

GEOLOGICAL SERIES

OF
FIELD MUSEUM OF NATURAL HISTORY

NANODELPHYS, AN OLIGOCENE DIDELPHINE

By Paul O. McGrew
Assistant, Paleontology
In a former paper (McGrew, 1937) the genus Nanodelphys was described and tentatively referred to the subfamily Thlaeodontinae. The reference was based on its agreement in molar structure with the subfamily diagnosis given by Simpson (1929). However, small size, Oligocene occurrence, and lack of knowledge of premolar structure tended to make this assignment somewhat dubious.

In the course of sorting and cataloguing a collection of micromammals from the Brulé of northwestern Nebraska, three additional specimens were encountered which are unquestionably referable to Nanodelphys minutus. Teeth previously unknown in this genus, M \perp and $M^{ \pm}$, are preserved on the new specimens and offer further material for comparison.

A review of the existing Didelphidae has shown that the dentition of Nanodelphys is similar in many respects to that of certain living forms, especially Marmosa and Dromiciops. The only constant difference between Nanodelphys and all species of Marmosa is the subequal para- and metacones in the former genus. Although fairly constant within any given species of Marmosa, the stylar cusps vary greatly between different species. In some (especially M. beatrix) the stylar cusps are almost exactly like those of Nanodelphys and the Thlaeodontinae.

Except for their reduced stylar cusps, the molars of Dromiciops are almost identical with those of Nanodelphys in size and shape, and in having subequal para- and metacones. The metastylar spur is variable among the Didelphinae, being slight in some and prominent in others. Thus each character which was thought to be diagnostic of the molars of the thlaeodontines (see Simpson, 1935) may be matched in one or another living didelphine. The only character remaining which is truly diagnostic for the Thlaeodontinae seems to be the bulbous premolars. Although these teeth are unknown

394 Field Museum of Natural History-Geology, Vol. Vi

in Nanodelphys, the agreement of this form with certain members of the Didelphinae, coupled with its Oligocene age, makes its reference to that subfamily almost certain.

Nanodelphys minutus McGrew.

Holotype.-F.M. No. 25708, ${ }^{1}$ portion of left maxillary with M2 ${ }^{2-3}$.
Referred specimens.-F.M. No. P25709, portion of right maxillary with M2. F.M. No. P25719, portion of left maxillary with $\mathrm{M}^{2}{ }^{-\underline{4}}$. F.M. No. P25720, portion of left maxillary with $\mathrm{M}^{1^{-2}-2}$.

Description.-With the exception of its greater antero-posterior length in relation to transverse diameter, M 1 agrees exactly with $\mathrm{M} \underline{\underline{2}}$ and M^{3}. In relation to their antero-posterior diameters, M^{2} and M^{3} are wide transversely, with large external shelves. From the anteroexternal corner of each, projects a spur, the outer border of which is confluent with the outer border of the tooth. This spur bears the relatively low stylar cusp A. ${ }^{2}$ Immediately posterior to A and external to the paracone is the very prominent stylar cusp B. Behind B is a rather deep U-shaped valley (deeper on M^{3}) in which stylar cusp C may be greatly reduced or absent. Stylar cusp D is rather low and unites posteriorly with cusp E to form an anteroposterior crest external to the metacone. The paracone and metacone are nearly or quite equal in size and height and the V between them is shallow. The antero-external crest of the paracone unites with the anterior slope of stylar cusp B, and the postero-external crest of the metacone unites with stylar cusp E. The paraconule and metaconule are absent. The protocone is very high and is situated antero-internally, lying immediately mesial to the paracone. The protocone, paracone and stylar cusp B lie in an almost straight transverse line. The antero-external crest of the protocone extends in front of the paracone to meet the inner base of stylar cusp A; its postero-external crest terminates at the base of the metacone. M^{4} is very narrow antero-posteriorly and has stylar cusps A and B as well as the paracone and protocone well developed, but the posterior stylar cusps are lost, and the metacone is greatly reduced.

Comparisons.-Nanodelphys is closer in molar structure to Marmosa beatrix than to any other known didelphid, living or fossil. It differs, however, in certain significant characters which appear

[^0]
to be primitive. The molars of the Oligocene form are smaller and more compressed antero-posteriorly; the external shelf is broader and more deeply cleft; the stylar cusps are similarly arranged, but the second (B) is larger and higher. The paracone is reduced in M. beatrix and not in Nanodelphys. The V-shaped rotch between the paracone and metacone is shallow in Nanodelphys and deep in the living species. The protocone shelf of Nanodelphys is more compressed antero-posteriorly.

Nanodelphys differs greatly from the contemporary Peratherium. It is much smaller and the molars are more compressed anteroposteriorly. Stylar cusp B is much more strongly developed, and

Fig. 114. Nanodelphys minutus McGrew. Crown view of molar dentition, $\mathrm{M}^{1-4} . \times 20$. Composite, drawn from P25719 and P25720. Drawing by Mr. Frank Gulizia.
cusp C, which is rather strong in Peratherium, is either greatly reduced or absent. The paracone of Peratherium is reduced and the V between the paracone and metacone is much deeper. The protocone of Nanodelphys is much higher than that of Peratherium. In the latter the protocone shelf is $\cdot \mathrm{V}$-shaped, whereas it is U -shaped in Nanodelphys. The external shelf is more deeply cleft in Nanodelphys and the metacone of M^{4} is more reduced.

Nanodelphys differs from Peradectes as it does from Peratherium and Marmosa. Thylacodon, being known only from a lower jaw, can not be directly compared, but it is much larger than Nanodelphys.

Relationships.-Without more complete material it would be premature to speculate about the exact position of Nanodelphys within the Didelphinae. The molar teeth are sufficiently primitive for the genus to be regarded as structurally ancestral to any or all
of the living forms. The fact that Peratherium is closer in tooth structure to most living murine opossums and to Didelphis suggests that Nanodelphys did not hold so central a position. By reduction of the stylar cusps Nanodelphys might have given rise to Dromiciops, but it seems improbable.

TERTIARY DIDELPHIDS AND PHYLOGENY

The consensus among most writers on didelphid phylogeny has been that Marmosa represents the most primitive, structurally ancestral form. Dollo (1899), Bensley (1903), and Gregory (1910) have expressed the belief that all living genera of Didelphidae are structural descendants of that genus. Tate (1933) suggested two principal lines of descent, one giving rise to Didelphis, Chironectes, Lutreolina and Metachirus, and the other to Monodelphys, Philander, Marmosa, Glironia, and Dromiciops, the latter two branching from a marmosoid ancestor. The evidence for regarding Marmosa as prototypal is found in its unmodified prehensile hands and feet, accompanied by generally arboreal habits-conditions which are presumably primitive.

Several writers-Bensley (1906), Gregory (1910), and Simpson (1928)-have implied that the separation into the several existing genera occurred relatively recently (i.e. post-Oligocene), from Peratherium. As there is little or no structural change observable from Peratherium to Marmosa this view is supported by the paleontologic evidence.

Only one limited group of opossums in North America appears to have escaped extinction at the end of the Cretaceous (Simpson, 1928). This apparently direct, conservative line has been known from two Tertiary genera, ${ }^{1}$ Peradectes of the Paleocene, and Peratherium of the Eocene, Oligocene, and Miocene (McGrew, 1937). The dental structure of these forms is very close to certain species of Marmosa; so close, in fact, that satisfactory characters with which to separate them from the recent genus are hard to find. Peradectes is slightly more primitive in that it retains the para- and metaconules and the somewhat less reduced paracone. The stylar cusps of any of the Tertiary species may practically be duplicated in living forms.

The almost complete absence of aberrant species or genera among the fossils seems to have led to the assumption that there

[^1]was little or no diversification among Tertiary didelphids. The conclusion reached from this reasoning has been that the relatively diverse living didelphids represent incipient branches of a new expansion. Bensley (1906) stated this view as follows: "The existing Didelphyidae of South America, which might at first sight be regarded as surviving remnants of the original didelphyid radiation, may be shown to represent a third radiation which is at the present time in its very incipient stages. Of these three radiations the Australian, and the existing South American ones are directly traceable to minute primitive didelphyid forms like the existing genera Marmosa and Peramys, or Peratherium." I am of the opinion, however, that such conclusions may well prove erroneous when additional specimens are known.

The living opossums show rather wide diversity of habit with corresponding foot adaptations. Thus, Marmosa is typically arboreal with complete opposable hallux and well-developed plantar pads; Monodelphys is terrestrial with reduction of the fifth digit and planter pads; Chironectes is aquatic and has highly modified webbed feet. The dentitions of these genera are very similar, however, and no differences in tooth structure may be correlated with the widely different habits. Foot structure, then, is a most important factor in the determination of exact relationships and phylogeny within the Didelphidae--apparently more important than dental structure in such a conservative group. The fact that we do not know the feet of the Tertiary didelphids is, therefore, a serious handicap in the attempt to fit the fossil forms into a phylogenetic picture.

Although the dentition of Peratherium is usually regarded as primitive and prototypal (Winge, 1893; Bensley, 1903; Gregory, 1910; Tate, 1933) there is some indirect evidence which indicates that this genus was actually so specialized in foot structure that it could not have been ancestral to most living didelphids. This possibility is suggested by two rather striking facts: (1) Peratherium is abundant ${ }^{1}$ and is found commonly in the clays of the White River Oligocene. (2) It is nearly always found in direct association with such mammals as rabbits (Paleolagus), terrestrial rodents (Ischyromys, Eumys, Heliscomys, etc.), small artiodactyls (Leptomeryx, Hypertragulus, Hypisodus), horses (Mesohippus), and camels (Poëbrotherium).

[^2]Study of the mammals contained in the clays of the White River series led Matthew (1901) to regard them as "strictly terrestrial." He stated: "The analogy of the clay fauna is with that of the modern plains, of the sandstone fauna with that of the modern forests (with some aquatic forms)." The abundance of specimens of Peratherium in the White River clays indicates that it formed an important component of the life of the time. The number of specimens of the genus is greater than that of all insectivore genera combined. ${ }^{1}$

It is highly unlikely that an arboreal creature would occur in such abundance with terrestrial forms. The obvious conclusion, therefore, is that Peratherium was terrestrial. Further, to maintain existence so successfully ${ }^{2}$ among the numerous placentals it must have been considerably modified in foot structure. This would suggest that Peratherium, although having the generalized didelphine dentition, could hardly have been ancestral to all of the recent Didelphidae, unless arboreal modifications were secondary, which, according to Dollo (1899), does not seem to be the case. It is possible, of course, that a terrestrial form such as Monodelphys could be a direct descendant of Peratherium.

The presence of Nanodelphys in the Oligocene proves that there was at least some diversity of marsupials in the middle Tertiary of North America. It is very probable that many and diversified arboreal opossums lived throughout the Tertiary, but their habitus so rarely occasioned their presence in areas of deposition that we do not know them as fossils. It may be that the Tertiary didelphids would not be regarded as "stereotyped" or "monotonously unvaried" (Simpson, 1928) if they were adequately known.

It seems likely that many of the recent genera of didelphines originated in the early Tertiary. This view is supported by the occurrence of Lutreolina and Didelphis in the lower Pliocene of South America (Patterson, 1937). These early Pliocene forms are almost identical with living species of the same genera and do not appear to be more primitive.

[^3]Dromiciops has usually been regarded as a descendant of a marmosine. The paracone of this genus, however, is not reduced-a very primitive character-suggesting an early pre-Peratherium separation of this genus. It seems improbable that the paracone was secondarily enlarged, since it is known to have been equal in size to the metacone in primitive genera such as Pediomys and Nanodelphys.

It seems probable that the modifications seen in living didelphines may have had their origin at the time of the original early Tertiary mammalian expansion. After that time the limits of expansion in North America would have been determined by the few ecologic niches left open by placentals. In Australia and, to a lesser degree, South America similar obstacles to expansion were not encountered.

	MEASUREMENTS (In millimeters)			
	P25708	P25709	P25719	P25720
$\mathrm{M}^{1} \mathrm{~A}-\mathrm{p}$.				1.5
$\mathrm{M}^{1} \mathrm{Tr}$.				1.3
$\mathrm{M}^{2} \mathrm{~A}-\mathrm{p}$.	1.5	1.5	1.6	1.6
$\mathrm{M}^{\mathbf{2}} \mathrm{Tr}$.	1.6	2.0	1.7	1.6
$\mathrm{M}^{3} \mathrm{~A}-\mathrm{p}$.	1.3		1.6	
$\mathrm{M}^{3} \mathrm{Tr}$.	1.7		1.8	
$\mathrm{M}^{ \pm} \mathrm{A}-\mathrm{p}$.			1.0	
$\mathrm{M}^{4} \mathrm{Tr} .$.	\cdots	\ldots	1.9	

LITERATURE CITED

Bensley, B. A.
1903. On the Evolution of the Australian Marsupialia; with Remarks on the Relationships of the Marsupials in General. Trans. Linn. Soc. Lond., (2), 9, pp. 83-217, 3 figs., pls. 5-7.
1906. The Homologies of the Stylar Cusps of the Upper Molars of the Didelphyidae. Univ. Toronto Studies, Biol. Ser. No. 5, pp. 149-159, figs. 1-6.
Dollo, L.
1899. Les ancêtres des Marsupiaux, étaient-ils arboricoles? Miscellanées Biologiques, pp. 188-203.
Gregory, W. K.
1910. The Orders of Mammals. Bull. Amer. Mus. Nat. Hist., 27, pp. 1-524, figs. 1-30.
Matthew, W. D.
1901. Fossil Mammals of the Tertiary of Northeastern Colorado. Mem. Amer. Mus. Nat. Hist., 1, Part 7, pp. 355-447, figs. 1-34, pls. 37-39.
McGrew, P. O.
1937. New Marsupials from the Tertiary of Nebraska. Jour. Geol., 45, pp. 448-455, figs. 1-4.
Patterson, B.
1937. Didelphines from the Pliocene of Argentina. Proc. Geol. Soc. Amer., 1936, p. 379.

400 Field Museum of Natural History-Geology, Vol. VI

Simpson, G. G.
1928. American Eocene Didelphids. Amer. Mus. Nov., No. 307, pp. 1-7, figs. 1-5.
1929. American Mesozoic Mammalia. Mem. Peabody Mus., 3, pp. I-XV, 1-171, figs. 1-62, pls. 1-32.
1935. Note on the Classification of Recent and Fossil Opossums. Jour. Mamm., 16, pp. 134-137.
Tate, G. H. H.
1933. A Systematic Revision of the Marsupial Genus Marmosa, with a Discussion of the Adaptive Radiation of the Murine Opossums. Bull. Amer. Mus. Nat. Hist., 66, pp. 1-250, figs. 1-29, pls. 1-26.
Winge, H.
1893. Jordfundne og nulevende Pungdyr (Marsupialia) fra Lagoa Santa, Minas Geraes, Brasiliens. E. Museo Lundii, 2, pp. 1-132.

INDEX

VOLUME V

Ahumada meteorite, 1
Arispe meteorite, 2
Bishop Canyon meteorite, 3
Davis Mountains meteorite, 4
Davis Mountains meteorite, analysis of, 9
Greenland, composition of sands from, 24
Labrador, composition of sands from, 22

Macquarie River meteorite, 12
Macquarie River meteorite, analysis of, 14
Mineral composition of sands, laboratory procedure for determination of, 17-20

Quebec, composition of sands from, 20
Rawson-MacMillan Expedition, 17
South Bend meteorite, 14

VOLUME VI

Adinotherium, 17-21, 95, 107, 114, 210, $212,214,221,222,276,278,279$, 286, 298
оvinum, 17, 212-214, 220-222, 282, 286-288
Adpithecus; see Notopithecus
Aelurodon, 329
Ailuropoda, 325, 333, 334, 336, 337, 338 melanoleuca, 334
Ailurus, 325, 333, 334, 336, 337
fulgens, 333
Aletocyon, 337
multicuspis, 331
Allognathosuchus, 315, 318 mooki, 318
Amblypoda, 352, 373, 381
A meghinotherium, 132
Amherst brain cast, 279
Amphicyon americanus, 349
amnicola, 348
aurelianensis, 349
frendens, 348
idoneus, 348
ingens, 348
palaeindicus, 349
pontoni, 349
reinheimeri, 348
riggsi, 341-350
shabbazi, 349
sinapius, 348
Ancylocoelus, 166, 215
frequens, 15-17; (Colpodon [sp.), 94, 166, 215-216
Ankylodon, 267, 269, 271
annectens, 269-271
Araucanian-Entrerian series, 132
Archaeohyracidae, 131
Arctostylopidae, 108

Argyrohippus, 96, 97, 98, 161, 162, 164, 281
boulei, 161, 162
fraterculus, 96-98, 161, 162, 164, 166
praecox, 161-165
sp., 97, 109
Argyrohyrax, 21; see Plagiarthrus
proavus; see Plagiarthrus proarus
Arsinoitheria, 373
Artiodactyla, 373
Asmodeus, 100, 299
sp., 100, 107
Astrapotheria, 24, 25, 110, 176, 373
Astrapothericulus, 170
Astrapotherium, 110, 167, 173, 175-176 magnum, 167, 175

Bacteria in stony meteorites, 179
Barylambda, 229 (Titanoides), 173, 174, 229-230, 361$364,365,367,369,370,371,372$
faberi, 230, 365, 372
group, 370-371
Barylambdidae, 361, 371, 372
Barylambdinae, 230, 372
Bassariscus, $325,326,327,331,332$, 335, 336, 338
astutus, 326
Bathmodon; see Coryphodon
Bathyopsis, 374, 376, 377, 382 fissidens, 374
Bathyopsoides, 373-374, 376, 377, 379, 380, 382
harrisorum, 373, 374-378, 379, 380, 381
Bathyurus sculpinensis, 40, 59
sp., 44, 59
Bessoecetor, 268

402 Field Museum of Natural History－Geology，Vol．Vi

Bison bison，308，310， 311
Blarina，247，249， 256
Blarina brevicauda，247， 306
＂Blarinae，＂ 256
Borhyaena，63， 64
Borhyaenidae， 65
Borhyaeninae， 65
Braincasts，method of making， 273
Canis，329，330，346，347， 348
familiaris，307－308
latrans，306， 311
lupus，309， 311
Carnivora， 373
Casamayor formation， 132
Castoroides ohioensis， 306
Ceratiocaris leesi， 155 markhami， 142
Ceratosuchus，315－316
burdoshi，316－318
Cervalces roosevelti， 310
scotti， 310
Cervus canadensis， 310
Chert，analysis of， 82
Chironectes，396， 397
Chrysemys sp．， 311
Cochilius，21，86，121，134， 135
volvens，23， 88
Colhué－Huapí formation， 132
Collon－Curá formation， 132
Colpodon，15，165， 166
propinquus， 94
sp．，166；see Ancylocoelus frequens
Condylarthra，369，373， 382
Conularia manni， 147
Coresodon，109， 281
Coryphodon， $172,173,174,352,353$ ， $354,356,357,358,359,360,361$ ， $362,364,365,369,370,371,372$ group，370－371
wortmani， 357
Coryphodontidae，370，371－372， 381
Creodonta， 382
Crinoidal stems，Labrador， 36
Crista meati， 85
Crocidura russula russula， 254 group， 254
Cynarctinae， 337
Cynarctoides，324，325，327，328，330， 331，336，337， 338
Cynarctus，323，324，325，327，329，331， $335,336,337$
acridens，323，324，328， 336
crucidens， $323,324,329$
saxatilus，323， 324
Dalmanites pratteni， 67
Daphaenodon，346，347，348， 350
Daphaenus，346， 347
Deep River beds， 341
Deseado formation，132， 299
Didelphidae，393， 398

Didelphys，396， 398
Dinoceras， 377
Domnina，246－248，250，255－256
gradata，246，247，248－255
Dromiciops，393，396， 399
Echinosoricinae， 268
Elachoceras， 382
Elasmosaurus platyurus， 385
serpentinus，385－390
Embassis， 246
Entelon⿳亠口冋刂
Entomolestes， 268
Eobasileus， 382
Epitypotherium，132， 135
Erinaceidae，245，267， 268
Erinaceinae， 268
Eumys， 397
Eurygeniops， 108
Eurygenium， 108
Eurygenius， 108
Eutrachytherus，119， 130
modestus， 133
Eutypotherium，130，131， 293
Ferrissia fusca， 304
Fossaria obrussa， 304
Fossils of Northeast Labrador，sources of， 49

Gastroliths of Elasmosaurus serpenti－ nus， 390
Glironia， 396
Goldman，E．A．，on Post－Glacial Indian Dog， 307
Goniobasis livescens， 304
Gravel pits in Coles County，Illinois， geology of，303－304
Gypsonictops， 267
Gyraulus altissimus， 304
Haplolambda，365，367， 370
quinni，365－367
Hegetotheriidae，108，131，134－135，136， 222，224，297，299－300
Hegetotherium，128，129，200，204，205， 212，222，223，274，276，277，293， $294,295,296,297$
mirabile，200－203
Helicotoma rawsoni，39， 59
Heliscomys， 397
Helisoma anceps， 304
Hemiechinus， 268
Heterosorex，255， 256
Hicoria sp．，304， 312
Homalodotheriidae，108，225，298－299
Homalodontotherium；see Homalodo－ therium
Homalodotherium，100，106，207，215， $216,224,225,242-243,288,291$ ， 292，293，297，298， 299
cunninghami (segoviae), 6-9, 99, 113117, 216-220, 222, 223, 225, 233242, 288-293
segoviae; see H. cunninghami
Homo sapiens, 308, 309
Hormotoma labradorensis, 37, 59
Hormotoma minuta, 38, 59
Hylomys, 268
Hypertragulus, 397
Hypisodus, 397
Hyracoidea, 222, 373
Ictops, 264
Illinois, fossil vertebrates from, 303
Interatheriidae, $108,131,134,136,222$, 224, 297, 299
Interatherium, 134, 136, 204, 206, 207, 209
robustum, 204-206, 224
Interhippus, 109
Ischyromys, 397
Isoproedrium, 132
Isotemnidae, 108, 299
Isotypotherium, 132, 135
Labrador fossils, 33
La Flecha deposit, 165, 166
Larix sp., 304
Leidyosuchus, 318, 319, 320
acutidentatus, 320
multidentatus, 320
riggsi, 318-320
sternbergii, 320
Leontinia, 92, 99, 105, 108, 126, 216
gaudryi, 92-94, 105, 107
sp., 93
Leontiniidae, 108, 225, 297
Leptacodon, 266, 267
tener, 267
Leptictidae, 266, 267
Leptomeryx, 397
Limestones, Sculpin Island, 62
Silliman's Fossil Mount, 52
Limnoecus, 254
Loxolophodon, 352
Lutreolina, 398
Lynx sp., 311
Macrauchenia, 172
Mammut americanum, 308
Marmosa, 393, 394, 395, 396, 397
beatrix, 394, 395
Marsland beds, 324
Marsupial sabertooth, 61
Megalonyx jeffersonii, 306
Megalonyx? sp., 306
Meleagris gallopavo, 311
Mesohippus, 397
Metacodon, 257, 263, 266-268, 269, 270, 271
magnus, 257-258, 264
mellingeri, 258-266, 269, 270

Metamynodon, 168, 176
Miniopterus, 256, 257
Miothen crassigenis; see Domnina gradata
"Miothen". gracile; see Peratherium huntii
Monodelphys, 396, 397, 398
Moropus, 243
Morphippus, $96,108,109,110,164$, 165,281
Muñizia, 136-137
Muñiziinae, 136
Musters formation, 299
Mystipterus vespertilio, transferred from Chiroptera to Soricidae, 256-257

Nanodelphys, 393-399
minutus, 393, 394
Nectogale, 255
Neomys, 248
Nesodon, 17-21, 95, 107, 130, 200, 209, 212, 214, 221, 222, 276, 279, 281, 282, 284, 285, 286, 287, 288, 290, 291, 292, 298
imbricatus, 19, 96, 209-212, 220, 221, 222, 281-286
Nesodontidae, 109, 286
Nesohippus, 109
Nothocyon annectens, 337
Notioprogonia, 223
Notohippidae, 108-110, 279, 281, 297, 298
gen. et sp. indet., 279-281
Notohippus, 109, 164
Notopithecus, $91,101,102,103,132$
Notostylopidae, 108
Notostylops, 129, 284, 290, 299
aspectans, 9-12
brachycephalus, 9
sp., 105
Notoungulata, 6, 23, 25, 91, 92, 107, 110, 199, 223-224, 273, 297-300, 373

Odocoileus virginianus, $308,310,311$
Oldfieldthomasia, 203, 207, 214, 215, 223, 279
Ondatra zibethica, 309
Orohippus, 107
Ovibos, 308, 312
Ovibovinae, 308
Pachyrukhos, 203, 207, 209, 222
moyani, 203-204, 224
typicus, 19
Palaeostylops iturus, 103-105
macrodon, 104
Paleolagus, 397
Pantodonta, 352, 353, 369-373, 382
Pantolambda, 230, 352, 353, 354, 356, $357,358,359,360,361,364,367$, 369, 370, 371

404 Field Museum of Natural History-Geology, Vol. Vi

Pantolambda bathmodon, 356 cavirictus, 356, 367
Pantolambdidae, 369, 370, 371, 381
Pantolambdinae, 372
Pantolambdodontidae, 370
Parastrapotherium, 110, 167
Parictis dakotensis, 324, 338
Patagonian formation, 132
Peradectes, 395, 396
Peramys, 397
Peratherium, 246, 247, 395, 396, 397, 398, 399
huntii, 248
sp., 247
Periphragnis, 299
Periptychidae, 369, 373, 382
Perissodactyla, 373
Phenacodus, 284, 291
Philander, 396
Phlaocyon, 325, 327, 330, 331, 335, 336, 337, 338
leucosteus, 324, 331
Phyllopod mandible, 155
Phyllopodous crustacean, new Silurian, 141
Physa gyrina, 304 integra, 304
Pisidium sp., 304
Plagiarthrus (Argyrohyrax), 21, 107, 121, 131, 134, 135
proavus, 21-23
Plateau Valley beds, Tiffany age of, 351 vertical distribution of fossils in, 380
Pleurostylodon, 100, 105, 293, 299 biconus? 100
Poebrotherium, 397
Post-Glacial of Coles County, Illinois, 312
Proadinotherium, 94, 98
leptognathum, 95, 97
muensteri, 94-96
Probathyopsis, 373, 374, 376, 378, 382 newbilli, 378-381
praecursor, 378, 380, 381
Procavia, 222
Procyon, 325, 330, 332, 333, 334, 335, 336, 337
lotor, 309, 332
priscus, 309
Procyonidae, 323, 324, 335, 338
Prodinoceras, 373, 374, 380
Proedrium, 132
Proedrus, 132
Prosotherium, 102, 103, 134, 136
Proterixoides, 267 davisi, 267
Proterotherium, 276
Protosorex, 246, 247 crassus, 247, 248, 255
Protypotherium, 23, 128, 129, 134, 136, $204,205,206,209,212,293,295$, 296, 297
attenuatum, 207
australe, 206-207, 209, 224
Pseudemys sp., 311
Pseudocynodictis, 325, 326, 327, 328, $331,335,338$
gregarius, 325
Pseudotypotherium, 83, 88, 120, 121, $122,123,124,125,126,133,208$, 209, 224, 293
pseudopachygnathum, 83-89, 116, 208, 209
Pyrotheria, 373
Rhynchippidae, 108-110
Rhynchippus, 108, 109, 110, 214, 215, 274, 276, 278, 279, 280, 281, 282, 284, 285, 286, 287, 290, 291, 292, 298, 299
equinus, 12-14, 98, 214-215, 274-279
pumilus, 98-99, 214-215, 218, 225
Rhyphodon, 274, 275, 276, 277, 278, 279, 290, 291, 292, 298, 299
Río Frías formation, 132
Río Mayo formation, 132
Rubber technique for braincasts, 273274

Santa Cruz formation, 132
Sculpin Island, Labrador, 35
Septum in notoungulate bulla, 222-223
Sorex, 247
Soricid, 245
Soricidae, 255
Sparactolambda, 352-354, 356, 357, 358, $359,361,362,367,370,371,372$, 373
looki, 354-361
Sphaerium sulcatum, 304
Stagnicola reflexa, 304
Stilhippus, 109
Stratigraphy of northeast Labrador, 44
Sylvilagus floridanus, 306
Tachytypotherium, 130
"Taligrada," 373
Terrapene ornata, 311
Thomashuxleya, 236, 299
Thylacodon, 396
Thylacosmilinae, 65
Thylacosmilus, 61-65, 114
atrox, 62
lentis, 62
Tinoceras, 377
Titanoideidae, 372
Titanoides; see Barylambda
faberi; see Barylambda faberi
gidleyi, 229, 230
primaevus, 229, 230
Titanoidinae; see Barylambdinae
Toxodon, 19, 20, 21, 85, 96, 275, 282, 284, 286, 287
burmeisteri, 18, 19, 285
platensis, 18, 87
Toxodonta, 12, 23, 24, 207, 222, 223, 224, 225, 297, 298
Toxodontia, 6, 23-25, 110
Toxodontidae, 108, 109, 225, 297, 298
Trachytherium, 101, 119
Trachytherus, 130-137, 280, 293, 294, 295, 296, 297
conturbatus, 120
grandis, 120
spegazzinianus, 101-102, 119-129, 274, 279, 293
Trachytypotherium internum, 21
Trigodon, 96
Trilobite, New Devonian, 67
Trinacromerum, 385
Tupaiodon, 260, 261, 267
Tupaiodon? minutus, 267, 268
Tupaiodon morrisi, 264
Turritoma cf. T. ada, 39, 59
Typotheria, 21, 23, 24, 136, 297, 299-300
Typothericulus, 133
Typotheriidae, 108, 132-133, 222, 224, 297, 299
Typotheriopsis, $84,88,122,126,133$, $135,224,293,294,295,296,297$
chasicoensis, 293
internum, 21, 293-297
studeri, 293
Typotherium, 19, 21, 86, 122, 129, 130, $131,132,133,135,295$
cristatum,
$\quad 88,181$
Uintatheriidae, 381
Uintatherium, 352, 377, 382
Ulmus sp., 304
Ungulates, 373
Upper Canadian fossils, Labrador, 31
Upper Harrison, 323
Uquía formation, 132
Ursus (Euarctos) americanus, 309
Ursus gyas group, 309
horribilis group, 309
procerus, 309
sp. cf. U. horribilis, 309
Vulpes, 330
Xotodon, 236
"Zotodon;" see Xotodon

[^0]: ${ }^{1}$ This specimen previously bore the number Walker Museum No. 1545. In the interest of keeping the collection as a unit, however, the specimen was transferred, together with certain others which I had collected, to Field Museum.
 ${ }^{2}$ Simpson's (1929) designations of the stylar cusps are followed.

[^1]: ${ }^{1}$ Thylacodon pusillus Matthew and Granger has been described from the Puerco. On the basis of the holotype of this species it is not possible to be certain of its relationships.

[^2]: ${ }^{1}$ In a few Sunday collecting trips I have found more than seventy-five jaws and maxillaries of Peratherium. When its small size is considered, with the consequent probability that many specimens were overlooked, such abundance is striking.

[^3]: ${ }^{1}$ This statement is based upon more than three thousand specimens of small mammals which I personally have collected in the Brulé of northwestern Nebraska.
 ${ }^{2}$ This fact may help to account for the complete absence of indigenous placental mammals in Australia. If marsupials did originally migrate to Australia over a land bridge, instead of being "waif" immigrants, they were probably accompanied by insectivores. The ability of Peratherium to thrive in competition with the White River insectivores suggests the possibility that the original Australian marsupials may have been victorious over the placentals in the struggle for existence.

