leipziger Berichte 1914, p. 67-75, wo (p. 73-74) ein Beweis für die Möglichkeit der konformen Abbildung einer geschlossenen schlichtartigen Riemann schen Fläche auf eine Kugel durch Kontinuitätsbetrachtungen (auf rein funktionentheoretischem Wege, unter Ausschaltung des Integralbegriffes) angegeben wird. 573*)

Einen auf Kontinuitätsbetrachtungen gegründeten Beweis des Satzes, daß jedes einfach zusammenhängende Polygongebiet in & auf ein Kreisgebiet konform abgebildet werden kann, gibt L. Bieberbach⁵⁷⁴) (Nr. 25).

Die Mannigfaltigkeit Ω' aller schlichten Polygonflächen, auf die eine Kreisfläche vom Halbmesser R um den Punkt Z=0 durch die Funktion

$$z(Z) = \int_{0}^{Z_{1...n}} \prod_{k} \left(1 - \frac{Z}{Z_{k}}\right)^{-2\lambda_{k}} dZ, \lambda_{1} + \dots + \lambda_{n} = 1, |Z_{k}| = R (k = 1, \dots n),$$

572) P. Koebe, loc. cit. 569) d) p. 98-129.

573) Dieser Abbildungssatz läßt sich übrigens auch, worauf Koebe a. a. O. zum Schluß ebenfalls hinweist, durch kombinatorische Methoden (im allgemeinen Falle unter Heranziehung gewisser von Prym herrührenden Gedanken) erledigen.

573a) Aus der in der Fußnote 569) unter c) genannten Note von Koebe sei noch die Verallgemeinerung der Grenzkreisuniformierung zu dem Problem der konformen Abbildung einer beliebigen einfach oder mehrfach zusammenhängenden berandeten, oder auch einer geschlossenen Riemannschen Fläche auf ein konvexes Grenzkreispolygon hervorgehoben, wobei jetzt die Winkelsummen der einzelnen Eckenzyklen nicht mehr wie im Uniformierungsfalle genaue Teile von 2π zu sein brauchen.

574) Vgl. L. Bieberbach, Gött. Nachr. 1913, p. 552-564; Rend. del Circolo Mat. di Palermo, 38 (1914), p. 98-112 [p. 102-104].

 $(Z_l-Z_k=0)$ nur für l=k) $\left(z(o)=0,\frac{dz(o)}{dZ}=1\right)$ konform abgebildet wird (Formelpolygonflächen), hängt bei vorgegebenen Außenwinkeln $2\pi\lambda_1,\ldots,2\pi\lambda_n$ und variablem R von (n+1) reellen Parametern stetig ab. Von ebenso vielen reellen Parametern hängt die Menge Ω'' der nicht degenerierten Polygonflächen in \mathfrak{C} , die $2\pi\lambda_1,\ldots 2\pi\lambda_n$ zu Außenwinkeln haben und z=0 enthalten, stetig ab. Augenscheinlich sind Ω' und $\Omega''\ldots (n+1)$ -dimensionale Gebiete und es gilt $\Omega' \leq \Omega''$. Sollte $\Omega' < \Omega''$ sein, so müßte Ω' in Ω'' mindestens einen Grenzpunkt haben. Diesem entspricht kein Formelpolygon, da die gegenteilige Annahme im Widerspruch mit dem L.E.J. Brouwerschen Satze von der Invarianz des Gebietes stehen würde. Wendet man jetzt den Carathéodoryschen Satz über Folgen beschränkter Gebiete mit von Null verschiedenem Kern (Nr. 47) an, so kommt man wieder zu einen Widerspruch. Offenbar steht auch dieser (den Verzerrungssatz nicht benutzende) Beweis auf dem Boden der Methode der offenen Kontinuen.

47. Funktionentheoretische Richtung. Es sei T ein einfach zusammenhängendes Gebiet der Klasse B in der Ebene z, das den Koordinatenursprung enthält. Die Bestimmung einer in T regulären, für z=0 verschwindenden Funktion Z(z), durch deren Vermittlung T auf die Fläche K des Einheitskreises C konform abgebildet werden kann, wird in der Potentialtheorie auf ein Randwertproblem zurückgeführt (Nr. 22).

In der neueren Zeit ist die Theorie der konformen Abbildung durch Methoden bereichert worden, die sich ausschließlich der funktionentheoretischen Hilfsmittel bedienen, so daß von einem Übergang durch ein Randwertproblem abgesehen werden kann.

Es ist vor allem einleuchtend, daß die Potentialtheorie in der Ebene sich ohne weiteres in die Funktionentheorie einordnen läßt. Die meisten Randwertaufgaben der Theorie des logarithmischen Potentials lassen sich auf die Bestimmung gewisser regulärer oder mit vorgeschriebenen Unstetigkeiten behafteter analytischer Funktionen, deren reeller und imaginärer Teil auf dem Rande des Definitionsgebietes vorgegebenen Bedingungen genügen, zurückführen.

Aus dem Cauchyschen Integralsatze folgt in der einfachsten Weise der Gaußsche Mittelwertsatz, aus diesem durch eine lineare Substitution, die eine vorgegebene Kreisfläche in sich selbst zurückführt, das Poissonsche Integral.⁵⁷⁵)

⁵⁷⁵⁾ Einen anderen von W. Blaschke angegebenen Weg, der ebenfalls von dem Cauchyschen Integralsatze zu dem Poissonschen Integral führt, teilt G. Pick, Math. Ann. 77 (1915), p. 7—23 [p. 8—10] mit. Dort findet sich auch eine von G. Pick angegebene Verallgemeinerung des Poissonschen Integrals.

Von hier aus führt der Weg über die Schwarzschen Resultate zu den Ergebnissen von Koebe, ohne daß von den partiellen Ableitungen zweiter Ordnung und der Differentialgleichung $\Delta u = 0$ Gebrauch gemacht wird. Auch läßt sieh, von dem Cauchyschen Integralsatze ausgehend, für $\Im\left(\frac{Z(z)}{z}\right)$ auf S ohne weiteres eine lineare Integralgleichung ableiten, die der bei der Behandlung des zweiten Randwertproblems in der klassischen Theorie (Nr. 17 d) auftretenden Integralgleichung adjungiert ist. 576)

Neuerdings sind von C. Carathéodory, P. Koebe sowie L. Bieberbach Methoden ausgearbeitet worden, bei denen von den Ansätzen der Theoric der Randwertprobleme, selbst in einer funktionentheoretischen Einkleidung, kein Gebrauch gemacht wird. Das Gebiet T wird durch eine Folge von Gebieten T_n $(n=1,2,\ldots)$ approximiert, die durch spezielle elementare Funktionen (z,B). eine Folge von Quadratwurzeloperationen oder elliptische Funktionen) auf die Fläche des Einheitskreises konform abgebildet werden können. Zu Z(z) wird sodann durch einen Grenzprozeß übergegangen. Die wesentlichen Hilfsmittel von Carathéodory sind der Satz von P. Montel (Nr.41) und der Cauchysche Integralsatz. Demgegenüber bedient sich Koebe in strenger Durchführung der Weierstraßschen Ideen lediglich potenzreihentheoretischer Hilfsmittel unter gänzlicher Ausschaltung des Integralbegriffes.

Es sei $T_n(n=1,2,\ldots)$ eine Folge von Gebieten in $\mathfrak E$, die sämtlich in einer Kreisfläche $z \mid \leq M$ enthalten sind und den Punkt z=0 enthalten. Gibt es keine Kreisfläche um z=0, die von einem bestimmten n an in allen T_n enthalten ist, so sagen wir mit C. Carathéodory, der Kern der Gebietsfolge besteht aus dem einzigen Punkte z=0. Andernfalls ist der Kern das größte z=0 enthaltende Gebiet, das die Eigenschaft hat, daß jeder in ihm gelegene Bereich von einem bestimmten n an in allen T_n enthalten ist. Ist der Kern der Gebietsfolge $T_n(n=1,2,\ldots)$ zugleich Kern jeder Teilfolge $T_n(k=1,2,\ldots)$, so sagen wird, die Folge T_n konvergiert gegen ihren Kern. Es sei $z_n(Z)$ eine Funktion, durch deren Vermittlung T_n auf die Fläche des Einheitskreises in der Ebene Z konform abgebildet wird $\left(z_n(0)=0,\frac{dz_n(0)}{dZ}$ reell und >0).

⁵⁷⁶⁾ Vgl. L. Lichtenstein, Arch. d. Math. u. Phys., 25 (1916), p. 179—180. Ist allgemeiner der Wert $\Re(\overline{Z}(z))$ einer in T regulären Funktion auf S vorgegeben, etwa gleich $\varphi(s)$, so erhält man, wenn z. B. $\varphi'(s)$ vorhanden und stetig ist, zur Bestimmung von $\Im(\overline{Z}(z))$ auf S eine lineare Integralgleichung.

⁵⁷⁶a) In diesem Zusammenhang sei noch einmal auf die in der Nr. 35 besprochene Abhandlung von H. A. Schwarz hingewiesen

354

Damit die Funktionen $z_n(Z)$ in jedem in dem Gebiete |Z| < 1gelegenen Bereiche gleichmäßig konvergieren, ist notwendig und hinreichend, $da\beta$ die Folge T_n gegen ihren Kern konvergiert. Durch Vermittlung der für Z < 1 regulären Funktion $z(Z) = \lim z_n(Z)$ wird der Kern T(sofern dieser > 0 ist) auf die Fläche des Einheitskreises konform abgebildet $(z(0) = 0, \frac{dz(0)}{dZ} \text{ recll } und > 0)$. 577)

Ein ganz analoger Abbildungssatz gilt, wenn die (einfach zusammenhängenden) Gebiete der Folge nicht mehr schlicht, sondern endlich oder unendlich vielblättrig sind, dabei nach wie vor einer Ungleichheit $z \mid < M$ genügen. ⁵⁷⁸)

Es sei T+S irgendein einfach zusammenhängender Bereich in der Kreisfläche $z \mid < 1$. Gelingt es, eine Folge von Gebieten T_n einfacher Natur anzugeben, die T zum Kern haben und gegen diesen konvergieren, so ist, wenn die Funktionen $z_{\mu}(Z)$ bekannt sind, die Möglichkeit der konformen Abbildung von T auf die Fläche des Einheitskreises bewiesen. Carathéodory bestimmt z(Z) auf folgendem elementaren Wege. Es möge zunächst ein von T verschiedenes Gebiet T* existieren, dessen Rand S enthält. 579 Es sei p_i (j = 1, 2, ...) $(|p_i| < 1)$ irgendeine Folge von Punkten in T^* , die sich gegen jeden Punkt von S häufen. Man kann eine Folge rationaler Funktionen $z_i(Z)$ explizite angeben, so daß: 1. durch Vermittlung von $z_i(Z)$ die Kreisfläche |Z| < 1 auf ein über der z-Ebene ausgebreitetes 2^{j} -blättriges Gebiet T_i , das in p_1, \ldots, p_i Windungspunkte hat und von dem 2^j mal durchlaufenen Kreise z = 1 begrenzt ist, derart abgebildet wird, daß $z_i(0) = 0$, $\frac{dz_{j}(0)}{dz_{j}}$ reell und >0 ist; 2. die Gebiete T_{j} das Gebiet T zum Kern

⁵⁷⁷⁾ C. Carathéodory, Math. Ann. 72 (1912), p. 107-144 [p. 120-126]. Der Beweis stützt sich auf gewisse aus dem Schwarzschen Lemma (Nr. 35) abgeleitete Ungleichheiten, dann aber vor allem auf den in der Nr. 41 angegebenen Satz von P. Montel. Der vorliegende Satz von Carathéodory berührt sich mit den Nr. 41 besprochenen Ergebnissen von Koebe, bei denen gleichfalls von dem Montelschen Satze Gebrauch gemacht wird. Man vergleiche hierzu ferner P. Koebe, loc. cit. 489d) p. 68-77.

⁵⁷⁸⁾ C. Carathéodory, loc. cit. 577) p. 126-131. Wie L. Bieberbach, Gött. Nachr. 1913, p. 552-564 gezeigt hat, kann man bei diesen Betrachtungen das Schwarzsche Lemma ganz entbehren und die Betrachtungen auf den Montelschen Satz allein stützen. Vgl. die Fußnote 632).

⁵⁷⁹⁾ T läßt sich in diesem Falle sowohl durch Folgen ineinander geschachtelter Gebiete der Klasse C als auch durch Folgen von Gebieten derselben Natur, die alle T enthalten, beliebig annähern. Die fragliche Bedingung ist beispielsweise erfüllt, wenn T ein Jordansches Gebiet ist. Sie ist hingegen nicht erfüllt, wenn man z. B. für T eine längs eines Halbmessers aufgeschnittene Kreisfläche wählt.

haben und gegen diesen konvergieren. Die Funktion z(Z) erscheint damit als die Grenzfunktion einer Folge rationaler Funktionen. Da jedes beschränkte einfach zusammenhängende Gebiet T in $\mathfrak E$ als Kern einer Folge einfach zusammenhängender Gebiete der Klasse C aufgefaßt werden kann, die gegen T konvergieren, so ist nunmehr der Osgoodsche Satz (Nr. 38) auf einem neuen Wege bewiesen.

Von anderen Sätzen der Carathéodoryschen Arbeit sei an dieser Stelle der folgende erwähnt: Jede Punktmenge, die die vollständige Begrenzung eines beschränkten Gebietes in E ist und zugleich in der Begrenzung eines von diesem verschiedenen Gebietes in E enthalten ist (insbesondere jede Jordansche Kurve) liegt ganz im Innern von Streifen, die durch zwei Niveaulinien einer und derselben Potentialfunktion gebildet sind. Die Differenz der Werte der Potentialfunktion auf diesen beiden Niveaulinien kann beliebig klein gemacht werden. 581)

Durch die im vorstehenden geschilderten Untersuchungen von Carathéodory angeregt, hat Koebe eine von ihm als "Schmiegungsverfahren" bezeichnete, überaus einfache Methode der konformen Abbildung angegeben.⁵⁸²)

Es sei zunächst T_1 ein beschränktes einfach zusammenhängendes Gebiet in $\mathfrak E$, das ohne wesentliche Einschränkung als in dem Gebiete |z|<1 enthalten, vorausgesetzt werden kann. Wir nehmen an, daß T_1 den Punkt z=0 enthält. Es sei h_1 die Entfernung des Koordinatenursprunges von S_1 und p_1 ein Punkt auf S_1 , so daß $p_1=h_1e^{i\vartheta_1}$ gilt. Durch Vermittelung der Funktion $z(\bar{z})=\bar{z}\,\frac{\bar{z}-q_1e^{i\vartheta_1}}{q_1\bar{z}-e^{i\vartheta_1}},\ q_1=\frac{2\sqrt{h_1}}{1+h_1}$ wird das Gebiet $|\bar{z}|<1$ auf ein über der Ebene z ausgebreitetes, be-

⁵⁸⁰⁾ C. Carathéodory, loc. cit. 577) p. 139-143.

⁵⁸¹⁾ C. Carathéodory, loc. cit. 577) p. 143. Eine Verallgemeinerung des Montelschen Satzes führt in ähnlicher Weise zu einem neuen Beweise des Poincaréschen Satzes über die konforme Abbildung von Gebieten, die drei Punkte der Ebene unbedeckt lassen. (C. Carathéodory, loc. cit. 577) passim, insb. p. 132).

⁵⁸²⁾ Vgl. P. Koebe, a) Voranzeige, Gött. Nachr. 1912, p. 844-848; ausführliche Darlegung b) Journ. f. Math. 145 (1914), p. 177-223; c) Acta Math. 40 (1915), p. 251-290. Weitere Abhandlungen derselben Serie: d) Journ. f. Math. 147 (1917), p. 67-104; e) Acta math. 41 (1918), p. 305-344; f) Math. Zeitschrift 2 (1918), p. 198-286. Es sei in diesem Zusammenhang auf Poincaré, loc. cit. 427) und Schlesinger, Journ. f. Math. 105 (1889); 110 (1892); Annales de l'École Normale 20 (1903) verwiesen. Vgl. das einschlägige Zitat bei Koebe, Journ f. Math. 145 (1914), p. 177-223 (p. 179, Fußnote *).

⁵⁸³⁾ Jedes einfach zusammenhängende Gebiet in E, dessen Begrenzung aus mehr als einem Punkte besteht, läßt sich durch elementare Funktionen auf ein Gebiet dieser Art abbilden (P. Koebe, loc. cit. 582), b) 182—183; C. Carathéodory, Schwarz Festschrift, Berlin 1914, p. 19—41 [p. 29—30]).

schränktes, zweiblättriges Gebiet abgebildet, das in p_1 einen Windungspunkt erster Ordnung hat und von dem doppelt umlaufenen Kreise |z|=1 begrenzt ist. Durch Vermittelung eines geeigneten Zweiges der Funktion $\bar{z}(z)$ wird T_1 auf ein schlichtes Gebiet T_2 abgebildet, das den Nullpunkt enthält und offenbar ganz im Innern des Gebietes $|\bar{z}|<1$ enthalten ist. Es gilt $\bar{z}(0)=0$, $\frac{d\bar{z}(0)}{dz}$ reell und >0. Es sei h_2 die Entfernung des Koordinatenursprungs von S_2 und p_2 ein Punkt auf S_2 , so daß $p_2=h_2e^{i\vartheta_2}$ ist. Von T_2 gelangt man nach einer Wiederholung des Verfahrens zu T_3 , von T_3 zu T_4 , T_5 usw. Durch elementare Überlegungen (im wesentlichen durch Betrachtung geeigneter Greenscher Funktionen) beweist Koebe, daß $h_1 < h_2 < \cdots$, $\lim_{n \to \infty} h_n = 1$

ist, somit S_n sich immer näher dem Einheitskreise anschmiegt. Dieses Resultat läßt sich auch mit Carath'eodory aus einer elementaren, auf Plemelj zurückgehenden Abschätzung gewinnen. Daß das Koebesche Verfahren zur Abbildung von T_1 auf K führt, ergibt sich jetzt aus dem folgenden, in dieser Fassung von Carath'eodory formulierten Satze:

Es sei T ein beschränktes, einfach zusammenhängendes Gebiet in der Ebene z und $z_n(Z)$ $(n=1,2,\ldots)$ eine Folge von Funktionen, durch deren Vermittelung T auf eine Folge von Gebieten Θ_n in der Ebene Z abgebildet wird. Es wird vorausgesetzt, daß $z_n(0)=0$, $\frac{dz_n(0)}{dZ}$ reell und >0 ist, sowie daß Θ_n in der Kreisfläche Z<1 enthalten ist und den Kreis vom Halbmesser δ_n um den Koordinatenursprung enthält. Endlich ist $\lim \delta_n=1$.

Alsdann ist $\lim_{n \to \infty} z_n(Z) = z(Z)$ vorhanden. Der Grenzübergang ist in jedem Bereiche $Z| \le \vartheta < 1$ gleichmäßig. Durch Vermittelung von z(Z) wird T auf die Fläche des Einheitskreises konform abgebildet. 585) 586)

Eine andere Behandlung des Koebeschen Verfahrens hat L. Bieberbach angegeben. 587)

⁵⁸⁴⁾ C. Carathéodory, loc. cit. 583) p. 29-31.

⁵⁸⁵⁾ C. Carathéodory, loc. cit. 583) c) p. 25-29.

⁵⁸⁶⁾ Eine andere Beweisordnung des Schmiegungsverfahrens unter Zuhilfenahme eines erweiterten Schwarzschen Lemmas findet sich bei P. Koebe, loc. cit. 582) c) p. 261—266 — hier unter Anwendung auch auf mehrfache und unendlichvielfach zusammenhängende schlichte Gebiete. A. a. O. wird auch der Fall vorgeschriebener relativer Verzweigung der Abbildungsfunktion behandelt. Vgl. p. 272—286.

⁵⁸⁷⁾ Vgl. L. Bieberbach, Konforme Abbildung, p. 94-108. Wesentliche Dienste bei dem Konvergenzbeweise leisten hier die folgenden Hilfssätze: Es sei

Er gibt auch eine weitere Beweisordnung an, um auf funktionentheoretischem Wege ein beschränktes Gebiet T in $\mathfrak E$ auf eine Kreisfläche konform abzubilden. Das Gebiet T wird als Grenze einer Folge ineinandergeschachtelter Polygonflächen T_n aufgefaßt. Es sei $Z_n(z)$ $\left(Z_n(0)=0,\,\frac{d}{dz}\,Z_n(0)\, \text{reell und}>0\right)$ eine Funktion, durch deren Vermittelung T_n auf K konform abgebildet wird. Durch elementare Betrachtungen unter Benutzung der in der Fußnote 587) genannten Hilfssätze wird gezeigt, daß $\lim_{n\to\infty} Z_n(z)$ existiert und die erwünschte Abbildung vermittelt. 588)

. Es sei T ein beschränktes, einfach zusammenhängendes Gebiet in \mathfrak{E} , dessen Rand in dem Rande eines von T verschiedenen Gebietes in \mathfrak{E} enthalten ist. Die in der Fußnote 587) besprochenen Hilfssätze benutzt Bieberbach, um die Funktion Z(z) $\left(Z(0)=0, \frac{d}{dz}Z(0)=1\right)$,

 $\begin{array}{l} f(z)=a_1\,z+a_2\,z^2+\cdots \ \ \text{eine in dem Bereiche} \ \ |z|\leq R \ \ \text{regul\"{a}re nichtlineare} \\ \text{Funktion. Der Fl\"{a}cheninhalt des durch} \ f(z) \ \ \text{entworfenen Bildbereiches ist gleich} \\ \varPhi=\int\limits_K |f'(z)|^2 dx dy =\pi \sum_{n=1}^\infty n|a_n|^2 R^{2n}. \ \ \text{Er ist, sofern} \ a_1 \neq 0 \ \ \text{ist, sicher gr\"{o}Ber} \\ \text{als } \pi|a_1|^2 R^2. \ \ \text{Ist aber} \ a_1=\cdots=a_{n-1}=0 \ , \ \text{so ist} \ \varPhi\geq n\pi|a_n|^2 R^2. \\ \text{Ist der Inhalt des Bildbereiches h\"{o}chstens um } \varepsilon \ \text{von} \ \pi R^2 \ \text{verschieden, ist} \end{array}$

Ist der Inhalt des Bildbereiches höchstens um ε von πR^2 verschieden, ist ferner $|a_1|=1$, so ist $|f(z)-z|<\sqrt{\frac{\varepsilon}{\pi}}\,\varrho^2\frac{1}{1-\varrho}\,$ (L. Bieberbach, Rend. del. Circolo Mat. di Palermo 38 (1914), p. 98—112 [p. 105]). Aus dieser, oder vielmehr einer hierzu analogen etwas allgemeineren Ungleichheit folgt insbesondere der Satz: Es sei $f_n(z)$ ($n=1,2,\ldots$) eine Folge von Funktionen, die sich in der Kreisfläche |z|< R regulär verhalten. Es sei $f_n(0)=0$, $\lim_{n=\infty}\frac{d}{dz}f_n(0)=1$. Die Inhalte der durch $f_n(z)$ entworfenen Bildbereiche mögen gegen πR^2 konvergieren. Alsdann ist $\lim_{n=\infty}f_n(z)=z$. Der Grenzübergang ist in jedem in der Kreisfläche |z|< R enthaltenen Bereiche gleichmäßig.

Ein Gegenstück zu dem eingangs betrachteten Hilfssatze bildet der folgende von Bieberbach, Berliner Sitzungsber. 38 (1916), p. 940—955 [p. 941—944], angegebene Satz: Es sei T ein einfach zusammenhängendes Gebiet in der Ebene z, das den unendlich fernen Punkt enthält. Es sei z'(z) eine in T reguläre Funktion, die für $z=\infty$ eine Entwicklung von der Form $z'=z+\alpha_1\frac{1}{z}+\cdots$ gestattet und T auf ein schlichtes Gebiet T' abbildet. Der innere Inhalt des Gebietes $\mathfrak{E}-T'-S'$ erreicht seinen Höchstwert, wenn T' das Außengebiet eines Kreises ist. (Vgl. hierzu G. Faber, Münchener Ber. 1916, p. 39—42.)

Neue Sätze über die Grenzen der Flächenvergrößerung bei konformer Abbildung enthält die neueste Arbeit von G. Hamel, Monatsh. f. Math. u. Phys. 29 (1918), p. 48—64.

588) Vgl. L. Bieberbach, a) Verh. d. Schw. Naturforsch. Ges., 96. Jahresvers. (1913), 2. Teil, p. 131—132; b) Rend. del Circ. Mat. di Palermo 38 (1914), p. 98—112 [p. 100—104]. Die funktionentheoretische Bestimmung der Funktionen $Z_n(z)$ (nach der Kontinuitätsmethode) vergleiche Nr. 46.

durch deren Vermittlung T auf ein Kreisgebiet um den Koordinatenursprung konform abgebildet wird und deren Existenz bereits feststeht, durch Polynome anzunähern. Unter allen Polynomen der Form $P(z) = z + \sum_{k=0}^{\infty} a_k z^k$ wird dasjenige $P_n(z)$ bestimmt, das den Ausdruck $\int_T |P'_n|^2 dx dy$ zum Minimum macht. Die Folge $P_n(z)$ $(n=1,2,\ldots)$ konvergiert in jedem Bereiche in T gleichmäßig gegen Z(z). 589)

Nachdem durch die im vorstehenden besprochenen Untersuchungen das Problem der konformen Abbildung eines beschränkten schlichten Gebietes auf ein Kreisgebiet erledigt ist, gestattet ein von C. Carathéodory angegebenes Verfahren jedes einfach zusammenhängende Gebiet T in \mathfrak{S}_m auf funktionentheoretischem Wege auf die Fläche eines Kreises abzubilden. Dasselbe leistet ein auf einer ganz anderen Grundlage beruhendes, um dieselbe Zeit bekanntgegebenes Verfahren von Koebe, das, worauf Koebe besonderen Wert legt, sich potenzreihentheoretisch begründen läßt. Sena

Carathéodory löst zunächst die folgende spezielle Aufgabe. Es seien K, und K, zwei Kreisflächen, die in je zwei einfach zusammenhängende, etwa der Klasse D angehörende Gebiete T_{11}, T_{12} und T_{21} , T_{22} , deren Rand allemal einen Bogen des Kreises C_1 oder C, enthält, zerfallen. Die Endpunkte dieser Kreisbögen heißen P_1 , Q_1 und P_2 , Q_2 . Bekannt ist eine in T_{12} erklärte reguläre Funktion $z_2 = z_2(z_1)$, durch deren Vermittelung T_{12} auf T_{21} derart konform abgebildet wird, daß die Punkte P_1 , P_2 einerseits, Q_1 , Q_2 andrerseits einander entsprechen. Hierdurch werden T_1 und T_2 (ideal) zu einem einzigen (einfach zusammenhängenden) Gebiete @ zusammengeschlossen. Es handelt sich darum, @ auf ein Kreisgebiet konform abzubilden, d. h. zwei entsprechend in K_1 und in K_2 erklärte reguläre Funktionen $Z_1(z_1), Z_2(z_2)$ zu bestimmen, so daß $Z_2(z_2(z_1)) = Z_1(z_1)$ gilt und die durch Z_1 und Z_2 entworfenen Bilder $T_{11}', T_{12}' = T_{21}', T_{22}$ von $T_{11}, T_{12}, T_{21}, T_{22}$ so beschaffen sind, daß $T_{11}' + T_{12}' + T_{22}' = T_{11}' + T_{21}' + T_{22}'$ das Gebiet eines Kreises darstellt. Die Bestimmung der Funktionen Z_1 und Z_2 gelingt durch wiederholte Anwendung einer Schwarzschen Spiegelung und einer darauf folgenden Abbildung eines einfach zusammenhängenden schlichten Gebietes auf eine Kreisfläche.

Jedes einfach zusammenhängende Gebiet T in \mathfrak{S}_m kann man,

⁵⁸⁹⁾ L. Bieberbach, loc. cit. 588), p. 107-112.

⁵⁹⁰⁾ C. Carathéodory, loc. cit. 583), p 32—37 [Nr. 24j]. Eine Darstellung findet sich bei L. Bieberbach, Konforme Abbildung, p. 120—126 sowie bei P. Koebe, loc. cit. 582 d)), p 75—77.

⁵⁹⁰ a) Vgl. P. Koebe, Leipziger Ber. 1914. p. 67-75.

wie man leicht sieht, in eine endliche Anzahl miteinander ideal zusammenhängender Kreisflächen in $\mathfrak E$ umwandeln. Durch sukzessives Verschmelzen dieser gelangt man zu der gewünschten Abbildung von T auf das Gebiet eines Einheitskreises. Die schrittweise Erweiterung des abgebildeten Gebietes muß man natürlich so vornehmen, daß man stets ein einfach zusammenhängendes Gebiet vor sich hat.

Jedes berandete schlichtartige Gebiet in \mathfrak{E}_m kann nunmehr auf ein schlichtes Gebiet abgebildet werden. Die in der Nr. 41 besprochenen Entwicklungen von P. Koebe führen von hier aus auf einem rein funktionentheoretischen Wege zur Abbildung eines beliebigen (nicht geschlossenen) schlichtartigen Gebietes auf ein schlichtes Gebiet, insbesondere zu dem Poincaré-Koebeschen Satze und der Abbildung einer mit p Rückkehrschnitten versehenen Riemannschen Fläche \mathfrak{R} vom Range $p \geq 1$ auf ein 2p-fach zusammenhänges schlichtes Gebiet \overline{T} mit linearer Ränderzuordnung (Nr. 43). Der Quotient zweier zu \overline{T} gehörigen Poincaréschen Θ -Reihen gleicher Dimension führt auf \mathfrak{R} verpflanzt zu einer zu \mathfrak{R} gehörigen algebraischen Funktion, womit die Riemannsche Theorie algebraischer Funktionen auf funktionentheoretischem Wege begründet wird. $\mathfrak{S}^{(p)}$

In einer dritten Abhandlung zur Theorie der konformen Abbildung (loc. cit. 582) d) gibt Koebe unter Zugrundelegung einer ideal zusammenhängenden Riemannschen Mannigfaltigkeit u. a. eine Bearbeitung seiner in der Nr. 40 b besprochenen Untersuchungen über die konforme Abbildung einfach zusammenhängender Gebiete, diesmal unter Ausschaltung des Integralbegriffs. Koebe erklärt (vgl. auch P. Koebe, loc. cit. 457) sowie Annali di Matematica (3) 21 (1913) S. 57—64; H. Weyl, Die Idee der Riemannschen Fläche, passim); eine "Riemannsche Mannigfaltigkeit" (bei Weyl "Fläche") als den Inbegriff \mathfrak{T}^* einer endlichen oder abzählbar unendlichen Anzahl von Elementarbereichen $D_t(l=1,2,\ldots)$ in $\mathfrak E$ oder auf Flächen der Klasse C, die von je drei analytischen und regulären Kurvenstücken begrenzt sind, wenn folgende Bedingungen erfüllt sind:

1. Gewisse Kantenpaare hängen durch analytische und reguläre Substitutionen gegensinnig miteinander zusammen. 2. Betrachten wir alle Kanten, die einen Eckpunkt gemeinsam haben. Es muß möglich sein, die beteiligten, per definitionem "die vollständige Umgebung

⁵⁹¹⁾ Vgl. P. Koebe, loc. cit. 582)a), p. 847—848; c) p. 237—290. Eine wesentlich andere, ebenfalls funktionentheoretische Begründung mit Hilfe der Theorie linearer Integralgleichungen gibt J. Plemelj, Monatsh. f. Math. u. Phys. 19 (1908), p. 211—246 [p. 244—245]. Ältere Literatur (Thomae, Schlesinger) findet sich bei Koebe loc. cit. 582)c) p. 255, Fußnote 1) angegeben.

360

jener Ecke bildenden" Elementarbereiche D_{n_1},\ldots,D_{n_k} allemal derart auf gewisse Dreiecksbereiche $\Delta_{n_1},\ldots,\Delta_{n_k}$ konform abzubilden, daß einander paarweise entsprechende Punkte der Kanten von D_{n_1},\ldots,D_{n_k} in ebensolche Punktepaare der Kanten von $\Delta_{n_1},\ldots,\Delta_{n_k}$ übergehen und $\Delta_{n_1},\ldots,\Delta_{n_k}$, in richtiger Reihenfolge aneinander gereiht, die vollständige Umgebung eines Punktes ergeben ("Eckpunktsbedingung"). 3. Durch die eingangs erörterte Zuordnung der Kanten wird \mathfrak{T}^* zu einem (ideal zusammenhängenden) Gebiet. Ist die Anzahl der Elementarbereiche endlich, so ist das Gebiet \mathfrak{T}^* geschlossen (vgl. Nr. 4, insbes. die Fußnote 43). Jedes analytische Gebilde ist eine "Riemannsche Mannigfaltigkeit" kann ("trianguliert" werden). (Siehe H. Weyl, Die Idee der Riemannschen Fläche, p. 30—34.)

Im Gegensatz zu den früheren Darstellungen betrachtet Koebe jetzt auch geschlossene Gebiete. Es sei \Re eine schlichtartige geschlossene Riemannsche Fläche (allgemeiner, ideal zusammenhängende "Riemannsche Mannigfaltigkeit"). Man denke sich aus \Re einen Punkt entfernt und das entstandene berandete Gebiet T als Grenze einer Folge ineinander geschachtelter Gebiete, etwa der Klasse $C: T_1 < T_2 < \cdots$ dargestellt. Es sei z_0 ein Punkt in T_1 und $Z^{(n)}(z)$ diejenige in T_n , außer in z_0 , reguläre Funktion

$$Z^{(n)}(z) = \frac{1}{z-z_0} + (z-z_0)\, \mathfrak{P}^{(n)}(z-z_0)\,,$$

durch deren Vermittelung T_n auf das Außengebiet eines Kreises in der Ebene Z konform abgebildet wird. Die Folge $Z^{(n)}(z)$ $(n=1,2,\ldots)$ konvergiert, wie unter wesentlicher Benutzung des Schwarzschen Lemmas gezeigt wird, gegen eine Funktion Z(z), durch deren Vermittelung \Re auf die geschlossene Ebene der Variablen Z konform abgebildet wird. (Eine andere funktionentheoretische Behandlung des gleichen Problems — auch hier unter Ausschaltung des Integralbegriffs — findet sich bei P. Koebe, Leipziger Berichte 1914, p. 67—75 (p. 73 bis 74).)

In derselben Abhandlung (p. 95—103) gibt Koebe ein ohne Benutzung des Integralbegriffes durchgeführtes Verfahren zur konformen Abbildung der Oberfläche einer analytischen körperlichen Ecke auf ein schlichtes Gebiet an. Es wird angenommen, daß die einzelnen an der Bildung der Ecke beteiligten Flächenstücke sich über den Eckpunkt hinaus analytisch fortsetzen lassen, daß die von den Normalen an je zwei Nachbarflächen in dem Eckpunkt eingeschlossenen Winkel von Null verschieden sind und die Summe der Flächenwinkel einen von Null verschiedenen Wert hat. Die Aufgabe wird zunächst auf das folgende neue Problem zurückgeführt: In der Ebene z ist ein von

zwei sich im Punkte z=0 unter einem von Null verschiedenen Winkel schneidenden analytischen und regulären Kurvenstücken Σ_1 und Σ_2 und etwa einem Kreisbogen Σ_3 begrenztes Gebiet Θ_0 gegeben. Die Kurvenbögen Σ_1 und Σ_2 sind durch eine analytische und reguläre Transformation

$$z' = az + bz^2 + cz^3 + \cdots$$
 (| a | = 1)

umkehrbar eindeutig aufeinander bezogen. Der Bereich $\Theta_0 + \Sigma_1 + \Sigma_2 + \Sigma_3$ ist so auf eine vollständige Umgebung $\overline{\Theta}$ des Koordinatenursprunges in der Ebene \overline{z} stetig und, bis auf den Punkt z=0, konform abzubilden, daß die Punkte z=0 und $\overline{z}=0$ einander entsprechen und den korrespondierenden Punkten Σ_1 und Σ_2 die gleichen Punkte in $\overline{\Theta}$ entsprechen.

Koebe betrachtet nun das aus Θ_0 durch Übereinanderlagerung unendlich vieler Exemplare Θ_k ($k=\cdots-2$, -1, 0, 1, 2, \cdots) des gleichen Winkelraumes entstehende ideale einfach zusammenhängende Gebiet und bildet dieses auf eine ganze oder halbe Ebene einer Variablen ξ ab. Durch eine Substitution von der Form $Z=e^{\frac{2\pi i}{c}\xi}$ oder $Z=\xi^{\frac{2\pi i}{\log c}}$ wird erreicht, daß Θ_0 auf ein von zwei konzentrischen Kreisen, die sich, allgemein zu reden, auch auf Punkte reduzieren können, begrenztes Gebiet Π derart abgebildet wird, daß den zusammengehörigen Punkten von Σ_1 und Σ_2 dieselben Punkte in Π entsprechen. Der äußere Begrenzungskreis ist von einem Punkte verschieden. Sonst wäre $\frac{1}{Z}$ als Funktion von z betrachtet, wie man sich leicht überzeugt, eine Konstante. Daß im Gegensatz hierzu der innere Begrenzungskreis sich auf einen Punkt reduziert, wird durch besondere Überlegungen bewiesen.

Wie Koebe bemerkt, bleibt seine Methode anwendbar, auch wenn man allgemeiner 0 < |a| + 1 voraussetzt.

Durch die im vorstehenden skizzierten Betrachtungen wird bewiesen, daß die "Eckpunktsbedingung" eine Folge der übrigen Bedingungen ist.

Wie Koebe zeigt, kann man mit Hilfe des Schmiegungsverfahrens: 1. die zu einem beliebigen mehrfach zusammenhängenden schlichten Gebiete T gehörige einfach zusammenhängende Überlagerungsfläche auf ein Kreisgebiet konform abbilden ⁵⁹²), 2. die konforme Abbildung

⁵⁹²⁾ P. Koebe, loc. cit. 582) c). Die Lösung des ersten Randwertproblems läßt sich damit, wie leicht ersichtlich, auf das Poissonsche Integral zurückführen. (vgl. die Fußnote 160). A. a. O. werden noch gewisse andere nicht umkehrbar eindeutige konforme Zuordnungen mehrfach zusammenhängender, insbesondere "punktierter" Gebiete auf eine Kreisfläche erledigt. Man vgl. hierzu F. Schottky, Berl. Sitzungsber. (1907), p. 919—923; (1908), p. 119—128.

eines beliebigen zweifach zusammenhängenden Gebietes auf ein Kreisringgebiet durchführen. (Vgl. P. Koebe, loc. cit. 582 b) p. 195—205.)

In einer vierten vor kurzem erschienenen Abhandlung zur Theorie der konformen Abbildung (loc. cit. 582 e) führt Koebe auf funktionentheoretischem Wege (unter Ausschaltung des Integralbegriffs) eine Reihe spezieller Abbildungen mehrfach zusammenhängender schlichter Gebiete, die man ohne Einschränkung der Allgemeinheit von der Klasse ${\cal C}$ annehmen kann, durch. Es handelt sich um die Abbildung auf Normalgebiete, deren Rand aus einer Anzahl geradliniger, konzentrischer kreisförmiger oder auch gewisser spiralförmiger Schlitze besteht und überdies einen oder zwei mit den Kreisschlitzen konzentrische Kreise ent-Die geradlinigen Schlitze sind nach dem Kreismittelhalten kann. punkt (Koordinatenursprung) gerichtet oder den Koordinatenachsen parallel. Sie können insbesondere den Koordinatenursprung oder den unendlich fernen Punkt oder beide zugleich enthalten. Koebe behandelt 39 verschiedene Arten von Normalgebieten. Die Abbildung auf ein jedes Normalgebiet vorgeschriebenen Typus ist im wesentlichen nur in einer Weise möglich. Sie wird wie folgt gewonnen. Das gegebene Gebiet T (oder ein aus T durch Hinzunahme seiner Rückseite in gewisser Weise entstehende Gebiet T) in der Ebene z wird, wie soeben auseinandergesetzt wurde, in unendlich-eindeutiger Weise auf die obere Halbebene in einer Ebene ξ abgebildet. Dem Gebiet T entspricht dabei umkehrbar eindeutig ein gewisser von Abschnitten der Achse des Reellen und Halbkreisen begrenzter Fundamentalbereich in der Ebene ξ. Es sei $f(z) = \varphi(\xi)$ eine die gesuchte Abbildung vermittelnde Funktion. Die Funktion $\varphi(\xi)$ wird unter Zuhilfenahme von unendlichen Reihen gewonnen, die den von H. Weber (loc. cit. 404) und in allgemeinerer Weise von F. Schottky, Journ. f. Math. 101 (1887), p. 227-272, untersuchten Reihen analog sind.

Eine von den bisher betrachteten verschiedene, rein potenzreihentheoretisch begründete Beweisführung für die in den Nr. 41 und 42 besprochenen Sätze skizziert Koebe in der mehrfach erwähnten Note, Zur Theorie der konformen Abbildung und der Uniformisierung, Leipziger Berichte 1914, p. 67—75. Insbesondere gelingt es Koebe auf diesem Wege (ohne Benutzung der Hilbertschen Minimumseigenschaft) die Möglichkeit der Abbildung jedes einfach oder mehrfach zusammenhängenden schlichtartigen Gebietes auf ein Schlitzgebiet zu beweisen.

Sei T ein beschränktes, zweifach zusammenhängendes Gebiet etwa der Klasse C in \mathfrak{S} , das außen von einem Kreise um den Koordinatenursprung vom Radius R_a begrenzt ist. Es sei r_g der größte, r_k der kleinste Wert der Entfernung des Koordinatenursprunges von den Punkten

der inneren Randkomponente von T und r_a und r_s die Radien der Begrenzungskreise eines Kreisringgebietes, auf das T konform abgebildet werden kann. Es gilt

$$\frac{R_a}{r_g} \leq \frac{r_a}{r_j} \leq \frac{R_a}{r_k}.$$

Diese Ungleichheit, die in der Theorie der zweifach zusammenhängenden Gebiete in & dieselbe Rolle spielt, wie das Schwarzsche Lemma in der Theorie der einfach zusammenhängenden Gebiete, ist von C. Carathéodory in seiner im Sommersemester 1916 an der Göttinger Universität gehaltenen Vorlesung über konforme Abbildung angegeben und auf funktionentheoretischem Wege bewiesen worden. Sie gestattet, wie Carathéodory an gleicher Stelle gezeigt hat, eine einfache funktionentheoretische Erledigung der konformen Abbildung einer geschlossenen schlichtartigen Riemannschen Fläche R auf eine Kugel. 592a)

Eine Beweisordnung des Nr. 40 besprochenen Uniformisierungstheorems den Prinzipien der Weierstraßschen Funktionentheorie gemäß, gibt in einer vor kurzem erschienenen Arbeit L. Bieberbach. 592 b Seine Betrachtungen erstrecken sich, wie diejenigen der zuletzt be-

Auf \Re entspricht jedoch B ein Kreisringgebiet mit den Radien $\frac{k}{2^{\mu}}$ und $\frac{k}{2^{\mu+1}}$, mithin dem Modul 2, was einen Widerspruch darstellt. Es ist demnach in der Tat $\lim_{n\to\infty}\frac{1}{\varrho_n}=0$.

Verzweigungspunkten verschiedener) im Endlichen gelegener Punkt P entfernt wird. Es sei \Re_n das Gebiet eines Kreises um P vom Halbmesser $k_n = \frac{\vartheta}{2^n}$ ($\vartheta > 0$) und es sei $T_n = \Re - \Re_n - \Im_n$. Es gilt $T = \lim_{n = \infty} T_n$. Man denke sich T_n durch Vermittlung einer Funktion $Z_n(z)$ auf ein Kreisgebiet K_n in der Ebene Z derart konform abgebildet, daß ein fester Punkt P_0 in T in den Koordinatenursprung fällt und das Vergrößerungsverhältnis in P_0 den Wert 1 hat. Ist ϱ_n der Radius von K_n , so gilt $\varrho_1 < \varrho_2 < \varrho_3 < \cdots$. Daß (*) $\lim_{n = \infty} \frac{1}{\varrho_n} = 0$ ist, zeigt Carathéodory wie folgt. Es sei im Gegensatz zu (*) $\lim_{n = \infty} \varrho_n = R$. Wir wählen einen Wert μ so groß, daß etwa $\varrho_{\mu+1} > \frac{2}{3}R$ ausfällt und das durch die Funktion $Z_{\mu+1}(z)$ entworfene Bild S^* von \mathfrak{C}_μ auch noch außerhalb der Kreisfläche \overline{K} um den Koordinatenanfangspunkt mit dem Radius $\frac{2}{3}R$ liegt. Dies ist, wie sich durch geeignete Abschätzungen zeigen läßt, stets möglich. Bilden wir jetzt das von $C_{\mu+1}$ und S^* begrenzte beschränkte Gebiet auf ein Kreisringgebiet B konform ab, so muß der Modul von B nach dem vorhin erwähnten Satze kleiner als $\frac{R}{2}R$ sein

⁵⁹²b) Vgl. L. Bieberbach, Math. Ann. 78 (1908), p. 312-331.

sprochenen Koebeschen Arbeit, auf beliebige "Riemannsche Mannigfaltigkeiten", wobei besonderes Gewicht auf die Ausschaltung topologischer Betrachtungen gelegt wird. Der Beweis stützt sich auf die in der Fußnote 587) besprochenen Hilfssätze und das Schwarzsche Lemma und benutzt nicht die zum Verzerrungssatze führenden Koebeschen Hilfssätze. (Diese können übrigens in der einfachsten Weise aus dem in dem dritten Absatze der Fußnote 587) mitgeteilten Bieberbachschen Satze gefolgert werden. Vgl. z. B. G. Faber, loc. cit. 462.)⁵⁹²°)

Neben dem Carathéodoryschen Verfahren der Kreisscheibenanhängung (erste Grundaufgabe), das hier die Form einer Anhängung von Elementarbereichen erhält, spielt der folgende Abbildungssatz (zweite Grundaufgabe) eine wesentliche Rolle: Aus einem Kreisgebiet K wird dadurch ein (ideal zusammenhängendes) Gebiet Θ gebildet, daß zwei in einem Punkte zusammenstoßende Kreisbögen aufeinander umkehrbar eindeutig, analytisch und regulär bezogen sind. Das Gebiet Θ kann auf eine punktierte Kreisfläche, oder doppelt punktierte Ebene (das letztere, wenn die beiden Bögen den Kreis ausfüllen) konform abgebildet werden. Zum Beweise wird die zu Θ gehörige "Überlagerungsfläche" $\Theta^* = \lim_{n = \infty} \Theta_n$ durch geeignete Verbindung unendlichvieler kongruenter Exemplare von Θ (was ohne topologische Betrachtungen erfolgen kann), gebildet und der in der Fußnote 592°) angegebene Konvergenzsatz auf die Folge Θ_n $(n = 1, 2, \ldots)$ angewandt.

Liegt nun eine beliebige "Riemannsche Mannigfaltigkeit" vor, so werden die einzelnen in unendlicher Anzahl von Exemplaren vorliegend

^{592°)} Aus den in der Fußnote 587) besprochenen Hilfssätzen wird der folgende, bei allen weiteren Betrachtungen allein noch benutzte Konvergenzsatz abgeleitet, der sich mit entsprechenden Konvergenzsätzen von Koebe berührt. (Vgl. P. Koebe, loc. cit. 457), p. 206–207.) Es sei eine unendliche Folge schlichter, einfach zusammenhängender Gebiete $T_n(n=1,2,\ldots)$, die sämtlich den Nullpunkt enthalten, gegeben. Durch Vermittlung einer für z=0 verschwindenden, in T_n regulären Funktion $f_n(z)$ $(n=1,2,\ldots)$ sei T_n auf T_{n+1} , oder ein Gebiet in T_{n+1} , durch Vermittlung einer weiteren regulären Funktion $Z_n(z)$ $\left(Z_n(0)=0,\frac{dZ_n(0)}{dz}=1\right)$ auf die Kreisfläche $Z_1 < R_n$ konform abgebildet. Ist $\lim_{n=\infty} \frac{1}{R_n}$ vorhanden ≥ 0), so ist die Folge Z_{n+p} $(p=1,2,\ldots)$, auf T_n verpflanzt, in jedem Bereiche in T_n gleichmäßig konvergent. Jeder Bereich in T_n , von dem die Funktionen der Folge $f_n, f_{n+1}(f_n), f_{n+2}(f_{n+1}(f_n)), \ldots$ eine schlichte Abbildung liefern, wird durch die Grenzfunktion Z(z) schlicht abgebildet. Für hinreichend hohe n enthält das von Z(z) entworfene Bild von T_n jeden Bereich im Gebiet $\frac{1}{Z} > \lim_{n=\infty} \frac{1}{R_n}$.

gedachten Elementarbereiche in geeigneter Reihenfolge miteinander verbunden und jedesmal die erste oder die zweite Grundaufgabe zur Anwendung gebracht. Der Konvergenzsatz (Fußnote 592°) auf die sich hierbei ergebende Folge abbildender Funktionen angewandt, liefert den zu beweisenden Uniformisierungssatz. 592d)

48. Abbildung des Randes. 193 a) Besondere Klassen schlichter Gebiete. Es sei T ein beschränktes einfach zusammenhängendes Gebiet in der Ebene der Variablen z, das den Koordinatenursprung enthält. Den Betrachtungen der Nr. 38 zufolge gibt es eine und nur eine Funktion Z = Z(z) (Z(0) = 0, $\frac{dZ(0)}{dz}$ reell und > 0), durch deren Vermittelung T auf die Fläche des Einheitskreises K in der Ebene Z konform abgebildet werden kann. Man darf im allgemeinen nicht fordern, daß Z(z) sich in T + S stetig verhält, vielmehr ist dies eine Eigenschaft, die in jedem besonderen Falle entweder erfüllt ist oder nicht. 194 Sie gilt, wie wir bereits gesehen haben, in allen Gebieten der Klasse Q (Nr. 24c). Gehört T der Klasse B (oder auch nur Ah) an, so ist die Ableitung $\frac{dZ}{dz}$ in T + S vorhanden und stetig und genügt einer H-Bedingung. Ferner ist in $T + S \cdot \cdots \cdot \frac{dZ}{dz} > 0$. Nach H. A. Schwarz läßt sich Z(z) über ein analytisches und reguläres Stück der Begrenzung analytisch fortsetzen (Nr. 22). 194 a

In einer Ecke, deren Seiten (den Eckpunkt z_0 eingeschlossen) analytisch und regulär sind und einen Winkel $\alpha \pi > 0$ einschließen, ist

⁵⁹² d) Weitere Literatur: P. Montel, C. R. 164 (1917), p. 879-881.

⁵⁹³⁾ Es sei $\mathfrak T$ ein über einer Ebene ausgebreitetes unendlichvielblättiges einfach zusammenhängendes Gebiet, das auf ein Kreisgebiet K konform abgebildet werden kann. Im allgemeinen kann bei $\mathfrak T$ von einem Rande im eigentlichen Sinne des Wortes nicht die Rede sein (vgl. die Fußnote 41). Punktfolgen in K, die gegen C konvergieren, können in $\mathfrak T$ Folgen von Punkten entsprechen, deren Häufungsstellen Mengen bilden, die nicht ohne weiteres als Kontinuen anzusprechen sind. (Vgl. E. Study, loc. cit. 148), p. 37—39.) Es empfiehlt sich darum, sich zunächst mit der Betrachtung beschränkter Gebiete in $\mathfrak E$ zu begnügen (Beispiele für Eigentümlichkeiten, die solche Gebiete bieten können, finden sich z. B. bei E. Study, loc. cit. 148, p. 40—44). Eine Theorie der Gebiete der Art $\mathfrak T$ vom Standpunkte der Analysis situs steht noch fast ganz aus. Erst wenn diese ins einzelne durchgearbeitet sein wird, wird die Frage der Abbildung des Randes eine konkrete Bedeutung gewinnen können.

⁵⁹⁴⁾ H. A. Schwarz hat als erster ausdrücklich die konforme Abbildung (des Innern) eines einfach zusammenhängenden (konvexen) Gebietes auf die Fläche eines Einheitskreises betrachtet (Nr. 35). Daß die Abbildung, sofern sie überhaupt möglich ist, durch die obige Bedingung im wesentlichen vollständig bestimmt ist, hat H. Poincaré gezeigt. (Vgl. loc. cit. 427.)

⁵⁹⁴a) Vgl. die Fußnoten 270) und 288).

 $\frac{dZ}{dz} = (z - z_0)^{\frac{1}{\alpha} - 1} f(z)$ (f(z) in z_0 stetig, $f(z_0)| \neq 0$) (Nr. 23). Gehört T der Klasse A an, so entsprechen Kurvenstücken der Klasse A in T, die von einem Punkte P auf S ausgehen, ebensolche Kurven in der Ebene Z. Die Abbildung ist auch noch auf S winkeltreu. Gehört T der Klasse N an, so gilt die vorstehende Aussage, außer in den Ecken und Spitzen, ohne Änderung. In einem Eckpunkt P oder in einer nach innen gekehrten Spitze (der eingeschlossene Winkel $\alpha \pi > 0$) ist die Abbildung in der Bezeichnungsweise von C. Carathéodory "quasikonform": der von zwei beliebigen in P^* einmündenden Kurven der Klasse A in T eingeschlossene Winkel wird bei der Abbildung mit dem Faktor $\frac{1}{\alpha}$ multipliziert. $\frac{595}{}$

b) Allgemeine Theorie. In seinem Enzyklopädie-Artikel über Funktionentheorie 596) spricht $W.\ F.\ Osgood$ die Vermutung aus, bei der konformen Abbildung eines von einer Jordanschen Kurve S begrenzten Gebietes T in $\mathfrak E$ auf eine Kreisfläche K dürfte der Bereich T+S umkehrbar eindeutig und stetig auf K+C bezogen sein. In einer im Jahre 1903 erschienenen Note 597) gibt weiter Osgood ohne nähere Begründung eine Reihe von Sätzen über das Verhalten der Abbildung am Rande eines beliebigen besehränkten, einfach zusammenhängenden Gebietes in $\mathfrak E$ bekannt. Einen Beweis enthält die erst 1913 mit $E.\ H.\ Taylor$ gemeinsam veröffentlichte Abhandlung "Conformal Transformations on the boundaries of their regions of definition". 598) Wir werden auf diese weiter unten zu sprechen kommen. Kurz vorher erschienen zwei Arbeiten von $C.\ Carath\'eodory$. in denen gleichsam als Abschluß der in der Nr. 47 besprochenen Untersuchungen eine allgemeine Theorie beschränkter einfach zusammenhängender Gebiete ent-

⁵⁹⁵⁾ Für konvexe Gebiete der Klasse A ist dieser Satz zuerst von P. Painlevé, loc. cit. 224) bewiesen worden. Man vergleiche ferner E. A. Hintikka, Über das Verhalten der Abbildungsfunktion auf dem Rande des Bereiches in der konformen Abbildung, Inaugural-Dissertation, Helsingfors 1912, p. 1—36. In dem Umfange des Textes ist der Beweis fast ohne jede Rechnung durch geometrische Betrachtungen von C. Carathéodory, loc. cit. 583), p. 38—41 geliefert worden. Nach einer Bemerkung von Carathéodory ist die Abbildung in einer Ecke auch dann noch quasikonform, wenn die Randkurve in dem Eckpunkte selbst zwei Tangenten hat, im übrigen aber eine beliebige Jordansche Kurve ist. Weitergehende Sätze gibt neuerdings W. Groß, Math. Zeitschrift 3 (1919).

⁵⁹⁶⁾ W. F. Osgood, II Bl Nr. 19, p. 56 (abgeschlossen im August 1901).

⁵⁹⁷⁾ W. F. Osyood, Bull. of the Amer. Math. Soc. 9 (1903).

⁵⁹⁸⁾ W. F. Osgood and E. H. Taylor, Trans. of the Amer. Math. Soc. 14, Nr. 2, p. 277-298, April 1913.

wickelt wird. 599) Neben vielen anderen Resultaten werden hier alle Osgoodschen Sätze bewiesen. Eine eingehende Behandlung widmete ferner diesen und verwandten Fragen in einer um diese Zeit erschienenen Schrift über konforme Abbildung einfach zusammenhängender Gebiete E. Study. 600)

Die Carathéodorysche Behandlungsweise der Begrenzung ist rein mengentheoretisch und von der Theorie der konformen Abbildung unabhängig. 601) In der zweiten der in der Fußnote 599) zitierten Arbeiten wird teils von den begrifflichen Definitionen aus, teils auf konstruktivem Wege die Theorie der Primenden (vgl. den Artikel von L. Zoretti und A. Rosenthal über die Punktmengen Nr. 13) entwickelt und in Wechselwirkung mit E. Study deren Einteilung in vier Arten durchgeführt; des weiteren werden die Fragen der Erreichbarkeit und Vielfachheit weit gefördert. Wir beschränken uns auf die Besprechung der wichtigsten Resultate über die Abbildung des Randes.

Sei T ein Jordansches Gebiet. Es sei z_k $(k=1,2,\ldots)$ eine Folge von Punkten in T, die gegen einen Punkt P auf S konvergieren. Die zugehörigen Punkte Z_k $(k=1,2,\ldots)$ der Ebene Z konvergieren gegen einen Punkt auf C. Dieses zeigt Carath'eodory indirekt auf folgendem Wege. 602)

Augenscheinlich können Z_k $(k=1,2,\ldots)$ keinen Häufungspunkt in K haben. Es mögen sich nun aus Z_k $(k=1,2,\ldots)$ zwei Teilfolgen aussondern lassen, die gegen zwei verschiedene Punkte Π_1 und Π_2 auf C konvergieren. Dem Fatouschen Satze 4. Nr. 13^{603}) zufolge läßt sich auf jedem der beiden von Π_1 und Π_2 begrenzten Kreisbogen gewiß je ein Punkt Π_3 und Π_4 angeben, so daß z(Z) längs der Radien $O\Pi_3$ und $O\Pi_4$ gegen bestimmte voneinander und von P verschiedene Punkte P' und P'' konvergiert. Dem Linienzuge Π_3 $O\Pi_4$

⁵⁹⁹⁾ C. Carathéodory, Math. Ann. 73 (1913): a) p. 305—320; b) p. 323—370, H. A. Schwarz zum 70. Geburtstag, den 25. Januar 1913, gewidmet. Die Hauptresultate sind von Carathéodory auf der Karlsruher Naturforscherversammlung im September 1911 vorgetragen worden. Dort machte auch E. Study Mitteilungen von seinen parallel laufenden Untersuchungen. Über das Verhältnis seiner und der Studyschen Untersuchungen spricht sich Carathéodory loc. cit. a) p. 305 Fußnote *) sowie b) p. 324 aus. Vgl. hierzu E. Study, loc. cit. 600) Vorwort.

⁶⁰⁰⁾ E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie. 2. Heft. Konforme Abbildung einfach zusammenhängender Bereiche. Herausgegeben unter Mitwirkung von W. Blaschke, Leipzig 1912, p. 1—142 [p. 37—71].

⁶⁰¹⁾ Eine Ausnahme bilden nur die Sätze XXIII und XXIV seiner zweiten Arbeit.

⁶⁰²⁾ C. Carathéodory, loc. cit. 599) a) p. 317-320.

⁶⁰³⁾ Und der Carathéodoryschen Ergänzung (s. die Fußnote 148) hierzu.

entspricht ein in P' und P'' endender Querschnitt von T. Durch diesen wird T in zwei Teilgebiete T' und T'' zerlegt. Wie leicht ersichtlich, enthält T' oder T'' nur endlich viele Punkte der Folge z_k ($k=1,2,\ldots$); entweder Π_1 oder Π_2 ist kein Häufungspunkt. Wir sind auf einen Widerspruch gekommen.

Aus dem vorstehenden Satze leitet dann Carathéodory ohne Mühe das weitere endgültige Resultat ab; die Bereiche T+S und K+C sind durch konforme Abbildung von T auf K umkehrbar eindeutig und stetig aufeinander bezogen.

An diesen Satz knüpfen gewisse funktionentheoretische Resultate von L. $Fej\acute{e}r$ an. 604) $Fej\acute{e}r$ beweist unter anderem den bemerkenswerten Satz: Die für |Z| < 1 reguläre Potenzreihe $z(Z) = \sum_{k}^{1 \dots \infty} a_k Z^k$ ist für $|Z| \le 1$ gleichmäßig konvergent. 605)

Es sei jetzt T irgendein beschränktes einfach zusammenhängendes Gebiet in $\mathfrak E$ und z_k $(k=1,2,\ldots)$ eine Folge von Punkten, die gegen ein Primende E_g konvergieren. Die Folge Z_k $(k=1,2,\ldots)$ konvergiert gegen einen Punkt des Kreises. Der Beweis läßt sich ganz wie vorhin führen. Für den Punkt P tritt jetzt irgendein Punkt auf S ein, gegen den eine das Primende E_g definierende Folge von Querschnitten konvergiert (irgendein "Hauptpunkt" von E_g). Von hier aus gelangt man zu einem Hauptsatze der Carathéodoryschen Theorie: Die Primenden des Gebietes T und die Randpunkte des Kreises C entsprechen einander umkehrbar eindeutig und stetig. Jeder Folge von Punkten in T, die gegen ein Primende E_g konvergiert, entspricht eine gegen das Bild von E_g konvergierende Punktfolge in K.

Die Menge von Punkten, in denen $\lim_{R=1} z(Re^{i\Phi})$ existiert, ist dem Falouschen Satze 4. Nr. 13 zufolge auf C vom Lebesgueschen Maße 2π . Hieraus wird unter anderem erschlossen, daß 1. die Menge der Punkte auf C, denen Primenden erster und zweiter Art in T ent-

⁶⁰⁴⁾ L. Fejer, a) C. R. 156 (1913), p. 46-49; b) Schwarz-Festschrift, Berlin 1914, p. 42-53. Eine Darstellung findet sich bei E. Landau, loc. cit. 462) p. 59-60.

⁶⁰⁵⁾ Nach Fejér, loc. cit. 604) b, p. 49—50 konvergiert $\sum_k a_k Z^k$, wenn T ein beliebiges beschränktes, einfach zusammenhängendes Gebiet in E bezeichnet, auf C in den Punkten einer gewissen Menge vom Maße 2π . Aus dem Abelschen Satze folgt, daß in diesen Punkten $\lim_{R\to 1} z(Re^{i\Phi})$ existiert. Im Gebiete T entsprechen ihnen darum Primenden erster und zweiter Art (vgl. die Ausführungen weiter unten).

606) C. Carathéodory, loc. cit. 599), p. 350 sowie p. 351 Fußnote *).

sprechen, das Maß $2\pi^{607}$) und 2. auf einem jeden Bogen von C die Mächtigkeit des Kontinuums hat. Damit das Gebiet T ein Jordansches Gebiet sei, ist notwendig und hinreichend, daß seine Begrenzung aus lauter einfachen und erreichbaren Punkten besteht.

In welcher Weise erreichbare und nicht erreichbare Punkte eines Primendes verschiedenen gegen das Bild von E_g konvergierenden Punktfolgen in K entsprechen, hat Carath'eodory nicht näher untersucht.

Study hält es für wahrscheinlich, daß einem beliebigen Halbmesser des Kreises C in T ein (analytisches) Kurvenstück entspricht, das die Gesamtheit der Hauptpunkte 610) eines Primendes approximiert. 611) Die gleiche Punktmenge wird, wie Koebe mit Hilfe seines Verzerrungssatzes zeigt, gewonnen, wenn man sich dem Endpunkte jenes Halbmessers auf einer beliebigen Kreissehne nähert. 612)

Ein Teil der Carathéodoryschen Resultate ist auf einem ganz anderen Wege von W. F. Osgood und E. H. Taylor abgeleitet worden. 613) Durch rein potentialtheoretische Betrachtungen wird gezeigt, daß die zu der Greenschen Funktion von T konjugierte Potentialfunktion bei der Annäherung an einen (erreichbaren) Punkt des Randes längs eines Jordanschen Kurvenstückes in T gegen einen bestimmten Wert konvergiert. 614) Aus diesen Resultaten wird dann im wesentlichen alles weitere abgeleitet. Die Methode ist also direkt. Sie bedient sich im

⁶⁰⁷⁾ Vgl. die Fußnote 615).

⁶⁰⁸⁾ C. Carathéodory, loc. cit. 599) b) p. 365.

⁶⁰⁹⁾ C. Carathéodory, loc. cit. 599) b) p. 366. Derselbe Satz wird auf anderem Wege bei W. F. Osgood and E. H. Taylor bewiesen (loc. cit. 598), p. 295). Man vergleiche hierzu die Ausführungen von E. Study, loc. cit. 600), p. 37-71.

^{610) &}quot;Die Kernmenge" nach Study. Randpunkte und erreichbare Punkte des Randes heißen bei Study "Grenz"- und "Randpunkte".

⁶¹¹⁾ Vgl. E. Study, loc. cit. 600) p. 65 (Hypothese).

⁶¹²⁾ Vgl. loc. cit. 600), p. 127.

⁶¹³⁾ W. F. Osgood und E. H. Taylor, loc. cit. 598). Die beiden Autoren untersuchen das Verhalten der die Abbildung vermittelnden Funktion vor allem in den Primenden erster und zweiter Art, d. h. den Primenden, die einen erreichbaren Punkt haben (übrigens ohne den Begriff eines Primendes zu benutzen). Primenden ohne erreichbare Punkte kommen implizite erst in dem Schlußsatz V nebst dem Korollar (p. 296—297) vor. Den Carathéodoryschen Hauptsatz über die umkehrbar eindeutige und stetige Zuordnung der Punkte des Kreises und der Primenden des Gebietes T schließt die Theorie von Osgood und Taylor nicht ohne weiteres ein. Das gleiche ist von dem Satze über das Maß der den Primenden erster und zweiter Art auf C entsprechenden Punkte (übrigens hezüglich aller noch zu besprechenden Theorien) zu sagen.

⁶¹⁴⁾ W. F. Osgood und E. H. Taylor, loc. cit. 598) p. 291.

Gegensatz zu der Carathéodoryschen Theorie lediglich des klassischen Integralbegriffes. 615)

Eine überraschend einfache Behandlungsweise des Randes beschränkter, einfach zusammenhängender Gebiete in $\mathfrak E$ ist von P. Koebe angegeben worden. Koebe geht von dem folgenden Hilfssatze aus. Es sei F(Z) eine in K erklärte beschränkte, singularitätenfreie analytische Funktion, Σ_k $(k=1,2,\ldots)$ eine Folge analytischer und regulärer Kurvenstücke, die einen Bogen Σ von C gleichmäßig approximieren. Nimmt F(Z) auf Σ_k $(k=1,2,\ldots)$ Werte an, die mit wachsendem k gegen eine Konstante gleichmäßig konvergieren, so ist F(Z) selbst eine Konstante.

Durch eine elementare konforme Abbildung kann man erreichen, daß Σ sich mit der unteren Hälfte des Kreises C deckt und die Endpunkte von Σ_k ($k=1,2,\ldots$) auf der Achse des Reellen liegen. Die Konstante darf man gleich Null annehmen. Die in K reguläre Funktion $\Phi(Z) = F(Z) \overline{F}_1(Z)$; $\{F_1(Z) = [F(\overline{Z})]; \overline{Z}, [\overline{F}_1(Z)] \text{ zu } Z \text{ und } F_1(Z) \text{ konjugiert komplex}\}$ konvergiert auf den aus den Linien Σ_k und ihren Spiegelbildern gebildeten geschlossenen Linien für $k=\infty$ gegen Null. Wie leicht zu sehen ist, ist $\Phi(Z)=0$, darum auch F(Z)=0. Sei jetzt $P(z_0)$ ein erreichbarer Punkt auf S und L ein in P mündendes Jordansches Kurvenstück in T. In der Ebene Z entspricht S ein Jordansches, etwa in I1 auf C1 mündendes Linienstück $\mathfrak S$ 2. Andernfalls müßte $\mathfrak S$ 3 längs eines Stückes von C3 unendlich oft entlang streichen, z(Z)3 auf $\mathfrak S$ 3 gegen z_0 3 konvergieren, darum z(Z)3 identisch gleich z_0 3 ein. In ähnlicher Weise werden auf indirektem Wege ohne jede Rechnung die Hauptsätze über die Ränderzuordnung abgeleitet.

⁶¹⁵⁾ In der Note, Zur Ränderzuordnung bei konformer Abbildung, Gött. Nachr. 1913, p 509-518 gibt übrigens Carathéodory unter Benutzung eines Gedankens von E. Schmidt einen von der Lebesgueschen Theorie unabhängigen Beweis des hier in Frage kommenden Spezialfalles des Fatouschen Satzes.

⁶¹⁶⁾ P. Koebe, a) Gött. Nachr. 1913, p. 286-288, b) Journ. f. Math. 145 (1915), p. 177-223.

⁶¹⁷⁾ P. Koebe, loc. cit. 616) b) p. 212—213. Einen anderen Beweis skizziert Koebe loc. cit. 616) a) p. 287—288. Der im Texte wiedergegebene Beweis berührt sich mit gewissen Betrachtungen von E. Lindelöf, loc. cit. 627). Einen weiteren Beweis vergleiche bei C. Carathéodory, loc. cit. 615) p. 509—512. Einen analogen Hilfssatz gab R. Courant, loc. cit. 557), p. 207—208 an. (Die Voraussetzung, daß F(Z) in K beschränkt ist, wird dort durch die Annahme ersetzt, daß K durch F(Z) auf ein Gebiet vom endlichen inneren Flächeninhalte abgebildet wird.) Eine Erweiterung gibt neuerdings W. Groß, Monatsh. f. Math. u. Phys. 29 (1818), p. 3—37, an. Vgl. auch W. Groß, Math. Zeitschr. 3 (1919).

⁶¹⁸⁾ P. Koebe, loc. cit. 616) b) p. 215.

⁶¹⁹⁾ Vgl. die analogen Ausführungen bei R. Courant, loc. cit. 557), p. 207 $^{\circ}$ bis 211.

Es mögen z_1 und z_2 zwei Punkte in T bezeichnen. Es sei $E(z_1,z_2)$ die untere Grenze der Länge aller von z_1 nach z_2 führenden geradlinigen Streckenzüge in T. Nach Koebe läßt sich jedem $\varepsilon>0$ ein $\nu(\varepsilon)>0$ zuordnen, so daß $|Z_1-Z_2|<\varepsilon$ wird, sofern z_1 und z_2 in T der Beziehung $E(z_1,z_2)<\nu(\varepsilon)$ gemäß, im übrigen jedoch willkürlich gewählt sind ("Gleichmäßige Stetigkeit" der Funktion Z(z).

Einen ganz anderen, ebenfalls indirekten Weg beschreitet R. Courant. Es sei S eine Jordansche Kurve. Die zunächst nur in T erklärte Funktion Z(z) ist dort "gleichmäßig stetig": Jedem $\varepsilon>0$ läßt sich ein $\delta(\varepsilon)>0$ zuordnen, so daß Punktepaaren z,z' in T, die der Ungleichheit $|z-z'|<\delta(\varepsilon)$ genügen, Punktepaare Z,Z' in K entsprechen derart, daß $|Z-Z'|<\varepsilon$ gilt. Wäre dies nämlich nicht der Fall, ließen sich also (gegen S konvergierende) Punktepaare z_n,z_n' finden, so daß $\lim_{n\to\infty} |z_n-z_n'|=0, |z_n-z_n'|>\alpha$ (α konstant) wäre, so müßte, wie eine Betrachtung der Kurven α 0 α 1, α 2, α 3, α 4, α 5, α 5, α 6, α 6, α 7, α 8, α 8, α 9, α

$$\int_{z} \left| \frac{dZ}{dz} \right|^2 dx dy$$

divergieren. 623) Die punktweise umkehrbar eindeutige und stetige Beziehung der Bereiche T+S und K+C ist eine fast unmittelbare Folge dieses Satzes. 624) In ähnlicher Weise läßt sich der wiederholt erwähnte allgemeine Carath'eodorysche Satz über die Zuordnung der Primenden eines beschränkten, einfach zusammenhängenden Gebietes T und der Punkte auf C beweisen. 625) Die Beschaffenheit des Randes von T läßt sich übrigens nach einer Bemerkung von Courant auch von der Abbildung des Innern von T auf K aus, auf Grund der Sätze über die Zuordnung erreichbarer Punkte erforschen. 625) Man kann so zu den von Carath'eodory auf mengentheoretischem Wege gewonnenen Resultaten gelangen. 626)

⁶²⁰⁾ P. Koebe, loc. cit. 616) b), p. 221-222. Mit diesem Satze steht ein von W. F. Osgood, loc. cit. 597) angegebenes "physical law" in enger Beziehung.

⁶²¹⁾ R. Courant, Gött. Nachr. 1914, p. 101-109.

⁶²²⁾ Courant betrachtet übrigens, was unwesentlich ist, die Abbildung auf ein Schlitzgebiet.

⁶²³⁾ Die Courantsche Betrachtungsweise ist mit der anderen Zwecken dienenden Betrachtungsweise von H. Lebesgue (Nr. 45c) verwandt.

⁶²⁴⁾ Vgl. die Andeutungen von R. Courant, loc. cit. 621), p. 102; loc. cit. 557, p. 211.

⁶²⁵⁾ R. Courant, loc. cit. 557) p. 211.

⁶²⁶⁾ Im einzelnen durchgeführt wurde dieser Gedankengang von P. Koebe, loc. cit. 616) b) p. 217—219 und E. Lindelöf, loc. cit. 627) b) (vgl. die weiteren Ausführungen im Text).

372

Eine sehr bemerkenswerte funktionentheoretische Behandlungsweise des Randes ist von E. Lindelöf vorgeschlagen worden. Lindelöf geht von dem von ihm bereits früher vielfach mit Erfolg benutzten elementaren Satze aus: Es sei f(z) eine in einem einfach zusammenhängenden Gebiete T in $\mathfrak E$ reguläre Funktion. Sei z_0 ein willkürlicher Punkt auf S und es sei ε eine beliebig kleine positive Zahl. Läßt sich ε und z_0 ein Wert $\nu\left(\varepsilon,z_0\right)>0$ so zuordnen, daß für alle z in T, die der Ungleichheit $|z-z_0|<\nu(\varepsilon,z_0)$ genügen, $|f(z)|< M+\varepsilon$ ist, so ist in $T\cdot \cdots |f(z)| \leq M$. Das Gleichheitszeichen gilt nur, wenn f(z) in T konstant ist.

Sei Z=Z(z) eine Funktion, durch deren Vermittelung T auf die Fläche des Einheitskreises |Z|<1 konform abgebildet wird. Sei q die Entfernung des Punktes z(0) von S, L der Durchmesser von T. Ist z ein Punkt in T und ist seine Entfernung von S kleiner als $\varrho^*< q$, so ist

Dieser Satz stellt eine Verschärfung des Satzes $\lim_{\substack{a'=0\\ a'=0}} |Z(z)| = 1$ dar. Zum Beweise wird, wenn z=a ein Punkt P auf S ist, derjenige Teil der zu $\log(z-a)$ gehörigen Riemannschen Fläche, der der Beziehung $|z-a| \leq L$ genügt, durch Vermittelung der Funktion

(2)
$$\overline{Z}(z) = \frac{\log\left(\frac{z-a}{L}e^{-i\beta}\right) + \log\frac{L}{d}}{\log\left(\frac{z-a}{L}e^{-i\beta}\right) - \log\frac{L}{d}}$$
 $(z(0) = a + de^{i\beta})$

auf die Fläche K des Einheitskreises abgebildet. Das Gebiet T wird dabei auf ein Gebiet in K abgebildet. Durch Anwendung des eingangs genannten Hilfssatzes auf $\frac{Z(z)}{Z(z)}$ und einige einfache Umformungen gewinnt man die zu beweisende Beziehung. Unter Zuhilfenahme weiterer elementarer Hilfssätze zeigt sodann Lindel"of, daß für alle hinreichend kleinen $\varrho^*(<q)$ die Schwankung σ der Funktion Arctang $\frac{Y}{X}$ längs eines beliebigen Jordanschen Kurvenstückes in dem der Kreisfläche $|z-a|<\varrho^*$ und T gemeinsamen Gebiete der Ungleichheit

(3)
$$\sigma < 4 \operatorname{Arc tang} \sqrt{\frac{2 \log \frac{L}{q}}{\log \frac{L}{\rho^*}}}$$

⁶²⁷⁾ E. Lindelöf, a C. R. 158 (1914), p. 245-247, b) Acta societatis scientiarum Fennicae, Bd. 46, Nr. 4 (1915).

genügt. Augenscheinlich ist $\lim_{q^*=0} \sigma = 0$. Aus den Ungleichheiten für |1-Z(z)| und σ folgen nun nacheinander die Sätze:

Ist P ein erreichbarer Punkt von S, so entspricht einem in a mündenden Jordanschen Kurvenstücke S in T ein in einen bestimmten Punkt Z_a auf C mündendes Jordansches Kurvenstück $\mathfrak Q$ in K. Im allgemeinen konvergiert z(Z) bei der Annäherung der Veränderlichen Z an Za in K nicht gegen einen bestimmten Wert. Die Gesamtheit der Häufungsstellen von z(Z) bildet ein Kontinuum (das sich jedoch auch auf einen Punkt reduzieren kann). Lindelöf zeigt, daß dieses Kontinuum ein Primende erster oder zweiter Art ist. Dabei entsprechen allen möglichen in Z_a mündenden Jordanschen Kurvenstücken im Innern des Winkelraumes $\left| rg rac{Z_a}{Z_a - Z}
ight| \leq rac{\pi}{2} - \epsilon_0$ (ϵ_0) beliebig klein) in T nach a führende Jordansche Kurvenstücke. Sind a_1 und $a_2 + a_1$ zwei erreichbare Punkte auf S, \mathfrak{S}_1 und \mathfrak{S}_2 nach a_1 und a_2 führende Jordansche Kurvenstücke in T, so münden \mathfrak{L}_1 und $\mathfrak{Q}_{\mathfrak{p}}$ in zwei verschiedene Punkte von C ein. Ist T ein Jordansches Gebiet, so ist Z(z) in T und auf S stetig und ordnet Punkte auf S und C einander umkehrbar eindeutig zu. Bei einem beliebigen beschränkten, einfach zusammenhängenden Gebiete sind erreichbare Punkte z = a auf S und ihre Bilder Z_a auf C überall dicht verteilt. Einem jeden nicht zur Menge der Z_a gehörenden Punkte ${}^*\!Z$ auf C läßt sich wie vorhin durch die Gesamtheit der Häufungsstellen von z(Z) ein Kontinuum auf S zuordnen. Dieses ist ein Primende dritter oder Bleibt ein nach *Z führendes Jordansches Kurvierter Art. venstück $\mathfrak L$ im Innern des Winkelraumes $\left|\arg\frac{{}^*Z}{{}^*Z-Z}\right| \le \frac{\pi}{2} - \varepsilon_0$ (ε_0) beliebig klein), so umfaßt die Menge der Häufungsstellen von z(Z)auf $\mathfrak Q$ nach $\mathit{Lindel\"of}$ alle Hauptpunkte des ${}^{*}Z$ zugeordneten Primendes und keinen einzigen Nebenpunkt. Damit und durch den vorhin genannten Satz über die Primenden erster und zweiter Art wird insbesondere die Studysche Vermutung 628) als zutreffend erwiesen. 628 a.)

49. Variable Gebiete. Betrachtung einer Folge von Gebieten, die gegen ein Gebiet T oder \mathfrak{T} konvergieren, ist, wie sich wiederholt

⁶²⁸⁾ Vgl. E. Study, loc. cit. 611).

^{628°)} Einen anderen Beweis dieses Satzes gibt neuerdings W. Groß in einer zur Zeit (im September 1918) in Veröffentlichung begriffenen größeren Arbeit. Vgl. W. Groß, Math. Zeitschrift 2 (1918), p. 242—294. In dieser Arbeit sowie in den weiteren Arbeiten (vgl. Monatshefte f. Math. u. Phys. 29 (1918), p. 3—47; Math. Zeitschrift 3 (1919), über die nicht mehr im Zusammenhang referiert werden konnte, findet sich eine größere Anzahl weiterer Ergebnisse (vgl. die Fußnote 595) Weitere Literatur: P. Montel C. R. 164 (1917), p. 879—881.

gezeigt hat, eins der wichtigsten Mittel zur Behandlung der Randwertanfgaben der Potentialtheorie und der Probleme der konformen Abbildung. Die auf diesem Wege gewonnenen Ergebnisse lassen sich jedesmal als Konvergenzsätze deuten. Doch sind T_a dabei in der Regel Gebiete spezieller Natur. Faßt man das erste Randwertproblem für beschränkte Gebiete der allgemeinsten Natur in & als gelöst auf, so gewinnt man, wie in der Nr. 34 angedeutet wurde, mit der größten Leichtigkeit einen allgemeinen Satz über das Verhalten der Lösung bei einer stetigen Änderung des Gebietes. Das gleiche gilt, wenn T einfach zusammenhängend ist, für die konforme Abbildung von T auf K. In diesem Abschnitte werden einige hierher gehörige weitgehende Sätze besprochen. Es handelt sich dabei, sei es um unendlichvielblättrige Gebiete, sei es um gleichmäßige Konvergenz im Innern und auf dem Rande gewisser Gebiete, sei es um besondere Abschätzungen. Meist liefert die Methode zugleich einen Existenzbeweis der Lösung oder der Abbildung.

Ein sehr allgemeiner Satz dieser Art ist von H. Lebesgue bewiesen worden. Es sei T_n $(n=1,2,\ldots)$ eine Folge beschränkter Gebiete in $\mathfrak E$, die gegen ein ebenfalls beschränktes Gebiet T konvergieren. Es sei K^* eine T und T_n $(n=1,2,\ldots)$ enthaltende Kreisfläche, φ_n $(n=1,2,\ldots)$ eine in K^*+C^* gleichmäßig konvergierende Folge stetiger Funktionen, u_n die zu φ_n gehörige Lösung des ersten Randwertproblems in T_n . Die Funktionen u_n in T_n , φ_n in $K^*+C^*-T_n$ konvergieren in T+S gleichmäßig gegen u, die zu $\varphi=\lim_{n\to\infty}\varphi_n$ in T gehörige Lösung. Es u0 gehörige Lösung.

Einen sehr weitgehenden allgemeinen Satz über veränderliche Gebiete in & haben wir in der Nr. 47 kennen gelernt. Es ist der Carothéodorysche Satz über die Abbildung des Kernes einer Folge einfach zusammenhängender beschränkter Gebiete. (582)

^{629.} H. Lebesgue, loc. cit. 535) a. p. 398-399.

⁶³⁰⁾ T und T_n erfüllen die in der Nr. 45 c gegebene Lebesguesche Bedingung. Das Maximum des Abstandes der Punkte des Randes S_n von S konvergiert mit $\frac{1}{n}$ zugleich gegen Null. Die Gebiete T_n können, auch wenn T unendlichvielfach zusammenhängend ist, eine endliche Zusammenhangszahl haben.

⁶³¹⁾ Lebesgue gibt seinem Satze eine geometrische Fassung. Der Beweisstützt sich wesentlich auf den in der Nr. 45c besprochenen Hilfssatz.

⁶³²⁾ L. Bieberbach [Gött. Nachr. 1913, p. 552-564 (p. 558-559)] hat den Carathéodoryschen Satz wie folgt verallgemeinert: Es sei T_n $(n=1,2,\ldots)$ eine Folge einfach zusammenhängender, gleichmäßig beschränkter Gebiete in der Ebene z, die alle den Punkt z=0 enthalten und gegen ihren (von Null verschiedenen) Kern Θ konvergieren. Durch Vermittlung der Funktionen $\overline{Z}_n(z)$ $(\overline{Z}_n(0)=0)$ $(n=1,2,\ldots)$ mögen T_n $(n=1,2,\ldots)$ auf Gebiete \overline{T}_n $(n=1,2,\ldots)$ in der Ebene \overline{Z} , die

In der in der Schwarz-Festschrift veröffentlichten Arbeit gibt Carathéodory einen in jenem Satze als Spezialfall enthaltenen Konvergenzsatz an (Nr. 47).633) Der Beweis benutzt wesentlich einige von Carathéodory angegebene Abschätzungen und berührt sich mit gewissen Betrachtungen von Plemelj und Koebe (Nr. 40b). Er ist von einem Auswahlverfahren unabhängig.

Es sei T ein einfach zusammenhängendes, beschränktes Gebiet in \mathfrak{E} , dessen Rand in der Begrenzung eines von T verschiedenen Gebietes enthalten ist. Es sei z(Z) eine Funktion, durch deren Vermittelung K auf T konform abgebildet wird $\left(z(0)=0,\frac{dz(0)}{dZ}\right)$ reell und >0. Um z(Z) durch die in gleicher Weise normierte Abbildungsfunktion $z^*(Z)$ eines Gebietes T^* mit beliebiger Genauigkeit zu approximieren, genügt es, das Maximum des Abstandes eines Punktes auf S^* von S hinreichend klein zu wählen. Die Gestalt von S^* ist dabei völlig gleichgültig. S^*

Einen weiteren auf Carathéodory zurückgehenden allgemeinen Konvergenzsatz gibt R. Courant an. 635)

Es sei T_n $(n=1,2,\ldots)$ eine Folge Jordanscher Gebiete, die sämtlich eine feste Kreisfläche um den Punkt z=0 enthalten und gegen ein Jordansches Gebiet T_0 "gleichmäßig konvergieren".636) Es seien $Z_n^*(z)$ $(n=0,1,\ldots)$ Funktionen, durch deren Vermittelung

gleichfalls gleichmäßig beschränkt sind, konform abgebildet werden. Damit $\overline{Z}_n(z)$ $(n=1,2,\ldots)$ in jedem Bereiche in Θ gleichmäßig konvergieren, ist notwendig und hinreichend, daß Gebiete \overline{T}_n $(n=1,2,\ldots)$ gegen ihren Kern $\overline{\Theta}$ konvergieren. Durch Vermittlung der Funktion $\overline{Z}(z)=\lim_{n=\infty}\overline{Z}_n(z)$ wird, sofern $\overline{\Theta}$ von Null verschieden ist, Θ auf $\overline{\Theta}$ konform abgebildet.

Wie bereits erwähnt (vgl. die Fußnote 578)), benutzt Bieberbach als das einzige Hilfsmittel den Montelschen Satz (Nr. 41, p. 316), während Carathéodory daneben gewisse von ihm aus dem Schwarzschen Lemma abgeleiteten Ungleichheiten anwendet.

- 633) Für das Kreisgebiet tritt hierbei, was unwesentlich ist, ein festes beschränktes einfach zusammenhängendes Gebiet T ein
- 634) C. Carathéodory, loc. cit. 577), p. 136. Eine andere Fassung dieses Satzes findet sich bei L. Bieberbach, loc. cit. 588) b) p. 104—107. Für den Fehler der Abbildung gibt Bieberbach explizite eine obere Schranke an.
 - 635) R. Courant, loc. cit. 621) p. 106.
- 636) Dies besagt folgendes: Die Randkurve S_0 ist mit der Menge der Punkte identisch, deren Entfernung von S_n für $n=\infty$ gegen Null konvergiert. Es sei P irgendein Punkt auf S_0 ; P_1 und P_2 seien zwei beliebige Punkte in T_0 , deren Abstand von P kleiner als ε ist; P_1 und P_2 lassen sich durch einen geradlinigen Streckenzug verbinden, der für hinreichend großes n in allen T_n liegt und dessen Länge unterhalb einer von n, P_1 und P_2 unabhängigen, mit ε gegen Null konvergierenden Schranke liegt.

 $T_n+S_n\ (n=0,1,\ldots)$ auf Schlitzbereiche in der Ebene Z^* der Bedingung $\lim_{z\to 0} \left(Z_n^*(z)-\frac{1}{z}\right)=0$ gemäß konform abgebildet werden. Die Funktionen $Z_n^*(z)\ (n=1,2,\ldots)$ konvergieren in jedem den Punkt z=0 nicht enthaltenden Bereiche in T_0 gleichmäßig gegen $Z_0^*(z)$. Ist z_1,z_2,\ldots irgendeine Folge von Punkten $(z_k$ in T_k oder auf S_k), die gegen z_0 (in T_0 oder auf S_0) konvergiert, so ist $\lim_{k\to\infty} Z_k^*(z_k) = Z_0^*(z_0)$. Den Beweis führt Courant indirekt durch Betrachtung der Dirichletschen Integrale

$$\int_{T_n-K_0-C_0}^{\bullet} \left| \frac{d}{dz} Z_n^*(z) \right|^2 dx dy,$$

unter K_0 ein Kreisgebiet um den Punkt z=0 verstanden. Der vorstehende, ebenso wie der Nr. 48 b) p.371 besprochene *Courant*sche Satz gilt unverändert bei mehrfach zusammenhängenden beschränkten Gebieten in \mathfrak{E} , deren alle Randkomponenten *Jordan*sche Kurven sind. Ein ganz analoger Satz gilt, wenn $T_n(n=0,1,\ldots)$ einfach zusammenhängend sind, für die in der üblichen Weise normierten Funktionen $Z_n(z)$ $(n=0,1,\ldots)$, die T_n $(n=0,1,\ldots)$ auf die Fläche des Einheitskreises abbilden. Die Umkehrfunktionen $z_n(Z)$ $(n=1,2,\ldots)$ konvergieren in dem Gebiete $|Z| \leq 1$ gleichmäßig gegen $z_0(Z)$.637

Es sei noch der folgende von Carathéodory angegebene Satz genannt:

Es sei T_t eine für $0 \le t \le 1$ erklärte einparametrige Schar einfach zusammenhängender beschränkter, z=0 enthaltender Gebiete in \mathfrak{E} . Damit die T_t auf K abbildende Funktion $z_t(Z)$ $(z_t(0)=0,\frac{d}{dZ}z_t(0)$ reell und >0) für jeden Wert von Z(|Z<1) stetig von t abhänge, ist notwendig und hinreichend, daß: 1. jedem Bereiche $\overline{T}+\overline{S}$ in T_t , der z=0 enthält, ein Wert $\varepsilon>0$ zugeordnet werden kann, so daß $\overline{T}+\overline{S}$ in T_{τ} enthalten ist, sofern $|t-\tau|<\varepsilon$ ist, 2. wenn ein z=0 enthaltender Bereich $\overline{T}+\overline{S}$ in T_t , T_t , ... enthalten ist, $\overline{T}+\overline{S}$ auch in T_{θ} liegt, unter θ einen beliebigen Häufungspunkt der Folge t_1 , t_2 , ... verstanden. t_1 0

Eine Reihe spezieller Sätze über konforme Abbildung veränderlicher Gebiete sowie über Potentialfunktionen in diesen wird bei der Durchführung der Kontinuitätsmethode abgeleitet (Nr. 46). So beweist P. Koebe (auf zwei verschiedene Arten) einen Satz über die stetige Änderung der zu einem 2p-fach zusammenhängenden Fundamentalgebiete in $\mathfrak E$ mit paarweise analytischer und regulärer Zuordnung

⁶³⁷⁾ R. Courant, loc. cit. 621), p. 108-109.

⁶³⁸⁾ C. Carathéodory, loc. cit. 577), p. 138-139.

der Randkomponenten zugehörenden Abelschen Integrale bei einer stetigen Änderung des Gebietes. (639) Man vergleiche ferner P. Koebe, loc. cit. 489)d) p. 68—77. In diesem Zusammenhang sind noch die Arbeiten von E. Ritter über das Verhalten automorpher Funktionen bei einer kleinen Änderung des Fundamentalbereiches zu erwähnen. (640)

639) Das Fundamentalgebiet ist dabei als eine ideal geschlossene Fläche vom Range p zu betrachten. Vgl. P. Koebe, Math. Ann. 75 (1914), p. 42—129 [p. 61—71]. Der eine direkte Beweis stützt sich wesentlich auf deu Courant-Koebeschen Hilfssatz (Nr. 45 d), der andere ist indirekt und benutzt den Montelschen Konvergenzsatz (Nr. 41 p. 316).

640) Vgl. E. Ritter, Math. Ann. 45 (1894), p. 473-544; 46 (1895), p. 200-248.

(Abgeschlossen im Mai 1918.,

Die seit August 1914 erschienenen ausländischen Arbeiten konnten nur zum Teil berücksichtigt werden.

II C 4. NEUERE UNTERSUCHUNGEN ÜBER FUNKTIONEN VON KOMPLEXEN VARIABLEN.*)

Vox

LUDWIG BIEBERBACH

IN FRANKFURT A. M.

Inhaltsübersicht.

Grundlagen der Theorie.

- 1. Definition des analytischen Charakters einer Funktion
- 2. Der Fundamentalsatz der Funktionentheorie.
- 3. Die Integralformel.
- 4. Erweiterungen.
- 5. Begriff der analytischen Funktion.
- 6. Riemannsche Mannigfaltigkeiten.
- 7. Uniformisierung.
- 8. Begriff der singulären Stelle.
- 9. Begriff der Umgebung einer singulären Stelle.
- 10. Eindeutige isolierte Singularitäten.
- 11. Mehrdeutige isolierte Singularitäten.
- 12. Der Monodromiesatz.
- 13. Verteilung der Singularitäten bei eindeutigen Funktionen.

Der Picardsche Satz.

- 14. Der Picard sche Satz.
- 15. "Elementare" Methoden.
- 16. Der Landausche Satz.
- 17. Verallgemeinerungen.
- 18. Der Schottkysche Satz.
- 19. Erweiterungen.

Weiteres über das Verhalten in der Nähe wesentlich singulärer Stellen.

- 20. Grundbegriffe.
- 21. Geradlinige Annäherung an singuläre Stellen.

971

^{*)} Dieser Artikel will den 1900 abgeschlossenen Osgood schen Artikel (II B 1) bis 1920 weiterführen. Diese Aufgabe zwang mich, häufig vor 1900 zurückzugreifen. Die ausländische Literatur der Kriegsjahre habe ich leider nicht immer einsehen können, so daß ich in dieser Hinsicht manchmal aus zweiter Hand schöpfen mußte. Wenn ich auch nicht hoffen darf, peinlichste Vollständigkeit erreicht zu haben, so glaube ich doch, daß mein Aufsatz ein einigermaßen treffendes Bild vom augenblicklichen Stande der Theorie gibt. Die Theorien der konformen Abbildung habe ich allerdings mit Rücksicht auf den Artikel Lichtenstein (II C 3) nur eben streifen dürfen. Viele wertvolle Ratschläge gaben mir während der Korrekturen Faber, Hardy, Hartogs, Hellinger, Ostrowski, Pölya, Rosenthal, Szász. Ich erwähne das mit aufrichtigem Dank.

- 22. Sätze von W. Groß.
- 23. Werteverteilung in Winkelräumen.
- 24. Ränderzuordnung bei konformer Abbildung.
- 25. Der Fatousche Satz.

Ganze transzendente Funktionen.

- 26. Weierstraß.
- 27. Laguerre.
- 28. Poincaré. Hadamard. Borel.
- 29. Grundbegriffe.
- 30. Ordnung und Koeffizienten.
- 31. Ordnung und Grenzexponent.
- 32. Ausnahmefälle.
- 33. Bestimmung des Geschlechtes aus den Koeffizienten.
- 34. Das Geschlecht von Summe und Ableitung.
- 35. Funktionen unendlicher Ordnung und Funktionen der Ordnung Null.
- 36. Beziehungen zwischen dem Maximalbetrag einer ganzen Funktion und dem Betrag des größten Gliedes ihrer Potenzreihenentwicklung.

Analytische Fortsetzung.

- 37. Die erste Methode Mittag-Leftlers.
- 38. Methode der konformen Abbildung.
- 39. Modifikation der Methode durch Painlevé.
- 40. Der Hauptstern als Konvergenzstern.
- 41. Zurückführung auf die Summation der geometrischen Reihe.
- 42. Integraldarstellungen.
- 43. Eine neue Methode Mittag-Lefflers.
- 44. Verallgemeinerungen.

Zusammenhang zwischen den Koeffizienten eines Funktionselementes und den Singularitäten der durch dasselbe definierten Funktion.

- 45. Die Singularitäten auf dem Konvergenzkreis.
- 46. Der Hadamardsche Multiplikationssatz.
- 47. Der Satz von Leau.
- 48. Sätze von Lindelöf.
- 49. Rekurrierende Reihen.
- 50. Untersuchungen von Darboux.
- 51. Die Lage der Pole.

Die Potenzreihen an der Konvergenzgrenze.

- 52. Der Abelsche Grenzwertsatz.
- 53. Die Hölderschen und die Cesaroschen Mittel.
- 54. Weitere Summationsmethoden.
- 55. Beziehungen zwischen den verschiedenen Summationsmethoden.
- 56. Das Wachstum der Funktion bei Annäherung an die Konvergenzgrenze.

Reihen analytischer Funktionen.

- 57. Eigenschaften der Summen konvergenter Reihen von analytischen Funktionen.
- 58. Der Vitalische Satz.
- 59. Weiteres über Reihen analytischer Funktionen.

Funktionenfamilien.

- 60. Die Taylorkoeffizienten beschränkter Funktionen.
- 61. Jensens Verallgemeinerung des Schwarzschen Lemmas.
- 62. Die Funktionen M(r), $\mu(r)$, $\mathfrak{M}(r)$.
- 63. Schwankungen.
- 64. Schlichte Familien.
- 65. Familien, die schlicht und zugleich beschränkt sind.
- 66. Konvexe Familien.

Arithmetische Eigenschaften analytischer Funktionen.

67. Arithmetische Eigenschaften analytischer Funktionen.

Analytische Funktionen von mehreren komplexen Variabelu.

- 68. Definition des analytischen Charakters einer Funktion.
- 69. Die Konvergenz der Potenzreihen in zwei komplexen Veränderlichen.
- Die singulären Stellen der analytischen Funktionen von zwei komplexen Veränderlichen.
- 71. Meromorphe Funktionen.
- 72. Implizite Funktionen.
- 73. Analytische Abbildungen.

Literatur.

- L. Bianchi, Lezioni sulla teoria delle funzioni di variabile complessa e delle funzioni ellitiche, Pisa 1901.
- L. Bieberbach, Einführung in die konforme Abbildung, Berlin 1915.
- Blumenthal, Principes de la théorie des fonctions entières d'ordre infini, Paris 1910.
- E. Borel, Leçons sur la théorie des fonctions, Paris 1898; 2. Aufl. Paris 1915.
- -, Leçons sur les fonctions entières, Paris 1900.
- -, Leçons sur les séries divergentes, Paris 1901.
- -, Leçons sur les séries à termes positifs, Paris 1902.
- --, Leçons sur les fonctions méromorphes, Paris 1903.
- -, Leçons sur la théorie de la croissance, Paris 1910.
- Leçons sur les fonctions monogènes uniformes d'une variable complexe, Paris 1917.
- P. Boutroux, Leçons sur les fonctions définies par les équations différentielles du premier ordre, Paris 1908.
- H. Burkhardt, Einführung in die Theorie der analytischen Funktionen einer komplexen Veränderlichen, 3. Aufl., Leipzig 1908.
- P. Dienes, Leçons sur les singularités des fonctions analytiques, Paris 1913.
- T. S. Fiske, Functions of a complex variable, New York 1906.
- W. B. Ford, Studies on divergent series and summability, New York 1917.
- A. R. Forsyth, Theory of functions of a complex variable, 3^d ed. Cambridge 1918.
- Lectures introductory to the theory of functions of two complex variables, Cambridge 1914.
- E. Fouet, Leçons élémentaires sur les fonctions analytiques, 2. Aufl., Bd. I (Paris 1907), Bd. II (Paris 1910).
- J. Hadamard, La série de Taylor et son prolongement analytique (Coll. Scientia), Paris 1901.

- G. H. Hardy, Ordres of infinity. The infinitarcalcul of Paul Du Bois Reymond, Cambridge 1910.
- J. Harkness and J. Morley, A treatise on the theory of functions, London 1893.

 —, Introduction to the theory of analytic functions, London 1898.
- G. Kowalewski, Die komplexen Veränderlichen und ihre Funktionen, Leipzig 1911.
- K. Knopp, Funktionentheorie (Sammlung Goeschen), Bd. I, 1. Aufl. Leipzig 1913,
 2. Aufl. Leipzig 1918; Bd. II, 1. Aufl. Leipzig 1913,
 2. Aufl. Leipzig 1920.
- E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin 1916.
- E. Lindelöf, Le calcul des résidus, Paris 1905.
- Th. M. Macrobert, Functions of a complex variable, London 1917.
- P. Montel, Leçons sur les séries de polynomes à une variable complexe, Paris 1910.
- N. Nielsen, Elemente der Funktionentheorie, Leipzig 1911.
- W. F. Osgood, Lehrbuch der Funktionentheorie, Bd. I, 1. Aufl. Leipzig 1907,
 2. Aufl. Leipzig 1912, 3. Aufl. Leipzig 1920.
- -. Topics in the theory of functions of several variables. The Madison Colloquium 1913, New York 1914.
- S. Pincherle, Lezioni sulla teoria delle funzioni, Bologna 1899.
- J. Petersen, Vorlesungen über Funktionstheorie, Kopenhagen 1898.
- S. E. Sawitsch, Theorie der Funktionen einer komplexen Veränderlichen, St. Petersburg 1906.
- O. Stolz und J. A. Gmeiner, Einleitung in die Funktionentheorie, Leipzig 1904.
- G. Vivanti, Theorie der eindeutigen analytischen Funktionen, deutsch von A. Gutzmer, Leipzig 1906.
- G. N. Watson, Complex integration and Cauchys theorem, Cambridge tracts Nro. 15 (1914).
- H. Weyl, Die Idee der Riemannschen Fläche, Leipzig 1913.
- E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction of infinite series and of analytic functions with an account of the principal transcendental functions, Cambridge 1902. 2. Aufl. 1915, 3. Aufl. 1920.
- L. Zoretti, Leçons sur le prolongement analytique, Paris 1911.

Grundlagen der Theorie.

1. Definition des analytischen Charakters einer Funktion. Man hat zwei wesentlich verschiedene Ausgangspunkte für die Definition des analytischen Charakters einer in einem Bereiche der komplexen z-Ebene eindeutig erklärten Funktion zu unterscheiden. An den allgemeinen Dirichletschen Funktionsbegriff knüpft die nach Cauchy und Riemann benannte Erklärung an: Analytisch heißen diejenigen eindeutigen Funktionen, welche an jeder Stelle einen Differential-quotienten besitzen. Im Sinne der von Weierstraβ¹) und Méray vertretenen Auffassung liegt es, den analytischen Charakter durch die Entwickelbarkeit in Potenzreiben zu erklären. Daß beide Definitionen

¹⁾ Bei $Weierstra\beta$ scheint dieser Begriff des analytischen Charakters einer in einem gegebenen Bereiche eindeutig erklärten Funktion nicht vorzukommen.

gleichwertig sind, ist eine bekannte Folge des Cauchyschen Integralsatzes.²) Indem aber sein Beweis zu verschiedenen Zeiten ein mehr oder weniger großes Ausmaß an Voraussetzungen nötig machte, wechselte die Fassung der Cauchy-Riemannschen Definition. So glaubte man bis 1884 (und länger), dazu noch die Stetigkeit des Differential-quotienten voraussetzen zu müssen. Erst Goursat erkannte, daß die Stetigkeit nicht besonders vorausgesetzt werden muß (näheres weiter unten). Daß auch an der so entstehenden Fassung der Definition noch Abstriche gemacht werden können, werden wir weiter unten sehen.

Unserer heutigen an der reellen Funktionentheorie geschulten Auffassung liegt wohl die Cauchy-Riemannsche Definition näher als die Weierstraßsche. Daß Weierstraß dieser gleichwohl den Vorzug gab. hängt wohl mit den folgenden Umständen eng zusammen: Weierstraß war die Cauchy-Riemannsche Definition durchaus geläufig. Hat er sie doch schon 1841^{2,1}), also rund 10 Jahre vor Cauchy und Riemann zum Ausgangspunkt eines Beweises für den Laurentschen Satz genommen, den er also auch zwei Jahre vor Laurents Veröffentlichung besaß. Aber zu einer exakten Begründung der Integration im komplexen Gebiet ist von da noch ein weiter Weg. Die Art, wie Weierstraß in dieser Abhandlung im komplexen Gebiet vorsichtig integriert, läßt deutlich erkennen, daß er sich schon damals über die Schwierigkeiten eines Aufbaues der Integralrechnung im komplexen Gebiet klar gewesen sein muß. Tatsächlich sind dieselben ja auch erst lange nach dieser Zeit, in der sich Weierstraß seine Grundanschauungen bildete, überwunden worden. Ein genauer Begriff des Kurvenintegrals im komplexen Gebiet hätte wohl Weierstraß zur Verfügung stehen können, wenn auch die endgültige Fassung erst die zweite Auflage von Jordans Cours d'analyse (1896) brachte. Hingegen die bis zu Pringsheims Beweis von 1900 (oder Goursats Beweis von 1884) üblichen Beweise des Cauchyschen Integralsatzes mochten wohl einen exakten Denker

²⁾ Man vgl. auch Pringsheims Übersetzung dieser Methode ins "Integrallose". A. Pringsheim, a) Über die Entwicklung eindeutiger analytischer Funktionen in Potenzreihen, Münch. Ber. 1895, p. 75—92; b) Über Vereinfachungen in der elementaren Theorie der analytischen Funktionen, Math. Ann. 47 (1896), p. 121—154; c) Elementare Funktionentheorie und komplexe Integration, Münch. Ber. 1920, p. 145—182. — Falls die Punktmenge, in welcher f(z) betrachtet wird, kein Gebiet ist, so gibt es darin unter Umständen differenzierbare nicht analytische Funktionen, deren Gesamtverlauf gleichwohl durch Angabe der Funktionswerte in gewissen Punktmengen bestimmt ist. Vgl. dazu z. B. E. Borel, Leçons sur les fonctions monogènes uniformes d'une variable, Paris 1917.

^{2,1)} K. Weierstraß, Darstellung einer analytischen Funktion einer komplexen Veränderlichen, deren absoluter Betrag zwischen zwei gegebenen Grenzen liegt, Münster 1841. Zuerst veröffentlicht in: Gesammelte Werke Bd. I, p. 51—66.

nicht zur Nacheiferung locken. Die Frage indessen, ob Weierstraß bei ernstlichem Willen die namentlich, wenn auch nur anscheinend, im Gebiete der analysis situs liegenden Schwierigkeiten hätte überwinden können, scheint mir müßig. Denn die arithmetische Veranlagung trieb Weierstraß ganz von selbst in eine andere Richtung, in der dazu noch die Linie des geringsten Widerstandes lag. Dazu kam der prägnante Charakter, den die Definition des analytischen Gebildes, der analytischen Funktion, der Prozeß der analytischen Fortsetzung (namentlich gegenüber den etwas unbestimmteren Darlegungen Riemanns³)) erhielt. So lag es nahe, die Reihenlehre von vornherein zum Ausgangspunkt zu wählen, weil so der ganze Bau eine große innere Geschlossenheit erhielt.

Für uns Hentige fallen die Hemmungen weg. Der Integralbegriff und die Integralsätze sind in einfachster voll befriedigender Weise begründet. Dazu erscheint ein Aufbau der Infinitesimalrechnung ausgehend von der Riemannschen Definition natürlicher, einfacher und durchsichtiger. Zwar halten auch wir an der Weierstraβischen Definition des analytischen Gebildes fest, doch machen wir geltend, daß es gerade die komplexe Integration ist, die allerorts, auch in der Theorie der analytischen Fortsetzung, die schönsten Ergebnisse und die elegantesten Methoden gezeitigt hat. Wer auf sie verzichtet, beraubt sich eines der zugkräftigsten Hilfsmittel. Darum legen wir unserer Darstellung die Cauchy-Riemannsche Definition zu grunde. Wir können das um so eher tun, als bereits in II C 1 (Pringsheim u. Faber) die für den Weierstraβschen Standpunkt in Betracht kommenden Reihensätze ausführlich dargestellt sind.⁴)

2. Der Fundamentalsatz der Funktionentheorie ist der Cauchysche Integralsatz. Er wird am besten so formuliert:

Eine geschlossene rektifizierbare Kurve $\mathfrak C$ gehöre einem einfach zusammenhängenden Bereiche 5) an, in welchem f(z) eindeutig und von

3) Siehe z. B. Riemanns Gesammelte mathematische Werke, 2. Aufl. (1892). p. 88-89.

5) Darunter wird wie üblich eine Punktmenge verstanden, zu der mit jedem Punkt auch eine gewisse Umgebung desselben gehört, in der je zwei Punkte

⁴⁾ Osgood hat in Selected topics in the general theory of functions, Bull. Am. math. Soc. (2) 5 (1898), p. 59—87 auf einen dritten Ausgangspunkt hingewiesen. Man erkläre als analytisch diejenigen Funktionen, für welche das $\int f(z) dz = 0$ ist immer dann, wenn es über eine geschlossene Kurve eines gegebenen einfach zusammenhängenden Bereiches erstreckt wird. Dann lehrt der Satz von Morera die Übereinstimmung dieser Definition mit der üblichen. Vgl. auch Morera, Sulla definizione di funzione di una variabile complessa, Atti di Torino 37 (1902), p. 99—102.

analytischem Charakter ist. Dann ist

$$\int_{\mathfrak{S}} f(z) dz = 0.$$

Während die älteren Beweise dieses Satzes (II B 1 (Osgood), Nr. 3) die Stetigkeit der Ableitung von f(z) voraussetzen müssen, hat eine auf $Goursat^6$) zurückgehende Beweisanordnung die Möglichkeit gegeben, mit der bloßen Existenz der Ableitung auszukommen, den Satz also in der eben ausgesprochenen Fassung zu beweisen. Eine kaum noch zu überbietende klassische Einfachheit hat der Beweis des Hauptsatzes durch A. $Pringsheim^7$) erhalten 8). Doch erst allmählich, einem bekannten Trägheitsgesetz folgend, verschafft er sich Eingang in die Lehrbücher 9) und in das Bewußtsein der wissenschaftlichen Welt. Man kann den Integralsatz auf Fälle ausdehnen, wo die geschlossene Kurve $\mathfrak C$ nicht dem Inneren, sondern dem Rande des Regularitätsbereiches angehört. Das leistet die Goursatsche Fassung des Beweises. 10) 11) Auf Grund der $Weierstra\beta$ schen Definition der analytischen Funktion hat

einen sie verbindenden Polygonzug besitzen und deren Randpunkte eine zusammenhängende Menge bilden, eine Menge also, die sich nicht in zwei punktfremde abgeschlossene Teilmengen zerlegen läßt.

6) E. Goursat, a) Démonstration du théorème de Cauchy, Acta math. 4 (1884), p. 197-200; b) Sur la définition générale des fonctions analytiques d'après Cauchy, Trans. Am. math. Soc. 1 (1900), p. 14-16.

7) A. Pringsheim, a) Über Goursats Beweis des Cauchyschen Integralsatzes, Trans. Am. math. Soc. 2 (1901), p. 413—421: b) Zur Geschichte des Taylorschen Lehrsatzes, Bibl. math. (3) 1 (1900), (p. 433—479) p. 477—479: c) a. a. O. 8 e).

8) Man vgl. ferner: a) E. H. Moore, A simple proof of the fundamental Cauchy-Goursat theorem, Trans. Am. math. Soc. 1 (1900), p. 499—506; b) L. Heffter, Zur Theorie der reellen Kurvenintegrale, Gött. Nachr. 1902, p. 115—140; c) L. Heffter, Zum Beweis des Cauchy-Goursatschen Integralsatzes, Ebd. 1903, p. 312—316; d) L. Heffter, Über die von einem Integrationsweg von voruherein unabhängige Definition des bestimmten Integrales im zweidimensionalen Gebiet, Ebd. 1904, p. 196—200; e A. Pringsheim, Der Cauchy-Goursatsche Integralsatz und seine Übertragung auf reelle Kurvenintegrale, Münch. Ber. 33 (1903), p. 673—682; f) F. Schottky, Über den geometrischen Begriff der Funktion einer komplexen Veränderlichen, Berlin. Ber. 1915, p. 790—798; g) F. Schottky, Über das Cauchysche Integral, J. f. Math. 146 (1916), p. 234—244.

9) Vgl. z. B. H. Burkhardt, Einführung in die Theorie der analytischen Funktionen einer komplexen Veränderlichen, 3. Auft., Leipzig 1908 oder K. Knopp, Funktionentheorie, Bd. 1, Sammlung Goeschen. Auch Osgood hat für die Darstellung in seinem Lehrbuch Kenntnis von den neueren Beweismethoden genommen.

10) Man vgl. z. B. die Darstellung bei O. Stolz, Grundzüge der Differentialund Integralrechnung II, Leipzig 1896, p. 217 ff.

11) Man vgl. ferner die spezielleren Untersuchungen von A. Pringsheim, Über den Cauchyschen Integralsatz, Münch. Ber. 25 (1895), (p. 39-72) p. 71.

kürzlich *Pringsheim* ^{11a}) den Hauptsatz, den Residuensatz und andere wichtige Sätze abgeleitet. ^{11b})

3. Die Integralformel ist eine bekannte Folgerung aus dem Integralsatz. Sie lautet bekanntlich so: Wenn die geschlossene orientierte Kurve $\mathfrak C$ einem einfachzusammenhängenden Bereiche angehört, in welchem f(z) eindeutig und von analytischem Charakter ist, und wenn sie die Stelle z einmal in positivem Sinne 11c) umschließt, dann gilt die Darstellung $f(z) = \frac{1}{2\pi i} \int_{\mathbb C} \frac{f(\zeta) d\zeta}{\zeta - z}$.

In den meisten Lehrbüchern pflegt die Sache so dargestellt zu werden, als handele es sich um eine unmittelbare Folgerung aus dem Integralsatz. Wenn das richtig sein soll, so muß man zu mindest aber den Integralsatz so allgemein formulieren, wie dies z. B. O. $Stolz^{10}$) getan hat. Denn sonst ist die gewöhnlich herangezogene Hilfskurve gar nicht unter den Kurven enthalten, für die der Integralsatz bewiesen wurde. Denn sie enthält ein doppelt durchlaufenes Stück, liegt somit nicht im *Inneren* eines einfach zusammenhängenden Regularitätsbereiches von f(z). Aber selbst wenn man wie K. $Knopp^9$) durch Einschaltung zweier doppelt durchlaufenen Hilfsgeraden diesen Übelstand, auf den ich ihn aufmerksam machte, vermeidet, so krankt die Beweisanordnung doch noch immer daran, daß die Autoren eine anschauliche Vorstellung, keine begriffliche Fassung, des Umlaufssinnes

eine in B analytische Funktion dar, deren unter Umständen in irgend einem Sinne existierende Randwerte aber mit $\varphi(\xi)$ nicht übereinzustimmen brauchen. Indessen bestehen gewisse Beziehungen, mit welchen sich die folgenden Arbeiten befassen: a) M. Hamburger, Über das Cauchysche Integral, Sitzungsber. Berl. math. Ges. 2 (1903), p. 17—25; b) J. Plemelj, Ein Ergänzungssatz zur Cauchyschen Integraldarstellung analytischer Funktionen, Randwerte betreffend, Monatsh. Math. Phys. 19 (1908), p. 205—210; c) D. Pompéju, Sur les fonctions représentées par des intégrales définies, Ann. sc. d. Ac. d. Porto 5 (1910), p. 214—219 (dazu E. Borel, a. a. O. 138 c), p. 3, Fußnote 1); d) W. Gross, Eine Bemerkung zum Cauchyschen Integral, Monatsh. Math. Phys. 28 (1917), p. 238—242.

¹¹a) A. Pringsheim, Elementare Funktionentheorie und komplexe Integration, Münch. Ber. 1920, p. 145—182. Vgl. auch A. Pringsheim, Zur Theorie der synektischen Funktionen, Münch. Ber. 1896, p. 167—182.

¹¹b) Vgl. auch A. Kncser, Die elementare Theorie der analytischen Funktionen und die komplexe Integration, Münch. Ber. 1920, p. 65-81.

¹¹c) Damit ist gemeint, daß bei Durchlaufung der Kurve im vorgeschriebenen Sinne $\log (\xi - z)$ genau um $2\pi i$ zunimmt.

¹²⁾ Wenn $\varphi(\xi)$ auf der rektifizierbaren Randkurve $\mathfrak C$ von B stetig ist, so stellt bekanntlich das Integral $\frac{1}{2\pi i}\int \frac{\varphi(\xi)}{\xi-z}\,d\xi$

benutzen. Daher liegt es nahe, den Beweis dadurch zu führen, daß man durch $\log (\xi - z)$ den Bereich auf einen schlichten einfach zusammenhängenden Hilfsbereich abbildet, in dem dann die übliche Hilfskurve wieder geschlossen liegt. (Näheres im ersten Band meines demnächst erscheinenden Lehrbuches der Funktionentheorie.) Die Beweisanordnung von Schottky⁸) bietet besondere Vorteile.

4. Erweiterungen. Man kann in mannigfacher Weise die Cauchy-Riemannsche Definition noch erweitern, an den gemachten Annahmen mannigfache Abstriche vornehmen. Immer handelt es sich darum festzustellen, daß Teile der gemachten Annahmen sich aus dem Rest derselben erschließen lassen. Der älteste in diese Richtung zielende Satz ist der Riemannsche über hebbare Unstetigkeiten:

Wenn eine Funktion in der Umgebung einer Stelle eindeutig, analytisch und beschränkt ist, so existiert ein Grenzwert von f(z) bei Annäherung an diese Stelle. Wenn man die Funktion an der kritischen Stelle dadurch erklärt, daß man sie diesem Grenzwert gleichsetzt, so ist die neue Funktion auch an der kritischen Stelle selbst analytisch geworden. 13

Es liegt auf der Hand, daß man auch endlichviele solche kriti sche Stellen, ja unendlichviele zulassen kann. Näheres darüber wird in Nr. 13 bei Besprechung der singulären Stellen gesagt werden.

Man pflegt häufig die vorausgesetzte Differenzierbarkeit durch das Bestehen der Cauchy-Riemannschen Differentialgleichungen auszudrücken. Natürlich folgen diese Differentialgleichungen aus der Differenzierbarkeit von f(z). Aber aus dem Bestehen dieser Differentialgleichungen folgt noch nicht ohne weiteres die Differenzierbarkeit von f(z). Denn die partiellen Ableitungen enthalten nur Grenzübergänge in zwei bestimmten Richtungen, während in der Ableitung f'(z) ein allgemeinerer Grenzübergang steckt. Erst aus der vollständigen Differenzierbarkeit f'(z) von Real- und Imaginärteil folgt die Existenz der Ableitung f'(z). Diese vollständige Differenzierbarkeit folgt z. B. aus der Stetigkeit dieser partiellen Ableitungen als Funktionen der beiden Variabelen f'(z) und f'(z) wir schon aus der Stetigkeit dieser partiellen Ableitungen als Funktionen einer jeden einzelnen der beiden Variabeln folgt, scheint eine noch offene Frage zu sein. In

13 a) D. h.
$$|\varphi(x,y) - (x - x_0) \varphi_x(x_0, y_0) - (y - y_0) \varphi_y(x_0, y_0)| < \varepsilon \{|x - x_0| + |y - y_0|\}$$

für jedes positive a bei genügend kleinen

$$|x - x_0|$$
 und $|y - y_0|$.

¹³⁾ Viele der älteren Beweise sind mißlungen. Neuere siehe unter 45).

¹⁴⁾ L. Heffter, a a. O. 8b), p. 132.

diese Richtung zielt allerdings ein Satz, den $Montel^{15}$) gewonnen hat: Die eindeutige Funktion w=f(z) (w=u+iv, z=x+iy) sei in einem Bereiche B beschränkt. Die vier partiellen Ableitungen u_x , u_y , v_x , v_y sollen überall mit Ausnahme einer Menge vom Maße Null existieren, beschränkt sein und den Cauchy-Riemannschen Differentialgleichungen genügen. Dann ist f(z) von analytischem Charakter. Aus dem Montelschen Satze würde also z. B. folgen, daß f(z) analytisch ist, wenn es in einem Bereiche B eindeutig und stetig erklärt ist, wenn dazu der Differentialquotient f'(z) überall mit Ausnahme einer Menge vom Maße Null existiert und zudem beschränkt ist. 16)

In anderer Richtung liegt ein schönes Ergebnis von H. Bohr¹⁷). Aus der Existenz von $\lim_{z \longrightarrow z_0} \frac{f(z) - f(z_0)}{z - z_0}$

folgt offenbar die Existenz sowohl von

$$\lim_{z \to z_0} \frac{f(z) - f'(z_0)}{z - z_0} \Big\|$$

$$\lim_{z \to z_0} \arg \frac{f(z) - f(z_0)}{z - z_0}.$$

als von

Eine Funktion, für die der erste Grenzwert existiert, möge streckentreu, eine, für die der zweite existiert, möge winkeltreu heißen. H. Bohr hat bemerkt, daß nicht alle streckentreuen Funktionen analytisch oder zu analytischen konjugiert sind. Setzt man aber noch voraus, daß f(z) eine schlichte Abbildung eines Bereiches vermittelt, daß sie eindeutig und streckentreu ist und daß bei der Abbildung der Umlaufssinn erhalten bleibt, dann ist f(z) analytisch. (Vgl. hierzu auch II C 3 (Lichtenstein, Nr. 11.)18)

¹⁵⁾ P. Montel, a) Sur les suites infinies de fonctions, Ann. Éc. Norm. (3) 24 [1907], (p. 233-334) p. 298-334; b) Sur les différentielles totales et les fonctions monogènes, Paris C. R. 156 (1913), p. 1820-1822.

¹⁶⁾ Weitere Untersuchungen in ähnlicher Richtung rühren von verschiedenen Autoren her: a) L. Lichtenstein, α) Sur la définition générale des fonctions analytiques, Paris C. R. 150 (1910), p. 1109—1110; β) Über einige Integrabilitätsbedingungen zweigliedriger Differentialausdrücke mit einer Anwendung auf den Cauchyschen Integralsatz, Sitzber. Berl. math. Ges. 9 (1910), p. 84—100; b) Ch. de la Vallée-Poussin, Réduction des intégrales doubles de Lebesgue. Application à la définition des fonctions analytiques, Ac. r. de Belgique, Bull. de la classe des sc. 1910, Nr. 11, p. 793—798; c) H. Rademacher, Bemerkungen zu den Cauchy-Riemannschen Differentialgleichungen und zum Moreraschen Satz, Math. Ztschr. 4 (1919), p. 177—185.

¹⁷⁾ H. Bohr, Über streckentreue und konforme Abbildung, Math. Ztschr. 1 (1918), p. 403—420. Einen einfacheren Beweis gab H. Rademacher, Über streckentreue und winkeltreue Abbildung, Math. Ztschr. 4 (1919), p. 131—138.

¹⁸⁾ Mit solchen Fragen hat sich schon vorher R. Remak befaßt: Über

5. Begriff der analytischen Funktion. Die Vorstellung oder der Begriff der analytischen Fortsetzung spielte sowohl bei Riemann wie bei Weierstraß eine beherrschende Rolle. Während er aber bei Riemann und seinen Nachfolgern mehr als eine zur Vorstellung der Riemannschen Fläche hinführende nicht ins einzelne ausgeführte Idee auftritt, hat Weierstraß diese Vorstellung mit voller begrifflicher Schärfe durchdrungen. Sie hat ihn zum Begriff der analytischen Funktion geführt, der auch bei Riemann aber mehr in anschaulicher als begrifflicher Klarheit auftritt. Der Ausgangspunkt liegt immer in der Bemerkung, daß zwei in einem Bereiche analytische Funktionen dann durchweg übereinstimmen, wenn dies nur in einer Punktmenge zutrifft, welche einen dem Bereichinneren angehörigen Häufungspunkt besitzt. Daraus ergibt sich nun wieder das Streben, eine in einem Bereiche definierte analytische Funktion wenn möglich auch über diesen Bereich hinaus zu verfolgen. Diesem Bestreben hat Weierstraß eine präzise Fassung gegeben durch seinen Begriff der analytischen Fortsetzung. Wenn eine analytische Funktion in einem Kreise durch ihre Potenzreihenentwicklung gegeben ist, so ist es möglich, daß die Entwicklung derselben Funktion an einer vom Mittelpunkt des Kreises verschiedenen Stelle des Kreises noch in Stellen konvergiert, die dem ersten Kreise nicht mehr angehören. Dann wird durch die neue Entwicklung eine Fortsetzung der gegebenen Funktion erklärt. Jede der Entwicklungen stellt ein Funktionselement dar. Man sagt, das zweite Element gehe aus dem ersten durch unmittelbare analytische Fortsetzung hervor. Den eben beschriebenen Prozeß kann man iterieren. um so immer neue Elemente zu erhalten. Ihre Gesamtheit erschöpft die analytische Funktion. Man überzeugt sich leicht, daß jedes der Elemente alle übrigen bestimmt.

Unter einer analytischen Funktion versteht man also die Gesamtheit der Funktionselemente, die man aus einem derselben durch Iteration des Prozesses der unmittelbaren analytischen Fortsetzung erhalten kann.

Durch eine Erweiterung des Begriffes "Funktionselement" gelangt man von hier zum analytischen Gebilde. Man kann kurz sagen, es gehe aus der analytischen Funktion dadurch hervor, daß man die Stellen rationalen und die Stellen algebraischen Charakters mit in Betracht zieht. Ein solches allgemeines Element erscheint so entweder in einer der Formen $w = \mathfrak{P}(\sqrt[n]{z} - a), \ \mathfrak{P}\left(\sqrt[n]{\frac{1}{z}}\right), \ \text{wo} \ \mathfrak{P}(\sqrt[n]{z})$ eine Potenzreihe in $\sqrt[n]{z}$ (n ganzzahlig) mit endlich vielen negativen Potenzen

winkeltreue und streckentreue Abbildung an einem Punkt und in der Ebene, Rend. di Palermo 38 (1914), p. 193—246.

ist, oder aber in der allgemeineren Gestalt der Parameterdarstellung $w = \mathfrak{P}(t), \quad z = \mathfrak{Q}(t),$

wo jede der beiden Potenzreihen nach ganzen Potenzen von t fortschreitet und nur endlich viele negative Potenzen von t enthält. Durch unmittelbare Fortsetzung eines solchen allgemeineren Elementes erhält man nur polfreie Elemente. Daher bedarf auch der Begriff der analytischen Fortsetzung einer gewissen Erweiterung, wenn man wieder sagen will, daß alle Elemente eines analytischen Gebildes durch analytische Fortsetzung aus einem derselben entstehen. Es reicht nicht aus, diesen Begriff wieder als Iteration des Prozesses der unmittelbaren Fortsetzung zu erklären. Vielmehr gehört ein Element dann und nur dann dem durch ein Element erklärten analytischen Gebilde an, wenn es ein reguläres Element gibt, das aus beiden durch Iteration des Prozesses der unmittelbaren Fortsetzung erhalten werden kann. 19)

6. Riemannsche Mannigfaltigkeiten. Das ist die begrifflich scharfe Fassung einer Vorstellung, die auch die Riemannsche Theorie beherrscht. Namentlich liegt sie der Idee der Riemannschen Fläche zugrunde. Ursprünglich waren diese Gebilde für Riemann weiter nichts als anschauliche Hilfsmittel. Und mehr bedeuteten sie auch zunächst für seine Nachfolger nicht, auch wenn diese wie z. B. Koenigsberger die Idee der Riemannschen Fläche aus dem Weierstraßschen Prozeß der analytischen Fortsetzung heraus entwickelten. Doch wurde damit eine Auffassung vorbereitet, die mit der Zeit mehr und mehr in den Vordergrund gerückt wurde, und die neuerdings durch Weyl19) ihre begrifflich scharfe Fassung erhalten hat. Das ist die Erkenntnis, daß die Einführung der Riemannschen Fläche weiter nichts bedeutet als die Hervorhebung gewisser geometrischer Eigenschaften der analytischen Funktionen. Damit werden die allgemeinen geometrischen Methoden, namentlich die der Topologie für die Funktionentheorie verfügbar. Und das ist ein Umstand, den sich bereits Riemann selbst zunutze gemacht hat, z. B. bei seiner Theorie der algebraischen Funktionen und ihrer Integrale. In mehr und mehr bewußter Weise hat nach ihm Klein das geometrische Moment in den Vordergrund geschoben, freilich wohl auch mit dem Bewußtsein, daß die wirklich begrifflich scharfe Durchführung der anschaulich so bestechenden Gedankengänge mit Notwendigkeit zu erheblichen Schwierigkeiten führen mußte. Aus dieser Wurzel ist eine ganze geometrische Funktionentheorie erwachsen, die sich namentlich an die Lehre von der konformen Abbildung anschließt. Der Umstand endlich, daß man Rie-

¹⁹⁾ Zum Ganzen: H. Weyl, Die Idee der Riemannschen Fläche, 1913.

mannsche Flächen auch losgelöst von ihrer Entstehung aus einer analytischen Funktion betrachten kann, legte die umgekehrte Frage nahe, ob jede Riemannsche Fläche als Riemannsche Fläche einer bestimmten Funktion angesehen werden kann.

Bevor wir den in unseren Zeitraum fallenden Lösungen dieses Hauptproblemes uns zuwenden, müssen wir einen Blick auf die Entwicklung des Begriffes der *Riemanns*chen Fläche selbst werfen.

Schon bei Riemann treten neben den mehrblättrigen Flächen durch Ränderzuordnung geschlossene Flächen auf. Auch der Begriff des funktionentheoretischen Fundamentalbereiches, weist ganz in diese Richtung. Dann kommen, auf eine mündliche Bemerkung Pryms zurückgehend, Kleins frei im Raume gelegene Riemannsche Flächen in Betracht.20) Endlich tritt bei Klein zuerst die allgemeine Vorstellung der Riemannschen Fläche (besser der Riemannschen Mannigfaltigkeit) hervor.20) Aus diesen Elementen hat H. Weyl22) unter Heranziehung der Koenigsbergerschen Erzeugung der Riemannschen Flächen aus dem Weierstraßschen Begriff der analytischen Funktion und des analytischen Gebildes heraus einen einheitlichen Aufbau der Theorie der Riemannschen Flächen geschaffen, dessen strenge Begründung ein oft gefühltes Bedürfnis befriedigt. Man hat also drei Sorten von Riemannschen Gebilden zu unterscheiden: die Riemannschen Felder 23), die Riemannschen Flächen, die Riemannschen Mannigfaltigkeiten. Versteht man unter der Umgebung eines Funktionselementes diejenigen Elemente, die man aus demselben durch unmittelbare analytische Fortsetzung erhalten kann, so überzeugt man sich leicht, daß die Gesamtheit aller Elemente einer ana-

²⁰⁾ F. Klein, a) Über Riemanns Theorie der algebraischen Funktionen und ihrer Integrale, Leipzig 1882; b) Neue Beiträge zur Riemannschen Funktionentheorie, Math. Ann. 21 (1883), p. 141—248; c) Über den Begriff des funktionentheoretischen Fundamentalbereiches, Math. Ann. 40 (1892), p. 130—159. Schon früh hat E. Beltrami analytische Funktionen auf krummen Flächenstücken betrachtet. Er hat so den Kleinschen Standpunkt vorbereitet. Vgl. E. Beltrami, Delle variabili complesse sopra una superficie qualunque, Ann. di mat. (2) 1 (1867/68), p. 329—366.

²¹⁾ P. Koebe, a) Über die Uniformisierung beliebiger analytischer Kurven III, Gött. Nachr. 1908, p. 337—358; b) Abhandlungen zur Theorie der konformen Abbildung III: Der allgemeine Fundamentalsatz der konformen Abbildung nebst einer Anwendung auf die konforme Abbildung der Oberfläche einer körperlichen Ecke, J. f. Math. 147 (1917), p. 67—103.

²²⁾ H. Weyl, a) a. a. O. 19); b) Strenge Begründung der Charakteristikentheorie auf zweiseitigen Flächen, Jahresber. d. Deutsch. Math.-Ver. 25 (1916), p. 265—278.

²³⁾ Die Benennung rührt von R. Fricke her, Die elliptischen Funktionen und ihre Anwendungen, Leipzig 1916, p. 24.

lytischen Funktion eine Fläche ausmachen in dem von H. Weyl präzise festgelegten Sinn. Han muß nur statt Element der Funktion Punkt der Fläche sagen, muß also nur die Benennung ändern und die Umgebung eines Punktes in der eben angegebenen Weise erklären, um aus einer analytischen Funktion die zugehörige Riemannsche Fläche zu erhalten. Unter der Koordinate eines so erklärten Flächenpunktes versteht man das Funktionselement, das dem Punkt entspricht. Durch die Funktion w = f(z) wird die Umgebung eines jeden Flächenpunktes auf ein schlichtes Gebiet der z-Ebene abgebildet. Wegen dieser Beziehung zur analytischen Funktion w = f(z) heißt die Riemannsche Fläche "über der z-Ebene ausgebreitet". Mit Fricke bezeichne ich diese Art von Riemannschen Flächen als Riemannsche Felder.

Durch Hinzunahme der Elemente rationalen und algebraischen Charakters gelangt man vom Riemannschen Felde zur Riemannschen Fläche. In dem damit gegebenen Sinne wollen wir fortan dies Wort gebrauchen. Auch sie erscheint über der z-Ebene ausgebreitet. Da aber bei der Darstellung der Elemente durch z gebrochene Potenzen auftreten, erscheint es zweckmäßig, Parameterdarstellungen der Elemente einzuführen: Durch die gewöhnlichen Potenzreihen z=z(t)und w = w(t) wird ein Funktionselement definiert, wenn diese Reihen nur endlich viele negative Potenzen enthalten, und einen Konvergenzkreis von nicht verschwindendem Radius gemeinsam haben. Natürlich liefern alle Reihenpaare, die auseinander durch umkehrbar eindeutige umkehrbar analytische Parametertransformation hervorgehen, dasselbe Element. Elemente werden fortgesetzt, indem man die Reihenpaare einer geeignet gewählten Parameterdarstellung fortsetzt.24a) Die Gesamtheit der so erhaltenen Elemente macht wieder das analytische Gebilde aus. Sagt man wieder statt "Element der Funktion" "Punkt der Riemannschen Mannigfaltigkeit" und erklärt die Umgebung eines Punktes durch die durch unmittelbare Fortsetzung aus dem entsprechenden Elemente hervorgehenden Elemente, so erhält man den Begriff der Riemannschen Mannigfaltigkeit, bei der also wegen der Parameterdarstellung keine unmittelbare Beziehung auf eine z-Ebene vorhanden ist. Die Umgebung eines jeden Punktes derselben erscheint also durch das zugehörige Element auf ein schlichtes Stück der t-Ebene abgebildet. Daher nennt man t einen lokalen uniformisierenden Parameter oder kurz Ortsparameter der Mannigfaltigkeit. Eine jede so erhaltene Mannigfaltigkeit kann nach Weyl19) trianguliert werden; d. h. man kann die ganze Mannigfaltigkeit in dreieckige Elemente zerlegen, die keine

²⁴⁾ H. Weyl, a. a. O. 19), dazu eine Berichtigung, Math. Ann. 77 (1916), p. 349. 24 a) Vgl. die Bemerkung am Ende der Nr. 5 dieses Aufsatzes.

inneren Punkte gemein haben. Wir sahen nämlich gerade, daß jedes Element bei bestimmt gewählter Parameterdarstellung die schlichte Abbildung eines bestimmten Stückes der Mannigfaltigkeit auf einen Bereich der Parameterebene liefert. Man kann nun abzählbar viele solche Elemente in geeigneter Parameterdarstellung auswählen, die in ihrer Gesamtheit schlichte Abbildungen der ganzen Mannigfaltigkeit liefern. Man kann es so einrichten, daß jedem Element ein schlichtes Dreieck der Parameterebene entspricht. Die Seitenpaare der verschiedenen Dreiecke erscheinen durch umkehrbar eindeutige analytische Abbildung einander zugeordnet. An diese Betrachtung schließt sich die Koebesche 21) Formulierung des Begriffes der Riemannschen Mannigfaltigkeit an.

Die Ortsparameter dienen auch zur Erklärung des Begriffes einer auf der Fläche oder auf der Mannigfaltigkeit analytischen Funktion. Wenn eine Funktion in der Umgebung einer Stelle der Mannigfaltigkeit erklärt ist, so heißt sie dort von analytischem Charakter, wenn sie als analytische Funktion eines zur Stelle gehörigen Ortsparameters aufgefaßt werden kann.

So gibt also jede analytische Funktion Anlaß zur Einführung der eben betrachteten zweidimensionalen geometrischen Gebilde. Man kann aber nun von vornherein derartige zweidimensionale Mannigfaltigkeiten betrachten, losgelöst von ihrer Beziehung auf bestimmte analytische Funktionen, aus welchen sie entstanden waren. Nur muß für jeden Punkt der Fläche festgelegt sein, was man unter einer in seiner Umgebung auf der Fläche analytischen Funktion verstehen soll. Die allgemeinste Fassung erhält diese Vorstellung in dem Begriff der Riemannschen Mannigfaltigkeit, den im wesentlichen Klein²⁰) entdeckt Man kann mit Koele²¹) so erklären: Man denke sich in der komplexen t-Ebene eine abzählbare Menge von schlichten Dreiecken, welche durch je drei noch in den Ecken analytische Kurven begrenzt sind. Die Ränder derselben sollen paarweise durch umkehrbar eindeutige analytische Abbildungen einander zugeordnet sein. Durch diese Zuordnungen schließen sich die dreieckigen Elemente zu einer zusammenhängenden zweidimensionalen Mannigfaltigkeit, der Riemannschen Mannigfaltigkeit zusammen. Man erkennt, wie alle bisher betrachteten Mannigfaltigkeiten als spezielle Fälle in dieser Vorstellung enthalten sind. Man kann aber auch den Begriff der Riemannschen Mannigfaltigkeit auf kreisförmige Weierstraßsche Elemente aufbauen, statt ihn wie Koebe von dreieckigen Elementen ausgehend zu erklären. Man hat dann etwa so zu verfahren: In der komplexen z-Ebene sei eine abzählbare Menge schlichter oder endlichvielblättriger Kreisscheiben gegeben. Zwischen denselben wird durch gewisse umkehrbar eindeutige analytische Abbildungen ein Zusammenhang hergestellt. Wenn so zwei Elemente verbunden erscheinen, so geschieht es auf folgende Weise. Von jedem der beiden Elemente ist durch eine zwei seiner Randpunkte verbindende analytische Kurve ein sichelförmiges Gebiet abgegrenzt. Durch umkehrbar eindeutige analytische Abbildung sind diese sichelförmigen Stücke paarweise aufeinander bezogen. Doch muß für diese Zuordnungen noch die Gruppeneigenschaft bestehen: Wenn zwei einem Element zugehörige Sicheln ein Stück gemeinsam haben, das also durch zwei Abbildungen auf zwei verschiedene andere Elemente bezogen ist, so sollen diese beiden Elemente in Sicheln aufeinander bezogen sein, welchen die Bilder jenes gemeinsamen Stückes angehören. Es bedarf kaum der Erwähnung, daß zwecks Berücksichtigung des Unendlichfernen auch das Äußere gewisser Kreise herangezogen werden muß.

Diese Begriffsbildung führt mit Notwendigkeit zu dem Grundproblem der Riemannschen Funktionentheorie hin, nämlich zu der Frage, ob jede so zu bildende Riemannsche Mannigfaltigkeit als Riemannsche Mannigfaltigkeit einer analytischen Funktion aufgefaßt werden kann, oder ob diejenigen Riemannschen Mannigfaltigkeiten, für welche das zutrifft, etwa noch besonderen Bedingungen genügen müssen. Daß dies nicht so ist, daß vielmehr jede Riemannsche Mannigfaltigkeit als Riemannsche Mannigfaltigkeit analytischer Funktionen aufgefaßt werden kann, ist ein Satz, den Klein als erster aussprach, den aber erst Koebe²¹) in voller Allgemeinheit zu beweisen vermochte. Bald darauf hat auch L. Bieberbach²⁵) einen Beweis des Satzes geliefert, dessen prinzipieller Fortschritt gegenüber dem Koebeschen darin besteht, daß er unter Vermeidung aller topologischen Hilfsmittel vollständig im Rahmen der Weierstraßschen Theorie geführt wird.

Man wird bemerken, daß durch diese Begriffsbildungen und Gedankengänge sich eine Einordnung der Riemannschen Ideen in die Weierstraßsche Theorie anbahnt. Zu Weierstraß Zeiten mußte allerdings ein Aufbau der Theorie auf so vagen Ideen fast als wissenschaftlich ungenügend erscheinen und ich möchte aus mancher Andeutung schließen, daß Weierstraß sogar von noch schärferer Auffassung nicht zu weit entfernt war. Indessen muß man zugeben, daß ihr wie allem, wofür sich Riemann und sein Nachfolger Klein einsetzten, ein Zug ins Große anhaftet. Und es ist in der Tat eine Erkenntnis von großer prinzipieller Bedeutung, daß gewisse funktionentheoretische Wahrheiten als Spezialfälle allgemeinerer geometrischer

²⁵⁾ L. Bieberbach, Über die Einordnung des Hauptsatzes der Uniformisierung in die Weierstraβische Funktionentheorie, Math. Ann. 78, (p. 312-334) p. 314.

Wahrheiten aufgefaßt werden können. Aber daraus möchte ich doch nicht den Schluß ziehen, daß es einzig richtig ist, derartige Sätze wie z. B. die über das Geschlecht mit rein geometrischen Methoden zu beweisen. Vielmehr sehe ich eine wichtige Aufgabe der Weiterentwicklung der Theorie und der weiteren Verschmelzung Riemann-Kleinschen Schwunges mit Weierstraßscher Herbe darin, auch Geschlechtssätze, überhaupt alles, was heute noch topologisches Denken oder gar topologische "Anschauung" zu erfordern scheint, den Methoden der Analysis zugänglich zu machen. Das ist eine Aufgabe, die bisher erst zu einem Teil in der Theorie der Uniformisierung 25) gelöst ist. Auf diesem Wege ist dann wohl auch ein einfacherer Aufbau der Theorie zu erhoffen — ühnlich wie in der Theorie der elliptischen Funktionen — einfacher als er in der Weylschen geometrischen Theorie bisher vorliegt.

Man wird weiter bemerken, daß durch die Parallelisierung der Begriffe "Riemannsche Fläche" und "analytische Funktion" das Riemannsche Hauptproblem auch ein für die Weierstraßsche Auffassung durchaus verständliches und wichtiges wird. Aber für die Riemannsche Auffassung spielt doch dieses Problem eine viel größere Rolle. Es liegt ja im Zuge der Riemannschen Theorie, eine Funktion zunächst einmal durch ihren Gesamtverlauf, ihren Verzweigungscharakter, ihre singulären Stellen zu definieren und dann erst nach der speziellen Werteverteilung zu fragen, die mit solchen Bedingungen verträglich ist. Nach wie vor aber bleibt es Grundproblem der Weierstraßschen Theorie, eine Funktion. die durch ein erstes Element gegeben ist, in ihren Schicksalen zu verfolgen, also Methoden zu entwickeln, welche es erlauben, aus den Koeffizienten des ersten Elementes auf den Gesamtverlauf zu schließen. Während nun die Riemannsche Theorie kaum irgendwo so weit gediehen ist, die Frage zu beantworten, welche Koeffizienteneigenschaften das erste Element haben muß, wenn die Riemannsche Fläche der zugehörigen Funktion diese oder jene Eigenschaft haben soll, so ist die Weierstraßsche Theorie wenigstens in einigen Fällen dazu gediehen, das Problem der Fortsetzung eines Elementes restlos zu lösen, so daß man manchmal aus den Koeffizienteneigenschaften auf die Struktur der Riemannschen Fläche oder auf die Lage der Singularitäten schließen kann. Weit ist man dagegen in der näheren Untersuchung eines einzelnen Zweiges gediehen. Die Riemannsche Theorie hinwieder hat in der Lösung des Uniformisierungsproblems schöne Triumphe gefeiert, ferner in der Theorie der algebraischen Funktionen den Wettbewerb mit anderen Theorien ausgehalten und sich in der Lehre von den automorphen Funktionen bewährt. Schon diese Beispiele zeigen, daß die Riemannschen Fragestellungen sämtlich auch für die Weierstraßsche Theorie wichtig sind, während die Weierstraßschen vielleicht einem Anhänger der Riemannschen Theorie minder wichtig erscheinen mögen. Aber wie dem auch sei, die Gegensätze schwinden immer mehr und die Funktionentheorie ist auf dem besten Wege ein einheitlicher Bau zu werden. Hält es doch bei vielen Fragen heute schon schwer, zu entscheiden, ob das nun Fragen der Riemannschen oder der Weierstraßschen Theorie sind. Darum soll auch in diesem Berichte weiter nicht mehr geschieden werden.

7. Uniformisierung. Das Problem der Uniformisierung ist das der eindeutigen Parameterdarstellung der analytischen Funktionen. Wenn also w = f(z) eine analytische Funktion ist, so sollen zwei eindeutige Funktionen z(t) und w(t) derart gefunden werden, daß für alle t:w(t)= f(z(t)) ist und daß man durch Elimination von t aus den Elementenpaaren rationalen Charakters der beiden Funktionen z(t) und w(t) alle Elemente algebraischen Charakters der Funktion f(z) erhält. Wie aus dem Artikel II B 4 (Fricke, Nr. 36) näher zu ersehen ist, hat zunächst Klein im algebraischen Fall die Überzeugung von der Lösbarkeit dieses Problems gewonnen und hat auch die ersten Beweisansätze geliefert. Daß das Problem auch für allgemeinere analytische Funktionen mindestens eine Lösung besitzt, hat Poincaré²⁶) im Jahre 1883 zunächst für den Spezialfall gezeigt, wo die Funktion w = f(z) drei Werte ausläßt. Der Beweis des allgemeinen Satzes gelang erst im Jahre 1907 ungefähr gleichzeitig Poincaré²⁷) und Koebe²⁸). Wir brauchen hier nur in großen Zügen auf diese Dinge einzugehen, weil in dem schon erwähnten Artikel über automorphe Funktionen und in dem Artikel II C 3 (Lichtenstein) über konforme Abbildung ganz ausführlich darüber gehandelt ist.

Der ursprüngliche Poincarésche Ansatz, der auf eine mündliche durch Klein am 14. Mai 1882 brieflich an Poincaré übermittelte Äußerung von H. A. Schwarz zurückgeht, zerlegt das Problem in zwei Teile, einen topologischen und einen funktionentheoretischen. Im topologischen Teil wird die Riemannsche Fläche der Uniformisierungstranszendenten als Überlagerungsfläche aus der Riemannschen Fläche von w = f(z) aufgebaut, d. h. es wird diejenige Riemannsche

²⁶⁾ H. Poincaré, Sur un théorème de la théorie générale des fonctions, S. M. F. Bull. 11 (1883), p. 112—125. Auch den algebraischen Stigmatafall behandelt Poincaré als erster.

²⁷⁾ H. Poincaré, Sur l'uniformisation des fonctions analytiques, Acta. math. 31 (1907), p. 1-64.

²⁸⁾ P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. 1907, p. 197-210.

Fläche konstruiert, auf welcher alle relativ zur Riemannschen Fläche von w=f(z) unverzweigten Funktionen eindeutige Funktionen des Ortes sind. Diese Fläche erweist sich als einfachzusammenhängend. Und damit ist das Problem der Uniformisierung auf die Frage zurückgeführt, ob eine solche unendlichvielblättrige einfachzusammenhängende Fläche, ähnlich wie dies seit Riemann für die schlichten Bereiche allgemein bekannt war, auf die Fläche eines Kreises umkehrbar eindeutig konform abgebildet werden könne.

Dieser Ansatz birgt eine Menge von Worten und anschaulichen Vorstellungen, die erst nach 1907 ihre volle begriffliche Klärung gefunden haben.

Zunächst die Überlagerungsfläche. Eine Riemannsche Fläche heißt Überlagerungsfläche einer gegebenen, wenn jede auf der gegebenen eindeutige Funktion auch auf der neuen Fläche eindeutig ist. Solcher Flächen gibt es natürlich eine reiche Menge. Unter allen diesen hebt der Schwarzsche Ansatz eine als besonders wichtig hervor; das ist die, auf welcher nicht nur alle auf der gegebenen Fläche schon im ganzen eindeutigen Funktionen, sondern auch alle die eindeutig sind, welche nur in der Umgebung einer jeden Stelle der gegebenen Fläche eindeutig sind. Auch sie sind auf der Überlagerungsfläche jetzt eindeutige Funktionen des Ortes. Man kann das auch so ausdrücken: Die Umgebung einer jeden Stelle der Riemannschen Fläche von w = f(z) kann auf ein schlichtes Flächenstück abgebildet werden. t = t(z) sei eine Funktion, die das leistet. Man nennt dann t einen lokalen uniformisierenden Parameter. Setzt man t=t(z) über die Riemannsche Fläche von w = f(z) fort, so wird im allgemeinen nicht die Umgebung einer jeden Stelle durch t = t(z) schlicht abgebildet werden, ja im allgemeinen kann man t(z) gar nicht über die ganze Fläche analytisch fortsetzen. Der Uniformisierungssatz aber behauptet, daß es Funktionen t(z) gibt, welche diese Eigenschaften besitzen. t(z) muß dann also eine schlichte Abbildung der ganzen Riemannschen Fläche von f(z) liefern. Schon das Beispiel des elliptischen Integrals erster Gattung zeigt aber, daß diese Abbildung im allgemeinen nicht umkehrbar eindeutig sein kann, wie bei den Flächen der unikursalen Kurven. t(z) ist daher eine auf der Fläche mehrdeutige, wenn auch in der Umgebung einer jeden Stelle eindeutige Funktion, deren Riemannsche Fläche also eine Überlagerungsfläche der gegebenen sein muß. Es war ein glücklicher Gedanke, unter allen möglicherweise in Betracht kommenden Überlagerungsflächen eine zu suchen, auf der alle relativ zur Fläche von w = f(z) unverzweigten Funktionen eindeutig sind. Denn auf ihr ist jedenfalls auch eine jede Uniformisierungsfunktion eindeutig. Man kommt damit nämlich um ein näheres Eingehen auf den möglichen Gesamtverlauf der Uniformisierungsfunktion herum. Allerdings ist es dann wieder ein besonderer Glücksfall, daß die so gefundene Fläche wirklich auf einen schlichten Bereich konform abgebildet werden kann. Aber die Erkenntnis, daß die so gefundene Fläche einfach zusammenhängend sei, konnte hier den Glauben an den Erfolg stärken.

Die Konstruktion der Fläche, die begriffliche Fassung der Vorstellung "einfach zusammenhängend", sind allerdings wieder Probleme für sich, die erhebliche Schwierigkeiten boten. $Koebe^{29}$) und seine Vorgänger gehen z. B. stets von der fertigen Fläche von f(z) aus, zerschneiden dieselbe und bauen dann aus der zerschnittenen Fläche die Überlagerungsfläche auf. Wesentlich einfacher ist die Erklärung und Konstruktion, welche H. $Weyl^{30}$) gibt. Direkt aus dem Begriff der monogenen analytischen Funktion heraus hat $Bieberbach^{25}$) die Überlagerungsfläche konstruiert.

Die Überlagerungsfläche ist einfach zusammenhängend: Diese Vorstellung ist erst durch H. $Weyl^{31}$) begrifflich gefaßt worden. Der Begriff wird dort losgelöst von den funktionentheoretischen Eigenschaften hingestellt. Man kann ihn auch — und das erscheint mir zweckentsprechender — im Anschluß an die Abbildung der Fläche entwickeln. Dann heißt eine Fläche einfach zusammenhängend, wenn sie auf einen schlichten einfach zusammenhängenden Bereich konform abbildbar ist. 32)

Bei der Abbildung der Überlagerungsfläche auf die schlichte Fläche eines Kreises können mehrere Fälle eintreten. Es kann die Vollebene herauskommen. Dann muß aber schon die ursprüngliche Fläche geschlossen und vom Geschlecht Null sein. Sie fällt dann mit allen ihren Überlagerungsflächen zusammen. Oder aber es kommt ein Kreis mit unendlichem Radius heraus, also etwa die Vollebene mit Ausschluß des unendlich fernen Punktes. Dahin gehören als wichtiger Fall z. B. die algebraischen Kurven vom Geschlechte Eins und auch gewisse transzendente unikursale Kurven. Schließlich kann ein Kreis von endlichem Radius zum Vorschein kommen. Bei der Abbildung der Überlagerungsfläche kommen also noch Fallunterscheidungen herein und das war gerade die Schwierigkeit, die *Poincaré* 1883 noch nicht überwinden konnte. Die Methoden von *Poincaré* und *Koebe* benutzen reichlich Sätze und

²⁹⁾ P. Koebe, a) Über die Uniformisierung der algebraischen Kurven I, Math. Ann. 67 (1909), p. 145-244; b) Über die Uniformisierung beliebiger analytischer Kurven II. Die zentralen Uniformisierungsprobleme, J. f. Math. 139 (1911), p. 251-292.

³⁰⁾ A. a. O. 19), p. 50 u. 51.

³¹⁾ A, a. O. 19), p 47.

³²⁾ Diese Fassung bei Bieberbach a. a. O. 25).

Hilfsmittel der Potentialtheorie. Einen ersten Schritt zur Vermeidung derselben macht *Plemelj*³³). Ganz beseitigt erscheinen sie zuerst bei *Koebe*³⁴) auf Kosten einer verstärkten Inanspruchnahme topologischer Hilfsmittel, und bei *Bieberbach*²⁵), der den Beweis mit den Mitteln der Funktionentheorie allein führt.

Den auf den *Poincaré*schen Ansatz aufgebauten Methoden reihen sich noch einige andere Verfahrungsweisen an. Die älteste ist die gleichfalls von H. A. Schwarz^{34,1}) ersonnene Methode des Linienelementes, die auf eine Randwertaufgabe der Differentialgleichung $\Delta u = e^u$ hinausläuft. Neben den älteren Arbeiten von *Picard* und *Poincaré* sind hier neuerdings $Bieberbach^{35}$) und $Lichtenslein^{36}$) zu nennen. (Vgl. auch H B 4, Fricke.)

Eine weitere ist die älteste von *Klein* ersonnene, von *Klein* und *Poincaré* verwendete, von *Koebe* ausgebildete Kontinuitätsmethode³⁷); das Schmiegungsverfahren³⁸) reiht sich an. Während aber diese drei

33) J. Plemelj, Die Grenzkreisuniformisierung analytischer Gebilde, Monatsh.

Math. Phys. 23 (1912), p. 297-304.

34) P. Koebe, a) Über die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. 1908, p. 337—358; b) Zur Theorie der konformen Abbildung und Uniformisierung, Leipzig. Ber. 66 (1914), p. 67—75. Vgl. auch Note 36) und 37).

34,1) Gött. Nachr. 1889, p. 560-561. 35) L. Bieberback, a) $\Delta u = e^u$ und die automorphen Funktionen, Gött. Nachr. 1912, p. 599-602; b) $\Delta u = e^u$ und die automorphen Funktionen, Math. Ann. 77 (1916), p. 173-212.

36) L. Lichtenstein, a) Intégration de l'équation $\Delta u = ke^u$ sur une surface fermée, C. R. 157 (1913), p. 1508—1511; b) Integration der Differentialgleichung $\Delta_2 u = ke^u$ auf geschlossenen Flächen, Acta math. 40 (1915), p. 1—34; c) Die Methode des Bogenelementes in der Theorie der Uniformisierungstranszendenten mit Grenz- oder Hauptkreis, Gött. Nachr. 1917, p. 141—148; d) Bemerkung zu der Note: Die Methode des Bogenelementes in der Theorie der Uniformisierungstranszendenten mit Grenz- oder Hauptkreis, Gött. Nachr. 1917, p. 426. Vgl. ferner P. Koebe ³⁷⁴).

37) P. Koche, a) Begründung der Kontinuitätsmethode im Gebiete der konformen Abbildung und Uniformisierung (Voranzeige), Gött. Nachr. 1912, p. 879—886; b) Dass. zweite Mitteilung, Gött. Nachr. 1916, p. 266—269; c) Zur Begründung der Kontinuitätsmethode, Leipzig. Ber. 64 (1912), p. 59—62; d) Über die Uniformisierung der algebraischen Kurven IV, Math. Ann. 75 (1914), p. 42—129.

38) P. Koebe, Über eine neue Methode der konformen Abbildung und Uniformisierung, Gött Nachr. 1912, p. 844-848.

Weiter vgl. man die folgenden Arbeiten, welche alle mehr oder weniger spezielle Fragen mit besonderen Methoden behandeln: S. Johannson, a) Über die Uniformisierung Riemannscher Flächen mit endlicher Anzahl Windungspunkte, Acta Soc. sc. Fennicae 33 (1905), Nr. 7; b) Ein Satz über die konforme Abbildung einfach zusammenhängender Riemannscher Flächen auf den Einheitskreis, Math. Ann. 62 (1906), p. 177—183; c) Beweis der Existenz linearer polymorpher Funktionen vom Grenzkreistypus auf Riemannschen Flächen, Math. Ann. 62 (1906),

letztgenannten Verfahren auf den Fall der algebraischen Funktionen zugeschnitten sind, ist die *Hilbert*sche Methode des *Dirichlet*schen Prinzips für die Uniformisierung der allgemeinen analytischen Funktionen

geeignet 39).

Letzthin hat Bieberbach ²⁵) eine neue Methode entwickelt, die man etwa als Methode der sukzessiven Uniformisierung bezeichnen könnte. Bieberbach knüpft an den Weierstraβschen Aufbau der analytischen Funktion an, und konstruiert die uniformisierende Funktion als Grenzfunktion von lokalen uniformisierenden Parametern, die ihre uniformisierende Kraft sukzessive über immer mehr durch die Fortsetzung aneinandergereihte Funktionselemente erstrecken. Jeder Anfügung eines neuen Elementes der zu uniformisierenden Funktion folgt eine Änderung des uniformisierenden Parameters auf dem Fuß, derart daß der neue Parameter eine eindeutige Darstellung aller bis dahin aneinandergereihten Elemente liefert.

Der so behandelte Satz wird am besten als Hauptsatz der Uniformisierung bezeichnet. Er beweist die Möglichkeit der Uniformisierung mit dem Zusatz, daß die Aufgabe so gelöst werden kann, daß gleichzeitig alle auf dem Gebilde w=f(z) unverzweigten Funktionen mituniformisiert werden und daß dabei die uniformisierende Funktion selbst zu diesen unverzweigten Funktionen gehört. Diese Aufgabe kann, abgesehen von umkehrbar eindeutigen Substitutionen des Parameters, nur auf eine Weise gelöst werden. Diese Unität ist dabei wesentlich durch die auf die uniformisierende Kraft sich beziehende Bedingung gewährleistet. Läßt man diese fallen, so sind noch eine große Zahl anderer Lösungen möglich, Lösungen, bei welchen die uniformisierende p. 184–193; d) Zur Theorie der Uniformisierung Riemannscher Flächen, Acta Soc. Fennicae 40 (1910), Nr. 2.

P. Koebe, a) Über die Uniformisierung reeller algebraischer Kurven, Gött. Nachr. 1907, p. 177—190; b) Zur Uniformisierung der algebraischen Kurven, Gött Nachr. 1907, p. 410—414; c) Über die Uniformisierung beliebiger analytischer Kurven II, Gött. Nachr. 1907, p. 633—669.

39) a) D. Hilbert, Zur Theorie der konformen Abbildung, Gött. Nachr. 1909, p. 314-323; b) P. Kocbe, Über die Uniformisierung beliebiger analytischer Kurven, Gött. Nachr. 1909, p. 324-361; c) P. Koebe, Über die Hilbertsche Uniformisierungsmethode, Gött. Nachr. 1910, p. 59-74; d) P. Koebe, Über die Uniformisierung beliebiger analytischer Kurven I. Das allgemeine Uniformisierungsprinzip, J. f. Math. 138 (1910), p. 192-353; e) R. Courant, Über die Anwendung des Dirichletschen Prinzips auf die Probleme der konformen Abbildung, Diss. Göttingen 1910; f) R. Courant, Zur Begründung des Dirichletschen Prinzips, Gött. Nachr. 1910, p. 154-160; g) R. Courant, Über die Methode des Dirichletschen Prinzips, Math. Ann. 72 (1912), p. 512-550; h) H. Weyl, a. a. O. 19), p. 78 ff.; i) R. Courant, Über die Existenztheoreme der Potential- und Funktionentheorie, J. f. Math. 144 (1914), p. 190-211.

Funktion durch ihre (größere oder kleinere) uniformisierende Kraft festgelegt werden kann, und noch allgemeinere Lösungen, bei welchen auch dies nicht möglich ist. Die Frage nach der Aufzählung aller möglichen Uniformisierungen ist kaum in Angriff genommen. Die wichtigsten sind zweifellos die schon von F. Klein⁴⁰) formulierten Lösungen. Dahin gehören die Funktionen, welche dadurch charakterisiert sind, daß alle in gegebener Weise relativ zu w = f(z) verzweigten Funktionen und nur diese eindeutig werden, daß also die uniformisierende Funktion selbst zu der zu uniformisierenden Funktionsklasse gehört. Zu seiner Lösung stehen fast alle vorhin aufgezählten Methoden zur Verfügung. Wegen der weiteren von Klein formulierten Probleme sei auf Artikel II B 4 (Fricke) verwiesen. Bieberbach 41) hat bei zwei Gelegenheiten Beispiele gegeben, die zeigen, daß mit diesen Kleinschen Problemen lange nicht alle Uniformisierungsprobleme erschöpft sind. Koebe 42) hat aber durch sein allgemeines Uniformisierungsprinzip gezeigt, daß die volle Aufzählung im Grunde ein topologisches Problem ist: die Aufzählung aller derjenigen Überlagerungsflächen, welche eine schlichte konforme Abbildung zulassen. Man kann sehr wohl dies topologische Problem als rein gruppentheoretisches Problem formulieren. Bei der Aufzählung aller relativ zu w = f(z) unverzweigten Uniformisierungsfunktionen läuft es darauf hinaus, diejenigen Untergruppen der zu w = f(z)gehörigen Grenzkreisgruppe anzugeben, deren Fundamentalbereich eine Ränderzuordnung aufweist, die durch schlichte Abbildung vollzogen werden kann.

8. Begriff der singulären Stelle. Den Begriff des singulären Punktes einer analytischen Funktion haben nicht alle Verfasser unserer Epoche mit der wünschenswerten Klarheit erfaßt. Ich halte einzig und allein die folgende Definition für richtig: Wenn die Glieder einer Kette von regulären Elementen $\mathfrak{P}(z-a)$ der Funktion w=f(z) durch unmittelbare Fortsetzung auseinander hervorgehen, derart daß ihre Mittelpunkte einen einzigen Häufungspunkt haben, und ihre Konvergenzradien 42,1) gegen Null konvergieren,

⁴⁰⁾ F. Klein, Neue Beiträge zur Riemannschen Funktionentheorie, Math. Ann. 21 (1883), p. 141-218.

⁴¹⁾ L. Bieberbach, a) Zur Theorie der automorphen Funktionen, Diss. Göttingen 1910; b) a. a. O. 25).

⁴²⁾ P. Koebe, a) Über ein allgemeines Uniformisierungsprinzip, Atti del IV congresso internaz. dei mat. vol II. Roma 1909, p. 25-30; b) Sur un principe général d'uniformisation, Paris C. R. 148 (1909), p. 824-828; c) a. a. O. 39 d). Vgl. auch J. Kaufmann, Zur Theorie der konformen Abbildung, Diss. Basel 1917.

^{42,1)} Diese sind auf der Kugel zu messen. Ich verstehe darunter den auf der Kugel gemessenen Abstand des Entwicklungsmittelpunktes vom Rand des Konvergenzkreises.

so definiert diese Kette eine singuläre Stelle. Die z-Koordinate des Häufungsminktes ist ihre z-Koordinate. Man sagt auch, sie liege über der betreffenden Stelle der z-Ebene. Die sie bestimmende Kette nennen wir Elementkoordinate der singulären Stelle. Wann zwei nicht identische Ketten denselben singulären Punkt festlegen, wird hernach erklärt werden. Verbindet man die Mittelpunkte je zweier aufeinanderfolgender Kreise der Kette durch einen Jordanschen Kurvenbogen, der den von beiden Kreisen gebildeten Bereich nicht verläßt, so macht die Gesamtheit dieser Kurvenbogen eine einzige Kurve aus. Man sagt, die Fortsetzung erfolge längs dieser Kurve oder, diese Kurve führe zu dem singulären Punkt hin. Diese Erklärung der singulären Punkte zeigt, daß sie als uneigentliche oder ideale Elemente oder uneigentliche ideale Punkte der Riemannschen Fläche aufzufassen sind. Man gelangt nämlich zu den eigentlichen, den regulären Stellen, durch Ketten, deren Elementmittelpunkte sich auch in einer einzigen Stelle häufen, deren Konvergenzradien aber nicht gegen Null, sondern gegen einen anderen Grenzwert streben. Daß man jede solche reguläre Kette - im Sinne der gleich zu erörternden Gleichheitsdefinition — durch eine endliche ersetzen kann, ändert nichts an der Tatsache, daß es eben solche unendliche Ketten gibt.

Ist z. B. eine eindeutige Funktion vorgelegt, so sind nach dieser Definition nicht alle Grenzpunkte des Definitionsbereiches also im allgemeinen auch nicht alle Häufungspunkte der singulären Punkte selbst singuläre Punkte, sondern nur die durch Jordankurven erreichbaren Grenzpunkte treten als Koordinaten der singulären Punkte auf. Man hat also scharf zwischen Grenzpunkten des Definitionsbereiches, singulären Punkten und Koordinaten von singulären Punkten zu unterscheiden. Trotzdem gibt es Darstellungen⁴³), die mehr oder weniger klar die hier gegebene Erklärung zugrunde legen, in einem Atem aber erklären, die Menge der singulären Punkte sei abgeschlossen.

Aber von solchen Inkonsequenzen ganz abgesehen, ist eine Definition, welche die singulären Punkte einer eindeutigen Funktion mit den Grenzpunkten des Existenzbereiches identifizieren wollte, aus vielen Gründen höchst unzweckmäßig.

1. Sie entspricht wenig dem Geist der Weierstraβschen^{43a}) Erklärung der analytischen Funktion, weil sie nicht an den Begriff der analytischen Fortsetzung anknüpft. Während aber Ketten von Funktionselementen,

⁴³⁾ So L. Zoretti, Leçons sur le prolongement analytique, Paris 1911.

⁴³a) Gleichwohl hat sich Weierstraß gelegentlich derselben bedient. Eine eigentliche Theorie der singulären Punkte hat indessen Weierstraß nicht gegeben. Vgl. z. B.: Einige auf die Theorie der analytischen Funktionen mehrerer Veränderliche sich beziehende Sätze, § 3.

deren Mittelpunkte nur einen einzigen Häufungspunkt haben, deren Konvergenzradien aber nicht gegen Null streben, zu einem Funktionselement hinführen, betrachtet unsere Definition Ketten, deren Konvergenzradien gegen Null streben. Im Begriff der "Kette mit einem einzigen Häufungspunkt" sind also die Begriffe "reguläre Stelle" und "singuläre Stelle" vereinigt.

- 2. Eine Definition aber, die bei eindeutigen Funktionen singuläre Stellen und Grenzstellen des Definitionsbereiches identifiziert, läßt sich nicht auf mehrdeutige Funktionen übertragen, weil da erst die Erklärung des Grenzpunktes zu geben wäre. Man hat da ja nicht ohne weiteres eine größere Fläche zur Verfügung, die an sich zwar nichts mit der Funktion zu tun hat, von der aber der Existenzbereich, also jetzt die Riemannsche Fläche, ein Teilbereich ist.
- 3. Schon bei eindeutigen Funktionen erfordern die Grenzpunkte eine ganz andere Behandlung, als die spezielle Sorte derselben, die als Koordinaten unserer singulären Stellen auftreten.
- 4. Viele Beispiele drängen direkt zu unserer Definition hin, so z. B. nach *Hurwitz*⁴⁴) die Betrachtung der Umkehrungsfunktionen der ganzen Funktionen. Die nicht algebraischen singulären Stellen derselben entsprechen den Grenzwerten, die man bei kurvenmäßiger Annäherung an den wesentlich singulären Punkt der ganzen Funktion erhalten kann.

Der Begriff der singulären Linie kann bei den allgemeinen analytischen Funktionen so gefaßt werden: Jede Kette von Funktionselementen definiert eine singuläre Linie, wenn die Radien dieser Elemente gegen Null streben, ohne daß dabei die Mittelpunkte der Kettenglieder einen Grenzwert haben. Die Projektion der Kurve auf die z-Ebene wird von den Häufungspunkten der Elementmittelpunkte gebildet.

9. Begriff der Umgebung einer singulären Stelle. Sie besteht aus Funktionselementen, die wie folgt erhalten werden. Wenn der singuläre Punkt die Koordinate a hat, so nehme man eine Umgebung dieser Stelle in der z-Ebene und eine Kette, die zu dieser Stelle hinführt. Den Teil dieser Kette, der nur Elemente über Punkten dieser Umgebung enthält und in a endigt, bezeichne man mit L und nehme nun alle Elemente, die man von den Elementen der Kette aus erhalten kann, wenn man sie längs Kurven fortsetzt, die ganz in dieser Umgebung verlaufen. Die Gesamtheit dieser Elemente heißt eine Umgebung der singulären Stelle. Zwei durch verschiedene Ketten definierte singuläre

⁴⁴⁾ A. Hurwitz, Sur les points critiques des fonctions inverses, Paris C. R. 143 (1906), p. 877-879 und 144 (1907), p. 63-65.

Stellen werden dann als identisch angesehen, wenn alle ihre Umgebungen identisch sind. Man kann etwas präziser die Definition der singulären Stelle nun also so fassen: Was in der vorigen Nummer als singuläre Stelle bezeichnet wurde, werde richtiger singuläre Kette genannt. Eine singuläre Stelle wird dann der Inbegriff aller der singulären Ketten, die im eben bezeichneten Sinne eine Umgebung gemeinsam haben.

Gibt es eine Umgebung der Koordinate a derart, daß kein ihr angehöriger Weg, von einem Element einer a definierenden Kette aus, zu einer anderen singulären Stelle, als eben der über a gelegenen hinführt, so heißt diese singuläre Stelle isoliert. Besitzt eine singuläre Stelle eine Umgebung, in der zu jeder Koordinate höchstens ein Element gehört, so heißt die singuläre Stelle eindeutig, sonst mehrdeutig.

10. Eindeutige isolierte Singularitäten. Sie zerfallen in Pole und wesentlich singuläre Stellen. Das ist bekanntlich eine direkte Folge des Satzes über die hebbaren Unstetigkeiten: Wenn f(z) im Bereiche B eindeutig ist, und auf allen den Punkt a nicht treffenden Wegen fortsetzbar ist, wenn sie außerdem beschränkt ist, so besitzt sie bei Annäherung an a einen Grenzwert b und wird auch in diesem Punkte regulär, wenn man in a die Erklärung ändert und f(a) = b setzt. In unserer Epoche haben sich verschiedene Verfasser a mit diesem Satz beschäftigt. Neuerdings hat er durch a a a eine a a a eine

In den Ausnahmepunkten aber soll folgendes gelten: Es soll eine im Bereiche reguläre und von Null verschiedene Funktion w(z) geben, die folgende Eigenschaften hat: In B ist |w(z)| < 1. In hinreichender Nähe der Ausnahmepunkte

⁴⁵⁾ W. F. Osgood, Some points in the elements of the theory of functions, Bull. Am. math. Soc. (2) 2 (1896), p. 296-302; E. Landau, On a familiar theorem of the theory of functions, Bull. Am. math. Soc. (2) 12 (1906), p. 155-156; D. R. Curtiss, A proof of the theorem concerning artificial singularities, Ann. of math. (2) 7 (1906), p. 161-162; M. Böcher, An other proof of the theorem concerning artificial singularities, Ann. of math. (2) 7 (1906), p. 163-164.

⁴⁶⁾ E. Phragmén, Sur une extension d'un théorème classique de la théorie des fonctions, Acta math. 28 (1904), p. 351-368. Die Arbeit enthält noch eine Reihe ähnlicher Sätze. In einer späteren Arbeit: E. Phragmén und E. Lindelöf, Sur une extension d'un principe classique de l'analyse et sur quelques propriétés des fonctions monogènes dans le voisinage d'un point singulier, Acta math. 31 (1908), p. 381-406 sind diese Fragen wieder aufgenommen. Die Beweise sind dort vereinfacht und die Sätze sind auf eine allgemeinere Grundlage gestellt. Sie fließen alle aus dem folgenden Prinzip: Die Funktion f(z) sei in dem Bereiche Beindeutig und regulär. Ihr absoluter Betrag möge am Rande mit Ausnahme gewisser Stellen den folgenden Bedingungen genügen: Wenn z hinreichend nahe am Rande liegt, so gelte, wie klein auch das positive ε gewählt sein möge, die Ungleichung $f(z) | < C + \varepsilon$.

wesentliche Vertiefung erfahren. Ich erwähne nur den folgenden Satz: Wenn f(z) in der Umgebung von z=0 eindeutig ist, wenn es für $|\arg z|<\frac{\alpha}{2}$ in dieser Umgebung der Bedingung

$$|f(z)| < C_1 e^{\left|\frac{1}{z}\right|^K}$$

genügt, wenn dabei $K lpha < \pi$ gilt, wenn für alle anderen z der Umgebung

$$|f(z)| < C_{\circ}$$

ist, so ist f(z) bei geeigneter Erklärung von f(0) auch im Punkte z=0 regulär.

Während in einem Pole von f(z) die Funktion $\frac{1}{f(z)}$ regulär bleibt, kommt nach Weierstra β^{47}) f(z) in der Umgebung einer wesentlich singulären Stelle jedem Wert beliebig nahe. Der Picardsche Satz stellt sogar fest, daß die Funktion jeden Wert mit höchstens einer Ausnahme unendlich oft annimmt. (Näheres weiter unten.)

- 11. Mehrdeutige isolierte Singularitäten. Sie zerfallen in endlich vieldeutige, die durch eine geeignete Wurzeloperation zu eindeutigen regulären oder singulären Stellen gemacht werden können und in transzendente. Besitzt die Funktion bei Annäherung an die singuläre Stelle einen Grenzwert (endlich oder unendlich) d. h. weicht sie in hinreichend naher Umgebung (siehe Nr. 9 dieses Artikels) der singulären Stelle beliebig wenig von einem festen Wert ab, so liegt eine außerwesentliche oder logarithmische Singularität sonst eine wesentliche Singularität vor. Zu ihrer näheren Charakterisierung dient die Betrachtung ihres Wertevorrates oder ihres Unbestimmtheitsbereiches. (Näheres wird Nr. 20 ff. angegeben werden.)
- 12. Der Monodromiesatz. Längs eines jeden in einem einfach zusammenhängenden Bereiche B verlaufenden Weges sei die Funktion f(z) fortsetzbar. Dann ist sie im Bereiche B eindeutig und regulär. Der Satz besagt also, daß eine in einem einfach zusammenhängenden

gilt für jedes positive ε und für jedes positive σ die Ungleichung

$$|w^{\sigma}(z)f(z)| < C + \varepsilon.$$

Unter diesen Voraussetzungen gilt in ganz B die Ungleichung

$$|f(z)| \le C$$

und dabei steht gleich nur dann, wenn f(z) eine Konstante ist.

- 47) K. Weierstraβ, Zur Theorie der eindeutigen analytischen Funktionen, Berl. Abh. 1876, p. 11 = Werke Bd. 2, p. 77—124 (§ 8).
- 48) P. Painlevé, Sur les singularités des fonctions analytiques et en particulier des fonctions définies par des équations différentielles, Paris C. R. 131 (1900), p. 489 492. Ferner: Notice sur les travaux scientifiques de M. Painlevé, Paris 1900.

Bereiche B mehrdeutige Funktion in diesem Bereiche Singularitäten besitzen muß. 49)

- 13. Verteilung der Singularitäten bei eindeutigen Funktionen. Die Frage nach den Punktmengen, welche als Singularitätenmengen eindeutiger Funktionen auftreten können, ist durch den Satz völlig gelöst, daß jeder beliebige Bereich Existenzbereich einer analytischen Funktion sein kann. Die Singularitäten sind nämlich die erreichbaren Randpunkte des Existenzbereiches. Für eindeutige Funktionen wurde der Satz zuerst durch Mittag-Leftler.50) bewiesen. Eine andere Frage ist die, ob an den einzelnen singulären Stellen auch die Natur der Singularität beliebig vorgeschrieben werden kann. Hierüber existieren bisher nur sehr spezielle Untersuchungen.⁵¹) Eng damit zusammen hängt die Frage, ob und wie man eine gegebene Funktion so als Summe zweier anderer darstellen kann, daß die eine an einer gegebenen Teilmenge der Singularitätenmenge der anderen singulär, die andere daselbst regulär ist. 52) Dahin gehört auch der Satz von Cousin 53): Wenn zwei Bereiche A und B den Bereich C gemeinsam haben und wenn f(z) in A, q(z) in B eindeutig und analytisch ist, die Differenz f(z) - q(z)aber in C regulär ist, so gibt es eine in A und B erklärte eindeutige
- 49) Der Satz rührt von Weierstraβ her. Vgl. O. Stolz u. J. Gmeiner, Einleitung in die Funktionentheorie, Leipzig 1910, wo der von Weierstraβ in seinen Vorlesungen gegebene Beweis zu finden ist. Neuerdings hat sich Osgood mit ihm beschäftigt: On a gap in the ordinary presentation of the Weierstraβ theory of functions, Am. M. S. Bull. (2) 10 (1904), p. 294—301. Einen Beweis gibt A. Pringsheim, Über eine charakteristische Eigenschaft sogenannter Treppenpolygone und deren Anwendung auf einen Fundamentalsatz der Funktionentheorie, Münch. Ber. 1915, p. 27—66. Einen sehr einfachen Beweis enthält der erste Band meines demnächst erscheinenden Lehrbuches der Funktionentheorie.
- 50) Mittag-Leffler, Sur la représentation analytique des fonctions monogènes uniformes d'une variable indépendante, Acta math. 4 (1884), p. 1—79. Verschiedene Autoren haben neuerdings den Satz auf mehrdeutige Funktionen ausgedehnt und haben bewiesen, daß ein jedes Riemannsches Flächenstück als Existenzbereich gewisser analytischer Funktionen aufgefaßt werden kann. Koebe, Fonction potentielle et fonction analytique ayant un domaine d'existence donnée à un nombre quelconque (fini ou infini) de feuillets, Paris C. R. 148 (1909), p. 1446—1448: E. Freundlich, Analytische Funktionen mit beliebig vorgeschriebenem unendlichblättrigem Existenzbereich, Diss. Göttingen 1910; Osgood, Lehrbuch der Funktionentheorie, 2. Aufl. Leipzig 1912, p. 748—753.
- 51) Mittag-Leffler, a. a. O. 50); G. Faber, Über analytische Funktionen mit vorgeschriebenen Singularitäten, Math. Ann. 60 (1905), p. 379—397. Faber dehnt die Untersuchungen auf mehrdeutige singuläre Stellen aus.
- 52) G. Faber, a. a. O. 51); A. Haar, Über analytische Funktionen mit singulärer Linie, Gött. Nachr. 1914, p. 115--123.
- 53) P. Cousin, Sur les fonctions de n variables complexes, Acta math. 19 (1894), p. 1-61. Vgl. auch E. Phragmén, a. a. O. 46).

analytische Funktion F(z), für die F(z) - f(z) in A, F(z) - g(z) in B regulär ist.

Bei eindeutigen Funktionen kann die Singularitätenmenge nach rein mengentheoretischen Gesichtspunkten klassifiziert werden. Wir betrachten die Menge der Grenzpunkte des Existenzbereiches. 1. Die Menge sei abzählbar. Dann ist jeder Punkt erreichbar, und die Menge besteht also aus lauter singulären Punkten. In beliebiger Nähe eines jeden derselben liegen isolierte Singularitäten. Für jede von einem Pole verschiedene Singularität gilt daher der Picardsche Satz. Daher ist auch auf solche Funktionen der Satz von den hebbaren Unstetigkeiten übertragbar.

2. Die Menge enthalte perfekte Bestandteile. Dann kann man sich mit Rücksicht auf das eben Gesagte auf den Fall beschränken, daß die Menge selbst perfekt ist. Als solche kann sie dann punkthaft sein oder kontinuierliche Bestandteile enthalten.

Es sei also zunächst die Menge der Grenzpunkte perfekt und punkthaft. Wir teilen sie nach ihrem Flächenmaß (Null oder positiv) sowie nach ihrem Umfang ein. Damit ist folgendes gemeint. Man betrachte eine Folge von endlich vielen Kreisen um die Punkte der Menge. l_d sei die untere Grenze der Gesamtlänge dieser Kreise, falls ihr Durchmesser d nicht übertrifft. Bei Verkleinerung von d nimmt l_d nicht zu, und es sei $\lim_{d\to 0} l_d = l$. Dann heißt l Umfang der Menge.

Er kann Null, endlich oder unendlich sein. Mit Hilfe der Integralformel kann man auf den ersten Fall leicht den Satz von den hebbaren Singularitäten übertragen, und damit gilt für diese Singularitäten wieder der Satz von Weierstraß und daher, wie man mit Hilfe der Modulfunktion sieht, auch der Satz von Picard.

Ist der Umfang endlich und von Null verschieden, so kann man nur noch zeigen, daß die Funktion an den singulären Stellen nicht stetig sein kann.⁵⁴) Man kann aber schon Funktionen angeben, die in der vollen Ebene beschränkt sind, deren Singularitäten aber eine derartige perfekte diskontinuierliche Menge ausmachen.⁵⁵)

Ist schließlich der Umfang unendlich, so kann man nach Pompéju⁵⁶) und Goloubeff⁵⁶) Beispiele von Funktionen bilden, die in der

⁵⁴⁾ P. Painlevé, Notice sur les travaux scientifiques de M Painleve, Paris 1900; L. Zoretti, a. a. O. 43), p. 80.

⁵⁵⁾ A. Denjoy, Sur les fonctions analytiques uniformes à singularités discontinues non isolées, Paris C. R. 150 (1900), p. 32-34.

⁵⁶⁾ D. Pompéju, Sur la continuité des fonctions de variables complexes, Ann. de Toulouse (2) 7 (1903), p. 264—315. Zoretti versuchte in seiner These: Sur les fonctions analytiques uniformes, qui possèdent un ensemble parfait discon-

ganzen Ebene stetig und doch nicht konstant sind und deren Singularitäten unter den Punkten der Menge enthalten sind.⁵⁷)

Sind in der Randmenge des Existenzbereiches kontinuierliche Bestandteile enthalten, so ist wieder eine große Mannigfaltigkeit von Fällen möglich. Erst wenige davon sind untersucht. Ich will nur von dem Fall reden, wo eine isolierte Linie von Singularitäten da ist. Ältere Untersuchungen verfolgen hauptsächlich das Ziel, Beispiele dafür zu geben, daß solche Fälle möglich sind. Heutzutage zweifelt niemand mehr an ihrem häufigen Vorkommen. Ja man weiß sogar, daß unter allen im Einheitskreis konvergierenden Potenzreihen diejenigen am häufigsten vorkommen, die nicht über diesen Kreis hinaus fortsetzbar sind. 58) 59)

tinu de points singuliers, J. de math. (6) 1 (1905), p. 1-51 das Gegenteil zu beweisen. W. Goloubeff, Sur les fonctions à singularités discontinues, Paris C. R. 158 (1914), p. 1407-1409.

57) Mit den Fragen dieses Abschnittes befassen sich noch eine ganze Reihe weiterer Arbeiten von Pompéju und von Denjoy: D. Pompéju, a) Sur les fonctions de variables complexes, Paris C. R. 134 (1902), p. 1195-1197; b) Sur les singularités des fonctions analytiques uniformes, Paris C. R. 139 (1904), p. 914-915; c) Sur les singularités des fonctions analytiques uniformes, Paris C. R. 149 (1909), p. 103-105; d) Sur les singularités discontinues des fonctions analytiques uniformes, Paris C. R. 149 (1909), p. 1050-1051; e) Sur la représentation des fonctions analytiques par des intégrales définies, Paris C. R. 149 (1909), p. 1355-1357; f) Sur les singularités des fonctions analytiques uniformes, Paris C. R. 149 (1910), p. 454-455; g) Sur les singularités des fonctions analytiques uniformes, Rend. di Palermo 29 (1910), p. 306-307; h) Sur un exemple de fonction analytique partout continue, Am. J. of math. 32 (1910), p. 327-332; i Sur les singularités des fonctions analytiques uniformes, Enseignement math. 12 (1910), p. 18-20; k) Sur les fonctions analytiques uniformes, Nieuw archiev voor wiskunde (2) 9 (1910), p. 172-175; l) Sur les fonctions de variables complexes, Paris C. R. 153 (1911), p. 624-626.

A. Denjoy, Sur les fonctions analytiques uniformes, qui restent continues sur un ensemble parfait discontinue de singularités, Paris C. R. 148 (1909), p. 1154—1156; P. Painleré, Observations au sujet de la communication précédente, Paris C. R. 148 (1909), p. 1156—1157; A. Denjoy, Sur les fonctions analytiques uniformes à singularités discontinues, Paris C. R. 149 (1909), p. 258—260; A. Denjoy, Sur les singularités discontinues des fonctions analytiques uniformes, Paris C. R. 149 (1909), p. 386—388.

58) Ansätze von Borel, a) Sur les séries de Taylor, Paris C. R. 123 (1896), p. 1051—1052; b) Sur les séries de Taylor, Acta math. 21 (1897), p. 243—248; c) Sur les séries de Taylor admettant leur cercle de convergence comme coupure, J. de math. (5) 2 (1896), p. 441—451; A. Pringsheim, Über Funktionen, welche in gewissen Punkten endliche Differentialquotienten jeder endlichen Ordnung aber keine Taylorsche Reihenentwicklung besitzen, Math. Ann. 44 (1894) [p. 41—56] p. 50—51; E. Fabry, a) Sur les séries de Taylor, Paris C. R. 124 (1897), p. 142—143 und Bd. 125 (1897), p. 1086—1089; b) Sur les séries de Taylor, qui

Der Picardsche Satz.

14. Der Picardsche Satz. Eine glückliche Idee führte im Jahre 1879 E. Picard zu einer wesentlichen Vertiefung des Weierstraßschen Satzes, daß eine jede in der Umgebung einer wesentlich singulären Stelle eindeutige und meromorphe Funktion daselbst jedem Wert beliebig nahe kommt. Eine Anwendung der elliptischen Modulfunktion ließ ihn erkennen, daß die Funktion alle Werte mit höchstens zwei Ausnahmen wirklich annimmt. Zunächst allerdings 60a) gelang der Beweis nur für ganze Funktionen und führte so zu dem heute oft als kleiner Picardscher Satz bezeichneten Theorem. Erst etwas später 60 c) gelang ihm der Beweis des großen Picardschen Satzes, wonach eine jede in der Umgebung einer wesentlich singulären Stelle eindeutige und meromorphe Funktion daselbst jeden Wert mit höchstens zwei Ausnahmen wirklich annimmt. (Unendlich wird dabei als Wert gezählt, so daß eine in der Umgebung der betreffenden Stelle reguläre Funktion nur noch einen endlichen Ausnahmewert besitzen kann.)

Der Grundgedanke des Picardschen Beweises wird am besten am kleinen Picardschen Satz erläutert. Mit $\omega(\nu)$ sei diejenige elliptische ont une infinité de points singuliers, Acta math. 22 (1899), p. 65-87; L. Leau, Recherches sur les singularités d'une fonction définie par un développement de Taylor, J. de math. (5) 5 (1899), p. 365-425. Eine wirkliche und entgültige Klärung dieser Angelegenheit gab erst G. Pólya, Über die Potenzreihen, deren Konvergenzkreis natürliche Grenze ist, Acta math. 41 (1917), p. 99-118; F. Hausdorff, Zur Verteilung der fortsetzbaren Reihen, Math. Ztschr. 4 (1919), p. 98-103. Dagegen: Fréchet, Les fonctions prolongeables, Paris C. R. 165 (1917), p. 669-670.

59) Noch sei erwähnt, daß Fredholm [siehe bei Mittag-Leffler, a) Sur une transcendante remarquable découverte par M. Fredholm, Paris C. R. 110 (1890), p. 627-629; b) Sur une transcendante remarquable trouvée par M. Fredholm, Acta math. 15 (1891), p. 279-280; A. Hurwitz, Über die Entwicklung der allgemeinen Theorie der analytischen Funktionen in neuerer Zeit, Verh. d. I. internat. Math.-Kongr. in Zürich 1897, Leipzig 1898, (p. 91-112) p. 109] ein Beispiel einer Funktion gegeben hat, die samt allen Ableitungen auf der natürlichen Grenze noch stetig ist. Zu dieser Frage vgl. man noch: A. Pringsheim, Zur Theorie der Taylorschen Reihe und der analytischen Funktionen mit beschränktem Existenzbereich, Math. Ann. 42 (1893), p. 153-184. Auch schlicht abbildende derartige Funktionen kennt man als explizite Potenzreihen. Fredholm, a. a. O. und Osgood, a) Example of a single-valued function with a natural boundary, whose inverse is also single valued, Am. Math. Soc. Bull. (2) 4 (1898), p. 417-424; b) Supplementary note on a single-valued function whose inverse is also single valued, Am. Math. Soc. Bull. (2) 5 (1898), p. 17-18.

60) E. Picard, a) Sur une propriété des fonctions entières, Paris C. R. 88 (1879), p. 1024-1027; b) Sur les fonctions entières, Paris C. R. 89 (1879), p. 662-665; c) Sur les fonctions analytiques uniformes dans le voisinage d'un point singulier essentiel, Paris C. R. 89 (1879), p. 745-747; d) Mémoire sur les

fonctions entières, Ann. Éc. Norm. (2) 9 (1880), p. 145-166.

Modulfunktion bezeichnet, welche bei $\nu = 0, 1, \infty$ Verzweigungspunkte unendlich hoher Ordnung besitzt und die ihre Riemannsche Fläche auf die Halbebene $\Im(\omega) > 0$ abbildet. Wenn nun eine ganze Funktion f(z) die Werte 0, 1, ∞ nicht annähme, so wäre auch $\omega\{f(z)\}$ eine in der Umgebung eines jeden endlichen z-Wertes eindeutige und reguläre Funktion also nach dem Monodromiesatz (Nr. 12) selbst eine ganze Funktion, welche aber nur Werte mit positivem Imaginärteil annehmen könnte. Daher ist nach dem Weierstraßschen Satz $\omega\{f(z)\}$ also auch f(z) eine Konstante. Der Schluß also, daß $\omega\{f(z)\}$ wieder eine in der Umgebung von ∞ eindeutige Funktion ist, beruht auf dem Monodromiesatz, setzt also die Kenntnis eines einfach zusammenhängenden Bereiches voraus, in dem die Funktion von rationalem Charakter ist. Daher kann der Monodromiesatz beim Beweis des großen Picardschen Satzes keine Verwendung finden. Denn da hat man nur einen zweifach zusammenhängenden Bereich zur Verfügung. Bei diesem Sachverhalt liegt es daher nahe, statt der schlichten Umgebung des unendlichen Punktes ein daselbst unendlich oft gewundenes und darum wieder einfach zusammenhängendes Riemann sches Flächenstück einzuführen, dann wird somit $\omega\{f(e^t)\}$ eine in einer Halbebene der t-Ebene eindeutige Funktion, die keinen Wert von negativem Imaginärteil annimmt. In diesem Ansatz stimmen zahlreiche Beweise des großen Picard schen Satzes überein. Zur weiteren Ausbeutung dieses Gedankens hat man mannigfache weitere Beweisgründe ins Feld geführt. Ich halte den von Lindelöf 61) gegebenen Beweis, der sich auf das Schwarzsche Lemma stützt (vgl. Nr. 60), für den naturgemäßesten. 62)

15. "Elementare" Methoden. Diesen mit Hilfe der Modulfunktion geführten Beweisen steht eine andere Gruppe von Unter-

⁶¹⁾ E. Linddöf, a) Mémoire sur certaines inégalités dans la théorie des fonctions monogènes et sur quelques propriétés nouvelles de ces fonctions dans le voisinage d'un point singulier essentiel. Acta Soc. Fenn. 35 (1908), Nr. 7; b) Sur le théorème de M. Picard dans la théorie des fonctions monogènes, C. R. du congrés des math. tenu à Stockholm 1909, p. 112—136.

⁶²⁾ Weitere Beweise bei *Picard*, a. a. O. 60). Ferner in traité d'analyse, 2. Aufl. Bd. II, p. 231, III, p. 365; *A. Hurwitz*, Über die Anwendung der elliptischen Modulfunktion auf einen Satz der allgemeinen Funktionentheorie, Zürch. Vierteljahrsschr. 49 (1904), p. 242—253; *E. Landau*, Über den *Picard*schen Satz, Zürch. Vierteljahrsschr. 51 (1906), p. 252—318; *F. Schottky*. Über zwei Beweise des allgemeinen *Picard*schen Satzes, Berlin. Sitzber. 1907, p. 823—840; *P. Montel*, Sur les familles des fonctions analytiques, qui admettent des valeurs exceptionelles dans un domain, Ann. Éc. Norm. (3) 29 (1912), p. 487—535; *Osgood*, a) Lehrbuch der Funktionentheorie, 2. Aufl. (1912), p. 709; b) Zum Beweise des *Picard*schen Satzes. Eine Ergänzung, Jahresber. d. D. Math.-Ver. 22 (1913), p. 35—36.

suchungen gegenüber, deren Autoren sich darum bemühen, auch ohne das zugkräftige Mittel der Modulfunktion den Beweis zu bezwingen. Wenn dies an sich auch von minderer Bedeutung ist, so haben doch die dabei gewonnenen Methoden zu einer wesentlichen Verschärfung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung geführt, und diese haben wieder nützliche Anwendung bei der Verallgemeinerung des Picardschen Satzes auf gewisse Klassen mehrdeutiger Funktionen gefunden (vgl. Nr. 19 u. Nr. 32). Hier sei nur kurz erwähnt, daß Borel⁶³) 1896 den kleinen, Schottky⁶⁴) 1904 den großen Picardschen Satz ohne Verwendung der Modulfunktion bewiesen hat.⁶⁵)

16. Der Landausche Satz. Unter den zahlreichen Landauschen Veröffentlichungen verdient die Arbeit von 1904⁶⁶), welche sich jener elementaren Methoden bedient — wenigstens was ihr Ergebnis anlangt — besonderes Interesse. Landau beweist dort eine wesentliche Verschärfung des kleinen Picardschen Satzes: Wenn eine analytische Funktion f(z) durch eine Potenzreihe

$$a_0 + a_1 z + \dots$$

mit $a_1 \neq 0$ gegeben ist, so gibt es eine nur von a_0 und a_1 abhängende, von den übrigen Koeffizienten völlig unabhängige Funktion $R(a_0, a_1)$, so daß im Kreise $|z| < r | (r > R(a_0, a_1))$ entweder eine Nullstelle oder eine Einsstelle oder eine Singularität der Funktion f(z) liegt. Bei ganzen Funktionen liegt also schon in diesem Kreise eine Nullstelle oder eine Einsstelle.

Auch bei diesem Satz hat sich bald die Überlegenheit der die elliptische Modulfunktion benutzenden Methoden gezeigt. Denn schon Landau selbst⁶⁶) konnte den Satz mit Hilfe dieser Funktion in wenigen Zeilen beweisen. Auch liefert die Verwendung dieser Funktion

⁶³⁾ E. Borel, a) Démonstration élémentaire d'un théorème de M. Picard sur les fonctions entières, Paris C. R. 122 (1896), p. 1045—1048; b) Leçons sur les fonctions entières, Note I, Paris 1900.

⁶⁴⁾ F. Schottky, Über den Picardschen Satz und die Borelschen Ungleichungen, Berlin. Sitzber. 1904, p. 1244—1262 und 1906, p. 32—36.

⁶⁵⁾ Weiter sind hier zu nennen: F. Schottky, a. a. O. 62). Ferner F. Schottky, Problematische Punkte und die elementaren Sätze, die zum Beweise des Picardschen Satzes dienen, J. f. Math. 147 (1917), p. 161—172; Landau, a. a. O. 62); E. Lindelöf, a. a. O. 61b); A. Kraft, Über ganze transzendente Funktionen von unendlicher Ordnung, Diss. Göttingen 1913. A. Wiman, a. a. O. 127).

⁶⁶⁾ E. Landau, Über eine Verallgemeinerung des Picardschen Satzes, Berlin. Ber. 1904, p. 1118—1133.

Schranken für $R(a_0, a_1)$, ja die genaue Bestimmung von $R(a_0, a_1)$. ⁶⁷ Man findet so $R(a_0, a_1) = \frac{2 |\Im \left[\omega \left(a_0\right)\right]|}{|a_1||\omega'\left(a_0\right)|} = \frac{2 \varphi \left(a_0\right)}{|a_1|}.$

Mit der durch Landau mit $\varphi(a_0)$ bezeichneten Funktion befassen sich eine Reihe Arbeiten 68) namentlich zu dem Zwecke, handliche Abschätzungen dieser Funktion zu gewinnen. So findet A. Hurwitz

$$|\varphi(a_0)| \leq 11 |a_0|^{\frac{2}{3}} |a_0 - 1|^{\frac{1}{2}}.$$

Diese Abschätzung gestattet es Landau⁶²), der sie erneut einfacher gewinnt und verallgemeinert, den großen Picardschen Satz aus dem Landauschen zu erschließen.

Die angegebenen Gedankengänge ermöglichen es natürlich auch für den Fall, daß a_1 und einige weitere Koeffizienten von f(z) verschwinden, analoge Sätze zu gewinnen. Man erhält dann eben eine Schranke, die von a_0 und dem ersten weiteren nicht verschwindenden Koeffizienten abhängt.

Man kann natürlich auch die Carathéodorysche Abschätzung dahin interpretieren, daß sie eine Schranke für den ersten Koeffizienten a_1 derjenigen Funktionen liefert, die in |z| < 1 regulär sind und in diesem Kreise die Werte Null und Eins nicht annehmen. Dieser Umstand legt die Frage nahe, ob man nicht ähnliche Schranken auch für die weiteren Koeffizienten gewinnen kann, also überhaupt die Frage nach den Koeffizienten derjenigen in |z| < 1 regulären Funktionen, die in diesem Kreise die Werte Null und Eins auslassen. Vermöge der elliptischen Modulfunktion hängt diese Frage eng zusammen mit dem Carathéodoryschen Problem, die Koeffizienten derjenigen Potenzreihen anzugeben, welche im Einheitskreis einen positiven Realteil besitzen. So wurde denn auch die Lösung dieser Frage im Zusammenhang mit diesem Problem von Carathéodory und $Fej\acute{e}r^{69}$) gefunden.

⁶⁷⁾ C. Carathéodory, Sur quelques généralisations du théorème de M. Picard, Paris C. R. 141 (1905), p. 1213—1215. Die wirkliche Ausrechnung gibt erst Landau, a. a. O. 62).

⁶⁸⁾ A. Hurwitz, a. a. O. 62); E. Landau, a. a. O. 62); P. Bernays, Zur elementaren Theorie der Landauschen Funktion $\varphi(a_0)$, Zürch. Vierteljahrsschr. 58 (1913), p. 203—238; Gronwall, Sur un théorème de M. Picard, Paris C. R. 155 (1912), p. 764—766.

⁶⁹⁾ C. Carathéodory und L. Fejér, Über den Zusammenhang der Extreme von harmonischen Funktionen mit ihren Koeffizienten und über den Picard-Landauschen Satz, Rend di Palermo 32 (1911), p. 218—239. Vgl. auch O. Toeplitz, a. a. O. 295).

17. Verallgemeinerungen. Carathéodory 67) hat dadurch eine Verallgemeinerung des Landauschen Satzes erzielt, daß er statt der Modulfunktion eine andere Dreiecksfunktion heranzieht. So erhält man etwa folgenden Satz:

Wenn die Funktion

$$f(z) = a_0 + a_1 z + \cdots$$

im Kreise |z| < r meromorph sein soll, und zwar so, daß die Ordnung einer jeden Nullstelle ein Vielfaches von m, die Ordnung jeder Einsstelle ein Vielfaches von n, die Ordnung eines jeden Poles ein Vielfaches von p ist, und wenn dabei

$$\frac{1}{m}+\frac{1}{n}+\frac{1}{p}<1$$

gilt, so gibt es eine nur von a_0 und a_1 abhängige Schranke, die r nicht übersteigen kann. 69 a)

Durch ähnliche Schlüsse hat *Carathéodory* ⁷⁰) noch allgemeinere Sätze gewonnen, die ohne Konstantenbestimmung schon *Landau* ⁷¹) vorher angegeben hatte. Ich führe nur einen derselben an:

Wenn die Funktion

$$f(z) = z^k + \beta_1 z^{k+1} + \dots$$
 $(k \ge 1)$

für |z| < r regulär und von $(-1)^m$ verschieden ist, und wenn die Ordnungen aller ihrer von Null verschiedenen Nullstellen Vielfache von m sind, so kann r eine gewisse Schranke $\sqrt[k]{A_m}$ nicht übersteigen. Dabei ist

 $A_{\scriptscriptstyle m} = \frac{16 \cdot \Gamma^{\scriptscriptstyle m} \left(1 - \frac{1}{m}\right) \cdot \Gamma^{\scriptscriptstyle 2\,m} \left(1 + \frac{1}{2\,m}\right)}{\Gamma^{\scriptscriptstyle m} \left(1 + \frac{1}{m}\right) \cdot \Gamma^{\scriptscriptstyle 2\,m} \left(1 - \frac{1}{2\,m}\right)}.$

Nach $Landau^{71}$) kann man hieraus einen interessanten Schluß ziehen: Wenn k und l zwei teilerfremde ganze Zahlen sind (l > 1), und wenn die Reihe $z^k + \beta_1 z^{k+l} + \beta_2 z^{k+2l} + \dots$

für |z| < r konvergent und von -1 verschieden sein soll, dann muß

$$r < (A_{-})^{\frac{1}{kl}}$$

sein. Das merkwürdige an diesem Satz ist, daß die an den Koeffizienten angebrachten Lücken den sonst noch vorhandenen zweiten

⁶⁹ a) Vgl. auch *Montel*, Sur quelques généralisations des théorèmes de *M. Picard*, Paris C. R. 155 (1912), p. 1000—1003.

⁷⁰⁾ C. Carathéodory, Sur quelques applications du théorème de Landau-Picard, Paris C. R. 144 (1907), p. 1203—1206.

⁷¹⁾ E. Landau, Sur quelques généralisations du théorème de M. Picard, vnn. Éc. Norm. (3) 24 (1907), p. 179-204.

Ausnahmewert ersetzen. Dahin gehören namentlich auch die ungeraden Funktionen. Und hier leuchtet ja sofort ein, daß mit dem Ausnahmewert — 1 noch ein weiterer Ausnahmewert + 1 gekoppelt ist. Ebenso ist es in den anderen Fällen.

Der Landausche Satz stellt sich als eine Verallgemeinerung des kleinen Picardschen Satzes dar. Nach einem früheren Versuche von Landau⁶²) hat Carathéodory⁷²) auch dem großen Picardschen Satze eine ähnliche Vertiefung gegeben. Hier gilt der folgende Satz: Wenn f(z) für 0 < |z| < r regulär und von Null und Eins verschieden ist, dann gibt es eine von f(z) und r unabhängige Zahl $\alpha \neq 0$ derart, daß für $0 < |z| < \alpha \cdot r$ entweder |f(z)| > 2 oder $|f(z)| < \frac{1}{2}$ gilt.

18. Der Schottkysche Satz. Um eine weitere Entdeckung aus diesem Fragenkreise hat *Schottky* ⁶⁴) die Wissenschaft bereichert. Er hat folgenden Satz gefunden:

Wenn
$$f(z) = a_0 + a_1 z + \dots$$

im Kreise |z| < r die Werte Null und Eins ausläßt und sich dort regulär verhält, dann gibt es eine nur von a_0 und ϱ ($\varrho < 1$) abhängige Zahl $K(a_0, \varrho)$ derart, daß

$$|f(z)| < K(a_0, \varrho)$$

ist für $|z| < \varrho \cdot r$.

Auch hier läßt sich der Beweis mit Hilfe der Modulfunktion leicht erbringen. So gelingt auch die wirkliche Bestimmung von $K(a_0, \varrho)^{73}$). Beim Beweis zeigt sich auch, daß $K(a_0, \varrho)$ eine stetige Funktion von a_0 ist, solange a_0 die Werte 0, 1, ∞ vermeidet. Es gibt daher eine Zahl $\lambda(\varepsilon, \omega, \varrho)$ derart, daß

$$|f(z)| < \lambda(\varepsilon, \omega, \varrho)$$

ist für $|z| < \varrho \cdot r$, solange $|a_0| > \varepsilon$, $|a_0 - 1| > \varepsilon$ und $|a_0| < \omega$ ist Landau hat gefunden, daß hier die auf ε bezügliche Bedingung wegfallen kann.⁷⁴) Man hat also den Satz:

Wenn
$$f(z) = a_0 + a_1 z + \dots$$

⁷²⁾ C. Carathéodory, Sur le théorème général de M. Picard, Paris C. R. 154 (1912), p. 1690—1693.

⁷³⁾ C. Carathéodory, a. a. O. 67.

⁷⁴⁾ E. Landau in H. Bohr und E. Landau, Über das Verhalten von $\zeta(s)$ und $\zeta_k(s)$ in der Nähe der Geraden s=1, Gött. Nachr. 1910, p. 303—330. Weitere Beweise gaben Bernays in C. Carathéodory und E. Landau, Beiträge zur Konvergenz von Funktionenfolgen, Berl. Ber. 1913, p. 587—613; ferner P. Lévy, Remarques sur le théorème de M. Picard, Bull. de la Soc. math. de France 40 (1912), p. 25—39; G. Pick, Über eine Eigenschaft der konformen Abbildung kreisförmiger Bereiche, Math. Ann. 77 (1916), p. 1—6.

in |z| < r regulär ist und die Werte Null und Eins ausläßt, so gilt $|f(z)| < \lambda(\omega, \varrho)$

in $|z| < \varrho \cdot r$, falls $|a_0| < \omega$ ist.

P. $L\acute{e}vy^{75}$) hat hieran noch verschiedene Einzeluntersuchungen angeschlossen. So hat er z. B. gefunden, daß $K(a_0, \varrho)$ zwischen zwei Schranken $\frac{K_1(a_0)}{1-\varrho} \quad \text{und} \quad \frac{K_2(a_0)}{1-\varrho}$

liegt. 76)

Aus dem Schottkyschen Satze folgert man nach Landau 62) leicht:

Es sei $f(z) = a_0 + a_1 z + \cdots$

in |z| < r regulär und von Null verschieden und nur an p Stellen gleich Eins. Dann liegt |f(z)| für $|z| < \varrho r$ unterhalb einer nur von a_0 und p abhängigen Schranke.

Eine weitere Behauptung von $Boutroux^{77}$), der übrigens den Schottkyschen Satz selbständig wiedergefunden hat, wurde von $Landau^{62}$) widerlegt.

19. Erweiterungen: E. Picard⁷⁸) hat 1883 folgende Verallgemeinerungen seines Satzes gefunden:

Zwischen zwei eindeutigen analytischen Funktionen kann nur dann eine algebraische Gleichung von einem Eins übertreffenden Geschlecht bestehen, wenn dieselben keine isolierten wesentlichen Singularitäten aufweisen.

Carathéodory^{78,1}) hat kürzlich den eben genannten und den großen Picardschen Satz als Spezialfälle eines viel allgemeineren Satzes erkannt.

Picard 79) hat auch den Landauschen Satz erweitert: Wenn zwi-

⁷⁵⁾ P. Lévy, a) Sur une généralisation des théorèmes de M. Picard, Landau et Schottky, Paris C. R. 153 (1911), p. 658-660; b) a. a. O. 74).

⁷⁶⁾ Das ist also viel schärfer als die Abschätzung, welche Schottky, a. a. O. 64) und E. Lindelöf, a. a. O. 61b) auf "elementarem" Wege hier gefunden haben.

⁷⁷⁾ P. Boutroux, Propriétés d'une fonction holomorphe dans un cercle ou elle ne prend pas les valeurs 0 et 1. Bull. de la soc. math. de France 34 (1906), p. 30-39, Paris C. R. 141 (1905), p. 305-308.

⁷⁸⁾ E. Picard, a) Sur une proposition concernant les fonctions uniformes d'une variable liées par une relation algébrique, Bull. des sciences math. (2) 7 (1883), p. 107—116; b) Démonstration d'un théorème général sur les fonctions uniformes liées par une relation algébrique, Acta math. 11 (1887), p. 1—12.

^{78,1)} C. Carathéodory, Über eine Verallgemeinerung der Picardschen Sätze, Berl. Sitzber. 1920, p. 202—209.

⁷⁹⁾ E. Picard, a) Sur un théorème général relatif aux fonctions uniformes d'une variable liées par une relation algébrique, Paris C. R. 154 (1912), p. 98 bis 101; b) Sur les systèmes de deux fonctions uniformes d'une variable liées

schen zwei um t=0 meromorphen Funktionen

$$z = a_0 + a_1 t + \cdots$$

$$\omega = b_0 + b_1 t + \cdots$$

eine algebraische Gleichung vom Geschlecht größer als Eins bestehen soll, so können beide Funktionen zugleich nur in einem Kreise $\mid t \mid > r$ meromorph sein, dessen Radius eine gewisse nur von a_0 und a_1 abhängende Schranke nicht übersteigt. Bemerkenswert ist, daß hier keinerlei Annahmen über Ausnahmewerte gemacht werden müssen.

Rémoundos hat in zahlreichen Arbeiten die Picardschen Sätze auf gewisse Klassen mehrdeutiger Funktionen ausgedehnt. Seine Thèse 80a) enthält z. B. den folgenden schon von Painlevé vermuteten Satz:

Wenn eine Funktion $\omega(z)$ durch eine Gleichung

$$f(\omega, z) = \omega^{\nu} + A_1(z)\omega^{\nu-1} + \dots + A_1(z) = 0$$

mit ganzen, aber nicht durchweg rationalen Koeffizienten erklärt ist, so gibt es höchstens 2ν Ausnahmewerte ω_k , für welche die Gleichung $f(\omega_k, z) = 0$ nur endlichviele Wurzeln hat.

Ferner gibt Rémoundos Ausdehnungen des Landauschen Satzes auf algebraische und andere endlichvieldeutige Funktionen. Auch ge-

par une relation algébrique, Bull. de la soc. math. de France 40 (1912), p. 201-205; c) Sur les couples de fonctions uniformes d'une variable correspondant aux points d'une courbe algébrique de genre supérieure à l'unité, Rend. di Palermo 33 (1912), p. 254-258.

⁸⁰⁾ G. Rémoundos, a) Sur les zeros d'une classe de fonctions transcendantes, Ann. de la fac. des sc. de Toulousc (2) 8 (1906), p. 1-72; b) Une nouvelle généralisation du théorème de M. Picard sur les fonctions entières, Paris C. R. 136 (1903), p. 953-955; c) Sur les zéros d'une classe de fonctions transcendantes, Bull. de la soc. math. de France 32 (1904), p. 44-50; d) Sur les zéros d'une classe de fonctions transcendantes multiformes, Paris C. R. 138 (1904), p. 344-346; e) Paris C. R. 155 (1912), p. 818-820 und p. 1592-1595; 138 (1904), p. 1574 bis 1575; f) Généralisation d'un théorème de M. Landau, Bull. de la soc. math. de France 41 (1913), p. 19-24, p. 340-346; g) Paris C. R. 157 (1913), p. 542-545; h) Sur les familles de fonctions multiformes admettant des valeurs exceptionelles dans un domaine, Acta math. 37 (1914), p. 241-300; i) Sur les fonctions entières et algébroides, généralisation du théorème de M. Picard dans la direction de M. Landau, Ann. Éc. Norm. 30 (1903), p. 377-393; k) Paris C. R. 157 (1913), p. 694-697; l) Le théorème de M. Picard et les fonctions algébroides, Rend. di Palermo 35 (1913), p. 217-224; m) Extension d'un théorème de M. Borel aux fonctions algébroides multiformes, Rend. di Palermo 32 (1911), p. 267-277; n) Sur le module maximum des fonctions algébroides, Bull. de la soc. math. de France 39 (1911), p. 304-309; o) Sur les fonctions ayant un nombre fini des branches, Paris C. R. 141 (1905), p. 618-620 und J. de math. (6) 2 (1906), p. 87-107; p) Sur la croissance des fonctions multiformes, Paris C. R. 143 (1906). p. 391-393 und J. de math. (6) 3 (1907), p. 267-298.

wisse Sorten von unendlichvieldeutigen Funktionen werden herangezogen. Aber kein Resultat ist so bemerkenswert, daß es hier angeführt werden müßte. Häufig sind die Beweise nur skizziert und unvollständig, wie bei der folgenden Behauptung: Die Ausnahmewerte einer ganzen transzendenten Gleichung $f(\omega, z) = 0$ treten nur in abzählbarer Menge auf und häufen sich nirgends im endlichen. Die Ergebnisse von Sire und Iversen⁸¹) lassen die Richtigkeit der Behauptung zweifelhaft erscheinen.

Weiteres über das Verhalten in der Nähe wesentlich singulärer Stellen.

20. Grundbegriffe. Zur weiteren Untersuchung der singulären Stellen sind verschiedene Begriffe eingeführt worden, die wir im Anschluß an W. Groß 82) erklären wollen. Unter einem Einschnitt der Funktion f(z) versteht man einen Jordanschen Kurvenbogen, der die Mittelpunkte einer eine singuläre Stelle definierenden Kette verbindet. Wir sagen, er endige in dieser Stelle. Unter dem Wertebereich dieses Einschnittes werde der Durchschnitt der Wertemengen verstanden, welche die Funktion auf beliebigen an die singuläre Stelle anstoßenden Teilbogen des Einschnittes annimmt. Unter dem Häufungsbereich des Einschnittes werde die Menge derjenigen Werte verstanden, welchen die Funktion auf dem Einschnitt in beliebiger Nähe des singulären Punktes nahekommt. Besteht der Häufungsbereich aus nur einem Wert, so heißt dieser Konvergenzwert der Funktion längs des Einschnittes. Unter dem Wertebereich einer singulären Stelle (auch Unbestimmtheitsbereich 48) genannt) versteht man die Vereinigungsmenge. der Wertebereiche aller zu der singulären Stelle hinführenden Einschnitte. Analog wird der Häufungsbereich und der Konvergenzbereich der singulären Stelle erklärt. Der Durchschnitt der Häufungsbereiche aller zu einer singulären Stelle hinführenden Einschnitte heißt Bereich der Hauptpunkte.

⁸¹⁾ J. Sire, Sur la puissance de l'ensemble des points singuliers transcendants des fonctions inverses des fonctions entières, Bull. de la soc. math. de France 41 (1913), p. 148—160; F. Iversen, Sur une fonction entière, dont la fonction inverse présente un ensemble de singularités transcendantes de la puissance du continu, Oefversigt af Finska vet. soc. Förhandlingar 58 Afd. A 3 (1915).

⁸²⁾ W. Groβ, a) Über die Singularitäten analytischer Funktionen, Monatsh. Math. Phys. 29 (1918), p. 3—47. Ein Teil des erwähnten Satzes findet sich schon bei Iversen ⁹³); b) Zum Verhalten analytischer Funktionen in der Umgebung singulärer Stellen, Math. Zeitschr. 2 (1918), p. 242—294; c) Zum Verhalten der konformen Abbildung am Rande, Math. Zeitschr. 3 (1919), p. 43—64.

Ich betrachte nun die Struktur der hier eingeführten Mengen. Ein wesentliches Hilfsmittel bei der Untersuchung ist der $Gro\beta$ sche^{82,1}) Satz über den Stern ^{82,2}) der Umkehrungsfunktion einer meromorphen Funktion. Jeder Stern einer Umkehrungsfunktion einer meromorphen Funktion erfüllt darnach die ganze Ebene mit Ausschluß einer Menge vom Maße Null. $Gro\beta^{82b}$) hat einen analogen Satz auch für die Umkehrungsfunktionen solcher Funktionen bewiesen, die nur in einem gewissen Bereiche meromorph sind.

Was nun die verschiedenen Mengen anbetrifft, so gibt es im Einheitskreis meromorphe Funktionen, für die der Wertebereich des Punktes z=1 eine beliebige meßbare Menge enthält und sich von ihr nur um eine Nullmenge unterscheidet. Jede abgeschlossene zusammenhängende Menge kann als Häufungsbereich des Punktes z=1 für eine im Einheitskreis meromorphe Funktion auftreten. Jede abgeschlossene Menge kann als Menge der Hauptpunkte auftreten.

Die nichtalgebraischen Singularitäten der Umkehrungsfunktion einer in der ganzen Ebene meromorphen Funktion werden (wie schon $Hurwitz^{44}$) andeutete und $Iversen^{93a}$) ausführlich darlegte) durch die Konvergenzwerte der nach dem unendlichfernen Punkte führenden Einschnitte geliefert. Jeder Ausnahmewert einer ganzen Funktion ist Konvergenzwert eines zweckmäßig gewählten Einschnittes. 82) 82,3)

21. Geradlinige Annäherung an singuläre Stellen. Ältere Untersuchungen haben sich namentlich mit den Wertemengen usw. bei geradliniger Annäherung an singuläre Stellen befaßt. Während in der Nähe eines Poles ein in allen Richtungen gleichmäßiges Anwachsen der Funktion stattfindet, gilt ein Gleiches nicht für die Umgebung isolierter wesentlich singulärer Stellen eindeutiger Funktionen. Schon der Umstand, daß in der Umgebung einer solchen Stelle f(z) jeden Wert mit höchstens einer Ausnahme wirklich annimmt, steht dem entgegen. Gleichwohl bieten sich in verschiedenen Beispielen recht verschiedene Erscheinungen dar. Wir denken an die Funktion e^z , die längs jeder Geraden der rechten Halbebene gegen unendlich, in der linken Halbebene gegen Null strebt, sofern nur diese Geraden nicht der imaginären Achse parallel sind. Auf diesen letzteren Geraden strebt die Funktion keinem bestimmten Grenzwert zu, sondern nimmt

^{82,1)} Im allgemeinen erfüllt die Bildkurve einer jeden Geraden die Bildebene überall dicht; Borel, Paris C. R. 155 (1913), p. 201.

^{82,2)} Vgl. die Erklärung dieses Begriffes auf p. 446.

^{82,3)} Vgl. dazu auch Valiron, Démonstration de l'existence, pour les fonctions entières, de chemins de détermination infinie, Paris C. R. 166 (1918), p. 382-384.

eine Wertmenge an, die jeden Punkt einer leicht anzugebenden Kreisperipherie zum Häufungspunkt hat: Häufungsbereich des Einschnittes ist also ein Kreis. Darin prägt sich eine allgemeine von Hurwitz⁴⁴) gefundene Gesetzmäßigkeit aus. Wenn ∞ eine isolierte singuläre Stelle von f(z) ist, so strebt die Funktion auf jedem nach ∞ ziehenden Einschnitt entweder einem bestimmten Grenzwert zu, oder aber der Häufungsbereich des Einschnittes ist eine perfekte zusammenhängende Menge.82)

Wenn auch das Maximum M(r) von |f(z)| für |z| = r mit wachsendem r nach unendlich strebt, so kann es doch vorkommen, daß die Funktion auf keiner einzigen Geraden, $\varphi = c(z = re^{i\varphi})$ gegen unendlich strebt. Das ist z. B. bei

$$e^{ie^{ie^z}}$$
 und bei e^{-ze^z}

der Fall, Funktionen, welche auf keiner einzigen Geraden der ganzen Ebene gegen unendlich konvergieren. H. von Koch⁸³) hat darauf hingewiesen, daß $z + e^z$ auf allen Geraden $\varphi = c$ gegen unendlich strebt, so daß also die meromorphe Funktion $\frac{1}{z+e^z}$ auf allen diesen Geraden gegen Null strebt. Es gibt auch ganze Funktionen, die dies eigentümliche Verhalten zeigen. Malmquist84) hat auf Veranlassung von Mittag-Leffler zuerst ein Beispiel einer ganzen Funktion gebildet, die auf allen Geraden $\varphi = c$ mit der einzigen Ausnahme $\varphi = 0$ gegen Null strebt. E. Lindelöf85) und Mittag-Leffler86) haben weitere Beispiele solcher Funktionen angegeben. Ist E(z) eine solche Funktion, also z. B.

$$E(z) = \sum_{0}^{\infty} \left\{ \frac{z}{\log(\nu + 2)} \right\}^{\nu},$$

so ist nach $extit{Mittag-Leffler} \ E(z) \cdot e^{-E(z)}$

$$E(z) \cdot e^{-E(z)}$$

eine Funktion, die auf allen Geraden den Konvergenzwert Null hat. Sire81) gab zuerst ein Beispiel einer ganzen Funktion, die auf ge-

⁸³⁾ H. von Koch, Sur une classe remarquable de fonctions entières et transcendantes, Arkiv för mat. astr. och fys. 1 (1903), p. 627-641.

⁸⁴⁾ J. Malmquist, Étude d'une fonction entière, Acta math. 29 (1905), p. 203-215.

⁸⁵⁾ E. Lindelöf, Sur la détermination de la croissance des fonctions entières définies par un développement de Taylor, Bull. des sc. math. (2) 27 (1903), p. 213-226.

⁸⁶⁾ G. Mittag-Leffler, a) Sur une classe de fonctions entières, Verh. des III. internat. Math.-Kongr. zu Heidelberg 1904, Leipzig 1905, p. 258-264; b) Sur la représentation arithmétique des fonctions analytiques générales d'une variable complexe, Atti del IV. congr. internaz. dei mat. Roma 1908, p. 75-85.

eigneten Geraden Konvergenzwerte besitzt, deren Gesamtheit die Mächtigkeit des Kontinuums besitzt. $Iversen^{31}$) gab ein einfacheres Beispiel dieser Art. $Gro\beta^{87}$) fügte hinzu, daß der Konvergenzbereich des unendlichfernen Punktes bei gewissen ganzen Funktionen die ganze Ebene erfüllen kann.

 $H.\ Bohr^{87,1}$) hat folgenden Satz bewiesen: f(z) sei in dem Bereich x>0, |y|< w(x), wo $w(x)\to 0$ für $x\to \infty$, eindeutig und regulär mit |f(z)|>k>0. Dann gibt es eine stetige Funktion $\varphi(x)$, so daß für alle x>0 stets $|f(x)|<\varphi(x)$ gilt.

So sind mannigfache Beispiele mannigfacher Vorkommnisse gefunden. Aber eine allgemeine Untersuchung der auf den Geraden $\varphi=c$ möglichen Wertebereiche steht noch aus. So ist namentlich die Frage noch offen, ob diese Konvergenzwerte stetig von φ abhängen können. Gleichwohl sind eine ganze Reihe von Gesetzmäßigkeiten für diese Konvergenzwerte bekannt. Namentlich $E.Lindel\"of^{88}$), $F.Iversen^{93}$) und $W.Gro\beta^{83}$) verdankt man gesicherte Ergebnisse in dieser Richtung:

Wenn f(z) in $\varphi_1 \leq \varphi \leq \varphi_2$, |z| > R eindeutig und regulär ist und auf $\varphi = \varphi_1$ und auf $\varphi = \varphi_2$ denselben Konvergenzwert a besitzt, so ist die Funktion entweder im Winkelraum beschränkt und strebt dann für alle $\varphi_1 \leq \varphi \leq \varphi_2$ gleichmäßig gegen a oder aber sie nimmt im Winkelraum jeden Wert mit höchstens einer Ausnahme unendlich oft an. Strebt sie aber auf $\varphi = \varphi_1$ und auf $\varphi = \varphi_2$ gegen verschiedene Grenzwerte, so tritt stets der letztere Fall ein. Wenn L eine dem Winkelraum angehörige Kurve ist, die ins Unendliche führt und wenn auf ihr f(z) gegen a strebt, während f(z) im Winkelraum beschränkt ist, oder doch die Werte Null und Eins ausläßt, so strebt die Funktion in jedem inneren Teilwinkelraum gleichmäßig gegen a in jedem an $\varphi = \varphi_1$ anschließenden inneren Teilwinkelraum (einschließlich $\varphi = \varphi_1$). Ist f(z)

⁸⁷⁾ W. Groß, Eine ganze Funktion, für die jede komplexe Zahl Konvergenzwert ist, Math. Ann. 79 (1918), p. 201-208.

^{87,1)} H.Bohr, En funktionsteoretisk Bemaerkning, Nyt tidsskrift f. Mat. 1916.

⁸⁸⁾ $E.\ Lindel\"off$, a) a. a. O. 61a); b) Sur uu principe géneral d'analyse et ses applications à la théorie de la représentation conforme, Acta Soc. s. Fennicae 46 (1915), Nr. 4. Aus diesem Satz folgt insbesondere, daß die Randfunktion einer in |z|<1 regulären beschränkten Funktion keine sprunghaften Unstetigkeiten haben kann. Dieser Satz ist indessen schon länger bekannt. Vgl. $A.\ Pringsheim$, a. a. O. 222), p. 96–98; $P.\ Fatou$, a. a. O. 95), p. 363. Einen sehr einfachen Beweis hierfür gab $Fej\acute{e}r$ bei $F.\ Riesz$, a. a. O. 299), p. 153, Fußn. 1). Eine zusammenfassende Darstellung über die Randfunktion geben $F.\ u.\ M.\ Riesz$, Über die Randwerte einer analytischen Funktion, 4. Congrès des math. scand. à Stockholm 1916, p. 27—44. Für den im Textangeführten Satz und seine Erweiterung auf meromorphe Funktionen gaben $F.\ Iversen^{.93}$) und $W.\ Gro\beta^{.82}$) weitere Beweise.

auf einer einem Teilwinkelraum angehörigen Kurve beschränkt, und läßt sie im Teilwinkelraum die Werte Null und Eins aus, so liegt f(z) im ganzen Teilwinkelraum unter derselben Grenze. Strebt aber f(z) auf L gegen Unendlich, während es wieder im Winkelraum die drei Werte Null, Eins, Unendlich ausläßt, so strebt es in jedem inneren Teilwinkelraum gleichmäßig gegen Unendlich.

22. Sätze von W. Groß. W. $Groß^{82a})^{82b})$ hat diesen Satz wiedergefunden und noch beträchtlich verallgemeinert:

f(z) sei im Gebiete G und an dessen Rand mit Ausnahme des Punktes P meromorph. Der Häufungsbereich des Punktes P möge einen Punkt aus einem der Komplementärgebiete enthalten, welche durch den auf den Rand bezüglichen Häufungsbereich von P bestimmt sind Dann enthält der Häufungsbereich alle Punkte dieses Komplementärgebietes und alle mit Ausnahme einer Menge vom Maße Null werden in G unendlich oft angenommen.

 $Gro\beta^{96}$) hat weiter den folgenden von $Zoretti^{96}$) vermuteten Satz bewiesen: Jede Funktion mit beschränktem Existenzbereich, welche nur Singularitäten besitzt, in welchen sie verschwindet 88,1), ist identisch Null. Auf Grund dieses Satzes hat $Gro\beta^{82\,b}$) das vorige Ergebnis dahin ergänzt, daß f(z) in G sogar alle Werte mit Ausnahme einer punkthaften Menge unendlich oft annimmt. Ist endlich G einfach zusammenhängend, so gibt es höchstens zwei Ansnahmewerte.

23. Werteverteilung in Winkelräumen. In diesem Zusammenhang muß auch wieder der Satz von $Phraymén^{46}$) Erwähnung finden, den ich so aussprechen will: Eine ganze^{88,2}) Funktion der Ordnung ϱ (vgl. Nr. 29) kann nicht in einem Winkelraum, dessen Öffnung $\pi\left(2-\frac{1}{\varrho}\right)$ übersteigt, beschränkt sein. Bei der Mittag-Leffler schen

Funktion

 $E_{\frac{1}{\varrho}}(z) = \sum_{0}^{\infty} \frac{z^{\nu}}{\Gamma\left(1 + \frac{\nu}{\varrho}\right)}$

wird diese Schranke übrigens gerade erreicht. Auch die Winkelräume, in welchen eine ganze Funktion der Ordnung ϱ ein schwächeres Wachstum zeigen kann, als es dieser Ordnung entspricht, haben eine nur beschränkte Öffnung. Damit hängt es zusammen ⁸⁹), daß eine solche Funktion in einem jeden, diese Öffnung übersteigenden Winkelraum

^{88,1}) Sie soll also auf jedem in einer singulären Stelle endigenden Einschnitt den Konvergenzwert Null haben.

^{88,2)} Es ist nur Bequemlichkeit, wenn ich den Satz nur für ganze Funktionen ausspreche. Er gilt auch für die Umgebung isolierter wesentlich singulärer Stellen.

⁸⁹⁾ L. Bieberbach, Zwei Sätze über das Verhalten analytischer Funktionen in der Umgebung wesentlich singulärer Stellen, Math. Ztschr. 2 (1918), p. 158—170.

einzelne Werte mehrfach annimmt, während die Funktion

$$z+E_{\frac{1}{\varrho}}(z)$$

einen Winkelraum der Öffnung $\pi\left(2-\frac{1}{\varrho}\right)$ schlicht abbildet. Funktionen einer $\frac{1}{2}$ nicht übersteigenden Ordnung können in keinem einzigen Winkelraum wie rationale Funktionen wachsen, ganz im Einklang mit einem Satz von Wiman (p. 436). Bieberbach 90) hat weiter folgenden Satz gefunden: Es gibt Polynome eines jeden Grades und ganze Funktionen einer jeden Ordnung unter $\frac{1}{2}$, deren sämtliche Nullund Einsstellen auf der positiven reellen Achse liegen. Ist aber f(z) eine ganze Funktion, deren Ordnung ϱ zwischen $\frac{1}{2}$ und 1 liegt, so können passende Winkelräume der Öffnung $\frac{1}{\varrho}\pi$ einschließlich des Randes von Null- und Einsstellen frei bleiben. In jedem größeren Winkelraum aber nehmen diese Funktionen alle Werte bis auf höchstens eine Ausnahme unendlich oft an. Wenn endlich die Ordnung größer oder gleich Eins ist, so können passende Winkelräume der Öffnung $\pi\left(2-\frac{1}{\varrho}\right)$ einschließlich des Randes zwei oder mehr Ausnahmewerte zulassen. In jedem größeren Winkelraume aber werden wieder alle Werte mit höchstens einer Ausnahme unendlich oft angenommen. 90,1

Nach einem weiteren Satz von Phragmén und Lindelöf⁴⁶) ist eine jede Funktion der Ordnung ϱ in einem Winkelraum einer unter $\frac{\pi}{\varrho}$ bleibenden Öffnung beschränkt, sobald sie am Rande desselben beschränkt ist. Hält man dies mit dem Lindelöfschen Satz der Nr. 21 zusammen, so sieht man, daß der Winkel zweier Geraden, auf welchen eine Funktion der Ordnung ϱ gegen verschiedene endliche Grenzwerte strebt, mindestens $\frac{\pi}{\varrho}$ sein muß. Daraus folgt, daß zwei Strahlen, auf welchen die Funktion gegen verschiedene endliche Grenzwerte strebt, nicht aneinander stoßen können. Es muß zwischen ihnen ein Winkelraum bleiben, dessen Öffnung mindestens $\frac{\pi}{\varrho}$ beträgt. Es kann also höchstens 2ϱ Winkelräume oder Strahlen mit endlichen Grenzwerten geben. 90,2) In jedem der frei bleibenden Winkelräume muß die Funktion

⁹⁰⁾ L. Bieberbach, Über eine Vertiefung des Picardschen Satzes bei ganzen Funktionen endlicher Ordnung, Math. Ztschr. 3 (1919), p. 175—190.

^{90,1)} Für jede ganze Funktion lassen sich stets beliebig schmale Winkelräume angeben, in welchen sie alle Werte mit höchstens einer Ausnahme annehmen. Vgl. G. Julia, Une propriété générale des fonctions entières, Paris C. R. 168 (1919), p. 502-504.

^{90,2)} G. Valiron, Sur les chemins de détermination des fonctions entières, Bull. soc. math. Fr. 45 (1917), p. 153—161, dehnt dies Resultat auf krummlinig begrenzte Winkelräume von konstanter Öffnung aus.

jeden Wert mit höchstens einer Ausnahme wirklich annehmen. Eventuell kann sie in jedem Teilwinkelraum desselben gegen unendlich streben.⁹¹)

Bemerkt man' mit $Hurwitz^{44}$), daß die Grenzwerte, die auf beliebigen Kurven bei Annäherung an unendlich erhalten werden können, gerade die nicht algebraischen Singularitäten der Umkehrungsfunktion liefern, so kommt man zu der noch unbewiesenen Vermutung von $Denjoy^{92}$), daß die Umkehrungsfunktion einer ganzen Funktion endlicher Ordnung höchstens $2 \, \varrho + 1$ Singularitäten nicht algebraischen Charakters haben kann. 90,3)

Endlich führe ich (als Spezialfall eines allgemeineren) den folgenden Satz von *Phragmén* und *Lindelöf*⁴⁶) an, der das Wachstum im Inneren eines Winkelraumes mit dem am Rande in Beziehung setzt. f(z) besitze in einem Winkelraum die Ordnung ϱ , so daß für jedes $\varepsilon > 0$

$$\lim_{r \to \infty} \sup_{\varphi \to \infty} \frac{\log |f(re^{i\varphi})|}{r^{\varrho+\varepsilon}} = 0$$

ist. An den Rändern $\varphi=\varphi_1$ und $\varphi=\varphi_2$ eines Teilwinkelraumes, dessen Öffnung kleiner als $\frac{\pi}{\rho}$ ist, sei

$$\lim_{r \to \infty} \sup_{r \to \infty} \frac{\log |f(re^{i\varphi_k})|}{r^{\varrho}} = h_k. \qquad (k = 1, 2)$$

^{90,3)} In einer im Arkiv för mat. astr. och fys. erscheinenden Arbeit hat T. Carleman $5\varrho+1$ bewiesen.

⁹¹⁾ Boutroux behauptet, daß sich zwischen zwei Endlichkeitsräume stets ein Unendlichkeitsraum lagere. Vgl. P. Boutroux, Sur l'indétermination d'une fonction uniforme au voisinage d'une singularité transcendante, Ann. de l'Éc. norm. sup. (3) 25 (1908), p. 319—370, und Paris C. R. 142 (1906), p. 499—501. Ferner: Sur l'inversion des fonctions entières, Atti del IV congr. internaz. dei mat. Roma 1909, Bd. I, S. 31—35; Sur les points critiques transcendants et sur les fonctions inverses des fonctions entières, Paris C. R. 145 (1907) p. 708—710, und p. 1406—1408. Sur les singularités transcendantes des fonctions inverses des fonctions entières, Paris C. R. 149 (1909), p. 255—258. Die Ergebnisse von Sire 81) lehren, daß diese Unendlichkeitsräume, wenn sie überhaupt immer vorhanden sein sollten, beliebig schmal sein können.

⁹²⁾ A. Denjoy, Sur les fonctions entières de genre fini, Paris C. R. 145 (1907) p. 106-108.

⁹³⁾ F. Iversen, a) Recherches sur les fonctions inverses des fonctions méromorphes, Diss. Helsingfors 1914; b) Sur quelques propriétés des fonctions monogènes au voisinage d'un point singulier, Oefversigt af Finska Vet. Soc. Förh. 58 (1916), Afd. A. Nr. 25; c) Sur quelques fonctions entières qui admettent des valeurs asymptotiques finies, Oefversigt af Finska Vet. Soc. Förh. 61 (1919), Afd. A. Nr. 1; d) Sur les valeurs asymptotiques des fonctions méromorphes et les singularités transcendantes de leurs inverses, Paris C. R. 166 (1918), p. 156. G. Rémoundos, a) Sur les points critiques transcendants, Ann. de la fac. des sc. de Toulouse (2) 9 (1908), p. 177—182; b) Sur la classification des points transcendants des inverses des fonctions entières ou méromorphes, Paris C. R. (1917), p. 331.

424 II C 4. L. Bieberbach. Neuere Untersuch. über Funkt, von kompl. Variablen.

Ferner sei $H(\varphi) = A \cos \varrho \varphi + B \sin \varrho \varphi$, $H(\varphi_1) = h_1$, $H(\varphi_2) = h_2$. Dann ist für $\varphi_1 \leq \varphi \leq \varphi_2$ $\limsup_{r \to \infty} \frac{\log |f(r e^{i \varphi})|}{r^{\varrho}} \leq H(\varphi).$

- 24. Ränderzuordnung bei konformer Abbildung. In engem Zusammenhang mit den hier besprochenen Dingen stehen die Untersuchungen von Study, Carath'eodory, Lindel"of u. a. über die Ränderzuordnung bei konformer schlichter Abbildung 93,1). Dabei spielt auch der Satz von $Schwarz^{94}$) eine Rolle: Ist f(z) oberhalb der reellen Achse in einem an dieselbe anschließenden Bereiche regulär und eindeutig, und strebt sie bei Annäherung an die reelle Achse gleichmäßig einem konstanten Werte zu, so ist sie überhaupt eine Konstante. Natürlich läßt sich dieser Satz sofort auf die Annäherung an einen analytischen Kurvenbogen verallgemeinern. Nimmt man den Satz von Carath'eodory hinzu, wonach die schlichte Abbildung eines von einer Jordankurve begrenzten Bereiches auf einen Kreis auch auf dieser Kurve noch stetig ist, so läßt sich der Satz auch für die Annäherung an Jordansche Kurvenbogen aussprechen.
- 25. Der Fatousche Satz. In engem Zusammenhang mit der Frage der Ründerzuordnung steht auch der Fatousche Satz⁹⁵). Eine im Einheitskreis reguläre beschränkte Funktion ist in allen Peripheriepunkten mit Ausnahme einer Nullmenge dreiecksstetig, d. h. sie strebt einem bestimmten Grenzwerte zu, wenn man sich dem Punkte längs eines Einschnittes nähert, der einem Teildreiecke des Kreises angehört. Verschwindet aber eine beschränkte Funktion in einer Punktmenge,
- 93,1) Man vgl. die in Il C 3 (*Lichtenstein*), Nr. 48 angegebene Literatur. Dazu kommen noch die Arbeiten von $Gro\beta^{82}$).
- 94) H. A. Schwarz, Zur Integration der Differentialgleichung $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ unter vorgeschriebenen Grenz- und Unstetigkeitsbedingungen, Berl. Monatsb. 1870, p. 764—795 und Ges. Abh., Bd. II, p. 144—171. Man vgl. ferner Koebe, Abhandlungen zur Theorie der konformen Abbildung I, J. f. Math. 145 (1915), p. 177—223. W. $Gro\beta^{32}$) hat diesen Satz verallgemeinert.
- 95) P. Fatou, Série trigonométrique et série de Taylor, Acta math. 30 (1906), p. 335—400. Ein eleganter Beweis findet sich bei Carathéodory, Über die gegenseitige Beziehung der Ränder bei der konformen Abbildung des Inneren einer Jordanschen Kurve auf einen Kreis, Math. Ann. 73 (1913), p. 305—320; ferner vgl. E. Study, Vorlesungen über ausgewählte Gegenstände der Geometrie, Heft II, herausgegeben unter Mitwirkung von W. Blaschke, 1913, p. 50. Überhaupt gehören in diesen Zusammenhang auch die Untersuchungen über das Randverhalten bei schlichter Abbildung 93, 1). Fatou dehnte seinen Satz auf die Annäherung an beliebige analytische Linien aus. Sur les lignes singulières des fonctions analytiques, Bull. de la soc. math. de France 41 (1913), p. 113—119. Für rektifizierbare Linien gibt ihn Denjoy, Paris C. R. 168 (1919), p. 387.

deren Inhalt Null übertrifft, so ist sie wahrscheinlich identisch Null. (96) Natürlich genügt statt der Beschränktheit auch die Bedingung, daß die Funktion ein Kontinuum von Werten ausläßt. (82) (95)

Ganze transzendente Funktionen.

26. Weierstraß. Dem vorigen Abschnitt reiht sich die Theorie der ganzen transzendenten Funktionen an. Denn auch sie ist ja in vielen Stücken eine Theorie des isolierten wesentlich singulären Punktes.

Den Ausgangspunkt der Theorie bildet die Abhandlung von Weierstra β^{97}) aus dem Jahre 1876, in welcher er durch schon vorher bekannte Beispiele, wie die Γ -Funktion und die trigonometrischen Funktionen angeregt, die Produktdarstellung der ganzen rationalen Funktionen auf die ganzen transzendenten Funktionen überträgt. Er fand den Ausdruck

$$f(z) = e^{g\left(z\right)} \cdot z^m \cdot \prod \left\{ \left(1 - \frac{z}{a_i}\right) e^{\frac{z}{a_i} + \frac{1}{2}\left(\frac{z}{a_i}\right)^2 + \ldots + \frac{1}{k_i}\left(\frac{z}{a_i}\right)^{k_i}} \right\}, \ |a_n| \leq |a_{n+1}|.$$

Dabei bedeutet g(z) eine weitere ganze Funktion. Die k_i sind so zu wählen, daß $\sum_{i=1}^{n} \frac{z_i}{a_i} k_i + 1$

konvergiert. Wesentliche Änderungen hat der Weierstraßsche Beweis nie erfahren. Neuerdings hat ihn A. Pringsheim 98) durch Vermeidung komplexer Logarithmen noch ein wenig elementarer gefaßt. Die weitere Entwicklung hat sich zunächst hauptsächlich mit dem Fall beschäftigt, wo g(z) rational ist und wo die k_i unter einer festen Grenze liegen. Das sind die Funktionen von endlichem Geschlecht.

27. Laguerre. Dieser Begriff des endlichen Geschlechtes ist zuerst von $Laguerre^{99}$) 1882 verwendet worden. Weder er noch seine Nachfolger haben stets genau die heute übliche Definition benutzt. Wir erklären jetzt so: Die ganze Zahl k sei so gewählt, daß

$$\sum \left| \frac{z}{a_i} \right|^k$$

⁹⁶⁾ P. Fatou, a. a. O. 95), p. 394. Vgl. auch: L. Zoretti, a. a. O. 43); W. Groß, a) Zur Theorie der Differentialgleichungen mit festen kritischen Punkten, Math. Ann. 78 (1918), p. 332-342; b) a. a. O. 82); M. u. F. Riesz, a. a. O. 88).

⁹⁷⁾ K. Weierstraβ, Zur Theorie der eindeutigen analytischen Funktionen, Berl. Abh. 1876, p. 11-60, Ges. Werke Bd. II, p. 77-124.

⁹⁸⁾ A. Pringsheim, Über die Weierstraßsche Produktdarstellung ganzer transzendenter Funktionen und über bedingt konvergente unendliche Produkte, Münch. Ber. 1915, p. 387—400.

⁹⁹⁾ E. Laguerre, Sur quelques équations transcendantes, Paris C. R. 94 (1883), p. 160—163, Oeuvres I, p. 167—170.

divergiert und daß $\sum \left| \frac{z}{a_i} \right|^{k+1}$

konvergiert. In der obigen Produktdarstellung können dann alle $k_i=k$ gewählt werden. Die ganze Funktion g(z) sei rational und besitze den Grad g. Dann heißt die größere der beiden Zahlen k und g das Geschlecht der Funktion. Kann aber die ganze Funktion nicht in dieser Weise dargestellt werden, so heißt sie von unendlichem Geschlecht.

Laguerre hat nach zwei Richtungen hin die Theorie über Weierstraβ hinaus fortgeführt. Einmal hat er die Analogie zur Algebra weiter verfolgt und Sätze über Wurzelrealität übertragen. Es ist ja bekannt, daß hier mit einer Funktion zusammen nicht auch die Ableitung lauter reelle Wurzeln zu besitzen braucht.¹⁰⁰) Laguerre hat klar erkannt.¹⁰¹), wenn auch nicht lückenlos bewiesen.¹⁰²), wie hier der Satz lauten muß:

Eine reelle ganze Funktion vom Geschlechte p möge außer reellen genau q komplexe Wurzeln besitzen. Dann besitzt ihre Ableitung außer den durch Vielfachheit und Rolleschen Satz bedingten reellen Wurzeln höchstens noch p+q weitere reelle oder kompexe Nullstellen. Von einem gewissen Modul an sind nach $Leau^{151b}$) die nach Rolle vorhandenen die einzigen reellen Nullstellen 102,1). Zahlreiche weitere Arbeiten schließen sich diesem Fragekreis an. 103)

¹⁰⁰⁾ Beispiele findet man bei *E. Borel*, a. a. O. 63b), p. 30 und bei *O. Perron* im Arch. Math. Phys. 22 (1914), p. 362.

¹⁰¹⁾ E. Laguerre, a) a. a. O. 99); b) Sur le genre de quelques fonctions entières, Paris C. R. 98 (1884), p. 79-81; Oeuvres I, p. 178-180; c) Sur quelques points de la théorie des équations numériques, Acta math. IV (1884), p. 97-120; Oeuvres I, p. 184-206.

¹⁰²⁾ Einen ausführlichen Beweis findet man bei E. Borel, a. a. O. 63b).

^{102,1)} L. Leau 151b) hat den Satz auf einige Klassen von Funktionen mit unendlich vielen komplexen Nullstellen ausgedebnt.

¹⁰³⁾ E. Laguerre, Sur la théorie des équations numériques, J. de math. (3) 3 (1883), p. 99-146; Oeuvres I, p. 3-47; E. Cesáro, a) Sur les fonctions holomorphes de genre quelconque. Paris, C. R. 99 (1884), p. 26-27; b) Sur un théorème de M. Laguerre, Nouv. Ann. de math. (3) 4 (1885), p. 321-327. Weitere Arbeiten von Bassi, Vivanti, Maillet, Jaggi, Dell' Agnola, Puzyna, De Sparre, Frenzel usw. mit mehr formalem Inhalt, findet man bei Vivanti Theorie der eindeutigen analytischen Funktionen. Deutsch von A. Gutzmer, Leipzig 1906, zusammengestellt. Ferner Bálint, Math. és term. értesitö 31 (1913); J. L. W. V. Jensen, Recherches sur la théorie des équations, Acta math. 36 (1913), p. 181-195; G. Pólya, a) Algebraische Untersuchungen über ganze Funktionen vom Geschlecht Null und Eins, J. f. Math. 145 (1915), p. 224-249; b) Bemerkung zur Theorie der ganzen Funktionen, Jahresber. d. D. Math.-Ver. 25 (1915), p. 392-400; c) Über die Nullstellen gewisser ganzer Funktionen, Math. Ztschr. 2 (1918), p. 352-382; d) Geometrisches über die Verteilung der Nullstellen gewisser ganzer

Viele derselben beziehen sich nicht auf den allgemeinen Fall, sondern machen die spezielle Annahme, daß das g(z) in der Weierstraßschen Produktdarstellung sich auf eine Konstante reduziert. Solche Funktionen heißen kanonisch oder primitiv. Da aber die gefundenen Kriterien für die Wurzelrealität sich z. B. auf die Koeffizienten der Potenzreihenentwicklung beziehen, die Bedingung kanonisch aber an die Weierstraßsche Produktdarstellung anknüpft, so vermißt man ein Koeffizientenkriterium für kanonische Funktionen. Diese Lücke hat Maillet 104) ausgefüllt. Er gelangt zu Formeln für die Potenzsummen der reziproken Wurzeln, die den algebraischen analog sind. Im Zusammenhang damit steht auch das gesuchte Kriterium. Für den Fall, daß der Grenzexponent (Erklärung weiter unten) nicht ganzzahlig ist und den Wert ϱ hat, findet man: Die Funktion

$$\sum a_n z^n$$

ist dann und nur dann kanonisch, wenn

$$a_1 = a_2 = \dots = a_k = 0$$

ist, wo $k = [\varrho]$ bedeutet. Daß man den Grenzexponenten seinerseits aus den Koeffizienten ermitteln kann, werden wir bald sehen. Die erwähnten Arbeiten liefern weiter Methoden zur Berechnung von q(z).

Viele der Arbeiten fassen die ganzen Funktionen als gleichmäßige Grenzfunktionen einer Polynomenfolge auf. Dahin gehört auch schon ein Satz von $Laguerre^{105}$), wonach eine solche Folge mit lauter reellen Nullstellen nur eine ganze Grenzfunktion besitzen kann, die aus einer Funktion des Geschlechtes 1 durch Multiplikation mit einem Exponentialfaktor zweiten Grades $e^{\gamma z^2}$ entsteht $(\gamma < 0)$. $^{107\,a}$) Haben alle Nullstellen das gleiche Vorzeichen, so ist die Grenzfunktion, wenn überhaupt ganz, eine des Geschlechts Null, multipliziert mit einem Exponentialfaktor ersten Grades $e^{\gamma z}$. Diese Sätze sind erst neuerdings durch $Lindwart^{106}$) vollständig bewiesen worden. Der Satz wurde

transzendenter Funktionen, Münch. Ber. 1920, p. 285—290; J. Grommer, Ganze transzendente Funktionen mit lauter reellen Nullstellen, J. f. Math. 144 (1914), p. 114—166 (= Diss. Göttingen 1914). Ålander, a) Sur le déplacement des zéros des fonctions entières par leur dérivation, Diss. Upsala 1914; b) Sur les zéros extraordinaires des dérivées des fonctions entières réelles, Arkiv för mat. astr. och fys. 11 (1916), Nr. 15; c) Sur les zéros des dériviées des fonctions rationelles et d'autres fonctions méromorphes, Arkiv för mat. astr. och fys. 14 (1920), Nr. 23.

¹⁰⁴⁾ E. Maillet, Sur les fonctions entières et quasientières, J. de math. (5) 8 (1902), p. 329-386.

¹⁰⁵⁾ E. Laguerre, Sur les fonctions de genre zéro et du genre un, Paris C. R. 95 (1882); Oeuvres p. 174-177.

¹⁰⁶⁾ E. Lindwart, Über eine Methode von Laguerre zur Bestimmung des Geschlechtes einer ganzen Funktion, Diss. Göttingen 1914.

auch noch insofern vertieft, als *Lindwart* und *Pólya* ¹⁰⁷) erkannten, daß es genügt, vorauszusetzen, daß die betreffenden Polynomfolgen in einem Teilkreis der Ebene gleichmäßig gegen eine nichtkonstante Grenzfunktion konvergieren, während die *Laguerre* schen Sätze (nicht gleichmäßige) Konvergenz gegen eine ganze Funktion in der ganzen Ebene verlangen. ¹⁰⁸) ¹⁰⁸, ¹)

J. Grommer 103) hat aus der Algebra die bekannten Bedingungen für die Realität sämtlicher Nullstellen übertragen. 108, 2)

Ich komme zur zweiten folgenschweren Laguerreschen Entdeckung. Der Anfang, den er machte, ist zwar auf den ersten Blick unscheinbar, aber die ganze weitere Entwicklung hat davon ihren Ausgang genommen. Unter Verwendung des Cauchyschen Integralsatzes hat Laguerre¹⁰⁹) gefunden, daß eine ganze Funktion sicher höchstens vom Geschlecht p ist, wenn $\lim_{z\to\infty} \left| \frac{1}{z^p} \frac{f'(z)}{f(z)} \right| = 0$

ist. Das ist insofern der Keim zu den weiteren mit *Poincaré* 1883 einsetzenden Fortschritten, als darin zum ersten Male eine Beziehung zwischen dem Geschlecht und dem Wachstum der ganzen Funktionen angedeutet ist. Für die Funktionen nämlich, welche der *Laguerres*chen Bedingung genügen, ist auch

$$|f(z)| < e^{\epsilon |z|^{p+1}}$$

für jedes positive ε von einem gewissen |z| an.

28. Poincaré. Hadamard. Borel. Im gleichen Jahre 1883 und im gleichen Bande des Bulletin de la société mathématique de France hat *Poincaré* zwei grundlegende Arbeiten veröffentlicht, die über Uni-

108) Man vgl. weiter M. Petrovitch, Sur certaines transcendantes entières, Bull. de la soc. math. de France 34 (1906), p. 165-177.

108,1) Die ganzen Funktionen, welche als Grenzen von Polynomen aus nur reellen Nullstellen auftreten können, besitzen charakteristische funktionentheoretische und algebraische Eigenschaften. G. Pólya u. J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der algebraischen Gleichungen, Crelles J. 144 (1914), p. 89—113.

108,2) Gewisse Vereinfachungen des Beweises hat N. Kritikos, Über ganze transzendente Funktionen mit reellen Nullstellen, Math. Ann. 81 (1920), p. 97—118 erzielt.

109) E. Laguerre, Sur la détermination du genre d'une fonction transcendante, Paris C. R. 94 (1882), p. 635-638; Oeuvres I, p. 171-173.

¹⁰⁷⁾ E. Lindwart und G. Pólya, Über den Zusammenhang zwischen der Konvergenz von Polynomfolgen und der Verteilung ihrer Wurzeln, Rend. di Palermo 37 (1914), p. 297—304. G. Pólya, a) Über Annäherung durch Polynome mit lauter reellen Wurzeln, Rend. di Palermo 86 (1913), p. 297—395; b) Über Annäherung durch Polynome, deren sämtliche Wurzeln in einen Winkelraum fallen, Gött. Nachr. 1913, p. 326—330. Vgl. auch R. Jentzsch, a. a. O. 273).

formisierung und die über ganze Funktionen. Poincaré hat das Laguerresche Resultat dahin vervollständigt, daß für alle Funktionen des Geschlechts p und beliebige $\varepsilon > 0$ stets

$$\lim_{z \to \infty} e^{-\varepsilon |z|^{p+1}} \cdot |f(z)| = 0$$

ist. Ferner hat $Poincar\acute{e}$ schon die Beziehungen des Geschlechts zu den Koeffizienten der Funktion zu untersuchen begonnen. Er hat nämlich gezeigt, daß für die Koeffizienten einer Funktion $\Sigma a_n z^n$ vom Geschlecht p stets

$$a_m \cdot \Gamma\left(\frac{m+h+1}{p+1}\right) \longrightarrow 0 \text{ (für } m \longrightarrow \infty \text{ und beliebiges } h > 0)$$

gilt.

Zehn Jahre lang war dies der Stand der Theorie, da erschien 1893 eine bahnbrechende Arbeit von *J. Hadamard* ¹¹¹). Er hat, wie weiterhin näher ausgeführt wird, die *Poincaré* schen Sätze umgekehrt.

Bahnbrechend wirkte weiter eine Arbeit von *E. Borel*¹¹²). Darin wird die Beziehung zum *Picard* schen Satze hergestellt und dieser gleichzeitig vertieft.

Das sind die Hauptzüge, aus welchen eine große Zahl von Mathematikern in zum Teil nicht minder eigenartigen Beiträgen das heutige Gesamtbild der Theorie der ganzen Funktionen endlicher Ordnung herausgearbeitet haben. Wir wenden uns nun der systematischen Darstellung der Theorie zu.

29. Grundbegriffe. Zu dem schon erwähnten Begriffe Geschlecht trage ich noch nach, daß einzelne Mathematiker sich anderer Begriffsnamen bedienen. So findet man bei $Schaper^{113}$) und $Pringsheim^{114}$) die Benennung Höhe, bei $Vivanti^{103}$) den Ausdruck Rang. Den Grad der Funktion g(z) in der $Weierstra\beta$ schen Produktdarstellung will ich (bei geeigneter Normierung) kurz Grad der Funktion nennen. Dann sind die Funktionen nullten Grades die schon erwähnten kanonischen oder primitiven Funktionen. Ferner spielt der Grenzexponent (ordre réelle

¹¹⁰⁾ H. Poincaré, Sur les fonctions entières, Bull. de la soc. math. de France 11 (1883), p. 136-144.

¹¹¹⁾ J. Hadamard, Etude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. de math. (4) 9 (1893), p. 171—215.

¹¹²⁾ E. Borel, Sur les zéros des fonctions entières, Acta math. 20 (1897), p. 357-396.

¹¹³⁾ H. v. Schaper, Über die Theorie der Hadamardschen Funktionen und ihre Anwendung auf das Problem der Primzahlen, Diss. Göttingen 1898.

¹¹⁴⁾ A. Pringsheim, Elementare Theorie der ganzen transcendenten Funktionen von endlicher Ordnung, Math. Ann. 58 (1904), p. 257-342.

der Franzosen) eine wichtige Rolle. Falls es eine Zahl ϱ gibt von der Art, daß, unter a_i die Nullstellen der ganzen Funktion verstanden, für jedes $\varepsilon > 0$ die Reihe $\sum \left|\frac{1}{a_i}\right|^{\varrho+\varepsilon}$

konvergiert und die Reihe

$$\sum \left| \frac{1}{a_i} \right|^{\varrho - \varepsilon}$$

divergiert, so ist ϱ der Grenzexponent. Er kann natürlich ein Konvergenz- und ein Divergenzexponent sein, je nach dem Verhalten, das

$$\sum \left| \frac{1}{a_i} \right|^{\varrho}$$

selbst zeigt. Der Grenzexponent einer Zahlenfolge hängt selbstredend eng mit dem einfachsten der Bertrandschen Konvergenzkriterien zusammen. Der Grenzexponent hat nämlich dann und nur dann den Wert ϱ , wenn für jedes $\varepsilon>0$ von einem gewissen n an

$$|a_n| > n^{\frac{1}{\varrho} - \epsilon}$$

gilt, und wenn außerdem für jedes $\varepsilon > 0$ und gewisse beliebig große n noch

$$|a_n| < n^{\frac{1}{\varrho} + \epsilon}$$

bleibt. Hiernach liegt eine von $Lindel\ddot{o}f^{115}$) und fast gleichzeitig von $P.Boutroux^{116}$) eingeführte Verallgemeinerung des Grenzexponenten nahe.

Wir kommen zu den aufs Wachstum der Funktion bezüglichen Ordnungsbegriffen. Eine Funktion heißt von der *Ordnung* μ (ordre apparent der Franzosen) wenn für jedes $\varepsilon > 0$ von einem gewissen |z| = r an

$$|f(z)| < e^{r^{\mu} + \epsilon}$$

ist und wenn es gleichzeitig beliebig große r gibt, für welche

$$\max_{|z|=r} |f(z)| > e^{r^{\mu-\epsilon}}$$

ist. Hiernach ist also z. B. eine Funktion $e^{\varphi(z)}$ vom Grade μ genau von der Ordnung μ . Man erkennt, wie der Begriff "Ordnung" den Begriff "Grad" der ganzen rationalen Funktionen verallgemeinert. Alle Funktionen, für die es ein derartiges endliches μ gibt, heißen von endlicher Ordnung, die anderen sind von unendlicher Ordnung. Falls die zweite der bei der Erklärung des Ordnungsbegriffes benutzten Ungleichungen auch von einem gewissen |z| an für alle z erfüllt ist, so

¹¹⁵⁾ E. Lindelöf, Mémoire sur la théorie des fonctions entières de genre fini, Acta soc. sc. Fenn. 31 (1902). Vgl. auch G. Valiron, Sur les fonctions entières d'ordre fini, Paris C. R. 156 (1913), p. 1138—1141.

¹¹⁶⁾ P. Boutroux, Sur quelques propriétés des fonctions entières, Acta math. 28 (1903), p. 97-224.

haben wir es mit einer Funktion von regelmäßigem Wachstum zu tun.^{116, 1})

Die Funktionen einer gegebenen Ordnung μ kann man noch in verschiedene Typen einteilen.¹¹⁴) Gibt es ein endliches $\gamma > 0$, so daß

$$|f(z)| < e^{(\gamma + \varepsilon)r^{\mu}}$$

ist von einem gewissen r an, und daß

$$\max_{|z|=r} |f(z)| > e^{(\gamma-\varepsilon)r^{\mu}}$$

ist für gewisse beliebig große r bei beliebig gegebenem $\varepsilon>0$, so haben wir eine Funktion vom Normaltypus γ vor uns. Ist aber für jedes $\varepsilon>0$ von einem gewissen r an

$$|f(z)| < e^{\epsilon r^{\mu}}$$

so liegt der *Minimaltypus* der Ordnung μ vor, und wenn für jedes $\gamma > 0$ und gewisse beliebig große z noch

$$\max_{|z|=r} |f(z)| > e^{\gamma r^{\mu}}$$

ist, so haben wir den Maximaltypus der Ordnung u.

Der vorhin erwähnten Verallgemeinerung des Grenzexponenten geht eine gleichfalls von E. Lindelöf und P. Boutroux eingeführte Verallgemeinerung des Ordnungsbegriffes parallel. Sie ziehen nämlich neben der Exponentialfunktion noch

$$e^{r^{\mu} \cdot \log^{\alpha_1} r \cdot \log^{\alpha_1}_2 r \cdot \ldots \log^{\alpha_k \pm \varepsilon}_k r}$$

als Vergleichsfunktion heran.

30. Ordnung und Koeffizienten. Ihren Ausgang nimmt hier die Entwicklung von der schon erwähnten *Poincaré*schen Entdeckung über die Koeffizienten einer Funktion vom Geschlecht p. Die Einführung des Ordnungsbegriffes hat zu einer Verschärfung geführt. Hadamard lehrte umgekehrt aus den Koeffizienten die Ordnung bestimmen. Während *Poincaré* sich auf Eigenschaften des Laplaceschen Integrales stützt, haben die Beweise unter den Händen von Hadamard 117, E. Lindelöf 85) 115)

^{116,1)} Bei Funktionen von unregelmäßigem Wachstum gilt sogar in unendlich vielen r-Intervallen $|f(z)| < e^{r^{\mu}-\epsilon}$.

Man vgl. R. Mattson, Sur la croissance du module d'une fonction entière, Arkiv for mat. astr. och fysik. 6 (1910), Nr. 10. Beispiele von Funktionen mit unregelmäßigem Wachstum konstruiert Borel, Sur quelques fonctions entières, Rend. di Palermo 23 (1907), p. 320—323.

¹¹⁷⁾ J. Hadamard, a) a. a. O. 111); b) Sur les fonctions entières, Bull de la soc. math. de France 24 (1896), p. 186—187.

und A. Pringsheim¹¹⁸) eine außerordentlich kurze und elegante Gestalt erhalten. Der Gipfel des Erreichbaren ist wohl durch E. Lindelöf⁸⁵) gegeben. Eine Modifikation des Lindelöfschen Beweises bietet A. Pringsheim (a. a. O.¹¹⁴), p. 337 ff.). Ein durch diese Untersuchungen sicher gestellter Satz lautet:

Aus $|f(z)| < e^{\frac{\alpha+\epsilon}{c_{\mu}}r^{\mu}} (\alpha > 0, \ \epsilon > 0)$ von einem gewissen |z| = r an folgt für die Koeffizienten von $f(z) = \sum c_n z^n$: $\sqrt[n]{|c_n|} < \left(\frac{\alpha+\epsilon}{n}\right)^{\frac{1}{\mu}}$ von einem gewissen n an und umgekehrt.

Aus $\max |f(z)| > e^{\frac{\alpha - \epsilon}{\epsilon \mu} r^{\mu}}$ für gewisse beliebig große |z| = r folgt $\sqrt[n]{|c_n|} > \left(\frac{\alpha - \epsilon}{n}\right)^{\frac{1}{\mu}}$ für gewisse beliebig große n und umgekehrt.

 $E.\ Lindel\"{o}f^{85}$) hat unter Vervollständigung eines Versuches von $E.\ Maillet^{119}$) eine Ergängung dieses Satzes angegeben. Der Zusatz bezieht sich natürlich immer nur auf die zweite Hälfte: Damit die dort gegebene Abschätzung nicht nur für gewisse große r, sondern von einem gewissen r an immer erfüllt sei, ist notwendig und hinreichend, daß die für die Koeffizienten angegebene Abschätzung für unendlich viele Werte $n_0,\ n_1,\ldots$ von n erfüllt sei, welche der Bedingung

$$\lim_{k \to \infty} \frac{n_{k+1}}{n_k} = 1 \qquad \text{genügen.}$$

Dem so für die Normaltypen ausgesprochenen Satz stehen analoge für Funktionen der Ordnung μ überhaupt und für Lindel"of-Boutrouxsche Ordnungstypen an der Seite. Auch für die Minimaltypen lassen sich genauere Resultate finden.

Falls die vorgelegte Funktion lauter positive Koeffizienten hat, so gehen diese für das Maximum der Koeffizienten gefundenen Ergebnisse in Aussagen über das asymptotische Verhalten der Funktion selbst auf der positiven reellen Achse über. 120)

¹¹⁸⁾ A. Pringsheim, a) Zur Theorie der ganzen transcendenten Funktionen, Münch. Ber. 32 (1902), p. 163—192 und p. 295—304; b) Zur Theorie der ganzen transcendenten Funktionen von endlichem Rang, Münch. Ber. 33 (1903), p. 101—130; c) a. a. O. 114).

¹¹⁹⁾ E. Maillet, Sur les fonctions entières et quasientières à croissance régulière et les équations différentielles, Ann. de la fac. des sc. de Toulouse (2) 4 (1902), p. 447—469.

¹²⁰⁾ E. le Roy, Valeurs asymptotiques de certaines séries procédant suivant les puissances entières et positives d'une variable réelle, Bull. des sc. math. (2) 24 (1900), p. 245-268; E. Lindelöf, a. a. O. 115); P. Boutroux, a. a. O. 116); G. Valiron, Sur le calcul approché de certaines fonctions entières, Bull. soc. math. Fr. 42 (1914), p. 252-264; Denjoy, a. a. O. 147,1).

31. Ordnung und Grenzexponent. Den Ausgangspunkt bildet hier die Poincarésche Entdeckung, daß

$$\lim_{z \to \infty} |f(z)| e^{-\epsilon |z|^{n+1}} = 0$$

ist für Funktionen vom Geschlechte p, bei beliebig gegebenem positiven ε. Die Einführung des Grenzexponenten und der Ordnung erlaubt eine Verschärfung des Resultates. 121) Gleichzeitig ergibt sich eine Umkehrung.

Zunächst die Verschärfung: Primitive Funktionen des Grenzexponenten o sind höchstens von der Ordnung o. Genauer gesagt liefern elementare Abschätzungen das folgende Ergebnis: Die primitive Funktion f(z) sei vom Geschlechte p und es sei $p < \sigma \le p + 1$. Gilt dann

$$\limsup_{r \to \infty} \nu \left| \frac{1}{a_r} \right|^{\sigma} \leq g, \quad \text{wo} \quad g \geq 0,$$

so ist für jedes $\varepsilon > 0$ und alle genügend großen |z|

$$|f(z)| < e^{(c_{\sigma^g + \epsilon})|z|^{\sigma}}$$

 C_{σ} bedeutet dabei eine passende nur von σ abhängende positive Zahl. Die Funktion gehört also höchstens dem Normaltypus an. Ist insbesondere

 $\lim_{r\to\infty} \nu \left| \frac{1}{a_r} \right|^{\sigma} = 0,$

so gehört die Funktion höchstens dem Minimaltypus an. Das ist namentlich dann der Fall, wenn o Konvergenzexponent ist. Denn dann kann man $\sigma = \varrho$ wählen.

 $f(z) = e^{q(z)}$ Ist die Funktion

vom Grade g, und besitzt der höchste Koeffizient in g(z) den Wert a, so ist f(z) vom Typus |a| der Ordnung g.

Damit gewinnt man dann zunächst das Resultat, daß Funktionen eines endlichen Geschlechtes stets von endlicher Ordnung sind und zwar gilt z. B. die Abschätzung $|f(z)| < e^{r^{\lambda + s}}$

$$|f(z)| < e^{r^{\lambda + n}}$$

wo & die größere der beiden Zahlen Grad und Grenzexponent bedeutet.

Sind nun aber auch umgekehrt alle Funktionen von endlicher Ordnung von endlichem Geschlecht? Für diese Fragestellung hat Hadamard bahnbrechend gewirkt.

Zunächst ergibt sich, daß nirgends verschwindende Funktionen

¹²¹⁾ J. Hadamard, a) Théorème sur les séries entières, Paris C. R. 124 (1897), p. 492; b) Sur les séries entières, Procès verbaux de la soc. des sc. phys. et nat. de Bordeaux, 1897, p. 110-112; c) Théorème sur les séris entières, Acta math. 22 (1898), p. 55-63; E. Lindelöf, a. a. O. 115); A. Pringsheim, a. a. O. 114).

endlicher Ordnung stets von der Form $e^{g(z)}$ mit ganzem rationalem g(z) sind. Ordnung und Grad stimmen hier also überein. Das ergibt sich als unmittelbare Folgerung aus einem Hadamardschen Satz über den Realteil analytischer Funktionen. 292)

Weiter aber gilt es nun aus der bekannten Ordnung der Funktion einen Schluß auf den Grenzexponenten der Nullstellen zu ziehen. Dies gelingt Hadamard durch eine Abschätzung der Anzahl der Nullstellen, welche eine Funktion gegebener Ordnung in einem gegebenen endlichen Bereich haben kann. Sein Beweis ist zuerst durch Schou¹²²) vereinfacht, dann sein Resultat durch Lindelöf¹¹⁵) aus dem Satz von Jensen (p. 505), von Pringsheim¹¹⁴) gar durch ganz elementare Abschätzungen gewonnen worden. Man schließt nämlich, daß

$$\sum \left| \frac{1}{a_i} \right|^{\mu + \epsilon}$$

für jedes $\varepsilon > 0$ konvergiert, wenn die Funktion f(z) der Ordnung μ unendlich viele Nullstellen a_i besitzt. Genauer gesagt findet man folgendes durch $Pringsheim^{114}$) besonders scharf herausgearbeitetes Resultat:

Für jede Funktion der Ordnung umit unendlich vielen Nullstellen gilt

$$\lim_{r \to \infty} \nu \left| \frac{1}{a_r} \right|^{\mu + \delta} = 0 \quad \text{für jedes} \quad \delta > 0.$$

Für jede Funktion vom Normaltypus der Ordnung μ gilt

$$\lim_{\nu \to \infty} \sup \nu \left| \frac{1}{a_{\nu}} \right|^{\mu} \leq g \quad (g \text{ endlich}).$$

Für jede Funktion vom Minimaltypus der Ordnung μ gilt

$$\lim_{\nu \to \infty} \nu \left| \frac{1}{a_{\nu}} \right|^{\mu} = 0.$$

Für *primitive* Funktionen liest man nun aus dem Gesagten folgende Ergebnisse ab:

- a) Ordnung und Grenzexponent μ stimmen überein.
- b) Ist weiter u nicht ganzzahlig, so gehört die Funktion dann
 - α) dem Minimaltypus an, wenn $\lim_{r\to\infty} v \left| \frac{1}{a_r} \right|^{\mu} = 0$
 - β) dem Normaltypus an, wenn $\limsup_{r\to\infty} \nu \left| \frac{1}{a_r} \right|^{\mu} > 0$
 - γ) dem Maximaltypus an, wenn $\limsup_{r\to\infty} \nu \left| \frac{1}{a_r} \right|^{\mu} = \infty$ ist.

¹²²⁾ Schou, a) Sur la théorie des séries entières, Paris C. R. 125 (1897), p. 763-764; b) Bewis for en sätning af *Hadamard*, Nyt. tidskrift for math. 8B (1897), p. 5-6.

¹²³⁾ P. Boutroux, a. a. O. 116); A. Pringsheim, a. a. O. 114); A. Wiman, Sur le cas d'exception dans la théorie des fonctions entières, Arkiv for mat. astr. och fys. 1 (1903), p. 327-345.

Wie bei ganzzahligem μ der Satz zu modifizieren 1st, hat nach verschiedenen Vorbereitungen¹²³) erst $Lindel\"{o}f^{124}$) erschöpfend dargelegt.

Zur Übertragung dieser Sätze auf nicht primitive Funktionen hat man eine Abschätzung der primitiven nach unten nötig. Auch sie wurde durch Hadamard¹¹¹) entdeckt. Er fand:

Auf unendlich vielen Kreisen |z|=r beliebig großer Radien gilt für die primitive Funktion f(z) des Grenzexponenten ϱ die Abschätzung

$$|f(z)| > e^{-r\ell + \varepsilon} \tag{$\varepsilon > 0$}$$

Ist o Konvergenzexponent, so ist nach Lindelöf 125) sogar

$$|f(z)| > e^{-\epsilon r \varrho}. \qquad (\epsilon > 0)$$

Wie leicht zu erkennen ist, lassen sich ähnliche Sätze bei beliebigen ganzen Funktionen endlicher Ordnung aussprechen. Ihre schärfste Fassung haben sie durch *E. Lindelöf*¹²⁶) und *J. E. Littlewood* ¹³⁵) erhalten. Sie beweisen, daß

$$m_i(r) > \left(\frac{1}{m_a(r)}\right)^h$$

für unendlich viele gegen unendlich wachsende |z|=r und für jede ganze Funktion der Ordnung ϱ und beliebiges h>0 gilt, wofern man unter $m_i(r)$ das Minimum, unter $m_a(r)$ das Maximum von |f(z)| für |z|=r versteht. Insbesondere gilt also auf unendlich vielen Kreisen

$$f(z) \mid > e^{-r\varrho + \epsilon}$$
.

Daß $m_i(r) > m_a(r)^{-1-\epsilon}$ für beliebig große r, hat $Wiman^{127}$) für Funktionen unendlichen Geschlechts ohne Nullstellen bewiesen und für beliebige ganze Funktionen vermutet.

Verschiedene Autoren haben versucht, solche Abschätzungen auf das ganze Gebiet zu übertragen, das von der unendlichen Ebene übrig bleibt, wenn man die Nullstellen durch gewisse Kreise ausschließt. Als Vorläufer sind hier *Boutroux* und *Maillet* ¹²⁸) zu nennen. Doch entnahm *Maillet* der von ihm weitergeführten *Borel*schen Methode nicht alles,

¹²⁴⁾ E. Lindelöf, Sur les fonctions entières d'ordre entier, Ann. Éc. Norm. (3) 22 (1905), p. 369-395.

¹²⁵⁾ E. Lindelöf, Quelques théorèmes nouveaux sur les fonctions entières, Paris C. R. 133 (1901), p. 1279—1282; ferner a. a. O. 115).

¹²⁶⁾ E. Lindelöf, Sur un théorème de M. Hadamard dans la théorie des fonctions entières, Rend. di Palermo 25 (1908), p. 228—234.

¹²⁷⁾ A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrage einer analytischen Funktion und dem größten Betrage bei gegebenem Argument der Funktion, Acta math. 41 (1916), p. 1—28.

¹²⁸⁾ P. Boutroux, a. a. O. 116); E. Maillet, Sur les fonctions entières et quasientières, J. de math. (5) 9 (1902), p. 329-386.

was sie liefern konnte. Das tat erst Rémoundos¹²⁹), während Wiman¹³⁰) und Lindgren¹³¹) daran anknüpften, daß das von Maillet angegebene Resultat meist trivial ausfällt. Sie nahmen die Frage erneut auf und fanden:

Schließt man die Nullstelle a_i durch einen Kreis vom Radius $|a_i|^{-\lambda}$ (k>0 beliebig, aber von a_i unabhängig) aus, so gilt im Restbereich

$$|f(z)| > e^{-r\varrho + \varepsilon}$$

für beliebiges $\varepsilon > 0$ und genügend großes r.

Diese Abschätzung bleibt bestehen, wenn man statt dieser Kreisscheiben auf jedem Kreis |z|=r geeignet gewählte Bogen von einer Gesamtlänge kleiner als $e^{-r^{\alpha}}$ ($0<\alpha<\varepsilon$) wegläßt. (Rémoundos 129).)

Bei Funktionen einer Ordnung $\varrho < \frac{1}{2}$ hat $Wiman^{132}$) entdeckt und später $Lindel\"{o}f^{126}$) einfacher bewiesen 133), daß auf unendlich vielen beliebig großen Kreisen sogar

$$|f(z)| > e^{r^{\varrho} - \varepsilon}$$

bleibt. Valiron und $Littlewood^{134}$) geben dem Satz über Funktionen vom Grenzexponenten Null eine schärfere Fassung. Eine weitere Verschärfung des Hadamardschen Satzes für $\varrho < 1$ vermutet Littlewood und beweist $Wiman^{135}$).

¹²⁹⁾ G. Rémoundos, Sur les fonctions entières de genre fini, Bull. de la soc. math. de France 32 (1904), p. 314-316.

¹³⁰⁾ A. Wiman, a. a. O. 123).

¹³¹⁾ B. Lindgren, Sur le cas d'exception de M. Picard dans la théorie des fonctions entières, Upsala 1903.

¹³²⁾ A. Wiman, a) Über die angenäherte Darstellung von ganzen Funktionen, Arkiv för mat. astr. och fysik. 1 (1903), p. 105-111; b) Sur une extension d'un théorème de M. Hadamard, Arkiv för mat. astr. och fysik (2) (1905), p. 14.

¹³³⁾ Ein anderer Beweis bei F. Wiener, Elementare Beiträge zur neueren Funktionentheorie, Diss. Göttingen 1911.

¹³⁴⁾ Valiron, a) Sur les fonctions entières d'ordre nul, Math. Ann. 70 (1911), p 471—498; b) Sur les fonctions entières d'ordre nul et d'ordre fini et en particulier les fonctions à correspondance régulière, Thèse Toulouse 1914; c) Le théorème de M. Picard pour les fonctions entières d'ordre nul, Nouv. Ann. (4) 11 (1911), p. 145—151; d) Sur les fonctions entières d'ordre nul, Nouv. Ann. (4) 11 (1911), p. 448—461; e) Sur les fonctions entières d'ordre nul, Paris C. R. 156 (1913), p. 534—536; f) Sur la croissance des fonctions entières d'ordre nul, Nouv Ann. (4) 13 (1913), p. 97—110; g) Sur la dérivée logarithmique de certaines fonctions entières, Nouv. Ann. (4) 11 (1911), p. 498—508; J. E. Littlewood, On the asymptotic approximation to integral functions of zero order, Proc. of the London mat. soc. (2) 5 (1907), p. 361—410; A. Wahlund, Sur Ie module minimum des fonctions entières d'ordre nul, Arkiv för mat. astr. och fys. (8) 1914, Nr. 6.

¹³⁵⁾ J. E. Littlewood, A general theorem on integral functions of finite order, Proc. of the London math. soc. (2) 6 (1908), p. 189—204; A. Wiman, Ganze Funktionen der Höhe Null, Math. Ann. 76 (1915), p. 197—211.

Wir kehren zur ersten Fassung des Hadamardschen Satzes zurück um seine Bedeutung für die Beziehung zwischen Grenzexponent und Ordnung bei den allgemeinen Funktionen endlicher Ordnung darzulegen.

Sei nun eine beliebige Funktion der Ordnung μ vorgelegt, so ergibt sich zunächst, daß sie von endlichem Geschlecht ist. Denn einmal kann wegen der Konvergenz von

$$\sum \left| \frac{1}{a_i} \right|^{\mu + \epsilon}$$

ihr primitiver Bestandteil keinen größeren Grenzexponenten als μ haben. Hieraus findet man eine untere Abschätzung für den primitiven Bestandteil und daraus eine obere Abschätzung für den Exponentialfaktor, der sich damit nach dem *Hadamard*schen Satze als von endlichem Grade erweist. Gleichzeitig führt dieser Gedankengang zu den folgenden Resultaten:

Bei nicht ganzzahliger Ordnung bleiben die vorhin für primitive Funktionen ausgesprochenen Ergebnisse unverändert bestehen. Das Geschlecht ist also eindeutig zu $[\mu]$ bestimmt.

Bei ganzzahliger Ordnung μ indessen sind die Ergebnisse etwas andere. $Lindel\ddot{o}f^{124}$) gibt sie in folgender Form an:

a) Wenn die Funktion dem Minimaltypus der Ordnung μ angehört, so ist ihr Grenzexponent gleich μ und ihr Grad höchstens μ . Ihr Geschlecht ist also μ oder $\mu-1$, je nachdem, ob μ Divergenz-oder Konvergenzexponent ist. Weiter gilt:

(A)
$$\limsup_{r \to \infty} \nu \left| \frac{1}{a_r} \right|^{\mu} = 0$$
 und $\limsup_{r \to \infty} \left| \alpha_0 + \frac{1}{\mu} \sum_{1}^{\nu} \left(\frac{1}{a_k} \right)^{\mu} \right| = 0.$ 135a)

Wenn umgekehrt eine Funktion von höchstens μ^{tom} Grade den Grenzexponent μ besitzt, und wenn dazu die Gleichungen (A) gelten, so ist ihre Ordnung dem Grenzexponenten gleich, und sie gehört dem Minimaltypus dieser Ordnung an.

b) Wenn eine Funktion dem Normaltypus der Ordnung μ angehört, so ist sie entweder vom Grade μ und hat einen Grenzexponenten, der μ nicht übertrifft, oder aber ihr Grenzexponent ist gleich μ und ihr Grad nicht über μ . In beiden Fällen ist ihr Geschlecht μ . Die beiden vorhin angegebenen limites superiores (A) sind endlich und verschwinden nicht gleichzeitig. Sind umgekehrt für eine Funktion von höchstens μ -tem Grade die eben genannten Ergebnisse zutreffend, so gehört sie dem Normaltypus der Ordnung μ an.

$$g(z) = \alpha_0 z^{\mu} + \alpha_1 z^{\mu-1} + \cdots + \alpha_{\mu},$$

 α_0 also der Koeffizient der μ^{ten} Potenz.

¹³⁵ a) Wenn $e^{g(z)}$ der Exponentialfaktor der Funktion ist, so sei

c) Wenn f(z) vom Maximaltypus der Ordnung μ ist, so wird ihr Grenzexponent gleich μ . Mindestens einer der beiden limites superiores (A) ist unendlich. Wenn umgekehrt bei einer Funktion μ^{ten} Grades vom Grenzexponenten μ die eben erwähnten Ergebnisse zutreffen, so gehört sie dem Maximaltypus der Ordnung μ an.

Im Falle der Minimaltypen und Maximaltypen nicht ganzzahliger Ordnung konnten 136) durch Heranziehen der verallgemeinerten Ordnungstypen noch genauere Resultate gewonnen werden. Wenn nämlich bei gegebenem $\varepsilon > 0$ und nicht ganzzahligem ϱ von einem gewissen |z| = r an

$$|f(z)| < e^{r_{\ell}^{Q}(\log r)^{\alpha_{1}} \dots (\log_{k}(r))^{\alpha_{k} + \epsilon}}$$

ist, so ist auch

$$|a_n| > [n(\log n)^{-\alpha_1} \dots (\log_k n)^{-\alpha_k - \epsilon}]^{\frac{1}{\ell}}$$

von einem gewissen n an und umgekehrt.

Wenn ferner für ein gegebenes $\varepsilon > 0$ und gewisse beliebig große r

$$\operatorname{Max} |f(z)| > e^{r\ell(\log r)^{\alpha_1} \cdots (\log_k r)^{\alpha_k} - \varepsilon}$$

gilt, so ist auch für gewisse beliebig große n

$$|a_n| < [n(\log n)^{-\alpha_1} \dots (\log_k n)^{-\alpha_k + \epsilon}]^{\frac{1}{\varrho}}$$

und umgekehrt. Bei Funktionen von regelmäßigem Wachstum gelten diese Abschätzungen für alle genügend großen r und n (Borel 63b).

Im Falle ganzzahliger Ordnung ist eine solche weitere Theorie jedoch zunächst nicht möglich. Dies sieht man schon durch Vergleich der beiden Funktionen:

$$\sin \frac{\pi z}{2}$$
 und $\frac{1}{\Gamma(z)}$

ein. Ihre Nullstellen haben die gleichen absoluten Beträge und doch gehören die beiden Funktionen verschiedenen Typen der Ordnung eins an. Erst *Lindelöf* ¹²⁴) hat Ergebnisse gewonnen, welche den vorhin angegebenen entsprechen.

32. Ausnahmefälle. Wir haben im Laufe dieses Abschnittes eine Reihe von Fällen kennen gelernt, wo die zu bestimmende Größe durch die gemachten Angaben noch nicht eindeutig festgelegt war. Diese zunächst unschön wirkenden Fälle haben im weiteren Verlauf der historischen Entwicklung zu den tiefsten Resultaten geführt. Es zeigt sich nämlich, daß auch in den erwähnten Ausnahmefällen im allgemeinen die zu bestimmende Größe eindeutig festgelegt ist, daß nur unter gewissen Umständen ein anderer Wert herauskommen kanu. Der Grund

¹³⁶⁾ E. Lindelöf, a. a. O. 115), 124); P. Boutroux, a. a. O. 116); A. Wiman, a. a. O. 123).

ist schließlich der, daß es nicht ausreicht, die Nullstellen allein zu betrachten, man muß noch die Verteilungsdichte der Stellen, wo ein anderer gegebener Wert angenommen wird, mitheranziehen. Darauf deutet schon der *Picard*sche Satz hin. Mit ihm stehen auch die jetzt darzulegenden Ergebnisse in engstem Zusammenhang.

E. Lindelöf¹³⁷) und A. Pringsheim¹¹⁴) haben den folgenden Borelschen¹³⁸) Satz bewiesen:

f(z) sei vom Normaltypus der ganzzahligen Ordnung μ , q(z) und r(z) seien von niedrigerer Ordnung oder doch wenigstens von niedrigerem Typus als f(z), (z. B. Konstanten gleich). Dann sind die Funktionen $q \cdot f + r$ von gleicher Ordnung und von gleichem Typus wie f(z). Unter allen diesen Funktionen gibt es höchstens eine, deren Grenzexponent kleiner als μ ist. (D. h. wenn $q_1 \cdot f + r_1$ und $q_2 \cdot f + r_2$ zwei solche Funktionen sind, so ist $q_1 r_2 - q_2 r_1 = 0$.) Führt man also z. B. einen Grenzexponenten für die Nullstellen und einen Grenzexponenten für die Einstellen ein, so kann nur der eine der beiden kleiner als μ sein. Man erkennt gleichzeitig hierin eine wesentliche Verschärfung des *Picard*schen Satzes, insofern als nicht nur die eine Stellensorte in unendlicher Anzahl, sondern sogar mit einer bestimmten minimalen Verteilungsdichte genommen werden muß.

Ist f(z) eine Funktion von regelmäßigem Wachstum der nicht ganzzahligen Ordnung μ , so zeigen auch die Nullstellen von f(z)-x für alle x mit endlich vielen Ausnahmen ein regelmäßiges Wachstum, d. h. man hat für die Beträge dieser Nullstellen $r_n(x)$

$$n^{\frac{1}{\mu}-\epsilon} < |r_n(x)| < n^{\frac{1}{\mu}+\epsilon}$$

für alle $n > N(\varepsilon)$. Ist aber μ ganz, so kann für eine x-Menge vom Umfang Null (vgl. p. 407) der Satz Ausnahmen erleiden. ^{138, 1})

E. Lindelö f^{124}) hat eine Verallgemeinerung dieses Satzes gefunden. Wenn f(z) vom Normaltypus ist, so kann für höchstens eine der Funktionen $q \cdot f + r$ der

$$\lim_{v \to \infty} \sup_{\alpha} \frac{v}{|a_v|^{\mu}} = 0$$

sein. Wenn weiter f(z) vom Maximaltypus ist, so kann für höchstens

¹³⁷⁾ E. Lindelöf, Sur un cas particulier du théorème de M Picard relatif aux fonctions entières, Arkiv för mat. astr. och fysik 1 (1903), p. 101-104.

¹³⁸⁾ E. Borel, a) a. a. O. 112); b) a. a. O. 63b); c) Leçons sur les fonctions entières, Paris 1900.

^{138,1)} J. Sire 375) und G. Valiron, Sur les zéros des fonctions entières d'ordre fini, Rend. di Palermo 43 (1918/19), p. 255-268.

440 HC4. L. Bieberbach. Neuere Untersuch. über Funkt. von kompl. Variablen.

eine der Funktionen $q \cdot f + r$ der

$$\lim_{\nu \to \infty} \sup_{a_{\nu} \mid a_{\nu} \mid^{a}} \quad \text{endlich sein.}$$

A. Wiman¹²⁸) hat sich den Unentschiedenheiten in der Bestimmung des Geschlechtes zugewandt. Er hat da in gewissen Fällen einen ähnlichen Ausnahmesatz gefunden. A. Wiman überträgt nämlich den Borelschen Ausnahmesatz auf die verallgemeinerten Lindelöfschen Ordnungstypen. Hier bestehen ja auch gewisse Unbestimmtheiten. Er fand, daß für diese im allgemeinen der gleiche Satz gilt, wie bei nicht ganzzahliger Ordnung:

Wenn f(z) vom Minimaltypus der ganzzahligen Ordnung μ ist, und g(z) einer niedrigeren Ordnung angehört, so wird höchstens für eine der Funktionen f+g der p. 437 angegebene Lindelöfsche Satz unrichtig. Bei speziellen Funktionen haben $Hardy^{140}$) und $Barnes^{141}$) die asymptotische Verteilung der Nullstellen untersucht und damit schon vorab Beispiele zur allgemeinen Theorie geliefert.

E. Lindelöf 124) hat die Wimanschen Resultate bis zur vollen

141) E. W. Barnes, a) A memoir on integral functions, Phil. Trans. Roy. soc. (A) 199 (1901), p. 411-500; b) On the classification of integral functions, Cambr. Phil. Trans. 19 (1904), p. 322-355; c) The asymptotic expansion of integral functions of multiple linear sequence, Trans. of Edinburgh 100 (1904), p. 426-439; d) The asymptotic expansion of integral functions of finite non zero ordre, Proc. of the London math. soc. (2) 3 (1905), p. 273-295; e) The asymptotic expansion of integral functions defined by Taylor series, Phil. Trans. Roy. soc. (A) 206 (1906), p. 249-297.

¹³⁹⁾ Vgl. auch P. Boutroux, a) Sur les zéros des fonctions entières d'ordre entier, Paris C. R. 139 (1904), p. 351—353; b) Sur les fonctions entières d'ordre entier, Verh. d. dritten internat. Math. Kongr. Heidelberg 1904, p. 253—257.

¹⁴⁰⁾ G. H. Hardy, a) On the roots of the equation $\frac{1}{\Gamma(x+1)} = c$, Proc. of the London math. soc. (2) 2 (1904), p. 1-7; b) On the zeros of certain classes of integral Taylor series. On the integral function $\sum_{0}^{\infty} \frac{x^{\Phi(n)}}{\{\Phi(n)\}!}$, Proc. of the London math. soc. (2) 2 (1904), p. 332-339; b) dasselbe II: On the integral function $\sum_{0}^{\infty} \frac{x^n}{n!(n+a)^3}$, a. a. O. (2) 2, p. 401-431; c) On the zeros of the integral function $x - \sin x$, Mess. of math. 31 (1902), p. 161-165; d) On the zeros of certain integral functions, Mess. of math. 32 (1902), p. 36-45; e) The asymptotic solution of certain transcendental equations, Quart. J. 35 (1904), p. 261-282; f) Note on an integral function, Mess. of math. 34 (1904), p. 1-2; g) On the zeros of a class of integral functions, a. a. O., p. 97-101; h) On the integral function $\varphi_{a,\alpha,\beta}^{(x)} = \sum_{n=0}^{\infty} \frac{x^n}{(n+a)^{\alpha n+\beta}}$, Quart. J. 37 (1906), p. 369-378.

Analogie mit dem Borelschen Ausnahmefall verallgemeinert. Ob aber ganz allgemein für die Unbestimmtheit des Geschlechtes ein ähnlicher Ausnahmesatz wie für den Grenzexponenten besteht, ist noch nicht bekannt. Nur für 'gewisse Funktionen von regelmäßigem Wachstum kann man bisher folgendes behaupten:

Wenn die ganzen Funktionen q und r von niedrigerer Ordnung oder doch wenigstens von niedrigerem Typus als f(z) sind, und wenn μ die ganzzahlige Ordnung von f(z) ist, so gibt es unter den Funktionen $q \cdot f + r$ höchstens eine, deren Geschlecht nur $\mu - 1$ ist.

- 33. Bestimmung des Geschlechtes aus den Koeffizienten. Diese Frage ist durch die vorausgegangenen Betrachtungen mit erledigt. Denn wir haben gelernt, aus den Koeffizienten auf die Ordnung und auf den Typus der Ordnung zu schließen. Und wir haben gesehen, wie man aus der Ordnung auf das Geschlecht schließen kann. Einige dabei auftauchende minderwichtige Einzelfragen haben Lindelöf 137) und Fabry 142) behandelt. Hier müssen ferner die Arbeiten von Maillet 128), Frenzel 143), Puzyna 144) und Jaggi 145) Erwähnung finden, da sie die Mittel zur Berechnung der äußeren Exponentialfaktoren enthalten.
- 34. Das Geschlecht von Summe und Ableitung. Diese Fragen gehören zu den ältesten der Theorie. Sie haben schon *Laguerre* beschäftigt und stehen an der Spitze der *Poincaré*schen Arbeit von 1883.

Die Ordnung der Summe zweier Funktionen kann höchstens der größeren der beiden Ordnungen gleich sein. Es ist daher selbstverständlich, daß das Geschlecht der Summe kleiner sein kann als das der Summanden. Aber es kann merkwürdigerweise auch größer sein und zwar höchstens um eine Einheit. Das rührt her von der bei den Ausnahmefällen besprochenen Unbestimmtheit des Geschlechtes beim Minimaltypus einer ganzzahligen Ordnung. Die ersten dahin zielenden Beispiele gaben $Boutroux^{116}$) und $Lindel\"of^{115}$). Sie betrachten Funktionen des Geschlechtes p-1, deren Summe gleichwohl das Geschlecht p hat.

¹⁴²⁾ E. Fabry, a) Sur le genre des fonctions entières, Bull. de la soc. math. de France 30 (1902), p. 165—176; b) Sur le genre des fonctions entières, Paris C. R. 140 (1905), p. 1010—1013.

¹⁴³⁾ C. Frenzel, Die Darstellung der eindeutigen analytischen Funktionen durch unendliche Produkte und Partialbruchreihen, Ztschr. f. Math. u. Phys. 24 (1897), p. 316—343.

¹⁴⁴⁾ J. v. Puzyna, Über den Laguerreschen Rang einer eindeutigen analytischen Funktion mit unendlich vielen Nullstellen, Monatsh. Math. Phys. 3 (1892), p. 1—15.

¹⁴⁵⁾ E. Jaggi, a) Relations entre les zéros et coefficients d'une fonction entière, Nouv. Ann. (4) 1 (1901), p. 16—19; b) Sur les zéros des fonctions entières, Nouv. Ann. (4) 2 (1902), p. 218—226.

Daß selbst die Zufügung einer Konstanten das Geschlecht erhöhen kann, haben Wiman 146) und Fabry 142) durch Beispiele erhärtet.

Die nach unseren Darlegungen evidente Tatsache, daß die Ordnung einer Ableitung der Ordnung der ursprünglichen Funktion gleich ist, klärt auch hier wesentlich die Sachlage. Ein besonderes Licht fällt darauf noch durch das erwähnte Wimansche Beispiel, das lehrt, daß die Ableitung einer Funktion vom Geschlecht p ausnahmsweise das Geschlecht p-1 haben kann.

L. Leau^{151b}) und G. Valiron^{181b}) haben es unternommen, die sich aus speziellen Annahmen über die Regelmäßigkeit in der Verteilung der Nullstellen ergebenden Verschärfungen in der Theorie festzustellen.

35. Funktionen unendlicher Ordnung und Funktionen der Ordnung Null. Viele der genannten Arbeiten enthalten auch besondere Darlegungen über die Funktionen unendlicher Ordnung und der Ordnung Null. Indessen haben erst Kraft⁶⁵), Blumenthal¹⁴⁷) und Denjoy^{147,1}) eine volle Theorie der Funktionen unendlicher Ordnung entwickelt.

Für eine besondere Theorie der Funktionen nullter Ordnung kommen die Arbeiten von Lindelöf ⁵⁵), Zöllich ¹⁴⁸), Mattson ¹⁴⁹), Littlewood ¹³⁴), Valiron ¹⁵⁴), Wiman ¹²⁷) in Betracht. Ich hebe hervor, daß bei diesen ja stets primitiven Funktionen Ausnahmefälle nicht vorkommen. Auch zeigen sie gewisse Einfachheiten in ihrem Wachstum.

36. Beziehungen zwischen dem Maximalbetrag einer ganzen Funktion und dem Betrag des größten Gliedes ihrer Potenzreihenentwicklung. Wenn für alle m

$$m(r) = \max_{m=1,2...} |a_m| \, r^m < S(r)$$

ist, so ist nach Borel 112 63b)

$$M(r) < (S(r))^{1+\alpha}$$

(unter M(r) das Maximum von |f(z)| auf dem Kreise |z| = r ver-

¹⁴⁶⁾ A. Wiman, a) a. a. O. 123; b) Sur le genre de la dérivée d'une fonction entière et sur le cas d'exception de M. Picard, Paris C. R. 138 (1904), p. 137—139.

¹⁴⁷⁾ O. Blumenthal, a) Principes de la théorie des fonctions entières d'ordre infini, Paris 1910; b) Über ganze transcendente Funktionen, Jahresber. d. D. Math.-Ver. 16 (1907), p. 97—109.

^{147,1)} A. Denjoy, Sur les produits canoniques d'ordre infini, J. de math. (6) 6 (1910), p. 1-136.

¹⁴⁸⁾ H. Zöllich, Beiträge zur Theorie der ganzen transcendenten Funktionen der Ordnung Null, Diss. Halle 1908.

¹⁴⁹⁾ R. Mattson. a) Contribution à la théorie des fonctions entières, Upsala 1905; b) Sur les fonctions entières d'ordre zéro, Rend. di Palermo 33 (1912) p. 91—107.

36. Bezieh, zw. Max f(z) u. dem größten Glied der Potenzreihenentwickl. 443

standen) bei beliebigem aber festem $\alpha > 0$ für unendlich viele beliebig große r erfüllt. Und das gilt für alle r < R bis auf r-Intervalle. welche im Vergleich zu R für große R verschwindend klein sind. Da nun nach Hadamard für das Maximum A(r) des Realteils

$$|a_m| r^m < 4A(r) - 2\Re(a_0)$$

für alle r gilt, so gilt also auch

$$M(r) < (A(r))^{1+\alpha}$$

für unendlich viele r. Andererseits ist ja A(r) < M(r).

Also wird
$$A(r) < M(r) < (A(r))^{1+\alpha}$$
.

Das gleiche gilt für B(r), das negative Minimum des Realteils. Daher findet Borel $(A(r))^{1-\alpha} < B(r) < (A(r))^{1+\alpha}$.

für unendlich viele r. Für einen Maximalbetrag $M_1(r)$ der ersten Ableitung folgt hieraus

$$\big(M(\mathbf{r})\big)^{_{1\,-\,\alpha}} < M_{_1}\big(\mathbf{r}\big) < \big(M(\mathbf{r})\big)^{_{1\,+\,\alpha}}$$

für unendlich viele r. Valiron 149,1) bemerkt, daß für ganze Funktionen endlichen Geschlechts das Verhältnis von $\log M(r)$ zu $\log m(r)$ gegen 1 strebt.

Diese Untersuchungen hat A. Wiman 150) wieder aufgenommen. Er hat auch die Borelschen Resultate zum Teil auf nicht ganze Funktionen übertragen 150,1), insbesondere auf solche, die auf dem Konvergenzkreis im Hadamardschen Sinn (siehe p. 488) unendlich hohe Ordnung haben. G. Pólya 151) hat das Prinzip der Wimanschen Überlegungen klarer herausgearbeitet. 151,1) Man findet z. B.

$$M(r) < S(r)[\log S(r)]^{\frac{1}{2} + \varepsilon}$$

für unendlich viele beliebige große r und beliebiges $\varepsilon > 0$. Insbesondere

^{149,1)} a. a. O. 134b). Ferner: G. Valiron, Sur quelques théorèmes de M. Borel, Bull. soc. math. Fr. 42 (1914), p. 247-252.

¹⁵⁰⁾ A. Wiman, Über den Zusammenhang zwischen dem Maximalbetrag einer analytischen Funktion und dem größten Gliede der zugehörigen Taylorschen Reihe, Acta math. 37 (1904), p. 305-326.

^{150,1)} Dazu auch: Valiron, Sur la croissance du module maximum des séries entières, Bull. soc. math. Fr. 44 (1916), p. 45-64.

¹⁵¹⁾ G. Pólya, Über den Zusammenhang zwischen dem Maximalbetrag einer analytischen Funktion und dem größten Gliede der zugehörigen Taylorschen Reihe, Acta math. 40 (1916), p. 311-319.

^{151,1)} Vgl. auch Valiron, a) Sur le maximum du module des fonctions entières, Paris C. R. 166 (1918), p. 605-608; b) Les propriétés générales des fonctions entières et le théorème de M. Picard, Paris C. R. 167 (1918), p. 988-991.

444 HC4. L. Bieberbach. Neuere Untersuch. über Funkt. von kompl. Variablen.

darf hier für S(r) der Betrag m(r) des größten Gliedes gewählt werden. Borels entsprechende Formel

$$M(r) < [S(r)]^{1+\alpha}$$

gilt nach Wiman auch für alle Funktionen, welche auf dem Konvergenzkreis unendlich hohe Ordnung besitzen. Daß für die gleichen Funktionen auch $M(r) < [A(r)]^{1+\alpha}$

gilt, hat gleichfalls A. Wiman gezeigt. Er hat sogar¹²⁷) die weit schärfere Abschätzung $M(r) < A(r)(1+\alpha)$ gewonnen.

 $Polya^{151c}$) hat ein weiteres $Wimansches^{127}$) Ergebnis so formuliert: Zu jeder ganzen Funktion f(z) läßt sich eine Folge z_1, z_2, \ldots mit wachsenden absoluten Beträgen und $z_v \to \infty$ so bestimmen, daß 1. $\lim_{v \to \infty} \frac{z_v f'(z_v)}{n_v f(z_v)} = 1$ und 2. $|f(z_v)| = M(|z_v|)$. Dabei ist n_v die Nummer desjenigen Gliedes der Maclaurinschen Reihe von f(z), die für $z = z_v$ den größten absoluten Betrag hat.

Diese Untersuchungen Wimans scheinen von grundlegender Bedeutung werden zu sollen. Das lehren auch die Arbeiten $P\'olyas^{151d}$) über ganze Funktionen, welche algebraischen Differentialgleichungen genügen. Insbesondere kann keine Funktion nullter Ordnung einer algebraischen Differentialgleichung erster Ordnung genügen. Die Frage, ob das bei beliebigen algebraischen Differentialgleichungen auch so ist, läßt P'olya noch unerledigt. Wiman selbst¹²⁷) folgerte aufs neue einen schon von $Perron^{151e}$) gefundenen Satz, wonach eine ganze transzendente Funktion, welche einer linearen Differentialgleichung m^{ter} Ordnung mit rationalen Koeffizienten genügen soll, von rationaler Ordnung $\geq \frac{1}{m}$ sein muß; Wiman fügt hinzu, daß sie dem Normaltypus ihrer Ordnung angehören muß. Durch diese Sätze ist ein neues sehr versprechendes Arbeitsgebiet angeschnitten worden. P'olya weist auf die nahe Analogie der Fragestellung zum Liouvilleschen

¹⁵¹a) E. Borel, Contribution à l'étude des fonctions méromorphes, Ann. Éc. Norm. (3) 18 (1901), p. 211-239.

¹⁵¹ b) L. Leau, Étude sur les fonctions entières orientées d'ordre réel non entier, Ann. Éc. Norm. (3) 18 (1906), p. 33-120.

¹⁵¹c) G. Pólya, Zur Untersuchung der Größenordnung ganzer Funktionen, die einer Differentialgleichung genügen, Acta math. 42 (1920), p. 309—316.

¹⁵¹d) G. Pólya, a) Über das Anwachsen von ganzen Funktionen, die einer Differentialgleichung genügen, Zürich. Vierteljahrsschr. 61 (1916), p. 531—545; ß) a. a. O. 151c).

¹⁵¹e) O. Perron, Über lineare Differertialgleichungen mit rationalen Koeffizienten, Acta math. 34 (1910), p. 139-163.

Approximationssatz über algebraische Zahlen hin. Zu den Sätzen kommt noch ein anderer auf p. 514 zu erwähnender von $Hurwitz^{343,1}$) und $P\'olya^{151d}$).

Einiges über ganze Funktionen enthalten natürlich auch die Abschnitte über den *Picard*schen Satz und über die Singularitäten. Auf meromorphe Funktionen hat namentlich *Borel*^{151a}) die Theorie der ganzen Funktionen ausgedehnt.

Analytische Fortsetzung.

37. Die erste Methode Mittag-Lefflers. Wie wir schon p. 389 sahen, ist eine analytische Funktion in ihrem Gesamtverlauf durch ein einzelnes Funktionselement völlig bestimmt. Das stellt uns naturgemäß vor die Aufgabe, die Eigenschaften dieser Funktion in Zusammenhang zu bringen mit den Koeffizienten desjenigen Funktionselementes, das die Funktion definiert. Auch im vorigen Abschnitt haben wir im Grunde von der Lösung einer derartigen Aufgabe berichtet. Nun soll es sich aber um Funktionselemente mit endlichem Konvergenzkreis handeln. Hier wird die Fülle der Probleme reicher. Man kann die Funktion im Inneren des Konvergenzkreises untersuchen, man kann nach ihrem Verhalten bei Annäherung an den Rand fragen, man kann die Berechnung der Funktion außerhalb des ersten Elementes verlangen. Das sind lauter Fragen, die wir weiterhin zu behandeln haben. Ich will damit beginnen, auseinanderzusetzen, welche Methoden man ersonnen hat, um durch einen einzigen Ausdruck die Funktion in einem möglichst weiten Teil ihres Existenzbereiches darzustellen. Dazu verwendet man die linearen Mittelbildungen. Es ist gerade das Problem der analytischen Fortsetzung, durch das man auf die Wichtigkeit dieser Dinge erst aufmerksam wurde. Auch die Methode der arithmetischen Mittel hängt, wie wir später sehen werden, mit unserer Frage zusammen, insofern als man sie brauchen kann, um in gewissen Punkten des Konvergenzkreises die Funktion darzustellen. Aber niemals führen diese einfachsten linearen Mittel zu einer Darstellung der Funktion im Äußeren des Konvergenzkreises. Es ist daher nötig, zu allgemeineren linearen Mittelbildungen zu greifen. Am nächsten liegt es natürlich, den Prozeß der analytischen Fortsetzung durch Aneinanderhängen von Funktionselementen selbst zur Lösung der Aufgabe zu verwenden. Aber Borel¹⁵²) hat 1895 entdeckt, daß man andere Darstellungen finden kann, die in einem weiteren Bezirk als es durch

¹⁵²⁾ E. Borel, Sur la sommation des séries divergentes, Paris C. R. 121 (1895), p. 1125—1127. Weitere Literatur siehe weiter unten.

ein einziges weiteres Funktionselement möglich ist, die Funktion darstellen, Ausdrücke, die auch einfacher sind, als die, welche man durch mehrmalige Ausführung des Prozesses der unmittelbaren analytischen Fortsetzung erhält, insofern als dieselben nur einen Grenzübergang enthalten.

Die damit eingeleiteten Bestrebungen sind in den Händen Mittag-Lefflers zu einer umfassenden Theorie geworden, die in der Einfachheit und dem Konvergenzbereich der Ausdrücke weit über das Borelsche Ergebnis hinausgehen. Mittag-Lefflers erste Arbeiten reichen bis ins Jahr 1882 zurück. Seiner damals erschienenen Abhandlung ¹⁵³) kann man schon die Möglichkeit der Existenz solcher Darstellungen entnehmen. Ihre wirkliche Angabe ist aber erst von 1898 an in die Wege geleitet worden.

Mittag-Lefflers erste Methode knüpft unmittelbar an den Prozeß der analytischen Fortsetzung durch Aneinanderreihen von Funktionselementen an. Es ist Mittag-Leffler gelungen, denselben durch passende Wahl der Elemente rechnerisch zu verfolgen. Er erhielt so nach einigen Zwischenstufen eine Reihe von Polynomen $\sum P_n(z)$ mit

$$P_n(z) = \sum_{1}^{n} C_k s_k(z) = \sum_{1}^{n} d_k^{(n)} a_k z^k.$$

Dabei ist

$$\mathfrak{P}(z) = \sum a_{\nu} z^{\nu}$$

die fortzusetzende Reihe. Die

$$s_k(z) = \sum_{1}^{k} a_i z^r$$

sind ihre Partialsummen. Die Koeffizienten C_k und $d_k^{(n)}$ sind universelle Konstanten, die also von der darzustellenden Funktion f(z) nicht abhängen. Die Polynomreihe konvergiert jedenfalls in allen inneren Punkten des "Hauptsternes" A gleichmäßig und stellt dort einen Zweig der durch das Funktionselement $\mathfrak{P}(z)$ bestimmten analytischen Funktion f(z) dar. Dieser Hauptstern, welcher seit Mittag-Leffler in allen diesen Untersuchungen eine beherrschende Rolle spielt, wird so erhalten: Auf jedem von z=0 ausgehenden Halbstrahl markiere man den z=0 nächstgelegenen singulären Punkt. Die zwischen z=0 und diesem nächsten singulären Punkt gelegene Strecke gehöre dem Stern an, der weitere Punkte mit diesem Halbstrahl nicht gemeinsam hat. Allgemein versteht man unter einem Stern mit dem Mittelpunkt z=0 einen Be-

¹⁵³⁾ G. Mittag-Leffler, Fullständig analytisk framställning af hvarje entyding monogen function, hvars singulära ställen utgöra en värde mängd af första slaget, Oefversigt af K. Vet. Förh. 1882, p. 11—45.

reich der von jeder Geraden durch z=0 nur in einer einzigen Strecke geschnitten wird, und für den z=0 ein innerer Bereichpunkt ist.

Als einfachste durch diese Methode zu gewinnende Darstellung von f(z) kann diese gelten:

$$f(z) = \lim_{n \to \infty} \sum_{0}^{m} \sum_{1}^{n} \sum_{0}^{\lambda_{1}} \cdots \sum_{0}^{m} \sum_{1}^{n} \frac{1}{\lambda_{1}! \lambda_{2}! \cdots \lambda_{n}!} f(o)^{(\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n})} \left(\frac{z}{n}\right)^{\lambda_{1} + \lambda_{2} + \cdots + \lambda_{n}}.$$

Hier ist $m = n\omega(n)$ gesetzt und $\omega(n)$ bedeutet irgendeine positive mit n über alle Grenzen wachsende Funktion. Man kann also z. B. $m = n^2$ setzen.¹⁵⁴)

38. Methode der konformen Abbildung. Wenn ein z=0 enthaltender, einfach zusammenhängender Bereich B bekannt ist, in dem f(z) regulär ist, so kann man ihn durch eine z=0 festlassende Abbildung auf einen Kreis vom Radius Eins um diesen Punkt umkehrbar eindeutig und konform abbilden.

 $z=\varphi(\eta),\;\eta=\varphi^{-1}(z)$ vermittle die Abbildung. Dann kann man

$$f(z) == f\{\varphi(\eta)\}\$$

in eine für $|\eta| < 1$ konvergente Reihe $\mathfrak{P}(\eta)$ entwickeln, so daß man in B die Darstellung

$$f(z) = \mathfrak{P}\{\varphi^{-1}(z)\}\$$

hat. Lindelöf¹⁹⁰) hat diesen Gedanken systematisch verfolgt und den Nutzen vieler einfacher Abbildungen, wie z. B. der Eulerschen Reihentransformation und anderer für die Ausführung der analytischen

¹⁵⁴⁾ G. Mittag-Leffler, a) Om en generalisering af potensserien, C. R. de l'ac. de Stockholm 55 (1898), p. 135-138; b) Om den analytiska framställningen af en allmän monogen function, Oefversigt af kgl. Vet. Akad. Förhandl. Stockholm 55 (1898), p. 247-282 u. p. 375-385; c) Sur la représentation d'une branche uniforme de fonction analytique, Paris C. R. 128 (1899) p. 1212-1215; d) Sur la représentation analytique d'une branche uniforme d'une fonction analytique, Acta math. 23 (1900), p. 43-62; e) Sulla rappresentazione analitica di un ramo uniforme di una funzione monogena, Atti di Torino 34 (1899), p. 481-491; f) On the analytical representation of a uniform branch of monogenic fonction, Trans. of. the Cambridge phil. Soc. 18 (1900), p. 1-11; g) Fonction analytique et expression analytique. Une application de la théorie des séries n fois infinis. Sur une extension de la série de Taylor, Congrès internat. des math. Paris 1901, p. 273—276; h) Sur la représentation d'une branche uniforme d'une fonction monogène, Acta math. 24 (1901), p. 183—204; i) Über eine Verallgemeinerung der Taylorschen Reihe, Gött. Nachr. 1900, p. 194-205; k) On multiply infinite series and on an extension of Taylor series, Proc. of the London math. soc. (1) 32 (1900), p. 72-79; l) Über die analytische Darstellung eines eindeutigen Zweiges einer analytischen Funktion, Münch. Sitzungsber. 1915, p. 109-164.

Fortsetzung, für die Kenntnis der Lage der Singularitäten, für die numerische Berechnung der Funktion dargetan. Elliptische Integrale und hypergeometrische Differentialgleichung bieten ihm namentlich dankbare Beispiele. Seine Untersuchungen berühren sich da aufs engste mit der Landenschen Transformation bei elliptischen Integralen, und mit den Überlegungen, durch die Mittag-Leffler (Acta 15), Hamburger (J. f. Math. 83) u. a. der numerischen Integration der linearen Differentialgleichungen beizukommen suchten.

Später hat der *Lindelöf*sche Grundgedanke zu den *Faber*schen Polynomen geführt (p. 499). Auch bei den jetzt hier weiter zu besprechenden Untersuchungen hat der Grundgedanke in etwas anderer Wendung seine Fruchtbarkeit bewiesen.

Die zweite Methode ¹⁵⁵) von Mittag-Leffler ist der ersten vorhin dargelegten an Tragweite und Durchsichtigkeit bei weitem überlegen. Bei ihr spielen gewisse den Hauptstern approximierende Nebensterne eine Rolle. Sie werden durch Verwendung erzeugender Figuren erhalten. Eine solche wird durch einen endlichen einfachzusammenhängenden Bereich G geliefert, welcher die Strecke $0 \le z < 1$ enthält. Unter $z \cdot G$ werde dann der Bereich verstanden, der aus denjenigen Punkten besteht, deren Koordinaten aus den Koordinaten der Punkte von G durch Multiplikation mit z hervorgehen. Läßt man nun z, mit z = 0 beginnend, einen Halbstrahl $\varphi = \text{const.}$ durchlaufen $(z = re^{i\varphi})$, so gibt es eine obere Grenze der Punkte des Halbstrahles, für die $z \cdot G$ ganz dem Hauptstern angehört. Sie sei $O(\varphi) \cdot e^{i\varphi}$. Der Nebenstern bestehe nun aus den Punkten der Vektoren von z = 0 bis $z = O(\varphi) \cdot e^{i\varphi}$. Es handelt sich nun zunächst um die Summation der Potenzreihe im Nebenstern. Man gewinnt hier folgendes Resultat:

Man kann Polynome

$$\mathfrak{Q}_{n}(z) = l_{0}^{(n)} a_{0} + l_{1}^{(n)} a_{1} \cdot z + \cdots + l_{n}^{(n)} a_{n} \cdot z^{n}$$

angeben, deren Koeffizienten $l_k^{(n)}$ von der Funktion $f(z) = \sum a_{\lambda} z^{\lambda}$ unabhängig sind, und die also allein durch die erzeugende Figur G bestimmt sind, derart, daß die Reihe $\sum \mathfrak{L}_n(z)$ in jedem abgeschlossenen

¹⁵⁵⁾ G. Mittag-Leffler, a) a. a. O. 154 c); b) Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta math. 24 (1900), p. 205—244; c) Sur le terme complémentaire de mon développement de la branche uniforme d'une fonction monogène dans le cas, où ce développement possède une étoile de convergence, Oefversigt af kgl. Vet. akad. Förhandl. 58 (1901), p. 785—790; d) Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta math. 26 (1902), p. 353—391; e) a. a. O. 154 l); f) Sur une formule de M. Fredholm, Paris C. R. 132 (1901), p. 751—753.

Teilbereich des Nebensternes S gleichmäßig konvergiert, und daß in ganz S die Gleichung $f(z) = \sum \mathfrak{D}_{z}(z) \qquad \text{gilt.}$

Von hier ausgehend kann man dann mit Leichtigkeit zu einer ebensolchen Darstellung im Hauptstern übergehen. Man denke sich dazu eine Folge erzeugender Figuren G_{α} , die sich beim Grenzübergang $\alpha \longrightarrow 0$ auf die Strecke $0 \le z \le 1$ zusammenziehen sollen. Dazu gehören Nebensterne S_{α} , die dann den Hauptstern approximieren und gehören Polynomreihen

 $\sum \mathfrak{Q}_{n}^{(\alpha)}\left(z\right) ,$

welche in S_{α} die Funktion f(z) darstellen. Dann hat man natürlich in ganz A: $f(z) = \lim_{\alpha \to 0} \sum_{n=0}^{\infty} \mathfrak{L}_{n}^{(\alpha)}(z).$

Von dieser Darstellung kann man dann durch geläufige Prozesse zu einer Polynomreihe der oben für S angegebenen Gestalt gelangen, welche dann in ganz A die Funktion f(z) darstellt.

Besonders einfach wird die Herleitung, wenn die erzeugende Figur G den Punkt z=1 im Inneren enthält. Man kann dann etwa von der Integraldarstellung

 $f(z) = \frac{1}{2\pi i} \int \frac{f(z \cdot \varphi(\eta))}{\eta - 1} d\eta$

ausgehen ^{155,1}), wenn man dabei das Integral über eine den Kreis $|\eta| < 1$ einmal in positivem Sinne umlaufende Kurve erstreckt. Entwickelt man dann $\frac{1}{\eta - 1}$ nach Potenzen von $\frac{1}{\eta}$ und integriert gliedweise, so hat man sofort das gewünschte Resultat.

Wenn aber zufällig der Punkt z=1 auf dem Rande der erzeugenden Figur liegt, so ist noch eine besondere Überlegung nötig. Wenn der Rand der Figur aus einer eckenfreien analytischen Kurve besteht, geht noch alles unmittelbar. Wenn aber eine Ecke auftritt, so sind Zusatzüberlegungen nötig, die zuerst $Phragmén^{156}$) anstellte. Auf einem anderen Wege gelangte M. $Riesz^{157}$) zum Ziel.

^{155,1)} $z = \varphi(\eta)$ bilde $|\eta| < r(r > 1)$ auf die erzeugende Figur ab, und es sei $\varphi(0) = 0$, $\varphi(1) = 1$.

¹⁵⁶⁾ E. Phragmén bei Mittag-Leffler, a. a. O. 155 b).

¹⁵⁷⁾ M. Riesz, Sur un problème d'Abel, Rend. di Palermo 30 (1910), p. 339-345. Dazu vgl. man auch Mittag-Leffler, Sur un problème d'Abel, Rend. di Palermo 30 (1910), p. 337-338 und a. a. O. 154 l), p. 161-163. Man vgl. ferner eine Bemerkung von Bieberbach, a. a. O. 25). Vgl. auch p. 485 dieses Artikels.

Als numerisch einfachstes Beispiel ist dieses anzusehen: Erzeugende Figur sei das durch

$$z = 1 - (1 - \eta)^{\alpha}$$

erhaltene Bild von $|\eta| < 1$. Der zugehörige Stern S_{α} konvergiert für $\alpha \to 0$ gegen den Hauptstern. Für die Koeffizienten des Polynoms $L_{\alpha}(z)$ findet man die folgenden Werte

$$l_0^{(n)} = 0$$

$$l_{k}^{(n)} = \frac{k}{1!} \cdot \frac{\alpha(1-\alpha)\cdots(n-1-\alpha)}{n!} + \frac{k(1-k)}{2!} \frac{2\alpha(1-2\alpha)\cdots(n-1-2\alpha)}{n!} + \cdots + \frac{k(1-k)\cdots(k-1-k)}{k!} \frac{k\alpha\cdot(1-k\alpha)\cdots(n-1-k\alpha)}{n!}.$$

Zahlreiche weitere Beispiele enthalten die angegebenen ¹⁵⁵) Arbeiten von *Mittag-Leffler*. ¹⁵⁸)

Die nach dieser Methode für Nebensterne zu gewinnenden Ausdrücke haben alle diesen Nebenstern als Konvergenzstern, d. h. sie konvergieren wohl in ihrem Inneren aber nirgends außerhalb desselben. Auch über die Konvergenz am Rande des Nebensternes liegen einige Resultate vor. Es finden da wieder die schon erwähnten Methoden von *Phragmén* und *Ricsz* Verwendung.

39. Modifikation der Methode durch Painlevé. 159) Dieser sucht nicht erst Entwicklungen in Nebensternen zu gewinnen, sondern er geht direkt auf den Hauptstern los. Er führt dazu den Grenzübergang, den Mittag-Leffler zuletzt ausführt, schon etwas früher durch. Dabei gelangt er zunächst zu dem folgenden allgemeinen Satz:

Wenn F(t) eine für $0 \le t \le 1$ reguläre analytische Funktion bedeutet, deren Entwicklung bei t=0 durch

$$F(t) = \sum \alpha_{\nu} t^{n}$$

gegeben sei, so kann man Polynome

$$L_n(t) = \sum_{1}^{n} \lambda_k^{(n)} \alpha_k t^k$$

angeben, deren Koeffizienten $\lambda_k^{(n)}$ von F(t) unabhängig sind, derart, daß

¹⁵⁸⁾ Dazu kommt noch *I. Fredholm*, Sur la méthode de prolongement analytique de *M. Mittag-Leffler*, Oefversigt af kgl. Vet. Akad. Förhandl. 58 (1911), p. 203-205.

¹⁵⁹⁾ P. Painlevé, a) Sur le développement d'une branche uniforme de fonction analytique, Paris C. R. 128 (1899), p. 1277—1280; b) Sur le développement d'une branche uniforme d'une fonction analytique en série de polynomes, Paris C. R. 129 (1899), p. 27—31; c) Sur le développement des fonctions analytiques. Note 1 zu E. Borel, Leçons sur les fonctions de variables réelles, Paris 1905.

für
$$0 \le t \le 1$$
 gleichmäßig $F(t) = \sum L_n(t)$

gilt. Wendet man dies dann auf die Funktion F(t) = f(zt) an und trägt dann t = 1 ein, so erhält man eine in jedem Teilbereich des Hauptsternes gleichmäßig konvergente Polynomreihe für f(z).

- 40. Der Hauptstern als Konvergenzstern. Man kann sich fragen, ob für solche oder für andere nach der Mittag-Lefflerschen Methode gewonnene Entwicklungen der Hauptstern in dem Sinne Konvergenzstern ist, daß für keine Funktion im Äußeren des Sternes Konvergenz herrscht, sei es gegen die analytische Fortsetzung des im Sterne dargestellten Funktionszweiges, sei es gegen eine andere Funktion. Daß dies nicht der Fall ist, ist der Inhalt eines allgemeinen von Borel¹⁶⁰) für Polynomreihen bewiesenen, von Phragmén 161) auf Reihen ganzer Funktionen ausgedehnten Satzes. Wenn irgend eine derartige Summationsmethode gegeben ist, so kann man immer eine Funktion f(z) so wählen, daß nach Einsetzen ihrer Koeffizienten in die Reihe ganzer Funktionen diese in passenden Punkten außerhalb des Sternes noch konvergent bleibt. Das hindert natürlich nicht, daß für andere Summationsmethoden, deren Reihenglieder $L_n(z)$ nicht ganze analytische Funktionen sind, der Hauptstern Konvergenzstern sein kann. Beispiele dieser Art erhält man bei der Approximation des Hauptsternes durch Nebensterne ganz unmittelbar.
- 41. Zurückführung auf die Summation der geometrischen Reihe. Bekanntlich bietet die Cauchysche Integralformel ein Mittel, um aus der Möglichkeit einer Potenzreihenentwicklung für $\frac{1}{1-z}$ zu schließen, daß sich alle analytischen Funktionen in Potenzreihen entwickeln lassen. Hat man nun in irgend einem z=0 enthaltenden Stern eine Polynomentwicklung oder eine andere Reihen- oder Integraldarstellung von $\frac{1}{1-z}$, so kann man daraus sofort nach dem gleichen Schlußverfahren auf eine solche Entwicklung von f(z) in einem anderen leicht angebbaren Stern schließen. Das hat schon Mittag-Leffler 153) 1882 erkannt. Borel 162) und Phragmén 163) haben es erneut gefunden. Der Gedanke ist naheliegend aber von großer Fruchtbarkeit. Sei nämlich $\mathfrak C$ eine einfache rektifizierbare Kurve, welche z=0 in positivem

¹⁶⁰⁾ E. Borel, Leçons sur les séries divergentes, Paris 1901.

¹⁶¹⁾ E. Phragmén bei Mittag-Leffler, a. a. O. 1541).

¹⁶²⁾ E. Borel, Addition au mémoire sur les séries divergentes, Ann. Éc. Norm. (3) 16 (1899), p. 132-134.

¹⁶³⁾ E. Phragmén, Sur une extension d'un théorème de M. Mittag-Leffler. Paris C. R. 128 (1899), p. 1434—1437.

Sinne umläuft, und die einen einfachzusammenhängenden Teil des Hauptsternes begrenzt. Dann gilt die Darstellung

$$f(z) = \frac{1}{2\pi i} \int_{\mathcal{E}} \frac{f(\zeta)}{1 - \frac{z}{\zeta}} \frac{d\zeta}{\zeta}.$$

Wenn nun irgendeine in einem Stern S von $\frac{1}{1-z}$ gleichmäßig konvergente Darstellung von $\frac{1}{1-z}$ bekannt ist, so kann man diese auf $\frac{1}{1-\frac{z}{\ell}}$ an-

wenden, jedesmal dann, wenn für alle ξ auf $\mathfrak C$ und für alle z aus dem Inneren von $\mathfrak C$ der Punkt $\frac{z}{\xi}$ dem Sterne S angehört. Man kann dies auch so ausdrücken, daß alle Sterne ξS die Kurve $\mathfrak C$ enthalten müssen. Da man nun die Kurve $\mathfrak C$ beliebig nahe an den Rand des Hauptsternes heranlegen kann, so schließt man daraus, daß man durch gliedweises Integrieren eine Darstellung erhält, welche in einem Stern S' gilt. Man erhält diesen aus S, indem man alle Sterne αS bildet, wobei unter α irgend eine Ecke des Hauptsternes von f(z) verstanden sein soll. S' ist dann einfach der Durchschnitt der Sterne αS . Hat man also insbesondere eine Darstellung von $\frac{1}{1-z}$ in dem Hauptstern von $\frac{1}{1-z}$, so erhält man eine Entwicklung von f(z) in seinem Hauptstern. Diese Methode schien lange zwar gedanklich sehr einfach, aber es schien schwierig, geeignete Darstellungen für $\frac{1}{1-z}$ zu finden. Später aber hat gerade diese Methode numerisch sehr schöne Resultate gezeitigt. So hat Le Roy^{164}) diese Darstellung gefunden:

$$\frac{1}{1-z} = \lim_{t \to 1} \sum_{n=0}^{\infty} \frac{\Gamma(nt+1)}{\Gamma(n+1)} z^{n}.$$

Diese liefert

$$f(z) = \lim_{t \to 1} \sum_{n=0}^{\infty} \frac{\Gamma(nt+1)}{\Gamma(n+1)} a_n z^n,$$

eine im Hauptstern gültige Darstellung. Überhaupt erhält man immer aus der Entwicklung von $\frac{1}{1-z}$ die von f(z), in dem man statt des allgemeinen Gliedes z^n der geometrischen Reihe das allgemeine Glied der Potenzreihe für f(z), also $a_n z^n$, einträgt.

¹⁶⁴⁾ E. Le Roy, Sur les séries divergentes et les fonctions définis par un développement de Taylor, Ann. de Toulouse (2) 2 (1900), p. 317—430.

E. Lindelöf 165) hat durch Residuenbetrachtung die Darstellung

$$f(z) = \lim_{\alpha \to 0} \sum_{n=0}^{\infty} a_n \frac{z^n}{n^{\alpha n}}$$

abgeleitet.166)

Insbesondere lehren diese Sätze, daß man Folgen von ganzen Funktionen $\Phi_n(z)$ finden kann, die in jedem Teilbereich des Sternes f(z) gleichmäßig approximieren. $Fej\acute{e}r^{166\,a}$) hat bemerkt, daß man die $\Phi_n(z)$ so wählen kann, daß die n ersten Glieder ihrer Maclaurinschen Reihe mit der von f(z) übereinstimmen.

42. Integraldarstellungen. Sei

$$f(z) = \sum a_n z^n$$

eine um z = 0 reguläre Funktion, so ist

$$F(z) = \sum_{n=1}^{\infty} \frac{a_n}{n!} z^n$$

eine ganze Funktion. Kümmert man sich zunächst nicht um Konvergenzfragen, so zeigt eine formale Rechnung sofort, daß

$$f(z) = \int_{0}^{\infty} e^{-a} F(az) da$$

ist. Aber welches ist der Konvergenzbereich dieser bereits von

¹⁶⁵⁾ E. Lindelöf, a) Une application de la théorie des résidus au prolongement analytique des séries de Taylor, Paris C. R. 135 (1902), p. 1315—1318; b) Sur l'application de la théorie des résidus au prolongement analytique des séries de Taylor, J. d. math. (5) 9 (1903), p. 213—221; c) Le calcul des résidus Paris 1905. Vgl. auch P. Dienes, Math. és. termész. ért. 27 (1909), p. 58—63.

¹⁶⁶⁾ Darstellungen für $\frac{1}{1-z}$ findet man in den folgenden Arbeiten: $E.\ Lindel\"of$, Sur le prolongement analytique, Bull. de la soc. math. d. France 29 (1901), p. 157—166. $E.\ Goursat$, Sur quelques développements de $\frac{1}{1-z}$ en séries de polynomes, Bull. d. sc. math. (2) 27 (1903), p. 226—232. $E.\ Borel$, Sur le prolongement analytique de la série de Taylor, Bull. de la soc. math. de France 28 (1907), p. 200 und a. a. O. 160). $L.\ Leau$, Sur les points singuliers situés sur le cercle de convergence et sur la sommation des séries divergentes, Paris C. R. 127 (1898), p. 607—609. $G.\ Faber$, Über polynomische Entwicklungen, Math. Ann. 57 (1903), p. 389—408. $H.\ F.\ Baker$, An expansion of $\frac{1}{1-z}$ by means of polynomials, Proc. of the London math. soc. (2) 9 (1910), p. 122—125. Ferner werde an die allgemeine Rungesche Methode, Acta math. 6 (1887), p. 229—244 erinnert.

¹⁶⁶a) L. Fejér, Eine Bemerkung zur Mittag-Lefflerschen Approximation einer beliebigen analytischen Funktion innerhalb des Sterngebietes, Acta math. 35 (1911), p. 67-71.

Laplace 167) und Abel 168) angegebenen Integraldarstellung? Sie würde offenbar eine weitere Verallgemeinerung des Summationsverfahrens durch lineare Mittelbildung liefern. Diesen Bereich hat zuerst E. Borel 169) angegeben. Es ist der Borelsche Stern. Man erhält ihn, wenn man auf jedem Halbstrahl, der z=0 mit einer Ecke des Hauptsternes verbindet, in diesem Eckpunkt eine senkrechte Gerade zeichnet. Die Punkte der Ebene, welche mit z=0 auf derselben Seite aller dieser Geraden liegen, machen den Konvergenzstern dieser Borelschen exponentiellen Summation aus. Dieser Stern enthält also stets den Konvergenzkreis der um z=0 geltenden Taylorschen Entwicklung im Inneren. Daß die Darstellung jedenfalls im Borelschen Stern gültig ist, kann man unmittelbar an Hand der in der vorigen Nummer besprochenen allgemeinen Methode einsehen. Offenbar gilt nämlich in der Halbebene $\Re(z) < 1$ die für jeden Teilbereich gleichmäßig konvergente Darstellung

 $\frac{1}{1-z} = \int_{0}^{z} e^{a(z-1)} da.$

Das Integral ist dabei über a>0 zu erstrecken. Setzt man dies in die Cauchysche Integralformel ein, und beachtet, daß man die Integrationsreihenfolge wegen der gleichmäßigen Konvergenz vertauschen darf, so erhält man ohne weiteres unser Resultat, und die damals gegebene Konstruktion des Konvergenzsternes führt gerade zum Borelschen Stern. Wir merken noch an, daß man auf diese Weise auch leicht eine Integraldarstellung des Unterschiedes zwischen f(z) und

$$\int_0^a e^{-a} F(az) da \text{ erhalten kann. Man findet n\"{a}mlich}^{170})$$

$$f(z) = \int_0^a e^{-a} F(az) da + \frac{1}{2\pi i} \int_0^a \frac{f(yz)}{y-1} e^a \left(\frac{1}{y}-1\right) dy.$$

170) G. Mittag-Leff'ler, a. a 0. 155 d).

¹⁶⁷⁾ Laplace, Théorie analytique des probabilités (1812) u. Oeuvres 7, p. 89 ff. 168) N. H. Abel, Sur les fonctions génératrices et leurs déterminantes, Oeuvres II, p. 67-81.

¹⁶⁹⁾ E. Borel, a) Sur la généralisation de la notion de limite et sur l'extension aux séries divergentes sommables du théorème d'Abel sur les séries entières, Paris C. R. 122 (1896), p. 73—74; b) Application de la théorie des séries divergentes sommables, Paris C. R. 122 (1896), p. 805—807; c) Sur la région de sommabilité d'un développement de Taylor, Paris C. R. 123 (1896), p. 548—549; d) Les séries absolument sommables, les séries M et le prolongement analytique, Paris C. R. 131 (1900), p. 830—832; e) Le prolongement analytique et les séries sommables, Math. Ann. 55 (1900), p. 74—80; f) Fondements de la théorie des séries divergentes sommables, J. de math. (5) 2 (1896), p. 103—122; g) Mémoire sur les séries divergentes, Ann. Éc. Norm.. (3) 16 (1899), p. 132—134; h) a. a. O. 160).

Dabei ist das zweite Integral über die Randkurve eines die Punkte y = 0 und y = 1 enthaltenden schlichten einfachzusammenhängenden Bereiches zu erstrecken.

Daß also das Laplacesche Integral zum mindesten im Borelschen Stern konvergiert, war leicht einzusehen. Daß dieser Stern nun aber in dem präzisen p. 451 angegebenen Sinn Konvergenzstern der Darstellung sei, hat schon Borel behauptet, aber erst Phragmén 171) bewiesen. Borel 172) hat weiter gezeigt, daß im Inneren des Sternes sogar absolute Konvergenz herrscht, derart, daß auch die Integrale

$$\int_{a}^{\infty} e^{-a} \left| \frac{d^{\lambda}}{da^{\lambda}} \left\{ F(az) \right\} \right| da \quad (\lambda = 0, 1, 2, \ldots)$$

absolut konvergieren. Das *Laplace*sche Integral kann in eine Reihe umgeformt werden, die gleichfalls den *Borel*schen Stern als Konvergenzstern hat.^{172,1}) Man findet so die Darstellung

$$f(z) = \lim_{a \to \infty} e^{-a} \sum_{n=0}^{\infty} s_n(z) \frac{a^n}{n!}$$

wobei $s_{n}(z)$ die n^{to} Partialsumme der Maclaurinschen Reihe von f(z) ist. Diese Reihendarstellung konvergiert jedoch 173) nur in einem Teil derjenigen Randpunkte des Borelschen Sterns, in welchen die Integraldarstellung noch gültig bleibt. Man kann aber auch eine Reihendarstellung angeben, die stets gleichzeitig mit der Integraldarstellung konvergiert. Das ist die folgende 174)

$$f(z) = \lim_{a \to \infty} e^{-a} \sum_{n=0}^{\infty} s_n(z) \frac{a^{n+1}}{(n+1)!}$$

Man kann die eben dargestellte Borelsche Methode auf allgemeinere den Hauptstern besser als der Borelsche Stern approximierende Nebensterne verallgemeinern. Bevor wir dazu übergehen, wird es gut sein, auf den ziemlich engen Zusammenhang dieser Borelschen Methode auch mit der Methode der konformen Abbildung hinzuweisen. Der Borelsche Stern besitzt eine erzeugende Figur. Das ist der über

¹⁷¹⁾ E. Phragmén, Le domaine de convergence de l'intégrale infinie $\int_{0}^{\infty} F'(\alpha z) e^{-\alpha} d\alpha$, Paris C. R. 132 (1901), p. 1396—1399.

¹⁷²⁾ E. Borel, a. a. O. 169 d) u. 160).

^{172,1)} Wegen des Beweises vgl. man auch G. H. Hardy 178) und O. Perron. a) Zur Theorie der divergenten Reihen, Math. Ztschr. 6 (1920), p. 158—160; b) Beitrag zur Theorie der divergenten Reihen, Math. Ztschr. 6 (1920), p. 286—310.

¹⁷³⁾ G. H. Hardy, Researches in the theory of divergent series and divergent integrals, Quart. J. of math. 35 (1904), p. 31-66.

¹⁷⁴⁾ Mittag-Leffler, a. a. O. 155 d).

dem Durchmesser $0 \le z \le 1$ errichtete Kreis. Sei dieser K und sei z ein innerer Punkt des Borelschen Sterns, so ist f(zt) = F(t) in einem mit K konzentrischen etwas größeren Kreis der t-Ebene regulär. Integriert man über einen solchen Kreis K', so findet man die Darstellung:

$$f(z) = \frac{1}{2\pi i} \int_{-\tau}^{\tau} \frac{f(z\tau)}{\tau - 1} d\tau.$$

Denn es ist ja F(1)=f(z). Kennt man nun eine im Äußeren von K, also auch auf K' gleichmäßig konvergente Darstellung von $\frac{1}{\tau-1}$, so kann man sie ins Integral eintragen und daraus eine Darstellung von f(z) ableiten. Durch die Abbildung $\frac{1}{\tau}=\xi$ geht aber das Außere von K gerade in die Halbebene $\Re(\xi)<1$ über, in der wir eine Darstellung von $\frac{1}{1-\xi}$ durch ein Laplacesches Integral kennen. So gelangen wir zu dem Borel-Laplaceschen Integral.

Zugleich haben wir damit einen Fingerzeig, wie wir zu Darstellungen in allgemeineren Sternen kommen können. Es sei ein solcher Stern gegeben mit einer die Strecke $0 \le z \le 1$ enthaltenden erzeugenden Figur. Dieselbe werde durch die Funktion $z = \varphi(\xi)$ auf einen mit K konzentrischen Kreis abgebildet, so daß gleichzeitig noch $\varphi(0) = 0$ und $\varphi(1) = 1$ gilt. Sei K' wieder ein mit K konzentrischer etwas größerer Kreis, der aber noch in jenem Bildkreis liege. Dann findet man die Integraldarstellung:

$$f(z) = \frac{1!}{2\pi i} \int_{\nu}^{z} \frac{f(z \cdot \varphi(\zeta))}{\zeta - 1} d\zeta.$$

Verfährt man mit dieser genau wie oben weiter, so erhält man allgemeinere Darstellungen von f(z).

Wenn jedoch die erzeugende Figur die Punkte 0 und 1 auf dem Rande hat, so versagen diese Überlegungen. Es müssen ganz neue Betrachtungen angewendet werden. Diese hat wieder $Mittag-Leffler^{175}$) allerdings nur für eine spezielle Klasse von Sternen B_{α} angestellt. Diese Sterne erlauben allerdings eine beliebig genaue Approximation des Hauptsternes. Sie enthalten den Borelschen Stern als speziellen Fall. 176) Die erzeugende Figur ist der Bereich K^{α} . Er wird aus dem

¹⁷⁵⁾ G. Mittag-Leffler, a) Une généralisation de l'intégrale de Laplace-Abel, Paris C. R. 136 (1903), p. 537—539; b) Sur la nouvelle fonction $E_a(z)$, Paris C. R. 137 (1903), p. 554—558; c) Sur la représentation analytique d'une branche uniforme d'une fonction monogène, Acta math. 29 (1905), p. 101—181.

¹⁷⁶⁾ Weniger weitreichende Verallgemeinerungen der Borelschen Methode versuchten Borel, Hanni und Servant. Doch erst die Entdeckung der Funktionen $E_{\mu}(z)$ durch Mittag-Leffler brachte die Bemühungen zum Abschluß. Man ver-

Kreis K der ζ -Ebene erhalten durch die Abbildung $z = \zeta^{\alpha}$. Für α → 0 konvergiert der zugehörige Stern gegen den Hauptstern. $\alpha=1$ fällt er mit dem Borelschen zusammen. Man überzeugt sich mit einem Blick, daß man den Stern auch mit Hilfe der zu Ka reziproken Figur $\frac{1}{K^{\alpha}}$ erhalten kann, in der Weise, wie p. 452 Sterne kon-Sei nämlich $\frac{1}{K^{\bar{\alpha}}}$ zugleich die Bezeichnung für den struiert wurden. auf derselben Seite wie der Nullpunkt liegenden durch $\frac{1}{K^{\alpha}}$ begrenzten Bereich, und β irgendein Randpunkt des Hauptsternes. Dann ist B_a der Durchschnitt aller Bereiche $\beta \frac{1}{K^{\alpha}}$. Kann man somit eine in $\frac{1}{K^{\alpha}}$ gleichmäßig konvergente Darstellung von $\frac{1}{1-x}$ finden, so hat man damit nach p. 452 eine in B_a gleichmäßig konvergente Darstellung von f(z). Mittag-Leffler hat nun gefunden, daß man eine solche Darstellung erhält, wenn man, statt wie Borel die Exponentialfunktionen zu verwenden, von der ganzen Funktion:

$$E_{\alpha}(z) = \sum_{0}^{\infty} \frac{z^{\nu}}{\Gamma(1+\alpha \nu)}$$

Gebrauch gemacht. Es gilt nämlich in $\frac{1}{K^{\alpha}}$ die Darstellung

$$\frac{1}{1-z} = \int\limits_0^\infty e^{-\frac{1}{a^{\alpha}}} \; E_a(az)(d\,a^{\frac{1}{\alpha}})$$

und diese liefert für f(z) die Darstellung:

wo

$$f(z) = \int_0^\infty e^{-\frac{1}{a^{\alpha}}} F_a(az) da^{\frac{1}{\alpha}},$$

$$F_a(z) = \sum_0^\infty a_v \frac{z^v}{\Gamma(1+\alpha v)}, \quad f(z) = \sum_0^\infty a_v z^v.$$

Mittag-Leffler hat weiter gezeigt, daß für die so gefundenen Darstellungen die Sterne B_a Konvergenzsterne sind. Man kann auch ähnlich wie bei der Borelschen Methode von der Integraldarstellung zu Reihendarstellungen übergehen. Die hier Platz greifenden Überlegungen haben endlich Mittag-Leffler zu einer neuen allgemeinen und sehr weittragenden Methode geführt, der wir uns nun zuwenden.

gleiche Borel, a. a. O. 169b), 169f), 169g); L. Hanni, Monatsh. Math. Phys. 12 (1901), p. 267—289; Acta math. 29 (1905), p. 25—58, Monatsh. Math. Phys. 14 (1903), p. 105—124; Servant, Essai sur les séries divergentes, Ann. de Toulouse (2) 1 (1899), p. 117—175. E. Schöll(182,1) hat durch Iteration der Borelschen Mittel eine beliebig genaue Approximation des Hauptsternes erzielt.

43. Eine neue Methode Mittag-Lefflers. Man kann sowohl bei der Borelschen Methode wie bei der Methode der konformen Abbildung leicht Restintegrale angeben. Von diesen ausgehend kann man die eben genannten Entwicklungen gleichfalls ableiten. Die Integrale sind nämlich über eine 0 und 1 enthaltende Kurve zu erstrecken. Zerlegt man sie in zwei Einzelintegrale über Kurven, die nur je einen dieser Punkte umschließen, so liefert das eine die Funktion f(z), das andere das endliche Integral oder auch die abbrechende Reihe je nach dem weiteren Verlauf der Rechnung. Mittag-Leffler 175c) hat nun allgemeinere derartige Integrale vorgenommen. In ihnen spielt eine noch zu bestimmende Funktion E(z) eine gewisse Rolle. Die Form der Integrale ist so gewählt, daß sie sich auf das bei der Borelschen Methode auftretende Restintegral reduzieren, sowie man für E(z) die Exponentialfunktion nimmt. Unter den sich darbietenden Möglichkeiten möge nur noch eine näher besprochen werden. 176) aus von dem Integral

 $\frac{1}{2\pi i} \int \frac{f(z\xi)}{\xi - 1} \frac{E\left(\frac{a}{\xi}\right)}{E(a)} d\xi,$

erstreckt in positivem Sinn über eine einfach geschlossene Kurve, welche die Punkte 0 und 1 umschließt. Man gewinnt daraus durch die oben angegebene Überlegung ohne weiteres die folgende Relation:

$$f(z) = \sum_{0}^{\infty} k s_{K}(z) \frac{E^{(K+1)}(a)}{(K+1)!} \frac{a^{K+1}}{E(a)} + \frac{1}{2\pi i} \int \frac{f(z\xi)}{\xi - 1} \frac{E(\frac{a}{\xi})}{E(a)} d\xi,$$

wo das Integral über eine nur noch $\xi = 0$ umschließende Kurve zu erstrecken ist. Alles kommt nun darauf an, die ganze Funktion E(z) so zu wählen, daß in einem gewissen Stern der z-Ebene das Restintegral beim Übergang $a \to \infty$ gegen Null strebt. Je nach der Wahl von E(z) kann man verschiedene Sterne erhalten. Nimmt man aber $E(z) = E_a(z)$, so erhält man wieder den Stern B_a .

Man kann auch E(z) so wählen, daß man eine im Hauptstern gültige Darstellung von f(z) erhält. Dazu reicht es nach $Dienes^{177}$) hin, eine ganze Funktion mit positiven Koeffizienten zu wählen, welche auf jedem von der positiven reellen Achse verschiedenen Halbstrahl bei Annäherung an den unendlich fernen Punkt der Null zustrebt, und zwar gleichmäßig in jedem nicht an die positive reelle Achse heranreichenden Winkelraum. Die Wichtigkeit dieser Funktionen

¹⁷⁷⁾ Man vergleiche dazu auch P. Dienes, Leçons sur les singularités des fonctions analytiques, Paris 1913.

für die Frage hatte schon *Mittag-Leffler*^{175 c}) erkannt. *Malmquist*⁸⁴) gab zuerst eine derartige Funktion an. *E. Lindelöf*⁸⁵)^{165 c}) gab die Funktion

$$\sum_{0}^{\infty} \left(\frac{z}{\log (n+2)} \right)^{n}$$

an. Ein weiteres Beispiel gab Mittag-Leffler 175b). E. Lindelöf 165e) zeigte weiter, daß die ganzen Funktionen mit positiven Koeffizienten C_n brauchbar sind, wenn $C_n = \varphi(n)$ ist, und wenn $\varphi(z)$ eine in der Halbebene $\Re(z) > 0$ reguläre analytische Funktion bedeutet, für welche $|\varphi(\varrho e^{i\psi})| < e^{e\varrho}$ ist für jedes $\varepsilon > 0$ und für $\frac{\pi}{2} < \psi \leq \frac{\pi}{2}$, falls nur ϱ hinreichend groß ist.

Über die Konvergenz am Rande des Hauptsternes liegen Untersuchungen von *Dienes* ¹⁷⁸) vor.

44. Verallgemeinerungen. Schon Mittag-Leffler hat gelegentlich 154d) auf die Möglichkeit hingewiesen, statt des geradlinig begrenzten Hauptsternes Kurvensterne zu verwenden. Zu ihrer Erzeugung hat man statt der vom Mittelpunkt ausgehenden Halbstrahlen andere Kurvenscharen zu verwenden. 179 Von verschiedenen Seiten sind solche Überlegungen ins Einzelne durchgeführt worden. Painleve 159 hat sich ausführlich damit befaßt, und Phragmén 163 hat noch allgemeinere derartige sternartige Bereiche herangezogen.

 $H.\ von\ Koch^{180})$ und $Painleve^{(181)}$ haben zuerst die Untersuchungen auf den Meromorphiestern ausgedehnt, d. h. auf den Stern, in dem nur durchweg rationaler Charakter von f(z) verlangt wird. Die erhaltenen Polynomreihen konvergieren natürlich nicht mehr durchweg gleichmäßig. Die Pole der Funktion sind durch unendlich werdende Reihensumme gekennzeichnet. $Mittag-Leffler^{182}$) ist in zwei Noten

¹⁷⁸⁾ a) Dienes, a. a. O. 177); b) P. und V. Dienes, Recherches nouvelles sur les singularités des fonctions analytiques, Ann. Éc. Norm. (3) 28 (1911), p. 389-457.

¹⁷⁹⁾ G. Mittag-Leffler, Sopra le funzioni $E_{\alpha}(z)$, Atti dei Lincei (5) 13 (1904), p. 3-5.

¹⁸⁰⁾ H. von Koch, a) Applications nouvelles de la fonction exponentielle, Bih. till Svenska Vet. Akad. Förh. 1902; b) Sur le prolongement analytique d'une série de Taylor, Acta math. 27 (1902), p. 79—104; c) Sur le prolongement d'une série de Taylor, Arkiv for mat. astr. och phys. 12 (1907), Nr. 11.

¹⁸¹⁾ P. Painlevé, Sur le développement des fonctions analytiques en séries de polynomes, Paris C. R. 135 (1902), p. 11—15.

¹⁸²⁾ G. Mittag-Leffler, a) Un nouveau théorème général de la théorie des fonctions analytiques, Paris C. R. 138 (1904), p. 881—884; b) Une nouvelle fonction entière, Paris C. R. 138 (1904), p. 941—942.

460 HC4. L. Bieberbach. Neuere Untersuch. über Funkt. von kompl. Variablen.

noch etwas weiter gekommen. Doch scheint der allgemeinste der Methode zugängliche Fall noch nicht erreicht zu sein. 182,1)

Zusammenhang zwischen den Koeffizienten eines Funktionselementes und den Singularitäten der durch dasselbe definierten Funktion.

45. Die Singularitäten auf dem Konvergenzkreis. Wenn ϱ der Konvergenzradius der Potenzreihe $\Sigma a_n z^n$ ist, so folgt aus dem Cauchyschen Konvergenzkriterium $\frac{1}{\varrho} = \limsup_{n \to \infty} \sqrt[n]{|a_n|}$.

Einen Zusammenhang zwischen Konvergenzradius und $\frac{a_n}{a_{n+1}}$ hat ebenfalls bereits $Cauchy^{183}$) angegeben. Wenn nämlich $\lim_{n\to\infty}\left|\frac{a_n}{a_{n+1}}\right|=a$ existiert, so ist $\varrho=a.^{184}$) Im allgemeinen liegt ϱ zwischen

$$\limsup_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \quad \text{und} \quad \liminf_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|.$$

Tiefer führt der folgende Satz: Wenn $\lim_{n\to\infty}\frac{a}{a_{n+1}}=\alpha$ existiert, so ist α ein singulärer Punkt. ¹⁸⁵)

Die Wurzel der Beweismethode, die diesen und ähnliche Sätze liefert, liegt in der folgenden Bemerkung: Wenn |z| = 1 der Konver-

^{182,1)} Weitere Literatur über analytische Fortsetzung: A. Buhl, a) Sur une extension de la méthode de M. Borel, Paris C. R. 144 (1907), p. 710—712; b) Sur de nouvelles applications de la méthode des résidus, Bull. des sc. math. 31 (1907), p. 152—158; c) Sur la sommabilité des séries de Laurent, Paris C. R. 145 (1907), p. 614—617; d) Sur de nouvelles formules de sommabilité, Bull. des sc. math. 31 (1907), p. 340—346; e) Sur les séries de polynomes Tayloriens, Paris C. R. 146 (1908), p. 575—578; f) Sur la représentation des fonctions méromorphes par des séries de polynomes Tayloriens, Bull. des sc. math. 32 (1906', p. 198—207; A. Costable, Sur le prolongement analytique d'une fonction méromorphe, Enseignement math. 10 (1908), p. 377—390; E. Schöll, Beiträge zur Theorie der analytischen Fortsetzung in elementarer Behandlungsweise, Diss. München 1914.

¹⁸³⁾ A. L. Cauchy, Analyse algébrique 1821, p. 289 = Oeuvres sér. II Bd. 3, p. 240.

¹⁸⁴⁾ Vgl. auch E. Bortolotti, Sul raggio di convergenza delle serie di potenze, Mém. acc. Modena (3) 4 (1901), p. 16-20.

¹⁸⁵⁾ E. Fabry, Sur les points singuliers d'une fonction donnée par son développement en série et sur l'impossibilité du prolongement analytique dans des cas très généraux, Ann. Éc. Norm. (3) 13 (1896), p. 107—114; J. Hadamard, La série de Taylor et son prolongement analytique, Paris 1901, p. 25.

genzkreis der Reihe $\Sigma a_n z^n$ ist, so ist z=1 singulär, wenn für irgendein b zwischen 0 und 1

$$\lim \sup_{n \to \infty} \sqrt[n]{\left| \frac{f^{(n)}(b)}{n!} \right|} = \frac{1}{1-b}$$

ist. z = 1 aber ist regulär, wenn für ein solches b

$$\limsup_{n\to\infty} \sqrt[n]{\frac{f^{(n)}(b)}{n!}} < \frac{1}{1-b}$$

ist. Ohne vorherige Umformung kann man jedoch selten dies Kriterium verwerten. Einer dieser seltenen Fälle liegt bei dem Satze von Vivanti-Dienes 186) vor. Er lautet: Wenn die Koeffizienten a_n der Bedingung $\lim_{n\to\infty} \sup_{n\to\infty} \sqrt[n]{|a_n|} = 1$ genügen und bei ihrer Deutung in einer Gaußschen Zahlenebene bis auf endlich viele einem Winkelraum angehören, dessen Scheitel der Koordinatenursprung ist, und dessen Öffnung weniger als π beträgt, so ist +1 singulärer Punkt der Funktion $\Sigma a_n z^n$.

Für weitere Untersuchungen läßt sich das Kriterium auf eine handlichere Form bringen. Sie beruht auf der Einsicht, daß man von der Reihe, welche $f^{(n)}(b)$ darstellt, nur eine endliche, allerdings mit n über alle Grenzen wachsende Zahl von Gliedern beizubehalten braucht. Diese Zahl, das ist wesentlich, hängt von der Wahl der Funktion f(z) nicht ab. Daraus entnimmt $Hadamard^{186}$) sofort, daß eine Potenzreihe, für welche die Lücken zwischen den nichtverschwindenden Koeffizienten groß genug sind, über ihren Konvergenzkreis nicht fortgesetzt werden kann. Das ist der einfachste Fall eines allgemeinen Lückensatzes, dessen Beweis zwar von dem genannten Kriterium ausgeht, aber noch wesentlich tiefer schürfen muß. Der allgemeine Lückensatz lautet:

¹⁸⁶⁾ G. Vivanti, Sulle serie di potenze, Rivista di matematica 3 (1893), p. 111—114. Hier kommt der Satz zuerst ohne Beweis für positive Koeffizienten vor. Einen ersten Beweis für diesen Fall gab A. Pringsheim, Über Funktionen, welche in gewissen Punkten endliche Differentialquotienten jeder endlichen Ordnung, aber keine Taylorsche Reihenentwicklung besitzen, Math. Ann. 44 (1894), p. 41—56. Den inneren Grund deckt erst der Beweis von E. Landau auf: E. Landau, Über einen Satz von Tschebychef, Math. Ann. 61 (1905), p. 527—550. Einen etwas allgemeineren Fall behandelt J. Hadamard, Essai sur l'étude des fonctions données par leurs développements de Taylor, J. de math. (4) 8 (1892), p. 101—186. Die Erweiterung auf die Form des Textes gab Dienes, Essai sur les singularités des fonctions analytiques, J. de math. (6) 5 (1909), p. 327—413. Den vorhin erwähnten Landauschen Beweis übertrug Fekete auf diesen allgemeinen Fall. Fekete, Sur les séries de Dirichlet, Paris C. R. 150 (1910), p. 1033—1036. Vgl. auch die Darstellung bei E. Landau, Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie, Berlin 1916.

Eine Potenzreihe $\Sigma a_{m_r} z^{m_r}$, für welche $\lim_{v \to \infty} \frac{m_r}{v} = \infty$ gilt, kann nicht über ihren Konvergenzkreis hinaus fortgesetzt werden. 187)

Dieser Satz begreift alle schon vorher von anderer Seite (Weierstraß $\Sigma a^n z^{b^n}$ (a > 0), Fredholm⁵⁹) $\Sigma a^n z^{n^2}$) angegebenen Beispiele von Funktionen in sich, deren natürliche Grenze der Einheitskreis ist.

Natürlich ist das Auftreten von Lücken keine notwendige Bedingung für Nichtfortsetzbarkeit. Das zeigen Beispiele verschiedener Autoren. 188) Am deutlichsten kommt es jedoch in einer von $Polya^{189}$) bewiesenen Fatou schen 94) Vermutung zum Ausdruck:

Für jede vorgelegte Reihe $\Sigma a_n z^n$ mit endlichem Konvergenzkreis läßt sich eine Folge von Zahlen ε_0 , ε_1 . . ., deren jede entweder + 1 oder - 1 ist, so bestimmen, daß die Reihe $\Sigma \varepsilon_n a_n z^n$ nicht über ihren Konvergenzkreis hinaus fortgesetzt werden kann.

Statt bei der Herleitung der Kriterien für singuläre und für reguläre Punkte von der unmittelbaren Aneinanderreihung der Funktionselemente auszugehen, kann man auch die *Euler* sche Transformation verwenden. ¹⁹⁰) Sie besteht in der Substitution

$$z = \frac{\zeta}{1 - \zeta}, \quad \zeta = \frac{z}{1 + z}.$$

188) E. Fabry, a. a. O. 185); E. Borel, a. a. O. 58a); Leau, Sur le cercle de convergence des séries, Paris C. R. 127 (1898), p. 711—712 und p. 794; E. Le Roy, Sur les points singuliers d'une fonction défini par un développement de Taylor, Paris C. R. 187 (1898), p. 948—950; G. N. Watson, The singularities of functions defined by Taylor series, Quart. J. 42 (1911), p. 41—53.

189) G. Pólya und A. Hurwitz, Zwei Beweise eines von Herrn Fatou vermuteten Satzes, Acta math. 40 (1916), p. 179—183. Vgl. ferner F. Hausdorff, a. a. O. 58).

190) E. Lindelöf, a) Sur la transformation d'Euler et la détermination des

¹⁸⁷⁾ In dieser allgemeinen Form gab den Satz zuerst E. Fabry 185) an. Ein Beweis wurde durch G. Faber erbracht. G. Faber, a) Über Reihenentwicklungen analytischer Funktionen, Diss., München 1903; b) Über Potenzreihen mit unendlich vielen verschwindenden Koeffizienten, Münch. Ber. 36 (1906), p. 581—583; c) a. a. O. 190b). A. Pringsheim hat den Beweis vereinfacht: A. Pringsheim, Über einige funktionentheoretische Anwendungen der Eulerschen Reihentransformation, Münch. Ber. 1912, p. 11—92. Den Spezialfall $\lim_{r\to\infty} \frac{m_{r+1}-m_{r}}{m_{r}}>0 \text{ gab bereits } Hadamard^{186}).$ Die Verallgemeinerung zu $\lim_{r\to\infty} \frac{m_{r+1}-m_{r}}{\sqrt{m_{r}}}>0 \text{ fand } E.$ Borel 58c). Vgl. auch Lösung der Aufg. 520, Arch. Nath. Phys. 27 (1918), p. 90. Die im Text angegebene Bedingung besagt, daß die Wahrscheinlichkeit, einen von Null verschiedenen Koeffizienten zu treffen, Null ist. Fabry 185) und Faber 187b) haben Beispiele dafür gegeben, daß $\lim_{r\to\infty} \frac{m_{r}}{r} = \infty$ nicht ausreicht. Es gibt Fälle, wo dann auf dem Konvergenzkreis nur eine singuläre Stelle liegt.

Sie führt die Halbebene $\Re(\zeta) < \frac{1}{2}$ in den Kreis |z| < 1 über. Dabei entsprechen sich $\xi = \frac{1}{2}$ und z = 1. Daher ist die Funktion $f(\frac{\xi}{1-z})$ zum mindesten im Kreise $|\zeta| < \frac{1}{2}$ regulär. Ob der Konvergenzkreis größer ist oder nicht, hängt davon ab, ob z=1 für f(z) singulär ist oder nicht. Da aber

$$f\left(\frac{\zeta}{1-\zeta}\right) = (1-\zeta) \sum_{0}^{\infty} \left(\sum_{0}^{\lambda} {\lambda \choose \nu} a_{\nu}\right) \zeta^{\lambda}$$

ist, so hat man den Satz:

hat man den Satz:
$$z = 1 \text{ ist singulär, wenn } \limsup_{\lambda \to \infty} \sqrt[\lambda]{\sum_{0}^{\lambda} \binom{\lambda}{\nu} a_{\nu}} = 2,$$

$$z=1$$
 ist regulär, wenn $\limsup_{\lambda \to \infty} \sqrt[\lambda]{\left|\sum_{0}^{\lambda} {\lambda \choose \nu} a_{\nu}\right|} < 2$

Hieraus kann man durch einige Rechnung die folgende hinreichende Bedingung für die Singularität ableiten: z = 1 ist sicher dann singulär, wenn man $0 < \vartheta < 1$ so wählen kann, daß

$$\lim_{\lambda \to \infty} \sup_{\alpha_{\lambda}} \left| a_{\lambda} + \sum_{1}^{3\lambda} \frac{\lambda!}{(\lambda - \nu)!} \frac{\lambda!}{(\lambda + \nu)!} (a_{\lambda - \nu} + a_{\lambda + \nu}) \right|^{\frac{1}{\lambda}} \ge 1$$

Diese Bedingung kann man auch aus ist.

$$\lim_{\lambda \to \infty} \sup_{\alpha} \sqrt[\lambda]{\left| \frac{f^{(\lambda)}(b)}{\lambda!} \right|} = \frac{1}{1-b}$$

ableiten. Sie spielt eine besondere Rolle beim Beweis des Lückensatzes.

E. Fabry 190) ist von der Eulerschen Transformation ausgehend zu einer Abschätzung des Hauptsternes gelangt, die also als Spezialfall Bedingungen für die Regularität auf einem Bogen des Konvergenzkreises enthält. Fabry und Leau haben mit den hier dargelegten Methoden Spezialfälle der in der nächsten Nummer zu besprechenden Sätze gewonnen.

Verwandt mit der Frage nach der Lage der Singularitäten auf dem Konvergenzkreis ist die andere nach der Lage der Singularitäten auf dem Hauptstern. Auch hierzu bieten die bisher erwähnten Arbeiten von Hadamard, Fabry, Servant Methoden. Zu erwähnen sind

points singuliers d'une fonction définie par son développement de Taylor, Paris C. R. 126 (1898), p. 632-634; b) Remarques sur un principe général de la théorie des fonctions, Acta soc. sc. Fenn. 84 (1898), Nr 7; E. Fabry, a) Sur les séries de Taylor, Paris C. R. 125 (1897), p. 1086-1089; b) Sur les points singuliers d'une série de Taylor, J. de math. (5) 4 (1898), p. 317-358; A. Pringsheim, a. a. O. 187; G. Faber, a) a. a. O. 187); b) Über die Nichtfortsetzbarkeit gewisser Potenzreihen, Münch. Ber. 34 (1904), p. 63-74.

464 HC4. L. Bieberbach. Neuere Untersuch. über Funkt. von kompl. Variablen.

auch noch einige russische Arbeiten von Brajtzew in Warschau, Polit. Inst. 1907—1913.

46. Der Hadamardsche Multiplikationssatz. Die Bestimmung des Hauptsternes ist identisch mit der Aufgabe, den Konvergenzbereich einer im Hauptstern gültigen Polynomentwicklung aus den Koeffizienten des die Funktion definierenden Funktionselementes direkt zu bestimmen. Doch hat diese Methode bisher zu keinen Resultaten von größerer Bedeutung geführt. 191)

Die Untersuchungen, welchen wir uns jetzt zuwenden, beziehen sich ebensowenig wie Konvergenzkriterien auf beliebige Reihen. Sie werden vielmehr für gewisse Reihentypen die Bestimmung des Hauptsternes leisten. Darüber hinaus werden sie oft über den ganzen weiteren Verlauf der Funktion Aufschluß geben.

Ich beginne mit einigen elementaren Bemerkungen. Wenn man die Singularitäten von f(z) und g(z) kennt, so sind damit auch die Singularitäten von f(z)+g(z), f(z)-g(z), $f(z)\cdot g(z)$, $\frac{f(z)}{g(z)}$, f'(z),

 $\int f(z)dz$ und in gewissem Umfang auch die von $f\{g(z)\}$ bekannt. Dahin gehört auch die Bemerkung, daß die Addition einer ganzen Funktion an den im Endlichen gelegenen Singularitäten nichts ändert. Das hat Anlaß zu einigen interessanten Resultaten gegeben. Ich nenne den Satz von $Borel^{192}$), daß man zu jeder Potenzreihe eine andere mit rationalen Koeffizienten konstruieren kann, so daß sich die durch beide dargestellten Funktionen nur um eine ganze Funktion unterscheiden. Dahin gehören auch verschiedene Untersuchungen 193) über gleichsinguläre Potenzreihen, d. h. Reihenpaare, deren Differenz einen größeren Konvergenzradius hat als jede der Reihen.

Tiefer als diese naheliegenden Bemerkungen führt der Hadamardsche Multiplikationssatz. 194) Ich spreche ihn so aus: Die am Rande des

¹⁹¹⁾ Vgl. indessen Servant, Sur les points singuliers d'une fonction définie par une série de Taylor, Paris C. R. 128 (1899), p. 80-83. Vgl. Borel, a. a. O. 160), p. 141.

¹⁹²⁾ E. Borel, Leçons sur la théorie des fonctions méromorphes, Paris 1903, p. 36.
193) S. Pincherle, Confronto delle singolarità delle funzioni analitiche, Rend.
Acc. Bologna Nuova serie 2 (1897/98), p. 77—78 und Rend. Acc. Lincei (4) 32 (1887), p. 310—315. G. H. Hardy, On a class of analytic functions, Proc. Lond. math. Soc. (2) 3 (1905), p. 441—460.

¹⁹⁴⁾ J. Hadamard, Un théorème sur les séries entières, Acta math. 22 (1898), p. 55-63; E. Borcl, Sur les singularités des séries de Taylor, Bull. de la soc. math. de France 26 (1898), p. 238-248; G. Faber, Bemerkungen zu einem funktionentheoretischen Satz des Herrn Hadamard, Jahresber. d. D. Math.-Ver. 16 (1907), p. 285-298; Petrovitch, Un problème sur les séries, Ann. nouv. (3) 15 (1896), p. 58-63; P. Montel, Leçons sur les series de polynomes, Paris 1910, p. 34 ff.

Hauptsternes von $a(z) = \Sigma a_n z^n$ gelegenen Singularitäten seien a_r , die am Rande des Hauptsternes von $b(z) = \Sigma b_n z^n$ gelegenen Singularitäten seien β_r . Dann sind die am Rande des Hauptsternes von $f(z) = \Sigma a_n \cdot b_n z^n$ gelegenen Singularitäten unter den Punkten $a_r \cdot \beta_r$ enthalten.

Man kann diesen Satz sicher in mancher Hinsicht auf die Singularitäten der übrigen Funktionszweige ausdehnen. Aber abschließende Resultate liegen da nicht vor. Zum Beispiel weiß man, daß in den anderen Zweigen auch 0 und ∞ zu den Singularitäten zählen können. Eine Stelle $\alpha_r \cdot \beta_r$, die nur auf eine Weise als Produkt $\alpha_r \cdot \beta_r$ dargestellt werden kann, ist sicher singulär; $\alpha_r \cdot \beta_r$ ist eine eindeutige Singularität, falls dies für alle $\alpha_r \cdot \beta_r$ zutrifft, deren Produkt diese Stelle liefert. Der Beweis aller dieser Sätze beruht auf der Parsevalschen Integraldarstellung

egradurstellung $f(z) = \frac{1}{2\pi i} \int a(t)b\left(\frac{z}{t}\right) \frac{1}{t} dt.$

Dabei soll der Integrationsweg t=0 einmal im positiven Sinn umlaufen und samt z so gewählt sein, daß für alle t des Weges $\frac{z}{t}$ dem Hauptstern von b(z) angehört.

Hurwitz¹⁹⁵) hat die Sätze erweitert und namentlich Fälle angegeben, wo an die Stelle der Multiplikation eine Addition der Singularitäten tritt. Er stützt sich dabei auf die Betrachtung gewisser Doppelintegrale. Agnola¹⁹⁶) hat zu dem gleichen Zweck an das Integral

$$\int\!\! f(u)\, \varphi(z-u)du \quad \text{ angeknüpft.}^{197})$$

47. Der Satz von Leau. Wir wenden uns zur Besprechung einiger Typen von Funktionen, deren Hauptstern sich bestimmen läßt. Der allgemeine Charakter der Sätze ist es, aus den Eigenschaften von

¹⁹⁵⁾ A. Hurwitz, Sur un théorème de M. Hadamard, Paris C. R. 128 (1899), p. 350—353; E. Schöll 182, 1) hat den Hurwitzschen Satz aus dem Hadamardschen abgeleitet.

¹⁹⁶⁾ C. A. dell' Agnola, Estensione di un teorema di Hadamard, Atti dell' ist. Veneto 58₂ (1898—99), p. 525—531 und p. 669—677.

¹⁹⁷⁾ Spezielle Fälle und weitere Bemerkungen bei folgenden Autoren: E. Lugaro, Intorno alle singolarità di una funzione dipendente da quelle di piu funzione date, Periodico matematico (3) 1 (1904), p. 105-123; S. Pincherle, a) A proposito di un recente teorema del signore Hadamard, Rend. Acc. di Bologna nuova serie 3 (1898-99), p. 67-75; b) Sulle singolarità di una funzione che dipende da due funzioni date, Rend. Acc. Lincei (5) 8, (1899), p. 228-232; A. Pringsheim, a. a. O. 187); G. Faber, Über die Fortsetzbarkeit gewisser Taylorscher Reihen, Math. Ann. 57 (1903), p. 369-388; M. Beke, a) Untersuchungen aus der Theorie der analytischen Funktionen (ungarisch), Math. és Term. ért. 34 (1916), p. 1-61; b) Beiträge zu der Hadamardschen und der Hurwitzschen Komposition der Potenzreihen (ungarisch), ebenda 35 (1917), p. 87-119.

 $f(z) = \Sigma a(n)z^n$ auf die von $F(z) = \Sigma \varphi[a(n)]z^n$ zu schließen. $\varphi(x)$ ist dabei eine analytische Funktion mit gewissen näher anzugebenden Eigenschaften. Hier faßt man auch die Koeffizienten a(n) als Werte einer analytischen Funktion a(x) für ganzzahlige x auf.

Ich betrachte nun einzelne Fälle.

- 1) $\varphi(x)$ sei eine ganze Funktion. Die hier bislang erhaltenen Resultate sind im wesentlichen in einem Satz von Leau¹⁹⁸) zusammengefaßt. Derselbe läßt sich als eine Verallgemeinerung des Hadamardschen Satzes ansehen. Wenn nämlich $\varphi(x)$ eine ganze rationale Funktion von x ist, so gibt schon der Hadamardsche Satz über die Funktion Aufschluß. Von hier gelangt man durch einen Grenzübergang zum Satz von Leau: z=1 sei die einzige endliche Singularität von f(z). Ferner sei $(z-1)^m f(z)$ in der Umgebung von z=1 beschränkt. Dann ist z=1 auch die einzige Singularität von F(z), welche im Hauptstern von $\frac{1}{1-z}$ liegt, wenn
 - a) $\varphi(x)$ eine ganze Funktion von niedrigerer Ordnung als $\frac{1}{m-1}$ ist für den Fall m>1, d. h. wenn von einem gewissen |x| an $|\varphi(x)|<|e|^{\epsilon|x|^{\delta}}$

ist für ein $\delta < \frac{1}{m-1}$ und ein beliebig gegebenes $\varepsilon > 0.^{198,1}$)

- b) $\log n \cdot \sqrt[n]{|d_n|} \to 0$ für m = 1.
- c) $\varphi(x)$ irgendeine ganze Funktion für m < 1.

Wenn ferner z = 1 eine eindeutige Singularität von f(z) ist, so ist z = 1 auch eine eindeutige Singularität von F(z).

Leau hat diesen Satz noch nach verschiedenen Richtungen erweitert. Zunächst läßt er allgemeinere Singularitäten als die mit $\frac{1}{(z-1)^m}$ vergleichbaren zu. Ferner werden Funktionen F(z) mit mehreren isolierten Singularitäten betrachtet. Seien diese α_n , so sind die Singularitäten von F(z) unter den α_n , ihren doppelten, dreifachen usw. Produkten und den Häufungspunkten dieser enthalten. Eventuell kommt noch in anderen Zweigen der Punkt 0 hinzu.

¹⁹⁸⁾ E. Leau, a) Extension d'un théorème de M. Hadamard à l'étude des séries de Taylor, Bull. de la soc. math. de France 26 (1898), p. 267-270; b) a. a. O. 58). Ferner Désaint, a) Théorèmes géneraux sur les points singuliers de fonctions données par une série de Taylor, J. de math. (5) 8 (1902), p. 448 bis 451; b) Les séries de Taylor et la représentation exponentielle, Ann. Éc. Norm. (3) 21 (1904), p. 415-448.

^{198,1)} Ob diese Aussage auch noch für Funktionen $\varphi(x)$ vom Minimaltypus der Ordnung m-1 zutrifft, ist im allgemeinen Fall noch unentschieden. In dem gleich zu erwähnenden Spezialfall $a_n=n$ trifft sie zu.

Als wichtiger Spezialfall ist $a_n = n$ zu nennen. Ein darauf bezüglicher Satz ist unabhängig von dem Leauschen von verschiedenen Autoren 199 behandelt und über den aus diesem zu entnehmenden Inhalt hinaus erweitert worden. Dahin gehört der Satz von Wigert: Die notwendige und hinreichende Bedingung dafür, daß die Reihe $f(z) = \sum_{i=1}^{\infty} c_n z^n$ eine ganze Funktion von $\frac{z}{1-z}$ definiert, besteht darin, daß die c_n sich in der Form $\varphi(n)$ darstellen lassen. Dabei bedeutet $\varphi(x)$ eine ganze Funktion, die höchstens dem Minimaltypus der Ordnung Eins angehört. Ist sie rational 199a), so ist auch f(z) rational. Ist sie transzendent, so ist auch f(z) transzendent.

Verallgemeinerung. Wenn a(x) von höherer Ordnung als dem Minimaltypus der Ordnung Eins ist, so kann man zu Abschätzungen des Hauptsternes gelangen. Le Roy, Faber, Pringsheim, Lindelöf u. a. 200) haben mit verschiedenen Methoden hier verschieden scharfe Resultate gewonnen.

- 48. Sätze von Lindelöf. Wir wollen zunächst $\varphi(x)$ in anderer Weise als in der vorigen Nummer spezialisieren. Ich wähle nämlich
- 2) $a_n \to \infty$, $\varphi(x)$ holomorph für genügend große |x|. Bisher ist nur $a_n = n$ behandelt. Hier gilt der folgende Satz²⁰¹):

199a) Diesen Teil des Satzes sieht man sofort ein, wenn man beachtet, daß für $f_p(z) = \sum n^p z^n$ stets $f_{p+1}(z) = z f'_p(z)$ gilt.

200) E. Lindelöf gibt die Resultate als Spezialfälle noch viel allgemeinerer Sätze: E. Lindelöf, a) Quelques applications d'une formule sommatoire générale, Acta Soc. Fennicae 31 (1902), Nr. 3 und a. a. O. 165c); b) Sur une formule sommatoire générale, Acta math. 27 (1903), p. 305-311; W. B. Ford, a) Sur la fonction définie par une série de Mac-Laurin, J. de math. (5) 9 (1903), p. 223-232; b) A theorem on the analytic extension of power series, Bull. of the Am. math. soc. (2) 16 (1910), p. 507-510; F. Carlson, a a. O. 199; S. Wigert, Sur une certaine classe de séries de puissances, Arkiv for mat. astr. och fys. 12 (1917), Nr. 7. Die Untersuchungen von Desaint, Sur quelques théorèmes de la théorie des fonctions, Ann. Éc. Norm. (3) 14 (1897), p. 311-378, widersprechen den hier angeführten gesicherten Tatsachen. G. H. Hardy, a. a. O. 199).

201) In dieser allgemeinen Fassung folgt der Satz aus Entwicklungen von Le Roy 164), Leau 58): Sur les fonctions définies par un développement de Taylor,

¹⁹⁹⁾ Den Nachweis, daß die Bedingung des Satzes hinreicht, gab Leau⁵⁸) auch noch unabhängig von seinem Hauptsatz. Auch ist dieser Teil des Satzes in den Untersuchungen von Le Roy¹⁶⁴) enthalten. Daß die Bedingung notwendig ist, zeigten zuerst S. Wigert und F. Carlson. Vgl. F. Carlson, Sur une classe de séries de Taylor, Upsala 1914; S. Wigert, Sur les fonctions entières, Oefversigt af K. Vet. Ak. Förh. 57 (1900), p. 1001—1011. Später gab Faber¹⁸⁷) ¹⁹⁷) einen neuen unabhängigen Beweis, den Pringsheim¹⁸⁷) in etwas anderer Fassung wiederholt hat. Vgl. ferner E. Lindelöf, a. a. O. 200); G. H. Hardy, On two theorems of F. Carlson and S. Wigert, Acta math. 42 (1920), p. 327—339; M. Riesz, Sur le principe de Phragmén-Lindelöf, Proc. Camb. Phil. Soc. 20 (1920), p. 205—209.

 $\sum \varphi(n)z^n$ hat im Endlichen nur die singulären Punkte 0, 1.

3) $a_n \to \infty$, $\varphi(x)$ sei vom Charakter einer ganzen rationalen Funktion für große |x|. Wir wollen diesen Fall in die gleich jetzt zu besprechenden Untersuchungen mit einbeziehen. Es ist bisher auch nur $a_n = n$ behandelt.

4) In der Funktion
$$f(z) = \sum a(n)z^n$$

sei a(x) eine in einer Halbebene $\Re(x) > \alpha$ reguläre Funktion, die für $x \to \infty$ gewisse asymptotische Bedingungen erfüllt. Wir verlangen z. B., daß bei gegebenem $\epsilon > 0$ von einem gewissen |x| an

$$|a(x)| < e^{x-x}$$

gleichmäßig gilt, in der Halbebene $\Re(x) > \alpha$. Dann ist z = 1 die einzige Ecke des Hauptsternes von f(z). Dies Resultat haben $Le\ Roy^{202}$) und $E.\ Lindelöf^{165c})^{200}$) mit verschiedenen Methoden gewonnen. 203)

Die sehr weittragenden Methoden, welche *Lindelöf* angibt, beruhen auf der Anwendung allgemeiner Summenformeln. Die eine führt zu der Integraldarstellung:

$$f(z) = \int_{-i\infty}^{+i\infty} \frac{a(x)z^x dx}{e^{2i\pi x} - 1}.$$

Als Halbebene ist dabei $\Re(x) \geq 0$ genommen. Die andere führt zu der Erkenntnis, daß für den Verlauf der Funktion $f(z) = \Sigma a(n) z^n$ im wesentlichen der von

$$J(z) = \int_{0}^{\infty} \dot{\sigma}(x) z^{x} dx$$

Paris C. R. 128 (1899), p. 804—805. Faber ¹⁸⁷) ¹⁹⁷) und Pringsheim ¹⁸⁷) haben Teile bewiesen. Die allgemeine Fassung ergibt sich aus den gleich zu erwähnenden Resultaten von Lindelöf.

202) Le Roy ¹⁶⁴) gibt noch Andeutungen für den allgemeinen Fall, wo an Stelle der Halbebene ein anderer, die positive reelle Achse enthaltender Winkelraum tritt. Er behauptet, auch hier lägen alle singulären Punkte auf der positiven reellen Achse jenseits +1. Indessen scheint ein Beweis dafür noch nicht vorzuliegen. Erwähnt sei nur, daß E. Fabry ¹⁸⁵) gezeigt hat, daß +1 der einzige singuläre Punkt auf dem Konvergenzkreis ist.

203) Hierher gehören auch die Untersuchungen von E. W. Barnes, The asympto-

$$\text{tic expansion of } \sum_{0}^{\infty} \frac{x^n}{n! \ (n+\vartheta)} \text{ and the singularities of } g(x,\vartheta) = \sum_{0}^{\infty} \frac{x^n}{n+\vartheta} \,,$$

Quart. J. 37 (1906), p. 289–313; vgl. auch B. Svensson, Etudes sur les fonctions définies par une série de Taylor, Diss. Lund 1908; Lindelöf und Wigert haben auch andere Wachstumsbedingungen für a(x) untersucht. Vgl. S. Wigert, Sur une certaine classe de séries de puissances, Arkiv for mat. astr. och fys. 12 (1917), Nr. 7. Es kommt dabei nur $|a(x)| < e^{\alpha |x|}$ und $\alpha < \pi$ in Betracht, weil schon von $\alpha = \pi$ an der Einheitskreis singuläre Linie sein kann.

bestimmend ist. Andere als die bei diesem Integral auftretenden Singularitäten sind auch bei f(z) in keinem Zweige vorhanden. Über die Lage dieser Singularitäten gewinnt man Aufschluß, wenn man die für a(x) gemachten Voraussetzungen noch etwas erweitert. Wir wollen annehmen, die Funktion a(x) sei holomorph für $\Re(x) > 0$; ferner gebe es zu jedem positiven Zahlenpaar ε , ψ_0 eine andere Zahl R so, daß für $(z = \varrho e^{i\psi}) |\psi| < |\psi_0|$ und $\varrho > R$ die Funktion f(z) holomorph ist und der Bedingung $|f(oe^{i\psi})| < e^{\varepsilon \varrho}$

genügt. Dann läßt sich J(z) verfolgen und man kommt zu dem Resultat, daß dann 0, 1, ∞ die einzigen singulären Stellen von

$$f(z) = \sum_{n=0}^{\infty} a(n)z^{n}$$
 sind.

In den allgemeinen Sätzen Lindelöfs, deren wichtigste hier aufgeführt wurden, sind so gut wie alle seither über analytische Fortsetzung gewonnenen Resultate enthalten, soweit sie nicht schon aus dem Satz von Leau folgen. Sie umfassen namentlich fast alle speziellen Fälle, welche Mellin 204) und Le Roy mit ähnlichen Integraldarstellungen behandelt haben. Bei Le Roy sind es Integrale der Form

$$\int \psi(x) A(x,z) dx,$$

insbesondere das Integral

$$\int_{0}^{t} \psi(x) A(x,z) dx,$$
real
$$f(z) = \int_{0}^{1} \varphi(x) \frac{dx}{1 - xz},$$

aus dem die Resultate fließen. Dies letztere leistet namentlich dann gute Dienste, wenn es gelingt, eine Funktion $\varphi(x)$ anzugeben, mit der sich die Darstellung

 $a_n = \int_{-\infty}^{1} \varphi(x) x^n dx$

gewinnen läßt. Auch Hadamard¹⁸⁶) hat schon solche Fälle behandelt³⁰⁵). Die einzige Ecke des Hauptsternes ist stets +1. Ist $\varphi(x)$ analytisch und sind $0, 1, \infty$ ihre einzigen Singularitäten, so ist f(z) nur bei 1 und ∞ singulär. Oft erlauben es auch diese Methoden, über die Natur der Singularitäten Aufschluß zu gewinnen. (Lindelöf, Le Roy,

²⁰⁴⁾ H. J. Mellin, Verschiedene Arbeiten in den Acta math. 28 (1904), p. 37-64, Bd. 25 (1902), p. 139-184. In den Acta soc. Fennicae 20 (1895), 22 (1896), 24 (1899), 29 (1902), 31 (1902).

²⁰⁵⁾ G. H. Hardy, a) A method for determining the behaviour of certain classes of power series near a singular point on the circle of convergence, Proc. Lond. math. Soc. (2) 3 (1905), p. 381-389; b) On the singularities of functions defined by power series, Proc. Lond. math. Soc. (2) 5 (1907), p. 197-205.

Hardy.) Carlson¹⁹⁹) gibt in seiner Dissertation Verallgemeinerungen und, was wichtiger ist, Umkehrungen Lindelöfscher Resultate.

Wie man sieht, bezieht sich fast alles auf Funktionen mit eineckigem Stern. Für allgemeinere Funktionen liegen nur wenige Resultate vor. Es kommt dabei wesentlich die Bemerkung in Betracht, daß solche Funktionen durch Summation anderer mit eineckigen Hauptsternen erhalten werden. Dazu kommen die schon erwähnten Abschätzungen der Hauptsterne, sowie die oben erwähnte Verallgemeinerung des Satzes von Leau.

49. Rekurrierende Reihen. Neben diesen Fällen, wo die Koeffizienten a_n der Funktion $\Sigma a_n z^n$ als bestimmte analytische Funktionen a(n) gegeben sind, hat man noch verschiedene Fälle untersucht, in welchen die Koeffizienten gewissen Rekursionsgesetzen, z. B. linearen Differenzgleichungen genügen. Dahin gehören namentlich die aus der Algebra bekannten Sätze über rekurrente Reihen. Funktionstheoretisch ausgedrückt enthalten dieselben die Bedingungen dafür, daß eine Reihe $\Sigma a_n z^n$ eine rationale Funktion darstellt. Dafür ist notwendig und hinreichend, daß es eine endliche Anzahl von Zahlen $a_0, a_1, \ldots a_n$ gibt derart, daß für alle hinreichend großen ν die Relationen

$$\alpha_0 a_{\nu} + \alpha_1 a_{\nu+1} + \cdots + \alpha_n a_{\nu+n} = 0$$

gelten. $a_0z^n + a_1z^{n-1} + \cdots + a_n$ ist dann der Nenner der durch die Reihe dargestellten rationalen Funktion. Man kann die Bedingung auch dahin aussprechen, daß die Determinanten

$$D_{i}^{(n)} = \begin{vmatrix} a_{i} & a_{i+1} & \dots & a_{i+n} \\ a_{i+1} & a_{i+2} & \dots & a_{i+n+1} \\ \vdots & & \vdots & \vdots \\ a_{i+n} & a_{i+n+1} & \dots & a_{i+2n} \end{vmatrix}$$

von einem gewissen i an alle verschwinden müssen. Man kann mit $P\acute{o}lya^{206}$) hieraus schließen, daß $\Sigma a_k z^k$ dann und nur dann eine rationale Funktion darstellt, wenn unter den Determinanten $D_{k-1}^{(k)}$ und $D_k^{(k)}$ nur endlich viele ungleich Null sind.

206) G. Pólya, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann. 77 (1916), p. 497—513. Vgl. auch G. Pólya, Arithmetische Eigenschaften der Reihenentwicklungen rationaler Funktionen, Crelles J. 151 (1921).

^{205, 1)} Notwendige und hinreichende Bedingungen dafür, daß die sämtlichen Singularitäten einer Funktion auf einer Strecke liegen, gaben auch Jensen und Wigert: Jensen, Eine notwendige und hinreichende Bedingung dafür, daß die Singularitäten einer gegebenen Taylorschen Reihe auf einer geradlinigen Strecke liegen, (dänisch); Nyt tidskrift for mat. 21 (1910); S. Wigert, Sur un théorème de la théorie des fonctions analytiques, Arkiv for mat. astr. och fys. 5 (1909), Nr. 8.

Perron ²⁰⁷) und Van Vleck ²⁰⁸) haben im Anschluß an Poincaré ²⁰⁹) lineare Differenzengleichungen mit nicht konstanten Koeffizienten betrachtet. Aber ihre Untersuchungen haben nicht viel mehr als die Bestimmung des Konvergenzradius der in Betracht kommenden Reihen geliefert.

Fatou²¹⁰) untersucht folgenden Fall: $\vartheta(u)$ sei in einem Bereich B der u-Ebene analytisch und eindeutig. Es gelte $a_n = \vartheta(a_{n-1})$ und es werde die Funktion $f(z) = \Sigma a_n z^n$ untersucht. $\vartheta(u) - u$ habe nur eine Nullstelle α im Bereiche B. Ferner sei in einem gewissen Kreis um $\alpha: |\vartheta(u) - \alpha| < k |u - \alpha| \ (0 < k < 1)$ Dann gilt $\vartheta(a_n) \to \alpha$ für $n \to \infty$ und für jedes a_0 aus jenem Kreis um α . Unter diesen Voraussetzungen ist f(z) eine in der ganzen Ebene meromorphe Funktion, welche als Quotient zweier Funktionen vom Geschlecht Null aufge-

faßt werden kann. Setzt man $a = \vartheta'(\alpha)$, so kann $\prod_{0}^{\infty} (1 - a^n z)$ als Nenner benutzt werden.

50. Untersuchungen von Darboux. $Darboux^{211}$) hat im Jahre 1878 einen Zusammenhang zwischen den Singularitäten auf der Konvergenzgrenze einer Potenzreihe und dem asymptotischen Verhalten ihrer Koeffizienten gefunden und z. B. zur Untersuchung des Verhaltens der Legendreschen Polynome für große Gradzahlen verwendet. Er fand folgenden Satz: Es sei k eine reelle Zahl und α ein Punkt auf der Konvergenzgrenze von $f(z) = \Sigma a_n z^n$. Ferner gelte in der Umgebung von $z = \alpha$ eine Darstellung $f(z) = \varphi(z)(z - \alpha)^k + \psi(z)$, in der $\varphi(z)$ und $\psi(z)$ um $z = \alpha$ regulär sind. In den übrigen Punkten ihres Konvergenzkreises sei f(z) regulär. Dann gelten Abschätzungen wie die folgende 211,1):

$$a_n = \frac{\varphi(\alpha)}{\alpha^{n-k}} \frac{k(k-1)\dots(k-n+1)}{n!} \left| 1 + o\left(\frac{1}{n}\right) \right| + O\left(\frac{1}{|\alpha|^n} \cdot \frac{1}{n\Re(k) + 2}\right).$$

²⁰⁷⁾ O. Perron, Über die Poincarésche lineare Differenzengleichung, J. f. Math. 137 (1910), p. 6-64; vgl. auch O. Perron, Über einen Satz des Herrn Poincaré, J. f. Math. 136 (1909), p. 17-37.

²⁰⁸⁾ E. B. van Vleck, On linear criteria for the determination of the radius of convergence of a power series, Trans. of the Am. math. soc. 1 (1900), p. 293-309.

²⁰⁹⁾ H. Poincaré, Sur les équations linéaires aux différentielles ordinaires et aux différences finies, Am. Journ. 7 (1885), p. 203—263.

²¹⁰⁾ P. Fatou, Sur une classe remarquable de séries de Taylor, Ann. Éc. Norm. (3) 27 (1910), p. 43—53; Lattès, a) Sur la convergence des relations de récurrence, Paris C. R. 150 (1910), p. 1106—1109; b) Sur les séries de Taylor à coefficients récurrents, Paris C. R. 150 (1910), p. 1413—1415; c) Sur les suites récurrentes non linéaires et sur les fonctions génératrices de ces suites, Ann. de Toulouse (3) 3 (1913), p. 13—124.

²¹¹⁾ G. Darboux, Mémoire sur l'approximation des fonctions de très grands nombres, et sur une classe étendue de développements en séries, J. de math. (3)

Dieses Ergebnis ist von den verschiedensten Seiten verallgemeinert worden. Denn es bietet aus mehr als einem Grunde ein erhebliches Interesse dar, und zwar nicht nur wegen der darin enthaltenen Beziehungen zwischen den Singularitäten einer Funktion und den Koeffizienten ihrer Taylorentwicklung. Es kommt auch die Anwendung auf das asymptotische Verhalten noch anderer Funktionen als der Legendreschen Polynome und das Interesse dieser Dinge für die Himmelsmechanik in Betracht. 212)

Den weitestgehenden Satz über Funktionen mit algebraisch logarithmischen Singularitäten hat unter Weiterführung der Untersuchungen von Nörlund ²¹⁸) Perron ²¹⁴) angegeben, und auf das Verhalten der hypergeometrischen Funktion beim Anwachsen eines oder mehrerer Parameter angewandt. ²¹⁵) L. Fejér ²¹⁶) hat Unbestimmtheitsstellen auf der Konvergenzgrenze herangezogen. Sein Resultat wurde von Perron ²¹⁵) erweitert unter gleichzeitiger Vereinfachung des Beweises. ^{215,1})

51. Die Lage der Pole. Alle diese Autoren erschließen aus der Natur der Singularitäten notwendige Bedingungen für die Koeffizien-

4 (1878), p. 5-56 und p. 377-416. Vgl. auch O. Perron, Über das Verhalten von $f^{(v)}(x)$ für $\lim v = \infty$, wenn f(x) einer linearen homogenen Differentialgleichung genügt, Sitzber. München (1913), p. 355-382.

211,1) Mit Landau drücke ich durch die Schreibweise $\varphi(x)=O(f(x))$ aus, daß $\frac{\varphi(x)}{f(x)}$ für große x beschränkt ist, während $\varphi(x)=o(f(x))$ bedeutet, daß

 $\lim_{x \to \infty} \frac{\varphi(x)}{f(x)} = 0 \text{ ist.}$

212) H. Poincaré, Leçons de mécanique céleste II, p. 157 und Les méthodes nouvelles de mécanique céleste I, p. 280. Man vergleiche weiter Arbeiten von Hamy im Bull. astr. 1893, im J. de math. (4) 2 (1890), (4) 10 (1894), (6) 4 (1908) und Paris C. R. 144 (1892) und 125 (1897). Ferner Flamme, Thèse, Paris 1887, und Féraud, Thèse, Paris 1897, und Coculesco, Thèse, Paris 1895. Vgl. auch II A 12 (Burkhardt).

213) T. E. Nörlund, Fractions continues et différences réciproques, Acta

math. 34 (1911), p. 1-108.

214) O. Perron, Über das infinitäre Verhalten der Koeffizienten einer gewissen Potenzreihe, Arch. Math. Phys. (3) 22 (1914), p. 329-340.

215) O. Perron, Über das Verhalten der hypergeometrischen Funktion bei unbegrenztem Wachstum eines oder mehrerer Parameter, Sitzber. Heidelberg I,

1916, Nr. 9 und II, 1917, Nr. 1.

215, 1) Weitere Untersuchungen bei G. Faber, Über das Verhalten analytischer Funktionen an Verzweigungsstellen, Münch. Ber. 1917, p. 263—284; G. H. Hardy, Oscillating Dirichlet's integrals, Quart. J. of math. 44 (1913), p. 1—40, p. 242—263; M. Kuniyeda, Note on asymptotic formulae for oscillating Dirichlet's integrals, Quart. J. of math. 48 (1918), p. 113—135.

216) L. Fejér, a) Sur une méthode de M. Darboux, Paris C. R. 147 (1908), p. 1040—1042; b) Asymptotikus értékek meghatározásáról, Math. és term. ért.

1909), p. 1-33.

ten der Potenzreihe. Es war das große Verdienst von Hadamard ¹⁸⁶), daß er 1892 die Betrachtung umkehrte und lehrte, wie man aus dem Verhalten der Koeffizienten auf die Natur der Singularitäten schließen kann. Besonders die Lage der Pole ist es, die bisher interessiert hat. Er knüpft dabei außer an Darboux noch an andere ältere Untersuchungen an.

Der einfachste hierher gehörige Satz ist dieser:

Dafür daß f(z) als einzige Singularität auf dem Konvergenzkreis einen einfachen Pol bei z = a hat, ist notwendig und hinreichend, daß es eine positive Zahl k < 1 gibt, so daß von einem gewissen n an,

$$\left| \frac{a_{n+1}}{a_n} - \frac{1}{\alpha} \right| < k^n \qquad bleibt.$$

Dem entspricht ja auch der Satz, daß stets $\frac{a_n}{a_{n+1}} \rightarrow \alpha$ strebt, wenn der Pol α die einzige Singularität auf dem Konvergenzkreis ist.²¹⁷)

Die allgemeinen Untersuchungen von Hadamard knüpfen an die schon erwähnte Theorie der rekurrierenden Reihen an. Auch bei ihnen spielen die schon angegebenen Determinanten $D_i^{(n)}$ die Hauptrolle. Noch deutlicher als bei den rationalen Funktionen tritt hier im allgemeinen Fall die Beziehung zur Funktion $D_n(z) = \Sigma D_i^{(n)} z^i$ hervor. Setzt man $f_0(z) = f(z) = \Sigma a_n z^n$ und für $n \ge 1$ allgemein

$$f_n(z) = \frac{f_{n-1}(z) - a_{n-1}}{z}$$
,

so hat man die Integraldarstellung:

$$D_{n}(z) = \frac{1}{(2\pi i)^{n}} \int_{\mathfrak{C}_{1}} \dots \int_{\mathfrak{C}_{n}} f_{0}(t_{1}) \qquad f_{1}(t_{1}) \qquad \dots f_{n}(t_{1}) \\ f_{1}(\frac{t_{2}}{t_{1}}) \qquad f_{2}(\frac{t_{2}}{t_{1}}) \qquad \dots f_{n+1}(\frac{t_{2}}{t_{1}}) \\ \vdots \\ f_{n}(\frac{z}{t_{n}}) \qquad f_{n+1}(\frac{z}{t_{n}}) \qquad \dots f_{2n}(\frac{z}{t_{n}})$$

Ähnlich wie bei dem Parsevalschen Integral von p. 465, auf dem der Beweis des Hadamardschen Multiplikationssatzes beruht, ist dabei \mathfrak{C}_1 ein Integrationsweg, der $t_1=0$ so nahe umschließt, daß in und auf ihm nur Regularitätsstellen von $f_0(t_1)$ und von $f_1\left(\frac{t_2}{t_1}\right)$ liegen, während t_2 den Integrationsweg \mathfrak{C}_2 durchläuft. Dieser umschließt seinerseits $t_2=0$ so nahe, daß er nur Regularitätsstellen von $D_2(t_2)$ und von $f_2\left(\frac{t_3}{t_2}\right)$ umschließt, während t_3 auf \mathfrak{C}_3 variiert usw. Hadamard selbst benutzt keine derartige Integralstellung, zumal er wie $Schaper^{113}$) nur

²¹⁷⁾ Wohl zuerst bei J. König, Über eine Eigenschaft der Potenzreihen, Math. Ann. 23 (1884), p. 447-450.

die Produkte der absoluten Beträge der Pole untersucht. Ähnlich wie beim Hadamardschen Produktsatz sind aber hier die am Rande des Hauptsternes von $D_n(z)$ liegenden Singularitäten unter den $\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_n$ enthalten, wenn die α die Ecken des Hauptsternes von f(z) sind. In dem Produkt $\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_n$ kann dabei jeder Pol von f(z) so oft auftreten, als seine Vielfachheit beträgt (während die anderen Singularitäten beliebig oft auftreten können), wenn anders die Stelle $\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_n$ wirklich singulär für $D_n(z)$ sein soll.

Aus dieser Integraldarstellung für $D_n(z)$ liest man sehr leicht die Hadamardschen Sätze über die Lage der Pole von f(z) ab. Ich stelle die wichtigsten hier zusammen:

 R_n sei der Konvergenzradius von $D_n(z)$, R_0 der von f(z) selbst. R_n ist dann und nur dann größer als R_0^n , wenn f(z) auf seinem Konvergenzkreis höchstens n Pole und keine weiteren Singularitäten hat. Die genaue Zahl der Pole stimmt mit der Nummer derjenigen Funktion $D_n(z)$ überein, bei der das Kriterium zum ersten Male erfüllt ist.

Dann und nur dann ist

$$\frac{R_n}{R_{n-1}} \ge l,$$

wenn f(z) im Kreise |z| < l höchstens n Pole und keine weiteren Singularitäten hat. Die Anzahl ist genau gleich n, wenn n die kleinste Zahl ist, für welche die Ungleichung gilt.

Dann und nur dann, wenn

$$\frac{R_n}{R_{n-1}} \longrightarrow l$$

gilt für $n \to \infty$, hat f(z) im Kreise |z| < l nur Pole, während jeder größere Kreis auch andere Singularitäten enthält.

Dann und nur dann, wenn von n=k an stets $\frac{R_n}{R_{n-1}}=l$ bleibt, hat f(z) im Kreise |z|< l genau k Pole, während jeder größere Kreis auch andere Singularitäten enthält.

Dann und nur dann, wenn $R_n \to \infty$ für $n \to \infty$, ist die Funktion f(z) meromorph in der ganzen Ebene. Sie hat dann und nur dann endlich viele (k) Pole, wenn von n = k an $R_n = \infty$ ist.

Hadamard hat weiter eine Methode ausgearbeitet, welche die Koordinaten der Pole und ihre Hauptteile zu berechnen erlaubt. Sie läuft auf die Bestimmung eines Polynoms $P_n(z)$ heraus, von der Art, daß $P_n(z) \cdot f(z)$ einen größeren Konvergenzradius hat als f(z). Die Heranziehung der Funktion $D_n(z)$ vereinfacht auch diese Entwicklungen, wenn man beachtet, daß $D_{n-1}(z)$ auf dem Konvergenzkreis

²¹⁸⁾ Eine andere Integraldarstellung gibt A. Hurwitz 195) an.

nur den einen Pol $\alpha_1 \cdot \alpha_2 \cdot \ldots \cdot \alpha_{n-1}$ besitzt, wenn mit $\alpha_1, \alpha_2 \ldots \alpha_{n-1}$ die Pole von f(z) auf dem Konvergenzkreis erschöpft sind. 213, 1)

Hadamard hat daran anschließend weiter die Frage behandelt, wann durch Multiplikation mit einem Polynom die Ordnung (siehe p. 489) der Funktion auf dem Konvergenzkreis erniedrigt werden kann. Damit gewinnt man in gewissem Umfang eine Methode zur Bestimmung auch anderer Singularitäten als Pole. 218, 2)

Die Potenzreihen an der Konvergenzgrenze.

52. Der Abelsche Grenzwertsatz. Abel²¹⁹) hat die Aufgabe gestellt, das Verhalten einer durch eine Potenzreihe dargestellten Funktion bei Annäherung an eine Stelle der Konvergenzgrenze zu bestimmen.

Schon vorher hat Abel^{219,1}) die genannte Aufgabe in dem speziellen Fall gelöst, daß die Reihe in dem zu untersuchenden Punkt des Konvergenzkreises noch konvergiert. Der später sogenannte Abelsche Grenzwertsatz besagt, daß dann die Reihe auf dem ganzen, zu dem Punkte hinziehenden Radius des Konvergenzkreises gleichmäßig konvergiert, daß also die Funktion bei radialer Annäherung an diesen Punkt einen Grenzwert besitzt, welcher durch die Reihensumme dargestellt wird. O. Stolz^{219,2}) hat später den Satz dahin verallgemeinert, daß die Reihensumme sogar in einem ganzen Dreieck stetig ist, dessen eine Ecke in dem zu untersuchenden Peripheriepunkt liegt und dessen andere beide Ecken dem Inneren des Konvergenzkreises angehören. Ein neuer

^{218, 1)} Vgl. auch P. Dienes a. a. O. 186) und Sur les singularités des fonctions analytiques en dehors du cercle de convergence, Paris C. R. 148 (1909), p. 694—698.

^{218, 2)} Vgl. auch V. Dienes, Sur les points critiques logarithmiques, Paris C. R. 148 (1909), p. 1087—1090 und p. 1290; P. und V. Dienes, Sur les singularités algébro-logarithmiques, Paris C. R. 149 (1909), p. 972—974; P. und V. Dienes, Recherches nouvelles sur les singularités des fonctions analytiques, Ann. Éc. Norm. (3) 28 (1911), p. 389—457.

²¹⁹⁾ N. H. Abel, Théorèmes et problèmes, J. f. Math. 2 (1827), p. 286, Werke I, p. 618.

^{219, 1)} N. H. Abel, Recherches sur la série $1 + \frac{m}{1}x + \frac{m(m-1)}{1 \cdot 2}x^2 + \frac{m(m-1)(m-2)}{1 \cdot 2 \cdot 3}x^3 + \cdots$, J. f. Math. 1 (1826), p. 311—339; Werke I, p. 219—250.

^{219 2)} O. Stolz, a) Beweis einiger Sätze über Potenzreihen, Zeitschr. Math. Phys. 20 (1875), p. 369-376; b) Nachtrag zur Mitteilung in Bd. XX dieser Ztschr., p. 369: Beweis einiger Sätze über Potenzreihen, Ztschr. Math. Phys. 29 (1884), p. 127-128.

besonders durchsichtiger Beweis rührt von A. Pringsheim²²⁰) her. Bei Annäherung an den Peripheriepunkt längs Wegen, welche keinem solchen Dreieck angehören, braucht kein Grenzwert zu existieren.^{220,1})²²¹)

In Abels Nachlaß (Werke Bd. II, p. 203) fand sich endlich noch eine Untersuchung, die in gewissen Fällen, nämlich bei eigentlich divergenten Reihen, schließen läßt,²²³) daß bei jener radialen Annäherung an die Stelle eigentlicher Divergenz die Funktion dem Betrage nach über alle Grenzen wächst. Die damit angeregte Sorte von Untersuchungen berühren wir später erneut. Zunächst wollen wir bei den an den Grenzwertsatz anschließenden Forschungen stehen bleiben.

Abel hat durch seinen Grenzwertsatz zum ersten Male einer uneigentlich divergenten (oszillierenden) Reihe eine Summe beigelegt. Es ist eine für das folgende wichtige Fragestellung, inwieweit es möglich ist, den heute nach Cauchy benannten Summenbegriff einer Reihe (Summe gleich Limes der Partialsummen) so zu verallgemeinern, daß gewisse im Cauchyschen Sinne nicht konvergente Reihen eine Summe erhalten, und daß der neue Summenbegriff eine Verallgemeinerung des Cauchyschen wird, d. h. daß im Cauchyschen Sinne konvergente Reihen bei Anwendung des neuen Summenbegriffes die gleiche Summe erhalten, die ihnen im Cauchyschen Sinne zukam. Bei Abel selbst ist diese Frage noch nicht gestellt. Gleichwohl ist sein Grenzwertsatz ein Beitrag zu ihrer Lösung. Die Fragestellung selbst tritt zum ersten Male bei Frobenius²²³) auf.

Im Sinne der Abelschen Summationsmethode heißt s die Summe der Zahlen $a_0, a_1, a_2, \ldots,$

wenn bei radialer Annäherung

$$s = \lim_{s \to 1} \sum_{n=0}^{\infty} a_n z^n$$

gilt. Damit das einen Sinn hat, muß also die Folge der a_n so beschaffen sein, daß die angegebene Potenzreihe für |z| < 1 konvergiert.

220) A. Pringsheim, Über zwei Abelsche Sätze, die Stetigkeit von Reihensummen betreffend, Münch. Ber. 1897, p. 343-356.

220,1) Wegen eines einfachen Beispieles siehe: G. H. Hardy u. J. E. Littlewood, a) a. a. O. 224a), p. 475; Beweis dazu G. H. Hardy, a. a. O. 320), p. 150; b) Abels theorem and its converse, Proc. Lond. math. Soc. (2) 18 (1918), (p. 205-235) p. 207.

221) Verschiedene Autoren haben die Überlegungen auf gewisse andere Reihentypen verallgemeinert. Fejér, Math. Ann. 58; Bromwich, Math. Ann. 65; Hardy, Math. Ann. 64 und Proc. Lond. math. Soc. (2) 4; C. N. Moore, Am. Trans. 8.

222) Vgl. dazu A. Pringsheim, Über das Verhalten der Potenzreihen auf dem Konvergenzkreise, Münch. Ber. 30 (1900), p. 37-100.

223) G. Frobenius, Über die Leibnizsche Reihe, J. f. Math. 89 (1886), p. 262-264.

Der Abelsche Grenzwertsatz besagt, daß für konvergente Reihen der Abelsche Summenbegriff mit dem Cauchyschen koinzidiert.

Ein Spezialfall der Abelschen ist die von Hardy und Littlewood ²²⁴) so genannte Eulersche Summationsmethode. Sie nennt s die Summe der a_0, a_1, \ldots , wenn $\sum a_n z^n$ in z = 1 regulär ist und dort den Wert s besitzt.

53. Die Hölderschen und die Cesaroschen Mittel. Das Abelsche Problem ruhte lange. Erst im Jahre 1880 hat es durch Frobenius 228) eine entschiedene Förderung erfahren. Frobenius betrachtet neben dem Grenzwert der Partialsummen (Cauchyscher Summenbegriff) den Grenzwert der arithmetischen Mittel der Partialsummen und erklärt durch ihn die Summe einer unendlichen Reihe. Daß sich für den Fall einer konvergenten Reihe der neue Summenbegriff mit dem alten deckt, wird am besten einem Cauchyschen Grenzwertsatz entnommen (siehe I A 3 (Pringsheim), p. 74 ff.). Hiernach ist

$$\lim_{n\to\infty}\frac{s_1+s_2+\ldots+s_n}{n}=\lim_{n\to\infty}s_n$$

jedesmal dann, wenn der Grenzwert auf der rechten Seite existiert.

O. Hölder ²²⁵) hat im Jahre 1883 durch Iteration der arithmetischen Mittel die nach ihm benannten Mittel eingeführt. Auch sie sind Verallgemeinerungen des Cauchyschen Summenbegriffes, der sich als Mittel nullter Ordnung darstellt, während die arithmetischen Mittel als Höldersche Mittel erster Ordnung aufzufassen sind.

Cesàro²²⁶) hat zunächst für die Zwecke der Reihenmultiplikation im Jahre 1890 die arithmetischen Mittel in etwas anderer Weise verallgemeinert. Man kann die Cesàroschen Mittel so erklären: Man bilde

$$\frac{\sum_{0}^{\infty} a_n z^n}{(1-z)^{\nu+1}} = \sum_{0}^{\infty} S_n^{(\nu)} z^n$$

²²⁴⁾ G. H. Hardy und J. E. Littlewood, a) Contributions to the arithmetic theory of series, Proc. of the Lond. math. soc. (2) 11 (1912), (p. 411-478) p. 413 Fußnote; b) Tauberian theorems concerning series of positive terms, Mess. of math. (2) 42 (1913), p. 191-192; a) a. a. O. 220,1) b). Die ältere Literatur gebraucht die Benennung Eulersche Summationsmethode für das hier als Abelsche Methode bezeichnete Verfahren. Vgl. auch: H. Burkhardt, Über den Gebrauch divergenter Reihen in der Zeit von 1750-1860, Math. Ann. 70 (1911), p. 169-206

²²⁵⁾ O. Hölder, Grenzwerte von Reihen an der Konvergenzgrenze, Math. Ann. 20 (1882), p. 535-549.

²²⁶⁾ E. Cesàro, Sur la multiplication des séries, Bull. des sc. math. (2) 14 (1890), p. 114 -120.

478 II C 4. L. Bieberbach. Neuere Untersuch, über Funkt. von kompl. Variablen.

und setze
$$\frac{1}{(1-z)^{\nu+1}} = \sum_{n} A_n^{(\nu)} z^n.$$
 Dann ist
$$\lim_{n \to \infty} \frac{S_n^{(\nu)}}{A_n^{(\nu)}} = s$$

die Erklärung der Cesàroschen Mittel ν^{ter} Ordnung, falls dieser Grenzwert existiert. (Man sieht, wie für $\nu=0$ der Cauchysche, für $\nu=1$ der Frobeniussche Summenbegriff herauskommt.) Cesàro hatte zunächst wohl nur ganze positive ν im Auge. Bewußt haben nicht ganze und auch negative $\nu>-1$ erst Hadamard 186), Knopp 227) und Chapman 228) herangezogen. Da stets $A_n^{(r)} \sim \frac{n^{\nu}}{\Gamma(\nu+1)}$

ist, so ist
$$\lim_{n \to \infty} \frac{S_n^{(\nu)} \Gamma(\nu+1)}{n^{\nu}}$$

eine oft verwendete, mit der vorhin angegebenen gleichwertige Erklärung der Cesàroschen Mittel v^{ter} Ordnung. Daß für konvergente Reihen die Cesàroschen Mittel genau die Cauchysche Summe liefern, folgt aus einem von Cesàro²²⁹) herrührenden Grenzwertsatz, den wir gleich in der etwas allgemeineren von E. Lasker²³⁰) und A. Pringsheim²³¹) gegebenen Fassung anführen: $\Sigma b_n z^n$ habe lauter positive Koeffizienten und besitze den Konvergenzradius 1. Außerdem sei Σb_n divergent. Dann gilt für $f(z) = \Sigma a_n z^n$ stets dann bei radialer Annäherung $\lim_{z\to 1} \frac{\Sigma a_n z^n}{\Sigma b_n z^n} = \lim_{n\to\infty} \frac{a_n}{b_n},$

wenn der Grenzwert rechts existiert. Daher ist namentlich 232)

$$\lim_{z \to 1} f(z) = \lim_{z \to 1} \frac{\sum S_n^{(1)} z^n}{\sum A_n^{(1)} z^n} = \lim_{n \to \infty} \frac{S_n^{(1)}}{A_n^{(1)}}.$$

Stets zieht die Cesàrosche Summierbarkeit zu irgendeiner Ordnung die Summierbarkeit zu jeder höheren Ordnung und zur gleichen Summe nach sich. Die Abelsche Summierbarkeit ergibt sich als Folge der Cesàroschen. Diese Verallgemeinerung des Abelschen Grenzwertsatzes läßt sich auch für die Stolzsche Verallgemeinerung desselben erreichen, welcher die Stetigkeit in einem Dreieck behauptet. Dazu ist nur eine

²²⁷⁾ K. Knopp, Grenzwerte von Reihen bei Annäherung an die Konvergenzgrenze, Diss. Berlin 1907.

²²⁸⁾ S. Chapman, On non integral order of summability of series and integrals, Proc. Lond. math. Soc. (2) 9 (1910), p. 369-409. Cesàrosche Mittel unendlich hoher Ordnung siehe bei G. H. Hardy u. S. Chapman, Quart. J. of math. 42 (1911), p. 181-215.

²²⁹⁾ E. Cesàro, Démonstration d'un théorème de M. Appell, Mathesis (2) 3 (1893), p. 241-243.

entsprechende von *E. Lasker*²³⁰) und *A. Pringsheim*²³¹) angegebene Verallgemeinerung des *Cesàro* schen Grenzwertsatzes nötig.

Die Fragen nach notwendigen sowohl wie nach hinreichenden Bedingungen für Cesàrosche Summierbarkeit sind noch wenig geklärt. Ziemlich an der Oberfläche liegt die Tatsache, daß für eine (C, k), d. h.' mit Cesàroschen Mitteln k^{ter} Ordnung summierbare Reihe $a_n = O(n^k)$ sein muß. Etwas tiefer liegt die notwendige Bedingung $a_n = o(n^k)$. Dahin gehört ferner ein Satz von $a_n = o(n^k)$. Dahin gehört ferner ein Satz von $a_n = o(n^k)$. Wonach $a_n = o(n^k)$. The Ordnung summierbar ist, stets dann, wenn $a_n = o(n^k)$. Ordnung summierbar ist. Chapman $a_n = o(n^k)$. And die Annahme ausreicht, daß die Mittel $a_n = o(n^k)$. Dahin gehört Ordnung summierbar ist. Chapman $a_n = o(n^k)$. Dahin gehört ferner ein Satz von $a_n = o(n^k)$. Dahin gehört ferner ein

Dahin gehören endlich Sätze, die aus der Summierbarkeit von Σa_n auf die von $\Sigma a_n f_n(z)$ schließen lassen, wenn die $f_n(z)$ gewisse Eigenschaften haben. 221)

Littlewood²³⁷) und H. Bohr³³⁸) gaben Beispiele von Reihen, für welche die Mittel nicht einer einzigen Ordnung existieren, und die gleichwohl nicht eigentlich divergieren.

²³⁰⁾ E. Lasker, Über Reihen an der Konvergenzgrenze, Phil. Trans. of London 196 (1901), p. 431—477.

²³¹⁾ A. Pringsheim, Über den Divergenzcharakter gewisser Potenzreihen an der Konvergenzgrenze, Acta math. 28 (1904), p. 1-30.

²³²⁾ Die Abelsche Summierbarkeit ist also eine Folge der Cesàroschen. Dies ergibt sich auch schon aus einer viel älteren Untersuchung von Appell, Sur certaines séries ordonnées par rapport aux puissances d'une variable. Paris C. R. 87 (1878), p. 689—692. Es steht auch schon als Folge viel allgemeinerer Sätze bei Hadamard. (Die Appellschen Sätze hinwiederum ergeben sich als unmittelbare Folgerung aus dem Cesàroschen Grenzwertsatz.) Knopp hat zuerst die beherrschende Bedeutung des Cesàroschen Grenzwertsatzes hervorgehoben.

²³³⁾ T. J. Bromwich, Introduction to the theory of infinite series, London 1908, § 128; S. Chapman, a. a. O. 228), p. 379.

²³⁴⁾ H. Bohr, Über die Summabilität Dirichlet scher Reihen, Gött. Nachr. 1909, p. 217-262.

²³⁵⁾ M. Riesz, Sur les séries de Dirichlet, Paris C. R. 148 (1909), p. 1658 ---

²³⁶⁾ G. H. Hardy, Theorems connected with Mac-Laurin's test for the convergence of series, Proc. of the Lond. math. soc. (2) 9 (1910), p. 126-144.

²³⁷⁾ J. E. Littlewood, The converse of Abel's theorem on power series, Proc. Lond. math. Soc. (2) 9 (1910), p. 434—448; vgl. auch E. Landau, Über einen Satz des Herrn Littlewood, Rend. di Palermo 35 (1913), p. 265—276.

²³⁸⁾ H. Bohr bei E. Landau, a. a. O. 186), p. 38.

Die Cesàroschen und die Hölderschen Mittel besitzen die gleiche Tragweite, d. h. wenn die Cesàroschen Mittel k^{ter} Ordnung existieren und die Summe s liefern, so existieren auch die Hölderschen Mittel k^{ter} Ordnung und liefern die gleiche Summe und umgekehrt. Das ist der Inhalt des nach seinen Entdeckern benannten Knopp-Schneeschen Satzes²³⁹). Den kürzesten sachgemäßesten Beweis gab J. Schur²⁴⁰) ²⁴¹).

54. Weitere Summationsmethoden. Namentlich für die Zwecke der Dirichletschen Reihen hat M. $Riesz^{242}$) eine neue Summationsmethode eingeführt. Er setzt

$$C_{w}^{(r)} = \sum_{0}^{(r)} a_{m} \left(1 - \frac{\lambda(m)}{\lambda(\omega)}\right)^{r}.$$

Wenn dann $\lim_{\omega \to \infty} C_{\omega}^{(r)} = s$ ist, so heißt s die Summe der Reihe Σa_n . Man sagt, sie sei $(R\lambda\nu)$ summierbar. Dabei bedeutet $\lambda(\omega)$ eine positive mit ω monoton über alle Grenzen wachsende Funktion. ν ist die Ordnung der Summierbarkeit. Für $\lambda(\omega) = \omega$ stimmen die Riesz schen Mittel ν^{ter} Ordnung mit den $Ces\grave{a}ros$ chen Mitteln ν^{ter} Ordnung überein. Es ist für die Methode wesentlich, ω durch beliebige nicht nur durch ganzzahlige Werte gegen unendlich streben zu lassen.

Die Cesàroschen, die Hölderschen und die Rieszschen Mittel sind Spezialfälle der allgemeinen linearen Mittelbildungen. Auch bei der Mittag-Lefflerschen Theorie der analytischen Fortsetzung lernten wir solche linearen Mittel kennen.²⁴³) Ich hebe noch die Borelschen Mittel

²³⁹⁾ K. Knopp a. a. O. 227); W. Schnee, Die Identität der Hölderschen und Cesàroschen Grenzwerte, Math. Ann. 67 (1909), p. 110—125.

²⁴⁰⁾ J. Schur, Über die Äquivalenz der Hölderschen und Cesàroschen Mittelwerte, Math. Ann. 74 (1913), p. 447—458. Dazu vgl. K. Knopp, Bemerkung zu der vorstehenden Arbeit des Herrn J. Schur, Math. Ann. 74 (1913), p. 459—461. Ferner vgl. dazu E. Landau a. a. O. 186); A. Pringsheim, Über die Äquivalenz der sogenannten Hölderschen und Cesàroschen Grenzwerte und die Verallgemeinerung eines beim Beweise benutzten Grenzwertsatzes, Münch. Ber. 1916, p. 209—224.

²⁴¹⁾ Weitere Beweise gaben W. B. Ford, On the relation between the sum formula of Hölder and Cesàro, Amer. J. 32 (1910), p. 315—326; B. Ottolenghi, Coesistenza é identitá dei limiti di Hölder é di Cesàro, Padua 1911; G. Faber, Über die Hölderschen und Cesàroschen Grenzwerte, Münch. Ber. 1913, p. 519—531.

²⁴²⁾ M. Riesz, a) Sur la sommation des séries de Dirichlet, Paris C. R. 149 (1909), p. 18-21; b) Une méthode de sommation équivalente à la méthode des moyennes arithmétiques, Paris C. R. 152 (1911), p. 1651-1654.

²⁴³⁾ O. Teeplitz, Über allgemeine lineare Mittelbildungen, Prace mat. fis. 22 (1911), p. 113-119, hat sich mit der allgemeinen Frage der Äquivalenz linearer Mittel befaßt. T. Kojima, On generalized Toeplitzs theorems on limit and their applications, Tôhoku M. J. 12 (1917), p. 291-326. Zur ganzen Fragesteilung: N. E. Nörlund, Sur une application des fonctions permutables, Lunds Univ.

hervor, weil sie viel behandelt worden sind.²⁴⁴) Bezeichnet man mit s_x die n^{to} Partialsumme der a_x , so ist die *Borel* sche Summe durch den Grenzwert x^n

 $\lim_{x \to \infty} \frac{\sum_{s_n} \frac{x^n}{n!}}{\sum_{n} \frac{x^n}{n!}} = s(x > 0)$

erklärt. Aus einem unmittelbaren Analogon zu dem p. 478 erwähnten Cesàroschen Satz ergibt sich sofort, daß auch diese Mittel zu einer Verallgemeinerung des Cauchy schen Summenbegriffes führen. Der in Betracht kommende Grenzwertsatz lautet: Wenn $\Sigma a_n z^n$ und $\Sigma b_n z^n$ zwei ganze Funktionen sind, und wenn die b_n positiv sind, so gilt bei Annäherung durch positive x stets:

$$\lim_{x\to\infty} \frac{\sum a_n x^n}{\sum b_n x^n} = \lim_{n\to\infty} \frac{a_n}{b_n},$$

wenn der zweite Grenzwert existiert.244,1)

55. Beziehungen zwischen den verschiedenen Summationsmethoden. Im Abelschen Grenzwertsatz sowie seinen Verallgemeinerungen, ferner im Knopp-Schneeschen Satz haben wir schon eine Reihe von Beziehungen zwischen den verschiedenen Mittelbildungen kennen gelernt. Das allerdings noch lange nicht abgeschlossene Studium dieser Beziehungen hat zu einer Reihe von Sätzen geführt, die wir jetzt darlegen wollen.

 $Ces\grave{a}ro oup Ces\grave{a}ro$. Es handelt sich um die Beziehungen zwischen der Konvergenz der $Ces\grave{a}ro$ schen Mittel verschiedener Ordnungen. Mit den Mitteln k^{ter} Ordnung konvergieren, wie schon erwähnt, alle Mittel höherer Ordnung zur gleichen Summe. Natürlich kann man nicht umgekehrt aus der Konvergenz der Mittel k^{ter} Ordnung auf die Konvergenz der Mittel niedrigerer Ordnung schließen, solange man nicht besondere Voraussetzungen über die Reihenglieder hinzunimmt. Man kann nämlich zu jeder Ordnung Reihen angeben, die genau zu dieser Ordnung und zu keiner niedrigeren summierbar sind. 245)

Kronecker 246) gab schon die notwendigen und hinreichenden Be-

Årsskrift. Avd. 2, Bd. 16, Nr. 3 (1919); O. Perron, Beitrag zur Theorie der divergenten Reihen, Math. Ztschr. 6 (1920), p. 286-310.

²⁴⁴⁾ E. Borel, a. a. O. 152), 169a), 169b), 58a), 169e). Die mangelhaften Beweise Borels hat G. H. Hardy 173) in Ordnung gebracht.

^{244,1)} Für Erweiterungen dieses Satzes vgl. Dienes, a a. O. 177); G. Valiron, a) a. a. O. 120); b) Remarques sur la sommation des séries divergentes par les méthodes de M. Borel, Rend. di Palermo 42 (1917), p. 267—284.

²⁴⁵⁾ Für ganzzahlige Ordnung schon bei Cesáro 226).

²⁴⁶⁾ L. Kronecker, Quelques remarques sur la détermination des valeurs moyennes, Paris C. R. 103 (1876), p. 980-987.

dingungen für die Konvergenz einer nach arithmetischen Mitteln summierbaren Reihe Σa_n an. Das ist dann und nur dann der Fall, wenn die arithmetischen Mittel von na_n gegen Null streben. Man kann dies sofort dahin erweitern (ein Beitrag dazu bei $Knopp^{247}$), daß aus der Konvergenz der Mittel k^{ter} Ordnung die der Mittel nullter Ordnung, also die Konvergenz im Cauchyschen Sinne dann und nur dann folgt, wenn die Mittel erster Ordnung von na_n gegen Null streben. Und dies läßt sich dahin erweitern, daß aus der (C,k) die (C,r) mit r < k dann und nur dann folgt, wenn die (C,r+1) von na_n gegen Null streben. Insbesondere folgt aus $a_n = o\left(\frac{1}{n}\right)$ und der Summierbarkeit (C,1) die Konvergenz von Σa_n . $Hardy^{248}$) zeigte z. B. für diesen speziellen Fall, daß schon $a_n = O\left(\frac{1}{n}\right)$ statt $a_n = o\left(\frac{1}{n}\right)$ ausreicht, und $Landau^{249}$) hat dies dahin erweitert, daß sogar die einseitige Beschränktheit von na_n bei reellen a_n ausreicht. Erwähnung verdient noch ein Satz von Hardy und $Littlewood^{224}$), daß aus (C,1) und

$$n^{\frac{a_n-a_{n-1}}{a_n}}=O(1)$$

stets $a_n = o\left(\frac{1}{n}\right)$ und (C, 0) von Σa_n folgt.

Cesàro→Abel. Der Abelsche Grenzwertsatz in seiner Verallgemeinerung auf Cesàrosche Mittel schließt aus der Konvergenz der Mittel kter Ordnung auf die Existenz und die Äquivalenz der Abelschen Mittel. Gerade auf dieser schon oben behandelten Tatsache beruht die funktionentheoretische Bedeutung der Cesàroschen Mittel, als ein Verfahren zur Berechnung der Abelschen Grenzwerte, also zur Untersuchung des Verhaltens der Funktion bei Annäherung an eine Stelle auf der Peripherie des Konvergenzkreises.

 $Abel
ightharpoonup Ces \`{a}ro$. Will man umgekehrt aus der Existenz der Abel schen Mittel auf die der $Ces \`{a}ro$ schen schließen, so kommt man wieder nicht ohne besondere weitere Voraussetzungen über die Reihenglieder aus. $Little-wood^{237}$) hat ohne Beweis ein Beispiel einer Reihe gegeben, die nach Abel summierbar ist, die aber nach $Ces \`{a}ro$ zu keiner Ordnung summierbar ist. Insbesondere kann man also nicht ohne besondere Annahmen über die a_n auf die Konvergenz von Σa_n schließen (z. B. $\Sigma (-1)^n x^n$

²⁴⁷⁾ K. Knopp, Eine notwendige und hinreichende Konvergenzbedingung, Rend. di Palermo 25 (1907), p. 237-252.

²⁴⁸⁾ G. H. Hardy, Theorems relating to the summability and convergence of slowly oscillating series, Proc. Lond. math. Soc. (2) 8 (1909), p. 301-320.

²⁴⁹⁾ E. Landau, Über die Bedeutung einiger neuerer Grenzwertsätze der Herren Hardy und Axer, Prace mat. fis. 21 (1910), p. 97—177.

bei $x \to 1$). Nicht einmal die Annahme $a_n \to 0$ reicht dazu aus. 250) Littlewoods Beispiel würde zeigen, daß aus $a_n \rightarrow 0$ nicht einmal die Konvergenz eines (C, r) folgt. Wohl aber zieht nach $Pringsheim^{222}$) $a_n \ge 0$ für alle n und $\sum a_n z^n \longrightarrow a$ für $z \longrightarrow 1$ nach sich, daß $\sum a_n = a$ im Cauchyschen Sinn. Tiefer liegt der Satz von Tauber 251). Aus $\Sigma a_n z^n \longrightarrow a \ f\ddot{u}r \ z \longrightarrow 1 \ (radial) \ und \ \frac{a_1 + 2 \ a_2 + \ldots + n \ a_n}{n+1} \longrightarrow 0 \ldots f\ddot{u}r \ n \longrightarrow \infty,$ also insbesondere z. B. aus n $a_n \rightarrow 0$ folgt die Konvergenz $\sum a_n = a$ im Cauchyschen Sinn. (Man beachte die Ähnlichkeit dieses Satzes mit dem von Kronecker, den wir p. 481 erwähnten. In beiden ist eine Hauptbedingung die, daß das arithmetische Mittel der na, gegen Null geht.) Landau 252) hat einen analogen Satz für nichtradiale geradlinige Annäherung, Hardy und Littlewood 224) sogar für Annäherung auf gewissen den Konvergenzkreis berührenden Kurven angegeben. Angeregt durch gewisse bei Cesàro + Cesàro angeführte Ergebnisse gelangte Littlewood²³⁷) zunächst zu der Erkenntnis, daß man beim Tauberschen Satz schon mit $a_n = O(\frac{1}{n})$ auskommt. Hardy und Littlewood²⁵³) gelangten sogar zum Nachweis der Gültigkeit des Tauberschen Satzes bei einseitiger Beschränktheit von na_n und reellen a_n . Endlich sind Hardy und Littlewood 253,b) zu dem folgenden diese Entwicklungen abschließenden Satz gelangt: Wenn $a_n = O\left(\frac{1}{n}\right)$ ist, dann ist die notwendige und hinreichende Bedingung für die Cauchysche Konvergenz von $\Sigma a_n = A$ die, daß $\Phi(z) = \frac{1}{1-z} \sum_{n=1}^{\infty} \frac{a_n}{n+1} (1-z^{n+1}) \longrightarrow A$ wenn $z \rightarrow 0$ auf irgendeinem Weg, oder auch die, daß dies längs allen Wegen zutrifft. Wenn $\Sigma a_n z^n \longrightarrow A$, so gilt auch $\Phi(z) \longrightarrow A$, aber nicht umgekehrt.

²⁵⁰⁾ A. Pringsheim, Über die Divergenz gewisser Potenzreihen an der Konvergenzgrenze, Münch. Ber. 31 (1901), p. 505—524; L. Fejér, Über gewisse Potenzreihen an der Konvergenzgrenze, Münch. Ber. 1910, Nr. 3, p. 1—17; J. E. Littlewood, a. a. O. 237); N. Lusin, a) Über eine Potenzreihe, Rend. di Palermo 32 (1911), p. 386—390; b) Über einen Fall der Taylor sche Reihen, Mosk. math. Samml. 28 (1912), p. 295—302. Die beiden Abhandlungen stimmen überein. Das Lusinsche Beispiel zeigt sogar, daß eine Reihe $\Sigma a_n z^n$ mit $a_n \to 0$ in jedem Punkt des Einheitskreises divergieren kann.

²⁵¹⁾ A. Tauber, Ein Satz aus der Theorie der unendlichen Reihen, Monatsh. Math. Phys. 8 (1897), p. 273-277; man vgl. auch A. Pringsheim 222.

²⁵²⁾ E. Landau, Über die Konvergenz von einigen Klassen von unendlichen Reihen am Rande des Konvergenzgebietes, Monatsh. Math. Phys. 18 (1907), p. 8—28.

²⁵³⁾ G. H. Hardy u. J. E. Littlewood, a) Tauberian theorems concerning power series and Dirichlet's series whose coefficients are positive, Proc. Lond. math. Soc. (2) 13 (1914), p. 174—191; b) a. a. O. 220,1) b).

Man kann auch unter Zuhilfenahme der Koeffizientendifferenzen $Abel \rightarrow Ces\grave{a}ro$ -Sätze angeben. So kann man nach Hardy und Littlewood in dem letzten unter $Ces\grave{a}ro \rightarrow Ces\grave{a}ro$ angegebenen Satze die vorausgesetzte (C,1) durch die Summierbarkeit nach Abel ersetzen.

In noch anderer Form gibt $Fej\acute{e}r^{254}$) Bedingungen für $Abel \rightarrow Ces\grave{a}ro$. Sein Ergebnis lautet in einer von Hardy-Littlewood 254,1 b) gegebenen Verallgemeinerung 186): Aus der Konvergenz von $\Sigma n^p |a_n|^{p+1}$ (p>0) in Verbindung mit Abelscher Summierbarkeit $\lim_{x\to 1} \Sigma a_n x^n = a$ folgt die Konvergenz $\Sigma a_n = a$.

Die Sätze dieses Abschnittes sind im Grunde bisher lauter Sätze $Abel \rightarrow Cauchy$. Von Sätzen $Abel \rightarrow Cesàro$ bei höherer als der nullten Ordnung ist bisher nur wenig bekannt. Der folgende liegt schon ziemlich tief, obwohl er nur das Analogon zu dem einfachen oben gegebenen Pringsheim schen Satze ist (p. 483). Dieser Satz kann so ausgesprochen werden: Wenn die Partialsummen der reellen a_n einseitig beschränkt sind, und wenn Σa_n nach Abel schen Mitteln summierbar ist und dabei die Summe a besitzt, a. a h. wenn a ist, so ist die Reihe auch nach arithmetischen Mitteln erster Ordnung zur gleichen

die Reihe auch nach arithmetischen Mitteln erster Ordnung zur gleichen Summe summierbar. ^{254,1}) Littlewood ²⁸⁷) zeigte: Sind die (C, r) von $\sum a_n$ beschränkt und existiert $\lim_{x\to 1} \sum a_n x^n$, so ist $\sum a_n$ mit (C, r+1) summierbar.

Weiter weiß man noch, daß nicht einmal aus $a_n \to 0$ in Verbindung mit *Abel*scher Summierbarkeit die *Cesàro*sche Summierbarkeit folgt. (*Littlewood*²³⁷).)

Euler-Cesàro: Hier wünscht man also aus der Regularität der Funktion $\Sigma a_n z^n$ bei z=1 auf die Summierbarkeit von Σa_n zu schließen. Daß dazu noch weitere Voraussetzungen über die a_n nötig sind oder über den Bereich, in dem die Funktion regulär ist, ist allgemein bekannt. Beispiele liefern ja schon die Ableitungen von $\Sigma (-1)^n z^n$. Weiter gibt es Potenzreihen, die in z=1 regulär sind, deren Koeffizienten-

²⁵⁴⁾ L. Fejér, a) La convergence sur son cercle de convergence d'une série de puissances effectuant une représentation conforme du cercle sur le plan simple, Paris C. R. 156 (1913), p. 46—49; b) Über die Konvergenz der Potenzreihe an der Konvergenzgrenze in Fällen der konformen Abbildung auf die schlichte Ebene, Festschrift für H. A. Schwarz (1914), p. 42—53.

^{254, 1)} Hardy u. Littlewood, a) a. a. 0. 253)a); b) Some theorems concerning Dirichlet series, Mess. of math. (2) 43 (1914), p. 134—147; vgl. auch Landau, a. a. 0. 186). Der im Text angegebene Satz erscheint bei Hardy-Littlewood in anderer Fassung. Dort handelt es sich um die tiefe Erkenntnis, daß man die Lasker-Pringsheimschen Sätze von p. 478 bzw. p. 488 über das Wachstum der Funktionen umkehren kann, wenn die $a_n \ge 0$ sind.

summe dort aber zu keiner Ordnung summierbar ist. So ist z. B. nach p. 467 $\Sigma(-1)^{\nu}g(\nu)z^{\nu}$ bei z=1 regulär, wenn $g(\nu)$ vom Minimaltypus der Ordnung Eins ist. Natürlich reichen hier alle die Voraussetzungen aus, die es erlaubten, aus der Existenz der Abelschen Mittel auf die Cesàrosche Summierbarkeit zu schließen. Aber es ist zu erwarten, daß man angesichts der in der Eulerschen Summierbarkeit liegenden gegenüber der bloßen Abelschen Summierbarkeit verstärkten Voraussetzung mit weniger Zusatzannahmen über die Koeffizienten auskommen kann. Das ist in der Tat der Fall. Der wichtigste hierher gehörige Satz ist der von Fatou. Er entspricht genau dem Satz von Tauber. Fatou 95) hat entdeckt, daß für eine bei z=1 reguläre Reihe $\Sigma a_z z^*$ mit $a_n \rightarrow 0$ die Σa_n konvergiert. Dies ist eine Verallgemeinerung des weniger scharfen Hadamardschen Satzes 186), der $a_n = o(n^{\epsilon})$ für ein $\epsilon < 0$ statt $a_n \rightarrow 0$ verlangt. Den schwierigen Fatouschen Beweis hat M.Riesz²⁵⁵) durch zwei weitere einfachere ersetzt. Namentlich der zweite Beweis ist sehr kurz. M. Riesz hat auch einige weitere Hadamardsche Sätze verschärft und gefunden, daß aus $a_n = o(n^r)$ die Konvergenz der Mittel rter Ordnung folgt 256). Schon Hadamard hat gesehen, daß es bei diesen Koeffizientenvoraussetzungen nur einer geringeren Annahme als der Regularität der Funktion bedarf, um die Summierbarkeit erschließen zu können. An allen Punkten negativer Ordnung bleibt nämlich das Resultat richtig. (Vgl. p. 490.)

In anderer Richtung liegt ein nicht minder wichtiger Satz von M. $Riesz^{157}$). In einem den Konvergenzkreis enthaltenden Kreisbogendreieck, das nur eine Ecke mit der Konvergenzkreisperipherie gemeinsam hat, und dessen Rand denselben unter von Null verschiedenen Winkeln trifft, sei f(z) analytisch und einschließlich des Randes stetig. Dann konvergiert die f(z) darstellende Potenzreihe gleichmäßig auf dem ganzen Konvergenzkreis. O. $Sz\acute{a}sz$ hat bemerkt, daß das gleiche

²⁵⁵⁾ M. Riesz, a) Über einen Satz des Herr Fatou, J. f. Math. 140 (1911), p. 89-94; b) Neuer Beweis des Fatouschen Satzes, Gött. Nachr. 1916, p. 62-65; c) Sätze über Potenzreihen, Arkiv for mat. astr. och fys. 11 (1916), Nr. 12. Zum Fatouschen Satz vgl. auch: W. H. Young, On restricted Fourier series and the convergence of power series, Proc. London math. Soc. (2) 17 (1919), p. 353-366.

²⁵⁶⁾ Ein Analogon dieses Satzes fehlt bei den Abelschen Mitteln. Wohl aber gibt Dienes, a. a. O. 177) (vgl. auch Paris C. R. 153 (1911), p. 802-805) an, daß statt der Regularität im Punkte z=1 schon die Stetigkeit der Funktion in dem durch z=1 erweiterten Kreise genüge, eine Annahme also, die etwas mehr besagt wie Abelsche Summierbarkeit. Allerdings könnte der Satz nur für r=0 gelten. Denn nach Fejér ²⁵⁰) gibt es Reihen mit $a_n \longrightarrow 0$, welche im abgeschlossenen Einheitskreise stetig sind, und die doch in einer überall dichten Menge von Peripheriepunkten divergieren.

für ein Kreisbogen-3*n*-Eck gilt, das in *n* Ecken die Peripherie trifft. Ein Teil des *Riesz*schen Resultates ist in einem älteren Satze von *Pringsheim*²⁵⁷) enthalten. Dieser läßt z. B. z=1 die einzige Singularität von f(z) in |z| < R mit R > 1 sein. Ist |f(z)| außerdem z. B. beschränkt in diesem Bereich, so konvergiert $\mathfrak{P}(z)$ auf |z|=1 mit eventueller Ausnahme von z=1 selbst.

Cesàro-Euler: Der Lückensatz p. 461/62 lehrt, daß etwa hier vorhandene Sätze von ganz anderer Art sein müßten als die bisher besprochenen.

Bevor wir weitergehen, sei indessen noch auf Untersuchungen hingewiesen, die mit dem bisher Besprochenen in gewissem Maß verwandt sind. An Stelle von Stetigkeit oder Regularität der Randfunktion treten dort gewisse allgemeinere Eigenschaften derselben. Ferner wird nicht nur die Frage der Konvergenz, sondern auch die der absoluten Konvergenz am Rande betrachtet. Es zeigt sich z. B., daß eine Potenzreihe an der Konvergenzgrenze ausnahmslos und gleichmäßig konvergieren kann, ohne doch absolut zu konvergieren. ²²²) ³²⁰) Doch möchte ich diesen Untersuchungen keine nähere Darlegung widmen, da sie eher der Reihenlehre als der Funktionentheorie angehören.

Cesàro→Borel: Zwar kann man, wie schon oben bemerkt, aus der Konvergenz einer Reihe auf ihre Summierbarkeit im Borelschen Sinne schließen. Aber die Konvergenz der Cesàroschen Mittel einer höheren Ordnung erlaubt den gleichen Schluß nur unter gewissen weiteren Annahmen über die Koeffizienten.²⁵⁸)

Borel \rightarrow Cesàro: Hier gelten analoge Sätze wie bei Abel \rightarrow Cesàro. Hardy und Littlewood ²⁵⁸) haben diesen Fragen eine ausführliche Untersuchung gewidmet. Ohne besondere Annahmen über die Koeffizienten lassen sich keine Schlüsse ziehen. Eine solche Bedingung ist etwa $a_n = O\left(\frac{1}{\sqrt{n}}\right)$. Anders wie bei Abel-Cesàro gelten hier auch analoge

Sätze für Mittel höherer Ordnung. Aus $S_n^{(k-1)} = o\left(n^{k-\frac{1}{2}}\right)$ folgt die Summierbarkeit k^{ter} Ordnung für eine nach Borel summierbare Σa_n .

²⁵⁷⁾ A. Pringsheim, Über Potenzreihen auf dem Konvergenzkreis und Fouriersche Reihen, Münch. Ber. 1895, (p. 337-394), p. 346.

²⁵⁸⁾ G. H. Hardy, a) a. a. O. 173); b) Further researches in the theory of divergent series and integrals, Cambr. phil. trans. 21 (1908), p. 1—48; c) a. a. O. 248); Bromwich, a. a. O. 233), p. 319; G. H. Hardy und J. E. Littlewood, a) The relation between Borels and Cesàros methods of summation, Proc. Lond. math. Soc. (2) 11 (1912), p. 1—16; b) Theorems concerning the summability of series by Borel's exponential method, Rend. di Palermo 41 (1916), p. 36—53. Vgl. auch M. Fujiwara, Ein Satz über die Borelsche Summation, Toh. Math. J. 17 (1920), p. 339—343. G. Doetsch, Eine neue Verallgemeinerung der Borelschen Summabilitätstheorie der divergenten Reihen, Diss. Göttingen 1920.

Auch Koeffizienten differenzenkriterien sind von Hardy und $Littlewood^{224}$) angegeben worden.

Euler→Borel: Es wurde schon anläßlich der analytischen Fortsetzung p. 454 festgestellt, daß die Borelschen Mittel in allen regulären Peripheriepunkten konvergieren. Statt der Regularität genügen auch gewisse Stetigkeitsannahmen, um die Konvergenz der Borelschen Mittel zu sichern. 259)

Borel→Abel: Aus der Borelschen Summierbarkeit folgt stets die Abelsche zur gleichen Summe. 260)

Abel→Borel: Hier sind keinerlei Sätze bekannt.

Wegen der Beziehung der Rieszschen Mittel zu den hier behandelten vergleiche man den Abschnitt über Dirichletsche Reihen.

56. Das Wachstum der Funktion bei Annäherung der Variablen an die Konvergenzgrenze. Wir knüpfen nun wieder an einen schon p. 476 erwähnten Satz von Abel an, wonach stets dann $\mathfrak{P}(z) = \Sigma n_n z^n$ bei radialer Annäherung an z=1 über alle Grenzen wächst, wenn die Reihe Σa_n nur Glieder mit einerlei Vorzeichen hat und divergiert. Hieran schließen sich eine Menge von Arbeiten an, die es sich zur Aufgabe machen, aus der Art der Divergenz von Σa_n auf die Art des Wachstums von $\mathfrak{P}(z)$ für $z \to 1$ zu schließen. Daß ein solcher Zusammenhang besteht, hat $Appell^{232}$) entdeckt. Seine Resultate wurden dann namentlich durch $Pringsheim^{231}$) auf allgemeinere Reihen und auf nicht nur radiale Annäherung erweitert. Dabei hat dann wieder ein in seiner einfachsten Form auf $Cesàro^{229}$) zurückgehender Satz sich den an Appell auschließenden Methoden überlegen gezeigt. Diese letzteren benutzen gewisse Integralabschätzungen und wurden von $Le Roy^{164}$) bei allgemeineren Reihentypen verwendet.

Schon die vorhin angeführten Sätze Cesàro→Abel lassen sich in der jetzt von uns gewollten Weise interpretieren. Aus der p. 478 gegebenen Anwendung des Cesàroschen Grenzwertsatzes und der zweiten Definition der Cesàroschen Mittel schließt man nämlich leicht auf einen allgemeinen zuerst von Appell angegebenen Satz, und zwar gleich in der allgemeinen Fassung, die ihm auf Appells Anregung Soudée 261) und unabhängig davon Cesàro 229) gegeben haben. Das Resultat ist dieses:

²⁵⁹⁾ P. Dienes, a. a. O. 177).

²⁶⁰⁾ E. Phragmén, a. a. O. 176); G. H. Hardy, a) a. a. O. 173); b) The uniform convergence of Borels integral, Mess. of math. 40 (1911), p. 161-165; E. Landau, Auszug aus einem Briefe des Herrn Landau an den Herausgeber, Acta math. 42 (1911), p. 95-98.

²⁶¹⁾ Soudée, Solution de la question 1624, Nouv. Ann. (3) 2 (1893), p. 4-6.

Es sei k > 0 und $r \ge -1$. Ferner sei

$$\lim_{n \to \infty} \frac{S_n^{(r)}}{n^{k+r}} = g.$$

Dann ist

$$\lim_{z \to 1} \left\{ (1-z)^k \cdot \sum_{n=0}^{\infty} a_n z^n \right\} = g \cdot \Gamma(k+r+1)$$

bei radialer Annäherung. Das hier gegebene Resultat ist schon etwas allgemeiner als das von den genannten Autoren zunächst gewonnene Ergebnis. Denn diese ließen nur Reihen mit positiven Gliedern zu. 261,1) Wir haben uns ja auch schon auf die von *Pringsheim* und *Lasker* herrührende Verallgemeinerung des *Cesàro*schen Satzes gestützt. Doch haben diese Forscher den Satz auch auf nicht radiale Annäherung im *Stolz*schen Dreieck erweitert. Sie finden:

Falls die Reihe $\Sigma a_n z^n$ in einer Punktmenge, welche z=1 als Häufungspunkt besitzt, gleichmäßig divergiert, d. h. falls es eine Zahl $\alpha > 0$ gibt, so daß in dieser Punktmenge

bleibt, so folgt aus
$$\frac{\left|\frac{\sum a_n z^n}{\sum |a_n z^n|} > \alpha\right|}{\sum |a_n z^n|} > \alpha$$
 daß
$$\frac{\sum b_n z^n}{\sum a_n z^n} \to g$$

strebt, falls z durch jene Punktmenge gegen 1 rückt. Gleichzeitig folgt die gleichmäßige Divergenz von $\Sigma b_n z^n$ in der gleichen Punktmenge.

Also auch die Annahme, daß $a_n > 0$ sei, ist gefallen. Man kann den Satz somit auf viel allgemeinere Vergleichsreihen $\Sigma a_n z^n$ mit bekanntem Wachstum anwenden. Eine Fülle derartiger Fälle hat A. Pringsheim²³¹) angegeben. Vgl. auch K. Knopp.²²⁷)

Zum Studium des Wachstums einer Funktion bei Annäherung an die Konvergenzgrenze ihrer Potenzreihe hat $Hadamard^{186}$) den Begriff der Ordnung auf dem Konvergenzkreis geschaffen. Die Einführung dieses Begriffes knüpft an die Beobachtung an, daß durch Differenzieren, durch Integrieren sowie durch Multiplizieren der Funktion mit z die Lage der endlichen und von Null verschiedenen singulären Stellen nicht geändert wird. Auch die Riemannschen Differentiationen und Integrationen nicht ganzzahliger Ordnung besitzen diese Eigenschaft. (Vgl. II A 2 (Voß).) Der einfachste hierher gehörige Prozeß ist

$$D^{\alpha}f(z) = a_0 + \sum_{1}^{\infty} \frac{a_n}{n^{\alpha}} z^n.$$

^{261,1)} Für $a_n \ge 0$ sind aber auch 254 1) diese Sätze umkehrbar.

Dabei ist

$$f(z) = a_0 + \sum_{n=1}^{\infty} a_n z^n$$

in z=0 regulär. Die Funktion $D^{\alpha}f(z)$ hat durchweg an denselben Stellen ihre Singularitäten wie f(z). Nur können in den anderen Zweigen noch bei z=0 neue Singularitäten auftreten oder vorhandene verschwinden. Das gleiche gilt von $z=\infty$. Auf alle Fälle aber behalten die Ecken des Hauptsternes ihre Lage. Für positive α erklärt der Prozeß eine Art Integration, für negative α eine Art Differentiation.

Eine auf einem Kurvenbogen z=z(t) z.B. auf |z|=1 stetige Funktion heißt nach Hadamard daselbst von beschränkter Spannung (à écart fini), wenn — unter teinen auf der Kurve variablen Parameter, unter a, b die Parameterwerte zweier Kurvenpunkte verstanden — stets

$$\left| n \int_{a}^{b} f\{z(t)\} \sin nt \, dt \right| \quad \text{und} \quad \left| n \int_{a}^{b} f\{z(t)\} \cos nt \, dt \right|$$

beschränkt sind, für alle ganzzahligen n und für alle a, b auf der Kurve. Die obere Grenze dieser beiden Ausdrücke heißt Spannung. Wir wenden dies insbesondere auf das Verhalten einer Funktion auf ihrem Konvergenzkreise an. Dieser sei der Kreis |z|=1. Die Funktion sei $f(z)=\sum a_nz^n$. Dann gilt folgende Aussage: $\sum |a_n|$ sei konvergent, und es gelte $na_n\log n \to 0$. Dann ist f(z) auf |z|=1 stetig und von beschränkter Spannung. Wenn umgekehrt f(z) auf |z|=1 stetig und von beschränkter Spannung ist, so ist $\sum \frac{|a_n|}{n^{\varepsilon}}$ für jedes $\varepsilon>0$ konvergent, und es ist für jedes $\varepsilon>0$ auch $n\log n\frac{a_n}{n^{\varepsilon}}\to 0$.

Im allgemeinen zerfallen die Zahlen α in zwei Klassen, je nachdem ob $D^{\alpha}f(z)$ auf dem Konvergenzkreis |z|=1 stetig und von beschränkter Spannung ist, oder nicht. Wenn nämlich $D^{\alpha}f(z)$ von beschränkter Spannung ist, so gilt nach dem eben angeführten Satz für h>0 von $D^{\alpha+h}f(z)$ das gleiche. Ist aber $D^{\alpha}f(z)$ nicht von beschränkter Spannung, so ist dies für h<0 auch nicht mit $D^{\alpha+h}f(z)$ der Fall. Es gibt daher eine Zahl ω , welche beide Klassen voneinander trennt. Diese heißt die Ordnung von f(z) auf dem Konvergenzkreis. Aus dem vorhin angeführten Satze entnimmt man

$$\omega = 1 + \limsup_{n \to \infty} \frac{\log |a_n|}{\log n}.$$

Der Begriff der Ordnung läßt sich wie der der Spannung auf Kreisbogen und dann auch auf einzelne Punkte ausdehnen. In einem Bogen des Kreises |z| = 1 heißt f(z) von der Ordnung ω , wenn ω der Schnitt ist zwischen denjenigen Zahlen α , für die $D^{\alpha}f(z)$ von beschränkter

Spannung ist, und den Zahlen α , für die das nicht der Fall ist. Da offenbar bei Verkleinerung der Bogens die Ordnung der Funktion auf demselben nicht zunehmen kann, so hat sie bei unbegrenzter Verkleinerung des einen Punkt z_0 enthaltenden Bogens einen Grenzwert. Dieser heißt Ordnung im Punkte z_0 . Die Ordnung auf einem Bogen ist daher die obere Grenze der Ordnungen seiner Punkte. In einem regulären Punkt ist die Ordnung — ∞ .

Der Begriff der Ordnung steht in enger Beziehung zum Wachstum der Funktion bei Annäherung an einen Punkt. Diese Beziehung wird durch den folgenden Satz gegeben.

Ist ω_1 die Ordnung von f(z) auf dem abgeschlossenen Bogen (a, b) und ist $\omega_1 < \omega$ und $\omega > 0$, so gilt gleichmäßig auf dem ganzen Bogen

$$\lim_{\varrho \to 1} (1 - \varrho)^{\omega} f(\varrho e^{i\vartheta}) = 0^{261s}$$

$$\lim_{\varrho \to 1} (1 - \varrho)^{\omega} S(\varrho) = 0$$

und

 $S(\varrho)$ bedeutet dabei die Spannung von f(z) auf dem Bogen

$$|z| = \varrho$$
, $\arg a \le \arg z \le \arg b$.

Ist umgekehrt

$$\limsup_{\varrho \longrightarrow 1} |(1-\varrho)^\omega f(\varrho e^{i\vartheta})| < A \quad \text{and} \quad \limsup_{\varrho \longrightarrow 1} |(1-\varrho)^\omega S(\varrho)| < A$$

für arg $a \leq \vartheta \leq$ arg b, so ist auf dem Bogen die Ordnung höchstens ω .

Dazu tritt noch der Begriff des Wachstums. r heißt der Grad des Wachstums bei einer bestimmten Art der Annäherung an z=1, wenn r der Schnitt ist zwischen denjenigen Werten o, für die

$$\lim_{z \to 1} (z - 1)^a f(z) = 0$$

ist und den Werten a, für die

$$\lim_{z \to 1} \sup_{z \to 1} |(z - 1)^{\alpha} f(z)| = \infty$$

ist. Beispiele zur Erläuterung der Beziehungen zwischen Ordnungs- und Wachstumsbegriffen, die sich ganz und gar nicht decken, geben Borel 262 186), Fabry 262 a). Der letztere hat diese Fragen eingehend untersucht.

$$\frac{s_n}{n^p} \longrightarrow 0 \quad \text{auch} \quad \lim_{\varrho \longrightarrow 1} (1 - \varrho)^p \sum_{1}^{\infty} a_{\nu} \varrho^{\nu} = 0.$$

Dabei ist

$$s_n = a_1 + a_2 + \cdots + a_n.$$

262) E. Borel, Loçons sur les séries à termes positifs, Paris 1902.

262a) E. Fabry, Ordre des points singuliers d'une série de Taylor, Acta math. 36 (1912), p. 69-104.

²⁶¹ a) Diese Aussage läßt sich etwas verschärfen: Nach $Pringsheim^{222}$) folgt aus

Reihen analytischer Funktionen.

57. Eigenschaften der Summen konvergenter Reihen von analytischen Funktionen. Der Weierstraßsche Doppelreihensatz (II B 1 (Osgood), p. 21) hat zu den mannigfaltigsten Untersuchungen Anlaß gegeben. Schon Weierstraß selbst erkannte, daß eine Reihe in verschiedenen Gebieten gleichmäßig konvergieren und in ihnen Zweige verschiedener analytischer Funktionen darstellen kann.

Diese Erscheinung kommt in den bald folgenden Untersuchungen $Runges^{166}$) erneut zur Geltung, und $Borcl^{264}$) hat dies Vorkommnis als direkte Folge der Existenz mehrdeutiger Funktionen erkannt. Weiter gab $Runge^{266}$) ein Beispiel einer Reihe analytischer Funktionen, welche zwar nicht gleichmäßig konvergiert, aber doch eine analytische Funktion darstellt. $Runge^{166}$) hat folgenden Satz bewiesen, der bei seinen Überlegungen eine hervorragende Rolle spielt:

 B_1 und B_2 seien zwei einfach zusammenhängende Bereiche mit von Null verschiedener Entfernung voneinander. Im Inneren und am Rande eines jeden derselben sei je eine reguläre analytische Funktion $f_1(z)$ und $f_2(z)$ gegeben. Dann gibt es ein Polynom, das in B_1 um weniger als ε von $f_1(z)$ und in B_2 um weniger als ε von $f_2(z)$ abweicht. So erhalten wir eine Folge von Polynomen, die in jedem der Bereiche gegen die dort vorgeschriebene Grenzfunktion $f_1(z)$ oder $f_2(z)$ konvergiert.

Dies Prinzip dient Runge zum Beweis des Satzes, daß man jede in einem einfach zusammenhängenden Bereich reguläre eindeutige analytische Funktion in eine gleichmäßig konvergente Polynomreihe entwickeln kann.

Ferner gelingt es mit Hilfe dieses Prinzips, ein Beispiel einer Reihe analytischer Funktionen anzugeben, die nicht gleichmäßig konvergiert und doch eine analytische Summe besitzt.

Aus diesen Beobachtungen sind im Laufe der Zeit zwei Fragestellungen erwachsen:

- 1. Welche Funktionen können durch Reihen analytischer Funktionen dargestellt werden?
- 2. Wann stellt eine konvergente Reihe analytischer Funktionen eine analytische Funktion dar?

²⁶³⁾ K. Weierstraβ, Zur Funktionenlehre, Monatsber. kgl. Akad. Berlin 1880, p. 719—743 (Werke II, p. 201—230).

²⁶⁴⁾ E. Borel, Leçons sur la théorie des fonctions, Paris 1898, p. 58.

²⁶⁵⁾ Man vgl. auch *H. von Koch*, Remarques sur quelques séries de polynomes, Bull. de la soc. math. de France 34 (1906), p. 269-274.

²⁶⁶⁾ C. Runge, Zur Theorie der analytischen Funktionen, Acta math. 6 (1884), p. 245—248.

Der erste, der die Frage 1 allgemein in Angriff nahm, war $Osgood^{267}$). Er bewies: Wenn $\Sigma f_n(z)$ in einem Gebiet G konvergiert, so enthält es ein Teilgebiet, in dem die Reihe gleichmäßig konvergiert. Die Teilgebiete gleichmäßiger Konvergenz liegen also überall dicht. Eine konvergente Reihe analytischer Funktionen stellt also stets eine stückweise analytische Funktion dar. Daß die Summe tatsächlich in verschiedenen Gebieten verschiedenen analytischen Funktionen angehören kann, zeigte erst $Montel^{268}$) an einem Beispiel. Man kann dasselbe so einrichten 269), daß unendlich viele Teilgebiete mit vorgeschriebenen Summen herauskommen. Ja Montel hat das Beispiel sogar so eingerichtet, daß die Summe stetig wird, ohne durchweg analytisch zu sein.

Für die Stetigkeit der Reihensumme ist nach $Arzelda^{269,1}$) und $Severini^{270}$) die gleichmäßige Konvergenz in jedem einzelnen Punkte 270,1) notwendig und hinreichend. Darunter versteht man folgendes: Zu jeder Stelle z_0 , zu jedem $\varepsilon > 0$ und zu jedem n kann man ein $\delta(\varepsilon, n)$ so bestimmen, daß für jedes n mit $|h| < \delta(\varepsilon, n) | s_n(z_0 + h) - s(z_0 + h)| < \varepsilon$ ist. $Severini^{270}$) hat darüber hinaus erkannt, daß die Reihensumme dann und nur dann analytisch ist, wenn sie stetig ist und über jede geschlossene rektifizierbare Kurve gliedweise integriert werden kann. 271,1) Daß die gliedweise Integrierbarkeit über nicht geschlossene Kurven zwar notwendig aber nicht hinreichend ist, hat $Montel^{269}$) an einem Beispiel gezeigt. Montel hat sich weiter mit der Art der Konvergenz in den verschiedenen Punkten des Konvergenzgebietes befaßt.

²⁶⁷⁾ W. F. Osgood, Note on the functions defined by infinite series whose terms are analytic functions of a complexe variable with corresponding theorems for definite integrals, Ann. of math. (2) 3 (1901), p. 25-34.

²⁶⁸⁾ a. a. O. 15).

²⁶⁹⁾ P. Montel, Sur les séries des fonctions analytiques, Bull. d. sc. math. (2) 30 (1906), p. 189-192. Vgl. auch a. a. O. 194).

^{269,1)} $Arzel\grave{a}$, Sulle serie dei funzioni I, Mem. dell. R. Acc. d. sc. di Bologna ser. V t. 8 (1899).

²⁷⁰⁾ C. Severini, Sulle serie di funzioni analitiche, Foggia 1903.

^{270, 1)} Diesen Begriff hat A. Pringsheim, Über die notwendigen und hinreichenden Bedingungen des Taylorschen Lehrsatzes für Funktionen einer reellen Variablen, Math. Ann. 44 (1894) (p. 57-83), p. 82 eingeführt. Vgl. ferner A. Pringsheim, Über singuläre Punkte gleichmäßiger Konvergenz, Münch. Ber. (1919) p. 419-430. Hier zeigt Pringsheim weiter, daß bei konvergenten Reihen analytischer Funktionen isolierte Punkte gleichmäßiger Konvergenz nicht auftreten können, daß vielmehr aus der gleichmäßigen Konvergenz in einem inneren Punkt des Konvergenzbereiches die gleichmäßige Konvergenz in einer Umgebung dieses Punktes folgt.

^{271, 1)} Wegen einer Bedingung für den analytischen Charakter vgl auch J. Wolff, Über Folgen analytischer Funktionen, Math. Ann. 81 (1920), p. 48-51.

Er teilte sie in reguläre und in irreguläre ein. Die regulären Punkte besitzen eine Umgebung gleichmäßiger Konvergenz, die irregulären nicht. Diese letzteren bilden natürlich zusammen mit dem Rand eine einfach zusammenhängende und nirgends dichte Menge. Auf jeder perfekten Teilmenge des Konvergenzbereiches ist die Reihensumme punktweise unstetig. Über das Verhalten in der Umgebung eines irregulären Punktes kann man dem Stieltjesschen Satz und seinen Verallgemeinerungen wichtige Ergebnisse entnehmen. Vgl. Nr. 58. Der Stieltjessche Satz lehrt nämlich, daß in der Umgebung eines irregulären Punktes die Partialsummen nicht beschränkt sein können, und seine Verallgemeinerung lehrt, daß die Partialsummen in der Umgebung eines irregulären Punktes nicht zwei verschiedene Werte auslassen können. Man hat so das folgende Ergebnis²⁷¹):

Die irregulären Punkte sind identisch mit denjenigen unter den gemeinsamen Häufungspunkten der Lösungsstellen von $s_n(z) = a$ und $s_n(z) = b$ (a und b zwei beliebige Werte), welche von unendlicher Ordnung sind $s_n(z) = \sum_{i=1}^{n} f_n(z)$. Damit ist gemeint, daß in jedem die Stelle umgebenden Kreise die obere Grenze für die Anzahl der Wurzeln von $s_n(z) = a$ oder von $s_n(z) = b$ unendlich ist. Andernfalls nämlich bildeten die $s_n(z)$ eine in der Umgebung des irregulären Punktes normale Familie, die also gleichmäßig konvergieren müßte entgegen der Definition des irregulären Punktes.

Für den Fall, daß die $s_n(z)$ die n-ten Abschnitte einer Potenzreihe sind, hat R. $Jentzsch^{273}$) einen wesentlich weiter gehenden Satz

²⁷¹⁾ P. Montel, a) Sur les points irréguliers des séries convergentes de fonctions analytiques, Paris C. R. 145 (1907), p. 910-913; b) a. a. O. 194); c) a. a. O. 62); Sur les fonctions analytiques qui admettent deux valeurs exceptionelles dans un domaine, Paris C. R. 153 (1911), p. 996-998; d) Sur l'indétermination d'une fonction uniforme dans le voisinage de ses points essentiels, Paris C. R. 153 (1911), p. 1455-1456. Vitali, Sopra le serie di funzioni analitiche, Ann. di mat. (3) 10 (1904), p. 65-82. C. Severini, a) Sulle successioni infinite di funzioni analitiche, Atti del IV. cong. internaz. dei mat. Roma 1909, Bd. II, p. 182-193; b) Sulle serie di funzioni analitiche, Rend. Acc. dei Lincei 12 (1903), p. 97-105 und p. 257-259; c) Sulle successioni infinite di funzioni analitiche, Atti dell. Acc. Gioenia di Catania (5) 1 (1907); d) Sulle serie di funzioni analitiche, Atti del reale Ist. Veneto 63 (1904), p. 1241-1255 und 64 (1905), p. 1609-1613; e) Sulla convergenza uniforme delle successioni di funzioni analitiche, Atti dell. Acc. Gioenia di Catania (5) 5 (1912).

²⁷²⁾ Statt der Konstanten a und b kann man zwei reguläre Funktionen a(z) und b(z) nehmen. Montel 271 e).

²⁷³⁾ R. Jentzsch, a) Untersuchungen zur Theorie der Folgen analytischer Funktionen, Diss. Berlin 1914 und Acta math. 41 (1918), p. 219-251; b) Fort-

gefunden. Er hat gezeigt, daß die Stellen, für die $s_n(z)=a$ ist, schon für sich allein einen jeden Punkt des Konvergenzkreises zum Häufungspunkt haben. Vermutungsweise hat dies schon vorher $Montel^{271}$) ausgesprochen.

Zwar können auch nicht gleichmäßig konvergente Reihen analytische Funktionen darstellen, ja man kann sogar durch Polynomreihen eindeutige Funktionen in mehrfach zusammenhängenden Bereichen, ja im ganzen Existenzbereich darstellen. ($Montel^{194}$).) Indessen ist die Frage nach Kriterien, die erkennen ließen, ob die oben für analytische Summen angegebenen Bedingungen bei einer solchen Reihe erfüllt sind oder nicht, nirgends angeschnitten worden. Vielmehr hat sich die an den klassischen $Weierstra\beta$ schen Satz anschließende Literatur darauf beschränkt, Kriterien für gleichmäßige Konvergenz zu gewinnen.

58. Der Vitalische Satz. Nächst dem bekanntesten aus der absoluten Konvergenz fließenden Kriterium für gleichmäßige Konvergenz ist wieder als erstes ein Ergebnis von Runge¹⁶⁶) zu nennen: Die gleichmäßige Konvergenz am rektifizierbaren Rande eines einfach zusammenhängenden Bereiches zieht die gleichmäßige Konvergenz im Inneren nach sich, ein Satz, der unmittelbar aus dem Cauchyschen Integralsatz fließt, und der zur Folge hat, daß die Bereiche gleichmäßiger Konvergenz nur dann mehrfach zusammenhängend sein können, wenn in den Löchern Singularitäten der Reihenglieder liegen. Montel¹⁵) hat an einem Beispiel gezeigt, daß Konvergenz am Rande ohne gleichmäßige Beschränktheit am Rande noch nicht auf die Konvergenz im Inneren zu schließen erlaubt.

Konvergenz und gleichmäßige Beschränktheit im Bereiche zieht die gleichmäßige Konvergenz nach sich. Einen ersten Fortschritt hierüber hinaus erzielte Stieltjes²⁷⁴). Er nimmt die Teilsummen in B gleichmäßig beschränkt an und setzt voraus, daß die Reihe in einem Teilbereich gleichmäßig konvergiert. Dann herrscht gleichmäßige Konvergenz im ganzen Bereich. Osgood²⁶⁷) kommt mit gleichmäßiger Beschränktheit und bloßer Konvergenz in einer überall dichten Teilmenge aus. Porter²⁷⁵)

gesetzte Untersuchungen über die Abschnitte von Potenzreihen, Acta math. 41 (1918), p. 253-270. Ein anderer Beweis bei Landau, a. a. O. 186). Man vgl. auch Lukács, Arch. Math. Phys. (3) 23 (1914), p. 34-35; Lindwart und Pólya, a. a. O. 107).

²⁷⁴⁾ T. J. Stieltjes, Brief an Hermite vom 14. und 16. II. 1894, Corr. d'Hermite et de Stieltjes II, p. 369, Paris 1905. Ferner: Recherches sur les fractions continues, Ann. fac. sc. Toulouse VIII (1894) 7 (p. 1—122), p. 56 oder Savants étrangers 32, Paris 1902, Nr. 102.

²⁷⁵⁾ Porter, On functions defined by an infinite series of analytic functions of a complex variable, Ann. of math. (2) 6 (1909), p. 45-48.

zeigte bald darauf, daß statt der überall dichten Menge eine Menge genügt, deren Häufungspunkte eine geschlossene dem Bereiche angehörige rektifizierbare Kurve erfüllen. So weit war die Entwicklung gediehen, als eine Kreuzung mit einer namentlich durch Arzelà²⁷⁶) ausgebauten Gedankenkette eintrat. Ich meine den Satz, daß sich aus jeder gleichmäßig stetigen Folge analytischer Funktionen mindestens eine gleichmäßig konvergente Teilfolge herausheben läßt. Da offenbar eine gleichmäßig beschränkte Folge analytischer Funktionen auch gleichmäßig stetig ist, so hatte Vitali²⁷⁷) leichte Mühe, den nach ihm benannten Satz zu entdecken:

Eine gleichmäßig beschränkte Folge regulärer analytischer Funktionen konvergiert jedenfalls dann in einem Bereiche gleichmäßig, wenn sie in einer Punktmenge konvergiert, welche einen dem Bereich angehörigen Häufungspunkt besitzt.²⁷⁸)

W. Blaschke ²⁷⁹) hat den Vitalischen Satz verallgemeinert. Der Häufungspunkt darf auch am Rande liegen. Doch müssen die Konvergenzpunkte hinreichend langsam dem Rande zustreben. Für den Fall, daß |z| < 1 der Bereich ist, ist notwendig und hinreichend, daß $\sum_{n=1}^{\infty} (1-|z_n|)$ divergiert, wo z_n die Konvergenzpunkte sind.

Beim Beweise des Vitalischen Satzes spielt die Möglichkeit, daß man aus jeder Teilfolge eine gleichmäßig konvergente herausgreifen kann, eine wesentliche Rolle. An diesem Punkte setzen weitere Verallgemeinerungen ein. Man braucht nämlich nicht besonders anzunehmen, daß die ausgewählte Funktionenfolge gegen eine endliche Grenzfunktion konvergiert.

Man nennt nun eine Funktionenfolge von der Art, daß man aus jeder Teilfolge eine gleichmäßig konvergente Teilfolge herausgreifen

²⁷⁶⁾ C. Arzelà, a) Sulle serie di funzioni analitiche, Rend. della R. Acc. di Bologna 1902; b) Note on series of analytic functions, Ann. of math. (2) 5 (1904), p. 51-63.

²⁷⁷⁾ Vitali, a) Sulle serie di funzioni analitiche, Rend. del. R. ist. Lombard. (2) 36 (1903), p. 771-774; b) a. a. O. 271).

²⁷⁸⁾ Weitere Beweise findet man an folgenden Stellen: Porter, Concerning series of analytic functions, Ann. of math. (2) 6 (1904), p. 190—192. C. Carathéodory und E. Landau, a. a. O. 74); E. Lindelöf, Démonstration nouvelle d'un théorème fondamentale sur les suites des fonctions monogènes, Bull. de la soc. math. de France 41 (1913), p. 171—178; R. Jentzsch, a. a. O. 273); C. Severini, a. a. O. 271), Montel, a. a. O. 15).

²⁷⁹⁾ W. Blaschke, Eine Erweiterung des Satzes von Vitali über Folgen analytischer Funktionen, Leipz. Ber. 67 (1915), p. 194—200. Dazu kann man auch vergleichen: E. Landau, Über die Blaschkesche Verallgemeinerung des Vitalischen Satzes, Leipz. Ber. 70 (1918), p. 156—159.

kann, nach Fréchet²⁸⁰) kompakt, nach Montel⁶²) normal. (Vgl. Art. Borel-Rosenthal.) So hat man den Satz: Falls eine normale Funktionenfolge in einem Bereiche regulär ist und an unendlich vielen Stellen mit Häufungspunkt im Bereichinneren konvergiert, so konvergiert sie gleichmäßig im ganzen Bereiche.

Mit Hilfe der elliptischen Modulfunktion erkennt man leicht, daß z. B. die Familie derjenigen Funktionen, die zwei gegebene Werte auslassen, normal ist. 62) Falls die Gleichungen $f_n(z) = 0$ und $f_n(z) = 1$ für kein n mehr als p Wurzeln besitzen, so ist die Familie quasinormal, d. h. es gibt eine Teilfolge, die gleichmäßig gegen eine endliche oder quasiunendliche Grenzfunktion konvergiert. Quasiunendlich heißt eine Funktion, die überall außer an endlich vielen Stellen unendlich ist. Wenn insbesondere die $f_n(z)$ gar keine Nullstellen haben, so ist die Familie normal. Die Punkte also, in welchen eine quasiunendliche Folge endlich bleiben kann, sind unter den Punkten zu suchen, die Häufungspunkte von Null- und von Einsstellen zugleich sind. Wenn also weiter eine quasinormale Familie in einem nicht zu dieser Kategorie gehörigen Punkte beschränkt ist, und wenn weiter die gemeinsamen Häufungspunkte und die Punkte unendlicher Ordnung mit dem Bereichrande keine zusammenhängende Menge bilden, so ist die Familie normal und gleichmäßig beschränkt. Wenn eine quasinormale Familie einen Wert ausläßt, so ist sie normal (Montel 62)).

Der Satz läßt sich noch dahin verallgemeinern, daß statt der festen Ausnahmepunkte variable genommen werden. Sie dürfen aber nicht zu dicht zusammenkommen. Z. B. soll bei festem γ stets

$$|a_n| < \gamma, |b_n| < \gamma, |a_n - b_n| > \frac{1}{\gamma}$$

sein. Statt der Modulfunktion können andere Dreiecksfunktionen genommen werden.

Wegen Ausdehnung der Sätze auf mehrdeutige Funktionen siehe Koebe³⁴), Carathéodory⁷⁰), Boutroux²⁸¹), Rémoundos²⁸¹).

59. Weiteres über Reihen analytischer Funktionen. In einer klassischen Arbeit¹⁶⁶) vom Jahre 1884 hat *C. Runge* bewiesen, daß

²⁸⁰⁾ Fréchet, Sur quelques points du calcul fonctionel, Rend. di Palermo 22 (1906), p. 1-74.

²⁸¹⁾ P. Boutroux, a) Fonctions multiformes à une infinité de branches, Ann. de l'Éc. norm. sup. (3) 22 (1905), p. 441—469; b) Sur les fonctions limites des fonctions multiformes, Rend. di Palermo 24 (1907), p. 209—222; c) Leçons sur les fonctions définies par les équations différentielles du premier ordre, Paris 1908; G. Rémoundos, a) Sur les familles des fonctions algébroides, Paris C. R. 156 (1913), p. 862—865; b) Sur les séries et les familles de fonctions algébroides dans un domaine, Paris C. R. 156 (1913), p. 1141—1144.

man jede beliebige in einem einfach zusammenhängenden Bereiche eindeutige und analytische Funktion in eine im Inneren gleichmäßig konvergente Reihe von Polynomen entwickeln kann. Wie schon p. 491 hervorgehoben wurde, gelingt dies dadurch, daß Runge zunächst aus der Cauchyschen Integralformel auf eine Darstellung durch eine Reihe rationaler Funktionen schließt. Diese Überlegung liefert sogar eine gleichmäßig konvergente Darstellung in einem beliebig vielfach zusammenhängenden Regularitätsbereich. Von da gelangt er dann durch Verschieben der Pole der Reihenglieder zu einer Polynomreihe. Montel 194 hat bemerkt, daß man durch diese Überlegung sogar zu einer Polynomentwicklung in einem beliebigen auch mehrfach zusammenhängenden Regularitätsbereich gelangen kann, eine Darstellung, die allerdings dann nicht mehr gleichmäßig konvergiert. (Siehe auch p. 494.)

Dieses weitgehende Rungesche Resultat ist von verschiedenen Autoren auf verschiedene Weise in mehr oder weniger weitem Umfange wieder gewonnen worden. Zunächst von Painleve²⁸²) für konvexe Bereiche, dann von Hilbert²⁸³) für beliebige einfach zusammenhängende Bereiche. Zu erwähnen sind auch die Untersuchungen von Appell (Acta 1 und Annalen 21). Ferner ist hinzuweisen auf die oben schon behandelten Mittag-Lefflerschen in verschiedenen Sterngebieten konvergenten Polynomreihen. ²⁸⁴)

Man hat versucht, die Polynomentwicklungen mit der Lagrangeschen Interpolationsformel in Zusammenhang zu bringen. In gewisser Weise kann man schon die Hilbertschen Entwicklungen als Lösungen eines solchen Interpolationsproblemes auffassen. Dabei werden die Stellen, an welchen gegebene Daten benutzt werden, festgehalten und in den Punkten die Übereinstimmung einer wachsenden Zahl von Ableitungen verlangt. Sucht man aber die Übereinstimmung dadurch zu gewinnen, daß man nur die Funktionswerte in einer wachsenden Zahl von Punkten benutzt, so erhält man ohne gewisse geeignete Vorsichtsmaßregeln keine in einem gegebenen Bereiche konvergente Darstellung. Die Wahl der Interpolationsstellen ist durch die Gestalt des Bereiches bedingt. Von L. Fejér²⁸⁵) rührt der folgende Satz her: Wenn f(z)

²⁸²⁾ P. Painlevé, Sur les lignes singulières des fonctions analytiques, Ann. de Toulouse (1) 2 (1888), p. 1—130.

²⁸³⁾ D. Hilbert, Über die Entwicklung einer beliebigen analytischen Funktion einer Variablen in eine unendliche nach ganzen rationalen Funktionen fortschreitende Reihe, Gött. Nachr 1897, p. 63-70.

²⁸⁴⁾ Endlich noch zwei Arbeiten von Painlevé, Paris C. R. 1898.

²⁸⁵⁾ Ch. Méray, Observations sur la légitimité de l'interpolation, Ann. l'Éc. norm. sup. (3) 1 (1884), p. 165-176; C. Runge, Über empirische Funktionen und

in einem einfach zusammenhängenden Bereiche B und auf seinem voraussetzungsgemäß von einer Jordankurve gebildeten Rande regulär ist, so konvergieren die Lagrangeschen Interpolationspolynome sicher dann in B und auf seinem Rande gleichmäßig gegen f(z), wenn man die Interpolationsstellen alle am Rande wählt, und wenn dieselben dort regelmäßig verteilt sind. Regelmäßig verteilt aber heißen n Randpunkte, wenn man das $\ddot{A}u\beta ere$ der Jordankurve so umkehrbar eindeutig und analytisch auf das Innere eines Kreises abbilden kann, daß dabei die n Punkte in die n Ecken eines regelmäßigen n Ecks übergehen. G. $Faber^{285}$) hat die Frage für in B gelegene Interpolationsstellen zum Abschluß gebracht. Seien $z_1^{(n)} \dots z_n^{(n)}$ die Interpolationsstellen des n Polynoms n n so wird dann und nur dann jedes in n reguläre n f(n durch die n gleichmäßig approximiert, wenn die Kurven n n der n der n der n Bereichrand gleichmäßig approximieren.

Man kann auch von gegebenen Interpolationsstellen ausgehen und fragen, für welche Funktionen die zu diesen Stellen gehörigen Interpolationsformeln konvergieren. ²⁸⁶)

Versucht man das Interpolationsproblem namentlich bei ganzen transzendenten Funktionen zu behandeln, so wird man — wie bei Polynomen — auf die Frage geführt, ob man eine ganze Funktion bestimmen kann, die an unendlich vielen sich nur im Unendlichen häufenden Stellen gegebene Werte annimmt, und inwieweit die Funktion durch diese Werte bestimmt ist. Der einfachste Weg zur Lösung der ersten Aufgabe ist wohl dieser: Man konstruiere zunächst irgendeine ganze Funktion F(z), welche an den gegebenen Stellen a_n verschwindet. Alsdann nach Mittag-Leffler eine Partialbruchreihe, die an den Stellen a_n einfache Pole mit den Residuen $\frac{A_n}{F(a_n)}$ hat. Diese sei $\Phi(z)$. Dann ist $F(z) \cdot \Phi(z)$ eine ganze Funktion, die an den Stellen a_n die Werte A_n annimmt. 287)

Schon diese ganze Herleitung zeigt, daß die Funktion durch die Werte A_n nicht bestimmt ist. Man kann ja auch eine beliebige ganze

die Interpolation zu äquidistanten Ordinaten, Ztschr. Math. Phys. 46 (1901), p. 224—243; L. Fejér, Interpolation und konforme Abbildung, Gött. Nachr. 1918, p. 319—331. G. Faber, Über Tschebycheffsche Polynome, Crelles J. 150 (1920), p. 74—106.

²⁸⁶⁾ I. Bendixson, Sur une extension à l'infini de la formule de l'interpolation de Gauss, Acta math. 9 (1887), p. 1-34; G. Faber, Beitrag zur Theorie der ganzen Funktionen, Math. Ann. 70 (1911), p. 48-68.

²⁸⁷⁾ C. Guichard, Sur les fonctions entières, Ann. Éc. Norm. (3) 1 (1884), p. 427-432; P. E. B. Jourdain, On the general theory of functions, J. f. Math. 128 (1905), p. 169-210; A. Pringsheim, a. a. O. 187), p. 27.

Funktion zufügen, die an allen Stellen a_n verschwindet. Man kann aber hoffen, etwa durch Wachstumsbeschränkungen für die Funktion f(z) diese Möglichkeiten auszuschließen und die Lösung eindeutig zu machen. In dieser Richtung hat F. $Carlson^{288}$) das folgende schöne Ergebnis gewonnen: Wenn f(z) langsamer wächst, als es dem Normaltypus π der Ordnung Eins entspricht, oder präziser, wenn $|f(z)| < A \cdot e^{k \cdot z}$ $(k < \pi)$ für große z, dann kann f(z) nur dann für alle ganzzahligen z verschwinden, wenn es identisch Null ist. $Polya^{345}$), $Valiron^{288,1}$) und F. $Carlson^{288,2}$) behandeln die Frage nach dem kleinstmöglichen Wachstum der interpolatorischen Funktion.

 $L.\ Tonelli^{289})$ hat unter Anlehnung an einen Tschebycheffschen Gedanken gezeigt, daß unter allen Polynomreihen, welche ein und dieselbe Funktion darstellen, eine am besten konvergent ist. Dabei approximiert ein Polynom $P_n(z)$ vom Grade n im Bereiche B am besten von allen Funktionen n-ten Grades die Funktion f(z), wenn das Maximum von $f(z) - P_n(z)$ in B möglichst klein wird. Es gibt genau ein Polynom n^{ten} Grades mit dieser Eigenschaft.

 $G.\ Faber^{290})$ hat in mehreren Arbeiten das Problem, eine gegebene Funktion in einem gegebenen Bereiche durch eine Polynomreihe darzustellen, auf sehr einfache Weise von der Integralformel aus gelöst und ergänzt. Er hat gezeigt, daß man in mannigfaltiger Weise einem gegebenen einfach zusammenhängenden Bereiche eine Folge von Polynomen $P_n(z)$ zuordnen kann, derart, daß jede im Bereiche reguläre Funktion in eine gleichmäßig konvergente Reihe $\Sigma a_n P_n(z)$ entwickelt werden kann. Wie bei einer' Potenzreihe $(P_n(z) = z^n)$ hängen also die $P_n(z)$ nicht von der darzustellenden Funktion f(z) ab und sind

²⁸⁸⁾ F. Carlson, a. a. O. 199); S. Wigert, Sur un théorème concernant les fonctions entières, Arkiv for mat. astr. och fys. 11 (1916), Nr. 21. Vgl. auch S. Wigert und H. Cramer, Un théorème sur les séries de Dirichlet et son application, Arkiv for mat. astr. och fys. 13 (1918/19), Nr. 22 (p. 1—14), p. 11. Vgl. auch G. Pólya, a. a. O. 345). Ferner neuerdings G. H. Hardy, On two theorems of F. Carlson and S. Wigert, Acta math. 42 (1920), p. 327—339; M. Riesz, a. a. O. 199).

^{288,1)} G. Valiron, Sur l'interpolation des fonctions entières, Bull. soc. math. Fr. 44 (1916), p. 103—119; F. Carlson, Sur les séries de coefficients binomiaux, Nova acta R. soc. Sc. Ups. (4) 4 (1915), Nr. 3.

²⁸⁹⁾ L. Tonelli, I. polinomi d'approssimazione de Tschebycheff III, Annali di mat. (3) 15 (1909), p. 108-119.

²⁹⁰⁾ G. Faber, a) a. a. O. 166), 187); b) Über polynomische Entwicklungen, Math. Ann. 64 (1907), p. 116—135; c) Über Reihen nach Legendreschen Polynomen, Jahresber. d. D. Math.-Ver. 16 (1907), p. 103—115; d) K. Rieder, Polynomische Entwicklungen von Funktionen einer Variabelen, Diss. Basel 1911; e) M. Krafft, Zur Theorie der Faberschen Polynome und ihrer zugehörigen Entwicklungen, Diss. Marburg 1915; f) G. Faber, a. a. O. 285).

durch den Bereich allein, in dem die Entwicklung gelten soll, bestimmt. Lediglich die Koeffizienten a_n hängen von der Wahl der darzustellenden Funktion ab. Bewiesen ist dies allerdings bis jetzt nur für solche einfach zusammenhängende Bereiche, deren Grenze von einer geschlossenen analytischen Kurve gebildet wird. Durch Grenzübergang zu allgemeineren Bereichen gelang Faber nur ein schöner Beweis des Rungeschen Satzes von der Möglichkeit einer Polynomentwicklung. Die Analogie mit den Potenzreihen hat Faber noch weiter verfolgen können. Auf der Konvergenzgrenze (bei den Legendreschen Polynomen z. B. eine Ellipse mit den Brennpunkten ± 1) liegt stets mindestens eine singuläre Stelle usw. Z. B. kann man auch aus der Verteilung der Singularitäten von $\Sigma a_n z^n$ auf die von $\Sigma a_n P_n(z)$ schließen.

Funktionenfamilien.

60. Die Taylorkoeffizienten beschränkter Funktionen. Daß beschränkte Familien analytischer Funktionen normal sind, lehrt der Satz von Vitali. Das älteste Ergebnis über beschränkte Familien ist im sogenannten Schwarzschen Lemma niedergelegt: 291 Wenn f(z) mit f(0) = 0 in |z| < 1 regulär ist, und wenn in diesem Kreise |f(z)| < 1 gilt, so ist auch $|f(z)| \le |z|$ in |z| < 1, und das Geichheitszeichen kann hier nur dann vorkommen, wenn f(z) eine ganze lineare Funktion ist. Der Satz regelt das Wachstum einer beschränkten Funktion im Einheitskreis und entspricht also dem Schottkyschen Satz bei der Familie der Funktionen, welche in |z| < 1 die Werte 0 und 1 auslassen, und dem Verzerrungssatz bei den Familien derjenigen Funktionen, welche den Einheitskreis schlicht abbilden.

Die in den Voraussetzungen des Schwarzschen Lemmas liegende Beschränkung kann leicht durch lineare Transformation von z oder der Funktion selbst beseitigt werden. Überhaupt ist konforme Abbildung das Mittel, durch das man weitgehende Folgerungen aus dem Schwarzschen Lemma ziehen kann, und das seine große Fruchtbarkeit bedingt. So gelangt man auf diesem Wege zu dem sogenannten Lindelöfschen Prinzip, das allerdings sein Entdecker auf anderem Wege auch für mehrfach zusammenhängende Bereiche gewonnen hat.²⁹²) Das Lindelöfsche Prinzip lautet: B₁ und B₂ seien zwei be-

²⁹¹⁾ H. A. Schwarz, Zur Theorie der Abbildung (1869), Ges. Abh. II (p. 108-132), p. 109. Wegen eines einfachen Beweises vgl. man z. B. Carathéodory, a. a. O. 332). Eine neue Formulierung gibt Pick, a. a. O. 74).

²⁹²⁾ a. a. O. 61a). Die Spezialisierung dieses Prinzips führt zu einer Menge von Sätzen, die zum Teil schon vor diesem Prinzip anderweitig bekannt waren. Ich nenne hier nur die folgenden Arbeiten, will aber vorab bemerken, daß auch

liebige Bereiche, G_1 und G_2 seien ihre mit bestimmten Aufpunkten gebildeten Greenschen Funktionen. Es sei weiter eine in B_1 reguläre Funktion gegeben, welche den Bereich B_1 auf einen über B_2 ausgebreiteten Bereich abbildet und dabei den Aufpunkt von B_1 in den von B_2 überführt Dann wird das Innere der Greenschen Niveaulinie $G_1 = \lambda$ durch diese Funktion auf einen über dem Inneren der Niveaulinie $G_2 = \lambda$ gelegenen Bereich abgebildet. Beim Schwarzschen Lemma, das auch als Spezialfall dieses Satzes aufgefaßt werden kann, sind die Niveaulinien eben konzentrische Kreise.

Das Lemma enthält gleich dem Cauchyschen Koeffizientensatz eine Aussage über die Koeffizienten derjenigen Potenzreihen $f(z) = a_1 z + a_2 z^2 + \cdots$, für die |f(z)| < 1 gilt in |z| < 1. Es muß nämlich nach dem Lemma $|a_1| \le 1$ sein, und gleich gilt nur für ganze lineare Funktionen. Daß die übrigen Koeffizienten ähnlichen Bedingungen genügen, hat Carathéodory entdeckt, und durch ihn und durch an die seinigen anschließende Arbeiten sind diese Bedingungen des näheren bekannt geworden. Carathéodorys Arbeiten 293) beziehen sich allerdings auf Funktionen, welche im Einheitskreis nur Werte mit positivem Realteil annehmen. Doch ist dies kein wesentlich anderes Problem, wie auch schon Carathéodory angegeben und J. Schur²⁹⁴) näher ausgeführt hat. Carathéodory hat den folgenden Satz gefunden: Wenn die Funktion $f(z) = 1 + a_1 z + a_2 z^2 + \cdots$ in |z| < 1 regulär ist und dort einen positiven Realteil besitzt, so müssen $(a_1, a_2, \ldots a_n)$ die Koordinaten eines Punktes sein, der einem gewissen konvexen Körper K, des 2n-dimensionalen Raumes angehört. Der Körper ist als kleinster die Kurve

die später zu besprechenden Jensenschen Verallgemeinerungen des Schwarzschen Lemmas mit dem Lindelöfschen Prinzip zusammenhängen. J. Hadamard, Sur les fonctions entières de la forme $e^{G(x)}$, Paris C. R. 114 (1892), p. 1053—1055; E. Borel, a. a. O. 63a); F. Schottky, a. a. O. 64); E. Landau, a) a. a. O. 62); b) Beiträge zur analytischen Zahlentheorie, Rend. di Palermo 26 (1908), p. 191—193; C. Carathéodory, Elementarer Beweis für den Fundamentalsatz der konformen Abbildungen, Schwarzfestschrift 1914, p. 19—41; P. Koebe, Über das Schwarzsche Lemma und einige damit zusammenhängende Ungleichheitsbeziehungen der Potentialtheorie und Funktionentheorie, Math. Ztschr. 6 (1920), p. 52—84.

²⁹³⁾ C. Carathéodory, a) Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, welche gegebene Werte nicht annehmen, Math. Ann. 64 (1907), p. 95—115; b) Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen, Rend. di Palermo 32 (1911), p. 193—217.

²⁹⁴⁾ J. Schur, Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind, J. f. Math. 147 (1917), p. 205—232 und 148 (1918), p. 122—145. Vgl. auch G. Hamel, Eine charakteristische Eigenschaft beschränkter analytischer Funktionen, Math. Ann. 78 (1918), p. 257—269.

$$a_k = 2e^{-ki\theta} (k = 1, 2, \dots n)$$

enthaltender konvexer Körper charakterisiert. Wenn umgekehrt die Koeffizienten einer Potenzreihe dieser Bedingung genügen, so stellt sie eine in |z| < 1 reguläre Funktion mit positivem Realteil dar. Gehört $(a_1, a_2, \ldots a_n)$ dem Rande von K_n an, so ist die Funktion durch $(a_1, a_2, \ldots a_n)$ eindeutig bestimmt und ist eine rationale Funktion von dieser Form:

$$\sum_{1}^{n} \lambda_{j} \frac{e^{i \vartheta_{j}} + z}{e^{i \vartheta_{j}} - z} \left(\lambda_{j} \ge 0, \sum_{1}^{n} \lambda_{j} = 1 \right).$$

 $Toeplitz^{295}$) hat bald darauf erkannt, daß die K_n von algebraischen Flächen begrenzt sind, und daß man K_n durch die Bedingung charakterisieren kann, daß die Hermitesche Form mit der Matrix

$$\begin{pmatrix}
\bar{a}_{1} & a_{1} & a_{2} & \dots & a_{n} \\
\bar{a}_{1} & 2 & \bar{a}_{1} & \dots & a_{n-1} \\
\bar{a}_{2} & \bar{a}_{1} & 2 & \dots & a_{n-2} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
\bar{a}_{n} & \bar{a}_{n-1} & \bar{a}_{n-2} & \dots & 2
\end{pmatrix}$$

nicht negativ sei. So gelangt man zu dem folgenden Satz, den in seiner vollständigen Form erst G. Herglotz²⁹⁶) ausgesprochen hat:

 $f(z) = a_0 + a_1 z + \cdots$ ist dann und nur dann in |z| < 1 konvergent und stellt dort eine Funktion mit positivem Realteil dar, wenn die Determinanten

$$\begin{vmatrix} 2a_0' & a_1 & \dots & a_n \\ \bar{a}_1 & 2a_0' & \dots & a_{n-1} \\ \dots & \dots & \dots & \dots \\ \bar{a}_n & \bar{a}_{n-1} & \dots & 2a_0' \end{vmatrix} \quad (a_0 = a_0' + ia_0')$$

entweder alle wesentlich positiv sind oder doch von der ersten Verschwindenden an alle verschwinden. Der zweite Fall tritt nur dann ein, wenn f(z) eine wohlbestimmte rationale Funktion ist, deren Partialbruchzerlegung schon vorhin angegeben wurde, der man aber nach J. Schur die folgende Form geben kann:

$$f(z) = \frac{1 - \varphi(z)}{1 + \varphi(z)} \quad \varphi(z) = \varepsilon \prod_{1}^{n} \frac{z + w_{\nu}}{1 + \overline{w}_{\nu} z} (|w_{\nu}| < 1, |\varepsilon| = 1).$$

Dies Ergebnis übte natürlich einen starken Reiz auf die Algebraiker

²⁹⁵⁾ O. Toeplitz, Über die Fouriersche Entwicklung positiver Funktionen, Rend. di Palermo 32 (1911), p. 191—192.

²⁹⁶⁾ G. Herglotz, Über Potenzreihen mit positivem reellen Teil im Einheitskreis, Leipz. Ber. 63 (1911), p. 501-511.

aus, und so sehen wir denn bald eine Reihe rein algebraischer Beweise entstehen.²⁹⁷)

J. Schur²⁹⁴) hat durch einen bekannten kettenbruchähnlichen aus dem Schwarzschen Lemma gespeisten Algorithmus das Problem |f(z)| < 1 in |z| < 1 direkt in Angriff genommen. Er gelangte zu folgendem Satz: $a_0 + a_1 z + \cdots$

 $f(z) = \frac{a_0 + a_1 z + \cdots}{b_0 + b_1 z + \cdots}$

ist dann und nur dann in |z| < 1 regulär mit einem Betrage unter Eins, wenn die Determinanten

$$\delta_{n} = \begin{bmatrix} \overline{b}_{0} & 0 & \dots & 0 & a_{0} & a_{1} & \dots & a_{n-2} & a_{n-1} \\ \overline{b}_{1} & \overline{b}_{0} & \dots & 0 & 0 & a_{0} & \dots & a_{n-3} & a_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ \overline{b}_{n-1} & \overline{b}_{n-2} & \dots & \overline{b}_{0} & 0 & 0 & \dots & 0 & a_{0} \\ \overline{a}_{0} & 0 & \dots & 0 & b_{0} & b_{1} & \dots & b_{n-2} & b_{n-1} \\ \overline{a}_{1} & \overline{a}_{0} & \dots & 0 & 0 & b_{0} & \dots & b_{n-3} & b_{n-2} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ \overline{a}_{n-1} & \overline{a}_{n-2} & \dots & \overline{a}_{0} & 0 & 0 & \dots & 0 & b_{0} \end{bmatrix}$$

entweder alle wesentlich positiv sind oder doch von der ersten verschwindenden an alle verschwinden. Dieser letztere Fall tritt nur für die im vorigen Satz mit $\varphi(z)$ bezeichneten rationalen Funktionen ein. Von einer neuen Seite her hat O. $Sz\acute{asz}^{298}$) das Problem in Angriff genommen. Er bringt wie Toeplitz und Schur den Wertevorrat einer Potenzreihe mit dem Wertevorrat gewisser Bilinearformen in Zusammenhang und bestimmt die Stützgeraden am Koeffizientenraum der in |z| < 1 beschränkten Potenzreihen.

Im engen Zusammenhang mit diesen Ergebnissen steht das folgende von Carathéodory und $Fej\acute{e}r^{69}$) gelöste Problem: Die n+1 ersten Koeffizienten der Reihe $f(z)=\sum a_nz^n$ seien gegeben, gefragt wird nach dem kleinsten Wert, den die obere Grenze der absoluten Beträge von f(z) für alle |z|<1 annehmen kann. Dies Minimum des Maximums wird für eine eindeutig bestimmte rationale Funktion erreicht,

²⁹⁷⁾ E. Fischer, Über das Carathéodorysche Problem, Potenzreihen mit positivem reellen Teil betreffend, Rend. di Palermo 32 (1911), p. 240—256; G. Frobenius, Ableitung eines Satzes von Carathéodory aus einer Formel von Kronecker, Sitzber. kgl. Akad. Berlin 1912, p. 16—31; I. Schur, Über einen Satz von Carathéodory, Sitzber. kgl. Akad. Berlin 1912, p. 4—15; F. Riesz, Über ein Problem von Carathéodory, J. f. Math. 146 (1916), p. 83—87.

²⁹⁸⁾ O. Szász, a) Ungleichungen für die Koeffizienten einer Potenzreihe, Math. Ztschr. 1 (1918), p. 163—183; b) Über Potenzreihen und Bilinearformen, Math. Ztschr. 4 (1919), p. 163—176.

504 II C 4. L. Bieberbach. Neuere Untersuch. über Funkt. von kompl. Variablen.

die in |z| < 1 an n Stellen verschwindet und am Rande konstanten absoluten Betrag hat.²⁹⁹)

 $G.\ Pick^{300})$ hat noch folgenden Satz gefunden: Die sämtlichen in |z|<1 regulären Funktionen $\sum a_n z^n$, welche daselbst einen positiven Realteil haben und in den ersten n Koeffizienten übereinstimmen, ordnen jedem festen Wert von z einen Kreis zu. Dieser ist der Ort der Werte, welche die verschiedenen Funktionen in jenem Punkte z annehmen. Pick hat auch die Resultate von Carath'eodory und Fej'er insofern erweitert, als er statt der Ableitungen von z=0 die Werte an n verschiedenen Stellen in Betracht zog. Für diese müssen n von ihm angegebene Relationen erfüllt sein. Auch der Satz von der Kreisscheibe überträgt sich auf diesen Fall. Für n=1 hat $Pick^{74}$) seine Sätze noch direkt aus dem Schwarzschen Lemma gewonnen.

Im Prinzip enthalten die Untersuchungen von Carathéodory und Schur über die Koeffizienten beschränkter Potenzreihen alles, was sich über dieselben sagen läßt, und jeder weitere Koeffizientensatz muß eine Folge dieser notwendigen und hinreichenden Bedingungen sein. Für die jetzt zu besprechenden Landauschen Ergebnisse über die Koeffizientensumme beschränkter Potenzreihen hat dies J. Schur in seiner zweiten Arbeit²⁹⁴) gezeigt.

Der von Landau³⁰¹) bewiesene Satz lautet:

Für |z| < 1 sei f(z) regulär, und es gelte $|f(z)| \le 1$ in |z| < 1. Mit s_n werde die Summe $a_0 + a_1 + \cdots + a_n$ bezeichnet. Dann ist für die Menge aller dieser f(z) die obere Grenze von $|s_n|$ durch

^{299,} Vgl. dazu: T. H. Gronwall, On analytic functions of constant modulus on a given contour, Ann. of math. (2) 14 (1913), p. 72–80. Eine neue Lösung enthält die Arbeit: T. H. Gronwall, On the maximum modulus of an analytic function, Ann. of math. (2) 16 (1914/15), p. 77. F. Riesz, der gleichfalls eine neue Lösung gibt, erkannte den engen Zusammenhang des Problems mit dem anderen: Von einer Potenzreihe, die eine in |z| < 1 reguläre Funktion darstellen soll, sind die n+1 ersten Koeffizienten gegeben. Die übrigen sollen so bestimmt werden, daß |z|=1 auf eine Kurve möglichst kleiner Länge abgebildet wird. Die Lösung wird durch eine eindeutig bestimmte ganze rationale Funktion höchstens $2n^{\rm ten}$ Grades geliefert. Vgl. F. Riesz, Über Potenzreihen mit vorgeschriebenen Anfangsgliedern, Acta math. 42 (1920), p. 145–171.

³⁰⁰⁾ G. Pick, a) Über die Beschränkungen analytischer Funktionen, welche durch vorgegebene Funktionswerte bewirkt werden, Math. Ann. 77 (1916), p. 7—23; b) Über die Beschränkungen analytischer Funktionen durch vorgegebene Funktionswerte, Math. Ann. 78 (1918), p. 270—275. Vgl. auch die Behandlung des Problemes durch R. Nevanlinna, Über beschränkte Funktionen, die in gegehenen Punkten vorgeschriebene Werte annehmen, Ann. acad. Fennicae A 13 (1919), Nr. 1.

³⁰¹⁾ E. Landau, Abschätzung der Koeffizientensumme einer Potenzreihe, Arch. Math. Phys. (3) 21 (1913), p. 42-50 und p. 250-255 und (3) 24 (1916), p. 250-260.

$$G_n = 1 + \left(\frac{1}{2}\right)^2 + \left(\frac{1 \cdot 3}{2 \cdot 4}\right)^2 + \dots + \left(\frac{1 \cdot 3 \cdot \dots \cdot 2n - 1}{2 \cdot 4 \cdot \dots \cdot 2n}\right)^2 = O(\log n)$$

gegeben. Diese obere Grenze wird nur für die Funktion

$$f(z) = e^{i\gamma} \frac{z^{\mu} \cdot \sum_{0}^{n} {\binom{-\frac{1}{2}}{\nu} \left(-\frac{1}{z}\right)^{\nu}}}{\sum_{0}^{n} {\binom{-\frac{1}{2}}{\nu}}_{(-z)^{\nu}}} \quad (\gamma \text{ reell})$$

erreicht. 302)

Nachdem erst $Fej\acute{e}r^{250}$) erkannt hatte, daß die Menge der $|s_n|$ für eine einzelne beschränkte Funktion nicht beschränkt zu sein braucht 302a), hat $Bohr^{303}$) gezeigt, daß es Funktionen gibt, für die

$$\lim_{n \to \infty} \sup \frac{|s_n|}{G_n} = 1$$

ist. Für jedes |f(z)| < 1 ist nach Bohr weiter

$$\lim_{n \to \infty} (G_n - |s_n|) = \infty.$$

Die Frage, ob $s_n = o(\log n)$ ist, ist erst zum Teil erledigt.³⁰¹) Schon Steffensen³⁰⁴) bemerkte, daß die Menge der

$$t_n = \frac{|s_0 + s_1 + \dots + s_n|}{n+1}$$

für jede einzelne beschränkte Funktion beschränkt ist. $Fej\acute{e}r^{305}$) zeigte, daß die Menge dieser arithmetischen Mittel sogar unter Eins liegt, wenn der Betrag von f(z) unter Eins bleibt. Nur für $f(z) \equiv e^{i\gamma} \cdot z$ wird $|s_0 + s_1 + \cdots + s_n| = n + 1$.

Neuerdings hat O. $Sz\acute{a}sz^{298}$) durch seine Bestimmung der Stützebenen des Koeffizientenraumes alle diese Untersuchungen auf eine einheitliche Basis gestellt und auch die Untersuchung von $|a_0| + |a_1| + \cdots + \cdots + |a_n|$ in die Wege geleitet.

³⁰²⁾ Für n=1 hat dies vor Landau schon Pompéju gefunden: Pompéju, Sur une relation d'inégalité dans la théorie des fonctions holomorphes, Arch. Math. Phys. (3) 19 (1911), p. 224—228. Weitere Vorläufer sind E. Fabry, Paris C. R. 149 (1900), p. 767—768 und Hansen. Vgl. auch Landau 186).

³⁰²a) Nicht einmal die Stetigkeit im abgeschlossenen Einheitskreis zieht die Beschränktheit der $|s_n|$ nach sich. Wohl aber zieht nach $Fatou^{95}$) die Regularität in z=1 zusammen mit der Beschränktheit im Einheitskreis die Beschränktheit der $|s_n|$ nach sich.

³⁰³⁾ H. Bohr, Über die Koeffizientensumme einer beschränkten Potenzreihe, Gött Nachr. 1916, p. 276—291 und 1917, p. 119—128.

³⁰⁴⁾ J. E. Steffensen, Über Potenzreihen insbesondere solche, deren Koeffizienten zahlentheoretische Funktionen sind, Rend. di Palermo 38 (1914), p. 376-386.

³⁰⁵⁾ L. Fejer, a. a. O. 250). Man vgl. dazu O. Szász, a. a. O. 298), Fußnote 2. Vgl. auch $Landau^{201}$).

61. Jensens Verallgemeinerung des Schwarzschen Lemmas. Jensen 306) hat folgende Verallgemeinerung des Schwarzschen Lemmas gefunden: Wenn |f(z)| < M bleibt für |z| < R und für $z_0, z_1, \ldots z_n$ in diesem Kreis verschwindet, so ist

$$|f(z)| \leq M \cdot \frac{R(z-z_0)}{R^2-\overline{z_0}z} \cdot \left| \frac{R(z-z_1)}{R^2-\overline{z_1}z} \cdot \cdots \cdot \frac{R(z-z_n)}{R^2-\overline{z_n}z} \right|,$$

und das Gleichheitszeichen steht hier nur für die Funktionen

$$f(z) \equiv e^{i\,\varphi} \cdot M \prod_{0}^{n} \frac{R(z-z_{k})}{R^{2}-z_{k}z}.$$

Setzt man in der letzten Abschätzung z = 0, so erhält man

$$|f(0)| \leq M \frac{|z_0 \cdot z_1 \cdot \dots \cdot z_n|}{R^{n+1}}.$$

Ihrer Herleitung nach gilt diese Abschätzung zunächst nur für solche Werte von R, welche alle $|z_0|, |z_1|, \ldots, |z_n|$ übertreffen. Aber $Lindel\"of^{115}$) hat bemerkt, daß die Abschätzung für alle R gilt. Man entnimmt ihr also eine Abschätzung für das Produkt der n+1 ersten Nullstellen. Diese hat Jensen schon 1895^{307}) angegeben. Nach $Hurwitz^{308}$) findet sie sich für Polynome schon bei Jacobi. Für die n+1 ersten η -Stellen $z_0, z_1, \ldots z_n$ gilt nach $Landau^{309}$)

$$z_{\mathbf{0}}\cdot z_{\mathbf{1}}\cdot \cdot \cdot z_{\mathbf{n}} \big| \geqq \frac{M |f(0)-\eta|}{\|M^{\mathbf{1}}-\eta|f(0)\|} \cdot R^{\mathbf{n}+1}.$$

Auch diese Abschätzung ergibt sich aus einer allgemeineren von Jensen

$$M\left|\frac{f(z)-\eta}{M^2-\eta f(z)}\right| \leq \left|\frac{R(z-z_0)}{R^2-\overline{z_0}}\right| \cdot \cdot \cdot \cdot \left|\frac{R(z-z_n)}{R^2-z_n z}\right|,$$

wenn man in ihr z=0 einträgt. Bildet man sie für die kleinste η -Stelle z_0 allein und geht zur Grenze $z\longrightarrow z_0$ über, so findet man eine Abschätzung für die Ableitung

$$|f'(z)| \leq \frac{R}{M} \cdot \frac{M^2 - |f(z)|^2}{R^2 - |z|^2}$$

306) J. L. W. V. Jensen, Untersuchungen über eine Klasse fundamentaler Ungleichungen in der Theorie der aualytischen Funktionen I, (dänisch), Kgl. Dansk. Vidensk. Selsk. skr. nat. og math. afd. (8) 23 (1916), p. 203—228. Übers. ins Englische Ann. of math. (2) 21 (1919). Man vgl. auch Carathéodory und Fejér, Remarques sur le théorème de M. Jensen, Paris C. R. 145 (1907), p. 163—165.

307) J. L. W. V. Jensen, Sur un nouvel et important théorème de la théorie des fonctions, Acta math. 22 (1899), p. 359-364. Für diesen Satz wurden zahlreiche Beweise gegeben. E. Goursat, Sur un théorème de M. Jensen, Bull. des sc. math. (2) 26 (1902), p. 298-302. G. Mittag-Leffler, Sur le théorème de M. Jensen, Bull. soc. math. Fr. 32 (1904), p. 1-4.

308) Bei E. Landau 809).

309) E. Landau, Über eine Aufgabe aus der Funktionentheorie, The Tôhoku math. J. 5 (1914), p. 97-116.

Insbesondere also wird

$$|f'(0)| \le \frac{M^{2} - |f(0)|^{2}}{M \cdot R}$$

Für die Gesamtheit aller Funktionen, die in |z| < R regulär sind und dort der Bedingung |f(z)| < M genügen, findet man also die Schranke $|f'(z)| \le \frac{RM}{R^2 - |z|}.$

Sie wird für die Funktion $\frac{M \cdot R(z-r)}{R^2 - rz}$

auf |z| = r erreicht. Auch für die zweite und die ungeraden höheren Ableitungen hat O. $Sz\acute{a}sz^{309a}$) genaue Schranken angegeben, in die wie in die vorige der Wert |f(z)| nicht eingeht.

Nach Wiener 310) findet man:

$$|f^{(n)}(0)| < n! \frac{M^2 - |f(0)|^2}{MR^n}$$

Nach Landau311) gilt weiter für

$$f(z) = \sum a_n z^n \\ |z_0 \cdot z_1 \cdot \cdot \cdot z_n| \ge \frac{|a_0| |R^{n+1}|}{\sqrt{\sum_{0}^{\infty} |a_k|^2 R^{2k}}}$$

eine Formel, die für n=0 zuerst $Petrovitch^{312}$) angab. Sie gibt also eine Abschätzung für die Lage der Nullstellen, die nur von den Koeffizienten der Potenzreihe nicht vom Maximum ihres absoluten Betrages oder dgl. abhängt. Das Hereinziehen des Realteils gibt zu weiteren Abschätzungen Anlaß, die auch $Jensen^{306}$) behandelt hat. Ich erwähne nur die folgende, welche die meisten in den oben 292) erwähnten Arbeiten enthaltenen Abschätzungen in sich begreift. Man hat für die kleinste Nullstelle z_0

$$|f(z)| \leq \frac{|R^2 - \overline{z}_0 z|}{R|z - \overline{z}_0|} |f(z) - 2N|,$$

wenn f(z) für |z| < R regulär ist und daselbst $|\Re f(z)| < N$ gilt.

Die vorhin angegebenen Abschätzungen von $f^{(n)}(0)$ sind natürlich Verschärfungen des Cauchyschen Koeffizientensatzes. Sie ist auch für

³⁰⁹a) O. Szász, Ungleichheitsbeziehungen für die Ableitungen einer Potenzreihe, die eine im Einheitskreise beschränkte Funktion darstellt, Math. Ztschr.

³¹⁰⁾ Bei $H.\ Bohr$, A theorem concerning power series, Proc. Lond. math. Soc. (2) 13 (1914), p. 1-5.

³¹¹⁾ E. Landau, Sur quelques théorèmes de M. Petrovitch relatits aux zéros des fonctions analytiques, Bull. soc. math. Fr. 33 (1905), p. 251—261. Vgl. auch 309).

³¹²⁾ M. Petrovitch, Remarques sur les zéros de fonctions entières, Bull. soc. math. Fr. 32 (1904), p. 65-67.

den einzelnen Koeffizienten von $\sum a_n z^n$ schärfer als die, welche aus der bekannten Gutzmerschen³¹³) Verschärfung

$$\sum |a_n|^2 R^{2n} \leq M^2$$

des Koeffizientensatzes fließt. Denn dieser liefert nur

$$|f^{(n)}(0)| \le n! \frac{\sqrt{M^2 - |f(0)|^2}}{R^n}$$

62. Die Funktionen M(r), $\mu(r)$, $\mathfrak{M}(r)$. Es mögen hier noch einige Untersuchungen Platz finden, die zwar nicht eigentlich hierher gehören, die aber bisher auch sehr schlecht Platz hätten finden können. M(r) sei das Maximum des absoluten Betrages von f(z) für $|z| \leq r$. Hadamard 117b) und davon unabhängig Blumenthal 314) und Faber 315) fanden, daß $\log M(r)$ eine konvexe Funktion von $\log r$ ist. Weitere Beweise gaben Hadamard 316) und E. Landau 186), der den Satz Dreikreisesatz nennt. Blumenthal hat weiter bewiesen, daß M(r) stetig ist und aus Bogen analytischer Kurven besteht. Die einzelnen Bogen können unter von Null verschiedenen Winkeln zusammenstoßen. Das beobachtet man schon bei Polynomen dritten Grades sowie nach Hardy 317) bei Funktionen 3172)

$$e^{a_0z^3+a_1z^2+a_2z+a_3}$$
.

Der Mittelwert
$$\mu(r)$$
. Hardy³¹⁸) hat gezeigt, daß auch
$$\mu(r) = \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\varphi})| d\varphi \quad \text{und} \quad \mu_{\delta}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\varphi})|^{\delta} d\varphi \quad (\delta > 0)$$

monoton wächst und dem Dreikreisesatz genügt. Landau gab einen neuen Beweis.319) Der Satz ist gleichbedeutend damit, daß die Länge

³¹³⁾ A. Gutzmer, Ein Satz über Potenzreihen, Math. Ann. 32 (1888), p. 596 - 600.

³¹⁴⁾ O. Blumenthal, a) a. a. O. 147b); b) Sur le mode de croissance des fonctions entières, Bull. soc. math. Fr. 35 (1907), p. 97-109.

³¹⁵⁾ G. Fuber, Über das Anwachsen analytischer Funktionen, Math. Ann. 63 (1907), p. 549-551.

^{316,} J. Hadamard, Notice sur les travaux scientifiques, Paris 1912.

³¹⁷⁾ G. Hardy, The maximum modulus of an integral function, Quart. J. 41 (1909), p. 1-9.

³¹⁷a) Valiron hat M(r) bei ganzen Funktionen vom Geschlecht Eins oder Zwei sehr genau untersucht. Vgl. Valiron, Maximum du module des fonctions entières de genre un et deux, Nouv. Ann. (4) 12 (1912), p. 193-212.

³¹⁸⁾ G. H. Hardy, The mean value of the modulus of an analytic function, Proc. Lond. math. Soc. (2) 14 (1915), p. 269-277. Vgl. auch P. Csillag, Über die Beziehung zweier auf Potenzreihen bezüglichen Konvergenzkriterien (ungarisch), Math. és. phys. lapok 26 (1917), p. 74-80; F. Riesz, a. a. O. 299).

³¹⁹⁾ E. Landau, Neuer Beweis eines Hardyschen Satzes, Arch. Math. Phys. (3) 25 (1916), p. 173-178. Vgl. auch E. Hille, Über die Variation der

der durch eine in $|z| \leq R$ analytischen Funktion erhaltenen Bildkurve von |z| = r < R mit r zugleich wächst und dem Dreikreisesatz genügt. Die gleichen Eigenschaften besitzt auch der Inhalt.

Die Majorante $\mathfrak{M}(r) = \sum |a_n| r^n$. Wenn f(z) regulär und |f(z)| < 1 ist für |z| < 1, so braucht die Majorante $\mathfrak{M}(r)$ in |z| < 1 nicht einmal beschränkt zu sein. Hardy 320 hat ihr Wachstum etwas näher untersucht und fand

 $\mathfrak{M}(r) = o\left(\frac{1}{\sqrt{1-r}}\right).$

Diese Untersuchungen wurden von J. Schur, M. Riesz, F. Wiener, H. Bohr in einem wesentlichen Punkt ergänzt. 310) Sie fanden, daß $\mathfrak{M}(\frac{1}{3}) \leq 1$ ist, daß es aber für jedes $r > \frac{1}{3}$ Funktionen gibt, für die $\mathfrak{M}(r) > 1$ ist.

63. Schwankungen. Nach Vorstufen bei Schottky und Landau haben Landau, Toeplitz und Hartogs 321) folgenden Satz gefunden: Wenn $f(z) = \sum a_n z^n$ in |z| < 1 regulär ist, und D die Schwankung der Funktion am Rande bedeutet, so ist $|a_1| \leq \frac{1}{2} D$, und nur für $a_0 + a_1 z$ kann $|a_1| = \frac{1}{2} D$ sein. Poukka 322) hat für die weiteren Koeffizienten a_n dieselbe Abschätzung $|a_n| \leq \frac{1}{2} D$ bewiesen. Hier wird die Schranke nur für $a_0 + a_n z^n$ erreicht. Diese Ergebnisse legen die Frage nach den notwendigen und hinreichenden Bedingungen für die Koeffizienten einer Potenzreihe mit gegebener Schwankung nahe. Indessen ist da mehr als das eben Erwähnte noch nicht bekannt.

Bezeichnet man mit E die Schwankung von $\Re f(z)$ auf |z|=1, so fand $Landau^{321}$) weiter $|a_1| \leq \frac{2}{\pi} E$. Der Faktor $\frac{2}{\pi}$ kann durch keinen kleineren ersetzt werden. Von $Schottky^{321}$) rührt

$$|f(z_1)-f(z_2)| \leqq D \ \frac{2}{\pi} \ \text{arc sin} \ \Big| \frac{1-z_1\overline{z}_2}{z_1-z_2}$$
 für $|z_1|<1, \ |z_2|<1$ her.

Bogenlänge bei konformer Abbildung von Kreisbereichen, Arkiv for mat. astr. och fys. 11 (1916), Nr. 27.

320) G. H. Hardy, A theorem concerning Taylor series, Quart. J. 44 (1913), p. 147-160.

321) F. Schottky, Über die Wertschwankungen der harmonischen Funktionen zweier reellen Veränderlichen und die Funktionen eines komplexen Argumentes, J. f. Math. 117 (1897), p. 225—253; E. Landau, Über einige Ungleichheitsbeziehungen in der Theorie der analytischen Funktionen, Arch. Math. Phys. (3) 11 (1906), p. 31—36; E. Landau und O. Toeplitz, Über die größte Schwankung einer analytischen Funktion in einem Kreise, Arch. Math. Phys. (3) 11 (1907), p. 302—307. In dieser Arbeit findet sich ein Beitrag von F. Hartogs.

322) K. A. Poukka, Über die größte Schwankung einer analytischen Funktion in einem Kreise, Arch. Math. Phys. (3) 12 (1907), p. 251-254.

64. Schlichte Familien. f(z) heißt in |z| < 1 schlicht, wenn f(z) dort keinen Wert mehr als einmal annimmt. Auf diese Familie ist erst durch die Arbeiten Koebes, insbesondere seinen für die Zwecke der Uniformisierung aufgestellten Verzerrungssatz die Aufmerksamkeit gelenkt worden. Diesen Verzerrungssatz hat Koebe 1909 entdeckt. 223 Erst Plemelj 224 hat eine scharfe Fassung dieses Satzes vorgetragen, die unabhängig davon Gronwall 225 und Pick 226 wieder fanden, und die Pick zuerst vollständig bewiesen hat. In dieser scharfen Fassung lautet der Verzerrungssatz:

Wenn $f(z) = z + a_2 z^2 + \cdots$ für z < 1 schlicht und regulär ist, so gilt

1. für irgend zwei Stellen z_1 und z_2 aus dem Kreise $|z| \leq r < 1$

$$\left(\frac{1-r}{1+r}\right)^4 \leq \left|\frac{f'(z_1)}{f'(z_2)}\right| \leq \left(\frac{1+r}{1-r}\right)^4,$$

2. in
$$|z| < r$$
 $\frac{r}{(1+r)^2} \le |f(z)| \le \frac{r}{(1-r)^2}$.

Die Schranken werden nur für

$$\frac{z}{(1-e^{i\,\varphi}\,z)^{\frac{2}{2}}}$$

erreicht. Bei *Pick* blieben die hier mit 2 und 4 bewerteten Exponenten noch unbestimmt. Ihre Bestimmung gelingt erst *Bieberbach* ³²⁷) auf Grund seines Flächensatzes und eines *Fabers* chen ³²⁸) Kunstgriffes.

³²³⁾ P. Koebe, Über die Uniformisierung der algebraischen Kurven durch automorphe Funktionen mit imaginärer Substitutionsgruppe, Gött. Nachr. 1909, p. 68—76. Ferner a. a. O. 29b).

³²⁴⁾ J. Plemelj, Über den Verzerrungssatz von P. Koebe, Verh. d. Ges. D. Natf. u. Ärzte 85 (1913) Abtlg. III, p. 163.

³²⁵⁾ Gronwall, Sur la déformation dans la représentation conforme, Paris C. R. 162 (1916), p. 249-252.

³²⁶⁾ G. Pick, Über den Koebeschen Verzerrungssatz, Leipz. Ber. 1916, p. 58-64.

³²⁷⁾ L. Bieberbach, Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln, Sitzber. kgl. Akad. Berlin 1916, p. 940—955. Das Verhalten des Flächeninhaltes bei konformer Abbildung betrachtet auch G. Hamel, Über Funktionen von beschränktem mittleren Quadrat und über die Grenzen der Flächenvergrößerung bei konformer Abbildung Monatsh. Math. Phys. 29 (1918), p. 48—64. Indessen ist sein Ergebnis eine leichte Folgerung aus dem ersten Flächensatz, den L. Bieberbach, Zur Theorie und Praxis der konformen Abbildung, Pal. Rend. 38 (1914), p. 98—112, aufgestellt hat. Vgl. dazu auch: A. Winternitz, Über zwei von Hamel herrührende Extremumsätze der Funktionentheorie, Monatsh. Math. Phys. 30 (1920), p. 123—128.

³²⁸⁾ G. Faber, Neuer Beweis eines Koche-Bieberbachschen Satzes über konforme Abbildung, Münch. Ber. 1916, p. 39—42.

Neuerdings hat R. Nevanlinna^{328,1}) den Verzerrungssatz als unmittelbare Folge des Flächensatzes erkannt. Der Flächensatz lautet:

Wenn $f(z)=z+a_0+\frac{c_1}{z}+\cdots$ eine schlichte Abbildung von |z|>1 vermittelt, so ist $\sum n^+\alpha_n^{-2} \le 1$. Diese Ungleichung bedeutet weiter nichts, als daß der äußere Inhalt der Komplementärmenge des Bildbereiches positiv oder Null sein muß. Ein Spezialfall findet sich bei $Faber^{328}$); ein einfacherer Beweis bei $Pick.^{329}$) Allgemeine Sätze über |z|>1 gibt $L\"owner.^{335b}$)

 $Bieberbach^{3z7}$) hat weiter gezeigt, daß $f(z)=z+a_2z^2+\cdots$ den Kreis |z|<1 dann und nur dann schlicht abbildet, wenn ihr n-ter Repräsentant $(a_2,\,a_3,\,\ldots\,a_n)$ für jedes n einen Punkt eines gewissen einfach zusammenhängenden algebraisch begrenzten Bereiches bestimmt. Die Bestimmung der Ränder ist noch nicht allgemein gelungen. Immerhin ist $a_2|\leqq 2$ die genaue Schranke für a_2 , die nur für

$$\frac{z}{(1-e^{i\,\varphi}z)^{\frac{2}{2}}}$$

erreicht wird, ein Satz, auf dem auch die Koeffizientenbestimmung in der Pickschen Verzerrungsformel beruht. Das sind also Untersuchungen, die denjenigen von Carath'eodory und Schur über beschränkte Familien durchaus analog sind. Eine weitere Parallele sind auch die Untersuchungen von Carath'eodory und $Fej\'er^{69}$) über die Koeffizienten der Null und Eins vermeidenden Familie. Einen Beitrag zum Koeffizientenproblem enthält auch der Satz von $Fej\'er^{254}$), wonach eine in |z| < 1 schlichte Funktion, welche |z| < 1 auf einen von einer Jordankurve begrenzten Bereich abbildet, eine in $|z| \le 1$ gleichmäßig konvergente Potenzreihenentwicklung besitzt.

Aus dem Flächensatz bzw. der Abschätzung 2. auf p. 510 kann leicht der folgende von Koebe 330) herrührende Satz gefolgert werden 331):

Wenn f(z) für z < 1 regulär und schlicht ist, so hat der Null nächstgelegene Randpunkt von z = 0 eine Entfernung, die nicht kleiner als $\frac{1}{4}$ sein kann, und die nur für $\frac{z}{(1-e^{i\varphi_z})^2}$ gleich $\frac{1}{4}$ wird.

^{328,1)} R. Nevanlinna, Über die schlichten Abbildungen des Einheitskreises, Övers. av Finska Vet. Förh. Bd. 62 (1919/20), Avd. A, Nr. 7.

³²⁹⁾ G. Pick, Über die konforme Abbildung eines Kreises auf ein schlichtes und zugleich beschränktes Gebiet, Wien. Ber. 1917 Abtlg. IIa 126, p. 247—263. 330) P. Koebe, a. a. O. 28).

³³¹⁾ G. Faber, a. a. O. 328); L. Bieberbach SET). Vgl. auch L. Bieberbach, Math. Ann. 72 (1912), p. 107—144. Vgl. auch L. Bieberbach, Math. Ann. 77 (1916), p. 153—172, wo ein anderer Beweis versucht wurde. G. Faber, Über l'otentialtheorie und konforme Abbildung, Münch. Ber. 1920, p. 49—64, gibt einen neuen Beweis und eine Reihe weiterer neuer Sätze.

Jede Folge von schlichten Funktionen $a_1z+\cdots$, für die $|a_1|$ und $\frac{1}{|a_1|}$ beschränkt sind, ist eine normale Familie; jede Grenzfunktion ist wieder schlicht. Das lehrt der Verzerrungssatz in Verbindung mit dem Satz von *Rouché*. Auf solche Folgen von Funktionen bezieht sich ein Satz von *Carathéodory*. 332)

Neuerdings hat $Bieberbach^{333}$) dem Verzerrungssatz einen Drehungssatz an die Seite gestellt. Er beweist: Wenn $f(z) = z + a_2 z^2 + \cdots$ in |z| < 1 schlicht und regulär ist, so gilt

$$|\arg f'(z)| \le 2 \log \frac{1+|z|}{1-|z|} \quad (\arg f'(0) = 0)$$

eine Schranke, die noch verschärft werden kann. Der Beweis beruht auf der leicht aus $|a_2| \le 2$ fließenden Ungleichung

$$\left|\frac{f''(z)}{f'(z)}(1-z\bar{z})-2\bar{z}\right| \leq 4,$$

die nach R. Nevanlinna^{328,1}) auch die ganze Lösung des Verzerrungsproblems enthält. (Vgl. auch II C 3 (Lichtenstein), Nr. 47.)

65. Familien, die schlicht und beschränkt zugleich sind. Die Untersuchung läuft in vielen Stücken der bei den schlichten Familien parallel. Den Anstoß gab auch hier ein Satz von $Koebe^{39})^{29\,b}$), den er beim Hauptkreistheorem der Uniformisierung verwendete: Wenn der schlichte Bereich B ganz dem Inneren des Einheitskreises angehört und den Nullpunkt enthält, und d der Abstand seines nächsten Randpunktes vom Mittelpunkt ist, dann kann B durch eine Funktion, die bei Null verschwindet und dort die Ableitung Eins besitzt, auf einen Kreis abgebildet werden, dessen Radius kleiner ist als $\frac{4d}{(1+d)^2}$. Diese Schranke wird nur dann erreicht, wenn es sich um die Abbildung eines Bereiches handelt, der aus dem Kreis |z| < 1 durch radiale Aufschlitzung von einem Punkte des Betrages d bis zum Rande des Einheitskreises entsteht. 34

Pick³²⁹) hat diese Untersuchungen wieder aufgenommen und zunächst den eben ausgeführten Satz auf folgende Form gebracht:

³³²⁾ C. Carathéodory, Untersuchungen über die konforme Abbildung von festen und veränderlichen Gebieten, Math. Ann. 72 (1912), p. 107—144. Vgl. auch L. Bieberbach, Über einen Satz des Herrn Carathéodory, Gött. Nachr. 1915, p. 552—560.

³³³⁾ L. Bieberbach, Aufstellung und Beweis eines Drehungssatzes für schlichte und konforme Abbildungen, Math. Ztschr. 4 (1919), p. 295—305. P. Koebe, Zum Verzerrungssatz der konformen Abbildung, Math. Ztschr. 6 (1920), p. 311—312 hat auf Grund einer älteren Ungleichungsbeziehung 292) zwischen Realund Imaginärteil einer analytischen Funktion eine weniger scharfe Abschätzung aus dem Verzerrungssatz gewonnen. R. Nevanlinna 328,1) hat Bieberbachs Beweis wesentlich verkürzt.

³³⁴⁾ Bieberbach, a. a. O. 331), Math. Ann. 77.

Wenn f(z) für |z| < 1 schlicht ist, und wenn dort |f(z)| < R gilt, wenn "am Rand" außerdem $|f(z)| \ge r$ ist, so ist

$$(R+r)^2 \leq 4R^2r.$$

Das Gleichheitszeichen kann nur dann stehen, wenn es sich um die Abbildung von |z| < 1 auf den von r bis R aufgeschlitzten Kreis vom Radius R handelt. Weiter hat Pick das Analogon des Verzerrungssatzes gewonnen.

66. Konvexe Familien. Dahin gehört vor allem Study's Rundungsschranke⁹⁵): Die Potenzreihe $f(z) = a_0 + a_1 z + \cdots$ kann in einem Kreise $|z| < \varrho$, für den $\varrho > \left| \frac{a_1}{a_2} \right|$ ist, nicht regulär und konvex zugleich sein, d. h. denselben auf einen konvexen Bereich abbilden; und

$$a_0 + \frac{e^{i\varphi} \cdot z}{(1 - e^{i\varphi} \cdot z)^2}$$

sind die einzigen Funktionen, die für $|z| < \left| \frac{a_1}{a_2} \right| = 1$ konvex sind.

Gronwall \$25) hat angegeben, daß für jede |z| < 1 schlichte und reguläre Funktion f(z) die Rundungsschranke nicht kleiner als $2-\sqrt{3}$ sein kann. Für $\frac{z}{(1-z)^2}$ wird diese Schranke gerade erreicht. Ein Beweis für diese Angabe läßt sich nach R. Nevanlinna \$28,1) sehr leicht aus der am Ende von Nr. 64 angegebenen Abschätzung ablesen. Wie ich neuerdings gefunden habe, wird ein fast doppelt so großer Kreis stets auf einen Stern abgebildet.

Die Frage nach den Koeffizienten konvexer Funktionen ist gleichfalls durch die Untersuchungen von Study erledigt. Die Funktion f(z) ist nämlich dann und nur dann für |z| < 1 konvex, wenn

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) \ge 0$$

ist. Bei Anwendung auf $1 + \frac{zf''(z)}{f'(z)}$ erledigen also die Carathéodory-Schurschen Untersuchungen über Funktionen mit positivem Realteil auch das Koeffizientenproblem der konvexen Funktionen. K. Löwner 335) hat bemerkt, daß sämtliche Koeffizienten einer in |z| < 1 konvexen Funktion dem Betrage nach nicht über Eins liegen. Löwner hat weiter das Analogon zum Verzerrungsgesetz hergeleitet.

³³⁵⁾ K. Löwner, a) Untersuchungen über die Verzerrung bei konformen Abbildungen des Einheitskreises |z| < 1, die durch Funktionen mit nicht verschwindender Ableitung geliefert werden, Leipz. Ber. 1917, p. 89—106; b) Über Extremumsätze bei der konformen Abbildung des Äußeren des Einheitskreises, Math. Ztschr. 3 (1919), p. 65—77. Vgl. ferner: E. Frank, Beiträge zur konformen Abbildung, Diss. Frankfurt 1919.

Ich erwähne noch einen Satz von Carathéodory 336): Man kann die Koeffizienten $a_0, a_1, \ldots a_n$ der Funktion $\Sigma a_n z^n$ mit der selbstverständlichen Einschränkung $a_1 \neq 0$ beliebig vorgeben und dann noch die anderen so bestimmen, daß die Reihe ihren Konvergenzkreis auf ein konvexes Polygon abbildet. Man kann sie sogar auf eine einzige Weise so bestimmen, daß das Polygon höchstens n Seiten besitzt.

Arithmetische Eigenschaften analytischer Funktionen.

Arithmetische Eigenschaften analytischer Funktionen. E. Strauβ³³⁷) hat 1887 zu beweisen versucht, daß eine analytische Funktion, die für alle rationalen Werte des Argumentes rational ist, eine rationale Funktion sei. Aber Weierstraβ338) gab alsbald ein Beispiel einer ganzen transzendenten Funktion an, die für alle rationalen Werte rational wird. Staeckel³³⁸) hat diese Fragestellung wieder aufgenommen und in wesentlichen Punkten gefördert. Zunächst fand er ein allgemeines Prinzip, das auch den Weierstraßschen Fall in sich schloß. Er zeigte, daß man stets ganze Funktionen angeben kann, die in einer gegebenen abzählbaren Menge nur Werte annehmen, die einer gleichfalls gegebenen dichten Menge angehören. Hilbert 339) fand, daß eine algebraische Funktion, die für alle rationalen Werte des Argumentes rationale Werte annimmt, rational ist. Staeckel 340) gab weiter eine Funktion an, die samt ihrer Umkehrung an allen algebraischen Stellen algebraische Werte annimmt, ohne selbst algebraisch zu sein. Er legt die weitere Frage vor, ob es transzendente Funktionen gibt, die an algebraischen Stellen samt allen ihren Ableitungen algebraische Werte annehmen. Faber 341), der Staeckels Untersuchungen wieder aufnahm und weiter vertiefte, bejahte diese Frage. Faber zeigte weiter, daß man jede ganze Funktion mit beliebiger Genauigkeit durch andere

³³⁶⁾ C. Carathéodory, Sur la représentation conforme des polygones convexes, Ann. de Bruxelles 57 (1913), p. 1-10.

³³⁷⁾ E. Strauβ, Eine Verallgemeinerung der dekadischen Schreibweise nebst funktionentheoretischer Anwendung, Acta math. 11 (1887), p. 13-18.

³³⁸⁾ Bei P. Staeckel, Über arithmetische Eigenschaften analytischer Funktionen, Math. Ann. 46 (1895), p. 513-520, und Nouv. Ann. (3) 18 (1899), p. 53-64.

³³⁹⁾ D. Hilbert, Über die Irreduzibilität ganzer rationaler Funktionen mit ganzzahligen Koeffizienten, J. f. Math. 110 (1892), (p. 104--129) p. 129.

³⁴⁰⁾ P. Staeckel, a) Arithmetische Eigenschaften analytischer Funktionen, Acta math. 25 (1902), p. 372—384; b) Sur quelques propriétés arithmétiques des fonctions analytiques, Paris C. R. 128 (1899), p. 225—227 und p. 805—808; c) Arithmetische Eigenschaften analytischer Funktionen, Jahresber. d. D. Math.-Ver. 11 (1902), p. 183—184

³⁴¹⁾ G. Faber, Über arithmetische Eigenschaften analytischer Funktionen, Math. Ann 58 (1904), p. 545-557.

ganze Funktionen approximieren kann, die samt ihren Ableitungen an allen algebraischen Stellen algebraische Werte annehmen. Daß man ganze Funktionen mit beliebig gegebenen Nullstellen und rationalen Koeffizienten angeben kann, hat *Hurwitz* 342) gezeigt, so daß also der Begriff der Irreduzibilität im Gebiet der ganzen transzendenten Funktionen seinen Sinn verliert.

Der berühmte Satz von Eisenstein ³⁴³) lautet: Wenn eine Potenzreihe $\Sigma a_n z^n$ mit rationalen Koeffizienten einer algebraischen Gleichung genügt, so gibt es eine ganze Zahl K, so daß die Koeffizienten von $\Sigma a_n K^n z^n$ mit Ausnahme von a_0 alle ganze Zahlen werden. $Hurwitz^{343,1}$) und G. $Pólya^{151\,d}$) haben ihm einen Satz über die Lösungen algebraischer Differentialgleichungen zur Seite gestellt.

Borel³⁴⁴) fand als Anwendung von Hadamards Untersuchungen über die Lage der Pole folgenden Satz: Wenn eine für $|z| \le 1$ meromorphe Funktion in der Umgebung von z=0 durch eine Potenzreihe mit ganzen rationalen Koeffizienten dargestellt wird, so ist sie notwendig rational. Natürlich genügt es nicht, nur für |z| < 1 die

³⁴²⁾ A. Hurwitz, Über beständig konvergente Potenzreihen mit rationalen Zahlenkoeffizienten und vorgeschriebenen Nullstellen, Acta math. 14 (1891), p. 211—215.

³⁴³⁾ G. Eisenstein, Über eine allgemeine Eigenschaft der Reihenentwicklungen aller algebraischen Funktionen, Berlin. Sitzber. 1852, p. 441-443. Vgl. auch den Beweis von Heine, Über die Entwicklung von Wurzeln algebraischer Gleichungen, J. f. Math. 48 (1854), p. 267-275. In dieser Arbeit wird noch die oft nützliche Bemerkung bewiesen, daß eine algebraische Funktion, die durch eine Potenzreihe mit ganzzahligen Koeffizienten dargestellt ist, stets auch einer algebraischen Gleichung mit ganzen Koeffizienten genügt. Ferner Hermite, Sur uu théorème d'Eisenstein, Proc. of the London math. soc. 7 (1876), p. 173-175 und Cours professée à la fac. des sc. de Paris 1891. Dort finden sich auch in nicht ganz präziser Weise gewisse Ergebnisse von Tchebychef über die Reihen, welche elementare Funktionen darstellen. Vgl. auch R. Sutak, Ein neuer Beweis eines Eisensteinschen Satzes, Math.-nat. Ber. aus Ungarn 12 (1894), p. 1-10. Ferner R. Schwarz, Der Eisensteinsche Satz über die Koeffizienten der Reihenentwicklungen algebraischer Funktionen, Diss., Tübingen 1908; L. Koenigsberger, Über den Eisensteinschen Satz von dem Charakter der Koeffizienten der Reihenentwicklungen algebraischer Funktionen, J. f. Math. 130 (1906), p. 259-269; H. von Koch, a) Sur une propriété arithmétique du développement en série de Taylor d'une function algébrique, Arkiv for math. astr. och fys. 1 (1903), p. 629 -641; b) Sur une extension du théorème d'Eisenstein, Arkiv for math. astr. och fys. 1 (1903), p. 643-650.

^{343, 1)} A. Hurwitz, Sur le développement des fonctions satisfaisant à une équation differentielle algébrique, Ann. Éc. Norm. (3) 6 (1889), p. 327—332.

³⁴⁴⁾ E. Borel, Sur une application d'un théorème de M. Hadamard, Bull. des sc. math. 18 (1894), p. 22-25; G. Valiron, Sur le développement de Taylor d'une fonction méromorphe, Nouv. ann. (4) 11 (1911), p. 18-20.

Funktion meromorph vorauszusetzen, denn $\Sigma a_n z^n$ und $\Sigma [a_n] z^n$ haben in |z| < 1 die gleichen Singularitäten.

Borel ^{138c}) hat weiter den Fall betrachtet, daß die Reihe die Gestalt $f(z) = \sum \frac{b_n}{c_n} z^n$ mit ganzzahligen b_n und c_n besitzt, wofern die c_n nur endlichviele verschiedene Primfaktoren enthalten, und $\sqrt[n]{|c_n|}$ beschränkt ist. f(z) kann nicht meromorph sein. Valiron ³⁴¹) betrachtet sogar einen Fall mit unendlichvielen Primfaktoren.

Pólya³⁴⁵) verallgemeinert den Borelschen Satz für den Fall, daß die gegebene Funktion in der ganzen Ebene nur eine wesentliche Singularität hat. Auch dann kann ihre Entwicklung um z = 0 nicht nur ganzzahlige Koeffizienten besitzen. Noch allgemeiner ist der folgende Satz von Pólya 346): Wenn f(z) für |z| < R und R > 1 abgesehen von endlichvielen Singularitäten regulär und eindeutig ist und ganzzahlige Koeffizienten besitzt, so ist f(z) rational. Polya hat aus seinem eben erwähnten Satz den folgenden Schluß gezogen: Die singulären Punkte einer eindeutigen Funktion sollen keinen endlichen Häufungspunkt besitzen, und die Koeffizienten der Potenzreihenentwicklung sollen rationale Zahlen sein. Die Funktion ist rational, wenn ihre Potenzreihe der Eisensteinschen Bedingung genügt, und sie ist transzendent, wenn ihre Potenzreihe der Eisensteinschen Bedingung nicht genügt. Pólya 206) hat weiter die folgende Vermutung ausgesprochen: Wenn $\sum a_n z^n$ ganze Koeffizienten hat und den Einheitskreis als Konvergenzkreis besitzt, so ist dieser entweder natürliche Grenze oder die Funktion ist rational. Wie ich höre, hat Carlson diese Vermutung kürzlich bewiesen.

Pólya³⁴⁵) hat Untersuchungen über das Wachstum der ganzen transzendenten Funktionen augestellt, welche für ganzzahlige Werte des Argumentes stets ganzzahlige Werte annehmen, und hat gefunden, daß das Wachstum nicht beliebig langsam sein kann. Vielmehr muß

$$\lim_{r \to \infty} \sup_{2^r} \frac{M(r)}{2^r} \ge 1$$

sein, wenn die Funktion f(z) kein Polynom sein soll. Gibt es eine positive Zahl k so, daß $\frac{M(r)}{2^r \cdot r^k}$ für $r \ge 1$ beschränkt bleibt, so folgt aus der Ganzzahligkeit der Werte $f(0), f(1), \ldots$, daß

$$g(z) = P(z) \cdot 2^z + \varphi(z)$$

ist, wo P(z) und $\varphi(z)$ Polynome sind.

³⁴⁵⁾ G. Pólya, a) Über ganzwertige ganze Funktionen, Rend. di Palermo 40 (1914), p. 1-16; b) Über ganze ganzwertige Funktionen, Gött. Nachr. 1920, p. 1-10. Vgl. auch G. H. Hardy, On a theorem of Mr. G. Pólya, Proc. of the Cambr. Phil. Soc. 19 (1920), p. 60-63; E. Landau, On Mr. Hardy's extension of a theorem of Mr. Pólya, Proc. of the Cambr. Phil. Soc. 19 (1920), p. 14-15. 346) a. a. O. 206).

Von Fatou^{\$46,1}) rührt der folgende Satz her: Wenn eine algebraische Funktion eine Potenzreihenentwicklung mit ganzzahligen Koeffizienten und einem Konvergenzradius gleich Eins besitzt, so ist sie rational, und alle ihre Pole liegen bei Einheitswurzeln.³⁴⁷)

Von $Fatou^{95}$) rührt weiter der folgende Satz her: Wenn eine Potenzreihe nur endlichviele verschiedene Koeffizienten hat, so ist entweder die durch sie dargestellte Funktion rational, oder sie hat auf dem Konvergenzkreis singuläre Punkte, in deren Umgebung keine Abschätzung der Form

 $|f(z)| < \frac{K}{|z - a|^{\alpha}}$

gilt.

 $R.\ Jentzsch^{348}$) fand die folgenden Sätze: Hat $\Sigma a_n z^n$ nur endlichviele verschiedene Koeffizienten und auf dem Einheitskreis nur endlichviele Singularitäten und ist die dargestellte Funktion in einem etwas größeren Kreis eindeutig, so ist f(z) rational mit lauter einfachen Polen, die bei Einheitswurzeln liegen. Diesen Satz verschärft $Carlson.^{348}$)

Wenn $\Sigma a_n z^n$ aus $\Sigma b_n z^n$ durch Vorzeichenänderung der Koeffizienten erhalten wird und wenn beide Reihen auf dem Konvergenzkreis nur isolierte Singularitäten besitzen und in einem etwas größeren Kreise eindeutig sind, so gehen die auf dem Konvergenzkreis gelegenen singulären Stellen der einen durch Multiplikation mit Einheitswurzeln aus denjenigen der anderen hervor. Für diesen Satz von Jentzsch hat $Polya^{349}$) einen neuen Beweis gegeben.

Fatou⁹⁵) vermutete, deß man durch Vorzeichenänderung der Koeffizienten eine jede Reihe in eine andere verwandeln kann, die keine Fortsetzung über ihren Konvergenzkreis zuläßt. Hurwitz und Pólya¹⁸⁹) haben diese Vermutung bewiesen.

Analytische Funktionen von mehreren komplexen Variabeln.

68. Definition des analytischen Charakters einer Funktion. Man kann hier wie bei den analytischen Funktionen einer Variabeln von der Potenzreihendefinition oder von einer in Richtung des Di-

^{346,1)} P. Fatou, a) a. a. O. 95); b) Sur les séries entières à coefficients entiers, Paris C. R. 138 (1904), p. 342-344.

³⁴⁷⁾ Vgl. auch O. Szász, Über arithmetische Eigenschaften gewisser unendlicher Zahlenfolgen und zugehöriger Potenzreihen, Arch. Math. Phys. (3) 26 (1917), p. 125—132.

³⁴⁸⁾ R. Jentzsch, Potenzreihen mit endlichvielen verschiedenen Koeffizienten, Math. Ann. 78 (1918), p. 276—285; F. Carlson, Über Potenzreihen mit endlich vielen verschiedenen Koeffizienten, Math. Ann. 79 (1919), p. 237—245.

³⁴⁹⁾ G. Pólya, Über Potenzreihen mit endlichvielen verschiedenen Koeffizienten, Math. Ann. 78 (1918), p. 286—293.

richletschen Funktionenbegriffes liegenden Erklärung ausgehen. Die Verbindung zwischen beiden Definitionen liefert wieder die Integralformel, und der Nachweis, daß man jede im Sinne der zweiten Definition in der Umgebung einer Stelle ξ_1, ξ_2 analytische Funktion $f(z_1, z_2)$ in eine nach Potenzen von $z_1 - \xi_1$ und $z_2 - \xi_2$ fortschreitende absolut konvergente Reihe $\mathfrak{P}(z_1 - \xi_1, z_2 - \xi_2)$ entwickeln kann.

Man stelle die folgende Definition an die Spitze:

Eine in einem Bereiche des z_1 , z_2 -Raumes³⁵⁰) eindeutig erklärte Funktion $f(z_1, z_2)$ heißt darin von analytischem Charakter, wenn sie 1. eine stetige Funktion der beiden Variabeln ist und wenn 2. an jeder Stelle des Bereiches die partiellen Ableitungen $\frac{\partial f}{\partial z_1}$ und $\frac{\partial f}{\partial z_2}$ existieren.

In dieser Definition sind nicht alle darin angeführten Bedingungen voneinander unabhängig. Als erster hat $Osgood^{351}$) gezeigt, daß neben der Existenz der beiden partiellen Ableitungen statt der geforderten Stetigkeit die Beschränktheit von $f(z_1, z_2)$ ausreicht, daß also die Stetigkeit eine Folge der Differenzierbarkeit und der Beschränktheit ist. Daß auch die Beschränktheit selbst eine Folge der Differenzierbarkeit ist, hat erst $Hartogs^{352}$) gelehrt. Man hat daher den Satz, daß eine eindeutige Funktion $f(z_1, z_2)$, die in jeder einzelnen der beiden Variabeln analytisch ist, im Sinne der an die Spitze gestellten Definition eine analytische Funktion der beiden komplexen Variabeln ist.

Was die Erklärung durch Potenzreihen anlangt, so kann man sich fragen, ob nicht überhaupt eine jede *Mac-Laurin* sche Reihe, d. h. eine nach homogenen Polynomen

$$q_n(z_1, z_2) = a_0 z_1^n + a_1 z_1^{n-1} z_2 + \cdots + a_n z_2^n$$

n-ten Grades fortschreitende konvergente Reihe im Konvergenzbereich eine analytische Funktion darstellt, also absolut konvergiert als Potenzreihe in z_1, z_2 . In der Tat hat dies $Hartogs^{352\,a}$) bewiesen. 353)

³⁵⁰⁾ Damit ist folgendes gemeint: Es sei $z_1 = x_1 + iy_1$ und $z_2 = x_2 + iy_2$. Dann meine ich einen Bereich in dem vierdimensionalen Raum der x_1, x_2, y_1, y_2 .

351) W. F. Osgood, Note über analytische Funktionen mehrerer Veränderlicher, Math. Ann. 52 (1899), p. 462—464.

³⁵²⁾ F. Hartogs, Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlicher, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiten, Math. Ann. 62 (1906), p. 1—88. Vgl. auch W. F. Osgood, Zweite Note über analytische Funktionen mehrerer komplexer Veränderlicher, Math. Ann. 53 (1900), p. 461—464.

³⁵²a) a. a. O. 352), § 11.

³⁵³⁾ Dies Resultat von *Hartogs* ist einigen Verfassern, die das gleiche Problem interessierte, unbekannt geblieben. So erklären sich wohl die nicht

Von der an die Spitze gestellten Definition aus gewinnt man leicht den Cauchy schen Integralsatz und die Integralformel durch zweimalige Anwendung der für Funktionen einer Variabeln geltenden Beziehungen. Das Ergebnis lautet (vgl. auch II B 1 (Osgood)):

 $B(z_1)$ sei ein Bereich der z_1 -Ebene und α_1 eine ihm angehörige rektifizierbare Kurve, die z_1 einmal in positivem Sinne umkreise.

 $B(z_2)$ sei ebenso ein Bereich der z_2 -Ebene und α_2 eine ihm angehörige rektifizierbare Kurve, die z_2 einmal in positivem Sinne umkreise. Dann gilt

$$f(z_1,\,z_2) = \left(\frac{1}{2\,\pi\,i}\right)^2 \int\limits_{a_1}^{\bullet} d\,\xi_1 \int\limits_{a_2}^{\bullet} \frac{f(\xi_1,\,\xi_2)}{(\xi_1-z_1)\,(\xi_2-z_2)} \; d\,\xi_2.$$

 $f(z_1, z_2)$ soll dabei eine in dem Bereich:

$$z_1$$
 aus $B(z_1)$, z_2 aus $B(z_2)$

eindeutige analytische Funktion sein.

Es braucht nicht näher erörtert zu werden, wie man aus dieser Integralformel die Potenzreihenentwicklung

$$f(z_1, z_2) = \mathfrak{P}(z_1 - a_1, z_2 - a_2)$$

oder auch die Verallgemeinerung der Laurentschen Reihe erschließt. 354)

69. Die Konvergenz der Potenzreihen in zwei komplexen Veränderlichen. Am eingehendsten hat diese Fragen Hartogs 355 untersucht. Seine Ergebnisse gelten zum Teil auch für Reihen in mehr als zwei Veränderlichen. Doch wollen wir uns in diesem Artikel wie bisher so auch weiter darauf beschränken, die Ergebnisse der Theorie an dem Beispiel der Funktionen von zwei komplexen Veränderlichen zu entwickeln. Das muß bei einer Theorie, die noch so im Flusse ist wie die hier darzustellende, genügen.

Ich betrachte zunächst die Potenzreihen selbst. Das sind also

zum Ziel gelangten Versuche von Dulac und E. Levi. Vgl. H. Dulac, Sur les séries de Mac-Laurin de plusieurs variables, Acta math. 31 (1908), p. 95—106; E Levi, Serie di Taylor di funzioni analitiche di più variabile, Rend. dei Lincei (5) 21 (1912), p. 816—822. Es ist auch bei den Autoren eine Verschiedenheit der Benennung, die es vielleicht erklärt, daß die späteren Autoren bei Hartogs ihr Problem nicht wieder erkannten. Diese Erklärung ist um so wahrscheinlicher, als nicht einmal der Referent in den "Fortschritten der Mathematik" der Hartogs (F. d. M. 36 (1905), p. 483—486) sowohl wie später Levi (F. d. M. 43 (1912), p. 512) referierte, das Hartogssche Problem bei Levi wiedererkannte.

³⁵⁴⁾ Hartogs *55a) hat die "integrallose" Pringsheim sche Umsetzung dieser Methode verwendet.

³⁵⁵⁾ F. Hartogs, a) Beiträge zur elementaren Theorie der Potenzreihen und der eindeutigen analytischen Funktionen zweier Veränderlichen, Diss. München 1904; b) a. a. 0.352).

Doppelreihen 356) $\mathfrak{P}(z_1-a_1,z_2-a_2)$. Für die Funktionentheorie ist namentlich der Bereich der absoluten Konvergenz wichtig. Denn Hartogs hat gezeigt, daß die Stellen lediglich bedingter Konvergenz niemals einen Bereich erfüllen. Allerdings liegen sie auch nicht wie bei Potenzreihen einer Veränderlichen alle am Rande des Bereiches der absoluten Konvergenz. Außerhalb desselben können noch gewisse zweidimensionale Mengen bedingter Konvergenz liegen. Ob die Werte, die dort die konvergente Reihe liefert, etwas mit der Fortsetzung der durch die Reihe definierten analytischen Funktion zu tun haben, scheint noch nicht geklärt. Was nun den Bereich der absoluten Konvergenz betrifft, so ist er von der Form

$$|z_1 - a_1| < r_1, |z_2 - a_2| < r_2, r_2 = q(r_1).$$

Hier ist $\varphi(r_1)$ eine Funktion von gleich näher anzugebenden Eigenschaften. Man nennt r_1 und r_2 zwei assoziierte Konvergenzradien. $\varphi(r_1)$ ist eine in einem Intervall $0 < r_1 < R_1$ erklärte stetige, bei wachsendem r_1 niemals zunehmende Funktion. $\log \varphi(r_1)$ ist außerdem eine konvexe Funktion von $\log r_1$. $Hartogs^{352}$) und $Faber^{357}$)

356) Wegen einer allgemeinen Theorie der unendlichen Doppelreihen vergleiche man A. Pringsheim, a) Elementare Theorie der unendlichen Doppelreihen, Münch. Sitzber. 27 (1897), p. 101—152; b) Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1899), p. 289—321; c) Vorlesungen über Zahlenlehre 2 (1916), p. 449—514; F. London, Über Doppelfolgen und Doppelreihen, Math. Ann. 53 (1899), p. 322—370.

357) Der auf die Stetigkeit und Monotonie bezügliche Teil dieses Satzes wurde schon von Weierstraß in Vorlesungen 1880/1881 angegeben. Ich entnehme diese Bemerkung dem schönen Bericht von Osyood, Topics in the theory of functions of several complex variables, Am. math. soc. colloquium lectures Vol. IV, The Madison colloquium 1913, Newyork 1914, p. 111—230. Vgl. ferner: Ad Meyer, Om Kontinuitet hos Konvergensområden, Stockholm ac. förh. öfver. 40 (1883), Nr. 9, p. 15—31; E. Paragmén, Om Konvergensområdet hos potensserier af två variabler, Stockholm Ac. förh. öfver. 40 (1883), Nr. 10, p. 17—26. Den aut die Konkavität bezüglichen Teil hat zuerst E. Fabry angegeben. Vgl. E. Fabry, Sur les rayons de convergence d'une série double. Paris C. R. 134 (1902), p. 1190—1192. Fabry stützt sich dabei auf gewisse ältere Überlegungen von E. Lemaire, Sur les séries entières à plusieurs variables indépendantes, Bull. des sc. math. 36 (1896), p. 186—292. Lemaire gibt dort die Parameterdarstellung

$$\frac{1}{r_1} = \limsup_{\mu + r \to \infty} \frac{\mu + r}{\sqrt{|a_{\mu r}| \Re r}}, \quad r' = \Re \cdot r \quad (0 < \Re < \infty)$$

für die assoziierten Radien. Der Beweis von Fabry wurde durch Hartogs vereinfacht. Vgl. F. Hartogs, Über neuere Untersuchungen auf dem Gebiete der analytischen Funktionen mehrerer Variablen, Jahresber. d. D. Math.-Ver. 16 (1907), [p 223—240] p. 232. Gleichzeitig mit Hartogs hat auch G. Faber einen Beweis gegeben. Vgl. G. Faber, Über die zusammengehörigen Konvergenzradien von Potenzreihen mehrerer Veränderlichen, Math. Ann. 61 (1905), p. 289—324.

69. Die Konvergenz der Potenzreihen in zwei komplexen Veränderlichen. 521

haben weiter gezeigt, daß die angegebenen Eigenschaften für $\varphi(r)$ charakteristisch sind.

Von besonderer Wichtigkeit für die Theorie sind weiter die von Hartogs so genannten Zeilen- und Kolonnenreihen. Das ist weiter nichts als eine nach Potenzen von z_1 bzw. von z_2 geordnete Potenzreihe $\mathfrak{P}(z_1, z_2)$. Es genügt also, die Zeilenreihen $\mathfrak{P}(z_1, z_2)$ zu betrachten. Die für die Wichtigkeit dieser Zeilenreihen grundlegende Tatsache ist in dem folgenden Satz von $Hartogs^{358}$) ausgesprochen:

Für die absolute Konvergenz der Doppelreihe $\mathfrak{P}(z_1-a_1,z_2)$ in einem Kreisgebiete $|z_1-a_1| < r_1$, $|z_2| < r_2$ ist die gleichmäßige Konvergenz der zugehörigen Zeilenreihe $\Sigma f_{\nu}(z_1)z_2^{\nu}$ in dem gleichen Kreisgebiet notwendig und hinreichend.

Die z_2 -Werte nun aber, für welche die Zeilenreihe in einem gegebenen z_1 -Bereich hinsichtlich z_1 gleichmäßig konvergiert, machen wieder einen Kreis $z_2 \mid < r_2$ aus.

Der Bereich, in dem überhaupt eine Zeilenreihe eine analytische Funktion darstellen kann, ist auf Grund des ersten der eben genannten beiden Sätze näher wie folgt zu charakterisieren 359): Eine gegebene analytische Funktion $f(z_1, z_2)$ läßt sich in einem Regularitätsbereich B nur dann durch eine Zeilenreihe $\Sigma f_{\nu}(z_1)$ z_2^{ν} darstellen, wenn ihre Fortsetzung auch noch für die Stellen (z_1, Kz_2) eindeutig und regulär ist. Dabei soll (z_1, z_2) irgendeine Stelle aus B_1 und K irgendeine komplexe Zahl sein, deren Betrag eins nicht übersteigt. 360)

Die Zeilenreihen sind insbesondere für die Untersuchungen von Hartogs über die Singularitäten der analytischen Funktionen von mehreren unabhängigen Variabeln wichtig geworden. Ein Haupthilfsmittel bei diesen Überlegungen ist nämlich der jetzt einzuführende Radius der gleichmäßigen Konvergenz: R_{z_1} . Diejenigen z_2 -Werte näm-

³⁵⁸⁾ F. Hartogs, a. a. O. 355 a), p. 34.

³⁵⁹⁾ F. Hartogs, a. a. 0. 352), p. 27. Der Beweis stützt sich u. a. auf eine Grundeigenschaft der Reihen $\Sigma f_{\nu}(z_1)z_2^{\nu}$, die auch beim Beweis des Satzes, daß alle mit partiellen Ableitungen erster Ordnung versehenen Funktionen analytisch sind, eine große Rolle spielt. Folgendes ist die Eigenschaft: Die Koeffizienten $f_{\nu}(z_1)$ der Reihe $\Sigma f_{\nu}(z_1)z_2^{\nu}$ mögen in einem Bereiche $B(z_1)$ regulär sein. Die Reihe möge für $z_2=a_2$ in $B(z_1)$ konvergieren, ferner für $z_2=b_2$ (\neq 0) in $B(z_1)$ gleichmäßig konvergieren. Dann konvergiert sie auch für alle $|z_2|<|a_2|$ in $B(z_1)$ gleichmäßig. Seinen Beweis 352) hat Hartogs später noch vereinfacht. Vgl. F. Hartogs, Über den Beweis eines Satzes aus der Theorie der analytischen Funktionen mehrerer Veränderlichen, Schwarzfestschrift 1914, p. 54-60.

³⁶⁰⁾ Wegen der Zeilenreihen vgl. man auch W. F. Osgood, Note on the functions defined by infinite series whose terms are analytic functions, Annals of math. (2) 3 (1901), p. 25-34.

lich, für die $\Sigma f_{r}(z_{1})z_{2}^{r}$ in einer wenn auch noch so kleinen Umgebung von $z_{1}=a_{1}$ hinsichtlich z_{1} gleichmäßig konvergiert, erfüllen einen gewissen Kreis, dessen Radius $R_{a_{1}}$ ist. $Hartogs^{352}$) hat die folgenden Grundeigenschaften dieser Funktion $R_{z_{1}}$ entdeckt. Wenn die Koeffizienten $f_{r}(z_{1})$ der Zeilenreihe $\Sigma f_{r}(z_{1})z_{2}^{r}$ in dem Bereiche $B(z_{1})$ regulär sind, so ist in diesem Bereiche $\log R_{z_{1}}$ nicht kleiner als diejenige ebene Potentialfunktion, die in $B(z_{1})$ regulär ist, und am Rande dieses Bereiches mit $\log R_{z_{1}}$ übereinstimmt. Wenn insbesondere $R_{z_{1}}$ in $B(z_{1})$ stetig ist und stetige partielle Ableitungen der beiden ersten Ordnungen besitzt, so kann man das auch so aussprechen: In jedem Punkte des Gebietes $B(z_{1})$ gilt die Ungleichung

$$\frac{\partial^z \log R_{z_1}}{\partial x_1^z} + \frac{\partial^z \log R_{z_1}}{\partial y_1^z} \leq 0 \qquad (z_1 = x_1 + iy_1).$$

Unter der Annahme, daß R_{z_1} die genannten Differenzierbarkeitsbedingungen erfüllt, hat Hartogs weiter gezeigt, daß diese Ungleichung für R_{z_1} charakteristisch ist. Es ist aber keineswegs immer R_{z_1} stetig oder differenzierbar, wie die Untersuchungen von Hartogs des näheren ergeben.

70. Die singulären Stellen der analytischen Funktionen von zwei komplexen Veränderlichen. Ich werde erst einige Sätze angeben, die als Analoga zu bekannten Sätzen bei Funktionen einer komplexen Veränderlichen erscheinen. Alsdann werde ich ausführlicher bei den Sätzen verweilen, die typisch Neues bieten. Überhaupt lege ich im ganzen Artikel keinen Wert darauf, zu viel von mehr oder weniger naheliegenden Übertragungen oder Verallgemeinerungen zu reden.

Zunächst gilt es, den Begriff der singulären Stellen zu fassen. Ich will die bei einer Veränderlichen gegebene Begriffsbestimmung sinngemäß übertragen. Funktionselement soll wieder eine einzelne Potenzreihe $\mathfrak{P}(z_1,z_2)$ heißen. Ihr Konvergenzbereich heiße der Bereich $|z_1| < r_1$, $|z_2| < r_2$, wo also $|r_1|$ der zu $|r_2|$ assoziierte Konvergenzradius ist. $|a_1|$, $|a_2|$ sei irgendeine weitere Stelle desselben. Man setze das gegebene Element in eine Reihe $\mathfrak{P}(z_1-a_1,z_2-a_2)$ um. Wenn dann der Konvergenzbereich des neuen Elementes stellenweise über den des alten hinausreicht, so liefert es in diesen Bereichen die Fortsetzung des alten. Bildet man nun wieder eine Kette solcher Elemente, so kann der Fall eintreten, daß ihre Mittelpunkte einen Grenzwert besitzen, während die Konvergenzradien gegen Null streben. "Konvergenzradius" eines Elementes möge dabei der Radius der größten Kugel um den Mittelpunkt des Elementes heißen, welche im Konvergenzbereich Raum hat.

Als ersten Satz führe ich nun diesen an: Am Rande eines jeden Konvergenzbereiches liegt mindestens eine singuläre Stelle. Man erkennt diesen zuerst von Hartogs 355 a) angegebenen Satz als unmittelbare Folge der Integralformel. Ihr entnimmt man auch am bequemsten den schon von Hurwitz⁵⁹) angegebenen Satz, daß eine analytische Funktion von mehreren komplexen Veränderlichen keine isolierten singulären Stellen besitzen kann. Präziser formuliert lautet der Satz so:

Eine analytische Funktion von zwei komplexen Veränderlichen sei für alle Stellen der Umgebung einer Stelle $z_1 = a_1, z_2 = a_2$ regulär und eindentig. Dann ist sie auch in dieser letzten Stelle selbst regulär. Der in die Voraussetzungen aufgenommene Zusatz "eindeutig" kann übrigens auch wegbleiben.

Hartogs hat wesentliche Verallgemeinerungen dieses Satzes entdeckt. 355) Die bequemste Herleitung ergibt sich wieder mit Hilfe der Integralformel 361). Man sieht nämlich leicht ein, daß man die Integralformel schon ansetzen kann, wenn nur $f(z_1, z_2)$ regulär und eindeutig ist, sobald z_1 dem Rande eines Bereiches $B(z_1)$ und z_2 dem Inneren oder Rande eines Bereiches $B(z_2)$ angehört und auch regulär und eindeutig ist, sobald z, ein beliebiger festgewählter Punkt aus $B(z_{i})$ oder von seinem Rande ist und z_{i} dem Bereich $B(z_{i})$ angehört. Die so gewonnene Integralformel stellt dann aber in dem ganzen Bereich $[z_1]$ aus $B(z_1)$, z_2 aus $B(z_2)$] eine reguläre analytische Funktion dar, die mit $f(z_1, z_2)$ identisch sein muß. Insbesondere ist hierin der folgende Satz enthalten: Wenn $f(z_1, z_2)$ am Rande eines Bereiches

$$[z_1 \text{ aus } B(z_1). \ z_2 \text{ aus } B(z_2)]$$

regulär und eindeutig ist, so gilt das auch im Inneren, also eine eminente Vertiefung des Satzes, daß es keine isolierten Singularitäten gibt. Auch hier kann der Zusatz eindeutig aus der Voraussetzung wegbleiben. Man kann den Satz auch auf beliebige Bereiche des vierdimensionalen z₁, z₂-Raumes übertragen.³⁶¹)

Ich hebe eine Folgerung besonders hervor³⁶¹): Wenn in der Ebene $z_1 = a_1$ singuläre Stellen liegen, wenn sich aber um dieselben ein Bereich abgrenzen läßt, auf dessen Rand $f(z_1, z_2)$ für $z_1 = a_1$ regulär ist, dann enthält jede Nachbarebene $z_1 = a_1 + \varepsilon$ singuläre Stellen, für welche z2 dem genannten Bereich angehört. Ich habe den Satz gleich allgemein ohne Eindeutigkeitsvoraussetzungen ausgesprochen, weil er im Falle der Mehrdeutigkeit sehr einfach zu beweisen ist, während er sich für den Fall der Eindeutigkeit aus dem

³⁶¹⁾ F. Hartogs, Einige Folgerungen aus der Cauchyschen Integralformel hei Funktionen mehrerer Veränderlichen, Münch. Sitzber. 36 (1906), p. 223-242.

Encyklop, d. math. Wissensch. 11 3

vorher Angeführten ergibt. Ist zudem in der Ebene $z_1 = a_1$ nur eine singuläre Stelle $z_2 = a_2$ gelegen, so sind die z_2 -Koordinaten der in den Nachbarebenen gelegenen singulären Stellen stetige Funktionen von z_1 .

 $E.\ Levi^{362}$) hat aus diesem Satz diese Folgerung gezogen: Sei (a_1,a_2) eine reguläre Stelle der Funktion $f(z_1,z_2)$. Man betrachte die Entfernungen $s_1-a_1^2+|s_2-a_2|^2$ der singulären Punkte (s_1,s_2) von diesem regulären. Dann kann diese Entfernung für keinen singulären Punkt ein relatives Maximum haben. Denn sonst denke man sich durch einen solchen maximal entfernten singulären Punkt eine Kugel mit dem Mittelpunkt (a_1,a_2) gelegt. In dem singulären Punkt (s_1,s_2) betrachte man ihre dreidimensionale Tangentialebene. Dieselbe enthält mindestens eine zweidimensionale Ebene mit einer Gleichung von der Form $A_1(z_1-s_1)+A_2(z_2-s_2)=0$. Alle benachbarten zweidimensionalen Ebenen $A_1(z_1-s_1)+A_2(z_2-s_2)=\varepsilon$ enthalten dann nach Hartoys auch singuläre Stellen in der Nähe von (s_1,s_2) . Darunter gibt es aber auch Ebenen, die ganz außerhalb der Kugel verlaufen.

Eine wesentliche Vertiefung erfahren alle diese Sätze, wenn man den Begriff des Regularitätsradius mit heranzieht. Das ist die in der vorigen Nummer mit R_{z_i} bezeichnete Zahl. Zunächst gilt der Satz 35?): Wenn der Punkt $z_1 = a_1$ eine Umgebung besitzt, in welcher die Koeffizienten $f_r(z_1)$ von $\Sigma f_1(z_1)z_2^r$ eindeutig und regulär sind, so besitzt der durch diese Reihe dargestellte Funktionszweig mindestens eine singuläre Stelle (a_1, a_2) , für welche $|a_2| = R_{a_1}$ ist, aber keine, für welche $a_2 < R_{a_1}$ ist. Man nennt daher am besten R_{σ_1} den Regularitätsradius (hinsichtlich von z_1) an der Stelle $(a_1, 0)$. Jeder Satz über Rz, ist somit zugleich ein Satz über die Lage von Singularitäten. Mit Hilfe dieser Funktion hat Hartogs 363) den analytischen Charakter der Singularitätenmannigfaltigkeiten bewiesen. Präziser formuliert lautet sein Satz so: Wenn $f(z_1, z_2)$ in der Umgebung der singulären Stelle (a_1, a_2) in der Ebene $z_1 = a_1$ eindeutig und regulär ist, so enthält, wie schon oben erwähnt, jede Nachbarebene $z_1 = \text{const.}$ eine singuläre Stelle $(z_1, \varphi(z_1))$. Dabei ist nun aber nicht nur, wie schon bewiesen, $\varphi(z_1)$ eine stetige, sondern sogar eine analytische Funktion. Von den Polen her war das längst geläufig (seit Weierstraß), womit

³⁶²⁾ E. E. Levi, Studii sui punti singolari essenziali delle funzioni analitiche di due o più variabile complesse, Annali di matematica (3) 17 (1910), p. 61-87.

³⁶³⁾ F. Hartogs, Über die aus den singulären Stellen einer analytischen Funktion von mehreren Veränderlichen bestehenden Gebilde, Acta math. 32 (1909). p. 57—59.

denn die spärlichen Kenntnisse über Singularitäten, die man vor den bahnbrechenden Arbeiten von Hartogs hatte, wesentlich erschöpft sind. 364)

E. E. Levi 365) hat in zweifacher Hinsicht die Forschungen von Hartous etwas weitergeführt. Er hat einmal neben den Begriff des Regularitätsradius den Begriff des Rationalitätsradius gestellt: (a, a) sei ein regulärer Punkt von $f(z_1, z_2)$. $P_{a_1}(R_0)$ sei der Radius des größten Kreises $z_2 - a_2 < r_2$, in welchem $f(a_1, z_1)$ von rationalem Charakter ist. Dann heißt P_{a_i} der auf z_1 bezügliche Rationalitätsradius der Stelle (a_1, a_2) . Für diese Größe hat Levi wesentlich die gleichen Eigenschaften nachgewiesen, wie wir sie beim Regularitätsradius kennen Er hat somit für die Lage der wesentlich singulären Stellen die gleiche Gesetzmäßigkeit nachgewiesen, die Hartogs für die Gesamtheit aller singulären Stellen entdeckt hat. 366)

Weiter hat Levi Ergebnisse über die Gestalt des Regularitätsbereiches und des Rationalitätsbereiches einer Funktion von zwei komplexen Veränderlichen gewonnen. Wenn Weierstraß 367) angegeben hatte, ein solcher Bereich unterliege keinerlei Bedingungen, so wurde dies schon durch die Bemerkung widerlegt, daß isolierte Singularitäten nicht vorhanden sind. Die Ergebnisse von Levi lassen vollends in der Frage nach der Gestalt der Existenzbereiche ein schwieriges Problem erkennen. Das Resultat von Levi kann dahin zusammengefaßt werden, daß eine jede Tangentialhyperebene an die als analytisch angenommene Grenzfläche eines Existenzbereiches einer eindeutigen Funktion die Fläche in der Umgebung des Berührungspunktes durchsetzt. Man kann dies Ergebnis, das sich natürlich sofort aus dem vorhin erwähnten Levischen Entfernungssatz ergibt, auch in Gestalt einer Differentialungleichung formulieren. Blumenthal 368) hat sie so ausgesprochen: Zu jedem Punkt der Grenzfläche werde die lineare Kom-

³⁶⁴⁾ Manchmal kann man die Lage der benachbarten Singularitäten gleich bestimmt angeben. Dahin gehört der folgende Satz von Hartogs: Ist $f(z_1, z_2)$ in $|z_1| < r_1$, $|z_2| < r_2$ regulär und besitzt dieser Funktionszweig eine singuläre Stelle (a_1, a_2) , für welche $|a_1| = r_1$, $a_1 | < r_2$ ist, so sind alle Stellen (a_1, z_2) ($|z_2| < r_2$) singuläre Stellen; a. a. O. 355a), § 19 und 352), § 6.

³⁶⁵⁾ E. E. Levi, a) a. a. O. 364); b) Sulle ipersuperficie dello spazio a 4 dimensioni che possono essere frontiere del campo di esistenza di una funzione analitica di due variabile complesse. Ann. di matematica (3) 18 (1911), p. 69-79.

³⁶⁶⁾ Vgl. auch F. Hartogs, Über die Bedingungen, unter welchen eine analytische Funktion mehrerer Veränderlicher sich wie eine rationale verhält, Math. Ann. 70 (1911), p. 207-222.

³⁶⁷⁾ K. Weierstraβ, Über 2r-fach periodische Funktionen, J. f. Math. 89 (1880) (p. 1-8); Werke II (p. 125-133), p. 129-130.

³⁶⁸⁾ O. Blumenthal, Bemerkungen über die Singularitäten analytischer Funktionen mehrerer Veränderlicher, Festschrift für H. Weber 1912, p. 11-22.

bination $Z_1 \equiv A_1 z_1 + A_2 z_2 + A_3 \equiv X_1 + i Y_1 = 0$ so gewählt, daß $X_1 = 0$ die Gleichung der Tangentialebene in diesem Punkt wird, und daß $X_1 > 0$ stets nach derselben Seite der Fläche weist.

$$Z_2 \equiv X_2 + i Y_2 = 0$$

sei eine beliebige linear unabhängige andere Kombination. Dann darf

$$\frac{\partial^2 X_1}{\partial X_1^2} + \frac{\partial^2 X_1}{\partial Y_1^2}$$

längs der Mannigfaltigkeit sein Vorzeichen nicht wechseln. Ist der Ausdruck irgendwo von Null verschieden, so kann eine Funktion, deren Existenzbereich durch die Fläche in der Nähe dieses Punktes begrenzt wird, nur auf der Seite der Fläche existieren, wo der Differentialausdruck positiv ist.

Levi hat weiter gezeigt, daß damit die einzigen lokalen Bedingungen der Grenzfläche gegeben sind. Blumenthal aber erkannte, daß die Bedingung noch nicht hinreicht, um eine Hyperfläche im großen als Grenzfläche eines Existenzbereiches zu kennzeichnen.

Man kann in dem Satz von dem Fehlen isolierter Singularitäten und seinen Erweiterungen eine Verallgemeinerung des Riemannschen Satzes über hebbare Unstetigkeiten sehen. Indessen fällt dabei auf, daß keinerlei Voraussetzung, wie Beschränktheit der Funktion, gemacht werden muß. $Kistler^{369}$) hat weiter bemerkt: $f(z_1, z_2)$ sei in der Umgebung von (a_1, a_2) eindeutig, regulär und beschränkt außer auf der zweidimensionalen analytischen Fläche $z_2 = \varphi(z_1)$. Dann kann das nur eine hebbare Unstetigkeit sein. Ebenso ist $f(z_1, z_2)$ über eine dreidimensionale analytische Fläche hinweg analytisch fortsetzbar, wie $Osgood^{357}$) bemerkt, wofern sie nur stetig darüber hinaus fortgesetzt werden kann.

71. Meromorphe Funktionen. Rationale Funktionen können neben Polen noch eine andere Art von Singularität in einzelnen Punkten aufweisen. Natürlich sind die Pole auf algebraischen Kurven aufgereiht. Wo diese aber die Kurven der Nullstellen treffen, tritt ein besonderes Vorkommnis ein. In der Umgebung solcher Stellen, die man zum Unterschied von den Polen außerwesentlich singuläre Stellen zweiter Art nennt, kommt die Funktion nämlich einem jeden Wert beliebig nahe. In dieser Erscheinung liegen die Schwierigkeiten begründet, die sich einer Übertragung bekannter Sätze über Funktionen rationalen Charakters einer Variabeln auf Funktionen mehrerer Variabeln entgegenstellen. Ich führe einige solche Sätze an:

³⁶⁹⁾ Kistler, Über Funktionen mehrerer komplexer Veränderlicher, Diss. Göttingen 1907.

Eine Funktion, die überall von rationalem Charakter ist, ist rational. The probability of the probability o

Man kann das Unendliche des Raumes aber auch im projektiven Sinne als eine unendlichferne (komplexe) Gerade, also als zweidimensionale des vierdimensionalen Raumes einführen. Auch dann ist der Satz richtig, wie W. F. Osgood 371) bewiesen hat.

Eine jede im Endlichen meromorphe Funktion läßt sich als Quotient zweier ganzen Funktionen darstellen.⁸⁷²)

Ob sich jede in einem gegebenen Bereich meromorphe Funktion als Quotient zweier daselbst regulärer darstellen läßt, ist noch unentschieden. (378)

Weitere Untersuchungen beschäftigen sich mit der Übertragung der Produktzerlegung ganzer Funktionen. Unter einer Primfunktion

³⁷⁰⁾ K. Weierstraß hat den Satz ohne Beweis angegeben, vgl. K. Weierstraß, a. a. O. 367), p. 129.

Einen Beweis gab erst *Hurwitz*, Beweis des Satzes, daß eine einwertige Funktion beliebig vieler Variabeln, welche überall als Quotient zweier Potenzreihen dargestellt werden kann, eine rationale Funktion ihrer Argumente ist. J. f. Math. 95 (1883), p. 201—207.

³⁷¹⁾ W. F. Osgood, A condition that a function in a projective space be rational, Trans. of the Am. math. soc. 13 (1912), p. 159—163; D. Jackson, Note on rational functions of several complex variables, Crelles J. 146 (1916), p. 185—188

³⁷²⁾ K. Weierstraß hat diesen Satz zuerst 1879 ausgesprochen und bemerkt, er werde sehr schwer zu beweisen sein. Vgl. K. Weierstraß, Einige auf die Theorie der analytischen Funktionen mehrerer Veränderlichen sich beziehende Sätze. Abhandlungen aus der Funktionenlehre 1886 (p. 105—163), p. 138, Werke II (p. 135—188), p. 163. Den ersten Beweis gab H. Poincaré, Sur les fonctions de deux variables, Acta math. 2 (1883), p. 97—113. Einen durchsichtigeren einfachen Beweis gab P. Cousin, Sur les fonctions des variables complexes, Acta math. 19 (1895), p. 1—61.

³⁷³⁾ Zu dem diesbezüglichen Beweisversuch von Kistler 369) vgl. man die Kritik von Hartogs 357). Cousin hat den Satz für den Fall bewiesen, daß der Bereich so aussieht: z_1 aus $B(z_1)$, z_2 aus $B(z_2)$. Wie aber Gronwall im Bull. of the Am. math. soc. (2) 20 (1914), p. 173—174 bemerkt, muß man dabei im allgemeinen gemeinsame zweidimensionale Nullmannigfaltigkeiten von Zähler und Nenner in Kauf nehmen, entgegen der Behauptung von Cousin, daß nur in einzelnen Punkten Zähler und Nenner zugleich verschwinden können. Dieser Zusatz ist nur richtig, wenn $B(z_1)$ und $B(z_2)$ einfach zusammenhängend sind.

versteht man eine ganze Funktion, die sich nicht als Produkt zweier ganzer Funktionen darstellen läßt, welche beide Nullstellen besitzen. Gronwall und Hahn 374) haben unabhängig voneinander gezeigt, daß eine ganze Funktion als Produkt von Primfunktionen dargestellt werden kann. Die Nullstellen einer ganzen Funktion können auch auf folgende Weise beliebig vorgegeben werden. Man kann sie entweder durch die betreffenden Funktionen geben, die dann eventuell um Exponentialfaktoren geändert in die Produktzerlegung eingehen, oder aber man kann sich auch auf folgenden Satz von Cousin 372) beziehen: Wenn die Funktion $f_1(z_1, z_2)$ in einem Bereich z_1 aus $B_1(z_1)$, z_2 aus $B_1(z_2)$ regulär und eindeutig ist, wenn im Bereiche: z_1 aus $B_2(z_1)$, z_2 aus $B_2(z_2)$ das Gleiche für $f_2(z_1, z_2)$ gilt, wenn weiter in dem Durchschnitt beider Bereiche sowohl $\frac{f_1}{f_2}$ wie $\frac{f_2}{f_1}$ regulär sind, dann gibt es eine Funktion f3(z1, z2), die in beiden Bereichen regulär und eindeutig ist, und für die im ersten Bereich $\frac{f_8}{f_1}$ und $\frac{f_1}{f_2}$, im zweiten Bereich $\frac{f_3}{f_*}$ und $\frac{f_2}{f_*}$ regulational single lär sind.

Wann aber kann eine analytische Mannigfaltigkeit Nullmannigfaltigkeit sein? Hahn 374) gab zuerst Bedingungen dafür an. Hartogs 357) hat das Problem als einfache Umkehrung des Weierstraß schen Vorbereitungssatzes erkannt und demuach die Bedingungen ganz einfach gefaßt.

Sire 975 a) hat begonnen, eine Theorie der ganzen Funktionen zu entwickeln, die der analogen Theorie bei einer Variabeln zu folgen versucht.

72. Implizite Funktionen. An der Spitze steht der Satz, den man heute meist den Weierstraßschen Vorbereitungssatz nennt 376). Er

374) Gronwall, Om system af linjöra totale differentialekationer sörs kildt sådana mod Impersodiska Koetficienter, Thesis Upsala 1898. Hahn, Über Funktionen zweier komplexer Veränderlicher, Monatsh. Math. Phys. 16 (1905), p. 29—44.

375) J. Sire, a) Sur les fonctions entières de deux variables d'ordre apparent total fini, Rend. di Palermo 31 (1911), p. 1—91; b) Sur les fonctions entières de deux variables d'ordre apparent total fini et à croissance régulière par rapport à l'une des variables, J. de math. (6) 9 (1913), p. 1—37. Vgl. auch E. Borel. Sur les fonctions entières de plusieurs variables et les modes de croissance, Paris C. R. 132 (1901); A. Wiman, Note über die ganzen Funktionen zweier Veränderlichen, Arkiv för mat. astr. och fys. 1 (1903), p. 113—116; L. Baumgartner, Beiträge zur Theorie der ganzen Funktionen von zwei komplexen Veränderlichen, Monatsh. Math. Phys. 25 (1914), p. 3—69.

376) Der Satz kommt zuerst bei Cauchy, Excercises d'analyse (2) 1841, p. 65, vor. Dann gab ihn Weierstraß von 1860 an in Vorlesungen (vgl. Werke II, p. 135). Weitere Beweise gaben H. Poincaré, Thèse 1879, p. 6; Stickelberger, Über einen Satz des Herrn Noether, Math. Ann. 30 (1887), p. 401—409; E. Goursat, Démonstration élémentaire d'un théorème de Weierstraß, Bull. soc. math. de France 36 (1908), p. 209—215; F. Hartogs, a) Über die elementare Herleitung des Weierstraß.

lautet: $F(w, z_1, z_2)$, sei in der Umgebung von $z_1 = z_2 = w = 0$ regulär und eindeutig. Ferner sei F(0, 0, 0) = 0, aber es sei $F(w, 0, 0) \equiv 0$. Alsdann gibt es eine ganze Zahl l > 0, und l in der Umgebung von $z_1 = z_2 = 0$ reguläre Funktionen $A_1(z_1, z_2)$... $A_1(z_1, z_2)$, so daß man

$$F(w, z_1, z_2) = (w^l + A_1 w^{l-1} + \cdots + A_l) \Phi(w, z_1, z_2)$$

schreiben kann, wo $\Phi(\omega, z_1, z_2)$ eine in der Umgebung der Stelle $z_1 = z_2 = w = 0$ reguläre Funktion ist, für die $\Phi(0, 0, 0) \neq 0$ gilt.

Dieser Satz macht die Untersuchung der Funktionselemente impliziter Funktionen zu einer Aufgabe, die nahezu der Theorie der algebraischen Funktionen angehört.

Das Problem der lokalen Uniformisierung einer analytischen Funktion hat für die Umgebung einer Kurve durch *Halphen*³⁷⁷), für die Umgebung einer einzelnen Stelle durch *Black* seine Lösung gefunden.^{377,1}) (Vgl. auch II B 1 (*Osgood*), p. 107, sowie II C 6 (*Jung*)).

73. Analytische Abbildungen. Während im Gebiete einer komplexen Variabeln analytische, d. h. winkeltreue Abbildung und analytische Funktion zusammenfallen, tritt hier neben das Studium einzelner analytischer Funktionen das Studium analytischer Abbildungen, d. h. der Paare voneinander unabhängiger analytischer Funktionen. Ein der Winkeltreue entsprechendes einfaches geometrisches Merkmal gibt es nicht. $w_1 = f_1(z_1, z_2)$.

 $w_2 = f_2(z_1, z_2),$

seien zwei analytische Funktionen, für die

straβschen Vorbereitungssatzes, Münch. Ber. 1909, Nr. 3; b) Bemerkung dazu, Münch. Ber. 1909, p. 29*; A. Brill, Über den Weierstraβschen Vorbereitungssatz, Math. Ann. 69 (1910), p. 538—549; Bliβ, A new proof of Weierstraβ's theorem concerning the factorisation of power series, Bull. Am. math. soc. (2) 16 (1910), p. 356—359; Mac Millan. A new proof of the Weierstraβ's theorem concerning the factorisation of power series, Bull. Am. math. soc. (2) 17 (1910), p. 116—120; Fields, The complementary theorem, Am. J. of math. 32 (1901), p. 1—16; G. Dumas, Elementare Herleitung des Weierstraβschen Vorbereitungssatzes, Münch. Ber. 39 (1904).

³⁷⁷⁾ Halphen, Sur les lignes singulières des surfaces algébriques, Ann. di mat. (2) 9 (1878—1879), p. 68—105. Vgl. auch K. Hensel, Über eine neue Theorie der algebraischen Funktionen zweier Variablen, Acta math. 23 (1900), p. 339—416; H. Jung, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlichen x, y in der Umgebung einer Stelle x=a, y=b, J. f. Math. 133 (1908), p. 289—314.

^{377,1)} C. W. Black, The parametric representation of the neighborhood of a singular point of an analytic surface, Proc. of the Am. Ac. of arts and sciences, vol. 37 (1902), p. 289-330. Vgl. auch Jung. 577)

$$0 = f_1(0, 0),$$

$$0 = f_2(0, 0)$$

$$\Delta(z_1, z_2) = \frac{\frac{\partial f_1}{\partial z_1}, \frac{\partial f_1}{\partial z_2}}{\frac{\partial f_2}{\partial z_2}, \frac{\partial f_2}{\partial z_2}}$$

gilt, und es sei für

 $\Delta(0,0) \neq 0$ Dann vermitteln die beiden Funktionen eine umkehrbar eindeutige Abbildung der Umgebung von $z_1 = 0$, $z_2 = 0$ auf eine Umgebung von $w_1 = 0$, $w_2 = 0$.

Wenn aber $\Delta(0,0)=0$ ist, geschieht die Abbildung auf eine volle n blättrige Umgebung von $w_1=w_2=0$. Diese Zahl n ist dabei wie folgt bestimmt: $F_1(z_1z_2)$ und $F_2(z_1z_2)$ seien die homogenen Polynome niedrigsten Grades in der $Mac\ Laurin$ schen Reihe für $f_1(z_1,z_2)$ und $f_2(z_1,z_2)$. Ihre Grade seien v_1 und v_2 . Dann ist $n=v_1\cdot v_2$. Die n, Blätter" hängen längs einer einzigen analytischen zweidimensionalen Fläche $\varphi(z_1,z_2)=0$ zusammen, deren Punkte also allein nicht n fach bedeckt sind. 3^{78} 3^{79} Man erkennt in diesen Sätzen die Übertragung des Satzes von der Gebietstreue.

Einiges ist auch bekannt für den Fall, daß die Abbildung nicht durch eindeutige Funktionen definiert ist, sondern durch zwei allgemeinere Gleichungen - K. (er. 18. 5. 5.) - O

$$\begin{split} F_{\mathbf{1}}(w_{\mathbf{1}},w_{\mathbf{2}},z_{\mathbf{1}},z_{\mathbf{2}}) &= 0, \\ F_{\mathbf{2}}(w_{\mathbf{1}},w_{\mathbf{2}},z_{\mathbf{1}},z_{\mathbf{2}}) &= 0 \end{split}$$

378) H. Poincaré a. a. O. 376); G. A. Bliß, a) A generalisation of Weierstraß preparation theorem for a power series in several variables, Trans. of the Am. math. soc. 13 (1912), p. 133-145; b) Four lectures on fundamental existence theorems, Am. math. soc. colloquium lectures III, The Princeton colloquium (1909), New-York 1913, p. 71; Poincaré (mécanique céleste I, p. 72) behauptet, daß man jedes Gleichungssystem auf ein Gleichungssystem zurückführen kann, das ganz und rational von den Unbekannten abhängt. Dieser Fassung des Satzes hat sich Mac Millan zugewendet; vgl. Mac Millan, A reduction of a system of power series to an aequivalent system of polynomials, Math. Ann. 72 (1912), p. 157-179. Dazu vgl. aber die Kritik von Bliβ a. a. O. 376). Kistler a. a. O. 369); Clements, a) Implicit functions defined by equations with vanishing Jacobian, Bull. of the Am. math. soc. (2) 18 (1912), p. 451-456; b) Implicit functions defined by equations with vanishing Jacobian, Trans. of the Am. math. soc. 14 (1913), p. 325-342; c) Singular point transformations in two complex variables, Annals of math. (2) 15 (1913), p. 1-19; Dines, Concerning two recent theorems on implicit functions, Bull. Am. math. soc. (2) 19 (1913), p. 165-166. p. 464.

379) Vgl. ferner zu dieser Frage: *Dederick*, On the charakter of a transformation in the neighborhood of a point where its *Jacobian* vanishes, Trans. of the Am. math. soc. 14 (1913), p. 143—148; *Urner*, Certain singularities of point transformations in space of three dimensions, Trans. of the Am. math. soc. 13 (1912), p. 232—264.

zwischen z_1, z_2 und w_1, w_2 . Der älteste hierher gehörige Satz stammt von Weierstra β^{380}).

Neuerdings haben sich verschiedene amerikanische Mathematiker den Problemen zugewandt. Ich erwähne vor allem einen Satz von $Bli\beta^{878}$).

Die beiden Funktionen $F_1(w_1, w_2, z_1, z_2)$,

$$F_2(w_{\scriptscriptstyle 1}, w_{\scriptscriptstyle 2}, z_{\scriptscriptstyle 1}, z_{\scriptscriptstyle 2})$$

sollen in der Umgebung von $z_1 = z_2 = w_1 = w_2 = 0$ regulär sein. Entwickelt man $F_1(0, 0, z_1, z_2)$,

$$F_2(0,0,z_1,z_2)$$

nach Mac Laurin, so seien v_1 und v_2 die Grade der homogenen Polynome niedrigster Ordnung in der Entwicklung. Setzt man dann wieder $n = v_1 v_2$, so gehören zu jedem Wert von w_1 , w_2 aus der Umgebung von (0,0) n im allgemeinen voneinander verschiedene Werte aus der Umgebung von $z_1 = z_2 = 0.374$) Wenn aber eine der Funktionen

$$F_1(0, 0, z_1, z_2),$$

 $F_2(0, 0, z_1, z_2)$

identisch verschwindet, so kann z_1 oder z_2 in der Umgebung von $w_1 = w_2 = 0$ beliebigen Werten beliebig nahe kommen. Das lehrt z. B. die Abbildung $w_1 - w_2 z_1 = 0$,

$$w_1 - z_2 = 0$$
.

Das folgt aber auch aus dem erwähnten Satz von Weierstra β^{380}). Der Satz von der Gebietstreue wird dann nur aufrechterhalten werden können, wenn man den Gebietsbegriff geeignet verallgemeinert.

Man kann die eben erwähnten Sätze auch auf den Fall ausdehnen, daß die Zahl der Gleichungen und Unbekannten übereinstimmt, die Zahl der unabhängigen Variablen aber beliebig ist.³⁸¹)

H. Poincaré³⁸²) hat das Hauptproblem der analytischen Abbildung in Angriff genommen, nämlich die Frage nach den Bedingungen, unter welchen zwei gegebene Bereiche aufeinander analytisch abbildbar sind.^{382,1}) Er hat erkannt, daß ganz und gar nicht zwei beliebige einfach zusammenhängende Bereiche aufeinander abgebildet werden können. Wenn

³⁸⁰⁾ K. Weierstraβ, Allgemeine Untersuchungen über 2n-fach periodische Funktionen von n Veränderlichen, Werke III (p. 53-114), p. 79-80.

³⁸¹⁾ Für den Fall, daß sie Eins ist, hat Mac Millan Beispiele diskutiert. Mac Millan, A method for determining the solutions of a system of analytic functions in the neighborhood of a branch point, Math. Ann. 72 (1912), p. 180—202.

³⁸²⁾ H. Poincaré, Les fonctions analytiques de deux variables et la représentation conforme, Rend. di Palermo 23 (1907), p. 185-220.

^{382, 1)} Hierüber wird demnächst K. Reinhardt in den Math. Ann. interessante Untersuchungen veröffentlichen.

es nämlich möglich sein soll, zwei gegebene analytische dreidimensionale Flächen analytisch aufeinander abzubilden, so müssen gewisse Differentialausdrücke für beide den gleichen Wert haben. Als speziellen schönen Satz aus diesen grundlegenden Untersuchungen hebe ich den folgenden hervor: Jede auf der ganzen Oberfläche reguläre Abbildung der Kugel $|z_1|^2 + |z_2|^2 < 1$ auf sich wird durch lineare Funktionen vermittelt. (Bei einer Variablen leistet auch die auf |z| = 1 reguläre Funktion $w = z^2$ eine Abbildung von |z| < 1 auf sich selbst.)

Dieser Satz macht beispielsweise die Übertragung des Quadratwurzelverfahrens der konformen Abbildung auf analytische Abbildungen unmöglich, wiewohl man mancherlei andere Sätze, wie das Schwarzsche Lemma und dgl., übertragen kann. SSS) K. Reinhardt SSS, 1) hat an konkreten Fällen gezeigt, daß ein dem Riemannschen analoger Abbildungssatz hier nicht gilt: $\{|z_1| < 1, |z_2| < 1\}$ kann z. B. nicht auf $|z_1|^2 + |z_2|^2 < 1$ abgebildet werden.

³⁸³⁾ Einige weitere Arbeiten, die meist Übertragungen enthalten; Baker. a) Elementary proof of a theorem for functions of several variables, Proc. London math. Soc. 34 (1902), p. 296-306; b) On functions of several variables, Proc. London math. Soc. (2) 1 (1903/04), p. 14-36; P. Boutroux, Remarques sur les singularités transcendantes des fonctions de deux variables, Bull. soc. math. Fr. 39 (1911), p. 296-304; T. J. Bromwich u. G. H. Hardy, Some extensions to multiple series of Abel's theorem on the continuity of power series, Proc. London math. Soc. (2) 2 (1904), p. 161-189; T. J. Bromwich. Various extensions of Abel's lemma, Proc. London math. Soc. (2) 6 (1908), p. 58-76; W. B. Ford, On the analytic extension of functions defined by double power series, Trans. Am. math. Soc. 8 (1906), p. 260 -274; Forsyth, Simultaneous complex variables and their geometrical representation, Mess. of math. (2) 40 (1910), p. 113-134; G. H. Hardy, a) On the convergence of certain multiple series, Proc. London math. Soc. (2) 1 (1903/4), p. 124-128; b) The singular points of certain classes of functions of several variables, Proc. London math. Soc. (2) 5 (1907), p. 342-360; c) A function of two variables, Quart. J. 45 (1913), p. 85-113; H. Holzberger, Über das Verhalten von Potenzreihen mit zwei und drei Veränderlichen an der Konvergenzgrenze, Monath. Math. Phys. 25 (1914), p. 179-266; D. Jackson, Non essential singularities of functions of several complex variables, Annals of math. (2) 17 (1915), p. 172-179; T. Levi-Civita, Sulle funzioni di due o più variabile complesse, Rend. dei Lincei 14 (1905), p. 492-499; G. Mittag-Leffler, Analytische Darstellung monogener Funktionen von mehreren unabhängigen Variabeln, Jahresber.d. D. Math.-Ver. 9 (1901), p. 74-77; C. W. Oseen, Eine Bemerkung über die analytische Fortsetzung von Funktionen mehrerer Variabeln, Arkiv for mat. astr och fys. 3 (1907), Nr. 21; P. Painlevé, Sur le développement des fonctions analytiques de plusieurs variables, Paris C. R. 129 (1899), p. 92-95; G. Rémoundos, Contribution au problème de la représentation uniforme des surfaces, Bull. soc. math. Fr. 39 (1911), p. 79-84; L. Sauvage, Premiers principes de la théorie générale des fonctions de plusieurs variables, Ann. Fac. sc. Marseille 14 (1904), p. 1-70.

II C 5. ARITHMETISCHE THEORIE DER ALGEBRAISCHEN FUNKTIONEN.

Vox

K. HENSEL*)

IN MARBURG A. L.

Inhaltsübersicht.

I. Der Körper K(z) der rationalen Funktionen von z.

- 1. Untersuchung der rationalen Funktionen von z für eine Stelle dieser Variablen.
- 2. Der Körper $K(\mathfrak{p})$ aller zur Stelle \mathfrak{p} gehörigen Potenzreihen und der Unterkörper $K(\mathfrak{p})$ der zu \mathfrak{p} gehörigen konvergenten Potenzreihen.
- Untersuchung der rationalen Funktionen von z für alle Stellen der ganzen Kugelfläche. Die rationalen Divisoren.

II. Der Körper K(u, z) der algebraischen Funktionen einer Variablen.

- 4. Allgemeine Sätze über die algebraischen Funktionen.
- 5. Untersuchung der Funktionen des Körpers K(u, z) in der Umgebung einer Stelle \mathfrak{p} der unabhängigen Variablen.
- 6. Die Grundgleichung ist für den Bereich $\widetilde{K}(\mathfrak{p})$ irreduktibel.
- 7. Allgemeiner Fall: Die Grundgleichung zerfällt innerhalb $\overline{K}(\mathfrak{p})$ in mehrere irreduktible Faktoren.
- 8. Die dem Körper K(u, z) zugeordnete Riemannsche Kngelfläche \Re_z .
- 9. Direkte Berechnung der zu einer Stelle p gehörigen Wurzelzyklen. Das zu p gehörige Diagramm.
- 10. Untersuchung der algebraischen Funktionen des Körpers für alle Stellen der Riemannschen Kugelfläche R. Die algebraischen Divisoren.
- 10a. Die arithmetischen Begründungen des Punktbegriffes.
- 11. Untersuchung der Funktionen des Körpers K(u, z) in bezug auf ihre Teilbarkeit durch einen beliebigen Divisor.
- 12. Die algebraischen Systeme und ihre Elementarteiler.
- 13. Die eindeutigen Transformationen des Körpers K(u, z) in den ihm gleichen K(y, x) bei beliebiger Annahme der unabhängigen Variablen x.
- 14. Die Einteilung der algebraischen Divisoren in Klassen.
- 15. Die Divisorenscharen und ihre Invarianten.
- 16. Die ganzen Divisoren einer Klasse Q.

III. Die zu dem Körper K(y,x) gehörigen Abelschen Integrale.

- 17. Die Abelschen Integrale.
- 18. Die Differentiale der Elemente des Körpers K und die zugehörigen Divisoren.
- 19. Die Differentialklasse W.

^{*)} Die mit [O] bezeichneten Anmerkungen sowie die gleichbezeichnete Nr. 10a rühren von Herrn A. Ostrowski her.

- 534 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.
- Die Fundamentalaufgabe in der Theorie der Abelschen Integrale. Der Riemann-Rochsche Satz.
- 21. Die Elementarintegrale erster, zweiter und dritter Gattung.
- 22. Spezialisierung für die Integrale mit rationalem Integranden.

IV. Die zum Körper K(y, x) gehörigen algebraischen Kurven.

- 23. Die ebenen algebraischen Kurven und ihre singulären Punkte.
- 24. Der zur Kurve C gehörige Divisor der Doppelpunkte.
- 25. Auflösung der Singularitäten einer Kurve.
- 26. Die zu einer Gleichung F(x, y) gehörigen Funktionenringe.
- 27. Darstellung der zum Körper K gehörigen Kurven durch homogene Koordinaten.
- 28. Die Differentialteiler einer Divisorenschar und ihre Anwendung in der Geometrie. Die Plückerschen Formeln.
- 29. Theorie der algebraischen Raumkurven.

V. Die Klassen algebraischer Gebilde.

- 30. Die Hauptkurve eines Körpers und ihre Weierstraßpunkte.
- 31. Die Normalgleichungen und die Moduln der algebraischen Körper.
- 82. Die Normalgleichungen und die Moduln der allgemeinen Körper vom Geschlecht p.

VI. Algebraische Relationen zwischen Abelschen Integralen.

- 83. Algebraische Normierung der Fundamentalintegrale erster und zweiter Gattung.
- 34. Die Integrale dritter Gattung und der Satz von der Vertauschung von Parameter und Argument.
- 35. Einteilung aller Wege auf einer Riemannschen Fläche in Klassen.
- 36. Die Fundamentalsysteme von Periodenwegen für eine Riemannsche Fläche.
- 37. Die Periodenrelationen der Integrale erster und zweiter Gattung.
- 38. Die Beziehungen zwischen den verschiedenen Fundamentalsystemen von Periodenwegen.
- 39. Die Perioden der Integrale zweiter und dritter Gattung als Funktionen ihrer Unstetigkeitspunkte.
- 40. Die Primfunktionen. Zerlegung der Funktionen des Körpers in Primfunktionen.
- 41. Das Abelsche Theorem als Additionsprinzip der Integrale.
- 42. Die aus dem Abelschen Theorem folgenden Reduktionsprobleme.
- 43. Das Umkehrproblem für die Abelschen Integrale.

VII. (Anhang.) Arithmetische Theorie der algebraischen Zahlen.

- Der Körper K(1) der rationalen Zahlen und der Körper K(p) der p-adischen Zahlen
- Die algebraischen Zahlkörper und die ihnen isomorphen rationalen Kongruenzkörper.
- 46. Untersuchung der rationalen Kongruenzkörper für den Bereich einer Primzahl p. Ihre Reduktion auf die p-adischen Kongruenzkörper.
- 47. Die p-adischen Kongruenzkörper und die ihnen isomorphen Körper $K(\mathfrak{P})$ der π -adischen algebraischen Zahlen.
- 48. Der zu einer vorgelegten Gleichung F(x) = 0 zugehörige Galoissche π -adische Zahlkörper $K(\mathfrak{P})$.

Literatur.

(Die hier angeführten Abhandlungen und Werke werden im Text und in den Aumerkungen nur mit der Angabe der Abkürzung und der Seitenzahl zitiert.)

- R. Dedekind und H. Weber, Theorie der algebraischen Funktionen einer Veränderlichen, J. f. Math. 92 (1882), p. 181-290 ("D.-W.").
- H. Weber, Lehrbuch der Algebra, Bd. III, 5. Buch, p. 623-707. Braunschweig 1908, F. Vieweg & Sohn ("W.").

Bringt sämtliche Resultate von D.- W. mit vereinfachter Begründung der Idealtheorie. Wird nur im Absehnitt (19a) über die Grundlegung des Punktbegriffes zitiert.

- L. Kronecker, Über die Discriminante algebraischer Funktionen einer Variabeln, J. f. Math. 91 (1881), p. 301-334 ("Discr.").
- L. Kronecker, Grundzüge einer arithmetischen Theorie der algebraischen Größen. Festschrift zu Herrn Ernst Eduard Kummers fünfzigjährigem Doktorjubiläum. Berlin 1882, G. Reimer. Auch J. f. Math. 92 (1882), p. 1—122 ("Festschrift").
- A. Brill und M. Nöther, Die Entwickelung der Theorie der algebraischen Funktionen in älterer und neuerer Zeit. Jahresber. d. deutsch. Math.-Ver. 3 (1894), p. 109—566 und p. I—XXIII Vorrede ("B.-N.").

Geht auf die arithmetische Theorie zwar nicht ein, bespricht jedoch eingehend die Kroneckerschen Untersuchungen über die Diskriminante. Bringt außerdem einen Bericht über die Weierstraßsche Vorlesung aus dem Jahre 1869 (als "V. 1869" zitiert), in der der Begriff der ganzen algebraischen Funktion stark beuutzt wird, und den zeitlich ersten, zusammenhängenden (wenn auch äußerst knapp gehaltenen) Bericht über die spätere Weierstraßsche Theorie (1873) als "V. 1873" zitiert, die auf B. und H.-L. von Einfluß gewesen ist.

- H. F. Baker, Abels theorem and the allied theory including the theory of the theta funktion. Cambridge 1897 ("B").
- K. Hensel und G. Landsberg, Theorie der algebraischen Funktionen einer Variabeln und ihre Anwendung auf algebraische Kurven und Abelsche Integrale. Leipzig 1902, Teubner ("H.-L.").

Der Inhalt der ersten Vorlesungen ist auch besonders erschienen: K. Hensel, Zur Theorie der algebraischen Funktionen einer Veränderlichen und der Abelschen Integrale, Math. Ann. 54 (1901), p. 437—497. Dieser Aufsatz wird nicht besonders zitiert werden.

C. Weierstraβ, Vorlesungen über die Theorie der Abelschen Transcendenten, Gesammelte mathematische Werke, Bd. IV (1902).

Wird zum Vergleich mit den Methoden und Resultaten der arithmetischen Theorie herangezogen.

E. Noether, Die arithmetische Theorie der algebraischen Funktionen einer Veränderlichen in ihrer Beziehung zu den übrigen Theorien und zu der Zahlkörpertheorie, Deutsch. Math.-Ver. 28 (1914), p. 182—203 ("E N.").

Gibt eine kurze Darstellung der Grundlagen der verschiedenen Theorien und eine Vergleichung der verschiedenen arithmetischen Theorien untereinander und mit der geometrischen Theorie der algebraischen Funktionen.

- K. Hensel, Neue Begründung der arithmetischen Theorie der algebraischen Funktionen einer Variablen, Math. Ztschr. 5 (1919), p. 118—131. Vgl. Anm. 5) dieses Artikels.
- -, Theorie der algebraischen Zahlen, Leipzig 1908 (H. I).

K Hensel, Zahlentheorie, Berlin 1913 (H. II).

-, Eine neue Theorie der algebraischen Zahlen, Math. Ztschr. 2 (1918), p. 433 bis 452 (H. III).

In diesen Werken ist die im Anhange erwähnte Theorie der rationalen und algebraischen Zahlen ausführlich dargestellt.

Es werden hauptsächlich nur die Abhandlungen zitiert, welche die Methoden der arithmetischen Theorie benutzen. Für die übrige Literatur, die sich auf die im Referat berührten Fragen bezieht, vgl. B.-N., II B 2 (Wirtinger), III C 4 (Berzolari), III C 8 (Rolin), III C 9 (Segre), III C 10 (Zindler) [O].

I. Der Körper K(z) der rationalen Funktionen von z.

1. Untersuchung der rationalen Funktionen von z für eine Stelle dieser Variablen. Die Gesamtheit aller rationalen Funktionen

$$Z = \varphi(z)$$

einer komplexen Variablen mit beliebigen reellen oder komplexen Koeffizienten bildet einen Körper¹), dessen Elemente sich durch die elementaren Rechenoperationen wieder erzeugen.

Jedem Werte $z=\alpha$ bzw. $z=\infty$ der unabhängigen Variabeln ordnen wir eindentig eine Stelle zu.²) Geometrisch entspricht jeder endlichen Stelle $\alpha=a+ib$ ein Punkt der komplexen Zahlenebene oder durch stereographische Abbildung derselben ein Punkt $\mathfrak p$ der sog. Einheitskugel $\mathfrak A$ vom Durchmesser eins; der Stelle $z=\infty$ entspricht der Südpol $\mathfrak p_\infty$ dieser Kugel. Die geometrische Repräsentation dient

¹⁾ Die erste Körperdefinition bei *Dedekind* (Zahlkörper), (*Lejeune-Dirichlet*, Vorles. über Zahlentheorie, 2. Aufl., Braunsehweig (1871), für Funktionenkörper *Kronecker* (Rationalitäts- und Gattungsbereiche), Festschrift, p. 6. Audere wesentlich allgemeinere Körperdefinitionen geben *D.-W.*, p. 185, *Weber*, Math. Ann. 43 (1893), p. 526—527, *Steinitz*, J. f. Math. 137 (1910), p. 172.

Es sind eigentlich zwei verschiedene Körperbegriffe, mit denen die Theorie der algebraischen Funktionen einer Veränderlichen operiert. Einmal sind es Körper der algebraischen Funktionen einer bestimmten festen Veränderlichen z (Kronecker) — solchen Körpern entsprechen dann n-blättrige über der z-Ebene oder der z-Kugel ausgebreitete Riemannsche Flächen. Oder es wird kein Element des Körpers ausgezeichnet, so daß nur zwischen konstanten und nicht konstanten Elementen zu unterscheiden ist, und der Körper wird durch die rationalen Relationen (mit beliebigen konstanten Koef Körper wird durch die zwischen seinen Elementen bestehen (D.-W., H.-L., Steinitz). Genauer, ein Körper algebraischer Funktionen einer Variabeln ist gegeben, wenn zu jedem Paar nicht konstanter Elemente aus ihm ein irreduzibles Polynom von zwei Veränderlichen gegeben ist, das verschwindet, sobald für die Veränderlichen jene Elemente eingesetzt werden. Diesem letzten implizite bereits bei D.-W. vorkommenden Körperbegriff entspricht der Begriff der absoluten Riemannschen Fläche, für den sich bei D.-W. eine arithmetische Definition findet (s. 10 a).

²⁾ II B 1 (Osgood), Nr. 8. [O]

hier wie im Folgenden nur zur einfachen Veranschaulichung; die folgenden Untersuchungen und Beweise sind von ihr unabhängig. Die dem Werte $z=\alpha$ bzw. $z=\infty$ zugeordnete Stelle soll im Folgenden ebenso wie der zugehörige Punkt der Kugelfläche \Re durch $\mathfrak p$ bzw. $\mathfrak p_\infty$ bezeichnet werden.

Jede Funktion Z des Körpers K(z) besitzt in einer beliebigen Stelle \mathfrak{p} (z=a) einen eindeutig bestimmten Zahlenwert $Z(\mathfrak{p})$, welcher $0, \infty, c$ sein kann; hier wie im Folgenden bedeutet c einen bestimmten endlichen von Null verschiedenen Wert. Im ersten bzw. im zweiten Falle heißt \mathfrak{p} eine Nullstelle bzw. ein Pol; ist dagegen $Z(\mathfrak{p})=c$, so heißt Z eine Einheit oder eine Einheitsfunktion für die Stelle \mathfrak{p} und wird kurz durch $E(\mathfrak{p})$ oder $E(z \mid a)$ bzw. $E(\mathfrak{p}_{\infty})$ oder $E(z \mid \infty)$ bezeichnet.

Z heißt eine ganze Funktion für die Stelle \mathfrak{p} , wenn $Z(\mathfrak{p})$ endlich ist, ist $Z(\mathfrak{p}) = \infty$, ist also \mathfrak{p} ein Pol für Z, so nennt man sie eine für \mathfrak{p} gebrochene Funktion.³) Die Summe, die Differenz und das Produkt von ganzen Funktionen ist wieder ganz. Eine ganze oder gebrochene Funktion Z heißt durch eine andere U für die Stelle \mathfrak{p} teilbar, wenn der Quotient $\frac{Z}{U}$ dort ganz ist. Die Einheitsfunktionen, und sie allein, sind in jeder ganzen Funktion enthalten. Ist sowohl Z durch U als auch U durch Z für \mathfrak{p} teilbar, so heißen Z und U für \mathfrak{p} äquivalent, und dies ist stets und nur dann der Fall, wenn sie sich um eine Einheitsfunktion multiplikativ unterscheiden.

Eine ganze Funktion p(z) heißt eine Primfunktion für die Stelle \mathfrak{p} , wenn sie dort eine Nullstelle hat und nicht in ein Produkt von Faktoren derselben Art zerlegt werden kann. Eine solche Primfunktion ist z.B.

$$p=z-\alpha$$
 für die endliche Stelle $(z=\alpha)$
 $p=\frac{1}{z}$ für die unendlich ferne Stelle $(z=\infty)$.

Alle Primfunktionen für eine und dieselbe Stelle sind einander äquivalent. Ist p eine Primfunktion, so läßt sich jede andere Funktion Z auf eine einzige Weise in der Form

$$(1) Z = \varepsilon p^{\varrho}$$

darstellen, wo ϱ eine ganze Zahl, und ε eine Einheit bedeutet. Der Exponent ϱ , welcher offenbar von der Wahl der Primfunktion un-

³⁾ Ganz analog nennt man in der Zahlentheorie einen reduzierten Bruch $\frac{a}{b}$ ganz in bezug auf eine Primzahl p, wenn b mit p teilerfremd ist, gebrochen in bezug auf p, wenn b durch p teilbar ist. Ebenso heißt eine Zahl a durch eine andere b teilbar in bezug auf p, wenn $\frac{a}{b}$ ganz in bezug auf p ist. Vgl. Nr. 44 dieses Referates. [O]

abhängig ist, soll die Ordnungszahl von Z für die Stelle $\mathfrak p$ heißen. Es besteht also für jede Funktion Z und für jede endliche oder die unendlich ferne Stelle eine Gleichung:

(1 a)
$$Z = (z - \alpha)^{\varrho} E(z \mid \alpha)$$
, bzw. $Z = \left(\frac{1}{z}\right)^{\varrho} E(z \mid \infty)$.

Die allgemeinste Primfunktion für die betr. Stelle ergibt sich aus diesen Gleichungen für $\varrho=1$. Die Ordnungszahl von Null ist gleich $+\infty$ zu setzen. Die Stelle $\mathfrak p$ ist eine Nullstelle oder ein Pol für Z, je nachdem ϱ positiv oder negativ ist.

Man ordnet nun jeder Stelle $\mathfrak p$ einen *Divisor* zu, welcher ebenfalls durch $\mathfrak p$ bezeichnet werde, und zwar soll die Teilbarkeit einer Funktion Z durch $\mathfrak p$ durch die folgende Definition charakterisiert werden.

Eine Funktion Z ist durch \mathfrak{p}^q teilbar, wenn sie im zugehörigen Punkte \mathfrak{p} mindestens die Ordnungszahl ϱ besitzt, wenn sie also für jene Stelle mindestens durch die ϱ^{to} Potenz der zugehörigen Primfunktion teilbar ist. Z heißt genau durch \mathfrak{p}^q teilbar, wenn sie in \mathfrak{p} genau die Ordnungszahl ϱ hat.

Sind Z und Z' genau durch \mathfrak{p}^{ϱ} und $\mathfrak{p}^{\varrho'}$ teilbar, so ist ZZ' und Z' genau durch $\mathfrak{p}^{\varrho+\varrho'}$ und $\mathfrak{p}^{\varrho-\varrho'}$ teilbar.

Man nennt die so definierten Divisoren *Primteiler*, weil ein Produkt ZZ' dann und nur dann durch $\mathfrak p$ teilbar ist, wenn mindestens einer der Faktoren $\mathfrak p$ enthält.

Zwei Funktionen Z und Z' heißen modulo po kongruent, wenn ihre Differenz mindestens durch po teilbar ist. Zwei solche Funktionen heißen für den Bereich von p gleich, wenn sie für jede noch so hohe Potenz von p kongruent sind; zwei rationale Funktionen sind dann und nur dann für den Bereich von p gleich, wenn sie identisch sind.

Jede Funktion Z des Körpers K(z) ist für den Bereich einer beliebigen Stelle $\mathfrak p$ gleich einer eindeutig bestimmten Potenzreihe

$$Z = A_{\varrho} p^{\varrho} + A_{\varrho+1} p^{\varrho+1} + \cdots \tag{\mathfrak{p}}$$

mit konstanten Koeffizienten A_z , welche beliebig weit rational berechnet werden können; der Exponent ϱ des Anfangsgliedes ist gleich der Ordnungszahl von Z. Für eine endliche bzw. für die unendlich ferne Stelle gelten so Entwicklungen:

(2)
$$Z = A_{\varrho}(z - \alpha)^{\varrho} + A_{\varrho+1}(z - \alpha)^{\varrho+1} + \cdots \qquad (\mathfrak{p})$$
$$Z = B_{\sigma}\left(\frac{1}{z}\right)^{\sigma} + B_{\sigma+1}\left(\frac{1}{z}\right)^{\sigma+1} + \cdots \qquad (\mathfrak{p}_{\infty})$$

Die Reihen (2) sind aber nicht bloß für den Bereich der Stelle p gleich Z, sondern sie stellen, wie nun leicht bewiesen werden kann 3a),

³a) Vgl. z. B. H.-L., p. 8-10.

die Werte von Z auch der Größe nach mit jeder vorgegebenen Genauigkeit für alle Werte von z innerhalb eines Kreises auf der Kugelfläche \Re mit dem Mittelpunkte $\mathfrak p$ dar, dessen Peripherie durch den nächsten Pol von Z geht. Man nennt diese Reihen die zur Stelle $\mathfrak p$ gehörigen Funktionenelemente von Z. Eine allgemeine analytische Funktion, welche in einer endlichen Umgebung eines Punktes $\mathfrak p$ gleich einer Potenzreihe (2) ist, besitzt, wie man sagt, an dieser Stelle rationalen Charakter. Die rationalen Funktionen sind also analytische Funktionen, welche an einer jeden Stelle rationalen Charakter besitzen; umgekehrt folgt aus den Elementen der Funktionentheorie, daß jede solche analytische Funktion dem Körper K(z) angehört.

2. Der Körper $\overline{K}(\mathfrak{p})$ aller zur Stelle \mathfrak{p} gehörigen Potenzreihen und der Unterkörper $K(\mathfrak{p})$ der zu \mathfrak{p} gehörigen konvergenten Potenzreihen. Wir betrachten die Gesamtheit *aller* Potenzreihen für die Stelle \mathfrak{p} :

(3)
$$Z = a_{\varrho}(z - u)^{\varrho} + a_{\varrho+1}(z - u)^{\varrho+1} + \cdots$$

(3')
$$Z = a_{\varrho} \left(\frac{1}{z}\right)^{\varrho} + a_{\varrho+1} \left(\frac{1}{z}\right)^{\varrho+1} + \cdots$$

Wenn man den Begriff der Gleichheit für den Bereich von $\mathfrak p$ wie oben und die Addition und Multiplikation von zwei solchen Reihen wie gewöhnlich definiert, so bilden auch sie einen Körper $\overline{K}(\mathfrak p)$, von dem der Körper der rationalen Funktionen ein Teilkörper ist; denn eine Reihe (3) oder (3) stellt dann und nur dann eine rationale Funktion dar, wenn ihre Koeffizienten $a_{\varrho}, a_{\varrho+1}, \ldots$ einer Rekursionsformel genügen. Auch für diesen größeren Körper $\overline{K}(\mathfrak p)$ gelten genau die einfachen Gesetze, welche vorher für den Körper K(z) der rationalen Funktionen für diese Stelle ausgesprochen wurden. Auch für ihn ist p = z - a bzw. $\frac{1}{z}$ eine Primfunktion, und jede andere Funktion des Körpers $K(\mathfrak p)$ läßt sich in der Form (3) bzw. (3) eindeutig darstellen.

Einen Teilkörper von $\overline{K}(\mathfrak{p})$ bildet nun der Bereich $K(\mathfrak{p})$ aller derjenigen Potenzreihen (3) bzw. (3'), welche einen endlichen Konvergenzbereich besitzen, also der Bereich aller zu \mathfrak{p} gehörigen Funktionenelemente, welche dort rationalen Charakter haben, derselbe werde kurz der Körper der Potenzreihen in \mathfrak{p} genannt. Der letzte Absatz des vorigen Paragraphen zeigt, daß die rationalen Funktionen nicht bloß dem Körper $\overline{K}(\mathfrak{p})$, sondern auch seinem Unterkörper $K(\mathfrak{p})$ angehören.

3. Untersuchung der rationalen Funktionen von z für alle Stellen der ganzen Kugelfläche. Die rationalen Divisoren. Die Einführung der den einzelnen Punkten p der Kugelfläche \Re zugeordneten Primteiler leitet naturgemäß über zu der Betrachtung der allgemeinen aus ihnen zusammengesetzten Divisoren. Es seien $\mathfrak{p}_1, \mathfrak{p}_2, \ldots, \mathfrak{p}_r$ beliebige Punkte der Kugelfläche \mathfrak{K} und zugleich auch die ihnen zugeordneten Primteiler; sind ferner h_1, h_2, \ldots, h_r beliebige positive oder negative ganze Zahlen, oder auch Null, so sagen wir:

Eine Funktion Z des Körpers K(z) ist für den Bereich der Stellen $\mathfrak{p}_1,\,\mathfrak{p}_2,\,\ldots,\,\mathfrak{p}_r$ durch den Divisor

$$\mathfrak{q} = \mathfrak{p}_1^{h_1} \mathfrak{p}_2^{h_2} \dots \mathfrak{p}_r^{h_r}$$

teilbar, wenn sie allgemein im Punkte \mathfrak{p}_i mindestens die Ordnungszahl h_i besitzt, wenn also Z für jede dieser Stellen \mathfrak{p}_i mindestens durch die h_i^{te} Potenz der zugehörigen Primfunktion \mathfrak{p}_i teilbar ist. Z ist ein ganzes Vielfaches oder ein Multiplum von \mathfrak{q} , wenn sich Z außerdem noch auf der ganzen Fläche \mathfrak{A} mit Einschluß von \mathfrak{p}_{∞} , falls dieser Primteiler nicht in \mathfrak{q} vorkommt, regulär verhält, also sonst keine Pole besitzt. \mathfrak{q} heißt ein ganzer oder ein gebrochener Divisor, je nachdem keiner oder wenigstens einer seiner Exponenten negativ ist.

Die Summe $q=h_1+h_2+\cdots+h_r$ der Exponenten von $\mathfrak q$ heißt die *Ordnung* jenes Divisors. Sind

$$\mathfrak{q} = \mathfrak{p}_1^{h_1} \mathfrak{p}_2^{h_2} \dots \mathfrak{p}_r^{h_r}, \quad \mathfrak{r} = \mathfrak{p}_1^{h_1} \mathfrak{p}_2^{h_2} \dots \mathfrak{p}_r^{h_r}$$

zwei beliebige Divisoren (in denen auch einige Exponenten Null sein können), so nenut man

$$\mathfrak{p}_1^{h_1+h_2}\mathfrak{p}_2^{h_2+h_2}\dots\mathfrak{p}_r^{h_r+h_r}$$
 and $\mathfrak{p}_1^{h_1+h_2}\mathfrak{p}_2^{h_2+h_2}\dots\mathfrak{p}_r^{h_r+h_r}$

bzw. das Produkt und den Quotienten von q und r und bezeichnet sie durch qr und $\frac{q}{r}$. Sind q und r die Ordnungszahlen von q und r, so sind die entsprechenden Zahlen für qr und $\frac{q}{r}$ bzw. q+r und q-r. Dann kann man alle Regeln und Definitionen der Arithmetik auf die Multiplikation und die Division dieser Divisoren ausdehnen. Jeder Divisor q läßt sich als Quotient $\frac{3}{n}$ zweier ganzen Divisoren darstellen, welche der Zähler und der Nenner von q heißen, und diese Darstellung heißt reduziert oder nicht reduziert, je nachdem \mathfrak{z} und \mathfrak{u} gewisse Primteiler gemeinsam enthalten oder nicht. Ebenso ergibt sich der Begriff des größten gemeinsamen Teilers $\mathfrak{b} = (\mathfrak{q}_1, \mathfrak{q}_2, \ldots, \mathfrak{q}_u)$ mehrerer ganzer oder gebrochener Divisoren genau wie in der reinen Arithmetik.

Zu jeder rationalen Funktion Z gehört ein Divisor

$$\mathfrak{q}_Z = \frac{\mathfrak{d}_Z}{\mathfrak{q}_Z} = \mathfrak{p}_1^{h_1} \mathfrak{p}_2^{h_2} \dots \mathfrak{p}_r^{h_r},$$

dessen Zähler in der reduzierten Form durch die Nullstellen, dessen

3. Untersuchung der rationalen Funktionen auf der ganzen Kugelfläche. 541

Nenner durch die Pole von Z eindeutig bestimmt ist. So ist z. B. für jeden Linearfaktor $z-\alpha$ bzw. $\frac{1}{z}$

$$z-\alpha=rac{\mathfrak{p}_{lpha}}{\mathfrak{p}_{\infty}}, \quad rac{1}{z}=rac{\mathfrak{p}_{\infty}}{\mathfrak{p}_{\circ}}.$$

Da eine rationale Funktion durch ihre Pole und Nullstellen bis auf eine multiplikative Konstante bestimmt ist, so kann man

$$Z = \mathfrak{q}_Z = e \, \frac{\mathfrak{n}_Z}{\mathfrak{d}_Z}$$

setzen, wenn man unter e den Anfangskoeffizienten der Entwicklung von Z in der Umgebung eines ein für alle Male festgewählten Punktes $\bar{\mathfrak{p}}$ (etwa von \mathfrak{p}_{∞}) versteht. Dann gehört zu dem Produkte bzw. dem Quotienten zweier Funktionen Z und Z' das Produkt $\mathfrak{q}_Z \cdot \mathfrak{q}_{Z'}$ bzw. der Quotient $\frac{\mathfrak{q}_Z}{\mathfrak{q}_{Z'}}$ seiner Divisoren.

Da eine rationale Funktion ebenso viele Nullstellen wie Pole besitzt, so ist die Ordnung eines jeden zu einer Funktion Z gehörigen Divisors \mathfrak{q}_Z gleich Null, und umgekehrt zeigt man leicht, daß zu jedem Divisor der Ordnung Null stets eine und nur eine Funktion des Körpers gehört.

Hieran schließt sich die Einteilung aller Divisoren in Klassen, welche für die hier betrachteten rationalen Divisoren sehr einfach ist, aber für das höhere Gebiet der algebraischen Divisoren von großer Wichtigkeit wird. Wir rechnen alle rationalen Divisoren $Z = \mathfrak{q}_Z$ in eine Klasse E, die sogenannte Einheits- oder Hauptklasse, welche einem Elemente Z des rationalen Körpers $\mathfrak{A}(z)$ gleich sind. Die Hauptklasse enthält also alle und nur die Divisoren nullter Ordnung. Allgemeiner nennen wir zwei Divisoren \mathfrak{q} und \mathfrak{q}' äquivalent und rechnen sie in eine Klasse Q, wenn ihr Quotient $\frac{\mathfrak{q}}{\mathfrak{q}'}$ ein Divisor der Hauptklasse oder also einer Funktion des Körpers gleich ist. Hieraus ergibt sich sofort, daß zwei Divisoren \mathfrak{q} und \mathfrak{q}' dann und nur dann in dieselbe Klasse gehören, wenn sie von gleicher Ordnung sind.

Es gibt unendlich viele Divisorenklassen, nämlich für jeden ganzzahligen Wert der Ordnungszahl eine einzige; z. B. gehört zur Ordnungszahl 1 die Klasse A, deren Divisoren (\mathfrak{pq}_z) alle einem beliebigen Primteiler \mathfrak{p} äquivalent sind; sie enthält überhaupt alle Primteiler, und diese sind die einzigen ganzen Divisoren dieser Klasse.

Sind Q und R zwei Divisorenklassen, \mathfrak{q} und \mathfrak{r} irgendwelche Divisoren derselben, so sind alle Produkte $\mathfrak{q}\mathfrak{r}$ die sämtlichen Divisoren einer einzigen neuen Klasse, welche durch QR bezeichnet werde; und ebenso bilden alle Quotienten $\frac{\mathfrak{q}}{\mathfrak{r}}$ eine andere Klasse, welche $\frac{Q}{R}$ ge-

nannt wird. Die Hauptklasse E ist die einzige, durch deren Multiplikation und Division eine beliebige Klasse Q nicht geändert wird, für welche also stets $QE = \frac{Q}{E} = Q$ ist. Ist A die oben charakterisierte Divisorenklasse erster Ordnung, so sind alle Divisorenklassen in der Reihe:

$$\dots$$
 A^{-2} , A^{-1} , E , A , A^{2} , \dots

enthalten.

II. Der Körper K(u, z) der algebraischen Funktionen einer Variablen.

4. Allgemeine Sätze über die algebraischen Funktionen. Aufgabe der Theorie der algebraischen Funktionen einer Veränderlichen ist die Untersuchung aller rationalen Funktionen $U = \varphi(u, z)$ der beiden Variablen u und z mit konstanten Koeffizienten unter der Voraussetzung, daß u Wurzel einer Gleichung n^{ten} Grades

(4)
$$f(u, z) = u^{-} - u_{n-1}(z)u^{n-1} + \dots + u_{0}(z) = 0$$

mit rationalen Funktionen von z als Koeftizienten ist. Man kann eine beliebig gegebene Funktion f(u,z) auf rationalem Wege in ihre irreduktiblen Faktoren zerlegen; deshalb kann und soll gleich vorausgesetzt werden, daß f(u,z) irreduktibel ist.⁴)

Jeder Stelle $\mathfrak p$ der unabhängigen Variablen (z=a, bzw. $z=\infty)$ entsprechen stets n gleiche oder verschiedene Zahlenwerte u_1, u_2, \ldots, u_n von u_i u_i ist also eine n-deutige Funktion von z. Jede symmetrische Funktion von $u_1, u_2, \ldots u_n$ ist eine rationale Funktion von z.

Die Gesamtheit aller Funktionen $U = \varphi(u, z)$ bildet einen Körper K(u, z). Jede Größe U dieses Körpers genügt ebenfalls einer sog. Hauptgleichung n^{ten} Grades

(4a)
$$F(U,z) = U^n - b_{n-1}(z)U^{n-1} + \dots + b_0(z) = 0,$$

deren linke Seite entweder selbst irreduktibel oder die Potenz einer irreduktiblen Funktion ist; jedes Element $U = \varphi(u, z)$ von K(u, z) ist also auch eine n-deutige Funktion von z, und zwar hängen für jede Stelle \mathfrak{p} von z die n konjugierten Zahlen U_i mit den Zahlen u_i durch die Gleichungen $U_i = \varphi(u_i, z)$ zusammen. Speziell heißt

(5)
$$n(U) = b_0(z) = U_1 U_2 \dots U_n$$

die Norm von U; es bestehen die Gleichungen

(3a)
$$n(UV) = n(U)n(V), \quad n\left(\frac{U}{V}\right) = \frac{n(U)}{n(V)}.$$

⁴⁾ Vgl. IB 1 b. 5.

Ferner heißt das Determinantenquadrat:

(6)
$$d(U) = |1, U_i, U_i^2, \dots U_i^{n-1}|^2 = \prod_{i \le k} (U_i - U_k)^2 \quad (i, k = 1, 2, \dots, n)$$
 die Diskriminante von U .

Ist d(U) nicht identisch Null, so heißt U eine primitive Funktion des Körpers; nur in diesem Falle ist die Hauptgleichung F(U, z) = 0 selbst irreduktibel.

Es seien endlich $U^{(1)}$, $U^{(2)}$, ..., $U^{(n)}$ n Funktionen des Körpers K(u, z), und es mögen allgemein:

(7)
$$U_i^{(1)}, U_i^{(2)}, \ldots, U_i^{(n)} \qquad (i = 1, 2, \ldots n)$$

die konjugierten Zahlenwerte derselben für irgendeinen Wert von z bedeuten. Dann heißt das allgemeinere Determinantenquadrat:

(8)
$$d(U^{(1)}, U^{(2)}, \ldots, U^{(n)}) = |U_i^{(1)}, U_i^{(2)}, \ldots, U_i^{(n)}|^2$$

die Diskriminante des Systems $(U^{(1)}, U^{(2)}, \ldots, U^{(n)})$. Die n Funktionen $U^{(i)}$ sind dann und nur dann rational abhängig, d. h. zwischen ihnen besteht eine homogene lineare Gleichung

$$c_1 U^{(1)} + c_2 U^{(2)} + \ldots + c_n U^{(n)} = 0$$

mit rationalen nicht sämtlich verschwindenden Koeffizienten $c_i(z)$, wenn ihre Diskriminante identisch Null ist.

Jede Funktion U des Körpers K(u,z) kann auf eine einzige Weise in der Form:

(9)
$$U = c_0 + c_1 u + c_2 u^2 + \ldots + c_{n-1} u^{n-1}$$

mit rationalen Funktionen von z als Koeffizienten dargestellt werden, Daher heißt das System $(1, u, ..., u^{n-1})$ eine Basis des Körpers K(u, z). Allgemeiner bildet das System $(1, U, ..., U^{n-1})$ eine Basis des Körpers, wenn U eine primitive Funktion, also $d(U) \geq 0$ ist, und das Gleiche gilt für jedes System $(U^{(1)}, U^{(2)}, ..., U^{(n)})$, dessen Elemente rational unabhängig sind, dessen Diskriminante $d(U^{(1)}, U^{(2)}, ..., U^{(n)})$ also nicht Null ist.⁵)

⁵⁾ Die Entwicklungen von Nr. 4 werden bei H.-L. unter Benutzung konjugierter Zahlenwerte einer Funktion durchgeführt. Da bei D.-W. auf Benutzung der Reihenentwicklungen verzichtet wird und die Möglichkeit, für jeden Wert von z den Funktionen des Körpers gewisse Werte beizulegen, erst am Schlusse der Untersuchung begründet wird, muß dort auf mehr formale Betrachtungen zurückgegriffen werden, die ähnlich durchgeführt werden wie in der Idealtheorie. (Vgl. z. B. Dirichlet-Dedekind, Vorlesungen über Zahlentheorie, 4. Aufl. 1894, p. 487 ff.)

Ist η_1, \ldots, η_n eine Basis, und ξ eine beliebige Funktion des Körpers, so lassen sich die Produkte $\xi \eta_1, \ldots, \xi \eta_n$ durch die Basis (η_i) so darstellen: $\xi \eta_k = \sum_{i=1}^{i=n} y_{k,i} \eta_i (k=1,\ldots,n)$, wo $y_{k,i}$ rationale Funktionen von z sind. An die

5. Untersuchung der Funktionen des Körpers $K(u, \varepsilon)$ in der Umgebung einer Stelle der unabhängigen Variablen. der Umgebung einer endlichen oder der unendlich fernen Stelle $\psi(z=\alpha \text{ oder } z=\infty)$ der Variablen z sind die Koeffizienten $a_i(z)$ der Grundgleichung (4) in nach ganzen Potenzen der Entwicklungsfunktion $p\left(z-\alpha \text{ bzw. } \frac{1}{z}\right)$ fortschreitende Potenzreihen entwickelbar, d. h. sie gehören dem umfassenderen Körper $\overline{K}(\mathfrak{p})$ der Potenzreihen in \mathfrak{p} an. Während nun die linke Seite f(u,z) der Grundgleichung im Körper K(z) der rationalen Funktionen von z als unzerlegbar vorausgesetzt werden konnte, ist sie dies in dem weiteren Bereich $\widehat{K}(\mathfrak{p})$ der Potenzreihen in \mathfrak{p} im allgemeinen nicht, sondern sie zerfällt in ein Produkt von unter sich verschiedenen unzerlegbaren Faktoren, deren Koeffizienten $c_i(\mathfrak{p})$ für die Umgebung der Stelle p rationalen Charakter haben, ohne doch rationale Funktionen von z zu sein. Auch hier gibt es ein rationales endliches Verfahren, um diese Zerlegung mit jeder vorgegebenen Genauigkeit zu machen, und

sich daraus für 5 ergebende Hauptgleichung:

$$(-1)^{n} q(\xi) = \begin{cases} y_{11} - \xi, & y_{12}, & \dots, & y_{1n}, \\ y_{21}, & y_{22} - \xi, & \dots, & y_{2n}, \\ \vdots & & & & & = 0, \\ y_{n1}, & y_{n2}, & \dots, & y_{nn} - \xi \end{cases} \Rightarrow 0,$$

deren Unabhängigkeit von der Wahl der Basis aus dem Multiplikationssatz der Determinanten folgt, knüpfen die weiteren Definitionen an. Die Norm $n(\xi)$ von ξ definieren D.-W. als die Determinante y_{ik} (i, k = 1, ..., n). Es folgt dann, daß für jede rationale Funktion t von z $\varphi(t) = n(t - \xi)$ ist. Die Spur $s(\xi)$ von ξ wird als $y_{11} + y_{22} + \cdots + y_{nn}$ definiert. (Die Funktion $\varphi(t)$ stimmt mit der Funktion $(t - \xi)(t - \xi_1) \dots (t - \xi_{n-1})$ überein, wo ξ_1, \dots, ξ_{n-1} die zu ξ konjugierten Funktionen sind.) Alle Eigenschaften der Funktionen $\varphi(t), n(\xi), s(\xi)$ werden nun durch entsprechende Wahl der Basis (η_i) bewiesen. Die Diskriminante eines Systems von n Funktionen (η_i) (i = 1, ..., n) wird durch die Gleichung:

$$\Delta(\eta_1,\ldots,\eta_n) = S(\eta_i\eta_k) \qquad (i,k=1\ldots n)$$

definiert, ohne Benutzung der konjugierten Basen. Die Diskriminante einer Funktion U wird als $\triangle(1, U, ..., U^{n-1})$ definiert. Die Ausdrücke aller dieser Größen durch konjugierte Werte einer Funktion werden bei D-W. erst nach Einführung der absoluten Riemannschen Fläche abgeleitet, p. 243—247 (§ 16. Konjugierte Werte und konjugierte Punkte). [O]

In der Abhandlung "Neue Begründung der arithmetischen Theorie der algebraischen Funktionen einer Variablen", Math. Ztschr. 5 (1919), p. 118—131, führt Hensel diese Theorie auf diejenige der Kongruenzkörper $K(u, \bmod f(u, z))$ aller modulo f(u, z) ganzen rationalen Funktionen von u mit in z rationalen Koeffizienten für f(u, z) als Modul zurück. Die in Nr. 5—7 gegebene Darstellung der Theorie knüpft an diese Arbeit an.

sie ist nur auf eine einzige Art möglich. Somit kann und soll die Untersuchung zunächst auf den einfachsten Fall beschränkt werden, daß die linke Seite der Grundgleichung f(u,z) selbst nicht bloß für den Bereich K(z) der rationalen Funktionen, sondern auch für den Bereich $\overline{K}(\mathfrak{p})$ der Potenzreihen in \mathfrak{p} irreduktibel ist.

6. Die Grundgleichung ist für den Bereich $\overline{K}(\mathfrak{p})$ irreduktibel. Wir betrachten zuerst die Gesamtheit aller rationalen Funktionen $U = \varphi(u, \mathfrak{p})$ von u, deren Koeffizienten Potenzreihen in \mathfrak{p} sind modulo f(u, z). Auch sie bilden einen Körper $\overline{K}(u, \mathfrak{p})$, welcher aus dem Körper $\overline{K}(\mathfrak{p})$ der konvergenten oder nicht konvergenten Potenzreihen in \mathfrak{p} durch Hinzunahme oder Adjunktion des einen Elementes u hervorgeht. Jede dieser Funktionen U läßt sich modulo f(u, z) auf eine einzige Weise in der Form:

(10)
$$U = a_0 + a_1 u + a_2 u^2 + \ldots + a_{n-1} u^{n-1}$$

mit Koeffizienten in $\overline{K}(\mathfrak{p})$ darstellen. Die rationalen Funktionen von u und z, d. h. die Funktionen des Körpers K(u,z), bilden einen Teilkörper dieses Körpers, alle für diesen gefundenen Ergebnisse gelten demnach auch für den Körper K(u,z). Jede Funktion U genügt wieder einer Hauptgleichung

(11)
$$F(U, \mathfrak{p}) = U^{n} - b_{n-1}(\mathfrak{p}) U^{n-1} + \cdots + b_{0}(\mathfrak{p}) = 0,$$

deren Koeffizienten Potenzreihen in $\mathfrak p$ sind, und welche in $\overline{K}(\mathfrak p)$ entweder selbst irreduktibel oder die Potenz einer irreduktiblen Funktion ist. Durch die Voraussetzung der Irreduktibilität der Grundgleichung für den Bereich $\overline{K}(\mathfrak p)$ gestalten sich die folgenden Überlegungen sehr einfach.

Auch hier werde dem Werte $z=\alpha$ bzw. $z=\infty$, welchem im Körper der rationalen Funktionen von z die Stelle $\mathfrak p$ bzw. $\mathfrak p_\infty$ entspricht, im Körper K(u,z) der rationalen Funktionen von u und z eindeutig eine einzige Stelle $\mathfrak P$ bzw. $\mathfrak P_\infty$ zugeordnet. Dieselbe Stelle ordnen wir auch jenem Werte von z für den größeren Körper $\overline{K}(u,\mathfrak p)$ der rationalen Funktionen von u mit Potenzreihen in $\mathfrak p$ als Koeffizienten zu.

Ein Element U heißt algebraisch ganz oder gebrochen, je nachdem alle Koeffizienten $b_i(\mathfrak{p})$ seiner Hauptgleichung (11) ganz sind oder nicht. Aus der Irreduktibilität der Grundfunktion f(u, z) folgt dann der Fundamentalsatz:

Ein Element U des Körpers $K(u, \mathfrak{p})$ ist algebraisch ganz oder gebrochen, je nachdem seine Norm $n(U) = b_0(\mathfrak{p})$ ganz oder gebrochen ist.

Hieraus ergeben sich sofort die Sätze, daß die Summen, die Diffe-

renzen und die Produkte von ganzen Elementen wieder ganz sind, daß diese also einen Ring im Körper $\overline{K}(u,\mathfrak{p})$ bilden. Von zwei beliebigen Elementen U und V heißt das erste durch das zweite teilbar, wenn $\frac{U}{V}$ ganz, wenn also n(U) durch n(V) teilbar ist, sie heißen äquivalent, wenn ihre Normen gleiche Ordnungszahl haben. Ein Element ε heißt eine Einheit, wenn $n(\varepsilon)$ eine Einheit ist. Äquivalente Elemente unterscheiden sich hiernach um eine multiplikative Einheit ε .

Unter den ganzen Elementen gibt es solche, deren Norm eine positive aber möglichst kleine Ordnungszahl hat; jedes solche Element π heißt eine Primfunktion für den Körper $\overline{K}(u,\mathfrak{p})$ oder die ihnen zugeordnete Stelle \mathfrak{P} . Jedes andere Element U ist eindeutig in der Form $\varepsilon \pi^a$ darstellbar, wo ε eine Einheit bedeutet; die von der Auswahl von π unabhängige ganze Zahl a heißt die Ordnungszahl von U für die Stelle \mathfrak{P} . Im Körper $\overline{K}(u,\mathfrak{p})$ hört also das Element p auf, eine Primfunktion zu sein; an seine Stelle tritt das Element π oder irgendein äquivalentes $\pi' = \varepsilon \pi$.

Zwei Elemente U und U' heißen modulo \mathfrak{P}^{ϱ} kongruent, wenn sie modulo π^{ϱ} kongruent sind, wenn also U-U' durch π^{ϱ} algebraisch teilbar ist; sie heißen für die Stelle \mathfrak{P} gleich, wenn sie für jede noch so hohe Potenz von \mathfrak{P} kongruent sind. Dies ist stets und nur dann der Fall, wenn jene beiden Elemente nicht verschieden sind.

Jedes ganze Element U ist modulo $\mathfrak P$ einer einzigen endlichen Konstanten c kongruent, nämlich derjenigen Zahl c, für welche n(c-U) durch p teilbar ist. Allgemeiner ist jedes ganze oder gebrochene Element für eine beliebige Potenz $\mathfrak P^r$ von $\mathfrak P$ einer einzigen Reihe

$$c_{\alpha}\pi^{\alpha} + c_{\alpha+1}\pi^{\alpha+1} + \cdots + c_{r-1}\pi^{r-1}$$

mit konstanten Koeffizienten kongruent.

Wir betrachten nur den Körper $\overline{K}(\mathfrak{P})$ aller Potenzreihen

$$(12) c_a \pi^a + c_{a+1} \pi^{a+1} + \cdots + c_r \pi^r + \cdots$$

in π mit konstanten Koeffizienten, gleichgültig, ob sie in einer endlichen Umgebung der Stelle $\mathfrak P$ konvergieren oder nicht, bezeichnen die Reihe der Elemente $c_a\pi^a, c_a\pi^a+c_{a+1}\pi^{a+1},\ldots$ als ihre Näherungswerte und nennen zwei solche Reihen wieder kongruent modulo $\mathfrak P$, wenn alle ihre Näherungswerte modulo $\mathfrak P$ r kongruent sind. Wir nennen sie gleich für den Bereich von $\mathfrak P$, wenn sie für jede Potenz von $\mathfrak P$ kongruent, wenn sie also identisch sind Endlich soll ein Element U von $\overline{K}(u,\mathfrak P)$ und eine solche Potenzreihe gleich genannt werden, wenn sie für jede noch so hohe Potenz von $\mathfrak P$ kongruent sind.

Dann ist jedes Element des Körpers $\overline{K}(u, \mathfrak{p})$ einer einzigen Potenzreihe von $\overline{K}(\mathfrak{P})$ gleich und umgekehrt, diese beiden Körper sind also identisch.

Hieraus folgt nun, daß jede Primfunktion π ein primitives Element innerhalb $\overline{K}(u, \mathfrak{p})$ ist, und daß $n(\pi) = pE(p)$ von der ersten Ordnung ist. Die Primfunktionen sind also vollständig durch den folgenden wichtigen Satz charakterisiert:

Eine algebraische Funktion π ist stets und nur dann für den algebraischen Körper $\overline{K}(u, \mathfrak{p})$ eine Primfunktion, wenn ihre Norm $n(\pi)$ für den rationalen Körper $\overline{K}(\mathfrak{p})$ eine Primfunktion ist. Hieraus folgt sofort der allgemeinere Satz:

Besitzt $U = \varepsilon \pi^a$ in der Stelle \mathfrak{P} die Ordnungszahl a, so hat n(U) in der zugeordneten Stelle \mathfrak{p} die gleiche Ordnungszahl.

Unter den äquivalenten Primfunktionen kann man π stets so auswählen, daß es der einfachsten Gleichung

(13)
$$\pi^{n} - (\varepsilon - e) = 0$$
 bzw. $\pi^{n} - \frac{1}{\varepsilon} = 0$

genügt. Die n konjugierten Werte dieser Primfunktion sind also

(13a)
$$\pi_i = w^i(z - \alpha)^{\frac{1}{n}}$$
 bzw. $\pi_i = w^i(\frac{1}{z})^{\frac{1}{n}}$ $(i = 0, 1, \dots n - 1)$

wo w eine primitive n^{te} Einheitswurzel bedeutet. Im Folgenden wird meistens diese Primfunktion benutzt werden.

Es sei nun U ein beliebiges Element des Körpers $K(u,\mathfrak{p})$ und $F(U,\mathfrak{p})=0$ die zugehörige Hauptgleichung n^{ter} Grades, ferner möge für die Primfunktion $\pi=(z-a)^{\frac{1}{n}}$ bzw. $\left(\frac{1}{z}\right)^{\frac{1}{n}}$

$$U_1 = c_a \pi^a + c_{a+1} \pi^{a+1} + \cdots$$
 (3)

die Darstellung von U für den Bereich von $\mathfrak P$ sein und es bedeuten:

$$U_{i} = c_{a} \pi_{i}^{a} + c_{a+1} \pi_{i}^{a+1} + \cdots$$

$$= c_{a} w^{ia} \pi^{a} + c_{a+1} w^{i(a+1)} \pi^{a+1} + \cdots \quad (\mathfrak{P}) \quad (i = 2, 3, ..., n)$$

die n-1 zu U_1 konjugierten Potenzreihen, welche alle die gleiche Ordnungszahl a besitzen.⁶) Dann zerfällt die linke Seite der Hauptgleichung im Körper $\overline{K}(\mathfrak{P})$ eindeutig in das Produkt der n Linearfaktoren:

(14)
$$F(U, \mathfrak{p}) = (U - U_1)(U - U_2) \cdots (U - U_n) \qquad (\mathfrak{P}).$$

Aus diesem Grunde sollen dem Elemente U für den Bereich der Stelle

⁶⁾ An die Reihenentwicklungen knüpft die Definition der Ordnungszahl einer algebraischen Funktion an einer bestimmten Stelle zuerst Weierstraß an. V. 1873. B.-N., p 381; H.-L., p. 141—145. [0]

 \mathfrak{P} diese n Potenzreihen U_i zugeordnet und als die n konjugierten Wurzeln der Gleichung $F(U,\mathfrak{p})=0$ für den Bereich jener Stelle bezeichnet werden. Dieselben sind stets und nur dann voneinander verschieden, wenn U ein primitives Element ist, und es ist $n(U)=U_1\ldots U_r$.

Betrachtet man an Stelle des Körpers $\widehat{K}(u, \mathfrak{p})$ aller modulo f(u, z)ganzen rationalen Funktionen von u mit konvergenten oder nicht konvergenten Koeffizienten in $\bar{K}(\mathfrak{p})$ nur den Bereich $K(u,\mathfrak{p})$ der rationalen Funktionen von u mit konvergenten Potenzreihen in p als Koeffizienten, so bilden auch diese einen Körper, also einen Teilkörper von $\widetilde{K}(u, \mathfrak{p})$, wenn die Grundfunktion f(u, z) auch innerhalb $K(\mathfrak{p})$ unzerlegbar ist; auch dieser enthält den zu untersuchenden Körper K(u,z)der rationalen Funktionen von z und u als Teilkörper. Jedes Element U dieses Körpers $K(u, \mathfrak{p})$ genügt einer Hauptgleichung $F(U, \mathfrak{p}) = 0$ mit konvergenten Koeffizienten, deren linke Seite für den Bereich von B ebenfalls in das Produkt der u konjugierten Linearfaktoren (14) zerfällt. Dann kann man wieder durch Majorantenbildung den Nachweis führen 6a), daß in diesem Falle die n konjugierten Wurzeln $U_1, U_2, \ldots U_n$ konvergente Potenzreihen sind. Diese Reihen stellen auch die n konjugierten Wurzeln der Gleichung $F(U, \mathfrak{p}) = 0$ für alle Werte von z in einer endlichen Umgebung der Stelle α dar. Man nennt sie die zur Stelle & gehörigen Funktionselemente für die algebraische Funktion U.

Geometrisch betrachtet können diese Werte der algebraischen Funktion U in der Umgebung der Stelle $\mathfrak P$ eindeutig auf n Blättern ausgebreitet werden, welche in einem n-blättrigen Verzweigungspunkte zusammenhängen, der jetzt ebenfalls durch $\mathfrak P$ bezeichnet werde. So entspricht dann dem Punkte $\mathfrak P$ auf der einblättrigen Kugelfläche $\mathfrak R$ dieser n-blättrige Verzweigungspunkt $\mathfrak P$ eindeutig.

7. Allgemeiner Fall: Die Grundgleichung zerfällt innerhalb $K(\mathfrak{p})$ in mehrere irreduktible Faktoren. Es werde jetzt der allgemeinste Fall betrachtet, daß die Grundgleichung innerhalb des Körpers $K(\mathfrak{p})$ der konvergenten Potenzreihen für \mathfrak{p} reduktible sei; dann zerfällt sie in ein eindeutig bestimmtes Produkt irreduktibler Faktoren. Es sei:

(15)
$$f(u,z) = f_1(u, \mathfrak{p}) f_2(u, \mathfrak{p}) \dots f_r(u, \mathfrak{p})$$

diese Zerlegung, $\lambda_1,\lambda_2,\ldots\lambda_r$ seien die Grade der ν irreduktiblen Faktoren in u. Dann folgt aus der Anwendung der soeben gefun-

⁶a) H.-L, p. 68-73. Im Gegensatz zu "E. N.", p. 184, glaube ich, daß auch diese Majorantenmethode als rein arithmetische anzusehen ist; hierauf werde ich an anderer Stelle zurückkommen.

7. Die Grundgleichung zerfällt innerhalb $K(\mathfrak{p})$ in mehrere Faktoren. 549

denen Ergebnisse auf die einzelnen irreduktiblen Gleichungen, daß die n Wurzeln der Grundgleichung in ν Zyklen

(16)
$$u_1^{(1)}, \dots u_{\lambda_1}^{(1)}; u_1^{(2)}, \dots u_{\lambda_2}^{(2)}; \dots; u_1^{(\nu)}, \dots u_{\lambda_{\nu}}^{(\nu)}$$

zerfallen; jeder Zyklus enthält die Wurzeln von je einem dieser irreduktiblen Faktoren. Allgemein können die Wurzeln $u_1^{(i)}, u_2^{(i)}, \dots u_{\lambda_j}^{(i)}$ von $f_i(u, \mathfrak{p}) = 0$ in konjugierte Potenzreihen entwickelt werden, welche

nach ganzen Potenzen von $(z-a)^{\lambda_i}$ bzw. $\binom{1}{z}^{\lambda_i}$ fortschreiten und höchstens eine endliche Anzahl von Gliedern mit negativem Exponenten enthalten. Diese Reihen stellen λ_i unter den n Wurzeln der Grundgleichung für eine endliche Umgebung der Stelle $\mathfrak p$ dar und sind in dieser Umgebung (eventuell mit Ausnahme des Punktes $\mathfrak p$ selbst) stetige Funktionen ihres Argumentes. Genau dasselbe gilt für die Wurzeln der Hanptgleichung F(U,z)=0, der ein beliebiges Element U des Körpers K(u,z) genügt und deren linke Seite für den Bereich von $\mathfrak p$ in gleicher Weise zerfällt.

Wir ordnen nun der Stelle $\mathfrak p$ im rationalen Körper K(z) die ν Stellen $\mathfrak P_1, \mathfrak P_2, \ldots \mathfrak P_{\nu}$ in dem algebraischen Körper K(u,z) zu, entsprechend den ν für den Bereich $K(\mathfrak p)$ irreduktiblen Faktoren $f_i(u,\mathfrak p)$ der Grundgleichung bzw. den ν Zyklen $u_1^{(i)}, u_2^{(i)}, \ldots u_{\lambda_{\nu}}^{(i)}$ ihrer Wurzeln, und sagen allgemein, daß jede Funktion U des Körpers K(u,z) in der Umgebung der Stelle $\mathfrak P_i$ die λ_i konjugierten Darstellungen besitzt, welche aus einer unter ihnen:

(17)
$$U = a_{\varrho_i}(z - \alpha)^{\frac{\varrho_i}{\lambda_i}} + a_{\varrho_i + 1}(z - \alpha)^{\frac{\varrho_i + 1}{\lambda_i}} + \cdots$$

durch Ersatz der Wurzel $(z-a)^{\lambda_i}$ durch ihre konjugierten $w_i^a(z-a)^{\hat{\lambda}_i}$ für $a=0,1,\dots(\lambda_i-1)$ hervorgehen. Jeder dieser Stellen \mathfrak{P}_i ordnen wir endlich einen gleichbezeichneten Primteiler \mathfrak{P}_i zu und setzen fest, daß U genau durch $\mathfrak{P}_i^{\varrho_i}$ teilbar heißen soll, wenn U in der Stelle \mathfrak{P}_i die Ordnungszahl ϱ_i besitzt. Diese Stelle ist eine ein- oder mehrfache Nullstelle oder ein Pol, je nachdem ϱ_i eine positive oder negative Zahl ist. Speziell ist der der Stelle \mathfrak{P} zugeordnete Linearfaktor z-a bzw. Legenau durch $\mathfrak{P}_i^{\lambda_i}$ teilbar. Geometrisch können die Werte der algebraischen Funktion U in der Umgebung der Stelle \mathfrak{P}_i eindeutig

37

⁷⁾ Der Gedanke, die Definition der Stelle des algebraischen Gebildes an die Reihenentwicklungen zu knüpfen, rührt von Weierstraβ her. V. 1873, B.-N., p. 379; Baker, Math. Ann. 45 (1892); die Benutzung der für den Bereich K(p) irreduktiblen Faktoren der Grundgleichung wird durch zahlentheoretische Analoga nahe gelegt. Vgl. Hensel, Theorie der algebraischen Zahlen, Leipzig, p. 168 ff. [O]

auf die λ_i Blätter ausgebreitet werden, welche in einem λ_i -blättrigen Verzweigungspunkte, der jetzt ebenfalls \mathfrak{P}_i genannt werde, zusammenhängen. So entspricht dann dem Punkte \mathfrak{P} auf der einblättrigen Kugelfläche eindeutig das System der ν Verzweigungspunkte $\mathfrak{P}_1, \mathfrak{P}_2, \ldots \mathfrak{P}_r$ von je $\lambda_1, \lambda_2, \ldots \lambda_r$ Blättern, oder dem rationalen Primteiler \mathfrak{P} das System der ν algebraischen Primteiler $\mathfrak{P}_1, \mathfrak{P}_2, \ldots \mathfrak{P}_r$. Man sagt, ein Primteiler \mathfrak{P} besitzt die Verzweigungsordnung $\lambda-1$, wenn in dem zugehörigen Punkte \mathfrak{P} λ Blätter zusammenhängen, oder wenn der zugeordnete irreduktible Faktor der Grundgleichung vom λ^{ten} Grade ist. Es gibt nur eine endliche Anzahl von Primfaktoren einer positiven Verzweigungsordnung; alle übrigen Punkte heißen regulär; für sie schreitet die eine zugehörige Potenzreihe $U(\mathfrak{P})$ nach ganzen Potenzen des Linearfaktors $z-\alpha$ bzw. $\frac{1}{z}$ fort; sie gehört also selbst dem Körper $K(\mathfrak{p})$ der konvergenten Potenzreihen in \mathfrak{p} an.

8. Die dem Körper K(u,z) zugeordnete Riemannsche Kugelfläche $\mathfrak{K}_{z}.^{8}$) Man kann die Werte, welche u oder eine beliebige Funktion U von K(u,z) für alle Werte der unabhängigen Variablen annimmt, eindeutig und im allgemeinen stetig entweder auf n unendlich nahe untereinander gelagerten komplexen Zahlenebenen oder, was anschaulicher ist, auf n unendlich nahen ineinander liegenden konzentrischen Einheitskugeln \Re_1 , \Re_2 , ... \Re_n ausbreiten. Diese letzteren mögen in der Einheitskugel \Re für die unabhängige Variable z und konzentrisch zu dieser liegen. Es sei nun $\mathfrak{p}^{(\cdot)}$ ein Punkt von \mathfrak{R} , welchem n reguläre Punkte $\mathfrak{P}_1^{(0)}, \mathfrak{P}_2^{(0)}, \ldots \mathfrak{P}_n^{(0)}$ entsprechen, und diese mögen durch die genau unter $\mathfrak{p}^{(0)}$ liegenden Punkte von $\mathfrak{R}_1, \mathfrak{R}_2, \ldots \mathfrak{R}_n$ repräsentiert werden; ferner sollen die zugehörigen Potenzreihen $u(\mathfrak{P}_1^{(0)}), u(\mathfrak{P}_2^{(0)}), \ldots u(\mathfrak{P}_n^{(0)})$ sämtlich regulär sein. Denkt man sich nun in bekannter Weise diejenigen Punkte, welche Verzweigungsstellen und Polen von u entsprechen, durch kleine Kreise ausgeschlossen, und diese Kreise durch Schnitte verbunden, setzt man dann jene n Funktionselemente simultan über diese n zerschnittenen Kugelflächen analytisch fort und heftet sie endlich in geeigneter Weise zusammen, so erhält man den Wertevorrat von u eindeutig und, mit Ausnahme der Pole, auch stetig auf der so gewonnenen $Riemannschen Kugelfläche <math>\Re_{z}$ ausgebreitet. Die n-blättrige Riemannsche Fläche \Re_z wird jetzt von der einblättrigen Fläche & so umhüllt, daß die jedem Punkte p von A zugeordneten Punkte B1, B2, ... B, von R2 genau untereinander und unter \mathfrak{p} liegen. Jede Funktion U von K(u,z) ist dann auf der Ricmannschen Fläche \Re_z eindeutig und bis auf eine endliche Anzahl

⁸⁾ Vgl. II B 1, Nr. 11-12, 22; II B 2, Nr. 4-6. [0]

9. Direkte Berechnung der zu einer Stelle p gehörigen Wurzelzyklen. 551

von Polen auch stetig, und umgekehrt gehört jede analytische Funktion, welche diese Eigenschaften besitzt, dem Körper $\Re(u, z)$ an.

Die n-blättrige Kugelfläche \Re_z ist dann und nur dann zusammenhängend im Sinne der Analysis Situs, wenn die Grundgleichung n^{ten} Grades für u innerhalb des Körpers K(z) irreduktibel ist⁹); und allein in diesem Falle wird durch sie u als eine einzige analytische Funktion von z definiert.

9. Direkte Berechnung der zu einer Stelle $\mathfrak p$ gehörigen Wurzelzyklen. 10) Das zu $\mathfrak p$ gehörige Diagramm. Die direkte Auffindung der zu einer Stelle $\mathfrak p(z=a$ bzw. $z=\infty)$ gehörigen Wurzelzyklen $u(\mathfrak P_i)$ wird durch eine Erweiterung des sogenannten Newtonschen Diagramms wesentlich erleichtert. Sei:

(18)
$$f(u,z) = A_0(z) + A_1(z)u + \dots + A_n(z)u^n = 0$$

die Grundgleichung für K(u, z), und es sei allgemein für die Stelle \mathfrak{p} :

(19)
$$A_i(z) = a_i(z-\alpha)^{\varrho_i} + \cdots$$
 bzw. $A_i(z) = a_i\left(\frac{1}{z}\right)^{\varrho_i} + \cdots$

Dann fixieren wir in bezug auf ein rechtwinkliges Koordinatensystem die n Punkte:

$$\mathfrak{A}_0 = (0, \varrho_0), \ \mathfrak{A}_1 = (1, \varrho_1), \ldots \mathfrak{A}_n = (n, \varrho_n).$$

Man verbinde dann den letzten Punkt \mathfrak{A}_n mit demjenigen Punkte \mathfrak{A}_t , welcher von \mathfrak{A}_n aus gesehen am tiefsten, und, falls es deren mehrere geben sollte, außerdem möglichst entfernt von \mathfrak{A}_n liegt, und ziehe die Sehne $\mathfrak{A}_n\mathfrak{A}_t$; hierauf mache man von \mathfrak{A}_t aus dieselbe Konstruktion und fahre so lange fort, bis \mathfrak{A}_0 erreicht ist. So erhält man ein nach unten konvexes Polygon $\mathfrak{A}_n\mathfrak{A}_t\mathfrak{A}_s\ldots\mathfrak{A}_0$, durch welches das Punktsystem nach unten begrenzt wird. Dann gehören zu jeder dieser Begrenzungssehnen etwa zu $\mathfrak{A}_t\mathfrak{A}_s$ genau t-s Wurzeln $u(\mathfrak{B})=e_0^{(i)}(z-a)^{e_0}+e_1^{(i)}(z-a)^{e_1}+\cdots$, deren Anfangsexponenten e_0 alle dieselben und zwar gleich der Steigung $-\frac{\varrho_t-\varrho_s}{t-s}$ der betreffenden Sehne sind; die t-s Anfangskoeffizienten $e_0^{(i)}$ sind die t-s von Null verschiedenen Wurzeln der Gleichung:

(20)
$$\varphi(e) = a_t e^t + \dots + a_k e^k + \dots + a_s e^s = 0.$$

In dieser Gleichung sind $a_i, \dots a_k, \dots a_s$ die Anfangskoeffizienten derjenigen Gleichungskoeffizienten $A_i(z)$ in (18), für welche die zugehörigen Diagrammpunkte $\mathfrak{A}_i, \dots \mathfrak{A}_k, \dots \mathfrak{A}_s$ auf der betreffenden Begrenzung-sehne $\mathfrak{A}_i \mathfrak{A}_s$ liegen.

⁹⁾ Der Satz stammt von Puiseux her. Vgl. II B 1, Anm. 58. [O]

¹⁰⁾ Vgl. II B 2, Nr. 2-3. [O]

Durch Fortsetzung desselben Verfahrens kann man das zweite Glied $e_i^{(i)}(z-a)^{\epsilon_i}$ einer beliebigen Wurzel u_i berechnen usf., und die Konvergenz der n so sich ergebenden Potenzreihen $u(\mathfrak{P})$ vollständig nachweisen. Für jeden der v für die Stelle \mathfrak{p} irreduktiblen Faktoren $f_i(u,\mathfrak{p})$, deren Wurzeln einem Verzweigungspunkte entsprechen, besitzt das zugehörige Newtonsche Diagramm eine einzige Seite, und die zugehörige Funktion $\varphi_i(e)$ hat die Form:

(21)
$$q_i(e) = (e^{l_0} - c_0^{l_0})^{\delta} = 0$$

wo $l_0 \delta = \lambda_i \text{ ist.}^{12}$

10. Untersuchung der algebraischen Funktionen des Körpers für alle Stellen der Riemannschen Kugelfläche \Re_z . Die algebraischen Divisoren. Es seien wie in Nr. 3 \Re_1 , \Re_2 , ... \Re_r r beliebige Punkte der Kugelfläche \Re_z und zugleich die ihnen zugeordneten Primteiler; sind ferner $h_1, h_2, \ldots h_r$ beliebige ganze Zahlen einschließlich Null, so stellen wir genau dieselbe Definition wie a a. O. für die Teilbarkeit einer algebraischen Funktion U durch den algebraischen Teiler oder Divisor:

$$\mathfrak{Q} = \mathfrak{P}_1^{h_1} \mathfrak{P}_2^{h_2} \cdots \mathfrak{P}_r^{h_r}$$

auf. Auch hier heißt die Zahl $q = h_1 + h_2 + \cdots + h_r$ die Ordnung von \mathfrak{Q} , und \mathfrak{Q} heißt ein ganzer Divisor, wenn alle Exponenten nicht negativ sind; sonst wird \mathfrak{Q} ein gebrochener Divisor genannt. Wir definieren das Produkt $\mathfrak{Q}\mathfrak{N}$ und den Quotienten $\mathfrak{Q}/\mathfrak{N}$ zweier Divisoren

$$f(u, z) = A_0(z) + A_1(z)u + \cdots + A_n(z)u^n$$

in u mit Potenzreihen von z als Koeffizienten durch die oben entwickelte Konstruktion ein Diagramm zuordnen. Dann gilt der Satz von Dumas (Thèse Paris [1904], p. 13): Das Diagramm eines Produktes von zwei oder mehreren Polynomen in u ent-teht aus den Diagrammen der einzelnen Faktoren, wenn man die einzelnen Seiten dieser Diagramme nach steigenden Neigungen anordnet und dann mit ihnen die Figur bildet, die zur Konstruktion ihrer geometrischen Summen dient. Läßt man bei den Polynomen in u nur solche Potenzreihen als Koeffizienten zu, die nach ganzen Potenzen von z fortschreiten, so gelten die weiteren Sätze (G. Dumas, ebenda p. 16): Jedes Polynom, dessen Diagramm gebrochen ist, ist reduzibel. Jeder Seite des Diagramms entspricht ein Teiler des Polynoms, dessen Diagramm aus nur einer Seite von derselben Neigung und Länge besteht, und, bis auf eine Potenzreihe von z als Faktor, nur ein solcher Teiler. Die Sätze bleiben bestehen, wenn man den Potenzreihen, die als Koeffizienten auftreten, die Bedingung auferlegt, einen nicht verschwindenden Konvergenzbereich zu besitzen. Diese Sätze verwendet dann Dumas zur Ableitung von Reihenentwicklungen. Ein älteres Verfahren von Brill (Münch, Ber. 21 [1892], p. 207) beruht ebenfalls auf sukzessiver Zerlegung der linken Seite der Grundgleichung. [O]

¹¹⁾ H.-L. (1902), p. 47-77.

¹²⁾ Allgemeiner kann man jedem Polynom

genau wie in Nr. 3. Jeder gebrochene Divisor läßt sich dann wieder als Quotient $\mathfrak{Q} = \frac{\delta}{n} = \frac{\delta \mathfrak{g}}{n\mathfrak{g}}$ zweier ganzer Divisoren in der reduzierten oder auch in einer mit dem beliebigen ganzen Divisor \mathfrak{g} erweiterten Form darstellen. Auch der Begriff der Teilbarkeit eines Divisors durch einen anderen sowie der des größten gemeinsamen Teilers $\mathfrak{D} = (\mathfrak{Q}_1, \mathfrak{Q}_2, \dots \mathfrak{Q}_r)$ mehrerer ganzer oder gebrochener Divisoren wird genau ebenso wie in der reinen Arithmetik definiert. Dieser größte gemeinsame Teiler ist dann und nur dann ganz, wenn das Gleiche für alle Divisoren \mathfrak{Q}_r gilt.

Ist \mathfrak{P} ein beliebiger algebraischer und \mathfrak{p} der ihm zugeordnete rationale Divisor, so wollen wir \mathfrak{p} die *Norm* von \mathfrak{P} nennen und dieses Verhältnis durch die Gleichung $\mathfrak{p} = n(\mathfrak{P})$ ausdrücken; allgemeiner verstehen wir unter der Norm eines beliebigen algebraischen Divisors $\mathfrak{D} = \mathfrak{P}_1^{h_1}\mathfrak{P}_2^{h_2}\cdots\mathfrak{P}_r^{h_r}$ den zugeordneten rationalen Divisor:

(23)
$$\mathfrak{q} = n(\mathfrak{Q}) = \mathfrak{p}_1^{h_1} \mathfrak{p}_2^{h_2} \cdots \mathfrak{p}_r^{h_r}.$$

Die Ordnung eines algebraischen Divisors ist also stets gleich derjenigen seiner Norm.

Zu jedem Elemente U des Körpers K(u, z) gehört ein algebraischer Divisor:

(24)
$$\mathfrak{D}_U = e^{\frac{\delta U}{\mathfrak{n}_H}} = e \mathfrak{P}_1^{h_1} \mathfrak{P}_2^{h_2} \cdots \mathfrak{P}_k^{h_k},$$

dessen Zähler \mathfrak{z}_U durch die Nullstellen, dessen Nenner \mathfrak{u}_U durch die Pole von U eindeutig bestimmt ist. Einem beliebigen Linearfaktor $z - \alpha = \mathfrak{p}_{\alpha}$ des rationalen Körpers entspricht z. B. der algebraische Divisor:

 $z - \alpha = \frac{\prod \mathfrak{P}_{i}^{(\epsilon)^{l_i}}}{\prod \mathfrak{P}_{k}^{(\infty)^{m_k}}},$

wenn allgemein zur Stelle \mathfrak{P}_{α} die l_i -blättrigen Verzweigungspunkte $\mathfrak{P}_{k}^{(\alpha)}$, zur Stelle \mathfrak{P}_{∞} die m_k -blättrigen Verzweigungspunkte $\mathfrak{P}_{k}^{(\infty)}$ gehören. Durch Angabe ihres Divisors ist eine Funktion U bis auf eine Einheit, d. h. eine multiplikative Konstante e bestimmt; unter dieser wollen wir in naturgemäßer Verallgemeinerung der auf \mathfrak{p} . 541 gegebenen Vorschrift den Anfangskoeffizienten der Entwicklung von U in der Umgebung eines ein für alle Male festen regulären Punktes \mathfrak{P}_0 verstehen. Dann gehört zu dem Produkte bzw. dem Quotienten zweier Elemente von K(u,z) das Produkt bzw. der Quotient seiner Divisoren. Ferner gehört zu der Norm von U, d. h. zu dem Produkte

¹³⁾ Vgl. die Darstellung der Funktionen des Körpers durch Polygonquotienten bei D.-W., p. 247—248. [O]

554 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

 $U_1 U_2 \ldots U_n$ die Norm $\mathfrak{q} = n(\mathfrak{Q})$ des zugehörigen Divisors, so daß die Gleichung besteht $U_1 \ldots U_n = e_1 \ldots e_n \mathfrak{q}$. Da nun jede rationale Funktion von \mathfrak{s} allein, also auch n(U), ebensoviele Nullstellen als Pole besitzt, d. h. die Ordnungszahl Null hat, so gilt dasselbe auch von jedem Divisor \mathfrak{Q}_U .

Alle zu Elementen des Körpers K(u, z) gehörigen Divisoren haben mithin die Ordnungszahl Null, diese Funktionen besitzen also ebensoviele Nullstellen als Pole.

Die Anzahl v_U der Pole oder der Nullstellen von U heißt der Grad dieser Funktion 14); so ist z. B. jeder Linearfaktor z = a, bzw. $\frac{1}{z}$ innerhalb des Körpers n^{ten} Grades K(z, u) vom n^{ten} Grade; dann gilt der allgemeine Satz: Eine Funktion v^{ten} Grades nimmt jeden reellen oder komplexen Wert an genau v Stellen der Riemannschen Fläche \Re_z an.

10 a. Die arithmetischen Begründungen des Punktbegriffes. Während die im Vorigen gegebene Darstellung der Theorie vom Punktoder Primdivisorenbegriff ausgeht, der durch die Theorie des Kongruenzkörpers sichergestellt wird, erscheint dieser Begriff in der ursprünglichen in D.-W. gegebenen Begründung der arithmetischen Theorie als einer der hauptsächlichsten Zielpunkte der ganzen Entwicklung. In dieser Darstellung fußt die Definition des Punktes der absoluten Riemannschen Fläche auf der mit Hilfe rein algebraischer und arithmetischer Prinzipien zu entwickelnden Idealtheorie, wobei allerdings die meisten Beweise zu reinen Existenzbeweisen werden.

D. und W. definieren den Punkt der zum Körper K gehörigen absoluten Riemannschen Fläche durch folgende Forderungen, bei denen der invariante, von jeglicher Auszeichnung bestimmter Funktionen des Körpers K unabhängige Charakter dieses Begriffes unmittelbar einleuchtet: Wenn jedem Element $\alpha, \beta, \gamma, \ldots$ von K ein Zahlenwert $\alpha_0, \beta_0, \gamma_0, \ldots$ so zugeordnet werden kann, daß $\alpha_0 = \alpha$ ist, falls α konstant ist, und allgemein $(\alpha \pm \beta)_0 = \alpha_0 \pm \beta_0$, $(\alpha\beta)_0 = \alpha_0\beta_0$, $(\frac{\alpha}{\beta}) = \frac{\alpha_0}{\beta_0}$ wird (zu den Zahlenwerten wird dabei auch ∞ gerechnet), so ordnen wir jeder solchen Zuordnung einen Punkt der absoluten Riemannschen Fläche von K zu und sagen, das Element α von K nehme in diesem Punkt den Wert α_0 an. α_0 an.

Um nun den Umfaug des hiermit eingeführten Punktbegriffes

¹⁴⁾ Über die Definition des Grades einer algebraischen Funktion vgl. Weierstraß V. 1873, B.-N., p. 381; D.-W., p. 242-243; H.-L., p. 156. [O] 15) D.-W., p. 236.

genauer zu beschreiben, zeichnen wir ein nicht konstantes Element z von K aus. Jedes Element von K ist dann eine ganze oder gebrochene, rationale oder algebraische Funktion von z. Dabei ist jede gebrochene Funktion von z als Quotient von zwei ganzen Funktionen darstellbar. Als ein Ideal in z bezeichnen wir dann jede Gesamtheit von ganzen Funktionen aus K, die mit zwei Elementen α und β zugleich auch jedes Element $x\alpha + y\beta$ enthält, wo x, y beliebige ganze Elemente von K sind. 16) Unter dem Produkt von zwei Idealen a und 6 verstehen wir das aus möglichst vielen Elementen bestehende Ideal, das alle Produkte der Funktionen aus a und b enthält, unter dem Einheitsideal E, das aus allen ganzen Elementen von K bestehende Ideal. Eine im Ideal a enthaltene Funktion heißt durch a teilbar, zwei Funktionen, deren Differenz in a enthalten ist, modulo a kongruent. Es gilt nun der folgende Fundamentalsatz: Ideale, die sich nicht als Produkt von zwei weiteren, von E verschiedenen Idealen darstellen lassen - Primideale - haben die charakteristische Eigenschaft, daß nach ihnen jede ganze Funktion von K einer Konstante kongruent ist. Jedes Ideal a ist auf eine einzige Weise als ein Potenzprodukt von endlich vielen Primidealen darstellbar. 17) —

Unter den vielen Folgerungen aus diesem Satz heben wir nur eine hervor: Ist uns ein beliebiges Primideal p gegeben, so ist jede Funktion f von K durch eine positive, verschwindende oder negative ganze Potenz von \mathfrak{p} genau teilbar. Sind f_1 und f_2 durch die a^{te} bzw. β^{to} Potenz von $\mathfrak p$ genau teilbar, so sind $f_1^if_2$ und $\frac{f_1}{f_3}$ genau durch die $(\alpha + \beta)^{to}$ bzw. $(\alpha - \beta)^{to}$ Potenz von \mathfrak{p} teilbar. 18) Eine Funktion, die genau durch die Ote Potenz von p teilbar ist, ist modulo p einer endlichen von Null verschiedenen Konstante kongruent. Ersetzen wir nun jede Funktion f von K, je nachdem sie durch eine positive, negative oder die nullte Potenz von p genau teilbar ist, bzw. durch 0, ∞ oder die ihr modulo p kongruente Konstante, so erhalten wir einen Punkt im oben definierten Sinne. Und so erzeugt jedes Primideal p einen Punkt B der absoluten Riemannschen Fläche von K. Alle diese Punkte haben die Eigenschaft, daß in ihnen das vorher ausgezeichnete Element von K den Wert ∞ nicht annimmt. Hat umgekehrt ein Punkt diese Eigenschaft, so bildet die Gesamtheit aller ganzen Funktionen von K, die in ihm verschwinden, ein Primideal, durch das umgekehrt dieser Punkt erzeugt wird. Nimmt

¹⁶⁾ D.-W., p. 206 ff.

¹⁷⁾ D.-W., p. 215-217.

¹⁸⁾ D.-W., p. 239-241.

aber z in einem Punkt den Wert ∞ an, so braucht man nur statt z ein anderes, in diesem Punkt nicht unendlich werdendes Element von K auszuzeichnen, etwa $\frac{1}{z}$, um dem Punkte ein Primideal zuordnen zu können. ¹⁹)

Unter einem *Polygon* wird ein symbolisch aufzufassendes Potenzprodukt aus gewissen Punkten

$$\mathfrak{A} = \mathfrak{P}^r \mathfrak{P}_{i_1}^{r_1} \cdots \mathfrak{P}_{i_r}^{r_r} \quad (r \ge 0, r_1 \ge 0, \cdots r_i \ge 0)$$

verstanden. Dolygone entsprechen ganzen Divisoren. Bildungen, die gebrochenen Divisoren entsprechen, verwenden D.-W. nicht. - Die Äquivalenz der Idealtheorie mit der Divisorentheorie wird durch den folgenden Satz dargetan: Wird in K ein nicht konstantes Element ε ausgezeichnet, so bildet die Gesamtheit aller ganzen Funktionen aus K, die durch einen bestimmten ganzen Divisor (in dessen Punkten z nicht unendlich wird) teilbar sind, eiu Ideal, und so erhält man alle Ideale in z. Zur Begründung der Idealtheorie für Funktionenkörper schlagen D.-W. einen ähnlichen Weg ein, wie Dedekind in seiner Begründung der Idealtheorie²¹), wobei sich jedoch die ganze Deduktion viel einfacher gestaltet. Die von Kronecker 22) gegebene und später von König²³) weiter ausgeführte Begründung der Idealtheorie bezieht sich von vornherein sowohl auf Zahlen- als auch auf Funktionenkörper. In einer späteren Darstellung verwendet Weber²⁴), um zu der Punktdefinition zu kommen, eine Ausgestaltung der Kroneckerschen Methode, die Theorie der Funktionale. Einen verwandten Weg schlägt Wellstein 25) ein.

Auch weitere zahlentheoretische Untersuchungen der Idealtheorie sind auf Funktionenkörper übertragen worden. R. König untersucht insbesondere die hyperelliptischen Funktionenkörper und wendet die Ergebnisse auf die Untersuchung der quadratischen Formen mit rationalen Funktionen von z als Koeffizienten an. 26 Rehfeld 27 beweist die Existenz einer Zahl, die der Klassenanzahl in der Idealtheorie analog

¹⁹⁾ D.-W., p. 239.

²⁰⁾ D.-W., p. 241.

²¹⁾ Dirichlet-Dedekind, Vorl. ü. Z., 4. Aufl. (1894), p. 493 ff.

²²⁾ Kronecker, Festschrift p. 48 ff.

^{- 23)} König, Einleitung in die allgemeine Theorie der algebraischen Größen. Leipzig 1903, Teubner.

²⁴⁾ Weber, Lehrb. d. Algebra, Bd. III, p. 640 ff.

²⁵⁾ Wellstein, Jahresb. d. D. M.-V. 19 (1904), p. 112-116.

²⁶⁾ R. König, Wiener Monatshefte 23 (1912), p. 321-346; J. f. Math. 142 (1912), p. 191-210.

²⁷⁾ Rehfeld, Straßb. Diss. 1904.

ist. Wie aus dem *Riemann-Roch*schen Satz leicht folgt, ist diese Zahl das Geschlecht p des Körpers. Für die hyperelliptischen Körper s. *König.*²⁸) M. Lerch²⁹) gibt eine charakteristische Eigenschaft der Gattungen vom Geschlecht 0 an. [O]

- 11. Untersuchung der Funktionen des Körpers K(u,z) in bezug auf ihre Teilbarkeit durch einen beliebigen Divisor. Die Grundlage für die ganze Theorie der algebraischen Funktionen bildet die vollständige Lösung der Frage nach allen Funktionen des Körpers, welche durch einen beliebig gegebenen Divisor $\mathfrak{D} = \mathfrak{P}_1^{c_1}\mathfrak{P}_2^{c_2}\cdots\mathfrak{P}_r^{c_r}$ teilbar sind.
 - a) Es sei zuerst $\mathfrak{D} = \mathfrak{P}'$, und \mathfrak{P} entspreche einem n-blättrigen Verzweigungspunkte.

In diesem einfachstem Falle, auf den sich alle anderen leicht reduzieren lassen, ist die Grundgleichung f(u,z)=0 für den zu $\mathfrak B$ gehörigen Bereich $K(\mathfrak p)$ irreduktibel, wenn $\mathfrak p=\mathfrak P^n$ der zu $\mathfrak P$ zugeord nete rationale Divisor ist. Es sei π irgend eine Primfunktion für den

Bereich von \mathfrak{P} (etwa $\pi = (z - a)^{\frac{1}{n}}$ bzw. $(\frac{1}{z})^{\frac{1}{n}}$); dann können offenbar alle Multipla von \mathfrak{P}^r für die Stelle \mathfrak{P} auf eine einzige Weise homogen und linear durch die Basis:

$$(25) \qquad (\pi^r, \pi^{r+1}, \dots \pi^{r+n-1})$$

mit ganzen Koeffizienten des Bereiches $K(\mathfrak{p})$ d. h. in der Form:

(25a)
$$w = u_1 \pi^r + u_2 \pi^{r+1} + \dots + u_n \pi^{r+n-1}$$

dargestellt werden, deren Koeffizienten u_i rationalen Charakter für die Stelle $\mathfrak p$ haben und von nicht negativer Ordnung sind. Ein solches System heißt ein Fundamentalsystem für den Divisor $\mathfrak P^r$, und die Form w heißt für unbestimmte u eine Fundamentalform für den Divisor $\mathfrak P^r$, weil aus ihr durch Spezialisierung der Unbestimmten alle und nur die Multipla von $\mathfrak P^r$ erhalten werden. Die Gleichung n^{ten} Grades

(25b)
$$G(w) = (w - w_1)(w - w_2) \dots (w - w_n),$$

deren Wurzeln die n konjugierten Fundamentalformen sind, heißt die Fundamentalgleichung für \mathfrak{P}' , da sie alle und nur die Gleichungen ergibt, denen die Multipla von \mathfrak{P}' genügen, wenn man für $u_1, \ldots u_n$ alle ganzen Größen des Körpers $K(\mathfrak{p})$ einsetzt. Ebenso ergibt die sog. Diskriminante der Fundamentalgleichung für \mathfrak{P}'

(25c)
$$\Delta^{(r)}(w) = \prod_{i>k} (w_i - w_k)^2$$

²⁸⁾ Sächs. Ber. 63 (1911), p. 360-361.

²⁹⁾ M. Lerch, Wiener Monatshefte 2 (19), p. 465-468.

bei denselben Spezialisierungen der Unbestimmten die Gleichungsdiskriminanten für alle Multipla von \mathfrak{P}' . Das System (25) ist nicht das einzige Fundamentalsystem für die Multipla von \mathfrak{P}' . Irgend ein anderes System $(U^{(1)}, U^{(2)}, \ldots U^{(n)})$ von Vielfachen des Divisors \mathfrak{P}' ist dann und nur dann ein Fundamentalsystem für denselben, wenn es aus dem obigen durch eine lineare Transformation:

(26)
$$U^{(i)} = \sum u_{k}^{(i)} \pi^{r+k-1} \qquad (i, k = 1, 2, \dots n)$$

mit ganzen Koeffizienten $u_k^{(i)}$ hervorgeht, deren Determinante $\mid u_k^{(i)} \mid$ durch $\mathfrak p$ nicht teilbar ist.

Es sei nun $(U_k^{(1)}, U_k^{(2)}, \ldots U_k^{(n)})$ für $k = 1, 2, \ldots n$ das zu $(U^{(1)}, U^{(2)}, \ldots U^{(n)})$ gehörige System, welches aus den n^2 zu \mathfrak{p} gehörigen konjugierten Entwicklungen besteht, und

(27)
$$d(U^{(1)}, U^{(2)}, \dots U^{(n)}) = |U_k^{(1)}, \dots U_k^{(n)}|^2$$

die Diskriminante dieses Systems. Dann folgt aus dem soeben erwähnten Satze, daß die Diskriminanten aller Fundamentalsysteme durch dieselbe Potenz p^D des zugehörigen rationalen Divisors teilbar sind, daß man also jenen Teiler nur für das besonders einfache System (25) zu bestimmen braucht.

Berechnet man nun die Diskriminante

(28)
$$\pi_i^r, \pi_i^{r+1}, \dots \pi_i^{r+n-1+2} \qquad (i = 1, 2, \dots n)$$

des Systems $(\pi^r, \pi^{r+1}, \dots, \pi^{r+n-1})$ unter der Voraussetzung $\pi_i = w^i(z-\alpha)^{\frac{n}{n}}$

 $w=e^n$, so ergibt sich leicht der Wert $(z-a)^{2r+n-1}$. Also ist die in der Diskriminante irgend eines Fundamentalsystems für \mathfrak{F}^r enthaltene Potenz $D_r(\mathfrak{P})$ von \mathfrak{p}

(29)
$$D_r(\mathfrak{P}) = \mathfrak{p}^{2r + (n-1)} = n(\mathfrak{P}^r)^2 n(\mathfrak{P}^{n-1}),$$

wo der erste Faktor nur von dem Exponenten r des Divisors, der zweite nur von der Natur des Körpers abhängt. Jedes andere System $(U^{(1)}, \ldots U^{(n)})$ von n Vielfachen von \mathfrak{P}^r ist dann und nur dann ein Fundamentalsystem für diesen Divisor, wenn seine Diskriminante genau durch $D_r(\mathfrak{P})$ teilbar ist.

Ebenso leicht kann man die Potenz von p bestimmen, welche für unbestimmte $u_1, u_2, \ldots u_n$ in der Diskriminante $\Delta^{(r)}(w)$ der Fundamentalgleichung enthalten ist. In der Tat kann man auch hier von der besonders einfachen Fundamentalform (25a) ausgehen. Berücksichtigt man dann, daß

(B0)
$$\Delta^{(r)}(w) = n(F'(w_1)) = n(\Pi(w_1 - w_k))$$

$$= n(\Pi(u_1 \pi^r (1 - w^{kr})) + u_2 \pi^{r+1} (1 - w^{(k+1)r}) + \cdots)$$

ist, so ergibt sich ohne weiteres der Satz:

Die Diskriminante der Fundamentalgleichung für den Divisor \mathfrak{P}^r ist für unbestimmte u_i genau durch

(31)
$$y^{r(n-1)+(n,r)-1}$$

teilbar, wenn (n, r) den größten gemeinsamen Teiler von n und r bedeutet.

Im Falle r=0 handelt es sich um die Darstellung aller für den Bereich von \mathfrak{P} ganzen algebraischen Funktionen. Hier ist die Diskriminante des Fundamentalsystems \mathfrak{p}^{n-1} , d. h. genau gleich dem Teiler der Diskriminante der Fundamentalgleichung.

b) Es sei $\mathfrak{D} = \mathfrak{P}_1^{r_1} \mathfrak{P}_2^{r_2} \dots \mathfrak{P}_{\nu}^{r_{\nu}}$, und die Primteiler $\mathfrak{P}_1, \mathfrak{P}_2, \dots \mathfrak{P}_{\nu}$ gehören alle zu demselben rationalen Primteiler \mathfrak{p} .

Diese Untersuchung kann leicht auf die vorige zurückgeführt werden mit Hilfe des allgemeinen Satzes:

Man kann im Körper $K(u, \mathfrak{p})$ stets eine Funktion finden, welche an den zu \mathfrak{p} gehörigen Stellen $\mathfrak{P}_1, \mathfrak{P}_2, \ldots \mathfrak{P}_r$ beliebig vorgegebene Entwicklungen besitzt.

Wir nehmen der Einfachheit wegen an, daß dem Punkte \mathfrak{p} drei bzw. a-, b- und e-blättrige Verzweigungspunkte \mathfrak{P}_1 , \mathfrak{P}_3 , \mathfrak{P}_3 entsprechen, und es sei $\mathfrak{D} = \mathfrak{P}_1^r \mathfrak{P}_2^s \mathfrak{P}_3^t$. Es seien ferner $\pi^{(0)}$ und π zwei nach dem vorigen Satz bestimmte Funktionen, welche im Be-

reiche von \mathfrak{P}_1 bzw. gleich 1 und $(z-a)^{\overline{a}}$ sind, während sie in der Umgebung von \mathfrak{P}_2 und \mathfrak{P}_3 gleich Null sind. Es mögen ferner $\mathfrak{g}^{(0)}$

und ϱ für \mathfrak{P}_2 und $\sigma^{(0)}$ und σ für \mathfrak{P}_3 bzw. die Werte 1, $(z-a)^{\frac{1}{b}}$

und 1, $(z-a)^{\frac{1}{c}}$ haben und für die beiden anderen Punkte Null sein. Dann erkennt man wieder unmittelbar, daß die a+b+c=n Elemente:

(32)
$$\pi^r, \pi^{r+1}, \ldots, \pi^{r+a-1}; \varrho^s, \varrho^{s+1}, \ldots, \varrho^{s+b-1}; \sigma^t, \sigma^{t+1}, \ldots, \sigma^{t+c-1}$$

ein Fundamentalsystem für alle Multipla von $\mathfrak{Q} = \mathfrak{P}_1^r \mathfrak{P}_2^r \mathfrak{P}_3^r$ innerhalb des Bereiches $K(u,\mathfrak{p})$ bilden, d. h. alle und nur diese Multipla sind eindeutig in der Form:

(32a)
$$w = u_1 \pi^r + \cdots + u_a \pi^{r+a-1} + v_1 \varrho^s + \cdots + v_b \varrho^{s+b-1} + w_1 \varrho^t + \cdots + w_a \varrho^{t+c-1}$$

mit ganzen Koeffizienten des Körpers $K(\mathfrak{p})$ darstellbar. Die Diskriminante dieses Fundamentalsystems wird identisch gleich dem Produkte der drei Diskriminanten: $d(\pi^r, \pi^{r+1}, \ldots, \pi^{r+a-1}) = \mathfrak{p}^{2r+(a-1)}, \ldots$, welche zu $\mathfrak{P}_1, \mathfrak{P}_2, \mathfrak{P}_3$ gehören; es ergibt sich also sofort die Gleichung: (32b) $D(\mathfrak{D}) = D(\mathfrak{P}_1^r) D(\mathfrak{P}_2^r) D(\mathfrak{P}_3^r) = n(\mathfrak{D}^2) n(\mathfrak{P}_1^{a-1} \mathfrak{P}_2^{b-1} \mathfrak{P}_3^{c-1})$.

Ein anderes System $(U^{(1)}, U^{(2)}, \dots U^{(n)})$, von Vielfachen von $\mathfrak D$ ist dann und nur dann ein Fundamentalsystem für $\mathfrak D$ in der Umgebung der Stelle $\mathfrak p$, wenn dasselbe genau durch $D(\mathfrak D)$ teilbar ist. Jedes rational unabbängige System $(\eta^{(1)}, \eta^{(2)}, \dots \eta^{(n)})$ des Körpers $K(u, \varepsilon)$ kann durch eine endliche Anzahl von rationalen Elementartransformationen in ein Fundamentalsystem $(U^{(1)}, \dots, U^{(n)})$ für $\mathfrak D$ übergeführt werden; die Diskriminanten $d(\eta^{(1)}, \dots \eta^{(n)})$ und $d(U^{(1)}, \dots U^{(n)})$ unterscheiden sich dann nur um eine Potenz des zugehörigen Linearfaktors mit ganzzahligem Exponenten.

Die Untersuchung der einzelnen Differenzen, aus denen die Diskriminante der Fundamentalgleichung besteht, ergibt für diese den Teiler

(33)
$$\Delta_{\mathfrak{D}}(w) = \mathfrak{p}^{\sum r(a-1) + ((n,a)-1) + \frac{1}{2}\sum ab \cdot m\left(\frac{r}{a}, \frac{s}{b}\right)}$$

wo $m\left(\frac{r}{a}, \frac{s}{b}\right)$ jedesmal den kleineren der beiden Brüche $\frac{r}{a}$ und $\frac{s}{b}$ bezeichnet.

c) Die Ideale des Körpers K(z,u) und die zugehörigen Fundamentalsysteme.

Es sei nun $\mathfrak{D}=\mathfrak{P}_1^{r_1}\mathfrak{P}_2^{r_2}\ldots\mathfrak{P}_h^{r_h}$ ein beliebiger ganzer oder gebrochener Divisor, dessen zugehörige Punkte aber alle im Endlichen liegen. Dann bildet die Gesamtheit aller Elemente des Körpers, welche durch \mathfrak{D} teilbar und außerdem für alle im Endlichen liegenden Punkte regulär sind, einen Bereich $I(\mathfrak{D})$, ein sog. Ideal. (U⁽¹⁾, $U^{(2)}, \ldots U^{(n)}$) irgendwelche Elemente dieses Ideales, so gehört offenbar jede Funktion

(34)
$$U = u_1 U^{(1)} + u_2 U^{(2)} + \dots + u_n U^{(n)}$$

ebenfalls zu $I(\mathfrak{Q})$, wenn $u_1, u_2, \ldots u_n$ beliebige ganze rationale Funktionen von z sind. Sind in der Form (34) alle Elemente von $I(\mathfrak{Q})$ enthalten, so heißt $(U^{(1)}, U^{(2)}, \ldots U^{(n)})$ ein Fundamentalsystem für dieses Ideal. Ein System ist dann und nur dann ein Fundamentalsystem für $I(\mathfrak{Q})$, wenn ihm diese Eigenschaft für die Umgebung einer jeden im Endlichen liegenden Stelle \mathfrak{p} zukommt. Hierdurch ist ein Mittel gegeben, um ein beliebiges rational unabhängiges System durch eine endliche Anzahl rationaler Transformationen in ein Fundamentalsystem $(U^{(1)}, \ldots U^{(n)})$ für ein beliebig gegebenes Ideal $I(\mathfrak{Q})$ umzuformen und außerdem mit Hilfe von (b) die Diskriminante dieses Fundamentalsystems zu bestimmen. Um dieses Resultat einfach schreiben zu können, bezeichnen wir durch:

$$\mathfrak{Z} = I \mathfrak{P}_{a}^{a-1}$$

³⁰⁾ Vgl. D.-W., p. 206 f. [O]

das über alle im Endlichen liegenden Punkte \mathfrak{P}_a erstreckte Produkt, in welchem also nur die Verzweigungspunkte mit einem von Null verschiedenen Exponenten vorkommen. Dann ist jede Diskriminante $d(U^{(1)},\ldots U^{(n)})$ des Ideales $I(\mathfrak{Q})$ genau durch den Divisor

$$(36) n(\mathfrak{Q}^2\mathfrak{Z})$$

teilbar und enthält sonst keinen endlichen Divisor \mathfrak{p} . Entsprechen dem Punkte \mathfrak{p}_{∞} lauter reguläre Punkte, so ist der obige Divisor:

$$\mathfrak{Z}_{\cdot} = \Pi \mathfrak{P}_{a}^{a-1},$$

der sog. Verzweigungsteiler von K(u,z) in Bezug auf die unabhängige Variable z, das über alle Verzweigungspunkte \mathfrak{P}_a erstreckte Produkt. Dann ergibt sich für die Diskriminante $D(\mathfrak{Q}) = D(U^{(1)}, U^{(2)}, \dots U^{(n)})$ eines beliebigen Fundamentalsystems für $I(\mathfrak{Q})$ die wichtige Darstellung

(38)
$$D(\mathfrak{Q}) = \frac{n(\mathfrak{Q}^{z} \mathfrak{Z}_{z})}{\mathfrak{p}_{z}^{2q+w}},$$

wenn q die Ordnung von \mathfrak{Q} , und

$$(38a) w = w_z = \sum (a - 1)$$

die sog. Verzweigungsordnung die Ordnung des Verzweigungsteilers 3, ist. 31)

Ist speziell $\mathfrak{Q}=1$, also $(U^{(1)},\ U^{(2)},\ \dots U^{(n)})$ ein Fundamentalsystem für die sog. ganzen, d. h. die Funktionen des Körpers, welche im Endlichen überall endlich sind, so ist $D(1)=\frac{n(\mathfrak{Z}_z)}{\mathfrak{p}_{\infty}^w}$; da aber andererseits jedes Element $U_k^{(i)}$, also auch die Determinante $|U_k^{(i)}|$ in der Umgebung der regulären Punkte $\mathfrak{P}_i^{(\infty)}$ nach ganzen Potenzen von $\frac{1}{z}$ fortschreitet, so besitzt $|U_k^{(i)}|^2$ in der Umgebung von \mathfrak{p}_{∞} eine gerade Ordnungszahl; also ergibt sich der Satz:

Für jeden algebraischen Körper K(u,z) ist die Ordnungszahl $w_z = \sum (a-1)$ des Verzweigungsteilers stets eine gerade Zahl.³²)

³¹⁾ Vgl. D-W., p. 223 f.; H-L., p. 219-221. [O]

³²⁾ Ist Ω = 1, so entsteht das Fundamentalsystem für ganze Größen (Kronecker, Discr. 309) oder die Basis (D.-W., p. 194) des Körpers. Mit der wirklichen Herstellung der Minimalbasis beschäftigen sich zahlreiche Untersuchungen (sowohl Kronecker, Discr. 309), als auch D.-W., p. 193 geben nur Existenzbeweise). Die erste auf der allgemeinen Eliminationstheorie beruhende Methode ist von Kronecker in der Festschrift (§ 6, p. 16-19) angedeutet und später von König (s. Fußnote 23), Allg. Th., p. 499-502) ausführlich dargestellt worden. In ihr wird das Problem auf Systeme linearer Gleichungen zurückgeführt mit Hilfe des Satzes, daß die Resolvente eines Gleichungssystems, dessen Lösungen eine lineare Schar bilden, linear sein muß. Ein direktes Verlahren zur Zurückführung des Problems

12. Die algebraischen Systeme und ihre Elementarteiler. Die Gesamtheit aller durch ein beliebiges rational unabhängiges System $(U^{(1)}, U^{(2)}, \ldots, U^{(n)})$ mit ganzen Funktionen u_i von z als Koeffizienten, d. h. in der Form

(39)
$$U = u_1 U^{(1)} + u_2 U^{(2)} + \dots + u_n U^{(n)}$$

darstellbaren Funktionen des Körpers K(u,z) bildet einen Teilbe-

auf lineare Gleichungen gibt Hensel (J. f. Math. 109, 1892), in korrigierter Form (J. f. Math. 111, 1893), Mertens (Wiener Ber. 102 II, 1893), Hensel (Acta Math. 18, 1894) - die in der letzten Arbeit gegebene Methode stellt etwas modifiziert und mit Beispielen Baker (B. p. 105-112) dar. - König 23) (p. 514-526). Die letzte Methode führt zu solchen Funktionen des Fundamentalsystems, die rational mit rationalen Koeffizienten durch x,u ausdrückbar sind, falls die Zahlenkoeffizienten der Grundgleichung rational sind. - Die Methoden von Hensel (Act. Math. 18) lösen das Problem unter Benutzung der Formen, wobei sich das sog. absolute Fundamentalsystem ergibt, bei dem auch der unendlich ferne Punkt nicht ausgezeichnet ist. Die Methoden von Hensel und Mertens beruhen auf der von Hensel gegebenen "rationalen" Definition der Teilbarkeit durch gebrochene Potenzen einer Primfunktion. Durch direkte Einführung gebrochener Potenzen rationaler Funktionen (Wurzelfunktionen) gelangt Laut (Dissert. Tübingen 1913) zu einer einfachen Lösung des Problems. Später hat Hensel [J. f. Math. 115 (1895), Berl Ber. (1895) p. 933] Fundamentalsysteme in bezug auf den Primteiler x-a eingeführt. Unter Benutzung solcher besonderer Fundamentalsysteme hat dann Landsberg [Gött. Nachr. 1895, Math. Ann. 50 (1899) p. 336-350] Methoden für die Konstruktion absoluter Fundamentalsysteme abgeleitet. In der ersten dieser Abhandlungen wird die Irreduzibilität der Grundgleichung nicht vorausgesetzt, und das erhaltene Fundamentalsystem ergibt dann ein einfaches Kriterium für die Irreduzibilität der Grundgleichung. Die Methode der zweiten Arbeit beruht nur auf den Reihenentwicklungen.

Allgemeiner wird die Konstruktion des Fundamentalsystems für ein beliebiges Ideal, worin die Konstruktion einer Minimalbasis als spezieller Fall enthaiten ist, mit Hilfe der Reihenentwicklungen bei H.-L. p. 215 ausgeführt (1902), desgleichen bei G. Dumas, Thèse (Paris 1904), p. 68-71.

Endlich sei noch das Buch von H. Stald, Abriß einer Theorie der algebraischen Funktionen einer Veränderlichen, Leipzig 1911, erwähnt, wo im § 10 ein allgemeiner Ausdruck für ganze Funktionen (unter gewissen Voraussetzungen über die Singularitäten der Grundkurve) gegeben und im § 14 zur Aufstellung der Minimalbasis angewandt wird. Zur Aufstellung der Minimalbasis kann auch die Thomésche Methode der Singularitätenauflösung (58) angewandt werden.

Einige spezielle Körper betrachtet Baur (J. f. Math. 116, 1896) hyperelliptische Körper [Math. Ann. 41 (1893), p. 491], kubische Körper [eld. 43 (1893), p. 505], K. Fischer (Dissert. Berlin, J. f. Math. 117, 1896) gibt allgemeine Methoden für kubische und biquadratische Körper in Anlehnung an die ersten Arbeiten von Hensel.

Den Aufbau einer Fundamentalbasis untersucht Baker (Proc. Lond. M. S. 26 (1895), B. 47-57) mit Hilfe des Riemann-Rochschen Satzes. Klein (R. F. I, p. 122-129) bespricht die Zusammensetzung eines absoluten Fundamentalsystems. Vgl. endlich noch Weierstraβ, V. 1873; B.-N., p. 433. [O]

reich desselben, welcher ein Modul genannt wird. 33) Jenes System $(U^{(1)}, U^{(2)}, \ldots, U^{(n)})$ heißt eine Basis des Moduls. Jedes Ideal ist ein spezieller Modul.

Zwei Systeme $(U^{(i)})$ und $(V^{(i)})$ heißen äquivalent, wenn sie Basen desselben Moduls sind, wenn sie also durch eine umkehrbare lineare Transformation mit ganzen rationalen Koeffizienten ineinander übergeführt werden können. Bildet man die zu einer Basis gehörige algebraische Matrix $(U_k^{(1)}, U_k^{(2)}, \ldots U_k^{(n)})$ und sucht nach den Vorschriften der Determinantentheorie ihre sog. Determinantenteiler, d. h. die größten gemeinsamen Teiler $d_1(z), d_2(z), \ldots d_n(z)$ ihrer Unterdeterminanten erster, zweiter, ... n^{ter} Ordnung und aus ihnen die sog. Elementarteiler:

(40)
$$e_1(z) = d_1(z), \ e_2(z) = \frac{d_2(z)}{d_1(z)}, \dots \ e_n(z) = \frac{d_n(z)}{d_{n-1}(z)},$$

so sind dies Produkte von Potenzen der rationalen Divisoren p mit ganzen oder gebrochenen Exponenten, und aus der Definition äquivalenter Systeme folgt sofort der Satz:

Äquivalente Systeme besitzen dieselben Elementarteiler.

Es sei $\mathfrak p$ ein im Endlichen liegender Punkt der einblättrigen Kugelfläche $\mathfrak R$, zu welchem auf der n-blättrigen Fläche $\mathfrak R_z$ die Verzweigungspunkte $\mathfrak P_a$, $\mathfrak P_b$, ... $\mathfrak P_c$ von a, b, ... c Blättern gehören. Sind dann $\mathfrak p^{\epsilon_1}$, $\mathfrak p^{\epsilon_3}$, ... $\mathfrak p^{\epsilon_n}$ die in den Elementarteilern e, (z), $e_2(z)$, ... $e_n(z)$ enthaltenen Potenzen von $\mathfrak p$, so sind die Exponenten ϵ_1 , ϵ_2 , ... ϵ_n rationale Brüche, deren kleinste positive Reste, abgesehen von der Reihenfolge, die Bruchsequenzen:

$$\left(0, \frac{1}{a}, \frac{2}{a}, \cdots, \frac{a-1}{a}; 0, \frac{1}{b}, \frac{2}{b}, \cdots, \frac{b-1}{b}; \cdots, \frac{1}{c}, \frac{2}{c}, \cdots, \frac{c-1}{c}\right)$$

bilden. Mit Benutzung dieser Tatsache kann man mit Hilfe eines beliebigen algebraischen Systems, z. B. von $(1, u_i, u_i^2, \dots u_i^{n-1})$ die Verzweigung der zugehörigen *Riemanns*chen Fläche aus dem Koeffizienten der Grundgleichung direkt finden.³⁴) So ergibt sich z. B. der Satz:

Besitzen in der allgemeinen kubischen Gleichung:

$$u^3 + a(z)u + b(z) = 0$$

die rationalen Funktionen a(z), b(z), $\Delta(z) = 4a^3 + 27b^2$ für eine endliche oder die unendlich ferne Stelle $\mathfrak{p}(z=a, \text{bzw. } z=\infty)$ die Ordnungszahlen \mathfrak{a} , \mathfrak{b} , \mathfrak{d} , so wird die Verzweigung im Punkte \mathfrak{p} durch

³³⁾ Eingehendere Untersuchung der Funktionsmoduln geben D.-W. 194-206. Die Determinanten- und Elementarteiler der den Moduln zugehörigen Basissysteme werden jedoch erst von Hensel herangezogen, J. f. Math 115, p. 254 ff. [O]

³⁴⁾ Hensel, Berlin Sitzber. 1895, p. 993; Hensel, ebd. p. 1103; H.-L., p. 188 ff. [O]

den Nenner des kleineren unter den Brüchen $\frac{a}{2}$ und $\frac{b}{3}$ so bestimmt, daß er angibt, wie viele unter den drei Blättern dort zusammenhängen. Ist aber $\frac{a}{2} = \frac{b}{3}$, so wird dieselbe Frage durch den Nenner von $\frac{b}{2}$ entschieden. 35)

Jedes System $(U^{(1)}, U^{(2)}, \dots U^{(n)})$ kann durch eine endliche Anzahl von rationalen Elementartransformationen in ein äquivalentes $(V^{(1)}, V^{(2)}, \dots V^{(n)})$ übergeführt werden, dessen n Elemente durch möglichst hohe Potenzen eines beliebig gegebenen rationalen Divisors $\mathfrak p$ algebraisch teilbar sind, und zwar sind dies diejenigen n Potenzen $\mathfrak p^{\epsilon_1}, \, \mathfrak p^{\epsilon_2}, \dots \mathfrak p^{\epsilon_n}$, welche in den Elementarteilern des algebraischen Systems $(U_i^{(1)}, \, U_i^{(2)}, \dots \, U_i^{(n)})$ enthalten sind. Ein solches System $(V^{(i)})$ heißt normal in bezug auf die Stelle $\mathfrak p$. Die Determinanten $|U_k^{(i)}| = |V_k^{(i)}|$ sind genau durch $\mathfrak p^{\epsilon_1+\epsilon_2+\dots \epsilon_n}$ teilbar. $\mathfrak s^6)$

Dieses Resultat benutzen wir zur Lösung der folgenden Fundamentalaufgabe für die Theorie und die Anwendung der algebraischen Funktionen:

Es sollen alle linear unabhängigen Multipla eines beliebig gegebenen ganzen oder gebrochenen Divisors $\mathfrak D$ innerhalb des Körpers K(u,z) gefunden werden.

Die im Text gegebene Definition der normalen Systeme kommt zuerst bei Hensel (J. f. Math. 105, p. 334) vor. In einigen späteren Abhandlungen von Hensel (J. f. Math. 115, 117) und Fischer (J. f. Math. 117) wird die Bezeichnung kanonisch gebraucht. Für die Transformation eines Systems in ein in bezug auf eine endliche oder unendlich ferne Stelle kanonisches gibt Hensel [J. f. Math. 115 (1895), p. 254-294] rationale Methoden. Zu vergleichen ist auch H.-L., p. 169-173. Jedes System ist einem solchen äquivalent, welches in bezug auf alle endlichen Stellen normal ist [Hensel, J. f. Math. 117 (1895), p. 129-139]; für die Körper 3 und 4. Grades ist die Transformation vollständig durchgeführt bei L. Fischer [Dissert. Berlin oder J. f. Math. 117 (1895), p. 1-23]. [O]

³⁵⁾ Hensel, Berlin Sitzber. 1895, p. 1103; für dreiblättrige Flächen vgl. Baur, Math. Ann. 46 (1895), p. 31-61; J. f. Math. 119 (1898), p. 171-174. Ein ähnlicher einfacher Satz besteht für die Verzweigung der allgemeinen vierblättrigen Kugelfläche. Hensel, ebd. [O]

³⁶⁾ Der Begriff einer Normalbasis, d. h. einer Minimalbasis, die in bezug auf den unendlich fernen Punkt normal ist, wird bei D.-W. (p. 255-258) auf eine andere Weise mit einem Existenzbeweis eingeführt. Die Konstruktion einer solchen gibt Mertens (Wien. Sitzber. 1893, 2a, p. 437), ein kürzeres Verfahren mit denselben Hilfsmitteln Laut (Dissert. Tübingen 1913). Alle übrigen in der Fußnote 32) erwähnten Arbeiten, die sich mit der Konstruktion eines absoluten Fundamentalsystems für ganze Formen beschäftigen, ergeben zugleich auch Normalbasen [Baur, Math. Ann. 49 (1897), p. 73-82], wenn in den Formen der absoluten Fundamentalsysteme eine der Variablen gleich 1 gesetzt wird. Dazu ist auch Hensel [J. f. Math. 115 (1895), p. 254-294] zu vergleichen.

Es werde angenommen, was eventuell durch eine Transformation $z'=\frac{1}{z-\alpha}$ leicht erreicht werden kann, daß der unendlich fernen Stelle keine Verzweigungspunkte entsprechen, und daß $\mathfrak Q$ keinen der n Primteiler $\mathfrak P_i^{(\infty)}$ enthält. Dann sei $(U^{(1)},\,U^{(2)},\,\ldots\,U^{(n)})$ ein Fundamentalsystem für das Ideal $I(\mathfrak Q)$, welches in bezug auf die Stelle $\mathfrak p_\infty$ normal ist. Es mögen nun:

$$\mathfrak{p}_{\infty}^{r_1}, \, \mathfrak{p}_{\infty}^{r_2}, \, \ldots \, \mathfrak{p}_{\infty}^{r_n}$$

die in den algebraischen Funktionen $U^{(1)}$, $U^{(2)}$, ... $U^{(n)}$ enthaltenen Potenzen von \mathfrak{p}_{∞} sein, und diese seien so geordnet, daß $r_1 \geq r_2 \geq \ldots \geq r_n$ ist. Ist dann r_s der letzte nichtnegative unter diesen Exponenten, so sind nur diese ersten Funktionen $U^{(1)}$, $U^{(2)}$, ... $U^{(s)}$ wirklich Vielfache von \mathfrak{Q} , die n-s letzten sind es nicht, da diese noch außerdem die Primteiler $\mathfrak{P}_i^{(\infty)}$ mindestens einmal im Nenner haben. Allgemeiner ist eine Funktion:

$$U = u_1 U^{(1)} + u_2 U^{(2)} + \cdots + u_s U^{(s)}$$

dann und nur dann ein Multiplum von \mathfrak{Q} , wenn allgemein u_i eine beliebig ganze Funktion des r_i^{ten} Grades von z ist.

Unter den soeben gemachten Voraussetzungen bilden also die:

(41)
$$N = (r_1 + 1) + (r_2 + 1) + \dots + (r_s + 1)$$

algebraischen Funktionen:

$$U^{(i)}, z U^{(i)}, \ldots z^{r_i} U^{(i)}$$
 $(i = 1, 2, \ldots s)$

ein vollständiges System linear unabhängiger Multipla des Divisors \mathfrak{Q}^{37})

Zu jedem rational unabhängigen Systeme $(U^{(1)}, U^{(2)}, \dots U^{(n)})$ gehört ein anderes, das sog. komplementäre System $(U^{(1)}, U^{(2)}, \dots U^{(n)})$, dessen Elemente demselben Körper K(u, z) angehören. 38) Dasselbe ist dadurch charakterisiert, daß die beiden dazugehörigen Matrizen $(U_k^{(1)}, U_k^{(2)}, \dots U_k^{(n)})$ und $(U_k^{(1)}, U_k^{(2)}, \dots U_k^{(n)})$ reziproke Systeme werden, wenn in einem von ihnen Zeilen und Kolonnen vertauscht werden. Aus diesem Zusammenhang ergeben sich sofort die wichtigsten zwischen zwei komplementären Systemen bestehenden Beziehungen: Ist das System $(U^{(i)})$ für eine Stelle $\mathfrak p$ normal und sind $\mathfrak p^{\epsilon_1}, \dots \mathfrak p^{\epsilon_d}$ die in

³⁷⁾ S. H.-L., p. 223; G. Dumas, Thèse, p. 71—72. "Die Frage der Aufstellung aller Multipla eines gegebenen Divisors innerhalb eines Körpers bildet den Kernpunkt aller algebraischen Theorien" (B.-N., p. 410). In der Weierstraβschen Vorlesung von 1869 (B.-N., p. 410—414) wird diese Frage unter Benutzung der Kroneckerschen Fundamentalsysteme für ganze Größen des Körpers behandelt. [O]

³⁸⁾ D.-W., p. 217—223; Hensel, J. f. Math. 117 (1896), p. 33. [O] Encyklop. d. math. Wissensch. II 3.

den einzelnen Elementen enthaltenen Potenzen von \mathfrak{p} , so ist auch das komplementäre System für \mathfrak{p} normal, und seine Elemente enthalten die Potenzen $\mathfrak{p}^{-\epsilon_1}$, $\mathfrak{p}^{-\epsilon_2}$, ... $\mathfrak{p}^{-\epsilon_n}$. Hieraus folgt sofort der Satz: Die Elementarteiler des komplementären Systems sind gleich den reziproken Elementarteilern des ursprünglichen in umgekehrter Reihenfolge.

Von besonderer Wichtigkeit ist die Frage, unter welcher Bedingung ein System $(U^{(1)}, U^{(2)}, \ldots U^{(n)})$ ein Fundamentalsystem für ein Ideal $I(\mathfrak{Q})$ ist, und welches in diesem Falle der zugehörige Divisor \mathfrak{Q} ist. Diese Frage wird vollständig durch die folgenden beiden Sätze beantwortet:

1. Ein algebraisches System $(U^{(1)}, U^{(2)}, \dots U^{(n)})$ ist dann und nur dann ein Fundamentalsystem für ein Ideal, wenn seine Diskriminante genau gleich $\frac{n(\mathfrak{Q}^{z}\mathfrak{Z})}{\mathfrak{p}^{2\mathfrak{q}+n}}$ ist, wenn $\mathfrak{Q}=(U^{(1)}, U^{(2)}, \dots U^{(n)})$ den

größten gemeinsamen Teiler der n Elemente $U^{(i)}$ bedeutet, und zwar ist alsdann der zum Ideale gehörige Divisor gleich \mathfrak{Q} .

2. Ein algebraisches System ist dann und nur dann ein Fundamentalsystem für ein Ideal, wenn es für jede endliche Stelle peinem anderen äquivalent ist, welches entsprechend den an jener Stelle übereinanderliegenden Verzweigungspunkten \mathfrak{P}_a , \mathfrak{P}_b , ... \mathfrak{P}_c in lauter Fundamentalsysteme $(\pi^r, \ldots \pi^{r+a-1}; \varrho^s, \ldots \varrho^{s+b-1}; \ldots; \sigma^t, \ldots \sigma^{t+c-1})$ zerfällt. Ist dies der Fall, so ist der zugehörige Divisor $\mathfrak{D} = H\mathfrak{P}_a^r$, wo das Produkt nur über diejenigen Primfaktoren \mathfrak{P}_a , ... erstreckt zu werden braucht, für welche die bezüglichen Exponenten r, ... von Null verschieden sind. 39)

Aus diesen beiden Sätzen erschließt man unmittelbar das folgende wichtige Theorem:

Ist $(U^{(1)}\ldots U^{(n)})$ ein Fundamentalsystem für einen Divisor \mathfrak{Q} , so ist auch das komplementäre System $(\check{U}^{(1)},\ldots\check{U}^{(n)})$ ein Fundamentalsystem und zwar für den zu \mathfrak{Q} komplementären Divisor $\check{\mathfrak{Q}}$, welcher mit \mathfrak{Q} durch die Gleichung

$$\mathfrak{D}\widetilde{\mathfrak{D}} = \frac{1}{\mathfrak{z}_0}$$

zusammenhängt; hier bedeutet wieder β_0 den Verzweigungsteiler $\Pi \mathfrak{P}_a{}^{a-1}$ für alle endlichen Verzweigungspunkte. 40)

40) H.-L., p. 231. Ein entsprechendes Resultat, jedoch spezieller (für Fundamentalbasen des Körpers) bei D.-W., p. 227. [O]

³⁹⁾ H.-L., p. 218; derartige Bedingungen für Minimalbasen zuerst bei Hensel, J. f. Math. 115, p. 267, für Normalbasen in homogener Form, ebd. p. 287. Eine ähnliche Charakterisierung des Fundamentalsystems für Integrale 1. Gattung gibt ebenfalls in homogener Form Hensel, J. f. Math. 117, p. 37. [O]

13. Die eindeutigen Transformationen des Körpers K(u,z) in den ihm gleichen K(y,x) bei beliebiger Annahme der unabhängigen Variablen $x.^{41}$

Ist x eine beliebige nichtkonstante Funktion des Körpers K(u,z), so kann man stets durch ein endliches rationales Verfahren ein anderes Element desselben Körpers so auswählen, daß alle Elemente des Körpers K(u,z) auch rationale Funktionen von x und y sind, daß also K(u,z) = K(y,x) ist.

Ist n_x der Grad von x, so kann und muß man nämlich y innerhalb K(u,z) so auswählen, daß y einer irreduktiblen Gleichung des n_x^{ten} Grades mit rationalen Funktionen von x als Koeffizienten genügt. Der so transformierte Körper K(y,x) ist also stets von dem Grade n_x der beliebig gewählten unabhängigen Veränderlichen, und die neue Grundgleichung:

ist in bezug auf x und y bzw. vom Grade n_y und n_x . Jede Größe des Körpers genügt dann einer irreduktiblen Gleichung mit rationalen Koeffizienten in x, deren Grad gleich n_x oder gleich einem Teiler von n_x ist. Zwischen zwei beliebigen Elementen ξ und η des Körpers K(u,z) besteht immer eine irreduktible Gleichung $F(\xi,\eta)=0$, deren Grade in ξ und η bzw. gleich n_η und n_ξ oder einem Teiler dieser Zahlen sind. Der aus ihnen gebildete Körper $K(\eta,\xi)$ ist dann und nur dann gleich K(u,z), wenn jene beiden Gradzahlen ihren größten Wert haben. Aus diesem Resultat folgt sofort der allgemeine Satz, der die Grundlage der Theorie der algebraischen Kurven bildet:

Ist

$$x_0 = \frac{\mathfrak{A}_0}{\mathfrak{A}_s}, \quad x_1 = \frac{\mathfrak{A}_1}{\mathfrak{A}_s}, \quad x_2 = \frac{\mathfrak{A}_2}{\mathfrak{A}_s}$$

die Divisorendarstellung von drei beliebigen nichtkonstanten Elementen des Körpers K(u,z), so besteht zwischen ihnen stets eine homogene Gleichung

(43a)
$$F(x_0, x_1, x_2) = 0,$$

deren Grad n gleich dem Grade der von ihrem größten gemeinsamen Teiler befreiten Zählerdivisoren \mathfrak{A}_0 , \mathfrak{A}_1 , \mathfrak{A}_2 ist; diese Gleichung ist in bezug auf x_0 von dem Grade n_0 der Funktion $\frac{x_1}{x_2} = \frac{\mathfrak{A}_1}{\mathfrak{A}_2}$, und das Entsprechende gilt von den Graden n_1 und n_2 für x_1 und x_2 .

⁴¹⁾ D.-W., p. 232—235. Über die Beziehungen zum Riemannschen Klassenbegriff vgl. II B 2, Nr. 9—10. [O]

Jede nicht konstante Größe x des Körpers kann als unabhängige Variable für den Körper gewählt werden, und zu jeder gehört eine n_x -blättrige Riemannsche Kugelfläche \Re_x , auf welcher nun alle und nur die Funktionen des Körpers eindeutig und bis auf ihre Pole auch stetig ausgebreitet sind. Da die einzelnen Punkte P und ihre Umgebungen unabhängig von der Wahl der Kugelfläche definiert sind, so folgt, daß je zwei solche zu demselben Körper gehörigen Kugelflächen in der Weise eindeutig umkehrbar aufeinander bezogen sind, daß die Umgebungen entsprechender Punkte einander eindeutig zugeordnet sind. Hieraus folgt weiter, daß die algebraischen Divisoren und die Gesetze ihrer Teilbarkeit, ferner die Definition der ganzen und der gebrochenen Divisoren usw. in bezug auf den Körper invariant sind, dagegen sind z. B. die Begriffe des Moduls, des Ideales, des Verzweigungsteilers u. a. m. von der Wahl der unabhängigen Variablen z, d. h. von der Riemannschen Fläche \Re_z , abhängig. Speziell ist der zur unabhängigen Variablen x gehörige Verzweigungsteiler gleich $\mathfrak{Z}_x = \prod \mathfrak{P}_b^{b-1}$, wenn das Produkt auf alle Verzweigungspunkte der Kugelfläche & ausgedehnt wird.

Existiert in dem Körper K(u,z) speziell ein Element $\xi = c \frac{\mathfrak{P}}{\mathfrak{P}}$ vom ersten Grade und wählt man dieses als unabhängige Variable, so werden alle anderen Elemente η dieses Körpers rationale Funktionen von ξ ; der algebraische Körper K(u,z) ist dann gleich dem rationalen Körper $K(\xi)$. Alle Kugelflächen \mathfrak{R}_z des Körpers sind dann eindeutig auf die zu ξ gehörige einblättrige Kugelfläche \mathfrak{R}_ξ abgebildet.

14. Die Einteilung der algebraischen Divisoren in Klassen. Wie in Nr. 3 rechnen wir in dem algebraischen Körper K(u, z) alle auch ihren multiplikativen Konstanten nach bestimmten Divisoren $U = \mathfrak{Q}_U$ in eine Klasse E oder (1), die sogenanute Haupt- oder Einheitsklasse, welche einem Elemente U des Körpers gleich sied. Es ist also

(44)
$$E = (1) = (U, U', U'', \ldots).$$

Diese Klasse enthält somit unendlich viele, nämlich so viele Divisoren, als es Elemente U, U', \ldots des Körpers gibt. Alle Divisoren der Hauptklasse haben hiernach die Ordnung Null, und sie erzeugen sich durch die elementaren Rechenoperationen wieder. Jedoch gehört hier im allgemeinen nicht jeder Divisor der Ordnung Null zur Hauptklasse; dies ist vielmehr dann und nur dann der Fall, wenn der algebraische Körper K(u, z) einem rationalen Körper $K(\xi)$ gleich ist oder, was dasselbe ist, wenn wenigstens ein Quotient $\frac{\mathfrak{P}}{\mathfrak{P}}$ zweier Primteiler der Hauptklasse angehört.

Allgemeiner nennen wir zwei Divisoren $\mathfrak Q$ und $\mathfrak Q'$ äquivalent und rechnen sie in eine und dieselbe Klasse Q, wenn ihr Quotient $\frac{\mathfrak Q}{\mathfrak Q'}=\mathfrak Q_U$ eine Größe U des Körpers oder ein Divisor $\mathfrak Q_U$ der Hauptklasse E ist. Man erhält also alle und nur die Divisoren einer Klasse Q, wenn man alle Elemente (U, U', \ldots) des Körpers mit einem beliebig ausgewählten Divisor $\mathfrak Q_0$ der Klasse Q, dem sogenannten Multiplikator für diese Klasse multipliziert, Q. h. es ist

$$(45) Q = \mathfrak{D}_0(U, U', \ldots) = (\mathfrak{D}_0 U, \mathfrak{D}_0 U', \ldots).$$

Alle Divisoren der Klasse Q haben somit dieselbe Ordnung q, welche daher die Ordnung jener Klasse genannt wird. Man kann den Multiplikator \mathfrak{D}_0 innerhalb Q ganz beliebig und speziell auch stets so auswählen, daß er beliebig gegebene Primfaktoren nicht enthält.

Sind Q und R zwei Divisorenklassen, und durchlaufen $\mathfrak Q$ und $\mathfrak R$ alle Elemente derselben, so gehören alle Produkte $\mathfrak Q\mathfrak R$ und nur sie in eine und dieselbe neue Klasse, welche durch QR bezeichnet wird, und ebenso sind alle Quotienten $\frac{\mathfrak Q}{\mathfrak R}$ die sämtlichen Divisoren einer Klasse $\frac{Q}{R}$. Sind q und r die Ordnungen von Q und R, so haben QR und $\frac{Q}{R}$ die Ordnungszahlen q+r und q-r. Die Haupt- oder Einheitsklasse E ist die einzige, durch deren Multiplikation und Division eine beliebige Klasse Q nicht geändert wird. 42

Zu einer wesentlich allgemeineren Auffassung der Äquivalenz und der Klasseneinteilung der algebraischen Divisoren, welche für die geometrischen Anwendungen der Theorie von großer Bedeutung ist, gelangt man durch die folgenden Betrachtungen:

Alle Divisoren $\mathfrak Q$ bilden eine Gruppe, welche kommutativ, also eine *Abel*sche Gruppe G ist, und dasselbe gilt für jede Untergruppe von G, z. B. für die Gesamtheit aller der soeben bestimmten Divisorenklassen. Es sei nun

$$M = (\mathfrak{M}_0, \ \mathfrak{M}_1, \ \ldots)$$

eine beliebige Untergruppe von G, so sollen zwei Divisoren $\mathfrak Q$ und $\mathfrak Q'$ jetzt in allgemeinerem Sinne äquivalent in bezug auf M heißen,

⁴²⁾ D.-W., p. 248-250 (§ 18), H-L., p. 250 f.; bei der Vergleichung der Resultate ist jedoch zu beachten, daß bei D.-W. Polygone nur ganzen Divisoren entsprechen, so daß zu den dort betrachteten Polygonklassen Divisorenklassen gehören, in denen wenigstens ein ganzer Divisor vorkommt Ähnliches gilt von den Polygonscharen. Dementsprechend gestalten sich die obigen Sätze bei D.-W. komplizierter. [0]

wenn sie sich nur um ein Element von M unterscheiden, so daß also die Aquivalenz $\mathfrak{D} \sim \mathfrak{D}'$ (M)

eine Gleichung $\mathfrak{Q} = \mathfrak{Q}'\mathfrak{M}$ vertritt. Bei dieser allgemeineren Definition ordnen sich alle untereinander in bezug auf M äquivalenten Divisoren zu Klassen (E_M, Q_M, R_M, \ldots) , und auch für diese Klasseneinteilung gelten genau die früheren Gesetze. Die Hauptklasse E_M ist hier die Gruppe M, und auch hier bestimmt das Produkt je zweier Elemente von zwei Klassen Q_M und R_M alle Elemente einer neuen Klasse, welche jetzt mit $Q_M R_M$ bezeichnet werden möge. Ebenso gehört zu jeder Klasse Q_M eine reziproke Klasse Q_M^{-1} , welche mit ihr multipliziert die Hauptklasse M erzeugt.

Wählt man für M speziell die Klasse E der zu den Funktionen U von K(u,z) gehörigen Divisoren \mathfrak{D}_U , so erhält man genau die vorige Klasseneinteilung, die wir auch im folgenden zunächst immer benutzen werden. Es sei nun aber A irgendeine dieser Divisorenklassen, und es bedeute jetzt

 $M = (\ldots A^{-2}, A^{-1}, E, A, A^2, \ldots)$

die durch diese Klasse und ihre Potenzen konstituierte Untergruppe von G, welche also ihrerseits die Klasse E als Teiler enthält. Dann entspricht der Einteilung der Divisoren $\mathfrak Q$ in bezug auf M die Zusammenfassung aller der früheren Divisorenklassen Q in eine größere Klasse Q_M , welche sich von Q nur um eine Potenz von A unterscheiden.

15. Die Divisorenscharen und ihre Invarianten. Sind \mathfrak{Q}_{U_1} , \mathfrak{Q}_{U_2} , ..., $\mathfrak{Q}_{U_{\mu}}$ μ beliebige Divisoren der Hauptklasse, c_1 , c_2 , ..., c_{μ} beliebige Konstanten, so ist

$$\mathfrak{Q}_{U} = c_{1}\mathfrak{Q}_{U_{1}} + c_{2}\mathfrak{Q}_{U_{2}} + \cdots + c_{\mu}\mathfrak{Q}_{U_{\mu}}$$

ebenfalls ein eindeutig bestimmter Divisor der Hauptklasse, nämlich derjenige, welcher der Funktion

(46a)
$$U = c_1 U_1 + c_2 U_2 + \cdots + c_{\mu} U_{\mu}$$

entspricht. Derselbe ist durch den größten gemeinsamen Teiler $\mathfrak{D} = (\mathfrak{D}_{U_1}, \mathfrak{D}_{U_2}, \ldots, \mathfrak{D}_{U_{\mu}})$ der \mathfrak{D}_{U_i} ebenfalls teilbar, also in der Form $\mathfrak{D}_{U} = \mathfrak{D}$ darstellbar, wo der ganze Divisor \mathfrak{G} von den Konstanten $c_1, c_2, \ldots, c_{\mu}$ abhängt. Man kann die Konstanten c_i auf unendlich viele Arten so bestimmen, daß \mathfrak{G} beliebig gegebene Primteiler $\mathfrak{P}^{(1)}, \mathfrak{P}^{(2)}, \ldots, \mathfrak{P}^{(r)}$ nicht enthält. μ Divisoren der Hauptklasse heißen

⁴³⁾ Vgl. D.-W., p. 250-252 (§ 19), wo jedoch nur Polygonscharen, d. h. Scharen ganzer Divisoren betrachtet werden (für die hier gegebenen Betrachtungen vgl. H.-L., p. 452f.). [O]

linear unabhängig, wenn zwischen ihnen keine lineare homogene Gleichung: $c_1 \mathfrak{D}_{U_1} + c_2 \mathfrak{D}_{U_2} + \cdots + c_u \mathfrak{D}_{U_u} = 0$

mit konstanten Koeffizienten besteht.

Wenn wir festsetzen, daß eine zwischen Divisoren bestehende Gleichung richtig bleiben soll, wenn man sie mit einem von Null verschiedenen Divisor multipliziert oder durch ihn dividiert, so erkennt man, daß jede homogene Gleichung vom ersten oder auch von höherem Grade zwischen Divisoren der Hauptklasse für die ihnen in einer beliebigen Klasse Q zugeordneten Divisoren ebenfalls erfüllt ist, und umgekehrt besteht zwischen Divisoren einer und derselben Klasse dann und nur dann eine homogene Gleichung, wenn sie auch für die zugeordneten Funktionen der Hauptklasse erfüllt ist. Sind speziell \mathfrak{D}_0 , \mathfrak{D}_1 , ..., \mathfrak{D}_{μ} beliebige Divisoren einer Klasse Q, so stellt jede homogene lineare Funktion:

$$\mathfrak{Q} = c_0 \mathfrak{Q}_0 + c_1 \mathfrak{Q}_1 + \dots + c_{\mu} \mathfrak{Q}_{\mu}$$

einen eindeutig bestimmten Divisor derselben Klasse dar, welcher in der Form \mathfrak{D} G geschrieben werden kann, wo $\mathfrak{D} = (\mathfrak{D}_0, \mathfrak{D}_1, \ldots, \mathfrak{D}_{\mu})$ ist und \mathfrak{G} einen von den c_i abhängigen ganzen Divisor bedeutet. Die Divisoren $(\ldots \mathfrak{D}_i \ldots)$ heißen *linear unabhängig*, wenn zwischen ihnen keine homogene lineare Gleichung mit nicht sämtlich verschwindenden Koeffizienten besteht. Man kann jedes System (\mathfrak{D}_i) durch ein System unabhängiger Divisoren ersetzen.

Für alle möglichen Werte der Konstanten e_i erhält man alle Divisoren $\mathfrak D$ einer Divisorenschar $\mathfrak S$, welche durch die $Basis\,(\mathfrak D_0,\mathfrak D_1,\ldots,\mathfrak D_\mu)$ von linear unabhängigen Elementen vollständig bestimmt ist. Diese Schar bleibt ungeändert, wenn man ihre Basis durch eine umkehrbare lineare Transformation

$$\mathfrak{D}_{i} = \sum c_{ik} \mathfrak{D}_{k}' \qquad (i, k = 0, 1, ..., \mu)$$

mit konstanten Koeffizienten in eine äquivalente Basis transformiert. Diese Tatsache liefert gleich die zu einer solchen Schar gehörigen $(\mu+1)$ invarianten Verzweigungsteiler, welche in allen Anwendungen dieser Theorie von grundlegender Bedeutung sind.

Man kann nämlich die Basis (\mathfrak{D}_i) von vornherein in eine äquivalente Basis $(\overline{\mathfrak{D}}_i)$ transformieren, welche für eine beliebig gegebene Stelle \mathfrak{P} regulür ist, in welcher nämlich jedes folgende Element durch eine höhere Potenz von \mathfrak{P} teilbar ist, als das vorhergehende. Sind nun \mathfrak{P}^{a_0} , $\mathfrak{P}^{a_0+a_1}$, ..., $\mathfrak{P}^{a_0+a_1+\cdots+a_s}$

die in $\overline{\mathbb{Q}}_0$, $\overline{\mathbb{Q}}_1$, ..., $\overline{\mathbb{Q}}_s$ enthaltenen Potenzen von \mathfrak{B} , so sind die Exponenten α_0 , α_1 , ..., α_s nur von dem Systeme (\mathfrak{Q}_s) abhängige ein-

deutig bestimmte ganze Zahlen, von denen die μ letzten sämtlich positiv sind, während α_0 positiv, Null oder negativ sein kann. Für jeden Punkt \mathfrak{P} erhält man so ein System von Exponenten $(\alpha_0,\alpha_1,\ldots,\alpha_{\mu})$, welches der Schar $\mathfrak{S}=(\mathfrak{Q}_0,\mathfrak{Q}_1,\ldots,\mathfrak{Q}_s)$ zugeordnet ist. Wir bezeichnen nun die über alle Punkte \mathfrak{P} erstreckten $\mu+1$ Produkte:

(47 a)
$$\beta_0 = II \mathfrak{P}^{\alpha_0}, \quad \beta_1 = II \mathfrak{P}^{\alpha_1 - 1}, \quad \beta_2 = II \mathfrak{P}^{\alpha_2 - 1}, \dots, \\ \beta_{\mu} = II \mathfrak{P}^{\alpha_{\mu} - 1}$$

als die zu der Schar $\mathfrak S$ gehörigen Verzweigungsteiler nullter, erster, ... μ^{ter} Ordnung. Sie sind die wichtigsten Invarianten der höheren Geometrie. Nur der Verzweigungsteiler nullter Ordnung $\mathfrak Z_0$, der größte gemeinsame Teiler aller Divisoren $(\mathfrak Q_0, \mathfrak Q_1, \ldots, \mathfrak Q_\mu)$, ist im allgemeinen gebrochen, alle anderen sind endliche ganze Divisoren. Ist speziell $\mu=1$, so treten nur die beiden Verzweigungsteiler $\mathfrak Z_0=(\mathfrak Q_0, \mathfrak Q_1)$ und $\mathfrak Z_1$ auf; dieser letztere ist, wie eine einfache Überlegung zeigt, der Verzweigungsteiler $\mathfrak Z_x$ der zu der Funktion $x=\frac{\mathfrak Q_0}{\mathfrak Q_1}$ gehörigen Riemannschen Fläche $\mathfrak R_x$.

Sind ferner:

(48)
$$x_0 = \frac{\mathfrak{A}_0}{\mathfrak{A}}, \quad x_1 = \frac{\mathfrak{A}_1}{\mathfrak{A}}, \quad x_2 = \frac{\mathfrak{A}_2}{\mathfrak{A}}$$

drei beliebige nicht konstante Elemente des Körpers und $\Phi(x_0, x_1, x_2) = 0$ die zwischen ihnen bestehende homogene Gleichung n^{ten} Grades, so besteht dieselbe Gleichung $\Phi(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2) = 0$ zwischen den drei einander äquivalenten Divisoren, welche oben die Zähler von x_0, x_1, x_2 bilden.

Umgekehrt folgt jetzt sofort aus (43a) auf p. 567: sind

$$(48 a) \mathfrak{A}_0 = \mathfrak{D} \mathfrak{G}_0, \quad \mathfrak{A}_1 = \mathfrak{D} \mathfrak{G}_1, \quad \mathfrak{A}_2 = \mathfrak{D} \mathfrak{G}_2$$

drei beliebige ganze oder gebrochene Divisoren einer und derselben Klasse und $\mathfrak{D} = (\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$ ihr größter gemeinsamer Teiler, so besteht zwischen ihnen stets eine homogene Gleichung

$$\Phi(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2) = 0,$$

deren Grad n gleich dem Grade der Divisoren \mathfrak{G}_0 , \mathfrak{G}_1 , \mathfrak{G}_2 ist, und diese Gleichung steigt z. B. in \mathfrak{A}_0 bis zum Grade n_0 von $\frac{\mathfrak{A}_1}{\mathfrak{A}_0} = \frac{\mathfrak{G}_1}{\mathfrak{G}_2}$ an.

16. Die ganzen Divisoren einer Klasse Q bilden einen Teilbereich derselben, den sogenannten Integritätsbereich der Klasse Q. In jeder Klasse gibt es stets eine endliche Anzahl von linear unabhängigen Divisoren $\mathfrak{G}_1, \mathfrak{G}_2, \ldots, \mathfrak{G}_N$, durch welche alle und nur die ganzen Divisoren in der Form:

$$\mathfrak{G} = c_1 \mathfrak{G}_1 + c_2 \mathfrak{G}_2 + \cdots + c_N \mathfrak{G}_N$$

mit konstanten Koeffizienten dargestellt werden können. Die Zahl $N = \{Q\}$ der linear unabhängigen ganzen Divisoren innerhalb Q wird die *Dimension* dieser Klasse genannt. Die Aufstellung eines solchen Systemes und die Bestimmung der Dimension $\{Q\}$, eine Hauptaufgabe der ganzen Theorie, wird folgendermaßen einfach gelöst:

Ist \mathfrak{Q}_0 ein Multiplikator für die Klasse Q, und sind $U^{(1)}, U^{(2)}, \ldots, U^{(N)}$ die zu $\mathfrak{G}_1, \mathfrak{G}_2, \ldots, \mathfrak{G}_N$ zugeordneten Elemente der Hauptklasse, so bilden die $U^{(i)} = \frac{\mathfrak{G}_i}{\mathfrak{Q}_0}$ ein vollständiges System linear unabhängiger Multipla des zu \mathfrak{Q}_0 reziproken Divisors $\overline{\mathfrak{Q}}_0 = \frac{1}{\mathfrak{Q}_0}$ innerhalb des Körpers K(u,z); also können diese Vielfachen $U^{(i)} = \frac{\mathfrak{G}_i}{\mathfrak{Q}_0}$ und damit auch die Divisoren $\mathfrak{G}_i = U^{(i)}\mathfrak{Q}_0$ nach der p. 565, Nr. 12 auseinandergesetzten Methode rational gefunden werden. Aus diesen Betrachtungen ergeben sich leicht die Folgerungen:

Ist Q eine Divisorenklasse von der Ordnung q, deren Dimension mindestens gleich zwei ist, so kann man auf rationalem Wege eine nicht konstante Größe x innerhalb K(u,z) finden, deren Grad $n_x \leq q - \{Q\} + 2$ ist. Legt man diese als unabhängige Variable zugrunde, so geht K(u,z) in einen Körper von derselben Ordnung n_x über. Man kann so den Grad des Körpers stets mindestens auf (p+1) erniedrigen, wenn p das in (54a) p. 577 definierte Gc-schlecht des Körpers ist.

Eine Verallgemeinerung dieses Satzes ist das folgende wichtige Theorem:

Die Anzahl aller linear unabhängigen Multipla eines beliebigen Divisors $\mathfrak D$ innerhalb einer Divisorenklasse R ist gleich der Dimension $\left\{\frac{R}{Q}\right\}$ der Klasse $\frac{R}{Q}$, wenn Q die Klasse von $\mathfrak D$ bedeutet; sie ist also von der Wahl des Divisors $\mathfrak D$ innerhalb seiner Klasse unabhängig. Ist also speziell Q von höherer oder von gleicher Ordnung wie R, so ist diese Anzahl stets gleich Null, es sei denn, daß Q = R ist; alsdann ist sie gleich Eins.

Es sei endlich Q eine beliebige Klasse, und $\mathfrak{D}=(\mathfrak{G}_1,\mathfrak{G}_2,\ldots,\mathfrak{G}_{\mu})$ der größte gemeinsame Teiler aller ihrer ganzen Divisoren; dann heißt Q eine Klasse vom Teiler \mathfrak{D} ; ist $\mathfrak{D}=1$, so wird Q eine primitive Klasse genannt. Es sei D die Klasse von \mathfrak{D} , so ist $Q=D\overline{Q}$ und \overline{Q} ist eine primitive Klasse. Dann bestehen für die Dimensionen von \overline{Q} und D die Gleichungen⁴⁵):

$$\{\overline{Q}\} = \{Q\}, \quad \{D\} = 1.$$

⁴⁴⁾ D.-W., p. 254.

⁴⁵⁾ D.-W., p. 255.

III. Die zu dem Körper K(y,x) gehörigen Abelschen Integrale.

Eine der wichtigsten Anwendungen der soeben entwickelten Theorie ist die Untersuchung der Integrale algebraischer Differentiale. Hier ist sie im wesentlichen identisch mit der vollständigen Betrachtung einer bestimmten Divisorenklasse, der sogenannten Differentialklasse.

17. Die Abelschen Integrale. Sind ξ und ξ_{ξ} zwei beliebige Elemente des Körpers K(y, x), so wird durch die Differentialgleichung:

(50)
$$\frac{d\omega}{d\xi} = \zeta_{\xi} \qquad (d\omega = \zeta_{\xi}d\xi)$$

eine neue analytische Funktion $\omega = \int \xi_{\xi} d\xi$ bis auf eine additive Konstante eindeutig definiert, welche ein zu dem Körper K(y,x) gehöriges Abelsches Integral genannt wird. Durch gliedweise Integration der für eine endliche Umgebung einer gegebenen Stelle $\mathfrak{P}(\xi=\xi_0)$ gleichmäßig konvergierenden Potenzreihe für $\xi_{\xi}d\xi$ überzeugt man sich, daß sich ein Abelsches Integral in der Umgebung einer beliebigen Stelle \mathfrak{P} stets in der Form darstellen läßt:

(51)
$$\omega(\mathfrak{P}) = \varrho \lg \pi + \psi(\pi),$$

wo π eine zu $\mathfrak P$ gehörige Primfunktion, etwa $(\xi-\xi_0)^{\frac{1}{\sigma}}$ bzw. $(\frac{1}{\xi})^{\frac{1}{\sigma}}$ ist, und $\psi(\pi)$ wieder dem Körper $K(u,\mathfrak p)$ der konvergenten Potenzreihen für $\mathfrak P$ angehört, also höchstens eine endliche Anzahl negativer Potenzen von π enthält. Nur für eine endliche Anzahl von Stellen ist $\varrho \geq 0$; diese heißen logarithmische Stellen von $\mathfrak O$, und der Koeffizient ϱ wird das Residuum des Differentiales d ϱ für die Stelle $\mathfrak P$ genannt.

Ist ω_0 die zu der Stelle $\mathfrak P$ gehörige Integrationskonstante, welche von dem Integrationswege abhängt, so soll wieder $\omega-\omega_0$ durch den Divisor $\mathfrak P^\sigma$ genau teilbar heißen, wenn die Entwicklung der Differenz $\omega-\omega_0$ in der Umgebung der Stelle $\mathfrak P$ im früheren Sinne die Ordnungszahl σ besitzt, oder für diese Stelle durch die σ^{to} Potenz der zugehörigen Primfunktion genau teilbar ist.

Beginnt jedoch diese Entwicklung speziell mit $\lg \pi$, so sagen wir, daß $\omega - \omega_0$ durch $\lg \mathfrak{P}$ genau teilbar ist, und in diesem Falle müssen wir, wie man leicht einsieht, $\omega - \omega_0$ eine unendlich kleine aber negative Ordnungszahl zuschreiben. Ein Integral ω heißt regulär

⁴⁶⁾ Vgl. D.-W., p. 259 ff., wo eine von Kontinuitätsbetrachtungen freie Einführung der Differentialquotienten gegeben wird. Für die hier gegebene Einführung vgl. H.-L., p. 269 f. und p. 287 f. [O]

18. Differentiale der Elemente des Körpers K und die zugehörigen Divisoren. 575

an der Stelle \mathfrak{P} , wenn $\omega - \omega_0$ genau durch die erste Potenz des Primteilers \mathfrak{P} teilbar ist.

Alle zum Körper K gehörigen Integrale bilden einen in sich abgeschlossenen Bereich von im allgemeinen transzendenten Funktionen. Die Erforschung ihrer Eigenschaften und die Darstellung aller Integrale durch möglichst einfache unter ihnen ist die Aufgabe dieses dritten Abschnittes. An Stelle dieser Integralfunktionen ω selbst untersuchen wir ihre Differentiale $d\omega$, die sogenannten Abelschen Differentiale, und stellen sie zunächst durch die sie vollständig bestimmenden und von der Wahl der Integrationsvariablen ξ unabhängigen Differentialteiler dar. Hierzu führen die folgenden Betrachtungen:

18. Die Differentiale der Elemente des Körpers K und die zugehörigen Divisoren. Es seien ξ und η zwei beliebige nicht konstante Elemente von K und $F(\xi,\eta) = 0$ die zwischen ihnen bestehende irreduktible Gleichung. Dann folgt aus der Gleichung $\frac{d\eta}{d\xi} = -\frac{F'_{\xi}}{F'_{\eta}}$, daß das Verhältnis irgend zweier Differentiale $d\eta$ und $d\xi$ ebenfalls eine Größe des Körpers, also gleich einem Divisor der Hauptklasse ist, dessen Bestimmung unsere nächste Aufgabe bildet. Aus der Entwicklung von ξ und η in der Umgebung einer beliebigen Stelle $\mathfrak P$ ergibt sich nun zunächst der Satz:

Sind ξ_0 und η_0 die zu ξ und η in ihrer Entwicklung in der Umgebung von \mathfrak{P} gehörigen konstanten Glieder und sind die Differenzen $\xi - \xi_0$ und $\eta - \eta_0$, bzw. durch \mathfrak{P}^d und \mathfrak{P}^e teilbar, so ist der Differentialquotient $\frac{d\eta}{d\xi}$ genau durch \mathfrak{P}^{e-d} teilbar, d. h. es ist

$$\frac{d \eta}{d \xi} = \Pi \mathfrak{P}^{c-d},$$

wenn die Multiplikation über alle Punkte P erstreckt wird.

Derselbe Divisor kann auf andere Weise dargestellt werden: Ist nämlich \Re_{ξ} die zu ξ gehörige Kugelfläche, sind \Im_{ξ} und \mathfrak{n}_{ξ} der Verzweigungsteiler von \Re_{ξ} und der Nenner von ξ , haben ferner \Re_{η} , \Im_{η} und \mathfrak{n}_{η} dieselbe Bedeutung für das Element η , so kann das Produkt in (52) auch in der Form $\frac{\Im_{\eta}}{\mathfrak{n}_{\eta}^2}:\frac{\Im_{\xi}}{\mathfrak{n}_{\xi}^2}$ dargestellt werden, d. h. es besteht der Satz⁴⁷):

Sind ξ und η zwei beliebige Größen des Körpers K, so besteht immer die Gleichung:

(52 a)
$$\frac{d\eta}{d\xi} = \frac{g_{\eta}}{\mathfrak{n}_{z}^{z}} : \frac{g_{\xi}}{\mathfrak{n}_{z}^{z}}$$

⁴⁷⁾ D.-W., p. 263-264. [O] H.-L., p. 292.

576 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

Ordnen wir daher jedem Differentiale $d\xi$ des Körpers den algebraischen Divisor:

$$\mathfrak{w}_{\xi} = \frac{\mathfrak{z}_{\xi}}{\mathfrak{n}_{\xi}^2}$$

zu, so ist das Verhältnis $\frac{d\xi}{w_{\xi}}$ für alle Elemente des Körpers dasselbe, und jedes Differential $d\xi$, welches zu einem Elemente ξ von K(x, y) gehört, ist so durch den zugehörigen Divisor w_{ξ} vollständig bestimmt.

Schreiben wir jetzt ein beliebiges Abelsches Differential in einer der Formen $d\omega = \xi_{\xi} d\xi = \xi_{\eta} d\eta$, indem wir das eine Mal ξ , das andere Mal η als Integrationsvariable wählen, so ergibt sich für das Verhältnis der beiden Integranden ξ_{ξ} und ξ_{η}

$$\frac{\zeta_{\xi}}{\zeta_{\eta}} = \frac{d\,\eta}{d\,\xi} = \frac{\mathfrak{w}_{\eta}}{\mathfrak{w}_{\xi}}.$$

Also ist der algebraische Divisor:

$$(53) \quad w_{\omega} = \xi_{\xi} w_{\xi} = \xi_{\eta} w_{\eta}$$

$$= \xi_{\xi} \cdot \frac{3\xi}{\mathfrak{n}_{\xi}^{\xi}} = \xi_{\eta} \cdot \frac{3\eta}{\mathfrak{n}_{\eta}^{2}}$$

von der Wahl der Integrationsvariablen ganz unabhängig und allein durch das Differential $d\omega$ vollständig bestimmt; daher wird der Divisor \mathfrak{w}_{ω} der su $d\omega$ gehörige Differentialteiler⁴⁸) genannt, und so ist auch allgemein jedes Abelsche Differential $d\omega$ ebenso wie vorher jedes zu einem Elemente von K gehörige Differential vollständig durch den zugehörigen Divisor \mathfrak{w}_{ω} bestimmt.

Durch den Differentialteiler w_{ω} ist das Verhalten des Integrales ω an jeder Stelle $\mathfrak P$ eindeutig bestimmt. Durch geeignete Spezialisierung der Integrationsvariablen für die zu untersuchende Stelle ergibt sich nämlich leicht der Satz:

Ist $\mathfrak P$ ein d-facher Divisor des zu $d\varpi$ gehörigen Differentialteilers $\mathfrak w_\omega$, so ist die zum Punkte $\mathfrak P$ gehörige Differenz $\omega-\varpi_0$ durch $\mathfrak P^{d+1}$ oder durch $\lg \mathfrak P$ genau teilbar, je nachdem $d \gtrsim -1$ oder d = -1 ist.

Ist also allgemein $\omega-\omega_0$ in einem Punkte $\mathfrak P$ von der Ordnung ϱ , so ist der zugehörige Differentialteiler durch das über alle Punkte $\mathfrak P$ zu erstreckende Produkt

(53 a)
$$\mathfrak{w}_{\omega} = \prod \mathfrak{P}^{\varrho-1}$$

definiert, wenn für diejenigen Punkte, für welche o negativ unendlich klein ist (vgl. Nr. 17) diese Zahl durch Null ersetzt wird.

⁴⁸⁾ D.-W., p. 268. [O] H.-L., p. 294.

19. Die Differentialklasse W. Betrachtet man alle Abelschen Differentiale $(d\omega = \xi_{\xi}d\xi, d\omega' = \xi_{\xi'}d\xi, \ldots)$ des ganzen Körpers K, so sind die zugehörigen Differentialteiler $(w_{\omega}, w'_{\omega}, \ldots)$ äquivalente Divisoren, wie aus den Gleichungen $\frac{w_{\omega}}{w'_{\omega}} = \frac{\xi_{\xi}}{\xi'_{\xi}}, \cdots$ unmittelbar folgt. Sie bilden also die sämtlichen Divisoren einer Klasse W, der sogenannten Differentialklasse, ebenso wie die Elemente von K(u, z) die sämtlichen Divisoren der Hauptklasse ausmachen. Die Ordnung dieser Klasse ist gleich derjenigen irgend eines Divisiors $\frac{3\xi}{n_{\xi}^2}$, also gleich

$$\mathfrak{w}_{\xi}-2n_{\xi}=2p-2,$$

wenn die ganze Zahl:

(54 a)
$$p = \frac{1}{2} w_{\xi} - n_{\xi} + 1,$$

das sogenannte Geschlecht des Körpers K(u,z), als wichtigste Invariante der ganzen Theorie in die Untersuchung eingeführt wird. Es ergibt sich hier ohne weiteres, daß das Geschlecht von der Wahl der Variablen ξ innerhalb des Körpers ganz unabhängig ist.

Als Multiplikator für den Übergang von der Hauptklasse zur Differentialklasse kann man irgend einen Divisor $\frac{3\xi}{n\xi}$ von W wählen. Dieser Festsetzung entspricht dann die Wahl von ξ als Integrationsvariablen.

20. Die Fundamentalaufgabe in der Theorie der Abelschen Integrale kann nun auch analog wie in Nr. 16, p. 573 folgendermaßen ausgesprochen werden:

Es soll ein vollständiges System linear unabhängiger Differentiale $(d\omega_1, d\omega_2, \ldots, d\omega_u)$ gefunden werden, deren Divisoren w_{ω_i} Multipla eines beliebig gegebenen Divisors $\mathfrak Q$ sind, für welche also:

$$\mathfrak{w}_{\omega} = \mathfrak{Q} \mathfrak{G}_{\omega}$$

ist, wenn die \mathfrak{G}_{m_i} ganze Divisoren bedeuten. Oder, was dasselbe ist, es sollen alle *Abel*schen Integrale mit vorgeschriebenen Nullstellen, Polen oder logarithmischen Punkten gefunden werden.

Nach dem allgemeinen Satze auf p. 573 ist diese Anzahl der linear unabhängigen Differentialteiler für alle Divisoren $\mathfrak Q$ einer Klasse Q dieselbe, nämlich gleich der Dimension $\left\{\frac{W}{Q}\right\}$ der sogenannten $Erg\ddot{a}n$ -zungsklasse zu Q: $Q' = \frac{W}{Q}$. Die hier gestellte Aufgabe ist also identisch mit der Frage nach der Dimension zweier Klassen Q und Q' der Ordnungen q und q', für welche QQ' = W, also q + q' = 2p - 2 ist. Diese Frage wird vollständig beantwortet durch die folgende Beziehung

zwischen den Ordnungs- und Dimensionszahlen zweier Ergänzungsklassen, den sogenannten Riemann-Rochschen Satz⁴⁹):

Sind Q und Q' zwei beliebige Ergänzungsklassen, so ist stets:

(I)
$$\{Q\} - \frac{q}{2} = \{Q'\} - \frac{q'}{2}$$

(II)
$$\{Q'\} = \{Q\} - q + p - 1.$$

Von diesen Gleichungen ist jede eine Folge der anderen. Wählt man, was auf das Resultat ohne Einfluß ist, die unabhängige Variable ξ innerhalb K sowie die beiden Divisoren $\mathfrak L$ und $\mathfrak L'$ innerhalb Q und Q' geeignet aus, so ist der Riemann-Rochsche Satz eine unmittelbare einfache Folgerung aus der Beziehung zwischen einem Fundamentalsystem $(U^{(1)},\ U^{(2)},\ldots,\ U^{(n)})$ für die Multipla des Divisors $\frac{1}{\mathfrak D\mathfrak n_\xi}$ und seinem komplementären Systeme $(\check U^{(1)},\ \check U^{(2)},\ldots,\ \check U^{(n)})$, welches nach (42) ein Fundamentalsystem für die Multipla von $\frac{1}{\mathfrak L'\mathfrak n_\xi}$ wird, wenn eben $\mathfrak D$ und $\mathfrak L'$ so ausgewählt sind, daß $\mathfrak L\mathfrak L'=\frac{3\xi}{\mathfrak n_\xi^2}$ ist. 50)

Wählt man für Σ irgend einen Divisor Σ_U der Hauptklasse oder setzt man ganz speziell $\Sigma = 1$, so ergibt sich als Folgerung:

Die Anzahl aller linear unabhängigen Integrale, deren Divisor \mathfrak{w}_{ω} ein Multiplum einer beliebigen Funktion des Körpers K(u,z) ist,

bezeichnet. (Dann sind offenbar die Klassen von Ω und Ω_1 Ergünzungsklassen.) Und das "Complementary theorem" gibt die Beziehung zwischen den Dimensionen der durch Ω und Ω_1 teilbaren Funktionenscharen. [O]

⁴⁹⁾ Die entsprechenden Entwicklungen bei D-W., p. 273—281 gestalten sich noch sehr unübersichtlich infolge der Beschränkung auf Klassen mit einer Dimension ≥ 1 . [O]

Satz und dem zu einem Fundamentalsystem für ganze Größen komplementären System haben zuerst D-W. erkannt (D-W., p. 274—281). An allgemeinere Fundamentalsysteme (für Formen) knüpft die Untersuchung des Riemann-Roch-schen Satzes erst Landsberg (Math. Aun. 50 (1898), p. 333—380) an. Mit dem so aufgefaßten Riemann-Roch-schen Satz stimmt sachlich das "Complementary theorem" vollständig überein, in dem die Fields-sche Theorie der algebraischen Funktionen gipfelt (J.C.Fields), Theorie of the algebraic functions of a complex variable 1906); vereinfachte Darstellungen Phil. Trans. A. 212 (1913), p. 339—373, International Congress of Mathematicians (Proceed. Cambridge 1913, Vol. I, p. 312). Darin entspricht die Inzidenzbasis (basis of coincidences) dem Exponentensystem eines beliebigen Divisors; ist R eine beliebige Funktion des Körpers, (m_i) das Exponentensystem des entsprechenden Divisors, so sind zwei Inzidenzbasen komplementär in bezug auf die durch R gegebene Inzidenzbasis (m_i) , wenn das Produkt der entsprechenden Divisoren $\mathfrak Q$ und $\mathfrak Q_1$ gleich R $\frac{3z}{n^2}$ ist, wo z die unabhängige Variable

speziell also auch die Anzahl der unabhängigen allenthalben endlichen Integrale ($Integrale\ erster\ Gattung$), ist stets gleich dem Geschlechte p des Körpers.

Setzt man zweitens $\mathfrak{Q} = \frac{1}{\mathfrak{n}_{\omega}}$, wo \mathfrak{n}_{ω} einen beliebigen ganzen Divisor bedeutet, so ergibt sich:

Die Anzahl aller linear unabhängigen Differentiale, deren Differentialteiler einen gegebenen Nenner besitzt, ist stets gleich $\nu + p - 1$, wenn ν den Grad von \mathfrak{n}_{ω} bedeutet.

Aus der in Nr. 12 (p. 565) angegebenen Vorschrift ergibt sich nun ein endliches rationales Verfahren zur wirklichen Aufstellung eines vollständigen Systemes von linear unabhängigen Differentialen, deren Divisor ein Multiplum von $\mathfrak D$ ist. Wendet man dieses auf den Fall $\mathfrak D=1$, also auf die Differentiale erster Gattung an, so ergibt sich folgende Vorschrift: Es möge an der Stelle $\mathfrak p_\infty$ kein Verzweigungspunkt liegen. Ist dann $(U^{(1)}, U^{(2)}, \ldots, U^{(n)})$ ein Fundamentalsystem für die ganzen algebraischen Funktionen von K(u, z), welches für die Stelle $\mathfrak p_\infty$ normal ist, und bedeutet $(\check{U}^{(1)}, \check{U}^{(2)}, \ldots, \check{U}^{(n)})$ das komplementäre System, so ist dieses nach Nr. 12 (p. 566) ein ebenfalls für $\mathfrak p_\infty$ normales Fundamentalsystem für die Multipla von $\frac{1}{3_x}$. Ist daher allgemein $\check{U}^{(i)}$ für $\mathfrak p_\infty$ von der Ordnung $\overline{\mathfrak q}_i$, so bilden die

$$p = \sum_{i=1}^{n} \overline{\varrho}_{i} - n + 1 = \frac{w}{2} - n + 1$$

Elemente

$$\widecheck{U}^{(i)}, x\,\widecheck{U}^{(i)}, \ldots, x^{\widetilde{\ell_i}-2}\,\widecheck{U}^{(i)} \qquad (i=1,2,\ldots,n)$$

ein vollständiges System linear unabhängiger Multipla von $\frac{n_x^2}{3x}$, d. h. ein vollständiges System von Integranden erster Gattung.⁵¹)

21. Die Elementarintegrale erster, zweiter und dritter Gattung. Aus dem *Riemann-Roch*schen Satze folgt sofort, daß die Differential-klasse W primitiv ist.

⁵¹⁾ Diese Darstellung der Integrale erster Gattung mit Hilfe der zur Normalbasis komplementären geben zuerst D-W., p. 271—273, homogen Hensel, J. f. Math. 109 (1892), p. 37; 8. f. Math. 117 (1896), p. 29—41; inhomogen Baker, Math. Ann. 45 (1894), p. 115 ff., B. 67; homogen Landsberg, Math. Ann. 50, p. 356—360, inhomogen H.-L., p. 298—300. Baur tührt die Rechnungen für hyperelliptische [Math. Ann. 41 (1893), p. 491] und kubische [Math. Ann. 43 (1893), p. 505] und besondere [Math. Ann. 46 (1895)] Körper durch. Über die Bakersche Darstellung der Integrale zweiter und dritter Gattung durch die zur Normalbasis komplementären s. Baker, Math. Ann. 44 (1894), p. 127. [O]

Man kann also stets ein Integral erster Gattung finden, welches sich in einer beliebig gegebenen Stelle B regulär verhält.

Diesem Satze kann man ebenfalls mit Hilfe des Riemann-Rochschen Satzes die folgende Verallgemeinerung geben:

Ist $\mathfrak{N}=\mathfrak{P}_1\mathfrak{P}_2\ldots\mathfrak{P}_{\nu}$ ein beliebiger ganzer Divisor, dessen Ordnung ν größer als Eins ist, so ist die Divisorenklasse (\mathfrak{N} W) stets primitiv, d. h. die ganzen Divisoren dieser Klasse sind teilerfremd. Dagegen besitzt für $\nu=1$ die Klasse (\mathfrak{P} W) stets den Teiler \mathfrak{P} .

Da man somit, falls $\nu > 1$ ist, in jeder Klasse ($\Re W$) stets auch ein zu \Re teilerfremdes Element finden kann, so existiert auch stets ein Integral, dessen Differentialteiler in der reduzierten Form gleich $\frac{\mathfrak{G}}{\Re}$ ist. Dag gen gibt es niemals einen Differentialteiler, welcher die reduzierte Form $\frac{\mathfrak{G}}{\Re}$ besitzt.

In der primitiven Differentialklasse W von der Dimension p existieren genau p linear unabhängige teilerfremde ganze Divisoren oder Differentialteiler erster Gattung $(\mathfrak{G}^{(1)},\mathfrak{G}^{(2)},\ldots,\mathfrak{G}^{(p)})$. Ist ferner \mathfrak{P}_0 ein ein für alle Male fest, aber sonst beliebig angenommener Punkt, und \mathfrak{P}_1 irgendein von \mathfrak{P}_0 verschiedener Divisor, so existiert innerhalb W ein sog. Differentialteiler dritter Gattung, welcher die reduzierte Form $\frac{\mathfrak{G}_{01}}{\mathfrak{P}_0\mathfrak{P}_1}$ hat. Endlich existieren für jeden Primteiler \mathfrak{P} die Differentialteiler zweiter Gattung $\frac{\mathfrak{G}_2}{\mathfrak{P}^2}, \frac{\mathfrak{G}_6}{\mathfrak{P}^3}, \ldots, \frac{\mathfrak{G}_{\mu}}{\mathfrak{P}^{\mu}}, \ldots$

Dann zeigt man wörtlich ebenso, wie bei der Partialbruchzerlegung rationaler Funktionen, daß man jeden Divisor $\frac{\mathfrak{A}}{\mathfrak{B}}$ der Klasse W als homogene lineare Funktion dieser Differentialteiler erster, zweiter und dritter Gattung mit konstanten Koeffizienten darstellen kann, und aus dem Riemann-Rochschen Satz folgt sofort, daß diese Darstellung auch nur auf eine einzige Weise möglich ist. Nennen wir die zu den elementaren Differentialteilern gehörigen Integrale die Elementarinte-grale erster, zweiter und dritter Gattung, so folgt aus der vorigen Partialbruchzerlegung von w_c , durch Multiplikation mit $\frac{n_x^2}{3_x}dx$ und Integration:

Jedes *Abel*sche Integral kann auf eine einzige Weise als Summe von Elementarintegralen erster, zweiter und dritter Gattung dargestellt werden.⁵²)

⁵²⁾ D.-W., p. 281-284. [O]

22. Spezialisierung für die Integrale mit rationalem Integranden. Ist der Körper K(x,y) speziell vom Geschlecht Null, ist er also gleich dem rationalen Körper K(z), so ist für ihn $\beta_z = 1$, und zu jedem Integrale $\omega = \int \xi_z dz$

mit rationalem Integranden gehört der Differentialteiler $\mathfrak{w}_{\omega} = \frac{\xi_z}{\mathfrak{n}_z^2} = \frac{\delta_{\ell \nu}}{\mathfrak{n}_{\omega}}$ von der $(-2)^{\text{ten}}$ Ordnung. Die Differentialklasse $W = \left(\cdots \frac{\xi_z}{\mathfrak{n}_z^2} \cdots \right)$ besteht also aus allen und nur den Divisoren, deren Nenner zwei Primfaktoren mehr enthält als der Zähler. Hieraus folgt schon, daß es hier keine Integrale erster Gattung gibt, und daß die zu den Normalintegralen zweiter und dritter Gattung gehörigen Differentialteiler $\frac{1}{\mathfrak{p}^\varrho}$ und $\frac{1}{\mathfrak{p}\mathfrak{p}^\nu}$ sind, wobei $\varrho > 1$ ist, und \mathfrak{p} einem endlichen oder dem unendlich fernen Punkte entsprechen kann. Für den rationalen Körper ergibt sich so der folgende Satz:

Unter den Integralfunktionen rationaler Differentiale gibt es keine Integrale erster Gattung; die Elementarintegrale zweiter Gattung sind hier rationale Funktionen von z, nämlich:

$$-\frac{1}{\varrho-1}\int \frac{dz}{(z-\alpha)^\varrho} = \frac{1}{(z-\alpha)^{\varrho-1}} \quad \text{oder} \quad (\varrho+1)\int z^\varrho dz = z^{\varrho+1}.$$

Nur das Elementarintegral dritter Gattung ist transzendent, nämlich

$$(\alpha - \alpha') \int_{\overline{(z-\alpha)}} \frac{dz}{(z-\alpha')} = \lg \frac{z-\alpha}{z-\alpha'} \text{ oder } \int_{\overline{z-\alpha'}} \frac{dz}{z-\alpha'} = \lg(z-\alpha'),$$

je nachdem der Punkt $z=\alpha$ im Endlichen liegt oder der unendlich ferne Punkt ist.

IV. Die zum Körper K(y, x) gehörigen algebraischen Kurven.

23. Die ebenen algebraischen Kurven und ihre singulären Punkte. Es sei wieder ein beliebiger Körper K(u,z) gegeben; x,y seien irgend zwei nicht konstante Elemente desselben, und es sei

$$(55) F(x,y) = 0$$

die zwischen ihnen bestehende irreduktible Gleichung, welche in bezug auf x den Grad m, für y den Grad n haben möge; ohne Beeinträchtigung der Allgemeinheit können wir x und y so gewählt voraussetzen, daß K(y,x)=K(u,z) ist. Die Gesamtheit aller jene Gleichung befriedigenden reellen und komplexen Wertsysteme bezeichnen wir als ein algebraisches Gebilde und interpretieren es durch das geometrische Bild einer zu dem Körper gehörigen ebenen algebraischen Kurve \mathfrak{C} .

Jedem Punkte $\mathfrak P$ der Riemannschen Fläche $\mathfrak R_x$ oder $\mathfrak R_y$ bzw. dem ihm zugeordneten Primteiler $\mathfrak P$ entspricht dann ein endlicher oder unendlich ferner Punkt P(x=a,y=b) der Kurve $\mathfrak C$. Umgekehrt gehört ein Punkt P(a,b) der xy-Ebene stets und nur dann der Kurve $\mathfrak C$ an, wenn die Zählerdivisoren $\mathfrak F_{x-a}$ und $\mathfrak F_{y-b}$ der beiden Linearfaktoren x-a,y-b einen gemeinsamen Teiler besitzen. Haben diese Divisoren nur einen einzigen Primteiler $\mathfrak P$ gemeinsam, entsprechen sich also P und $\mathfrak P$ eindeutig, so heißt P=(a,b) ein requlärer Punkt der Kurve $\mathfrak C$. Ist dagegen dieser gemeinsame Teiler:

(56)
$$\Re = (\mathfrak{z}_{x-a}, \mathfrak{z}_{a-b}) = \mathfrak{P}_1^{\alpha_1} \mathfrak{P}_2^{\alpha_2} \dots \mathfrak{P}_x^{\alpha_y}$$

von höherer als der ersten Ordnung, so entspricht den z Punkten $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_z$ der Kugelflächen \mathfrak{R}_x oder \mathfrak{K}_y derselbe Kurvenpunkt P; dieser heißt dann ein nicht regulärer oder singulärer Punkt von \mathfrak{C} .

Und zwar heißt P = (a, b) ein k-facher Kurvenpunkt, wenn \mathfrak{z}_{x-a} und \mathfrak{z}_{y-b} eineu Divisor k^{ter} Ordnung \mathfrak{R} gemeinsam haben. Ist a oder b gleich unendlich, so tritt $\frac{1}{x}$ an die Stelle von x oder $\frac{1}{y}$ an die Stelle von y, also \mathfrak{u}_x bzw. \mathfrak{u}_y an die Stelle von \mathfrak{z}_{x-a} bzw. \mathfrak{z}_{y-b} . Enthält dieser Teiler \mathfrak{R} \varkappa voneinander verschiedene Primteiler $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_x$, so gehen von dem zugehörigen Kurvenpunkte P \varkappa verschiedene Äste oder Zweige aus; die Kurve \mathfrak{C} besitzt in P eine \varkappa -zweigige Singularität.

Die dem Kurvenpunkte P zugeordneten Stellen $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_x$ entsprechen auf den Riemannschen Flächen \mathfrak{R}_x und \mathfrak{R}_y bzw. den Werten x=a und y=b. Ist z. B. in (56) $\alpha_1>1$, so ist \mathfrak{P}_1 sowohl auf \mathfrak{R}_x als auch auf \mathfrak{R}_y mindestens ein α_1 -blättriger Verzweigungspunkt, und die Verzweigungsteiler \mathfrak{P}_x und \mathfrak{P}_y haben den gemeinsamen Teiler $\mathfrak{P}_1^{\alpha_1-1}$.

Ein endlicher Punkt P = (a, b) ist dann und nur dann ein k-facher Kurvenpunkt, wenn in ihm alle Ableitungen $\frac{\partial^{g+h} F}{\partial x^g \partial y^h}$ verschwinden, für welche g+h < k ist, aber mindestens eine Ableitung k^{tor} Ordnung von Null verschieden ist, wenn also in der Entwicklung:

(57)
$$F(x,y) = u_0 + u_1 + \dots + u_{k-1} + u_k \dots$$

nach steigenden Potenzen von x-a und y-b die homogenen Aggregate u_0,u_1,\ldots,u_{k-1} der $0,1,\ldots,(k-1)^{\mathrm{ten}}$ Dimensionen identisch verschwinden, u_k aber nicht Null ist. Insbesondere ist P dann und nur dann ein vielfacher Kurvenpunkt, wenn die drei Funktionen $F(x,y), \frac{\partial F(x,y)}{\partial x}, \frac{\partial F(x,y)}{\partial y}$ in P verschwinden.

Jede Funktion $t_{\lambda} = (y-b) - \lambda(x-a)$ des Körpers K(x,y) enthält ebenfalls den Divisor $\Re = \Re_1^{\alpha_1} \dots \Re_z^{\alpha_z}$; jeder Strahl des Strahlenbüschels $t_{\lambda} = 0$ mit dem Träger P trifft also jeden der den Primteilern zugeordneten in P sich schneidenden Äste mindestens in α_i in P koinzidierenden Punkten. Unter ihnen gibt es einen einzigen Strahl $t_{\ell_i} = 0$, für welchen die Funktion t_{λ_i} mindestens durch $\Re_i^{\alpha_i+1}$ teilbar ist; dieser heißt die Tangente in P des zu \Re_i gehörigen Kurvenzweiges.

Besitzt also $\mathfrak C$ in P eine \varkappa -zweigige Singularität, so hat sie dort \varkappa verschiedene oder zusammenfallende Tangenten $t_1, t_2, \ldots, t_{\varkappa}$. Die \varkappa Richtung-koeffizienten λ_i dieser Tangenten sind die Wurzeln

der Gleichung kten Grades

(58)
$$u_k(1, \lambda) = c_0 + c_1 \lambda + \dots + c_k \lambda^k = 0,$$

wo $u_k(x-a,y-b)$ das Aggregat der Glieder k^{ter} Dimension in (57) ist. Dann und nur dann, wenn diese Gleichung keine gleichen Wurzeln besitzt, ist P ein k-facher Punkt mit getrennten Tangenten; alsdann besitzt $\Re = \Re_1 \Re_2 \ldots \Re_k$ keine mehrfachen Primfaktoren. Für k=2 erhält man so den Doppelpunkt mit getrennten Tangenten.

24. Der zur Kurve & gehörige Divisor der Doppelpunkte. Zur vollständigen Charakterisierung eines beliebigen singulären Punktes führt die Zerlegung der beiden Funktionen $\frac{\partial F}{\partial x}$ und $\frac{\partial F}{\partial y}$ des Körpers K(x,y) in ihre Primfaktoren, von denen wegen der zwischen ihnen bestehenden Gleichung:

(59) $-\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}} = \frac{dy}{dx} = \frac{\frac{3y}{n_y^2}}{\frac{3x}{n_z^2}}$

nur einer, etwa $\frac{\partial F}{\partial y}$ zu untersuchen ist.

Durch direkte Untersuchung der Nullstellen und Pole dieser Funktion ergeben sich in Verbindung mit (59) leicht die beiden Gleichungen:

 $(0) \qquad -\frac{\partial F}{\partial x} = \frac{\mathfrak{D}\mathfrak{Z}_y}{\mathfrak{n}_x^{m-2}\mathfrak{n}_y^{n}}, \quad \frac{\partial F}{\partial y} = \frac{\mathfrak{D}\mathfrak{Z}_x}{\mathfrak{n}_x^{m}\mathfrak{n}_y^{m-2}}.$

Der durch diese Gleichungen vollständig bestimmte ganze Divisor De heißt der zu E gehörige Divisor der Doppelpunkte, weil er alle und nur die zu singulären Punkten von E gehörigen Primfaktoren in einer von der Art der Singularität abhängigen Multiplizität enthält⁵³);

⁵³⁾ Den Divisor der Doppelpunkte haben zuerst D.-W., p. 267, als Polygon der Doppelpunkte eingeführt, wobei jedoch von den im Unendlichen liegenden Singularitäten abgesehen wird. [O]

eine leichte Betrachtung zeigt speziell, daß für einen gewöhnlichen Doppelpunkt $\mathfrak D$ genau durch das Produkt der beiden zugehörigen Primfaktoren teilbar ist. Dieser Divisor spielt in der Kurventheorie eine ähnlich wichtige Rolle, wie der Verzweigungsteiler in der Theorie der Riemannschen Flächen; er hängt aber von beiden Elementen x und y ab und bleibt nur bei linearen Transformationen:

$$x = \frac{\alpha \xi + \beta}{\gamma \xi + \delta}, \qquad y = \frac{\alpha' \eta + \beta'}{\gamma' \eta + \delta'}$$

unverändert. Man kann D auch als Nenner der zu dem Differentiale:

(61)
$$d\varphi = \frac{dx}{F_y'} = -\frac{dy}{F_x'} = \frac{\mathfrak{n}_x^{m-2} \mathfrak{n}_y^{m-2}}{\mathfrak{D}}$$

gehörigen Differentialteiler definieren.

Da die Ordnung irgend eines Differentialteilers nach (54) gleich 2p-2 ist, so folgt hieraus, daß die Ordnung 2d von $\mathfrak D$ stets eine gerade Zahl ist, und zwar ist

(62)
$$d = (m-1)(n-1) - p,$$

während sich aus (60) die Gleichungen

(62a)
$$d = (m-1)n - \frac{1}{2}w_y = (n-1)m - \frac{1}{2}w_x$$

ergeben, weil Zähler und Nenner von F'_x und F'_y von gleicher Ordnung sind. Aus (62) geht hervor, daß die Maximalzahl (m-1)(n-1) von Doppelpunkten nur für Kurven vom Geschlecht Null, d. h. für sog. *Unicursalkurven*, erreicht wird.

Es sei jetzt P=(a,b) ein endlicher Punkt von $\mathfrak{C},\mathfrak{P}_1$ einer der Punkte $\mathfrak{P}_1,\mathfrak{P}_2,\ldots,\mathfrak{P}_r$ der Riemannschen Fläche \mathfrak{R}_x , welcher der Stelle \mathfrak{p}_a (x=a) zugeordnet ist. Wir fragen jetzt, welche Potenz von \mathfrak{P}_1 in dem Divisor \mathfrak{D} der Doppelpunkte enthalten ist, vorausgesetzt, daß der Stelle \mathfrak{p}_a kein Pol von y entspricht. Es sei dann:

(63)
$$F(y, x) = F_1(y)F_2(y) \dots F_r(y)$$

die Zerlegung von F(y, x) für den Bereich der Stelle \mathfrak{p}_a . Sind dann $y^{(1)}, y^{(2)}, \ldots, y^{(r)}$ je eine Wurzel aus den zu $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_r$ gehörigen Wurzelzyklen⁵¹), so besitzt

(63a)
$$\left(\frac{\partial F}{\partial y}\right)_{y=y^{(1)}} = F_1'(y^{(1)}) F_2(y^{(1)}) \dots F_r(y^{(1)})$$

im Punkte \mathfrak{P}_1 von \mathfrak{R}_x dieselbe Ordnungszahl, wie die Funktion:

(63b)
$$D(F_1)R(F_1, F_2) \dots R(F_1, F_r)$$

in dem zugeordneten Punkte $\mathfrak p$ der einblättrigen Kugelfläche, wenn $D(F_1)$ die Diskriminante von $F_1(y)$, und allgemein $R(F_i,F_k)$ die Eliminationsresultante von $F_i(y)$ und $F_k(y)$ bedeutet.

⁵⁴⁾ Literatur zur Theorie der Zyklen s. B.-N., p. 381 ff.; III C 4, Nr. 14, 16. [O]

Ist nun \mathfrak{P}_1 ein a_i -blättriger Verzweigungspunkt, also $F_1(y)$ vom a_1^{ten} Grade, so ist $D(F_i)$ durch $\mathfrak{P}_i^{a_i-1+2\cdot l_n}$, also $F_1'(y^{(1)})$ durch $\mathfrak{P}_i^{a_i-1}\mathfrak{P}_i^{2\cdot l_n}$ teilbar, wo l_{11} eine nicht negative ganze Zahl bedeutet. Ist ferner allgemein für $i \geq k$ $l_{ik} = l_{ki}$ die Ordnungszahl der Eliminationsresultante $R(F_i(y), F_k(y))$, so gibt dieselbe Zahl die Ordnung von $F_i(y^{(k)})$ für \mathfrak{P}_k und von $F_k(y^{(i)})$ für \mathfrak{P}_i an; l_{ik} ist immer eine nicht negative ganze Zahl, und stets und nur dann Null, wenn die zu \mathfrak{P}_i und \mathfrak{P}_k gehörigen Wurzelzyklen $y^{(i)}$ und $y^{(k)}$ verschiedene Anfangsglieder besitzen.

Also enthält $\frac{\partial F}{\partial y} = \frac{\mathfrak{D}\mathfrak{F}_x}{\mathfrak{n}_x^m\mathfrak{n}_y^{n-2}}$ den Primteiler \mathfrak{F}_1 genau in der Potenz $\mathfrak{F}_1^{a_1-1+2l_{i_1}+l_{i_2}+\cdots+l_{1r}}$, und das Entsprechende gilt für die ν anderen Teiler \mathfrak{F}_i . Beachtet man nun, daß \mathfrak{F}_a genau durch $\mathfrak{F}_i^{a_i-1}$ teilbar ist, während nach dem Vorhergehenden \mathfrak{n}_x und \mathfrak{n}_y keinen Faktor \mathfrak{F}_i enthalten, so ergibt sich leicht die folgende vollkommen übersichtliche Darstellung des Divisors der Doppelpunkte:

(64)
$$\mathfrak{D} = \prod_{g \leq h}^{(\Gamma)} (\mathfrak{P}_g \mathfrak{P}_h)^{l_g h},$$

wo das Produkt nur auf die singulären Punkte P der Kurve und jedesmal nur auf die Primteiler $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_{\varkappa}$ zu erstrecken ist, welche den \varkappa Zweigen von P entsprechen.⁵⁵)

Es ist leicht, die Ordnungszahlen t_{gh} durch die Exponenten der Reihenentwicklungen von y_1, y_2, \ldots, y_n für die Stelle \mathfrak{p}_a auszudrücken: Es seien \mathfrak{P}_1 und \mathfrak{P}_2 für \mathfrak{R}_x Verzweigungspunkte der a_1^{ten} und a_2^{ten} Ordnung und

(65)
$$y^{(1)} - b = \lambda^{(1)}(x - a)^{\frac{b_1}{a_1}} + \cdots, y^{(2)} - b = \lambda^{(2)}(x - a)^{\frac{b_2}{a_2}} + \cdots$$

je eine der zu \mathfrak{P}_1 und \mathfrak{P}_2 gehörigen konjugierten Wurzelzyklen von y. Ist also allgemein π_i die zu \mathfrak{P}_i gehörige Primfunktion, so ist für den Bereich dieses Punktes:

$$\pi_i \sim (x-a)^{\frac{1}{a_i}} \sim (y-b)^{\frac{1}{b_i}}, \quad \text{d. h. } x-a \sim \pi_i^{\ a_i}, \quad y-b \sim \pi_i^{\ b_i},$$
 und es ist:

(66)
$$(x-a, y-b) \sim \Pi \mathfrak{P}_{i}^{m(a_{i}, b_{i})},$$

wo hier wie im folgenden $m(\alpha_i, \beta_i)$ die kleinere der beiden Zahlen α_i, β_i bedeutet. Ebenso ergibt sich für den gemeinsamen Teiler der beiden Verzweigungsdivisoren:

(66a)
$$(\beta_x, \beta_y) \sim (\Pi \mathfrak{P}_i^{a_i-1}, \Pi \mathfrak{P}_i^{b_i-1}) \sim \frac{(x-a, y-b)}{\mathfrak{P}_1 \mathfrak{P}_2 \cdots \mathfrak{P}_x}.$$

⁵⁵⁾ Vgl. B.-N., p. 381—388. [O]

Ferner ist jede der Differenzen $y_1^{(1)} - y_i^{(1)}$ des ersten Wurzelzyklus mindestens durch $(x-a)^{\frac{b_1}{a_1}}$, jede Differenz $y_1^{(1)} - y_k^{(2)}$ von je einer zu \mathfrak{P}_1 und \mathfrak{P}_2 gehörigen Wurzel mindestens durch $(x-a)^{m\left(\frac{b_1}{a_1},\frac{b_2}{a_2}\right)}$ teilbar. Da nun $F_1'(y_1)$ aus a_1-1 Differenzen der ersten, $F_2(y_1)$ aus a_2 Differenzen der zweiten Art besteht, so folgt sofort, daß l_{11} mindestens gleich $(a_1-1)(b_1-1)$, l_{12} mindestens gleich $m(a_1b_2,a_2b_1)$ ist. Hieraus ergeben sich die folgenden Sätze:

Jeder gemeinsame Teiler \mathfrak{P}_1 von \mathfrak{Z}_x und \mathfrak{Z}_y ist auch in \mathfrak{D} enthalten.

Denn unter dieser Voraussetzung sind a_1 und b_1 beide größer als Eins, also $l_{11} > 0$.

Der kleinste Wert, welchen l_{11} erhalten kann, ist Null, und dies tritt dann und nur dann ein, wenn $m(a_1, b_1) = 1$, also a_1 oder b_1 gleich Eins ist, oder, was dasselbe ist, wenn (x-a, y-b) genau durch die erste Potenz von \mathfrak{P}_1 teilbar ist.

Der kleinste Wert, welchen l_{12} für einen regulären Punkt P annehmen kann, ist Eins, und das tritt dann und nur dann ein, wenn $m(a_1b_2,a_2b_1)=1$, wenn also $m(a_1,b_1)=m(a_2,b_2)=1$ ist, und wenn außerdem $\frac{dy}{dx}$, d. h. die Steigung der Tangente, in \mathfrak{P}_1 und \mathfrak{P}_2 verschiedene Werte hat. Alsdann ist also (x-a,y-b) genau durch $\mathfrak{P}_1\mathfrak{P}_2$ teilbar, und $(\mathfrak{F}_x,\mathfrak{F}_y)$ enthält diese Primfaktoren gar nicht; nur einer der beiden Punkte \mathfrak{P}_1 und \mathfrak{P}_2 kann also ein Verzweigungspunkt für \mathfrak{R}_x oder für \mathfrak{R}_y sein.

Hieraus und aus (64) folgt das Fundamentaltheorem:

Der Divisor der Doppelpunkte $\mathfrak D$ enthält jeden zu einem z-zweigigen singulären Punkte $P_k = (a,b)$ gehörigen Primteiler $\mathfrak B$ mindestens in der $(z-1)^{\mathrm{ten}}$ Potenz, und diese untere Grenze wird dann und nur dann erreicht, wenn $\mathfrak R = (\mathfrak z_{x-a},\mathfrak z_{y-b}) = \mathfrak P_1\mathfrak P_2\cdots\mathfrak P_k$ keine gleichen Primteiler besitzt, und wenn außerdem P_k lauter verschiedene Tangenten hat. In diesem Falle soll P_k ein gewöhnlicher singulärer Punkt genannt werden.

Liegen die Doppelpunkte und Verzweigungspunkte der Kurve \mathfrak{C} alle im Endlichen, und ist D(F) die Diskriminante der Kurvengleichung F=0, so folgt aus (60) die Gleichung:

(67)
$$D(F) \sim N(F'(y)) = N(\mathfrak{D}_{x}) = N(\mathfrak{D})N(\mathfrak{Z}_{x}).$$

Jede zum Körper K(x, y) gehörige Gleichungsdiskriminante besteht also aus zwei Faktoren, von denen der erste:

(67 a)
$$N(\mathfrak{D}) = \left\{ \prod_{(P)} (x - a)^{g \le h} I_{gh} \right\}^2$$

quadratisch ist; dieser, der sog. außerwesentliche Diskriminantenteiler, ist die Idealnorm des Divisors $\mathfrak D$ der Doppelpunkte, der zweite, der wesentliche Diskriminantenteiler, ist die Idealnorm des Verzweigungsteilers, ihre Grade sind 2d und w_x . Sind die beiden Voraussetzungen nicht erfüllt, so treten in jenen Faktoren Graderniedrigungen ein. Dieser Satz ist eine unmittelbare Folgerung aus dem entsprechenden (60) für die Divisoren, während jener aus diesem nicht erschlossen werden kann. 56)

25. Auflösung der Singularitäten einer Kurve. Unter einer regulären Kurve verstehen wir eine Kurve mit lauter gewöhnlichen im Endlichen liegenden singulären Punkten. Für diese und nur für sie ist der Divisor der Doppelpunkte durch das über alle k-fachen Punkte

56) Die Begritse des wesentlichen und des außerwesentlichen Diskriminantenteilers sind von Kronecker eingeführt worden (Discr. p. 313, s. auch Festschrift p. 22. Von dem dort entwickelten Begriff der Diskriminante der Gattung ist der Begriff des wesentlichen Diskriminantenteilers ein spezieller Fall). Bei D.-W., p. 194 wird der wesentliche Diskriminantenteiler unter dem Namen der Körperdiskriminante eingeführt.

Ist y eine ganze algebraische Funktion n. Grades von x, und $f_0, f_1, \ldots, f_{n-1}$ eine Fundamentalbasis für die ganzen Größen von K(y, x), so ist die Diskriminante Δ des Systems (f_0, \ldots, f_{n-1}) der wesentliche Diskriminantenteiler von y; es ist dann:

$$d(1, y, \ldots, y^{n-1}) = \Delta R^2,$$

wo die ganze rationale Funktion R von x offenbar der Diskriminante der Substitution gleich ist, durch die die Basen $(1, y, \ldots, y^{n-1})$ und $(f_0, f_1, \ldots, f_{n-1})$ zusammenhängen. R^2 ist der außerwesentliche Diskriminantenteiler von y. Δ ist der größte gemeinsame Teiler der Diskriminanten aller gauzen Größen von K(y, x). Über die Fundamentaldiskriminante (Diskriminante der Fundamentalgleichung) s. Nr. 19.

Der anßerwesentliche Diskriminantenteiler der Gleichung F(y, x) = 0, der eine ganze algebraische Funktion y von x genügt, läßt sich auch charakterisieren als der größte von U, V unabhängige Teiler von

$$N\left(U \cdot \frac{\partial F(y,x)}{\partial y} + V \cdot \frac{\partial F(y,x)}{\partial x}\right).$$

Kronceker untersucht weiter die Verallgemeinerung der obigen Begriffsbildungen auf reduzible Gleichungen (Discr., p. 315—319) sowie auf die gebrochenen Größen der Körper (Discr., p. 327—329).

In der Weierstraßschen Vorlesung von 1869 (B.-N., p. 375-376) werden die Begriffe des wesentlichen und des außerwesentlichen Diskriminantenteilers an die irreduzible Gleichung, der eine, im allgemeinen gebrochene Funktion des Körpers genügt, angeknüpft und mit Hilfe der Reihenentwicklungen analysiert. Klein, R. F. I, p. 118-121, bespricht die geometrische Bedeutung des wesentlichen und des außerwesentlichen Diskriminantenteilers. Vgl. außerdem für die geometrische Bedeutung des Diskriminantenteilers B.-N., p. 389, 391. [O]

 P_k erstreckte Produkt:

(68)
$$\mathfrak{D}(\mathfrak{C}) = \prod_{(P_k)} (\mathfrak{P}_1 \mathfrak{P}_2 \dots \mathfrak{P}_k)^{k-1} \qquad (\mathfrak{D}, \mathfrak{n}_x) = 1$$
 dargestellt.

Anstatt aber die Singularitäten einer vorgelegten Kurve F(y,x)=0 so sukzessive durch passend gewählte Abbildungen auf andere Kurven aufzulösen, kann man direkt zeigen, daß man unter Festhaltung von x die andere Variable y auf unendlich viele Arten durch ein anderes primitives Element η des Körpers so ersetzen kann, daß die neue Kurve $\Phi(\eta, x)=0$ der anderen eindeutig entspricht und sogar nur gewöhnliche im Endlichen liegende Doppelpunkte hat, daß also jedem ihrer einzelnen Punkte P nur ein Teiler zweiten Grades $(\mathfrak{P}_1\mathfrak{P}_2)$ entspricht, \mathfrak{D} also lauter verschiedene Primfaktoren enthält.

Zu diesem Zwecke wähle ich den Grad q von η beliebig, aber größer als w_x und schreibe den Nenner $\mathfrak{n}_\eta = \mathfrak{P}_1 \mathfrak{P}_2 \dots \mathfrak{P}_q$ beliebig aber so vor, daß auf der Riemannschen Fläche \mathfrak{R}_x die zugehörigen Punkte $\mathfrak{P}_1, \mathfrak{P}_2, \dots \mathfrak{P}_q$ und ihre in Bezug auf x konjugierten Punkte unverzweigt, und daß auch keine zwei von ihnen einander konjugiert sind. Dann kann man auf unendlich viele Arten einen Zähler \mathfrak{F}_η so bestimmen, daß die der Variablen $\eta = \frac{\mathfrak{F}_\eta}{\mathfrak{n}_\eta}$ zugehörige Kurve $\Phi(\eta, x) = 0$ nur Doppelpunkte im Endlichen besitzt.

In der Tat, sei $(\eta^{(1)}, \eta^{(2)}, \ldots, \eta^{(n)})$ ein für die Stelle $(x = \infty)$ reguläres Fundamentalsystem für das Ideal $J(\frac{1}{\mathfrak{n}_{i}})$, so sind die Ordnungszahlen — σ_{i} der Elemente $\eta^{(i)}$ für die Stelle $(x = \infty)$ sämtlich ne-

⁵⁷⁾ Literaturangaben zu dieser ersten Auflösungsmethode bei B.-N., p. 376-380. [O]

gative ganze Zahlen; alle Elemente η mit dem Nenner \mathfrak{n}_{η} sind also in der Form:

(69)
$$\eta = u_1 \eta^{(1)} + u_2 \eta^{(2)} + \dots + u_n \eta^{(n)}$$

enthalten, wo allgemein der Koeffizient

$$u_i = u_i^{(0)} + u_i^{(1)}x + \cdots + u_i^{(\sigma_i)}x^{\sigma_i}$$

eine ganze Funktion des σ_i^{ten} Grades von x mit unbestimmten Koeffizienten ist. Durch zweckmäßige Wahl der höchsten Koeffizienten $u_i^{(a_i)}$ erreicht man zunächst, daß η für die Stelle $(x=\infty)$ endliche und voneinander verschiedene Werte enthält, daß also hier kein singulärer Punkt von \mathbb{C}_n auftritt.

Sei nun $\Phi(\eta, x) = 0$ die Gleichung, der die Form (69) zunüchst für unbestimmte u_i genügt, und

(70)
$$\Phi(\eta, x) = \Phi_1(\eta, x) \Phi_2(\eta, x) \dots \Phi_r(\eta, x)$$

die Zerlegung ihrer linken Seite in irreduktible Faktoren für den Bereich einer beliebigen endlichen Stelle \mathfrak{p} (x=a), so folgt aus der Gleichung:

(70a)
$$\left(\frac{\partial \Phi}{\partial \eta}\right)_{\eta = \eta_1} = \Phi_1'(\eta_1, z) \Phi_2(\eta_1, x) \dots \Phi_\nu(\eta_1, x)$$

durch Diskussion der rechts auftretenden Linearfaktoren, daß für un bestimmte u_i alle ν oben in (64) auftretenden Exponenten $l_{11}, l_{12}, \ldots l_{1r}$. Null sind, daß also alle unendlich vielen Kurven $\Phi(\eta, x) = 0$ nicht etwa einen festen Doppelpunkt gemeinsam haben können. Ferner geht ebenfalls aus der Untersuchung der einzelnen Linearfaktoren von (70a) hervor, daß, falls es durch zweckmäßige Wahl einer Konstanten $u_z^{(i)}$ bewirkt ist, daß die Kurve $\Phi = 0$ an einer bestimmten Stelle einen singulären Punkt hat, die übrigen stets so gewählt werden können, daß der zugehörige Primdivisor $\mathfrak P$ ein einfacher Teiler von $\mathfrak D$ ist, also einem gewöhnlichen Doppelpunkt entspricht.

Geht man also in der Gleichung (70a) zur Norm über und beachtet (67), so ergibt sich für unbestimmte $u_i^{(x)}$ eine Gleichung:

(71)
$$D(\Phi) = N(\mathfrak{D}_{\Phi})N(\mathfrak{Z}_r) = U^2(u_r^{(l)})N(\mathfrak{Z}_r),$$

und nach dem oben Bewiesenen ist $U(u_{\varkappa}^{(i)}) = \sqrt{N(\mathfrak{D}_{\Phi})}$ eine primitive rationale Form, welche für unbestimmte $u_{\varkappa}^{(i)}$ keinen einzigen quadratischen Faktor besitzt. Wählt man also, was auf unendlich viele Arten geschehen kann, diese Konstanten so, daß auch für sie $U(u_{\varkappa}^{(i)})$ nur ungleiche Linearfaktoren hat, so besitzt für das so bestimmte η die Kurve $\Phi(\eta, x) = 0$ wirklich lauter gewöhnliche Doppelpunkte.⁵⁸)

⁵⁸⁾ Die Auflösung der Singularitäten einer ebenen Kurve ist zuerst von Kronecker gegeben, jedoch erst 1881 veröffentlicht worden (Discr., p. 301-305, 326, vgl. auch B.-N., p. 370-375). Durch die von Kronecker veröffentlichte Methode,

26. Die zu einer Gleichung F(x,y) gehörigen Funktionenringe. Sind x und y zwei beliebige Elemente des Körpers K, so konstituiert die Gesamtheit R(x,y) aller ganzen rationalen Funktionen von x und y einen Teilbereich von K, welcher nach Dedekind eine Ordnung, nach Hilbert ein Ring genannt wird. Die Addition, Subtraktion und Multiplikation der Funktionen eines Ringes liefert wieder Elemente desselben; für die Division ist dies im allgemeinen nicht der Fall. Ist $G(x,y)=\frac{\delta G}{\pi_G}$ die Zerlegung eines solchen Ringelementes in seine Primfaktoren, so bestimmt der Zähler das Schnittpunktsystem der Kurve G=0 mit der Grundkurve F=0; die Untersuchung solcher Schnittpunktsysteme führt mit Notwendigkeit auf die Betrachtung von Funktionsringen. Die Frage, ob ein gegebenes Element η des Körpers K(x,y) dem Ringe R(x,y) angehört oder nicht, wird durch den folgenden wichtigen Satz beantwortet:

Wenn die zwischen x und y bestehende irreduktible Gleichung F(x,y)=0 in bezug auf jene Variablen bzw. vom $m^{\rm ten}$ und $n^{\rm ten}$ Grade ist, und $\mathfrak D$ den Divisor ihrer Doppelpunkte bedeutet, so gehört jedes Multiplum von $\mathfrak D$ dem Ringe R(x,y) an. Allgemeiner gehört auch jedes Multiplum von $\frac{\mathfrak D}{\mathfrak n_x^n\mathfrak n_y^n}$ für $\mu < m$ und $\nu < n$ ebenfalls zu R(x,y), und zwar ist es in bezug auf x und y bzw. vom $\mu^{\rm ten}$ und $\nu^{\rm ten}$ Grade.

Der Beweis beruht auf dem wichtigen Hilfssatze, welcher später (Nr. 41) auch für den Beweis des Abelschen Theorems von grundlegender Bedeutung ist:

Ist der Nenner einer Funktion

(72)
$$\varphi = \frac{\Im \varphi}{\Im_x \mathfrak{n}_x^{\mu}}$$

das Produkt aus dem Verzweigungsteiler β_x und einer nicht negativen Potenz von \mathfrak{n}_x , so ist ihre Spur eine ganze Funktion μ^{ten} Grades von x.

die sich im wesentlichen mit der im Text zuletzt angegebenen deckt, werden jedoch im allgemeinen nur die im Endlichen liegenden singulären Punkte aufgelöst, da in ihr als neue Variable für y eine yanze Funktion von x eingeführt und daher an ein Fundamentalsystem für y ganze Größen des Körpers angeknüpft wird. Die im Text angegebene Methode zuerst bei H.-L., p. 402—409. Die Kroneckersche Methode benutzt die Reihenentwicklungen nicht und kann daher zum Existenzbeweis für Reihenentwicklungen verwendet werden. Die von Weierstraß mit Hilfe von Reihenentwicklungen erhaltenen Resultate gebraucht Thomé (J. f. Math. 126, p. 95) zur Auflözung der Singularitäten. [O]

Ist zum Beispiel:

$$(72a) u = \int \varphi \, dx$$

irgendein Integral erster Gattung, also $\varphi = \frac{\mathfrak{Gn}_x^*}{\mathfrak{Z}_r}$, so folgt aus der Gleichung:

(72b)
$$\varphi \cdot \frac{\partial \mathbf{F}}{\partial y} = \mathfrak{G} \frac{\mathfrak{n}^2_x}{\mathfrak{F}_x} \cdot \frac{\mathfrak{D} \mathfrak{F}_x}{\mathfrak{n}_x^m \mathfrak{n}_y^{m-2}} = \mathfrak{G} \cdot \frac{\mathfrak{D}}{\mathfrak{n}_x^m \mathfrak{n}_y^{m-2}} = g(\tilde{x}, \tilde{y})^{m-2})$$

daß dieses Produkt eine ganze Funktion des Ringes, daß also jeder Integrand erster Gattung in der Form:

(72 e)
$$\varphi = \frac{g(x,y)}{F_y}$$

dargestellt werden kann, deren Zähler eine ganze Funktion des $(m-2)^{\text{ten}}$ Grades in x, des $(n-2)^{\text{ten}}$ in y ist, welche durch $\mathfrak D$ teilbar ist, so daß die sog. adjungierte Kurve g(x,y)=0 in diesem präziseren Sinne durch die singulären Punkte der Grundkurve hindurchgehen muß, wenn $\frac{g}{F_{x,y}}$ einen Integranden erster Gattung liefern soll.

27. Darstellung der zum Körper K gehörigen Kurven durch homogene Koordinaten. Nach (48) ff., p. 572, besteht zwischen drei beliebigen linear unabhängigen äquivalenten Divisoren $\mathfrak{D}_0 = \mathfrak{M}\mathfrak{A}_0$, $\mathfrak{D}_1 = \mathfrak{M}\mathfrak{A}_1$, $\mathfrak{D}_2 = \mathfrak{M}\mathfrak{A}_2$ stets eine homogene irreduktible Gleichung:

(73)
$$\Phi(\mathfrak{Q}_0, \mathfrak{Q}_1, \mathfrak{Q}_2) = 0$$

mit konstanten Koeffizienten, deren Dimension gleich dem Grade n der Klasse $A=(\mathfrak{N}_0,\mathfrak{N}_1,\mathfrak{N}_2)$ ist, und welche z. B. in bezug auf \mathfrak{D}_0 bis zum Grade von $\frac{\mathfrak{D}_1}{\mathfrak{D}_2}$ ansteigt, usw. Sind speziell:

(74)
$$x_0 = \frac{\mathfrak{A}_0}{\mathfrak{A}_0}, \ x_1 = \frac{\mathfrak{A}_1}{\mathfrak{A}_0}, \ x_2 = \frac{\mathfrak{A}_2}{\mathfrak{A}_0}$$

drei beliebige, linear unabhängige Elemente des Körpers, welche so ausgewählt sind, daß $K(x_0, x_1, x_2) = K(x, y)$ ist, und ist $F(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2) = 0$ die zwischen ihnen bestehende irreduktible Gleichung, so ist auch

$$F(x_0, x_1, x_2) = 0$$

die Gleichung einer algebraischen Kurve des Körpers K(x,y) in homogenen Koordinaten, bezogen auf das Koordinatendreieck $(x_0=0,x_1=0,x_2=0)$, dessen Seiten die Grundkurve in denjenigen Punkten schneiden, welche den Primteilern von \mathfrak{A}_0 , \mathfrak{A}_1 , \mathfrak{A}_2 zugeordnet sind. Ist $G(x_0,x_1,x_2)=0$ eine andere Kurve m^{ten} Grades, so liefert der ganze Divisor mn^{ten} Grades $G(\mathfrak{A}_0,\mathfrak{A}_1,\mathfrak{A}_2)$ die mn Schnittpunkte dieser Kurve mit der Grundkurve $F(x_0,x_1,x_2)=0$. Speziell bestimmen die Divisoren der Schar $c_0\mathfrak{A}_0+c_1\mathfrak{A}_1+c_2\mathfrak{A}_3$ die Schnittpunkte aller Geraden

592 II C 5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

 $c_0x_0 + c_1x_1 + c_2x_2 = 0$ der Ebene mit der Grundkurve. Einer Transformation:

(75)
$$\mu y_i = \sum_k a_{ik} x_k \qquad (i, k = 0, 1, 2)$$

der homogenen Koordinaten mit nicht verschwindender Determinante $|a_{ik}|$ entspricht die Substitution:

$$\mathfrak{B}_{i} = \sum_{k} a_{ik} \mathfrak{A}_{k},$$

bei welcher die Basis $(\mathfrak{V}_0,\,\mathfrak{A}_1,\,\mathfrak{P}_2)$ der Divisorenschar $c_0\,\mathfrak{V}_0+c_1\,\mathfrak{V}_1+c_2\,\mathfrak{V}_2$ durch die äquivalente Basis $(\mathfrak{B}_0,\,\mathfrak{B}_1,\,\mathfrak{P}_2)$ ersetzt wird.

Sind allgemeiner vier linear unabhängige Funktionen x_0, x_1, x_2, x_3 innerhalb K so gegeben, daß

$$K(x_0, x_1, x_2, x_3) = K(x, y)$$

ist, so entspricht jedem Punkte $\mathfrak P$ der Riemannschen Fläche ein Punkt P einer algebraischen Raumkurve R mit den Tetraederkoordinaten (x_0, x_1, x_2, x_3) , und diese Beziehung ist im allgemeinen, d. h. mit Ausnahme einzelner Punkte eindeutig. Ist allgemein:

$$x_i = \frac{\mathfrak{A}_i}{\mathfrak{A}_i}$$
 $(i = 0, 1, 2, 3)$

die Divisorendarstellung jener vier Funktionen, deren Zähler also ganze teilerfremde Divisoren derselben Klasse A sind, und ist n die Ordnung on A, so schneidet jede Fläche $G(x_0, x_1, x_2, x_3) = 0$ die Kurve R in allen und nur den Punkten, welche dem Divisor: $G(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3)$ entsprechen. Speziell schneidet jede Ebene $c_0x_0 + c_1x_1 + c_2x_2 + c_3x_3 = 0$ diese Kurve in den n Punkten, welche dem ganzen Divisor n^{ter} Ordnung $c_0\mathfrak{A}_0 + c_1\mathfrak{A}_1 + c_2\mathfrak{A}_2 + c_3\mathfrak{A}_3$ zugeordnet sind. Die Kurve R hat also die Ordnung n.

Sind endlich ganz allgemein: $\mathfrak{N}_0, \mathfrak{A}_1, \ldots \mathfrak{A}_s$ (s+1) linear unabhängige Divisoren einer Klasse A und $x_0, x_1, \ldots x_s$ die ihnen bei irgendeiner Wahl des Multiplikators $\mathfrak A$ zugeordneten Funktionen des Körpers, so wird durch die Proportion:

$$x_0: x_1: \ldots: x_s = \mathfrak{A}_0: \mathfrak{A}_1: \ldots: \mathfrak{A}_s$$

eine Kurve R_s im Raume von s Dimensionen bestimmt. Diese Kurve kann in keinem Raum niedrigerer Dimension gelegen sein, weil zwischen den x_i keine lineare homogene Gleichung besteht; ihre Ordnung ist, wie genau wie vorher bewiesen wird, gleich der Ordnung der Klasse A, vorausgesetzt, daß der Körper $K(x_0, x_1, \ldots x_s)$ gleich K(x, y) ist.

Die Divisoren $(\mathfrak{A}_0,\,\mathfrak{A}_1,\,\dots\,\mathfrak{A}_s)$ können ebenso wie vorher im Falle der ebenen Kurve durch lineare Gleichungen von der Form:

$$\mathfrak{B}_i = \sum_k a_{ik} \mathfrak{A}_k$$

transformiert werden. Eine solche Substitution entspricht einer Ver-

legung des Koordinatentetraeders oder einer kollinearen räumlichen Abbildung der Kurve.⁵⁹)

Wir beschäftigen uns zunächst mit den ebenen Kurven des Körpers K(x, y), bemerken aber, daß die hier abgeleiteten Resultate auch auf die Kurven in höheren Mannigfaltigkeiten ausgedehnt werden können.

Ein Punkt $P = (a_0, a_1, a_2)$ der Ebene liegt stets und nur dann auf der Grundkurve, wenn die drei Determinanten der Matrix

$$\begin{pmatrix} a_0, & a_1, & a_2 \\ \mathfrak{A}_0, & \mathfrak{A}_1, & \mathfrak{A}_2 \end{pmatrix}$$

einen gemeinsamen Teiler \Re enthalten. P ist ein k facher \varkappa -zweigiger Punkt der Kurve, wenn \Re von der k^{ten} Ordnung ist und \varkappa verschiedene Primfaktoren enthält, wenn also

$$\Re = \mathfrak{P}_1^{h_1}\mathfrak{P}_2^{h_2}\dots\mathfrak{P}_z^{h_z}$$

und $h_1 + h_2 + \ldots + h_k = k$ ist.

Man erhält die zu den z
 Zweigen von P zugehörigen Tangenten, wenn man in dem Büschel

$$\begin{vmatrix} b_0 + \lambda c_0, b_1 + \lambda c_1, b_2 + \lambda c_2 \\ a_0 & a_1 & a_2 \\ x_0 & x_1 & x_2 \end{vmatrix} = 0$$

59) Es werde hier kurz auf den Zusammenhang der Kleinschen Formentheorie mit der Divisorentheorie eingegangen: Ist $z=\frac{\mathfrak{D}_1}{\mathfrak{Q}_s}$ die unabhängige Variable, und spaltet man sie in einen Quotienten von x_1 und x_2 , so daß $z=\frac{x_1}{x_2}$ ist, so verschwindet x_1 in allen Punkten von \mathfrak{Q}_1 , x_2 in allen Punkten von \mathfrak{Q}_2 . Ist A die Klasse von \mathfrak{Q}_1 und \mathfrak{Q}_2 , so entspricht jedem ganzen Divisor von A^r (r>0)eine Form rter Dimension, die gerade in den Punkten jenes Divisors verschwindet. Jede Funktion des Körpers ist dann als Quotient von zwei ganzen Formen darstellbar. Läßt sich ein ganzer Divisor ganz und :ational in D1, D2 darstellen, so ist die entsprechende Form rational in x1, x2. Den übrigen Divisoren der Klassen A' entsprechen algebraische Formen. Benutzt man die Formentheorie und unterscheidet nicht zwischen rationalen und algebraischen Formen, so kommt dies auf die Auszeichnung der Klasse A binaus. Unterscheidet man zwischen rationalen und algebraischen Formen, so wird die Teilschar $c_1 \mathfrak{Q}_1 + c_2 \mathfrak{Q}_2$ von A ausgezeichnet Vgl. für die Einführung der Formentheorie Hensel, Jahresber. d. D. M. V, 1 (1892), p. 4, J. f. Math. 109 (1892), p. 56, Acta Math. 18 (1894, p. 247 ff. und besonders Klein, R. F. I, p. 100-101, 114-117, 122-136, 142-148. Ebenda p. 173-185 behandelt Klein auch rationale und algebraische Formen mit mehr als zwei Variabeln. Im Anschluß daran behandelt dann Klein die Fragestellung, sämtliche Kurven, die zur vorgegebenen Riemannschen Fläche (oder arithmetisch zum vorgegebenen Körper) gehören, herzustellen und zu untersuchen. R. F. I, p. 179-181; II p. 63-66, 78 ff., p. 115-117. [O]

der durch P gehenden Strahlen den Parameter λ so bestimmt, daß der Divisor: $|b_0 + \lambda c_0, b_1 + \lambda c_1, b_2 + \lambda c_2|$

je einen der z
 Primteiler $\mathfrak{P}_1,\,\mathfrak{P}_2,\,\ldots\,\mathfrak{P}_z$ öfter als \mathfrak{K} enthält.

Sind $\mathfrak{Z}_{\mathfrak{A}_1:\mathfrak{A}_2}$, $\mathfrak{Z}_{\mathfrak{A}_2:\mathfrak{A}_0}$, $\mathfrak{Z}_{\mathfrak{A}_0:\mathfrak{A}_1}$ die zu den Körperfunktionen $\frac{\mathfrak{A}_1}{\mathfrak{A}_2}$, $\frac{\mathfrak{A}_2}{\mathfrak{A}_0}$, $\frac{\mathfrak{A}_2}{\mathfrak{A}_1}$ gehörigen Verzweigungsteiler, so ist allgemein:

(76)
$$\frac{\partial F}{\partial x_i} = \frac{\bar{\mathfrak{D}}\mathfrak{F}_{\mathfrak{U}_{i+1}} : \mathfrak{I}_{i+2}}{\mathfrak{U}^{n-1}} \qquad (i \equiv 0, 1, 2 \pmod{3})$$

(76a)
$$\frac{\partial F(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)}{\partial \mathfrak{A}_i} = \overline{\mathfrak{D}} \mathfrak{Z}_{\mathfrak{A}_{i+1}: \mathfrak{A}_i+2},$$

wo hier wie im folgenden die Indizes stets durch ihre kleinsten Reste modulo 3 zu ersetzen sind. Der so bestimmte ganze Divisor $\overline{\mathfrak{D}}$ ist der Divisor der Doppelpunkte im projektiven Sinne.

Ein Kurvenpunkt P ist nämlich dann und nur dann singulär, wenn seine Primfaktoren \mathfrak{P}_i in $\overline{\mathfrak{D}}$ vorkommen, und sie treten auch hier in einer bestimmten von der Beschaffenheit der Singularität abhängigen Multiplizität auf.

Da jeder der Verzweigungsteiler \mathfrak{Z} vom Grade 2(p+n-1) ist, und die in (76a) links stehenden Divisoren den Grad n(n-1) besitzen, so ergibt sich für den halben Grad \overline{d} von $\overline{\mathfrak{D}}$ die Gleichung:

(77)
$$\bar{d} = \frac{1}{2}(n-1)(n-2) - p$$
, $p = \frac{1}{2}(n-1)(n-2) - \bar{d}$.

Für den Fall gewöhnlicher Doppelpunkte ist \overline{d} die Anzahl derselben, und man erhält also das Geschlecht der Kurve, wenn man die Anzahl der wirklich vorhandenen Doppelpunkte von der Maximalzahl $\frac{1}{2}(n-1)(n-2)$ abzieht, welche eine irreduktible Kurve n^{tor} Ordnung haben kann.

Ist $C = (c_0, c_1, c_2)$ ein beliebiger Punkt der Ebene, also

(78)
$$\Delta_c(F) = c_0 \frac{\partial F}{\partial x_0} + c_1 \frac{\partial F}{\partial x_1} + c_2 \frac{\partial F}{\partial x_2} = 0$$

die Gleichung der ersten Polare von C in bezug auf die Grundkurve, so wird ihr Schnittpunktssystem mit der Grundkurve durch den Zählerdivisor von $\Delta_C(F)$

$$(78a) c_0 \frac{\partial F}{\partial \mathfrak{A}_0} + c_1 \frac{\partial F}{\partial \mathfrak{A}_1} + c_2 \frac{\partial F}{\partial \mathfrak{A}_2} = \overline{\mathfrak{D}}(c_0 \mathfrak{Z}_{\mathfrak{A}_1 : \mathfrak{A}_2} + c_1 \mathfrak{Z}_{\mathfrak{A}_2 : \mathfrak{A}_0} + c_2 \mathfrak{Z}_{\mathfrak{A}_0 : \mathfrak{A}_1})$$

repräsentiert, und aus dieser Darstellung folgt der Satz:

Das Netz aller ersten Polaren schneidet auf der Grundkurve Punktsysteme aus, welche einen festen, dem Divisor $\widehat{\mathfrak{D}}$ genau entsprechenden Bestandteil besitzen. Der Divisor $\overline{\mathfrak{D}}$ der Doppelpunkte kann als Nenner eines auf die Kurve bezüglichen Differentialteilers definiert werden: Aus der Auflösung der beiden Gleichungen:

$$x_0 \frac{\partial F}{\partial x_0} + x_1 \frac{\partial F}{\partial x_1} + x_2 \frac{\partial F}{\partial x_2} = 0$$
, $dx_0 \frac{\partial F}{\partial x_0} + dx_1 \frac{\partial F}{\partial x_1} + dx_2 \frac{\partial F}{\partial x_2} = 0$ folgt nämlich, daß das Differential:

(79)
$$dM = \frac{x_1 dx_2 - x_2 dx_1}{\frac{\partial F}{\partial x_0}} = \frac{x_2 dx_0 - x_0 dx_2}{\frac{\partial F}{\partial x_1}} = \frac{x_0 dx_1 - x_1 dx_0}{\frac{\partial F}{\partial x_2}}$$

zu dem Differentialteiler $\frac{\mathfrak{A}^{n-3}}{\overline{\mathfrak{D}}}$ gehört, wenn \mathfrak{A} der Generalnenner von x_0, x_1, x_2 ist. Bedeuten also (a_0, a_1, a_2) beliebige Konstanten, so folgt aus den vorigen Gleichungen der allgemeinere Ausdruck für dasselbe Differential:

(79a)
$$dM = \frac{\begin{vmatrix} a_0 & a_1 & a_2 \\ x_0 & x_1 & x_2 \\ dx_0 & dx_1 & dx_2 \end{vmatrix}}{a_0 \frac{\partial F}{\partial x_0} + a_1 \frac{\partial F}{\partial x_1} + a_2 \frac{\partial F}{\partial x_2}} \sim \frac{\mathfrak{A}^{n-3}}{\overline{\mathfrak{D}}}.$$

Aus dieser Darstellung ergibt sich einmal, daß der Divisor $\frac{2(n-3)}{2}$, also auch sein Nenner, der Divisor der Doppelpunkte, bei beliebiger linearer Transformation des Koordinatensystemes ungeändert bleibt, weil dasselbe von dem Ausdrucke (79a) von dM gilt. Ferner folgt aus derselben Gleichung sofort, daß das allgemeinste auf die Kurve F=0 bezügliche Abelsche Integral in der von Aronhold eingeführten Form:

(80)
$$I = \int \theta(x_0, x_1, x_2) \frac{\begin{vmatrix} x_0 & x_1 & x_2 \\ dx_0 & dx_1 & dx_2 \end{vmatrix}}{a_0 \frac{\partial F}{\partial x_0} + a_1 \frac{\partial F}{\partial x_1} + a_2 \frac{\partial F}{\partial x_2}} = \int \theta(x_0, x_1, x_2) dM$$

dargestellt werden kann, in welcher θ eine beliebige ganze oder gebrochene Funktion der $(n-3)^{\rm ten}$ Ordnung ist; denn so wird der zugehörige Differentialteiler

(80a)
$$dI \sim \frac{\theta(\mathfrak{A}_0, \, \mathfrak{A}_1, \, \mathfrak{A}_2)}{\mathfrak{D}}$$

von dem akzessorischen Nenner A unabhängig.

Die Übertragung der in Nr. 26 gefundenen Resultate auf die durch die Gesamtheit aller ganzen homogenen Funktionen von x_0, x_1, x_2 konstituierten Funktionenringe ergibt leicht das folgende Resultat:

Eine Funktion des Körpers, welche ein Vielfaches des Divisors $\frac{\overline{\mathfrak{D}}}{\mathfrak{A}^{\nu}}$ ist, ist als ganze homogene Funktion ν^{ter} Ordnung von (x_0, x_1, x_2) darstellbar,

oder in anderer Form ausgesprochen:

Bedeutet A die Klasse der ganzen Divisoren $(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$, so kann jeder Divisor der Klasse A^r , welcher ein Multiplum von $\overline{\mathfrak{D}}$ ist, als ganze homogene Funktion ν^{ter} Ordnung von $\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2$ dargestellt werden. 60)

Eine homogene Gleichung $\boldsymbol{\nu}^{\text{ter}}$ Ordnung $\boldsymbol{\Phi}_{\boldsymbol{\nu}}(x_0, x_1, x_2) = 0$, deren Zählerdivisor $\boldsymbol{\Phi}_{\boldsymbol{\nu}}(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$ durch $\overline{\mathfrak{D}}$ teilbar ist, stellt eine durch die Doppelpunkte der Grundkurve hindurchgehende Kurve dar, welche auch hier eine zu jener adjungierte Kurve genannt wird.

Ist wieder A die durch die Zählerdivisoren $(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$ von (x_0, x_1, x_2) konstituierte Klasse, so heißt von zwei ganzen Divisoren \mathfrak{R} und \mathfrak{S} jeder ein Rest des anderen, in bezug auf die Grundkurve $F(x_0, x_1, x_2) = 0$, wenn das Produkt $\mathfrak{D}\mathfrak{R}\mathfrak{S}$ ein Divisor irgendeiner der Klassen A^m , also nach dem soeben angegebenen Satze in der Form $\Psi_m(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$ einer ganzen homogenen Funktion irgendeiner m^{ten} Ordnung von $(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2)$ darstellbar ist. Dann ist also das dem Divisor $\mathfrak{D}\mathfrak{R}\mathfrak{S}$ entsprechende Punktsystem der vorlständige Schnitt der Grundkurve und der adjungierten Kurve $\Psi(x_0, x_1, x_2) = 0$.

Die auf p. 570 eingeführte Klasseneinteilung der algebraischen Divisoren modulo A gibt ein Mittel, die Beziehungen aller Reste in bezug auf die Grundkurve einfach auszusprechen: Sind nämlich \overline{D}_A , R_A , S_A die Klassen, welche alle zu $\overline{\mathfrak{D}}$, \mathfrak{R} , \mathfrak{S} modulo A äquivalenten Divisoren enthalten, so besteht zwischen ihnen die Gleichung:

$$(81) R_{\scriptscriptstyle A} S_{\scriptscriptstyle A} = \overline{D}_{\scriptscriptstyle A}^{-1}.$$

Von zwei solchen Klassen R_A und S_A soll jede die Residualklasse der anderen genannt werden. Zwei ganze Divisoren \Re und \Re' heißen nun korresidual, wenn sie beide Reste eines und desselben Divisors $\mathfrak S$ sind. Dies ist dann und nur dann der Fall, wenn \Re und \Re' beide der Residualklasse R_A zu der durch $\mathfrak S$ bestimmten Klasse S_A angehören.

Die Gesamtheit aller zu einem beliebigen Divisor R korresidualen Divisoren bilden alle ganzen Divisoren der zugehörigen Klasse R_A .

Hieraus folgt unmittelbar der Satz, welcher eine der fruchtbarsten Quellen für die Ergründung der Eigenschaften der auf höheren algebraischen Kurven gelegenen Punktgruppen bildet:

Sind vier ganze Divisoren R, R'. S, S' so beschaffen, daß durch die drei zu den Divisoren RS, RS', R'S gehörigen Punktgruppen

⁶⁰⁾ Zur Fragestellung in der Sprache der Formentheorie vgl. Klein, R. F. I. p. 175-179. [O]

je eine adjungierte Kurve bestimmt wird, so wird auch durch R'S' eine adjungierte Kurve festgelegt.

597

Unter dieser Voraussetzung sind nämlich \Re und \Re' korresidual zu \Im , und \Im und \Im' korresidual zu \Re .

28. Die Differentialteiler einer Divisorenschar und ihre Anwendung in der Geometrie. Die Plückerschen Formeln.⁶¹) Sind (x_0, x_1, x_2) die homogenen Punktkoordinaten einer ebenen Kurve, so sind die Linienkoordinaten ihrer Tangente im Punkte $P = (x_0, x_1, x_2)$ die drei Unterdeterminanten zweiter Ordnung der Matrix:

(82)
$$\begin{pmatrix} x_0 & x_1 & x_2 \\ \frac{dx_0}{d\xi} & \frac{dx_1}{d\xi} & \frac{dx_2}{d\xi} \end{pmatrix},$$

wenn ξ irgendeine Funktion des Körpers ist, welche wir als unabhängige Variable wählen; denn diese Linie verbindet ja P mit einem benachbarten Kurvenpunkte. Soll P ein Wendepunkt der Kurve sein, so muß für ihn:

(82a)
$$\Delta = \begin{vmatrix} x_0 & x_1 & x_2 \\ \frac{dx_0}{d\xi} & \frac{dx_1}{d\xi} & \frac{dx_2}{d\xi} \\ \frac{d^2x_0}{d\xi^2} & \frac{d^2x_1}{d\xi^2} & \frac{d^2x_2}{d\xi^3} \end{vmatrix} = 0 \quad \text{sein.}^{62}$$

Sind allgemeiner (x_0, x_1, x_2, x_3) die homogenen Koordinaten des Punktes P einer Raumkurve R, so sind die $Pl\ddot{u}cker$ schen Linienkoordinaten ihrer Tangente in P, d. h. der Verbindungslinie von P mit einem benachbarten Kurvenpunkte proportional den sechs Determinanten zweiter Ordnung der Matrix:

Ebenso sind die homogenen Koordinaten ihrer Schmiegungsebene in P, welche durch P und zwei benachbarte Kurvenpunkte hindurchgeht, die vier Unterdeterminanten dritter Ordnung der Matrix:

$$(82 \, \mathbf{c}) \qquad \begin{pmatrix} x_0 & x_1 & x_2 & x_3 \\ \frac{d \, x_0}{d \, \xi} & \frac{d \, x_1}{d \, \xi} & \frac{d \, x_2}{d \, \xi} & \frac{d \, x_3}{d \, \xi} \\ \frac{d^2 \, x_0}{d \, \xi^2} & \frac{d^2 \, x_1}{d \, \xi^2} & \frac{d^2 \, x_2}{d \, \xi^2} & \frac{d^2 \, x_3}{d \, \xi^2} \end{pmatrix}.$$

⁶¹⁾ Die Methoden dieses Abschnittes wurden teilweise H.-L., p. 438-459 angegeben. Vollständig dargelegt Hensel, Über die Invarianten algebraischer Körper, J. f. Math. 149 (1919), p. 125-146.

⁶²⁾ G. Landsberg (J. f. Math. 131 [1906], p. 152 ff.) gibt die Divisorendarstellung der Hesseschen Determinante, die zur Kurve gehört, und vergleicht sie mit der Divisorendarstellung von Δ . [O]

Soll endlich die Schmiegungsebene in P vier konsekutive Punkte mit R gemeinsam haben, soll sie also eine Wendeberührungsebene der Kurve sein, so muß für P die Gleichung:

(82d)
$$\left|\frac{d^{i}x_{k}}{d\xi^{i}}\right| = 0 \qquad (i, k = 0, 1, 2, 3)$$
 erfüllt sein.

Genau entsprechende Überlegungen gelten für algebraische Kurven im Raume von s Dimensionen. Die hier auftretenden Funktionen (82)—(82d) gehören alle dem Körper K(x, y) an, unterscheiden sich aber von den früher betrachteten dadurch, daß sie auch die Ableitungen der in ihnen auftretenden Funktionen enthalten.

Um die allgemeinsten Funktionen dieser Art zu umfassen, legen wir (s+1) Funktionen des Körpers $(x_0, x_1, \ldots x_s)$ zugrunde; ist dann ξ irgendeine nicht konstante Funktion desselben, so betrachten wir eine beliebige, z. B. eine ganze rationale Funktion der $(\varkappa+1)$ (s+1) Funktionen der folgenden Matrix:

(82e)
$$\begin{pmatrix} \frac{d^{\lambda}x_{i}}{d\xi^{\lambda}} \end{pmatrix} = \begin{pmatrix} x_{0} & x_{1} & x^{s} \\ \frac{dx_{0}}{d\xi} & \frac{dx_{1}}{d\xi} & \dots & \frac{dx_{s}}{d\xi} \\ \dots & \dots & \dots & \dots \\ \frac{d^{\kappa}x_{0}}{d\xi^{\kappa}} & \frac{d^{\kappa}x_{1}}{d\xi^{\kappa}} & \dots & \frac{d^{\kappa}x_{s}}{d\xi^{\kappa}} \end{pmatrix} \quad \begin{pmatrix} \lambda = 0, 1, \dots \times \\ i = 0, 1, \dots \times \end{pmatrix},$$

welche durch

(82f)
$$F\left(\left(\frac{d^{\lambda}x_{i}}{d\xi^{\lambda}}\right)\right)$$

bezeichnet werde, während der zugehörige Divisor $\mathfrak{Q}_{\xi}(x_0, x_1, \dots x_s)$ genannt werden soll. Allgemeiner untersuchen wir den größten gemeinsamen Teiler:

(82g)
$$\mathfrak{Q}_{\xi}(x_0, x_1, \dots x_s) = \left(F^{(k)}\left(\frac{d^{\lambda} x_i}{d \xi^{\lambda}}\right)\right) \qquad (k = 1, 2, \dots)$$

mehrerer derartiger Funktionen.

Alle hier zu betrachtenden Divisoren \(\mathbb{Q}\) besitzen die folgenden drei Eigenschaften, durch deren Benutzung ihre Bestimmung sehr erleichtert wird:

1) Sie sind Invarianten für die lineare Transformation der Elemente x_i , d. h. bei jeder umkehrbaren Koordinatentransformation

$$y_i = \Sigma a_{i \times} x_{\times}$$

bleibt D; ungeändert, oder es ist

(83)
$$\mathfrak{Q}_{\xi}(x_0, x_1, \dots x_s) = \mathfrak{Q}_{\xi}(y_0, y_1, \dots y_s).$$

2) Sie sind Differentiationsinvarianten: Ersetzt man nämlich die Differentiationsvariable ξ durch ein anderes Element η des Kör-

pers, so bleibt Q ungeändert, d. h. es ist

$$\mathfrak{Q}_{\xi}(x_0, x_1, \dots x_s) = \mathfrak{Q}_{\eta}(x_0, x_1, \dots x_s).$$

3) Sie sind homogen von der nullten Dimension in bezug auf die x_i ; ersetzt man nämlich jedes x_i durch μx_i , wo μ ein beliebiges Element des Körpers ist, so wird:

(85)
$$\mathfrak{Q}_{\xi}(\mu x_0, \ \mu x_1, \dots \mu x_s) = \mathfrak{Q}_{\xi}(x_0, x_1, \dots x_s).$$

Jeder nicht homogene Divisor $\mathfrak{Q}_{\xi}(x_0, \dots x_s)$ kann offenbar durch die Substitution $x_i = \frac{\bar{x}_i}{\bar{x}_{s+1}}$ $(i = 0, 1, \dots s)$ in einen homogenen Divisor von $\bar{x}_0, \dots \bar{x}_s, \bar{x}_{s+1}$ verwandelt werden.

Um nun die in $\mathfrak{Q}_{\varepsilon}(x_i)$ enthaltene Potenz eines beliebigen Primteilers B zu bestimmen, kann man, falls D eine Transformationsinvariante ist, das System $(x_0, x_1, \dots x_s)$ durch ein äquivalentes reguläres System $(\delta_0, \delta_1, \dots \delta_s)$ für diesen Punkt ersetzen (S. Nr. 15) und dann den Divisor $\mathfrak{Q}_{\xi}(\delta_0,\,\delta_1,\,\ldots\,\delta_s)$ untersuchen. Ist zweitens $\mathfrak{Q}_{\xi}(\delta_i)$ eine Differentiationsinvariante, so kann man außerdem die Differentiationsvariable ξ durch eine Primfunktion π für diese Stelle ersetzen, d. h. den Divisor $\mathfrak{Q}_{\pi}(\delta_i)$ betrachten. Außerdem ist aber der Divisor $\mathfrak{D}_{\xi}(x_i)$ bei dieser zweiten Voraussetzung von der Differentiationsvariablen & ganz unabhängig; es kann also Q auch als abhängig von den Differentialen $(d^{\varkappa}x_i)$ allein angesehen werden. Ist endlich $\mathfrak{Q}_{\xi}(x_i)$ außerdem homogen von der nullten Dimension, also $\mathfrak{Q}_{\xi}(\mu x_i) = \mathfrak{Q}_{\xi}(x_i)$, und ersetzt man alle Elemente x_i durch die zugehörigen Divisorenquotienten $\frac{\mathfrak{L}^{(i)}}{\mathfrak{D}_0}$, so ist \mathfrak{D}_{ξ} von dem Generalnenner \mathfrak{D}_0 ganz unabhängig, da bei der Wahl eines anderen Nenners \mathfrak{D}_0' $x_i' = \frac{\mathfrak{D}^{(i)}}{\mathfrak{D}_0'} = \mu x_i$ wird, wo $\mu = \frac{\mathfrak{D}_0{}'}{\mathfrak{D}_0{}}$ ein Element des Körpers ist. Unter dieser Voraussetzung kann also jener Divisor als abhängig allein von jenen Zählerdivisoren angesehen und durch $\mathfrak{Q}_{\varepsilon}(\mathfrak{Q}^{(0)},\mathfrak{Q}^{(1)},\ldots\mathfrak{Q}^{(s)})$ bezeichnet werden.

Diese Betrachtungen werden jetzt angewendet auf den größten gemeinsamen Teiler:

$$\begin{pmatrix}
\begin{pmatrix}
\frac{dx_0}{d\xi} & \frac{dx_1}{d\xi} & \dots & \frac{dx_s}{d\xi} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{d^lx_0}{d\xi^l} & \frac{d^lx_1}{d\xi^l} & \dots & \frac{d^lx_s}{d\xi^l}
\end{pmatrix} = \begin{pmatrix}
\begin{pmatrix}
\frac{d^{\varkappa}x_i}{d\xi^{\varkappa}}
\end{pmatrix} \qquad \begin{pmatrix}
i = 0, 1 \dots s \\
\varkappa = 0, 1 \dots l
\end{pmatrix}$$

aller Determinanten $(l+1)^{\text{ter}}$ Ordnung der (l+1)reihigen Matrix $\left(\frac{d^{\varkappa}x_{i}}{d\hat{\xi}^{\varkappa}}\right)$. Derselbe ist, wie unmittelbar ersichtlich, eine Transformations-

invariante; er besitzt aber noch nicht die beiden letzten Invarianteneigenschaften. Ersetzt man nämlich die Differentiationsvariable ξ durch eine andere η , so multipliziert sich jene Matrix hinten mit einem Dreieckssystem, dessen Elemente von den Ableitungen erster, zweiter Ordnung von ξ und η abhängen und dessen Determinante gleich

 $\left(\frac{d\xi}{d\eta}\right)^{\frac{l(l+1)}{2}}$ ist. Hieraus folgt, daß $\left(\left(\frac{d^xx_i}{d\xi^x}\right)\right)d\xi^{\frac{l(l+1)}{2}}$ auch die zweite Invarianteneigenschaft besitzt. Ersetzt man endlich die x_i durch μx_i , so multipliziert sich jene Matrix hinten mit einem neuen Dreieckssystem von der Determinante μ^{l+1} ; jener Divisor ist also homogen von der $(l+1)^{\text{ten}}$ Dimension, und es wird nach Division mit \mathfrak{Z}_0^{l+1} , wo $\mathfrak{Z}_0=(x_0,x_1,\ldots x_s)$ den größten gemeinsamen Teiler der Elemente x_i bedeutet, homogen von der nullten Dimension.

Also besitzen die s + 1 Divisoren

(86)
$$\triangle_{l}(x_{0}, x_{1}, \dots x_{s}) = \frac{\left(\left(\frac{d^{\varkappa}x_{i}}{d\xi^{\varkappa}}\right)\right) d\xi^{\frac{l(l+1)}{2}}}{\Im_{0}^{l+1}} {i, l = 0, 1, \dots s \choose \varkappa = 0, 1, \dots l}$$

alle drei Invarianteneigenschaften. Sie können also auch in der folgenden Form geschrieben werden

(86a)
$$\Delta_{l}(\mathfrak{D}^{(0)}, \mathfrak{D}^{(1)}, \ldots, \mathfrak{D}^{(s)}) = \begin{pmatrix} \begin{pmatrix} \mathfrak{D}^{(0)}, & \mathfrak{D}^{(1)}, & \ldots, & \mathfrak{D}^{(s)} \\ d \mathfrak{D}^{(0)}, & d \mathfrak{D}^{(1)}, & \ldots, & d \mathfrak{D}^{(s)} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ d^{l} \mathfrak{D}^{(0)}, & d^{l} \mathfrak{D}^{(1)}, & \ldots, & d^{l} \mathfrak{D}^{(s)} \end{pmatrix} \end{pmatrix},$$

$$(l = 0, 1, \ldots s)$$

wenn $\mathfrak{Q}^{(0)}, \mathfrak{Q}^{(1)}, \ldots, \mathfrak{Q}^{(s)}$ die Zählerdivisoren von $x_0, x_1, \ldots x_s$ bedeuten.

Um nun zu untersuchen, welche Potenz eines beliebigen Primteilers \mathfrak{P} in $\Delta_l(x_i)$ enthalten ist, werde das System (x_i) durch ein äquivalentes reguläres System (δ_i) und zugleich die Differentiationsvariable ξ durch eine Primfunktion π für die Stelle \mathfrak{P} ersetzt. Dann enthält der zu $d\pi$ gehörige Divisor \mathfrak{P} nicht, alle Determinanten $(l+1)^{\rm ter}$ Ordnung der Matrix $\left(\frac{d^x\delta_i}{d\pi^x}\right)$ enthalten \mathfrak{P} mindestens so oft wie ihre erste Determinante $|\delta_i^{(z)}|$ $(i,\varkappa=0,1,\ldots l)$, und dieser Exponent von \mathfrak{P} kann leicht durch die Zahlen $\alpha_1,\alpha_2,\ldots \alpha_l$ ausgedrückt werden, aus denen sich die Ordnungszahlen von δ_0,δ_1,\ldots in Nr. 15 zusammensetzen. Hieraus ergibt sich sofort die folgende Darstellung jener Determinantenteiler:

(87)
$$((d^{\varkappa}x_{i})) = (\begin{pmatrix} d^{\varkappa}x_{i} \\ d\xi^{\varkappa} \end{pmatrix}) d\xi^{\frac{l(l+1)}{2}} = \beta_{0}^{l+1}\beta_{1}^{l} \cdots \beta_{l} \quad \begin{pmatrix} i = 0, 1, \dots s \\ \varkappa = 0, 1, \dots l \end{pmatrix},$$

wo $\beta_1, \beta_2, \ldots \beta_i$ die Verzweigungsteiler (47a) der Schar (x_i) sind.

Diese Gleichungen liefern ein einfaches Mittel, die Verzweigungsdivisoren $\beta_1, \beta_2, \ldots \beta_s$ der Schar (x_i) selbst durch die Invarianten Δ_{κ} darzustellen: in der Tat folgt ja aus (87) unmittelbar:

(88)
$$\mathfrak{E}_{l} = \frac{((d^{\varkappa}x_{l}))}{((d^{\varkappa-1}x_{l}))} = \mathfrak{Z}_{0}\mathfrak{Z}_{1} \dots \mathfrak{Z}_{l} \qquad (\varkappa = 0, 1, \dots l)$$
$$\mathfrak{Z}_{l} = \frac{\mathfrak{E}_{l}}{\mathfrak{E}_{l-1}} = \frac{\Delta_{l}(x_{l})}{\Delta_{l-1}(x_{l})}.$$

Aus den letzten Gleichungen geht hervor, daß die Verzweigungsteiler $\mathcal{B}_1, \mathcal{B}_2, \ldots \mathcal{B}_l$ ebenfalls alle drei Invarianteneigenschaften haben, während die \mathfrak{E}_l zwar auch homogen, aber von der ersten Dimension sind. Man nennt die Quotienten $\mathfrak{E}_0, \mathfrak{E}_1, \ldots \mathfrak{E}_s$ der Determinantenteiler der Matrix (d^*x_i) die Differentialteiler nullter, erster, \ldots ster Ordnung der Funktionenschar $(x_0, x_1, \ldots x_s)$; es ergibt sich also der Satz:

Man erhält den Verzweigungsteiler l^{ter} Ordnung einer Funktionenschar, wenn man den Differentialteiler l^{ter} Ordnung durch den nächstvorhergehenden dividiert.

So gehört z. B. zu der Determinante $\begin{vmatrix} x_0 & x_1 \\ dx_0 & dx_1 \end{vmatrix}$ der Divisor $\mathfrak{Z}_0^2\mathfrak{Z}_1$. Setzt man hier $x_0 = 1$, $x_1 = x$, so wird $\mathfrak{Z}_0 = (1, x) = \frac{1}{\mathfrak{n}_x}$, $\mathfrak{Z}_1 = \mathfrak{Z}_x$, und man findet so wieder (vgl.p. 576 (52 b)), daß dem Differentiale $dx = \begin{vmatrix} 1 & x \\ 0 & dx \end{vmatrix}$ eines beliebigen Elementes x der Divisor $\mathfrak{D}_{dx} = \frac{\mathfrak{Z}_x}{\mathfrak{n}_x^2}$ entspricht.

Nun seien allgemein für einen bestimmten Index l $D_l^{(i)}$ alle $\binom{s+1}{l+1}$ Determinanten $(l+1)^{\text{ter}}$ Ordnung der (l+1)-reihigen Matrix

(89)
$$(d^{\varkappa}x_i) = \left(\frac{d^{\varkappa}x_i}{d\,\xi^{\varkappa}}\right) d\,\xi^{\frac{1(l+1)}{2}} \qquad \begin{pmatrix} i = 0, 1, \dots s \\ \varkappa = 0, 1, \dots l \end{pmatrix}$$

in irgend einer Reihenfolge; ebenso werden die zugehörigen Divisoren bezeichnet. Da zu $d\xi$ ein Divisor $2(p-1)^{\rm ten}$ Grades gehört, und die Determinanten $\left|\frac{d^*x_i}{d\xi^*}\right|$ alle zur Hauptklasse gehören, so sind alle Divisoren $D_i^{(l)}$ äquivalent und von der Ordnung l(l+1) (p-1). Ferner seien $\mathfrak{T}_i^{(l)}$ die aus $D_i^{(l)}$ nach Division mit dem zugehörigen größten gemeinsamen Teiler $((d^*x_i))$ sich ergebenden ganzen Divisoren. Dann heißen diese $\binom{s+1}{l+1}$ ganzen äquivalenten Divisoren $\mathfrak{T}_i^{(l)}$ die Tangentialkoordinaten $l^{\rm ter}$ Ordnung der zur Schar $(x_0, x_1, \ldots x_s)$ gehörigen schimensionalen Raumkurve, weil sie, wie gleich noch näher dargelegt wird, die naturgemäße Verallgemeinerung der Tangential- oder Linienkoordinaten einer ebenen Kurve sind. Nach (89) bestehen dann die Gleichungen:

(90)
$$D_{i}^{(i)} = (d^{k}x_{i}) \cdot \mathfrak{T}_{i}^{(i)} = \mathfrak{Z}_{0}^{l+1} \mathfrak{Z}_{1}^{l} \dots \mathfrak{Z}_{l} \mathfrak{T}_{l}^{(i)}.$$

Sind also $w_0, w_1, \ldots w_s$ und $n_0, n_1, \ldots n_s$ die Gerade der Verzweigungsteiler \mathfrak{Z}_l und der Tangentialkoordinaten \mathfrak{T}_l , so ist $n_0 = n$, $n_s = 0$, $w_0 = -n_0 = -n$, und aus der Vergleichung der Grade beider Seiten von (90) folgen die nachstehenden Gleichungen, welche für s=2 die Verallgemeinerung der *Plückerschen Formeln* auf den Fall ganz beliebiger Singularitäten ergeben:

(91)
$$n_l + (l+1) w_0 + lw_1 + \cdots + w_l = l(l+1) (p-1)$$
 oder:

$$(92) (n_l - n_{l-1}) + (w_0 + w_1 + \dots + w_l) = 2l(p-1)$$

oder endlich:

Für den speziellen Fall s=2 sind $x_0=\frac{\mathfrak{A}_0}{\mathfrak{A}},\ x_1=\frac{\mathfrak{A}_1}{\mathfrak{A}},\ x_2=\frac{\mathfrak{A}_2}{\mathfrak{A}}$ die homogenen Koordinaten einer ebenen algebraischen Kurve, der Grad $n=n_0$ gleich der Ordnung der äquivalenten teilerfremden ganzen Divisoren \mathfrak{A}_r Dann ist, wie eine sehr einfache geometrische Betrachtung zeigt, \mathfrak{Z}_1 der Divisor der Rückkehrpunkte, also w_1 die Anzahl derselben, \mathfrak{Z}_2 der Divisor der Wendepunkte, also w_2 ihre Anzahl; endlich sind $n_0=n$ und n_1 die Ordnung und die Klasse der Kurve, während $n_2=0,\ w_0=-n$ ist.

Die Formeln (91) gehen hier in die beiden fundamentalen, jetzt aber für jede Singularität gültigen *Plückers*chen Formeln über

aus denen die beiden dualen Formeln in bekannter Weise gefunden werden können.

29. Theorie der algebraischen Raumkurven. Esa Im Falle s=3 seien $x_0=\frac{\mathfrak{A}_0}{\mathfrak{A}}$, $x_1=\frac{\mathfrak{A}_1}{\mathfrak{A}}$, $x_2=\frac{\mathfrak{A}_2}{\mathfrak{A}}$, $x_3=\frac{\mathfrak{A}_3}{\mathfrak{A}}$ die homogenen Koordinaten einer Raumkurve n^{ter} Ordnung $C_n^{(p)}$ vom Geschlechte p; dann haben also die äquivalenten Divisoren \mathfrak{A}_i die Ordnung $n_0=n$. Ein Punkt $P=(a_0,a_1,a_2,a_3)$ gehört stets und nur dann der Kurve an,

⁶²a) M. H. Reimers (Dissert. Kiel 1915) untersucht mit den Methoden der arithmetischen Theorie die Charakteristiken: 1. der ebenen Schnitte der Tangentenflächen von algebraischen Raumkurven, 2. der Perspektivkegel von algebraischen Raumkurven. [O]

wenn die Determinanten der Matrix

$$\begin{pmatrix} a_0, & a_1, & a_2, & a_3 \\ \mathfrak{A}_0, & \mathfrak{A}_1, & \mathfrak{A}_2, & \mathfrak{A}_3 \end{pmatrix}$$

einen gemeinsamen Teiler haben. Derselbe ist ein singulärer Punkt, wenn jener Divisor von höherer als der ersten Ordnung ist. Während zu einem Körper K im allgemeinen keine singularitätenfreien ebenen Kurven gehören, gibt es für ihn immer doppelpunktfreie Raum-Hier ist 3, der Divisor der stationären Punkte oder der Rückkehrpunkte, 3, der Divisor der stationären Berührungsgeraden oder der stationären Tangenten, 33 der Divisor der stationären Schmiegungsebenen, oder der Wendeberührungsebenen; die Zahlen w_{ij} w_2 , w_3 geben also im regulären Falle die Anzahlen jener stationären Elemente an, während für allgemeine Kurven diese Gebilde in der durch 31, 32, 33 charakterisierten Multiplizität zu zählen sind. Ferner bedeutet hier $n_0 = n$ den Grad der Kurve, d. h. die Anzahl der Kurvenpunkte auf einer beliebigen Ebene, n, ist der sog. Rang derselben, d. h. die Anzahl der Kurventangenten, welche durch eine beliebige Gerade gehen; ng gibt die Klasse der Kurve, nämlich die Anzahl ihrer Schmiegungsebenen durch irgendeinen Punkt im Raume; n_3 ist gleich Null.

Die Spezialisierung der Gleichungen (91) für s=3 liefert hier die drei unabhängigen Verallgemeinerungen der *Plückers*chen Formeln:

(95)
$$n_1 = 2(p-1) + 2n - w_1 n_2 = 6(p-1) + 3n - 2w_1 - w_2 0 = 12(p-1) + 4n - 3w_1 - 2w_2 - w_3,$$

und auch sie gelten für jede Raumkurve mit beliebigen Singularitäten. 63)

Zur Bestimmung des Divisors $\mathfrak D$ der Doppelpunkte einer Raumkurve $C_n^{(p)}$ führen die folgenden Betrachtungen: Projiziert man diese Kurve von einem beliebigen Punkte des Raumes auf eine Ebene, so erhält man eine ebene Kurve $\mathfrak C_0$, welche ihrerseits einen Divisor der Doppelpunkte $\mathfrak D_0$ besitzt. Dieser besteht aus zwei Teilen: einem, der mit dem Projektionszentrum variiert und den sog. scheinbaren Doppelpunkten von $C_n^{(p)}$ bei dieser Projektion entspricht, während der andere Teil $\mathfrak D$ von den wahren Singularitäten der Raumkurve abhängt und somit völlig unveränderlich ist. Dieser letztere ist somit der größte gemeinsame Teiler der Divisoren $\mathfrak D_0$, $\mathfrak D_1$,... der Doppelpunkte, welche zu allen Projektionen der Kurve gehören. Es gilt nun der folgende Satz:

⁶³⁾ Vgl. hierzu H.-L., p. 465.

Der Divisor \mathfrak{D} der Doppelpunkte einer Raumkurve kann stets als größter gemeinsamer Teiler der zu zweien ihrer Projektionen gehörigen Doppelpunktsdivisoren \mathfrak{D}_0 und \mathfrak{D}_1 dargestellt werden.

Auf dieser Tatsache beruht nun ein Satz, der eine direkte Verallgemeinerung des über Funktionsringe auf p. 596 ausgesprochenen ist und dessen Beweis auch unmittelbar auf diesen reduziert werden kann:

Sind $(\mathfrak{A}_0, \mathfrak{A}_1, \mathfrak{A}_2, \mathfrak{A}_3)$ vier ganze linear unabhängige Divisoren einer Klasse A von der Ordnung n, und ist \mathfrak{D} der zugehörige Divisor der Doppelpunkte, so kann jeder durch \mathfrak{D} teilbare Divisor der Klasse A^r als ganze homogene Funktion v^{ter} Ordnung von $\mathfrak{A}_0, \mathfrak{A}_1$, $\mathfrak{A}_2, \mathfrak{A}_3$ dargestellt werden, vorausgesetzt, daß der Exponent v oberhalb einer bestimmten unteren Grenze

(96)
$$v_0 = 2(n-3) - \frac{2(p-1+\delta)}{n}$$

liegt, wo 28 die Ordnung des Divisors D ist.

Oder in anderer Form:

Liegt ν oberhalb der Grenze v_0 , so kann jede durch \mathfrak{D} teilbare Funktion des Körpers, deren Nenner die ν^{te} Potenz des Divisors \mathfrak{A} ist, stets als ganze homogene Funktion ν^{ter} Ordnung von (x_0, x_1, x_2, x_3) dargestellt werden.

Besitzt die Raumkurve nur gewöhnliche Doppel- oder Rückkehrpunkte, so ergibt sieh aus dieser Tatsache unmittelbar der folgende Satz:

Liegt ν oberhalb der soeben angegebenen Grenze ν_0 , so ist die notwendige und hinreichende Bedingung dafür, daß eine Fläche ν^{ter} Ordnung die Raumkurve $C_{\kappa}^{(p)}$ enthält, durch ein System von $(\nu n - \delta - p + 1)$ linearen unabhängigen Gleichungen für die Koeffizienten der Flächengleichung gegeben. 64)

Und da die Gleichung einer Fläche v^{ter} Ordnung $\frac{(r+1)(v+2)(v+3)}{1\cdot 2\cdot 3}$ Koeffizienten besitzt, so folgt weiter:

Die Gesamtheit aller Flächen v^{ter} Ordnung, welche durch eine gegebene Raumkurve der Ordnung n und des Geschlechtes p hin-

⁶⁴⁾ Dieser Satz (für hinreichend große r) folgt sofort aus dem Riemann-Rochschen Satz, findet sich jedoch zum erstenmal ausgesprochen und vollständig bewiesen bei G. Castelnuovo, Palermo Rendiconti VII (1893), p. 89—110. Mit der Bestimmung einer möglichst niedrigen Grenze r_0 , von der an er gilt, beschäftigen sich M. Noether, Ann. di Mat. (2) V (1871), p. 1—15, Berl. Abh. (1882); Picard et Simart, Théorie des fonctions algébriques de deux Variables indépendantes, t. I (Paris 1897), p. 223—235; H.-L., p. 466—476. [O]

durchgelegt werden können, bildet bei hinreichend großem ν eine Schar der Dimension:

(97)
$$N = \frac{(\nu+1)(\nu+2)(\nu+3)}{1\cdot 2\cdot 3} - \nu n + p + \delta - 1,$$

d. h. alle Flächen der Schar können aus N von ihnen linear komponiert werden.

Hiernach kann jede Raumkurve als vollständiger Schnitt von N geeignet gewählten Flächen v^{ter} Ordnung definiert werden. Die kleinste Anzahl von Flächen, welche eine gegebene Raumkurve ausschneiden, ist im allgemeinen größer als zwei. (So kann z. B. schon eine singularitätenfreie Raumkurve vierter Ordnung vom Geschlechte Null nicht als Durchschnitt zweier Oberflächen zweiten Grades dargestellt werden, da nur eine einzige solche Fläche diese Kurve enthält.)

V. Die Klassen algebraischer Gebilde.

30. Die Hauptkurve eines Körpers und ihre Weierstraßpunkte. Der genaueren Untersuchung aller algebraischen Kurven, welche zu demselben Körper oder zu derselben Kurvenklasse gehören, legen wir die Betrachtung der sog. $Hauptkurve\ H$ des Körpers, nämlich derjenigen Kurve im Raume von p-1 Dimensionen zugrunde, deren homogene Koordinaten durch die Gleichungen:

(98)
$$x_1: x_2: \dots: x_p = \mathfrak{W}_1: \mathfrak{W}_2: \dots: \mathfrak{W}_p = dw_1: dw_2: \dots: dw_p$$
 bestimmt sind, wenn die (\mathfrak{W}_i) ein Fundamentalsystem für die ganzen Divisoren der Differentialklasse W , also die (w_i) das System der zugehörigen Integrale erster Gattung bezeichnet. Ihre Bedeutung beruht darauf, daß sie offenbar invarianten Charakter bei jeder birationalen Transformation des Gebildes besitzt. Jede durch Kollineation unzerstörbare Eigenschaft der Hauptkurve ergibt somit eine wesentliche Eigenschaft des algebraischen Gebildes.

Ist der Körper nicht hyperelliptisch, so ist die Hauptkurve stets vom Geschlechte p des Körpers und von der Ordnung 2p-2; sie besitzt keinen einzigen singulären Punkt. Jedes zum Körper gehörige algebraische Gebilde ist auf die Kurve H ebenso wie auf die Riemannsche Fläche eindeutig bezogen. Ist dagegen der Körper hyperelliptisch, und ist $u^2 = f_{2n+2}(z)$

seine Grundgleichung, so entsprechen jedem Punkte von H zwei über-

⁶⁵⁾ G. Landsberg, J. f. Math. 131 (1904), p. 155 ff., stellt eine einfache Raumkurve durch eine einzige Gleichung, die Gleichung ihres Sekantenkomplexes dar und gibt ein Verfahren zur Aufstellung dieser Gleichung. [O]

einanderliegende Punkte der zugehörigen zweiblättrigen Riemannschen Fläche \Re_z . Infolgedessen ist hier das Geschlecht der Hauptkurve gleich Null, da ihre Koordinaten in dem Unterkörper K(z) rational sind, und ihre Ordnung ist nun gleich (p-1).

Zerlegt man nun nach (87) die zu der Schar $(\mathfrak{W}_1, \dots \mathfrak{W}_p)$ gehörige Differentialdeterminante $\Delta(\mathfrak{W})$, deren Divisor der Klasse $W^{\frac{1}{2}p(p+1)}$ angehört, so erhält man die Gleichung:

$$(99) \ \Delta(\mathfrak{W}) = \begin{vmatrix} \mathfrak{W}_1, & \mathfrak{W}_2, \dots & \mathfrak{W}_p \\ d\mathfrak{W}_1, & d\mathfrak{W}_2, \dots & d\mathfrak{W}_p \\ \vdots & \vdots & \ddots & \vdots \\ d^{p-1}\mathfrak{W}_1, & d^{p-1}\mathfrak{W}_2, \dots & d^{p-1}\mathfrak{W}_p \end{vmatrix} = \beta_1^{p-1}\beta_2^{p-2} \dots \beta_{p-2}^2\beta_{p-1} = \prod_{\mathfrak{P} \mid \mathfrak{P}} \mathfrak{A}.$$

Die den Primteilern von $\Delta(\mathfrak{W})$ entsprechenden Punkte \mathfrak{P} sollen die Weierstraß-Punkte des Körpers, und ihre Ordnungszahlen α das Gewicht derselben heißen. Ist allgemein \mathfrak{F}_i durch \mathfrak{F}^{a_i-1} genau teilbar, so folgt aus (99)

$$(99a) \quad a = (p-1)(a_1-1) + (p-2)(a_2-1) + \dots + (a_{p-1}-1)$$

und, da der Divisor von $\Delta(\mathfrak{B})$ der Klasse $\overline{W^{\frac{1}{2}}}^{p(p+1)}$ angehört, so ergibt sich aus derselben Gleichung für die Summe der Gewichte aller Weierstraßpunkte:

(99b)
$$\sum \alpha = (p-1) p(p+1).$$

Jeder Körper, dessen Geschlecht größer ist als 1, besitzt also immer Weierstraßpunkte; nur diese haben positives Gewicht.

Eine andere Charakterisierung der Weierstraßpunkte liefert unmittelbar die Anwendung des Riemann-Rochschen Satzes zur Bestimmung der Dimensionen $\{\mathfrak{P}\}, \{\mathfrak{P}^2\}, \ldots$ der Divisorenklassen, welche äquivalent den Potenzen $\mathfrak{P}, \mathfrak{P}^2, \ldots$ eines beliebig gegebenen Primteilers sind, oder, was dasselbe ist, der Ordnungszahlen aller Funktionen des Körpers, welche nur in \mathfrak{P} unendlich werden. In dem Systeme dieser Ordnungszahlen fehlen nämlich stets genau so viele als die Geschlechtszahl p des Körpers angibt (Weierstraßscher Lückensatz). Sind nun $\varrho_1, \varrho_2, \ldots, \varrho_p$ diese fehlenden Ordnungszahlen, so ist allgemein:

(100)
$$\begin{aligned} \varrho_1 &= 1, \ \varrho_2 = \alpha_1 + 1, \ \varrho_3 = \alpha_1 + \alpha_2 + 1, \dots, \\ \varrho_p &= \alpha_1 + \alpha_2 + \dots + \alpha_{p-1} + 1. \end{aligned}$$

Für jeden gewöhnlichen Punkt der Fläche ist also stets $\varrho_i = i$, d. h. es gibt für sie keine Funktionen erster, zweiter . . . p^{ter} Ordnung, während alle höheren Ordnungszahlen auftreten. Die Weierstraßpunkte

sind dagegen die einzigen, für welche nichtkonstante Funktionen $\frac{6}{3}$ existieren, deren Exponent ϱ kleiner als p+1 ist.

Für einen hyperelliptischen Körper vom Geschlechte p sind die 2p+2 Verzweigungspunkte die einzigen $Weierstra\beta$ punkte, und jeder von ihnen hat das Gewicht $\frac{1}{2}p(p-1)$. Für diese Punkte fehlen die p Ordnungszahlen 1, 3, 5, . . . (2p-1). Für alle anderen Körper ist das Gewicht jedes $Weierstra\beta$ punktes kleiner als $\frac{1}{2}p(p-1)$, ihre Anzahl also stets größer als 2p+2. Elliptische und rationale Körper haben keine $Weierstra\beta$ punkte.

Im allgemeinen tritt ein Primfaktor $\mathfrak P$ nur in der ersten Potenz in $\Delta(\mathfrak B)$ auf, und es kann als eine Besonderheit betrachtet werden, wenn $\Delta(\mathfrak B)$ einen mehrfachen Teiler enthält. Für einen einfachen Teiler fehlen also die Ordnungszahlen $(1,2,\ldots p-1,p+1)$. Ein Körper, welcher nur die gewöhnlichen, durch den Wert von p bedingten Besonderheiten darbietet, heißt ein ordinärer Körper. Ein solcher hat also (p-1) p(p+1) verschiedene Weierstraßpunkte $\mathfrak P$ vom Gewichte Eins, und für jeden von ihnen gibt es in K eine Funktion mit dem p-fachen Pole $\mathfrak P$, aber keine Funktion von niederer Ordnung.

Unterwirft man ein algebraisches Gebilde F(z,u)=0 durch die umkehrbaren Gleichungen $z'=\varphi(z,u),\ u'=\psi(z,u)$ einer Abbildung, so kann der Fall eintreten, daß das transformierte Gebilde F(z',u')=0 mit dem ursprünglichen übereinstimmt. Man nennt eine solche Abbildung eine Transformation des Gebildes in sich.

Diese Transformationen führen jeden Weierstraßpunkt notwendig wieder in einen solchen über, da ja jede Funktion $\frac{\mathfrak{G}}{\mathfrak{F}^{\varrho}}$, in welcher $\varrho < p+1$ ist, in eine andere $\frac{\mathfrak{G}'}{\mathfrak{F}'^{\varrho}}$ derselben Art übergeht.

Die Gesamtheit aller dieser Transformationen bildet offenbar eine Gruppe G. Ferner bilden alle diejenigen unter ihnen, welche alle Weierstraßpunkte in Ruhe lassen, eine Untergruppe U von G, und zwischen G und U besteht eine Gleichung:

$$G = U \cdot V$$

wo V ein Komplex von Transformatienen ist, bei denen die Weierstra β punkte auf lauter verschiedene Weisen untereinander vertauscht werden. Da es überhaupt nur eine endliche Anzahl von Vertauschungen dieser Punkte gibt, so folgt jetzt, daß die Anzahl aller Transformationen eines Gebildes in sich dann und nur dann endlich ist, wenn das Gleiche für die Anzahl derjenigen unter ihnen gilt, welche alle Weierstra β punkte in Ruhe lassen.

Aus der bloßen Tatsache nun, daß die Anzahl dieser Punkte $\geq 2(p+1)$ ist, folgt nun, daß jene letzte Anzahl gleich zwei oder gleich eins sein muß, und hieraus ergibt sich der merkwürdige Satz:

Ein algebrasches Gebilde vom Geschlecht p > 1 besitzt stets nur eine endliche Anzahl von Transformationen in sich.

Bei der genaueren Untersuchung der Hauptkurve H eines algebraischen Körpers handelt es sich vor allem um die Frage, welche Flächen diese vollständig enthalten, bzw, wie sich H als vollständiger Schnitt algebraischer Flächen darstellen läßt. Arithmetisch betrachtet reduziert sich diese Frage auf die andere, wie groß die Anzahl der unabhängigen Relationen einer beliebigen r^{ten} Ordnung zwischen den p ganzen Divisoren der Differentialklasse W ist.

Nun folgt aus p. 604 (96), daß für ein hinreichend großes r alle ganzen Divisoren der Klasse Wr als ganze homogene Funktionen $r^{ ext{ten}}$ Grades jener Fundamentaldivisoren $(\mathfrak{W}_1,\ \mathfrak{W}_2,\ \dots\ \mathfrak{W}_n)$ darstellbar sind. Es ist aber sehr bemerkenswert, daß in diesem Falle jene untere Grenze für den Exponenten r die kleinstmögliche wird; es gilt nämlich der folgende von Nöther 66) herrührende wichtige Satz:

Ist der Körper K nicht hyperelliptisch, so kann jeder ganze Divisor der Klasse W'r als ganze homogene Funktion r^{ten} Grades der p Fundamentaldivisoren W, der Klasse W ausgedrückt werden.

Um diesen Satz zu beweisen, beachten wir zunächst, daß die Dimension einer beliebigen Klasse W' nach dem Riemann-Rochschen Satze stets gleich (2r-1)(p-1) ist, sobald r>1 ist. Andrerseits gehören die $\binom{p+r-1}{r}$ ganzen Divisoren:

$$\mathfrak{B}_1^{h_1}\mathfrak{B}_2^{h_2}\ldots\mathfrak{B}_p^{h_p} \qquad (h_1+h_2+\cdots+h_p=r)$$

stets derselben Klasse an. Kann man also aus ihnen (2r-1)(p-1)unabhängige Divisoren auswählen, so ist der Nöthersche Satz in seinem vollen Umfang bewiesen. Diese Aufgabe kann aber stets gelöst werden, und zwar geschieht dies zunächst für die beiden ersten Klassen W² und W³ durch ein direktes Verfahren. Nehmen wir dann an, die Frage sei bereits für die Klassen W^2 , W^3 , ... W^r gelöst, wo $r \ge 3$ ist, so kann sie folgendermaßen für die nächste Klasse Wr+1 entschieden werden:

Es seien Bu und Bi irgend zwei ganze teilerfremde Divisoren der Klasse W, und es sei (\mathfrak{S}_r) ein System von (2r-1) (p-1)Fundamentaldivisoren der Klasse W^r . Bilden wir dann die beiden Reihen:

(101)
$$\mathfrak{B}_{\alpha}(\mathfrak{S}_r)$$
 und $\mathfrak{B}_{\beta}(\mathfrak{S}_r)$,

⁶⁶⁾ Math. Ann. 17 (1880), p. 263-284. [O].

so gehören die Elemente dieser Systeme zur Klasse W^{r+1} und sind nach dem Vorhergehenden ganze homogene Funktionen $(r+1)^{\text{ter}}$ Ordnung von $\mathfrak{W}_1, \mathfrak{W}_2, \ldots \mathfrak{W}_p$. Soll nun ein Divisor zu jeder der beiden Scharen (101) gehören, so muß er sowohl durch \mathfrak{W}_{α} , als auch durch \mathfrak{W}_{β} , also auch durch ihr Produkt teilbar und somit in der Schar:

(101a)
$$\mathfrak{W}_{\alpha}\mathfrak{W}_{\beta}(\mathfrak{S}_{r-1})$$

enthalten sein, wenn \mathfrak{S}_{r-1} ein System von $(2r-3)\,(p-1)$ Fundamentaldivisoren der Klasse W^{r-1} bedeutet. Vereinigt man also jetzt die beiden Scharen (101) in der Art, daß ihr größter gemeinsamer Teiler (101a) nur einmal auftritt, so erhält man im ganzen (2r+1)(p-1) linear unabhängige Elemente, und diese bilden somit ein Fundamentalsystem für die Klasse W^{r+1} w. z. b. w.

Hieraus folgt, daß für jedes r > 1

(102)
$$\tau_r = \binom{p+r-1}{r} - (2r-1)(p-1)$$

linear unabhängige homogene Gleichungen r^{ter} Ordnung zwischen den Divisoren $(\mathfrak{W}_1, \mathfrak{W}_2, \dots \mathfrak{W}_p)$ bestehen, und ebenso groß ist die Dimension der Schar von Flächen r^{ter} Ordnung, welche die Hauptkurve enthalten.

- 31. Die Normalgleichungen und die Moduln der algebraischen Körper. Ein Körper K ist durch zwei geeignet gewählte Elemente x, y oder durch die zwischen ihnen bestehende Gleichung f(x,y) = 0 vollständig bestimmt. Alle anderen den Körper definierenden Gleichungen g(z,u) = 0 sind umkehrbar eindeutig auf diese bezogen. Alle so meinander transformerten Gleichungen rechnen wir mit Riemann in eine Klasse. Ist die Gleichung f(x,y) = 0 irgendwie durch Bedingungen charakterisiert, welche von der Wahl der Grundgleichung unabhängig sind, so nennt man sie eine Normalgleichung; sie enthält, wenn das Geschlecht und die etwaigen Besonderheiten des Körpers gegeben sind, eine bestimmte Anzahl stetig veränderlicher unabhängiger Parameter, welche die Moduln der Klasse genannt werden. Eine der Hauptaufgaben der Theorie besteht darin, die Anzahl der Moduln zu bestimmen. Die soeben durchgeführten Untersuchungen führen in vielen Fällen zu einer einfachen Lösung derselben.
- a) Die Körper vom Geschlechte drei und vier. Ist zunächst das Geschlecht des Körpers gleich drei, so ist seine Hauptkurve eine singularitätenfreie ebene Kurve vierter Ordnung, und jede solche Kurve entspricht umgekehrt einem bestimmten Körper dieses Geschlechtes als Hauptkurve. Die Untersuchung der projektiven Eigenschaften dieser ebenen Kurven ist hiernach völlig äquivalent der Analyse beliebiger

nichthyperelliptischer Körper vom Geschlechte drei. Nun enthält aber jene Gleichung 15 Konstanten, von denen aber nur 15 — 9 = 6 wesentlich sind, da man die Variablen noch linear transformieren kann; sie sind also die Moduln des algebraischen Gebildes. Zwei Gebilde mit verschiedenen Moduln sind dann im allgemeinen nicht ineinander birational transformierbar.

Die adjungierten Kurven, deren Schnittpunktsysteme den Differentialteilern entsprechen, sind hier die Geraden der Ebene. Der Körper enthält hier keine Funktionen zweiter, aber unendlich viele dritter Ordnung. Man findet sie alle, wenn man durch einen beliebigen Kurvenpunkt zwei beliebige Gerade hindurchlegt. Jedem solchen Geradensystem entspricht eine Divisorenklasse von der Ordnung drei und der Dimension zwei, nämlich die Ergänzungsklasse der zu $\mathfrak P$ gehörigen Klasse P.

Die Hauptkurve eines Körpers vom Geschlecht vier ist eine doppelpunktfreie Raumkurve sechster Ordnung:

$$x_1:x_2:x_3:x_4=\mathfrak{W}_1:\mathfrak{W}_2:\mathfrak{W}_3:\mathfrak{W}_4.$$

Durch sie geht nach (102) eine einzige unzerlegbare Fläche zweiter und eine dritter Ordnung, und zwar bildet sie den vollständigen Durchschnitt derselben. Die Untersuchung derjenigen Körper vom Geschlecht vier, welche nicht hyperelliptisch sind, ist also völlig äquivalent der Ergründung der projektiven Eigenschaften derjenigen Raumkurven sechster Ordnung, welche der Schnitt zweier Flächen von zweiter und dritter Ordnung ohne besondere Lagenbeziehungen sind.

Hier gibt es aber zwei wesentlich verschiedene Arten nichthyperelliptischer Körper vom Geschlechte vier, je nachdem die zugehörige Fläche zweiter Ordnung eine ordinäre Fläche, also ein Hyperboloid, oder ein Kegel ist. Im ersten Falle zerfällt die Klasse W in zwei eindeutig bestimmte voneinander verschiedene Ergänzungsklassen A und B der dritten Ordnung und der zweiten Dimension, im zweiten fallen jene beiden Klassen zusammen, W ist also das Quadrat einer eindeutig bestimmten Klasse derselben Art. Im ersten Falle gehen durch jeden Punkt B der Hauptkurve zwei und nur zwei voneinander verschiedene und niemals zusammenfallende Trisekanten dieser Kurve hindurch, welche die beiden erzeugenden Geraden des Hyperboloides durch \$\mathbb{B}\$ sind; arithmetisch werden diese Geraden durch die beiden durch \mathfrak{P} teilbaren Divisoren $\mathfrak{A}_1 \longrightarrow \lambda \mathfrak{A}_2$ und $\mathfrak{B}_1 \longrightarrow \mu \mathfrak{B}_2$ dargestellt, welche zu den beiden Ergänzungsklassen $A = (\mathfrak{A}_1, \mathfrak{A}_2)$ und $B = (\mathfrak{B}_1, \mathfrak{B}_2)$ gehören. Da in diesem Fall zwei verschiedene Klassen dritter Ordnung existieren, so gibt es in K zwei Funktionen dritter Ordnung x und y, welche durch eine irreduktible Gleichung zusammenhängen, die in bezug auf jede Variable von drittem Grade ist, und sie kann als Normalkurve für diesen Fall zugrunde gelegt werden. Man erkennt leicht, daß sie 9 wesentliche Konstanten oder Moduln besitzt.

Im zweiten Falle geht durch jeden Punkt $\mathfrak P$ der Hauptkurve eine einzige Trisekante derselben, welche die diesem entsprechende Kegelkante ist, und sie gehört zu dem $\mathfrak P$ enthaltenden Divisor $\mathfrak A_1 - \lambda \mathfrak A_2$ der Klasse $A = (\mathfrak A_1, \mathfrak A_2)$. Da hier nur eine Klasse dritter Ordnung existiert, so gelangt man zu einer Normalgleichung, wenn man aus K eine Funktion dritter und eine geeignet normierte Funktion sechster Ordnung auswählt. Die Gleichung, durch welche diese zusammenhängen, hat die Form

$$y^3 + a_4(x)y + b_6(x) = 0$$
,

und ihre Diskriminante hat verschiedene Wurzeln; umgekehrt charakterisiert jede solche Gleichung einen derartigen Körper. Diese Gleichung besitzt acht wesentliche Konstanten oder Moduln.

b) Die rationalen elliptischen und hyperelliptischen Gebilde. Die Körper K(z,u) und K(x,y) mögen zunächst beide das Geschlecht Null haben, und es seien

$$z = r(t)$$
, $u = s(t)$ bzw. $x = R(\tau)$, $y = S(\tau)$

die Ausdrücke der Funktionen durch je eine Funktion t und τ ersten Grades von K(z,u) bzw. K(x,y); sind beide Körper also gleich, so hängen diese Funktionen ersten Grades notwendig durch eine lineare Gleichung $t = \frac{\alpha \tau + \beta}{\gamma \tau + \delta}$

zusammen; umgekehrt können aber auch offenbar irgend zwei rationale Gebilde durch eine derartige Substitution stets ineinander transformiert werden; die Anzahl der Moduln ist hier also gleich Null und es gilt der Satz:

Jedes algebraische Gebilde vom Geschlechte Null kann durch unendlich viele Transformationen, welche von drei willkürlichen Parametern abhängen, in jedes andere Gebilde derselben Art übergeführt werden.

Ein hyperelliptischer Körper ist dadurch charakterisiert, daß er eine Funktion zweiter Ordnung enthält. Wählt man sie zur unabhängigen Variablen, so kann man die andere so wählen, daß

(103)
$$u^2 = (z - e_1)(z - e_2) \dots (z - e_{2p+2})$$
 wird. Dann ist:

(103a)
$$z = \frac{3z}{n_z}, \quad u = \frac{3 \cdot n_z^{p+1}}{n_z^{p+1}},$$

612 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

und die Gleichung (103) läßt sich schreiben:

(103b)
$$\mathfrak{Z}_{\varepsilon}^2 = (\mathfrak{z}_{\varepsilon} - c_1 \mathfrak{n}_{\varepsilon}) (\mathfrak{z}_{\varepsilon} - c_2 \mathfrak{n}_{\varepsilon}) \dots (\mathfrak{z}_{\varepsilon} - c_{2p+2} \mathfrak{n}_{\varepsilon}) = G(\mathfrak{z}_{\varepsilon}, \mathfrak{n}_{\varepsilon}).$$

Ist nun p > 1, so folgt aus dem Riemann-Rochschen Satze, daß die Klasse zweiter Ordnung $A = (\mathfrak{z}, \mathfrak{n}_z)$, welcher Zähler und Nenner von z angehören, von der Dimension zwei ist, und daß sie die einzige Klasse zweiter Ordnung ist. Jede andere Funktion zweiter Ordnung z' hängt also mit z durch eine Gleichung:

$$(104) z' = \frac{\alpha z + \beta}{\gamma z + \delta},$$

(104 a)
$$\begin{aligned} \mathfrak{z}_{z'} &= \alpha \mathfrak{z}_z + \beta \mathfrak{n}_z \\ \mathfrak{n}_{z'} &= \gamma \mathfrak{z}_z + \delta \mathfrak{n}_z \end{aligned}$$

zusammen. Ist daher ein zweites hyperelliptisches Gebilde vom Geschlechte p durch die entsprechende Gleichung

$$\mathfrak{Z}_{z'}^{2} = (\mathfrak{z}_{z'} - e_{1}'\mathfrak{u}_{z'}) (\mathfrak{z}_{z'} - e_{2}'\mathfrak{u}_{z'}) \dots (\mathfrak{z}_{z'} - e_{2p+2}'\mathfrak{u}_{z'}) = G'(\mathfrak{z}_{z'}, \mathfrak{u}_{z'}),$$

charakterisiert, so ist dann und nur dann K(z,u) = K(z',u'), wenn z mit z' durch eine Gleichung (104) zusammenhängt, wenn also $G(\mathfrak{F}_{\mathfrak{F}_{\mathfrak{F}}},\mathfrak{n}_{\mathfrak{F}})$ und $G'(\mathfrak{F}_{\mathfrak{F}_{\mathfrak{F}}},\mathfrak{n}_{\mathfrak{F}_{\mathfrak{F}}})$ durch die Substitution (104a) ineinander übergehen. Das ist aber bekanntlich dann und nur dann der Fall, wenn die Verzweigungspunkte $(e_1, e_2', \ldots e_2'_{p+2})$ so angeordnet werden können, daß die 2p-1 Doppelverhältnisse (e_1, e_2, e_3, e_h) und (e_1', e_2', e_3', e_h') einander gleich sind. Es besteht also der Satz (der auch für p=1 richtig bleibt):

Die Anzahl der Moduln der hyperelliptischen Gebilde vom Geschlechte p ist stets gleich 2p-1.

Im Falle p=1 tritt der wesentliche Unterschied ein, daß es hier nicht nur eine, sondern unendlich viele verschiedene Klassen zweiter Ordnung und zweiter Dimension gibt, es ist also hier nicht notwendig, daß $z'=\frac{az+\beta}{\gamma z+\delta}$ sein muß, wenn K(z,u)=K(z',u') sein soll. Man zeigt aber auch hier, daß dann und nur dann zwei durch die Gleichungen

(105)
$$u^{2} = C(z - e_{1}) (z - e_{2}) (z - e_{3}) (z - e_{4}) u'^{2} = C(z' - e_{1}') (z' - e_{2}') (z' - e_{3}') (z' - e_{4}')$$

definierte Körper K z,u) und K(z',u') einander gleich sind, wenn die beiden Doppelverhältnisse (e_1, e_2, e_3, e_4) und (e_1', e_2', e_3', e_4') gleiche Werte haben. Ist das der Fall, so geht also auch sicher der eine Körper in den anderen durch die obige lineare Transformation über; nur gibt es hier außer dieser noch unendlich viele andere Transformationen, welche den unendlich vielen verschiedenen Divisorenklassen

von der Ordnung und der Dimension zwei entsprechen. Zu dem vorigen Theorem tritt also im Falle p=1 noch der folgende Satz hinzu:

Ein algebraisches Gebilde vom Geschlechte Eins besitzt unendlich viele Transformationen in sich, welche von einem veränderlichen Parameter abhängen.

c) Die ordinären Körper vom Geschlecht $p \ge 3$. Ist K ein ordinärer Körper vom Geschlecht p, so ist zwar seine Hauptkurve von invarianter Beschaffenheit, sie ist aber, da sie im (p-1)-dimensionalen Raume liegt, nicht direkt zur Aufstellung einer Normalgleichung verwendbar. Man gelangt aber zu einer solchen, wenn man auf der Hauptkurve (p-3) Punkte willkürlich aber fest auswählt und vermöge eines durch sie hindurchgelegten Büschels ebener Mannigfaltigkeiten diese Kurve in eine Ebene projiziert. So ergibt sich als Projektionskurve eine ebene Kurve der $(p+1)^{\rm ten}$ Ordnung vom Geschlechte p mit $\frac{1}{2}p(p-3)$ gewöhnlichen Doppelpunkten; und umgekehrt beweist man leicht, daß jede solche Kurve einen ordinären Körper vom Geschlecht p definiert. Aus der einfachen Abzählung der wesentlichen Konstanten dieser Normalkurve ergibt sich der wichtige, auch für p=2 gültige von Riemann zuerst aufgestellte Satz:

Eine Klasse algebraischer Gebilde vom Geschlecht p ohne jede Besonderheit besitzt 3p-3 Moduln.

32. Die Normalgleichungen und die Moduln der allgemeinen Körper vom Geschlecht p. Es sei jetzt allgemein K ein nichtordinärer Körper, \mathfrak{P}_{∞} einer seiner Weierstraßpunkte. Wir betrachten dann alle Funktionen von K, deren Nenner eine Potenz von \mathfrak{P}_{∞} ist; es sei n die kleinste positive unter den vorhandenen Ordnungszahlen, r+n sei eine spätere, welche in der Reihe der Ordnungszahlen an $(h+1)^{\text{tor}}$ Stelle stehen möge, und zwar sei sie die kleinste Zahl dieser Reihe, welche zu n teilerfremd ist. Sind dann x und y zwei Funktionen des Körpers, welche die Divisorendarstellung

(106)
$$x = \frac{\delta_x}{\mathfrak{P}_n^n}, \quad y = \frac{\delta_y}{\mathfrak{P}_n^{n+r}}$$

besitzen, so sind sie durch eine irreduktible Gleichung vom Geschlechte p

(107)
$$F^{\binom{(n+r)}{x}, y} = 0$$

verbunden. Diese Kurve besitzt ferner genau $\frac{1}{2}(n-1)(r+n-1)-p$ Doppelpunkte im Endlichen. Umgekehrt definiert jede solche Gleichung einen Körper dieser Art vom Geschlechte p, und x, y besitzen die Darstellung (106). Bringt man nun durch geeignete Normierung von

 \mathfrak{z}_x und \mathfrak{z}_y möglichst viele von den Konstanten von F(x,y) in Fortfall und reduziert man ferner die Konstantenzahl dadurch, daß man der Kurve die obige Zahl von Doppelpunkten erteilt, so erhält man wieder durch Abzählung die Anzahl der übrigbleibenden wesentlichen Konstanten, und zwar ergibt sich der Satz:

Es sei für ein algebraisches Gebilde vom Geschlecht p die Gesamtheit der zu einem beliebigen $Weierstra\beta$ punkte \mathfrak{P}_{∞} gehörigen vorhandenen Ordnungszahlen bekannt; n sei die kleinste positive unter ihnen, n+r aber die nächste, welche zu n relativ prim ist, und es stehe r+n in jener Reihe au $(h+1)^{\text{ter}}$ Stelle. Dann ist die Anzahl der Moduln des Gebildes gleich

$$p-3+2n+r-h.$$

Folgerungen: α) Besitzt das Gebilde wenigstens einen regulären Weierstraßpunkt \mathfrak{P}_{∞} , so ist für ihn die Reihe der vorhandenen Ordnungszahlen (0, p, p+2, p+3...). Also ist für ihn n=p, und wenn p+r die erste zu p teilerfremde Zahl ist, so ist h=r; also besteht der Satz:

Besitzt das algebraische Gebilde auch nur einen regulären Weierstra β punkt, so ist die Anzahl seiner Moduln gleich 3p-3.

 $oldsymbol{eta}$) Ist für einen Weierstra $oldsymbol{eta}$ punkt $oldsymbol{\mathfrak{P}}_{\infty}$ die Reihe der vorhandenen Ordnungszahlen

$$(0, p, p+1, \ldots p+g-1, p+g+1, \ldots),$$

wo g > 1 ist, so ist wieder n = p, r = 1, also h = 2, und die Zahl der Moduln wird daher 3p - 4.

 γ) Ist das Gebilde hyperelliptisch, so wird jene Reihe:

$$(0, 2, 4, \ldots 2p, 2p + 1, 2p + 2, \ldots),$$

also n=2, n+r=2p+1, h=p+1, also ergibt sich wieder die Anzahl der Moduln gleich 2p-1.

δ) Enthält das Gebilde einen Weierstraβpunkt mit der Ordnungszahl drei, so läßt sich die Reihe der für diesen Punkt vorhandenen Ordnungszahlen folgendermaßen schreiben:

0, 3, 6,
$$\cdots$$

 $3\mu_1 + 1$, $3\mu_1 + 4$, $3\mu_1 + 7$, \cdots
 $3\mu_2 + 2$, $3\mu_2 + 5$, $3\mu_2 + 8$, \cdots

Die Anwendung des allgemeinen Satzes auf diese Reihe ergibt, daß die Zahl der Moduln in diesem Falle gleich $p+2\mu_1$ oder gleich $p+2\mu_2+1$ ist, je nachdem $\mu_1 \leq \mu_2$ oder $\mu_1 > \mu_2$ ist.

An eine charakteristischere Eigenschaft des Körpers knüpft die folgende Methode zur Aufstellung einer Normalgleichung an: Als unabhängige Variable x nimmt man eine Funktion der niedrigsten Ordnung μ , welche in K überhaupt auftritt, und wählt dann das andere Element y so aus, daß K(x,y)=K wird. Aus dem Riemann-Rochschen Satze ergibt sich dann, daß die Klasse <math>A des Zählers und Nenners von x notwendig die Dimension zwei hat, und daß für ordinäre Körper ihre Ordnung μ gleich $\frac{p}{2}+1$ oder $\frac{p+3}{2}$ sein muß, je nachdem p gerade oder ungerade ist. Im ersten Falle existiert nur eine endliche Anzahl, im zweiten einfach unendlich viele solche Divisorenklassen der Dimension zwei und der Ordnung μ .

In welcher Weise dann die abhängige Variable y ausgewählt werden kann, werde für den Fall $\mu=3$ unter der Annahme ausgeführt, daß das Gebilde nicht hyperelliptisch ist, wohl aber auf eine dreiblättrige Riemannsche Fläche bezogen werden kann, wobei jetzt p>4 vorausgesetzt werden kann.

In der eindeutig bestimmten Klasse $A=(\mathfrak{A},\mathfrak{A}')$ der niedrigsten Ordnung 3, wähle man $x=\frac{\mathfrak{A}}{\mathfrak{A}'}$ so aus, daß $\mathfrak{A}'=\mathfrak{P}_1^{(\infty)}\mathfrak{P}_2^{(\infty)}\mathfrak{P}_3^{(\infty)}$ drei verschiedene Primfaktoren enthält. Es sei dann r der kleinste Exponent, für welchen $\{A^r\}>r+1$ ist. Wählen wir dann von dieser Klasse $y=\frac{\mathfrak{A}_r}{\mathfrak{A}'^r}$ so aus, daß der Zähler \mathfrak{A}_r von den r+1 Potenzprodukten $(\mathfrak{A}^r,\mathfrak{A}^{r-1}\mathfrak{A}',\ldots\mathfrak{A}'^r)$ linear unabhängig ist, so hängen x und y durch eine in y kubische irreduktible Gleichung $F({}^{(3)}_y,x)=0$ zusammen, und es ist K(x,y)=K. Durch geeignete Bestimmung des Zählers \mathfrak{A}_r von y kaun man erreichen, daß diese Gleichung die Form erhält: $F(y,x)=y^3+a_{2r}(x)y+b_{3r}(x)=0$.

Ist $(1, \xi^{(1)}, \xi^{(2)})$ ein normales Fundamentalsystem dieses Körpers für die Stelle $(x = \infty)$, so sind die Ordnungszahlen von $\xi^{(1)}$ und $\xi^{(2)}$ gleich -r und -(r+s), wo $0 \le s \le r$ ist. Umgekehrt bestimmt eine solche Gleichung dann und nur dann einen Körper vom Geschlecht p, bei Beschränkung auf gewöhnliche Singularitäten, wenn diese Kurve $\tau = (r-s)$ gewöhnliche Doppelpunkte hat. Bestimmt man nun die in $a_{2r}(x)$ und $b_{3r}(x)$ vorhandenen Koeffizienten so, daß die Kurve in τ beliebig gegebenen Punkten je einen Doppelpunkt hat, und beseitigt man von den dann in dieser Gleichung auftretenden Konstanten so viele, wie sich durch Normierung der Variablen x und y fortschaffen lassen, so ergibt sich als Schlußresultat der folgende Satz:

Wenn in einem Körper vom Geschlechte p>4 keine Funktionen zweiter, wohl aber solche der dritten Ordnung existieren, so gibt es eine und nur eine Divisorenklasse A der Ordnung drei und

der Dimension zwei und eine bestimmte Potenz von A mit möglichst niedrigem Exponenten r, deren Dimension größer als r+1 ist. Setzt man dann:

$$p = 2r + s - 2,$$

so ist $r \ge s \ge 0$, und die Klasse des algebraischen Gebildes ist durch p+2r resp. p+2r-1 Moduln charakterisiert, je nachdem s positiv oder Null ist. Die Zahl der Moduln wird möglichst groß, nämlich 2p+1, wenn r seinen Maximalwert $\frac{p}{2}+1$ bzw. $\frac{p+1}{2}$ annimmt, also s=0 bzw. 1 wird.

VI. Algebraische Relationen zwischen Abelschen Integralen.

33. Algebraische Normierung der Fundamentalintegrale erster und zweiter Gattung. Aufgabe dieses Abschnittes ist es, durch direkte algebraische Methoden Einblick in die Periodizität der Abelschen Integrale und in die Zusammenhangsverhältnisse der zum Körper K gehörigen Riemannschen Flächen zu gewinnen. Hier sind die algebraischen Tatsachen festzustellen, welche den Sätzen der Analysis situs und den geometrischen Theoremen entsprechen, mit deren Hilfe sonst die topologischen Eigenschaften der Riemannschen Flächen erkannt und ihre Zerschneidung geleistet wird. 67)

Für diese Untersuchungen wählen wir, was stets durch eine birationale Transformation erreicht werden kann, die unabhängige Variable $z=\frac{\delta_z}{\mathfrak{P}_{\infty}^n}$ so, daß sie als Nenner nur die Potenz eines Primdivisors besitzt, daß also die zugehörige Riemannsche Fläche \mathfrak{R} , im Unendlichen einen einzigen n-blättrigen Verzweigungspunkt \mathfrak{P}_{∞} besitzt.

Die Gesamtheit aller ganzen algebraischen Funktionen von z, welche also nur in \mathfrak{P}_{∞} unendlich groß werden, bildet das Ideal I(1) aller Multipla des Divisors 1. Es seien

$$(\xi^{(0)}, \ \xi^{(1)}, \dots \xi^{(n-1)})$$
 und $(\eta^{(0)}, \ \eta^{(1)}, \ \dots \eta^{(n-1)})$

⁶⁷⁾ Derartige Methoden sind zuerst von Weierstra β in seinen Vorlesungen verwendet, jedoch erst bei B.-N. (1894), p. 426—429 in äußerst knapper Form skizziert worden. Die ihnen zugrunde liegende Form des Satzes von der Vertauschbarkeit des Argumentes und des Parameters bei den Integralen dritter Gattung rekonstruiert Baker (1897) (B. 185—186) und gibt zugleich eine einfachere Form des Satzes (B. 194), bei der die von Weierstra β benutzte von p+2 Stellen des Gebildes abhängige Funktion durch eine nur von zwei Stellen des Gebildes abhängende ersetzt wird. Unter Benutzung der Bakerschen Form des Satzes wird der Weierstra β sche Gedanke bei H.-L. durchgeführt. Für die Weierstra β sche Durchführung vgl. Weierstra β , Vorlesungen, p. 304 ff. [O]

ein für \mathfrak{P}_{∞} normales Fundamentalsystem für diese ganzen Funktionen und sein komplementäres System, welches dann ebenfalls für \mathfrak{P}_{∞} normal ist; durch diese beiden Systeme denken wir uns in der Folge die ganzen algebraischen Funktionen des Körpers einerseits und die *Abelschen* Integrale andrerseits dargestellt

Betrachtet man nun die Ordnung des Unendlichwerdens aller ganzen Funktionen im Punkte \mathfrak{P}_{∞} , so treten nach dem Weitrstraßschen Lückensatze nicht alle positiven ganzen Zahlen als Ordnungen dieser Funktionen auf, sondern es fehlen stets p, also genau so viele als es verschiedene Integrale erster Gattung gibt. Bezeichnet man nun diese fehlenden Ordnungszahlen nach ihrer Größe geordnet durch

$$\varrho_1, \ \varrho_2, \ \ldots \ \varrho_p$$

so kann man, wie eine einfache Diskussion zeigt 67a), ein System von p unabhängigen Integralen erster Gattung

$$w_1, w_2, \ldots w_p$$

rein algebraisch so normieren, daß allgemein w_i in \mathfrak{P}_{∞} die positive Ordnungszahl ϱ_i besitzt. Man kann es sogar erreichen, daß in der Entwicklung von w_i im Bereiche von \mathfrak{P}_{∞} die Glieder der höheren Ordnungen $\varrho_{i+1}, \varrho_{i+2}, \ldots \varrho_p$ sämtlich den Koeffizienten Null haben. Durch diese Festsetzungen sind dann die w_i eindeutig festgelegt.

Ferner kann man nun p Integrale zweiter Gattung mit dem einzigen Pole \mathfrak{P}_{∞} , $(t_1, t_2, \ldots t_p)$ so bestimmen, daß sie in diesem Punkte in den Ordnungen $\varrho_1, \varrho_2, \ldots \varrho_p$ unendlich werden, so daß also jedes Produkt $w_i t_i$ in \mathfrak{P}_{∞} endlich und von Null verschieden wird. Durch diese Festsetzung sind die Integrale t_i nur bis auf eine homogene lineare Funktion von Integralen erster Gattung bestimmt; ihre vollständige Normierung behalten wir uns vor.

Jedes andere zu \Re_z gehörige Integral zweiter Gattung, welches also nur polare Unstetigkeiten hat, ist dann auf eine einzige Weise als Summe einer Funktion des Körpers und einer homogenen linearen Funktion dieser 2p Fundamentalintegrale erster und zweiter Gattung darstellbar. Man bezeichnet daher die Reihe $(t_1, t_2, \ldots t_p, w_1, w_2, \ldots w_p)$ derselben, oder, wenn allgemein $w_i = t_{p+i}$ gesetzt wird, die Reihe

(107a)
$$t_1, \ldots t_p, t_{p+1}, \ldots t_{2p}$$

als ein Fundamentalsystem für die allgemeinen Integrale zweiter Gat-

⁶⁷a) Vgl. H.-L., p. 564-570.

⁶⁸⁾ D.-W. (p. 289—290) beweisen die lineare Ausdrückbarkeit aller Differentiale erster und zweiter Gattung durch 2p geeignet gewählte auf rein algebraischem Wege. [0]

tung; dasselbe ist ein irreduktibles System solcher Integrale, weil keine lineare Verbindung von ihnen gleich einer Funktion des Körpers sein kann. Jedes andere Fundamentalsystem für diese Integrale geht aus diesem durch eine umkehrbare lineare Substitution mit konstanten Koeffizienten hervor.

34. Die Integrale dritter Gattung und der Satz von der Vertauschung von Parameter und Argument. Um zu einer einheitlichen Darstellung der Integrale dritter Gattung zu gelangen, welche in unserer Theorie eine Hauptrolle spielt, führen wir die folgende algebraische Funktion der beiden unabhängigen Variablen z und \bar{z} ein:

(108)
$$\theta(\mathfrak{P}, \overline{\mathfrak{P}}) = \frac{\overline{\xi}_0 \eta_0 + \overline{\xi}_1 \eta_1 + \dots + \overline{\xi}_{p-1} \eta_{n-1}}{z - \overline{z}}.$$

Hier sind $\mathfrak P$ und $\overline{\mathfrak P}$ zwei verschiedene unabhängig veränderliche Punkte der Fläche $\mathfrak R_*$, und die in θ auftretenden Funktionen hängen von $\overline{\mathfrak P}$ oder von $\mathfrak P$ ab, je nachdem sie überstrichen oder nicht überstrichen sind. Diese Funktion ist also in rationaler Weise von den beiden Variablensystemen (z,u) und $(\overline{z},\overline{u})$ abhängig, ist also eine Größe des Körpers $K(zu,\overline{z}\,\overline{u})$ Eine einfache Zerlegung von $\theta(\mathfrak P,\overline{\mathfrak P})$ in seine Primfaktoren zeigt dann, daß ein Elementarintegral dritter Gattung mit den logarithmischen Stellen $\mathfrak P_1$ und $\mathfrak P_2$ und den zugehörigen Residuen -1 und +1 in einer der folgenden beiden Formen darstellbar ist:

$$(109) \quad \tilde{\omega}_{\mathfrak{P}_{1}\mathfrak{P}_{2}} = \int dz \left(\theta(\mathfrak{P},\mathfrak{P}_{2}) - \theta(\mathfrak{P},\mathfrak{P}_{1})\right) = \int dz \int_{\mathfrak{P}_{1}}^{\mathfrak{P}_{2}} \frac{d\theta(\mathfrak{P}\overline{\mathfrak{P}})}{d\bar{z}} d\bar{z}.^{69}$$

Der Satz von der Vertauschung von Parameter und Argument ist bei dieser Auffassung die Folge einer algebraischen Identität, welche sich folgendermaßen aussprechen läßt:

Normiert man die bis jetzt nur bis auf Integrale erster Gattung bestimmten Integrale t_1, t_2, \ldots, t_p in geeigneter Weise, so bleibt der Differentialausdruck:

(109a)
$$D(\mathfrak{P},\overline{\mathfrak{P}}) = \frac{d}{d\overline{z}} \theta(\mathfrak{P},\overline{\mathfrak{P}}) d\overline{z} dz + \sum_{i}^{p} dw_{i}(\mathfrak{P}) \cdot dt_{i}(\overline{\mathfrak{P}}),$$

welcher für das Argument \mathfrak{P} ein Differential zweiter Gattung mit dem einzigen und einfachen Pole $\overline{\mathfrak{P}}$ darstellt, bei der Vertauschung des Argumentes \mathfrak{P} und des Parameters $\overline{\mathfrak{P}}$ ungeändert.

Wir können nunmehr zu der Integralform des Vertauschungs-

⁶⁹⁾ Diese Form des Integrals dritter Gattung und die daraus folgende für die Integrale 2. Gattung ist von Baker gegeben worden [Math. Ann. 45 (1894); p. 67]. Vgl. H.-L., p. 576-587. [O]

satzes von Parameter und Argument dadurch übergehen, daß wir die veränderlichen Punkte $\mathfrak P$ und $\overline{\mathfrak P}$ auf zwei bestimmten Wegen s und σ fortrücken lassen, von denen der erste s sich von $\mathfrak P_1$ nach $\mathfrak P_2$, der zweite σ von $\mathfrak D_1$ nach $\mathfrak D_2$ erstrecken mögen, und sodann den Differentialausdruck $D(\mathfrak P,\overline{\mathfrak P})$ über diese beiden Wege integrieren. Machen wir zuerst die Voraussetzung, daß sich die Wege s und σ nicht schneiden, so ergibt sich jenes Theorem aus dem folgenden Satze:

Das Integral:

bleibt ungeändert, wenn man $(\mathfrak{P}_1 \, \mathfrak{P}_2)$ mit $(\mathfrak{D}_1 \, \mathfrak{D}_2)$ vertauscht, oder kürzer, es ist

(110a)
$$\int_{\mathfrak{F}_1}^{\mathfrak{F}_2} d\tilde{\omega}_{\mathfrak{D}_1 \mathfrak{D}_2} = \int_{\mathfrak{D}_1}^{\mathfrak{T}_2} d\tilde{\omega}_{\mathfrak{F}_1 \mathfrak{F}_2} .$$

Die gleiche Eigenschaft besitzt auch jedes Elementarintegral dritter Gattung, welches aus dem vorigen durch Hinzufügung einer Summe

$$\sum_{i,k=1}^{p} s_{ik} \int_{\mathfrak{B}_{1}}^{\mathfrak{P}_{2}} dw_{i} \int_{\mathfrak{Q}_{1}}^{\mathfrak{Q}_{2}} dw_{k}$$

entsteht, wenn das Koeffizientensystem symmetrisch ist. 70) Außer diesen Integralen gibt es aber keine andere Elementarintegrale dritter Gattung, welche die Vertauschung der Argumente $\mathfrak{P}_1\mathfrak{P}_2$ und der Parameter $\mathfrak{Q}_1\mathfrak{Q}_2$ gestatten.

Dieses Theorem wird modifiziert, wenn die Integrationswege s und σ sich schneiden.⁷¹) Setzen wir allgemein die Differenz

(111)
$$\int d\tilde{\omega}_{\mathfrak{D}_1\mathfrak{D}_2} - \int d\tilde{\omega}_{\mathfrak{P}_1\mathfrak{P}_2} = I(s,\sigma),$$

so ist $I(s,\sigma)$ nach (110a) gleich Null, wenn s und σ getrennt verlaufen. Beachten wir die leicht erweisbaren Sätze, daß, wenn man s oder σ in zwei beliebige Teile zerlegt,

(112)
$$I(s'+s'',\sigma) = I(s',\sigma) + I(s'',\sigma),$$
$$I(s,\sigma'+\sigma'') = I(s,\sigma') + I(s,\sigma''), \quad I(s,\sigma) = -I(\sigma,s)$$

ist, so braucht jener Wert nur für zwei unendlich kleine sich kreuzende Wegstrecken (s_0, σ_0) berechnet zu werden; nun erhält man für diese $I(s_0, \sigma_0) = + 2\pi i$ je nachdem der Übergang von s_0 über σ_0

⁷⁰⁾ Vgl. B., p. 194. [O]

⁷¹⁾ Vgl. B., p. 187. [0]

vom rechten zum linken oder vom linken zum rechten Ufer erfolgt. Im ersten Fall soll jener Übergang ein positiver, im zweiten ein negativer genannt werden. Hieraus ergibt sich dann der allgemeine Satz: es ist stets:

(113)
$$\int_{(s)} d\widetilde{\omega}_{\mathfrak{D}_1\mathfrak{D}_2} - \int_{(\sigma)} d\widetilde{\omega}_{\mathfrak{P}_1\mathfrak{P}_2} = 2\pi i (s, \sigma),$$

wo (s, σ) der Überschuß der Anzahl der positiven über die Anzahl der negativen Übergänge von s über σ bedeutet. Diese Zahl (s, σ) , welche kurz die Anzahl der Übergänge genannt werde, heißt nach Kronecker die Charakteristik der beiden Wege s und σ . Es ist besonders wichtig, daß sich die Charakteristik durch Integrale längs des einen und des andern Weges ausdrückt; so erhalten wir ein Mittel, um die Zusammenhangsverhältnisse der Flächen \Re_s ohne Hilfe der Analysis situs zu finden. In dieser Auffassung haben wir jene Gleichungen vollständig zu diskutieren und gelangen so zum Verständnisse der der Riemannschen Fläche eigentümlichen Zusammenhangsverhältnisse.

Setzen wir in der Gleichung (113) die Wege s und σ beide als geschlossen voraus, so stellt (s, σ) die Charakteristik zweier Periodenwege dar, und die in ihr auftretenden Integrale dritter Gattung fallen fort. Dann ergibt sieh die wichtige Periodenrelation:

(114)
$$t_1^{(\sigma)}w_1^{(s)} + \cdots + t_p^{(\sigma)}w_p^{(s)} - w_1^{(\sigma)}t_1^{(s)} - \cdots - w_p^{(\sigma)}t_p^{(s)} = 2\pi i(s,\sigma),$$
 wenn z. B. $\int dt_{\alpha} = t_{\alpha}^{(\sigma)}$ gesetzt wird.

Es sei nun zunächst s ein solcher geschlossener Weg, daß für ihn alle 2p Perioden $t_{\alpha}^{(s)}$ und $w_{\alpha}^{(s)}$ Null sind. Dann besitzt auch jedes Integral mit polaren Unstetigkeiten, erstreckt über s, den Wert Null. Ein solcher Weg werde äquivalent Null gesetzt und ein Nullweg genannt. Ist ferner σ ein ebenfalls geschlossener sonst aber beliebiger Weg, so ist stets $(s, \sigma) = 0$; jeder geschlossene Weg σ überschreitet also s ebensooft von rechts nach links, wie von links nach rechts.

Ist zweitens $\sigma = \widehat{\mathfrak{Q}_1}\widehat{\mathfrak{Q}_2}$ ungeschlossen, so folgt aus (113), daß $(s,\sigma) = \frac{1}{2\pi i} \int (\theta(\mathfrak{P},\mathfrak{Q}_2) - \theta(\mathfrak{P},\mathfrak{Q}_1)) ds$ nur von \mathfrak{Q}_1 und \mathfrak{Q}_2 , nicht

aber von σ abhängig ist, und daß dieses Integral nur einen von den drei Werten 0, +1, -1 haben kann. Hieraus folgt, daß man alle Punkte der Fläche in bezug auf s eindeutig in zwei Klassen, die inneren und die äußeren Punkte von s einteilen kann.

Durch jeden Nullweg s wird die Fläche \Re in zwei getrennte Teile geteilt, welche aus den inneren und den äußeren Punkten von s bestehen. Ist p == 0, so ist jeder geschlossene Weg ein Nullweg.

35. Einteilung aller Wege auf einer Riemannschen Fläche in Klassen. Ich betrachte nun die Gesamtheit aller Wege a auf R, von denen jeder aus einer endlichen Anzahl von getrennten oder zusammenhängenden Wegstücken besteht, die in beliebiger Reihenfolge, aber festgesetzter Richtung, durchlaufen werden. Unter der Summe a+bzweier Wege verstehe ich den Weg, welcher aus den Wegstrecken von a und b besteht. Für die so definierte Verknüpfungsoperation bestehen dann die drei Grundgesetze der Addition, nämlich das kommutative und das assoziative Gesetz:

$$a + b = b + a$$
, $a + (b + c) = (a + b) + c$,

sowie das Gesetz von der unbeschränkten und eindeutigen Subtraktion, daß nämlich, wie auch die Wege a und b gegeben sind, stets ein einziger Weg x = b - a existiert, für welchen a + x = b ist.

Sind speziell a und b geschlossene Wege, so kann ihre Summe a + b, falls sie sich schneiden, direkt, falls sie sich nicht schneiden, durch Hinzufügung eines zweimal in entgegengesetzter Richtung durchlaufenen Weges c wieder in einen geschlossenen Weg a+c+b-cverwandelt werden.

Für alle Wege auf Rz stelle ich nun die folgende Äquivalenzdefinition auf:

Zwei Wege a und b heißen äquivalent $(a \sim b)$ und werden in dieselbe Klasse K gerechnet, wenn sie sich nur um einen Nullweg n unterscheiden, wenn also a-b=n ist. Hiernach sind speziell alle Nullwege untereinander äquivalent; die durch sie gebildete Klasse Ko soll die Hauptklasse genannt werden.

Hiernach sind zwei Wege a und b stets und nur dann äquivalent, wenn sie sich zu einem geschlossenen Wege ergänzen und wenn für sie die 2p Gleichungen:

sämtlich erfüllt sind, wo hier, wie im folgenden, die p Integrale erster Gattung w_{β} gleich $t_{p+\beta}$ gesetzt sind. Für die Äquivalenz geschlossener Wege a und b sind somit allein diese 2p Gleichungen (115) notwendig und hinreichend. Da die Differenz äquivalenter Wege immer geschlossen ist, so brauchen im folgenden nur die geschlossenen Wege untersucht zu werden.

Ein System $(s_1, s_2, \ldots s_m)$ von geschlossenen Wegen heißt unabhängig, wenn ein aus ihnen linear mit ganzzahligen Koeffizienten zusammengesetzter Weg

$$s = x_1 s_1 + x_2 s_2 + \cdots + x_m s_m$$

nur dann äquivalent Null ist, wenn alle x_i verschwinden. Allein dann ist $s \sim 0$, wenn die auf dem Wege s gebildeten Perioden von $t_1, \ldots t_{3p}$ verschwinden, wenn also die Koeffizienten $x_1, \ldots x_m$ die 2p Gleichungen:

(116)
$$\int_{(s)} dt_{\alpha} = x_1 t_{\alpha 1} + x_2 t_{\alpha 2} + \dots + x_m t_{\alpha m} = 0$$

$$(e = 1, 2, \dots 2p)$$

erfüllen, in denen allgemein

(116a)
$$\int_{(i,j)} dt_{\alpha} = t_{\alpha\beta} \qquad \begin{pmatrix} \alpha = 1, 2, \dots 2p \\ \beta = 1, 2, \dots m \end{pmatrix}$$

gesetzt ist. Jene Gleichungen besitzen stets und nur dann überhaupt keine von Null verschiedene Lösung, wenn der Rang des Koeffizientensystems

(116b)
$$T = (t_{\alpha\beta}) \qquad \begin{pmatrix} \alpha = 1, 2, \dots 2p \\ \beta = 1, 2, \dots m \end{pmatrix}$$

gleich m ist. In diesem Falle sind also die m Wege sicher unabhängig.

Zunächst zeige ich nun, daß man stets 2p Wege $(s_1, \ldots s_{2p})$ so auswählen kann, daß sie linear unabhängig sind. In der Tat kann man an Stelle von $(t_1, \ldots t_{2p})$ irgend ein anderes Fundamentalsystem $(\tau_1, \ldots \tau_{2p})$ zugrunde legen, welches mit jenem durch eine Substitution

$$\tau_h = \sum a_{hk} t_k + \varphi_h \qquad (h, k = 1, 2, \dots 2p)$$

zusammenhängt, in der die φ_h algebraische Funktionen und die a_{hk} beliebige Konstanten von nichtverschwindender Determinante sind. Alsdann hängen die Periodendeterminanten $|\tau_{hk}|$ und $|t_{hk}|$ durch die Gleichung $|\tau_{hk}| = |a_{hk}| |t_{hk}|$

zusammen. Durch eine solche Transformation und durch geeignete Wahl von $(s_1, s_2 \dots s_{2p})$ kann man nun erreichen, daß für das Fundamentalsystem $(\tau_1, \dots \tau_{2p})$ das zugehörige Periodensystem (τ_{hk}) ein Dreieckssystem wird, welches unterhalb der Diagonale nur Nullen, in der Diagonale aber lauter von Null verschiedene Glieder hat, so daß also $|\tau_{hk}|$ und somit auch $|t_{hk}|$ nicht Null ist, und damit ist unsere Behauptung bewiesen.

Auf jeder Riemannschen Fläche vom Geschlecht p gibt es somit 2p unabhängige Periodenwege.

Für ein solches Wegsystem $(s_1, s_2, \ldots s_{2p})$ ist nun nicht bloß die Periodendeterminante $|t_{gh}|$, sondern auch die ganzzahlige Determinante (117) $C = |c_{gh}| = |(s_g, s_h)|$

aller Charakteristiken der Wege s_b aufeinander von Null verschieden. In der Tat bestehen ja zwischen den Perioden für je zwei beliebige

Wege s_{α} und s_{β} die Gleichungen:

(118)
$$t_{1\alpha}t_{p+1,\beta} + t_{2\alpha}t_{p+2,\beta} + \dots + t_{p\alpha}t_{2p,\beta} - t_{p+1,\alpha}t_{1\beta} - \dots - t_{2p,\alpha}t_{p\beta}$$

= $-2\pi i c_{\alpha\beta}$.

Führen wir also das alternierende Hauptsystem:

$$\mathsf{E} = \begin{pmatrix} 0, E_p \\ -E_p, 0 \end{pmatrix} = \begin{pmatrix} 0 & \cdots & 0 & 1 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & 0 & 0 & \cdots & 1 \\ -1 & \cdots & 0 & 0 & \cdots & 0 \\ \vdots & & \vdots & & \vdots \\ 0 & \cdots & -1 & 0 & \cdots & 0 \end{pmatrix}$$

ein und bezeichnen wie gewöhnlich durch \overline{T} das zu $T=(t_{\alpha\beta})$ konjugierte System, so lassen sich alle diese Gleichungen in die eine Systemgleichung:

zusammenfassen, und aus ihr folgt durch Übergang zu den Determinanten, da $E^2 = -1$ und $|\bar{T}| = |T|$ ist:

(118b)
$$|T|^2 = (2\pi i)^{2p} |c_{ab}|^2;$$

es ist also wirklich $|e_{gh}| = |(s_g, s_h)| \ge 0$. Hieraus folgt speziell der Satz:

Ein Periodenweg s ist stets und nur dann kein Nullweg, wenn man wenigstens einen andern Weg s' finden kann, welcher mit ihm eine von Null verschiedene Charakteristik (s, s') hat.

Nunmehr zeigt man leicht, daß mit diesem unabhängigen System (s_1, \ldots, s_{2p}) jeder andre Periodenweg s_0 ein abhängiges System bildet, d. h. daß man 2p+1 nicht sämtlich verschwindende ganze Zahlen x_0, x_1, \ldots, x_{2p} so bestimmen kann, daß der Weg:

(119)
$$\bar{s} = x_0 s_0 + x_1 s_1 + \dots + x_{2p} s_{2p} \sim 0$$

ist. In der Tat ist ja hierfür notwendig und hinreichend, daß die 2p Gleichungen:

(119a)
$$\int_{(3)} dt_{\alpha} = t_{\alpha 0} x_0 + t_{\alpha 1} x_1 + \dots + t_{\alpha, 2p} x_{3p} = 0$$

eine von (0) verschiedene ganzzahlige Lösung haben. Da aber auch das Koeffizientensystem $(t_{a0}, t_{a\beta})$ vom Range 2p ist, so hat das Gleichungssystem, abgesehen von Proportionalitätsfaktoren eine einzige Lösung. Multipliziert man nun diese Gleichungen allgemein mit $t_{p+1,\beta}, \dots t_{2p,\beta}, -t_{1\beta}, \dots -t_{p\beta}$ und addiert sie, so ergeben sich für $\beta=1,2,\dots 2p$ bei Beachtung der Periodenrelationen (118) für die-

624 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

selben $x_0, x_1, \dots x_{2n}$ die ganzzahligen Gleichungen:

$$c_{\beta 0}x_0 + c_{\beta 1}x_1 + \dots + c_{\beta, 2p}x_{2p} = 0,$$

deren ganzzahliges Koeffizientensystem $(c_{\beta 0}, c_{\beta \gamma})$ auch vom Range 2p ist, also auch nur eine einzige jetzt natürlich ganzzahlige Lösung besitzt; und da dieses Gleichungssystem eine Folge des vorigen ist, so hat letzteres dieselbe ganzzahlige Lösung $(x_0, x_1, \ldots x_{2p})$.

Hiernach kann also jeder Weg s_0 auf \Re durch dieses unabhängige System $(s_1, \ldots s_{2n})$ eindeutig in der Form:

$$(120) s_0 = r_1 s_1 + r_2 s_2 + \dots + r_{2p} s_{2p}$$

mit den rational gebrochenen Koeffizienten $r_i = -\frac{x_i}{x_0}$ dargestellt werden, wenn hier wie im folgenden eine solche symbolische Gleichung nur eine andre Schreibweise für die obige ganzzahlige homogene Äquivalenz (119) bedeutet. Ein solches unabhängiges Wegsystem $(s_1, s_2, \ldots s_{2n})$ soll daher eine Basis von Periodenwegen genannt werden.

Ist (120) die Darstellung eines beliebigen Weges s_0 durch die Basis $(s_1,\ldots s_{2p})$, so bestehen für die Perioden $\int_{(s_0)} dt_h = t_{h0}$ der Diffe-

rentiale dt_h für jenen Weg und für die Charakteristiken (s_0, s_h) desselben Weges in bezug auf die Fundamentalwege s_h genau dieselben Gleichungen:

(120a)
$$t_{h0} = r_1 t_{h1} + r_2 t_{h1} + \cdots + r_{2p} t_{h,p}$$
 and

$$(120\,\mathrm{b})\;(s_0,s_h) = r_1(s_1,s_h) + \dots + r_{2\,p}(s_{2\,p},s_h)\;\mathrm{d.\,h.}\; c_{0\,h} = r_1c_{1\,h} + \dots + r_{2\,p}c_{2\,p,h}.$$

36. Die Fundamentalsysteme von Periodenwegen für eine Riemannsche Fläche. Ist $(\sigma_1, \sigma_2, \ldots, \sigma_m)$ ein beliebiges System von Wegen, welches mit der Basis $(s_1, s_2, \ldots, s_{2p})$ durch das rationale Substitutionssystem $R = (r_{\alpha\beta})$ $\begin{pmatrix} \alpha = 1, 2, \ldots 2p \\ \beta = 1, 2, \ldots m \end{pmatrix}$ zusammenhängt, so folgt aus den vorigen Betrachtungen unmittelbar der Satz:

Die Anzahl der in $(\sigma_1, \sigma_2, \dots \sigma_m)$ enthaltenen linear unabhängigen Wege ist gleich dem Range des Systems $(r_{\alpha\beta})$. Dieses ist also dann und nur dann wieder eine Basis, wenn m=2p und $|r_{\alpha\beta}| \geq 0$ ist.

Sind ferner $\int dt_{\alpha} = au_{\alpha\beta}$ die Perioden der Differentiale dt_{α} für die

Wege σ_{β} , so hängt auch das System $T=(\tau_{\alpha\beta})$ für das Wegsystem (σ_{β}) mit dem Periodensystem $T=(t_{\alpha\beta})$ für die Wege (s_{β}) durch die Gleichung

(121)
$$\mathsf{T} = T\bar{R}, \quad \bar{R} = T^{-1}\mathsf{T}$$

zusammen und da nach (117) auf p. 622 | $T \geqslant 0$ ist, so haben T und R gleichen Rang; somit ergibt sich also der Satz:

Ist $(\sigma_1, \ldots \sigma_m)$ ein System geschlossener Wege und $T = (\tau_{\alpha\beta})$ das zugehörige Periodensystem der 2p Fundamentalintegrale für diese, so ist die Zahl der im Systeme (o_i) enthaltenen linear unabhängigen Wege gleich dem Range von (T). Also bilden diese stets und nur dann eine Basis für die Periodenwege, wenn m=2p und $|\mathsf{T}| \geq 0$ ist.

Es sei nun $(s_1, s_2, \ldots s_{2n})$ eine beliebige Basis von Periodenwegen, und es mögen:

$$s = x_1 s_1 + x_2 s_2 + \cdots + x_{2p} s_{2p}$$
, $\sigma = y_1 s_1 + y_2 s_2 + \cdots + y_{2p} s_{2p}$
zwei beliebige geschlossene Wege auf \Re sein; dann besteht nach (120b) auf p. 624 für die Charakteristik von s und σ die folgende Gleichung:

(122)
$$(s, \sigma) = \sum_{g,h} (s_g, s_h) x_g y_h = \sum_g c_{gh} x_g y_h,$$

sie ist also eine bilineare alternierende Form der Zahlensysteme (x_i) und (yi), deren Koeffizientensystem aus allen Charakteristiken je zweier Wege der Basis (s.) besteht; dieselbe soll die Charakteristikenform für jene Basis genannt werden.

Ersetzt man die Basis (s_i) durch irgend eine andere (\bar{s}_i) , welche aus jener durch eine Substitution $(k_{\alpha\beta})$ hervorgeht, so geht die zugehörige Charakteristikenform über in

$$(s,\sigma) = \sum \bar{c}_{ah} \bar{x}_a \bar{x}_h,$$

deren Koeffizientensystem mit dem vorigen durch die Gleichung:

$$(\bar{c}) = (\bar{k})(c)(k)$$

zusammenhängt.

Zwei Basissysteme $(s_1, \ldots s_{2p})$ und $(\bar{s}_1, \ldots \bar{s}_{2p})$ sollen äquivalent heißen, wenn sich die Wege des einen durch die andre Basis ganzzahlig ausdrücken, oder was dasselbe ist, sobald sich aus ihnen durch Addition und Subtraktion dieselben Wege ableiten lassen. Dies ist dann und nur dann der Fall, wenu das Substitutionssystem (k) ganzzahlig und unimodular ist, d. h. wenn die Determinante |k| = +1ist. Nennen wir also ganzzahlige bilineare Formen wie gewöhnlich äquivalent, wenn sie durch dieselbe ganzzahlige unimodulare Substitution für beide Variablensysteme ineinander übergehen, so ergibt sich der Satz:

Zu äquivalenten Fundamentalsystemen (s_i) und (\bar{s}_i) gehören äquivalente Charakteristikenformen und umgekehrt.

Bekanntlich kann man nun jede alternierende Form von 2p Variablen durch elementare umkehrbare ganzzahlige Transformationen nuf die folgende äquivalente reduzierte Form bringen:

 $e_1(\bar{x}_1\bar{y}_{p+1} - \bar{x}_{p+1}\bar{y}_1) + e_2(\bar{x}_2\bar{y}_{p+2} - \bar{x}_{p+2}\bar{y}_2) + \cdots + e_p(\bar{x}_p\bar{y}_{2p} - \bar{x}_{3p}\bar{y}_p),$ wo die positiven Koeffizienten $e_1, e_2, \ldots e_p$ dadurch eindeutig bestimmt sind, daß die Elementarteiler des ursprünglichen Systems der Reihe nach $e_1, e_1, e_2, e_2, \ldots e_n, e_n$

sind. Jedes e_i ist also ein Teiler des folgenden e_{i+1} . Das Koeffizientensystem dieser reduzierten Form ist daher gleich

$$\begin{pmatrix} 0, & D \\ -D, & 0 \end{pmatrix}$$

wo 0 und D das Nullsystem und das Diagonalsystem p^{ter} Ordnung mit den Diagonalgliedern $e_1, e_2, \ldots e_p$ ist.

Jede Basis $(s_1, s_2, \ldots s_{2p})$ mit den Elementarteilern $e_1, e_2, \ldots e_p$ ist also einer andern Basis $(\bar{s}_1, \ldots \bar{s}_{2p})$ äquivalent, deren Charakteristikenform $\sum e_g(\bar{x}_g \bar{y}_{p+g} - \bar{x}_{p+g} \bar{y}_g)$ reduziert ist und dieselben Elementarteiler besitzt. Zwei Basen sind also dann und nur dann äquivalent, wenn ihre Charakteristikenformen dieselben Elementarteiler besitzen.

Das zu $(s_1, \ldots s_{2p})$ äquivalente reduzierte Periodensystem $(\bar{s}_1, \ldots \bar{s}_{2p})$ ist also dadurch charakterisiert, daß jeder seiner Wege mit nur einem einzigen anderen eine von Null verschiedene Charakteristik besitzt, daß nämlich allgemein:

$$(\bar{s}_{\alpha}, \bar{s}_{p+\alpha}) = -(\bar{s}_{p+\alpha}, \bar{s}_{\alpha}) = e_{\alpha} \quad (\alpha = 1, 2, \cdots p)$$

ist, während alle anderen Charakteristiken Null sind. Ist endlich $s=x_1\bar{s}_1+x_2\bar{s}_2+\cdots+x_{2p}\bar{s}_{2p}$ ein beliebiger Weg, für welchen die x_i also auch rationale Brüche sein können, so bestimmen sich diese Koeffizienten aus der Charakteristikenform $(s,\sigma)=\sum e_g(\bar{x}_g\bar{y}_{p+g}-\bar{x}_{p+g}\bar{y}_g)$ für $\sigma=\bar{s}_{p+g}$ bzw. \bar{s}_g

$$(s, \bar{s}_{p+g}) = e_g x_g, \quad (s, \bar{s}_g) = -e_g x_{p+g}.$$

Jene Zahlen x_i fallen daher stets und nur dann ganz aus, wenn für diesen Weg die 2p Kongruenzen:

$$(s, \bar{s}_g) \equiv (s, \bar{s}_{p+g}) \equiv 0 \pmod{e_g}$$

sämtlich erfüllt sind. Sind also die Elementarteiler e_g sämtlich gleich Eins, ist also die Charakteristikenform die bilineare Einheitsform, so erhält jeder beliebige Periodenweg ganzzahlige Koeffizienten.

Mit Hilfe der bisher durchgeführten Transformation einer beliebigen Basis (s_i) auf die reduzierte Form (\bar{s}_i) zeige ich nun endlich, daß man für jede Riemannsche Fläche auch eine reduzierte Basis:

$$(s^{(1)}, s^{(2)}, \cdots s^{(p)}; s^{(p+1)}, s^{(p+2)}, \cdots s^{(2p)})$$

tinden kann, deren Charakteristikenform die Einheitsform wird, deren Elementarteiler also alle gleich Eins sind. Ein solches System und jedes ihm äquivalente soll ein Fundamentalsystem für R heißen. Durch ein solches System ist nach der soeben gemachten Bemerkung jeder andere Schnitt s ganzzahlig homogen d. h. durch Addition und Subtraktion darstellbar. Hiernach bilden also alle geschlossenen Schnitte auf R einen endlichen Modul der Ordnung 2p, dessen Fundamentalsystem ein solches System $(s^{(i)})$ ist.

Um die Existenz solcher reduzierten Fundamentalsysteme zu beweisen, ist nur notwendig, zu zeigen, daß es Basissysteme gibt, für welche die Wege $(s^{(1)}, \ldots s^{(2p)})$ sich nicht selbst durchsetzen, die zugehörige Charakteristikenform aber reduziert ist und die Elementarteiler Eins besitzt. Nur die letzte dieser Forderungen bedarf noch der Erläuterung; ihre Erfüllbarkeit ergibt sich ohne weiteres aus dem folgenden leicht beweisbaren Satze:

Ist a ein Periodenweg, welcher nicht zur Hauptklasse gehört und sich nicht durchsetzt, so gibt es stets einen zweiten b, für welchen die Charakteristik (a, b) = +1 ist.⁷²)

Mit Benutzung dieses Satzes kann man nun allein mit Hilfe der vorher entwickelten Theoreme ein Fundamentalsystem auffinden.

Für ein solches ist dann jeder Periodenweg s auf R eindeutig in der Form:

$$(123a) s = x_1 s_1 + x_2 s_2 + \dots + x_{2n} s_{2n}$$

darstellbar, worin die x, ganze Zahlen, nämlich die Charakteristiken

(123b)
$$x_i = (s, s_{n+i}), \quad x_{n+i} = -(s, s_i) \quad (i = 1, 2, \dots p)$$

sind, und für jedes Integral erster oder zweiter Gattung, welches auf diesem Wege s erstreckt wird, ergibt sich die Gleichung:

$$\int_{(s)} dt = x_1 \int_{(s_1)} dt + x_2 \int_{(s_2)} dt + \dots + x_{2p} \int_{(s_{2p})} dt.$$

Jede Periode eines solchen Integrales ist also eine ganzzahlige lineare Verbindung seiner 2p Hauptperioden für die Wege $s_1, \ldots s_{2p}$, deren Koeffizienten angeben, wie oft der Integrationsweg die Hauptschnitte s. im positiven bzw. negativen Sinne überschreitet.

⁷²⁾ Vgl. B.-N., p. 428-429. [O]

37. Die Periodenrelationen der Integrale erster und zweiter Gattung. Bei der Wahl eines beliebigen Fundamentalsystems (s_i) von Periodenwegen geht die Charakteristikenform $\sum c_{ik}x_iy_k$ in die alternierende Einheitsform $\sum \epsilon_{ik}x_iy_k$, also das System $C=(c_{ik})$ ihrer Charakteristiken in das alternierende Einheitssystem $\mathsf{E}=\begin{pmatrix}0,E_p\\-E_p,0\end{pmatrix}=(\epsilon_{ik})$ über. Ist also jetzt $T=(t_{ik})$ das zum Fundamentalsystem (s_i) ge-

über. Ist also jetzt $T=(t_{ik})$ das zum Fundamentalsystem (s_i) gehörige Periodensystem, so geht die Gleichung $\bar{T} \to 2\pi i C$ in die einfachere über:

Man kann diese Gleichung auf eine andre Form bringen, wenn man sie vorn mit E multipliziert und beachtet, daß $\mathsf{E}^2 = -1$ ist; aus der dann sich ergebenden Gleichung $(\mathsf{E}\,\overline{T})(\mathsf{E}\,T) = 2\pi i$ folgt nämlich, daß $(\mathsf{E}\,\overline{T})$ und $\frac{1}{2\pi i}(\mathsf{E}\,T)$ reziprok also miteinander vertauschbar sind, und hieraus ergibt sich leicht

$$(125) TE\overline{T} = -2\pi i E.$$

Man erhält so die beiden Sätze:

Die alternierende Hauptform $\sum \epsilon_{ik} x_i y_k$ geht sowohl durch die kongruenten Transformationen:

$$x_{\alpha} = \sum t_{\alpha\beta} \bar{x}_{\beta}, \quad y_{\alpha} = \sum t_{\alpha\beta} \bar{y}_{\beta}$$

als auch durch ihre konjugierten:

$$x_{\alpha} = \sum t_{\beta \alpha} \bar{x}_{\beta}, \quad y_{\alpha} = \sum t_{\beta \alpha} \bar{y}_{\beta}$$

bis auf den Faktor — $2\pi i$ in sich selbst über.

Die beiden Systemgleichungen (124) und (125) fassen je p(2p-1) bilineare Relationen zwischen den $4p^2$ Perioden $t_{\alpha\beta}$ der Fundamentalintegrale erster und zweiter Gattung $t_1, t_2, \ldots t_{2p}$ zusammen; die erste liefert nämlich ausgeführt die Gleichungen:

(126)
$$\sum_{k=1}^{p} (t_{k\alpha}t_{p+k,\beta} - t_{p+k,\alpha}t_{k\beta}) = -2\pi i \varepsilon_{\alpha\beta}$$
$$(\alpha, \beta = 1, 2, \dots 2p),$$

von denen jede diejenigen Perioden aller 2p Hauptintegrale enthält, welche sich auf eine bestimmte Kombination zweier Wege s_{α} und s_{β} beziehen; die zweite ergibt dagegen die Gleichungen:

(126a)
$$\sum_{k=1}^{p} (t_{\alpha k} t_{\beta, p+k} - t_{\alpha, p+k} t_{\beta k}) = -2\pi i \varepsilon_{\alpha \beta}$$

$$(\alpha, \beta = 1, 2, \dots 2p);$$

jede dieser Relationen enthält die sämtlichen 2p Perioden je zweier

Hauptintegrale t_{α} und t_{β} . Die beiden Formelsysteme (124) und (125) werden gewöhnlich als die Weierstraßsche und die Riemannsche Form der Bilinearrelationen zwischen den Perioden der Integrale erster und zweiter Gattung unterschieden, weil die erste sich bei dem Weierstraßschen Verfahren der Ableitung aus dem Vertauschungssatze, die zweite bei der Riemannschen Methode der Randintegration als die ursprünglichere einstellt; beide Formen sind aber, wie wir soeben gesehen haben, völlig miteinander äquivalent. Im elliptischen Gebilde liefern diese Relationen die eine Gleichung

(126 b)
$$\eta_2 \omega_1 - \eta_1 \omega_2 = 2\pi i$$

für die Perioden der elliptischen Integrale erster und zweiter Gattung, welche die Legendresche Relation genannt wird.

Geht man in der Gleichung (124) zu den Determinanten über, so ergibt sich $|T|^2 = (-2\pi i)^{2p}$, und eine leichte Determinantenbetrachtung zeigt, daß die Wurzelausziehung

(127)
$$|T| = |t_{\alpha\beta}| = (-2\pi i)^p$$
 ergibt.

38. Die Beziehungen zwischen den verschiedenen Fundamentalsystemen von Periodenwegen. Ist (s_a) ein Fundamentalsystem von Periodenwegen und (σ_a) ein anderes, so hängen die Wege σ_a mit dem ersten Systeme durch ganzzahlige Gleichungen:

(128)
$$\sigma_{\alpha} = \sum_{(j)} m_{\beta \alpha} s_{\beta}$$

zusammen, deren Koeffizienten

$$m_{\beta\alpha} = (\sigma_{\alpha}, s_{p+\beta}), \quad m_{p+\beta, \alpha} = -(\sigma_{\alpha}, s_{\beta})$$

 $(\beta = 1, 2, \dots p)$

sind. Das Koeffizientensystem $M=(m_{\beta a})$ muß gewissen leicht angebbaren notwendigen und hinreichenden Bedingungen genügen, wenn auch (σ_a) ein Fundamentalsystem sein soll. Sind nämlich wieder $T=(t_{\alpha\beta})$ und $T=(\tau_{\alpha\beta})$ die zu (s_a) und (σ_a) gehörigen Periodensysteme der Fundamentalintegrale (t_i) , so folgt ja aus (128), daß T=TM, daß also, da $|T|=|T|=(-2\pi i)^p$ ist,

$$|M| = +1$$

sein muß. Diese Bedingung für (M) ist aber nur eine Folge aus einer andern sehr viel inbaltsreicheren. Da nämlich für beide Systeme $\overline{T} \to T = \overline{T} \to T = -2\pi i \to T$ sein muß, so ergibt sich für T = TM leicht: $\overline{M} \to M \to M \to \overline{M} = \mathbb{E}$,

wo die zweite Gleichung aus der ersten, genau wie im vorigen Paragraphen in (125), hergeleitet wird.

Hängen also zwei Fundamentalsysteme (σ_{α}) und (s_{α}) durch die Gleichungen (128) zusammen, so geht die Charakteristikenform $\mathsf{E}(x,y)$ sowohl durch die unimodularen Substitutionen:

(129)
$$x_{\alpha} = \sum m_{\alpha\beta} \bar{x}_{\beta}, \quad y_{\alpha} = \sum m_{\alpha\beta} \bar{y}_{\beta}$$

als auch durch die konjugierten Substitutionen:

(129a)
$$x_{\alpha} = \sum m_{\beta \alpha} \bar{x}_{\beta}, \quad y_{\alpha} = \sum m_{\beta \alpha} \bar{y}_{\beta}$$
 in sich über.

Es besteht also für die $4p^2$ Substitutionskoeffizienten $m_{\alpha\beta}$ je ein System von p(2p-1) Bedingungsgleichungen, die man analog, wie vorher, in die äquivalenten Formen setzen kann

(130)
$$\sum (m_{\alpha k} m_{\beta, p+k} - m_{\alpha, p+k} m_{\beta k}) = \varepsilon_{\alpha \beta}$$

$$\sum (m_{k\alpha} m_{p+k, \beta} - m_{p+k, \alpha} m_{k\beta}) = \varepsilon_{\alpha \beta}$$

$$(\alpha, \beta = 1, 2, ..., 2p);$$

aus ihnen folgt die Gleichung |M| = +1 genau ebenso wie im vorigen Abschnitte. Für p = 1 liefern jene Gleichungen nur die Bedingung |M| = 1.

Die hier als notwendig begründete Bedingung $\overline{M} \in M = \mathbb{E}$ ist aber auch hinreichend dafür, daß die beiden Systeme (s) und (σ) äquivalent sind. Ist nämlich (s) ein Fundamentalsystem, also $\overline{T} \in T = -2\pi i \in$, M ein beliebiges ganzzahliges System, für welches $\overline{M} \in M = \mathbb{E}$ ist, und setzt man T = TM, so ergibt sich für T ohne weiteres die Gleichung $\overline{T} \in T = -2\pi i \in$, welche (nach p. 628) aussagt, daß die Wege $\sigma_a = \sum_{i=1}^{\infty} m_{\beta a} s_{\alpha}$ ebenfalls ein Fundamentalsystem bilden.

Den Übergang von dem Periodensystem T zu T durch die Gleichungen $\mathsf{T} = TM$ bezeichnet man als lineare Transformation der Perioden; hierbei bezieht sich der Ausdruck "linear" darauf, daß die Determinante |M| den Wert Eins hat. Eine Transformation der Perioden, deren Determinante gleich n ist und bei welcher die Charakteristikenform E(x, y) in ihr n-faches übergeht, heißt von der n^{ten} Ordnung; solche Transformationen und die ihnen entsprechenden Zerschneidungen ergeben sich, wenn die Punkte der Riemannschen Fläche mehrdeutig aufeinander bezogen werden. 72a

39. Die Perioden der Integrale zweiter und dritter Gattung als Funktionen ihrer Unstetigkeitspunkte. Eine weitere Anwendung der Vertauschungsformel entscheidet die Frage, in welcher Weise die Perioden eines Integrales zweiter oder dritter Gattung mit veränderlichen Unstetigkeitspunkten von diesen abhängen.

Wenden wir zunächst auf das elementare Integral zweiter Gattung mit dem Pole B die Gleichung (110) unter der Voraussetzung

⁷²a) Vgl. II B 7, Nr. 9 ff.

39. Die Perioden der Integrale als Funktionen ihrer Unstetigkeitspunkte. 631

an, daß der Weg $\mathfrak{P}_1\mathfrak{P}_2$ ein Periodenweg s_α ist, so ergeben sich die 2p Gleichungen:

$$(131) \quad \int\limits_{\langle \mathbf{s}_{\alpha}\rangle} dt_{\overline{\mathbf{p}}} = \sum_{k=1}^{p} (t_{k\alpha} dt_{p+k}(\overline{\mathbf{p}}) - t_{p+k,\alpha} dt_{k}(\overline{\mathbf{p}})), \quad (\alpha = 1, 2, \dots, 2p).$$

Die sämtlichen Perioden des Elementarintegrales $t_{\overline{y}}$ mit dem einfachen Pole $\overline{\mathfrak{P}}$ sind lineare Kombinationen der für den Punkt $\overline{\mathfrak{P}}$ gebildeten Differentiale der 2p Fundamentalintegrale t_1, t_2, \ldots, t_{2n} .

Nach der gleichen Methode bestimmen wir die zyklischen Perioden des Elementarintegrales dritter Gattung und finden die folgenden Gleichungen:

(131a)
$$\int_{(s_a)} d\widetilde{\omega}_{\mathfrak{Q}_1 \mathfrak{Q}_2} = \sum_{k=1}^{p} \left(t_{ka} \int_{\mathfrak{Q}_1}^{\mathfrak{Q}_2} dt_{p+k} - t_{p+k,a} \int_{\mathfrak{Q}_1}^{\mathfrak{Q}_2} dt_k \right),$$

falls der Weg σ von \mathfrak{Q}_1 nach \mathfrak{Q}_2 keinen der Periodenwege s_{σ} schneidet; auf dieselbe Weise ergeben sich die logarithmischen Perioden $\int_{(k)} d\mathfrak{D}_{\mathfrak{Q}_1\mathfrak{Q}_2}$ gleich $\pm 2\pi i$.

Alle zyklischen Perioden des Elementarintegrales dritter Gattung mit den Unstetigkeitspunkten \mathfrak{Q}_1 und \mathfrak{Q}_2 und den Residuen — 1 und + 1 sind also lineare Kombinationen der 2p Fundamentalintegrale t_1, t_2, \ldots, t_{2p} , wenn dieselben von \mathfrak{Q}_1 nach \mathfrak{Q}_2 auf einem Wege σ erstreckt werden, der keinen der Periodenwege s_1, s_2, \ldots, s_{2p} schneidet; sie sind also, als Funktionen der Unstetigkeitspunkte betrachtet, Integrale zweiter Gattung; die logarithmischen Perioden sind $+2\pi i$.

Hieraus folgt, daß das Integral

$$(132) \qquad \overline{\varpi}_{\mathfrak{D}_{1}\mathfrak{D}_{2}} = \varpi_{\mathfrak{D}_{1}\mathfrak{D}_{2}} + \sum_{1}^{p} (c_{k}t_{p+k} - c_{p+k}t_{k}),$$

in welchem
$$\int_{\Sigma_1}^{\Sigma_2} dt_k = c_k$$
, $\int_{\Sigma_1}^{\Sigma_2} dt_{p+k} = c_{p+k}$ gesetzt ist, gar keine zy-

klischen Perioden besitzt, weil sich diese wegen (131a) alle fortheben; und da das Analoge natürlich auch von einem Integrale mit beliebig vielen logarithmischen Stellen und auch von jedem Integrale mit bloß polaren Unstetigkeiten gilt (vgl. p. 617), so erhalten wir den Satz:

Jedes beliebige Abelsche Integral ω läßt sich durch Hinzufügung eines Integrals t mit einem einzigen Pole \mathfrak{P}_{ω} , der von den logarithmischen Stellen von ω verschieden ist, seiner zyklischen Perioden berauben.

Die logarithmischen Perioden des Integrales bleiben dabei ungeändert. Sind also die Residuen von ω durchweg ganze Zahlen m_r , so besitzt das in der angegebenen Weise reduzierte Integral $\overline{\omega} = \omega + t$ nur noch Perioden der Form $2\pi i m_r$; die Exponentialfunktion:

$$e^{\overline{r_0}(\mathfrak{P})} = \Pi_0(\mathfrak{P})$$

ist also eine eindeutige Funktion des Ortes auf der Riemannschen Fläche.

40. Die Primfunktionen. Zerlegung der Funktionen des Körpers in Primfunktionen. Nach den bisher abgeleiteten Resultaten sind wir nun imstande, mit Hilfe der Integrale dritter Gattung Funktionen mit einfacher Nullstelle und einfachem Pole zu bilden, welche aber natürlich im allgemeinen nicht mehr eindeutig auf R sind, sondern bei Fortsetzung längs eines geschlossenen Weges konstante Faktoren erhalten.

Ist nämlich zunächst $w(\mathfrak{P})=C_1w_1+C_2w_2+\cdots+C_pw_p$ ein beliebiges Integral erster Gattung, so ist

$$(134) E(\mathfrak{P}) = e^{w(\mathfrak{P})}$$

eine Funktion, welche auf der ganzen Riemannschen Fläche regulär ist und weder Null- noch Unendlichkeitsstellen hat; diese sollen daher als transzendente Einheitsfunktionen bezeichnet werden. Ferner ist die Exponentialfunktion

(135)
$$\Pi\left(\mathfrak{P}, \frac{\mathfrak{Q}_{z}}{\mathfrak{Q}_{1}}\right) = e^{\tilde{\omega}} \mathfrak{L}_{z} \mathfrak{L}_{z}^{(\mathfrak{P})},$$

deren Exponent das vorher bestimmte Integral dritter Gattung mit den Unstetigkeitspunkten \mathfrak{Q}_1 , \mathfrak{Q}_2 und den Residuen — 1, + 1 ist, dem Divisor $\frac{\mathfrak{L}_2}{\mathfrak{Q}_1}$ zugeordnet, da sie nur in \mathfrak{Q}_2 eine Nullstelle und nur in \mathfrak{Q}_1 einen Pol erster Ordnung besitzt, in allen anderen Punkten aber eine reguläre Einheitsfunktion ist. Deswegen heiße Π eine zum Divisor $\frac{\mathfrak{Q}_2}{\mathfrak{Q}_1}$ gehörige Primfunktion. Sowohl die Einheits- als die Primfunktionen sind auf \mathfrak{R} nicht eindeutig, sondern sie multiplizieren sich bei Fortsetzung längs eines Periodenweges mit einem Faktor e^c , wenn e der zugehörige Periodizitätsmodul des Exponenten ist. Hierbei bleiben aber bei den Primfunktionen die logarithmischen Perioden außer Betracht, da für sie e ein Multiplum von $2\pi i$ ist.

Ist endlich
$$\mathfrak{D} = \mathfrak{D}_1^{u_1} \mathfrak{D}_2^{u_2} \dots \mathfrak{D}_h^{u_h} \ (\mu_1 + \mu_2 + \dots + \mu_h = 0)$$

irgendein Divisor nullter Ordnung und \mathfrak{Q}_0 ein beliebiger Hülfspunkt, so ist die allgemeinste im gleichen Sinne zu $\mathfrak D$ gehörige Funktion:

(136)
$$P(\mathfrak{P}) = E(\mathfrak{P}) \Pi\left(\mathfrak{P}, \frac{\mathfrak{D}_{1}}{\mathfrak{D}_{0}}\right)^{u_{1}} \cdot \Pi\left(\mathfrak{P}, \frac{\mathfrak{D}_{2}}{\mathfrak{D}_{0}}\right)^{\mu_{2}} \dots \Pi\left(\mathfrak{P}, \frac{\mathfrak{D}_{h}}{\mathfrak{D}_{0}}\right)^{\mu_{h}}$$
$$= e^{\mu_{1} \tilde{\omega}} \mathfrak{D}_{0} \mathfrak{D}_{1} + \mu_{2} \tilde{\omega}} \mathfrak{D}_{0} \mathfrak{D}_{2} + \dots + \mu_{h} \tilde{\omega}} \mathfrak{D}_{0} \mathfrak{D}_{h} + C_{1} w_{1} + C_{2} w_{2} + \dots + C_{p} w_{p}.$$

weil sie offenbar in \mathfrak{D}_0 die Ordnungszahl Null hat und daher genau dem Divisor \mathfrak{D} entspricht.⁷³)

Ich untersuche nun, unter welchen Bedingungen $\mathfrak D$ zur Hauptklasse gehört. Dann muß es möglich sein, die Konstanten C_i so zu bestimmen, daß die den Fundamentalperioden s_{α} entsprechenden Multiplikatoren $e^{c_{\alpha}}$ sämtlich gleich 1, ihre Exponenten c_{α} also Multipla von $2\pi i$ werden. Es müssen also nach (131a) für diese Exponenten die folgenden Gleichungen bestehen:

$$c_{\alpha} = \sum_{k=1}^{p} (t_{k\alpha} Q_k - t_{p+1,\alpha} Q_{p+k}) = 2 \pi i n_{\alpha},$$

wo die n_{α} ganze Zahlen sind und allgemein

$$\begin{split} Q_k &= \mu_1 \int\limits_{\Sigma_0}^{\Sigma_1} dt_{p+k} + \mu_2 \int\limits_{\Sigma_2}^{\Sigma_2} dt_{p+k} + \dots + \mu_h \int\limits_{\Sigma_2}^{\Sigma_h} dt_{p+k}, \\ Q_{p+k} &= \mu_1 \int\limits_{\Sigma_0}^{\Sigma_1} dt_k + \mu_2 \int\limits_{\Sigma_2}^{\Sigma_2} dt_k + \dots + \mu_h \int\limits_{\Sigma_2}^{\Sigma_h} dt_k - C_k \end{split}$$

ist; durch Auflösung dieser Gleichungen mit Hülfe der allgemeinen Periodenrelationen (126a) ergeben sich leicht die Bedingungen:

$$Q_{k} = -\sum_{\alpha=1}^{p} n_{\alpha} t_{p+k, p+\alpha} + \sum_{1}^{p} n_{p+\alpha} t_{p+k, \alpha},$$

$$(k = 1, 2, ..., p)$$

$$Q_{p+k} = -\sum_{\alpha=1}^{p} n_{\alpha} t_{k, p+\alpha} + \sum_{1}^{p} n_{p+\alpha} t_{k\alpha},$$

73) Derartige "multiplikative" Funktionen, sowie allgemeiner Funktionensysteme, die sich beim Durchlaufen geschlossener Wege auf der Riemannschen Fläche linear substituieren, sind Gegenstand selbständiger Untersuchungen gewesen, insbesondere von E. Ritter (Gött. Nachr. 1893/4.5; Math. Ann. 44, 47), der die Formentheorie benutzt und die in geeigneter Weise verallgemeinerten Sätze über Basissysteme heranzieht, und in der letzten Zeit von R. König, der auf die homogene Schreibweise verzichtet und die Divisorensymbolik benutzt (vgl. das Referat von R. König in den Münch. Ber. 1918, p. 47ff, wo die anderen Arbeiten zitiert werden). Über andere bezügliche Untersuchungen vgl. die Literaturangaben in den Königschen Arbeiten, sowie B., p. 393-442.

In diesen Untersuchungen gelingt es, auf die multiplikativen Funktionen und allgemeinen Funktionenscharen eine Reihe von Sätzen der Theorie der algebraischen Funktionen auszudehnen, insbesondere den Riemann-Rochschen Satz, Partialbruchzerlegung der Integrale usw. [0]

von denen die p ersten ein System von notwendigen Bedingungen für die Zugehörigkeit von $\mathfrak D$ zur Hauptklasse liefern, während die p letzten dann die p Konstanten C_i bestimmen. Die rechten Seiten dieser Gleichungen sind aber die zusammengehörigen Perioden der Integrale $t_{p+1}, t_{p+2}, \ldots, t_{2p}, t_1, t_2 \ldots, t_p$, genommen auf einem und demselben Periodenwege

$$s = n_1 s_1 + n_2 s_2 + \cdots + n_{2p} s_{2p},$$

für welchen nach (123b) die Charakteristiken $(s,s_{\alpha})=n_{\alpha}$ sind. Bezeichnen wir also im folgenden wieder die Integrale erster Gattung $t_{p+1},\ldots t_{2p}$, die hier wieder in eine bevorzugte Stellung rücken, wie früher durch $w_1,\ldots w_p$ und ihre Perioden $t_{p+k,p+l}$ durch $-\omega_{kl}$, die Perioden $t_{p+k,l}$ durch $+\omega_{k,p+l}$, so kann dieses Resultat in dem folgenden Fundamentalsatz zusammengefaßt werden:

Wenn für einen Divisor $\mathfrak D$ der Ordnung Null die p Summen von Integralen erster Gattung:

(137)
$$Q_t = \mu_1 \int_{\Sigma_0}^{\Sigma_1} dw_k + \mu_2 \int_{\Sigma_0}^{\Sigma_2} dw_k + \dots + \mu_k \int_{\Sigma_0}^{\Sigma_k} dw_k$$
$$(k = 1, 2, \dots, p)$$

ein System zusammengehöriger Periodizitätsmoduln für einen und denselben geeignet gewählten Periodenweg $s=n_1s_1+\cdots+n_{2p}s_{2p}$ bilden, so daß die Gleichungen

(137 a)
$$Q_{k} = \int_{(j)}^{3} dw_{k} \qquad (k = 1, 2, ..., p)$$

sämtlich erfüllt sind, so gehört dieser Divisor zur Hauptklasse.

Die Umkehrbarkeit dieses Satzes wird sich aus dem Abelschen Theorem ergeben.

Während die hier benutzten Primfunktionen, abgesehen von Polen, regulär aber nicht eindeutig sind, kann man dem Vorgange von Weierstraß folgend an ihrer Stelle auch solche Primfunktionen einführen, welche auf \Re durchweg eindeutig sind und dafür eine wesentliche Singularität nach Art der Exponentialfunktion besitzen, die beim Übergang zum Logarithmus zu einer polaren Unstetigkeit wird. Man kann nämlich nach der Bemerkung am Schluß des vorigen Paragraphen zu $\varpi_{\Sigma_1 \Sigma_2}$ ein solches Integral zweiter Gattung mit dem Pole \Re hinzufügen, daß $\varpi_{\Sigma_1 \Sigma_2} = \varpi_{\Sigma_1 \Sigma_2} + t$ gar keine zyklischen Perioden besitzt, so daß also

$$e^{\tilde{\tilde{\omega}}_{\mathfrak{Q}_{1}}\mathfrak{Q}_{2}}=H_{0}\left(\mathfrak{P},\frac{\mathfrak{Q}_{2}}{\mathfrak{Q}_{1}}\right)$$

auf R eindeutig ist. Dasselbe gilt von einem Produkte

$$(138) P_0 = H_0 \left(\mathfrak{P}, \frac{\mathfrak{Q}_1}{\mathfrak{Q}_0} \right)^{\mu_1} \dots H_0 \left(\mathfrak{P}, \frac{\mathfrak{Q}_h}{\mathfrak{Q}_0} \right)^{\mu_h},$$

und dieses besitzt in $\mathfrak{Q}_1, \mathfrak{Q}_2, \ldots \mathfrak{Q}_{\lambda}$ Nullstellen oder Pole, hat aber überdies noch in \mathfrak{P}_{∞} eine wesentliche Singularität von der Art, daß sein Logarithmus daselbst wie ein Integral zweiter Art unendlich wird. Will man dann aus dem Komplexe der so erhaltenen Funktionen die Größen von der Hauptklasse aussondern, so hat man die Bedingung dafür aufzustellen, daß die singuläre Stelle bei \mathfrak{P}_{∞} fortfällt. Auch hierfür ergeben sich p Gleichungen, da es p eigentliche Integrale zweiter Gattung gibt.

41. Das Abelsche Theorem als Additionsprinzip der Integrale. Zum Abelschen Theorem in seiner allgemeinsten Gestalt führt die folgende einfache Betrachtung: Es seien $\mathfrak{A}=\mathfrak{A}_1\mathfrak{A}_2\ldots\mathfrak{A}_r$ und $\mathfrak{B}=\mathfrak{B}_1\mathfrak{B}_2\ldots\mathfrak{B}_r$ zwei beliebige äquivalente ganze Divisoren und also $x=\frac{\mathfrak{B}}{\mathfrak{A}}$ eine algebraische Funktion r^{ter} Ordnung. Ist dann \mathfrak{R}_x die zugehörige r-blättrige Riemannsche Fläche, \mathfrak{K}_x die einblättrige Kugelfläche, so entsprechen jedem Punkte \mathfrak{p} (x=a) auf \mathfrak{K}_x die r Punkte $\mathfrak{F}_1, \mathfrak{F}_2, \ldots \mathfrak{F}_r$ auf \mathfrak{R}_x , speziell gehören zum Punkte $\mathfrak{p}=\infty$ und $\mathfrak{p}=0$ die Punkte \mathfrak{A}_i und \mathfrak{B}_i ; jedem Wege etwa von ∞ nach 0 entsprechen die r kongruenten genau untereinander verlaufenden Wege, welche bei geeigneter Bezeichnung von \mathfrak{A}_i nach \mathfrak{B}_i führen.

Ist nun für x als unabhängige Variable

$$dw = \xi_x \cdot dx$$

die Darstellung eines ganz beliebigen Abelschen Differentiales und sind $\xi_1, \xi_2, \ldots, \xi_r$ die r konjugierten Werte von ξ_x , so besteht für die Spur $S(\xi_x)$ eine Gleichung

 $S(\xi_x) = \xi_1 + \xi_2 + \dots + \xi_r = R(x),$

wo R(x) eine bestimmte rationale Funktion von x bedeutet. Multipliziert man diese Gleichung mit dx, integriert sie rechts zwischen ∞ und 0 auf einem beliebigen Wege, welchem links die kongruenten Wege von \mathfrak{A}_i nach \mathfrak{B}_i entsprechen, so ergibt sich das allgemeine Abelsche Theorem in der Gleichung:

(139)
$$\int_{\mathbb{R}_{4}}^{\mathfrak{D}_{1}} d\omega + \int_{\mathbb{R}_{4}}^{\mathfrak{D}_{2}} d\omega + \cdots + \int_{\mathbb{R}_{6}}^{\mathfrak{D}_{7}} d\omega = \int_{\infty}^{0} R(x) dx.$$

Nach dem Abelschen Theorem können also Integrale mit gleichem Integranden durch das Integral einer rationalen Funktion summiert werden, sobald die Vereinigung ihrer unteren und ihrer oberen Grenzen zwei ganze Divisoren derselben Klasse liefert.

Ich spezialisiere das Abelsche Theorem zunächst für die drei Hauptfälle, daß $d\omega$ ein Integral erster, zweiter oder dritter Gattung ist. In diesen Fällen liefert der Hilfssatz (72) über die Spur von Funktionen des Körpers unmittelbar die folgenden Resultate:

1. Für Integrale erster Gattung ist stets:

(139 a)
$$\int_{\mathfrak{A}_1}^{\mathfrak{B}_1} dw + \int_{\mathfrak{A}_2}^{\mathfrak{B}_2} dw + \dots + \int_{\mathfrak{A}_r}^{\mathfrak{B}_r} dw = 0,$$

wenn wie immer die Integrale auf übereinander verlaufenden Wegen in der Fläche \Re_x geleitet werden.

2. Ist zweitens $t_{\mu} = \int \xi dx$ ein Elementarintegral zweiter Gattung mit dem μ -fachen Pole \mathfrak{D} , welcher auf \mathfrak{R}_x ein α -blättriger Verzweigungspunkt sein mag, und ist q der Wert, welchen x in \mathfrak{D} annimmt, so folgt aus demselben Hilfssatz fast unmittelbar, daß die Summe

(139 b)
$$\int_{\mathbb{R}_{0}}^{\mathfrak{R}_{1}} dt_{\mu} + \int_{\mathbb{R}_{0}}^{\mathfrak{R}_{2}} dt_{\mu} + \dots + \int_{\mathbb{R}_{d}}^{\mathfrak{R}_{d}} dt_{\mu}$$

eine ganze Funktion des $\left[\frac{\mu}{\alpha}\right]^{\text{ten}}$ Grades von $\frac{1}{q}$ ist, deren Koeffizienten durch die des Hauptteiles der für die Umgebung von $\mathfrak Q$ geltenden Reihenentwicklung von ξ bestimmt sind.

3. Ist endlich $\overline{\omega}_{12} = \int \zeta dx$ ein Elementarintegral dritter Gattung mit den logarithmischen Stellen \mathfrak{D}_1 und \mathfrak{D}_2 und den Residuen — 1 und + 1, so liefert dieser Hilfssatz sofort die Gleichung:

(139e)
$$\int_{\mathfrak{A}_{1}}^{\mathfrak{B}_{1}} d\widetilde{\omega}_{12} + \int_{\mathfrak{A}_{2}}^{\mathfrak{B}_{2}} d\widetilde{\omega}_{12} + \cdots + \int_{\mathfrak{A}_{r}}^{\mathfrak{A}_{r}} d\widetilde{\omega}_{12} = \lg \frac{q_{2}}{q_{1}},$$

wenn q_1 und q_2 die Werte sind, welche x in \mathfrak{Q}_1 und \mathfrak{Q}_2 annimmt.

Die bisher in diesem Abschnitt aufgestellten Integralsätze waren an die Bedingung geknüpft, daß alle Integrationswege $l_h = \overline{\mathfrak{A}_h} \mathfrak{B}_h$ in \mathfrak{R}_x übereinanderlaufen, daß diese Wege also auf einer anderen Fläche \mathfrak{R}_s in ganz bestimmter Weise von \mathfrak{A}_h nach \mathfrak{B}_h geführt werden. Es ist leicht, sich von dieser Beschränkung freizumachen: Erstreckt man nämlich diese Integrale in einer Fläche \mathfrak{A}_s auf beliebigem Wege λ_h von \mathfrak{A}_k nach \mathfrak{B}_h , so tritt zu den Gleichungen des Abelschen Theorems in jedem Falle nur eine Periode hinzu, und es ist wesentlich, sich klarzumachen, daß die ganzen Zahlen, welche die spezielle Periode charakterisieren, bei allen Integralen erster und zweiter Gattung allein von den Integrationswegen, nicht aber von den Integranden abhängen, daß also bei Anwendung des Abelschen Theorems auf ein System

von Integralen die auftretenden Perioden sich sämtlich auf den gleichen Weg beziehen und daher dasselbe Koeffizientensystem erhalten.

Für Integrale erster Gattung kann man somit das allgemeinste Abelsche Theorem in der folgenden Form aussprechen, in welcher es die genaue Umkehrung des Fundamentalsatzes (137) ist:

Ist $\mathfrak{D}=\mathfrak{D}_{\mathbf{i}}^{\mu_1}\mathfrak{D}_{\mathbf{i}}^{\mu_2}\ldots\mathfrak{D}_{\mathbf{k}}^{\mu_k}$ ein Divisor der Hauptklasse, so bilden die p Summen von Integralen erster Gattung:

(140)
$$\mu_1 w_k(\mathfrak{D}_1) + \dots + \mu_k w_k(\mathfrak{D}_k) = n_1 \omega_{k1} + n_2 \omega_{k2} + \dots + n_{2p} \omega_{k,2p}$$

 $(k = 1, 2, \dots p)$

ein System zusammengehöriger Periodizitätsmoduln der Integrale $w_1, w_2, \dots w_n$.

Hiernach und nach (137) bilden diese p Gleichungen die notwendige und hinreichende Bedingung dafür, daß ein Divisor der Ordnung Null der Hauptklasse angehört.

Um diesen Satz und die aus ihm zu ziehenden Folgerungen einfacher aussprechen und übersehen zu können, wollen wir zwei beliebige Zahlensysteme $(a_1, a_2, \ldots a_p)$ und $(b_1, b_2, \ldots b_p)$ hongruent nennen $((a_k) \equiv (b_k))$, wenn sich je zwei entsprechende Elemente a_k und b_k nur um zusammengehörige Perioden $\int_{(s)}^{s} dw_k$ der p Integrale erster Gattung unterscheiden, wenn also die p Gleichungen:

$$a_k = b_k + n_1 \omega_{k1} + n_2 \omega_{k2} + \dots + n_{2p} \omega_{k,2p} \quad (k = 1, 2, \dots, p)$$

für dasselbe ganzzahlige System n_1, n_2, \ldots, n_{2p} erfüllt sind. Solche Kongruenzen können offenbar addiert und subtrahiert werden. Dann nehmen die Gleichungen (140) des *Abel*schen Theorems die einfachere Form an:

(140 a)
$$\mu_1 w_k(\mathfrak{Q}_1) + \mu_2 w_k(\mathfrak{Q}_2) + \dots + \mu_k w_k(\mathfrak{Q}_k) \equiv 0.$$

Wir wollen zweitens durch eine einfache Modifikation die Beschränkung auf Divisoren der Ordnung Null beseitigen. Wählen wir als untere Grenze der Integrale w_1, w_2, \ldots, w_p (wie in Nr. 33) den Punkt \mathfrak{P}_{∞} , und ist P_{∞} seine Klasse, so sind dieselben Gleichungen (140a) für einen beliebigen Divisor \mathfrak{D} dann und nur dann erfüllt, wenn \mathfrak{D} einer der Klassen $P_{\infty}^{\mathfrak{o}}$, also der durch P_{∞} erweiterten Hauptklasse $(\ldots P_{\infty}^{-2}, P_{\infty}^{-1}, 1, P_{\infty}, P_{\infty}^{2}, \ldots)$ angehört, weil die dann hinzutretenden

bzw. fortfallenden Integrale $\int_{\mathbb{R}_{\infty}}^{\infty} dw$ kongruent Null sind.

Betrachten wir nun ganz allgemein einen Divisor

$$\mathfrak{D} = \mathfrak{D}_1^{\mu_1} \mathfrak{D}_2^{\mu_2} \dots \mathfrak{D}_h^{\mu_h}$$

einer ganz beliebigen Klasse so möge für ihn

(140 b) $\mu_1 w_k(\mathfrak{D}_1) + \cdots + \mu_k w_k(\mathfrak{D}_k) \equiv v_k \quad (k = 1, 2, \dots p)$ sein. Dann heiße $(v_k) = (v_1, \dots, v_p)$ das dem Divisor \mathfrak{D} entsprechende Wertsystem. Dann entspricht also nach dem Abelschen Theorem der durch P_∞ erweiterten Hauptklasse das Wertsystem $(0, \dots, 0)$. Sind ferner \mathfrak{D} und \mathfrak{D}' zwei beliebige Divisoren, (v_k) und (v_k') ihre Wertsysteme, so entsprechen den Divisoren $\mathfrak{D}\mathfrak{D}'$ und $\frac{\mathfrak{D}}{\mathfrak{D}'}$ die Wertsysteme $(v_k + v_k')$, und $(v_k - v_k')$, und \mathfrak{D} und \mathfrak{D}' sind stets und nur dann in bezug auf die Klasse P_∞ äquivalent, wenn $(v_k) \equiv (v_k')$ ist. Sieht man also konwants Westensterns als nicht wessentlich verschieden an so entspricht

und $(v_k - v_k')$, und $\mathfrak D$ und $\mathfrak D'$ sind stets und nur dann in bezug auf die Klasse P_∞ äquivalent, wenn $(v_k) \equiv (v_k')$ ist. Sieht man also kongruente Wertsysteme als nicht wesentlich verschieden an, so entspricht jeder Klasse relativ äquivalenter Divisoren ein und nur ein Wertsystem. Jede solche Klasse wird durch ein System von p Zahlen $(v_1, v_2, \ldots v_p)$ charakterisiert. Hier ist aber zu bemerken, daß das Wertsystem (v_k) , welches einem Divisor von nicht verschwindender Ordnung entspricht, von der Auswahl des Punktes $\mathfrak P_\infty$ abhängig ist und bei Veränderung dieses Punktes sich ebenfalls ändert; allein für die Divisoren der Ordnung Null ist das entsprechende Wertsystem (v_k) wegen der Gleichung $u_1 + u_2 + \cdots + u_k = 0$ von der Auswahl von $\mathfrak P_\infty$ unabhängig.

42. Die aus dem Abelschen Theorem folgenden Reduktionsprobleme. Das Abelsche Theorem ermöglicht nun die vollständige Lösung der folgenden Fundamentalaufgabe:

Es sei ein ganz beliebiger Divisor der Ordnung d

$$\mathfrak{D} = \mathfrak{D}_1^{\mu_1} \mathfrak{D}_2^{\mu_2} \dots \mathfrak{D}_h^{\mu_h} \qquad (\mu_1 + \mu_2 + \dots + \mu_h = d)$$

und ein Primteiler \mathfrak{P}_{∞} gegeben. Dann sollen die zugehörigen p Integralsummen: $\mathfrak{E}_{\scriptscriptstyle 1}$ $\mathfrak{L}_{\scriptscriptstyle h}$

$$s_i = \mu_1 \int_{\mathfrak{B}_{\infty}}^{\mathfrak{S}_1} dw_i + \cdots + \mu_h \int_{\mathfrak{D}_{\infty}}^{\mathfrak{S}_h} dw_i$$

durch p andere Integralsummen:

$$\sigma_i = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dw_i + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dw_i + \cdots + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} dw_i$$

mit gleicher unterer Grenze und möglichst wenigen Summanden so ersetzt werden, daß allgemein $s_i \equiv \sigma_i$, daß also bei geeignet gewählten Integrationswegen $s_i = \sigma_i$ wird.

Sind D und P_{∞} die zu $\mathfrak D$ und $\mathfrak P_{\infty}$ gehörigen Klassen, so stimmt diese Aufgabe mit der folgenden überein:

Es soll die kleinste Potenz P_∞^c von P_∞ so bestimmt werden, daß

$$\{DP_{\infty}^{c}\} = 1$$

ist. Ist nämlich diese Bedingung erfüllt und q=d+e die Ordnung der Klasse DP_{∞}^{e} , so gibt es in dieser einen einzigen ganzen Divisor $\mathfrak{G}=\mathfrak{P}_{1}\mathfrak{P}_{2}\ldots\mathfrak{P}_{q}$, für welchen $\mathfrak{D}\mathfrak{P}_{\infty}^{e}=\mathfrak{D}\mathfrak{P}_{2}^{q-d}\sim\mathfrak{G}$, also

$$\frac{\mathfrak{D}}{\mathfrak{P}_{\infty}^d} \sim \frac{\mathfrak{G}}{\mathfrak{P}_{\infty}^q}$$

ist, und aus dieser Äquivalenz folgen nach dem *Abel*schen Theorem die p Kongruenzen $s_i \equiv \sigma_i$ und umgekehrt. Wir haben hiernach nur noch die Ordnung q von \mathfrak{G} zu bestimmen und dann diesen Divisor selbst darzustellen.

Aus dem Riemann-Rochschen Satze ergibt sich zunächst unmittelbar, daß q gleich p oder kleiner als p sein muß, und daß der letzte Fall nur ausnahmsweise auftreten kann, weil die obere Grenze p z. B. immer dann erreicht wird, wenn $\mathfrak D$ aus p willkürlich ausgewählten Primteilern besteht.

Eine beliebige Anzahl von Abelschen Integralen erster Gattung läßt sich also stets in eine Summe von nur p, im allgemeinen aber nicht in eine Summe von weniger als p Integralen mit fester unterer Grenze zusammenfassen.

Die wirkliche Darstellung des zu \mathfrak{D} gehörigen Divisors $\mathfrak{G} = \mathfrak{P}_1 \dots \mathfrak{P}_p$ brauchen wir nur in den beiden Hauptfällen durchzuführen, in denen $\mathfrak{D} = \mathfrak{D}_1 \mathfrak{D}_2 \dots \mathfrak{D}_p$ ein ganzer Divisor mit beliebigen Primfaktoren oder aber der reziproke eines solchen ist; einmal nämlich kommen diese Fälle vorzugsweise bei den Anwendungen in Betracht, und zweitens kann der allgemeinste Fall leicht auf diese reduziert werden. In diesen beiden Fällen sind zu den p Integralsummen:

die Summen

$$s_{i} = \int_{\mathfrak{P}_{\infty}}^{\mathfrak{L}_{1}} dw_{i} + \cdots + \int_{\mathfrak{L}_{\infty}}^{\mathfrak{L}_{r}} dw_{i}$$

$$\sigma_{i} = \int_{\mathfrak{P}_{\infty}}^{\mathfrak{P}_{1}} dw_{i} + \cdots + \int_{\mathfrak{P}_{\infty}}^{\mathfrak{R}_{p}} dw_{i}$$

so hinzuzufügen, daß die p Kongruenzen

$$s_i - \sigma_i \equiv 0$$
 bzw. $s_i + \sigma_i \equiv 0$ $(i = 1, 2, ..., p)$

erfüllt sind. Ferner erkennt man leicht, daß die erste Reduktionsaufgabe durch zweimalige Lösung der zweiten gelöst werden kann. Ist nämlich $\Re = \Re_1 \Re_2 \dots \Re_p$ zuerst für $\mathfrak D$ so bestimmt, daß für seine Integralsummen ϱ_i $s_i + \varrho_i \equiv 0$ ist, und bestimmt man weiter zu \Re den Divisor $\mathfrak G = \mathfrak P_1 \mathfrak P_2 \dots \mathfrak P_p$ so, daß seine Integralsummen σ_i die Kongruenzen $\varrho_i + \sigma_i \equiv 0$ erfüllen, so folgt durch Subtraktion jener beiden Systeme, daß wirklich $s_i - \sigma_i \equiv 0$ ist. Wir wollen daher nur 640 HC5. K. Hensel. Arithmetische Theorie der algebraischen Funktionen.

den zweiten Fall untersuchen, obwohl der erste auch direkt leicht behandelt werden kann. 74)

Sind nun r beliebige Punkte $\mathfrak{D}_i=(z_i,u_i)$ gegeben, und sind die p Punkte $\mathfrak{P}_k=(\xi_k,\,\eta_k)$ so zu bestimmen, daß die p Kongruenzen $s_i+\sigma_i\equiv 0$ erfüllt sind, so ist diejenige Funktion

$$\psi(z, u) = \frac{\Omega_1 \dots \Omega_r \cdot \mathfrak{F}_1 \dots \mathfrak{F}_p}{\mathfrak{F}_z^{r+p}} = \frac{\mathfrak{D} \cdot \mathfrak{G}}{\mathfrak{F}_z^{r+p}}$$

zu bestimmen, welche ein Multiplum von $\frac{\mathfrak{D}_1 \dots \mathfrak{D}_r}{\mathfrak{P}_r^{r+p}}$ ist.

Ist nun $r \geq p-1$ oder r ganz beliebig, aber \mathfrak{F}_{∞} nicht gerade ein $Weierstra\beta$ punkt, so ist nach dem Riemann-Rochschen Satze $\{\mathfrak{F}_{x}^{r+p}\}=r+1;$ es gibt dann also genau r+1 linear unabhängige Funktionen $\psi^{(0)},\psi^{(1)},\ldots,\psi^{(r)}$ mit dem Nenner $\mathfrak{F}_{\infty}^{r+p}$, welche leicht aus dem zu \mathfrak{F}_{∞} gehörigen normalen Fundamentalsystem zu finden sind. Also ist die gesuchte Funktion $\psi=C_{0}\psi^{(0)}+C_{1}\psi^{(1)}+\cdots+C_{r}\psi^{(r)}$, wo nur die Konstanten C_{i} so zu wählen sind, daß $\psi(\mathfrak{Q}_{i})=0$ ist. Setzt man also zur Abkürzung allgemein $\psi^{(k)}(\mathfrak{Q}_{\psi})=\psi_{\psi}^{(k)}$, so ist die gesuchte Funktion ψ durch die Gleichung:

$$\psi = \begin{pmatrix} \psi^{(0)}, & \psi^{(1)}, & \dots & \psi^{(r)} \\ \psi_1^{(0)}, & \psi_1^{(1)}, & \dots & \psi_1^{(r)} \\ \vdots & & & & \\ \psi_r^{(0)} & \psi_r^{(1)}, & \dots & \psi_r^{(r)} \end{pmatrix}$$

eindeutig bestimmt, falls nur die Matrix $(\psi_{\varrho}^{(h)})$ vom Range r ist, und der Übergang zur Norm ergibt $n(\mathfrak{G}) = \frac{n(\psi)}{n(\mathfrak{G})}$; d. h.:

$$\frac{n(\psi)}{(z-z_1)\cdots(z-z_p)} = \chi_0 z^p + \chi_1 z^{p-1} + \cdots + \chi_p = \chi_0 (z-\xi_1) \ldots (z-\xi_p);$$

die Zerlegung dieses Quotienten in seine Linearfaktoren liefert die z-Koordinaten ξ_k der p gesuchten Punkte \mathfrak{P}_k . Zu ihrer Bestimmung bedarf man also der Auflösung einer Gleichung p^{ten} Grades, deren Koeffizienten rational von $\mathfrak{Q}_1,\,\mathfrak{Q}_2,\,\ldots,\,\mathfrak{Q}_r$ abhängen. Die zugehörigen Werte η_k folgen aus den Gleichungen $\psi(\xi_k,\eta_k)=0$. Die Auwendung dieser Betrachtungen auf die Gleichung $u^2=4z^3-g_2z-g_3$ liefert z. B. das Additionstheorem für die \wp -Funktion.

43. Das Umkehrproblem für die Abelschen Integrale. Durch die Auseinandersetzungen von Nr. 41 Ende ist festgestellt worden, daß jedem beliebigen Divisor $\mathfrak{D} = \mathfrak{D}_1^{\mu_1}\mathfrak{D}_2^{\mu_2}\ldots\mathfrak{D}_h^{\mu_h}$ durch die p Gleichungen: \mathfrak{D}_n

⁷⁴⁾ Vgl. H.-L., p. 685-691.

ein Wertsystem (v_1, \ldots, v_p) zugeordnet wird, welches nur nach seinem Kongruenzwert modulo der Perioden in Betracht kommt, und daß solchen Divisoren, welche im eigentlichen Sinne oder auch nur in bezug auf die Klasse P_{∞} von \mathfrak{P}_{∞} äquivalent sind, kongruente Wertsysteme entsprechen.

Durch die letzten Entwickelungen aber hat sich ergeben, daß jeder beliebige Divisor durch einen und im allgemeinen auch nur einen ganzen Divisor der Ordnung $p \colon \mathfrak{G} = \mathfrak{P}_1 \mathfrak{P}_2 \dots \mathfrak{P}_p$, das obige System (141) also durch folgendes:

ersetzt werden kann. Man kann also die Untersuchung auf die ganzen Divisoren der Ordnung p beschränken; jeder derselben konstituiert aber eine Klasse, deren Dimension nach dem Riemann-Rochschen Satze im allgemeinen gleich Eins und nur dann größer als Eins ist, wenn $\mathfrak G$ in einem ganzen Differentialteiler enthalten ist; es entsprechen also verschiedenen Divisoren $\mathfrak G$ und $\mathfrak G'$ im allgemeinen auch verschiedene Systeme (v_i) und (v'_i) .

Es entsteht nun die Frage, ob umgekehrt zu jedem Wertsystem (v_i) ein ganzer Divisor & der Ordnung p gefunden werden kann, so daß die Gleichungen (141a) erfüllt sind; ist dies aber der Fall, so ist nach unseren Ergebnissen das Punktsystem $(\mathfrak{P}_1,\mathfrak{P}_2,\ldots,\mathfrak{P}_p)$ im allgemeinen auch eindeutig bestimmt. Das so sich ergebende Problem heißt das Jakobische Umkehrproblem ^{74a}) und bildet die naturgemäße Verallgemeinerung des Umkehrproblems der elliptischen Integrale; denn dies besteht ja darin, aus der Gleichung

$$\int_{\mathbb{R}}^{\mathfrak{B}} dw \equiv v \pmod{\omega_1, \omega_2}$$

die Größen des Körpers K(z, u), welche sämtlich eindeutige Funktionen von $\mathfrak B$ sind, als Funktionen von v darzustellen; wie dies auf die elliptischen, so führt das allgemeine Problem auf die sogenannten Abelschen Funktionen.

Die Antwort auf die obengestellte Frage fällt bejahend aus; der Beweis erfolgt entweder durch direkte Integration des Systems von Differentialgleichungen:

 $dw_i(\mathfrak{P}_1) + dw_i(\mathfrak{P}_2) + \cdots + dw_i(\mathfrak{P}_p) = dv_i, \qquad (i = 1, 2, \ldots, p)$ welches ja mit dem System (141 a) im wesentlichen gleichwertig ist,

⁷⁴a) II B 7, Nr. 1.

oder durch Aufstellung und Benutzung der sogenannten Jacobischen oder Thetafunktionen von p Variablen v_1, v_2, \ldots, v_p . Die Ausführung dieser Untersuchung liegt außerhalb der Grenzen dieser Darstellung, welche mit der Einordnung des transzendenten Umkehrproblems in den Bereich der algebraischen Fragestellungen ihren Abschluß finden soll.

VII. (Anhang.) Arithmetische Theorie der algebraischen Zahlen.

44. Der Körper $\Re(1)$ der rationalen Zahlen und der Körper K(p) der p-adischen Zahlen. Die in I und II auseinandergesetzten Prinzipien führen auch zu einer vollständigen Theorie der rationalen und algebraischen Zahlen. Als Aufgabe der ersteren kann die Aufsuchung der Beziehungen bezeichnet werden, welche zwischen den rationalen Zahlen einerseits und einer beliebig angenommenen festen Grundzahl andererseits bestehen, welche letztere gleich als eine Primzahl p vorausgezetzt werden kann.

Alle rationalen Zahlen $A=\frac{a}{b}$ bilden einen Körper $\Re(1)$. Eine solche Zahl heißt ganz oder gebrochen in bezug auf p oder modulo p, je nachdem in ihrer reduzierten Darstellung $\frac{a}{b}$ der Nenner p nicht enthält oder durch p teilbar ist. 76) A heißt durch B teilbar, wenn $\frac{A}{B}$ modulo p ganz ist. Eine Zahl ε heißt eine Einheit, wenn ε und $\frac{1}{\varepsilon}$ modulo p ganz sind. Jede Zahl A ist eindeutig in der Form εp^{α} darstellbar, wo ε eine Einheit bedeutet; α heißt die Ordnungszahl von A. Die Ordnungszahl eines Produktes bzw. eines Quotienten ist die Summe bzw. die Differenz seiner Komponenten. Eine Zahl A heißt durch p^{ϱ} teilbar, wenn ihre Ordnungszahl α wenigstens gleich ϱ ist; zwei Zahlen sind kongruent modulo p^{ϱ} , wenn ihre Differenz durch p^{ϱ} teilbar ist. Zwei Zahlen heißen gleich für den Bereich von p, wenn sie für jede noch so hohe Potenz von p kongruent, wenn sie also identisch sind.

Die rationalen Zahlen bilden nun einen Teilbereich des folgenden Zahlenreiches. Jede Zahlgröße:

$$A = a_{\alpha}p^{\alpha} + a_{\alpha+1}p^{\alpha+1} + \cdots,$$

deren Koeffizienten a_a , a_{a+1} , ... modulo p ganze rationale Zahlen $\frac{a}{b}$ sind, welche beliebig weit berechnet werden können, wird eine p-adische

⁷⁵⁾ Vgl. Nr. I dieses Referates.

⁷⁶⁾ Vgl. Anm. 3.

Zahl genannt, und die rationalen Zahlen $a_{\alpha}p^{\alpha}$, $a_{\alpha}p^{\alpha} + a_{\alpha+1}p^{\alpha+1}$, ... heißen ihre Näherungswerte. Zwei Zahlen A und A' sind kongruent modulo p^{ϱ} , wenn fast alle ihre Näherungswerte modulo p^{ϱ} kongruent sind; sie sind gleich für den Bereich von p, wenn sie für jede noch so hohe Potenz von p kongruent sind. Bei dieser Definition der Gleichheit und der gewöhnlichen Festsetzung über die Addition und die Multiplikation p-adischer Zahlen bilden diese einen Zahlkörper K(p) welcher dem in Nr. 3 eingeführten Körper $\overline{K}(\mathfrak{p})$ aller konvergenten und nicht konvergenten Potenzreihen für die Stelle \mathfrak{p} völlig entspricht.

Jede rationale Zahl $A=\frac{a}{b}$ von $\Re(1)$ ist nun einer einzigen p-adischen Zahl $a_{\varrho}p^{\varrho}+a_{\varrho+1}p^{\varrho+1}+\cdots$ gleich; also ist wirklich $\Re(1)$ ein Teilkörper von K(p), und zwar derjenige, in welchem die Koeffizienten a_{ϱ} , $a_{\varrho+1}$, ... jedesmal linearen Rekursionsformeln genügen. Die arithmetische Untersuchung der rationalen Zahlen für den Bereich von p fällt hiernach mit derjenigen der p-adischen Zahlen zusammen, und diese kann genau ebenso geführt werden, wie dies in Nr. 2 für die Potenzreihen des Körpers $\overline{K}(\mathfrak{p})$ für die Stelle \mathfrak{p} (z=a) geschieht.

Hier werden noch die folgenden Bemerkungen hinzugefügt: Ist p eine beliebige ungerade Primzahl, so enthält der Körper K(p) p-1 $(p-1)^{\text{to}}$ Einheitswurzeln und keine andere Einheitswurzel. Im Körper K(2) ist nur die zweite Einheitswurzel -1 vorhanden. Für ein ungerades p ist jede p adische Zahl A eindeutig in der Form $A=p^{\alpha}w^{\beta}(1+p)^{\gamma}$ darstellbar, in welcher w eine primitive $(p-1)^{\text{to}}$ Einheitswurzel ist, α die Ordnungszahl von A und β , der sog. Index von α , eine der Zahlen $0,1,\ldots p-1$ bedeutet; endlich ist γ eine ganze p-adische Zahl; für p=2 ist $A=2^{\alpha}(-1)^{\beta}5^{\gamma}$ die entsprechende dyadische multiplikative Darstellung von A. Das Exponentensystem (α,β,γ) wird der Logarithmus von A für den Bereich von p genannt.

45. Die algebraischen Zahlkörper und die ihnen isomorphen rationalen Kongruenzkörper. 77) Der Gegenstand der Theorie der algebraischen Zahlen in ihrem allgemeinsten Umfange ist die Untersuchung der Teilbarkeitseigenschaften aller algebraischen Zahlen eines durch die Wurzel einer ganzzahligen Gleichung definierten Zahlkörpers. Hierzu würde noch die Betrachtung der Größenbeziehungen treten, welche zwischen denselben Zahlen bestehen; diese zweite Untersuchung kann ganz ebenso wie die erste durchgeführt werden, auf sie soll in der folgenden kurzen Darstellung nicht besonders eingegangen werden.

⁷⁷⁾ Vgl. Nr. II dieses Referates.

Es sei F(x) = 0 eine im Körper $\Re(1)$ aller rationalen Zahlen irreduzible Gleichung n^{ten} Grades und ξ eine Wurzel derselben in irgendeinem Erweiterungskörper $\Re(\xi)$; dann ist $\Re(\xi)$ einstufig isomorph dem Kongruenzkörper K(x, mod F(x)) = K(x, 1) aller modulo F(x) ganzen rationalen Funktionen von x mit rationalen Zahlkoeffizienten für diese Funktion als Modul, und dieser kann und soll daher statt $\Re(\xi)$ weiter untersucht werden.

Die oben gestellte Aufgabe der Theorie der algebraischen Zahlen ist nun vollständig gelöst, wenn man die Teilbarkeitsbeziehungen aller Zahlen von $\mathfrak{K}(\xi)$ oder, was dasselbe ist, aller Funktionen von K(x,1) zu einer beliebigen reellen Primzahl p kennt; sie sollen daher im folgenden untersucht werden.

46. Untersuchung der rationalen Kongruenzkörper für den Bereich einer Primzahl p. Ihre Reduktion auf die p-adischen Kongruenzkörper. Bei dieser Untersuchung können und sollen nun die rationalen Zahlkoeffizienten aller Funktionen von K(x, 1) nach Potenzen von p entwickelt, d. h durch die ihnen gleichen p-adischen Zahlen ersetzt werden. Dann bildet der Bereich K(x, 1) einen Teilkörper des größeren Bereiches

(142)
$$R(x, p) = R_p(x, \text{mod } F(x))$$

aller modulo F(x) ganzen Funktionen von x mit beliebigen p-adischen Koeffizienten in der Weise, daß jedes Element von K(x, 1) einem solchen von R(x, p) gleich ist, während umgekehrt jedes Element von R(x, p) der Grenzwert einer Folge von Elementen von K(x, 1) ist. Es kann und soll daher statt des Zahlkörpers $\Re(\xi)$ bzw. des Kongruenzkörpers K(x, 1) dieser Bereich R(x, p) auf die Teilbarkeitseigenschaften seiner Elemente untersucht werden.

Dieser neue größere Bereich R(x,p) unterscheidet sich nun von seinem Teilkörper K(x,1) ganz wesentlich dadurch, daß im rationalen Körper $\Re(1)$ F(x) unzerlegbar ist, während dieser Modul in dem größeren Körper K(p) im allgemeinen in ein Produkt von eindeutig bestimmten Primfaktoren mit p-adischen Koeffizienten zerfällt, welche aber immer voneinander verschieden sind. Es sei nun

(143)
$$F(x) = f_1(x, p) \cdot f_2(x, p) \cdot \cdots \cdot f_r(x, p)$$
 (p)

jene Zerlegung von F(x) in p-adische Primfaktoren und $\lambda_1, \lambda_2, \ldots \lambda_r$ seien ihre Grade. Dann ist der Bereich R(x,p) ein Kongruenzring, welcher sich in einfacher Weise auf die ν p-adischen Kongruenzkörper:

(143 a)
$$K_i(x, p) = K_i(x, \text{mod } f_i(x, p))$$
 $(i = 1, 2, \dots \nu)$

aller in bezug auf je ein $f_i(x, p)$ ganzen rationalen Funktionen von x, modulo $f_i(x, p)$ betrachtet, reduziert.

Sind nämlich $1_1, 1_2, \ldots 1_r \nu$ Funktionen des Ringes R(x,p), welche so gewählt sind, daß allgemein:

(144)
$$1_i \equiv 1 \pmod{f_i(x,p)}$$
 $1_i \equiv 0 \pmod{f_k(x,p)}$ $(i \ge k)$ ist, und welche durch das Euklidische Teilerverfahren unmittelbar bestimmt werden können, so ist jedes Element $v(x)$ von R eindeutig in der Form:

(144a)
$$v \equiv v_1 \cdot 1_1 + v_2 \cdot 1_2 + \cdots + v_{\nu} \cdot 1_{\nu} = (v_1, v_2, \dots v_{\nu}) \pmod{F(x)}$$
 darstellbar, we allgemein $v_i = v \pmod{f_i(x,p)}$ der Wert von v im Ringe $K_i(x,p)$ ist, und umgekehrt gehört zu jedem System $(v_1, v_2, \dots v_{\nu})$, dessen Elemente in den Körpern $K_i(x,p)$ ganz beliebig angenommen sind, ein einziges Element $v = (v_1, v_2, \dots v_{\nu})$, welches allgemein in $K_i(x,p)$ gerade den Wert v_i hat.

Sind ferner $v = (v_i)$, $w = (w_i)$ zwei beliebige Elemente von R in dieser Darstellung, so ergeben sich für die Summe, Differenz, Produkt und Quotient derselben die entsprechenden Darstellungen:

$$v \pm w = (v_i \pm w_i), \quad v w = (v_i w_i), \quad \frac{v}{w} = \left(\frac{v_i}{w_i}\right);$$

die letzte Gleichung besteht aber dann und nur dann, wenn $\frac{\sigma}{w}$ wirklich dem Ringe R angehört, wenn nämlich alle Komponenten w_i des Nenners von Null verschieden sind. Durch diese Darstellung $v=(v_i)$ aller Elemente von R wird also der ganze Ring einstufig isomorph auf das System $(K_1(x,p),\ldots K_r(x,p))$ der v Kongruenzkörper $K_i(x,p)$ abgebildet, wenn für zwei Elemente (v_i) und (w_i) die Addition und die Multiplikation durch die Gleichungen:

(144b)
$$(v_i) + (w_i) = (v_i + w_i), (v_i) \cdot (w_i) = (v_i w_i)$$

definiert wird. Hierdurch ist die allgemeine Aufgabe der arithmetischen Theorie der algebraischen Zahlen vollständig auf die Untersuchung der Teilbarkeitseigenschaften aller Elemente eines p-adischen Kongruenzkörpers

(145)
$$K(x, p) = K(x, \text{mod } f(x, p))$$

zurückgeführt, zu der ich jetzt übergehe.

47. Die p-adischen Kongruenzkörper und die ihnen isomorphen Körper $K(\mathfrak{P})$ der π -adischen algebraischen Zahlen. Es sei λ der Grad des unzerlegbaren Moduls f(x,p) in (145), es sei also K(x,p) vom λ^{ten} Grade. Ist dann $(\eta_1,\eta_2,\ldots\eta_{\lambda})$, etwa $(1,x,\ldots x^{\lambda-1})$, irgendeine Basis für f(x,p), so lehrt das in der Anm. 5 auseinandergesetzte Verfahren, daß jedes Element v des Körpers einer Gleichung λ^{ten} Grades: $(146) \ g(t) = (-1)^{\lambda} |b_{ik} - \delta_{ik} t| = t^{\lambda} - b_1 t^{\lambda-1} + \cdots + (-1)^{\lambda} b_{\lambda} = n(t-v)$

⁷⁸⁾ Vgl. Nr. 6 dieses Referates.

mit p-adischen Koeffizienten, der sog. Hauptgleichung genügt, deren linke Seite irreduzibel oder die Potenz einer irreduziblen Funktion $g_0(t)$ ist, je nachdem v ein primitives Element von K(x,p) ist oder nicht.

Ich nenne nun das Element v algebraisch ganz oder gebrochen, je nachdem seine Hauptgleichung g(t) ganze p-adische Koeffizienten hat oder nicht. Dann besteht der folgende Fundamentalsatz:

Ein Element v des Körpers K(x,p) ist algebraisch ganz oder gebrochen, je nachdem seine Norm $n(v) = b_{\lambda}$ eine ganze oder eine gebrochene p-adische Zahl ist.⁷⁹)

Durch diesen Satz wird die Untersuchung der ganzen Elemente von K(x, p) und die Behandlung aller Fragen der Teilbarkeit in diesem Körper außerordentlich einfach und durchsichtig, denn man braucht nur die für die p-adischen Zahlen n(v), n(w), ... geltenden Definitionen und Sätze auf die zugehörigen Elemente v, w, ... zu übertragen. So ergibt sich unmittelbar, daß die Summe und das Produkt ganzer Elemente wieder ganz ist, daß also die ganzen Elemente von K(x, p) einen Ring bilden. Von zwei Elementen v und w heißt das erste durch das zweite teilbar, wenn $\frac{v}{w}$ ganz, wenn also n(v) durch n(w) teilbar ist; sie heißen äquivalent, wenn außerdem auch $\frac{w}{n}$ ganz ist, wenn also n(v) und n(w) äquivalent sind, d. h. gleiche Ordnungszahl haben. Ein Element ε heißt eine *Einheit*, wenn $n(\varepsilon)$ eine p-adische Einheit ist. Alle Einheiten ε , ε' , ... bilden eine Gruppe, da sie sich durch Multiplikation und Division wiedererzeugen. Äquivalente Elemente v und w unterscheiden sich also nur durch einen Einheitsfaktor.

Da die Norm jedes ganzen Elementes, welches keine Einheit ist, eine positive Ordnungszahl besitzt, so muß es mindestens ein solches π geben, für welches die Ordnungszahl von $n(\pi)$ positiv und möglichst klein ist. Jedes solche Element soll eine Primzahl im Körper K(x,p) heißen und die Ordnungszahl f ihrer Norm $n(\pi) = \varepsilon p^f$ werde ihr Grad genannt. Der Körper K(x,p) enthält unendlich viele solche Primzahlen π, π', \ldots , aber alle sind untereinander äquivalent; ist also π eine unter ihnen, so sind alle anderen und nur sie in der Form $\pi' = \varepsilon \pi$ enthalten. Allgemeiner ist jedes ganze oder gebrochene Element v eindeutig in der Form $v = \varepsilon \pi^a$ darstellbar, wo a eine bestimmte ganze Zahl bedeutet, welche dann und nur dann nicht negativ ist, wenn v algebraisch ganz ist. a heißt die Ordnungszahl von v.

⁷⁹⁾ Vgl. Nr. 5 dieses Referates und H. III, S. 438ff.

Die Ordnungszahl eines Produktes (Quotienten) zweier Elemente v und w ist also die Summe (Differenz) der Ordnungszahlen seiner beiden Komponenten. Hat $v = \varepsilon \pi^a$ die Ordnungszahl a, so ist af diejenige ihrer Norm. Ist also speziell $p = \varepsilon \pi^e$, ist also e die Ordnungszahl der Primzahl p im Körper K(x,p), so besitzt $n(p) = p^{\lambda}$ die Ordnungszahl ef, es ist also $\lambda = ef$. Die Zahl e soll im folgenden die Ordnung der Primzahl π genannt werden. Das Produkt ef der Ordnung und des Grades der Primzahl π ist also stets gleich dem Grade λ des Körpers K(x, p). Ein Element v heißt durch π^{ϱ} teilbar, wenn n(v)durch $n(\pi^{\varrho}) \sim p^{f\varrho}$ teilbar ist; also ist v dann und nur dann durch jede noch so hohe Potenz von π teilbar, wenn n(v) = 0 ist aber die Hauptgleichung für v $g(t) = n(t - v) = t^{\lambda}$, d. h. es ist $v^{\lambda} = 0$ also v = 0. Ein Element $v = v_1 x_1 + \cdots + v_2 x_2$ ist also dann und nur dann durch jede noch so hohe Potenz von π teilbar, wenn es Null ist, wenn also alle seine Koeffizienten v. Null sind. Zwei Elemente v und v' sind mithin stets und nur dann für jede noch so hohe Potenz von π kongruent, wenn sie gleich sind.

Im Körper K(x,p) verliert die reelle Zahl p ihren Primzahlcharakter stets und nur dann, wenn e>1 ist, und an ihre Stelle
tritt in jedem Falle die zugehörige Primzahl π oder jede ihr äquivalente, während p äquivalent der Primzahlpotenz π^e wird. Die Untersuchung der Teilbarkeitsbeziehungen der Elemente v des Kongruenzkörpers K(x,p) wird also vollständig durch diejenige jener Elemente
zu einer Primzahl π ersetzt, zu der ich jetzt übergehe.

Diese Untersuchung erfordert zunächst eine vollständige Übersicht über alle ganzen Elemente γ des Kongruenzkörpers K(x,p). Man kann durch ein direktes endliches Verfahren stets eine solche Basis $(x_1, x_2, \ldots x_l)$ von lauter ganzen Elementen finden, daß alle und nur die ganzen Elemente jenes Körpers in der Form $(c_1x_1 + \cdots + c_lx_l)$ mit ganzen p-adischen Koeftizienten dargestellt sind; jedes solches System (x_i) heißt ein Fundamentalsystem für diesen Körper.

Alle diese ganzen Größen γ bilden nun modulo π betrachtet einen endlichen Kongruenzkörper $K(\gamma, \mod \pi)$ vom Grade f; derselbe enthält also genau f modulo π unabhängige Elemente $(x_1, x_2, \ldots x_f)$, während zwischen je f+1 Elemente $(x_0, x_1, \ldots x_f)$ eine lineare Kongruenz $c_0x_0+c_1x_1+\cdots+c_fx_f\equiv 0 \pmod{\pi}$ besteht. Jedes System $(x_1,\ldots x_f)$ von f unabhängigen Elementen heißt auch hier ein Fundamentalsystem jenes Kongruenzkörpers. Man kann aus einem Fundamentalsystem $(x_1,\ldots x_f)$ für alle ganzen Elemente von K(x,p) stets f, etwa $(x_1,\ldots x_f)$ so auswählen, daß sie ein Fundamentalsystem für den Kongruenzkörper $K(\gamma,\pi)$ bilden. Dann bilden die $\sigma=p^f\sim n(\pi)$

Elemente
$$\varepsilon = c_1 x_1 + \cdots + c_f x_f \qquad (c_i = 0, 1 \dots p - 1)$$

ein vollständiges Restsystem $(\varepsilon^{(0)}, \varepsilon^{(1)}, \dots \varepsilon^{(\sigma-1)})$ modulo π .

Die Elemente v des Kongruenzkörpers K(x, p) stimmen nun in ihrer Gesamtheit überein mit dem Körper $K(\mathfrak{P})$, der sog. π -adischen Zahlen, welcher folgendermaßen definiert ist: Jede Zahlgröße:

(147)
$$\alpha = \varepsilon_a \pi^a + \varepsilon_{a+1} \pi^{a+1} + \cdots,$$

deren Entwicklungszahl π eine beliebige Primzahl von K(x,p) ist und deren Koeffizienten ε_a , ε_{a+1} , ... ganze Elemente desselben Körpers sind, welche beliebig weit berechnet werden können, soll eine π -adische Zahl genannt werden; die Elemente von K(p,x)

(147a)
$$\varepsilon_a \pi^a, \quad \varepsilon_a \pi^a + \varepsilon_{a+1} \pi^{a+1}, \quad \dots$$

heißen ihre Näherungswerte. Zwei π -adische Zahlen α und α' sind kongruent modulo π^c oder modulo \mathfrak{P}^c , wenn fast alle ihre Näherungswerte modulo π^c kongruent sind; sie sind gleich für den Bereich von \mathfrak{P} , wenn sie für jede noch so hohe Potenz von \mathfrak{P} kongruent sind. Wird die Entwicklungszahl π fest gewählt, und werden die Koeffizienten ε_k auf ein und dasselbe Restsystem modulo π beschränkt, so heißt die Reihe (147) die reduzierte Darstellung von α , und jede π -adische Zahl ist einer einzigen reduzierten gleich. Bei dieser Definition der Gleichheit und der gewöhnlichen Festsetzung über die Addition und die Multiplikation π -adischer Zahlen bilden diese einen Zahlkörper $K(\mathfrak{P})$, welcher dem in (12) eingeführten Körper $\overline{K}(\mathfrak{P})$ aller konvergenten und nicht konvergenten Potenzreihen für den Punkt \mathfrak{P} der Riemann-ehen Fläche völlig entspricht.

Man beweist nun direkt, dåß jedes Element c des Kongruenzkörpers K(x,p) einer einzigen π -adischen Zahl γ gleich ist, welche ihre π -adische Entwicklung genannt werde, und daß auch umgekehrt jede π -adische Zahl gleich einem Elemente von K(x,p) ist. Also ist der zu untersuchende Kongruenzkörper K(x,p) dem Körper $K(\mathfrak{P})$ der π -adischen Zahlen einstufig isomorph; der letztere kann daher jetzt an Stelle von K(x,p) weiter untersucht werden.

Der Körper $K(\mathfrak{P})$ der π adischen Zahlen ist ein algebraischer Erweiterungskörper vom $ef = \lambda^{\mathrm{ten}}$ Grade über dem Körper K(p) der p-adischen Zahlen. In ihm sind alle $(p^f-1)^{\mathrm{ten}}$ Einheitswurzeln w^v $(v=0,1\dots p^f-2)$ enthalten, wo w eine solche primitive π -adische Einheitswurzel bedeutet. Außer diesen kann $K(\mathfrak{P})$ höchstens noch p^{q} Einheitswurzeln enthalten, deren Wurzelexponent eine Potenz von p ist. Die $\sigma=p^f$ Zahlen $(0,1,w,\ldots w^{p^f-2})$ bilden ein vollständiges Restsystem modulo \mathfrak{P} ; deshaib heißt der durch w bestimmte Körper

K(w) der zu $K(\mathfrak{P})$ gehörige Koeffizientenkörper. Derselbe ist ein algebraischer Körper f^{ten} Grades über K(p), während $K(\mathfrak{P})$ ein Körper e^{ten} Grades über K(w) ist.

Im Körper K(w) ist die Primzahl π ein primitives Element. Ist e nicht durch p teilbar, so kann π stets so ausgewählt werden, daß es in K(w) einer einfachsten reinen Gleichung e^{ten} Grades

$$\pi^{\varepsilon} - w^{\delta} p = 0$$

genügt, daß also die Entwicklungszahl der π -adischen Zahlen abgesehen von einer Einheitswurzel die e^{te} Wurzel aus p ist.⁸⁰)

Die π -adischen Zahlen unterscheiden sich also nur dadurch von den p adischen Zahlen, daß ihre Reihen nicht nach ganzen, sondern im allgemeinen nach gebrochenen Potenzen $\pi \sim p^{\frac{1}{e}}$ von p fortschreiten, und daß ihre Koeffizienten nicht $(p-1)^{\text{to}}$, sondern $(p^f-1)^{\text{to}}$ Einheitswurzeln sind. Ihrer Natur und ihrem arithmetischen Verhalten nach stimmen beide Zahlkörper genau überein.

48. Der zu einer vorgelegten Gleichung F(x) = 0 zugehörige Galoissche π -adische Zahlkörper.⁸¹) Die bisher gefundenen Ergebnisse können jetzt zur Bildung eines solchen Erweiterungskörpers $K(\mathfrak{P})$ von π adischen Zahlen benutzt werden, daß in ihm die linke Seite f(x) der vorgelegten Gleichung vollständig, d. h. in ein Produkt $(x-\alpha_1)(x-\alpha_2)\dots(x-\alpha_n)$ von n Linearfaktoren zerfällt.

Zerlegen wir nämlich die Funktion f(x) wie in (142) im Körper K(p) in das eindeutig bestimmte Produkt von v verschiedenen p-adischen Primfaktoren:

(149)
$$f(x) = f_{x}(x, p) \cdots f_{x}(x, p), \qquad (p)$$

und sind diese schon alle vom ersten Grade, ist also v=n, so ist die gestellte Aufgabe bereits durch den Körper K(p) gelöst. Ist dagegen v < n, so sei etwa der Grad λ_1 von $f_1(x,p)$ größer als Eins. Dann sei der zugehörige Kongruenzkörper des λ_1^{ten} Grades $K_p(x, \text{mod } f_1(x,p))$ gleich dem algebraischen π_1 -adischen Körper $K(\mathfrak{P}_1)$ vom λ_1^{ten} Grade, dessen Primzahl π_1 die Ordnung e_1 und den Grad f_1 haben möge, so daß $e_1f_1=\lambda_1$ ist. Zerlegt man nun die Grundfunktion f(x) in dem Oberkörper $K(\mathfrak{P}_1)$ von K(p) weiter in ihre Primfaktoren, so erhält man eine neue Zerlegung:

(149a)
$$f(x) = f_1^{(1)}(x, \pi_1) \cdots f_{r_1}^{(1)}(x, \pi_1), \qquad (\mathfrak{P})$$

welche darin besteht, daß sich jeder der p adischen Faktoren $f_i(x, p)$ jetzt noch weiter, und zwar wieder in lauter verschiedene π_1 -adische

⁸⁰⁾ Vgl. p. 547 (13) und (13a) dieses Referates.

⁸¹⁾ Vgl. Nr. 7 dieses Referates und H. III, p. 446 ff.

Faktoren spaltet. Die Anzahl ν_1 aller dieser Faktoren ist sicher größer als ν , da von jenen ν ersten Primfaktoren jedenfalls der erste $f_1(x,p) = (x-x_1)\bar{f}_1(x,\pi_1)$ sich mindestens in zwei π_1 -adische Faktoren zerlegen läßt. Ist jetzt $\nu_1 = n$, so zerfällt f(x) innerhalb $K(\mathfrak{P}_1)$ vollständig in Linearfaktoren, und die Aufgabe ist gelöst.

Es sei jetzt auch $v_1 < n$, und $f^{(1)}(x, \pi_1)$ sei irgendeiner dieser v_1 irreduziblen π_1 -adischen Faktoren $f_i^{(1)}(x, \pi_1)$, dessen Grad λ_2 größer als 1 ist; dann ist der zugehörige Kongruenzkörper $K_{\pi_1}(x, \text{mod } f^{(1)}(x, \pi_1))$ = $K(x, \pi_1)$ aller modulo $f^{(1)}(x, \pi_1)$ ganzen Funktionen von x mit π_1 -adischen Koeffizienten ebenfalls vom λ_2^{ten} Grade, und man zeigt nun genau ebenso wie vorher, daß derselbe gleich einem Körper $K(\mathfrak{P}_3)$ von π_2 -adischen Zahlen vom Grade λ_2 über $K(\mathfrak{P}_1)$ ist; ist also e_2 die Ordnung, f_2 der Grad einer Primzahl π_2 innerhalb dieses Körpers, so ist $e_2 f_2 = \lambda_2$. In bezug auf den Körper K(p) ist $K(\mathfrak{P}_2)$ ein algebraischer Erweiterungskörper vom Grade $\lambda_1 \lambda_2$, und für ihn sind $e_1 e_3$ und $f_1 f_2$ Ordnung und Grad der Primzahl π_2 .

In diesem größeren Erweiterungskörper $K(\mathfrak{P}_2)$ zerfällt die Funktion f(x) noch weiter, da sich jetzt von dem vorher irreduziblen Faktor $f^{(1)}(x,\pi_1)$ noch mindestens ein Linearfaktor $(x-\alpha_2)$ abspaltet. Durch Fortsetzung dieses Verfahrens ergibt sich also nach einer endlichen Anzahl von Schritten ein π -adischer Zahlkörper $K(\mathfrak{P})$ der Art, daß in ihm f(x) vollständig in Linearfaktoren zerfällt, daß also in ihm die Gleichung f(x)=0 genau n eindeutig bestimmte π -adische Wurzeln hat.

Für jede Primzahl p erhält man so einen Galoisschen Körper π -adischer Zahlen $K(\mathfrak{P})$, innerhalb dessen die Galoissche Theorie gilt und hier vollständigen Aufschluß über die arithmetischen Eigenschaften aller algebraischen Zahlen liefert. Es ergibt sich endlich der Satz, daß jede Gleichung F(x)=0 in jedem p-adischen Zahlkörper K(p) algebraisch aufsösbar ist. 82

⁸²⁾ H. III, p. 451-452.

II C 6. ARITHMETISCHE THEORIE DER ALGEBRAISCHEN FUNKTIONEN ZWEIER UNABHÄNGIGEN VERÄNDERLICHEN.

Von

HEINRICH W. E. JUNG

IN HALLE A. D. SAALE.

Inhaltsübersicht.

I. Einleitung.

II. Der Körper der algebraischen Funktionen zweier Veränderlichen.

- 1. Die Darstellung der Funktionen des Körpers in der Umgebung einer Kurve.
- 2. Die Darstellung der Funktionen des Körpers in der Umgebung einer Stelle,
- 3. Die Stellen des Körpers.

III. Primteiler und Divisoren.

- 4. Die Primteiler erster Stufe.
- 5. Einteilung der Primteiler erster Stufe in zwei Arten.
- 6. Die Primteiler zweiter Stufe.
- 7. Divisoren, Divisorenklassen.
- 8. Grad und Geschlecht einer Klasse.
- 9. Birationale Transformation.
- 19. Fundamentalsysteme für die Vielfachen eines Divisors.

IV. Die Zeuthen-Segresche Invariante und das numerische Geschlecht.

- 11. Die Fläche F.
- 12. Die Zeuthen Segresche Invariante.
- 13. Das numerische oder arithmetische Geschlecht.

Literatur.

- Beppo Levi, Sulla riduzione delle singolarità puntuali delle superficie algebriche dello spazio ordinario per trasformazioni quadratiche, Ann. di Mat. (2) 26 (1897), p. 219-253.
- —, Risoluzione delle singolarità puntuali delle superficie algebriche, Torino Atti 33 (1897), p. 66-86.
- -, Intorno alla composizione dei punti generici delle linee singolari delle superficie algebriche, Ann. di Mat. (3) 2 (1899), p. 127-138.

- Beppo Levi, Sulla trasformazione dell' intorno di un punto per una corrispondenza birazionale fra due spazi, Torino Atti 35 (1900), p. 20—33.
- —, Sur la résolution des points singuliers des surfaces algébriques, Paris C. R. 134 (1902), p. 222-225.
- —, Sur la théorie des fonctions algébriques de deux variables, Paris C. R. 134 (1902), p. 642—644.
- G. H. Halphen, Sur les lignes singulières des surfaces algébriques, Ann. di Mat. (2) 9 (1878), p. 68-105.
- Kurt Hensel, Über die Theorie der algebraischen Funktionen zweier Variablen, Jahresber. d. D. Math.-Ver. 7 (1899), p. 58-61 = Hensel A.
- -, Über eine neue Theorie der algebraischen Funktionen zweier Variablen, Jahresber. d. D. Math.-Ver. 8 (1900), p. 221-331 = Hensel B.
- —, Über eine neue Theorie der algebraischen Funktionen zweier Variablen, Acta Math. 23 (1900), p. 339—416 = Hensel C.
 - Hensel A und B sind kurze Referate.
- C. W. M. Black, The parametric representation of the neighborhood of a singular point of an analytic surface, Proc. of Am. Ac. 37 (1902), p. 281-330 = Black.
- G. Landsberg, Zur Theorie der algebraischen Funktionen zweier Veränderlicher, Berl. Ber. 1 (1900), p. 296-302 = Landsberg.
- H. W. E. Jung, Primteiler algebraischer Funktionen zweier unabhängiger Veränderlichen und ihr Verhalten bei birationalen Transformationen, Pal. Rend. 26 (1908), p. 113-127 = Jung A.
- —, Der Riemann-Rochsche Satz für algebraische Funktionen zweier Veränderlichen, Jahresber. d. D. Math.-Ver. 18 (1909), p. 267—339, und Berichtigung dazu, ebenda 19 (1910), p. 172—176 Jung B.
- —, Darstellung der Funktionen eines algebraischen Körpers zweier unabhängiger Veränderlichen x, y in der Umgebung einer Stelle x = a, y = b, J. f. Math. 133, p. 289 314 = Jung C.
- Kurvenscharen auf einer algebraischen Fläche, J. f. Math. 138 (1910), p. 77-95
 Jung D.
- -, Über die Zeuthen-Segresche Invariante, Pal. Rend. 34 (1912), p. 225-277 = Jung E.
- Über die ausgezeichneten Kurven algebraischer Flächen, J. f. Math. 142 (1912),
 p. 61-117 = Jung F.
- —, Über die kanonische Klasse einer auf einer algebraischen Fläche liegenden algebraischen Kurve. Schwarz-Festschrift 1914, p. 166—167 = Jung G.
- -, Über algebraische Flächen, J. f. Math. 150 (1919), p. 47-78 = Jung H.
- Über die Differentialinvarianten algebraischer Flächen, Math. Ztschr. 8 (1920),
 p. 182—221 = Jung J.
- G. Castelnuovo und F. Enriques, Art. III C 6b in dieser Encyklopädie = E.

I. Einleitung.

Die arithmetische Theorie der algebraischen Funktionen zweier Veränderlichen ist noch nicht so weit ausgebaut wie die entsprechende Theorie bei den Funktionen einer Veränderlichen. Vor allem fehlen eingehendere Untersuchungen über die Integrale. Die folgende ÜberDie Darstellung der Funkt. des Körpers in der Umgebung einer Kurve. 653

sicht enthält im wesentlichen nur die Auseinandersetzung der Methoden und der Grundbegriffe. Im übrigen sei auf die angegebene Literatur verwiesen.

II. Der Körper der algebraischen Funktionen zweier Veränderlichen.

1. Die Darstellung der Funktionen des Körpers in der Umgebung einer Kurve. Der Körper besteht aus allen rationalen Funktionen dreier Größen x, y, z, zwischen denen eine irreduktible algebraische Gleichung

$$(1) G(x, y, z) = 0$$

besteht. Er heiße K(x,y,z). Deuten wir x,y,z als kartesische Koordinaten, so wird durch (1) eine algebraische Fläche G definiert. Es sei A(x,y) ein irreduktibles Polynom, also A=0 die Gleichung einer Kurve A in der xy-Ebene. Für die Darstellung der Funktionen des Körpers K(x,y,z) in der Umgebung von A, d. h. für solche Werte von x,y, für die |A(x,y)| hinlänglich klein ist, hat Hensel folgendes bewiesen. E

Wir nehmen an, daß A(x, y) von y wirklich abhängt. Sollte das nicht der Fall sein, so wäre im folgenden x mit y zu vertauschen. Ist y_0 eine Wurzel von A(x, y) = 0, so läßt sich z und damit jede Funktion R des Körpers K nach steigenden Potenzen von $y - y_0$ entwickeln mit Koeffizienten, die algebraische Funktionen von x sind. Statt nach Potenzen von $y - y_0$ kann man auch nach solchen von A entwickeln, was aus den Henselschen Ergebnissen sofort folgt, da man $y - y_0$ nach Potenzen von A(x, y) entwickeln kann, wobei die Koeffizienten algebraische Funktionen von x werden.

Über die Entwicklungen gilt folgendes?):

a) Es kann höchstens eine endliche Zahl von negativen Potenzen von $y-y_0$ vorkommen.

b) Im allgemeinen schreitet die Entwicklung nach ganzen Potenzen von $y-y_0$ fort. Nur für eine endliche Zahl von Kurven A(x,y)=0 gibt es Entwicklungen, die nach ganzen Potenzen einer gebrochenen Potenz von $y-y_0$ fortschreiten.

c) Die Koeffizienten sind sämtlich Funktionen eines bestimmten algebraischen Körpers der einen Veränderlichen x, der entweder der durch A(x, y) = 0 definierte Körper oder ein Körper über diesem ist.

¹⁾ Hensel A, B, C.

Hensel C. Diese Entwicklungen finden sich schon bei Halphen am oben angegebenen Orte.

- d) Die Entwicklung von z schreite nach ganzen Potenzen von $(y-y_0)^{\frac{1}{\alpha}}$ fort. Der Körper der Koeffizienten sei vom Relativgrade σ in bezug auf den durch A(x,y)=0 definierten Körper. Man erhält dann aus der Entwicklung im ganzen $\alpha\sigma$ konjugierte, indem man die α -te Wurzel aus $y-y_0$ durch ihre anderen Werte ersetzt und die Koeffizienten durch die $\sigma-1$ ihnen relativ zum Körper A=0 konjugierten Funktionen. Diese $\alpha\sigma$ Entwicklungen sind nicht notwendig voneinander verschieden. Es gibt aber immer eine algebraische Funktion e von x folgender Art. Setzt man $e^a(y-y_0)=\eta$ und schreibt die Entwicklung von z als Potenzreihe von η , so werden die Koeffizienten Funktionen eines Relativkörpers über dem Körper A=0 von einem Relativgrade τ derart, daß die $\alpha\tau$ konjugierten Entwicklungen voneinander verschieden sind. Es heißt τ die Koeffizientenordnung.
- e) Es sei der Grad der Gleichung (1) in z gleich n. Ist $n = \tau \alpha$, so gibt es nur die eine Entwicklung für z mit ihren konjugierten für die Umgebung der Kurve A. Ist $n < \tau \alpha$, so gibt es mindestens noch eine weitere Entwicklung, jedenfalls aber nur eine endliche Zahl. Jede dieser Entwicklungen stellt z in der Umgebung einer auf der Fläche G liegenden Kurve dar, deren Projektion auf die xy-Ebene die Kurve A ist. Schreitet die zugehörige Entwicklung nach ganzen Potenzen von
- $(y-y_0)^{\frac{1}{\alpha}}$ fort, so heißt die auf G liegende Kurve eine Verzweigungskurve in bezug auf x, y von der Verzweigungsordnung $\alpha-1$.
- f) Es sei (a,b) ein auf der Kurve A liegender Punkt, und es sei y_0 in der Umgebung von (a,b) eine gewöhnliche Potenzreihe von x-a. Dann kann es sein und nur für eine endliche Zahl von Punkten (a,b) ist es nicht so —, daß sich die Reihen für z verwandeln lassen in gewöhnliche Potenzreihen von x-a, y-b. Ist

$$(2) z = \mathfrak{P}(x - a, y - b)$$

eine solche Reihe, und ist $\mathfrak{P}(0,0)=c$, so gibt uns (2) die Umgebung des Punktes (a,b,c) der Fläche G. Es ist jedoch i. a. nicht für alle Punkte von G möglich, aus den Henselschen Reihenentwicklungen Darstellungen zu gewinnen, die uns die ganze Umgebung des betreffenden Punktes liefern. Die Untersuchungen von Hensel bedürfen daher einer Ergänzung.

2. Die Darstellung der Funktionen des Körpers in der Umgebung einer Stelle. a) Es sei P ein Punkt der Fläche G. Er habe die Koordinaten a, b, c. Dann kann man die Gleichung

$$G(x, y, z) = 0$$

2. Die Darstellung der Funkt, des Körpers in der Umgebung einer Stelle. 655

für die Umgebung von P in der Form auflösen, daß man hat

$$x-a=\mathfrak{P}_{1}(u,v), \quad y-b=\mathfrak{P}_{2}(u,v), \quad z-c=\mathfrak{P}_{3}(u,v),$$

wo \mathfrak{P}_1 , \mathfrak{P}_2 , \mathfrak{P}_3 gewöhnliche Potenzreihen von zwei Parametern u, v sind, die für u=v=0 verschwinden. Eine endliche Zahl derartiger Darstellungen genügt, um alle Stellen von G in einer genügend klein gewählten Umgebung von P zu erhalten. Dieser Satz ist bewiesen von B. $Levi^3$) und C. W. M. $Black^4$).

Der Beweis von Black läßt sich leicht so umformen, daß zugleich folgt, daß die Hilfsgrößen u, v als Funktionen des Körpers K(x, y, z) gewählt werden können. Black selbst legt darauf keinen Wert, da er sich nicht auf algebraische Funktionen beschränkt. Man braucht nur die Gleichung (β) in § 2, S. 304 in der Blackschen Arbeit in der Form anzunehmen

$$\varphi(x,y) = p(x,y)^m E(x,y).$$

Darin ist E eine Einheit für x = y = 0, und p(x, y) ist eine ganze rationale Funktion von x, y, die für x = y = 0 verschwindet, in der aber die Glieder erster Dimension vorkommen. Man hat dann zu setzen

$$p(x, y) = x_1,$$

woraus sich x als gewöhnliche Potenzreihe von x_1 und y ergibt

$$x = \mathfrak{P}(x_1, y).$$

Diese Substitution ist statt der Gleichung (δ) von Black zu verwenden. Alles andere bleibt ungeändert.

b) Es sei P ein Punkt der xy-Ebene mit den Koordinaten a, b. Dann kann man die Gleichung

$$G\left(x,y,z\right)=0$$

in der Form auflösen, daß man hat

$$x - a = \mathfrak{P}_1(u, v), \quad y - b = \mathfrak{P}_2(u, v),$$

wo \mathfrak{P}_1 und \mathfrak{P}_2 gewöhnliche, für u=v=0 verschwindende Potenzreihen von u,v sind, während z entweder auch eine gewöhnliche Potenzreihe von u,v wird oder der Quotient zweier solchen. Es genügt eine endliche Anzahl solcher Darstellungen, um alle Werte von z für eine hinlänglich klein gewählte Umgebung von P zu erhalten. Dieser Satz ist von H. W. E. $Jung^5$) bewiesen. Er ist in dem unter a) angegebenen enthalten. Man kann daher auch hier u und v als

³⁾ Levi A-F.

⁴⁾ Black.

⁵⁾ Jung C. Während Levi und Black die Singularitäten der Fläche G mit Hilfe von Transformationen von x, y, z auflösen, benutzt Jung nur Transformationen der unabhängigen Veränderlichen x, y.

Funktionen des Körpers wählen, was in der Arbeit von Jung nicht bewiesen ist, obwohl das in der Einleitung gesagt ist. Das kommt daher, daß der Schluß der Arbeit während des Druckes geändert ist.

3. Die Stellen des Körpers K(x, y, z). Mit Benutzung einer Darstellung von x, y, z in der Nr. 2 angegebenen Form mit Hilfe zweier Parameter u, v lassen sich alle Funktionen des Körpers K(x, y, z) darstellen als gewöhnliche Potenzreihen von u, v oder als Quotienten solcher. Die Gesamtheit dieser Darstellungen definiert eine Stelle des Körpers mit ihrer Umgebung. An der Stelle selbst kann eine Funktion aus K(x, y, z) unbestimmt sein, wie z. B. die Funktion $\frac{u}{x}$ an der Stelle u = v = 0. Die Stellen des Körpers K(x, y, z) sind, im Unterschiede zu den Stellen eines algebraischen Körpers einer Veräuderlichen, nicht vollständig bestimmt. Zunächst kann man irgend $r \geq 2$ Funktionen des Körpers auswählen, von denen zwei voneinander unabhängig sein müssen, und festsetzen, daß an jeder Stelle diese Funktionen oder ihre reziproken Werte gewöhnliche Potenzreihen der Hilfsgrößen u, v werden, so daß die ausgewählten Funktionen an keiner Stelle unbestimmt sind.⁶) Betrachtet man einen algebraischen Körper und nicht eine algebraische Fläche, so wird man zweckmäßig zwei voneinander unabhängige Funktionen auszeichnen und diese dann als unabhängige Veränderliche betrachten, da es sich um einen Körper von zwei unabhängigen Veränderlichen handelt. Betrachtet man aber die algebraische Fläche G(x, y, z) = 0, so wird man die drei Größen x, y, z auszeichnen und die Stellen des Körpers so definieren, daß x, y, z an keiner Stelle unbestimmt werden. Dann nämlich entspricht jeder Stelle des Körpers ein ganz bestimmter Punkt der Fläche. Man kann dann aber auch noch einen Schritt weiter gehen. Sind x', y', z' die Ebenenkoordinaten einer Berührungsebene von G, so kann man die Stellen des Körpers auch so definieren, daß außer x, y, z auch x', y', z' an keiner Stelle unbestimmt werden, so daß jeder Stelle des Körpers sowohl ein bestimmter Punkt wie auch eine bestimmte Berührungsebene entspricht.

Daß die Stellen ganz verschieden sind, je nachdem, welche Größen man bei ihrer Definition auszeichnet, zeigt schon folgendes einfache Beispiel. Es sei der Körper definiert durch

$$G \equiv yz - x^2 = 0.$$

Nehmen wir x, y als unabhängige Veränderliche, so können wir für die Umgebung von x = 0, y = 0 setzen

(3)
$$x = u, \quad y = v, \quad z = \frac{u^2}{v}.$$

⁶⁾ Jung H, Kap. I, § 4.

Nehmen wir dagegen y, z als unabhängige Veränderliche, so können wir für die Umgebung von y=0, z=0 setzen

(4) I.
$$x = uv$$
, $y = v$, $z = u^2v$;
II. $x = uv$, $y = u^2v$, $z = v$.

Man kann I benutzen etwa für $\left|\frac{y}{z}\right| > 1$, |z| < 1 und II für $\left|\frac{y}{z}\right| \le 1$, |z| < 1. Sowohl die Darstellung (3) wie auch (4) geben uns unter anderem die ganze Umgebung des Punktes x = y = z = 0. In (3) wird z für u = v = 0 unbestimmt, während in (4) z immer bestimmt ist, so daß die durch (3) und (4) definierten Stellen wesentlich verschieden sind.

Aber selbst, wenn wir einige Funktionen des Körpers ausgewählt haben und die Stellen so definieren, daß diese Funktionen überall bestimmte Werte haben, ist diese Definition nicht eindeutig. Es sei z. B. der Körper K(x,y,z) der Körper der rationalen Funktionen von x,y. Die Umgebung des Punktes x,y können wir darstellen durch die Gleichungen x=u, y=v.

Wir können sie aber auch darstellen durch die beiden Gleichungspaare

I.
$$x = uv$$
, $y = v$;
II. $x = v$, $y = uv$,

indem wir I etwa gelten lassen für $\left|\frac{y}{x}\right| > 1$, |x| < 1 und II für $\left|\frac{y}{x}\right| \le 1$, |x| < 1. Im ersten Falle haben wir nur eine Stelle im Punkte x = y = 0, im zweiten unendlich viele. Denn jeder Stelle $u = u_1$, v = 0 des Körpers entspricht die Stelle x = y = 0, wenn u_1 irgendeine endliche Zahl ist.

Diese Willkürlichkeit in der Definition der Stellen hat ihre Nachteile, aber auch ihre Vorteile. Hat man z.B. auf der Fläche G eine Kurve mit irgendwelchen mehrfachen Punkten, so kann man allein durch andere Definition der Stellen die Kurve verwandeln in eine Kurve ohne mehrfache Stellen, wovon auch die italienischen Mathematiker häufig Gebrauch machen. Es kommt das daher, daß eine Veränderung in der Definition der Stellen nichts anderes ist als eine birationale Transformation. Und wenn man bedenkt, daß bei einer solchen Transformation Punkte der Fläche G in Kurven und Kurven in Punkte übergehen können, so sieht man, daß die Willkürlichkeit in der Definition der Stellen in der Natur der Sache liegt.

III. Primteiler und Divisoren.

4. Die Primteiler erster Stufe. 7) Es sei B ein algebraischer Körper einer Veränderlichen, der zum Körper K(x, y, z) in folgender Beziehung steht. Jeder Funktion aus K(x, y, z) entspreche eine und nur eine Funktion aus P. Jede Gleichung, die zwischen Funktionen aus K(x, y, z) besteht, bestehe auch zwischen den ihnen entsprechenden Funktionen aus P. Es beißt dann P ein Primteiler erster Stufe von K(x, y, z). Den Übergang von K(x, y, z) zu \mathfrak{P} drückt man so aus, daß man sagt, man setzt $\mathfrak{P} = 0$. Ist R eine Funktion aus K(x, y, z), der im Körper P die Zahl O entspricht, die also für P = 0 identisch null wird, so sagt man R ist durch \$\P\$ teilbar, oder \$\P\$ ist in R ent-Sind die Funktionen R und S beide durch B teilbar, und wird der Quotient R:S für $\mathfrak{P}=0$ weder identisch null noch unendlich, so sagt man, R und S werden für $\mathfrak{P}=0$ von derselben Ordnung null, oder sie enthalten $\mathfrak P$ in derselben Potenz. Wird aber R:Sfür $\mathfrak{P}=0$ zu null, so sagt man, R enthält \mathfrak{P} in höherer Potenz als S. Nun gibt es immer eine durch \mathfrak{P} teilbare Funktion T aus K(x, y, z)von der Art, daß keine Funktion aus K(x, y, z) \$\mathbb{B}\$ in niedrigerer Potenz enthält als T.

Ist dann R irgendeine Funktion des Körpers, die für $\mathfrak{B}=0$ zu null wird, die also durch \mathfrak{P} teilbar ist, so muß unter den Funktionen $R:T,\ R:T^2,\ R:T^3,\ \ldots$ eine vorkommen, die für $\mathfrak{P}=0$ weder null noch unendlich wird. Denn erstens muß $R:T^i$ für genügend großes ganzzahliges I für $\mathfrak{P}=0$ gleich unendlich werden. Ist zweitens $R:T^{2+1}$ die erste Funktion der Reihe, die für $\mathfrak{P}=0$ unendlich wird, und ist $R:T^2$ für $\mathfrak{P}=0$ null, so würde $R:T^2$ eine Funktion des Körpers sein, die für $\mathfrak{P}=0$ von geringerer Ordnung null wird als T. Es wird also $R:T^2$ für $\mathfrak{P}=0$ weder identisch null noch unendlich. Wir sagen: R ist durch \mathfrak{P}^2 teilbar oder \mathfrak{P} ist in R in der R-ten Potenz enthalten. Wenn R für R=0 unendlich wird und R-R2 für R=0 weder null noch unendlich, so sagen wir, R3 ist durch R-R4 teilbar, oder R4 enthält R5 in der Potenz R5.

Es entspricht z.B. jeder *Hensel*schen Entwicklung von z nach Potenzen eines irreduktiblen Polynoms A(x, y) ein Primteiler erster Stufe. Ist nämlich etwa

(5)
$$z = a_0 + a_1 A^{\frac{1}{\alpha}} + a_2 A^{\frac{2}{\alpha}} + \cdots$$

eine solche Entwicklung, wo die Koeffizienten a_i algebraische Funktionen von x sind, so können wir mit Hilfe dieser Entwicklung jede

⁷⁾ Jung A, Jung F, Nr. 1.

Funktion des Körpers K(x, y, z) in eine nach steigenden Potenzen von $A^{\frac{1}{\alpha}}$ fortschreitende Potenzreihe entwickeln, deren Koeffizienten algebraische Funktionen von x sind. Setzen wir in diesen Entwicklungen A=0, so gehen die Funktionen des Körpers K über in algebraische Funktionen von x, und zwar in Funktionen des zur Reihe (5) gehörenden Koeffizientenkörpers. Wir erhalten so aus K einen zur Entwicklung (5) gehörenden Primteiler $\mathfrak P$ erster Stufe. Eine Funktion R

Potenzen von A mit der λ -ten Potenz von $A^{\frac{1}{\alpha}}$ beginnt. Man kann jeden Primteiler \mathfrak{P} erster Stufe auf diese Art definieren, wenn man nur die unabhängigen Veränderlichen passend wählt. Sie müssen so angenommen werden, daß sie nicht beide für $\mathfrak{P}=0$ konstant werden.

aus K ist dann durch P2 teilbar, wenn ihre Entwicklung nach steigenden

5. Die Einteilung der Primteiler erster Stufe in zwei Arten.⁸) Es gilt der Satz: Jede Funktion des Körpers K(x, y, z) enthält unendlich viele Primteiler erster Stufe.

Nehmen wir z. B. den Körper K(x, y) der rationalen Funktionen von x, y. Es sei a irgendeine ganze positive Zahl. Wir setzen in die rationalen Funktionen von x, y statt y ein $x^{\sigma}\xi$, entwickeln nach steigenden Potenzen von x und lassen dann x zu null werden. Es gehen auf diese Art die rationalen Funktionen von x, y über in rationale Funktionen von ξ . Wir erhalten so einen algebraischen Körper der einen Veränderlichen ξ , der ein Primteiler erster Stufe des Körpers K(x, y) nach der in Nr. 4 angegebenen Definition ist. Wir bezeichnen ihn mit \mathfrak{P}_a . Wir erhalten so unendlich viele Primteiler $\mathfrak{P}_1, \mathfrak{P}_2, \mathfrak{P}_3, \ldots$ Durch alle diese Primteiler ist y teilbar, und zwar enthält y \mathfrak{P}_a genau in der aten Potenz.

Die hierdurch entstehende Schwierigkeit ist von ganz anderer Art als in der Theorie der algebraischen Zahlen. Dort besteht die Schwierigkeit darin, die Primteiler so zu definieren, daß eine eindeutige Zerlegbarkeit der Zahlen in Primteiler gewährleistet ist. Hier lassen sich die Primteiler, wie in Nr. 4 angegeben, einfach definieren, und es ist auch für jeden Primteiler zu definieren, wie oft er in einer Funktion enthalten ist. Die Schwierigkeit ist hier praktischer Art. Jede Funktion enthält unendlich viele Primteiler, die man bei der Zerlegung der Funktion nicht alle explizit angeben kann. Da tritt der glückliche Umstand ein, daß man die Primteiler in zwei Arten teilen kann in der Weise, daß jede Funktion nur eine endliche Zahl von Primteilern der einen Art enthält und eindeutig in Primteiler dieser Art

⁸⁾ Jung A, § 2, Jung F, Nr. 2.

zerlegt werden kann, und daß weiter die Primteiler der anderen Art, die in der Funktion enthalten sind, durch die der einen mitbestimmt sind.

a) Die Primteiler erster Art. Es liegt nahe, die Primteiler erster Art geometrisch zu definieren. Definiert G(x, y, z) = 0 den Körper K(x, y, z), so kann man G = 0 als Gleichung einer algebraischen Fläche auffassen, indem man x, y, z als kartesische Punktkoordinaten deutet. Man kann dann einen Primteiler \$\Psi\$ von der ersten Art nennen, wenn ihm auf G eine Kurve entspricht, wenn also für $\mathfrak{P}=0$ die drei Größen x, y, z nicht alle drei konstant werden. Oder, wenn man nur zwei Größen, etwa x, y, auszeichnen will, die man dann als unabhängige Veränderliche auffassen kann, so kann man \$\mathbb{B}\$ einen Primteiler erster Art nennen, wenn für $\mathfrak{P}=0$ nicht x und y beide konstant werden, wenn also \$\mathbb{P}\$ auf G eine Kurve entspricht, deren Projektion auf die xy-Ebene kein Punkt ist. Aber es zeigt sich, daß eine derartige Definition nicht das Wesen der Sache trifft, wie folgendes Beispiel zeigt. Beschränkt man sich auf diese Primteiler, die also, gleich null gesetzt, a und y nicht beide konstant werden lassen, so kann ein Doppeldifferential unendlich werden, ohne daß es längs eines Primteilers unendlich wird. Man hat also kein übersichtliches Kriterium dafür, daß ein Doppeldifferential von der ersten Gattung ist. Z. B. wird das Doppeldifferential

$$\frac{dxdy}{z} = \frac{dxdy}{\sqrt{x^4 - y^4}}$$

für keinen Primteiler der angegebenen Art unendlich, wird aber trotzdem im Punkte x=y=z=0 unendlich. Man hat nämlich — unter anderem — die Darstellung

(6)
$$x = u, \quad y = uv \quad z = u^{\circ} \sqrt{1 - v^{4}},$$
 woraus folgt
$$\frac{dx \, dy}{z} = \frac{du \, dv}{u \, \sqrt{1 - v^{4}}},$$

so daß das Differential für u=0 unendlich wird, d. h. für x=y=z=0. Nun wird durch u=0 ein Primteiler definiert. Setzt man nämlich in alle rationalen Funktionen von x, y, z für x, y, z die Werte (6) ein, entwickelt nach steigenden Potenzen von u und setzt dann u=0, so werden die Funktionen des Körpers K(x, y, z) rationale Funktionen von v und $\sqrt{1-v^4}$, also Funktionen eines algebraischen Körpers einer Veränderlichen. Man wird den so definierten Primteiler mit zu den Primteilern erster Art rechnen wollen. So kommt man zu folgender Definition der Primteiler erster Art.

Zunächst sind die Stellen des Körpers zu definieren. Wir betrachten dann eine Funktion R des Körpers in der Umgebung einer

Stelle S, wo sie null wird. Sie habe unter Benutzung der zur Stelle S gehörenden Hilfsgrößen u, v die Darstellung

$$R = \frac{L(u,v)}{H(u,v)},$$

wo L und H gewöhnliche Potenzreihen von u, v sein sollen, und wo L für u=v=0 verschwinden soll. Wir nehmen an, daß L und H in der Umgebung von u=v=0 keinen gemeinsamen Faktor haben. Wir können L in Faktoren zerlegen, die gewöhnliche für u=v=0 verschwindende Potenzreihen von u, v sind, und die sich nicht weiter in derselben Art zerlegen lassen. Das wird sofort klar, wenn man nach dem $Weierstra\beta$ schen Vorbereitungssatze L(u, v) darstellt in der Form $L(u, v) \equiv E(u, v) l(u, v)$,

wo E eine Einheit für die Stelle u=v=0 ist, d. h. eine Potenzreihe von u, v, die für u = v = 0 nicht verschwindet, während l eine ganze rationale Funktion von v ist, in der der Koeffizient der höchsten Potenz gleich 1 ist, während die anderen Koeffizienten gewöhnliche Potenzreihen von u sind, die für u=0 verschwinden. Ist k(u,v)ein nicht weiter zerlegbarer Faktor von L, so wird durch k=0 ein Primteiler \mathfrak{P} erster Stufe definiert. Denn es wird für k=0 auch R=0, so daß zu der Gleichung G(x,y,z)=0 noch eine algebraische Gleichung hinzukommt. Es kann sein, daß noch andere Faktoren von L denselben Primteiler $\mathfrak P$ definieren. Das Produkt aller $\mathfrak P$ definierenden Faktoren von L, jeden in der ersten Potenz genommen, nenne ich die zugeordnete Funktion von B für die Stelle S und bezeichne es mit $\mathfrak{P}(u, v)$. Die zugeordnete Funktion soll nur bestimmt sein bis auf eine Einheit für die Stelle u=v=0 als Faktor. Es kann also nach dem Weierstraßschen Vorbereitungssatz $\mathfrak{P}(u, v)$ auch immer als ganze rationale Funktion von v angenommen werden. Haben wir die Hilfsgrößen u, v als Funktionen des Körpers K(x, y, z) gewählt, so besteht zwischen ihnen für $\mathfrak{B}=0$ eine irreduktible rationale Gleichung p(u, v) = 0, und es kann dann $\mathfrak{P}(u, v)$ nichts anderes sein als der größte gemeinsame Teiler von l(u, v) und p(u, v).

Ist \mathfrak{P}' ein in R in positiver Potenz enthaltener Primteiler, und definiert keiner der Faktoren von L(u, v), gleich null gesetzt, den Primteiler \mathfrak{P}' , so setzen wir die zugeordnete Funktion von \mathfrak{P}' für die Stelle S gleich 1.

Nehmen wir ein einfaches Beispiel. Es sei die Fläche G definiert durch $G \equiv (z-x)^2-y^2(1+x)=0.$

Aus G = 0 folgt dann für die Umgebung von x = y = 0

$$z = x \pm y\sqrt{1+x}.$$

662 HCG. Jung. Arithm. Theorie d. algebr. Funkt. zweier unabhäng. Veräuderl.

Wir haben also im Punkte x = y = z = 0 zwei Stellen S_1 und S_2 von G, die definiert sind durch

S₁:
$$x = u$$
, $y = v$, $z = u + v\sqrt{1 + u} = u + v + \frac{1}{2}uv - \frac{1}{8}u^2v + \cdots$,
S₂: $x = u$, $y = v$, $z = u - v\sqrt{1 + u} = u - v - \frac{1}{9}uv + \frac{1}{9}u^2v + \cdots$

Wir betrachten die Stelle S_1 und wählen R=yz. Es wird dann H=1 und

$$L(u, v) = v(u + v\sqrt{1 + u}) = v(u + v + \frac{1}{9}uv + \cdots).$$

Wir haben also $l(u, v) = v \{ v + u(1 + u)^{-\frac{1}{2}} \}.$

Es hat hier l zwei Faktoren $k_1 = v$ und $k_2 = v + u(1 + u)^{-\frac{1}{2}}$. Der durch $k_2 = 0$ definierte Primteiler heiße \mathfrak{P} . Für $\mathfrak{P} = 0$ wird z = 0, so daß wegen G = 0 zwischen u = x, v = y für $\mathfrak{P} = 0$ die Gleichung besteht $p(u, v) = v^2(1 + u) - u^2 = 0.$

Es ist hier k_2 der größte gemeinsame Teiler von p und l, also die zugeordnete Funktion von $\mathfrak P$ für die Stelle S_1 . Durch $k_1=0$ wird ein von $\mathfrak P$ verschiedener Primteiler $\mathfrak P_1$ definiert. Denn für $\mathfrak P_1=0$ wird y zu null, für $\mathfrak P=0$ aber nicht.

Ein anderes Beispiel ist folgendes: Es sei K(x, y, z) der Körper K(x, y) der rationalen Funktionen von x, y. Wir betrachten die Stelle S, x = y = 0. Wir haben einfach zu setzen

$$x = u, \quad y = v.$$

Es sei $R \equiv (y-x)(y^2-x^2-x^3)$, also in der Umgebung von S, H=1 und $L(u, v) \equiv (v-u)(v^2-u^2-u^3) \equiv l(u, v)$.

Hier hat l drei Faktoren k_1 , k_2 , k_3 .

$$k_1 = v - u$$
, $k_2 = v - u(1 + u)^{\frac{1}{2}}$, $k_3 = v + u(1 + u)^{\frac{1}{2}}$

wo wir uns für $(1+u)^{\frac{1}{2}}$ die Potenzreihe gesetzt zu denken haben. Es wird durch $k_1=0$ ein Primteiler \mathfrak{P}_1 definiert, dem geometrisch die Gerade y=x entspricht. Durch $k_2=0$ und $k_3=0$ wird derselbe Primteiler \mathfrak{P}_2 definiert, dem geometrisch die Kurve $y^2-x^2-x^3=0$ entspricht. Es ist

$$\mathfrak{P}_1(u, v) = v - u, \quad \mathfrak{P}_2(u, v) = v^2 - u^2 - u^3.$$

Wir nennen jetzt einen Primteiler von der ersten Art, wenn er auch nur für eine Stelle eine von 1 verschiedene zugeordnete Funktion hat.

Es gilt dann der Satz⁹):

Jede Funktion des Körpers K(x, y, z) läßt sich auf eine und nur eine Art in eine endliche Zahl von Primteilern erster Art zerlegen,

⁹⁾ Jung A, § 3.

und zwei Funktionen, die dieselben Primteiler erster Art in derselben Potenz enthalten, unterscheiden sich höchstens durch einen konstanten Faktor.

Es genügt also, die Primteiler erster Art anzugeben. Damit ist nicht gemeint, daß die Funktion keine anderen Primteiler enthält, kann auch nicht gemeint sein, da ja jede Funktion unendlich viele Primteiler enthält.

Ferner gilt:

Hat man für die Funktion R des Körpers K(x, y, z) die Zerlegung $R = \mathfrak{P}_1^{q_1}\mathfrak{P}_2^{q_2}\ldots\mathfrak{P}_a^{q_a}$

in Primfaktoren, und ist $\mathfrak{P}_{\alpha}(u,v)$ die zugeordnete Funktion von \mathfrak{P}_{α} für eine Stelle S, so ist

$$R = \mathfrak{P}_1(u, v)^{\varrho_1} \mathfrak{P}_2(u, v)^{\varrho_2} \dots \mathfrak{P}_u(u, v)^{\varrho_u} E(u, v)$$

die Darstellung von R in der Umgebung von S durch die Hilfsgrößen u, v. Dabei ist E eine Einheit für die Stelle S.

Die Primteiler erster Art teilen wir wieder in zwei Arten. (10) Ist \mathfrak{P} ein solcher Primteiler, so werden für $\mathfrak{P}=0$ entweder x und y beide konstant oder nicht. Im ersten Fall heißt \mathfrak{P} Punktprimteiler, im zweiten Falle Kurvenprimteiler. (11)

b) Die Primteiler zweiter Art. 12)

Jeder Primteiler \mathfrak{B} zweiter Art gehört zu einer bestimmten Stelle, etwa zur Stelle S. Sind u, v die Hilfsgrößen, durch die wir die Funktionen des Körpers K(x, y, z) in der Umgebung von S darstellen, so können wir \mathfrak{B} so definieren:

Wir setzen:

$$\overline{v} = a_1 u^{\frac{\alpha_1}{\beta'}} + a_2 u^{\frac{\alpha_2}{\beta'}} + \dots + a_{i-1} u^{\frac{\alpha_{\nu-1}}{\beta'}} + t u^{\frac{\beta''}{\beta'}},$$

wo die Exponenten von u positive rationale Zahlen mit dem Hauptnenner β' sind, wo $\alpha_1 < \alpha_2 < \cdots < \alpha_{r-1} < \beta''$ und wo die a_z konstant sind, während t ein Parameter ist. Stellt man alle Funktionen aus K(x, y, z) durch u, v dar, setzt dann $v = \overline{v}$, ordnet nach Potenzen von u und setzt dann u = 0, so gehen alle Funktionen aus K(x, y, z) in rationale Funktionen von t [oder in Konstante] über. Wir erhalten so eine Abbildung von K(x, y, z) auf einen Körper $\mathfrak B$ vom Geschlechte 0, der ein Primteiler zweiter Art von K(x, y, z) ist. \overline{v} heißt die $\mathfrak B$ definierende Funktion. Es gelten die Sätze:

¹⁰⁾ Jung A. § 2.

¹¹⁾ Die Primteiler, die Hensel mit Hilfe seiner Reihenentwicklungen definiert, sind die Kurvenprimteiler (vgl. Hensel C, § 15).

¹²⁾ Jung A, § 2, Nr. 2, Jung F, Nr. 3.

1. Ist R eine Funktion aus K(x, y, z), und stellen wir R in der Umgebung von S durch u, v dar, setzen dann $v = \overline{v}$ und entwickeln nach steigenden Potenzen u, so ist R genau durch \mathfrak{B}^{λ} teilbar, wenn das Anfangsglied die λ^{te} Potenz von $u^{\overline{x}}$ enthält. Diese Definition

das Anfangsglied die λ^{te} Potenz von u^s enthält. Diese Definition stimmt mit der in Nr. 4 gegebenen überein. Denn aus der Theorie der algebraischen Funktionen einer Veränderlichen folgt, daß es immer eine rationale Funktion T von u, v gibt, so daß $T(u, \bar{v})$ genau durch

die erste Potenz von $u^{\overline{s'}}$ teilbar wird. Da aber u und v rationale Funktionen von x, y, z sind, so ist T eine Funktion des Körpers K(x, y, z), und diese wird für $\mathfrak{B} = 0$ von möglichst niedriger Ordnung null. Und man definiert: Ist \mathfrak{P} ein durch S gehender Primteiler erster Art, und beginnt die Entwicklung von $\mathfrak{P}(u, \overline{v})$ nach steigenden Po-

tenzen von u mit der μ^{ten} Potenz von $u^{\overline{x}}$, so sagt man, \mathfrak{P} ist durch \mathfrak{B}^u teilbar. Die Primteiler zweiter Art sind also in denen erster Art enthalten und durch diese mitbestimmt.

2. Ist der Hauptnenner der Exponenten $\frac{\alpha_1}{\beta'}$, $\frac{\alpha_2}{\beta'}$, \cdots $\frac{\alpha_{r-1}}{\beta'}$ gleich δ , und ist $\beta' = \varepsilon \delta$, so sind die Funktionen des Körpers \mathfrak{B} rationale Funktionen von $\tau = t^{\varepsilon}$,

und es ist τ selbst eine Funktion des Körpers 3.

Man setzt¹³)

(7)
$$\operatorname{Norm} (v - \overline{v}) = B(u, v; \tau),$$

wobei die Norm in bezug auf die zu \bar{v} konjugierten Entwicklungen zu bilden ist. Es ist die Norm B eine ganze rationale Funktion von u, v und τ . Sie heißt die Eichfunktion von \mathfrak{B} . Ihr Grad in u, v ist (β', β'') . Die Zahl $\beta = \beta' + \beta'' - 1$ heiße die Ordnung von \mathfrak{B} .

6. Die Primteiler zweiter Stufe. 14) Jeder Primteiler erster Stufe ist ein algebraischer Körper einer Veränderlichen. Die Primteiler, die zu den Stellen eines solchen Körpers gehören, heißen Primteiler zweiter Stufe des Körpers K(x, y, z). Ist im besonderen $\mathfrak P$ ein Primteiler erster Art, und ist $\mathfrak P(u, v)$ seine zugeordnete Funktion für eine Stelle S, durch die $\mathfrak P$ geht, so gibt die Gleichung $\mathfrak P(u, v) = 0$ für v eine oder mehrere Lösungen, die für u = 0 verschwindende gewöhnliche Potenzreihen von u oder einer gebrochenen Potenz von u sind. Ist etwa v_1 eine solche Lösung, und schreitet v_1 nach ganzen Potenzen von $u^{\frac{1}{\alpha}}$

¹³⁾ Jung F, Nr. 3, Schluß.

¹⁴⁾ Jung B, § 3.

fort, so ordnen wir v_1 einen Primteiler zweiter Stufe \mathfrak{p}_1 zu, indem wir definieren, der Primteiler erster Art \mathfrak{D} ist durch \mathfrak{p}_1^2 teilbar, wenn $\mathfrak{D}(u,v_1)$ durch $u^{\overline{u}}$ teilbar ist. Man kann so für jeden Primteiler [zweiter Stufe] von \mathfrak{P} bestimmen, ob und in welcher Potenz er in \mathfrak{D} enthalten ist. Das Produkt aller in \mathfrak{D} aufgehenden solchen Primteiler, jeden in der in \mathfrak{D} enthaltenen Potenz genommen, sei mit \mathfrak{q} bezeichnet. Man sagt dann: \mathfrak{D} geht für $\mathfrak{P}=0$ in \mathfrak{q} über. Ist $\mathfrak{D}=\mathfrak{D}_1^{r_1}\mathfrak{D}_1^{r_2}\ldots\mathfrak{D}_r^{r_r}$ ein Produkt von Primteilern erster Art, und geht \mathfrak{D}_1 für $\mathfrak{P}=0$ über in \mathfrak{q}_1 , so geht \mathfrak{D} für $\mathfrak{P}=0$ über in $\mathfrak{q}_1^{r_1}\mathfrak{q}_2^{r_2}\ldots\mathfrak{q}_r^{r_r}$. Ist im besonderen \mathfrak{D} eine Funktion aus K(x,y,z), so erhalten wir so die Zerlegung von \mathfrak{D} in Primteiler des Körpers \mathfrak{P} .

Man kann für jede Stelle S, durch die $\mathfrak P$ geht, bestimmen, durch welche Potenz der zu S gehörenden Primteiler von $\mathfrak P$

$$\frac{1}{d\,u}\,\frac{\hat{c}\,\mathfrak{P}}{\hat{c}\,v}\quad\text{oder}\quad\frac{1}{d\,v}\,\frac{\hat{c}\,\mathfrak{P}}{\hat{c}\,u}^{\,14\,a}\big)$$

teilbar ist. Das Produkt aller dieser Primteiler, jeder in der festgestellten Potenz genommen, sei bezeichnet mit $\mathfrak{d}_{\mathfrak{P}}$. Es heißt $\mathfrak{d}_{\mathfrak{P}}$ der Divisor der mehrfachen Stellen von \mathfrak{P} . Seine Ordnung ist immer endlich und immer gerade. Sie sei bezeichnet mit $2\sigma_{\mathfrak{P}}$.

7. Divisoren, Divisorenklassen. ¹⁵) Ein Produkt von irgendwelchen Primteilern, jeden in irgendeiner positiven oder negativen ganzzahligen Potenz genommen, heißt Divisor. Kommen keine negativen Potenzen von Primteilern in ihm vor, so heißt er ganz. Ist $\mathfrak L$ ein Divisor erster Art, enthält also $\mathfrak L$ nur Primteiler erster Art, und ist $\mathfrak b$ ein Divisor zweiter Art, so ist $\mathfrak L\mathfrak b^{-1}$ ganz, wenn $\mathfrak L$ durch $\mathfrak b$ teilbar ist. Ist $\mathfrak r$ ein Divisor zweiter Stufe, dessen Primteiler zum Körper $\mathfrak B$ einer Veränderlichen gehören, so ist $\mathfrak L\mathfrak r^{-1}$ ganz, wenn $\mathfrak L$ durch $\mathfrak r$ teilbar ist, wenn also für $\mathfrak B=0$ der Divisor $\mathfrak L$ in einen durch $\mathfrak r$ teilbaren Divisor des Körpers $\mathfrak P$ übergeht.

Ebenso wie bei algebraischen Funktionen einer Veränderlichen heißen zwei Divisoren äquivalent (\sim), wenn ihr Quotient eine Funktion des Körpers ist. Alle zueinander äquivalenten Divisoren bilden eine Klasse. Jede Klasse ist durch irgendeinen in ihr enthaltenen Divisor vollkommen bestimmt. Ist $\mathfrak Q$ ein Divisor, so wird die Klasse, der $\mathfrak P$ angehört, mit ($\mathfrak Q$) bezeichnet. Sind $\mathfrak Q_1$ und $\mathfrak Q_2$ zwei Divisoren erster Stufe, so heißt die Klasse ($\mathfrak Q_1,\mathfrak Q_2$) das Produkt und die Klasse ($\mathfrak Q_1$) der Quotient der Klassen ($\mathfrak Q_1$), ($\mathfrak Q_2$).

¹⁴a) Da $\mathfrak{P} = 0$, so ist $d\mathfrak{P} = \frac{\partial \mathfrak{P}}{\partial u} du + \frac{\partial \mathfrak{P}}{\partial v} dv = 0$ oder $\frac{1}{du} \frac{\partial \mathfrak{P}}{\partial v} = -\frac{1}{dv} \frac{\partial \mathfrak{P}}{\partial u}$.
15) Jung B, § 8.

Die Klasse, der die Funktionen des Körpers K(x, y, z) angehören, heißt Hauptklasse. Eine zweite besondere Klasse ist die kanonische Klasse. Sie wird folgendermaßen definiert. Ist S irgendeine Stelle des Körpers K(x, y, z), und sind u, v die Hilfsgrößen, so wird

$$dx dy = \left(\frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}\right) du dv = \mathfrak{G}(u, v) du dv,$$

wo \mathfrak{G} eine gewöhnliche Potenzreihe von u, v ist. Ist $\mathfrak{G}(u, v)$ keine Einheit für die Stelle u = v = 0, so läßt sich \mathfrak{G} als Produkt von zugeordneten Funktionen von Primteilern erster Art darstellen, $\mathfrak{G} = \mathfrak{P}_1^{\alpha_1}\mathfrak{P}_2^{\alpha_2}\ldots\mathfrak{P}_r^{\alpha_r}$. Min sagt dann, $dx\,dy$ ist durch $\mathfrak{P}_1^{\alpha_1}\mathfrak{P}_2^{\alpha_2}\ldots\mathfrak{P}_r^{\alpha_r}$ teilbar. Macht man diese Überlegung für alle Stellen S, so erhält man einen Divisor, durch den $dx\,dy$ teilbar ist. Dieser hat die Form

$$\Re = \frac{\Im^{xy}}{\mathcal{L}^2 \mathcal{M}^2},$$

wo \mathfrak{L} , \mathfrak{M} die Nenner von x,y sind, während \mathfrak{J}_{xy} ein ganzer Divisor ist. Die Klasse (\mathfrak{K}) heißt die kanonische Klasse des Körpers K(x,y,z). Über die in \mathfrak{J}_{xy} enthaltenen Primteiler gilt folgendes:

- a) Ist $\mathfrak P$ ein Punktprimteiler, so ist er mindestens in der ersten Potenz in $\mathfrak F_{rs}$ enthalten.
- b) Ist $\mathfrak P$ ein Kurvenprimteiler von der Verweigungsordnung a-1, so ist $\mathfrak P$ genau in der (a-1)-ten Potenz in $\mathfrak T_{xy}$ enthalten.

Der Divisor \mathfrak{F}_{xy} heißt Verzweigungsdivisor von K(x,y,z) in bezug auf xy. Es gilt der Satz: Das Differential $R\,dx\,dy$, wo R eine Funktion aus K(x,y,z) ist, wird dann und nur dann nirgends unendlich, wenn

$$R = \frac{\mathfrak{L}^{2} \mathfrak{M}^{2}}{\mathfrak{J}_{xy}} \mathfrak{G},$$

wo & ein ganzer Divisor der kanonischen Klasse ist. 16)

Zwei Klassen, deren Produkt gleich der kanonischen Klasse ist, heißen Ergänzungsklassen.

Sind \mathfrak{F}_{yz} , \mathfrak{F}_{zx} die Verzweigungsdivisoren in bezug auf yz, zx und ist $\mathfrak N$ der Nenner von z, so bestehen die Gleichungen¹⁷)

$$(9) \quad \frac{\partial G}{\partial x} = \frac{\mathfrak{T}\mathfrak{J}_{yz}}{\mathfrak{Q}^{1-2}\mathfrak{M}^m\mathfrak{N}^n}, \quad \frac{\partial G}{\partial y} = \frac{\mathfrak{T}\mathfrak{J}_{zx}}{\mathfrak{Q}^{1}\mathfrak{M}^{m-2}\mathfrak{N}^n}, \quad \frac{\partial G}{\partial z} = \frac{\mathfrak{T}\mathfrak{J}_{xy}}{\mathfrak{Q}^{1}\mathfrak{M}^m\mathfrak{N}^{n-2}}.$$

wo (l, m, n) der Grad von G(x, y, z) in x, y, z ist. Der durch diese Gleichungen definierte Divisor \mathfrak{D} ist ganz in bezug auf die Kurvenprimteiler, aber nicht notwendig ganz in bezug auf die Punktprim-

¹⁶⁾ Landsberg A, Jung A. Bei Landsberg sind die Punktprimteiler nicht berücksichtigt. E, Nr. 11. Dort werden vom kanonischen System ausgezeichnete Kurven abgesondert.

¹⁷⁾ Jung, Über den Doppelkurvendivisor einer algebraischen Fläche, Jahresbericht der D. Math.-Ver. 19 (1910) S. 199.

teiler. Er wird null längs der mehrfachen Kurven von G und heißt der Divisor der mehrfachen Kurven von G.

Über D gilt der Satz:

Ist eine Funktion des Körpers K(x, y, z) darstellbar in der Form

$$H = \frac{\mathfrak{D}\mathfrak{H}}{\mathfrak{L}^{\lambda}\mathfrak{M}^{\mu}\mathfrak{N}^{\tau}},$$

wo \mathfrak{H} ein ganzer Divisor ist, so ist H als ganze rationale Funktion von x, y, z darstellbar, und zwar, wenn $\lambda \geq l-1$, $\mu \geq m-1$, $\nu \geq n-1$ als ganze rationale Funktion vom Grade (λ, μ, ν) in x, y, z.

Aus (9) folgt, daß die kanonische Klasse auch durch den Divisor $\mathfrak{N}^{n-2}\mathfrak{N}^{m-2}\mathfrak{N}^{n-2}\mathfrak{N}^{n-2}\mathfrak{N}^{-1}$

definiert werden kann.

8. Grad und Geschlecht einer Klasse. 18) Ist $\mathfrak P$ ein Primteiler erster Art und $\mathfrak Q$ ein Divisor erster Stufe erster Art, der $\mathfrak P$ nicht enthält, so wird die Ordnung des Divisors $\mathfrak q$, in den $\mathfrak Q$ für $\mathfrak P=0$ übergeht, mit $(\mathfrak P,\mathfrak Q)$ bezeichnet und die Zahl der Schnittpunkte von $\mathfrak P$ und $\mathfrak Q$ genannt. Ist $\mathfrak Q_1 \sim \mathfrak Q_2$, und gehen $\mathfrak Q_1$ und $\mathfrak Q_2$ für $\mathfrak P=0$ in $\mathfrak q_1$ und $\mathfrak q_2$ über, so ist $\mathfrak q_1 \sim \mathfrak q_2$. Es gehen also die Divisoren einer Klasse $(\mathfrak Q)$ für $\mathfrak P=0$ über in die Divisoren einer Klasse $(\mathfrak q)$ des Körpers $\mathfrak P$. Daher ist auch $(\mathfrak P,\mathfrak Q)$ gleich der Ordnung der Klasse, in die $(\mathfrak Q)$ für $\mathfrak P=0$ übergeht, so daß $(\mathfrak P_1,\mathfrak Q_1)=(\mathfrak P_1,\mathfrak Q_2)$, wenn $\mathfrak Q_1 \sim \mathfrak Q_2$. Es hat also $(\mathfrak P,\mathfrak Q)$ auch eine Bedeutung, wenn $\mathfrak P$ in $\mathfrak Q$ enthalten ist. Sind $\mathfrak P_1$ und $\mathfrak P_2$ zwei Primteiler erster Art, so ist $(\mathfrak P_1,\mathfrak P_2)=(\mathfrak P_2,\mathfrak P_1)$. Sind $\mathfrak Q_1$ und $\mathfrak Q_2$ zwei Divisoren erster Art, und ist in Primteiler zerlegt

$$\mathfrak{D}_{1} = \mathfrak{P}_{1}^{\alpha_{1}} \mathfrak{P}_{2}^{\alpha_{2}} \dots \mathfrak{P}_{r}^{\alpha_{r}}, \quad \mathfrak{D}_{2} = \mathfrak{P}_{1}^{\beta_{1}} \mathfrak{P}_{2}^{\beta_{2}} \dots \mathfrak{P}_{r}^{\beta_{r}},$$

so setzt man

(10)
$$(\mathfrak{D}_1, \mathfrak{D}_2) = (\mathfrak{D}_2, \mathfrak{D}_1) = \sum \alpha_k \beta_l^*(\mathfrak{P}_k, \mathfrak{P}_l).$$

Ist $\mathfrak{D}_1 \sim \mathfrak{D}_1'$, $\mathfrak{D}_2 \sim \mathfrak{D}_2'$, so ist $(\mathfrak{D}_1, \mathfrak{D}_2) = (\mathfrak{D}_1', \mathfrak{D}_2')$. Man nennt $(\mathfrak{D}_1, \mathfrak{D}_2)$ die Zahl der Schnittpunkte der Divisoren \mathfrak{D}_1 , \mathfrak{D}_2 . Es ist hiernach $(\mathfrak{D}_1, \mathfrak{D}_2)$ auch definiert, wenn \mathfrak{D}_1 und \mathfrak{D}_2 gemeinsame Primteiler haben.

Im besonderen heißt (D, D) der Grad der Klasse (D).

Es sei \$\psi\$ ein Primteiler erster Art, \$\delta_B\$ sei sein Divisor der mehrfachen Stellen.

Unter den Klassen des Körpers $\mathfrak P$ ist von besonderer Bedeutung die kanonische Klasse (k). Es fragt sich, welche Klasse von K(x,y,z)

¹⁸⁾ Jung D.

für $\mathfrak{P}=0$ in (k) übergeht. Es gilt der Satz¹⁹): Ist (\mathfrak{R}) die kanonische Klasse von K(x,y,z), so geht die Klasse $(\mathfrak{R}\mathfrak{P}\mathfrak{d}_{\mathfrak{P}}^{-1})$ für $\mathfrak{P}=0$ in die kanonische Klasse von \mathfrak{P} über. Da der Grad dieser Klasse gleich $2\pi_{\mathfrak{P}}-2$ ist, wenn $\pi_{\mathfrak{P}}$ das Geschlecht von \mathfrak{P} ist, so folgt

$$(11) 2\pi_{\mathfrak{P}} - 2 = (\mathfrak{P}, \mathfrak{P}\mathfrak{R}) - 2\sigma_{\mathfrak{P}},$$

wenn $2\sigma_{\mathfrak{P}}$ die Ordnung von $\mathfrak{d}_{\mathfrak{P}}$ ist.

Hiernach definiert man als Geschlecht einer Klasse (\mathfrak{Q}) , wo \mathfrak{Q} ein Divisor erster Art ist, die Zahl

(12)
$$\tilde{\pi}_{\mathfrak{Q}} = \frac{1}{2}(\mathfrak{Q}, \mathfrak{Q}\mathfrak{K}) + 1.$$

Wenn $\mathfrak D$ ein ganzer Divisor aus $(\mathfrak D)$ ist, so ist $\tilde{\pi}_{\mathfrak D}$ identisch mit dem virtuellen Geschlecht der $\mathfrak D$ auf der Fläche G entsprechenden Kurve.

Nach M. Noether heißt das Geschlecht $p^{(1)}$ der kanonischen Klasse das Kurvengeschlecht der Fläche G und der Grad der kanonischen Klasse, eine auch von M. Noether eingeführte Zahl, wird mit $p^{(2)}$ oder auch mit $\omega - 1$ bezeichnet. Es ist $p^{(1)} = \frac{1}{2}(\widehat{\mathbb{R}}, \mathbb{R}^2) + 1 = (\widehat{\mathbb{R}}, \widehat{\mathbb{R}}) + 1$, so daß sich sehr einfach die Noethersche Gleichung $p^{(2)} = p^{(1)} - 1$ ergibt.

9. Birationale Transformation.²⁰) Sind ξ, η irgend zwei Funktionen des Körpers K(x, y, z), die nicht konstant sind und zwischen denen keine Gleichung besteht, so können wir ξ, η geradesogut als unabhängige Veränderliche wählen wie x, y. Es gibt immer eine Größe ξ aus K(x, y, z), so daß alle Funktionen aus K(x, y, z) auch als rationale Funktionen von ξ, η, ξ dargestellt werden können, wo zwischen ξ, η, ξ eine irreduktible Gleichung $\Gamma(\xi, \eta, \xi) = 0$ besteht. Es sind die Körper K(x, y, z) und $K(\xi, \eta, \xi)$ miteinander identisch. Den Übergang von einem zum andern nennt man birationale Transformation.

Bei der birationalen Transformation bleiben die Primteiler invariant, sowohl die erster wie zweiter Stufe. Aber die Einteilung der Primteiler erster Stufe in zwei Arten ist nicht invariant, da diese abhängt von der Definition der Stellen und damit von der Wahl der unabhängigen Veränderlichen. Man nennt diejenigen Primteiler, die in bezug auf K(x, y, z) und $K(\xi, \eta, \xi)$ von verschiedener Art sind, ausgezeichnete Primteiler oder Fundamentalprimteiler für die Transformation. Ihre Zahl ist immer endlich. Man nennt ferner diejenigen Primteiler erster Art von K(x, y, z), die überhaupt bei irgendeiner Transformation in einen Primteiler zweiter Art übergehen können, ausgezeichnete Primteiler von K(x, y, z). Ihnen entsprechen auf der Fläche G die ausgezeichneten Kurven. Es seien $\mathfrak{A}_1, \mathfrak{A}_2, \ldots \mathfrak{A}_2$ diejenigen Primteiler

¹⁹⁾ Jung B und Jung G; E, Nr. 12, 13. Hier zeigt sich besonders deutlich, wie viel einfacher die Definitionen mit Hilfe der arithmetischen Theorie werden.

²⁰⁾ Jung A und Jung F.

erster Art von K(x, y, z), die in bezug auf $K(\xi, \eta, \xi)$ von der zweiten Art sind. Sie seien als Primteiler von $K(\xi, \eta, \xi)$ bezeichnet mit $\mathfrak{a}_1, \mathfrak{a}_2, \ldots \mathfrak{a}_{\lambda}$. Es seien $\mathfrak{B}_1, \mathfrak{B}_2, \ldots \mathfrak{B}_{\mu}$ die Primteiler erster Art von $K(\xi, \eta, \xi)$, die in bezug auf K(x, y, z) von der zweiten Art sind. Sie seien als solche bezeichnet mit $\mathfrak{b}_1, \mathfrak{b}_2, \ldots \mathfrak{b}_{\mu}$. Ist \mathfrak{P} irgendein Primteiler erster Art von K(x, y, z), so bezeichnet man mit $s(\mathfrak{P})$ das Produkt der in \mathfrak{P} enthaltenen Primteiler $\mathfrak{b}_1, \mathfrak{b}_2, \ldots \mathfrak{b}_{\mu}$, jeden in der Potenz genommen, in der er in \mathfrak{P} enthalten ist. Die entsprechende Bedeutung habe $s(\mathfrak{D}')$, wenn \mathfrak{D}' ein Primteiler erster Art in bezug auf $K(\xi, \eta, \xi)$ ist.

Ist $\mathfrak P$ ein Primteiler erster Art in bezug auf K(x,y,z) und nicht einer der ausgezeichneten Primteiler $\mathfrak A_{\alpha}$, so bezeichnen wir $\mathfrak P$ als Primteiler von $K(\xi,\eta,\zeta)$ mit $\mathfrak P'$. Es gelten dann folgende Transformationsgleichungen

(13)
$$\frac{\mathfrak{A}_k}{s(\mathfrak{A}_k)} = \mathfrak{a}_k, \qquad \frac{\mathfrak{B}_k}{s(\mathfrak{B}_k)} = \mathfrak{b}_k, \qquad \frac{\mathfrak{F}}{s(\mathfrak{F})} = \frac{\mathfrak{F}'}{s(\mathfrak{F}')}.$$

Wenn die Klasse (\Re) oder eine ihrer positiven Potenzen einen ganzen Divisor enthält, so ist $s(\mathfrak{A}_k) = s(\mathfrak{B}_k) = 1$. 21)

Es sei $A_k(u, v; \tau)$ die Eichfunktion von \mathfrak{a}_k und $B_k(u, v; \sigma_k)$ die von \mathfrak{h}_k . Die Ordnung von A_k in (u, v) sei (α'_k, α''_k) , die bei B_k sei (β'_k, β'_k) . Setzt man

(14)
$$\alpha_{k} = \alpha_{k}' + \alpha_{k}'' - 1, \quad \beta_{k} = \beta_{k}' + \beta_{k}'' - 1, \\ \alpha = \alpha_{1}^{\alpha_{1}} \alpha_{2}^{\alpha_{2}} \dots \alpha_{k}^{\alpha_{k}}, \quad b = b_{1}^{\beta_{1}} b_{2}^{\beta_{2}} \dots b_{n}^{\beta_{n}},$$

so geht die Klasse $(\Re \mathfrak{b})$ über in die Klasse $(\Re'\mathfrak{a})$, wenn (\Re) die kanonische Klasse von K(x,y,z) und (\Re') die von $K(\xi,\eta,\xi)$ ist. Hieraus folgt dann leicht der Satz, daß jeder ganze Divisor der Klasse (\Re) durch alle ausgezeichneten Kurven des Körpers K(x,y,z) teilbar sein muß.

Es sei noch bemerkt, daß sich die Zahl der Schnittpunkte von zwei Primteilern \mathfrak{a}_k , \mathfrak{a}_l oder \mathfrak{b}_k , \mathfrak{b}_l so definieren läßt, daß die Zahl der Schnittpunkte zweier aus Primteilern erster Art von K(x,y,z) und aus Primteilern \mathfrak{b}_k zusammengesetzten Divisoren gleich der Zahl der Schnittpunkte derjenigen Divisoren ist, in die sie beim Übergang zu $K(\xi,\eta,\xi)$ übergehen. Dabei ist die Zahl der Schnittpunkte eines Divisors erster Art von K(x,y,z) mit einem der Primteiler \mathfrak{b}_k und ebenso die Zahl der Schnittpunkte eines Divisors erster Art von $K(\xi,\eta,\xi)$ mit einem Primteiler \mathfrak{a}_k gleich null zu setzen. So folgt z. B. aus $(\mathfrak{F}\mathfrak{b}) = (\mathfrak{F}'\mathfrak{a})$

(15)
$$(\Re, \Re) + (\mathfrak{b}, \mathfrak{b}) = (\Re', \Re') + (\mathfrak{a}, \mathfrak{a}).$$

²¹⁾ Jung F, Nr. 8.

Wenn die Klasse (3) oder eine ihrer positiven Potenzen einen ganzen Divisor enthält, so folgt hieraus 22)

(16)
$$(\Re, \Re) + \lambda = (\Re', \Re') + \mu,$$

wo λ die Zahl der \mathfrak{a}_k und μ die der \mathfrak{b}_k ist.

10. Fundamentalsysteme für die Vielfachen eines Divisors. 35) Es seien \mathfrak{L} , \mathfrak{M} die Nenner von x und y. Es sei \mathfrak{L} irgendein \mathfrak{L} und \mathfrak{M} nicht enthaltender Divisor erster Art. Man kann sich die Aufgabe stellen, alle Funktionen aus K(x,y,z) zu bestimmen, die in der Form darstellbar sind

$$\frac{\mathfrak{D}\mathfrak{G}}{\mathfrak{V}^{\lambda}\mathfrak{M}^{\prime\prime}},$$

wo & ein ganzer Divisor ist. Wir nennen die Funktionen der Form (17) Vielfache von D. Wenn aber & nur ganz ist in bezug auf Kurvenprimteiler, so nennen wir sie unvollständige Vielfache von D.

Es gelten die Sätze:

Man kann n Funktionen $\xi_1, \xi_2, \ldots, \xi_n$ des Körpers K(x, y, z) so finden, daß alle unvollständigen Vielfachen von $\mathfrak Q$ und nur diese sich in der Form darstellen lassen

$$g_1\xi_1 + g_2\xi_2 + \cdots + g_n\xi_n$$

wo die g_{α} ganze rationale Funktionen von x, y sind. Die Funktionen $\xi_1, \xi_2, \ldots, \xi_n$ heißen ein Fundamentalsystem für die Vielfachen von \mathfrak{Q} .

Das zum System (ξ_{kl}) reziproke und adjungierte System ist Fundamentalsystem für die unvollständigen Vielfachen von $\Im_{ru} \mathfrak{D}^{-1}$.

Während sich aus den entsprechenden Sätzen bei den algebraischen Funktionen einer Veränderlichen sehr einfach der Riemann-Rochsche Satz ergibt, ist das hier nicht der Fall.

IV. Die Zeuthen-Segresche Invariante und das numerische Geschlecht.

11. Die Fläche F^{24}) Es seien \mathfrak{A}_1 , \mathfrak{A}_2 , \mathfrak{A}_3 , \mathfrak{A}_4 vier linear unabhängige zueinander äquivalente ganze Divisoren und \mathfrak{A}_0 sei irgendein Divisor der Klasse (\mathfrak{A}_{σ}) . Es sind dann

$$x_1 = \frac{\mathfrak{A}_1}{\mathfrak{A}_0}, \quad x_2 = \frac{\mathfrak{A}_2}{\mathfrak{A}_0}, \quad x_3 = \frac{\mathfrak{A}_2}{\mathfrak{A}_0}, \quad x_4 = \frac{\mathfrak{A}_4}{\mathfrak{A}_0}$$

Funktionen des Körpers K und ebenso die Quotienten $x_1: x_4, x_2: x_4, x_3: x_4$. Zwischen diesen besteht also eine irreduzible algebraische Gleichung, so daß die x_a einer homogenen Gleichung

$$F(x_1, x_2, x_3, x_4) = 0$$

- 22) Jung F, Nr. 9.
- 23) Hensel A; Jung B.
- 24) Jung H, Kap. I, § 2-4; Jung J, I und II.

genügen. Deuten wir die x_{α} als homogene Punktkoordinaten, so wird hierdurch eine algebraische Fläche F definiert, und umgekehrt läßt sich jede algebraische Fläche in dieser Weise definieren. Wir können und wollen annehmen, daß der Körper K mit dem Körper der rationalen Funktionen von $x_1: x_4, x_2: x_4, x_3: x_4$ übereinstimmt.

Es seien x_1' , x_2' , x_3' , x_4' die Ebenenkoordinaten der Tangentialebenen von F, und es sei $x_\alpha' = \frac{\mathfrak{A}'_\alpha}{\mathfrak{A}'_0}$, wo \mathfrak{A}'_α ganze Divisoren ohne gemeinsame Teiler sein sollen. Durch passende Definition der Stellen des Körpers K(x,y,z) kann man erreichen, daß weder die \mathfrak{A}_α noch die \mathfrak{A}'_α an einer Stelle gleichzeitig verschwinden. Es entspricht dann jeder Stelle von K(x,y,z) eineindeutig eine Stelle von F und eine Berührungsebene. Ist ferner \mathfrak{B} ein Primteiler zweiter Art des Körpers K(x,y,z), so werden für $\mathfrak{B}=0$ sowohl die Verhältnisse der \mathfrak{A}'_α wie die der \mathfrak{A}''_α konstant, so daß jedem Primteilen zweiter Art ein bestimmter Punkt und eine bestimmte Tangentialebene entspricht.

Es sei jetzt $\mathfrak P$ ein Primteiler erster Art. Dann sind folgende vier Fälle möglich:

- I. Für $\mathfrak{P}=0$ werden weder die Verhältnisse der \mathfrak{A}_{α} noch die der \mathfrak{A}_{α}' konstant.
- II. Für $\mathfrak{P}=0$ werden die Verhältnisse der \mathfrak{A}_a konstant, aber nicht die der \mathfrak{A}'_a .
- III. Für $\mathfrak{P}=0$ werden die Verhältnisse der \mathfrak{A}_{α} nicht konstant, wohl aber die der \mathfrak{A}'_{α} .
- IV. Für $\mathfrak{P}=0$ werden sowohl die Verhältnisse der \mathfrak{A}_a wie die der \mathfrak{A}_a' konstant.

Wir lassen in allen vier Fällen dem Primteiler $\mathfrak P$ eine Kurve auf der Fläche F entsprechen, die wir auch mit $\mathfrak P$ bezeichnen. Im Falle I ist $\mathfrak P$ eine wirkliche Kurve, und die Berührungsebenen von F in ihren Punkten sind im allgemeinen vonein nder verschieden. Im Falle II entspricht dem Primteiler $\mathfrak P$ ein Punkt H der Fläche F, die Kurve $\mathfrak P$ ist in einem Punkt hondensiert, aber die Berührungsebenen von F in den Stellen der Kurve $\mathfrak P$ sind im allgemeinen voneinander verschieden. Sie bilden einen Kegel h mit der Spitze H. Es ist H ein isolierter singulärer Punkt von F, und der Kegel h ist der Berührungskegel von F in H. Im Falle III ist $\mathfrak P$ eine wirkliche Kurve, aber die Berührungsebenen von F in den Stellen von $\mathfrak P$ fallen alle zusammen in eine Ebene H'. Diese Ebene berührt also F längs $\mathfrak P$. Wir sagen in diesem Falle: $\mathfrak P$ ist in eine E bene hondensiert. Der Fall III entspricht dem Falle II dual. Im Falle IV ist die Kurve $\mathfrak P$ in einem Punkt H kondensiert und die Berührungsebenen von F in den Stellen

von $\mathfrak P$ fallen alle in eine Ebene H' zusammen. Die Kurve $\mathfrak P$ ist gleichzeitig kondensiert und ebene Berührungskurve. Der Punkt H kann in diesem Falle ein gewöhnlicher Punkt der Fläche F sein. Trotzdem ist es am einfachsten, auch in diesem Falle dem Primteiler $\mathfrak P$ eine Kurve auf F entsprechen zu lassen.

12. Die Zeuthen-Segresche Invariante. Es sei $c_1 \mathfrak{G}_1 + c_2 \mathfrak{G}_2$ ein Kurvenbüschel auf einer algebraischen Fläche F. Ihre Ordnung sei n, ihre Klasse n'. Es sei δ die Anzahl der Kurven des Büschels mit Doppelpunkt. Das Geschlecht einer allgemeinen Kurve des Büschels sei π , und die Zahl der festen Punkte des Büschels sei N. Dann ist $J = \delta - 4\pi - N$

nach Zeuthen und Segre eine Invariante der Fläche F, d. h. sie ist unabhängig von der Wahl des Kurvenbüschels. Sie heißt die Zeuthen-Segresche Invariante. Es entsteht die Frage, wie sind δ und N zu definieren, wenn zugelassen wird, daß unter den Kurven des Büschels irgendwie zerfallende vorkommen und wenn Kurven des Büschels irgendwelche Singularitäten haben. Diese Frage ist von Jung vollständig beantwortet.

Es sei $\mathfrak G$ irgendeine Kurve des Büschels. Es sei $\mathfrak G'$ die Kurve, die alle in $\mathfrak G$ enthaltenen Primkurven, aber jede nur einmal, enthält. Es werde gesetzt $\mathfrak G = \mathfrak D_{\mathfrak G}^{\#} \mathfrak G'$.

Natürlich ist nur für eine endliche Zahl von Kurven & die Kurve $\mathfrak{B}_{\mathfrak{G}}^*$ von 1 verschieden. Es bedeute $\nu(\mathfrak{G}')$ die Zahl der Zweige von \mathfrak{G}' , die durch die mehrfachen Stellen von \mathfrak{G}' gehen, $\varrho(\mathfrak{G}')$ die Zahl dieser Stellen. ν_a , ϱ_a seien dieselben Zahlen für eine allgemeine Kurve \mathfrak{G}_a des Büschels. Es sei ferner $\pi(\mathfrak{G}')$ das Geschlecht von \mathfrak{G}' und $2\sigma(\mathfrak{G}')$ die Ordnung des Divisors der mehrfachen Stellen von \mathfrak{G}' . Es seien π_a , $2\sigma_a$ dieselben Zahlen für eine allgemeine Kurve \mathfrak{G}_a . Das Geschlecht $\pi(\mathfrak{G}')$ soll, wenn etwa $\mathfrak{G}'=\mathfrak{P}_1\mathfrak{P}_2\ldots\mathfrak{P}_r$, wo die \mathfrak{P}_a Primkurven vom Geschlechte π_a sind, definiert sein durch

$$\pi(\mathfrak{G}')-1=\sum_{\alpha=1}'(\pi_{\alpha}-1).$$

Es sei weiter $z_S(\mathfrak{G}')$ die Zahl der Schnittpunkte von $\frac{\partial \mathfrak{G}'}{\partial u} = 0$, $\frac{\partial \mathfrak{G}'}{\partial v} = 0$ in einer mehrfachen Stelle S von \mathfrak{G}' und

$$z(\mathfrak{G}') = \sum_{S} z_{S}(\mathfrak{G}'),$$

wo die Summe über alle mehrfachen Stellen von \mathfrak{G}' zu erstrecken ist, und es bedeute δ_a dieselbe Zahl für eine allgemeine Kurve \mathfrak{G}_a des Büschels.

²⁵⁾ E, Nr. 14. Jung, E, H und K, Kap. VI.

Wir setzen dann

$$\begin{split} (18) \begin{cases} \delta(\mathfrak{G}) &= 2\pi_a - 2 + \nu_a - \varrho_a - \{2\pi(\mathfrak{G}') - 2 + \nu(\mathfrak{G}') - \varrho(\mathfrak{G}')\} \\ &= \nu_a - \varrho_a - 2\,\sigma_a - \{\nu(\mathfrak{G}') - \varrho(\mathfrak{G}') - 2\,\sigma(\mathfrak{G}')\} \\ &+ 2(\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{G}_a) - (\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{B}_{\mathfrak{G}}^*) + (\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{K}) \\ &= z_a - z(\mathfrak{G}') + 2(\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{G}_a) - (\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{B}_{\mathfrak{G}}^*) + (\mathfrak{B}_{\mathfrak{G}}^*,\mathfrak{K}). \end{split}$$

Hier ist \mathfrak{G}_a eine allgemeine Kurve des Büschels und \mathfrak{X} eine Kurve der kanonischen Klasse. Es ist dann in der Definitionsformel für die Zeuthen-Segresche Invariante zu setzen

$$\delta = \sum_{\mathfrak{G}} \delta(\mathfrak{G}),$$

wo die Summe über alle Kurven & des Büschels zu erstrecken ist. Ferner hat man zu setzen

$$(20) N = 2(\nu_a - \varrho_a) + f,$$

wo f die Zahl der festen Stellen des Büschels ist.

Für das Verhalten von J bei birationaler Transformation gilt:

Es ist
$$J + (\Re, \Re)$$

invariant bei birationaler Transformation, wo (\Re) die kanonische Klasse ist.

13. Das numerische oder arithmetische Geschlecht p_a von F. Es ist $(\Re, \Re) + J = 12 p_a + 8, 27$)

wo p_a das arithmetische Geschlecht von F ist. Da J jetzt für beliebige Flächen und Kurvenbüschel definiert ist, so ergibt sich die Möglichkeit, p_a für Flächen mit beliebigen Singularitäten zu berechnen. Man findet folgendes:

a) Es seien H_1, H_2, \ldots, H_s die isolierten singulären Punkte der Fläche F. Es sei $\mathfrak{A}^{(\alpha)}$ ein durch H_α gehender ebener Schnitt von F ohne besondere Lage. Es bedeute \mathfrak{C}_α die Kurve, die alle Primkurven von $\mathfrak{A}^{(\alpha)}$ enthält, aber jede nur in der ersten Potenz und es werde $\mathfrak{A}^{(\alpha)} = \mathfrak{B}^{(\alpha)} \mathfrak{C}_\alpha$ gesetzt. Ist \mathfrak{D} irgendeine ganze Kurve, die keine Primkurve in höherer als der ersten Potenz enthält, so verstehen wir unter $2\sigma(\mathfrak{D})$ die Ordnung ihres Divisors der mehrfachen Stellen, unter $\nu(\mathfrak{D})$ die Zahl der Zweige von \mathfrak{D} , die durch die mehrfachen Stellen gehen, und unter $\varrho(\mathfrak{D})$ die Anzahl der mehrfachen Stellen, und wir setzen

(21)
$$\mu(\mathfrak{Q}) = 2 \sigma(\mathfrak{Q}) - \nu(\mathfrak{Q}) + \varrho(\mathfrak{Q}).$$

²⁶⁾ Jung G, ferner Arbeiten von Jung in den Mitteilungen der Math. Ges. in Hamburg 5, Heft 1 (1911), p. 20; 5, Heft 2 (1913), p. 82; 5, Heft 5 (1916), p. 194. 27) E, Nr. 14.

674 HC6. Jung. Arithm. Theorie d. algebr. Funkt. zweier unabhäng. Veränderl.

Wir setzen weiter

$$(22) h_a = (\mathfrak{B}^{(a)}, \mathfrak{R}) - (\mathfrak{B}^{(a)}, \mathfrak{B}^{(a)}) + \mu(\mathfrak{C}_a)$$

und

$$(23) h = \sum_{\alpha=1}^{s} h_{\alpha}.$$

Ferner sei \Re_0 die von in Punkte kondensierten Kurven befreite Rückkehrkurve \Re , und es sei in Primkurven zerlegt

$$\mathfrak{R}_0 = \mathfrak{R}_1^{\varrho_1} \mathfrak{R}_2^{\varrho_2} \dots \mathfrak{R}_k^{\varrho_k}.$$

Es bedeute r_{α} den Rang von \Re_{α} , d. h. die Zahl der durch eine beliebige Gerade gehenden Tangenten von \Re_{α} . Wir setzen

(24)
$$r = \sum_{\alpha=1}^{k} \varrho_{\alpha} r_{\alpha}.$$

(25)
$$12(p_a+1) = (\Re, \Re) - 4(p-1) - n + n' + h + r,$$

wo p das Geschlecht eines allgemeinen ebenen Schnittes ist. Sind h', r' die den Zahlen h, r dual entsprechenden, und ist p' das Geschlecht eines allgemeinen Berührungskegels, so ist auch

(26)
$$12(p_a+1) = (\Re, \Re) - 4(p'-1) - n' + n + h' + r'.$$

Man kann der Formel für p_a verschiedene Formen geben. Z. B.

$$\begin{cases} 6 \, p_a = (n-1)(n-2)(n-3) - 4 \, b(n-3) - c(n-1) \\ + (\mathfrak{D}, \mathfrak{D}) + (\mathfrak{D}, \mathfrak{R}) + \frac{1}{2} (\mathfrak{R}, \mathfrak{R}) + \frac{1}{2} (h+r). \end{cases}$$

Für den Fall, daß F an Singularitäten nur eine Doppelkurve hat, wird h=0, $\Re=1$, r=0, und es läßt sich $(\mathfrak{D},\mathfrak{D})$ berechnen. Man erhält dann die bekannte Formel für p_a . Im allgemeinen Fall ist die Bestimmung von $(\mathfrak{D},\mathfrak{D})$, $(\mathfrak{R},\mathfrak{R})$, $(\mathfrak{R},\mathfrak{D})$ als Funktionen von n noch nicht gelungen.

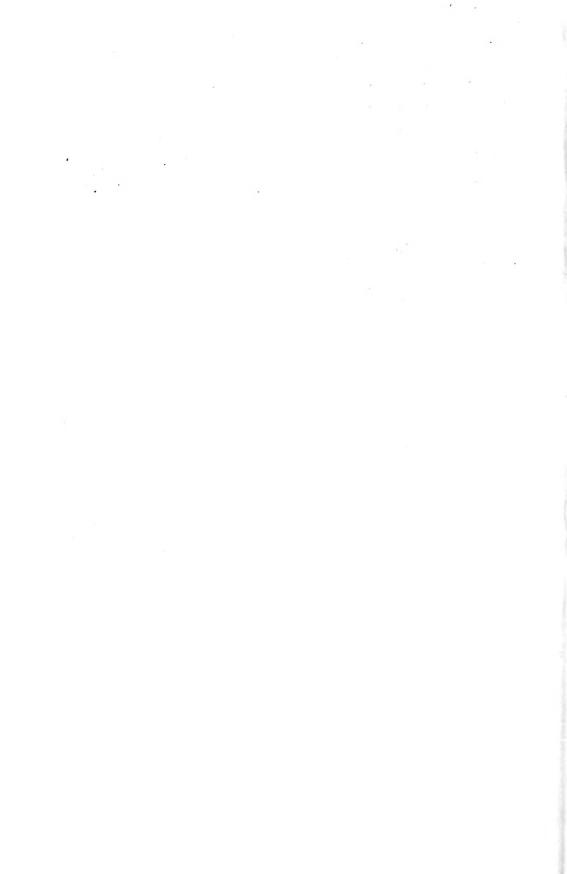
b) Verwendet man nichthomogene Koordinaten, so erhält man für p_a folgende Formel. Es sei G(r,y,z)=0 die Gleichung der Fläche G. Sie sei in x,y,z vom Grade (l,m,n) Es habe G an Singularitäten nur eine Doppelkurve vom Geschlechte π mit τ dreifachen Punkten, ferner irgendwelche isolierte Doppelpunkte und t dreifache isolierte Punkte. Ebenen senkrecht zur $x\cdot,y\cdot,z\cdot$ Achse mögen die Doppelkurve in d',d'',d'' Punkten schneiden. Dann ist 28

$$(28) \begin{cases} p_a = (l-1)(m-1)(n-1) - (l-2)d' - (m-2)d'' - (n-2)d''' \\ + \pi + 2\tau - t - 1. \end{cases}$$

²⁸⁾ Jung, Mitteil d. Math. Ges. in Hamburg 5, Heft 1, p. 21. Dort steht durch einen Fehler in der Berechnung 3τ statt 2τ .

,

676. .



QA 36 E62 Bd.2 T.3 Hfte.1 Encyklopidie der methemetischen Wissenschaften mit Einschluss ihrer Anwendungen

Physical &

PLEASE DO NOT REMOVE ... CARDS OR SLIPS FROM THIS POCKET

#1

UNIVERSITY OF TORONTO LIBRARY

