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ABSTRACT

It has recently been shown that the utility of playing a game

with side payments depends on a parameter called strategic risk posture.

The Shapley value is the risk neutral utility function for games with

side payments.

In this paper, utility functions are derived for bargaining games

without side payments, and it is shown that these functions are also

determined by the strategic risk posture. The Nash solution is the risk

neutral utility function for ba.rgaining games without side payments.





THE NASH SOLUTION AND THE UTILITY OF BARGAINING

by

Alvin E. Roth

I. Introduction

Recent work has shown that the Shapley value for a game with

side payments is a cardinal utility function which reflects the desir-

ability of playing different positions in a game, or in different games

(cf. Shapley [14], Roth [9]). A player's utility for playing some

position in a game is determined in part by his assessment of the

payoff he will receive in a class of games with side payments called

bargaining games. Given a player's evaluation of these bargaining

games, his utility for playing a position in any game with side payments

can be determined (cf. Roth [11]).

It is desirable to extend these results to games without side

payments, since the assumption that side payments can be made is not

appropriate in many situations. In this paper we will derive a class

of utility functions for playing bargaining games without side payments.

Games of this sort are studied by Nash [7], who developed a solution to

bargaining games which is an extension of the Shapley value for games

with side payments. That is, the Nash solution coincides with the

Shapley value for bargaining games with side payments.

Somewhat surprisingly, the utility of playing a bargaining game

without side payments is determined by the same considerations which

determine the utility of playing a game with side payments. Given a

player's evaluation of bargaining games with side payments, his utility

for bargaining without side payments is determined.





II . utility Functions for Games with Side Payments

This section summarizes the development of utility functions for

games with side payments, as presented in [9] and [11]. We begin with

some necessary definitions.
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A game with side payments consists of a set of positions

N = {l,...,n} and a superadditive function v from the subsets of N to

the real numbers such that v(0) = 0. The function v denotes the amount

of wealth which each coalition of players can obtain for itself, and

the model assumes that utility is linear in wealth, and that wealth is

freely transferable. The set of individually rational outcomes

(imputations) is thus the set

X = {(x^,...,x )| 5!x^ = v(N), x^ ^ v(i)}

Since we shall be interested in comparing different games, we

take N to be the common set of positions for all games. Thus n is the

largest number of players who can take part in a game (e.g., n could be

the population of the world). In order to distinguish which positions

have an active role in a given game, define position i to be a dummy

in game v if, for all subsets S of N, v(S) = v(SUi) . The positions

which are not dummies are called the strategic positions of the game v.

If 7t is a permutation of N, denote the image under it of a subset

S of N by irS, and define the game nv by Trv(iiS) = v(S). To simplify the

exposition, we confine our attention to the class G of non-negative

games; i.e., games for which v(S) >_ 0.

For any subset R of N, it will be convenient to define a bar-

gaining game with side payments, v^^, by ^^^(S) =
{^ Qt-^erwise

' ^^ ^^^^

game, all players in R are symmetric, and all players not in R are





dummies. Similarly, for each position i in N, denote by v. the game

v,(S) = IX , . .In this game all positions other than i are
i^ ^0 otherwise ^ ^

dummies. Denote by v the game v^(S) = for all S, the game in which

all positions are dummies.

In order to make comparisons between positions in a game and in

different games, we shall consider a preference relation defined on the

set NxG of positions in a game. Write (i,v)P(j,w) to mean "it is pre-

fereable to play position i in game v than to play position j in game w."

3
The letter I will denote indifference, and W will denote weak preference.

We will consider preference relations which are also defined on

the mixture set M generated by NxG. That is, preferences are also

defined over lotteries whose outcomes are positions in a game. Denote

by [q(i,v) ; (1-q) (j,w) ] the lottery which with probability q has a

player take position i in game v, and with probability (1-q) take posi-

tion j in game w. We will henceforth only consider preference relations

which have the standard properties of continuity and substitutability

on M which insure the existence of an expected utility function unique

up to an affine transformation. Denote this function fay 6, and write

6^(v) = 9((i,v)), and e(v) = (G^(v) , . . . ,e^(v) )

.

The utility for a position in a game is given by

(v) = 8((i,v)) =
q^l,((i,v)) - q^^Cr^)

^ '
'Jab^^l^ - '^ab^^O^

where a, b, r^ , and r are elements of M such that aW(i,v)Wbs and
J- u

aWr Pr„Wb, and the numbers q v (y) are probabilities defined for any y

in M such that aWyWb by yl[q , (y)a; (1-q (y))b] . The elements r^ and

r^^ determine the origin and scale, since 6(r^) = 1, and 9(^q) - O-





We assume that the preference relation obeys the following

three conditions:

(2.1) For all i e N, v e G, and for any permutation ti, ir(i,v)I(7Tl,iTv)

.

(2.2) If i is a dummy in the game v, then (i,v) I(i,v„) . Also

(i,v.^)P(i,VQ), and for all (i,v) C NxG, (i,v)W(i,Vj^) .

(2.3) For any games v and w, and for any probability q,

(i, (qw+(l-q) v) ) I [q (i, w) ; (1-q) (i, v) ]

.

Condition 2.1 says that the names of the positions don't influ-

ence their desirability. Condition 2.2 says that a strategic position

in a game is always at least as desirable as a dummy position, and that

it is equally undesirable to be a dummy in any game. Condition 2.

3

expresses indifference between playing position i in the game (qw+(l-q)v),

and playing position i in game w with probability q or in game v with

probability (1-q)

.

Condition 2.2 also insures that we may choose the natural nor-

malization for the utility function 6. In what follows, we will con-

sider 9 to be normalized so that 8. (v.) = 1, and Q.iv^) = 0.11 1

It has been shown [9], [11] that any utility function arising

from preferences obeying conditions 2.1, 2.2, and 2.3 has the following

properties:

Property 1. Symmetry: for any (i,v) e N^G, and for any permutation

TT, 9 .(-nv) = 9.(v).
ni 1

Property 2. Homogeneity: for any (i,v) c NxQ, and any non-negative

number c,- 9.. (cv) = c9 . (v)

.

Property 3. Additivity: for any v,w e G, e(v + w) = 8(v) + 8 (w)

.





The utility function fl can now be completely determined by

specifying the certain equivalent of playing a bargaining game v , as
K

one of r strategic players.

Let f(r) be a number such that

(2.4) (i,v^)I(i,f(r)v^) for i f, R.

This expresses indifference between receiving f(r) for certain (as the

only strategic player in the game f(r)v,) and being one of r strategic

players in the game v . Note that f(l) = 1. Using the terminology of
K

[9], we say that the preference is neutral to strategic risk if

f(r) = 1/r for r = l,...,n. The preference is strategic risk averse

if f(r) < 1/r, and strategic risk preferring if f (r) > 1/r

The utility 9 for playing an arbitrary game with side payments

can now be written in terms of the function f(r).

Theorem 1: 6 . (v) =
J^

k(t) [v(T) - v(T-i)],
^ TCK

n _ _
where k(t) = V (-1)^ ^(^_pf(r).

r=t

Furthermore, if the prefereiice relation is neutral to strategic

risk, then the utility of playing a position in a game is equal to its

Shapley value.

Corollary 1: If f(r) = 1/r, then 9 (v) - T
-^s-x; . v.n b,

.^^^^^ _ ^(g.^j j

SCN
^'





III. Bargaining Games without S ide Payments, and Nash's Solution

An n-person bargaining game without side payments is defined by

a compact convex subset A of n-dimens:ional Euclidean space, and a point

s contained in A. Any point x - (x , ...,x ) contained in A represents

the von Neuioann-Korgenste? n utility available to each player as the

result of some feasible agreeiiient, and the set A represents the set of

all feasible utility payoffs. The point s = (s^,...,s ) i"epresents the

utility of the "status quo"— that is, s gives the utility level achieved

by each player in the absence of any agreement.

For simplicity, v*e will assume that the set A contains only

individually rational agreements: i.e., if x e A, then x ^ s. We will

also assume that the origin of the utility function for each player

(position) is equal to the status quo payoff; i.e., we assume s. =

for all i e N. Denote the class of all such bargaining games by H. An

element of H will be denoted by the feasible set A, with the status quo

being understood to be the origin.

As in the previous section, take N = {!,..., n} to be the common

set of positions for all bargalnir-g games. The- set R of strategic

positions in a bargaining game A is the set R={icNl SxcA such

that X. 7^ 0}. A position which is not in the set R is a dummy for the

game A.

A Nash solution to the bargaining problem is a function F,

defined on bargaining games, which associates with each bargaining game

A a single feasible outcome F(A) f A, and which obeys the following

four conditions:





(3.1) Linearity: For any bargaining garae A and positive real numbers

a, , . . . ,a , if B = { (a, x, , . . . ,a :;c ) |
(x., , . . . ,x ) e A] then

1 n ixnnJ. n

F.(B) = a.F.(A) for i - l,...,fi.

(3.2) Independence of irrelevant alternatives: If A and B are bargain-

ing games and B contains A, and if F(B) e A, then F(B) = F(A)

.

(3.3) Symmetry: Let R be the set of strategic positions in a game A,

and suppose that for every permutation it of N such that irR = R,

X € A implies that iix f A. Then F. (A) = F , (A) .

r TTi

h

for all strategic positions i e R, then F(A) "^ x.

(3.4) Pareto Optimality: If x and y are elements of A, and y. > x.

Nash [ 7 ] proved the following theorem.

Theorem 2: There is a unique function F which satisfies conditions

3.1-3.4. For a bargaining game A, F(A) is the unique

element x e A such that it x > IT y. for every y ^ x
iCR ieR

^

in A, where R is the set of strategic positions of the

game A.

Thus the Nash solution picks the point x in S which maximizes

the geometric average of the payoffs x. for ieR- Note that F(A) =

if and only if R is empty. It has recently been shown that this con-

dition can replace Pareto optimality in the characterization of the

9
Nash solution (Roth [10]). That is, we have the following theorem.

Theorem 3: The Nash solution is the unique function F which satisfies

conditions 3.1-3.3, and the condition that F(A) = only

when R is empty.
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IV. The Utility of Bargal7;ting

In this sectior we will consider the utility of bargaining, by

considering a preference relation ? defined on the set of positions in

bargaining games without side payx^ents. Specifically, take P to be a

preference relation defined on N^U, and on the mixture set M' generated

by NxH,

It will be convenient to define, for each set R contained in N, the

set A - {x| 1 X. ± 1, X. >_ if i <r B., and x^ = if j (^ R} , and to define

for each non-negative vector x, the set A to be the line joining x to

the origin, i. e. , A = {ax | <^ a <^ 1} .

It is easy to see that a bargaining game with side payments is

actually a special case of a bargaining game without side payments. In

particular, the game v with side payments aiid the game A^ without side

payments present the same bargaining opportunities to the set R of stra-

tegic players (which is the same for both games). The set of outcomes

in which dummies receive a payoff of zero is the same in both games.

Similarly, the game v. can be associated with the game A. = A_ where

X. = 1, and X. = for 'i r i, and the game v,, has the same outcome set

as the game A^, since neither game has any strategic positions.

As in Section II, we confine our attention to preferences P which

have the properties of continuity and substitutability necessary to

insure the existence of an expected utility function 9. Of course 8 is

unique only up to affine transformations, so we may set 6. (A.) = 1, and

8 . (A„) = 0, where we denote 9
.
(A) = 6(1, A).

We also assume that the preference relation obeys the following

conditions

.





(4.1) For all i e N, A e H, and every permutation v of N, (i,A) I(fri,TiA)

(4.2) For all i e N, A c H, (i,A)W(i,A(^) and (i,A)I(i,AQ) iff i is a

dumm' in A. Also, if x. > y. then (i,A )P{i,A ), and if R is a
1 1 X y

non-empty subset of N such that R =/ (i), then (i,A. )P(i,A ) .

(4.3) If B = {(a^x^ , . . . ,a x )! x c A; for a. > for i = l,...,n, and11 *nn j=" - ».»
if a^ > 1, then (i,A)I[ (I/a. ) (i, B) ; (l~l/a^)(i,A^^) ]

.

(4.4) If A c B c C, and (i,A)I(i,C) then (i,A)I(i,B).

Condition 4.4 expresses indifference to irrelevant alternatives.

It says that if ^ player is indifferent between playing in a game A, or

in a game C with a larger set of Eeasibie alternatives, then he is also

indifferent between playing A or any game B which contains A and is con-

tained in C. Condition 4.3 simply says that, if the payoffs available

in a game are multiplied by positive constants, then a player is indif-

ferent between playing one game, or participating in the appropriate

lottery involving the new game. Conditions 4.1 and 4.2 are similar in

form and content to conditions 2.1 and 2.2.

If e is a utility function reflecting preferences which obey the

above conditions, then it has the follccjing properties.

Lemma 1: If i is a dummy in A, then 6 . (A) = 0, and if x. = y., then

Proof: This follows immediately from condition 4.2.

Lemma 2: If B = { (a^ x, , . . . ,a x )i x € A} where all a. > 0, then
i 1 n n '

2

6 . (B) = a . 6 . (A) .

Proof: Suppose a, >^ 1. Then by condition 4.3, 9 . (A) =

e^[(l/a_j^)(i,B);(l-l/ap(i,AQ)] = (l/a^)e^(B) + (1-1/a^) 9^(Aq)
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= (l/a.)6.(B). Suppose a. < 1. Vixen let b. = 1/a. for
1 1 X 3 J

i = 1, . . . ,n. ITien A = { (,b, y, , . . . ,b y ) ! y C B}, and b. > 1.J ' ' linn' 1.

So e.(B) = (l/b.)6.(A) = a.e,(A).

Lemma 3: For any x, 6 . (A ) = x.

.

IX 1

Proof: Let y be the vector such that y. = x. and y. = for

i ?^ i. Then lemma 2 implies that 6 . (A ) = 9.(x.A.) = x.9.(A.)^ lyxxxiix
= X., and lemma 1 implies that 6 . (A ) = 9 . (A ).

X X X X y

As is the case for games with side payments, the function G will

be completely determined by the posture towards strategic risk. For

bargaining games with side payments, condition 2.4 stated (i,v_)I(i, f (r)v.)

for i e R. The equivalent condition for bargaining games without side

paymen ts is

(4.5) (i,A„)J(i,f(r)A.) for i f R.'
K X

This expresses indifference between playing a strategic position in the

game A^ (as one of r strategic players) or receiving the utility f(r)

for certain (as the only strategic player in the game A.)- By condition

4.2 we know that f(l) = 1, and < f(r) < 1 for r > 1. As in the case

of games with side payments, we say the preference relation is neutral

to strategic risk if f(r) = 1/r, averse to strategic risk if f(r) < 1/r,

and strategic risk preferring if f(r) > 1/r. We will show that the Nash

solution is the utility function reflecting risk neutrality.

An immediate consequence of condition 4.5 is that e.(A^) = f(r).

More generally, we have the following result.

Lemma 4: If B„ = {y > 01 )' b.y. < 1, y. = for i i! R} where b. >

xeR
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for each i e R then 6 .
(B„) = f(r)/b. for i € R.

1 R 1

Proof: B^ - {(a,x_,...,a x )j x c K.^ where a. = 1/b , for
R 11 n n ' K" ], 1

1 e R and a . = 1 for j ^ R. So leinma 2 implies that 8 . (B )

J 1 K

a.6.(V = nr)/b..

We can nov? specify the function 6 for an arbitrary bargaining

game A.

Theorem 4: If A is a bargaining game with R the set of strategic posi-

tions, then for k e R, G, (A) = x, , where x is the unique

element of A such that II x. > n y. for all y c A such
icR leR

that y ^ x, where q = (q^,...,q ) is any non-negative vector

such that q, = f ( r) and Y q. = 1.

xcR

The element x named in the theorem maximizes the geometric average

with weights q , ...,q over the set A. (Tlie weighted geometric average

is concave, so it has a unique maximum of A.) The statement of the

theorem implies that 6, (A) = x, depends only on q. . Explicitly, the

following technical proposition follows as a corollary of the theorem.

^i Pi
Proposition: If x maximizes n x. and y maximizes JT y. over the

ICR
^

i€R
^

set A, where q and p are non-negative vectors such that

I q
i = I Pi = 1' then :<^ = y if q = p .

ieR "- ieR
^ R K ic K

Proof of theorem: Let A be a bargaining game without side payments, and

let R cr N be the set of strategic positions of A,

and let k e R. Let q = (q , ,..,q ) be a non-negative
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vector such that T q. = J q. = 1, and q, = f(r) > 0.

Let X be the element of A which maximizes n x. . That
i(^R .^

q, q^
is, II X." = c > n y. for all y e A nuch that y t' x.

iCR ^ ieR ^

Let H = {yj II y. >^ c} = {y| 1 q. log y. >^ log c}.

iCR ^ IfR ^
^

Tlien H and A are convex sets whose intersection is

the point x, and so there is a plane which separates H and

A. This plane is the tangent to H at x, i.e., the set

T = {zl z.n = x-n} where n = (q /x , ,..,q /x ) . So T =

{z] (q,/x,)z, + ... + (q /x )z = T q = 1}.
' ^1 1 i n n n .'-.^ i

Let B = {z\ (q /x )z + ... + (q /x )z £ D • Then
J_Ji„JL iLltLl

A cr B, since T separates A from H. Lemma 4 implies that

e^(B) = (Xj^/qj^)f(r) = (x^^/f(r))f(r) = x^. So (k,B)l(k,A^)

,

since 9 (A ) = 6, (B) = x, . Thus we have A c: A c: B, and

(k,A )I(k,B). By condition 4.4, this implies that

(k,A )I(k,A), and so 9 (A) = x . This completes the proof.
X K. K.

Corollary 2: When f (r) = 1/r, Q is equal to Nash's solution.

Proof: If A is a bargaining game with strategic positions

R, then for k e R, 9, (A) = x where x maximizes 11 x.
"^ ^

ieR
^

on A, for q, = f(r) = 1/r and ^ q, = 1. In particular,
^

ICR "-

X maximizes II x. , and, since r > 0, x maximizes n x. .

iC R le R

Thus we have shown that the utility of playing a bargaining game

without side payments is determined by the posture towards strategic
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risk. Since the Shapley value and the Nash solution agree on bargaining

games with side payments, it is natural to observe that they result from

the same risk posture.

The treatment presented here permits us to observe not only the

similarities between utility functions for games with and without side

pajrments, but the differences as well. The most significant difference

seems to be that, for bargaining games without side payments, there is

no parallel to condition 2.3 for games with side payments. Tliat is, if

A, B, and C are bargaining games without side payments, such that11 111C=yA + -T-B = {(2X + ^y)j xCA, ye B}, then the utility of a lottery

between A and B is not in general equal to the utility of C. That is

6.[y A;y B] = -rO . (A) + :r6 . (B) / 6.(C). A discussion of this phenomenon

in the context of the Nash solution is given by Harsanyi [2, pp. 330-

332].

Nash originally interpreted his solution as applying to players of

equal bargaining ability, but subsequently modified this interpretation

[7,8], Our results support Nash's original interpretation. The attitude

of neutrality to strategic risk, which gives rise to the Nash solution

as a utility function, simply expresses a player's belief that he will

receive the average reward in a bargaining situation. As we have seen,

any other risk posture gives rise to a utility function different from

the Nash solution.





FOOTNOTES

1. For related results, see Roth [12,13].

2. We speak of "positions" rather than the more customary "players"

since we are interested here only in the structural properties of

the game. We shall be concerned with the problem of evaluating

the different positions from the point of view of a player who

must choose among different positions.

3. So alb means neither aPb or bPa, and aWb means aPb or alb.

4. A mixture set has the properties that for all a,b e M

[la;Ob] = a, [qa;(l-q)b] = [(l-q)b;qa], and [q[pa; (l-p)b] ; (l-q)bi

= [pqa; (l-pq)b]. (Cf Herstein and Milnor [4].)

5. Cf Herstein and Milnor.

6. A utility function has the property that u(a) > u(b) if and only if

aPb. An expected utility function on a mixture space has the

property that u( [qa; (l-q)b]) = qu(£) + (l-q)u(b). That is, the

utility of a lottery is its expeci:ed utility.

7. Cf Herstein and Milnor.

8. The cardinality of sets R, S, T is denoted r, s, t.

9. This statement of the theorem makes use of the fact that we have

already assumed individual rationality.

0. Harsanyi and Selten [3, lemma 10. 1] and Kalai [5 J both show that

weighted geometric averages of this sort obey all of Nash's

conditions except symmetry.
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11. For different approaches to the bargaining problem see Brito, et.

al. [1] or Kalai and Smorodinsky [6].
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