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Preface 

The Twelfth Symposium on Naval Hydrodynamics 

was held at Washington, D.C., during the period 

5-9 June 1978 under the joint sponsorship of the 

Office of Naval Research, the David W. Taylor Naval 

Ship Research and Development Center, and the 

National Academy of Sciences. 

The technical program of the Symposium con- 

sisted of eight sessions equally apportioned among 

the following four subjects of great current inter- 

est in the general field of naval hydrodynamics: 

(1) boundary layer stability and transition, (2) 

ship boundary layers and propeller hull interaction, 

(3) cavitation, and (4) geophysical fluid dynamics. 

Tours of the hydrodynamic research facilities of 

the David W. Taylor Naval Ship Research and Devel- 

opment Center and of Hydronautics, Inc., were also 

included in the technical program. 

It is interesting to recal that the National 

Academy of Sciences was a cosponsor of the First 

and Second Symposia in this series which were held 

respectively in 1956 and 1958. It is a great plea- 

sure to acknowledge once again the invaluable 

assistance of the Academy in launching these Sym- 

posia and in establishing the high standards of 

quality and style for them by which we are guided, 

even to this day. 

Similarly, the David W. Taylor Naval Ship 

Research and Development Center has played an 

important role in the series of Symposia on Naval 

Hydrodynamics from their very inception. Scien- 

tists and engineers from the Center have presented 

outstanding scientific papers at each of the Sym- 

posia and have, in addition, participated in an 

informal manner in the planning of many of the 

earlier ones. 

For these reasons the Office of Naval Research 

is especially pleased and honored at the opportu- 

nity presented by the cosponsorship of this Twelfth 

Symposium to renew and continue the fruitful col- 

laboration with its old scientific allies. We are 

deeply grateful for their generous assistance in 

the past and present, and look forward with confi- 

dence to their continued support in the future. 

Of the seemingly endless list of people who 

contributed in large and small ways to the planning 

and organizing of the Twelfth Symposium the follow- 

ing deserve special recognition: Professor George 

F. Carrier of Harvard University and the Naval 

Studies Board of the National Research Council, who 

served as chairman of the Program and Organizing 

Committee; Dr. William E. Cummins of the David W. 

Taylor Naval Ship Research and Development Center, 

who served as vice-chairman of the Committee, and 

his colleagues from the .:nter, Dr. Wen Chin Lin, 

Mr. Justin H. McCarthy, Jr. and Mr Vincent J. 

Monacella, who served on the Committee; Mr. Lee M. 

Hunt of the Naval Studies Board, who served on the 

Committee and who, with the able assistance of 

Miss Virginia A. Harrison, personally carried out 
the multitude of detailed arrangements required for 

the success of the Symposium; and Dr. Nelson T. 

Grisamore of the National Academy of Sciences, who 

edited these Proceedings. 

A special note of appreciation is extended to 

Mr. Phillip Eisenberg, President of Hydronautics, 

Inc., for his delightful after-dinner talk at the 

Symposium Banquet and for the tour of Hydronautics, 

Inc., which he graciously arranged for the partic- 

ipants of the Symposium. 

To all of these, and many more, the Office of 

Naval Research is forever indebted. 

Ralph D. Cooper 

Office of Naval Research 
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Introductory Address 

Dr. Courtland D. Perkins 

President, National Academy of Engineering 

On behalf of the National Academy of Engine- 

ering and the National Academy of Sciences it is 

my distinct pleasure and privilege to welcome you 

to our Nation's Capitol, to the home of both Acad- 

emies, and to the Twelfth Symposium on Naval Hydro- 

dynamics. 

We have welcomed the opportunity to join with 

the Office of Naval Research and the David W. Taylor 

Naval Ship Research and Development Center in organ- 

izing and hosting the Twelfth Symposium in this 

distinguished series of meetings. 

We have, as a matter of fact, a special inter- 

est in the continuing success of the series since 

we cosponsored the First and Second Symposia with 

the Office of Naval Research in 1956 and 1958. 

Therefore, it is as gratifying for us as it must 

be for the Office of Naval Research to find that 

the international community of fluid dynamics and 

related specialties continues to find these meetings 

a unique forum for the exchange of research results 

and the discussion of problem areas of concern to 

both military and commercial activities. 

The interest and the involvement of the Acad- 

emies in naval science and engineering, of course, 

has a much longer history. After a careful reading 

of the early history of the National Academy of 

Sciences, one is persuaded that the Academy would 

not have come into being in 1863 had it not been 

for the carefully laid plan and persuasive argu- 

ments of the Navy's Chief of Navigation, Commodore 

Charles Henry Davis. One is further impressed by 

the fact that perhaps a quarter of those who signed 

the Academy's Charter were affiliated with the Navy 

in one way or another. And it is significant that 

the first five studies conducted by the fledgling 

Academy were requested by the Navy. In case some 

of you may be interested, these were: 

On Protecting the Bottom of Iron Vessels 
On Magnette Deviation tn Iron Ships 
On Wind and Current Charts 
Sailing Directtons 
On the Exploston On the Untted States Steamer 

CHENANGO 

I don't want to leave you with the impression that 

the Academy worked only on naval problems during 

the 1863-65 period. We did another study entitled 

"On the Question of Tests for the Purity of Whiskey" 

--an investigation undoubtedly stimulated by 

President Lincoln's remark that he wished he could 

supply all his generals with whatever it was that 

General Ulysses S. Grant was drinking. 

I have taken this short detour through some 

early Academy history, not so much to demonstrate 

our own long and continuous interest in naval sci- 

ence and engineering but to recognize the important 

role played by the Navy in supporting science and 

engineering throughout its 200-year history. Over 

the past 32 years the Office of Naval Research has 

continued that tradition by serving as a model for 

enlightened government support of basic research. 

On a more personal note may I conclude by say- 

ing that as a former professor of aeronautical 

engineering at Princeton University your technical 

program is of special interest to me. Therefore, 

I wish you an interesting and productive meeting. 

We are pleased that you have chosen to meet at our 

institution, and the staff we have assembled to 

support you is available to assure that your stay 

is a pleasant one. 
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Introductory Address 

Rear Admiral Robert K. Geiger, USN 

Chief, Office of Naval Research 

On behalf of the Office of Naval Research I 

would like to extend a sincere welcome to all the 

participants of the Twelfth Symposium on Naval 

Hydrodynamics. 

I wish to express my thanks to the National 

Academy of sciences for its assistance and role as 

a host and cosponsor of the Symposium through its 

National Research Council. 

Thanks are also due to the third member of the 

triumvirate of cosponsors of this, the Twelfth Sym- 

posium on Naval Hydrodynamics, namely the David W. 

Taylor Naval Ship Research and Development Center, 

known more familiarly to most of us old-timers as 

the David Taylor Model Basin and often referred to 

affectionately as DTMB. This facility has been a 

major contributor to the scientific program of each 

of the Symposia in this series, as a glance at the 

proceedings of any of the Symposia will confirm. 

I am happy to say that the present meeting is no 

exception and that it is again well represented on 

the technical program. However, this is the first 

time that it has participated as a cosponsor and I 

am especially pleased to acknowledge the invaluable 

assistance that our old colleague and ally in the 

field of naval hydrodynamics research has rendered 

in the organization and management of the present 

Symposium. 

The first two Symposia of this series were 

held in 1956 and 1958 and were also sponsored by 

the Office of Naval Research and the National 

Academy of Sciences. Many of the guiding princi- 

ples that govern the organization of the Symposia 

in this series were established in these first 

meetings. For example, the selection of a limited 

number of central themes of timely naval hydro- 

dynamic interest upon which to focus the technical 

program of the meeting was introduced in the 

Second Symposium. 

From the very beginning, the international 

aspects of the Symposia were emphasized through the 

invitation of speakers from all over the world 

wherever outstanding research in naval hydrody- 

Namics was going on. Starting with the Third Sym- 

posium, the international aspects were strengthened 

by locating the meetings outside the United States 

and cosponsoring them with relevant organizations 

in host countries. 

The list of such meetings includes Symposia 

held in the Netherlands, Norway, Italy, France, and 

England, and we hope to continue this pattern into 

the future as long as the series of Symposia con- 

tinue to provide a useful forum for the exchange 

of valuable information on results of advanced re- 

search in the field of naval hydrodynamics. 

I am gratified to see so many representatives 

of several countries in addition to the United 

States, and the number of technical papers pre- 

sented by internationally known authorities in 

fluid dynamics and related fields. 

For the Navy, progress in hydrodynamics re- 

search has become increasingly urgent. The Navy 

must find ways to discover and correct the problems 

that a new design may run into before reaching the 

point of full-scale sea trials. 

Since the sea is the Navy's business and we 

have been involved in it a long time, we are ex- 

pected to know it well. Only investigators like 

yourselves are aware of how limited is our knowl- 

edge of the forces that impact on a buoyant body 

propelled through the water. As much as our under- 

standing has increased, we know we have much more 

to learn. This information can only be obtained 

through the arduous bit-by-bit process of basic re- 

search, such as you gentlemen pursue. 

Today our nation is faced with the dilemma 

that we must plan types of ships that are radically 

different in design from anything in the past. At 

the same time, these ships must be inexpensive to 

operate and maintain in addition to satisfying our 

traditional standards. 



The results of the research that will be re- 

ported at this Symposium should help us move toward 

that formidable goal. It is clear that all of you 

here today are dedicated scientists, so I do not 

need to urge you to keep pressing forward in your 

search for solutions to the frustrating problems 

in hydrodynamics. I would like to stress, however, 

that you maintain strong lines of communication so 

that as many people as possible can benefit when 

you inevitably succeed in your endeavors. 

Best wishes for a successful symposium. 



Introductory Address 

Captain Myron V. Ricketts, USN 

Commander, David W. Taylor 

Naval Ship Research and Development Center 

We at the David W. Taylor Naval Ship Research 

and Development Center are both pleased and proud 

to join with the Office of Naval Research and the 

National Academy of Sciences in sponsoring the 

Twelfth Symposiumon Naval Hydrodynamics. While 

not a sponsor of the four earlier symposia held in 

Washington, the Center was directly and indirectly 

involved with all of the previous meetings. Of the 

forty-one papers to be presented at the present 

Symposium, five are authored by Center researchers, 

roughly the same number of papers given by Center 

authors at earlier symposia. In addition, much of 

the other U.S. research to be presented in papers 

to this Symposium was supported by the U.S. Navy's 

General Hydrodynamics Research Program which the 

Center has administered for nearly thirty years. 

It is worthy to note that this year's confer- 

ence is directed mainly at the underlying physics 

of hydrodynamic processes. The papers are of quite 

a fundamental nature, perhaps more so than was true 

of many of the earlier symposia. The Symposium 

topics are of immense importance to both the mer- 

chant ship and naval communities: Boundary Layer 
Stabtltty and Transttton because of their relation- 
ship to vehicle drag, cavitation inception, and 

flow noise; Shtp Boundary Layers and Propeller/ 
Hull Interactton because a need to accurately pre- 
dict vehicle drag, propulsive efficiency, and 

vibration; Cavitation, a very major cause of ero- 

sion, vibration, and noise; and finally, Geo- 

phystcal Flutd Dynamtes which describes the envi- 
ronment in which ocean systems must operate. Each 

topic area is a subject of current and lively in- 

terest and has witnessed remarkable advances over 

the past few years. 

The very high quality of the research papers 

to be presented this week is typical of previous 

Naval Hydrodynamics Symposia and has earned for the 

series the reputation of being the preeminent inter- 

national conferences on ship hydrodynamics. Each 

symposium has constituted an exceedingly valuable 

open forum which promotes national and international 

ties and dialogues between researchers in the field 

of hydrodynamics. 

I would like to close by saying that my 

Center's namesake, Admiral David W. Taylor, the U.S. 

pioneer hydrodynamicist and foremost naval archi- 

tect, introducer to the U.S. of towing tanks, water 

tunnels, transformer of empiricism to scientific 

methods, would be very pleased to be associated 

with the Twelfth Symposium on Naval Hydrodynamics. 

On Wednesday we look forward to welcoming you on a 

tour of the hydrodynamic facilities at the Center. 

You will see work in progress at our rotating arm 

facility, seakeeping basin, towing tanks and turn- 

ing basin, and at our largest cavitation tunnel. 

Best wishes for a very successful conference. 
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Session I 

BOUNDARY LAYER STABILITY 

AND 

TRANSITION 

PHILLIP. S. KLEBANOFF 

Session Chairman 

National Bureau of Standards 

Washington, D.C. 
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Stability and Transition Investigations 

Using the Navier-Stokes Equations 

Hermann F. Fasel 

Universitat Stuttgart 
Stuttgart, Federal Republic of Germany 

SUMMARY 

With this paper an attempt is made to review the 

stability and transition simulations, performed at 

the University of Stuttgart, which are based on 

finite-difference solutions of the Navier-Stokes 

equations. Research in this area has demonstrated 

that implicit finite-difference methods for the 

solution of the complete Navier-Stokes equations 

for unsteady, two-dimensional, incompressible flows 

can be successfully applied to investigations of 

hydrodynamic stability and to certain aspects of 

transition. This approach of numerically solving 

the partial differential equations describing the 

underlying flow mechanisms promises to be a valuable 

aid in transition research. In particular, this 

concept may prove to be especially rewarding for 

investigations of aspects of stability and transition 

which as yet are not feasible with other theoretical 

models. 

There are two main reasons for the attractiveness 

of this approach: Firstly, no assumptions whatsoever 

have to be made concerning the basic flow field under 

investigation. Thus, for example, all possible 

effects resulting from the growth of a boundary layer 

in downstream direction can be included in such 

investigations. Even strongly converging or diverg- 

ing flows, or flows with separation and/or reattach- 

ment can be studied. Secondly, no restrictions 

have to be made concerning amplitude and form of 

the disturbances which are injected into the flow. 

Therefore, using larger disturbance amplitudes 

certain nonlinear effects of the amplification 

process can be readily investigated. 

The major aspects of this approach will be dis- 

cussed in this paper. Emphasis will be placed not 

only on conveying the advantages of such investi- 

gations but also on elaborating the difficulties 

and shortcomings of such numerical simulations. 

Finally, a conjecture concerning the course of 

future developments will be attempted. 

1. INTRODUCTION 

The phenomena occurring in transition from laminar 

to turbulent flow have been the subject of inten- 

sive research ever since the discovery that these 

two entirely different states of flow exist. 

From all the research efforts basically only one 

universally-accepted theoretical concept evolved, 

namely, linear stability theory, verified experi- 

mentally by the famous experiments of Schubauer 

and Skramstad (1943). 

However, experimental evidence has also shown 

that linear stability theory is only applicable 

for one 'special' transition process, namely, 

transition initiated by the presence of very small 

disturbances in the flow. In this case a substan- 

tial portion of the entire transition process is 

indeed well described by this theory, i.e. the 

amplification of two-dimensional disturbance waves 

(the so-called Tollmien-Schlichting waves) can be 

predicted adequately. But even for this special 

transition process, triggered by small disturbances, 

linear stability theory is inadequate in the 

description and investigation of the mechanisms 

that follow the growth of Tollmien-Schlichting 

waves, and which finally cause the breakdown to 

fully turbulent flow. Nevertheless, due to the 

relative success of the linear stability theory 

and its impressive experimental verification, the 

vast majority of theoretical transition investi- 

gations were, and still are, based on stability 

theory concepts, thus constantly improving and 

perfecting this theory. 

The inherent shortcomings of this concept 

nontheless (such as being applicable only when 

transition is initiated by small disturbances, or 

that certain assumptions concering the basic and 

disturbance flow have to be made to keep the 

resulting equations tractible) led to a search for 

other means to investigate transition. One of the 

more promising concepts that has emerged in recent 
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years is based on direct numerical solutions of the 

complete partial differential equations that 

describe the flow phenomena arising in the transi- 

tion process. This approach became feasible with 

the rapid progress in the development of large, 

high-speed digital computers. 

The main difficulties here arise from the fact 

that these flow phenomena can be adequately 

represented only when the complete Navier-Stokes 

equations (or certain modifications thereof) are 

used. Thus, this approach requires the solution 

of the Navier-Stokes equations for strongly time- 

varying flow fields, due to the highly unsteady 

nature of the transition processes. Additionally, 

complications increase because the numerical 

solutions have to yield reliable results for 

relatively high Reynolds numbers (higher than the 

critical Reynolds number) to allow onset of 

transition. For a numerical solution procedure it 

is therefore necessary to allow for adequate 

resolution of the large temporal and spatial 

gradients resulting from the occurrence of thin 

time-varying fluid layers with large gradients 

close to solid walls. 

The development of finite-difference methods, 

which are applicable for such complex, unsteady 

flow phenomena as thase occuring in laminar 
turbulent transition, is associated with numerous 

difficulties which will be elaborated upon in this 

Paper. Because of these difficulties relatively 

few previous attempts based on such an approach be- 

came known. Reasonably successful earlier investiga- 

tions of this kind (based also on finite-difference 

solutions) are reported, for example, for incom- 

pressible flows in a boundary layer [De Santo 

and Keller, (1962)], for Poiseuille and plane 

Poiseuille flow [Dixon and Hellums (1967), Crowder 

and Dalton (1971)] and for a compressible boundary- 

layer flow [Nagel (1967)]. These earlier attempts 

clearly demonstrated the usefulness and potential 

of such investigations. However, due either to 

insufficent resolution of the resulting gradients 

and/or assumptions made concerning the basic or 

disturbance flows, or to shortcomings of the differ- 

ence methods used, the results of these calculations 

were more of a qualitative nature. Therefore, 

relatively little information could be gained 

concerning the various phenomena arising in the 

laminar-turbulent transition process. 

Some years ago, a research effort was initiated 

at the University of Stuttgart aiming at the devel- 

opment of numerical methods for the solution of the 

Navier-Stokes equations which would be applicable 

for detailed investigations of various aspects of 

Stability and of phenomena occurring in transition. 

To date, an effective implicit finite-difference 

method has evolved for the calculation of unsteady, 

two-dimensional incompressible flows. The ap- 

plicability of the numerical method to investigate 

stability and two-dimensional transition phenomena 

has been demonstrated by realistic simulations of 

Tollmien-Schlichting waves. Detailed results of 

these calculations are discussed elsewhere [Fasel 

(1976)]. With calculations involving large ampli- 
tude disturbances [Fasel et al. (1977)] it was addi- 
tionally shown that numerical simulations using 
the implicit difference method yield results which 
enable insight into certain nonlinear mechanisms 

of the transition process. 

In this paper the major aspects of the numerical 

approach using finite-difference methods will be 

reviewed and the present state of the developments 
discussed. Emphasis will be placed on the advan- 

tages of the numerical approach in general and on 

directional options chosen for the present method. 

Special attention will also be focused on the 

difficulties and limitations of such simulations. 

2. SELECTION OF THE INTEGRATION DOMAIN 

For a numerical solution of the Navier-Stokes equa- 

tions using finite-difference techniques a finite 

domain in which the equations are being solved has 

to be specified. The selection of the integration 

domain determines the nature of a physical flow 

problem to be simulated, because the boundary con- 

ditions required along the boundaries of this domain 

determine to a large degree the solution within the 

domain. For reasons of simplicity, in the present 

studies only rectangular domains of the x,y plane 

were considered as depicted schematically in Figures 

1 and 2 with the direction of the basic, undisturbed 

flow being in the x-direction. Rectangular domains 

allow relatively easy application of difference 

methods by using simple rectangular meshes. For 

example the rectangular domain may be a section of 

a boundary-layer flow on a semi-infinite flat plate 

(Figure 1) or a section of a flow between two paral- 

lel plates (Figure 2). 

In selecting the integration domain one has to 

consider that boundary conditions must be found for 

the 'artificial' boundaries B-C in Figures 1 and 2 

and additionally for C-D in Figure 1. These con- 

ditions should allow physically meaningful solutions 

in the finite domain, i.e. solutions that would be 

obtained if the domain were not made finite by 

means of these artificial boundaries. Due to the 

spatially elliptic (in x,y) character of the Navier- 

Stokes equations application of finite-difference 

methods requires boundary conditions on all bound- 

aries of the x,y domain. Of course, in a mathemat- 

ical sense the equations are parabolic because of 

the time derivative (See section 3). Selection of 

boundary conditions for boundaries representing 

solid walls (such as A-B in Figures 1 and 2 and C-D 

in Figure 2) generally creates no additional diffi- 

culty although consistent implementation in the 

numerical scheme is frequently difficult to achieve. 

Also, free stream boundaries such as C-D in Figure 

1 for the boundary-layer flow can be handled in 

satisfactory fashion (see Section 4). 

However, the upstream (A-D) and to a larger ex- 

tent the downstream (B-C) boundary require special 

considerations because the specific treatment of 

these boundaries determines the approach to be 

taken in a prospective stability and transition 

simulation. In selecting the boundary conditions 

FIGURE 1. Integration domain for boundary 

layer on flat plate. 



FIGURE 2. Integration domain for plane 

Poiseuille flow. 

there are basically two different approaches which 

lead to entirely different conceptions of the trans- 

ition simulation: 

1) Use of periodicity conditions at the upstream 

(A-D) and downstream (B-C) boundary, i.e. 

corresponding disturbance quantities are 

equal at the two boundaries for all times. 

Here it is assumed that flow phenomena are spatially 

periodic in downstream direction where the integra- 

tion domain X contains integer multiples of the 

spatial wavelength. When the spatial development 

is forced to be periodic, the flow responds with a 

temporal development. Thus, with this arrangement 

the temporal reaction of the flow to an initial 

disturbance (at t=0) of the flow field can be 

studied. This case corresponds in linear stability 

theory to an eigenvalue problem with wave number 

a real and frequency 8 complex (6=6,+i6,), i.e. 

amplification in time. Figure 3, for example, shows 

a typical result of a finite-difference calculation 

based on such an approach for a plane Poiseuille 

low [Bestek and Fasel (1977) ]. Plotted here is a 

time signal for a case which is unstable according 

to linear stability theory. The flow is only dis- 

turbed once at t=0. After a certain time span, 

where considerable reorganization of the disturbance 

flow takes place, the disturbances assume a periodic 

character with a slight amplification in time- 

direction. 

The Navier-Stokes calculation for this approach 

may be conceived as a means of solving the eigen- 

value problem as in linear stability theory, with 

a and Reynolds number given and obtaining the fre- 

quency 8,, amplification rate 8;, and the amplitude 

distribution of the distrubance flow. Of course 

these answers could be obtained with considerably 

less effort from linear stability analysis. The 

advantage of this present approach is, however, 

that it can be easily extended to investigations 

- FIGURE 3. Temporal development of u'-disturbance at 

y/Ay = 3 for initially disturbed flow (small ampli- 

tude); spatially periodic case (plane Poiseuille flow). 
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of certain nonlinear effects by merely increasing 

the amplitude level of the initial disturbances 

[see, for example, George and Hellums (1972)]. An 

equivalent study of nonlinear effects formulated 

as an eigenvalue problem in a stability theory 

analysis would, on the other hand, become consider- 

ably more involved. 

A major drawback of this first approach is, how- 

ever, that it is pratically only applicable for 

basic flows that do not vary in downstream direction 

(parallel flows), because only then is the period- 

icity assumption for the disturbance flow a real- 

istic one. Thus, strictly speaking, boundary-layer 

flows could not be treated in this manner since they 

are basically (although very mildly) non-parallel. 

It has been shown that non-parallel effects can 

have a strong influence on the stability character- 

istics of this flow [Gaster (1974), Saric et al. 

(1977) J. 
A second, perhaps even more serious disadvantage 

of this model is that the disturbance development 

in downstream direction cannot be investigated. As 

observed in numerous laboratory experiements the 

phenomena of transition are not periodic in space 

but rather are inherently space dependent. The 

disturbance flow may vary rapidly in downstream 

direction. This space dependency of the transition 

process does not only occur for flows where the 

basic flow is already dependent on the downstream 

location. It also occurs when the basic flow does 

not vary in downstream direction, as was impress- 

ively demonstrated experimentally by Nishioka et 

al. (1975) for the parabolic profiles of plane 

Poiseuille flow between parallel plates. Thus, 

this model is not suitable for realistic studies 

of transition phenomena. 

However, finite difference simulations based on 

this approach become considerably less involved 

and are less costly in practical execution than for 

the second approach discussed subsequently. The 

former approach is therefore applicable for funda- 

mental investigations of various unresolved ques- 

tions in hydrodynamic stability (such as certain 

nonlinear effects) or for preliminary studies of 

flow simulations based on the approach discussed 

below. 

2) At the upstream boundary, time-dependent 

disturbances are introduced. Use of bound- 

ary conditions at the downstream boundary 

which allow downstream propagation of the 

spatial disturbance waves. 

This second approach differs entirely in concept 

from the first one. Here, the reaction of the 

flow field to the disturbances introduced at the 

upstream boundary is of interest, particularly the 

spatial developments of the ensuing disturbance 

waves. In contrast to the previous approach, this 

case corresponds in stability theory to an eigen- 

value problem with a complex (a=a,+ia;) and 6 real. 

A typical result for a boundary-layer flow of a 

calculation based on this concept is shown in Fig- 

ure 4. Plotted is the disturbance variable u' 

(velocity component in x-direction) versus the down- 

stream coordinate x. The downstream development 

of the disturbance (in this case amplification) may 

be clearly observed. Thus, this approach enables 

the calculation of the spatial reaction of the flow 

to upstream disturbances, and therefore realistic 

simulations of space-dependent transition phenomena 



FIGURE 4. Downstream development of u'-disturbance at 

y/Ay = 3 for boundary-layer flow disturbed periodically 

(small amplitude) at upstream boundary. 

as observed in laboratory experiments should be 

possible. 

For example, realistic numerical simulations of 

Tollmien-Schlichting waves (as observed in the 

Schubauer and Skramstad experiments) can be per- 

formed by using at the upstream boundary A-D per- 

iodic disturbances as produced by a vibrating ribbon 

in the physical experiments. If the location of 

A-D is considered to be somewhat downstream of the 

ribbon in the real experiments, eigenfunctions of 

linear stability theory may be conveniently used 

to disturb the flow in the numerical simulation. 

It was shown that the disturbance flow somewhat 

downstream of the ribbon is well described by 

linear stability theory when amplitudes are small. 

The disadvantage of the second approach is that 

the development of numerical methods to solve the 

resulting mathematical problem is considerably more 

difficult than in the first approach. Although in 

a strict mathematical sense both problems represent 

mixed initial-boundary-value problems, the main 

difference between the two concepts is that the 

first approach results in a predominantly initial 

value problem, where the temporal evolution of an 

initially disturbed flow field is calculated. 

The second concept leads to a predominantly 

boundary-value problem where the spatial reaction 

of the flow field (which is also time-dependent, 

of course) to disturbances introduced on the left 

boundary is to be calculated. In the latter case 

difficulties arise from the necessity of finding 

adequate downstream boundary conditions which 

allow unhindered passage of the disturbance waves 

propagating downstream, and properly implementing 

them into the numerical method. Since the aim of 

this research effort is directed toward realistic 

simulations of transition phenomena, emphasis in 

the development of finite-difference methods was 

placed on methods that were applicable to solving 

the mathematical problem resulting from the latter 

approach. The remainder of the discussions in this 

Paper are therefore also based on this concept. 

3. FORMULATIONS OF NAVIER-STOKES EQUATIONS FOR 

NUMERICAL METHODS 

The Navier-Stokes equations can be cast into various 

forms to be used as basis for a finite-difference 

method. Each formulation has its inherent advan- 

tages and disadvantages. The decision in favour of 

a particular formulation has to be governed by the 

physical flow problem to be investigated and by the 

difference scheme finally used. In most cases, and 

also particularly for the present investigations, 

such a decision is difficult to make beforehand. 

Extensive preliminary numerical experiments are 

necessary before a decision can be made in favour 

of a particular formulation. 

For two-dimensional, incompressible flows the 

stream-function-vorticity formulation is most 

widely used in numerical fluid dynamics. It is 

also a possible choice for the present investiga- 

tions. It consists of the vorticity-transport 

equation 

aw aw dU) 1 3 
et NY 1 
3 Sipe dy Re 2 (1) 

and a Poisson equation for the stream function 

Ay = w (2) ~ 

where A is the Laplace operator, w is defined as 

oy = acl ' (3) 

TS gee a (4) 

With this definition of the stream function the 

continuity condition 

au ov 
ye ee (5) 

is satisfied for the continuum equations, however, 

not necessarily for the discretized equations. All 

variables in Eqs. (1) to (5) are dimensionless; 

they are related to their dimensional counterparts, 

denoted by bars, as follows 

— —_— = oe tu, 
alae = 22 = ee = = 
mR TREN AUS, Un eae 

(pe Oe ee ee | he SE 
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where L is a characteristic length, Ug a reference 

velocity and Re a Reynolds number (v kinematic vis- 

cosity). Thus this formulation represents a system 

of two partial differential equations, each of 

second order, for the unknown variables w and yw 

because u and v in Eq. (1) can be eliminated using 

Eq. (4). 

A variation of this formulation is the so-called 

conservative form for which the vorticity-transport 

equation 

aw , d(uw) | Oa). Ine (6) 
ot ox oy Re 

is used instead of Eq. (1). With this formulation 

conservation of vorticity is guaranteed for the 

continuum equations. 

A second formulation of the governing equations 

also consists of a vorticity-transport equation (1) 

or (6). However, instead of the Poisson equation, 

(2), for ~, two Poisson equations for the velocity 

components u and v are used 

Au = : 

¥ (7) 

See Dat i'r 
Oe ax 



which can be derived from the definition of vortic- 

ity, (3), using the continuity equation, (5). This 

system of partial differential equations for the 

w,u,v formulation is of higher order than the w,\W) 

system. The higher order allows less restrictive 

boundary conditions which is advantageous in appli- 

cations to transition simulations as discussed in 

Section 4. 

A third form of the governing equations is the 

so-called primitive variable formulation with the 

two momentum equations 

du du du dp 
—— — Ss ob ——— ee —— 

cay ae oinaees: oy x” Re Au 

(8) 
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(where p = p/pus, with density 0) and a Poisson 

equation for the pressure 

ise Qe Og oy oe 9 
ox oy ax One oY (9) 

which is derived from Eq. (8) using the continuity 

Eq. (5). 
There is also a conservative form of the primi- 

tive variable formulation (conserving momentum) 

jm . ee) ©) (om). G22 4b. 
yt oF qx + dy re ax Re Ae 

(10) 

ov, Sw , 0) 2 _ 2 , kL _y, 
are ox oy hy INS ; 

and a Poisson equation in a now different form 

32 (u*) a2(uv)  a2(v2) aD , Ll = - oo - 2 - = + A 
me ox2 2 ax dy ay2 at Re Dr(tt) 

with the so-called dilation term 

du Ch 
= — + — 2 D x ay (12) 

The absence of the dilation terms in a Poisson equa- 

tion for the pressure may cause nonlinear numerical 

instability, which can be avoided when such terms 

are retained (Harlow and Welch, 1965). 

Conservative versus Nonconservative Formulation for 

Use in Transition Studies 

The evaluation of the relative merits of conserva- 

tive formulations over non-conservative ones is a 

widely investigated subject in numerical fluid 

dynamics [Roache (1976), Fasel (1978) ]. Neverthe- 
less, satisfactory answers have not yet been found 

except for compressible flows for which conserva- 

tive formulations are obviously advantageous. One 

argument in favour of conservative formulations is 

that better accuracy can be obtained. However, for 

- incompressible flow problems there are several ex- 

amples contradicting this claim. When evaluating 

possible advantages of a conservative formulation 
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one has to keep in mind that the respective quanti- 

ties (such as vorticity in the w, or w,u,v formu- 

lation or momentum for the u,v,p formulation) are 

initially only conserved for the continuum equations. 

The conservation property may be carried over to 

the discretized equations only if certain differ- 

ence approximations (in this case, central differ- 

ences) are used. For the implementation of the 

boundary conditions it is frequently very difficult 

or sometimes impossible to employ such difference 

approximations required to maintain the conserva- 

tion properties for the discretized equations. 

For the present investigations, comparison cal- 

culations during the early stage of the development 

of the numerical method have shown that, for the 

W,) or w,u,v systems, almost equivalent accuracy 

can be obtained with either formulation. Because 

the conservative formulation leads to a somewhat 

slower solution algorithm for the solution of the 

difference equations, preference was given there- 

fore to a non-conservative formulation. 

Vorticity Transport (Ww, or W,u,v) versus Primitive 

Variable (u,v,p) Formulation 

In reviewing literature on numerical simulations 

of viscous incompressible flows it is noticeable 

that formulations involving a vorticity-transport 

equation, rather than the primitive variable form- 

ulation, are preferred. The unpopularity of the 

u,v,p system is a result of numerable unsuccessful 

attempts in applying it to calculations of viscous 

incompressible flows. Although a few successful 

applications based on the u,v,p system are reported 

in more recent literature, there are still serious 

arguments against its use for stability and trans- 

ition simulations. Difficulties result from prob- 

lems associated with the use of a Poisson equation 
for the pressure. This equation is often a source 

of numerical instabilities, possibly due to difficul- 

ties of properly implementing the boundary conditions 

for pressure into the numerical scheme. Although 

the numerical instabilities could be brought under 

control, at least to a degree, (for example by intro- 

ducing the dilation terms in Eq. 11) so that solu- 

tions could be obtained for steady flow problems, 

the inherent inclination of this formulation to 

numerical instability still prohibits its use for 

transition simulations. Frequently numerical 

solutions based on this system are of a slightly 

oscillatory nature (although amplitudes are extremely 

small) and therefore interaction with oscillations 

of the physically meaningful disturbances as oc-— 

curring in transition studies cannot be avoided. 

For these reasons finite-difference methods de- 

vised for investigations of stability and transition 

are based on the equations in vorticity transport 

form, i.e. either on the w,l) system (Eqs. 1 and 2) 

or the w,u,v system (Eqs. 1 and 7). Nevertheless 

current efforts are also directed toward develop- 

ment of difference methods based on the equations 

in primitive-variable formulation. Emphasis is 

placed on extreme numerical stability in order to 

make this method also applicable for stability and 

transition studies. The continuing attraction of 

the equations in primitive-variable form results 

from the fact that, for the three-dimensional case, 

fewer fields of variables have to be stored than 

for a vorticity-transport formulation. For the 

three-dimensional case, storage requirements are an 
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order of magnitude even more critical than for the 

two-dimensional calculations. 

Use of Navier-Stokes Equations for the Disturbance 

Flow 

For stability and transition simulations, the depen- 

dent variables, which appear in the different form- 

ulations of the Navier-Stokes equations discussed 

previously, are those of the total flow, that is, 

including both the basic and the disturbance flow. 

There is an alternate approach, namely, to decompose 

the total flow into the basic flow and a disturbance 

flow such that 

u=U+tu!’ , v=Vt+v' , p=Ptp' , w=¥+p'. w=lt+w', (13) 

where the prime indicates the variables of the dis- 

turbance flow and the capital letters denote those 

of the basic flow. Substituting relationships (13) 

into various forms of the Navier-Stokes equations, 

it is possible to rewrite the equations with the 

disturbance variables as dependent variables. Sev- 

eral terms involving only the basic flow can be 

dropped, assuming the basic flow satisfies the 

Navier-Stokes equations. 

The aspect of directly solving the equations for 

the disturbance variables is an attractive one, 

since it is the disturbance conditions that are of 

interest when performing numerical stability and 

transition studies. For this reason this approach 

has probably been preferred in earlier attempts. 

It also allows for detailed investigations of the 

effects of the nonlinear (convective) terms. because, 

in a difference method based on this form, the 'lin- 

earization' can be conveniently switched on or off. 

A careful evaluation of this form of equations, 

however, reveals that it also has some major disad- 

vantages. The equations in disturbance form contain 

several additional terms (involving disturbance 

terms with terms of the basic flow) which are not 
present in a corresponding formulation for the total 

flow. Thus, in finite-difference solutions addi- 

tional numerical operations are required. A more 

serious disadvantage is that, because of the 

additional terms involving the basic flow, the 

basic flow quantities have to be kept in fast- 

access computer storage to be readily accessible 

for the numerical operations in order to avoid ex- 

cessive computation times. On the other hand, 

using the equations for the total flow the basic 

flow quantities are not directly involved in the 

solution algorithm. In this case they are only 

required for analysis and better respresentation 

of the results (for example to determine the dis- 

turbance quantities). For this purpose they can 

be stored in mass storage of lower speed accessi- 

bility. 

The availability of sufficient fast-access stor- 

age is, even with the latest computer generation, 

still a critical limitation for such numerical 

investigations of stability and transition. For 

large scale simulations involving large numbers of 

grid points, use of the disturbance formulation is 

prohibitive. For this reason, for the present re- 

search effort, use of the equations for the total 

flow variables was generally preferred instead of 

the disturbance formulation. However, the basic 

solution algorithm of the definite-difference method 

was developed such that it is applicable with only 

minor modifications for either formulation. 

4. BOUNDARY AND INITIAL CONDITIONS 

The selection of adequate boundary conditions and 

the practical implementation into a finite- 

difference scheme represents one of the major dif- 

ficulties in the development of a finite-difference 

model applicable for stability and transition stud- 

ies. Difficulties arise from the necessity that 

boundary conditions, selected and implemented along 

the artificial boundaries (see Section 2) for the 

finite integration domain, have to enable solutions 

that would be identical to solutions if the govern- 

ing equations were solved in the infinite domain. 

There is, of course, no way of checking this be- 

cause solutions for the infinite domain are not 

available. This indicates that, for selecting 

boundary conditions, it is necessary to rely on 

experience, intuition, and test calculations. 

For practical reasons the boundary conditions 

at these artificial boundaries have to be such that 

physically meaningful results can be obtained with 
a relatively small integration domain. The number 
of grid points, and therefore computer storage and 

amount of numerical operations required for a nu- 

merical solution, is directly dependent on the size 

of the integration domain. Thus, only with a rela- 

tively small domain may the computational costs of 

numerical simulations be kept within acceptable 

limits. This aspect is of particular importance 

during the testing phases of the numerical methods. 

There are also other difficulties resulting from 

the complicated nature of the governing equations. 

For the nonlinear systems of governing equations in 

the formulations of Section 3 it is not yet possible 

to decide if a given problem consisting of the 

governing equations and a set of boundary conditions 
is well-posed in the sense of Hadamard (1952). More- 

over, it is not obvious whether Hadamard's postulates 

for a well-posed problem are adequate to include 

physically meaningful solutions only. Additional 

difficulties may arise because finite-difference 

methods frequently require more boundary conditions 

than would be needed for the original differential 

formulation if exact solutions were possible 

[Richtmyer and Morton (1967) ]. From numerical ex- 

perimentation with model equations simpler than the 

full Navier-Stokes equations it is known that these 

additional 'numerical' boundary conditions are of- 

ten a source of numerical instabilities possibly © 

caused by certain inconsistencies. Therefore, one 

is confronted with the delicate task of selecting 

and implementing the extra conditons (where it is 

normally not known a priori which conditions are 

the extra ones) in such a way that the numerical 

stability of an otherwise stable method would not 

be adversely affected. 

Initial Conditions 

When the simulation of space dependent transition 

phenomena is of interest as in the present in- 

vestigation the reaction of the flow to disturbances 

introduced at the upstream boundary has to be cal- 

culated. In this case one may assume an undisturbed 

flow as initial condition at t=O enabling the dis- 

turbance waves introduced for t>0 to propagate down- 



stream into an undisturbed flow field. Denoting 
the undisturbed flow field with capital letters the 

initial conditions for the w,i) system can be written 

as 

wW(x,y,0) = 2(x,y) , 
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and for the w,u,v system 

w(x,y,0) = 2Q(x,y) , 

u(x,y,0) = U(x,y) , (15) 

v(x,y,0) = V(x,y) , 

The undisturbed flow field is obtained by solving 

the Navier-Stokes equations for the steady flow. 

Of course, for the flow between two parallel plates 

the Poiseuille profiles already represent exact 

solutions of the Navier-Stokes equations and can 

therefore be used directly. For the boundary-layer 

flow a solution has to be calculated numerically 

by solving the Navier-Stokes equations without the 

unsteady termdwft in Eq. (1). The argument could 

be raised that in this case Blasius profiles could 

be used instead. The differences between the 

Blasius solution and a numerical Navier-Stokes sol- 

ution are indeed very small. Nevertheless, for 

investigations with very small disturbance ampli- 

tudes, the differences can be of the same order of 

magnitude as the disturbances themselves and there- 

fore the transient character of the flow could 

become considerably distorted. The boundary condi- 

tions used for the calculation of the undisturbed, 

basic flow are discussed subsequently in connection 

with the conditions used for the calculation of the 

unsteady, disturbed flow. 

Boundary Conditions 

At solid walls (non-permeable, no-slip), such as 

boundary A-B of Figure 1 or A-B and C-D of Figure 

2, the velocity components vanish 

TO , WO - UO 7 WO oc (16) 

The vorticity-transport formulations (the u,v,p 

formulation will not be discussed further) require 

special treatment for the vorticity calculation at 

the walls. For the w,i) formulation vorticity can 
be calculated from the relationship 

2 

WO = = (17) 

derived from Eq. (2); for the w,u,v formulation 

either 

Qt) _ OA 
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derived from Eq. (7b) or 

OS = (19) 

; resulting from Eq. (3) can be used. Equations (17)- 
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(19) are applicable for the calculation of both the 

steady, undisturbed and the unsteady, disturbed flow. 

At the upstream boundary A-D the disturbances are 

introduced by superimposing onto the profiles of a 

basic, undisturbed flow (denoted by subscript B; for 

example, Blasius profiles or Poiseuille profiles 

could be used for the cases considered in Figures 

1 and 2) so-called perturbation functions which are 

dependent on y and t only. Thus for the w, formu- 

lation we have 

w(O0,y,t) = Wply) + Pyly,t) , 
(20) 

DOr) = WG) se tera) 

and for the w,u,v formulation 

w(O,y,t) = SH) Pin Q¥pie) 

u(O,y,t) = ugly) + Pyly,t) , (21) 

v(O,y,t) = vply) + Pyly,t) 

For the calculation of the steady, undisturbed 

flow field the perturbation functions in Eqs. (20) 

and (21) of course vanish. For simulations of 

Tollmien-Schlichting waves, for example, the 

perturbation functions are periodic in time where 

amplitude distributions (or so-called perturbation 

profiles) as obtained from linear stability theory 

can be used. 

The freestream boundary C-D (Figure 1) for the 

boundary-layer flow is an artificial boundary and 

requires special considerations as discussed in 

Section 2. For both the calculation of the steady 

flow and the unsteady, disturbed flow, vorticity is 

assumed zero (w'=2=0). For boundary-layer type flows, 

vorticity for both basic and disturbance flow (when 

disturbances are introduced within the boundary lay- 

er) decays rapidly away from the wall and is practi- 

cally zero at a distance of two 6 (6 boundary layer 

thickness) from the wall. 

For the calculation of the steady flow using the 

W,u,Vv system suitable conditions for C-D are 

U = Ugg (x) (22) 

where the freestream velocity Ug (x) may be speci- 

fied according to the downstream pressure variation 

of the boundary layer flow. A condition for the v 

component can be derived from the continuity equa- 

tion, ((5))/,,,.using Eq. | (22) 

TORU ge LS 
dy dx 0 (23) 

For the w,i) system a condition equivalent to Eq. (22) 

can be used 

= = Ugg(x) - (24) 

The w',u',v' disturbances decay relatively slowly 

in direction normal to the wall. For example, for 

Tollmien-Schlichting waves the ' or v' amplitude 

at 66*, (for Re*=630, based on displacement thick- 

ness 6*) may still be close to 50% of the maximal 

amplitude. Therefore Dirichlet conditions (u'=v'= 

w'=0) could only be used if the freestream boundary 

were very far, for example 506*, from the wall. 
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This would be impractical due to the excessive 

amounts of grid points required. On the other hand, 

the conditions given below allow a relatively small 

integration domain in y-direction. They only postu- 

late that the disturbances decay asymtotically in 

y-direction. For the w,i formulation such a condi- 

tion is 

On ae ’ ae - ay : (25) 

and for the w,u,v formulation 

we att 

Onvaa - 

(26) 

dv! Plea! 

dy 

where a is the local wave number of the resulting 

disturbance waves. Test calculations have shown 

that with the conditions (25) or (26), together 

with the Dirichlet-type vorticity condition dis- 

cussed previously, physically meaningful results 

can be obtained when the integration domain in y- 

direction includes only two to three boundary-layer 

thicknesses. 

Selection and implementation of the boundary 

conditions at the downstream boundary B-C represents 

a very difficult task. These boundary conditions 

have to enable propagation of disturbances right 

through this boundary, where any effects causing 

even the slightest wave reflection have to be 

avoided. The conditions found most satisfactory 

in this respect are for the w, formulation 

Be ae 
ro apse 

(27) 
ay! Oe 
Spon ano ata 

and for the w,u,v formulation 
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Numerical experiments with conditions (27) and (28) 

have shown that physically reasonable results are 

already possible when, for periodic upstream dis- 

turbance input, the length of the integration domain 

includes only three to four wavelengths. 

For the calculation of the steady flow (for the 
boundary-layer flow, for example) boundary. condi- 

tions which are compatible with those of the unsteady 

calculations are for the w, system 

7 = OA SSE SO 4 (29) 

and for the w,u,v system 

922 92u 92v 
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The boundary conditions Eqs. (27) or Eqs. (28) for 

the downstream boundary [also Eqs. (25) and (26) 

for the free stream boundary] can be derived assum- 

ing neutral, periodic behaviour of the disturbance 

flow. However, extensive test calculations have 

shown that use of such conditions does not enforce 

a strict periodic behaviour of the disturbance flow 

near these boundaries. Rather, these conditions 

allow damping or amplification of the disturbances 

even on these boundaries themselves. These con- 

ditions have also proven to be applicable for cal- 

culations with periodic disturbance input of large 

amplitudes as well as for non-periodic disturbance 

input (random disturbances, for example) [see Fasel 

et al. (1977) ]. 
For cases where a is not known a priori it can 

be determined interatively. Starting with an ini- 

tial guess ao (x) (a is generally a function of x, 

of course, although for the derivation of the 

boundary conditions it was assumed constant to 

arrive at simple relationships) an improved a(x) 

can be determined from the resulting disturbance 

waves developing in the integration domain. Even 

with relatively crude initial guesses ag(x) (for 

example ag=0) this interation loop converges 

rapidly, and for practical purposes two or three 

iterations are sufficient. 

There is no formal difference between the bound- 

ary conditions (27) and (28) used for the w,W and 

w,u,v formulation, respectively. Both sets of con- 

ditions specify relationships for the second deriva- 

tives in the disturbance variables. Nevertheless a 

subtle difference does exist. Condition (27) for 

w' implies that (due to the definition of w, Eq. 4b) 

for v' a relationship involving the first derivative 

is prescribed 

—=-a*p'. (31) 

This is obviously more restrictive than condition 

(28c) where for v' a second derivative is prescribed. 

For small periodic disturbances the two sets of 

conditions lead to practically the same results, 

although the results with the w,W system, together 

with conditions (27), exhibit subtle irregularities 

near the downstream boundary for the waves propa- 

gating through this boundary. The w,u,v system, 
together with conditions (28), however become su- 

perior to the w, system with conditions (27) when 

larger disturbance amplitudes are involved. In this 

case, reflection-type phenomena can be observed in 

increasing manner at the downstream boundary for the 

w,) system. For the investigation of the effects 

of a backward-facing step on transition [Fasel et 

al. (1977) ] the small vortices traveling downstream 

are caught at the downstream boundary when the w,\ 

system and conditions (27) are used, rendering the 

numerical results worthless. Using conditions (28) 

with the w,u,v system, on the other hand, allows 

smooth passage of these vortices through that bound- 

ary. . 

For these reasons conditions (28), in connection 

with the w,u,v system, have proven to be the best 

choice so far in properly treating the downstream 

boundary. The relatively small upstream influence 

of these conditions can be best demonstrated with 

typical results from test calculations. Figure 5 

for example, shows a comparison of the disturbance 

variable u' for calculations with small periodic 

disturbances where first in Eqs. (28) an adequate 

value for a (a=35.6, obtained from linear stability 
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FIGURE 5. Downstream development of u'-disturbance at 

y/Ay = 3 for different boundary conditions at the 

downstream boundary (boundary layer on a flat plate). 

theory) was used while for the other calculation a 

was simply set zero. It is obvious that even with 

the poor value for a the upstream influence is re- 

stricted to a region of approximately one wavelength, 

while the disturbance further upstream is practi- 

cally unaffected. This relatively minor upstream 

influence can also be observed in Figure 6 where 

the amplification curves (for the maximum of u') 

are compared for the two cases. The disturbance 

amplification further than one wavelength upstream 

is practically unaffected by the value used for a 

in Eqs. (28). 

5. NUMERICAL METHOD 

A numerical method for transition studies has to 

generally allow for numerical solutions of a 

boundary-value problem for the calculation of the 

steady flow, i.e. solution of Eqs. (1) and (2) or 

Eqs. (1) and (7) (without dw/dt in Eq. 1) with ap- 

propriate boundary conditions discussed in Section 

4. Further the solution of a mixed initial-boundary- 

value problem for the calculation of the unsteady 

flow is required, i.e. solution of Eqs. (1) and (2) 

or Eqs. (1) and (7) with the boundary conditions for 

the unsteady, disturbed flow and initial conditions 

discussed in Section 4. The partial differential 

equations are of fourth order for the w,) formula-— 

tion and of even higher order for the w,u,v-system. 

For both formulations the governing equations are 

elliptic for the calculation of the steady flow and 

parabolic for the unsteady flow. In this paper the 

discussion is restricted to application of finite- 

difference methods for the solution of the mathe- 

matical problems posed. 

A difference method for investigations of hydro- 

dynamic stability and transition phenomena has to 

meet a number of requirements in order to ensure 

Lal 
Ao 
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"FIGURE 6. Amplification curves for maximum of u' for 

different boundary conditions at the downstream bound- 

ary (boundary layer on flat plate). 
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success. Some of the requirements deemed most 

important in this context are as follows: 

(i) Stability, convergence 

Rigorous mathematical proofs of (numerical) stabil- 

ity and convergence for nonlinear problems as dif- 

ficult as the one at hand have not been accomplished 

as yet. For the present investigation, however, 

stability of the numerical method is of fundamental 

importance. Numerical instability is frequently 

exhibited in form of oscillations which would be 

hardly discernible from the physically meaningful 

oscillations caused by introduced forced perturba- 

tions. Hence, a prospective difference method has 

to be highly stable, even for relatively large 

Reynolds numbers. 

In general, for transition studies of the kind 

considered in this paper convergence is also quite 

serious. Convergence is not necessarily guaranteed 

if for a properly posed problem the numerical scheme 

is stable and consistent as is the case for linear 

partial differential equations of second order 

[Lax's equivalence theorem, see Richtmyer and 

Morton (1967)]. However, experimenting first with 

small periodic disturbances one can at least empir- 

ically check the convergence behaviour of the nu- 

merical method by comparing calculations for various 

grid sizes with linear-stability-theory results and 

experimental measurements. Then for other dis- 

turbance inputs, such as large amplitude periodic 

disturbances, one hopes that the convergence char- 

acteristics do not change significantly. 

(11) Accuracy of second order 

For these investigations at least second-order ac- 

curacy of the numerical method (i.e. the truncation 

error of the difference analogue to the governing 

equations, initial and boundary conditions at least 

of second order) is required to exclude or minimize 

undesirable non-physical effects, such as artificial 

viscosity, when mesh intervals of practical sizes 

are used. 

(iii) Realistic resolution of the transient char- 

acter of unsteady flow fields 

Transition phenomena are of highly unsteady nature, 

with the time-dependent behaviour of the flow being 

of special interest. Thus, the difference method 

has to be such that realistic resolution of the 

transient character of such flow fields is possible. 

Therefore truly second-order accuracy is also de- 

sirable for the time derivative. 

(iv) Efficiency with respect to computational 

speed and required fast-access storage capacity 

Numerical solutions of the complete Navier-Stokes 

equations for unsteady flows at high Reynolds 

numbers require numerous time-consuming numerical 

operations. Therefore computers with large, fast- 

access computer storage capacity, reaching even the 

limits of modern computer systems, are necessary. 

A prospective difference method for transition 

simulations has to be extremely efficient, i.e. 

maximizing computational speed and minimizing re- 

quired computer storage capacity as much as possible, 
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in order to be capable at all of undertaking inves- 

tigations of this nature with the computers available 

today. 

Of the requirements discussed here, numerical 

stability is the most stringent one and hence has 

to be given most consideration. For this reason 
only implicit methods are suitable. Implicit meth- 

ods are generally much more stable than their im- 

plicit counterparts. For the adequate resolution 

of the large gradients, resulting from the strongly 

time-dependent flow fields to be investigated, rel- 

atively small spatial intervals Ax and Ay are re- 

quired. Using explicit methods this could lead to 

excessively small time-steps required to maintain 
numerical stability. For example, using an explicit 
counterpart to the present implicit method, the 

time-step, according to a linearized stability anal- 

ysis, would have to be more than 100 times smaller 

for a practical calculation than when using the 

corresponding implicit scheme. To satisfy require- 

ment (iv) attention has to be given to making the 

implicit difference method extremely efficient and 

also to meeting the other requirements discussed 

previously. 

Experimentation with various implicit difference 

schemes suggested that 'fully' implicit schemes are 

the most promising for transition studies. 'Fully' 

implicit means that all difference approximations 

and nodal values for the approximation of governing 

equations and boundary conditions are taken at the 

most recent time-level. For our fully implicit 

method three time-levels are employed to obtain a 
truncation error of second order for the time de- 

rivative dw/dt in Eq. (1). 

For all space derivatives, central difference 

approximations with second-order truncation error 

are employed. The implementation of the boundary 

conditions into the numerical scheme requires 

special care so that overall second-order accuracy 

can be maintained. 
This implicit scheme leads to two systems of 

equations for the w,i) formulation and to three 

systems of equations for the w,u,v formulation. 

These systems of equations can be solved by itera- 

tion. Because of the retention of full implicity 

the equation system resulting from the vorticity- 

transport equation is coupled with the Poisson 

equation systems via the nonlinear convection terms. 

It is additionally coupled with the systems result- 

ing from the Poisson equations via the calculation 

of the wall vorticity from Eq. (17) for the w,wW 

formulation and from either Eqs. (18) or (19) for 

the w,u,v formulation. 

A very effective solution algorithm based on 

line-iteration has been developed for our method 

for this coupled system. It is discussed elsewhere 

in more detail [Fasel (1978)]. This solution. algo- 

rithm has shown to be equally effective when the 

basic equations are transformed to allow for a vari- 

able mesh in the physical plane such as, for exam- 

ple, to concentrate grid points close to walls where 

high gradients are expected. Overrelaxation to 

accelerate convergence can be easily implemented as 

has been done for several calculations [Fasel et al. 

(1977) ]. Another advantage is that the solution 

algorithm is readily exchangeable to be applied for 

both the governing equations in w,W and w,u,v formu- 

lation. This has been successfully exploited in the 

investigations of the effects of a backward-facing 

step on transition. In this study both formulations 

were used in the integration domain; the w, formu- 

lation was used in the region containing the corners 

of the step which can be treated more conveniently 

with this formulation. For the domain bounded by 

the downstream boundary the w,u,v formulation was 

applied, because it allows use of less restrictive 

boundary conditions as discussed in Section 4. 

The effectiveness of this solution algorithm can 

be best judged by presenting a typical computation 

time for a practical calculation. For a periodi- 

cally disturbed flow with small disturbance ampli- 

tudes, using a 35 x 41 grid and calculating 260 

time-steps, the required CPU time on a CDC 6600 

is about five minutes, including the calculation 

of the steady flow. This is relatively little, 

considering that the flow is disturbed at every- 

time level and that full implicity is retained in 
the numerical method. 

6. NUMERICAL RESULTS 

The implicity difference method which we have devel- 

oped has been subjected to crucial test calcula- 

tions to verify its applicability to investigations 

of stability and transition. First, the reaction 

of the boundary-layer on a flat plate to periodic 

disturbances of small amplitudes was investigated 

in detail. It was demonstrated that the spatial 

propagation of Tollmien-Schlichting waves could be 

simulated where comparison of the numerical calcu- 

lations with results of linear stability theory and 

laboratory measurements showed good agreement. Re- 

sults of such calculations for the numerical method 

based on the w,u,v formulation are presented and 

discussed elsewhere [Fasel (1976) ]. 
The usefulness of the numerical simulations for 

the investigation of two-dimensional, nonlinear 

effects was demonstrated by calculating the reaction 

of a boundary-layer flow to periodic disturbances of 

larger amplitudes. Investigating the propagation 

of spatially growing or decaying disturbance waves 

in a plane Poiseuille flow (both in the linear and 

nonlinear regime) verified that the numerical method 

is not limited to boundary-layer flows but rather 

that it is equally applicable to other flows of 

importance. Finally, numerical investigations of 

of transition phenomena in the presence of a two- 

dimensional roughness element (backward-facing step) 

showed that simulations with this numerical model 

allow insight into processes which may possibly be 

important for understanding certain transition mech- 

anisms. Results of this investigation and of the 

investigations mentioned before are discussed in 

another paper [Fasel et al. (1977) ]. 
Because the purpose of this paper is to review 

Main aspects of numerical transition simulations, 

emphasis here is not on conveying new results or 

details of numerical calculations. Rather, results 

presented here are intended to be of exemplary 

nature and were selected in order to clearly demon- 

strate essential aspects of such simulations and 

to show what can be expected from such numerical 

calculations. 

The drawings:in Figures 7 and 8 should facilitate 

an evaluation of the potential of such numerical 

simulations, and, of course, also point out possible 

disadvantages and limitations. Figures 7 and 8 

show results for a boundary-layer flow on a flat 

plate, disturbed at the upstream boundary with small 

periodic disturbances. This case is particularly 

Suitable for demonstration purposes. The ensuing 
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Tollmien-Schlichting waves that can be studied from 

such calculations are thoroughly investigated, 

experimentally as well as theoretically, and the 

results of these calculations are therefore more 

intelligible than those of more complicated phe- 

nomena of transition. 

For these calculations, based on the w,u,v for- 

mulation, the Reynolds number at the upstream bound- 

ary is Re*=630. For the periodic disturbance input, 

for which perturbation profiles of linear stability 

theory gre u ged, the frequency parameter (defined 

as F=10 Bo/u, , with disturbance frequency 86) is 

We So | Abel Shis case the flow is unstable according 

to linear stability theory (the location of the left 

boundary corresponds to a point on the neutral curve) 

and therefore the disturbances should become ampli- 

fied in downstream direction. For the calculations 

an egqui-distant grid with 35 points in y-direction 

and 41 points in x-direction was used. 

In Figures 7 and 8 the function values of the 

disturbance flow (obtained by subtracting the 

quantities of the basic flow from those of the total 

flow) are plotted for all three fields of variables 

u',v',w', for which the total flow variables are 

directly obtained from the numerical calculations. 

To allow simultaneous representation of the func- 

- tion values at all grid points a perspective rep- 

resentation was chosen where the function values 

are plotted versus the downstream coordinate x/Ax 

Disturbance variables versus x/Ax and y/Ay (perspective representation) at t/At = 80; a) u', 

9) 

c) w 

i. 0.0015 

A 

and the coordinate normal to the wall y/Ay. These 

perspective representations allow the best possible 

qualitative survey of the large amount of data ob- 

tained from such calculations. 

In Figure 7 the disturbance variables u',v',w' 

are plotted for a time instance of t=80At, which 

corresponds to a time of two time periods after 

initiation of the disturbances at the upstream 

boundary. In Figures 7a, 7b, and 7c the view is in 

the direction away from the wall, looking slightly 

in upstream direction. In Figure 7d the view 

is also in the direction away from the wall, look- 

ing now, however, downstream. From these figures 

the propagation of the disturbance waves into the 

undisturbed flow field can be clearly observed. 

Figure 8 shows the corresponding drawings for 

the three variables u',v',w' at a time instance of 

t=250At, that is, more than two time periods after 

the disturbance wave reached the downstream bound- 

ary. These plots demonstrate that the downstream 

boundary conditions work properly. Obviously, the 

waves can smoothly pass through this boundary, 

causing no noticeable reflections. Even after hun- 

dreds of time-steps the flow at and near this 

boundary maintains its time-periodic character and 

therefore the state of the disturbance flow as rep- 

resented in Figure 8 would repeat itself periodi- 

cally if the calculations were continued for further 

time-steps. 
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In Figures 7 and 8 the large gradients normal 

to the wall of the u' and w' disturbances become 

clearly visible (for w' this can be best observed 

from Figures 7d and 8d) while v' changes more grad- 

ually. The large gradients observable in these re- 

sults indicate already the major difficulties and 

limitations in numerical simulations of transition 

phenomena. In a numerical solution method these 

large gradients have to be adequately resolved to 

obtain meaningful representation of essential physi- 

cal phenomena. For nonlinear disturbance waves re- 

sulting from disturbance input with larger amplitudes 

[Fasel et al. (1977)] or for other more complicated 

transition phenomena the gradients may become even 

considerably larger. Using finite-difference meth- 

ods of a given accuracy (for example, second order 

as for the present method) better resolution can 

only be achieved by using additional grid points. 

This, however, leads to ever larger equation sys- 

tems the sizes of which are limited by computer 

storage capacity and computation time. 

Some help can be expected from employing vari- 

able mesh systems allowing allocation of more grid 

points closer to walls, where the gradients are 

largest, and using fewer points further away where 

gradients are small. This can be best achieved 

using coordinate transformations for which test 

calculations have shown that sizable savings in 

the number of grid points, and also in computation 

- 0.0015 

c) 

Te BN 40 

d) 
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0.0000 

0 

(perspective representation) at t/At = 250; a) u', 

time, are possible to achieve accuracy comparable 

with calculations in an equidistant grid. Addi- 

tional improvement may be expected from application 

of higher-order accurate difference schemes (higher 

than second order) which are presently in the state 

of development and about to be used in our numerical 

method. 
The results shown in Figures 7 and 8 also unveil 

the considerable potential and advantages of such 

numerical simulations. The finite-difference so- 

lutions produce a bulk of data, i.e. the values of 

the variables directly involved in the solution 

procedure are obtained for all grid points and for 
all time-levels that are calculated. The data can 

be conveniently stored on mass storage devices, 

such as magnetic tape (used for the present calcu- 

lations, for example). The data stored can be 

processed immediately or at any later data to ob- 

tain any specific information desired, or to produce 

additional data that might be deemed necessary for 

a more detailed evaluation of particular flow phe- 

nomena. For example, they can be used to obtain 

frequency spectra, Reynolds stresses, energy bal-— 

ances, amplitude distributions, or to produce con- 

tour plots (equivorticity lines, stream lines) etc. 

Another positive side of such numerical simulations 

is that if the data would be destroyed or lost, they 

could be reproduced identically, which would be 

hardly possible in comparable laboratory experiments. 



7. CONCLUDING REMARKS 

The objective of the present review was to discuss 

possible approaches to numerical simulations of sta- 

bility and transition based on numerical solutions of 

the Navier-Stokes equations using finite-difference 

methods. The approach, allowing investigations of 

spatially propagating disturbance waves, mainly 

elaborated upon in this paper, appears most promis-— 

ing for realistic numerical investigations of physi- 

cal phenomena occurring in transition. The immense 

amount of reproducible data obtained from such cal- 

culations allows detailed information of any part 

of the flow field which may be helpful to gain in- 

sight into essential mechanisms occurring in tran- 

sition. 

The restriction of the numerical model to two- 

dimensional flows has also a positive side. With 

this model truly two-dimensional numerical experi- 

ments can be performed while in laboratory experi- 

ments it is always difficult to completely exclude 

unwanted three-dimensional effects. Of course the 

later stages of transition are inherently three- 

dimensional in nature and therefore for a study of 

these later developments a three-dimensional model 

would be desirable. 

The main difficulties and limitations of such 

simulations result from the large gradients which 

occur in the transition process. For adequate 

resolution of the large gradients which become even 
larger for more complicated phenomena, increasing 

numbers of grid points are required which may lead 

to excessive requirements of computer storage and 

computation time. 

In spite of these difficulties the number of 

numerical simulations of transition, similar to 

the approach discussed in this paper, is likely to 

increase due to the enormous potential inherent in 

such investigations. Emphasis will probably be on 

the development of difference methods with higher 

accuracy which are applicable for such studies. 

Additionally, increasing use of numerical methods 

other than finite-difference methods is likely, 

such as spectral methods or finite-element methods. 

Finally, with continuing progress in the develop- 

ment to high-speed digital computers, detailed 

quantitative investigations of three-dimensional 

transition phenomena will probably become feasible 

in the near future. 

This research is supported by the Deutsche 

Forschungsgemeinschaft, Bonn-Bad Godesberg, con- 

tract Ep 5/7. 
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The Physical Processes Causing 

Breakdown to Turbulence 

M. Gaster 

National Maritime Institute 

Teddington, England 

I want to present some recent experimental observa- 

tions that provide further insight into the physical 

processes that occur in the transition from a lami- 

nar to a turbulent boundary layer. We know that 

external disturbances, such as free-stream turbu- 

lence and sound, excite small pertubations in the 

laminar flow, and that under certain conditions 

these may develop downstream in the form of growing 

wave trains. At low pertubation levels these un- 

stable travelling waves are adequately described 

by the linearised equations of motion. Measure- 

ments on weak artificially excited waves have, by 

and large, provided excellent confirmation of linear 

theory. Far downstream the amplitudes of the per- 

tubation velocities will, however, become too large 

for the neglect of the non-linear terms to be valid, 

and a non-linear description of the motion is nec- 

essary. Even in the relatively simple situation 

of the constrained parallel Poiseuille flow, which 

has been extensively studied, the non-linear the- 

ories so far developed can only weakly describe 

non-linear events, and even then the computations 

are very involved. These non-linear theoretical 

models are nevertheless very helpful in describing 

the various interactions between the fundamental, 

its harmonics, and the mean flow, but they cannot 

go far toward providing a model of the process of 

breakdown to turbulence, nor are they intended for 

that purposes. 

Non-linear analyses have been concerned mostly 

with the evolution of purely periodic wave trains. 

In the case of linear problems it is quite proper 

to consider any disturbance in terms of its Fourier 

elements. Knowledge of the behaviour of purely 

periodic wave trains enables more complex distur- 

bances to be described. Unfortunately this is not 

the case when the disturbance is non-linear, and 

the welcome simplification obtained by breaking down 

a problem into harmonics is no longer valid. When 

the initial disturbances arise from natural rather 

random stimuli the linear wave train will initially 

consist of a band of unstable waves. After some 
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amplification a slowly modulated almost sinusoidal 

oscillation will inevitably develop. When the 

selective amplification is very large, as is the 

case in many boundary layer flows, the modulations 

are slow, and it does not seem too much of an 

idealisation to treat the non-linear problems 

analytically as if it were a purely regular wave 

train. It turns out, however, that the degree of 

modulation does not have to be large for its in- 

fluence on the Reynolds stresses and thus the 'mean 

motion' to be very significant. In a typical ex- 

periment on a laminar boundary layer over a flat 

plate in a low turbulence wind tunnel one finds 

that the instability waves are modulated suffi- 

ciently to influence the transition process. It 

is found, for example, that breakdown to turbulence 

occurs violently and in a random manner quite un- 

like the type of breakdown that is observed in 

controlled periodic wave trains. Measurements on 

isolated wave packets also show the effect that 

modulation of the wave train has on transition, but 

in a more controlled way. 

Previously reported measurements [Gaster and 

Grand (1975)] on artifically excited wave packets 

showed consistent and quite well defined deviations 

from the structure predicted by linear theory. 

Since the maximum level of the velocity fluctua- 

tions measured lay below that for which significant 

non-linearity is exhibited by regular periodic wave 

trains, the reason for this behaviour was at that 

time unclear. In the experiments only one level 

of input excitation was used and so there was no 

direct way of assessing the importance of the non- 

linear terms. These experiments have been repeated 

at the National Maritime Institute with various 

levels of input excitation and it has now been con- 

clusively established that the previously observed 

warping of wave fronts and the non-Gaussian char- 

acter of some of the hot-wire signal envelopes arose 

from non-linearity. This behaviour can best be il- 

lustrated by showing a comparison of the hot-wire 

signals that arise: (a) with a sinusoidal input, 



and (b) a pulsed input. As in the previous series 

of experiments the boundary layer flow was excited 

by an acoustic device mounted in a recess on the 

reverse side of the flat plate. A small hole 

through the plate provided the necessary fluid 

dynamic coupling at a point on the boundary of the 

working face. Figure 1 shows a set of hot-wire 

anemometer records taken with the probe mounted 

just outside the boundary layer one metre down- 

stream of the leading edge. The exciter was driven 

sinusoidally at four different amplitude levels 

increasing from (i) to (iv). The velocity fluc- 

tuations appear to be regular and show no harmonic 

or other distortion until the level of turbulence 

intensity exceeded 1% peak-to-peak of the free- 

stream velocity (see iv). Exciting the flow with 

isolated pulses on other hand, produces a some- 

what different picture. Figure 2 again contains 

four hot-wire records obtained with different 

levels of drive applied impulsively. At the lowest 

level shown the signal consists of a smooth roughly 

Gaussian packet of ripples, but even a small in- 

crease in driving amplitude produces a clearly 

discernible distortion to this signal. These dis- 

tortions are similar to those obtained in the 

earlier experiments quoted. As the amplitude is 

further increased the signal becomes increasingly 

distorted until at some level a secondary burst 

of relatively high frequency oscillations appears. 

It should be remarked that the amplitude scaling 

on both Figures 1 and 2 are identical, showing that 

non-linear effects occur at much lower amplitudes 

for the impulsively applied disturbance than for 

a periodic one. In these particular experiments it 

appears that non-linearity becomes apparent in the 

hot-wire signal at a peak to peak amplitude of only 

1/sth that for a continuous wave train. 

The high frequency oscillation appears to be 

associated with a steep shear layer that forms 

within the velocity profile momentarily as the 

wave packets sweep past the measuring station. 

These shear layers initially appear on either side 

of the centre line, and not surprisingly therefore 

the peak levels of the high frequency secondary 

oscillation also arise off centre at roughly these 

locations. The high frequency waves grow rapidly 

with downstream distance, initially developing 

exponentially but later the growth levels off. At 

that stage the filtered secondary wave packets were 

observed to distort in a way reminiscent of the 

c— 0,05 Seeso = 

FIGURE 1. Hot-wire Signals from Sinusoidal excitation. 
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FIGURE 2. Hot-wire Signals from pulsed excitation. 

primary wave packet. It was therefore conjectured 

that there might be yet a further level of insta- 

bility on the secondary wave oscillations when 

these became sufficiently large. Just two days 

before leaving for this meeting this idea was 

tested. Hot-wire signals from appropriate regions 

of the flow were filtered to see whether there was 

any signal above the frequency of the secondary 

oscillations. When the secondary wave amplitude 

was large, a burst of high frequency oscillations 

could be seen on the oscilloscope. Figure 3 shows 

the result of applying a high-pass filter, set to 

pass above 2 kHz, to such a hot-wire anemometer 

Signal. The time scale of this record is con- 

siderably expanded compared with that of Figures 1 

and 2, and shows that the oscillation frequency in 

the burst was around 5 kHz. The basic primary 

wave packet of roughly 150 Hz developed over 1m 

before breaking and supporting a secondary burst 

of 1 kHz. This secondary instability grew in am- 

plitude to levels large enough to indicate the in- 

fluence of non-linearities in a distance of roughly 

4 cm. The tertiary mode of 5 kHz detected at this 

stage seems likely to grow even more rapidly. One 

can only presume that further stages in this evo- 

lutionary process are inhibited by viscosity. 

These experiments on the non-linear wave packet 

and its breakdown to turbulence are as yet incom- 

plete and it is my purpose here to indicate only the 

r———— 04005 Seess, ——_——— 

FIGURE 3. High frequency burst. 
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most important features of the process. Firstly, 

a clear demonstration of the difference between 

a purely periodic wave train and a modulated train 

as far as the level at which non-linear effects 

occur is presented. The local breakdown observed 

in the wave packet case is similar to that observed 

in the breakdown of the modulated wave trains that 

arise from natural random excitations. Secondary 

breakdown does of course also occur on large enough 

periodic waves, but modulation seems to cause this 

phenomenon to take place at somewhat lower levels 

of primary disturbance and in a slightly different 

form. The artifically driven wave packet embodies 

some of the most important features found in natu- 

rally occurring waves, and since they can be gen- 

erated in a controlled manner the effects can be 

quantified. It is essential to understand this 

process if one is going to make estimates of where 

transition occurs on the basis of the amplitudes 

of instability waves calculated from linear theory. 

At present, most prediction methods rely solely on 

the intensity of the most unstable wave. This is 

clearly inadequate as breakdown is also dependent 

on the modulation of the wave train, and consequently 

the bandwidth of the amplified part of the spectrum 

must also be taken into account in some way yet to 

be established. 

Secondly, the transition from regular waves to 

turbulence appears to occur through a cascade pro- 

cess. The stresses induced by a modulated wave 

train cause steep shear layers to form in the bound- 

ary layer. These support instabilities of higher 

frequencies and shorter wavelengths than the waves 

that caused the distortions, and these grow to large 

amplitudes in appropriately shorter distances. This 

process must at some stage be tempered by viscosity, 

but in these experiments three levels of instability 

have been so far detected. The lowest frequency 

motion was artifically excited by the input pulse, 

while the two successviely higher frequencies were 

excited by random turbulence in the flow at the 

particular location in space and time where local 

instabilities existed. The development of a fine 

scale structure is thus a local, almost explosive, 

phenomenon. Such a cascade breakdown process pro- 

vides the necessary mechanism for the generation of 

fine scale motions that arise in a fully turbulent 

flow. 
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ABSTRACT 

The instability of the two-dimensional flat plate 

oscillatory boundary layer induced by a stream with 

velocity U, + U; cos wt is considered. The velocity 

amplitudes, U, and U;, are constants and U)/U, is 

assumed to be small. The instability of this oscil- 

latory boundary layer is analyzed by a time-dependent 

linear parallel flow instability theory. The change 

of the Tollmien-Schlichting growth rates due to the 

imposed oscillations are computed to second order in 

U|/U,- It is found that for imposed oscillation 

frequencies in the range of the Tollmien-Schlichting 

frequencies of the underlying Blasius flow, the 

boundary layer is stabilized by the oscillations of 

the external flow. 

1. INTRODUCTION 

In this paper, we study the instability of the two- 

dimensional oscillatory laminar boundary layer which 

forms on a flat plate that is exposed to a stream 

with a velocity, U, + U; cos wt, perpendicular to the 

plate's leading edge. The velocity amplitudes, U, 

and U;, are constants, w is the angular frequency of 

the oscillation, and t denotes time. The considera- 

tions of the instability of oscillatory flows has 

become an important field of research in recent years 

and has been reviewed by Davis (1976). The partic- 

ular class of problems concerned with the instability 

and laminar-turbulent transition of oscillatory bound- 

ary layers has been reviewed by Loehrke, Morkovin, 

and Fejer (1975). The latter review indicates that 

very few studies of instability and transition have 

focused directly on the subject of oscillatory bound- 

ary layers. Such studies that have concentrated on 

oscillatory boundary layers have been mainly experi- 

mental investigations which were restricted to low 

frequency oscillations compared to the oscillation 

frequency of unstable Tollmien-Schlichting waves. 

The only analytical work concerning the instability 
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of oscillatory boundary layers has been the quasi- 

steady analysis of Obremski and Morkovin (1969) which 

was aimed at these low frequency cases. 

The study of the instability of oscillatory 

boundary layers has technological as well as funda- 

mental importance. Examples of a fundamental nature 

for which the study of the instability of oscillatory 

flows may have relevance are the problems of how 

ambient disturbances affect the instability of the 

underlying steady boundary layer. Specific examples 

might be the effects of ambient acoustic waves or 

ambient turbulence on steady boundary layer insta- 

bility. The problem of the effects of ambient tur- 

bulence on the instability of a steady boundary layer 

probably is not completely accessible by the theory 

of the instability of oscillatory boundary layers. 

However, a sufficiently complex, but organized, am- 

bient oscillation may be adequate for duplicating 

some aspects of the effects of ambient turbulence 

on steady boundary layer instability. We are hope- 

ful that this may be the case because of similar 

phenomena in the field of nonlinear ordinary dif- 

ferential equations. The study of the instability 

of forced periodic solutions of nonlinear ordinary 

differential equations has furnished a much richer 

class of phenomena than the corresponding study of 

the instability of only the steady solutions of these 

equations [see, for example, Hayashi (1964); in 

particular, the results for the forced van der Pol 

equation, pp. 286-300]. 

In the present study, we focus on the very simple 

oscillatory boundary layer that was described ear- 

lier. The purely oscillatory part of this boundary 

layer is approximated by the oscillatory Stokes layer 

which has no spatial structure in the plane of the 

plate, i.e., it is an exactly parallel flow. Thus, 

this model problem may be too simple to reveal any 

particularly important features of realistic ambient 

disturbances. However, the model problem is a good 

starting point and serves as a basis on which to 

develop the appropriate methods of analysis for the 
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instability of oscillatory flows. We will be con- 

cerned mainly with moderate and high frequency os- 

cillations comparable to the oscillation frequencies 

of unstable Tollmien-Schlichting waves. Thus, a 

direct comparison of our results with the low- 

frequency experimental results cited by Loerke, 

Morkovin, and Fejer (1975) will not be possible. 

The method used here for analyzing the instability 

of the oscillatory boundary layer is a combination 

numerical and perturbation method [Yakubovich and 

Starzhinskii (1975)]. In this method, the changes 

in the amplification rates of the free disturbances 

of the underlying steady boundary layer are computed 

as perturbation series in the amplitude parameter, 

U,/Up, for any positive value of the frequency, w. 

Certain resonant and combination frequencies are of 

particular interest. The numerical method used here 

to evaluate the perturbation series allows the ef- 

ficient and easy generation of many terms of the 

series. 

The plan of this paper is as follows: In Sec- 

tion 2, we formulate the basic flow whose instability 

is to be examined along with the associated theory 

instability problem. Section 3 outlines the solu- 

tion method. Section 4 discussed the numerical 

results. Some concluding remarks concerning the 

instability of womewhat more complex oscillatory 

boundary layers are contained in Section 5. 

2. INSTABILITY THEORY 

The basic flow field whose instability is to be in- 

vestigated is the oscillatory boundary layer formed 

on a flat plate in a unidirectional stream with 

speed U, + U, cos wt perpendicular to the leading 

edge of the plate and parallel to its plane. Let 

the cartesian coordinate frame (x,y,z) be placed 

with its origin in the leading edge of the plate, 

the x-axis pointing downstream parallel to the plate, 

the y-axis perpendicular to the plane of the plate 

and the z-axis pointing in the spanwise direction. 

For values of the parameter, (ww/Uy) >> 1, the 

ratio, 8) = 6/65, of the boundary layer thickness, 

6 = Yxv/U,, to the oscillatory Stokes layer thick- 

ness, 5, = VY2v/w, is large and the oscillatory 

boundary layer resulting for small values of A = 

U)/U, can be approximated well [see Ackerberg and 

Phillips (1972)] by the sum of the Blasius profile 

Up (y) [see Rosenhead (1963), p. 225] and the Stokes 

layer profile Ugly, t) [Rosenhead (1963), p. 381]. 

Let us scale the x- and y-coordinates by the 

local value of the displacement thickness 

6x = 1.7208 Y¥xV/U (1) 

Then the transverse coordinate, n, is defined by 

nN = y/éx and x' = x/éx. The time scale is §*/U, 

so that dimensionless time is t' = tU,/5* and hence- 

forth the primes will be dropped. Then the basic 

oscillatory boundary layer profile is given ap- 

proximately by 

U(n,t) = fp(n) + pre [ite G7 ET 1] (2) 

where f£,(n) is the Blasius profile, B = 6x/5o, Q = 

wS*/Uo = 282/Rs,, and Rey = U,d*/v. 
We shall consider the instability of the basic 

flow (2) in a similar manner to the standard two- 

dimensional linear instability theory for steady 

boundary layers. In particular, the quasi-parallel 

temporal instability theory as outlined by Rosen- 

head (1963) is followed. The restriction to two- 

dimensional disturbances can be justified based on 

an extended version of Squires' theorem [see von 

Kerczek and Davis (1974)]. The perturbation ve- 

locities (u,v) are determined from the stream func— 

tion, W(x,n,t) = $(n,t)er* 

(3a,b) 
: ia 

v = Re ae Reiave e 
ax 

The disturbance equation for the perturbation ve- 

locities is then given by 

one Stay one oo _ 840 
ae EP = Ra 22, + ia (use ane eg (4) 

* 

where £ = 32/an2 = a2, i = V-1, Re(a) denotes the 

real part of a, and a is the wave number of the 

sinusoidally varying disturbance in the x-direction. 

The boundary conditions are 

= OF = (0, ens fy) = © (5a) 
an 

and 

gr = >0O asn>®. (5b) 

By analogy with Floquet theory for ordinary dif- 

ferential. equations with periodic coefficients 

[Coddington and Levinson (1958)], we seek solutions 

of (4) and (5) in the form 

O= Haney on (6) 

where g(n,t) is a periodic function of t with period 

27/Q. This is a reasonable choice of solution be- 

cause we are mainly interested in the oscillation 

induced changes of the principal disturbance mode 

of the Blasius flow. The principal disturbance mode 

of Blasius flow has multiplicity one. 

We shall adopt in this study an absolute defini- 

tion of instability which requires that some measure 

of the disturbance amplitude becomes infinite as 

t >, If the amplitude remains bounded as t >, 

then the flow is defined to be stable to infinites- 

imal disturbances. However, we must keep in mind 

that the local instantaneous amplitude may be im- 

portant in this linear theory because a disturbance 

may be transiently so large (but bounded) that the 

linear instability theory is no longer valid. Fur- 

thermore, the instantaneous magnitude as a multiple 

of the initial magnitude of the disturbance is an 

important quantity for assessing the likelihood of 

transition from laminar to turbulent flow. Thus we 

shall consider in detail the gross amplification 

rate G of a disturbance which we define by 

ann 
en dt 

G= (7) 

where em is the total energy of the disturbance de- 

fined by 
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efficients, a -a1+++/Ay, are determined by the 

boundary conditions once 4 is known. The matrices, 

Q,P,J, and V, are the respective representations of 

the operators ,£,£7, (fp£-9°fp/dy") and (f-3%df/ay2) , 

together with the boundary conditions (6) in the 

space, y, whose basis is the first N Chebyshev 

polynomials, T),..., Ty-1 lOrszag (1971)]. The 

function, of, is the Stokes layer profile. 

1/a 

(u2 + v2) axdn (8) 
sig 

Q = 
ae 

OSS 

co 

ae 
fe) 

Then the relative amplification ratio, ep, /en POs 

a disturbance as it grows during the time intérval 

from t, to t); can be shown to be 

a : = 
-(1+ § a. ao) 5, is ra oe CE esa 

aie = TICE) exp 2 A at (9) 
) 

8 ¢ cS Note that the matrices, Q,P, and J, are real constant 

matrices and V is real and time periodic and of the 

form 

ag|2 (1) int (=1) -int if - =i 
u(e) = ff (= + a*|g]* } an (10) VS Ye FETS (15) 

° 

(1) (-1) ; 
where V and V are constant matrices. 

and rr = Re(X). 

Since the disturbance energy vropogates down the 

boundary layer at the group velocity, c. [see 

Gaster (1962)] one can compute the aanaelye ampli- 

fication ratio, en /ep , by calculating the integral 

The matrix, Q, is invertable so that we can 

multiply (13) by Ont to get 

3 ; ; da iL : Sy = 
in the exponential function of Eq. (9) over the as ae (P'+iaJ')atiaAv'a (16) 

spatial interval, X) to x], using the transformation, Sy 

dx = cgdt. a , 
g where P' = Q Ip etc.; henceforth we shall dispense 

with the primes in (16) 

The perturbation procedure is most easily and 

illuminatingly carried out by transforming (16) so 

that the matrix, (PtiaJ)/R , 148 in diagonal form. 

That is we will be working directly in the (approx- 

imate) eigenspace of the steady Orr-Sommerfeld 

equation for Blasius flow. Suppose that the in- 

e(Aota1At.--)t (11) vertible matrix, B, transforms (P+iad) /Re into 

diagonal form. Then let 

3. SOLUTION OF THE DISTRUBANCE EQUATION 

Solutions of Eq. (4) in the form (6) can be obtained 

as a series in A, 

g= (g +g, +- 5.6) 

where each term of (11) can be evaluated by solving 5S (17) 

appropriate perturbation equations obtained by sub- 

stituting (11) into (4) and (5). Such perturbation and substitute (17) into (16) and left-multiply by 
equations are basically inhomogeneous unsteady Orr- Bethe 

Sommerfeld equations and must be solved numerically. 

Our approach is equivalent to this except we reverse ab 2 2s 

the procedure by first executing a numerical pro- ae = Db + AEb (18) 

cedure which reduces the Eqs. (4) and (5) to a sys- 

tem of ordinary differential equations in time. where 

These are easily solved by perturbation theory to as 

high an order as desired. Salt F 
Let us first expand the function ¢ in the Cheby- DSB (pew) 8) 6 Aire +s Ayey | (19a) 

shev series o 

x 1 (GX) calighs (Si), Sale 
OW, = » a (e)0 (y) (12) i} SS gratis}! “Wyss = in) e +E e (19b) 

n mea 

n=1 and the notation, [an gosor ad, |: stands for a di- 

agonal matrix of order n. 
where the Day) = cos7!(n cos y), n = 0,1,...are the The problem is now to find solutions of (18) in 
Chebyshev polynomials of the first kind and where the form 
we have mapped the interval, neo, no), onto ye[-1,1] . = » Ne 
Then we use the t-method as described by Orszag b(t) = z(t)e (20) 
(1971) to obtain the system of ordinary differential 

equations where Z(t+27/2) = z(t). We are mainly interested 

in perturbations of magnitude A of the steady flat- 

dawn! 7 Spa = plate disturbance mode which becomes unstable far 

2 Ge ~ See ane CHLOE: cS) downstream of the leading edge. This mode is as- 

8 sociated with one of the eigenvalues of D, say A_, 

which for values of x between the two values, a < 
where Q,P,J and V are (N-4)x(N-4) term matrices and X], Satisfies ReA, > 0. It is known that Ap is a 
a = (a),-.-,a eae The dagger (+) superscript de- simple eignevalue [see Mack (1976)] so that a solu- 
notes the transpose of a vector or matrix. The co- tion of the form (20) can be expanded as 
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Z(t) Sze (e)) EVAZ (CE) INWIAN(S) 855, | (Amel) 

A= A, + Ao) + AZ Gio) hace (21b) 

Substituting these two expansions into (20) and 

(18) and equating the terms of equal order in A 

yields the set 

dz, 

Sas (DA oe = 0 (22) 

dz, “ * 
Sere a Dane = (E-o,1) 2, (23) 

dz, m v a 

Sra ea (D-ApI)z, = (Gg, We = Rae (24) 

ercr 

Note that the constant coefficient matrix of 

these equations is 

1D)) = att = ly gosoniio | 

where Y3 = A; - Ano) S pooap NY Sil o de 

The only 27/2 periodic solution that is possible 

for Eq. (22) when (A5--Ap) FEM roe SW OPI APS oocborel 

j *#oe is the solution 

B. (9 4) (25) 

where 6 is the Kronecker delta and c is an arbi- 

trary complex constant. This statement is merely 

a restatement of the fact that the eigenfunction 

corresponding to the eigenvalue, A,, is the p-th 

column of matrix B, i.e., the least stable eigen- 

mode of the underlying steady Blasius flow. 

Since the solution (20) requires that z(t) be 

periodic with period 27/2 in t, we shall need the 

inner product <f,g> defined by 

= - ) 
=> = * SE,GD Soe if ) £9, dt. (26) 

where the asterisk superscript denotes the complex 

conjugate. We shall also need the adjoint eigen- 

function of Eq. (22) that corresponds to the eigen- 

value, Yo = 0, and that is 21/2 periodic in t. This 

eigenfunction is 

+ 

7. = Cla) 6 Me ( PE (27) 

For convenience we normalize Z,, and Vins that 

“a5 SS. 
o'%o 

by setting c=d=1. 

The solution of any one of the equations in the 

set (23), (24), etc. is obtained from the solution 

of the previous member, by the application of the 

Fredholm Alternative and the requirement that these 

solutions are unique, i.e., they do not contain 

multiples of the eigensolution of Eq. (22) and are 

27/2 periodic in time. All of the equations of the 

set (23), (24) etc. have the form 

— - (D-A_I)z. = h(t) (28) 
p J 

where h(t) is a periodic vector function which has a 

Fourier series representation of the form 

fA ( t) 2 ne 

kK==a0 

(29) 

where hy are constant vectors and the p-th component, 

hoo of hey, is zero. (This property is enforced by 

the solution procedures.) 

Then, application of the Fredholm Alternative 

for solving (28) yields the requirement that 

<h(t) -¥,> =0 (30) 

Assuming condition (30) to hold (this will be 

achieved by properly selecting the 55'S), the 

general solution, 24, can be written as 

z, = exp [(D-) 1) €] x 

t 

EB. 6 i exp[-(D-A 1) s]h(s)ds (31) 

(0) 

Equation (31) is easily evaluated because 

Vert Neonat 
exp (PSX t) el ae Waurere al (32) 

Equation (32) is the main reason for diagonalizing 

the matrix, (1/Rs,) (P+iad) . It makes evaluation 

of the exponential matrix and the integral of Eq. 

(31) trivial. Thus, by evaluating Eq. (31), and 

requiring that z(t) be unique and 21/2 periodic 
in t, values for the constant vector, Eq, are ob- 

tained which eliminate all the non-27/2 periodic 

functions from (31). The result of these calcula- 

tions is 

co 7 h ; 
Z.(t) = oe ee (33) 
5} LkQ-Y 9 

k=-00 

The solution procedure then is to apply Eqs. (30) 

and (33) to each of the Eqs. (23), (24) etc. in 

sequence starting with (23). These calculations 

have been programmed and are quite easily performed. 

(Our program does these calculations to the 7th 

order term, but more terms can be easily incorpo- 

rated.) We are mainly interested in the first two 

perturbation terms which result in 

o, = 0; 2,(t) = eee Werte (38) 

where 

E. =(1 D (35a) z | ) 



+ 

= 
zi) = Ra ' (35b) 

and 

N! 

(il) (=) (5) en (GLP) 
= IDA Ga a ID a 0 36 

%2 , Gas ai 2 ae 
jaa 

Bo (t) = Fl e28Mt , lO) 4, g(-2)-2i8t 36) 

where 

N' ar 

(a). (1) 
Dn 1G 

2 £3 74 
=1(2) je 
nN 2i0-V, , (37a) 

N' 

(i) = (on) (2) (a) = = im eG pO aI ) 
(o) s ‘ vay 3) a) 3) 

j=l 

+ (37b) 

- O58 og /\-¥9) , 

N! + 
ak pl) ,C) 

=(=2) eo The? 
n = j=l . (37c) 

~ 212-5 

We note that the order A perturbation, 6), of 

the eigenvalue _ is zero so that the long-term 

effect of a flow? oscillation with amplitude A is 

only of order AZ. However, the short-term effect 

is still of order A because the eigenfunction, 

Z,(t), appears in the term I(t) in the relative 

amplification ratio, ep /en,# given by Eq. (9). In 

fact, the structure of the Matrix, E, is such that 

all values of 6. with odd indices are zero and A 
has an expansion in even powers of A about the 

simple eigenvalue, ro: This can be surmized easily 

from the fact that the phase of the imposed oscil- 

latory part of the boundary layer flow should not 

play a role in the modifications of the eigenvalue, 

X,. Furthermore, note that the solutions, 2) (t) 

and Zo(t), exhibit clearly the possible effects, at 

second order, of certain resonant couplings. None 

of the denominators in (35) and (37) are zero be- 

cause y. #£+ ik for any integer values of j or k; 

hence these solutions are uniformly valid for any 

positive value of the frequency, 2. It is possible, 

however, that at resonant frequencies such as at 

n=t8m (5), the value of o» will have a relative 

Maximum. Of particular importance is that in the 

low frequency limit, 2 > 0, the o4's may be singu- 

lar. The lower values of 2 will be an important 

consideration and will be discussed in detail in the 

next section. 

4. NUMERICAL RESULTS AND DISCUSSION 

‘Before describing the computational results that 

have been obtained, we emphasize that in this work 
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the instability of the oscillatory boundary layer 

as a whole is being compared to the instability of 

the underlying steady Blasius boundary layer. How- 

ever, it is easier to describe this comparison in 

the terminology of the oscillatory forcing of the 

Blasius boundary layer instability. For example, 

if the oscillatory boundary layer is less stable 

than the steady boundary layer by itself, then we 

describe this situation as one in which the imposed 

oscillations tend to destabilize the steady flow. 

The first set of calculations were made to test 

for resonant interactions at second order in A. By 

consulting the solutions (35) and (36), it can be 

seen that the mean effect of the imposed oscilla- 

tions on the eigenvalue, Aon is manifested by the 

term, 09. There are two types of resonances pos- 

sible. The first type is the "harmonic parametric 

resonance" which corresponds to values of 2 given 

by Wo/k = 1/2, 1, 2,... where w, is the response 

frequency of the disturbance, W, = Q M\p- The 

second type of resonance is the "combination reso- 

nance" corresponding to values of 2 given bydm 

(10ty 5) = 0 (note the denominators of solution 35). 

Figure 1 shows the computational results at certain 

frequencies 2 in the range, l<w./Q<3. It can be 

seen that the imposed oscillations stabilize the 

flow. Figure 1 shows that no resonance effects are 

predicted at either Wy /2 = 1,2),3, or at Wp /2 = 1417 

and 1.74, which correspond to the two possible com- 

bination resonances in the frequency range shown. 

This lack of resonance effect results mainly be- 

cause the external free stream oscillations induce 

a significant amount of oscillatory vorticity in- 

side the boundary layer only in a region very close 

to the wall. This can be seen by examination of 

the Stokes layer profile (14) where the exponential 

factor has a vertical decay constant, 8, which is 

equal to about 5 in the range of frequencies con- 

sidered. The main fluctuations of the disturbance 

velocity are concentrated at the mean critical layer, 

Nc * 0.5 [where no is given by cy = fp(nc) and c, 

is the mean phase velocity of the disturbance]. 

Thus, instead of the Stokes layer interacting 

directly with the disturbance of the underlying 

steady boundary layer at the level, nc, where most 

of the disturbance energy is being produced, it is 

confined mainly to the wall region where it cannot 

be very effective. Furthermore, the Stokes layer 

lacks a spatial structure in the x-direction that 

can match in some way the spatial structure of the 
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disturbance mode. It is notable that the imposed 

oscillations have an increased stabilizing effect 

as 2 decreases (Wp /2 increases). This increased 

stabilizing effect can be expected for two reasons. 

The first reason is found in the solution (35) 

which shows that the terms, 

(aye Nast 
Oe (+12 alo 

may become unbounded if 

5!) ay ae 

pp pp 

remains bounded as 2 > 0, because y, = 0. Secondly, 

it can be seen in the Stokes layer profile (14) that 

the oscillations of the boundary layer become more 

effective in penetrating up to the critical layer 

when 2 decreases (i.e., B also decreases since 

B = YOR. Ne 
* 

However, we cannot use the present parallel flow- 

model at very low frequencies because in one period, 

27/2, of the imposed oscillation, a disturbance 

will propogate down.the boundary layer a distance, 

6x, that is too large for the parallel flow assump- 

tion to hold (i.e., constant boundary layer proper- 

ties in the x-direction). For example, the change, 

ORs, in the displacement thickness Reynolds number, 

R§,, Over the distance, 6x, (near the values of a = 

0.15 and R§, = 1200) is given approximately by 

SRe = Jeu) . (38) 

where N = Wo/Q. Thus, in the range of values of a 

and Rsy of our calculations 6Rgx = sO NPSonthakw tor 

N = 3, SRsy is nearly 20 percent of the value of 

Rgx- Under the circumstance, the parallel flow 

approximation is only roughly valid. Nevertheless, 

the values of 6Rs, as a fraction of Rg, decrease as 

one goes downstream of the neutral curve for fixed 

values of the frequency ratio, Wp /Q. Thus, the 

parallel flow approximation improves as one follows 

a constant frequency disturbance downstream of the 

neutral point. 

The second set of calculations that were per- 

formed was for the amplification of a fixed frequency 
disturbance propogating down the oscillatory bound- 
ary layer. Two values of Wo/2, equal to 2 and 3, 
were chosen for illustration. The disturbance ex- 
amined is an unstable Tollmien-Schlichting wave of 
constant absolute frequency Oe = Wo/Rg x = 0.43 x 107" 

along the constant frequency line a = 0.00133 Réy- 

This disturbance first begins to grow in the steady 
boundary layer at the values of a = 0.15, Rox = 
1128, and ceases to grow at about the values of a = 
0.3 and Rs, = 2255-, The disturbance trajectory a 
0.00133 Rs* passes nearly through the point in the 
a, Rs, plane of maximum rate of amplification. 

Figure 2 shows the values of Reo» obtained for 
the growing Tollmien-Schlichting wave along the 
trajectory, a = 0.00133 Rgx, at the two different 
values Wp /2 = 2 and 3. An interesting feature of 
the results in Figure 2 is that [Reo | increases 
with Rsgx although the quantity 8 also increases 
which would seem to indicate further decoupling of 
the oscillatory Stokes layer (14) from the distur- 
bance oscillations., Presumably, the values of 

-14 
1000 1200 1400 1600 1800 2000 2200 2400 

Rs, 

FIGURE 2. Growth rate perturbation Re o2 along a = 

0.00133 Rex- 

[Reap | decrease as Rox becomes sufficiently large 

for then 8 also becomes so large that the Stokes 

layer will almost completely disappear. It can be 

seen in Figure 2 that the stabilization of the 

boundary layer can be substantial for the value of 

Wp /2 = 3 and at the larger values of Rox- 

Figure 3 shows the values of Red = ReXp + A?Reo5 
for the value of A = 0.1 and the three values of 

Wp /2 —JO/2 mands se (W5/2 = 0 is equivalent to A = 

0). The total effect of the imposed oscillations 

with A = 0.1 is not very substantial at the value, 

Wp/Q = 2, but at the value of W/L = 3, the sta- 

bilization of the flow is significant. We note that 

an oscillation amplitude of A = 0.1 is a rather 

large value at the frequencies considered here and 

would require a large amount of power to achieve 

in an experimental test facility such as a wind 

tunnel unless the mean flow is very slow. 

The rates of amplification shown in Figure 3 can 

be summed according to formula (9) to obtain the 

relative amplification ratio, ep, /ep,- One can 

show that 
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FIGURE 3. The amplification rate A, along the trajec- 

tory 4 = 0.00133 Ray. 
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where Rg, and Roy) are the values of Rs, at the 

locations of the disturbance at the times, t, and 

t,, respectively. The value of cy, the group ve- 

locity, along the trajectory a = 0.00133 Rs,, was 

computed to be about 0.356. We neglected the 0(A2) 

modification of c_ due to the imposed oscillations. 

This modification of c, is 0(10 °) and thus does 
not affect the daiyareal , J, in a substantial way. 

From the results shown in Figure 3, one obtains (by 

a trapezoidal rule integration), the values of J =x 

11,8.7, and 6.3 for w,/Q = 0,2, and 3 respectively. 

The integral I(t) of (10) is evaluated by certain 

sums and products of the vector components of the 

solutions, (35) and (37). We omit the details. The 

resulting expression for I(t), to second order in A, 

has the following form 

I(t) = A] +A ,A2+A (By cosNt+Bysinxt) 
(40) 

+2 (Cy cos2Nt+Cysin2xNt) 

where A)>0,A>2,B,,Bo,C, and Cp are real numbers that 

depend on the Reynolds number, Rg,- These coeffi- 

cients have been computed along the disturbance 

trajectory, a = 0.00133 Rs, and are plotted in 

Figure 4. By using the values of Aj,B,, Bg, C, and 
Co from Figure 4 (A, = 1.0 by suitable normalization) 

in Eq. (40) for the value of A = 0.1 one finds that 

I(t) 
O.5 <=> & 5 T(t.) 2 

at all the values of Reynolds number, Rye for which 

the disturbance grows. It is customary to assess 

the overall growth of a disturbance by considering 

the natural logarithm of the amplification ratio, 

ep/eq,- From (9) we have 

e 

Qn a Qn ze) cr ay 
ea oe (Gt) 

and one can see that although the term, &n I(t)/I(t,), 

contributes an oscillatory factor to &n e Jen, (re- 

call that, by following the disturbance down the 

plate, t = Rs,) this contribution is minor relative 

to the maximum value attained by J. Thus it can be 

seen that the major effect of the parallel free 

stream oscillations is to reduce the mean growth 

rate of the unstable disturbances. This effect is 

small for small values of A but can be significantly 

large at such large values of A as A > 0.1. We note 

that typical free stream turbulence rarely has a 

_velocity magnitude as large as 10 percent of the 

mean free stream speed. 

_ Experimental results on the effects of parallel 

free stream oscillation on the instability and 

transition of the flat plate boundary layer are re- 
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FIGURE 4. The coefficients of I(t) along a = 0.00133 

Rear W/2 = 3. 

viewed by Loehrke, Morkovin and Fejer (1975). How- 

ever, we shall not make any comparison with their 

experiments because these were for very low frequency 

oscillations (w_/Q * 10) for which our parallel 

flow instabilitY theory is of doubtful applicability. 
An appropriate analytical instability theory for 

comparison with these experiments is a quasi-steady 

and parallel flow theory [see Obremski and Morkovin 

(1969) ]. 

5. CONCLUDING REMARKS 

Our main result is that the parallel free stream 

oscillations, which manifest themselves in the 

Blasius boundary layer as a Stokes layer, lead to 

a mean stabilization of the flow. This stabiliza- 

tion is very weak except for oscillation amplitudes 

that are at least near 10 percent of the mean free 

stream speed. Precise experimental data on the 

effects of such oscillations on Blasius boundary 

layer instability is not available in the frequency 

range considered in this work. However, the results 

are in accord with transition data for oscillatory 

pipe flows. Sarpkaya (1966) has shown experimen- 

tally that transition is delayed substantially when 

harmonic axial oscillations are superimposed on 

steady pipe flow. Furthermore, von Kerczek and 

Davis (1975) have shown that the oscillatory Stokes 

layer by itself is very stable, probably at all 

Reynolds numbers, so that one might conjecture that 

if the Stokes layer begins to dominate the boundary 
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layer (which occurs for low frequencies 2 and large 

amplitudes A), then the Blasius boundary layer can 

be stabilized by these oscillations. However, the 

Stokes layer stability is very sensitive to extra- 

neous effects such as streamline curvature. For 

instance, experiments show that transition of plane 

Stokes layers occurs at Stokes layer Reynolds 

numbers, Rs, (where R = ARg,/8) on the order 

of 500 [see Li (1954)]. However, if a slight amount 

of streamline curvature exists, as would occur in 

Stokes layers induced on the bottom of a water chan- 

nel supporting free-surface gravity waves [see 

Collins (1963)], the transition Reynolds number is 

reduced to about 160. Thus, the effect on the in- 

stability of the Blasius boundary layer of free 

stream oscillations with a spatial structure such 

as Up + U, cos (kx-wt) can be expected to be different 

from the parallel flow oscillations considered above. 

It is well known that ambient turbulence tends 

to promote laminar to turbulent transition of the 

boundary layer. Thus, if some oscillatory boundary 

layer does in fact properly model certain features 

of the interaction of the ambient turbulence with 

the underlying steady boundary layer then it is to 

be expected that such a oscillatory boundary layer 

is less stable than the underlying steady boundary 

layer. Although the present numerical results show 

only a stabilizing effect for the type of oscilla- 

tion considered, as inferred above there is reason 

to believe that a more complex form of oscillation 

of the boundary layer can be destabilizing. The 

theory of the instability of forced oscillatory 

boundary layers provides an alternative point of 

view from that of Rogler and Reshotko (1974) and 

Mack (1975) on the role of the interaction of free- 

stream disturbances with Tollmien-Schlichting waves. 
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Heated Boundary Layers 

Eli Reshotko 

Case Western Reserve University 

Cleveland, Ohio 

ABSTRACT 

Heating the walls on which laminar boundary layers 

develop in water can delay their transition to 

turbulent flow and lead to significant drag reduc-— 

tion. This paper describes the work done over the 

last several years at Case Western Reserve Univer- 

sity in examining the bases and consequences of the 

heating phenomenon. Included are theoretical and 

experimental studies of the stability of heated wa- 

ter boundary layers for both uniform and non-uniform 

wall temperature distributions, and experimental 

study of the effect of heating on laminar separa- 

tion and a quantitative assessment of the prospec-— 

tive drag reduction on underwater vehicles. 

1. INTRODUCTION 

It was noted many years ago in experiments at low 

subsonic speeds [Frick and McCullough (1942), 
Liepmann and Fila (1947)] that the transition lo- 
cation of the flat plate boundary layer in air is 

advanced as a result of plate heating. Based on 

this observation it had long been suspected that 

heating would have the opposite effect in water, 

namely that it would delay the onset of transition. 

This is because heating in water reduces the vis- 

cosity near the wall resulting in a fuller, more 

stable velocity profile for a flat plate than the 

Blasius profile. Cooling in water (and heating in 

air) on the other’ hand tends to give an inflected 

velocity profile which is less stable than the 

Blasius profile. 

These suspicions remained untested until con- 

firmed by the analysis of Wazzan, Okamura, and 

Smith (1968, 1970). These results triggered a 

significant activity in the United States to deter- 
mine whether wall heating could realistically be 
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used as a technique for drag reduction. A portion 

of this effort was undertaken at Case Western Re- 

serve University (CWRU) under the joint auspices 

of the Office of Naval Research and the General 

Hydrodynamics Research Program of the David W. 

Taylor Naval Ship Research and Development Center. 

The CWRU effort has been both analytical and 

experimental and is ongoing. This paper will re- 

view the results to date of the CWRU activity and 

indicate current and future directions. 

ANALYSIS OF THE STABILITY OF HEATED WATER 

BOUNDARY LAYERS 

The 

ers 

analysis of Wazzan et al. (1968, 1970) consid- 
the stability characteristics of the boundary 

layer to be governed by the disturbance vorticity 

equation including consideration of viscosity vari- 

ations in the basic flow but ignoring temperature 

fluctuations and the coupled viscosity fluctuations. 

The disturbance differential equation consists of 

the fourth-order Orr-Sommerfeld operator augmented 

by some lower order terms and is as follows: 

(Gc) (p"=026) - uN = - Slug?” - 2029" + alg) 

+ 2u'(6"" = 026) 

+ u"(o" + 029) ] (1) 

with boundary conditions 

(2) 

The analysis of Lowell and Reshotko (1974) on the 

other hand is based on the following coupled sixth- 

order system of vorticity and energy disturbance 

equations: 
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In equations (3) and (4) all properties of the 

basic flow are variable. The quantities r, m, and 

K are the density, viscosity, and thermal conduc- 

tivity fluctuation amplitudes respectively and 

the coupling comes about through the viscosity 

fluctuations that are directly related to the tem- 

perature fluctuations. 

Reg “min. crit. 

X 1073 
—O— Lowell & Reshotko 

(1974) 

12 —O-Wazzan, Okamura & 

Smith (1970) 

Ww To. = 60°F 
d 10 el) @ 
dx 

MINIMUM CRITICAL REYNOLDS NUMBER 

100 200 300 

Ura HA) 

FIGURE 1. Effect of wall temperature on minimum cri- 

tical Reynolds number ,[from Lowell and Reshotko (1974)]. 

The results of these two analyses for the min- 

imum critical Reynolds number with wall heating are 

shown in Fig. 1. The curves are very much alike. 

Furthermore, the neutral stability characteristics 

and the growth rates as calculated in the aforemen- 

tioned analyses are sufficiently close so that there 

is no important quantitative difference between the 

two. The coupling of vorticity and temperature 

fluctuations through the viscosity seems therefore 

to be rather weak. 

As is seen in Figure 1, both sets of calculations 

predict significant boundary layer stabilization 

(increased minimum critical Reynolds number, de- 

creased disturbance amplification rates, etc.) with 

moderate heating, but display a maximum and sub- 

sequent decrease as the wall to free-stream tem- 

perature difference is further increased. The 

significant stabilization indicated for overheats 

of up to 40°C (70°F) prompted a study of the pos- 

sible drag reduction due to heating to see if this 

drag reduction technique was in fact worth pur- 

suing further. 

3. DRAG REDUCTION IN WATER BY HEATING 

It is shown in this section that significant reduc— 

tions of drag are available to water vehicles with 

on-board propulsion system is discharged through 

heating the laminar flow portion of the hull. The 

analysis is as follows [following Reshotko (1977) |: 

For a vehicle with an on-board propulsion system 

te E —_—_ 
Poy Ses 

Cm_) 

the friction drag is 

= dx + D q c wdx xJ Coy wdx (6) 

where q is the dynamic pressure, cre and Cry are 

respectively the laminar and turbulent friction 

coefficients, wdx is the area element at length x, 

L is the vehicle length, and Xty is the transition 

location. 

The total drag can be written 

D= D,,(D/D,,) (7) 

where D/Dp is the ratio of total to friction drag. 

For an axisymmetric body this ratio is a function 

of the fineness ratio of the configuration. 

Hoerner (1958) suggests that 

3/2 
D/D,, = il) sb 1.5(5) f wr Bao (8) 

The drag power can then be written 

Pr = Duan u,, (D/D,,) (CEA) (9) 

where [Cp A] is the quantity in brackets in equa- 

Editon (5) ie 



The power available for heating is related to 

the thermal efficiency of the power plant as 

follows: 

p s(22on |g. 2 2 (S=S a) q (10) 

where Neff is the effectiveness of transmitting 

the reject heat to the water in the desired manner. 

If one considers heating only the laminar por- 
tion of the hull then the power required to accom- 

plish such heating is 

x 
134 = ar S Be pu ¢ 4 Che wdx (11) 

where c is the specific heat of water, cphe is the 

laminar Stanton number for the heated boundary 

May ermal ATE =) iti 

Applying the available heating power Pa to the 

laminar portion of the flow, (Py = Py) + after some 

simplification yields 

*tr 
oe Cha wax 

L c f ce cask f tr ~£Q wdx 

x ite ——— 
qs te eS at 2 2 (12) 

ff ee c wdx Ke || a0 ( = in ff ° £2 F th e 

The left side is the ratio of overall friction drag 

to the laminar friction drag and is configuration 

dependent. The right side depends on the dimension- 

less ratio CAT/Uay and on the bracketed parameter 

in the denominator related to the amount of reject 

heat that can be transferred to the boundary layer. 

The bracketed parameter in the numerator is a 

Reynolds analogy factor which is configuration de- 

pendent. In order to close the calculation, a 

relation is needed between AT and transition 

Reynolds number Re, which is also dependent on 

configuration. ee 

Example - The Flat Plate 

In order to quantitatively evaluate the prospective 

drag reduction due to heating, it is necessary to 

choose a particular configuration. The flat plate 

is chosen because of its great simplicity and be- 

cause some information on transition with surface 

heating is available. The results should be repre- 

sentative of what can be obtained for slender shapes 

having pressure gradients that are not too large. 

For a flat plate (w = const) 

(13) 

ff x 
L eae 

x c dx = 0.074 ( ) 
fate a Reu/a Ree a 

L x 
tr 

and by Reynolds analogy 
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(e} 
a £2 5 OD (14) 

hy 2 

Thus for the case of the flat plate, Eq. (12) be- 

comes 

= x me Fe (15) 

1.328 1/2 oe (Dia i 
Re DEN ne) Wee 

x < th 
te 

The left side of equation (15) is the ratio of 

overall friction drag to laminar friction drag for 

a flat plate. 

The variation of transition Reynolds number 

Rex ~ with overheat AT depends on the choice of 

transition criterion. A criterion that has been 

shown to give plausible trends is the e? criterion 

of Smith and Gamberoni (1956) and Van Ingen (1956). 

For low speed flows, these authors correlated tran- 

sition Reynolds number over plates, wings, and 

bodies with the amplitude ratio using linear sta- 

bility theory of the most unstable frequency from 

its neutral point to the transition point. They 

found that the transition Reynolds number Rex,, as 

predicted by assuming an amplification factor of 

e? was seldom in error by more than 20%. Wazzan 

et al. (1970) have calculated and presented such a 

curve for heated flat plates in water a portion of 

which is shown in Figure 2. Although not quite 

shown on the figure, Rey i reaches a maximum value 

of about 260 x 10© at an overheat of about 43°C. 

The most recent data of Barker (1978) taken ina 

constant-diameter pipe are shown on this figure as 

well. Barker obtains a considerable increase of 

transition Reynolds number with heating in the 

entrance flow boundary layers and his data attests 
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TRANSITION REYNOLDS NUMBER Re x,, 
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WALL OVERHEAT, AT, °C 

FIGURE 2. Variation of transition Reynolds number for 

a flat plate with uniform wall overheat according to 

an "eo" transition criterion, T, = 60°F. 
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to the reasonability of the assumed transition 

schedule with overheat. 

Drag reduction calculations have been performed 

for plate speeds up to 24.4 m/sec (80 fps), for 

plate lengths of 3.05 m (10 ft), 15.24 m (50 ft). 

30.48 m (100 ft), 152.4 m (500 ft), and 304.8 m 

1) 
D) all 

(OOORBE)), endutonmvaluestof l= Gai Jof 2,5,and 
Cren 

Since the product DN o¢¢/ Op might be very close 

Vote 

9. 

to unity, one may view the aforementioned values of 

A ba 
the "efficiency factor" = 1) Nee! as approx- 

F th 
imately corresponding to n 

respectively. 

Results are presented in Figure 3 for the case 

of an efficiency factor of 5 (n, 0.17). Shown 

in Figure 3 are D/D the ENG of the drag with 

heating to that WER OuCanenG the reject heat for 

drag reduction purposes, the corresponding laminar 

fraction of the plate x;,,/L, the wall temperature 

rise of the laminar region, and finally the ratio 

of the computed drag with heating to that for fully 

laminar flow over the entire plate. 

Generally speaking the drag reduction becomes 

noticable as speeds exceed 10 m/sec (20 knots). 

Although the drag ratio is not a strong function 

of length, the overheat in the laminar region in- 

OSs, Osali7/7 ctarcl ()5ilf0) 
th 

1.0 L, m (ft) 

304.8 (1000) 

1.0 

creases quite significantly with vehicle length. 

For ne, 0.17 (Figure 3), drag reduction of about 

60% are atainable for vehicle speeds of 25 m/sec 

(v50 knots) but the vehicle is far from full lami- 

narization. The variation of drag ratio with Nth 

is shown in Figure 4 for selected cases. The lower 

the thermal efficiency, the larger the drag reduc- 

tion and vice-versa. The indication from the cal- 

culations is that full laminarization can be ob- 

tained in a number of cases (Figure 4) but only if 

Nth gets below about 0.03. Since the e” transition 

curve (Figure 2) has a maximum value of Rey,  be- 
low 3 x 108, vehicles with length Reynolds numbers 

above 3 x 108 cannot be completely laminarized. 

For a plate of given length at a prescribed 

speed, the fuel consumption (proportional to D/nty, 

the slope of a line through the origin in Figure 

4) increases as ntp is reduced. But it is far below 

that of the unheated plate. 

Real Configurations 

Real vehicle configurations involve additional fac- 

tors not considered in this flat-plate calculation. 

Favorable pressure gradient, for example, can be 

very effective in delaying transition while regions 

of adverse gradient are otherwise. Non-uniform 

longitudinal heating distributions can result in 

a more optimal use of the available heat. Effects 

Die 
= (= arent =5 
Dé th 

0.8 152.4 (500) a 08 ny ~ 0.17 L, m (ft) 

So oS 3.05 (10) 
Ww Pad 

O}+ 5 
4 = 0.6 0.6 = 0 a 

: 30.5 (100) 9 15.2 (50) 
SI © = 
< 15.2 (50) z 4 30.5 (100) 
0:4) a 0 

g 3.05 (10) 2 
fo = 

- s 
0.2 0.2 

50 kts 10 20 30 40 50 kts 

0 0 
0 5 10 15 20 25 0 5 10 15 20 25 

U_, m/sec U_, m/sec 

an, L, m (ft) 

(o) 

Bo 100 
oe L,m (ft) 

ES 
wa 50 

z z c Pac) <q 20 30.5 (100) 
co 2 
wi wu = 10 15.2 (50) 

a < 
re a 8 3.05 (10) 

35 
< 
34 

1 
0 5 10 15 20 25 0 5 10 15 20 25 

U_,, m/sec U__,, m/sec 

FIGURE 3. Drag reduction by use of reject heat of propulsion system for transition 

delay. D 
= t = 5, (n m WoIL7)) o 
[= Nth ) nese] U th 



1.0 Ue L 

m/sec (FT/SEC) mM (FT) 

15.2 (50) 15,2 (50) 
15.2 (50) 3.05 (10) 

24.4 (80) 15.2 (50) 

24.4 (80) 3.05 (10) 

st = 0 D D 

Oo COMPLETE LAMINARIZATION 

Drac Ratio, 

0 cal 2 oe} 4 

PoweR PLanT THERMAL EFFICIENCY, 1. 
TH 

FIGURE 4. Effect of thermal efficiency of propulsive 

power plant on drag reduction. 

of surface roughness on transition are possibly 

more pronounced for heated surfaces than for un- 

heated. These factors are presently being studied 

both experimentally and analytically by a number 

of investigators for the purpose of obtaining an 

objective evaluation of the practical capabilities 

of this relatively simple and readily available 

means of drag reduction. The related experimental 

investigations done at CWRU will be described in 

the next two sections. 

4. STABILITY EXPERIMENTS IN WATER 

The first experimental study of flat plate boundary- 

layer stability in air was by Schubauer and Skram- 

stad (1948) who used hot wire anemometry to measure 

the growth characteristics of sinusoidal velocity 

disturbances introduced into the boundary layer by 

a vibrating ribbon. Ross et al.(1970) repeated the 

Schubauer and Skramstad experiment to obtain data 

for comparison with improved numerical solutions 

of the Orr-Sommerfeld equation. Similar stability 

experiments have been performed in water by Wortmann 

(1955) and Nice (1973). The results of these ex- 

periments are in agreement with the numerical solu- 

tions of the Orr-Sommerfeld equation except near 

the minimum critical Reynolds number, where the de- 

parture from parallel-flow theory seemingly results 

from the breakdown of the parallel flow assumption. 

Among the attempts to correct the parallel-flow 

formulation, those of Bouthier (1972, 1973) and 

Saric and Nayfeh (1975, 1977) using the method of 

multiple scales yield numerical results which dis- 

play the best agreement with experimental results. 

A natural extension of the above work is in the 

investigation of factors which can increase bound- 

ary layer stability. As indicated earlier, one of 

these factors is wall heating in water. The ob- 

jective of the experimental work done at CWRU was 

to see if the predicted increase in stability due 

to heating is in fact realized. To this end the 

stability of flat plate boundary layer was investi- 

gated on both a heated and unheated plate. For 

the heated plate, the case of uniform wall temper- 
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ature may be more interesting from an engineering 

viewpoint. For example, since the portion of the 

plate upstream of the minimum critical point of 

the unheated plate is stable without heating, why 

not begin heating at the minimum critical point 

and use more advantageously, the power that would 

have gone to heating the leading edge region? 

To systematize the approach to the problem, two 

types of nonuniform wall temperature distributions 

were studied: step changes in wall temperature 

of magnitude AT occuring at a location xg; and 

power law wall temperature distributions of the 

form T,,(x)-T,. = AxM for n both positive and nega- 

tive. The temperature T. is that of the external 

stream. In order to isolate the effect of the 

parameters, n and xg, on the boundary layer sta- 

bility, one of two quantities must be held fixed - 

either the total heating power put into the plate, 

Qtotal: or the local wall temperature difference 

at some reference location 1. (Xree) To: Since 

heat losses from the test plate used in this ex- 

periment could not be accurately measured, the 

total heating power put into the plate could not 

be related to the total convective heat transfer 
to the boundary layer. Therefore the wall tem- 

perature difference at Xyor¢, Ty (Xref) ~To, was held 

constant as n and x were varied, with Xref chosen 

in the region in which stability measurements were 

performed. 

Experiment 

The experiment was performed in a low turbulence 

water tunnel which has a test section 15.5 in. long, 

9 in. wide, and 6 in. high. The free stream tur- 

bulence intensity in the test section is 0.1 - 0.2% 

for free stream velocities ug Lellpte Sec 

The flat aluminum test plate, which is 13.6 in. 

long, 9 in. wide, and 0.625 in. thick is suspended 

from a frame which fits the top of the test section 

as shown in Figure 5. The origin of the coordinate 
system is located at the leading edge. The x- 

coordinate is the running length measured in the 

streamwise direction, y is measured normal to the 

surface, and z is the spanwise coordinate measured 

from the plate centerline. The rounded leading edge 

(1/32 inch radius) is located 0.425 in. below the 

top of the test section, thus forming a slot which 

spans the top of the test section. The turbulent 

wall boundary layer of the water tunnel is removed 

by suction through this slot. Suction is adjusted 

so as to locate the flow stagnation point at a 

stable position just downstream of the leading edge 

on the test side of the plate. A laminar boundary 

layer then develops along the plate starting from 

the stagnation point location. 

Plate heating is provided by eleven electric 

heating elements positioned as shown in Figure 5. 

Plate surface temperature is monitored by eleven 

thermistors imbedded in the surface of the plate 

along the centerline. However, because of the 

large temperature gradients which occur in the 

plate, the thermistors do not yield an accurate 

indication of the plate surface temperature. The 

surface temperature is determined from boundary 

layer temperature profiles measured with a hot- 

film anemometer operating as a resistance thermom- 

eter: 

The pressure distribution on the plate surface 

in both the spanwise and streamwise direction is 
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test section 

plexiglas plate 
mounting frame 

X (INCHES) 

monitored using static pressure taps in conjunction 

with a manometer board. Artificial velocity dis- 

turbances are introduced into the boundary layer 

with a phosphorbronze ribbon 0.001 in. thick and 

0.125 in. wide which is stretched across the plate 

surface 3.75 inches. behind the leading edge. Ribbon 

vibration is achieved by passing a sinusoidal cur- 

rent through the ribbon in the z-direction in the 

presence of a magnetic field maintained by horseshoe 

magnets located on top of the plate. 

A traversing mechanism located in the water 

tunnel diffuser downstream of the test section is 

used to position hot-film anemometer probes in the 

x and y direction for boundary layer profile 

measurements. The z-position of the probes is 

fixed at the plate centerline. 

Temperature measurements in the thermal boundary 

layer are made with a DISA 55D0O1 anemometer and a 

55F19 hot-film boundary layer probe operated in the 

constant current mode as a resistance thermometer. 

This unit is calibrated against the free stream 

temperature measured by thermistors extending in- 

to the free stream through the side walls of the 

test section. Boundary layer velocity measurements 

are made with a DISA hot-film system consisting of 

two 55F19 probes, a 11M01 constant temperature 

anemometer equipped with a 55M14 temperature com- 

pensated bridge, a linearizer, r.m.s. voltmeter, 

and d.c. voltmeter. The system is calibrated 

against the velocity measured by a pitot-static 

tube located in the center of the test section. A 

General Radio 1900-A wave analyzer is used to 

measure the r.m.s. amplitude of the anemometer 

signal resulting from ribbon-generated disturbances 

in the boundary layer. 

The mean velocity profile is measured at x = 5.5 

inches, which is the center of the region in which 

disturbance growth rates are measured. This posi- 

tion is also the value of x;,¢, the point at which 

the local wall temperature is held constant as the 

temperature distribution parameters n and x, are 

varied. The displacement thickness, 6*, is deter- 

mined by plotting the mean profile and using a polar 

planimeter to graphically perform the integration 

— o 

6* = Vx of (1 - 4) an, where n = yVu/vx 

Ue Ye 

Since the maximum wall temperature difference used 

in the present work,is T-T,.. = 8°F, the error in- 

upstream Flange 

aluminum suction 

transition piece ———\ \\ 

\ 
\\ 

ribbon-drive \\ 

) 
0. 

FIGURE 5. Test plate installation. 

curred by using the incompressible formulas given 

here to calculate 6* and n is only about 0.1%. All 

experimental results reported below are therefore 

based on the incompressibte forms of 6* and n. The 

Reynolds number, R,, = u 6*/v, is formed using the 

kinematic viscosity evaluated at the free stream 
temperature. 

For a fixed Reynolds number and ribbon frequency, 

the ribbon-generated disturbance amplitude is 

measured at five stations spaced 0.25 in. apart 

between x = 5 inches and x = 6 inches. In this 

region the pressure gradient is small (Falkner-Skan 

8 < 0.02) and there is no interaction between the 

ribbon-generated disturbance and the natural dis- 

turbances present in the boundary layer. The dis- 

turbance amplitude recorded at each station is the 

peak amplitude, defined as A(x) = [u'(n,x)/Velmax: 
found by searching through the boundary layer in 

the y-direction. The spatial disturbance growth 

rate is then calculated from the slope (aA/ax) | 

of a polynomial-curve fit of the A(x) data. By 

repeating the above process for several different 

frequencies the growth rate vs. frequency charac— 

teristics of the boundary layer are determined for 

a fixed Reynolds number and temperature distribution. 

All stability measurements reported here for 

non-uniform wall temperature distributions were 

performed near R,, = 800. At Reynolds numbers 

higher than 800 the ribbon-generated disturbances 

become more difficult to follow since background 

noise levels in the boundary layer increase with 

Reynolds number. At Reynolds numbers lower than 

800 the disturbance growth rates are already small 

for uniform wall temperature in the range 3°F Ss Hh 

(x)-To £ 8°F, and measurement of the decreased 

growth rates resulting from non-uniform wall tem- 

perature distribution is subject to large relative 

errors. 

xD 

Results and Discussion 

Uniform Wall Temperature Distributions 

The Mean Flow - A comparison between heated and 

unheated mean velocity profiles measured under 

identical flow conditions is shown in Figure 6 

together with the calculated unheated profile ob- 

tained using Lowell's (1974) program for 8B = -0.0036, 



which is the measured 8 for the case shown. For 

n > 6 the measured velocity is uniform to within 1%. 

The unheated boundary layer thickness for this case 

is 6 = 0.066 inches (n=6.3). Note that velocities 

measured in the region n< 0.75 are consistently 

higher than would be expected from the straight-line 

nature of the velocity profile in this region. 

These velocities may be subject to wall interference 
effects due to the size of the hot-film probe rel- 

ative to the boundary layer. At the last measured 

point, n=0.5, the prongs of the hot-film probe 

touch the wall. The probe prong diameter is 0.010 

inches (n=0.95 in the present case), while the 

sensing element diameter is 0.003 inches (n=0.29). 

The discrepancy shown in Figure 6 between measured 

and calculated profiles for Ty-To = 0 may be due to 

the integrated effect of the upstream pressure 

distribution on the measured profile. Note that 

the difference between the heated and unheated 

velocity profiles is within experimental error. 

The heated profile is slightly fuller than the 

unheated profile in agreement with Lowell's numer- 

ical solutions of the variable fluid property 

boundary layer equations. The calculated ratio of 
OP eattea nunheated for this case is 0.968 while 

the measured ratio is 0.967. 

Mean temperature profiles measured at varying 

values of T -T_ and R,, are compared to Lowell's 

(1974) solution of the boundary layer energy equa- 

tion in Figure 6. Note that the thermal boundary 

layer thickness is smaller than the velocity bound- 
ary layer thickness by approximately the ratio 

Sp/5y = pr-1/3 = 0.54, where the Prandtl number of 

water is taken as 6.3 at T, = 75°F. Further de- 

tails concerning the mean flow field may be found 

in Strazisar (1975). 

The Disturbance Flow Field - While the CWRU 

Water Tunnel has a relatively low turbulence level 

of 0.1% to 0.2%, this is still much higher than 

Ross et al. (1970) in air. It has nevertheless 

been ascertained by Strazisar (1975) that the pres- 

ent ribbon-generated disturbances do not interact 

with disturbances of other frequencies present in 

the tunnel turbulence and furthermore display the 

linearity required in order that the disturbances 

be considered "infinitesimal". 

The development of ribbon-generated disturbances 

just downstream of the ribbon is investigated to 

insure that the disturbances develop fully before 

—— Lowell's solution 

Tw-Ta =0°F 6 =-.0036 
—— Lowell's solution 

Tw-Tea =5F f=0 
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reaching the station where growth rates are first 

measured, namely x = 5 inches. Figure 7 shows 
the results for a decaying disturbance with 

Wo = We) SOTO, inj. = Gol Avse = SL dmenas, mie 
dimensionless frequency Wy is defined wy, = (27f) 
v/u,* where £ is the ribbon frequency. (The exper- 
imental lower branch neutral point at Rgx = 601 is 
at wy, = 150 x 1o-®.) points in the region n < 0.75 
are shown as broken symbols due to possible inter- 
ference effects because of probe proximity to the 
wall. The disturbance amplitude distribution 
through the boundary layer attains its final shape 
at x = 4.5 inches but the peak amplitude rises be- 
tween x = 4.0 and x = 4.5 inches. Downstream of 
x = 4.5 inches both the shape and peak amplitude 
of the disturbance display expected behavior as 
seen by comparison with the calculated eigenfunction 
for this frequency and Reynolds number obtained 
using Lowell's (1974) program. Since the measured 
wavelength of this disturbance is 0.66 inches the 
appropriate disturbance eigenfunction is seemingly 
established in less than 1-1/2 wave lengths. 

A measured disturbance temperature amplitude 
distribution is compared with the corresponding 
numerical solution in Figure 7. The calculated 
distribution is scaled by equalizing the area 
under the measured and calculated distributions 
in the region 0.75 <n <3. The shape of the 
disturbance temperature amplitude distribution is 
also found to be virtually independent of the 
disturbance frequency at a fixed R5x. 

Disturbance Growth Rates - Measured disturbance 

growth rates as a function of frequency for uni- 

form wall temperature are shown in Figure 8 for 

Rg*x = 800. The dimensionless spatial growth rate 

where A is the amplitude of the disturbance at the 

particular frequency under consideration. The 

solid lines in Figure 8 are curves faired through 

the measured points. The curve through the cir- 

cular symbols is for the unheated plate. It is 

evident that with increased heating of the plate, 

the growth rates progressively decrease and the 

range of disturbance frequencies receiving ampli- 

fication is diminished. Similar behavior is in- 

dicated at other Reynolds numbers as well. 

O Ty-Tao=O'F Reg» =940 DO Tyw—Teo =3.5°F R5+=863 
4 Ty-Ta =7.8°F Rs+=909 O Ty-Ta =5.4°F Rs«=910 

& Tyla =7.8°F Rs+=909 

1.0 

0.8 

0.6 

0.4 

0.2 

0) 
0 1 2 3 : 

FIGURE 6. Mean velocity and temperature pro- 

n 7 files for uniform wall heating. 
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Neutral Stability - For reference, the neutral 

stability results for the unheated plate will be 

presented first. Neutral points obtained in the 

present experiment are plotted together with those 

from prior investigations in Figure 9. The solid 

line in Figure 9 is the non-parallel flow solution 

of Saric and Nayfeh (1975) while the dashed line 

is the corresponding parallel flow solution of 

the Orr-Sommerfeld equation. Lower branch neutral 

points in the region Rgx < 500, Wy < 210 x 107© are 

T.. = 75 F 

Ug = 4.4 ft/sec 

x = 5.5 inches 

Uy Veg 

OF 

3.14 

4.97 

8.87 ©Oavo 

DISTURBANCE 
FREQUENCY, 

w, X 108 

-4 

SPATIAL DISTURBANCE GROWTH RATE, - ~ X 10° 

-6 

FIGURE 8. Measured disturbance growth characteristics 

for uniform wall temperature distributions, Re xy = 800. 
( , 

denoted by bars in the present work because dis- 

tinct neutral points could not be identified. Ex- 

perimental results indicate that a neutral point 

lies somewhere in the barred region at each dis- 

turbance frequency considered. The present re- 

sults are in agreement with the experimental 

results of Ross et al. (1970), Schubauer and 

420 Theory 

@ Non-parallel flow solution (Ref. 7) 

p b --—--— Parallel flow solution (Ref. 12) 

360 Data 

o OC) Present investigation 

OQ Schubauer and Skramstad (Ref. 1) 

4 Ross etal. (Ref. 2) 

Wortmann (Ref. 3) 
300 

240 

180 

120 

DIMENSIONLESS FREQUENCY, w, X 10° 
60 

0 400 600 800 1000 1200 

DISPLACEMENT THICKNESS REYNOLDS NUMBER, Res « 

FIGURE 9. Neutral stability results for the unheated 

plate. (Solid symbols denote lower branch points, 

open symbols denote upper branch points). 
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Skramstad (1948), and Wortmann (1955). and provide 
further verification of the departure from parallel- 

flow solutions in the region R,,< 500. The agree- 

ment obtained allows one to proceed to the case of 

the heated plate with some credibility. 

Experimentally determined neutral curves in the 

(Wy, Rg*) plane for nominal uniform wall tempera- 

ture differences of ky = 0,5,8°F are compared 

to the parallel flow results of Lowell (1974) in 

Figure 10. The experimental results are curves 

faired through the measured neutral points, which 

have not been shown for the sake of clarity. Com- 

parison between the calculated parallel-flow re- 

sults and experiment indicates that the departures 

between the two found near (Rg) min.crit for the 

unheated case persist in the heated cases. It is 

readily seen that with increases in Damo 

(RG t3) aden. Grete increases and also the range of 

frequencies receiving amplification decreases. 

Note that while the theoretical neutral curves 

according to Lowell's parallel flow calculation 

nest within each other, this does not happen ex- 

perimentally until Rsx exceeds 860. 

Predicted and measured values of (Rg*) min.crit 

are compared in Figure 11. The measured rate of 

increase in (R§*)min.crit Compares favorably with 

that predicted by Lowell (1974) and by Wazzan et al. 

(1970). Over the range of values of Ty-T, covered 

by the present work it is conjectured that the 

= fo) fo) oO 

0 2 4 6 8 

WALL TEMPERATURE DIFFERENCE, T\,-T.. (CF) 
S 

MINIMUM CRITICAL REYNOLDS NUMBER, (Re.+) MIN. CRIT. 

FIGURE 11. Effect of heating on minimum critical 

Reynolds number. 

DISTANCE DOWN THE PLATE, Rs «+ a/ xX 

1200 

FIGURE 10. 

for uniform wall temperature. 

Neutral stability characteristics 

ap. S 7525 

non-parallel flow nature of the boundary layer 

serves to reduce the value of (Rg*)min.crit by 

about 120 units from that predicted for parallel 

flow. This reduction seems independent of the 

level of wall heating. A more complete description 

of these results ig given in Strazisar, Reshotko, 

and Prahl (1977). 

Non-Uniform Wall Temperature Distributions 

As indicated earlier, the two types of non-uniform 

wall temperature distributions studied are a) the 

power-law type in which (Ty-T.) = Ax™ and b) step 

changes in wall temperature of magnitude AT = a 

T.. occuring at location x,. In the discussions 

that follow, n is the exponent of the power-law 

wall temperature distribution and s = x,/Xyef is 

the fraction of the distance to the measuring 

station (x;es = 5.5 inches) at which the step 
change in wall temperature is located. 

The Mean Flow - Mean velocity profiles for 

varying values of n, s and Tw(Xref)-To are compared 

to the Blasius profile in Figure 12. The discrep- 

x = 5.5 inches 

Ue = 4.65 ft/sec 

Te, = 75k 
U/U, Blasius 

FIGURE 12. Mean velocity profiles for varying wall 

temperature distributions. 
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ancy between the unheated profile and the Blasius due to equipment limitations. The thermal boundary 

solution may be due to small pressure gradient layer near the leading edge is too thin to make 

effects. temperature profile measurements with the hot film 

practical. The first indication of the wall tem— 

perature is thus provided by the thermistor imbedded 

in the plate surface at x = 1.2". The heater 

Mean temperature profiles and wall temperature 

distributions measured for values of Ty (Xye¢)-To 

=5°F are compared to relevant solutions of the 

boundary layer equations in Figure 19. These nearest the leading edge is located at 0.71" <x 

similar solutions were obtained by Runge-Kutta < 0.96". The actual wall temperature thus rises in 

integration of the coupled momentum and energy some unknown manner from Ty-To = 0 at the leading 

equations assuming variable viscosity and thermal edge to a value near the desired local wall tem- 

conductivity. Their development is not shown here. perature at x - 0.71". These limitations are more 

The error bars shown in Figure 13 represent the severe for increasingly negative values of n, which 

require large temperature differences near the 

leading edge, and may be the cause of the discrep- 

ancy between theory and experiment seen in Figure 

13 for the attempted n = -0.5 profile. 

maximum-measurement error. Agreement between the 

measured and predicted profiles is reasonable con- 

sidering the fact that the wall temperature cannot 

be monitored or maintained near the leading edge 
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Temperature profiles measured at x;of¢ = 5-5" for 

several yalues of S = x,/Xref, with AT = 5°F, are 

compared to analytic results in Figure 14. The 

actual wall temperature does not undergo a steep 

step change due to conduction of heat through the 

plate upstream of the first heater used in each 

case. As a result there is not a unique value of 

X,, the step change "location". For purposes of 

comparison solutions were obtained to the constant 

property energy equation assuming that the temper- 

ature profile developed entirely within the linear 

portion of the velocity profile. This is a reason- 

able assumption for the Prandtl number of water. 

Comparison of the measured profiles with these 

approximate step change solutions indicates that 

the best agreement between theory and experiment 

results when x, is taken as the x-location at 

which the wall temperature first begins to rise 

above the free stream temperature. The choice of 

X, is used in all of the results reported herein. 

The agreement between measured and predicted 

temperature profiles shown in Figures 13 and 14 

_—— Unheated 

—N=1.0 

1958\ w, x 108 

SPATIAL DISTURBANCE GROWTH RATE, - = Xx 10° 

° 

FIGURE 15. Measured disturbance growth characteristics 

for power law wall temperature distributions Ty(x) - To 

= Ax”, = 800. Ree 

43 

600 800 FIGURE 14. Mean temperature 

profiles at x = 5.5" for step 

Re* changes in wall temperature. 

for Ty(Xref)-To = 5°F is typical of that obtained 

at local wall temperature differences of 3°F and 

8°F as well. 

Disturbance Growth Rates - Disturbance growth 

rate characteristics for vaying values of n ata 

fixed Reynolds number near R§x = 800 with Ty (Xref) 

-T. = 5°, are shown in Figure 15. The unheated 

case is included for reference. The curves shown 

are faired through the measured (a;,W,) points, 

which are not shown for the sake of clarity. For 

n = +1.0 the maximum disturbance growth rate is 

greater than that for n=0 at a given value of Ty 

(Xye¢)-T,,, and the band of amplified disturbance 

frequencies moves to a higher frequency range. 

Similar results are obtained for Tw (Xref) -To = 3°F 

and 5°F,. 

Disturbance growth rates vs. frequency for 

various values of s, with AT = 5°F are shown in 

Figure 16 at a nominal Reynolds number of Rgx = 800. 

The unheated case is included for reference and 

measured points (a;,W,) are once again not plotted 

for the sake of clarity. The case s = 0 corresponds 

-68 s 

Unheated —<S 

' nN 

SPATIAL DISTURBANCE GROWTH RATE, - « X 108 

& ° 

FIGURE 16. Measured growth characteristics for a step 

change increase in wall temperature, Rox = 800. 
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(a) (b) 

FIGURE 17. Maximum growth rates for power law wall 

temperature distributions, Ty(x) - To = Axt, Rox = 800. 

to uniform wall heating beginning at the leading 

edge while the case s = 1 corresponds to a step 

change in temperature occurring at the measuring 

station x = 5.5 inches. The peak disturbance 

growth rate displays a minimum as s increases for 

each value of AT considered here. The band of 

amplified disturbance frequencies also moves toward 

a higher frequency range as s increases. 

Disturbance growth rate behavior as a function 

of wall temperature distribution is summarized in 

Figures 17 and 18, where (-01) max is defined as 

the maximum disturbance growth rate for a given 

value of Ty(Xye¢)-To at fixed values of n is shown 

in Figure 17b. We see that positive exponents can 

result in large disturbance growth rates at low 

wall heating levels. At higher levels of wall 

heating the relative reduction in (-0j)may, between 

any two temperature levels is greatest as n de- 

creases. 

The variation of (-;)max, with s at values of 

AT = 3°F and 5°F is shown in Figure 18. The min- 

imum in (-Gj)max at each wall heating level occurs 

near the minimum critical Reynolds number of the 

unheated boundary layer. The measured value of 

(Oe) annonce for AT = 0 is 400, which corresponds 

to s = 0.25 in Figure 18, while the predicted par- 

allel flow value of (Rg*) min.crit = 520 £0, AT) = 

O corresponds to s = 0.42. 
An attempt was made to use the program of Lowell 

and Reshotko (1974) to solve the parallel-flow 

spatial stability problem for power law, wall 

temperature distributions since the solution scheme 

allows the mean flow solution to be read directly 

into the coefficient matrix of the disturbance 

growth rate at a fixed frequency and Reynolds 

x 108 

(- “max 

0 2 4 6 8 

FIGURE 18. Maximum growth rates for step change in- 

creases in wall temperature. 

number is a minimum for n=O, and increases by 

maximum of 12% for values of n in the range 

- 1/2 £n‘£1. This behavior, which is not con- 

sistent with the experimental results, may be due 

to the fact that significant changes in wall tem- 

perature and therefore in the velocity and temper- 

ature distributions are taking place over one or 

two wave-lengths in violation of the parallel-flow 

assumptions. It is felt that a proper multiple 

scales formulation of the stability problem, which 

takes into account the rather rapid variation of 

wall temperature with x, is required to properly 

assess the present results for power-law and step 

function wall temperature variations. The results 

for non-uniform wall temperature distributions are 

given in more detail in the paper by Strazisar and 

Reshotko (1978). 

5. EFFECT OF WALL HEATING ON SEPARATION 

An underwater vehicle is basically a body of rev- 

olution having generally favorable pressure gra- 

dients forward of the maximum diameter and adverse 

pressure gradients downstream of the maximum 

diameter. If laminar flow can be maintained all 

the way to the adverse pressure gradient region 
then the boundary layer will be very easily 

separated unless measures are taken to delay such 

separation. 

An obvious way to delay separation is by suction. 

This however involves the complexities of suction 

slots, internal ducting and later discharge of 

the flow removed from the vehicle boundary layer. 

A "cleaner" possibility for separation delay if it 

in fact would work is heating. 

Wazzan et al. (1970) showed that heating can 

cause a separating profile to fill out significantly. 
Figure 19 indicates that for a Falkner-Skan B = 

-0.1988, an overheat of 90°F, converts a separating 

profile to one having the shape factor of a Blasius 

boundary layer. This motivated our proposal to 

investigate experimentally the potential effect of 

heating on delay of laminar separation. Subsequent 

calculations by Aroesty and Berger (1975) using an 

Y > 

FIGURE 19. Velocity profiles at various wall tempera- 

tures for 8 = -0.1988 [Wazzan et al. (1970)]. 
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FIGURE 20. Effect of overheat on Falkner-Skan separa- 

tion parameter. 

approximate procedure showed that despite the 

large changes in profile shown in Figure 19, the 

value of 8 at separation did not change very much 

with heating (Figure 20). This was confirmed as 

also shown on Figure 20 by exact calculations of 
Strazisar (1975) using Lowell's (1974) program. 
The question of the length retardation of separa- 
tion on a real configuration nevertheless remained 

an open one. 

Experiment 

This experiment was also performed in the CWRU Low 

Turbulence Water Tunnel described in Section 4 

using a specially designed two-dimensional model 

having an NACA 635-015 profile. The model (Fig- 

ure 21) is designed as part of the upper wall of 

the test section of the water tunnel. The boundary 

layer developing on the upper wall of the nozzle 

is removed through a scoop with the bleed rate 

adjusted so that the stagnation streamline is 

straight and steady. Rod heaters (Figure 22) are 

provided over the length of boundary layer develop- 

ment. The tests were conducted at rather low unit 

Reynolds numbers so as to promote laminar flow 

in the separation region and to minimize the power 

needed for large temperature differences. The 

electric heaters distributed through the plate 

provide wall temperatures of the order of 60°F 

a Pressure tap 

(taps run down centerline of model) 

Suction duct 

Mounting frame 

Model 

FIGURE 21. Model as mounted in water tunnel. 
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Experimental model HEATER X_WNCHES 

NACA 639-015 profile 

Maximum thickness = 1.175" 

jh Oo ral 

Maximum output of each 

heater is 600 watts 
electric 

D heater 
1" electric 

4 ~ heater 

ayn 

8 D 

FIGURE 22. Location of rod heaters in ex perimental 

model. 

above the free-stream fluid temperature in the 

region of separation. Wall temperature distribu- 

tions are shown in Figure 23. 

The separation behavior was determined by com- 

binations of the following indicators: 1) indi- 

cation of separation by visual observations of a 

dye stream injected along the surface through static 

pressure holes, 2) location of separation indicated 

by the static pressure distribution along the plate, 

and 3) use of hot film anemometry to measure bound- 

ary layer velocity profiles. 

As with many water flow facilities, results are 

dependent on the state of cleanliness of the 

experimental equipment. In particular, the veloc- 

ity profiles were affected by the condition of 

the airfoil surface and the screens in the settling 

chamber. Even when the screens and airfoil surface 

were relatively clean, there was some scatter in 

the level of the boundary layer shape parameter 

as evidenced by the results for the unheated air- 

foil. The effects of heating on shape factor 

displayed consistent trends that were generally 

independent of facility condition. The experi- 

mental setup, procedures and measurement systems 

are described in detail by Timbo and Prahl (1977). 

HEATER VOLTAGE = 
5. 8 

70, 
140. 

100 

mb 

FIGURE 23. Surface temperature distributions, To = 70°F. 
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Results 

When dye was injected into the boundary layer 

through the pressure taps along the centerline of 

the airfoil, it usually did not all move directly 

upstream on the centerline. Some of the dye moved 

initially spanwise and then upstream. Regardless 

of the path of the dye, its motion was never steady. 

When the airfoil surface was polished and the most 

accessible of the screens in the settling chamber 

cleaned, the most forward upstream position of the 

dye on the unheated airfoil was 4.1 inches (x/L = 

0.45). With heating, the patter of upstream dye 

flow remained indistinguishable from the unheated 

case. Thus for the wall overheats tested, up to 

80°F measured at x = 4.01" (x/L = 0.44 in Figure 

23), there was no separation delay discernable 

using the dye injection method. 

In looking at pressure distributions, separation 

is identified as the point where the experimental 

pressure distribution departs from the theoretical 

recompression distribution on the aft portion of 

the airfoil. The pressure taps will not indicate 

a separated boundary layer unless there is con- 

tinuous separation at the tap's position. Thus 

unless the upstream motion of the dye is very 

steady, which is usually not the case, the position 

of separation as determined by the most upstream 

penetration of dye is consistently farther upstream 

than indicated by pressure distributions. 

The separation point by examination of pressure 

distributions on unheated airfoil occurs at x*4.9" 

(x/L = 9.53). This is close to the location x = 5" 

predicted for separation using the Thwaites method. 

Heating, as reported by Timko and Prahl (1977), 

caused no significant alteration in the pressure 

4.0 
© -9/28 

QO -9/29 

3.8 4A -10/3 
: B = -0,1988 Vy —10/6 

4 Falkner-Skan 

Theoretical a Experimental 

ge Theoretical 
(Wazzan and Gazley, 1977) 
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FIGURE 24. Variation,of shape factor H with wall heating. 

distributions and so again one cannot point to any 

delay of separation by heating from these data. 

Since the first two indicators showed negligible 

shift of separation with heating, the boundary layer 

velocity profiles were measured in some detail at 

a point upstream of separation with and without 

heating. Figure 24 shows the results for boundary 

layer shape factor at a station 3.88" downstream 

of the leading edge. Heating causes a reduction 

in shape factor from the unheated value. The un- 

heated profiles correspond to -0.17 < 8 < -0.15 

and the slight reduction in shape factor with 

heating is in accordance with expectation from the 

similar solutions of Wazzan and Gazley (1977). 

Despite these shape factor reductions the profiles 

are changing so rapidly with longitudinal distance 

(hence the scatter in Figure 24) that the separation 

location is hardly affected. 

Thus for the amounts of wall heating employed 

in this study the separation point does not move 

noticeably from its unheated position. This ina 

sense confirms the results of Aroesty and Berger 

(1975) .and of Strazisar (1975) (Figure 20) which 

show the theoretical insensitivity of the value 

of 8 at separation to heating. 

6. CONCLUDING REMARKS 

The studies to date reported herein together with 

those of Wazzan et al. (1970, 1977), Barker (1978) 

and others are such as to justify further investi- 

gation of the various elements of the heating 

phenomenon. Among the factors affecting the prac- 

tical application of heating is the combined effect 

of heating and roughness on stability and transition. 

The work of Kosecoff, Ko, and Merkle (1976) suggests 

that the roughness effect is due to the instability 

of the mean profile as distorted by the roughness. 

An alternative view being investigated at CWRU is 

that the roughness introduces disturbances into 

the boundary layer that may subsequently be ampli- 

fied by the Tollmien-Schlichting mechanism. In 

this view the wavelength of the roughness is im- 

portant as well as its height. An experiment has 

been planned that will map out the mean and dis- 

turbance flow-fields in the vicinity of roughness 

elements so that the relevant mechanism can be 

identified. This will provide a fluid mechanic 

characterization of roughness and help in further 

assessment of the effects of roughness on trans- 

ition of heated water boundary layers. With further 

attention given also to heat exchanger design pro- 

pulsion system, and fabrication techniques, there 

are promising prospects for the achievement of 

drag reduction by heating in water. 
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Discussion 

CARL GAZLEY, Jr. 

Several of us* at Rand and UCLA have made a 

series of computations which serve to illuminate 

some of the experiments described by Professor 

Reshotko. His experiments with non-uniform wall 

temperature distribution indicate the sensitivity 

of the boundary-layer stability to the way the 

surface temperature changes with distance along the 

plate. For the power-law variation, AT = Ax , 

Reshotko's experiments for AT < 8°F appear to 

indicate decreased stability and increased ampli- 

fication rates as the experiment n decreases toward 

zero. Our computations indicate the same trend at 

low temperature differences, but also show a 

reversal at a temperature difference of about 20°F 

with an increasing stability with increasing n 

above this AT. In fact, very large increases occur 

for a AT above 30°. 

Our results were obtained both by exact numer-— 

ical techniques based on the Orr-Sommerfeld equa- 

tion [Wazzan and Gazley (1978)] and by a modifiac- 

tion of the Dunn-Lin approximation [Aroesty et al. 

(1978)]. The results for flat-plate flow in terms 

of the minimum critical Reynolds number based on 

displacement thickness are shown in Figures 1 and 

2 for values of n = 1 and 2 as a function of the 

local temperature difference. The modified Dunn- 

Lin approximation is seen to agree remarkably well 

with the exact computations. More extensive 

results of that approximation are shown in Figure 3 

for values of n ranging from zero to 2. For temp- 

erature differences above about 30°F, the advanta- 

geous effects of an increasing temperature differ- 

ence are seen to be very large. 
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w= MODIFIED DUNN-LINN 

APPROXIMATION 

4 EXACT COMPUTATIONS 

0 10 20 30 40 50 60 

LOCAL aT=T. -T., °F 
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FIGURE 1. Variation of critical Reynolds Number with 

local temperature difference. Flat plate with linear 

increase of temperature difference. 

*J. Aroesty, C. Gazley, Jr., G. M. Harpole, 

W. S. King, and A, R. Wazzan 
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FIGURE 2. Variation of critical Reynolds Number with 

local temperature difference. Flat plate with tempera- 

ture difference increasing with the square of distance. 
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FIGURE 3. Variation of Critical Reynolds Number with 

local temperature difference for several surface- 

temperature distributions. 
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Author’s Reply 

ELI RESHOTKO 

Dr. Gazley and his colleagues have long been 

interested and active in the topic of heated 

boundary layers and his comments on the conse- 

quences of power-law temperature distributions 

are greatly appreciated. 

Let me first restate our experimental results. 

Referring to Figure 17 of the paper, our experi- 

ments for AT < 8°F appear to indicate decreased 

amplification rates as the exponent n decreases 

toward zero and in fact for some range of negative 

values of n, the disturbances become damped. In 

the temperature range AT < 8°F, neither our cal- 

culations (cited in the paper) nor Gazley's give 

any basis for this experimental result. 

Nayfeh and El-Hady (private communication) 

have recently pointed out that water boundary 

layers with non-isothermal walls cannot have 

similar boundary layer solutions because of the 

variable properties of water. They show that if 

one first calculates the non-similar boundary 

layer profiles expected at the measuring station 

of the Strazisar-Reshotko experiments and then 

analyzes the stability of these profiles, the 

resulting growth rates are qualitatively in accord 

with the Strazisar-Reshotko results as shown in 

the figure below supplied to me by Professor 

Nayfeh. Note in the figure that as n decreases, 

the growth rates also decrease, and although the 

calculated maximum growth rates are not negative 

for the non-parallel calculations with n = -0.5, 

they are very close to zero. This trend is oppo- 

site to what was obtained for the stability of 

similar boundary layer mean profiles. 

Nayfeh and El-Hady's calculations do not go 

beyond AT = 8°F. But I believe that they have 

made their point that when studying the stability 

of water boundary layers with power-law or other 

non-isothermal wall temperature distributions, 

one must analyze the stability of the appropriate 

non-similar boundary layer profiles in order to 

obtain even the correct qualitative trends. 

Therefore I believe that the results presented by 

Dr. Gazley in his comment must be reexamined. 
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Effect of power law wall heating on stability of non- 

similar water boundary layer. ---- parallel, non- 
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parallel amplificatfon rate and ea) is the non-parallel 

contribution. 
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Nonparallel Stability of Two-Dimensional 

Heated Boundary Layer Flows 

N. M. El-Hady and A. H. Nayfeh 
Virginia Polytechnic Institute and State 

University, Blacksburg, Virginia 

ABSTRACT 

The method of multiple scales is used to analyze the 

linear-nonparallel stability of two-dimensional 

heated liquid boundary layers. Included in the anal- 

ysis are disturbances due to velocity, pressure, 

temperature, density, and transport properties, as 

well as variations of the liquid properties with 

temperature. An equation is derived for the modula- 

tion of the wave amplitude with streamwise distance. 

Although the analysis is applicable to both uniform 

and nonuniform wall heating, numerical results are 

presented only for the uniform heating case. The 

numerical results are in good agreement with the 

experimental results of Strazisar, Reshotko, and 

Prahl. 

1. INTRODUCTION 

It is generally accepted that the instability of 

small amplitude disturbances in a laminar boundary 

layer is an integral part of the transition process. 

Significant changes in the boundary layer stability 

characteristics can be achieved by utilizing dif- 

ferent factors, such as pressure gradients, suction, 

injection, compliant boundaries, and heating or 

cooling of the boundary layer. 

Surface heating in a liquid boundary layer can 

be utilized to yield a mean velocity profile which 

is more stable than the Blasius profile. The rea- 

son is that heat transfer alters the shape of the 

boundary-layer temperature profile which in turn 

alters the velocity profile through the viscosity- 

temperature dependence. The effect of wall heating 

on the stability of boundary layers in water was 

investigated by Wazzan et al. (1968, 1970). They 

included the variation of the viscosity with tem- 

perature through the thermal boundary layer. They 

obtained a modified Orr-Summerfeld equation. How- 

ever, they did not include temperature fluctuations 

in the disturbance flowfield. Their results show 
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that while cooling the wall has a destabilizing ef- 

fect on the flow, moderate heating has a strong 

stabilizing effect. Lowell (1974) reformulated the 

problem by adding fluctuations for the temperature, 

density, and transport properties. The results of 

Lowell did not vary appreciably from those of Wazzan 

et al. (1970). 

The presently available analyses (Wazzan et al. 

and Lowell) for the stability of heated boundary 

layers in water are all parallel flow analyses. 

results of the parallel stability analyses do not 

agree with available experimental results. Strazisar 

et al. (1975, 1977) performed experiments on the 

stability of boundary layers on both unheated and 

uniformly heated flat plates. These experiments 

confirmed the increased stability resulting from 

wall heating in water. Strazisar and Reshotko (1977) 

extended their experiments to cases of nonuniform 

surface heating in the form of power-law temperature 

distributions; that is, Ty(x) - Te = Ax®. Their 

results are given only for a displacement thickness 

Reynolds number R* = 800 and indicate that, for a 

given level of wall heating, cases with n < O have 

the lowest growth rates. Strazisar and Reshotko 

(1977) found that applying Lowell's analysis (1974) 

to the case of power-law temperature distributions 

yielded results that did not agree with the experi- 

mental results. 

In this paper, we use the method of multiple 

scales (1973) to analyze the linear, nonparallel 

stability of two-dimensional boundary layers in 

water on a flat plate, taking into account uniform 

as well as nonuniform wall heating. We include 

disturbances in the temperature, density, and trans- 

port properties of the liquid in addition to dis- 

turbances in the velocities and pressure. However, 

we present numerical results only for the case of 

uniform wall heating and compare our results with 

the experimental data of Strazisar et al. (1975, 

1977). When the variation of the temperature, 

thermodynamic, and transport properties are ne- 

glected, the present solution reduces to those of 

The 
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Bouthier (1973), Nayfeh, Saris, and Mook (1974), 

Gaster (1974), and Saric and Nayfeh (1975, 1977). 

The formulation of the problem and method of 

solution is taken in the next section, the solution 

of the first-order problem is given in Section 3, 

the solution of the second-order problem is given 

in Section 4, the mean flow is discussed in Section 

5, and the numerical results and their comparison 

with the experimental data of Strazisar et al. (1975, 

1977) is given in Section 6. 

2. PROBLEM FORMULATION AND METHOD OF SOLUTION 

The present study is concerned with the two- 

dimensional, nonparallel stability of two-dimensional, 

viscous, heat conducting liquid boundary layers to 

small amplitude disturbances. The analysis takes 

into account variations in the fluid properties but 

neglects buoyancy, dissipation, and expansion ener- 

gies. All fluid properties are assumed to be known 

functions of the temperature alone. 

Dimensionless quantities are introduced by using 

a suitable reference length L* and the freestream 

values as reference quantities, where the star 

denotes dimensional quantities. 

To study the linear stability of a mean boundary- 

layer flow, we superpose a small time-dependent dis- 

turbance on each mean flow, thermodynamic, and 

trasport quantity. Thus, we let 

G(x,y,t) = Qo (x,y) + q(x,y,t) (1) 

where Qg(x,y) is a mean steady quantity and q(x,y,t) 

is an unsteady disturbance quantity. Here, q stands 

for the streamwise and transverse velocity compo- 

nents u and v, the temperature T, the pressure p, 

the density p, the specific heat c,, the viscosity 

u, and the thermal conductivity k. Substituting 

Eq. (1) into the Navier-Stokes and energy equations, 

subtracting the mean quantities and linearizing the 

resulting equations in the q's, we obtain the fol- 

lowing disturbance equation: 

or oe ( + ) + om ( + = ye v ope We 3s DW ay Pov + PVo) = 0 (2) 

Ci se My + (32 + = @) 

eyo x Lh Ome 
oy R ox P 

avo , 5 2U0 + a(x ay FS )|} (4) 

or 0 oT 8T9 oT Pol se ap \b) 5 + Uo 9x oy ur Vo al 

c 
oT dTo + (bog& + 9)/uy 22 + | @ C) C) an x 0 °Y 

femal O oT oO) 
RPr c { ax (xo ose ox ) 

0 

3 oT chy an, Go, ws qlee tee) ry 
Op ile (ep oo = functions (T) (6) 

Here, Cpg is the liquid specific heat at constant 

pressure, R = pAUaL*/ug is the Reynolds number and 

ies = cheba/KS is the freestream Prandtl number. 

Moreover, 

(Aer Aap GS 2 (e sdk) 

wir wiry 
(1 + 2e), 1 = 5 ule-1) (7) 

where e is the ratio of the second to the first 

viscosity coefficients (e = 0 is the Stokes assump- 

tion). 

The problem is completed by the specification of 

the boundary conditions; they are 

u=v=T=0O0=aty=0 (8) 

I Aue Se 0) AG “Ny ae (9) 

We restrict our analysis to mean flows which are 

slightly nonparallel; that is, the transverse ve- 

locity component is small compared with the stream- 

wise velocity component. This condition demands all 

mean flow variables to be weak functions of the 

streamwise position. 

mathematically by writing the mean flow variables in 

the form 

Up (x1,¥), Vo + EVo(xX1,Y) i] Ug 

Po = Pg(x1), To= To(x1-yY) 

Po = Po(x1+Y), © = 64 sna) 0 ONS Day, Po Po 1rY 

Ho = vo(X1-¥), Ko = Ko(*1,Y) (10) 

where x; = ex with € being a small dimensionless 

parameter characterizing the nonparallelism of the 

mean flow. In what follows, we drop the caret from 

Vo- 

These assumptions are expressed 



To determine an approximate solution to Eqs. (2) 

-(10), we use the method of multiple scales [Nayfeh 

(1973)] and seek a first-order expansion for the 

eight dependent disturbance variables u, v, p, T, 

O, C., Hw and kK in the form of a traveling harmonic 

wave; that is, we expand each disturbance flow 

quantity in the form 

q(x ),y,t,) [qj] (x1,y) 

+ €q9(x,,y) + -.-Jexp(i0) (11) 

where 

Oo 5 oe aes a ae a9 (x1), re Tw (12) 

For the case of spatial stability, a is the complex 

wavenumber for the quasi-parallel flow problem and 

w is the disturbance frequency which is taken to be 

real. 

Substituting Eqs. (11) and (12) into Eqs. (2)- 

(10), transforming the time and the spatial deriv- 

atives from t and x to 8 and x), and equating the 

coefficients of ©9 and € on both sides, we obtain 

problems describing the q; and qo flow quantities. 

These problems are referred to as the first- and 

second-order problems and they are solved in the 

next two sections. 

3. THE FIRST-ORDER PROBLEM 

Substituting Eqs. (11) and (12) into Eqs. (2)-(10) 

and equating the coefficients of e€9 on both sides, 

we obtain the following 

: a) 
L} (U1, ,V,,P1,T1) = iagl(Pouy + (Ug - ag)! 

3 
+ oy (povi) = 0 (13) 

Lo (uj,,V],P1,T)) 

i duo : aod) dug 3U0 aay a a 2h (eo. 
R oy ap Jv *O0P1 R dy \aTo dy 

_ 2 ot oun ia avi 

Roy oF 1 mw POO By 

_ 1 ao, Sin OE Ba 
R dT dy dy m O Re = © (2e) 

L3(4,,V),P)1,T}) 

9 Ww 1 2 
= = — + — [ teor0(vs =) R voad fr 

_ is ,. 20 i, duo 9U0 
R Y oy “1 in 2 aTg dy ql 

a7 ig PO Bye (15) 
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Ly (W,,V),P1,T)) 

=| ipgag( up - —) + ees 
PON 0 a9 Bie el 

0 2 dKQ OT] 
+ Vv, - 

Po 1 RPr co ay oy 

0 

1 a2T] _ 
RPr c 0 oy2 ae ile) 

Po 

wy = Ww = wh = Oo ae Wy = @) (17) 

Chie wala wy = O as y7o (18) 

Equations (13) - (18) constitute an eigenvalue 

problem, which is solved numerically. It is 

convenient to express it as a set of six first-order 

equations by introducing the new variables Zin de- 

fined by 

is _ uy = 
ai = ilo Bl see 0 Z213.= Vie 

oT] 
rah Sig, BG Sho B18. Fe (19) 

Then, Eqs. (13)-(18) can be rewritten in the compact 

form 

az 
Hat 

- = 0 = Np aeo pO 20 y a 455215 for i ; (20) 
j= 

Bi = 4213 = Big =O at y =0 (21) 

Zllr 213, 215 10) ES 7 ae (22) 

where the a, are the elements of a 6 X 6 variable- 

coefficient matrix. The nineteen nonzero elements 

of this matrix are listed in Appendix I. 

We solve this eigenvalue problem by using SUPORT 

[Scott and Watts (1977)]. To set up the numerical 

problem, we first replace the boundary conditions 

(22) by a new set at y = y where y is a convenient 

location outside the boundary layer. Outside the 

boundary layer, the mean flow is independent of y 

and the coefficients aj; are constants. Hence, the 

general solution of Eqs. (20) can be expressed in 

the form 

6 

Ba S 2, A; ,cjexP Oy) fore A S Up Pros GO (23) 

where the \j are the eigenvalues of the matrix 

[a;;], the Ajj are the corresponding eigenvectors 

and the c+ are arbitrary constants. The real parts 

of three of the Aj are negative, while the real 

parts of the remaining \. are positive. Let us 

order these eignevalues so that the real parts of 

hy,A2, and 3 are negative. Then, the boundary 

condition (22) demands that cy,cs5 and cg are zero. 

To set up this condition for SUPORT, we first solve 

Eqs. (23) for the Cao Lo) and obtain 

6 

o5exp (1,y) = Waa, soe a) = Wpepceoc (22) 
Aa aba} ahat 
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where the matrix [b,;,] is the inverse of (A; -]- 

Setting cy = cs = cg = O in Eq. (24) leads to 

= 0 for j = 4,5, and 6 at y = y (25) 

where the bis are the elements of a 3 X 6 constant-— 

coefficient matrix. 

Using Eqs. (25) as the boundary condition at y 

= y and guessing a value for ag, we use SUPORT to 

integrate Eqs. (20) from y = y to y = O and attempt 

to satisfy the boundary conditions (21). If the 

guessed value for ag is the correct eigenvalue, the 

three boundary conditions will be satisfied. In 

general, the guessed value is not the correct value 

and the boundary conditions at the wall are not 

satisfied. A Newton-Raphson procedure is used to 

update the value of ag and the integration is re- 

peated until the wall-boundary conditions are satis- 

fied to within a prescribed accuracy. This leads 

to a value for ag and a further integration of 

Eqs. (20) leads to a solution that can be expressed 

in the form 

23 = A(x1) 6, (x) ,Y) nope SS DBAS oo FO (26) 

where A is still an undetermined function at this 

level of approximation. It is determined by im- 

posing a solvability condition at the next level of 

approximation. 

4. THE SECOND-ORDER PROBLEM 

With the solution of the first-order problem given 

in Eq. (26), the second-order problem becomes 

oa z 
5 = a, .Z,. 
y a aes 

=, 4 FA for i = 1,2,...,6 (27) 
al, (bre x] 

22] = 223 = 225 = 0 at y =0 (28) 

29112231 225 * O as yoy 2 (29) 

where the G. and F. are known functions of the Cie 

ag and the mean flow quantities. They are defined 

in Appendix II. 

Since the homogeneous parts of Eqs. (27)-(29) 

are the same as Eqs. (20)-(22) and since the latter 

have a nontrivial solution, the inhomogeneous Eqs. 

(27)-(29) have a solution if, and only if, a solva- 

bility condition is satisfied. In this case the 

solvability condition demands the inhomogeneities 

to be orthogonal to every solution of the adjoint 

homogeneous problem; that is, 

ic: Be ax nn dete va fay = 0 (30) 

i=1 

where the W;(x,,y) are the solutions of the adjoint 

homogeneous problem corresponding to the eigenvalue 

@g- Thus, they are the solutions of 

ow. 
i 

== + Ena =O) sore al = ilpArooe p@ 31) yy ayes j , , ( 

dy 
Joa 

Wo = Wy = We = O at y =0 (32) 

Wo, Wy, We > 0 as yy? (33) 

Substituting for the G; and Er from Appendix II 

into Eq. (30), we obtain the following equation for 

the evolution of the amplitude A: 

AAG) aes 
az ax} = ia, (x,) (34) 

where 

oo co 

6 6 

ia) = - » FW dy > G.W.dy (35) 
j=1 J j=1 a) 

0 0 

The solution of Eq. (34) can be written as 

A = Agexplie a (x1) dx] (36) 

where Ag is a constant of integration. 

To determine a1(x1), we need to evaluate dag/dx, 
and the 90; /0x)- To accomplish this, we differen- 

tiate Eqs. (20)-(22) with respect to x; and obtain 

; — )- : Ge ) 
zs a. 
dy \ dx} sai ij\dx, 

Sear Wl, sere at Se LHD paod® (37) 
1 al 

ae = ae = Fay =O at y=0 (38) 

Uist wis OES c 
dX] ¥ ax] z ax] “ao Ss er (Se) 

The initial conditions for the computational pro- 

cedures are chosen to exclude any multiple of the 

homogeneous solution. The H; are known functions 

of Ci, 4 and the mean flow quantities and their 

derivatives; they are given by 

6 OB 5 

= me) d Hy » c, oxy an 

aaah 9 

: 3 CLs 
Ce Ds 3 8) oe AS Tp Proce (40) 

j=1 ax] 

Using the solvability condition of Eqs. (37)-(39), 

we find that 
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COM). = = : an »y HW. dy yy GW, dy (41) 

Therefore, to the first approximation 

2.) = BN eWET gs) Cesailes [va + e€a,)dx - iwt] + O(e) (42) 
Y 

where the z, are related to the disturbance variables 

by Eq. (19) and the constant Ap is determined from 

the initial conditions. It is clear from Eq. (42) 

that, in addition to the dependence of the eigen- 

solutions on x, the eigenvalue a is modified by 

€a,- The present solution reduces to those obtained 

by Nayfeh, Saric, and Mook (1974) and Saric and 

Nayfeh (1975) for the case of nonheat conducting 

flows. 

5. THE MEAN FLOW 

For flows whose thermodynamic and transport 

properties are functions of temperature, the 

two-dimensional boundary-layer equations for a 

zero-pressure gradient are 

a 5 (p*u*) + ma (OA) = 6 (43) 

) du* 2) du* *y* + pxky* raves 44 p*u = ON Se 7 Be Bp ) (44) 

oT oT a oT* *u*C* + o*v*ck = p*u*c ax* p*v SD dy* ay (K* ay*) (45) 

The temperature dependence of p and w) couples the 

momentum and the energy equations. Note that buoy- 

ancy and viscous dissipation effects are neglected. 

Although the stability analysis is applicable to 

any wall temperature variations, we present stability 

results for the case of constant wall temperature 

for which the flow is self similar. Thus, we intro- 

duce the transformation. 

= =f pdy* (46) 

where R, is the freestream x-Reynolds number defined 

by 

R _ p*U*x* /u* (47) 

x See S) 

Introducing this transformation in Eqs. (43)-(45) 

and solving the continuity equations for v, we trans- 

form the original set of partial-differential equa- 

tions into the following set of ordinary-differential 
equations: 

Q) du du 
an (pu an) a Arie () (48) 

a oT oT Ls wes = 49 on (pk on) + we eS) on (0) (49) 

I) 7/ 

where 

lee 

i) 

nN 

g(n) = 5 Jf puan (50) 

0 

Note that all fluid properties are made dimension- 

less by using their freestream values. 

Equations (48)-(50) are supplemented by the fol- 

lowing boundary conditions: 

u=0, T= aes and g = 0 at n 0 (51) 

el Se Ls Cyayel ave = a AL as nto (52) 

where the subscript w denotes wall values. Equa- 

tions (48)-(52) are numerically integrated by using 

Runge-Kutta and Adams-Moulten integration techniques 

with the liquid thermodynamic and transport prop- 

erties computed at each integration step. All nu- 

merical results presented here are for water; the 

dependence of its thermodynamic and transport prop- 

erties on the temperature is given in Appendix III. 

6. ANALYTICAL RESULTS AND COMPARISON WITH 

EXPERIMENTS 

Although the analysis is applicable to both uniform 

and nonuniform wall heating, results are presented 

only for the case of uniform wall heating for which 

the mean flow is self similar. 

The only available experimental results for the 

stability of uniformly heated boundary-layer flows 

are those of Strazisar et al. (1975, 1977). Using 

a water tunnel, they introduced disturbances by 

vibrating a ribbon and measured the response by 

using a temperature compensated hot-film anemometry. 

They used the r.m.s. of the stream-wise component 

of the disturbance velocity, u, to calculate the 

growth rates. They determined the growth rate as a 

function of frequency at different Reynolds numbers. 

For a parallel mean flow, a, = 0, dp and A are 

constants, and the ¢_ are function of y only. Hence, 

one can unambiguously define the growth rate o of 

the distrubance as the imaginary part of Op; that 

is, 

o = - Im(a9) (53) 

This definition is equivalent to 

Oo = Re @ &nu) = Re (2 Qnv) = 
ax ox 

3 mene Rey (ine) eRe (ent) (54) 

On the other hand, for a nonparallel mean flow, aj, 

7 O, A and dg are functions of x, and the Gnyarce 

functions of both x and y. Thus, if one generalizes 

(53) to take into account €a), one obtains 

6 = - Im(d) + €a)) (55) 

which is not equivalent to (54). Moreover, the 

quantity a); and hence o depend on the normalization 

of the Cy because part of the Tn Can be absorbed in 
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A and a}. If one generalizes the definition (54) 

and uses (42), one obtains 

) 
o = - Im(a9 + €a)) + eRe(— Lnz_) (56) 

ox n 

Thus, the growth rate in (56) depends on the choice 

of S, because the axial and transverse variations 

of the Ty, are not the same. Since the Z, are func- 

tions of both y and x, one may term a stable flow 

unstable or vice versa. 

Since there are many possible definitions of the 

growth rate in a nonparallel flow, one should be 

careful in comparing analytical and experimental 

results. Saric and Nayfeh (1975, 1977) found that 

the best correlation between the nonparallel theory 

and available experimental data for the Blasius flow 

is obtained if one uses the definition (55). In 

this paper, we compare the definitions (55) and (56) 

evaluated at the value n where ¢; is a maximum. 

Figure 1 shows the variation of the calculated 

disturbance growth rates o/R with frequency FR=W/R 

for Twate = 0, 3,5, and 8°F and for the displacement 

thickness Reynolds number R* = 800. This range of 

Tw-Te is chosen for comparison with the existing 

experimental results. The growth rate is calculated 

by using the definition (55) and by normalizing 7, 

so that ¢)>exp(-agy) as ye~. This figure indicates 

that the disturbance growth rate decreases with in- 

creasing T,-T,. The maximum growth rate is reduced 

by approximately 56% by increasing the wall temper- 

ature by 5°F. The maximum growth rate is very small 

when the wall temperature is increased by 8°F at 

R* = 800. Figure 1 shows that the range of unstable 

frequencies decreases with increasing T,-Te. 

AMPLIFICATION RATE o/R« 10° 

80 100 120 140 160 180 

FREQUENCY FRxI0® 

FIGURE 1. The variation of the spatial growth rate 
with frequency for varying wall temperatures at R* = 
S00) =a = Nonparallel, ----- Parallel. 

MAXIMUM o/Rx10° 

Oo 400 600 800 1000 1200 1400 1600 

FIGURE 2. The variation of the maximum growth rate 

with streamwise position for varying wall temperatures. 

Nonparallel, ----- Parallel. 

Figure 2 shows the variation of the maximum 

growth rate obtained from our analysis with Ty-Te- 

It shows that the maximum growth rate decreases with 

increasing wall temperature at all Reynolds numbers. 

Figures 1 and 2 show a comparison between the 

growth rates based on the parallel, (53), and non- 

parallel, (55), stability theories. The nonparallel 

maximum growth rates are approximately 30% larger 

than the parallel ones. Moreover, the nonparallel 

critical Reynolds number is approximately 20% lower 

than the parallel one for all the values of T,-T 

considered as shown in Figure 2. 

Figures 3a-3d show comparisons of the experi- 

mental growth rates of Strazisar et al. and the 

nonparallel growth rates defined by (53), (55) and 

(56) for different values of T,-T, and different 

values of R*. These figures show good agreement 

between the growth rate defined by (55) and the ex- 

perimental results, in contrast with the parallel 

theory which underpredicts the experimental results 

by large amounts. Moreover, including the distor- 

tion of the eigenfunction with streamwise position 

in the definition of the growth rate yields a growth 

rate that is very close to the parallel one and 

hence underpredicts the experimental results by 

large amounts. 

© 

7. CONCLUSION 

The method of multiple scales is used to analyze 

the linear nonparallel stability of two-dimensional 

liquid boundary layers on a flat plate for the cases 

of uniform and nonuniform wall heatings. We include 

disturbances in the temperature, density, thermo- 

dynamic, and transport properties of the liquid in 

addition to disturbances in the velocities and 

pressure. The growth rates calculated from non- 

parallel results without including the distortion 

of the eigenfunction with streamwise position are 

in good agreement with the experimental results of 

Strazisar et al. (1975, 1977). The nonparallel 

results show that wall heating in water has a sta- 

bilizing effect on the flow; there is a decrease in 

the disturbance growth rates, a decrease in the 

range of unstable frequencies and an increase in 

the critical Reynolds number. 
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FIGURE 3a. Comparison of the analytical and the experi- 

mental spatial growth rates for various displacement 

thickness Reynolds numbers and wall temperatures. 

Experiments, Strazisar et al. (1975, 1977), 1) o = 
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FIGURE 3b. Comparison of the analytical and the ex- 

perimental spatial growth rates for various displace- 

ment thickness Reynolds numbers and wall temperatures. 

Experiments, Strazisar et al. (1975, 1977), 1) o = 

Im(a49), 2) o = -Im(a9 + €0)), 3) O = -Im(ag + €0}) + 
€ a] 41 
269) ox) 

o/R*« 10° 
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R*=910 
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FIGURE 3c. Comparison of the analytical and the ex- 

perimental spatial growth rates for various displace- 

ment thickness Reynolds numbers and wall temperatures. 

Experiments, Strazisar et al. (1975, 1977), 1) 5 = 

-Im(ag), 2) Go = -Im(a9 + €01), 3) O = -Im(a9 + €4)) + 

a ailGa 
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FIGURE 3d. Comparison of the analytical and the ex- 

perimental spatial growth rates for various displace- 

ment thickness Reynolds numbers and wall temperatures. 

Experiments, Strazisar et al. (1975, 1977), 1) 5 = 

-Im(ag), 2) o = -Im(ag + €4)), 3) © = -Im(dp + €0]) + 
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APPENDIX III 

The variation of the water thermodynamic and transport properties 
with temperature is given by 

_ | (T* = 3,9863)2(T* + 288.9414) 374.3 
ex = | - “sog9n9.2 (T* + 68.12963) + 0.011445 exp(- =>) 
p* iin gm/m’,  T* in °C. 

1.002 ) _ 1.37023(i* = 20) + 8.36 x 1On(T = 20)2 
Tia UWS) SF We Log( 

Me Win Cio, Te Alin 2G 

K* = - 9.901090 + 0.1001982T* - 1.873892 x10 “T*? 

+ 1.039570 x 10° 7T*? 

k* in mwatts cm ?K?, T* in °K 

cS = 2c! = OsGsley 2 WO “Te? & 2G WOT Ae 

= 2.42139 x 105 °1** 

Gs in cal Gn K os Te? a Ol 

A discussion of the sources and accuracy of these formulas can be 
found in Lowell (1974). 
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SUMMARY 

Most work in linearized boundary-layer stability 

theory has been carried out either on the basis 

of two-dimensional mean flow and plane wave dis- 

turbances with the wavenumber in the flow direction, 

or, for a more general case, by a transformation 

of the equations to two-dimensional form. This 

procedure can obscure important physical aspects 

of wave propagation in two space dimensions. In 

this paper the stability equations are retained 

in three-dimensional form throughout. A method 

for treating spatially amplifying disturbances with 

a complex group velocity is adopted and applied 

first to oblique waves in a two-dimensional bound- 

ary layer, and then to the two-parameter yawed 

Falkner-Skan boundary layers. One parameter is 

the spanwise to chordwise velocity. For boundary 

layers with small crossflow, the maximum amplifi- 

cation rate with respect to frequency is calculated 

as a function of flow angle for waves whose normal 

is aligned with the flow. Next, the minimum crit- 

ical Reynolds number of zero-frequency crossflow 

instability is obtained for both large and small 

pressure gradients, and finally the instability 

properties of two particular boundary layers with 

crossflow instability are determined for all un- 

stable frequencies. 

1. INTRODUCTION 

Most work in linearized boundary-layer stability 

theory has been restricted to two-dimensional mean 

flows, and, for these flows, even further restricted 

to plane-wave disturbances with the wave normal in 

the flow direction.* The latter restriction is 

normally justified by reference to the theorem of 

*Such a wave is called two-dimensional because 

it has only two disturbance velocity components. 

All other plane waves have three velocity components 

in any coordinate system, and are called three 

dimensional. 

California 
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Squire (1933), which states that ina two-dimensional” 

incompressible boundary layer, the minimum critical 

Reynolds number is given by a two-dimensional wave. 

Even though the most unstable wave at a given 

Reynolds number is two dimensional in accordance 

with the theorem, the most unstable wave of a 

particular frequency can well be three dimensional. 

Furthermore, the unstable three-dimensional waves 

can have phase orientation angles (the angle between 

the local freestream direction and the wave normal) 

up to almost 80°. Any method for the estimation 

of transition that is based on stability theory 

must take this large range of unstable three di- 

mensional waves into account. For a supersonic 

two-dimensional boundary layer, even the most un- 

stable plane wave at a given Reynolds number is 

three dimensional. The two-dimensional waves be- 

come of little importance as the Mach number in- 

creases above one until the hypersonic regime is 

reached, where a two-dimensional second-mode wave 

is the most unstable. 

When we turn to three-dimensional boundary layers, 

there are no two-dimensional waves, but the trans- 

formation of Stuart [Gregory et al. (1955) ] reduces 

the three-dimensional temporal stability problem 

to a series of two-dimensional problems. That is, 

the temporal amplification rate can be obtained by 

solving a two-dimensional problem for the boundary- 

layer profile in the direction of the wave normal. 

This approach was carried through numerically by 

Brown (1961) for the rotating disk and a limited 

number of swept-wing boundary layers. When the 

same approach is applied to the spatial theory, 

it leads to complex velocity profiles and loses 

much of its utility except as a computational device. 

Instead of trying to make a two-dimensional 

world out of a three-dimensional world, it might 

as well be accepted that boundary-layer instability 

is inherently three dimensional, even with two- 

dimensional mean flow, and to formulate the insta- 

bility problem directly as three dimensional [Mack, 

(1977); this paper will be referred to as M77]. A 

transformation of the dependent variables reduces 

the order of the incompressible eigenvalue problem 
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from sixth to fourth order, but the velocity pro- 

files and wave parameters are not transformed. 

This approach is equally valid for the temporal 

and spatial theories, but for the latter a growth 

direction must be assigned before eigenvalues can 

be computed. In M77 this direction was taken 

equal to the direction of the real part of the 

group velocity and numerical results were obtained 

for two-dimensional incompressible and compressible 

flat-plate boundary layers and for the rotating 

disk boundary layer. 

In the present paper, a theoretical presentation 

is given in Section 2 to justify the use of a 

spatial mode whose direction of growth is determined 

by the complex group velocity. In Section 3, some 

results concerning three-dimensional spatial waves 

in the Blasius boundary layer are given as an 

example. In Section 4, we adapt the family of 

yawed-wedge three-dimensional boundary layers 

[Cooke (1950) ] for use in stability calculations. 

In Section 5, under Boundary Layers with Small 

Crossflow, we consider the effect of the flow angle 

(the angle between the local potential-flow direc- 

tion and the direction of the pressure gradient) on 

the maximum amplification rate for small pressure 

gradients. Next, in Section 5 we take up cross-— 

flow instability and determine the critical Rey- 

nolds number for several combinations of pressure 

gradient and flow angle. We then obtain the max- 

imum amplification rate and instability boundaries 

of all unstable frequencies as a function of the 

wavenumber vector for a favorable pressure-gradient 

boundary layer which is unstable at low Reynolds 

numbers only because of crossflow instability. 

Finally, in the last part of Section 5, we repeat 

the latter calculation for an adverse pressure- 

gradient boundary layer with crossflow instability 

at a Reynolds number where the boundary layer is 

unstable even without crossflow instability. In 

all of the examples, only the amplification rate 

is calculated, and on the basis of locally uniform 

flow. No results concerning wave amplitude are 

given, although in Section 2, we make use of a 

simple wave amplitude equation in order to properly 

define the spatial amplification rate. 

2. THREE DIMENSIONAL STABILITY THEORY 

Formulation and Transformations 

The linearized, incompressible, parallel-flow, 

dimensionless Navier-Stokes equations for the 

elementary modes 

u(x,y,z,t) f(y) 

v(x,y,z,t) a o (y) 

w(x,y,Z,t) h(y) 

p(x,y,zZ,t) tT (y) 

exp[i(ax + Bz - wt) ], (1) 

where u,v,w are the velocity fluctuations and p 

is the pressure fluctuation, can be reduced to 

(M77) 

' 
Z) = Zor 

zZi= [ao + 6. + OR(au Hew w)lZ) 
2 a2! 

+ (aU' + BW')RZ3 + i(a + B )RZy, (2) 

2 2 
d Cmts 

-i2, -|i(au + aw - 0) +2 */z,, N a= 
i] 

for the determination of the eigenvalues. The 

primes refer to differentiation with respect to 

y, and the dependent variables are 

Z, (y) af(y) + Bhly), Z3(y) = oly), 

Z,(y) = my). 

There are two additional uncoupled equations for 

h(y). In Eqs. (2), a and 8B are the complex wave- 

number components in the x and z directions, w is 

the complex frequency, U and W are the mean velo- 

city components in the x and z directions, and R 

is the Reynolds number UpL*/v*, where the velocity 

scale U* is the potential velocity and L* is a 

suitable length scale. Asterisks refer to dimen- 

sional quantities. The modes in Eq. (1) can be 

termed plane waves in the x,z plane because of the 

phase function, even though there is a modal struc— 

ture in the y direction. 

The boundary conditions are 

Z,(0) =O , 423(0) =0, (3) 

Z, (y) a> '@ 5 Z,(y) +0 as y +o. 

If we choose x to be the direction of the local 

potential flow, then z is the crossflow direction 

and 

WD) ao Ibe Wiy) > 0 asyreo. 

Thus U(y) is the mainflow velocity profile; W(y) is 

the crossflow profile. 

In the temporal stability theory, a and 8 are 

real, and Eqs. (2) can be reduced to two-dimension- 

al form in two different ways. The first transfor- 

mation is 

(4) 

When W = 0, this is the transformation of Squire 

(1933). It relates the eigenvalues of a three- 

dimensional wave of frequency w in a velocity pro- 

file (U,W) at Reynolds number R to the eigenvalues 

of a two-dimensional wave of frequency w/cosy in 

a velocity profile U + W tani at Reynolds number 

R cosy, where 

y = tan’ (8/a) 

is the phase orientation angle. 

The second transformation, 

2 =) 
2 +) 1B) )7 A au = ov + BW, MN 2 a 

RrSCReo; 

is that of Stuart [Gregory et al. (1955) ]. It 
relates the eigenvalues of a three-dimensional 

wave of frequency w in a velocity profile (U,W) at 

Reynolds number R to the eigenvalues of a two- 

dimensional wave of the same frequency in a veloc- 

ity profile U cosy + W sini at the same Reynolds 



number. The Squire transformation is most useful 

for a two-dimensional boundary layer because the 

velocity profile is unchanged. Thus all eigen- 

values of three-dimensional waves can be obtained 

from known eigenvalues of two-dimensional waves 

with no additional calculations. In a three- 

dimensional boundary layer, the velocity profile 

must change and the Stuart transformation is pre- 

ferred because the frequency can remain fixed at 

a given Reynolds number as the phase orientation 

angle ~ is varied. 

Spatial Stability Theory 

Statement of the Problem 

In the spatial stability theory, a and 8 are com- 

plex and w is real. Neither transformation is of 

much utility except when 

a;/B; = o,/8,- (6) 

When (6) is not satisfied,a is complex, and in the 

Squire transformation both R and w are also com- 

plex as well as U for a three-dimensional boundary 

layer. In the Stuart transformation, U is complex 

for all boundary layers. With complex quantities, 

we might as well deal directly with (2), as these 

equations have already been reduced to fourth order 

and nothing is to be gained from an additional trans- 

formation. There only remains the question, to be 

answered later in this Section, of whether any use 

can be made of the simplification offered by (6). 

It is convenient to define a real wavenumber 

vector 

eS 
k = (a,,B,) 4 

and a real spatial amplification rate vector 

> 

G = (-0,, —By), 
ae R 

in place of the complex vector K - io. The magni- 

tudes of the vectors are k and o, and their di- 

rections are given by the two angles 

v= tan (8, /a,), p= tan” "(B,/a,). 

Equation (6) is now seen to be a statement that 

k and 6 are parallel (J = ~). Plane waves with 

? A) have been termed inhomogeneous by Landau and 

Lifshitz (1960). 

The solution of the eigenvalue problem set up 

by (2) and (3) gives the complex dispersion relation 

o = O(K,0,x;2))- 

Even with w, x and z fixed, there remain four real 

wave parameters: k, W, o and ~. Only two of 

these can be determined in a single eigenvalue 

calculation, e.g., k and o with w and wt) specified. 

The angle i can be considered an independent 

variable on the same basis as the frequency. The 

problem is to choose . What we are looking for 

is a single spatial mode which serves the same 

purpose as a two-dimensional spatial mode in a 

two-dimensional boundary layer, where it represents 

the wave produced by a stationary harmonic source. 

“The amplification rate of this mode is used as a 

65 

measure of the relative instability of different 

velocity profiles, and its amplitude can be applied 

to the transition problem. 

Introduction of an Amplitude Equation 

In order to describe wave propagation in the non- 

uniform medium of the boundary layer, equations are 

needed for the wave amplitude and the change in the 

wavenumber vector in addition to the dispersion 

relation. Even though no amplitude calculations 

are included in this paper, a consideration of the 

amplitude equation will help us select jp. 

In a nonuniform medium the elementary modes (1) 

are not general enough and must be replaced by 

wGesy747e) = AGB) explo (})x]£ (y)expli (a,x 

+B 2 - wt) ]. (7) 

In this, the exponential amplitude factor has been 

written separately in terms of the spatial amplifi- 

cation rate o()). This amplification rate is the 

magnitude of G(K,P,w,X,zZ) considered as a function 

of k,W,w,x,zZ with a fixed value of J. Each j de- 

fines a coordinate 

x = cos x + siny Z 

along which the wave growth is directed. 

Nayfeh et al. (1978) have derived an equation 

for the amplitude factor A(x,z,t) on the basis of 

the multiple scales technique, with A considered 

to be a slowly varying function of x,z,t, as are 

a,8,w and f(y). In a uniform medium, and with A 

independent of time, their equation reduces to 

A 
@ BE a6 dB = ©, (8) 

Be (e) ote Z0z 

where C = (Cx,Cz) is the (complex) group velocity. 

We may note that (8) is also obtained from 

2 > 
a (V.c)A> = 0, (9) 

which is the energy conservation equation of Whit- 

ham's theory (1974). Davey (1972) has applied (9) 

to non-conservative wave motion in a two-dimensional 

mean flow, and refers to the amplitude function A 

as a pseudo amplitude, or the 'dispersive part' of 

the amplitude. 

Spatial Mode - Real Group Velocity 

ss 
We restrict ourselves first to the case of C real 

and define the orthogonal coordinates 

x = cos x + siny Za (10a) 
gr gx gr 

Zee = -siny,, x + cos, Zy (10b) 

where 

Ves tan (E/E) o 

The angle Ugr defines the direction of the charac— 

teristic coordinate xg,, which is identical to a 

group velocity trajectory, and A is constant along 

each characteristic according to (8). 
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The amplitude portion of (7) is now 

a(x,z) = A(z expla ()) x], (11) 

and (7) can be interpreted as a certain type of 

solution for a uniform medium when A is variable, 

provided only that A is constant along a character—- 

istic. A knowledge of A along some initial curve 

completely specifies a along the characteristics 

of A, and the characteristics of A are also the 

characteristics of a. Therefore we can write (11) 

as 2 is os 

A(Xgy) = ag (z exp (Og,Xgr) » (12) 
gr gr 

where (10) has been used to eliminate x and 

Sgr = 5 (p) cos (V-Pgy) « (13) 

Consequently, (7) becomes 

u(x,¥,Z,t) = ao (Zg,) exp (OgyXgy) f(y) exp 

[i (4px + Byz - wt)]. (14) 

If an is a constant everywhere, the spatial mode 

(14) represents a physical wave in the entire x,z 

plane that could be produced by a particular 

stationary harmonic line source in a uniform medium. 

ifag ag is constant only along a characteristic, we 

have a form of ray theory, and (14) in turn applies 

only along a characteristic (ray). In other words, 

x and z are constrained to follow the characteristic. 

The latter viewpoint is more useful for a general, 

nonuniform boundary layer, and also applies to a 

stationary harmonic line source in a uniform bound- 

ary layer when the locus and amplitude. distribution 

of the source are arbitrary. 

Equation (13) was derived in M77 from a general- 

ized Gaster relation between temporal and spatial 

amplification rates. Its meaning can best be seen 

from Figure 1, where the constant amplitude lines 

for the two growth directions Ugr and } are shown. 

These lines are normal to the direction of growth, 

just as the constant phase lines are normal to the 

direction of the wavenumber vector. A certain 

growth along Xgr in distance Ax xy requires the 

amplification rate along x to be 1/cos (b-bgr) 

larger than the amplification rate along Xgr to 

yield the same growth along x in the shorter dis- 

tance Ax = Axgr cos (¥-Pgr) - It is this relationship 

between o() and Sgr that is expressed by (13). For 

a fixed orientation of the constant amplitude lines 

N 

Use LINES OF 
#—— CONSTANT 

AMPLITUDE 

FIGURE 1. Wave growth in direction Xgr as described 
by constant amplitude lines normal to Xgr and to X. 

normal to Xgrr the growth in different directions 

follows the usual vector law with the amplification 

rate in direction V1 given by 

o(p,) = Go. cos(, - eae © 

We can_use (13) to (a) determine o,, from o(p) 

provided is known; (b) determine t if two 

neighboring values of o() are known; and (c) answer 

the question left open previously of whether we can 

make use of the simplification in the spatial theory 

afforded by (6). The latter is easily done. With 

(6), the transformation (5) applies to spatial waves 

and gives 

Se o(W) cosw. (15a) 

With v =w, (13) relates a() to ~O, by 

¥ COM ore 

= A 

= [o(v)cosw](1 + tany cane) cos eee (15b) 

It is evident from this expression that (6) is valid 

only for can O (or p = Wg,)- However, o() can 

be used to~calculate o_, if Jy, is known, on the 
same basis as any other o(i). This procedure is 

obviously to be avoided when the direction of k is 

perpendicular to that of o . 

Spatial Mode - Complex Group Velocity 

With a complex dispersion relation, the group veloc- 

ity, defined as 

oo dw aw 

é-G2, gS) 
is also complex. For pure temporal or spatial modes, 

@ is real only at points of maximum amplification 

rate. Consequently, it is important to know how 

the complex é affects the preceding analysis. With 

a and Ce complex, (8) is no longer hyperbolic, as 

pointed Out by Nayfeh et al. (1978). However, it 

is still possible to proceed by defining a real 

characteristic in the three-dimensional space (xy + 

ixj,z). Such a technique was used in a different 

context by Garabedian and Lieberstein (1958). 

The complex vector group velocity is conveniently 

described in terms of a complex magnitude and a 

complex angle by writing 

G@ S&€ cea, C= € sinh, (17a) 
x g Z g 

where 

2 2 
cai +o) (17b) 

x Zz 

is the complex magnitude, and 

VG = Vr + Wi (17c) 

is the complex angle. 

The complex counterparts of (10) are 

* Il cosW x + sin) 2z, 
g g 

N i] -sin) x + cos) 2, 
g g 



With x = x + ix,, and x, required to be real, 

x, = tanh . (tan Xi 1Z)) 
ab gi Cig, 46 

and 

aw = x % = a= = 
Xg = SOS 4 (an BEEN) tanh“ GA 2 

= 3e , 
With a real, the analysis for real C applies and 

gives for the now complex amplitude along the real 

characteristic, 

A(xg) = 4 (23,)explo() cos() - Vg)%g]. (18) 

This expression differs from (12) in that tg is 

complex, has been replaced by z, and z 
Xgr g gr 

(orthogonal to X'grr see below). 

We define 

Sab Picet Uae = a= wi) 
Soa Be Bey oe tanh veri Bore (19a) 

as the characteristic coordinate in the physical 

plane to replace Xgr - The angle between Xgr and 

Xgr is given by 

tan ()gy 2 Vgr) = -tanlgy tanh*}g;. (19b) 

We can now write the complex amplitude (18) as 

A(X) = Ay (Zgr) exp {ow [cos - Ygr) cosh*Pgi 

+i sin( = Ygr) coshi)g; sinhYg; ian} 

(20) 

The real part of the exponential factor defines the 

spatial amplification rate along ee to be 

= Sgt De 
o = o(v) cos(p - vee cosh Teas (21a) 

This expression differs from its real counterpart 

(13), aside from the factor cosh? wv gis in that ee 

Vgr is the real part of the canoes angle Vg 

not the angle formed by the real parts of ce ma 

Cz. When fp = Dgr' 

2 

a cosh Dag 0 (21b) Q ll Q 

and, unlike o_, o is not directly calculable as 

an eigenvalue?” The imaginary part of the exponen- 

tial factor of (20) gives the phase difference be- 

tween the elementary mode growing along x and the 

spatial mode (20) growing along x' . The phase 

difference can be written as JT 

= rae mr = Fr = P (22) 
Boe - a(W)= o(p) sin(y - Vespe) ENN) SHINY a0 

where a is the wavenumber component in the ore 

direction. We can now write the complex ¢ counter- 

part to the pure spatial mode (14) as 

) £(y) 

ore fi as ap B. Zz > [ee - a) |x - ut}. (23) 

With (23) we have arrived at the spatial mode 

that will be used for the numerical calculations 

to follow. The amplitude growth is along Xgr with 

WE 7,Bpe) = & 9 (2gr) exp (ox" ay 
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magnitude o given by (21b) The eigenvalues are 

preferably computed with p = Ygrr but as Ygr is 

generally not known in advance, or for computation- 

al convenience, they can be computed at a neighbor- 

ing ~ and o obtained from (2la). If W is sufficiently 

close to Wgr, the phase shift given by (22) is 

negligible and the orientation angle i is unaffected 

by the transformation. 

If Vg were independent of v, both (14) and (23) 

would also be expected to be independent of . How- 

ever, as v departs from Degen o(~) becomes large and 

the evaluation of the complex derivatives in (16) 

takes place in a region of the complex a and 6 

planes well removed from the points which give v 

The same difficulty exists in making comparisons 

between temporal and spatial amplification rates. 

Although the elementary modes with arbitrary |) are 

available for the solution of an initial value 

problem by superposition, we give physical signifi- 

cance _here only to the special spatial mode with 

yp =v All of the other spatial modes, as well 

as the2éombined temporal/spatial modes with a,f,w 

all complex, do not enter the present analysis 

except for computational purposes. 

OBLIQUE WAVES IN A TWO-DIMENSIONAL BOUNDARY LAYER 

Numerical Example of Transformation Formulas 

We shall first discuss the transformations from 

three- to two-dimensional form and then the trans- 

formation between a spatial mode with arbitrary 

growth direction and the mode with growth direction 

Vgr- A single numerical example for the Blasius 

boundary layer will suffice. We use the conventional 

dimensionless frequency parameter F = w*v*/U*T, 

and choose the length scale to be L* = (x*V*/U*) 2, 

With this choice, the Reynolds number appearing in 

(2) sig: Rs (Ut x*/v*)%. The subscript 1 refers to 

freestream conditions. 

For F = 0.2225 x 107+, R = 1600 and ) = 50°, a 
direct calculation of the eigenvalues with (6), i.e., 

~ = 50°, or the, completely equivalent two-dimensional 

calculations with either the Squire or Stuart 

transformations, gives 

ks OIG, a) = A119 x 10%. 

Application of the wavenumber transformation rule 

in (4) and (5) gives 

a = 0.1074, -a, = 2.648 x 10-3 
a ab 

for the complex wavenumber in the x direction. 

Ite Vgr is computed in the neighborhood of wp = 

50° from (13) by means of the assumption that o 

is independent of ) and with the frequency hela? 

constant, we find 

p= 9.39° Were 9 

to be an approximate value for the real part of the 

complex angle of the group velocity vector. (If 

the wavenumber is held constant, gy = 8-80°; a 
value closer to the angle formed by the real parts 

of Cy and C,.) The eigenvalues of the p - 50° wave 

with p = 9.39° are 

hk O10, G = Say & lor, 
gr 
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and in the x direction 

a = 0.1073,-a; = 3.085 x Oss). 

The eigenvalues computed with (6) differ from these 

values in the fourth decimal place, which means 

that as has an unacceptable error of 16.5%, an 

error which can also be calculated directly from 

(15b). Consequently, this example reiterates that 

(6), or the real Squire and Stuart transformations, 

can only be used if p = 0 (or p= bgr) - 

For the check of che transformation of an ele- 

mentary spatial mode with growth direction x to the 

'physical' mode with growth direction Xgr, we start 

by calculating the eigenvalues as a function of 

for 0 <p < 95° and the same F, R and yj as in the 

previous example. In addition, we calculate the 

complex group velocity by evaluating the complex 

derivatives of (2) from central differences for 

increments in dy, 8, of +0.001 about the calculated 

dy, By at each ~. The real and imaginary parts of 

the complex angle Ug are listed in columns 2 and 3 

of Table 1. The angle Ygr of the growth direction 

x!_, as obtained from (19b), is listed in Column 

4. Eigenvalues were computed as a function of jp 

with wy = 50° by integrating (2), starting at y/L = 

8.0, with a fourth-order Runge-Kutta integration 

and 80 equal integration steps. The results are 

listed in columns 5 and oF 

If (13) with Ugr = = tan” 

the o() given in column 6, a nearly constant 6 

is obtained out to about = 60°. For v SOO 5 eee 

decreases steadily, and at pw = 95° it is 21% lower 

than the Sgr for pp = v gr’ Columns 7 and 8 give the 

angle and Wace ciber : k for y= = v gr as calculated 

from the phase-shift formula (22) of the transform- 

ation for complex group velocity. The corresponding 

amplification rate, as calculated from (21a), is 

listed in column 9. Comparisons of directly com- 

puted eigenvalues with these k and o are provided 

in the last two columns. Column 10 lists the eigen- 

value k computed for the Vgr of column 2 and the wp 

of column 7. Column 11 lists the amplification 

rate 0 obtained from the eigenvalue Ogy accompany— 

ing k and from (21b). 

We see that the transformation formulas work 

quite well out to J = 60°, where the difference 

L(Cen/ Cue) is applied to 

between columns 9 and 11 is 0.13%. The change of 

the o in colum 9 with jj is only about half of the 

change given by the transformation with real group 

velocity and the correct jj x given by Cy, and Cz,. 

In this particular example, at least, the smallest 

change of o with | is found if (13) is used with 

v a also computed from (13) on the basis of two 

neighboring values of o(\) obtained with the fre- 

quency held constant and Sgr assumed to be indepen- 

dent of ~. The conclusion to be drawn is that in 

order to obtain the desired spatial amplification 

rate o as defined by (21b), o(W)may be computed at 
some convenient v which can differ from the correct 

Vor by as much as 40° or 50°, but should be as close 

as possible. Only later, after Vgr and 4 are 

know, is o(W) converted to o by the transformation 

formulas. Almost any of the methods discussed above 

for applying the transformations gives acceptable 

numerical accuracy. 

Effect of Obliqueness Angle on Instability 

The frequency F = 0.2225 x 107* used in the examples 

of the previous Section is the most unstable fre- 

quency at R = 1600, and the maximum amplification 

rate for this frequency occurs for ) = 0°. ‘The 

distribution of o with ~ is shown in Figure 2 for 

this frequency and F x lot = 0.280, 0.1490 and 

0.1008. The latter two frequencies are the most 

unstable for y = 60° and 75°, respectively. They 

have their peak amplification rates, not for ~ = 0°, 

but for y = 34.4° and 61.8°, respectively. These 

results demonstrate that although the maximum am- 

plification rate at a given Reynolds number with 

respect to both frequency and orientation occurs 

for a two-dimensional wave, the maximum amplification 

rate with respect to orientation of given frequency 

occurs for.a three-dimensional wave if the frequency 

is less than the most unstable frequency. 

The envelope curve formed by the individual 

frequency curves is also shown in Figure 2. This 

curve gives Om;y,, the maximum amplification rate 

with respect to frequency, as a function of i. The 

envelope curve emphasizes the wide range of unstable 

orientations in a two-dimensional boundary layer. 

It can be seen that oy,, is not reduced to one-half 

TABLE 1 Numerical check of spatial-mode transformation for complex group 
velocity. R = 1600, F = 0.2225 x 107", w= 50°. 

% ik @ & TO? 
‘ip k o(t) x 103 v k o x 103 

TF p vy. eke F oa Y of C7 
7) gr gi (9b)! etga, w= 50° (22) (21a) SX D = There 

1 2 3 4 5) 6 U 8 9 10 11 

0 9.23 =-4.03 9.18 (o)aleyexs} sical GIS) SS) @)qalleysye) 3.145 0.1669 3.146 

9.21 9.21 -—4.02 9.16 0.1669 3.127 50.00 0.1669 Salas} 0.1669 3.143 

30.0 Deals AIG, GS), alah 0.1670 3.340 50.02 0.1669 iS leSy/) 0.1669 3.138 

60.0 9.08 -4.00 9.04 0.1672 4.928 50.06 0.1670 2}, La OMG OMSL 26 

90.0 8.67 =-3.88 8.63 OO) akexsi7/ aS SO) S10) © Oaal7/7/ 2.977 0.1676 3.060 

95.0 83365) —SieSuskhiss. 0.1710 46.04 50.66 0.1688 2251/0) (0) WS 27 
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FIGURE 2. Amplification rate as function of ~ for four 

frequencies. Blasius boundary layer, R = 1600. 

of its two-dimensional value until ) has increased 

to 60°. With unstable waves for -79° < p < 79°, a 

consideration of only the two-dimensional wave gives 

an incomplete picture of the instability of the 

boundary layer. 

THREE-DIMENSTONAL FALKNER-SKAN BOUNDARY LAYERS 

In order to study the influence of three dimension- 

ality in the mean flow on boundary-layer stability, 

it is necessary to have a family of boundary-layers 

where the magnitude of the crossflow can be varied 

in a systematic manner. The two-parameter yawed- 

wedge flows introduced by Cooke (1950) are suitable 

for this purpose. One parameter is the usual Falkner- 

Skan dimensionless pressure gradient; the other 

is the ratio of the spanwise and chordwise velocities. 

A combination of the two parameters makes it possible 

to simulate simple planar three-dimensional boundary 

layers. 

The inviscid velocity in the plane of the wedge 

and normal to the leading edge is 

U* = C#(x*) T) 
cy c 

where the wedge angle is (1/2) R and § = 2m/(mt1) . 

We shall refer to this velocity as the chordwise 

velocity. The velocity parallel to the leading 

edge, or spanwise velocity is 

W* = const. 
Sl] 

The subscript 1 refers to the local freestream. For 

this inviscid flow, the boundary-layer equations 

in the x_ direction, as shown by Cooke (1950), 

reduce to 

2 
£” + ££" +8 4) = |S O. 

h 2 

This equation is the usual Falkner-Skan equation 

for a two-dimensional boundary layer, and is inde- 
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pendent of the spanwise flow. The dependent vari- 

able f(n) is related to the dimensionless chordwise 

velocity by 

We S36 _f 2 2°) 5 

U m+1 

and the independent variable is the similarity 

variable 

iW) SPN oeers Il a 
r c 

where xo is measured normal to the leading edge. 

Once £(n) is known, the flow in the spanwise di- 
. * . 

rection Zs is obtained from 

where 

w* 

Si 

Both f£'(n) and g(n) are zero at n = O and approach 

unity as Tabulated values of g(n) fora 

few values of By may be found in Rosenhead (1963, 

p. 470). 

The final step is to use £'(n) and g(n) to con- 

struct the mainflow and crossflow velocity components 

needed for the stability equations. A flow geometry 

appropriate to a swept back wing is shown in Figure 

3. There is no undisturbed freestream for a Falkner- 

Skan flow, but such a direction is assumed and a 

yaw, or sweep, angle yw is defined with respect to 

it. The local freestream, or potential flow, is at 

an angle Pp with respect to the undisturbed free- 

stream. It is the potential flow that defines the 

x,Z coordinates of the stability equations. The 

angle of the potential flow with respect to the 

chord is 

n> ©. 

ws 

54, 
-1 

Cesta U* 4 
i 

and @ is related to We. and i by 

UNDISTURBED 
y FREESTREAM 

FIGURE 3. Diagram of coordinate systems used for 

Falkner-Skan-Cooke boundary layers. 
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With the local potential velocity, Up = (uxt + we?)’2, 

as the reference velocity, the dimensionless main- 

flow and crossflow velocity components are 

2 2 
f'(n) cos 6 + g(n) sin 6, U(n) (24a) 

W(n) [-£" on) + gin) | cos@ siné . (24b) 

These velocity profiles are defined by By, which 

fixes £'(n) and g(n), and the angle 6. We note 

from (24b) that for a given pressure gradient all 

crossflow profiles have the same shape; only the 

magnitude of the crossflow velocity changes with 

the flow direction. In contrast, according to 

(24a), the mainflow profiles change shape as §@ varies. 

For 0) = 0, U(n) = £.(n);) for 6 = 90°, UM) = g(n); 
for 6= 45°, the two functions make an equal con- 

tribution. 

When the velocity profiles (24) are used directly 

in the stability relations, (2), the velocity and 

length scales of the equations must be the same as 

in (24). This identifies the velocity scale as U*, 

the length scale as P 

V*X*/U* (x*) : ' 
{o cy Cc 

ie Ss 

and the Reynolds number Were as 

R=R/cos® , 
c 

where R_ = [vs oxy | 4 is the square root of 
c i) Ee re 

the Reynolds number along the chord. For positive 

pressure gradients (m > 0), 8 = 90° at x = O and 

8 > 0° as x > »; for adverse pressure gradients 

(m <0), 6) ="90° atix = 0) and! 0) 209 as x =); for 

adverse pressure gradients (m < 0), 8 = 0° at x = 

0 and 8 + 90° as x > ©. The Reynolds number R, is 

zero at x = 0 for all pressure gradients, as is 

R with one important exception. The exception is 

where m= 1 (8, = 1) is the stagnation-point solution; 

here it is the attachment-line solution. In the 

vicinity of x = 0, the chordwise velocity is 

U* = x* (aU* /dx*) x 
cy c cy c x=0 

The potential velocity along the attachment line is 

eno and the Reynolds number is 

R(x=0) = we / |v (a08, /8%2) x20] 

a non-zero value. 

For the purposes of this paper, 86 may be regarded 

as a free parameter, and the velocity profiles (24) 

used at any Reynolds number. However, for the flow 

over a given wedge, 8 can be set arbitrarily at only 

one Reynolds number. If 6,45 is 8 at Ro = (R)) 

the 6 at any other Ro is given by 

a | m/(m+1), tan® = tan® _. [a 7 | 
Cerehaic 

ref’ 

For m << 1, the dependence on R_ is so weak that 6 

is constant almost everywhere. “one way of choosing 

(Re)ref Within the context of Figure 3 is to make 

it the chord Reynolds number where p = 0; i-e., 

the local potential flow is in the direction of the 
undisturbed freestream. Then 6 is equal to the 

yaw angle j_. mee 

Figure 4 shows the crossflow velocity profiles 

FIGURE 4. Four crossflow velocity profiles, Falkner- 

Skan-Cooke boundary layers. INF, inflection point; 

MAX, maximum crossflow; SEP, separation pressure 

gradient (fy, = -0.1988377) . 

for 6 = 45° and four values of 8}. The inflection 

point and point of maximum crossflow velocity (Wmax) 

are also noted on the figure. In Figure 5, Wmax for 

@ = 45° is given as a function of 8} from near sep- 

aration to 8, = 1.0. The crossflow velocity for 

any other flow angle is obtained by multiplying the 

Wmax of the figure by cos8 sin@. The maximum cross-— 

flow velocity of 0.133 is generated by the separa- 

tion profiles rather than by the stagnation profiles, 

where W = 0.120. However, W varies rapidly 

with 8 men the neighborhood of separation, as do 

all Behen boundary-layer parameters, and for 8, = 

-0.190, W is only 0.102. 

The function g(n) is only weakly dependent on 

12 

ai 

: x 6 
) 

= 

= 
4h 

| 

-0.2 0 0.2 0.4 0.6 0.8 1.0 

By, 

FIGURE 5. Effect of pressure gradient on maximum cross— 

flow, Falkner-Skan-Cooke boundary layers. 
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TABLE 2. Properties of three-dimensional Falkner-Skan-Cooke boundary layers. 

Bu 8 Ns ng" be Wiese W finf Ninf 

SEP 2.2 8.238 3.495 4.024 0.0102 0.00476 0.487 4.306 

5.0 8.236 3.489 4.010 0.0231 0.01077 1.100 

10.0 8.229 3.466 3.959 0.0455 0.02123 2.156 

40.0 8.095 3.075 3.280 0.1310 0.06214 5.709 

45.0 8.058 2.986 3.167 0.1330 0.06339 5.696 

50.0 8.017 2.897 3.064 0.1310 0.06274 5.516 

-0.10 45.0 6.522 1.985 2.698 0.0349 0.01619 1.498 3213 

-0.02 45.0 6.098 1.763 2.609 0.0058 0.00267 0.249 2.940 

0.02 45.0 BJoesul 1.682 2.578 -0.0054 -0.00248 =0)232 2.835 

0.04 45.0 5.854 1.646 2.564 -0.0104 -0.00480 -0.449 2.787 

0.10 45.0 5.646 Ae ‘SISAL 2ro2 9 O02 9) -0.01094 -1.029 2.659 

0.20 45.0 5.348 1.424 2.482 -0.0423 -0.01924 milo a3} 2.478 

1.0 2.4 3.143 0.6496 2.227 -0.0100 -0.00503 -0.406 1.524 

10.0 3.196 0.6603 2.226 -0.0410 -0.02021 -1.669 

40.0 3.574 0.8050 2.275 -0.1181 -0.05204 —)o Ie) 

45.0 3.621 Oss} Bo shoal —o)paliejal -0.05217 —B)E2Eil 

50.0 3.661 OF 87/06) (253325 5-0-8 -0.05081 5 Zeb) 

55.0 3.695 0.9024 2.366 -0.1127 -0.04804 —B), SS) 

80.0 So7/Sal 1.0153 2.524 -0.0410 -0.01704 AS NSH) 

87.6 Jo 72) -0.00416 -0.489 1.0260 2.542 -0.0100 

Bre and, unlike f'(n), never has an inflection 

point even for an adverse pressure gradient. Indeed 

it remains close to the Blasius profile in shape, 

as underlined by a shape factor H (ratio of dis- 

placement to momentum thickness) that only changes 

have its wavenumber vector nearly aligned with the 

local potential flow, and we can restrict ourselves 

to waves with ~ = 0° for the purpose of determining 

the maximum amplification rate. With the temporal 

stability theory, this procedure is equivalent to 
from 2.703 to 2.539 as, goes from -0.1988377 (sep- 

aration) to 1.0 (stagnation). The weak dependence 

of g(n) on was first pointed out by Rott and 

Crabtree (1952), and made the basis of an approximate 

method for calculating boundary layers on yawed 

cylinders. For our purposes, it allows some of the 

results of the stability calculations to be antici- 

pated. For waves with the wavenumber vector aligned 

with the local potential flow, we can expect the 

amplification rate to vary smoothly from its value 

for a two-dimensional Falkner-Skan flow to a value 

not too far from Blasius as 6 goes from zero to 90°. 

The stability results in the next section will 

be presented in terms of the Reynolds number R and 

the similarity length scale L*. In order that the 

results may be converted to the length scales of 

the boundary-layer thickness, displacement thick- 

ness and momentum thickness, Table 2 lists the 

dimensionless quantities ng = 5/L*, ng* = 6*/L* and 

H = ng*/Ng of the mainflow profile for several com- 

binations of 6, and 6. Also listed are Wmax, the 

average crossflow velocity W = (wan) /ng, the 

deflection angle of the streamline at the inflection 

point, €jnf, and the location of the inflection 

point, Ninf. The quantity ng is defined as the 

point where U = 0.999. 

studying the two-dimensional instability of the 

mainflow profile, but is only approximately so in 

the spatial theory _unless Vgr = 0, 7S v 7 is 

usually small for y = 0°, even with large cross- 

flow, we may also view the = 0° spatial results 

as a measure of the instability of the mainflow 

profile. 

In order to place the three-dimensional effects 

in context, it is helpful to first consider a small 

deviation in the assumed pressure gradient on the 

maximum amplification rate of two-dimensional 

Falkner-Skan profiles. Figure 6 shows the maximum 

spatial amplification rate (with respect to frequency) 

as a function of Reynolds number for Blasius flow 

and for By = + 0.02. What is noteworthy about 

these results is the magnitude of the shift in Omax 

for what are quite small pressure gradients. It 

is evident that an experiment intended to measure 

amplification rates in a Blasius boundary layer to 

within an accuracy of 10% is required to maintain 

an exceptional uniformity in the flow. 

The effect of the flow angle 8 on the maximum 

spatial amplification rate of the waves with i = 0° 

is shown in Figure 7 for By, = + 0.02 and two Rey- 

nolds numbers. In these calculations, gr and bgi 

were both taken equal to zero. The amplification 

rate Omax is expressed as a ratio to the Blasius 

value (0,)max Shown in Figure 6. It will be re- 

called that with 6, = 0, g(n) = £(n), and the 

velocity profile remains the Blasius function for 

all flow angles. The effect of a non-zero flow 

angle withs, # 0 is destabilizing for a favorable 

pressure ergatthicrate , and stabilizing for an adverse 

pressure gradient. Consequently, it reduces the 

pressure-gradient effect shown in Figure 6. The 

reason for this result is easy to understand by 

reference to (24). We have already pointed out in 

Section 4 that the spanwise velocity profile g(n) 

STABILITY OF FALKNER-SKAN-COOKE BOUNDARY LAYERS 

Boundary Leyers with Small Crossflow 

In a two-dimensional boundary layer, the most un- 

stable wave is two dimensional. Therefore, we can 

expect that in three-dimensional boundary layers 

with small crossflow the most unstable wave will 
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FIGURE 6. Effect of small pressure gradients on 

the maximum amplification rate with respect to fre- 

quency for two-dimensional Falkner-Skan boundary layers. 

is always close to the Blasius function. Thus as 

the flow angle increases from zero the amplification 

rate must change from the two-dimensional Falkner- 

Skan value at 6 = 0° to a value not far from Blasius 

at 6 = 90°. 

As discussed in Section 4, the only physically 

meaningful flow with 6 = 90° and a non-zero Reynolds 

number is the attachment-line flow (f, = 1.0). For 

all other values of 8}, R at this flow angle must be 

either zero (8, > 0) or infinite (fy < 0). With By 
= 1.0 and R = 1000 (R = 404.2, where Ro is the 

momentum-thickness Reynolds number), Omax/ (8b) max 

= 0.766. The minimum critical Reynolds number of 

this profile is (Rg) jy = 268 (the parallel-flow 

Blasius value is 201), yet turbulent bursts have 

been observed as low as Rg = 250 for small distur- 

bances by Poll (1977). 

1,20 

Omax/( uy Bynax 

9 (deg) 

FIGURE 7. Effect of flow angle on the maximum amplifi- 

cation rate with respect to frequency of = 0° waves 

for two boundary layers with small crossflow at two 

Reynolds numbers. 

We must still show that the waves with p = 0° 

properly represent the maximum instability of three- 

dimensional profiles with small crossflow. For this 

purpose a calculation was made of 0 as a function 

of p for Bh = -0.02, 9 = 45°, R = 1000 and F = 

0.4256 x 10-*, the most unstable frequency for ) = 

0° at this Reynolds number. It was found that the 

crossflow indeed introduces an asymmetry into the 

distribution of 0 with W, and the maximum of Oo is 

located at = -6.2° rather than at 0°. However, 

this maximum value differs from the Omay of Figure 

7 by only 0.7%. It was also determined that v r= 

-0.04° and Wgi = -0.3° (approximately) for ~ = 0°, 

which justifies taking both of these quantities 

zero in all of the ~ = O° calculations. 

Crossflow Instability 

Minimum Critical Reynolds Number of Steady 

Disturbances 

The instability that is unique to three-dimensional 

boundary layers is called crossflow instability. 

It was discovered experimentally by Gray (1952) and 

later given a detailed theoretical explanation by 

Stuart in Gregory et al. (1955). This instability 

arises from the inflection point of the crossflow 

velocity profile. As explained by Stuart, there 

is a particular direction close to the crossflow 

direction for which the mean velocity at the in- 

flection point of the resultant velocity profile 

is zero. Consequently, at sufficiently large 

Reynolds numbers unstable steady disturbances exist 

which have their constant phase lines nearly aligned 

with the potential flow. 

Although crossflow instability is by no means 

restricted to. steady disturbances, these disturbances 

do make a convenient starting point for our investi- 

gation. The reason is that a suitable initial 

guess for the angle ~, which must be known rather 

accurately for the eigenvalue search procedure to 

converge, is given by 

v= (By/[Bnl) (7/2 - leline)» 

where €jnf¢ is the streamline deflection angle listed 

in Table 2. It turns out that this value is with- 

in a fraction of a degree of the angle of the most 

unstable wavenumber. There is no such convenient 

rule for the wavenumber itself, but the inverse of 

Ning the location of the inflection point in the 

similarity coordinate, or better still 0.9/Ning is 

usually an adequate enough initial guess to ensure 

rapid convergence to an eigenvalue. 

As the crossflow is a maximum at 0 = 45° fora 

given By, we can expect the crossflow instability 

to also be a maximum near this angle. Figure 8 

shows the minimum critical Reynolds number Roy at 
§ = 45° for the zero-frequency disturbances as a 

function of f,. For comparison, Roy of the two- 

dimensional Falkner-Skan profiles, as computed by 

Wazzan et al. (1968), is also given. For adverse 

pressure gradients, the steady disturbances become 

unstable at Reynolds numbers well above the Roy of 

the two-dimensional profiles. On the contrary, for 

Bh > 0.07 the reverse is true, and for most pressure 

gradients in this range the steady disturbances 

become unstable at much lower Reynolds numbers than 

the two-dimensional Roy (for fp, = 1.0, the two- 
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FIGURE 8. Minimum critical Reynolds number as function 

of pressure gradient: ——, steady disturbances, Falkner- 

Skan-Cooke boundary layers with 6 = 45°; ---, two- 

dimensional Falkner-Skan boundary layers [from Wazzan 

et al. (1968) ]. 
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FIGURE 9. Effect of flow angle on minimum critical 

Reynolds number of steady disturbances for fy, = 1.0 

- and separation boundary layers. 
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TABLE 3. Wave parameters at minimum critical 

Reynolds number of steady disturbances. 

8 i) R k y (p_) 
h cr cr (che! gunen 

SEP Ps? 535 0.213 -89.41 0.2 

5.0 237 0.213 -88.68 0.4 

10.0 iZaL 0.215 -87.44 0.9 

40.0 46.5 0.230 -83.54 3.0 

45.0 46.7 0.230 —{2}2}55)7/ 3.0 

50.0 48.4 OR2 351) —OSmons 3.0 

-0.10 45.0 276 0.295 -88.42 0.9 

-0.02 45.0 1885 0.310 -89.74 0.2 

0.02 45.0 2133 0.322 89.76 —{0)5 AL 

0.04 45.0 1129 0.327 89.53 —Ofy2 

0.10 45.0 527 0.339 88.93 0), 

0.20 45.0 328 0.358 88.12 ok, aL 

1.00 Qe 2755 OF553 89.60 -0.3 

10.0 671 0.547 88.33 ile ib 

40.0 219 0.545 84.88 -3.4 

45.0 2ale2) 0.540 84.70 =3}5'5) 

50.0 212 0.540 84.70 = 8\5'5) 

55.0 218 0.538 84.85 —3i3 

80.0 563 0.532 88.00 =1155) 

87.6 2325 ORS'S82 I) 5 5.1 O53} 

dimensional Rg; is 19,280 compared to Roy = 212 for 

zero-frequency crossflow instability). 

The distribution of Roy with 6 is shown in Figure 

9 for Bh = 1.0 over the complete range of 6, and 

for the separation profiles (fp, = -0.1988377) over 

the range 0° < 6 < 50°. Near 6 = 0° and 90°, Roy 

is very sensitive to 6; near, but not precisely at, 

@ = 45° Roy has a minimum. This minimum occurs 
close to the maximum of ell Are (cf. Table 2), which, 

unlike Wy3., is not symmetrical about 6 = 45°. Table 

3 lists the critical wave parameters for a few com- 

binations of 8, and 6. The extensive computations 

needed to fix these parameters precisely were not 

carried out in most cases, and so the values in the 

Table are not exact. The listed Ygr was obtained 

from (13); Ygi was not calculated. 

Boundary Layer with Crossflow Instability Only 

As an example of a boundary layer which is unstable 

at low Reynolds number only as a result of cross- 

flow instability, we select 8}, = 1.0 and @ = 45°, 

and present results for the complete range of un- 

stable frequencies. Although this pressure gradient 

can only occur at an attachment line, Figure 8 leads 

us to expect that all profiles with a strong favor- 

able pressure gradient will have similar results. 

For this type of profile, the minimum critical 

Reynolds number of the least stable frequency is 

very close to the R of Figure 7. We therefore 

choose a Reynolds number well above Rr where the 

instability is fully developed. 

Figure 10 provides a summary of the stability 

characteristics at R= 400. For a given frequency, 

the eignevalue o(i) can be computed as a function 

of either k or , with the other parameter given as 

the second eigenvalue. For strictly crossflow 

instability, k is the more suitable independent 

variable as i) can have an extremum in the unstable 

region. All unstable eigenvalues of a given fre- 

quency with a specified increment in k were calcu- 
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lated in a single computer run with Ugr = 0°, and 

then corrected to an approximate Ygr (k) obtained 

from (13) with constant wavenumber. A least-squares 

curve fit to o(k) provided Omay, to maximum spatial 

amplification rate with respect to the vector wave- 

number, and kmax and Wax, the magnitude and direc- 

tion of the wavenumber of Omax- 

Figure 10a gives Omax aS a function of the di- 

mensionless frequency F, and also shows the portion 

of the ~-F plane for which there is instability. 

The unstable region is enclosed between the curves 

marked and w_. These curves represent either 

neutral stability points or extrema of }. 

The corresponding wavenumber magnitudes are 

shown in Figure 10b. The negative frequencies 

signify that with taken to be continuous through 

F = 0, the phase velocity changes sign. If we 

choose ) so that the wavenumber and phase velocity 

are both positive, then it is | that changes sign 

at F = 0. Consequently, there are two groups of 

positive unstable frequencies with quite different 

phase orientations. The first group, which includes 

the peak amplification rate, is oriented anywhere 

from 5° to 31° (clockwise) from the direction opposite 

to the crossflow direction. The second group is 

oriented close to the crossflow direction itself. 

All of the unstable frequencies have in common 

that the direction of growth is within a few degrees 

of the potential~flow direction. The angle Ugr of 

Umax, aS computed from (13), is negative and has 

its largest magnitude of just under 6° near F = 

-0.60 x 10-+. Orientations other than Umax can 
have growth directions further removed from the 

flow direction. 

Boundary Layers with both Crossflow and Mainflow 

Instability 

As an example of a boundary layer which has both 

crossflow and mainflow instability at low Reynolds 

numbers, we select 8, = -0.10 and 6 = 45°. In con- 

trast to the previous case, the steady disturbances 

do not become unstable until a Reynolds number, R = 

276, where the peak amplification rate is already 

7.35 x 10-°. [For B} = -0.10 and @.= 0° omax = 
MMO Os! ate kes 22 Om according to Wazzan 

et al. (1968)]. The distribution of o with jp is 

shown in Figure 11 for F = 2.2 x 10-4, a frequency 

close to the most unstable frequency of F = 2.1 x 

10- . We see that with a maximum crossflow velocity 

of 0.0349 (cf. Table 2), the distribution of o about 

w = 0° is markedly asymmetric, and the maximum 

amplification rate of 7.31 x 1073 is located at jp = 

-29.4° rather than near zero. This asymmetry was 

barely perceptible for the small crossflow boundary 

layers of Figure 7 where the crossflow is only one- 

sixth as large. The o at pp = 0° of Figure 11 (5.82 

x 10-3) is close to Omax With respect to frequency 

of the » = 0° waves (5.91 x 10°3). Since this value 

is 20% below the peak amplification rate, the = 

O° waves are no longer adequate to represent the 

Maximum instability as with small crossflow boundary 

layers. Figure 11 also gives the distribution with 

of k and Wgr- The latter quantitiy was obtained 

from (13) with constant wavenumber, and we see that 

it remains within + 7.5° of the potential-flow 

direction throughout the unstable region. 

Because R = 276 is the minimum critical Reynolds 
number of the steady disturbances, the unstable 

region terminates in a neutral stability point at 
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FIGURE 10. Instability properties of 8, = 1.0, 8 = 45° 
Falkner-Skan-Cooke boundary layer at R = 400. (a) maxi- 

mum amplification rate with respect to Wavenumber and 

unstable ~ - F region; (b) unstable k-F region. 

F = 0. We are particularly interested here in Rey- 

nolds numbers where F = O is also unstable, and as 

an example, Figure 12 gives results for all unstable 

frequencies at R= 555. Figure 12a shows Omax as 

a function of F (here, as in Figure 10, Omax 1s the 

maximum with respect to k), as well as the unstable 

region of the k-F plane; the unstable region of the 

W-F plane appears in Figure 12b. These two unstable 

regions are quite different from those of Figure 10 

where there is only crossflow instability. The 

negative frequencies do resemble those of Figure 10 

in that the unstable range of ~ is small, of k is 

large, and with defined so that F > 0, the orien- 

tations are close to the crossflow direction. How- 

ever, for the higher frequencies, which are by far 

a x 10°, k x 10 

=70 -60 =50 =40 -30) -20) -10 0 10 20 30 40 

(deg) 

FIGURE 11. Effect of wavenumber angle on 9, k and Vgr 

for By, = -0.10, 8 = 45° Falkner-Skan-Cooke boundary 

layer at R = 276. F = 2.2 x 107". 
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FIGURE 12. Instability properties of Bh = -0.10, 9 = 

45° Falkner-Skan-Cooke boundary layer at R = 555. 

(a) maximum amplification rate with respect to wave- 

number and unstable k-F region; (b) unstable -F region. 

the most unstable, the unstable regions of Figure 

12 bear more of a resemblance to those of a two- 

dimensional boundary layer than to Figure 10. The 

main differences from the two-dimensional case are 

the asymmetry about = 0° already noted in Figure 

11, the one-sidedness) Of Wnax, and, for F < 0.4 x 

10-4, the replacement of a lower cutoff frequency 

for instability by a rapid shift with decreasing 

frequency to waves oriented opposite to the cross- 

flow direction and which are unstable down to zero 

frequency. The instability shown in Figure 12 

represents primarily an evolution of the small cross- 

flow boundary layers of Figure 7 to larger cross- 

flow. Only the frequencies, say |F| < 0.2 x loser 

have to do with the pure crossflow instability of 

Figure 10. For frequencies near 0.4 x 1074 ,wy 

varies little with k in one part of the unstable 

region, as with crossflow instability; in the other 

part, as with mainflow instability, the opposite 

is true. This behavior becomes more pronounced at 

high Reynolds numbers. 

CONCLUDING REMARKS 

All of the numerical results that have been presented 

stem from the viewpoint adopted in Section 2 that 
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useful information concerning three-dimensional 

boundary-layer stability can be obtained from par- 

ticular pure spatial modes just as with two- 

dimensional boundary layers. Arguments were given 

to support using the modes whose growth direction 

is determined from (17) or, more exactly, from 

(19b). A transformation (2la), was derived to 

enable the use of waves with an arbitrary growth 

direction in calculating eigenvalues. The trans- 

formation used in the temporal theory to reduce 

the three-dimensional problem to a two-dimensional 

probelm in the direction of the wavenumber vector 

was shown to apply to spatial modes only when this 

direction is close to the correct growth direction, 

or the latter is the same as the potential-flow 

direction WVgr = 0°). 

The waves which have their wavenumber vector 

aligned with the local potential flow (i) = 0° when 

the x axis of the mean-flow coordinate sytem is 

also in the flow direction) always have their growth 

direction very close to the potential-flow direction. 

If the crossflow is small, the maximum amplification 

rate of the ~ = 0° waves is almost identical to the 

maximum amplification rate of the three-dimensional 

boundary layer. Consequently, if we are only in- 

terested in establishing the maximum amplification 

rate of a small crossflow boundary layer, it can be 

obtained from the mainflow profile alone. We used 

this approach to obtain the effect of the flow (yaw) 

angle on the instability of the Falkner-Skan-Cooke 

yawed-wedge boundary layers for small pressure 

gradients, and found that yaw reduces both the 

stabilizing effect of a favorable pressure gradient 

and the destabilizing effect of an adverse pressure 

gradient. 

With moderate or large crossflow, crossflow in- 

stability, which arises from the inflection point 

of the crossflow velocity profile, is present and 

can destabilize a boundary layer at low Reynolds 

numbers which would otherwise be stable. As befits 

the name, the unstable waves have their wavenumber 

vectors oriented near the crossflow (or opposite) 

direction. Also the instability covers a wide band 

of unstable frequencies (including zero) and wave- 

numbers. The growth direction of all unstable waves 

is still near the potential-flow direction. If the 

mainflow profile is also unstable, then the unstable 

frequencies near zero act as with pure crossflow 

instability and the higher frequencies as with pure 

mainflow instability. Intermediate frequencies 

have the latter behavior for small wavenumbers, and 

the former for large wavenumbers. 

The results demonstrate why crossflow is more of 

a problem for the maintenance of laminar flow with 

strong favorable pressure gradients than with ad- 

verse pressure gradients. In the former case, cross- 

flow provides a powerful instability mechanism 

even when the mainflow profile is stable; in the 

latter, the crossflow only increases the amplifi- 

cation rate over that of an already unstable main- 

flow profile. This increase is about 50% for the 

6 = 45° separation boundary layer. 
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ABSTRACT 

There has been considerable recent interest in the 

stabilization of water boundary layers by wall 

heating. Calculations based upon linear stability 

theory have predicted transition Reynolds numbers 

as high as 2 x 108 for a zero pressure gradient 

boundary layer over a heated wall. The flow tube 

experiment described in this paper was intended to 

investigate these predictions. The test boundary 

layer develops on the inside of a cylindrical tube, 

0.1 m in diameter and 6.1m in length. The dis- 

placement thickness is small relative to the tube 

radius under nearly all operating conditions. The 

tube is heated by electrical heaters on the outside 

wall. The location of transition can be determined 

by a heat flux measurement, by flush-mounted hot 

film probes, or by flow visualization at the tube 

exit. 

A transition Reynolds number of 107 can be ob- 

tained without heat, which shows that free stream 

turbulence and other perturbations are well con- 

trolled. At 7°C wall overheat, a transition 

Reynolds number of 42 x 10° has been obtained, 

which is at least as high as the prediction for 

that overheat. However, as temperature is further 

increased there have been no additional increases 

in transition Reynolds number, which is in contra- 

diction to the theory. 
Possible reasons for the differences between 

theory and experiment have also been investigated. 

New test section exits have been developed to 

determine the effects of downstream boundary con- 

ditions upon the flow. An instrumented section 

has been used to measure detailed velocity profiles 

in the boundary layer, and determine intermittency 

as a function of azimuthal angle. From these 

measurements we can evaluate the possibility of 

* 

This work was performed by the Marine Systems Division of 

Rockwell International, and Poseidon Research. It was 

sponsored by the Defense Advanced Research Projects Agency. 
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buoyancy-generated instabilities in the tube. 

Future tests will also investigate the influence 

of free stream turbulence, streamwise vorticity 

in the boundary layer, and wall temperature vari- 

ations. 

1. INTRODUCTION 

Numerical calculations such as those of Wazzan, 

Okamura, and Smith (1968, 1970) have predicted large 

increases in the transition Reynolds numbers of 

water boundary layers with the addition of wall 

heating. The stabilizing mechanism is the decrease 

in fluid viscosity near the wall resulting from the 

heating. This increases the negative curvature 

of the velocity profile, making the flow more stable 

to small disturbances. The present study is an 

experimental investigation of these predictions, 

using the boundary layer developing on the inside 

wall of a cylindrical tube. This boundary layer is 

thin relative to the tube diameter, so that it 

approximates a boundary layer over a flat plate. 

The numerical predictions of Wazzan et al. are 

based on two-dimensional, linear stability theory. 

The mean flow is assumed plane and parallel, and 

the superimposed small disturbance is described by 

a stream function, 

W(x,y,t) = o(y) exp ia(x-ct) (1) 

Here $(y) is the disturbance amplitude, a is the 

wavenumber and is assumed real, and c is the wave 

velocity which may be complex. The imaginary part 

of c determines whether the disturbance is tempo- 

rally amplified or damped. If we substitute this 

stream function into the Navier-Stokes equations 

and linearize, taking account of the variation of 

viscosity || with distance from the wall y, we find 

at nm 2 " GRe Lh (> Ze) Qa (WU = e) (OY = a4) = U"> = 

m 
a 6) + 2ut (on! - a6") + uM(o" + a6)] (2) 
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In this equation, U(x) is the external flow velocity 

and Re is the Reynolds number based upon free stream 

velocity U,, and boundary layer thickness§5. This 

is known as the "modified Orr-Sommerfeld equation," 

the variable viscosity terms. 

Wazzan et al. have solved Eq. (2) numerically 

for the boundary layer over a heated flat plate, 

using velocity profiles generated by the method of 

Kaups and Smith (1967). The solutions determine 

the critical Reynolds number, which is the lowest 

Reynolds number at which any disturbance has a 

positive amplification rate. The last step of the 

calculation is to relate the critical Reynolds 

number to the transition Reynolds number, using the 

"e to the ninth" criterion of A. M. O. Smith (1957). 

According to this empirical criterion, transition 

occurs when the most unstable disturbance has grown 

to e? (which is 8,103) times its original amplitude. 

The linear theory is used in calculating the growth 

of the disturbance to this amplitude. 

Strasizar, Prahl, and Reshotko (1975) have 

measured growth rates of disturbances generated by 

a vibrating ribbon in a heated boundary layer. They 

found neutral stability curves and were able to 

determine critical Reynolds numbers for wall over- 

heats of up to 5°F (2.8°C). They found that in this 

range of overheats the critical Reynolds numbers 

are in reasonable agreement with the theoretical 

predictions. These experiments were performed at 

moderate Reynolds numbers and did not yield data on 

transition or on stability at higher overheats. 

The results of the Wazzan et al. calculations 

predict that the transition Reynolds number of a 

zero pressure gradient boundary layer should increase 

with wall temperature up to about 70°F (39°C) of 

overheat if the free stream temperature is 60°F 

(16°C). At that overheat, the transition Reynolds 

number should be in excess of 2 x 10° (based upon 

distance from the leading edge). Thus the experi- 

ment designed to investigate these predictions must 

be able to generate a very high Reynolds number 

boundary layer while maintaining low free stream 

disturbance levels. The wall should be very smooth 

and its temperature must be precisely controlled. 

These are the chief considerations that led to the 

experimental geometry described below. 

2. EXPERIMENTAL APPARATUS 

Configuration 

A facility in which water is recirculated through 

the test section was not used for two reasons. (1) 

Heat is continuously added to the test section so 

that a recirculating experiment would require some 

sort of heat exchanger. (2) The free stream tur- 

bulence level in the test section must be less than 

0.05 percent, which has previously been difficult 

to achieve in a recirculating water facility. The 

experiment must then be of the "blow-down" type, 

in which water is removed from one reservoir and 

discharged into another. Run times of more than 

twenty minutes are desired, which requires large 

reservoirs. This led to the selection of the Colo- 

rado State University Engineering Research Center 

as the site of the experiment. Here the water 

supply is Horsetooth Reservoir, which provides 

water to the laboratory through a 0.6 m diameter 

pipe at a total pressure of 6.8 x 10° N/m? (100 1b/ 

in.*). The discharge runs into a smaller lake be- 

HORSETOOTH 
RESERVOIR 

FILTRATION 
TAN K 
(7-FT DIA) 24 IN. DIA. 

24 IN. DIA DISCHARGE 
UPSTREAM SETTLING LINE 
TUBE CHAMBER 

(24-1N. DIA 

FLOW TUBE 

BALL VALVE 36:1 
VIBRATION ORIFICE PLATE 
ISOLATION DISCHARGE 
SECTION 

FIGURE 1. Experimental geometry. 

low the laboratory. At the maximum flow rate of 

this experiment (200 liters/sec), the run time is 

effectively unlimited. 

The flow tube apparatus consits of a settling 

chamber for turbulence management, a contraction 

section, a test section and various types of instru- 

mentation described below. A diagram of the experi- 

mental geometry is shown in Figure l. 

Settling Chamber 

The inside diameter of the settling chamber is 0.6 

m, the same as that of the supply line from the 

reservoir. The test section is 0.102 m in diameter, 

so that the contraction ratio is 35:1. The settling 

chamber is made up of four separable sections, as 

shown in Figure 2. The sections are made of fiber- 

glass to avoid heat transfer through the walls, and 

their total length is 3.35 m. Each end of each 

section is counter-bored to hold a 0.15 m long 

aluminum cylinder with a 1.3 cm wall thickness. 

Each cylinder will hold one or more turbulence 

manipulators, including screens, porous foam, or 

honeycomb material. This design allows the settling 

chamber to be assembled in different configurations, 

so that it can be optimized experimentally. 

The details of the design and optimization of 

the turbulence management system have been reported 

separately [Barker (1978)]. The configuration 

shown in Fibure 2 was arrived at after a great 

deal of testing. There is a considerable body 

of literature on the subject of turbulence 

Management, and this provided some guidelines 

for the optimization of the present system. 

The most detailed recent study is that of Loehrke 

and Nagib (1972), who measured mean velocity and 

turbulence level downstream of various turbulence 

Manipulators. Further recommendations for the 

construction of a turbulence management system 

have been given by Corrsin (1963), Bradshaw (1965), 

and Lumley and McMahon (1967). 

At the downstream end of the settling chamber is 

an additional 0.30 m long section containing porous 

wall boundary layer suction. Hot film anemometer 

surveys in the settling chamber have shown that 

at test section velocities above 9 m/sec (0.26 m/sec 

in the settling chamber) the boundary layer becomes 

turbulent before the flow enters the contraction. 

A thin turbulent boundary layer entering the strong 

favorable pressure gradient of the contraction 



79 

SECTION 

FIGURE 2. Schematic of turbulence manage- 
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section will tend to "relaminarize," as described 

by Launder (1964) and Back et al. (1969). However, 

this would leave us with unknown initial conditons 

at the entrance to the test section. Therefore we 

have added the suction section to completely remove 

the turbulent boundary layer. This section has a 

0.1m length of porous wall surrounded by an annular 

plenum chamber. The suction flow from the plenum 

is controlled by a valve and a Venturi meter. At 

each test section velocity above 9 m/sec, the 

suction flow is adjusted to the minimum value 

necessary to remove the turbulent boundary layer 

at the contraction entrance. 

Contraction and Test Section 

The 35:1 contraction was designed by a potential 

flow calculation using the method of Chmielewski 

(1974). The length.to diameter ratio of the 

contraction was chosen by balancing the effect of 

relaminarization with that of the Goertler insta- 

bility in the concave-curved portion. A careful 

study of these two effects led to a length to 

diameter ratio of 2.25, which made the contraction 

1.37 m long. The contraction was constructed in 

two sections: a fiberglass upstream half and an 

aluminum downstream half. The joint between the 

two sections is in the region of greatest favorable 

pressure gradient, and has no measurable step across 

Estee 

Recent velocity measurements in the test section 

(discussed below) have led to the design and con- 

struction of a new contraction section to replace 

the original one. The new contraction will have 

an annular bleed flow surrounding an entrance 

section which is all convex. In this way the 

concave-curved wall, which can produce Goertler 

vortices, will be avoided entirely. Results using 

this new contraction will soon be available. 

The flow tube test section is 6.4 m in length 

and 0.102 m in diameter, with a 2.5 cm wall thickness. 

It is made of aluminum, and the inside wall has been 

polished to a surface roughness of less than 10-7 m 

RMS (4 micro-inches). Surface waviness has been 

measured as less than one part per thousand for 

wavelengths less than 2 cm. The tube has been 

optically aligned on site so that it is straight to 

within less than 0.018 cm over its entire length. 

The outside wall is covered with electrical band 

. heaters, which are connected together in groups 

covering about 0.30 m of length. Each heater group 

ment system. 

is servocontrolled by a system which maintains a 

preset temperature on a thermocouple located near 

the inside tube wall. In this way the inside wall 

temperature can be controlled independently of flow 

velocity, and different variations of temperature 

along the tube length can be studied. 

To avoid tripping the boundary layer, no pene- 

trations of the inside wall are allowed except at 

the downstream end. The only instrumentation in 

the test section is an array of thermocouples within 

the wall, spaced along the tube length. At each 

location, there is one thermocouple on the outside 

surface and one in a small hole drilled to within 

0.15 cm of the inside surface. The temperature 

difference between the two thermocouples determines 

the heat flux through the wall at a particular 

location. Since heat flux increases by a factor of 

about ten at the transition point, these temperature 

measurements should provide a good transition 

indicator. A total of 53 thermocouple voltages are 

digitized and recorded. 

During the earlier experiments, there was a single 

hot film anemometer probe at the downstream end of 

the test section. This probe was located within 

the boundary layer and was used to indicate inter- 

mittency only. In the more recent measurements, a 

new instrumented section has been developed and 

installed on the.downstream end of the test section. 

This section is 0.61 m long and its inside diameter 

matches that of the test section to within 2 x 107° 

m. Two types of measurement can be made in the 

instrumented section. Very small Pitot tubes can 

be used to traverse the boundary layer and measure 

mean velocity profiles, and flush mounted hot films 

can determine intermittency at various locations. 

Since the boundary layer is typically less than 

0.5 cm thick, the Pitot tubes must be very small. 

The one being used at present has a cross-section 

of 0.013 x 0.076 cm. The smaller dimension is 

oriented in the direction perpendicular to the wall. 

The tube is traversed from the wall to the free 

stream by a micrometer, which can position it with 

an uncertainty of +0.002 cm. In addition, the 

entire central portion of the tube can be rotated 

in the azimuthal direction so that the Pitot tube 

can be traversed about the circumference of the 

test section. The azimuthal rotation can be per- 

formed while the experiment is running. 

The hot film anemometers in the instrumented 

section are all mounted flush with the wall to avoid 

tripping the boundary layer. The Pitot tubes are 

removed from the section while hot film measurements 
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are being made. The films are used only to determine 

intermittency, hence they are not calibrated. There 

are eight hot film locations--two streamwise sep- 

arated stations each having four probes at different 

azimuthal angles. All eight outputs can be displayed 

simultaneously on oscilloscope traces or recorded 

on a photographic strip-chart recorder. 

A high static pressure must be maintained in the 

test section to avoid possible cavitation or out- 

gassing from heated walls. Therefore the pressure 

loss for controlling the flow velocity is located 

at the downstream end of the experiment. Originally, 

a set of sharp-edged orifice plates was used on the 

end of a 1 m long extension tube added to the test 

section. Concern over possible upstream influence 

of the disturbances generated at the orifice plate 

led to the development of a smooth contraction 

section for the downstream end. With the smooth 

contraction, it is possible to maintain laminar 

flow all the way to the exit of the experiment, and 

thus determine transition by flow visualization in 

the exit jet. In addition, a "plug nozzle" has 

been developed, which consists of a strut-supported 

central cone which can be moved in and out of the 

end of the test section. This adjustable exit 

valve permits us to vary the test section static 

pressure independently of flow velocity while main- 

taining laminar flow all the way to the exit. With 

any of these possible exit conditions, the test 

section velocity can be determined from the test 

section static pressure and the known discharge 

coefficient of the nozzle. 

3. RESULTS 

Free Stream Turbulence 

Mean and fluctuating velocities were measured in 

the settling chamber by a cylindrical hot film 

anemometer. The probe penetrated the settling 

chamber wall 0.1 m downstream of the boundary layer 

suction section, and could be traversed from the 

wall to the centerline. Mean velocities and tur- 

bulence levels were measured at many points, and 

turbulence spectra were measured at two or three 

points for each flow condition. In addition, a 

1.2 m long instrumented straight tube could be 

substituted for the 6.4 m test section. This short 

tube contained a Pitot tube, accelerometers, and 

hot film probes. The unheated transition Reynolds 

number was measured in the 1.2 m tube for each 

settling chamber configuration. This Reynolds 

number varied from 800,000 for the empty settling 

chamber with no turbulence manipulators to 5.0 x 

10® for the "best" configuration. This configura- 

tion (shown in Figure 2) includes one piece of porous 

foam, two sections of honeycomb, and four screens. 

The last screen is located 0.3 m upstream of the 

beginning of the contraction, and has a mesh of 24 

per cm. All screens in the settling chamber have 

more than 55 percent open area, in accordance with 

the findings of Bradshaw (1965). 

Detailed results of the velocity measurements 
in the settling chamber have been reported separately 

[Barker (1978)], and are only summarized here. At 
test section velocities less than 9 m/sec, the 

settling chamber boundary layer remains laminar and 
the only effect of the suction is to make it thinner. 

The turbulence level is about 0.07 percent at all 
distances from the wall for the configuration of 

Figure 2. At higher velocities the turbulence level 

near the wall reaches 3 or 4 percent with no suction, 

but remains 0.07 percent at distances from the wall 

greater than 2 cm. As the suction flow rate is 

increased, the mean velocity profile shows thinning 

of the boundary layer and the turbulence level near 

the wall drops rapidly. At the optimum suction 

rate, the highest turbulence level near the wall 

in the settling chamber is about 0.4 percent. The 

suction has no measurable effect upon the mean 

velocity profile or turbulence level more than 2 

cm from the wall. 

The settling chamber velocity measurements and 

the unheated transition Reynolds numbers indicate 

that the turbulence management system is performing 

well. If the turbulence level reduction through 

the contraction is proportional to the square root 

of the contraction ratio [Pankhurst and Holder 

(1952) ], then the turbulence level in the test 

section should be about 0.01 percent. This is 

lower than the turbulence level recorded in most 

wind tunnels, and certainly lower than any previ- 

ously reported water tunnel. 

Transition Reynolds Numbers 

Figure 3 shows measured transition Reynolds numbers 

as a function of wall overheat for the uniform wall 

temperature case. The results on the upper curve 

were obtained with the smooth, laminar flow nozzle 

at the downstream end of the test section, using 

flow visualization at the exit to determine tran- 

sition. The water temperature was approximately 

50°F (10°C) during these tests. Note that the 

transition Reynolds number rapidly increases with 

wall temperature up to 10°F (6°C) wall overheat, 

at which it has reached a value of 42 x 10°®. 

This represents a factor of four increase in tran- 

sition Reynolds number for a relatively small heat 

input. However, above 10°F there are no further 

increases in transition Reynolds number, while the 

theory predicts that it should increase up to about 

60°F (33°C) overheat. Previously published results 

[Barker and Jennings (1977) ] have shown that varying 

the wall temperature distribution does not change 
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FIGURE 3. Transition Reynolds numbers measured at 

exit: one extension tube. 
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this result. In fact, uniform wall temperature has 

produced the largest transition Reynolds numbers to 

date. The primary difference between the results 

shown here and those published previously is that 

the present experimental curve reaches the limit 

Reynolds number of 42 x 10° at a lower overheat 

than before. This change is attributed to the 

improvement of the exit conditons with the develop- 

ment of the laminar flow nozzle. 

All of the data of Figure 3 were taken by main- 

taining laminar flow over the full length of the 

tube and observing transition at the exit. If the 

flow velocity is increased further, so that the 

transition region moves upstream in the test 

section, the measured transition Reynolds numbers 

are much lower. In addition, there is a hysteresis 

effect when transition is allowed to move more than 

about 1 m upstream from the exit. That is, to 

restore fully laminar flow over the full tube length 

the velocity must be reduced to a value lower than 

that which previously yielded fully laminar flow. 

This hysteresis may be a phenomenon which is accen- 

tuated by the flow tube geometry. The free stream 

in the flow tube is confined by the boundary layer, 

so that the boundary layer can influence the free 

stream once it becomes turbulent. This free stream 

influence could propagate upstream, which has led 

to conjecture about disturbances from the test 

section exit affecting the transition Reynolds 

number. 

To test this hypothesis of downstream disturbances 

affecting transition Reynolds number, a separate 

study has been conducted to determine the dependence 
of transition upon the tube exit geometry. As dis- FIGURE 4a. Exit jet from smooth nozzle: laminar 

cussed above, there are three types of exit nozzle boundary layer. 

available: orifice plates, the smcoth contraction, 

and the plug valve. In addition, the length of 

unheated tube between the heated test section and 

the exit can be varied from zero to 3.7 m in incre- 

ments of 1.22 m. For each configuration, transition 

can be determined either at the exit itself or at 

the end of the heated section. Transition at the 

exit is easily determined by flow visualization, as 

shown in Figure 4. This photograph of the smooth 

exit contraction shows laminar flow (4a) and turbu- 

lent flow (4b), both at a length Reynolds number 

of approximately 40 x 1O®. ma Figure 4a, note 

the glassy region very near the exit, which soon 

becomes milky in appearance as the air-water shear 

layer undergoes transition. The longitudinal streaks 

in Figure 4a are appraently due to Goertler vortices 

generated in the concave part of the smooth exit 

contraction. They are not seen with the plug valve 

exit, which has no concave region. 

The data of Figure 3 are for one 1.22 m extension 

section on the end of the heated section, followed 

by either the smooth contraction or the orifice 

plate. Transition is measured at the exit in either 

case. Note that the transition Reynolds numbers 

with the orifice plate exit are about 20 percent 

lower than with the smooth contraction, showing a 

definite effect of the exit condition. Figure 5 

shows the same comparison with 2.44 m of unheated 

extension tube between the test section and exit. 

Here we see a much larger difference between results 

with the orifice and with the smooth contraction. 

The smooth contraction transition Reynolds numbers 

are nearly the same as with 1.22 m of extension 

tube, while the orifice Reynolds numbers have 

dropped almost by a factor of two. Clearly the FIGURE 4b. Exit jet from smooth nozzle: turbulent 

effect of the exit condition upon transition Reynolds boundary layer. 
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FIGURE 5. Transition Reynolds numbers measured at exit: 

two extension tubes. 

number is far more pronounced here than for the 

shorter extension tube length. The most reasonable 

explanation of this lies in the fact that in the 

second case the boundary layer has passed over a 

much longer region of unheated wall, which should 

have a destabilizing effect. This less stable 

boundary layer is then more sensitive to external 

perturbations such as the disturbances created by 

the orifice plate exit. 

As the extension tube length is increased still 

further, the transition Reynolds numbers obtained 

with the smooth contraction begin to decrease. 

Apparently the destabilizing effect of the long 

unheated wall is felt even with the low disturbance 

exit condition. These results indicate that, under 

some conditions, a moderate length of unheated wall 

can be used downstream with no measurable reduction 

of transition Reynolds number. 

When transition is determined at a distance of 

1.4 m upstream of the exit rather than at the exit 

nozzle itself, the influence of the exit condition 

is greatly diminished. Taking the case of the 2.44 

m unheated extension as an example, there is a 

factor of 2.3 difference in the maximum transition 

Reynolds number obtained with the orifice and with 

the smooth contraction when transition is measured 

at the exit (Figure 5). However, when transition 

is measured 1.4 m upstream of the exit, the corre- 

sponding difference is only 15 percent in Reynolds 

number. Clearly the disturbances present at the 

exit nozzle can affect the transition process if 

it occurs near the nozzle, but this influence 

diminishes rapidly as transition moves upstream 

of the exit. Since the highest transition Reynolds 

numbers have consistently been obtained with laminar 

flow over the full length of the tube, most future 

measurements will be made using one of the two 

laminar flow exit conditions. 

Although it is difficult to assess uncertainties 

in transition Reynolds number in this experiment, 

some effort should be made. Results for the highest 

transition Reynolds numbers exhibit a large amount 

of scatter, but most of this can now be attributed 

to variations in the free stream particulate content. 

The purity of the water supply varies considerably 

with weather conditions at the site, and these 

changes in purity have been directly correlated 

with changes in transition Reynolds number. Under 

the most adverse conditions, this effect has reduced 

the maximum transition Reynolds number to less than 

15 x 108 (compared with 42 x 10© for "clean" water) . 

If we compare results that were obtained during 

periods of relatively high water purity, the stan- 

dard deviation in transition Reynolds number is 

about 10 percent of the mean. 

This extreme sensitivity of the results to water 

purity was quite unexpected, and an effort has been 

made to improve the water quality by filtering 

upstream of the settling chamber. Measurements of 

the particle concentration spectrum have been made 

using a Coulter Counter, and some of the results 

are shown in Figure 6. The bands on this figure 

indicate the typical ranges of concentration that 

are obtained in the present experiments, as well 

as in the NSRDC towing basin and the ocean. Note 

that the flow tube particle spectrum has a steeper 

slope than either the ocean or the tow basin, which 

implies that for particle sizes greater than 10 U, 

the flow tube water is much cleaner than the other 

two. The filtration system presently used in the 

flow tube effectively removes all particles larger 

than 100 iL. 

The reason for the strong sensitivity of results 

to relatively minor contamination of the water 

supply is not understood at present. The most 

likely mechanism seems to be a slight increase in 

wall roughness due to the adhesion of particles 

to the wall. Whatever the mechanism, this effect 

will clearly be of importance in hydrodynamic 

applications. 

Comparison with Theory 

Wazzan et al. (1970) have presented numerically 

predicted transition Reynolds numbers for heated 

PARTICLE CONCENTRATION (COUntS/,)) 
FLOW TUBE 

STATION | 

| 10 100 

PARTICLE MEAN DIAMETER (microns) 

FIGURE 6. Particle concentration spectra: flow tube, 

NSRDC towing basin, and open ocean. 
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wall boundary layers with zero pressure gradient. 

More recently, similar calculations have been 

performed for boundary layers in favorable pressure 

gradient flows. Before comparing the flow tube 

results with such predictions we should estimate 

the favorable pressure gradient produced by the 

boundary layer displacement effect in the tube. 

The most common way to characterize streamwise 

pressure gradient in a boundary layer is by the 

similarity parameter 8 [Schlichting (1968)]. For 

the general class of wedge flows, the external 

velocity U is given by U Cx , and the parameter 

8 is then 2m/(m + 1). Both m and & are constants 

in any wedge flow, and are equal to zero for the 

zero pressure gradient boundary layer. We have 

calculated approximate local values of 8 in the 

flow tube, using the Blasius growth law for the 

boundary layer displacement thickness: 

6* = 1.72 (vx/Us) 4 (3) 

(The calculation can be iterated to include the 

effect of pressure gradient upon 6*, but the differ- 

ence is negligible.) The resulting values of 8 as 

a function of x at several values of U_ are shown 

in Figure 7. 8 is proportional to the square root 

of x, and thus has its largest value at the down- 

stream end of the tube. 

Figures 3 and 5, which show transition Reynolds 

numbers versus overheat for the flow tube, also 

include the theoretical predictions of Wazzan et al. 

(1970) for a 8 of 0.07. This represents an approx- 

imate average of 8 in the tube for the velocity 

range of interest. (Calculations using exact 8 

values from the tube will be done in the near future.) 

Note that the experimental results lie near or even 

above the 8 = 0.07 prediction for overheats from 

zero to 13°F (7°C). At this point the experimental 

curve quite suddenly levels out, while the predicted 

curve continues to rise at an increasing slope. 

The predicted curve reaches its maximum at a Reynolds 

number of about 250 x 10° (near 45°C overheat), 

while the experiment has never yielded more than 

AD 16° , 
There are several possible reasons for the 

disagreement between theory and experiment at the 

higher overheats. (1) The theory does not account 

for the destabilizing effects of density stratifi- 

cation, which will become increasingly important as 

“overheat is increased. Buoyancy effects may 

FIGURE 7. 

Uk50 

8 versus x for several values of 

destabilize the flow in three distinct ways: (a) 

the bottom of the tube wall is subject to thermal 

convection rolls, similar in form to the Goertler 

instability; (b) the side wall boundary layer will 

experience a cross-flow due to the rising fluid 

near the wall; and (c) the top wall boundary layer 

will grow in thickness faster than normal because 

of the fluid rising up from the sides. (2) The 

theory neglects the effects of temperature and 

viscosity fluctuations upon the growth of the 

velocity fluctuations. There is evidence that this 

is a reasonable approximation. (3) The theory relies 

upon the e? transition criterion, which may become 

increasingly incorrect at higher overheats. This 

criterion has never before been applied to boundary 

layers with inhomogeneous physical properties. 

There is a large distance between the minimum crit- 

ical point in the boundary layer and the predicted 

transition point using ey ab is questionable 

whether the region of linear growth can extend over 

such a large range of Reynolds numbers. (4) Wall 

roughness is not accounted for in the theory, and 

the importance of roughness will increase with wall 

heating (and with increased velocity) due to the 

thinning of the boundary layer. Roughnesses that 

are insignificant at zero or low overheat may become 

important as overheat increases. 

Velocity Profile Measurements 

In view of the differences between experimental 

results and computed transition Reynolds numbers, 

measurements have been made of boundary layer 

velocity profiles in the flow tube to try to 

establish the mechanism of transition. If the 

buoyancy effects described above are in fact 

significant, they should produce measurable devi- 

ations from axisymmetry in the mean velocity profiles. 

In addition, they might cause transition to occur 

earlier on the top, side, or bottom wall, depending 

upon which mechanism is predominant. We therefore, 

designed the instrumented section (described above) 

to be installed on the downstream end of the 6.1m 

test section. This contains Pitot tubes for mean 

velocity measurements and flush mounted hot film 

probes for intermittency measurements. The instru- 

mented section has been very successful in measuring 

mean velocity profiles in the flow tube. Figure 8 

shows a typical measured profile that has been 
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FIGURE 8. Normalized velocity profile with zero over- 

heat, compared with Blasius profile. 

normalized and plotted with a curve representing 

the Blasius profile for a zero pressure gradient 

boundary layer. Actually, the agreement shown 

here is better than it should be due to the positive 

B of the flow tube boundary layer. 
The most surprising result that has been obtained 

with the instrumented section is the large deviation 

from axisymmetry in the profiles, even with no wall 

heat. Figure 9 shows a plot of 6* (displacement 

thickness), 8 (momentum thickness), and H (shape 

factor) versus azimuthal angle for no wall heat 

at a free stream velocity of 1.60 m/sec. The 

dashed lines indicate the calculated values for 

8 = 0 and § = 0.16, which is the value of 8 at the 

downstream end of the test section. The variations 

in 6* and @ are more than 50 percent, which was 

totally unexpected. Figure 10 shows an azimuthal 

velocity profile, that is, u versus ¢ at a fixed y. 

Here we see that the departure from axisymmetry is 

wave-like in nature, and that significant changes 

in velocity occur over a 15° change in $. 

This behavior suggests that the asymmetries may 

be caused by streamwise vortices within the boundary 

layer, which would have a cross-stream length scale 

on the order of the boundary layer thickness. 

Such vortices could be caused by the Goertler 

instability in the contraction section, as described 

above. To test this hypothesis, a new contraction 

section is presently being built which will avoid 

a : [ oe
 ——~ . =

 4 

Oo 90 180 270 360 
AZIMUTHAL ANGLE 

FIGURE 9. Displacement thickness, momentum thickness, 

and shape factor vs. azimuthal angle for zero overheat, 

Us. = 155 cm/sec. 

the Goertler instability entirely. This new con- 

traction will have a fully convex inlet section 

surrounded by an annular bleed flow. All fluid 

from the settling chamber boundary layer will be 

removed by the bleed flow. 

Variations in mean velocity profiles due to 

heating have in fact been measured, but they are 

small relative to the changes with azimuthal angle 

shown in Figures 9 and 10. The shape factor H 

tends to decrease with increasing overheat as 

expected. However, no firm evidence of buoyancy- 

driven instabilities has yet been seen, even at 

low flow velocities and high overheats. 

150 . I ] | 
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50 
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FIGURE 10. Velocity, u 300 330 360 

( ¢?, at y = 0.51 cm 



4. CONCLUSIONS 

The flow tube experiment has already demonstrated 

that wall heating can have a significant effect 

upon transition Reynolds numbers in water boundary 

layers. Although the maximum transition Reynolds 

number of 42 x 10° is well below the predicted 

maximum, this value has been obtained with only 

7°C wall overheat. The unheated transition Reynolds 

number of 10’ shows that disturbances are well 

controlled in the experiment. 

Possible causes for the differences between the 

predicted and realized transition Reynolds numbers 

at higher overheats are still under investigation. 

Preliminary results from the instrumented section 

indicate that buoyancy-driven instabilities are 

not a Significant factor. However, major deviations 

from boundary layer axisymmetry have been observed 

even with no wall heat. These perturbations of the 

unheated flow could themselves have an effect upon 

transition Reynolds numbers. This is particularly 

true if the actual disturbances are Goertler vortices, 

because these vortices would increase in strength 

with increasing flow velocity. Since the transition 

length is fixed at the end of the tube in this 

experiment, transition Reynolds number will be 

directly proportional to velocity. Thus the 

Goertler vortices could impose a limit in transition 

Reynolds number if they begin to dominate the 

transition process above some critical flow velocity. 

This hypothesis will be tested by the installation 

of the new contraction section, which eliminates 

the possibility of Goertler vortex formation. 
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ABSTRACT 

Some of the effects of freestream turbulence and a 

dilute polymer solution on the fully wetted flow 

and the subsequent cavitation inception has been 

investigated for three different bodies. Two of 

these bodies possess a laminar separation and one 

does not. In the fully wetted investigation the 

flow on one of the bodies was found to be insensi- 

tive to the present disturbances whereas the other 

two were found by comparison to be very sensitive. 

Although there is a pronounced "Suppression" of 

inception by the polymer, it seems clear that the 

effects observed are due primarily to the change 

in the real fluid features of the flow past the 

bodies themselves and not to an intrinsic cavita- 

tion process. There appeared to be no special poly- 

mer effect, insofar as cavitation is concerned, on 

the body not having a laminar separation, confirm- 

ing the results of van der Meulen. Due to practical 

limitations the effects of turbulence per se on in- 

ception could not be separately evaluated. 

The inception index on all bodies was found to 

be greatly dependent on the distribution of nuclei 

within the water tunnel. For those cases in which 

a turbulent transition was established well upstream, 

travelling bubbles were a common form of cavitation 

observed on all test bodies. The number of these 

cavitation events were so few, however, that in one 

test facility having a resorber, it was just as 

likely for an attached cavity to form as it was to 

observe a travelling bubble. In both cases the 

inception index was far below the customary minimum 

pressure coefficient reference value. Nuclei counts 

made with the aid of holograms reveal significantly 

fewer microbubbles within the flow of this test 

facility than in those not having a resorber. 

1. INTRODUCTION 

Our understanding of the details of the process of 

cavitation inception (and thus our ability to scale 
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laboratory results to prototype conditions) is far 

from complete [e.g. Acosta and Parkin (1975), Morgan 

and Peterson (1977)]. This lack of understanding 

is well illustrated by our ability to do no more 

than indicate reasons which are believed to be 

responsible for the large variations in the results 

of the ITTC comparative test series [Lindgren and 

Johnsson (1966), Johnsson (1969)]. These results, 

some of which are presented in Figures 1 and 2, did, 

however, prompt a considerable amount of effort to 

investigate more systematically the factors influ- 

encing cavitation inception. In particular there 

are three areas in which there have been significant 

developments: (i) the influence of viscous effects 

on inception, (ii) the discovery that in some situ- 

ations the presence of drag-reducing polymers in the 

water cause a suppression of the inception index, 

and (iii) the development of equipment to accurately 

measure freestream nuclei populations. 
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FIGURE 1. Results of the comparative inception test 

on a modified ellipsoidal headform sponsored by the 

International Towing Tank Conference, Lindgren and 

Johnsson (1966). 
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Viscous Effects 

Parkin and Kermeen (1953) appear to be the first 

investigators to appreciate the influence of the 

boundary layer on the inception process. However, 

even though their interpretations of the experi- 

mental results were used in many subsequent incep- 

tion theories [e.g. van der Walle (1962), Holl and 

Kornhauser (1969) to name only two] further experi- 

mental investigations of these viscous effects 

were carried out only much later. 

Among these, Arakeri and Acosta (1963), by using 

the schlieren flow visualization technique, were 

able to observe cavitation inception within the 

structure of the flow. A primary feature of the flow 

observed by them was a laminar separation in which 

the cavitation was seen to occur first. There was 

further some suggestion by them that the laminar- 

to-turbulent transition itself may promote cavita- 

tion, perhaps through a mechanism similar to that 

for inception in turbulent pipe flow [Arndt and 

Daily (1969)]. In any case, it should be expected 

then, that any factor which could influence the 

presence of separation or even transition may also 

influence the inception of cavitation. One such 

well-known factor is freestream turbulence. [For 

recent accounts of these effects on transition see, 

e.g., Spangler and Wells (1968), Hall and Gibbings 

(1972), and Mack (1977)]. Unfortunately, the mea- 

surement of turbulence in water is more difficult 

than its aerodynamic counterpart and, until recent 
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FIGURE 2. Photographs of dif- 

ferent types of cavitation ob- 

served in the ITTC tests, 

Lindgren and Johnsson (1966). 

times, there has been no great demand for determin- 

ing the freestream turbulence in water tunnels. For 

reference we tabulate in Table I the turbulence 

levels for a few water tunnels for which this inform- 

ation is available (12th ITTC Cavitation Committee) . 

Polymer Effects 

It was inevitable that the much-heralded, drag- 

reducing polymer solutions would be the subject 

of cavitation experiments also. Very early in the 

course of this work Hoyt (1966) and Ellis et al. 

(1970) found that the inception index was reduced 

by as much as a factor of two for hemisphere-nosed 

bodies. There was, furthermore, a pronounced change 

in the physical appearance of the cavitation, once 

it was well developed, as subsequently illustrated 

by the beautiful photographs of Brennan (1970). Two 

possible explanations for the cavitation-suppression 

effect were then advanced: in the first, it was 

speculated that the dynamics of individual bubbles 

were changed by the presence of the polymer, and 

in the second, it was assumed that the basic viscous 

flow about the model was altered by the presence of 

the polymer. Ting and Ellis (1974) could find no 

difference in the collapse time of spark-generated 

bubbles in either water or polymer solutions weak- 

ening the idea that the bubble mechanics are impor- 

tant for this process. Later, however, Holl and 

co-workers (1974) in commenting on experiments 
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TABLE I 

Ottawa, Canada 0.75% 

Kriloff No. 2 

Leningrad, USSR 0.4% 

NPL No. 1 

Feltham, UK 0.5% 

MIT 

Massachusetts, USA 0.77% 

6'' Tunnel 

Minnesota, USA 0.8% 

carried out at the Garfield Thomas Water Tunnel 

(GTWT) noted that there appeared to be no laminar 

separation on a hemisphere nose body when polymer 

was added to the water, but no direct flow visual- 

ization was done. Later van der Meulen (1976) 

verified this speculation with the clever use of 

schlieren holography to observe simultaneously the 

viscous flow and cavitation inception on a 10 mm 

diameter hemisphere nose body. His results showed 

clearly that when polymer was injected into the 

boundary layer that the laminar separation was re- 

moved. van der Meulen suggested that the polymer 

removed the separation by causing an early transi- 

tion to a turbulent non-separating boundary layer. 

He then attributed the suppression effect to the 

removal of the large pressure fluctuations associ- 

ated with the transition zone of the free shear 

layer [Arakeri (1975)]. 

Freestream Nuclei 

It is generally accepted that inception begins at 

the nuclei in the liquid and that there are two 

sources for these nuclei--the test body surface 

and the incoming flow. At one time "surface nuclei" 

received considerable attention [e.g. Acosta and 

Hamaguchi (1967), Holl and Treaster (1966), Holl 

(1968), Peterson (1968) and van der Meulen (1972) ]. 

While on the one hand it was shown that under certain 

circumstances, but not in normal cavitation testing, 

surface nuclei could exert a controlling influence 

upon inception. It seemed evident on the other hand 

from the results of the ITTC tests that freestream 

nuclei were the more important. Further, the de- 

velopment of the concepts of cavitation event count- 

ing [Schiebe (1966) ] in conjunction with Johnson 

and Hsieh's (1966) trajectory calculations, the 

idea of “cavitation susceptibility" [Schiebe (1972) ] 

and the development of equipment to measure free- 

stream nuclei populations have led to more interest 

in the influence of freestream nuclei versus surface 

nuclei. In particular, the experiments of Keller 

(1972) have prompted considerable interest in mea- 

suring and relating freestream nuclei populations 

to inception. 

Morgan (1972) has reviewed the various types of 
instruments available for measuring freestream 
nuclei populations and Peterson et al. (1975) have 

made an experimental comparison of three of these, 

namely; light scattering, microscopy, and holog- 
raphy. At the moment holography seems the best 

Turbulence Levels in Some Water Tunnels 

ORL 
Pennsylvania State, USA 0.8% 

HSWT 
California Institute of 

Technology, USA 0.25% 

LIWT 

California Institute of 

Technology, USA 0.05% 
(present work) tor See % 

in that no "calibration" is required, a permanent 

record is obtained, a large volume is sampled, and, 

as Peterson observed, one can determine if the 

nuclei are solid particles or micro-bubbles. 

There is seen to be ample reason then to pursue 

these various freestream factors in inception re- 

search. Two are primarily fluid-dynamic in nature 

and of these the questions concerning freestream 

turbulence levels are of historic interest in fluid 

mechanics and naval architecture. The cavitation 

nuclei however are directly involved in the cavita- 

tion inception process and the recent experimental 

progress cited above make one hope for a more quan- 

titative predictive ability than in the past inso- 

far as inception is concerned. The present work is 

in the mainstream of these observations; briefly we 

report on observations made in two different flow 

facilities having widely different freestream nuclei 

distributions on identical bodies. In one of these, 

the freestream turbulence level is varied over nearly 

a factor of 100 (but not in a condition of cavita- 

tion then) and we confirm and extend the observa- 

tions of van der Meulen on the polymer effect. 

Schlieren photography is extensively used to visu- 

alize thermal boundary layers on the test bodies 

used and in-line holography is used to determine 

nuclei populations in the working section. 

Before discussing these effects we should com- 

ment briefly on the means used for the determination 

of the actual inception observation. A standard 

procedure has been to observe the test body under 

stroboscopic light and to say that inception occurs 

when macroscopic cavities or bubbles become visible 

on the model. However, this method is observer- 

dependent and the trend now is to use cavitation- 

event counters free of human judgment. Ellis et al. 

(1970) and Keller (1972) have developed optical 

techniques which count interruptions of light beams 

which are adjusted to graze the model surface where 

inception has been observed to occur. Peterson 

(1972), Brockett (1972), and Silberman et al. 

(1973) have also determined inception acoustically 

by locating a hydrophone inside the test model. 

There are problems of identifying the types and 

location of the cavitation phenomena occurring with 

these “events." Aside from the question of tech- 

nique, there is also the question of selecting 

appropriate threshold levels at which an event be- 

comes countable and also the event rate at which 

inception is defined to occur. At present there is 

no universal agreement of just what these values 

should be. 
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20) EXPERIMENTAL EQUIPMENT AND METHODS 

Test Models 

Three axisymmetric test models were used in the 

present experiments: a brass hemisphere nose, a 

copper modified ellipsoidal (or NSRDC) body, anda 

stainless steel standard headform from the Schiebe 

series with a minimum pressure coefficient (Cpmin) 

of -0.75. The hemisphere nose and Schiebe bodies 

were fabricated specifically for these tests, 

whereas the NSRDC body is the same as that used 

by Brockett (1972) and Arakeri (1976). Each body 

is 5.08 cm in diameter and has a 0.423 cm diameter 

hole at the stagnation point for polymer injection. 

No quantitative measure of surface roughness was 

made, but each model was highly polished [a highly 

polished surface typically has a 0.1 x 10-7m rms 

finish, Beckwith and Buck (1961)]. The model ge- 

ometries are shown in Figure 3. 

The models were supported by a two-bladed sting 

in the LIWT and by a three-bladed sting in the 

HSWT with the nose of the model being about six 
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FIGURE 4. Schematic diagram of flow visualization 

system. 
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body diameters upstream of the sting in each case. 

Misalignment from the geometric tunnel center-line 

in both the LTWT and HSWT was measured to be about 

ORO Ee 

Flow Visualization 

Thermal boundary layers in the viscous flow past 

the test model were observed by schlieren photog- 

raphy. The particular schlieren configuation used 

is shown schematically in Figure 4 and is essen- 

tially the same as that used by Arakeri (1973). 

Also following Arakeri, the prerequisite density 

gradient was produced by heating the body with in- 

ternal cartridge type electric heaters. An example 

schlieren photograph obtained using this system is 

presented in Figure 5. 

Water Tunnel 

The two facilities used in the present experiments 

were the High Speed Water Tunnel (HSWT) and the 

FIGURE 5. A schlieren photograph of a 5 cm diameter 

hemisphere showing laminar separation and turbulent 

reattachment at a body Reynolds number of 2.6 * 10°. 

The maximum height of the separated region is about 

2 mm. 
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FIGURE 6. Diagram of the Low Turbulence Water Tunnel 

(LTWT) . 

Low Turbulence Water Tunnel (LTWT) both at the 

California Institute of Technology. Since the 

HSWT has been described in detail elsewhere [see 

Knapp et al. (1948) or Knapp, Daily, and Hammit 

(1970) ], it will only be noted here that one, it 

has a resorber and two, the freestream turbulence 

level has been measured to be about 0.2 percent by 

Professor S. Barker. The LTWT [Vanoni et al. 

(1950) ] is also a closed loop recirculating tunnel; 

but, as can be seen in Figure 6, it has no resorber. 

In this facility the maximum test section velocity 

and minimum cavitation number are approximately 8 

meters per second and 0.3 respectively. The unique 

feature of the LTIWT is that the freestream turbu- 

lence level in the test section can be varied from 

a very low value (for water tunnels) of 0.05 per- 

cent to a high value of 3.6 percent. The low tur- 

bulence level is obtained by use of small turning 

vanes in each elbow of the circuit, a yery gradual 

diffuser (included angle is 3°13'), a nozzle with a 

16:1 contraction ratio, and by turbulence. damping 

screens and honeycombs in the "stagnation" section 

of the tunnel just upstream of the nozzle. The 

configuration of screens and honeycombs which pro- 

duces the 0.05 percent turbulence level is shown 

schematically in Figure 7 (with the exception that 

no turbulence generating grid is installed) and is 

based upon the results of Loehrke and Nagib's (1972) 

report. 

By inserting different turbulence generating 

grids into the tunnel circuit the turbulent intensity 

can be gradually increased from 0.05 to approxi- 

mately 3.6 percent. The description of these grids 

is as follows: 

HONEYCOMB 
"7" TRIANGULAR CELLS 

TURBULENCE DAMPING SCREENS 
0.0075" DIA. WIRE, 22 meshes/lineal inch 

TURBULENCE 
GENERATING GRID 

SECOND HONEYCOMB 
1/8 x2 HEXAGONAL CELLS 

FIGURE 7. Sketch of LTWT contraction nozzle showing 

the turbulence manipulators. 

grid No. 1: 12.7mm diameter bars with 50.8mm 

mesn 

grid No. 2: 6.35mm diameter bars with 25.4mm 

mesh 

grid No. 3: three 25.4mm diameter horizontal 

bars on 76.2mm centers 

grid No. 4: 0.635mm diameter fishing line with 

19.05mm mesh 

Grids 1, 2, and 4 are located at the entrance to 

the test section as is shown in Figure 7 (the 

distance from these grids to the test model is 

approximately 1.2 meters). Grid No. 3 is located 

in the "stagnation" section immediately after the 

final turbulence damping screen. Grid No. 3 has 

this particular configuration because (after much 

trial and error) it was found to produce a turbu- 

lence level which is close to the levels measured 

in a number of other facilities--see Table 1. 

A DISA constant temperature anemometer was used 

to measure the turbulence levels in the test section. 

The probe was a wedge-shaped hot film type and was 

firmly mounted on the tunnel center-line at the 

model position (1.2 meters from the test section 

entrance). The results of these measurements have 

been summarized in Figure 8. 

Polymer Injection System 

The injection approach of introducing the polymer 

into the boundary layer versus filling the tunnel 

with a polymer solution (polymer ocean) was chosen. 

After considering a number of injection configura- 

tions [Wu (1971)] it was decided to follow van der 
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FIGURE 8. Summary of turbulence intensity measurements 

in the LTWT. 
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FIGURE 9. Cross-section of injector used for these 

polymer experiments. The body diameter is 5 cm. 

Meulen's (1973) example and inject the polymer into 

the boundary layer through a hole at the stagnation 

point. To do this an injector was designed to in- 

troduce the polymer into the boundary layer without 

also introducing disturbances. The injector is 

shown schematically in Figure 9 assembled inside 

the hemisphere nose body and consists of first a 

settling chamber 12.7mm in diameter and 31.75mm long. 

This section was packed with porous plastic foam 

held in place by a sintered brass disc. The pur- 

pose of this section is to disperse the jet enter- 

ing the injector and provide a smooth flow into the 

9:1 contraction which follows. After the smooth 

contraction there is a tube with a length to diam- 

eter ratio of 22 and this tube ends at the surface 

of the model. 

To minimize polymer degradation, the polymer 

solutions were "pushed" through the injector from a 

reservoir by using compressed air instead of a pump. 

A check with a turbulent flow rheometer [the same 

one as used by Debrule (1972) ] showed degradation 

of the polymer after it passed through the injec- 

tion system to be minimal. Preliminary tests were 

carried out with water as the injectant to ensure 

that the injection process itself was not respon- 

sible for any observed changes in the flow. Results 

of these tests for the NSRDC body are presented in 

Figure 10 and show that even at an injection rate 

of three to ten times higher than actually used 

with polymer solutions no differences are detectable 

from the no-injection case. 

Nuclei Counter 

Nuclei distributions were deduced from holograms 

of the test fluid. The experimental apparatus and 

method is much the same as used by Peterson (1972), 

Feldberg and Shlemenson (1973) and is described in 

detail in Gates and Bacon (1978). Essentially it 

is a two-step image forming process. In the first 

step, a hologram of a sample volume of the water 

in the tunnel test section is recorded on a special 

high resolution film by a "holocamera." In the 

second step, the developed hologram is reconstructed 

producing a three dimensional image of the original 

volume which can be probed at the investigator's 

leisure. The holocamera and reconstruction system 

are shown schematically in Figure 11 and 12 respec- 

tively. 

91 

(b) 

FIGURE 10. Schlieren photographs showing the effect 

of injecting water on the NSRDC body at a body Reynolds 

number of 3.2 x 10°, (a) injection rate = O m&/sec, 

(b) 1.8 m&/sec, (c) 3.6 m&/sec, (d) 6.6 m&/sec, 

(e) 9.8 m&£/sec. No effect is observed. 

SAMPLE VOLUME 

TEST SECTION 

WINDOWS 

BC D 
1 

FIGURE 11. Diagram of the holocamera; (a) dielectric 

mirror, (b) iris, (c) dye-quench cell, (d) ruby-flash 

lamp assembly, (e) iris, (f£) dielectric mirror, 

(g) beam splitter, (h) neutral density filter, 

(1) beam expander lens, (j) 25y pinhole, (k) collimat- 

ing lens, (1) front surface mirror, (m) p.i-.n. diode, 

(n) film pack. 
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[icc alee ee : and also to let the freestream bubbles go back into 

solution or rise to the high points in the tunnel 
TV CAMERA circuit. 

The same general test procedure was used in the 

HSWT except for small differences in pressure mea- 

MICROSCOPE surement. However, desinent cavitation observa- 

tions were also made in this facility. All holograms 

=== TV MONITOR made in the HSWT were done without the model in 

=>==2 RECONSTRUCTED place but at conditions of velocity and pressure at 

Ty 7t Wee which inception had been observed to occur. 

4. PRESENTATION AND DISCUSSION OF FULLY WETTED 
HOLOGRAM ON TRAVELING RESULTS 

CARRIAGE 

ig} b L aL — BEAM DIAMETER ~5cm reestream Turbulence Levels 

COLLIMATING LENS CSN ACIOAS 

The influence of gradually increasing freestream 

turbulence level upon the viscous flow about each 

test body is illustrated in the sequences of PIN HOLE 

|| ~~ microscore OBJECTIVE schlieren photographs presented in Figures 13 

‘| through 15. In each sequence of photographs the 

test body is seen in silhouette and the flow is 

from right to left. The magnification is such that 

the surface length shown in these photographs is 

He-Ne GAS LASER (5mw) 

FIGURE 12. Arrangements to reconstruct and read the 

holograms. 

3. GENERAL EXPERIMENTAL PROCEDURES 

Before any experiments were carried out, the water 

in each facility was de-aerated to reduce the 

number of freestream air bubbles produced in the 

tunnel circuit. This was of particular importance 

in the LIWT which has no resorber. During the 

present tests the air content in the LIWT was typ- 

ically between 7 - 8ppm whereas in the HSWT it was 

between 9 - 10ppm (air content levels were measured 

with a van Slyke blood gas analyzer). At these air 

contents there were very few macroscopic air bubbles 

visible in the flow approaching the model in the 

HSWT (as will be seen later). However, in the LTWT 

there were always many macroscopic air bubbles 

easily visible in the approaching flow. 

In a typical cavitation test in the LTWT, the 

tunnel velocity and polymer injection rate (if any) 

were first adjusted to the desired values. Incep- 

tion was then obtained by reducing as rapidly as 

possible the tunnel static pressure until the pres- 

ence of cavitation was visually observed on the 

model under stroboscopic illumination. At the 

point of inception, a schlieren photograph, a holo- 

gram, the tunnel velocity, and the tunnel static 

pressure were recorded simultaneously. Each test 

had to take less than forty seconds since by that 

time the abundant supply of cavitation bubbles gen- 

erated at the pump would reach the test section and (e) 

dramatically change the freestream conditions. Af- 

ter each test, the tunnel pressure was raised to on the flow past the NSRDC body (the flow is right to 
about one atmosphere and the tunnel allowed to cir- left) at a body Reynolds number of 1.6 x 105: (a) u'/v 

culate for five minutes. This recess between each = 0.05 percent, (b) 0.65, (c) 1.1, (a) 2.3, (e) 3.6 
test was required to let the ruby laser cool down percent. 

FIGURE 13. The effect of freestream turbulence level 



(d) 

FIGURE 14. The effect of freestream turbulence level 

on the flow past the hemisphere body at a body Reynolds 

number of 2.6 * 10°. (Same turbulence values as in 

Figure 13.) 

approximately 10mm. As can be seen in the first 

photograph of each of Figures 13 and 14, the NSRDC 

and the hemisphere nose bodies respectively have a 

laminar separation. Transition on these bodies oc- 

curs on the resulting free shear layer and the flow 

subsequently reattaches as a turbulent boundary 

layer. With increasing turbulence intensities the 

point of transition on the NSRDC body moved upstream 

on the free shear layer. As the position of tran- 

sition moved forward, the size of the separation 

bubble decreased until finally it disappeared when 

the position of transition and separation coincided. 

Once the point of transition moved upstream of the 

point of separation, no further observations of the 

thermal boundary layer could be made with the pres-— 

ent schlieren system. Unlike the NSRDC model, the 

increasing turbulence level seemed to have no ef- 

fect upon the viscous flow about the hemisphere 

nose body--as can readily be seen in Figure 14. 

This rather surprising result will be returned to 

later. 

As is shown in the first photograph of Figure 15, 

the Schiebe body has no laminar separation and tran- 

sition occurs on the model surface rather than on a 

free shear layer. With increasing freestream tur- 

bulence level two effects were noted; first, as can 

be seen in Figure 15, the position of transition 

moves substantially upstream and secondly, the ap- 

pearance of the disturbance appears to change. This 

change is not quite so evident in only a few pic-— 

tures, but we believe we observe more-or-less peri- 

odic and highly amplified boundary layer waves in 

Figure 15a and even b. However, for the higher 
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turbulence levels frequent “bursts" interspersed 

with a periodic phenomenon seemed to be more common. 

A random collection of schlieren photographs of the 

same body (Figure 16) at an intermediate turbulence 

level shows these various forms more clearly. 

Discussion 

To quantify the effects of turbulence level, the 

position, length, and maximum height of the separa- 

tion bubble were measured for the NSRDC and hemi- 

sphere nose bodies. For the Schiebe body, which 

has no separation, the position of transition was 

recorded--the position of transition being defined 

as that point at which the first noticeable dis- 

turbance occurs in the laminar boundary layer. These 

quantities are defined in Figure 17 and were mea- 

sured directly from the negatives of the schlieren 

photographs with the aid of a scale or reference 

(e) 

FIGURE 15. The effect of freestream turbulence level 

on the flow past the Schiebe body at a body Reynolds 

number of 2.5 x 10°. The turbulence levels are those 

in figure 13 and the regions shown are, at arc-length 

diameter ratios of (a) 0.82-1.07, (b) 0.76-1.01, 

(c) 0.60-0.85, (d) 0.61-0.86, (e) 0.47-0.63. 
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FIGURE 16. Random photographs of the flow past the 

Schiebe body at a Reynolds number of 3.4 x 10° with 

background turbulence level of 1.1 percent. The 

region shown covers the arc length diameter ratio of 

0.68 to 0.93. 

(a) POSITION OF LAMINAR SEPARATION OR 
TRANSITION WHICHEVER IS APPLICABLE 

U eet 
H 

(b) LENGTH AND HEIGHT OF SEPARATED REGION 

FIGURE 17. Definition sketch of separation location. 

079 
HEMISPHERE NOSE BODY 

[o) 1 x 

[o) NI a 

ESTIMATED SEPARATION 
082 LOCATION (THWAITES METHOD) 

NSROC BODY 

TURBULENCE LEVEL 

0.05% 

0.65% 
O78} 1.10% 

° 8 

2.30% 

3.60% 

POSITION OF SEPARATION/ DIAMETER -(S/D), 15x10° 25x10° 35x10° 45xi0> 
BODY REYNOLDS NUMBER- UD /y 

FIGURE 18. Observed separation locations as a func-— 

tion of turbulence level for two bodies. 

negative. Note that the position of transition on 

the free shear layer coincides with the definition 

of the end of the separated bubble. 

Each of these measured quantities was non- 

dimensionalized by dividing by the body diameter 

and are plotted versus the body Reynolds number 

with the freestream turbulence level as a parameter 

in Figures 18 through 21. For the NSRDC body, Fig- 

ure 19 shows that the size of the separation bubble 

decreases with increasing velocity and turbulence 

level--the critical Reynolds number being reduced 

from a value of greater than 4 x 10° at 0.05 joene= 

cent to near 2.5 x 10° at 3.6 percent. As was ex- 

pected from the schlieren photographs of the 

hemisphere nose (Figure 14), Figure 20 shows the 

length of the separation bubble is independent 

of turbulence level but decreases with increasing 

velocity. Finally, Figure 21 shows that as with 

the NSRDC body, the position of transition on the 

Schiebe body moves forward with increasing velocity 

and turbulence intensity. 

The most startling result of the above tests was 

the insensitivity of the boundary layer on the 

hemisphere nose to the present disturbances imposed 

by the freestream turbulence. Hall and Gibbings 

TURBULENCE LEVEL 
@ 005% 

0.65% 

1.10% 

2.30% 

3.60% 

o ie ce} 

0.08 

‘s (e) 5 

SEPARATION LENGTH/BODY DIAMETER 

° n 

fo} 

1.5x10> 2.5x10° 3.5x105 4.5x10° 
BODY REYNOLDS NUMBER-UD/v 

FIGURE 19. The length of the separated region as a 

function of freestream turbulence level for the 

NSRDC body. 
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FIGURE 20. The length of the separated region as a 

function of freestream turbulence level for the 

hemisphere body. 

(1972) have summarized the available experimental 

data and semi-empirical correlations at that time 

for the combined effects of pressure gradient and 

freestream turbulence level upon transition. How- 

ever, this correlation does not predict an insensi- 

tivity to increasing turbulence levels. No doubt 

this discrepancy is related to the question of how 

the freestream disturbances are assumed to inter- 

act with the boundary layer. For example, van 

Driest and Blumer (1963) accounted for the effect 

of freestream turbulence by using Taylor's assump- 

tion that the unsteady perturbation induced in- 

stantaneous variations in the velocity gradient. 

But, as just noted, this type of correlation did 

not work. Later, Spangler and Wells (1968) demon- 

strated that not only the intensity, but also the 

energy spectrum and the nature of the disturbance 

must be taken into consideration. Reshotko (1976) 

and Mack (1977) have re-emphasized Spangler and 

Wells' conclusions and pointed out the lack of un- 

derstanding of the interaction mechanism between the 

freestream disturbance and the boundary layer* is 

one of the major obstacles in the consistent predic-— 

tion of transition. Thus, although the effect of 

freestream turbulence on these bodies cannot be pre- 

dicted with confidence, we at least may offer some 

speculation based on these ideas to explain the be- 

havior on the hemisphere nose body. 

It is readily possible using the approximate 

method of transition prediction suggested by Jaffe 

et al. (1970) in conjunction with the stability 

charts for the Falkner-Skan profiles computed by 

Wazzan et al. (1968b) to determine the critical 

frequency, or most unstable frequency for growth, 

for each body at a number of velocities. These 

estimates are presented in Table 2. We then esti- 

mate with the aid of measured energy spectra of 

grid generated turbulence, Tsuji (1956) that there 

is approximately sixty times as much energy avail- 

able in the freestream at the critical frequency of 

the NSRDC body than there is at the critical fre- 

quency of the hemisphere nose body. Furthermore, 

the distance from the position of neutral stability 

to the position of separation is only 0.07 diameters 

on the hemisphere nose model whereas on the NSRDC 

*This is the concept of boundary layer receptivity devel- 

oped by M. V. Morkovin [see the review of Reshotko (1976) ]. 
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FIGURE 21. The location of transition on the Schiebe 

body as a function of turbulence level. 

body it is 0.40 diameters. Thus on the NSRDC body 

not only is there considerable more energy available 

at the critical frequency, but there is also more 

opportunity for disturbances to grow than for the 

hemisphere nose body. This same trend is also found 

for the Schiebe body at the low turbulence levels. 

The critical frequencies are even less than those 

of the NSRDC model (Table 2). There is, therefore, 

more energy available at those frequencies than even 

on the NSRDC model. Finally, the distance from the 

position of neutral stability to transition is be- 

tween 0.40 to 0.60 diameters--much the same as for 

the NSRDC model. 

We find it somewhat reasonable then, in retro- 

spect, for the hemisphere body to be found insensi- 

tive, in the present experiments, to the freestream 

disturbances. Regrettably, the present visual 

observations are not sufficiently quantitative to 

shed light on this basic problem of boundary layer 

receptivity to external disturbances and their sub- 

sequent growth into turbulence. 

By using an oil film technique, Brockett (1972) 

found the NSRDC model to have a critical velocity 

of 2.8 meters per second at 20°C and Peterson (1972) 

reports 4.2 meters per second at 10°C in the NSRDC 

12-inch water tunnel. The same body in the HSWT 

was found to have a critical velocity of about 9.2 

meters per second and it was observed to be above 

7.6 meters per second in the LTWT at 0.05 percent 

turbulence level. To reduce the value of the criti- 

cal velocity to 4 meters per second in the LIWT re- 

quired a 316 percent turbulence level, which is as 

can be seen from Table 1 a very high value for a 

water tunnel test section. (Initially it was thought 

unlikely that the disturbance level in the NSRDC 

facility is this high. However, after inspecting a 

drawing of the facility [Figure 2.3 pg. 26, Knapp 

et al. (1970)] such a high level does not seem so 

unlikely.) However, in this as well as in most 

water tunnel facilities the energy spectrum is not 

known, forestalling therefore a direct comparison 

of transition phenomena. 

The present observations of transition on the 

Schiebe body at the lowest turbulence level are 

compared with calculations of Wazzan* and experi- 

*Private communication. 
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TABLE II 
for Several Bodies 

Approximate Critical Boundary Layer Frequencies 

Rep Hemisphere Nose NSRDC Schie be 

(Hz) (Hz) (Hz) 

aEOWaex 10° 1070 670 -- 

Ze, 0) 2 10° 1800 1060 350 

3,33 % 19> 2140 1780 650 

Bear a10r 3350 2100 1200 

ments of van der Meulen (1976) in Figure 22. There 

is good agreement of the experimental results and 

also with Wazzan's e? calculations. 

Polymer Injection 

Observations 

The influence of gradually increasing the injection 

rate of the polymer solution upon the basic flow 

about each test body is illustrated in the sequences 

of schlieren photographs in Figures 23 through 25. 

In Figure 23(a) the maximum height of the separa-— 

tion bubble is 0.5mm and on the hemisphere nose 

body in 24(a) the maximum bubble height is 0.25mm. 

Unlike the freestream turbulence level, the presence 

of polymer in the boundary layer was found to 

influence the basic viscous flow on all the test 

models. As can be seen in the schlieren photographs, 

as the polymer injection rate was increased the 

position of transition moved upstream in each case. 

For the NSRDC and hemisphere nose models a critical 

injection rate was reached at which the positions of 

transition and separation coincided and the laminar 

separation was eliminated. At injection rates above 

this critical value the position of transition ap- 
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FIGURE 22. Comparison of transition observations on 

the Schiebe body. 

(d) 

FIGURE 23. Flow past the NSRDC body with injection 

of 500 wppm Polyox (WSR 301) at a Reynolds number of 

1.6 x 10°: (a) no injection; (b) 0.1 mg/sec, G = 

0.5 x 1055; (c)) 0.3) me/sec, G = 15) x) dogo; (a) ons 
mi/sec, G = 2.5 x 10-©. G is the dimensionless 

polymer injection rate. 

peared to move further upstream, but with the limited 

resolution of the present schlieren system, these 

poisitions could not be accurately determined. 

Discussion 

It would seem desirable to normalize somehow the 

injection rate of polymer fluid. We have chosen 

to do this by dividing the mass flux of polymer 



FIGURE 24. Flow past the hemisphere body with injec- 

tion of 100 wppm Polyox at a Reynolds number of 3.9 x 

10°. The dimensionless injection values are: (a) G = 

0, no injection, (b) 0.5 x 1076, (c) 1.1 x 1078, 
(G) 1.7 & 1078, (@) 2.9 2 10-9. 

material by the mass flux of the boundary layer 

displacement flow. Although this is an arbitrary 

normalization, in the present experiments the dis- 

placement effect of the injectant fluid was always 

much less than the boundary layer displacement 

thickness, 6,. Thus we define a quantity G 

za cQ 
SS npn ome 

wo ts 

where c is the polymer concentration (weight basis) 

in the injectant Q the volume flow rate of injectant 

(basically the same fluid as the test medium) with 

D and V. being the body diameter and tunnel ve- 

locity respectively. For the NSRDC and hemisphere 

models dtg5 was calculated at the position of the 
laminar separation whereas for the Schiebe body it 

was arbitrarily calculated at S/D = 1.00. The pres- 

ent results, so normalized, are presented in Fig- 

ures 26, 27, and 28. As with the freestream 

turbulence level, no change in the position of 

separation on the NSRDC and hemisphere nose models 

was observed when polymer was injected into the 

boundary layer. 

The results of the experiments show the presence 

. of very small quantities of Polyox to be destabiliz- 
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ing to the laminar boundary layers on the present 

test models. This destabilization effect has been 

observed before: in fully developed cavity flows 

past spheres and cylinders Brennen (1970) observed 

distortions in the cavity surface and separation 

line due to the presence of polymer. Brennan at- 

tributed the changes in cavity appearance to a 

polymer induced instability in the wetted surface 

flow on the headform. Sarpkaya (1973, 1974) in- 

vestigated the flow of dilute polymer solutions 

about cylinders and several airfoils and also ex- 

plained his observations by suggesting a polymer 

induced instability in the laminar boundary layer. 

Some later experiments by Tagori et al. (1974) 

support some of Sarpkaya's speculation for one of 

the airfoils. 

A destabilizing effect is rather contrary to the 

general impression obtained from the available lit- 

erature on the effects of drag-reducing polymers on 

fluid friction [see for example Hoyt (1972)]. We 

were unable however, to find in the available lit- 

erature any satisfactory explanation of the effect 

on transition of the polymer fluids. 

FIGURE 25. Flow past the Schiebe body at a Reynolds 

number of 4.2 x 10° with injection of 500 wppm Polyox. 

The dimensionless injection parameters are, (a) G = 0, 

(3) 23 8 1O-, (6) 1.5 = 16-5, @) 2.9 % 20°53, mach 
frame is 0.2 body diameters in length and they are 

centered at arc length ratios of 0.82, 0.75, 0.6, 

0.53, respectively. 
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FIGURE 26. The length of the laminar separation as a 

function of polyox injection on the NSRDC body. 

Comparison of Present Results with those of van 

der Meulen 

van der Meulen (1976) has studied the influence of 

dilute polymer solutions (Polyox, WSR 301) upon the 

fully-wetted flow and cavitation inception for a 

hemisphere nose body and was the first, to our 

knowledge, to observe the Schiebe body (Comin = 

-0.75). He also was the first to inject the polymer 

solution at the stagnation point. To observe the 

flow on the test models, van der Meulen used pulsed 

ruby laser holography. However, to make the flow 

visible a salt was added to the polymer solution. 

In his case the injectant was a 2 percent salt-- 

500wppm Polyox solution. ‘ 

On the hemisphere nose body he observed that the 

injection of the salt-polymer solution eliminated 

the laminar separation and he further speculated 

that the polymer caused an early transition to a 

turbulent non-separating boundary layer. On the 

Schiebe body, which has no laminar separation, the 

laminar to turbulent transition point was found to 

move upstream of the no-injection position. The 

present results for this body are seen to agree 

qualitatively with those of van der Meulen (Figure 

28), although the deduced injection rates of the 
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FIGURE 27. The length of the laminar separation as a 

function of polyox injection on the hemispehre nose 

body . 
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FIGURE 28. The position of transition on the Schiebe 

body as a function of polymer injection. 

latter are rather larger. Even though freestream 

conditions of these two tests may not quite be the 

same, it is evident because of the nearly one order 

of magnitude change in Reynolds number that the 

polymer fluid is the chief agent of boundary layer 

instability. 

5. EFFECT OF FLOW VISUALIZATION ON TRANSITION 

It is now well documented that heating a laminar 

water boundary layer, tends to stabilize it [see 

for example Wazzan et al. (1968a, 1970)]. This 

point was further discussed with reference to the 

hemisphere and ITTC test bodies by Arakeri and 

Acosta (1973) who concluded that for the separating 

flows of these bodies, the effect of heating was 

on the order of only a few percent. Since the heat-— 

ing rate and velocity ranges are similar in the 

present experiments, it is expected that the in- 

fluence of heating on the hemisphere and NSRDC 

bodies is not Significant. However, there is some 

question as to the influence of heating on the non- 

separating flow on the Schiebe body. Shown in Fig- 

ure 22 are averaged observed values of the position 

of transition calculated by Wazzan with and without 

wall heating. First, it can be seen that there is 

good agreement between Wazzan's calculation for an 

unheated boundary layer with e? amplification and 

the observed position of transition. However, the 

point to be noted is that (with a wall temperature 

10°F above the ambient water temperature) these 

same calculations predict a 40 percent delay in 

transition at Rep = 2.5 x 10°. This would suggest 

that wall heating is important although not perhaps 

sufficient to alter major trends in the present ex- 

periments. There is however the qualification that 

the calculation assumes a constant wall temperature 

while this is not the actual case. 

An attempt to measure the actual wall tempera- 

ture was made by installing six thermocouples near 

the surface of the model at positions of S/D = 0.4, 

0.6, 0.8, 1.0, 1.2, 1.4. The position of neutral 

stability on this body is S/D = 0.37 and the average 

position of transition varied from S/D = 1.0 to 

S/D = 0.8. Since it is the heating in the boundary 

layer prior to transition that is of importance, 



the values of the wall temperatures at S/D = 0.4, 

0.6, 0.8, 1.0 were of the most interest. The total 

heat flux was set at 250 watts (about 3W/cm2) at 

which the schlieren effect was observable. The 

wall temperatures were then measured at increasing 

values of velocity. It was found that the maximum 

wall temperature between S/D = 0.4 and 1.0 varied 

from 3°C to 5°C above the ambient temperature. 
However, it must be emphasized that these are very 

conservative values since the thermocouples are 

actually somewhat below the surface in a region of 

a high temperature gradient. When this gradient 

is accounted for our estimate of the surface excess 

temperature is from 1-3°C, a smaller but not neg- 

ligible amount. van der Meulen avoided the tem- 

perature effect by injecting a two percent salt 

solution. On the whole this method and the present 

one agree quite favorably (Figure 22). There is, 

however, the possibility of instability via a de- 

(c) 

FIGURE 29. Schlieren photographs of the Schiebe body 

with and without salt water injection. The top photo- 

graph of each group is without injection; the bottom 

photograph shows the injection of MgSO, solution having 

a specific gravity of 1.02. The Reynolds number is 

Ue67) <9102in) (a) 26150) x) 102 in (((b)),, and) 3433) <1 dloe 
in (c). 
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FIGURE 30. Cavitation inception on the NSRDC body. 

stabilizing density gradient. This point was ad- 

dressed experimentally and in Figure 29 matched 

pairs of schlieren photographs, without and with 

salt injection are presented. It was found that 

although the appearance of the transition changed 

markedly the location of transition did not change 

significantly. 

6. PRESENTATION OF CAVITATION INCEPTION RESULTS 

Freestream Turbulence Level 

The data on the influence of freestream turbulence 

level upon cavitation inception is limited because 

of the low maximum water speed in the LTWT of about 

8m/s but more importantly because the turbulence 

generating grids located at the entrance to the 

test section cavitated themselves before the test 

models did. Consequently, only the 0.05 and 0.65 

percent turbulence level configurations could be 

used. The NSRDC body was the only one to be so in- 

vestigated. Some of these inception data are sum-— 

marized in Figure 30 where they are compared with 

Brockett's (1972) data. Inception on the NSRDC 

body was always of the band type which occurred 

suddenly without any precursor bubble type cavita- 

tion. As can be seen in Figure 30, inception oc- 

curred at the same value of the inception index for 

both turbulence levels, but as illustrated in Fig- 

ure 31 the subsequent developed cavitation was much 

less steady at the higher turbulence intensity. 

The Effects of Polymer Solutions 

Hemisphere Nose Body 

The type of cavitation and the value of the incep- 

tion index were found to be strongly dependent on 

the amount of polymer present in the boundary layer. 

For a fixed polymer solution concentration and free- 

stream velocity the following changes in inception 

were observed to take place: at zero injection 

rate, incipient band type cavitation as illustrated 

in Figure 32(a) always occurred. At injection rates 

less than the critical value (the injection rate 

at which the separation would disappear), band type 

inception still occurred but as can be seen in Fig- 

ure 32(b) the surface of the developed cavitation 
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FIGURE 31. The physical appear- 

ance of cavitation on the NSRDC 

body at two turbulence levels in 

the LIWT. The Reynolds number 

is 3.4 x 10°. In (a) the turbu- 

lence level is 0.05 percent and 

the cavitation index is 0.44. 

The turbulence level in the re- 

Maining photographs is 0.65 per- 

cent and the cavitation index is 

about 0.35 for all cases. 

FIGURE 32. In these photographs 

500 wppm of polyox solution is 

injected at the nose of the hemi- 

sphere body. The cavitation 

index is 0.59, and the Reynolds 

number is 6.7 x 10° (HSWT). The 

dimensionless injection rate, G, 

is zero in (a) 1.9 x 107° in (b), 

4.4 x 10-© in (c), and 5.24 
1o-© in (d). In many instances 

the attached cavitation would 

disappear. 

has a definite wave structure and the separation 

line has become very irregular. Inspection of 

Schlieren photographs of the fully wetted flow at 

this injection rate showed that the position of 

transition on the free shear layer had moved upstream 

from the no injection case and that the separation 

region was smaller in size. With a further increase 

in the injection rate to near critical values, dif- 

ferent types of cavitation were observed depending 

upon the facility. In the HSWI, band type inception 
would occur intermittently in patches with irregular 
separation lines and surfaces as is shown in Figure 

32(c), (d). At injection rates above the critical 
value, the same type of behavior took place, but with 

the flow altering between fully wetted and patchy 
band type cavitation more rapidly. A decrease in 

the cavitation number at this injection rate would 

make the cavitation more "violent," but no steady 

attached cavitation could be obtained. At these 

near-and-above critical injection rates the fully 

wetted observations showed the laminar separation 

had been eliminated with only an occasional short 

reappearance. That is, the flow in the region of 

interest was almost always turbulent. If then the 

injection rate was suddenly reduced to zero, a large 

steady cavity would quickly form on the body. 

In the LTWT the same sequence of cavitation 

events with increasing injection rates would occur 

as in the HSWT. However, near and above critical 

injection rates, travelling bubble and band type 

cavitation would occur simultaneously, unlike the 

HSWT where no bubble type cavitation was observed. 
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FIGURE 33. Cavitation inception with polymer 

injection on the hemisphere body. 

This difference will be discussed later. These 

inception data have been summarized in Figure 33. 

NSRDC Body 

The NSRDC body was tested only in the LTWT and it 

too was observed to go through a sequence of cavi- 

tation development similar to that of the hemisphere 

nose body in the LIWT; namely, that the injection 

of polymer at sub-critical rates changed the orig- 

inal band type inception to simultaneously occurring 

intermittent band and travelling bubble type incep- 

tion. At above critical injection rates the inter- 

mittency became more rapid but still no steady 

attached cavitation could be obtained. Examples 

of these types of cavitation are shown in Figure 

34. Notice in particular Figure 34(d) where only 

one cavitation bubble is visible at a cavitation 

number of 0.34. Values of the inception index 
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versus body Reynolds number are presented in Fig- 

ure 35. 

Schiebe Body 

The Schiebe body was tested in both the LIWT and the 

HSWT, but the influence of polymer was only studied 

in the LTWI. Again as for the hemisphere nose body, 

the type of cavitation depended upon the facility. 

In the LIWT, travelling bubble type inception always 

occurred and the presence of polymer was found to 

have no significant effect on either the type of 

cavitation or the inception index. Lowering of the 

tunnel pressure below the inception value produced 

a steady, attached cavity of the type normally as- 

sociated with the presence of a laminar separation. 

On the other hand, in the HSWT, travelling bubble 

type cavitation events were extremely rare. In- 

ception occurred with the sudden appearance of an 

unsteady attached cavity occasionally preceded by 

one or two travelling bubble events. Examples of 

these types of cavitation on the Schiebe body are 

given in Figure 36 and a summary of the inception 

data is given in Figure 37. A unique location of 

inception could not be accurately determined in 

either facility for this body. 

7. DISCUSSION 

Freestream Turbulence Level 

The main purpose of the investigation of freestream 

turbulence level upon cavitation inception was to 

determine if it could be a contributing factor to 

the differences in cavitation results on identical 

bodies tested in different facilities. In particu- 

lar, could the differences in cavitation inception 

on the same NSRDC test body between the CIT HSWT and 

the NSRDC 12-inch tunnel be explained by different 

FIGURE 34. The physical appear- 

ance of cavitation on the NSRDC 

body at a Reynolds number of 

3.4 x 10° in the LIWT with (a) 
no injection, (b) G = 3.4 x 10°77, 

cavitation index = 0.45 [same as 

in (a)I, (ce) 3.4 x 1077, cavita- 
tion index = 0.34, and (d) 7.1 x 

10-© at the same index! 
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FIGURE 35. Cavitation suppression by polymer injection 

on the NSRDC body. 

turbulence levels? From the proceeding discussion 

of the fully wetted results it appears that the 

differences in observed critical Reynolds numbers 

are probably due to a higher turbulence level in 

the NSRDC facility. It follows then that the dif- 

ferences in the type of inception for velocities 

less than 30 feet per second can be explained in 

terms of the different viscous flows. However, we 

FIGURE 36. : Photographs of cavitation on the (same) 
Schiebe body in the LIWT (upper picture) at a cavita- 
tion index of 0.52 and in the HSWT at an index of 0.41. 
The flow speeds are 7.3 and 14 m/s, respectively. 
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FIGURE 37. Cavitation inception on the Schiebe body 

in three different facilities. 

still need to account for the different freestream 

populations of nuclei, the subject of the next 

section. 

Polymer Injection 

Some inception data for the hemisphere nose body 

with polymer injections are given in Figure 38 as 

a function of the injection rate for two concentra- 

tions. The same data have been replotted in Figure 

39 against the non-dimensional injection parameter 

G. It can readily be seen that the two curves have 

collapsed onto one. A similar happy result was 

found when the dimensions of the laminar separation 

bubble on the hemisphere nose body were plotted 

versus the parameter G. These correlations of the 

inception index and separation bubble dimensions 

with G implies that the polymer "effectiveness" is 

proportional only to the amount present within the 

boundary layer, here taken to be the displacement 

thickness. 

For the NSRDC and hemisphere nose bodies it can 

be seen that increasing amounts of polymer in the 

boundary layer produce an increasing suppression 
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FIGURE 38. Cavitation index with polymer injection on 

the hemisphere body at a Reynolds number of 7.5 x 10°. 
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FIGURE 39. The data of figure 38 replotted against the 

dimensionless injection parameter G. 

of cavitation index. There is a limit, however, 

beyond which no further increase in cavitation 

suppression occurs. In the present experiments on 

the hemisphere nose body this limiting value of G 

is approximately 7 x 107© which also coincides with 

the removal of the laminar separation. These 

results and others are summarized in Figure 40 

where the maximum percent reduction in cavitation 

index has been plotted versus the Reynolds number. 

These include the "polymer ocean" results of Baker 

et al. (1973), Holl et al. (1974), and Ellis et al. 

(1970). However, the information from their re- 

ports is limited and all that can be said is that 

they give values approximately the same as those 

noted in the present case. The agreement is be- 

lieved to be reasonably good for experiments of this 

type insofar as the maximum effect goes. We presume 

that similar effects in "ocean" experiments could 

be achieved at much smaller concentrations if the 

G parameter has significance. 

During their cavitation tests Baker and Holl 

noted a change in the appearance of the developed 

cavitation. From photographic observations of these 

changes they speculated that the cavitation attenu- 

ation was due to a "flow reorientation in the region 

of the laminar separation bubble." They further 

suppose [Arndt et al. (1975)] that the amount of 
attenuation might depend on a Deborah number, 

TV /S51 where T is the molecular relaxation time 

of the molecule, V,, the freestream velocity, and 
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FIGURE 40. Maximum cavitation inception index suppres- 

. sion by polyox WSR 201 on the hemisphere nose. The 

Ellis and Baker results are for polymer "oceans." 
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6, is the boundary layer displacement thickness at 

separation. It now seems clearly established in 

our opinion, that the overall gross effect caused 

by the polymer in the flow about these bodies is a 

removal of the laminar separation by stimulation of 

transition and that this is indeed the origin of the 

flow "reorientation" noted by Baker and Holl. Pre- 

sumably, the molecular relaxation time has an im- 

portant role in boundary layer stability, but as 

yet this appears to be unknown; it may be that the 

parameter proposed by Arndt is important for some 

laminar flows with separation (as it is indeed for 

the flow about a circular cylinder), but we think 

not in the context of the present experiments. 

Since the suppression of cavitation upon these 

bodies is a result of the elimination of the laminar 

separation by the polymer it is worthwhile to com- 

pare the present results with those in which the 

separation is eliminated by another method. Arakeri 

and Acosta (1976) carried out a series of tests with 

a hemisphere nose body and an ITTC body using bound- 

ary layer trips to reduce the critical Reynolds num- 

ber in the HSWT. It was, briefly, found that with 

the trip present and at velocities above the new 

critical velocity, the occurrence of cavitation was 

significantly suppressed, and that at higher ve- 

locities the tunnel would choke from the model 

support before the body could be made to cavitate: 

The present polymer tests show a very similar large 

effect on inhibiting cavitation but not quite as 

dramatic as the tripped tests. 

8. FREESTREAM NUCLEI AND CAVITATION INCEPTION 

Some Observations in the LTIWT 

As will be recalled from the description of the 

LTIWT, this facility has no resorber which neces-— 

sitated cavitation data acquisition before pump- 

generated bubbles entered the test section. Ona 

number of occasions the cavitation on the NSRDC and 

hemisphere bodies was deliberately maintained and 

the pump-generated gas bubbles allowed to pass 

through the test section. As the number of free 

gas bubbles increased, the initially-occurring band 

type cavitation was gradually destroyed and replaced 

by travelling bubble type cavitation. An alterna- 

tive procedure was to lower tunnel static pressure 

so that the cavitation number had a value below 

-Cpmin but above the inception value and again 

allow the pump-generated bubbles to accumulate. 

The body would then eventually cavitate with in- 

ception then always being of the travelling bubble 

type. Schlieren observations of the basic viscous 

flow on the hemisphere nose were made at these 

gradually increasing freestream bubble populations 

and nuclei populations were measured when band type 

inception occurred and when this above deliberately- 

promoted bubble type inception occurred. The 

schlieren observations show (see Figure 41) that 

as the number of freestream nuclei increased, the 

laminar separation on the hemisphere nose became 

unsteady and was finally greatly diminished if not 

eliminated. Thus, in effect, the free-stream bub- 

bles serve to trip the boundary layer. 

Nuclei populations obtained when band type incep- 

tion occurred (0; = 0.44) are shown with distribu- 

tions obtained when deliberately promoted travelling 

bubble inception occurred (0; = 0.58, 0.73) in 

Figure 42. As can be seen in this figure, for 
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FIGURE 41. Flow past the hemi- 

sphere nose with many freestream 

bubbles showing boundary layer 

stimulation. 

nuclei with radii less than 100 microns all the dis- 

tributions are essentially the same whereas for 

nuclei greater than 100 microns radius the bubble- 

type inception distributions have many more nuclei 

than the band type inception distributions. Thus 

it seems possible that in facilities with many 

Macroscopic freestream gas bubbles, the normally 

occurring laminar separation on some bodies can be 

eliminated. The subsequent cavitation index and 

form of cavitation should then be controlled by the 

nuclei population. 4 

If so, the experiments on the NSRDC body at that 

facility and those tests on the same body in the 
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PIGURE 42. Nuclei distributions measured by holography 

in the LIWT (all microbubbles) and in the HSWT (essen- 

tially only solid particles). 

LTWT, when bubble type inception was deliberately 

promoted, should be very similar. This is, in fact, 

the case as the inception numbers are more-or-less 

the same. Beyond that, nuclei distributions are 

known for the two tests [Peterson (1972) and Fig- 

ure 42] so that, following the philosophy of Silber- 

man et al. (1974), it is possible to estimate the 

number of "cavitable" nuclei per unit volume for 

each experimental point. A rough estimate of the 

number of travelling cavitation events can be easily 

made if we take Johnson and Hsieh's (1966) "capture" 

radius of 0.01 body radius to determine the flux 

of fluid through the cavitating region. These data, 

calculated and measured events are tabulated in 

Table 3. Peterson measured the event rate acous- 

tically and chose one event/sec as the threshold 

level because of the agreement with a “visual" in- 

ception estimate. (Only the visual estimate was 

made in the LTWT.) 

Observation in the HSWT 

On the whole, the agreement of observations and 

event rates is satisfactory and it seems clear in 

this circumstance that viscous effects are not of 

primary importance and that travelling bubble cavi- 

tation, the type studied by the St. Anthony Falls 

group, is the prevalent form. But, on all of the 

bodies studied we have seen different forms of 

cavitation occur, when separation was not present, 

if the number of freestream nuclei is very small, 

as it is presumably in the California Institute of 

Technology HSWT and other resorber facilities. Then, 

even on the Schiebe body we see attached forms of 

cavitation at inception (see Figure 36) at very low 

inception indices with only rare occurrences of 

travelling bubble cavitation [see also Arakeri et al. 

(1976) ]. In these circumstances the fluid and the 

nuclei that it contains pass through regions of 

some tension (up to about 1/2 at m in the HSWT). It 

is conceivable then that the substantial pressure 

fluctuations in transition regions [Huang and Hannon 

(1975) ] can initiate cavitation. This is the ra- 

tionale for Arakeri's (1975) inception-transition 

pressure coefficient correlation. Values of —Cptr 
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TABLE Ml CAVITATION HVENT RATES 

$5 Model oy ee R. Cavitatable Calculated Measured 
Facility Mat'l. Nuclei/cm Events/sec Events per sec 

(ft/sec) (microns) (est) 

NSRDC CU 0.62 29.86 We 0.5 Ong 1.0 

CU 0.66 29. 86 15 ie 8 Bie WO) 

AU-Plated 0.65 29.86 14 Ze Al 3.8 ee 

DELRIN 0.69 29. 86 18 OS 0.9 1.0 

DELRIN 0.71 29.86 21 2.4 4.3 0 

LTWT CU 0.58 20.15 21 Sc 9) 10.7 -- 

CU 0.64 20. 10 29 2.0 Z.4 -- 

CU 0.66 ZO). U5 32 0.9 We il -- 

CU O73 20.25 58 Ne 7 2.0 -- 

are also shown for the Schiebe body in Figure 37; 

again the correlation is suggestive but not con- 

clusive. 

Further evidence of the difference between a 

resorber facility and a recirculating tunnel is 

given by the nuclei distributions of the flow in the 

California Institute of Technology HSWT. These data 

are averaged in the graph of Figure 42. Following 

Peterson (1972) it is possible to distinguish par- 

ticulate matter from gaseous microbubbles down to 

about 10 micrometers. Thus we identify solid par- 

ticulates on the one hand and microbubbles on the 

other. All of the nuclei reported in Figure 42 

for the LTWT are microbubbles. It is significant 

that the HSWT shows a very similar distribution of 

solid particulates, but very few microbubbles. In 

about ten holograms made of the HSWT flow, within 

the various sample volumes that were counted, about 

100 particles/cm? on the average were found. How- 

ever, of these, less than one on the average was a 

microbubble, too few even to hazard a guess as to 

the distribution. This finding certainly tends to 

explain the experimental trends in this facility if 

it is assumed (as appears evident) that the solid 

particulates do not act as nucleating sources. 

In closing this section we have perhaps come 

full circle in inception research to re-emphasize 

the important role of the cavitation nuclei. The 

influence of laminar inception on cavitation is now 

much clearer as are the effects of the processes 

that cause stimulation of the boundary layer. If 

there are many nuclei present (so that a large ten- 

sion on the body does not exist prior to cavitation) 

it is likely that travelling bubble cavitation will 

predominate, then the notion of a "standard body" 

to deduce cavitation susceptibility appears to be 

useful. However, with only a few nuclei other more 

_complex forms of cavitation are seen at inception. 

Comparison of Nuclei Distributions 

Data from several other investigations, reduced to 

the number density distribution function, N(R), by 

the following approximation 

number of nuclei per unit 

Ry + R, with radii between RQ, and R, ee ee 
(R,- R)) 

are shown in Figure 43. A tabulation of the mea- 

suring techniques and test conditions for each in- 

vestigation is given in Table 4. All the data have 

approximately the same slope, but the values of the 

distribution function can differ by several orders 

of magnitude, i.e., although the nuclei population 

changed by several orders of magnitude, the dis- 

tribution of the nuclei sizes remains constant. 

The large differences in populations is undoubtedly 

a consequence of the large variation in conditions 

which existed in the water when the data was col- 

lected and is no doubt one of the contributing fac- 

tors to the lack of repeatability seen in cavitation 

esitese 

A goal of cavitation research is to be able to 

predict the inception of cavitation and thus be able 

to scale laboratory results to prototype conditions. 

It is interesting then to compare nuclei populations 

in water tunnels to those in the ocean. Medwin 

acoustically measured bubble populations in the 

ocean near Monterey, California, and in Figure 43 

two of his measured distributions are presented. 

The summer distribution agrees reasonably well with 

the distributions obtained under cavitating con- 

ditions in strongly deaerated water. However, in 

the LTWT there are considerably more bubbles than 

found in the ocean for radii greater than about 30 
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TABLE IV COMPARISON OF NUCLEI MEASUREMENTS 

Investigator 

Gavrilov (1970) 

Peterson et al (1975) 

Arndt & Keller (1976) 

Keller & Weitendorf (1976) 

Medwin (1977) 

Peterson (1974) 

U.S. Navy (Naval Ocean 
System Center, San Diego, 

California. Courtesy 
Dr. T. Lang) 

Present Tests 

1975) (o=0.49, 
SCATTERING 

Measuring 
Technique 

Acoustic 

Light Scattering 
Holography 
Microscopy 

Light Scattering 

Light Scattering 

Acoustic 

Coulter Counter 

Coulter Counter 

Holography 

Facility 

Water Tunnel 

ene ID) 

Water Tunnel 

at NSMB 

Water Tunnel 

at Hamburg 
Model Basin 

Monterey Bay, 
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micrometers. Further, in the winter the measured 

bubble population in the ocean is one order of 

magnitude less than in the summer. We see then it 

is actually possible for laboratory facilities to 

have much higher nuclei populations than actually 

occur in the ocean. Medwin concludes interestingly 

that the microbubbles had a biological as well as 

physical origin because the concentration of bubbles 

increased with depth. This observation is perhaps 

of importance for the Coulter Counter measurements 

of Peterson (1974) and Lang (1977). The particulates 

measured there, although thought to be of organic 

material, may actually also contain some gas. 

Finally, it is amazing to observe the wide range 

of applicability of fairly simple power laws for 

particulate and microbubble populations. 

9. CONCLUSIONS 

It is clear that the onset of cavitation and its 

physical appearance at this onset can be greatly 

affected by freestream turbulence and the presence 

of minute amounts of long chain polymer solutes. 

The present results support the conclusion that 

these effects are indirect insofar as cavitation 

goes and that the primary effect is on the viscous 

flow past the test body. The polymer solutions in 

particular promote an early boundary layer transi- 

tion which forestalls the presence of laminar separa- 

tion much as does boundary layer stimulation by 

freestream turbulence or trips. It follows that 

cavitation on bodies not having laminar separation 



should not be much affected by freestream turbu- 

lence or polymer solutions. This appears to be 

the case if the test medium has "many" freestream 

nuclei so that travelling bubble cavitation is 

predominant. However, if only a few nuclei are 

present, attached forms of cavitation occur at 

inception even on nonseparating bodies. From 

recent nuclei measurements in the ocean it appears 

that some test facilities may have too many nuclei 

and others possibly too few. 

ACKNOWLEDGMENTS 

This work was supported by the Department of the 

Navy, Office of Naval Research under Contract 

NOO014-76-C-0156 (in part) and by the Naval Sea 

Systems Command, General Hydromechanics Research 

Program, administered by the David W. Taylor Naval 

Ship Research and Development Center under Contract 

NOO014-75-C-0378. This assistance is gratefully 

acknowledged. Special thanks are due to Mrs. 

Barbara Hawk for manuscript preparation and to 

Joseph Katz and David Faulkner for their painstaking 

efforts in hologram analysis. Finally we thank 

Professor M. Morkovin for his careful and helpful 

review of the manuscript. 

REFERENCES 

Acosta, A. J., and H. Hamaguchi (1967). Cavitation 

inception on the ITTC standard headform. Hydro- 

dynamics Laboratory, Report No. E-149.1, Cali- 

fornia Institute of Technology. 

Acosta, A. J., and B. R. Parkin (1975). Cavitation 

inception--A selective review, J. Ship Res., 19, 

4; 193-205. 

Arakeri, V. H., and A. J. Acosta (1973). Viscous 

effects in inception of cavitation on axi- 

symmetric bodies. J. Fluids Eng. 95, Ser. 1, 

4; 519-528. 

Arakeri, V. H. (1975). A note on the transition 

observations on an axisymmetric body and some 

related fluctuating wall pressure measurements. 

Je Hluids Eng. , 97, ‘Sex. 1, 1; 82=s8i7-: 

Arakeri, V. H., and A. J. Acosta (1976). Cavita- 

tion inception observations on axisymmetric 

bodies at supercritical Reynolds numbers. J. 

Ship Res., 20, 1; 40-50. 

Arndt ReEe Acie .n las Basllet siden Wie sHOUsy) and 

C. B. Baker (1975). A note on the inhibition 

of cavitation in dilute polymer solutions. App. 

Res. Lab. Tech. Memo. 75-285, The Penn. State 

Univ. 

Arndt, R. E. A. and J. W. Daily (1969). Cavitation 

in turbulent boundary layers. Cavitation State 

of Knowledge, ASME; 64-86. 

Arndt, R. E. A. and A. P. Keller (1976). Free gas 

content effects on cavitation inception and noise 

in a free shear flow; Two phase flow and cavi- 

tation in power generation systems. IAHR Symp. 

Grenoble, March 16, 1976. 

Baker, C. B., R. E. A. Arndt, and J. W. Holl (1973). 

Effect of various concentrations of WSR-301 

polyethylene oxide in water upon the cavitation 

performance of 1/4-inch and 2-inch hemispherical 

nosed bodies. App. Res. Lab. Tech. Memo. 73-257, 

The Penn. State Univ. 

Beckwith, T. G., and N. L. Buck (1961). Mechanical 

Measurements. Addison-Wesley, Reading, Mass. 

107 

Brennen, C. (1970). Some cavitation experiments 

with dilute polymer solutions. J. of Fluid 

Mech., 44, part 1; 51-63. 

Brockett, T. (1972). Some environmental effects 

on headform cavitation inception. NSDRC Rep. 

3974. 

Cavitation Committee (1969). Summary of replies to 

questionnaire on water tunnel methods. 12th ITTC. 

Debrule, P. M. (1972). Friction and heat transfer 

coefficients in smooth and rough pipes with 

dilute polymer solutions. Ph.D. Dissertation, 

California Institute of Technology. 

Ellis, A. T., J. G. Waugh, and R. Y. Ting (1970). 

Cavitation suppression and stress effects in 

high-speed flows of water with dilute macro- 

molecular additives. J. of Basic Eng., Sept.; 

459-466. 

Feldberg, L. A., and K. T. Shlemenson (1973). The 

holographic study of cavitation nuclei. Dis- 

cussion to Proc. IUTAM Symp. on Nonsteady Flow 

of Water at High Speeds. Leningrad, USSR 

(English version; Moscow 1973); 106-111. 

Gates, E. M., and J. Bacon (1978). Determination 

of cavitation nuclei distributions by holography. 

Wo Glasto RAG, AA, ip Zs, 

Gavrilov, L. R. (1970). Free gas content of a 

liquid and acoustical techniques for its measure- 

ment. Sov. Phys-Acoustics, 15, 3; 285-295. 

Hall, D. J., and J. C. Gibbings (1972). Influence 

of stream turbulence and pressure gradient upon 

boundary layer transition. J. of Mech. Eng. 

Sethe da Bp alsvaS iss. 

Holl, J. W., and A. L. Treaster (1966). Cavitation 

hysteresis. J. of Basic Eng., Trans. ASME, 

Ser, ID, GH jp I@SoAily. 

Holl, J. W. (1968). Sources of cavitation nuclei. 

Pres. at the 15th Amer. Towing Tank Conf., 

Ottawa, Canada. 

Holl, J. W., and A. L. Kornhauser (1969). Thermo- 

dynamic effects on desinent cavitation on hemi- 

spherical nosed bodies in water of temperatures 

from 80 degrees F to 260 degrees F. Pres. at 

the Joint Conf. of App. Mech. and Fluids Eng. 

Divisions, ASME, Northwestern Univ. ASME paper 

No. 69-—PE=1- 

Holl, J. W., R. E. A. Arndt, M. L. Billet, and 

C. B. Baker (1974). Cavitation research at the 

Garfield Thomas Water Tunnel. App. Res. Lab. 

Tech. Memo. 74-62, The Penn. State Univ. 

Hoyt, J. W. (1966). Effects of High-polymer solu- 

tions on a cavitating body. Proc. llth ITTC, 

Tokyo. 

Hoyt, J. W. (1972). The effects of additives on 

fluid friction. J. of Basic Eng., June; 258-285. 

Huang, T. T., and D. E. Hannan (1975). Pressure 

fluctuations in the regions of flow transitions. 

DTNSRDC Rep. 4723. 

Jaffe, N. A., T. T. Okamura, and A. M. O. Smith 

(1970). Determination of spatial amplification 

factors and their application to predicting 

‘transaid onl vArAA mie, 1S),) 0217) SOL —30/8r 

Johnson, Jr., V. E., and T. Hsieh (1966). The 

influence of the trajactories of gas nuclei on 

cavitation inception. 6th Symp. on Nav. Hydro. 

Johnsson, C. A. (1969). Cavitation inception on 

headforms, further tests. 12th ITTC, Rome; 

BSI 392% 

Keller, A. P. (1972). The influence of the cavita- 

tion nucleus spectrum on cavitation inception, 

investigated with a scattered light counting 

method. J. of Basic Eng., Dec.; 917-925. 



108 

Knapp, R. T., J. Levy, J. P. O'Neill, and F. B. 

Brown (1948). The Hydrodynamics Laboratory 

of the California Institute of Technology. 

Trans. ASME, 70; 437-457. 

Knapp, R. T., J. W. Daily, and F. G. Hammitt (1970). 

Cavitation. McGraw-Hill, New York. 

Lang, T. G., (1977). Naval Ocean Systems, Private 

Comm. 

Lindgren, H., and C. A. Johnsson (1966). Cavitation 

inception on head forms ITTC comparative experi- 

ments. Pub. of the Swedish State Shipbuilding 

Exper. Tank, No. 58. (Also presented at the 

llth ITTC Tokyo, 1966). 

Loehrke, R. I., and H. M. Nagib (1972). Experiments 

on management of freestream turbulence. AGARD 

Rep. No. 598. 

Mack, L. M. (1977). Transition and laminar in- 

Stabwlattye die ee ae PUD 7715). 

Medwin, H. (1970). In situ acoustic measurements 

of bubble populations in coastal ocean waters. 

J. Geophys. Res. 75, 599-611. 

Medwin, H. (1977). In situ acoustic measurements 

of microbubbles at sea. J. Geophys. Res. 82, 

Gp SPARS 

Morgan, W. B. (1972). Air content and nuclei mea- 

surements. 13th ITTC, Rep. of Cavitation Comm. 

Morgan, W. B., and F. B. Peterson (1977). Cavita- 

tion inception. 18th Amer. Tow. Tank Conf., 

U.S. Naval Acad., Annapolis, Md. 

Parkin, B. R., and R. W. Kermeen (1953). Incipient 

cavitation and boundary layer interaction on a 

streamlined body. Hydro. Lab. Rep. E-35.2, 

California Institute of Technology. 

Peterson, F. B. (1968). Cavitation originating at 

liquid-solid interfaces. NSDRC Rep. 2799. 

Peterson, F. B. (1972). Hydrodynamic cavitation 

and some considerations of the infltience of free 

gas content. 9th Symp. on Naval Hydro. 

Peterson, F. B., F. Danel, A. Keller, and Y. Lecoffe 

(1975). Determination of bubble and particulate 

spectra and number density in a water tunnel 

with three optical techniques. 14th ITTC. 

Peterson, L. L., (1974). The propagation of sun- 

light and the size distribution of suspended 

particles in a municipally polluted ocean water. 

Ph.D. Thesis, California Institute of Technology. 

Reshotko, E. (1976). Boundary-layer stability and 

transition. Ann. Rev. of Fluid Mech., 8; 311-349. 

Sarpkaya, T., P. G. Rainey, and R. E. Kell (1973). 

Flow of dilute polymer (Polyox WSR-301) solu- 

tions about circular cylinders. J. of Fluid 

Mech., 57; 177-208. 

Sarpkaya, T. (1974). On the performance of hydro- 

foils in dilute Polyox solutions. Int'l. Conf. 

on Drag-Reduction, Churchill Coll., Cambridge, 

England, 4-6 Sept. 

Schiebe, F. R. (1966). Cavitation occurrence 

counting--a new technique in inception research. 

Cavitation Forum, ASME, N.Y., 8-9. 

Schiebe, F. R. (1972). Measurement of the cavita- 

tion susceptibility of water using standard 

bodies. St. Anthony Falls Hyd. Lab. Project 

Rep. No. 118, Univ. of Minn. 

Silberman, E., F. Schiebe, and E. Mrosla (1973). 

The use of standard bodies to measure the 

cavitation strength of water. St. Anthony 

Falls Hyd. Lab., Rep. No. 141, Univ. of Minn. 

Spangler, J. G., and C. S. Wells, Jr. (1968). Ef- 

fects of freestream disturbances on boundary 

layer transition. AIAA J., 6; 543-545. 

Tagori, T., K. Masunaga, H. Okamoto, and M. Suzuki 

(1974). Visualization of flow of dilute polymer 

solutions around two-dimensional hydrofoils. 

2nd Symp. of Flow Visualization, Univ. of 

Tokyo, July; 83-88. 

Ting, R. Y., and A. T. Ellis (1974). Bubble growth 

in dilute polymer solutions. Physics of Fluids, 

ili VAG VA GDS 

Tsuji, H. (1956). Experimental studies on the 

spectrum of isotropic turbulence behind two 

grids. J. of Phys. Soc. of Japan, 11, 10; 

1096-1104. 

van der Meulen, J. H. J. (1972). Cavitation on 

hemispherical nosed teflon bodies. Int'l. Ship- 

building Prog., 19, 218; 333-341. 

van der Meulen, J. H. J. (1973). Cavitation sup- 

pression by polymer injection. ASME Cavitation 

and Polyphase Flow Forum, N.Y.; 48. 

van der Meulen, J. H. J. (1976). A holographic 

study of cavitation on axisymmetric bodies and 

the influence of polymer additives. Doctoral 

Thesis, Netherlands Ship Model Basin. 

van der Walle, F. (1962). On the growth of nuclei 

and the related scaling factors in cavitation 

inception. 4th Symp. on Naval Hydro. 

van Driest, E. R., and C. B. Blumer (1963). Bound- 

ary layer transition: freestream turbulence 

and pressure gradient effects. AIAA J., 1, 6; 

1303-1306. 

Vanoni, V. A., E. Hsu, and R. W. Davies (1950). 

Dynamics of particulate matter in fluid sus- 

pensions. Hydro. Lab. Rep. No. 7l.la, California 

Institute of Technology. 

Wazzan, A. R., T. T. Okamura, and A. M. O. Smith 

(1968a). The stability of water flow over 

heated and cooled flat plates. J. of Heat 

Transfer, Feb.; 109-114. 

Wazzan, A. R., T. T. Okamura, and A. M. O. Smith 

(1968b). Spatial and temporal stability charts 

for the Falkner-Skan boundary layer profiles. 

D.A.C. rep. 67086, McDonnell Douglas Corp. 

Wazzan, A. R., G. Keltner, T. T. Okamura, and A. 

M. O. Smith (1972). Spatial stability of stag- 

nation water boundary layer with heat transfer. 

Physics of Fluids, 15, 12; 2114-2118. 

Wazzan, A. R., C. Gazley, Jr. (1978). The combined 

effects of pressure gradient and heating on the 

stability and transition of water boundary 

layers. Rand Rept. R-2175-ARPA. 

Wu, J. (1971). Some techniques of ejecting additive 

solutions for drag reduction. Hydronautics 

Technical Rept. 7101-1. 

Additional Reference* 

van Ingen, J. L. (1977). "Transition, pressure 

gradient, suction, separation and stability 

theory," paper 20 AGARD proc. CP-224. 

* 

Suggested by Professor M. V. Morkovin 



Discussion 

M. A. WEISSMAN 

My question was "What is your definition of 

growth rate?" This is quite a crucial point, for 

in comparing theory to experiment, we must make 

sure that we are comparing like to like. 

The meaning of growth rate for nonparallel 

flow is not obvious. Let us consider El—Hady and 

Nayfeh's lowest order solution (Eq. 42): 

A = iN feGe ry)explif (a + ca )dx - iwt] (1) 
1 0 1 0 1 

The downstream growth of the magnitude of this 

function is not purely contained in the expotential 

factor. The change in the eigenfunction, Tt, with 

x, also contributes to "growth." In fact, a com- 

miete definition of growth would be 

1 a|z,| 

er el ex 

which reduces to 

G= @) + eG, + Tel Oe, (2) 
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using (1), where it is understood that Gy and G4 

are the negative and imaginary parts of o, and a,. 

[Bouthier (1972), Gaster (1974), and Eagles and 

Weissman (1975)]. 

Equation 2 shows that the growth rate is 

actually a function of y. (It is also a function 

of the flow quantity under consideration, see the 

above mentioned references.) However, if we agree 

to measure the growth rate at a particular 

y-position and if the eigenfunction is normalized 

at that position (so that 3|c|/ax = 0 at that 

position), then the influence of the changing 

eigenfunction on growth rate will disappear (for 

this particular definition of growth rate). The 

poit is that a, is not uniquely defined; it depends 

on the normalization used for Z. [This can also 

be seen from examination of the equation defining 

Oye Eq. 35]. The authors have neglected to explain 

what their normalization was. 
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Author’s Reply 

ALI H. NAYFEH 

The growth rate in a parallel flow can be 

unambiguously defined, but it cannot be unambig- 

uously defined in a nonparallel flow. Because the 

eigenfunctions are functions of y as well as x, 

Saric and Nayfeh (1977) note that stable flows may 

be termed unstable and vice versa. Saric and 

Nayfeh (1977) discussed in great detail the differ- 

ent possible definitions of the growth rate and 

compared these definitions with all available exper- 

imental data for the Blasius flow. They found that 

all the experimental data (neutral curves or growth 

rates) obtained at the values of n for which |u| 
has a maxima can be correlated with the nonparallel 

results if the growth rate is defined as in (55). 

For the heated liquid problem, we arrived at the 

same conclusion. Including the distortion of the 

eigenfunction with the streamwise position, the 

definition, (56), underpredicts the growth by 

large amounts. 



Discussion 

G. CHAHINE and D. H. FRUMAN 

The question of whether polymer solutions 

affect cavitation inception through changes of the 

flow structure or through the inhibition of bubble 

growth has been the subject of much controversy. 

In this excellent paper the authors seem to adhere 

to the first school of thought and disregard the 

second. We think that there is ample evidence of 

the profound flow changes introduced by the ejected 

polymers to support, at least partially, their 

contention. However, evidence also exists showing 

that the onset of acoustically generated cavitation 

is delayed by the presence of minute amounts of 

polymers and asbestos fibers [Hoyt (1977)]. also, 

in investigating the behavior of spark-generated 

bubbles in the vicinity of a solid wall, the dis- 

cussers have observed significant changes being 

promoted by the presence of the polymers. 

Figure 1 shows the geometric dimensions that 

have been considered in the analysis of the bubble 

behavior. The displacement of point A, where the 

re-entering jet originates, divided by the maximum 

lateral dimension of the bubble, Rumax, is plotted 

in Figure 2 as a function of the dimensionless time 

parameter, t/tp, and the parameter, n, which is the 

ratio between Rumax and £, the distance between the 

center of the spherical initial bubble and the wall. 

As shown, the polymer solution has a retarding 
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effect on the re-entering jet. This effect in- 

creases with increasing n [Chahine and Fruman 

(1979)]. Together with results shown in Hoyt, 

our data further confirm that, in the absence of 

flow, bubble behavior is affected by the intrinsic 

properties of dilute polymer solutions. 
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EDWARD M. GATES and ALLAN J. ACOSTA 

Messrs. Chahine and Fruman have raised the 

question of the relative importance of polymer- 

induced changes in bubble growth versus induced 

changes in the flow structure with regard to the 

suppression of cavitation. Although both experi- 

mental [Ellis and Ting (1970); Chahine and Fruman! 

(1979)] and theoretical [Street (1968); Fogler and 

Goddard (1970)] work demonstrate that in "no-flow" 

situations the growth and collapse rates in polymer 

solutions are different than those in pure water, 

the magnitude and sense (Street predicts an in- 

crease in bubble growth rate) of the changes are 

open to question. On the other hand, the results 

of Hoyt (1976), Brennen (1970), van der Meulen 

(1976), and the present work show drag-reducing 

polymers have a very dramatic effect upon the flow 

structure in jets and axisymmetric bodies. The 

authors believe that in the present work the influ- 

ence of these profound flow alterations predominate 

over any influence of modified bubble dynamics as 

nicely shown by them as evidenced by the following 

observations: 

First, it was observed in the LIWT that cavi- 

tation inception on the non-separating Schiebe body 

was not influenced by viscous considerations and 

was of the travelling bubble type. In this situa- 

tion we would expect that if the polymer effect 

upon bubble dynamics was significant, it should be 

well illustrated under these circumstances. How- 

ever, we (like van der Meulen) observed no change 

in either the cavitation index or the appearance 

of the cavitation at inception. Second, on the 

hemisphere nose and NSRDC bodies a similarly large 

suppression of the inception index was obtained by 

Arakeri and Acosta (1976) through the elimination 

of the laminar separation by a mechanical boundary 

layer trip - a situation for which there is no 

change of bubble dynamics. 

From these observations we infer that the in- 

fluence of the polymer on cavitation inception is 

dominated by changes in the flow structure rather 

than modified bubble dynamics. However, in "non- 

flow" sitations it must be assumed that modified 

bubble dynamics are responsible for the observed 

changes and the work of Messrs. Chahine and Fruman 

is a useful addition to this area of study. 
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ABSTRACT 

The differential equations of the thick axisymmetric 

turbulent boundary layer and wake are solved using 

a finite-difference method. The equations include 

longitudinal and transverse surface curvature terms 

as well as the static-pressure variation across the 

boundary layer and wake. Closure of the mean-flow 

equations is affected by a rate equation for the 

Reynolds stress deduced from the turbulent kinetic- 

energy equation. The results of the method are 

compared with the two sets of data obtained at the 

Towa Institute of Hydraulic Research from experi- 

ments in the tail region of a modified spheroid 

and low-drag body of revolution, and also with the 

predictions of a simple integral approach proposed 

earlier. It is shown that the differential approach 

is superior, provided due account is taken of the 

normal pressure variation and the direct influence 

of the extra rates of strain, associated with the 

longitudinal and transverse surface curvatures, on 

the length scale of the turbulence. 

1. INTRODUCTION 

In the absence of flow separation, the boundary 

layer on a pointed-tailed body of revolution con- 

tinues to grow in thickness up to the tail. Over 

the rear quarter of the length of a typical body, 

the boundary layer thickness becomes large enough 

to invalidate the assumptions of conventional thin 

boundary-layer theory. The measurements of Patel, 

Nakayama, and Damian (1974) on a modified spheroid 

as well as those of Patel and Lee (1977) on a low- 

drag body indicate that the breakdown of thin bound- 

ary layer approximations is manifested by several 

concurrent flow features, namely (a) the boundary 

layer thickness is no longer small compared with 

the local transverse and longitudinal radii of sur- 

- face curvature, (b) the velocity component normal 

to the wall is not small, (c) the pressure is not 
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constant across the boundary layer, and (d) the 

pressure distribution on the body surface does not 

conform with that predicted by potential flow theory, 

as a consequence of the interaction between the 

thick boundary layer and the external inviscid flow. 

These features have been recognized in the develop- 

ment of the simple integral method of Patel (1974) 

for the calculation of a thick axisymmetric bound- 

ary layer, and later on, in the formulation of the 

interaction scheme of Nakayama, Patel, and Landweber 

(1976a,b) which attempted to couple the boundary 

layer, the near wake and the external inviscid flow 

by means of successive iterations. Although the 

overall iteration scheme proved to be quite success-~ 

ful, the treatment of the boundary layer using the 

integral method, and particularly its extension to 

calculate the near wake, required many assumptions 

which remain untested. The purpose of the present 

work was therefore to develop a more rational pro- 

cedure in which the differential equations of the 

thick boundary layer and the near wake are solved 

by means of a numerical method, since it appeared 

that such a procedure would provide not only a 

more reliable vehicle for the extension of the 

boundary layer solution into the wake, but also 

yield the detailed information on the velocity 

profiles required for the interaction calculations. 

This paper describes the new differential method 

and evaluates its performance relative to the inte- 

gral method as well as the available experimental 

information. 

2. DIFFERENTIAL EQUATIONS AND TURBULENCE MODEL 

In the (x,y,¢) coordinate system shown in Figure 1, 

x and y are distances measured along and normal to 

the body surface, respectively, and ¢ is the azi- 

muthal angle. As shown by Patel (1973) and Nakayama, 

Patel, and Landweber (1976b), the momentum equa- 

tions of a thick axisymmetric turbulent boundary 

layer may be written 
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FIGURE 1. Coordinate system and notation. 
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and the continuity equation is 

a a ¥ 
53 (Ur) + ay (xh,V) = 0 (3) 

U and V are the components of mean velocity in the 

x and y directions, respectively; h, = 1 + ky, Kk 

being the longitudinal surface curvature; T = —puv 

+ u dU/dy, where p is density, wu is viscosity and 

-puv is the Reynolds stress; r = r, + y cos 8 is the 

radial distance measured from the body axis, 8 

being the angle between the tangent to the surface 

and the axis of the body; and p is the static pres- 

sure. These equations resulted from order of mag- 

nitude considerations and an examination of the 

data from the modified spheroid experiments of 

Patel, Nakayama, and Damian (1974). Specifically, 

from Eq. (2) we note that the static pressure varies 

across the boundary layer and that the gradient of 

the pressure in the direction normal to the surface 

is associated primarily with the curvature of the 

mean streamlines. 

Equations (1), (2), and (3) also apply to the 

wake, with k = 0 and 0 = O (i-.e., r = y)- In place 

of the no-slip boundary conditions on the body sur- 

face, however, the conditions on the wake center- 

line are dU/dy = O and t = O. 

If the Reynolds stress is determined by a one- 

equation model using the turbulent kinetic-energy 

equation, as proposed by Bradshaw, Ferriss, and 

Atwell (1967), then the appropriate closure equa- 

tion for the flow outside the viscous sublayer and 

the blending zone is 

1 U oT chs ou 

Daa) Naan ox a= ; {2 7 “) 

- T 3/2 
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Pighiet, Aaa/ow mp he Tw 2 e 
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where a, is a constant (=0.15), G is a diffusion 

function and 2 is a length-scale function identified 

with the usual mixing length. G and % are assumed 

to be universal functions of y/é, where 6 is the 

boundary layer thickness. The particular forms of 

these functions proposed by Bradshaw et al. (1967) 

for a thin boundary layer have gained wide accep- 

tance and have proved adequate for the prediction 

of a variety of boundary layers developing under 

the influence of different pressure gradients and 

upstream history. In the adoption of this closure 

model for the treatment of thick boundary layers 

and wakes, however, it is necessary to consider the 

influence of transverse and longitudinal surface 

curvatures on the turbulence. 

Figure 2 shows the conventional transverse and 

longitudinal curvature parameters for the modified 

spheroid and low-drag body [Patel and Lee (1977) ]. 

The ratio of the boundary-layer thickness to the 

transverse radius of curvature, 6/ro, is seen to be 

more than twice as large in the latter case as in 

the former. In both cases, however, 6/ro is less 

than 0.4 up to X/L = 0.75, so that the boundary 

layers may be regarded as thin up to that station. 

Over the rear one-quarter of the body length, the 

influence of transverse curvature would prevail 

not only through the geometrical terms in the mo- 

mentum and continuity equations but also through 

any direct effect on the turbulence. The precise 

nature of the latter is not known at the present 

time since the turbulence is also affected by the 

longitudinal curvature of the streamlines associated 

with the curvature of the surface as well as the 

curvature induced by the rapid thickening of the 

boundary layer over the tail. 

The longitudinal surface curvature parameter ké 

is seen to be quite different for the two bodies. 

In the case of the modified spheroid, the curvature 

is convex up to X/L = 0.933 and zero thereafter, 

while that of the low-drag body is initially convex 

and becomes concave for X/L > 0.772. Several 

recent studies with nominally two-dimensional thin 

© Modified Spheroid 

& Low-Orag Body 

Ly 

0.4 Os 0.6 0.7 0.8 0.9 10 

X/L 

FIGURE 2. Ratios of boundary-layer thickness to the 

longitudinal and transverse radii of surface curvature. 



turbulent boundary layers [Bradshaw (1969, 1973), 

So and Mellor (1972, 1973, 1975), Meroney and 

Bradshaw (1975); Ramaprian and Shivaprasad (1977); 

Shivaprasad and Ramaprian (1977)] have indicated 

that even mild (ké~0.01) longitudinal surface 

curvature exerts a dramatic influence on the turbu- 

lence structure. In particular, it is noted that 

quantities such as the mixing length 2, the struc- 

ture parameter a, = -uw/q2 and the shear-stress 

correlation coefficient uv/(Vva- vv“) are influenced 
markedly, and experiments indicate that convex 

streamline curvature leads to a reduction in these, 

whereas concave curvature has an opposite effect. 

The turbulence measurements on the modified spheroid 

and the low-drag body appear to confirm these ob- 

servatons although the relative influence of longi- 

tudinal streamline curvature and transverse surface 

curvature could not be separated readily. 

Bradshaw (1973) has argued that whenever a thin 

turbulent shear layer experiences an extra rate of 

strain, i.e., in addition to the usual dU/dy, the 

response of the turbulence parameters is an order 

of magnitude greater than one would expect from 

an observation of the appropriate extra terms in 

the mean-flow equations of momentum and continuity. 

For THIN shear layers and SMALL extra rates of 

strain he proposed a simple linear correction for 

the length scale of the turbulence, viz. 

Be a 
= U/oy (5) 

where £, is the length scale with the usual rate 

of strain, dU/dy, & is the length scale with the 

extra rate of strain, e, and a is a constant of 

the order of 10. For the axisymmetric boundary 

layer being considered here, there are two extra 

rates of strain: 

Pcs! (6) 

ns TP icy 

due to the longitudinal curvature, and 

fy oe es ot a) 
ies 

due to the convergence or divergence of the stream- 

lines (in planes parallel to the surface) associated 

with the changes in the transverse curvature. The 

former is a shearing strain while the latter is a 

plain strain, and it is not certain whether the 

two effects can be added simply in using Eq. (5) 

as recommended by Bradshaw (1973). If this is the 

case, however, we would expect a greater reduction 

in £ in the tail region of the modified spheroid, 

where kK is positive and dr,/dx is negative, than 

on the low-drag body, where kK becomes negative and 

would therefore tend to offset the influence of 

the negative dr,/dx. Although the available data 

appear to bear this out to some extent, a direct 

comparison between Eqs. (5), (6), and (7) and the 

data was not attempted, especially in view of 

Bradshaw's [Bradshaw and Unsworth (1976) ] assertion 

that Eq. (5) should be used in conjunction with a 

simple rate equation which accounts for the up- 

stream extra rate-of-strain history. He proposes 

ae 
Me eft : 
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where e is the actual rate of strain, eef¢ is its 
effective value and 106 represents the "lag length" 
over which the boundary layer responds to a change 

ine. In order to determine the merit of this 

proposal, it is of course necessary to incorporate 

it in an actual calculation and make a comparison 

between the predictons and measurement. Such an 

attempt has been made here. 

The functions £2, and G used in the present study 
are shown in Figure 3. For the wake calculation, 
the linear variation of 2, in the wall region is 
replaced by the constant value of 0.09, as shown 

by the dotted line in the figure. The local dis- 

tribution of the length scale, %, is thus given by 

Eqs. (6) through (9) while the diffusion function, 

G, and the structure parameter, a ,, retain their 

thin-boundary-layer values. 

3. SOLUTION OF THE DIFFERENTIAL EQUATIONS 

A numerical method available for the solution of 

equations corresponding to (1), (3), and (4) for 

a thin two-dimensional boundary layer was modified 

to introduce the longitudinal- and transverse- 

curvature terms. Instead of incorporating the y- 

momentum, Eq. (2), into the solution procedure, 

however, changes were made such that a prescribed 

variation, across the boundary layer, of the pres- 

sure gradient dp/dx could be used. This implies 

that the pressure field is known a priori. The 

solution of Eqs. (1), (3), and (4) together with 

Eqs. (6), (7), (8), and (9) can then be obtained 

through step-by-step integration by marching down- 

stream from some initial station where the velocity 

and shear-stress profiles are prescribed. A 

staggered mesh, explicit numerical scheme, similar 

to that used by Nash (1969), was used to integrate 

the equations in the domain between the first mesh 

point away from the surface (or the wake center- 

line) to some distance, typically 1.25 6, outside 

the boundary layer and the wake. The fifteen mesh 

points across the boundary layer are distributed 
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C0) Sg RS ee 

6 08 5| 
(G)y=8 

06 

04 
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FIGURE 3. Distributions of empirical functions, 29 

and G. 
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non-uniformly to provide a greater concentration 

near the wall and the wake centerline. Instead of 

carrying out the integration of the equations up 

to the wall, i.e., through the viscous sublayer 

and the blending zone, the numerical solution at 

the first mesh point, located in the fully turbulent 

part of the boundary layer, is matched to the wall 

using the law of the wall. In the extension of the 

method to the wake, the matching between the first 

mesh point and the wake centerline is accomplished 

by using the conditions 3U/dy = O and t = O on the 

centerline. The main differences between the 

boundary layer and wake calculation procedures are 

therefore the treatment of the flow between the 

first mesh point and the wall or the wake center- 

line, and the change in 2, at the tail. Note that 

the local value of £2 in the boundary layer as well 

as the wake is different from 2, due to the lag, 

Eq. (8). The length scale recovers the reference 

distribution % 4 asymptotically in the far wake. 

Since the near wake data from the low-drag body 

indicated that most of the adjustment from the 

boundary layer to the far wake is accomplished over 

roughly five initial wake thicknesses, the lag 

length for the wake calculation was taken to be 

5 6, rather than 10 6 used for the boundary-layer 

calculation on the basis of Bradshaw's (1973) sug- 

gestion. Since the extra rates of strain vanish 

at the tail (k = 0, dr j/dx = 0), the length scale 

approaches the £2, distribution at about five wake 

radii downstream of the tail. 

Preliminary calculations performed with the dif- 

ferential method described above quickly indicated 

that the extra rates of strain in both experiments 

were much larger than those examined by Bradshaw 

(1973) in support of the linear length-scale 

correction formula of Eq. (8). In fact, the use 

of the linear formula led to a rapid decrease in 2 

and indicated almost total destruction of the 

Reynolds stress across the boundary layer in the 

tail region and the near wake. In view of this, 

recourse was made to a non-linear correction formula 

in the form 

ae 
L eff,- 1 
— = 1- — Qo { DU/ay? (8a) 

which reduces to the linear one, Eq. (8), for 

small extra rates of strain. Equations (1), (3), 

and (4), together with (6), (7), (8a), and (9), 

were then solved with the following inputs: 

A: the measured wall pressure distribution Cow 

(i-e., no normal pressure variation) and 

L(y/8) = &o(y/8) 
B: the measured Cpy with %£(y/s) corrected for 

only the longitudinal curvature (e = eg) 

C: the measured Cpy with 2(y/6) corrected for 
only the streamline convergence (e = e;) 

D: as above, but with e = Cn sr Gs 

E: using e = e€, + ey in Eqs. (8a) and (9), and 

a variable dp/dx across the boundary layer 

evaluated by assuming a linear variation in 

p from y = 0 to y = 6 and using the measured 

values of Cpw, Cpg and 6. 

Thus, case A corresponds to an axisymmetric bound- 

ary layer with thin, two-dimensional boundary-layer 

physics. The other cases enable the evaluation of 

the relative influence of the extra rates of strain 
as well as the static pressure variation through 

the boundary layer. The calculations were started 

with the velocity and shear-stress profiles mea- 

sured at X/L = 0.662 on the modified spheroid and 

at X/L = 0.601 on the low-drag body. 

4. COMPARISONS WITH EXPERIMENT 

The major results of the calculations are summarized 

in Figure 4(a-k) for the low-drag body and in 

Figure 5(a-h) for the modified spheroid. However, 

in the latter case the calculations are restricted 

to the boundary layer since detailed measurements 

were not made in the wake. Both figures contain 

comparisons between the experimental and calculated 

velocity, shear-stress, and mixing-length profiles 

at a few representative axial stations as well as 

the development of the integral parameters, 62, Ad, 

H, H, and Cg, with axial distance. These parameters 

are defined by 
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and 
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Ce = (12) 
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Where Us is the velocity component at the edge of 

the boundary layer and wake (y = 6), tangent to the 

body surface for the boundary layer and parallel 

fe) %, 
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FIGURE 4(a). Comparison of measurements with the solu- 

tion of the differential equations, low-drag body. Ve- 

locity and shear stress profiles at X/L = 0.920. 
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to the axis for the wake. In the interest of clar- 

ity, the results of all the calculations (cases A 

through E) are shown only at one axial station 

(Figure 4b and 5b), those at other stations being 

qualitatively similar. 

Considering the most detailed figures, 4b and 

5b, first, it is clear that the predictions are 

rather poor when the length scale, &, is assumed 

to be the same as that in a thin boundary layer 

(case A). This is particularly evident in the pre- 

diction of the shear-stress profiles across the 

boundary layer and the near wake. Incorporation 

of the correction to & to account for the extra 

rate of strain due to longitudinal curvature (case 

B) leads to a marginal improvement in the case of 

the low-drag body and a dramatic improvement for 

the modified spheroid. This is to be expected in 

view of the grossly different surface curvature 

histories of the two bodies as noted earlier 
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(Figure 2). Nevertheless, it is clear that this 

correction by itself is not sufficient to account 

for the differences between the data and the calcu- 

lations with thin boundary-layer turbulence models 

(case A). The application of the correction for 

the extra rate of strain due to the transverse 

curvature (case C) appears to account for a major 

portion of these differences for both bodies. The 

influence of transverse curvature is in fact seen 

to be somewhat larger for the low-drag body as 

would be expected from the fact that 6/ro is greater 
in that case (Figure 2). The simple addition of 

the effects of the two rates of strain (case D) 

leads to a significant improvement in the prediction 

of both the velocity profiles and the shear stress 

profiles. The incorporation of a variable pressure 

gradient across the boundary layer (case E), which 

is an attempt to account for the normal pressure 

gradients, appears to make a significant improve- 



ment in the prediction of the velocity profile in 

the case of the modified spheroid, but its influence 

is small, and confined to the outer part of the 

boundary layer, in the case of the low-drag body 

Examination of the velocity and shear-stress 

profiles at several axial stations shown in Figures 

4a-f and 5a-c suggests that the incorporation of 

the non-linear length-scale correction of Eq. (8a), 

the associated rate Eq. (9) and the static-pressure 

variation in the equations of the thick boundary 

layer, which already include the direct longitudinal 

and transverse curvature terms, leads to satis- 

factory overall agreement with the data for both 

bodies. It is particularly noteworthy that the 

velocity and shear stress distributions in the 

far wake (X/L = 2.472) of the low-drag body are 

predicted with good accuracy. The level of 

agreement can obviously be improved further by 

appropriate modifications in the empirical functions 

in the turbulent kinetic-energy equation and changes 

in the lag-length used in the length-scale equation. 

The predictions of the shear stress profiles are 

consistent with those of the mixing-length distri- 

butions shown in Figures 4g and 5e insofar as lower 

shear stresses correspond to an over correction in 

the mixing length. These comparisons provide 

further insight into the manner in which the length 

scale must be modified to improve the correlation 

between the calculation method and experiment. It 

is apparent that the consistent discrepancy between 

the calculated and measured velocity and shear- 

stress profiles near the outer edge of the boundary 

layer and wake stems from a poor representation of 

the length scale distribution. 

It is interesting to note that, for both bodies 

the calculation precedure predicts normal components 

of mean velocity which are of the same order of 

Magnitude as those measured. The relatively close 

agreement between the predictions and experiment 

for both components of velocity is perhaps a good 

indication of the axial symmetry achieved in the 

experiments. The large values of the normal veloc- 

ity and the influence of static pressure variation 

noted above would appear to indicate that incorpora- 

tion of the y-momentum equation in the calculation 

procedure would be worthwhile. Note that this has 

been avoided in the present calculations by using 

the measured pressure distributions at the surface 

and the outer edge of the boundary layer. 

Finally, the comparisons made in Figures 4 (i-k) 

and 5 (e-h) with respect to the integral parameters 

show several interesting and consistent features. 

It is observed that the prediction of the physical 

thickness of the boundary layer and the wake is 

insensitive to the changes in 2 as well as the in- 

clusion of static pressure variation. The under 

estimation of the thickness is associated with the 

discrepancy, noted earlier, in the velocity profile 

near the outer edge of the boundary layer and wake. 

The planar momentum thickness 69 and the momentum- 

deficit area A» are also insensitive to changes in 

2. The variation of static pressure across the 

boundary layer appears to make a small but notice- 

able contribution to the development of A» in both 

cases. However, it is not large enough to account 

for the differences between the calculations and 

experiment. The predictions of the shape parameters, 

H and H, presented in Figures 4j and 5g, appear-to 

be satisfactory, especially in view of the rather 

_large scale of the plots. Nevertheless, there is 

a systematic difference between the data and the 
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calculation in the tail region and wake of the low- 

drag body. As indicated earlier, this can be im- 

proved by modifications in the empirical functions 

and the lag length. The predictions of the wall 

shear stress, shown in Figures 4k and 5h, indicate 

that the present method gives acceptable results 

for both bodies. 

5. COMPARISONS WITH THE INTEGRAL APPROACH 

An integral method for the calculation of a thick 

axisymmetric boundary layer was described by Patel 

(1974) and its extension to the wake was proposed 

by Nakayama, Patel, and Landweber (1976b). A few 

possible improvements in this method were examined 

recently relative to the description of the velocity 

profiles in the near wake and these are discussed 

by Patel and Lee (1977). The most recent version 

of this method has been used here to calculate the 

development of the boundary layer and the wake of 

the low-drag body in order to assess its performance 

relative to the experimental data (which were not 

available at the time the method and its extension 

were proposed) and the more elaborate differential 

method. 

The results of the calculations are shown in 

Figure 6. It is seen that the performance of the 

integral method is comparable with that of the 

differential method (compare Figures 4h-k with 

6a-d) with respect to the prediction of the bound- 

ary layer up to the tail. The prediction of the 

near wake is, however, distinctly inferior to that 

of the differential method, particular with respect 

to the physical thickness 6 and momentum deficit 

area Ay. The main conclusion to emerge from these 

calculations is that the integral method is capable 

of giving a good overall description of the flow 

features with considerably less computing effort. 

The differential approach is to be preferred, how- 

ever, Since it affords the opportunity for further 

refinement and gives greater details which may be 

necessary for many applications. A more thorough 

discussion of the integral method and its short- 

comings is given in Patel and Lee (1977). 

6. CONCLUSIONS 

From the present solutions of the differential 

equations, using the (one-equation) turbulent 

kinetic-energy model of Bradshaw, Ferriss, and 

Atwell (1967), it is clear that methods developed 

for thin shear layers cannot be relied upon to pre- 

dict the behavior of the thick boundary layer and 

wake of a body of revolution. Although these cal- 

culations have demonstrated that the boundary-layer 

calculation can be readily extended to the wake 

and that a fairly satisfactory prediction procedure 

can be developed by incorporating ad hoc corrections 

to the model for the extra rates of strain, along 

the lines recommended by Bradshaw (1973), it is 

indeed surprising that such modifications, proposed 

originally for small extra rates of strain and thin 

shear layers, work so well for the two bodies which 

are substantially different in shape. In keeping 

with recent trends in the formulation of turbulence 

models, one inquires whether thick axisymmetric 

boundary layers and near wakes ought to be treated 

by the so-called two-equation models. From the 

yapid changes in the mixing-length indicated by 
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the data, this would appear to be desirable since 

it would provide an extra equation for the length- 

scale of the turbulence in addition to that for 

its intensity. This would also enable the incorpo- 

ration of the variations in the structure parameter, 

a,, observed in the experiments. However, the 

recent work of Launder, Priddin and Sharma (1977) 
and Chambers and Wilcox (1977) indicates that even 

two-equation models, at least of the type available 

at the present time, require further modifications 

to account for the extra rates of strain stemming 

from such effects as streamline curvature, stream- 

line convergence, and rotation, two of which are 

present in the case examined here. 

In addition to the problem of turbulence models, 

the thick boundary layer and the near wake contain 

the complication of normal pressure gradients. The 

available data show that there exist substantial 

variations of static pressure across the boundary 

layer. The calculations presented here as well 

as those performed with the integral method by Patel 

and Lee (1977), suggest that the influence of the 

normal pressure gradients on the development of 

the boundary layer and the near wake is not negli- 

gible although it is masked by the rather major 

effects of the transverse and longitudinal surface 

curvatures on the turbulence. If normal pressure 

variations are to be taken into account in a method 

based on the differential equations, it is neces- 

sary to include the y-momentum equation in the 

solution procedure and regard the pressure as an 

additional unknown. This is perhaps best accom- 

plished by means of an iterative scheme such as 

that proposed by Nakayama, Patel, and Landweber 

(1976a,b), although other possibilities can be ex- 

plored. In view of the success of the present dif- 

ferential method, it is proposed to incorporate 

the present method in this iterative scheme, in 

place of the integral method, to study the viscous- 

inviscid interaction in the tail region in greater 

detail. é 

The representative calculations presented in 

Section 5 demonstrate the overall reliability of 

~the simple integral method of Patel (1974) for the 
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prediction of the thick boundary layer. Its ex- 

tension to the wake is not altogether satisfactory 

and this is attributed largely to the lack of a 

systematic procedure for the description of the 

velocity profiles in the near wake. This method 

is ideally suited, however, for rapid calculations 

to determine the state of the boundary layer in the 

tail region for certain applications. 
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Stern Boundary-Layer Flow on 

Axisymmetric Bodies 

TA DavHuang, N. Santelilkl, wand! Go Belt 

David W. Taylor Naval Ship Research and Development 

Center, Bethesda, Maryland 

ABSTRACT 

Measurements of static pressure distributions, mean 

velocity profiles, and distributions of turbulence 

intensities and Reynolds stress were made across the 

stern boundary-layers on two axisymmetric bodies. 

In order to avoid tunnel blockage, the entire after- 

body was placed in the open-jet test section of the 

DTNSRDC Anechoic Wind Tunnel. The numerical itera- 

tion scheme which uses the boundary layer and open 

wake displacement body is found to model satisfac- 

torily the interaction between the thick stern bound- 

ary layer and the external potential flow. The 

measured static pressure distributions across the 

entire stern boundary layer and the near wake are 

predicted well by potential flow computations for 

the displacement bodies. The measured distributions 

of mean velocity and eddy viscosity over the stern, 

except in the tail region (X/L > 0.90), are also 

well-predicted when the Douglas CS differential 

boundary-layer method is used in conjunction with 

the inviscid pressure distribution on the displace- 

ment body. However, the measured distributions of 

turbulence intensity, eddy viscosity, and mixing- 

length parameters in the tail region are found to 

be much smaller than those of a thin boundary layer. 

An approximate similarity characteristic for the 

thick axisymmetric stern boundary layer is obtained 

when the mixing-length parameters in the tail region 

are normalized by the square-root of the boundary- 

layer cross-sectional area instead of the boundary- 

layer thickness. 

1. INTRODUCTION 

Many single-screw ship propellers operate inside of 

thick stern boundary layers. An accurate prediction 

of velocity inflow to the propeller is essential to 

meet the ever-increasing demand for improving pro- 

peller performance. Huang et al. (1976) used a 

- Laser Doppler Velocimeter (LDV) to measure the ve- 
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locity profiles on axisymmetric models with and 

without a propeller in operation. The measured 

difference between these velocity profiles has 

provided the necessary clues to formulate an inviscid 

interaction theory for propellers and thick boundary 

layers. An iterative scheme was employed to compute 

the velocity profiles of the thick axisymmetric 

boundary layer. In this approach, the initial 

boundary-layer computation proceeds making use of 

the potential-flow pressure distribution on the body 

[Hess and Smith (1966)]. The flow calculations are 

then repeated for a modified body and wake geometry, 

by adding the computed local displacement thickness 

as suggested by Preston (1945) and Lighthill (1958). 

Potential-flow methods are then used to compute the 

pressure distribution around the modified body and 

the boundary-layer calculations are repeated using 

the new pressure distribution. The basic iterative 

scheme is continued until the pressure distributions 

on the body from two successive approximations agree 

to within a given error criterion (1 percent). 

The Douglas CS differential boundary-layer method 

[Cebeci and Smith (1974)], modified to properly ac- 

acount for the effects of transverse curvature, was 

used to calculate the boundary-layer over the axi- 

symmetric body. The integral wake relations given 

by Granville (1958) were used to calculate the dis- 

placement thickness in the wake. In the stern/ 

near-wake region (0.95 £ x/L £ 1.05), where X is the 
axial distance from the nose and L is the total 

length, a fifth-degree polynomial was used, with 

the constants determined by the condition that the 

thickness, slope, and curvature be equal to those 

calculated by the boundary-layer method at X/L = 

0.95 and by the integral wake relations at X/L = 

1.05. Comparison with experimental results of Huang 

et al. (1976) show that the potential-flow/boundary- 

layer interaction computer program predicts accurate 

values of pressure, shear stress, and velocity pro- 

files over the forward 90 percent of the bodies, 

where the boundary layers are thin compared with 

the radii of the bodies. Over the last 10 percent 
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of body length, the measured shear stress and ve- 

locity profiles became smaller than those predicted 

by the theory. These differences are more notice- 

able over the last 5 percent of the body length 

where the boundary-layer thicknesses are greater 

than the radii of the bodies, especially for fuller 

sterns. 

In order to examine the thick stern boundary- 

layer properties in detail, it is necessary to 

measure the distributions of static pressure, tur- 

bulence intensities and Reynolds stress across the 

thick stern boundary layer. The magnitudes of the 

eddy viscosity and the mixing-length parameter were 

determined and compared with those obtained for 

thin boundary layers. It is found that the eddy 

viscosity and the mixing length for thick boundary 

layers are smaller than those of thin boundary 

layers. An improvement to the Douglas CS differ- 

ential method can be made by modifying the mixing- 

length model in the tail region. The distributions 

of measured static pressure, which were found to be 

nonuniform across the thick stern boundary layers 

and near wake, can be approximated very well by 

potential flow computations for the displacement 

bodies. The gross curvature effects of the mean 

streamlines on the static pressure distributions 

outside the displacement surface are represented 

very well by those of the potential-flow stream- 

TABLE 1 - Offsets for Model 1 

K/L Y/t Y/R X/L 

0.0000 9.0000 0.0000 - 2684 

0050 -0100 2193 28S) 
o0se -0142 3118 - 2883 

0149 -0175 3835 - 2982 
0199 0202 4441 3082 

+0249 -0227 4975 .3181 
0208 .0248 5454 ~ 3280 
0348 0268 5891 - 3380 
0398 -C287 6291 ~3479 
9447 -0303 6659 “3979 

0497 OSS) 7000 . 3678 
05417 0333 7315 SON AMaT| 
6596 -0347 7607 . 3877 

0646 -0359 7877 .3976 
0596 0379 8126 .4076 

0746 -0381 8355 -4175 
0795 -0390 8567 +4274 

0845 -0399 8760 - 4374 
0895 -0407 8936 -4473 
og44 -0414 9097 -4573 

oo94 0421 9241 »4672 
-1044 .0427 9371 -4771 
1093 0432 9466 -4871 

1143 -0437 9587 -4970 
1H}93 -0441 9676 -5070 

1243 .0444 9752 -5169 
1292 .0447 9816 -5268 
1342 -0450 9869 “9268 
11392 -0452 9912 ~5467 

144) -0453 9445 ~5567 
1491 -0454 9969 -5666 

1541 -90455 9986 .9765 
1590 -0448 9836 ~ 5865 
1640 .0456 1.0000 -5964 
1690 .0456 1.0000 .6064 
1740 .0456 1.0000 -6188 
1789 .0456 1.0000 .6264 

1839 .0456 1.0000 .6378 
1889 .0456 1.0000 -6454 
1938 .0456 1.0000 - 6567 

1988 -0456 1.0000 .6681 
2087 -0456 1.0000 ~6757 
2187 -0456 1.00C0 -G871 
2286 .0456 1.0000 -6984 
2356 -0456 1.0000 7060 
2485 .0456 1.0000 ~7174 
2584 -0456 1.0000 -7250 

lines of the fictitious displacement body. Thus, 

the nonuniform static pressure distributions across 

the thick stern boundary layer can be interpreted 

mainly as an inviscid phenomenon and can be assumed 

to have little effect on the stern boundary-layer 

development. 

Two axisymmetric bodies without flow separation, 

Afterbodies 1 and 2 of Huang et al. (1976), were 

chosen for this investigation. Their geometric 

simplicity offers considerable experimental and 

computational convenience in treating fundamental 

aspects of thick stern boundary layers. Afterbody 

1 is a fine convex stern while Afterbody 2 is a 

full convex stern. 

In the following discussion, the experimental 

techniques and geometries of the model are given 

in detail. The measurements of mean velocities, 

turbulence intensities, and Reynolds stresses were 

analyzed to obtain eddy viscosity and mixing length. 

The application of the present results to improve- 

ment of the accuracy of boundary-layer computations 

over the entire stern is outlined. 

2. WIND TUNNEL AND MODELS 

The experimental investigation was conducted in the 

wind tunnel of the DTNSRDC anechoic flow facility. 

NA Y/R X/L Y/L Y/R 

-0456 1.0000 - 7363 -0427 -9382 

-0456 1.0000 -7477 +0421 -9235 
0456 1.0000 .7553 -0416 SAY 

-0456 1.0000 - 7666 -0408 -8951 
0455 1.0000 - 7780 -0399 -8755 
0456 1.0000 - 7856 -0392 -8615 

0956 1.0000 ESTO: -0382 - 8387 
0456 1.0000 -8045 -0375 -8225 
0456 1.0000 -8159 -0363 - 7963 

0456 1.0000 -8273 0350 SASS) 
0456 1.0000 -8349 -0341 - 7477 

-0456 1.0000 -B8462 -0326 si NSS) 
0456 1.0000 -8576 -0310 - 6807 

0456 1.0000 - 8652 -0299 - 6560 
0456 1.0000 -8765 -0281 - 6167 

0456 1.0000 8841 .0268 -5889 
0456 1.0000 -8955 -0248 -5445 
9455 1.6000 +9069 +0226 -4970 

0456 1.0000 -9144 -0211 - 4633 
0456 1.0000 -9245 -0189 ~4147 

0456 1.0000 +9344 -0166 3636 
0456 1.0000 -9443 -0140 . 3078 
0456 1.0000 ~9513 -0122 - 2673 
0456 1.0000 9563 -0108 - 2380 
0456 1.0000 -9612 -0095 - 2080 
0456 1.0000 -9642 .0087 - 1900 
0456 1.0000 -9662 -0081 -1778 

0456 1.0000 - 9682 -0076 - 1669 
0456 1.0000 9692 -0074 -1613 
0456 1.0000 -9702 -0072 6 US 
0456 1.0000 -9722 -0068 1489 

0456 1.0000 -9732 -0066 ~1453 

0456 1.0000 OO -0063 - 1393 
0456 1.0000 +9771 -0062 1364 

0456 1.0000 OPA -0059 +1293 
0456 9999) -9811 -0056 -1222 
0455 SON, -9831 -0053 +1165 

0455 9988 -9851 -0050 1107 
0455 9977 -9871 -C048 -1051 
0453 9952 -9881 -C046 -1018 
0452 g915 «9901 -0043 -0951 

0450 9883 +9920 -0040 - 0880 
0448 9R23 -9940 -0036 -0782 
0444 9748 -9960 -0028 -0625 
0441 9690 -9980 -0019 -0413 

0437 9588 1.0000 0.0000 9.0000 

0433 SSH 



The wind tunnel has a 2.44 m by 2.44 m closed-jet 

test section, followed by a 7.16 m by 7.16 m open- 

jet test section. The length of the open-jet sec- 

tion is 6.40 m. The maximum air speed which can 

be achieved is 61 m/sec; in the present experiments, 

the velocity of the wind tunnel was held constant 

at 30.48 m/sec. The measured ambient turbulence 

level in the open-jet test section without the model 

in place was 0.1 percent. Integration of the mea- 

sured noise spectrum levels in the open-jet test 

section, over the frequency range of 0 to 10,000 Hz, 

indicated that the typical background acoustic 

noise at 30.48 m/sec was around 93 db re 0.0002 

dyn/cm2. These levels of ambient turbulence and 

acoustic noise were considered low enough so as not 

to unfavorably affect the measurements of boundary- 

layer characteristics. 

Two axisymmetric convex afterbodies without 

stern separation were used for the present experi- 

mental investigation. Their afterbody length/ 

diameter ratios (La/D) were 4.308 and 2.247. The 

detailed offsets for Models 1 and 2 are given in 

Tables 1 and 2. Each afterbody was connected to a 

parallel middle body of length Ly and an existing 

streamlined forebody with a bow-entrance length 

diameter ratio (L,/D) of 1.82. The total length 

of each model (L) is fixed at a constant value of 

3.066 m. The diameter of the parallel middle body 

(emp) is 27.94 cm. The common forebody and a 

portion of the parallel were constructed of wood. 

TABLE 2 - Offsets for Model 2 

X/L Y/L Y/R x/L Y/L 

0.0000 0.0090 0.0000 . 2684 -0456 
.9050 -0100 .2193 . 2783 .0456 
.0099 .0142 .3118 .2883 .0456 
.0149 0175 . 3836 . 2982 -0456 
0199 .0202 4443 . 3082 0456 
.0249 .0227 -4975 23181 .0456 
-0298 .0249 5455 .3280 -0456 
-0348 .0268 -5891 . 3380 .0456 
-0398 -0287 -6291 .3479 -0456 
.0447 .0303 -6659 .3579 .0456 
.0497 -0319 .7000 .3678 .0456 
.0547 .0333 .7316 SCUY -0456 
.0595 0347 .7606 .3877 .0456 
-9646 0359 7877 .3976 -0456 
.0696 0370 -8126 .4076 0456 
0746 -0381 8357 .4175 -0456 
.0795 .0390 .8566 .4274 -0456 
.0845 0399 .8761 .4374 -0456 
.0895 -0407 .8937 .4473 - 0456 
.0944 .0414 .9097 4573 -0456 
.0994 -0421 .9241 4672 0456 
.1044 .0427 .9372 4774 -0456 
-1093 .0432 -9487 .4871 -0456 
.1143 .0437 -9588 .4970 -0456 
-1193 .0441 -9677 .5C070 .0456 
.1243 .0444 -9751 .5169 0456 
.1292 -0447 9817 5268 -0456 
.1342 -0450 . 9869 .5368 -0456 
.1392 .0452 .9913 .5467 0456 
1441 0453 .9945 5567 -0456 
-1491 .0454 -9969 .5666 -0456 
21541 .0455 - 9987 5765 .0456 
.1590 .0455 -9996 .5865 -0456 
-1640 -0456 1.0000 5964 .0456 
.1690 .0456 1.00069 6064 .0456 
.1740 -0456 1.0000 6188 -0456 
.1789 .0456 1.0000 .6264 -0456 
.1839 .0456 1.0000 .6378 -0456 
.1889 .0456 1.0000 6454 -0456 
-1938 0456 1.0000 6567 -0456 
-1988 .0456 1.0000 .6681 0456 
. 2087 .0456 1.0000 6757 -0456 
.2187 -0456 1.0000 .6871 .0456 
.2286 .0456 1.0000 -6984 .0456 
. 2386 -0456 1.0000 .7060 -0456 
.2485 9456 7%.0000 7174 .0456 
- 2584 -045€ 1.0000 .7250 -0456 

AAAS) 

The afterbody and the remaining portions of the 

parallel middle body were constructed of molded 

fiberglass; specified profile tolerances were held 

to less than +0.4 mm, all imperfections were re- 

moved, meridians were faired, and the fiberglass 

was polished to a 0.64-micron rms surface finish. 

The tail ends of the afterbody were shaped to ac- 

commodate the hub of an existing propeller. This 

modification caused a considerable change of body 

curvature in the region of X/L 2 0.96. However, 

as will be seen later, the thicknesses of the 

boundary layer in this region are much larger than 

the local radii of the body. This deficiency does 

not cause serious degradation of boundary-layer 

flow at that point. 

The model was supported by two streamlined struts 

separated by roughly one-third of the model length. 

The upstream strut had a 15 cm chord and the down- 

stream strut a 3 cm chord. The disturbances gener- 

ated by the supporting struts were within the region 

below the horizontal centerplane. Prior to the 

experiments, pressure taps and Preston tubes were 

used to check the axisymmetric characteristics of 

the stern flow at X/L 0.90, 0.95, and 0.98. The 

circumferential variations of pressure and surface 

shear stress on the upper half of the two after- 

bodies at these three locations were within two 

percent. All the final measurements were made in 

each body's vertical centerplane along the upper 

meridian where there was little extraneous effect 

Y/R X/L Y/L Y/R 

1.0000 .7363 -0456 1.0000 
1.0000 .7477 -0456 1.0000 
1.0000 -7553 -0456 1.0000 
1.0000 . 7666 -0456 1.0000 
1.0000 .7780 0456 1.0000 
1.0000 .7856 -0456 1.0000 
1.0000 .7952 0456 1.0000 
1.0000 - 8050 .0455 .9996 
1.0000 -8147 .0454 .9959 
14.0000 .8245 -0450 -9871 
1.0000 .8342 -0443 .9723 
1.0000 .8459 .0431 .9452 
1.0000 . 8556 -0417 £9153 
1.0000 .8654 .0400 .8789 
1.0000 -8751 .0381 . 8364 
1.0000 .8849 .0359 .7881 
1.0000 -8946 .0335 -7349 
1.0000 .9044 .0309 .6775 
1.0000 -9141 .0281 .6162 
1.0000 .9239 .0251 .5514 
1.0000 .9336 .0220 . 4840 
1.0000 .9453 .0182 .3993 
1.0000 .9512 sO1G2" a Ses 
1.0000 .9570 .0142 Sit 
1.0000 .9609 .0128 . 2808 
1.0000 - 9648 .0114 .2501 
1.0000 .9662 .0109 . 2383 
1.0000 . 9682 .0101 .2221 
1.0000 .9692 .0098 .2145 
1.0000 .9702 -0094 .2055 
1.0000 .9722 .0087 .1901 
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from the supporting strut. One half of the model 

length protruded from the closed-jet working sec- 

tion of the wind tunnel into the open-jet test 

section. The ambient static pressure coefficients 

across and along the entire open-jet chamber (7.16 

x 7.16 x 6.4 m) were found to vary less than 0.3 

percent of dynamic pressure. The tunnel blockage 

and the longitudinal pressure gradient along the 

tunnel length were almost completely removed by 

testing the afterbody in the open-jet test section. 

The location of boundary-layer transition from 

laminar to turbulent flow was artifically induced 

by a 0.61 mm diameter trip wire located at X/L = 

0.05. When the flow was probed with a hot-wire, 

the trip wire was found to effectively stimulate 

the flow at a location 1 cm downstream from the 

wire. As a result of the parasitic drag of the 

wire, the boundary layer can be theoretically con- 

sidered to become turbulent at a virtual origin 

upstream of the trip wire. This virtual origin for 

the turbulent flow is defined such that the sum of 

the laminar frictional drag from the body nose to 

the trip wire, the parasitic drag of the trip wire, 

and the turbulent frictional drag after the trip 

wire equals the sum of the laminar frictional drag 

from the nose to the virtual origin and the turbu- 

lent frictional drag from the virtual origin to 

the after end of the model [McCarthy et al. (1976)]. 

The location of the virtual origin on the forebody 

with a 0.61 mm trip wire at X/L = 0.05 was found 

to be at X/L = 0.015 for a length Reynolds number 

of 5.9 x 10©. The location of transition in the 

mathematical model for the present boundary-layer 

calculation is specified at this virtual origin. 

The length Reynolds number based on the distance 

from the trip wire to the end of the parallel middle 

body is larger than for 4 x 10© for the two after- 

bodies. It can be assumed that a fully established 

axisymmetric turbulent boundary layer exists at the 

beginning of the afterbody and that the trip wire 

has no peculiar effect on the boundary-layer char- 

acteristics of the stern. 

3. INSTRUMENTATION 

A 1.83-cm Preston tube was taped to the stern at 

successively further aft locations in order to 

measure the shear stress distribution along the 

upper meridian of each stern. The Preston tube 

used was calibrated in a 2.54-cm water pipe flow 

facility described by Huang and von Kerczek (1972). 

Pressure taps (0.8 mm diameter) were used to mea- 

sure steady pressures at the same locations as the 

Preston tubes. The taps were connected by "Tygon" 

plastic tubes to a scanning valve located inside 

the model. The output tube from the scanning valve 

was run from the model through the supporting strut 

to a precision pressure transducer located on the 

quiescent floor of the open-jet chamber. The pres- 

sure transducer was a Validyne Model DP 15-560 de- 

signed for measuring low pressure up to + 1.4 x 10" 

dyn/cm? (0.2 psi). The zero-drift, linearity, and 

hysteresis of this transducer system were carefully 

checked and the overall accuracy was found to be 

within 0.5 percent of the dynamic pressure. 

A Prandtl type pitot-static pressure probe of 

3.125-mm diameter with four equally spaced holes 

located at three diameters aft of the nose was used 

to measure static pressure across the boundary 

layer. The yaw sensitivity of the static pressure 

probe was examined by yawing the probe in the free- 

stream. It was found that the measured static pres- 

sure was insensitive to the probe angle up to 5° 

yaw. The response of measured static pressure to 

probe angle was nearly a cosine function of yaw 

angle for yaw angles less than 15°. The static 

pressure probe was aligned parallel to the model 

axis for all of the static pressure measurements. 

The local angles between the resultant velocity of 

the boundary-layer flow and probe axis were found 

to be less than 15° (5° for most cases). The maxi- 

mum static pressure coefficient in the boundary 

layer was less than 0.2. Thus, the error in the 

measured static pressure caused by not aligning the 

probe with the local flow was less than 0.8 percent 

of the dynamic pressure. 

The mean axial and radial velocity components 

and the Reynolds stress were measured by a TSI, Inc. 

Model 1241 "X" wire. The probe elements were 0.05 

mm in diameter with a sensing length of 1.0 mn. 

The spacing between the two cross elements is 1.0 

mm. A two-channel TSI Model 1050-1 hot-wire ane- 

mometer and linearizer were used. The "X" wire, 

together with temperature compensated probes, were 

calibrated at the factory and supplied with their 

individual linearization polynomial coefficients. 

This eliminated the time-consuming linearization 

process. The frequency response of the anemometer 

system claimed by the manufacturer is dc to 200 kHz. 

Calibration of the "X" wire was made before and after 

each set of measurements. It was found that this 

hot-wire anemometer system had a 40.5 percent ac- 

curacy (40.15 m/s accuracy at the free stream ve- 

locity of 30.5 m/sec) during the entire experiment. 

The accuracy of cross-flow velocity measurements 

by the cross wire was estimated by yawing the cross-— 

wire in the free stream. It was found that the ac- 

curacy of the measured cross-flow velocities was 

about one percent of the free stream velocity. 

The linearized signals were fed into a Time/Data 

Model 1923-C Real-Time analyzer. Both channels of 

analog signal were digitized at a rate of 80 points 

per second for ten seconds. These data were imme- 

diametely analyzed by a computer code to obtain the 

individual components of mean velocity, turbulence 

fluctuation, and Reynolds stress on a real time 

basis. 

A traversing system enclosed in a 15 cm chord, 

streamlined strut was used to support both the 

static pressure probe and the cross-wire probe. The 

traversing system was mounted either on an I-beam 

along the axis of the lower floor of the open-jet 

chamber or on the ceiling of the closed-jet section. 

The combination of these two mounting arrangements 

allowed the measurements to be made at any axial 

location along the stern and up to 50 percent of 

the body length downstream from the aft end of the 

body. Positioning of the traversing system was 

achieved by manual adjustment in the axial direction 

and by remote control in the radial direction. The 

total radial traverse of the probe was 25 cm. The 

radial position of the probe was monitored by a 

potentiometer to with a +0.01 mm accuracy. 

4. COMPARISON OF EXPERIMENTAL AND THEORETICAL 

RESULTS 

In the following, the experimental results for the 

thick stern boundary layers are presented and com- 

pared with theoretical results. The theories used 



in the comparison are the Douglas CS differential 

boundary-layer method in conjunction with the dis- 

placement body concept. The iteration procedures 

for numerical computation are given by Huang et al. 

(1976). In this investigation, the displacement 

body concept for solving the interaction between 

the thick stern boundary layer and potential flow 

will be examined and an eddy-viscosity model will 

be evaluated. 

Measured and Computed Pressure and Shear Stress 

Distributions 

Significant improvement in the accuracy of measur- 

ing surface pressure and shear stress have been made 

by using a precision pressure transducer. The 

present results are more reliable than the earlier 

results of Huang et al. (1976), although the dif- 

ferences are small. 

The measured and computed values of the pressure 

coefficient, Cp = 2(p - Pa) /OUSs. are compared in 

Figure 1 for Afterbody 1 and in Figure 2, for After- 

body 2; p is the local static pressure, p is the 

mass density of the fluid, U, is the free-stream 

velocity and po is the ambient pressure (the qui- 

escent chamber static pressure of the open-jet sec- 

tion). The pressure coefficients computed on the 

displacement body were carried radially back to the 

hull surface and the radial distribution of pres- 

sure at a given axial station was assumed to be a 

constant between the hull surface and the fictitious 

displacement surface. The maximum error in the 

static pressure associated with this assumption is 

less than two percent of the dynamic pressure (next 

section). The agreement between theory and measure- 

ment is excellent for both afterbodies. The results 
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suggest that the displacement body concept as used 

by Huang et al. (1976) permits accurate computation 

of the pressure distribution on the stern. 

The measured and computed distributions of local 

shear stress, C;, are compared in Figure 3. The 

agreement between theory and measurement is 

also very good for both afterbodies except for 

x/L > 0.95 where the measured values of C, are lower 

than the computed values. 

Measured and Computed Static Pressure Distribution 

The measured and computed static pressure coeffi- 

cients for Afterbody 1 are compared in Figure 4 at 

various locations across the stern boundary layer 

and in Figure 5 for the near wake. Figures 6 and 7 

show the comparisons for Afterbody 2. The off-body 

option of the Douglas potential-flow computer code 

was used to compute the static pressure distribu- 

tions off the displacement body. As can be seen in 

Figures 4 through 7, the computed static pressure 

distributions across the entire stern boundary layer 

and near wake mostly agree well with the measured 

static pressure distributions. The discrepancy 

between the measured and computed values of C, is 

in general less than 0.01 which is about the accuracy 

of the measurement. 

As will be seen later, both displacement bodies 

are convex from the parallel middle body up to X/L 

= 0.91 and become concave downstream from X/L > 

0.91. However, the actual afterbodies are convex 

all the way up to X/L = 0.96. The measured values 

of C, shown in Figures 4 through 7 increase with 

radial distance for X/L < 0.91, indicating that 

the mean streamlines are convex; and measured values 

of Cp decrease with radial distance for X/L > 0.91, 

0.85 0.90 0.95 1.0 

X/L 

FIGURE 1. Computed and measured stern pressure distribution on afterbody 1. 
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FIGURE 6. Computed and measured static pressure distributions across stern boundary layer of afterbody 2. 

indicating that the mean streamlines are concave. 

Thus, the curvatures of the mean streamlines are 

more closely related to the curvatures of the dis- 

placement body than the actual body. The close 

agreement between the computed and measured static 

pressure distributions again supports the displace- 

ment body concept for computing the potential flow 

outside of the displacement surface. 

Yo is the body radius; x is the axial distance; u 

and vy, are the mean velocity components respectively 

parallel to and normal to the meridan of the body 

(s and n directions); v is the kinematic viscosity 

of the fluid; Tul is the Reynolds stress; and u! 

and vy, are the velocity fluctuations in the s and n 

directions respectively. The Douglas CS method as- 

sumes that the Reynolds stress depends upon the local 

flow parameters only, e.g., 

5. MEASURED AND COMPUTED MEAN VELOCITY PROFILE Sal gpa for! oS nis ne 

=ulv' = 5 = (3) 
The incompressible steady continuity and momentum Se 6 2 HON iy SS © 
equations for thin axisymmetric turbulent boundary i. 

layers are . du. 

where ¢, = 22 = gn (eddy viscosity in the inner 
d(ru,)/ds + d(xrv,)/dn = 0 (1) fo) region) 

and co 

€. = 0.0168 y (Ul=u))idn = 00168 UR TOA, 
u_du_/3s + v du /dn ° G35 if @ SQ er tere p 
Sis Ties, 

(2) : é . . 
= -dp/pds + d[r(vdu /on)=u'v']/ron (eddy viscosity in the outer region), 

s sn r 

2 = 0-4 xine) {2 = exp = = in (yy 
u,(s,0) = v(s,0) = 0 at n = 0 OS a e 

where (mixing-length parameter in the inner 

region) , 

r(s,n) = xr _(s,n) + n cosa 
fe} Tw —5 : 

A = 26 Lira , (Van Driest's damping 
a= tan”* (dr, /ax) 

factor), 
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6 Us where u,/U, and V1,/U, are computed by the CS method. 
oF =f (1 - —)dn, [displacement thickness The potential-flow pressure is assumed to be con- 

fo} e (planar definition) ] stant between the body surface and the displacement 
; surface and is equal to the pressure Pq computed on 

y 2 Ant & BLE (2) Tees (Ghisetisteney the displacement body. The value of U, used in Eqs. 
E18 6 Recto) (4) and (5) is equal to vl - Pq and U, is assumed 

, 

to be parallel to the body surface. 
& = 8995 , (boundary-layer thickness), The displacement-body concept can be used to 

improve the computed values of u, and We outside 

ae (wall sheamistress)), of the displacement Surface of thick boundary layers, 
e.g., 

Ue is the potential-flow velocity used in the 

boundary-layer calculations, and at y,, ej is equal u(r) u, (n) U_cos(8-a) 
to €,. A computer code to solve for the values U ~ U_cos(@-a) U Cese! 
us/Ue and vp/Ue has been developed by Cebeci and © P ° 
Smith (1975) using Keller's numerical box scheme. : (6) 

The velocity components measured in the present v,,(n) Smee) ; 

investigation are u, and v,, the components in the ~ U sin(6—a) U Sei 
axial and the radial directions of the axisymmetric P ©) 

body. The computed values of uy and v; are given 
5 v_(n) u_(n) U_cos (6-a) 
Vi 1g s p 

SSS 58 ee a SS “Sting 
a, (x) us (n) U, v,,(n) U UR t eeS(O=@) Us 

U = U v cosa - yp sina, (4) 

fe) e fe} e fe} vy, (™) UL oaeWre) 

+ 7 cosa (7) 
v(x) a, (n) UL v (n) U umn (=e) U, , 

7 = a — sina + i cosa, (5) 

fo) e fo) e [o) where the variation of the inviscid static pressure, 
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PIGURE 7. Computed and measured static pressure distributions across near wake of afterbody 2. 
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C,,(r), across the thick boundary layer is expressed 

in terms of the inviscid resultant velocity U 

Name) S valve Cp(r)Jand @ is the angle between the 

inviscid resultant velocity U, and body axis (0 is 

positive when Up is directed away from the axis). 

In the first improvement the values u,g/(U,,cos(0-a) ) 

are taken as the computed values of f' = us/U, in 

the CS method with Ue equal to the inviscid resul- 

tant velocity on the displacement body. At the edge 

boundary layer, the value of ug(U,cos(8-a)) is equal 

to 1.0. The value of v,/(U.sin(68-a))is also equal 

to 1.0 since the boundary-layer-induced normal ve- 

locity is assumed to be equal to the inviscid normal 

velocity of the displacement body at that point 

(Lighthill (1958)]. The theoretical proof for an 

axisymmetric body has not been worked out in the 

literature and will not be given here. However, 

the validity of the assumption will be borne out 

by the experimental measurements of Vy: Therefore, 

Eqs. (6) and (7) reduce to the proper limit at the 

edge of the boundary layer, e.g., 

u(r=6)) U 

TE Kane: yg cost: (8) 

fo) ° 

v.(r=5)) U 

uU = T sin6é, (9) 

fe} 

which are the inviscid axial and radial velocity 

components of the displacement body, where Us = 

1.4 

1.2 

1.0 

0.8 

0.4 

0.2 

AL ey7) 

Vlas Coe (CTO Vo Outside of the boundary layer, 

Eqs. (B) and X9) are also valid so long as the 

local inviscid values of U, and 6 for the displace- 

ment body are used. The improved values in Eqs. 

(6) and (7) account for the variation of the in- 

viscid static pressure and potential-flow vector 

across the thick boundary layer and make appropriate 

use of the results of the CS method. As already 

noted, the variation of static pressure computed 

across the boundary layer outside of the displace- 

ment surface agrees quite well with the experimental 

results. 

Figure 8 shows the comparison of the mean axial 

and radial velocity profiles at several axial sta- 

tions on Afterbody 1, and Figure 9 shows the mea- 

sured axial velocity profiles across the near wake 

of Afterbody 1. The theoretical results at X/L = 

1.00 were calculated at X/L = 0.998. Figures 10 

and 11 show comparisons of the measured and computed 

velocity profiles for Afterbody 2. The mean axial 

and radial velocity components uy, and Vy were mea- 

sured by a cross-wire probe and the experimental 

accuracy of measurements of u,,/Ug and Vr/U5 were 

respectively about 0.5 percent and 1.0 percent. 

As shown in Figures 8 and 10, the theoretically 

computed velocities, which account for the variation 

of static pressure distribution across the thick 

boundary layer, agree better with the measured axial 

and radial profiles outside of the displacement sur- 

face. These results suggest that a simple improve- 

ment of the existing boundary-layer computation 

method can be made for the thick stern boundary 

FIGURE 9. Measured mean axial velocity distributions 

across near wake of afterbody 1. 
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layer by means of the displacement body concept. 

However, it is important to point out that the 

measured axial velocity profiles in the inner region 

are in general smaller than the theoretical values. 

The eddy viscosity model plays an important role in 

this region; therefore, it is essential to examine 

the eddy viscosity model used for computing the 

thick stern boundary layer. Figures 8 and 10 also 

show the comparison of the axial velocities mea- 

sured by the cross-wire and by LDV (Huang et al., 

1976). The agreement is very good inside the bound- 

ary layer. However, due to the artifical seeding 

of oil mist required for the LDV, the axial veloc-— 

ities near the edge of the boundary layer measured 

by LDV are smaller than that by the cross-wire. 

6. COMPARISON OF MEASURED AND COMPUTED INTEGRAL 

PARAMETERS 

The integral parameters are derived from the mea- 

sured velocity distribution. The two-dimensional 

displacement thickness is defined as 

= u (x) 
x (10) 

where 6, is the boundary thickness measured radially 
normal to the body axis and Ux(r) is the value of 
the axial component of inviscid flow velocity com- 
puted about the displacement body. The value of 

, 

U,,(r) is computed by the potential-flow method ex- 

cept inside of the displacement surface where it is 

assumed that UL (x) = UL, (XQ) with re) being the radius 

of the displacement surface. The boundary-layer 

thickness 6, is defined at the radial position where 

the measured value of uy (r) equals) (01995 3U57\(@>) eae 

is difficult to obtain 6, precisely since the ac- 

curacy of the Uy/U, measurement is only about 0.005. 

Nevertheless, the overall accuracy of the values of 

6, estimated in the present investigation is about 

10 percent. 

A measure of the mass-flux deficit in the thick 

axisymmetric boundary layer is defined by 

r_ +6 ry +6% 
(0) "32 u(r) OMG 

= i oS rdr = rdr abil i U_(z) ff are 
xr x ie 

fo) 

where r_ is the local body radius and 6* is the 

axisymmetric displacement thickness. Thus, the 

axisymmetric displacement thickness becomes 

Ge a 1 O% Yr = 

2 z= (2) +2 (12) 
12 r 2 
max max max 

where Ypax is the maximum radius of the body. 

The displacement body in the present investiga- 

tion is defined by rq = 5# + xr, rather than the 

planar definition, rg 6* + ro. Similarily, a 

measure of the momenta lax deficit is defined by 
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The measured and computed values of 6* and 6, are 

shown in Figure 12 for Afterbody 1 and in Figure 

13 for Afterbody 2. The measured values of d¢ and 

6, for X/L > 0.90 are slightly larger than the 

computed values for both bodies. 

The transverse curvatures of the boundary-layer 

flow with respect to the body radius, (ro + Oe) Pes 

and (ro + 5,)/ro, are also shown in Figures 12 and 

13. A drastic increase of the values of (ro + Ss) AZ) 

and (rg + 6;)/Yg occurs at X/L = 0.9, indicating the 

important effect of transverse curvature on the 

stern. The longitudinal curvature of the body is 

denoted by K, = (d°r,/dx*) [1 + (dro/dx*)]~3/% and 
the longitudinal curvature of the displacement body 

is denoted by Kg = (d2rg/dx2) [1 + (drg/dx) 2173/2. 
A positive sign for K, or Kg indicates concave sur- 

pacer The values of nae and Ka' max are shown 

in Figures 12 and 13. There is a significant dif- 

ference between Ky and Ka in the thick boundary 

layer region. In each case, the curvature of the 

displacement body is convex up to X/L = 0.92, then 

changes to concave and remains concave throughout 

the entire thick boundary-layer and near-wake region. 

The curvature of the body surface is convex up to 

X/L = 0.96. As already shown in Figures 4 and 6, 

the measured distributions of static pressure and 
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hence the curvatures of the mean streamlines are 

much more closely related to the displacement body 

than to the actual body. The magnitudes of the 

maximum concave and convex radii of curvature of 

the displacement bodies are estimated to be 8 max 

and 30 Yrmax for Afterbody 1 (Figure 12) and 7 rmax 

and 8 Yrmax for Afterbody 2 (Figure 13), respectively. 

The magnitudes of the radii of curvature of the 

mean streamlines outside of the displacement body 

are expected to be larger than 10 rmax.- 

7. MEASURED TURBULENCE CHARACTERISTICS 

The cross-wire probe was used to measure the tur- 

bulence characteristics in the thick boundary layer. 

The measured Reynolds stresses and the measured 

mean velocity profiles were used to obtain eddy 

viscosity and mixing length. 

Measured Reynolds Stresses 

The turbulence characteristics in the thick boundary 

layer can be represented by the distributions of 

Reynolds stresses, namely, -u'v', u'2, v'2, and 

w'2, where u', v', and w' are the turbulence fluc- 

tuations in the axial, radial, and azimuthal direc-— 

tions, respectively. Figures 14 and 15 show the 

measured distribution of Reynolds stress =v’ /U,2 

and three components of turbulence intensity at 

several axial locations along the two afterbodies. 

In general, for a given location, the intensity of 

the axial turbulence-velocity component has the 

highest value and the intensity of the radial com- 

ponent has the smallest value. The degree of 

anisotropy decreases as the stern boundary layer be- 

comes thicker. Furthermore, the increased boundary- 

layer thickness is accompanied by a reduction of 

turbulence intensities and a more uniform distribu- 

tion of turbulence intensities in the inner region. 

The variation along the body of the radial location 

of the maximum values of the measured Reynolds stress 

=u 9/057 layer is small. The spatial resolution of 
the cross-wire probe is not fine enough to measure 

the Reynolds stress distributions in the inner re- 

gion when the boundary layer is thin. As the stern 

boundary layer increases in thickness, the location 

of maximum Reynolds stress moves away from the wall 

(Figures 14 and 15). The values of Reynolds stress 

=u'v" decrease quickly from the maximum value to 
zero at the edge of the boundary layer. As shown 

in Figures 14 and 15, the shape of the Reynolds 

stress distribution curves in the outer region is 

quite similar for all the thick boundary layers. 

It is interesting to note that the shapes of the 

Reynolds stress distributions in the inner regions 

are different from those measured in the wake at 

X/L = 1.057 and 1.182 (Figures 14 and 15); this is 

a typical characteristic of a developing wake 

([Chevray (1968)]. The Reynolds stresses experience 

a drastic reduction in magnitude near the edge of 

the boundary layer. 

A turbulence structure parameter defined by aj 

= =u'v'/aq2, where q?2 = uj," + v,'2 + w'2, is of 

interest. The measured distributions of a, are 
shown in Figure 16. Most thin boundary layer data 

show that a, is almost constant (a, = 0.15) between 

0.05 and 0.86. The present thick stern axisymmetric 

data shown in Figure 16 indicate that a, is almost 

constant up to 0.6 6,, and the magnitudes of aj 
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decrease toward the edge of the boundary layer. The 

values of a; also decrease in the inner region of 

wake at X/L = 1.057 and 1.182 of Afterbody 1. It 

should be pointed out that the measured values of 

q? contain the free-stream turbulence fluctuation, 

no attempt having been made to remove the free- 

stream turbulence fluctuation from the measured 

values of q*. The measured reduction of a) near 

the outer edge of the boundary layer is in part 

caused by the larger contribution of the free-stream 

turbulence to q2 than to -u'v". Nevertheless, the 

measured values of the turbulence structure param- 

eter a, are quite constant across the inner portion 

of the boundary layer where the effect of free- 

stream turbulence is small. 

Eddy Viscosity and Mixing Length 

The measured distributions of shear stress =u'Tv™ 

and mean velocity gradient, du,/dr, were used to 

calculate the variations of eddy viscosity and 

mixing length across the thick stern boundary layers 

according to the following definitions 

Tg ou (14) SU = ea 
or 

and 

ou du, 
ee 2. =e mS u'v Q les | ay (15) 

The experimentally-determined distributions of 

eddy viscosity, €/Ugd5p*1 are shown in Figure 17 for 

Afterbody 1 and in Figure 18 for Afterbody 2, where 

Us is the potential-flow velocity at the edge of 

the boundary layer and 6,* is the displacement 

thickness (based on the planar definition, Eq. 10). 

Figures 19 and 20 show the experimentally-determined 

distributions of mixing length 2/6, for the after- 

bedies, where 6, is the boundary-layer thickness 

measured normal to the body axis. As shown in 

Figures 19 and 20, the measured distributions of 

0.018 
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0.014 
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0.012 BOUNDARY 
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eddy viscosity agree resonably well with the eddy- 

viscosity model of Cebeci and Smith (1974, Eq. 3) 

when the boundary layers are thin. However, as the 

stern boundary layer thickens, the measured values 

of e/Us Sp* in the thick stern boundary layers are 

only about 1/6 of the values for thin boundary 

layers given by the Cebeci and Smith model (1974). 

The measured distributions of mixing length shown 

in Figures 19 and 20 also agree quite well with the 

thin boundary layer results of Bradshaw, Ferriss, 

and Atwell (1967). Again as the boundary thickens, 

the measured values of 2/6, reduce drastically. 

The values of 2/5, in the thick stern boundary 

layers are only about 1/3 of those of the thin 

boundary layers. Similar reductions of eddy vis- 

cosity and mixing length in thick stern boundary 

layers were also measured by Patel et al. (1974, 

USN) 3 

As the axisymmetric boundary layer thickens in 

the stern region, the boundary layer thickness Sy 

and the displacement thickness Sp* increase dras- 

tically. However, the values of eddy viscosity and 

mixing length do not have enough time to respond to 

this change. Therefore, neither the eddy viscosity 

model of Cebeci and Smith (1974), nor the mixing 

length results of Bradshaw, Ferriss, and Atwell 

(1967) can be applied to the thick stern boundary 

layer. 

8. TURBULENCE MODELS 

In most works, the basic assumption made in the 

differential methods for calculating turbulent 

boundary layers is that the mixing length or eddy 

viscosity is uniquely related to the mean velocity 

gradient and the boundary-layer thickness parameter 

at a given location. So long as the boundary layer 

is thin and the change in boundary-layer properties 

due to the pressure gradient is gradual, this simple 

assumption is know to be satisfactory [see e.g., 

Cebeci and Smith (1974)]. When the past history of 

boundary layer characteristics is important, Brad- 

FIGURE 17. Measured distributions 

of eddy viscosity for afterbody 1. 
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shaw et al. (1967) argue that the turbulence energy 

equation can be used to model the memory effect. 

In order to determine the rate of change of tur- 

bulent intensity along a mean streamline, three 

assumptions have to be made: namely, that turbu- 

lence intensity is directly proportional to the 

local Reynolds stress, aj =u /q2 0.15; that = =u'v'/ 

the dissipation rate is determined by the local 

Reynolds stress and a length scale depending on 

n/é; and the energy diffusion is directly pro- 

portional to the local Reynolds stress with a fac- 

tor depending on the mixing value of Reynolds stress. 

On the basis of thin boundary-layer data two em- 

pirical functions for the last two assumptions were 

proposed by Bradshaw et al. (1967). The first as- 

sumption, 2/6 £,; (n/é), was found not to be 
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applicable to the present thick axisymmetric stern 

boundary layers. The deviation of the apparent 

mixing length along the curved boundary from that 

of a thin flat boundary was also noted and dis- 

cussed by Bradshaw (1969). A simple linear cor- 

rection to the length scale of the turbulence by 

the extra rate of strain was made by Bradshaw (1973). 

The extension of this concept has just been made for 

the thick axisymmetric boundary layer by Patel et 

Gilly (ALS) 7S) 

It is important to note that the boundary-layer 

thickness of a typical axisymmetric body increases 

drastically at the stern. Most of the rapid change 

takes place within a streamwise distance of a few 

boundary-layer thicknesses. Most of the empirical 

functions for solving the turbulence energy equa- 
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tion will undergo rapid changes in basic forms. The 

one known for certain is the empirical function for 

mixing length. Therefore, it may be difficult to 

compute the rate of change of the turbulence energy 

or the extra rate of strain in the region. 

Fortunately the present measured distributions 

of Reynolds stresses shown in Figures 14 and 15 are 

quite similar in the outer region and differences 

appear in the inner region where the turbulence is 

reduced in intensity and more homogeneous. In such 

an axisymmetric flow configuration, the character- 

istic length scale is more closely related to the 

entire turbulence annulus between the body surface 

and the edge of the boundary layer rather than the 

radial distance between the two. Therefore, we 

propose that the mixing length of an axisymmetric 

turbu-length boundary layer is proportional to the 

square root of this area when the thickness in- 

creases drastically at the stern: 

Qo We, + S.) 2 - ie 

In order to examine this simple hypothesis, the 

present measured values of 2/V(rg + 6,) 2 = ro? 

together with the data of Patel et al. (1974, 1977) 

are shown in Figure 21. The solid line is the best 

fit of the present data. The present values of 2 

are slightly greater than those for Patel's modified 

spheroid (1974) and are slightly lower than those 

for Patel's low-drag body (1977). The data in 

Figure 21 support this simple hypothesis although 

the data are quite scattered due to large varia- 

tions of stern configurations and Reynolds number, 

and probable measuring errors. 

The existing thin turbulent boundary-layer dif- 

ferential methods can be applied to the forward 

portion of the axisymmetric body up to the station 

where the boundary layer thickness increases to 

about 20 percent of the body radius. Further down- 

THIN BOUNDARY 
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FIGURE 20. Measured distribu- 

tions of mixing length for 

afterbody 2. 

stream, the apparent mixing length of the thick 

axisymmetric stern boundary layer (2) can be roughly 

approximated by the mixing length for a thin flat 

boundary layer (2,) by 

Ghee 3.336 (to) 
ag 

which is the solid line of Figure 21. At the aft 

end of the stern Yo is zero and the value of 2/2, 

is 1/3.33. This simple approximation of the mixing 

length for thick axisymmetric stern turbulent bound- 

ary layers can be incorporated into most existing 

differential methods. As noted earlier, the mea- 

sured axial velocities inside the thick boundary 

layer (especially in the inner region) are smaller 

than the computed values (Figures 8 and 10). The 

present CS method overestimates the magnitude of 

eddy viscosity (Eq. 3) for the thick stern boundary 

layer. While the mixing length approximations ob- 

tained in the present investigation can be incorpo- 

rated into the CS method to predict more accurately 

the thick stern boundary-layer velocities, further 

refinement of the theoretical methods is desirable. 

9. CONCLUSIONS 

In this paper, we have described recent experimental 

investigations of the thick turbulent boundary lay- 

ers on two axisymmetric sterns without shoulder flow 

separation. A comprehensive set of boundary layer 

measurements, including mean and turbulence veloc-— 

ity profiles and static pressure distributions, are 

presented. Two major conclusions can be drawn: 

The Lighthill/Preston displacement body concept 

has been proven experimentally to be an efficient 

and accurate tool for treating the viscid and in- 
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viscid stern flow interation on axisymmetric bodies. 

The measured static pressure distributions on the 

body and across the entire thick boundary layer and 

wake were predicted by the displacement body method 

to an accuracy within one percent of dynamic pres- 

sure. Theoretical predictions of the measured 

axial and radial velocity profiles outside the dis- 

placement surface were improved significantly when 

the variations of the static pressure and radial 

velocity of the displacement body were incorporated 

into the computation. 

Neither the measured values of eddy viscosity 

nor mixing length were found to be proportional to 

the local displacement thickness or the local 

boundary-layer thickness of the thick axisymmetric 

boundary layer. As the boundary layer thickens 

rapidly at the stern, the turbulence characteristics 

in the outer region remain quite similar but the 

turbulence reduces its intensity and becomes more 

uniformly distributed in the inner region. The 

measured mixing length of the thick axisymmetric 

stern boundary layer was found to be proportional 

to the square root of the area of the turbulent 

annulus between the body surface and the edge of 

boundary layer. This simple similarity hypothesis 

can be incorporated into existing differential 

boundary-layer computation methods. 
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APPENDIX 

The raw data and derived results of the present 

experiments are tabulated in the following so that 

they can be used independently by other investi- 

gators. Table 3 shows the measured pressure and 

shear stress coefficients on Afterbodies 1 and 2. 

Tables 4 and 5 provide the measured static pres- 

sure coefficients across the stern boundary layers 

and near wakes of Afterbodies 1 and 2, respectively. 

Tables 6 and 7 contain the values of measured mean 

axial and radial velocities, three components of 

turbulence fluctuations, and Reynolds stresses 

across the boundary layer and near wake of After- 

bodies 1 and 2, respectively. The experimentally 

derived data on eddy viscosity, mixing length, 

planar and axisymmetric displacement thickness, and 

boundary layer thickness are also given. 
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TABLE 3 - Measured Pressure and Shear Stress Coefficients on 

Afterbodies 1 and 2 

6 
AFTERBODY 1, RX = 6.6 x 10 AFTERBODY 2, Ry = 6.8 x 

oe oe 

a c c a P c 
L max p T L max p 

0.7060 0.9690 -0.062 = 0.6000 1.0000 -0.013 
0.7455 0.9267 -0.064 0.00281 0.7000 1.0000 -0.024 
0.7952 0.8423 -0.050 0.00265 0.7455 1.0000 -0.035 
0.8449 0.7192 -0.024 0.00248 0.7952 1.0000 -0.106 
0.8946 0.5480 +0.018 0.00213 0.8449 0.9476 -0.160 
0.9145 0.4633 +0.050 0.00185 0.8946 0.7349 -0.010 
0.9344 0.3636 +0.074 0.00163 0.9145 0.6137 +0.053 
0.9543 0.2396 +0.112 0.00130 0.9344 0.4834 +0.090 
0.9642 0.1900 +0.133 0.00115 0.9543 0.3317 +0.170 
0.9741 0.1394 +0.135 0.00104 0.9642 0.2547 +0.183 
1.0000 0.0000 +0.116 - 0.9741 0.1740 +0.198 

1.0000 0.0000 +0.185 

TABLE 4 - Measured Static Pressure Coefficients Across Stern Boundary 
Layer and Near Wake of Afterbody 1 

x/L = 0.7553 x/L = 0.9144 x/L = 0.9344 
é r-r) = rr) a Tr 

"max Tmax C Tmax vnax Cp Tax "ax Cp 

0.9127 0 -0.0560 0.4633 0) 0.050 0.3636 0 0.0740 
0.9345 0.0218 -0.0530 0.4997 0.0364 0.0604 0.4214 0.0578 0.0821 
1.0283 0.1156 -0.0510 0.5181 0.0548 0.0604 0.4981 0.1345 0.0791 
1.1298 0.2171 -0.0500 0.5508 0.0875 0.0587 0.6102 0.2466 0.0674 
1.2392 0.3265 -0.0480 0.5892 0.1259 0.0570 0.7253 0.3617 0.0682 
1.4736 0.5609 -0.0434 0.6687 0.2054 0.0546 0.8375 0.4739 0.0624 
1.6767 0.7640 -0.0380 0.7397 0.2764 0.0514 0.9497 0.5861 0.0593 
1.8720 0.9593 -0.0350 0.8519 0.3886 0.0492 1.0989 0.7353 0.0518 
2.0908 1.1781 -0.0302 0.9670 0.5037 0.0464 1.2509 0.8873 0.0471 
2.2861 1.371 -0.0287 1.0835 0.6202 0.0434 1.4000 1.0364 0.0421 
2.4736 1.5609 -0.0270 1.1957 0.7324 0.0400 1.5563 1.1927 0.0368 
2.8798 1.9671 -0.0226 1.3093 0.8460 0.0370 1.7054 1.3418 0.0333 
3.2783 2.3438 -0.0214 1.4386 0.9753 0.0338 1.8546 1.4910 0.0305 
3.7079 2.7952 -0.0197 1.5906 1.1273 0.0301 2.0066 1.6430 0.0264 
4.3251 3.4124 -0.0158 1.7426 1.2792 0.0269 2.0904 1.7268 0.0256 

WASOSI W4298F 1OROZ4 1S 5022 i74m2; O09 010235, 
2.0451 1.5418 0.0221 3.3580 2.9943 0.0114 
2.1971 1.7338 0.0206 3.6960 3.3324 0.0099 
2.3491 1.8858 9.0183 4.0355 3.6719 0.0079 PBHRRWNHRPRPRPRrFRrRRrFPODOCOCCCOCCO0O 

10 

SiOLOlIOLO LOLOrOrO1Oore 

[o) i=) iy) (>) S 

BPRWNWRPRPRrRrRrrROOCOOOCOCCoO SOLO OLOLOROROL OOF OLOROLOEOVOL OTS: 



TABLE 4 (Continued) 

Sel, S On CyAl x/L = 0.9830 x/L = 0.8462 
ag ey r 16 * me 

= Tax C Tax rnax CS = Yr = max 
max max 

0.1364 0 0.135 0.1164 0 Ost 7/155 0 -0 
0.1600 0.0236 0.1441 0.1278 0.0114 0.1250 0.7450 0.0295 -0 
0.2324 0.0960 0.1400 0.1647 0.0483 0.1249 0.7620 0.0466 -0 
0.3447 0.2083 0.1293 0.2031 0.0867 0.1241 0.7791 0.0636 -0 
0.4569 0.3205 0.1172 0.2471 0.1307 0.1224 0.8018 0.0864 -0 
0.5748 0.4384 0.1058 0.2826 0.1662 0.1211 0.8217 0.1063 -9 
0.6827 0.5464 0.0950 0.3153 0.1989 0.1189 0.8572 0.1418 -0 
0.7949 0.6586 0.0856 0.3892 0.2728 0.1142 0.8572 0.1801 -0 
0.9057 0.7693 0.0781 0.4659 0.3495 0.1090 0.9297 0.2142 -0 
1.0251 0.8887 0.0705 0.5412 0.4248 0.1036 0.9694 0.2540 -0 
1.1373 1.0009 0.0628 0.6136 0.4972 0.0974 1.0092 0.2938 -0 
1.2466 1.1102 0.0574 0.7684 0.6520 0.0858 1.0873 0.3719 -0 
1.3645 1.2281 0.0536 0.8437 0.7273 0.0817 1.1598 0.4443 -0 
1.4796 1.3432 0.0490 0.9162 0.7998 0.0774 1.2322 0.5168 -0 
1.5918 1.4555 0.0450 0.9914 0.8750 0.0735 1.3061 0.5906 -0 
1.7395 1.6031 0.0406 1.1463 1.0299 0.0650 1.3785 0.6631 -0 
1.8901 1.7537 0.0374 1.2968 1.1804 0.0555 1.7000 0.9945 -0 
2.0137 1.8773 0.0350 1.4431 1.3267 0.0505 

1.5966 1.4802 0.0441 
1.7343 1.6179 0.0409 

x/L = 1.00 x/L = 1.0076 sh = i057 Sih & Waiey 
16 r a6 ag 

ie C r C r C Cc max p max 2) max p max p 

0.061 0.1295 0 0.0995 0 0.0418 0 0.0181 
0.098 0.1209 0.099 0.0987 0.057 0.0413 0.036 0.0174 
Qobye  OWtO O,292- ©0868 O,152° O,040 —~O,07%41  @.0nz2 
0.249 0.1022 0.327 0.0897 0.247 0.0426 0.149 0.0178 
0.361 0.0940 0.453 0.0815 0.344 0.0424 0.224 0.0189 
0.477 0.0865 0.585 0.0740 0.433 0.0415 0.303 0.0194 
5537 W075 Os720, OL0677%  O.527 > O.0400) 0.637 O.Olee 
0.702 0.0716 0.855 0.0604 0.616 0.0396 0.561 0.0180 
0.814 0.0656 0.980 0.0553 0.831 0.0364 0.716 0.0176 
0.928 0.0604 1.116 0.0503 1.000 0.0353 0.864 0.0170 
TOSS OO 527. 2417 WN OMO46S el l6 ON = ON0333s Og. OL Ol70 
W273) 100464515382) 1004267 91,342) 040316" ol sll6s) © O-ol70 
Loos Oo0205 2.5 O.0K7 MoS ©0298) Tale —@,oeH 
1.724 0.0344 1.724 0.0344 1.724 0.0249 1.464 0.0160 

1.900 0.0230 1.621 0.0150 
2.240 0.0195 1.756 0.0140 
2.580 0.0168 
2.750 0.0150 
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TABLE 5 

x/L 

HIH 

NNN FPRP RRP RRP PRR O 

max 

-9855 
.0536 
.1417 
.2141 

.2937 
- 3406 
-4173 
.4968 
.6374 
.9357 
.2085 
-4926 

. 8860 

NNFRrRrROOOCOOCOCOC oO 

RPreroooocna0qcco0co 

Measured Static Pressure Coefficients Across Stern Boundary 

Layer and Near Wake of Afterbody 2 

0.8400 

1e=ae 

NrRPrRPOODOOCOCOCOCOCOCCO 

-0 
-0 

-0 

-0 
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=10)6 
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=. 
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CHS) Cy(ey(o) Koyo (Se) ey (yoyo yie) (SiS) 

SY LS iSyeC ft SS) (S) (Sy-o(e) Sy )(S) 
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Sila) (ele) (sriere) (2) ee) S) (Ss) 

SOLO sO LOFOLOLOROLOL ORO LOLS 

0.9336 

SLOZOLOLOLOLOLO LOFOlO.OLOLOr©) 

SOLO ,OLOLOLOLO VOLO LO ONOFOVOrOoro 

x/L = 0.9702 

r ETO 
Ts (¢, 
max max p 

0.2419 0.0364 0.1884 

0.2930 0.0875 0.1854 

0.3754 0.1699 0.1740 

0.4379 0.2324 0.1654 

0.5061 0.3006 0.1563 
0.5686 0.3631 0.1482 

0.6623 0.4568 0.1342 

0.7262 0.5207 0.1252 
0.8541 0.6486 0.1110 

0.9961 0.7906 0.0957 

1.1467 0.9412 0.0804 

1.4393 1.2338 0.0604 

eV: Wo Sle Me@Ak3e} 

2.0941 1.8886 0.0340 

2.4038 2.19835 0.0247 

IP SO} 7/ x/il) =) Lls2 

r 

G 10 C 
p max Pp 

0.0471 0 0.0004 

0.0467 0.0426 0.0067 

0.0492 0.2102 0.0095 

0.0503 0.3722 0.0099 

0.0447 0.5313 0.0090 

0.0484 0.6889 0.0120 

0.0450 0.8523 0.0179 

0.0493 1.1250 0.0191 

0.0462 1.7159 0.0172 

0.0439 

0.0368 

0.0340 

0.0260 

0.0234 

0.0232 

0.0198 

0.0181 



TABLE 6 - Measured Mean and Turbulence Velocity Characteristics for Afterbody 1 

x/L = 0.755, r_/r = 0.9127 tan a = -0.0671 
O° max 

es) uy vy Jar2 Jae wi2 pee uty! TR € 

max UG Us U5 U Y we, oF O. Uso 

0.013 O67 O05 O07) O.0883 O47 On08 Ooi O.084 
0.034. 0.719 -0.018 0.069 0.039 0.049 0.146 0.168 0.121 0.0080 
0.08: On Or O.0683 Os083 OLOlG ONS OnIG2 Ole  WrOlAo 
0.074 0.820 -0.019 0.064 0.036 0.043 0.123 0.170 0.264 0.0152 
0.02) OG O01 O08 OsOGS ~O.042 “OLUIO O.NG2 ORIG Oily 
0.110 0.881 -0.019 0.057 0.032 0.039 0.0969 0.167 0.393 0.0149 
0.129 0.908 -0.019 0.052 0.030 0.036 0.0809 0.165 0.460 0.0145 
OMmi1Go! 051) 08020) \0s038) 0N024) 0,052) 00589) sOnuzey)  On6045) o,00911 
0.203 0.983 -0.020 0.027 0.017 0.018 0.0159 0.118 0.725 0.0072 
0.241 1.003 -0.019 0.012 0.010 0.011 0.0022 0.061 0.861 0.00125 
0.280 1.015 -0.017 0.007 0.006 0.006 0.0004 0.024 1.00 0.00017 
0.361. 1.020 -0.016 0.003 0.003 0.003 0.00005 0.019 1.29 
O.“5 ICO O02 0,002 0,002 002 = 
0.6% 1.000 0.008 ©0022 0,008 O00 < 
1,768 1000  -W.008 O.00F  O.002 002 = 

&* $* 8 
2 = 0.0426, = = 00444 Mi ="0R280 
max max max 

x/L = 0.846, r /r_4 = 0.7155, tan a -0.1343 

aT uy vy fie Sie (a2 Aopen -uly! TEXO € 

r U_ Um 5 Y % wa aS Sy Uso" 
max eo} (e) 

O05 O05 Os073  O.067 Oc0k3 ~ WL0AS Oss Oe) OIA 
0.0280 0.660 -0.082 0.066 0.035 0.042 0.110 0.150 0.0800 0.00536 
0.0843 O78 0.080) OGG O.058 0.050 O.108 O16? O.i153°  O,00oo 
0,070 O77 0,08 0,089 @.05 O.088 OOP Osis  O.al7 O,0128 
QnOgS4y) ONS06) 08093), 005400) 0505595 0F036) 0809555. Ohl 79m MOnzelN ss ononad 
01700 O40  O,098 O02  O.052 O05 O00 O.i67 0.283 O06 
O15, 0.664 0.08 @,052 GO.08l § O.055 O.082 OniG7 O6e05  —W.0140 
0.1600 0.890 -0.093 0.050 0.031 0.035 0.0815 0.174 0.457 0.0142 
0,105 O98 0,093 O.042 ©0285 O08 O.0888 0.145 —G.557 —W.0nas 
02168 O98. 40,098 6.055 0.023 0.025 0.0204 O.129  O.G18  O.00me 
0.2250 0.665 =.0S 0.029 0,02, @.025 O03 O07 O.6720 Ooms? 
0.2560 0.073 0.08 0,026 0.018 ©0283 0118 O.094 O.75l O,005i8 
0.2770 OOS, 0,087 0.099 0,014 O07 ©0025 0.07 O.791  O,0May 
0.3341 1.003 -0.084 0.005 0.005 0.006 0.00045 0.046 0.955 0.00053 
0.6040 1.002 -0.063 0.003 0.002 0.002 0.00002 
1,203 1,000 O05 0,002 0.002 @.002 © 
DMOONSHNI O00) 20024) ONOO2MNONOO2NNOROO2M =n0 

6* 6x 6 
- = 0.0489, = 5 0,082, 22 2 O88 

SOLO FOLOL.O OOO lo: 

SISGLEKOIOVOLOLONORoFOto lS: 

oO “I co 

CriOlrOlOoLOoxOvORONCIe 

SS OLOLOLOLOLOhOL OLOrOlO) 
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TABLE 6 - Continued 

x/L = 0.934, Bfte oe 

r-Y, be Wes ut 

U_ U_ Un U 
max fo) fo) fo) 

0.0127 0.425 -0.096 0.055 0. 

0.0511 0.541 -0.104 0.049 QO. 

0.0909 0.613 -0.105 0.047 0. 

0.1704 0.727 -0.103 0.047 0. 

0.2360 0.805 -0.097 0.040 0. 

0.3309 0.884 -0.091 0.038 0. 

0.4105 0.931 -0.087 0.026 0. 

0.5284 0.964 -0.076 0.007 QO. 

0.6477 0.974 -0.066 0.003 0. 

0.8366 0.982 -0.055 0.003 0. 

1.1093 0.989 -0.044 0.002 0. 

1.4470 0.993 -0.034 0.002 0. 

1.7926 0.997 -0.028 0.002 0. 

2.1803 1.000 -0.024 0.002 0. 

x/L = 0.964, A ee = 0.190, tan a 

ae wi ‘e a2 

max US Ue U5 

0.0145 0.294 -0.085 0.045 0 

0.0700 0.428 -0.093 0.045 0 

0.1168 0.509 -0.086 0.046 0 

0.1751 0.586 -0.083 0.045 0 

0.2589 0.682 -0.075 0.044 0 

0.3469 0.768 -0.069 0.042 (0) 

0.4748 0.868 -0.061 0.035 0) 

0.6069 0.936 -0.055 0.021 QO. 

0.7361 0.964 -0.047 0.004 0 

0.8654 0.978 -0.041 0.003 0 

1.0671 0.988 -0.035 0.002 0 

1.2674 0.994 -0.029 0.002 0 

1.4719 0.997 -0.026 0.002 0) 

1.6793 0.991 -0.022 0.002 0 

1.881 0.996 -0.020 0.002 0 

2.1893 0.998 -0.018 0.002 0 

6 * 

= 0.364, tan a -0.2440 

ee wi Loge saa es € 

fo) Yo U5 a* Yr Usep 

034 0.039 0.104 0.182 0.023 

033 0.038 0.0759 0.154 0.0929 Q.00302 0 

032 0.037 0.0740 0.161 0.165 0.00424 0 

032 0.056 0.0700 0.154 0.310 0.00517 0 

028 0.034 0.0556 0.157 0.429 0.00513 0 

025 0.028 0.0300 0.105 0.602 0.00413 0. 

018 0.021 0.0139 0.096 0.746 0.00287 0 

006 0.007 0.00088 0.066 0.961 0.000465 0O 

003 0.003 0.00002 0.003 1.178 0.0000277 0 

002 0.002 0.00003 

002 0.002 

002 0.002 

002 0.002 

002 0.002 

on Gs 6 

aE = O.L064, |= 0.0251 = 0S 
r r r 
max max max 

= =0)..2770 

ait) wy! Tyat Saniitand r-r 

See SS 
- 0 fe) (e) a0 6 P 

028 0.034 0.0767 0.193 0.0186 

.028 0.033 0.0615 0.158 0.0897 0.00176 

032 0.035 0.0654 ORSa 0.150 0.00232 

032 0.036 0.0651 0.150 0.224 0.00286 

.030 0.036 0.0605 0.146 0.332 0.00336 

.028 0.036 0.0528 ON LS7 0.445 0.00323 

024 0.032 0.0354 0.125 0.609 0.00299 

014 0.017 0.00968 0.106 0.778 0.00145 

004 0.004 0.00090 0.005 0.944 0.000304 

003 0.003 0.00004 0.014 Valog 

002 0.002 0.00002: 0.016 1.368 

002 0.002 0.00003 

002 0.002 0.00002 

002 0.002 

002 0.002 

002 0.002 

a oF 
— = 0.2343, — = 0.78 

max max 

[o-) 

R[x 

.0160 
0212 

.0262 

.0308 

.0328 
0371 
0349 
0237 

oooooocooco 

BDO DOO oe Oe) 
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TABLE 6 - (Continued) 

x/L, = 1.0076, soa ie = 0. 

r oe Vy a? ne) wie 100 uy 7% € Q 

Tax UG os Uy 5 UN US ae Sy U5°F 6. 

0 0.368 -0.059 0.044 0.029 0.034 0.0251 0.162 0 

0.061 0.385 -0.053 0.039 0.027 0.031 0.0385 0.154 0.067 0.00219 0.0296 

0.101 0.426 -0.047 0.037 0.027 0.030 0.0495 0.165 Onna 0.00209 0.0248 

0.139 0.462 -0.043 0.038 0.027 0.032 0.0524 0.164 ORS S: 0.00227 0.0262 

0.213 OF 535 -0.037 0.039 0.027 0.033 0.0580 0.174 0.234 0.00248 0.0272 

0.288 0.607 -0.020 0.041 0.028 0.034 0.0625 0.173 0.316 0.00292 0.0309 

0.365 0.670 -0.010 0.042 0.029 0.035 0.0610 0.159 0.401 0.00285 0.0305 

ORS 77, 0.781 -0.005 0.042 0.029 0.034 0.0530 0.141 0.524 0.00246 0.0282 

0.589 0.871 -0.005 0.036 0.028 0.032 0.0380 0.130 0.647 0.00239 0.0325 

0.702 0.929 -0.004 0.033 0.023 0.025 0.0106 0.057 OL 772 0.00105 0.0275 

0.811 0.961 -0.004 0.016 0.012 0.013 0.0020 0.035 0.891 0.00038 0.0208 

0.923 0.977 -0.004 0.004 0.003 0.003 0.0009 0.027 1.014 0.000207 0.0182 

1.040 0.993 -0.004 0.002 0.002 0.002 0.0002 

Om oF o 

= = 0.243, = = 10.350, = 0.91 
max max max 

XY / ily = SOS, ie_//ze =Hi0) 
o’ ma 

oe x ie uate) vie wi2 penne -u'y! ae e 2 
Tax aD M5 Uy os i we in oF Us°p Ps 

0 0.519 -0.049 0.036 0.026 0.034 0.0117 0.038 0 = - 
0.034 0.538 -0.043 0.035 0.026 0.032 0.0235 0.080 0.037 0.00236 0.0293 
ORAS 2. 0.609 -0.024 0.037 0.025 0.030 0.0416 0.144 0.165 0.00351 0.0328 

0.232 0.667 -0.015 0.038 0.024 0.029 0.0493 0.137 0.252 0.00396 0.0340 
5 alal OLw22 -0.010 0.040 0.028 0.031 0.0527 0.158 0.338 0.00438 0.0364 
0.388 0.774 -0.006 0.040 0.026 0.031 0.0505 0.156 0.422 0.00420 0.0357 
0.460 0.824 -0.004 0.037 0.026 0.031 0.0460 0.152 0.500 0.00394 0.0350 
0.573 0.894 -0.004 0.037 0.028 0.030 0.0400 0.132 0.622 0.00357 0.0364 
0.614 0.916 -0.004 0.034 0.021 0.027 0.0353 0.235 0.667 0.00336 0.0370 
0.693 0.952 -0.004 0.025 0.017 0.023 0.0186 0.129 0.753 0.00255 0.0357 
0.770 0.981 -0.003 0.018 0.011 0.015 0.00569 0.098 0.837 0.00104 0.0341 

0.847 0.989 -0.003 0.004 0.003 0.003 0.00033 0.051 0.921 0.00029 0.0305 
0.923 0.991 -0.003 0.003 0.002 0.002 0.00010 0.024 1.003 0.000323 = 
1077, 0.991 -0.002 0.002 0.002 0.002 0.00007 = Naka - 
1276 0.993 -0.002 0.002 0.002 0.002 0.00005 = - 
1.459 0.994 -0.002 0.002 0.002 0.002 0 

1.697 0.998 -0.002 0.002 0.002 0.002 0 

Oe é* § 

aE Ost =) = oLeszi == = pep 
r r r 
max max max 
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TABLE 6 - (Continued) 

X/il= ale BD lee 

SS) [It IOs Cy ie) (s} SS) (S)'(S) 

x/L = 

> ~— wo 

SLOT OVOLOLOtO Oro eOLO1Oro© 

= 0 
ax 

ux ‘y \ ul2 yi2 Ww 2 1002u -u'v' 
im Tah Vi) Ti ae Taare 2 U, U, U5 US U5 UZ q 

632) | -OMO1ON) 10-0400 w OK 034) On034 0 0 
644 08008)" 0040) 08054) ONossi  On0055. Os 01s8 
G0 <O.005 O00 OL  O.025 O.0I40 0.055 
63. 0,005  OxMO- Wes OOH D063 W207) 
Te 0,004 O05 C.050 0,052 O,0403  O.ilA 
ks O08 O06 O025  @.050 O00  G.lBR 
BS 7 eAOO03) 10032 = 0025 te OMOZSHEONOS40N)  NOnI46 
RO) =O, Ose “G.0Rl ~~ Os0e5 Os0R90 ~~ Opis 
7 O02 WelRs Onc”  O,02, 0.0200 050 
oo . EOS 'OL0O  “C.0d) O00 0083 O,025 
995  -0.002 0.003 0.002 0.002 0.00006 0.035 
5 <0 O007 , O00  O.00R O.onm = 
GOSH a = OF0 01 ONOOZMENONCOZMMONOO? 0 u 

6* 6* 

— = 0.1543, — = 0.2832, — = 0.95 
r ae) ay 
max max max 

0.914, r/r.. = 0.9145 x/L = 0.977; r,/r,,, = 0.1364 

aes Be 3 ee ace uy : ts 

Tax (e} OY, Tax UR Us 

0.0042 0.448 0.085 0.0073 0.318 0.033 
0.0136 0.482 0.091 0.0128 0.334 0.039 
ONS W520 © W 20M 0.0183 0.345 0.041 
0.0280 0.552 0.096 0.0238 0.360 0.046 
0.0392 0.574 0.104 0.0349 0.381 0.042 
0.0500 0.598 0.107 0.0459 0.400 0.047 
0.0700 0.639 0.112 0.0624 0.428 0.055 
0.0907 0.675 0.108 0.0845 0.459 0.045 
0.1100 0.706 0.111 0.1011 0.483 0.049 
Ost s07/0 nO 7542 OOS 0.1294 0.524 0.049 
DIS - Oona  Wanws Oot 0.855 ~O.085 
0.1772 0.796 0.099 0.1845 0.595 0.045 
0.2058 0.833 0.096 0.2176 0.634 0.044 
0.2344 0.864 0.093 0.2563 0.676 0.040 
0.2687 0.894 0.091 0.2901 0.713 0.036 
0.2980 0.919 0.089 0.3328 0.748 0.033 
0.3324 0.941 0.088 0.3839 0.796 0.035 
0.3782 0.964 0.085 0.4287 0.837 0.033 
0.4067 0.979 0.082 0.4949 0.884 0.030 
0.4475 0.984 0.078 0.5563 0.915 0.028 
0.4876 0.987 0.074 016225) 08947. 0.029 
0.5276 0.990 0.069 0.6894 0.960 0.025 
0.5677 0.992 0.067 0.7501 0.962 0.020 
0.6142 0.992 0.063 0.8170 0.976 0.019 
0.6599 0.992 0.059 0.9494 0.982 0.016 
0.7229 0.993 0.054 1.0218 0.984 0.013 
0.7915 0.994 0.052 Ino) Woes — OsonA 
0.8609 0.995 0.047 1.2487 0.989 0.011 
0.9417 0.995 0.043 1.3253 0.991 0.009 
1.0275 0.998 0.041 1.3984 0.991 0.009 
1.1369 1.000 0.032 1.4756 0.993 0.007 
iezo7iee wIeOOIy 104052 1.5474 0.994 0.006 
1.4522 1.003) 0.027: 1.6253 0.994 0.006 
1.6474 1.004 0.024 1.7026 0.995 0.005 
1.8770 1.004 0.005 1.7743 0.995 0.005 

6+ 6* 6* 
= 0.0772, = = 0.0875 — = 0.1866, = = 0.2469 

max max max 

§ 
= 0.54 tana = -0.2094 = = 0.80 tana = -0.1036 

max 

LS) (SS) (SSS) O) S) Sys) ©) 

Ww wo N 

x/L = 1.000, De / oe 

SEOLOKOKOLOLORO YO) 

(=) fo) os | Oo 

u 
x 

re eee eee oo ooo ooo ooo oo ooo loko nholonolic) 

Oe Go oO uw ise) 

NO Ww ito} ss ale 

-90 

fon fos) oo 

he ee eee ee ee eo oN ooo ooo oo Molo nooo Noho—moio}) 

ax 



TABLE 7 - Measured Mean 

x/L = 0.840, r/r = 

Cpa a 
¥ U U 
max ie) 10) 

0.018 0.703 -0.091 

0.058 0.8444 -0.109 

0.0935 0.9096 -0.106 

0.1304 0.956 -0.112 

0.1645 0.9911 -0.115 

0.2380 1.037 -0.110 

0.3094 1.042 -0.103 

0.4500 1.038 -0.089 

0.6659 1.028 -0.073 

1.1602 1.013 -0.051 

1.7668 1.004 -0.038 

6* 

up 
r 
max 

x/L = 0.9336, Tatas = 

r-r u Vv 
° RE aac 

Tr U U 
max ° fo) 

0.0102 0.3206 -0.088 
0.02 0.402 -0.091 
0.055 0.546 -0.115 
0.079 0.598 -0.117 
0.112 0.652 -0.119 
0.140 0.6955 -0.122 
0.201 0.776 -0.121 
0.228 0.8063 -0.119 

0.300 0.878 -0.115 

0.330 0.903 -0.113 
0.375 0.930 -0.110 
0.427 0.9524 -0.104 

0.483 0.970 -0.094 

0.555 0.984 -0.090 

0.660 0.995 -0.085 

0.9273 1.000 -0.070 
1.340 1.000 -0.052 

and Turbulence Velocity Characteristics for Afterbody 2 

0.9618 tana = -0.1047 

ane yi2 wi2 10024 -u'y! io 

US Yo Uo Uo a Sy 

0.0723 0.0364 0.0387 0.1366 0.169 0.064 
0.0676 0.0328 0.0368 0.1234 0.176 0.204 
0.0600 0.0320 0.0340 0.0950 0.164 0.328 
Os, | OL0233- Wn0rOS | O07 Oda” O.718e 
0.0402 | 0.0213 0.0240 0.0411 0.155 0.577 
OLOLOL)  (OX0091N) HOn00929) OF 00S35 eu On las moreso 
O00 W005 O.00s j= 1.086 
0.0025 0.002 0.002 2 
0.002 0.002 0.002 = 
0.002 0.002 0.002 = 
0.002 0.002 0.002 u 

6x 6 
OOE%, =— > O08, => 3 OAs 

max max 

0.4839 tan a = -0.3216 

ate yt fyr2 -u'v'-u'yv! BE 

Uae fh URm Uae ome aq tenes 
[e) (0) e} fe) Le 

0/0569)" 0.030" 104035810093. On173. OxOg2 
O06) O04 O04 @L095 Ol) OsOss7 
0.0541 0.0343 0.038 0.0990 0.178 9.098 
0.052 0.032 0.038 0.0801 0.154 0.141 
0.053 0.031 0.037 0.0824 0.160 0.20 
0.049 0.030 0.036 0.0785 0.170 0.250 
0.049 0.030 0.033 0.0759 0.173 0.359 
QOASH wn ON O27HMOROSONNOFOSI751 NO; LO SHONd Or 
0.037 0.026 0.030 0.0495 0.165 0.539 
O02 0.023 0,025. 0.0632 Msl5SS OLS 
0.029 0.019 0.022 0.0167 0.099 0.670 
0.018 0.014 0.015 0.0078 0.105 0.763 
0.011 0.010 0.000 0.0027 0.084 0.863 
0.004 0.002 0.003 0.0007 0.014 0.991 
0.002  O.004 Oc) = 1.179 
0.002 0.002 0.002 0 1.656 
0.002 0.002 0.002 2.393 

é* 6* 8 
— = 0.1126, = = 0.1296, = = 0.560 
max max max 

oo0o0o00 00000000 OOOO OOOO) OLS) 

0.05 0.0180 
0.0697 0.0250 
0.0780 0.0280 
0.0809 0.0291 
0.0623 0.0224 

La L 

6 / ae, 
r (reo iste 

0205 0.0124 
0260 0.0157 

0322 0.0195 

0336 0.0203 
0420 0.0254 

0401 0.0243 

0451 0.0273 

0454 0.0275 

0442 0.0268 

0421 0.0255 

0355 0.0215 

0299 0.0181 
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TABLE 7 - (Continued) 

x/L = 0 

Sf S) Syeoy SS) SS) (Sy (S) ) (>) 

DS) [3 (SESS) SOOO SOQ) S| © 

SEORLOFOROLOLOLOLO LOLOL OlOr© 

SIOLOLOLOROZOLOLOLOnOFOre: 

sGl7Ad)5) Se //ae 
o’ ma x 

0. 

OLOLO LOLOL OVOLOTOLOLOVORSre 

SLOLOLOLSLOVOLOLOLOLOR OLS: 

tan a -0.4077 

yi2 w! 

wv. U 
oO fo) 

0.0244 0.241 
0.0304 0.030 
0.0333 0.0352 
0.0324 0.0359 
0.0314 0.0355 
0.0290 0.0354 
0.0271 0.0315 
0.0232 0.0290 
0.0168 0.0219 
0.007 0.007 
0.002 0.002 
0.002 0.002 
0.002 0.002 
0.002 0.002 

6* 

a 0.239 
max 

tan a = -0.3901 

ui2 , Tanta 

uv. Ua 
ie} ie} 

0.0175 0.0230 
0.0289 . 0.0319 
0.0301 0.0344 
0.0314 0.0354 
0.0317 0.0364 
0.0287 0.0339 
0.0219 0.0250 
0.012 0.014 
0.003 0.003 
0.002 0.002 
0.002 0.002 
0.002 0.002 
0.002 0.002 

6* 

oo = 0.233, 
max 

-u'v' -ulv! 

100 
uz q? 

fe} 

0.0531 0.185 
0.0756 0.177 
0.0850 0.164 
0.0872 0.171 
0.0800 0.165 
0.0666 0.152 
0.0545 0.156 
0.0420 0.149 
0.0199 0.126 
0.00173 0.107 

6* 

5 eS 0229); 
max 

-u'v' -u'v! 
100— 

ug ae 

OROZ19 me Omazil 
0.0544 0.152 
0.0692 0.161 
0.0788 0.161 
0.0770 0.156 
0.0625 0.159 
0.0355 0.157 
0.00868 0.124 
0.000417 0,033 

6* 

= 0294), 
Ty 

SO*OVOROROLOLOLOROI©: 

Lis) eyo) S) SY OC) 

Ww > i) 

SOLO .OLOLOLOROIO 

SEOEOLOLOVORO!S 

.00166 

.00209 
00244 
-00278 
-00287 
-00289 
-00243 
.00154 
.000339 

.78 

Q L 

o. 22 
r J (x, +6,) 2x2 

.0182 
-0215 

-0248 
.9295 
.0334 
.0372 
.0357 
-0326 
.0250 

-0206 
.0236 

-0260 
-0306 
.0356 
.0367 
.0300 
0201 

OLOsOLOLOVOLOLO OS) 

STOLOTOIOs OGIO: OS: 

.0147 

.0174 

.0201 

.0238 

.0270 

.0301 

.0229 

.0264 

.0202 
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TABLE 7 - (Concluded) 

x/L = 1.000 x/L = 1.057 x/L = 1.182 

Yr ox xr uy r “x 
r Um 2 U rr. U 
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ABSTRACT 

This paper describes an empirical method devised 

for modifying measurements made at a propeller 

position at the rear of unpowered bodies such that 

the flow at the same position on a full-scale self- 

propelled body may be predicted. ms 
A boundary layer calculation procedure for esti- 

mating boundary-layer velocity profiles at the 

tail region of a body of revolution is discussed, 

and the inclusion of a simple representation of a 

propeller is described. Comparisons between 

velocities measured at Reynolds numbers of order 

10® and calculated velocities show reasonable 

correlation both for unpowered and for powered 

bodies of revolution. It is shown how the results 

of boundary-layer velocity calculations are used 

to derive a method for modifying flow measurements 

at model scale to represent full-scale flow over 

the propeller disc area. Comparisons are made 

between predictions based on this method and 

measurements on powered and unpowered bodies at 

high and low Reynolds numbers. 

1. INTRODUCTION 

For many applications a self-propelled marine 

vehicle has a propeller fitted at the rear of the 

body where it gains in propulsive performance and 

in cavitation performance by operating in the 

relatively slow moving fluid in the hull boundary 

layer. It follows that a fundamental requirement 

for propeller design is a knowledge of the boundary 

layer flow at the propeller position. This infor- 

mation is not usually known since there are no 

theoretical methods presently available for calcu- 

lating the boundary flow at the rear of a powered 

asymmetric body with appendages. An estimate of 

the required flow field can be obtained from 

measurements at model scale but as the Reynolds 

number based on model length is considerably lower 
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than the full-scale value, it is necessary to make 

some modification to the measurements to simulate 

the effect of a thinner boundary layer at full 

scale. If the flow field is measured on an un- 

powered model, as is often the case, further 

modification is required to allow for flow acceler- 

ation due to the propeller. 

This paper describes an approximate method 

which has been developed for estimating corrections 

required to flow measurements on unpowered bodies. 

A boundary layer calculation procedure is briefly 

outlined and then compared with data from tests on 

axisymmetric bodies at low Reynolds numbers and 

non axisymmetric bodies at both low and high 

Reynolds numbers. 

2. BOUNDARY LAYER CALCULATION 

The method is based on the work of Myring (1973) 

and only a brief outline is presented herein. An 

iterative scheme is adopted in which a boundary 

layer calculation is done for a given pressure 

distribution over the body and a potential flow 

calculation is done to calculate the pressure 

distribution over the body with boundary layer dis- 

placement thickness added. In the boundary layer 

calculation procedure, an integral method is used 

in which the laminar flow region is calculated 

using the method of Luxton and Young (1962) and the 

turbulent flow is calculated using a method similar 

to that due to Head (1960). The transition point 

must be specified and it is assumed that momentum 

area and a shape parameter are continuous at 

transition. 

An important feature in Myring's method is his 

treatment of the turbulent boundary layer in the 

region of the tail. The usual boundary layer 

assumptions become invalid in this region where the 

ratio of boundary layer thickness to body radius 

tends to infinity so Myring defines a momentum 

area and a displacement area which overcomes the 



problem and which reduce respectively to body 

radius times momentum thickness and body radius 

times displacement thickness far from the tail 

where boundary layer thickness is small. A con- 

ventional momentum integral equation is derived in 

terms of the defined parameters and this is solved 

using an empirical relationship for skin friction 

coefficient which assumes that wall shear-stress 

does not change sign. Therefore the method is only 

applicable to bodies on which the boundary layer 

remains attached. It is also assumed that the 

variation of static pressure across the boundary 

layer is negligible. This latter assumption has 

been found to be incorrect for bodies with blunt 

tails (i.e., cone angles greater than 30°) and an 

empirical modification has been made based on the 

work of Patel (1974) who developed independently 

a method which is similar to Myring's but which 

recognises the importance of static pressure varia- 

tion. The modification introduced in the present 

method is that the predicted velocity distribution 

along the body is changed empirically in the tail 

region, the change being related to differences 

between measured and predicted velocity distribu- 

tions at the rear of a given body with a blunt 

stern. It has been found that this modification 

results in improved correlation between measured 

and predicted boundary layer velocity profiles. 

A simple actuator disc representation of a 

propeller has now been included in the potential 

flow part of the calculation in order to give a 

first approximation to the acceleration effects 

on the flow caused by the action of the propeller. 
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FIGURE 1. Measured and predicted velocities 0.96L from 
the bow of a body of revolution with tail cone angle of 

AS 
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FIGURE 2. Measured and predicted velocities 0.96L from 

the bow of a body of revolution with blunt stern [Patel 

(1973) ]. 

3. RESULTS AT LOW REYNOLDS NUMBER ON AXISYMMETRIC 

BODIES 

Comparison between Predicted and Measured Results 

The main interest in the present work is in the 

prediction of boundary layer velocity profiles in 

the tail region of a body and the results presented 

in this section relate to model measurements under 

conditions giving a Reynolds number based on model 

length from 1 x 10© to 6 x 10°. 
The velocity measurements shown in Figure 1 were 

made at a station 0.96 L from the bow of a body of 

revolution of length L and having a relatively fine 

stern (cone angle 26°). The measurements are of 

total velocity whereas the calculation method gives 

values of velocity component parallel to the hull. 

The theoretical curve in Figure 1 is obtained by 

applying a small correction to the calculated 

velocities to allow for the difference between 

local flow angle and hull angle. It can be seen 

that the resulting predicted curve gives values to 

within 4% of the measured velocities. Detailed 

measurements at the rear of a body of revolution 

having a blunt stern have been reported by Patel 

et al. (1973) and results for a station 0.96 L 

from the bow are shown in Figure 2. The broken 

line is the theoretical boundary layer profile 

predicted from Myring's method with no allowance 

for static pressure variation across the boundary 

layer. This curve is significantly different from 

the measured velocities which are more than 10% 

less than predicted values in the inner part of 

the boundary layer. Correlation between measured 

and predicted results is improved when the empirical 

modification allowing for static pressure variation 
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has been made and the resulting curve is seen in Velocity profiles close to the propeller plane 

Figure 2 to be in better agreement with the measure- with and without propeller operating have been 
ments. reported by Huang (1976). A typical example is 

Theoretical results obtained with the simple shown in Figure 4 where it can be seen that the 

representation of a propeller included in the Myring theoretical prediction for the unpowered 

method indicate that the propeller can produce body gives velocities which tend to be too low. 
large local changes in the boundary layer flow. An Nevertheless the discrepancy is less than 4% of the 

example for which measurements are also available measured values. 

is shown in Figure 3 where results are presented 

for various stations along a body of revolution 

having a fine tail and contra-rotating propellers. Reliability of Harmonic Analyses of Measured Flow 

The measurements are of total velocity and were Fields 

made with rakes of probes fixed to the body, the 

rake at the forward propeller plane being removed The comparisons between theoretical prediction and 

when the propeller was fitted. The velocity pro- measurement indicate that the calculation method 

files on the unpowered body are well predicted gives a good approximation to velocity profiles 
except close to the tail where boundary layer measured on powered and unpowered bodies of 

separation appears to be present: it is noted revolution. The method is not expected to pre- 

earlier that the calculation procedure will not dict velocities to better than 4% in absolute 

predict separation. The changes produced by the terms but this is satisfactory for the purpose of 
propellers are in surprisingly good agreement with deriving a simple means for modifying model measure- 

predicted changes considering that an actuator ments to represent full-scale values. It is re- 

disc representation of the propellers has been quired to obtain a representative flow field over 

adopted. The velocities in a region close to the the propeller disc area and an essential starting 

hull are under-predicted at the two rearmost point is to have reliable model data not only in 
stations and at the station very close to the tail the sense that velocities can be measured accurately 

the velocities near to the edge of the boundary at a given point, but also that, if a Fourier anal- 

layer are also underpredicted. Apart from these ysis is made of the velocities measured during one 

discrepancies the effect of the propeller is well revolution at a given radius, then a good approxi- 

represented. mation to the magnitudes of wake harmonics is 
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FIGURE 3. Velocity predictions and measurements on a torpedo-like body. 
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FIGURE 4. Velocity profiles immediately ahead of the 

propeller DTNSRDC body 5225-1 [Huang (1976) ]. 

obtained. This information is relevant to the 

estimation of unsteady forces generated by a pro- 

peller. Some tests have been made in a wind tunnel 

to assess the reliability of model measurements at 

a typical propeller position on a three dimensional 

body. Inflow non-uniformity was introduced by 

fitting four struts to the body and the velocity 

field was measured by a single traversable pitot- 

static prove with head 1.5 mm in diameter. Measure- 

ments at a given radius were made on different runs 

with incremental steps of 1°, 2°, and 3° in the 

circumferential position of the probe and 10 repeat 

runs were made with 3° incremental steps. A Fourier 

analysis of each set of results was made and the 

harmonic spectra are summarised in Figure 5. It 

can be seen that the standard deviations in the 

magnitudes of wake harmonics are quite small show- 

ing that misleading information concerning the 

relative magnitudes of different wake harmonics 

would not be obtained on any one run. The differ- 

ences in magnitudes from the runs with 1°, 2°, and 3° 

steps in probe position are also quite small in 

general although a few wake harmonics, such as ll, 

do show significant changes. No consistent trend 

is observed in comparing amplitudes at low harmonic 

number but at harmonic numbers greater than 25 the 

amplitudes obtained from the run with 1° steps tend 

to be higher than those from other runs, the impli- 

cation being that choosing a coarser step size has 

resulted in a small loss in accuracy. 

The amplitudes of wake harmonics at harmonic 

numbers greater than 20 are small (less than 0.005 

times tunnel speed) except for harmonic numbers 

which are multiples of 4. These higher values are 
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associated with the wakes from the four struts 

which each produce a 'trough' in the measured flow 

field. The high harmonic amplitudes at high har- 

monic numbers implies a possible inaccuracy in 

results from a Fourier analysis based on the finite 

number of measured points. This was investigated 

theoretically by assuming an idealised wake defect 

giving a triangular waveform as indicated in 

Figure 6. The number of wake defects and wake 

width could be varied and for each assumed flow 

field an exact Fourier analysis was obtained ana- 

lytically and the results were compared with similar 

analyses determined numerically with the waveform 

described at discrete points as specified in the 

measurements. Figure 7 shows results obtained with 

4 narrow wake defects and 120 points specifying the 

velocity profile. Two wake widths are considered; 

when maximum wake width is 9° harmonics above 20 

are in reasonable agreement with the exact solution 

although harmonics below 20 are too low; when wake 

width is reduced to 44° the amplitude of harmonics 

from the exact solution falls slowly with increas- 

ing harmonic number whereas the amplitudes deter- 

mined numerically show no reduction in amplitude. 

In this case, where points are specified every 3° 

and the width of each wake defect is only 4%°, 

‘aliasing' in the numerical results is not un- 

expected. Such pitfalls in numerical analysis are 

well known and Manley (1945) shows that erroneous 

values in analyses of the type described above 

might be expected at harmonic numbers given by 

(N-jK) where N is the number of specified points, 

K the number of wake defects and j is an integer. 

A parametric study for triangular waveforms in 
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FIGURE 5. Harmonic analysis of different measurements 

of a non-uniform flow field. 
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AMPLITUDE 
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kK 

FIGURE 6. Theoretical representation of wake defects 

in the flow field. 

which N, K, and wake width were varied showed that, 

in general, errors did not become significant until 

wake width was less than twice the angular spacing 

of the specified points, i.e., 720°/N. 

4. USE OF THE PREDICTION METHOD IN PROPELLER DESIGN 

A knowledge of the flow in the region of a propeller 

is required first, in order to design it, and 

second, to estimate its performance characteristics. 

The former requires an estimate of the unpowered 

mean velocity through the propeller position to- 

gether with the radial variation of mean circum- 

ferential velocity. Of the latter, the prediction 

of unsteady propeller forces in particular also 

requires the detail wake structure at the propeller 

position in the powered condition. 

The theoretical boundary layer prediction method 

outlined in Section 2 cannot be used directly to 

predict the above wake information for practical 

vehicle configurations because of limitations such 

as its restriction to unappended bodies of revolu- 

tion. However, it can be employed indirectly by 

using the method to predict the changes from model 

testing conditions to full-scale vehicle conditions 

and then applying these scale effects to available 

model data. 

The procedure adopted for the predictions dis- 

cussed in the following section was to replace the 

non symmetric, appended vehicle by an equivalent 

body of revolution. Powered and unpowered boundary 

layer predictions were then carried out and, by 

assuming a simple power law for the boundary layer 

velocity profile, the mean circumferential veloci- 

ties were determined for the equivalent model and 

full-scale bodies. In this way it was possible to 

estimate at any position the scale effect upon the 

unpowered wakes, the propeller induction effects, 

and any combination of the two. These effects were 

then applied to all the measured unpowered model 

data to give predictions of both model and full- 

scale powered wakes for comparison with measured 
data. 

5. COMPARISON BETWEEN PREDICTED AND MEASURED RESULTS 

ON NON-SYMMETRIC BODIES 

As part of a programme to investigate the effects 
of scaling and propejler induction on wakes, experi- 

ments have been carried out on two practical vehicle 

forms covering a range of Reynolds numbers, based 

on body length, from approximately 1 x 10” to 

6 x 108. The two vehicles concerned were propelled 

by a single centre line propeller and were fitted 

with a set of cruciform after-control surfaces just 

ahead of the propeller. The afterbody form was 

axisymmetric in both cases, one vehicle having a 

fine stern (vehicle A) and the other a blunt stern 

(vehicle B). 

The low Reynolds number data were obtained in the 

ship tanks at AMTE (Haslar) using small conventional 

pitot static tubes. For body A, measurements were 

made at a position 26 percent of the local control 

surface chord aft of the control surface trailing 

edge. This corresponded to 28 percent of the 

propeller diameter forward of the propeller. The 

measurements were made at 2° intervals over an angle 

of approximately 90° centred on one control surface, 

and at radial distances from the body surface of 

12.5 percent and 25 percent of the propeller radius. 

For body B, data were obtained 24 percent of the 

local control surface chord aft of the control 

surface trailing edge, corresponding to 22 percent 

of the propeller diameter forward of the propeller. 

In this case 6 pitot static tubes were used cover- 

ing a range of radial distances from the hull of 

12.5 percent to 65 percent of the propeller radius. 

The high Reynolds number data were obtained from 

trials carried out at sea on vehicle A using 5 con- 

° 
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FIGURE 7. Comparison between an exact Fourier analysis 

of the theoretical velocity profile and a numerical 

analysis of the same profile specified at a discrete 

number of points. 



ventional pitot static tubes at each of the above 

radial positions. 

The high Reynolds number measurements could only 

be carried out at self-propulsion conditions. 

However, the model experiments in the ship tank 

were run over a range of propulsion conditions, 

the model speed, propeller rpm, and resistance being 

recorded. 

Analysis of Experimental Data 

The low Reynolds number results for vehicle A are 

presented in Figures 8 and 9 while the equivalent 

high Reynolds number trail data is given in 

Figure 10. For body B the available data is 

restricted to that obtained in the low Reynolds 

number ship tank tests and the results are pre- 

sented in Figures 11 to 13. For the sake of 

brevity the velocity profiles given in Figures 11 

to 13 have been limited to those for alternate 

measurement radii. 

It can be-shown that the propeller diffusion 

ratio, defined as the ratio of the mean velocity 

through the propeller to the unpowered mean wake 

velocity through the propeller position, can be 

obtained from the propeller thrust or hull resis- 

tance together with the mean volumetric wake and 

thrust deduction. Thus, using the model powered 

and unpowered resistance measurements and values 
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of wake and thrust deduction obtained from previous 

model tests, the propeller diffusion ratio has been 

calculated for the model propulsion conditions 

pertaining during the experiments. Similar calcu- 

lations have been carried out for the sea trial 

conditions using data obtained from previous pro- 

pulsion trials. The results of these analyses are 

given on Figures 8 to 13, and also in Table 1 which 

summarises the experimental and trial conditions. 

The velocities just ahead of the propeller have 

been averaged at each radius to give the variation 

of the mean circumferential velocities with diffu- 

sion ratio presented in Figures 14 and 15. [In an 

attempt to quantify the secondary flow component in 

the above velocity profiles the ratio of the mean 

peak velocity to the mean minimum velocity has been 

evaluated and plotted in Figures 16 and 17. The 

normal parameter used to specify the velocity defect, 

namely the ratio of the minimum velocity in the 

"trough' to the mean velocity at the edge of the 

"trough' is given in Figures 16 and 18. No values 

are given for the inner radius on body B because, 

as can be seen from Figure 11, the wake defect is 

not clearly defined at this position. The latter 

parameter is also compared in Figure 19 with an 

empirical relationship based on two-dimensional 

data [e.g., Raj (1973)]. 

The results of using the Myring based boundary 

layer prediction method as described in Section 4 

for the powered model and trial conditions are 

also plotted in Figures 14 to 18. 

FIGURE 8. Vehicle A model velocity profiles 

at position 12.5 percent of propeller radius 

from the hull. 

EYe) 

FIGURE 9. Vehicle A model velocity profiles 

at position 25 percent of propeller radius 

from the hull. 
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Discussion of Measured Data 

It is clear from Figure 16 that the relative magni- 

tude of the velocity defect at the two radii con- 

sidered on vehicle A is virtually unaffected by the 

propeller, and is subject to only a very small 

scale effect. The latter gives rise to a reduction 

in the depth of the velocity defect between the 

model and full-scale equivalent to an increase of 

between 1 percent and 3 percent in the ratio of 

minimum velocity in the 'trough' to the mean veloc-— 

ity at the edge of the 'trough'. It can be seen 

from Figure 19 that for vehicle A the actual values 

of the velocity defect are considerably lower than 

predicted by the empirical relationship derived 

from two-dimensional test results. This is not 
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surprising since the two radii concerned are close 

to the hull and the velocity defect is developing 

in a complex three-dimensional flow field influenced 

by the secondary flow and this is possibly leading 

to a more rapid mixing of the flow. The results 

obtained over a much larger distance from the hull 

on vehicle B support the above hypothesis since it 

can be seen from Figures 18 and 19 that as the 

distance from the hull increases the magnitude of 

the wake defect increases and approaches the two- 

dimensional value. The model results for vehicle 

B shown in Figure 18 tend, in general, to indicate 

a small increase in the depth of the wake defect 

as the propeller diffusion ratio increases. The 

maximum value of this increase in the wake defect, 

between the model self-propelled and unpowered 

condition, is only of the order of 3 percent. This 

change is somewhat surprising since the propeller 

produces a favourable pressure gradient aft of the 

control surfaces, and on the evidence of two- 

dimensional data this would be expected to reduce 

the wake defect. 
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FIGURE 13. Vehicle B model velocity pro- 

50 files at position 54.5 percent of propeller 

radius from the hull. 

In contrast to the velocity defect the secondary 

flow can be seen from Figures 16 and 17 to be 

significantly reduced by the presence of the 

propeller, this reduction becoming larger as the 

diffusion ratio increases. Additionally, at equal 

propeller diffusion ratio, the full-scale secondary 

flow is significantly less than measured on the 

model. From the data obtained on vehicle A 

(Figures 14 and 16) it can be seen that, comparing 

the results at model and full-scale self-propulsion 

conditions, the magnitude of the secondary flow and 

the mean circumferential velocity at the two radii 

considered agree to within 2 percent and 3 percent 

respectively. Although comparison between the 

velocity profiles is difficult because of the non- 

symmetry of the trial data, Figures 1 to 3 indicate 

that at these conditions there is also reasonable 

agreement between the velocity profiles. These 

results indicate a possible condition for similar 
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FIGURE 16. Relative magnitude of the secondary flow 

and velocity defect for vehicle A. 

inflow to the propeller at model and full-scale; 

however, it should not be regarded as a general 

conclusion on the basis of this one experiment. 

Additionally although the propeller inflow may be 

similar at self-propulsion the propeller thrust 

loading, as indicated by the diffusion ratio, will 

be different. 

Comparison between the wake defect and secondary 

flow model measurements for the two vehicles 

(Figures 16 to 18) show generally similar magnitudes 

for the former, but a much larger secondary flow in 

the case of the body with the fuller afterbody. 

The latter effect can also be seen in the velocity 

profiles given in Figures 8 and 1l. 

Comparison between Predicted and Measured Results 

It can be seen from Figure 14 that the mean circum- 

ferential velocity predictions for the powered model 

of vehicle A are always higher than measured. The 

maximum differences occur at model self—propulsion 

conditions and are 7 percent and 4 percent for the 

positions 12.5 percent and 25 percent of the pro- 

peller radius from the hull respectively. Both 

the measured data and the predicted velocities can 

be seen to vary linearly with propeller diffusion 

ratio. For the blunter stern, Figure 15 indicates 

that for radial positions between 23 percent and 44 

percent of the propeller radius from the hull the 

predictions of mean circumferential velocity are 

generally in good agreement with the measured data. 

For the two outer radii the predictions tend to 

be high as in the case for body A, the maximum 

errors at model self-propulsion being of the order 

of 4 percent. However, for the innermost radial 

position, the powered predictions are up to 14 per- 

cent below the measured values. t is apparent 

for Figure 15 that, in contrast to the other radii, 

the model results for this position are not linear 

with propeller diffusion ratio because of the low 

velocity obtained in the unpowered condition. Since 

the measured data was linear at a similar radial 

position for body A this suggests that the poor 

powered prediction of velocity for body B is due to 

the low unpowered velocity measurement which is 

used as the datum for the prediction. This low 

measured velocity may be the result of flow separa- 

tion on the vehicle with the blunt afterbody which 

is suppressed by the favourable pressure gradient 

produced when the propeller is operating. 

Comparison between the full-scale and predicted 

mean circumferential velocities in Figure 14 show 

the latter to be less accurate than for the model 

case, the predicted values being 15 percent and 9 

percent high for the inner and outer positions 

respectively. However, correlation of propulsion 

data from sea trials and model experiments on 

vehicle A suggest an equivalent full-scale hull 

Reynolds number of one-tenth of the true value and 

TABLE 1 Experimental and Trial Conditions 

Hull 

Reynolds Diffusion 

Vehicle Conditions Number Ratio Remarks 

A Model 13 xe 1Od mesos Self propulsion 

1.226 

1.130 

A Trial 5.5 x 108 1.160 Self propulsion 

B Model ToD 3 AO? “a Dsis) Self propulsion 

1.175 

abSatalat 
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distance from the control surface. 

if this is used for the predictions the above 

differences become + 1 percent and - 2 percent 

respectively. Thus the speed trial and full-scale 

wake data become compatible and both suggest a 

scale effect on the flow velocity for the vehicle 

A with the finer stern much smaller than predicted. 

This may be due to the fact that the full-scale 

vehicle is hydraulically rough at all but the very 

lowest speeds while the prediction method assumes 

hydraulically smooth conditions. 

The process of adding the predicted mean circum- 

ferential velocity changes to all measured veloci- 

ties are described in Section 4 naturally leads to 

a change in the ratios used herein to describe the 

relative magnitudes of the velocity defect and 

secondary flow. For the velocity defect Figures 16 

and 18 show that the predicted magnitude decreases 

slightly with increasing diffusion ratio such that 

at model self-propulsion the relative magnitudes 

are 3 percent higher than measured for body A and 

up to 6 percent for body B. The predicted relative 

magnitude of the wake defect at the full scale 

condition is within 2 percent of that measured, 

although as already noted the absolute velocities 

are 15 percent and 9 percent higher than measured. 

The use of a smaller scaling effect based on the 

equivalent Reynolds number discussed above would 

slightly reduce the above error in predicted 

velocity defect. 

The predicted relative magnitude of the secondary 

flow can be seen from Figures 16 and 17 to decrease 

with increasing diffusion ratio but at a slower 

rate than actually measured on the models. Thus, 

the propeller is having an influence on the develop- 

ment of the secondary flow in addition to the simple 

change in relative magnitude arising from the 

propeller induced velocity. It is clear that at 

model conditions, the difference between the 

measured and predicted secondary flow is much 

greater for the blunter afterbody form of vehicle 
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B. At model self-propulsion conditions these 

differences are up to 5 percent for vehicle A but 

60 percent for vehicle B. The secondary flow pre- 

diction for the full-scale conditions on body A 

given in Figure 16 can again be seen to be higher 

than the measured values but only by up to 4 percent 

at the two radii considered. In this case the use 

of a smaller scaling effect would lead to higher 

predicted values such that the differences between 

these and the measured values would increase to the 

order of 6 percent. 

The above results show that the agreement between 

the measured and predicted data has been limited and 

further work is required before the proposed scaling 

method can be regarded as satisfactory. The princi- 

pal requirement is for further high Reynolds number 

data and it is proposed to obtain this by additional 

full-scale trials, together with experiments on 

models in a compressed air wind tunnel. 

6. CONCLUSIONS 

An integral boundary-layer calculation method for 

bodies of revolution is shown to give a good pre- 

diction of boundary layer velocity profile for 

attached flows in the tail region of a body. 

Inclusion of a simple actuator disc representa- 

tion of a propeller in the calculation method gives 

a reasonable first approximation to the effect of a 

propeller on the flow. 

Comparison between results from Fourier analyses 

of measurements from runs repeated a number of 

times and of measurements made with different 

incremental steps in probe position indicates that 

wake harmonics can be determined reliably. from 

measurements at model scale. 

Fourier analyses of idealised velocity profiles 

representing wake defects in an otherwise uniform 

flow field have been obtained analytically. Com- 

parison between these results and numerical harmonic 

analyses of the same profile specified at a dis- 

crete number of points shows no significant differ- 

ences in the amplitudes of wake harmonics at high 

harmonic number provided that the width of the wake 

is not too small. 

The measurements presented herein indicate that 

the velocity defect produced behind a control sur- 

face is only slightly affected by either the 

presence of a propeller aft of the control surface, 

or by the change in Reynolds number from model to 

full-scale. 

Near the hull, where the flow is influenced by 

secondary flow effects, the velocity defect behind 

a control surface is much smaller than predicted 

from two-dimensional data. For positions outside 

the influence of the secondary flow the velocity 

defect approaches the two-dimensional value. 

The velocity defect is of a similar order of 

magnitude for the two bodies examined. However, the 

secondary flow effects are significantly larger 

for the vehicle with the blunter stern. 

The secondary flow produced by the interaction 

of a control surface with the hull boundary layer 

is reduced significantly by the presence of a 

propeller aft of the control surface, and from 

model to full-scale conditions. This reduction 

increases with increasing propeller diffusion ratio. 

By using the unpowered model measurements as 

datum it has been possible to predict the model 

powered mean circumferential velocities to within 

4 percent for radial positions from the hull greater 

than 12.5 percent of the propeller radius. At this 

radius itself, the predictions are within 7 percent 

for the finer stern model and 14 percent for the 

fuller stern; however, the latter may be due to 

separation effects which are not taken into account 

in the prediction method. 

Predictions of the mean circumferential velocity 

at the full-scale conditions for the vehicle with 

the finer stern are high by up to 15 percent. If 

the ship prediction is made at a reduced Reynolds 

number suggested by speed trial results the pre- 

dictions come within 2 percent. Predictions of the 

powered velocity defect are wit in © percent for 

model conditions and 2 percent for ship conditions, 

the latter figure applying to either the true or 

reduced full-scale Reynolds number. Predictions of 

the model powered secondary flow are within 5 per-— 

cent for the body with the finer stern, but up to 

60 percent for the fuller form. However, for the 

full-scale conditions obtained on the finer stern 

the predictions are within 4 percent at the true 

Reynolds number, and 6 percent at the reduced value. 

A practical method of estimating propeller in- 

duction and wake scaling effects has been proposed 

and demonstrated to give limited agreement with 

model and full-scale data. Further experimental 

data are required to refine the method and to this 

end high Reynolds number model experiments are 

planned to be carried out in a compressed air wind 

tunnel, and further full-scale trials scheduled. 
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ABSTRACT 

Characteristics of the boundary layer and wake flow 

of ships are investigated experimentally and at- 

tempts are made to estimate their velocity distri- 

butions. 

Boundary layer characteristics, before the onset 

of separation, are studied; a three-dimensional 

boundary layer calculation is carried out by the 

integral method, while examining the boundary layer 

assumptions and the validity of auxiliary equations 

by direct measurements of velocity and static pres- 

sure profiles in boundary layer as well as skin 

friction distribution on hull surface. 

Assuming that the wake is the domain of influ- 

ence of the boundary layer and consists of three 

sub-regions, i.e., vorticity diffusion region, 

separated retarding region, and viscous sublayer, 

different governing equations for each sub-region 

are derived by local asymptotic expansions. 

Velocity distribution in the vorticity diffusion 

region is estimated in two steps: first, vorticity 

distribution is found by solving the vorticity 

diffusion equation, then velocity distribution is 

calculated from the obtained vorticity distribution 

by invoking Biot-Savart's law. 

Satisfactory agreements are attained between 

calculations and measurements both for boundary 

layer and wake. 

1. INTRODUCTION 

Introductory Remarks 

The prediction of the viscous flow field around 

ship hulls, boundary layer on the hull surface, and 

the wake, is one of the most important problems in 

ship hydrodynamics. Important design-conditions, 

such as estimations of viscous resistance or wake 

distribution on a propeller disk, are all closely 

connected with this problem. Instabilities of ship 
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Maneuvering and propeller-excited-vibrations are 

also presently urgent problems in practice; they 

are also fundamentally connected with the viscous 

Calculations of a ship boundary layer have been 

carried out by many investigators during the last de- 

cade; e.g., Uberoi (1969), Gadd (1970), Webster and 

Huang (1970), Hatano et al. (1971), Himeno and Tanaka 

(1973), and Larsson (1975). They have solved bound- 

ary layer equations in integral forms. Cebeci et al. 

(1975), as well as Soejima and Yamazaki (1978), has 

tried to solve them by the finite-difference method. 

Such remarkable progress in ship boundary layer 

calculations are mainly due to studies of two- 

dimensional boundary layers and to the use of high 

speed computers. Though some of them yield good 

results, an absence of experimental examination of 

boundary layer assumptions or auxiliary equations 

can be found when applying them to shiplike bodies. 

Experimental examinations are very important because 

most of auxiliary equations are derived from two- 

dimensional experiments. 

On the other hand, as to the ship wake, many 

experimental studies have been carried out not only 

for ship models but also for full scale ships, e.g., 

Yokoo et al., (1971) and Hoekstra, (1975) mainly 

discussed the prediction of full scale wake charac-— 

teristics based on model wake survey. 

Rational theoretical studies are still more im- 

portant. As to theoretical studies of wake, we 

must retreat to problems of flow behind rather 

simple obstacles like flat-plates, circular cylin- 

ders, or bodies of revolution. Even in such cases, 

most treatments are based on potential theory such 

as free-streamline theory or cavity-flow theory, 

reviewed by Wu, (1972). However, because vortici- 

ties existing within wakes are mainly generated in 

boundary layers of hull surfaces and shed into wakes 

viscously and convectively through separations, the 

prediction of wake flow should be treated in close 

relation to boundary layer flow. 

The previous works by Hatano et al., (1975, UIT) 5 
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were carried out from this standpoint. But they 

are only the beginning of research on ship wakes 

and many future problems were pointed out, especially 

requirements for further experimental studies. 

The present authors are firmly convinced that, 

for such viscous flow problems, marriages of experi- 

mental and theoretical studies are primarily impor- 

tant in order to make further progress. Because 

of this, the present paper is divided into two parts; 

experimental studies on ship boundary layers and 

wakes (Section 2 and 4), and theoretical studies 

and numerical calculations (Section 3 and 5). 

Coordinate Systems and Models Used 

Two coordinate systems are employed throughout the 

present paper. One is the right-hand linear coordi- 

nate system, O-xyz, whose origin is at midship and 

on the waterplane and the oncoming flow, Ug, is in 

the x-direction. The other is the streamline coor- 

dinate, x]x2x3; the curves of constant x2 coincide 

with potential flow streamlines on hull surface and 

x3 is normal direction to hull surface (Figure 1). 

All quantities are dimensionless by half ship 

length 2 (=L/2), ship speed Ug, and fluid density p, 

unless specified in another form. 

For the present research three ship models, 

GBT-125, GBT-30, and MS-02 were used whose body 

plans with potential streamlines and principal di- 

mensions are shown in Figure 2 and Table l. 

GBT-125 and GBT-30 are practical tanker ship 

models, similar in geometry to each other. GBT-125 

is a double model and was used under submerged con- 

ditions for studies of boundary layer flow. MS-0O2, 

which was used for the studies of wake flow, has a 

rather simple stern form; the framelines are ellip- 

tic and given by the equation, 

CHlOlae 
0.7 

xa 
Yo = bo | 1- (=) 1 (2) 

and bg is the half breadth of the waterplane at 

x = 0.4 (S.S.3) and d is the draft. The remainder, 

(x < 0.4), has a practical hull form. This is be- 

cause the practical stern form produces a very com- 

plicated stern flow, e.g., an intensive longitudinal 

vortex, not suitable for the present investigations. 

Experiments were carried out in the circulating 

water channel and the towing tank of Hiroshima 

University. 

x >a (a=0.4) (1) 

Coordinate systems. 

TABLE 1 PRINCIPAL DIMENSIONS OF MODELS 

GBT-125 GBT-30 MS-02 

1.250/™) 3.000'") 3.000!™) 
.193 -462 -485 

065 o Si 165 

Ch .836 .836 .768 

NOTATION 

L, ship model length and half length Q 

b ship model breadth 

Cy, block coefficient of the ship model 

d ship model draft 

p density 

v kinematic coefficient of viscosity 

Ve eddy viscosity coefficient 

g gravity acceleration 

Up velocity of oncoming flow, ship speed 

F, Froude number =U0/VgL 

Re Reynolds number =UoL/v 

€ small parameter for asymptotic ex- 

pansions = Rg 8 

X,Y,Z orthogonal linear coordinates 

X],*%2,%3 orthogonal curvilinear coordinates 

E,n,G distances along X],X2,x3 coordinates 

hj,ho,h3 corresponding metric coefficients 

K,,K2 convergences defined by Kj = 

Sel ohoney, eeu il ohy 

hyh2dx] 2 hyho 9x9 

normalized distances for vorticity 

*) diffusion region, separated re- 

tarding region, and viscous sub- 

layer respectively 

q velocity vector 

Gy, viscous part of velocity vector 

u,v,w velocity components in x,y,z direc-— 

tions excluding uniform flow 

41/92/43 mean velocity components in x) ,x2,xX3 

: directions 

fluctuating velocity components in 

X1],X2,*3 directions 

U, resultant velocity at boundary layer 

edge 

velocity components at boundary layer 

edge in x)],X9,x3 directions 

UTITY LUTY 2 

~ 

SIwsaidr 

x 

WX OUT? 

' ' ' 

G1192793 

U,,V1 Wy 

RorirYirWi| asymptotic terms of normalized mean 

CLOSE velocity for vorticity diffusion 

Cae ) region, separated retarding region, 
IL Aoo oo 

and viscous sublayer region 

af, 07 Wi } asymptotic terms of normalized fluc- 

(Gil pAeb oo) tuating velocity for separated re- 

tarding region 

wW vorticity vector 

Wye 1 Wy 1 We vorticity components in x,y,z di- 

rections 

W1,W2,W3 vorticity components in X],X2,X3 

directions 

asymptotic terms of normalized vor- 

ticity for vorticity 

diffusion region 

p pressure 
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H 

pressure far upstream 

pressure coefficient =(p-py)/z pu2 
al, 

0 
asymptotic terms of normalized 

pressure 

boundary layer thickness 

three-dimensional boundary layer 

thickness parameters defined by 

Eqs. (5)),) (19) 
shape factor of streamwise velocity 

profile =6}/6) 
angle between surface streamline 

and external streamline direction, 

positive in x2 direction 

index for power-law velocity profile 

parameter for wake part of wall-wake 

law in q}, q2 components 

coefficients of wall-wake law 

wall and wake functions of wall- 

wake law defined by Eq. (10) 

resultant skin friction 

components of skin friction in x} 

and x2 directions 

friction velocity 

entrainment function 

parameter for separation 

positions of onset of separation 

and reattachment 

integral region for induced velocity 

gradient vector £ 

symbol of orders f=O(€); lim ¢ =M 

(M:constant) eo) 

2. EXPERIMENTAL STUDIES ON BOUNDARY LAYER 

Kinds of Experiments and Measuring Techniques 

In order to examine the boundary layer assumptions 

and the validity of semi-empirical equations in 

case of ship-like bodies, the following kinds of 

experiments were carried out [Hatano et al., (1978) ]. 

7 

FIGURE 2. Body plans and potential 

flow streamlines of models. 

Static pressure measurements on hull surface 

Static pressure holes of 0.6mm were arranged on the 

hull surface along streamlines and the static pres- 

sure was measured by towing ahead and astern. 

Static pressure measurements in boundary layer 

Static pressure in the boundary layer was measured 

by using a static pressure tube. It is 1.2mm in 

diameter with two 0.4mm $¢ holes on diametrically 

opposite sides. A traverser with a micrometer was 

used to move the probe normal to the hull surface. 

The preliminary experiments showed that the static 

pressure was free from incident flows whose attack 

angles were less than 20°. 

Velocity measurements in boundary layer 

A total head probe, made from hypodermic tubing of 

outside diameter 0.28mm and 2.7mm respectively, 

was mounted on the traverser. Total pressure was 

measured after locating flow directions by yawing 

the directionally-sensitive hot film probe. Using 

the measured static pressure, velocity was estimated 

and decomposed into streamwise and crossflow 

components. 

Local skin friction measurements 

Local skin friction on the hull surface was mea- 

sured directly by a floating-element type friction 

meter [Hotta, (1975)]. The floating element is 14mm 

in diameter with gaps of 0.05mm to the mounting case 

and balanced by electromagnetic force. 

All experiments described above were carried out 

using the GBT-125 under submerged conditions at a 

depth of about 6 times the draft of the model. The 

Reynolds number was kept constant at 10°. 
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FIGURE 3. Static pressure distribution on 

the hull surface (GBT-125). 

Experimental Examinations of Boundary Layer Assump- 

tions and Semi-Empirical Equations 

Boundary Layer Assumptions 

The usual first approximate calculations of the 

boundary layer were carried out under the assump- 

tion that the static pressure is constant across 

boundary layers and is equal to the inviscid flow 

pressure. These assumptions are open to experimental 

examination when the boundary layer thickness is 

not thin, especially in the case of ship-like bodies. 

Static pressure distributions on the hull sur- 

face along streamline Nos. 5, 7, and 11 are shown 

in Figure 3 with calculated potential flow pressures. 

Potential flow calculations were carried out by the 

well-known surface-source method [Hess and Smith, 

(1962) ] representing the hull by 254 x 2 small rec- 

tilinear panels. Static pressures while being 

towed onward are in good agreement with those calcu- 

lated, except near the stern, where pressure has 

not recovered and is slightly low. However, towing 

astern shows good agreements even near the stern. 

This means that displacement effects of the boundary 

layer are appreciable near the stern. 

Figure 4 shows static pressure profiles in the 

boundary layer . It was observed that pressure pro- 

files are almost constant across the boundary layer 

except for some positions where the pressure is mono- 

tonically increasing or decreasing in that normal 

direction. The tendencies of increments are signif- 

icant at S.S.1% or S.S.1% of streamline No. 11. This 

can be referred to the centrifugal force due to the 

small radii of curvature of the bilge keel. On the 

other hand, a decrease can be found:for all the 

streamlines at S.S.% or S.S.4, which may be the 

effect of separation. (As described later, flow 

*Static pressure on the hull surface does not agree with that 

of Figure 3. While the measurements whose results are shown 

in Figure 3 were carried out in the towing tank, those shown 

in Figure 4 were in the circulating water channel. The 

discrepancies are all due to this difference in experimental 

conditions; the cross section of the circulating water chan- 

nel is restricted to 1200mm 

estimated. 
‘ 820mm and pressure is under- 
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FIGURE 4. Static pressure profiles in the boundary 

layer (GBT-125). 
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constant assumption can be employed unless the radii If velocity profiles are represented by Eqs. (3) 

of curvature are not significantly small; the dis- and (4), the boundary layer thickness-parameters 

placement effects are important near the stern and 64, 6,1 and shape factor H are 

should be taken into account in higher order calcu- 

lations [Hatano and Hotta (1977)]. cot nls bag ae 
On = a ff (Uy q,)dt = rik Oley 

e 

Velocity Profiles 1 5 A 
—— - lie = 5 Mi ip t CU = Cele Sempre 2 

In order to calculate the boundary layer equations e 

by an integral method it is convenient to represent es 

velocity profiles by analytical functions which in- m $1 — nt2 

clude several parameters. 11 n 

The most commonly used formulae are based on a 

1/n-power law and on a wall-wake law. The former and Eqs. (3) and (4) can be written in other forms, 

has a definite merit of simplicity. The latter, H-1 
developed by Coles (1956), has more freedom than = iS H-1 2 70, = I ] (6) 
the 1/n-power law and can be expected to represent e 0, ,H(A+1) 
velocity profiles more exactly. H-1 

Mager's expression is well known as the three- Dr 

dimensional velocity profile model based on a 1/n- = Cc H-1 ] ~ & H-1 2 ? Cy AU, = reete\3 > Saree [el — ——] . 
power law, Mager (1951). He gave the streamwise ee a H (H+1) ony H (H+1) (7) 

and crossflow velocity profiles as 

> 4 1/n, 3 Tf 944 and 53 are integrated and 8 is determined 

en, a 6 (3) from measured velocity profiles, then velocity pro- 

files represented by Mager's model can be calculated 

17a 2 d with th 
ie Gah wt BG from Eqs. (6) and (7) and can be compared wi e 

92/0, ras ( 9) ) € ) i) measured profiles. 

Figure 5 shows the comparisons of them. It can 

where n is a variable parameter. be safely pointed out that Mager's model is employ- 
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FIGURE 6. Crossflow profiles in 

the boundary layer on the AFT hull wu, 

surface (GBT-125). 

able for the velocity profiles of ship-like bodies 

as far as streamwise components. 

Figure 6 shows crossflow profiles measured on 

aft parts of a model. As easily observed, there 

are some profiles which have reverse type (S-shaped) 

profiles. For most of remaining parts, the cross- 

flow angles are very small and do not show reverse 

type profiles. Because Eq. (4) has only one inflec- 

tion point, such S-shaped profiles can not be repre- 

sented by it. 

To represent even reverse crossflows, more gen- 

eral polynomial expressions are proposed [e.g., 

Eichelbrenner (1973), Okuno (1977)]. However, they 

require additional equations or boundary conditions 

and it is reported they do not always yield improve- 

ments [Okuno (1977)]. This is because the cross- 

flow does not always have such universal profiles 

near the stern. 

On the other hand, the three-dimensional veloc- 

ity profiles based on Coles' wall-wake law can be 

represented by 

q,/ ec Ce (8) 

a/v = Gr fyi hy sins + 958,05) (9) 

where 

say <u ) = * log, 5 ( =e ) +B, (10) 

eZ) = 5 [1-cos( me )] ; 

and 

Bs 2 u_ = ( Te / p) . (11) 

fp eer STREAMLINE 

Sine. 

J+ J, are variable parameters, for wake parts, u 

is the friction velocity, and k, B are constants. 

£. given by Eq. (10) is called the wake function. 

Figure 7 shows the existence of such parts in case 

Ue 

of ship-like bodies also. Velocity profiles 

deviate from linearity when approaching the outer 

edge of the boundary layer. Velocity profiles, 

represented by Eqs. (8) and (9), are compared with 

measured profiles. Here parameters g, and Jo are 

determined by the condition that q equals U, and 

dy equals zero at the boundary and u, is determined 

by a least-squares fit to the measured profiles. 

The values of Clauser, 5.6 and 4.9, were used for 

1/K and B respectively. Good reproductions are 

examined except crossflow representations. 

As to crossflow profiles, the situation is not 

much improved from Mager's model; reverse crossflow 

observed in experiments can also not be represented 

by the wall-wake law. The finite-difference method 

may be a possible step toward representation of any 

type of velocity profiles. 

Local Skin Friction 

In the case of turbulent flow, most of the friction 

is due to the turbulence (Reynolds' stress). For 

this reason it is necessary to introduce additional 

equations to determine it in closed form. 

Ludwieg and Tillmann's semi-empirical equation 

for the skin friction [Ludwieg and Tillmann (1949) ] 

is most commonly used; it is 

u_9 0.268 11 . 
t /pu2 = 0.123x1079-678H ( © —— (12) 
WwW) e Vv 

Because Eq. (12) is obtained from two-dimensional 

experiments, the validity should be examined when 

applied to three-dimensional flow. 

When Coles' wall-wake law is employed for the 

velocity profile, the skin friction can be deter- 
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mined from the friction velocity. But it should 

also be examined experimentally. 

In Figure 8, three kinds of experimental values 

of skin friction are compared along streamline 

Nos. 9, 11, and 18; directly measured values, those 
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obtained from Ludwieg-Tillmann's formula, Eq. (12), 

and those from friction velocity, Eq. (11). For 

estimations of the latter two values, measured 

velocity profiles are invoked. Calculated results 

are also shown here for later discussions. 

The values of Ludwieg-Tillmann's formula produce 

fairly good agreements with those directly measured, 

which implies that Ludwieg-Tillmann's expression 

is also good for three-dimensional flow. 

Entrainment Equation 

In streamline coordinates, 

is given by 

the continuity equation 

3 3 aitabee 
dx, (the) + 3x, (12h1) 1 nyh7a 423 =| Oe (13) 

Integrating with respect to X51 from zero to 6, 

gives 

ack 

28 (G6) = 262 
hj, 9x} 1 hgdx2 

5 ee oky 1 9Ue =F - (6-67) {—— =2 + —— <=} (14) I hjh, 3x, Uh, 3x, 

where F is the entrainment function given by 

a a6 06 
b= Wee. v Vee 7 Wal s (15) 

Equation (14) is often used as the third (auxiliary) 

equation when the boundary layer calculation is 

carried out by the integral method. Here, F should 

also be given in someway in closed form. 

In two-dimensional flow, Eq. (14) is reduced to 

F= [U,, (6-63) ]- (16) ele adh 
We chai © 

Head (1960) gave a relationship between F and 

(6-67) /01 (=Hg_6%) which was examined by two- 
dimensional experiments. 
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Introducing an assumption that the entrainment 

equation of three-dimensional flow is related ex- 

clusively to the streamwise quantities, Cumpsty and 

Head (1967) employed the Head's entrainment function 

for three-dimensional boundary layer calculations. 

This is of course open to criticism. 

In Figure 9, Head's entrainment function and 

experimental values, obtained from Eq. (14), invok- 

ing measured velocity profiles, are compared. It 

can be mentioned that Head's function gives rather 

good mean lines both in relation to Hg-3, - H and 

F-H5-6] - The values of Hs-§1 are not fairly related 

to H in the fore part, where laminar flow may still 

exist, and neither F to Hg-6] in the aft part. The 

former does not seriously effect F. We should bear 

in mind here that the determination of boundary 

layer thicknesses is not clear in the three- 

dimensional case and accurate estimations of their 

derivatives are very difficult. 

Himeno and Tanaka (1973) used the moment of 

momentum equation as the third equation instead. 

In this case, assumptions for the Reynolds" stress 

are also required and significant improvements are 

not always found. 

Summarizing the above discussions it can be 

safely concluded that the integral method, where 

either Mager's model or the wall-wake law is used 

for velocity profile, Ludwieg-Tillmann's equation 

for skin friction, and entrainment equation for 

auxiliary equation, is expected to yield meaningful 

results. Moreover, it can be also pointed out that 

improvements can be attained when the second order 

approximation for the static pressure is taken into 

account near the stern. However, in the region 

where reverse crossflows or large crossflow angles 

exist, although the boundary layer assumption is 

not violated, the integral method is no more 

available. 

BOUNDARY LAYER CALCULATIONS 

According to the preceding conclusions, boundary 

layer calculations were carried out by the integral 

method and compared with experimental results. 

Basic Equations and Auxiliary Equations 

The integrated boundary layer equations are given 

in streamline coordinates by 

FIGURE 9. 

function with experiments. 

Comparison of Head's entrainment 

, 

0611 0842 On Oe 2 
DE + on + cali ea Oem K; (6)) 890) 

=e. f wu 4 (17) 

2021 Ue | 011 We 
0g on U, on Ue an 

(H+1+ 212) 
911 

- 2K)}89] =T Ue pu2 , (18) 

where 9)1, 8,2, 92), and 899 are momentum thickness 

parameters defined by 

2 yee - te Pils deh Wisenels. o 

6 
us 912 = f q2(U;-q))daz , 

2 0 = 
We Pan = 4 cin Whissiayiehs p 

2 6 
WE Opp = f q2(Vi-q2)dz . (19) 

The entrainment equation is employed as the third 

equation; 

aU 
al e Hol i 
Us 9& 

3E 0 (20) 
3 (6-67) - noe = F - (6-6}) (-Kj+ 

For the function F, the relation of Head is used, 

which has already been examined. 

If Mager's velocity profiles are employed here, 

boundary layer thickness parameters are given using 

811, H and B, 

851 = 6),E(H)tan® , 695 = 06 1)C(H)tan28 , 

612 = 9110(H)tanB , 65 = 6),D(H)tanB , 

6-6] = 6,,N(H) , (21) 

where 

CH) = - Gaya 
D(H) 16H 

~ 3G) Ges) (Gas) 7 
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J(H) = E(H) - D(H) , 

Seoul MED = sey = Big ge (22) 

Then Eqs. (17), (18), and (20) are reduced to 

simultaneous differential equations in 36) ]/3&, 

dH/9§, and dR/9E; 

(i=1,2,3) (23) 

of OWNM og Chel 2,98 
dj = JtanB a J 811 tanBs— J8) sec Bon 

611 9Ue 2 
+ — ——" =_ (H uN dE + Kj) 6) (1-Ctan“s) 

2 ap U 
wl Te @ 7% 

a2 = Etanf, b2 = E'8))tan8, co = E6,)sec“B, 

81, 9U 
ta ee ial Anjo ay 2,0H 

do gE ant DE Ctan Bo C'6)),tan Bon 

- 2C611 tangsec?B5= ~ (1+i+Ctan?B)K 0) 1 

2 + 2K)E0),tanB + cee Hf puUctanB 1’ 

(24) 
a3 =N, b3 = N'O)1, c3 = 0, 

d3 = ptangee2 + DOqneenee «. Denmsec2 eo 
5 an on 
n 

1 dUe + F - N6O))(-Ki+ — —, Eee NEHGS] a, OG 

(The ' means differentiation with respect to H.) 

If Ludwieg-Tillmann's skin friction formula, 

Eq. (12), is used, all the coefficients of Eq. (24) 

are known at earlier & coordinate. 

This formulation is the same as that of Cumpsty 

and Head (1967). 

Numerical Calculations and Discussions 

Numerical calculations were carried out for GBT-125 

at Re=10°. First, 18 streamlines were traced inter- 

polating the 254 x 2 descrete values of velocity, 

obtained by the surface source method, and x, coor- 

dinates were determined. 

The differentials with respect to nm were numeri- 

cally determined along the n axis which was defined 

by bending short segments orthogonally to the xj 

axis. This is the main difference from Cumpsty- 

Head's original calculations. For such calculations 

as 0Ue/dn, 39911/dn, and so on, the differentials 

with respect to n should be carried out as care- 

fully as possible. Most numerical errors stem from 

‘these terms. 
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FIGURE 10. Comparisons of momentum thickness (GBT-125). 

0.5 x 107", 1.4, and 0.0 were used for the 
initial values of 8,,, H and 8 at S.S. 94(x=-0.85). 

These values were obtained from Buri's two- 

dimensional formula assuming the flow is turbulent 

just from F.P. (see Figure 1). Fortunately they 

do not seriously affect the calculations. 

About 200 steps were taken and Eq. (23) is 

integrated with respect to € by Lunge-Kutta-Gill's 

method (five points for each step). 

In Figures 10, 11, and 12, calculated results of 

611, H, and § along typical streamline Nos. 5, 9, 

and 11 are shown along with experimental results. 

The skin friction is shown in Figure 8. Streamline 

No. 5 generates a simple, quasi-two-dimensional 

curve on the hull surface and it may be expected 

the flow can be truly represented by the present 

framework. On the other hand streamline No. 11 

passes through a region where the boundary layer is 

rather thin and also through a bilge corner where 

pressure increments were observed. 

The experimental values of the streamwise momen- 

tum thickness, 6),,, of streamline No. 11 were much 

greater than those calculated around S.S.1. This 

discrepancy can be related to the fact that S.S.1 

of streamline No. 11 corresponds to the position 
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FIGURE 11. Comparisons of shape factor (GBT-125). 
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just behind the bilge keel and the occurrence of 

bilge separation can be suspected. 

Shape factor H, in every case, does not vary 

significantly and agreements between calculations 

and measurements are good except near the stern. 

There, as shown in comparisons of 8, large cross- 

flow angles existed and the present scheme can not 

be employed here. 

It is interesting that large crossflow angles 

can also be observed in experiments near the bow. 

They create a suspicion of the occurrence of bow- 

bilge separation. 

Skin friction Tw, Shows also good agreement. 

It is observed that both experimental and calculated 

values do not decrease. This suggests three- 

dimensional separation differs a little from that 

of two-dimensional where skin frictions vanish. 

As a whole, it can be safely concluded that, 

except near the stern, calculated results show good 

agreements with measured as far as integral quanti- 

ties like 6); or H. It can be also concluded that 

the present scheme, using integrated mementum bound- 

ary layer equations as governing equations, can be 

appreciated in spite of its brevity. 

EXPERIMENTAL STUDIES ON BOUNDARY LAYER SEPARATION 

AND WAKE 

Kinds of Experiments and Measuring Techniques 

The characteristics of separation and separated 

flow of ship-like bodies are dim. Experiments may 

throw light upon them. In order to discuss the 

characteristics of separation and separated flow, 

the following experiments were carried out in addi- 

tion to the previous experiments. All experiments 

were carried out with MS-02 and experiments (c) and 

(d) used GBT-30 also. Experiments were executed 

at the speeds of Fy=0.1525(Re=2.17x10°) and Fn=0.16 
(Rg=2.38*10°) for MS-20 and GBT-30 respectively. 

Flow Observations 

Planting twin tufts on the hull surface, flow di- 

rections near the stern were observed by a submerged 

camera; one tuft was just on hull surface and the 

other was 22mm off, normal from surface. 

Free-surface flow around the ship stern was also 

observed in relation to the separated flow by the 

aluminium powder method. 

Velocity Measurements in Separated Flow Region 

Velocity in the separated region was measured using 

a hot film anemometer. The probe is a conical type, 

2mm in diameter. One horizontal plane of z=-0.02 

was covered where framelines are almost vertical. 

Because the probe was set parallel to the uniform 

flow, the velocity is not quantitatively accurate. 

Velocity Measurements in Wake 

Two five-hole pitot tubes were used for velocity 

measurements in the wake; 8mm-diameter tube for MS-02 

and 10mm-diameter tube for GBT-30. For estimations 

of vorticity, measurements were carried out on three- 

dimensional lattice-points spaced 0.025, 0.015, and 

0.015 in x, y, and z directions respectively. 

Vorticity Estimations in Wake 

The vorticity can be estimated by differentiating 

the measured velocity distributions; 

ow av du ow av du 
‘Om = p = =—= HS a o 
x ay dz “y az teen eB 3x dy - 

(25) 

The differentials were obtained numerically by 

three-point approximation. 

Discussions on Boundary Layer Separation and Wake 

Flow 

Boundary Layer Flow near Separation 

Figure 13 shows flow directions near the stern of 

MS-02 obtained by the twin tufts method. 

It was observed that, very near A.P., both tufts 

are drooping. This means that the velocity is al- 

most dead; in other words, separation has occurred. 

On the remaining parts, the outer tufts show 

almost the same direction as the calculated poten- 

tial flow direction; on the other hand the inner 

tufts differ greatly from them and produce large 

crossflow angles. A reference to the surface pres- 

sure distribution gives a clear explanation that 

flow near the hull surface, whose velocity is very 

low, cannot make further steps against the pressure 

increments and change direction suddenly from the 

external streamwise direction toward the low- 

pressure regions. Significant occurrences of shear 

flow and generation of vortices are assumed which 

correspond to beginnings of three-dimensional sepa- 

ration. 

The above situation can be understood more 

clearly from velocity profiles in the boundary layer 

near separation. Figure 14 shows the velocity pro- 

files of GBT-125 along streamline Nos. 5, 9, and 

11. A sudden large crossflow occurs near S.S.% 

for all the streamlines and, correspondingly, the 

streamwise velocity profile also changes. The 
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maximum crossflow velocity amounts to about half 

of the streamwise velocity. 

Such behaviors of flow near the stern are not in 

the category of boundary layer flow, therefore, 

boundary layer calculations should be stopped and 

another treatment employed. 

Criterion for Boundary Layer Separation 

It is necessary to introduce some criterion for 

boundary layer separation in order to change the 

governing equations from boundary layer to some 

others. 

There are many criteria mainly for two-dimensional 

separation [e.g., Chang (1970) ]. 

A parameter, I',, defined by 

Speed (26) 

is proposed. 
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FIGURE 13. Flow directions near 

stern and isobar lines (MS-O2). 

FIGURE 14. Velocity pro- 

files in boundary layer 

near the stern (GBT-125). 

The proposal is based on the experimental facts 

that the beginning of three-dimensional boundary 

layer separation is closely related to the pressure 

gradients, as discussed in the previous section, 

and that boundary layer flow, such as with large 

momentum thickness and small skin friction, can no 

longer exist. Therefore, flows with large values 

of IF cannot exist in real flow in the sense of 

boundary layer flow. On the other hand, if the 

boundary layer assumptions are kept, the calculated 

values of Ty can increase without any upper bound. 

Figure 15 shows I’, obtained by the boundary 

layer calculations and from experiments. The calcu- 

lated values get increasingly large approaching 

the stern, but experimental values do not and they 

seem to have some upper bound. 

The value of [, = 20 is reasonable as a criterion 

for separation, because, as shown in Figure 14, 

large crossflow angles were observed near x=0.9 

(S.S.4) and the onset of separation is suspected. 

Of course, more experimental data are necessary 

for the present discussion and further experimental 
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FIGURE 15. Criterion for separation. 

and theoretical studies may give a firmer founda- 

tion for the present criterion. 

Flow Field after Occurrence of Separation 

Once separation has occurred, the flow field differs 

greatly from the unseparated boundary layer flow. 

The existence of the dead region, pointed out in 

the previous section, is one phenomena. 

Figure 16 shows velocity profiles, after the 

occurrence of separation, measured by the hot film 

anemometer. The bars in the figure represent fluc- 

tuations in velocity. The region where the velocity 

fluctuates so intensively and is very low consists 

of a characteristic thin layer, a separated retard- 

ing region. It can be definitely distinguished 

3 (mm) 

100 —t 
INTENSIVE 
FLUCTUATION 

® 

1 
Soe > 

FIGURE 16. 

near the separation position 

Velocity profiles 

(MS-02) . 

from the outer part where the flow does not differ 

greatly from the unseparated flow, The newly— 

generated vortex is confined to this region. 

Figure 17 is free-surface flow of MS-O2. It 

shows more clearly the existence of the above 

mentioned, separated retarding region. The divid- 

ing streamline can be observed which coincides with 

the border line of the separated retarding region. 

In the case of practical ship forms, we have not 

enough information as to whether or not such regions 

exist. But from the velocity profiles of GBT-125 
(Figure 14), their existence can be supposed in 

those .cases also. 

According to the present experimental studies, 

it is implied that any single approximate equation 

of the Navier-Stokes equation completely governs 

the flow field near the stern. 

Eddy Viscosity Coefficient in Wake 

In order to predict turbulent terms in the Navier- 

Stokes equation, there is a concept of eddy viscos- 

ity. It is based on an idea that momentum loss due 

to turbulence can be represented by momentum loss 

due to friction and the coefficient is constant as 

to positions and directions. According to this 

assumption, the Navier-Stokes equation is written, 

ae 2 q- Vu, - w.Vq = VAY Wr (27) 

where v, is the eddy viscosity coefficient. 

Equation (27) is a kind of diffusion equation 

with vg the diffusivity coefficient. It can be 

determined experimentally; substituting the measured 

values of velocity and vorticity into Eq. (27) 

leaves only Ve as an unknown. 

Using experimental data of the GBT-30, covering 

1.08<x<1-16, ve is determined by the least-square 

method. The estimated values of vg are not unique; 

they differ slightly for each direction, 2.7 x 101, 
2.4\x 107%, and|1.6 x 10>* fox w,, wy, ands.) the 
mean value is 2.2 x iO", and consequently the 

equivalent Reynolds number, based on the eddy vis- 

cosity, is about 1/300 of the real Reynolds number. 
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FIGURE 17. Free-surface flow near the stern (MS-0O2). 

Subdivision of the Flow Field 

It has been made clear by experimental studies 

that the separated flow has at least two, quite dif- 

ferent viscous regions where no single approximate 

equation of Navier-Stokes equation seems to be 

valid for both. It can be proposed to subdivide 

the flow field near the stern into five regions as 

shown in Figure 18; potential flow region, boundary 

layer region, vorticity diffusion region, separated 

retarding region, and viscous sublayer region. 

Their characteristics are as follows. 

Potential flow region: 

The region where the viscous term can be wholly 

neglected and only displacement effects should be 

taken into account. 

Boundary layer region: 

The region where the boundary layer assumption 

is valid and the backward influence of separation 

can be neglected. 

Vorticity diffusion region: 

The region where the vorticity, which has been 

generated in the boundary layer, is diffused con- 

vectively and viscously. No vorticity is newly 

generated in this region. Because the dividing 

streamline is a kind of free-streamline, the pres- 

sure on it might be constant. 

Separated retarding region: 

The region where the velocity is very small 

and the turbulence is intensive. Because even a 

recirculating flow can be observed, the governing 

equation for this region should be an elliptic type. 

Viscous sublayer region: 

This is the very thin layer region which just 

adheres to the hull surface. The molecular viscos- 

ity is predominant and the velocity profile should 

satisfy the no-slip condition on the hull surface. 

CALCULATION OF VELOCITY DISTRIBUTIONS IN THE SHIP'S 

WAKE 

Approximation of Navier-Stokes Equation by Local 

Asymptotic Expansion 

In order to get appropriate approximations of the 

Navier-Stokes equation for each region, local asymp- 

totic expansions of relevant quantities are made, 

using small parameter e defined by 

3 Ht/8 
SS Bes (28) 
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The quantity e€, was first introduced by Stewartson 

(1969) and © << 1 in case of a large Reynolds number. 

If the x3 coordinate can be assumed to be 

linear, i.e., 

h3 = 1, (29) 

the continuity equation and Reynolds equations are 

written in streamline coordinates as follows. 
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C ; VORTICITY DIFFUSION REGION 

D ; SEPARATED RETARDING REGION 

SEPARATION f : VISCOUS SUBLAYER 
POSITION 

SHIP HULL 

FIGURE 18. Subdivision of separated flow field near 

the stern. 
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where W], W2, W3 are the components of vorticity 

given by 

aq a yy Se 
hodx9 ax3 

ed pe ed 
oe 3x3 h) 0x, ‘ (34) 

ee eee q 
3 hy dx, hy dxXo 291 112- 

and they satisfy 

Vew = 0. (35) 

In the reduction of Eqs. (31, 32, 33) from the 

Navier-Stokes equation, conventional predictions 

for turbulent components are used; the velocity is 

assumed to consist of time-averaged terms and 

fluctuating terms. 

On the other hand, if the constant eddy viscosity 

can be assumed, the following equations are derived 

directly from Navier-Stokes equation; 

—— (y 2-wW2q)) + = (w1q3-0341) 
hgdx9 1 dX3 

it) Be a2 3 ey 303 
=v) Gr 2 yO. S ==) 

2 oxo ax3 hj) 0x) hodxo aX3 

9 w2 dW 
= ——— - - + ¥ Rep ote) orm ) Seaaeprey |e Se! 

eee = ))) ar eo -W392) hj) 0x] W29Q1-W192 aX 3 293-302 

i OS 34 wy 93 = y Say ( —) 
e né os oats hodx2 hj) dx) dx3 

9 dW) dW. 

7 Tmo, SIC) SS ners ic OO 

(Ky - 2 (wyq3-w3qy) + (Ko- 24 ( ) Le tata le oe 2% HaOxoY was 

i pe 1 94 a ew dw yy eS re a i ee ara np Ls 
e E x2 = h2 aR) os che OnE x ma 

1 1 2 2 

a dw p= (K 4K = (ears 3 
axa MSAD) (Ky 1) Os 

= teonealSaS| 

hodx9 (38) 

where 

1 dh 1 9h, 
K Sao ak Sf en eee, 

1l h2 ox, / Ko9 aD Fis, (39) 

1 2 

Vorticity Diffusion Region (C-region) 

For the vorticity diffusion region, the constant 

eddy viscosity is assumed. 

Introducing non-dimensional curvilinear small 

line segments 3, dn, and dz, we represent the dif- 

ferentiations 

OAD (40) 

Here we assume the derivatives by new variables 

Ebay Gull O(a), alaGion 

nor = 5 41 5 0(1) (41) = 0(1) , a 0(1) ' 
on Raat 

The origin of the new variables coincides with that 

of O-x)x 9x3 but ==0 corresponds to the position 

of separation. 

We tentatively assume that the asymptotic series 

for velocity and vorticity of C-region have the 

following forms; 

qi /Ug = tig (E02) + eu, (&,n,6) ar eau (Gann) ar G00 G 

epi) = mn Spns) 2 Erm (Ecee) 2 aac 5 

q3/Ug ee e7wy (E,n,c) ap eS (E,n,c) chiateheta , 

Ml = 2 a, (Esme) +, (E,neE) + Up/L Ee Ey aa Eo ms cee , 

Sa Aye cca Oe a Le a eect Taye = cE herteb) +S OL (Ene) ee 

a 
U/L & (43) 

All the quantities appearing in Eqs. (42) and (43) 

are assumed to be O(1). 

Moreover, we introduce non-dimensional variables 

k) ,k2,k11,k22 by 

IS, = WEP) op ES SR SS OK o 

koo = L*eKo9 p (44) 

whose orders are O(1) for all the regions. 

Substituting Eqs. (40), (42), and (43) into 

Eq. (30) and Eq. (35), we get as leading terms, 

55 
Oy (45) 
3€ 

du 3a 
=e (46) 

an dt 

and into Eqs. (36, 37, 38) we get, 

Ola eats LO (47) aA ni to? + aF ci to) O 4 

a M5 Ot Bye kg (48) 
€3 Uh dz2 Epanlel , 

2~. 

BOS ENS ROGUE A (49) 
e3) Uh Wae2m | OE, td 0” : 

In order for the viscous diffusion term to exist, 

Ve/UpL should be at least O(e3). 



We have obtained four equations, Eqs. (46-49), 

for three unknowns, U9 1 Wyys and Orly but it can be 

easily shown that one of them is not independent. 

Changing variables back into the original ones, 

we get, as the governing equations for C-region, 

r) C) 
hp dx W241) ote dxq (3a) = 0) 9 (50) 

a 
= es = ©. 5 (51) 

3 
a oxgccsa) > Ont (52) 

The terms of order 0(1/e2) are neglected in the 

above equations. 

Separated Retarding Region (D-region) 

Introducing normalized variables, E, nN, i for the 

separated retarding region in the same manner, the 

orders of differentiation are assumed, 

a _ a ) a Lee 

hy dx] L Ede hodxo L forehal 

a i @ 

ox3 Le 30g ’ =) 

3 a 3 
a O(a) 5 oa O1) ae = OG) (54) 

Velocity and pressure are assumed to be expanded 

asymptotically, 

q1/Ug = € (0, +0} ) + ©? (ap +09) woo 0 ’ 

qo/Up = E(vitvi) + e2 (oto) +... , (55) 

= een ee We nO q3/Up = €> (wi tw)) + e*(Wotwo) +... , 

2 
(p-p,,)/PU, = €P] + Epa + --- , (56) 

where Uy, Usr-++ are all time-averaged variables Ag Lad 
and u,, u,,..-. are fluctuating. Here the fluctu- 

ating terms of pressure are omitted because they 

do not appear in the basic equations. 

The vorticity can be also expanded asymptotically, 

ol iL OM ah ON SS ae er a OCI) ig 
Ug/L Se he c o 

w 3u au ZUG ay OL 2s ore 
U/L €2 ar € 3¢ 

Ug 9 9n (57) 

Under these assumptions, the leading terms of the 

continuity equation are written, 

Ce foN Oo (58) 
9e an ac 

“and the governing equations are 
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{a8 a 8 » SB Bae Ac Move tee ae 
ar & pases a AWitre oF Vilage i + Wars ar Wome) Uy 

ao m2 
-koujvj+ mi] 

) at 3 U2 Uist _ test 20,05) + a (alve + 09V}) 

O patar aint ann a2 12 
? eben oP u2W}) -2k9ujV} = ky (ay Savalt ) 

u 

Gages 7 (59) 

, ov a Be ng OY 
Wilma o0 Wlme oF WA 3 ae ap 

8) ae Oe ie SP). 808 
+e aa) + (iipe Wiis! Var Weis © eae 

+kouy2- eat 

1 a 1 @ pSoan fe) 0%) Oo ,.148 
SS Sse | een) oP Sela”) oP Satan) é On E an ae 

E 

Oane nen AGP ao ssi + eae + vow]) + k, (a) Na ) - 2k,0,¥v | 

pee a2¥1 + O(e%) (60) 
e6 UpgL a2 ‘ 

3 3 
ete 5 OC) =O, (61) 
lrg dt 

The leading terms of Eqs. (59, 60, 61) yield 

p1(&,n,S) = const. (62) 

Equation (62) means that the pressure is constant 

throughout the present region as far as O(c) is 

concerned. 

Now the second terms of Eqs. (58, 59, 60) yield 

Oe oO BS Big, a Bom 
19E 195 38 aE P2 1 

a ,n0n8 oO ,nias 
= SH) = salen) op (63) 
3 87 

SN ee 
W152 + wigs + Bie = ae t1V¥1) 

a on 2 ) SOO 

SSO a Wi) = ae) (64) ee Va ea) 

C) 
a EHC (65) 

Cc 

In the above equations, the molecular viscosity 
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disappears but its effects are still existing in- 

directly through turbulence. 

Equation (65) gives the so-called boundary layer 

approximation. But because cross terms of fluctu- 

ating components exist in Eqs. (63) and (64), they 

do not always yield the same type as boundary layer 

equations which can not predict the recirculating 

flow observed in experiments. 

Viscous Sublayer (E-region) 

In the viscous sublayer, E-region, the no-slip con- 

dition must be satisfied on the hull surface. Here 

the intensity of turbulence may be very small and 

all the turbulent terms in the Reynolds equations 

vanish infinitesimally. 

The following asymptotic expansions are assumed 

from the Blasius solution. 

2 * * 
CHYAUO = SWYy “EWA sP cco py 

2 
q2/Up = evi a vi ut ROSE (66) 

5 q3/Ug = etwt a? & wh Ti ooo p 

where the orders of each term are all O(1). 

The derivatives are represented by 

Cheb te riliert a. 8 
web Ps SE inte Fy Goa 2 

Gs Bale a8) 
axg | betoe 7 sou 

and their orders are 

3 a a 
—— = (0) p == 0 1 = 5 dE (1) a5 (1) ac 0(1) (68) 

Substituting the above assumptions into Eqs. 

(31, 32, 33), the leading terms are obtained as 

follows in original variables; 

+ + g3—— 
Why 8x] qh Fax 139 x 

1 98P aq) aS 
p hy, dx, ax2 uf ( ) 

aq 945 Tey) 
Wnjax; hoax, * dx, 

so ase (70) P hodxo ax2 i 

DITO. 2 (71) 
dXx3 : 

The continuity equation is 

oq) 8a oq3 (5) 
+ + = 

h) 0x] hodx9 ax3 

Here the quantities of O(e%) are omitted. 

These are the boundary layer equations themselves. 

They must be matched with the solution for the D- 

region in quite the same manner as the conventional 

method of boundary layer calculation. 

The following matching conditions should be 

satisfied when governing equations are solved. 

(i) for upstream; 

Wii Se Sieh) 2 es Se 
Ess0 VOCE Ne) > Un, pee wien e) = ve, 

Teme) == Bee wiGomee) = (73) 

whe re Up, Vp, and wp are the velocity components 

in the boundary layer in the x),x2,x3 directions 

respectively. 

(ii) far from the hull surface; the solutions 

should be matched to the solution of the A-region, 

potential flow. 

(iii) between the C- and D-region; 

ug(E,n,0) =0, uw (En,0) 

lim a Gee 8 Oi ne Se Pro O1(Esn/o) - S5e Gig (Enc) |=, | . (74) 

miGeonpO) = Se Soak 5 vi (E,n,0) = oe vil€n,c) , (75) 

wi(&sn,0) = 0, wo(E,n,0) 

lim} * ape 2 2 2 Poco | W1 (Erno) tpewi (Erm 2) |z_o (76) 

(iv) between the D- and E-region; 

MEO ean) o vi 
a 8 A ee 
En) = pees neo) (78) 

wi(En,0) = 0 , wolE,n,0) = 

lim She ore ea Ae = By 
a Ego) 1S rs wi (Erb) | a6 (79) 

The governing equations for the D-region do not 

close. Some auxiliary equations are required, but 

this problem is left for future work. 

Numerical Calculations for the C-Region 

To solve the derived equations analytically is al- 

most impossible; this is because not only are the 

equations non-linear but also the hull surface, 

where the boundary conditions are prescribed, is 

very complicated in geometry. Instead, they must 

be solved numerically. But it may be still more 

difficult because the calculation should be carried 

out for all the regions at the same time in order 

to satisfy the matching conditions. However, this 

difficulty can be removed by an iteration method; 

the surface consisting of dividing streamlines (DSL) 

is given a priori in the beginning as the inter- 

mediate region between C- and D-regions where the 

matching is carried out. Of course the surface of 

DSL can be obtained finally as a solution of the 

flow field, but the assumption of DSL makes it pos- 

Sible to solve the governing equations in every 

region almost independently and it is expected that 



repeated iterations may bring forth a reasonable 

solution. 

The flow in the C-region can be determined by 

taking a new streamline coordinate system O-x)X5%34 

where the x,-axis coincides with DSL and the x,- 

axis is normal to the DSL surface. 

By the finite-difference scheme, Eqs. (48) 
(49) are transformed into tridiagonal linear equa- 

tions for k > 2; 

and 

wo(i,j,k-1) - 2€(i,j3,k)wo(i,k,k) + wo(i,j,k+t1) 

=Ag(i,3,kK) , (80) 

W3(2,3,k-1) = 2C(i,j3,k)w3(i,5,k) + w3(i,3,k+1) 

= A3(i,3,k) , (81) 

where wo(i,j,k) etc. denote those values at x)=xjj, 

SSH! and X31 

ae Ac? ny, 
C(i,j,k) =1 + vbe Gin (Loa pbs) p 

Agi(i;a 7k) = = Wo(i=1,5,k=1) + 

3 ai Ac? ena Sots 
Aids (GALS) phe) || 2b a Con (st ala pis) || Wy (simak 5) petal) 

VeAE 

Aaa) = = wis\(G—1 a), kK) 

: : Ac2 Z : : : 
2w3 (i-1,5,k) |1 - —— qj (i-1,3,k) | - w3(i-1,5,k+1), 

VeAE 

(82) 

and AE, At are short segments in the x), x3 directions. 

Equations (80) and (81) can be solved by the 

forward marching procedure if the velocity profile 

of q; is given at the separation position. Here the 

value of vorticity at k=l, on DSL, is made equal to 

that at k=2. 

Once the vorticity distributions are obtained 

throughout, the boundary layer and wake, say V, 

0.27 AssuMED 0.2 0.2 
DSL 

UV.W ' 
‘ a an 0 See 

Ol ae ar) 

(Geena 

-0.2 - 

-0.4 2=-0,015 -0.4 -0.4 

-0.6 

0.2 

0 

-0.2 

o Z=-0.075 -0.4 slave -0.4 LAS, HA 

-0.6 

2 -0.8 -0.8 
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velocity distributions can be calculated as induced 

velocity of vorticity by invoking Biot-Savart's law; 

(x )=V 1 ppp W_ Bh ‘ay'az! 
eh SOGOU * an Vv ie Y] ested 

' 
where w, is the mirror image of w' whose components 

are Wx, Wy, Wz and 

ee (Feo a Ge) ae (aa!) 

ee = (EEE )e => Wa) & (a9) = (84) 

Because Eq. (83) gives the viscous component of 

velocity, the potential component should be added 

to qy;. 

In the present calculation, DSL is determined 

from experiments for the first iteration; it con- 

sists of line segments, departing at x5=0.9 and 

reattaching at x;=1.1 (see Figure 18). The stream- 

wise velocity q,; in Eq. (82) is given by a quadratic 

function of ~ which is equal to U; at the outer edge 

and to 2/3 U; on DSL. The integral intervals for 

x and ¢ are 0.005 and 0.0025 respectively. 

In order to obtain the velocity distributions at 

x=1.025, the region covering from x=0.8 to x=1.4 

is integrated in Eq. (83). Here, 300-times molecular 

kinematic viscosity is used as Ve. 

The boundary layer and the potential flow calcu- 

lations are carried out in the same manner as in 

Section 3. 

In Figure 19, typical calculated results of the 

first iteration for MS-02 are shown compared with 

experiments. The ship speed is Fpy=0.1525 and the 

corresponding equivalent Reynolds number is about 

8700. Here the calculations for the D- and E-regions 

have not been carried out; therefore both regions 

are excluded from the vorticity-integrating region V. 

Satisfactory results are obtained, as far as 

C-region is concerned, especially in u and w. The 

velocity v is always underestimated, in other words, 

overestimated in the negative direction; this may 

uo 
V4 em = 

we —-—-- 
° 

Fp=0.1525 FIGURE 19. Velocity distribu- 
( R,#2.17x106 ) tions in wake at (1/8)L AFT from 
een A.P. (MS-O2) . 
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FIGURE 20. Wake distribution at (1/8)L AFT from A.P. 

(MS-02) - 

be because in the present calculations the potential 

components are determined with no attention to dis- 

placement effects. 

Figure 20 shows the calculated wake distribution 

compared with measured. They do not always produce 

quantitative agreement with each other, but compli- 

mental uses of the present calculations with model- 

wake survey may offer a useful method for the 

prediction of full scale wake characteristics. 

It is expected that much further improvement can 

be attained by taking into account the D- and E- 

regions. 

CONCLUSION 

The flow characteristics of boundary layers and 

wakes of ship-like bodies are discussed. The fol- 

lowing remarks can be mentioned as conclusions; 

(i) The pressure-constant assumption of boundary 

layer is a good approximation except near the 

ship stern or bilge keel where there is a 

small radius of curvature. The pressure does 

not recover near the stern because of the dis- 

placement effects of the boundary layer. 

(11) Most commonly used semi-empirical equations 

for velocity profiles, skin friction, and 

entrainment can be safely employed in case of 

ship-like bodies, but the functional expres- 

sion for crossflow in boundary layer has a 

certain limit for large or reverse crossflows. 

(111) The integral method of boundary layer calcu- 

lation may be carried out more effectively by 

a hybrid use of integral and finite-difference 

methods. 

(iv) The three-dimensional boundary layer separa- 

tion is closely related to pressure distribu- 

tion on the hull surface. Its initiation is 

referred to the occurrence of large crossflow. 

(v) The eddy viscosity coefficient is about 300- 

times the molecular one, in the ship's wake. 

(vi) The separated flow region has sub-regions 

which have different characteristics and no 

single approximate equation of Navier-Stokes 

equation is valid uniformly for all regions. 

(vii) The local asymptotic expansion method is 

promising for the separated flow. Further 

experimental investigations as to turbulence 

are necessary. 
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ABSTRACT 

A general method for representing the flow proper- 

ties in the three-dimensional boundary layers around 

ship hulls of arbitrary shape is described. 

use of an efficient two-point finite-difference 

scheme to solve the boundary-layer equations and in- 

cludes an algebraic eddy-viscosity représentation 

of the Reynolds-stress tensor. The numerical method 

contains novel and desirable features and allows the 

calculation of flows in which the circumferential 

velocity component contains regions of flow reversal 

across the boundary layer. The inviscid pressure 

distribution is determined with the Douglas-Neumann 

method which, if necessary, can conveniently allow 

for the boundary-layer displacement surface. To 

allow its application to ships, and particularly to 

those with double-elliptic and flat-bottomed hulls, 

a nonorthogonal coordinate system has been developed 

and is shown to be economical, precise, and compara-— 

tively easy to use. Present calculations relate to 

zero Froude number but they can readily be extended 

to include the effects of a water wave and the local 

regions of flow separation which may stem from bul- 

bous-bow geometries. 

1. INTRODUCTION 

A general method for determining the local flow 

properties and the overall drag on ship hulls is 

very desirable and particularly so with the present 

need to conserve energy resources. Et is difficult 

to achieve for a number of reasons including the 

turbulent nature of the three-dimensional boundary 

layer, the complexity and wide range of geometrical 

configurations employed, the possibility of local 

regions of separated flow, and the existence of the 

free surface. In addition, and although these dif- 

ficulties may be overcome in total or in part, the 

resulting calculation method must have the essential 

features of generality, efficiency and accuracy. 

It makes 
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The purpose of this paper is to describe a general 

method which is capable of representing the flow 

properties in the boundary layer around ship hulls 

of arbitrary shape. It is based on the general 

method of Cebeci, Kaups, and Ramsey (1977), developed 

for calculating three-dimensional, compressible lami- 

nar and turbulent boundary layers on arbitrary wings 

and previously proved to satisfy the requirements 

of numerical economy and precision. To allow its 

application to ships in general, and to double- 

elliptic and flat-bottomed hulls in particular, 

an appropriate coordinate system has been developed. 

Previously described coordinate systems, for example 

a streamline system such as that of Lin and Hall 

(1966) or the orthogonal arrangement of Miloh and 

Patel (1972) are limited in their applicability and 

the present nonorthogonal arrangement is similar 

to that of Cebeci, Kaups, and Ramsey (1977). 

The numerical procedure for solving the three- 

dimensional boundary-layer equations makes use of 

Keller's two-point finite-difference method (1970) 

and Cebeci and Stewartson's procedure (1977) in 

computing flows in which the transverse velocity 

component contains regions of reverse flow. This 

is in contrast to previous investigations, for 

example those of Lin and Hall (1966) and Gadd (1970), 

which are limited either to zero crossflow or to a 

unidirectional and small crossflow. It is also in 

contrast to the previous methods of Chang and Patel 

(1975) and Cebeci and Chang (1977) which did not 

have a good and reliable procedure for computing 

the flow in which the transverse velocity component 

contained flow reversal. 

In representing turbulent flow by time-averaged 

equations, a turbulence model is required and an 

algebraic eddy-viscosity formulation, similar to 

that of Cebeci, Kaups, and Ramsey (1977), is used. 

This is in contrast to the two-equation approach 

which Rastagi and Rodi (1978) have applied to three- 

dimensional boundary layers and which, in principle, 

should be better able to represent flows which are 

far from equilibrium. The previous comparisons pre- 
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sented in Cebeci (1974, 1975) demonstrated that the geodesic curvatures of the curves z = const and x 

present eddy-viscosity model allows excellent agree- = const, respectively. They are given by 

ment between measurements and calculations but did 

not include comparison with the three-dimensional il t) dhy 
NG) rey lee Unvacrersi8) 5 

boundary-layer measurements of Vermeulen (1971). hyhgsinO | dx Oz 

Since this data includes a strongly adverse-pressure 

gradient case which allows a stringent test of the a 1 ioe Rey Ie dh 3) 
present model, corresponding calculations and com- D hyhgsind | dz 1 ox 

parisons are reported. 

The calculation method is described in detail The parameters Kj)» and K» are defined by 

in the following section which states the three- = 

dimensional, boundary-layer equations in curvi- asy ell i BG) 1 306 

linear, Se ea Meeaheaeae and describes B12 sind | (x: i 1 2) pe cose (x, ei 22) ie) 

and discusses the required initial conditions, a 

turbulence model, and transformations in separate al ( dy ee) i 8 : ; : S : K = {| Kp =) 6 (Kk), += — 
subsections. Section 3 is devoted to the coordinate ay sind 2 hg dz Soe 1 hy ox Ko9) 

system which is an essential feature of the present 

method. The numerical method is discussed briefly For an orthogonal system 6 = 7/2 and the parameters 

in Section 4 and calculated results are presented Ki, Ko, K,2, and Kj), reduce to 

in Section 5 which includes comparisons with the ss 
measurements of Vermeulen (1971) and demonstrations ear Ste 1 Os eee 1 ohe 7 

of the ability of the method to represent the geom- 1 hyhy 92 20 hyh, 0x (7) 

etry of different hull configurations and to result 

in realistic velocity and drag characteristics. eK on ee (8) 

Summary conclusions are presented in Section 6. 

At the edge of the boundary layer, (2) and (3) reduce 

to 

2. BASIC EQUATIONS 
uy au, W du, 5 
Cee: BAS a 2 

Boundary-Layer Equations h), 0x ho dz Ne COS! i RCS Ce ‘i uae 

The governing boundary-layer equations for three- as esc26 3 Pp cot@cscé 3 P 9 

dimensional incompressible laminar and turbulent er hy exp x ho dz\ po @) 
flows in a curvilinear nonorthogonal coordinate 

system are given by: u_ ow w_ oW 
e e e e 2 2 

a ee a ee I SIONIELS) Se NCTBLCISIONS) ae TL Ay 
Continuity Equation hy 0x hg oz S 5 cas 

5 ; 5 5 _ cotescé 2-(2) _ csce76 (2) (10) 
x (uh 2sin®) + jg (Wh isin®) + peamnns ing) =O (1) hy ax \p ho az \pe 

x-Momentum Equation The boundary conditions for Eqs. (1) to (3) are: 

9 3 3 y = 0: u,v,w = 0 (11a) 
i 4y% Y+yt- K,u~cot6 ap Kow“cscd + K)2uw 
hy ox.) hip) dz oy 

7 = OB u = Ug (x,2), W = We(x,z) (11b) 

ae esc28 Of i cot8csc8 9 /p 

hj dx \p ho dz \p 
Initial Conditions 

) du ; 
Ww By (% 2 Wy ) (2) The solution of the system given by (1) to (3), 

subject to (11), requires initial conditions on 

two planes intersecting the body along coordinate 

lines. In general, the construction of these 

initial conditions for three-dimensional flows on 

cscO + Kp)uUw arbitrary bodies such as ship hulls is difficult 

due to the variety of bow shapes, which may be ex- 

tensive and complicated. For this reason, assump- 

cot8csco al) a esc*8 mG) tions are necessary in order to start the calculations. 
hi ax \P he 3z \p In our study we choose the inviscid dividing 

streamline on which dp/dz = 0 to be one of the 
a ( ow vu") (3) initial data line (see Figure 1). In the case of 

z-Momentum Equation 

a ow ) 
e wl & WV 2s = Kone 

u Aue 2 
hy ox ho dz dy 

cot@ + Kyu 

+ — (v— 
OY oy rectilinear motion of a ship, this streamline runs 

along the plane of symmetry. Because of symmetry 
Here, h, and h2 are the metric coefficients and conditions, w and dp/dz are zero on this line causing 
they are, in general, functions of x and z; that is, (3) to become singular. However, differentiation 

with respect to z yields a nonsingular equation. 

hy = hy (x,z); hg = ho (x,2) (4) After performing the necessary differentiation for 

the z-momentum equation and taking advantage of 

Also, 9 represents the angle between the coordinates appropriate symmetry conditions, we can write the 
“x and z. The parameters K; and Kp are known as the so-called longitudinal attachment-line equations as: 
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Zz 
~<| 

INITIAL CONDITIONS ON 
A CROSS SECTION (x = xq) 

DP 
Lug 

FIGURE 1. The nonorthogonal coordinate system and the 

initial data lines for the ship hull. 

Continuity Equation 

3 : ; a F 
9q (un2sin®) + h)sinéw, + oy (vhjhgsin@) =O (12) 

x-Momentum Equation 

u_ du ou 2 hy ox SV; By cotéK)u 

Us du + 
= a - K,uzcot6 + 2 (8 - wv") (13) 

z-Momentum Equation 

dWy Ww ow 
u — ~—— + — + vy —— + 
h, ox ho M oy LOE 

Ue BW i Wze ane peels ( owe = 
ia OE ia 21UgWoe By Coa - (w'v Ne (14) 

Where wz = dw/dz and (w'v')z = d(w'v')/dz. These 

equations are subject to the following boundary con- 

ditions: 

y = 0: u=ve=w, =0 (15a) 

y= 6: WS Tap We SMa (15b) 

The other initial data should be selected near 

the bow of the ship along the line perpendicular to 

the z = const coordinate (see Figure 1). However, 

because of the variety of possible bow shapes, 

approximations are necessary. For a simple, smooth 

bow section, where curvatures are small and no 

separation is expected, the flow along the initial 

line can be successfully assumed to be two- 

dimensional without pressure gradient, and the 

governing two-dimensional equations for a flat 

plate are solved. However, for most general mer- 

chant ships, the bow section is complicated and 

flow separation and reattachment are expected be- 

cause of large curvature variations and adverse 

pressure gradients; as a consequence, the boundary- 

layer calculations can only be performed downstream 

of the attachment line (or point) where turbulent 

5 INITIAL CONDITIONS (z = 0) ON ve THE PLANE OF SYMMETRY 

flow is presumed (since it is unlikely that the flow 

remains laminar after separation and reattachment 

with high Reynolds number). Generation of the 

initial data for turbulent flows is much more in- 

volved if there are no experimental data available. 

It requires sound mathematical and physical judgment 

and tedious trial-and-error efforts. We shall 

discuss this aspect of the problem later in the 

paper. 

Turbulence Model 

For turbulent flows, it is necessary to make closure 

assumptions for the Reynolds stresses, -pu'v' and 

-pv'w'. In our study, we satisfy the requirement 

by using the eddy-viscosity concept and relate the 

Reynolds stresses to the mean velocity profiles by 

' ’ du ' ' ow UNA NG Ri ty Hh et (16) 

We use the eddy-viscosity formulation of Cebeci 

(1974), and define €, by two separate formulas. In 

the inner region, €, is defined as 

au A 

(emi = | (3) 
where 

L = 0.4 y [1 - exp(-y/A) ] (18a) 

v Cae We 
NS 26 wh. S|) (18b) 

T p 

2 2 L 

Trac ) + (2) + 2cos@ (2) (=) (18c) 
Y/ w YY. <n NIMS 

In the outer region €_ is defined by the following m 
formula 

Eq = 0.0168 at (una u,) dy (19) 

0 

where 

= (as bP aweh 2 Q)2 (20a) Daa S (US We UgW.Cos 

UE = (u2 + we + es) e (20b) 

The inner and outer regions are established by the 

continuity of the eddy-viscosity formula. 

Transformation of the Basic Equations 

The boundary-layer equations can be solved either 

in physical coordinates or in transformed coordinates. 

Each coordinate system has its own advantage. In 

three-dimensional flows, the computer time and 

storage required is an important factor. The trans- 

formed coordinates are then favored because the 

coordinates allow larger steps to be taken in the 

longitudinal and transverse directions. 

We define the transformed coordinates by 

x 
u 

xX =X, Z= Z, dn= (=) dy, Ss) = Jonjax (21) 

1 0) 



and introduce a two-component vector potential 

such that 

uhysing + oun wh ; sing =e) (22a) 
ay oy 

vhyh sing = - (Be ae) (22b) 
ox ox 

where y and » are defined as 

y= (vs jug) thf (x,z,n) sing (23a) 

$ = (v8 )Ug)% (Uo ¢/U,)h) g(x,2,n) sing (23b) 

and Uyef is some reference velocity. 

Using these transformations and the relations 

given by (9), (10), and (11), we can write the x- 

momentum and z-momentum equations for the general 

case as: 

x-Momentum 

(b£")' + m)f£" - mp (£')2 - msf'g' 

+ mgf"g - mg(g')* + mj] 

z-Momentum 

(bg")' + mjfg" - m,f'g' - m3(g')* + mggg” 

ay2 = fake) (GEN) sp ial 

ag! af ag' ag 
4 @ OB gf OE ; ee os = m0 (« es =) wad (s BD We eBeay) ate 

and their boundary conditions as 

i) = Wkap 287 = dbo Gl = WEAtas (26) 

Here primes denote differentiation with respect to 

nN, and 

€ 

The coefficients m, to mj, are given by 

s 3u, s 
m, = L @ Ee — =) fe pee NE See (hy sing) 

2 hyu, 8x hjhosin@ 3x 

S] dU Vref a ae = -s,K t M5 hug Ox s,K,cote, M3 S)K5 Fi cot¢ 

¥ _ 8a Gress dUe mR Uref 
M, = S)Ko1, ne as ae aon SiRio ou 

e 

Sal Crete 
Me = pects ee a Daa Oe (4 s; hy sing (28) 

h hosing aera dz e Ue 
eS 1 

i 2 

Si ref 
m7 Se, Mg = 51K) ( ) escé 

2 Ys Ue 

u S$} 

Mg = S )K) csc8, mig = rae 
ref 1 
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We We 

nn, Stiles oe Ms + m ( 

ef Uref 

w We 2 
m)2 = my m3 ( ) + M9 

ref Uref 

M19 We M7We IWe 

Uref ox u2 if az 

To transform the longitudinal attachment-line 

flow equations and the boundary conditions, we use 
the transformed coordinates given by (21) and de- 
fine the two-component vector potential by 

uhgsin@ = oe, 

: oY) 
hyh =-(— + vh;h9sin6o (2 ®) (29) 

with ¢ and still given by (23). With these vari- 
ables, the longitudinal attachment-line equations 

in the transformed coordinates can be written as 

(bE")' + m, ff" = Ty (£1)2 ar mefi"g + Mm) } 

Ss ' 1 @ O20 a at ) Go 

(bg")' fy mg"£ pa myf'g! - m3 (g!)2 + megg" tas Mg (£')2 

= ag! of 
+mjp = — (= a a) (31) 

The boundary conditions and the coefficients m, to 

m)2 are the same as in (26) and in (28) except now 

Mien 7.8 
N = Neo? gr 

Yet 

m3 = af Suet me =m 3 ho us , 6 3 

mg = 0, M)}] = m2 

2 
Wze Wze 3 1 dWre 

m)2 = m3 + my oF A 5 (32) 
Uref Uref Ip Uret ox 

In terms of the transformed variables, the alge- 

braic eddy-viscosity formulas as given by (17) to 

(20) become 

2 

i 2 y\ 2 (a= S01 |, = Seo . 2) (Ey) 

vRy B 

2 L u a u 3 
+ aa (g") 4 + 2 nee ogcost (33) 

Ge Ue 

he We 2 We 4s 
(Sale = 0.0168 VR, if 1+ e + 2\ —]cosé 

é Ue Ue 

2 u - ee (Ens 
Ue 

u A 
+ 2 ee eeticose dn (34) 

Ue 

Here R, = u,S}/v and 



Une ‘3 
+2 mamgawewccce (35) 

3. COORDINATE SYSTEM 

Since, in general, a ship hull is a complicated non- 

developable surface, a Cartesian coordinate system 

is not suitable for boundary-layer calculations. 

Most existing merchant and naval vessels possess 

the following features: a flat bottom [y = £(x,zZ) 

is not a single-valued function]; a bottom which is 

not parallel to the water surface; and a bow which 

has a submerged bulb extending toward the origin. 

In addition, the problem is further complicated by 

the existence of a free surface, corresponding to 

the water level of a partly-submerged hull. The 

chosen coordinate system must be sufficiently general 

to allow these various features to be represented in 

the boundary-layer calculations. 

The streamline coordinate system is superficially 

attractive but the determination of the streamlines, 

the orthogonal lines, and the associated geometrical 

parameters requires considerable effort. They are 

dependent on the Froude number, and also on the 

Reynolds number if the displacement effect is taken 

into account. Consequently, and in addition to 

being hard to compute, this coordinate system be- 

comes uneconomical to use when the effect of the 

Froude number and the Reynolds number are to be 

systematically examined. - 

A desirable requirement of a coordinate system 

for the boundary-layer calculations is that it be 

calculated only once. Miloh and Patel (1972) pro- 

posed an orthogonal coordinate system which depends 

only on the body geometry and is calculated once 

and for all. This coordinate system has been applied 

by Chang and Patel (1975) to boundary-layer calcula- 

tions on two simple ship hulls: ellipsoid and double 

elliptic ship. One of the coordinates is taken as 

lines of x = X = constant and the other as z(X,Z) = 

constant, which is orthogonal to x = constant lines 

everywhere on the ship hull, and is obtained from 

the solution of the differential equation 

dz fzts 
ax | 1 + £2 Ee 

Zz 

Here y = £(X,Z) defines the ship hull, and (x,y¥,Z) 

denote the Cartesian coordinates. The major ad- 

vantage of this coordinate system is its simplicity. 

Because one of the coordinates is subject to the 

condition (36), there is no guarantee that the 

boundaries of the ship hull are coincident with the 

coordinate lines. Furthermore, for a ship with flat 

bottom for which y = £(xX,Z) is not a single-valued 

function, one of the coordinates cannot be calcu- 

lated from (36). The coordinate system is limited, 

therefore, to some special geometries only. 

In this study we adopt a nonorthogonal coordinate 

system similar to that developed by Cebeci, Kaups, 

and Ramsey (1977) for arbitrary wings. It is based 

on body geometries only and, hence, it is calculated 

once and for all. In addition, the system can deal 

with the peculiar features of most merchant and 

naval vessels discussed previously. The details 

of this coordinate system are described briefly 

in the following paragraph. 

Now consider the ship hull as given in the usual 

Cartesian coordinate system; that is, x along the 

ship axis, y and z in the cross-plane (see Figure 

1). We select x = x = constant as one of the co- 

ordinates and the other coordinate, z, lies in the 

yz-plane. Because the coordinate system is non- 

orthogonal, we are free to select the values of z 

in the plane to satisfy the condition that the 

boundary lines of the ship hull are coincident with 

Z = constant coordinate lines. There are several 

ways of finding the z-values. Here z is determined 

by mapping each yz crossplane into a half or hull 
unit circle depending on whether the crossplane in- 

tercepts the free surface or is completely submerged. 

The polar angle, normalized by tm or 27 on the unit 

circle, is taken as z-values. The z-values then 

range from 0 to 1 on each crossplane. The advantage 

of the mapping method is that equi-interval, z = 

constant coordinate lines are automatically concen- 

trated in the region of large curvature where the 

boundary-layer characteristics are expected to vary 

greatly. Hence the number of z = constant coordinate 

lines can be reduced without loss of accuracy. 

There are several methods available for the map- 

ping of an arbitrary body onto a unit circle. Here 

we use the numerical mapping method developed by 

Halsey (1977). It makes full use of Fast Fourier 

Transform techniques and has no restrictions on the 

shape of the body to be mapped. To map a smooth 

crossplane onto a unit circle, the procedure is 

fairly easy. If there are inner corner points, or 

trailing-edge and leading-edge corner points (see 

Figure 2) caused by the reflection of the cross- 

plane, they must be removed before mapping is per- 

formed to improve numerical accuracy and to provide 

rapid convergence. The inner corner points are 

rounded off by using Fourier series expansion tech- 

nique and the leading-edge and/or trailing-edge 

corner points are removed by using the Karman- 

Trefftz mapping. For details see Halsey (1977). 

To use the mapping method to find the coordinate 

system, it is only necessary to define the ship hull 

as a family of points in the x = constant planes, 

to locate the intersection of the ship hull and the 

free surface, and to indicate whether corner points 

exist. The data in each plane is then mapped into 

a unit circle as ¥ vs z and z vs z and interpolated 

for constant values of z. Another set of spline 

fits, in the planes z = constant for y vs x and Zz 

vs x, completes the definition of the coordinate 

[aie le aN 

LEADING-EDGE 
CORNER POINT 

W.L. 

TRAILING EDGE f y 
CORNER POINT: 

SHIP HULL 

«(NNER CORNER POINT 

FIGURE 2. Notation of corner points used in the 

Mapping procedure. 



system. The lines formed by the intersection of 

the planes x = constant and z = constant with the 

hull constitute the nonorthogonal coordinate net 

on the surface, and the third boundary-layer coor- 

dinate is taken as the distance normal to the surface 

in accordance with first-order boundary-layer approx- 

imation. 

Since the spline-fitting also yields derivatives, 

the metric coefficient and the geodesic curvatures 

of the coordinate lines can be calculated from the 

formulas given below. 

The metric coefficients: 

D) 2. 4 i 
mene (24) « (2 (37a) 

ax / 2 SY 

2 (SEN> (ES? 
hp = (=) oF (2) (37b) 

x x 

The angle between the coordinate lines: 

i =) (=) Gy &) 
cose = (2 as ap — = (38) 

hyho oz 5% ox i ox 2 Cr4 . 

The geodesic curvature of the z = constant line: 

fe, 1 oy 22 | _ (ax oz 
1“ huhosind oz ox ox dz 

1 x Zz Zz x 

(2 a4y oy ay 
ox ox2 ox ox2 

oF 29 
‘ @) e “A 

x Zz 

(39) 

az (eS 
az ax2 

x 2 

The geodesic curvature of the x = constant line: 

(ase jaceaee oy) OB. on (oe 82 
a hy hi sind Zz)  \ox/ , ax/ , \dz 

x 

(40) 

The other parameters K}2 and K2] are calculated from 

(6). It may be noted that K; and K» can also be 

obtained from (5). This provides a check on the ex- 

pressions given by (39) and (40). 

In the boundary-layer calculations, we need the 

invisid velocity components along the surface 

coordinates. Let V be the total velocity vector 

on the hull, (Uu,v,w) the corresponding velocity com- 

ponents in the Cartesian coordinates, and (Ue,We) 

in the adopted surface coordinates. As can be seen 

from Figure 3, 

V- ie, = ¥ o ee cos® 

pean sin26 a 
v- ty = Vv 2 t) cos¢é 

eS kee aa: oe 
> => 

Here t; and t2 are the unit tangent vectors along 

x and z coordinates and are given by 

ne kles @)s a) | t) = Taq 1+ Cz 5] (2) k (43) 

Zz Z 

= = Lee) se oz\ 2 tre (=) 4) (2) k (44) 
x x 
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FIGURE 3. Resolution of the velocity components. 

With the definition of V and with the use of (43) 

and (44), Eqs. (41) and (42) can be written as 

= {92 
MN Ba (45) 

x 

1 atl |le x) B (2 
= + —< 

“OT Sines ho @ © \G2 ee 

4. NUMERICAL METHOD 

We use the Box method to solve the boundary-layer 

equations given in Section 2. This is a two-point 

finite-difference method developed by Keller and 

Cebeci. This method has been applied to two- 

dimensional flows as well as three-dimensional 

flows and has been found to be efficient and accu- 

rate. Descriptions of this method have been pre- 

sented in a series of papers and reports and a 

detailed presentation is contained in a recent 

book by Cebeci and Bradshaw (1977). 

In using this numerical method, or any other 

method, care must be taken in obtaining solutions 

of the equations when the transverse velocity com- 

ponent, w, contains regions of flow reversal. Such 

changes in w-profiles will lead to numerical in- 

stabilities resulting from integration opposed to 

the flow direction unless appropriate changes are 

made in the integration procedure. Here we use the 

procedure developed by Cebeci and Stewartson (1977). 

In this new and very powerful procedure, which fol- 

lows the characteristics of the locally plane flow, 

the direction of w at each grid point across the 

boundary layer is checked and difference equations 

are written accordingly. At each point to be calcu- 

lated, the backward characteristics which determine 

the domain of dependence, are computed from the 

local values of the velocity. Since the character- 

istics must be determined as part of the solution 

a Newton iteration process is used in the calcula- 

tion procedure to correctly determine the exact 

shape of the domain of dependence. 

To illustrate the basic numerical method, we shall, 
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at first, consider the solution of the longitudinal 

attachment-line Eqs. (30) and (31) and then the 

solution of the full three-dimensional flow equations 

as given by (24) and (25). We shall not discuss the 

Cebeci-Stewartson procedure for computing three- 

dimensional flows with the transverse velocity, w, 

containing flow reversal since that procedure will 

be fully described in a forthcoming paper. 

Difference Equations for the Longitudinal 

Attachment-Line Equations 

According to the Box method, we first reduce the 

Eqs. (30), (31), (32), and (26) into a system of 

five first-crder equations by introducing new depen- 

dent variables u(x,zZ,n), v(x,Z,n), w(x,Z,n), 

t(x,zZ,n), and 6(x,zZ,n). Equations (30) and (31) 

then can be written as 

ey yy (47a) 

w'=t (47b) 

(bv)' + 6v - mou* + mj] = mg u =e (47c) 

(bE) 4 + 8 = miuw = m3w- = mou + mj)2 

ow 
= mM) 0 u Bee (47d) 

6' = mju + mew +m au (47e) 1 6 10 ox 

The boundary conditions (26) and (32) become 

n= 0: u=w= 0 = 0 (48a) 

N = No: u=l1, we Woe/Uref (48b) 

We next consider the net rectangle shown in Figure 

4 and denote the net points by 

x0 i] (o) 6 =} 
| SS Peesy) an ky 

ll (o} =) no = - j-1 + hy a ek Bp acon a 

We approximate the quantities (u,v,g,t,9) at 

points (x05) of the net by functions denoted by 

(uh, v9 wh, th, 65) . We also employ the notation for 

points and quantities midway between net points and 

for any net function SH 

(x) n-1/2 
(xq) n-1 (x,) 

n 

FIGURE 4. Net rectangle for the longitudinal 

attachment-line equations. 

, 

na ph 
aia = 2% * na} yaya = 2 ("3 i "j-) 
nS /2 5 a(n y-1 ) eS pean n 

ei, =" (33 + s3 yEE i fo =D S5 + 5-1) (49) 

The difference equations which are to approximate 

(47) are formulated by considering one mesh rect- 

angle as in Figure 4. We approximate (47a,b) using 

centered difference quotients and average them 

about the midpoint (%y N5-1/2) of the segment P )Po2. 

Olid S sit enya! hy (uy j-1) 5-1/2 (50a) 

il soy Gal — Aig 

Similarly, (47c,d,e) are approximated by centering 

them about the midpoint x,-1/2+15_1/2 of the rect-— 

angle P)P )P3P,. This gives 

-1 n n n 
he by) =" (bv ar (Chi) : ( XA) ( Deon ( Deep 

a n 2\n _ aril meer 
(m5 a a) (u 5 -a/2 Reey/2 M)] (50c) 

= ak n n n 
ite || Coren = “Cee)) + (Git) 
J 5 5-1 ‘5-1/2 

= n n sd n 2 n = n 2 n 

(m, + O,) (UW) a7 m3 (Ww eee Mg (u Vee 

a, sat we uM yntl wi 

Sn) Y4-1/205-1/2 5-1/2" 5-1/2 

=cut n (50a) 

jai72 ~ ie 

1 n n n n TT hj G = 1) -( nj + 2a) 8-1/2 ea 

n-1 
aT (50e) 

Here 

n-1 pa 2,n-1 

jo a ey 

Sil n= n-1 ig —ill 
= hie bv). {5 [( v) (bv) 1] = COR. 

=a! ey a. n-l 
2: 3-172 aH a (51a) 

n-1 a ( n-1 

y= SO Bp 

=e n-1 n-1 n-1 =< he bie)is 3 (VoKe)) a + (6 o [ ( ); ( 5-1] ( ) 5 1y2 

TAN 4 Dol n-l, 9\n-1 
—m (w ts 2 

3 ewe 9 (u Boy (51b) 

n-1 n-1 
ey. gooey 

Ly ek 1 n-1 n-1 n-1 
£5 (@ i ai) Ty Mile 

TS =i jaa 

6 j-1/2 (Slc) 
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(j-1, n—1, i) 
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f— Cierra 

FIGURE 5. Net cube for the difference equations 

z(i) 

for three-dimensional flows, wj > 0. 

n-1/2 

w@ 
= (51d) 
n xk 

n n= 

Difference Equations for the Full Three-Dimensional 

Equations 

The difference equations for the full three- 

dimensional equations, as given by (24) and (25), 

are again expressed in terms of a first-order sys- 

tem. With the definitions given by (47a) and (47b), 

they are written as 

(bv)' + @v - mju? - mcouw - mgw? + m)) 

=Mj9 u oy m7w x (52a) 

(bt)' + 6t - myuw - m3w* - mgu2 + m)9 

=™)9 u oy m7w a (52b) 

6' = mju + mew + mo a + m7 se (52c) 

Their boundary conditions, (26) become: 

n= 0: u=w=60=0 (53a) 

in) = wWs3 u=1, W = We/Uref (53b) 

The difference equations for (47a) and (47b) are 

the same as those given by (50a) and (50b): they 

are written for the midpoint [(x) ye (2) 55-770] of 

the net cube shown in Figure 5; that is, 

al Ca - ut ) = yori j jon) > “3 ai7a° 

SW ciogah L Gaelpsl\\ = Afalpal 
my G “ie osy2 ee) 

The difference equations which are to approximate 

(52a,b,c) are rather lengthy. To illustrate the 

difference equations for these three equations, we 

consider the following model equation 

(bv)' + 0v + m,)] = mo u oe 4 m7w ~— (55) 

The difference equations for (55) are: 
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Solution of the Difference Equations 

The difference equations (50) for the longitudinal 

attachment-line flow and the difference equations 

for (52) are nonlinear algebraic equations. We use 

Newton's method to linearize them and then solve the 

resulting linear system by the block-elimination 

method discussed by Keller (1974). A brief 

description of it will be given for the streamwise 

attachment-line equations. 

Using Newton's method, the linearized difference 

equations for the system given by (50) are: 

h, 
5 al = ORS Oy, Sa Way > Og) = Ga) (59a) 

Ay - ‘ -=— me taOiter. = F 59b by > Ota oe Oe, Oh, 4) = Ge (59b) 

aOWin oF év., + 200.5 4 NOOR (S1) 5 Nea (G2) Ve (63), 5 (Su) 5 5 
1 

+ “OU ou, = ; 5S) (os), Bas (Se), Bag 5S) 2 (59c) 

R a (Sh A a sor : : (By), 8, + (B2),6t,_, + (Ba), 60, + (8,), 68 
> i 

_ W. _W. gu, + (Bg). cu, + (Bs), 8", + (Be), + (B75 S48, + (Bq); ou 
1 J aaa 

; (59d) (ry), 

+ fi A + z s (01) 68, (oa) a OO5_ 5 (93). du + (6). 6, 
j Si 5 Oe j-1 

+ Wop) Om + Woie)) 4 Ors 5 = (x5), (59e) 
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Here we have dropped the superscripts n, i and have 

defined (1K) 51 (%) 5. (8) 54 and (oy) 5 by 

r= Ble - ws to BeVe a75 (60a) 

ro = a - we + Meee iV/e (60b) 
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The boundary conditions become 

Sug = Swo = 58 = 0, bus = ow, = 0 (64) 

The solution of the linear system given by (59) 

and (64) is obtained by using the block elimination 

method. According to this method, the system is 

written as 

fA gé=r 65 aes (65) 

Here 

Ao nS 

Sr eae 
NG 

w= : Cc 
J 3) J 
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The A., By, C. in /A denote 5x5 matrices. The 

solution of (25) is obtained by the procedure 

described in Cebeci and Bradshaw (1977). 

5. RESULTS 

Turbulent Flow Calculations for a Curved Duct and 

Comparison with Experiment 

The turbulence model described in Section 2 has been 

used with considerable success to compute a wide 

range of two-dimensional turbulent boundary layers 

[see for example Cebeci and Smith (1974)]. The 

model has also been used to compute three-dimensional 

flows and again is found to yield accurate results 

[see for example Cebeci (1974, 1975) and Cebeci, 

Kaups, and Moser (1976)]. To further test the model 

for three-dimensional flows, we have considered the 

experimental data taken in a 60° curved duct of rect- 

angular cross section. Figure 6 shows a sketch of 

the flow geometry. The experimental data are due 

to Vermeulen (1971). Here z denotes the distance 

from the outer wall, measured along normals to the 

wall; x denotes the arc length along the outer wall; 

and y denotes distance normal to the plane x,z. 

To test the computed results with the data, it 

is necessary to specify the initial profiles given 

by experiment. This can be done in a number of ways. 

In the study reported by Cebeci, Kaups, and Moser 

(1976) the profiles were generated by using Coles' 

velocity profile formula. That formula, which repre- 

sents the experimental data rather well for two- 

dimensional flows, was not very satisfactory for 

three-dimensional flows. Here we abandon the use 

of Coles' formula in favor of Thompson's two- 

parameter velocity profiles as described and im- 

proved by Galbraith and Head (1975). According 

to this formula, the dimensionless u/ug velocity 

profile is given by 

INITIAL 
CONDITIONS 

MEASURING LOCATIONS 

eee 
FIGURE 6. Coordinate system and notation for the 

. curved duct. 
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u 

ei Ye (=) 15 (hy S 57a) (66) 
= €/ inner 

Here yg is an intermittency factor defined by the 

following empirical formulas: 

‘LoS = Oia Oe 

y y Z 405 < °*S4 Oo, = 1 - 2.64214(— - 0.05 
Sn” hes (5 nh ) 

y y d poi Ss = PE O25 <a 8 Oo ie 4.4053(2 0.5) 

- 1.8502( 4 = 0.5) + 0.5 
89 

y 2 

0.7<*%< 0.95 yg, = 2.64214 (= 0.05) 
50 0 

y A 
nee 0.95 Ys = 0.0 

The dimensionless velocity profile for the inner 

layer, that is, (u/ug)inner, is given by 

y <4 ut = y* 

4< yt < 30 ut = c) + coln yt + c3(1n yt)? 

+ cy (in y*)3 

y > 30 u’ = 5.50 In y’ + 5.45 

Hene en = 4 Si co =" Sey 45y Cape— OP elOF ici 

=0. 767) yu = WY, B= (t,,/2) 2, ut = u/u,, and 6, 
is a parameter which is a function of 6, Ce, and H. 

To find the functional relationship between On 

CE 68, and H, we use the definitions of displacement 

thickness, 6*, and momentum thickness, 9. Substitut- 

ing (66) into the definition of 6*, after some alge- 

bra, we get 

A 
SE i ae red a 
55 Rae 

c Cc £ 5* f ) 
= 0.5 + — — - = — 0.5 5 Ay, In oe A3 Ao In ce 5 (67) 

where 

A, = 50.679, Ap = 1.1942, A3 = 0.7943, Ay = 1.195. 

An expression similar to that given by (67) can also 

be obtained if we substitute (66) into the defini- 

tion of 8. However, the resulting expression is 

quite complicated. For this reason, the expression 

for 8 is obtained numerically, and for a given value 

of © and H, the corresponding values of c¢ and 6, 

are computed from that equation and from (67). 

Equation (66) is recommended for two-dimensional 

flows. Here we assume that it also applies to the 

streamwise velocity profile by replacing u/u, by 

u,/ug, with c, now representing the streamwise skin- 
friction coefficient. 

In order to generate the crossflow velocity com- 

ponent (a)/ug,) + we use Mager's expression and 

define Up/Us, by 
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08 

0.2 

FIGURE 7. Comparison of gener- 

ated initial total velocity ° sesh 

profiles with Vermeulen's data. y 0 

Yn Us ; 
aan ee ( - x) tang, (68) 

Se "se 

with the limiting crossflow angle fy, obtained from 

the experimental data. 

Once the streamwise and crossflow velocity pro- 

files are calculated by the above procedure, we 

compute the velocity profiles u/u, and w/wWe in the 

orthogonal directions x and z by the following rela- 

tionships 

u Uu. WwW - 
u s n e 

Tee Gow eMOS feo) 
e Se Se e : 

u u Ww Ss Un e 
a (69b) 
We Us, Us, We 

Figure 7 shows a comparison of generated and 

experimental total velocity profiles along the line 

A. As can be seen, the procedure discussed above 

for generating the initial velocity profiles from 

the experimental data is quite good. This is impor- 

tant for an accurate evaluation of a turbulent 

model, especially for three-dimensional flows. 

Here 
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FIGURE 8. Comparison of computed momentum thickness 

with Vermeulen's data. 
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The solution of the boundary-layer equations also 

requires the specification of the metric coefficients 

and the geodesic curvatures. They are calculated 

from the following expression: 

(a: straight section 

hy = 

1 - 2/R curved section 
le fe) 

hy = 1.0, Ko = 0 (71) 

(a : E 
(0) straight section 

K] = 

1/ (Ro-2) curved section 
S 

A comparison of calculated and experimental values 

of streamwise momentum thickness, 8 ),, shape factor, 

H}1, skin-friction coefficient, cf, and limiting 

crossflow angle, 8y, is shown in Figures 8, 9, 10, 

and 11, respectively, along the lines B, C, D, E. 

Here the limiting crossflow angle is computed from 

° DATA 

— PRESENT METHOD 

x (m) 

FIGURE 9. Comparison of computed shape factor with 
Vermeulen's data. 
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FIGURE 10. Comparison of computed skin friction 

coefficient with Vermeulen's data. 

We Ate urea) oe 5 f 
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a) (eed a) Se bg 

tanBy = 

Figures 12 and 13 show a comparison of calculated 

and experimental total velocity profiles and cross- 

flow angle profiles along the lines C and E. Here 

the crossflow angle is computed from 

w/oa L ee) 5" ie £"] (73) 9/2, (2/4)? sinpy, = 

As in Figures 8 through 11, again the agreement 

between calculated results and experiment is very 

good. The computed results follow the trend in 

the experimental data well and indicate that the 

present turbulence model, as in two-dimensional 

flows, is quite satisfactory for three-dimensional 

flows. 

Results for a Double Elliptic Ship Model 

To test our method for ship hulls, we have con- 

sidered two separate hulls. The first one, which 

is discussed in this section, is a double elliptic 

ship whose hull is given analytically. The second 

DATA 

PRESENT METHOD) 

1.0 15 2.0 25 3.0 
x (m) 

FIGURE ll. Comparison of computed limiting crossflow 

angle with Vermeulen's data. 

nie}) 

one, which is discussed in the next section, is 

ship model 5350 which has a rather complex shape. 

Its hull is represented section-by-section in tabu- 

lar form and contains all the features of most 

merchant and naval vessels. It proves an excellent 

test case to study the computational difficulties 

associated with real ship hulls. 

The double elliptic ship model can be analytically 

represented by 

pi ty UAL Ne le BY? (le 
Y = 2 (s4) = TON ae 1 -{ = (74) 

It has round edges except for the sharp corners at 

x = +L and z = +H. The body of L:H:B = 1.0:0.125:0.1 
together with the nonorthogonal coordinate nets on 

the hull is shown in Figure 14. 

The potential-flow solutions were obtained from 

the Douglas-Neumann computer program for three- 

dimensional flows. To get the solutions, 120 control 

elements on the surface were used, 12 along the x- 

direction and 10 along the z-direction. 
Before we describe our boundary-layer calculations, 

it is useful to discuss the pressure distribution for 

this body shown in Figure 15. As can be seen from 

the figure, the streamwise pressure gradient is 

initially favorable in the bow region and then ad- 

verse up to the midpoint of the body. This is fol- 

lowed by a region of favorable pressure gradient and 

then by a shape adverse pressure gradient very close 

to the stern. The crosswise pressure gradient varies 

in a more complex manner. Near the bow the pressure 

decreases down from the water surface to a minimum 

and then increases as the keel is reached. As the 

flow moves downstream, the location of the minimum 

pressure moves up and reaches the water surface at 

about x/L = -0.80. The minimum pressure remains at 

the water surface to about x/L = 0.80 and then moves 

toward the keel. As a result, near the bow and the 

stern, one may expect flow reversal of the crossflow 

across the boundary layer does not reverse direction 

from the keel to the water surface. This conclusion 

is drawn from considering the pressure gradients only. 

The real situation may be somewhat modified because, 

in addition, there are the upstream effects and the 

curvature effects on the flow characteristics. 

The boundary-layer computation starts with turbu- 

lent flow from X/L = -0.90. We have tried to start 

the computation from X/L = -0.97 and X/L = -0.95. 

However, flow separation was observed at X/L = -0.90 

near the keel due to the sharp curvature and adverse 

pressure gradient in the bow region and can be seen 

from Figure 15. In the previous calculations of 

Chang and Patel (1975) and Cebeci and Chang (1977), 

the flow separation near the bow was not found due 

to the orthogonal coordinate system they adopted in 

which the second net point from the keel is so far 

from the keel that the region of adverse pressure 

gradient is omitted. 

In our boundary-layer calculations, we have used 

40 points along the x-direction and 16 points along 

the z-direction. In the normal direction, we have 

taken approximately 40 points. The nonuniform grid 

structure described in Cebeci and Bradshaw (1977) 

is employed in the normal direction so that the grid 

points are concentrated near the wall where the 

velocity gradients are large. 

Some of the computed results for R; = 10’ are 

shown in Figures 16 and 18. Figure 16 shows the 

spanwise distributions of the pressure coefficients, 

Cp, local skin-friction coefficient, cre, the shape 
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with Vermeulen's data. 

factor, H,;,], the Reynolds number based on the momen- 

tum thickness, Rg, and the limiting crossflow angle 

for x/L = -0.85, 0.0, and 0.75. As can be seen from 

these figures, the boundary-layer parameters vary 

greatly near the keel where the curvatures and the 

pressure gradients are large and remain almost un- 

changed near the surface where the curvatures and 

the pressure gradients are small. Except at x/L = 

-0.85, the limiting crossflow angle is positive. 

This implies that the crossflow near the wall moves 

from the keel to the free surface as predicted from 

the pressure distribution. Figure 17 shows typical 

longitudinal and transverse velocity profiles at 

z= 0.6 for several values of (x/l), and Figure 18 

shows typical transverse velocity profiles at (x/L) 

= -0.2 for several values of z. As can be seen from 

Figures 17(b) and 18, the transverse velocity compo- 

nent undergoes drastic changes in the longitudinal 

and transverse directions under the influence of 

pressure gradient and body geometry. As was dis~ 

cussed before, when the transverse velocity changes 

30 20 
y (mm) y (mm) 

sign across the boundary layer and contains regions 

of reverse flow, numerical instabilities results from 

integration opposed to flow direction unless appro- 

priate changes are made in the integration procedure. 

The new numerical procedure of Cebeci and Stewartson 

(1977) handles this situation very well and does not 

show any signs of breakdown resulting from flow re- 

versal of transverse velocity component. 

Results for Ship Model 5350 

The ship model 5350, unlike the one discussed in the 

previous section, is a realistic tanker model. The 

geometry of the hull is so complicated that it is 

represented in tabular form section by section. 

The model possesses all the special features of 

existing merchant and naval vessels, that is, a 

bottom which is flat and not parallel to the still- 

water surface and an extended bow completely sub- 

merged under the water surface, and consequently 
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FIGURE 13. Comparison of computed crossflow angle with Vermeulen's data. 

serves as an excellent case on which to apply our 

method. 

Figure 19 shows a three-dimensional picture of 

this ship model together with our nonorthogonal co- 

ordinate system. We see from this figure that, as 

a by-product of the mapping method discussed earlier, 

the z = const. coordinate lines are concentrated 

in the bow and corner regions where the curvature 

is large. Figure 20 shows different cross-sections 

(indicated by solid lines) and interpolated values 

obtained by a cubic-spline method (indicated by 

circles) from which the geometric parameters are 

obtained. 

The inviscid velocity distribution for the model 

is obtained by using the Douglas-Neumann method 

treating the model as a double ship model. Figure 

21 shows the pressure distribution for the entire 

ship and Figure 22 shows a detailed pressure distri- 

bution for the bow region. We see from these figures 

that the longitudinal pressure gradient near the keel 

FIGURE 14. Three-dimensional picture of double ellip-— 

-tic ship model with the nonorthogonal coordinate system. 

FIGURE 15. 

GIRTH, % 

Pressure distribution for the double- 

elliptic ship. 
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FIGURE 17. 
10’ at z = 0.6. 

is favorable and then later becomes adverse. The 

pressure gradient in the transverse direction de- 

creases rapidly from the keel to a minimum value 

and then increases continuously up to the free sur- 

face. Due to this rapid pressure variation in the 

bow region, preliminary boundary-layer calculations 

showed flow separation and required an approximate 

procedure to generate the solutions for x < 22.5 m. 

After that (x > 22.5), the three-dimensional boundary- 

FIGURE 18. Computed transverse velocity profiles. 
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Computed longitudinal and transverse velocity profiles for the double-elliptic ship model for Ry = 

layer calculations were performed for a given invis- 

cid pressure distribution. The initial conditions 

at x = 22.5 m were generated by solving the boundary- 

layer equations in which the z-wise derivatives for 

a constant z were neglected. 

Figures 23 to 25 show some of the computed re- 

sults for R; = 3 x 108. Figure 23 shows the varia- 

TOM Cr Co, Cp Rg, Hy], and 8, at the cross-planes 

of x = 30 m, 105 m, and 210 m. Typical streamwise 

velocity profiles at x = 105 m and z = 0.2 are shown 

in Figure 24 and typical crossflow velocity profiles 

at x = 60 m are shown in Figure 25. As can be seen 

from these figures, the crossflow velocity profiles 

show great variations and indicate clearly the flow 

reversal that takes place in the crossflow plane. 

This implies that differential methods based on two- 

dimensional and/or small crossflow approximations as 

well as methods based on integral methods are not 

adequate to boundary-layer calculations on ship 

hulls. Other interesting results that emerge from 

these calculations are the sudden jumps of the limit- 

ing crossflow angle from positive to negative, and 

the thickening of the boundary layer in the corner 

region of the crossplanes. The jumps of the cross- 

flow angle indicates the convergence of the flow from 

FIGURE 19. Three-dimensional view of ship model 5350 

with the nonorthogonal coordinate system. 
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FIGURE 20. Body plan for ship model 5350. 

both sides of the corner region and, hence, enhances 

the thickening of the boundary layer. This thicken- 

ing of the boundary layer in the corner region of 

ship hulls has been verified experimentally by Hoff- 

mann (1976). 

6.. CONCLUDING REMARKS AND FUTURE WORK 

According to the studies presented in this paper, 

the three-dimensional boundary layers on ship hulls 

can be computed very efficiently and effectively. 

The turbulence model, as in two-dimensional flows, 

again yields satisfactory results for three- 

dimensional flows. This has been demonstrated 

by Soejima and Yamazaki (1978) who also have applied 

the present turbulence model to compute three- 

dimensional boundary layers on ship hulls. However, 

there are additional studies and problem areas that 

need to be considered and investigated before the 

present method can become a more effective tool to 

design ships. They are briefly discussed below. 

WATER SURFACE 
STERN SECTIONS 

Generation of Initial Conditions on Arbitrary 

Bow Configurations 

In Section 5, we presented calculations for the ship 

model 5350 and mentioned that due to flow separation 

in the bow region, we had to start the boundary-layer 

calculations at some distance away from the bow. 

Additional studies are required to generate the ini- 

tial conditions on the bow. These studies can lead 

to a better design of bow configurations and to 

better handling of bilge vortices, which contribute 

to the total drag of the ship. However, this is by 

no means an easy task. Consider, for example, the 

ship model 5350 discussed earlier. A sketch of the 

bulbous nose with a plausible inviscid streamline 

distribution is shown in Figure 26. We assume 

that the ship is symmetrical about the keel plane 

and there is a nodal attachment point on the bulbous 

nose at B. If the ship is floating, then the water 

line is determined by conditions of constant pressure 

and zero normal velocity. Hence the intersection A 

of the plane of symmetry with the water line and the 

1.0 (WATER LEVEL) 

ia 0.85 
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0.50 ‘ 
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FIGURE 21. Pressure 

entire 

distribution 

for the ship’ model 5350. 
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evidence for this is based on a successful scheme 

that we have already worked out for the prolate 

spheroid, Cebeci, Khattab, and Stewartson (1978). 

Other aspects that need further study include the 

condition at the water-line section. It has been 

usual to assume that the normal velocity is zero at 

the undisturbed free surface. This is not quite 

correct and the error may have implications for the 

nature of the solution near A and especially the 

question of separation along BA. Even if separation 

does occur, it may be possible to handle the post- 

separation solution, since it probably extends only 

GIRTH, % over a limited region of the ship, by means of an 

interaction theory, i.e., modifying the inviscid 

0.2 flow by means of a displacement surface. 

Viscous-Inviscid Flow Interaction 

0.4 

The present boundary-layer calculations are done 

for a given pressure distribution obtained from an 

inviscid flow theroy. In regions where the boundary- 

layer thickness is small, the inviscid pressure dis- 

tribution does not differ much from the actual one; 

as a result, the boundary-layer calculations are 

satisfactory and agree well with experiment, see, 

for example, the papers by Cebeci, Kaups, and Moser 

(1976) and by Soejima and Yamazaki (1978). When 

the boundary-layer thickness is large, which is the 

case near the stern region, the effect of viscous 

flows on the inviscid pressure distribution must 

be taken into account. One possible way this can 

be done is to compute the displacement surface for 

a given inviscid pressure distribution and iterate. 

Such a procedure is absolutely necessary to account 

bow is a saddle point with the streamlines of the for the thickening of the boundary layer as was 

inviscid flow converging on A along the line BA and observed by Soejima and Yamazaki (1978). 

diverging along an orthogonal direction. It is 

known that the boundary-layer equations can always 

0.6 

0.8 

1.0 

FIGURE 22. Pressure distribution for the bow region 

of ship model 5350. 

be solved at B but that at A the situation is more Prediction of Wake Behind Ship Hulls 

complicated and furthermore it is still not entirely 

clear what their role is in relation to the general The present boundary-layer calculations can be done 

solution. It is likely, however, that provided no up to some distance close to the stern; after that, 
reversed flow occurs at A in the component of the flow separation occurs. Since one, and probably the 

solution along the direction BA, then separation can biggest, reason why one is interested in boundary- 

be avoided along this line by appropriate choice of layer calculations on ship hulls, is the calculation 

design. Furthermore, if separation does occur, its of drag of the hull, additional studies should be 

effect may be limited. The recently developed Cebeci- directed to perform the calculations in the separated 

Stewartson procedure (1977), however, can be applied region and in the wake behind the ship. Recent calcu- 

to the present problem but there are some hurdles to lation methods developed and reported by Cebeci, 
be overcome. Keller, and Williams (1978) for separated flows by 

Of particular difficulty is the choice of coordi- using inverse boundary-layer theory and recent calcu- 

nate system on which to compute the solution and to lation methods developed and reported by Cebeci, 

join it with the already well-established method Thiele and Stewartson (1978) for two-dimensional 
downstream of CD. We have seen that in the case of wake flows are appropriate for these purposes. 

the prolate spheroid (see Cebeci, Khattab, and 

Stewartson (1978)) it is helpful to have a mesh 

which is effectively Cartesian near the nose and the PRINCIPAL NOTATION 

methods which were used to produce it in the earlier 

study are applicable to any body which can be repre- A Van Driest damping parameter, see 

sented by a paraboloid of revolution in the neighbor- (18b) 

hood of the nose. Now here we have a paraboloid near A, ,A2,A3,Ay constants 

B but not one of revolution, but we believe that the CE local skin-friction coefficient in 

necessary generalization is possible. The mesh now streamwise direction 

has to match with that which has proved convenient C1, ,C2,C3,Cy constants 

downstream of CD. Again we believe that a smooth £ transformed vector potential for wp 

transition can be achieved by building into the g transformed vector potential for 

mesh sides, right from CBA, an appropriate spacing hy, ,ho metric coefficients 

such that the points of a uniform mesh on CD are hy net spacing in n-direction 

also points of this mesh although not, of course, at H,Hj] boundary-layer shape factor along 

~ a constant value of one of the coordinates. Our streamwise direction, 6*/8)} 
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FIGURE 24. Computed streamwise velocity profiles for ship model 5350 for Ry, = 3 x 10” along (a) z = 0.2 and 

(b) x = 105m coordinate lines. 
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FIGURE 25. Computed crosswise velocity profiles 

for ship model 5350. 
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FIGURE 26. Pattern of streamlines near the bow of ship 

model 5350. 



ky net spacing in x-direction 

geodesic curvatures, see (5) 

geometric parameters, see (6) 

L mixing length, see (18a), or refer- 

ence length 

mM] ,Mo,---M)2 coefficients, see (28) or (32) 

p static pressure 

Q total velocity in the boundary layer 

Ry Ry, Reynolds numbers, ugs)/v and u,L/v 

Rgx Reynolds number, ug _6*/\v 

Ro Reynolds number, Us,811/Y 

s arc length along coordinate line 

1 ,t2 unit tangent vectors along x and z 

directions 

u,V,W, velocity components in the x,y,zZ 

directions 

u,V,W velocity components in the Cartesian 

coordinate 

Ug Uy velocity components in boundary layer 

parallel and normal, respectively, 

to external streamline 

u. friction velocity, see (18c) 

Ugo freestream velocity 

ref reference velocity 

XT VIn nonorthogonal boundary-layer coor- 

dinates 

Se Cartesian coordinates 

-pu'v',-pv'w' Reynolds stresses 

B crossflow angle 

By limiting crossflow angle 

) boundary-layer thickness 

6* displacement thickness, 
oc 

Sa- us/Us_,) dy 

Exp eddy viscosity - 

eu dimensionless eddy viscosity, E/Y 

n similarity variable for y, see (21) 

811 momentum thickness, 
(oe) 

al Us/us, (1 = us/Ug,,) dy 

u dynamic viscosity 

v kinematic viscosity 

p density 

rT shear stress 

o,w two-component vector potentials, see 

(23) 

Subscripts 

e boundary-layer edge 

s streamwise direction 

t total value 

Ww wall 

primes denote differentiation with respect to n 
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Study on the Structure of Ship 

Vortices Generated by Full Sterns 

Hiraku Tanaka and Takayasu Ueda 
Ship Research Institute 

Tokyo, Japan 

ABSTRACT 

Many attempts have been made to measure the vortic-—- 

ity distribution of vessels tested at the Ship 

Research Institute. This led to the successful 

development of the rotor-type vortexmeter and a 

method for its calibration. In order to investi- 

gate the structure of the full ship stern vortices 

and gain an understanding of interaction of the 

vortices and propeller, the wake flow behind two 

geosim models was studied experimentally. 

Using this vortexmeter, detailed diagrams of the 

vorticity distribution are presented for the dis- 

cussion of the structure and scale effects on the 

stern vortices. The authors found the existence 

of a separating vortex sheet in the vorticity dis- 

tribution and indicated that, by using the vorticity 

concentrated on the vortex sheet (Max. line), it 

was possible to simulate the original vorticity 

distribution. With these experimental results the 

relation between the vorticity distribution and 

the propeller performance on the geosim models was 

also analyzed. 

1. INTRODUCTION 

In recent years, the knowledge of the wake structure 

including stern vortices has made it essential for 

the ship builder to obtain a better understanding 

of the stern vibration with full stern forms. 

Nevertheless, the stern vortex characteristics such 

as its geometry and structure as well as the scale 

effect remained obscure. This situation may be 

partially due to the fact that the stern vortices 

do not cause serious problems in the resistance 

augmentation or in the self-propulsion factors. 

To overcome this lack of detailed knowledge, 

systematic investigations have been made concerning 

the problems of full ship models with unstable 

propulsive performance. This research was begun in 

.1975 under the Research Panel SR 159 of the Ship- 
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building Research Association of Japan (Chairman, 

Prof. H. Sasajima) which was mainly concerned with 

the following areas: sources of the unstable 

phenomenon, the unsymmetrical flows accompanying 

this phenomenon, and the procedure for testing model 

ships exhibiting this kind of phenomenon. 

Throughout the Panel discussion there was great 

interest in the behavior of the stern vortices as 

the basic approach to understanding this phenomenon 

and this led to the request for quantitative data 

regarding the stern vortices. The major part of 

this paper was completed during the course of this 

Panel's activities in which one of the authors was 

placed in charge of developing a technique for 

measuring the fluctuating stern vortices. Asa 

result of the discussions, a rotor-type vortex- 

meter for obtaining a detailed description of the 

structure of the stern vortices was adopted. 

Needless to say, by obtaining an illustrative 

model of the stern vortices it will be possible to 

develop a mathematical model which will be extremely 

useful for understanding the flow around the full 

ship stern. Various vortex models have been sug- 

gested by Tagori (1966), Sasajima (1973), and 

Hoekstra (1977). The structure of the stern 

vortices can be roughly described by a stream line 

which, flowing upward around the bottom of the 

hull, separates at a separation line formed at the 

bilge. This flow rolls up at the boundary layer 

around the bilge forming a separated sheet with 

vorticity. 

Sasajima has suggested a simplified model of 

conical separating sheets as shown in Figure 1-1. 

He assumed that the separating sheet could be 

described by a triangular plane with which he 

attempted to explain the basic character of the 

stern vortices. This vortex model shown in Figure 

1-1 has a core enclosed with a separating line 

(S-S'), an attachment line (A-S') and the surface 

of the separating sheet. In this model it was 

assumed that the direction, velocity, and vorticity 

of the flow along this developed vortex sheet would 



DEVELOPED 
SEPARATING 

| SHEET 

-ATTACHMENT LINE 

SEPARATION LINE 

7S) ie FIGURE 1-1. [Sasajima (19 FIGURE 1-2. 

SEPARATION LINE 

[Hoekstra (1977)]. 

Illustrative models of stern vortices 

have the same values as they had at the point the 

flow passed on the separation line. 

Hoekstra's vortex model also had a conical 

separating sheet with a cusp as shown in Figure 1-2. 

Although the stream along the separating sheet 

flows upward and rolls inside, it does not touch 

the hull surface to form an attachment line. 

In addition to the study on the scale effect of 

the stern vortices by Huse (1977), the studies 

based on the theory of the three-dimensional 

boundary layer by Okuno and Himeno (1977) has made 

it possible to discuss the detailed structure of 

the stern vortices. However, these studies did not 

pay much attention to the vorticity distribution. 

The authors concluded through their study that the 

prominent features of the stern vortices could be 

revealed by studying diagrams of the vorticity 

distribution. 

2. ROTOR-TYPE VORTEXMETER 

Although numerous efforts have been made to investi- 

gate the stern vortices, the state of the art for 

measuring the vorticity distribution in aft section 

of a model ship remains less developed than the 

techniques for measuring the wake distribution. 

This is evident by the few papers in which the 

complete data of the vorticity distribution has been 
published. This is largely attributable to problems 

in developing vortexmeters for towing tank measure- 

ments. 

In the authors' experience the problems in using 

five-hole Pitot tubes for measuring the vorticity 

have been in maintaining sufficient accuracy through- 

out the measurements. The analysis of vorticity 

distribution which includes finite difference 

methods results in insufficient precision. Besides, 

for one mesh point of a vorticity measurement, it is 

necessary to use the flow velocity data from four 

adjacent mesh points which makes it difficult to 

perform measurements close to the hull surface as 

well as to measure fluctuating vortex flows. 

The study of stern vortices has been greatly 

stimulated by flow visualization developments and 

especially noteworthy contributions have been made 

by researchers using tuft grid observations. 

However, flow visualization for observing the vortex 

flow has a weak point illustrated in the following 

discussion. 

Superimposing an arbitrary irrotational flow on 

a vortex flow, the resulting total flow should have 

the same vorticity as the original vortex. An 

example is shown in Figure 2 which is a velocity 

vector diagram of a circular vortex core super- 

imposed on a parallel flow. Examining this figure, 

it can safely be said that few people would be able 

to estimate an exact geometry or locate the center 

of the vortex from only this vector diagram of the 

total flow (or from a photo or sketch of the tuft 

grid observation). 

One of the authors [Tanaka (1971)] suggested 

adopting a rotor-type vortexmeter for towing tank 

measurements. He applied this technique to analyze 

the stern vortices generated by a submerged body 

running near the free surface. The application of 

the vortexmeter is reported in many aerodynamic 

investigations dating back to the 50's, and it was 

proposed for ship research by Gadd and Hogben [1962]. 

The vital problem in adopting the rotor-type 

vortexmeter for towing tank research lies in the 

accurate calibration of the rotor. This is mainly 

due to the fact that no one has succeeded in gener- 

ating a stable vortex useful for the calibration in 

a steady flow field. 

The rotor-type vortexmeter utilizes the principle 

that four-unpitched vanes mounted on a rotating 

shaft, shown in Figure 3, are not affected by any 

parallel and shear flow and only respond to a 

(A) (B) (A) +(B) 
Parallel circular vortex flow pattern on tuft grid 
flow flow 

FIGURE 2. Tuft grid pattern due to a circular vortex 

and a parallel flow. 
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Flow Flow 
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FIGURE 3. Principle of rotor-type vortexmeter. 

rotational flow. When the rotating shaft of a 

vortexmeter is parallel with vorticity axis, the 

rotor turns with angular velocity of W-S, where S 

is the slip due to rotational friction of the rotor 

shaft and W is the vorticity in the fluid. At 

present, the slip S can be estimated using the 

following technique. 

Using the simple consideration of the elementary 

wing, the torque Q due to a rotor element having 

small length dr in a radial direction can be deter- 

mined from Eq. (1), where C; , %, and U are lifting 

derivative, cord length of vane, and advance speed 

respectively. 

Q(x) = Ap LURC, gy rar (1) 

where 

ali Ssh ass 
LY Soya me oy souRUa) 

R. and L.F. are the rotor radius and lifting force 

respectively. In the flow with uniform vorticity 

distribution, the magnitude of the torque acting 

on the rotor becomes: 

R 

O(w) = 2 a Q(r)dr = (2/3) pLRPUC, ts (2) 

oR 

calibration - motor 

cl" ? (at calibration mode ) 

outer- tube 
inner — shaft 

rotor 
miniature ball bearing 

DIRECTIONS 

angular velocity 
modes 

in fluid rotor 
{ 

calibration 

vortex— 

measurement 

FIGURE 4. Principle of rotor-type vortexmeter calibra- 

tion. 
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Then, the slip of the rotor in a rotational flow 

can be determined by following equation, where 

q shows rotational friction of the shaft. 

S = d (273) p2R30C, (3) 
af 

For the calculation of S, the rotational friction 

of the ball bearings q should be determined experi- 

mentally. This problem will be briefly discussed 

later. 

As previously stated, since the generation of a 

stable vortex for the calibration is presently not 

feasible, a mechanical calibration was attempted in 

which vorticities mechanically act on the rotor 

through the shaft of the rotor. This principle of 

the calibration is shown in Figure 4 where a newly 

designed rotor shaft is composed of duplicate inner- 

shaft and outer-tubes. The outer-tube is mounted 

on the outer rings of the ball bearings and the 

vanes are fitted on the outer-tube. The inner- 

shaft is connected to a calibration-motor. 

To obtain the slip S, the vortexmeter is cali- 

brated in an irrotational flow in which it travels 

along at a constant speed. The inner-shaft is 

driven by the calibration-motor at an angular 

velocity, w, and the rotor turns at an angular 

velocity, S, in response to the condition of the 

ball bearing's frictional torque and the hydro- 

dynamic characteristics of the rotor. 

From the measured vorticity, Wg, we can estimate 

the vorticity in fluid as w = Wo + S. According to 

the authors' experience, if the frictional torque, 

q, is approximately 10-6 kg-m it is possible to 

consider S = O except in the case of fairly slow 

speed (cf. Figure 25). This means that the 

calibration of the vortexmeter seems unnecessary 

for ordinary test conditions. 

Although ball bearings exhibiting frictional 

torque values less than gq = 0.7 107-®kg-m in air were 

chosen in manufacturing the vortexmeter, there was 

no direct measurement of the frictional torque of 

the miniature ball bearings in water. The frictional 

torque, gq, also can be determined by measuring the 

torque on the outer-tube generated by inner-shaft 

turning in water. According to the results of these 

measurements, it can be said that there is hardly 

any difference between the frictional torque value 

of the bearings when they are used in water or 

air. 

An example of a vortexmeter is shown in Figures 

5 and 6. The diameter and length of the rotor are 

30mm and 18mm respectively, section of the vane 

is lenticular shaped with a thickness ratio t/2 

= 1/q. A transducer for rotating the rotor is 

used in connection with a photo-transistor which 

makes 4 pulses-signals in one revolution. Assuming 

Cry = 0.67, g = 107°kg-m Einel Gf = 155 Wei, ae aig 

possible to make a rough estimate of the vortex- 

meter's precision from the value of slip obtained 

by Eq. (3). From these values, the slip value, S, 

equals 1072r.p.s.- which corresponds to 1% error 

relative to a normal vorticity of w = 1 r.p.s. 

As will be mentioned later, the vortex cores of 

the stern vortex near the hull surface have a very 

steep gradient in vorticity distribution. There- 

fore, it is useful to consider the vorticity values 

measured by the rotor with a finite diameter at 

such boundaries. It is clear from the Eq.(1) that 

a mean value of a torque during a turn due to a 

wind element dr (see Figure 3) corresponds to a 
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mean value of the vorticity in a path of a wing 

element. 

Q(x) = %p2UC, x w(x) dr (4) 

27 277 

Oe) = aah (9,r)d8 (x) = i w(6,r) ae 
= aa Or Ohler DN Oe m 

0 0 

On the other hand, concerning the vorticity gradient 

influence on the radial portion of the rotor, from 

the following equation it can be understood that 

the tip of the rotor has a higher sensitivity: 

R R 

2 ff Q(x) ar = pLUC, F f rw (x) dr (5) 

-R -R 

In practice, using only large models, the error due 

to the finite diameter of the rotor can be eliminated. 

Such a problem is also present when determining 

the mesh interval in the vorticity measurement 

by a five-hole Pitot tube. 

3. EXPERIMENTS AND RESULTS 

The ship models used in the experiments exhibited 

an unstable propulsive performance in ballast 

condition. In recent studies, it has been recog- 

nized that the limiting stream line around the stern 

and the pressure distribution change along with the 

thrust fluctuation in the self-propulsion tests 

of the model ship. The influence of these 

phenomena on the ship design has been reported by 

Watanabe and Tanibayashi (1977) and Watanabe et al. 

(1972) . 

A special feature of this phenomenon was that it 

appeared only in the self-propulsion tests and was 

not observed on the towing tests. Thus, while this 

phenomenon easily appeared in the self-propulsion 

tests at Froude number 0.18 and 65% full displace- 

ment, at the same conditions there was no indication 

of this phenomenon during the tests concerned in 

this report. The body plan of the 4 and 7m geosim 

models are shown in Figure 7 and the principal di- 

mensions are summarized in Table 1. 

The intent of the experiments was twofold: first 

to determine the structure of the stern vortices 

using the rotor-type vortexmeter, and secondly, 

to investigate the performance of the propeller 

working in the presence of these stern vortices. 

FIGURE 6. Rotor-type vortexmeter and stern of model. 
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FIGURE 7. Body plan of model. 

Also as a reference, the vorticity distribution 

was measured by the five-hole Pitot tube for com- 

parison with the rotor-type vortexmeter measure- 

ments 

The positions where the vorticity distribution 

of the stern vortices was measured, are shown in 

Table 2 in which sq.st. 1/8 correspond with the 

section of the propeller disk. The effects of 

velocities of the model ship are studied at several 

mesh points. 

In order to discuss the scale effect of the 

vorticity distribution, the results of measure- 
ments on both models are shown in Figures 8 and 9, 

and the induced velocity vectors on the Y-Z plane 

which are calculated with the vorticity distribu- 

tion, are shown in Figures 10 and 11. 

The interval of mesh drawn on both diagrams of 

vorticity distributions and velocity vectors, 

corresponds to a non-dimensional length of 0.5% 

Lpp. The values of equi-vorticity contours in 

diagrams of vorticity distribution are non- 

dimensional vortices defined as follows: 

Bue) $2 

E = a ee (6) 

where wy shows the vorticity in r.p.s. which 

corresponds to twice the number of rotor revolu- 

tions. Considering a diagram of vorticity dis- 

tribution as a geographical contour map, the vortex 

core can be compared to a typical plateau. The 

TABLE 1 Principal Particulars of Models 

Model Ship No. M-7 M-4 

Length (m): Lpp 7.000 4.000 

4 Breadth (m) 1.167 0.667 

2 Breadth Draft Ratio 2.760 

Block Coefficient 0.802 

Longitudinal Prismatic Coeff. 0.810 

4, Pitch Ratio (const.) 0.7143 

“ Boss Ratio 0.180 

B Expanded Area Ratio 0.665 

Ai Number of Blades 5) 

TABLE 2 Measurement Positions of Vorticity 

Distribution 

Sq. “Sit 

Model 1/2 1/4 1/8 eb Bexs) 

Port £37) 
= Port M-7 Port Port St aeboara or 

eed Port x2. 

Starboard 

Notes 

*]1 Corresponds to propeller position 

*2 Measured by vortexmeter and 5-hole Pitot tube 

*3 Corresponds to Sq.St. -1/8 

fact can clearly be seen in the foreward detections, 

especially sq.st. 1/2 in Figure 12. In this 

connection, the vorticity distribution is sq.st. 1/4 

and A are presented in Figures 13 and 14 

respectively. 

As a reference, the induced velocity vector 

diagram on sq.st. 1/4 is shown in Figure 15. 

Furthermore the vorticity distribution (for 

M.No.M-7) obtained by the five-hole Pitot tube 

(diameter 12mm, angle between center and side 

FIGURE 8. Vorticity distribution of M.No.M-7 at 

Scot lS 
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holes 25°) is shown in Figure 16 and the wake 
distributions and the velocity vectors by the five- 
hole Pitot tube are shown in Figures 17, LB} p | I), 
and 20 respectively. 

FIGURE 15. Velocity vectors on y-Z plane due to stern vortices (M.No.M-7, Sq-St. 1/4). 
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FIGURE 16. Vorticity distribution measured by 5-hole 
pitot tube (M.No.M-7, Sq.) Sit.) 178). 

4. DISCUSSIONS AND APPLICATIONS OF THE RESULTS 

Remarks on Vorticity Measurements 

The rotor-type vortexmeter performed as expected. 
As seen from a comparison between Figures 8 and 16, 
the rotor-type vortexmeter is more sensitive and 
can be used to obtain a finer vorticity distribu- 
tion contour than the five-hole Pitot tube. While 
both vorticity distribution diagrams appear to have 
a similar shaped vortex core, they have fairly 
different values. The distinguishing difference 
is mainly in the pattern of the distribution. Al- 
though the plateau-type distribution would be the 
expected form of the typical vortex cores in the 
vorticity distribution obtained by the vortexmeter, 
the plateau-type is broken in Figure 16. It can be 
said that the difference between these results 
indicate the usefulness of the vortexmeter's resolv- 
ing ability. 

Contrary to the general opinion that a geometry 
of the stern vortices is fluctuating, in the 
authors' measurements, the vorticity and geometry 
of the stern vortices were generally quite stable. 
However, there is an unstable vorticity-zone at 
the top of the main vortex core indicated in 
Figures 8, 9, and others. Through these experi- 
ences, it can be shown that the dynamic character 
of the vortexmeter is one of its prominent features. 

While the present diameter of the vortexmeter's 
rotor was selected for maintaining its accuracy in 
measurement, it is possible that the rotor diameter 
is too large for the 4m geosim model (M.No.M-4). 
Furthermore, it appears that there were some 
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FIGURE 17. Wake distribution (M.No.M-7, Sq.St. 1/8). 

problems due to the presence of an oblique flow in 

those experiments. It is recommended in further 

work that the characteristics of the rotor ina 

strong oblique flow should be studied. 

Structure of the Stern Vortices 

As stated in the previous section, the equi- 

vorticity contours of the stern vortices can be 

compared with plateaus in geographical contours. 

Furthermore, in examining carefully the diagrams 

of the vorticity distribution, there is a line of 

concentrated vorticity on the "table of plateau," 

which is denoted by the "Max. line" in this paper 

and indicated in the contours. The Max. line 

can be clearly shown in a cross section of the 

diagrams of the contour as seen in Figures 21 and 

22. 

The Max. line can be considered as a kind of 
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FIGURE 18. Wake distribution (M.No.M-4, Sq.St. 1/8). 
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FIGURE 19. Velocity vectors on y-z plane (M.No.M-7, 

Sqisteawl/A8)) ie 

a ridge on this plateau; it is steep in the forward 

section and becomes gently sloping while shifting 

afterward. It is noticeable that the Max. line 

seems to show the existence of a separating vortex 

sheet. As is well known, stream lines flow from 

under the bottom of a hull up the boundary layer 

at the bilge and turn into part of the vortex 

sheet. Although the vortex sheet previously 

mentioned has only been used as a hydrodynamic 

description, the authors are able to show its 

existence in the flow behind the full stern as well 

as provide quantitative measurements. 

The development of the vortex sheet depends 

mainly on the potential flow and the induced flow 

from the vorticity. Its development is strongly 

affected by each ship form, with effects of model 

ship velocity and the Reynolds number effect 

mainly limited to the diffusion of the vorticity. 

In a comparison between Figure 8 and Figure 9, the 

forms of the Max. line which correspond to a form 

FIGURE 20. Velocity vectors on y-z plane (M.No.M-4, 
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FIGURE 21. Cross section of vorticity distribution 

(M.No.M-7 and M-4, Sq.St. 1/8). 

of the vortex sheet are fairly similar for both 

geosim models. On the other hand, the difference 

in breadth of each model's vortex core seems to be 

due to the effect of difference in Reynolds number. 

Furthermore, the suitability of adopting the 

idea of the Max. line is shown by the following 

facts. Assuming that all the vorticity of the 

stern vortices are concentrated on the Max. line 

for computing the induced velocities, the resul- 

tant velocity vector diagrams are similar to the 

complete flow field velocity. For instance, 

Figure 23 is a diagram of velocity vectors, which 

have the same circulation value as Figure 8 but 

with the vorticity concentrated on the Max. line 

divided by ten, of circular vortices with mean 

strength on the original Max. line. It can be 

seen that both diagrams of the velocity vector, 

Figure 10 and Figure 23, are fairly similar. This 

will allow not only simplified treatment of the 

stern vortices but also should simplify future 

numerical analysis of the stern vortices. 

In order to predict the wake of full stern 

ships, it is necessary to estimate the wake com- 

ponent due to the stern vortices in addition to 

the potential and frictional wake components used 

in Sasajima's wake prediction method. The concept 

of the Max. line in the vorticity distribution 

also may lead to the wake component due to the 

stern vortices. 

In order to discuss the relation between the 

stern vortices and the wake distribution, an 

illustrative model of the stern vortices is 

presented in Figure 24. A stream line flowing 

under the bottom of a ship, separates around the 

bilge and forms a part of the separating vortex 

sheet. The vortex sheet crosses to the hull 

surface near the propeller bossing where the 

authors denote the secondary separation line. 

And at the secondary separation line, the vortex 

217 

(Sq.st. +, PORT) 
Y 

-6  -4 

Z-| 

Z2-2 

FIGURE 22. Cross section of vorticity distribution 

(M.No.M-7, at Sq.St. 1/2 and 1/4). 

sheet makes the cross flow with the limiting stream 

line flowing aft passing through the tunnel of 

the vortex sheet. The crossed flow generates a 

reversed vortex at the secondary separation line 

as seen in the diagrams of the vorticity distribu- 

tion. 

The flow passing through the tunnel of the 

vortex sheet can be found at the section of the 

propeller disk (sq.st. 1/8) which appears as an 

eye in the wake distribution pattern in Figures 17 

and 18. This fact may be proved by the Max. line 

which just covers the eye. 

FIGURE 23. Velocity vectors due to concentrated vor- 

ticity on max. line (M.No.M-7, Sq-.St. 1/8). 
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FIGURE 24. Illustrative model of stern vortices. 

This tunnel vortex sheet is quite different from 

the conical vortex sheet used in the model proposed 

by Sasajima or Hoekstra. Considering the flow as 

passing through this tunnel makes it possible to 

discuss the relationships of the wake flow, limit- 

ing stream line, attachment line, and the stern 

vortices. 

Regarding the wake patterns of vessel with a 

full stern, the authors suppose that if the Max. 

line can be considered independent of the Reynolds 

number, then the "eye" in the ship's wake pattern 

should be in approximately same location as shown 

in Figures 17 and 18. The above mentioned facts 

will lead to further studies for prediction of 

ship's wake, using the potential and frictional 

wake patterns estimated by Sasajima's method. 

Actually, the authors cannot verify the 

relationship between the stern vortices and 

Reynolds number because the range of the scale 

ratio used in geosim models tested is too small 

for a discussion of the similarity of the stern 

vortices. However, it can be said that the 

alternation of the Max. line between both models 

seems relatively smaller than that of the wake 

pattern. Furthermore, the vortex center, which is 

defined as the vanishing point of the induced 

velocity vector due to the stern vortices, has 

shifted a distance corresponding to only 4% of the 

propeller diameter as seen in comparing Figures 10 

and 11. While the model size has comparatively 

for r/R= 0.50 

Vx/U 

Vx/U for r/R= 0.90 

FIGURE 26. Circumferential distribution of 

wake flow on propeller disk, V,/U. 
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FIGURE 25. 

small effect on the shape of the Max. line, the 

model size causes differences in the diffusion of 

the vorticity. Thus, from the calculation of the 

circulation of the vortex cores presented in 

Figures 8 and 9, it was found that the circulation 

of M.No.M-4 was smaller than M.No.N-7. The magni- 

tudes of these differences were 6% smaller on the 

portside and 8% smaller on the starboard side of 

M.No.M-7. However, even for the same model ship, 

the difference in the port and starboard side 

stern vortex circulation was on the order of 8%, 

so it is not possible to reach a definite conclu- 

sion about the significance of the differences in 

the geosim tests. 

Since the authors limited study to vessel speeds 

corresponding to Froude number 0.18, the effects 

on the velocity due to the stern vortices still 

remains obscure. However, the authors can in- 

dicate some examples in which the vorticity has 

been measured at the several mesh points as seen 

in Figure 25. If the free surface effect could be 

neglected, the non-dimensional vorticity €y should 

be constant. Although the cause of the different 

results explicitly shown in Figure 25 remains un- 

known, it may not be said that the rotor-shaft 

friction of the vortexmeter can be safely considered 

as negligible in a range of very slow speeds such 

as ES 0.1. 

r/R =0.50 

Vx/U for (/R*0.70 



Effect on Propeller Operation Due to Tangential 

Stern Vortex Flow 

In the previous section, the authors have mainly 

discussed the structure of the stern vortices 

obtained from the towing experiments. As was 

reported by Hoekstra (1977) it can be considered 

that the structure and geometry of the stern 

vortices is strongly affected by the flow induced 

propeller thrust. However, the authors have studied 

the forces and moments on the working propeller as 

a preliminary problem, assuming the structure of 

the stern vortices is not changed by the influences 

of the propeller suction. 

The forces and moments on the propeller are 

remarkably related to the pattern of the flow 

distribution at the propeller disk location. The 

flow distribution relevant to the present problem, 

is composed of the wake component, V_/U, and the 

tangential components, V_/U, which were obatained 

by the five-hole Pitot tube. The authors assumed 

that the tangential components could be further 

decomposed into the component obtained by the 

vortexmeter, V__/U, and other components. Although 

each component has already been shown in previous 

figures, for convenience the circumferential dis- 

tributions of V_/U, V_/U, and V__/U at 90%, 70%, 

and 50% of the Sisk radius are ENewn respectively 

Vr/U :tangential velocity component 

obtained by five-hole Pitot tube /R =0.50 
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in Figures 26, 27, and 28. Furthermore, the authors 

have included the tangential velocity vector com- 

ponent, Viny/ Ue in Figure 29. 

In order to determine the propeller forces and 

moments induced by the stern vortices, the authors 

have performed the following calculations using 

the unsteady lifting surface theory developed by 

Koyama (1975). The authors thus calculated the 

thrust and torque of the propeller, along with the 

vertical and horizontal forces and moments imparted 

by the propeller shaft of the working propeller 

with and without stern vortex flow. The definitions 

concerning the forces and moments are shown in 

Figure 30. 

The authors have assumed for the calculation that 

the tangential flow obtained from the subtractive 

procedure (V_/U - V__/U) simulates one eliminating 

the effect oie the of Som vortices, and a common 

wake flow can be used for both calculations with 

and without the stern vortices. 

Since the results of the calculation for M.No.M-4 

are quite similar to the results of M.No.M-7, only 

the results of M.No.M-7 are shown in Figures 31 and 

32. Figure 31 indicates a comparison of the torque 

and thrust on a blade of the propeller with and 

without the stern vortex flow. Total torque, 

thrust, and other forces and moments on the pro- 

peller (indicating propeller turning angle 0° to 

Top Starboard side 
n 

Top FIGURE 27. Circumferential dis- 

{o) 90 180 

03 

Vrv/U tangential velocity component 

obtained by vortexmeter clockwise anti - 

tribution of tangential flow on 

propeller disk, Vp/U. 

clockwise 

FIGURE 28. Circumferential dis- 

tribution of tangential flow on Top Starboard side Bottom Port side Top 
L 1 i 

{e) 90 180 

@ (deg ) 
360 propeller disk (induced flow), 

Vpy/U- 
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FIGURE 29. Tangential velocity vector due to induced 

flow on propeller disk (M-7). 

72°) are shown in Figure 32. According to the 

results, main effects of the stern vortices flow 

appeared on the vertical force (F_) and the 

horizontal bending moment (M_) of the propeller, 

but the other components are almost negligible. 

It can be concluded that the effect of the stern 

vortices is fairly limited to a few components of 

forces and moments generated by propeller. The 

results may be attributed to the tangential flow 

around the propeller caused by the stern vortices. 

It is mainly concentrated at the underside near the 

bossing, and does not severely appear on the 

propeller tip as shown in Figure 29. 

5. CONCLUSION 

The authors developed the rotor-type vortexmeter, 

giving careful attention to the calibration method 
of the vortexmeter, and, by using it in these tests, 
showed its high utility. 

PIGURE 30. Definitions of forces and moments due to 

propeller. 
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Measuring the vorticity distribution around the 

full stern of the geosim models, the authors 

determined the structure of the stern vortices 

and found the presence of a concentrated vorticity 

line in the vortex core which corresponds to the 

separating vortex sheet of the stern vortex. 

As an application of the results, the effect on 

the propeller operation due to the induced flow of 

the stern vortices has been studied. The effect is 

fairly limited to a few components of forces and 

moments generated by the propeller. Consequently, 

it can be said that the effect of the stern 

vortices on the performance of the propeller and 

propeller excited vibratory shaft forces and 

moments is relatively small. However, in the case 

of this ship model, this effect appears to change 

the direction of the vertical force and the 

horizontal bending moment acting through the pro- 

peller shaft. 
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Wake Scale Effects on a 

Twin-Screw Displacement Ship 

Arthur M. Reed and William G. Day, Jr. 
David W. Taylor Naval Ship Research and Development Center, 

Bethesda, Maryland 

ABSTRACT 

The results of a wake survey and boundary layer 

profile measurements on a full-scale twin-screw 

displacement ship are presented. The corresponding 

model-scale measurements are also presented. The 

full-scale wake measurements consist of the three 

velocity components which contribute to the nominal 

wake in the propeller plane, at four radii. The 

full-scale boundary layer profile was obtained at 

three longitudinal locations with and without the 

propeller operating. The model-scale nominal wake 

was determined in a towing tank using five-hole 

pitot tubes while the model-scale boundary layer 

measurements were made on a double model in a wind 

tunnel using hot wire anemometers. 

In order to identify the scale effects between 

the model and ship, the deviation of the velocity 

in the propeller disk from a uniform axial flow has 

been separated into the velocity field due to shaft 

inclination in a uniform stream, the perturbation 

due to the hull and its boundary layer, and the 

viscous wake due to the appendages. The principal 

contribution to this perturbation from the axial 

flow is the effect of inclining the shaft in the 

uniform stream. The perturbation of the flow due 

to the potential flow about the hull is small, as 

are the effects of the displacement thickness of 

the boundary layer of the hull. The proposed 

scheme for predicting the viscous wakes of the 

shaft and struts meets with little success. Never- 

theless, some conclusions are drawn as to how these 

wakes will vary between the ship and model. 

1. INTRODUCTION 

If unsteady propeller force and hull loading pre- 

dictions are to be precise, the inflow to the pro- 

peller must be known accurately. At the present 

time the nominal wake of a model is measured and 

extrapolated to full scale assuming geometric 
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Similarity. The extrapolation fails to take into 

account any of the scale effects which may possibly 

exist between model and full scale. This paper 

presents preliminary results from a series of full- 

scale nominal wake and boundary layer velocity pro- 

file measurements on a high-speed transom-stern 

ship. In addition, the corresponding model-scale 

measurements are reported, along with a series of 

analytical predictions, which are intended to 

identify the principal contributions to the wake. 

This is not the first investigation of this 

nature. However, it is the first project to suc- 

cessfully measure the three velocity components in 

the propeller disk of a high-speed twin-screw 

transom-stern hull form. The British have per- 

formed an extensive series of experiments on a 

frigate, [Canham (1975)], and the Japanese and 

Germans have performed flow measurements on 

several full-form ships. The Japanese and German 

experiments were conducted on single screw tanker 

forms and are reported in an extensive series of 

reports [see for instance: Namimatsu et al.(1973), 

Namimatsu and Muraoka (1973), Schuster et al.(1968), 

Takahashi et al.(1970), Taniguchi and Fujita (1970), 

and Yokoo (1974)]. 

While the British measurements were obtained on 

the ship type of interest, a high-speed transom- 

stern ship, only the longitudinal velocity compo- 

nent in the propeller plane was obtained. This 

resulted in the loss of the important tangential 

and radial velocity components. In the case of 

twin-screw transom-stern ships, these velocity 

components are generally very significant due to 

the inclination of the shaft to the direction of 

the free-stream. 

The Japanese, on the other hand, were able to 

measure all three velocity components in the wake, 

but they had to make their measurements in a plane 

ahead of the propeller disk. Due to the full 

sterns of the tankers, the flow into the propeller 

is highly influenced by viscous effects, and as a 

consequence is highly affected by changes in 
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Reynolds number. Therefore, while treating a much 

more difficult problem, the results of the tanker 

experiments are not applicable to the scaling of 

the wakes of high-speed hull forms. 

The full-scale velocity component ratios which 

are presented here were obtained at a speed of 15 

knots; the corresponding Froude and Reynolds numbers 

were 0.36 and 4.10 x 108 respectively. The model 

wake survey was conducted in a towing tank at the 

full-scale Froude number. This resulted ina 

model speed of 5.22 knots, and a Reynolds number of 

1.56 x 107. The full-scale boundary layer measure- 

ments were conducted at four speeds between 6.2 and 

16.5 knots. These speeds correspond to Reynolds 

numbers between 1.7 x 108 and 4.5 x 108 respec— 

tively. The model-scale boundary layer measure- 

ments were obtained on a double model in a wind 

tunnel at a Reynolds number of 1.68 x 107. 

Significant differences are observed between the 

model and full-scale velocity components, particu- 

larly in the magnitudes of the radial and tangen- 

tial velocity components. These differences are 

in the regions away from the ship's hull and 

appendages; therefore, these differences do not 

seem to be due to Reynolds number effects. A more 

likely explanation is a lack of ship-model simi- 

larity, possibly due to unexplained differences in 

hull form or initial trim. 

In order to obtain an understanding of the com- 

ponents which contribute most significantly to the 

deviation of the wake from uniform axial flow, an 

attempt has been made to predict the velocity com- 

ponents as seen by the propeller. To make this 

prediction, the velocity field (in shaft coordinates) 

was decomposed into its major components as follows: 

Velocity = Uniform Stream 

+ Perturbation due to Hull 

+ Perturbation due to Hull Boundary 

Layer 

Viscous Wake of Struts 

Viscous Wake of Shafting + + 

The results of this decomposition show that the 

inclination of the propeller shaft to the free 

stream is the most significant factor contributing 

to the deviation of the velocity from a purely 

axial uniform flow. In particular, approximately 70 

percent of the measured radial and tangential flow 

is contributed by the inclination of the shaft to 

the uniform stream. The boundary layer of the hull 

is found to contribute insignificantly to the per- 

turbation of the free stream. Although the viscous 

wake of the shafts and struts makes a significant 

contribution to the nonuniformity of the flow, the 

empirical technique proposed herein overpredicts 

the wake of the struts and underpredicts the wake 

of the shafting. 

2. BACKGROUND 

During the last ten to fifteen years there has been 

a marked increase in the installed horsepower per 

shaft on high-speed commercial and naval vessels. 

This increase in power has led to increased steady 

and unsteady forces on propellers, and increased 

loads on the hull surface. If adequate structural 

designs are to be developed for the propeller, its 

shafting, and the shaft supports; then the un- 

steady forces and moments on the propeller must be 

known accurately. Similarly, if the hull is to be 

habitable and to have minimal vibration, the 

structural design must adequately account for the 

propeller-induced surface forces. The propeller 

forces and surface loads can in turn only be ac- 

curate if they are determined using the full-scale 

flow into the propeller. 

Several theories exist for predicting the un- 

steady forces and moments acting on a propeller in 

a nonuniform flow, and the hull-surface forces 

induced by a propeller. Tsakona et al. (1974) and 

Frydenlund and Kerwin (1977) report on two of the 

theories for the unsteady forces on a propeller; 

Vorus (1974) reports on a theory for predicting 

the hull-surface forces. In these theories, the 

flow into the propeller is used in conjunction 

with an unsteady lifting-surface theory to predict 

the unsteady forces on the propeller and hull as 

the propeller rotates through the nonuniform flow. 

Typically, a propeller is wake adapted, that is, 

designed to the radial distribution of the circum- 

ferential mean velocity. The alternating forces 

are determined by considering the propeller in a 

nonuniform flow circumferentially. The variations 

of the forces and moments in the nonuniform stream 

from those in the uniform stream are then con- 

sidered to be the unsteady forces and moments on the 

propeller. 

The longitudinal component of the velocity in 
the propeller disk is the principal component of 

the velocity on a transom stern ship with inclined 

shafts. Typically the radial and tangential com- 

ponents vary sinusoidally around the propeller 

disk, and have peaks which are 20 to 25 percent of 

the longitudinal velocity component. However, in 

the process of determining the circumferential 

average of the radial and tangential velocity com- 

ponents, these components are reduced to 1 or 2 

percent of the longitudinal velocity component. 

Because of this, the tangential velocity component 

contributes very little to the angle of attack on 

a propeller blade as computed for the propeller 

design. However, in unsteady force calculations, 

the longitudinal velocity component varies from 

its mean by 10 to 15 percent while the radial and 

tangential components vary by 1000 percent from 

their means. Thus the variation in the tangential 

velocity component contributes significantly to 

the changes in the angle of attack on a propeller 

blade as it rotates through the wake. These 

changes in angle of attack in turn result in the 

unsteady forces and moments on the propeller. 

Experiments by Boswell [Boswell et al. 1976)], 

show that the maximum unsteady loads on the 

propeller occur in the area where the tangential 

flow velocities in the propeller disk are at their 

maximum. As will be seen later, it is the tangen- 

tial velocity components that are in least agree- 

ment between model and full scale. It is this 

fact that makes the issue of wake scaling important 

to the accurate determination of the unsteady 

forces on a full-scale propeller. 

3. TRIAL VESSEL AND INSTRUMENTATION 

A number of criteria went into the selection of 

the ship on which the full-scale measurements would 

be made. The hull form and appendage arrangement 

of the ship had to correspond to that which is 

typical of high-speed twin-screw commercial and 



naval vessels. The ship had to be available for an 

extended period of time and a means of propelling 

the ship had to be available. 

Of the ships which were in the U.S. Navy fleet, 

four classes seemed to meet the geometric criteria, 

and a means of propelling them could be identified. 

These were the Gearing Class (DD 710), Forrest 

Sherman Class (DD 931), Spruance Class (DD 963), 

and the Asheville Class (PG 84). However, of these 

classes, only the Asheville Class, which was being 

decommissioned, met the criterion of long term 

availability. As it tourned out, the David W. 

Taylor Naval Ship Research and Development Center 

(DTNSRDC) already had one of these ships under its 

control, the Research Vessel (R/V) ATHENA. 

The ATHENA had the added advantage that an ex- 

tensive series of model- and full-scale correlation 

experiments were already planned. Unsteady blade 

loads, stresses, and pressure distributions were 

going to be obtained full scale. The blade loading 

measurements were also going to be repeated at model 

scale. This blade loading data complement the full- 

scale wake data, and would result in some of the 

most complete correlation data of this type for any 

ship and model. 

The R/V ATHENA is a twin-screw aluminum hull 

CODOG (COmbined Diesel Or Gas Turbine) propelled 

high-speed displacement ship. Formerly designated 

PG 94, the 46.9 meter LWL ship was decommissioned 

in 1975 and placed in service as a high-speed 

towing platform for DTNSRDC. The hull form and 

propulsion arrangements are similar to today's 

destroyers and frigates which are propelled by 

Scale Ratio r 
Block Coefficient 
Prismatic Coefficient 
Length/Beam Ratio 
Beam/Draft Ratio 
Displacement/Length Ratio 

Coefficients 
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controllable-, reversible- pitch propellers using 

gas turbines as prime movers. The principal di- 

mensions and form coefficients for R/V ATHENA are 

presented in Figure 1. Figure 1 also shows the 

body plan, and bow and stern profiles of the ship. 

Figure 2 shows a drawing of the propeller. 

The ATHENA is equipped with two Cummins 750 

V-12 diesels for low speed propulsion and a single 

General Electric LM 1500 gas turbine for high- 

speed propulsion. In the diesel mode, the ATHENA 

is capable of speeds of around 14 knots. Under gas 

turbine power, she can attain a speed of 40 knots. 

The ATHENA is appended with twin shafts, struts, 

and rudders typical of most high-speed transom 

stern ships. In addition, she also has two anti- 

roll fins located just aft of amidships. 

Once the ATHENA was selected for the study of 

wake scaling, the question of how to propel the 

ship had to be resolved. The ATHENA is small 

enough that she could be towed by either one or 

two ships at speeds high enough to provide useful 

data, or she could be propelled on one shaft and 

measurements could be made on the other shaft. The 

two-ship tow would have been the most ideal means of 

propelling the ship during the experiments, because 

it would have allowed the ATHENA to be towed with no 

yaw angle, and outside the wake of another ship. 

However, the logistics of this option made it much 

less practical than propelling on one shaft. 

A series of model experiments was instituted, 

aimed at determining whether or not single shaft 

propulsion could provide good course keeping 

ability with minimal yaw angles.’ Flow visualiza- 

Sf (825 
on 0.48 
Ce 0.63 
Wo yee 
B/T 3.89 
A, 7.15 

STATIONS 

FIGURE 1. 
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FIGURE 2. Controllable-pitch propeller geometry. 

tion studies in the circulating water channel at 

DTNSRDC indicated that yaw angles of less than 

four degrees would provide satisfactory inflows 

to the propeller disk, and still exclude the wake 

of the roll fins. Subsequent self-propulsion 

model experiments using only one shaft, indicated 

that with the rudder set at one degree to port, 

the ship would have less than one degree of yaw 

and insignificant sway. Therefore, the decision 

was made to propel the ship on one shaft rather 

than to tow the ship. 

The instrumentation which was installed on the 

ATHENA consisted of three types. Five- and 

thirteen-hole pitot tubes were used to determine 

the velocity field in the propeller plane on the 

starboard side, and ahead of the struts on both 

the port and starboard sides.* A set of eight 

boundary layer probes were used to measure the 

boundary layer profile at four symmetric locations 

on the port and starboard sides of the ship. 

Finally a piezoelectric pitot tube, a five-hole 

pitot tube with piezoelectric pressure transducers 

mounted on its face, was used to measure the time- 

varying flow ahead of the operating propeller. 

The locations of the pitot tube rakes and bound- 

ary layer probes are shown in Figures 3 and 4. The 

location of the struts and the shape of the after 

stations are shown in Figure 5. As can be seen in 

these figures and in Figures 6 and-7, which show 

photographs of the actual pitot tube rakes mounted 

on the ship, two rakes of four pitot tubes each 

were mounted on opposite sides of the propeller 

hub. These rakes were attached to the crank disks 

for two of the propeller blades. The details of 

one rake with pitot tubes mounted are shown in 

Figure 8. 

*For the details of the instrumentation design and operation 

see Troesch et al. (1978). 

Q.25GR._ IN. 
6-gk- An 

2.727 IN. 69.3 7H 

2 6 

1.697 _ IN. 1.27 
a3. Ah hag 

FOR HUB ¢ PALM DETAILS 
SEE P-4#7/09// Sh. 2 

ALSO FOR HUB EXTENSION (wor smounm) 

Figure 9 shows a close-up photograph of one of 

the full-scale boundary layers probes. These 

probes, which extended 0.46 meters from the hull, 

contained 13 pitot tubes. Ten of the pitot tubes 

were total head tubes, and three were Prandtl 

tubes. 

4. CORRELATION MODELS AND INSTRUMENTATION 

The model correlation experiments were performed 

using two fiberglass models designated DTNSRDC 

Models 5365 and 5366. These models, which were 

built to the lines of the ATHENA, had a scale 

ratio of 1 to 8.25; the principal dimensions of 

these models are listed with the ship dimensions 

on Figure 1. A full set of appendages including 

shafts, V-struts, rudders, roll stabilizer fins, 

and a centerline skeg were fitted to each model. 

Model 5365 was a ship model which was used for the 

correlation wake surveys performed in the towing 

tank to investigate the scale effects between the 

model and ship wake surveys. Model 5366 was a 

mirror image double model obtained by reflecting 

the lines of the ATHENA about the mean water line 

corresponding to a full-scale speed of fifteen 

knots. This model was used for the boundary layer 

correlation experiments which were made in a wind 

tunnel. 

The model-scale wake survey was made on the ship 

model, Model 5365, using five-hole pitot tubes. 

The pitot tubes were mounted on a rake, the shaft 

of which was placed through the strut bossings and 

stern tube on the model. Figures 10, ll, and 12 

show the model which was used for the wake 

surveys, and the details of the pitot tube rake 

mounted on the stern of the model. Two papers, one 

by Hadler and Cheng (1965) and the other by Hale 

and Norrie (1967), give a thorough description of 
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FIGURE 4. Plan view of hull showing boundary layer rake locations. 
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FIGURE 5. Afterbody sections of ATHENA hull showing radii of wake measurements. 
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FIGURE 6. Starboard side view of R/V ATHENA 

in drydock. 

FIGURE 7. Port side wake rakes and propeller 

on R/V ATHENA. 

FIGURE 8. Close-up view of five-hole pitot 

tube rake on starboard shaft on R/V ATHENA. 
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FIGURE 9. Close-up view of boundary layer rake Peres 

on R/V ATHENA. eae 

FIGURE 10. Fitting room photograph of DTNSRDC 

model 5365 representing R/V ATHENA. 

8g 10 124 
ERS 

4 6 
CENTIMET) 

FIGURE 11. After end view of DTNSRDC model 

5365 fitted with a rake of five-hole pitot 

tubes on the starboard shaft. 
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FIGURE 12. Afterbody profile view of DTNSRDC 

model 5365 fitted with a rake of five-hole 

pitot tubes on the starboard shaft. 

FIGURE 13. Double model installed in DTNSRDC 

wind tunnel. 

the use and calibration of five-hole pitot tubes. 

The boundary layer velocity profile measure- 

ments on the double model, Model 5366, in the wind 

tunnel were obtained using a hot wire anemometer. 

The model was mounted on its side and the anemom- 

eter was moved in the horizontal direction by a 

rack and pinion drive. The rack and pinion, with 

its stepping motor, allowed the position of the 

anemometer to be set to within a fraction of a 

millimeter. 

Figure 13 shows the double model mounted in the 

wind tunnel. The vertical strut at the stern of 

the model is the support for the anemometry, and 

the bottom horizontal bar is an arm to steady the 

strut. The top horizontal bar is the traversing 

arm on which the hot wire anemometer is mounted. 

A close-up of the hot wire anemometer is shown in 

Figure 14; a centimeter scale is shown in the 

background of the photograph. 

FIGURE 14. Hot-wire anemometer probe used for model 

wind-tunnel boundary layer profile measurements. 
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model 5365 at 0.456 radius. 
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5. FULL-SCALE WAKE SURVEY AND BOUNDARY LAYER 

MEASUREMENTS 

The full scale trials were run in the Atlantic 

Ocean off the Florida Coast near the mouth of the 

St. Johns River. The conditions for the trials 

were excellent as is shown in Table 1, which gives 

the trial agenda and sea conditions. The full-scale 

measurements were divided into four trials. Trial 

1 consisted of a wake survey in the propeller disk, 

and ahead of the struts on the port and starboard 

sides.* The objective of the measurements ahead of 

the struts was to determine the differences in the 

wake both with and without the propeller operating. 

Trial 2 consisted of a repeat of the wake survey in 

the propeller disk. However, for this repeat 

trial, the two rakes ahead of the struts on the 

starboard shaft were removed to eliminate any 

possibility of interference in the measurements. 

Trial 3 consisted of boundary layer profile measure- 

ments on the port and starboard sides of the hull. 

Again, the purpose of these measurements on both 

sides of the ship was to determine the effects of 

propeller induction on the development of the 

boundary layer. Trial 4 consisted of measurements 

of the time varying pressures in a plane ahead of 

the operating propeller. The results of Trial 4 

are discussed in Appendix A. 

*Note: The data from the wake surveys ahead of the struts 

and in the propeller disk at a lower speed are not re- 

ported in this paper, but will be reported in the future. 

80 190 120 140 165 130 200 220 240 
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60 280 309 320 340 360 380 

ANGLE 

The pitot tubes on the rake in the propeller 

plane were located at non-dimensional radii (local 

radius divided by propeller radius) of 0.456, 

0.633, 0.781, and 0.964. The angular position of 

the rake was adjusted by turning the entire shaft 

using the jacking gear. The shaft could be rotated 

through approximately 230°, and because of this an 

overlap of 50° could be obtained in the data 

around 180°. 

The data from the wake survey at 15 knots are 

given, along with the corresponding model data, on 

Figures 15 through 18. This ship speed corresponded 

to a Froude number of 0.36 and a Reynolds number of 

4.14 x 108. The data are presented as velocity 

component ratios, where the velocities are given in 

cylindrical coordinates centered about the pro- 

peller shaft. The longitudinal velocity component 

(VX) is positive for flow toward the stern. The 

tangential velocity component (VT) is taken to be 

positive in the counterclockwise direction when 

looking forward on the starboard shaft. The radial 

velocity component (VR) is taken as positive in- 

ward. The angles are defined positive in the 

counterclockwise direction, with zero directly 

upward. The conventions for the angles and the 

directions of the velocity components are shown on 

Figure 5. These conventions are those of Hadler 

and Cheng (1965), except that the data is presented 

on the starboard shaft rather than on the port 

shaft. Therefore, the angles increase in the 

opposite direction from Hadler and Cheng, as do the 

tangential velocity components. 
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There are not sufficient data at any one radius 

or circumferential position to adequately define 

the limits of accuracy for the full-scale measure- 

ments. A comparison between two different pitot 

tubes at any one radius may be made in the region 

between 150 and 200° where the data overlap. At 

all radii the longitudinal velocity component 

ratios show the greatest scatter in the full-scale 

data. In particular at the innermost radius 

(x/R = 0.456), the scatter in the longitudinal 

velocity component ratios is greatest, approxi- 

mately plus or minus ten percent. The scatter in 

the longitudinal velocity component ratios at other 

radii is significantly less than that, more nearly 

plus or minus five percent. The increased scatter 

in the longitudinal velocity component ratios is 

due to the computation procedure which uses the 

average of the longitudinal velocity components 

from both the radial and tangential velocity 

computations. 

The full-scale wake survey provided a unique 

opportunity to study the development of a turbulent 

boundary layer on a ship, and also the effects of 

propeller action on the boundary layer. The full- 

scale boundary layer was measured at the eight 

locations which are shown on Figures 3 and 4, at 

four speeds. These speeds were 6.2, 9.1, 14.8, 

and 16.5 knots; these speeds correspond to Reynolds 

ed eh 
200 220 240 260 280 360 320 340 360 330 ratios for R/V ATHENA and DTNSRDC 

model 5365 at 0.633 radius. 

numbers of 1.74 x 108, 2.56 x 108, 4.14 x 108, and 
4.63 x 108 respectively. 

The data obtained at location 1, for all four 

speeds, are plotted on Figure 19. Except for the 

data at 6.2 knots, which show a great deal of 

scatter, the data are quite consistent with the 

fullness of the boundary layer increasing as the 

Reynolds number increases. The data obtained at 

14.8 knots (RL 4.14 x 108) for location 1, 2, and 

3 are plotted in Figures 20, 21, and 22 along with 

the corresponding model data at the same Froude 

number. The data from Locations 1, 2, and 3 are 

plotted again in Figures 23, 24, and 25 along with 

the data for the corresponding locations on the 

port side with the propeller operating. 

6. MODEL-SCALE WAKE SURVEY AND BOUNDARY LAYER 

MEASUREMENTS 

For the model-scale wake survey, Model 5365 was 

ballasted while at rest to the drafts corresponding 

to those of the ship during the full-scale wake 

survey. The model was then towed at 5.22 knots 

(2.685 m/s), the Froude-scaled speed which corre- 

sponds to 15 knots full-scale. The velocity com- 

ponent ratios were measured with a rake of five-hole 

pitot tubes at radii corresponding exactly to the 
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model 5365 at 0.781 radius. 

full-scale wake survey radii, slowing a direct 

one-to-one comparison of the data. The data from 

this wake survey are plotted on Figures 15 through 

18. 

It is customary to perform wake survey experi- 

ments in the towing tank by towing the model at a 

speed corresponding to the Froude-scaled speed of 

the ship. In order to investigate the effects of 

Reynolds number on the model-scale wake, a second 

wake survey was run at an increased speed. This 

second speed was the highest speed for which steady 

data would be obtained, 13.5 knots (6.9 m/s). For 

this second wake survey, the sinkage and trim of 

the model were kept the same as at the 5.2 knot 

condition. This was done in an attempt to separate 

the effects of sinkage and trim, which is dependent 

on Froude number, from other speed effects. 

The data from the model-scale wake surveys at 

5.2 knots (Fp = 0.36, R, = 1.56 x 107) and 13.5 

knots (Fh = 0.93, Ry = 4.04 x 107) are presented 

in Figure 26. The longitudinal and radial velocity 

component ratios at these two speeds show no dif- 

ference. However, the tangential velocity compo- 

nent ratios obtained at 13.5 knots have peaks which 

are 4 to 6 percent lower than those obtained at 

5.2 knots. This is contrary to what might be 

exepcted, in that the increased Reynolds number 

should produce a thinner boundary layer and there- 

fore, a flow which more closely approaches the 

108 120 140 160 180 200 220 240 260 280 300 320 340 360 330 

ANGLE IN DEGREES 

potential flow around the hull. This anomalous 

result is probably due to the increased Froude num— 

ber and the corresponding change in the wave pattern 

around the model. 

The model-scale boundary layer profile measure- 

ments were made in a wind tunnel using hot wire 

anemometers. The double model was manufactured so 

as to take into account the dynamic trim of the 

ship. Although this cannot take into account the 

effects of the free surface, it does account for 

the angle of the shafting to the free stream, which 

contributes significantly to the radial and tangen- 

tial velocity components. 

The model scale boundary layer profile was 

obtained at a Reynolds number of 1.68 x 107, which 

was intended to equal the Reynolds number of the 

model in the towing tank at a Froude number of 0.36. 

The Reynolds number in the wind tunnel in fact 

turned out to be about 8 percent higher than the 

Reynolds number in the towing tank. However, this 

was not considered to be critical to the correlation 

of the model and ship data. 

The boundary layer profiles obtained in the wind 

tunnel, without the propeller operating, at Loca- 

tions 1, 2, and 3 are given in Figures 20, 21, and 

22; where they are plotted against the full scale 

data at the corresponding locations. The data 

obtained at the same locations with and without 

the propeller operating are plotted against the 
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corresponding data from the ship in Figures 23, 

and 25. This is the extent of the model scale 

boundary layer data. 

The accuracy of the model scale measurements with 

five-hole pitot tubes is known reasonably well. 

Model wake survey data have been repeated in past 

experiments, with the circumferential mean longi- 

tudinal velocity components repeating within 0.01 

of the free stream velocity. The velocity component 

ratios for the model data are repeatable to within 

plus or minus one percent, except in areas where 

steep velocity gradients occur. In the areas where 

high velocity gradients exist, such as behind the 

shaft struts, the five-hole pitot tube has much 

lower accuracy. Experiments with hot wire anemom- 

eters have shown that they are at least as accurate 

as five-hole pitot tubes. In fact, in regions where 

there are steep velocity gradients, hot wire anemom- 

eters may be an order of magnitude more accurate 

than pitot tubes. 

24, 

7. COMPARISON OF MODEL- AND FULL-SCALE DATA 

A study of the velocity component ratios presented 

in Figures 15 through 18 shows that the degree of 

scatter of the full-scale data is higher than that 

of the model data. This is due to the higher 

variations in both pressure measurement and ship 

speed. In particular, the full-scale data for the 

longitudinal velocity component ratio at the inner- 

most radius (r/R - 0.456) show the largest scatter, 
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FIGURE 20. Measured and calculated boundary layer 

velocity profiles for R/V ATHENA and wind tunnel 

model 5366 at location l. 

Velocity Profile Data From R/V ATHENA 

and Wind Tunnel Model 5366 

Location 2 x/Ly, * O.77 

iE EXPERIMENTAL MEASUREMENTS 

E | MODEL SCALE Us = 38.1m/s Re = 168x107 
E Ww 
| = FULL SCALE -U, = 7.6 m/s, Re = 4.14x10° 
oa a EQUIVALENT BODY OF REVOLUTION CALCULATIONS 

a o ————MODEL SCALE 
tr =I - —FULL SCALE 

WwW 

a re) 
x 7 = 

50 
400 

Ww 

< 
ire 

5 40 
yn 

300 4 
=) 
=) 
Be 
= 30 
3 
© 

200 
Ww 

Z 20 
q 
= 
Cy 
(=) 

100, 
=z 10 
= 
ac 
fo} 
z 

() i) 
ie} 02 04 o6 08 10 le 

U/Ue | Ue = SHIP, MODEL SPEED 

FIGURE 21. Measured and calculated boundary layer 

velocity profiles for R/V ATHENA and wind tunnel model 

5366 at location 2. 
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FIGURE 22. Measured and calculated boundary layer 

velocity profiles for R/V ATHENA and wind tunnel model 

5366 at location 3. 
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FIGURE 23. Measured boundary layer velocity profiles 

for R/V ATHENA and wind tunnel model 5366 with and 

without propeller at locations 1 and 8. 
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FIGURE 24. Measured boundary layer velocity profiles 

for R/V ATHENA and wind tunnel model 5366 with and 

without propeller at locations 2 and 6. 

and the greatest deviation from the model-scale 

wake. 

In part, this scatter is also due to the fact 

that the longitudinal velocity component ratios 

presented are an average of the longitudinal velocity 

component as measured in the tangential plane and in 

the radial plane. Therefore, any scatter error in 

either the tangential or radial plane measurements 

will influence the calculation of the longitudinal 

component. Another factor which probably contrib- 

uted to increased scatter at the innermost radius 

is the close proximity of the pitot tube to the 

strut bossing. 

The longitudinal velocity component ratio at the 

innermost radius is about 10 percent lower for the 

ship than for the model, while the peaks of the 

tangential and radial velocity component ratios are 

about 10 percent higher for the ship than for the 

model. Although there are undoubtedly scale effects 

on the shafting and strut bossing at this radius, 

another significant factor is that the bossing on 

the ship is proportionately much longer than on 

the model. This is due to the collar to which the 

pitot tube rakes ahead of the struts were attached. 

At the outer radii the longitudinal velocity 

component ratios for the ship are 2-4 percent lower 

than those for the model. The peaks of the radial 

and tangential velocity component ratios at the 

outer radii are 8-10 percent higher for the ship 

than for the model. At the two innermost radii, 

the shift in the radial and tangential velocity 

component ratios indicate that there is a stronger 

upflow on the ship than the model, in the region 

under and outboard of the propeller hub. This 

effect is much weaker, and has shifted to the inside 
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on the two outer radii. One possible cause of the 

shift at the outer radii is the fact that the full 

scale trial was performed with a propeller operating 

on the port shaft, while the model data were col- 

lected without the propeller present. However, the 

most likely source of the increased upward flow is 

a difference in attitude between the ship and model. 

The models were run at a number of Reynolds num- 

bers in the towing tank and wind tunnel and the 

longitudinal velocity component was measured at a 

single location near the hull for these various 

Reynolds numbers. The results of these measure- 

ments are plotted in Figure 27. These results in- 

dicate that for a Reynolds number greater than 107 

there is very little effect of either Reynolds num- 

ber or Froude number on the longitudinal velocity 

component. Therefore, in cases where it is desir- 

able to obtain accurate longitudinal velocity 

component measurements, the model should be run at 

the correct Froude trim, at a Reynolds number 

greater than 107. 

A comparison of the boundary layer profiles 

presented in Figures 20, 21, and 22 shows that, as 

might be expected, the model velocity profile is 

not as fully developed as the full-scale velocity 

profile at Locations 1 and 3. This is clearly a 

consequence of the one decade difference in Reynolds 

number between the model and ship. However, at 

Location 2, the model- and full-scale boundary 

layer velocity profiles almost coincide. This is 

clearly an anomalous situation, particularly be- 

cause even at 0.46 meters from the hull full scale, 

the velocity has not reached the free-stream 

velocity, let alone the potential flow velocity 

which is even higher. The most likely explanation 

for the low full-scale velocity profile is a mal- 
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FIGURE 25. Measured boundary layer velocity profiles 

for R/V ATHENA and wind tunnel model 5366 with and 

without propeller locations 3 and 7. 
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FIGURE 26. Velocity component 

ratios for DTNSRDC model 5365 at 

0.633 radius for model speeds of 

5.22 knots and 13.5 knots. 

function in the instrumentation but a check of the 

data records indicated no obvious errors in the 

data. 

The results of boundary layer profile measure- 

ment with the propeller operating, plotted in 

Figures 23, 24, and 25 indicate that the data at 

positions 1 and 8, just ahead of the propeller, 

show a slight increase in velocity profile due to 

the propeller suction. The increases are about 

the same at both model- and ship-scale. The data 

at positions 3 and 7, behind the propeller, show 

rather significant increases in the velocity pro- 

file for both scales. This is undoubtedly due to 

the wake of the propeller. From the model-scale 

data, at Locations 2 and 6, there is no noticeable 

difference in the data obtained with or without 

the propeller operating. This is consistent with 

the separation between the boundary layer probe and 

the propeller. There is no ship-scale data ahead 

of the operating propeller at location 6 due to the 

failure of that boundary layer probe. 

In order to evaluate our ability to predict the 

boundary layer of the hull, a series of boundary 

layer calculations were instituted. For these 

calculations, the ship was approximated as a body 

of revolution, and the boundary layer was calculated 

using the standard DTNSRDC method for bodies of 

revolution [Wang and Huang (1976)]. Two methods 

for generating the bodies of revolution were tested. 

In one, the body was generated with radii equal to 

the square root of twice the sectional area of the 

$c 103 120 149 160 

ANGLE IN DEGREES 

135 205 220 240 250 280 309 320 340 360 33¢ 

ship; and in the other, the body was generated 

using circumferences equal to twice the girth of 

the ship. The boundary layer calculations using 

the body of revolution based on sectional area 

agreed best with the experimental data. 

The results of the equivalent body of revolution 

calculations are plotted with the experimental data 

on Figures 20, 21, and 22. The calculations for 

the ship at Locations 1 and 3 agree reasonably well 

with the full-scale data. However, at the model- 

scale, the calculations do not agree nearly as 

well. This is probably due to the fact that at 

lower Reynolds numbers, the boundary layer is much 

more sensitive to errors in the flow velocity and 

pressure gradient than at higher speeds. As stated 

previously, the data at Location 2 is anomalous, 

as is shown by a comparison with the calculated 

boundary layer profile. 

8. PREDICTION OF NOMINAL WAKE 

Although the model- and full-scale wake of the R/V 

ATHENA both agree qualitatively, there are some 

substantial quantitative differences between the 

model- and full-scale velocity components. To 

develop an understanding of the origins of these 

differences, it was necessary to predict the wake 

of both the model- and full-scale ship analytically. 

Since the hull of the ATHENA showed no separation, 

it appeared that the presence of the hull could be 
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dealt with primarily by potential flow techniques, 

combined with calculations of the boundary layer 

displacement thickness. It was also assumed that 

the viscous flow about the appendages could be 

dealt with empirically. 

The velocity in the propeller disk, expressed in 

shaft coordinates, was decomposed as follows: 

Velocity = Uniform Stream 

Perturbation due to Hull 

Perturbation due to Boundary Layer 

Viscous Wake of Struts 

Viscous Wake of Shafting. oe eee 

The principal factor contributing to the radial and 

tangential components of the velocity in the pro- 

peller plane is the inclination of the shaft to the 

free stream. The shafting of the ATHENA makes an 

angle of 8.9° with the baseline. In addition, at 

15 knots Ga = 0.36), the ATHENA takes a bow-up 

trim of 0.3° as indicated by model experiments. 

Thus, the propeller shaft is inclined a total of 

9.2° to the incident stream. The effect of resolv- 

ing the incident stream into shaft coordinates is 

shown on Figure 28. 

The effects of perturbing the incident stream by 

the presence of the hull were obtained by means of 

potential flow calculations. For the purposes of 

this study, the free surface was represented by the 

zero Froude number condition, and the calculations 

were made for a double model in an infinite fluid. 

The hull was reflected about the mean waterline at 

15 knots, and flow about the resulting body was 

computed using the DTNSRDC potential flow program 

[Dawson and Dean (1972)]. The results of this 

computation are also shown on Figure 28. As can 

be seen, the effects due to the perturbation of the 

incident flow by the hull are small, on the order 

of two percent of the ship speed. 

The effects of the displacement thickness of the 

boundary layer were considered next. The intention 

was to increase the thickness of the hull by the 

displacement thickness of the boundary layer, and to 

repeat the potential flow calculations. However, 

at its thickest point, the model scale boundary 

layer determined from the equivalent body of 

revolution calculations, would only have increased 
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FIGURE 27. Longitudinal velocity component 

ratio at O-degree position of 0.633 radius 

10? as a function of Reynolds number based on 

hull length. 

the thickness of the hull by 1 percent of the beam. 

The full-scale boundary layer would have increased 

the thickness even less. Since the complete hull 

potential flow had only a two percent effect, the 

revised potential flow was not computed for such a 

small change in effective hull shape. The error 

due to neglecting the displacement thickness of the 

boundary layer is probably much less than the error 

incurred by making the zero Froude number approxi- 

mation for the potential flow calculations. There- 

fore, the velocity component ratios based on only 

the first potential flow calculations are presented 

in Figures 29 through 32. 

The velocity defect caused by the struts was 

predicted using an empirical scheme based on data 

from aerodynamics. The velocity defect was com- 

puted using the following formula from page 584 of 

Goldstein (1965). 

(7R=0633 
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FIGURE 28. Effect of shaft inclination and hull po- 

tential flow on velocity component ratios for R/V 

ATHENA at 0.633 radius. 
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FIGURE 29. Predicted and measured values of velocity 

component ratios for R/V ATHENA at 0.456 radius. 

Ie 
= 3/18a,x* 

rend Oe Lo Gee 

and 

No 3/2a,, = 10D/n PU, 

where Umax is the velocity defect, U, the free- 

stream velocity, n_ is the nondimensional wake half 

width, x is the nondimensional distance from the 

strut, D is the strut drag, and p the fluid density. 

These formulas predict the longitudinal velocity 

defect in terms of the strut drag, wake thickness, 

and distance behind the strut. 

The shaft struts on R/V ATHENA are Navy EPH 

sections with a chord-to-thickness ratio of 6. 
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FIGURE 30. Predicted and measured values of velocity 

component ratios for R/V ATHENA at 0.633 radius. 
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FIGURE 31. Predicted and measured values of velocity 

component ratios for R/V ATHENA at 0.781 radius. 

Assuming that the drag on the EPH section would not 

be too different from the drag on an elliptic 

section of the same thickness-chord ratio, many data 

for a number of elliptic sections were collected. 

These data are plotted on Figure 33 as a function 

of Reynolds number. 

The nondimensional wake half-width was predicted 

using Equation (4) from Silverstein et al. (1938): 

os 45 5 
n = sets) (G6 ce 415) 
(0) D 

In this equation n_ is again the nondimensional half 

width of the wake, X is the nondimensional distance 

from the strut, and C_ is the drag coefficient per 

unit length of the strut. 

Using the strut Reynolds numbers based on chord 

length, of 1.46 x 10° for the ship, the correspond- 

r/R =0.963 
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FIGURE 32. Predicted and measured values of velocity 

component ratios for R/V ATHENA at 0.963 radius. 
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ing drag coefficients are found to be 0.050 and 

0.018 for the model and ship, respectively. Sub- 

sitution of these drag coefficients into the above 

formulas from Silverstein, et al. (1938) and 

Goldstein (1965) yields the velocity defects which 

are shown on Figures 29 through 32. 

These computed velocity defects due to strut 

wake are significantly greater than the velocity 

defects which were observed at either model or full 

scale. The cause of this over-prediction is 

probably the fact that the formulas from Goldstein 

are derived by assuming that the wake is being 

calculated far enough downstream that the cross 

flow terms in the momentum equation can be neglected. 

This is an assumption which is undoubtedly violated 

in the region near the struts, where the wake has 

been predicted. 

Although the empirical method for predicting the 

wake of the shaft struts was not successful, it 

does at least provide some insight into how the 

wake should vary with Reynolds number. Both the 

width of the wake of the struts and the velocity 

defect in the wake of the struts are proportional 

to the square root of the drag coefficient of the 

section. Therefore, the velocity defect and the 

width of the wake should both decrease (like the 

square root of the ratio of the drag coefficients) 

as the Reynolds number increases. However, the 

full-scale wake survey data were not collected at 

angular increments spaced closely enough to confirm 

this scaling law. 

The empirical method for predicting the wake 

behind an inclined shaft is not as well defined as 

the methods for predicting the wake behind the 

struts. Following the methodology of Chiu and 

Lienhard (1967), it was assumed that the separated 

flow behind a yawed cylinder is a function of the 

component of the velocity normal to the cylinder. 

Following the method of Roshko (1955) and (1958), 

an estimate of the velocity defect in the wake of 

the shaft was developed based on the pressure 

coefficient at the point of separation and the 

Strouhal number. i 

Data showing the base pressure behind a circular 

*Note: The base pressure is not necessarily the pressure at 

the separation point because there is usually some pressure 

variation in the separated region. 

5x10° 
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FIGURE 33. Drag coefficients of elliptical 

7 section struts as a function of Reynolds 

number based on chord length. 
10 

cylinder have been collected, and are presented as 

a function of Reynolds number in Figure 34. Based 

on this data and the Reynolds number based on cross 

flow velocity, the pressure coefficients for the 

model (R_ = 1.63 x 10*) and ship (R_ = 4.26 x 10°) 

were found to be -1.1 and -0.2 respectively. These 

pressure coefficients resulted in a predicted veloc- 

ity defect, perpendicular to the shaft axis, of 

0.25 for the model and 0.10 for the ship. However, 

when resolved back into the direction of the flow, 

the shaft wake is less than two percent of model 

speed and one percent of ship speed. This is 

significantly less than than the velocity defect 

which is measured for either the model or the ship. 

In fact, if the velocity defect in the direction 

normal to the shaft were 100 percent of the forward 

speed, the velocity defect in the wake would only 

be seven percent, still less than the velocity 

defect measured experimentally. 

These results are not surprising when one con- 

siders the discussion in Chiu and Lienhard (1969). 

In this discussion, data are presented which point 

out that the wake of an inclined shaft is in general 

not parallel to the shaft. This is due to the 

axial component of the flow along the cylinder which 

develops a boundary layer which separates. The 

Reynolds number for separation in the axial direc- 

tion on the shaft is independent of the Reynolds 

number of the flow normal to the shaft. In addition, 

the data from Bursnall and Loftin (1952), show that 

as a circular cylinder is inclined further and 

further to the flow, the transverse Reynolds number 

at which separation takes place becomes lower and 

lower. 

9. CONCLUSIONS 

Significant differences have been found in the 

tangential and radial velocity component ratios 

between the ship and the model wake surveys. In 

particular, the full-scale tangential velocity 

component ratio has a peak amplitude approximately 

eight to ten percentage points higher than that at 

model scale. Similarly, the ship radial velocity 

component peak is higher by six to eight percentage 

points. These differences cannot be attributed 

to scale effects. The most likely cause seems to 
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be a difference in trim between model- and full- 

scale. Because the model was ballasted to the 

draft of the ship, further work will be required 

to identify the source of these differences. 

The longitudinal velocity component ratios for 

the full-scale trial show a much greater scatter 

than the tangential and radial components. For 

this reason it is unclear that any difference is 

shown by these data, when compared to model-scale 

data. The innermost radius (r/R = 0.456) does show 

that the high longitudinal velocity component 

normally measured at these inner radii is not found 

full scale. This may not be the result of scale 

effects on the shafting and strut bossing, but the 

fact that the full-scale bossing is longer than the 

model-scale bossing. This is a result which will 

have to be investigated by further model experi- 

ments. 

The results from model experiments in both the 

wind tunnel and in the towing tank, and from the 

full-scale trial indicate that for a circumferential 

position near the hull, there was little difference 

in longitudinal velocity component ratio for speeds 

corresponding to Reynolds numbers greater than 10". 

Therefore, when measuring only the longitudinal 

velocity component ratios experimentally, the model 

should be run at the trim corresponding to that of 

the Froude-scaled speed and at a speed high enough 

to yield a Reynolds number of greater than 107. 

The attempt at predicting the wake for this high- 

speed displacement ship showed that the most im- 

portant contribution to the variation in tangential 

and radial velocity component ratios was the shaft 

angle to the flow. The calculation of the potential 

flow around the hull and the resulting velocity 

components showed that the effect of the perturba- 

tion due to the hull was small. The effects of the 

boundary layer of the hull on the wake were also 

shown to be small. 

In summary it may be stated that the full-scale 

and model wakes differ by approximately ten percent 

of the ship speed. These differences cannot be 

adequately explained at this time. Further work 

on wake of appendages is recommended as one step in 

improving the understanding of these differences. 

Chiu, W. S., and J. H. Lienhard (1967). 

FIGURE 34. Base pressure coefficients of cylin- 

10 drical shafts as a function of Reynolds number 

based on shaft diameter. 
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amplitude of the pressure oscillation is only 1 per- 
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cent of the mean pressure signal. Due to the 

failure of two of the pressure transducers in the 

head of the pitot tube, it was impossible to obtain 

any data on the variation of the flow velocity with 

angular position. 

During each of the runs with the piezoelectric 

pitot tube, data were collected for a period of 

time totalling between 5 and 10 minutes. All of 

the data points for each angular position of the 

shaft were then averaged to obtain a mean level for 

each signal. Figures A-1, A-2, and A-3 show these 

averaged pressure signals as a function of angular 

position. Runs 209 and 205 were both obtained at 

the same ship speed (15 knots) and shaft speed 
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ABSTRACT 

Flow field in the vicinity of a hull is analyzed 

by using acceleration potential, and an approximate 

calculation method is derived. The present method 

can calculate the change of pressure on the hull 

caused by a propeller action. Numerical results 

by the present method are shown with experimental 

results. 

Wake far from a ship is analyzed by using Oseen's 

approximation, and an optimum condition is given 

for wake energy recovery by a propeller. This 

condition is examined by the results of the self- 

propulsion tests and the wake survey measurements 

at distant positions behind a ship. 

ibn INTRODUCTION 

When a hull is towed in still water, a flow field 

is induced around the hull. This flow field is 

very complicated, and becomes more complicated by 

propeller action. Many researchers have studied 

experimentally and theoretically the phenomena 

caused by the interaction of the hull and propeller, 

[Yamazaki et al. (1972) ]. Unfortunately, however, 

the number of practical uses of the study results 

is less than those derived in other fields of naval 

hydrodynamics. One of the reasons is because the 

various suggested methods are themselves complicated 

owing to the complexity of the phenomena. 

It has been popularly known that both the equa- 

tions and the boundary conditions which describe 

flow field can be simplified, and analyzed easily 

if disturbance by an object in the flow is a small 

quantity of the first order. One of the typical 

examples is the method of acceleration potential 

in inviscid flow fields used for propeller theory 

[Tsakonas et al. (1973) ]. Another example is 

Oseen's method in a viscous flow field used for 

the separation of hull resistance components [Baba 

(1969) ]. 

In this paper, the above-mentioned concept is 

applied to analysis of flow fields induced by the 

interaction of the hull and propeller, and the 

author derives practical methods relating to the 

propeller-induced pressure change on the hull and 

wake energy recovery by the propeller. Section 2 

explains coordinate systems used in this paper. 

In Section 3, the author applies the method of 

acceleration potential for analysis of inviscid 

flow fields in the vicinity of the hull, and derives 

a method which can be used to calculate the change 

of pressure induced by a propeller on a hull surface. 

In Section 4, the author applies Oseen's method for 

analysis of wake far from the hull, and derives a 

method to predict recovery of wake energy by the 

propeller. Then, this method is examined by the 

experimental results obtained from self-propulsion 

tests and the wake survey. Section 5 concludes 

this paper. 

Bo COORDINATE SYSTEMS 

We assume that a ship with a single propeller is 

moving with a constant speed on the free surface of 

still water. At first, we define a coordinate 

system O-XYZ fixed in space and a coordinate system 

o-xyz fixed on the hull as indicated in Figure 1. 

The coordinate system O-XYZ is an orthogonal coor- 

dinate system, in which the XZ-plane coincides with 

the still water surface and the positive direction 

of Y-axis coincides with an upward vertical line. 

The coordinate system o-xyz is a moving coordinate 

system in which the origin o is moving on the X-axis 

in the negative direction with a constant velocity 

U, and this sytem satisfies the following relation- 

ship with 0O-XYZ: 

Mako WE WS we 4S Bp (1) 

where t represents time. 

Next, we define two more coordinate systems 



FIGURE 1. Coordinate systems. 

0)-x1y1]Z and 0)-x)r8 related with the propeller 

as indicated in Figure 1. In the coordinate system 

01-X1]¥1Z1, the origin 0) coincides with the propeller 

center and we assume that the x]-axis coincides 

with the propeller axis and is parallel to the x- 

axis. Further, the coordinate system 0]-x ]y]2Z] has 

the following relationship with the coordinate 

system O-xyz: 

SF Op Oe SoS A oP Alp BS Bio (2) 

where (x,, -f, 0) are the coordinates of the pro- 

peller center on o-xyz. Moreover, the following 

relationship is satisfied between 0]-x y ]Z] and 

0)|-x)4r8: 

X] = X1, y) = © cos®, 2] = r sind. (3) 

3. PRESSURE ON A HULL SURFACE AND ACCELERATION 

POTENTIAL 

Pressure generated on the hull surface in the towed 

condition differs from that in the self-propulsion 

condition because of the influence of propeller 

action. The time-independent part of this change 

corresponds to the pressure component of the thrust 

deduction and the time-dependent part corresponds 

to the propeller-induced surface force. Now, with 

conventional methods devised to calculate these 

forces, numerical procedures tend to be extremely 

troublesome. Consequently, a great deal of calcu- 

lation time is required, especially in calculating 

propeller induced velocity, and it is hard to apply 

to a practical hull of a complicated form. Hence, 

an easy method with which the calculations of pro- 

peller influences can be reduced is needed. 

In this chapter, the method which can calculate 

change of pressure induced by a propeller on the 

hull surface is explained. This method can be 

obtained by using acceleration potential. 

Fundamental Equation 

In this section, we assume that the flow field 

around the hull is inviscid. This assumption may 

be considered reasonable in solving the problem of 

pressure on the hull surface when the boundary layer 

on the hull surface is thin. 

At first, let us examine the flow field around 

the hull in the towed condition. Denoting the 

velocity potential of disturbance due to the hull 
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by $,(x,y,2), the velocity potential for the over- 

all flow field can be expressed by U*x+},, and the 

following equation must be satisfied for $<: 

2 2 2 

anes r OS a cats 
ax2 ay2 az2 

=o. (4) 

Boundary conditions are given as follows. On the 

hull surface, S,, the following equation must be 

satisfied: 

(o + 2) + sae) £ ais 0 , (5) ny om Orn = : 
x dy y 0z Zz on & 

where Ny, Ny, and nz, represent xX-, y-, and z- com- 

ponents of the outward normal unit vector on S.. 

On the free surface, we have two boundary conditions. 

One of them can be obtained from the Bernoulli's 

law and the condition of constant pressure there, 

as follows: 

1 (See p es; fs (2) t Oe ‘ | ee 

2 | \ox dy dz ox SE eget 0 

(6) 

where (,(x,Z) represents the vertical displacement 

of the free surface, namely, wave height. Another 

boundary condition on the free surface is the 

kinematical condition as indicated below: 

a6 af ao ag ot 
(o + 2)". s Ss Ss Ss 

oe ho 8a... BE mies (7) 
y=Ss 

At infinity, the following boundary conditions 

might be given: 

Derivatives of bs > 0 when Vx? + y2 Foo => Cd 

C5 * O when Vx* + 22 > . (8) 

Next, let us examine the flow field around the 

hull in the self-propulsion condition. We assume, 

similarly to the towed condition, that the velocity 

potential of disturbance exists. Then, we can 

express the velocity potential of the overall flow 

field by Uex + >, + o*. Here, the 9*(x,y,z;t) xrep- 

resents the change of the velocity potential due 

to the propeller action when the moving condition 

is changed from the towed condition to the self- 

propulsion condition, and $* must satisfy the 

following equation: 

2 2 2 ra) o* te A) o* ey A) o* A 

ax? dy? 2° 

We can also obtain the boundary conditions under 

the self-propulsion condition in the same manner 

as under the towed condition. In this case, however, 

time derivatives appear in some conditons by the 

influence of propeller rotation. On the hull sur- 

face, the following boundary condition is given: 

( Oy ag * (Ss ey 

Wise ee ee OS De pe 

OO. a 

lee vie) te 

Dio (9) 

on So. =O. (10) 
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On the free surface, the condition of constant 

pressure and the kinematical condition can be given 

as follows: 

/ Id*\ 9 3 ao* p) ap* al ted Cte ea a 
2 ax ax dy dy az dz 

36. ee) ao* 
ee — = ; 11 + U (= tae) eae oul \ lees (0) (11) 

Gis 2) es 
u ox ax ox dy by 

cle) ap* at ot 
s sp sp a Sie = 5 12 a3 (= + 22 ) Ozie w moe vaca. me oe 

where Ssp represents the wave height in the self- 

propulsion condition. At infinity, the following 

boundary conditions might be given: 

Derivatives of ¢, + >* > O when Vx2 + y? +2270, 

G+ O when Vx? + 22 +m . (13) 
sp 

Finally, using the equations derived under the 

towed condition and the self-propulsion condition 

described above, let us derive the equation and 

boundary conditions for $* which express the change 

of the flow field around the hull due to the pro- 

peller action. At first, $* must satisfy the Laplace 

equation (9). Next, let us obtain the boundary 

conditions for ~*. On the hull surface, the fol- 

lowing relationship is given from (5) _and (10): 

CUES ab* , OWE = 6 
Fay es oy y i dz oz ee Ss, me oe 

On the free surface, the following equation is 

given from (6) and (11) in correspondence with the 

condition of constant pressure: 

oe (ee 
2 ax ax ay dy az az 

(ee es age 
F Ui einer) ites ak OY, leer 

8d_\2 (26.\2 /2¢.\ 2] a9 
Ee ley a a 5 te ) *\ay Nae ee ON ace, 

(15) 

And, using (7) and (12), the following equation is 

given in correspondence with the kinematical 

condition: 

* Fg Alas Mas ag tance 
\ ax ox ax oy dy: 

ot 
Pst eae Weed sD Sp 
az oz / az at Yop 

Uh ilies: BUN eect ea RAD We nce 
5 \ ax ) ax oy Oz 

dd * (Zs Ch) Oo. 

aan eee (16) 

At infinity, the following boundary conditions 

might be given: 

Derivatives of »* > O when Vx? 4 22 aa Cie, 

c* + 0 when Vx? + z2 +0 , (17) 

where C* (x,z;t) represents change of wave height 

due to the propeller action and the following 

relationship must be satisfied: 

Ge -SGSpe Gs. (18) 

Acceleration Potential and Approximate Calculation 

Method 

Acceleration Potential 

The purpose of this section is to indicate that the 

equation and the boundary conditions for $* derived 

in the previous section can be expressed in the 

terms of acceleration potential on the assumption 

of thin hull. 

At first, using the assumption of thin hull, we 

express the shape of the hull as follows: 

Z = Of (o0,y,) in See p (19) 

where € represents a small quantity of the first 

order and S_* represents a projected plane of the 

hull surface, Ss, in the xy-plane. And, it seems 

reasonable to develop all our quantities in powers 

of €, as follows: 

o, = 1 + S40n' soe ; (20) 

o* = ed] + [765 +... ; (21) 

SoS en Seige ee ap (22) 

a Boi PE Ba cbo 7 (23) 

Thus, €* can also be developed as follows: 

* 2 * 

Ge 0 Gn ar EG Poco oo (24) 

Next, we proceed to obtain the equation and 

boundary conditions for $,* which correspond to the 

first order of € by substituting the development 

(20) ~(24) into the equation and boundary conditions 

for ~* in the previous section. The following 

equation in Q* can be obtained from (9) and (21): 

24k 24k Jak a2gt a2ge 92g 
(25) 

aa ay2 * 922 

Let us consider the boundary conditions for )*. 

First, using Eq. (19), we can estimate the magni- 

tude of nye ae ne in the Eq. (14) as follows: 

mim SO), mM = OS), mm = O@) - (26) 
x y Zz 

where O denotes the order symbol. In addition, we 

obtain from (19) and (21) 

ap* 

wie | Se + O(e*) , 
2=€f£ (x,y) =) 

(27) 



ap* oi 2 al = 6 7 Ole) 5 (28) 
Y z=ef (x,y) Y z=0 

ag* 
* 

2 | ay = | + o(e2) (29) 
ca z=ef (x,y) z=0 

Hence, by substituting (26)~(29) into (14), we can 

obtain 

* 

do 
== = 0) sin SG (30) 

dz s 
z=0 

Further, for the boundary conditions on the free 

surface, the following equation can be obtained by 

substituting (20)~(24) into (15): 

* * 

d¢1 91 A 
bes so = al 

y=0 

And, in correspondence with the Eq. (16), the follow- 

ing equation is also obtained: 

* 

os 9b. eal | = 0 (32) 
ox Oy Oe rf ; 

* 

Hence, eliminating f, from (31) and (32), we can 

obtain the boundary conditions on the free surface: 

2k 3 $5 

9x2 

2 a> o* L oO gi ag* 
a 1 

u2 9t2 
+ 

U2 ay 
= 0 (33) 

i BeBe eo 

Moreover, at infinity, boundary conditions are given 

as follows by (17), (21) and (24): 

A ee ee 
Derivatives of $, > 0 when Vx2 + y2 + 2250, (34) 

* —_——___—— 

en => © Winein (EOE ee a co 5 (35) 

Now, let us denote the pressure of the flow field 

in the towed condition and that in the self-propulsion 

condition by pg(x,y,z) and Psp (*,¥,2;t) respectively. 

By substituting (20) and (21) into Bernoulli's 

expression, we can obtain 

ag Ps 1 SS = Ce 2 ae gy € ax OMES) i, (36) 

) * * 

Psp _ - -ey( vy paki) = a + O(e2 
Or SY ox ox at (er) a (S) 

where 9, represents fluid density. Hence, the 

pressure change, i)(x,y,z;t), due to the interaction 
of the hull and propeller is given by the following 
equation: 

1 
a = a 
ig if 

This equation shows that the magnitude of Wy is of 

( aor a) 

sp ir P,) Geis Cae at /- (Ss) 
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the order of € Moreover, W/P. can be considered 

as an acceleration potential as is obvious from the 

relationship with $y: 

Finally, we proceed to convert Eqs. (25),(30), 

(33), (34), and (35) for b} to equations for \) by 
using the relationship (38). Using (25) and (38), 

y must satisfy the following equation: 

a2y . a2p a2 
Pal BY Bae 7S (22) 

On the hull surface, So’ we can obtain from (26) 

the following equation: 

3 

in | eae gona cil 
on s y °y < on S 

s s 

25 a | + O(e7) in sé (40) 
z=0 

On the other hand, if (x,y) is a point on See the 

following equation can be obtained from (30) and 

(38): 

a a 362 1 

Chie 
3 F) o* 

-c +5): pew (cae alam © 
* 

Thus, the hull surface condition for $, can be con- 

verted to that for | as follows: 

(41) 

(42) 

Similarly, the free surface condition (33) for )* 

can be converted to that for W as follows: 

2 2 2 3 a*w my Bo ha) Peal oa) a & v = 6 (43) 

9x? U dxdt Ul dts Udy y=0 

Moreover, for the boundary condition at infinity, 

the following equation is given from (34) and (35): 

W > O when Yx2 + y2 + 22 30. (44) 

Integral Equation 

We proceed to seek the solution of which is the 

harmonic function in the region bounded above by 

the plane y=0 and elsewhere by the hull surface and 

satisfies boundary conditions (42), (43), and (44). 

At first, we separate the solution into the two 

parts and write it as follows: 

W(x,y,Z;t) = V(x,y,z;t) + W(x,y,z;t), (45) 

where both V and W are the harmonic functions in 

the region as indicated above. Moreover, let W 

represent the pressure induced by a rotating pro- 

peller moving straight ahead with a constant speed 

in still water and a free surface. Now, we have 



252 

many formulas for W*(x,y,z;t) which represents (52), (53), (55), and (56) with the method of Green's 

the pressure induced by an N-bladed propeller moving function: 

in infinite space. One of the formulas for W* is 

given on the assumption of thin blades as follows ay (2) gy (2) 

[Jakobs et al. (1972) ]: (e) ss ( ¥ Y ) anv *°" (Q,) = eS) (Sa 2 a) @ & (OpO5) 

. 2 JvNt ns 
Wty mW (a y771Z) ae 

v=0 v y(t) 

+(V en ‘ ee (ans ‘ v ) 5am, i, a, (2; Q ) 5 (7) 

= 25 1 fas Da L.(E",6,89)e> ese se at ; 
v=0 47 a q=1 =0 rR where Q, denotes a point outside Ss, Q denotes a 

e p Pp (46) point on S,, and the suffix, (i), means the inside 

where 8g = Zu (GN) (47) of the hull surface. Then, we seek a solution of 

N vy, (2) which satisfies the boundary conditon on S., 

as follows: 

with j = imaginary unit, 9% = angular speed of the gy (2) 
= 3W 

propeller, Sp = lifting surface of propeller, L)' = v | eek | (58) 

pressure jump across Sp, (&',0, 89) = point on Sp, dn Bie on Sats 

is = normal unit vector at Spr and R = distance s s 

between (&',9,89) and (x,y,z). Hence, using W* and ; . ‘ 

the method of the mirror image, we can obtain a W Then, using (53) and (58), we can obtain an internal 

which satisfies the boundary conditions (43) and solution as follows: 

(44). Then, we can write W as follows: 

we? Sth, « (59) 
© }V. evince) See (48) 

Therefore, by substituting (51), (58), and (59) 
5 g e : 

Next, let us consider V. Then, we assume that into (57), the external solution WS must satisfy 

Vv and can be developed in correspondence with the 

development (48) as indicated below: ( (e) ) 9 / 
ATV (e) = pees Ts 4 ay ey) GSA aon ie ang a, (0:06 ) 

ya 8 ch Cegrpaen (49) S (60) 
veo" *r¥s x eS 

co JUL F 4 . 2 
V = LOVy (ery, Ze & (50) Finally, we have the following equation by adding 

v= B anw, (Q.) to both sides of the Eq. (60): 

Hence, using (42) and (44), we have 

(e) az (2) (oy eelton 
av, (e) | OW, a Amp (Q.) St MMO) ap ds (2) on5 ) (Q79,) : 

22 on g Coons 8. (61) 
Ss Ss 

7 eS Olwhen Woe v2 pecs (52) In this equation, letting Q, be the limit of Q, on 

oa we can get 

where the suffix, (e), means the outside of the 

hull surface. In the same manner, from Eq. (43), (e) 1 ) 
( ares da (e) Sees : 

we have YS) to8) 20 S YW) 6 G,, (0790) 

ONG, av, ov ee 
+ = + Ka 2 i W, | = 05 (53) 

gx? dy ox =0 
= 2W (Q.) 62 

where yee 2 ce 

: 202 
Cia i 2gwk -_ _ EV 

Kos ee BS) = pO 5 : (54) because the singularity of first order exists in 
U W U the ey Se chis Wle) (9 ) is exactly the change of 

Now, we suppose that we know the functions G (&, pressure on the hull surface caused by the propeller 

TVA ECAVIZ) ie U= Ole 2 een ) such that the Gare which we intend to calculate. If W. and G, can be 

harmonic functions for n<O except at (x,y,z) where given a priori, Eq.(62) can be considered to be 
G have a singularity of first order, and G., satisfy * an integral equation for the unknown )(e) (Q5)- Thus, 
he boundary conditions: the problem of calculating the change of pressure i 

on a hull surface caused by a propeller changes to 

once dG 0G the problem of solving an integral equation. 
Vv + Ko— + Ki— + KG =o, (55) 

ae? an 0g ws 
Vie Time-Independent Change of Pressure On the Hull 

As 2 2 Zip 
S,) Suen Vx Pe ihe ame are Meare KC (56) Now, we proceed to give Wo and Go for a steady case 

(v=0). Go(&,n,0;x,y,2) can be written as follows 

Then, we can obtain the following equation by using based on a wave making theory: 
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V(E-x)2 + (n-y)2 + (G-2)? 
Go (EN, Gi X,Y 12) = 

T 
— foe) 

2 

ie k exp (k nty + ikp') (63) 
T ae Aye Bees ss inn ee 

k - Kgsec-6 

= 0 
2 

where p' = (&-x) cos @ + (t-z) sin 0. (64) 

We can get Wo by using Eq. (46) as follows. The 

first step is to rewrite the integrated term in the 

right side of Eq. (46) by the transformation 

pe Ey EOL lay (65) 
n 

Then, using the rewritten expression, we can obtain 

Wo as follows: 

Wo(x,y,Z) = Wa (x,y 2) ae (66) 

It should be understood from the above expla- 

nation that L)' must be given to calculate Wo. In 

order to obtain L)' precisely, we must consider the 

boundary conditions on the propeller surface which 

have been disregarded in the discussion up to this 

step. To do so, however, requires complicated 

calculations as seen in the conventional methods 

for the problems of the hull-propeller interaction. 

The complexity of the calculations have caused the 

conventional methods to be impractical as described 

in the Section 1. Hence, the author introduces the 

following approximation. The steady change of 

pressure on a hull surface which we are now examining 

corresponds to a pressure component of thrust de- 

duction. We can consider that obtaining the thrust 

deduction is the same as obtaining pressure on the 

hull surface as a percentage of the mean propeller 

thrust, To. Hence, the relationship between un- 

known Lg' and known Tg can be given as follows: 

N 

- 2 J esti eGo) I = @o > (67) 
q=l es 

Ss 
Pp 

where [ |]. denotes the component in x direction. 

Now, the L,' cin be considered as the jump of the 

pressure change across the propeller surface due 

to the interaction of the hull and propeller, and 

consequently, Eq. (67) may be considered as the 

approximate boundary condition on the propeller 

surface for vfey(g.). By giving an arbitrary 

function, L,', which satisfies the auxiliary Eq. (67) 

and calculating Wo by (46), (65), and (66), we can 

solve the integral equation, (62). This is the 

approximate calculation method proposed in this 

paper. 

253 

Numerical Procedure 

The purpose of this section is to describe the 

numerical procedure for the method explained in 

the previous section. Here, for convenience' sake, 

let us denote §@) in (62) by wr. 

Numerical Calculation 

The integral equation, (62) is an integral equa- 

tion of Fredholm type of the 2nd kind. Generally, 

it is impossible to obtain analytic solutions of 

the integral equation for S_ in an arbitrary form. 

Thus, various approximation methods have been 

suggested. In this paper, a definite integral is 

approximated by a finite sum, the equation is con- 

verted to a linear equation, and this equation is 

solved numerically. 

At first, the following approximations are used: 

(i) A hull in an arbitrary form is replaced by a 

polyhedron. The form of each surface named 

"element" is a plane quadrilateral. 

(ii) On each element, the unknown function Va (Or) 

is assumed to be constant. 

Using this approximation, the continuous function 

VEMOR) is replaced by the discrete quantities, vF 

(UST Di te rcketers , M), for the total number, M, of the 

elements. A control point, Q , where Wo (Q_) must 

be calculated, is selected fof each element. Thus, 

we have the following transformation: 

‘ pee ¥ 3G, 

ds os Seeds Oar v, CB ang? iQue (68) 

Ss aL element 

where ase no, and Q' denote values on the elements. 

The definite integral in the right side of this 

equation is an influence function from point Q to 

point Q 5 and we denote this function by Ag ,Q- 

On calculating Ag,,Q, the existence of a singular 

point, a so called doublet, becomes a problem. How- 

ever, there are many numerical calculation methods 

for this case. In this paper, the Hess-Smith method 

is used [Hess and Smith (1967)]. Further, selection 

of a control point is also a problem. However, for 

this problem various methods have also been suggested 

in the analysis of potential flow field. In this 

paper, each element is selected to be similar toa 

rectangle, and the point of intersection of its 

diagonal lines is employed as the control point. 

Finally, the hull surface after St.11/2 is taken 
into consideration, and it is divided more nar- 

rowly near stern in the longitudinal direction and 

approximately equally in the depth direction. 

Thus, each element, Aj, i'(i,i'= pera c.ccghy) 4 

which corresponds to Ag,,Q can be calculated and 

Wo (Qo), can be calculated for each control point. 

Then, the integral equation of unknown function, 

W*(Q_), is converted to a linear equation of un- 

known, i*- 

Now, in the calculation of Wo(Q_), the author 

uses the approximation that the number of propeller 

blades is infinite. Then, in correspondence with 

(46), (47), (65), and ((6), we can get the following 

relations: 
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ro PAL 

. 1 3 ~ 
Wo(Q) =, race dr de@n?r Ce) anne , 

(69) 

rE ie} 

Go (rv, 93%,¥7Z) = Go(xp, xr cos@ -f, sinO; x,y,z), (70) 

(71) 

where H represents a mean pitch of the propeller 

blade, and r, and rg represent respectively radius 

of the boss and radius of the propeller. Moreover, 

['(r,8) represents the thrust per unit length in the 

radial direction of the propeller blade elements 

and can be developed as follows: 

P(e,8) = 42 Tie . (72) 

We can also get the following equation in correspon- 

dence with the Eq. -(67): 

a2 
° 

To = dr NI'p (x) 6 (73) 

J i 

B 

Further, for the calculation of Wo in Eq. (69), it 

is approximated that I) is an elliptic distribution 

against r, and [,, To ....are disregarded. 

Examples 

The numerical calculations are performed in the 

case of two combinations of the hull and propeller 

shown in Table 1. Figure 2 shows the body plan of 

hulls. In order to examine the correctness of the 

TABLE 1 Particulars and Operating Condition 

U SHIP Lop He B/T Cc D Z Ba Ou 

L 6-00) (650) 92/586 SBW2 oS S 2505 oAo7 Oa'55 

a 7.00 6.00 2.63 BYE) 52l@  aboA7 ailSs) Sos 

Lpp = Length between perpendiculars (meter), B = 

Breadth, 

T = Draft at mid-section, Cp = Block coefficient, 

D = Propeller diameter (meter), Z = Number of 

propeller blades, 

U = Ship speed (meter/second), Fn = Froude number, 

nq = Propeller's number of revolution per second. 

Ne 
T ship L ship 

FIGURE 2. Body plan. 

approximation used in the calculation of Wo, the 

procedure as follows is performed. First, perfor- 

mance of the propeller in the nominal wake is calcu- 

lated to obtain IT), and L,~. Next, by using the 
five combinations of distribution forms of I), L)~ 

and the number of the propeller blades as follows: 

(al) SN Eeimsktey asain Geli hy lly iereen beget Fy ltge eatin (SS) 

(03) INP alweiotiee, meshing Waplng goss , IT7 in (69) 

(c) N; finite, using Lo' only in (66) 

(d) N; infinite, using Ig only in (69) 

(e) N; infinite, using Ip: elliptic in (69) , 

The Wp are calculated. Then, by substituting these 

Wo in (62), the pressure changes, W*, are calculated 

and indicated in a non-dimensional form in Figure 3. 

As shown in Figure 3, the * barely differ due to 

the distribution form of I!,L', and the number of 

propeller blades. Hence, the approximation of the 

elliptic distribution is reasonable. 

Experiment 

The experiment was performed at the towing tank of 

IHI by applying a standard hull surface pressure 

measurement [Namimatsu, (1976)]. For the ships 

indicated in Tdble 1, pressures on the hull surface 

are measured under both the towed and the self- 

propulsion condition. Differences of the measured 

pressure between the towed and the self-propulsion 

condition are used for the experimental values of 

the pressure change caused by the propeller. 

Figure 4 shows the comparison of the experimental 

values to the calculated values, which are obtained 

by approximating Ip as the elliptic distribution. 

In addition, Table 2 shows the pressure component, 

tor of the thrust deduction fraction, t, which is 

the sum of the pressure change. The comparison in- 

dicates better agreement for the L ship (a thinner 

ship). 

Discussion 

The calculation method in this paper is derived by 

expressing the equations and boundary conditions 

(which determine the change of the flow field due 

to the interaction of the hull and propeller) in 

the form of an acceleration potential. For this 

reason, this method nominally requires calculations 

of pressures induced by the hull and propeller, 

while the conventional methods, which express flow 

fields in the form of a velocity potential, require 
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(y,z)=coordinate of a point on hull surface U(ship speed)=2.05m/sec 

FIGURE 3. 

calculations of pressures and velocities induced by 

the hull and propeller. Generally, the calculations 

of induced pressure require less time in comparison 

with the calculations of induced velocity. Thus, 

when the present method is used, the time required 

for numerical calculations can be reduced to a 

practical value. This method can also be applied 

for the calculation of propeller-induced surface 

forces [Ishida, (1975) ]. 

It is anticipated that the results derived by 

this method may be worse as the calculation point 

moves closer to the stern, because, in this method, 

the assumption of a thin hull is used, propeller 

boundary conditions are simplified, and the rudder 

is disregarded. When the actual experimental values 

are examined, it seems that the anticipation may be 

correct. However, it iS more appropriate to con- 

sider that the majority of the error is due to the 

fact that the flow field around the hull is assumed 

to be inviscid. 

4. WAKE ENERGY RECOVERY BY A PROPELLER 

A towed hull pulls still water forward, but when 

the hull is self-propelled, the propeller acceler- 

ates this forward flow toward the back, and thus, 

the propeller recovers wake energy. Hence, it is 

important for the improvement of propulsion effi- 

ciency of a ship to know how the wake energy can be 

recovered effectively. The present, self-propulsion 

test method can give information for the wake energy 

recovery as a propulsion factor. This method is, 

however, insufficient to tell us how wake energy 
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T ship 4c, 

y= [£139.8] mm =326. “4 

Ye erate LEON, 5 200mm 150 100 50 : 

(E186-5] 
-0.1 
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———_ + + 0 
200mm 150 100 50 

AC 
P 

(233-2) © 200mm 150 

-0.2 39555 -0.3 

2 + = 
200mm 150 100 50 

(y,z)= coordinate of a point on hull surface U(ship speed)=1.27m/sec 

Numerical calculation of pressure change on a hull. 

should be effectively recovered. This is due to 

the fact that the balance of force is a basic prin- 

ciple of analysis in the method, in which the balance 

of energy is not given sufficient consideration, 

and further, because almost no information on the 

flow field can be given. To cover the fault of the 

self-propulsion test method, a knowledge of the 

overall flow field is necessary and the distribution 

In the vicinity of energy in the flow must be found. 

of the propeller, however, the flow field is so 

complicated that experimental measurement and 

theoretical analysis are difficult. 

consider, as a practical approximation, an attempt 

to estimate wake energy recovery by a propeller 

through an analysis of the wake at a position far 

from the propeller. 

In the next section, the phenomena of the inter- 

action in a distant wake are analyzed by the use 

of Oseen's approximation to determine under what 

Hence, we might 

TABLE 2 Thrust Deduction Fraction 

SHIP t t ie 
Pp Pp 

L .- 166 .140 -109 

ay oOul .-160 -200 

t,, is obtained from pressure measurement. 

tp* is calculated by present method. 
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L ship 

* 150 mm 

[E184.5] 

CALCULATION 

=o EXPERIMENT 

3 150 mm 100 SO 0 

(y,2)= coordinate of a point on hull surface U(ship speed)=2.05m/sec 

FIGURE 4. 

conditions the wake energy is effectively recovered 

by the propeller. 

Fundamental Equation 

In this section, we assume that a ship is stationary 

in a uniform flow of speed U. We proceed to examine 

the balances of force and energy between the ship 

and the flow field. 

Now, for the surfaces where force and energy are 

surveyed, we define six rectangular cross-sections 

in addition to the hull and propeller surfaces. 

These six rectangular cross-sections are indicated 

in Figure 5. Two vertical planes are in right angle 

to the direction of the uniform flow at the front 

and rear of the hull. The free surface and the 

bottom of the water are held between the two vertical 

planes, and two more vertical planes are parallel 

to the uniform flow at infinite distances to the 

right and left of the hull. Further for simplicity, 

we assume that the flow field is independent of 

time even if a propeller exists and a coefficient 
of diffusion, Ue, due to viscosity or turbulent 

flow is constant. Moreover, notations used here 

have the same meaning as those in Section 3. 

At first, let us examine the input and output 

of momentum at the individual surveyed surface in 

the towed condition. Then, as a result, the total 

resistance, R_, can be given by the integration on 

the rectangular cross section, S., in the rear of 

the hull as follows: * 

T ship 

y= [E1328] nm 

*700 mm150 100 

=186.5 

“200 mm 150 

=0.2 37305 023) 

Zz 0 gal 
200 mm 150 

ACh 

-0.4 Ss 
-279.9 ——————— 

200 mm 150 

-0.3 

Zz 
200 mm 150 100 

(y,z)=coordinate of a point on hull surface U(ship speed)=1.27m/sec 

Comparison between calculated and experimental value. 

du 

ds[po-p+2u, ae a u_(Ut+u_) | 
s s 

(74) 

b 
aL 2 

+ > Pd AZEGSi, 

-b 

where u, v, and w represent x-, y-, and z-components 

of disturbance velocity and b represents the half 

width of S. at the free surface. Further, po repre- 

sents the pressure at x = -®. Moreover, when the 

energy balance is examined, kinetic energy lost 

when the uniform flow passes along the hull must 

be equal to the sum of the energy dissipated to the 

outside through the surveyed surfaces by heat and 

work. Thus, we can obtain the equation as follows: 

p 2 
£ 2 —=—= 2 2 = ds[u* - (Utug + v_ + w.)](U + u_) 

on 

= av @(@) = ds {pop or) 

Vv Ss 



it [ du. 

re a(u + 7) Ea 

(Ge du 4 
tig pe 2) 

where V. denotes the flow field surrounded by the 
Survey Surfaces, and 

; dus) 2 av, \2 aw.) 2 
® (e) = ue (—*) + =) + (5) 

aw av.) 2 ow ane 

(52 +3) (yet ae 
(2s vs | 

Vp EET 

By using (74) and (75), the effective horsepower, 

EHP, can be expressed as follows: 

p 

iis d(e) + cau dS (ug+vgtw2) (U+ug) 

Sp WE 

(75) 

N 

(76) 

EHP = 

UP 5 
Ps Gigs dS ug (Pg-Po) 

=) Sa 

jh du. (Se ou. 
a Ws 4 dS |2u, cra a? Wes <a ay ) 

A 

(ts **s) 
qr Ws Deas a 6 (77) 

The first term on the right side expresses heat 

energy, the second term expresses the increase of 

kinetic energy, the third term expresses the in- 

crease of potential energy, and the fourth and fifth 

terms express work toward the outside of Vs. This 

equation, (77) gives the work, EHP, transmitted 

to the fluid through the hull when the hull is 

towed in still water. 

Next, the self-propulsion condition can be 

considered in the same manner as the towed condition. 

The equation for the balance of forces is as follows: 

du 
= Bis AR = ds E Days 5 P gu iy (OR ) 

or 

b 

i 2 
7 a PS dz Crs! (78) 

-b 

where the subscript sp denotes the self-propulsion 

condition and AR represents the skin friction 

correction which is used for the ordinary propulsion 

test at the towing tank. When the energy balance 

is considered, we can get the following equation: 

FIGURE 5. Survey surfaces. 

DHP -{ dv oe (e) 

Wee 

Pe 
-=— as |u2 =\ uraget + v2_ + w2 (Utu__) 

2 s sp s sp 
Sa 

ie oe (Utu__) 

Sa 

Ons gives Usp 

ar Be BUG) 5 + ul x oe ) 
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Then, using 

equation: 

DHP + UAR = 

Vv 

p 
~ ds(u2_ + 

2 Ss 

iS) 
A 

b 

Up .g 
pet fe ce + 

sp 

-b 

dv © (e) 
sp 

ie 

Cb OF VW 2 m_)) 
sp 

ds Bap Bao 2) 

Sa 

PST 

(78) and (79), we can get the following 
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This equation reveals that the work transmitted to 

the fluid by the ship moving in still water with a 

constant speed, U (sum of the delivered horsepower 

and the work UAR caused by skin friction correction), 

changes in the fluid and is dissipated as heat, 

kinetic energy, potential energy, and work through 

the surface si: 

Oseen's Approximation and Problem of Variations 

We assume that the hull is thin and S_ is placed 

sufficiently far behind the hull. Then, the inte- 

grations on S which appear in the right side of 

the Eqs. (74), (77), (78), and (81) can be approx- 

imated as indicated in the Appendix. Hence, the 

following equations can be obtained: 

WwW 

2 2 2 Oe eee ae om ds ay x ox 

Sa bY 

b 
Og) 5 

a if dztc, (82) 

—b 

AR = Pd J estes - 4H ey 

Gd) 

Pe i (Es) ( ‘sp )? (Es) 
+ ds + = 

2 S dy dz ox 

A 

b 

Pg 2 
rn £ dz csp , (83) 

7 

-b 

where Ho, H_, and He represent the total head as 

follows: P 

Po u2 
Hn = — + ay (84 0 Pd Y 2g ) 

B 2 
HO ==—+y += (UFO + v2 + w*) A (85) 
s [oye s 

£ 

12) 2 
= SS sy Ee (U+u vanes we) (86) 

Further, W represents the sectional area in which 

Ho-H is not equal to zero at S,- 

And, 

Po 
EHP = av ® (e) + aS(Ho - H_)? 

Ss Ss 

V, mn) 

pies o (eye Hee) (“s\? 

2 dy az ax 

Sa 
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4 azine (87) 
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Po 2 
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 -JU 5 

a) dz Usp (88) 
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In the Eqs. (82) and (83) for the balance of force, 

the forces Rt and AR, given to the fluid from the 

outside are divided into the force related to the 

viscosity expressed by the first term and the force 

related to the wave making expressed by the second 

and third terms. In Eqs. (87) and (88) for the 

balance of energy, the energies EHP and DHP + UAR 

given to the fluid from the outside are independently 

divided into the first and second terms which repre- 

sent the energy related to viscosity and into the 

third term and the fourth term which represent the 

energy related to wave making. 

Now, using (87) and (88) which show that the 

viscous energy and the potential energy are indepen- 

dent of each other, it is obvious that the condition 

for minimizing the viscous energy in (88) is a 

necessary condition for minimizing the DHP. We 

proceed, therefore, to obtain the minimum condition 

of the viscous energy which corresponds to the 

optimum condition for the energy recovery by the 

propeller. For this discussion, we assume that in 

the right side of Eq. (88), the first and second 

terms change independently or that the increase 

and decrease of the second term have, at least, a 

positive correlation with the increase and decrease 

of the first term. Based on this assumption, let 

us consider the conditions required in minimizing 

the following function: 



a (89) 

Using (83), the following equation is obtained: 

da = = - ; 90 PI S(Ho Bao AR Rg, (90) 

W 

where R_ denotes a wave making resistance under a 

self-propulsion condition. This R_ might be 

approximately equal to a wave making resistance 

under the towed condition. Furthermore, AR can 

also be given by the total resistance under the 

towed condition. Hence, it can be considered that, 

under the self-propulsion condition, the following 

equation is given: 

g dS(Hy) - H_) = C, (91) 
sp 

where C is constant and can be decided by the towed 

condition. Thus, the problem of minimization of E 

is converted to the problem of variations for 

minimization of E given by (89) under the constraint 

condition (91). It is obvious that the following 

solution exists for the problem of variations: 

Ho - H = constant. (92) 
sp 

Furthermore, although it is omitted here, at least 

the conditions that the ship speed and displacement 

are constant are implicitly required in addition 

to this constraint condition. 

Let us consider the meaning of Eq. (92). Since 

Ho - Hs and Ho - Hsp are proportional to the viscous 

wake in a position far from the hull as indicated in 

the Appendix, (Ho - Hg) 2 and (Hg - Hsp) * are propor- 

tional to the kinetic energy of the viscous wake. 

Hence, the minimization of E corresponds to the 

minimization of the kinetic energy of the viscous 

wake. And, it can be considered that the condition 
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(92) is the condition for minimizing the kinetic 

energy left in the wake by recovering the kinetic 

energy of the viscous wake with the propeller. 

The optimum condition for this energy recovery 

is obtained under the assumption that the constant 

C of Eq. (91) is given as the constant decided by 

the towed condition. In other words, it is con- 

sidered that condition (92) gives only the condition 

for the propeller to accelerate flow effectively 

under the assumption. If, however, the wave making 

resistance is zero under a purely self-propulsion 

condition, then (AR=0) C can be expressed as C=0 

regardless of the towed condition. Therefore, it 

can be considered that this fact indicates condition 

(92) applies not only to the optimization of the 

flow acceleration by the propeller but also to the 

optimization of the hull-propeller combination for 

effective recovery of the wake energy. 

The author proceeds to examine the correctness 

of this condition in the following sections by 

using results of the self-propulsion tests and 

wake survey measurements. 

Experiment 

Total head at a wake far from the hull was measured 

at the towing tank of IHI. The measurements were 

performed for the ships and operating conditions 

indicated in the Table 1 under both the towed and 

the self-propulsion conditions. The measurement 

cross-sections which correspond to plane Sag were 

three vertical cross-sections of 0.3Llpp, 0.5Lppr 

and 0.7Lpp behind A.P. Figure 6 shows the total 

head loss distribution of the towed condition in 

the non-dimensional forms and also shows H,* which 

is the change of total head loss by the propeller 

action. Here, Hp* is obtained as follows: 

Bie = (ig Cel.) iy = 1) 6 (93) 
Pp sp s 

We observe that in the towed condition the wake of 

the T ship spreads to the relatively lower region 

of the flow field. Further, we can see that the 

peak of the total head distribution in the towed 

condition agrees well with the peak of the change 

distribution for the T ship, but not for the L 

ship. In addition, Table 3 shows results of the 

TABLE 3 Self-propulsion and Towed Test Data and 

Wake Survey 

Sieg 1 te A Ww Ths te Rg, AR EE a 

L 5287 collGG aml DoW $557 .@O8 Agia, 5.42 150 

ae 18S .20 OS 1.58 8.92 ails@ 1660 So os’) 

Ww = Effective wake, Re = Total resistance from towing 

test (kg.), 

Ry = Wave resistance from wave analysis at towed condi- 

tion (kg.), 

AR = Skin friction correction (kg.), 

fs = ptg J dS(Ho-Hg) at 0.7 LIpp behind ship in towed 

condition (kg.), 

f£sp = p£9 J ds(Ho-Hgp) at 0.7 Lpp behind ship in self- 

propulsion condition (kg.). 
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FIGURE 6. Total head 

distribution far from 
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self-propulstion test and the towing test, and 

viscous resistances obtained from the wake survey. 

Discussion 

By analyzing the wake at a distant position behind 

a ship, an estimate of the recovery of the wake 

energy by the propeller is made, and the optimum 

condition (92) is given. Table 3 shows that hull 

MEASUREMENT SECTION 

0.3Lpp behind A.P. 

efficiency is better for the T ship than for the L 

ship. Results of the self-propulsion test, therefore, 

indicate that the energy recovery by the propeller 

is better for the T ship. On the other hand, results 

of wake survey measurement far from a ship indicate 

that for the T ship, the peak of the head change 

distribution agrees well with the peak of the head 

distribution in the towed condition. Hence, it can 

be considered that the propeller of the T ship makes 

the wake flatter in order to adapt the conditon (92). 
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TOWED CONDITION 

—--—-—- CHANGE OF TOTAL HEAD 

U=2.05m/sec 

583. 3mm 

U=1.27m/sec 

Thus, condition (92) is not contradictory to the 

results of the self-propulsion test. 

Bo CONCLUSION 

From the theoretical and experimental studies for 

the interaction of the hull and propeller, the 

following conclusions are derived: 

(i) Flow field in the vicinity of a hull is 

MEASUREMENT SECTION 
0.5Lpp behind A.P. FIGURE 6. (continued). 

analyzed by using acceleration potential, and the 

approximate calculation method is derived. This 

method can be used to calculate the change of 

pressure on the hull and has a higher practical 

applicability than conventional methods. 

(ii) For the analysis of the wake at a distant 

position behind a ship Oseen's approximation is 

used, and the optimum condition is given for the 

wake energy recovery by the propeller. This 

condition is examined by the results of the self- 

propulsion tests and the wake survey measurements. 
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APPENDIX 

Let us examine the definite integral in Eqs. (74) 

and (78) for the balance of force and the definite 

integral in Eqs. (77) and (81) for the balance of 

energy. At first, we denote these integrals by F 
E 

and Ee as follows: 

= du 
FE as [bo 2 ? Qe qa p-u(U + u) 
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(95) 
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If the terms to which uw is related are assumed to 

be small, Ee and Ea can be rewritten as follows: 

p 
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where H represents total head as follows: 

= 2 Fo a Gar ke eS . (98) 
Pd 2g 

Now, using Oseen's approximation, the following 

relationship can be written: 

Meee bw we Os Wn Wi SS Se db ity A (99) 
ox az 

where ~ represents velocity potential, and u', v', 

and w' represent velocity components of rotational 

motion which are zero at other than W. Then, pres- 

sure, p, and wave height, C, can be expressed as 

follows: 

cate a6 (100) 
= SPA! = WAU eeein 

SBE 6 oy (101) 
12) 

where Tf, is due to a potential motion and [' is due 

to a rotational motion. 

Substituting (99), (100), and (101) into (96) and 

(97), we can get 

dz Gar 

-b -b! 

+ (Vo)? + ow | (102) 
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and b' represents the half width of W at the free 

surface. If only the largest terms in W are kept 

in the definite integral in Eqs. (102) and (103), 

the following approximate equations can be obtained: 

SN 

b 

Pg 2 

+ — Ch (Gs) = (910 dw u' , (105) 
2 £ 
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=b W) 

Since the following relationship is approximately 

satisfied in a wake far from the hull: 

eo Sy = GG 8), (107) 

Eqs. (82), (83), (87), and (88) can be obtained from 

(74), (77), (78), and (81) by substituting this 

relation into (105) and (106). 
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ABSTRACT 

The paper covers the problems involved in determin- 

ing the velocity field in way of the ship propeller. 

The analysis is given for both the structure of the 

stern viscous flow and its change due to the ship 

propeller operation. 

The method is offered for scaling the nominal 

field of axial velocities based on the use of both 

the semi-empirical theory of the boundary layer and 

theory of free turbulence, and the engineering method 

of estimating the action of the working propeller 

upon the velocity field. 

As an illustration, the data of studying the 

influences of the scale effect and the working ship 

propeller upon the velocity distribution and total 

wake flow are presented in reference to a moderate 

displacement tanker. 

1. INTRODUCTION 

The need for a reliable definition of nonstationary 

loads acting on the propeller blades and shafting, 

and also of the intensity of hull vibration and 

cavitation phenomenon, has placed the wake flow 

problem among the most important problems of ship 

hydromechanics in the last few years. Though this 

problem first originated mainly in connection with 

the building of large full ships, it is of no less 

importance in the design of modern high speed con- 

tainer ships and some other classes of ships. In 

this sphere of hydromechanics shipbuilders are facing 

two main problems: a) prediction of the velocity 

field in way of the propeller for a ship of given 

lines as based on geosim model test results and 

b) finding solutions which provide a more favorable 

distribution of the wake flow. The rationalized 

formation of the afterbody wake is also one of the 

possible reserves of ship propulsion which do not 

yet appear to be fully realized. 

At present, the problem of the afterbody wake 
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and particularly its prediction attracts the atten- 

tion of a growing number of specialists in research 

centers of the advanced shipbuilding nations in- 

cluding the USSR. In view of the extreme complexity 

of the afterbody flow pattern in the presence of the 

propeller-induced disturbances, the problem of the 

wake flow is still far from being solved. The laws 

regulating the development of wake flow and also 

the dependence of the velocity distributions at the 

propeller disk upon the shape of the afterbody lines 

are not quite clear. The test methods of defining 

the ship model wakes and model-to-ship correlation 

methods are as yet imperfect. Therefore the ac- 

curacy of the flow nonuniformity data obtained in 

way of the propeller and used as a basis for calcula- 

tion of the abovementioned hydrodynamic character- 

istics does not satisfy the requirements of modern 

practice. Hence, a detailed investigation of this 

phenomenon is needed. 

In our opinion the most important tasks are as 

follows: First, comprehensive physical studies of 

the afterbody velocity field. These would allow for 

better understanding and proper evaluation of the 

effects of different factors on the formation of 

wake flow in that region and help create a flow 

model exhibiting the main features of the phenomenon 

and capable of being investigated by analytical 

methods. At this stage the theoretical studies are 

essential primarily for a better understanding and 

more proper analysis of the test results, as well 

as for improving the general knowledge of both the 

flow laws and the scheme of breaking the wake into 

components. Second, the results of the experiment 

and the qualitative theoretical conclusions should 

be the basis for the development: 

- methods for simulation of the nominal wake or 

methods for theoretical estimation of the scale 

effect at early stages of designing; 

- methods for experimental definition of the 

effective wake and approximate methods for the evalu- 

ation of propeller effect using the nominal velocity 

field data. Since the velocity field in way of the 
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propeller is normally defined in the idealized con- 

ditions of the towing tank, it is absolutely neces- 

sary to evaluate and take account of the effect of 

operating conditions, i.e., the effect that increas- 

ing the roughness of the hull surface as well as the 

ship motions and drift have on the extent of flow 

nonuniformity at the afterbody. There are also 

some additional tasks, such as improvement of the 

method used for definition of the ducted propeller 

velocity field, estimation of a possible change in 

the wake flow over the propeller axial length, and 

thinking over the practicability of the methods of 

disturbing action upon the flow pattern with preset 

requirements. The methods of experimental defini- 

tion of the flow velocities in the vicinity of the 

hull model are no less important. It is impossible 

to cover the results of all the above studies ina 

short report like this, so we shall restrict our- 

selves to the following traditional problems: the 

scale effect of the velocity field and the propeller 

effect on the flow formation at the stern. 

2. SCALE EFFECT OF THE NOMINAL VELOCITY FIELD 

The decrease of the mean wake in a model--ship 

correlation with sufficient accuracy can be at- 

tributed to variation in total frictional losses. 

The problem of simulating the local wake is far 

more complicated. The flow in way of the propeller 

is a combination of two three-dimensional flows: 

the boundary layer in the upper part of the after- 

body with intensive secondary flows characteristic 

of this region and the initial part of the wake de- 

model - ship correlation, the approximate methods 

of the semiempirical theory of turbulent boundary 

layer and of the free turbulence theory are of 

great importance; also important are comprehensive 

physical investigations of the afterbody flow which 

are necessary for the refinement of the flow model 

and formulation of the simplifying assumptions. 

Such investigations should cover the whole of the 

viscous wake region (Figure 1 and 2) and not be 

limited to the disk propeller area as is usually 

done in practice. 

The phenomenon being too complicated, a general 

approach to simulating the flow seems to be unat- 

tainable at present. Therefore, it is expedient 

to discuss some particular models of the flow. Some 

of the flows may be considered as the most common 

types which can easily be investigated. These are: 

a) the velocity field of a single-screw ship of 

moderate fullness with V-shaped or U-shaped frames 

where the contribution of bilge vortices is not 

Significant; 

b) the velocity field of high-speed, twin-screw 

container ships; 

a more complex pattern and more complex scaling laws 

are characteristic for 

c) the velocity field of full ships (6 > 0.8) 

with U-shaped frames where the intensive bilge 

vortices are formed; 

d) the velocity field of the very full ships with 

the boundary layer separation at the afterbody. 

Model "a" 

The calculation data obtained for a three-dimensional 

boundary layer lead to the conclusion that with moder- 

ate transverse flows the variation in characteristics 

veloping behind the hull which may contain discrete 

vortices resulting from the boundary layer separa- 

tion in way of the bilge where the flow lines from 

under the bottom are extending to hull side sur- 

face (Figure 1 and 2). As shown by experiments, 

the contribution of each of these factors depends 

on afterbody fullness, stern frame form, buttock 

angles, and some other parameters. 

The distributions of the relative axial veloci- 

ties Uy/Ys(y/é;Rn) are different for the boundary 

layer, the wake, and the vortex effect region, and 

largely depend on the afterbody lines and the 

history of the flow. The solution of the scale 

effect problem by a purely experimental way is not 

practicable, so when the general laws of variation 

in the flow characteristics are established for 

of the main flow accounting to Rn does not differ 

markedly from those obtained for a two-dimensional 

boundary layer. Hence, for practical estimation of 

the axial velocity field in the upper part of the 

afterbody (Figure 1) we can use, without introduc- 

ing large errors, the boundary layer correlation 

schemes developed to fit the two-dimensional flow 

on the basis of the logarithmic law and the velocity 

defect law. For simulating the wake flow use can be 

made, with some assumptions, of the known Prandtl 

asymptotic solution for a two-dimensional flow 

which was obtained on the assumption that the flow 

is barotropic and that the velocity defect, AU, is 

FIGURE 1. Nominal velocity 

field in the propeller plane 

for a model of tanker with 

moderate block coefficient, 

cy = 0.73 (model 1). 
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FIGURE 2. Nominal velocity 

field in the propeller plane 

of a "Krym"-type tanker model, 

cy = 0.83 (model 2). 

insignificant as compared to the velocity at the Such a scheme of simulation makes it possible 

boundary of the wake flow: to take into account the variation in both the 

wake thickness and the form of the nondimensional 
Wr = Wi 4 — 6 ae L profile U,/Us. 

a Us een (C,/A%) S ASP2) ) Model - ship correlation data for a tanker of 

Bela wm * (in (2) them eae D = 1 
Z, = 2,/R = 0.875 Ae 

where AX is the relative distance between the body 0.85 Pee oi 

trailing edge and the wake flow section under study. 

Naturally, these relations do not provide a reliable 

qualitative definition of the flow characteristics x 

at the initial part of the three-dimensional wake IS) Osh 

which develops with the longitudinal pressure gra- 

dient. However, the above relations are considered 

to be quite suitable for simulating the wake field 014) ae 

velocity because the deviations due to the effect ) 1 

of some factors ignored here can be mutually com- 

pensating. The practical method of correlation is 

based on the assumption of a negligible effect of 

the potential component and of a free streamline 0.8 
flow around the hull. The effect that the varia- 

tion of the transverse velocity component has upon 

the axial flow with the increase in Rn is also con- x 

sidered insignificant. The initial experimental 

data for the model are defined in the Cartesian 

system as velocity or wake distributions against 

the transverse coordinate, y = y/L, with the dif- 0.4 i ay 

ferent constant values of %. The coefficients, Kj, 0 1 2 3 

and Kj, in Eqs. (1) and (2) are assumed to be (Y/L) X 10? 
constant in the geosim horizontal sections of the = 

Z. = 0.438 
wake. cn Se | 

= if = W Wa Cr (BNg) /Cag (RT, A aioe 37/0) const (3) 

© © O— According to Equations (1)—(4) 

@ @ @— Jaking Account of the Boundary 
Layer Scale Effect 

= ID 

b. = bo/l, = Cc Rn C s s/ 5 by ao ad Fo {En,,) (4) 

where “i me att | 

1 a2 3 

Co = frictional resistance coefficient (Y/L) X 10 
in two-dimensional flow; 

b = width of the wake; FIGURE 3. Velocity distribution in wake extrapolated 

WwW = frictional wake ship, model. to full scale. 
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medium displacement are shown in Figure 3 as an 

illustration. Isotaches (lines U = const) plotted 

in Figure 1 show that the upper part of the propel- 

ler disk is in the hull boundary layer region and 

here the flow contraction will take place almost 

normal to the constant velocity lines rather than 

to the longitudinal center plane. In this connec- 

tion an attempt was made to evaluate the variation 

of the flow velocities in the upper part of the 

propeller disk using the approximate method re- 

ported at the 13th ITTC, which provides quite a 

good agreement with the full-scale test data, and 

those obtained by calculation of the three- 

dimensional boundary layer [Boltenko et al. (1972) ]. 

The results of the refined model--ship correlation 

for this model within the propeller disk practically 

coincide. Velocity deviations of 3-4% V are ob- 

served only in the vicinity of the viscous wake 

boundary in its upper sections (outside the propel- 

ler disk), Figure 3. However, in some cases (e.g., 

with pronounced V-shaped afterbody frames) the hull 

boundary layer can play a more significant role in 

the formation of the wake flow, and in that case 

its effect should additionally be taken into con- 

sideration. Similar practical methods based on more 

general assumptions with respect to regularities 

in the variations of the axial velocities were given 

by the towing tanks of Europe and Japan [Sasajima 

and Tanaka (1966), Hoekstra (1977), Dyne (1974) J. 

For comparison Figure 4 shows the model--ship cor- 

relation results obtained by the Japanese method* 

for some specific profiles of the wake of the model 

under consideration. As is seen, this method leads 

to a greater contraction of the wake in model--ship 

correlation and does not take into account the varia- 

tions of the velocity defect in the centerline plane. 

However, apart from some limited regions in the 

vicinity of 6 = 0° and 180° the circumferential dis- 

tribution of axial velocities U,, (78) calculated by 

both methods differs slightly (Figure 5). For the 

above reasons substantial discrepancies in the 

vicinity of 6 = 0° and 6 = 180° can give rise to an 

appreciable change in the harmonic spectrum of the 

field especially in the amplitudes of the even har- 

monics. 

At present it is difficult to find an acceptable 

practical method of simulating the transverse ve- 

locities, though the semiempirical theory indicates 

the possibility of a noticeable scale effect of the 

secondary flow velocities in the three-dimensional 

boundary layer of the ship. 

Model "b" 

The flow nonuniformity in way of the propeller of 

the twin-screw ship is mainly due to the hull bound- 

ary layer and the additional loss of velocity in the 

wake behind appendages 

WV eaMO PF Se SAU Stls ES Oe Os 

*The method of Japanese researches was used as described by 

Dyen (1974). 

il 

According to 

Equations (1)—(4) 

---- According to 

Sasajima and 

Tanaka, 1966 

(Y/L) X 102 (Y/L) X 102 

FIGURE 4. Full scale wake predicted by different 

methods. 

where 

mana potential component of the wake; 

Fo; viscous wake due to the effect of the hull 

boundary layer; 

Aw. = additional losses of velocity in the wake 

behind the appendages; 

U = horizontal local velocity 

U = horizontal local velocity in the "bare" 

hull boundary layer. 

The investigation of the wake scale effect for a 

twin-screw ship, with a probable interaction between 

the wake components, involves a number of complex 

hydrodynamic problems. They include that of the 

hull three-dimensional boundary layer, also the wake 

behind the propeller shaft fairing placed at an 

angle of attack to the flow inside the boundary 

layer, in which case not only is the mean velocity 

Vy (y) changed but also the extent and the scale of 

the "outside" flow turbulence. Then there is also 

the wake--boundary layer interaction problem and, 

finally, oblique flow around the circular cylinder 

(shaft) placed in the turbulent boundary layer. 

Many of the above problems are concerned with some 

insufficiently known aspects of hydrodynamics of 

viscous fluid and, therefore, cannot be completely 

solved for the present. As with the previous case, 

approximation schemes can be used for practical 

estimations. By way of illustration let us con- 

sider the model--ship correlation data for a twin- 

screw ship equipped with propeller-shaft fairings. 
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FIGURE 5. Full scale circumferential velocity 

distribution predicted by different methods. 

The experiments show that, in the vicinity of the 

heavily-loaded blade sections which are at a dis- 

tance from the hub, the interaction between the 

boundary layer and the wake behind the fairing can 

be considered insignificant; the effect of support- 

ing vortices at the fairing junction is also negli- 

gible or not found at all because provision is 

usually made for a smooth transition of the fairing 

to the shaft body. This enables simulation of each 

component of the viscous wake Wro(Rn) and AW, (Rn) 

to be investigated separately with the total scale 

effect to be determined by the method of superposi- 

tions. Here it is expedient to make measurements 

in the Cartesian system of coordinates as well. For 

the model--ship correlation of the wake behind the 

hull the method described by Boltenko et al. (1972) 

is used. When simulating a component of the wake 

AWp caused by the flow around appendages, use can 

be made of the relationships of the free turbulence 

theory (1) and (2). According to data of the flow 

visualization, it can be considered with an accuracy 

sufficient for practical purposes that the stream- 

lines on the fairing are arranged equidistant to 

the hull surface, and that in evaluating the scale 

effect the strip theory can be used. Then 

U —_& 
AW. = A v a RS Wom _HS Cre) Com icone $a) a const 

Unm 

y= Zi const (6) 

b. = oe Coe (7) 
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where 

C.. = coefficient of the fairing resistance at 

section at a given distance ¥% from hull 

surface (Figure 6); 

Uh = velocity in the hull boundary layer at a 

given distance % from its surface; 

b = width of wake behind the fairing at the 

propeller. 

From the model-ship correlation data shown in Fig- 

ure 6 it is seen that the flow nonuniformity varies 

almost equally due to the scale effect of the hull 

boundary layer and the wake behind the shaft fairing. 

The mean circumferential axial wake is reduced ap- 

proximately by one half. 

Model "c" 

The discrete vortices, which develop due to separa- 

tion from the bilge, with their axes oriented in 

the direction of the main flow may have, in some 

cases, especially where the flow is around the U- 

shaped stern frames, a noticeable effect on the 

afterbody flow pattern. Generally there are two 

vortices arranged symmetrically in relation to the 

center plane; however, sometimes more complex vor- 

tical systems can be observed in the flow around 

full ships. The development of the bilge vortices 

leads not only to redistribution of the tangential 

velocities at the propeller, but to the additional 

nonuniformity of the axial wake as well due to 

a) redistribution of the velocities of the main 

flow in the hull boundary layer and in the wake 

behind the hull under the action of the vortex- 

induced transverse velocities and 

b) variation of the axial velocities in the 

vortex turbulent cores, the transverse dimensions 
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FIGURE 6. Scale effect estimates for nominal velocity 

distribution at propeller of a twin-screw ship with 

shafting fairings. 
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of which can be rather large as shown in Figure 2. 

Thus the whole flow field containing bilge vor- 

tices can be divided into three parts: 

1) the region of turbulent core, 

2) the region of vortex effect on the hull bound- 

ary layer and 

3) the region of nondisturbed flow in the bound- 

ary layer or in the wake (Figure 7). 

The laws for changing the relative velocities in 

each of these regions are different in model-ship 

correlation. 

Evaluating the scale effect of disturbances in 

the boundary layer is rather a complicated task 

partly due to the difficulty of distinguishing these 

disturbances in the nonuniform three-dimensional 

boundary layer of the hull. Therefore, at the ini- 

tial stages of investigation the principal attention 

was paid to the specific features of such kind of 

flow in simplified conditions, i.e., under the as- 

sumption that artificial vortex systems were pro- 

duced by means of profiles of small aspect ratio 

at the boundary layer of a flat surface [Poostoshniy 

(1975) ]. For such simpler flows one can use the 

approximate methods of evaluating the scale effect 

of axial velocities in the region where influence 

of the vortex is observed. These methods will be 

based on a combination of experiment and theory or 

approximate semiempirical schemes, which is most 

important for having a general idea of the phe- 

nomenon. : 

Extra losses of axial velocities in the vortex 

cores are rather high for some ship models (reach- 

U = constant 

Region of Vortex Influence . . ; SS 

on the Boundary Layer ~— Y Undisturbed Flow Region 

Vortex Core -/ 

Uo 

7 Velocity Distribution 

in the Core 

Circulation Distribution in the Bilge Vortex 

“Core of Tanker Model (4 = 60000 t), T= 1.1 m2/s 

2.0 a 

Distribution of Circulation in a Vortex 

Core of Free Flow, To= 0.07 m*/s 

= 
1.0 2.0 

Ig(r/r,) +1 

FIGURE 7. Velocity field in the boundary layer with 

longitudinal discrete vortices. 

ing 20-30% of the mean wake value); these losses 

are also to be studied in detail. 

As shown by the experiments (Figure 6) the 

circulation distribution law for the cores of bilge 

vortices is similar to that for the vortex cores in 

the free flow. So, in order to evaluate the scale 

effect of a relative defect of the axial velocity 

in the core, i.e., the core allowance, use can be 

made of the theoretical relationships derived for 

linear turbulent vortices. 

Calculated results which are based upon rather 

a small amount of data on the variation in eddy 

viscosity coefficients with Rn obtained during model 

tank tests and fall-scale hydrodynamic experiments 

lead to the conclusion that a model-ship correlation 

involves relative decrease of the core size. How- 

ever, far from decreasing, the wake allowance, unlike 

that for the boundary layer, may even be markedly 

growing. Some additional variation in the distribu- 

tion of axial velocities in the core caused by an 

increase in Rn may also be due to an increase in the 

longitudinal pressure gradient at the stern owing 

to the reverse effect of the hull boundary layer on 

the external potential flow both on model and ship. 

It is impossible at present to develop a flow 

model of this complexity, define the component ve- 

locities changing under different model-ship corre- 

lation laws and, finally, determine these laws; in 

other words it is impossible to develop a well- 

founded method for simulation of a three-dimensional 

wake flow with discrete vortices. The results of 

the above-mentioned preliminary studies are of 

qualitative character and need experimental verifi- 

cation. A series of comparative model and full-scale 

tests carried out mainly by Japanese researchers 

[Namimatsu and Muroaka (1973), Taniguchi and Fujita 

(1969) ] confirm the existence of bilge vortices in 

full-scale conditions as well, though the data re- 

ported in the above papers are inadequate to judge 

the quantitative aspect of the phenomenon. We can 

only observe that the disturbances induced by the 

vortices in the flow around a ship are less notice- 

able, i.e., the flow is cleaned up. Therefore the 

attempt to use a more generalized model (model "a") 

seems to be justified also in this case, i.e., in 

the presence of developed bilge vortices, or at 

least an attempt to establish limits for the appli- 

cation of this’ flow model should be made. Compara- 

tive data obtained from model and full-scale tests 

are a decisive factor here. 

Unfortunately no data of nominal wake distribu- 

tion at the propeller are available. For an indirect 

evaluation of the scale effect of nominal wake we 

shall make use of the test data obtained in Japan 

for a 36000 t (displacement) tanker and its 1/37- 

and 1/20-scale models [Taniguchi and Fujita (1969) ]. 

The measurements were taken in the boundary layer 

near the sternpost at a distance of 1.1D from the 

propeller disk. In laboratory conditions the ve- 

locity field was measured both during the towing 

tests and self-propelled tests. The tests performed 

with the model (\ = 1:20) allow the propeller effect 

at the measurement plane to be considered as negli- 

gible (~0.05 V) and practically constant within the 

region equivalent to the propeller disk area. The 

comparison between the velocity distribution in the 

wake transverse section for % = 8, (where %, = 

propeller axis level) and the circumferential dis- 

tribution of the axial velocities (Figures 8 and 9) 

for this tanker and those for a "Krym"-type tanker 

shows that the simplified method of model-ship cor- 
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3. PROPELLER EFFECT UPON THE WAKE DISTRIBUTION 

Consideration of the wake scale effect when using 

the nominal velocity field as initial data will not 

always improve the agreement between the calcula- 

tions and full-scale measurements of nonstationary 

loads acting on the shafting and, particularly, of 

the constant bending moment component defined by 

the analysis of the first harmonic. Systematic 

model basin test results indicate that signigicant 

variations of the velocity distribution at the stern 

may be due to the propeller performance. Several 

factors are to be taken into account when analysing 
(Y/L) X 102 the causes of this phenomenon. The most important 

LWL among these are the propeller-induced acceleration 
= of flow and, hence, the decrease of the layer thick- 

(+) ness upstream, and the effect of propeller-induced 

radial velocity in the immediate vicinity of the 

propeller. 

Thus it becomes necessary to investigate the 

ship-hull boundary layer and the wake taking into 

account the transverse pressure gradient. Semi- 

empirical theories do not permit this problem to 

be solved and are adequate only for the most ap- 

proximate estimations of the flow history. There- 

fore, just as in studying some features of the 

nominal wake flow mentioned above, preliminary 

theoretical investigations of the velocity field 

under simplified conditions are of great importance 

here. Although these results are not directly 

applicable to the ship, they may be useful for a 

better understanding of the main relationships of 
0.8 1.6 2.4. the phenomena under study and for the devleopment 

of practical methods to obtain the effective wake. 

In this connection one cannot but mention the 

important contribution of American scientists to 

the investigation of the axisymmetrical problem, 

particularly, the latest works by Huang and Cox 

(CL) Dc 

To obtain approximate estimates of the effective 

“KRYM"-Type Tanker 

© 0 0 —Model, Experiment 

eer Correlation 

—— 

0.8 1.6 2.4 

Taniguchi and Fujita 

Experiment, 1969 

oO 0 O — Model, Experiment 

SS Ship, Experiment 

(Y/L) X 10? 

FIGURE 8. Comparison of velocity distributions for 

model and ship wake. 

relation reveals the characteristic features of 

variation in the velocity field and its harmonic 

spectrum. However, these conclusions cannot be “KRYM"-Type Tanker Tanker, Taniguchi and Fujita 

considered reliable enough; they need further veri- Experiment, 1969 
fication. 

Model "d" 

Several years ago, simulation of the velocity field 

in the case of afterbody boundary layer separation 

attracted the special attention of researchers in 

connection with the development of very large tankers 

with high block coefficients and a tendency to de- 

crease the length-to-breadth ratio. Although this 

problem has lost its vitality by now, studies in 

this field are being continued. The attempts in 

Japan and in the Soviet Union to theoretically and 

experimentally evaluate the scale effect of separa- 

tion of three-dimensional and even two-dimensional 

boundary layers do not yet allow any definite con- 

clusions to be made, even regarding the qualitative 

aspect of the phenomenon, or the development of the 

most approximate scheme of variation with Rn number, 

not only in the velocity distribution, but also in 

the mean value of the wake. Thus the problem of N N 

simulating the characteristics of flow at the stern 

with the boundary layer separation remains one of FIGURE 9. Circumferential velocity distribution and 
the unsolved problems in ship hydrodynamics. harmonic spectrum for model and ship. 

a_ X 102 
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wake, both in our practice and in the practice of 

other model tanks, use has been made in recent 

years of engineering procedures based on the results 

of nominal velocity field measurements and propeller 

theory relationships [Hoekstra (1977), Raestad 

(1972), Nagamatsu and Sasajima (1975) ]. 

If we assume that the propeller effects are 

mainly due to the factors mentioned above, the 

propeller can be thought of as having a large diam- 

eter when evaluating the mean wake field. 

This assumption will result in a decrease of the 

wake coefficient. The decrease of the frictional- 

resisted wake due to the propeller effect can be 

taken as inversely proportional to the square root 

of the diameter. Then, 

- 4 
Ware = Wey/ (lL + wi/2V,) (8) 

where 

Con = (pv2/2)F 

To define the potential component Wpe alte) Sk} 

reasonable to apply the known propeller theory 

relationship 

= am (fea/2)) €s V Woe Won ( o/ ) (w/ ) 

to = 

= iio yal as G = Al 
WON 2 [ Th ] (9) 

where j 

W No experimentally defined potential component 

P of the nominal wake field, 

tj = thrust deduction at zero velocity of 

model. 

Allowing for the smallness of the 2nd term in (9), 

the thrust deduction fraction undergoing only minor 

changes can be assumed for single-screw ships to be 

tg = 0.07-0.10 (the last figure relating to fuller 

hull shapes) . 

The final expression for the mean effective wake 

field (taking into account the scale effect) has 

the form, 

We = eon tF EGQ/QGAL Cr - 1)] 
nh 

mh Won Cao (RM) fo) NS ES eee 
V1/2(vV7l + C. +1 CEA (Ene) VW/2(vE+ Cy + 1) Spon (aif 

where 

Cro = frictional resistance coefficient in two- 

dimensional flow. 

Relationship (10) displays good agreement with 

the model test data (see Table 1) and W, values 

close to those obtained from the full-scale test 

analysis. 

As can be seen from the Table, all known approxi- 

mate methods yield practically the same results. 

By making some additional assumptions, similar 

methods can also be applied for an approximate 

estimation of the circumferential distribution of 

the effective wake, and in the main they correctly 

reflect the variation trends of the flow at the 

stern while the propeller is in operation. However, 

they do not permit: taking into account and evalu- 

ating some qualitative changes in the hull boundary 

layer, which may take place due to propeller opera- 

tion, such as variation in circulation of bilge 

vortices and their positions in relation to the 

ship hull; the possibility of preventing or reduc-— 

ing the separation about the stern zone with the 

propeller in operation; and, on the other hand, 

the possibility of the boundary layer separation in 

the vicinity of the stern above the propeller. 

Therefore, when performing a quantitative analysis 

of the effect the propeller has on the wake and the 

harmonic spectrum of the velocity field, these 

methods, in spite of their relative simplicity and 

convenience, should be applied rather carefully, as 

for most tentative estimates. 

At the present stage of the wake problem in- 

vestigation the development of experimental methods 

is of decisive importance. 

Both for the improvement of the general knowledge 

of propeller effects on the flow pattern at the 

stern and for the solution of problems associated 

with ship form design, the accumulation of data 

on the effective velocity fields for ships of 

various types and the improvement of model test 

methods is of great importance, especially those 

taking account propeller induced velocities or 

eliminating the same from measurement data. 

A practical method for estimating the effective 

velocity field, Uy, by way of flow velocity mea- 

surements at some distance ahead of the propeller 

in "open water" and behind the hull, was given in 

Titov and Otlesnov (1975). For measured data 

analysis the quasi-steady theory was accepted. 

When the hydrodynamic flow angle, 8), of a 

propeller blade section for the propeller operating 

in "open water" is equal to that behind the hull, 

— ' = te " a 
tgBy WE oF Wi) Jot (Ura Wi) / (wr Use) (11) 

where 

W' and W" = axial induced velocities ahead 

= of the propeller in "open water" 

and behind the hull 

U = circumferential component of the effective 

Be velocity field 

The axial component of the effective velocity field 

ahead of the propeller is determined from the 

relation 

Comparison of the Mean Effective Wake 

Calculated by Approximate Methods With 

That Obtained from Self-Propelled Tests 

(Model No. 1) 

TABLE 1. 

Titov - Poostoshniy method 0.345 

Nagamatsu - Sasajima method (1975) 0. 340 

Roestad method (1972) 0.355 

Self-propulsion test data 0.350 

Nominal wake 0.390 

Ne —— 
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following from the equality of forces on the pro- 

peller blade section. 

However, another approach to the problem of 

experimental determination of the effective wake 

is also possible based on the data analysis of 

measured flow velocities and total head pressure 

immediately ahead of the propeller and behind it. 

In this case, measurements are taken only with the 

propeller in operation behind the hull. 

As is known, the circumferential induced velocity 

at propeller section, Wg, in "open water" is pro- 

portional to the jump in the total head at the pro- 

peller disk 

PUTW, (78) = Ho(t0) —- Hy (Té) (13) 

It can be shown that this relationship is also 

valid for the propeller behind the hull, if the 

variation of the circumferential induced velocity 

of the hull wake, Ug, is negligible within the axial 

length of the propeller or between the sections 

where measurements are taken. In this case total 

head pressures at sections 1 and 2 (see Figure 10), 

ahead of the propeller and behind it are, respec— 

tively, equal to 

p 2 2) 2 = +> + US, + U 
in (ie) al 2 Oe 61 11! 

p -2 2 8) = Po +> + (W + U 
Ha Mus) 2% a LOL) (Woy 82) 

+ (W_, + U_,)7] (ale) T2 T2 

where 

Wh. = UES + Wo = axial flow velocity at 

i i v section 1 

us = UA + We = axial flow velocity at 

2 2 2 section 2 

We G Wo and Whe = propeller induced velocity 

z components at respective 

sections 

Theoretical investigation results of propeller in- 

duced velocities and test data make it possible to 

linearly approximate component variations of the 

induced velocity, W3(x), within the limits of the 

propeller axial length. It is believed that the 

axial component variation of the wake in this re- 

gion is small and also obeys the linear law. 

With the above assumptions, in order to determine 

the design effective velocity, U at section X9 

where the condition 
xOU 

a 

WaCg) = (15) 

is observed, we obtain the following set of equa- 

tions: 

U Xo) + wo 7/2 
x ee EE SS 

Eoen WT — wy /2 + Us ee) 

W 
a. W,/2 (17) 

2 tgBy 
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0 90 180 

FIGURE 10. Circumferential distribution of velocity 

components in way of propeller (r = 0.590). 

w 
a 
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U =. Gj 

Teen ete (18) = SSS OK 
x} AX 1 

where 

8; = hydrodynamic flow angle of a propeller 

blade section 

AX = distance between sections 1 and 2 

AXg, = Xo =) Xa = distance between section 1 

and the point of calculation 

In propeller theory it is generally taken that the 

above condition is met at the propeller disk plane 

corresponding to the midspan section of the blade, 

and, in the case of blade rake, corresponding to 

the midsection of the blade at a relative radius, 

Te O.76 

However the calculation results of variations in 

the anomalous induced velocity, W,(X), of the pro- 

peller with the finite axial length indicate that 

in fact the point must be found upstream of the pro- 

peller disc plane. 

This conclusion is confirmed by the experimental 

investigation results of the propeller velocity field 

in open water. Taking account of these data it is 

more reasonable to assume the point of calculation, 

corresponding to condition (15), to be on the lead- 

ing edge of the blade. 
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Application of this procedure can be illustrated 

on a medium size tanker model (Model 1). 

Experimental studies of the velocity field for 

the operating propeller were performed during free- 

running model tests with the operational relative 
speed, Fn = V/VgL) 1 = 0.22. Wake characteristics 

ahead of and behind the propeller were measured at 

equal distances from the propeller centre with a 

6-point probe [devised at our model tank, Otlesnov 

(1969) ], which enables simultaneous measurements of 

total head pressure, (H), static pressure, (P), and 

flow angles in the horizontal and vertical planes 

in the immediate vicinity of the propeller. When 

processing the measured data and analysing the nom- 

inal wake, use was made of calibration relationships 

which took into account the interference of flow 

angles in the vertical and horizontal planes with 

the readings of the probe. Figures 10 and 11 il- 

lustrate the initial data and the calculated induced 

velocities for the starboard-side of the propeller 

disk (right-hand rotation) in the region where 

sections experience maximum loading. 

Comparison (Figure 12) of the nominal velocity 

field with the effective velocity field calculated 

from Eqs. (11)-(12) and (13)-(18) shows the pro- 

nounced effect the propeller has on the wake at the 

lower part of the propeller disk and the minor ef- 

fect at the upper part of the same. This may be 

accounted for by a better possibility for momentum 

exchange between the external flow and the viscous 

wake under the action of radial induced velocities 

in a relatively thin wake at the lower part of the 

propeller disk, and a worse possibility at the upper 

part where the thickness of the viscous wake is much 

greater (see isotachs in Figure 1). 

0 90 6° 180 

FIGURE 11. Circumferential distribution of velocity 

components in way of propeller (r = 0.756). 

=) 

0 90 6 180 
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1 — Nominal Field 

2 — Effective Field (Titov and Otlesnov, 1975) 

3 — Effective Field (Proposed Method) 

4 — Effective Field (Hoekstra, 1977) 

x 
ID 

FIGURE 12. Influence of propeller operation on 

velocity distributions. 

The above two methods for defining effective 

field axial velocities yield results which, as a 

whole, show satisfactory agreement. However there 

are some systematic discrepancies in the regions 

of @ » O° and 6 * 80-160°, and additional analysis 
is required to explain these. 

Besides, the velocity distribution data obtained 

on the basis of measurements ahead of and behind 

the propeller in operation make it possible to find 

the thrust distribution (load coefficient of pro- 

peller, Cm,,) over the propeller disk area 

We ar Wy 2 

Cr G8) GG ) are (19) 
xe 

Figure 13 and the equivalent system of singularities 

Q(68) 5 Wa ZU (20) 

In its turn, the knowledge of this system of singu- 

larities allows one to calculate the induced ve- 

locities over the total wake region ahead of the 

propeller, and perform a more detailed analysis of 

the effect the nonuniformity of load distribution 

over the disk has on thrust deduction. 

The following conclusions can be drawn from the 

comparison of Fourier transform coefficients for 

the circumferential distribution of axial velocities 

of the nominal field obtained for the model and ship 



90° sB 

180° 
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FIGURE 13. Load distribution over the propeller disk 

(based on effective velocity field measurements) . 

(model-ship correlation), as well as of the velocity 

field in model tests taking account of propeller 

effects. The amplitudes of harmonics determining 

the nonstationary hydrodynamic forces and moments 

(Figures 14 and 15) may vary several times under the 

influence of the above factors. 

It should be mentioned that no definite regular- 

ity could be observed here. With some relative 

radii the amplitudes increase, with others they 

decrease. 

As the variation in harmonic spectrum of the 

velocity field is of rather a complicated nature 

let us illustrate the effect the variation of axial 

velocities due to scale effect and propeller opera- 

tion has on the constant component of the hydro- 

dynamic bending moment in the vertical plane which 

is mainly defined by the first decomposition har- 

monic [Voitkunskiy (1973) ]; 

e M. = = oS 
Yo 7 “30 ~ Pyo ° 2 (2) 

where 

i = 
ey = IC, /4S _ ft[a,+(1/FT) (J+2K,/C))a,, lat (22) 

TO 

1 

Po = -JCoS— f/t[b + (1/FT) (J+2 iT 70 2S—F/T[b 1+ (1/FT) ( Ko/C,)b, lat (23) 

oa V,/nD 

tT) = relative radius of propeller hub 

KprKo = thrust and torque coefficients at 

design speed 

a,,b, = Fourier transform coefficients for 

the cosines and sines of the first 

harmonic of axial velocity on a given 

radius 

agg = Fourier transform coefficients for 

the cosine and sine of the first 

275 

harmonic of tangential velocity on a 

given radius 

2 = coefficients 

f = coefficient depending on radius 

e = distance between the design propeller 

shaft section and the propeller disk 

The distributions of transverse relative ve- 

locities Uo = Ug/V were taken as equal. 

Table 2 shows the design estimates of relative 

values of the constant component, Myg/Kg, as based 

on various initial data. 

As can be seen, the calculated results based on 

the nominal velocity field data may differ (even 

qualitatively) from those obtained with considera- 

tion for the scale effect or the effect of operat-— 

ing propeller. Although the local variations of 

the nominal field due to the scale effect or pro- 

peller operation are quantities of the same order 

(see Figures 5 and 12), the constant component 

values of the bending moment in the vertical plane 

determined from the effective field prove to be 

4-5 times as large. Physically this may be due to 

the fact that, in contrast to the scale effect, 

the propeller effect on the viscous flow in the 

upper parts of the propeller disk differs from that 

in the lower part. In the upper part of the disk 

(8 = 0 - 90°) the effective field distribution of 

velocities in way of the heavier loaded blade sec— 

tions differs only slightly from the nominal field 

distribution, while in its lower part (@ = 90-180°) 

the effective field velocities are much in excess 

of the nominal field velocities (by a factor of 

1.5-2). This increases the asymmetry of circum- 

ferential distribution of the effective field axial 

} 

[ Ship, Nominal Field (Correlation Based | 

on Equations (1)—(4)) | 

0.1 [ 

y- Model, Nominal Field 

Model, Effective Field 

(Hoekstra, 1977) 

Model, Effective Field 

(Proposed Method) 

Model, Effective Field (According 

to Titov and Otlesnov, 1975) 

FIGURE 14. Influence of scale effect and propeller 

operation on harmonic spectrum. 
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FIGURE 15. Influence of scale effect and propeller 

operation on harmonic spectrum. 

velocities and results in an increase of the con- 

stant component of the moment in the vertical plane. 

The Myo/Ko values calculated from the effective 

velocity field approximate those observed for full- 

scale ships of this type under operational condi- 

tions. This fact confirms the importance of taking 

into account propeller operation when simulating 

the velocity field at the propeller. The propeller 

effect upon the velocity field is dependent on the 

load, ship hull form and afterbody shape, initial 

nominal field, and the relationship between pro- 

10 a, 

10 a, 

10 a, 

Model, Nominal Field 

Ship, Nominal Field (Correlation Based 

on Equations (1)—(4)) 

a — 

Model, Effective Field (Titov and Otlesnov, 1975) 

Model, Effective Field (Proposed Method) 

0.6 F 

peller screw size and wake thickness, i-.e., on the 

propeller immersion into the viscous wake. 

The full-scale conditions of effective field 

formation are likely to differ from the model ones. 

Hence, the next step in studying the prediction of 

the flow velocity field in way of the propeller will 

be the development of procedures which enable simul- 

taneous consideration of both the scale-effect and 

the effect of propeller operation on the wake at 

the stern. 

TABLE 2. Variation in the Constant Component of Bending Moment Depending on the 

Velocity Distribution at the Propeller (Model 1) 

Model. Esti- Model. Model. 

mation of Experiment Experiment 

: Propeller Consideration Consideration 

Model. Model-ship Effect of Propeller of Propeller 

Experiment. Correlation According to Effect by Effect by 

Initial Nominal Using Equa- Hoekstra Using Equa- Using Equa- 

Data Field tions (1)-(4) (1977) tions) ((22)i=(@i2)) stafon's (dis) =1('8)) 

M_ /K 0.04 -0.07 -0.08 -0.35 =(0) 57355) 
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ABSTRACT 

This paper concerns recent advances in the theory 

and numerical solution of propeller induced pressure 

forces acting on ship hull surfaces. The analysis 

is formulated in terms of the diffracted potential 

flow about general three-dimensional hull boundaries 

in the presence of a free surface. The influence 

of the propeller is derived from lifting-surface 

theory, explicitly accounting for finite blade 

number, blade thickness and skew, and radial and 

chordwise loading (steady and unsteady, but sub- 

cavitating). Two methods have been developed to 

calculate the periodic forces. In the direct 

approach, time-dependent source singularities are 

distributed over the body surface with the strengths 

determined for a prescribed propeller onset flow. 

The force is then found by applying the extended 

Lagally theorem. In the second approach, based on 

a special application of Green's theorem, the force 

is obtained by finding the velocity potential at 

the propeller generated by the boundary executing 

simple oscillatory motions. 

A towing tank experiment is described in which 

blade frequency forces were measured on a body of 

revolution adjacent to a propeller operating in 

virtually uniform flow. The simplifications of 

body shape and propeller loading provided a physical 

model which could be treated in a reasonably exact 

fashion by the theory. The body consisted of two 

parts. A heavy afterbody, attached to the towing 

strut, acted as a seismic mass at all but very low 

frequencies. The forces were measured on a light, 

rigid forebody supported from the afterbody by a 

specially designed strain-gaged flexure assembly. 

Tests with two propellers differing only in blade 

thickness revealed the separate contributions of 

blade loading and thickness and the results obtained 

agree favorably with the analytical predictions. 
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1. INTRODUCTION 

Propeller induced ship hull virbration continues to 

be a major source of uncertainty and, indeed, 

frustration to the naval architect. Today we witness 

a trend toward larger and faster ships with higher 

power being delivered to the propeller. These 

designs are inherently more susceptible to propeller 

related vibration problems, as has been learned 

from bitter and usually costly experience and this 

situation has focused renewed attention on the need 

for improved methods to predict propeller exciting 

forces - methods which are both reliable and practi- 

cal for application during the design process. 

Two distinct, but related types of propeller 

exciting forces (and moments) produce hull vibration. 

Unsteady blade loads developed by the propeller 

operating in the nonuniform ship wake and trans-— 

mitted to the hull directly through the propeller 

shafting are termed bearing forces. Periodic 

pressure forces acting on the surface of the 

hull, arising from the propeller unsteady veloc-— 

ity and pressure fields, are called surface forces. 

Various approaches have been developed to predict 

these forces from model tests. For example, bearing 

forces are measured on a model propeller in a water 

tunnel using wake screens to simulate the flow at 

the ship stern. Surface pressures can be obtained 

from measurements of transducers distributed over 

the surface of the model hull afterbody. Alterna- 

tively, the entire hull afterbody can be cantilevered 

on a flexure assembly instrumented to measure the 

total surface force [separated stern technique, 

Stuntz et al. (1960)]. 

The foregoing experimental techniques, and 

others [most notably Lewis (1969)], have proven to 

be costly and difficult to carry out in practice. 

Moreover, a large number of experiments would be 

required to examine all the pertinent physical 

parameters, including hull form, propeller clearances, 



blade geometry and loading characteristics. Con- 

sequently, researchers are attempting to develop 

theories and numerical procedures for calculating 

propeller exciting forces. An analytical approach 

offers a means to economically evaluate competing 

propeller-hull design concepts as well as to diagnose 

at-sea vibration problems and identify corrective 

measures. 

The present paper concerns recent advances in 

the theory for propeller induced surface forces. 

A general three-dimensional boundary intercepting 

the propeller disturbance field poses a formidable 

diffraction problem. As a first step, it is 

necessary to determine both the time-average and 

unsteady loading on the propeller. All of the 

components of loading, together with blade thickness, 

contribute to the propeller induced flow impinging 

on the hull and the resultant unsteady pressure. 

Fortunately, as a result of much past work in the 

analytical prediction of bearing forces, there now 

exist powerful theoretical methods for calculating 

unsteady propeller loading in a prescribed nonuniform 

flow. The analysis rests on a lifting-surface 

representation of the propeller, explicitly account- 

ing for number of blades, radial and chordwise 

distribution of loading, thickness, and skew. While 

further refinements and improvements, such as the 

prediction of transient blade surface cavitation, 

are needed, the calculation of blade loading can 

now be done with sufficient accuracy to address the 

surface force analysis. Also, as these improvements 

in the propeller calculation become available, they 

can be incorporated into the surface force calcula- 

tion without fundamental changes. 

Previous analyses of the surface forces are 

formulated in terms of the diffracted potential 

flow about the solid boundary in the presence of 

a given propeller onset flow. To facilitate the 

analysis, it was necessary to introduce simplified 

representations of both the propeller and the 

boundary as outlined by Breslin (1962) and more 

recently, Vorus (1974). For example, analytical 

expressions for the vibratory force produced on a 

long flat strip and a circular cylinder adjacent 

a propeller in uniform flow were derived some years 

ago [Tsakonas et al. (1962) and Breslin (1962)]. 

These investigations provided useful insights regard- 

ing the importance of propeller tip clearance and num- 

ber of blades. However, such approximate treatments 

neglect what are now known to be certain essential 

physics of the propeller-hull interaction. The net 

force on a long boundary may be deceptively small 

because of cancellation of large out-of-phase force 

components developed fore and aft of the propeller. 

On a hull which terminated in the immediate vicinity 

of the propeller, such cancellation will not occur. 

Also, the components of unsteady blade loading at 

or near blade frequency can produce much larger 

surface forces than those arising from the steady 

loading and thickness. Components of blade loading 

at higher frequencies, while relatively smaller in 

amplitude, generate field pressures which decay 

much more slowly, encompassing a large portion of 

the hull afterbody and resulting in a significant 

integrated force. For this same reason, an experi- 

mental determination of the total surface force by 

measurement of pressures at selected positions on 

the hull boundary can be disastrously misleading. 

In view of these circumstances, it is now generally 

accepted that a satisfactory theory must represent 

the hull boundary in a reasonably exact fashion, 
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accommodate the presence of the free surface, and 

account for all constituents of propeller loading. 

This paper sets forth a comprehensive theory 

for propeller-hull interaction and describes proce- 

dures for calculating the periodic forces acting 

on the hull surface. The paper is divided into 

five sections. In the first section, the problem 

for the diffracted potential flow about the hull 

is formulated, in which the propeller unsteady 

disturbance is assumed to be of small amplitude 

and high frequency. In keeping with the desire for 

first order results, the high frequency linearized 

free surface conditon applies. However, the zero 

normal velocity condition is satisfied exactly at 

the hull boundary. Formulae for the surface pres- 

sures and forces may then be expressed in terms of 

the propeller velocity potential and the unknown 

diffraction potential. The following section deals 

with the representation of the propeller. Dipole 

singularities with strenths related to the blade 

pressure loading and thickness are distributed over 

helicoidal surfaces approximating the geometry of 

the actual blade surfaces. Based on this model, 

expressions for the field point velocity potential 

arising from loading and thickness are developed. 

Examination of these formulae and their asymptotic 

behavior at large distances reveals important prop- 

agation characteristics associated with the unsteady 

blade loading components at and near blade frequency. 

In the subsequent sections, two methods of solu- 

tion are developed for determining the surface 

forces. The direct approach consists of distributing 

time-dependent source singularities over the hull 

surface with the source strenths determined for a 

prescribed propeller onset flow using a modified 

Douglas-Neumann calculation [Hess and Smith (1964)]. 

The force on the body is then found by applying 

the extended Lagally theorem to the hull singulari- 

ties. In an alternative approach, based on a 

special application of Green's theorem, the force 

is obtained by finding the velocity potential at 

the propeller produced by the hull boundary executing 

simple oscillatory motion. 

In the final section, a towing tank experiment 

is described in which blade frequency forces were 

measured on a body of revolution adjacent to a 

propeller operating in uniform flow. The simplifi- 

cations of body shape and propeller loading provided 

a physical model which could be treated in a reason- 

ably exact fashion by the theory. Despite these 

simplifications, certain classical problems were 

encountered in the design of the experiment including 

the measurement of a relatively small force, avoid- 

ance of system resonances in the frequency range of 

interest, and retrieval of the force signal from 

background noise. A two-part body design was 

developed, similar in concept to the separated 

stern technique mentioned earlier. A heavy after- 

body attached to the towing strut, behaved as a 

seismic mass at all but very low frequencies. 

Forces were measured on a light rigid forebody, 

supported from the afterbody by a specially designed 

and dynamically calibrated straingaged flexure 

assembly. 

Tests were performed with two propellers differing 

only in blade thickness in order to reveal the 

separate contributions of loading and thickness. 

The measured forces (amplitude and phase) were 

obtained for a range of speeds and advance coeffi- 

cients and for two positions of the propeller 

relative to the test body. The results agree 
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favorably with the theoretical predictions. It is 

recommended that this experimental technique be 

extended to study the effects of nonuniform flow and 

intermittent blade surface cavitation. 

2. FORMULATION OF THE PROBLEM 

Consider a ship moving at constant speed U through 

otherwise undisturbed water. We seek to determine 

the periodic forces and moments exerted on the 

ship hull surface arising from the unsteady propeller 

velocity and pressure fields. The fluid is con- 

sidered to be incompressible and inviscid and within 

the domain bounded by the free surface, the hull 

boundary, and the propeller blades (and trailing 

vortex wakes), the flow is assumed to be irrotational. 

Under these circumstances, a fluid velocity potential 

exists which can be expressed in terms of steady 

and unsteady components as 

o(x,t) = Ux + d5(x) + 6) (Kt) + bp (x,t) 

Here, x = (x,y,z) is a cartesian coordinate system 

fixed to the ship with the x and y axes in the me 

waterline plane, and z-axis directed upward. 9, (x) 

is the steady disturbance flow about the bare hull 

in the presence of the free surface, $,(x,t) is the 

propeller potential, and bp Gx, t) is the potential 

of the flow arising from the propeller-hull inter- 

action, often termed the scattering or diffraction 

potential. It should be noted that the presence 

of the viscous, rotational wake of the ship is 

ignored in the diffraction problem, i.e., it is 

assumed that the unsteady pressure forces on the 

hull can be derived from potential flow considera- 

tions alone. 

The propeller potential is periodic in time and, 

by virtue of the symmetry of identical, equally 

spaced blades, may be expressed as a Fourier series 

with harmonics in blade passage frequency as 

a = 1 a! bp (x,t) = a bp, Gee Net (1) 

with 6 being the complex amplitude of nth harmonic. 

(In this and all subsequent expressions involving 

einNwt the real part is understood to be taken.) 
Similarly, the diffraction potential will be of the 

form 

co 

bp Ge, t) =) ip, Ce (2) 

n=0 

We now consider the boundary value problem for 

the potential $ = $, + $p, assuming the fluid 
disturbance velocities to be small compared to the 

ship speed, i.e., |V>| and |V¥$,| <(U. Within the 
fluid domain, the potential must satisfy Laplace's 

equation 

V2o,(x) = 0 (3) 

At large depth and distances upstream of the hull 

and propeller the disturbance must vanish 

x > -© Vo, > 0 

>0 Za OF (4) 

and at large downstream distances, x > + 1d. 

satisfies a suitable radiation condition. 

The boundary condition on the hull surface, 

denoted by S, requires that the fluid velocity must 

be tangent to the surface, or 

a a = 
n° Voy (x) = 0 x on S (5) 

a being the outward unit normal vector to the sur- 

face (see Figure 1). Here we have assumed the 

hull to be rigid and stationary with respect to the 

translating coordinate system (i.e. hull motion 

and deformation due to propeller excitation is 

ignored) . 

The linearized free surface boundary condition 

May be written in the form 

2 , 9b 3 oa 3b 

-(nNw)“o_. + (2inNwU) —— + U 7 ej ——— =_ 
n ax 2 

ax dz 

on, z9= 0 (6) 

In order to establish the relative magnitude of 

terms the equation is recast in nondimensional form 

using the ship speed U and propeller radius Rg for 

reference length and time scales, obtaining 

a 326 gR 3a 
n 2 n oO D igh 

ae + —_ — = = ax € uD + G2 € NE O on z (0) =) ar 2ie 

where € = J/mnN, J being the propeller advance 

coefficient. It may now be observed that typical 

propeller applications, « <<_1 and the first term 

will dominate. Thus, as a first approximation the 

free surface boundary condition (6) reduces to 

bn (x) = 0 on z =0 (7) 

This completes the statement of the boundary value 

problem for the diffraction potential as summarized 

in Figure 1. It should be noted that by virtue of 

(7), the function bn (x) can be analytically continued 

into the upper half plane, z > 0, in a straight- 

forward manner. As will be shown in subsequent 

sections a solution can be constructed in terms of 

VELOCITY POTENTIAL 
Fz DXL) UX + QK)4+h (Kt) 

= = >, inNwt PRE Piwe 

v2 py =0 

RV, | ,70 

Pa| 20) 
B=0 

lybal-= 0, |X|-e 00 
E<O 

FIGURE 1. 

problem in propeller-hull interaction analysis. 

Coordinate system and boundary value 



appropriate “images" of the propeller and hull 

singularity systems. 

Upon solving for the velocity potential, all 

other quantities of interest can be determined. 

The linearized, unsteady component of pressure is 

given by* 

v6) , Wa Gc) = iu + Vo, Gx) 
(8) 

p(x,t) = -p (4449, 

or from (1) and (2), 

inNwt 
p(x,t) eee I 1 

me} [inNwd + Ue - Von] 

(9) i] 
to 

2} 
zy 

where the Py (x) are amplitudes of harmonics of the 

unsteady pressure. The periodic force, F(t), and 

moment, M(t) acting on the hull surface (see Figure 

1) may be written as 

F(t) = - pnds (10) 

Ss 

and 

M(t) = - pxxnds (11) 

Inserting the expression for p, one obtains the 

amplitudes of the force and moment harmonics, as 

a —S => 

r= 2 (inNwd, + Vs * Von)n ds (a) 

s 

and 

—> A — oy —. 

MO =o0 (inNw$, an Wa O Wun) BS 2 inh ols} (AES) 

s 

Until now, the propeller’potential has been regarded 

as a known function. Before proceeding with the 

surface force analysis, it is appropriate to discuss 

the analytical representation of the propeller and 

the velocities and pressures induced at arbitrary 

field points. 

3. REPRESENTATION OF THE PROPELLER 

The primary source of propeller exciting forces is 

the spatially nonuniform wake of the hull in which 

*To be strictly consistent with the high frequency approxi- 

mation, the convective pressure term should be discarded. 

However, this term adds no serious burden to the ensuing 

analyses and by retaining it, numerical calculations can 

be used to demonstrate that the contribution from this term 

is, in fact, negligibly small. 
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the propeller operates. As viewed in a coordinate 

system rotating with the propeller, the flow 

approaching the propeller consists of time-average 

or circumferential mean component and an oscillatory 

component. The oscillatory component gives rise to 

unsteady loading on the blades in a manner analogous 

to a hydrofoil encountering a sinusoidal gust. This 

unsteady loading, summed over all the blades, yields 

periodic shaft forces at blade frequency and integer 

multiples. In contrast, the periodic pressure 

forces acting on the hull surface arise from the 

induced velocity and pressure fields from both the 

mean and unsteady components of loading, as well 

as the blade thickness, because of the varying 

aspect of the rotating blades relative to the fixed 

hull boundary. 

Propeller theory for unsteady flow has developed 

as a logical extension of linearized lifting-surface 

theory for hydrofoils. It is assumed that the 

oscillatory components of the wake velocities are 

small compared to the mean, and can be resolved by 

Fourier analysis into "wake harmonics," the funda- 

mental harmonic being the shaft rotation frequency. 

Each of these harmonics, within the linear approxi- 

mation, will produce a component of unsteady blade 

loading with the same frequency. By virtue of the 

propeller's symmetry, upon summing over all the 

blades, only certain harmonics of the loading will 

contribute to the net force on the shaft. However, 

all the harmonics of loading contribute to the 

forces on an individual blade, and, as will be seen, 

to the radiated pressure field of the propeller. 

The propeller lifting-surface theory developed 

by Tsakonas et al. (1973) is adopted in the present 

work. This analysis and associated computer pro- 

grams have been successfully applied in recent 

propeller designs to minimize bearing forces, e.g., 

Valentine and Dashnaw (1975). In addition, the 

analysis has been extended to compute field point 

velocities and pressures, including the contributions 

from the image of the propeller arising from the 

presence of the free surface. As the details of 

the development of these formulae have been largely 

reported in the literature, we shall not burden 

this paper by recounting them, being content to 

outline the procedure. 

Blade Loading Potential 

The linearized equation of motion for unsteady flow, 

referred to a non-rotating cylindrical coordinate 

system (x,r,f) centered at the propeller axis 

(Figure 2), may be written 

36 36 
Sent p 19) 

2 i Dem Os (re) 

=o (15) 

where p is the pressure induced by the loadings on 

the blades due to camber and incidence and p', for 

later convenience, denotes the fluid density. Here 

the angles of attack are produced by each axial 

and tangential spatial harmonic of the nominal hull 
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FIGURE 2. Propeller coordinate system-projected 

view looking upstream. 

wake which is presumed to be known from wake survey 

measurements. 

The pressure induced at a field point by a single 

blade is given by the following distribution of 

pressure dipoles 

M LUpaat -ikut 9 1 
epasy pe) = a a | Apr(&,p)e np Ros 

Sp A=0 Pp (16) 

where Ap, is the complex amplitude of the pressure 

loading on the blade arising from the wake harmonic 

order X and, as illustrated in Figure 3, 

Sp is the surface of the blade, represented ap- 

proximately by the helicoidal surface & = U/w 

Ny is the distance directed normal to the surface 

S 

R = [(x-&)? + r2 + o2 - 2rp cos(§ +a -¥Y)] is 

the distance from a point (&,0,89 + a) in the 

surface Sp to the field point (x,r,/) 

6 = - wt is the angular position of the blade 

We note that the representation of the blade is 

only approximate for a wake adapted propeller, 

being correct for a constant pitch propeller in 

uniform flow. Here we also assume that the pressure 

jumps on the blades, Ap), have been previously 

calculated by the unsteady lifting-surface theory 

such as developed and programmed by Tsakonas et al. 

(1973). ; 
To place the harmonic content of 1/R in evidence, 

the following identity can be used 

Rea Jp pita lee 9 ars co 10 
ana | (17) 

where the amplitude A | is given by 

, 

Tq) 10K) yy (Le lx) p<xr<o 

Tog) (HE[=)K) gy (110) 0<xr<op (18) 

Im and K, being the modified Bessel functions of 
the second kind of order m. 

To secure the pressure field for an N-bladed 

propeller, the blade position angle 9 is replaced 

by 8 + 2m/N and the sum over n from n = 0 to N - 1 

carried out. This sum yields a factor N and the 

constraints on the frequencies A and m, given by 

X =m = RN with & = 0,+1,4+2,+3...i.e., products of 

terms for which A - m # 2N will sum to zero. ‘The 

total induced pressure at any field is secured by 

summing over 2 from -~ to +”. 

Upon use of (15), (16) and (17) and looking after 

the shifted time variable, using 8 = -wt which shifts 

to -wt + w/U (x-x'), one obtains the velocity 

potential in the form 

co 

N y i2Nwt 
bp (x,r,P,t) = ~ ou S 

M Q=-0 

A , 12) rU,TG7Se ds ) a Py (E,0) Pq (Xr /PH E70) ae 
A= Sp 

in which the propagation function, Pr is given by 

an2 

aro “7 } ak (20) 

where for each 2, m= A - &£N, and M is a practical 
upper bound of the wake harmonic order number beyond 

which the amplitudes of the wake harmonics are so 

small as to render negligible values of Ap, for all 

A > M. (A value of M = 8 is reasonable). Details 

of further reductions of the integrals involved in 

(19) and (20) may be found in Jacobs and Tsakonas 

(1975). 

BLADE 
REFERENCE 

LINE 

p(t) —~+ 

7 HELIX: f= Ge 

FIGURE 3. Propeller coordinate system-expanded view 

of blade section at radius p. 



To account for the presence of the free surface 

which, at the frequencies of interest acts as a 

zero potential surface (see Eq. (7), we merely add 

to (19) the potential dp; =- bp (Yur pyr t) in 

which 

a = ly 24+ (2d-z.)2 =r when z =4d (21) 
1 p p p 

a | fy = tan aE = 7” when Zp = d and 

= Wf Sia S UPznP Leo) = © (22) 

where d is the distance or depth of the propeller 

axis below the free surface; y,, Z, are the transverse 

and vertical coordinates of any field point (Figure 

2). Thus, the total potential arising from the 

loadings on an N-bladed propeller in the presence 

of the free surface (neglecting the feed-back on 

Ap, from the free surface) is 

N = 
=-—— 2Nwt 

%D; e'U iy Srey 
dp + 

Q=-00 

M 

a A Ap) (€,0) [Pm (x,r,776,0) - 

A=0 S 

Pm(x,ri,fii&,0)] Aas (23) 

and the spatial derivatives of this function yield 

the velocities induced by the propeller and its 

negative image in the free surface. Clearly bp + 

oH = © seers Enlil Se Ehatel Yp for Zp = Glo 

Blade Thickness Potential 

The potential, $,, induced by blade thickness may 

be constructed from a distribution of dipoles (with 

axes tangent to the helical arc along the blade at 

any radius) whose strenths are given by V_, V being 

the local relative resultant velocity and T the 

local thickness provided by the expanded blade 

section drawing. Using the helical geometry as 

before, one can obtain 

Ro on 

| ‘i U2 + (wo)? t(p,a) 

Ry Oo 

) iL 
aaa da dp (24) 

or (x,r,f,t) = Te 

where ae (Pp) and a;(p) are the angular coordinates 

of the blade leading and trailing edges. 

To allow for the free surface, 1/R is replaced 

by 1/R - 1/R; with Ry being the distance from the 

reflection of the dummy point in the free surface 

to the field point on or below the water surface, 

making use of relations (21) and (22). Again, to 

place the harmonic content of 1/R and 1/R; in 

evidence and to facilitate integrations over the 

blade surface, the Fourier expansion (17) can be 

applied. 
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Asymptotics of the Loading Potential 

The fact that the disturbances induced by each of 

the pressure jumps Ap, are propagated by widely 

different functions of the space variables x,r, ~ 

must be emphasized as these behaviors have a most 

significant impact on the pressure, velocities, and 

the resultant forces generated on the hull. These 

diverse characteristics can best be illustrated by 

examining the asymptotics of the potential for 

upstream locations which are large only with respect 

to the x-wise extent of the blade surface. The 

x-wise extent of the blades is given by the (chord) 

5 Satin bpp being the local pitch angle which, in 

the radial region of heaviest loading, is normally 

of the order of 25° For merchant ships, the blade 

chord in this region is of the order of one-half 
the radius and, hence, the x-wise extent of the 

significant position of a propeller is only about 

0.2 radius. Thus, for axial distances of the order 

of one diameter, the x-wise extent of the important 

region of the blade can certainly be neglected in 

an asymptotic analysis. 

Using the expansion of Rae given by 

Ree © Qm—a72 ') eae) 

T pr 

m=-0 

where Q is the associated Legendre function, and 

MAGE) eistelaeet tO 
2pxr 

and retaining only the leading term in the expansion 

of Q for large Z, one can arrive at the following 

behaviors for the ae ae of the loading poten- 

tial, i.e., dp = Oe op being the part 

associated ten oe OR and To) being that 

arising from the torque-producting loading in the 

forms: 

Siete -i2Née 

an2 p'w 

Q=-2 

een 

Ro 

r 
m : anya | 

Rh 

(25) 

eas czy a San MIME eee 
(x24r2402) |™ Eve [x?+r°+p*+4d (a-z,,) ] ae 

inl -i2ne 
pred | ct ae Ne oe 

woe a ae An2p'w* oe 

Q=-0 = 

(m=A-2N) 
continued on page 284 
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R 
oO 

aN 2 HEE alta 

Rh (26) 

em? "3 elm fi a 

L(x? +2407) Ree [x2424p?+4a (a-z,,)} mI#1/2 

where 

e flea Oct Cn ae a AZ) e_2)  yeecp cheer 
<Im| I (|}m| +1) 

function (27) 

and 
ee 

LA) =o Ap) (Pp, 0) asus da, the load density 

(28) 
ae 

Here the effect of the free surface is included by 

the last terms in each integrand. To exclude the 

free surface, take the propeller depth of submergence 

d=, 

Limiting our attention to blade rate (£ = 1, - 1), 

we see that, although the mean pressure jumps Apo 

(A = 0) are much larger than those at all other 

wake harmonics, the propagation functions for m = 

X - &N = +N exhibit extremely rapid decay with 

increasing x. In addition, we observe that the 

radial loading for m = +N obtained from Apy is 

weighted by the oscillatory function eiNa which 

has the effect of producing an Iy(o) which is 

inversely proportional to N. In contrast, the 

contribution fon Ae— Ni, ase, m=O} as ofthe 

form 

(N) 
Lo = ie da ' 

which has a "non-destructive" weighting function of 

unity. Another feature which reduces the mean 

loading contribution to the generation of forces 

on the hull (wherein integration over the athwart- 

ship variable yp is involved) is the presence of 

the space angular function 

: R -1 
oiNy aya iN (tan Yp/Zp) 

yielding pressures and velocities at different Yp 

which are not in phase. In strong contrast in the 

propagation mode for the blade frequency loading 

Apy (for which m= 0), dp has no dependence on p 

or p4, and all yp locations receive velocities and 

pressures which are in phase with each other. On 

the other hand, the coefficient C|,| is large for 

} = 0 (being 6.5 for a 5-bladed propeller), whereas 

Cc. = 1, the multiplier for the contribution from 

the blade frequency Ap's. 

These observations are succinctly summarized in 

Tables 1 and 2 for the case of a 5-bladed propeller, 

displaying the rate of decay with x, the variation 

of the influence coefficients C]m| and mC|m|/1+2 m|, 

and the dependence on the angular space coordinates 

pand ~;, without and with the free surface effect 

for the dominant terms at blade frequency arising 

from the loading at wake harmonics i} = 0, N- 1, 

Nand N+ 1. 

One may observe in Tables 1 and 2 that the effect 

of the free surface does not generally increase the 

rate of attenuation of the potentials with x except 

at or near all points in the vertical plane yp = 0 

with the exception of the bp (N) and > (N) arising 

from blade frequency loading on the blades, i.e., 

} =N and m =0, which show a change from x72 to x74 

and x7! to x-3 everywhere, respectively. 

A dramatic contrast in the force-generating 

capabilities of the pressure field components arising 

from the mean (the largest) and the blade-frequency 

loadings on the blades can be found by integrating 

the pressures 

-p! Og) eng 59 94,7, (N) 

ot the 

over a rectangular region of half-breadth b arranged 

symmetrically z, units above the propeller and 

extending from -f radii forward to s radii downstream 

of the propeller plane. Upon defining the coeffi- 

cient of the vertical force on the rectangle as Ze (A) 

= FZ) /o'n2p4, we can arrive at the following 

TABLE 1. ASYMPTOTIC CHARACTERISTICS OF BLADE FREQUENCY COMPONENTS 
OF THE THRUST-ASSOCIATED POTENTIAL ¢, FOR A 5-BLADED PROPELLER 

FOR LARGE AXIAL DISTANCES 

Wake Propagation Influence Relative 

Order Order Coef. Loading* 

r m C mil A) 

2pQ, 

0 =5 8.48 26.7 

N-1=4 -1 4.71 4.8 

N=5 0 3.14 1 

N+1=6 1 4.71 2.1 

Dependence on x, py and ¥, 

Without With With 

Free Surface Free Surface Free Surface 

(yp =9) 

x et ise x (cae 1) 26d (d-Zp)x 

Ix|3 ix |!3 x5 

x tiv x (el? -e “4 10d(d-z,)x 

Ixi Ix [x7 

x 6xd(d-zp) 6xd(d-zp) 

ixP Ixf Ix 

xe? x(eriP—e 10d (d-z),)x 

7 ix/5 xf |x| 
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TABLE 2. ASYMPTOTIC CHARACTERISTICS OF BLADE FREQUENCY COMPONENTS 
OF THE TORQUE-ASSOCIATED POTENTIAL ¢g FOR A 5-BLADED PROPELLER 

AT LARGE AXIAL DISTANCES 

Wake Propagation Influence Relative 
Order Order Coef. Loading* 

r m mC) | LO) 

1+2|m| 2p), 

0 -5 -3.86 26.7 

N-1=4 -1 -1.57 4.8 

N=5 0 0 1 

N+1=6 1 IES; 2.1 

Dependence on x, y and ¥; 

Without With With 

Free Surface Free Surface Free Surface 

(yp =9) 

eisy eid y_ li 22d(d-zp) 
Ix }x |} |x ls 

eiv civ _ eli 6d (d-zp) 

IxP [xP Ix 

ou 2d(d-zp) 2d(d=zp) 

Ix! Ix? Ix 

eiv paigmemGi 6d(d-zp) 

IxP [xP Ix 

*These are relative values as obtained from calculations of a 5-bladed propeller 

using the wake of the SS Michigan. 

** L O) 

im 

2 p04, 204, 

a 

~ a4, 

expressions for the moduli of the blade-frequency 

forces, viz., 

DO Nate 
C. \(2e4b ) 

[Zp] = sin [ (Nt) 7] 
an2p 'n2R2 

(o) 

1.0 

N+1 : 
fe) Ap, (p) sin Noy, 

0,2 (29) 

—(2N+ ~(2N+ { (Vezeztep® NN) _ (Veep? "ONY yap 
where 

Gy, = dbeSaBoos (NEI) ig 2 tem! ica 
N Zo 

2 (N+1)! 

for the contribution from the mean loading, (i = 

0), and 

10 

N N 
|z ( ai | 4p, | 2n T 202 N 

81p'n“R ) 

0.2 

(30) 
(b+ [s*4+22+p2+b2) 

SSE do 

(b+, [£24+22+p24b7) 

for the contribution from the blade-frequency loading 

on the blades. 

b 5 

Ap, (p,a%) eM da = Apy (p) ar 
b 

sin may, 
for Ap, independent of a 

Evaluations of (29) and (30) were carried on a 

hand calculator for various integration lengths f 

forward of a propeller using assumed radial distri- 

butions of Ap, and Apy and representative values 

from computer calculations for a 5-bladed 22.5 ft 

propeller in a single-screw ship (model) wake. The 

calculations were made for a flat-bottomed hull of 

half-breadth b = 2 Ry at 2, = 1.5 Ry (25 percent 
tip clearance) and a stern overhang s = 1. Results 

shown on Figure 4 show dramatically that the force 

arising from the blade-frequency (b-f£) loading is 

(asymptotically) 65 times larger than that from the 

mean blade loading when the free-surface effects 

are omitted (note that Ap, = 40 Ap;). Furthermore, 

the total force due to b-f blade loading rises very 

slowly to its asymptotic value as the integration 

length is increased and even the force from mean 

blade loading requires integration of the pressure 

to three radii forward of the propeller. 

To allow approximately for the effect of the 

free surface, one can subtract terms of the same 

form as (29) and (30) with z,* replaced by z,* + 
4dh with d being the depth of submergence of the 

propeller axis and h the hull draft in way of the 

propeller. The reduction in force for d = 3.5 and 

h = 2 is significant for Zp (N) but is found negli- 

gible for the smaller force. As expected, the 

asymptotic value Zp (N) (£09) is more quickly achieved 

due to the presence of the free surface, but, never- 

theless, requiring that one integrate to some 8 

diameters to achieve the final value. 

These results tell us that the current practice 

in European model basins (in which b-f pressures 

are measured on models in the vicinity of the 

propeller and these are integrated in an attempt to 

secure the b-f hull force) is highly suspect because 

the slowly decaying pressures from b-f blade loadings 

contribute large sectional force densities far from 

the propeller. This effect is exacerbated by the 

"growing" cross-sectional shape as one integrates 

forward which is not accounted for in the constant 

beam "ship" used in the foregoing analysis. 
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As an order of magnitude formula, one might use 

(30) for £ = ~ with the correction for the free 

surface included. This reduces to the complex 

amplitude 

1.0 

Zn = pAp. Qn 

(b+ s*+z *+p°+b?) 

do 

(b+ \s2+z 20 2 +4b2+4dh) (eat) 

(which must not be used for hull drafts in way of 

the propeller, h, which are small, as clearly Zep (N) 

*+0O as h-+0O). In practice, Apy = ay(P) cos NO + 

by(p) sin N8, ay, by being the chordwise average in- 

phase and quadrature blade pressures given by the 

unsteady lifting surface calculation. 

With the foregoing considerations of the propeller 

in mind, we now return to the surface force problem 

for a general three-dimensional hull boundary and 

prescribed propeller onset flow. In the following 

section, a procedure is described for determining 

the diffraction potential and the surface pressures 

and forces in terms of singularities distributed 

over the surface of the hull. 

x10 

FIGURE 4. Approximate moduli of B-F forces on 

barge-like ship from pressures emanating from 

mean and B-F loadings on a 5 bladed propeller 

(in a single screw ship wake) as a function of Oo 

integration length forward of propeller. 

, 

B-F FORCE COEFFICIENTZ 

(EFFECT OF FREE SURFACE NEGLIGIBLE) 
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INTEGRATION LENGTH, f, FORWARD OF PROPELLER IN RADII 

4. A DIRECT APPROACH FOR DETERMINING SURFACE FORCES 

A "frontal attack" on the problem of predicting the 

vibration forces generated on an arbitrary hull by 

the induced flow of the propeller, (and its free sur- 

face image) is to construct the potential of the hull 

in the presence of these onset flows. This procedure 

was first applied by Breslin and Eng (1965) toa 

realistic hull form. At that time, however, only 

the mean loading and the blade thickness were 

accounted for in the flow impinging on the hull and 

the computer time was observed to be excessive. In 

contrast to these earlier efforts, the propeller 

flow is now composed of all constituents of loading 

and the (high frequency) images arising from the 

presence of the free surface. 

A solution for the potential, $,, which satisfies 

equations (3), (4), and (7), is constructed by 

distributing source singularities, on (x)einNut, 
over the surface of the hull, such that 

dn) = - A o,f") (—— - —4— Jas) 
Ss |x-x" |x-x! | 

ab 

aC Dae O (32) 

where the region of integration is over the submerged 

portion of the hull and x; is the distance from an 

ASYMPTOTIC VALUE 

FOR f—=@ a 

6.28 
1 ARISING 

FROM B-F LOADINGS Op, ON PROPELLER BLADES 

WITHOUT FREE SURFACE 

WITH FREE SURFACE CORRECTION 

(d=3.5, h=2) 

a NOTE EXPANDED 
Z, —B-F FORCE ARISING FROM SCALE ———= 

MEAN LOADING (4 P= 40 Ap, !) 

WITHOUT FREE SURFACE 



“image” hull point to the field joteulics abo, alse 

x' = (x',y',2!), then xt =X AV Ze ee Source 

strengths o,(x) can be determined by applying the 

hull boundary condition (5) yielding an integral 

equation 

(x) oO (x 
n 1 — al iL 5 > it oy, (x")n o W ae SES as 

+ n(x) “(Yop + Yop; ) = 0, Sons (33) 
n 

The integral teria gives the contribution from all 

source elements other than at the point of interest 

on the hull. The contribution from the source at 

that point is given by the first term, 0, (x)/2. 

Equation (33) with n- [Vop_ + Vop; _] as a known 
i 7 ; n in 9 
input is solved numerically by the generalized 

Douglas-Neumann program [Hess and Smith (1964)]. 

In practice, the hull surface is divided up into 

quadrilateral elements over which o, is considered 

constant and the integral equation is replaced by 

a set of simultaneous algebraic equations. Care 

must be exercised to insure that the sizes of the 

elements are small compared to the spatial "wave 

length" of the propeller-induced velocity field. 

This is particularly the case for field points just 

downstream of the propeller since the velocity 

components rapidly become proportional to sines 

and cosines of N(w/U x-Y) so that the wave length 

of these signatures is A =2mU/Nw, which, for J~1 

and N = 5, becomes A = 0.4R,. In order to obtain 

representations of an entire cycle, it is necessary 

to take element lengths of one-quarter of this 

length or about 0.10R,. Upstream, the induced flow 

is monotonic in x and the element sizes can be made 

much larger without loss of accuracy. 

It is acknowledged that the above-described pro- 

cess does not, in principle, completely solve the 

problem since the feedback of the hull sources on 

the instantaneous flow experienced by the propeller 

is not included in the propeller loadings Ap). To 

do this would require joining the integral equation 

for the propeller loadings (with input from the 

propeller generated hull sources) to Eq. (33) to 

form a pair of integral equations for Ap) and oy, 

which, when solved interatively to convergence, 

would yield the complete solution. For the present, 

we are content to ignore the hull feedback on the 

propeller. 

Once the source densities on the hull surface 

are found, it is convenient to determine the force 

induced on the hull in terms of simple integral op- 

erations on these sources. Although the Lagally 

theorem and its extension by Cummins (1957) is known 

for submerged bodies, it is necessary to develop a 

form which is suitable for use for floating bodies 

beset by high frequency flows. 

The force as given earlier by Eq._ (12) may be 

considered as the sum of two terms F, ) and F, (2) 

given by 

ae = ipnNw [fe nds (34) 

and Ss 

F,(2) = 9 Jf Vz * Vb, nds (35) 
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Since $y = 0 on z = O, the region of integration 

in (34) may be extended to include the hull water- 

line plane S, (see Figure 1), thus forming a closed 

surface about the volume ¥ inside the submerged 

portion of the hull, and 

F (1) = ipnnw bn nds (36) 

S+S5 

where the symbols ( )* and ( )~ are used to denote 
a quantity evalutated on the outside and inside of 

the surface of integration respectively. Noting 

that for $,(x) given by (32), bn? = bn (i.e. the 

potential is continuous across a surface distribution 

of source singularities), and using the vector 

identity n=n- Vx, one obtains 

st 

F,(1) = ipnNw dan * V¥ds(x) (37) 

S+S, 

By means of Green's reciprocal theorem applied to 

the volume ¥, (37) becomes 

Sy — 

x xn ° Vo_ dS(x) (38) 

° 

since V + V(x) = 0 and V*$," = 0 in ¥. A fundamental 
property of a surface distribution of source singu- 

larities relates the jump in the normal derivative 

of the potential to the local source strength, viz. 

Bl) no) Vout = ni) Vduo cy, (39) 

But since n° Vont = 0 on S by virtue of the boundary 

condition (5), Eq. (38) may be written as 

—— — —_ —_. 

Fy, (1) = -ipnNw X On(x) dS(x) + 

S 

aS OO => 
ipnNw x a ds (x) (40) 

Ss 
oO 

The first term in (40) has the same structure as 

that derived by Cummins (1957) for submerged bodies 

generated by internal singularities. The second 

term arises from the capping of the volume by 

extending the free surface through the ship (proposed 

originally by Breslin in 1971). For the important 

case of the vertical force, Fone we obtain 

FZ (1) = ipnw i Op (x) aS (x) (41) 

Ss 

A similar analysis can be applied to the convec- 

tive term F, (2) (see appendix A) to obtain 



F,(2) = - p ile Wop. + op, ) eS) + 
n 

s 

3 
fe) I Vo5 = ds 

So 

(42) 

in which again the first term exhibits the same 

form as for a submerged body and the second term 

accounts for the intersection with the free surface. 

If it is assumed that 96 /dz = 0 on z = O (rigid 

wall free surface condition for the steady flow 

about the hull, i-e., low Froude number approximation), 

then from (42) 

FE, (2) = -9 o i108 (dp + op, ) ds (43) 
=o S dz n in 

S 

and the total vertical force, F 

becomes 

; an 
=> Res, Oi. oF Oma a + . 

“Bg ff ee ca tr 
Z 

As noted earlier, the first term under the integral 

will dominate because of the large multiplying 

factor nNw. This will be confirmed in the calculated 

example to be presented subsequently. First, how- 

ever, we outline an alternative approach for 

determining the vibratory hull force which avoids 

the need to solve for the diffraction potential. 

Zn + ) 

ds 

(44) 

5. AN ALTERNATIVE METHOD FOR DETERMINING THE 

VIBRATORY HULL FORCES 

Vorus (1971, 1974, 1976) has developed an alternative 

procedure for determining the vibratory hull surface 

forces which eliminates the need to solve for the 

hull diffraction potential in the presence of the 

propeller onset flow. The ith oscillatory force 

or moment, Fin, exerted by the pressure on the 

hull may be written from (12) and (13) as 

: =x a Sas 
Ech = (0) (inNwd, + Vs °* Von) my ctr ds (45) 

Ss 

> a 
where the a, are defined as 

= —> a = > 

a, =i Cy, = yk =z 9 
=> — > aS = 

a2 = j Ch = 64 al be Us 

a3 =k OF Gea) i ee (46) 

Vorus has shown that the solution for Fjy, with no 

additional approximation, is given by the formula 

1 /Nw 

-inNwt 
F. =— dt e ds(&,p,9 + a) 

-7 /Nw 

SPyy 

1 72 2 O A p /U + (wp) ™ Wate 

E (47) 

All of the variables in (47) pertain to the propeller 

except Hin- Hy, is the amplitude of the fluid 

velocity potential due to the bare hull travelling 

backwards with speed U across the water surface 

and oscillating with unit amplitude in the ith 

direction and at the frequency nNW. Since the 

details of the derivation of this formula may be 

found in the cited literature we will only outline 

major steps as follows. 

The second term in (45) can be rewritten using 

the following vector identity 

Wig 9 Woe) (ao i) SS Wo Ga) Wg 2 ta) + 

> > > == = => 

Vx[¢n(@; x Vs)] * n - oy Vx (aq x Vs) * n (48) 

Only the last term contributes to (45), because We 

*n = 0 (steady flow hull boundary condition) and, 

by Stokes' theorem 

ae > a <=> > > 

ff tes 1) (eno Ve)il om 6 =o tne x V5)d% = 0 

Ss (49) 

where the line integral is taken along the hull 

waterline on which $, = 0. Consequently, Eq. (45) 

becomes 

FR — — a —> 

Fin = 0 J fr [inNwo, - Vx(aj x Vs)] + n ds (50) 

S 

and, upon introducing the function Tela which satis- 

fies 

Uh = © in fluid domain (51) 

H. =0 z= 0, outside S (52) 
in 

= > 4. es —>) —_ 

OY isla hae [inNw a; - Vx(a4;XVg)] on S(53) 

Vu, +0 as [x| > =,z< 0 (54) 
in 

equation (50) is given by 

— > 7 Fo? Oat AV TH eas (55) 

s 

This form can be identified as one of the terms in 

Green's theorem applied to the functions $y, and 

Hin in the fluid domain bounded by the hull surface 

S, the free surface z = 0, and the surfaces of the 

propeller blades Spyr and slipstream, Spy, which 

yields 

1 /Nw 

N -inNwt 
Fin a ra dte {f Hin 

SPy —7/Nw 



ap + db - 
ae eae) we, Ae 0 ; an an lS}. ap (bp bp )n. Vv Hi ds 

Bp Pp 

SPyytSWyy (56) 

where dp - bp is the jump in the propeller potential 

across the blade and slipstream surfaces. The two 

terms in (56) can be identified as the contributions 

from blade loading and thickness, and with further 

manipulation can be brought into the form of (47). 

Equation (47) indicates that the velocity corres- 

ponding to the potential Hj, is evaluated over the 

propeller blades and slipstream. The propeller 

representation by distributions of dipoles directed 

normal and tangential to the blade pitch surface is 

the same as previously discussed. In the formula, 

the velocity induced by the bare hull, VH;,, is 

resolved into components in the directions of the 

dipoles, multiplied by the dipole strengths, and 

the products integrated over the blade and slipstream 

surfaces. The first integral in (47), in time, 

extracts the nth Fourier harmonic. Both the blade 

position and the dipole strengths are functions of 

time. 

In the case of vertical force analyses, an 

approximation to the improper integral in (47) has 

been found to yield acceptable results. Let I be 

defined as 

inNw 
a WEE |) a 

I= e im. © Wile lis 0 (57) 
'o p 3 

E 

If the oscillating exponential varies more rapidly 

than VHjy, then the argument of the exponential can 

be considered as "large" and I can be expanded in 

an asymptotic series. VHj,, should vary relatively 

slowly aft in the propeller slipstream for vertical 

oscillation of the bare hull and an asymptotic 

evaluation should therefore be valid. (Such a 

treatment may not apply to an athwartship analysis, 

for example, where a rudder is involved in the bare 

hull oscillation.) To proceed with the asymptotic 

representation, (57) is integrated by parts yielding 

inNw go ae ee) 2 
=- ma OW a. | 

inNw Ny win 'é 

inNw 
(57) 

y e us a im oO W SI dé' 
inNw ost I ~ alfa) 

For the conditions stated, the integral term is 

higher order. Hence, to one term, 

intw “P ~ y He) (5) 

and (47) reduces to 

1 /Nw 

Nw -inNwt E. = — dt e dS [o'vtn, 

-7 /Nw SP, 
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Ap as 

inNw np! iY Ha (5?) 

in which the induced flow is evaluated exclusively 

on the surface of all N propeller blades Spy. 

6. COMPARISON OF THEORY AND EXPERIMENT FOR A BODY 

OF REVOLUTION 

An experiment was conducted to measure the periodic 

forces on a body of revolution adjacent to a propel- 

ler loading provided a configuration which could 

be treated in a reasonably exact fashion by potential 

flow theory. As such, the experiment was intended 

as a fundamental check on the theory and computer- 

aided numerical procedures. However, it is believed 

that the experimental technique can be extended in 

the future to study more general hull geometries 

and the effects of unsteady propeller loading and 

transient cavitation. 

In the following sections, the experimental 

apparatus and procedures are described and the 

force measurements are compared with the analytical 

predictions. 

Test Body and Propellers 

The experiments were performed in the DTNSRDC Deep- 

Water Basin [(22 feet (6.7 m) deep, 51 feet (15.5 m) 

wide, and 2600 feet (792 m) long)]. Both the body 

and propeller were supported and towed from Carriage 

II which has a drive system capable of maintaining 

speed to within 0.01 knot. 

Forces were measured on the forward half of an 

ellipsoid of revolution with a length/diameter 

ratio of 5.65. This "half body" was mounted by a 

specially designed strain-gaged flexure assembly 

to the forward end of a massive streamlined after- 

body, attached to the towing carriage by a single 

strut. The propeller was driven by the DTNSRDC 

35-horse-power dynamometer, separately supported 

from the towing carriage and positioned so that 

both the propeller shaft and body axes were aligned 

parallel to the direction of flow as illustrated 

in Figure 5. 

ne half body consisted of a 0.25 inch (0.64 cm) 

thick fiberglass shell measuring 36.0 inches (0.91 

m) in length and 12.75 inches (0.324 m) in maximum 

diameter. The shell was filled with polyester foam 

in order to minimize the mass and obtain a high 

natural frequency, sufficiently above the propeller 

blade rate frequency range to reduce nonlinear 

resonance effects. The aluminum, free-flooded 

afterbody, together with its support strut had a 

low natural frequency to prevent mechanical vibra- 

tions from the propeller dynamometer gears and 

shafts passing through to the body force dynamometer. 

The towing strut was attached to a large frame, 

mounted on the propeller dynamometer structure. 

Slotted pads supporting the frame permitted trans- 

verse and longitudinal adjustment of the body 

location and orientation. Vibration isolating 

mounts were placed in the framework to further in- 

hibit “pass through" vibrations. 

Vibratory forces were measured for two propellers. 

DTNSRDC propeller 4118 is a 3-bladed, 12-inch (0.305 

m) diameter aluminum propeller designed for uniform 

flow. Propeller 4119 is identical to 4118, except 
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FIGURE 5. Experimental 

arrangement. AFT VIEW 

that it has twice the blade thickness (and a slight 

difference in pitch to correct for the added thick- 

ness). The principal design characteristics of 

the propellers are listed in Table 3. 

were designed by lifting-surface methods and both 

open water performance [Denny (1968) ] and field 

point pressure measurements [Denny (1967)] have 

been reported. It should be noted that the theoret— 

ical predictions of field point pressures agree 

very well with the experimental measurements (at 

design advance coefficient) and the same propeller 

theory is applied in the present surface force 

calculations. 

The Force Dynamometer 

A dynamometer was developed to measure the horizon- 

tal component of the unsteady forces produced on 

the half body by the propeller. The half body is 

cantilevered from the afterbody on five (5) flexures. 

Forces are determined by measuring the strain in 

one flexure, while the other four flexures absorb 

the vertical force and moments as illustrated 

schematically in Figure 6. The measurement flexure 

transmits vertical forces and moments with miminal 

The propellers 

PROFILE VIEW 

stress while resisting a large part of the horizontal 

force (calculated to be over 90 percent). 

Two competing requirements governed the flexure 

design - the need to resolve small forces and the 

desire to maintain the natural frequency of the 

flexure-half body system far above the propeller 

excitation frequency. Also the flexure was expected 

to experience large (static) forces arising from 

flow misalignment and hydrostatic loading. 

From the relationships for stress and stiffness 

of a simple cantilevered beam, it is known that 

for a given force, the flexure should have a low 

stiffness in order to produce maximum strain. This 

in turn would require a small body mass to keep the 

natural frequency high. However, if the body is 

too small, the resulting propeller force signal 

becomes difficult to retrieve in the presence of 

background noise. Although sophisticated techniques 

were employed to reduce electrical noise and boost 

signal power, it was not possible to completely 

eliminate mechanical noise generated by the rumbling 

carriage. With these compromises in mind, the 

flexure was designed for a frequency ratio of 0.5, 

producing minimally acceptable stress levels of 

1000 psi (6.9 uPa) for the one pound (0.454 kg) 

force in this experiment. 

TABLE 3. PROPELLER GEOMETRY 

4118 419 

DIAMETER, INCHES 

NO OF BLADES 

PITCH RATIO (0.7Ro) 

EXPANDED AREA RATIO 

BLADE THICKNESS FRACTION 

NACA MEANLINE 



—SUPPORT FLEXURE (4) 
DIRECTION 0.750 IN. X 0.035 IN. 

OF MEASURED (1.90 CMX 0.084 CM) 

FORCE MEASUREMENT FLEXURE 
O.500IN. X 0.005 IN. 
(1.27 CM X 0.0127 CM.) 

FIGURE 6. Schematic diagram of flexure arrangement. 

For simplicity and economy, the flexure consisted 

of conventional steel shim stock clamped between 

the half body and the afterbody by sets of wedges. 

The flexures were pinned and epoxied to the wedges 

prior to insertion into the dynamometer plate. 

Before assembly, eight strain gages were mounted 

and waterproofed, with one gage placed at each 

corner of the two large faces of the flexure. The 

gages were electrically compensated for tension 

(or compression) and torsion. In order to check 

vertical alignment to the flow, two of the support 

flexures were also strain-gaged. 

Calculations indicated that the measured strain 

in the flexure due to dynamic forces would be 135 

percent of the strain due to a static force with 

the same amplitude, assuming small damping. Also, 

the phase angle of the strain relative to the applied 

force would be affected by the large ratio of 

excitation frequency to the natural frequency. 

Consequently, the experiment incorporated an inter- 

nally mounted electromagnetic voice coil to calibrate 

the measurement flexure as a function of force 

amplitude, frequency, and forward speed. Initally, 

with a series of known static forces applied to the 

body, a current was applied to the coil to return 

the body to its unloaded position, as indicated by 

the strain output from the measurement flexure. 

These static calibrations revealed that the coil 

current varied linearly with applied force and that 

the flexure strain was virtually independent (less 

than 2 percent variation) of the axial location of 

the applied force. 

Dynamic calibrations of the dynamometer were 

performed using a frequency generator and amplifier 

with the known sinusoidal current directly input to 

the coil. (It is assumed that in the low frequency 

range of interest, O to 60 Hz, the applied force 

is independent of frequency). The response amplitude 

(relative to the applied current or force) was 

found to vary linearly with the applied force. By 

averaging the data, the transfer function for each 

frequency and forward speed was determined as shown 

in Figure 7. These results revealed anomalous 

behaviour for frequencies of 20 Hz and 50-60 Hz, 

which were later identified as resonant frequencies 

associated with the towing structure. 

Instrumentation and Data Acquisition 

During each data run the following physical quanti- 

ties were measured (see Figure 8): the force on 

the half body, the surface pressure at two locations 

on the body, the distance between the body and the 

propeller (tip clearance), propeller blade angular 

position and rotation speed, the forward speed of 

the towing carriage, and the horizontal accelerations 

of the afterbody. 

Pressures were measured by metal diaphragm solid- 

state gages (KULITE XTMS-1-190) flush mounted to 

Zo 

the half body surface. The propeller tip clearance 

which varied slightly with forward speed, was 

determined by measuring the distance between the 

35-horsepower dynamometer body and the test after- 

body at two axial positions using linear variable 

differential transformers (Schaevitz 1000 HCD). 

These low friction devices recorded relative move- 

ment without transmitting mechanical vibration. 

The propeller blade angular position and rotation 

speed were measured by a Baldwin Shaft Position 

Encoder mounted on the 35-horsepower dynamometer 

tachometer shaft, generating one interrupt per 

degree of revolution and another interrupt once per 

revolution. During the experiments each data channel 

was sampled for each six degree increment of propel- 

ler rotation, thus providing 20 samples per cycle 

for blade frequency quantities. (The time lag 

between successively sampled channels and the delay 

between the encoder interrupt and capture of the 

sample, together amounting to several degrees of 

rotation, were later accounted for in the data 

reduction). Analog data output from the measurement 

tranducer was digitized and stored on magnetic tape. 

Data for each angular position of the propeller 

were summed and averaged over several hundred 

revolutions in an attempt to reinforce the signal 

of interest while self-cancelling random noise. 

In order to determine the blade-frequency com- 

ponents of the unsteady force (and pressure) on 

the half body, a Fourier analysis was applied to 

the averaged data to yield the coefficients of the 

series 8) 

35 
F(0) = a + a, cos mO + be sin m0,-T7 < 0 <T 

m=1 

S) 

a 
=O! = = 5 + Co cos (md vey) (60) 

m=1 

in which 6(t) is the blade position angle (Figure 

8). For the three-bladed propellers, the nondimen- 
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FIGURE 7. Force dynamometer amplitude response as a 

function of frequency for several forward speeds. 
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FIGURE 8. Schematic diagram of 

experiment. 

sional amplitude and phase of the blade frequency 

force F3, are given by 

lF3| 5 5 
is ahs vja3t + b4 (61) Cc = 

on2D 

0 Se tea Gye) (62) a = e ein 3/a3 

where the phase angle, Ope is the position of the 

reference blade when the force is a positive maximum 

or, from Figure 8, 8, is the angle by which the 

force leads the blade position. 

Experimental Results 

Force measurements with propeller 4118 located 16.0 

in. (6.3 cm) aft of the nose of the body and with 

a nominal tip clearance of 3.0 in. (1.18 cm) are 

given in Figure 9. The force generally increases 

in amplitude and lags further with higher propeller 

loading. The data points at design J (0.83) for 

speeds of 4 and 8 knots show good agreement. In 

Figure 10, the blade frequency pressure induced on 

tne body in the plane of the propeller [x = 16.0 in. 

(6.3 cm)] shows a monotonic increase in amplitude 

with increased propeller loading and repeats well 

for different speeds. 

Force measurements with propellers 4118 and 4119 

positioned 10.0 in (3.94 cm) aft of the nose of 

the body [4.5 inc. (1.77 cm) tip clearance] are 

shown in Figure 11. Over the range of propeller 

advance coefficient, the force amplitude tends to 

increase with increased propeller loading and the 

effect of thickness is demonstrated. 

The data exhibit some scatter for reasons not 

yet fully understood and further calibration experi-_ 

ments and data runs are needed. The variation in 

the data for different speeds (and hence different 

propeller excitation frequencies) is particularly 

disturbing. It may be noted that a post-test 

examination of the raw (unaveraged) data for the 

flexure, displacement, and afterbody accelerometers 

revealed three specific sources of difficulty. 

First, low amplitude data, particularly for speeds 

of 6 knots and a blade frequency of 35 Hz, was 

AFT VIEW IN PROPELLER PLANE 

PRESSURE 
SDF TRANSDUCERS Z 12.75" 

VD 
be AFTERBODY 

PLAN VIEW 

difficult to process. An example of this type of 

run and comparison with a good data run is shown 

in Figure 12. Generally, the low amplitude data 

resulted in force coefficients much below the 

values obtained from the higher amplitude data. 

Second, for certain runs the data were overscale on 

the individual records, but not in the averaged 

plot. These overscales, if abundant, produced 

anomolies. Third, structural resonances of 18-20 

Hz and 55-60 Hz grossly distort data for blade 

frequencies with these values. To the extent 

possible, data contaminated by these problems were 

discarded and are not in the results presented. 
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FIGURE 9. Calculated and measured blade frequency 

force for propeller located at 2 = 16.0 in. with 

tip clearance C = 3.0 in. 
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Application of the Theory 

Direct Approach - Extended Lagally Theorem 

(Breslin and Eng, 1965) 

The test body surface was divided into 154 elements 

as shown in Figure 13 with finer subdivisions made 

in way of the nearest approach of the propeller 

blades. Panels 93 through 100 were used to close 

the body. The geometry of these elements, together 

with the normal velocity induced by the propeller 

due to loading and blade thickness formed the input 

to the generalized Hess-Smith program which inverts 

Eq. (33) to yield the source densities on each of 

the panels. 

A typical velocity variation, as given in Figure 

14, shows that, downstream of the propeller, the 

loading contribution is oscillatory, requiring 

great care as the body sections are becoming larger. 

This test case presents a somewhat difficult appli- 

cation of this technique for this reason. In the 

ship case, there is only a small portion of the 

hull downstream of the propeller, and the sections 

are generally becoming smaller. As a result of 

this non-ship arrangement, @ifficulty was encountered 

in securing an accurate answer, requiring several 

adjustments of the size and location of the source 

panels. 

A calculation for a single set of conditions, 

specified by the geometry of DTNSRDC Propeller 4118 

set at a tip clearance of 3.0 inches (1.18 cm) at 

an axial distance of 16.0 inches (6.3 cm) downstream 

of the nose of the body gives a blade-frequency 

force coefficient Cp = 3.4 x10-3 anda phase angle 

Op = -2.0°. These results are quite close to the 

measured values shown in Figure 9. It should be 

remarked that the evaluation included the Lagally 

force corresponding to the integral of the convective 

pressures, i.e., the action of the transverse pro- 

peller velocity component on the sources which 

generate the body in the uniform axial flow. This 

contribution, as expected, is indeed small yielding 
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only 1.0 percent of the force arising from the 

time rate of change of the potential. This surely 

justifies the order of magnitude argument given 

earlier. 

Alternative Approach - Oscillatory Body Potential 

(Vorus, 1974) 

In order to apply Eq. (47) to the experimental 

configuration, it is convenient to consider the 

velocity potential Hj, of tne body travelling back- 

wards and executing simple vertical oscillations, 

so that a.=03 =k in Eq. (53). The free surface 

condition Hj, = 0 on z = 0, Eq. (54), can be satis- 

fied by reflecting the body surface into the upper 

half space and satisfying the body boundary condition 

additionally on the image surface, S;- In Appendix 

B it is shown that the vertical force induced by 

the propeller on a ship in the free surface is 

equal to the force on the "double hull" deeply 

submerged. If we make the further assumption that 

the force due to the convective pressure can be 

omitted, the problem for H;, now reduces to 

7H sO amy (63) 
in 

= — 

nav, He = inno (nek) oneSetaS: (64) 
in i 

Vu, +0, {x| >@ (65) 
in 

where ¥ is the whole space outside the “double-hull" 

sumtacel,) Sica 

This method is particularly convenient in the 

present application because the velocity potential 

of an oscillating spheroid is well known, e.g. Lamb 

(1932). With slightly modified notation 
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FIGURE 11. Calculated and measured blade frequency 

force for propellers 4118 and 4119 located at 2% = 10.0 

in. with tip clearance C = 4.5 in. 
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and by a suitable coordinate transformation from 

(u,t) to (x,xr), the velocity V Hj, can be calculated 

at an arbitrary point on the propeller blades. 

In general the propeller dipole strength repre- 

senting blade loading is a function of blade position 

O@(t), i.e., Ap = Ap(p,atO(t)). However, in the 

present experiments the inflow to the propeller is 

uniform so that the loading is steady and Ap = Ap 

(9,a). The blades of propellers 4118 and 4119 

employ NACA a = 0.8 meanline sections. For this 

section, and assuming a radially elliptical distri- 

bution of bound circulation, the pressure jump 

across the blade is given by 

8T hoo 

Ap(p,a) = * F(a) (69) 
0.9(ay- a)) ™(R,? - RN 

in which 
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FIGURE 14. Variation of blade frequency verti- 

cal velocities induced by 3-bladed DTNSRDC 

propeller 4118 at r = TOR and > = 

and T is the steady propeller thrust. 

The calculated values of the forces produced on 

the spheroid for conditions corresponding to those 

in the experiment are summarized in Table 4 showing 

the separate contributions arising from blade loading 

and thickness as well as the total forces. The 

latter are also displayed in Figures 9 and 11 and 

agree quite well with the measurements. 

Additional parametric calculations were performed 

to study the effect of propeller location on the 

force produced on an ellipsoid arising from propeller 

mean loading and thickness. In Figure 15 the 

attenuation in force (amplitude) with increasing 

tip clearance is illustrated. (The phase was found 

to be essentially independent of tip clearance) . 

Calculations are presented in Figure 16 for a series 

of axial positions of the propeller with the tip 

clearance held fixed. As the propeller is moved 

aft from the nose of the body, the force increases 

TABLE 4. FORCE CALCULATIONS USING METHOD OF VORUS (1974) 

4= 10.0 IN. 
C= 4.5 IN. 

4=10.0 IN 

C= 4.5 IN. 

PROPELLER LOCATION CONTRIBUTION | S, x103 

MEAN LOADING 

THICKNESS 

TOTAL 

MEAN LOADING 0.88 

THICKNESS 1.58 

TOTAL 1.52 

MEAN LOADING 

THICKNESS 

TOTAL 

1.50 

Bou 

2.90 

0.88 

3.16 

2.97 



PROPELLER 4118 
= 16.0 IN 
J = 0.83 

C/R) = 0.25 

IN EXPERIMENT 

FIGURE 15. Modulus of blade-frequency force on ellip- 

soid as a function of propeller tip clearance [calculated 

using method of Vorus (1974)]. 

rapidly, largely due to the thickness contribution. 

CONCLUDING REMARKS 

The analytical methods given in this paper can be 

applied to a wide range of problems in which it is 

desired to determine the unsteady pressures and 

forces generated by a propeller on a nearby boundary. 

The formulation is quite general, being applicable 

to arbitrary hull (and appendage) geometries, and 

propeller locations, geometry, and loading charac- 

teristics. The assumption of high frequency 

propeller excitation, which greatly simplifies the 

treatment of the free surface, is not at all 

restrictive in most cases of practical engineering 

interest. A severe limitation, to be sure, is the 

restriction to subcavitating propellers. However, 

researchers are actively pursuing this subject and 

/ 
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AXIAL POSITION OF PROPELLER, */(L/a) 

FIGURE 16. Modulus of lateral blade-frequency force 

produced on an ellipsoid of revolution (L/B = 6.0) as 

a function of propeller axial position (constant tip 

clearance, C/R_ = 0.25)-calculated for DTNSRDC pro- 

peller 4118 using method of Vorus (1974). 

as procedures for predicting transient blade cavity 

geometry and the attendant pressure field become 

available, this important feature can be incorporated 

into the analytical representation of the propeller 

and the analysis of induced forces. 

As with any theoretical development of this kind, 

the usefulness and limitations can only be fully 

ascertained by comparison with a sufficient number 

of experimental measurements. The comparisons 

presented in this paper for the simple case of a 

body of revolution adjacent to a propeller in uniform 

flow represent an encouraging first check. This 

experimental technique can be extended to examine, 

in a systematic manner, the effects of nonuniform 

flow (unsteady blade loading and cavitation) and 

more general body shapes. For example, wire screens 

selected to produce certain wake harmonics can be 

towed upstream of the propeller. At the same time, 

the need is evident to undertake calculations for 

comparison with results of the many experiments 

reported during the past several decades. 
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APPENDIX A 

THE LAGALLY FORCE ON A FLOATING BODY REPRESENTED 

BY A SURFACE DISTRIBUTION OF SOURCE SINGULARITIES 

The force F, (2) arising from the convective term 

of the linearized unsteady pressure, Eq. (35), is 

given by 

= + 
vot + Vo, n ds (A-1) 

Ss 

where, as before, the symbols ( ) einel ( ye denote 

quantities inside and outside the hull surface, S. 

We assume that the solutions for We and $y are 

known in terms of distributions of source singular- 

ities and images over the surface S as 

bs (x) =- ma (ee face 4 G(x,x')|dsS 

ese? |] fee? a | 
vy 

& ‘S) 

Vz = iU + Voy (A-2) 

i 1 = 1 1 
n(x) = - aa Oy(x"') TSG Toate | Cay op, 

x-x' | x-x' | 

S) 

+ op, (A-3) 
1n 

in which Og (x) and Op (x) are the source singularity 

strengths, x! is the image point of x, and G(x,x') 

is the "wave potential" of a source located at x! 

and is regular in the half plane z < 0. The deriva- 

tives of these functions on eacn side of the surface 

S are related to the source strengths in the form 

<> + a +E > 

Wa = We 7 neg (A-4) 

—_ > > , 

Vo = Von + no, x on S (A-5) 

from which it follows that 

— SS fs (A-6) 

Ye OVO Sg = Wn = Os Ga 

= 

since vt Cin = Wear 0 ® = 0. 
We now apply Green's theorem to the functions 

Vs and Vd, in the closed volume ¥ surrounded by 

the surface S and So, where Sp is the hull water- 

line plane, obtaining 

+ 
=> a >_ 

Viet O- Wisay saVelis) = V(Vg - Von )dv¥ 

+ S+S5 @ 

>_ 3S = > _ 

= [IVs > V(Vo, ) + Von * Wg ] d¥ (A-7) 

¥ 

since V x We = Vx Vo, = 0 in ¥. Using Gauss' 

theorem and the fact that V* V, =V-° Vo,- = 0 

in ¥, (A-7) may be written as 

Ah 9 - Vo, n dS = 

S+S, 

ane (Vo Vo" +n) + Von (VE + n)] as (A-8) 

St+So 

and hence 



J oe 5, 5 a n i ‘ab a, a os oa 5 

s S 

+ V- (Vg » n)] ds 

+ Jf [ve (Vo + n) 

So 
— >_ —— 

Ore Wctuen 1) h Sa Victi Geren aS 

(A-9) 

The last two terms in the integral over S, combine 

to yield 

= aS 

- Vo. WS +n) =o, + Wy 
— 

n(Vg ° Voy ) 

~s -_=> 

(Go, 23 WY) x bn Vo 

(A-10) 

The first term on the righthand side of (A-10) 

vanishes since $n = 0 on So. The second term also 

vanishes, since by Stokes' theorem 

[fe 2s Gee = ¢ dx x $y Vg = 0(A-11) 

iS) Co 

where the contour cy is taken as the hull waterline. 

Consequently, using (A-6), (A-9), and (A-10), the 

expression for the force becomes 

Fy” = p [Ve Woes a) + Vor We + n) 

S 
> — S 

- dg on n] dS + p Ve (Voy * n)dS (A-12) 

So 
— —= 

The contribution from the free stream, iU(in Vs), 

vanishes since 

iU(Vy, * n)dS = iU V7, a¥ = 0 

StS, ¥ 

Also noting that Voy ° n=-o 

(A-11) reduces to 

= (2 ns aS F(?) = - p [o, Vos + 65 Voy + og on n] AS 

Ss 

+p Vos Vor «nas (A-13) 

So 

or, upon defining 

vot + Voz 
V6 2 Ss S 

a 2 

Vo+ + Vor 
A — n 

Whey = 2 (A-14) 

(A-13) becomes 

Be sree Ga Vis = Te Vp,)4s 

Ss 

au 165 ane ds (A-15) 

So 

The first term has the same structure as the steady 

flow Lagally force derived by Lin (1974) fora 

linearized source sheet representation of a slender 

strut piercing the free surface. The second term 

arises from the intersection of the hull with the 

free surface in unsteady flow. 

In the low Froude number approximation, 0$</dz 

= 0 on z = O (rigid wall representation of the 

free surface), and G(x,x') > 0. In this case (A-2) 

and (A-3) yield 

— 

2 1 = -x! ees 
Woks = oP = Og (x") + ds 

at > =>/3 ats ESS 3 
DR | |x-x", 

i 

Ss 

and 

—s > 

Ty = OS (x') ES Mees | a 
ha 40 Sines = 5,3 s 3 Ss 

|x-x'| |x-x', 
al 

‘S) 

+V +V 2a-16 oP, op. ( ) 
n 

for x on S, and where the integrals are to be 

interpreted in the principal value sense. Inserting 

these expressions into (A-15) and performing the 

integrations, the equation for the force reduces to 

Pasay =—- 6) Og (Vop + Von, a's: 
n tn 

S 

ab 
+ 0 Veg —,- a8 (A-17) 

So 

which is the result given as Eq. (42) in the text. 

The reduction in the first term reflects the fact 

that there is no net force arising from the mutual 

interaction of the body sources. 

APPENDIX B 

REDUCTION OF THE ANALYSIS OF PROPELLER INDUCED 

VERTICAL SURFACE FORCE TO AN INFINITE FLUID 

PROBLEM 

The linearized unsteady pressure at a point, x, 

on the ship hull surface is given by (8) as 

espe) = => (9 3 ie an Wis (G39 ved) (B-1) 



and the vertical force acting in the hull, from 

(10), is 

F(t) = - p(x,t) n+ k as (B-2) 

In the high frequency approximation, ¢ = O on the 

free surface, z = 0, and this condition can be 

satisfied by constructing an image of the hull 

surface and a negative image of the propeller in 

the upper half space and allowing the fluid domain 

to extend to infinity in all directions. The 

negative image propeller is identical to the propel- 

ler proper, but rotates in the opposite direction 

and the signs of the dipole singularities represen- 

tating the effects of loading and thickness are 

reversed from those of their images in the lower 

half space. 

The image hull surface, S;, is identical geomet— 

rically to S, but the signs of the singularities 

on Sj required to diffract the unsteady flow from 

the "two propellers" will be reversed from these 

on S due to the symmetry. The magnitudes of the 

Singularities at image points will be equal. 

The steady flow about the bare hull, Vc, in the 

low Froude number approximation will satisfy the 

rigid wall free surface condition Vs * k = 0. In 

this case, the steadily moving hull can be reflected 

into the upper half plane with a positive image 

singularity system, i.e., the singularities on the 

image surface, S; will be of the same sign as the 

singularities on S to diffract the velocity iU. 

Because of the assumed linearity, the unsteady 

potential may therefore be considered as the sum of 

contributions from the propeller and hull and their 

respective images. 

O = Oe © Oe Pe Ong 2 One (B-3) 

where 

bt) = — bys Gy, t) 
— oN 

bp (x,t) = - py (xy ,t) 

— 

So SOS pip) (B-4) ab 

for all (x,y,z) outside the surface § + Sz: If we 

define bpy = bp + by then it follows that 

(x,t) = opy (xt) - dp, Gg,t) all ¥ (B-5) 

Therefore, the complete unsteady potential in the 

fluid beneath the zero potential free surface can 

be obtained entirely from consideration of the 

propeller and the double-hull in an infinite fluid. 

The unsteady pressure at a point on the hull 

surface S is now given by 

ab ie) Eas —_> — 

at Gant) ee Vg (x) . Vopy (x,t) p(x,t) =- p 
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f) Bc TNE mel ig. | | 
at (x5, ) g (x) gua | 

9 => = 
Now if Vg = (U + Ugr Vor Wo), the symmetry of Vo 

is such that Uc and vg are even in z, while weg is 

odd in z. It follows that 

a — eS => 

Vg (x) Vobpy (X47 t) = Vo (x, ) Vopy (x47) 

and hence 

a => 

p(x,t) = Ppy(x,t) - Ppy(x;,t) (B-6) 

in which 

ap 
PH = 

Bay = 2 Fe ge ° We 

Thus, the unsteady pressure at points on the hull 

can be obtained from calculations, or measurements, 

of pressures at image points on the double-hull, 

with the double-hull and propeller deeply submerged. 

Turning now to the formula (B-2) for the vertical 

force, we obtain 

F(t) = - J [renee - k ds 

iS) 

> 

+ Pip (44 7t) 0 - k ds (B-7) 

s 
_> => => 

But since n(x) * k = —n (x; ) - k, (B-7) may be 

written as 

Pe (Ve) Ss Dip (Xr t) n (x) +k das 

Ss 

—2) — i => 

= Pryp (Xj ot) n(x, ) * k ds (B-8) 

Ss 

or, since the image hull S; is geometrically iden- 

tical to the hull proper, 

—>) > 

aoe) S = Pyp et) n> k ds 

S+S; 

and consequently the unsteady vertical force on the 

hull can be obtained from force calculations, or 

force measurements, using the double model and 

propeller deeply submerged. 
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ABSTRACT 

The Special Research Pool within the Institut ftir 

Schiffbau and the Hamburg Shipmodel Basin (HSVA) in 

collaboration with the Technical University Munich 

and Det norske Veritas executed extensive full-scale 

measurements on the Single-Screw Container Ship 

"Sydney-Express." The main task of the project was 

the determination of the free air content of the 

seawater in front of the propeller during the voyage 

from Australia to Europe. 

Simultaneously the velocity was measured at the 

control point within the Laser-beam, where the free 

air content was measured by the scattered light 

technique. Additional investigations were a deter- 

mination of the water-quality, high speed films and 

sterophotography of the cavitation at the blade, 

and pressure fluctuation measurements above the 

propeller. 

ils INTRODUCTION 

For several years the dynamic behaviour of small 

gas bubbles or nuclei in hydrodynamic pressure 

fields has been recognized as an important influence 

on cavitation inception and its extent. Besides 

other scale effects in the field of model propeller 

testing, the importance of this influence of nuclei, 

which also effects propeller excited pressure 

fluctuation measurements, was often underestimated 

and neglected. Thus, for instance, the results by 

van Oossanen and van der Kooy (1973) have shown 

that for equal non-dimensional flow conditions but 

different absolute revolutions (i.e. n = 20 and 

n = 30 Hz) the non-dimensional propeller excited 

pressure amplitudes were different. After the 

development by Keller (1973) of a practicable laser- 

scattered-light (LSL) method for measuring the 

undissolved air content, systematic cavitation and 

pressure fluctuation measurements were carried out 
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in the medium cavitation tunnel of the Hamburg Ship 

Model Basin (HSVA) with the model propeller of the 

"Sydney Express" [Keller and Weitendorf (1975) ]. 

The results were similar to those by van Oossanen 

and van der Kooy. Due to the additional application 

of the (LSL) technique, the differences of the 

nondimensional pressure amplitudes for different 

revolutions could be clearly explained by the 

influence of the free air content or nuclei on the 

cavitation. A further finding was that the non- 

dimensional pressure amplitudes and the cavitation 

for a revolution of n = 15 Hz were increasing with 

growing free air content, whereas the cavitation 

and those amplitudes for n = 30 Hz remained more 

or less constant. The different behaviour for 

n = 15 Hz and n = 30 Hz were explained by Isay and 

Lederer (1976, 1977). Using the theory of bubble 

dynamics they found that the reactions of the 

bubbles on the respective pressure gradient of the 

propeller blades at n = 15 or n = 30 Hz were differ- 

ent. Further, these investigations led to criteria 

of cavitation similarity of such a kind that the 

number of nuclei per unit volume of the model flow 

had to be increased compared with the number of 

nuclei of the full scale flow. By geosim tests 

with hydrofoils or propellers it should be determined 

to what extent these additional criteria for cavi- 

tation similarity are applicable. 

Keeping in mind these physical connections, the 

full scale trials on the container ship "Sydney 

Express" were planned. These investigations were 

the first attempt to measure the nuclei distribution 

in seawater around a ship by means of the LSL 

technique. The nuclei distribution could serve as 

a basic value for the geosim tests and perhaps as a 

comparative standard value of the water quality for 

model cavitation investigations. Furthermore, the 

experiences, made during the almost adventurous 

measurements on the "Sydney Express" with the LSL 

technique in front of a full scale propeller, could 

be of common interest because the introduction of 



optical laser methods is a promising tool in the 

research fields of boundary layers and propeller 

flows. 

The additional investigations on the "Sydney 

Express" help in full-scale model correlation only 

slightly; the main purpose of these measurements 

was the securing and better interpretation of the 

scattered light results. The following additional 

measurements were performed: 

1. Propeller-excited pressure fluctuation 

measurements with six pressure pick-ups above 

the propeller. 

2. Cavitation observations for determination 

of the thickness and extent of the cavity by 

means of stereo photography. 

3. Investigations of water-quality by means of 

a simple scattered light method (Aminco- 

colorimeter) for detecting suspended particles 

and total air content by means of a Van-Slyke- 

apparatus. For both measurements water 

samples were taken. 

4. Velocity measurements in the control volume 

of the scattered light measurement in order 

to estimate the bubble concentration. 

The "Sydney Express", as one of the fastest 

German single screw merchant ships, was chosen for 

the investigations because its propeller has an 

interesting cavitation extent. 

2. SHIP DATA AND PREPARATION OF THE MEASUREMENTS 

The single screw, turbine-driven ship "Sydney Express" 

has been built by Messrs. Blohm and Voss AG, Hamburg 

(No. 872) and belongs to the so-called second 

generation of container ships. 

The main data of the ship are given in Table 1: 

TABLE 1 - "Sydney Express" - Data 

Ship Data 

Length b.p. L = 210.00 m 

Breadth, moulded BPP = 30.50 m 

Design Draft D = 121.00 m 
Block coefficient c = 0.616 

Displacement (Design) V 43,457 m° 

Container about 1,600 

Max. Power Pp 23,870 kw 

Service Speed Ve = 22.0 kn 

Propeller Data 

Diameter Dp = 7.00 m 

Pitch (mean) Ph 6.550 m 

Blade-Area-Ratio Ae/Ag = 0.78 

Number of Blades Z = 5 

The necessary conversions of the ship construction 

for the installation of the measuring devices in 

the after peak of the ship were carried out at the 

Hapag-Lloyd ship yard at Bremerhaven during the 

latter part of September 1977. Figure 1 shows 

allusively to what an extent the narrow steel 

construction had to be cut free. The installation 

of three windows for the reception of the scattered 

laser light proved to be the most complicated of all 
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installations. For reasons of the ship's safety 

and also to enable proper cleaning these windows 

were pushed through 350 mm sluice valves together 

with their tubular guide pipes. The windows, of 

which only that opening was marked in Figure 1 

which had been used for measurements, were arranged 

between frames 12 and 13. Also, the fitting of the 

three 350 mm sluice valves required skillful impro- 

visation on the spot. The installations of the 

sluice valves for the pressure pick-ups, dimensioned 

in Figure 1, and of the cavitation observation 

windows were carried out without any difficulties. 

In addition, all electric lines were laid out 

from the measuring pick-ups to the measuring con- 

tainer during this period. The necessary amplifiers, 

digital magnetic tape recorders, and computer (HP 

2100 A) with its peripheral equipment were located 

in this measuring container. The measuring container 

was located in hole 6 directly on the tank deck of 

the after peak, in the last bay. For the determi- 

nation of the performance data of the ship, strain 

gauges were attached to the shaft. In addition, 

the shipborne electro-magnetic log (system Plath) 

for determination of the ship's speed was connected 

to the computer via an isolation amplifier. Thus, 

the ship's speed and power could also be recorded 

at each pressure fluctuation- and LSL-measurement. 

A recalibration of the log was made on the outward 

voyage in the North Sea by means of a speed measure- 

ment carried out by the Hamburg Ship Model Basin 

using their method with a resistance log. 

Bo PROPELLER EXCITED PRESSURE FLUCTUATIONS AND 

CAVITATION OBSERVATIONS 

The measurements of the propeller excited pressure 

fluctuations were started on the outward voyage 

when leaving the English Channel and continued until 

the arrival at Marseille (Tests No. 1-11). Further 

details on these measurements as well as for the 

pressure fluctuation measurements carried out in 

13-16) the Mediterranean (Tests No. 

Tables 2a and 2 b. 

are given in 
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FIGURE 1. Locations of test setups. 
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FIGURE 2. Arrangement of test setups. - 

The results of the pressure fluctuation measure- 

ments for the Tests No. 1-4, 11 and 13-16 are given 

in Figure 3 showing the dimensionless pressure 

amplitudes of the blade frequency for the pressure 

pick-ups Pl, P3, P4, and P6. They have been 

harmonically analysed on the HP-computer in the 

measuring container. As usual with right-hand 

propellers the pressure pick-up on the starboard 

Side (here: P3) clearly shows higher values than 

that on the port side (P4). Figure 4 shows the 

amplitudes measured by these two pressure pick-ups 

up to the 15th harmonic. The harmonic analysis has 

been carried out for a "representative" revolution, 

resulting from the average of 60 propeller revolu- 

tions. 

Figure 5 shows the pressure fluctuations measure- 

ments versus propeller rpm for the pick-ups P3 and 

P4 for two drafts applied during the voyage in the 

Indian Ocean. At this point in time the propeller 

was already damaged. Further data of these measure- 

ment runs can be found in the Tables 3a to 3h. 

Examples of the results of harmonic. analyses up to 

the 15th harmonic order for the pressure pick-ups 

P3 and P4 are shown in Figure 6. In Figure 7 a 
comparison is given of the pressure amplitudes of 

these harmonic orders for the pick-up P4 (port) in 

shallow and deep water. In shallow water the 

pressure amplitudes are only slightly higher (5.8%) 

than that in deep water. With the pick-up P3 

(starboard) the difference was even smaller (1.0% 
increase) . 

TEST NO | 1-4|11 [13-16 
SYMBOL | = | 0 | 

is) 

TEST NO 
SYMBOL 

0.04; 

0.03 

0.02 

80 90 100 —»n [RPM] 
Undamaged Propeller 

Mediterranean 

FIGURE 3. Pressure fluctuations. 

The lower pressure amplitudes of the blade 

frequency in the Indian Ocean (Figures 5 and 6) 

compared with that in the Mediterranean (Figures 

3 and 4) are to be attributed to a significantly 

stronger, but mainly stationary cavitation of the 

damaged blade (No. 3). A comparison between Figures 

4 and © shows that due to the damage the pressure 

amplitudes of the "not-blade-number" frequencies 

have been strongly increased in opposition to the 

blade frequency. It should be noted that the ship 

superstructure vibrated strongly after the propeller 

had been damaged. This damage resulted from a ground- 

Pressure Pick-Up P3 (St-B) 

Pressure Pick-Up P4 (Port) 

1 5 (0 15 

TEST NO 15; 17-10-1977 

n = 100.4 RPM; V, =21.3Kn 

Harmonic Order n 

FIGURE 4. Harmonic components of pressure fluctuations. 
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Table 2a 

Test No. iy. 2 3 4 1] 

Date ———— 9.10.1977 ————— 125 No 77 

Speed V, [kn] 17.2 18.6 19.8 21.4 20.7 
Revolution n_ [RPM] 89.1 94.3 98.8 104.7 100.4 
Power Pp [MW 11.4 13.0 14.6 16.8 14.9 
Draft aft [m 8.94 8.94 8.94 8.94 8.33 
Draft forward [m 6.35 6.35 6.35 6.35 6.96 

Course 209° 231° 2 Bie 230° 37° 

Sea region —— English Channel ——— Medit. 

Wind [Beauf | 4 4 4 4 (6) 

Wind direction 180° 180° 180° 180° ) 
Water Depth [m] 36 35 41 51 1040 

Table 2b Measurements in the Mediterranean 

Test No. 13 14 15 16 

Date ——— 17.10.1977 
Speed Vs [kn] 18.6 19.5 Dio) DD,,3) 

Revolution n_ [RPM| BONS) 98n2) MOOG 105.1 
Power Pp [MW Ook 12.2 15a Ws) 
Draft aft [m O99 Bold Dats 9.73 
Draft forward [nm] O63 9s08 9463) 9.63 
Course 11s? MA . 1ae 114° 

Sea region — 36°45'N; 18°49'E (Mediterr.) 

Wind [Beauf] = | 806 

Wind direction ——_———_ 90° 

Water Depth [m] = 3500 =— 

Table 3a Measurements in the Indian Ocean 

Test No. 47 59 60 61 62 65 

Date 30.11.77 1.12.77 —_—— Dol2ovT 

Speed V, [kn] Die? 21.4 2S Dilo8) DNS Di33 
Revolution n [RPM] 101.1 101.6 101.2 101.8 101.0 101.3 
Power Pp [Mw Nod = = —= = —= 

Draft aft [m 9.30 —————— _ 9.30 ——__=— 9.30 
Draft forward [m] 7.620 — 7.62 — 7.62 
Course 294° — 294° — 2gi” 

Sea region or 1a 1S Onende Oe 9°09'S; 

aasieien Hones | Ta Ne 20 88 Te San CATE 
Wind [Beauf | 6 = 3 — 2 = 3) 

Wind direction 100° ——__$_—_ 70°. —__—_=— 230° 

Water Depth [m| 3300 ——__—— 4900 —————= _ 2000 

Table 3b Measurements in the Indian Ocean 

Test No. 70 7\ 72 

Date ————— 4.12.77 ———— 

Speed V, [kn] 21.8 22.1 21.8 

Revolution n_ [RPM] 101.7 101.9 101.3 
Power Pp [MW = = =e 

Draft aft [m — Qo S7 — 

Draft forward |m —_ 8.08 — 

Course — 314° — 

Sea region or position = 2°58'N; 59°44'— ——=— 

Wind [Beauf] = 142 — 

Wind direction en BRO 

Water Depth [] ——__§_—— 3250 ———_=— 

Table 3c Measurements in the Indian Ocean 

Test No. 73 74 75 76 77 78 

Date — A V2o07 —_ 

speed V, [kn] Dito fl 20.9 — zee 16.9 

Revolution n [RP] OT 2 96.8 95).4 92.6 B2I9) 82.5 

Power P, [MW — 11.6 

Draft aft [m —- 9.37 — 

Draft forward [m) — 8.08 — 

Course =— 314° = 

Sea maglon Of POSa —————— 2°58'N; 59°44°—  ———————e— 

Wind [Beauf] = 32 —_ 

Wind direction = 235° — 

3250) — Water Depth {m] 



Table 3d 

Test No. 

Date 

Speed V. [kn] 

Revolution n [RPM] 

Power Pp [MW 
Draft aft [m] 

Draft forward [m] 

Course 

Sea region or pos. 

Wind [Beauf] 

Wind direction 

Water Depth [m] 

Table 3e 

Test No. 

Date 

Speed V [kn] 

Rexoilwe ton n [RPM] 

Power Pp [MW 

Draft aft [m 

Draft forward [m] 

Course 

Sea region or pos. 

Wind [Beauf] 

Wind direction 

Water Depth [m] 

Table 3f 

Test No. 

Date 

Speed V, [kn] 

Revolution n [RPM] 

Power Pp) [MW 
Draft aft [m} 

Draft forward {m] 

Course 

2°58'N;59°44'E; 

Measurements in the Indian Ocean 

79 80 81 

—_—_____—_ 4.12.77 

11.9 11.9 Nite’) 

5 OFZ 60.1 61.3 

7 Io8 = 

7 9.37 9.75 

08 8.08 7.82 

—_____—_——._ 314° 

——____—__ ] +2 

2252 
3250 3250 3250 

82 83 

Noe 12.0 
0.9 61.3 

ors) oS) 

7.82 7.82 
_———— 

—— 3°15'N359°27'E —— 
————————— ee 

a 

3250 3250 

Measurements in the Indian Ocean 

84 85 86 87 88 89 
as 1D 5.12.77 => 
17.5 17.5 17.5 19.7 20.4 20.4 
85.3 85.1 85.2 95.4 96.5 96.3 

13.9 — — 
= 9.75 = 
oe 7.82 _ 
a 8) eee 

SBIR SOP OTN — 
= te? = 
— 230° — 
— 3250 —— 

Sea region or position 

Wind [Beauf] 

Wind direction 

Water Depth {m] 

Table 3g 

Test No. 

Date 

Speed Vg [kn] 

Revolution n_ [RPM] 
Power Pp [MW 

Draft aft [m 

Draft forward [m] 

Course 

Sea region of pos. 

Wind [Beauf] 
Wind direction 

Water Depth [m] 

Table 3h 

Test No. 

Date 

Speed V, [kn] 
Revolution n [RPM] 

Power Pp oa 
Draft aft [m 

Draft forward [m] 

Course 

Sea region or pos. 
Wind [Beauf] 

Wind direction 

Water Depth [ml 

Measurements in the Indian Ocean 

90 91 92 

SIZ 

—_> 21.6 = 

100.8 101.3 101.3 

———_———- 9.75 eee 

= 7.82 — 
) 

SS SG 8 

15 9Ng SOS. —— 
= Ori 

= 23009 —_—_—> 

— 3250 

Measurements in the Indian Ocean 

93 94 95 96 97 
ae 95>.12.77— 
Des 21.4 21.2 Die? Diath 
101.0 101.0 101.0 101.2 101.2 

== = = — DDD 
— 8.63 Som 
= 8.23 =— 
<i ie) Fee 

——————._ 8°28'N; 54°40'E ————— 
es 4 

at SS ES 

SS OOO 

Measurements in 

99 100 10] 

G26 
22.4 22.2 22.3 
103.1 102.3 102.8 

16.9 — 
= 8 
= 8. 

— 273° 
12°21'N; 47°03'E 
ee ee 

2. 

si 

the Gulf of Aden 

103 104 105 

——— Zoe 

22.3 DP <3} 225) 

101.8 101.9 101. 

17.0 = — 

2730, = 
Bab-el-Mandab 

37 38 40 
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FIGURE 5. Pressure fluctuations during laser-scattered- 

light (LSL)-measurement. 

ing due to a thunderstorm at the entrance of the 

Suez Channel. The cavitation of the damaged blade 

was so strong that it existed during the total pro- 

peller revolution. This could be seen through the 

cavitation observation windows. Unfortunately, no 

photographies were made because the measuring crew 

of Det Norske Veritas carrying out the cavitation 

observations left the ship in Port Said. 

In the Mediterranean, however, a large number 

(about 800) of black-white photographs of the 

undamaged propeller were made with the equipment 

of Det Norske Veritas with stroboscopic lighting. 

Since pictures were always taken with two Hasselblad 

cameras it might be possible to carry out stereo- 

Pressure Pick-Up P3 (St-B) 

Pressure Pick-Up P4 (Port) 

1 5 ae Re 15 
TEST NO 70 rmonic Order n 

Damaged Propeller V, = 21.8 Kn 
Indian - Ocean n =101.7RPM 

FIGURE 6. Harmonic components of pressure fluctuations 

during LSL-measurement. 
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Deep Water with Low Nuclei Content 

Test No 99: V, =22.4Kn; n= 103.1RPM 

Shallow Water with High Nuclei Content 

Test No 105: V.=22.5Kn;n = 101.7RPM 

1 5 10 —» 15 

Pressure Pick-Up P4 (Port) 

Damaged Propeller, 

Indian Ocean 

Harmonic Order n 

FIGURE 7. Harmonic components of pressure fluctuations. 

metric measurements of the cavitation layers in 

dependence of the blade positions. As an example 

for the cavitation extension of n = 105 rpma 

collection of photographs is shown in Figure 8. 

These pictures were made with a camera with a fisheye- 

objective. The photographed condition belongs to 

Test No. 16. 

4. INVESTIGATION OF THE WATER QUALITY 

Measurements of Suspended Particles 

In addition to nuclei measurements, which will be 

described later, the content of suspended particles 

was investigated as often as possible. This was 

necessary for two reasons: the LSL-method does 

not allow direct differentiation between solid and 

gaseous particles. Thus it became necessary to 

estimate the proportion of dirt or organic particles 

(probably contained in the water) in the measured 

nuclei sprectra. For these investigations a 

scattered-light instrument (nephelometer) was used; 

the J4-7439 fluoro-colorimeter of the American Instru- 

ment Company (Aminco). The Aminco-scattered-light 

instrument works on almost the same physical princi- 

ple as the LSL instrument. Water samples of 1 cm, 

investigated in the Aminco-colorimeter under a 

scattered light angle of 90° were exposed to a green 

light (514 nm) as in the laser control volume. The 

geographical positions where the Aminco scattered 

light measurements were carried out (as well as all 

the other measurements described in this report) 

are shown in Figure 9. 

The results of the Aminco scattered light investi- 

gations, given in Figure 10, were obtained in the 

following way: 

Water samples were taken from the condenser in- 

flow of the ship's turbine during the voyage. One 

part of this water was poured through a filter with 

a pore size of 0.4 um. Another part was used for 

unfiltered samples, which previously were roughly 

degassed by stirring and shaking. Subsequently, 

the unfiltered and filtered samples were investigated 
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KDrsesth 1 15°stb. 
Ta =9.75m 

Gy =0.22 

FIGURE 8. Cavitation "Sydney-Expess." 

in the Aminco-colorimeter. The deflection of the 

meter for the filtered sample was adjusted on the 

indicating scale to "0", which served as reference 

value. Measured values of unfiltered samples are 

shown in Figure 10; Relative Intensity is an 

arbitrary unit. 

The first measurements, at the end of October, 

were made with a one-hole-aperture in the beam 

path, the following ones with a four-hole-aperture 

due to a thereby increased intensity. 

In order to obtain a general idea of the sensi- 

tivity of the Aminco scattered light method, 

standard solutions were produced using the plastic 

spheres also used for the calibration of the LSL- 

instrument. It is apparent from this that five 

parts per cm? with a diameter of D = 25.7 um could 

still be measured. 

Many results from investigations of sea water 
did not show any difference between filtered and 

unfiltered samples. The content of suspended 

particles was thus very small in the Indian Ocean; 

it was below the response level of the Aminco-device. 

The samples taken on the 7th December 1977 contained, 

however, suspended particles. They descended from 

the shallow water region of the Bab-el-Mandab at 

the entrance to the Red Sea. 

The lack of knowledge about the back scattering 

qualities of the particles appears to be a problem 

when applying this scattered light method with the 

£A.\ 20°Stb. 

f 

HAL 25°stb. FAL 30°s tb. 
Veg =22.3kn; n=105RPM 
P,=17. IMW, Jkq=0.69 

Aminco-colorimeter. A more expanded and intensive 

investigations of suspended particles, for instance, 

with coulter counter, could not be carried out within 

the frame of this research work. 

¥ Aminco - Colorimeter 

T Total Air Content 

+ Scattered Laser Light M. 

® Velocity Measurements 

FIGURE 9. Positions of measurements. 
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iL 
Seawater, 27. 10.77 (One-hole aperture) 

Seawater 28. 10.77 

: 31. 10.77 

2.11.77 
2.11.77, 20 naut. miles before Fremantle 

Swan-River 3.11.77; Fremantle 

7.77 

11.11.77, Swanson Dock West 

7, White Ba’ 

212.77 

612.77 (Gulf of Aden) 

612.77 

[_]Seawater 712.77 (Shallow water, Bab-el-Mandab) 

71277 (Red Sea) 
Seawater 10.12.77 Great Bitter Lake 

11.12.77 (Mediterranean, 15 naut.miles behind Port Said) 

Seawater 12.12.77 (lonian Sea) 

Measurements of Total Air Content 

Although the water should always just be saturated 

at the surface, the gas concentration c_ of the 

sea water was also continuously determined from 

water samples with a Van-Slyke-apparatus. The 

results are given in Figure 11, in dependence of 

the temperature. 

For the calculation of the gas content ratio, 

Ee = c/e , the gas saturation capacity, c_, is 

necesSary for the specific salt content and temper- 

ature. Since the corresponding data were not known 

some water samples were left overnight in a basin 

with a large surface and the gas concentration c 

was determined on the following day, which in this 

case should indeed correspond to the saturation 

concentration c_. The two values obtained for the 

saturation concentration c_ are also plotted in 

Figure 11 (with the symbol -O- ). They are within 

the range of tolerance of the measured total gas 

content, Co, for the voyage leading southward. 

Subsequently the measured total gas content present 

values which correspond to the gas content ratio, 

€ = 1, i.e., to saturated water. Due to the 

dissolved salt the total gas content values, Co, 

for sea water should lie below the values for fresh 

water. This is, in fact, the case with the exception 

of some values of the voyage leading northward. It 

must be left to other investigations to find out 

whether the wind, seaway, and temperature "history" 

of the sea surface has an influence on the total 

gas content. 

5. MEASUREMENTS OF THE NUCLEI SPECTRA AND LOCAL 

VELOCITY 

Device for Nuclei Measurement 

The LSL method was applied to the measurement of 

the nuclei spectra in front of the "Sydney Express" 

Standard-Solution, D = 25,7 um; Cpart = 1,0 - 10 n/cm3 2810.77 
St=Sol D=25,7 um; Cpa = 54 nicm3 31.10.77 cea for particle size 
St-Sol D=25,7 um; Cport = 5 nicm? 1.1.77 D= 25,7 wm an 
St=Sol D= 1011 wm; Coon = 176-108 niem3 2311.77 WA7Ret Int 

aes 610 2311.77 
Cpart = 176-108 n/cm? 23.11.77 = a a vale a ah 

St.-Sol D = 1,011 pum; Cpart = 1,76 102 n/cm3 23.11.77 

ae} 39 
(ey Rel. Int. 

a DPV 7 Ny ; same sample after 6 hours) 

FIGURE 10. Measured suspended particles. 

propeller. This method was also applied to the 

model tests, described by Keller and Weitendorf 

(1975). Detailed information about the measure- 

ment principle has been supplied, for instance, by 

Keller (1970, 1973). Thus, it is not necessary 

to go into the details. 

Compared with previous measurements carried out 

in the laboratory the measuring distances were 

essentially larger at these full scale investigations. 

Thus, some new components for the measuring device 

were required. The distance between the measuring 

volume and the receiving lens amounted up to 2 m so 

that the laser power and the diameter of the 

receiving lens had to be markedly increased, in 

order to obtain usuable measuring signals. 

The arrangement of the measuring unit on board 

is shown in Figures 1 and 2. The path of the laser 

beam is bent three times and enters the water almost 

horizontally; the path of the beam of the receiving 

system is bent once and proceeds in the water 

vertically. With this arrangement the flow direction 

Co 

[foo] 

20 Se 

(O59) aso= Saturation of air in pure water (70 mm Hg ) 
Measured total air content in seawater southbound voyage 

Measured total air content in seawater northbound voyage 

Saturation of air in seawater 

2 Port Phillip Bay (Melbourne, 7. 11.1977 ) 

10 15 20 25 We 

FIGURE 11. Measured total air-content. 
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and the direction of the laser beam as well as the 

optical axis of the scattered light receiving system 

are standing vertically, one upon another. This is 

optimal for the measuring technique used. 

The homogenization of the laser beam, i.e. the 

conversion of the Gaussian intensity distribution 

over the beam cross section into a rectangular 

distribution, was made with a special filter. The 

homogenous intensity distribution as well as the 

shape of the laser beam (square or rectangular) 

were maintained quite well by the very long focal 

length of the laser system (about 6 m). 

The control volume, optically defined, was 

positioned in such a way that the stream line 

through the control volume came into the range of 

the propeller tip. The position of the control 

volume in front of the propeller was determined by 

the position of the reception window of the scattered 

light between frames 12 and 13, i.e., 4.2 m in front 

of the propeller plane. The additional geometrical 

fixing of the control volume in the vertical direction 

resulted from the laser window (located between 

frames 13 and 14) with its horizontal beam outlet 

into the water. Subsequently the positions for 

the control volume was fixed as follows: 90 cm of 

the ship's hull vertically downward and 145 cm from 

midship on the port side between frames 12 and 13 

(see Figure 2). 

The Calibration Device 

The relationship between the photomultiplier impulse 

amplitude and the size of nuclei was determined by 

a calibration with latex spheres. For this purpose 

a special device was put through an opening in the 

ship's hull when the ship stopped in calm water. 

With this device it was possible to maneuver a 

fine nozzle near to the control volume and to inject 

the latex spheres into the control volume. The 

apparatus was operated by means of small hydraulic 

elements from the inside of the ship (Figure 12). 

For the calibration latex spheres of 45 and 25 

Um were used. The corresponding photomultiplier 

impulse amplitudes fit excellently to the theoretical 

curve of the scattered light intensity. The measuring 

range was set to 8-117 Um for the nuclei diameter. 

In addition to the scattered light intensity, 

the dimensions of the control volume were important 

data for the determination of nuclei spectra and 

nuclei concentration. Since a direct measurement 

or calculation of the cross section of the laser 

beam in the control volume was not possible in this 

case, a new method had to be applied to determine 

the laser beam dimensions. By means of the above 

mentioned hydraulic device a small rotating wheel 

with thin platinum wires was adjusted in such a 

way that the wires cut the laser beam vertically 

at the location of the control volume. Thus the 

light in the direction of the photomultiplier was 

scattered. The dimensions could then be determined 

from the width of the photomultiplier impulses, the 

distance between the axis of the small wheel, and 

the light point on the small platinum wires 

(determined by crossed platinum wires) and the 

revolution number of the small wheel. The diameter 

(25 um) of the platinum wire had also to be con- 

sidered. The exact knowledge of the control volume 

dimensions was also important for the measurements 

of the local velocity, as described below. 

The dimension of the control volume in the longi- 

Sluice Valve 

Micro - Hydraulic Device 

6mm Pipes flexible 

6m long 

Pipe 10cm (Length 2.5m ) 

Seawater 

FIGURE 12. Calibration device and arrangement. 

tudinal direction of the laser beam was adjusted as 

usual through the measuring slit in front of the 

photomultiplier, after the enlargement factor of 

the reception optic was determined. This again was 

done by means of the hydraulic device with which 

an object, whose dimensions were known, was placed 

in the control volume; its picture was measured in 

the plane of the measuring slit. 

For the nuclei measurement the dimensions of the 

control volume were then fixed as follows: 0.86 mm 

x 0.86 mm X 1.33 mm = 0.98 mm®. The cross section 

of the control volume rectangular to the flow 

direction amounted to 0.86 mm X 1.33 mm = 1.14mm’. 

This detail was required for the determination of 

the nuclei concentration. 

Measurement of Local Velocity 

When the cross section of the control volume and 

the number of the nuclei measured per unit time, 

were known, it was necessary in addition to know 

the local flow velocity at the control volume in 

order to determine the nuclei concentration. Since 

the conversion of model test results from wake field 

measurements to full scale appeared to be too in- 

accurate for the determination of the local velocity 

and because the measurement of the velocity with a 

Prandtl tube, for instance, was not possible, a 

new method was applied to measure the velocity and 



flow direction. If the dimensions of the control 

volume in the flow direction are known, the velocity 

can be determined from the measured impulse width. 

In order to estimate the local flow direction at 

the control volume, an aperture is put into the 

beam path of the laser (Figure 13), which gives 
the laser ray a rectangular shape. This aperture 

is turned until the photomultiplier impulses have 

reached a maximum. Then it is possible to determine 

from the position of the aperture the position of 

the plane, formed by the flow direction and the 

laser beam. If now the measuring slit is turned 

until the half width of the distribution of the 

impulse width has reached a minimum, it is possible 

to read - from the position of the measuring slit - 

the plane which is formed by the flow direction 

and the optical axis of the reception system. The 

flow direction in the volume results from the inter- 

section of the two determined planes; the impulse 

width gives the flow velocity, and the impulse 

width spectra provides information on the degree 

of the turbulence flow. 

In this way flow characteristics can be determined, 

undisturbedly and locally, with one measurement; 

otherwise they could only be determined with a 

three-component measurement. Furthermore, the 

control volume simultaneously reaches the optimum 

inclination for the measurement of the nuclei size. 

Thus one signal provides data about the distribution 

of nuclei size and about the flow field. 

Large particles or bubbles require a longer 

period to completely cross the control volume than 

smaller particles at the same speed. This means 

that besides the larger impulse amplitude there is 

also a larger impulse width. These facts have to 

be considered in the measurement of the velocity. 

Therefore, a single-channel discriminator is inserted 

into the impulse processing electronics. The 

discriminator choses for the measurement only 

impulses of the amplitude or a strongly limited 

range of amplitudes. Thus it is possible to draw 

a clear conclusion from the measured impulse width 

on the speed of the particles in the control volume. 

The new technique to measure the velocity is 

illustrated in the Appendix. A rectangular beam 

cross section whose breadth is the vertical to the 

flow direction, has proved to be the optimum for 

the measurement of velocity and the determination 

of the flow direction. 

4 Spectral Filter 
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General Remarks 

Originally it was planned to shift the height of 

the measuring point on the optical axis of the 

reception system by different laser beam directions. 

In addition, this axis should be shifted laterally 

through two additional observation windows between 

the frames 12 and 13. This would make it possible 

to measure at several points in the plane between 

the frames 12 and 13. Unfortunately, this could 

not be realized due to lack of time, because the 

installation of the measuring equipment at the 

beginning of the voyage had taken too much time. 

It is not intended to describe all the diffi- 

culties which occurred at the installation of the 

equipment. The problem of vibration, however, must 

be mentioned. 

To protect the laser, vibration damping should 

be guaranteed as far as possible. It was, however, 

observed during the outward voyage that the pneu- 

matic vibration isolation, which had a resonant 

frequency of £, = 1.8 up to 3.0 Hz, could not be 

used, - even if the exciting blade frequency of the 

propeller was within the range of 8 and 9 Hz. 

Excitations occurred, of course, also at a propeller 

speed of f = 1.8 Hz and due to seaway frequencies. 

When it was obvious that different damper devices 

also did not help, the support, on which the laser 

and the photomultiplier were fixed, had to be 

stiffly connected with the steel construction of 

the after peak. This labor and the laser adjust- 

ments required more than half the time of the voyage 

to Australia during difficult climatic conditions. 

The laser adjustment was carried out mainly when 

the ship was stopped. The calibration of the 

nuclei impulses and the determination of the control 

volume, in which the nuclei were measured, were 

also carried out during these periods. These were 

kindly granted by the captain and his officers and 

had to be regarded as a special concession since 

the "Sydney Express" was on a fixed schedule. In 

this connection it must also be mentioned that the 

calibrations and later the measurements, made on 

the return voyage, could only be carried out after 

dark. For this reason, extra maneuvering watches 

had to be set in the engine control room, usually 

while the ship had a "16-hours-unattended-machinery- 

space". 

The above mentioned stiff support solved the 

1 Laser 5 Grey Wedge Filter 
2 Beam Expander 6 Rectangular Aperture 
3 Aperture 7 Lens 

Idealized Photomultiplier 
signal from scattering 

(ets objects. 
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wedge filter(5) in rays. 

(eee Slope indicates direction. 

8 Microscope Lens 

9 Flow Section 

10 Control Volume 

11 Receiving Lenses 

12 Measuring Slit 

13 Photomultiplier 
FIGURE 13. Principle of LSL-measurements. 
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vibration problem almost completely. It provided, 

however, the risk that the laser might fail. 

Fortunately, this did not happen. The laser, a 

Coherent-Radiation (4 Watt) product, achieved the 

same performance (900 mW), to which it was adjusted 

at the beginning, up to the end of the voyage with- 

out any failure. The small vibration still observed 

at the measuring point had no significant effect. 

6. RESULTS OF MEASUREMENTS 

Local Velocity 

It was mentioned already that the number of measure- 

ments originally planned could not be carried out 

due to lack of time. Thus, for instance, the size 

and the direction of the local velocity could only 

be determined at one measuring point. This measure- 

ment took much time since there was no special 

electronic device available. It was the first 

measurement of this kind and it was included in the 

program at a late date, which made it impossible 

to establish a special measurement before the 

departure. The measurement was, therefore, partly 

performed with the electronic device which was also 

used for the scattered light measurements, and with 

some special interfaces. 

The velocity and one plane of the flow direction 

at the place of the control volume could be deter- 

mined for one velocity. At the ship's speed of 

22 kn the velocity at the measuring point amounted 

to 7.22 m/s and the direction was found at an angle 

of 5° downward. The corresponding result from the 

model test for the geometrically corresponding 

position of the "Sydney Express" amounted to 7.47 

m/s. This model test, however, was carried out for 

the propeller plane of the towed model, without a 

running propeller. - In full sale, on the other 

hand, the plane formed by the flow direction and 

by the optical axis of the reception device could 

not be determined due to lack of time. 

[eal 
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FIGURE 14. Pulse width distribution and mean pulse 

width dependent on the inclination of the flow. 
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FIGURE 15. Nuclei distribution. 

The ratio, local velocity to ship's speed, 7.22 

m/s to 11.32 m/s, and which corresponds to the 

local wake in the control volume for the ship at 

22 kn, was applied for all nuclei concentration 

measurements. The nuclei concentration was then 

calculated from the recorded ship's velocity, the 

measuring period, and the measuring cross section. 

Figure 14 shows examples of the velocity measure- 

ment and also the change of the impulse width 

distribution for the rotation of the rectangular 

laser aperture. The value i = 0° corresponds to 

the horizontal plane. At 5° downward (A = -5°) the 

mean impulse width, evaluated on the HP-computer, 

reaches its minimum at 59.6 Usec. The large half- 

width of the distribution curve results from the 

turbulent flow. With a laminar flow the distribution 

curve would be smaller. (See Figures A 2.2 and 

IX AoS)o 

On the basis of these measurements a quantitative 

statement about the turbulent degree of the flow 

cannot yet be made. On the one hand we have no 

experience with this measuring technique, on the 

other hand the ratio, length to width of the laser 

beam cross-section, was too small at this measure- 

ment (2:1). At high turbulent flow the corners of 

the beam cross-section were dispersed by a relatively 

high amount of nuclei which resulted in shorter 

photomultiplier impulses than with nuclei running 

through the middle of the beam. A higher ratio, 

length to width, would be more favourable. 

The first practical experiences with this mea- 

suring technique are so promising that its further 

development is being promoted. The advantages which 

this measuring procedure offers in connection with 

the determination of the size of nuclei are quite 

remarkable. 

Nuclei Spectra 

About one third of the spectra obtained between 30 

November and 7 December 1977 are demonstrated in 

Figures 15 through 24. The spectra contain the 

respective sum of nuclei per cm? for the respective 

range of diameters. In the diagrams one range of 

diameter is marked by a horizontal line. The single 

ranges of diameters do not have the same width. 

The dissimilarity of these spectra, which obviously 

results from different conditions, will later be 

described in detail. 

First, it has to be noticed that for all spectra 

in the range of a bubble diameter from 20 to 40 um 

(micron) there is either a relative maximum or an 

absolute maximum of nuclei. The relative maximum 
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FIGURE 16. Nuclei distributions in seaways. 

was detected in Test 47 - Figure 15, Tests 60 and 

62 - Figure 17 and Tests 90 to 92 - Figure 20. 

The absolute maximum was detected in Test 61 - 

Figure 17 and Test 65 - Figure 16. The strong 

fluctuation of the number of nuclei per em? (nuclei 

concentration €9) can be read from the diagrams. 

Figures 15 to 17 as well as 18 and 19 show spectra 

which have been measured in different seaways. 

During the performance of Tests 47 to 62 (Figures 

15 to 17) there was a seaway and swell from astern. 

The strong pitching motions of the "Sydney Express" 
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resulted in a strong fluctuation of the nuclei 

concentration, i.e. from Co = 21 N/em? 10) (Gi) = AILS) 

N/cm*? in the Tests 62 and 61 - Figure 17. Depending 

on the quality of the water, either swarms of 

bubbles or clear water, which hits the control 

volume of the laser beam, 2000 nuclei were counted 

more or less quickly. The process of counting the 

2000 bubbles is demonstrated in Figure 25 for two 

cases. There the analog-output voltage of the 

memory is plotted against time and propeller revo- 

lutions respectively. The output voltage of 1 Volt 

is reached by the memory when its 2000 cells are 

filled. In Test 61, 2000 bubbles were counted 

within 1.16 s and in Test 60 within 17.03 s at an 

almost linear processing of the output voltage. 

Figures 18 and 19 show also a series of nuclei 

spectra measured, one immediately after the other, 

at a seaway of Beaufort 4. At this series the 

direction of the seaway was, however, athwartships 

up to "slightly from fore". The seaway motions of 

the "Sydney Express" (length 210 m) were very 

small in this case. Subsequently the number Co of 

nuclei per cm? was higher than the smallest number 
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with the pitching ship but still within the narrow 

range of To = 39 up to To = 62 N/com?. Considering 

the Tests 47 to 65 (Figures 15 to 17) and the Tests 

93 to 97 (Figures 18 and 19) it can be said that in 

a seaway the nuclei concentration G9 is higher than 

in smooth water, and further, that the influence of 

shipmotions on the concentration Cg superimpose on 

the influence of the seaway. 

The measurement series carried out with the 

Tests 90 and 92 (Figure 20) under ideal weather 

conditions, show on one hand the good repetitive 

accuracy of the results for a constant speed in 

good weather. In this case the number of nuclei 

per em? amounts to So = 18, 19, and 18 N/cem? at 

constant measuring periods of 13.6, 13.2, and 13.9 

for 2000 nuclei. This, however, shows - on the 

other hand - a clearly lower concentration, Co, 

than with the Tests 61 and 65 in a seaway (Figures 

17 and 16). 
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A further difference, previously mentioned, has 

to be noticed when comparing measurements in a 

seaway and in calm weather. Whilst with typical 

spectra in a seaway (Tests 61 and 65) the absolute 

maximum is between the nuclei sizes 30 and 40 um, 

it can be detected for calm weather in the smallest 

measured, nuclei range. This phenomenon will be 

described later (in Section 7). The measuring 

series of different speeds for two drafts are 
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shown in Figures 21 and 22. In the second case the 

"Sydney Express" was ballasted with 5,160 tons of 

water. In both series it should be noted that with 

decreasing speed the number T 9 of nuclei per cm? 

increases. At the lowest speed of ca. Vg= 12 kn 

the bubble range of a diameter between 20 and 40 

Um contains the absolute maximum number of bubbles. 

The differences between the two cases are, however, 
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small. The differences between the drafts were 

obviously not sufficient to provide stronger differ- 

ences between the nuclei spectra. 

The two measurement series shown in Figures 23 

and 24 were made under ideal weather conditions, 

the one 7 hours later than the other. The spectra 

from Figure 23 were obtained in deep water in the 

Gulf of Aden; the spectra shown in Figure 24 were 

obtained from shallow water at the entrance of the 

Red Sea at Bab-el-Mandab. With these two series 

it was intended to clarify the point that the 

propeller excited vibrations which occur on shallow 

water result (apart from the shallow water effect) 

to a higher extent from a stronger instationary 

cavitation, which arises on occount of an increased 

nuclei concentration in shallow water. It must be 

said that this question could not be answered. On 

the other hand a comparison of these two measurement 

series shows that the number of nuclei per cm? 

(nuclei concentration Co) increases from a fo of 

11 to 14 N/cm? in deep water to a Z) of 155 to 270 
N/cm*® in shallow water. This will be described in 
the following Section. The absolute maximum of Tp 

is here again in the range between the nuclei 

diameter of 20 to 40 um. In this connection it 

should be noted that hardly any nuclei with a 

diameter of above 60 Um were detected. 

7. DISCUSSION OF THE RESULTS OF NUCLEI SPECTRA 

AND COMPARISON WITH OTHER INVESTIGATIONS 

Simultaneously with the nuclei measurements in 

shallow water - Figure 24 - water samples have been 

taken. The results of the tests carried out with 

these water samples with the Aminco scattered light 

device appear in Figure 10. These samples from the 

shallow water region at Bab-el-Mandab showed a 

Relative Intensity of 0.4 for the difference between 

unfiltered and filtered water. Even after six 

hours the unfiltered sample still showed a Relative 

Intensity of 0.28. From this it can be concluded 

that the suspended particles, existing at this 

coastal strip, settled in the samples within six 

hours. From this Aminco scattered light measurement 

it can further be concluded that the high nuclei 

concentration shown by the LSL measurement - of the 

shallow water measurement series, Figure 24 - results 

mainly from suspended particles. There were probably 

also solid particles concerned (it is likely to be 

sand at the coast of Arabia) which show no inclusion 

of gas. This is assumed because the cavitation did 

not increase in the shallow water. The corresponding 

propeller excited pressure fluctuations in deep and 

in shallow water show practically no difference, 

Figure 7. 

In Figure 26 the results of the laser-scattered- 

light technique and the Aminco scattered light 

measurement for investigations in shallow water 

(Test 105) are shown together. Figures 27 and 28 

(in the diagrams marked with "Sydney Express") show 

further results of the Aminco-scattered-light 

measurements and the LSL measurements. In the 

Aminco scattered light investigations the differences 

between unfiltered and filtered water were equal 

to zero [A(Rel.-Int.) = 0] in these cases. This 

means that the concentrations of the suspended 

particles were imperceptibly small; they were in 

any case below the response level of the device. 

In each top diagram of Figures 27 and 28, results 

of the investigations of suspended particles from 
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comparable locations are shown which were carried 

out on the occasion of the Indian Ocean expedition 

of the "Meteor". For the investigations, which 

have been made by Krey et al. (1971), the so-called 

inverted microscope and the Zeiss particle-counter 

were used. These results lie always one magnitude 

above the "Sydney Express" measurements for the 

operating revolution (n = 101 rpm). In case of the 

low revolution number of n = 60 rpm the nuclei 

concentration measured at the "Sydney Express" 

expedition (To = 15 N/cm?) reaches the values from 

the "Meteor" expedition in the range 20 - 35 um 

and exceeds in the range 35 - 92 um. Since, further- 

more, the water sample tests carried out with the 

Aminco scattered light device do not show any 

difference between filtered and unfiltered water 

(medium diagram - Figure 27) it is justified to 
state that with the LSL measurement mainly bubbles 

were recorded. The investigation of Keller et al. 

(1974) of the optical qualities of the latex spheres, 

applied for the calibration, supports this fact. 

According to his investigation the latex spheres 
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show scattering characteristics similar to the 

bubbles. Therefore, it can be said that the 

sensitivity of the LSL measurements is - toa 

certain extent - adjusted to the scattering 

behavior of bubbles via the calibration. With the 

LSL technique mainly bubbles are measured whose 

number is always smaller than that of all solid 

and gaseous nuclei. It is known, for instance, 

that silica algae are almost transparent. It is, 

therefore, understandable that there must exist 

differences between the LSL method on the one hand 

and the microscope method (with coloration perhaps) 

and the conductivity measurement with Coulter 

Counter on the other hand. The assumption that, 

with the LSL method, mainly bubbles are measured is 

supported by the good conformity of the LSL method 

with the holographic method of an ITTC-comparison 

measuring, Peterson et al. (1975). In this investi- 

gation a holographic method, the laser scattering 

light method, and a microscope method have been com- 

pared with each other. The first two methods agreed 

well with each other in the range of the bubble sizes 

20-40 um, whilst the microscope method also showed 

a nuclei concentration higher by one order of 

magnitude. The higher concentration of nuclei 

according to the microscope method apparently 

results from mistakes arising from the focusing of 

the nuclei. Similar difficulties might also occur 

with the inverted microscope applied at the "Meteor" 

expedition. This argument, however, does not say 

that the highest nuclei concentration of the "Sydney 

Express"-investigation, frequently occurring in 

the smallest ranges of size, results from bubbles 

only. (See, for instance, Test 70 - Figure 27 and 

Test 99 - Figure 28 or all diagrams of Figure 20). 

In the class of the smallest size nuclei solid 

particles which always exist in the sea water have 

certainly also been measured. 

Oceanographic studies with the Coulter Counter, 

for instance, carried out in the Gulf of California 

by Zeitzschel (1970) show a strong increase in the 

number of particles with a diameter of 14 to 4 um. 

In addition, Zeitzschel cites the size distribution 

of particulate carbon in the Indian Ocean by means 

of fractional filtration investigated by Mullin 
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(1965). In Mullin's report the following average 

percentage in the different size categories for 

near surface samples (15 m) are given: 500 - 350 

um: 3%; 350 - 125 um: 5%; 125 - 95 um: 4%; 95 - 60 
um: 6%; 60 - 33 um: 6%; 33 - 10 um: 18%; and 10 - 1 
um: 58%. The content of organic carbon can amount 

to 4.5 - 34% of the particulate matter in the 

different regions of the oceans [see Zeitzschel 

(1970)]. Zeitzschel continues: "It can be concluded 

from the results obtained at the Gulf of California 

and the above mentioned references that small par- 

ticles, mainly in the range from 1 to 10 um in diam- 

eter, predominate in offshore surface waters of the 

oceans." Investigations by Gordon (1970) and Carder 

et al. (1971), which are compared with our results in 

Figure 29, revealed the same results. It is obvious 

that the "Sydney Express" results - ending at a 

diameter of 10 to 20 um for reasons of intensity - 

would probably show strongly increasing particle 

numbers below this range. This can be seen from 

the results of Gordon (1970) and Carder et al. 

(1971) which have been published by Jerlov and 

Nielsen (1974). 

The fact that a large number of small particles 

in sea water show every arbitrary geometrical shape 

(according to Zeitzschel) also reminds one of the 

shapes of particles from the water of a cavitation 

tunnel, shown by Peterson et al. (1975) - Figure 6. 

These sea water particles of different shapes 

(diameter 1 to 10 Um), which according to Figure 29 

are always available in a high concentration can 

easily nucleate cavitation, as we know from many 

investigations [(e.g., Peterson (1972) and Keller 

(1973) ]. 
The problem of the difference between real shapes 

of the nuclei, detected by the laser beam in the 

sea water and the diameters evaluated for the 

measuring results can only be mentioned here. In 

this connection one should remember that the cali- 

brations on the "Sydney Express" were performed 

with latex spheres, whereas the real shape of the 

nuclei in the seawater is unknown. This problem 

also arises with the Aminco-method and with the 

Coulter Counter measurements, the latter working, 

however, according to the conductivity principle. 
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A further uncertainty is probably included in 

the comparison of results obtained from oceanographic 

studies carried out with water samples from the 

open sea and those obtained from laser scattered 

light measurements carried out in the flow and in 

the boundary layer of the ship. The low-pressure 

area of the boundary layer with its vortices of 

different size most likely have a great influence 

on the conversion of pore nuclei into bubbles when 

they are moved from the calm free sea through the 

boundary layer of the ship and thereby increase. 

Due to the long running-time along the ship's hull 

diffusion will also have an effect. 

These physical processes accompanying the growing 

of the bubbles in the low-pressure areas of the 

boundary layers and the effect of diffusion could 

be the explanation for the fact that the lower 

speeds (12 kn, Tests 79 and 83) show a larger 

bubble concentration Gg (due to the long running- 

time along the ship's hull) than the higher speeds 

(21.6 - 21.8 kn, Tests 70 and 90) with a shorter 

running-time. (See measuring series with different 

speeds - Figures 21 and 22). Thus - at a ship's 

speed of about 60 rpm - a characteristic size of 

bubbles has been formed. The measurements in a 

seaway (Tests 61 and 65 - Figures 17 and 16) show 

similar characteristic sizes of bubbles between 20 

and 30 um. In a seaway the turbulence is larger 

due to wave and ship motions. According to Sevik 

and Park (1973) the turbulence can lead to character- 

istic bubble sizes in connection with the pressure 

history. 

All considerations concerning bubble sizes must 

finally lead to those bubbles participating in the 

cavitation process. According to the calculations 

by Isay and Lederer (1977), small bubbles, which 

can also arise from pore nuclei, will grow faster 

than big ones (Figure 30). The result of such 
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FIGURE 30. Calculated growth of a single bubble in 

a hydrofoil flow [Isay and Lederer (1977)]. 
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calculations is valid for a hydrofoil of length 

c = 10 cm, wherein the pressure distribution was 

calculated by means of the profile theory for 

incompressible flow with the completion of shock 

pressures caused by the compressibility of the 

water. With these calculations one question re- 

mains unsolved: Up to which negative values can 

the local pressures on the profile really decrease 

in natural water? On the full scale propeller of 

the "Sydney Express" the local pressure gradients 

are probably steep and reach negative pressures, 

causing bubbles with a diameter of 10 Um, or less, 

to cavitate. Regarding the measurements, bubbles 

with diameters of about 10 lim to 20 um were still 

recorded in the results from Test 47 (Figure 15) up 

to Test 65 (Figure 16). For unknown reasons, how- 

ever, from Test No. 65 on nuclei with a diameter 

of less than 20 um frequently could not be measured. 

On the other hand one has to consider that, the 

smaller the nuclei concentration U9 becomes, the 

smaller the bubbles enlarged by cavitation. 

It is apparent from these remarks that it would 

have been desirable to record bubbles or nuclei 

with a diameter below 5 um. But this was impossible 

even with a 4 Watt laser which delivers 900 mW on 

the green line. Therefore, it has to be admitted 

that not all bubbles, which possibly are partici- 

pating in the cavitation process, could be detected. 

The question arises whether this will be possible 

without any doubt in the future and if it is 

necessary or not. Also the following aspects would 

have to be considered: the required laser intensity 

is limited; the exact local pressure distribution 

on the propeller blades is difficult to determine 

and on the other hand the tensile stress that can 

actually be supported by the sea-water is quanti- 

tatively unknown. : 

Before closing this paragraph a personal impres- 

sion in connection with the bubble sizes should be 

mentioned which is supported by the collection of 

photographs in Figure 8 and by numerous additional 

pictures and propeller observations on the "Sydney 

Express": The propeller will always find in the 

flow a sufficient number of small nuclei leading 

to cavitation. Therefore, the fullscale cavitation 
will always be more stable than the model cavitation 

with its smaller negative pressures and its different 

nuclei distribution. 

The white foam on the cavitation pictures of the 

full-scale propeller clearly indicates a large 

number of nuclei, which have led to cavitation and 

grown together. 

8. SUMMARY 

The comprehensive laser scattered light measure- 

ments on the "Sydney Express" showed the following: 

1. The nuclei spectra measured in a seaway in 

the Indian Ocean are quite different: In the range 

of the nuclei diameter of 20 - 40 um either a 

relative or an an absolute maximum of nuclei was 

measured. (Figure 16). The motions of the ship, 

especially the pitching motion, are in this con- 

nection as decisive as the wave motiens on the sea 

surface (Figures 18 and 19). The nuclei of this 
range (diameter: 20 to 40 um), consist of bubbles, 
since the scattered light method, carried out at 
the same time with the Aminco-colorimeter did not 
show any difference between unfiltered and filtered 
water. 

2. In good weather conditions the absolute 

maximum of the bubbles with a diameter between 20 

and 40 um (Figure 20) disappears. The nuclei of 

smallest diameter show the largest nuclei concen- 

tration. It probably consists of bubbles and 

suspended particles, as the comparison with micro- 

scope- and Coulter Counter measurements has shown. 

3. Measurements made at different speeds 

(Figures 21 and 22) have again resulted in an 

absolute maximum at a diameter of 20 to 40 um for 

the smallest ship speed at 12 kn. These nuclei 

certainly consist of bubbles, since the Aminco mea- 

surement in this case also did not show any dif- 

ferences. 

4. Measurements in shallow water show an 

absolute maximum at a diameter between 20 and 40 

um. The majority of these nuclei consists of 

suspended particles, as the Aminco scattered light 

measurement have shown. These suspended particles 

probably do not contribute to cavitation, since the 

comparison of propeller excited pressure fluctuation 

measurements between deep and shallow water shows 

practically no difference (Figure 7). 

5. The ship's vibrations caused by the propeller 

do pose a big problem for measurements of this type. 

The insensibility of the laser against vibrational 

stresses, however, after it was stiffly connected 

with the ship, was suprisingly good. Even the 

high loading caused by the temperature did not 

create any bad effects in the laser. 

6. Future laser measurements should possibly 

anticipate diameter ranges below 5 um. A more 

precise determination of suspended particles 

requires a greater effort than the present method. 

7. Further results of this trial will be 

published later. 
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APPENDIX 

DESCRIPTION OF THE NOVEL TYPE OF VELOCITY 

MEASUREMENT 

When particles or bubbles pass through a light beam, 
they scatter a finite amount of light which is 

dependent principally on the object shape, size, 

index of refraction, and optical characteristics 

of the beam. For this technique a small, homoge- 

neously illuminated control volume (see No. 10 in 

Figure 13) is optically defined by the cross- 

sectional dimensions of the laser beam and the 

optics of the system detecting the scattered light 

(see No. 11 and 12 in Figure 13). 

The amplitude of the electrical output pulses 

from the photomultiplier (see No. 13 in Figure 13) 

is proportional to the "nucleus" size, and thus is 

the parameter used for "nucleus" spectrum determi- 

nation. 

The pulse width corresponds to the time in which 

the scatterer remains in the scattering volume, and 

therefore, by knowing the dimensions of the control 
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volume, the velocity of the "nuclei", i.e., the 

flow velocity, can be evaluated. 

The sketch in Figure A 2.1 shows the shapes of 

the optically bounded measuring volume for different 

positions of the rectangular laser aperture and 

the measuring slit in front of the photomultiplier. 

The time the "nuclei" need to cross the control 

volume is a function of the dimensions of the 

volume in the flow direction, and of the flow 

velocity. Therefore, the resulting photomultiplier 

pulse width is a measure of the flow velocity if 

the dimensions of the control volume are known. 

To get an accurate relation between pulse width and 

flow velocity, only nuclei of one known size, 

defined by their pulse height, should be selected. 

Example I in Figure A 2.2 displays an arbitrary 

position of the control volume relative to the flow 

direction. In that case, even for laminar flow one 

gets a certain fluctuation for the pulse widths, 

because the dimensions of the volume in the flow 

direction are not equal. 
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aperture 
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slit 

FIGURE A2.1. Principle of velocity measurement. 

FIGURE A2.2. Sketch of inclined control volume and 

received photomultiplier signals. 

FIGURE A2.3. Sketch of inclined control volume and 

flow direction. 

In example II Figure A 2.2 the main axis of the 

rectangular aperture is positioned parallel to the 

projection of the flow direction versus the plane 

vertical to the optical axis of the laser, and 

consequently the peak of the pulse width distribution 

is at a maximum value of t. 

In example III in Figure A 2.3 the direction of 

the measuring slit is also parallel to the projection 

of the flow direction versus the plane vertical to 

the optical axis of the photomultiplier, so that 

all dimensions of the measuring volume in the 

direction of the flow are the same, and the pulse 

width distribution therefore shows its most narrow 

shape. The peak of the distribution indicates the 

velocity in the main direction, whilst the shape of 

the curve is a measure of the turbulence level. 

The direction of flow can now be determined by 

the position of the rectangular aperture and the 

measuring slit. They each define a plane containing 

the corresponding optical axis, whereby the line 

of intersection represents the direction of the 

main flow in this region. 
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ORVAR BJORHEDEN and TORE DALVAG 

We congratulate the authors of this very 

interesting paper. For hull designers as well as 

propeller manufactures the problem of predicting 

the propeller induced vibration forces is a most 

essential task indeed. In this context we wish to 

inform you briefly about some recent developments 

at the KMW* Marine Laboratory related to the model 

testing technique applied in our cavitation tunnels. 

The first item concerns the method of hull 

wake simulation. For some time the well-known 

dummy technique, involving ship afterbody models 

and transverse net screens, has been used in our 

tunnels for the purpose of simulating model wake 

pattern. This is a rather time consuming process 

since the net screens have to be adjusted step by 

step until the correlation with the wake pattern 

obtained in the towing tank appears satisfactory. 

Moreover, the method has some technical drawbacks 

as regards the stability of the wake as well as 

the interaction between propeller and hull and the 

influence of the propeller on the wake pattern. 

In connection with hydro-acoustic tests, cavitation 

occurring on the nets may worsen the background 

noise level. 

In order to eliminate the above drawbacks a 

new technique involving longer afterbody hull 

dummies has been introduced. The method aims at 
simulating the full-scale ship wake pattern based 

upon the concept of equivalent relative boundary 

layer thickness, i.e., the frictional boundary 

layer thickness in relation to some characteristic 

length, e.g., the propeller diameter should be the 

same in the model and in full-scale. For ordinary 

cavitation testing purposes utilizing propeller 

model diameters around 250 mm and tunnels speeds 

of 4 to 8 m/sec this criterion results in hull 

dummy lengths of 2.5 to 3.5 m for most types of 

vessels. In principal, the model stern contour as 

well as the aftermost water-lines are made to scale, 

whilst the maximum breadth of the dummy is chosen 

on the basis of 2-dimensional potential flow cal- 

culations comparing the ship water-lines in unre- 

stricted water to the dummy lines within the bound- 

aries of the cavitation tunnel test section and 

aiming at similarity in the potential wake 

distribution. 

Figure 1 shows a picture of a 3 m hull dummy 

used for the testing of a 150 m, single screw, con- 

tainer ship. In Figures 2 and 3 the model wake 

distribution as obtained in the towing tank and 

then corrected for scale effect according to the 

so-called Sasajima method is given. In Figure 4, 

finally, a comparison between the corrected model 

wake and the wake distribution obtained in the cav- 

itation tunnel is shown for a few radii close to 

the propeller blade tip. As can be seen from the 

diagrams, the agreement is quite good, particularly 

as regards the wake peak in the 12 o'clock propel- 

ler blade position. 

*Karlstads Mekaniska Werkstad 

Figure 1. Hull dummy for wake simulation in cavita- 

tion tunnel. 

Apart from the advantage of a quicker and more 

direct simulation of the full-scale wake, the 

method with long afterbody dummies results in a far 

more stable wake distribution which in turn implies 

more consistent recordings of fluctuating propeller 

forces, propeller induced pressure pulses against 

the hull, etc. Probably, the interaction between 

propeller and hull is also more realistic with this 

method of wake simulation as compared to the method 

utilizing transverse nets. 
The second item refers to the instrumentation 

employed for recording of propeller forces and the 

propeller induced pressure pulses on a ship's hull. 

In both KMW tunnels a data collecting and evaluation 

system consisting of an on-line connected desk com- 

puter together with a printer and a plotter has 

been used for several years. For the measurement 

of propeller induced pressure pulses with the aid 

of pressure pickups fitted into the hull, a pulse 

sampling technique giving time averaged values from 

a number of propeller revolutions at each blade 

position has been the practice. With this method 

the pressure signals are given in analogue form and 

recordings can be obtained from only one pickup at 

atime. Recently, a new data collecting unit was 

put into service enabling simultaneous recording 

on 6 channels and storing test results from every 
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Figure 5. Data collecting memory. 

second degree of a propeller revolution in digital 

form in a RAM semi-conductor memory controlled by 

the desk calculator. With this instrument, instan- 

taneous or time averaged test results can be stored 

and are readily available for printing, plotting, 

ERLING HUSE 

The authors in their presentation draw atten- 

tion to the problem of calculating cavity geometry 

and thus the excitation force due to cavitation. 

At the Norwegian Ship Model Tank in Trondheim we 

are at present developing a procedure to overcome 

this difficulty. In the cavitation tunnel we 

Measure the propeller-induced pressure at only 4 

positions on the hull model above the propeller. 

The measurements are made for non-cavitating as well 

as cavitating propellers. From the results of these 

Measurements we calculate an equivalent singularity 

O. RUTGERSSON 

First I would like to congratulate the authors 

on this interesting paper. The possibility of cal- 

culating hull forces and moments and their distri- 

butions directly on the body without the roundabout 

way over freestream pressures and solid boundary 

factors is especially elegant. Being somewhat in- 

volved in calculations and measurements of pressure 

fluctuations (with and without cavitation) at SSPA* 

I would like to ask if the authors intend to use 

this new method also to calculate solid boundary 

*Statens Skeppsprovningsanstalt, Goteborg, Sweden 

Figure 5. Desk calculator with printer and plotter. 

transformation to full scale, and harmonic analysis 

as well as integration of resulting hull surface 

forces and similar calculations with the aid of 

the desk calculator. 

distribution to represent the propeller. This is 

next combined with a theory similar to that of 

Dr. Vorus to obtain the excitation force on the hull 

referring to any given vibratory mode of the hull. 

As a second comment on the paper I notice in 

Figure 4 integration areas extending up to 30 pro- 

peller diameters upstream. This is, in my opinion, 

not very realistic because one is then passing one 

or more nodal points of practically occurring modes 

of vibration. 

factors for different afterbody shapes and propeller 

configurations? 

Unfortunately the authors' investigation is 

limited to non-cavitating propellers. This is a 

severe limitation as the contribution from the 

transient cavitation often is of a much higher mag- 

nitude than the contributions from blade loading 

and thickness. When discussing this subject the 

authors declare that methods "for predicting trans- 

ient blade cavity geometry and the attendant pres-— 

sure field" are not available. I would like to ask 

why the methods developed by Huse (1972), Johnsson 

and Sgndvedt (1972), and van Oossanen (1974) have 
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not been considered? These methods have been used 

in Europe for several years and the agreement with 

experiments is usually good. 

I agree that it is important that the integra- 

tion of hull forces and moments is carried out over 

a not too small part of the hull surface. This is 

even more important when the forces from a cavita- 

ting propeller are considered, as those pressures 

have a slower decay than those induced by a non- 

cavitating propeller [Lindgren and Johnsson (1977)]. 

Assuming that the hull forces should be used 

for an estimation of the vibration level for a 

certain ship project, I think that the problem is 

far more complicated than just a matter of integra- 

tion area. First, the described method is a near 

field theory where the influence of the propagation 

velocity of the pressure wave has been neglected. 

When calculating forces far from the propeller this 

could cause some difficulties. Secondly, the ship 

hull is not a rigid body. The vibration response 

will therefore be dependent not only on the hull 

forces but also on their location relative to the 

nodes of the vibration mode. Forces located close 

to the nodes will contribute very little and those 

located on different sides of a node will more or 

less cancel each other. Calculations with the Fi- 

nite Element Method have shown that hull forces aft 

of the aftermost node are particularly efficient 

in exciting high vibration levels. This could be 

the explanation for rather good results often being 

achieved in vibration calculations in spite of the 

fact that the excitation forces have been obtained 

by integration over a rather small area. 

The correct treatment of the problem will, of 

course, include vibration calculations, with a very 

detailed Finite Element model with the complete ex- 

citation forces and moments. Since this is very 

complicated and expensive it is seldom done. In- 

stead, different approximate procedures have been 

developed by different institutions. Referring to 

the integration problems the authors claim that 

"the current practice in European model basins is 

highly suspect." I very much doubt that this is 

current practice. At SSPA for example, we use the 

pressure fluctuations in a reference point above 

the propeller as a basis for estimation of the risk 

of vibration. On the basis of full-scale measure- 

ments we have established an approximate relation 

between excitation at this point and the vibrations 

at another reference point [(Lindgren and Johnsson 

(1977) 1]. 
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Authors’ Reply 

BRUCE D. COX, WILLIAM S. VORUS, JOHN P. BRESLIN, 

and EDWIN P. ROOD 

Our thanks to the discussers for their interest 

and encouraging remarks. On Mr. Rutgersson's 

question of calculating solid boundary factors, we 

do believe it would be useful to perform computa- 

tions for a series of hull afterbody forms and pro- 

pellers. The results would illustrate sensitivity 

to the various physical parameters and could pro- 

vide guidance during the early stages of a ship 

design. However, for realistic predictions of pro- 

peller exciting forces, the complete calculation 

should be carried out using the actual wake, hull 

geometry, and propeller design under consideration. 

As noted in the paper and by Mr. Rutgersson, 

only the non-cavitating propeller case is consid- 

ered which is a severe limitation in many pratical 

applications. The principal purpose of the paper 

was to present analytical methods and simple form- 

ilae for predicting hull surface forces for a given 

representation of the propeller and show compar- 

isons with experiments. Future improvements in the 

propeller theory, in particular, the allowance for 

transient cavitation, can be incorporated quite 

readily into the surface force analysis. It can 

be shown [Breslin (1977)] that the time rate of 

change of the cavity volume plays a crucial role 

in generating the propeller pressure field. We 

are familiar with a number of proposed methods for 

predicting blade cavity geometry including those 

cited by Mr. Rutgersson. These approaches for the 

most part are empirical. An alternative procedure, 

described in Mr. Huse's discussion, consists of 

finding an "equivalent" singularity distribution 

so as to produce agreement between calculated and 

measured values of pressure at selected locations 

near the propeller. The problem of analytically 

predicting the proper singularity distribution to 

represent the cavity volume dynamics is now the 

subject of active research. 

We agree with Mr. Rutgersson that compress- 

ibility effects should be examined when considering 

the far field pressures generated by a propeller. 

A 5-bladed propeller operating at 100 rpm produces 

a blade rate frequency disturbance with a acoustic 

wavelength on the order of 600 feet. The relative 

phase of the distrubances generated far ahead of 

the propeller may be important in the integrated 

pressure force amplitude and phase. 

The theory presented in this paper assumes a 

rigid hull boundary, intended to provide a first 

estimate of propeller exciting forces acting on 

the hull girder. Certainly for detailed stress and 

vibration analyses, the interplay between fluid 

loading and hull structural deformation would have 

to be accounted for. In principle, the present 

theory can be extended to satisfy the boundary 

condition on a deformable body. The complete 

analysis would then involve coupled equations des- 

cribing the fluid loading and structural response, 

and could be solved by finite methods. 
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ABSTRACT 

Cavitation in turbulent shear flows is the result 

of a complex interaction between an unsteady 

pressure field and a distribution of free stream 

nuclei. Experimental evidence indicates that 

cavitation is incited by negative peaks in pressure 

that are as high as ten times the rms level. This 

paper reviews the current state of knowledge of 

turbulent pressure fields and presents new theory 

on spectra in a Lagrangian frame of reference. 

Cavitation data are analyzed in terms of the avail- 

able theory on the unsteady pressure field. It is 

postulated that one heretofore unconsidered factor 

in cavitation scaling is the highly intermittent 

pressure fluctuations which contribute to the high 

frequency end of the pressure spectrum. Because of 

limitations on the response time of cavitation 

nuclei, these pressure fluctuations play no role 

in the inception process in laboratory experiments. 

However, in large scale prototype flows, cavitation 

nuclei are relatively more responsive to a wider 

range of the pressure spectrum and this can lead to 

substantially higher values of the critical cavi- 

tation index. Unfortunately, this issue is clouded 

by the fact that higher cavitation indices can be 

found in prototype flows because of gas content 

effects. Some cavitation noise data are also 

examined within the context of available theory. 

The spectrum of cavitation noise in free shear 

flows has some similarity to the noise data found 

by Blake et al. (1977) with the exception that there 

appears to be a greater uncertainty in the scaling 

of the rate of cavitation events which leads to a 

substantial spread in the available data. 

1. INTRODUCTION 

The physical processes involved in cavitation 

inception have been studied for many years. Much 

of this research has been directed toward an under- 
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standing of the dynamics of bubble growth and the 

determination of the sources of cavitation nuclei 

and their size and number in a given flow situation. 

This research has led to a general understanding of 

some of the environmental factors involved in 

scaling experimental results from model to prototype. 

More recently, considerable attention has been 

paid to the details of the boundary layer flow over 

streamlined bodies and the role of viscous effects 

in the cavitation process. This research has shown 

that viscous effects such as laminar separation 

and transition to turbulence can have a major impact 

on the inception process and that there can be 

considerable variation between model and prototype 

in the critical conditions for cavitation. 

In the absence of viscous effects, the scaling 

problem reduces to an understanding of the size 

distribution of nuclei and the temporal response 

of these nuclei to pressure variations as viewed 

in a Lagrangian frame of reference. This was first 

treated in detail by Plesset (1949). As already 

mentioned, consideration of viscous effects shows 

that the cavitation inception process can be 

considerably altered by either laminar separation 

or transition to turbulent flow. Obviously these 

phenomena are interrelated and are strongly Reynolds 

number dependent. The recognition of the importance 

of these factors has had considerable impact on the 

direction of cavitation research in recent years. 

Several papers in this symposium deal directly with 

this aspect of the cavitation scaling problem. 

It is reasonably well understood that intense 

pressure fluctuations, either at the trailing edge 

of a laminar separation bubble or in the transition 

region, can have a major effect on the inception 

process on streamlined bodies. However, these 

phenomena will be excluded from this review. The 

focus of this paper will be on the relationship 

between the temporal pressure field and cavitation 

inception in free turbulent shear flows and fully 

developed boundary layer flows. Scant attention 

has been given to this problem, even though the 
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topic is of practical significance. Turbulent 

shear flows are very common in practice and what 

cavitation data are available for these flows 

indicate that there can be significant scale effects. 

For example, Lienhard and Goss (1971) present a 

collection of cavitation data for submerged jets. 

It is observed that the critical value of the 

cavitation index increases with an increase in 

jet diameter, with no upper bound on the cavitation 

index being defined by the available data. The 

cavitation index is observed to vary from 0.15 to 

3.0 over a size range of 0.1 cm to 13 cm. Arndt 

(1978) reviews the available data for cavitation 

in the wake of a sharp edged disk. These data 

increase monotonically with Reynolds number and 

again no upper limit on the critical cavitation 

index can be determined from the available data. 

At present, it can be said that laboratory experi- 

ments do not provide a reasonable estimate of the 

conditions that can be encountered under prototype 

conditions. From a practical point of view the 

situation is much more critical than the scaling 

problems associated with streamlined bodies since 

at present there is no definable upper limit on 

the cavitation index for these free shear flows. 
There are a myriad of factors that enter into 

the inception process in turbulent shear flows. 

As a minimum, we need information on the turbulent 

pressure field, such as spectra and probability 

density. We require an understanding of the diffu- 

sion of nuclei within the flow, and we need to 

know how these nuclei respond to temporal fluctu- 

ations in pressure. In taking into account the 

bubble dynamics inherent in the problem, consider- 

ation must also be given to gas in solution which 

can have an influence on both bubble growth and 

collapse. p 

The theory of bubble dynamics is well founded 

and reasonable estimates of critical pressure can 

be determined under flow conditions that are well 

defined. Needless to say, the flow conditions in 

a turbulent shear flow cannot be defined in 

sufficient detail. However, the problem of flow 

noise has led to a more comprehensive understanding 

of turbulence; in particular, recent aeroacoustic 

research has provided a wealth of data on turbulent 

pressure fluctuations. These data are a by-product 

of the need for understanding turbulence as a source 

of sound. At this point in time, it seems only 

logical to review the inception problem in terms 

of both classical bubble dynamics and the more 

recent results of the field of aeroacoustics. 

2. THEORETICAL CONSIDERATIONS FOR CAVITATION 

Cavitation Index 

The most fundamental parameter for cavitating flows 

is the cavitation index 

wherein p_ is a reference pressure, p_ the vapor 

pressure, U_ a reference velocity, and p the 

density of the liquid. The flow state of primary 
interest in this paper is characterized by a 
limited amount of cavitation in an otherwise Single 
phase flow. There is a specific value of 0 associ- 

ated with this flow condition, which for convenience 

will be defined as the critical index: 

If it is necessary to have completely cavitation 

free conditions, one design objective for various 

hydronautical vehicles is the minimization of 0 . 

Cavity flows are assumed identical in model 

and prototype for geometrically similar bodies 

when O is constant, irrespective of variations 

in physical size, velocity, temperature, type of 

fluid etc. In practice O0_ is found to vary over 

wide limits. Simply stated, these so-called scale 

effects are due to deviations in two basic assump- 

tions inherent in the cavitation scaling law; namely 

that the pressure scales with velocity squared and 

the critical pressure for inception is the vapor 

pressure, p_. As will be shown, the two factors 

can be interrelated, since in principle the critical 

pressure is a function of the time scale of the 

pressure field. 

In order to provide a foundation for the ensuing 

discussion, consider a steady uniform flow over a 

streamlined body devoid of any viscous effects. 

The following identity can be written: 

wherein C_ is a pressure coefficent defined in the 

usual manher. Generally speaking, C_ is defined 

by the pressure on the surface of a Given boedy- east 

is generally assumed that cavitation first occurs 

when the minimum pressure, p_, is equal to the 
: m™m 3 

vapor pressure, p This results in the well-known 

scaling law ys 

Consider next the case where the pressure in the 

cavitation zone is less than the minimum pressure 

measured on the surface of the body, then 

nt Pl E Py a Pl Oo = ——— -C fb ee 

Lou 2 1p me) W 2 
2 Oo ts (e) 

Here we have to distinguish between the pressure 

at the surface of the body p, and the pressure 

sensed by cavitating nuclei, p _. Assuming 

cavitation occurs when Pal = Py we have 

OL S=5= Cee (1) 

Equation (1) is one version of the superposition 

equation that is commonly referred to in the 

literature. 

Bubble Dynamics 

It is generally accepted that the process of 

cavitation inception is a consequence of the rapid 



or explosive growth of small bubbles or nuclei 

which become unstable due to a change in ambient 

pressure. These nuclei can be either imbedded in 

the flow or find their origins in small cracks 

and crevices at the surfaces bounding a given flow. 

The details of how these nuclei can exist have been 

considered by many investigators. A summary of 

this work is offered by Holl (1969, 1970). 

Theoretically, liquids are capable of sustaining 

large values of tension. However, the nuclei in 

the flow act as sites for cavitation inception 

and prevent the existence of significant tensions. 

The mechanics of the inception process are adequately 

described by the Rayleigh-Plesset equation, which 

considers the dynamic equilibrium of a spherical 

bubble containing vapor and non-condensable gas 

and subject to an external pressure Boy ft)? 

iN) n 

w\|we 

co qo il 

AER ——— RR 2 0 (2) + - -—-4 2. PG Ig SE) = Hl 

wherein R is the bubble radius and dots denote 

differentiation with respect to time. It should 

be emphasized here that even for the case of steady 

flow over a streamlined body, p_,(t) is a function 
of time since we are concerned with the pressure 

history sensed by a moving bubble. If the problem 

is simplified to consider the static equilibrium 

of a bubble, we find that there is a critical 

value of p - p below which static equilibrium 

is not possible. This is found to be 

(ee = Dae = 45/3R* (3) 

wherein R* is defined as the critical bubble radius. 

Substitution of Eq. (3) into Eq. (2) with dynamical 

terms identically zero will indicate that R* is a 

function of the partial pressure of noncondensable 

gas within the bubble. If p __(t) varies rapidly 

in comparison to the response time of the nuclei, 

then even greater values of tension are possible. 

Thus in general we can write 

PY y Pal Ss) 

AS /SR*in my c 3 

where 

ll o(o) =~, o(~) =1 

The function ¢ depends on the flow field. The 

argument of ¢ contains a characteristic time scale 

of the pressure field (t_) anda GREACEOENSIELS 

response time of the nuclei, (PR, 37s)* 7 En) the 

case of a streamlined body in une absence of viscous 

effects, t_ would be proportional to the quotient 

of body diameter and velocity. In the case of 

cavitation induced by turbulence, the characteristic 

time scale could be any of the turbulence time 

scales. For example, 
u' OD 

L4/ Vine 3 

ae factor (PR, js)? is 

derived from the asymptotic solution to Eq. (2) 

for the case of negligible gas diffusion. Under 

these conditions 

is often appropriate. 
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and the growth rate stabilizes at a value given by 

| 2) a (4) 3 p 

Assuming a characteristic bubble response time 

given by R*/R, with 1 = ea = 4S/3R*, we obtain 

R* 

= —— O. qT, R 87 \ (5) 

A typical variation of ¢ based on the theoretical 
computations of Keller (1974) is given in Arndt 

(1974). 

The Influence of Dissolved and Free Gas 

The discussion in the previous section is based on 

the assumption of a healthy supply of free nuclei 

which is generally the case in recirculating water 

tunnels and in the field. Generally speaking, a 

reduction in O_ due to bubble dynamic effects 

usually only occurs on model scale. To some extent 

the level of dissolved gas and the number and size 

of free nuclei are interrelated. Some recent 

experimental results are documented in Arndt and 

Keller (1976). The level of dissolved gas can 

play an important direct role when the time of 

exposure to reduced pressure is relatively long. 

Under these circumstances Holl (1960) has shown 

that gaseous cavitation can occur at values of 6 

much greater than those for vaporous cavitation. 

Using an equilibrium theory, Holl (1960) deduced 

an upper limit on on given by 

wherein @ is the concentration of dissolved gas 

and 8 is Henry's constant. 

In summary, an overview of the effects of bubble 

dynamics and free and dissolved gas indicates that 

short exposure times such as are the case ina 

model implies that cavitation will occur at pressures 

lower than vapor pressure and OF is less than 

expected. Long exposure time, Such as can occur 

in vortical motion of all types, including large 

scale turbulence, implies the possibility of gaseous 

cavitation with © being greater than expected. 

3. PRESSURE FLUCTUATIONS IN TURBULENT SHEAR FLOWS 

Background 

Considerable progress has been made over the last 

five years in the understanding turbulent pressure 

fluctuations in free shear flows in an Eulerian 

frame of reference. Of particular importance is 

the development of pressure sensing techniques 

which under certain circumstances can lead to 

reliable measurements of pressure fluctuations. 
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The first theoretical arguments on the pressure 

fluctuations associated with turbulent flow appear 

to be due to Obukov and Heisenberg [Batchelor 

(1953) ]. Heisenberg argued that Kolmogorov scaling 

should be possible for small scale pressure fluc- 

tuations. Batchelor (1951) was able to calculate 

the mean square intensity of the pressure 

fluctuations as well as the mean square fluctuating 

pressure gradient in a homogeneous, isotropic 

turbulent flow. This work was extended by Kraichnan 

(1956) to the physically impossible but conceptually 

useful case of a shear flow having a constant mean 

velocity gradient and homogeneous and isotropic 

turbulence. 

Apparently there were no attempts made to extend 

this theoretical work until the 1970's when George 

(1974a), Beuther, George, and Arndt (1977a, b, c) 

and George and Beuther (1977) applied the concepts 

developed by Batchelor and Kraichnan to the calcu- 

lation of the turbulent pressure spectrum in 

honogeneous, isotropic turbulent flows with and 

without shear. When compared with experimental 

evidence gathered in turbulent mixing layers, the 

theory is found to be remarkably accurate. The 

predicted spectrum (with no adjustable constants) 

agrees with pressure measurements in turbulent jet 

mixing layers from several sources, including 

those of Fuchs (1972a), Jones and his co-workers 

(1977), and the authors themselves. As shown in 

Figure 1, the experimental data and the theory are 

remarkably consistent, especially in light of the 

fact that several different experimental techniques 

and different flow facilities are involved. 

The current state of knowledge of turbulent 

pressure fluctuations can be summarized as follows: 

1) Pressure fluctuations in a shear flow can 

arise from three sources. The first two involve 

interaction of the turbulence with the mean shear. 

These are second order and third order interactions, 

of which only the second order interactions are 

important at small scales. The last involves only 

interactions of the turbulence with itself. 

2) Kolmogorov similarity arguments can be 

applied to each of the spectra arising from these 
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FIGURE 1. Experimental confirmation of the theoretical 

pressure spectrum for a turbulent jet. 

terms. These arguments are valid for the small 

scale fluctuations. 

3) If the turbulent Reynolds number is high 

enough, there exists an inertial subrange in each 

of the three spectra in which 

us, D DPD gail Ted (k) iP Kk 

ses 2 =9/5 
Uap ie) Se xs 

= 2) WV} 7/3} 
Tp (K) = 4,0 € k 

wherein a . = 2, a. =0, a= 1.3, ¢ is the rate of 

dissipation of ene Sailene enérgy per unit volume, 

K is the mean shear, and k is the disturbance wave 

number. 

4) There is considerable evidence that coherent 

structures play an important role in determination 

of at least the large scale pressure fluctuations 

[Fuchs and Michalke (1975), Fuchs (1972a, b), Chan 

(1974a, b), and Chan (1976)]. 

Relation to Cavitation 

Since the above spectral results are expressed in 

Eulerian frames, they cannot be directly applied 

to the problem of cavitation inception which is a 

Lagrangian problem. Nonetheless, Kolomogorov scaling 

has been successful in an Eulerian frame of reference 

and therefore we can, with some confidence, infer 

that similar scaling will be valid for Lagrangian 

time spectra (i.e. the frequency spectra that would 

be seen by a moving material point). The results 

of such an exercise are as follows: 

1) The Lagrangian turbulent spectrum can be 

separated into interaction of the turbulence with 

the mean shear and the interaction of the turbulence 

with itself. 

2) The high frequency (analogous to small scale) 

will be well described by Kolmogorov scaling such 

that 
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In summary it appears plausible to assume that 

the basic picture of pressure fluctuations arising 

from mean-shear turbulence interactions will be 

unchanged in a Lagrangian frame of reference, 

although the actual spectra are different. The 

postulated relations for Lagrangian spectra should 

be directly applicable to any Lagrangian phenomenon; 

in particular the relations should be applicable 

to the inception of nuclei in a fluctuating pressure 

field. 

In relating the information on the pressure field 

to the problem at hand, it is evident that two 

criteria must be satisfied for turbulence induced 

inception: 

1) The pressure must dip to the vapor pressure 

or lower. 

2) The pressure minimum must persist for a time 

that is long in comparison to the characteristic 

time scale of the bubble, say Tp (taken to be the 

time scale for growth at inception). 

Both factors lead to scale effects. Consider 

first the second factor. The preceding arguments 

for the pressure field in a Lagrangian frame of 

reference lead to the hypothetical spectrum shown 

in Figure 2. For convenience we have normalized 

the spectrum with respect to the mean square pressure 

and the Lagrangian time scale JY. (c.f. Tennekes 

and Lumley, Chapter 8). Requirement (2) for bubble 

growth is plotted at the frequency W = 1/T,- te 

is clear that as long as w << 1/Tp, any pressure 

flucuation persists for a time longer than the 

time scale of the bubble. Thus at frequencies less 

than » = 1/Tg cavitation inception can occur with 

minimal local tension. Moreover, by integrating 

the spectrum from wW = O to W = 1/T, 1 we can deter- 

mine that fraction of the mean square pressure 

which can contribute to bubble growth without 

appreciable tension (assuming a normal distribution 

of nuclei). 

Consider now the effect of maintaining Tg con- 

stant while varying the Reynolds number. Taking 

J~ &£/a' and noting that there are essentially no 

pressure fluctuations of interest above the 

Kolmogorov frequency, W = (e/v)2 we find that 

after 1/Tp, exceeds (e/v) 4, the entire spectrum 

can potentially contribute to bubble growth. This 

will occur when the Reynolds number is roughly 

3 
Q 
a 
< 

Ve Ve 0.2(%) "2 
E B 

FIGURE 2. Hypothetical pressure spectrum in a 

Lagrangian frame of reference. 
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spectrum. 

Integration of Lagrangian pressure 

ul/v ~ (2/uTR)?. By noting the spectral dependence 

on frequency and performing a running integral, a 

plot such as shown in Figure 3 can be generated. 

This graph illustrates how rapidly the asymptotic 

state is reached. This occurs when 7/T -ts J (€/v) 

> (ut £/v) 2 or when £/u'T_ > (u'&/v) 72 as previously 

stated. B 

As an example,* cavitation is observed to occur 

in submerged jets at an axial position, x, that is 

roughly one diameter from the nozzle. Assuming 

the dissipation rate to be approximately 0.05U;°/x, 

where Uz is the jet velocity, results in a criterion 

that the jet diameter must exceed the following 

before scale effects are absent: d > 0.05U;°TR7/v. 

Using typical values of Uz = 10 m/s and Tp = Om 

sec., we conclude that the asymptote is reached for 

d ~ 50 meters. Thus size effects could be important 

in many model experiments. 

1 
i) 

Effect of Intermittency at Small Scale 

In 1947, Batchelor and Townsend concluded from 

observations of the velocity derivatives in 

turbulent flow that the fine structure of the 

turbulence (small scales, high frequency) was 

spatially localized and highly intermittant in 

high Reynolds number flows. Subsequent work [c.f. 

Kuo and Corrsin (1971)] has confirmed that there 
is a decrease in the relative volume occupied by 

the fine structure as the Reynolds number is 

increased. Thus the spatial intermittancy increases 

with Reynolds number. The effect of this phenomenon 

on filtered hot wire signals is shown in Figure 4. 

These data are derived from Kuo and Corrsin (1971). 

It is obvious from these data that the signal is 

increasingly intermittant as the filter frequency 

is moved to higher and higher values. 

Since the dissipation of turbulent energy takes 

place at the smallest scales of motion, it is clear 

from these observations that the rate of dissipation 

of turbulent energy must vary widely with space 

and time. It was this consideration that led 

*Strictly speaking, these results are only applicable 

when the Lagrangian turbulent field is stationary. 

In most flows of interest this is seldom the case. 

However, the smallest scales of motion can often 

be considered to be in quasi-equilibrium. 



FIGURE 4. Filtered hot-wire signals in grid- 

generated turbulence [adapted from Kuo and Corrsin 

(1971)]. (i) £ = 200 Hz, £/£ = 0.52, 20 ms/division 

(horizontal scale); (ii) 1 kH2, OoSA, 4a (sists) Gp 

0.52, 1; (iv) high-pass signal, f = kHz, 1 ms/ 

division. 2 

Kolmogorov (1962) to reformulate his original 

similarity hypothesis in terms of the average rate 

of dissipation of turbulent energy <e> , and to 

assume that the logarithm of € was governed by a 

normal distribution. Later work by Gurvich and 

Yaglom (1967) showed that any non-negative quantity 

governed by fine scale components has a,log normal 

distribution with a variance given by » =A+B 

ln R, where A is a constant depending on the 

structure of the flow, B is a universal constant and 

Ro is the turbulence Reynolds number. 

These results have implications for the cavita- 

tion problem at hand. Beuther, George, and Arndt 

(1977a, b) have shown that Kolmogorov similarity 

scaling is applicable to the high wave number 

turbulent pressure spectrum. As a consequence of 

this and the observed intermittancy and spatial 

localization of small scale velocity fluctuations, 

it is reasonable to expect the same trend in the 

small scale pressure fluctuations. This could 

result in an important cavitation scale effect. 

To make this point clear, a set of hypothetical 

band passed pressure signals at high and low 

Reynolds number are presented in Figure 5. For the 

sake of argument, assume that the filter is set 

around a range of frequencies which will result in 

bubble growth (wTgp £1). Since the spectra of these 

two signals will be identified in terms of Kolmo- 

gorov variables and since the low Reynolds number 

signal is less intermittant, there is a greater 

probability that the high Reynolds number signal 

FIGURE 5. Hypothetical band-passed pressure signals: 

(i) low turbulent Reynolds numbers, (ii) high turbu- 

lent Reynolds number. 

will contain more intense deviations from the mean. 

In particular, with all other factors held equal 

it is more likely that the local pressure will fall 

below the critical pressure when the Reynolds number 

is high, even though the spectra are identical. 
This is shown in Figure 5. If the log normal 

arguments were applicable, then it can be expected 

that this will depend on the Reynolds number. 

The effect of intermittancy coupled with effects 

cited earlier could be of considerable importance 

to the problem of predicting cavitation inception 

in the prototype from small scale experiments in 

the laboratory. The Reynolds number in model and 

prototype can vary by many orders of magnitude. 

For example, experimental observations of boundary 

layer cavitation by Arndt and Ippen (1968) were 

carried out at Reynolds numbers, u'6/v, of the 

order 5000. On large ships, Reynolds numbers of 

10° and greater are not uncommon. 

Coherency of the Pressure Field 

An important factor related to cavitation in- 

ception in jets is the existence of coherent 

structure in the flow. Cavitation in highly turbu- 

lent jets is observed to occur in ring like bursts, 

smoke rings if you will. These bursts appear to 

have a Strouhal frequency fd/U_ of approximately 

0.5. This point is underscored by some recent work 

of Fuchs (1974). Fuchs made 2 and 3 probe pressure 

correlations as shown in Figure 6. His results are 

summarized in Table 1. Signals filtered at a 

Strouhal number of 0.45 were highly coherent. For 

comparison, velocity correlations are shown in 

parentheses indicating that the velocity field is 

much less coherent than the pressure field. 

The Turbulent Boundary Layer 

Because of the relative ease of measurement, there 

exists a considerable body of experimental data 

Jet Nozzle 

Probes (la2) 

“| 
Probe (0)—g\ A\ 

A \E 3d 

General Arrangement 

(a) (c) (b) 

a ae 
PoP, Py (P,*P5) Py P, P, Po 

FIGURE 6. Measurement of pressure coherency in a 

turbulent jet [adapted from Fuchs (1974)]. 



for wall pressure due to turbulent boundary layer 

flow. However, in many ways less is known about 

the turbulent pressure field for boundary layers 

than for free turbulent shear flows. Not only is 

the theoretical problem made more difficult 

(impossible to the present) by the presence of the 

wall, the experimental problem is considerably 

complicated by the dynamical significance of the 

small scales near the wall. 

Thus, in spite of over two decades of concentrated 

attention we cannot say with confidence even what 

the rms wall pressure level is, although recent 

evidence points to a value of [Willmarth (1975)]: 

mp = oo 

c 2 ico) 3} 

The basic problem is that the most interesting part 

of a turbulent boundary layer appears to the region 

near the wall where intense dynamical activity 

apparently gives rise to the overall boundary layer 

activity. While the details of the process are 

debatable, most investigators concur on the importance 

of the wall region on overall boundary layer 

development. Unfortunately, under most experimental 

conditions, the scales of primary activity are 

smaller than standard wall pressure probes can 

resolve [Willmarth (1975)]. Thus we have virtually 

no information concerning the contribution of the 

small scales to the pressure field, although we 

suspect that the small scales are significant or 

even dominant. 

Pressure Spectra in Boundary Layers 

Our knowledge of the pressure spectra may be 

summarized as follows: 

1) Pressure fluctuations arising from motions 
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in the main part of the boundary layer (y/é > 0.1) 
scale with the outer parameters iB, and 6. 

2) Pressure fluctuations arising from the inner 

part of the boundary layer scale with the inner 
parameters: 

a) hydraulically smooth, uy, Vv 

b) hydraulically rough, u h; where h is 
roughness height 

3) Pressure fluctuations arising from the 
inertial sublayer (logarithmic layer) scale only 
with u, and y, the distance from the wall. 

4) The wall pressure spectrum is a composite 

of all these factors and has a distinct region 

corresponding to each factor. 

A composite picture of the wall pressure spectrum 
is shown in Figures 7a and 7b. The 1/k range is 

evident in both the inner and outer scalings and 

arises from the inertial sublayer contribution 

[Bradshaw (1967)]. 

The pressure spectrum within the near wall region 

should closely resemble the wall spectrum (although 

this has never been confirmed). The spectrum in 

the main part of the boundary layer, should, however, 

resemble that obtained for a free shear flow at 

high Reynolds numbers. Again there is no information 

available to either prove or disprove this conjecture. 

The Lagrangian model developed in the preceding 

section depends in part on the assumption that a 

material point is in a stationary random field. 

As long as the Eulerian field is homogeneous, there 

is no problem. This is approximately true in many 

shear flows, but is never true in a turbulent 

boundary layer. Thus our Lagrangian spectral picture 

must be abandoned entirely (or used with great 

restraint). 

However, a number of features of the Lagrangian 

model can be applied to this problem. In particular, 

the "spectral peaks" in the outer flow can be 

identified with the Lagrangian integral scale, 

J ~ &/u'. The highest frequencies in the flow will 

*! 

Table 1. Normalized correlation functions with pressure probes 
arranged as shown in Figure 6 (corresponding velocity 
correlations in brackets). 

Signals 

Unfiltered 

Signals 

Filtered at St = 0.45 
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FIGURE 7. Wall pressure spectra: (a) outer scaling, 

(b) inner scaling. 

be e/a) or u*/h, depending on whether the wall is 

hydraulically smooth or rough, and there will be 

increasing intermittency with increasing Reynolds 

number. The latter effect is most interesting and 

is quite evident in the many observations of dye 

streaks in the wall layer [cf Kim, Kline, and 

Reynolds (1971)]. 

Effect of the Pressure Field on Cavitation 

Whether or not the pressure fluctuations play a role 

in the cavitation inception process, depends on 

the previously cited criteria: 

1) The minimum pressure must fall below a 

critical level. 

2) The minimum pressure must persist below the 

critical level for a finite length of time. 

The first criterion depends greatly on the yet 

unresolved question of intermittency and its effect 

on the probability density of the pressure fluctua- 

tions. At this point in time we can say that the 

critical cavitation index will increase with 

Reynolds number because larger excursions from the 

mean pressure are more likely. Without justification, 

it is hypothesized that the effect on the pressure 

variance will be approximated by a log-normal 

dependence on the Reynolds number. ‘Detailed study 

of the wall pressure such as that proposed by 

George (1975) should aid considerably in resolving 

this question. 

The question of time scale is more easily con- 

fronted. Since most of the energy in the pressure 

spectrum scales with u, and 6 it is clear that the 

criteria for bubble growth without appreciable 

tension reduces to 

u,T,/5 <1 

In words, we again require a pressure fluctuation 

to persist for a time which is long in comparison 

to the response time of a typical nucleus. 

Since v/u,? is the shortest time scale ina 

smooth wall boundary layer, all of the pressure 

spectrum is sampled by the nuclei when 

2 
u, T,/Y < il 

This criterion is especially important in view of 

the highly intermittant process near the wall. 

For rough walls, the last criterion can be 

expressed in terms of the roughness height h by 

u,T,/n <a 

Since in fully 

that the small 

rough flow u,h/v Sl ale GUS} Giles 

scale criterion is more easily 

satisfied with rough wall experiments. 

In summary, the information we have on pressure 

fields in turbulent boundary layers and its 

relationship to cavitation inception can be 

summarized as follows: 

Significant scale effects can be expected when 

u'T,/5 > 1. As the ratio of T. to the smallest 

time scale in the flow decreases, the scale effect 

would be expected to level off i.e. when uxTp/V or 

u,T,/h <1. Further increase in the cavitation 

n er with Reynolds number will be due to the 

Reynolds number dependent effects on the probability 

density of the pressure fluctuations as a result of 

increased intermittancy of the small scale structure. 

The latter effect should produce a more gradual 

dependence of the cavitation index on Reynolds 

number than the former effect. 

The picture, as displayed above, is plausible 

and perhaps even appealing, but it must be viewed 

simply as conjecture until definitive experimental 

information is made available. An important hint 

of the relevance of these results can be found in 

the work of Arndt and Ippen (1967) where it was 

found that the region of maximum cavitation ina 

rough boundary layer shifted inward with a decrease 

in u,T /n. However, the change in this parameter 

varied only by a factor of 15 in their experiments. 

This will be discussed in more detail in subsequent 

sections. 

4. CAVITATION INCEPTION DATA 

A rather limited amount of experimental data have 

been collected under controlled conditions. The 

types of flows considered to date include the wake 

behind a sharp edged disk, submerged jets from 

nozzles and orifices, and smooth and rough boundary 

layers. There is a dearth of information relating 

the observed cavitation inception with the turbulence ~° 

parameters. Some of the earlier efforts in this 

direction are summarized in a paper by Arndt and 

Daily (1969) and by Arndt (1974b). A collation of 

available data is presented in Figure 8. Here the 

data are presented in the form of Eq. (1): 

o fC = 
Pp 

* f£ (Cp) 



Ke) T om Se T T Vapaly oe em Seer an au 

© Smooth, Daily & Johnson ('56) 

Boundary |@Sawteeth, Arndt & Ippen ('68) 

Layer © Sand, Messenger ('68) 

™ Sand, Huber ('69) 

eo: 
f Jet 4 Rouse, ('53) 

oo | Wake 4 Kermeen, Et Al ('55) | 

+ 
co 

OF a 

Best Fit Curve 1 
br ° >| 

| 10 100 

1000 C, 

FIGURE 8. Collation of cavitation inception data. 

wherein 

2t )/pU* Boundary Layer Flow 

Ce = 

W145 Free Shear Flows 

U 
fe} 

In this expression Cg is computed either from the 

measured wall shear jn the case of boundary layer 

flows or from turbulence measurements made in the 

air at comparable Reynolds numbers for the case of 

a free jet and a wake. The measured value of C, is 

only significant for the case of the disk wake and 

the pressure data was determined from the experi- 

mental work of Carmodi (1964). The available data 

seem tc be well approximated by the relation 

which was originally proposed for boundary layer 

flow by Arndt and Ippen (1968). These data would 

seem to imply that a relatively simple scaling law 

already exists and would further imply that the 

previous discussion in this paper on turbulence 

effects is superfluous. This is not the case. 

Arndt and Ippen (1968) made observations of the 

bubble growth in turbulent boundary layers. Some 

of their results are depicted in Figures 9 and 10. 

Figure 9 shows sample bubble growth data. The 

growth rate is observed to stabilize at a constant 

value during most of the growth phase. Using Eq. 

(4), the levels of local tension are found to be 

quite small, of the order 20 to 100 millibar. These 

data correspond to observations in a rough boundary 

layer. Of particular interest is the fact that, 

in all cases, the life time for bubble growth is 

a fraction of the Lagrangian time scale, J = d/u'. 

In fact growth times were observed to be of the 

order h/u,. Unfortunately there is not enough 

*Tp was estimated from Eq. (5) using observed values 

of R, reported in Arndt and Ippen (1967). For 

convenience, the results are normalized to equivalent 

Sand grain roughness, hg. 
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FIGURE 9. Sample bubble growth data [after Arndt 

and Ippen (1968)]. 

experimental evidence available to completely 

illuminate this point. As shown in Figure 10, 

cavitation occurs roughly in the center of the 

boundary layer with a tendency for the zone of 

maximum cavitation to shift inward as uxTp/h, 

decreases from about 1.5 to approximately 0.1*. 

In the cited boundary layer experiments, Cp is 

negligible. Thus 0, = 16 Cf. Noting that p' is 

approximately 2.5 pux* at the wall, we estimate 

that cavitation is incited by negative peaks in 

pressure of order 6 p'. This compares favorably 

with Rouse's (1953) data for jet cavitation which 

indicate that negative peaks of order 10 p' are 

responsible for cavitation. 

A strong dependence on Reynolds number can be 

observed even in free shear flows. Figure 11 

contains cavitation data for a sharp edged disk. 

These data were obtained in both water tunnels 

and a new depressurized tow tank facility located 

at the Netherlands Ship Model Basin. The water 

tunnel data are for cavitation desinence, whereas 

the tow tank data are for cavitation inception 

determined acoustically. The cross hatched data 

were determined in a water tunnel at high velocities 

by Keermeen and Parkin (1957). All the other data 

were obtained at relatively low velocities (2 - 10 

m/sec). There is considerable scatter in these 

data and this is traceable to gas content effects 

T T T T T T T T a reas |e 

all bubbles all bubbles 

30F ---- cavitating bubbles 30+ ---- Cavitating bubbles 4 

Relative Concentration (%) Relative Concentration (%) 

2 

FIGURE 10. Observation of cavitation in turbulent 

boundary layers [after Arndt and Ippen (1968) ]. 
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edged disk. 

Cavitation inception data for a sharp- 

which are dominate at low velocities as will be 

discussed later. At low Reynolds number the data 

appear to be satisfied by the empirical relationship 

discussed by Arndt (1976): 

o, = 0.44 + 0.0036 (Ud/v) 2 (7) 

It was found that the tow tank data agree with this 

relationship at relatively high Reynolds numbers. 

Equation (7) was developed from a model which 

assumes laminar boundary layer flow on the face of 

the disk. It would be expected that this condition 

would be satisfied at higher Reynolds numbers in 

a tow tank than in a highly turbulent water tunnel. 

At high Reynolds number (and also high velocity 

where gas content effects are negligible), there 

is a continuous upward trend in the data with 

increasing Reynolds number. This underscores the 

need for further work as suggested in the intro- 

duction to this paper. 

A systematic investigation of gas content effects 

in free shear flow was recently reported by Baker 

et al. (1976). Cavitation inception in confined 

jets, generated either by an orifice plate ora 

nozzle, was determined as a function of total gas 

content in the liquid. The results are shown in 

Figure 12. When the liquid was undersaturated at 

test section pressure, the critical cavitation 

index was independent of gas content and roughly 

equal to that observed by Rouse (1953) for an 

unconfined jet. When the flow is supersaturated, 

the cavitation index is found to vary linearly with 

gas content as predicted by the equilibrium theory, 

Eq. (6). This effect occurs even though the 

Lagrangian time scale is much shorter than typical 

times for bubble growth by gaseous diffusion. For 

example, in the cited cavitation data, a typical 

residence time for a nucleus within a large eddy 

is roughly 1/15 of a second. At a gas content of 

7ppm and a jet velocity of approximately 10 m/s, 

inception occurs at a mean pressure equivalent to 

a relative saturation level of 1.25. Epstein and 

Plesset (1950) show that for growth by gaseous 3 

diffusion alone, 567 seconds is required for a 10 

cm nucleus to increase its size by a factor of 10. 

One additional point should be kept in mind here. 

The local pressure within an eddy is much less than 

the mean pressure and highly supersaturated con- 

ditions can occur locally. Arndt and Keller (1976) 

also reported extreme gas content effects in their 

experiments with disks when the flow was super- 

saturated. The magnitude of the effect also depends 

on the number of nuclei in the flow. Gas content 

effects were noted only in their water tunnel 

experiments (where there is a healthy supply of 

nuclei). No gas content effects on inception were 

noted in the tow tank (where the flow is highly 

supersaturated but there is a dearth of nuclei). 

Thus the picture becomes more cloudy as the influence 

of dissolved, noncondensable gas is taken into 

consideration. 

5. SOME REMARKS ON CAVITATION NOISE 

A complete discussion on cavitation noise would be 

beyond the scope of this paper. Recognizing the 

unique features of cavitation inception in 

turbulent shear flows, it appears appropriate to 

review what is known about cavitation noise under 

the same circumstances. 

The general features of cavitation noise were 

reviewed by Fitzpatrick and Strasberg (1956), Baiter 

(1974), and Ross (1976). The spectrum of cavita- 

tion noise can in its simplest form be defined as 

the linear superposition of N cavitation events per 

unit time. Thus we can write 

S(£) = N G(£) (8) 

The function G(f) is the spectrum of a single 

cavitation event. If p, is the instantaneous 

acoustic pressure due to the growth and collapse of 

a single bubble, then by definition 

J ccrar - ee dt 

oO —co 

Fitzpatrick and Strasberg (1956) have shown that a 

characteristic bubble spectrum can be written in 

the form 
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FIGURE 12. Cavitation inception in confined jets. 



wherein Tt, is a characteristic bubble collapse 

time, Ry is the maximum bubble radius, and R is 

the distance to the observer. In addition, it 

appears reasonable to assume that N is related to 

the number of nuclei per unit volume, n, the 

velocity, the size of a given flow field, and the 

relative level of cavitation. Therefore we write 

N/nu a2 = £(c/fo_) 
0) c 

Thus a normalized version of Eq. (8) would be 

——_——F = £(o/o |) G(fr 7) (9) 

It is difficult to obtain appropriate scaling 

factors for R_ and T_ in a turbulent shear flow. 

The problem iS discussed briefly by Arndt and Keller 

(1976). Lacking more detailed information, the 

following assumptions can be used 

mR os Gl 
m 

aiee 
Be {UG 

If we interpret S(f) as the mean square acoustic 

pressure in a frequency band Af, Eq. (9) can be 

written in the form 

p 2/p2u “) 2 eee, 
Afa/U 3 
( / By ond 

1 
a2) 

Se (a/o.) G(f£d/Uo ~) (10) 

Blake et al. (1977) circumvented the requirement 

of measuring n. They reasoned that 

2 —— 
= = 2 i G(£) dt i i Che SES Ish, 

wherein Pp? is the time mean square of pp and y,, 

is the total lifetime of the bubble (including 

growth, initial collapse times and rebounding times) . 

Further, they simply reasoned that 

or that 

S(e 32) = We eee _)) 
() (0) (o) 

This results in the normalized spectrum 

Di 2 
pi” (£,4£) yt or 

S(t, £) SSS (11) 
A£N R 4op 

Making the same assumptions as before, we would 

expect that 

a ee G! (£a/vo®) (12) (hea/o,) 53/2” 2 

Blake et al. were able to determine S(tgf) for the 

case of noise due to cavitation on a hydrofoil 

using measured values of Ry. They assumed N equal 

to unity and found that Eq. (11) resulted in 

excellent collapse of the data. 

Arndt (1978) used Eq. (12) to normalize cavitation 

data previously reported by Arndt and Keller (1976). 

These data correspond to noise from cavitation in 

the wake of a disk and were collected under a 

variety of conditions in both a water tunnel and in 

a depressurized towing tank. Both the level of 

dissolved gas and the number of free nuclei were 

monitored. As shown in Figure 13, the normalization 

is not very successful. It would appear that Eq. (10) 

would be more effective in taking all of the 

variables into account. However, n could only be 

measured in unison with acoustic observations in the 

water tunnel. Because of the nature of the laser 

scattering measurements used to determine n in the 

depressurized towing tank, these measurements had 

to be made separately from the acoustic measure- 

ments. The assumed form for S(£T)) in Eqs. (10) and 

(11) varies by a factor na3/o's. As an example, n in 

the depressurized towing tank appeared to be rela- 

tively constant and equal to about 15/cm?. Therefore 

the factor nd3/o% was found to have a maximum varia- 

tion of 23 dB. This does not account for the scatter 

shown and one can only assume that there are other 

complicating factors. It should be emphasized that 

these data were collected under carefully controlled 

conditions. This underscores the fact that the 

current state of knowledge in this area is poor. 

6. CONCLUSIONS 

Cavitation inception in turbulent shear flows is 

the result of a complex interaction between an 

unsteady pressure field and a distribution of free 

stream nuclei. There is a dearth of data relating 

cavitation inception and the turbulent pressure 

field. What little information that is available 

indicates that negative peaks in pressure having a 

magnitude as high as ten times the root mean square 
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pressure can excite cavitation inception. This fact 

alone indicates that consideration should be given 

to the details of the turbulent pressure field. 

The available evidence indicates that two basic 

factors related to the pressure field enter into 

the scale effects. First, as the scale of the 

flow increases, cavitation nuclei are relatively 

more responsive to a wider range of pressure 

fluctuations. Secondly, the available evidence 

indicates that large deviations from the mean 

pressure are more probable with increasing Reynolds 

number. This would explain some of the observed 

increases in cavitation index with physical scale. 

In view of the almost total lack of information on 

the statistics of turbulent pressure field (aside 

from some correlation and spectral data) and the 

potential importance of this knowledge to under- 

standing cavitation, it is strongly recommended 

that careful experiments be initiated to remedy the 

situation. Such experiments have been proposed by 

George (1974b, 1975). 

Direct application 

tion to cavitation is 

of the pressure field informa- 

unfortunately clouded by gas 

content effects which also increase the cavitation 

index with increasing exposure time. The fact that 

a reasonably precise scaling law for cavitation 

noise has not yet been found (perhaps a consequence 

of the lack of knowledge about the pressure field) 

further complicates interpretation of experiments 

and theory. Therefore it is also strongly recom- 

mended that the problem of the response of cavita- 

tion nuclei to turbulence receive particular attention. 

Such experiments have been proposed by Arndt (1978). 
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ABSTRACT 

Secondary flow theories are employed to calculate 

the secondary vorticity near the inner wall of a rotor 

for several flow conditions. This calculated vortic-— 

ity is used in a simple vortex model to calculate the 

minimum pressure coefficient of the resulting vortex 

behind the rotor. The influence of inflow velocity 
distributions on the generation of secondary vortic-— 

ity is discussed. Comparisons are given between the 

calculated pressure coefficients and the measured 

cavitation indices of the vortex. 

1. INTRODUCTION 

Secondary flows generate additional streamwise vor- 

ticity when a boundary layer flow is turned by a 

rotor. The apparent effect of this additional vor- 

ticity is evidenced by the high cavitation numbers 

of the vortex formed downstream of the rotor plane. 

One example of the cavitation associated with a 

vortex can be found in the draft tube of a Francis 

turbine operating in the part load range. The 

cavitation depends directly on the square of the 

streamwise vorticity associated with the vortex. In 

most cases, the critical cavitation numbers typical 

of this vortex are often higher than those associ- 

ated with any other type of rotor cavitation. 

Previous experimental results have shown that a 

cavitation inception prediction of this vortex is a 

very difficult problem. All rotors operating with 

a wall boundary layer have a vortex ‘along the inner 

wall. The appearance of this cavitating vortex varies 

from rotor to rotor. The critical cavitation number 

can vary aS much as an order of magnitude. Small 

variations in the wall boundary layer can cause a 

significant change in the critical cavitation number. 

Some confusion in cavitation inception data asso- 

ciated with this vortex is due to a confusion of 

types of cavitation, i.e., vaporous versus nonva- 

porous cavitation. Vortex flows tend to be good 
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collectors of gas bubbles which can cause non- 

vaporous cavitation. This often leads to confusing 

nonvaporous for vaporous cavitation giving high 

cavitation numbers. In general, results indicate 

for vaporous- limited cavitation that 

< 
Tg = SC oee (1) 

Thus, the minimum pressure coefficient is of partic- 

ular importance in a study of vortex cavitation in- 

ception. 

It is appropriate then to find a simple descrip- 

tion of the vortex in order to calculate its minimum 

pressure coefficient. Unfortunately, the vortex is 

composed of a finite number of vortex filaments 

and a difficulty arises in specifying this number. 

This is particularly difficult when the vortex exists 

in the low pressure region near the inner wall of the 

complicated flow behind a rotor. In this region, 

there are vortex filaments in the primary flow in 

addition to the secondary vortex filaments which can 

influence this vortex. The combined effect of these 

filaments is to induce a swirl velocity distribution, 

Vg, which can be easily measured. 

Some preliminary tests show that in many cases 

small changes in the incoming velocity profile near 

the inner wall cause large differences in the crit- 

ical cavitation number of the vortex. Measurements 

of the primary flow field show only a change in down- 

stream velocity profile near the inner wall. This 

is especially true if the rotor was designed to be 

unloaded near the inner wall. For these cases, 

changes in the critical cavitation number can be 

directly related to changes in the secondary vortic- 

ity near the rotor inner wall. 

The secondary vorticity can roll-up into a vortex 

like flow in the blade passage or it can simply com- 

bine with other vortex filaments aft of the rotor to 

form a larger vortex flow. In either case, there 

will be a circulation and a characteristic dimension 

of the passage vorticity which will determine the 

critical cavitation number of the resulting vortex. 



In this paper, a brief summary is given of the 

method for calculating the secondary vorticity in 

the blade passage with comparisons to flow field 

measurements. Initially, the primary flow field 

through the rotor had to be determined in order to 

calculate the passage secondary vorticity. This was 

accomplished by using a streamline curvature method. 

Flow field results are given in detail for one basic 

flow configuration so named Basic Flow No. 1. Com- 

parisons between the calculated minimum pressure co- 

efficients and measured critical cavitation indices 

are given for several basic flow configurations or 

inflow velocity distributions. 

2. CALCULATION OF FLOW FIELD 

Primary Flow Field 

A schematic of the calculation procedure for the 

flow through a rotor is given in Figure 1. This 

outlines the iterative procedure for the calcula- 

tions and indicates the point at which refinements 

to the deviation angle are necessary and where 

secondary flow calculations are employed. 

It is important to realize that in this discus- 

sion the flow field is being solved for a given 

rotor configuration. For this case, the boundary 

conditions are (1) the geometric or metal angles 

of the blades, (2) the rpm of the rotor, (3) the 

velocity profile far upstream of the rotor plane, 

and (4) the bounding streamlines of the flow. 

After solving for the bounding streamlines, the 

iterative calculation procedure is started by 

establishing the velocity profile far upstream of 

the rotor. The initial conditions (Step 1) to the 

solution for this boundary condition are (1) bounding 

streamtube and (2) velocity profile in rotor plane 

without rotor. With this information, the initial 

streamlines without rotor can be calculated using 

the streamline curvature equations (Step 2). The 

result of this calculation is the boundary condition 

of an initial velocity or energy profile at a station 

far upstream of the rotor plane. 

CALCULATION OF PRIMARY FLOW FIELD 

STEP 1 INITIAL CONDITIONS 

STEP 2 CALCULATION OF FLOW WITHOUT RoToR | 

STEP 3 FIRST ESTIMATE OF ROTOR OUTLET ANGLE 

Si? J—= CALCULATION OF FLOW FIELD WITH ROTOR 

Sup 7 SECONDARY FLOW CALCULATION 

STEP 8 THIRD ESTIMATE OF ROTOR OUTLET ANGLE 

STEP 9—— | FINAL CALCULATION OF FLOW FIELD WITH ROTOR 

FIGURE 1. Schematic of calculation procedure for 

primary flow field. 
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VELOCITY PROFILE 
(B.C. #3) 

y— BOUNDING STREAMLINES (B.C, #4) 

METAL ANGLES OF — 
BLADES (B.C. #1) 

IER eT = 

ROTOR RPM (B.C. #2) 

FIGURE 2. Schematic of boundary conditions. 

Knowing the blade metal angles, the first estimate 

of the flow outlet angles (Step 3) can be calculated. 

These flow outlet angles depend on the blade metal 

angles and on a deviation angle. The deviation 

angle correlation developed by Howell as discussed 

in Horlock (1973) is initially applied. This 

relationship considers only thin blade sections and 

assumes that each blade secticn operates near design 

incidence. As shown in Figure 2, all of the boundary 

conditions are now known and the flow field can be 

solved with the rotor included (Step 4) by using 

the streamline curvature equations [McBride (1977)]. 

Once a converged solution is obtained for the 

flow field using Howell's deviation angles (Step 4), 

the axial velocity distribution is known whereby the 

inlet angles can be estimated in addition to the 

acceleration through the rotor. Now a second 

estimate of the rotor outlet angles (Step 5) can be 

made. For this deviation angle, the effects of 

acceleration, Aéd', blade camber, 69, and blade 
thickness, Aé*, are calculated separately. For the 

calculation of the deviation term due to axial 

acceleration through the rotor, an equation developed 

by Lakshminarayana (1974) is applied. For the 

calculation of deviation terms due to camber and 

thickness effects, the data obtained by the National 

‘Aeronautics and Space Administration [Lieblein 

(1965)] are used. The result is an improved outlet 

flow angle profile which can be used to again calcu- 

late the flow field (Step 6). 

The converged solution of the flow field (Step 6) 

is then used to solve the secondary vorticity 

equations (Step 7) and to determine a deviation term, 
Aéds, which is due to nonsymmetric flow effects. The 

details of the secondary flow calculations will be 

discussed later in this paper. An improved outlet 

flow angle profile (Step 8) is obtained by adding 

this secondary flow term to the deviation terms 

thus far calculated to obtain 

Bo* = Bo — AS' + AS* + bo + AS. (2) 

where 85* is the outlet flow angle and 8) is the 

blade metal outlet angle. This outlet flow angle 

distribution is then used as a boundary condition 

in the calculation of the flow field (Step 9). 

Finally, all of the deviation angle calculations 

are checked based on the flow field calcvlated in 

Step 9. If the angles did not change significantly 

then the result obtained in Step 9 is used as the 

final flow field. 

In all, twenty-eight streamlines were calculated 
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—_—— r or 
02 OC HS WE a ke 

AXIAL VELOCITY RATIO, Vien 

FIGURE 3. Comparison between velocity profile with/ 

without rotor. 

through the rotor with the first streamline being 

at the inner wall and the last streamline going 

through the rotor tip. The streamlines were spaced 

more closely near the inner wall because the second- 

ary flow calculations are most important near the 

wall. Also, the streamline curvature equations are 

inviscid so that there is a finite velocity at the 

inner wall streamline. 

A sample of the calculations for the flow field 

is given in Figures 3,4, and 5 for the flow config- 

uration called Basic Flow No. 1. For.Basic Flow 

No. 1, the boundary layer entering the rotor is 

axisymmetric with no upstream distribution such as 

screens or struts forward of the rotor which is 

operating at its design flow coefficient. In Figure 

3, the calculated axial velocity profile in the 

plane of the rotor without the rotor and the calcu- 

lated axial velocity profile in front of the rotor 

with the rotor operating on design is shown. In 

addition, experimental data measured in the 48-inch 

(a) WITHOUT UPSTREAM STRUTS 

WITHOUT SCREEN 

DESIGN FLOW COEFFICIENT 

3 (BASIC FLOW NO. 1) 

DISTANCE 

FROM 

SURFACE, 2 DATA 

R' (inches) 

ake 
VE 

l ined 

CALCULATED 

PROFILE 

° 

0 rt A (PAL al 
0 0.2 #O4 0.6 0.8 1e Ome Zed 

VELOCITY RATIOES, V5 NES AND Vy 

FIGURE 4. Rotor outlet velocity profiles for basic 

flow no. l. 
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DESIGN FLOW COEFFICIENT 
(BASIC FLOW NO. 1) 

DISTANCE 
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CENTERLINE, 5 max 
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CALCULATED PROFILES 

n°) 
(0) 

O° OF O41 G6 O86, RO be a 
8 x 

VELOCITY RATIOS, —— AND) — 
Ves co 

4 

FIGURE 5. Tangential and axial velocity profiles 

at cap. 

water tunnel by a LDA system are given for a com- 

parison. In Figure 4, the calculated outlet velocity 

profiles are shown with comparison to measured data. 

Finally, Figure 5 shows the calculated and measured 

tangential velocity, component, Vg, downstream of the 

rotor plane where cavitation occurs under certain 

flow conditions. In general, the flow field calcu- 

lations show very good agreement with the experi- 

mental data. 

Secondary Flow Field 

The major equations used in the streamline curvature 

method for calculation of the flow field were derived 

from the principles of conservation of mass, momentum, 

and energy. The fluid was assumed to be incompress-— 

ible, inviscid, and steady. In addition, the flow 

field was assumed to be axisymmetric. 

The resultant equations allow for streamline 

curvature and for vorticity in the flow. However, 

it is important to realize that the solution to the 

flow field does not contain all of the vorticity. 

In particular, only the circumferential vorticity 

is totally included. The other components of 

vorticity contain derivatives with respect to the 

circumferential direction which are assumed to Ee 

zero. As discussed by Hawthorne and Novak (1969), 

the neglected vorticity terms can be related to the 

secondary flows that occur in the blade passage 

along the inner wall. 

Using the generalized vorticity equations, Lak- 

shminarayana and Horlock (1973) derived a set of 

incompressible vorticity equations valid for a 

rotor operating with an incoming velocity gradient. 

Their expressions for the absolute vorticities, 

Ws', Wn', defined along relative streamlines, s', 

n', were modified for the boundary conditions imposed 

by this problem and were integrated. The resulting 

equations are 

W) ap} 

Oe Sapte ead (3) 
2 abo 

and 



2 2 

AAW OY 22. Hue 

Oo = Wo WR" ds' + Wo 3 ds! 
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1 ' 
W 

-wW ecla ds' + w_! sts (4) 
2 2 S$] Wy 

where the primes refer to a rotating frame of 

reference and the subscripts, 1, 2, refer to com- 

puting stations along a streamline within the rotor. 

As shown in Figure 6, s', n', b' represent the 

natural coordinates for the relative flow, W is the 

relative velocity, we' and W,' are absolute vorticity 

resolved along the relative streamline, s', and the 

principal normal direction, n', 2 is the rotor 

rotation vector, and R' is the radius of curvature 

of the relative streamline. 

The means by which the streamwise component of 

vorticity is produced in this relative flow are 

similar to those discussed by many investigators 

for a stationary system. However, it is important 

to note that additional secondary vorticity is 

generated when x W has a component in the relative 

streamwise direction. Rotation has no effect when 

the absolute vorticity vector lies in the s'-n' 

plane and the rotation, 9%, has no component in the 

binormal direction, B'. 

These equations were employed to calculate the 

secondary vorticity along a relative streamline 

through the rotor. All of the quantities in the 

equations were calculated by an iterative procedure 

using the primary flow calculations. The initial 

normal component of absolute vorticity, Wn , for a 

streamline was calculated from the incoming axial 

velocity profile to the rotor. In all, the vorticity 

along twenty-eight streamlines was calculated. 

As an example, Figure 7 shows the importance of 

each term in Eq. 4 in the rotor exit plane for Basic 

Flow No. 1. The sum of these terms is given in 

Figure 8. The secondary passage vorticity is the 

difference between the exit vorticity, Ws5, and the 

inlet vorticity, Ws}, along a streamline. 

CALCULATION OF FLOW FIELD THROUGH ROTOR IN RELATIVE COORDINATE SYSTEM 

VELOCITY COMPONENTS 

Ww 
Vx, 

U 

BLADE ROW 

VORTICITY COMPONENTS ROTATION COMPONENTS 

STREAMLINE 

STREAMLINE 

Wr, Ty 
| a2) a 1 

/B2 
s. 

FIGURE 6. Description of relative coordinate system. 

343 

3 T T T Ta r t~— 

WITHOUT UPSTREAM STRUTS 
Q @ WITHOUT SCREEN 

o 2u, ds 20,4, ds! DESIGN FLOW COEFFICIENT 
3 = (BASIC FI i FE - Wo liwRumenis C FLOW NO. 1) 
€ 

z 2 22_,u, ds! a 
=f | 

2 qe W z : 
a 
> O 

= 
Oo 

& 
wot = 
r= 

< c) 
nn 

a 

CALCULATED DATA 

0 n L | 

6 5 “4 3 -2 -1 0 1 2 3 

uy RR RELATIVE ABSOLUTE STREAMWISE VORTICITY, G, = 

FIGURE 7. 

ge} dhe 

Streamwise passage vorticity for basic flow 

The effect of this additional vorticity, Ws - 

Ws}, is to induce secondary velocities which are 

assumed to occur at the exit plane of the rotor. It 

is important to note that the normal component of 
vorticity, Wndr is accounted for in the axisymmetric 
flow analysis. Thus, only streamwise secondary 

vorticity calculated as a function of radius influ- 

ences the flow field. 

The effect of the streamwise component of vorti- 

city within the blade passage is similar to that 

obtained in the flow through a curved duct [Hawthorne, 

(1961), Eichenberger, (1953)]; however, there is 
the difficulty of devising a reasonable approximate 

method of satisfying the Kutta-Joukowski condition 

at the exit of the rotor. The method used in this 

investigation assumes that the flow is contained in 

a duct defined by the blades and streamlines of the 

primary flow leaving the exit of each blade. In 
this exit plane, a flow solution devised by Hawthorne 

and Novak (1969) was applied. The secondary stream- 

Sire 
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re DESIGN FLOW COEFFICIENT 
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FIGURE 8. Relative passage streamwise vorticity at 

rotor exit plane for basic flow no. 1. 
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wise vorticity was divided into tangential and axial 

components whereby the former, (We5-Ws 1) sinBo, 

causes a radial gradient of axial velocity and the 

latter leads to an equation for a stream function 

describing the radial and tangential velocities in 

the exit plane, r,6. 

The form of the secondary stream function equation 

is 

2 ay ley 1 02y xd * y2y = we OE i ue a) ee CE 
Sed Soe Ste Da 1 pl ae (ete) 

2 C)s) Yr 

* 

- Ge ")secBo = I5((Fe)) 5 (5) 

where Vx is the secondary axial velocity and is 

obtained from the solution of the tangential com- 

ponent of streamwise vorticity. The solution to 

Eq. (5) was found by applying standard differential 

techniques. The solution and the necessary boundary 

conditions will not be discussed in this brief paper. 

The deviation angle due to the secondary flow 

can be calculated using 

N cos? B> UA 

N\ = ou dr 
s 271V Cha (S) 

a 0 

where N is the number of blades and ¥ is obtained 

from the solution of Eq. (5). The axial velocity, 

Vx, and outlet angle, 85, are determined in the 

calculation of the primary flow field. 

The results of the secondary flow calculations 

for various basic flows indicate that the effects 

are significant only near the inner wall where the 

incoming vorticity is the largest. The deviation 

angles calculated for Basic Flow No. 1 are shown 

in Table 1. 

3. CAVITATION EXPERIMENTS 

The cavitation experiments were conducted in the 

48-inch diameter water tunnel located in the Garfield 

Thomas Water Tunnel Building of the Applied Research 

Laboratory at The Pennsylvania State University. In 

Correlation with cavitation data for basic 

1 and 4. 

FIGURE 9. 

flow nos. 

CAVITATION NUMBER 

TABLE 1. Deviation Angles for Basic Flow No. 1 

Normalized Distance 

from Surface Deviation Angles 

R/R AS 
s 

0.00 -5.4 

0.04 =239) 

0.14 -1.0 

0.24 

0.34 
fo} 

0.44 <0.2 

0.54 

0.64 

all cases, desinent cavitation was employed as the 

experimental measure of the critical cavitation 

number. The cavitation in the vortex system occurred 

on the rotor cap. Also, the occurrence of the 

cavitation was very sporadic. 

The air content of 3.1 ppm was chosen for all of 

the cavitation experiments because gas effects are 

reduced and the relative saturation level was always 

much less than unity. Desinent cavitation number 

data were obtained for different incoming velocity 

profiles to the rotor. The incoming velocity profile 

was varied by changes in the configuration of the 

upstream surface in addition to varying the rotor 

flow coefficient. Results were obtained with/without 

upstream struts, with/without a screen on the upstrea 

surface, and on/off design rotor flow coefficients. 

In all, there were sixteen different flow configura- 

tions or Basic Flow Nos. tested. 

Figures 9-11 display the effects on the desinent 

cavitation number over a range of velocities due to 

variations in the inflow velocity distribution. In 

general, the cavitation number increased for in- 

creasing free stream velocity for all flow config- 

urations shown. As shown in Figure 9, the addition 

of upstream struts which consisted of four struts 

placed at the 0°, 90°, 180°, 270° points on the 

upstream surface caused the cavitation number to 
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st 5 Qg— 
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increase. In contrast to this result, the addition 

of upstream screens causes the cavitation number to 

decrease as shown in Figure 10. Data in Figure 11 

show that a decrease in the flow coefficient by 10% 

causes a dramatic increase in the cavitation number, 

whereas a 10% increase in the flow coefficient 

causes the opposite trend which is not shown in the 

figures. Additional cavitation results are given in 

iBslililene, {(lS)745)) o 

4. CORRELATION OF SECONDARY FLOWS WITH THE CRITICAL 

CAVITATION NUMBER 

Because of the complicated flow field where the 

vortex exists, an absolute calculation of Cppiy of 

the cavitating region would be very difficult. The 

minimum pressure associated with the cavitation 

occurs within the vortex which is located along the 

inner wall. This minimum pressure is not only 
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FIGURE 11. Correlation with cavitation data for basic 

flow nos. 1 and 2. 
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45 FIGURE 10. Correlation with cavitation data for 

basic flow nos. 1, 3, 4, and 5. 

determined by the vorticity associated with the 

vortex but also by the location of the vortex in 

the primary flow field. 

Considering only the vortex, there are many fac- 

tors which can influence the minimum pressure coef- 

ficient. If one models a vortex by a simple 

rotational core combined with an irrotational outer 

flow, the Cpmin is found to be 

2 
IP 

atm 7S a m=} V7) 

where T is the circulation and r, is the radius of 

the core. Thus, the factors which influence Cpmin 

are those which influence the circulation or core 

size. 

Assuming that secondary flows control the vortex, 

Eq. (7) can be used to predict changes in critical 

cavitation number due to changes in the secondary 

vorticity produced along the inner wall. Therefore, 

Eq. (7) can be arranged into the form 

T 

Bef re Wf 
A Ss CeOUA (8) 

Ga. - 2 
see) iP 

we Von B 

where [T is now the integrated component of stream- 

wise passage vorticity and ro is approximated by the 

characteristic dimension of the resulting passage 

vorticity. The letters A and B refer to different 

flow states. 

The passage streamwise vorticity was calculated 

along several mean streamlines in the blade passage 

by the method outlined in this paper for four basic 

flow configurations which are described in the left 

hand column of Table 2. For all flow configurations 

considered, the results show a large amount of 

streamwise vorticity at the rotor exit plane near 

the inner wall. An example of the exit streamwise 

passage vorticity is shown in Figure 8 for Basic 

Flow No. 1. 

As can be seen in Figure 8, the vorticity near 



346 

TABLE 2 - Vortex Circulation and Core Size Calculated Flow Vorticity Data 

Circulation Characteristic Nondimensional Planar Momentum 

Basic Flows Th Dimension Ratio Thickness 

(Gacsee) Ro (inch) Ue Wi) 6 (inch) 

Basic Flow No. l 

without upstream struts - 11.64 0.81 -0.080 0.85 

without screen 

design flow coefficient 

Basic Flow No. 2 

without upstream struts - 8.23 0.57 -0.091 O)g7/al 

without screen 

0.9 design flow coefficient 

Basic Flow No. 3 

without upstream struts =) 10599 0.20 -0.076 0.94 

with screen 

design flow coefficient 

Basic Flow No. 4 

with upstream struts - 8.29 0.45 -0.102 Gol 

without screen 

design flow coefficient 

the inner wall has a characteristic dimension 

associated with it. A measure of the circulation 

associated with this vorticity can be found by 

integrating the vorticity from the inner wall to 

the radius where the vorticity changes sign. In 

addition, the characteristic dimension of the 

passage streamwise vorticity must be related to the 

difference between the radius where the vorticity 

changes sign and the inner wall radius. The results 

for several basic flow configurations are shown in 

Table 2. Also, the nondimensional ratio, T'/x Voor 

which is a measure of the minimum pressure coef- 

ficient of the vortex is given in addition to the 

planar momentum thickness of the mean boundary 

layer profile entering the rotor for each flow 

configuration. 

In order to make absolute comparisons between 

calculated minimum pressure coefficients and 

cavitation data, a reference point is necessary 

and the effect of Reynolds number must be calculated. 

A reference point for Basic Flow No. 1 of 6 = 2.8 at 

a velocity of 15 ft/sec was chosen. The influence 

of Reynolds number was determined by solving for the 

relative streamwise vorticity at two different free 

stream velocities. For these calculations, a bound- 

ary layer profile at the reference Reynolds number 

was used in one calculation and the boundary layer 

profile at three times the reference number was 

used in the other calculation. 

Now using Eq. (8) with Basic Flow No. 1 as the 

reference point, comparisons between cavitation 

data and Cpmiyn calculated using the passage stream— 

wise vorticity can be made. Some of the results 

are shown in Figures 9, 10, and 11. As can be noted, 

the changes in Cpmin or 06 for the vortex as calcu- 

lated, using secondary flow theory, correlate well 

with the cavitation results. Only the correlation 

with the rotor operating off-design (Basic Flow No. 

2) is poor at the higher velocities. It is felt 

that this is due to primary flow problems. 

5. SUMMARY 

A secondary flow analysis has been developed which 

can be employed to assess the effect of inflow 

velocity distribution on the strength and core 

size of a vortex. This analysis has been success— 

fully applied to a rotor where the secondary flows 

dominate the flow field near the inner wall. 

NOMENCLATURE 

ap' - streamline spacing in bi-normal direction 

Rg - radius of rotor 

WwW - relative velocity 

Bo - relative outlet metal angle 

g% - relative outlet air angle 
Aé':- deviation angle due to axial velocity accel- 

eration 

AS, - deviation angle due to secondary flows 

09 - deviation angle due to blade camber 
og - cavitation number = (Pw - Py) /(1/2pVa~) 
dg - limited cavitation number 

dq - desinent cavitation number 

Wg' - component of absolute vorticity vector in 

relative streamwise direction 

Wn' - component of absolute vorticity vector in 

relative normal direction 

Wp' - component of absolute vorticity vector in 

relative bi-normal direction 

Qn' - component of rotation vector in relative 

normal direction 

%!' - component of rotation vector in relative bi- 

normal direction 
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ABSTRACT 

In general, there is a cavity astern of the hub of 

a ship screw. This cavity is rather stable and is 

roughly in the shape of a long circular cylinder. 

There is circulation about it, which occurs in the 

case of a real screw propeller, when the circulation 

around the blades at their roots is nonzero. 

Because the divergence of the vorticity field is 

zero, this circulation at the roots "flows" down- 

stream in the form of circulation about the hub. 

At the end of the hub the flow contracts and the 

swirl velocity increases. The pressure becomes 

lower and a cavity forms where the pressure decreases 

to the vapor pressure. 

We introduce the following simplifications: 

First, we neglect the influence of the finite number 

of blades and consider a half infinite axially 

symmetric hub immersed in an inviscid and incom- 

pressible fluid. The incoming flow consists of a 

homogeneous part, parallel to the axis of the hub 

in the direction of the endpoint, and of a swirl 

which represents the circulation around the hub. 

In the upstream direction the hub tends to a 

circular cylinder while its radius tends to zero 

towards the end point. Second, our theory will be 

linear: The difference between the radius of the 

hub and the radius of the cavity is assumed to be 

small and quantities which are quadratic in this 

difference will, in general, be neglected. 

Using these simplifications we determine the 

shape of the cavity for given values of, for 

instance, the swirl, the incoming velocity, the 

ambient pressure, and the vapor pressure. The 

surface tension is also included in the general 

formulation of the problem. The more detailed 

considerations, as well as the numerical calculations, 

will be confined to zero surface tension. 

One of the unknowns of the problem is the 

position of the point of separation. This position 

can be determined by demanding that the pressure 

exceeds the vapor pressure everywhere on the wetted 
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surface of the hub and by demanding that the flow 

cannot penetrate the surface of the hub. 

The shape of the cavity is roughly a circular 

cylinder. There are waves on the surface of this 

cylinder which are, within the limitations of our 

theory, steady with respect to the hub, and their 

crests and throughs are perpendicular to the axis 

of the hub. We will give numerical results for 

the wavelengths and amplitudes of the waves as 

functions of, for instance, the incoming velocity 

and of the shape of the hub. 

1. INTRODUCTION 

A long cavity generally begins somewhere at the 

end of the hub of a ship screw. This cavity, which 

has circulation around it, does not close or widen, 

it has a rather stable mean value to its radius. 

The circulation or swirl occurs in the case of a 

real screw propeller when the circulation around 

the blades at their roots is not zero. Because 

the divergence of the vorticity field is zero, this 

circulation at the roots "flows" downstream in the 

form of circulation about the hub and then about 

the cavity. 

In order to gain some insight in this phenomenon 

we introduce some simplifications. We neglect the 

influence of the finite number of blades and con- 

sider a half infinite axially symmetric hub immersed 

in an inviscid and incompressible fluid. The 

incoming flow consists of a homogeneous part paral- 

lel to the axis of the hub in the direction of the 

endpoint and of a swirl which represents the 

circulation around the hub. In the upstream 

direction the hub tends to a circular cylinder 

while its radius tends to zero towards the end 

point. Hence, near the endpoint the flow contracts 

and the swirl velocity increases proportional to 

the inverse of the radius. This means that the 

pressure becomes lower and a cavity starts where 

the pressure decreases to the vapor pressure of 



the fluid. Another approximation is that our theory 

will be linear. In order for this theory to be 

valid it is necessary that there be no abrupt changes 

in radius of the hub and cavity. In real fluids the 

viscosity can have an important influence on the 

point of separation [Wu (1972)], however, this 

effect is too complicated to be treated by our 

method. We will not take into account the dependence 

of the local vapor pressure on the curvature of the 

interface between vapor and liquid. Surface tension 

is included in the general formulation of the prob- 

lem. The more detailed considerations, as well as 

the numerical calculations, will be confined to 

zero surface tension. 

One of the unknowns of the problem is the value 

of the axial coordinate of the point of separation. 

This value can be determined by demanding that there 

is no place at the wetted area where the pressure 

is lower than the prescribed pressure in the cavity 

and by demanding that the flow cannot penetrate the 

surface of the hub. 

The problem is very similar to the shrink fit 

problem, in the theory of elasticity, of an unbounded 

elastic medium with a circular two-sided infinite 

hole [Sparenberg (1958)]. This hole is occupied by 

a half infinite axially symmetric rigid body and 

the problem is to calculate the contact pressure 

between the body and surrounding medium when for 

instance shear stresses are supposed to be zero. 

Also, in this case, the edge of the region of con- 

tact has to be determined. 

The way in which we solve our problem is 

analogous to the way in which the aforementioned 

elastic problem can be solved. First we determine 

a Green function. This is, in our case, the 

deformation of the two-sided infinite cavity with 

swirl when a rotationally symmetric pressure of a 

Dirac 6 function type is applied at the circular 

cylindrical wall. By using this Green function as 

a kernel we can write down a Wiener-Hopf integral 

equation for the unknown contact pressure causing 

the fluid flow along the hub. This integral 

equation is solved numerically by the finite element 

method. 

2. EQUATIONS OF MOTION AND BOUNDARY CONDITIONS 

First we consider a two-sided infinite circular 

undisturbed cavity of radius Yor with swirl in an 

inviscid and imcompressible fluid of density ~p. 

FIGURE 1. Undisturbed cavity flow. 

The undisturbed velocity field and pressure field are 

~ ~ ~ 1p ~ 

u=U, v=0, w==, p= Po(r), 12 Baap ((aL)) 
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where u, Vv, and w are the velocity components in the 
x, xr, and 9 direction, p is the pressure, and T is 
27 times the circulation around the axis. From 
Bernoulli's equation it follows that 

po (x) = ppl? /2xr? (2) 

Po is the ambient pressure in the fluid and p (r) 

> p, for r+. On the wall of the caviity for 

if oP ra we have 

(x) = - pr? 2 = = ID We Ie, OE fae a = eye. (3) 

where p_ is the pressure inside the cavity and po 

is the surface tension of the fluid. In the 

following we assume 

= > 0 4 5 Te (4) 

hence, the ambient pressure at infinity is larger 

than the pressure in the cavity. From (3) it 

follows 

- po + Vp2o2 + 2 pl? (p - P,)- 
Sn et eo ee OY 
c 2 - 5 (pela Pe) (5) 

We had to choose the positive root under the 

assumption (4). For (p, - Pp.) < 0 we would have 

chosen the negative root, however, this would 

yield an unstable situation. In the case of zero 

surface tension (5) simplifies to 

x, = 1¥p/2(p,-Pe) (6) (o} 

The equations of motion for a time dependent fluid 

flow are 

St, = Ot. . ot 1 ap 
ae oP Wee 
De Oe VY Be p dx ! 2) 

= ©. = OF we 1 op 
—+0—4+7V—- —-=- = = 
at : ox M or Yr @ Or 9 (8) 

ow  . dw. ow. ww 
—F+t1—+7—+—= 
DE” “Oe” Y Oe 12 e f 2) 

Also, we have to satisfy 

diy (hy Yo te Be 2a Veo, (10) 
x ag 1G) 

For a disturbed motion which satisfies (7)... (10) 

it remains true that (1) 

Tj 
Wheat (11) 

otherwise a circular contour floating with the 

fluid would change its circulation which is im- 

possible when external force fields inside the 

fluid are absent. This follows also from (9) which 

is satisfied by (11). Hence substituting (11) into 

CAD eseeverene (10) we are left with the following three 

equations for the three unknown functions u,v, and 

Pp, 
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Am = Bel ei 1 ap oy Wa peseses , (12) 
AVSuh a Ges ta fore eax 

~ ~ ~ ~ 2 
OU Rie On a SRO Cole ay (13) 
at x or (0) he ~ 

dn Oy 
— + — + — = 0 (14) 
ax or ie 

We now linearize these equations with respect to 

the undisturbed swirl flow, 

a=U+u, V=v,p=p,+ Dd, (15) 

where the perturbation quantities widens nie) 6. WA(Ssp3e7 

t), and p(x,r,t,) are supposed to be of OE) FSub- 

stituting (15) into (12)...(14), neglecting terms 

of O(c2) and using (2) we find 

We Geog a Se, (16) 
at ox p dx 

ov av 1 ap 
+ =a A aL7/ 

at uv Ox po or nT) 

<¥+V%;42%=0 (18) 

Because the (u, v) velocity field is without rota- 

tion we can write 

(a, v) = Ge, 2%) (19) 

where ¢ = $(x, r, t) is a scaler potential function 

satisfied by (18) 

(20) 

We now suppose the disturbed cavity wall to be at 

fa Sac ab wep (21) 
c c 

where 6r (x, t) is O(€). On this axial symmetric 

boundary we demand the difference between the 

pressures inside the cavity and in the fluid to be 

in equilibrium with the effect of the surface ten- 

sion and with some still unspecified external 

normal loading 0U*E£ (x, t) of the cavity wall, 

i 
R = =\ 0} 12) 19 p ( 

where R,and Ry are the principle radii of curvature 

of the boundary, reckoned positive when the centers 

of curvature are at the side of the cavity. 

Within the accuracy of our linearized theory we 

can put 

2) 4 Meee eee ef Oe, (a). 
1 Ro Cc c 

Substituting (23) into (22) and using (2) and (15) 

we find 

il 
Pye (OR? /2r0) + P=) Re a. OPyS — sen On.) cua [-) 

16 SB ae Org. (24) 

Expanding the functions of r in (24) with respect 

to 6r,, neglecting second order quantities, and 

using (3) the boundary condition (24) changes into 

2 2 en er op a 2 
= (- ——+ = + = p(x, roe t) ( im + 5 )ox. 0 a5 ox. + pUCE. 

(co) Cc 

From (16) we find, because p + 0 and $¢ > O for x 
+ - om, 

yp So? OW Seo Ss (26) 

which is Bernoulli's law for the unstationary lin- 

earized flow. Herewith the dynamical boundary 

condition (25) becomes 

32 > 
+—= (—-- — -o——_ - U5 5 (3 = ) br. oe 5 ox, Use (27) 

The kinematical condition at the boundary of the 

cavity is 

a 3 ad 
— + — 6 = — 
at ore y ox ae Gre = We) 

Hence, we must solve (20) under the conditions (27) 

and (28) while » > 0 for r > © and for x > - ~. 

3. THE GREEN FUNCTION 

We suppose the dimensionless loading of the boundary 

(22) to have the form 

(GS 12) SY 229) Bere (29) 

where € is a "Small" positive parameter which has 

no connection with the linearization parameter ec. 

Because our problem is linear we assume 

ét =t 
Di Crate) = (3705) Ny dx (x,t) = éx_(x)e~ Bn (3.0)) 

Then equation (20) and the boundary conditions (27) 

and (28) change into 

Gaz + goo t+ = gp) PORE) = 0, ay 

ee Org (x) = U*E(x), (32) 
To* 



SURES ole elCxee) = Ole (33) 

c or 

a 
edr (x) a Ux 

We introduce the Fourier transform g (1) of a function 

g(x) by 

p00 WE 
= ipx 1 = dx, =— g(u) Von g(x)e x g (x) V2, 

2 

(= reals u? ¢(u,r) =0 . (35) 

Hence, for real yu 

¢ (ur) = Ay (u) K (ule) + Ag (wT (lulz), (36) 

where Ky and Ip are modified Bessel functions. 

Because ¢ > 0 for r > © we have 

Aj (uv) = 0. (37) 

Substitution of (36) with (37) into (32) and (33) 

yields 

2 — 

(iw) x (lulz) aay - Go- 5+ woe ww 
@ ta XG © 

= -U*F(u), (38) 

Ju] Ky {ule ) ay) + (é-inv) 6x, (u) = 0. (39) 

Solving (38) and (39) for 6x, (u) and applying the 

inverse Fourier transformation we obtain 

6x, (x) = 

a = ans i £(u) |ulK, (Julzye "du 

a 2 
Jon [(é-ino) 2x, (Lule) + - Sy +u?0) |ulx, (ulze)] 

co c 

(40) 

We now choose 

f(x) = 6(x) , (41) 

where 6(x) is the delta function of Dirac, hence 

£(u) = 1/V20. Next we split the range of integra- 

tion into two parts namely - ~ < uw < O and O < 4u 

< © and neglect terms of 0(&2) in the denominator, 

then we find 

def ee] 
k (x) == 82 C2) | een ee) 

ix 
Ri(Be =" ale 1 fos) 

Sis J 

(E 2480 OK (E)-(a+BE~) Ky (E) 
U {e) 
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~iEx 
Ae{o] 

ne Ky (E) Le dé 
grate = 

an (E+ “**¥o ) K (6) - (otBE2)K, (E) , (42) 
U 

where a and 8 are dimensionless quantities given by 

T2 

-< Bees. . (43) 
ie Cc r U2 

c 

It can be easily proved that under the assumption 

(4), 

a/B = pf + [2r? w, - p,)/007| > Ale (44) 

In order to find the Green function for the 

stationary case we have to take the limit € > 0 in 

(42). 

We now make some remarks for the case o # O and 

hence 8 # 0. 

First, the integrals in (42) are absolutely con- 

vergent for 0 < x < ». This means that when sur- 

face tension is present Green's function k(x) is 

finite even at the point of application of the 

Singular loading (41). This could be expected 

because the surface tension can be represented by 

a membrane placed at the boundary of the cavity 

and a membrane has the possibility to locally 

sustend such a loading by a jump in its first 

derivative while its deformation is still a contin- 

uous function of x. 

Second, we consider the denominators in (42) for 

€ = 0 and look for positive real roots of 

a K, (é) 
(¢ ap {8 s) = Ki (a) . (45) 

The left hand side of (45) is curved upwards for 

— > 0, while the right hand side is curved down- 

wards. The proof of the latter statement is rather 

complicated and will not be given here. However, 

taking this for granted, it means that there are 

none or two real positive roots, which is analogous 

to the case of ordinary gravity waves with surface 

tension. One of the roots corresponds to a wave 

primarily due to the swirl, the other one to 

capillarity. [Whitham (1973), p.446] 

4. THE CASE OF ZERO SURFACE TENSION 

Green's function (42) in the stationary case for 

zero surface tension, when we take a different 

positive value for € which of course is irrelevant, 

ILS} 

, x 
co 1g 

A ig () © © ae 
GS) dena) ee eee: 

E>0 [(E-i E)K, (E)- a Ky (E)I 

Ky (jive 

[ (+i E)K,(&) = @ Kj, (&)] 
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First we investigate the number of poles of the 

integrands for € = 0, hence, the number of positive 

real roots of 

K (&) 
° 
RG, 2 ae (47) 

where now (43) a We fire = 2(p, - p)/pu". 

From the well known expansions of K,(&) and 

K,(&) it follows that the right hand side of (47) 

is zero for — = 0 and tends to infinity for § >>. 

We prove that this function increases monotonically 

with &, hence, we have to consider 

2 re (U3) 

= 65 == . 
K, (&) 

au poe alen 
a— > Kj () 

K, (8) 

K, (6) 
(48) 

Instead of proving that the right hand side of (48) 

is positive we will show that 

Ais (3) iG) =e Sole) | BR) 20. (49) 

This is easily shown to be true for § >. 

when the derivative of (49) is negative the 

function itself has to be positive. 

Hence, 

2K, (6) (K, (E)+ & KE) I/E - Ky>(&) + Ky? (E), (50) 

is negative, since K,(&) for 0 < §€ < ~. This means 

that the right hand side of (47) increases mono- 

tonically, hence, there is one and only one root 

Ss Cre WAY) alin. SS C5 

We will estimate the value of bee 

show that 

Therefore we 

(€+1) K (8) SS LS) 2) Oe (51) 

From well-known expansions for K 

inequality holds for §€ + >. 

left hand side of (51) being 

and Kj, this 

The derivative of the 

(E+1) [Kp (&) - Ki (E)] , (52) 

is clearly negative, and hence (51) holds in 0 < 

— <e, From K,(&) > Kj(&) and (51) it follows 

that the root BS of (47) satisfies 

oe 
24a)? (Ns tae try OH DN CAM) (53) 

Second we have to determine at which side of the 

real axis this root is situated when € is small 

but not zero. Consider the denominator of the 

first integral of (46), hence a root of 

(E-i €) Ee MS) 75 K, (€) = 0. (54) | 

The zero in the neighborhood of the real axis of 

(54) is assumed as 

Ts) tn ES ae (55) 

where — satisfies (47) or (54) with € = 0. Sub- 
stituting (55) into (54), expanding the modified 

This derivative, 

Bessel functions, and using the definition of Se 

we find 

ii Kee) 
6 &= 5 5 (56) 

(2K) (E,)K (60) -E Ki (E+E K (E,)} 

Hence by (49) we find that 

Im(é +6 5) 22 Oy, (57) 

or the pole of the integrand of the first integral 

in (46) is slightly above the real axis for € small 

and € > 0. In the same way the pole of the inte- 

grand of the second integral in (46) is slightly 

below the real axis. 

Now we want to give a different representation 

of (46). We distinguish between two cases x > 0 

and x < 0. In the case of x > 0 we rotate the 

direction of integration of I, and Ip as follows. 

1, =e M@ paris) pp By = (pmsl) p (58) 

and in the case of x < 0 

at =e (Oped) ip) ath == (Opa) 5 (59) 

From the foregoing it follows, that for x > 0, a 

pole has to be added to TI, as well as to In. The 

question arises: are there still other poles in 

the complex half plane Re — > O which are passed 

by rotating the lines of integration? We now 

shall give a proof that this does not happen. This 

proof was kindly given to us by our colleague Prof. 

Dr. B. L. J. Braaksma. 

Consider the function 

def 
ENS) —— ee K, (6) = oh eS) = = [NY (iE) 

+ (o+1)K, (€)], (60) 

which is real for real values of €. Suppose sj 

with Re sj > 0 and Im s; # 0 is a zero of F(&), 
then also s» = 8; (complex conjugated value) is 
such a zero. The functions K)(s.&), j = 1,2, 

satisfy J 

2. 42 ‘da d : 
a 2S Se Se eee Sy reG.s) = ©, J = 1,2 

ae2 dé 5) J 
(61) 

Multiplying (61) by K,(s_&) with k = 2 for j =1 

and k = 1 for j = 2, we find by subtracting the 

results 

2 2 a d 

(s] - So) EK, (S16) Ky (so&) = ag £11 (S28) ae K, (s1&) 

= K1 (818) $1 (S28) (62) 

Hence = 

2 2 a 
(s] = So) ite K; ($7 &) Ky (sg&) dé = EL (Ky (S28) gpk (S18) 5 

at 
d (s &)] 

= Lene) ae a | 

(63) 

It is easily seen that the right hand side 

vanishes for — > © and because s) and Sp are zeros 

1 



of F(&) (57) this right hand side also vanishes 

for § > 1. Because the integral is positive we 

have found that the assumption Im s; = -Im so # 0 
yields a contradiction. It follows that no other 

residues have to be added to the resulting integrals 

after the rotations as denoted in (58) and (59) 

besides the two we mentioned for x > 0. 

Using some formulae from Watson (1922) we find 

f TL : 
OG at 3) ar Ue J, 68) ak ween 0 & P Op (64) 

iG & G) > len) 2 ea) 75 = Op GS) 

Adding poles to the integrals in the case x > 0 we 

can transform the Green function (46) into 

Avsin, bx. yak > 0 

k(x) = h(x) + , (66) 

where 

ro) _, Ie 

2 e S dé ind): SY ers | eee angen ee SES Qe 
7 [ET (E) +05) (6) ) +[EY, (€)+a¥)(E)] (67) 

oO 

and 

2 

AS 28 (Murs ) 5. SB fs (68) 
(o) (o) Omc 

The function h(x) is symmetric, h(x) = h(-x). 

For x > 0 it has a logarithmic singularity because 

for x = 0 the integrand as a function of &, behaves 

as 1/2€, hence 

h (x) = cs Si Sop <a Or (69) 

For x > © the behavior of h(x) depends on the behav- 

ior of the integrand in (67). For & > 0, this 

turns out to be as 

(402/n2E2)+0(E32ne) . (70) 

Then it follows from Doetsch (1943) p. 233 that 

h(x) = Sin cies oc |x| +. (71) 

Now suppose that for x < 0 the shape of the 

cavity is prescribed. 

FIGURE 2. Flow with swirl along hub. 

im = ie dp Oe (3) ,» Ow see © (729) 
c c 

and that the unknown pressure between hub and fluid 

US} ie) oF pU2£ (x). 
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Then we have to solve the following integral 

equation 

) 

[ k(x-x') £(x')dx'= Ox | (x) 7 $8 < O} (73) 

which is of the Wiener-Hopf type. 

5. THE EXPLICIT SOLUTION OF a K,(&) -€ K (&) =0 
(0) 

In order to find an explicit solution of Eq. (47) 

we first have to make some preliminary considerations. 

Assume the following loading of the otherwise undis- 

turbed cavity boundary 

f(x) = €,6(x), (74) 

where €,; is a small parameter. By (66) we find for 

the deformation of the cavity 

€, A sin bx 7 2820, (75) 

Sx (x) = €, h(x) + 

(0) pm 3% S Oe 

Next we consider 

e(e3) 3 Sep , 1S O 9 GEG) S O7 3 2 Os (76) 

The loading given in (74) is the derivative with 

respect to x of the loading given in (76). Hence 

the derivative of the deformation 6*r,(x) caused 

by (76) has to be equal to (75), we take 

BWeos lope 5 2. Op (77) -e] 5 

d*x (x) = =€) hi(Eyidercr 

* [> , x <0, 
o 

where we have chosen the constant of integration 

in such a way that for x > +” we have a harmonic 

wave with mean value zero. 

Finally consider 

2G) SO »,*s<@ 3 5 82 Op (78) £ (x) = €j 

The loading given in (74) is also, in this case, 

the derivative with respect to x of the loading 

given in (78). Hence the same argument applies as 

before. However, now the constant of integration 

has to be chosen so that the disturbance tends to 

zero for x > -~ , we find 

(79) 
A 

oa p (i-cos lop) 5 38 E25 

(0) pn 28S, Os 

Subtraction of the disturbances (77) and (79) yields 
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+00 

A bar (x) - O*#r (x) = =e | Mae a= 

Cole Xu LCON (80) 

which is constant as could be expected because 

belongs to a constant loading of magnitude -€1pU* 

of the whole cavity. 

This displacement however can be calculated in 

another way by using (6) where we have to replace 

Diy, 

Py + pU*f = Die €)pU*. (81) 

Expanding (6) with respect to €), we find 

ip 

2 ee 
c Cc (p,-P te 1pU?) 2 

T €,0U 

= \[& ules ). (82) 
Oe Sac 2p -p ) 

Po Po C6 

Combining (80) and (82) yields 

+0 

u*r /2(p.-p_) = h(x) dx + A/b (83) 
(o} 2 fe} 

Substituting h(&), A, and b from (67) and (68) into 
(83) and carrying out the integration with respect 

to x we find after some reductions 

-1 2 1 
a = 2(2ata 5.) =L (84) 

where 

a dé 
a 2 2 

EL LET, (€) tad) (E)] FEY (E)+a0¥, (E)] } 

(85) 

Solution of (84) with respect to 5 yields 

a 2L ys bj(a) =a. {1 SF ene (86) 

by which we have found the unique solution of (47) 

for € real and & > 0. This derivation rests on 

some mechanical considerations such as uniqueness 

of the solutions in relation to radiation conditions. 

The result however, which is interesting from the 

point of view of zeros of transcedental equations 

connected with Bessel functions, has been verified 

by others in a more straight forward way and found 

to be correct. 

By (86) it follows that an axial symmetric wave 

moving along the cavity with velocity U has a wave- 

length A(U) given by 

d(U) am/b =[mT/E (a)] [20/(p.-Pe) ] 

oO 2 (P-Po) /pu* (s7) 

’ 

Equation (87) describes the dispersion of these 

waves when surface tension is neglected. 

6. NUMERICAL SOLUTION OF THE INTEGRAL EQUATION 

In the left hand side of (73) the function k(x) is 

given by (66-68) and the dimensionless quantity 

f£(x') is unknown. For x < O the right hand side 

is determined by the geometry of the hub. Let this 

geometry be described by 

= = + 6 me) 9 88 r ry x) ae x ) (88) 

where r(x) is a given function. Then the right 

hand Sigs is known up to an unknown shift, s, of 

the hub along the x-axis, since the position of 

the point of separation is a priori unknown. Hence 

for x < 0 we can write (73) as 

) 

{ kK (GcR Sexi") (Exe) xa or (Ge a> Sip x <= O 

(89) 

where the function f(x') and s are unknown. First 

we will describe how f£(x') is computed numerically 

from (89) for arbitrary values of s. Then s will 

be determined by a condition to be satisfied by f 

at x = 0. 

We make some remarks concerning the behavior of 

£(x') for x'tO and for x' > -©. As will be shown 

in the Appendix, the behavior of f(x') near the 

origin is, for arbitrary values of s, 

B Ieee US H(0) (90) 
eG) 2 Pi 

where B is some constant which will be discussed 

later. 

The hub has a constant radius far upstream, 

hence 6r (x) tends to a finite value for x > -~, 

Since the kernel k(x) vanishes for x > -~, the 

perturbation due to the end part of the hub van- 

ishes far upstream. Hence, the pressure distribu- 

tion there is the same as that of a two-sided 

infinitely long hub with constant radius. This 

case was also considered in the preceding section. 

We' find £(-~©) from (82), with -e, = £(-~), and (6) 

and (87); 

£(-~) =a 6r (-~)/r . (91) 
h c 

In order to transform (89) into a discrete 

function we choose n + 1 points on the negative 

x-axis: 

oO < a < x1 S boo S wy) < x) = 0, (92) 

and construct n coordinate functions, f (x), ..., 

f,(x), defined on -~ < x < 0 as follows: For 

WS By .-, n-l the function f,(x) vanishes out- 

side the interval (x41, Xm-1), and inside this 

interval its value is 

£ (G25 x ) Baal (xtc ) paex 
™m ™m 

ae, 9) (x = xy ) Ws S38. ayo 
m m- 

The function £ (x) vanishes for x SE5 a and: 



1/2 1/2 

fi, (x| = |x| 7 |x| 5 $y SR SO; (94a) 

27) SB Reo sp) 7 Geo oc oS 8 Sear co (94b) 
1 2 

Finally £ (x) vanishes for X41 < x < 0 and: 

= = Bi (95a) 
a) ak a / ( Soe d * ee el 

£ (x) (95b) 
n 

i] a * 
1A 

* 

These functions are plotted in Figure 3. We approx- 

imate the function f(x') in (89) by a linear com- 

bination of the coordinate functions: 

n 

S@)S 6 2.62) 4 (96) 

where the C_ are unknown coefficients. In order to 

approximate f(x') well near the origin, we have 

chosen f; in a special way and, besides, the points 

x are more densily distributed near the origin. 

Since f£(x') is almost constant for large negative 

values of x', we have chosen f to be constant in 

(© Qp 'F3_)o ie 
Next we have to determine the coefficients C), 

oetain Ch We substitute (96) into (89) and then 

the C_ must be chosen so that the difference 

between the right hand side and the left hand side 

of (89) is as small as possible, in the sense of 

some norm. The computed values of the C_ appeared 

to depend strongly on which norm was chosen for this 

difference; many of these norms give unreliable 

results. We obtained reliable values of the C as 

follows: m 

Equation (89) with x = Kor 2=0,1,..., n-2 yields 

n 

M = + = Reni a = on Cc ox, (x) s), R= O, n-2 (97) 

m=1 

where: 

(0) 
= = ' ' O My ih ss, = a0) BG) Gh? (98) 

—0oo 

At the points x,-}; and x, we minimize the difference 

between the right hand side and the left hand side 

of (89). The expression 

n n 

z (eM EG ote be 2 S\iZ (99) 
fe gen eek 

is a quadrative, non-negative function of the C . 

Now the Cj, -, Cy are determined so that they 

minimize (99) with the constraints (97). 

FIGURE 3. The coordinate functions 

eG o >. £.. 
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We have checked these numerically computed values 

of the C, as follows. First, the computed approxi- 

mation has the square root character (90) even in 

the interval (x3,0). Second, the value of C, equals 

the right hand side of (91) within an error of 0.5%. 

Third, if we replace the kernel k(x) in (89) by a 

kernel k(x), which has the same behavior (69) at 

the origin, and which for x > ~ is also given by a 

term A sin bx as in (66), then (89) can be solved 

effectively by the Wiener-Hopf method. If we, apply 

our numerical method to (89) with the kernel k, 

then the numerically computed function, f, equals 

the analytically computed solution within an error 

of 1s. 

We have tried to compute the Cj, ..., C_ in 
different ways; for instance: 

i) By collocating the points x), ..., x, with 

the exception of one point xj, so that the number 

of equations equals the number of unknowns. This 

method had to be rejected because the computed 

approximation for f(x) appeared to have oscillations 
near Xj. 

ii) By minimizing the sum of squares of the 

differences between the right hand and the left 

hand side of (88) at the points x, ..-., X,- We 

have also rejected this method, because oscilla- 

tion occurred in f(x) near the origin. 

We make some remarks concerning the computation 

of the matrix elements. M Inya(98) Seek orems— a5, 

---, n - 1 the integrand iS non-zero only ina 

bounded region. The kernel k(x) is written as the 

sum of a logarithm and a function which is bounded 

at x - 0. The integral over the logarithm is 

evaluated analytically; the remaining term is 

integrated numerically. For m =n the integrand is 

non-zero in an unbounded region. For x < x, we 

have f,(x) = 1 and we must evaluate 

x 
n 

J k(x] = 220) s@bst s (100) 

—o 

Note, that the integrand does not tend to zero for 

x' > -~, as follows from (66). However, the express- 

ion (100) represents the deformation of the cavity 

due to a loading which equals a step-function. This 

deformation has been computed in (76,77). 

We now come to the determination of the shift, s. 

The pressure in x < 0 at r = r, must exceed the 

vapor pressure. Hence, by (22) with o = 0, we 

must have f 2 0, and by (90), B 2 0. As will be 

shown in the Appendix, the shape of the cavity for 

small values of x is given C 

' L 
6x (x) = 6x (0) + br (0)x - 4B(x3/m) 7/3, x + 0 

c h h 

(101) 

This implies that the radius of curvature tends to 

ZOO) EO exXiy) 0. Since the fluid may not penetrate 
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the hub, we must have B < O for a hub with a smooth 

surface. We found above that B > O and hence B 

must vanish. For our numerical approximation this 

implies that the coefficient, C,, must vanish. Now 

the value of the shift, s, is determined by iteration 

so that C, vanishes. 

When f(x) has been computed we can compute the 

shape of the cavity in x > 0 with a numerical 

integration of (73) for x > 0. Using (40) with 

o = 0, we can derive an expression for dr,(x) for 

x > ©. The derivation is similar to the derivation 

of (66) and, therefore we give the result only: 

2E (102) 
Oo j 

OS (0) ee TASH (ERX) Wet A COS| (SX/.-m) he 
c Beene ) ) 0) G 

to) 

where: 

(0) 
ex 

A, = lim e cos (E x/r) oid (3x3) Gea (103a) 

e+O -2 

to) 

IN = nin f e Sen (Ee) sm (5%) obren (103b) 

e+O -2 

7. NUMERICAL RESULTS 

In this section we give computermade plots of the 

shape of the cavity dr,(x) for a number of shapes 

of the hub dr;},(x) and for a number of values of the 

dimensionless parameter a. We consider the case of 

zero surface tension, hence a is given by (87) or 

by (43) with o = 0: 

2(p, - P_) Tr 
os = 5 (104) 

It follows from (88) that 6r},(x) depends on rq for 

a fixed hub. The value of r, is given by (6): 

1 
mae = neue Bese Gy) NG). raise) (105) 

However we can vary 4 without changing drp,(x) by 

varying U and keeping p, IT and p, - Poe constant. 

In the Figure 4 the function dédrp(x) is plotted; 

it consists of a straight horizontal line and part 

of a parabola. The x-axis is chosen so that x = 0 

at the point of separation. No scale-unit is given 

in the vertical direction, since ér,(x) and 6r¢(x) 
are the linearized perturbations of the undisturbed 

FIGURE 4. The functions 6rp [(x+s)/r,] 
(hatched curve), Sr¢(x/r,) and the asymptotic 

expression (102) (a.e.). The values of a are 

a)4, b)2, c)l, d)0.5, e)0.25. The point of 

separation is at x=0. bry is given by 

Sry (x/r,) = 1 for x < 0 and = 1- (x/xQ)? for 
x > 0. The values of s/r, are a)1.092, 

b)1.017, c)0.558, d)0.070, e)0.014. 
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cavity (1); see Figure 2. The dimensionless quantity the fluid particles leave the hub. This effect is 

x/Yc is on the horizontal axis. In x > 0 the important in the case of a low speed. 

numerically computed function érg(x) is plotted In Figure 5 we have plotted the same functions 

and also the asymptotic expression (102) is given. for a different shape of the hub. Here bry, (x) 

It appears that the asymptotic expression is a good consists of a straight line, a part of a parabola, 

approximation for 6r,(x) also for rather small and another straight line. It appears that quali- 
values of x/rc. tatively the same effects occur. 

The Figures 4(a) through (e) correspond to In Figure 6 we have only one value of the param- 

decreasing values of a. This is equivalent to eter, a, (a4 = 1), but we have plotted a family of 

increasing values of the speed U with constant p, functions Oxy, (x). The plot of 6r,(x) is omitted, and 

T, and p. - Pe- The length of the waves on the we have indicated the point of separation with a 

cavity is an increasing function of a, as was stated dot. The amplitudes of the waves in dr,(x) at x = — 
in Section 4. Further we observe from these figures are denoted in a table underneath Figure 6. These 
the following: numbers are the amplitudes divided by dr} (-~). 

i) An increase of the speed U induces an increase From this figure we observe the following: 
of the amplitude of the waves on the cavity. iii) If dr, (x) decreases abruptly as a function of 
ii) When U is relatively large, the point of x, then the amplitude of the waves on the cavity is 

separation is near the point where dr,(x) attains relatively large. 

the value 6r;(-”). When U is small, the point of iv) The sign of ér,(x) at the point of separation 
separation is near the point where érp(x) = 0. can be positive or negative, depending on the 

The latter phenomenon is easily understood, since function dry,(x). If é6r,(x) decreases more and more 

we can imagine two reasons for which the fluid may slowly as a function of x, then the value of 6rp, (x) 

separate from the hub: First, the radius of curva- at the point of separation approaches zero from 
ture of the hub may be so small that the fluid below. 
particles are unable to keep contact with the hub. We will compare the effects on the cavity by 

This effect dominates in the case of a relatively changing a, or U with constant p and p_ - p_,, and 

high speed U. Second, the value of dr},(x) may of the function 6ér, (x). In order to give a rough 

become negative. Then the centrifugal force makes description of the dependence on Sr (x), we use the 

T r El of a af Do Ot 
-4.0C -2.0c o> 2.00 y 700 8.ac 10.a0 

D> ae. 
7? 

=r T 
-4. 0c -2.00 ON CO 

CUUUUULU EU UE 

“4.00 73.00 

d 

FIGURE 5. The functions 6r}[(x+s)/r,] 

(hatched curve), 6x (x/r¢) and the asymptotic 

expression (102) (a.e.). The values of a are 

a)4, b)2, c)1, d)0O.5, e)0.25. The point of 

separation is at x=0. dr, is given by 

Srp (x/rQ)=1 for x < 0, = 1-(x/r,)*/2 for 
0 < x < r,, and =1.5-x/r for x > r_. The values 

of s/Xo are a)1.683, b)1.759, c)1.805, d)0.361, 

e)0.052. 
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curvature kK of the hub, which must be interpreted 

as some mean value of the curvature of 6ér, (x) in 

the wetted region not too far upstream. 

First we consider the amplitude of the waves on 

the cavity. This amplitude is an increasing function 

of both U and k, as follows from i) and iii). Next 

we consider the point of separation. An increase 

of U or k tends to shift this point from the point 

where Sr}(x) = 0 to the point where éry,(x) = drp(-2) 
as follows from ii) and iv). 

an increase of U has roughly the same effect as an 

increase of kK. However, the length of the waves on 

the cavity is, as follows from the previous theory 

(87), independent of k but is a decreasing function 

of U. 

Finally we consider a shape of the hub which 

induces, for some value of a, no waves on the cavity 

at x = ©. The existence of nontrivial shapes can 

be shown as follows. Let dér,)(x) and 8x49 (x) be 

two shapes of the hub and let 6X oe, (x) and 6X G5 (x) 

be the corresponding shapes of the cavity for some 

value of a. In each case the point of separation 

is at x = 0. We choose A > 0 so that the amplitude 

of ASXe, (x) at x = © equals the amplitude of OY Gy (x)- 

(Notice that their wavelength is already the same.) 

Next we choose a shift, s > 0, so that 

lim AGL] (x+s) + 8X Qo (x) = 0% (106) 

xo 

Now we construct a shape, 6r, (x), which induces no 

waves at infinity, as follows: 

xcs (107) Sx, (x) Adxy, , (xts) + Sry 2 (x), 

Sx, (x) = ASX, (xts) + OY 5 (x) - of S sg <7) 

The dimensionless load f was introduced in (22). 

By virtue of the linearity of our equations we 

obtain the load corresponding to the shape (107) by 

shifting the load due to 8rpy over a distance s, 

multiplying it by » and summing the load due to 

6X49: This load is nonnegative in x < O and 

vanishes in x > 0. The condition for the point of 

separation described in the preceding section is 

satisfied at x = 0. The shape of the cavity is 

obtained by a similar construction as for the load 

f. The value of ér (x) tends to zero for x + © by 

virtue of (106). 

Using this method we have constructed five 

functions dr},(x) which induce no waves at x = © for 

five different values of a respectively. The 

functions 6r,) and 6r,2 are the functions plotted 

in Figures 4 and 5 respectively. The results are 

plotted in Figure 7. The point of separation is at 

x = 0. The value of Sx (x) in x > O is unessential. 

APPENDIX 

SOME RESULTS DERIVED BY USING WIENER-HOPF-TECHNIQUE 

In equation (73) we let the path of integration 

be from -~ to ~ and we assume the load f(x) to 

vanish for x > 0. Then applying Fourier transform 

(34) to both sides of this equation, we obtain: 

Hence in these respects, 

859) 

bx (E) = k(E) £(E), (A,1) 

where: 

‘i = 

K(E) = Ky, ((E]) (a Ky, ({E]) - [é] Kole} (A,2) 

Here we have chosen the unit of length to be equal 

to ¥_, so that r. = 1. We have to solve (A,1) with 

f(x) = 0 for x > O and with dr,(x) being prescribed 

agoye og S Wr 

In order to apply Wiener-Hopf-Technique, we need 

a multiplicative decomposition of K(E). We define: 

My ee H(E) = -k(E) (E2 - cae) (E2 + : (A,3) 

where € is the root of (47). This function is 

continuous and positive in -~ < — < ~. By virtue 

of well-known asymptotic expressions for the 

Bessel functions, K, and K,, we have: 

BS) S Ika © Gye)o Esra © (A,4) 

Hence, we can decompose H(&) in the usual way, see 

for instance Noble (1958); we find: 

me) on) /m) 4 (A,5) 

where: 

2 i S4 
H (&) = exp == | 7 in {H(Z) ] ae (A,6) 

Cc 

This represents two equations; the upper or the 

lower of the + signs must be read. The contour of 

Ci (resp. C-) is the real axis, indented into the 

upper (resp. lower) half of the complex C-plane at 

t = &. The function H*(E) [resp. H~(&)] is analytic 

in the upper (resp. lower) halfplane. Using (A,2-3) 

and (A,5) we can write (A,1l) as 

1/2 Gag (5) (2 = 2) (BA) > ae) — 
{o) 

peli) = 
AC) d: sai” (3). 28S) (A,7) 

The function (E+i)% has a cut from -i to -i» and 
(E-i) 1/2 has a cut from ito i~. They are both 

chosen so that they are positive for §>°%. 

The function Sr (x) is prescribed for x < 0. 

First we assume: 

Ax 
bx (x) =e xI<0) (A,8) 

for some positive \; later we discuss the general 

case. Fourier transformation gives: 

= = - + 
Sale) =a On (Ey * + 8x (6), (A,9) 

where 

6x (E) = (Cay i! a Sx (x) dx (A,10) 

O 
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is unknown. We substitute (A,9) into (A,7) and 

separate functions which are analytic in the upper 

half plane and respectively in the lower one. There- 

fore we write: 

@a)ne = (Gaas (sD eG) = 

ne (&)) + he(é) , (A,11) 

where: 

h (&) = Seaer tits (CANFEIE2}) 

(27) (iA+i) g-id 

is analytic in the lower half of the complex €-plane, 

and: 

+ “ H (in) 
h (&) = —— [—*- Hie) a 

Qn) 4 (iA4+1) 

5 (A,13) 
(esi) 7? E-id 

is analytic in the upper half plane. 

and (A, 11) we can write (A,7) as: 

Using (A,9) 

SY sy + 
[6x _*(E) (E+i) / H (é)]+h (&)] (E2 = Ea) = 

- . 1 2 = =- 

=Is\ (0S) (E - e) = (( > al) / Ist (15) 2e{(S)) (A,14) 

+ 

The function 6r_ (&€) is analytic in the upper 

half plane by virttie of (A,10). Hence the left 

hand side of (A,14) is analytic in the upper half 

plane. Since £(x) vanishes for x > 0, £(&) is 

analytic in the lower half plane and hence the 

right hand side of (A,14) is also analytic there. 

Hence, both sides of (A,14) represent an entire 

function. The H7™(&) tend to 1 and the nt (E) are 

O(1/E) for — > ©. We assume ér (&) gl/2 and £(&) 

gl/2 to be bounded for — + ~. Then the entire 

function must be a first order polynomial C_ + Cj 

—, where the values of the constants C and°C, will 

be given later. We can now solve for the unknowns 

6x0 and f: 

pele (e Hens 

ore) = Xe, tay 
H (é) Be 

= (Es - 2 £(E)) =) IG, en BP) EV Sey cus 
H (E) 

The value of Cl] is chosen so that £(£) is o(e 1/4 

for —& +> ™. Hence, by (A,12): 

) 

er SHUG (net 5 EN) (A,17) 

We choose Ce so that £(E) is an order smaller, i.e., 

0(£73/2), for — + ~; hence: : 

c= - Opt NMEA aS BON) (A, 18) 

The meaning of this choice for f(x) will be discussed 

later. 

We obtain f(x) with the inverse Fourier transform: 

eo Léx (ei) 1/2 

H (é) 
£(x) = Esa 

(2m) 1/7 

IG, Cie He (G) (l= Bees - (A,19) 

Since the integrand is analytic in the lower half 

of the E-plane, the right hand side of (A,19) 

vanishes for x > 0, as follows from the calculus 

of residues. In order to obtain an expression for 

f(x) for x + 0 we investigate the integrand in 

(A,19) for — ++. The function f(x) is continuous 

at x = 0, since the integrand is 0(E73/2). Hence 

£(07) = 0. For real values of € we have, by (A,6): 

: a Pe at 
+ Sy (A H(E) = (H(E))-/? exp Neat ahi = a 

where the integral is a Cauchy principal-value. 

Hence for real — we have 

ie (2) ~ Sn 2 Eee), (A,21) 

where H(&) is a continuous function, which is 0(1/&) 

for — > + ™ by (A,4). Therefore, if the factor 

H7~(€) in the denominator in the integrand in (A,19) 

is omitted, the value of the integral changes by a 

term which is O(x) for x + O. The other factors 

in the integrand in (A,19) are an exponential and 

a rational function of €. Using the calculus of 

residues and Tauberian theorems we can obtain an 

asymptotic expression for the value of this integral 

for x t 0. We do not go into details and give the 

result only: 

=P |x| 1/2 
ie (5) SS Qur Ape ee 0) (A,22) 

where: 

1/2 
(AE ey QUST Ae GR) - (a,23) 

In a similar way we investigate dr (x) for x ¥ 0. 

Substitution of (A,17) and A,18) into (A,15) and 
then into (A,9) gives: 

or, (8) = 

i Hit (GA) (En) a NES 
eee (A,24) 
Ci) (ayy Fe) (Ee >) (=a) 

This expression is OES) for §€ + © and hence 

6r (x) and its first derivative are continuous at 

x = 0. An expression for x ¥ 0 is obtained in the 

same way as for f(x): 

Ges (GF) Ss Gre (()) GE -WreY (@)) se = a B sel? x10} 
c c (o} a2 

(A,25) 

At this point we return to our choice (A,18) for 

Go. If (A,18) does not hold, then it can be shown 

that: 



£i(x)) 2) BS |x| 3 se P Oy (A, 26) 

1/2 
(Gre (9) wes _(@)) — rests 6% xe Ol (A,27) 

c c 

where the constants B* and B** have the same sign. 

The condition f> 0 implies B* > O and the condition 

that the fluid does not penetrate the hub implies, 

in the case of a smooth hub, that B** < 0. Hence 

they must vanish both, which is achieved only by 

giving C_ the value (A,18). 
Finally we consider a hub of arbitrary shape. 

By virtue of the Laplace transform we can write: 

oe Ax 
Sr (x) Some g(A)e GA 5 SOG (A,28) 

C-ic 

where c is a positive number, and: 

) 

g(X ) = if mes bx (x) dx (A,29) 
oo 

First we assume that 6dr (x) is such that the integral 

aay (VAp2S))) ats absolutely convergent iors JN SI Cp Joyihe, 

our results will appear to hold for a more general 

case. By virtue of the linearity of our questions, 

the expressions (A,22) and (A,25) hold with B given 

by: 

Ctic 

1/2 H (id) an. 

(A,30) 

g () 2 + es) (Remy) 

GRales 

Substitution of (A,29) into (A,30), interchanging 

the order of integration, and applying partial 

integration with respect to x twice, gives: 

(o) 

B= | L(x) {E7 Sx, (x) ae Oig UU) Ir Cbs p (A,31) 
ic 

where 

Cctjio 

1 Se EY aR 
L(x) = Daa e Paks, Gy pp 32S Os. Hypa?) 

(A+1) 
c-ics 
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In this expression for L(x) we substitute ay SS lly, 

take the limit c + 0 and use some symmetry-properties 

of Ht (1). Then we find: 

ete 
il i H (u 

L(x) = al Re e ae HSL, Chil, se = O, (H\,55))) 
(1-in) 

—ily/) 
Since the integrand in this expression is 0(H / ) 

we can derive for L(x): 

~ ly SLY aeeeae* (sl 47 xt 0 (a, 34) 

As stated in Section 6, the position of the 

point of separation is determined by the condition 

B=0. By (A,31) this condition becomes: 

(0) 

ff L(x) [e2 Sy (x) + Sr 0 | dx = 0. 
= ° c c 

We can give an interpretation to the two terms in 

this integrand. There are two reasons for which 

the fluid may separate from the hub. First the 

value of é6r, may become negative, so that the 

centrifugal force makes the fluid particles leave 

the hub. This corresponds to the first term in the 

integrand. Second, the radius of curvature of the 

hub may be so small that the fluid particles are 

unable to keep contact with the hub. This corres- 

ponds to the second term in the integrand. 

(A, 35) 
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Unsteady Cavitation on an 

Oscillating Hydrofoil 
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ABSTRACT 

Bent trailing edges and erosion are often observed 

on marine propellers and are attributed mainly to 

unsteady cavitation caused by the nonuniformity 

of the flow field behind a ship's hull. In order 

to improve the physical understanding of the 

cavitation inception and the formation. of cloud 

cavitation on marine propellers, a large two 

dimensional hydrofoil was tested in the DTNSRDC 

36-inch water tunnel under pitching motion. Fully 

wetted, time dependent, experimental pressure 

distributions were compared with Giesing's unsteady 

wing theory. The influence of reduced frequency 

and pressure distribution on inception was determined. 

A simplified mathematical model to predict unsteady 

cavitation inception, was formulated. Good corre- 

lation between theoretical prediction and experi- 

mental measurements on cavitation inception was 

observed. The reduced frequency, maximum cavity 

length, foil surface pressure variation, and time 

sequential photographs were correlated with the 

formation of cloud cavitation. A physical model 

based on the instability of a free shear layer 

defining a near-wake region provides a reasonable 

explanation of the observed results. 

1. INTRODUCTION 

Hydrofoil craft are typically designed to operate 

both in calm water and waves; and marine propellers 

normally operate in the nonuniform flow field 

behind a ship. Unfortunately, due to the complexity 

of the experiments, only a few experiments have 

been specifically concerned with unsteady leading 

edge sheet cavitation on hydrofoils and propellers, 

Morgan and Peterson (1977). It is the intent of 

this paper to report the results of experiments 

concerned with leading edge sheet cavitation on an 

oscillating two dimensional hydrofoil. Following 

a brief review of the most pertinent experimental 
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data available in the literature, an analytical 

method for the prediction of inception will be 

developed and compared with the experimental data. 

Once the cavity is present on the foil, cavity 

instabilities develop due to the foil oscillation 

and also due to the inherent instability of the 

cavitation process. This general process of 

instability in the leading edge sheet cavity is the 

subject of this paper. 

It has been observed by innumerable investigators 

that a leading edge sheet cavity can, under certain 

circumstances, be quasi steady with relatively few 

collapsing vapor bubbles to produce erosion. How- 

ever, if a propeller blade enters a wake field, the 

inception angle of attack at the leading edge may 

not agree with the uniform flow inception angle. 

In addition, the developed cavity may exhibit 

instabilities not produced in uniform flow fields. 

One form of cavity instability is manifest by the 

shedding of a significant portion of the sheet 

cavity. This shed portion appears to be composed 

of microscopic bubbles and is commonly referred to 

as "cloud" cavitation, van Manen (1962). Cloud 

cavitation is now considered to be one of the main 

causes of erosion and bent trailing edges, Tanibayashi 

(1973). 

Model experiments have been performed by many 

organizations in an attempt to simulate full-scale 

wake fields in which propellers operate. One of 

the first detailed experiments concerned with 

unsteady cavitation was reported by Ito (1962). 

These experiments were with pitching three dimen- 

sional hydrofoils and propellers in a wake field. 

A principle result directly applicable to the work P 

to be reported here was that the reduced frequency 

had an important influence on the cavitation. He 

also concluded that the "critical" reduced frequency 

at which a leading edge sheet cavity broke up into 

cloud cavitation was 0.3 to 0.4. His latter con- 

clusion will be considered in more detail in the 

context of the results to be reported here. 

A recent discussion of this subject was given 



by Tanibayashi (1962). He concluded that the 

occurrence of cloud cavitation in nonuniform flow 

cannot be predicted on the basis of uniform flow 

experiments. In earlier work by Tanibayashi and 

Chiba (1968), it was concluded from experiments 

with an oscillating two dimensional foil that an 

unsteady flow was required for the formation of 

cloud cavitation. However, unlike the earlier 

results of Ito, no distinct critical reduced 

frequency was found. Since these latter results 

were for nominally hemispherical travelling bubbles, 

instead of a leading edge sheet, it remains to be 

established whether the type of cavitation in the 

growth phase is of importance to cloud cavitation 

formation. 

Chiba and Hoshino (1976) carried out extensive 

measurements of induced pressures on a flat plate 

above a propeller. On the basis of comparing 

results with and without a wake field and with and 

without cavitation, they determined that strong 

pressure impulses were detected on the flat plate 

and these correlated with the presence of cloud 

cavitation. 

Strong pressure fluctuations of very short 

duration have also been detected by Meijer (1959) 

on the surface of a cavitating two dimensional foil. 

He attributed these pressure fluctuations to a 

stagnation point at the rear of the sheet cavity 

passing over a pressure gage. Chiba (1975) has 

attempted to correlate cavity collapse on a two 

dimensional oscillating foil with the response from 

a pressure gage mounted in the foil. He concluded 

that, as expected, when the shed vapor collapses 

large pressure impulses occur. The essential 

points for both of these experiments are that foil 

mounted pressure gages can be used in the presence 

of cavitation and when correlated in time with 

photographs can assist in the interpretation of the 

physical processes involved. This technique was 

also used in interpreting the results to be reported 

here. 

Two other oscillating foil experiments have also 

been reported, Miyata (1972), Miyata et al. (1972), 

and Radhi (1975), that demonstrate the importance 

of the reduced frequency on the whole cavity 

inception, growth, and collapse process. Both have 

shown that for the particular conditions of their 

experiments, inception could be delayed. The 

greatest suppression occurred for reduced frequencies 

in the range of 0.4 to 0.5. Both of these experi- 

ments will be discussed later in more detail within 

the context of the results to be reported in this 

paper. 

All of the experiments reviewed above describe 

various aspects of cavitation instabilities that 

are associated with the cavitation performance of 

oscillating foils and propellers in a wake. This 

cavitation performance appears to be uniquely 

related to the unsteady flow field that exists 

Pe (*/e = 0.033) 

P, (*/e = 0.10) 
P, (¥/e = 0.25) 

PITCH AXIS LOCATION 

alles ba C = 241 m 
KULITE PRESSURE GAGE 

363 

over the cavitating surface. In the sections that 

follow analytical and experimental results will be 

presented in an effort to provide a better under- 

standing of how these various results are related 

and of the associated physical processes involved. 

2. EXPERIMENTAL APPARATUS AND TEST PROCEDURE 

Foil and Instrumentation 

The foil was machined from 17-4 PH stainless steel 

to a rectangular wing of Joukowski section with the 

trailing edge modified to eliminate the cusp. To 

simulate the viscous effects at the leading edge 

as close to a prototype as possible, the model was 

designed with a chord length of 24.1 cm and a span 

of 77.5 cm. The maximum thickness to chord ratio 

is 10.5 percent. The foil surface was hand finished 

within 0.38 wm RMS surface smoothness. 

Pressure transducers were installed at a distance 

of 7.96, 24.1, and 60.3 mm from the leading edge. 

These locations correspond to 3.3, 10, and 25 

percent of chord length from the leading edge. 

Kulite semiconductor pressure gages of the diaphram 

type were mounted within a Helmholtz chamber con- 

nected to the foil surface by a pinhole. With this 

arrangement one could measure the unsteady surface 

pressures due to foil oscillation and high frequency 

pressure fluctuations inside the boundary layer 

over a pressure range of +207 KPa (+30 PSI) anda 

calibrated frequency range of 0 to 2 kHz. In order 

to increase the spatial resolution in measuring 

the local pressure fluctuations inside the boundary 

layer, the diameter of the pinholes installed on 

the foil surface were kept at 0.31 mm (0.012 inches), 

(see Figure 1). This arrangement also reduces the 

danger of cavitation damage to the pressure 

transducers. Extreme care was taken to fill the 

Helmholtz-type chamber through the pinhole under 

vacuum with deaerated water to minimize the possible 

occurrence of an air bubble trapped inside the 

chamber. If a gas bubble was present within the 

gage chamber, the resonant frequency of the chamber 

would be reduced below its 3880 Hz value. For 

example, with the above procedures for filling the 

gage chamber at a pressure of 3.4 KPa, a bubble of 

0.6 mm diameter at atmospheric pressure is produced. 

This bubble will lower the chamber's resonant 

frequency to 1100 Hz. The danger of becoming a 

Helmholtz resonator was not observed in our dynamic 

calibration tests up to 2000 Hz. The calibration 

procedure used here was developed by the National 

Bureau of Standards, Hilten (1972), modified to 

the extent that water rather than silicone oil was 

the fluid medium. Since it was very important to 

determine the relative phase difference between the 

foil angle and the pressure gage signals, all 

amplication and recording equipment was selected to 

minimize the introduction of unwanted phase shifts. 

PINHOLE 

HELMHOLTZ TYPE 
CAVITY 

FIGURE 1. A sketch of the foil 

and three pressure gage locations. 
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Photographic Instrumentation 

All photographs used to document the inception and 

cavity instability processes were taken with two 

35 mm cameras. Illumination was provided by strobe 

lights having a light duration of 10 microseconds. 

With the camera shutter open, the first frame of a 

sequence was taken when a foil position indicator 

triggered the strobe lights. Each succeeding 

exposure was taken 10 and 1/25 foil oscillations 

after the preceeding exposure. An electrical pulse 

from a light detector was recorded on a channel of 

the same magnetic tape that was used to record the 

foil position, pressure gage responses, and a time 

code. Oscillograph records then allowed a direct 

correlation between these events. Both top and 

spanwise photographs were taken simultaneously by 

exposing the film with one set of flash lamps. In 

order to focus the camera lens in the same region 

as the location of the pressure gages when viewing 

in the spanwise direction, the camera was elevated 

at an angle of 4° and directed slightly downstream 

by an angle of 10°. 
High-speed 16 mm movies were taken at a rate of 

9,300 frames per second to assist in the interpre- 

tation of the 35 mm pulse camera sequential 

photographs. Adequate exposure for these photographs 

was achieved by using high intensity tungsten 

filament flash bulbs of 25 millisecond duration. 

Test Section 

The closed jet, test section of the 36-inch water 

tunnel was modified by the insertion of sidewall 

liners to provide two flat sides as shown in Figure 

2. On each end of the foil a disc was, attached. 

This disc rotated in a sidewall recess. Thus the 

foil could be rotated without gap cavitation 

occurring between the end of the foil and the 

sidewall of the tunnel. One sidewall assembly was 

fitted with clear plastic windows to permit side 

view photography. 

The foil was oscillated by a mechanism whose 

conceptual design is shown in Figure 3. With this 

type of design the foil mean angle (a _) can be 

adjusted statically and the amplitude of foil 

oscillation (a]) can be continuously adjusted 

between 0° < a; < 4° while in operation. The 
oscillation frequency is continuously variable 

between 4 Hz < £ < 25 Hz. Air bags, shown in 

Figure 3, were installed to reduce the fluctuating 

torque requirements on the motor drive system. 

VIEWING PORTS 

FOIL DISC 

FIGURE 2. Schematic of closed jet test section. 

PNEUMATIC 
AIR BAGS 

FOIL 
OSCILLATOR 
ARM ADJUSTABLE 

PIVOT POINT 

— FOIL SHAFT 

SLIDE 

CONNECTING 
ROD —— ECCENTRIC CRANK 

~ DRIVEN BY VARIABLE 
SPEED D.C. MOTOR 

FIGURE 3. 

mechanism. 

Conceptual design of foil oscillation 

Water Tunnel Resonant Frequencies 

The study of cavity dynamics in a water tunnel gives 

rise to a fundamental question, namely, the effect 

of tunnel compliance on transient cavity flows. If 

the tunnel was perfectly rigid and if there were 

no free surfaces other than that of the cavity 

itself, then an infinite pressure difference in an 

incompressible medium would be required to create 

a changing cavity volume. To make sure that this 

kind of tunnel effect would not be present in our 

model tests, a hydraulically operated piston having 

a frequency range of 0 to 45 Hz was initially 

oscillated in a test section opening to simulate 

the maximum expected change of cavity volume. A 

sharp peak of fundamental tunnel resonance was 

observed at 4.7 Hz. Consequently, all of the foil 

oscillation experiments reported here were carried 

out at frequencies either above or below this 

resonant frequency. 

Data Reduction 

Due to the installation of two sidewall liners in 

the test section, the tunnel velocity was corrected 

according to the area-ratio rule. The tape recorded 

time histories of foil angle and pressures were 

digitized using a Raytheon 704 minicomputer and 

reduced using algorithms implemented on the DTNSRDC 

CDC-6000 series digital computers. The time histo- 

ries were recorded on one inch magnetic tape at 

15 inches per second (38 cm/s) using IRIG standard 

intermediate band, frequency modulation techniques. 

During digitization, these data were filtered using 

eight-pole Butterworth low pass filters that have 

a -3 db signal attenuation frequency at 40 Hz. 

They were then sampled at 125 hertz. The run 

lengths used in the data reduction were nominally 

40 seconds. For the oscillating foil data the 

computer output consists of values of mean and 

standard deviations, sine wave amplitudes and 

frequencies, and transfer function magnitudes and 

phases. Mean and standard deviation values were 

obtained from the stationary foil data. For the 

transfer functions, the system input was foil angle, 

where the pressures were responses to this input. 

For the dynamic runs, foil angle was sinusoidal; 



nominally one percent of this channel's signal 

energy consisted of harmonics or noise. 

The methods used in data reduction are now 

described. The mean value, wt, and the standard 

deviation, o_, were calculated in the usual manner. 

The sine wave amplitudes and frequencies, and the 

transfer functions were obtained using operations 

on measured autospectra and cross spectra. These 

spectra were obtained using overlapped fast Fourier 

transform (FFT) processing of windowed data segments, 

Nuttall (1971), where the following reduction 

parameters were used: FFT size of 1024, 50 percent 

overlap ratio, and full cosine data window. The 

true autospectrum of a sine wave is an impulse, 

0.5A°6(£ - £_); the measured autospectrum is this 

true spectrum convolved with the spectral window. 

The spectral window associated with the cosine has 

the form: 

sin mf 

£1 (1-£7) 

The wave frequency is, in general, not sampled at 

a rate which is an integral multiple of the sampled 

frequency. Thus, the measured spectrum consists 

of this spectral window sampled at evenly spaced 

frequencies where the location of the samples 

relative to the sine wave frequency or spectral 

window maximum is unknown. The sine wave frequency 

and amplitude are found by fitting the spectral 

window shape to the three largest samples that are 

closest to where the sine wave is expected. The 

transfer functions are given by the cross spectra 

between the input and output data channels divided 

by the autospectra of the input channel. The 

transfer functions were evaluated at the frequency 

of oscillation of the foil. Quadratic interpolation 

between spectral samples was used to obtain the 

cross and autospectrum values. Once evaluated, the 

complex transfer functions were converted to magni- 

tudes and phases. The transfer function magnitude 

is then the output sine wave amplitude, and the 

transfer function phase is the phase angle of this 

output sine wave. Except for data runs when cavi- 

tation was present, the cross spectra coherency 

was always greater than 0.98; this high coherency 

implies low noise and high linearity at the foil 

oscillation frequency. 

3. UNSTEADY HYDRODYNAMICS IN FULLY WETTED FLOW 

Basic knowledge in the general field of unsteady 

aerodynamics has been compiled, condensed, and 

presented by several authors [for example see 

Abramson (1967)]. Available experimental hydro- 

dynamics information for oscillating wings and 

foils is very limited, especially at high values 

of Reynolds number. Most of the available experi- 

mental data concern lift, drag, and moment 

coefficients from flutter and craft control 

investigations. For cavitation inception studies, 

accurate determination of the pressure distribution, 

especially around the leading edge, is of major 

importance. In the present investigation, three 

pressure gage transducers were installed on the 

foil to measure the unsteady surface pressures. 

Experimental data were then correlated with an 

available unsteady flow theory with the intent 
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of providing adequate information to analyze unsteady 

cavitation inception. 

The foil was pitched about an axis at %% chord 

length from the leading edge. The instantaneous 

foil angle a is given by 

= 1 6 + a) sin wt (1) 

where & _, 4), and W™ are the mean foil angle, pitch 

amplitude, and circular frequency of pitch oscil- 

lation. Let Cp(t), Cys, and Cpy(t) denote the 

total pressure coefficient, the magnitude of the 

steady pressure coefficient at the foil mean 

angle, and the magnitude of the dynamic pressure 

coefficient, respectively. At a given location on 

the foil, it is assumed that: 

De ap 2 (Ge), oe 
P oO 15 oo c(t) = BE = Fe = 8 4 
4p v2 A (e) W 

(2) 

= © a © (ie) 
ps pu 

where 

B = EAS 

ces Ey V2 (3) 

and 

P (t) 
4 é re) = wl (4) 

a 5p v2 

where P(t), Ps, Py(t), and p are the local total 

pressure on the foil, static pressure on the foil, 

dynamic pressure on the foil, and the fluid density, 

respectively; P, and V, denote the freestream 

pressure and freestream velocity. We have: 

sin(wt + 6) (5) 

where |Acpu| and ¢ are the amplitude of dynamic 

pressure response and phase angle, respectively. 

A positive value of > means that the pressure 

response leads the foil angle. 

Let the Reynolds number, Rn, and the reduced 

frequency, K, be defined by 

Ww, € 

nm = (6) 
n v 

and 

wC 
= 7 

K 2 Voo 7) 

where C, Vv, and w are the chord length, kinematic 

viscosity of the fluid, and the circular frequency 

of the oscillating foil, respectively. Fully wetted 

experiments covered the range of Reynolds number 

Rn = 1.2 to 3.7 x 10© and reduced frequency K = 0.23 

to 2.30. The test results are given in Tables la 

to lc. The phase angles and the amplitude of 

dynamic pressure response per radian of pitch 

oscillation are given in Figures 4 and 5 at values 

Oe Ch = Os55 WsO, Etre BoOPs 

An unsteady potential flow theory for small- 

amplitude motion recently developed, Giesing (1968), 

is used here to correlate the experimental results. 

The unsteady part of the pressure coefficient is 
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FIGURE 4a. Phase angles of dynamic pressure 

response at pitch amplitude a; = 0.5 deg. 

FIGURE 4b. Phase angles of dynamic pressure 

response at pitch amplitude a, = 1.0 deg. 

FIGURE 4c. Phase angles of dynamic pressure 

response at 4] = 2.0 deg. 



obtained as the difference between the total pressure 

coefficient minus the steady part. The steady 

solution is based on an exact nonlinear theory. 

The theoretical values obtained from Giesing's 
program are plotted on Figures 4 and 5 along with 

the experimental data. 

The phase angles obtained from experiments and 

calculations will be discussed first. As seen in 

Figures 4a to 4c, the agreement between experimental 

measurements and theoretical calculations of pressure 

and phase angles is quite good for all three pressure 

locations. The agreement is good between experi- 

mental measurements and theoretical predictions of 

Magnitudes of dynamic pressure for the cases of 

X/C = 0.25 and 0.10, as seen in Figures 5a to 5c. 

At low values of K the measured pressure coefficients 

are seen to be slightly lower than the values 

calculated for the case of X/C = 0.033. The exact 

cause of this small discrepancy between measurements 

and theoretical calculations has not been determined. 

The cause of small discrepancies between the 

theory and experiments requires further investigation. 

Nevertheless, the overall good agreement observed 

between our experimental measurements and Giesing's 

method is extremely encouraging. It is noted that 

Giesing's method is based on unsteady potential 

flow theory. The combined theoretical and experi- 

mental results by McCroskey (1975, 1977) indicate 

that unsteady viscous effects on oscillating airfoils 

are much less important than the unsteady potential 

flow effects, if the boundary layer does not interact 

significantly with the main flow. The present study 

appears to agree with his conclusion for the case 

of a fully wetted foil. On the basis of this 

relatively good agreement between Giesing's method 

and the experimental data, this method will be used 

in the next section to predict cavitation inception 

as a function of the reduced frequency, K. 

4. UNSTEADY EFFECTS ON CAVITATION INCEPTION 

The major objective of this section is to examine 

what effect unsteadiness has on cavitation inception. 

The question of the occurrence of cavitation is of 

particular importance when comparing model test 

results for marine propellers or hydrofoils with 

the full-scale prototype data. We would like to 

know whether a noncavitating model is also free 

from cavitation in the prototype. When calculating 

the flow about propeller blades or hydrofoils, it 

is important to know whether the cavitation bubbles 

form on the blades, and if so, under what circum- 

stances. The cavitation number o, defined by 

has proved useful as a coefficient for describing 

the cavitation process. Here, p and P_ denote the 

density and vapor pressure of the fluid and P_ and 

V,, denote the freestream static pressure and the 

freestream velocity, respectively. 

In addition to the incoming flow properties such 

as freestream turbulence and nuclei content, the 

surface finish and boundary layer characteristics 

on the body surface are also of paramount importance 

to the cavitation inception process Acosta and 

Parkin (1975). To limit the scope of the test 
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program, air content of the water was not varied. 

The air content was measured with 70% saturation 

in reference to atmospheric pressure at a water 

temperature of 22.2° C and tunnel pressure of 103.6 

kPa. 

The foil was pitched sinusoidally around an axis 

at the quarter chord location aft of the foil leading 

edge. The cavitation tests were carried out by 

lowering the ambient pressure from the previous 

fully wetted tests. The determination of cavitation 

inception was based on visual observations. For 

every test condition, 30 pictures were taken to 

record the cavitation process on the foil. A 

picture was taken every ten oscillations plus 1/25 

of the time period of the foil oscillation. Thus, 

a series of high quality short duration photos 

were taken that together simulate one and 1/5 cycles 

of the foil oscillation. A pulse signal was 

simultaneously recorded on magnetic tape when a 

picture was taken. In this way, each cavity pattern 

observed on the foil could be related directly to 

the instantaneous angle of attack of the foil. 

Analytical Prediction 

A simplified mathematical model will be formulated 

first to explore the possible effect of unsteadiness 

on cavitation inception. A significant delay in 

dynamic stall was observed experimentally and 

discussed in a recent review paper by McCroskey 

(1975), who showed that the pressure gradient AC, /dx 

around the leading edge was of paramount importance 

in dynamic stall. The studies by Carta (1971) 

indicate that the mechanism involved in the delay 

of dynamic stall is the large reduction of unfavor- 

able pressure gradient dC /dx during any unsteady 

motion. P 

The mechanism involved in cavitation inception 

is different from the mechanism of aerodynamic 

stall. It is generally assumed that cavitation 

occurs on a body when the local pressure, including 

the unsteady pressure fluctuations within the 

boundary layer, falls to or below the vapor pressure 

of the surrounding fluid, Huang and Peterson (1976). 

Aside from the effect of nuclei content of the 

water, it is the value of the local pressure 

coefficient that governs the occurrence of cavita- 

tion. Prior to the occurrence of cavitation on 

an oscillating foil, the foil is in a fully wetted 

condition. Thus, the knowledge of pressure distribu- 

tion on the foil in the fully wetted condition 

can be expected to provide useful information for 

unsteady cavitation inception prediction. 

As previously mentioned, the combined theoretical 

and experimental results reviewed and summarized 

by McCroskey (1977) indicate that unsteady viscous 

effects on oscillating airfoils are much less 

important than unsteady potential flow effects, if 

the boundary layer does not interact significantly 

with the main flow. In the present study, as 

discussed in the previous section, the three 

pressure coefficients measured at three points 

around the leading edge are predicted reasonably 

well by Giesing's method both in amplitude and 

phase within the range of reduced frequencies 

examined. This unsteady potential flow theory will 

now be used to investigate cavitation inception. 

In the tests, the foil was oscillated about a 

mean angle of 3.25°. The mean values of dynamic 

foil loadings determined from measurements are 
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plotted in Figure 6. Aside from some scatter in 

the data, they are seen to be independent of 

frequency (or reduced frequency). The steady 

pressure distribution calculated theoretically at 

3.25° is given in Figure 7. A suction peak appears 

at around 1.8 percent of the chord length aft of 

the leading edge. Reasonably good agreement between 

the theoretical prediction and the three experimental 

measurements should be noted. Experimental data 

confirm the basic assumption made in Eq. (2) that 

the total pressure coefficient Cp(t) is the sum of 

the dynamic pressure coefficient Cpu (t) plus the 

static pressure coefficient Cys at the mean foil 

angle, i.e. 

CAGE) =n€ stn Can Gt) 
1) ps pu 

We will now proceed to examine the possible 

relationship between the dynamic pressure coeffi- 

cient Cpu(t) and the static pressure coefficient 

Cps- Let the instantaneous foil angle be expressed 

as in Eq. (1). The dynamic pressure response is 

then given by 

u | : 
sin (wt + 6) (5) 

Here |ACpul| and $ are the amplitude and phase angles. 

They are functions of reduced frequency K and 

location X/C. They can be obtained either from 

experimental measurements or theoretical calculations. 

In the following study, Giesing's program will be 

used to compute these variables. In our oscillating 

tests, the mean foil angle was always maintained at 

a = 3.25°. The type of cavitation observed in our 
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TABLE la - MEASURED DYNAMIC PRESSURE RESPONSE AT PITCH AMPLITUDE %= 0.5 DEG. 

x/c = 0.25 x/c = 0.10 x/c = 0.033 
ue v f K = é [SC nul/ oy é JOC lay, é [SCou| /oy 

m/s HZ x10 Deg Per Radian Deg Per Radian Deg Per Radian 

7002 4.88 5.5 846 1.2 43.4 3.48 7.1 5.53 =3).1 9.92 
7006 4.88 10.0 1.539 1.2 77.7 5.40 31.2 5.60 7.0 9.62 
7010 4.88 15.0 2.305 1.2 95.7 8.51 48.3 6.77 15.5 10.10 
7014 6.71 5.5 635 1.7 35.8 3.07 1.2 5.69 -6.4 10.15 
7019 6.71 10.0 1.154 1.7 58.4 4.13 13.6 5.72 ol 9.72 
7024 6.71 15.0 1.730 1.7 81.6 6.59 32.5 6.21 7.6 10.32 
7029 9.75 5.5 +423 2.4 18.3 2.69 -2.0 4.74 =11.5 10.43 
7034 9.75 10.0 .769 2.4 44.9 3.34 12.6 4.79 -7.1 9.93 
7039 9.75 15.0 1.153 2.4 62.2 4.45 24.8 5.32 =2.3 10.21 
8002 13.11 5.5 -317 3.3 5.7 2.61 =11'53) 5.89 -15.1 10.90 
8006 13.11 10.0 -576 3.3 29.5 2.76 =3.2 5.33 -12.4 10.10 
8010 13.11 15.0 -865 3.3 48.5 3.50 6.4 5.36 -8.2 10.19 
8029 6.71 4.0 +462 1.7 24.9 2.65 -4.3 5.60 =9.2 10.09 
8041 9.75 4.0 308 2.4 7.1 2.58 -7.6 4.78 =13 73) 10.64 
8045 13.11 4.0 -231 3.3 =2.5 2.77 -13.3 5.86 -15.8 11.68 
8057 14.94 5.5 «282 3.7 7 2.88 =1'5).1 6.62 -16.6 11.80 
1121 11.58 4.0 +264 2.8 = 39) 3.05 -9.9 4.54 -15.0 11.85 
1122 11.58 5.5 +363 2.8 10.5 2.86 -1.0 4.44 =13.3 11.12 
1123 11.58 7.5 495 2.8 20.3 2.91 4.3 4.44 -11.6 10.77 
1124 11.58 10.0 +660 2.8 32.1 3.03 10.0 4.53 =9.5 10.72 
1125 11.58 15.0 -990 2.8 52.3 3.93 24.0 5.00 -5.4 10.69 

TABLE 1b - MEASURED DYNAMIC PRESSURE RESPONSE AT PITCH AMPLITUDE = 1.0 DEG. 

x/c = 0.25 x/c = 0.10 x/c = 0.033 
Run v f K Rn é | ac. Jo, | bel /er, é [oC pul /oa 

Rinses m/s HZ x10~° Deg Per Radian Deg Per Radian Deg Per Radian 

7003 4.88 5.5 -846 1.2 42.4 3.39 10.5 5.46 -1.5 9.66 
7007 4.88 10.0 1.539 V2 71.1 5.13 28.5 6.09 7.4 9.77 
7011 4.88 15.0 2.305 1.2 93.6 8.51 47.0 7.40 16.0 10.73 
7015 6.71 5.5 +635 1.7 37.4 3.04 5.8 5.28 -5.3 10.03 
7020 6.71 10.0 1.154 1.7 62.8 4.57 23.6 5.67 2.0 10.05 
7025 6.71 15.0 1.730 1.7 79.5 6.71 38.8 6.75 8.6 10.70 
7030 9.75 5.5 +423 2.4 20.7 2.67 -2.6 5.26 -10.4 10.36 
7035 9.75 10.0 +769 2.4 44.9 3.28 9.5 5.19 -5.3 9.91 
7040 9.75 15.0 1.153 2.4 62.6 4.64 20.9 5.76 =.6 10.41 
8003 13.11 5.5 -317 3.3 7.6 2.64 -9.5 5.91 -13.6 11.03 
8007 13.11 10.0 576 3.3 30.9 2.81 clo) 5.45 -10.2 10.22 
8011 13.11 15.0 -865 3.3 49.0 3.63 6.8 5.65 =659) 10.40 
8030 6.71 4.0 - 462 57) 23.5 2.69 =1.1 5.13 -8.6 10.07 
8042 9.75 4.0 +308 2.4 8.2 2.59 =7..9 5.34 12.4 10.72 
8046 13.11 4.0 231 3.3 =.8 2.78 -11.8 6.13 -14.2 11.76 
8058 14.94 5.5 +282 3.7 3.5 2.90 -11.8 6.46 -14.8 11.96 
1017 11.58 4.0 -264 2.8 208} 3.08 -11.3 5.76 -13.9 12.09 
1018 11.58 5.5 +362 2.8 9.4 3.03 -6.3 5.58 =12'57, 11.83 
1019 11.58 7.5 +493 2.8 21.7 2.97 -6 5.22 =10.5 10.99 
1020 11.58 10.0 +660 2.8 34.2 3.33 6.1 5.40 -9.0 10.83 
1021 11.58 15.0 +988 2.8 52.2 4.15 15.5 5.69 -4.9 11.10 

TABLE 1c - MEASURED DYNAMIC PRESSURE RESPONSE AT PITCH AMPLITUDE 

@% = 1.5 DEG 

x/ce = 0.25 x/c = 0.10 x/c = 0.033 

aay f K a 3 [Ac I/, [c,ui/a, 6 14Cp ul /on 
m/s HZ x10 Deg Per Radian Deg Per Radian Deg Per Radian 

7031 9.75 5.5 +423 2.4 21.0 2.65 =3.2 5.50 -10.0 10.26 
7036 9.75 10.0 +769 2.4 46.5 3.22 8.3 5.30 =5.1 9.76 
7041 ous 5% Opel 53) 2.4 62.3 4.62 19.0 5.98 92 10.40 
8004 13.11 5.5 -317 3.3 9.0 2.57 -8.6 5.72 -13.0 10.79 
8008 13.11 10.0 -576 3.3 31.5 2.78 -1.0 5.39 -9.7 10.19 
8012 13.11 15.0 -865 3.3 50.2 3.63 8.4 5.62 Bez 10.35 

= 2.0 DEG 

7004 4.88 5.5 - 846 1.2 46.7 3.36 16.9 4.93 Sai/ 9.34 
7008 4.88 10.0 1.539 1.2 71.3 5.14 33.7 6.01 7.2 9.76 
7012 4.88 15.0 2.305 1.2 90.7 8.47 49.0 7.96 16.0 10.98 
7016 6.71 9o5 -635 1.7 33.0 3.01 7.4 5.06 -4.9 9.75 
7021 6.71 10.0 1.154 1.7 58.5 4.16 23.2 5.59 2.0 9.83 
7026 6.71 15.0 1.730 7, 77.8 6.30 36.4 6.91 8.7 10.87 
7032 9.75 5/a15) =423 2.4 19.4 2.63 -2.8 5.38 =9.7 9.99 
7037 9.75 10.0 -769 2.4 44.7 3.18 8.3 5.30 -5.0 9.68 
7042 9.75 15.0 1.153 2.4 60.9 4.42 19.2 5.92 0.0 10.26 
8031 6.71 4.0 -462 7, 18.8 2.70 =-1 4.86 -8.3 9.67 
8047 13.11 4.0 +231 353) 2.0 2.50 -13.0 8.35 -16.5 10.16 

O, = 2.5 DEG 

7017 6.71 515 +635 1.7 32.8 2.89 6.9 4.91 -4.8 9.34 
7022 6.71 10.0 1.154 aloy 57.7 4.01 21.6 5.54 1.6 972 
7027 6.71 1550 1-730 slog 77.9 6.00 36.4 6.59 8.8 10.33 
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NEGATIVE PRESSURE COEFFICIENT, 

~Cp 

NEGATIVE PRESSURE COEFFICIENTS, 

wo 

FIGURE 6. 

oscillating tests. 

Seuie| ——+y— at 

a z eo ol x 

EXP x/C a@ = 3.25 + 1.0 Sin wt 

Vx = 13.1 m/s 

5 10 15 20 25 

FREQUENCY, HZ 

Mean pressure coefficients deduced from 

- THEORY AT a@, = 3.5 DEG 

THEORY AT a, = 3.25 DEG 

EXP. AT aw, = 3.25 DEG 

-05 -10 =) -20 
x/C 

test program always initiated near the foil leading 

edge. 

Let (dC,/da); denote the static pressure gradient 
with respect to foil angle at a given location on 

the foil. Similarly, let (dcp /da) 4 denote the 

dynamic pressure gradient with respect to foil angle 

at the same location on the foil with the reduced 

frequency, K, as the parameter. To simplify the 

writing, they will be referred to as the "Static" 

and "dynamic" angular pressure gradients respectively. 

Let &(k) be the ratio of dynamic angular pressure 

gradient versus static angular pressure gradient 

at a given location on the foil, namely 

&(K) = (ac_/da) / (dc_/da) (9) 
P u P s 

This ratio §(K) and the phase angle $ for several 

locations and reduced frequencies have been calcu- 

lated and are given in Table 2. The static angular 

pressure gradient (dC _/da)_ at a given location is 

approximated for mean? foil angles of 3.3 to 4.3° 

since leading edge cavitation inception typically 

occurred within this range. As seen in Table 2, 

for a given reduced frequency, the amount of 

reduction in dynamic pressure ratio (&€) remains 

almost a constant value in the range of 0.004 < 

X/C < 0.06 which covers the foil region over which 

leading-edge cavitation occurs. Consequently, if 

the foil is oscillated around the mean foil angle 

G54, the shape of the pressure distribution in the 

neighborhood of the suction peak and the peak 

location are essentially the same for both zero 

25 FIGURE 7. Static pressure distributions at 

foil angles of 3.5 and 3.25 deg. 



TABLE 2 - THEORETICALLY CALCULATED DYNAMIC PRESSURE 
RESPONSE AT VARIOUS (x/c) LOCATIONS 

REDUCED FREQUENCY, K 

0.05 0.1 0.3 0.5 0.75 1.0 1.5 2.0 
de 

At x/c = 0.0046, Gana = 33.52 

é -7-47, 10.53 711.25 -9.53 -7.91 6.97 -6.26 -5.96 

10 30.18 28.10 22.41 21.87 20.97 20.57 20.27 20.19 

Ls «90 84 67 65 +63 +61 -61 -60 

de 
At x/e = 0.0073, (F#) = 30.25 

8 

4 -7.46 -10.51 -ll.11 9.25 -7.45 6.32 -5.26 -4.61 

28.03 26.09 21.72 20.28 19.44 19.06 18.77 18.68 

g +93 -86 +72 67 +65 -63 +62 -62 

dc 

At x/c = 0.0117, G®). = 26.59 
da’s 

é -7.44 -10.46 -10.88 -8.78 -6.66 -5.22 -3.56 -2.31 

| apa! joy, 24.28 22.59 18.78 17.51 16.77 16.44 16.19 16.10 

& -91 -85 -70 -66 -63 +62 -61 -61 

dc 

At x/e = 0.018, (;4) = 23.0 
8 

é -7.41 -10.38 -10.53  -8.08  -5.48 -3.58  -1.02 41.13 

Joc} 20.72 19.27 15.99 14.89 14.25 13.96 13.75 13.67 
pu /% 

e 91 83 -70 +65 62 61 -60 -60 

de 
At x/e = 0.026,(7$), = 19.65 

é -7.37 -10.28 -10.08  -7.19 -4.01 -1.52 +2.15 +5.40 

Jac. | 17.72 16.47 13.63 12.67 12.12 1188s ella 71 ed. 68 
pu’ / 

E -90 84 69 65 62 61 60 -60 

dc 
At x/e = 0.035, (z£), = 16.79 

é  -7.31 -10.16 -9.53 6a LON = 2422 +.96 45.96  +10.51 

Jac. | TGAY  WAgiig)shlaehA 10.87 * 10.40 10.20 10.09 10.11 
pu /Q% 

z 91 -85 .70 65 62 -61 -60 -60 

d ic 

ia os 
At x/c = 0.058) Gab), = 12-78 

6 -7.18 -9.84 =g510)-=3633' +2533. 47-23 415.41) | +22.84 

, : 8.89 8.2 ; 7.78 7.83 8.0 Vou joy 11.68 10.84 3 7.88 5 

g 92 85 .69 65 62 61 .61 63 

and nonzero reduced frequencies. This is an 

important conclusion which will be utilized later 

in the analytical prediction of cavitation inception. 

We will now proceed to develop a criterion to 

define the unsteady leading edge cavitation inception. 

Let 0;, denote the cavitation inception angle 

measured in a stationary test for given values of 

oO and Rn. As an example, at a cavitation number of 

Oo = 1.15 and Rn = 3 X 10°, cavitation inception 

occurred experimentally at ajo = 3.5°. The corre- 

sponding pressure distribution calculated using 

potential flow theory is given in Figure 7 with a 

suction peak appearing at around 1.6 percent chord 

aft of the leading edge. Let Cpsmin (jg) denote 

the minimum value of the static pressure coefficient 

Cops, at the foil angle 4 = aj,. It has been 

generally assumed that cavitation inception occurs 

when -Cpsmin (%is) = 9. Obviously, this simple 

Sh7fal 

relationship is not realized in the present test 

results (See Figure 7). This kind of discrepancy 

in applying the above scaling law for cavitation 

inception is a classic problem and has been exten- 

sively discussed in the literature [for example see 

Morgan and Peterson (1977) and Acosta and Parkin 

(1975) ]. 
One of the possible reasons for this discrepancy 

is that a finite amount of time is required for 

nuclei to grow. Thus, cavitation inception will 

depend not only on the magnitude of the suction 

pressure peak, but it will also depend on the shape 

of the pressure distribution in the neighborhood 

of the suction peak and the peak location. Since, 

as shown previously, these two features of the 

pressure distribution are essentially the same for 

zero and nonzero reduced frequencies of interest 

here, it will be assumed that the amount of time 

required for nuclei to grow is approximately the 

same for both a stationary and oscillating foil. 

Consequently, it is assumed that cavitation incep- 

tion occurs on the foil at nonzero reduced 

frequencies when the magnitude of ~Cpsmin (O;5) is 

encountered during the foil oscillation, for given 

values of oO and Rn. 

An analytical method will now be developed to 

predict leading edge cavitation inception on a 

oscillating foil based on inception measurements 

made on a stationary foil. Let AC, be given by 

Ke = |e. @ Jee, @). | (10) 
p Psmin 1s psmin fo) 

where Cpsmin (%) denotes the minimum value of the 
static pressure coefficient at 4 = 49 and Cysmin (dis) 

is the minimum static pressure coefficient at the 

cavitation inception angle 4;,. According to our 

assumption, unsteady cavitation occurs when the 

difference in the static loading AC, between ig 

and 4, is produced by the dynamic loading at some 

instant of time tj. Thus, unsteady cavitation 

occurs if 

= ACp (11) 

where Gan ea) | is the magnitude of the dynamic 

pressure response at time t = tj. If the value of 

Aig - % is small it follows from Eqs. (5) and (11) 

that 

a, (aC_/de). sin (Ob, + o)/=(@, = &))) (der /de) 
p u al is p s 

(12) 

where t:. corresponds to that instant of time at 

which Eq. (11) is satisfied. Small-amplitude 

motion has been assumed. The static angular 

pressure gradient is to be evaluated at the location 

of the suction peak corresponding to the steady 

condition a = a.. The unsteady inception angle 4;,, 

for a given reduced frequency K is obtained from 

Eqs. (1) and (12). 

cos 
Oo. = 6 ar (Gi, = Gh.) COSY) 

s ) 

= a] sing \j/l - ( (a, # 0) (13) 

As a consequence of Eq. (12), no singularity is 

expected inside the square root. Due to the 
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unsteady effect the inception angle ajy is generally 

different from AEC Let Aa be 

(14) 

which can be used to measure the magnitude of the 

unsteady effect. From Eq. (13), it follows that 

Ney S (SG) SOE, 1) 
is fo) & 

2 

Sagres (15) 
= Ci sino 1- a 

a 76 

(a, # 0) 

For the case where the phase angle > is small at 

the location of inception, we have 

Qa. 1 SO ae es oa) a 7 
a,& 

(16) 

Although a small phase angle, $¢, approximation is 

not required, it is useful to make this approxi- 

mation for the sake of discussing the implications 

of Eq. (15). The first term on the right-hand side 

represents the effect of the ratio of dynamic to 

static angular pressure gradients &(K) on unsteady 

cavitation inception. The second term represents 

the effect of phase angle, amplitude of oscillation, 

and the ratio of pressure gradients on cavitation 

6.0 

Sins a FROM EQ (15) 
<%= 6.0 DEG 

FROM EQ (15) 
m = 2.8 DEG 

CAVITATION-INCEPTION ANGLES a (DEG) RUNS 1205 TO 1208 

3.25 + 2.8 Sin wt 

9.75 m/s,o = 1.35 

4.0 

ab) 1.0 1.5 2.0 

REDUCED FREQUENCY, K 

FIGURE 8. Measured cavitation-inception angles for 

test runs 1205 to 1208, a) 2.8 deg. 

inception. For example, as seen 

phase angles of dynamic pressure 

leading edge lag behind the foil 

for values of K less than 1.0 at 

to this phase lag, 

tation inception is further delayed. 

in Figure 4 the 

response at the 

angle (negative 6) 

X/C 0.033. Due 

the occurrence of unsteady cavi- 

Contributing 

TABLE 3 - EXPERIMENTAL RESULTS ON UNSTEADY 

CAVITATION-INCEPTION ANGLES, & 

Run Vv f K 

No n/s HZ x10 

1205 9.75 4.0 2.4 - 307 

1206 9.75 B55) 2.4 ~423 

1207 C675) U5) 2.4 Belt 

1208 9.75 10.0 2.4 768 

1301 11.49 4.0 2.8 264 

1302 11.49 EGE) 2.8 - 362 

1303 11.49 is) 2.8 494 

1304 11.49 10.0 2.8 659 

1305 11.49 15.0 2.8 - 988 

1306 11.49 25.0 2.8 1.646 

1307 14.78 4.0 Sjo7/ 205 

1308 14.78 Dyed) 7) - 282 

1309 14.78 7.5 3.7 384 

1310 14.78 10.0 S\6i7/ 512 

1401 11.49 4.0 2.8 264 

1402 11.49 5.5 2.8 -362 

1403 11.49 7.5 2.8 ~494 

1404 11.49 10.0 2.8 659 

1405 11.49 15.0 2.8 987 

1406 11.49 25.0 2.8 1.646 

1407 14.78 4.0 3.7 205 

1408 14.78 5398) 3.7 282 

1409 14.78 708) 3.7 384 

1410 14.78 10.0 S}57/ 513 

1501 16.42 4.0 4.1 185 

1502 16.42 DoS) 4.1 255 

1503 16.42 Hoe) 4.1 347 

1504 16.42 10.0 4.1 - 462 

1505 16.42 15.0 4.1 694 

1506 16.42 25.9 4.1 al galey/ 

iu 

a a 

e ea is iu 
Deg Deg Deg 

1235) 2.8 4.3 5.28 
35 2.8 4.3 5.28 
35 AGEy 8) 5.28 

S5 2.8 4.3 5.28 

alga ks} “95 35 3.94 

aq ks} 395 315 3.94 

abe als} 395. 3.5 3.94 

LS 7995) Sop) 3.94 

3 195) S\o5) 3.94 
ib abs} 195 35 3.71 ~3.94 

Algal7d 1.00 35 Sey 19.4 

alent? 1.00 3.5 Sorat 

ial 1.00 S}G5) 3.94 

ye 1.00 365 3.94 

iL Gals} HI55 35) 3.90 ~4.20 

bats} 1.55 355 3.90 ~4.20 

13 Te55 35) 4.20 
alGals) 1.55 S}o5) 4.20 
1.13 1.55 375 4.20 

algal} 1.55 35) 3.60 ~ 3.90 

1.14 55) 3.5 3.90 
1.14 155, 3.5 4.20 

1.14 LG 5s) S355) 4.20 
1.14 IG S35) 35 3.90 

LS +95 S}58) 3.71 

1.15 095 355) So 7/4 
ilo als) +95 S}55) SJov/l 
algal) -95 e}55) 3.94 
1.15 295 Si5) Slozal 
nals) 95 &}55) Sef 394 



TABLE 4- THEORETICAL CALCULATION OF Aw AND & 
1205 TO 1208 AT x/c 

K é E Aa 

DEG DEG 

0.05 -7.41 91 42 
0.1 -10.38 .83 64 
0.3 -10.53 .70 .86 
0.5 -8.08 65 .87 

(57/5) -5.48 62 85 

1.0 -3.58 61 83 
1,5} -1.02 .60 .74 
2.0 +1513 .60 66 

to the inception delay is the oscillation amplitude 

a]. It is noted that the effect of oscillation 
amplitude on inception angle is strongly coupled 

with the phase angle. Thus, there will be no effect 

of q,; on inception if there is no phase shift. This 

is a consequence of the small oscillation amplitude 

assumption. As the reduced frequency K approaches 

zero, &>1 and 9-0, and the steady-state inception 

angle (Aa*0) is recovered. 

Experimental Results 

The range of Reynolds numbers covered in the cavita- 

tion tests was 2.4 to 4.1 x 10®. Because it is 

shown in Acosta and Parkin (1975) and Huang and 

Peterson (1976) that the existence of laminar 

separation may trigger premature cavitation in 

model tests, the boundary layer characteristics on 

the foil under stationary conditions were calculated. 

Within the Reynolds number range of the test program, 

the occurrence of laminar separation around the 

leading edge was not predicted. Flow visualization 

with dye injection supported this conclusion. The 

unsteady effect of foil oscillations on the boundary 

layer characteristics was not included in the 

calculation. 

In order to simulate prototype viscous effects 

as closely as possible, the model was tested at 

high tunnel speeds (11.5 to 16.4 m/s). Fora 

given body shape the laminar boundary layer thick- 

ness based on chord length decreases approximately 

as (Rn)-%. The effect of surface roughness on flow 

characteristics becomes more important at higher 

Reynolds number. This roughness effect was found 

in the present model tests with cavitation appearing 

prematurely in a few "weak" spots even though the 

surface was highly polished. This caused some 

difficulty in determining accurate values of 
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4y FOR TEST SERIES 

= 0.018 

NOTE: 

R fT 4.30 DEG. 

R a 3.25 DEG. 

2.80 DEG. R a 

cavitation inception angle. The relative importance 

of this uncertainty was minimized by applying the 

same cavitation inception criteria to both the 

steady and unsteady test results. 

Six series of oscillating foil tests were carried 

out. The test conditions and the test results are 

given in Table 3. Only 30 pictures were taken to 

cover one and 1/5 cycles of oscillating motion, 

and thus the angle at which inception occurred can 

only be related to two successive pictures. There- 

fore, in some cases, the inception angle is given 

in terms of a small range of angles instead of a 

single value. 

The test results from runs 1205 to 1208 are 

shown in Figure 8. In these cases, the foil was 

oscillated around a mean angle G) = 3.25° with a 

4.5 o = 3.25 + 1.55 Sin wt 

RANGE OF FOIL ANGLES IN 
4-0 TWO SUCCESSIVE PICTURES 

EQ(15), % = 1.55 DEG 

ZX RUNS 1401 TO 1406, o= 1.13 

CAVITATION-INCEPTION ANGLES, a |, (DEG) O RUNS 1407 TO 1410, w= 1.14 

T r 

oy 1.0 Wo 2.0 

REDUCED FREQUENCY, K 

FIGURE 9. Measured cavitation-inception angles for 

runs 1401 to 1410. 

TABLE 5 - THEORETICAL CALCULATION OF Aw AND @ FOR TEST SERIES 

1401 TO 1410 AT x/c = 0.018" 

K 6 rd Ao wy NOTE: 

DEG. DEG. DEG. 

0.05 =F) .91 .23 Be O,, = 3-5 DEG. 
0.1 -10.38 .83 134 3.84 
0.3 -10.53 .70 142 3.92 @ = 3,25 Wz8, 
0.5 -8.08 .65 .40 3.90 
0.75 -5.48 62 .36 3.86 CA =nEINSSEDEGE 
1.0 -3.58 61 .33 3.83 
a5 =1.02 -60 .26 3.76 
2.0 +1.13 .60 .20 3.70 
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TABLE 6 - THEORETICAL CALCULATION OF Aw AND ae 

FOR TEST SERIES 1301 TO 1306 

Iso Tomis06 nt x! Gio Ole 
NOTE: 

K é g Aa Mu 
DEG DEG DEG 

0.05 -7.41 ht 14 3.64 a, , = 3.5 DEG 
0.1 -10.38 - 83 oil 3.71 
0.3 -10.53 -70 +26 3.76 &% = 3.25 DEG 
0.5 -8.08 -65 -25 3.75 
0.75 -5.48 -62 23, SJoV/s) &% = .95 DEG 
1.0 -3.58 - 61 22 3.72 
ale) -1.02 - 60 .18 3.68 
2.0 Cra bo ale} - 60 ols} 3.65 

4.5 ‘ @ = Q,5. As seen in Figure 7, the steady suction 
@ = 3.25 + .95 Sin wt 5 

S peak occurs at a location near X/C = 0.018. The 

a predicted results based on Eq. (15) for the unsteady 

2 RANGE OF FOIL ANGLES IN cavitation inception are given in Table 4 and plotted 

J TWO SUCCESSIVE PICTURES in Figure 8 along with the experimental data. The 

a 4.0 phase angle ¢, and the ratio of dynamic to static 

2 angular pressure gradients, €, used in the predic- 

z tion were calculated with Geising's computer program. 
E Reasonably good agreement between theoretical calcu- 

S BUSI) o Gh Sh0 Use lations and experimental measurements is observed. 

2 6 ate Ree The test results from runs 1401 to 1406 and runs 
= Gite ees ere 1407 to 1410 are given in Table 3 and plotted in 

= El seen one nas Figure 9. In these cases, the foil was oscillated 

Ss around a, = 3.25° with a pitch amplitude of a) = 

1.55° and cavitation number of o = 1.14. The 

3 1.0 1.5 2.0 measured cavitation inception angle at the stationary 

REDUCED FREQUENCY, K 

FIGURE 10. Measured cavitation-inception angles for 

runs 1301 to 1310 and 1501 to 1506. 

pitch amplitude of a, = 2.8° and cavitation number 

fo} 1.35. The measured cavitation inception angle 

at the stationary condition was aj, = 4.3°. Within 
the range of reduced frequency 0.3 < K s 0.77, the 

measured unsteady cavitation inception angles were 

5, = 5-28°. That is, a significant delay of 

cavitation inception was observed at nonzero 

reduced frequencies. The unsteady inception angles 

computed. from Eq. (15) will now be examined. A 

previous discussion indicates that the suction 

pressure peak with the foil in oscillation is 

located at essentially the same X/C position as the 

suction peak corresponding to the steady condition 

TABLE 7 - THEORETICAL CALCULATION OF Aw AND @& 
AT x/c = 

K é g 
DEG 

0.05 -7.41 91 

0.1 -10.38 83 

0.3 -10.53 .70 

0.5 -8.08 .65 

0.75 -5.48 62 
1.0 -3.58 61 

ilo) -1.02 . 60 

2.0 casa li} .60 

0.018 

DEG 

1.06 

condition is ajg = 3.5°. The measured unsteady 

inception angles vary from ajy = 3.9 to 4.2° between 

K = 0.2 to 1.0 and oj = 3.6 to 3.9° at K = 1.65. 
The theoretical results obtained from Eq. (15) are 

given in Table 5 and plotted in Figure 9. Once 

again, a Significant delay in cavitation inception 

is observed experimentally and predicted theoret- 

ically at nonzero reduced frequencies. The agree- 

ment is fair. Part of the discrepancy between theory 

and experiment may be due to the lack of accurate 

resolution in measuring foil angles, since only 

30 pictures were taken to simulate 1 and 1/5 cycles 

of foil oscillation. The phase angle ¢$ is seen to 

change the sign from negative to positive values 

at K above 1.5. Consequently, at high values of 

reduced frequencies the amount of reduction in 

cavitation inception delay is reduced. This trend 

is observed experimentally and predicted theoret- 

ically. 

The test results from runs 1301 to 1306, 1307 

Lu 

NOTE: 

a, = 4.3 DEG 
s 1 

a > = 3.25 DEG 

(ogy = 6.0 DEG 



Peres = 5 m/s 

8 fe) o = 2.5 (DEG) 
O 

lu a =3+6 Sin wt 

CAVITATION-INCEPTION ANGLES, a. 

oy 1.0 1.5 2.0 

REDUCED FREQUENCY, K 

FIGURE 11. Measured cavitation-inception angles by 

Miyata (1972). 

to 1310 and 1501 to 1506 are given in Table 3 and 

plotted in Figure 10. The foil was oscillated 

around a, = 3.25° with a pitch amplitude of a) = 

0.95° and cavitation number o = 1.12 to 1.15. The 

measured cavitation inception angle at the stationary 

condition is aj, = 3.5°. The measured maximum 

steady inception angles are aj, = 3.70 to 3.93°. 

Once again, a Significant delay in cavitation 

inception at nonzero reduced frequencies is mea- 

sured. The theoretical calculations based on Eq. (15) 

are given in Table 6 and plotted in Figure 10. The 

agreement is reasonably good. 

In order to provide an insight into the effect 

of a] on cavitation delay, a theoretical example 

is computed in Table 7 and plotted in Figure 8. 

The foil is assumed to pitch around a, = 3.25° with 

an amplitude of a] = 6.0°. The stationary cavita- 

tion inception angle is assumed to be dj, = 4.3°. 

It is seen in Figure 8 that a significant delay in 

cavitation inception can be expected if the pitch 

amplitude is increased. This trend is also observed 

experimentally by comparing Figures 9 and 10. 

A two-dimensional foil undergoing pitch oscil- 

lations around an axis located at mid-chord was 

tested by Miyata et al. (1972). Two of the typical 

test results are produced in Figure 11 for com- 

parison. For the data shown the foil was oscillated 

with a pitch amplitude of a] = 6.0°. As expected 

(See Figure 8) a significant increase in the angle 

of cavitation inception is noticed for 0 < K < 1.2. 

For the second set of data shown in Figure 11, the 

foil was oscillated with a pitch amplitude of 

a] = 3.0°. A similarity between Figure 8 and 

Figure 11 is noticed. Although the foil shapes and 
the locations of pitch axes are different between 
Miyata's experiments and ours, the effect of 

unsteadiness on cavitation inception is similar for 
two model tests. A similar trend is also noticed 
in Radhi's experiments (1975). 

In the review papers by Acosta and Parkin (1975) 

and Huang and Peterson (1976), one is clearly 

reminded that even under steady conditions the 
cavitation inception process is extremely complex. 
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The theoretical prediction of cavitation inception 
angle under steady conditions is still very difficult. 
However, if the steady-state inception angle Ais is 
known from model tests, the effect of unsteadiness 
on cavitation inception may be estimated reasonably 
well by Eq. (15). Further investigations are 
needed to explore discrepancies between theory and 
experiment and the applicability of Eq. (15) to 
different foil shapes and for pitch axis different 
from the ones examined here. 

5. LEADING EDGE SHEET CAVITY INSTABILITY 

Wu (1972) has provided a very useful review of the 

physics of cavity and wake flows which may help to 

explain the observations of the present experiment. 

The essence of his description, applicable to the 

partial cavity condition, is that the free shear 

layer enveloping the cavity is unstable. The cavity 

occupies a portion of what can be referred to as 

the wake bubble or near wake, physically delineated 

in steady flow by a dividing streamline that is 

characterized by a constant or nearly constant 

pressure. For the condition where the cavity within 

the near wake is unsteady, the region is, strictly 

speaking, not defined by a streamline but by a 

material line which is difficult to observe experi- 

mentally. Because of this difficulty, we will 

initially assume that a quasisteady approximation 

is valid. When the cavity is just beyond the 

inception condition, its surface should be smooth 

as would be expected with a laminar shear layer. 

As the cavity grows in length the free shear layer 

would tend to become unstable. Transition from a 

laminar to turbulent shear layer initially takes 

place at the downstream end of the near-wake. A 

further extension of the cavity length causes 

transition to gradually move upstream along the 

free shear layer and the far-wake becomes irregular. 

This is comparable to the bursting of a short laminar 

Separation bubble in a single phase fluid. With a 

continued increase in cavity length, transition 

can begin at the leading edge of the cavity. 

In applying here the general features of the 

near-wake outlined by Wu (1972) no assumption is 

made as to whether the cavity occupies all of the 

near-wake region since the detailed physics of the 

region downstream of the cavity trailing edge are 

uncertain. One possibility is that the roll-up of 

the shear layer into vortices is completed at the 

near-wake closure where the vortices break away. 

If this occurs, it is reasonable to expect a 

periodicity in this shedding process. 

The variation in foil pressure at the P; location 

(see Figure 1) can give a useful insight into what 

is happening both downstream of the cavity and 

within the cavity when the foil is oscillaing with 

a pitch amplitude (a1) of 1.55°. Figure 12 shows 

an oscillograph record of the pressure variation 

P, for a cavity that reaches its maximum length 

downstream of the gage location. (A) is the 
region where the foil surface is fully wetted and 

the pressure appears to follow the variation 

expected as the angle of attack, a, is varied. At 

point (B), the cavity begins to cover the gage and 

in this example the pressure drops from the fully 

wetted pressure of 31.7 kPa to the cavity pressure 

in 0.003 seconds. The cavity pressure remains 

constant, except for several pressure spikes (C) of 



376 

FIGURE 12. Sample oscillograph record for 

the variation in foil surface pressure with 

foil angle at K = 0.26, Van) RS am/S\, 

Dey =i/6%2) kPa) =) 325°) Pal oo san Ot. 

millisecond duration, until the trailing edge of 

the cavity recedes past the P, gage (point D). 

The absolute magnitude of the cavity pressure 

could not be accurately determined from these 

experiments since the in situ pressure gages were 

not calibrated for the condition of a gas/liquid 

interface at the entrance to Helmholtz-type chamber 

over each gage. As shown in Figure 12, point B, 

the growing cavity does not appear to produce large 

foil surface pressure fluctuations at its downstream 

edge. However, when the cavity recedes, (ie., point 

D) then the foil surface pressure fluctuations can 

be comparable to the magnitude of the dynamic 

pressure. 

Based on photographic records it appears that 

when the cavity is expanding, its trailing edge is 

disturbed as one would expect if the shear layer 

were unstable at that location. Beginning at the 

cavity trailing edge and then moving forward, the 

cavity surface becomes highly disturbed, irregular, 

and bubbles are introduced into the shear layer, 

just as one would expect when transition in the 

shear layer moves forward. The cavity pressure, 

as measured by the gages Pj, P2 and P3, remains 

constant throughout this change in the surface of 

the cavity. 

During the early stages of sheet cavity growth, 

when only the cavity trailing edge appears disturbed, 

small regions of bubbles are shed from the sheet 

cavity trailing edge. This shedding process becomes 

more accentuated as the sheet cavity length increases 

and more of its surface becomes disturbed. High 

speed movies taken at 9,300 frames per second 

clearly show the highly turbulent characteristics 

originating at the trailing edge of the sheet 

cavity and progressively moving upstream. 

The sequence of vapor shedding from the cavity 

trailing edge, as determined by high speed movies 

taken at 9,300 frames per second, is as in the 

sketches of Figure 13. The photographs of Figure 

14 demonstrate a phase in the vapor bubble shedding 

process from the sheet cavity as sketched in 13c 

with two regions of shed vapor downstream. It 

should be noted that since the foil surface is 

very smooth, a reflection of the shed vapor is 

seen in the side views. Therefore a dashed line 

PRESSURE GAGE Ps 

PRESSURE GAGE Po 

PRESSURE GAGE P) 

FOIL ANGLE 

" FOIL ANGLE MAX. 

ai neeanimttamenen CAMERA PULSE TRACE 

has been added to Figure 14 to indicate the 

separation of the vapor and its reflected image. 

This shedding process is periodic and for the 

example shown in Figure 14 the shedding frequency 

at a given spanwise location is nominally 700 hertz. 

The view shown in Figure 14 covers nominally the 

center third of the foil span. Visual observations 
with strobescopic lighting indicate that the leading 

edge sheet cavitation, for nonzero values of K, 

typically consists of a series of 3 dimensional 

cavities across the span. 

In Figure 15 the top view shows a depression in 

the cavity surface (a) just above P); and a rise in 

cavity height (b) just downstream of the depression. 

At this instant a pressure "Spike" is detected by 

P, (see for example C in Figure 13). This condition 

precedes the shedding of a small region of vapor 

bubbles upstream of the sheet cavity trailing edge 

and significantly deforms the cavity trailing edge 

shape. It is the forerunner of the condition that 

will be referred to in this paper as "cloud" cavita- 

tion. It is interesting to note that after 

correlation: of over 600 photographs of the leading 

edge sheet cavitation with the pressure gage signal, 

the pressure "spike" always occurs when a depression 

in the cavity surface exists over the pressure gage. 

The converse, however, was not observed, ie., the 

"spike" can occur when no depression was discernable 

in the photographs. These "spikes" can occur without 

any significant gross change in the observed 

character of the sheet cavity surface in the general 

— 

Lo 
CAVITY FLOW 

+—— 

(a) FOIL LEADING (b) 
EDGE 

(c) x (4) 

FIGURE 13. Sequence of vapor shedding from the cavity 

trailing edge. 
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vicinity of a pressure gage. 

"spikes" can occur during the life of the sheet 

cavity it appears improbable that they are due to 

the interaction of a postulated reentrant jet with 

Since numerous pressure 

the sheet cavity surfaces [Knapp et al. (1970)]. 

These "spikes" frequently have amplitudes which are 

comparable to the dynamic pressure and certainly 

exceed the estimated static pressure in the free 

shear layer over the pressure gage location. Quite 

possibly, these pressure "spikes" are due to the 

free shear layer itself since they only occur when 

the cavity surface indicates a turbulent shear 

layer is present. When the reduced frequency is 

high, for example at K = 1.65, the fully wetted 

pressure variation leads the foil angle by 68° and 

then no pressure "spikes" are produced at the pressure 

gage location as can be seen in Figure 16. At 

these high reduced frequencies the periodic shedding 

t SIDE VIEW 

4 ste VIEW 

7/7 

ROW 

FIGURE 14. Progressive shed- 

ding of vapor from sheet cavity 

trailing edge, K = 0.26, 

V_= 11.5 m/s, P_ = 76.2 kPa, 
© (o) come 

a = 3.25 + 1.55 sin wt. 

—— FLOW 

FIGURE 15. Cavity surface de- 

pression producing pressure 

"SPIKE" P, gage location, 

1S = Oo dain Ni, > aiboS m/s, 

Po =, 76-2 ry 6 = SoOSo, + 

1.55 sin wt. 

from the sheet cavity trailing edge downstream of 

the pressure gage is still observed. 

The last aspect of the leading edge sheet cavity 

instability to be described in this paper is that 

which will be called cloud cavitation. The three 

principle features of cloud cavitation for K 2 0 

are as follows: 

(1) A large surface area of the sheet cavity 

becomes highly distorted and undergoes a 

significant increase of overall cavity 

height in the distorted region, (Figure 17). 

(2) Once this distorted region begins to 

separate from the main part of the sheet 

cavity, the upstream portion of the sheet 

cavity develops a smooth surface and a 

reduced thickness (Figures 18 and 19). 

(3) The trailing edge of the smooth surfaced 
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FIGURE 16. Sample oscillo- 

graph record for the variation 

in foil surface pressure with 

foil angle at K = 1.65, 

Vina ellis> m/s, P_ = 76.2 kPa, 
a) colt 

ON= 35255 1 S5iisiniwwts. ERT 

FIGURE 17. Initial stage in 

the process of cloud cavitation 

formation, K = 0.51, woe 14.8 

m/s, mS 124.1 kPa, a = 3.25 

+ 0.95 sin wt. 

region then moves downstream, becomes 

unstable at its trailing edge, and quickly 

develops the characteristic appearance of 

the leading edge sheet cavity elsewhere 

along the span (see feature a in Figure 20); 

or, the trailing edge of the smooth portion 

of the sheet cavity moves upstream to the 

foil leading edge and the cavity disappears 

(Figure 21). In Figure 21 a dye trace 

injected at the foil leading edge can be seen. 

When the foil is stationary (K=0) cloud cavita- 

tion shedding can be very periodic as can be seen 

in Figure 22 which shows the oscillograph trace of 

the pressure gage response. The frequency of 

shedding for the condition illustrated in Figure 

ponvonslisa cbintasnsitauanoanwanshonanatbia 
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PRESSURE GAGE Po 

PRESSURE GAGE Py 

FOIL ANGLE 
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{ SIDE VIEW *—TOP VIEW 

22 is 42 Hz based on the response of the pressure 

gage P}. Figure 23 shows a photograph of the type 

of cavitation that produced the time pressure history 

of Figure 22. In Figure 23, (a) is a cloud just in 

the process of being shed, (b) is a cloud previously 

shed at a nearby spanwise location, and (c) is a 

cloud shed earlier at the same location as (a). 

The cavities did not shed in the manner of the two- - 

dimensional separation which typically occurs in 

sharp leading edge foils [Song (1969),Besch (1969), 

Wade and Acosta (1965)]. Instead, cavity shedding 

was highly three-dimensional and more or less 

independent of the sheet cavity instability occur- 

ring several cavity lengths away along the foil 

Span. However, it appears that for the trailing 

edge shedding and the cloud cavitation (at least 
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for K = 0) shedding occurrence alternated between 

several spanwise locations. This is clearly seen 

in Figure 23. 

Several other aspects of the cavity shedding 

process were apparent. The shed vapor had an 

initial gross rotation with the same direction as 

occurs in the free shear layer. This was evident 

from the high speed movies viewing the cavitation 

along the span (ie., a side view), and can also be 

inferred from the pulse camera photographs taken 

from the same view. The gross volume of the shed 

vapor had relatively little dispersion prior to its 

collapse but frequently developed within it regions 

of apparent bubble coalesence prior to collapse, 

as can be seen in Figures 14 and 24. 

On the basis of the previously described defini- 

tion of cloud cavitation, its occurrence was 

determined from available photographs. The presence 

of cloud cavitation as a function of the ratio of 

SIDE VIEW 

{ SIDE VIEW 
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FIGURE 18. Cloud cavity sepa- 

ration from leading edge sheet 

cavity (example 1), K = 0.99, 

We S dled m/s, P= 76.2 kPa, 

a = 3.25 + 1.55 sin wt. 

—— FLOW 

FIGURE 19. Cloud cavity sepa- 

ration from leading edge sheet 

cavity (example 2), K = 0, 

WV = deo8 m/s, P= 124.1 kPa, 

Oe—isey25eR 

maximum sheet cavity length, %m, to chord length, 

C, and reduced frequency K is shown in Figure 25. 

The data used to define the condition for the 

occurrence of cloud cavitation were all taken at 

nominally the same value of o. Figure 25 shows 

that for a given (2m/c) value, cloud cavitation 
can occur at nonzero K values whereas none would 

be apparent for K = 0. For example, if test 

conditions were adjusted such that 2m/e = O26, Ete 

0.3 < K < 0.4, then one could conclude as did Ito 

(1976) that there was a "critical" reduced frequency 

associated with the onset of cloud cavitation. 

Figure 25 also shows two curves representative 

of the influence of the value of a, on cloud cavita- 

tion. It is readily apparent from the data in 

Figure 25 that the conditions for cloud cavitation 

cannot be simulated by quasi-steady experiments. 

As shown in Figure 25, cavity length is strongly 

dependent on K. If the angle of a stationary foil 
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FIGURE 20. Final stage in cloud 

shedding process, K = 0.21, 

VEX = 14.8 m/s, Pi = 124.1 kPa, 

a = 3.25 + 0.95 sin wt. 

FIGURE 21. Desinent condition 

for leading edge sheet cavity; 

K = 0.49, V| = 11.5 m/s, 

P_ = 76.2 kPa, 0 = 3.25 + 1.55 

sin wt. 

was set to the maximum angle the oscillating foil 

attained (4.2° for a; = 0.95 in Figure 25), the 

maximum cavity length could be as much as a factor 

of two larger than for finite values of K (eg., 

K = 1.2). 
The data plotted in Figure 26 show that within 

the accuracy of the experiments, a variation in 

velocity from 11.5 to 16.4 m/s produced no signifi- 

cant change in the results shown in Figure 25 other 

than that expected for the small variation in o 

that occurred between tests. It appears that the 

parameters of K, 0, and aj, are sufficient to 

correlate all of the present data with the presence 

of cloud cavitation. 

6. CONCLUSIONS 

In order to improve the physical understanding of 

the cavitation inception process and the formation 

—— FLOW 

eee ee ee ee 
La tne 

i} SIDE VIEW 
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of cloud cavitation on marine propellers, a large 

two-dimensional hydrofoil was tested in the DINSRDC 

36-inch Water Tunnel under pitching motion. The 

foil was instrumented with pressure transducers to 

measure the unsteady surface pressure due to foil 

oscillation, and photos were taken to correlate 

cavitation inception and cavity patterns. 

Prior to the occurrence of cavitation on an 

oscillating foil, the foil is in a fully wetted 

condition. Knowledge of the pressure distribution 

on a fully wetted foil can be expected to provide 

useful information for prediction of unsteady cavi- 

tation. Fully wetted, time dependent, experimental 

pressure distributions were compared with results 

from Giesing's method for calculating unsteady 

potential flow. Good correlation between the 

prediction and the experimental measurements was 

obtained for both dynamic pressure amplitudes and 

phase angles within the range of reduced frequencies 

investigated (K = 0.23 to 2.30). This good corre- 
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lation supports McCroskey's conclusion that unsteady 

viscous effects on fully wetted oscillating airfoils 

are less important than unsteady potential flow 

effects, if the boundary layer does not interact 

significantly with the main flow. 

Six series of oscillating foil experiments were 

carried out in this test program to study the 

leading edge sheet cavity growth and collapse. 

A simplified mathematical model was developed to 

explain experimental results for leading edge sheet 

cavitation inception. The mathematical model 

utilizes Giesing's method for calculating the 

unsteady potential flow. A significant delay in 

unsteady cavitation inception was both predicted 

and measured. A further delay in cavitation 

inception was also observed and predicted with 

increasing pitch amplitude. It is shown that 

unsteady cavitation inception is a function of: 

ett aiat 

i cathnpinyyremrea FOIL ANGLE (K=0) 
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FIGURE 22. Surface pressure 

fluctuations for K = 0, 

We datos m/s, P= 76.2 kPa, 

| CAMERA PULSE TRACE GS 3,250, 

a— FLOW 

FIGURE 23. Alternate spanwise 

cloud cavitation shedding for 

i= Op Wy = UitsS m/s, i = 1962 

kPa’, O) — 3/25). 

(1) the ratio of dynamic to static angular 

pressure gradients 

(dc_/da) / (dc _/da) 
iS) u Pp s 

and, 

(2) the phase shift between the foil angle 

and the dynamic pressure response. 

Due to the phase lag in pressure response a signifi- 

cant delay in unsteady cavitation inception is 

predicted theoretically and observed experimentally. 

Additionally, the angle at which cavitation inception 

occurs increases with increasing pitch amplitude. 

This effect results from a change in the phase angle. 

It is well known tha even in a steady condition 

the cavitation inception process is extremely complex. 

The theoretical prediction is still very difficult. 



FIGURE 24. Apparent coales- 

cence of vapor bubbles within 

cloud cavity; K = 0.28, 

We = Wot m/s, Po = 124.1 kPa, 

a = 3.259 + 1.55° sin wt. 

a = 3.25 +a Sin wt 

Vq = 11.49 m/s 6= 1.13 

(°) = FOIL ANGLE AT K = 0 
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Nevertheless, if the inception angle djg is known 

from the steady model tests, the unsteady effect 

on cavitation inception, to the first order, may 

be estimated by the present method. Since the 

present tests were carried out with only one foil 

shape and only one pitch axis location, further 

experiments are required, and in particular, the 

range of variables should be extended. 

Based on photographic observations of the leading 

edge sheet cavitation instabilities, it appears 

that the free shear layer and near-wake stability 

concepts reviewed by Wu (1972) give a reasonable 

qualitative description of the physical process. 

The inherent instability of the free shear layer 

and associated vortex shedding appear to provide 

a reasonable model for the breakup of a sheet 

cavity. However, the detailed hydrodynamics 

associated with the near-wake closure region can 

still only be postulated. The commonly held concept 

of a reentrant jet, Wu (1972), may provide a reason- 

able description applicable to the closure of the 

near-wake region during the actual shedding of 

vapor. For sheet cavitation extending over only a 

portion of the foil chord this reentrant jet may 

not actually penetrate the cavity itself but pene- 

trate only a locally separated region just down- 

stream of the sheet cavity trailing edge. In any 

event, the presence of a reentrant jet is not 

required to explain the inherent instability and 

breakup of the sheet cavity. 

For the conditions of the experiments reported 

here, where the gross flow is nominally two dimen- 

sional, the cavity instability is not coherent to a 

significant extent along the foil span. In other 
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FIGURE 26. Influence of Vie 

1.5 Por Gyr and K on cavity length 

(2m/c) . 

words, the cavity instability is highly three- 

dimensional and appears to be principally dependent 

on conditions in the immediate upstream free shear 

layer flow. The most extreme form of cavity insta- 

bility is manifest as a large shed cloud of vapor 

and thus referred to in the literature as "cloud" 

cavitation. 

Within the context of the experimental results 

reported here, the principle parameters controlling 

the formation of cloud cavitation are reduced fre- 

quency, K, cavitation number, o and foil oscillation 

amplitude, 4}. The maximum cavity length, (2m/c), 

is a function of these three parameters. However, 

it has been shown that predictions of lm/e at finite 
reduced frequencies cannot be based on the cavitation 

observations at zero reduced frequency. With o con- 

stant, the results show that it is possible to have 

no cloud cavitation at finite reduced frequencies - 

even though it was present on a stationary foil set 

to the maximum unsteady angle. However, if the 

steady foil is set to the mean angle of oscillation, 

@, and no cloud cavitation is present, then it is 

easily shown that at finite reduced frequencies 

cloud cavitation will be present. Thus, Ito's con- 

clusion that there exists a "critical" reduced fre- 

quency for the onset of cloud cavitation appears to 

be the result of the specific chosen values of the 

parameters, K, 0, and 4). 

The implication of the above results is that the 

prediction of the occurrence of cloud cavitation 

for hydrofoils in waves and propellers in wakes can- 

not be based solely on the performance in calm 

water or uniform flow. 
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Cavitation on Hydrofoils in 

Turbulent Shear Flow 

H. Murai, A. Ihara, and Y. Tsurumi 

Tohoku University, Sendai, Japan 

ABSTRACT 

Conditions and positions of inception, locations of 

zones, and aspects and behaviors of bubbles and 

cavities of cavitations occurring on two hydrofoils 

with the profiles of Clark Y 11.7 and 08 in shear 

flows and a uniform flow have been observed and 

measured, and correlated with measured pressure 

distributions on the hydrofoils and turbulence 

levels and size distributions of cavitation nuclei 

in free streams. 

At attack angles small for the profile, traveling 

cavitations begin near positions of minimum pressure 

and at cavitation numbers about the same as absolute 

values of minimum pressure coefficients, irrespective 

of flow shears in free streams provided local values 

are used. Discrepancies between conditions and 

positions of inceptions and pressure coefficients 

and their distributions, and sizes of traveling 

bubbles depend on qualities of free streams. 

On the hydrofoil with the Clark Y 11.7 profile, 

a traveling bubble in a zone of rising pressure, 

deforms, creating a projection in shear flow, or 

two projections in uniform flow, leaves only the 

projection and then collapses. On the hydrofoil 

with 08 profile, a traveling bubble collapses after 

the deformation caused by the instability of the 

bubble surface. On both hydrofils, bubbles collaps- 

ing symmetrically and asymmetrically, looking like 

micro jets forming, can be found. 

At attack angles large for the profile, fixed 

cavitations occur. Conditions and positions of 

inception are similar to those of traveling cavita- 

tions. In the boundary layers on both side walls, 

fixed cavitations occur at relatively large 

cavitation numbers, possibly equal to the absolute 

values of local minimum pressure coefficients, and 

even develop beyond the boundary layers. Cavitation 

zones on the low-speed side are larger than those 

on the other side, and those occurring in the 

boundary layers of uniform free streams are of an 

intermediate size. 
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At attack angles intermediate for the profile, 

fixed and traveling cavitations occur at the same 

time and tend to become fixed only on the Clark Y 

11.7 profile. On the 08 profile, fixed cavitations 

at the leading edge and traveling cavitations at 

about the mid-chord appear at the same time in shear 

flows, but only fixed cavitations occur and develop at 

the leading edge in uniform flows. 

1. INTRODUCTION 

Many researches on the cavitation characteristics 

of hydrofoil profiles have been published, and the 

appearance, the degree, and the effects on the 

hydrodynamic behavior of hydrofoil of the incipient 

and developed cavitations occurring on hydrofoils 

have been discussed by Numachi (1939, 1954), Daily 

(1944, 1949), and Kermeen (1956a, 1956b). Recently, 

the effects of the behavior of boundary layers and 

the turbulence in the free stream on the inception 

and development of cavitations on hydrofoils were 

reported by Casey (1974), Numachi (1975), and Blake 

et al. (1977). Although they have been concerned 

with cavitation occurring on hydrofoils in a free 

stream of uniform velocity, actual blades of 

hydraulic machines, including ships' propellers, 

work mostly in nonuniform flow, and the effect of 

nonuniformity might have to be examined as well. 

Investigations on cavitation occurring in shear 

layers have been made by Daily and Johnson (1956) 

in a zone of wall shear turbulence, by Kermeen and 

Parkin (1957) in a wake behind a circular plate 

and by Rouse et al. (1950) and Rouse (1953) in 

submerged jets. But research concerning the cavita- 

tion occurring on hydrofoils laid in a free stream 

with a shear is not available as far as the authors 

are aware. 

The present report is intended to clarify the 

influence of the spanwise shear, uniform in the 

core and the accompaning boundary layers on both 

sides of the free stream and its turbulence on the 
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FIGURE 1. High speed water tunnel. 

inception and development of cavitation and the 

aspect and behavior of cavitation cavities occurring 

on two hydrofoil profiles with different cavitation 

characteristics. 

2. EXPERIMENTAL APPARATUS AND METHODS 

High Speed Water Tunnel 

The water tunnel used for the experiment is shown 

schematically in Figure 1. The tunnel contains 

180m? of water. The water is circulated by the 

centrifugal pump, P, whose revolution is controllable. 

Bubbles generated in the measuring section, the 

duct, and the pump mainly disappear in the reservior 

T. In the reservoir the water first flows upward 

to the free surface at the top of the reservoir, 

and then down very slowly through an area of 20m? 

to the bottom. Two spaces, one at the entrance 

corner of T and the other at the top of the tunnel, 

separate bubbles from the water and continuously 

remove the separated air. The water sucked up from 

the bottom of T turns to the horizontal direction 

through corner vanes, and enters the measuring 

section through the honey comb, S, made of synthetic- 

resin pipes of 26mm diameter, 6mm thick, and 450mm 

long. Then it flows through two nozzles, Nl and 

N2, which contract the cross section from 2100x1400mm? 

to 1500x1000mm2 and to 1200x200mm? , the room for 

installing the shear grid, and the nozzle for 

contracting the cross section from 1200x200mm? to 

610x200mm2. The contraction ratio is 24:1 in all. 

The water flowing out of the measuring section flows 

through the diffuser and back to the circulating 

pump P. 

The tunnel pressure is controlled by introducing 

compressed air to the top of the reservoir or by 

U/Uc 3 
0,02 &, 

Uc 0.01 = 
oa 

© 8.23 m/s Q A 

| 4 5.60 m/s = 

07 | SIL 1 ati 

00 601 0.2 03 #04 O05 0.6 Or . OG 09 1.0 

y/h 

FIGURE 2. Velocity distribution at no grid condition. 

lowering the free surface led from the top of the 

tunnel, the maximum and minimum pressures being 

48x10° Pa and -0.8x10° Pa. The flow velocity at 

the measuring section is controlled from the measur- 

ing station by controlling the speed of the 

circulating pump P. 

Measuring Section 

The measuring section has a cross section 200mm 

wide and 610mm high and its total length is 3000mm. 

The first upstream 1000mm has two plexiglass windows 

in each side, and upper and lower wall. In this 

experiment, the hydrofoil is installed through two 

downstream-Side windows in both side walls. Figure 

2 shows the spanwise distributions of the velocity 

and the static pressure at the position of the 

mid-chord of the hydrofoil in the case of no grid. 

The velocity profile is almost uniform except in 

the 10% the boundary layers on both side walls. 

The static pressure, expressed as the difference 

from that at the side wall, is constant within the 

accuracy of this experiment. 

Hydrofoils 

Two hydrofoils have been prepared for the experiment, 

each of which has 100mm chord and 700mm span. ‘Two 

profiles have been selected; one is Clark Y 11.7 

and the other 08, dimensions of which are shown in 

Table 1. The former is selected for the purpose of 

examining the influence of the behavior of the 

boundary layer on the hydrofoil surfaces on the 

inception and development of cavitation and the 

aspects of cavitation bubbles or cavities, because 

it has a round nose and a surface pressure distri- 

bution rising toward the trailing edge. The latter 

is selected as a typical profile among ones designed 

by Numachi (1952) for high-speed flows, and has a 

sharp leading edge and comparatively good cavitation 

characteristics for its simple shape. 

The hydrofoil of the Clark Y 11.7 profile has 

14 and 13 piezometer holes of 0.4mm diameter on the 

suction and pressure surfaces respectively, and one 

of the 08 profile has 13 and 13 piezometer holes, 

“Table 1 Profile Forms of Hydrofoils 
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Table 2 Positions of Piezometer Holes 
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as are shown in Table 2. The holes are inclined to 

the direction of the free streams as to have no 

influence on the pressures measurements of each other. 

Pressures are measured by using a mercury-water 

manometer. 

For measurements of pressure distributions, the 

hydrofoil is shifted spanwise so as to allow the 

piezometer holes to cover the whole 200mm span. 

For observations of cavitations, the part of hydro- 

foil having no piezometer hole is used. 

Shear Grids 

In order to examine the influence of shear flow, 

the free stream at the measuring section has been 

made to have the simplest shear, that is, uniform 

shear. The grids for creating uniform shear flow 

are composed of straight rods arranged perpendicular 

to the free stream and the hydrofoil span with non- 

uniform spacings calculated by using the theory of 

Owen and Zienkiewicz (1957). The spaces near both 

side walls were modified according to Liverey and 

Turner, (1964) and Adachi and Kato (1973) and are 

shown in Table 3. In order to make two different 

free streams having the same shear but different 

turbulence, two grids were made, composed of rods 

with different diameters, 20mm for No. 1 and 15mm 

for No. 2. 

TABLE 3 Rod Spacings of Shear Grids 

Grid No. l 

Rod Number it 2 3 4 

distance from low-speed 

side wall (mm) AWoil SQLS) alosjo%4 al Sjs}3} 

Grid No. 2 

Rod Number 1 2 3 4 5 

distance from low-speed 

side wall (mm) 16 47.4 81.5 118.4 161.2 
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The shear grid is installed at a position 1500mm 

upstream from the mid-chord of hydrofoil, where 

the cross section of the duct is about twice as 

great as that of the measuring section so as to 

keep the grid free from cavitation. 

Measurement of Velocity and Static Pressure at the 

Measuring Section 

Spanwise distributions of the velocity and the static 

pressure are measured at the position of the mid- 

chord of the hydrofoil in the absence of the 

hydrofoil, by using a Prandtl-type Pitot tube of 

3mm diameter. They corresponded to the difference 

of static pressures at the inlet and exit of the 

second nozzle, N2, and the static pressures at the 

exit of the nozzle and the position 530mm upstream 

and 170mm below the position of the mid-chord of 

hydrofoil. 

It has been pointed out by Lighthill (1957) that 

total pressures measured by using a Pitot-tube in 

a shear flow exhibit larger values than real ones 

due to displacement effects of a Pitot-tube. The 

displacement thickness of the boundary layer on 

the Pitot-tube used in this experiment, having a 

ratio of outer to inner diameters of 0.6, is 

calculated as about 0.54mm by use of the empirical 

equation presented by Yound and Mass (1936) and 

Macmillan (1956). The error in this experiment 

caused by the displacement thickness is the order 

of 0.08mm/s for a shear factor of 0.15 in the core 

of the shear flow so that it can be neglected, 

except in the boundary layers. There the shear 

factor, on which the error is proportional, is 

considerably large, especially near both side walls. 

The static pressure at the measuring section is 

limited due to the following two reasons: at the 

upper limit, by the strength of the differential 

piezometer used for detecting the velocity at the 

measuring section; and at the lower limit by the 

need to prevent the shear grid from cavitating. 

The prescribed velocities at the measuring section 

are determined so as to keep the static pressure 

at the measuring section within the above-written 

limits for obtaining the inception and development 

of cavitation corresponding to the angles of attack 

of the hydrofoils, as shown in Table 4. 

Measurement of Turbulence 

Spanwise distributions of the components of turbu- 

lent velocity in the directions parallel to the 

free stream and perpendicular to the free stream 

and the hydrofoil span are measured at the position 

of the mid-chord of hydrofoil (in the absence of it) 

by using the Laser-Doppler velocimeter, DISA 55L 

Mark II. Each component of turbulent velocity is 

TABLE 4 Velocity and Pressure at the Test Section 

on Cavitation Experiments 

a (rad) Velocity (m/s) Pressure (105 Pa) 

0.0 iil ©) -0.64 ~ -0.45 

0.052 10.0 HOS  —0)53)5) 

0.105 9.0 —=0)5 (60) ~ 0), ALab 

(0) 5 15) 7/ 8.0 =0).33' + +0)-40 
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FIGURE 3. Schematic diagram for nuclei measurements. 

detected as an absolute value of the root mean 

square. 

Observations and Measurements of Cavitation 

Cavitation inceptions are seen by the naked eye 

under 50Hz, stroboscopic 3yus flash illumination. 

An incipient cavitation number is defined by using 

the static pressure at which the inception is 

detected while reducing the static pressure at a 

low rate and the local free stream velocity. How- 

ever, in the boundary layers the velocities at 

outside edges are taken while the free stream 

velocity is kept at the prescribed value. Desin- 

ences are too intermittent and indefinite to be 

detected definitely in the course of raising the 

static pressure. 

For the measurements of positions of inception 

and the observations of appearances of cavitation 

bubbles or cavities, photographs of 3 Us exposure 

and high-speed motion pictures of 3000 frames per 

second and 2 us exposure for each frame were taken. 

For the high-speed photography, the high-speed 

camera, FASTAX, was used synchronized with the 

high-speed stroboscope made by E. G. and E Co. Ltd. 

For the measurements of average locations and shapes 

of cavitation regions, photographs of 1/60 s 

exposure were used. 
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FIGURE 4. Velocity and static pressure distribution 

for shear grids. 

Relative Measurement of Cavitation Nuclei 

Size distributions of gas nuclei are measured by 

using the sound-attenuation method of Schiebe 1969. 

The measuring system is shown in Figure 3. The 

frequency range of swept pulses was 20kHz~1000 kHz. 

Both probes for emission and reception were 25mm 

diameters, made of a crystal, and exposed directly 

to water. The measurements were relative ones for 

comparison between the three cases of no grid and 

grids No. 1 and No. 2 because the system has not 

yet been calibrated for bubbles with prescribed 

definite diameters. 

Measurements were carried out at four positions 

in the spanwise direction at the mid-chord of 

hydrofoil perpendicular to the free stream and the 

hydrofoil span. 

3. RESULTS OF EXPERIMENT AND DISCUSSIONS 

Shear Flow at Measuring Section 

The velocity profiles normalized by each velocity 

at the mid-span and the distributions of the static 

pressure expressed as the difference from one at 

the side wall and normalized by each dynamic pressure 

at the mid-span for the grids No. 1 and No. 2 are 

shown in Figure 4. The flow shear for grid No. 1 

is uniform in the free stream core and the non- 

dimensional shear factor is 0.15. That for grid 

No. 2 is about the same as for grid No. 1 at half 

the core of the free stream on the high-speed side 

but smaller at the other half. The non-dimensional 

shear factor is 0.06. Both have boundary layers of 

10% thickness span on both sides. The static 

pressure is higher in the free stream core than on 

the side walls by about 1% or a little more of the 

dynamic pressure at mid-span. Scatters of plots 

are within the accuracy of this experiment. 

Spanwise Distribution of Turbulence 

Root mean squares of two components of turbulent 

velocity, one stream-wise and the other perpendic-— 

ular to it ahd the hydrofoil span, are measured 

in every free stream, and shown in Figure 5 

normalized by Uc. The velocity at the mid-span was 

kept at 9.86 m/s. When both are expressed as the 

turbulence levels based on the local velocity of 

free stream, U, for the cases of the two shear grids, 

both u'/U and w'/U vary so little in the spanwise 

direction that they can be regarded as constant 
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FIGURE 5. Spanwise 

distribution of 

turbulence. 
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FIGURE 6. Spanwise variation of size distribution of 

cavitation nuclei. 

within the accuracy of this measurement. u'/U was 

6.8 and 6.2% in the case of grids No. 1 and No. 2, 

respectively, and w'/U was 3.6% in the case of both 

two shear grids. It has been reported by Harris 

et al. (1977) that in a shear flow generated by a 

shear grid, w' and the other lateral component of 

turbulent velocity, say v', are almost the same. 

If it is also assumed that v' = w' in this experi- 

ment, the resultant turbulence levels were 8.5 and 

8.0% in the case of the grids No. 1 and No. 2, 

respectively, in the core of the free stream. In 

the case of no grid both u'/U and w'/U were 0.1%, 

and the turbulence can be regarded as isotropic 

at a level of 0.17%, in the core of free stream. 

Spanwise Variation of Size Distribution of Cavita- 

tion Nuclei 

Attenuations of sound pressures were measured at 

four positions in the spanwise direction ( 12.5, 

37.5, 62.5, and 87.5% span) from the low-speed side 

at the position of mid-chord in the absence of the 

hydrofoil, and at the cavitation numbers of 2.75 

and 0.65. Because the levels of attenuated sound 

pressures were not calibrated for micro bubbles 

of known sizes, sound pressure levels in the shear 

flows at each measuring position were compared with 

one in the uniform flow in which any spanwise 

variation was not noticed. Frequencies and 

differences of sound pressure levels were related 

to equivalent radii, and to differences of the 

numbers of cavitation nuclei from those in the 

uniform flow by using the formulae presented by 

Richardson (1947) and Gavrilov (1964). 

At a cavitation number of 2.75, any noticeable 

difference of size distributions between the shear 

flows and the uniform flow was not found. Ata 

cavitation number of 0.65, however, remarkable 

differences were ncticed as can be seen in Figure 

6. Numbers of nuclei with radii smaller than 24m 

in both shear flows are considerably larger than 

those in uniform flow, and the larger the numbers 
of nuclei the smaller the nuclei radii are. Size 

distributions in the two shear flows were not so 

different from each other in the high-speed sides 

of free streams, but in the low-speed sides, the 

shear flow made by the grid No. 2 is richer in 

nuclei, especially in the range of small radii, than 

the other. 
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Cavitation Inception 

Spanwise variations of local incipient cavitation 

numbers are plotted in Figure 7 for the Clark Y 

11.7 profile, and in Figure 8 for the Og profile. 

Also, spanwise variations of positions of minimum 

pressure for the case of no grid, grid No. 1, and 

grid No. 2, are shown. 

Clark Y 11.7 Profile 

In the case of no grid incipient cavitation 

numbers, kdi, are a little smaller than absolute 

values of minimum pressure coefficients, |cpmin|'s 

over the whole span at the attack angles, a, of 

0 and 0.052 rad, and in the core of free stream at 

a's of 0.105 and 0.157 rad. Differences between 

kdi's and |Cpmin|'s increase as a increases until 
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FIGURE 7. Spanwise variation of incipient cavitation 

numbers for the Clark Y 11.7 profile. 
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it reaches 0.105 rad, but become smaller at a = 

0.157 rad. 

At a's not smaller than 0.105 rad, fixed cavita- 

tions occur in the boundary layers at positions 

very close to both side walls at kd's much greater 

than local |Cpmin|'s. At the same time a zone of 

cavitation widens spanwise beyond each boundary 

layer with the inception so that detection of 

inception becomes difficult in the region neighbor- 

ing both boundary layers on the side walls. This 

is the reason the lack of points between y/h = 0.025 

~ 0.3 and 0.7 ~ 0.975. Frequency distributions of 

cavitation occurrences analyzed by using high speed 

motion pictures for 1 second illustrate those facts, 

as can be seen in Figure 9. 

In free streams with shears made by the grids 

No. 1 and No. 2, kdi's almost equal or are a little 

larger than local |Cpmin|'s. They vary spanwise 

under the influences of the flow shears in the 

core and the boundary layers on both side walls, 

and the accompanied secondary flows, except at 

a = 0.105 rad, which indicates that these free 

streams are rich in cavitation nuclei. At a = 0.105 

rad, kdi is a little smaller than |cpmin|, which 

can be assumed to be due to cavitations changing 

from traveling to fixed, as mentioned in the next 

section. 

Differences between kdi's and |Cpmin|'s in the 
boundary layers are larger than those in the case 

of no grid on the low-speed side, but are the 

contrary on the high-speed side, due to the 

secondary flows induced by the flow shears in the 

cores. The above-mentioned effect is most remark- 

able at a = 0.105 rad: kdi's in the boundary layer 

on the low-speed side in cases of the shear grids 

are larger than those not only in the case of no 

grid but also |cpmin|'s in the boundary layer, 

though only by a little. The mechanism causing 

the effect has been examined by measuring spanwise 

variations of static pressures on three points near 

the leading edge in the boundary layer on the low 

speed side at the attack angle of 0.105 rad in the 

case of the grid No. 2. It was confirmed that the 

detected incipient cavitation number, 2.53, in the 

boundary layer lies near the largest absolute value 

of the pressure coefficient based on the local 

velocities in the zone between 3 and 5 mm from the 

side wall. However, measured velocities in the 

zone are not very reliable. Symbols A in Figure 

7 show kdi's when the hydrofoil has a tip clearance 

of about 0.1mm on the high-speed side in the case 

of grid No. 1. It was found that effects of a 

boundary layer are weakened by tip clearances, 

especially at large angles of attack, although 

another cavitation occurs at the tip clearance. 

08 Profile 

At 0 angle of attack, traveling cavitations 

occurred and kdi aimost coincide with | Cpmin| in 
the case of no grid, but were larger than the latter 

in the case of grid No. 1. The difference decreases 

spanwise toward the high-speed side, in correspon- 

dence with the size distribution of cavitation 

nuclei. At angles of attack larger than O rad, 

however, fixed cavitations occurred and kdi's were 

much larger than measured |Cpmin|'s because of the 

lack of a piezometer hole at the position of the 

largest |Cpmin|, which is closer to the leading 

edge than the closest hole at 3% chord. At a = 

0.052 rad, in the case of the grid No. 1, another 

cavitation of the traveling type appears around 

the position of the measured second lc min | and the 
kd almost coincided with the measured Cpmin| . kdi's 

in the case of grid No. 1 were smaller than those 

in the other case on the high-speed side. The 

discrepancey can be surmised as due to the discrep- 

ancy between structures of laminar separation 

bubbles just behind the leading edge in the two 

cases because of the difference between turbulence 

levels. At a = 0.105 rad, kdi in the case of the 

grid No. 1 was larger than in the case of no grid 

in the core of free stream, but was the opposite 

in the boundary layer on the high-speed side wall. 

In the case of no grid, cavitations with long and 

wide zones occurred in the boundary layers on both 

sides close to the side walls and the leading edge 

as with the Clark Y 11.7 profile. 

Location of Incipient and Developed Cavitations 

Spanwise variations of positions of cavitation 

inception and front and rear edges\of (time) average 

zones of developed cavitation are shown in Figures 

10 and 11 for the profiles Clark Y 11.7 and 08 

respectively. Also are shown spanwise variations 

FIGURE 9. Frequency 

distribution of cavi- 

tation occurrence. 
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of positions of minimum pressure, in each case 

indicated in the figures. The bottom and the 

second (at a = 0, 0.052 rad) groups show the 

positions of inception or front edges of cavitation 

zones and refer to the scales written on the right- 

hand side, and the other groups show rear edges of 

cavitation zones and refer to the scales written on 

the left-hand side. Open symbols correspond to 

traveling cavitations and closed and semi-closed 
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symbols to fixed. kd's indicated in the figure are 

based on the velocity at the mid-span. 

Clark Y 11.7 Profile 

In the case of no grid, traveling cavitations oc- 

curred a little downstream from positions of minimum 

pressure at a = 0 and 0.052 rad. Front edges of 

average zones of cavitation move forward beyond posi- 

tions of minimum pressure as kd is reduced, uni- 

formly in the core of the free stream. At a = 0.105 

rad, in the core of the free stream, cavitations, 

mainly traveling mixed with fixed, occurred just 

downstream from positions of minimum pressure. How- 

ever, with a small decrease of kd from the incipient, 

the type of cavitation changes to fixed and the 

front edges of cavitation zones move backward from 

positions of inception and forward with a further 

decrease of kd. In the boundary layers on both 

side walls, fixed cavitations occurred very close 

to the leading edge of the profile and to the side 

walls, and front edges of cavitation zones move 

little as kd is reduced. At a = 0.157 rad, fixed 

cavitations occurred just downstream from positions 

of minimum pressure and front edges of cavitation 

zones moved forward just a little and never ex- 

ceeded positions of minimum pressure, in the core 

of free stream. In the boundary layers on both 

side walls, fixed cavitations occurred just down- 

stream from the leading edge of the profile and al- 

most attached to the side walls, and front edges of 

cavitation zones moved little as kd was reduced. 

At all attack angles, lines of rear edges of 

cavitation zones have shapes similar to the velocity 

profile at kd's a little smaller than the incipient. 

But rear edges move backward with a further decrease 

of kd to be almost uniform in the spanwise direction. 

In cases of grids No. 1 and No. 2, positions of 

inception are closer to positions of minimum 

pressure than in the case of no grid, in correspon- 

dence with size distributions of cavitation nuclei: 

Front edges of cavitation zones move forward beyond 

positions of minimum pressure in the cores of free 

streams at a = 0, 0.052, and 0.105 rad. Ata=0, 

0.052, and 0.105 rad, incipient cavitations are of 

the traveling type, but at a = 0.105 rad, in the 

cores of the free stream, cavitations sometimes 

change their type from traveling to fixed as kd is 

reduced, and in those cases front edges of zones 

of fixed cavitations move backward from the inception 

position. In the boundary layer on the low-speed 

side wall a fixed cavitation occurred very close 

to the leading edge of the profile and to the side 

wall, but no inception of cavitation of any type 

can be detected in the boundary layer on the other 

side wall, in the range of kd in this experiment. 

At a = 0.157 rad, fixed cavitations occurred at 

positions of minimum pressure, including the boundary 

layers on both side walls, and front edges of 

cavitation zones move little. 

At kd's a little smaller than the incipient, 

lengths of cavitations are larger on the high-speed 

Side than on the other side at a = O and 0.052 rad. 

At a = 0.105 and 0.157 rad, however, they are larger 

near the wall on the low-speed side than on zones 

more distant from the wall. Rear edges of cavita- 

tion zones have a tendency to be uniform in the 

spanwise direction at all attack angles as cavita- 

tions develop. 

Much difference between the two grids in the loca- 

tions and movements of cavitation zones cannot be 

found. 

08 Profile 

At O angle of attack, positions of cavitation 

inception and movements of front and rear edges of 

cavitation zones with a decrease of kd, compared 

with positions of minimum pressure, are quite 

similar to those of the Clark Y 11.7 profile in 

the cases of no grid and grid No. 1. However, at 

a's larger than 0, fixed cavitations always occurred 

at the leading edge over the whole span, irrespective 

of the existence of the shear grid. Front edges of 

cavitation zones never moved from the leading edge 

as kd's were reduced. Lengths of cavitation zones 

do not grow much, owing to the steep negative- 

pressure zones just behind the leading edge, until 

kd's are reduced to about the second Cpmin|'s. 

But in the case of no grid, once kd's increase, 

they develop suddenly beyond positions of minimum 

pressure and tend to be uniform in the spanwise 

direction as can be seen in Figure 13(b) at a = 

0.052 and kd = 0.7. In the case of grid No. l, 

however, lengths of the fixed cavitation do not 

grow enough to reach positions of minimum pressure. 

Instead cavitations of the traveling type appear 

around positions of the second minimum pressure, as 

can be seen in Figure 13(b) at a = 0.052 and kd = 

0.7 and as shown in Figure 11(b) by the symbols A. 

The length of the cavitation zone is about the same 

as that in the case of no grid in the free stream 

core but smaller than that in the boundary layers 

on both sides, at the beginning of development. 

At a = 0.105 rad, the length of the cavitation zone 

is much larger than that in the case of no grid at 

the beginning of development, but becomes about the 

same as the others with a further decrease of kd. 

Aspect and Behavior of Cavitation Bubbles and 

Cavities 

Figures 12 and 13 show several examples among the 

3us-exposure photographs and an example of high- 

speed motion pictures of cavitations taken at the 

inception and each stage of development occurring 

on the Clark Y 11.7 and 0g profiles, respectively. 

Cavitation numbers indicated in the figure on the 

left hand side are based on the velocity at the 

mid-span. 

Clark Y 11.7 Profile 

At a = O and 0.052 rad, incipient cavitations are 

of the traveling type in all cases, and in general, 

the bubble radius and number of bubbles in the case 

of no grid were the largest and the smallest, 

respectively, of the three cases, followed by the 

case of grid No. 1, which agrees with the size 

distributions of cavitation nuclei given previously. 

Each bubble is circular when observed perpendicular 

to the hydrofoil surface, but as the cavitation 

number is reduced, two, in the case of no grid, or 

one, in both cases of two shear grids, horn-like 

projections are projected behind each bubble from 

the downstream or both sides. The groups of plots 

lying second from the bottom in Figures 10 (a) (b) 

show positions of the upstream tips of the projec— 
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FIGURE 12 (a) (b). Cavitation on the hydrofoil of the Clark Y 11.7 profile. 
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tions, which seem to be little affected by either 

kd or the shear of the free stream. The projections, 

in the case of no grid, are supposed to be generated 

in cores of trailing vortices and adhere to the 

hydrofoil surface, because velocities of the bubbles 

exceed those of surrounding water in regions down- 

stream from positions of minimum pressure. It can 

be seen in high speed motion pictures shown in 

Figure 12(f) that the main body of bubbles, having 

generated projections, decay, leave behind them 

projections of two string-like bubbles, and then 

collapse. In cases of the two shear grids, bubbles 

are inclined upward toward the high-speed side due 

to the secondary flow caused by the flow shears. 

Trailing vortices on the low-speed side reach the 

hydrofoil surface easier than those on the high- 

speed side. Bubbles which generate projections be- 

come fewer as kd is reduced in the case of the 

shear grids. Several bubbles can be found which 

seem to collapse and generate micro jets. 

At a = 0.105 rad, cavitations of both types, 

traveling and fixed, appear, though the former are 

395 

FIGURE 12 (e). Behavior of 

fixed cavitation on the hydro- 

foil of the Clark Y 11.7 pro- 

file, a = 0.157 rad, flow up 

to down, 12 ms between frames, 

2us exposure. 

fewer than the latter. Front edges of fixed cavi- 
tation zones are round compared with tips of the 
above-mentioned projections. At a = 0.157 rad, only 
fixed cavitations occur. A cycle of formation of 
the break off of a fixed cavity is shown in high 
speed motion pictures in Figure 12(e). At IEILASKE p 
a clear bubble is generated, like those observed in 
our laboratory on the surface of an axisymmetrical 
body with a hemispherical nose. The bubble develops 
in both streamwise and spanwise directions. The 
middle part of the spanwise breadth of the bubble 
becomes bubbly, then wavy, and after the development 
of the middle part breaks off in pieces of micro- 
bubble clouds which are transported downstream al- 
though a few remaining small parts grow and 
disappear. 

08 Profile 

At O angle of attack tiny bubbles of traveling 
cavitation can be found at a kd a little smaller 
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than kdi, in both cases of no grid and the grid No. 

1. Little difference between sizes of the bubbles 

can be noticed, although bubbles can hardly be 

found on the low-speed side in the case of the grid 

No. 1. As cavitation numbers are reduced, however, 

the bubbles grow larger and are fewer in the case 

of no grid, due to the difference in size of 

cavitation nuclei as stated above. Bubbles deforming 

to generate projections like those on the Clark Y 

11.7 profile can barely be found. Instead, cavities 

collapsing to clusters of small bubbles appear. 

The discrepancy of the collapse aspect between the 

two hydrofoils can be considered to be caused by 

the difference of pressure distributions. Cavita- 

tions of the above type become more than traveling 

bubbles with the decrease of kd, in the case of 

the grid No. l. 

At a = 0.052 rad, only fixed cavitations occurred 

at the leading edge in cases of both no grid and 

grid No. 1. The fixed cavitations grown without 

changing the front edges of cavitation zones from 

the leading edge and develop their lengths slowly 

until the kd's are reduced to about the second 

Cpmin|'s, being about equal to each other and 

existing at the mid-chord in both cases. Nonuniform- 

ity of lengths can be found in the case of grid 

No. 1. When kd's reach the second |Cpmin|'s, how- 

FIGURE 12 (f). Behavior of 

traveling cavitation on the 

hydrofoil of the Clark Y 11.7 

profile, a = 0 rad, flow up to 

down, 0.3 ms between frames, 

2us exposure. 

ever, a remarkable difference in the aspects of 

cavitations between the two cases occurs in spite of 

only a small difference in the measured pressure dis- 

tribution. In the case of no grid, fixed cavitation 

develops beyond the position of minimum pressure, 

whereas in the case of grid No. 1, the rear edge 

of the zone of fixed cavitation does not reach the 

position of minimum pressure. Instead, another 

cavitation of the traveling type appears around the 

position of minimum pressure, and bubbles of the 

traveling cavitation are found more on the high- 

speed side. The mechanism of this difference can 

be surmised as follows: a free shear layer on an 

interface between cavity and water may be laminar 

near the point of inception in either case, but 

the distance necessary for its transition in the 

case of no grid is larger than in the case of grid 

No. 1 because of the difference of the turbulence 

level in the free stream between the two cases, 

and the distance necessary for a cavity surface to 

reattach the hydrofoil surface might be the same. 

The fact that the cavity surfaces in Figure 13(b) 

at kd = 0.7 are clear in the case of no grid but 

wavy in the other case may show this. Furthermore, 

the effect of rolling up the cavity surface caused 

by the secondary flow may be expected in shear flow. 

At a = 0.105 rad, only fixed cavitations can be 
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found in both cases. Even in the case of the grid 

No. 1, much uniformity of cavitation zones can be 

found, although some tail wisps of cavitation can 

be found in the case of no grid, e. g., ones 

gathered in cores of streamwise vortices. 

4. CONCLUDING REMARKS 

Conditions and positions of inception, locations of 

zones, and the aspect and behavior of bubbles and 

cavities of cavitations occurring on two hydrofoils 

with the profiles of Clark Y 11.7 and 0g in shear 

flows made by shear grids and a uniform flow have 

been observed and measured. They have been corre- 

lated with measured pressure distributions on the 

hydrofoils and the qualities of free streams, i.e. 

turbulence levels and size distributions of cavita- 

tion nuclei in free streams. The main conclusions 

deduced from the results may be summarized as 

follows. 

At attack angles small for the profile, when 

pressure distributions have gradual chordwise 

changes, traveling cavitations incept near positions 

of minimum pressure and at cavitation numbers about 

equal to absolute values of minimum pressure coeffi- 

cients, irrespective of flow shears in free streams, 

provided local values influenced by flow shears are 

-used. Discrepancies between conditions and posi- 

tions of inceptions, and pressure coefficients and 

their distributions depend on the free stream quali- 

ties. The sizes of traveling bubbles depends on the 

size distribution of cavitation nuclei. 

On the hydrofoil with the Clark Y 11.7 profile, 

having a relatively large positive pressure gradient, 

a traveling bubble in a zone of rising pressure 

deforms, creating a projection in shear flow, or 

two projections in uniform flow, leaves only the 
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FIGURE 13 (a). Cavitation on the 

hydrofoil of the Og profile. 

projection and then collapses. On the hydrofoil 

with the 08 profile having gradual pressure gradient, 

a traveling bubble collapses after the deformation 

caused by the instability of bubble surface. On 

both hydrofoils, bubbles collapsing symmetrically 

and asymmetrically, looking like micro jets forming 

can be found. 

At attack angles larger for the profile, when 

the pressure distribution declines steeply followed 

by a relatively large positive pressure gradient, 

fixed cavitations occur. Conditions and positions 

of inception are similar to those of traveling 

cavitations, although discrepancies of them from 

pressure coefficients and their distributions are 

less than those of traveling cavitations. In the 

boundary layers on both side walls, fixed cavitations 

occur at relatively large cavitation numbers, 

possibly equal to absolute values of local minimum 

pressure coefficients. They develop in both stream- 

wise and spanwise directions even far enough beyond 

the boundary layers to affect cavitation inceptions 

in zones neighboring the boundary layers. Cavita- 

tion zones on the low-speed side are larger than 

those on the high-speed side. Fixed cavitations 

of this kind occur in the boundary layers on both 

sides of uniform free streams also. 

At attack angles intermediate for the profile, 

fixed and traveling cavitations occur at the same 

time and tend to become fixed only on the Clark Y 

11.7 profile. On the 08 profile, fixed cavitations 

at the leading edge and traveling cavitations at 

about the mid-chord appear at the same time in shear 

flows, but only fixed cavitations occur and develop 

at the leading edge in uniform flows. Discrepancies 

of conditions and positions of inception from 

pressure coefficients and their distributions are 

the largest of the three cases mentioned on the 

Clark Y 11.7 profile, but about the same as above 

mentioned two cases, on the O08 profile. 



FIGURE 13 (b) (c). Cavitation on 

the hydrofoil of the Og profile. (c) 

Q>= 0.057 rad 

a=0.105 rad 



ACKNOWLEDGMENT 

The authors wish to express their thanks to Mr. S. 

Onuma, the technician of Institute of High Speed 

Mechanics for his assistance in the experiment. 

NOMENCLATURE 

Cp: pressure coefficient 

|Cpmin | absolute value of minimum pressure 

coefficient 

fp: number of total occurrences of 

cavitation 

fy: number of local occurrences of 

cavitation at position y 

h: width of measuring section 

kd: cavitation number 

kdi: incipient cavitation number 

1: chord length of hydrofoil 

n(R,): number of bubbles at radius R, 

p: static pressure at hydrofoil surface 

or in free stream 

Py: static pressure at side wall of 

measuring section 

Rg: bubble radius 

U: local free stream velocity 
Uc: velocity at mid span of hydrofoil 

installed in measuring section 
RMS values of turbulence velocity 

components parallel to free stream, 

parallel to hydrofoil span and 

perpendicular to u' and v', respec- 
tively 

X, Y; X, y : co-ordinate system fixed in hydrofoil; 

the X(x) axis is parallel and the 
Y(y) axis is perpendicular to the 
chord of the hydrofoil 

a attack angle in radian 

fe) water density 

r chordwise distance from leading edge 
of hydrofoil to rear edge of cavita- 
tion zone 

r o ? Chordwise distance from leading edge 
of hydrofoil to inception point or 
front edge of cavitation zone 
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ABSTRACT 

The boundary layer of four propeller models in 

uniform flow is investigated and related with cavita- 

tion inception. Laminar separation is found to be 

an important phenomenon on model propellers. The 

radius where laminar separation starts is found to 

be a limit for the radial extent of cavitation. 

No inception takes place in regions of laminar flow. 

The effect of nuclei in the flow is investigated 

using electrolysis. Nuclei seem to be important 

for cavitation inception when laminar separation 

occurs, but they do not initiate sheet cavitation, 

when the boundary layer flow is laminar. When the 

boundary layer on the blades is tripped to turbu- 

lence by roughness at the leading edge it is shown 

that this changes the cavitation by restoring cavita- 

tion inception at the vapour pressure. The effect 

of electrolysis on cavitation becomes very small 

when the propeller blades are roughened. Calcu- 

lations of the pressure distribution and the laminar 

boundary layer were made and related with test 

results. 

1. INTRODUCTION 

When cavitation patters, observed on full scale 

ship propellers, are compared with observations on 

model scale, differences are often found [e.g., 

Bindel (1969), Okamoto et al. (1975)]. These 

differences are caused by two main factors: 

correct scaling of the incoming flow of the 

propeller, including propeller-hull interaction, 

and incorrect scaling of cavitation. 

Considerable efforts have been made to improve 

the simulation of the incoming flow by testing the 

cavitating propeller model behind the ship model 

in a large cavitation tunnel or in a depressurized 

towing tank, or by correcting the measured model 

wake to simulate the full scale wake in a cavitation 

tunnel [Sasajima and Tanaka (1966), Hoekstra (1975)]. 

in- 
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In this paper the problem of proper scaling of 

cavitation will be investigated. 

Scaling rules for cavitating propellers can be 

formulated using dimensional analysis when the 

relevant parameters are known. This results in the 

following well-known dimensionless quantities: 

the advance ratio 

the cavitation index 

the Froude number By 

the Reynolds 

V = where 
A 

h = 

Vv = 

ee 1 = oD (1) 

-p + ager ogh 
Fe (2) 

on2D2 

2 

ans D (3) 
g 

2 

number Re. = Das (4) 
N v 

advance velocity of the propeller 

number of propeller revolutions 

propeller diameter 

pressure at some reference level 

vapour pressure 

density of water 

acceleration due to gravity 

vertical distance from reference level 

kinematic viscosity 

When these dimensionless parameters are kept the 

same for model and prototype, the cavitation 



behaviour of a propeller is independent of size, 

provided that no additional parameters play a role 

in the cavitation process. 

The choice of the cavitation index as a parameter 

implies the assumption that inception occurs when 

the local pressure is equal to the vapour pressure. 

When the inception pressure deviates from the vapour 

pressure these deviations are called "Scale effects 

on cavitation inception". 
Two scaling problems do arise now. First it is 

impossible to maintain the Froude number and the 

Reynolds number at the same time. The Reynolds 

number is abandoned and is lowered on model scale 

by a factor of 3/2, where A is the scale ratio. 

Even if the Froude number is not maintained it is 

practically impossible to obtain the full scale 

Reynolds number on model scale. The second scaling 

problem is that nuclei play a role in cavitation 

inception. Both problems manifest themselves as 

scale effects. 

Pure water can withstand very high tensions and 

nuclei are necessary to generate inception of 

cavitation. Nuclei are mostly considered to be gas 

pockets in the fluid, possibly trapped in small 

crevices of hydrophobic particles. For a review 

see Holl (1970). In a cavitation tunnel, however, 

the flow will also contain free air bubbles which 

come out of solution at the pump, at sharp corners, 

or at the cavitating propeller in the test section. 
Resorbers are used to bring the free gas back into 

solution, or the tunnel can be prepressurized. 

When no large nuclei are present, however, scale 

effects on cavitation become larger [Hill and 

Wislicenus (1961)]. Inception of cavitation becomes 

related to the pressure at which the largest gas 

bubbles become unstable and start to expand, and 

this pressure is lower than the vapour pressure 

when the nuclei are small [Daily and Johnson (1956)]. 

In a towing tank there are very few nuclei since 

they will rise to the surface or to go into solution. 

Therefore Noordzij (1976) created additional nuclei 

in the NSMB Depressurized Towing Tank by electrolysis 

and showed the "stabilizing" influence of nuclei on 

propeller cavitation behind a ship model. A similar 

effect was reached by Albrecht and Bjorheden (1975) 

who injected additional nuclei into the water of 

their free surface cavitation tunnel after the low 

pressure in the test section had deaerated the 

water so much that nuclei were no longer formed in 

the tunnel. 

It is very difficult to control the nuclei content 

of the incoming flow [Schiebe (1969)]. When the 

nuclei are large enough, the inception pressure 

will be close to the vapour pressure. However, 

when the nuclei are too large they can lead to 

"gaseous cavitation" [Holl (1970)] with inception 

above the vapour pressure, or they can be removed 

from the region of lowest pressures by the pressure 

gradient in the flow, as was theoretically shown by 

Johnson and Hsieh (1966). 

Variation of the Reynolds number leads to viscous 

effects on cavitation inception. Arakeri and Acosta 

(1973) and Casey (1974) showed the effect of the 

boundary layer on cavitation inception. Laminar 

separation was shown to be especially important. 

Arakeri and Acosta (1973) visualized the boundary 

layer by a schlieren technique and they tentatively 

related the cavitation index at inception and the 

pressure coefficient at laminar separation or at 

transition. Increased pressure fluctuations in 

the reattachment region of a laminar separation 
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bubble and in the transition region were measured 

by Arakeri (1975) and by Huang and Hannan (1975). 

Van der Meulen (1976) also observed the inception 

process on headforms by means of holography. He 

showed that suppression of laminar separation by 

polymers also could suppress cavitation inception. 

The relation between the inception pressure and 

the pressure at laminar separation or transition 

was not always confirmed. In a recent case study 

[Kuiper (1978)], it was shown that viscous effects 

were responsible for a delay in cavitation inception 

on a propeller model. Additional nuclei had no 

effect in this case, but it was not yet clear if 

nuclei did interact with the boundary layer to 

create cavitation inception. 

In this study, scale effects on cavitation on 

three propellers with different characteristics 

were investigated. When a propeller operates in 

a wake, scaling problems of the incoming flow and 

of cavitation cannot be separated. Therefore the 

propellers were tested in uniform axial flow. The 

tests were carried out mainly in the Depressurized 

Towing Tank. A description of this facility is 

given by Kuiper (1974). The advantages of this 

tank for the research on scale effects on cavitation 

inception are the, supposedly, very low and constant 

turbulence level and nuclei content, the uniform 

inflow of the propeller, and the absence of wall 

effects. Both advance speed and propeller revolu- 

tions can be controlled very accurately. The range 

of Reynolds numbers which can be tested is lower 

than in a cavitation tunnel (maximum carriage speed 

is 4 m/sec.) but is not smaller. 

The aim of the present study is to gain insight 

into the occurrence of scale effects on cavitating 

propellers and to develop means to improve the 

correlation with full scale observations. Paint 

tests were carried out to visualize the boundary 

layer flow on the propeller blades. Methods to 

calculate the pressure distribution on the blades 

are discussed and the calculated pressure distri- 

butions are used for the interpretation of the 

results of the paint tests and the cavitation 

observations. The nuclei content is varied by 

using electrolysis, and roughness at the leading 

edge of the propeller blades is applied to make the 

boundary layer on the blades turbulent, thus simu- 

lating a higher Reynolds number. The relation 

between the boundary layer on the blades and 

cavitation inception is shown and the effect of 

leading edge roughness and electrolysis is investi- 

gated. 

2. TEST PROGRAM 

Propellers and Test Conditions 

Four propellers were investigated in uniform flow. 

Propeller A is the propeller which was investigated 

behind a model in a case study by Kuiper (1978). 

This propeller showed viscous scale effects on 

Cavitation inception but was insensitive for 

electrolysis (Figure 1). Behind the model, this 

propeller operated in a nozzle. In this study it 

was tested without a nozzle. 

Propeller B is the propeller which was tested by 

Noordzij (1976) behind a model. This propeller 

was very strongly influenced by electrolysis. 

Without electrolysis the sheet cavitation varied 

per revolution, (Figure 2). With electrolysis the 



propeller an electrolysis grid was mounted, as 

shown in Figure 5. The wires had a diameter of 

0.2 mm and a current of 0.2A was used to generate 

nuclei. The propeller shaft was at 0.4 meter below 

the water level and the lowest wire at 0.5 meter. 

Therefore the effect of electrolysis could only 

be observed in the upper half of the propeller disk. 

-The propeller boundary layer. Two ways of 

affecting the boundary layer were used. First, 

sandroughness at the leading edge was used to trip 

the boundary layer to turbulence. Second, the 

9 FULL SCALE OBSERVATIONS 

FIGURE 1. Viscous effects on cavitation inception on 

propeller A behing the model. 

cavitation pattern was present and identical at 

every revolution. This "stabilizing" effect of 

nuclei is important because it affects the induced 

pressure fluctuations on the hull. 

Propeller C had a very distinct collapse of the 

cavity when the blades left the wake peak, as can WITHOUT ELECTROLYSIS 

be seen in Figure 3. This irregular collapse of 

the cavity was thought to be caused by viscous 

effects and it can also strongly influence the 

pressure fluctuations on the hull. 

Propeller D was not tested in cavitating con- 

ditions. It was used only for boundary layer 

visualization. This propeller is an example of a 

smaller propeller model used behind models with a 

maximum length of 7 meters. This propeller was 

made of a copper-nickel-aluminium alloy (CUNIAL). 

Propellers A, B and C were of aluminium. 

The most important geometrical characteristics 

of the four propellers are given in Figure 4. The 

complete description, necessary for the calculations, 

is given in the Appendix. Most tests were done in 

the NSMB Depressurized Towing Tank. To obtain 

uniform inflow the propellers were mounted on a 

right-angle drive unit, which was kept afloat by a 

catamaran-type vessel, as shown in Figure 5. Only 

a few comparative tests were done in a cavitation 

tunnel. 

The following parameters were varied: 

-The propeller loading. Two advance ratio's were 

used, namely 70% and 40% of the pitch ratio at 
r/R=0.7. (Slip ratio's of 30% and 60% respectively). 

The slip ratio of 30% corresponds to a loading which 

is about normal behind the ship, the slip ratio 

of 60% corresponds to an overloaded condition, as 

occurs when the blades are in a wake peak. Propeller 

A was also investigated at an intermediate loading WITH ELECTROLYSIS 
: : of 

with a slip of 40% FIGURE 2. Effect of electrolysis on propeller B 
-The nuclei content. At 1 meter in front of the behind the model. 



FIGURE 3. 

C behind the model. 

Irregular collapse of cavitation on propeller 

propeller Reynolds number was varied with a factor 

of about three. 

-The cavitation index. Three values of the 

cavitation index were used: Oyq=1.5, 2.0, and 2.5. 

The reference level of the cavitation index was 

always taken at the propeller tip in the top position. 

In this paper most cavitation observations will be 

shown at Oyp=l.5. At higher revolutions a lower 

cavitation index was possible: Oymp=0.5 in the 

towing tank and oyp=1.0 in the cavitation tunnel. 

Paint Observations 

To visualize the character of the boundary layer 

at the propeller blades a surface oil flow technique 

was used [Maltby, ed. (1962)]. This technique was 

adapted for use in water on propellers by Meyne 

(1972) and Sasajima (1975). It is particularly 

useful on rotating bodies because the difference 

in friction coefficient between laminar and turbu- 

lent boundary layer flow, in combination with the 

centrifugal force acting on the paint, creates a 

clear difference in the direction of the paint- 

streaks in laminar and turbulent regions. 

The paint, used in our paint tests, consisted 

of lead-oxide, diluted with linseed oil and coloured 

with red "Dayglo" pigment. This mixture produced 

a finely detailed pattern of streaks on the metal 

surface of the propeller. When the propeller 

blades were painted yellow with a thin layer of 

zinc-chromate primer, as is done with the cavita- 

tion observations to improve contrast and to avoid 

reflections, no streaks were formed. Consequently 

the flow visualization tests were done with the 

propellers not painted. 

The viscosity of the paint was controlled by 

the amount of linseed oil and was chosen such that 

the formation of the pattern took about one full 

run in the towing tank. At least 500 revolutions 

were always available to form the patter. To 
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FIGURE 4. Geometry of propellers. 

reach the desired condition took about 100 

revolutions, most of them very close to the final 

condition. Paint tests were also done in the 

cavitation tunnel. The pictures obtained there 

were more profuse, especially at high tunnel veloc- 

ities, because of the relatively long time it took 

to reach a stable condition. For runs longer than 
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FIGURE 5. Test equipment for open-water tests. 

a few minutes the viscosity of the lead-oxide is 

too low and the blades are cleaned by the flow. 

The paint is put on the propeller blades at the 

leading edge to about 10% of the chord. The layer 

must be rather thick to provide enough paint to 

cover the whole blade. Some pictures were taken 

with UV light using the fluoriscent properties of 

the pigment. The bulk of the pictures of the paint 

tests was taken in colour photography with natural 

light. This gave good colour prints, but unfortu- 

nately the contrast in monochrome paper turned out 

to be rather poor. 

Roughness at the Leading Edge 

To trip the boundary layer to turbulence the leading 

edge of the propeller blades was covered with 

carborundum. The leading edge of the propeller 

blade is wetted with watery thin varnish to about 

0.5 mm from the leading edge. This is done by 

touching the leading edge with a pad wetted with 

varnish. The softness of the pad determines the 

length of the wetted area from the leading edge. 

Then carborundum is put on the wetted area by 

spreading the grains on a felt cloth and by wiping 

the wetted leading edge with that cloth. Two grains 

sizes were used: 30 wm (31-37) and 60 um (53-62). 

Microscopic inspection afterwards is necessary. An 

example is given in Figure 6. 

3. CALCULATION OF PRESSURE DISTRIBUTION 

The analysis of boundary layer phenomena and of 

cavitation on propeller blades becomes very specu- 

lative when the pressure distribution is not known. 

No firm experimental verification of calculations 

of the pressure distribution is available yet, only 

the total thrust and torque give some evidence of 

the value of calculations. The calculations are 

always potential flow calculations and the effect 

of viscosity on the propeller sections cannot yet 

be derived with suitable accuracy. Since the 

propeller thrust is least sensitive to viscous 

effects this quantity gives the most reliable 

verification of calculations. When the propeller 

geometry and the nominal inflow are known two 

approaches are available to obtain the distribution 

of propeller loading, viz. the lifting line theory 

and the lifting surface theory. Hereafter, both 

approaches will be considered with models going 

back to the work of Lerbs (1952) for the former 

and Sparenberg (1960) for the latter theory. 

Lifting Line Calculations 

The lifting line theory concentrates the loading of 

a propeller section at one point. Using the induc- 

tion factor method [Wrench (1957)], a relation 

between the hydrodynamic pitch angle, 8;, and the 

circulation, I, at each section is found. 

B. (i) = ae] ie (a) I (5) 

When a given propeller is analysed 8; and I are 

unknown. To find them a second relation is necessary, 

which is derived from two-dimensional profile 

characteristics. The lift coefficient 

de" 

Cy -( =) (ata,) (6) 

where a, is the zero lift angle of the propeller 

section. Since the angle of attack a is taken from 

oS (BS (2) (7) 
Pp i 

where 8, is the known geometrical pitch angle, a 

second relation is formulated between Cy, (or IT) 
and §;, in which dC;/da, is assumed to be known. 

When the two-dimensional value for dc; /da, based 

on the geometry of the propeller section, is used 

the results are rather drastically wrong. This is 

caused mainly by the finite length of the propeller 

section, which creates a distribution of induced 

velocities affecting camber and angle of attack. 

1mm 

60 Lm 30 Lm 

CARBORUNDUM CARBORUNDUM 

FIGURE 6. Microscopic picture of leading edge 

roughness. 
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So Eq. 6 has to be corrected to obtain a three- 

dimensional lift curve. At one point of the lift 

curve, at the ideal angle of attack, results of 

systematic lifting surface calculations are avail- 

able [Morgan et al. (1968)] and they can be expressed 

as correction factors on camber, Ko, and the angle 

of attack, Ky. Van Oossanen (1974) used these 

correction factors to define the three-dimensional 

lift curve over the whole range of angles of attack 

instead of at the ideal angle of attack only. He 

wrote 

fol 
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Propeller open-water characteristics. 

where a; is the ideal angle of attack of the 

propeller section. Substitution of these three- 

dimensional values in Eq. 6 makes it possible to 

solve the set of Eqs. 5-7, resulting in a radial 

distribution of 8, Qos and Cy,. 

In Figure 7 the calculated open-water character- 

istics using this approach are compared with experi- 

ments. The agreement between measurements and 

calculations is acceptable. Propeller B could not 

be calculated since the regression formula's for 

K, and K, in the program were restricted to a 

maximum pitch ratio of 1.4. 

Viscosity is taken into account by assuming a 

viscous lift slope 

ac 3 
L t (<2)yan = 0.947-0.76 (£) 



where t= max. thickness of propeller section 

c= chord length of propeller section 

The drag is calculated using the characteristics 

of the equivalent profiles of the NSMB B-series 

propellers. 

Lifting Surface Calculations 

The lifting surface theory calculates the induced 

velocities over the propeller blades, in chordwise 

and radial direction, thus including the effects 

of finite aspect ratio of the blades. The draw- 

back is that the theory is linearized, which 

restricts the validity to lightly loaded propellers. 

Van Gent (1977) has shown in his thesis how 

heavily loaded propellers can be treated with a 

linearized theory since the vorticity in the wake 

induces an additional axial velocity component in 

the propeller plane, keeping the angles of attack 

of the propeller sections small. 

The boundary conditions on the propeller blades 

are fulfilled at a number of chordwise and spanwise 

points. In our calculations four chordwise and 

ten radial points per blade were chosen. The pitch 

of the vortex sheet in the wake was taken rather 

arbitrarily as the pitch at 0.7D. 

A very approximate description of the viscous 

effects is used. The drag force of the propeller 

sections is split into two parts: a drag force 

as a result of losses in the suction peak at the 

leading edge and a drag force due to friction. The 

latter is calculated using a friction coefficient 

of 0.0080, irrespective of the Reynolds number. 

The first drag force is taken as half the theoretical 

suction force. The same correction is also applied 

to the sectional lift, which is obtained from chord- 

wise integration of the lift distribution. In the 

calculation of the induced velocities the geometrical 

pitch angle is reduced by 3/4 degree to simulate 

viscous effects on the zero lift angle. 

The open-water diagrams as calculated with the 

lifting surface theory as described by Van Gent 

(1977) are shown in Figure 7 together with experi- 

mental results and lifting line calculations. The 

general agreement with measurements is as good as 

the lifting line calculations. This makes clear 

that the linearized lifting surface theory can 

indeed produce reliable open-water characteristics 

up to high propeller loadings. At very low advance 

ratio's the calculations deviate from the measure- 

ments but this might well be caused by an erroneous 

estimate of the viscous effects. 

Calculation of the Pressure Distribution 

Lifting line as well as lifting surface calculations 

give the radial distribution of the lift coefficient, 

of the angle of attack, and of the induced camber 

(or camber distribution) which can be translated 

into a zero lift angle. In Figure 8 these results 

are compared for propeller A at 40% slip. The 

lifting line calculation gives a higher loading at 

the tip and a lower loading at inner radii, compared 

with the lifting surface calculation. This is 

characteristic for all four propellers in all 

conditions. The total thrust does not differ very 

much. Large differences, however, are found for 

the angle of attack and for the zero lift angle. 

LIFT. SURFACE 

ET NES 

AroT= AincineNce * %o 

Q, =ZERO LIFT ANGLE 

FIGURE 8. Radial distribution of lift coefficient and 

angle of attack on propeller A at 40% slip. 

Since these values will be used in the calculation 

of the pressure distribution this discrepancy needs 

further attention. 

The source of the discrepancy is the choice of 

Eqs. 8 and 9, used in the lifting line calculation. 

The reduction of the slope of the lift curve with 

the lifting surface correction factor for the camber, 

Ko (Eq. 8), is an empirical one, first suggested 

by Lerbs (1951) when he analyzed the lift slopes 

of his "equivalent profiles". The physical meaning 

of this correction is not clear, but it still can 

lead to correct results for thrust and torque, 

since the lift slope for the equivalent profiles 

was derived using a lifting line theory and experi- 

mental values of thrust and torque. Therefore, this 

correction for the lift slope, used in combination 

with the same lifting line theory, should give 

results for thrust and torque not too far from the 

experimental results. The definition of the three 

dimensional zero lift angle (Eq. 9) is another 

empirical relation, bringing the calculated open 

water characteristics in line with experiments. 

However, this does not necessarily mean that the 

three dimensional angle of incidence and zero lift 

angle have a physical meaning and can be used for 

the calculation of the pressure distribution. 

Therefore, the results of the lifting surface cal- 

culations are used in the following to calculate 

the pressure distribution. 

To calculate the pressure distribution on the 

blades, the effect of propeller thickness has to 

be calculated and the leading edge singularity of 

the lift distribution has to be dealt with. Tsakonas 

et al. (1976) calculated the pressure distribution 

on the propeller blades using a singularity distri- 

bution for the thickness, in combination with a 

linearized lifting surface theory. These calcula- 

tions, however, remain linearized, producing an 

infinite velocity at the leading edge, which was 

removed by the Lighthill correction for thin air- 

foils [Lighthill (1951)]. In our study, three- 

dimensional effects on the pressure distribution 

are neglected. Interaction effects between thickness 



PROPELLER A 

PROPELLER C 

Tp =0.95 

and loading, which occur due to the non-planar 

surface of the propeller blades are taken into 

account by a correction factor [Morgan et al. (1968)]. 

This makes it possible to apply conformal mapping 

to calculate the pressure distribution. An approx- 

imation of the original theory of Theodorsen (1932), 

known as Goldstein's third approximation [Goldstein 

(1948)] was used. The determination of the "effec- 

tive geometry" was done using a camber line, derived 

from the calculated induced velocities of the lifting 

surface calculation. This can be done because the 

problem is linearized. The calculated induced 

camberline and the geometrical thickness distribution 

were combined in the NACA-manner to obtain the 

geometry of the effective profile. The pressure 

distribution on the propeller section was then cal- 

culated using the induced angle of attack from the 
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PROPELLER B 

FIGURE 9. Calculated pressure distribution on the 

suction side at 30% slip. 

lifting surface calculation. The lift coefficient, 

which is found from the lifting surface calculation, 

is maintained using the method of Pinkerton (1934). 

This is necessary because the potential flow lift 

coefficient of the effective profile is slightly 

lower at inner radii, where the sections become 

thicker. The differences are of the order of 0.02. 

In Figures 9 and 10 the calculated pressure 

distributions at the suction side are given for 

propellers A, B, and C. 

4. RESULTS OF PAINT TESTS 

In Figure 11 the paint patterns are shown for pro- 

pellers A, B, and C at 30% slip and at Reynolds 

numbers typical for testing behind 12 meter models. 
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PROPELLER A 

PROPELLER C 

These pictures were taken with UV-illumination. 

At the leading edge the paint is removed, due to 

high local velocities. The streaks are formed 

gradually, either in a nearly tangential direction 

(the turbulent region) or pointed outwards (the 

laminar region). The transition from laminar to 

turbulent boundary layer flow is shown by a change 

in direction of the streaks. 

Laminar boundary layer flow occurs in all cases 

near the leading edge. Transition in chordwise 

direction to turbulent boundary layer flow occurs 

gradually, but a transition region can be distin- 

guished and at the trailing edge the boundary layer 

is turbulent. When the paint streaks are nearly 

in the radial direction the flow is separated. At 

inner radii the boundary layer if often close to 

separation. Laminar separation was clearly present 

PROPELLER B 

FIGURE 10. Calculated pressure distribution on the 

suction side at 60% slip. 

on propeller D, as is shown in Figure 12. At 60% 

slip the radius where laminar separation is replaced 

by natural transition can be seen by the sharp 

corner in the paint streaks. 

At the suction side near the tip a turbulent 

region exists immediately from the leading edge 

(Figure 11). An increase in propeller loading 

showed a radial increase of the turbulent region at 

outer radii, as illustrated in Figure 12. The 

change in radial direction of the laminar region 

near the leading edge to the turbulent region at 

outer radii on the suction side is abrupt and 

nearly discontinuous, as sketched in detail in 

Figure 13. The laminar region is cut off and the 

region of natural transition at inner radii does 

not reach the leading edge. We will designate the 

radius where this discontinuity occurs, the critical 



SUCTION SIDE 

PROPELLER C , Rey= 0.66 x 10° 

radius of the propeller. Such a critical radius 

can also be observed from the paint pattern of 

Sasajima (1975) and of Meyne (1972). This critical 

radius turned out to be very important for cavita- 

tion inception and could be discerned in all cases. 

No photographs are shown because of the bad contrast 

of the monochrome prints. (Figure 16). 

On propeller B at 60% slip a separation bubble 

at the leading edge was observed, connected with a 
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PRESSURE SIDE 

FIGURE 1l. 

30% slip. 

Paint patterns at 

stagnation region near the tip on the suction side, 

which indicated the position of the tip vortex. In 

the direction of the hub the laminar separation 

bubble extended exactly until the critical radius. 

This lead us to the hypothesis that laminar sepa- 

ration near the leading edge was the cause of the 

discontinuous character of the paint streaks at the 

critical radius. To verify the hypothesis of laminar 

separation at the critical radius, boundary layer 
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60 °%. SLIP 
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FIGURE 12. Variation of the critical radius with 

propeller loading on propeller D (suction side). 

calculations were made, using the pressure distri- 

butions as calculated in Section 3. The laminar 

boundary layer was calculated with Thwaites' method 

[Thwaites (1949)]. Laminar separation was predicted 

using Curle and Skan's (1957) criteron. This cal- 

culation method does not take into account the 

delaying effect of rotation on laminar separation, 

but since laminar separation occurs very close to 

the leading edge the effect of rotation on the 

development of the boundary layer will still be 

small. The correlation between the calculated and 

the observed critical radius is given in Figure 14, 

and this correlation is quite good. The critical 

radius at all conditions and the variation of the 

critical radius between the propeller blades can 

FIGURE 13. Discontinuity of paint streaks at the 

critical radius. 
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FIGURE 14. Correlation of calculated radius of 

laminar separation and measured critical radius. 

also be found from Figure 14. As can be seen, the 

variation of the critical radius per blade in one 

condition can be considerable, showing the sensi- 

tivity of laminar separation to the manufacturing 

accuracy. The critical radius per blade, however, 

reproduced remarkably. 

The position of laminar separation is independent 

of the Reynolds number. So another check on the 

hypothesis of laminar separation at the critical 

radius is the independence of the critical radius 

from the Reynolds number. Propellers A and C were 

therefore tested with about twice the original 

number of revolutions. Propeller A was also inves- 

tigated in a cavitation tunnel: the highest 

Reynolds number in the towing tank was repeated 

and another condition with about three times the 

original Reynolds number was tested. The paint 

tests in the cavitation tunnel were less accurate 

since turbulent spots occurred, which caused a 

wedge shaped tangential streak through the laminar 

pattern. This was strongest at the higher Reynolds 

numbers. 

Figure 15 gives the critical radius as a function 

of Reynolds number for the blades available for 

comparison. There is a slight trend for the critical 

radius to decrease with increasing Reynolds number, 

but this is only very slight. The critical radius 

is strongly dependent on the propeller loading and 

a slight increase of the propeller loading with 

increasing Reynolds number might cause the decrease 

of the critical radius. For comparison the obser- 

vations of Sasajima are also drawn in Figure 15. 

He observes a larger shift of the critical radius 

with Reynolds number, but his results from the 

tank show no variation with Reynolds number. The 

variations found in the cavitation tunnel might 

well be caused by variations in propeller loading 

or by wall effects. The conclusion seems justified 

that the critical radius is independent of the 

Reynolds number, at least until natural transition 

occurs close to the minimum pressure point. In 

that case a critical radius no longer exists. 
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It is important to note that in Figure 12 at 60% 

slip the radius where laminar separation occurs 

near midchord is not the critical radius, although 

in this case the difference between both is small. 

With increasing Reynolds number, however, the region 

of laminar separation near midchord will decrease, 

while the critical radius will remain unchanged. 

The distance between the sharp corner in the paint 

streaks of Figure 12b and the critical radius will 

therefore increase with increasing Reynolds number. 

An increase of Reynolds number causes a shift 

in the chordwise position of the transition region 

at radii inside the critical radius, as is illus- 

trated in Figure 16. This was also observed on 

the pressure side. In Figure 17 the chordwise 

position of the transition region is given at 

r/R=0.7 as a function of the sectional Reynolds 

number, which is related to the entrance velocity 

and the chordlength of the propeller section at 

that radius. The transition region is averaged in 

Figure 17. This makes clear that a complete turbu- 

lent boundary layer at a radius of 0.7R requires 

sectional Reynolds numbers of about 5x106. At the 

suction side, turbulent flow at this radius also 

occurs when the loading is increased, i.e. the 

critical radius is smaller than 0.7. 

Empirical criteria for transition of the boundary 

layer to turbulence have been given as a relation 

between the Reynolds numbers based on the length 

from the stagnation point, Re,, and based on the 

momentum thickness, Reg. [Michel (1951), Smith 

(1956) ]. Van Oossanen used the Smith line 

Rey = 0.73 x10" 

Rey = 1.56 x 10° 
= 1 1740Re, aac 

SO ears (10) 

as a criterion. When the relation between Reg and 

Re, Over the chord was calculated, both on the 

suction side and on the pressure side, this relation 

was so closely parallel to the criterion of Eq. 10 

that no reliable intersection was possible. When 

there is a strong negative pressure peak at the 

leading edge the relation between Reg and Re, is 

such that Eq. 10 always predicts transition very $$ GRIMIENG RASIUS 

close to the leading edge. When the pressure £22 777 7~7~— TRANSITION 

distribution was nearly shockfree, the prediction 

was erroneous. FIGURE 16. Effect of Reynolds number on the transi- 

To calculate the transition region, calculation tion region. Propeller A at 30% slip. 



On propeller A and on propeller B at 30% slip 

the radial extent of the cavitation is clearly 

restricted by the observed critical radius. Some— 

PRESSURE SIDE times there is a small difference between the 

FF SUP =0.6 critical radius and the inception radius, which is 

probably caused by a change in the pressure distri- 

bution by the cavitation. 

The calculated ideal inception radii at 60% slip 

should be considered with caustion. They are close 

to the hub and the influence of the hub is not 

taken into account in the calculations. For example 

on propeller B at 60% slip the inception radius is 

larger than calculated. In that case the critical 

radius is smaller than the inception radius and 

does not cause any viscous effects on cavitation. 

The distance between the ideal inception radius 

and the critical radius on propeller C is small, 

so the scale effects due to the critical radius 

will be small too. 

We can conclude that no cavitation occurred in 

regions of laminar flow near the leading edge. The 

radial extent of cavitation can be seriously 

5x10° 10° 5 x10° restricted by the critical radius. Since the crit- 

Re (0.7) ical radius is connected with laminar separation 

this means that variation of the Reynolds number 

does not remove this restriction until very high 

Reynolds numbers. From Figure 17 the sectional 

Reynolds number at r/R=0.7 has to exceed 5x106, 

whereas a value of 3x105 is mostly considered 

enough to avoid Reynolds effects on thrust and torque. 

O PROPELLER C- SUCTION SIDE SLIP=0.3 

a cr PRESSURE SIDE co BOOKS 

O PROPELLER A SUCTION SLIP =0.3 

e@ 

a 

FIGURE 17. Chordwise position of natural transition 

inside the critical radius. 

of the stability of the laminar boundary layer 

might give better results [Smith and Camberoni (1956) ]. 
Since transition occurs far from the leading edge, 

the effect of rotation can be important. When the 

calculation scheme of Arakeri (1973) is used it is 

possible to take the effect of rotation into account 

using Meyne's (1972) results. This was beyond the 

scope of this paper. j 

Variation of Reynolds Number 

Propellers A and C were tested at a higher Reynolds 

number in the towing tank, while propeller A was 

Rey = 0.73x10" Rey =0.51x10° Rey =0.66x10° 

5. CAVITATION OBSERVATIONS 

The cavitation on propellers A, B, and C is sketched 

in Figure 18 for both slip ratio's. The cavitation 

index at the blade tip in top position, Oymp (Eq. 2) 

was always 1.5. The Reynolds numbers Rey, were 

about 5x105. At 30% slip the condition is not far 
from inception and a cavitating tip vortex is 

present in nearly all cases. However, in some cases 

at low Reynolds numbers, propellers A and C were ob- 

served without any cavitation. This was not due to 

intermittent cavitation during one test, but oc- 

curred when tests were repeated with time-intervals 

of some weeks. During one test the observations 

were quite consistent, indicating that the varia- 

tions are caused by factors which are still not 

under enough control, e.g., air content, nuclei 

content, turbulence. 

30% SLIP 

Correlation with Paint Test 

Of interest is the correlation of the radial extent 

of the cavity with the observed critical radius, 

found from the paint test. In Figure 18 the 

observed position of the critical radius is indicated, 

as well as the calculated ideal inception radius, PROP. A PROP. B PROP. C 

which is the radius where the minimum pressure on 

the blades equals the vapor pressure. Also indicated 

is the cavitation, observed when the leading edge 

was roughened, as will be discussed in the next 

section. FIGURE 18. Cavitation observations at Chom = 1.5. 

——— WITH ROUGHNESS 

= OBSERVED CRITICAL RADIUS 

— CALCULATED IDEAL INCEPTION RADIUS 



also tested in the cavitation tunnel at two Reynolds 

numbers. No differences in cavitation pattern due 

to variation of the Reynolds number were observed 

in the towing tank. Notably the radial extent of 

the cavity was unchanged, which confirmed that the 

critical radius restricted cavitation inception 

independent of the Reynolds number. The results 

of propeller A at 30% slip are shown in Figure 19. 

In this figure the observations of the tests in 

the cavitation tunnel are also shown. These show 

some differences requiring further attention. The 

cavity in the cavitation tunnel at Rey=1.56x106 is 

somewhat larger than in the towing tank, but the 

difference is not significant and is probably 

caused by a slight difference in propeller loading. 

(The tunnel condition was taken at a’K,-value 

derived from the open water measurements. The flow 

velocity was not measured). Remarkable are the 

spots of cavitation at Rey=l.56x106 which increased 

in number when time increased! 

At Rey=2-72*106 there is a sheet outside r/R=0.9, 

the same as at Rey=1.56x106. The spots however, 

have increased in number and they coalesce at some 

distance from the leading edge, forming a cavity 

until about r/R=0.8 with isolated spots until r/R=0.7, 

which is the ideal inception radius. The increase 

of the number of spots with time was not observed 

in this situation, but the time to reach a stable 

condition was much longer than at lower Reynolds 

numbers. 

TANK 
Rey, =1.36x10° 

a. TANK b. 
Rey =0.73x10° 

TUNNEL 
Rey =2.72x10° 

c. TUNNEL d. 
Rey = 1.56x10° 

FIGURE 19. Effect of Reynolds number on propeller A 

at 30% slip with On = 1.5. 
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The occurrence of cavitating spots in the laminar 

region agrees with the observation of turbulent 

streaks in the paint tests in the cavitation tunnel 

at higher Reynolds numbers. Therefore, it is 

conjectured that, in the tunnel, tiny particles 

were deposited on the leading edge of the propeller, 

thus creating turbulent streaks. The number of 

these streaks may increase with time, and these 

turbulent streaks cause spots of cavitation. 

Another possible effect is that the propeller 

is not hydrodynamically smooth. With increasing 

Reynolds number the boundary layer becomes thinner 

and more sensitive to local roughness. In this 

case the streaks would always be in the same position. 

Not enough observations were made to verify this, 

but the strongly reduced occurrence of turbulent 

spots in the towing tank points to the flow as the 

origin of the disturbances. The occurrence of 

these streaks was also apparent in the tank when 

the pressure was drastically lowered, as is shown 

in Figure 20. It is of course very important to 

recognize these cavitating spots since they indicate 

a region of laminar boundary layer flow anda 

possible restriction of the radial extent and the 

volume of the cavity. 

The effect of Reynolds number on cavitation in 

the region from the critical radius to the tip is 

small. In nearly all cases cavitation took place 

in this region at low Reynolds numbers. In some 

cases no cavitation was present in this region at 

a low Reynolds number, as shown in Figure 21. A 

paint test is included to show the critical radius. 

At a higher Reynolds number, cavitation was present 

until the critical radius. The ideal inception 

radius in this case is at r/R=0.7. A similar effect 

was sometimes seen at propeller C and can be 

explained by the fact that the reattachment region, 

where inception is assumed to occur, shifts to 

lower pressure regions with increasing Reynolds 

number. Calculations of such an effect are given 

by Huang and Peterson (1977). It is not certain, 

however, that the Reynolds number is the only 

variable since application of electrolysis also 

caused inception at low Reynolds numbers. Apparently 

the nuclei distribution becomes more critical with 

lower Reynolds numbers. 

Observations with Oyp = 0.5 

Laminar boundary layer flow was seen to prevent 

sheet cavitation at the leading edge. To see if 

there is some threshold for inception the cavitation 

index was drastically lowered to opy=0-5. This 

was only possible at high Reynolds numbers. In 

Figure 22 propeller A is shown at 30% slip, a 

condition comparable with Figure 19b, but at a low 

cavitation index. It is clear that even in this 

extreme condition no cavitation occurred in the 

laminar flow region. 

A comparison of the local cavitation index with 

the pressure coefficients as given in Figure 9 

shows that, e.g., at r/R=0.8, the minimum pressure 

coefficient is 0.54 while the cavitation index at 

that radius is 0.08 to 0.012, depending on the 

position of the blade. The cavitation index at this 

radius is lower than the pressure coefficient over 

most of the propeller section. When turbulent spots 

appeared inside the critical radius these spots 

were supercavitating, as is also shown in Figure 20. 

Bubble cavitation can be expected near midchord 
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FIGURE 20. Turbulent streaks inside the critical 

radius at higher Reynolds numbers. Propeller C at 

30% slip. 

at inner radii, where the minimum pressure exists 

near midchord. At propeller A at r/R=0.6 the cavita- 

tion index is between 0.13 and 0.20, at Oyp-O-5, 

while the minimum pressure coefficient is 0.26. 

As can be seen in Figure 22 no bubble cavitation 

occurred. The cavitating spot at midchord is a 

dent in the propeller surface and illustrates the 

low local pressure. Similar observations were made 

with propeller C at Oyp=0.5. No threshold for sheet 

cavitation could be established and no bubble 

cavitation occurred near midchord at inner radii. 

Both phenomena are suspected to be caused by a lack 

of nuclei. So electrolysis was applied, as will be 

discussed in the next section. 

6. VARIATION OF NUCLEI CONTENT BY ELECTROLYSIS 

Some measurements in the NSMB Depressurized Towing 

Tank with the scattered light method indicated 

that the nuclei content of this tank was nearly 

independent of the pressure. The density of small 

nuclei (17 um) was 1.2x107 m7~3 and that of the 

largest available nuclei (45 um) was 1.2x10° Wo 

[This corresponds with nuclei number densities, as 

defined by Gates (1977) of 9x10!! ana 2.4x101° 
respectively]. A description of the measuring 

technique which was used is given by Keller (1974). 

A comparison with similar measurements in the NSMB 

large cavitation tunnel [Arndt and Keller (1976) J 

shows that the nuclei content is lower than that 

in the cavitation tunnel at the lowest air content 

by a factor of about 5. The nuclei content in the 

cavitation tunnel was very much dependent on the 

total air content of the water, showing variations 

of a factor of 10 between high (12.5 ppm) and low 

(6.3 ppm) air content. This dependency was absent 

PAINT OBSERVATION 

Rey= 0.73x10° 

CAVITATION OBSERVATION 

Rey=0.73x 10° 

Ont= 1.71 

CAVITATION OBSERVATION 

Rey = 1.56 x10° 

Gyt=2-09 

Effect of Reynolds number on_ cavitation FIGURE 21. 

inception outside the critical radius. Propeller A 

at 40% slip. 
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FIGURE 22. Cavitation at very low cavitation index. 

Propeller A at 30% slip. 

in the Depressurized Towing Tank. So when cavita- 

tion observations in the tank are compared with 

observations in the tunnel, we can assume that the 

nuclei content in the tunnel is always larger than 

that in the tank by at least a factor of 10. Perhaps 

most important, however, is that in the tank nuclei 

greater than 60 wm are absent. 

The nuclei content in the tank has been varied 

using electrolysis, as described in Section 2. The 

nuclei size distribution from the wires of 0.2 mm 

diameter has not been measured. Exploratory 

photographic observations showed that the bubbles 

coming from the wires are in the range of 50 to 

100 um under comparable conditions. 

The influence of the wires on the propeller 

boundary layer was checked by a paint test on 

propeller A at 30% slip. The paint patterns with 

and without wires were identical. So we assume that 

the turbulence, coming from the wires, did not 

affect the propeller boundary layer. This assumption 

should be treated with some caution, because Gates 

(1977) showed widely different effects of flow 

turbulence on two headforms, both with laminar 

separation. 

Gates also showed that large amounts of nuclei 

can influence the boundary layer. Notably the 

laminar separation bubble on his hemispherical 

headform was removed. To see if this was also the 

case in our tests a paint test was carried out with 

propeller A at 30% slip. The cavitation index was 

just above inception, so cavitation was avoided. 

To correct for the higher pressure in this condition 

the current through the electrolysis wires was 

increased to produce the same volume of gas per 

second as in the cavitating condition. No effect 

on the paint pattern could be observed. Especially 

the critical radius remained unchanged. So we 

assume that the nuclei had no disturbing effect on 

the boundary layer. As to the effect of electrolysis 
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on the cavitation pattern, three regions on the 

suction side of the propeller blades can be 

distinguished: 

a. At radii larger than the critical radius, 

where, at least near the critical radius, 

laminar separation takes place. 

b. At radii smaller than the critical radius 

having a negative pressure peak at the leading 

edge. 

c. At radii smaller than the critical radius 

having a pressure distribution which is 

nearly shockfree. 

At radii larger than the critical radius no effect 

of electrolysis on sheet cavitation could be seen 

in those cases where it was present. In the few 

cases where no cavitation was present in this 

region application of electrolysis restored inception. 

An example of absence of cavitation, apparently due 

to a lack of nuclei, is shown in Figure 23, where 

blade 3 of propeller C at 60% slip showed consider- 

able cavitation , while blade 4 was free of sheet 

cavitation during the whole run (9 photographs in 

3 different blade positions). 

Absence of cavitation in regions of laminar 

separation, however, is an exception in the steady 

case. A possible explanation is that the water is 

never completely without nuclei and sooner or later 

a nucleus will expand in the separated region and 

cause inception. After inception cavitation seems 

to be more or less self-sustaining. This agrees 

with the observation of Gates (1977) that inception 

on a hemispherical body appeared to be insensitive 

to freestream nuclei content as long as laminar 

separation took place. The situation is different, 

however, in the unsteady case, when a blade passes 

a wake peak. Only a very restricted time is avail- 

able for inception at every propeller revolution 

and a high frequency of encounters with nuclei is 

necessary to obtain inception at every revolution. 

This can explain why the "stabilizing" effect of 

electrolysis is more pronounced behind a ship model 

than in the open-water tests of the current test 

program. 

At higher Reynolds numbers absence of cavitation 

in regions of laminar separation was not observed. 

Apart from viscous effects this can also be caused 

by an increase in encounter frequency of nuclei, 

since an increase in Reynolds number of the same 

propeller models always implied an increase in 

propeller revolutions. 

At radii smaller than the critical radius elec- 

trolysis surprisingly had no effect at all. No 

cavitation was initiated in the minimum pressure 

peak, although the pressure was far below the vapor 

pressure. Even the cavitation pattern at very low 

cavitation index, as shown in Figure 22, was 

unchanged. It is not clear yet why the nuclei do 

not expand. Possibly nuclei do not reach the 

minimum pressure region due to a screening effect 

as described by Johnson and Hsieh (1966). Ina 

situation as shown in Figure 23, however, nuclei 

promoted cavitation inception and were not pushed 

away. This is only possible when the critical 

size of nuclei in a laminar flow region is different 

from the critical size in the reattachment region 

of a laminar separation bubble. 

The third region which has to be considered is 

the region where the pressure distribution is 

nearly shockfree and has its minimum pressure near 

midchord. When the pressure is low in these regions 

bubble cavitation can be expected. A situation 
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FIGURE 23. Inconsistency of cavitation inception 

outside the critical radius at low nuclei content. 

Propeller C at 60% slip. 

like this is shown in Figure 22, but none or only 

a few transient bubbles were seen. 

Electrolysis sometimes restores bubble cavitation 

in this region, but in many cases it does not. 

This inconsistency could even be found on the same 

propeller in virtually the same condition when 

tested repeatedly with long time intervals. In 

one case an abundant amount of large bubbles was 

visible without causing bubble cavitation, while 

an amount of invisibly small nuclei did cause 

bubble cavitation in the same condition. In Figure 

19d it was seen that in the cavitation tunnel 

cavitating spots at the leading edge were formed at 

high Reynolds numbers. When the cavitation index 

was lowered, bubble cavitation occurred in the 

wake of these spots, while at radii in between of 

the spots no bubble cavitation was observed. When 

the cavitation index was lowered to about Oyp=0.5 

the spots were connected with intense bubble cavita- 

tion, as shown in Figure 24. It can be seen that 

the bubble cavitation is related to the spots at 

the leading edge. Apparently the stream nuclei, 

which were abundant in the tunnel at this low 

cavitation index, did not create bubble cavitation, 

while nuclei, generated by a cavitating spot 

created intense bubble cavitation. The possible 

relation between pressure distribution, boundary 

layer, and nuclei distribution must be studied to 

analyse these phenomena. 

7. VARIATION OF THE BOUNDARY LAYER BY ROUGHNESS 

AT THE LEADING EDGE 

In all tests, at least one of the propeller blades 

was roughened at the leading edge, as described in 

Section 2. With paint tests, it was verified that 

the laminar regions were changed into turbulent 

ones. Although the grain size of 30 wm and 60 um 

is larger in comparison with the boundary layer 

thickness, there was a lower limit in the region 

which had to be covered with carborundum to cause 

turbulent flow. For thin sections an evenly dis- 

tributed layer of carborundum of say 0.5% of the 

chord was necessary to trip the boundary layer. 

There was little difference between the effect of 

30 um and 60 um carborundum. At thick sections 

to be effective roughness was necessary until about 

the minimum pressure point. At the pressure side 

the boundary layer remained increasingly laminar 

when the loading increased. At 70% slip the 

the pressure side of the roughened blades was 

completely laminar near the leading edge. 

Attention, given until now to the propeller 

boundary layer, was focussed on the effect on 

torque and thrust. Calculation methods to account 

for Reynolds effects on open-water characteristics 

are based on the assumption of turbulent boundary 

layer flow on the propeller model [Lerbs (1951) ] 

or on an empirical value in between fully turbulent 

and fully laminar, as compiled by Lindgren (1972). 

From the paint tests however, we saw that the 

turbulent region at the suction side strongly 

depends on the propeller loading. The difference 

between the dimensionless thrust and torque coeffi- 

cients, therefore, will not only depend on the 

Reynolds number, but also on the propeller loading. 

In order to eliminate the dependency of thrust 

and torque coefficients on the Reynolds number, 

turbulence stimulators have been used. Sasajima 

(1975) used studs, Yasaki and Tsuda (1972) and 

Tsuda et al. (1977) used trip wires at some distance 

from the leading edge. Apart from changing the 

boundary layer, these devices also have considerable 

resistance of their own. Effects both on thrust 

and torque are difficult to separate. The influence 

of roughness at the leading edge on thrust and 

6 Rey = 2.72 x10 

Oyy = 0.5 

FIGURE 24. Bubble cavitation in the wake of spots at 

the leading edge. Propeller A at 30% slip in the cavi- 

tation tunnel. 
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FIGURE 25. Effect of leading-edge roughness on torque 

and thrust coefficients. 

torque coefficients is given in Figure 25. These 

measurements were carried out with a special dyna- 

mometer inside the propeller hub to assure that the 

differences were not insignificant due to inaccuracy 

of the measurements. The accuracy in Figure 25 is 

still only about + 0.005. 

Using Lindgren (1972), the value of AK, between 

fully turbulent and fully laminar boundary layer 

flow on the propeller is 0.0035. The actual 

influence of the roughness at the leading edge is 

smaller, so that we can conclude that the resistance 

due to the carborundum was very small. An analysis 

of the effect of roughness at the leading edge on 

the performance of the propeller is beyond the 

scope of this paper. 

The effect of leading edge roughness on cavitation 

is sketched in Figure 18. The radial extent of the 

cavitation is increased in those cases where the 

critical radius was a limit for cavitation. The 

risk of scale effects on cavitation inception due 

to laminar boundary layer flow is largest at low 

propeller loadings, when the risk of laminar 

separation is smallest. But it still can be 

considerable at high loadings, as is shown in Figure 

26, where propeller A is shown with and without 

roughness at 60% slip. 

Application of roughness at the leading edge is 

expected to cause two problems. First the geometry 

of the leading edge may be altered, having a pro- 

found influence on the minimum pressure peak. 

Secondly, the local inception index may be changed 

due to roughness. The effect on the shape of the 

leading edge can only be minimized by using small 

grain sizes. However, to obtain a turbulent boundary 

layer the current 30 wm grainsize was about the 

minimum and no differences in cavitation behavior 

were observed between blades roughened with 30 um 

and 60 wm roughness. The effect of surface irreg- 

ularities on cavitation inception can be large, as 

was shown by Holl (1965). Moreover, Holl points 

out that "the most disastrous place to locate 

surface roughness is at the point of minimum 

pressure of a parent body". This is exactly what 

cannot be avoided at the rather sharp leading edge 

of thin propeller sections. The situation very 

close to the leading edge, however, is different 

from the situation of an isolated roughness at a 
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surface, as studied, e.g., by Holl (1965) and 

Benson (1966). Application of their results is 

also difficult, because the ratio between grainsize 

and boundary layer thickness without roughness, 

which is required for the calculations, varies 

rapidly in this region. The boundary layer thickness 

on the smooth blades near the end of the roughness 

was about 30 um in all conditions, when no separation 

took place. At the position of laminar separation 

the boundary layer thickness was only a few um. 

Thus, the ratio of grainsize to boundary layer 

thickness easily varies by a factor of ten. Appli- 

cation of inception calculations on distributed 

roughness [e.g., Arndt and Ippen (1968)] seems 

more appropriate, but this is difficult, because a 

friction coefficient is required for the calculations, 

as well as an "equivalent sandroughness". Both 

are strongly interrelated [Bohn (1972) ] and espe- 

cially near the leading edge these quantities are 

difficult to estimate. 

The roughness elements do form a massive distur- 

bance of the boundary layer and an increase in the 
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FIGURE 26. Effect of leading edge roughness on cavi- 

tation. Propeller A at 60% slip. 
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FIGURE 27. Effect of Reynolds number on spot cavita- 

tion at roughness elements. Propeller A at 30% slip. 

cavitation inception pressure to a value greater 

than the vapor pressure is possible, which would 

create additional scale effects on cavitation 

inception. To estimate the importance of a possible 

increase in cavitation inception index, the ideal 

inception radius is also given in Figure 18. This 

is the radius where cavitation should start when 

the calculations of the pressure distribution were 

correct and when no scale effects would occur. As 

a 

SMOOTH 

60 [Lm CARBORUNDUM 

0.73 x10® 
Gur = 2-5 

a o z u 

FIGURE 28. Effect of roughness near inception. Pro- 

peller A at 30% slip. 

can be seen, no cavitation occurs inside the ideal 

inception radius, indicating that the pressure at 

inception with roughness is not far from the vapor 

pressure. Assuming that full scale inception takes 

place near the minimum pressure point at the vapor 

pressure [oj=-Cp (minimum)], application of sand- 

roughness can effectively simulate this situation 

at much lower Reynolds numbers. Further experiments 

are necessary to find out the precise effect of 



leading edge roughness on the flow and on the 

boundary layer. Holographic methods, as applied by 

van der Meulen (1976) in studying the effects of 

polymers can be attractive for these experiments. 

When the effect of roughness at the leading edge 

is studied three regions on the model propeller can 

again be distinguished. At radii larger than the 

critical radius, where inception on the smooth 

blades takes place due to laminar separation, the 

cavitation behavior is unaffected by roughness. 

Cavitation was always present on the roughened 

blades. It is unknown if the sensitivity to nuclei 

in the unsteady case increases, as is suspected on 

the smooth blade. Experiences with several other 

propellers behind a model indicate that this is 

not the case and that nuclei have very little effect 

when roughness is applied. 

In the laminar region, at radii smaller than the 

critical radius, roughness at the leading edge has 

its major effect, as described above. In some 

cases, however, problems appeared in the form of 

streaky cavitation as shown in Figure 27a. When 

the pressure on the blade sections was constant, 

as was the case for propeller A at r/R=0.7 and for 

propeller C at r/R=0.8, both at 30% slip (Figure 9), 
and when the Reynolds number was low, cavitating 

streaks were formed behind the roughness elements. 

In Figure 27b the same blade in the same condition 

at a higher Reynolds number is shown. Here a smooth 

cavity is seen. The roughness elements apparently 

suffer from laminar separation at low Reynolds 

number and cavitation occurs in the separated regions 

behind the roughness. The length of the spots is 

strongly dependent on the cavitation index, as is 

shown in Figure 28b, where the same situation as 

in Figure 27a is shown at a somewhat higher cavita- 

tion index. The spots disappeared and the propeller 

is near inception. Figure 28 also shows that in- 

ception of the sheet at the leading edge is not far 

from the vapor pressure, because the ideal inception 

radius in this case was 0.78. When roughness was 

applied, electrolysis had no further effect at 

radii smaller than the critical radius. 

In the region with shockfree nressure distribution, 

bubble cavitation was seen to be promoted in some 

cases by roughness at the leading edge. The influ- 

ence of roughness, however, was inconsistent again 

SMOOTH 60 [Lm CARBORUNDUM 

Rey = 2.72x10° 
Gut = 1.0 

“FIGURE 29. Effect of leading edge roughness on bubble 

cavitation. Propeller A at 30% slip in the cavitation 

tunnel. 
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in this region, as it was with electrolysis. When 

there was cavitation at the leading edge due to 

the roughness, again bubble cavitation appeared at 

midchord, as is illustrated in Figure 29, where 

nuclei generated by cavitation at the leading edge 

created bubble cavitation at midchord. The cavita- 

tion index at 0.7R in Figure 29 is 0.18 and the 

minimum pressure coefficient from Figure 9 is 0.20, 

so the situation with roughness seems to be the 

situation without scale effects on cavitation 

inception. Nuclei in the flow, however, did not 

create bubble cavitation. 

8. CONCLUSIONS 

The results of the present test program can be 

summarized as follows: 

ib5 On the suction side of a model propeller a 

critical radius can exist outside of which 

the boundary layer is turbulent from the 

leading edge. This critical radius is due 

to laminar separation, as was seen from some 

observations, from calculations (Figure 14), 

and from the Reynolds independency of the 

critical radius. (Figure 15). 

To obtain natural transition near the leading 

edge on a propeller model, high Reynolds 

numbers (Reyy>2 510°) are required. 

The critical radius is a limit for the radial 

extent of sheet cavitation from the leading 

edge. An increase of nuclei by electrolysis 

is ineffective in the laminar region (Figure 22). 

Outside the critical radius, cavitation is not 

inhibited (the inception pressure was not 

accurately determined), but a lack of nuclei 

at low Reynolds number seems to decrease the 

frequency of inception (Figure 23). In the 

unsteady case the nuclei content of the water 

is probably important in this region. 

Roughness at the leading edge can effectively 

remove the critical radius, thus simulating a 

higher Reynolds number. Inception of cavitation 

at the roughness elements occurs close to the 

vapor pressure, which is assumed to be also 

the case on the prototype. 

When the pressure distribution is very flat 

and the Reynolds number is low, the roughness 

elements can induce spots of cavitation. The 

length of these spots is strongly dependent on 

the cavitation index and is different from the 

cavity length at high Reynolds numbers. This 

is probably due to laminar separation at the 

roughness elements (Figure 27). 

The inception of bubble cavitation near mid- 

chord at inner radii is not consistent. There 

seems to be an interaction between the pressure 

distribution, the nuclei distribution, and 

even the boundary layer. When cavitation at 

the leading edge is present, bubble cavitation 

occurs near midchord when the pressure is below 

or near the vapor pressure in that region. 

Lifting line and lifting surface calculations 

can adequately predict the open-water character— 

istics of a propeller. For the calculation of 

the pressure distribution, however, lifting 

surface calculations are necessary. The corre- 

lation between calculations and the results of 

paint tests and cavitation observations is good. 
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From the previous investigations in uniform flow 

some tentative explanations can be given of the 

scale effects on cavitation as shown in Figures 

1-3. The explanations can only be tentative since 

the unsteady pressure distribution on the propellers 

in the wake is not known. Propeller A in Figure 1 

apparently had a critical radius at r/R=0.9 in 

this blade position, which was removed by roughness 

at the leading edge. Also, behind the model in 

some situations no cavitation at all occurred in 

the wake peak, which is expected to be due to a 

lack of nuclei (as seen in Figure 21). 

The lack of nuclei is more apparent at propeller 

B. The critical radius is expected to be near the 

hub, but the low encounter frequency with nuclei 

of sufficient size makes cavitation inception more 

or less random. The irregular collapse of the 

cavity on propeller C is apparently due to a strong 

change in the pressure distribution, due to a sharp 

wake peak. The critical radius at the position of 

Figure 3 is near r/R=0.9 but the cavity at inner 

radii is still collapsing. This phenomenon could 

also be seen on high speed films, where the sheet 

cavity was seen to detach from the leading edge 

and collapse while moving with the flow. Some 

cavitating spots can be seen at r/R=0.8 on propeller 

(Cr 
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APPENDIX 

The geometry of the four propellers, used in this 

study and shown in Figure 4, is given in this 

appendix. The output is from a propeller data 

base and is not dimensionless but in mm on model 

scale. Propellers A and C were stored in the data 

base on a different model scale than actually used 

in the tests, but this has no further impact. Cal- 

culations were made directly from this data-base. 

At each radius, R, the pitch, P, is given, 

together with the distance to the generator line of 

the trailing edge, TE, the leading edge, LE, and 

the position of maximum thickness, TM. The positive 

direction is from the generator line to the leading 

edge. 

The geometry of the propeller section is given 

by the thickness and the distance of the face of 

the propeller section above the pitch line. The 

ordinates of the section geometry are given as 

percentages of the distance between point of max- 

imum thickness and leading edge (positive) or 

trailing edge (negative). The origin therefore 

always is at the point of maximum thickness of the 

profile. 

The profile thickness at leading and trailing 

edge is finite in this appendix. The radii at the 

leading edge were determined by generating a spline 

through the profile contour or by interpolating in 

the transformed plane after conformal mapping. 

Both interpolating techniques gave nearly the same 

results and were very close to the actual propeller 

geometries. 
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Discussion 

SHIN TAMIYA, HIROHARU KATO, and YOSHIAKI KODAMA 

SETTLING SECTION —-NUCLE! GENERATION SECTION 

TEST SECTION (80x80x10G0) 

4 
=F EED TANK 

— FILTER TANK “ORIFICE 

FIGURE 1. General arrangement. 

The discussers appreciate the excellent re- 

search work on cavitation inception done at NSMB*. 

At the University of Tokyo the discussers also per- 

formed similar experiments using both hemispherical 

and ITTC headforms tested in our newly built cav- 

itation tunnel. This tunnel has a filtering tank 

containing 60 cartridge type filters, which contin- 

uously remove air nuclei and solid particles larger 

than ca. 1 um from water (Figure 1). |. 

Figures 2 through 7 show the effect of elec- 

trolysis on cavitation inception. The photograph 

in Figure 3 was taken a few seconds after that in 

Figure 2. The flow conditions are exactly the same 

for Figures 2 and 3; the only difference is the 

presence of hydrogen bubble nuclei. The photographs 

in Figures 4 and 5, as well as 6 and 7, were also 

taken under the same conditions. 

In the discussers' experiments the cavitation 

caused by electrolysis nuclei generates only bubble PICUREV Qe muitehoutl hydrogenabubblles\vasichsunver 

type cavitation. Even when sheet cavitation exists, 3 ='Osehh. 

the cavitation bubbles caused by the electrolysis 

nuclei seem to break up the sheet cavity. 

*Netherlands Ship Model Basin FIGURE 3. With hydrogen bubbles V = 6.8 m/s, 

#Statens Skeppsprovningsanstalt Ci = Machi, 



FIGURE 4. Without hydrogen bubbles V = 6.8 m/s, 

o = 0.71. 

FIGURE 5. With hydrogen bubbles V = 6.8 m/s, 

o=0.71. 

FIGURE 6. Without hydrogen bubbles V = 6.8 m/s, 

o = 0.60. 

O. RUTGERSSON 

I would like to congratulate the author of 

this interesting paper. As a complement to the data 

presented I think that some results obtained at 

SSPA# when testing high-speed propellers could be 

of some interest. A propeller of the supercavi- 

tating type was tested with three different gases 

in the water. Also, two different conditions of 

the blade surface were used, smooth polished and 

painted with a thin spray paint giving the surface 

some roughness. 

In Figure 1 the propeller characteristics from 

these tests for homogenous flow at the cavitation 

number, 0 = 0.6, are shown. In the partially cav- 

itating region (J > 1.0) there is a very pronounced 

influence due to gas content for the polished pro- 

peller. For the painted propeller no such influ- 

FIGURE 7. With hydrogen bubbles V = 6.8 m/s, 

o = 0.60. 

ence was found. Cavitation pictures at the advance 

ratio, J = 1.1, give the explanation for these 

differences. Figure 2 shows the cavitation at the 

lowest gas content (a/a, = 0.2) for the polished 

propeller. The cavitation pattern is divided into 

two parts. The first part is a sheet starting at 

the leading edge. The second part is an unstable 

sheet of bubble cavitation at the aft part of the 

blade. Tests at higher gas contents (Figure 3, 

a/a, = 0.4) show that the aft part cavitation now 

has a larger extension. The painted propeller 

(Figure 4) shows a rather different pattern for the 

aft part cavitation (the leading edge sheet is al- 

most uninfluenced by gas content and roughness) . 

The aft part cavitation now consists of a thin sheet 

of very small bubbles. The sheet also has a rela- 
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tively larger extension on the painted propeller 

than on the polished propeller. Obviously it is 

the changes in this aftpart cavitation that cause 

the changes in propeller characteristics. 
Full scale tests have also been conducted with 

this propeller design. In Figure 5 the full scale 

cavitation pattern corresponding to the model tests 

is shown. This cavitation pattern is very similar 

to that of the painted model propeller. 

In the author's Figure 29 bubble cavitation 

is shown very similar to that in tests with the 

painted propeller at SSPA. The author concludes 

08 a/Os 
0.4 Painted 

Ky —-—-— 0.2 Not painted No 
0.4 Not painted — 

10Kq ———— 0.6 Not painted 
n 
° 06 

0.4 

0.2 

all 
0.6 0.8 - 1.0 1.2 AIS 

ADVANCE RATIO 
FIGURE 1. Propeller characteristics at 6 - uU.6. 

FIGURE 2. J = 1.1 a/a = 0.2 polished blade.* 

that this cavitation is inconsistent. Based on our 

experience with full scale cavitation, however, I 

think that the pattern shown could very well repre- 

sent a full-scale case. 

The influence of nuclei content and blade 

roughness on the cavitation pattern is found to be 

rather similar in the tests at NSMB and SSPA. The 

main difference is the necessary amount of rough- 

ness. This difference is possibly due to the dif- 

ference in Reynolds number, about 10 times as high 

in the tests at SSPA as in those carried out at 

NSMB. 

FIGURE 3. J = 1.1 a/a = 0.4 polished blade.® 

FIGURE 4. J =1.1a/a = 0.4 painted blade. 

FIGURE 5. J = 1.1 6 = 0.65 full scale. 
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Author’s Reply 

G. KUIPER 

Both the hemisphere and the ITTC body are 

known to exhibit laminar separation in the zenge 

of Reynolds numbers (estimated at about 2 x 10°) 

used in the experiments of Tamiya et al. as was 

already shown by Arakeri and Acosta (1973). They 

now point to an apparent discrepancy between the 

results as described in my paper and their obser- 

vations: on the propellers nuclei were found to 

generate sheet cavitation in the very few cases 

where it was not yet present, and the nuclei never 

changed the appearance of the cavity. 

First of all, the cavitation patterns, both 

with and without electrolysis, on the headforms of 

the discussers show a remarkable resemblance to 

various patterns shown on the ITTC bodies at other 

facilities [Lindgren and Johnsson (1966) and also 

reproduced by Gates and Acosta in their paper on 

this program] illustrating that the nuclei content 

was at least one of the factors causing the varia- 

tion in type of cavitation observed at different 

facilities. 

From the observations of the discussers it can 

be concluded that the nuclei, generated by elec- 

trolysis, removed the laminar separation bubble in 

the same manner as shown very clearly by Gates and 

Acosta in their symposium paper. This phenomenon 

was found when there were many large free stream 

bubbles in the flow, as can also be observed in the 

pictures of the discussers. In our case, however, 

we verified with a paint test that electrolysis did 

not remove the laminar separation bubble by veri- 

fying that the critical radius was unchanged. 

The observations of the discussers show that 

an overdose of nuclei can change the situation 

considerably. Gates and Acosta assume that the 

free stream bubbles do trip the boundary layer. 

Another possibility, however, is that the dynamic 

behavior of the bubbles near the minimum pressure 

region changes the pressure distribution on the 

body, specifically by decreasing the low pressure 

peak. This would also remove laminar separation, 

leaving the boundary layer laminar over a longer 

distance. In fact the nuclei do not only affect 

cavitation inception but they change the free 

stream conditions, making a correct comparison of 

the inception phenomena impossible. 

Rutgersson, in his discussion, gives an illus- 

tration of a possible effect of nuclei and roughness 

on bubble cavitation. With the pictures alone, 

only some assumptions can be made as to what hap- 

pened on this propeller, but I will make an attempt 

to give an explanation. 

Although the Reynolds number was rather high 

it looks like the boundary layer within r/R = 0.8 

is laminar over a large portion of the chord, while 

the minimum pressure region is near midchord 

(Figure 2). An increase of the nuclei content 

leads to occasional cavitating spots, starting at 

the low pressure region (Figure 3). On the painted 

blade, however, the boundary layer seems to be 

turbulent and bubble cavitation starts there, near 

the minimum pressure region (Figure 4). : 

If my tentative description is correct there 

is a difference between the discussers' case and 

Figure 29 (and also Figure 24) from my paper, since 

there the boundary layer in the region of low pres- 

sure was turbulent, and still no bubble cavitation 

occurred. Only when cavitation, generated by rough- 

ness, at the leading edge took place, a separate 

region of bubble cavitation also appeared. 

Whatever may be the case, it must be kept in 

mind that these descriptions of phenomena do not 

explain them, because it is not clear to me why 

there should be any interaction between the bound-~ 

ary layer and the free stream nuclei and which 

parameters would control this. I think more sys- 

tematic research is necessary to be able to 

simulate bubble cavitation on model propellers 

in a reproducible way. 

I agree with the suggestion of the author that 

the increased amount of bubble cavitation, as shown 

many times by roughened propeller models, may well 

be representative for full-scale cases. Bubble 

cavitation seems to be inhibited on scale models 

very easily. When bubble cavitation does occur on 

scale models the situation is so bad that invari- 

ably erosion problems do occur on full-scale. 

Ironically a better simulation of bubble cavitation 

may not make the interpretation easier. 

In general both discussions have made it clear 

again that it is impossible to make general state- 

ments about the effect of nuclei or roughness. To 

make any interpretation and to avoid confusion the 

test conditions must be given as complete as pos- 

sible. Finally, I thank the discussers for their 

discussions and for their kind attention to my 

paper. 
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A Holographic Study of the Influence of 

Boundary Layer and Surface Characteristics 

on Incipient and Developed Cavitation on 

Axisymmetric Bodies 

J. H. J. van der Meulen 
Netherlands Ship Model Basin 

Wageningen, The Netherlands 

ABSTRACT 

This paper describes an experimental investigation 

of boundary layer flow and cavitation phenomena on 

three axisymmetric bodies. The bodies possess 

different boundary layer or surface characteristics. 

The importance of these features for incipient and 

developed cavitation are studied by using in-line 

holography. A good correlation is found between 
observations and calculations of laminar flow 

separation and subsequent transition to turbulence 

of the separated shear layer. The influence of 

polymer additives on laminar flow separation is 

studied in detail. The results of this study explain 

the effect of cavitation suppression by polymer 

additives on certain bodies. 

1. INTRODUCTION 

Axisymmetric bodies have often been used to study 

the inception of cavitation. These studies were 

usually made by systematically varying the parameters 

related to the liquid flow (velocity, turbulence, 

air content, pressure history) or to the body (size, 

surface roughness, wettability). Although a con- 

siderable knowledge of cavitation was obtained in 

this way, a complete understanding of many cavitation 

phenomena was still lacking. A breakthrough was 

achieved by Acosta (1974) who emphasized the need 

for a thorough understanding of the basic fluid 

mechanics of the liquid flow surrounding the bodies 

in which cavitation takes place. This statement 

was based on an earlier study by Arakeri and Acosta 

(1973) in which the boundary layer flow was visual- 

ized by the employment of the schlieren method. 

Cavitation inception could be correlated with the 

occurrence of laminar flow separation. Unawareness 

of this important flow phenomenon had obscured the 

results of comparative cavitation studies with 

axisymmetric bodies, made in the past. 

In general, it can be stated that cavitation 
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inception on a body is affected by nuclei, viscous, 

and surface effects. The present study deals with 

the two latter effects. The use of holography, a 

three-dimensional imaging technique, enabled a new 

approach. The employment of this method for the 

observation of cavitation inception phenomena has 

been reported before by Van der Meulen and Ooster- 

veld (1974). In the present study an extended 

version of the method has been used by which boundary 

layer flow phenomena also could be observed. Viscous 

effects were studied by comparing two axisymmetric 

bodies, a hemispherical nose having laminar flow 

separation and a blunt nose not having it. Surface 

effects were studied by comparing two hemispherical 

noses, one made of stainless steel, the other made 

of Teflon. 

The phenomenon of turbulent-flow friction reduc-— 

tion by polymer additives of high molecular weight 

has been known for about thirty years. In recent 

years an increased interest has been shown on the 

effect of polymer additives on cavitation. In the 

present work the influence of polymer additives on 

the flow about the test bodies is studied and 

related with the influence on cavitation. 

2. EXPERIMENTAL METHODS AND PROCEDURE 

Description of Test Facility 

The facility used is the high speed recirculating 

water tunnel of the Netherlands Ship Model Basin. 

Originally, the maximum speed in the 40 mm circular 

test section was 65 m/s and the maximum allowable 

tunnel pressure 35 kg/cm?. A detailed description 

of this tunnel and its air content regulation system 

is given by Van der Meulen (1971, 1972). For the 

present study a new test section was made. It has 

a 50 mm square cross section with rounded corners 

(radius 10 mm), to limit the influence of the walls. 

The models, having a diameter of 10 mm, occupy 3.25 

percent of the cross-sectional area of the test 
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FIGURE 1. Schematic diagram of high fa Stass aeanee 
speed cavitation tunnel with polymer 

injection system. 

section. Injection of polymer solutions from the 

nose of the models was made by a Hughes Centurion- 

100 pump unit. The unit consists of a drive mech- 

anism fitted with two pump heads. A pulse-damper 

was used to minimize flow variations. Further 

details are given by Van der Meulen (1974b). A 

schematic diagram of the tunnel with the polymer 

injection system is shown in Figure 1. 

To measure the influence of polymer additives 

on the friction factor and the surface tension of 

the solutions, a turbulent-flow rheometer and a 

surface-tensionmeter have been used. Details on 

these measuring devices are given by Van der Meulen 

(1974a, 1976b) . 

Test Models 

According to Arakeri and Acosta (1973), most 

axisymmetric models used in cavitation inception 

studies, such as the hemispherical nose and the 

ITTC standard headform, exhibit laminar boundary 

layer separation. It means that the laminar boundary 

layer is unable to overcome the adverse pressure 

gradient and the flow separates from the wall. 

Schiebe (1972) introduced a standard series of 

axisymmetric models which, theoretically, should 

not exhibit boundary layer separation. To distin- 

guish between these two classes of axisymmetric 

models, a hemispherical nose and a blunt nose, 

selected from Schiebe's standard series, were used 

in the present investigations. Both models were 

made of stainless steel (SST). In addition, a 

third model (hemispherical nose) was used, made of 

Teflon. The contour of the blunt nose is derived 

from the combination of a normal source disk and 

a uniform flow. Schiebe (1972) calculated the 
dimensionless coordinates and pressure coefficients 

for a series of models in the range, Co din = Oods 
(point source) - 1.0. From this series a blunt 

nose with a minimum pressure coefficient of 0.75 

was selected. 

The diameter, D, of the cylindrical part of the 

hemispherical nose is 10.00 mm. Theoretically, 

the diameter of the blunt nose increases smoothly 

TUIUILILZ/7 

Oc MOTOR 

mtd 100i 
y 

i pk { 

WATER SUPPLY 
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VACUUM PUMP 

to an asymptotic value, D, with increasing axial 

distance, x. 

However, 

This value was set at 10.00 mm. 

for the manufacture of the blunt nose a 

minor deviation from the theoretical contour had 

to be permitted. 

HEMISPHERICAL NOSE 

FIGURE 2. 

(dimensions in mm). 

Thus, the actual contour coincides 

BLUNT NOSE 

Cross sections of stainless steel models 
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with the theoretical contour over a distance, x/D 

= 0-1.6, and next changes smoothly into a circular 

cylinder with a diameter of 9.88 mm. The cross 

sections of the SST models are shown in Figure 2. 

For the Teflon hemispherical nose the dimensions 

are the same as for the SST hemispherical nose. 

However, the Teflon model was not made of solid 

Teflon but consisted of a Teflon nose slipped on 

a SST core. Extreme care has to be exercised in 

manufacturing models for cavitation studies. An 

accurate similarity of the model contour is essential, 

but a smooth surface is even more critical. The 

drastic effects of surface roughness, in particular 

isolated irregularities, on cavitation inception 

have been demonstrated by Holl (1960) and Arndt 

and Ippen (1968). The present models were made by 

Instrumentum TNO in Delft. The models were inspected 

by an optical comparator (magnification 50x). For 

the SST hemispherical nose the maximum deviation 

from the true contour was within 5 um, for the 

Teflon hemispherical nose within 10 pm. For the 

blunt nose, the maximum deviation for x/D < 0.3 

was within a few microns and for x/D > 0.3 within 

10 um. The mean surface roughness height for the 

SST models was 0.05 um; for the Teflon model this 

value was considerably higher. 

Computations of the pressure coefficient for the 

hemispherical nose and the blunt nose were made at 

the National Aerospace Laboratory NLR, The Nether- 

lands. The velocity potential for irrotational 

flow along the model contour was computed with the 

variational finite element method according to 

flow without walls _| 

FIGURE 3. Computed pressure co- 

efficient as a function of surface 

coordinate over diameter for hemi- 

spherical nose. Data points ob- 

tained from measurements by Rouse 

and McNown (1948) at Re = 2.1 x 

10° are included. 

20 1.6 18 

Labrujére and Van der Vooren (1974). This method 

“is suitable for axisymmetric flows. The relation 

between the pressure coefficient, Cp, and the 

velocity potential, $, is given by 

2 

CK) |W se) (1) 

where s is the streamwise distance along the model 

contour and V, the free stream velocity. The pres- 

sure coefficient was computed in the absence of 

tunnel walls and with tunnel walls. In the latter 

case, it was necessary to substitute the square 

cross section with rounded corners by a circular 

one (diameter 55.44 mm), having the same cross- 

sectional area. For the hemispherical nose, the 

results are plotted in Figure 3. Also given are 

data points obtained from measurements by Rouse 

and McNown (1948) at a Reynolds number of 2.1 x 10°. 
The computed Cp-values are claimed to be accurate 

within 0.1 percent. The Cp-value for irrotational 

flow in the absence of tunnel walls is 0.7746 at 

s/D = 0.6825 (y = 78.2°). With tunnel walls the 

Cpmin Value at the same location is 0.8367. For 

the blunt nose, the results are plotted in Figure 

4. The computed Cp-values are accurate within 1 

percent. The Cp-value for irrotational flow in 

the absence of tunnel walls is 0.750, which is 

consistent with the accurate computations by Schiebe 

(1972). With tunnel walls the Cpy;j,-value is 0.802. 

Tabulated values of Cp are presented by Van der 

Meulen (1976b) and Labrujére (1976). 
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Pressure Coefficient, Cp 

FIGURE 4. Computed pressure co- 

efficient as a function of surface 

coordinate over diameter for blunt ie) 02 

nose. 

Holographic Method 

In the present work, in-line holography has been 

used to study cavitation and flow phenomena about 

the test models. The method consists of making 

photographic records containing detailed information 

on the cavitation and flow patterns. Holography 

has become one of the most important areas of modern 

optics since the invention of the laser as a new 

light source. Holography is usually described as 

a method for storing wavefronts on a record from 

which the wavefronts may later be reconstructed. 

The record, formed in photosensitive material, is 

called a hologram. In forming holograms two sets 

of light waves are involved: the reference waves 

and the subject waves. In the present case of in- 

line holography only one set of waves is used 

basically. The undeflected light waves from this 

set of waves act as reference waves, the light 

waves deflected by the subject act as subject waves. 

A schematic diagram of the applied optical system 

is shown in Figure 5. The light source is the 

Korad K-1QH pulsed ruby laser of the Institute of 

Applied Physics TNO-TH. To improve the resolution 

of the system, the red light from the ruby laser 

is converted to ultraviolet light, with a wavelength 

of 0.347 um, in a KDP-crystal. The pulse duration 

is 25 nanoseconds and the maximum energy 4 mJ in the 

TEMg99 mode. A telescopic system (Ly and L3) is used 

to obtain a laser beam with a diameter of 30 mm. 

A mirror reflects the beam into the test section of 

the tunnel. In the walls of the plexiglass test 

section, two optical glass windows are inserted. 

irrotational flow without walls 

irrotational flow with walls 

06 08 1.0 1.2 14 1.6 18 20 

Surface Coordinate over Diameter, s/D 

The location of the body in the test section is 

such that the nose is illuminated by the laser beam 

over a length of about 20 mm, and the body contour 

is imaged on the hologram. A shutter is placed on 

the first window. The camera containing the holo- 

graphic plate is located close to the second window. 

Agfa-Gevaert Scientia Plates 8E56 and 8E75 with a 

resolution up to 3000 lines/mm were used as recording 

material. The ruby laser could also be used as a 

multiple switched laser. Two or three pulses with 

PULSED RUBY ral 
LASER v 

| 
KDP-CRYSTAL| UV-FILTER } 

Us 

GLASS WINDOW 

TUNNEL WALLS, \ 

GLASS WINDOW cog 
{ SSEREENS;| ISS =< 

CAMERA /HOLOGRAPHIC PLATE 

FIGURE 5. Schematic diagram of optical system for 

making holograms of cavitation or flow phenomena in 

test section of tunnel. 
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set-up. 

pulse separations of 50 or 100 usec could be 

generated. This enabled multiple imaging of moving 

cavities on one hologram. 

Reconstruction of the holograms was made with a 

continuous-wave He-Ne gas laser (\ = 0.633 ym). A 

schematic diagram of the reconstruction set-up is 

shown in Figure 6. The diameter of the laser beam 

is enlarged by the lenses, L} and Lz. The intensity 

of the light can be adjusted by a polaroid filter. 

The hologram is placed on a stage, fitted with 

guides so that the hologram can be moved in two 

orthogonal directions. The movement of the stage 

is measured on vernier scales. The reconstructed 

image is studied with a microscope with a magnifi- 

Cation between 40x and 200x. 

Flow Visualization Technique 

A new technique had to be developed to visualize 

the boundary layer flow about the axisymmetric 

models. A description of the several methods in- 

vestigated is given by Van der Meulen (1976b). The 

ultimate method consisted of injecting a sodium 

chloride solution into the boundary layer from a 

hole located at the stagnation point of the model. 

The diameter of the hole is 0.08 mm. The sodium 

chloride solution has a slightly different index 

of refraction from the surrounding fluid. The 

light emitted from the pulse laser will be deflected 

and the deflections are recorded in the hologram. 

Optimum conditions for flow visualization are given 

by Van der Meulen and Raterink (1977). In the 

present study, the ratio of the injection velocity, 

Vi, to the velocity in the test section, Vo, was 

usually between 0.1 and 0.2. The sodium chloride 

concentration was 2 percent. At first, the fluid 

was injected with a hypodermic syringe, but later 

on, a plunger with a constant motion was used. 

Procedure 

The tests performed in the high speed tunnel com- 

prised flow visualization tests, cavitation tests 
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and cavitation inception measurements. Essentially, 

the flow visualization and cavitation tests consisted 

of making holograms at prescribed conditions. Prior 

to each series of tests the model was cleaned and 

the tunnel refilled. To adjust the air content, 

the water was passed through the deaeration circuit 

for a period of 1% h at a constant pressure in the 

deaeration tank. All tests were made at a constant 

air content, a, of about 5 cm?/2 (1 cm? of air per 

liter of water at STP corresponds to 1.325 ppm by 

weight). For each test the temperature of the 

tunnel water was measured to obtain the dynamic 

viscosity and the vapor pressure. The average 

value of the water temperature was 20°C. The flow 

visualization tests covered a velocity range of 2 

to 30 m/s. For the cavitation tests, the velocity 

ranged from 10 to 20 m/s. The effect of polymer 

additives on cavitation and cavitation inception 

was investigated by injecting a 500 ppm Polyox WSR- 

301 solution from the nose of the models. Polymer 

injection was provided by the Hughes Centurion-100 

pump unit. The holograms were made at the instant 

of maximum injection rate. The injection rate was 

such that the average value of Vi/Vo was 0.17. For 

the cavitation inception measurements, the velocity 

ranged from 10 to 24 m/s. Inception (or desinence) 

was observed visually. 

3. BOUNDARY LAYER STUDIES 

Newtonian Flow 

The holograms exhibited a distinct occurrence of 

laminar boundary layer separation on the hemispher- 

ical nose. The location of separation could be 

obtained quite accurately from the holograms. At 

this location the interference pattern usually 

showed a V-shape. This is shown in the photograph 

presented in Figure 7. This photograph also shows 

the laminar separation bubble itself and the 

subsequent transition to turbulence and reattachment 

of the separated shear layer. In the transition 

region, the flow is still visualized by the sodium 

chloride, but further downstream, where the turbu- 

lence becomes more developed, mixing of the sodium 

chloride prevents any further observations. The 

determination of the length and the maximum height 

of the laminar separation bubble from the holograms 

was somewhat complicated by the fact that the height 

of the bubble may show a maximum, as illustrated by 

case A in Figure 8, or that the outer flow line 

shows an inflexion point, as illustrated by case B 

in Figure 8. The location of separation for the 

FIGURE 7. Photograph showing laminar separation bubble and subsequent transition to turbulence on SST 

hemispherical nose. The flow is from left to right. At the position of separation the interference pattern 

shows a "V". YW, = 4 m/s. 
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A maximum 

Inflexion point 

FIGURE 8. 

on hemispherical nose (schematically) and definitions 

of length and maximum height of bubble. 

Observed shapes of laminar separation bubble 

hemispherical nose is given in Figure 9. In this 

figure the angular location of separation, yg, is 

plotted against the Reynolds number. Results on 

the length, L, the height, H, and the length to 

height ratio, L/H, of the separation bubble are 

presented in Figures 10, 11 and 12. Each data 

point refers to one hologram (values for the upper 

and lower side of the model are averaged). Most 

data points refer to the SST hemispherical nose, 

a few refer to the Teflon hemispherical nose. 

The present observations are in agreement with 

those obtained earlier by Arakeri (1973) and Arakeri 

and Acosta (1973). From Figure 9 it follows that 

the boundary layer separation angle is independent 

on the Reynolds number, which is consistent with 

theory (Schlichting, 1965). For the SST hemispher- 

ical nose the average value of yg is 85.43°. This 

value is claimed to be quite accurate. To compare 

this experimental value with the theoretically 

predicted one, laminar boundary layer calculations 

were made using the method derived by Thwaites 

(1949). With this method the parameter m is cal- 

culated, where m is defined as 

a2 dau 
ae oi wv) ds (2) 

and where 9 is the momentum thickness, U the velocity 

at the edge of the boundary layer, v the kinematic 

viscosity, and s the distance along the surface. 
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FIGURE 9. Boundary layer separation angle, Yc, 

as a function of Reynolds number for hemispherical 

nose. 
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FIGURE 10. Length of separation bubble to diameter, 

L/D, as a function of Reynolds number for hemispheri- 

cal nose. The solid lines refer to theoretical pre- 

dictions. 

Laminar boundary layer separation is said to occur 

for m = 0.09. The computations of yg were made 

with the accurate pressure distributions obtained 

earlier (Figure 3). For the actual case (with 

tunnel walls) yg was found to be 85.57°, and thus, 

in excellent agreement with the experimental value. 

The theoretical value of yg is hardly affected by 

the presence of the tunnel walls, since in the 

absence of tunnel walls we found yg = 85.53°. 

Arakeri (1973) found experimental and theoretical 

values of 87°. However, his computations were 

based on the experimental pressure distribution 

data by Rouse and McNown (1948), as shown in Figure 3. 

The length and the height of the separation 

bubbles decrease gradually with increasing Reynolds 

number. The variations in length and height for a 

given Reynolds number are partly due to the different 
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FIGURE 11. Height of separation bubble to diameter, 

H/D, as a function of Reynolds number for hemispheri- 

cal nose. 
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FIGURE 12. Length to height ratio of separation bubble, 

L/H, as a function of Reynolds number for hemispherical 

nose. 

appearances of the separation bubbles near transition, 

as illustrated in Figure 8. The length to height 

ratio of the separation bubbles (Figure 12) is not 

very dependent on the Reynolds number. For the SST 

hemispherical nose an average value of 10.8 is found. 

To compare experimental values of L with theoret- 

ical ones, it is necessary to calculate the location 

of transition on the separated shear layer. Recently, 

Van Ingen (1975) presented a calculation method for 

the laminar part of separation bubbles in which 

also the location of transition is predicted. The 

method is based on a solution of the Navier-Stokes 

equations, valid near the separation point. A 

relation is found for the separation streamline 

leaving the wall at an angle, 6. By using constant 

values of B, Oar and Msepr to be obtained experi- 

mentally, a formula is derived to calculate the 

length of the separation bubble. It is assumed 

that the separation streamline is straight and 

that the angle 6 is given by 

tan 6 = aL (3) 
Re, 

sep 

where REQsep is the Reynolds number based on the 

momentum thickness at separation, given by 

Re = (Gao) : (4) 

TABLE 1. Separation Streamline Angle 6 For SST 

Hemispherical Nose, Derived from Holograms. 

Re x 107° Regsep 8 B 

0.21 56 14.6° 14.6 
0.36 74 9.0° 11.8 
0.62 97 710° 11.9 
0.97 121 52° it 
1.35 144 4.4° Tied 
1.41 146 4.2° 10.8 
1.87 169 A390 WD7 
2.40 191 3.9° 13.0 
3.40 228 2.8° Died 
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The amplification factor, o is defined as a’ 

a 

a 
neutral 

where a/apeytra, 18 the ratio of the amplitude of 

a disturbance to its amplitude at neutral stability. 

Meo is the value of m at separation (Msep = 0.09). 

According to Dobbinga et al. (1972), B is usually 

between 15 and 20, but lower values are also found. 

To obtain B for the present case, the separation 

streamline angle, &, was derived from a series of 

holograms. The results are presented in Table 1. 

The average value of B is 12.0. 

With Van Ingen's method, the location of transi- 

tion has been calculated for oa = 7 and go, = 8, 

using Msep = 0.09 and B= 12. The results are 

plotted in Figure 10. It is found that most experi- 

mental data points lie between the two theoretical 

curves. The best fit would be obtained for og = 7.5. 

It should be noted that the present experimental 

data refer to the beginning of transition. Ina 

recent paper, Van Ingen (1976) attempted to corre- 

late the amplification factor with the turbulence 

level, Tu. For og = 7.5, predicting the beginning 

of transition, we find Tu = 0.15%. Although the 
turbulence level in the high speed tunnel has not 

been measured, it is possible to obtain an approx- 

imate value (without considering noise aspects) . 

Arakeri (1975a) measured the location of transition 
on a 1.5 caliber ogive in the axisymmetric test 

section of the CIT high speed water tunnel. The 

turbulence level in this tunnel was 0.2%. Recently, 

Arakeri (1977) performed similar measurements in 

the NSMB high speed water tunnel. The agreement 

between the transition data indicates that the 

turbulence level in both tunnels was approximately 

the same. Hence, the turbulence level in the NSMB 

tunnel may have been close to 0.2%, which is con- 

sistent with the value derived earlier. The above 

considerations on the turbulence level are, however, 

not confirmed by the measurements of Gates (1977), 

who found that the turbulence level had no effect 

whatsoever on the location of transition on a 

hemispherical nose. 

As shown in Figures 9 through 12, the appearance 

of the laminar separation bubble on the Teflon 

hemispherical nose is the same as for the SST 

hemispherical nose. From Figure 10 it is found 

that the higher surface roughness of the Teflon 

body has no effect on transition. Apparently, the 

amplification of disturbances mainly occurs down- 

stream of separation. 

The blunt nose exhibited a laminar boundary layer 

with normal transition to turbulence. Laminar flow 

separation did not occur. A photograph showing 

transition is presented in Figure 13. A plot of 

the transition data is given in Figure 14. Since 

the outflow of the sodium chloride solution from 

the nose of the model was in some cases quite 

unstable, the determination of the precise location 

of transition provided some difficulties, but an 

upper or lower bound could still be indicated. [In 

Figure 14 these data points are marked with an 

arrow. When the arrow is pointing upward the data 

point is considered to be the lower bound; when the 

arrow is pointing downward the data point is con- 

sidered to be the upper bound. Silberman et al. 

(1973) made laminar boundary layer calculations for 

a series of blunt noses having CPpin Values ranging 



FIGURE 13. Photograph showing transition (T) 

from 0.333 to 1.0. The calculations showed that 

none of the blunt noses were subjected to laminar 

separation. The present observations are in 

agreement with these theoretical predictions. 

Non-Newtonian Flow 

The influence of polymer additives on the boundary 

layer flow about the models was investigated by 

injecting a 500 ppm (parts per million by weight) 

Polyox WSR-301 solution from the nose of the models. 

To visualize the flow, the injection fluid contained 

2 percent sodium chloride. For the SST hemispher- 

ical nose, the holograms showed that laminar flow 

separation was no longer present. An example is 

given by the photograph presented in Figure 15. At 

or shortly downstream from the location where 

Newtonian flow separation occurred, transition from 

laminar to turbulent boundary layer flow is observed. 

From the holograms made in the velocity range 4 to 

20 m/s, it could be derived that transition to 

turbulence occurred close to the location of 

Newtonian flow separation. It was difficult, however, 

to indicate the precise location of transition. 
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FIGURE 14. Streamwise distance to boundary 

layer transition over diameter, S,/D, asa 03 

function of Reynolds number for blunt nose. 

from laminar to turbulent boundary layer on blunt nose 

(Sp/D = 1.68). The flow is from left to right, W. = 8 m/s. 

Another important observation was that the sodium 

chloride was not completely mixed in the turbulent 

region, but was still able to show the existence of 

waves and streaks further downstream, till the end 

of the hologram. An example of this phenomenon 

has been given by Van der Meulen (1976b). For the 

Teflon hemispherical nose it was found that the 

influence of polymer additives on laminar flow 

separation was the same as for the SST hemispher- 

ical nose. Although the observations made with the 

blunt nose were somewhat obscured by the irregular 

outflow from the nose of the model, the main con- 

clusion to be derived from the holograms is that 

the polymer causes early transition to turbulence. 

The approximate locations of transition are plotted 

in Figure 14. 

The polymer concentration used during the above 

observations is rather high when compared to the 

most effective concentration for turbulent-flow 

friction reduction. From Figure 16, where the 

friction factor, f, for flow through a circular 

tube is given as a function of the Reynolds number, 

it can be derived that a Polyox WSR-301 concentration 

of about 20 ppm gives a maximum friction reduction. 

Additional holograms for the SST hemispherical nose 

O 2percent NaCl injection 

@ 2percent NaCl +500ppm Polyox WSR-301 injection 

06 O7 O8 1.0 15 20 30 04 foe) 

Reynolds Number x 1075 
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FIGURE 15. Photograph showing boundary layer flow about SST hemispherical nose when a solution of 500 ppm 

Polyox WSR-301 is injected. The flow is from left to right. We 

were made at polymer concentrations of 100, 50, 

and 20 ppm. The injection rate was such that Vj/Vo 

= 0.2. The phenomena observed at these lower 

concentrations were the same as those found at 500 

ppm. Recently, Gates (1977) studied the influence 

of polymer additives on laminar flow separation at 

low injection rates, and was able to find inter- 

mediate stages of separation suppression. 

The study on the influence of polymer additives 

on laminar flow separation has been limited so far 

to the case where the polymer is present only in 

a thin layer adjacent to the body (the "inner part" 

of the boundary layer). To study the influence of 

polymer additives present in the "outer part" of 

the boundary layer, additional tests with the SST 

hemispherical nose were made in which the tunnel 

was filled with a 50 ppm Polyox WSR-301 solution. 

To prevent polymer degradation, the water speed in 

the test section was set at a low value of 4 m/s. 

Three different solutions were injected: a solution 
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FIGURE 16. Friction factor of Polyox WSR-301 solu- 

tions in water as a function of Reynolds number, 

according to Van der Meulen (1974a). 

= 4nm/s. 

of 2 percent NaCl, a solution of 2 percent Nacl + 

50 ppm Polyox and a solution of 2 percent NaCl + 

500 ppm Polyox. The injection velocity Vj was 

0.8 m/s (Vi/Vo = 0-2). Photographs showing the 

boundary layer flow are presented in Figure 17. 

For comparison a photograph is included showing 

the influence of polymer injection when the tunnel 

is filled with water (Figure 17a). When a 2 per- 

cent NaCl solution is injected (Figure 17b), the 

boundary layer first shows a tendency to become 

unstable but further downstream the instabilities 

are suppressed and the boundary layer is laminar 

again. When a 2 percent NaCl + 50 ppm Polyox 

solution is injected (Figure 17c), the boundary 

layer first shows a slight tendency to become 

unstable, but further downstream the boundary layer 

is laminar. When a 2 percent NaCl + 500 ppm Polyox 

solution is injected (Figure 17d), the boundary 

layer remains completely laminar, till the end of 

the hologram. The conclusions to be derived from 

these observations are that the presence of the 

polymer in the "inner part" of the boundary layer 

leads to destabilization, whereas the presence of 

the polymer in the "outer part" of the boundary 

layer leads to stabilization, and the latter effect 

is predominant. In all cases considered (Figure 

17), laminar flow separation is suppressed. 

An explanation of the various phenomena observed 

can, as yet, not be given. Apparently, some of the 

phenomena are in agreement with those reported 

elsewhere, others may not have been observed before. 

This is mainly due to the fact that numerous studies 

have been made on drag reduction in turbulent flow, 

but only a few were made on the influence of polymer 

additives on laminar flow. In studying laminar 

flow around circular cylinders, James and Acosta 

(1970) found that the streamline patterns with 

dilute polymer solutions were significantly different 

from those with Newtonian fluids because of visco- 

elastic effects. These effects may also play a 

dominant role in eliminating flow separation in 

those cases that the boundary layer remains laminar. 

In those cases where the boundary layer becomes 

turbulent due to the presence of the polymer in the 

"inner part" of the boundary layer, it is still 

questionable whether flow separation is eliminated 

by early turbulence by viscoelastic effects, or by 

a combination of these. The occurrence of early 

turbulence as found in the present study and reported 

before [Van der Meulen (1976a, 1976b), Gates (1977) ] 

is consistent with the findings of others. According 

to Lumley (1973), polymer solutions producing drag 
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FIGURE 17. Photographs showing boundary layer flow about SST hemispherical nose. The flow is from right to 

left. V_ = 4 m/s. (a) Injection of 50 ppm Polyox in water. (b) Injection of water in 50 ppm Polyox. (c) Injec- 

tion of°50 ppm Polyox in 50 ppm Polyox. (d) Injection of 500 ppm Polyox in 50 ppm Polyox. 

reduction display a positive Weissenberg effect for 

which destabilization is predicted analytically. 

Destabilization is also predicted by the numerical 

analysis of Kiimmerer (1976) on the stability of 

boundary layers in an idealized viscoelastic fluid. 

Experiments by Forame et al. (1972) and Paterson 

and Abernathy (1972) also suggest destabilization. 

On the other hand, Castro and Squire (1967) and 

White and McEligot (1970) found that polymer solu- 

tions in water cause a delay in transition to 

turbulence. According to Lumley (1973), drag- 

reducing polymers tend to increase the thickness 

of the viscous sublayer. Experimental evidence 
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IGU Cavitation inception and desinence number 

as a function of Reynolds number for SST hemispherical 

ose with and without polymer injection. 

for this phenomenon has been provided by Rudd (1972), 

who measured velocity profiles in a polymer solution 

by using a laser dopplermeter. By examining the 

expansion behavior of isolated polymer molecules 

in a flow field, Lumley (1973) postulated a mech- 

anism which predicted a decreased intensity of 

small-scale turbulence in the buffer layer and which 

also predicted that, in the maximum drag reduction 

regime, the turbulence should consist primarily of 

larger eddies. The present observations of waves 

and streaks along the surfaces of the models seem 

in agreement with the above predictions. They also 

agree with the observations made by Hoyt et al. 

(1974) on the structure of jets of polymer solution 

discharged in air. 

4. CAVITATION STUDIES 

Inception 

Cavitation inception data for the SST hemispherical 

nose are plotted in Figure 18. Inception was 

measured by gradually lowering the pressure until 

the first appearance of cavitation was observed. 

Desinence was measured by starting from developed 

cavitation and gradually raising the pressure until 

cavitation just disappeared. The type of cavitation 

mostly observed at inception was sheet cavitation. 

Also plotted in Figure 18 are cavitation inception 

data when a 500 ppm Polyox WSR-301 solution was 

injected from the nose of the model. The type of 

cavitation observed in this case was travelling 

bubble cavitation. Cavitation inception data for 

the Teflon hemispherical nose are plotted in Figure 
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FIGURE 19. Cavitation inception and desinence number 

as a function of Reynolds number for Teflon hem- 

ispherical nose. 

19. The type of cavitation observed at inception 

was spot cavitation. The spots were usually located 

between the pressure minimum (y = 78°) and the 

transition of hemisphere and cylinder (y = 90°). 

The most striking differences between the inception 

data for both models are: (a) the inception data 

for the Teflon model are much higher than for the 

SST model and (b) the Teflon model exhibits a strong 

cavitation hysteresis [Holl and Treaster (1966) ] 

whereas the SST model exhibits no hysteresis. Such 

observations have been reported before by Reed 

(1969), Gupta (1969), and Van der Meulen (1971). 

Since the viscous flow behavior of the Teflon model 

is the same as for the SST model (see Section 3), 

the above differences can only be explained by 

surface effects. Teflon is a porous material and 

has a high contact angle. Both properties are 

essential features of the Harvey nucleus [Harvey 

et al. (1944) ]. Hence, the Teflon surface acts as 

a host for surface nuclei, from which (gaseous) 

cavitation is initiated. The mechanism most probably 
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FIGURE 20. Comparison of cavitation inception (or 

desinence) number with pressure coefficient at sepa- 

ration, Cp_, and at transition, Cpr for SST hem- 

ispherical’ nose. 
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involved with inception on the SST hemispherical 

nose has been described by Arakeri (1973). Inception 

takes place in the transition and reattachment 

region of the separation bubbles, where high pressure 

fluctuations occur [Arakeri (1975a)]. The nuclei 
may either originate from the surface (Arakeri) 

or from the stream where they become trapped in. 

the strong vortices occurring in the reattachment 

region. 

When o; (or og) for the SST hemispherical nose 

is to be compared with the pressure coefficient, 

several problems arise. The most obvious pressure 

to compare 0; with would be the pressure coefficient 

at transition, Cp,, since the onset of cavitation 

takes place at the location of transition. Accord- 

ing to Arakeri (1973), however, the important 

pressure coefficient to compare 0; with would be 

the pressure coefficient at separation, Cpg- This 

opinion is probably based on the assumption that 

the pressure within the separation bubble is con- 

stant (and thus Cpg = Cp) but, according to Van 

Ingen (1975), this is a good approximation only 

at low values of Re. A mean curve of the present 

inception (and desinence) data is plotted in Figure 

20. Also plotted are Cp, = 0.76 and Cp, for 

irrotational flow, derived from Figures 3 and 10 

(with og, = 7.5). The real (or viscous) values of 

Cin are unknown and should be obtained from pressure 

measurements. It can be estimated that the real 

values of Cp,, are considerably larger than those 

for irrotational flow, but still smaller than Cpe: 

Thus it would seem that oj; (or oq) can be correlated 

with the real value of Coe eEnnthatecase waktacan 

be argued that the peak pressure fluctuations, 

measured by Arakeri (1975a), are creating the 

negative pressures necessary to overcome the sta- 

bilizing pressure in stream nuclei, caused by the 

surface tension. 

Cavitation inception data for the blunt nose are 

plotted in Figure 21. Also plotted are inception 

data with polymer injection. At inception, a 

region of travelling bubbles was observed. The 

approximate location of this region was x/D = 0.2 

- 1.0. In Section 4, a further analysis will be 

given of the type of cavitation occurring. The 

inception data show that the o,;-and og-values are 

almost identical and nearly constant (Sia = 0.46, 

in the absence of polymers). When oj is to be 

compared with a suitable pressure coefficient, the 
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FIGURE 22. Comparison of cavitation inception (or 

desinence) number with pressure coefficient at tran- 

sition, Cpe for blunt nose. 

best choice would seem the pressure coefficient at 

the location of cavitation inception. However, 

this location can not precisely be indicated. For 

bodies with attached boundary layers, Arakeri (1973) 

suggested correlating 6; with the pressure coeffi- 

cient at transition, Cp,. For a 1.5 caliber ogive 

a close correlation was found between measured 

values of og and computed values of Cp,. The same 

comparison can be made for the blunt nose. In 

Figure 22, o5 q and Cp,, derived from Figures 4 and 

14, are plottéd agesinee the Reynolds number. In 

this case it may be assumed that the real (or viscous) 

values of Cp,, are the same as those for irrotational 

flow. It is evident from Figure 22 that oj (or 

Og) cannot be correlated with Cp,,. The location 

where Cp, = 0.46 (= 53a) is well in the laminar 

region of the boundary layer for the Reynolds numbers 

considered. 

The influence of polymer additives on cavitation 

inception is a rather new phenomenon. Darner (1970) 

investigated the addition of polymers to water on 

Ellis 

reported on the effect of polymer 

acoustically induced cavitation inception. 

et al. (1970) 

Surface Tension S, dyne/cm 

lo) 100 200 300 400 500 600 

Polyox WSR - 301 Concentration , ppm 

FIGURE 23. Surface tension as a function of Polyox 

WSRT301 concentration in water, as measured in surface 

tensionmeter. 

solutions on flow-generated cavitation inception. 

The effect of the polymer was to suppress cavitation 

inception. An explanation for the effect could, 

as yet, not be given. Ting and Ellis (1974) studied 

the growth of individual gas bubbles in dilute 

polymer solutions but concluded that the polymers 

hardly affected bubble growth. From Figure 23 it 

is found that the surface tension is slightly 

reduced by small additions of Polyox WSR-301, but 

according to Hoyt (1973) this effect should cause 

earlier cavitation instead of cavitation suppression. 

From Figure 18, a considerable effect on oj and 

Og is found when a 500 ppm Polyox solutuion is 

injected from the nose of the SST hemispherical 

model. For Re above 1.2 x 10°, the reduction 

amounts to 30 percent. For the mean value of oj 

and 0g we have Siva = 0.445. The o;- and og-values 

are independent of Re. From Figure 21 it is found 

that oj; and og are hardly affected by the injection 

of a 500 ppm Polyox solution from the nose of the 

blunt model. For Re above 1.2 * 10°, the mean 

value of oj and og in the absence of polymers is 

i,q = 0-45. Hence, inception on the SST hemispher- 

ical nose with polymer injection takes place at the 

same cavitation number as inception on the blunt 

nose in the absence of polymers. 

As found in Section 3, the influence of the 

polymer is to suppress the laminar boundary layer 

separation on the hemispherical nose. Hence, the 

strong pressure fluctuations, occurring at the 

position of transition and reattachment of the 

separated shear layer [Arakeri (1975a) ] and being 

the principal mechanism for cavitation inception, 

are eliminated and cavitation will start at a much 

lower cavitation number. The flow visualization 

studies described in Section 3 do not only explain 

the suppression of cavitation inception by polymer 

injection, but also by having a polymer ocean 

[Ellis et al. (1970)]. Earlier studies by Van der 

Meulen (1973, 1974b) showed that polymer injection 

had hardly any effect on cavitation inception on a 

Teflon hemispherical nose. The reason for this 

finding is clear now, since cavitation inception on 

a Teflon hemispherical nose is related to surface 

effects and not to viscous effects. 

Appearance on Hemispherical Models 

The appearance of cavitation on the SST hemispher- 

ical nose is closely related to the occurrence of 

laminar boundary layer separation. Arakeri (1973) 

showed that cavitation bubbles are first observed 

at the location of transition and reattachment of 

the separated shear layer. This type of cavitation 

is usually called bubble cavitation. An example 

is shown in Figure 24a. The larger bubbles at the 

location of transition are preceded by smaller ones 

which, according to Arakeri (1973), are travelling 

upstream with the reverse flow in the separated 

region. With a reduction in o, the larger bubbles 

create a single cavity as shown in Figure 24b. 

With a further reduction in o, the cavity is filling 

the separated region, and a smooth attached cavity 

is observed (Figure 24c). This type of cavitation 

is usually called sheet cavitation. When o is 

further reduced, the length and the height of the 

cavity extend, but the first part of the cavity 

remains smooth (Figure 24d, e). By analyzing 

double exposure holograms made of developed cavita- 

tion, it could be established that the first smooth 

part of the cavity is stable. 
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The appearance of cavitation on the Teflon 

hemispherical nose is closely related to the presence 

of weak spots on the surface. Discrete cavities 

originate from points located on the hemisphere. 

The cavities develop cone-shaped in the downstream 

direction. The first part of the cavity surface 

is smooth; the cavity leaves the wall at a very 

small angle. Some of these features can be observed 

on the photographs presented in Figure 25. The 

cavitation separation angle Ycg for both hemispher- 

ical models is plotted in Figure 26. For the Teflon 

model it is found that the cavities start upstream 

of the minimum pressure point (Yes < YPmin)! when 

0 is sufficiently low. For the SST model it is 

found that the cavities always start downstream 

of the minimum pressure point (Yoo < Wien Jo. Yes 

is both a function of o and Re. For a given Re, 

Yes decreases with decreasing o and for a given 

5, Yes decreases with increasing Re. These tenden- 

cies for the SST model are in agreement with the 

observations by Arakeri (1975b). 

The shape of the cavity nose on the SST model 

has been analyzed further. A schematic drawing of 

the geometry of the cavity nose is presented in 

Figure 27. From a detailed study of the holograms 

it could be established that the cavity nose was 

circularly shaped. It was found that the nose 

angle 8 varied between 70° and 120°, but was 

independent of o or Re. An average value of 90° 

was obtained from 28 cavity noses. Since the cavity 

nose is immersed in the separation bubble and the 

flow comes to a standstill near the cavity nose, 
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FIGURE 24. Photographs showing progressive 

development of cavitation on SST hem- 

ispherical nose. The flow is from left to 

right. V, = 13.2 m/s. (a) o = 0.60; 

(b) o = 0.59; (c) o = 0.56; (d) o = 0.47; 

(e) o = 0.39. 

it is to be expected that the nose angle equals 

the contact angle for the present liguid-gas-solid 

system. This is confirmed by the fact that, accord- 

ing to Adamson (1966), the contact angle for a 

water-air-steel system is 70°-90°. The nose radius 

ry was independent of o but, as shown in Figure 28, 

the radius decreases with increasing Re. The length 

of the sheet cavity (the smooth part preceding the 

developed cavity) is more or less independent of 

oO but decreases with increasing Re. In Table 2, 

mean values of Lo¢/D are compared with corresponding 

values of L/D, obtained from Figure 10 (with 

5, = 7-5). From this table it can be concluded 

that transition to turbulence on the cavity surface 

is closely related to transition to turbulence on 

the fully wetted separated shear layer. The shape 

of the developed cavity is determined by the total 

length to maximum height ratio of the cavity, 

L¢/Her (in most cases the cavity reached its maxi- 

mum height close to the trailing edge of the cavity). 

Values of this ratio are given in Figure 29. The 

mean value of Lc/He is 10.2. Since the mean value 

of the length to height ratio of the separation 

bubble is 10.8, it may be concluded that the shape 

of the developed cavity appearing on the SST hemis-— 

pherical nose is strongly governed by the shape of 

the separation bubble. 

With polymer injection, the cavities on the SST 

hemispherical nose are either attached or may show 

the appearance of travelling bubbles, resembling 

the type of cavitation observed on the blunt nose. 

Details are given by Van der Meulen (1976b). 



446 

FIGURE 25. Photographs showing progres- 

sive development of cavitation on Teflon 

hemispherical nose. The flow is from left 

to right. Ve = 13.2 m/s. (a) o = 0.96; 

(b) o = 0.63; (c) o = 0.40. 
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TABLE 2. Length of Sheet Cavity Over Diameter, 

Lsc/D, and length of Separation Bubble Over 

Diameter, L/D, for SST Hemispherical Nose. 

Re x 107° Sc L/D 

0.94 0.156 0.124 
1627 0.124 0.096 
1.54 0.070 0.084 
DNOS 0.074 0.068 

Appearance on Blunt Model 

The type of cavitation occurring on the blunt nose 

is typically travelling bubble cavitation. An 

example is shown in Figure 30a (o = 0.33). When 

o is reduced, a single transient cavity may develop, 

as shown in Figure 30b (o = 0.28). The transient 

character of the cavities occurring on the blunt 

nose is clearly observed in the photographs taken 

from multiple exposure holograms. Figure 31 shows 

a photograph taken from a hologram, where three 

pulses were generated by the ruby laser with pulse 

separations of 50 usec and 100 usec respectively. 

The flow is from right to left. The picture shows 

the growth of a cavity near the nose of the model. 

The cavity is attached to the model and its shape 

is a spherical segment. The cavity grows (its 

radius increases) and, at the same time, travels 

along the surface with a velocity slightly below 

that of the surrounding fluid. When the cavity 

reaches a certain height, its shape becomes more 

like an attached bubble, as shown in Figure 32. 

In this figure, the flow is from left to right. 

The attached bubble hardly grows, travels along 

the surface, and finally collapses. 

The streamwise distance to cavitation separation 

on the blunt nose obtained from a series of holograms 

taken at various values of o and Re, is plotted in 

Figure 33. Also plotted are data points where no 

cavitation was observed in the hologram on either 

one or both sides of the model. It is found that 

| x/p =0247 

| x/o=0267 

FIGURE 30. Photographs showing cavitation on blunt nose. 

(2) @ = Oo33p (Gey) @ = Wolo 
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the streamwise distance to cavitation separation 

decreases with increasing Re (apart from the scatter, 

typical for travelling bubble cavitation). For 

Re = 2.08 x 10°, cavitation separation is located 

at a short distance from the pressure minimum 

[(s/D) pis, = 0-371. 
The Observations of the cavity growth as 

represented in Figure 31, enables a comparison with 

theory. Plesset (1949) analyzed experimental 

observations by Knapp and Hollander (1948) and 

compared the growth and collapse of bubbles on a 

1.5 caliber ogive with the equation of motion for 

a bubble. The agreement was quite satisfactory. 

Recently, Persson (1975) introduced some refinements 

in the comparison. The present analysis is based 

on the so-called Rayleigh-Plesset equation according 

to Hsieh (1965). For a vapor bubble, the motion 

of the bubble wall is given by the equation 

0 ae 25 _ 4uk OPIS teh) (6) 

where p is the liquid density, R the instantaneous 

bubble radius, Py, the vapor pressure, P the instan- 

taneous ambient pressure, S the surface tension, 

and uw the dynamic viscosity. The dots indicate 

differentiation with respect to time t. The 

multiple exposure hologram (Figure 31) provided 

data on Ro(to), Ri (tot50us), and R2 (to+150us), 

whereas P(t) could be derived from Figures 31 and 

4. Equation (6) was solved numerically to obtain 

a theoretical value of Ro. The results of the 

computations are given in Table 3. To compare the 

significance of the right-hand side terms of Eq. 

(6), numerical values of these terms are presented 

in Table 4. The main conclusion to be derived from 

Table 3 is that the experimentally observed growth 

of the cavity on the blunt nose is fairly well 

represented by the Rayleigh-Plesset equation of 

motion. This is mainly due to the fact that the 

blunt nose does not exhibit laminar flow separation 

and viscous effects seem to be small. 

The appearance of developed cavitation on the 

blunt nose with polymer injection was essentially 

the same as that without polymers. Details are 

given by Van der Meulen (1976b). 

f= 5mm 

(b) 

The flow is from left to right. We = 218) m/si. 
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FIGURE 31. Photograph of multiple exposure hologram showing three stages of cavity growth near nose of blunt 

model. The pulse separations are At) = 50 usec and Atp= 100 usec. The flow is from right to left. Ye = 10 m/s; 

1 = 0.31. The radii of the growing cavity are indicated on the lower figure. 

x/D=0543 = Imm =| 

FIGURE 32. Photograph of multiple exposure hologram showing three stages of travelling bubble along blunt nose. 

The time separations are: At, = 50 c and At2 = 100 usec. The flow is from left to right. VA = 10 m/s; 
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tion over diameter, s_/D, as a function of cavitation 

number and Reynolds number for blunt nose. Also plotted 

are some data points where no cavitation was observed 

on one or both sides of the model. 

5. CONCLUSIONS 

The application of in-line holography and injection 

of a 2 percent sodium chloride solution from the 

nose of the axisymmetric bodies are useful methods 

to visualize the boundary layer and to obtain 

detailed information on boundary layer phenomena 

and cavitation patterns. 

Laminar boundary layer separation and transition 

to turbulence of the separated shear layer on the 

hemispherical nose can be predicted quite accurately 

by existing approximate calculation methods. 

Cavitation on axisymmetric bodies may be strongly 

influenced by boundary layer effects. For the SST 

hemispherical nose, inception and appearance of 

cavitation are both related to the location and 

appearance of the separation bubble. For the 

blunt nose, however, cavitation is apparently more 

related to nuclei effects than to viscous effects. 

The type of cavitation occuring in this case is 

travelling bubble cavitation. The growth of a 

cavity on the blunt nose is adequately described 

by the Rayleigh-Plesset equation of motion for a 

cavitation bubble. 

TABLE 3. Theoretical (R) and Experimental (R 

Values of Bubble Radius for Cavity Growth on 

Blunt Nose (Figure 31). 

exp) 

R R R R D exp 
t m/sec m/sec mm mm 

ee -5710 259)3} 0.84 0.84 

te so 50 we -5290 2.66 0.98 0.98 

-4540 Qos Le 23} 1.28 
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TABLE 4. Influence of Vapor Pressure, Py, Liquid 

Pressure, P, Surface Tension Pressure, 2 S/R, and 

Viscosity Pressure, 4y R/R, on Cavity Growth on 

Blunt Nose (Figure 31). 

Py P DESVAR 4u R/R 
t N/m? N/m? N/m? N/m? 

om 1940 -6320 170 15 

t + 50 us 1940 -3590 150 12 

t + 150 us 1940 + 330 120 8 

Surface effects on the Teflon hemispherical nose 

play a dominant role in both inception and appearance 

of cavitation. 

The presence of polymers in the "inner part" of 

the boundary layer on the SST hemispherical nose 

leads to destabilization, whereas the presence of 

the polymer in the "outer part" of the boundary 

layer leads to stabilization, and the latter effect 

is predominant. For all cases considered, laminar 

boundary layer separation is suppressed. 

Since the influence of polymer additives is to 

suppress laminar boundary layer separation on the 

hemispherical nose, the strong pressure fluctuations, 

occurring at the position of transition and reattach- 

ment of the separated shear layer and being the 

principal mechanism for cavitation inception, are 

eliminated and cavitation will start at much lower 

pressures. As a consequence, the cavitation charac- 

teristics of the SST hemispherical nose with polymer 

injection are approximately the same as those of 

the blunt nose without polymer injection. 

NOTATION 

B Constant in Equation (3) 

Cp Pressure coefficient 

CPmin Minimum pressure coefficient 

CPs Pressure coefficient at separation 

Cpm Pressure coefficient at transition 

D Model diameter 

H Height of separation bubble 

He Height of cavity 

L Length of separation bubble 

Le Length of cavity 

Lsc Length of sheet cavity 

P Static pressure 

Po Free stream static pressure 

Pmin Minimum static pressure 

2 Vapor pressure 

R Bubble radius 

Re Reynolds number, VoD/v 

REQ sap Equation (4) 

iS Surface tension 

Tu Turbulence level 

U Velocity at edge of boundary layer 

Vo Free stream velocity 

Vi Injection velocity 

a Amplitude of disturbance 

Aneutral Amplitude of disturbance at neutral 

stability 

if Friction factor 

m Equation (2) 

ie Nose radius of cavity 
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s Surface coordinate 

Sc Streamwise distance to cavitation 

separation 

Sp Streamwise distance to boundary layer 

transition 

x Axial coordinate 

a Air content 

8 Nose angle of cavity 

Y Angular coordinate 

Ys Boundary layer separation angle 

Yes Cavitation separation angle 

6 Angle at which separation streamline 

leaves wall 

Momentum thickness 

Dynamic viscosity 

Kinematic viscosity 

Liquid density 

Cavitation number, (Po-Py) /40Vo2 

Incipient cavitation number 

Desinent cavitation number 

Amplification factor 

Velocity potential 

ab 

ar pre ne we ee 
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ABSTRACT 

Recently cavitation erosion has been primarily 

treated experimentally. However a need exists for 

both a theoretical cavitation erosion model and 

more quantitative erosion test methods. As a 

contribution to the state of the art, the authors 

have summarized their research at the University 

of Tokyo using the soft surface erosion test method 

(the aluminum erosion test). 

Two test series were completed, the first using 

the NACA 16021 foil section and the second using 

the NACA 0015 foil section. Two-dimensional erosion 

tests were systematically made at various velocities 

and cavitation numbers to obtain a correspondence 

between the erosion and the hydrodynamic character- 

istics of the cavitation pattern. It was found that 

the estimation of the cavity length and its fluctua- 

tion are important factors in the prediction of the 

cavitation erosion. 

The results of these tests are used to illustrate 

the effectiveness of Mean Depth of Deformation Rate, 

MDDR, aS a Cavitation Erosion Index. These test 

results also served as a background for extending 

the cavitation erosion scaling theory, previously 

proposed by Kato, to include differences in the 

cavitation number. 

After determining two empirical constants, the 

resulting predicted MDDR Cavitation Index was shown 

to be in good agreement with both Thiruvengadam's 

(1971) and the authors' test results. 

In addition to this basic research, two additional 

studies are summarized. The first is a comparative 

test of the aluminum erosion test and the paint 

test and the second is a study in the influence of 

air injection in reducing the cavitation erosion 

intensity. The test results obtained from the paint 

and aluminum tests were found to be in good agreement 

and for routine cavitation erosion checks, the paint 

test should be adequate. It was found that small, 

air injection rates reduced the cavitation erosion 

intensity dramatically and large injection rates 
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did not result in substantial reduction of the 

cavitation erosion intensity. 

1. INTRODUCTION 

Erosion is one of the largest problems caused by 

cavitation. Cavitation tests of model propellers 

have been made for the purpose of predicting cavita- 

tion erosion, especially for low-speed merchant 

ships. However, the prediction was mainly based 

on the observer's "feeling" of the cavitation 

pattern on the propeller blade. Recently a new 

testing method, i.e., paint test, was developed at 

several laboratories [Sasajima (1972) and Lindgren 

and Bjdrne (1974) ]. In this test the erosion inten- 

sity is judged by the area of paint peeled off. 

At the University of Tokyo in the authors' 

laboratory, erosion tests of soft aluminum test 

pieces have been made for several years [Sato et 

al. (1974) and Sato (1976)]. The main purpose for 

developing the soft aluminum method are: 

(1) Development of a quantitative prediction 

method for cavitation erosion. 

(2) Obtain a deeper insight into the mechanism 

of cavitation erosion by the observation 

of eroded metal surface. 

(3) Establishment of cavitation erosion scaling 

laws. 

The test piece is usually made of pure aluminum, 

which is easy to obtain, has stable quality, good 

machinability, and is relatively cheap. Its 

mechanical properties can be roughly established 

by hardness and tensile tests. The erosion resist- 

ance of pure aluminum is very low and its surface 

is roughed by cavitation attack within one half 

hour of test exposure which is similar to the testing 

time of the paint test. The increase in roughness 

is a first indication of erosion [e.g., Young and 

Johnston (1969) ]. It can be measured by a roughness 

tester and the quantitative erosion intensity can 

be obtained with sufficient accuracy. 



Micro-appearances of the eroded surface such as 

the pit shape, can also be qualified by examination 

of roughness records and microscopic pictures of 

the surface. 

The erosion intensity has been evaluated by 

mean depth of penetration (MDP) GoGo 5 Hammitt 

(1969) ] or energy absorbed by the material eroded 

l@aGio p Thiruvengadam (1966) ]. In addition one of 

the authors recently proposed a new concept of 

erosion intensity, mean depth of deformation (MDD) 

which functions as a bridge between surface rough- 

ness, SR, and MDP [Kato (1975) ]. Thus MDD corres- 

ponds to SR at the initial stage and MDP at the 

final stage of erosion. 

This paper discusses the experimental results 

of two-dimensional aluminum foil sections (pure 

and aluminum alloy), various considerations of the 

erosion mechanism in connection with the hydrodynamic 

characteristics of the foil section along with the 

modeling and scaling of erosion, and summarizes 

experiments using an air injection system which the 

authors found very effective in cavitation erosion 

preventation. Nomenclature is shown at the end of 

this paper. 

2. FOIL SECTION EROSION TEST 

High Speed Cavitation Tunnel at University of Tokyo 

Erosion tests of two-dimensional foil sections 

were made using a high speed cavitation tunnel at 

University of Tokyo. The test sections of this 

tunnel can be changed according to the experiment. 

For the present test two test sections were used. 

One was the rectangular high speed section with 

cross section dimensions of 100mm x 10mm. Test 

Series I was carried out using this section in 

1976. Since the side wall effect was so large that 

the two-dimensionality of the flow was almost lost 

near the trailing edge of the foil section, it was 

concluded that the 10mm width was too narrow. There- 

fore the test section was modified to a 80mm x 15mm 

cross section prior to starting Test Series II in 

1977. The maximum velocity of the section was 

about 50m/s. 

The second test section was the rectangular low- 

speed section used only in Test Series II (1977). 

It has cross section dimensions of 120mm x 25mm 

and a maximum velocity of 35m/s. 

Foil Section 

Two foil sections (NACA 16021 and NACA 0015) were 

tested. The NACA 16021 foil section used in Test 

Series I (1976), was the same foil section used in 

Kohl's experiment [Kohl (1968) ]. Kohl made his 

tests at an attack angle of a = 0°. Since this 

foil section has no camber, when it is set at a = 

O°, the inception point of cavity appears around 

60% chord. Thus, testing at a = 0° was not suitable 
for cavitation erosion tests, so the authors chose 

a test condition of a = 4°. Since its chord and 

Span are 40mm and 10mm respectively, the aspect 

ratio A = 0.25, was so small that the spanwise 

pattern of the cavity was not uniform. The cavity 

closed at midspan appearing as a kind of streak 

cavitation. Another disadvantage of using the NACA 

16021 section is its chordwise pressure distribution 

which is the "roof-top" type. The cavity length 
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drastically changes with only slight changes in the 

cavitation number. While this characteristic is 

desirable in practical applications, it was found 

to be undesirable in the present study since erosion 

would occur only in a narrow range of cavitation 

numbers which makes the experiment difficult. 

Therefore prior to starting Test Series II in 

1977, two major improvements were made. From wind 

tunnel tests the minimum aspect ratio necessary to 

maintain two-dimensional flow was found to be about 

4 = 0.4 and an aspect ratio, A = 0.5, was chosen 

for Test Series II. The smaller foil was designed 

with a 30mm chord and a 15mm span and the larger 

foil section was designed with a 50mm chord and 

a 25mm span. 

The second improvement was to change the foil 

section, from the NACA 16021 to the older NACA 0015, 

which has a chordwise pressure distribution of the 

"triangular" type. The experimental chordwise 

pressure distribution of this foil is compared in 

Figure 1 with the calculated pressure values. It 

can be seen that the agreement between the experi- 

ment and calculation is satisfactory. 

Test Condition 

In Test Series I (NACA 16021) the following items 

were tested: 

(1) Relationships between the mean depth of 

deformation (MDD), mean depth of penetration 

(MDP), and surface roughness (SR). 

(2) Effect of cavitation number, velocity, and 

the water's air content on the erosion 

intensity. 

(3) Comparison between the results obtained by 

the soft aluminum erosion test and paint 

EeSice 

(4) Influence of air injection on erosion pre- 

vention. 
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FIGURE 1. Comparison of suction side Cp for NACA 

0015 foil section. 
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In Test Series I, the size and material of the foil 

section were not changed. The material was pure 

aluminum, JIS H2102-2 (AL > 99.5%). 
In Test Series II (NACA 0015) the following items 

were tested. 

(1) Effect of cavitation number, velocity, and 

chord length, and the hydrodynamic character- 

istics of the cavity flow, on the erosion 

intensity. 

(2) Effect of material properties on the erosion 

intensity. 

(3) Comparison of the soft aluminum and paint 

test results. 

The test conditions are summarized in Table 1. 

The attack angle was a = 4° throughout Test Series 

I and II. In Test Series I, the air content was 

a/adg = 0.5, while in Test Series II it was initially 

0.2 and increased gradually during the experiment 

to a value of 0.4 by the end of the experiment. 

In Test Series I-D, before the test began, air 

bubbles were injected into the cavitation tunnel 

to control air bubble content of the water. Then, 

the erosion test was completed to study the effect 

of air content on erosion. 

Experiments with air injection from the foil 

surface were also carried out to study the positive 

Table 1 

utilization of erosion prevention effect of air 

bubbles. 

At the start of the tests, the water temperature 

was about 25°C which increased during the high speed 

tests, reaching a maximum temperature of 50°C. 

In addition to the erosion tests, measurements 

of the hydrodynamic characteristics such as cavity 

length, pressure distribution etc., were completed 

using a similar foil section made of stainless steel. 

Material and Heat Treatment 

In Test Series I the foil section material was pure 

aluminum (JIS H2102, 99.5%), while in Test Series 

II pure aluminum and two kinds of aluminum alloy, 

JIS H4163-2 (AA 5056) and JIS H4163-5 (AA 6063) 

were used. These materials were selected for their 

low erosion resistance, good corrosion resistance, 

and good machinability. The foil sections tested 

were machined by a NC-milling machine and the surface 

was smoothed by a buffing machine. The foils' 

surface roughness was found to be less than 1 um 

in the virgin state. 

Since the foil surface was work-hardened, a thin 

layer of the foil surface had a large degree of 

Experimental Conditions 

Series I 

ie 
Cav. No. & Flow Vel.| Duration 

Material JIS* 

Attack Angle 

Flow Velocity 

Cavitation 

Number 

Exposure Time 

Air Content 

Material 

JIS (AA)* 

Chord 30 mm, Span 15 mm 

HA4LE3—5 Hh163—2 
(5056) (6063) 

Flow Velocity 

Cavitation 

Number 

Air Content 4v8 ppm (a/as** =0.200.4) 

* JIS Japanese Industrial Standards 

AA : The Aluminum Association 

**¥ Qo : Saturated Air Content at 25°, 1 ata. 
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Table 2 Chemical Composition and Mechanical Properties 

Pure Aluminum 

JIS H2102-2 

Aluminum Alloy 

JIS H4163-5| JIS H4163-2 
(AA 6063) (AA 5056) 

v0.10 

Chemical 

Composition 

Stress 

Tensile 
2 

Mechanical Strength (kg/mm 

Vickers Properties 

Hardness (kg/mm? 

Young's 

Modulus (kg/mm? 

hardness, requiring heat treatment to remove this 

work hardened layer. Following the Japanese 

Industrial Standards, pure aluminum and aluminum 

alloy H4163-2 were annealed for 1 hour at 400°C 

and foils made of aluminum alloy H4163-5, were 

annealed for 1 hour at 205°C. 

The surface hardness before and after annealing 

are shown in Figure 2. This test was made using 

a micro Vickers hardness tester. The tensile test 

results are shown in Figure 3 and summarized with 

the composition of the materials in Table 2. 

Surface Roughness (SR), Mean Depth of Penetration 

(MDP), and Mean Depth of Deformation (MDD) 

For this study a NACA 16021 foil section was 

tested for 9 hours to find the relation among SR, 

MDP, and MDD. The result is shown in Figure 4. 

When a ductile material such as aluminum is exposed 

to cavitation, small pits detected by an increase 

60 

Pure Acuminum (H2102-2) 

Non-ANNEALED Pas 

7 
ANNEALED Hv (KG/MM) 

8 9? ° | ° 

MEAN RoucHNess (gem) 0 200 400 60( 
Static Loap (G) 

FIGURE 2. Result of Vickers hardness test [pure 

aluminum (H2102-2)]. 

in SR are formed at the first stage of erosion. 

At this stage there is no weight loss. This initial 

period is called the incubation period where after 

an initial increase, the SR value asymptotically 

approaches a larger value. 

It is well known that MDP remains zero during 

the incubation period. The time rate of MDP/(MDPR) 

increases to the maximum (acceleration period) then 

decreases gradually (deceleration period). Asa 

measure of erosion intensity the value of MDD, pro- 

30 

25 

ind oOo 

rH al 

Stress (KG/MM”) 

0 5 10 15 20 25 
STRAIN (%) 

FIGURE 3. Comparison of tensile test result. 
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FIGURE 4. Extended duration cavitation test [NACA 

Pure Al (H2102-2), C = 40 mm, a = 4 deg.]. 

posed by one of the authors, seems to be more 

suitable than MDP. The advantages of using MDD 

are that it increases almost linearly over a wide 

range of exposure time as well as the fact that MDD 

corresponds to SR in the incubation period and to 

MDP after long exposure. 

In the present tests, SR was measured to shorten 

the testing time. Usually the test was completed 

within 1 hour so the SR value coincides with MDD. 

The degree of erosion after a long exposure can be 

estimated using the measured SR. 

3. HYDRODYNAMIC CHARACTERISTICS OF CAVITATION ON 

NACA 0015 FOIL SECTION 

Cavity Length 

Because erosion occurs at the collapsing point of 

the cavities namely the end of the cavity, it is 

important to know the cavity length for predicting 

cavitation erosion. 

tests, the cavity length and pressure distribution 

along the back surface of the NACA 0015 foil were 

PROBABILITY (2) 

Therefore, prior to the erosion 

measured. At the test condition 50 photographs 

were taken to measure the cavity length. 

The results are shown in Figure 5. As seen in 

the figure, above o > 0.8 the distribution of cavity 

length is characterized by a peak, but below o < 0.8 

the fluctuation becomes so large that there is no 

characteristic peak. For the supercavitation 

condition (o = 0.45) the fluctuation is reduced and 

a characteristic peak can again be observed. The 

mean value of cavity length and its standard devia- 

tion are shown Figures 6 and 7. The cavity length 

increases linearly with smaller cavitation number, 

and the standard deviation begins to increase 

rapidly about o = 0.85 as clearly seen in the figure. 
It is well known that the cavity length of a 

partially cavitated foil can not be determined 

theoretically by linear cavity models. The cavity 

length predicted by a closed type cavity model is 

usually longer than the observed length. If we 

adopt a open type cavity model., the situation 

becomes reversed and the predicted cavity length 

becomes shorter than the observed length. Conse- 

quently a half-closed type model is usually adopted, 

but this model requires the opening of the cavity 

end to be determined experimentally. 

In this study the cavity length was calculated 

using the half-closed type model by Nishiyama and 

Ito (1977). This method is based on linear theory 

using singularities (source and vortex) distributed 

on the cavitated foil. The calculated results are 

shown in Figure 7 where the opening de was system- 

atically changed. The contour of de = O coincides 

with the closed cavity model. The circles in this 

figure represent the "mean" value of the observed 

cavity length. Using this mean value, the opening 

6e can be calculated showing that de increases 
with smaller values of o (see Figure 8). 

Pressure Distribution and Cavity Shape 

The theoretical pressure distribution and cavity 

shape for the back side of NACA 0015 foil section 

are shown in Figure 9 along with the corresponding 

experimental result. Here the Nishiyama-Ito's half- 

closed model was used with the de values taken 

0 
0 

PROBABILITY (2) 

FIGURE 5. Fluctuation of cavity length (NACA 

0015, «a = 4 deg., V = 35.9 m/s). 
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FIGURE 6. Standard deviation of measured cavity length 

(NACA 0015, a = 4 deg.). 

from Figure 8. The pressure distribution diverges 

to a positive infinite value at the end of cavity 

because of singularity at this point. This singu- 

larity makes the agreement between theoretical and 

experimental results very poor. 

The cavity shape is also compared in Figure 9. 

The observed leading edge of the cavity is about 

10% chord position. Whereas, in the theory the 
leading edge of the cavity begins at the leading 

edge of the foil. This appears to be one of the 

reasons why the calculated cavity thickness is 

much thicker than the experimental thickness even 

though the cavities have similar profiles. 

4. EROSION TEST 

Cavity Length and Position of Erosion 

The roughness increment on the foil was measured 

for various exposure times. Spanwise roughness 

measurements were made over the entire chord at 

intervals corresponding to 5% the chord length. 

120 

THEORY 

100 —-— EXPERIMENT 

0..08C 30 0.06C 0. 04C 

60 
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Two examples of the roughness distribution are 

shown in Figure 10. Arrow marks in this figure 

indicate the position of cavity end and the standard 

deviation of its fluctuation. 

The figure clearly shows that the peak of erosion 

appears slightly downstream of the cavity end, and 

the erosion distribution agrees well with the cavity 

fluctuation. Namely, there is an obvious peak in 

the region of o > 0.8, but in the region of o < 0.8 

the surface roughness distribution spreads over a 

wider range. This result indicates that the esti- 

mation of cavity length and its degree of fluctuation 

are important factors in the prediction of erosion 

intensity. 

Effect of Hydrodynamic Factors on Erosion 

Cavitation Number 

The mean increment of surface roughness, SR, and 

its time rate of change can be determined from the 

roughness distribtuion shown in Figure 10. It 

corresponds to the mean depth of deformation rate 

(MDDR) because the test was finished within the 

incubation period. While Thiruvengadam has proposed 

adopting the rate of energy absorbed by the eroded 

material, which can be calculated by multiplying 

MDP by the energy absorbing capacity of the material 

per unit volume, the present research uses MDDR as 

a measure of erosion intensity in order to find 

which property is responsible for cavitation erosion. 

It is known that the erosion intensity, MDDR, 

has a peak at the certain cavitation number. The 

change of measured MDDR to cavitation number is 

shown in Figure 11, where plots (a) and (b) refer 

to the NACA 0015 foil tests while plot (c) refers 

to the NACA 16021 foil tests. The test result of 

Kohl and Thiruvengadam are also presented in plot 

(a) [Kohl (1968) and Thiruvengadam (1971) ]. As 
mentioned earlier, while the same foil section 

(NACA 16021) was tested in Test Series I, a different 

attack angle was used. 

There are several differences in the results 

obtained in the NACA 0015 foil tests and the NACA 

= 35 m/s 

= 25 m/s 

= 15 m/s 

o.czc _8,-0 

40 

Cavity LENGTH (ZCHORD) 

20 

0.4 0.6 0.8 1,0 

CaviITATION NuMBER 

FIGURE 7. Comparison of calcu- 

lated and observed mean cavity 

length (NACA 0015, a = 4 deg.). 

1.2 1.4 
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FIGURE 9. Comparison of NACA 0015 foil calculated 

cavity shape and Cp distribution with experiments at 

a= 4 deg. 
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16021 foil tests. First, the width of the peak of 

NACA 16021 is narrower than the NACA 0015 peak. 

This is caused by the difference of pressure distri- 

bution between the two foil sections. The NACA 

16021's distribution is flat, resulting in a larger 

change of cavity length with small changes in 

cavitation number. In contrast, the NACA 0015 

section has a triangular pressure distribution so 

the difference between the inception cavitation 

number and supercavitation number is large. Since 

erosion occurs only when the cavity bubbles collapse 

on the foil surface, it seems quite reasonable that 

NACA 0015 has a much wider peak than the NACA 16021. 

Here the authors would like to point out that due 

to side wall effects the measured pressure distri- 

bution of the NACA 16021 foil and the peak value 

of o = 0.4 can not be obtained directly by a two- 

dimensional calculation. 

0.35 

CavITATION NUMBER 

(d) NACA 16021, 1100F-A1 
(Thiruvengadam, 1971) 

0.40 0.45 

FIGURE 11. Summary of MDDR erosion 

index and 'test results. 

Another difference between these two results is 

the value of the maximum MDDR. It is much larger 

for the NACA 16021 foil when compared with the 

NACA 0015 foil results, even though the chord length 

and test velocity are not that much different. The 

main reason lies in the difference of cavity pattern. 

With the NACA 16021 section, the cavity inception 

is concentrated at the mid-span position and the 

cavity was a streak type. Correspondingly, the 

erosion pattern was a streak type, where a narrow 

and deep eroded groove was formed along the middle 

of foil. A picture of this groove taken by a 

scanning electron microscope is reproduced in Figure 

12. Streak cavitation can induce severe erosion in 

comparison to sheet cavitation erosion which occurred 

in the NACA 0015 foil tests. The difference in the 

cavity patterns seems to cause this large difference 

in MDDR. 
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FLOW 

DIRECTION —> 

FIGURE 12. Scanning electron 

microscope photographs of eroded 

surface (NACA 16021, H2102-2, 

Cc = 40 mm, a = 4 deg., V = 41.7 

m/s, o = 0.450). 

Referring to Figure 11 (b) in the 3 test series 

where only the material of the foil was changed, 

the position of maximum MDDR changes. This seems 

irrational because the flow condition is not changed 

by the material. The reason of this shift is the 

occurrence of the foil's bent trailing edge. Ona 

full scale propeller, cavitation erosion is some- 

times accompanied by a bent trailing edge. The 

same thing happened in the present test. The: foil 

section made of pure aluminum is much weaker than 

those made from an aluminum alloy, and it was bent 

more at the trailing edge causing the shift of 

peak MDDR to the larger cavitation number. 

An example of a bent trailing edge is shown by 

the profile view in Figure 13. The amount of bend 

is large at the corner of the trailing edge, which 

exaggerates considerably the shape shown in this 

figure. The bent trailing edge was observed on 

every NACA 0015 foil sections when the erosion 

occurred. On the contrary, it hardly appeared on 

“ Poe 

Eropep REGION 

NACA 16021 foil section because of its thicker 

trailing edge. 

Velocity 

It is well known that the erosion intensity is af- 

fected very much by the mean velocity since Knapp's 

suggestion of 6th power law [Knapp et al. (1970) ]. 

The effect of velocity on the peak value of MDDR 

is shown in Figure 14. Usually the exponent obtained 

‘experimentally, has a large spread falling somewhat 

between 3 and 9. In the present tests with the 

NACA 16021 foil the exponent, n, was 9 and for the 

NACA 0015 foil tests the exponent, n, was 6. 

Chord Length 

The chord length of a foil also has a large ef- 

fect on the erosion intensity. This is very 



(a) BEFORE EXPERIMENT 

(b) AFTER EXPERIMENT. 

FIGURE 13. Impression of bent trailing edge. 

important for marine propellers where the scale 

ratio between a full scale propeller and its model 

is large. Sometimes this ratio exceeds 30. As 

mentioned above, while the effect of the velocity 

difference is very large, we can still make a model 

test with the same tip speed as full scale by 

increasing the revolution of the model propeller. 

However it is very difficult to reduce the scale 

ratio of chord length. 

Experimental verifications on this problem are 

also very poor. Thiruvengadam (1971) made his 

erosion tests using two chord lengths, 1.5 and 3 in. 

His result shows that the erosion intensity increases 

proportional to the chord length. The result 

obtained in the present test is shown in Figure 15. 

In the present tests the erosion intensity increases 

proportional to the square of chord length. The 

effects of hydrodynamic factors such as cavitation 

x10"? 
15 

MDDR ( pem/min) 

ine) 

0,2 
20 40 70 100 

VELocITY (m/s) 

FIGURE 14. MDDR vs. velocity 

(NACA 0015 : H2102-2, C = 30 mm, 

a = 4 deg.) (NACA 16021 : H2102-2, 

C = 40 mm, a = 4 deg.). 
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FIGURE 15. MDDR vs. chord length 

(NACA 0015, H2102-2, a = 4 deg., 

V = 35 m/s). 

number, velocity, and chord length can be explained 

universally by a model of erosion mechanism. The 

details of this model will be given in Section 5. 

Air Content 

The effect of air content was examined using the 

NACA 16021 foil section results. The air content 

was controlled as follows. As a pretreatment, the 

water was degassed to about 8ppm in a vacuum chamber 

and introduced into the cavitation tunnel. Then a 

certain amount of air was injected into the tunnel 

through an injection port before the test. In this 

case the ratio of gaseous air to total air content 

is much greater than found in ordinary water where 

the amount of air is an order of parts per million 

of total air content [Ahmed and Hammitt (1969) ]. 

With increase of air content the value of MDDR 

decreases as seen in Figure 16. This tendency 

agrees with the test results of SSPA [Lindgren and 

Bjarne (1974) ] and those of Stinebring et al. 

[Stinebring et al. (1977)]. The reason is attributed 
to the damping effect of air in a collapsing cavity 

bubble, attenuation effect of tiny air bubbles to 

shock wave, or a combination of both. 

Material Properties 

The effects of material properties on erosion are 

usually tested by accelerating devices such as 

vibrators, rotating discs, water jets etc. Summa- 

rizing these results, Heymann has made the chart 

shown in Figure 17 where the hardness of the 

material was taken as a factor governing the erosion 

[Heymann (1969)]. As seen in the figure the slope 

differs according to the material group, namely 

the slope of the steel group is steeper than that 

of aluminum and copper and brass group. This implies 

that the erosion resistance cannot be fully repre- 

sented by hardness alone. Thus other material 

properties such as strain energy absorbed to material 

(engineering strain energy) [Thiruvengadam (1966) J, 

ultimate resilience [Hobbs (1966) ], or their com- 
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FIGURE 16. Effect of air content on MDDR 

(NACA 16021, H2102-2, C = 40 mm, a = 4 deg., 

V = 41.7 m/s, o = 0.443). 

bination [e.g. Hammitt et al. (1969) ], have also 
been proposed by several researchers. 

The present test results are also compared with 

those material properties, i.e., hardness, engi- 

neering strain energy, and ultimate resilience. 

Hardness seems to give the best representation as 

seen in Figure 18. This will be discussed in Section 

5 dealing with modeling the erosion mechanism. 

5. THEORETICAL CONSIDERATIONS 

Review of Erosion Scaling Theory 

Thiruvengadam has made several theoretical. consid- 

erations on scaling of erosion. In 1971, he 

introduced a scaling formula [Thiruvengadam (1971) ]. 

He assumed a statistical distribution of air nuclei 

and derived the efficiency of erosion, 6, as, 

_ o& 1 -2.67 
6 = 5 (As) €XD F(A), 

where 6, 0, Ao, and W are nondimensional nuclei 

size, cavitation number, degree of cavitation, and 

Weber number respectively. Equation (1) is very 

attractive because it has no empirical constants. 

However the calculated values are quite different 

from the experimental values. While 9 should be 

the order of 10° by the calculation, the 8 obtained 

from model tests typically has an order of 10710, 

This discrepancy comes from the assumption that the 

total energy of the cavity bubbles generates the 

erosion. The theory shows that when the cavitation 

number is reduced, the efficiency, 8, increases 

from the point of cavitation inception to a maximum 

and then decreases to zero when cavitation number 

reaches zero. This tendency agrees qualitatively 

with experiments. It is expected, since the actual 

cavity becomes a supercavity at a certain cavitation 

number causing the erosion intensity to decrease 

greatly and in a practical sense reach zero. 

One of the authors has proposed a model of erosion 

mechanism in which the discharged energy of the 

collapsing bubble is assumed to be distributed 

statistically as: 

a6), === - — ) =a € exp € (2) 

where f is the distribution function of energy 

density, €, reached on the material surface. Then 

a scaling law for cavitation erosion was derived 

using an empirical formula for the erosion resis- 

tance of materials. A comparison with only the 

peak erosion intensity taken from Thiruvengadam's 

tests showed good agreement [Kato (1975)]. 

Consideration on Effect of Cavitation Number 

As mentioned before, MDDR has a peak value of a 

certain cavitation number. This is due to a 

combination of the following two reasons. There is 

an increase in the collapsing cavity volume as the 

cavitation number decreases which causes increased 

erosion. On the other hand, the decrease of cavita- 

tion number causes an increase in the cavity length 

so the eroded area shifts towards the trailing edge 

of a foil. Also when the cavity length exceeds the 

chord length, the cavity does not collapse on the 

foil surface, causing no cavitation erosion. 

Usually the cavity length fluctuates and the erosion 

intensity will change continuously with the cavita- 

tion number. Although there seems to be a consider- 

able decrease in the collapsing pressure of cavity 

decreasing cavitation number, the control factor 

of erosion intensity is the change of cavity length 

as mentioned above. 

The decrease of erosion intensity at the right 

hand side of the MDDR peak in Figure 19 is caused 

by the lack of cavity and by too long a cavity on 

left hand side. By increasing the cavitation number, 

the cavity becomes intermittent, and if the cavity 

is stabilized by roughing the leading edge, the 

MDDR peak shifts to a higher cavitation number 

where the peak value is increased. This was verified 

in the authors' experiments as shown in Figure 20. 
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FIGURE 17. Vickers hardness vs. erosion 

resistance [Heymann (1969)]. 
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FIGURE 18. MDDR vs. various mechanical 

properties of material (NACA 0015, C = 30 mm, 

a = 4 deg., V = 45 m/s). 

Modelling of Cavitation Erosion and Scaling Factors 

As mentioned above, one of the authors developed 

a model of the cavitation erosion mechanism. How- 

ever it is limited to only constant cavitation 

numbers and the effects of material properties were 

derived empirically from accelerated tests. In the 

present paper, this model is developed further to 

treat differences in the cavitation number. The 

effect of the material's mechanical properties is 

also studied and a simple model is introduced. 

The total energy of collapsing bubbles per unit 

is given as: 

E. = n(p-pv)O , (3) 

probability of bubble collapses on a 

foil’ surface, 

where nN 

P-Py : pressure difference at the collapse 

point, 

Q : volumetric flow rate of cavitation 
bubbles. 

Equation (3) can be modified: 
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FIGURE 19. Illustration of MDDR peak characteristic 

(test data given in Figure ll). 

E, * 1(Po-Py) 5 BV 

« nopv? eS) es (4) 

where 6 displacement thickness of cavitation 

bubbles, 

B : foil] span, 

de : cavity thickness at the cavity end, 

V : velocity, 

L : reference length. 

Assuming that a cavity bubble grows according to 

Knapp's similarity law, the volume,V, is: 

Vera (wg = ye (5) 

where T = ay where A is the cavity length. 

The pressure difference, Ap, is assumed as 

x10°? 
3.0 

© SmooTH SURFACE 

@ RouGHEeD aT LeaDING EDGE 

2.0 

1.0 
MDDR ( pem/miNn) 

0.3 0.4 0.5 

CavITATION NUMBER 

FIGURE 20. Impression of effect of roughened leading 

edge [NACA 16021, tested by Ozaki and Kiuchi (1975)]. 
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Ga (ot Gam) OF - (6) 

Combining Eqs. (5) and (6), the following equation 

is derived. 

3 

v « 3 [-(o + Cryin) | (7) 

The number of cavity bubbles per unit time is then 

given as, 

de V 
va @e 7 (8) = 3 

r3n [-( © + CPmin) ]2 

where \ as the nondimensional cavity length, X= 

A/D Se is the nondimensional cavity thickness at 

the end, and de = Se/L. 

Here, we make the same assumption as in the 

previous paper [Kato (1975) ] on the statistical 

energy distribution of cavity bubbles. The distri- 

bution is given as, 

n = cE exp (-aE) 9 (9) 

where n is the number of bubbles per unit time 

whose energy is between E and E + dE. Total number, 

N, and total energy of bubbles, E;, are given as 

follows: 

foe) 

c 
N= a ndE = a2 (10) 

0 

Constants a and c can be decided by combining Eqs. 

(4), (8), and (10). 

1 

ES 
pp Il 

No 

nov2L2r3[-(o + CPmin) | 

oom (alah) 
ki de 

Se Ras Se 9 

n2p2v3L7A902[-(0 + CPrmin) ]” 

where Kj} and K} are constants independent of the 

chord length, velocity and cavitation number. From 

Eq. (9), the distribution function of energy density, 

f, is derived as a function of energy density, €. 

The detailed discussion of this point is given in 

the previous paper [Kato (1975) ]. 
Substituting Eqs. (9) and (11) into the relation 

£(E) coon (ele) i, (12) 

the final expression for f is 

f = C € exp (-Ae) f (13) 

where A= 

= x) 
n2p2v3L32\ 202 [-(o0 + Cp.) ]2 

min 

In the present case the chord length is taken as a 

suitable reference length, L. 

Equation (13) is similar to Eq. (2), but it is 

extended to include differences in the cavitation 

numbers. 

The next problem is the modelling of deformation 

of a material surface caused by the attack of 

collapsing bubbles. For the present tests, hardness 

seems the best property to express the erosion 

resistance of a material. However it was found to 

be insufficient as seen in Figures 17 and 18. 

The methods of hardness testing can be divided 

into two types. One is the measurement of a dent 

size caused by the static load of a sphere or a 

pyramid on the material surface. The other method 

is the measurement of absorbed energy from dropping 

a certain test body on the surface. The Vickers 

hardness test made in the present study belongs to 

the first type. 

When a pyramidal dent whose depth is d, is 

formed by a static load F (Figure 21), the energy 

used to the deformation is 

iy Gaiotel 9B (14) 

The hardness has the following relation by its 

definition. 

(15) 

The increase of surface roughness (SR) by the single 

dent is given as 

wv . ae Se SS 16 SRES aia) rayne (16) 

where Y and S are the volume of the dent and refer- 

ence area, respectively. 

Combining equations (14) ~ (16), 

i 
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FIGURE 21. Model of Vickers hardness test method. 



where e 

atecraieulo 

is the energy density absorbed by the 
s plastic deformation. If e is small 

enough, the deformation is within the elastic limit 
and no permanent dent will be formed. When e 
exceeds a certain limit, e,, the plastic deformation 
of surface occurs and a pernament dent is formed. 

Then the following relation is derived: 

a) = 0 fore < ee 

Qa. = © 2° Pp @ for e > Se 9 (18) 

The above mentioned argument is valid for the actual 
case of erosion where many cavity bubbles collapse 
in a certain period if e is substituted tO}, Er, en 
these equations. 

Then, 

—e =0 for € <e 
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Vv 
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Integrating Eq. (20), 

K ov3 € 
MDDR = —~ —— g (a)( 2+ —1"_) 

Loy dele oV LF (o) 

ic ex | = FI (21) 
OV2LF(o) 

where 

= 3 
F(o) = naso [-(o + Cp in) J? 

G(o) = node o 

Here F and G are functions of cavitation number, 
where G is proportional to the total energy of the 
cavity reaching to the surface, and F is related 
to the individual energy of each cavity bubble. 

The probability of the bubble collapse on the 
foil surface, n, is calculated using the estimated 
mean position of collapse and its fluctuation. In 
the case of the NACA 0015 foil section, the position 
was estimated as 1.3 A from Figure 10 and the 
fluctuation is assumed to be the same as the cavity's 
fluctuations. The thickness at the end of cavity 
is taken from Figure 8. The value of F andG for 
NACA 0015 section were calculated at a = 4°. The 
results are shown in Figure 22. 

While the critical value of energy density, Er 
should be expressed by the mechanical properties of 
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material such as yield strength, Young's modulus 
etc., at the present stage, for lack of data we 
assume the following relation, 

Yield strength (22) aC y o oy 

and determine the power, n, from the erosion experi- 
ments. 

Comparison with Test Result 

The results of this theoretical model are compared 
with the erosion test of NACA 0015 section in 
Figure 23 where the two constants, K, and Ky, in 
Eq. (21) were determined using two different test 
points. In this figure those points are shown by 
dashed marks. The value of the power, n, was taken 
as n = 1/4 from the experimental results. The 
agreement between this theory and the test results 
is satisfactory. 

The theory was also compared with Thiruvengadam's 
test result [Thiruvengadam (1971)]. In this case, 
no data about the cavity was measured, so only the 
peak value of erosion intensity was used in this 
comparison with the present theory. The agreement 
is almost perfect as seen in Figure 24 where one 
set of data was used to determine two constants. 
Photos in Figure 23 (b) also show the paint test 
results discussed in the next section. 

Paint Test and Soft Aluminum Erosion Test 

Recently the paint test has been routinely used at 
several research laboratories to predict erosion 
intensity, in contrast to the present research using 
the soft aluminum erosion test to predict erosion. 
Both of these two test methods have merits and 
demerits. The soft aluminum erosion test is some- 
what troublesome and the surface of the material 

5 O26 0.7 0.8 0.9 1.0 Itai 

CAVITATION NUMBER 

FIGURE 22. Derived F and G values for NACA 0015 foil 
section at a = 4 deg. 
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FIGURE 24. Comparison with 

Thiruvengadam's data (NACA 

16021). 

is destroyed, as a matter of course, after a long 
exposure to cavitation. But as mentioned in Section 

1, it has the merits of yielding quantitative and 

reliable erosion data, a similar appearance of the 

full scale eroded surface, etc. 

The paint test has just the opposite merits. It 

is a cheap and handy method. And although the 

conditions under which the paint is removed changes 

with very small changes in the paint composition, 

test procedure, etc., it appears that by developing 

standards, the paint test can be used to represent 

relative differences between similar models. 

From this discussion of the paint test merits 

and demerits, the paint test appears suitable for 

daily routine tests of usual propellers. The soft 

aluminum test is suitable for making standard com- 

parative tests at different research laboratories 

as well as for different types of propellers and 

for situations where critical erosion predicitions 

are required. 

It is valuable to make a comparison of these 

test methods using the same foil section. After 

testing several kinds of paint, a marking paint 

"AOTAC" was found to be the best. Figure 23 (b) 

shows appearances of the painted surface after 5 

min. test. They can be compared with the theory 

and the soft aluminum erosion test results shown 

in the same figure. The cavitation number of 

maximum erosion intensity is slightly different 

between the paint test and theory. But the general 

tendency agrees well and the paint test seems very 

useful especially for a comparative testing. 

The position of maximum erosion intensity esti- 

mated from the paint test also agrees well with 

the chordwise distribution of MDD shown in Figure 

10. 

6. AIR INJECTION SYSTEM 

Tiny air bubbles in the free stream reduce the 

erosion intensity by the action of their damping 

effect as mentioned in Section 4. To achieve a 

positive damping effect an air injection system 
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with air bubbles injected from holes on the foil 

surface is sometimes adopted. This system has 

been used very effectively to prevent erosion on 

the inner surface of a full-scale ducted propeller 

(Ooo p Okamoto et al. (1975) and Narita et al. 

(1977) ]. However the mechanism of prevention is 

not yet fully explained, and the best injection 

position and/or the necessary amount of air injection 

have not been clarified. 

The authors made the air inject test using NACA 

16021 foil sections with three air injection holes 

of 0.5mm dia. drilled at 10% or 37.5% chord position 
(Figure 25). The tests were made at a = 4°, 

V = 41.9m/s, and o = 0.438. The previous test 

showed that the peak MDDR value falls somewhere 

between 40 ~ 45% chord. The injection position 
of 10% chord represents the injection near the 

leading edge of the section, and that of 37.5% chord 

represents the injection which insures effective 

coverage of the eroded area. Air was then injected 

at 2, 5, and 10 cc(normal)/min. The quantity of 

air was so small that separate air bubbles were 

found even at the 10 cc/min, and consequently the 

air jet column typical at high flow rate was not 

observed. As seen in Figure 26, the injection 

from 10% chord gives better performance and even as 

small a rate of the injection as 2 cc/min results 

in drastic decrease in the erosion intensity. With 

injection the MDDR value reduced to 1/5 of non- 

injection level. Increasing air volume, the value 

of MDDR decreases but the effect seems to become 

saturated with a larger rate of air injection. 

7. CONCLUSIONS 

(1) The purpose of the present research was to 

find the mechanism of cavitation erosion and its 

scaling laws with special reference to the relation- 

ship between the appearance of cavitation and the 

erosion intensity. 

(2) Detailed observations of the cavity pattern 

were made on a two-dimensional foil section (NACA 

0015). Then erosion tests, using the same foil 

section of pure aluminum and aluminum alloy, were 

made to measure the increase of surface roughness. 

The erosion intensity was also compared with the 

observed cavity pattern and other hydrodynamic 

0.1C or 0.375C 

ERoDED REGION 
(0.45 - 0.5C) 

FIGURE 25. Location of air injection. 
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FIGURE 26. Effect of air injection on MDDR erosion 

index [NACA 16021, pure Al (H2102-2), C = 40 mn, 

a = 4 deg., V = 41.9 m/s, o = 0.438). 

factors such as cavitation number, water velocity, 

etc. 
(3) Modelling of cavitation erosion has been made 

assuming a statistical distribution of cavitation 

bubble. Using the model, a theory of erosion scaling 

was established which contains two constants given 

by the experiment. The erosion scaling of cavita- 

tion number, velocity, chord length, and material 

can be made by the theory. The theory has been 

shown to give good agreement with the authors' and 

Thiruvengadam's tests. 

(4) Another two-dimensional foil section (NACA 

16021) was also tested, but in this case the side 

wall effect was so large that the results were not 

compared with the theoretical calculations. 

(5) The paint test also was made with the same 

foil section (NACAOQ0O15). The results of paint 

test agreed with that of the aluminum erosion test 

although it gives qualitative data. 

(6) The effect of air content and air injection 

method was also investigated experimentally. The 

air injection was found to be very effective in 

preventing erosion. 
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NOMENCLATURE 

A, a : constants 

B : span 

ic : constant, chord length 

c : constant 

Cp : pressure coefficient 

d : depth 

E : energy 

Et : total energy of bubbles 

e : energy density 

1 : force 

£ : energy density distribution function 

Ish re: Vickers hardness 

Ky, Kj constants 

Ko, Ki : constants 
L : reference length (chord length) 

al : length 

MDD : mean depth of deformation 

MDDR : mean depth of deformation rate 

MDP : mean depth of penetration 

MDDR : mean depth of penetration rate 

N total number of cavity bubbles 

n distribution function of bubble number 

p pressure 

Q volumetric flow rate 

R bubble radius 

Ss area 

SR surface roughness 

T time 

Vv velocity 

a attack angle, air content 

6 thickness 

Se cavity thickness at the end 

€ energy density rate 

n probability 

A aspect ratio 

nN cavity length 

fo) density 

oO cavitation number 

Sy : yield stress 

Vv : volume 

SUBSCRIPTS 

critical 

min > minimum 

Pp plastic deformation 

Ss : sSaturate 

Vv vapor 

©0 infinity 

— : nondimensional value 
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Experimental Investigations 

of Cavitation Noise 

G6ran Bark and Willem B. van Berlekom 

The Swedish State Shipbuilding Experimental Tank, 

Goteborg, Sweden 

ABSTRACT 

The requirement of low or acceptable noise levels 

onboard ships as well as low levels of radiated 

noise for special purpose ships can cause large 

problems for the naval architect. Low noise levels 

onboard ships are required in living quarters and 

also in some working spaces. The radiated noise 

field is of concern for instance for fishing vessels 

and ships with acoustical dynamic positioning systems. 

One important source of noise in ships is cavita- 

tion and especially cavitating propellers. The 

cavitation noise can have a quite varying character. 

It may for example sound like a hiss or like sharp 

hammer blows. For the naval architect it is impor- 

tant to be able to predict and, if possible, to 

reduce undesired cavitation noise. 

In this paper some of the research and develop- 

ment work on cavitation noise at the Swedish State 

Shipbuilding Experimental Tank (SSPA) will be 

described. This work at SSPA is mainly experimental 

and two projects will be described here in detail. 

One concerns the relation between cavity dynamics 

and cavitation noise. This work was carried out 

using an oscillating hydrofoil in the No. 1 SSPA 

cavitation tunnel. The other project concerns the 

relation between types of cavitation and cavitation 

noise. Different types of cavitation were generated 

in the tunnel using axisymmetric head forms and 

hydrofoils. 

A great deal of effort has been made at SSPA to 

develop adequate methods for measuring cavitation 

noise in cavitation tunnels. A short review of 

the measuring techniques now in use is given in an 

introductory chapter. Besides the two projects 

mentioned above several other projects are, or 

have been, carried out at SSPA. 

1. REVIEW OF MEASUREMENT TECHNIQUES AT SSPA 

Measurements of cavitation noise started at SSPA 

as early as 1958. The first tests concerned cavita- 
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ting axisymmetric head forms and were carried out 

in the SSPA cavitation tunnel No. 1. The measuring 

equipment was a waterfilled box attached to one of 

the plexiglass windows of the tunnel. A hydrophone 

was lowered into this box and could thus pick up 

the noise emanating from the source (propeller etc). 

The transmission path from the noise source is 

through water, plexiglass, and water to the hydro- 

phone. The transmission loss due to the presence 

of the plexiglass window is low. The drawbacks to 

this arrangement are reflected acoustic waves and 

vibrations in the box. The problem with the 

reflected waves may partly be overcome by carefully 

calibrating, or rather comparing, results from the 

hydrophone in a free field and in the box using the 

same known noise source. Vibration problems (from 

the vibrating tunnel plating) may be cured by using 

a pair of rubber bellows between the box and the 

window (see Figure 1). 
The signal from the noise source is, however, 

still distorted as can be seen in Figure 2. This 

figure shows the noise from a cavitating propeller, 

as measured by the hydrophone in the box and a 

hydrophone near the propeller. The differences in 

the curves are striking and show that the general 

shape is seriously altered by the box. It is in 

fact almost impossible to analyse the signal in 

time-domain using the hydrophone in the box. Com- 

paring results from 1/3 octave band analysis also 

shows differences, especially as regards the 

frequency dependence. These differences are, 

however, not as striking as those for signals in 

time-domain. 

The arrangements for noise measurements at SSPA 

are at present: 

1. Flush mounted pressure tranducers on the hull 

(Figure 3) 

2. Flush mounted pressure transducers on the tunnel 

wall 

3. Hydrophones in the flow field near the propeller 

(Figure 3) 

4. Hydrophone in the water-filled box outside the 

tunnel 
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All, 2 pine, AnD, Sale, 

are pressure transducers 

Arrangement 1 is intended to be the standard 

measurement procedure at SSPA and results are easily 

compared with full scale measurements using the 

same equipment. This arrangement gives essentially 

the near field noise from the propeller. 
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into the farfield, arrangement 2 can be used. 

Arrangement 4 also gives the farfield noise, but 

has its problems, as discussed above. Arrangement 

2 has less problems with reflected acoustic waves 

and vibrations than arrangement 4. The main reason 

why arrangement 4 is still used is to compare results 

directly with older measurements. Arrangement 3 

(Figure 3) has been especially developed for explor- 

ing the influence of variation in cavitation and 

the effect on the near field noise. Other arrange- 

ments of hydrophones have also been used for special 

purposes. 

Since the main concern in the noise measurements 

is cavitation noise, the effect of flow noise due 

to the turbulent boundary is of minor importance. 

Usually the increase in noise level due to cavita- 

tion is quite substantial, as can be seen in Figure 

4, which shows a typical example for a propeller in 

non-cavitating and cavitating condition. 

2. EXPERIMENTS WITH AN OSCILLATING HYDROFOIL 

Background to Experiments with Oscillating Hydrofoil 

A typical example of the pressure signal froma 

cavitating propeller model is shown in Figure 5. 

The pressure was measured by a hydrophone near the 
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FIGURE 4. Noise measurements on propeller-model. 

(Tunnel No. 2) 
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propeller. The signal corresponds to a spectrum of 

the the type shown in Figure 4 and typically is a 

rather slow variation of pressure interrupted by 

sharp and fairly infrequent pulses. The pulses 

are presumed to be generated during the final cavity 

collapse and they provide the main contribution to 

pressure levels at high frequencies. The pulses 

are often higher than the low frequency variations, 

but because of their low repetition frequency and 

wide frequency content the spectrum levels at high 

frequencies are lower than at low frequencies. 

To understand the scaling of cavitation noise 

and how different types of cavitation noise are 

generated, and perhaps can be reduced, it is 

important to study the mechanism generating different 

types of noise. A suitable way to obtain such 

knowledge is to carry out high speed filming and 

synchronous measurement of the cavitation noise. 

The first idea was to carry out such measurements 

with a propeller model. Because of high tip speed, 

small dimensions, and the complicated geometry of 

a propeller it was decided to take the first step 

by performing such experiments with oscillating 

hydrofoils. By suitable oscillation of a hydrofoil 

it is possible to generate cavitation with approxi- 

mately the same dynamic behavior as obtained from 

a propeller operating in a wake. The experiments 

with oscillating hydrofoils were supposed to shed 

some light on the following questions that originated 

from the search for methods of prediction and 

reduction of propeller cavitation noise: 

1. Which are the characteristic properties of the 

pressure pulses from some special types of 

cavitation? 

2. Are strong pulses generated by an orderly 

collapse of the whole cavity (e.g., a sheet 

cavity) or do they originate from large or 

small parts that separate from the main cavity? 

What is the geometry before and during collapse 

of cavities generating strong pulses? 

3. How is the pressure pulse related to the size 

of the cavity? Is there, for example, any 

relation between the maximum extension of a 

sheet cavity and the final pressure pulse? 

4. Is rebound of cavities important for generation 

of sharp pulses? 

5. What part of the cavitation period is of main 

importance for the generation of different 

types of noise (slow pressure variations, sharp 

pulses, etc.)? 

6. Which are the characteristic properties of the 

Blade frequency period 
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FIGURE 5. Pressure signal from a cavitating 

10 propeller model. 

flow field, oscillation frequency, etc., causing 

cavitation with violent collapse? 

7. To what extent is collapse time determined by 

the oscillation frequency of the hydrofoil? 

8. To what extent does the cavity behavior seem 

predictable by theoretical methods? How 

realistic is it to think that a sufficiently 

good scaling from model to full scale is 

obtained for the most important cavitation 

events? 

Experimental Set Up 

Cavitation Tunnel 

The tests were carried out in SSPA cavitation 

tunnel No. 1 (the samller one) equipped with test 

section No. 1 (500 x 500 mm). 

Oscillation Apparatus 

The hydrofoil was located horizontally in the test 

section and attached to an oscillation apparatus 

fixed to the test section wall (Figure 6). The 

hydrofoil was supported only at one end and forced 

to oscillate (rotate) around an axis fixed spanwise 

through the midchord point, i.e., the geometric 

angle of attack oscillated around an adjustable 

mean value, a9, (Figure 7). The axis was driven 

by a connecting rod and an adjustable crankpin. 

By setting the crankpin the oscillation angle, a, 

could be varied from 0 to 6°. With the hydrofoil 

used in these tests the oscillation frequency, foccr 

was varied from 0 to 15 Hz. The limits of water 

speed, ag, G, and f,,, were set by the strength of 

the hydrofoil and the background noise generated by 

the apparatus. One part of the background noise 

from such an apparatus is knocking in shaft bearings. 

To minimize this knocking, adjustable bearings were 

used. The motor, which was not dimensioned for this 

experiment, could deliver 16 kW at a maximum speed 

Cpe 5X0) 16/435 

The dynamic angle of attack, experienced by the 

leading edge of the hydrofoil, is composed of the 

geometric angle and of an angle caused by the motion 

of the leading edge. The angle is also affected by 

induced velocity. In the following only the geomet-— 

ric angle is considered (Figure 7). 

The system with connecting rod and crankpin 

results in an approximately sinusoidal oscillation 

of the geometric angle of attack. This manner of 
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Hydrofoil 

Hydrophone strut 

FIGURE 6. Experimental set up. 

oscillation does not cause a time variation of the 

angle of attack that is completely similar to that 

of a propeller blade in a wake. The reason for 

using this sytem was that, due to its strength, 

high oscillation frequencies with large hydrofoils 

could be obtained. If similarity with propellers 

is most important it is probably better to use 

oscillation systems of the types constructed by 

Ito (1962) and Tanibayashi and Chiba (1977). 

Hydrofoil 

In these introductory experiments an existing hydro- 

foil, earlier used for studies in two-dimensional 

flow, was used. The profile has NACA 16 thickness- 

distribution and is typical of a relatively thick 

propeller blade at about 0.7 of propeller radius. 

The hydrofoil data are 

Mean line a = 0.8 

Camber ratio = fy/c = 0.0144 

Thickness ratio = s/c = 0.0681 

Chord length = c = 120 mm 

Span = 200 mm 

Profile shown in Figure 7. 

Noise Measuring Equipment 

Two hydrophones (Briiel and Kjaer Type 8103 with 

frequency response 0.1 Hz - 140 kHz +2 dB) were 

placed in notches in a tube supported by two hydro- 

foils in such a way that photographing of cavitation 

was permitted (Figure 6). The frequency response 

of the hydrophones mounted in this manner was 

checked by white noise. No significant change in 

the frequency response was detected. 

The hydrophone signals were recorded on FM- 

channels on a Honeywell 5600-C tape-recorder (0-40 

kHz at 60 ips tape speed). Recordings were also 

made on direct channels (300 Hz - 300 kHz at 60 ips). 

It was then possible to write out the complete signal 

(0-40 kHz) by use of tape speed reduction and UV- 

recorder. 

Simultaneous with the hydrophone signals, a FIGURE 7. 

signal showing the events of maximum angle of attack 

was also recorded. 

High-Speed Film Equipment 

The requirements set up for the filming were that 

the film had to be synchronous with the noise 

recordings and permit measurements of cavity size 

as a function of time. The intention was not to 

measure the detailed behavior of small or very fast 

events. The minimum duration of the filming was 

set to about one second. 

These requirements were met by a Stalex VS 1C 

camera capable of 3,000 frames/s. This is a 16 mm 

rotating prism camera taking rolls of 30 m film. 

Lenses with focus lengths of 9.8 and 50 mm were 

used. For synchronization the camera could release 

a flash at a preset time. The flash trigging 

signal was recorded on tape together with hydrophone 

signals and the flash was placed within the frame. 

Only one flash was released during each filming. 

The camera was also equipped with a crystal-controlled 

timée-marker, making one light marking every milli- 

second on the edge of the film. This, together 

with the synchronization flash, made it possible 

to identify and follow cavitation behavior on the 

film together with the corresponding pressure 

Geometric angle of attack = QA~A +A sin 2T t fosc 

Oscillating hydrofoil. 



behavior recorded on tape. An example of the 

recorded signals is shown in Figure 8. 

As light sources, two 1,000 Watt spotlights were 

used. To get a proper background without reflections 

the hydrofoil was painted with a red matte paint. 

A test was performed with black and white film 

(Kodak 2479 RAR Film). The result was not very 

good, the contrast between hydrofoil and cavitation 

being too small. Color film (Kodak Vide News Film) 

was then used, with very good results. 

Evaluation of Films and Pressure Signals 

The pressure pulse generated by a cavity is related 

to the volume acceleration of the cavity and thus 

it is desirable to measure the cavity volume as a 

function of time. With complex cavities this is 

not very simple. An estimate of the cavity volume 

could be obtained if both cavity extent (area) and 

thickness were filmed synchronously. This is 

possible by the use of optical systems reflecting 

the two pictures into the same frame [Lehman (1966) ]. 

No such attempts were made. Most photographs were 

taken in order to measure the cavity area on the 

suction side of the hydrofoil. To obtain information 

about the cavity thickness some photographs were, 

however, taken from the free end of the hydrofoil. 

A method of estimating the relative thickness, 

synchronous with the cavity area, was to measure 

the length of a cavity shadow generated by the 

directed light. The method, which was calibrated 

by use of spherical bubbles, was rather rough, but 

some general information of thickness behavior was 

obtained. 

The photographs were studied by use of an analysis 

projector permitting single-frame projection on a 

focusing screen, where the area of the cavities 

could be measured by summing up elements in a 

pattern. For identification of cavitation events 

on the films and noise recordings the synchronization 

flash was the primary starting point. To increase 

the accuracy of identification of events far from 

the flash easily identifiable events, such as 

single bubble collapses, were used as reference 

points. 

Experiments 

The experiments with an oscillating hydrofoil 

presented in this paper are the first of this kind 

carried out at SSPA and they are to be regarded as 

introductory in several respects. 

Only one hydrofoil was used. The following 

flow parameters were held constant during the tests: 

Relative gas content (at atmospheric pressure) 

of the tunnel water was 25% 

Water velocity in test section = U = 5.0 m/s 

Cavitation number at the center of test section 

ey), = 12 
Bag oe TT. eee ys 

1 5 w 
where 2 

Po = surrounding pressure = 11.850 Pa 

Py vapor pressure of water (20°C) = 2.338 Pa 

po = density of water = 998 kg/m? 
The following oscillation parameters were varied 

in the experiments (see Figure 7): 

ag = mean angle of attack of the hydrofoil 
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& = oscillation angle 

1 eye = oscillation frequency 

In the figures the reduced frequency k, is used: 

TE c 
wo _ osc 

where 

WwW = 2M eos 

c = chord length of the hydrofoil 

U = water velocity 

After some introductory tests the following con- 

ditions of hydrofoil oscillation were selected from 

high-speed filming: 
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Results 

Primary results are presented as pressure signals 

from cavitating and non-cavitating hydrofoils, 

measurements of cavity area, and sketches of the 

cavitation pattern at various oscillation parameters. 

Presentation of Results 

In Figures 9 - 14 a survey of pressure signals 

and cavitation patterns at various oscillation 

conditions is shown. All pressure signals shown 

in these and other figures are from the hydrophone 

(Hl) near the leading edge of the hydrofoil. For 

each condition some oscillation periods are shown. 

The length, Toso = 1/fosc, Of an oscillation period 

is identified by the markings of maximum angle of 

attack, Omax- The figures show primarily cavitating 

conditions (cavitation number = 0.76) but in some 

cases signals from the corresponding non-cavitating 

condition is sketched (without the fine structure, 

which is apparatus noise). The pressure scale is 

given as a number of Pascal (Pa) per scale unit 

(su) defined at the top of the figures. The time 

scale is 6.15 ms/scale unit in all signal examples 

in Figures 9-13. For one of the oscillation periods 

the number of the oscillation period (relative to 

the synchronization flash) is shown in a circle, 

and for this period some additional data is given 

to the right. In the cavitation sketches are shown 

the maximum area extent, the maximum chordwise 

cavity length, &max, and the cavitation extent at 
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FIGURE 10. 

(approximately) that moment when maximum pressure 

is generated. For rapidly collapsing cavities the 

cavitation patterns shown existed 1/3-2/3 milli- 

seconds before the sharp pressure pulse. A note 

is also made as to whether or not the maximum 

pressure increase coincided with the final collapse 

(i.e., the complete disappearance of the cavity). 

The collapse velocity during the last stage is 

indicated by arrows: 

> = slow motion of the cavity boundary in 

the direction of the arrow 

>> = fast motion of the cavity boundary in the 

direction of the arrow 

>>> = very fast motion of the cavity boundary 

in the direction of the arrow 

At collapses with more or less spherical symmetry, 

arrows are placed opposite each other. 

To the right is shown the cavity growth time, Tg: 

and the collapse time, T,, for the complete cavity, 

measured by use of the time markings on the high- 

speed film. The’collapse time is measured from the 

time of maximum area extent to that time when the 

cavity generated the maximum positive pressure. For 

rapidly collapsing cavities this event coincides 

with complete disappearance of the cavity. This 

was not the case for slowly collapsing cavities; 
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for these cavities the collapse times for complete 

disappearance are also given (in parenthesis). 

General 

The general character of noise and cavitation be- 

havior when the frequency of oscillation is varied 

is shown in Figures 9-14. The pressure signals 

from the cavitating hydrofoil are to be compared 

with signals from the non-cavitating hydrofoil 

(Figure 15) and with the curve in Figure 16, showing 

the schematic behavior of the pressure generated by 

a growing and collapsing cavity. 

In comparisons of generated pressure from non- 

cavitating and cavitating hydrofoils the most 

striking difference is often the high and sharp 

pulses generated at the cavity collapse. The 

generation of such pulses is obtained especially 

when fog, exceeds a certain value. Also the pressure 

increase corresponding to cavity growth and the 

pressure dip generated near maximum cavity extent 

are detectable. 

The generated pressure pulses were classified 

into three main types: 
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e Slow pressure increase at cavity collapse 

(normally obtained at fog, = 1-3 Hz) 

e Fast pressure increase (fosc = 4-7 Hz) 

e Very fast pressure increase, i-.e., sharp 

pulses (fos¢ = 7-15 Hz) 

Generation of High Frequency Noise 

Sharp pulses (i.e., high frequency noise) were 

generated in three main ways: 

A. By violent collapse of the main cavity (or 

a large part of it). 

B. By collapse of small spherical bubbles 

occurring independently of the main cavity. 

The bubbles generated rather strong pulses. 

Cc. By collapse of rather small irregular cavities 

separating continuously from the main cavity. 

Of greatest interest is the generation process 

A, which was obtained at high fo,,- The high and 

sharp pulses were generated in three somewhat 

different ways: 

Al. Separation of a rather large part of the 

main cavity at an early stage of the 

collapse. Thick cavity formations often 

separated in this way, especially if the 

cavity was long (large %may) and broken up 

by disturbances. At the end the collapse 

was often very violent and often followed 

by a violent rebound. Also the rebounded 

cavities (complex in form) cometimes 

Pressure signals 
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FIGURE 11. Oscillating hydrofoil. Pressure signals and cavitation. 

collapsed violently. An example of this 

behaviour is shown in Figure 13 for fog, = 

7 Hz (oscillation period 5). 

A2. Sharp pulses were also generated when a 

sheet collapsed towards the leading edge. 

The upstream cavity boundary was attached 

to the leading edge during the whole collapse. 

This process was normal at the conditions 

shown in Figures 11 and 12 and especially 

in cases where the main cavity was rather 

small. In these cases the whole collapse 

was orderly and without extensive separa- 

tions of cavity parts from the main sheet. 

After the collapse was completed a rebound 

of small cavities occurred about 10 mm 

downstream from the leading edge and not at 

the center of collapse as in the case of 

more symmetrical collapses. Also in cases 

where large cavities separated from the 

main cavity the remaining, rather smooth 

sheet often collapsed in this way (Figure 

10, 10 and 14 Hz, Figure 13, 7 and 10 Hz). 

A3. In cases where the smooth sheet attached 

to the leading edge was long and narrow it 

was also cut off from the leading edge. For 

the downstream part, the collapse then be- 

came more symmetric and violent and with 

a violent rebound (Figure 11, 10 Hz and 

Figure 13, 7 Hz). This process often 

occurred near the end of collapse. 

Spherical bubbles were very effective as genera- 

eo cs nn 

50 

(71) 

0.48 

Collapse oman nl 
3) 

max p at final coll max p at final coll, |max p before final coll! 9 

max p at final coll 



Pressure signals 

L111 1 4 50 scale units (su) 

156 Pa/su presse 
——cav. Starts 

131 Pa/su 

131 Pa/su 

FIGURE 12. 

tors of high frequency noise. This is discussed 

later in the text together with cavity area measure- 

ments. 

The generation of high frequency noise by small 

irregular cavities, continuously separating from 

the main cavity is the only generation process when 

fosc = 0. Also at low fos, (about 1-2 Hz) this 

process generated pulses. The separation of small 

cavities from the main cavity decreased with 

increasing fosc- 
When the high frequency noise was obtained it was 

always generated during the last part of collapse 

of the generating cavity (i.e., a bubble could col- 

lapse and generate high frequency noise during the 

growth of the main cavity). This is not surprising, 

but it should be mentioned that at studies of pro- 

peller cavitation it has been noticed that the growth 

of cavities in some cases also generates rather fast 

pressure variations which indicates that high volume 

acceleration can also occur during growth. 

Generation of Low Frequency Noise 

The generation of low frequency noise (vibration 

generating pressure disturbances at multiples of 

propeller blade frequency) can be identified by 

inspection of signals from non-cavitating conditions, 
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cavitating conditions, and the schematic pressure 

behavior shown in Figure 16. This is especially 

easy in cases where cavitation start is marked 

(Figure 9, 3 Hz, Figure 10, 7 Hz, Figure 11, 3 Hz, 

Figure 12, 7 Hz, Figure 13, 3 Hz) or where a non- 

cavitating period is followed by a cavitating one. 

In several cases it can be seen that a rather slow 

pressure increase is generated during the growth. 

When the volume acceleration is directed inwards, 

during a period around the maximum cavity volume, 

negative pressure is generated (for example Figure 9, 

3 Hz). This pressure variation is rather slow and is 

an essential part of the low frequency disturbance. 

Because of inertia effects in the motion of cavity 

walls this part of the motion will probably never 

contribute to really high frequencies. 

In most of the figures it can be seen that con- 

tribution to the low frequency pressure is also 

obtained from the collapse. Especially at low foc. 

the collapse seems important. The pressure increase 

during collapse is due to the outward-directed 

volume acceleration existing during the final part 

of collapse. This acceleration depends on the 

cavity geometry and the velocity of the cavity walls 

and it is in principle possible to obtain a collapse 

with constant volume velocity (no pressure generation), 

as well as a collapse with decreasing volume velocity, 

in which case a pressure increase is generated. It 

is supposed that both types of collapse can occur 
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FIGURE 13. Oscillating hydrofoil. Pressure signals and cavitation. Ce 4° @ = 5°. 

on propellers, depending on cavity geometry and medium-high frequencies from a propeller 

time variation of the surrounding pressure. (5-20 x blade frequency). The pressure 

The contribution from collapse obviously exists fluctuation seems related to the dynamics 

(see Figure 9, 1 and 2 Hz) but the quantitative of the main cavity, which at this stage was 

results especially at fo,, = 3-7 Hz must be used quite orderly. 

with much prudence, because of the resonant character 3. During the last part of collapse very sharp 

of the signal in these conditions. This is discussed pulses with durations less than 0.1 milli- 

in the Appendix. second were generated. At this scale of 

time, measurements and detailed observations 

of cavity behavior were not possible. Some 

Area Measurements of Some Cavities observations indicated, however, that the 

sharp pulses sometimes were generated by a 

For the condition a9 = a = 3° and rage = la ee rather well-ordered collapse. Figure 17 

some results from measurements of cavity area are shows an example of this behavior. The 
shown in Figures 17-23. The main cavity includes cavity was in this case attached to the 
the sheet and some small bubbles at the downstream leading edge during the whole collapse. 

edge, which follow the behavior of the sheet. 4. More complex cases are shown in Figures 18, 

Although the cavities in this condition were rather 

simple, with no large separations from the sheet, 

quite complex events often occurred during the 

last 1/2 millisecond of the collapse. 

Some comments on the figures will be made: 

1. From the shape of the area curves it can be 

seen that the growth of cavities was rather 

similar in all cases, while there are 

differences in the collapses. Compare, for 

example, Figures 17 and 20. 

2. It is seen that 1-2 milliseconds before 

final collapse a slow or moderately fast 

pressure increase was obtained. During this 

time collapse is fast, but measurable. This 

pressure fluctuation corresponds to low or 

21, 22, and 23. Several pulses were generated 

during a short time and it is impossible to 

separate the generating events (collapses 

and rebounds of several small cavities). 

Typical of these oscillation periods is 

that when the downstream cavity wall moves 

towards the leading edge, the cavity separates. 

into two parts, both attached to the leading 

edge. This separation was caused by a growing 

disturbance on the cavity surface. The 

disturbance grew from the downstream edge 

towards the leading edge. (See also Figure 

11). During the collapse some bubbles also 

separated from the downstream cavity edge 

and the disturbed area. These three cavity 
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groups seldom collapsed exactly simultaneously 

or with the same violence. For example, in 

the cases shown in Figures 18 and 21 a part 

of the cavities was cut off from the leading 

edge during the last millisecond of the 

collapse. This resulted in violent collapse 

of the cut-off parts. 

From these examples it is understood that 

in a single oscillation period the character 

of the pressure signal is very sensitive to 

such things as simultaneousness and violence 

of separate cavitation events. Over many 

periods, normally used in measurements, the 

quantities are smoothed out to a mean value, 

which often is less sensitive to small dis- 

turbances. 

5. In some cases small bubbles and irregular 

parts separated from the main cavity and 

collapsed rather fast. In the case shown 

in Figure 22 a group of small bubbles behind 

the main cavity (cavity B) collapsed violently, 

simultaneously with the main cavity, and it 

is impossible to determine which of the 

cavities generated the main pulse. Examples 

of cavities that seemed rather fast, but 

only generated small pulses are shown in 

Figure 18 (B) and 19 (C). 

6. The most extensive rebounds resulted from 

cavities that were cut off from the leading 

edge and then collapsed fairly symmetrically. 

The cut-off normally occurred during the 

last one or two milliseconds and it often 

resulted in two cavities, one of which 

remained attached to the leading edge. The 
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FIGURE 17. Cavity area and generated pres-— 

sure. Oscillation period -1l. 

Cavity area (cm?) 

70 

60 p 131 Pa/scale unit 

Cavity area (cm?) p ‘131 Pa/scale unit ag=3° 

50 a=? 

r fosc=15 Hz 

Ir 50 scale units 

mh hava, [ | 
[ on ty at 

ant a a a a 

L 0 5 10 15 20 25 30 35 

L t (milliseconds) 

20 

10 | 

| 
| 

i | 
0 L 
0 5 10 15 20 25 30 

50 scale units 

t (milliseconds) 

FIGURE 19. 

sure. Oscillation period 6. 

Cavity area and generated pres- 

30 

35 40 45 
t (milliseconds) 

FIGURE 18. Cavity area and gen- 

35 40 erated pressure. Oscillation 

t (milliseconds) period 4. 

Cavity area (cm?) p 131 Pa/scale unit Gp = 3° 

507 a=3° 
L fosc= 15 Hz 

50 scale units 

I leg 

30+ be +1 J SSS SS SS eee) 

0 5 10 15 20 25 30 

t (milliseconds) 

25 30 
t (milliseconds) 



Cavity area (cm?) dp =3° 
° 

50, p 131 Pa/scale unit @=3 
f fosc=15 Hz 

40+ 50 scale units 

30 

a frie] 
10 15 20 25 30 

20 — ees = {VTMIUUER GHEE 

Bmax =/22 mm | | 

a 

| | 

A | 

25 30 
t (milliseconds) 

Cavity area (cm?) 

707 

t P 

483 

FIGURE 20. Cavity area and generated pres- 

sure. Oscillation period 7. 
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FIGURE 23. Cavity area and generated pres- 

sure. Oscillation period 14. 

rebounded cavity (often a group of small 

cavities) collapsed after three to four 

milliseconds. Compared with the main cavity 

the area of the rebounded cavity was small 

(Figure 18 cavity C, Figure 22 cavity C and 

Figure 23 cavity B). The rebounded cavity 

often generated pulses of nearly the same 

height as the main cavity. 

7. The equipment was not designed to measure 

small and fast collapsing cavities such as 

small bubbles, but an example.of a diameter 

measurement of a bubble is shown in Figure 

24. The area (1a2/4) of the same cavity is 

plotted in Figure 19 (cavity A), where the 

sharp collapse pulses are also visible. 

Other examples of bubble collapses are shown 

in Figure 17 (time = t = 5 ms), 18 (t = 10), 

20 (t = 0, cavity A), and 23 (t = 0). Bubble 

collapses are also shown in Figures 9-13. 
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FIGURE 24. Diameter of a spherical cavity. 
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The bubbles studied appeared just before or 

during the growth of the main cavity and the 

pressure pulses were then easy to identify. 

The bubbles normally rebounded once or twice. 

From the size of the bubbles and the generated 

pressure it is obvious that the bubbles are 

very effective as sources of high frequency 

noise. During the first life cycle, the 

bubble surface was smooth, but in the rebound 

cycles it became rough as reported by other 

authors. 

Dimensionless Presentation of Some Results 

The pressure generation at collapse is related 

to the violence of the collapse and it is then 

natural to study the collapse time, Te, for cavities 

generating different types of pressure pulses. Tc, 

given in Figures 9-13, is measured for the complete 

cavity, but in several cases it is only a separted 

part of the cavity that generates the main pressure 

pulse. Because of this simplification T. is probably 

not significant for the generated pressure in all 

cases. The intention was, however, to study the 

relevance of parameters for the complete cavity. 

In Figure 25 dif (its + Tg), (Ty = growth time), 

is plotted for the cavities shown in Figures 9-13. 

As seen the steepness of the curves tends to 

stabilize at a lower value for foo, resulting in 

sharp pulses. The growth and collapse are, however, 

not generally related to each other and Figure 25 

may thus give a distorted picture of T_-behaviour. 

In an effort to remove this drawback Wea also 

was plotted, where Ti is a hypothetical collapse 

time given by the formula for spherical cavities 

(Rayleigh 1917): 
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FIGURE 25. Normalized collapse time. 

where 

Pg = surrounding pressure 

Py = vapor pressure 

U = undisturbed velocity 

pe = density of water 

Oo = cavitation number 

Of course this formula at best gives a time 

proportional to the collapse time of the sheet with 

maximum length, 2£m3y- As is shown in Figure 26 

the tendency is simlar to that in Figure 25. The 

conclusion is that at high f the collapse is 

mainly regulated by a surrounding pressure consider- 

ably higher than the pressure inside the cavity, 

which results in T./Tc' = constant and a violent 

collapse of the type predicted by classical theory 

[Rayleigh (1917)]. At low f5,, it can be supposed 
that during collapse the pressures outside and 

inside the cavity are approximately equal. Then a 

violent collapse will not occur and T./T,' becomes 

considerably larger than for a "free" collapse. 

If the cavity is considered as a monopole source 

the generated pressure, p, in the far field is 

d2v(t - =) 
P= G 2 (1) 

4tr at2 

where 

V = cavity volume 

r = distance between cavity and hydrophone 

c¢ = velocity of sound 

t = time 

Applying this and classical theory of cavity 

collapse it can be shown [Ross (1976) ] that the 
generated maximum pressure, Pmax, at certain con- 

ditions is given by 

max 
p = const 
max 
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where 

Rnax = the maximum radius of a spherical cavity 

AP = Po - Py 

Py = surrounding pressure 

Py = vapour pressure 

According to this 

" fs, AP 
P Y/ "max (2) 

would be an appropriate coefficient to study for 

different cavities in our case. 

+ : : 
Pp = maximum pressure increase at collapse 

oe = maximum chord-wise extension of the sheet 

cavity (for bubbles 25, = diameter) 

The parameters are: 

The distance r is measured individually for 

every collapse. 

1 DB MPSS OU G 2 Op) ma 

Inherent in the coefficient above is an assumption 

about the collapse dynamics and, as the dynamics 

are dependent on cavity type, there is no universal 

value for the coefficient (2). For our purpose 

the coefficient may be seen as a measure of the 

pressure generation efficiency of different types 

of cavities. For spherical cavities this coefficient 

was used by Harrison (1952) and Blake et al. (1977). 

Another treatment which leads to a dimensionless 

pressure coefficient is to suppose that a constant 

part of the potential energy available for collapse 

is radiated as noise [Levkovskii (1968)]. The 
dimensionless parameter derived from this assumption 

is 

6.0r 
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FIGURE 26. Normalized collapse time. 
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fy pe 93 
y por ‘ce max eh max? (5) 

p = density of water 

c = velocity of sound From the films it was observed that the cavity 

Other symbols as above thickness seemed proportional to the length rather 

Here it is necessary to know a time At propor- than to the square root of the cavity area and the 

tional to the duration of the pressure pulse. following coefficient was obtained in cases where 

With the use of At some information about the the area was measured. 

real collapse dynamics is introduced and therefore 

coefficient (3) may be somewhat more universal than ‘i 

(2). Note, however, that for the original use of Pit Te max p 

(3) similarity in cavitation was assumed. teal 

Of interest for future work is to what extent 3.0 a a a 

the final pressure behavior can be described by a Fi a t 

measured cavity data. In this case it is more NSB bubbles 

natural to think of methods to estimate a2v/at? in @ 6 3 

(1). It is then necessary to know V(t) or to assume Oo 5 bs 

a relation between a*v/at? and measured parameters, 7 slow pressure increase 

nh llapse time and vity size In thi 2.0 7 fast pressuresrincrease 
SSS ao. P A ea yo i a s : A very fast pressure increase 
paper only the cavity area A(t) is presented. As 

a first approximation it will be assumed that V(t) 

is proportional to a3/2 ox (see. From the measure- 

ments of A(t) attempts were made to estimate a*v/at? 

by difference ratios in the conventional manners. (&) 

This failed, due to uncertainty in A(t) during the 10- extreme 

final collapse. Then as a very rough assumption 

Vv 
GAY ~ 
=~ = const —* (4) 

at? an 
Cc 0 SSE 

0.0 05 1.0 Reduced freq. 1.5 

was tested. 

This is true only at very special circumstances. 

The assumption was, however, used and from (1) and 

(4) the following dimensionless pressure coefficient FIGURE 29. Pressure p- at collapse. Different 

is obtained conditions. 

(ft 

0 5 10 15 foge (Hz) 20 
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+r [Pa:m] reached the low value region (Figure 26). There 

is considerable scatter in generation efficiency. 

It must, however, be remembered that the plot is 

based on single cavitation events probably not 

always typical, the results must only be seen as a 

first hint of tendencies. The coefficient (3) gave 
tooo} + = a t aoratry results rather similar to those from (2) but with 

somewhat smaller dispersion. In Figure 29 it can 

be seen that with coefficient (5) the dispersion 

of the points was considerably decreased. 

In Figures 30-32 results from Figures 17-23 are 

plotted. Only the dimensionless coefficients (2) 

and (6) are shown and it is seen that both attain 

approximately the same values for similar pulses, 

but neither of them brings the values of oscillation 

periods 6 and 7 into agreement with the others. 
100 | (tees a Le The other coefficients give similar results. Also 

if the coefficients are based on values of area, 
| time, etc. closer to the final collapse, the scatter 

is not decreased drastically. The conclusion of 
| ical Iai this is that, in the prediction of noise by theory 

0 10 20 30 40 50 60 7, or model tests, good similarity in certain cavitation 
Maximum cavity area(em’) events is important, and that these important events 

are not generally described by such simple parameters 
as To and Vpax- 

Because it was not possible to estimate d2v/at2 
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Ee c max BA max max” (6) with six variable para- 

In Figures 27, 28, and 29 results are shown for meters ] 

the different conditions shown in Figures 9-13. were closely matched to nearly the whole collapse. 
ptr is shown in Figure 27 only to provide a reference The pressures then calculated by use of these 
for the other parameters. functions agreed fairly well with measured values 

Figure 28 shows that the generation efficiency in many cases. These simple computations also 
increased strongly at a certain fogc~ (or reduced demonstrated how sensitive the generated pressure 

frequency). The increase normally coincided with often was to the final behavior of V(t) and it was 
generation of very sharp pressure pulses and at easy to realize that parameters of the types dis- 

these f5,, the relative collapse time had also cussed above can only be "universal" if they are 

applied to fairly similar cavitation events. 
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3. SUMMARY AND CONCLUSIONS FROM EXPERIMENTS WITH 

AN OSCILLATING HYDROFOIL 

1. The generation of sharp pulses was dependent 

of the oscillation frequency. At low 

frequencies no high and sharp pulses were 

generated and above a certain frequency very 

high pulses were generated. 

2. The sharpest and highest pulses were generated 

by cavities which separated from the main 

cavity and underwent a rather symmetrical 

and orderly collapse. Detailed studies 

showed, however, that a series of pulses was 

often generated, indicating that the collapse 

was not always simple at the very end. 

3. Very high pulses could also be generated by 

cavities that were attached to the leading 

edge during the whole collapse. 

4. The highest pressure generation efficiency 

was observed for spherical bubbles, which 

despite their smallness generated rather 

strong pulses. 

5. The sharp pulses were generated during the 

very last part of the collapse. 

6. Rebound of cavities was an important process 

for generation of sharp pulses. The most 

violent rebounds were obtained for separated 

cavities. 

7. Low frequency noise was generated during the 

growth, near the time of maximum cavity 

extent and during the rather late stage of 

collapse. Because of a disturbing resonance 

the importance of collapse was, however, 

difficult to determine. 

The basis of existing scaling laws for cavitation 

noise is mainly [see for example Levkovskii (1968) 

and Baiter (1974)]: 

1. Ideas from theory and experiment concerning 

the dynamics and radiation properties of a 

single cavity. 

2. Ideas concerning statistical properties of 

the pulse-generating events. 

The dynamics and radiation depend on cavity 

geometry, cavity size, and the surrounding pressure. 

Scaling laws based on simple theory deal with model 

scale and magnitude of surrounding pressure, while 

similarity has to be assumed in cavitation behavior. 

It has to be accepted that complete similarity 

in cavitation behavior will not occur, but if it is 

known which events in the cavitation process are 

crucial for generation of important pulses this 

will provide an indication of to what extent 

similarity is necessary for proper application of 

scaling laws. 

Of course these introductory experiments cannot 

supply the final and complete answer, but the results 

indicate that one of the most important factors is 

that the separation of a cavity into parts is 

correctly scaled, the reason being that these 

separations are often the starting points for violent 

collapses. 

this often begins at an early stage of the collapse, 

or is even initiated by disturbances during the 

growth of the main cavity. 

Parameters that determine tendencies to separation 

of cavities have only been studied to a limited 

extent, but it is clear that the combination of a 

long (chord-wise) cavity and high reduced frequency 

causes extensive separation of large parts from the 

main sheet. From the plots of collapse times and 

pressure generation efficiency, DeC/ AP ene: as 

Especially when large parts are separated, 

functions of reduced frequency it can be concluded 

that within special regions it is important that 

the time variations of the surrounding pressure be 

properly scaled. Such a scaling may be critical 

for the onset of separation of large cavity parts 

from the main cavity. 

4. NOISE FROM DIFFERENT CAVITATION SOURCES 

Introduction 

In order to gain more information concerning the 

noise emitted from a cavitating source, tests with 

four axisymmetric head forms and two hydrofoils 

have been carried out in SSPA cavitation tunnel No. 

1. The aim of these tests was to obtain well-defined 

and unambiguous types of cavitation, as bubble, 

sheet, and vortex cavitation. Comparisons of the 

noise levels from these different types of cavitation 

were made, as well as some investigations of the 

effect of free-stream velocity and gas content. 

The results reported here will only concern effects 

of the type of cavitation. 

Test Set-Up 

The tests were carried out in SSPA cavitation tunnel 

No. 1 test section, 0.5 m x 0.5 m. The noise was 

measured using arrangement 4 (hydrophone in water- 

filled box), see also Figure 1. In some of the 

later tests a flush-mounted hydrophone in the 

tunnel wall (arrangement 2) was used as well as a 

hydrophone in the flow field. Signals from the 

hydrophone(s) were registered by a tape recorder, 

but also directly analysed by a 1/3 octave band 

analyser and a narrow-band analyser. Main results 

given here are from the 1/3 octave band analysis. 

Tests were carried out for a water speed 9 m/s, 

but with some additional tests at 7.5 m/s and 11 

m/s. The gas content of the water at the tests 

was 10% and 40%, with some additional tests at 

higher gas content. 

Test Set-Up 

The first series of tests was carried out with 

axisymmetric head forms. The reason for this 

choice was that cavitation patterns for these bodies 

were well-known and well-defined from rather exten- 

sive tests [Johnsson (1972)]. The head forms used 

are given below, see also Figure 33. 

Head form Shape Cavitation Type of 
SSPA iden- of nose number for cavita- 

tification contour cav inception tion 

U1A hemispherical 0.67 sheet 

N39 flatt+elliptic 3:1 0.4 bubble 

N3 flat+elliptic 6:1 0.42 sheet 

N10 flattelliptic 4:1 0.43 sheet 

The head forms were attached to a cylinder and 

a faired afterbody, which were suspended from the 

tunnel roof via a thin wing. The main difficulty 

at the tests was the low cavitation numbers needed. 

At cavitation numbers below 0.4 fairly extensive 

cavitation occurred at the wing-tunnel roof junction 

and at other imperfections along the tunnel walls. 

This cavitation caused rather excessive background 
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noise and made noise measurements almost impossible 

at low cavitation numbers. There is also some 

question whether such background noise from undesired 

cavitation was obtained at higher cavitation numbers 

than o = 0.4, when cavitation numbers are increased. 

With regard to these findings the results given 

here are limited to cavitation numbers o > 0.6 and 

only for decreasing pressure. 

In Figure No. 34 1/3 octave band noise spectra 

for cavitation numbers o = 1 and o = 0.6 are given. 

At o = 1.0 no visual cavitation was obtained and 

the noise levels are almost the same as for the 

empty tunnel (at the same velocity and cavitation 

number). At o = 0.6 the cavitation is well developed 

for the hemispherical nose, for the other head forms 

no cavitation can be visually observed. There are, 

however, rather large differences in noise spectra 

for the three "non-cavitating" head forms. Thus 

head forms N3 and N1O have noise levels 10 to 20 

dB above N39, for which the noise level is equal 

to non-cavitating or empty tunnel conditions. These 

differences cannot be attributed to unwanted cavita- 

tion on the wing or tunnel walls. In that case the 

noise levels for head form N39 should also have 

increased. The conclusion is thus that head forms 

N3 and N1O have audible but not visible cavitation. 

From the tests with axisymmetric head forms it 

can be concluded that the cavitation numbers will 

be low, which implies that effects of unwanted 

cavitation will increase background noise levels 

and violate results for the cavitating head forms. 

Tests with Hydrofoils 

In order to obtain cavitation at higher cavitation 

numbers tests with two wings have been carried out. 

Using wings, vortex cavitation can also be obtained. 

The problem is here rather to obtain other types of 

cavitation without getting vortex cavitation. 
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One of the wings tested has cambered sections 

and elliptical planform, and the other has symmetric 

sections and trapezoidal planform, see Figure 35. 

Wing Angle Cavitation Type of 

(SSPA ident- of number for cavitation 
ification) attack, a cav inception 

Elliptic, =e =2 sheet 

cambered 

(16-12.12) the De) vortex 

LW22 3 vortex 

Trapezoidal, 

symm rounded (0) 0.5 bubble 

tip (K7 Vbl1*) Bo SL 5) vortex 

Trapezoidal 

symm with 

end plate Sse =1.2 sheet 

(K7 Vp3*) 

(*The wing K7 was tested with rounded tip, Vbl, 

and a small end plate, Vp3, see also Figure 35). 

For the comparison of noise emitted from different 

types of cavitation it is important that these 

comparisons be made at the same cavitation number. 

One inherent difficulty is that pure bubble cavita- 

tion seems to be possible to obtain only at rather 

low cavitation numbers compared with the other 

cavitation types. 
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FIGURE 34. Axisymmetric head forms, cavitation noise 

(1/3 octave band). (Free stream velocity 9 m/s, 

gas content 10%.) 
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Wing 16-12.12 

Elliptic , cambered 

Wing K7 

Trapezoidal , symmetric 

Tip shape: 

Rounded K7 Vb1 

S—— 

End plate K7 Vp 3 

FIGURE 35. Wings. 

Results from the tests are given here for five 

cavitation numbers, o = 3, 2.5, 2, 1.5, andl. 

The free stream velocity was 9 m/s and the gas 

content ratio was 10%. Results are given as faired 

curves for the noise levels from 1/3 octave band 

analysis. 

For cavitation number o = 3 (Figure 36) only 

the cambered wing 16-12.12 at a = 172° cavitates 

with vortex cavitation. Noise levels for the wings 

with no cavitation are of the same order as for the 

empty tunnel. The vortex cavitation at a = 172° 

gives an increase in noise levels of 15 to 20 dB 

compared with non-cavitating conditions. 

At o = 2.5 the wing 16-12.12 has vortex cavita- 

tion at a = 2° and a = 172°, Figure 36. It is of 

interest to note that the vortex cavitation at 

a = 2° is not attached to the wing tip but starts 

behind the wing. This vortex can only be obtained 

when the pressure in the tunnel is increased 

(increasing cavitation number). The increase in 

noise level due to vortex cavitation here is also 

15 to 20 GB. 

For the cavitation number o = 2 the wing 16-12. 

12 has vortex cavitation at a = 172°, intermittent 

vortex cavitation at a = 2° and sheet cavitation 

at a = -2°. The vortex cavitation gives an increase 

in noise level of the order of 15 dB. The sheet 

cavitation at a = -2° increases the noise levels 

at higher frequencies (f > 5 kHz), 10 to 15 dB 

above the level for vortex cavitation, see Figure 

Bike 

At o = 1.5 it can be noted that in some cases 

no pure types of cavitation can be obtained. Thus, 

wing 16-12.12 gives sheet cavitation at a = -2°, 

vortex cavitation at a = 2° and vortex and bubble 

Cavitation at a = 172°. Results in Figure 37 show 

the largest increase of noise levels for sheet 

cavitation. Note also the differences between 
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decreasing and increasing cavitation number for 

a = 172°. For decreasing 0 small cavitation bubbles 

are obtained, which increase the noise level about 

15 dB compared with increasing o. 

From the results at cavitation number o = 1.0 

(see Figure 38) it is obvious that bubble cavitation 

gives the largest increase in noise levels from 

25 dB at low frequency (500 Hz) to 55 dB at high 

frequency (40 kHz). Sheet cavitation gives less 

increase but depends on the intensity of the cavita- 

tion. Thus for wing 16-12.12, a = -2°, the sheet 

cavitation is extensive and gives an increase from 

20 dB at low frequencies to 50 dB at high frequencies 

compared with non-cavitating condition. For wing 

K7 Vp3 the sheet cavitation is concentrated at the 

leading edge and an increase in noise level is only 

obtained for higher frequencies (> 2 kHz) and the 

increase at 40 kHz is of the order of 25 dB. The 

differences in noise level for wing K7 Vbl for 

increasing and decreasing cavitation numbers can be 

attributed to differences in cavitation patterns. 

No pure vortex cavitation could be obtained at 

cavitation number o = 1.0. 

Conclusions from Tests with Head Forms and Hydrofoils 

Tests with head forms are less suited as rather low 

cavitation numbers are needed. This may cause 

problems with high background levels due to undesired 

cavitation on tunnel walls etc. Tests with hydrofoils 

can be used to obtain effects on noise levels from 

different types of cavitation. There may, however, 

be some problems in obtaining pure cavitation types. 

Vortex cavitation gives an increase in noise 

level of about 20 dB. It should be noted that 

differences in vortex cavitation can be obtained 

for increasing and decreasing pressure, which also 

show as differences in noise level. Also a vortex 

not attached to the wing causes increases in noise 

level. The increase in noise level due to vortex 

cavitation seems to be less for lower cavitation 

numbers. 

Sheet cavitation gives substantially higher 

levels than vortex cavitation. The extent of the 

sheet has some influence on the noise level. For 

a fairly large sheet increases in noise level of 

20 dB at 500 Hz to 50 dB at 40 kHz are obtained. 

For a small, leading edge sheet the increases in 
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160 Bubble and vortex 

cav. (16 -12.12 ,a=172°) 

150 

Sheet cav 
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al Sheet cav.(K7 Vp 3 a=5) 
Vortex and sheet cav. 

increasing O. 

NOP (K7 Vb1 a=5) 

No cavitation 
1 
ge f (kHz) 0.5 2 5 10 40 

FIGURE 38. Wings, cavitation noise (1/3 octave band). 

(Free stream velocity 9 m/s, gas content 10%.) 
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noise level are obtained for higher frequencies 

(£ > 2 kHz) and for 40 kHz the increase is 25 dB. 

Bubble cavitation gives the largest increases 

in noise level. Levels are for this case 5 to 10 

dB above the levels for sheet cavitation. 
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APPENDIX 

LOW OSCILLATION FREQUENCIES MAINLY GENERATING 

RATHER SLOW PRESSURE PULSES 

The following observations were typical for fy, = 

1-3 Hz and ag = 3°, & = 4° (Figure 9) but most of 

the results are also valid for other angle conditions: 

1. The maximum pressure increase is generated 

before the sheet cavity has disappeared 

completely. At the moment of maximum pressure 

increase the collapse Slowed significantly 

and the rest of the collapse was very slow. 

Due to hysteresis the total collapse time 

was sometimes longer than the growth time, 

T.. Typical for the collapse from maximum 

extent to maximum pressure was Way (ls + Tg) 

> 0.4. The sheet cavities were attached to 

the leading edge during the whole collapse 

and only small parts were separated from the 

downstream cavity edge. 

Already during growth a large part of the 

cavity is disturbed and consists of one part 

with a smooth surface and one with thick 

irregular cavity formations. From this total 

connected cavity, small parts were separated 

both during growth and collapse. Only a few 

of these parts collapsed violently, which is 

also confirmed by the pressure signals which 

do not contain many sharp pulses during 

growth and first part of collapse. 

At very low f,., (1-2 Hz) these contin- 

uously occurring collapses of small cavities 

were, however, the only source of high- 

frequency noise. At these conditions also 

most sharp pulses were obtained in the 

hydrophone (H2) near the trailing edge. 

3 AG Eose = 2 and! 4) Hz the pressure ancrease 

often ends with a sharp pulse. The pulse 

was, however, not caused by an orderly and 

violent collapse of the main cavity, but 

instead by small cavities that separated 

from the main cavity and then collapsed 

separately. It was also observed that these 

rather violent collapses of small cavities 

mainly occurred during the time when the 

pressure was high owing to main cavity col- 

lapse. 

On a more expanded time scale it can also 

be seen that the sharp pulse is superimposed 

on a slower pressure increase. If not very 

clear, this tendency is still detectable in 

the 7 Hz-condition in Figure 14. This figure 

shows the pulse (oscillation period 6) in 

the 7 Hz-condition shown in Figure 10, but 

with the time axis expanded 40 times. 

4. The cavitation sketches in Figures 9-13 show 

that for f,., $ 4 Hz the cavitation extent 

was approximately independent of fosc, but 
that at higher fog, the cavity did not develop 

to the full size. One reason for this may 

be that the time variation of the dynamic 

angle of attack is altered with OSG 

5. Characteristic of low fosc is also the fact 

that collapsing cavities show little tendency 

to rebound. Rebound is only obtained in 
small bubbles. 

to 

HIGH OSCILLATION FREQUENCIES MAINLY GENERATING 

SHARP PRESSURE PULSES 

Below some observations are reported regarding the 

conditions ag = 3°, @ = 4° and £,,, = 10 and 14 

Hz (Figure 10). Many of the results are also valid 

for other similar conditions. Typical observations 

are: 

1. The sharp pulses are often much higher than 

slow pressure variations. 

2. The duration of the final part of the sharp 

pulses seems (as long as can be determined 

in the recording) independent of fosc (Figure 
14). For the earlier parts of the cavitation 

period the dependency on ERS is more complex 

due to different cavity sizes etc. 

3. For this condition (ag = 3°, &@ = 4°) the 

complete change of cavity dynamics and 

pressure generation occurred between fog, = 

7 and 10 Hz (Figure 14). At 7 Hz the cavity 

mainly collapsed towards the leading edge. 

At 10 Hz a large part consisting of thick 

formations separated and performed a violent 

collapse at the middle of the hydrofoil (B 

in Figure 14). This collapse occurred about 

1.4 milliseconds later than the collapse of 

those two parts (A) of the sheet that were 

attached to the leading edge during the 

whole collapse. Also these two parts col- 

lapsed rather violently, but a small pulse 

was generated. The thick separated cavity 

(B) consisted of several parts that did not 

collapse exactly simultaneously and, thus, 

a series of collapse and rebound pulses was 

generated. A significant rebound was only 

obtained from the separated cavity. The 

group of rebounded cavities collapsed rather 

slowly, resulting in a small pulse about 

3.5 milliseconds after the collapse of the 

separated cavity (B'). In some oscillation 

periods the separated cavities and those 

attached to the leading edge collapsed almost 

simultaneously and it also happened that 

high pulses were generated at the collapse 

of rebounded cavities. 

4. The cavitation behaviour at fy., = 14 Hz is 

approximately similar to that at 10 Hz 

(Figures 10 and 14). The thick formation 

(C) separated and collapsed at a later stage. 

The first pulse (Figure 14) was generated 

by the outer cavity (A) attached to the 

leading edge. About 1.4 milliseconds later 

the other cavity (B) attached to the leading 

edge collapsed. This cavity was complex 

and generated a series of pulses. First 

about 3.5 milliseconds after the first pulse 

the thick formation (C) collapsed, generating 

a sharp pulse. No violent collapses were 

experienced by rebounded cavities in this 

case. The overall impression from these 

two conditions with fog, = 10 and 14 Hz is 

that normally the separated thick cavities 

generated the highest pulses, but that in 

some cases pulses of almost equal height 

were generated by cavities attached to the 

leading edge. 
Another behavior of the signal from the cavitating 

hydrofoil is a low frequency variation (about 23 Hz) 

that seems rather independent of f,,,- Sequences 



containing cavitating as well as non-cavitating 

periods indicate that the fluctuations were generated 

by cavitation (Figure 10, 7 Hz, Figure 11 and 12). 

Inspection of the films shows, however, that no 

cavitation is visible on the hydrofoil or about 

0.5 chord-lengths downstream it (Figure 9, 11, 3 Hz). 
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Here the most probable cause is that the cavitation 

started resonance vibrations in some structure. 

These vibrations probably cause disturbing errors 

in the pressure signal at some f,,,, mainly in the 

region 3-7 Hz, and quantitative results from such 

conditions must be used with care. 
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ABSTRACT 

Theoretical and experimental correlation of visual 

and accoustical effects of cavitation are considered. 

The Froude similarity is treated critically because 

of the pressure effects on the coefficient of cavity 

energy transformation into cavitation noise as well 

as because of the increase of noise absorption or 

cavitation resistance of water. Though in large 

cavitation tunnels which have no free surface the 

nonstationary boundary conditions can be reproduced 

less perfectly, their capability of simulation 

at full-scale pressure is regarded as the leading 

factor. It is suggested that extrapolation formulae 

should take into account the effect of the rate of 

pressure increase (or pressure gradient) in the 

cavity collapse area. This corresponds to an 

increase in the square of acoustic pressure on the 

model, compared to the prototype, inversely pro- 

portional to the linear scale of modelling. 

1. COMPARISON OF VISUAL AND ACOUSTIC EFFECTS OF 

CAVITATION 

The occurrence of strong visual and noise effects 

of cavitation are usually considered to be coinci- 

dent. When this coincidence is actually the case, 

it provides certain conveniences. The measurement 

of noisiness makes it possible to detect cavitation 

on structural elements not easily accessible for 

inspection. Visual observation of cavitation on 

models is used for the prediction of noisiness of 

various prototypes. However, the experiments 

involving visual and acoustical recording of 

cavitation indicate that there may be a considerable 

discrepancy between these two manifestations of 

cavitation. It is interesting to discover the 

nature and the cause of the discrepancy by means 

of a mathematical model of an elementary cavitation 

process which is described by the well-known 

differential equation of a single spherical cavity 
growth 
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Here R and R, are the cavity radius and its initial 

value, respectively; p and py are the variable 

component and the initial value of ambient pressure; 

Par ©, Y, and v are vapor pressure, density, and 

the surface tension and kinematic tension coefficient, 

respectively. 

Computations were made by equation (1) for the 

negative pressure pulse 

1-1 t 
INE) SES! 7 ee (2) 

which is characterized by the time scale, T, and 

the amplitude, Pm: Such a pulse represents the 

region of negative pressure having the length, L, 

on the profile with the maximum negative pressure 

coefficient, Coms in the flow with velocity, U: 

2 it 
pus is) T 

Linearization of Eq. (1) with respect to 6 = z2-z 

for the small-amplitude oscillation frequency gives 

(3) 

According to (3), oscillatory properties of the 

cavity disappear at pp = 1 ata when Ry < 10-© m. 

Bearing in mind that the natural period is limited 

by the pulse duration, T, computations were made 

for 

Po = 10" kg/m?; R, = 107°+1073 m; ~ = 1073410-1m; 

V = 10+20 m/s; Cc =o 
pm 



The following value is taken as a measure of the 

accoustical effect of an elementary cavitation 

process to an accuracy of the potential energy 

transformation coefficient for the maximally expanded 

cavity: 23 5/43 

G_ = 10 Log a (4) 
R? 
n 

Here, Rn is the threshold value of the cavity radius 

which, for the sake of convenience and without 

limiting the generality of conclusions, is taken as 

10-6 m. For large Rp/Ro values this measure differs 

only slightly from a simpler measure used in Figure 1 

Vy as 5 Gh 302g (5) 

The threshold of the visual observation of cavita- 

tion is taken as Re = 1073 m, which coincides with 

the upper limit to the size of the cavitation nuclei 

under study. For the chosen measure of acoustic 

effect this threshold corresponds to 90 dB. Since 

the resolution of vision is limited by angular 

dimension, the measure of the visual effect where 

the distance to the object of observation remains 

constant is the first order, linear dimension of 

the cavity. Hence, when the origins coincide 

al 
Giese 
B 3.7 @) 

and the processes below the level of G, = 90 dB are 

out of visual observation. 

Thus, leaving out of account the actual signal- 

noise ratios, the acoustical recording makes it 

possible to penetrate much deeper (by 2-3 orders) 

into the "microcavitation" region. 

Worthy of notice is the qualitative similarity 

of the curves shown in Figure 1 to the experimental 

curves of cavitation noise increase against velocity 

which are given below, as well as by Sturman's data 

(1974). It is evident that at an early cavitation 

p= 4°) 

FIGURE 1. Calculated comparison of visual and acous- 

tical effects of elementary cavitation process in a 

limited region of negative pressure. 
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stage the predicted levels drop by 20 dB with the 

velocity decreasing 10-fold. This stage is usually 

regarded as free of cavitation. 

With the increase of velocity there comes a stage 

which is sometimes referred to as "true" cavitation 

and in which the most intensive growth of cavities 

and cavitation noise is observed. This stage corre- 

sponds to a decrease and loss of static equilibrium 

of the cavity. 

At the third stage the intensive cavity growth 

ceases and asymptotic saturation of the acoustic 

effect occurs due to the fact that the size of the 

cavity is nearing that of the zone of negative 

pressure. The asymptotic values of saturation shown 

in Figure 1 correspond to the rough estimation 

L 
Gre = 15 +15 Hee + 302g a (6) 

n 

As to the relationship between visual and noise 

manifestations of cavitation, Figure 1 allows one 

to assert that: 

- at sufficiently high levels of ambient noise 

the acoustic detection of cavitation may coincide 

with the visual detection or takes place even later; 

- potentially, at a fairly low level of the 

ambient noise, the acoustic manifestation of cavita- 

tion must be detected much earlier than the visual 

one. 

In particular, the acoustic effect of cavitation 

can be rather strong (e.g., an increase of noisiness 

by several dozens of decibels) in the case of "micro- 

scopic" cavitation invisible to the eye. 

The indicated values are largely conditional as 

the threshold of visual detection may differ under 

different conditions. Nevertheless they are close 

to those obtained under laboratory conditions. 

It is of interest that Figure 1 reveals such a 

contradictory phenomenon as vagueness in respect 

to cavitation inception. At high levels the curves 

for various nuclei coincide, so for a more correct 

determination of cavitation inception one should try 

to reduce rather than to increase the accuracy of 

recording methods. The increase of accuracy, as is 

shown in Figure 1, brings about increasing ambiguity 

of cavitation inception and expansion of the vague- 

ness region to cover an increasing range of veloci- 

ties. However, as the accuracy decreases, more and 

more small zones of cavitation inception are left 

out of control. 

The above analysis simplifies the actual processes 

and can be at variance with them mainly due to the 

fact that the coefficient of cavity potential energy 

transformation into acoustic energy is not constant 

being a complex function of many parameters [Benia- 

minovich et al. (1975)]. Specifically it may have 

a much greater value for small cavities as compared 

to larger cavities. 

2. EXPERIMENTAL STUDY ON MODELS 

There is an urgent need for an effective and well- 

founded classification of a great variety of forms 

and types of cavitation which substantially differ 

in the mechanism of nonstationarity giving rise 

to noise and having other practical consequences 

of cavitation. 

The following brief list of the forms and types 

of cavitation represents a more or less established 

practice with respect to marine propellers [Goncharov 

et all. (1977) ])- 



496 

——-— - bubble cavity 

- sheet cavity 

Uniform flow 

FIGURE 2. Development of noise and visual manifesta- 

tion of cavitation at constant pressure vs. velocity, 

in- reference to the conditions of cavitation noise 

detection. 

According to the location of cavitation zones: 

- vortex cavitation (in the cores of tip and 

axial vortices), 

- leading edge cavitation (on the suction side 

and pressure side at the leading edge), 

- blade-profile cavitation (in the region of 

large blade thicknesses) . 

—-—-— - bubble cavity 

- sheet cavity 

Nonuniform flow 

FIGURE 3. Development of noise and visual manifesta- 

tion of cavitation at constant pressure vs. velocity, 

in reference to the conditions of cavitation noise 

detection. 

- root cavitation (at the blade roots). 

According to cavity pattern: 

- bubble cavitation (with cavities moving with 

the flow through negative or increased pressure 

zones), 

- sheet cavitation (with cavities which on the 

average are motionless in relation to the propeller). 

By steadiness (uniformity) of the incoming flow: 

- steady cavitation (noise and other effects 

result from the inner unsteadiness of the cavity 

which is steady on the average), 

- unsteady cavitation (noise and other effects 

result from the cavity pulsations at an almost 

regular frequency, the phenomenon of cavitation 

buffeting), 

- cavitation in an unsteady flow (noise and other 

effects here again result from the pulsations as 

well as from the probable disappearance of cavities 

with the frequency of flow condition change). 

It seems extremely difficult to provide a com- 

parative description of noisiness for about three 

dozen cavitation types characterized only by the 

above-mentioned features. Some guidance is given 

by the experimental data presented in Figures 2 to 

Bs 

In steady-state conditions the bubble cavitation 

types are the most noisy (Figure 2). Among cavita- 

tion zones of different locations, vortex cavitation 

types are the least noisy (Figure 3), whereas 

pressure-side, leading-edge cavitation types are 

the most noisy (Figure 4). 

In an unsteady (non-uniform) flow the relation 

between the noisiness of sheet cavitation and that 

of the bubble type is different (Figure 5). 

The higher noisiness of the pressure-side leading- 

edge cavitation is accounted for by the rapid 

increase of pressure behind the suction zone (high 

gradient), which is typical of these conditions. In 

case of the bubble structure of a cavity this rapid 

pressure increase is accompanied by the increase 

of acceleration during the collapse. In case of 

the sheet structure it is accompanied by the 

~o- - vortex cavitation V 

—e - leading-edge 
cavitation 

FIGURE 4. Development of noise and visual manifesta- 

tion of vortex and leading-edge cavitation appearing 

in succession in a uniform flow at constant pressure. 



- cavity on the v 
pressure-side of 
the leading edge 

—o 

—eo - cavity en the 
suction-side of 
the leading edge 

FIGURE 5. Development of noise and visual manifesta- 

tion of cavitation on both pressure- and suction-side 

in a uniform flow at constant pressure. 

unsteadiness of even small size cavities due to 

closure behind the maximum suction zone. 

The change in the relative noise intensity of 

sheet and bubble cavities depends upon the fact 

that in the case of the bubble cavity structure the 

unsteadiness varies but slightly, whereas the volume 

of sheet cavities begins to severly pulsate. Passing 

over to the unsteady flow, we may even observe the 

reduction of bubble cavitation noise. This occurs 

when one portion of the propeller gets free from 

the cavity whereas, on the other portion thereof, 

the intensive development of cavitation is not 

accompanied by an increase of noise due to a satura- 

tion effect. 

Individual points on the graphs shown in Figures 

2 to 5 indicate moments of the first visual detection 

of cavitation. As is seen, in a large cavitation 

tunnel where the measurements were made, the above 

conclusion that the noise comes ahead of the visual 

detection of cavitation is to a variable degree 

valid for any type of cavitation. 

3. MODEL-PROTOTYPE CORRELATION AND COMPARISON OF 

MODEL-TEST RESULTS WITH FULL-SCALE DATA 

It is usually assumed [Levkovsky (1968) and 

Sturman (1974)] that the fraction of the cavity 

potential energy converted into cavitation noise 

(coefficient of transformation) is the same for 

the model and the full scale ship. Experience con- 

firms the validity of the conflicting conclusions 

[Beniaminovich et al. (1975)] that are indirectly 

confirmed in some works. The coefficient of cavity 

energy transformation into noise proves to be 

strongly dependent on the absolute pressure, Po- 

It is this fact, that was used by Beniaminovich 

et al. (1975) for explaining the reduction of the 

transformation coefficient by several orders with 
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a decrease of pressure, Por from 1 to 0.4 ata. ie 

is also emphasized that at sufficiently low Pp, the 

collapse of cavities is not necessarily accompanied 

by shock wave generation. 

Vacuum noise measurements, when performed in 

ship hydrodynamics laboratories engaged in cavitation 

research, show inadmissible noise absorption in 

the facility water unless measures are taken to 

insure additional removal of gaseous nuclei of cavi- 

tation from the water. By intensified water degassing 

the absorption may be reduced to an acceptable level, 

but the resulting growth of cavitation resistance 

of water leads to a drastic change of conditions 

for inception and development of cavitation [Gorsh- 

kof£ and Lodkin (1966)]. In view of the complicated 

character of absolute pressure effects on the 

coefficient of cavity energy transformation into 

noice it appears to be good practice to perform 

cavitation noise measurements at a full-scale value 

of pressure. 

That the Froude similarity will not be fulfilled 

under these conditions, can be accepted provided 

that adequate means are available for the description 

and reproduction of the conditions of flow non- 

uniformity behind the hull. This approach, used 

in a large cavitation tunnel in combination with 

correlation methods recommended by Levkovsky (1968), 

Sturman (1974), has shown that overestimated cavita- 

tion noise levels are predicted in this case. This 

was found to arise from the fact that the coefficient 

of cavity energy transformation into noise is 

approximately proportional to the rate of pressure 

growth leading to the cavity collapse. In modelling 

by the Froude method this pressure growth rate 

decreases as VL. 

In case of large-scale modelling the comparison 

of model-test and full-scale data may not have 

revealed this discrepancy among other more pro- 

nounced ones. One can use pressure gradient instead 

of the rate of pressure variation with time. Then, 

for Froude similarity, the noise level model-to-full- 

scale extrapolator coincides with that used by Sturman 
(1974). Not so with modelling at full-scale absolute 
pressure. Here the proportionality of the transform- 
ation coefficient both to the velocity of pressure 
variation with time and to the pressure gradient in- 
volve the same extrapolator. Giving up the construc- 
tion of dimensionless parameters of which, with a 
great number of constants involved, there is ample 
freedom of choice, the extrapolator suggested by 
Sturman (1974) 

3 

A. = 2808 (7) <p*> —SS SS 

2 

can be substituted by the following: 

is the square of the acoustic pressure, 

T is the distance to the point of noise 

measurement, 

No is the number of cavities collapsing in 

unit time. 

If we assume in the regular way that the similar- 

ity of cavity patterns is observed and the noise is 

measured at similar points of the flow, then 



V w/e 

- model-test data 

coo - full-seale test data 

FIGURE 6. Comparison of noise levels extrapolated 

from model with measured full-scale data in a wide 

band of frequencies. 

and t = L. The table below shows extrapolators for 

scaling the square of the acoustic pressure during 

cavitation from model to full-size with reference 

to the assumptions of constant and variable coeffi- 

cients of cavity energy transformation into noise, 

nN, and to fit the cases of constant Froude number 

and constant absolute pressure. 

That the frequencies vary inversely in proportion 

to linear dimensions in modelling at a constant 

pressure may turn out to be a significant advantage, 

so the acoustic wave lengths change in proportion 

to linear dimensions of the model and wave inter- 

ference patterns remain unchanged. In modelling by 

the Froude method wave lengths on the model are 

© model-test and full-scale results for the wide 

frequency band 

@ model-test and full-scale results for the 1/3- 

octave noise frequency band of the model - 80 kHz 

* instant of visual detection of vortex cavitation 

on the model 

FIGURE 7. Comparison of noise levels extrapolated 

from model with measured full-scale data. 

TABLE 1. Cavitation Noise Levels Scaling 

Extrapolator 

P P 
=e ike 

nN = const L T 

Fo = const i3/2 Be72 Le 

Bs = const iL 1/L 1/L 

known to be VI, times larger than the model linear 

dimensions. 

Figure 6 shows the comparison between the model- 

test data (solid line) scaled the comparison between 

the model-test scale data (dotted line) for the 

noise level in a wide band of frequencies. Figure 

7 gives a similar comparison with another prototype. 

Curves of cavitation noise increase are also compared 

in a 1/3-octact band for the model at the frequency 

of 80 kHz. In Figure 7 the moment of visual detec-— 

tion of cavitation is marked on the general level 

curve with an asterisk. Full-scale data are given 

here for individual rates of speed. 

The scaling extrapolator (8) needs to be verified 

under full-scale conditions and is likely to be 

refined. However, the need for stability of the 

coefficient of cavity energy transformation into 

cavitation noise appears to be an indisputable 

argument for cavitation noisiness scaling with the 

full-scale pressure retained. 

CONCLUSION 

The two major conclusions can be formulated as 

follows: 

- Scaling for cavitation noise measurements with 

the full-scale pressure retained gives a high value 

coefficient of cavity energy transformation into 

noise and substantial advantages in respect to: 

a) obtaining high levels of cavitation noise; 

b) similarity of sound waves to the model. 

- Large-scale modelling with the full-scale 

pressure retained confirmed the possibility brought 

out by the analysis of an elementary cavitation 

process of acoustic detection of cavitation long 

before the cavity reaches the size that can be 

detected visually. 
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ABSTRACT 

The object of this paper is to present an account 

of recent developments in the direct formulation of 

the theories of fluid jets and fluid sheets based 

on one and two-dimensional continuum models origi- 

nating in the works of Duhem and E. and’ F. Cosserat. 

Following some preliminaries and descriptions of 

(three-dimensional) jet-like and sheet-likeé bodies, 

the rest of the paper is arranged in two parts, 

namely Part A (for fluid jets) and Part B (for fluid 

sheets), and can be read independently of each other. 

In each part, after providing the main ingredients 

of the direct model and a statement of the conserva- 

tion laws, appropriate nonlinear differential equa- 

tions are derived which include the effects of 

gravity and surface tension. Application of these 

theories to various one and two-dimensional fluid 

flow problems, including water waves, are discussed. 

1. INTRODUCTION 

Jets and sheets are a class of three-dimensional 

bodies whose boundary surfaces have special charac- 

teristic features. To this extent they are, respec- 

tively, similar to another class, namely that of 

rods and shells (or plates), although the nature of 

the specified surface (or boundary) conditions in 

the two classes may be different. Moreover, the 

kinematics of jets and rods are identical, as are 

the kinematics of sheets and shells. Indeed, it is 

only through their constitutive equations that a 

distinction appears between rods and jets on the 

one hand, and shells and sheets on the other. It 

is natural to inquire as to the possible utility of 

methods of approach in the construction of theories 

in the class of rods and shells for that of jets 

and sheets and vice versa. The main purpose of this 

paper is to call attention to the possible utility 

of a direct approach for jets and sheets, an approach 
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which has met with considerable success in the case 

of rods and shells. The direct approach for fluid 

jets is based on a one-dimensional model, called a 

Cosserat (or a directed) curve which is defined in 

Section 3; and the direct approach for fluid sheets 

is based on a two-dimensional model, called a Cos- 

serat (or a directed) surface which is defined in 

Section 5. It should be emphasized that a Cosserat 

curve and a Cosserat surface are not, respectively, 

just a one-dimensional curve and a two-dimensional 

surface; but are, in fact, endowed with some struc-— 

ture in the form of additional primitive kinematical 

vector fields. 

The concept of 'directed' or 'oriented' media 

originated in the work of Duhem (1893) and a first 

systematic development of theories of oriented media 

in one, two, and three dimensions was carried out by 

E. and F. Cosserat (1909). In their work, the Cos- 

serats represented the orientation of each point of 

their continuum by a set of mutually perpendicular 

rigid vectors. The purely kinematical aspects of 

oriented bodies characterized by ordinary displace- 

ment and the independent deformation of N deformable 

vectors in N-dimensional space has been discusssed 

by Ericksen and Truesdell (1958), who also intro- 

duced the terminology of directors. 

A complete general theory of a Cosserat surface 

with a single deformable director given by Green 

et al. (1965) was developed within the framework of 

thermomechanics; and their derivation (Green et al. 

1965) is carried out mainly from an appropriate 

energy equation, together with invariance require- 

ments under superposed rigid body motions. A re- 

lated development utilizing three directors at each 

point of the surface, in the context of a purely 

mechanical theory and with the use of a virtual work 

principle, is given by Cohen and DeSilva (1966). A 

further development of the basic theory of a Cosserat 

surface along with certain general considerations re- 

garding the construction of nonlinear constitutive 

equations for elastic shells is given by Naghdi 



(1972), which also contains additional historical 

remarks relevant to oriented continua and to the 

theory of thin elastic shells. A parallel develop- 

ment in the theory of a Cosserat curve with two 

deformable directors begins with a paper of Green 

and Laws (1966) whose derivation is carried out 

mainly from an appropriate energy equation, together 

with invariance requirements under superposed rigid 

body motions. A related theory of a directed curve 

with three deformable directors at each point of the 

curve, in the context of a purely mechanical theory 

and with the use of a virtual work principle, is 

given by Cohen (1966). A further development of 

the basic theory of a Cosserat curve along with 

certain general developments regarding the construc- 

tion of nonlinear constitutive equations for elastic 

rods is given by Green et al. (1974a,b). 

In general, two entirely different approaches may 

be adopted for the construction of one-dimensional 

and two-dimensional theories of mechanics pertain- 

ing to certain motions and (three-dimensional) media 

responses which are effectively confined, respec-— 

tively, to one-dimensional and two-dimensional re- 

gions. For example, the theory of slender rods and 

that of fluid jets are both one-dimensional theories; 

and, similarly, the theory of thin shells and that 

of fluid sheets are both two-dimensional theories 

in the context of the particular classes of three- 

dimensional bodies mentioned earlier. 

Of the two approaches just mentioned, one starts 

with the three-dimensional equations of the classi- 

cal continuum mechanics and by applying approxima- 

tion procedures strives to obtain one-dimensional 

(in the case of jets and rods) and two-dimensional 

(in the case of sheets and shells) field equations 

and constitutive equations for the medium under 

consideration. In the other approach, the particu- 

lar medium response mentioned above is modelled as 

a one-dimensional and a two-dimensional directed 

continuum, namely a Cosserat curve and a Cosserat 

surface introduced earlier; and one then proceeds 

to the development of the field equations and the 

appropriate constitutive equations. If full inform- 

ation is desired regarding the motion and deforma- 

tion of the continuum under study in the context of 

the classical three-dimensional theory, then there 

would be no need to develop a particular one- 

dimensional and a two-dimensional theory. In fact, 

the aim of one-dimensional and two-dimensional theo- 

ries of the type mentioned above is to provide only 

practical information in some sense: for example, 

in the case of fluid sheets information concerning 

quantities which can be regarded as representing 

the medium response confined to a surface or its 

neighborhood as a consequence of the (three- 

dimensional) motion of the body, or the determina- 

tion of certain weighted averages of quantities 

resulting from the (three-dimensional) motion of 

the body. A parallel remark may be made, of course, 

in the case of fluid jets. The desire for obtain- 

ing limited or partial information if the basic 

motivation for the construction of such one- 

dimensional and two-dimensional theories as those 

for slender rods and thin shells and for fluid flow 

problems of jets and sheets. 

The nature of difficulties associated with the 

development of both the shell theory and the theory 

of water waves on the one hand, and that of rods and 

jets on the other, from the full three-dimensional 

equations is well known and has been elaborated upon 
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on various occasions.* In view of these, it is rea- 
sonable to attempt to formulate one-dimensional and 
two-dimensional theories of the types described above 
by replacing the continuum characterizing the (three- 
dimensional) medium in question with an alternative 
model which would reflect the main features of the 
response of the three-dimensional medium and which 
would then permit the formulation of appropriate 
one-dimensional and two-dimensional theories by a 
direct approach and without the appeal to special 
assumptions or approximations generally employed in 
the derivation from the three-dimensional equations. 

Of course, the introduction of an alternative 

model and formulation of one-dimensional and two- 
dimensional theories by the direct approach do not 

mean that one ignores the nature of the field equa- 

tions in the three-dimensional theory. In fact, 

some of the developments of the field equations by 

direct procedures are materially aided or influenced 

by available information which can be obtained from 

the three-dimensional theory. For example, the inte- 

grated equations of motion from the three-dimensional 

equations provide guidelines for a statement of one 

and two-dimensional conservation laws in conjunction 

with the one and two-dimensional models, and also 

provide some insight into the nature of inertia terms 

and the kinetic energy in the direct formulation of 

the one-dimensional and two-dimensional theories. 

Inasmuch as most of the difficulties associated 

with the derivation of the one-dimensional and two- 

dimensional theories from the three-dimensional equa- 

tions occur in the construction of the constitutive 

equations, it is in fact here that the direct ap- 

proach offers a great deal of appeal. This construc- 

tion, as well as the entire development by the 

direct approach, is exact in the sense that they 

rest on (one-dimensional and two-dimensional) pos- 

tulates valid for nonlinear behavior of materials 

but clearly they cannot be expected to represent all 

the features that could only be predicted by the 

relevant full three-dimensional equations. Theories 

constructed via a direct approach necessarily sat- 

isfy the requirements of invariance under superposed 

rigid body motions that arise from physical consider- 

tions and, of course, they are also consistent and 

fully invariant in the mathematical sense. More- 

over, the development by the direct approach is con- 

ceptually simple and does not have the difficulties 

involving approximations usually made in the devel- 

opment of the theory of thin shells and the theory 

of water waves (or the theories of slender rods and 

jets) from their corresponding three-dimensional 

equations. 

Following some general background information 

and definitions of jet-like and sheet-like bodies 

in Section 2, the remainder of the paper is arranged 

in two parts which can be read independently of each 

other: one part (Part A) is concerned with the 

theory of fluid jets and the other (Part B) is de- 

voted to the theory of fluid sheets and its applica- 

tion to water waves. In our discussion of the 

direct formulation of these two topics, considerably 

“the nature of these difficulties with particular reference 

to shells is discussed by Naghdi (1972, Secs. 1,4,19,20,21). 

Some of the difficulties associated with both nonlinear and 

linear theories of water waves are noted by Naghdi (1974) and 

are also discussed in the first and final sections of the 

paper of Green et al. (1974c). 

tsee the remarks following Eqs. (26) and (50). 
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more space is devoted to fluid sheets and water 

waves. This is partly due to the fact that, in the 

context of the direct formulation, the theory of 

fluid sheets has to date received more attention 

than that of fluid jets. Thus, in Part A (Sections 

3-4) , we summarize the basic theory of a Cosserat 

curve and briefly discuss a restricted form of the 

theory for straight jets which are not necessarily 

circular. The resulting system of nonlinear ordi- 

nary differential equations includes the effects of 

surface tension and gravity and has been derived for 

both inviscid and viscous jets. We do not record 

these here; but we call attention in Section 4 toa 

number of existing solutions, which serve as evidence 

of the relevance and applicability of the direct 

formulation of the theory of fluid jets. 

In Part B (Sections 5-8), after briefly describ- 

ing the basic theory of a Cosserat surface in Sec- 

tion 5, we present in outline a derivation of a 

restricted theory in Section 6, and then obtain a 

system of nonlinear partial differential equations 

for the propagation of fairly long waves in a homo- 

geneous stream of variable depth (Section 7). This 

system of differential equations, which includes 

the effects of surface tension and gravity, is de- 

rived for incompressible inviscid fluids. Some ex- 

tensions of these results to nonhomogeneous and 

viscous fluids are available but these are not dis- 

cussed here. In the final section of the paper we 

make a comparison between the differential equations 

derived in Section 7 and the systems of equations 

for water waves that are often used in the litera- 

ture; and, on the basis of compelling physical con- 

siderations, argue as to why the system of equations 

of the direct formulation should in general be pre- 

ferred to others. In Section 8, we also call at- 

tention to a number of existing solutions, which 

serve as further evidence of the relevance and ap- 

plicability of the direct formulation of the theory 

of fluid sheets. 

In the course of our development, sometimes the 

same symbol is utilized in Parts A and B to denote 

different quantities; but this should not give rise 

to confusion, as the two parts can be read indepen- 

dently of each other. Throughout the paper, Latin 

indices (subscripts or superscripts) take the values 

1, 2, 3, Greek indices take the values l, 2 only, 

and the usual convention for summation over a re- 

peated index is employed. 

2. GENERAL BACKGROUND 

In this section, we provide appropriate definitions 

for jet-like and sheet-like bodies. To this end, 

consider a finite three-dimensional body, 8, ina 

Euclidean 3-space, and let convected coordinates, 

61 (i = 1, 2, 3), be assigned to each particle (or 

material point) of 8. Further, let tr* be the posi- 

tion vector, from a fixed origin, of a typical parti- 

cle of § in the present configuration at time, t. 

Then, a motion of the (three-dimensional) body is 

defined by a vector-valued function, £*, which as- 

tone use of an asterisk attached to various symbols is for 

later convenience. The corresponding symbols without the 

asterisks are reserved for different definitions or designa- 

tions to be introduced later. 

signs position, r*, to_each particle of 8 at each 

instant of time, i.e., 

fa (DE O07) (1) 

We assume that the vector function, £*,--a 1- 

parameter family of configurations with t as the 

real parameter--is sufficiently smooth in the sense 

that it is differentiable with respect to 6+ and t 

as many times as required. In some developments, 

it may be more convenient to set 93 = — and adopt 

the notation 

Fiz Wem ie gel ta oc (2) 

Ae 
CES ay 7 Gay Chi Gin gee Celera) 56 = z 

gt 0 J; = 8; " gt = g”9, E gt 6 gJ = gtJ , (3) 

L, 
dv = g*aelae7ae? (4) 

and further assume seal 

Xs 
Ga S ig _g Gill SO co (5) 

~1=2=3 

In (4), g and g are the covariant and the contra- 

variant base vectors at time, t, respectively, Si5 

is the metric tensor, gtJ is its conjugate, 6+ is 

the Kronecker symbol in 3-space and dv the volume 

element in the present configuration. 

The velocity vector, v*, of a particle of the 

three-dimensional body in the present configuration 

is defined by 

Wi Sat (6) 

where a superposed dot denotes material time dif- 

ferentiation with respect to t holding 6+ fixed. 

The stress ‘vector t across a surface in the present 

configuration with outward unit normal y* is given 

by 

(7) Vos are 4 
au ey a oct 

i] 

ico 

where 

§ F . 
Recall that when the particles of a continuum are referred 

to a convected coordinate system, the numerical values of 

the coordinates associated with each particle remain the 

same for all time. Although the use of a convected coordi- 

nate system is by no means essential, it is particularly 

suited to studies of special bodies (such as sheets, jets, 

shells, and rods) and often results in simplification of 

intermediate steps in the development of the subject. 

Wine choice of positive sign in (5) is for definiteness. 
Alternatively, for physically possible motions we only need 

to assume that g@ # 0 with the understanding that in any 

given motion [g}g293] is either > 0 or < 0. The condition 

(5) also requires that 01 be a right-handed coordinate 

system. 
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and where tik are the contravariant components of 

the symmetric stress tensor. In terms of quantities 

defined in (5)-(8), the local field equations which 

follow from the integral forms of the three- 

dimensional conservation laws for mass, linear 

momentum and moment of momentum, respectively, are 

* 1 eo a 
+ = in Os OS DSI 

x lox i 
Z o Gy T =0 (9) 

where p* is the three-dimensional mass density, £* 

is the body force field per unit mass, and a comma 

denotes partial differentiation with respect to 6?. 

A material line (not necessarily a straight line) 

in 8 can be defined by the equations, 6% = 6%(&); 
the equation resulting from (1) with 6% = e"(E) rep- 

resents the parametric form of this material line in 

the current configuration and defines a l1-parameter 

family of curves in space, each of which we assume 

to be smooth and nonintersecting. We refer to the 

space curve, 6% = 0, in the current configuration 

by c. Any point of this curve is specified by the 

position vector, xr, relative to the same fixed ori- 

gin to which r* is referred, where 

v= Z(E,t) = £ (0,0,8,t) . (10) 

Let a3 denote the tangent vector along the E-curve. 

By (10) and (3), 

@ > 
ag = a3(E,t) = DE = g3(0,0,€,t) (11) 

and the unit principal normal, a,, and the unit bi- 

normal vector, aj, to c may be introduced as 

da,/dE 
a; = a, (&,t) = |[BaaDET P 

on = (Ee) ek a 12 a2 a2 Tas] l 2 (12) 

lL, 
la3| = (a33)7 , 

Glee) Seley 2 Ele) 0 

[ajaga3] >O , (12) 

where the notation Ja3| stands for the magnitude of 

a3. The system of base vectors, aj, are oriented 

along the Serret-Frenet triad and satisfy the dif- 

ferential equations 

day ky 

Be ~ 'l@ag) Gao ke3 

dag i, 

Te | Sega) ano 

Be3 1 2233 
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where K and Tt denote, respectively, the curvature 

and the torsion of c. In the special case that c 

is a plane curve, we may choose aj as the unit 

normal to the curve and then ag will be perpendicu- 

lar to the plane of a, and a3. TEC isvarstravight 

curve, then there is no unique Serret-Frenet triad 

and a, may be chosen as any orthogonal triad with 

a1,a2 as unit vectors. Equations (13) are not 

identical to the formulas of Frenet because the pa- 

rameter, €, is not necessarily the arc length of c. 

It may be noted here that the convected coordinate, 

&, may be chosen to coincide with the arc length in 

any one configuration of the material curve, e.g., 

in the present configuration. However, in a general 

motion (involving different configurations) the arc 

length between any pair of particles changes while 

the convected coordinates of each particle must re- 

main the same. Therefore, arc length would not 

qualify as a convected coordinate. 

A material surface in 8 can be defined by the 

equation, —€ = &(6%); the equation resulting from 

(1) with € = €(6%) represents the parametric form 

of this material surface in the current configura- 

tion and defines a l-parameter family of surfaces 

in space, each of which we assume to be smooth and 

nonintersecting. We refer to the surface, € = 0. 

in the current configuration by s. Any point of 

the surface, s, is specified by the position vector, 

r, relative to the same fixed origin to which r* is 

referred, where 

BS (Ope) = BY Ore) (14) 

Let a, denote the base vectors along the 6°-curves 

on the surface, s. By (14) and (3)j, 

‘asa (0. ,t) = 
~O. 

=g (6',0,t) , (15) 
~O =a 

and the unit normal, a3 = a3(0’,t), to s may be 

defined by** 

Ey eG ee lO) hb. Crs cia le a 

Bn E  lepeeeal > Os (XE) 

In the next four paragraphs we provide appropri- 

ate definitions for jet-like and sheet-like bodies 

in fairly precise terms. 

Definition of a Jet-like Body. A Representation 

for the Motion of a Slender Jet. 

Consider a space curve c defined by the parametric 

equations, e* = 0, over a finite interval, € SESE>. 

Let r be the position vector of any point of c and 

let aj,a2 and a3 denote its unit principal normal, 

unit binormal, and the tangent vector, respectively. 

At each point of c, imagine material filaments ly- 

ing in the normal plane, i.e., the plane perpendicu- 

kk 

The use of the same symbols for base vectors of a surface 

in (15)-(16) and for the triad of a space curve in (11)-(12) 

should not give rise to confusion. The main developments 

for jets and sheets are dealt with separately in the rest 

of the paper; this permits the use of the same symbol for 

different quantities in the case of jets and sheets without 

confusion. 
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lar to a3, and forming the normal cross-section'tT, 

Qn - The surface swept out by the closed boundary 

curve, 0Q,, Of Gp is called the lateral surface. 

Such a three-dimensional body is called jet-like if 

the dimensions in the plane of the normal cross- 

section are small compared to some characteristic 

dimension, L(c), of c (see Figure 1), e.g., its 

local radius of curvature 1/K, or the length of c 

in the case of a straight curve. A jet-like body 

is said to be slender if the largest dimension of 

Q@y is much smaller than L(c). If a, is independent 

of €, the body is said to be of uniform cross- 

section, otherwise of variable cross-section. Since 

a material curve in the three-dimensional body, 8, 

can be defined by the equations, e% = e%(E), it 

follows that the equation resulting from (1) with 

e% = 9%(&) represents the parametric form of the 

material curve in the present configuration and de- 

fines a curve, c, in space at time, t, which we as- 

sume to be sufficiently smooth and nonintersecting. 

Every point of this curve has a position vector 

specified by (10). Let the (three-dimensional) jet- 

like body in some neighborhood of c be bounded by 

material surfaces, § = &), € = &9, (indicated in 

Figure 1) and a material surface of the form 

me ,O=) =O 5 (17) 

which is chosen such that & = constant are curved 

sections of the body bounded by closed curves on 

this surface with c lying on or within (17). In 

the development of a general theory, it is preferable 

to leave unspecified the choice of the relation of 

the curve, c, to one on the boundary surface (17). 

In special cases or in specific applications, how- 

ever, it is necessary to fix the relation of c to 

the surface (17). @ 

Suppose now that £* in (1) is a continuous func- 

tion of eit and has continuous space derivatives 

of order 1 and continuous time derivatives of order 

2 in the bounded region lying inside the surface (17) 

and between € = €], € = 9. Hence, to any required 

degree of approximation f£* may be represented as a 

polynomial in el, 62 with coefficients which are con- 

tinuously differentiable functions of &, t. Instead 

of considering a general representation of this kind, 

we restrict attention here to the approximation. 

ak (o} 

BE + 6 qa p (18) 

where r is defined by (10) and a = qd (6 rt) - 

Definition of a Sheet-like Body. A Representation 

for the Motion of a Thin Sheet. 

Consider a two-dimensional surface, s, defined by 

the parametric equation, & = 0, over a finite co- 

ordinate patch, a' = 6! Sa", Bg" S 62 = p".. Let ig 
and a3 denote, respectively, the position vector and 

the unit normal to s. At each point of s, imagine 

material filaments projecting normally above and 

below the surface, s. The surface formed by the 

material filaments constructed at the points of the 

closed boundary curve of s is called the lateral 

surface. Such a three-dimensional body is called 

tt , A é : 
The normal cross-section of a jet is a portion of the 

normal plane to the curve, c, i.e., the intersection of the 

body and the normal plane. 

FIGURE 1. A jet-like body in the present configuration 

showing the line of centroids with position vector r 

and the end normal cross-sections & = &;, § = &. Also 

shown are the unit principal normal aj), the unit binor- 

mal az and the tangent vector a3 to the curve with po- 

sition vector r. 

a sheet if the dimension of the body along the nor- 

mals, called the height and denoted by h, is small. 

A sheet is said to be thin if its thickness is much 

smaller than a certain characteristic length, L(s), 

of the surface, s, for example, the local minimum 

radius of curvature of the surface, or the smallest 

dimension of s in the case of a plane sheet. If h 

is constant, the sheet is said to be of uniform — 

thickness, otherwise of variable thickness. Since 

a material surface in the three-dimensional body can 

be defined by the equation, — = &(6%), it follows 
that the equations resulting from (1) and (2) with 

— = £(6%) represent the parametric forms of the 

material surface in the present and the reference 

configurations, respectively. In particular, the 

equation, € = 0, defines a surface in space at time, 

e 
~ 

FIGURE 2. Sketch of the cross-section (y = const.) of 

a sheet of vertical thickness $ showing a wave motion 

propagating over a bottom of variable depth. Also shown 

is the surface 6? = 0 (with position vector r and height 

Y) chosen such that the center mass of the (three- 

dimensional) fluid region lies on this surface. The top 

and bottom surfaces of height 8 and a are specified by 

93 = 1/2 ana 63 = -1/2, respectively. 



t, which we assume to be smooth and nonintersecting. 

Every point of this surface has a position vector, 

x, specified by (14). Let the boundary of the three- 

dimensional continuum be specified by the material 

surfaces 

B= ei@=ne) 9 § = Bald 0-) Ei < Em p (is) 

with the surface, & = 0, lying either on one of the 

two surfaces (19)1,2 or between them (see, for ex- 

ample, Figure 2), and a material surface 

f(0!,02) =o , (20) 

which is chosen such that € = const. forms closed 

smooth curves on the surface (20). As pointed out 

previously [Naghdi (1975)], in the development of 

a general theory, it is preferable to leave unspeci- 

fied the choice of the relation of the surface, s, 

(—§ = 0) to the major surfaces, st ands. In spe- 

cial cases of the general theory or in specific ap- 

plications, however, it is necessary to fix the 

relation of s to the surfaces (19)1,2- 
Suppose now that r in (1) is a continuous func— 

tion of 61,t, and has continuous space derivatives 

of order 1 and continuous time derivatives of order 

2 in the bounded region, &)S&S&>. Hence, to any 

required degree of approximation, oe may be repre- 

sented as a polynomial in € with coefficients which 

are continuously differentiable functions of 6%,t. 

However, instead of considering a general represent- 

ation of this kind, we restrict attention here to 

the approximation 

ce En sei (Bel (21) 

where r is defined by (14) and d = d(9%,t). 

PART A 

In Part A (Sections 3-4), we summarize the basic 

theory of a Cosserat (or a directed) curve and then 

briefly discuss a restricted form of the theory ap- 

propriate for straight fluid jets. Although we are 

concerned here mainly with the purely mechanical 

theory involving appropriate forms of the conserva- 

tion laws for mass, linear momentum, and moment of 

momentum, we also include the conservation of energy. 

The latter is useful in some applications and sup- 

plies motivation for some requirements in the de- 

velopment of certain solutions. 

3. THE BASIC THEORY OF A COSSERAT CURVE 

Having defined a (three-dimensional) jet-like body 

in Section 2, we now formally introduce a direct 

model for such a body. Thus, a Cosserat (or a 

directed) curve, R, comprises a material curve, L, 

(embedded in a Euclidean 3-space) and two deformable 

directors attached to every point of the curve, 

The directors which are not necessarily along the 

unit principal normals and the unit binormals of 

the curve have, in particular, the property that 

they remain unaltered under superposed rigid body 

motions. Let the particles of | be identified by 

means of the convected coordinate, &, and let the 
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curve occupied by | in the present configuration of 

R at time, t, be referred to as 2. Let r and dy 
(a = 1,2) denote the position vector of a typical 

point of & and the directors at the same point, 

respectively, and also designate the tangent vector 

to the curve, &, by a3. Then, a motion of the Cos- 

serat curve is defined by vector-valued functions 

which assign a position, r, and a pair of directors, 

dy to each particle of R at each instant of time, 

i.e. 

xr = valle) , cL SCL) 9 MGC ea) = © (22) 

and the condition (22)3 ensures that the directors, 

dy, are nowhere tangent to % and that d),d2 never 

Change their relative orientation with respect to 

each other and a3. The velocity and the director 

velocities are defined by 

He 7m ee (23) 

and from (23), and (11) we have 

ay =a 4 (24) 

where a superposed dot denotes material time dif- 

ferentiation with respect to t holding € fixed. 

Consider an arbitrary part of the material curve, 

L, in the present configuration, bounded by & = &j 
and 1G )= 75 (EG seo) jandy let 

1. 
ds = (a33)*d& , a33 = a3 ° a3 (25) 

be the element of the arc length along the curve, 

&. It is convenient at this point to define the 
following additional quantities: The mass density, 

p = p(&,t), of the space curve, %; the contact 

force, n = n(&,t), and the contact director couples 
is = p"(—,t), each a three-dimensional vector field 

in the present configuration; the assigned force, 

£ = £(€,t), and the assigned director couples, 

ga = g%(£,t), each a three-dimensional vector field 
and each per unit mass of the curve, 2; the intrin- 

sic (curve) director couples, 1% = mt (Epe) o per unit 

length of & which make no contribution to the supply 

of momentum; the inertia coefficients, y® = y%(&) 

and yB = y%8(z), with y°8 being components of a 
symmetric tensor, which are indenpendent of time; 

the specific internal energy, €« = €(§,t); the spe- 

cific heat supply, r = r(&,t), per unit time; and 

the heat flux, h = h(&,t), along 2, in the direction 

of increasing §, per unit time. The assigned field, 

£, represents the combined effect of (i) the stress 

vector on the lateral surface (17) of the jet-like 

body denoted by f,, and (ii) an integrated contri- 

bution arising from the three-dimensional body force 

denoted by fp, e.g., that due to gravity. A parallel 

statement holds for the assigned fields, ge Sim- 

ilarly, the assigned heat supply, r, represents the 

combined effect of (i) heat supply entering the 

5 Spor convenience, we adopt the notation for r in (10) and 

(18) also for the surface (22);. This permits an easy iden- 

tification of the two curves, if desired. The choice of 

positive sign in (22)3 is for definiteness. Alternatively, 

it will suffice to assume that [d)d a3] # O with the under- 
standing that in any given motion the scalar triple product 

[djdja3] is either > 0 or < 0. 
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lateral surface (17) of the jet-like body from the 

surrounding environment, denoted by r,, and (ii) an 

integrated contribution arising from the three- 

dimensional heat supply denoted by rp. Thus, we may 

write 

1 OLs es) sO ett Olam ny i ry= tat COU (26) 

The various quantities in (26) are free to be spec- 

ified in a manner which depends on the particular 

application in mind and, in the context of the the- 

ory of a Cosserat curve, the intertia coefficients, 

yo, yo8 and the mass density, 9, require constitu- 

tive equations. Indeed, fo, 22 and r,, as well as 

fb, &£% and Xp, Can be identified with the corre- 

sponding expressions in a derivation from the three- 

dimensional equations [see, for example, Green et 

al. (1974a)]. Likewise, the inertia coefficients, 

yo, yos , and the mass density, p, may be identified 

with easily accessible results from the three- 

dimensional theory. 

With the above definitions of the various field 

quantities and with reference to the present con- 

figuration, the conservation laws for a Cosserat 

curve are: 

a iy) * - 
dt p as = ’ fe A 
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zs f p(x +£-v+ fa w)ds 
€1 = y = ~OL 

ls Onypsde By ie) py (27) 

where we have used the notation 

=) 
£ [ (E,t) 1, Srp) = wep) (28) 

The first of (27) is a statement of the conservation 
of mass, the second is the conservation of linear 

momentum, the third that of the director momentum, 
the fourth is the conservation of moment of momentum, 
and the fifth represents the conservation of energy. 

Under suitable continuity assumptions, the first 

four equations in (27) are equivalent to 

1 6 r) 

h = A(E) = p(a33)? or 6a33 + pag ° = =0, (29) 

an 

pe + AE =A(v + yw.) , (30) 

ap. 
WS ae SNES oes) (31) 
0€ ~ ~ ~ ~B 

om 
a3 x n+ Be @ Key SO (32) 

dh : 
Ue pe 7 er 1 =O , (33) 

where 

ia a , a 
LSS eS = it er liey Gr ’ 

(o} a aie ap 
QRS SV ES (34) 

and 

ov ow, MI fees a. @). Seley 
ALE = n DE +7 Wo +p DE (35) 

is the mechanical power. With the help of (34), the 

local form of the moment of momentum equation (31) 

can be reduced to 

ad 

ag Xn 4d" x qe 4 ie = Oy (36) u dE P 

It may be noted that the local field equations 

in the mechanical theory of a Cosserat curve have 

the same forms as those that can be derived from the 

three-dimensional equations; the latter can be de- 

rived by suitable integration of (9)],9,3 with re- 

spect to 61 and 62 and in terms of certain definitions 

for integrated mass density and resultants of stress 

[for details, see Green et al. (1974a)]. Moreover, 

given the approximation (18), there is a 1-l corre- 

spondence between the one-dimensional field equations 

that follow from the conservation laws of a Cosserat 

curve and those that can be derived from the three- 

dimensional equations provided we identify the 

director dy in (18) with (22) 9 and adopt the defini- 

tions of the resultants mentioned above. A similar 

1-1 correspondence can be shown to hold between (33) 

and an integrated energy equation derived from the 

three-dimensional energy equation. 

The above results include the local form of con- 

servation of energy derived from (27)5. For the 

purely mechanical theory in which the law of con- 

servation of energy is excluded, the appropriate 

conservation laws are the first four of (27). In 

the context of the purely mechanical theory, it is 



worth recalling that the rate of work by all contact 

and assigned forces acting on the curve, %, and its 

end points minus the rate of increase of the kinetic 

energy can be reduced to: 

E2 j 4 &2 

-w,)ds + In - wi 
a 3) 

A iq + IwD ig + OD 

where P is defined by (35). 

Before closing this section, we note that the 

restriction imposed on the motion of the medium by 

the condition of incompressibility reduces to |||| 

[see Green (1976) ] 

5, [didza3] = 0 (38) 

and can alternatively be expressed in the form 

eax Yau yaniecy k= (39) ° x ° — i= 
~B a3 We Sil a2) 0& t 

where 8 is the permutation symbol in 2-spaces. To 

complete the theory of a Cosserat curve under the 

constraint condition (39), eee assume that each of 

the functions, n, a, and p is determined to within 

an additive constraint essen ee so that 

f =f 9 7 » Sa ep pCO n=n+n , 

where fi, #%, and p% are determined by constitutive 
equations and the functions n(&,t), Tt (Ep) p and 

pa(é,t) are the response due to the constraint; the 

latter quantities are arbitrary functions of &,t and 

do no work. For an incompressible inviscid fluid 

jet, which models the properties of the three- 

dimensional inviscid fluid at constant temperature, 

we introduce the constitutive assumption that n,74, 

ig do not depend explicitly on the kinematic quan- 

tities, dv/dé, Wor W/E, and are furthermore work- 

less, i.e., 

ov ow 
a, 

110% erent WON A Se eaife) DO ae a) ge ee is (41) 

provided w., dv/d— satisfy the constraint condition 

(39). It can then be shown that [Green and Laws 

(1968) and Green (1976) ] 

p=0, (42) 

lll In. general, there are three conditions of incompressibility 
in the theory of incompressible directed fluid jets; for a 

discussion of these, see Caulk and Naghdi (1978a, Appendix) . 

In restricted forms of the theory discussed in the next sec- 

tion, two of the three conditions are satisfied identically. 

The specification (38) is motivated from an examination of 

the incompressibility condition in the three-dimensional 

theory when the position vector is approximated by (18). 
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where isya is an arbitrary scalar function of &,t. 

For an incompressible viscous jet, the constraint 

response,n, mo, po, are determined similarly with the 

use of the Constraint condition (39), but constitu- 

tive equations are required for n, ister 1p in (40). We 

do not record here the results for a viscous jet and 

refer the reader to Green (1976) and Caulk and 

Naghdi (1978b) . 

4. STRAIGHT FLUID JETS. ADDITIONAL REMARKS 

We now specialize the results of the previous sec- 

tion to straight jets of elliptical cross-section. 

In order to display some details of the kinematics 

of a straight jet, including the rotation of the 

directors in a plane normal to the jet axis, it is 

convenient to introduce a fixed system of rectangular 

Cartesian coordinates (x,y,z) with the z-axis paral- 

lel to the jet. Further, let the unit base vectors 

of Ene rectangular Cartesian axes be denoted by 

(i,j rk) and introduce, for later convenience, the 

eee lowell base vectors 

Qy = ab cos © w 3 Sain F 

ep ie San Ol ta ICOSMON my §Cae Kner, (43) 

where 8 is a smooth function of z and t. We assume 

that the directors are so restricted that they de- 

scribe an elliptical cross-section of smoothly vary- 

ing orientation along the length of the jet and that 

at each z = const., the base vectors, e] and eg, 

lie along the major and minor axes of the ellipse, 

respectively. Then, the angle, 8, called the 

sectional orientation, specifies the orientation of 

the cross-section as a function of position. With 

this background, henceforth we restrict motions of 

the directed curve, R, such that in the present con- 

figuration at time, t, 

SS] B(Eraes oo Ghee 7 ca = wen) (24) 

where $)] and ¢9 measure the semiaxes of the ellipti- 

cal cross-section. In the case of a circular jet, 

¢1 = 62. 
The complete theory also requires the specifica- 

tion of explicit values for Ary, yOB, £ and £%. In 

particular, the values for d,y%,yoB may be obtained 

by an appeal to certain results from the three- 

dimensional description of the jet. Thus, recall- 

ing (18) and the remark made following (17), here 

we choose the curve, 6% = 0, as the line of centroids 

of the jet-like body and identify this curve with 

the curve, 2, in the theory of a Cosserat curve. 

This leads to the identification 

L eh 
\ = p@aq)e = i g°ae!ae? 

a 

* 4s a 
Ay = (Ni tefl) cls) Cl) 9 yp 

a 

x 1 i 2 pF iE g*e"e"aa ao, (45) 

where p* is the three-dimensional mass density in 

(9) and the determinant g defined by (3)3 is cal- 

culated from the approximation (18). Again, with 
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the use of (18) and the equations of motion (9)2, 3, 

the expressions for f and 2% can be identified in 
terms of the integrated body force, £*, over the 

cross-sectional area, a, and specified pressure and 

surface tension over the boundary, da of a [for 

details, see, for example, Caulk and Naghdi (1978a)]. 

We observe that since y® = 0 hy (45)9, the equations 

of motion (30) and (31) assume a slightly simpler 

form. We do not record here the details of the 

system of ordinary differential equations which can 

be obtained from (29)-(33) for both inviscid and 

linear viscous fluids. They are readily available 

in the papers cited: see Green and Laws (1968), 

Green (1975, 1976, 1977), and Caulk and Naghdi 

(1978a, b). 

In the rest of this section, we briefly call 

attention to some available evidence of the relevance 

and applicability of the direct formulation of the 

fluid jets. Available solutions obtained to date 

are limited to those for straight jets and among 

these most of them deal with jets of circular cross- 

section. Some general aspects of compressible 

inviscid jets, including a discussion of ideal gas 

jets in the context of a thermodynamical theory, 

have been studied by Green (1975). Applications to 

incompressible circular jets for both inviscid and 

viscous fluids are contained in the papers of Green 

and Laws (1968) and of Green (1976). Green (1977) 

has also studied a steady motion of an incompressible 

inviscid fluid jet which does not twist along its 

axis. A more detailed analysis of the motion of a 

straight elliptical jet of an incompressible inviscid 

fluid in which the jet is allowed to twist along its 

axis is contained in a recent paper by Caulk and 

Naghdi (1978a). This study, which includes the ef- 

fects of gravity and surface tension, utilizes the 

nonlinear differential equations of Section 3 with 

r and dg at time, t, specified in the form (44). A 

number of theorems are proved in the paper of Caulk 

and Naghdi (1978a) which pertain to the motion of a 

twisted elliptical jet and some special solutions 

are obtained which illustrate the influence of twist. 

Further, a system of linear equations, derived for 

small motions superposed on uniform flow of an in- 

compressible circular jet, is employed by Caulk and 

Naghdi (1978b) to study the instability of some 

simple jet motions in the presence of surface ten- 

sion, i.e., the so-called capillary instability that 

leads to disintegration of the jet. In particular, 

they [Caulk and Naghdi (1978b)] consider the breakup 

of both inviscid and viscous jets: in the case of 

an inviscid jet excellent agreement is obtained with 

the three-dimensional results of Rayleigh (1879a,b); 

and for a viscous jet, through a comparison with 

available three-dimensional numerical results 

[Chandrasekhar (1961)], the solution obtained is 

shown to be an improvement over an existing approxi- 

mate solution of the problem by Weber (1931). A 

related study by Bogy (1978), concerning the insta- 

bility of an incompressible viscous liquid jet of 

circular section, partly overlaps with the work of 

Caulk and Naghdi (1978b) on the temporal instability 

of a viscous jet, and considers the spatial insta- 

bility of a semi-infinite jet formulated as a 

boundary-value problem. 

PART B 

In Part B (Sections 5-8), after briefly describing 

the basic theory of a Cosserat (or a directed) sur- 

face, we summarize a special case of the theory 

which is particularly suited for applications to 

problems of fluid sheets and to the propagation of 

fairly long water waves. For the sake of simplicity, 

we confine attention here to homogeneous fluids; but 

note that, as in Green and Naghdi (1977), the deriva- 

tion can be modified to allow for variation of mass 

density with depth. Although we are concerned mainly 

with the purely mechanical theory involving appropri- 

ate forms of the conservation laws for mass, linear 

momentum, and moment of momentum, we also include 

the conservation of energy. The latter easily sup- 

plies motivation for some requirements in the devel- 

opment of certain solutions. 

5. THE BASIC THEORY OF A COSSERAT SURFACE 

Having introduced the notion of a (three-dimensional) 

sheet-like body in Section 2, we now formally define 

a direct model for such a body. Thus, a Cosserat 

(or directed) surface, C, comprises a material sur- 

face, S, (embedded in a Euclidean 3-space) and a 

single deformable vector, called a director, attached 

to every point of the surface, S. The directors 

which are not necessarily along the unit normals to 

the surface have, in particular, the property that 

they remain unaltered under superposed rigid body 

motions. Let the particles of the material surface 

of C be identified by means of a system of convected 

coordinates, 0% (a = 1,2), and let the surface oc- 

cupied by S in the present configuration of C€ at 
time, t, be referred to as Jd. Let ry and d denote 

the position vector of a typical point of J and the 

director at the same point, respectively, and also 

designate the base vectors along the 6%-curves on 

Jd by ay: Then, a motion of the Cosserat surface is 

defined by vector-valued functions which assign posi- 

tion, x, and director, d, to each particle of C at 

each instant of time, imens 

r= r(0,t) , d= d(0",t) , [ajard] > 0 (46) 

and the condition (46), ensures that the director, 

d, is nowhere tangent to Jd. The base vectors, ay, 

and their reciprocals, ar the unit normal, a3, and 

the components of the metric tensors, aap and ars, 

at each point of & are defined by 

ax a a 
furs a | = | 8g SOB See Zoe 

30 

OS 2. 8 gah 
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5 
a = det at, ane [ajaja3] > O , (47) 

where 67 is the Kronecker delta in 2-space. The 

velocity and the director velocity vectors are de- 

fined by 

43) ig 
ll 

ine 2 Que 9 YS 

*For convenience, we adopt the notation for ry in (14) and 

(21) also for the surface (46),. This permits an easy 

identification of the two surfaces, if desired. The choice 

of positive sign in (46)3 is for definiteness. Alterna- 

tively, it will suffice to assume that [ajajd] # 0 with the 
understanding that in any given motion the scalar triple 

product [a,ajd] is either > 0 or < 0. 



where a superposed dot denotes differentiation with 

respect to t holding 0° fixed. 
Let P, bounded by a closed curve, 0P, be a part 

of J occupied by an arbitrary material region of 

S in the present configuration at time, t, and let 

Vow =| vie (49) 

be the outward unit normal to 3P. It is convenient 

at this point to define certain additional quantities 

as follows: The mass density, p = p(0’,t), of the 
surface, J, in the present configuration; the con- 

tact force, NES N(8Y,t;v), and the contact director 

forcel, M = M(6Y,t;v), each per unit length of a 

curve in the present configuration; the assigned 

force, £ = £(0Y,t), and the assigned director force, 

L= R(0Y,t), each per unit mass of the surface,J ; 

the intrinsic director force, m, per unit area of 

di the inertia coefficients, k = k(@Y) and k = k(6Y), 
which are independent of time; the specific internal 

energy, € = e(O8Y,t); the heat flux, h = h(6’,t;v) 

per unit time and per unit length of a curve, OP; 

the specific heat supply, r = r(6Y,t), per unit time; 

and the element of area, do, and the line element, 

ds, of the surface, J. The assigned field, £, may 

be regarded as representing the combined effect of 

(i) the stress vector on the major surfaces of the 

sheet-like body denoted by f., e.g., that due to the 

ambient pressure of the surrounding medium, and (ii) 

an integrated contribution arising from the three- 

dimensional body force denoted by fy, e.g., that due 

to gravity. A parallel statement holds for the as- 

signed field, 2. Similarly, the assigned heat sup- 

ply, r, may be regarded as representing the combined 

effect of (i) heat supply entering the major surfaces 

of the sheet-like body from the surrounding environ- 

ment, denoted by Yo, and (ii) a contribution arising 

from the three-dimensional heat supply, denoted by 

Yp- Thus, we may write 

7 Sse, ab ae A & = fl) a A ae ES Ge tb ry o (SO) 

The various quantities in (50) are free to be speci- 

fied in a manner which depends on the particular ap- 

plication in mind and, in the context of the theory 

of a Cosserat surface, the inertia coefficients, k, 

k and the mass density, p, require constitutive equa- 

tions. Indeed, forko and Yor as well as fpr ep and 

Yp, can be identified with corresponding expressions 

in a derivation from the three-dimensional equations 

[for details, see Naghdi (1972,1974)]. Likewise, p 

and the coefficients,k,k, may be identified with 

easily accessible results from the three-dimensional 

theory. 

In terms of the above definitions, the conserva- 

tion laws for a Cosserat surface can, be stated in 

fairly general forms. We do not record these here 

since they are available elsewhere [Naghdi (1972), 

p. 482) or Naghdi (1974)]. Instead, we turn our 

attention to the relatively simple theory of the 

next section. 

It may be noted that the local field equations 

in the mechanical theory of a Cosserat surface have 

+ 
The terminology of director couple is also used for M depend- 

ing on the physical dimension assumed for the director, d. 

Here we choose d to have the physical dimension of length so 

that M has the same physical dimension as N. For further 

discussion see Naghdi (1972, Ch. C) and Green and Naghdi 

(1976). 
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the same forms as those that can be derived from the 

three-dimensional field equations () 1 4) Jey Suites 

able integration between the limits, &, and €5, and 

in terms of certain definitions for integrated mass 

density and resultants of stress [for details, see 

Naghdi (1972, Sections 11-12) or Naghdi (1974)]. 

Moreover, given the approximation (21), there is a 

1-1 correspondence between the two-dimensional field 

equations that follow from the conservation laws of 

a Cosserat surface and those that can be derived from 

(9)1,2,3 provided we identify the director, d, in 

(21) with (46)9 and adopt the definitions of the re- 

sultants mentioned above. As similar 1-1 correspon- 

dence can be shown to hold between the two-dimensional 

energy equation in the theory of a Cosserat surface 

and an integrated energy equation derived from the 

three-dimensional energy equation. 

6. A RESTRICTED THEORY OF A COSSERAT SURFACE 

Special cases of the general theory can be obtained 

by the introduction of suitable constraints, thereby 

resulting in constrained theories. Alternatively, 

corresponding special cases can be developed in which 

the kinematic and the kinetic variables are suitably 

restricted a priori and then restricted theories are 

constructed by direct approach. Such special cases 

of the general theory have been discussed previously 

by Naghdi (1972, Sections 10 and 15) and by Green 

and Naghdi (1974) and are of particular interest in 

the context of elastic shell theory. We provide here 

an outline of a restricted theory developed by Green 

and Naghdi (1977) mainly for application to problems 

of fluid sheets. The resulting equations can also 

be obtained as a constrained case of those given for 

directed fluid sheets [Green and Naghdi (1976)], but 

it is more convenient tq restrict the kinematic and 

the kinetic variables at the outset and construct a 

corresponding restricted theory from an appropriate 

set of conservation laws in integral form. 

Let the director, d, while deforming along its 

length, always remain parallel to a fixed direction 

specified by a constant unit vector, b. It should 

be kept in mind that b is fixed relative to the body 
and not relative to the space. Thus, recalling (46) 9 

and (48)5, we write 

d= $(0,t)b , w=w(0,t)b , w= . (51) 

Further, in view of the assumed form of (51), for 

the director, it is convenient to decompose M,m and 

2 into their components along and perpendicular to 

the) unit vector, b, iJe., 

MS MOV ews Bis Oey) 7 SSDS O 2 
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where M,m and % are scalar functions and S,s,c are 

vector functions of their arguments. According to 

the decomposition (52) ; the vector, M, is resolved 

into two parts. One pat is along b and the other 

part is the perpendicular projection of M onto the 

plane defined by S * b = O which is perpendicular to 
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b. Parallel statements hold for vectors, m and L, 

in (52)9,3- 
Also, it is convenient to decompose the assigned 

fields, f and 2, into two parts, one of which repre- 

sents the three-dimensional body force acting on the 

continuum which is assumed to be derivable from a 

potential function, 2(r,$), and the other which 
represents the effect of applied surface loads on 

the major surfaces of the fluid sheet. Thus, we 

write 

dQ 8Q 
i i fo ’ oe (— nen Lo) O (53) 

With the foregoing definitions of the various 

field quantities and with reference to the present 

configuration, the conservation laws for a restricted 

theory of a Cosserat surface [different from the re- 

stricted and constrained theories discussed previ- 

ously by Naghdi (1972) and by Green and Naghdi (1974) ] 

are: 

d ae do = s |e (o} OQ 4» 

d 
—= ne = + ae exe + kwb) do J ,eta0 lhe N dst; 

ae : p (kv + kwb) wdo = bt J (or-mas ae Mds] 

+b x if (pc-s) do Diese 

+ J gp80s] : 

A ae px x v + k(x x wh + d x v)]do 
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=[ ple x £ + ax (b x c)]do 5 C 

+ [ope x N+ax x s)las , 

aE ple +2 + 4(v + v + 2kv + wh + kw?)]do x, avant 2 

= [ pirte “y+ 2 w)ao 
P CLO! ~ (© 

+ foe ONY ar Iie) > TNCIS= 5G (54) 

In the above equations (54) ; is a statement of con- 

servation of mass, (54) 9 the conservation of linear 

momentum, (54)3 that of the conservation of the 

director momentum, (54), the conservation of moment 

of momentum and (54)5 represents the conservation 

of energy. It should be noted that the quantities, 

M and 2% .¢ no contributions to the moment of momen- 

tum equation, and the quantities, ¢ and S, make no 

contribution to the equation for conservation of 

energy in the present restricted theory. 

Under suitable continuity assumptions, the curve 

force, N, the director force, M, and the heat flux, 

h, can be expressed as S 

(er Ch. a 
Erie Mabeaicbia aU Doki 0 (55) 

where q is the heat flux vector and the fields, N°, 

seme, q%, are functions of eY,t. The five conserva- 

tion equations in (54) then yield the local equa- 

tionst 

pa- = y(@)) (56) 

a) eyes 
(aN) PAE = Wy > Ky) (57) ; z v £ 

Bw : 
Dr). ey = ue + y(kv * b+kw) , ‘ s 
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Qa Qa ay x N + dq x (b 1) <5 Gl " x) (6b) Si) Oe 9) 

r - div =pe + N° OW + + Mw = 0 (60) 
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where "div is the surface divergence operator de- 

fined by divs q = q,q ° ao and a comma denotes par- 

tial differentiation with respect to the surface 

coordinates,0". It should be noted that the vector 

fields, Sc and s, are workless and do not contribute 

to the reduced energy equation (60). 

The above results include (60), which is derived 

from (54)5. For the purely mechanical theory in 

which the law of conservation of energy is excluded, 

the appropriate conservation laws are the first four 

of (54). In the context of the purely mechanical 

theory, it is worth recalling that the rate of work 

by all contact and assigned forces acting on P and 

on its boundary, dP, minus the rate of increase of 

the kinetic energy in P can be reduced to [see 

Naghdi (1972,1974)]: 

fpolt “vt 22 * w)do + f (N > v +M ° w)ds pois Yves we ys” s 

bgt (vy + v + 2kv + w + kw2)ao = [Pao 5 (Gib) 
dt Yp~ ~ ~ ~ = P 

where 

P= N° OF AY + mw + Mw 

is the mechanical power. 

Before closing this section, we also note that 

the restriction imposed on the motion of the medium 

by the condition of incompressibility, in the context 

ache restricted theory under discussion, reduces | 

to 

i line with a remark made at the end of the previous 

section, we note that equations (56)-(60) can also be 

derived by suitable integration across the thickness of 

the sheet, respectively, from the three-dimensional equa- 

tions (9)1 2,3 and the three-dimensional energy equation. 

am general, there are two conditions of incompressibility 

in the theory of incompressible directed fluid sheets; for 

a discussion of these, see Naghdi (1974, Section 3). In 

our present discussion, since d is assumed to have the form 

(51) ,, the second condition is satisfied identically and 

the corresponding pressure (arising from the constraint 

response) is a part of the response functions for Se and s. 

The specification (62) is motivated from an examination of 

the incompressibility condition in the three-dimensional 

theory when the position vector is approximated by (21). 
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and can alternatively be expressed in the form 
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For an incompressible inviscid fluid sheet, which 

models the properties of the three-dimensional in- 

viscid fluid at constant temperature, we introduce 

the constitutive assumption that N*,m,M% do not de- 

pend explicitly on the kinematical quantities, Yiar 

WW ye and are furthermore workless, i.e., 

lo} 
IN +mw+Mw =O , (64) 

, ' 

provided v g and w satisfy the constraint condition 

(63). With the use of (51), it can then be shown 

that [see Green and Naghdi (1976, 1977)] 

NO = - p!{(d + a3)a" = (d + a°)ag} 

So g ap ne no 

Mes wa, om kr SOG (65) 

where PS is an arbitrary scalar function of ey,t 

and e¢8 is the alternating tensor in 2-space. With 

the help of the energy equation (60) and the fact 

that the mechanical power vanishes identically for 

an incompressible inviscid fluid at constant tempera- 

ture, it can be shown that [see the appendix of Green 

and Naghdi (1976) ] 

7. WATER WAVES OF VARIABLE DEPTH 

Within the scope of the restricted theory of the 

previous section, we include here an outline of a 

derivation of a system of nonlinear differential 

equations governing the two-dimensional motion of 

incompressible fluids for propagation of fairly long 

waves in a stream of water of variable initial depth. 

Our developments include the effects of gravity and 

surface tension but we assume that the mass density 

of the fluid does not vary with depth. However, a 

more general derivation for a nonhomogeneous inviscid 

fluid in which the mass density is allowed to vary 

with depth is given by Green and Naghdi (1977). Let 

e€1,e2,e3 be a set of right-handed constant orthonormal 

base vectors associated with rectangular Cartesian 

axes and choose the unit vector, b, to coincide with 

e3.- Then, the position vector, xr, in (46), and the 

director, d, in (51), can be represented as 

(66) BS son > Yep Sg GOSS sg 

where x,y,,> are functions of 9! ,62,t. The velocity, 

v, and the director velocity now take the forms 

YS Us 1 Vena Ney op We ue; a (67) 

where 
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u=x ,v=y , _=0 ,w= (68) 

and we note that the velocity components, u,v,A,w, 

may be regarded as functions of either 6) ,02,t or 

of x,y,t. From (67) follow the expressions 

Vue qt ven + he; " w = wes (69) 

and 

u POUL act UL Ulta A qv =v, + uv VV ' 
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t x y x 

where the subscripts, x,y,t, designate partial dif- 

ferentiation with respect to x,y,t, when u,v,A,w are 

regarded as functions of x,y,t. With the use of (67) 

and (70), the incompressibility condition (64) as- 

sumes the simpler form 

OGL AP A)! Ey SO) 5 (71) 
x y 

In order to complete our development, we need to 

specify values for the assigned force, £, and the 

assigned director force, 2, and to identify the co- 

efficients,y,k and k, which, in general, require 

constitutive equations. For this purpose we consider 

the corresponding fluid sheet in the three-dimensional 

theory in which an incompressible homogeneous fluid 

under gravity|| ,-g*e3, flows over a bed specified by 

the position vector 

r* = xe; + yep + a(x,y)e3 (72) 

and we specify the surface of the fluid by 

r* = xe, + yeo + B(x,y,t)e3 (73) 

In (72), a is a given function of x,y but 8 in (73) 

depends on x,y,t. At the surface (73) of the stream 

there is constant pressure, Por a constant normal 

surface tension, T. At the bed the (unknown) pres- 

sure, Pr depends on x,y and t. Thus, the normal 

pressure, p*, at the top surface (73) is 

w= 19) 15) Sone neg 7 

T{(1 + 82)8 - 2888 + (1 + 62)6 3 
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(74) 

At the bed (72) the normal velocity of the fluid is 

zero and the pressure, p* takes the value 

p* = p(x,y,t) , (75) 

where p is to be determined. 

To proceed further, we recall the notation ais ((3})) 5 

let the surface, & = 0, defined by (15) coincide with 

the surface, J, and consider the three-dimensional 

region of space between the surfaces (72) and (73) 

occupied by the fluid. Any point in this three- 

dimensional region is then specified by 

I We use g* (instead of g) for gravity, since the letter, g, 

is used for a different quantity in (3), (5) and elsewhere in 

the paper. 
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where the surfaces, a and $8, in (26) or (72) and (73) 

correspond to 93 = Bale 93 = Eo, respectively. Also, 

x,y,W and $¢ in (76) are functions of 61,62 and t and 

GS Waren, g SW sp Saw o (77) 

Next, in order to obtain explicit values of y,k,k,f 

and 2 in relation to the top and bottom surfaces of 

the fluid, we choose the surface, 93 = 0, so that the 

center of mass of the three-dimensional fluid region 

under consideration always lies on this surface and 

we then identify this surface with the surface,d, 

in the theory of Cosserat surface. Without loss in 

generality, we may choose &) = -, E> = +5 (see 

Figure 2). This leads to the identification: 

1 *; ol * 3 ( ) 
= cakee= Zola) \3 eee x1Y 

Y = pa = ij Gel" =.) Sa 5 aanes) 1 
eo 

Ss 4 x L 

k = [ o g*e3ae3 =0 , 

es 7. Be) % > Sp 

p g7(6%)2ae2 = FS - (78) 
= 3 (61,67) 

where p* is the three-dimensional mass density in 

(9) and the determinant g defined by (3)3 is cal- 

culated from the approximation (21) so that 

1 
3 a (x,y) 

= ae SS (79 
y 3(6!,62) : 

Substitution of (78) and the appropriate expressions 

for f and QR into (57) to (59) results in the dif- 

erential equations of motion 

ne 0 

p gu = = (Py = DB = pa, 

*ov=-p + (p -@)® - pa , p> I 1D. = Gi Be Pa, 

eta = Rok 
PRON ESP eet etd ¢ <7 

iL oO = 

ao OY SAG = 2.) = ape : é (80) 

where 

P=plo . (81) 

Moreover, Since the bed of the stream is stationary, 
from (77) and (70) 3,4 we have 

a = ua, + va = V -}i $ =o PAW 6 (82) 

The above system of equations is independent of the 
remaining equations (58) which involve S%,s. The 
fields, $%,s, correspond to appropriate constraint 
responses for the restricted motion (51). 

ak 

In (76) to (78), we have returned to the notation 

6° instead of & introduced in (2) 

The questions of continuous dependence upon the 

initial data and uniqueness for solutions of initial 

boundary-value problems for a class of symmetric 

flows characterized by a special case of the system 

of nonlinear partial differential equations given 

by Green et al. (1974c) has been discussed by Green 

and Naghdi (1975). A similar procedure may be used 

to establish uniqueness for the more general system 

of equations (80). 

For later reference, we consider here the reduc-— 

tion of the system of nonlinear differential equa- 

tions (71) and (80) for unidirectional flow in the 

absence of surface tension, T. Without loss in 

generality, we set the ambient pressure, py = 0, 

and consider flows in the x-direction only. Then, 

with q = 0, from (71) and (80) we obtain 

Qn 3? COBY) =O" 

OMS. st 

ep dh =p-o*g% , 

pe ow=-spee (83) 

We may solve (83)3,, for p and p and obtain the ex- 

pressions 

= * * ° 

DSO Oe SP WY) 

oF D 5 io 

bp=%p ¢ (g+dAt aw 6 (84) 

Introduction of (84); 9 into (83);,9 yields a system 

of two partial differential equations in u and w but 

we do not record these here. A further simplifica- 

tion of these equations results for a horizontal bed. 

For a horizontal bottom a may be taken to be zero and 

(77)1,2 and (68) 3,4 reduce to 

a=O , B=o , W=%o ,rA=4W . (85) 

8. FURTHER REMARKS 

The system of nonlinear differential equations (71) 

and (80)),2,3,4, which include the effects of gravity 

and surface tension, govern the two-dimensional mo- 

tion of incompressible inviscid fluids for the propa- 

gation of fairly long waves in a stream of variable 

initial depth. They are derived here by a direct 

approach as consequences of the conservation laws 

(54) subject to the incompressibility condition (64) . 

Upon specialization to unidirectional flow, the non- 

linear differential equations (71) and (80) reduce 

to those for inviscid fluids over a bottom of vari- 

able initial depth given by Green and Naghdi (1976a, 

Sections 5-6), while the equations for two- 

dimensional flow over a horizontal bottom were de- 

rived earlier [Green et al. (1974c)]. 

The differential equations governing the motion 

of a viscous fluid sheet are discussed briefly by 

Green and Naghdi (1976a, Section 11) and a similar 

development can be given within the framework of the 

restricted theory of Section 6, but we do not con- 

sider this aspect of the subject here. The system 

of differential equations obtained in Section 6 is 



valid for incompressible, inviscid, and homogeneous 

fluids. A more general derivation for propagation 

of fairly long waves in a nonhomogeneous stream of 

variable initial depth in which the mass density is 

allowed to vary with depth is contained in a recent 

paper of Green and Naghdi (1977). 

In the case of incompressible inviscid fluid 

sheets, the nonlinear equations for wave propagation 

in water of variable depth can also be derived from 

the three-dimensional theory: the procedure involves 

the use of the (three-dimensional) equation for con- 

servation of energy, the incompressibility condition, 

invariance requirements under superposed rigid body 

motions, along with a single approximation (21) for 

the position vector. Then, by (6) and (21), the ap- 

proximation for the (three-dimensional) velocity 

field is given by 

Vay Oy (86) 

where v and w in (86) have the same forms as those 
in (67). A derivation of this kind has been carried 

out by Green and Naghdi (1976b). It is important, 

however, to note that this derivation is limited to 

incompressible inviscid fluids which do not require 

constitutive equations. tt 

It is natural to ask what are the relationship and 

advantages (if any) between the above system of equa- 

tions and those which are currently employed by other 

investigators. To provide a ready comparison, we 

list below from Whitham (1974) alternative forms of 

equations for water waves moving in the direction of 

a fixed x-axis for a stream of initial constant depth, 

h. Let the elevation of the stream be h + yn. Then, 

for unidirectional flow and in terms of n and the 

horizontal velocity, u, we recall from Whitham 

(1974, pp. 460-463) the system of equations 

nt + f{u(h + nyt =OMine 

* L 2 2 us + uu, +g es + c“hn =O© > (87) 

and the pair of equations attributed to Boussinesq, 

namely 

nte(h+tnu =0 , 
x 

° x it 
ar += = wi i. 3 Wuleare ORS, (88) 

where the notations in (87) and (88) are the same as 

those in (70), g* is the acceleration due to gravity 

introduced in Section 7 and c@ = g*h. Both systems 

of equations (87) and (88) allow for wave propagation 

in either direction along the x-axis. For waves moyv- 

ing along the positive x-direction only there is the 

Korteweg-deVries (1895) equation--hereafter referred 

to as the K.dV. equation--i.e., 

De & On =0 (89) 
h x 

3 
+ — 

Ne OMe se 6 XXX 2 

tt A , E 2 
Recall that in the three-dimensional theory of incompress- 

ible inviscid fluids the stress vector is specified in terms 

of a pressure which is determined by the equations of motion 

and the boundary conditions. 
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or an equation due to Benjamin et al. 

by 
(1972) given 

Ss + Q Ee + 

LOH es) 
Ab uo) = yn, 6 ch eee ='0) 3 (90) ‘gh 

h 

As already remarked by Green and Naghdi (1977), 
it may immediately be verified that the set of equa- 
tions (88) and (90) only have steady state solutions 

if n and u are both constants. Also, although the 

K.dV. Eq. (89) admits a solitary wave in which the 

velocity at infinity is zero and the stream there is 

at its undisturbed height, h, it does not admit a 

steady state solution with u constant and n = 0 at 

infinity. This fact is related to another property 

of (89) which is also shared by (88) and (90): the 

three sets of equations (88) to (90) are not invari- 

ant in form under a constant superposed rigid body 

motion of the whole fluid. To see this, suppose 

that a constant superposed rigid body translational 

velocity is imposed on the whole fluid so that the 

particles at the place, x, are displaced to x? at 

time, t , specified by 

+ 

See tb ee a te ue aE (91) 

where a and a are constants. The variables that oc- 

cur in the differential equations (87)-(90) are n = 

n(x, )) and w= wtx,t)). Let ni = nica t) and ut = 
ut(xt,tt) be the corresponding scalar quantities de- 

fined over the region of space occupied by the fluid 

after the imposition of the superposed rigid body 

motion (91),. Then, from (68), and (8.6) we obtain 

+ + + 
Dex) = el (Ge pie) Se 

+ —_ 

U 63 + ae, oe > am a «2 (92) 

We expect the elevation, h + n, of the fluid to re- 

main unaltered by superposed rigid body motions; and, 

since h remains unaltered also, this leads us to re- 

quire that 

n(x,t) = a’ Gee) = a” (GR eye, oh Gy) 5 (ES) 

From (92) and (93), we calculate expressions of the 

type 

= + = ue U) re en 2 ike Win, 9 
t x x 

ae ar 2, + 
= + 

xtt. Vee ae” etl). fa CW ne te 
ae me oS 18 oS 2S 

. + + o+ e+ 
Hh, FM Sy, Fe Hh = i , (94) 

te x + 
ste x 

with similar results for uz,uy and u in terms of ut 
and their derivatives. It was noted by Green and 

Naghdi (1977) that if the independent variables, x, 

t, in (88) to (90) are changed to (91), the equations 

for u,n in terms of xt+,tt+ are different from those in 

terms of x,t and this was illustrated explicitly with 

reference to the K.dV. equation (89). Here, we con- 

sider the pair of equations (88) 1 2- After substi- 

tuting (92)-(94), they become 
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x 

Pe Gap ees hg 
Ue Ul at, oe 

x Gta 

+ + 
=— 2a) - at : 

i tre Ie ca) oP ar op 2) 
BS) Bre) 1S Re “Bie ge 

The first of (95) is of the same form as (88), and 

hence invariant but clearly the second of (95) dif- 

fers from (88). This means that the character of 

the solutions of (88), (89) and (90) is substantially 

altered by superposing a constant rigid body trans- 

lational velocity on the fluid, which is contrary 

to what happens if we use the full three-dimensional 

equations of motion for an inviscid fluid. On the 

other hand, the set of equations (87) is not subject 

to this drawback, and the equations do have useful 

steady state solutions. It may be argued that be- 

cause of the nature of the approximation in obtain- 

ing (88) to (90) from the three-dimensional theory 

we should not expect these equations to be invariant 

under a superposed constant translational velocity, 

but this then leaves in doubt which version of any 

of the sets (88) to (90) are to be chosen as basic. 

The difficulty disappears if we linearize any of 

the above sets since the resulting equations are 

then invariant under a small superposed constant 

translational velocity, as we would expect. 

From the above discussion, it might appear that 

the equations (87) may be preferable to any of (88) 

to (90), but arguments are put forward by Whitham 

(1974, p.462) to suggest that the system (88) is to 

be preferred to (87). Although considerable use has 

been made of some of the equations (87) to (90), it 

would seem that they all rest on a somewhat shaky 

physical foundation. By contrast, the system of 

equations (71) and (80) do not possess the undesir- 

able features of the type noted above: they are 

properly invariant under superposed rigid body mo- 

tions, admit general steady state solutions, and are 

free from anomalies mentioned earlier. 

For the purpose of providing a more explicit com- 

parison with the system of equations (87) to (90), 

we specialize the system of equations (83) to that 

for a horizontal bottom for which (85) j 2,3,4 hold. 

Then, denoting again the elevation of the stream by 

h +n, the differential equations (83) 2 can be re- 

corded in the form 

i) ar (a a) SO) A 

beg. = iH (96) 
Pep) ube = 3 tt | Be 0 

where 

2 

BF Uae > sy Vaden 

11 i42 2 -== + oo 
3 > p (Aes se Bh BU Shae i 

b=h+tn . (97) 

Clearly if R on the right-hand side of (96) can be 

neglected, then (96), 2 reduce to those of Boussinesq 

given by (88)],2. It should be emphasized, however, 

that the nonlinear equations (96); 9 are invariant 

under a constant superposed rigid body translation 

while (88) 9 are not.#+ Within the scope of the 
nonlinear theory, it does not seem reasonable to 

neglect the quantity, R, in (96) on the basis of 

either physical considerations or mathematical argu- 

ments. It may be, however, that in some special 

circumstances the solution of (88) is a good approxi- 

mation to the solution of (96), but this is a dif- 

ferent question than that discussed above. In this 

connection, it is worth noting that a solution to a 

system of differential equations, which results from 

neglecting certain terms in a more general system of 

equations, in general, will not be the same as a 

solution obtained by approximation from a correspond- 

ing solution of the more general system of equations. 

We close this section by calling attention to some 

available evidence of the relevance and applicability 

of the direct formulation for fluid sheets. The sys- 

tem of equations (71) and (81), or a special case of 

it, has already been employed in some detailed stud- 

ies of a number of two-dimensional problems of in- 

viscid fluid sheets, as well as in some comparisons 

with known previous solutions on the subject. We 

mention here some of these studies and refer the 

reader to the papers cited for additional informa- 

tion: (a) the nonlinear differential equations admit 

a solitary wave solution [see Green et al. (1974c)] 

which is the same as that attributed by Lamb (1932, 

Section 252) to Boussinesq and Rayleigh; (b) this 

solitary wave solution, as well as appropriate jump 

conditions and certain results derived from the 

energy balance for an inviscid fluid sheet at con- 

stant temperature [Green and Naghdi (1976a, Appen- 

dix)], has been used by Caulk (1976) to discuss the 

flow of an inviscid incompressible fluid under a 

sluice gate; (c) the steady motion of a class of 

two-dimensional flows in a stream of finite depth 

in which the bed of the stream may change from one 

constant level to another, and the related problem 

of hydraulic jumps, both for homogeneous and non- 

homogeneous incompressible fluids [Green and Naghdi 

(1976a, Section 7) and Green and Naghdi (1977)]; 

and (d) a class of exact solutions [Green and Naghdi 

(1976a, Section 9)] which characterize the main fea- 

tures of the time-dependent free surface flows in 

the three-dimensional theory of incompressible in- 

viscid fluids [Longuet-Higgins (1972)]. 
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Discussion 

G. L. CHAHINE 

I would like to congratulate the author on his 

very fine work and to comment on his conclusion 

that the Rayleigh-Plesset equation represents fairly 

well the growth of bubbles attached to a wall. As 

is well-known, the Rayleigh-Plesset equation relates 

the growth and collapse of a spherical bubble, with- 

out relative motion with respect to the unbounded 

surrounding fluid, for a given variation of pressure 

far from it. It then seems really surprising that 

such an equation could describe so well the growth 

of the bubble on a blunt nose as shown in Figure 31. 

None of the requirements for the validity of the 

Rayleigh-Plesset equation are fulfilled: 

a. the bubble is non-spherical, even if we 

agree that the shape in the figure plan 

is a portion of a circle, 

b. presence of a wall, 

c. shear flow around the bubble, 

d. yrelative motion between the bubble and the 

fluid (as pointed out by the author). 

Moreover, the presence of gas inside the 

bubble is not taken into account, while the gas 

behavior has been shown to be very important 

(Chahine (1974, 1976)]. We believe that the good 

agreement between experimental results and analyt- 

ical computations shown in this paper is mainly 

due to: 

a. the time of observation is too small com- 

pared to the hypothetical lifetime of the 
bubble. (For a bubble radius of 1.3 mm 

and an external pressure of 5,000 N/m2, 

the Rayleigh time is about 0.7 ms and the 

lifetime is greater than 1.5 ms; say 10 

times the observation time.) 

b. in order to integrate numerically the 

Rayleigh-Plesset equation one needs two 

initial conditions: an initial radius 

and an initial growth rate. If R, and R 

replace these initial conditions it is 

not surprising that the result deduced 

for Ry differs only 4% from the experi- 

mental result. 

Concerning Table 4, the calculated relatively 

small effect of surface tension and viscosity is 

in good agreement with previous asymptotic studies 

{Chahine (1976) and Poritsky (1952) ]. 
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Author’s Reply 

J. H. J. van der MEULEN 

The author appreciates Dr. Chahine's comments 

and would like to point out that the principal aim 

of comparing the cavity growth on the blunt nose 

with theory was to show that the travelling bubble 

type of cavitation is more related to bubble dynam- 

ics than to boundary layer phenomena. 

The surprising observation (Figure 31) that 

the shape of the attached, growing cavity is a 

spherical segment is, to a certain extent, consis-— 

tent with the observation by Dr. Chahine (1977) 

that the growth of the lower part of a bubble below 

a free surface is not influenced by the presence 

of the free surface. 

It seems most unlikely that the presence of 

gas originating from a small stream nucleus or from 

diffusion may have affected the growth of the cav- 

ity during the observation period. Oldenziel (1976) 

has shown that such effects can be neglected for 

explosive bubble growth. 
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Discussion 

R. LATORRE 

Our lack of understanding of cavitation noise 
and its measurement technique is an area of recent 
concern and the authors' experiments and discussion 
will hopefully aid other researchers with these 
problems. 

The correlation of cavitation noise and the 
observed cavitation is a complicated research topic. 
In my dissertation I am studying tip vortex cav- 
itation noise and as a contribution to the authors’ 
paper, I would like to present some illustrative 
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noise measurements made at the University of Tokyo's 

and the Ship Research Institute's (SRI) cavitation 

tunnel - 

Figure 1 shows the measurement apparatus. The 

hydrophone was set in a 50 mm acrylic cup mounted 

on the tunnel's observation window and filled with 

water. The measurements were made in uniform flow 

at constant speed with the section pressure lowered, 

using propellers and foils. The propeller was SRI 

No. 121 (D = 250 mm, z = 6, area ratio = 0.8, 

constant P/D = 0.75). The foil (1/4 SRI Foil) was 

a scaled version of Dr. Ukon's (SRI) design using 

NACA 4412 wing section and a planform of c(n) = 

c,(1-n*)%. The 1/4 SRI Foil had an aspect ratio 

of 3, semi-span = 50 mm, and base chord, c, = 40 mn. 

The measurements are briefly illustrated in 

Figures 2, 3, and 4. In Figure 2 the noise spec- 

trum and envelope of tip vortex cavitation noise 

is shown for SRI and Tokyo University tests. The 

intermittant tip vortex noise appears as spikes in 

the spectrum between 2 and 6.3 kHz, as denoted by 

"2" in this figure. Using the complete test 

record it is possible to construct the envelope 

shown in Figure 2D. The shifts in the frequency 

TRIGGER SIGNAL : 6.3 KHz BAND CENTER FREQUENCY 
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appear to be a function of both the low pressure 

vortex core and the condition of the water. 

In an attempt to gain an understanding of the noise 

mechanism, additional experiments were performed. 

In Figure 3, the intermittant tip vortex noise 

signal at 6.3 kHz was used to trigger the camera 

shutter to photograph the intermittant tip vortex 

cavitation. It appeared that the noise mechanism 

is due to the pressure wave caused by the filling 

of the low pressure vortex core by dissolved gases. 

To test this hypothesis of the tip vortex cav- 

itation noise mechanism, air was injected from the 

1/4 SRI Foil tip and the noise spectrum measured. 

Figure 4 shows the results of the initial tests 

illustrating a qualitative agreement in the actual 

tip vortex cavitation noise spectrum and the sim- 

ulated tip vortex using air injection. At the time 

of writing, it has been possible to improve this 

technique and duplicate the intermittant "spikes" 

in the noise spectrum. 

Thus by the experimental results a basis for 

understanding the low frequency aspects of tip vor- 

tex cavitation noise has become possible. 

40 1 o= 3.8 
NO. CAVITATION 

DGy= 3.8 
AIR INJECTION 
FROM FOIL TIP 

3 Gye Sul 
STEADY TIP 
VORTEX 
CAVITATION 

1/4 SRI FOIL 
V = 12 M/S5) 105 

AIR CONTENT: 
24%, 2 PPM 

nN WN =) =) 

ex (ao) 

SOUND PRESSURE LEVEL, dB IN 1/3 OCTAVE 

%0,8 i 2 5 10 KHz 

1/3 OCTAVE BAND CENTER FREQUENCY 

1/4 SRI FOIL, 10 M/S, 10°, 6, 

AIR CONTENT: 23%, 1.9 PPM 

© PHOTO 

= 3,36 

FIGURE 3. Intermittent tip vortex cavitation 

noise signal and photo. 

FIGURE 4. Comparison of tip vortex cavitation noise 

spectrum trace and simulated tip vortex using air 

injection. 
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GORAN BARK and WILLEM B. van BERLEKOM 

It is very interesting to hear of this hypoth- 

esis concerning generation of noise by tip vortex 

cavitation. We have performed experiments with tip 

vortex cavitation at propellers and hydrofoils and 

found that intermittant tip vortex cavities were 

noisiest. However, we have not performed high speed 

filming or other more advanced attempts to study 

the real mechanisms involved in the volume fluctu- 

ations of the tip vortex cavity. In the case of 

bubble cavitation and unsteady sheet cavitation, 

which we have studied in more detail, we are of 

the opinion that the highest pulses are generated 

during the final part of a collapse, which often 

is rather symmetrical, and that filling the cavities 

with gas is of minor importance as a primary gen- 

eration mechanism. However, some results indicate 

that this gas decreases the violence of the collapse. 
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in a Gradually Varying Channel 
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ABSTRACT 

The Boussinesq equations for gravity waves of ampli- 

tude a(x) and characteristic length 2£(x) ina 

gradually varying channel of breath b(x) and depth 

d(x) are derived from Hamilton's principle on the 

assumptions that a/d =a << 1, (a/2) 2 = OCC), io (9) 

= 0(a3/2b/a) and d“(x) = 0(a3/2) (* = d/dx). The 
further assumption of unidirectional propagation 

then leads to the Korteweg-deVries equation for a 

gradually varying channel. It is shown that the 

latter equation admits two integral invariants. 

The second-order (in amplitude) invariant measures 

energy, as expected, but the first-order invariant 

measures mass divided by pid’ ; accordingly, mass 

is conserved only if either the first-order invariant 

vanishes identically or ba is constant, and only 

the former possibility appears to be consistent 

with conservation of energy. An approximate solution 

for a cnoidal wave, which conserves both energy and 

mass, is developed. The corresponding approximation 

for a solitary wave (which may be regarded as a 

limit of a cnoidal wave) does not conserve mass but 

nevertheless provides an approximation to the evolu- 

tion of the amplitude, a « bp 2/3q7l, that is in 

agreement with experiments for gradual decrease of 

depth or increase of breadth but not for decrease 

of breadth. 

1. INTRODUCTION 

The Boussinesq régime for gravity waves of amplitude 

a and characteristic length 2 in water of depth d 

is characterized by 

GCSv“vd<i, Ge GM <« il, BS OG), Gade) 

where a and 8 are measures of nonlinearity and 

dispersion, respectively, and (lc) refers to the 

asymptotic limit a + 0. The assumptions of one- 

dimensional wave motion and uniform depth and the 
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neglect of compressibility and viscosity then imply 

Boussinesq's equations for the free-surface displace- 

ment and the depth-averaged velocity, n(x,t) and 

u(x,t). The further assumption of undirectional 

propagation permits the elimination of u to obtain 

the Korteweg-deVries (KdV) equation for n. The 

classical derivations are given by Whitham (1974, 

§13.11). An alternative derivation, starting from 

the Luke-Whitham variational principle and using &, 

the velocity potential at the free surface, and n 

as dependent variables also has been given by Whit- 

ham (1967). 

I consider here the generalization of the 

Boussinesq and KdV equations for a channel of grad- 

ually varying breadth and depth b(x) and d(x) and 

their approximate solution for slowly varying 

cnoidal and solitary waves. I begin (in Section 2) 

by deriving (what may be called) the Boussinesq chan- 

nel equations directly from Hamilton's principle (to 

which the Luke-Whitham variational principle is 

equivalent in the present context) on the basis of 

(1) and the further assumptions (which imply 

gradually varying) 

3 3 
b*(x) = O(a /2b/a) , a7 (x) = O(a /2) (2a,b) 

I then (in Section 3) invoke the hypothesis of uni- 

directional propagation to obtain the KdV channel 

equation, which was developed originally by Shuto 

(1974) through a rather more involved procedure. 

I then go on to consider cnoidal waves in Section 

4 and the solitary wave in Section 5 on the basis 

of the stronger assumptions 

|b*| << 0 3/2 (pa) la*| << a °72 (3a,b) 

A prominent feature of the KdV equation for a 

uniform channel is the existence of an infinite 

number of integral invariants (Whitham, 1974, §17.6). 

The KdV equation for a slowly varying channel admits 

only two such invariants, of first and second order 

in the amplitude; the latter measures energy, as 
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expected, but the former measures mass only if ba” 

= constant. This deficiency is presumbly a conse- 

quence of the implicit neglect of the weak reflection 

that accompanies the gradual variation of the channel: 

the reflection coefficient for energy is second 

order in some appropriate measure of the channel 

variation and therefore has no cumulative effect, 

whereas that for mass is first order and does have 

a cumulative effect. The resulting difficulty may 

be avoided for a wave that is either periodic or of 

compact support simply by choosing a horizontal 

reference plane such that the mean value of the 

free-surface displacement vanishes identically (see 

Section 4), but the problem is more subtle for an 

aperiodic disturbance of unlimited extent such as 

a solitary wave (see Section 5) and remains unre- 

solved. 

The primary goal, at least for practical applica- 

tions, of the analysis of waves in a gradually 

varying channel is the prediction of a as a function 

of b and d. Green's law, which neglects both non- 

linearity and dispersion, predicts [Lamb (1932, 

§185)] 

A GI” 5 (4) 

It is often used for practical shoaling calculations, 

and Shuto (1973) finds that a « d “ holds for 

solitary waves on relatively steep slopes for a/d as 

large as 2. On the other hand, the joint assumptions 

of Boussinesq similarity (a/d « d2/22) and conser- 

vation of energy (which is proportional to abo) 

imply [Miles (1977a)] 

ace pb 2/3q-1 . (5) 

Comparison with experiment (see Section 5) suggests 

that (5) should be valid for a shoaling-or laterally 

diverging channel if |6| < 0.1, where 

5 = Ge) 72a) & Sey (6) 

but perhaps not for a laterally converging channel. 

The present results also have implications for 

the approximate treatment of nonlinear wave propa- 

gation along the lines initiated by Whitham (1974, 

Ch. 8) in his treatment of shock-wave propagation 

and since applied to solitary waves [Miles (1977a)]. 

2. BOUSSINESQ CHANNEL EQUATIONS 

The boundary-value problem for gravity waves in an 

ideal, homogeneous liquid may be deduced from 

Hamilton's principle in the form [Broer (1974), 

Miles (1977b) ] 

LP 1 6[[Lté n}axat = 0, L = En, - Bune esy - 590°, (7a,b) 

where x and y are horizontal and vertical coordinates; 

6 (x,t) and n(x,t) are the velocity potential at, and 

the displacement of, the free surface; dx is an 

element of area in the x space; d(x):is the quiescent 

depth; and the velocity potential $(x,y,t) is 

determined by 

V26= (0)  (-d <y <n) , (8) 

Re ar NKSIONKy = 0) (C7 el) ) StS GZ =) (9a,b) 

The solution of (8) and (9) is given by 

§ = & - y¥-(avey - Sy2v2e + 01826) (10) 

where 8 is defined by (lb) with d and 2 as scales 

of y and x. The corresponding approximation to 

the kinetic energy integral, after invoking n = O(ad), 

aVE = 0(8%E), B = O(a), (2), and V*(AVB) = VA*VB + 

AV2B, is 

n 

f (Vo) 2dy = (atn) (VE)? - $a3 (026)? + 29- [a3 (v2E) VE] 

OGRE) (11) 

Substituting (11) into (7), invoking the further 

approximation that ¢ is independent of the transverse 

coordinate in a channel of slowly varying breadth 

b(x) and depth d(x), and integrating across the 

channel, we obtain 

L 2, 13-2 dL -= + =a - = offen, 3 (d+n) ES Go ex 7 GIN |bdxdt = 0. (12) 

The corresponding Euler-Lagrange equations, 

Ll g3 =. + = 3 (bd See [b(d+n)e), ur bn, 0) (13a) 

and 

E, + 562 + on = 0 (13b) 
t Dex. . 

are counterparts of the Boussinesq equations [cf. 

Whitham (1967)]. 

It is worth noting that the approximations to 

this point are consistent with conservation of both 

mass and energy: 

3, [nbax = Op a, [Jptarm ey - aa3e2 + Sgn? bdx = 0, 

(14a,b) 

where the integrals are over either (-~,~) or a 

periodic interval. The integral (14a) follows 

directly from the integration of (13a) with respect 

to x, subject to appropriate null or periodicity 

conditions at the end points. The integral (14b) 

may be similarly established or may be inferred 

(through Noether's theorem) from the invariance of 

the Lagrangian density in (12) under a translation 

of t;:it is an exact invariant of (13), but it 

would be consistent with the antecedent approxima- 

tions to approximate the specific energy in (14b) 

by 4 (d&2 + gn7). 

3. KORTEWEG-DEVRIES CHANNEL EQUATION 

The Korteweg-deVries (KdV) equation for uni- 

directional wave propagation in a uniform channel 

may be deduced from the Boussinesq equations by 

assuming that & and n are slowly varying functions 

of t in a reference frame moving with the wave speed, 

c. It is expedient in the present context to choose 

x, rather than t, as the slow variable (since b and 

d are prescribed as slowly varying functions of x) 

and to introduce 

- = gd alls) aes) E (c gd) (15) 

as a characteristic variable. The direction of 

propagation may be reversed by reversing the sign 

(ope qo) bhigy, ((alS))) 4 



The reduction of (13) on the hypothesis that Ny 

= O(ans) yields 

Qe a j= 3d Vike ) pe + 3i(cd)) mm. + an, + (Abe)im = 0; (16) 

where 

A( ) = (d/dx)log( ) (17) 

(note that Ac = 4Ad). Equation (16), which appears 

to have been derived originally by Shuto (1974), 

reduces to the KdV equation if b and d are constant. 

The vertically averaged, horizontal velocity is 

given by 

u = (gn/c) [1+0(a)], (18) 

whilst the vertical velocity is O(a %u). The mass, 

Momentum, and energy of the wave therefore are given 

by 
co foe) co 

M = pbc [ nas, M = pba [ uds| ="Me,, & = pgbe [n2ds, 

— co —-o —o 

(lS ay o7C). 

within 1+0(a). The limits of integration may be 

replaced by +4T for a wave of period T. 

Multiplying (16) through by (be) and ben, 

respectively, and integrating over -~ < s < ~ on 

the assumption that n, Ns, and ngg vanish in the 

limits, we obtain the integral invariants 

Cc foe} 

3 2 I = (bc) nds, J =bc n“ds. (20a,b) 

—oco —oO 

It follows that E = pgJ is conserved. On the other 

hand, 

1 

ai(aa) ema Ma pn@ses)? M = (2la,b) 

so that, except for special combinations of b and 

d, M and M are conserved only if S°.nds = 0. Non- 

conservation of momentum is acceptable in consequence 

of the horizontal thrust exerted on the fluid by 

the bottom and walls of the channel, but non- 

conservation of mass is generally unacceptable. 

We remark that the neglect of both dispersion 

and nonlinearity, as represented by the first and 

second terms, respectively, in (16), yields Green's 

law, (be) 2n = f(s), where f is an arbitrary function 

of the characteristic coordinate, s. 

4. SLOWLY VARYING CNOIDAL WAVE 

Theory 

Kinematical and scaling considerations suggest that 

an approximate solution of (16) for a wave of pre- 

scribed period 

We Ann = (t/g)? (22) 

be posited in the form 

n(s,x) = a(x)N(6,x), 68 = ws - x(x), (23a,b) 

where 8 and x are fast and slow variables, a(x) is 

a slowly varying amplitude, and x(x) is a slowly 

varying phase shift. It also is expedient to 

introduce 
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y¥ (x) = 2(cd/aw) x7 (x), (24a) 

such that the phase speed of the wave is given by 
. 1 

-8,/8, = c/{1-y(a/a] = [g(dtya)]*. 
Conservation of mass and energy imply the constraints 

(see Section 3) 

ne (24b) 

<N> = (0), a*beT<n2> = 5, (25a,b) 

where < > implies an average over a 2m interval of 

8 and J is the integral invariant obtained through 

the substitution of (23) into (20b). 

A formal, asymptotic development of the descrip- 

tion (23) may be obtained by expanding N(8,x) and 

y(x) in powers of an appropriate measure of the 

slow variation of b and d and invoking (25a) and 

the requirement that the period of 6 be 27. The 

first approximation, which is obtained by substit- 

ing (23) into (16) and then neglecting all 

derivatives with respect to the slow variable x, 

corresponds to that for a cnoidal wave [Lamb (1932, 

§253)]. It may be placed in the form 

N en? [ (K/t) 6|m] - <cn2> F <cn2> = l [m-1+(E/K)] /m, 

(26a,b) 

il y = [2-m-3(E/K)]/m, aL/a% = (16/3)mk2 = U(m), (26c,d) 

where en (u|m) is an elliptic cosine of modulus vn 

and K and E are complete elliptic integrals in the 

notation of Abramowitz and Stegun (1955), and U(m) 

is the local Ursell parameter. Substituting (26) 

into (25b), we obtain 

ah opie 2) = WPaes = Fen), (27a) 

where 

<n2> = <cnt> - <cn2>2 = [2(2-m) (E/K) - 3(E/K)2 

- (1-m)]/(3m?) (27b) 

and 

E = (4°/3°)x2[2(2-m)EK - 3R2 - (1-m) K?]. (27¢c) 

It follows from (27), which determines m(x), that 

m is constant if and only if pad/2 = constant, in 

which special case (23), (26), and (27) constitute 

an exact similarity solution of (16). e 
The results (26a) and (27a) provide a parametric 

relation between aL/d2 and gL3/2 /pa/2 that may be 

graphically represented as a plot of log F vs log U 

[see Miles (1978b)]. The case of constant depth is 

especially simple in that the plot of log F vs log 

U is equivalent to -log b vs log a. The limiting 
relations 

F > au? JAS Ghia cas 2 yo (283i) 

and 

ae an”, ie Saar (U + o) (29a,b) 

intersect at U = 

for U> 150. 

The preceding calculation is a generalization of 

that of Svendsen and Brink-Kjaer (1972), who consider 

the one-dimensional (b = constant) shoaling problem; 

however, they replace 8 + wt in (23b) by the 

equivalent of [1 - 4y(a/da] (x/c), which is clearly 

150 and provide rough approximations 
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in error unless both b and d are constant. 

The problem also is attacked by Shuto (1974), 

who allows for the variation of both b and d but 

arrives at a result (which he integrates numerically) 

that appears to be inconsistent with conservation 

of energy. However, his result is consistent with 

(28) in the limit U + 0 and with (29) in the limit 

U + © or, more precisely, with the result obtained 

by neglecting only terms of exponentially small 

order in (27), 

3/2 2 F~ Gu “- 2G) Ute), (30) 

which is in error by less than 1% for U > 70. It 

therefore appears that Shuto's numerical results 

are not significantly in error (on the scale of his 

plots) over the entire range of U. 

Experiment 

Shuto (1974) compares his results with his own 

experimental observations and with those of Iwagagi 

and Sakai (1969) for shoaling waves periods from 

1.2 to 6 seconds on uniform slopes of 1/20 and 1/70. 

He concludes that linear surface-wave theory (which 

presumably accounts exactly for dispersion) is 

superior to his cnoidal-wave results for U < 30 and 

conversely for U > 30 and that the latter are good 

for a/d as large as 0.8. 

5. SLOWLY VARYING SOLITARY WAVE 

Theory 

The slowly varying solitary wave 

*5 1 
nN = asech? Cra)” (fee t) , C= [g(dta)]°*, 

(3la,b) 

Die OVS =. 
a= a3 %% cia (31c) 

is obtained by letting U + © with KO = 0(1) in (26) 

and (27).* There is, however, a new difficulty: 

none of the integrals I, M, and M [see (20a) and 
(2la,b)], which now are proportional to pl/6g3/4 

b2/3q, and p2/3q3/2 respectively, is conserved ex- 

cept for special variations of b and d. [The failure 

of the condition <N> = 0 in the limit U + ~ is a con- 

sequence of the loss of the displacement -a<cn*> ~ 

a/K, which cancels the mean of acn? (2K8) when inte- 

grated over -K < 2K9 < K.] It follows that, except 

in the special case ba?/2 = constant for which (31) 

is an exact solution of (16) and M and M vary like 

a-? and a3/2, respectively, (31) cannot be a uni- 

formly valid approximation to the solution of the 

KdV channel equation (16); instead, it is the first 

term in an inner expansion, which must be matched 

to an appropriate outer expansion. 

Johnson (1973) obtains the next term in an inner 

expansion for b = constant and finds that it can 

be matched to an appropriate outer expansion if d 

is increasing in the direction of propagation (the 

solitary wave may undergo fission if d is decreasing) ; 

*The prediction that a «= b72/3q71 appears to be due 

originally to Saeki, Takagi, and Ozaki (1971); see 

also Shuto (1973, 1974) and Miles (1977a). 

however, he does not obtain an explicit description 

of the oscillatory tail, nor does he allow for the 

possibility of expanding the slowly varying phase 

X(x) as well as N(6,x) [see (23)]. 

Ko and Kuehl (1978) have criticized Johnson for 

this latter omission and develop a joint expansion 

of (the equivalents of) N and x. They conclude 

that the solitary wave ("soliton") experiences an 

irreversible energy loss in the sense that it does 

not re-establish itself if the channel gradually 

reverts to its initial, uniform breadth and depth. 

This may be, but the proper form of the inner 

expansion is to some extent a matter of expediency, 

and the ultimate validity of any particular expansion 

can be established (albeit heuristically) only 

through matching to a proper outer expansion. Ko 

and Kuehl appear to overlook the crucial role of 

matching, and, at least in this important respect, 

their results must be regarded as incomplete. 

Johnson's results are readily generalized to 

allow for the variation of both b and d and reveal 

that 

§ = 2(3a/d) °/2aA(ba9/2) = (3a)~3/2 (2aAb + 947) 
(32) 

is an appropriate measure of the slow variation of 

the channel (this same measure also is appropriate 

for a cnoidal wave for U > 100). The Boussinesq 

equations (13) and KdV equation (16) are based on 

the restriction 6 = O0(1) asa ¥0 [cf. (2)], whereas 

(26) and (31) are based on the stronger assumption 

|| << 1 [cf. (3)]. Moreover, a consideration of 

the special case of linearly increasing breadth and 

constant depth [Miles (1978a)] suggests that the 

wave ultimately ceases to be solitary and evolves 

0.4 

0.02 

0.01 
10 

FIGURE 1. Decay of a solitary wave in a linearly ex- 

panding channel. The wave is propagating in the posi- 

tive-x direction, where x is measured from the virtual 

origin at which b = 0, and enters the diverging chan- 

nel (from an entry section of uniform width) at 

x/d + 10. The amplitudes at the transition station are 

a/d = 0.05(x), 0.1(+), 0.2(0), and 0.4(:*). The dashed 

lines have slopes of -2/3. 
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FIGURE 2. Growth of a solitary wave in a linearly con- 

tracting channel. The wave is propagating in the nega- 

tive-x direction (right to left), where x is measured 

from the virtual origin at which b = O, and enters the 

converging channel (from an entry section of uniform 

width) at x/d + 94. The amplitudes at the transition 

station are a/d = 0.05(x), 0.1(+), 0.2(0), and 0.4(:); 

the corresponding slopes of the dashed lines are 

“DoE, “Oo, SO MLE Etvel o)o4i- 

into a dispersive wave train for which the first 

peak closely approximates a solitary wave in shape 

but is followed by successive peaks of only gradually 

diminishing amplitude. There remains, however, the 

difficulty of nonconservation of mass, and the 

general problem of an aperiodic wave (in particular, 

an initially solitary wave) in a gradually varying 

channel is unresolved at this time. 

Experiment 

Shuto (1973) compares Green's law, a = ars, and the 
present prediction a « qd7l, with the experimental 

observations of Camfield and Street (1969) and Ippen 

and Kulin (1954) for shoaling of solitary waves on a 

uniform slope. He concludes that the range of valid- 

ity of the "-l power" law decreases with increasing 

slope and that the "4 power" law holds for slopes in 

excess of 0.045 and a/d as large as 2.0. A more 

precise comparison can be made on the basis of (32), 

which reduces to 

6 = 9(3a/d)~3/2a°  (b = constant) (33) 

for a channel of constant breadth. The estimated 

critical values of 6, such that a « a7! or a-*% pro- 

vide better fits to the data for 6 < 6* or 6 > 6%, 

respectively, are 6* = 0.10, 0.10, and 0.09 for 

slopes of .01, .02, and .03, anda « a! is typically 

within the experimental scatter for 6 < 0.01. 

Chang and Melville (unpublished) have recently 

measured a(x) in linearly diverging and converging 

channels. Their results for a diverging channel 

(Figure 1) tend to confirm the prediction a « b~2/3 

for initial values (at the transition from a uniform 

channel) of 0.05 < a/d < 0.2 [the corresponding 

values of 6 = 2(3a)-3?/2(db“/b) are in the range 

(0.01, 0.07], although the decay ultimately exceeds 

this inviscid prediction--presumably in consequence 

of viscous or other dissipation -- and exceeds it 

after only a rather brief section for an initial 
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value of a/d = 0.4. Their results for a converging 
channel (Figure 2) predict a growth that is roughly 
approximated by a = b-9-4, Dissipation in the 
converging channel would tend to decrease the magni- 
tude of the exponent, but why this decrease should 
be so much larger than the corresponding increase 
for the diverging channel is not clear at this time 
(intuition suggests that reflection could be more 
significant in a converging than in a diverging 

channel, but neither analytical nor experimental 

evidence is available to support this conjecture). 
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Strongly Nonlinear Phenomenon 
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ABSTRACT 

Recent studies on wind waves in our laboratory, 

from a view point of strong nonlinearity of the 

wind waves, are reviewed. The main items are as 

follows. (1) It has been shown by experiments and 

theoretical analyses that the mechanism of initial 

generation of waves by the wind is the instability 

of shear flows of two-layer viscous fluids, air and 

water. It is a selective amplification of distur- 

bances at the frequency of maximum growth rate. 

However, the transition of the initial wavelets to 

irregular wind waves including turbulence follows 

within several seconds [Kawai (1977)]. (2) Flow 

visualization studies of the internal flow pattern 

of wind waves show that the shearing stress of the 

wind is concentrated at the crest and windward face 

of individual waves, and a special area is formed 

where the surface wind drift, and consequently the 

vorticity is concentrated, causing the forced con- 

vection or the turbulent mode, which is the origin 

of the irregularity of wind waves [e.g., Toba et al. 

(1975); Okuda et al. (1977)]. (3) Statistical 

investigation of instantaneous individual waves in 

a wind-wave tunnel shows clearly the existence of 

similarity in the individual waves [Tokuda and Toba 

(1978)]. Namely, the energy spectrum, which is 

newly defined for the individual waves, is virtually 

equivalent to the traditional energy spectrum at 

the frequency range from 0.7- to 1.5-times the 

frequency of the energy maximum. However, the energy 

peaks which usually appear in the traditional spec- 

trum at the higher harmonics of these dominant waves 

completely disappear. The apparent phase speed of 

individual waves, for each wind and fetch condition, 

is inversely proportional to the square root of 

their frequency, and is much larger than the phase 

speed of linear water waves. For the individual 

waves for each wind and fetch condition, there 

exists statistically a conspicuous relationship of 

the 3/2-power law [cf., Toba (1972, 1978a)] between 

the normalized wave height and period. Consistently 
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with this and the phase speed relationships, the 

steepness of the individual waves is statistically 

constant. (4) Discussicn is presented as to the 

possibility of approaching the above-mentioned 

characteristics of the individual waves from the 

similarity hypothesis and dimensional considerations. 

Self-adjustment of the individual waves to the 

local wind drift distribution is postulated to 

explain the 3/2-power relationships, which may be 

the basis of the possibility that the pure wind-wave 

field is represented by a single dimensionless 

parameter [Toba (1978a)]. (5) A new formulation 

is presented for the roughness parameter or the 

drag coefficient over the wind waves, incorporating 

the single dimensionless parameter of the wind-wave 

field. A physical interpretation of the form is 

given from the internal flow pattern of individual 

waves [Toba (1978b)]. 

1. INTRODUCTION 

In a traditional model, the wind waves are treated 

as phenomena, expansible to component free water 

waves having weakly nonlinear interactions among 

waves of different wave numbers. However, detailed 

experimental studies on the actual conditions of 

wind waves produced in wind-wave tunnels, have 

shown that wind waves are much more strongly non- 

linear phenomena, especially in their younger stages. 

This report presents a review of recent studies 

made in our laboratory, giving much emphasis to 

the strong nonlinearities which are inherent in 

wind waves. 

2. INITIAL GENERATION OF WIND WAVES 

The first topic starts with an approach from the 

process of the initial generation. The wind waves 

have long been assumed to be generated from a still 

water surface by the effect of pressure fluctuations. 



FIGURE 1. Flow visualization 

of the initial stage of the 

generation of wind waves by 

use of hydrogen bubble lines 

produced by the electrolysis 

of water. The photographs were 

taken from a viewpoint slightly 

below the air-water interface, 

so images reflected at the in- 

terface are seen in the upper 

1/4 of each picture. The hydro- 

gen bubble lines are produced 

near the left end as pulses of 

0.002-s width at 0.04-s inter- 

vals in a very slow, uniform 

flow of water which was pro- 

duced before the start of 

wind. The wind was 6.2 m/s 

blowing from left to right of 

each picture. The filmed time 

of each picture from the start 

of the wind is shown in sec- 

onds. The out-of-focus areas 

were caused by some fluctuation 

of the mean flow, for very shal- 

low depth of the focus. In (e) 

are seen the initial wavelets, 

and in (f) is seen the onset of 

turbulent mode. [Cited from 

Okuda et al. (1976).] 

| Ma 
(a) 0.40 sec 

4 

(d) 3.29 

A resonance mechanism for the initial generation 

proposed by Phillips (1957) and an instability 

mechanism for further growth proposed first by Miles 

(1957) have been referred to on every occasion. 

Valenzuela (1976) showed that the growth rate of 

waves in the gravity-capillary range, observed by 

Larson and Wright (1957) at the initial stage of 

the generation, agrees with the expected growth 

rate by the instability theory applied to a coupled 

shear flow of the air and the water. 

Kawai (1977 and 1978) of our laboratory has 

arrived at the conclusion, by systematic experiments 

together with theoretical analyses, that the mech- 

anism of generation of the initial wavelets is the 

instability in a two-layer shear flow of viscous 

fluid of air and the water, as a selective amplifi- 

cation of disturbances of the frequency at the 

maximum growth rate. 

The experiments were carried out mainly by use 

of a wind-wave tunnel of 20 m length, 60 cm x 120 cm 

cross-section, containing water of 70 cm depth. 

After the sudden starting of wind on the still 

surface of water, a shear flow first develops in 

the uppermost thin layer of water, and several 

seconds later, regular, long-crested initial wavelets 

appears [Figure l(e)]. His theoretical analysis of 

the shear flow instability of the two-layer viscous 

fluids, using the actual profile of the shear flow 

in water, shows that the system is unstable and 

there exists a frequency at which the growth rate, 

kCj, is maximum (Figure 2). The frequency of kCj- 

maximum does not necessarily coincide with that of 

Cr-minimum, or the minimum phase speed for the 

gravity-capillary wave. Three properties of the 

initial wavelets determined by the experiment, i-e., 

the frequency, the growth rate, and the phase speed 

are all virtually coincident with those of the 

theoretically predicted waves of the maximum growth 

rate as shown in the following. 

Figure 3 shows an evolution of the spectrum 

calculated by the maximum entropy method, which may 

be applicable to nonstationary processes. Each 

spectrum represents an ensemble average of 8 runs. 

- in Figure 7. 

(b) 1.40 (c) 2.36 

(f) 4.20 (e) 3.78 

Wavelets of a constant frequency of about 15 Hz in 

this case grow as shown in the figure with a smooth 

spectrum. The peak then moves to a lower frequency 

side showing the evolution to irregular wind waves 

having the usual spectral form. In the stage of 

constant frequency, Figure 4 shows the agreement of 

the observed frequency of the initial wavelets with 

the theoretical frequency for the kCj;-maximum, as 

a function of the friction velocity of the air, u,, 

but independent of the fetch. The frequency for the 

Cy-minimum is around 14 to 13 Hz, and does not 

coincide with the observed initial wavelets. Figure 

5 shows the agreement in the phase speed, and Figure 

6 the growth rate between the observed initial 

wavelets and the theoretical initial wavelets for 

kCj-maximum. 

Thus, Kawai's conclusion is that the generation 

of wind waves, whose initial stage is called initial 

wavelets, is caused by the selective amplification 

of small perturbations which inevitably occur in 

the flow by the instability of the two-layer viscous 

shear flow. 

However, the duration of the exponential growth 

of the initial wavelets was limited to from 1 to 8 

seconds in the experiments. The transition from 

the regular, long-crested initial wavelets to short- 

crested, irregular wind waves takes place in a very 

short time. The spectral peak, which has grown up 

with an approximately constant frequency, starts 

wandering at the transition, and then moves toward 

the lower frequency side with the energy increased 

in a general trend as seen in Figure 3, and also 

The transition coincides with the 

onset of turbulence at the water surface as revealed 

in the next section. 

3. INTERNAL FLOW PATTERN OF WIND WAVES — AN 

EXPERIMENTAL SUBSTANTIATION OF THE STRONGLY 

NONLINEAR PROCESSES 

Irregularity is a character inherent in the wind 

waves. This has been demonstrated by detailed 
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studies of the internal flow pattern of wind waves 

by use of flow visualization techniques [Toba 

et al. (1975), Okuda et al. (1976, 1977) and 

Okuda (1977) ]. 
Along the surface of individual undulations, 

hereafter called individual waves, there is a strong 

variation of the tangential stress exerted by the 

wind. The stress value determined locally from the 

distortion of hydrogen bubble lines, is several 

times greater than the average wind stress value at 

the windward face of the crest, and it is negligible 

at the lee side of the crest as shown in Figure 8 

as an example. The concentration of the shearing 

stress results in the development of the local 

surface wind drift forming a special region under 

the crest where the strong vorticity is concentrated. 

The vorticity concentration causes the forced con- 

vection or turbulence, irrespective of whether or 

not the air entrainment, or the breaking in a usual 

sense occurs. As seen in Figure 9, small polystyrene 

particles of 0.99 specific gravity placed just 

beneath the water surface prior to the start of 

the wind, begin to disperse into the interior by 

the forced convection, coincidentally with the 

t(Hz) 

(tz) 

FIGURE 2. Theoretically obtained correlation 

of the amplification factor kC;, the phase 

speed, Cy, and the frequency, f, to the wave 

number, k, in the instability of coupled shear 

flow of the air and the water, for four values 

of the friction velocity of the air uy, of (a) 

13.6, (b) 17.0, (c) 21.4, (da) 24.8 cm/s. 

(Cited from Kawai (1977).] 

transition of the initial wavelets to the irregular 

wind waves. The main stage of the growth of wind 

waves thus seems to proceed as a strongly nonlinear 

processes. 

4. COMPONENT WAVES AND INDIVIDUAL WAVES AS PHYSICAL 

MODEL OF WIND WAVES 

Despite the fact that the wind waves are thus a 

strongly nonlinear phenomenon, they have been 

assumed as expansible to component waves, having 

phase speeds obeying the dispersion relation of 

free water waves, and weak wave-wave interactions 

have been considered. 

Recently there have been some articles reporting 

that the phase speeds of component waves do not 

necessarily satisfy the dispersion relation, notably 

by Ramamonjiarisoa (1974) for the one dimensional 

case and Rikiishi (1978) for two-dimensional com- 

ponent waves. Rikiishi developed an experimental 

technique for the determination of the directional 

structure of the phase speed of component waves 

without pre-assuming the dispersion relation, and 



= 
ft) 

N 

E 
2 
i¥9) 

10 F KK 

L \ 
[ \ 

=) rr 
ic t(s) t(s) at(s) 

intta) wavelets 

[ —— 8.00~ 864 .005 128 
Simei 0-64) -019:28) r= 
239) EF= OC oo 

r * 992-1056 - 
— = 1056-1120 - 
developing wind waves 

10° —--- 1024~ 1536 01 
= 1280-1792 - 
— — 15.36 ~ 2048 = 
— — 17.92 ~ 23.04 

2048 ~ 2.60 - 
statronary wand wares 

—— 40.96 - 74.24 MQ 1664 

=9 

10 nn fLennnll 
1 10 100 

f(Hz) 

FIGURE 3. A sequence of spectra for the initial stage 

of the generation of wind waves, showing the growth of 

initial wavelets at a constant frequency of about 15 

Hz, and the transition to irregular wind waves. The 

spectra were calculated by the Maximum Entropy Method, 
and each line represents an ensemble average of eight 

cases. The fetch was 8 m and the nominal wind speed 

was 5.1 m/s. [Cited from Kawai (1977).] 
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FIGURE 4. Observed theoretically predicted frequency 

of the initial wavelets, f., as a function of the 

friction velocity of air, u,- Theoretical values are 

for the condition of the maximum growth rate, where 

U)/u, represents the dimensionless thickness of the 
viscous boundary layer of the air. [Cited from Kawai 

(Le) 01] 
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FIGURE 5. The growth rate of the initial wavelets, 

8, as a function of u,- Theoretical values correspond 

to those for waves of the maximum growth rate. [Cited 

from Kawai (1977).] 
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FIGURE 6. The phase speed of the initial wavelets C 

as a function of u,. Theoretical values correspond td 

those for waves of the maximum growth rate. The theo- 

retical values were calculated by use of the observed 

velocity profiles in the water at the critical time of 

the first appearance of the initial wavelets. The ob- 

served values for higher three wind speeds were deter- 

mined at the critical time, whereas that for the lowest 

wind speed was determined about 3.5 s after the critical 

time because of the experimental difficulty, and this 

delay may presumably explain the observed higher value 
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FIGURE 7. An example of minute inspection of the ob- 

served time series of the spectral peak for the initial 

stage of the generation of wind waves. The lapse of 

time is indicated in alphabetical order, the interval 

between successive points being 0.32 s. After the growth 

of regular initial wavelets at a constant frequency of 

about 15 Hz, the spectral peak shows an irregular mo- 

tion corresponding to the transition to irregular wind 

than the theoretical ones. [Cited from Kawai (1977).] waves. [Cited from Kawai (1977) .] 
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FIGURE 9. Flow visualization of the 

initial stage of the generation of wind 

waves by use of polystyrene particles 

which had a 2-mm diameter and the specific 

gravity of about 0.99, and which were 

placed just beneath the water surface 

prior to the start of the wind. The wind 

blows from the left to the right. The 

wind speed in the tunnel section was 

8.6 m/s, and the fetch was 2.85 m. The 

time measured from the start of the wind 

is shown in seconds. In 2.58 s, initial 

wavelets may be recognized by streaks of 

light in the water, and some particles 

have already begun to disperse into the 

water. In 4.78 s, waves are already ir- 

regular wind waves and more particles are 

dispersed. In 13.6 s, particles are dis- 

persed down to more than 10 cm, corre- 

sponding approximately to a half of the 

representative wave length. [Cited from 

Toba et al. (1975) .] 

found that the phase speed was virtually independent 

of the frequency, and had the same value as that 

of the waves of the spectral maximum, at respective 

fetches. These experimental results are interpreted 

as indicating that the assumption of wind waves as 

expansible to component free waves with weak non- 

linearity is not necessarily appropriate for young 

growing wind waves. 

On the other hand, since individual waves as 

instantaneous surface undulations have a specific 

shearing stress distribution, and a specific interval 

flow pattern, they may carry some factors as a phys- 

ical element. We have examined, in a wind-wave 

tunnel of 15-cm width, energy density distributions 

for individual waves, as well as their phase speeds, 

and compared them with those obtained by usual com- 

ponent wave model for the same experimental data 

{Tokuda and Toba (1978)].* 

First, a normalized energy spectrum for individual 
waves has been newly defined and calculated from the 
statistical distribution of two kinds of the individ- 

ual waves: zero-crossing, trough-to-trough and all 

trough-to-trough on our wave records, as illustrated 

in Figure 10. The definition of the normalized 

individual-wave spectral density, O8y, is 

8y (fy) = 6yAE/(AE/E,)E (1) 

where vim 

HABE debh 9) 
are Seatee at ; 

6;Af = > imt G peak: alae, Soon pant ae, db 

and where m; is the number of individual waves of 

the period class, T;, (frequency from f to f + Af), 

Af = 1/(2nAt), where we used At = 0.02 Shen) 00), 

and Af - 0.25 Hz, and also 

*Tokuda, M., and Y. Toba (1978): Component waves 

and individual waves as physical model of wind waves. 
To be published. 

is the frequency of the energy maximum. 

The A-spectrum 

and where f 

Figure 10 shows the comparison. 

is the normalized spectra by the traditional com- 

ponent wave model in which the secondary peak is 

seen at the normalized frequency of 2. The B-spectrum 

is for individual waves of zero-crossing, trough-to- 

trough, and the C-spectrum for all trough-to-trough 

on our wave records. In the main frequency range 

from 0.7 to 1.5, which is the value normalized by 

the peak frequency, the spectra are virtually 

equivalent with one another. The second peak at 

frequency of 2 in the A-spectrum completely dis- 

appears in the individual-wave spectra. The slope 

of these straight lines is £-2 for the high frequency 

side, and £2 for the low frequency, sides ethexe> 

spectrum is considered to give a better represen- 

tation of the high frequency side which is exactly 

on the £79 line, and the B-spectrum represents the 

low frequency side better, which is more similar to 

the traditional A-spectrum. We may infer that much 

energy of the higher frequency part of traditional 

component waves, which is clearly shown as the 

energy at higher harmonics of the spectra, is a 

manifestation of the distorted shape of individual 

waves of the main frequency range, as was already 

suggested by Toba (1973). 

Figure 11 shows the normalized phase speed of 

individual waves determined by two adjacent wave 

gauges. It is inversely proportional to the square 

root of the frequency, in contrast to the phase 

speed of linear waves which is inversely proportional 

to the frequency. In addition, the phase speed of 

the individual waves is much larger than that of 

linear waves as shown later. In the case of the 

phase speed of component waves of one-dimensional 
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Comparison of three kinds of normalized energy spectra from the same wind-wave records in the wind wave tunnel. A: Traditional energy spectra by the component-wave model. B: Energy spectra for individual waves of zero-crossing trough-to-trough. C: Energy spectra for individual waves of all trough-to-trough. [Cited from Tokuda and Toba (1978).] 

spectra, which was obtained from the cross-spectra 
of the records of two adjacent wave gauges (Figure 
12), approximately the same phase speed is obtained 
in the before-mentioned main frequency range, where 
the coherence is close to unity. However, in the 
higher frequency range, it is virtually constant 
in agreement with Ramamonjiarisoa's 1974 measurement. 
The original values are shown in Figure 13, in 
which locations of the spectral peak are shown by 
arrows for the shortest and the longest fetches, 
respectively, and as the peak frequency moves to 
the left, the phase speed of the component waves 
becomes larger. In the figure, the full line shows 

the phase speed of linear waves. Figure 12 is the 
normalization of Figure 13, and Figure 14 shows an 
example of the comparison of phase speeds of com- 
ponent waves and individual waves. It should be 
noted that, as the distance of two wave gauges 
becomes wider, the range of high coherence becomes 
narrower, and the phase speed of component waves 
tends to be more uniform and obscure. However, it 
is at least evident that phase speeds for both com- 
ponent waves and individual waves have the same 
value near the peak frequency, and are inversely 
proportional to the square root of frequency, and 
much higher than the values of linear waves. It 
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FIGURE 11. Phase speed distribution of individual 

waves (zero-crossing trough-to-trough), determined 

by a photographic method, and normalized by values 

for waves of maximum energy density. Dispersion re- 

lation for water waves are also entered by the dotted 

line. [Cited from Tokuda and Toba (1978).] 

is caused by the effect of the wind drift, which is 

concentrated near the crests. 

Thus, by using appropriate normalization, we 

may express the energy distribution of physically 

substantial waves by the energy spectra of individual 

waves for some local frequency ranges, excluding 

false energy density. The above mentioned B-spectrum 

and C-spectrum are two examples of these. Further, 

we may reinterprete- the traditional energy spectrum 

for the main frequency range as representing the 

energy distribution of individual waves, rather 

than the usual interpretation of a linear combination 

of small amplitudes of freely travelling component 

waves. In other words, the elementary physical 

substance of wind waves is rather in the individual 

waves, which have a specific distribution of local 

wind stress and flow pattern, and an apparent phase 

speed inversely proportional to the square root of 

the frequency. 

Further, Figure 15 shows that, for the individual 

waves in the main frequency range for each wind and 

fetch condition, there exists a conspicuous statis- 

tical relation between normalized wave height and 

period, for significant waves which Toba (1972) 

proposed as the 3/2 power law: 

H* = prx3/2 (2) 

where H* = gH/u 2 and T* = T/u, represents the g * g 

COHERENCE 

FIGURE 12. Phase speed distri- 

bution of one-dimensional compo- 

nent waves, obtained from the 

cross-spectra of records of adja- 

cent two wave gauges, and nor- 

malized by values for waves of 

maximum energy density. The 

coherence of the cross-spectra 

is shown in the upper part. 

[Cited from Tokuda and Toba 

(1978) .] 
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FIGURE 13. Original values of the phase speed distri- 

bution, for eight fetches, before the normalization 

shown in Figure 12. Peak frequencies for the shortest 

and the longest fetches are indicated by arrows, other 

cases being in between of these. The phase speed of 

linear water waves is indicated by the full line. 

[Cited from Tokuda and Toba (1978).] 

dimensionless height and period, respectively, 

normalized by use of the acceleration of gravity 

g and the friction velocity of the air u,. The 

figure shows the data for individual waves for 

various fetches. Except for very short fetches up 

to about 4m, the factor of proportionality B is 

constant of about 0.045. 

It should be noted that although the spectral 

form of wind waves in wind-wave tunnels is different 

from that in the sea as discussed, e.g., by Kawai 

et al. (1977), nevertheless the above power law 

holds for both cases, although the constant, B, is 

slightly different [cf, also Toba (1978a)]. Figure 

16 shows another representation of the same relation: 

between the wave height and the frequency, normalized 

for those waves of maximum energy. The slope of 

the line is -3/2. 

Consistently with this relation and the above- 

mentioned apparent phase speed, the steepness of the 

individual waves determined by a photographic method 

is approximately constant, statistically. It is 
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FIGURE 14. An example of the comparison of one- 

dimensional phase speeds of wind waves, determined 

from cross-spectra of records of two wave gauges, and 

determined for individual waves (zero-crossing trough- 

to-trough) together with the standard deviation, and 

the dispersion relation for water waves. At the bottom 

is shown the coherence of the cross-spectra. The fy, 

represents the frequency at the energy maximum. [Cited 

from Tokuda and Toba (1978) .] 

inferred that these facts strongly indicate the 

existence of similarity in the individual waves or 

in the field of wind waves, presumably as a result 

of the strong nonlinearity. 
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5. APPROACH BY SIMILARITY HYPOTHESIS AND 

DIMENSIONAL CONSIDERATION 

In cases of strongly nonlinear processes, such as 

turbulence, it is hard to approach problems from 

the rigorous way of solving a closed system of 

equations. In these cases, some assumptions based 

on physical considerations are sometimes introduced 

to supplement the system of equations, to arrive at 

useful results. In the case of wind waves, it 

seems that an approach by the traditional model of 

component irrotational free waves with their weak 

interactions is not necessarily realistic as has 

been shown. There is another approach, in which 

a kind of similarity structure in the field of wind 

waves is assumed, and a regularity in gross structure 

is sought by invoking dimensional considerations. 

An example of this line of approach has been 

attempted as partly described in a paper by me 

[Toba (1978a)]. 

Since the local wind stress distribution along 

the surface of individual waves is as shown in 

Figure 7, the local wind drift is forced to be 

stronger near the crest and weaker near the trough. 

Water particles near the surface travel a longer 

distance when they are near the crest than when 

near the trough. On the other hand, water waves of 

finite amplitude cause the wave current, resulting 

from the difference between the foreward and the 

backward movements of the water particles. Some 

self-adjustment should occur for individual waves 

in such a manner than the forward and the backward 

movements by the waves are coincident with the 

difference in the local wind drift as to the phase. 

The wave current ug of the individual waves of 

amplitude, a, and angular frequency, o, is now 

approximated by that of the second order Stokes 

wave: 

ug = a*a3/g 

Number Density 
@ 02 - 
e ONS = O12 

© 010 - O15 
* 005 - 0.10 
0.005 - 0.05 
Significant Wave 

Standard Deviation 

FIGURE 15. Examples showing that the main part of individual waves in the wind-wave tunnel (zero-crossing 

trough-to-trough) satisfies the 3/2 power law between the normalized wave height H* and the period T*. The 

u, was 68 cm/s. [Cited from Tokuda and Toba (1978) .] 
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fy 
FIGURE 16. Another representation of the 3/2 power law 

for individual waves (all trough-to-trough). H. and f 

represent the wave height and the frequency, respectively, 

normalized by values for waves of the maximum energy 

density. [Cited from Tokuda and Toba (1978) .] 

Since the difference in the local wind drift is 

caused by the mean wind stress, the self-adjustment 

is expressed by the condition that the wave current 

is proportional to ux, namely, 

a*o3/gu, = constant (3) 

This is transformed immediately to 

H* = B'o*73/2 (4) 

which is equivalent to (2), where o* = u,d/g. 

The condition of constant steepness may arise 

from the similarity requirement. The combination 

of the 3/2-power law relationship and the constant 

steepness condition leads to the apparent phase 

speed proportional to the square root of the 

frequency. These three relationships, which have 

been shown by the experiments to be satisfied by 

the individual waves, are self-consistent with one 

another, and may thus result from the strongly 

nonlinear effects. 

The 3/2-power law makes it possible that the 

wind-wave field is represented by a single dimension- 

less parameter of the frequency at the energy 

maximum as discussed by Toba (1978a). One of the 

consequences of the above paper is that the growth 

of the wind wave field is expressed by the evolution 

of the dimensionless single parameter in a form of 

error function of the parameter itself, in which 

the value of the parameter approaches a final value 

as a simple stochastic process, irrespective of its 

initial conditons, through a rapid self-adjustment 

of the state. 

6. WIND STRESS OVER WIND WAVES 

The final topic of this paper concerns the expression 

of wind stress over wind waves. It has been pointed 

out on Many occasions that the roughness length, or 

equivalently the drag coefficient of the water sur- 

face, depends not only on the wind speed but also 

on the state of the water surface. Various attempts 

have been made to obtain a functional form of the 

roughness length incorporating the state of wind 

waves or the wave breaking. However, in view of 

the complexity of the expressions, together with 

the wide scattering of data points, a simple 

dimensional formula by Charnock (1955) has been 

cited most frequently, but with various values of 

a constant of proportionality, although the formula 

contains only a parameter representing the wind 

field. 

A dimensional consideration leads to an expression: 

Zo* = zo*(ux*, On*) (5) 

where z9* = z9/v is the dimensionless roughness 

parameter, ux* = u,3/gv the dimensionless friction 

velocity representing the overall wind effect, and 

Om* = ux0p/g the single parameter representing the 

wind-wave field as stated in the previous section, 

where Om is the frequency at the energy maximum. 

Charnock's formula 

Zo = Bu,°/g (6) 

zo* = Bu,* (7) 

which is a form of (5) in which o,* is disregarded. 

It is shown that another simple form for zo*, using 
symbols, o and o*, instead of om and o,* hereafter: 

FETCH=13.6m 
TOBA (1972) 

KAWAI et al. (1977) 
KUNISHI (1963) 
MITSUYASU et al. (1971) 

20 = 0.035 ug/g 

UpZo/V 

10! 10? es 108 
ue / gu 

FIGURE 17. Data plots for the relationship (6) in 

a dimensionless form. Data by Toba (1972) and 

Kunishi (1963) are from wind-wave tunnel experiments, 

and data by Kawai et al. (1977) and Mitsuyasu et al. 

(1971) are from tower-station observations. [Cited 

from Toba (1978b).] 
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FIGURE 18. Data plots for the relationship (8) ina 

dimensionless form. The same data with Figure 17 is 

used. [Cited from Toba (1978b).] 

Zo* = au,*/o* = au,2/vo, a = 0.025 (8) 

is a better representation [Toba (1978b)]*. In 

Figures 17 and 18 are shown plots of some available 

data in the forms of (6) and (8) including wind-wave 

tunnel experiments and field observations. It 

should be said that the new formula is better at 

least. It is seen from Figure 19 that the breaking 

of wind waves is also expressed as a function of 

the parameter, u,2/vo, for data from the wind-wave 

tunnel and the sea. The ordinate is the percentage 

of the breaking crests among individual waves 

travelling through a fixed point, and it was deter- 

mined by the same procedure for both cases. The 

breaking of wind waves occurs for the condition 

ux? vo > 103. 
Equation (8) corresponds to an elimination of g 

from the form of (5). In view of the recent 

recognition since Munk (1955) that the waves of 

high frequency components play a major role in the 

transfer of momentum from the wind to the sea, it 

seems rather unreasonable that Eq. (7) contains 

information only of energy containing waves as o 

in the denominator. However, since ug2/V S A = 

du/un represents the magnitude of the average wind 

stress, and o-! « T is a measure of the integration 

time associated with individual waves, u,?/va is 

interpreted as a measure of the accumulation of 

the shearing stress or the concentration of the 

vorticity at each crest of the individual waves, 

conveying the horizontal momentum transferred from 

the air into the interior of the water through 

forced convection, whether or not the waves are 

breaking, as stated in Section 3. As this effect 

*Toba, Y. (1978b). A formula of wind stress over 

wind waves. To be published. 
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increases, the total momentum transfer, as well as 

the probability of the occurrence of the breaking 

increases. 

The form of (8) may be transformed to 

Zo = B'u,*/g, (SY = eh Aw, (9) 

which may be interpreted as an extension of Charnock's 

formula (6) to include information of wind waves 

in the form of the wave age, c/u,, where c is the 

phase speed of the dominant waves. Also, the drag 

coefficient, Cp, may be expressed from (8) as 

G. = k*/[ In (z190/au,)]~2 (10) 

where k is the von Karman constant and z;9 the 
reference height of 10 m. According to (10), Cy 

is more sensitive to the wind waves than to the 

wind speed. 

7. SHORT SUMMARY 

We may summarize the review paper as follows. First, 

the initial wavelets are generated by an instability 

of two-layer viscous shear flow of a type of insta- 

bility that immediately transfers to three 

dimensional turbulence. Second, the main phase of 

the growth of wind waves is regarded as the conse- 

quent, strongly nonlinear processes. Third, the 

traditional component wave model is not necessarily 

realistic, and the elementary physical substance 

might better be treated by individual waves, 

especially for younger stages as observed in wind- 

wave tunnels. Fourth, the individual waves 

represent a conspicuous and characteristic similarity 

of structure, presumably as a result of the strong 

nonlinearities, and this may be the basis for the 

pure wind-wave field being represented by a single 

dimensionless parameter. Finally, a new stress 

formula over the wind-wave field is presented. 

40 
Oo FETCH: 13.6m 

10.0 TOBA (1972) 

6.9 

TOBA et al. (1971) 
oa (eo) 
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PERCENTAGE OF BREAKING CRESTS 

9° 

Got tite) 10% 

FIGURE 19. Percentage of breaking crests among indi- 

vidual waves traveling through a fixed point, may be 

expressed as a function of the same parameter with 

Figure 18. Toba et al. (1971) data are from tower sta- 

tion observations, which are common with data of Kawai 

et al. (1977) used in Figure 18. [Cited from Toba 

(1978b) .] 
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ABSTRACT 

By aid of a non-linear two-scale analysis it is 

shown that large-scale water waves can experience 

growth due to spatial non-uniformities in the 

growth rate of the small-scale waves in the non- 

uniform wind field associated with the large-scale 

waves. The growth rate is shown to be proportional 

to the mean-square slope of the small-scale waves 

and their growth rates, but inversely proportional 

to the difference between the phase velocity of the 

large-scale wave and the group velocity of the small- 

scale waves. It is suggested that this mechanism 

can transfer wind energy to short gravity waves at 

a higher rate than the direct linear transfer 

mechanism of Miles (1962). The analysis also 

predicts that a large-scale wave moving against the 

wind will be damped by the action of the small-scale 

waves. 

1. INTRODUCTION 

The mechanism whereby wind generates water waves 

has long proven a difficult and challenging problem 

in theoretical fluid mechanics which has not yet 

been satisfactorily resolved. The simple linear 

mechanism of forcing by pressure fluctuations 

[Phillips (1957)] and by instability induced by 

the mean wind field [Miles (1957), 1962)] have 

been found inadequate to account for the high values 

of energy transfer from wind to waves observed for 

longer waves, both in the laboratory and in the 

open sea. For short waves in the capillary regime, 

laboratory experiments [Larson and Wright (1975) ] 

have given good agreement between observed growth 

rates and Miles' instability theory, particularly 

when the surface drift velocity in the water is 

taken into account [Valenzuela (1976)]. For waves 

in the short gravity range, however, recent experi- 

ments by Plant and Wright (1977) give growth rates 

much in excess of that predicted by the instability 
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theory with the discrepancy beginning at a wave 

length of about 10 cm and increasing with wave 

length. Open-sea measurements have also produced 

energy transfer rates for gravity waves which are 

much in excess of the values according to Miles. 

[See, for example, the recent review of Barnett 

and Kenyon (1975)]. 

In view of the failure of linear theory one is 

forced to look for nonlinear mechanisms for energy 

transfer. Nonlinear interaction between waves in 

the gravity range [Phillips (1966)] is a compara-— 

tively weak process (of third order in amplitude) 

which causes redistribution of the energy from 

waves of intermediate wave numbers to waves of lower 

and higher wave numbers. This could be effective 

for the eventual saturation of the spectrum but is 

unlikely to be strong enough to make a large change 

in the initial growth. A more tenable proposition 

is that the modification of the turbulence in the 

air by the wave induced velocity field could change 

the phase shift between surface elevation and the 

pressure so as to alter the energy transfer rate. 

This effect has been investigated by many authors 

[Manton (1972), Davies (1972), and Townsend (1972), 

among others] employing different turbulence models. 

These investigations point to the possibility that 

the modulation of the turbulence by the wind could 

have an important effect, but it is difficult to 

assess the adequacy of the postulated turbulence 

models employed. 

An interesting possibility for transfer of energy 

to gravity waves is through nonlinear interaction 

with capillary waves which can draw energy from 

wind at a much higher rate than the longer waves. 

The interaction between short and long surface 

waves has been subject to a great deal of discussion 

in the literature. A train of short waves riding 

on a long wave becomes modulated by the orbital 

velocity field of the long wave so as to make their 

wave length smaller - and hence their amplitude 

greater - in the region near the crest of the long 

wave. Longuet-Higgins (1969) argued that the 
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radiation stress then set up by the short-wave train 

would act to transfer momentum to the long wave. 

In particular, if the short wave were to reach an 

amplitude at the crest of the long wave high enough 

for breaking, it would give up all its momentum to 

the long wave. This maser-like mechanism was 

examined critically by Hasselman (1971) who showed 

that the change in potential energy in the surface 

layer due to Stokes' transport by the short waves 

would give a contribution to the energy transfer 

to the large waves which would exactly cancel that 

arising from Longuet-Higgins' momentum transfer 

term. Hasselman's analysis did not take into 

account any transfer due to modulation of surface 

wind stress or short wave growth rate, however. 

[This effect has been analysed by Valenzuela and 

Wright (1976)]. Also, his analysis concerned 

primarily gravity waves, for which resonant inter- 

action between wave number triads only occurs to 

third order. For capillary-gravity waves, however, 

the dispersion relation allows resonant interaction 

at second order. Valenzuela and Laing (1972) have 

developed a theory for this, and Plant and Wright 

(1977) suggest that part of the measured excess 

growth rate in the low gravity wave range could be 

attributed to capillary-gravity resonant interaction. 

Benny (1976) has also shown that under certain 

conditions, a long gravity wave may grow in the 

presence of small scale capillary waves; the wind 

field was not included in his analysis. 

The present paper reveals yet another possible 

mechanism for the transfer of energy from capillary 

to short gravity waves. The theory presented takes 

into account the effect of shear flow modulation 

on the local growth rate of the capillaries. It 

is found that this variation gives rise to a modu- 

lation of the Stokes' drift which is in phase with 

the long-wave surface slope and therefore makes 

possible an energy interchange with the long wave. 

It is found that the energy transfer rate due to 

this mechanism is positive for capillaries with a 

group velocity higher than the phase velocity of 

the long wave so that it can provide an increase 

in the long-wave growth for waves in the short 

gravity wave regime. For waves running against the 

wind the transfer rate is found to ke negative, so 

that the presence: of the capillaries would always 

increase the decay rate of the long waves. 

2. INTERACTION BETWEEN LONG AND SHORT WAVES 

We shall consider the situation depicted in Figure 

1 with two-dimensional surface wave of small wave 

length, 4', riding on a large-scale wave of wave 

length, A. An asymptotic analysis will be carried 

out under the assumption that 

Ee = A'/d << 1 (1) 

(Prime refers to the short and tilde to the long 

waves). The waves are excited by a wind field 

blowing over the water surface. Only the normal 

stress induced by the wind on the wavy surface is 

considered in this process, the effect of shear 

stresses being neglected. Of particular interest 

is whether the presence of the small-scale waves 

could change the growth rate of small-amplitude 

long waves. 

To arrive at the simplest possible analysis, 

terms that are of higher order than linear in the 

long-wave slope are neglected. For the short waves, 

only quadratic and lower-order terms in the wave 

slope are retained. Further, it will be assumed 

that the flow in the water is irrotational, i.e., 

the effects of surface drift currents are neglected. 

This allows the use of potential-flow theory leading 

to the following boundary-value problem for the 

velocity potential 6 in deep water: 

V4e= ob +6 =0 (2) 
xx ZZ 

with boundary conditions 

Oo eae Oe. (3) 

at z=: 

PW 1 3/2 
Ty ee lee oN bag / EZ) 

(4) 

at z= -™: @=0 (5) 

Here, © = C(x,t) is the surface deflection, P. the 

surface pressure due to the wind, and T the surface 

tension. Since cubic terms are neglected through- 

out, the denominator in the last term of (4) will 

be set equal to unity henceforth. We now separate 

large and small scales by introducing into the 

equations of motion 

ES ie oie (6) 

6=6 + 6! (7) 

Be = Py + Pe (8) 

For the boundary conditions it is useful first to 

transfer them to the surface of the large-scale 

motion, z = t, by a Taylor series expansion. Thus, 

O(x,5) = 0 (x,0) + 5'0,,(x,5) + 

= O,(x,o) + O' (x,o) ae 1G Y (a sn) 

; 3 
+ Or (er) stvemete (9) 

etc. By neglecting terms involving triple and 

higher products one finds from (4) and (5) the 

following boundary conditions to be applied at 

Zi iGes : 

water 

FIGURE 1. Long-wave short-wave interactions in a 

shear flow. 
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ibs) (Cabal) P, is the surface pressure in the absence of 

the short waves and Pw the additional surface pres- 

sure added due to the presence of the short waves. 

In deriving (10), partial use has been made of (2), 

which holds for ® and 6! separately. To arrive 

at equations for the long wave, (10) and (11) are 

averaged over the large scales. This is most 

conveniently done by taking the ensemble average 

of a large number of realizations differing only 

as to the phase of the short waves, which is assumed 

to be randomly distributed among the members of 

the ensemble. This procedure yields 

Do & Be tb Ole, ER te oc (12) 

2 a 
We = 2? ss 2 2 = GS > Os Sale = Oe) eae 

= a= (E94) = AO = OOF) os GS) 
ate 

at Z= co where the tilde denotes the average over 

the large scales and 

aN 

Siw a (14) 

is the Stokes' drift due to the small-scale motion. 

In deriving (13), use has been made of the linearized 

boundary conditions for the small scales, for 

example, 

“—~ SN 
O~j0 = Feuyey 

5 oe Se tt ee 3 

DR ee Pa ao Ce ae (BIER) = Ber 063 Se y= oa 

£ 

+ (15) 

The long waves are to be determined as a solution 

of Laplace's equation 

v26 = 0 (16) 

subject to the boundary conditions (12) and (13) 

and the condition that disturbances vanish at large 

depths, i.e., 

iBere 14 = = © (17) 

The corresponding boundary conditions for the short 

waves are obtained by subtracting those for the 

long waves from the full equations. 
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'- 6! +77! - 6 6! - 6 oO! 
tt) > ie x6 are a Zz 

F pope (19) 

both to be applied at z = t. The last bracketed 

term of (18) and the last two of (19) will give 

rise to higher harmonics. Their contribution to 

the large-scale motion will be of higher order, 

and they can hence be neglected. In deriving (19), 

use was made of the linearized boundary conditions 

for the long waves. Thus, for example, the term 

eel in (19) arises from replacing Ore, in (11) by 

Tet, which will give a negligible error to within 

the approximation employed. 

Since the major aim of the analysis is to deter- 

mine the lowest-order effect of the short waves on 

the growth rate of the long waves, it is sufficient 

to retain only linear terms. However, all terms 

linear in the large-scale motion which modulate 

the small-scale wave train must be retained. The 

long wave will be taken as a uniform, infinite 

wave train of wave number k = 21/A. Its phase 

velocity differs from the linearized value, 

c= vg/k + kT (20) 

by terms proportional to the square of the small- 

scale wave slope, and by terms due to the wind, 

which are proportional to the density ratio between 

air and water both of which may be expected to be 

small. The short waves driven by the wind may also 

give rise to slow growth, or decay, of the large- 

scale waves. For the subsequent analysis, it is 

convenient to introduce the following nondimensional 

"slow" variables: 

k(x - ct) (21) aa! 
i 

t=ket (22) 

The solution for the long wave is sought in the 

form (real part always implied) 

Ze Bi@e” (23) 

ete tkz (24) 

The variation of the surface deflection and potential 

with the "slow" time, t, allows for the effects of 

wind, and the presence of the short waves, to have 

a weak influence on the growth rate, and the phase 

(and consequently also the phase velocity) of the 

long waves. . Without the wind and the short waves 

both f and ® would be constants. 

For the short-waves, on the other hand, both 

the phase velocity and wave number will vary slowly 

along the long wave because of the modulation by 

the latter. We therefore set 

Bo = Lae aye Gr) (25) 

et (x,t) 
Oo = ou(&,zZ" 70) (26) 
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where 8 is the phase, 

ie = Oe (27) 

is the wave number, 

TS Oe (28) 

is the frequency (measured in a fixed coordinate 

system), and 

z= k"(z = C). (29) 

The assumption of a slowly varying wave train allows 

one to regard k' and w' as functions of the "slow" 

variables, t and &. 

An approximate asymptotic solution for the short 

waves if sound by expansion in the small quantity 

€ = k/k' (30) 

(That € thus defined is a slowly varying quantity 

causes no special difficulty). Substitution of 

(25) - (29) into (18) and (19) and omission of all 

terms of order lerle, Jerct |, and higher, as well 

as of terms of order e“ and higher, gives the 

following boundary conditions for the small-scale 

motion to be satisfied at z' = 0: 

ef = - itt (c'-a) + cust + ec(Zt - of) + iekt,s 

Saricrs (31) 

Pwo = - (g + k!2n)c' + ik'(c'-u)é" 
p ~ a en a “ n 

+ are ee: 5 g) + 2kuTey + kp Te") 

Se KO 70 Wa (Gra oe) ] ‘Foo ¢ (32) 

where 

ce! = w/k' (33) 

u and w are the perturbation velocities, 6. and x 
@, respectively, of the large-scale-flow evaluated 

at z= C and ist is defined by 

So 2 a 80 34) a S pla 
0 0 Py ( 

The terms neglected as being of higher order in ¢€ 

include the term Geeon in (19), which expressed in 

the slow coordinates becomes 

Paiva ea ra 

and is hence negligible compared to the term k'2Tc'. 

For the long waves one finds similarly 

@, = w= k[e(ct, - it) + 81] +... (35) 

Sn SARA yee Rata a 0 15 

Sere aa ene 

= 2x1 [id + 6} |2 - 05/7] +... (36) 

where 

ete es SS emai Gol a CLE) (37) 

and the star denotes complex conjugate. The velocity 

potential must satisfy Laplace's equation. Substi- 

tution of (26)-(29) into (2) gives 

se (@U ee al) ct iek'[ ko" + 2k'o} 

0m Ss eee 
ae ZA" ke Sek Yee oe 

+ 0(e26') = 0 (38) 

This equation may be solved approximately by series 

expansion in €. One finds in a straight-forward 

manner that 

' 12k; 
as ee at See elt ean ae EA 2 0) Go Atl = aie e et Itz, Cp) 1A iezA¢ + 0(e*A) } 

(39) 

where A = A(E,T) is to be determined by aid of the 

kinematic boundary condition (31). By substitution 

of (39) into (31) and expanding in powers of € one 

finds 

S(T iaty Se e(Shet)) = => let = 158) } 

+ 0(e20") (40) 

Combination of (40) and (32) yields 

= =(g + kt? = k'(c'=u) 212" + ick" {fe(ey > ae 

+ (et—u)u (ete) (c's 1a) eae 

+ 2c(c'-u)o! 

+ [(e'-a) (c'=2e + u) + 2k"T)eE } (41) 

The induced surface pressure due to the wind may be 

assumed to be related to the small-scale surface 

deflection in a quasilinear manner that takes into 

account the modulation of the wind field by the 

long waves. The following expression is chosen: 

Pe z Shes 
— = k' (eu) (a 2B") (2 = ake)ice (42) 
p 

where a' and §' are aerodynamic coefficients (having 

the dimension of velocity) giving the in-phase and 

out-of-phase components, respectively, of the induced 

pressure. The modulation of the wind field due to 

the presence of the long waves is accounted for by 

the factor (1 - akt). For long waves running with 

the wind and having a phase velocity less than the 

wind-speed, the air flow at the crest will slow 

down in the region below the matched layer where 

U= c, and the small-scale growth rate will thus 

be reduced in this region. Conversely, the air 

speed will increase over the troughs leading to an 

increased growth rate there. Hence, the coefficient,- 

a, will be positive for such waves. For waves run- 

ning against the wind, however, or for waves with 

c greater than the wind speed, a will be negative. 

To determine the numerical value of a, one must 

carry out calculations based on the Orr-Sommerfeld 

equation. First the wind field modulation due 

to a long wave of small amplitude is calculated. 

Then, the pressure on the short waves is computed 



on the basis of quasilinear theory, whereafter the 

effect of wind field modulations may be extracted 

from the results. In Section 3, we derive the 

governing equations for the local growth rate for 

short waves in the modulated flow of the long waves. 

Numerical results for a are presented in Section 4. 

Consistency of the two-scale expansion requires 

that the wind-induced growth rate is small, which 

is indeed the case, since it is proportional to 

the air-to-water density ratio. Accordingly, we 

shall set, formally, 

a’ + i8' = e(a+ iB) (43) 

Substituting (42) and (43) into (41) and remembering 

that all the quantities involved are real, we find 

the following pair of relations: 

g + k'?n - k'(c'-u)* + ek'G(c'-u) (1 -akZ) = 0 (44) 

[e(c'-u), + (c'-c) (c'-u) + (c'-a) tg 

o ial = B(c'-u) (1 - akt)]c 

+ Zel(cueu)oe + [(e'=u) (c'=2e + u) 

i 2k'T] oe =0 (45) 

From (44) it thus follows that 

c' =u +t vg/k' + k'T + O(c) = u + v(kK') - O(c) 

(46) 

Inspection of (35) and (36) reveals that the long 

waves receive their growth both directly from wind 

pressure and indirectly from interaction with the 

short waves, the latter effect being proportional 

to the mean-square slope of the short waves. Thus, 

since the variation of long-wave parameters with 

time is small, little error is incurred by taking 

u in (46) to be a function of — alone. Furthermore, 

the frequency of the short waves must then be 

constant in a coordinate system travelling with the 

long waves so that 

ie (P= eS) Sw (47) 

which, together with (46) determines how the wave 

number for the short waves varies along the wave 

train. Differentiation of (47) gives 

k'u 
Ceo 

a ma c!-¢c 3) 
g 

where oe is the group velocity, 

eg =k'y. tv tu (49) 

and where v(k') is defined by (46). With the aid 

of (46)-(49), (45) may thus be written 

2(e'-a) [6b + (cg - E)EL] = {(c'-a)B(1 - ake) 

- (c'-0) Ge + [(e"=e) vy" + T] 

ae /A(Cee) (50) 

This equation may be readily solved by integration 

along the characteristic line 

eS. 8 7 dé/dt, = (cg - c)/e (51) 
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Since only the terms which are linear in the large- 

scale perturbation are to be retained, one may 

ignore the variation of k' with & when carrying 
out this integration. 

- =i : E BCE 2 
oo a @ exp {5 eo a -~— 

c 2 (cg-c) 2(cg-C) 

kha hes 
+ Bw (o,=8)2 [(c “c)v,, ap abl Jy (52) 

where C is a constant to be determined from the 

initial value of ¢. By inserting this expression 
into (37) one finds 

u 
S; = - gi2 any == tee ap GU Pit 

g g 

= = fie? Oey 2 aT 53 (es) k! ee) 
g 

where 

= iL A 
gi2 = lee |= (54) 

is the mean-square slope of the short waves. (In 

Appendix A an alternative derivation, based on 

kinematic wave theory, is given.) In the second 

bracketed term U may be expressed in terms of f 

by the use of the linearized expression 

W = kez (55) 

Thus, Pe may be written 

st= A'T ae BIZ 
E (56) 

where (ignoring terms which are nonlinear in C) 

At = -s'2 as (57) 

-12~ 

oS = {=c" = ec" + 20 

Sy 

k! ' 4 ' dP (ele) [(c -e) vy + T]} (58) 

Gf 

The boundary conditions for the long waves may now 

be written. Substitution of the solution for the 

short waves, and (24), into (35) and (36), gives 

6 = eon = Ae) 4b Ne ee inde (59) 

=- (g + k2r)z - KE (o_ - id) + O(e2) (60) 

For the wave-induced pressure an expression similar 

to (42) is used, namely 

= ke(& + if)c (61) 

Substitution of this and (59) into (60) and separa- 

tion into real and imaginary parts yields 

0 = [g + k2T - ke? - KE(B + G)IZ - kc aoa + REC 
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(@ - A')t = (26 - B')Z (63) 

From (63) we find 

18 ns 

Spee B-a' 
GC = S exp ii 5G=nUn at, (64) 

By use of this, ee and Gone may be expressed in 

terms of & and an eigenvalue relation obtained by 

substitution into (62). This then gives 

G = G/RIEEERITD be. (65) 

with correction terms proportional to the mean 

square slope of the short waves and to the air-to- 

water density ratio, both of which are likely to 

be small corrections of little importance. The 

major result of the analysis is that given by (63), 

(64) namely that 

aB'c!' = os LBB <1 2 
(2nt) = =e 3 = oP 26 (e!-8) Ss (66) ae 

dt 

i.e., the growth of the long-wave amplitude is 

given by the sum of the growth due to direct action 

of pressures in the manner of Miles (1957, 1962) 

and the indirect growth due to the Stokes' transport 

by the growing short waves. The second term may be 

large compared to the first term, if ci is close 

to ¢. However, the analysis presented does not 

hold in the immediate neighborhood of cg = ¢ but a 

separate (and nonlinear) analysis is then required. 

For waves running against the wind, c', cl, anda 

will be negative, so that the presence pf the short 

waves will always increase the decay rate of the 

long wave. 

3. THE WIND-INDUCED GROWTH OF SHORT WAVES IN THE 

PRESENCE OF LONG WAVES 

The perturbation equation governing the modification 

of short waves on the wind-water interface by the 

long-wave field is derived from the momentum equation 

by the procedure used to derive the Orr-Sommerfeld 

equation. Additional effects arise because the 

short waves see not only the mean wind field, U(z), 

but long-wave fluctuations, ti and W. The large- 

scale field is governed by a linear equation, 

the small-scale field by an equation linear in u', 

w' which also contains terms linear in U and w. 

As in 2, we take the water to be inviscid and 

the flow potential but we consider the air to be 

viscous: with no surface current, and continuous 

tangential velocity between air and water, this 

corresponds to the limit un, > ©, vy > 0 with Us 

and v, finite, justified by the large density ratio 

between water and air. Both fluids are taken to 

be incompressible. : 

We begin with the Navier-Stokes equations for 

two-dimensional flow in the air 

du du du opie ily Chee ge = ee rye us + Woe a 6 + = V“u (67) 

ow dw dw op 1 ik 9) 

DEVEOR Moz = 5 os Ge REG (ee) 

where velocities are scaled to free stream velocity 

outside the boundary layer over the water, and 

lengths scaled to boundary-layer thickness 6 ; R 

is the Reynolds number based on 6. (In Section 2, 

lengths were scaled to k', the short-scale wave 

number) . 

To derive the Orr-Sommerfeld equation, these 

equations are cross-differentiated and subtracted 

to eliminate the pressure. Some use is made of 

the continuity equation and the result is 

32u o2w fu 1 y29u 
dzot dxdt 

- uV2w + wV2u - = = (en = 0 
az R 3x 

(69) 

The flow in the air is taken to be a horizontal 

shear flow plus two wave perturbations of disparate 

scales: the fast scale, x and t; and the slow 

scale, % = ex, and t = et where ec = k/k'. The 
variation with z is set by the shear profile and 

viscous effects and will be taken to be the same 

order for both wave fields. The long wave field 

is a function of X,z, and £ only; the short wave 

field is a function of x,z, and t and in addition 

will be influenced by the long scale waves so that 

U(z) + a(X,z,t) + ul (x,z,t;%,t) ll u 

Wie w(%,z,t) + w! (x,z,t;%,t) (70) 

The surface deflection is taken as 

BEG Cpe) > GY Cesare) 

The major effect of long waves in a parallel 

shear flow on the behavior of the short waves will 

come from changes in the local growth rate and 

convection velocities as well as an unsteady lifting 

of the small scale as the large waves pass. There- 

fore the small scales will be assumed to be of the 

form 

w' (x,Z,t:#,t) = wiz-c(z,t)ler °™ = wiz en” 

Pb) | Meee ee oO = Gene aay 

where z' = z-f and c = c(X,t). Changes in the wave 

number, k, are O(cedU/3X); such terms will be ignored 

in this local analysis. For this assumed form of 

w' and u', the continuity equation becomes 

ee + iku' - ¢€ — =) 10) (72) 

a ae Ds Bo eee Re a 1 dw ere Ww i dw wl dw 
=-——+ — C~ —G =F = - ST 73 O5 cs 8 apt cs Se ae 3) 

since el~ = -w/c. The presence of ia in the assumed 

form for w' and u' introduces several terms into 

the equation for the small scale. In addition, 

the velocity perturbations, U and w, also appear. 

The equation for the large scale is obtained by 

a phase average of (69) written with the assumed 

form (70) and (71). The non-linear coupling of the 

small-scale motions will not be included although 

the corresponding effects in the water are the 

main subject of this paper and are worked out in 

Section 2. We anticipate further work to complete 



the study of non-linear coupling in both the air 

and the water. 

The large-scale motions are taken as 

> 8 aed) 2 8 Ghee SPs elk (x ct) em ae) (x-ct) (74) 

soo, & A IRGHSE min Bae ests) 

To ease the process of working with products of 

wave perturbations, two distinct complex variables 

i and j are introduced. 

Under these assumptions, the large-scale mo- 

tions are governed by the linear homogeneous Orr- 

Sommerfeld equation 

w'" — 229" + kw - 3kR((U-G) (w" - k2w) - wu") = 0 

(75a) 

and a is related to a through the continuity 

equation 

a = j0'/k (75b) 

where from now on primes will denote derivatives 

with respect to z. 

In the equation for the small scale, we will 

keep all terms linear in the small-scale perturba- 

tions including products of the small-scale and 

large-scale perturbations. 

When the assumed form for the perturbations (71) 

is used in (69) together with the continuity equa- 

tion (73) we obtain the following equation for the 

small scale 

w'" — 2k2W" + k4w - ikR[ (U-c) (w"-k2w)- wU"] 

= Riwa-eSe] (w" - k*w') + ikR{(U'Z + di) (w"-k7w) 

= Spey Oes GEA ew ORS "a! ikR (= + U"'S)wt ERs I (2k (U-c) + U"]w 

= U(w"! = k2w') fy U"'w ra U' (w" ne k2w')} 

= ro (wW,w,z) (76) 

where we have introduced the symbol xo (w,Ww,Z) for 

the right-hand side of (76). The various terms in 

(69) are worked out in Appendix C. 

In deriving (76), terms of 0(k2t) have been ig- 

nored, however terms such as 32a/a22 in air have been 

kept since these can be large in a viscous flow. In 

terms of 0(€00/dx) a viscous correction has also been 

neglected since all other terms are proportional to R. 

We are interested in the local equilibrium and 

more specifically the local growth rate of short 

waves in the modified wind-water field. Thus in 

the assumed form of solution for the short waves, 

for a given k the eigenvalue, c, will be a slowly 

varying function of space 

@ = Gy v Gp (eS) (77) 

where Co is the eigenvalue of the short wave field 
in the presence of the wind shear field only; c, (x) 

will be at most O(z), the amplitude of the long 

wave. 

Thus the governing equation for w is the Orr- 

Sommerfeld equation with additional terms arising 

from the long-wave perturbations. Some of these 

terms could be obtained directly by replacing U by 

U + u in the Orr-Sommerfeld equation; additional 
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terms come from the unsteady lifting and distortion 

of the small scale flow by the long waves. 

The boundary conditions that are satisfied at 

the free water surface, z =~ + c', will now be 

derived for both the large and small scale motions. 

The first boundary condition is that the tangential 

velocity is continuous at the interface, z' = Z', 

ac C14 
Win Un SM mee > Ww O50 

Expanding the velocities from (70 and 71) ina 

Taylor series about z' = 0, and keeping terms linear 

in the large scale and small scales we obtain for 

the large scale 

Wie Sh, = wh, at z = 0 (78) 

for the small scale [to 0 (kt) ] 

Ui at ea ul =a ae oO at z=0 (79) 

The term 0U,,/dz = Uy has been ignored in deriving 

(79) since it is 0(k*Z) and a*u/dz2 (0) has been 

taken to be zero. 

Conditions (78 and 79) can be expressed in the 

vertical velocity, w' (and w), through use of the 

kinematic boundary condition; that the substantial 

derivative of the surface displacement function, 

S(x,z,t), is zero for both the air and water flow 

at the interface, S = 0. That is, if S(x,z,t) = 

Zou sthenwDS/DtE = Omatnou——OM(zi rat) 

D C) a a 
where a we U(Z) ae + w(T) Bp 

Expanding the velocity field for both air and 

water about z' = 0, and again keeping terms linear 

in the large and small scales, we obtain in the 

long-wave limit for the large scale 

a, WE =O 
for the air aE 5 w= 0 

for the water O8 L. w=0 
at Fi 

and for the small scale 

for the air 

iket - [U't + UjJikz - efu'c' + u'] ae w= 0 

at z' =0 (80) 

and for the water 

ret CU ae oars A Og, 6 : 
OS, > Wheall<ie = eu, re Fe = Oat zi a=a0) 

From (78) to (80) we see that 

ae - 

i at z' =0 

and W = Wy 

From (39) and (40), the velocities in the water at 

z' = 0 are related to the displacement & by the 

expressions 

z : > 1 DE 
Wy = ~ik(e -— u) (1 + tesg)o" 

Ae ee Ba) Ge aoe Set 81 uy = (c — U,) ( tens (81) 
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“ w u .W -& ee es and t ke (@l sp = iz) 

where € oe i Z 
ox c 

thus Uy = iw. as in fixed coordinates. 

For the large scale motions, 

and 5 (82) 
Ae 

With (75b) and (82), condition (78) for the large 

scale motion becomes 

Uwteéw' -wké=0 at z=0 (83) 

and with (73) and (81) condition (79) for the small 

scale motion [to 0(kt)] becomes 

a R = » Bly thy ~ 
U'w + cw' - wke = - ou -w aul [— + ity 

z Zi é 

Cn WX ES (84) = a = 0 iw a The (w) at z 

where we have introduced the symbol 19 (w) for the 

right hand side of (84). 

The remaining boundary condition to be satisfied 

at z = t and then transferred to z' = 0, is the 

balance of pressure or more precisely of normal 

stress with surface tension 

as (85) Ps ~ [nn = Pw Sebel: 9x2 

The viscous normal stress at z = t is given by 

3 2 Zn 

) 
where hn = > Wee Gls eS ae aes Spe 

Because uwU' (0) HaUd (0) inl the) Damitt uy 2 

there is some cancellation in the stress condition 

and the final result for the large scale is Spy = 

2 w'/R. 
For the small scale, all terms involving the 

large scale perturbations are negligible for k<<k' 

so that Caan = 2 w'/R. 

The pressure in the air at the surface, z=, 

is obtained by expanding the pressure about z' O. 

p(t) = plo) +¢ & (0) (86) 
az 

where p(o) and dp/dz(o) are available from the 

momentum equation (67). 

After considerable manipulation we obtain the 

following formula for pg - Onn 

ikIB, - Opp] = p,[- ¢ G' - wu" + — (w"' - 3k2w') SSIS nn’ “a Rk 

du = 0 ~ du ww! Ow 

Cae a ea uae t ie See MaKe OZ 
w a, GE k2w w" = (23 — - 22 - ice 87 z (2ikcw + a 2 = icy )] (87) 

We obtain p_ - k2T~ at z' = ¢' [to 0(kZt)] directly 
from (41) 

By - k2Te = pylk(e - &)? - (g + k*n)]E" (88) 

Using (81) to rewrite (88) in terms of w, introduc- 

ing s = Pa/p,, and using (84) to rewrite the group, 

cw' - U'w, we obtain the final form of the pressure 

boundary condition (85) to be satisfied at z' = 0. 

SiGe & (Gam = = gx - a wl! 
u 

= wlke? - (g+k*T)] ( = + iw/é) - w 2ci, 
ow uy ay 

a 2K D5 piel = 0 (ae iw + s(Gw'e + iw'c aa ke COU ian ( z + 5 

ae: = = Aa Ze 
we Sr Wy a ML “eats Aw k*w) — ~ + awe =) s z (2ikew + ae 2 A ) = Yoo (w) 

We will introduce the variables p,Q,b, and y and 

rewrite (89) as Pw + Qw + bw"' = Yoo (w) where 

P = [-k(1-s)c? + (gtk2T)] 

Q= ASK b = -isc/Rk 

and Y59 (w) is the right hand side of (89). 

The corresponding boundary condition for the 

large scale is homogeneous and of the form 

Bw + Qw' + bw"' = 0 (90) 

where 

P = [-k(1-s)¢* + (g+k2T)] 

Q jc3sk/R; b= —js/Rk 

To summarize, the long waves satisfy the ordinary 

Orr-Sommerfeld equation (75) with the appropriate 

linear boundary conditions for a free water (83) 

and (90) plus w (©) = w' (2) =o. The resulting 

homogeneous eigenvalue problem is solved numerically 

to determine 4, w, and ¢ for a given long wave 

amplitude, a wave number, k, and R. 

The short waves satisfy a modified Orr-Sommerfeld 

equation, (75) with the effects of the long-wave 

perturbations appearing also in the boundary con- 

ditions (84) and (89). 

To solve this short-wave local-equilibrium 

problem we resort to techniques that by now have 

become standard in stability theory for perturbed 

eigenvalue problems. 

We assume that the short-wave solutions can be 

expanded about the perturbed solution (no long waves 

present) in the form 

aw=uU, +24, 

w=w, +o w, 

BIS ey ee Sp (91) 

“where z is the large wave amplitude. The eigenvalue, 

c, is also expanded 

c=c) +c, (91b) 

For & = 0 the problem of short-wave dynamics 

reduces to the ordinary Orr-Sommerfeld equation 

with free-surface boundary conditions. 



Wo" - 2k2we + kw - GkRL (U-c) (w" —k?w9)-woU"] = 0 

cows + (= - key) Wo = 0 
at 2)" = 0 

Pw) + Q wi +b wi! =) (0) 

and Wo (*) = wi (~) = 0 (92) 

The eigenvalue, cj, which determines the growth 

rate of the short waves in the parallel shear flow, 

is determined by a numerical solution of these 

equations for a given k and R. 

The equations governing the modification to the 

flow due to the long-wave perturbations are derived 

by using (91) in (76) and equating terms of 0(¢). 

In this operation the as-yet-unknown correction 

to the eigenvalue, c cy, will appear multiplying the 

lowest order solution, Wo- The resulting problem 

for Wy is written 

wy -.2k2wt + kYw, - GkR[(U-cg) (WY -k2W,) —w 0") 

= c,r,(w,z) + x, (W,w,z) (93) 

where r, (w,z) and rp (w,W,Z) are known functions of 

the long-wave perturbation, w(z), and the lowest- 

order short-wave perturbation, wy (2). From (84) 

and (91) 

x, (W,Z) = - ikR(w" - k?wy) (94) 

and r»(w,w,z) is defined by (76) with the long 
wave perturbations normalized by ¢. 

The boundary conditions for W, have homogeneous 

operations that are identical to those for w, but 

the equations are non-homogeneous with terms that 

depend on w_, the long-wave perturbations, w, and 

the unknown correction to eigenvalue, c)- 

i du A ate 
' — = = cow, + (a kc) Wy Yq c, + Thi (w,w ) 

at z=0 

Bw) iO) wi oe by wh = Ven Ci Va (W,Wo) (95) 

and wy (~) = wy (7) = 0 

where y (w) and Yoo (w) are defined in equations 

(86) and (90) with the long wave perturbations 

normalized by f 

phe eee 
and Yay Wo kw) 

= 2c )k(1-s)wy = ik3s/Rw) + is/kRw) Very, 
This problem is similar to that considered by 

Stuart (1960) and many others in later studies. 

In Stuart (1960) we have the problem 

L(w,) = r(z) 

with w, (0) = Ww! (0) =w,(@) =w! (=) =0 (96) 

where L is the Orr-Sommerfeld operator. 

The solvability condition [Ince (1926) pg. 214] 

for this problem is 
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where v is the solution to the adjoint problem 

L(v) = 0 

with v (0) = y"'(~) =0 (98) i < S Mn < ay 

Condition (97) is then used to determine the modifi- 
cations of the flow due to non-linearities. 

The present problem differs from that in (96) - 
(98) in that the boundary conditions of (95) involve 
linear combinations of the derivatives of Wy at z 
= O and are non-homogeneous. 

In Appendix B, we show that the adjoint boundary 
conditions that replace (98) in the determination 
of v are 

v" (0) =u" (@) =7 (e) =(0 (99) 

and [B-ikRcU' + o(U'-ke)]v + [U'-kc]v" + cv"' = 09 

where ey ae 
G = - (2k? + ikR(u-e)]ip Bi = =e - 2(u"-ke) 

and the extended solvability condition for non- 

homogeneous boundary conditions is 

co 

J xvae = { [c) ry (z)) + Ly (z) ]vaz 

0 0 

ll z a + \ dq S 

+ (ye + His On (100) 

The solvability condition (100) is then used to 

determine ¢, and thus the correction to the local 

growth rate due to the presence of the long wave 

perturbations. 

vi {ood Fa NOEs Grae zs i eee OE eg EN, ca Js (z) vdz 

Ca 2 
Vv oO : Q a Vv 

eg Oar Beg) 7 (0) I+, Y ¥ (0) - Wes (z) vaz 

(101) 

After c has been determined from (101), the 

normal stress on the small-scale waves in the water 

due to the air flow may be determined. The sim- 

plest approach is to use (88) and infer Pa = Crm 
directly from Poy, using the momentum equation in the 

water (or Bernoulli's equation). 

Retaining the terms linear in the large-scale 

quantities, we have 

Day = Cres = 0h kz (c =H > = (gi TkA)cl (102) 

where c is given by (91b) with cy from (101). The 

correction to the growth rate, Cy, is doubly complex 

in that it has both real and imaginary parts (cee 

and c,) that are in phase and out of phase with @. 
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To complete the calculation of Section 2 for 

long-wave growth rate due to the non-uniformity of 

short-wave growth rate, we require the part of c. 

that is in phase with ee For the analysis of short 

waves, Section 2 uses an expression equivalent to 

Duesonry =fosku (cla aa) (user BU) (le ake) cn (42) 

where all quantities are real. This assumes that 

the real and imaginary part of c are modulated by 

the large scale in exactly the same proportions. 

Thus by this assumption, 

<5 (Ze, - uw) 
aky = -2 Gera (103) 

since 

co = V g/k+kT + ACen eee c' = Cy +U 

Should these assumptions not be exactly correct, a 

would have a small imaginary part, which will be 

ignored. 

4. NUMERICAL RESULTS 

We have carried out the calculations described in 

3 using the Orr-Sommerfeld solver developed by 

Gustavsson (1977). This is an implicit method 

which uses an Adam's -integration technique. One 

particularly attractive feature of the program is 

its variable step size. Thus it is possible with 

a reasonable number of points to have a fine mesh 

in the "wall" layer and other regions of high gra- 

dients and to coarsen the mesh as one moves out 

into the boundary layer. The programs and results 

will be more fully described in a subsequent publi- 

cation. Only one set of calculations will be 

reported here. 

The shear flow profile and its derivatives are 

modelled with continuous functions that approximate 

the mean profile of a turbulent boundary layer. 

Calculations were done at a friction velocity, uT, 

of 30 cm/sec; conditions were chosen so that the 

ratio, ut/Uw, was .05, a typical value for wind- 

tunnel experiments. Interaction between long waves 

of 100, 75, 50, 36, 20, and 16.5 cm with short 

waves of 2, 1, 0.75, and 0.6 cm were investigated. 

Although many interesting features of the flow can 

be investigated using this approach (such as the 

distortion of the mean profile as the large wave 

passes, and the variation of the wave speed, local 

‘growth rate, and amplitude of the short waves along 

the large waves), the only systematic investigation 

we have yet performed concerns the energy input to 

the large waves due to the modulation of the short- 

wave Stokes drift. 

The linear temporal growth rate of wind-driven 

waves 2; = ke; is of course a direct output of the 

calculations. Figure 2 shows Ma = sec-l as a 

function of wave number, k ~ cm-l, for we = 30 cm/ 

sec. The growth rates we obtained are slightly 

higher than Miles's viscous calculations [Miles 
(1962)] but when we used his shear-flow profile, we 

obtain close agreement. For Wee = 30 cm/sec, all 

the waves we investigated were viscously dominated, 

that is, their critical layers were sufficiently 
close to the free surface to be essentially merged 
with the surface viscous layer. Thus, little in- 

sight to the behavior of these flows can be obtained 
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FIGURE 2. Linear temporal growth rate @ u_ = 30 cm/sec; 

1—-—-—-present calculations; —W— present calcu- 

lations with miles profile U, = 5uU*. 

from an inviscid model of the behavior of shear 

flows. The real part of the wave speed, c,, also 

shown in Figure 2, differs very little from the 

free wave speed of gravity-capillary waves, co. 

The energy input to the large waves from the 

small waves is given by (66). With t = kct, and 

s'2 from (54), the dimensional temporal growth rate 

of the large waves can be written 

ae 
— 1272 ae i S61] (104) 

= = aB' ~ c! 

= fo [2 1 Tas = 

—C} 
g 

where 2; is the linear growth rate Bk/2. 

the coupling coefficient C as 

-aB'k 
c= 7 (105) 

We define 

where the minus sign is introduced because, contrary 

to our expectations, a turned out to be negative 

for the cases we investigated. Thus the growth of 

the large-wave amplitude is given by 

dé 
— ican 2 ae Jkt" | 2] (106) = Gy lia 

Thus for C positive, an energy input to long waves 

comes from short waves whose group velocity, c!, 

is slightly less than the long wave phase velocity, 

c¢. The theory also predicts that long waves will 
decay if c} > ¢. Since waves satisfying this con- 

dition will be shorter capillary waves which will 

be more strongly damped by viscosity, we expect a 

net energy input to the large waves. Of course 

the theory does not hold at ¢ = c, where non-linear 

“interactions must be considered. 

Numerical values of the coupling coefficient, C, 

are shown in Figure 3 as a function of A for various 

A'. C is certainly 0(1) having a maximum value of 

3 at 4' = 1 cm. It is also a slowly varying function 

of A. It has its maximum value about \’' = 1 cm 

which corresponds to the maximum in the linear 

growth rate for short waves for these conditions. 

It drops off more rapidly with decreasing wave 



length, A', than does the linear growth rate, Qa 

(A'). The long-wave linear growth rate, Qin is 

also shown for comparison; it is much smaller. Of 

course the interaction growth rate also involves 

(k'c') 2 of the short waves which would be typically 

0.01 but the division by cmc would somewhat offset 

the effect of small slope. One calculation for an 

upstream travelling long wave verified that a was 

negative and energy was removed from the long wave 

by interaction with the short wave. We have not 

carried the calculations further to date. 

Some idea of the wavelengths, involved in any 

practical application of these ideas can be seen 

from Figure 4 which shows the group velocity and 

phase velocities for gravity-capillary waves. The 

requirement for strong coupling is ¢ x ci. We 

further note that waves shorter than say 0.3 cm 

are unlikely to be important in a viscous fluid. 

Thus short waves in the range 0.3 cm could interact 

with a 20 cm long wave in the manner we have dis- 

cussed but waves longer than 20 cm would be unlikely 

to be affected. 

Although the effects of surface drift are not 

yet included in our calculations, the range of 

affected long waves can be somewhat broadened by 

considering surface drift. Drift velocities are 

typically 5% of the wind velocity; this is the same 

order as the friction velocity which we have taken 

as ut = 0.05 U.. If we assume that a surface layer 

will advect the short waves [Valuenzuela (1976) ] 

but leave the phase velocity of the long waves 

unaffected (Valenzuela's calculations did not extend 

to long waves), we can consider a broader range of 

interaction possibilities, as sketched in Figure 4. 

For a group velocity augmented by a surface current 

of 30 cm/sec, interactions between a long wave of 

about 50 cm and waves longer than 0.3 cm become 

possible and a 20 cm wave may interact with waves 

of order 1.4 cm. 

Experimental data in the range of wave lengths 

and friction velocities of interest for the inter- 

actions we have investigated here was presented by 

Plant and Wright (1977). Some of their results are 

reproduced in Figure 5, showing the temporal growth 

rate vs. wave number for several values of friction 

velocity. Of particular interest is that while the 

short-wave growth rate is accurately predicted by 

linear theory, there is a departure of theory and 

FIGURE 3. Coupling coefficients for long-wave and 

short-wave interaction; linear temporal growth rate 
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FIGURE 5. Measured temporal growth rates for various 

uu. cm/sec; from Plant and Wright (1977). 
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experiment for waves longer than about 10 cm. This 

is close to the first possible long wave that can 

strongly interact with a short wave whose group 

velocity is equal to the long wave phase velocity. 

Thus the results we have obtained to date indi- 

cate that the long waves can receive energy due to 

their interaction with wind driven short waves. 

The interaction mechanism we have investigated 

requires the presence of the wind and the variation 

of the short wave growth rate along the surface of 

the long wave due to changes in the local wind 

field caused by the passage of the long wave. Of 

course further work remains to be done to explore 

the full implications of these results, to complete 

the calculations and to make fuller comparison with 

experiment. 
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APPENDIX A. 

DERIVATION OF STOKES' DRIFT MODULATION FROM 

KINEMATIC WAVE THEORY 

Kinematic wave theory, modified to allow for small 

dissipation or growth due to energy interchange 

with the wind, gives the following conservation 

equation for the wave action density, A", of the 

train of short waves: 

dA" 3 - 
a= tS UA = 20S A A.l 
at ax (a ) ac ( ) 

where &' is the temporal growth rate. The wave 

action density for waves on a current is given by 

[Bretherton and Garrett (1968) ] 

A' = E'/Q' 2 (A. 2) 

where E' is the energy density and 2' = k'(c' - 0) 

the frequency relative to the fluid at rest. By 

introduction of 

Be = ki (eu a) (a |2 = (c' — ws" (A.3) 

(A.1) may be cast as a conservation equation for 

the Stokes' drift 

as' e) tar = 

gee Ucegue 
1 dk u ' ok" ' ' gice | Six ) + 2011s 

Il 7 
fob] Keb) x lee 

ap QV) Se (A.4) 
L 

With Qe = k'B" (1-akZ) /2 and expressed in the vari- 

ables T and & this takes the form 

=U 6 2 ey OL Rp ie vi 
[c carat ee c) dE ]2n S' = B(1-akz) 

u 
aus ' eo oe ee eee Ste oe +c 20 (re) O) Ven te LN) 

(A.5) 

By neglecting the variation of the left-hand side 

with t one finds from this 

s! set oe 

s (cg-c) (ee -ti) 

k! 

= Cra) [(c'-e)v,, + T)} (A.6) 

which, with S' = (c=) s"2/k", is found to agree 

with (53). 

APPENDIX B. 

THE EXTENDED SOLVABILITY CONDITION 

We first determine the adjoint to the homogeneous 

problem for a shear flow over a water surface. 

This problem is written 

L(w) = 0 

Wi ew (U" - kc) w' =0O 

Wo = Pw + Qw’ + bw"' = 
a ow . o at z=0 

w(e) = w'(~) = 0 (B.1) 

where L is the Orr-Sommerfeld operator. 

The adjoint to the Orr-Sommerfeld equation is 

[Sturart (1960) ] 

L(v) = v"" + ov" - 2ikRU'v' + [k* + ik3R(U-c)]v = 0 

o = -2k2-ikR(U-c) (B.2) 

From the Lagrange identity [Ince (1926) pp. 210, 

214) 

J tenes) - wL(v) }dz = P(w,v) 

0 0 

where P(w,v) is the bilinear concomitant. The 

boundary conditions on v that will complete the 

statement of the adjoint problem are found by the 

requirement that P(w,v) be zero at both end points. 

Since w and its derivatives are zero at Zz = o, this 

leaves the conditions on v to be found for z = 0. 

P(w,v) is written in bilinear form as 

(hepa) UA NAL UA | attastail 1 (oa Ww 

-o 0-10 w' 
@Q al © © w" 

= v-[U] -w il 0) 0) © w"' (B.3) 

The free surface boundary conditions for w may be 

written 



v'-ke c (0) 0 w 

P Q 0 b w' 
w"' = 0 

ww" (B.4) 

(B.4) is an underdetermined set of equations 

that will yield two solution vectors with arbitrary 

coefficients. They are not unique and any linear 

combination will also be a solution. Two such 

solution vectors are 

Ww, = {0,0,1,0} and Wy = (-c,U'-kc,0,8) (B.5) 

where 

B = - [Q(U'-kc)-cP]/b 

We now enforce the requirement that P(w,v) be 

zero. This requires that certain linear combinations 

of v, v', v", v'"' be zero and these are of course 

the required adjoint boundary conditions. 

Consider the solution vector Wy: For P(w,v) to 

be zero 

P(w,v) =v °[U] - th 2 wo 0 | 

(B.6) 

This requires that 

0 = © (B.7) 

Consider the solution vector We: For P(w,v) to 

be zero, 

aloIsaoj) ap @(WUae)) ap (8 

P(w,v) =v °[U] We = Wo =o 

(Y= Tee 

Cc 

so that (B.8) 

[-icRU'k+o(U'-kc) + B]v - cov' + (U'-kce)v" 

re Ww = © 

Since v' = 0, this term may be eliminated from this 

relationship. Thus given 

WwW, (7) 2 ey 4 (! = ina = 0 | 

at z=0 

W, (w) = Pw + Qw' + bw" = of (B.9) 

for P(w,v) to be zero requires 

(v) = [-ikcRU' + o(U" - ke) + B]v + (U' - ke)v" 

tev = 0) at z= 0 (B.10) 

It can be shown that if (B.9) and (B.10) are used 
to construct P(w,v), the result is identically zero. 

Thus (B.10) are the boundary conditions for the 

adjoint problem. 

The solvability condition for a problem of the 

form [Ince (1926) ] 
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L(w) =r 

W, (w) = Va, aly = hyo) (B. 11) 

is that 

[ vrdz = i Von + 15 Wo yaeh + O0000 (B.12) 

where the Von'S are determined such that P(w,v) 

= Wy Wyn Wo Worm +... and v is a solution of 

the adjoint system. 

V, () ="0) i =1,n (B.13) 

For the present problem, only Y, and Yo are 

non-zero. By standard techniques, we have deter- 

mined the additional linear combination of w and 

Vv, 

W3 (w) = - A 

Wy (w) = - w" - ow 

V3 (v) = v/b 

Wh, (CA) = We a (Ce = OAsxe))a7 (B.14) 

such that the bilinear concomitant (B.3) may be 

written in the form 

P(w,v) = W Vy + W> V3 ta Ws Vo + Wy Vv 
1 1 

where W, and W2 are the boundary conditions from 

(B.1) and V, and V, are the adjoint boundary con- 

ditions from (B.10). 

Thus the solvability condition for non-homogeneous 

problem with non-homogeneous free water boundary 

conditions is 

i rvdz = Y, Vv, 1 Foy V3 (B.15) 

0 

where 

Wn = We uz (fe = Ore) 

at z=0 

V3 = v/b 

and v is a solution of the adjoint system 

L(v) = 0 

V, (v(o)) = 0 

Vy (v(0)) = 0 

v(~) = v'(~) = 0 (B.16) 

APPENDIX C. 

In this section we give the expressions for the 

various terms in (69) for the assumed form of the 

small scale (71). The continuity equation (73) 

has been used to express u' in terms of w'. 

The results are as follows 



sin. Oe Oa a Oi OS. dle Dts OS 
dtez  dtoz d22 k 023 dt k 9023 0x 

(Gea) 

o2w i Aw Poe eeOWsO at ow! 
RO 7 © REDE Gy BEG ae HEE BE ae Meca 

Vw = daw Ant alent Be Es + Vw (C.3) 
az2 3 ox i 

She0 > ya Pose pvesies Cy Bh, Be oe Otw 
IES ea ae ve om fen vo ae Bee 

+V2R + U" + UNZ (Cc. 4) 

89 _ i atw 32w A, © 3t aw A 33w cs 
ie a eee dz2 «k2 O& Oz5 923 Ox 

(Va) Un! (C.5) 
az 

Die ae open) oy cary SR Be 
ox > dz Ox dz (Ox 

Oo 
+ eaE Vw (C.6) 

The equation for the small scale will contain 

coefficients involving the mean flow expressed as 

a function of z'. 

U(z")) = U(z) + UN(zZ)) Z 

and u"(z") = U"(z) + U"' (z) & (G7) 

so that, for example, the term uV2w, with only 

linear terms retained, becomes : 

2 

uV2w = UV2w + [U + U'E + a] a k2w"] 
Oz 

nee & eon OS, See + u'VCw €2ikU aE Oz (C.8) 

and 

2 ~ i 33w! dw' v2 = ao at ' mo4 mt aay RCE e ‘Wo wV*u wi w'[{U (0-7) whe aa3 iky ] 

coe (c.9) 
of these, v2w and 32a/ax2 will be ignored. 

The viscous term is manipulated as follows 

1,42 dw 2 du 1 2 ow 2 ou eye {co Se a oc 

RL ax v az! R Ny ox az 1 

1 32w! 2 i otw! 32w! 
+ - ") - = i 

plik G72 Ewe) k dzt 7 fe 

tee Oe. 6 Oke | Mh Beh 
+ RI3k 5 a2 = Dee ] (C.10) 

The fifth derivative is obtained from the Orr- 

Sommerfeld equation. Some cancellation occurs 

among these terms to yield the final result (76). 
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Preliminary Results of Some 

Stereophotographic Sorties Flown Over 

the Sea Surface 

L. H. HOLTHUIJSEN 
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The Netherlands 

SYNOPSIS 

Preliminary results are presented of a study which 

is concerned with the directional characteristics 

of wind generated waves. The basic approach adopted 

was to measure the actual sea surface elevation as a 

function of horizontal coordinates by means of stereo- 

photogrammetric techniques. The surface representa- 

tions thus obtained were Fourier transformed to 

estimate two-dimensional wave number spectra. 

Basic considerations concerning the photogram- 

metrical process, the transformation rules and the 

statistical significance of the results are described. 

The required stereo photographs were obtained during 

photographic missions carried out in 1973 and 1976 

off the island of Sylt (Germany) and off the coast 

of Holland. So far three two-dimensional spectra, 

each from a different flight, have been calculated. 

The sea and weather conditions during these flights 

are briefly stated. The wind direction in these 

flights was off-shore. 

Frequency spectra computed from the observed wave 

number spectra are compared with an assumed frequency 

spectrum and an observed frequency spectrum. The 

agreement is reasonable but some discrepancy needs 

to be resolved. For two of the three observations 

the directional distribution of the wave energy is 

strongly asymmetrical around the wind direction. 

This asymmetry seems to correspond to asymmetry in 

the up-wind coast line. 

From the observed spectra a directional spreading 

parameter has been computed as a function of wave 

number. The results in normalized form agree well 

with published data. The absolute values of the 

spreading parameter for two spectra are within 30% 

of the anticipated values. For the third spectrum 

the values were almost five times too large but a 

comparison in this case may not be proper. In one 

of the spectra some indications of bi-modality around 

the wind direction have been observed in the direc- 

tional distribution function near the peak of the 

spectrum. 
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1. INTRODUCTION 

Observations of the two-dimensional spectrum of wind 

generated waves are relatively few and are mostly 

based on methods with rather poor directional resolu- 

tion. The techniques which are used for the observa- 

tions may be based on such systems as a sparse wave 

gauge array [e.g., Panicker and Borgman (1970)] ora 

buoy capable of detecting directional characteristics 

of the sea surface [e.g., Longuet-Higgins et al. 

(1963)]. The few detailed observations which have 

been published were based on other techniques such 

as high-frequency radio-wave backscatter [e.g., 

Tyler et al. (1974)], analysis of the sea surface 

brightness [e.g., Stilwell (1969), Sugimori (1975) ] 

or stereophotography [e.g., Cote et al. (1960)]. 

These provided information with a high directional 

resolution but the analysis of the results in terms 

of wave characteristics has not been very extensive. 

The Delft University of Technology and the Min- 

istry of Public Works in the Netherlands have devel- 

oped a system based on stereophotography which 

monitors the instantaneous sea surface elevation as 

a function of horizontal coordinates. It has been 

used in this and other studies and it is anticipated 

that it will also be used in future studies of wave 

phenomena such as wave transformation in the surf 

zone or wave patterns around marine structures. The 

present study, which is a joint effort of the Uni- 

versity and the Ministry, is aimed at observing and 

interpreting two-dimensional spectra of wind gener- 

ated waves in a variety of atmospheric conditions. 

The study is primarily directed towards the evalu- 

ation of the shape characteristics of the directional 

energy distribution of the waves. 

For this study a few hundred stereo pictures have 

been taken since 1973 and the analysis has just be- 

gun. The results reported here are preliminary in 

that the number of analyzed pictures is only a frac- 

tion of the total and in that the interpretation of 

these pictures has not as yet been completed. The 

spectra which are presented here were calculated 
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from three sets of pictures, each containing ten Cote et al. (1960)] and the present system is es- 

stereo pairs. These sets were chosen on two bases. sentially a revised version of the system used in 

One is the photographic quality which was judged by SWOP. 

photogrammetric experts, the other is the scientific It will suffice here to comment only briefly on 

interest. In this stage of the study it was felt the operational system. Actually two independent 

that wave fields generated by off-shore winds would systems were built. One is based on Hasselblad 

be of most interest because the boundary conditions cameras and has been described in detail elsewhere 

are well defined. Also, results of past investiga- [Holthuijsen et al. (1974)]. The other is an almost 

tions of wave generation [Hasselmann et al. (1973), exact copy of that system except that the Hasselblad 

Hasselmann et al. (1976)] suggests that observations cameras were replaced by UMK cameras of Jenoptik 

in these conditions may be extrapolated to more com- which are superior in optical and metrical aspects. 

plex conditions. The Hasselblad system was used for observations in 

The first set of pictures which was analyzed was the area off Sylt and the UMK system was used in 

taken in September 1973 during almost "ideal" off- the area off the coast of Holland. Synchronization 

shore wind conditions in the area just west of the of the cameras was achieved by using a radio signal 

German island of Sylt. These observations were that triggered a command pulse which was manipulated 

carried out in the framework of an international electronically in such a way that it complied with 

oceanographic project known as the Joint North Sea the timing characteristics of the receiving camera. 

Wave Project (JONSWAP) which is concerned with the The synchronization error for the Hasselblad system 

study of wave generation and prediction. A variety was less than 1 ms for all of the analyzed stereo 

of articles directly related to JONSWAP has been pairs and for the UMK system the synchronization 

published and more are being prepared for publica- error was less than 5 ms. To position the cameras 

tion. Some references are: Hasselmann et al. (1973), two Alouette III helicopters were used. These heli- 

Spiess (1975), Hasse et al. (1977), and Hiihnerfuss copters had a drop-door over which the cameras could 

et al (1978). The two other sets of pictures were be mounted. The distance between the helicopters 

taken in March and November 1976 in the area west of was estimated during the flight through a range 

Holland near the town of Noordwijk, also in off- finder which was imposed on the viewer of a third 
shore wind conditions. Wave observations at sea camera which looked from one helicopter to the other. 
level during the first and last flights are avail- It took a picture of the other helicopter every time 

able and these have been used for comparison with the downward looking cameras were activiated. From 

the stereophotogrammetric results. these photographs the distance between the helicop- 
ters could be computed and the scale of photography 

could be determined. 

2. STEREOPHOTOGRAMMETRY OF THE SEA SURFACE The specification for the helicopter formation 

during a photographic sortie were largely based on 

When an object is photographed from two slightly photogrammetric requirements. Only the altitude 

different positions, the imagery in the two pictures was based on the anticipated sea state since the 

will also be slightly different. The differences noise and resolution in the spectrum are directly 

depend upon the geometry of the object. By measur- related to the altitude of photography. The upper 

ing the differences, the elevation of the surface limit of the altitude was based on noise considera-— 
relative to an arbitrary plane of reference can be tions. The standard deviation of the measurement 

determined. The conventional technique of analysis error is estimated to be 0.03% of the altitude 

requires human interpretation of the pictures and [Holthuijsen et al. (1973)]. Taking a noise to 

complicated stereoscopic viewing devices. More ad- signal variance ratio of 1:10 as an acceptable upper 

vanced procedures, which have only recently been limit, it can be shown that the altitude should be 

developed, use a computer to carry out a correlation less than 1,000 times the standard deviation of the 

between the images to arrive at the same results instantaneous sea surface elevation (or 250 times 

[e.g., Crawley (1975)]. the significant wave height). The lower limit of 
In the conventional geodetic aerial survey the the altitude is directly related to the resolution. 

pictures are taken vertically in sequence from an If a resolution in the spectrum is required equiva- 

airplane and the interval is chosen such that the lent to % of the peak wave number or better, it 

pictures overlap in the area directly under the : appears that for the Hasselblad system the altitude 

line of flight. An obvious condition is that the should be higher than 6.7 times the reciprocal of 

object does not change between exposures. In land the peak wave number. For the UMK system the fac- 

survey this poses no problem since the ground sur- tor is 4.0. For most "young" sea states these upper 

face does not move. The sea surface, however, and lower limits are not in conflict. The final 

changes very rapidly. To limit the distortions be- choice of the altitude was confined to multiples of 

tweeen two successive pictures to an acceptable 250 ft for the pilot's convenience. 

level, they should be taken within an interval of The size of the sea surface covered in stereo in 

1-5 ms. The airplane cannot possibly fly from one stereo pair is usually too small to produce suf- 

one required point of photography to the other within ficient data for a reliable estimate of the two- 

this time lapse. The consequence is that not one but . dimensional spectrum. To increase the amount of 

two cameras are needed which take the pictures "simul- data more pictures were taken in sequence with a 

taneously," that is, within an interval of 1 - 5 ms space interval sufficiently large to ensure photog- 
and that two aircraft are needed to position the two raphy of non-overlapping sea areas. The correspond- 

cameras. Apart from these technical differences in ing time interval between the exposures would be 
obtaining the stereo pairs, the methods and pro- typically between 4 s and 20 s (depending on camera 
cedures used in this study are standard in geodetic type, ground speed, and altitude). The photographic 

survey and they have been used in the past by various operation to obtain this sequence is called a sortie. 

Oceanographic investigators. A well publicized ef- In principle, the pictures can be analyzed with 

fort is the Stereo Wave Observation Project [SWOP, recently developed, fully automated processes. The 



facilities, however, were not available for the pres- 

ent study and the conventional technique was used. 

In the three-dimensional space which is reproduced 

in the stereoscopic viewing devices a right-handed 

system of coordinates was defined with the y-axis 

in the direction of flight and the z-axis upward. 

During the analysis the sea surface was read at a 

square grid with spacing Ax = Ay, which was chosen 

such that aliasing in the spectrum would be limited 

to only a fraction of the total wave variance. For 

each stereo pair the analysis was carried out ina 

square field as large as possible and the elevations 

were determined relative to an arbitrary plane of 

reference. In the subsequent numerical analysis the 

linear trend was removed through a least-squares 

analysis. The fields obtained from a series of 

stereo pairs were initially arbitrary in shape but 

fairly close to a rectangle. Later they were clipped 

or extended to a square of one common size of Ly.*Ly 

as required in the spectral analysis. Sections where 

no stereo information was available (mainly in the 

areas of extension) were filled with zeros. 

3. TRANSFORMATION AND STATISTICAL SIGNIFICANCE 

The sea surface data from the stereophotogrammetric 

analysis were Fourier transformed to estimate the 

two-dimensional wave number spectrum (k-spectrum) . 

To inspect the directional characteristics as a 

function of wave number, the K-spectrum was trans— 

formed to the wave-number, direction space to pro- 

duce the k,9-spectrum. The k-spectrum was also 

transformed to the frequency domain. 

The k-Spectrum 

The definition adopted here for the two-dimensional 

wavenumber spectrum E(k) is given by Eqs. 1, 2, and 

30 

re 

E(k) = lim < ee > (1) 
Aoo 

where 

Ba > -i2tk:x 12 
H(k) = |SS h(x) e ax (2) 

> 

R 

A = Sf dx (3) 
> 

R 

and <> denotes ensemble averaging. Observations of 

E is estimate of E(k) 

5 

a 
k-plane 

grid in k-plane 

E. linearly interpolated between EB and E 

Ee linearly interpolated between E 

Eo linearly interpolated between E 
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h(x) were available from the stereo analysis ina 

number of square fields and these fields were con- 

sidered to be realizations of the ensemble. They 

were Fourier transformed with a multi-dimensional, 

multi-radix FFT procedure [Singleton (1969)] and 
the final estimates were obtained by averaging the 

results over the available realizations. The sea 

surface data were not tapered and the spectral 

estimates were not convolved; consequently the 

spectral estimates are "raw" estimates. In analogy 

with time series analysis [e.g., Bendat and Piersol 

(1971)] the reliability is represented by a y2= 

distribution with 2n degrees of freedom, where n 

is the number of fields. The resolution denoted 

by Ak, Aky is) on the order of (Ly ° Ly) ae 

The k,9-Spectrum 

ze 
The transformation of the k-spectrum to the k, 

6-spectrum is formally given by Eq. 4. 

nm 
E(k,6) = E(k) |J;| (4) 

where k = magnitude of ik, 8 = orientation of k and 

where the Jacobian Jj = k. Computing the values of 

E(k,8) at a regular grid in the k,8-plane requires 

the estimation of E(K) at corresponding values of 

k. This was done by bi-linear interpolation of 

E(K) at the proper values of K (see Figure 1). 

The directional resolution can be estimated by 

considering the angular distance between two 

neighbouring, independent estimates of E(K) ona 

circle in the ¥-plane centred in k = 0. On this 

circle with arbitrary radius, k, approximately 

27Tk/Ak independent estimates of E(K) are available 

and the directional increment between these estimates 

in radians is Ak/k. This would be a fair approxima- 

tion of the directional resolution if all pictures 

were oriented in the same direction. But actually 

the orientation is a random variable due to the heli- 

copter motion during the sortie. The directional 

bandwidth to be added will be on the order of twice 

the standard deviation (dg) of the helicopter yaw. 

The final expression for the directional resolution 

(A8) is given in Eq. 5. 

A® = Ak/k + 20, (5) 

The resolution in k will be on the order of the 

increment between estimates of E(k) in the k-plane 

which is LZ! = Lo 
The reliability of the estimates of E(k,6) can 

again be expressed in terms of a y2-distribution but 

the number of degrees of freedom is not uniformly dis- 

tributed over the k,@-plane. It constitutes an un- 

2 

3 and E, 

5 and EG 

+ gridpoint in k,@ plane transformed to 

FIGURE 1. Bi-linear interpola- 

tion in the k-plane. 
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FIGURE 2. Sites of the field operations. The areas in 

the boxes are shown enlarged in Figures 3 and 4. 

dulating function due to the fact that the estimated 

value of E(k,@) is based on four values of E(k) which 

are usually not equally weighted in the given in- 

terpolation technique. They are equally weighted 

only when a transformed gridpoint in the k,8-plane 

coincides with the centre of a mesh in the ¥-plane. 

In that case the number of degrees of freedom for 

E(k,6) is four times the number of degrees of free- 

dom for each individual estimate of E(K). This is 

the upper extreme of the undulating function. The 

lower extreme occurs when a transformed k,® grid- 

point coincides with a gridpoint in the K-plane. 

Then the number of degrees of freedom of the esti- 

mate of E(k,8) is equal to the number of.degrees of 

freedom of an individual estimate of E(k). The 

values of the two extremes are 8n and 2n respectively. 

The £-Spectrum 

The f-spectrum is determined by integrating the f, 

8-spectrum over the range (0,7) and multiplying the 

result by two. The operation is given by Eq. 6. 

T 

E(f) = 2 f E(£,6)d0 (6) 
0 

The £,8-spectrum has been computed from the k- 

spectrum. The relationship to transform from wave 

number vector to frequency is based on the linear 

dispersion relation for deep water corrected for 

currents. This expression and the transformation 

are given in Eqs. 7, 8, and 9. 

L. >> 
f = (gk/2m) * + k.V (7) 

E(£,0) = E(k)|g.| (8) 

By 
Jo = Ds (g/2m) 3/2 + vk-! cos (0, - e)17? (9) 

a 
V is the current vector and V and 8. are its magni- 

tude and orientation. To determine the values of 

E(k) the same procedure as described above was used. 

The resulting spectrum is the frequency spectrum as 

Norway 

\ 
Germany | 

Great Britain | 

Belgium 

observed in a point stationary with respect to the 

sea bottom. This was done so as to be able to com-— 

pare the results with measurements carried out with 

anchored buoys. Expressions for the approximate 

resolution (Af) and number of degrees of freedom 

(N) are given by Eqs. 10 and ll. 

> Use el 
KE ak Ak = on eis (10) 

Phe) ee ues ab 
N= 8 G AK (11) 

4. DESCRIPTION OF THE SITES AND THE WEATHER 

CONDITIONS 

Maps of the areas off Sylt and off Noordwijk and 

two bottom profiles are given in Figures 2, 3, 4 

and 5. It may be noted that both areas are similar 

in general appearance but an important difference 

seems to be that the coast near Sylt recedes sharply 

North and South of the island and is strongly asym- 

metric with respect to the off-shore direction, 

25km 

+ observation tower 

FIGURE 3. The area of observation off Noordwijk. Lo- 

cations of observations indicated by dots. 
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FIGURE 4. The area of observation off Sylt. Active 

wave monitoring stations and station of observation 

indicated by dots. Wind direction indicated by arrow. 

whereas the coast near Noordwijk is more continuous 

and symmetric. For both sites the water is effec- 

tively deep for waves generated by an off-shore wind. 

The sortie in the area west of Sylt was carried 

out during the field operations of JONSWAP in 1973, 

on September 18th, at 17:30 hr (local). Britimmer et 

al. (1974) describe the large scale weather features 

during the JONSWAP operations of 1973 and also give 

results of meteorological observations from ships, 

buoys, and balloons in the area. According to this 

information the windspeed and direction prior to the 

flight had been fairly constant for one day. Since 

the wind was almost perfectly off-shore the situa- 

tion was classified as an "ideal" generation case. 

In the two hours prior to the flight the windspeed 

and direction at station 8 (see Figure 4), at 10 m 

elevation was approximately 13 m/s and 110° respec- 

tively. The direction is only a few degrees off the 

"ideal" off-shore direction of 107°. 

The weather during this flight was poor for photo- 

graphic operations and all pictures which were taken 

were under-exposed, in spite of the best possible 

photographic measures. Pictures were taken over 

six stations of JONSWAP, including active wave mon- 

itoring stations 5, 7 and 9 (see Figure 4). The 

frequency spectra observed at these stations are 

given in Figure 6 and they may be used for a direct 

comparison with the results of stereo observations 

over these stations. But in selecting the pictures 

for preliminary investigation preference was given 

to photographic quality rather than availability of 

ground-true information and it appeared that the best 

pictures were taken over station 10, which was other- 

wise inactive during the flight. 

TTT, ON 
———— Noordwijk 

FIGURE 5. Bottom profiles off Sylt (direction 287°) 
and off Noordwijk (direction 300°). 
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The frequency spectrum at station 10 was estimated 

with a "hindcast" procedure based on the JONSWAP pa- 

rameter relationships [Hasselmann et al. (1973)]. 

The "hindcast" was attempted for stations 5, 7, and 

9 with the observed windspeed of 13 m/s but the re- 

sults (Figure 6) were rather poor, although they 

seemed consistent with the statistical variation in 

the observations of JONSWAP. The agreement improved 

when a windspeed of 15 m/s was used (Figure 7). This 

was the windspeed estimated just prior to the flight. 

Since this fictitious windspeed produced more real- 

istic results, in particular for station 9 which was 

the nearest to station 10, it was used for the "hind- 

cast" at station 10. The resulting spectrum is given 

in Figure 8, the comparison with the stereophoto- 

graphic results will be discussed in Section 5. 

The second and third set of pictures to be ana- 

lyzed were chosen from the pictures obtained in the 

area off Noordwijk. The main reason for selecting 

these pictures rather than the pictures taken off 

Sylt was that the results of the sortie just de- 

scribed indicated that the data were influenced by 

the asymmetry of the coastline of Sylt. The coast 

near Noordwijk is more symmetric for off-shore wind 

directions. The information on the atmospheric con- 

ditions during these flights was based on standard 

synoptical observations which were received through 

the office of the Royal Netherlands Meteorological 

Institute. In addition a cup-anemometer and a wind- 

cone were available at an observation tower located 

9.5 km off-shore from Noordwijk (see Figure 3). 

The second sortie (the sequence refers to the 

sequence of analysis, not the time sequence of the 

flights) was flown in off-shore wind conditions on 

November 12, 1976, at 13:05 hr (local). From the 

synoptical observations it was found that the wind 

was rather weak over the entire North Sea and the 

wind in the area of observation was mainly caused 

Sylt 730918 

ast JONSWAP spectrum _— 

observed spectrum 

17:51 start of record (duration 25 min.) 

N stat.9 
30+ 17:25hr 

257 

energy density (m*/Hz) 

0.30 0.35 0.40 010 015 0.20 

FIGURE 6. Observed frequency spectra at stations 5, 7, 

and 9 and corresponding JONSWAP spectra for U = 13 m/s. 
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Sylt 730918 
35} 

stat.9 JONSWAP spectrum 
30 | 17.25 hr 

r | observed spectrum 

| \ 17:51 start of record (duration 25 min.) 

20 

wn 

i=) 
spectral density ( m?/Hz) 

os 

Qo ——, 

0.10 a15 020 025 030 035 040 

frequency (Hz) 

FIGURE 7. Observed frequency spectra at stations 5, 7, 

and 9 and corresponding JONSWAP spectra for U = 15 m/s. 

by a weak and fairly large low pressure area over 

central France. Synoptical observations in the 

coastal region 25 km North and 8 km South of Noord- 

wijk indicated windspeeds of 4.5 m/s and 4.0 m/s 

respectively and the wind directions of 100° and 

160° respectively. The wind observation at the 

platform was carried out at 23 m above mean sea 

level. Averaged over the duration of the photo- 

graphic operations (about 40 min.), the observed 

windspeed was 6.4 m/s and the directions just prior 

and just after the flight were approximately 140°. 

The “ideal" off-shore direction would have been 120°. 

To estimate the windspeed at 10 m elevation, the 

observed value was corrected. The correction for 

the bulk of the tower, is known from wind-tunnel 

5.0 
Sylt 730918 

JONSWAP spectrum ------ 

Observed spectrum 
40 

(from stereo dota) 

w o 

spectral density (m?/Hz) 

Nn i=) 

is) 

01 015 0.20 0.25 030 a35 f (Hz) 

FIGURE 8. Spectrum inferred from stereo data and cor- 

responding JONSWAP spectrum for U = 15 m/s. 

tests, and the windspeed was extrapolated using a 

logarithmic wind-profile with a drag coefficient, 

cj9 = 1-5 x 10-3. The resulting windspeed is 6.0 

m/s. The corrections for the wind direction are 

marginal and well within the error of observation. 

During this flight pictures were taken over the 

observation tower and at locations 30 km and 50 km 

from the coast (see Figure 3). The pictures taken 

30 km off-shore seemed to contain sufficient stereo 

information to obtain a relatively high directional 

resolution and these were chosen for preliminary 

investigation. 

Wave observations at sea level were available 

from a wave gauge at the observation tower and from 

an accelerometer buoy at the location 30 km off- 

shore. The spectrum of the buoy is given in Figure 

9. It will be used for comparison with the stereo- 

photographic results. During the flight some swell 

coming from south-westerly directions was observed 

from the helicopters. 

The third sortie was flown off Noordwijk on 23 

March 1976 at 12:20 hr (local). The wind was rather 

weak over the entire North Sea and the direction 

varied from ENE off the Dutch coast to SSW off the 

Norwegian coast. This windfield was caused mainly 

by a fairly weak high pressure ridge over the North 

Sea and a low pressure area over central France. 

Synoptical observations at the same coastal stations 

as mentioned above indicated windspeeds of 11.0 m/s 

and 8.0 m/s respectively and wind directions of 80° 

and 70° respectively. The corrected wind speed and 

direction at the observation tower (averaged over 

20 min.) were 8.3 m/s and 70°. Since the "ideal" 

off-shore wind direction would have been 120° the 

wind is slanting across the coast line at an angle 

of approximately 50°. Obviously this implies a 

strong asymmetry of the coast line with respect to 

the wind direction. Pictures were taken over the 

observation tower and at locations 17 km and 30 km 

off-shore. Since the pictures taken 17 km off-shore 

seemed to be the best, they were analyzed. Unfor- 

tunately no simultaneous wave observations in the 

area were available. 

0.50 Noordwijk 761112 

buoy spectrum = = ———-—- 

observed spectrum 

0.40 (from stereo data) 

030- 

spectral density(m*/Hz) 

010 0.20 030 0.40 0.50 

frequency (Hz) 

FIGURE 9. Spectrum inferred from stereo data and 

spectrum from buoy measurement. 
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TABLE 1 Photogrammetric Sylt Noordwijk | Noordwijk 
parameters Sept. 1973 | Nov. 1976 March 1976 

altitude of photography 1500 ft 

orientation of helicopters 
elative to true North 

percentage of zeros added 

in stereo areas 

umber of pictures 
accepted for stereo analysis 

2 
stereo area per picture 220x220 m™ 156x156 ma 170x170 an” 

es ey 2 2 2. 
grid in x-plane 5), 33 5) in 3} big Sh am Dose~aos) iu 

5. RESULTS resolution, Og was estimated at 0.06 [c-.f., 

Holthiujsen et al. (1974) ]. 

The values of a number of parameters relevant to the On closer inspection of the contour-line plot of 

photogrammetric process are given in Table 1. In the spectrum of Sylt two wave fields can be identi- 

view of the preceding paragraphs this table is fied: one coming from approximately 110° and one 

largely self-explanatory but a few parameters will from approximately 155°. This is rather surprising 

be discussed briefly. because neither the wind conditions nor the ground- 

The altitudes of photography are based on antic-— true information gave such indication. The swell 

ipated significant wave heights and peak wave num- in the second spectrum (off Noordwijk) coming from 

bers. These were estimated by substituting the south-westerly directions was observed during the 

windspeed and fetch in the JONSWAP parameter rela- flight. It is well separated from the locally 

tionships [Hasselmann et al. (1973)]. For the sortie generated wind sea and it will be largely ignored 

off Sylt the wind information was fairly good as it in the following discussion. The peak of the third 

was based on ship observations in the area but for spectrum is, surprisingly, coming from Northerly 

the sorties off Noordwijk this information was poorer, directions rather than from Easterly directions, as 

partly because no observations prior to the flights may be antitipated from the wind direction. 

were available. The helicopters were flying directly Instead of the k, -spectra, the normalized direc-— 

into the wind during the sortie off Sylt. During tional distribution functions have been plotted in 

the second and third sortie they were flying with Figures 13, 14 and 15. The definition of these 

the wind in the left respectively right rear quarter functions is given by Eqs. 12 and 13. 

with 11° drift. Ten stereo pairs were taken in each 

sortie but one pair was rejected from the set taken E(k,8) 

off Sylt because it covered too small an area. Us— DO BES) ° FOO ies (te) 

ing the sea surface information from the stereophoto- Halen eek 

grammetric analysis the three K&-spectra were computed 

according to the procedures described in Section 3. 

The results are presented in the form of countour- D(8;k) = 0 mone Wy SO) Ss Ay (13) 

line plots in Figures 10, 11, and 12. Some isolated 

regions in the k-plane have been indicated where the This seemed to be more illustrative than a contour- 

spectra are thought to be seriously affected by line plot of the k,§-spectra, the normalized direc-— 

noise. This noise is dealt with in the Appendix. primarily for the directional characteristics. An 

Values of relevant spectral parameters are given in evaluation of these functions will be given in the 

Table 2. For the determination of the directional next paragraph. 

TABLE 2 Spectral 

parameters 

Sylt 

Sept. 1973 

Noordwijk | Noordwijk 
Nov. 1976 | March, 1976 

] 
resolution in k-plane imal (220x220) 1 (156x156) (170x170)! 

number of degrees of 20 

freedom 

1 ] 0.0641 &*) peak wave number (Gc) [m 

directional resolution 

atke=s ok 

k = 2k" 
k = 3k” 

m 

as 
10 
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FIGURE 10. Contour-line plot of K-spectrum off Sylt, 

Sept. 18th, 1973. Contour-line interval equivalent 

to factor 2. Minor variations are dashed, shaded 

areas seriously affected by noise. Orientation of 

positive ky-axis 110°, k_-axis 200° from true North. 

Wind direction 110°. 

FIGURE 11. Contour-line plot of K-spectrum off 

Noordwijk, Nov. 12th, 1976. Contour-line interval 

equivalent to factor 2. Minor variations are dashed, 

shaded areas seriously affected by noise. Orientation 

of ky-axis 275°, negative k -axis 185° from true 

North. Wind direction 140°. 

FIGURE 12. Contour-line plot of k-spectrum off 

Noordwijk, March 23rd, 1976. Contour-line interval 

equivalent to factor 2. Minor variations are dashed, 

shaded area seriously affected by noise. Orientation 

of ky-axis 310°, k,-axis 40° from true North. Wind 
direction 70°. 
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SCALE 

20° 110° 200° k =1.90 km 

k =0.71km k=2.14km 

k =0.95km k =238km 

k=119 km k=2.62km 

k =1.43 km k =2.86 Km 

k =157km k=3.10 km 

KeTetSSixt Om min, 

The f-spectrum has been computed from the ie 

spectrum according to the procedures described in 

Section 3. The result for the spectrum off Sylt 

is given in Figure 8 along with the corresponding 

JONSWAP spectrum. The resolution is about 0.02 Hz 

near the peakfrequency, which is 0.165 Hz, and 0.01 

Hz at twice the peak frequency. The number of de- 

grees of freedom for frequencies greater than 0.13 

Hz is 250 or more. Considering the scatter in the 

original data set of JONSWAP and taking into account 

the resolution, it is concluded that the agreement 

between the two spectra is fair. 

The frequency spectrum computed from the observed 

k-spectrum of the second sortie is plotted in Fig- 

ure 9 along with the frequency spectrum of the buoy. 

The resolution of the spectrum based on the stereo 

data is on the order of 0.02 Hz near the peak of 

the swell and 0.015 Hz near the peak of the locally 

generated wind sea. The number of degrees of free- 

dom is 125 or more for frequencies greater than 

0.10 Hz. For the spectrum of the buoy the resolu- 

tion is about 0.02 Hz and the number of degrees of 

freedom is about 48. 

The spectrum based on the stereo data seems to 

be shifted in energy density. This may have been 

caused by noise and to appreciate this influence 

the R-spectrum was corrected. The noise was assumed 
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Sylt 730918 

k =3.33 Km 

k =3.57km 

k =3.80 km 

k=4.28km 

FIGURE 13. Normalized directional 

distribution functions of the k- 

spectrum off Sylt, Sept. 18th, 

1973. Directions are relative to 

true North. 

to be uniformly distributed over the K-plane and the 

variance was estimated at 0.002 m2 (based on the 

anticipated measurement error of 0.03% of the alti- 

tude of photography, see Section 2). Accordingly 

a uniform noise level of 0.018 m* was subtracted 

from the ¥-spectrum and the transformation was 

carried out again. The differences were marginal 

compared with the earlier results and the shift 

cannot be explained with the anticipated noise uni- 

formly distributed over the K-plane. Further in- 

vestigation is needed to resolve the remaining 

discrepancy. 

The frequency spectrum of the third sortie is 

given in Figure 16 but no attempt has been made 

to compare this spectrum with a "hindcasted" spec— 

trum because the relatively simple relationships 

for off-shore wind situations cannot be applied. 

6. DISCUSSION OF THE RESULTS 

In the area off Sylt, where the wind was almost 

perfectly off-shore and fairly homogeneous and 

stationary, one would expect to find a frequency 

spectrum with a shape similar to the shape found 

earlier in JONSWAP. Finding a JONSWAP-type spectrum 

in the conditions off Noordwijk seems to be less 
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k=0.2 km 

k=0.3km 

k=0.4 km 

k=0.7 kp, 

FIGURE 14. Normalized directional distribution 

functions of the k-spectrum off Noordwijk, 

Nov. 12th, 1976. Directions are relative to 

true North. The peak wave number kn is related 

to the locally generated wind sea. 

likely because the differences between the wind ob- 

servations at the coast and at the tower are fairly 

large and the wind may have varied between the point 

of observation and the coast. In particular for the 

slanting wind conditions it is obvious that a JONSWAP-— 

type spectrum would not be found, due to the asym- 

metry in the coastline around the wind direction. On 

the other hand, non-linear interactions in the spec— 

trum may produce a JONSWAP-type spectrum, in spite 

of the asymmetry and the variations in the windfield 

[Hasselmann, et al. (1976)]. From an inspection of 

Figure 8 it can be concluded that the frequency 

spectrum in the sortie off Sylt is indeed JONSWAP- 

like. The correspondence of the frequency spectra 

off Noordwijk with a JONSWAP-type spectrum has not 

yet been investigated. 

For the k-spectra of the first two sorties one 

would expect to find directional distribution func- 

tions having some kind of standard shape, symmetrical 

about the mean direction although some skewness may 

be expected in the observation off Noordwijk because 

the wind direction was not perfectly off-shore. For 

SCALE 

Noordwijk 761112 

oo = 3 

= W is) = 3 = i nN = 3 

k=26 km 

km=6.41x 10-2 m_~! 
k=18k rp 

the third spectrum strong skewness may be anticipated 

due to the slanting position of the coastline. 

These expectations seem to be far from reality 

in the k-spectrum off Sylt. The directional distri- 

bution near the peak of the spectrum (see Figure 13) 

is distinctly asymmetric with respect to the wind 

direction with the highest peak at + 45° off the 

wind direction (155° from true North). It is highly 

improbable that the wave generation mechanism would 

build a directional distribution as strongly asym- 

metrical as this. An explanation for this unexpected 

observation can perhaps be found through a detailed 

study of the wind and wave fields, possibly using 

"hindcasting" procedures. But in the context of this 

paper one can only speculate on some possible causes. 

The source function is symmetrical, as is the radia- 

tive energy transfer, since bottom and current re- 

fraction is virtually non-existent. It seems then 

that the asymmetry stems from asymmetry in the wind 

field or in the boundary conditions. As for the 

wind field, a cursory inspection of the large scale 

weather maps revealed no asymmetry. As for the 



boundary conditions, the coast of Sylt, rather than 

the main-land coast was deemed to be relevant as up- 

wind boundary. This was based on the expectation 

that the wave energy is propagating in a narrow 

angular sector around the wind direction [e.g., 

Hasselman et al, (1973)] and since the coast of 

Sylt is rather symmetric it should not cause asym— 

metry in the wave field. But the coast to the North 

and South of Sylt is strongly asymmetric. In fact, 

the distance to shore in the direction of 155° (the 

direction of the highest peak) is almost 2.5 times 

the distance to shore in the direction of 65° (the 

"symmetrical" direction, see Figure 4). If this 

asymmetry in the windward boundary is indeed the 

cause, then it seems that the "ideal" generation 

cases of JONSWAP may be contaminated to some degree 

by asymmetric boundary conditions. Still, relating 

this conclusion to the observed K-spectrum is largely 

speculative as long as it is not substantiated with 

more data. In particular the shapes of the k- 
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spectra at locations closer to shore may give some 
clues. 

The expectations regarding the directional dis- 

tributions for the locally generated wind sea off 

Noordwijk in the second sortie seem to be more 

realistic, at least in an overall sense (Figure 14, 

for k > k,). Any skewness is hard to identify 

through visual inspection of the plots due to the 

small scale variations in the functions. These 

probably stem from the statistical variability of 

the estimates. The swell peak (k = 0.3 con 

0.6 k,) is unimodal and covers a narrow angular 

sector with a half power width of about 35°. 

The directional distribution functions of the 

spectrum in the third sortie seem to be strongly 

skewed for the lower wave numbers (Figure 15, 

mS 2 kp, Say) but for higher wave numbers skewness 

is hard to identify visually. As for the main di- 

rection of the energy distribution, it varies almost 

monotonously from approximately 80° at higher wave 
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numbers to about O° for the lowest wave numbers (see 

also Figure 17). The energy of the higher wave num- 

bers travels more or less in the wind direction but 

the main direction of the peak of the spectrum ap- 

pears to be about 10° relative to true North; that 

is about 60° from the wind direction and almost 

parallel to the coast. This seems to be the most 

remarkable feature of this spectrum as one would 

expect to find a uniform main direction of 70°, con- 

sidering the wind direction and the effects of non- 

linear interactions [Hasselmann et al. (1976)]. 

Again, as with the spectrum off Sylt, it is felt 

that the observed phenomenon is due to the asym- 

metry of the coastline around the wind direction. 

To substantiate this preliminary conclusion 

qualitatively, a simplified "hindcasting" model was 

implemented for homogeneous, stationary wind fields, 

arbitrary coastlines, and deep water. In this model, 

which is basically the same as suggested by Seymour 

(1977), the wave components from different direc-— 

tions are decoupled. In this version the parameter 

relationships from JONSWAP [Hasselmann et al. (1973) ] 

were taken and the suggestions of Mitsuyasu et al. 

(1975) were used for the directional distribution 

function. When applied to the situation of the 

first and third sortie it did produce two-dimensional 

£,6-spectra which at least qualitatively agreed with 

the so far unexpected main directions in the observed 

k-spectra. 

This seems to be.in contradiction with the con- 

clusions of Hasselmann et al. (1976) that the shape 

of the spectrum is fairly insensitive to variations 

in the wind field due to the non-linear interactions 

in the spectrum. It should be noted however that 

the distance to the coast, in terms of wave lengths, 

seems to be rather short for the lower wave numbers 

in the two spectra so that non-linear interactions 

May not have been sufficiently effective to over- 
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come the influence of the geometry of the coastline. 

For the higher wave numbers the distance to shore 

is relatively long and the non-linear interactions 

may have produced the observed directional distribu- 

tion functions which indeed seem to be hardly af- 

fected by the asymmetry of the coastline. The ob- 

servations therefore may still be consistent with 

the theory of non-linear interactions and the con- 

clusions of Hasselmann et al. (1976) if the relevant 

space and time scales are considered. 

In an "ideal" generation case the directional 

distribution of the wave energy is often approximated 

with a simple unimodal function. The observed situa- 

tions are distinctly multi-modal, but one such func-— 

tion, given in Eq. 14, has been fitted to the data. 

This was done mainly to compare the results with the 

published data. 

lL WG = A) a= 8 
Di(e) = Se We ay cos 2s (Come) (14) 

In this expression s is the spreading parameter and 

8m is the mean direction, both of which may vary 

with k. The values of 8,, and s have been computed 

using a least-squares technique. The results for 

8m as a function of wave number are given in Figure 

15. Noise in the spectra (see Appendix) did influ- 

ence these results and outliers had to be identified. 

As a criterion for acceptation, the rate of change 

of 6, along the wave number axis has been chosen. 

An accepted value of Om should be within 30° of its 

neighboring values on the wave number axis.* This 

is equivalent to a rate of change of approximately 

0.0024 m for the first sortie, 0.0033 m for the 

second sortie, and 0.0031 m for the third sortie. 

This allows for slow but significant variations in 

6m which is required, for instance, in the spectrum 

of the third sortie. The resulting set of accepted 

values of 6,, is also indicated in Figure 17. The 

values of s at the corresponding values of the wave 

number have been plotted in Figure 18 in a format 

* 

The value of 30° was chosen arbitrarily. 



suitable for a comparison with data published by 

Mitsuyasu et al. (1975). 

Mitsuyasu et al. (1975) presented results of a 

number of measurements (five) which were carried 

out with a cloverleaf buoy at several locations 

around the Japanese islands. The observed wave 

fields were generated by various types of wind 

fields, including on-shore and off-shore winds. It 

appears from the ratio of the wind speed to the phase 

speed of the peak frequency of these observations, 

that the state of development of the wave fields was 

rather advanced (the ratios ranging from 0.75 to 

1.25). Based on the observed values of s, relation- 

ships in the frequency domain were suggested. The 

relevant expressions have been transformed here to 

the wave number domain to produce Eqs. 15 and 16. 

s = k7}-25 for k 2 

S| = k259 for k <1 (15) 

= 268) s 1.5 (u/c) (16) 

where § = S/S and k = k/ky, a is the maximum value 

of s, ky is the peak wave number, cm is the phase 

speed of the peak wave number, and U is the wind 

speed. The data of Mitsuyasu et al. (1975) are 

probably obtained in situations where tidal currents 

were negligible and in the above transformation the 

deep water linear relationship between frequency and 

wave number was used. 

Equations 15 and 16 are also plotted in Figure 18 

and the agreement is fair, the scatter being on the 

same order of magnitude as the scatter in the data 

of Mitsuyasu et al. (1975). The values of sp com- 
puted from the stereo data are 6.0 for the spectrum 

off Sylt, 5.0 for the first spectrum off Noordwijk. 

These are also in fair agreement with the values 

suggested by Mitsuyasu et al. (1975) which are 4.6 

and 6.1 respectively. However, for the second spec-— 

trum off Noordwijk the observed value of s is 27.4 

whereas the value following from expression 16 is 

5.9. This is a very large discrepancy which is 

possibly due to the rather extreme asymmetry of the 

coastline around the wind direction where the sug- 
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FIGURE 18. The normalized spreading parameter as a 

function of the normalized wave number. 
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gestions of Mitsuyasu et al (1975) may not be ap- 

plicable. 

The above discussion concerned rather overall- 

characteristics of the directional distributions. 

It is planned to investigate these functions more 

in detail. For instance, in the &-spectrum off 

Sylt one aspect which will require closer study is 

the shape of the directional distribution near the 

peak of the spectrum in a sector around the wind 

direction. Two peaks at + and - 15° relative to 

the wind direction can be identified and this phe- 

nomenon seems to be "real" in the sense that the 

directional resolution seems sufficiently high (20°) 

to resolve these peaks in terms of statistical sig- 

nificance. The resonance theory of Phillips (1957) 

predicts a bimodal distribution for frequencies in 

the initial stage of development, but the components 

around the peak have passed that stage and there is 

no relation with this theory. More relevant seem 

to be the theory and calculations of Hasselmann 

(1963), Longuet-Higgins (1976), and Fox (1976) which 

produce a non-linear energy transfer in wave number 

space with two lobes towards the lower wave numbers 

and two lobes towards the higher wave numbers. Fox 

(1976) noted that this function resembles a "butter- 

fly." Also the results of Tyler et al. (1976), who 

observed directional distributions of wind generated 

waves with high-frequency radio-wave backscatter, 

may be of interest since some of the distributions 

have a bimodal character around the mean direction. 

7. CONCLUSIONS 

Three, two-dimensional, wave number spectra have 

been computed from stereophotographic data obtained 

in off-shore wind conditions. The agreement with 

ground-true information is reasonable but some dis- 

crepancy needs to be resolved. 

The directional distribution of the wave energy 

near the peak of the first spectrum is strongly 

asymmetric. In the third spectrum the main direc-— 

tion of the waves differs appreciably from the wind 

direction. It is speculated that these phenomena 

are due to asymmetry in the up-wind coastline. The 

directional distribution functions of the second 

spectrum are more symmetric and unimodal, at least 

in an overall sense. 

A bimodality in a sector around the wind direction 

is observed near the peak of the first spectrum. 

This bimodality may be related to a multi-modal non- 

linear interaction in the spectrum. 

The observed normalized directional spreading 

parameter as function of a normalized wave number 

is in fair agreement with published data. The ab- 

solute values are about 30% larger for the first 

spectrum and about 20% lower for the second spectrum. 

The values for the third spectrum are almost five 

times too large. This may be due to the rather 

extreme asymmetry of the coastline where a compari- 

son with the published data may not be proper. 

The results reported herein are preliminary. 

Additional analysis of available data is being 

carried out. 
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NOTATION 

A area of spatial integration 

Cm phase speed of component fp 

Cg group velocity 

D(8) standard directional distribution function 

E(k) spectral density in k-space 

spectral density in k,8-space 

spectral density in f,8-space 

E(£) spectral density in f-space 

£ frequency 

g acceleration due to gravity 

ES instantaneous surface elevation 

H (k) Fourier transform of surface elevation 

J Jacobian 3) 

k wavenumber vector k = (kx, Ky) 

k wavenumber, modulus of wavenumber vector 

km wavenumber at peak of wavenumber vector 

spectrum of locally generated wind sea 

dimension of area of analysis in x-direction 

dimension of area of analysis in y-direction 

number of degrees of freedom 

number of transformations 

boundary of spatial integration 

directional spreading parameter 

maximum value of s 

dimensionless spreading parameters s/sp 

windspeed at 10 m elevation 

tidal current vector 

magnitude of V 

place vector x= (x,y) 

ASP EB spatial coordinates 

increment 

direction, orientation of wavenumber vector 

orientation of tidal current 

mean direction 

standard deviation of helicopter yaw 
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APPENDIX 

NOISE 

Inspection of contour-line maps of the sea surface 

obtained from the observation off Sylt revealed a 

dome-shaped distortion. This distortion is probably 

caused by the fact that the pictures could not be 

positioned in the stereoscopic viewing devices with 

the accuracy normally obtained with high grade pic- 

tures. When this positioning is not optimal, a 

dome-shaped distortion is to be expected. Unfor- 

tunately the exact distortion cannot be determined, 

but in the k-plane it seems to be well separated 

from the wave information (area No. 1 in Figure 19) 

and the data in this area was removed in the sub- 

sequent analysis. 

The other noise-affected areas are related to a 

phenomenon introduced by the manner of scanning 

the pictures during the photogrammetrical process: 

the sea surface elevation at even-numbered lines 

wavenumber [m~] 

t ky 

© componen o, L 

ao 
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the directional spectrum of ocean waves. 

Sea Research, 22, 339. 

Dyllew,, GCG. Lie, Cu (Ce. Teague, Ro H. Stewart), A. Ms 

Peterson, W. H. Munk, and J. W. Joy (1974). Wave 

directional spectra from synthetic aperture ob- 

servations of radio scatter. Deep-Sea Research, 

21, 989. 

Deep- 

(scanned in positive y-direction) is systematically 

slightly too low, while the elevation at odd- 

numbered lines (scanned in negative y-direction) 

are systematically slightly too high. This effect 

has been observed earlier in the analysis of stereo 

photos of regular waves generated in a hydraulic 

laboratory. The principal wave length and direction 

of this distortion correspond with the location of 

area No. 2 in Figure 19, which is the location of 

the Nyquist wavenumber in x-direction. This spectral 

information was removed from the spectra in the sub- 

sequent analysis. The noise in areas No. 3, 4, and 

5 was labeled as such mainly because of the delta- 

type behavior of the directional distribution func- 

tions in these regions. It is probably due to 

variations in the error introduced by the scanning 

and possibly also by "leakage" from area No. 2. In 

the k-spectrum off Sylt this noise was not removed. 

In the k-spectrum off Noordwijk the noise in the 

indicated region in Figure 11 has been removed. 
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Gerstner Edge Waves in a Stratified Fluid 

Rotating about a Vertical Axis 

Erik Molo-Christensen 
Massachusetts Institute of Technology 

Cambridge, Massachusetts 

ABSTRACT 

An exact solution is obtained for edge waves along 

one inclined planar boundary in a fluid rotating 

about a vertical axis. The solution is based on a 

modification of Gerstner's rotational waves, and 

includes the effect of mean drift. The solution re- 

duces to Yih's edge wave solution for zero rotation 

and to Pollard's rotational deep water Gerstner waves 

in rotating flow. Satellite observations of sea sur- 

face are shown which reveal patterns similar to those 

which would be generated by Gerstner edge waves. 

1. INTRODUCTION 

The early, exact solution by Gerstner (1802, see 

1932, p. 419) was rediscovered by Rankine (1863), 

discussed by Lamb (1932), found to be valid for free 

surface waves in an arbitrarily stratified flow by 

Dubreil-Jacotin (1932), further modified to describe 

edge waves by Yih (1966), and free surface waves in 

a rotating flow by Pollard (1970). However, there 

has been a tendency to dismiss Gerstner waves as of 

limited applicability to phenomena in nature. As 

Lamb (1932) has pointed out, the generation of 

Gerstner, free surface waves by the application of 

surface stresses requires a certain mean vorticity 

distribution to exist in the fluid. It can be argued 

that in a nonrotating fluid of uniform density it is 

difficult to conceive how the required vorticity dis- 

tribution can be established. However, in a strati- 

fied and rotating fluid, there are mechanisms capable 

of generating vorticity without viscous diffusion. 

In a stratified fluid, the baroclinic term, express- 

ing the action of a pressure gradient normal to a 

density gradient in generating vorticity will be 

capable of establishing a horizontal vorticity field. 

In a rotating fluid, the effects of vortex stretch- 

ing and compression can establish distributed vertical 

vorticity. 

There, in a rotating stratified flow, waves simi- 
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lar to Gerstner waves are more likely to be encoun- 

tered. In fact, the uniform flow, usually assumed 

as the mean flow on which small perturbation waves 

may ride, would be less likely to occur in a rotating 

stratified fluid. But the small perturbation solu- 

tions for waves, as well as exact, finite amplitude 

solutions, are all useful as approximate descriptions 

of real phenomena and actual observations. 

If such solutions do not fit the exact circum— 

stances, they can possibly serve as starting points 

for perturbation expansions. Furthermore, we may 

learn about some of the special features of finite 

amplitude exact wave solutions; there is a tendency 

to forget some of these facts when preoccupied with 

linear wave solutions. 

In the following, I shall present a Lagrangian 

description of an edge wave field, point out where 

it differs from previous solutions, and develop the 

dispersion relation for the waves. 

2. COORDINATE SYSTEMS AND DISPLACEMENT FIELD 

Coordinate System 

The waves propagate in the x - direction, normal to 

the plane of Figure 1. In the planes normal to the 

x - direction we define the oyZ- coordinates, with 

o0Z vertical and the oyz-coordinates, with oy in the 

plane of the inclined boundary, inclined at an angle 

a with the vertical. The particle motion will be in 

planes parallel to xy. 

While Yih (1966) could let the amplitude of 

particle motion decay with negative y-distance, and 

Pollard (1970), for deep water waves away from a 

side boundary, made the obvious and correct choice 

of letting the particle motion decay with decreasing 

vertical position; here I have to make a different 

choice. The amplitude of particle motion will decay 

along a direction - or, shown in Figure 1 as another 

coordinate system, ors. 
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FIGURE 1. Coordinate system, looking along the direc- 

tion of wave propagation, ox, and along the labeling 

coordinate direction, oq. 

Displacement Field 

Using labeling variables, q, r, s, to identify fluid 

particles, define the field of particle positions in 

terms of 1, r, s and time, t, as follows: 

x = q + Ut - a (exp mr) sin (kq - ot) (1) 

y =x cos 8 - s sin B 

+ a (exp mr) cos (kq - ot) (2) 

BS 1 Sali 5} a S Cos § (3) 

for m SIRs O 

U is a constant mean particle velocity in the x- 

direction, a is an oscillation amplitude parameter, 

m is an inverse decay distance measure, K is wave- 

number and o is the frequency of particle motion. 

First consider the kinematics of wave motion, 

next find the condition for incompressibility before 

proceeding to apply dynamics to give the dispersion 

relation. A surface defined by letting r be a func- 

tion of s will have waves that proceed in the x- 

direction. For example, a string (line) of particles 

defined by fixed values of r and s will have maxima 

in y-displacement at 

kq - ot = 2ntT (4) 

From Eq. 1, substituting for q from Eq. 4 gives the 

x-positions of crests to be at 

Ke aee = [2nt + (o + Uk)t]/k (5) 

The crests move at a speed of 

c = (o + Uk)k = w/k (6) 

571 

w is the wave encounter frequency, and differs from 

the particle oscillation frequency by the Doppler 

SHEsEe Uke 

Mass Conservation 

The displacement field defined by Eqs. 1, 2, and 3 

can be made to satisfy the requirement that the 

density of a fluid particle is independent of time 

by requiring that the Jacobian: 

d(x,y,2)/9(q,xr,S) 

= 1 - a@km (exp2mr) cos 8 

+ (m cos 8 - k) a(exp mr) cos (kq - ot) (7) 

is independent of time. This requires 

k =m cos £ (8) 

Now proceed to apply the momentum equations to cal- 

culate the pressure, which in turn will be set con- 

stant at the free surface. 

3. PRESSURE FLUCTUATIONS 

The momentum equation in Lagrangian variables gives, 

for the derivative of pressure with respect to the 

labeling variable q: 

“Pg/P = (% + z £ sina - y f cos Oe 

+ (¥ + x £ cos ON, + (2 - x f sin Ne 

(9) N> ar Cj g 

The equations for the r and s-derivatives are 

similar. f = 22 is the angular velocity of rotation 

of the coordinate system, the angular velocity being 

vertical as mentioned before. Substituting for x, 

Vin and ez etromeEqs..15,, 27) sand 3) into) Eq= 197) onesob= 

tains: 

-Pg/P [o2 - £ cos a(o + Uk) 

-gk sin a] a (exp mr) sin 6 (10) 

-p,/p = - [0% - f 0 cos aja? exp2mr 

+ [-o2 cos 8 + £ o cos(a + 8) 

+ fUm cos a+ gm sin aJa(exp mr) cos 6 

+ fU cos (a + 8) + g sin (a + 8) (11) 

-ps/0 = [o2 sin B - £ o sin (a + 8)]a(exp mr) cos 6 

= £Ul san) (0) +18) +g) cosh (a7 298) (12) 

where § = kg - ot is the phase of particle oscilla- 

tion. 

At the free surface, which consists of particles 

with a specified relation between r and s, and with 

values of labeling variable, q, from - ~ to + ~, the 

pressure must be independent of q and t. This is 

satisfied, as can be seen from Eqs. 10, 11, and 12, 
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if the pressure is independent of phase 6, and Pq 

Py, and Pp, are independent of 6. 

From Eq. 12, pz is independent of 6 when 

cot 6 = an = (elon (3 (13) 
f sina 

Since a is given by the slope of the boundary, Eq. 

13 gives 8 for a given o and a. Equation 10 shows 

Pq to be independent of 8 when 

o* - £ cos a(o + Uk) - g k sina = 0 (14) 

For a given value of o, Eq. 14 yields k, and m is 

then found from Eqs. 8 and 13. 

This leaves Eq. 11 unused, but it can be shown 

that the requirement that Py be independent of 6 is 

not independent of Eqs. 13 and 14. Equation 11 also 

shows that there will be a mean pressure gradient 

across the wave propagation direction, proportional 

to a*. This is a nonlinear effect of the presence 

of waves. 

4. DISCUSSION 

The equivalent to a linear dispersion relation con- 

sists of Eqs. 8, 13, and 14, relating particle fre- 

quency, 0, decay direction angle, 8, horizontal 

wavenumber, k, and decay parameter, m, with f, a, 

and U as parameters. 

Note that the introduction of a mean drift veloc- 

ity, U, has a now-trivial effect on dispersion, as 

can be seen from Eq. 14, where the effect is not a 

simple Doppler shift in frequency. The equations 

of rotating fluids are not invariant to Galilean 

transformations. Also note that the dispersion is 

independent of the amplitude parameter, a; this is 

an unexpected result for non-linear waves. But the 

amplitude of particle motion parallel to oy is really 

a exp[2mR(s)], where R is the value of r at the sur- 

face. Since m is found from the equations involved 

in determining dispersion, one cannot really claim 

that dispersion is independent of amplitude. 

With the dependence on phase, 9, eliminated in 

Eqs. 10, 11, and 12 by satisfying the dispersion 

relations, one can see that the mean surface slope 

across the wave propagation direction will vary with 

wave amplitude and with y- position. 

As pointed out by Dubreil-Jacotin (1932), and 

later by Yih (1966) the results are valid for a 

fluid of arbitrary stable density stratification. 

The solutions given here can be further extended 

to replace the free surface by an interface between 

the given flow field and a homogeneous wave trapped 

fluid, giving the gravitational billows described 

elsewhere [Mollo-Christensen (1978)]. This will re- 

place the acceleration of gravity, g, by g' = 

g(Ap/p), where Apis the density difference between 

the two fluids and p the density of the lower fluid 

at the interface. 

Similarly, the flow field at the off-shore or 

inside end may be bounded by a field of geostrophic 

billows or a combination of gravitational and geo- 

strophic billows [see Mollo-Christensen (1978)]. 

FIGURE 2. High-passed and contrast enhanced satellite 

infrared images from January 27, 1975, at 1600, 1700, 

and 1800 hrs., GMT. Florida on the right side, Gulf 

Coast on top. 



5. SOME EXAMPLES OF OBSERVATIONS OF FINITE AMPLITUDE 

WAVES ALONG A SLOPING BOUNDARY 

By processing satellite data on sea surface infrared 

emission one can see moving patterns of sea surface 

temperature in the Gulf of Mexico between the con- 

tinental shelf edge and the coast. 

A sequence of processed satellite images taken 

one hour apart is shown in Figure 2. Because the 

mean current, U, at the time of observation is not 

known, one cannot say whether these waves satisfy 

the dispersion relations for the kind of edge waves 

discussed here. All one can say at this point is 

that it appears possible to satisfy the dispersion 

relations given with wavelengths, bottom slopes, 

and currents of reasonable orders of magnitude, but 

one needs to refine the observations further before 

one can reach any definite conclusions. 

6. CONCLUSIONS 

Nonlinear edge waves of finite amplitude can have 

dispersion relations defined by a set of equations 

relating particle oscillation frequency, encounter 

frequency, wave number, and other parameters in a 

way that can be solved systematically if one starts 

by specifying a suitable wave variable, in the pres- 

ent case, frequency. 

The observations which inspired the present anal- 

ysis show Gerstner edge waves or possibly waves of 

a different kind; one cannot tell with the evidence 

now at hand. 
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ABSTRACT 

Microstructure of hydrodynamical fields, a well- 

known phenomenon in the ocean, is attributed to the 

formation and development of turbulent spots gener- 

ated due to the loss of stability or breaking of 

internal waves. Under some general assumptions the 

relations are obtained governing the development of 

turbulent spots at various 'stages of their evolution 

It is shown that the longest and slowest stage of the 

extension of a turbulent spot is the final, viscous 

one. Simple self-similar laws of the extension of 

turbulent spots are obtained for this stage and com- 

pared with experiment. Long-standing turbulent 

layers of the "blini" shape, sharply bound by am- 

bient non-turbulent stratified fluid, are identified 

with turbulent spots of the above-mentioned origin 

which are in the final viscous stage of their evolu- 

tion. The relations are also obtained governing 

viscous intrusion of the bottom seawater into the 

body of the ocean. 

1. INTRODUCTION 

Under strongly stable stratification, turbulent mix- 

ing is inhibited due to large losses of the turbulent 

energy for the work against the buoyancy forces. 

der natural conditions, therefore, turbulence cannot 

be present in the whole body of the fluid during 

rather long periods of time [Woods (1968), Monin et 

al. (1977), Federov (1976)]. In fact, it is concen- 

trated only in separate turbulent layers having the 

shape of "blini," vertically quasi-homogeneous due 

to mixing, and separated by thin streaks with micro- 

jumps of temperature, electrical conductivity, sound 

velocity, salinity, density, refraction index, and 

other thermodynamic parameters of sea water some- 

times accompanied by microjumps of flow velocity. 

Such thin-layered vertical structure, which is ap- 

parent from inhomogeneities ("steps") on the verti- 

cal profiles of density and other thermodynamic 

Un- 
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parameters (see schematic drawing in Figure 1) or 

even more sharply from multiple peaks on the pro- 

files of vertical gradients of these parameters, is 

called microstructure or fine structure of hydro- 

dynamical fields. Numerous measurements performed 

using the method of continuous vertical sounding in 

the cruises of the research vessels of the Institute 

of Oceanology, USSR Academy of Sciences, and re- 

search vessels of other countries showed that the 

microstructure exists always and everywhere in the 

World Ocean (the lack of microstructure may be ex- 

pected only for the regions of macroconvection which 

occur rather seldom in the ocean, at least in the 

low and temperate latitudes). 

Smoothing over the microstructural "steps" on 

the profile of a thermodynamic parameter, e.g., 

density or temperature, we obtain a smooth curve 

characterizing large-scale stratification of the 

ocean (gross-stratification). We have to emphasize 

that from the point of view of the Richardson cri- 

terion gross-stratification is nearly always stable 

- the Richardson number computed for it, Ri(z), as 

a rule, is essentially larger than its critical 

value, 1/4. How can the turbulence be generated 

under such conditions? Graphs of Ri(z), taking 

into account the "steps" of microstructure, show 

values of Ri < 1/4 in several layers of the micro- 

structure - apprently in these very layers, at the 

momeht of sounding, the generation of small-scale 

turbulence took place (in other layers where Ri > 

1/4 turbulence decayed with time). The appropriate 

conditions for local generation of turbulence at 

stable gross-stratification may be created by in- 

ternal waves. Indeed, in the field of internal 

waves in the regions near their crests and hollows 

the local values of the Richardson number can be 

reduced lower than the critical value, 1/4, and the 

turbulence spots would then be formed there. The 

internal waves can also break. For the turbulent 

spots formed after the breaking of internal waves, 

the formation is characteristic of continuous spec- 

trum, i.e., of developed turbulence immediately 



FIGURE 1. 

chronous vertical distribution of 

density and shear in the ocean. The 

dashed line shows the shear distri- 

bution for intrusions. 

Schematic form of syn- 

after the breaking [Belyaev et al. (1975)]. 

The evolution of a newly-formed turbulent spot 

appears to be the following. The turbulent mixing 

makes the spot vertically quasi-homogeneous, there- 

fore, within the spot the density of the water be- 

comes uniform. For stable stratification, when the 

density grows with depth, the density in the upper 

half of the mixed spot is higher and in the lower 

half of the spot lower than at the same levels in 

ambient fluid. Therefore, under the action of the 

buoyancy forces, the upper half of the spot should 

go down and the lower half of the spot should rise 

to its middle level. Therefore, the spot should 

"collapse," simultaneously spreading and transform- 

ing itself into a thin "blin." The intrusion of 

such a "blin" into the body of surrounding strati- 

fied fluid creates in it a new layer of microstruc-— 

ture. 

If the initial internal wave has a long period 

and wave length (e.g., internal waves with tide 

periods may be generated by tide forming forces 

and tides themselves) turbulent spots formed by 

this wave are large and corresponding turbulent 

layers are very thick. Internal waves of smaller 

periods and lengths may develop on these layers 

forming turbulent spots of smaller sizes and layers 

of microstructure of smaller thicknesses, etc.; 

internal waves of minimum periods and lengths, 

turbulent spots of minimum sizes and layers of 

microstructure of minimum thicknesses. Thus, the 

answer to the question "which came first, the chicken 

or the egg?" consists for this case in the indica- 

tion of a cascade process "internal waves > turbulent 

spots > layers of microstructure +> internal waves 

etc." This cascade process may lead to the forma- 

tion of a quasi-steady spectrum of internal waves, 

intermittent turbulence, and layers of microstructure 

(although in real nature the action of some other 

processes influencing real spectra is possible, in- 

cluding storms and quasi-steady horizontal inhomo- 

geneities of geographic and dynamic origin). The 

turbulent spots also take part in a rising cascade 

generated by local instabilities of available shear 

flows, breaking of surface waves, sinking of cooled 
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fluid from the turbulized surface layer, etc. As 

distinct from the classical Kolmogorov cascade in 

non-stratified fluid, here, in passing from a larger 

scale to a smaller one, the energy is not preserved, 

being left in turbulent spots in the final stage of 

their evolution where internal waves do not gener- 

ate. Thus, in stratified fluid turbulent spots of 

various scales are continuously generated and the 

process of their evolution is of considerable 

interest. 

The first stages of the evolution of turbulent 

spots* where the radiation of internal waves takes 

place are rather short: by estimates of J. Wu 

(1969) and T. W. Kao (1976) they come to an end in 

a time interval of the order of several tens of 

n7! (N is the Brunt-Vaisdla frequency) after the 

beginning of the process. The final stage of the 

evolution of turbulent spots is much longer. This 

stage is much less known: in the paper of J. Wu 

(1969) concerning this stage it is mentioned only 

that viscosity is of significance at this stage and 

it is noted that the profile of the spot is pre- 

served during this stage. The analysis presented 

here shows that the velocity of the extension of 

turbulent spots at the viscous stage is essentially 

lower than at the initial stages. It is our opin- 

ion that the "blini"-shaped turbulent structures 

are the intrusions of the turbulent spots of various 

scales into surrounding stratified fluid which are 

mainly at the final stage of their evolution. 

Thus, let a turbulent spot (Figure 1) be formed in 

a stable continuously density-stratified (linearly 

for definiteness) fluid due to some reason (breaking 

of internal waves, local loss of stability of shear 

flow, penetration of denser fluid from the turbulent 

surface layer, etc.). The density of fluid within 

the turbulent spot due to mixing is uniform in con- 

trast to an ambient continuously stratified fluid 

being in a state of rest or laminar motion. Certain 

potential energy is stored due to mixing in the tur- 

bulent spot, so the state of the mixed fluid- 

stratified environment system ceases to be in 

equilibrium. Mixed turbulent fluid starts to strike 

(Figure 2) into stratified non-turbulent fluid by 

tongues - "intrusions" which are formed at the 

level, z = 2), (z is the vertical coordinate) where 

the density of stratified fluid is equal to the 

density of mixed fluid. 

Potential energy, stored by the fluid at initial 

turbulization and mixing in the spot, dissipates 

during the intrusion of mixed fluid into stratified 

non-turbulent fluid. It is natural to consider 

three stages of the evolution of the spot: 

(1) Initial stage of free intrusion. The motive 

force of the intrusion at this stage exceeds greatly 

the drag forces. The turbulent spot extends slightly 

but the internal waves are intensively formed by the 

spot. 

(2) Intermediate steady state. The motive force 

at this stage is balanced mainly by form drag and 

wave drag due to radiation of internal waves by an 

extending turbulent spot. The acceleration of the 

tongue is negligible. 

*the classification of stages of the evolution of the spot of 

mixed fluid in the continuously density-stratified fluid goes 

back to the fundamental work of J. Wu (1969) where the ex- 

perimental investigation of the initial stages of this process 

was performed for the wake of circular initial cross-section. 

T. W. Kao (1976) performed semi-empirical theoretical investi- 

gation for the initial stages of the evolution of such wakes. 
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FIGURE 2. The intrusion of a turbulent spot into con- 

tinuously stratified fluid. 

(3) Final viscous stage. The motive force is 

balanced at this stage mainly by viscous drag. 

Of course, between the first and second and the 

second and third stages there exist intermediate 

transitional periods. When the third stage comes 

to the end the spot is mixed due to diffusion with 

ambient fluid and disappears. 

The turbulent motion inside of the intrusion 

tongue is supported by general shear stress together 

with eddy motions inside of the intrusion due to the 

difference of the velocities of the tongue and en- 

vironmental non-turbulent fluid. The boundary of 

turbulent and non-turbulent fluid is sharp and if 

the thickness of the intrusion is not too small, 

the shear required for supporting the turbulence 

within the intrusion is not large. 

Indeed, let us consider the equation of the 

balance of turbulent energy in a shear flow of 

stratified fluid neglecting, as usually, the viscous 

transfer term [Monin and Yaglom (1971)-] 

3,5 + 3 {w'E' + p'w'} 

= - pw'g - pe - p u'w' au (1) 

Here t is the time, E the turbulent energy of 

unit mass, € the dissipation rate per unit mass, 

u the longitudinal and w the vertical velocity 

components, p the pressure. The flow is considered, 

for the estimates we need, as horizontally homogen- 

eous and the Boussinesque approximation is accepted, 

i.e., the density variation is taken into account 

only if it is multiplied by very large factor - 

gravity acceleration g. 

Let us accept for the terms of the equation of 

balance of turbulent energy, the Kolmogorov approxi- 

mations [Monin and Yaglom (1971) ] 

wwii} ap joy eS pvp. 38 

u'w' = - 2vB aa, é = y'*p3/272 (2) 

Here 8 = E/p is the mean turbulent energy per 

unit mass, 2 the external turbulent scale. Thus, 

the equation of balance of turbulent energy takes 

the form 

3,8 = a LB 3,8 - pw'g/p 

+ 278 (2 a)? - y'tB3/272 (3) 

The mathematical nature of sharp interface between 

the turbulent and the non-turbulent regions becomes 

completely transparent from this equation. In fact, 

Eq. (3) is a non-linear equation of heat conductivity 

type with heat inflow where the coefficient of trans- 

fer of turbulent energy equal to ave tends to zero 

with turbulent energy itself. For such equations 

under zero initial conditions the disturbed region, 

in contrast to the linear heat conductivity equation, 

is always finite; this explains (cf. below) mathe- 

matically the existence of a sharp interface between 

the turbulent and the non-turbulent regions. 

It is important that, due to mixing following the 

generation of a turbulent spot, the losses of turbu- 

lent energy for the work of suspending a stratified 

fluid [the second term of the right-hand side of the 

Eq. (3)] disappear because the density within the 

spot becomes uniform. Furthermore, the first term 

of the right-hand side of (3) governs the diffusional 

transfer of turbulent energy within the mixed region 

and does not influence the averaged, through the 

spot, value of turbulent energy. Therefore, the 

decay of turbulent energy within the spot is governed 

by the balance of the two last terms of the right- 

hand side of the equation (3) representing genera- 

tion and dissipation of turbulent energy, 

respectively. 

It seems natural to accept that the external scale 

of turbulence 2, within a factor of the order of 

unity, coincides with the transverse size of the 

tongue of intrusion h; the constant y by estimates 

has a value of about 0.5. Thus, the shear d,u ~ 

VB/h is sufficient to support the turbulence within 

the spot at a steady level together with the state 

of mixing within the spot. If h has the value of 

tens of centimeters - one meter or more, then for 

the value VB ~ 1 cm/sec, characteristic of oceanic 

turbulence, the shear required for supporting steady 

turbulence is small. In thin layers it is large; 

therefore, the turbulence in thin layers decays 

rather quickly and the spot of mixed fluid exists 

during the time interval required only for the dif- 

fusional mixing of the spot with the ambient strati- 

fied fluid. 

Furthermore, available experimental data show 

(J. Wu (1969)] that turbulent entrainment and the 

erosion of a turbulent spot may be neglected, start- 

ing from a very early stage of the evolution till 

rather late stages of this process. Therefore, we 

shall take the volume of turbulent spot constant at 

all stages of its collapse to be described. 

For simplicity we shall further suppose that the 

initial form of a turbulent spot is symmetric in 

respect to the equilibrium plane where the densities 

of stratified fluid and mixed fluid coincide. 

2. INITIAL STAGES OF THE EVOLUTION OF THE SPOT OF 

MIXED FLUID 

At the first stage, free fall (lifting from below) 

of the particles of mixed fluid to the equilibrium 

plane takes place, followed by the spreading of 

fluid particles along this plane. Therefore, the 

rate of change of the area of horizontal projection, 

S, of a turbulent spot is proportional at this stage 

to the product of the actual area by the rate of 

fluid influx to the equilibrium plane. The latter 

quantity is equal to the product of the acceleration 

of free fall proportional to N2 and time t. Thus, 

we obtain for the initial stage 



dS/dt ~ sN*t (4) 

For small Nt we obtain by integration 

= = ee (S S,)/S, Nft (5) 

(Sg is the initial area of horizontal projection of 

the spot). Thus, at the first stage the character- 

istic size of the plan form of the turbulent spot, 

L, changes proportionally to the square of time 

(L-L)/L. ~ n2t2 aL/dt ~ L N2t (6) 
fo) fo} {o) 

[for the wake, S ~ L, and the relation (6) follows 

from (5) in an elementary way; for the spot of the 

circular plan form, S ~ L2, but at (L = Lo) SS) op 

we = Tae ~ 2 (L - Lo)Lo and (6) follows again from 

(5) Ic 

The relations of the type of (6) were obtained 

by J. Wu (1969) from the experimental investigation 

for a spot having the form of a cylinder with a 

horizontal axis; they were confirmed by some nu- 

merical investigations [see Kao (1976)]. Actually 

they were confirmed to be valid to Nt ~ 2.5. 

At the intermediate stage the motive force of 

the intrusion is balanced by form drag and wave 

drag, thus, the velocity of the propagation of the 

intrusion tongue is governed by the parameter of 

stratification - Brunt-Vaisala frequency N - to- 

gether with the actual height of the tongue, h, 

whence by dimensional considerations we obtain 

aL/dt ~ Nh (7) 

We see that at this stage the dependence of the 

velocity of the extension of the intrusion tongue 

is different for various geometries of the problem. 

In fact, the volume of the turbulent spot V is 

constant; for the cylindrical spot h ~ V/LH (H is 

the longitudinal size of the spot) and h ~ V/L2 for 

a spot of the circular plane form. Therefore, we 

obtain for the cylindrical spot 

dL2/at ~ NV/H , L ~ VYNV(t —- to) (8) 

(to is a conditional time moment of the beginning 

of the second stage), whereas for the spot of the 

circular plane form 

3 
aL3/dt ~ NV , L~ YNV(t — to) (9) 

The relations of the type (8) were obtained by 

J. Wu (1969) from the experimental data for collapse 

of a turbulent wake of initial circular cross- 

FIGURE 3. Elementary particle of the diffusion tongue. 
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section. They were confirmed to be valid for 

3S ie S BS, 

3. FINAL, VISCOUS STAGE OF THE INTRUSION 

Under accepted assumptions the equation of mass con- 

servation for a mixed fluid takes the following form 

in hydraulic approximation. 

a,h + div (hy) = 0 (10) 

Here h(x,y,t) is the height of the intrusion 

tongue; x,y are the spatial horizontal coordinates, 

t is the time, v is the velocity of fluid displace- 

ment averaged through the height of the tongue. 

For the determination of the velocity, v, let us 

consider the system of forces acting on the cylin- 

drical particle of the intrusion tongue leaning upon 

the area 56S (Figure 3). The motive force of this 

particle is caused by the action of the gradient of 

redundant pressure, P, and spatial variation of the 

height of the tongue of intrusion 

Fm = - grad(ph) 6s (11) 

Furthermore, the drag force per unit area of a 

particle surface due to the viscous character of 

the drag at the final stage of the intrusion under 

consideration is governed by the velocity, v, of 

the particle relative to ambient fluid, viscosity 

of the fluid, u, and particle height, h. The di- 

mensional considerations give the viscous drag 

force per unit area of particle surface proportional 

to uv/h. Therefore, the viscous drag force acting 

on the particle leaning upon the area, 6S, is equal 

to 

Fr = CuvéS/h (12) 

where C is a constant, under given assumptions - a 

universal one. For estimating the constant, C, the 

well-known solution of the problem of viscous flow 

between flat plates may be used. This solution 

gives for the viscous drag the value 12uvéS/h, whence 

C = 12. Equaling drag force to motive force (the 

inertia force, as at the second stage, is supposed 

to be a negligible one) we find 

v = - hgrad(ph) /Cu (13) 

To complete the statement of the problem we have 

to find the redundant pressure in the mixed fluid. 

In stratified fluids the density varies linearly with 

height. The intrusion tongue propagates symmetri- 

cally, thus, the equilibrium plane divides the 

height of the tongue in half. Let us denote by pj 

and ~,, correspondingly, the pressure and the density 

in stratified fluid at the level, 2 = zy. ‘Then, 

evidently, the pressure in the stratified fluid 

varies with depth following the relation 

Pp = pi ~— 919(2 - 2) 

+ p{N2(z - 2)) 2/2 (14) 

Here, as before, N is the Brunt-Vdisdla frequency 

N2 = ag, g is the gravity acceleration, a = (dp/dz)p . 

Thus the pressure at the upper and the lower points of 

a vertical section of the tongue z = z; + h/2 are 

equal, respectively, to 
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Ur = 2,2 
P = Pp] — Pigh/2 + p\N°h*/8 

Pp = pj + pigh/2 + p\N2h2/8 (15) 

because at the upper and the lower points the pres- 

sure in the tongue coincides with the pressure in 

ambient stratified fluid. Hence, the pressure 

within the tongue is distributed according to the 

hydrostatic law 

P = Pp) — p1g(z - 21) + p1N*h?/8 (16) 

The pressure averaged over the section of the tongue 

is equal to 

Ki 2y2 Pog 7 Pl + ei h“/8 (17) 

The pressure averaged in the same way in the strati- 

fied fluid due to (14) is equal to 

22 = ot 4 18 Be Pl p1Nch*/2 (18) 

Thus, the redundant pressure entering the expres- 

sion of motive force of the intrusion tongue at a 

given vertical line is 

= = = 2n2/12 2) See ee = ho/, (19) 

The relations (13) and (19) give 

p,NA aN 
1 1 = 3) eo 

M 12Cu lore telte) 4cyu 
hegrad(h) (20) 

Putting this expression into the equation of 

mass conservation of mixed fluid (10) we obtain 

for h a non-linear equation of the heat’ conductivity 

type 

a,h - nAh®> = 0 , n = p,N2/20Cy = N2/20Cv = (211) 

Here A is the Laplace operator, v the kinematic 

viscosity of the fluid. In particular, for one- 

dimensional motions Eq. (21) takes the form 

d.h - nd*2 h°2 = 0 (22) 
iS xx 

= 5 = dh n(1/r) 0x0 h 0) (23) 

for the plane and the axisymmetrical cases, respec- 

tively. Here x is the horizontal Cartesian co- 

ordinate, r the horizontal polar radius. 

4. SELF-SIMILAR ASYMPTOTIC LAWS OF TURBULENT SPOT 

EXTENSION AT THE VISCOUS STAGE 

We neglected turbulent entrainment and the erosion 

of a turbulent region; therefore, the volume of the 

turbulent mixed region is considered to be constant 

and equal to the initial volume of the turbulent 

spot. It stands to reason that this assumption at 

the viscous stage is valid for sufficiently high 

stratification only. If the characteristic dimen- 

sions of the plane form of a turbulent spot are 

nearly equal, it is natural to expect that the ex- 

tension of the intrusion starts already to be axi- 

symmetric at the end of the intermediate stage and 

deliberately is axisymmetric at the viscous stage. 

Hence, Eq. (23) may be applied for its description. 

Thus, the condition of conservation of the volume 

of a turbulent spot takes the form 

co 

27 ff rh(r,t)dr = V = Const (24) 

fo) 

The asymptotic stage of the spreading of the spot 

is of primary interest when the plane size of the 

intrusion exceeds the corresponding initial size 

of the turbulent spot. At this stage the details 

of the initial distribution h(r,0) cease to be 

essential and for an asymptotic description or the 

viscous stage of the intrusion the initial distribu- 

tion may be represented in the form of an instantan- 

eous point source 

h(r,t;) = 0 (r #0), 2m f rh(x,t))dr = V (25) 
(0) 

Here, t; is the conditional time moment of the be- 

ginning of the viscous stage. 

The solutions of such type for non-linear heat 

conductivity equations with the power-type non- 

linearity to which Eqs. (22, 23) belong were con- 

sidered in the papers of Ya. B. Zel'dovich, A. S. 

Kompaneets, and one of the present authors [see 

Barenblatt et al. (1972)]. In our case the solu- 

tion depends on the quantities t - tj, n, V, r. 

The dimensional considerations show that it is a 

self similar one: 

@ 1/5 

a Anais > 1851) £(o) 

-1/10 
t= r[vin(t - t))/l6n*] (26) 

Putting (26) into Eq. (23) and integrating the 

ordinary differential equation obtained for the 

function, f(t), we find 

(aol ye A r2 1/4 
6 ( ae ) gOSES So 

0,520.5 103/572 = 2 (27) 

(GG) = 

Thus, at each moment of time the intrusion tongue 

stretches for a finite distance: this is (cf. Sec- 

tion 1) the peculiar feature of non-linearity dis- 

tinguishing the equation of intrusion from the 

linear equation of heat conductivity. The edge of 

the intrusion propagates following the law 

ro(t) = 2(vin(t = ey fen 2/2 (28) 

The form of the intrusion tongue represented by 
the curve 1 in Figure 4 also is peculiar: the 

thickness of the tongue changes slowly to the very 

edge where it comes abruptly to naught. The maxi- 

mum spot thickness, ho (t) = h(o,t), also changes 

very slowly with time 
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FIGURE 4. The distribution of thickness along an 

intrusion. 

anne (2 1/4 ( Vv ) 1/5 (29) 

fe) 6 Cra (te = te) 

Equation (28) seems very simple and accessible 

for experimental confirmation: confirmation of 

this equation will give some confidence in the 

validity of the model proposed here. The experi- 

mental checking of Eq. (28) was performed by A. G. 

Zatsepin, K. N. Federov, S. I. Voropaev, and A. M. 

Pavlov. They used the following scheme for the ex- 

periment (Figure 5). An open plexiglass tank having 

the form of a rectangular parallelepiped contained a 

stable, temperature-stratified fluid. A hollow 

cylindrical tube was introduced from above under 

the surface of the fluid. The fluid in the tube was 

mixed and then the tube was raised, leaving in its 

place a spot of mixed fluid which immediately started 

penetrating the ambient stratified fluid. The ob- 

servations, photo- and movie camera, were performed 

using a shadow device. The experiment allowed one 

to observe clearly the two last stages of spot evolu- 

tion; the spot extension at the viscous stage is 

represented in Figure 6. The mixed fluid volume in 

the spot was fixed for all experiments, as well as 

the kinematic viscosity of the fluid and the diameter 

of the tube. Therefore, if Eq. (28) is correct, the 

experimental data in the coordinates Lg[2ro(t)/D], 

&gIN (t - t))] had to fall on a single straight line 

with the slope 0.1. This is confirmed by the graph 

of Figure 6 where the slope of the solid straight 

line is 0.1 and t; = -10 sec. Thus, the law of one 

tenth Eq. (28) for the viscous extension of a spot 

was confirmed by the experiments of A. G. Zatsepin, 

K. N. Federov, S. I. Voropaev, and A. M. Pavlov with 

a Satisfactory accuracy. 

Analogously, in the case when the form of the 

turbulent spot is close to the cylinder with a 

horizontal axis Eq. (22) for the height of the in- 

trusion tongue will hold, where x is the horizontal 

coordinate normal to the axis of the spot. The con- 

dition of conservation of the volume of the spot of 

mixed fluid takes, for this case, the form 

H ff h(x,t)dx = V = Const (30) 

where H is the longitudinal size of the cylindrical 

spot. The initial conditions corresponding to the 
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asymptotic solution of the instantaneous point 

source type may be written in the form 

Die = ONG 70) { h(x,t))dx = Vv (31) 
a) 

and the asymptotic solution itself due to the same 

reasons, as before, may be represented in the form 

v2 1/6 

h 4n(t - t,)H2 =i) 

1/6 
5 = x[Vin(t - t,)/l6Ht] 

MG. = Be Aye ae Se 
(0) 10) 

2/3 
1/6 

2 =U 0, 62%. = Us)” om 2 3).(6 

Ae (5, 27s) 4? 2 0.97 (32) 

so that the leading edge of the intrusion, x = X(t), 

propagates according to the law 

ee? 
(2) = co lvin(t - t,)/16H* (33) 

o} 

while the maximum thickness of the intrusion, ho(t) 

= h(o,t), decays with time according to 

/6 hot(t) = 0.97(v2/4H2n(t - ty))? (34) 

Thus, in both cases a strong deceleration of the 

extension of intrusion was characteristic for a 

turbulent spot in the transition to the viscous 

stage. Indeed, at the free intrusion stage the ex- 

tension of a turbulent spot is proportional to the 

The scheme of the experimental checking of FIGURE 5. 

the law of viscous extension of a spot of mixed fluid. 

1) The tank, 2) Point light source with collimator, 

3) Lens, 4) Vertical elevator with electromotor, 5) 

Mixer, 6) Tube, 7) Screen, 8) Movie camera. 
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FIGURE 6. The one tenth law as confirmed by laboratory 

experiments of A. G. Zatsepin, K. N. Fedorov, S. I. 

Voropaev, and A. M. Pavlov. 

square of time; at the intermediate stage it is 

proportional to the square root of time for a cylin- 

drical spot and to the cube root of time for an axi- 

symmetric spot. At the viscous stage the extension 

is proportional to time; to one sixth in the case of 

a cylindrical spot and to one tenth in the case of 

an axisymmetric spot. Thus the extension of the 

spot is sharply decelerated at the viscous stage in 

comparison with the initial stages. 

It seems plausible to us that the "blini" shaped 

regions of constant density and temperature observed 

in the ocean are turbulent spots of various scales 

generated by the loss of stability or breaking of 

internal waves, local instability of shear flows, 

penetration of cooled turbulized fluid from the 

curbulized surface layer, etc. which are mainly in 

the last, viscous stage of their evolution. Note 

that along with the states in which turbulence is 

preserved within the spot, the states are possible 

and apparently rather frequent, especially for spots 

of small scales, in which turbulence within the spot 

has disappeared but the fluid remains mixed and homog- 

eneous. This assumption is supported qualitatively 

by some data of simultaneous measurements of vertical 

distributions of density and velocity gradient 

[Federov (1976)]. These distributions have the form 

presented by solid lines in Figure 1. Indeed, if 

the regions of constant density are intrusions, then 

the shear should increase near their boundaries com- 

pared to ambient fluid (cf., Figure 2). However, in 

this case the shear should be reduced near the cen- 

tral line of intrusion (dashed line in Figure l). 

It is plausible that the resolution in these mea- 

surements was not sufficient to observe this shear 

reduction. 

5. THE INTRUSION OF BOTTOM SEA WATER INTO THE 

BODY OF THE OCEAN 

The intrusion of mixed fluid into a continuously 

stratified medium is widely distributed in nature; 

IO) 100 

it is of interest from the point of view of the 

evolution of turbulent spots in stratified fluid. 

A characteristic example - the intrusion of the 

bottom Mediterranean water into the body of the 

Atlantic (Figure 7). The bottom water descends 

through the Straits of Gibraltar down the contin- 

ental slope and enters the body of the ocean in an 

intermediate layer where the density of the ocean 

water is equal to its own density. The intrusion 

of the bottom water of the Red Sea into the body of 

the Indian Ocean is completely analogous. The in- 

trusion of bottom water is a slow process and we 

may assume that for its description, Eq. (22), 

corresponding to a pure viscous mechanism of the 

intrusion drag, is valid. 

The intrusion of bottom sea water into the body 

of the ocean goes by separate portions [Federov 

(1976) ] and it is possible to assume that, at the 

beginning of the intrusion of a new portion, the 

bottom fluid that intruded earlier is carried suf- 

ficiently far away so that the initial condition 

holds 

(<= (0) (35) 

Here h, as before, is the height of the intrusion 

tongue, x the horizontal coordinate in the direction 

of intrusion from its origin. Let us suppose that 

FIGURE 7. The intrusion of sea bottom water into the 

body of the ocean. 



the height of the bottom water layer at the origin 

of intrusion does not depend on time: 

IM(Opi) = hy = (Const (36) 

The solution of Eq. (22) under conditions (35) 

and (36) is also self-similar and has the form 

= = Yoh + h hot, (a) + t x/ nh t (37) 

where the function f9(t) which satisfies the equa- 

tion 

a2£5° df> A a SER = @ (38) 
ac? dt 

under the conditions 

10) (39) (0) Si, sy) 

is continuous and has a continuous derivative 

df°/at (the last requirement follows from the 

continuity of the flow of bottom fluid). The solu- 

tion, f(t), is represented in Figure 4 (curve 2). 

It is also different from zero only in a finite 

interval 0 = G = To 6 «61.66, so that the leading 

edge of the intrusion x,(t) propagates as 
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ABSTRACT 

A theory is offered for the rise of a strong inver- 

sion in the atmosphere caused by heating at the 

ground. The heating, specified by the buoyancy 

flux, q,;, near the ground, causes turbulence in a 

growing layer of depth, D, above the ground with an 

inversion or interfacial layer of thickness, h, 

separating the mixed layer from the non-turbulent 

air above. There is a buoyancy jump, Ab, across 

the interfacial layer and the air above the inver- 

sion has a buoyancy gradient, No: 

The lower surface of the inversion layer rises 

(at a speed, Us = dD/dt) because of two processes. 

One is related to the mean temperature rise of the 

mixed layer which, in the present model, leaves h + 

D unaffected but which causes the interfacial thick- 

ness, h, to decrease and therefore D to increase at 

a rate proportional to eee where Ri = DAb/w% is 

the Richardson number and wx = (q,D) ? is the con- 

vective velocity typical of the rms velocities in 

the main portion of the mixed layer. The second 

process, increasing both h and D, is the erosion of 

the stable fluid by the turbulence in the mixed 

layer and the intermittent turbulence in the inter- 

facial layer. This causes D to increase at a rate 

proportional to Rea a The total effect is con- 

tained in the equation 

Ye 
— = aRi7! + cRi-7/* 
Wy 

where a and c are universal constants. Other re- 

sults are presented, notably the ratio, lqo/ay|, where 

qo is the (negative) buoyancy flux near the level 

Z=D. This ratio decreases with increase of sta- 

bility as observed in experiments of Willis and Dear- 

dorff. |qo/q,| ~ Ri-3/7*. 

1. INTRODUCTION 

When the sun rises and begins to heat the ground, 

the atmosphere is normally in a stable state (po- 
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tential temperature increases with height). If we 

neglect the effect of mean wind for the moment, the 

heating creates instability and turbulence near the 

ground and a mixed layer of depth, D, appears, capped 

by an inversion. This phenomenon is called penetra- 

tive convection. The potential temperature of the 

mixed layer is nearly constant with height except 

very close to the ground, where a superadiabatic 

lapse rate exists in a thin layer, and just below 

the inversion base where there is weak stability. 

The inversion base rises because of two processes. 

The first is heating alone which tends to decrease 

the thickness, h, of the inversion layer, (IL), and 

so increase D. The second is the entrainment effect 

of the turbulent eddies just below the inversion 

base. We do not have a detailed understanding of 

this erosion process but laboratory experiments with 

mechanical stirring [Moore and Long (1971), Linden 

(1973) ] suggest that the eddies in the mixed layer 

deflect the IL upward storing potential energy. When 

this is released by downward motion, a portion of 

the lighter fluid in the IL is ejected into the 

homogeneous layer where it is carried away by the 

turbulent eddies, leaving the lower surface of the 

IL sharp again. 

If there is no mean wind, the energy for the tur- 

bulence comes from the energy flux divergence term 

and from the buoyancy flux term in the energy equa- 

tion, where q = -w'b" is the buoyancy flux*. When 

there is a mean wind, as is usual in the atmosphere, 

the shear yields another energy source. This serves 

to increase the turbulence energy and thus to in- 

crease the entrainment effect through greater agita- 

tion of the IL. In addition, the shear may cause 

Kelvin-Helmholtz instability and consequent wave 

breaking at the interface and thereby enhance ero- 

sion. 

On the other hand, the effect of shear should be 

“SHOVES in an incompressible fluid is defined as b = 

g(p - P9)/p9 where g is gravity, p is density and pg is a 

representative density. In the atmosphere, p and pg are 

potential densities. We may also write b = g(@ -89)/8o 

where 6 is a potential temperature. 
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negligible if the mixed layer depth is much greater 

than the Monin-Obukhov length, L = -u3/q), [Monin 

and Yaglom (1971, p. 427)] where ux is the friction 

velocity. Thus (-L/D) 173 is proportional to the 

ratio, ux/wy, of the turbulent velocity in the mixed 

layer associated with shear to the turbulent veloc- 

ity associated with convection, wx = (q,D) 173. The 

shear effect becomes less important as this ratio 

decreases. Lenschow (1970, 1974) presents aircraft 

measurements, which appear to confirm the unimpor- 

tance of energy production by the shear for the 

turbulence near the inversion if |L/D| is small 

enough. 

The purpose of this paper is to construct a 

theory for the rise of an inversion in the atmo- 

sphere neglecting the effect of shear. The analysis 

is similar in some respects to that in a recent paper 

by the first author, [Long (1977b), hereinafter 

referred to as MISF] in which a theory is developed 

for turbulence in a stably stratified liquid, as 

for example in the experiments of Rouse and Dodu 

(1955), Turner (1968), Wolanski (1972), Linden (1973), 

Crapper and Linden (1974), Linden (1975), Thompson and 

Turner (1975), Wolanski and Brush (1975), and Hop- 

finger and Toly (1976). In these experiments a 

stably stratified fluid is agitated by a grid oscil- 

lating up and down near the bottom of the vessel 

(Figure 1). A growing mixed layer of depth, D, 

appears in the lower portion of the fluid separated 

from the non-turbulent fluid above, in which the 

buoyancy gradient is given, by an IL of thickness, 

h. Observations indicate that the lower mixed layer 

has a very weak mean buoyancy gradient. The buoyancy 

difference across the IL is relatively large and is 

denoted by Ab. 

As indicated by the experiments of Thompson and 

Turner and Hopfinger and Toly, and derived by the 

first author in a recent paper [Long (1977a)], the 

turbulence generated by the grid in a homogeneous 

fluid is nearly isotropic, and if u is the rms veloc- 

ity and 2 is the integral length scale, the quantity, 

uZ(proportional to eddy viscosity), is constant with 

height. When there is stratification, the mixed 

layer is nearly homogeneous and us = K is again con- 

stant near the grid [Hopfinger and Toly (1976)]. 

Since 2 is proportional to the depth, D, the veloc— 

ity, u, = K/D, is characteristic of the turbulent 

velocities in the mixed layer. The quantity, K, 

may be taken to be characteristic of the "action" 

of the energy source (grid). 

On the basis of observations, experimenters have 

FIGURE 1. 

the grid.) 

Oscillating grid experiment. (S = stroke of 

proposed that the entrainment velocity u, = dD/dt 

is expressible in the form 

Ue «3/2 _* DAb 
fs Ri , Rl = Feg2 (1) 

where Ri* is the overall Richardson number, f is the 

frequency, and S is the stroke of the grid. The 

measurements correspond to large values of Ri* so 

that attention is confined to the usual situation 

in nature in which the Richardson number is large. 

In terms of the "action" K of the grid, another 

Richardson number is 

Mee | msi (2) 
ea 

This is very similar to the number Ri = 2Ab/u2 

proposed by Turner (1973), where 2 and u are the 

integral length scale and rms velocity measured at 

the level z = D in a homogeneous fluid agitated by 

the same grid at the same grid frequency and stroke. 

In MISF and in the present paper, the role of the 

IL separating the mixed layer from the non-turbulent 

fluid above is essential. This contrasts with ear- 

lier theories in which h is neglected despite ex- 

perimental evidence [Linden (1975)] that h is 

proportional to D and is not particularly small 

(h/D = 1/4). Observations [for example, Wolanski 

and Brush (1975)] indicate that the IL with its 

large density gradient is typified by wave motion. 

Wolanski and Brush found that the frequency of dis- 

turbances in this layer was proportional to the 

Brunt-Vaisdla frequency (Ab/h)? although numerically 

one order of magnitude smaller. Certainly turbulence 

of some kind exists in the IL and since the density 

gradient there is strong rather than weak as in the 

mixed layer, it is reasonable to assume that the 

turbulence in the IL is intermittent and that this 

intermittent, weak turbuience transfers the buoyancy 

in the layer. In MISF the intermittency factor de- 

creases with increase of stability so that for the 

large Richardson numbers of the asymptotic theory 

the layer is, for the most part, in laminar wave 

motion with occasional breaking waves in the interior 

and at the lower surface of the interface. 

Similar ideas may be applied to the present prob- 

lem in: which the turbulence in the mixed layer is 

caused by heating at the lower surface. The princi- 

pal differences are the effect of heating in causing 

h to decrease and D to increase, and the differences 

in the sources of turbulence kinetic energy. The 

energy equation is 

' Dae 12 12 ey + 

Open w(2 +% a ) Vu & (3) 
C4 Po 2 

where the first term is the energy flux divergence; 

u', v', w' are the instantaneous velocities, p' is 

the pressure, Po is a reference density, q = -w'b" 

-is the buoyancy flux, and € is the energy dissipa- 

tion. In the present problem the buoyancy flux 

term, -w'b', is of basic importance and corresponds 

to the conversion of potential energy to kinetic 

energy. This effect is missing of course, in the 

case of mechanical stirring in a homogeneous fluid. 

Equation (3) omits the local time rate-of-change 

of kinetic energy although, in fact, the inversion 

is rising and conditions are therefore unsteady. 

With respect to the mixed layer, the kinetic energy 



Heated Surface 

FIGURE 2. Model of entrainment at an interface by 

heating from below. The curve on the left is the mean 

buoyancy, b, with an assumed linear profile above the 

interfacial layer. The curve for buoyancy flux, q, is 

on the right. The superadiabatic layer near z = 0 is 

not shown. 

is proportional to the square of the convective 

velocity, (q,D) 273, so that the ratio of the time 

rate-of-change term to the other terms in Eq. (3) is 

Ue/Wx. This ratio is of order one if the convective 

motions are spreading upward at a speed, ug, in 

initial conditions of neutral stability. Evena 

fairly weak inversion will cause a great slowdown 

and ue/wy will be small. Similar remarks apply to 

the IL and we are assured that the time dependence 

is negligible in the stable conditions of the paper, 

although it has received some attention in considera- 

tions of the real atmosphere [Zilitinkevich (1975)]. 

We may conclude this introduction with reference 

to work on penetrative convection in the atmosphere 

and oceans including atmospheric observations: 

Lettau and Davidson (1957), Ball (1960), Veronis 

(1963), Izumi (1964), Summers (1965), Deardorff 

(1967), Kraus and Turner (1967), Lilly (1968), Dear- 

domki (972) Betts) (197/3)",, Carson) (197/s)),) Stull 

(1973), Tennekes (1973a,b, and 1975), Adrian (1975), 

Farmer (1975), Zilitinkevich (1975), Kuo & Sun (1976), 

Stull (1976a,b,c), and Zeman and Tennekes (1977). 

Related experiments have been run by Deardorff, 

Willis, and Lilly (1969), Willis and Deardorff (1974), 

and Hedit (1977). A second-order closure model has 

been given by Zeman and Lumley (1977). More recent 

field observations have been made by Kaimal, et al. 

(1976). Mixed layer deepening in the upper layers 

of the ocean, which is almost always associated with 

wind stirring has been discussed by Niiler and Kraus 

(ID 77) 6 

2. RELATION OF FLUXES TO THE BUOYANCY JUMP AND TO 

MIXING LAYER AND INTERFACIAL LAYER THICKNESSES 

In the theory of the paper we ignore rotation, radia- 

tive heating, water vapor, and horizontal variations 

of mean quantities. The model is shown in Figure 2 

which contains curves for the mean buoyancy and buoy- 
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ancy flux. The mean buoyancy curve above the IL is 

assumed to be linear with buoyancy gradient N2. In 

one case we assume that N* = 0 so that the inversion 

rises and weakens, eventually disappearing. When 

n2 # O we assume that the air was at rest with uni- 

form buoyancy gradient when heating began. Then the 

inversion strength increases with time. Since the 

theory of this paper is concerned with very stable 

conditions, the solutions hold for large values of 

the Richardson number. 

The buoyancy flux curve is derived below from the 

assumed buoyancy distribution. The latter is assumed 

to be linear in the IL (region R3). This is an ex- 
cellent approximation* in certain circumstances at 

least, for example in the mechanical stirring ex- 

periments of Wolanski and Brush (1975). Observa- 

tions in the mixed layer [Willis and Deardorff 

(1974) ] indicate that there is very little mean 

buoyancy variation in this layer except for some 

indication of a stable mean gradient near the heated 

plate. If we ignore these gradients for the moment, 

the equation 

db aq 

at Oz i) 

indicates that q is a linear function of z. In fact, 

experiments show that q is nearly linear [Willis and 

Deardorff (1974)] so that the neglect of mean buoy- 

ancy variations in the mixed layer in the model of 

Figure 2 seems reasonable. The lower surface is 

heated and the buoyancy flux q = -w'b' (proportional 

to the heat flux) is held constant at the lower sur- 

face where it is denoted by q,. The mean buoyancy 

in the mixed layer is 

b =b.. = N2(D + h) + Ab (5) 
m 00 

where Ab is the buoyancy jump across the interfacial 

layer and bog is constant equal to the buoyancy at 

the surface 1f the linear gradient above is extra- 

polated down to the surface. Integrating (4) over 

the mixed layer, we get the flux, qo, just below the 

IL. IRS Als) 

Se ky GD De Ch N2D S= (D + h) (6) 

On physical grounds qo must be negative (Figure 2) 

and this is confirmed by laboratory measurements 

(Willis and Deardorff (1974)]. In the IL, the mean 

buoyancy is 

- N2(D = h) (7) 
= Ab 
Ney) Ne) ee (ES 1D) Ie 1a 

Integrating (4), we get the flux at a given level 

in the interfacial layer 

2 2 dAb t 2 dh z ap) 
Bou? G+ a) @ ESS Ee 

aD . dh peter sem (lola tet 8 wee (2+ B) (3) 

where T= z- D. At z=D+h, the buoyancy flux 

is zero so that 

* 
Even when the approximation is only fair, the error in as- 

suming a linear profile is small. We discuss this in Section 

6. 



Using (6) we get 

ei = = x [(D + sh) Ab - 4N?(D + h) 2] (10) 

The integral of (10) is 

(D + sh) Ab - 4N2(D + h)? = Vo - q,t (11) 

where 

We = (oe ‘sh ) Abg - 4N?(D, + ny)? (12) 

and the zero subscript denotes values at t = 0. 

Tennekes (1973b) obtained (11) and (12) with h and 

ho missing. As we have indicated, the interfacial 

layer thickness h plays an important role in the 

theory of this paper. The time to = vp /a1 is the 

time for an initial buoyancy difference to disappear 

when the upper air has a uniform potential tempera- 

ture [Tennekes (1973b) ].- 

3. THE INTERFACIAL LAYER (REGION R3) 

According to the discussion in Section 1, the IL 

in our model is turbulent with intermittency factor, 

I3, defined here as the ratio of the volume in tur- 

bulent motion to the whole volume*. Much of the 

layer is in wave motion in which all of the compo- 

nents of the fluid velocity are of the same order, 

i.e., the ratios w3/u3, w3/v3 are independent of 

the Richardson number. The intermittent turbulence 

is caused by the intermittent breaking of these 

waves. Since the wave amplitude is of the order of 

the wave length when the wave breaks, we should have 

u3 ~ V3 ~ w3 initially in the breaking waves as well 

and we assume this. Of course the "homogeneous" 

fluid in the breaking patch will tend to flatten 

out and the vertical velocities in the patch will 

decrease relatively as time goes on. In our model 

we ignore the patch after a time of order (h/Ab)% 

and consider that the local heat transfer has al- 

ready been accomplished. In actual fact this trans- 

fer is accomplished by the spreading of the patch 

over a larger time interval and the ultimate trans- 

fer by molecular processes. Since buoyancy flux 

occurs only in the turbulent portions of this layer, 

we get, at any level in the IL, 

a3 = ~ Byu3b313 (13) 

where b3 is the rms buoyancy fluctuation in the 

interfacial layer. B , is a universal constant? but 

“the introduction of intermittency may result in confusion 

if one inadvertently thinks of the IL as a’surface or even 

as a layer with thickness of the order of the amplitude of 

the wave disturbances. The latter is not excluded as a 

possibility in this section but, in fact, as we see in 

Eq. (26) the wave amplitude is much smaller than the thick- 

ness of the IL so that I is not the ratio of the times that 

a fixed point is in the upper (non-turbulent) and lower (tur- 

bulent) fluid. 

twe use symbols B), Byj,... to denote universal constants. 

Later, "constants" arise which, at first glance at least, 

may be functions of s = N2/(Ab/h) , i.e., the ratio of the 

stabilities of the upper "quiescent" layer and the inter- 

facial layer. We denote these "constants" by Aj,Ap,..-- 

b3, u3, and I3 may vary with height. The turbulence 

is certainly strongly influenced by buoyancy in this 

layer so that kinetic and available potential ener- 

gies [Long (1977d)] are of the same order not only 

in the waves but in the turbulent patches, i-.e., 

eS BS, S B05 a (14) 

where 63 is the order of the size of the disturbances 
and because of the tendency for conservation of buoy- 

ancy, we assume b3 is proportional to 63(Ab/h). Us- 

ing (14), Eq. (13) becomes 

B2B 5 
coils erase a ab) 43 aa (4 1 (15) 

Let us now find the dissipation. This occurs only 

in the turbulent patches and we assume that the 

local dissipation Gia = £(u3,63, b3). Since us ~ 

b353, we get Ep ~ 3/63 and 

Bu? ls Ab 45 a 

€3 = 13 4 = B,Bju3 (2) T3 (16) 63 h 

Equations (15) and (16) show that €3 ~ q3. Since 

these are both dissipative, it follows that they are 

of the order of the energy flux divergence. At the 

upper boundary of the IL, the kinetic energy of the 

waves has been so reduced by losses to potential 

energy and dissipation, that there can no longer be 

wave breaking and turbulence. Thus h is the depth 

of penetration of the turbulence. At the height z 

= D+h, the energy flux is too weak to support tur- 

bulence so that it has apparently decreased to a 

value well below that at the bottom of the IL. 

Therefore, the increment in energy flux over the IL 

is proportional to the value at the bottom of the 

IL. Integrating Eq. (3) between levels in the layer 

near the upper and lower surface, we find that q3h 

is of the order of the energy flux just below the 

inversion where q3 is the average buoyancy flux in 

R3-. Since the interface is being distorted by the 

vertical motions (inducing pressure fluctuations) , 

the energy flux should be proportional to W5P5/00 

~ we in Ro. We may write 

= 3 
q3h SO Aowo (17) 

Equation (17) has a form superficially similar to 

that proposed by others in a number of papers [for 

example Long (1975), Zeman and Tennekes (1977)] on 

the basis of assumptions about the size of terms in 

the mixed layer. In present notation, these authors 

propose qoD ~ we and this leads rather directly to 

the Ri-! law for the entrainment. Equation (17) is 

really quite different. If the upper fluid is ho- 

mogeneous, Ay should be a universal constant. How- 
“ever, when the upper layer is stratified, losses of 

energy may occur by wave radiation and Ap may then 

be a function of s = N2/(Ab/h). 

Using (6), (8), (14), (15), (17), we get 

3 
Agw? dip nh dAb) Ab dh aD iy See nO EO Be Sn, Se h ae) cles 9G Ge DS Ge 

2 1 d + q; - N*“(D + %h) ae (D + h) (18) 
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=e ma \ 2 

= eff, 
So = B3 (2) wo (19) 

BB 1s 
od Ab dAb d 

yaa) = ceo Dl a = anes 

where the subscript "2" denotes values at a level 

just above z = D. Equation (19), which follows from 

Eq. (18), is consistent with the assumption that the 

pressure fluctuations in eddies in region Rp of fre- 

quency wo/59 of order of the natural frequency 

(Ab/h)2 are generating the breaking waves by reso- 

nance. 

4. TURBULENCE IN THE MIXED LAYER 

According to (17) the vertical turbulence velocity 

in Ro is related to the average buoyancy flux in 

the interfacial layer. The latter is related to 

the entrainment velocity so that it is essential to 

relate w 2 to turbulence in the main portion of the 

mixing layer, or to w, = (qb) 173 This is often 

called the convective velocity. A great deal of 

confusion has arisen regarding this problem because 

of two explicit or implicit assumptions often made: 

(1) that the turbulence near the interface is quasi- 

isotropic, i.e., ug ~ vo ~ wo, and (2) that wo ~ wy. 

We will try to show that both of these assumptions 

are incorrect*. 

In laboratory experiments with mechanical mixing, 

measurements indicate that the mean buoyancy gradi- 

ent in the mixed layer is very weak and, in fact, 

approaches zero as the Richardson number increases 

(Wolanski (1972)]. Instantaneously, the lower sur- 

face of the interfacial layer is very sharp (perhaps 

a discontinuity for infinite Reynolds numbers!) . 

This surface is agitated by the disturbances of the 

mixed layer so that the mean buoyancy curve varies 

continuously, although rapidly in the region, R». 

It seems quite safe, however, to neglect effects of 

buoyancy on the turbulence of the instantaneous mixed 

layer. Let us do this tentatively although we will 

return to this point later. Since, for the highly 

stable conditions of this paper, the interface dis- 

turbances will be very small, the inversion will act 

like a 'rigid lid" with slipt and the turbulence will 

be similar to turbulence between a rigid heated plate 

at z = 0 and a rigid plate az=D. The first ques- 

tion to face, then, is the nature of the turbulence 

at some level € = D - z near the upper "plate." To 

do this, we first consider the findings in two recent 

papers by Hunt (1977) and Hunt and Graham (1977) re- 

garding the distorting effect of a rigid plane on 

homogeneous turbulence. The corresponding labora- 

tory experiment is produced by passing air through a 

grid in a wind tunnel. The rigid plane is a moving 

belt along one wall of the wind tunnel with speed 

equal to the mean wind. This serves to eliminate 

the shear near the wall and the corresponding energy 

source. The wall causes two boundary layers (Fig- 

ure 3). One is a very thin viscous layer of thick- 

ness dy near the wall in which all three components 

of velocity go to zero, and the other, called a 

source layer of thickness 6,, extends from the vis- 

* 

We mean by A ~ B that A/B is finite and non-zero in the limit 

as ixul $7 dp 

"This is the opinion also of Zeman and Temnekes (1977). 
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FIGURE 3. Turbulence near a wall. 

cous layer to a level at which the disturbing ef- 
fects of the wall are negligible. The vertical 
velocity must decrease throughout the source layer 
because it is very small at the top of the viscous 
layer, but there is no obvious reason for a decrease 
of the horizontal velocity components in the source 

layer. This is confirmed by experiment and by the 

mathematical analysis by Hunt and Graham who derive 

the following results of interest in the present 

problem: The rms vertical velocity in the lower 

portions of the source layer is wo = B(et) 1/3, where 

B is a universal constant and € is the dissipation 

function far from the wall, and the rms horizontal 

velocities are of the same order as those far from 

the wall although somewhat larger. It is useful to 

obtain these and other results more intuitively. 

In a recent paper, the first author [Long (1977c) ] 

has shown that turbulence at high Reynolds number in 

a wind tunnel far from a wall is determined com- 

pletely by two quantities, K and u/x, where K is a 

quantity of dimensions L?T-! characteristic of the 

grid and proportional to ul. u is the mean velocity 

and x is distance downstream from the grid (or more 

accurately from a virtual energy source replacing 

the grid). For example, the dissipation function 

far from the wall is e€ ~ Ku2/x*, the rms velocity 

is u ~ (Ku/x)%, and the integral length scale is 

2 ~ (Kx/u)*s. 
Obviously the source layer thickness is 6, ~ 2 

[Hunt (1977)] and the dissipation in the source 

layer is 

u e, = ef a (21) 
K ey 2 

Just outside of the viscous layer, Es is Eso or 

rt 

bya? 
ein 68 \| Soae (22) 

K°x? 

INS Ws Op Sy > 0O, and, since ¢€ must be independent 

of viscosity for high Reynolds number turbulence, 

aq @ Co 

At small ¢, eddies of length much less than f 

will not feel the distorting effect of the surface 

and will be isotropic. Eddies of length much greater 

than ¢ will feel the surface very strongly and will 

be strongly flattened. Eddies of length of order 

& << & will feel the surface but will remain quasi- 

isotropic. From the equation of continuity the 

large flattened eddies of horizontal dimensions D 

yield vertical velocities of order ujZ/D ~ KE/D2. 

The quasi-isotropic eddies are much smaller and for 
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high Reynolds numbers will lie in the inertial sub- 

range. They will have a spectrum function 

2 5 

Sg ie ae wd Spall (23) E 1 (k) oe k Aids (6 

where k is the wave number so that ,the contribution 

to the vertical velocity is et6°cl/3, This is much 

larger than the contribution from the flattened 

eddies so that w, ~ elf3zi/3 or we ~el/3 ti/3, as 
derived rigorously by Hunt and Graham (1977) . 

In the mixing experiments the surface at z = D 

is not rigid but is agitated by disturbances of 

amplitude 65. Assuming that eddies of this size 

are in the inertial subrange, we get vertical veloc- 

ities of order BMSINiee and again these, rather than 

the eddies of size D, contribute most to the rms. 

Then wo ~ el/35,1/3, Since € ~ K3/p4, we get, as 

in MISF, 

=B (24) 

The problem of the present paper is somewhat more 

complicated but the distorting effect of the inter- 

face should be the same since the buoyancy varia- 

tions in the mixed layer are very small. The air 

in the main portion of the mixed layer has velocities 

of order (q)D)!/3 rather than K/D and in Ro the 
buoyancy flux is similar to that in the case of 

mechanical stirring. Equation (24) takes the form 

3 
WwW Ee BCH (25) 
85 : 

This result, together with (19), implies wo ~ 

W*Ri-4(h/D)% , where Ri = DAb/w2, and differs 
fundamentally from that of Tennekes (1973b) who 

assumed wo ~ w, by arbitrarily equating the buoy- 

ancy flux and the energy flux divergence. Tennekes 

has acknowledged [Zeman and Tennekes (1977) ] the 

inadequacy of this assumption. 

The drop-off of w as the interface is approached 

is revealed in the data of Willis and Deardorff 

(1974). As shown by Hunt and Graham (1977), the 

total kinetic energy is the same near the distorting 

surface as it is far away so that the horizontal com- 

ponents of rms velocity should increase toward the 

interface. There is an indication of this also in 

the data of Willis and Deardorff. 

It is also interesting that we may predict the 

same type of behavior near the lower heated surface. 

In fact, earlier data of Deardorff and Willis (1967) 

as well as the more recent data of Willis and Dear- 

dorff (1974) show that the vertical velocity near 

the heated plate increases with height, roughly in 

accordance with similarity theory [Prandtl (1932)], 

but that the horizontal velocity decreases with 

height. Thus, it is possible to apply similarity 

theory to obtain the vertical component, w, but not 

to obtain the horizontal components, u and v. The 

dimensional analysis for the horizontal components 

at large Rayleigh number must include D as well as 

q, and z no matter how small the ratio, z/D! There 

are experimental indications that the classical 

arguments of "localness" are also incorrect in prob- 

lems of turbulent shear flow [Tritton (1977, p. 

Using (25), the relations in (18)-(20) and the 

expression for wy are 

283)]. 

oat oD 3 

Sy a iain is 

LONER PS 
=p 2a. 8 A) 27 

pe techy cel (2 bean) 

mies ie oy an = @= hb) = (28) Bp 119162 = at at a 

3 
-a,q)2 h\dAb Ab dh 1 aD 2th 

=> — —_— + —_- — — — 

Spe gus ea ae ( Sig ) cae | 2S ae 

ht (Ab) 4 

Se = hy ESL ae ey) (29) 
BPD sa aie) as 

Seanes 
3 q 

where Q5 = A,B) 1/33 5 

5. DIFFERENTIAL EQUATIONS 

Equation (29) is a single differential equation in 

three unknowns, D, h, Ab. Let us now seek additional 

information. The quantity, 03/53, is the dissipa- 

tion in the turbulent patches in the interfacial 

layer. We have seen that it is independent of Ri 

in the lower portions of the layer. Obviously it 

will vary continuously with < (now defined as z - D) 

in the layer and, to the first order, will remain 

independent of Ri although it may vary with the 

quantity s = N2h/Ab when the upper fluid has a 

linear buoyancy field. We may therefore write 

U3 t 

oe = Ci 4? (é, s) (30) 

or using (14) 

4 nye 4 h ic 
u3 = B3 Ae) ¥7 (, s) (31) 

We may obtain another expression for us by in- 

tegrating the energy equation over the interfacial 

layer. We have already seen that Je3|~|a3| and 

assuming that the energy flux is proportional to 

u3 in this layer*, we have from the energy equation 

Ww 3 
3 = Brigg (32) 

Using (8) and integrating, we get 

dab (72 3 ud = wi + Bio [ ans + MB(E- =) 

(DE) (33) 

* 

We have seen that the energy flux at the bottom of the layer 

1s proporticnal to ugae To the first order it should be pro- 

portional to us in the rest of the layer, i.e., independent of 

Ri. 



Comparing (31) and (33) and using (27), we get 

3 

ga aes 2 ne a tr eC Ee Yy (Es) =e ge Tr usp + 25 (34) 

where? A3, Ay, and As may depend on s. Equating 

coefficients in (34) we get (29) again and the 

following 

ied 
2 4 

dAb a Gl ie aor 
Ghy WPMD) are" 7 NED) a (D + h) = -a3 3 (35) 

D(Ab) # 

33 

2 rane Dddb , db aD _ N*D a 7 1 
5 Ge Do as a ae (O° 2) = ch 3 (36) 

D(Ab) * 

32 
24 

D2 aAb | D2Ab dh q, h 
- = + 5 = a5 (37) 

6h dat 6h2 at 3 
D(Ab) * 

my BYAR na ; 
where Oj] = A;/B)2B3 (i = 3,4,5). Equations (35)- 

(37), (29), and (11) are five equations in the three 

unknowns. They determine the solution to the first 

order for large Ri, although we must make sure that 

all equations are satisfied to that order. In this 

regard, if we use (35)-(37), (29), and the deriva- 

tive of (11), i.e., (10), we may consider these as 

five homogeneous linear, algebraic cquat tous in five 

EET SA FA dAb/dt, dD/dt, dh/dt, q,, and qi? 24374 7p 

(Ab) 3 +. The determinant of these eguations vanishes 

and we satisfy compatibility. 

6. HOMOGENEOUS CASE (N = 0) 

If N = O, the upper fluid is homogeneous and (11) 

becomes 

1 2 
(D + 5h) Ab = Vp - ayt (38) 

2 9 Aad 
where Vp is a constant related to initial conditions. 

We use (35) and (38) to eliminate Ab in (29), (36), 

and (37). We get 

3 3 3 
9.4 4 4 

d a, °h (D sr 2 ) 
at (Ab) = - ea a3 52 ViEgaeene i! (39) 

(V5 - q,t) 

dh qih (D+ oh) 

dt D 
(vi = Cite) 

Si o 
q, 2h" ines tn) 

+ Cy = 6a5 D = 7 = (0) (40) 

ON = qyt)* 

+ 5 be PD: A 
.For arbitrary Ri, the quantities A,; may depend on Ri. As 

Ri > ©, however, A, will approach "constants" which may, of 

course, be zero. 
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1 
dap h (D+ gh) 

SG at 1 >) 4 
(Vo - q,t) 

a7 As 
aon (D + 5h) 4 

= (a3 + 204) =0 (41) 
D2 2 Z 

(Vo - a, t) 

1 
Bc e anya penap ny aie 

dt dt 2) De 
(Vo - q,t) 

307 7 ae 

D2 D q,°h! (D + zh)" 
sue 6a9 oe 603 a 203 = (0) (1)) 

h 2 f 

Two effects occur in (40) and (41). We may separate 

them by adding the two equations. We get 

3 7 

24 1 4 
él h\ 41 h }D) Sr oh 
—_ + = + _ _ dt (D h) (2u, 6a5 ae 2 (43) 

Vo ~— qt 

The term on the right of (43) expresses the upward 

motion of the boundary between (intermittently) 

turbulent and non-turbulent fluid due to turbulence 

in the interfacial layer causing entrainment of the 

upper, non-turbulent fluid. On the other hand, the 

second terms in (40) and (41) express the upward 

motion of the boundary between fully turbulent and 

intermittently turbulent fluid (and the consequent 

decrease of h) due to heating alone. This contribu- 

tion to the entrainment velocity is proportional to 

the interfacial thickness, h, and disappears when 

the common approximation is made that h = 0. 

Let us find an approximate solution to (40)-(42). 

If we let Dp and ho be the values of D and h at t = 

0, we make the following definitions: 

ho h D S'S =) = h = = jp Do a , Do 1 , Do i 

2 2 1 
3 3 a J. 

q a8 pet (44) 
Vo Do3 

Then equations (40)-(42) may be written 

1 + 5 hj) dh i By, Uo 

dt Dy (1 - 6t) 

L, ilies 
4 ii yoy 

2, ye SOE Ze =0 (45) + a3 > 645 Dy 2 Z 

: Dy (AL > Ox) 

1 
aD, hy (D, ar zhy) ; 

dt Dy (lL = Or) 

ih 1 Ho 
GD, & Bin, ) B08 

2 (Gg > 2p) 7 0 (46) 

Do (2 - 6t)* 



592 

D Dj hi 
(602 ne 6a3 hy + 604 + 605 7 

72 Le 
q 1 rar 

ot SS ST ee, (47) 
2 £ 
Dy (1 - at)4 

Solutions are of the form 

h i q,t 
—_ = _ + = —_ mh aL (al 74) ve 

3 7 sa 
= < 2n2 
4 Pace fay Das 

= A(Cley = Seley) Gi: (al + $a) at 

v2 
0 

Qe 
mate 

+5 a(2t+ayo 1+... (48) 
Vo 

Gast 
Zen aG so) = 
Do 2 V6 

atl 

fr il Dee Dye 
ae (ie), ae Aton) ery (al ae 58) aetricn 

Vo2 

Gace 

- 5 a2(2 + a)? ae (49) 
Vo 

Pee 2 Se 

vy 2+a ve 
0 

Sel 
iL 1 c= 
7 oF Pip ne 

O13 ) a a y qy Do 
G 204 3asa}a{l+ 5 z 

Vo 

2 D2 
a(2 + a) qjt 
ee aC SOO (50) 4 

4 Vo 

where hg and Dp are related by the equation 

6a9 - 6a3a + 6ay4a2 a 6as5a2 = 0 (51) 

The entrainment velocity, ug = dD/dt, may be ex- 

pressed in terms of the Richardson number, Ri = 

DAb/w? , by using 

6(1 + Sa) = fal a 25) 

Y 2 

np Ce (Ox 4 2a4)a* (52) 

The first term is of the same form as the non- 

dimensional entrainment velocity of Tennekes (1973) 

but, as already pointed out, the derivation and 

physical mechanism are very different. It is easy 

to trace the error in (52) arising from the simpli- 

fication of Section 2 that the IL has a linear 

buoyancy field. The error is proportional to 

(u,/w,) ab./Ab where b, is the maximum difference 

between the actual buoyancy in the IL and the as- 

sumed buoyancy. Since a is 1/6 or so and be/Ab is 

fairly small, this error is negligible. Notice also 

that the theory concerns strongly stable conditions 

so that (52) does not apply in the limit as Ru, == Op 

As Ri tends to order one ue becomes of order wy as 

one would expect. 

The ratio go/q, is of interest. Using (6), we get 

a2 D_ dAb — si ¢ = S— (53) 
qi qi dat 

Using (50) and (52), we get 

Z 3 £ 

a2 a TR = a || = yRi * , y = — (3+ 2ay + asa) (54) 
ql (ea) 

2 

The expressions (26)-(28) are 

1 Td 5 3 Cy aguas Op BHae: Se 
—_—= at atri # = 8 ua Rea ' 
We im iB 3.3 

B3! rears 
B3 alt 

3 

I SeE Rae (55) 2 ak ae ee 
BiB) * 

These relations are identical to those in MISF. The 

result that the disturbances in the IL are small 

compared to the thickness of the IL is contrary to 

speculation [Stull (1973) and Zeman and Tennekes 

(1977)] that h is the depth of penetration of the 

eddies into the stable region. 

7. LINEAR BUOYANCY FIELD IN THE UPPER LAYER (N # 0). 

We consider initial conditions in which the fluid is 

at rest initially with a linear buoyancy field, so 

that D, h, Ab are zero at t = 0. Equation (11) be- 

comes 

n2 
(D + sh)ab = (D+ ny? = - gt (56) 

Equations (56), (29), and (35)-(37) determine the 

problem. The approximate solutions* are 

* 

The solutions, as throughout the paper, are for strong 

stability, which implies here that Nt is large. Thens +1, 

and %9,043,4,45 are independent of s. 
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l 2 
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h = (2q)t) z + 3 

n2 

at ee 
Ab = (2q,t)2aN + (2q)) 2b3N? (57) 

where 

1 
2: b a 

a=-1+(Q+2 Pyles ME Se) \ See L 
Oy ay i ay 3 

22 

1 ao 2 ide} = lok) = 

—=a*(1 +a) , ———= 22a (58) 
(omn 3) Oy 

Using the relationship 

3 3 3 
42 uf b b aS 
Ri 3a 1 sl Ban oh 

Nt = 3 1 eee Ri (59) 

2a? 22 

we obtain for the entrainment velocity 

u x Tek math 
— = ari7! + 22b,a'Ri * (60) 
We 

The ratio of fluxes is 

3 ees 
|*| = 22p aki 4 (61) 
qi 

Notice that Ab/h > N2 as t > © so that the IL be- 

comes indistinguishable from the upper layer as the 

turbulence in it weakens (becomes more intermittent). 

This contrasts with MISF in which the stability in 

the IL is several times larger than the stability 

in the upper fluid. Notice also that s + 1 implies 

09...d5 are universal constants. More accurately, 

Nie [Nd 2. 
ae = 1+ ay (<2) (62) 

We see from (32) that a, > 0 so that the buoyancy 

gradient in the IL is more stable than in the air 

above. These results suggest that an interfacial 

layer will be difficult to identify when there is 

a stable buoyancy gradient aloft. This is certainly 

the case in the experiments of Deardorff, Willis, 

and Lilly (1969) and Willis and Deardorff (1974). 

8. DISCUSSION 

We have already contrasted the theory of this paper 

with that of Tennekes (1973). He obtains 
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Ue OY Beanie (63) 
* 

which has the same form as the first term in (52) 

or (60). The present theory should not, however, 

be regarded as an extension or modification of the 

Tennekes' theory because, as we have noted in sev- 

eral places, the two theories differ fundamentally. 

This is also evident in the difference in the nature 

of the two constants of proportionality for the 

Ri71 term in the two theories. The a, in (63) may 
be identified physically as the ratio |qo/q | which 

is a universal constant in the Tennekes' theory. 

The constant, a, in (52) or (60), however, is a 

universal constant equal to the asymptotic value 

of the ratio of the inversion layer thickness to 

the thickness of the mixed layer. Tennekes assumed 

a value of 0.2 or so for a; and it is a coincidence 

that this is also a reasonable choice for a. 

We may attempt to estimate the constants in the 

expressions 

7 3 
u a air qo a) oe e ates a. 4 0 
— = aRi7! + cRi * f Asal 4 (64) 
Wy ql 

using the data of Willis and Deardorff (1974)*. 

Approximate estimates for the two cases: 

Sily iD) = Se) Guy, in = S) on, Ae S 157%, 
0.39 cm/sec, Qo = 0.18°C cm/sec, 

WwW 1.3 cm/sec, Ri = U5 5,5 4 = Ostler 

¢ = 1.09, y = 1.61 
B48) te) S FSeidp iy SS 55) vem, (aw = Be, 

A 

He the 

0.69 cm/sec?, Qo = 0.22°C cm/sec, 

1.4 cm/sec, Ri = 20, a = 0.15, 

@ = 1,05, 7 = 1.05 
Ee top 

te ak 

We may also attempt to compare with atmospheric data. 

For example, using the 1200 observation on Day 33 

for the Wangara data, [Zeman and Tennekes (1977)], 

we obtain 

2 S10" Guy AO S 2°C;, 
20°C cm/sec, 

3, 4 = O58 C= 22 

D = 1.1 10°cm, h = 
13 cm/sec’, Qo 

194 cm/sec, Ri 

Ile Cc o 

Idk 

These computations indicate that the two terms in 

the expression for u, in Eq. (64) are roughly 

similar in magnitude for atmospheric and laboratory 

conditions. 

It is interesting to compare the theory of the 

erosion of a linear buoyancy field with a numerical 

experiment of Zeman and Lumley (1977) using a 

second-order closure model. The numerical calcula- 

tion began from an initial instant, ty, at which 

eshte) IY S Dip Wa = Wag) = (qaDo)it7 2. The present 

theory sat timelt) =) tS tp ais 

D T 9) 
— = te SP ooo Sn) = WDE AW Do i So 7 SH) Uf 

where we have assumed that (tgN)’s is large. The 
numerical’ curves [Figure 1 of the paper of Zeman 

and Lumley] are nearly linear after tT exceeds 2 or 

so although, as (57) would indicate, D/Dop increases 
somewhat more slowly after considerable time. The 

i . 

Supplemented by information in a personal communication from 

Dr. Willis. 
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FIGURE 4. Comparison of present theory and numerical 

experiment of Zeman and Tennekes (1977). The curves 

correspond to values of S, in (65). 

most important comparison, however, is that the 

curves of Zeman and Lumley for various Sg collapse 

rather well when plotted against t/Sg instead of Tt 

as in Figure 1 of Zeman and Lumley. Conversely, we 

may reproduce Figure 1 of Zeman and Lumley together 

with plots of D/Do in (65) for the same values of 

Sg chosen by Zeman and Lumley. This is shown in 

Figure 4. The agreement is good, especially at 

large stabilities where the approximation in (65) 

should be best. This indicates that the two models 

have some similar features. 
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ABSTRACT 

There is now good observational evidence to support 

the ideas that double-diffusive processes, i.e., 

those for which the differential diffusion of heat 

and salt are important, can affect the rates of 

vertical transport of these properties in the ocean, 

and are responsible for the formation of certain 

types of microstructure. Much of our detailed 

understanding of these effects has come from related 

laboratory experiments, but new phenomena are still 

being discovered which are as yet untested by direct 

measurements in the ocean. It is the purpose of 

this paper first to review the background to this 

Australia 

subject, and then to describe the more recent experi- 

ments which suggest further double-diffusive effects 

likely to be significant in various oceanographic 

contexts. 
A convenient laboratory technique has been to 

use two solutes (commonly salt and sugar) to model 

the T-S variations; some of these experiments with 

closer diffusivities are in fact directly relevant 

to the ocean. When more than two diffusing compo- 

nents are present it has been shown that even small 

differences in molecular diffusivity can signifi- 

cantly affect the relative rates of transfer of 

solutes through an interface, and this should be 

considered more carefully in geochemical studies. 

Strong double-diffusive layering is often associated 

with large horizontal gradients of T and S, and 

related effects have been studied in our laboratory 

in three different geometries: the circulation 

produced by a block of ice in a salinity gradient; 

a line source of one fluid intruding at its own 

density level into a gradient with different prop- 

erties; and the spreading across a frontal surface 

separating two fluids having the same vertical 

density but different T-S structures. 
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1. INTRODUCTION 

It is past the stage when the relevance of double- 

diffusive effects has to be justified ab initio to 

an audience of oceanographers. Over the last few 

years, there have been many observations of fine- 

structure and microstructure in the deep ocean 

which can only be explained in these terms. Wherever 

there is a systematic association between T and S 

variations, with both properties increasing or 

decreasing together (so that their effect on the 

density is in opposite senses), then it is clear 

that the difference in molecular diffusivities for 

heat and salt can affect the vertical structure 

and the transports of the two properties. It is 

not then sufficient to base predictions of mixing 

on the net density distribution alone. 

Our understanding of these processes has been 

greatly influenced by related laboratory experiments 

[see Turner (1973, 1974)]. Much of the detailed 

work has concentrated on the properties of sharp in- 

terfaces separating relatively well-mixed layers: 

it has been shown that when there are compensating 

T-S gradients, a smoothly stratified water column 

typically breaks up into a series of steps, and 

molecular processes must be more important across 

such interfaces. Once layers have formed there 

remains little doubt that the coupled transports 

can be estimated using the laboratory results. It 

is much less certain, however, that the processes 

of formation of layers have always been adequately 

modelled in the laboratory, where most of the experi- 

ments have been one-dimensional in form. 

More recent experiments [Turner and Chen (1974), 

Huppert and Turner (1978), Turner (1978)] have begun 

to explore a variety of two-dimensional effects, and 

it is these which will be given most attention in 

the verbal presentation of this paper. It should be 



admitted right at the beginning that these experi- 

ments are still largely qualitative, and that much 

more remains to be done, but already they suggest 

new explanations of some existing observations in 

the ocean, and allow us to predict what might be 

measurable in future work. 

2. ONE-DIMENSIONAL PROCESSES 

Formation of Layers from a Gradient 

For completeness, the fundamental physics of the 

double-diffusive convection will be outlined briefly 

by referring to the simpler early experiments. The 

review of one-dimensional experiments will then be 

brought up to date and specific oceanographic 

examples of these processes will also be described. 

The necessary conditions for double-diffusive 

convection to occur in a fluid are firstly that 

there should be two or more components having 

different molecular diffusivities, and secondly 

that these components should make compensating 

contributions to the density. It is remarkable 

that under these conditions strong convective 

motions can arise even when the net density distri- 

bution increases downwards. The overall density is 

"statically stable' in this sense in all the cases 

described here. Motions are nevertheless generated 

since the action of molecular diffusion, at different 

rates for the two components, makes it possible to 

release the potential energy in the component which 

is heavy at the top. This can drive convection in 

relatively well-mixed layers, while the second 

(stably distributed) component preserves the density 

difference across the interfaces separating them. 

There are two cases to be considered, depending 

on the relation between the diffusivities and the 

density gradients, i.e., on whether the driving 

energy comes from the component having the higher 

FIGURE 1. Layering produced from an initially 

smooth salinity gradient by heating from below. 

Three well-mixed layers are marked by fluorescein 

dye, lit from the top. (Tank diameter, 300mm. ) 
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or lower diffusivity. The simplest example of 

the former is a linear stable salinity gradient, 

heated from below. An unstratified tank would over- 

turn from top to bottom, but because of the stabi- 

lizing salinity gradient only a thin temperature 

boundary layer is formed at first, which breaks 

down through an overstable oscillation [Shirtcliffe 

(1967)] to form a shallow convecting layer. This 

layer grows by incorporating fluid from the gradient 

above it, in such a way that the steps of S and T 

are nearly compensating, and there is no disconti- 

nuity of density, only of density gradient. 

When the thermal boundary layer ahead of the 

convecting region reaches a critical Rayleigh number, 

it too becomes unstable. A second layer then forms 

above, and eventually many other layers form in 

succession (See Figure 1). The vertical scale of 

these layers increases as the heating rate is 

increased, and decreases with larger salinity gra- 

dients. Turner (1968) has shown that the first 

layer stops growing when 

Je =D Nee (1) 

Here d, is the critical depth, D is a dimensional 

constant which depends on the critical Rayleigh 

number and the molecular properties, B = -gaFm/pC 

is the imposed buoyancy flux corresponding to a 

heat flux Fp (a being the coefficient of expansion 

and C the specific heat), and Ng = [(g/p) (dp/dz]% 
is the initial buoyancy frequency of the stabilizing 

salinity distribution. The criterion for the for- 

mation of further layers is currently being studied 

by Huppert and Linden (personal communication). 

A device which has proved very helpful in elim- 

inating uncontrolled sidewall heat losses (as well 

as providing results directly relevant to the ocean) 

is to carry out experiments with two solutes, say 

sucrose and sodium chloride solutions, instead of 

salt and heat. Essentially the same phenomena can 

be observed, although the diffusivities are much 

more nearly equal (the ratio T = Ksg/Kz, where Km 
denotes the larger and ks the smaller diffusivity 

in each case, is about 1/3 for sugar and salt, 

compared with = 1072 for salt and heat). 

Linden (1976) has in this way extended the 

"heated gradient" experiments to study the case 

where there is a destabilizing salt (T) gradient 

partially compensating the stabilizing sugar (S) 

gradient in the interior. He has shown, both 

theoretically and experimentally, that during the 

formation of layers the relative contributions of 

the energy provided by the boundary flux, and that 

released in the interior, change systematically 

with the ratio of the vertical T and S gradients. 

In the limit where these gradients become equal, 

all the energy comes from the destabilizing compo- 

nent in the interior, and the ultimate layer depth 

is finite and proportional to N,-% (where N, is the 
buoyancy frequency corresponding to the stabilizing 

component) . 
Once layers and interfaces have formed, it is 

important to understand what governs the fluxes of 

S and T across them. For this purpose two or more 

layers can be set up directly, and the interfaces 

examined using a variety of optical techniques. 

For example, Figure 2 is a shadowgraph picture of 

a very sharp interface formed between a layer of 

salt solution above a layer of sugar solution, which 

is equivalent to colder fresh water above hot salty 

water. Note that salt is here the analogue of heat, 



FIGURE 2. Shadowgraph picture of a sharp "diffusive" 

interface, formed between a layer of salt solution above 

a denser sugar solution. Note the convective plumes each 

side of the interface, evidence of strong interfacial 

transports. (Scale: the tank is 150mm. wide.) 

and sugar the analogue of salt, since in each case 

the convection is maintained, and the interface 

kept sharp, by the more rapid vertical transfer of 

the faster diffusing component. Such interfaces 

have been called "diffusive interfaces", for reasons 

which will become clearer in the following section. 

Fluxes through Diffusive Interfaces 

Quantitative laboratory measurements have been made 

of the S and T fluxes across the interface between 

a hot salty layer below a cold fresh layer, and 

they have been interpreted in terms of an extension 

of well-known results for simple thermal convection 

at high Rayleigh number. Explicitly, Turner (1965), 

Crapper (1975), and Marmorino and Caldwell (1976) 

have shown that the heat flux oF», (in density units) 

is described by 
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OF = AL (aAT) (2) 

where Aj has the dimensions of velocity. Fora 

specified pair of diffusing substances, A, is a 

function of the density ratio Ro=BAS/aAT, where 8 

is the corresponding "coefficient of expansion" 

relating salinity to density differences. The 

deviation of A, from the constant A obtained using 

solid boundaries, with a heat flux but no salt flux, 

is a measure of the effect of AS on Fm. When Rp 

is less than about 2, A, > A due to the increased 

mobility of the interface, and when Rp > 2, Ay 

falls progressively below A as R, increases and 

more energy is used to transport salt across the 

interface. The empirical form 

A,/A = 3.8 (BAS/aAT) 7 (3) 

{Huppert (1971)] provides a good fit to the obser- 

vations over the whole of the measured range 1.3< 

Rp <7. 

The salt flux also depends systematically on 

Rp, and has the same dependence on AT as does the 

heat flux. Thus the ratio of salt to heat fluxes 

(both expressed in density units) should be a 

function of Rp alone for given diffusing substances: 

BF./oF, = £, (8AS/aAT) (4) 

The results reproduced in Figure 3 support this 

relation, and they also reveal the striking feature 

that the flux ratio is substantially constant (=0-.15) 

for 2<R, <7. [The more recent experiments of 

Marmorino and Caldwell (1976) suggest that the flux 

ratio can be as high as 0.4 with much smaller heat 

fluxes, but the reason for this discrepancy is not 

yet resolved]. Experiments by Shirtcliffe (1973), 

using a layer of salt solution above sugar solution, 

have shown a much stronger dependence of Fm on Rp 

than (3), but again a constant flux ratio, the 

measured value (for NaCl and sucrose) being 

BF</OF p x 0.60. Note that the flux ratio must 

always be <l, for energetic reasons: the increase 

in potential energy of the driven component must 

always be less than that released by the component 

providing the energy. This implies that the density 

difference between two layers must always increase 

as a result of a double-diffusive transport between 

them. 

Direct measurements through the interface in 

Shirtcliffe's experiment suggest that this has a 

diffusive core, in which the transport is entirely 

molecular, and which is bounded above and below by 

unstable boundary layers. The "thermal burst" 

model of Howard (1964) has recently been extended 

to this two-component case by Linden and Shirtcliffe 

(1978), to predict both the fluxes and flux ratios. 

The constant range of flux ratio can be explained 

in the following way. Boundary layers of both T 

and S grow by diffusion to thicknesses proportional 

to Ken and Keer and then both break away intermit-— 

tently. If only the statically unstable part at 

the edge of the double boundary layer is removed 

(such that aAT=8AS), then the fluxes will be in 

the ratio tz, in reasonable agreement with the 

laboratory results for the two values of T used. 

Linden (1974a) has given a mechanistic argument to 

explain the increase of flux ratio at lower values 

of Ry, which he attributes to the direct entrainment 

of both properties across the interface. 

It is worth noting in passing that Huppert (1971) 
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FIGURE 3. The ratio of the fluxes of salt and heat (in 

density units) across an interface between a layer of 

hot, salty water below colder, fresh water, plotted as 

a function of the density ratio R.. [From Turner 

(1965) .] " 



has shown theoretically that an intermediate layer, 

or series of layers, is stable if the overall S 

and T differences lie in the range where the flux 

ratio is constant, and unstable if the flux ratio 

varies with Rj. Observations of stable layers in 

the ocean seem to be consistent with this criterion. 

The merging of layers by this and other mechanisms 

has been studied experimentally by Linden (1976). 

Some measurements have also been made in the 

case where several solutes with different diffusivi- 

ties, Ky, are driven across an interface by heating 

from below. Turner, Shirtcliffe, and Brewer (1970) 

showed that the individual eddy-transport coeffi- 

cients can be different, and suggested that they 

are proportional to yee More recent work by 

Griffiths (personal communication) predicts theo- 

retically that the ratios of transports of pairs 

of solutes should be proportional to T2 at low 

solute-heat density ratios, and to Tt at higher 

ratios. His much more accurate and extensive 

experiments show an even larger variation, for 

reasons which are still unexplained. These results 

are potentially of great importance for the inter- 

pretation of geochemical data, as will be discussed 

further below. 

Observations of Diffusive Interfaces 

There are now many observations of layering in the 

ocean which can unambiguously be associated with 

"diffusive" interfaces, and where a one-dimensional 

interpretation seems appropriate. The regularity 

of the steps and the systematic increase of both 

S and T with depth serves to distinguish these from 

layers produced in other ways (by internal wave 

breaking, for example). Neal et al. (1969) and 

Neshyba et al. (1971) have observed layers about 

5 m thick, underneath a drifting ice island in the 

Arctic where cold fresh melt water overlies warm 

salty water. A common observation in Norwegian 

fjords is that cold fresh water, formed by melting 

snow, can often form a thin layer on top of warmer 

seawater, with an interface which remains extremely 

sharp, and thickens much less rapidly than expected. 

This is due to double-diffusive convection driven 

by the heat flux from below, which will stir the 

layers on each side of the interface (independently 

of any wind stirring at the surface) and thus keep 

the interface sharpened. 

There are also fresh-water lakes in various parts 

of the world which have become stratified in the 

past by the intrusion of sea water. Some of these 

are heated at the bottom by solar radiation, and 

convectively mixed layers separated by diffusive in- 

terfaces are formed. A particularly well-documented 

example is Lake Vanda in the Antarctic [Hoare (1968), 

Shirtcliffe and Calhaem (1968)]. Since these lakes 

are not complicated by horizontal advection pro- 

cesses, Huppert and Turner (1972) were able to 

use the Lake Vanda data to show that the one- 

dimensional laboratory result (3) can be applied 

quantitatively to comparable large-scale motions. 

Other striking examples are the multiple steps 

observed in a lake in the East African Rift zone, 

which is heated geothermally by the injection of 

hot saline water at the bottom [Newman (1976)], 

and the layers of hot salty water found at the 

bottom of various Deeps in the Red Sea [Degens and 

Ross (1969)]. These layers are nearly saturated 

with salts of geothermal origin, including a high 
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proportion of heavy metals, and are of special 

interest because of the potential commerical value 

of the associated thick sediments. [Another related 

application, to the genesis of ore deposits on the 

sea floor, has recently been proposed by Turner and 

Gustafson (1978)]. 

The existence of many components in these layers 

raises another question which should be explored 

more systematically in the oceanic context. 

Griffiths' laboratory measurements mentioned above 

indicate that different solutes are transferred 

across diffusive interfaces at different rates, 

depending on their molecular diffusivities. The 

"Mixing rate" for a tracer is thus not necessarily 

a good indicator of the transport of a major com- 

ponent if interfaces are important. In the absence 

of definite knowledge of the mixing mechanisms 

which have operated between the sources and the 

sampling point, the assumption that all components 

are mixed simultaneously (i.e., that a single "eddy 

diffusivity" should be used) seems likely to lead 

to large errors, and even to gross misinterpretations 

of geochemical data. 

Double-diffusive processes can also be important 

in other systems besides aqueous solutions. A 

situation of oceanographic interest arises if liquid 

natural gas (LNG) or some other liquid gas spills 

(following a tanker accident for instance) onto 

the sea surface [Fay and MacKenzie (1972)]. The 

liquid quickly evaporates to form a layer of cold 

gas, predominantly methane, which would be lighter 

than the air above it except that it is much colder. 

Since methane, and also water vapour picked up from 

the sea surface, have larger diffusivities than heat 

in air, double-diffusive effects can again be 

important in this gaseous system. The driving 

energy comes from the distribution of methane and 

water vapour, so the interface is "diffusive". 

The limited observations available suggest that 

the top of such a layer is very sharp, and its rate 

of spread vertically small, which is consistent 

with a self-stabilizing double-diffusive transport 

across the interface. Another application, to 

explain the phenomenon of "rollover" in LNG storage 

tanks, will not be described in detail here, but it 

too depends on double-diffusive effects, this time 

in the liquified gas [see Sarsten (1972)]. 

Salt Fingers and Related Phenomena 

We now turn to the second type of double-diffusive 

convection, that for which the driving energy is 

derived from the component having the lower molecular 

diffusivity. Though this is associated with the 

very different phenomenon of "salt fingers", there 

are many similarities between it and the "diffusive" 

case already presented, and these will be emphasized 

in the following discussion. 

When a small amount of hot salty water is poured 

on top of cooler fresh water, long narrow convection 

cells or "salt fingers" rapidly form. These motions 

were first predicted by Stern (1960) [and see Stern 

(1975) for a more up to date account of the theoret-— 

ical work]. They are sustained by the slower 

horizontal diffusion of salt relative to heat, which 

permits the release of the potential energy in the 

salt field. Again, fingers may be produced using 

two solutes with much closer diffusivities, and 

when there are strong contrasts of properties, the 

fingers are confined to an interface. Figure 4 
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FIGURE 4. Shadowgraph of a thickened "finger" inter- 

face, formed between a layer of sugar solution on top 

of salt solution. (Scale: the tank is 150mm. wide.) 

shows a shadowgraph picture of such an interface 

between a layer of sugar solution (S) above heavier 

salt solution (T). This is bounded by sharp edges, 

where the fingers break down and feed an unstable 

buoyancy flux into the convecting layers on either 

side. 

Finger interfaces between two such layers have 

been shown to thicken linearly in time [Stern and 

Turner (1969), Linden (1973)]. They have also been 

observed in plan by Shirtcliffe and Turner (1970) 

who showed that the convection cells have a square 

cross section, with upward and downward motions 

alternating in a close-packed array. The initial 

stability of an interface has been examined quanti- 

tatively by Huppert and Manins (1973). Whena 

layer of S is placed on a layer of T, the sharp 

boundary thickens by diffusion; the condition for 

formation of fingers depends on the magnitude of 

the gradients and the ratio of diffusivities, T, 

and is related to the overall differences by 

BAS/aAT > tv¥t . (5) 

These results can be extended to three components, 

as can the earlier linear stability theories 

[Griffiths (1978)]. For heat and salt, (5) shows 

that fingers should form with very small destabiliz- 

ing salinity differences, and suggests that they 

will be ubiquitous phenomena in the ocean. 

Our confidence in applying these results ona 

geophysical scale has recently been increased greatly 

by the direct observations of fingers (using an 

optical method) by Williams (1974, 1975) under 

conditions close to those predicted by Linden (1973) 

on the basis of laboratory results. Magnell (1976) 

has also measured horizontal conductivity variations 

with the right scale (=2cm.) to support this inter- 

pretation. 

As mentioned above, there is not as big a differ- 

ence between the "diffusive" and "finger" cases as 

there appears to be when we simply compare the 

interfaces illustrated in Figures 2 and 4. Layers 

can be produced from a smooth gradient in the latter 

case too, by supplying a flux of S at the edge of 

a gradient of T; this was first demonstrated, using 

a sugar flux above a salt gradient, by Stern and 

Turner (1969). When viewed on the scale of the 

convecting layers, there is in fact a close corres- 

pondence between the two systems. The inequality 

of diffusivities results in an unstable buoyancy 

flux across statically stable interfaces in both. 

cases, and this maintains convection above and below. 

Only the mechanism of interfacial transport differs, 

and it is here that the detailed structure of the 

interface enters. Across a finger interface the 

buoyancy flux is dominated by the destabilizing 

component, S, and salt is transported faster than 

heat, whereas the opposite holds a diffusive inter- 

face. 

Corresponding laboratory measurements of the 

two coupled fluxes have been made for finger inter- 

faces. Again there is a strong dependence on the 

density ratio across the interface, and the ratio 

of heat to salt fluxes is constant over a consider- 

able range. Turner (1967) has shown in the heat 

salt case that the salt flux is about 50 times as 

large at R)* = aAT/BAS + 1 as it would be if the 

same salinity difference were maintained at solid 

boundaries, and falls slowly as R,* increases. 

He also obtained a value for the flux ratio aFp/8F, 

= 0.56 over the range 2 < Ro* < 10. Linden (1973) 

has made direct observations of the structure of 

salt fingers and the velocity in them that support 

these estimates of the salt flux. His estimate of 

the flux ratio was much lower, but recent experiments 

in our laboratory have supported the earlier value. 

These new experiments have concentrated on achieving 

as small a value of Rp* as possible, but measurements 

in the "variable" range of flux ratio are still 

elusive. This range could, however, be of great 

importance in the ocean, where Ro* is often close 

to unity. 

It is also of interest to mention the experiments 

of Linden (1974b) who applied a shear across a 

salt-finger interface. He showed that a steady 

shear has little effect on the fluxes, though it 

changes the fingers into two-dimensional sheets | 

aligned down shear. Unsteady shears (i-.e., stirring 

on both sides of the interface) can, on the other 

hand, rapidly disrupt the interface, and actually 

decrease the salt flux. 

There are now many examples of layering in the 

ocean which are consistent with the "fingering" 

process. These are observed in situations where 

both the mean salinity and the temperature decrease 

with increasing depth, and often occur under warm 

salt intrusions of one water mass into another. 

The first observations were made by Tait and Howe 

(1968, 1971) under the Mediterranean outflow, and 

a good summary of other measurements is to be found 

in Fedorov (1976). For reasons which will be dis- 

cussed more fully in later sections, it is difficult 

to find cases where one can be sure that the forma- 

tion of layers bounded by finger interfaces has 

been the result of one-dimensional processes, 

strictly analogous to those studied in the labora- 

tory. Once layers have formed, however, the effects 

‘of the fluxes through the finger interfaces between 

them can properly be discussed in these terms, and 

two practical examples will be given. 

The first arises in the context of sewage disposal 

in the sea. Fischer (1971) has discussed the case 

where effluent, which can be regarded for this 

purpose as nearly fresh (though polluted) water, is 

ejected from a pipe laid along the bottom, and 

rises as a line plume into sea water which is strat-— 

ified in temperature. Careful design of the outfall 



ensures that the effluent, diluted with many times 

its volume of cold sea water, will spread out ina 

layer below the thermocline. But this layer will 

remain colder and fresher than the water above it, 

so the salt finger mechanism can cause it to thicken 

vertically, and even extend to the surface. A 

related case, in which the environmental effects 

could be even more serious, arises in the disposal 

of effluent from a desalination plant. Suppose 

that the brine from which water has been evaporated, 

and the heated water from the cooling plant, are 

mixed together to be disposed of as a single effluent. 

This hot, salty water will have about the same 

density as the original sea water - according to 

the precise design conditions, it can be slightly 

heavier or slightly lighter. If it is made heavier, 

and forms a layer along the bottom, a diffusive 

interface will be formed, and the coupled transports 

will tend to increase the density difference and 

thus keep the layer distinct. If it is put in at 

the surface, or at an intermediate level ina 

gradient, fingers will form, and there will be more 

rapid vertical mixing. One thing is certain: the 

rate of mixing cannot be determined using only the 

net density distribution and leaving out of account 

the double-diffusive effects. 

3. TWO-DIMENSIONAL EFFECTS 

Side-wall Heating and Related Processes 

It became clear in early laboratory experiments on 

double-diffusive convection that layers will readily 

form from a salt gradient in another way, if it is 

heated from the side. This effect was studied 

systematically by Thorpe, Hutt, and Soulsby (1969) 

and by Chen, Briggs, and Wirtz (1971), and their 

results can be summarized as follows. The thermal 

boundary layer at a heated vertical wall grows by 

conduction and begins to rise. Salt is lifted to 

a level where the net density is close to that in 

the interior; then fluid flows out away from the 

wall, producing a series of layers that form 

simultaneously at all levels and grow inwards from 

the boundary. The layer thickness is close to the 

length-scale 

aAT 
= Bas/da &) 

which is the height to which a fluid element with 

temperature difference AT would rise in the initial 

salinity gradient. 

The stability problem corresponding to sidewall 

heating of a wide container has not been solved, 

though Stern (1967) has shown theoretically how 

lateral gradients could lead to the generation of 

layers. Thorpe, Hutt, and Soulsby (1969) have 

analyzed the simpler case of a fluid containing 

compensating linear horizontal gradients of S and 

T, contained in a narrow vertical slot and Hart 

(1971) improved their analysis; both theories 

predict slightly inclined cells extending right 

across the gap, with a spacing in fair agreement 

with the measurements. 

Similar layers are formed when the salinity as 

well as the temperature of the vertical boundary 

does not match that in the interior, for example 

when a block of ice is inserted into a salinity 

gradient and allowed to melt. A qualitative experi- 

ment of this kind was reported by Turner (1975), 
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FIGURE 5. Showing the tilted layers formed by insert- 

ing a block of ice into salt-stratified water at room 

temperature. Fluorescein was frozen into the ice, and 

was illuminated from the side, so that the spread of 

the dye indicates the distribution of the melt water. 

(Negative print.) 

but interest in the process has increased recently, 

because of the application to melting icebergs. 

Huppert and Turner (1978) have carried out a more 

extensive set of experiments with this problem in 

mind. 

An understanding of the melting of icebergs 

could be important in various contexts. Several 

groups are currently examining the feasibility of 

towing icebergs to their coasts and melting them 

to provide fresh water, but there are many unsolved 

scientific and engineering problems [see, for 

example, Bader (1977)]. It has been proposed that 

fresh water could be obtained by building a shallow 

pen round a grounded iceberg, allowing the melt 

water to collect in this, and siphoning it off the 

surface. On the other hand Neshyba (1977) has 

suggested that the melt water produced by icebergs 

would mix with the surrounding sea water, and could 

thus be effective in lifting water and nutrients 

from deeper layers to the surface, where it would 

increase biological production. 

Huppert and Turner's (1978) experiments have 

shown, however, that neither idea is likely to be 

valid, because of the neglect of the stable salinity 

gradient which exists in the upper layers of the 

oceans where icebergs are found. As demonstrated 

in Figure 5, the presence of horizontal S and T 

differences then produces a regular series of tilted 

convecting layers, which feed most of the meltwater 

into the interior; very little rises to the surface. 

A more detailed analysis of the experiments is 

continuing. At present it appears that for a 

cooled sidewall the layer depths are similar whether 

melting is occurring or not, and that they are not 

described simply by (6) but depend more weakly on 

the initial salinity gradient. Another phenomenon 

which deserves more careful study is the series of 

grooves and ridges produced by non-uniform melting 

associated with the circulation in the layers (see 

Figure 6). 

Sloping Boundaries 

Phenomena analogous to those described above can 

be observed in systems containing smooth gradients 

of more slowly diffusing solutes. The essential 

physical feature of the heated sidewall process is 



FIGURE 6. Shadowgraph photograph of a melting ice- 

block in a salinity gradient. Note the regularly spaced 

scallops and ridges, caused by uneven melting asso- 

ciated with the convection in layers. 

that the boundary conditions (on temperature or 

salinity or both) do not match the conditions in 

the interior. In tanks containing opposing gradients 

of two components, with say a maximum salt concen- 

tration at the top falling linearly to zero at the 

bottom, and a maximum (slightly larger) sugar 

concentration at the bottom falling to zero at the 

top, the same kind of instability can be produced 

in another way. With vertical side walls, the 

surfaces of constant concentration are normal to 

the boundaries, and the no-flux boundary condition 

is automatically satisfied. But when an inclined 

boundary is inserted, diffusion will distort the 

surfaces of constant concentration away from the 

horizontal, so that they become normal to the 

boundary. Density anomalies are produced which 

tend to drive flows along the wall; these cannot 

remain steady, but instead turn out into the interior 

and produce a series of layers. 

This process was first investigated experimentally 

by Turner and Chen (1974), with the initial strati- 

fication in the "diffusive" sense. A prominent 

feature of the intruding layers is the local reversal 

of gradients in the extending "noses", where fingers 

are prominent. In the later stages of that experiment, 

the advancing noses have become independent of the 

mechanism which produced them, and this suggested 

the systematic study of double-diffusive sources 

in various environments which is pursued below. 

Linden and Weber (1977) have investigated layer 

formation in the "finger" case; they have also 

discussed the instability of the boundary layer 

at the sloping wall, and the criteria determining 

the layer depths. In the limit where the opposing 

gradients are nearly equal, the characteristic 

vertical lengthscale depends mostly on the initial 

vertical distributions of S and T, and little on 

the mechanism triggering the instability. 

A different effect of sloping boundaries should 

be mentioned here. In a two-layer system, in which 

the layer depths vary because one wall of the 

containing vessel is inclined, large-scale quasi- 

horizontal motions can be set up even when the 

buoyancy flux across the horizontal interface is 

uniform. This effect is a purely geometrical 

consequence of the sloping boundary. The net result 

of the double-diffusive transports across the 

interface is to provide an unstable buoyancy flux 

which makes the bottom layer heavier. A given flux 

produces more rapid density changes in shallower 

regions where there is less dilution, and this sets 

up a circulation in the sense which includes a flow 

down the slope. Gill and Turner (1969) have shown 

that this flow can reverse the relative gradients 

of the two components, for example, giving rise to 

salt fingers at the bottom of a tank originally 

stratified in the diffusive sense. They have also 

suggested an application to the formation of bottom 

water near the Antarctic continent. Similar effects 

have been observed Ly Turner and Chen (1974) when 

a sloping interface, rather than a solid sloping 

boundary, produces the non-uniformity of depth, 

and this too can have implications for the formation 

of bottom water in deeper water. 

Double-diffusive Intrusions 

The experiments described in the two preceding 

sections have recognized the importance of horizontal 

gradients, but they still have not dealt with the 

common situation where fluid with one set of T-S 

properties intrudes into another having different 

properties. This question has recently been 

addressed by Turner (1978), using sources of sugar 

and salt solutions released into gradients of 

various kinds. 

The basic intrusion process with which other 

phenomena can be compared is the two-dimensional 

flow of a uniform fluid at its own density level 

into a linear gradient set up using the same property. 

Figure 7 shows the behaviour of a (dyed) source of 

salt solution released into a salinity gradient. 

This is what we might intuitively expect: the 

intruding fluid just displaces its surroundings 

upwards and downwards, and is kept confined to a 

horizontal layer by the denisty gradient. Detailed 

studies of this process have been reported by 

Maxworthy (1972), Manins (1976), and Imberger, 

Thompson, and Fandry (1976). Note praticularly the 

"upstream wake" effect, leading to a considerable 

disturbance of the environment ahead of the advancing 

nose. 

When the source of salt is replaced by sugar 

solution (S), while the same salinity gradient (T) 

is retained in the environment, the behaviour is 

very different. (It is worth keeping in mind 

throughout the following, the analogous situation 

with temperature and salinity: this corresponds 

to the intrusions of a layer of warmer, saltier 

water into a stable temperature gradient). As 

shown in Figure 8, there is strong vertical convec- 

tion near the source: this is produced by a 

mechanism which also occurs with a uniform ambient 

fluid close to the same density as that injected. 

The more rapid diffusion of T relative to S across 

the plume boundary causes it to become heavier, 

and its immediate surroundings lighter, than the 

fluid at the level of the source. The vertical 

spread is limited by the stratification, and "noses" 

begin to spread out at levels above and below the 



source. The process of vertical convection continues, 

and further layers appear as the layers first formed 

extend away from the source. The total volume of 

fluid affected by mixing is many times that of the 

input, showing that the intrusions are overtaking 

and incorporating the environment, rather than 

just displacing it as in the experiment of Figure 

7. The implication for the ocean is, of course, 

that large scale intrusions will tend to break up 

into thinner noses and layers, as is indeed observed. 

Each individual nose as it spreads contains an 

excess of S relative to its environment, so that 

conditions are favourable for the formation of a 

diffusive interface above and fingers below, as can 

be seen in Figure 8. This also implies that there 

will be a local decrease with depth or an inversion 

of T through each layer, and that the density 

gradient above such an intrusion will be greater 

than that below. These features have been demon- 

strated in oceanic data by Howe and Tait (1972), 

Gregg (1975), and Gargett (1976). 

Note too the slight upward tilt of each layer 

as it extends, which can be interpreted as follows. 

Above and below an intrusion, the net density 

differences are small and the double-diffusive 

fluxes therefore large. The one-dimensional labo- 

ratory observations indicate that the transports 

across a finger interface (both in the sugar-salt 

FIGURE 8. The flow produced by releasing 

Sugar solution at its own density level into 

a salinity gradient. Strong vertical convec- 

tion occurs, followed by intrusion at several 

levels. The density gradient and flow-rate, 

and the scale of the photograph, are approxi- 

mately the same as for Figure 7. 
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FIGURE 7. The intrusion of dyed salt solu- 

tion into a salinity gradient at its own 

density level. The distorted dye streaks 

show that the fluid in the environment be- 

gins to flow well ahead of the advancing 

fluid. (The region shown is about 400mm. 

wide.) 

and salt-heat case) are larger than those across 

a comparable diffusive interface. Thus the flux 

of positive buoyance through the fingers from below 

can exceed the negative flux from above, so a layer 

becomes lighter and rises across isopycnals as 

it advances away from the source. There is also 

a systematic shear flow associated with the inclined 

layers, and both these features would seem worth 

looking for when observations are made of oceanic 

finestructure in the future. 

The interpretation of the layer slope in terms 

of the differences in fluxes across the two inter- 

faces is supported by experiments carried out in 

the inverse sense. With a source of salt solution 

(T) flowing at its own density level into a gradient 

of sugar solution (S), the behaviour is as shown 

in Figure 9. Vertical convection near the source 

is again followed by the spread of noses at various 

levels, but now with diffusive interfaces below 

and fingers above, corresponding to the excess of 

T in the noses relative to their S environment. 

There is a systematic downward tilt as the noses 

advance, due again to the dominance of the buoyancy 

flux at the finger interfaces, which now causes 

the layers to become heavier as they extend. The 

sense of the internal shear is also consistent 

with this picture: the motion is inclined slightly 

down and away from the source at the bottom of the 
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FIGURE 9. The flow produced by releasing salt 

solution into a gradient of sugar solution, 

using conditions comparable with, but the in- 

verse of those shown in Figure 8. 

fingers and above the diffusive interfaces, indica- 

ting again that there is an increase in density due 

to the continuing flux in the fingers. 

Two other features of the laboratory observations 

which have important implications for the ocean 

should also be mentioned. The most rapid formation 

of layers in the series of experiments reported by 

Turner (1978) occurred when the tank was stratified 

in the "finger" sense, and the fingers were allowed 

to run down towards a marginally stable state. 

When source fluid was introduced, layers formed 

more rapidly and regularly than before, because of 

the potential energy already available in the 

ambient fluid. This implies that "reactivation" 

of layers in a region where they have previously 

formed will proceed more quickly than the original 

layering process. It suggests that the patches of 

strong layers, under the Mediterranean outflow 

into the Atlantic for example, are associated with 

the arrival of a fresh pulse of intruding fluid. 

The second related observation is that the further 

stage of overturning to produce nearly uniformly- 

mixed layers, bounded above and below by finger 

interfaces is also more likely to be reached near 

the source of the intruding water. The relationship 

between the two types of layering has been demon- 

strated directly in the measurements of Gregg (1975), 

which show that inversions of intrusive origin can 

in the course of time break down to form well-mixed 

layers. 

Layer Formation at Fronts 

An important geometry which merits separate study 

is a discontinuity of T-S properties over a vertical 

or inclined surface, i.e., a front. The motions 

produced when an inclined boundary is inserted into 

a fluid stratified with opposing gradients (Section 

3) have some of the required features, but the 

presence of the solid wall is clearly undesirable. 

Fronts can be set up in the laboratory in several 

ways. Large horizontal T and S gradients can, for 

example, be produced just by pouring fluid with 

contrasting properties into one end of a stratified 

tank at several levels, or by stirring it in 

throughout the depth. A somewhat more controllable 

method is to insert a vertical barrier in a previ- 

ously stratified tank, to introduce the extra fluid 

on one side of it, and allow the disturbances to 

This tech- die away before removing the barrier. 

nique has been used in the experiment shown in 

Figure 10. It is difficult to get the two vertical 

gradients exactly matched, and so when the barrier 

is removed internal waves are set up, which soon 

die away, leaving the isopycnals horizontal but 

the front distorted. The initial state illustrated 

in Figure 10a is completely determined by the 

readjustment of the density field, but note that 

diffusive interfaces have already developed in the 

sense to be expected with an excess of S on the 

left. At a later stage (Figure 10b) the frontal 

surface is spread out horizontally by the inter- 

leaving of inclined layers, the scale of which is 

unrelated to that of the initial adjustment, and 

which are driven entirely by the local density 

anomalies produced by double-diffusive transports. 

A more sophisticated version of this experiment 

is currently being studied by Ruddick (personal 

communication). He has set up identical vertical 

density distributions on two sides of a barrier, 

using sugar (S) in one half and salt (T) in the 

other. When the barrier is withdrawn, there is 

some small scale mixing, but virtually no larger 

scale distortion. A series of regular, interleaving 

layers then develops, with a spacing and speed of 

advance which are systematically related to the 

horizontal property differences. 

There are now many. measurements which support 

the view that the prominence and strength of 

layering in the ocean are related to the magnitude 

of the horizontal gradients of properties. To 

cite just two examples: profiles across the Antarc- 

tic polar front [Gordon et al. (1977)] reveal 

inversions which decrease in strength with increasing 

distance away from the front. Coastal fronts 

between colder fresh water on a continental shelf 

and warmer salty water offshore also exhibit strong 

interleaving [Voorhis, Webb, and Millard (1976)]. 

A general conclusion which can already be drawn 

from the laboratory experiments described in this 

section is that the formation and propagation of 

interleaving double-diffusive layers is a self- 

driven process, sustained by local density anomalies 

due to double-diffusive transports. Once a series 

of noses and layers has formed, the changes of T 

and S within them can be described in terms of the 

one-dimensional (vertical) transport processes 

previously studied. It should eventually be possible 



[Joyce (1977)] to parameterize the effective 

increase in the horizontal diffusion of T and S, 

produced by interleaving, in terms of the horizontal 

gradients and these quasi-vertical fluxes. 
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ABSTRACT 

With the rise in energy needs and the consequent 

proliferation of cooling towers (not to mention 

smoke stacks) on the one hand, and society's 

enchanced concern with the environment on the other, 

the study of buoyant plumes caused by heat sources 

in a transverse wind has become important. Buoyant 

plumes may also occur in the ocean, such as when 

a deeply submerged heat source moves horizontally 

in it. The fluid mechanics involved in buoyant 

plumes is very nearly the same, be they atmospheric 

or submarine. 

In this paper a similarity solution for turbulent 

buoyant plumes due to a point heat source in a 

transverse wind is presented. By a set of trans- 

formations the mathematical dimension of the 

problem is reduced from 3 to 2. Analytical solutions 

for the first and second approximations are obtained 

for the temperature and velocity fields. The 

solution exhibits the often observed pair of longi- 

tudinal counter-rotating vortices. As a result of 

buoyancy, the point of highest temperature and the 

"eyes" of the vortices at any section normal to 

the wind direction continuously rise as the longi- 

tudinal distance from the heat source increases. 

1. INTRODUCTION 

As industry expands and energy needs rise, the 

buoyant plumes caused by ever-increasing cooling 

towers and smoke stacks have become an important 

concern for societies anxious to protect their 

environment. Much effort has been expanded on the 

so-called numerical modeling of the phenomenon 

of plumes both in the United States and in Europe. 

In most of the numerical studies, the eddy viscosity 

is assumed constant, and its value is chosen to 

make the results agree with whatever gross observa- 

tions are available. The power of modern computers 

has made it possible to obtain numerical solutions 
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for partial differential equations with very 

irregular data, such as wind and temperature profiles 

in the atmosphere. On the other hand, one can 

only carry out a number of these special solutions, 

and while the power of the computer makes computa- 

tion possible it also makes the intermediate steps 

so opaque that one can only have faith in the 

accuracy of the results and the correctness of the 

programing; and one can attempt to interpret the 

results and understand the phenomenon only at the 

very end, when numerical results are available. 

One can hardly see, for example, the effects of 

changing one single parameter of the problem, without 

giving that parameter several values and going to 

the computer again and again. It is in view of 

this condition that even people most concerned with 

the immediate applicability of calculated results 

desire a certain measure of transparency in the 

analysis of the phenomenon. 

At the same time systematic and detailed experi- 

ments on buoyant plumes in transverse winds, with 

temperature and velocity measurements, are lacking. 

This being so, it seems that an analytical solution 

of the problem is most desirable and timely, even 

if it must of necessity be constructed by assuming 

certain quantities (such as the turbulence level 

in the plume) on the basis of whatever related 

experimental results are available. The assumed 

quantities (or quantity) will appear in the analysis 

as unspecified coefficients (or coefficient, as in 

this analysis), to be determined by experiments 

later. In the present work only one coefficient 

related to the turbulence level is left unspecified, 

to be determined by future experiments. But the 

probable range in which it lies is given. 

The solution is based on a set of transformations 

that reduces the mathematical dimension of the 

phenomenon from 3 to 2 is thus characterized by the 

striking feature of similarity between cross sections 

normal to the wind direction. The laws of decay 

of the temperature and velocity fields are given 

in simple, explicit terms. Thus, apart from the 
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quantitative predictions that this analysis is 

intended to furnish, I hope that the general features 

of the solution will be found especially useful. 

2. THE DIFFERENTIAL EQUATIONS 

The two basic assumptions underlying the analysis 

are that the longitudinal velocity component in 

the direction of the wind is constant and that an 

eddy viscosity, €, is constant in any cross section 

normal to the wind direction. It can be shown that 

the first assumption ceases to be true only at 

stages of approximations later than those arrived 

at in the present analysis, and its violation is 

therefore not very important. The second assumption 

mentioned above has been made in all analytic 

solutions for turbulent jets and plumes, according 

to Prandtl's simplified theory. These solutions 

are well known. See, for example, the paper by 

Yih (1977) on turbulent plumes for the latest 

application of that theory. One feels reassured 

that for a calculation of the mean temperature and 

velocity fields, this theory can again be used. 

We shall take the direction of the wind to be 

the direction of increasing x, and the z direction 

to be vertically upward. The y direction will then 

be a horizontal direction transverse to the x direc- 

tion. In general ¢ depends on x, y, and z. But it 

has been repeatedly shown before in other studies 

of jets and plumes that in their core, € can be 

taken as constant at a constant value of x, and 

that only at their outer edges does the nonuniformity 

in the y-z plane introduce some errors in the 

calculated mean quantities. (Very far away from 

the jets and plumes the value of € is immaterial 

for the determination of the temperature and velocity 

distributions). Accepting these outer-edge errors, 

which are fairly small, we shall take € to be a 

function of x only, apart from the parameters of 

the problem to be defined later. We note that if 

an eddy viscosity is used to determine the velocity 

distribution in turbulent flow in a circular pipe, 

Laufer's (1953) measurements show that in the core, 

that is, away from the narrow region near the pipe 

wall, € is nearly constant. 

The equations of motion are then, with subscripts 

denoting partial differentiations, 

Wii ar WAI SP ni = O 
al 

x y Zz p Py + E(Vyy a7 View (1) 

), (2) Uw, + vw, + wwo = - e = 60) ap eX te 
m8 y A 0 Pz GI e Wy Woz 

in which U is the wind velocity, assumed constant, 

v and w are the velocity components in the directions 

of increasing y and z, respectively, p is the 

density, p is the pressure, and g is the gravita- 

tional acceleration. The variable 8 is defined by 

Ap a=", - (3) 

where Ap is the variation of the density from the 

ambient density p, assumed constant. Thus the 

Boussinesq approximation has been used in Eqs. (1) 

and (2). Since § is small and the pressure vari- 
ation in the plume, though important for determina- 
tion of the flow field, is unimportant in the deter- 
mination of Ap from the temperature variation by 
the equation of state, 8 can also be written, by 
virtue of the equation of state of ideal gases. 

oa 
T 

where AT is the temperature variation and T the 

ambient temperature. For a liquid, the relationship 

between Ap and AT is still linear if 8 is small, 

and the constant. of proportionality is determined 

by the property of the liquid. 

We shall assume the eddy viscoity for heat 

diffusion to be the same as that for momentum 

diffusion. This may not be strictly true, for the 

turbulent Prandtl number may be slightly different 

from 1. The effect of this difference, if any, is 

not of great importance in our attempt to determine 

the mean temperature and velocity fields. The 

equation for heat diffusion can then be written in 

the form 

+ wO, = EN + 6 (4) 
x y y zz)- 

Longitudinal diffusion of heat or of momentum is 

ignored in Eq. (1), (2), and (4). This is justified 

in the same way as in other works that use the 

boundary-layer theory. 

The equation of continuity is, since the longi- 

tudinal velocity component is assumed constant, 

Yoo WS Oe (5) 

The heat source, located at the origin, is 

measured by the quantity 

UOdydz. (6) 

Note that solid boundaries are assumed to be far 

away from the source, so that their effects are 

negligible. Equations (1), (2), (4), (5), and (6), 

with appropriate boundary conditions, govern the 

phenomenon under investigation. 

The equation of continuity (5) allows the use 

of a stream function | in terms of which v and w 

can be expressed: 

V =z, w = -Wy. (7) 

By cross-differentiation of Eqs. 

obtain the vorticity equation 

(1) and (2), we 

Wiese or vey + wi, = € (Evy AP So) = 980 (8) 

in which é is the x component of the vorticity and 

is given by 

E=w ne te Wy S Vado (9) 

3. THE FORM OF THE EDDY VISCOSITY 

We assume the terms in Eqs. (1) or (2) or (4) to 

be of the same order of magnitude. In particular, 

this means that the diffusive and the convective 

terms are of the same order of magnitude in any of 

these equations. It also means that in Eq. (2) the 

buoyancy term is of the same order of magnitude as 

the convective and diffusive terms for w. This 

assumption underlies all existing analytical studies 



of jets and plumes and can be regarded as amply 

justified. 

Comparing the first and last terms in Eq. (2), 

then, we have 

(10) 

in which 2, and 2, are the length scales for the 

x and z directions. Comparing the first term in 

Eq. (2) with the term g@, we have 

Uw 
§@ ~ ——, (11) 

gh, 

where 9 and w stand for the magnitudes of 9 and w, 

rather than 8 and w rigorously, as they do also 

in the following proportionalities. Equation (6) 

gives, further, 

8 Nea w 8, (12) 
2 

UL, 

if we take 2, and 2, to be equal. From proportion- 

alities (11) and (12) we have, after some rearrange- 

ment, 

gGr 

Wy = (13) 
UL, 

But surely 

Se ~ Woo (14) 

Hence 

gGe 
x 

Coy : (15) 

UL, 

From proportionalities (10) and (15) we have 

G G 

Oi ta ar (16) 
U U 

since the doer the scale of x, is just x. Thus (12), 

(13), (14), and (16) give 

Le a x2/3, G0 xl/3, w ~ alae 8 ~ ee 

These results are unaffected when other comparisons 

are made between terms in either Eq. (1), (2), (4), 

@xe ((5)) o 

From porportionalities (15) and (16) we have 

a= Se? : (17) 

where a is a dimensionless constant to be determined 

experimentally or estimated from known values of 

€ in similar phenomena. We shall leave it free 

throughout our analysis. Equation (17) gives the 

form of € to be used in this paper. 

It seems strange at first sight that € should 

vary inversely as U. I believe that the interpre- 

tation of € ~ U7l is that € increases with the 

time that is required for the wind to travel a unit 

distance in the x direction, because turbulence 

needs time to develop. 
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4. THE TRANSFORMATIONS AND THE DIFFERENTIAL 

SYSTEM TO BE SOLVED 

The transformations to be used to obtain similarity 

solutions are already suggested by (12), (13), and 

(16) and are 

U Wis) Oia alae (5) Sin Un 7iB)) 7 (18) 
g 

1/3 (vyw) = = (3) (V,W), (19) 

S/S} U 
(n,) = Gayi7z (69x) (y,z)- (20) 

Then the equation of continuity (5) becomes 

and Eqs. (7) become 

Va Yrs Wil (21) 

in which ¥ is the dimensionless stream function 

related to yp by 

me all DS eae (Cae) 7 ne) o (22) 

Equation (9) now takes the form 

= = = ap bd E we Ve Ce aaa (23) 

where € is the dimensionless vorticity component in 

the x direction. 

With the transformations (18), (19), and (20), 

Eq. (4) becomes 

Lh = A(Vh_ + Wh_), (24) 
n 6 

where L is the linear operator defined by 

92 92 3 3 
= =——— —— — 5 an2 + 02 + 2n55 + 2057 + 4, (25) 

and 

VS ee (26) 

Equation (8) now has the form 

(> DE S S05 A(VE, + WE). (27) 

Equations (23), (24), and (27) are the final equa- 

tions governing the dynamics of the plume in a 

transverse wind. They are to be solved with the 

boundary conditions 

(ij) by =O, G20, YaO, aU = 0 ae i = O- 

(atat))) 394 0 at n = to or G = to. lI [e) wy i jo) E tl 

Boundary conditions (i) correspond to symmetry with 

respect to the ¢ axis, and conditions (ii) ensure 

that there is no temperature variation and no 
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velocity components v and w at infinity. The 

integral relation (6) now takes the form 

hdndg = 1, (28) 

The mathematical problem is now completely specified. 

5. THE METHOD OF SOLUTION 

The mathematical problem just formulated can be 

solved numerically once \ is known. But consider- 

able effort is required for this solution, since 

there are three second-order partial differential 

equations to be solved, two of which are nonlinear. 

It is true that computers can deal with nonlinear- 

ities, but the domain is infinite, and some estimate 

has to be made of how far to go in the numerical 

computation. Furthermore the integral condition 

(28) can only be imposed after the computations 

are done for h, and this makes the computation very 

cumbersome. 

For arbitrarily large values of \ an analytical 

solution is extremely difficult because the non- 

linearities present formidable difficulties. We 

shall attempt a power-series solution of the form 

h = hy + Ah, + Near ie Daetiel hk 

= Z2 BS Ba PAS 3 Be ae ool Gg (29) 

a 2 Des, OMG AW ole eo 

The success or failure of this approach depends 

not only on the value of A, but also on the magni- 

tudes of h,/ho, ho/hy, etc. Thus we need to make 

an estimate of the range of X, and we have to find 

out how fast hy, &,, and Y, decrease as n increases. 
Furthermore, even the estimate of A cannot be made 

without knowing the magnitudes of Yg. It turns 

out that a reasonable estimate of i is 

SOME OF 

Using Eq. (29), we shall show in the following 

sections that h,/ho, E1/eor and ¥1/¥ are all of 

the order of 1072. Thus, if i = 30, stopping at 

the second approximation, that is, at the terms 

with the first power in X, would introduce an error 

of about 10%, if we assume, as we evidently can, 

that the ratio 1072 would apply to (An+1)/hpy etc. 

for n equal and greater than 1. If X = 50 this 

error would be about 25 to 30 percent, and it would 

be necessary to go to at least the 042 terms to 

reduce the error to less than 15%. 

We shall delay the presentation of the estimate 

of A until later and shall proceed with the solution 

according to the approach in Eq. (29). In awaiting 

the experimental determination of i, we shall carry 

out the solution to the second approximation. 

6. THE FIRST APPROXIMATION 

The first approximation is governed by the equations 

Lh, = 0, (30) 

(L - 1) &9= -ho,, (31) 

WY ar Md = SS, 1 (32) 
0 Orr 0 

with the boundary conditions (i) and (ii) stated 

before, which we need not repeat here. 

The solution of Eq. (30) is 

2 2 - + Mis ee oo) 

and application of the integral condition (28) on 

ho gives the value 1/m for C, so that 

2 al ie 
ho = =e F (33) 

where 

me! Ge 4b 62. 

Then the solution of Eq. (31) is 

2 2 2 75 2 =e 
Eo =a a, 1e = ee Gels 8 re 0 

where 

Oe= tern & 4 
n 

Given Eo. Eq. (32) can be easily integrated by 

separation of the variables r and 8. The result is 

= 

Y= ee (So he (34) 

The isotherms given by Eq. (32) are just concen- 

tric circles. But the streamlines given by Eq. 

(34) are already interesting. They are shown in 

Figure 1, which shows two very prominent vortices, 

with the vorticity pointing in the x direction. 

Thus the first approximation already shows the 

prominent features of the flow pattern in any plane 

normal to the x axis. Note that both the flow 

pattern and the temperature field are symmetric 

Cic 

FIGURE 1. Flow pattern from the first approximation. 

The horizontal axis is the n axis, the vertical axis 

the © axis, and the arrow indicates the direction of 

the gravitational acceleration. The value of 679 is 

zero on the t axis. It increases toward the left and 

decreases toward the right. The increments (or decre- 

ments) are all 0.1. 



with respect to the € axis, and that both ho and 

Yo vanish at infinity, as desired. 

The maximum vorticity is 0.09 and is at the 

point 

i) = WD, 6 = Op 

at which both V and W are zero. The maximum vertical 

velocity is 1/6m and is at the origin. The maximum 

absolute value of Yo is 0.63817/61, which occurs 

a © 2 © 2 wy te = alos. 

7. THE SECOND APPROXIMATION 

The equation for h, is 

Lh, = Vghon + Woh (35) 1 Omi Ole” 

where Vj) and Wo are the velocity components from 

the first approximation. The right-hand side of 

Eq. (35) can be written in polar coordinates as 

KIFR Cle) #9 dr 

Hence Eq. (35) can be written as 

A ae apd 

iy, = = Sea P (oe? Yep 
3r@r 

where L, in its polar-coordinate form, is 

32 i 1 92 3 
b= Sl “= te’ at eZ te’ 

Writing 

in 6 
bh sets mm ©), (36) 

1 2 1 
31 

we have 

Ve 5 
e Aig 

L,H, = - (l-e Yip (37) 

if we write L, for L with the operator 32/902 in 

L replaced by -n2. 

To solve Eq. (37), we let 

sl SS ie ep (38) 

so that Eq. (37) becomes 

2 2 
= (Loe Jo (a) cel) see (2 = 3) £" + 2£ = =e 

Then we approximate the right-hand side of this 

equation by 

2 2 2.-r x x ie x 
r“e ( 5 B ) (40) 

The greatest error occurs at r = 1.8, but it is 

less than 6.5% of the maximum value of the quantity 

approximated. Up to r = 1.2 the approximation is 

excellent. It is expected that the local errors 

around r = 1.8 will be diffused out when Eq. (39) 
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is integrated and will introduce negligible errors 

in the result. After (40) is substituted into 

Eq. (39), the latter is solved by repeated use of 

the following formula for various values of n: 

=r ZIn(n = 2) - 2(n - 1)r2]Jer¥ 

The result for f is put into Eq. (38), and we have 

1S | Gi ya 
H, = == - —— —— rt - —— ie 3 G2 1G » Iya) Bona 

r®) eons (41) 

The function Hy is tabulated in Table 1. A look 

at h, given by Eq. (36) then reveals that the 

temperature is increased in the upper half of the 

n-G plane and decreased in the lower-half plane, 

making the isotherms more widely spaced in the 

upper-half plane and more crowded in the lower-half 

plane. 

The tabulated values of H, show a very smooth 

variation of H, with r, verifying the expectation 

that the local irregular variation of (40) is 

diffused away when Eq. (39) is solved with (40) 

replacing its right-hand side. 

The next step is to solve 

Gb = ais, 2 Sa + VoEon + Woboc- (42) 
1n 

A simplification is possible before we attempt to 

solve Eq. (42). Differentiating Eq. (35), we have 

(L + 2) = Vohonn + WoPonz + VonPon 

+ WonPoc: (43) 

Let 

hy 

f= aa + q. (44) 

Then Eq. (42) becomes 

BT il 
(L- lq + (L + 2) S~ = FZ Wohgnn + Wohonz) » (45) 

since 

1 

S09 = 3 Aon 

By virtue of (43), Eq. (45) becomes 

aL 
(ieee) qa 3 Yonon ap WonPoc) - (46) 

But 

Von = (¥o)on, Wor eS -(¥9)nn, 

so that ¥ is a stream function for the fictitious 

velocity field (Vont Won)» and we can write Eq. (46) 

as 
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TABLE 1 Values of H,, S, and F; for r > 4, -100F = 5.04 r72 

r 0.1 0.2 0.3 0.4 OS 0.6 0.7 0.8 0.9 1.0 

100H), 3.03 5.85 8.28 10.19 11.48 12.14 12.20 11.75 10.89 9.76 

-100S 0.25 0.97 2.06 39 - 80 12 UoP3 8.00 8.41 8.43 

-100F 0.03 0.11 0.24 0.41 0.60 0.80 1.00 iL AL 7/ igs 1.44 

r itoal eo? tgs} 1.4 eo) 1.6 ed 1.8 ike) 2.0 

100H, 8.47 PoU3} 5.84 4.65 3.62 2.74 2.04 1.48 1.06 0.75 

-100S 8.11 7.51 6.70 5 7/8) 4.83 Soe)al 3.07 2.34 Leys} 1675) 

-100F 1D 1.56 1G S)7/ 1.55 iLook 1.45 1.38 1.30 eer 212} iligals} 

r PAL Deed, od) 2.4 Bod) 2.6 Bet 2.8 oe) 3.0 

100H, 0.53 0.38 0.27 0.19 0.14 0.11 0.08 0.06 0.05 0.03 

-100S 0.88 0.61 0.42 0.29 0.20 0.14 0.11 0.08 0.06 0.05 

-100F 1.05 0.98 0.90 0.84 0.78 On75 0.68 0.63 O59 0.56 

r Shoal Sie SSS) 3.4 355) 3.6 a7 3.8 3.9 4.0 

100H, 0.02 0.02 0.01 0.01 0.01 0.00 

-100S 0.04 . 0.03 0.02 0.02 0.01 0.01 0.01 0.00 

-100F OF 2 0.49 0.46 0.44 0.41 OF39 0.37 0.35 0233 0.32 

(L-Da=- = Z%y - ut Aa eer (2? és ) -2 Ses = art (elt Eee) 

Remembering that for 

p) sin 6 9 L GG oo one E) = en (22 a z) aa aor e cos 8 We 2 8 24 8 

aie 
and with ¥o and ho given by Eqs. (34) and (32), we oy ‘ 

have, finally, and the last member of (49) can be approximated by 

one eighth of (40). By repeated use of the formula 

re al (@ = 1)q =—— sin 26 |e Q f =) Pare Bans) a8 
on BD inGe~ee, )) = & [n(n - 4) - (2n - 3)r?Je 

7 2 for various values of n, we can then find the 

- — enn (47) solution for (48), and the final result for q is 
r2 

2 f 
To solve this, let q = —z sin 20 + Q, (50) 

on 

) : 

qa= — epi 2G) 0 ae i, wanes 

on 2 2) 2 al pee, Cre a al 116 5 
= = - -=+ 2 Bie fc Wa ( 8° 9945 * 

Then Eq. (47) becomes e r 

— Sh 6 
A 3 =P 95472 42432 
Te = ki (2x - =) IRD Sik BS © [e (eS) = a), 

(48) Lgl sia) (51) 
32640 

where L is the linear operator defined by (48). 

It is advantageous to write the right-hand side of With hy given by (36) and (41) and therefore with 

(48) as hy, known, (44), (50), and (51) give 



f= sin 26 + S(r), (52) 
oT 

where 

2 2, 19 1 = aL 1OS283 a2 
Ss = —— = += = 
Se 2 fe DB) oT SAD 

4r 

114713 i, SSALz/ ¥ 

1670760 247520 

x 181 ome aL id 

68544 4320 
==) 

(53) 

The values of S(r) are tabulated in Table 1, from 

which it can be seen that the maximum absolute 

value of S occurs at about r = 0.95 and is about 

0.847. Since S is negative throughout, inspection 

of Eq. (52) shows that the maximum value of &) is 

at 

= 095), 6 = 

The effect of S is to reduce the strenths of the 

vorticity for the lower-half plane, but to augment 

them in the upper-half plane, thus to raise the 

eyes of the vortices. 

Finally, ¥; is to be found from 

9 i, 6 iy Oe 
Ty Yee, = A eee 2 Te) Yn = Ene 

or 1G 08 

Let 

vy, z sin 2 F (r) (54) 

9 

Then 

po Bop os Sop S este), 
re 2 

Two integrations by the method of variation of 

parameters (since a complimentary solution of F is 

simply rv?) gives, with due regard for the boundary 

conditions, 

a2 i2 

=5 
F = -r? Yr r3Sdr dr 

0 a 

Yr 12 
a) 

al -2 r3sdar - r2 nG l car 2 (55) 
= a @ 

6 
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which is given in Table 1 also. The calculations 

for the second approximation have now been accom- 

plished. 

8. ESTIMATE OF i 

The terms involving € in Eq. 

in the Reynolds stress terms 

(2) have their origin 

o) Ure Q 12 By (v'w') and De (KE) 5 

where the primes indicate turbulent quantities. 

The terms were originally on the left-hand side of 

Eq. (2). The nonlinear terms on the left-hand 

side of Eq. (2) can be written as 

oh OE @ ay (vw) + ae (wo). 

Thus the ratio of 

2. G2 wo). 12 ae (w*) and aS (w'<) 

is the ratio of 

3 2 a5 (w-) and “SW 0 

and this ratio has the magnitude of 

-\W2/W . 
/ c 

The magnitude of Wy is 1/67, and the magnitude of 

Wo, is 0.267/31, which is the maximum value of Wor 

along the n axis. Thus, approximately, 

Ar AL 

0.267(12m) 5 me 

where s is the square of w'/w. The convection in 

the bent plume is like the convection in a two- 
dimensional plume, since the plume is bent by the 

wind to a nearly horizontal position. The measure- 

ments of Kotsovinos (1977) for the plane plume 

give the value 0.2 to s. This is considered by 

some people to be too high. But for the problem 

under investigation s may be even higher, because 

any swaying or deformation of the vortices would 

contribute a good deal to turbulence. Thus using 

0.2 for s in Eq. (56) would overestimate A. Using 

0.2 for s, we obtain from Eq. (2) 

dX = 48.5. 

This is probably too high. My estimate of i is 

that it is somewhere in the range 

50) S AS AIO), 

The value 30 for A} corresponds to a value of 0.34 

LOSI: 

Let us now see what errors would be committed 

for h, ¥, and & by stopping at the second approxi- 

Mation. For A = 30, the errors (in ratio of the 
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FIGURE 2. Flow pattern from the second approximation. 

The n axis is horizontal and the f axis vertical. The 

arrow indicates the direction of the gravitational ac- 

celeration. The value of 67¥ is, starting from the ¢ 

axis and going to the curves on the right, respectively, 

Op Obi, “Os4p “Ossi “Wot, =—Oo5p —OaGg Einel —MoGEin Gus 

values of 67¥ on the curves to the left of the f axis 

have corresponding absolute values but are positive. 

estimated* maximum value of the terms neglected to 

the maximum value of the computed quantity) are, 

respectively, less than 15%, 3%, and 10%. For A 

= 40 these percentage errors are, respectively, 

25%, 5%, and 18%. The most interesting thing to 

note is that ¥ is the most accurately calculated 

quantity. Figure 2 shows the flow pattern ina 

plane normal to the x axis, and Figure 3 shows the 

isotherms therein, all for } = 30. The flow pattern 

in Figure 2 can be regarded as sufficiently accurate 

to be representative of the actual flow pattern in 

a plane normal to the x axis. As expected, the 

hottest point and the "eyes" of the vortices occur 

at positive values of f. That is to say, the plume 

rises according to the x°/3 law. After the present 

work was done, I found that this law had recently 

been verified experimentally by Wright (1977), 

although he did not measure the detailed velocity 

and temperature distributions in the plume. 

If later measurements show i is larger than 30, 

higher approximations would be necessary. 

9. DISCUSSION 

It is perhaps surprising that the analysis shows 

that the results in dimensionless terms are indepen- 

dent of the parameter Gg2/u°. The explanation is 

that the velocity (v,w) far downwind from the heat 

source becomes vanishingly small, and whatever the 

value of U, the transverse wind is asymptotically 

always strong. 

Near the heat source the flow indeed depends 

very much on the magnitude of U. The plume may 

*On the basis that hj/hp and (hn+)) /Ay are of the same order 

of magnitude and that the same is true for ¥ and &. 

FIGURE 3. Isotherms from the second approximation. 

The n axis is horizontal and the ¢ axis vertical. The 

arrow indicates the direction of the gravitational ac- 

celeration. The value of th is 1.1 on the smallest 

closed curve and 0.3 on the outermost curve. The incre- 

ments are 0.1. 

rise high in a weak wind before being bent suffici- 

ently for the present theory to apply. In using 

the present theory it is always necessary to 

determine a virtual position for the heat source, 

which for small value of U can be considerably 

higher than its actual position. 
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APPENDIX: 

THE EFFECT OF NEGLECTING THE PRESSURE 

GRADIENT IN CALCULATIONS FOR THE CONVECTION 

PLUME IN A TRANSVERSE WIND 

J. P. Benqué 

Electricité de France 

Chatou, France 

In many previous studies on jets and plumes, the 

pressure distribution in the jets or plumes is 

assumed hydrostatic, so that if the body-force term 

in the equation of motion is written in the form 

-gAp, where Ap is the difference between the local 

density and the ambient density, the pressure gradi- 

ent can be neglected in the equations of motion. 

If, further, the flow is two dimensional or axisym- 

metric, only the equation of motion for the vertical 

velocity component is then needed. After that 

velocity component is determined, the equation of 

continuity can be used to determine the other veloc- 

ity component. 

In the preceding paper by Yih, the assumption 

that the x component of the velocity is constant 

leaves only two other velocity components to be 

determined, and it is tempting to adopt the usual 

procedure of neglecting the pressure gradient. Yih 

has resisted that temptation. But it is useful to 

see what effects such a neglect would have on the 

flow and to determine whether in the problem treated 

by Yih such a neglect is allowable. This Appendix 

is devoted to this question. 

If the pressure distribution is assumed hydro- 

static and the usual procedure is followed, one will 

drop Eq. (1) and retain Eq. (2), with the first 

term on its right-hand side dropped. [Equation 

numbers in Yih's paper are retained.] Equations 

(3) to (7) will remain but (8) and (9) will not be 

needed. 

Following Yih's development and using his nota- 

tion, then, we have, as the dimensionless equations 

to solve, (24) and 

(L - 3)W = -h + A(VW, + WW). (A.1) 

Using the A-series (29), we have again (33) for the 

solution of hy. The equation for Wor obtained from 

(A.1), however, is now 

(L - 3)Wy = hy: (A. 2) 

The solution of this equation, satisfying all the 

boundary conditions for W stated in Yih's paper, is 

1 =y2 1 -n2-72 

0 3 - aC s (A. 3) 

Although it can be readily verified that Eq. 

(A.3) satisfies Eq. (A.2), it is not obvious that 

Eq. (A.3) is the unique solution. We shall show 

in the following that it indeed is the unique 

solution. The complementary solution Wo¢ of Eq. 
(A.2) satisfies 

(L - 3)Woc = O (A.4) 

and must be even in both n and ft. Let 

Woo = E(Mg(Z), 
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where the f is in no manner the same as the f in 

Eq. (38) of Yih's paper, we have 

£" 4) 2n£! Gat =" 0}, (A.5) 

g' + 20g' + bg = 0, (A.6) 

where 

a+b = 1. (A.7) 

Now let 

-n2/ 
fi) =e 28 (h) - (A.8) 

Then Eq. (A.5) becomes 

BM = (n2 + b)R = O- (A.9) 

Similarly, if we let 

=P 
g(t) =e b /2(c) . 

Then 

y" - (t2 + a)y = 0. (Al10) 

Because of Eq. (A.7), a or b must be positive. Let 

b be positive. (The argument is strictly similar 

if a is positive.) Because of the symmetry with 

respect to the f axis, 

B' (O)| = 0. 

Then Eq. (A.9) shows that 8 will approach infinity 

as n° approaches infinity, if 8(0) is not zero. 

[If 8(0) = 0 then 8B = O throughout.] To see how 

£(n) behaves at infinity, it is necessary to see 

how 8(n) behaves asymptotically. A simple calcula- 

tion shows that the two solutions of Eq. (A.9) 

behave, for large values of n2, like 

1 

exp |- (n2 - a - 2)%dn| and exp (n2 - a) 2an|. 

As we have seen, 8 must contain the second solution 

since 8 approaches infinity as n2 + ©, Using the 

second solution as the dominant term (a constant 

multiplier being understood), and recalling that 

Df en di ai part io (n a) n mn + 0 ( 2 , 

we see from Eq. (A.8) that for large 2 

aqy.< lal 2, (A.11) 

which can be seen to satisfy Eq. (A.5) asymptotically. 

If a is negative, (A.11) shows that f(n), and there- 

fore Wo, cannot satisfy the condition on Wp at 

infinity. If a is positive, it must be less than 

1, because of (A.7) and because b is positive. 

Then if Wo contains Woor 
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ol which shows that at In| = ©, Vj does not vanish. 

We must then, if we adopt the procedure of neglecting 

the pressure gradient, not demand that Vo vanish 

at infinity, but instead demand 

SS 0 

This boundary condition for V, must, for consistency, 

be demanded of V, i.e., of Vj, V2, etc., as we 

proceed to higher and higher approximations. 

In this connection we can also see that it is 

not possible to add a multiple of Woo to the Wy 

given by Eq. (A.3) to make V, vanish at infinity. 

For, in order to make Vo vanish at infinity, the 

only possibility is to add to the Wo given by Eq. 

(A.3) a multiple of 
FIGURE A.1. Flow pattern for (V,W)). Aém¥, = 0.2. 

2 

Worse) a(n) (A.15) 
co co 

where f satisfies 

I= W )dndz = oe, (A.12) £" + 2nf' - f = 0. 

That means 

a=-l, 
But this cannot be true, because integration of 

(A.2), by parts if necessary, gives and Eq. (A.11) gives 

1 
c} i) £(n) ~ [In| 2, 

=spl SS = hydnds —tiLy, which makes Woar and therefore Wo if it contains 

Woc, infinite at |n| = ©, Any other dependence of 

Wo on © than exp (-67) would, of course, not make 

rae rc a4 Vo vanish at infinity, for the part of Vo that 

so that arises from Wo, would not be able to cancel out Eq. 

cael (AQ13) at |=. 
3) Hence Wy and V) are uniquely given by Eqs. (A.3) 

and (A.13). Using them in 

Hence W cannot contain a multiple of Woar and Eq. 

(A.3) is the unique solution. Lh, = Voho, + Wohors (A.16) 
Then the equation of continuity gives 

and 

: 2 2 2 — + 
- — 

- V2 f te (n G Fane (A.13) (L - 3)W, hy + VoWo, + WoWors (A.17) 

g we find that 
> hy 

0,10 W) = 5 (A.18) 

I have computed h, numerically from Eq. (A.16) 

and the boundary conditions, and therefore W}). 

The velocity component, V,, is then found from the 

by equation of continuity. The flow pattern corres- 
ponding to (V,,W)) is given in Figure A.1, where 250 

¢ the streamlines are shown, with ¥; = 0 on the ¢ 

: axis and Aém¥, = 0.2. 

Then the flow field for 

oF V=vV ee o + AV, and W = Wy + AW) 

is shown in Figure A.2, with X = 30, where the 

AetY = 0.2. 

It is clear that the "streamlines" do not close 

to form closed eddies, as in the figures of Yih's 

paper. Thus the effect of the pressure gradient 

Flow pattern for (Vj + AV, Wo + AW))- cannot be neglected in the problem studied by Yih. 

In past studies of jets and plumes, where the 

FIGURE 

A6rY = Oop OS) 



pressure gradient has been successfully neglected, 
the velocity component other than the one retained 
is one order of magnitude smaller than the one 
retained. Thus the equation of motion for it can 
be neglected together with the gradient of (the 
dynamic part of) the pressure, and the flow pattern 
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can be determined from the equation of continuity 
once the principal component of the velocity is 
determined. Such is not the case in the problem 
under discussion here, and therefore for this prob- 
lem it is necessary to retain the pressure gradient, 
as Yih has done. 
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ABSTRACT 

It has become evident in the past few years that 

the wave-number, frequency spectrum of deep ocean 

oscillations has a remarkably consistent form close 

to that which would be expected for statistical 

equilibrium among the modes under wave-wave resonant 

interactions. The energy sources that maintain deep 

oceanic internal waves are, however, not well under- 

stood. - 

In the vicinity of the thermocline, the energy 

density (per unit mass) of internal wave activity 

is generally much greater than in the ocean depths. 

Relatively high frequency internal waves, generated 

in a variety of ways, are to a first approximation, 

trapped in this region. Disturbances whose fre- 

quencies are less than Ng, the deep stability fre- 

quency, do however radiate downwards effectively. 

Also, groups of high frequency, low mode waves 
generate second order mean perturbations to the 

thermocline structure, and if the group frequency 

is less than Ng, again energy radiates down. The 

flux of energy into the deep ocean is illustrated 

first in a simple model in which a sharp pycnocline 

lies over uniformly weakly stratified water. The 

more general problem involving an arbitrary strati- 

fication is formulated and some preliminary asymp- 
totic solutions are presented. 

1. INTRODUCTION 

During the last 10 years or so, a variety of new 
and ingeneous oceanographic observations has been 

made on the structure of internal waves fluctua- 

tions in the ocean. Twelve years ago, in the first 
edition of The Dynamics of the Upper Ocean, I was 
forced to write that in view of the difficulty and 
expense involved in the systematic study of oceanic 
internal waves, "those (measurements) that do exist 
are correspondingly rare and valuable." The present 
situation is gratifyingly different. Deep oceanic 
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observations of internal waves are no longer rare, 

but they remain valuable; Cairns (1975), Katz (1975), 

Gould, Simmons, and Wunsch (1974), and a number of 

others have provided different kinds of observations 

from which a consistent pattern is emerging. It ap- 

pears that the deep oceanic internal wave spectrum 

has a remarkably universal form close to that speci- 

fied by the Garrett-Munk (1975) spectrum, though why 

this is so cannot yet, I think, be asserted with con- 

fidence. McComas' (1975) calculations on resonant 

wave-wave interactions indicate that the Garrett- 

Munk spectrum is close to what one would expect in 

a state of statistical equilibrium under the balance 

of these interactions. On the other hand, there are 

indications, such as the occurrence of sporadic, 

isolated patches of turbulence in the stably strati- 

fied regions of the ocean which suggest that local 

instabilities may be limiting the wave spectral 

density. 

Soviet investigations, such as those of 

Brekhovskikh et al. (1975) have concentrated on the 

low mode structure in the thermocline region whose 

energy density (per unit mass) exceeds, usually by 

an order of magnitude, that of the deep oceanic in- 

ternal waves. The characteristic frequencies are 

also about an order of magnitude higher. The cal- 

culations of Watson, West, and Cohen (1975) among 

others indicate that the lowest modes are generated 

quite rapidly by interactions among surface wave 

components; a number of studies along these lines 

are described in the useful review by Thorpe (1975) 

and by the present author (1977). The upper ocean 

is certainly the site of considerable dynamical 

activity, but how much of it is radiated downwards 

-to provide a source for those motions encountered 

in the deeper, less strongly stratified region be- 

low? According to the usual linear analysis, the 

low mode, relatively high frequency waves are trapped 

to the strongly stratified thermocline region; only 

the low frequency high modes have structure that can 

penetrate great depth. 

Yet the description of deep oceanic motions as a 



linear superposition of high modes may make little 

sense. A linear mode can itself be considered the 

superposition of two disturbance trains, one propa- 

gating downwards and the other upwards with reflec- 

tions either at the bottom or at a region where the 

buoyancy (or stability) frequency N drops below the 

wave frequency. McComas! calculations indicate that 

the non-linear interaction time of such components 

at the spectral densities found in the deep ocean, 

is remarkably short, only a few wave periods in 

many wave cases. Accordingly, a train of waves 

generated, say, near the thermocline will in actu- 

ality have little opportunity to travel to the 

bottom, reflect upwards, and combine with a down- 

wards travelling wave to produce a 'mode' as usually 

conceived. More realistic would be the view of dis- 

turbances generated in the more active thermocline 

region, radiated downwards but being 'scrambled' by 

wave-wave interactions into a more diffuse spectral 

background. 

This contribution is concerned with some aspects 

of the energy flux downwards from high frequency, 

low mode internal waves at the thermocline. If the 

internal wave frequency is greater than the stability 

frequency Ng below the thermocline, the waves are 

of course trapped to the thermocline region. How- 

ever, as their frequency decreases below Ng, they 

become 'leaky' and their energy radiates rapidly 

downwards as the simple analysis of the next section 

will demonstrate. Yet, if Brekhofskikh et al. (1975) 

measurements are at all typical, most of the energy 

of the low mode internal waves in the thermocline 

region is at frequencies considerably above Nagi 

indeed, in view of the efficiency with which such 

low frequency energy is propagated downwards, we 

would not expect to find much energy at these fre- 

quencies in the main thermocline. However, one 

possible link is suggested by the work of McIntyre 

(1973) who showed that groups of internal waves in 

a fluid of constant frequency N, confined between 

horizontal boundaries, produce second order 'mean' 

motions, modulated as are the wave groups. There 

is no reason to believe that these second order dis- 

turbances are confined only to the particularly 

simple case that he considered, and indeed in Sec- 

tion 3 it is shown that they are not. 

internal waves, occurring in groups and trapped 

within the main thermocline, produce second order 

low frequency disturbances; if the group frequency 

is less than Ng, their energy is radiated downwards 

at the group frequency. 

The results presented here are preliminary but 

intended to provoke consideration of this mechanism 

as a source of oceanic internal waves. The simplest 

case of a sharp thermocline overlying a deep, uni- 

formly stratified region is described in some detail. 

The more realistic (and complicated) case with a 

general distribution of N(z) can be considered by 

asymptotic methods and these results will be de- 

scribed elsewhere. 

2. RADIATION DOWNWARDS--A "LEAKY MODE" 

Consider the following experiment: a laboratory 

tank (Figure 1) is stratified with a layer of uni- 

form density lying over a density jump 6p below 

which the fluid is uniformly stratified, with N? = 
(-p7lg d0/dz) = constant. A wave-maker at the end 

of the tank generates a periodic disturbance with 

(real) frequency n. What are the characteristics 

of the motion induced? 

High frequency 
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It is, I think intuitively evident that if n > N 

an interfacial wave mode will propagate. The struc- 

ture of the mode below the pycnocline will be in- 

fluenced by the stratification but at these high 

frequencies, no internal waves can be supported in 

the lower layer and the interfacial wave will propa- 

gate without loss. If, however, n < N, internal 

waves induced in the lower region by the interfacial 

disturbance can carry energy downwards so that the 

interfacial wave will attenuate. The question is: 

how rapidly does this occur? 

A linear analyses suffices. Suppose the pycno- 

cline displacement is represented by the real part 

of © = a exp i(kx - nt), where n is real and k may 

be real or complex. Above the pycnocline at z = 0, 

the motion is irrotational with u = Vd and V2 = 0. 

In the uniformly stratified region below, the vert- 

ical velocity component, w, obeys the internal wave 

equation 

a2 2 Dep We 
cen VA Row 2 © , (1) 

where Vine is the horizontal Laplacian operator, 

32 /ax2 in this two-dimensional problem. At the 

upper free surface at z = d, w = O to sufficient 

accuracy; at the pycnocline the vertical displace- 

ment and the pressure must both be continuous and 

as z>- ©”, the disturbance must either die away 

or represent internal waves with an energy flux 

downwards. 

In the upper region, the solution for 9 is 

readily found to be 

_ ina cosh k(z - dq) F 2 
> = Te sinh ka CxPi (kx Me) p (2) 

while in the lower layer, if 

w = - ina exp [kz + i(kx - nt)] , (3) 

(which satisfies the condition of continuity of w 

at z = 0), then substitution into (1) requires that 

(Pje silo Gye c (4) 

Note that since n is real, «/k is either purely real 

(Gin 2 N) or purely imaginary (if n < N). 

The dispersional relation is obtained from the 

condition that the pressure be continuous at z = f. 

In the upper region of density p, 

Pp, = - pg = 22 | 

- palg + (n*/k) coth kd] exp i(kx -nt) , (5) 

Wave 

Absorbers 

FIGURE 1. Tank stratified with a layer of uniform 

density over a density jump below which the fluid is 

uniformly stratified. 
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to the first order in the wave amplitude. In the 

lower region, where the density is p + 6p - oN2z/g, 

the horizontal pressure gradient 

DS 2 ou (ond Woy Se to the lowest order, 
ax ot 

i(p + 6p)an2(k/k) exp i(kx - nt) 

at z = 0 from (3), so that 

Po = (9 + 6p) an2(k/k2) exp i(kx - nt) 

At z = T, below the pycnocline, 

Py =- (p + dp)a(g - n2K/k?) exp i(kx - nt) (6) 

From (5) and (6) it follows that 

2 _ __(6p/p) gk Bie ek ae (7) 
coth kd + (k/k) coth kd + (K/k) ’ 

to the Boussinesq approximation, when é6p/p << 1, and 

where b is the contrast in buoyancy across the pycno- 

cline. 

For high frequency oscillations, when n 2 N, 

equation (4) shows that k/k is real and less than 

unity; from (7) k is real and the waves propagate 

without attenuation. The additional restoring 

forces provided by the stratification below do how- 

ever increase the wave frequency for given k and b 

above the value for an unstratified lower layer by 

the ratio 

[coth kd + 1] / [coth kd + (1 - N2/n2)*%] 

The case when n < N is algebraically simplest when 

|ka| +e, In view of the upper boundary conditions, 

the real part of k > 0, while from (4) 

2\}5 K N - 
mm = 2 i(a - a) =e ta stan 6), (8) 

where n = N cos @. From (7) 

Pe = (Gai) (il Hh ee Ch) G (9) 

Since the interfacial waves attenuate in the posi- 

tive x-direction as energy leaks downwards, the 

positive sign in (9) is relevant and the vertical 

wave-number 

ray i] iktan 6, 

(n2/b) ( - tan26 + i tan 6) . (10) 

The motion of the pycnocline is therefore repre- 

sented by ; 

2 2 \ 
= _ nx fetes hotel 

C=a exp ( Spe tan 8) exp 1 (a ne) , 

n?x 
= a(x) exp i SS nt p (11) 

where 

2 
a(x) = a exp (- n* tan e) : 

The ratio of the spatial attenuation rate to the 

wave-number is simply tan 6 = (N2/n2 = 1)”; when n 

is significantly less than N the attenuation dis-— 

tance is short as the energy leaks downwards very 

effectively. 

Expressions for the motion in the upper and 

lower regions can be written down simply. In the 

lower layer energy flows along the characteristics 

—& = x cos @ + z sin 8 = const., and the distribu- 

tion of vertical velocity is 

wes fm e@ (- nieint . (25 aoe t) 
*P bcos26 ©XP + \beosé u 

2 mete aff rte! =)/=no!7)(&))) exp i( ST oe ) fF (12) 

Zz 

g 

6 x 
S IS q 

Ne SS 
N ~ 

SS SS 

S 

where a)(&) is the amplitude of the interfacial 

wave at the point where the characteristic inter- 

sects the pycnocline. The horizontal component 

of the velocity field in the lower layer is u = 

- w tan 6, since the motion here consists of alter- 

nate layers sliding relative to one another along 

the characteristic surface inclined at an angle 98 

to the vertical. The pressure fluctuation can be 

found most simply from the horizontal momentum 

equation: 

n2E 
p = - a1(&)bsin6(sin® + icos§)exp i eaeeat = 

The vertical energy flux is therefore 

2 
ES = -4noa ](&)b sin@cosé , 

and the total energy flux, directed downwards along 

the characteristics — = const is 

E = mnaj(—) bsine . (14) 

In the upper region, the fluctuations in pressure 

are found from (2): 

pe DD 2 es DRE) seca neces, [-kz + i (kx - nt)] , 

when kd >> 1, whose real part, in view of (9) and 

(12) reduces to 

IS. = & ei(Ge op zcot6) b(cos*8cosy + cos@sin@sinyx) , (15) 
ae 

where 

n2 

xX = pb (* - ztané@) - nt P 

The real part of the horizontal velocity field is 

likewise 



UL. = (0$/3x) = - na(x + zcot@) cosy ; 

so that the horizontal energy flux in the upper 

layer 

the horizontal divergence of which 

ab = - kna?(x)b sin@cosé (17) 

provides for the radiative flux in the lower layer. 

This simple example illustrates the way that 

energy can be radiated downwards by the low fre- 

quency perturbations produced by groups of high 

frequency waves, but they have a deeper theoretical 

interest. Gaster (1977) has pointed out that if 

the dispersion relation for waves involves complex 

wave-numbers or frequencies, the usual kinematic 

definition of group velocity may not be correct, 

and a simple calculation shows that the solution 

is an example of this failure. Here the wave- 

numbers are complex as the energy leaks into the 

lower layer, but the energy flux is not at the rate 

represented by the local energy density, n2a}2/2 

cos*6, times the ordinary group velocity Vw = 

c tan 6 = (b/n) sin @. The correct interpretation 

of these situations will be considered elsewhere. 

3. ENERGY RADIATION DOWNWARDS FROM GROUPS OF 

INTERFACTAL WAVES 

To illustrate the way in which groups of internal 

waves produce 'mean,' second order disturbances locked 

to the wave group, let us consider the same basic 

stratification as in the previous section, with 

fluid of depth d and constant density lying over 

a buoyancy jump b below which the stability fre- 

quency N is constant. Suppose that interfacial 

waves with frequency n > N are maintained by high 

frequency forcing £ from the upper layer, perhaps 

by the surface wave-wave interactions described by 

Watson, West, and Cohen (1976). If the internal 

wave amplitude is characterised by a and the wave- 

number by k, then, to order E2 = (ak)*, the condition 

or continuity of pressure across the interface can 

be expressed as 

du pY4 ( 2u ) S)\)-bp = =- tu: V ; 8 (2) b Aen +f I Wie azct u u (18) 

ae B= O, wae M( )} = Cn = ( Yag the difference 

across the density jumps. Since 

aie 2 - pO harness a GS C= we uy VG =wo +f a2 I, we ae 0 

= = oe (u ) (19) 0 3x 0S , 

to order E2, where the suffixes, tT and 0, represent 

quantities measured at z = t,0, then the condition 

that tf be continuous across the interface assumes 

the form 
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(sie) Aw = A ox at z=0O . (20) 

Finally, in the lower layer, 

nae Wo a Ne ae SO oy (21) 

93 

2 axdzot go wey 

- Cee * Vb + oa + Vw) ) (22) 
ox = dt . 

Variations in energy density of the primary waves 

will propagate with the group velocity, c,; let us 

therefore average these equations at aeslnres fixed 

with respect to the wave groups but over random 

phases of the waves themselves, a process repre- 

sented by brackets [ ]. The averaged interfacial 

conditions are then, to order E% = (ak)2, 

a, | oe S95 22d Nel eee gon gyi (23) 
at ox azot ~ U 

a 
AS ev} = Nee (x6) ' (24) 

ox | 

both at z = 0, and 

(2) = fe) = & Teel (25) 
ox 4 

also at z= 0. The averaged field equation for the 

lower layer follows similarly from (21) and (22). 

The linear fluctuating internal wave motion is 

as given in the previous section when n > N; through 

the non-linear terms on the right of (23)-(25), this 

forces a second order mean disturbance [zc], [wl], 
etc., that moves with the velocity of the wave groups. 

The pycnocline disturbance can be represented as 

t = ka{cos(k'x - n't) + cos(k"x - n"t)} . 

The form of the forcing functions is simplest when 

the pycnocline depth is such that kd >> 1, and it 

is found that (23) reduces to 

ou eC) 

ae | Bes [c] 

2 

= % a2 uipts 4a es {2 («) | 

(53S i ‘8) 
g 

ips 

(c_ + 4e)Sin k 
g g 

{1 + O(ak, n? fn?) 3 0 

i} 
c 

- k a2k NZ (<2 + 1) Salina Ik (5 © C38) 5 (26) 
g c 2 g g 

Wont Be = et ca jel Ng = n' - n", and cy, represent 

the wave-number, frequency, and velocity of the 

groups. Similarly, from (24) 
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1 2 f K Q 
Mw = q an ae + «) sin xX) 7 (27) 

where X = kg(x - cgt) and from (25) 

A al : 
(Es) [wil g ank, Same’ 

i] an | aly igs ; 
[w]_ 3 2 is e/a) sini! 7 (28) 

where [ ], and [ ]J_ represent averages taken just 
above and below the discontinuity in density. 

These matching conditions to be applied as z = 0 

involve the non-linear forcing provided by the wave 

groups. The field equations are, however, linear 

to this order. 

we have Laplace's equation for the averaged velocity 

lols O. | (29) 

while in the averaged internal wave equation (21) 

for z < 0, the non-linear terms are smaller by at 

least (ng/n) 2 << 1 than those in the matching con- 

ditions, since they involve two horizontal deriva- 

tives (or one x and one t derivative) of averaged 

second order quantities. Accordingly, to sufficient 

accuracy, 

Oe ea 2 22 = DED Vi[w] + N aes Kal SO 5 1a <6 © «6 (30) 

Since the length of the wave groups is large 

compared with the wavelength of the interfacial 

waves, k. << k and it is consistent to assume that 

kgd << 1, even though kd >> 1. Furthermore n/N << 

1 while NgN = O(1). Under these conditions the 

solutions for the mean pycnocline displacement and 

the low frequency internal waves radiated downwards 

are found to be 

a2nc 

aed [co] =- ba COs ka (x - ea) g (31) 

[w] 2» - 5 arnk, (2 + a cos OSes ar Sa = ye) nS) 

where 

1 
2 cy) 

Baral paga are (33) 
g 

is the vertical wave-number of the radiated field. 

The horizontal velocity component in the internal 

wave motion below the pycnocline 

{u] = [w] tanyp , 

where cos j = ng/N and the energy density (twice 

the kinetic energy density) is 

E =» (Tae + Twi), 
patkg2n2n2 eN2 

~ 126n2 | ( + £) G 

4 2n2 an. 2pa n“N 
ea ; (34) 

g 

Above the pycnocline, when d > z > O, 

since n/N >> 1 and kK/k = 1. The vertical component 

of the group velocity of the radiated waves is fg 

cos ~ sin ~ where c, is the group of the inter- 

facial waves, so that the vertical energy flux is 

m7 to 
n2 * 

= (9/128) a'tn2Nk ( = el ) : (35) 
g N2 

Although this representation of the density dis- 

tribution by a discontinuity at the pycnocline, 

followed by a uniform stratification below, is a 

gross simplification of typical oceanic conditions, 

it is of interest to examine the order of magnitude 

of the vertical energy flux that might be generated 

in this way. If the interfacial wave amplitude is 

10 m at a frequency of 5 c.p.h., having groups 1 km 

in length and if N = 2 c.p.h., the downwards energy 

flux is about 2 erg/cm* sec., which is of the same 

order as the 5 erg/cm* sec. estimated by Garrett 

and Munk (1972) for the rate of energy dissipation 

from internal waves by sheer instability. This 

correspondence is sufficiently close to encourage 

a more detailed study with N(z) arbitrary, the re- 

sults of which will be presented elsewhere. 
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Breaking Internal Waves in Shear Flow 
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ABSTRACT 

During and following periods of strong winds, the 

Richardson number (the square of the ratio of the 

Brunt-Vdisdla frequency to the shear) in the 

thermocline is of order unity, and the shear becomes 

an important factor in determining the properties 

of internal gravity waves. These properties are 

discussed and the shape and breaking of waves ina 

shear flow is investigated in laboratory experiments. 

These experiments show that the waves may break at 

their crests or their troughs depending on the sign 

of a certain vector scalar product. An analogy 

between surface waves and interfacial waves is 

invoked to account for this behaviour. Breaking 

is observed to occur by particles of fluid moving 

forward more rapidly than the wave crest advances, 

leading to gravitational instability. The effect 

of breaking in the ocean will not only enhance 

diffusion rates, but it will modify the directional 

spectrum of the internal waves. 

Although many acoustic backscatter observations 

from ships reveal clearly the presence of internal 

waves in the ocean seasonal thermocline, very few 

have been published which appear to show signs of 

their breaking. This is surprising in view of the 

clear and not infrequent evidence of 'breaking 

events' in the equivalent acoustic or Doppler radar 

Measurements in the atmosphere. Our knowledge of 

internal wave breaking in the ocean still rests 

almost entirely on the direct observations by divers 

using dye in the Mediterranean thermocline [Woods 

(1968)]. The present towed, moored, or dropped 
instruments give inadequate information on the 

nature or structure of the intermittent mixing events 

in the ocean to be certain of their cause, or even 

of the scales of motion which contribute most to 

diffusion across density surfaces in spite of its 

great importance to the prediction of the thermo- 

cline structure of the upper ocean. 

It is against this background of poorly known 

dynamical structures that this paper is presented. 
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One aim is to describe the patterns which accompany 

wave breaking, for without a knowledge of such 

patterns it is difficult to design the appropriate 

experiment to detect wave breaking or, conversely, 

to correctly identify the processes involved once 

observations are available. 

It would be naive to ignore the effect of wind 

in a description of breaking waves on the surface 

of the sea in deep water [see, for example, Phillips 

and Banner (1974)]. (Wave breaking on a beach is 

a different matter). It is similarly inappropriate 

to ignore the effect of mean shear on internal waves 

in the seasonal thermocline, since the Richardson 

number there is low, especially during, and follow- 

ing, storms [Halpern (1974)]. Internal gravity 

waves can exist and propagate in a shear flow just 

as they can when a mean flow is absent. These waves 

belong to a group which Banks, Drazin, and Zaturska 

(1976) have classified as 'modified' (-by shear) 

"internal gravity waves'. They may sometimes coexist 

with a set of wavelike disturbances which grow in 

amplitude (the 'unstable wave solutions' of the 

Taylor-Goldstein equation) and which may eventually 

lead to turbulence (Figure 1). It is known however 

that (for steady mean flows) the latter solution cor- 

responding to Kelvin-Helmholtz instability (K-H.I) 

only exists if the Richardson number, Ri, in the flow 

is somewhere less than a quarter [Miles (1961), 

Howard (1961)] and even then in some flows an un- 

stable solution may not exist. One way in which 

internal gravity waves may break is by themselves 

causing or augmenting a mean shear to induce regions 

of such low Ri that small-scale disturbances may 

grow as K-H.I and generate turbulence. It appears 

that Woods' (1968) billows were generated in this 

way, and similar structures in Loch Ness [Thorpe, 

Hall, Taylor, and Allen (1976)] may have a like cause. 

It is however known that internal waves may break in 

quite a different way, by what has been termed 'con- 

vective instability' [Orlanski and Bryan (1969) ]. 
This form of instability becomes much more likely in 

the presence of a mean shear. 



FIGURE 1. The development of Kelvin Helmholtz In- 

stability (K-H.I) in a stratified shear flow [from 

Thorpe (1971)]. 

Shear affects internal gravity waves in several 

ways. Perhaps the most important concern the wave 

speed. Bell (1974) has shown that for any wave 

mode, the phase speed, c, is a decreasing function 

of wavenumber, k, which, for waves moving faster 

than the mean flow at any level, tends to k71Nnax 

+ U, as k increases indefinitely, where Nna 
max x 

is of the Brunt-Vaisdld frequency, N, and Uneee che 

maximum mean flow. (A similar result holds for 

waves travelling more slowly than the mean flow.) 

This result reduces to the well-known property, 

OS Rep Cie internal waves in the absence of shear 

[Groen (1948)] where o = ck is the wave frequency 

relative to the mean flow. It implies that even 

in a shear flow the wave frequency is less than 

Nmax Provided the waves are viewed in frame of 

reference which moves forward at the speed, Upax- 

Banks et al. showed further that, at least for 

simple mean flow profiles, the speed of waves of 

a given mode and wavenumber tends to Where (from 

above) as Ri decreases. We see a consequence of 

this result later. 

The vertical structure of internal waves is also 

changed by shear. Figure 2 shows how the distri- 

bution of the amplitude of a small amplitude wave 

of given k varies with z as the shear increases 

for (a) plane Couette flow of a fluid with constant 

N and (b) hyperbolic tangent profiles of mean speed 

and density. The profiles are distorted as Ri 

decreases with the largest amplitudes displaced 

towards the level at which the mean speed in the 

direction of wave propagation is greatest. We shall 

find it convenient to distinguish these cases by 

the sign of x = c.g X 2 where 2 is the mean flow 

vorticity and c the phase speed of the waves in a 

frame of reference in which the depth averaged mean 

flow is zero. Positive U,) in Figure 2 corresponds 

to x > 0, and conversely. 

The shape of waves in a fluid with density and 

velocity distributed as tanh z (corresponding to 

Figure 2b) is shown in Figure 3 for (a) backward 

relative motion in the upper layer, x < 0, (b) no 

shear, (c) forward motion in the upper layer, x > 0. 

The waves in (b) and (c) have narrower crests than 

troughs, whilst the waves in (a) have wide crests 

and narrow troughs. 

This second-order effect is not unexpected. It 

may easily be shown [Thorpe (1974, Appendix C)] 

that interfacial waves (see Figure 4) which move 

forward with the speed of the upper layer (the 

limit, as we have seen, towards which the phase 

speed of the internal waves tends as Ri decreases) 

have exactly the same shape as have surface waves 

on a fluid of depth equal to the lower layer. Con- 

versely those moving at the speed of the lower layer 

have the shape of surface waves on a fluid of depth 

equal to the upper layer, but inverted. This is 

just the trend shown in Figure 3. The limiting 

form of the surface wave is one with a sharp apex 

of 120°. Such an angle can exist in a two-layer 

flow only in the cases we have considered where 

the wave speed is the same as the flow in one of 

the two layers. Otherwise there is a relative flow 

around the apex in the upper (or lower) fluid 

leading to a singularity of infinite flow in the 

irrotational fluid. In general, some other limiting 

profile must appear, although it is likely to tend 

in a continuous way towards the limiting sharp apex 

profile. Recent work on breaking surface waves 

[Cokelet (1977)] cannot be applied even in the 

special case for the analogy is valid only for 

steady waves. 

Experiments, however, [Thorpe (1968)] demonstrate 

how internal waves break in a shear flow. Figure 

5 shows wave breaking for x > 0. A jet of fluid 

moves forward (that is faster than the waves advance) 

from the wave crest above the level of the mean 



interface where we saw in Figure 2 that the dis- 

placement was concentrated, and, in Figure 3, where 

the curvature was greatest. The fluid particles 

move forward (at speed C,) more rapidly than the 

wave advances and this leads to a layered structure 

with a region of slightly denser fluid overlying 

less dense fluid with the potential consequence of 

gravitational instability. Similar 'forward' 

breaking occurs at the wave troughs when X < 0. 

The experiments demonstrate clearly the difference 

between K-H.I of the mean flow (seen in Figure 5}j) 

and the convective instability of the waves. In 

the former the wave-like disturbances grow, extract- 

ing energy from the mean flow, whilst in the latter 

the waves do not grow in amplitude and lose energy 

as a consequence of instability. 

The condition for convective instability to 

occur (C, = c) has been used in a calculation to 

produce the stability diagrams of Figure 6. These 

are appropriate only to a particular wavelength 

and show the wave slope at which instability will 

occur for a given Ri. The Couette flow (Figure 6a) 

is stable in the absence of waves for all Ri > 0, 

but the hyperbolic tangent profile (Figure 6b) is 

unstable at Ri = 0.25 and the dashed lines show 

the value Ri = 0.25 at the interface marking the 

boundary at which K-H.I will occur in a quasi steady 

flow. These diagrams demonstrate how shear greatly 

reduces the wave slope at which convective instabil- 

ity sets in, a partial consequence of the trend of 

the phase speed toward Umax and hence a reduction 

of the wave particle speed necessary to promote net 

speeds, Cpr which exceed the phase speed. The non- 

linear terms are also very important however, the 

finite amplitude change in the phase speed being 

as important as other non-linear effects. 
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FIGURE 2. The amplitude of the displace- 

ment of lines of constant density in 

internal waves of the first mode with wave 

number k = m/H calculated from linear theory 

(i.e., from the Taylor-Goldstein equation) 

at various Richardson numbers (as labelled) 

in 

(a) Couette flow, U = Ug(2z/H - 1), with 

constant density gradient. Ug is posi- 

tive for the left hand set of curves 

and negative for the right hand set. 

(b) Hyperbolic tangent profiles, U = 

Uptanh y and density p = pg(1 - 

Atanh y) where y = 20z/H - 15. 

Up is positive for the first three 

curves at the left, zero for Ri = = 

and negative for the three curves on 

the right. The value of Ri marked on 

these curves is the minimum mean flow 

value at z = 3H/4. 

We may press the analogy between interfacial 

internal waves in a shear flow and surface waves 

further. The shape of surface gravity waves 

(narrower crests than troughs) and their habit of 

breaking forwards at the crests seems universal, 

in that it is independent of water depth, being 

observed and (where theory is available) predicted 

for both shallow and deep water waves. The internal 

waves observed in the experiments have similar prop- 

erties, accepting that the profile is inverted with 

respect to the surface waves if x < 0, even though 

they are not strictly interfacial waves or moving 

at the speed of one of the layers. This suggests 

that the shape and breaking, by convective overturn, 

of long first mode internal waves on a relatively 

narrow interface between two uniform layers follow 

the pattern observed in the experiments, independent 

of the depths of the layers, provided that the 

Richardson number of the mean flow in the interfacial 

region is small. 

Figure 6b is not symmetrical, a consequence of 

the asymmetry introduced by having unequal layer 

thicknesses above and below the interface. Trans-— 

lated to a situation in which wind is driving a 

flow above a shallow thermocline, the diagram 

implies that internal waves travelling with the 

wind (x > 0) will break at a greater amplitude (or 

later if the shear flow is increasing) then waves 

of the same length travelling against the wind. 

This result also follows from our analogy with 

surface waves since, for a given wavelength, surface 

waves of limiting (120° apex) amplitude in deep 

water (corresponding to the forward moving, x > 0, 

internal gravity waves) are higher than waves in 

shallow water (which correspond to the backward 

moving waves). Waves moving across the flow will 
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FIGURE 3. Internal waves in a shear flow with profiles of U and p similar to those of Figure 

2(b), except that the interface is at z = H/4 and the mean, depth averaged, flow is zero. The 

waves propagate to the left and in (a) the mean flow in the upper layer is to the right, lower 

to the left (y<0), in (b) there is no mean flow, whilst in (c) the mean flow in the upper layer 

is to the right and in the lower layer to the left (y > 0). 

h FIGURE 4. Interfacial waves in a two-layer fluid. In 

(a) the phase speed of the waves, c, is equal to the 

speed of the lower layer, Up. The wave shape is identi- 

cal to that of surface waves on a layer of depth hj, 

h, but inverted. (This corresponds to xy < 0). In (b), 

c = U;, and the wave shape is identical to that of 

surface waves on a layer of depth ho. 
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FIGURE 5. The onset of wave breaking for xy > 0. The waves are moving to the left. The mean Richardson number at the in- 

terface in the accelerating flow is approximately (a) 2.5 (b) (c) 0.36 (d) 0.25 (e) 0.18 (f) 0.14 (g) 0.11 (h) 0.09 

(i) 0.07 (j) 0.06 [from Thorpe (1968)]. Convective overturn is seen to begin at (c) and K-H.I at (i). The instability is 

not seen at the critical value of Ri because of the time needed for growth in the accelerating flow. 

not be unaffected by it. This process may be 

important in producing asymmetric directional wave 

spectra in the seasonal thermocline. 

In practice of course unidirectional flows and 

long trains of internal waves do not occur in the 

ocean. The component of the mean flow velocity 

normal to the direction of wave propagation appears 

to play no part in the breaking or dynamics of the 

waves, and the results should be valid for long 

crested waves even in (Ekman) spiral flows. A 

periodic shear flow applied to a wave, as when one 

internal wave moves through another, may produce 

locally the conditions for convective overturn of 

the kind we have described. The final stages of 

the experiments of Keulegan and Carpenter (1961) 

or Davis and Acrivos (1967) illustrate this process. 

In these experiments a short second mode wave is 

driven by resonant interaction from a long first 

mode wave, itself generated by a wavemaker. The 

shorter wave eventually breaks in the shear field 

of the longer first mode wave. 

Flow acceleration accompanies both the periodic 

flows in a wave field and the motion of the upper 

layers of the ocean during periods of wind forcing. 

In the experiments shown here breaking was induced 

by allowing the flow to accelerate uniformly. It 

was discovered that the energy of the fluctuating 

wave components was reduced very rapidly as a 

result of this acceleration. The consequent Rey— 

nolds stress working on the mean velocity gradient 

transferred energy to the mean flow. This inter- 

action may have important consequences on the 

development of the seasonal thermocline during 
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FIGURE 6. Stability diagrams corresponding 

to the waves described in Figure 2, based 

on a calculation extended to third order 

(Thorpe, 1968). (a) Couette flow (b) Hyper- 

bolic tangent profiles. 
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periods of wind forcing and the acceleration of the 

mixing layer, but they are beyond the scope of this 

paper. 

It seems likely that in the seasonal thermocline 

short internal waves may break predominantly by 

convective overturn whilst the longer are more 

prone to K-H.I, but the balance of effects is not 

known. The importance of non-linearities in 

determining the condition of convective overturn 

and the unknown structure of the density and veloc-— 

ity fields make the problem difficult to resolve 

theoretically, and some effort is being directed 

towards an observational, and hence empirical, 

solution using small arrays of thermistors with 

rapid response times, and sensitive CTDs. 
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