

UNIVERSITY OF
ILLINOIS LIBRARY

AT UR3ANA-CHAMPA1GN
ENGINEERING

NOTICE: Return or renew all Library Materials! The Minimum Fee for

each Lost Book is $50.00.

The person charging this maTeTilfl is re^ponsiBle for

its return to the library from which it was withdrawn
on or before the Latest Date stamped below.

Theft, mutilation, and underlining of books are reasons for discipli-

nary action and may result in dismissal from the University.

To renew call Telephone Center, 333-8400

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

IliLU > >

L161—O-1096

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/networkingresearuniv

ENGINEERING LIBRARY
UNIVERSITY OF ILLINOIS

ORBANAi IUJNOIS

ivancea ^ompuiaTion
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA. ILLINOIS 61801

CAC Document Number 221

CCTC-WAD Document Number 7502

Networking Research in Front Ending

and Intelligent Terminals

Experimental Network Front End

Functional Description

January 15, 1977

:
f077

The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theft, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

CAC Document Number 221
CCTC-WAD Document Number 75b2

Networking Research in Front Ending
and Intelligent Terminals

EXPERIMENTAL NETWORK FRONT END FUNCTIONAL DESCRIPTION

by
Steven F. Holmgren
Peter A. Alsberg
Gary R. Grossman

Paul B. Jones

Prepared for the
Command and Control Technical Center

WWMCCS ADP Directorate
Defense Communications Agency

Washington, D.C. 20305

under contract
DCA100-76-C-0088

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

January 15, 1977

Approved for Release: XxJb^
Peter A. Alsberg, al Investigator

TABLE OF CONTENTS

INTRODUCTION

Background 1

The Hardware Configuration 1

Overview of Front-end Software Requirements 2

ADDITIONS TO UNIX

General 8

Inter-Process Communication (IPC) 9

Non-Blocking I/O 10

HFP SOFTWARE MODULES IN THE FRONT END

Introduction 12

Channel Protocol Module (CPM) 14

ARPANET Host-Host Service (HHS) Module 16

Program Access Service (PAS) Module 18

ARPANET Server Virtual Terminal Service (SVTS) Module 20

APPENDIX I. CHANNEL PROTOCOL MODULE 22

APPENDIX II. ARPANET HOST-HOST SERVICE MODULE 41

APPENDIX III. PROGRAM ACCESS SERVICE MODULE 60

APPENDIX IV. ARPANET SERVER VIRTUAL TERMINAL SERVICE MODULE . 81

INTRODUCTION

Background

Under contract DCA100-76-C-0088 , the Center for Advanced

Computation (CAC) of the University of Illinois at Urbana-

Champaign is investigating the capabilities of network front

ends. As a part of that contract, an experimental network front

end (ENFE) is being developed to interface a WWMCCS H6000 to the

ARPA Network and to conduct experiments with the proposed ARPANET

Host-to-Front-End Protocol. The experimental network front end

is being developed on a DEC PDP-11/70.

The operating system for the front end is a modified Unix

operating system. Unix, a general-purpose PDP-11 operating sys-

tem developed by Bell Telephone Laboratories, supports time-

sharing and has facilities such as editors, compilers and word

processors. The CAC has already enhanced the Unix system by

adding a Network Control Program (NCP) to it. The NCP is a sys-

tem software module that implements the ARPA Network Host-Host

and Initial Connection Protocols. These are the basic protocols

used in communication across the ARPA Network. This document

describes the further enhancements to Unix and the new software

modules which are needed to support front-end experimentation.

The Hardware Configuration

The front end itself is a Digital Equipment Corporation

(DEC) PDP-11/70 computer with 128K words of memory and disk

storage. Hardware interfaces to terminals, the ARPANET, and the

-1- 1/15/77

H6000 will be provided. A DEC IMP-11A ARPANET interface will be

used to connect the 11/70 to the ARPANET. The IMP-11A is a DEC

standard product.

The H6000 and PDP-11/70 will be linked by a pair of in-

terfaces, similar to ARPANET host-to-IMP interfaces, connected so

that the outputs of one interface are the inputs of the other.

The H6000 interface will be an Asynchronous Bit Serial Interface

(ABSI) which uses two Common Peripheral Intercnanges (CPI) on the

H6000 I/O multiplexor. The PDP-11/70 interface will be a general

purpose, full duplex, direct memory access (DMA) interface. The

interfaces will use ARPANET IMP-to-host data transmission tech-

niques to communicate with each other.

Overview of Front -end Software Requirements

At present, the storage, maintenance, and processing

requirements of host-resident network software represent a signi-

ficant burden on WWMCCS hosts. Offloading a major portion of

this network software to a front end should reduce the extent and

complexity of host-resident software. As a result, host perfor-

mance should improve considerably. Proper design of front-end

and interface software should also yield improved security.

The network software can be thought of as a set of ser-

vices provided to host processes or users. These services allow

the network and the various hosts connected to the network to be

conveniently used. Offloading shifts the major burden of provid-

ing these services from the local host to the front end.

-2- 1/15/77

The major services to be offloaded to the experimental

network front end are:

1. the Network Control Program (NCP) , which controls

access to the network and to remote hosts on the

network, and

2. Telnet, which provides an interface between term-

inals (which may be of widely differing types) and

interactive processes on remote hosts.

Since an NCP has already been added to the Unix system,

only a simple software module, a message relay, must be added to

provide access to the NCP. This software module is the ARPANET

Host-Host Service Module, which is described in detail below.

Telnet is usually implemented as two separate facili-

ties: User Telnet and Server Telnet. User Telnet accepts input

from terminals and initiates connections to ARPA Network hosts.

Server Telnet accepts those connections. Normally, a user of a

Telnet facility invokes a User Telnet "program" at his local ARPA

Network host and is connected to a server Telnet "program" at a

remote ARPA Network host. The result is that the user's terminal

appears to be connected to the remote host as if it were a local

terminal at the remote host.

The Program Access process-to-service protocol will be

used to access the existing Unix User Telnet program in the front

end. The Program Access Service module will use the Unix

pseudo-Teletype (PTY) mechanism to make a terminal connected to

-3- 1/15/77

the host appear to be directly connected to the front end. Then

the terminal connected to the host can use the Unix User Telnet

program as if it were a terminal connected to the front end.

The implementation of Server Telnet presents a more dif-

ficult problem. A Server Virtual Terminal Service Module will be

implemented in the front end. This module (described in detail

below) interfaces with the NCP to manipulate network connections

and to transmit data. Other Server Telnet functions which are

appropriately offloaded to the front end will also be handled by

this module.

To support process-to-service communication (i.e. commun-

ication between processes in the host and services in the front

end) a basic mechanism must be provided for the host and the

front end to communicate. This mechanism is the Host-to-Front-

End Protocol (HFP) , which is defined in CAC Document 219 (ARPA

Request for Comments (RFC) 710) . The HFP specification distin-

guishes two protocol layers - the channel protocol and the

process-to-service protocols.

The process-to-service protocols specify the content and

type of the messages by which host processes communicate with the

various service modules in the front end. Those process-to-

service protocols defined to date are:

1. ARPANET Host-Host Process-to-Ser vice Protocol

(CAC Technical Memorandum No. 80),

2. Program Access Process-to-Service Protocol

-4- 1/15/77

(CAC Technical Memorandum No. 81), and

3. Server Virtual Terminal Process-to-Service Protocol

(CAC Technical Memorandum No. 82).

Thus these protocols define the communications between host

processes and the three service modules described above.

By means of the channel protocol, logical channels are

set up between the host and the front end, and messages are

transmitted on these channels. Provisions are made for flow con-

trol and for out-of-sequence signaling. The channel protocol

defines five types of HFP Messages. These types are

1. BEGIN, which sets up logical channels;

2. END, which terminates logical channels;

3. TRANSMIT, which transmits data;

4. SIGNAL, which provides a means for synchroniz-

ing the ends of a logical channel, for inter-

rupting the other end, and for flushing data

from the other end of the channel; and

5. EXECUTE, which provides a means for passing

service-specific information "out-of-band"

(i.e. outside of the strict sequencing re-

quired for the TRANSMIT Messages)

.

Each Message type can be either a Command (requesting that the

action defined by the Message be taken) or a Response (indicating

-5- 1/15/77

whether the action was taken and, if not, providing some explana-

tion) .

The front end will contain a software module, the Channel

Protocol Module (CPM) , which manages the logical channels and

serves as a multiplexor. In one direction, messages from the host

are obtained from the lower-level host-to-front-end communica-

tions link and transmitted to the correct service. In the other

direction, the CPM accepts messages from the services and sends

them on their way to the host. The host also contains a CPM

which similarly manages the other ends of the logical channels.

The front-end CPM is described in detail below.

Two additional facilities must be added to the Unix

operating system. These are an inter-process communication fa-

cility and a non-blocking I/O facility. Brief descriptions of

these facilities are given below. In addition, device drivers

will be added to Unix to manage the IMP-to-host interface, the

H6000 to PDP-11 interface, and VIP terminals.

The HFP identifies a "link handler" which operates the

hardware interface between the host and the front end. The

11/70-H6000 interface device driver will fulfill this function in

the ENFE.

The diagram on the next page shows the network-front-end

software configuration. Note that this NCP consists of two

software modules, one in the operating system and one which runs

in user mode.

-6- 1/15/77

£

a
HU
U
HM
aso

H
o
in

w
zu

dHIdwi v\y

O 0)

1 iH .H
4-1 u > 3
(0 en M T3
o o Q) O
s X m S pu •< m x

c
•H
£
u
<u

H

•h <u a)

in > h w s

iH o

c
c
« o

o a.

-a
o
£

Host Interface \^
Device Driver s\

ooo
sO
S3

-7- 1/15/77

ADDITIONS TO UNIX

General

The Unix operating system will be modified to support HFP

operations. Parts of some general-purpose system functions are

not needed to support the front-end programs. These functions

will be streamlined. Some system functions are not needed at all

and will be removed.

Device drivers will be aaded to Unix to manage the IMP-

to-host interface, the 11/70-H6000 interface, and VIP terminals.

The Unix terminal handler and numerous other system modules will

be modified for front-end experiments.

Two additional facilities must be implemented to support

network access through the front end: an inter-process communi-

cation facility and a non-blocking I/O facility. These are need-

ed partly because the NCP interface is imbedded in the Unix file

system. ARPANET connections are initiated by file OPEN requests.

Data are transmitted to the network by file WRITE operations and

received from the network by file READ operations. Each of these

operations causes the initiating process to block until the

operation is complete. When a network READ is executed by a pro-

cess, the process is blocked until data arrives from the network.

Therefore, simultaneous READ'S on multiple network connections

require multiple processes. To enable a single process to manage

several concurrent network operations, the NCP user interface

will be modified to allow non-blocking I/O operations. Non-

-8- 1/15/77

blocking I/O will be implemented with an inter-process communica-

tion facility.

Inter-Process Communication (IPC)

An inter-process communication (IPC) facility will be

implemented to effect efficient communication between processes

and to provide a convenient mechanism for the implementation of

non-blocking I/O. Two types of communications will be used:

events and messages.

Events transfer small amounts of control information

oetween processes. Events have a source, a destination, an op-

code, and a word of data. The contents of the opcoae and data

fields are application-dependent.

Messages transfer large amounts of data. Messages are

created, transmitted, and received within segments. A segment is

an area of physical core memory dynamically mapped into and out

of the address spaces of communicating processes. Shared data

areas are a useful by-product of the message facility.

Each process has an IPC queue where events and notifica-

tions of messages are stored until requested.

Details of the inter-process communication facility are

described in CAC Technical Memorandum No. 84, "Unix Inter-Process

Communication"

.

-9- 1/15/77

Non -Blocking I/O

Non-blocking I/O will be added to the front-end file sys-

tem. This will enable a single process to perform I/O concurrent-

ly on multiple files.

At present, each Unix terminal typically uses three or

four processes. As the number of active processes increases,

system response degrades rapidly. The rapidity of the degrada-

tion appears to be due to the large number of processes resulting

from the Unix multiple-process-per-terminal architecture (minimum

process overhead = IK words) . The addition of non-blocking I/O

will significantly reduce the number of processes typically used

by each terminal.

Non-blocking I/O will use the inter-process communication

facility. Events will be used to notify user processes of the

completion of non-blocking I/O operations. File system software

will be modified to generate events at appropriate times:

1. the opening of a file,

2. the arrival of input data,

3. the completion of output operations, and

4. the closing of a file.

When processes receive these events, they are free to

execute READ, WRITE, and CLOSE file-system primitives in the usu-

al manner

.

-10- 1/15/77

There are other non-blocking I/O strategies. The pro-

posed strategy represents a relatively simple modification to the

Unix system.

Experience with the HFP is necessary to determine some

aspects of front-end operating system requirements. Initially,

non-essential system modifications will be kept to a minimum.

After HFP test data are available, alternative strategies for

non-blocking I/O, process management, and memory management will

be investigated.

-11- 1/15/77

HFP SOFTWARE MODULES IN THE FRONT END

Introduction

There will be four major HFP software modules in the

front end:

1. the Channel Protocol Module,
2. the ARPANET Host-Host Service Module,
3. the Program Access Service Module, and
4. the Server Virtual Terminal Service Module.

Each component will be implemented as a user level program. Each

program is structured as a finite state machine accepting input

from multiple sources. These inputs may be thought of as mes-

sages that request some action and drive the machine from state

to state. Each message is associated with a logical communica-

tions channel. The message type and current state determine the

action and the next state. Most actions result in the transmis-

sion of a message to another destination and in the generation

of a response indicating the success or failure of the action.

The functions required in the interface between the chan-

nel protocol module and the service modules (the service-to-CPM

interface) are described in the HFP specifications, CAC Document

219 (ARPANET RFC 710) . The service-to-CPM interface employed in

the experimental network front end is implemented via the IPC

mechanism for efficiency. It is functionally equivalent to that

described in the HFP specification. The IPC messages passed

between the channel protocol module and the service modules are

identical in format and content to HFP Messages. Appendix I

includes a description of the relation between the service-to-CPM

-12- 1/15/77

interface as described in the HFP specification and the service-

to-CPM interface employed in the experimental network front end.

A brief description of each component follows. More

detailed descriptions are contained in Appendices I through IV.

-13- 1/15/77

Channel Protocol Module (CPM)

Function. The channel protocol module (CPM) will enable

programs running in the H6000 to communicate with service modules

in the front end. It will implement the HFP channel protocol

described in the HFP specifications, CAC Document 219 (ARPANET

RFC 710) . The CPM will perform several functions.

1. It will de-multiplex HFP Messages arriving
from the host interface and pass them to the
appropriate service modules in the front end.

2. It will accept input in the form of HFP Mes-
sages from the service modules and multiplex
them to the host interface.

3. It will implement the HFP flow control mechan-
ism.

4. It will perform error checking at the channel
protocol level.

Structure . The CPM will be implemented as a finite state

machine which relays information flowing in two directions:

1. from the host to the service modules and

2. from the service modules to the host.

The CPM will communicate with the host" via the 11/70-H6000 inter-

face device driver using the non-blocking I/O mechanism. It will

communicate with the service modules via the IPC mechanism.

The CPM will be a user-level program in order to facili-

tate its testing and evaluation. It may be transformed into a

kernel process in order to improve the performance of the front

end.

-14- 1/15/77

Operation . The CPM will wait for HFP Messages from the

host and IPC Messages from the service modules. Messages from

both sources will have the form of HFP Commands and Responses.

As the CPM receives each message, it will call a routine ap-

propriate to the service and type of message. These routines

will perform multiplexing, flow control, and error checking.

-15- 1/15/77

ARPANET Host -Host Service (HHS) Module

Function . The ARPANET Host-Host Service (HHS) module

will enable programs running in the H6000 to use the ARPANET NCP

in the front end. It will implement the ARPANET Host-Host

process-to-service protocol described in CAC Technical Memorandum

No. 80. The HHS module will perform several functions, using the

ARPANET NCP in the front end.

1. It will open and close ARPANET connections to
hosts on the network.

2. It will pass data between the H6000 and hosts
on the network.

3. It will maintain connection status informa-
tion.

The HHS module will communicate with programs in the H6000 via

the CPM.

Structure . The HHS module will be implemented as a fin-

ite state machine which relays information flowing in two direc-

tions:

1. from the CPM (and thus from the H6000) to the
NCP and

2. from the NCP to the CPM (and thus to the
H6000)

.

The HHS module will communicate with the CPM via the IPC mechan-

ism. It will communicate with the NCP via the non-blocking I/O

mechanism.

Operation . The HHS module will wait for IPC messages

from the CPM and IPC events from the NCP.

-16- 1/15/77

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the HHS module receives each message,

it will call a routine appropriate to the message type. These

routines will perform Command-specific functions, handle error

situations, initiate state transitions, and generate HFP

Responses.

IPC events from the NCP will signal the completion of

network I/O operations. As the HHS module receives each event,

it will call an appropriate routine. These routines will gen-

erate the necessary HFP Message sequences.

-17- 1/15/77

Program Access Service (PAS) Module

Function. The Program Access Service (PAS) module will

enable programs running in the H6000 to execute arbitrary pro-

grams in the front end. It will implement the Program Access

process-to-service protocol described in CAC Technical Memorandum

No. 81. The PAS module will perform several functions using the

Unix pseudo-Teletype (PTY) mechanism.

1. It will enable programs on the H6000 to log in
to and log out of the Unix system.

2. It will enable programs on the H6000 to run
programs under Unix (for example, User Tel-
net).

3. It will pass data between programs on the
H6000 and programs running under Unix.

The PAS module will communicate with programs on the H6000 via

the CPM.

Structure . The PAS module will be implemented as a fin-

ite state machine which relays information flowing in two direc-

tions:

1. from the CPM (and thus from the H6000) to the
pseudo-Teletypes, and

2. from the pseudo-Teletypes to the CPM (and
thus to the H6000)

.

The PAS module will communicate with the CPM via the IPC mechan-

ism. It will use the pseudo-Teletypes via the non-blocking I/O

mechanism. The PAS module will be a user-level program.

Operation

.

The PAS module will wait for IPC messages

-18- 1/15/77

from the CPM and IPC events from the pseudo-Teletypes.

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the PAS module receives each message,

it will call a routine appropriate to the message type. These

routines will perform Command-specific functions, handle error

situations, initiate state transitions, and generate HFP

Responses.

IPC events from the pseudo-Teletypes will signal the com-

pletion of pseudo-Teletype I/O operations. As the PAS module

receives each event, it will call an appropriate routine. These

routines will generate the necessary HFP Message sequences.

-19- 1/15/77

ARPANET Server Virtual Terminal Service (SVTS) Module

Function . The ARPANET Server Virtual Terminal Service

(SVTS) module will enable programs in the H6000 to be accessed by

terminals on the ARPANET. It will implement the ARPANET Server

Virtual Terminal process-to-service protocol described in CAC

Technical Memorandum No. 82. It will also implement the ARPANET

Telnet protocol described in NIC Document No. 15372. The SVTS

module will perform several functions, using the ARPANET NCP in

the front end.

1. It will open and close ARPANET connections to
hosts on the network.

2. It will pass data between the H6000 and hosts
on the network, transforming the data in ac-
cordance with Telnet protocol.

3. It will maintain connection status informa-
tion.

4. It will perform Telnet option negotiation.

The SVTS module will communicate with programs in the H6000 via

the CPM.

Structure . The SVTS module will be implemented as a fin-

ite state machine which relays and transforms information flowing

in two directions:

1. from the CPM (and thus from the H6000) to the
NCP and

2. from the NCP to the CPM (and thus to the H6000)

.

The SVTS module will communicate with the CPM via the IPC mechan-

ism. It will communicate with the NCP via the non-blocking I/O

mechanism.

-20- 1/15/77

Operation . The SVTS module will wait for IPC messages

from the CPM and IPC events from the NCP.

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the SVTS module receives each mes-

sage, it will call a routine appropriate to the message type.

These routines will perform Command-specific functions, transform

data, handle error situations, initiate state transitions, and

generate HFP Responses.

IPC events from the NCP will signal the completion of

network I/O operations. As the SVTS module receives each event,

it will call an appropriate routine. These routines will gen-

erate the necessary HFP Message sequences and perform Telnet

option negotiation.

-21- 1/15/77

APPENDIX I

CHANNEL PROTOCOL MODULE

-22- 1/15/77

Channel Protocol Module (CPM)

Current status . The detailed description of the module

which follows is a preliminary version and is subject to change.

Function . The channel protocol module (CPM) will enable

programs running in the H6000 to communicate with service modules

in the front end. It will implement the HFP channel protocol

described in the HFP specifications, CAC Document 219 (ARPANET

RFC 710) . The CPM will perform several functions.

1. It will de-multiplex HFP Messages arriving
from the host interface and pass them to the
appropriate service modules in the front end.

2. It will accept input in the form of HFP Mes-
sages from the service modules and multiplex
them to the host interface.

3. It will implement the HFP flow control mechan-
ism.

4. It will perform error checking at the channel
protocol level.

Structure . The CPM will be implemented as a finite state

machine which relays information flowing in two directions:

1. from the host to the service modules and

2. from the service modules to the host.

The CPM will communicate with the host via the 11/70-H6000 inter-

face device driver using the non-blocking I/O mechanism. It will

communicate with the service modules via the IPC mechanism.

The CPM will be a user-level program in order to facili-

tate its testing and evaluation. It may be transformed into a

-23- 1/15/77

kernel process in order to improve the performance of the front

end

.

Operation . The CPM will wait for HFP Messages from the

host and IPC Messages from the service modules. Messages from

both sources will have the form of HFP Commands and Responses.

As the CPM receives each message, it will call a routine ap-

propriate to the service and type of message. These routines

will perform multiplexing, flow control, and error checking.

-24- 1/15/77

Software Architecture

The following table illustrates the CPM procedure call

hierarchy. The "c/r" following procedure names indicates the

existence of both a command routine and a response routine. For

example, "BEGIN c/r" indicates that routines exist at that level

to process both an HFP BEGIN Command and an HFP BEGIN Response.

MAIN

I
(host FINDCHAN

I
(service

I
messages)

I
messages)

i r i
1 1

r

BEGIN c/r FLOWCTL END c/r TRANS c/r SIG c/r EXEC c/r

1 T ^T T
END c/r TRANS c/r SIG c/r EXEC c/r

-25- 1/15/77

State Transition Table

The following table depicts CPM logical channel states.

The STATE column indicates current channel state, the EVENT

column indicates the occurrence of a specific event, the ACTION

column indicates the action taken when an event occurs, and the

NEXT STATE column indicates the state of the channel after the

action is performed.

STATE EVENT ACTION NEXT STATE

NULL

PENDING

BEGIN Command

BEGIN Response
Status =

Initialize channel
data structure Pass
Command to service
or host.

Pass Command to host
or service.

PENDING

ESTABLISHED

ESTABLISHED

DRAINING

TERMINATING

BEGIN Response
Status not

END Command

END Command
w/drain

END Command
w/o drain

SIGNAL Command

All other
Commands

Transmits
drained

END Response

Pass Command to host
or service.

Pass Command to
destination

.

Wait for queued TRANS,
to drain.

Cleanup channel data
structure pass command
to destination.

Take appropriate
signal action.

Update flow control
and acknowledge
information.

Send END Command

Release channel data
structure

.

BEGIN Response Ignore

NULL

TERMINATING

DRAINING

TERMINATING

ESTABLISHED

ESTABLISHED

TERMINATING

NULL

TERMINATING

-26- 1/15/77

CPM Data Structures

Channel information will be kept in an ordered list of

data structures. The list will be ordered by channel group and

channel member. Each active HFP logical channel will have an

entry in this list. Each entry will contain the following: (The

numbers in parens are the field widths in bits)

.

link (16) -pointer to the next channel element
Null indicates end of list

group(16) -this channel's group number
member (16) -this channel's member number
state (8) -channel state (see states below)
service number (8) -number of the service for this

channel
service IPC (8) -IPC address of the service for

this channel
hiscredit(8) -current credit given by host
his_seq(8) -sequence number of last TRANSMIT

received from host
mycredit(8) -amount of credit given by front

end
myseq(8) -last TRANSMIT acknowledged by host
currseq(8) -sequence number of last TRANSMIT

sent to host
trans-q(16) -queue head of TRANSMITS waiting

to be sent
retran-q(16) -TRANSMITS waiting to be acknowledged

The following are state variable values

NULL
PEND 1

ESTAB 2

DRAIN 3

TERM 4

-27- 1/15/77

Service-to-CPM Interface

The HFP Specification describes 12 service-to-CPM inter-

face primitives. These primitives identify the operating system

functions needed to interface a service module to the CPM.

With the exception of S_ACCEPT, S_ACK, and S_IDENTIFY,

each of these primitives requests the CPM to generate an HFP Mes-

sage. For example, the S_TERMINATE primitive requests the gen-

eration of an HFP END Command, and the S_SEND primitive requests

the generation of an HFP TRANSMIT Command. In the ENFE, the ser-

vice modules will generate these HFP Messages. They will be con-

veyed to the CPM (and thus to the H6000) via IPC messages. The

S_ACCEPT primitive corresponds to the IPC system primitive that

reads an IPC message or event. The acknowledgement function that

would be provided by the S_ACK primitive will be provided by

passing HFP TRANSMIT Responses between the service modules and

the CPM. The S_IDENTIFY primitive will be implemented via a

service-to-CPM IPC event.

Program Logic

HFP Response status codes and their names are defined in

the HFP Specification. In the software logic descriptions, each

status code is represented by its name followed by its value in

parentheses.

MAIN

MAIN links the channel data structures into a free list,

-28- 1/15/77

procures any required IPC resources, calls INITIATE to begin com-

munications with the H6000, and falls into a loop waiting for

messages. As the messages arrive, they are multiplexed via the

command/response routines.

Logic

Link channel data structures into a free list.
Procure required IPC resources.
call INITIATE to bring up the H6000 link.
loop

wait for IPC message
based on message source and type

call common code routine
based on message source and type

call command/response routine.

INITIATE

INITIATE "brings up" the communications link with the

H6000. INITIATE sends an END Command with channel group and

member equal to zero and waits for an END Response. When the END

Response arrives, INITIATE waits for a BEGIN Command addressed to

the HFP Maintenance Service. When the BEGIN Command arrives,

INITIATE sends a BEGIN Response and marks the host as "alive".

All other messages from the host are ignored during this period.

Logic

send END Command w/group & member =

wait for END Response w/group & member =

wait for BEGIN Command for HFP
Maintenance Service

send BEGIN Response

mark host "alive"

-29- 1/15/77

BEGIN Command (from host)

A BEGIN Command requests the construction of a logical

HFP channel. The BEGIN routine must get a channel data struc-

ture, fill it in, and pass the Command on to the appropriate ser-

vice .

Logic

check service valid?
no:

return BEGIN Response
w/status = SERV_NOT__FOUND(33)
return

Call FINDCHAN
FINDCHAN return non-zero?
(channel already exists)
yes:

return BEGIN Response
w/status = CHAN_IN_USE(32)
return

GETCHAN return zero?
yes:

return BEGIN Response
w/status = NO_RESOURCES(34)
return

fill in
service#
service IPC address
hiscredit

clear myseq, his_seq, currseq
set state <- PEND
set mycredit <- 8

pass BEGIN to service

BEGIN Response (from service)

A BEGIN Response is generated to indicate the success or

failure of a BEGIN Command.

-30- 1/15/77

Logic

FINDCHAN return zero? (Channel doesn't exist)
yes

:

log error and discard
return

state = PEND?
no

:

log and discard (not necessarily an error)
return

status not zero?
yes:

call FREECHAN
no

:

state <- ESTAB
credit <- mycredit

call HOSTSEND

TRANSMIT (from host)

A TRANSMIT Command is generated when the host wants to

send data over a logical channel to a front-end service.

Logic

Call FINDCHAN

FINDCHAN return zero?

yes:
return TRANSMIT Response
w/status <- CHAN_NOT_FOUND(l)
return

channel state = ESTAB?
no

:

return TRANSMIT Response
w/status <- ILLEGAL_STATE(2)
return

message myseq = (his_seq+l)modl6?
no: (TRANSMIT out of order)

return TRANSMIT Response
w/status <- OUT OF SEQ(35)

-31- 1/15/77

return

increment his_seq mod 16
decrement mycredit

call FLOWCTL

pass TRANSMIT Command to service

TRANSMIT Response (from host)

A TRANSMIT Response is generated by the host to update

flow control information and signal error situations.

Logic

FINDCHAN return zero?
yes: log error and discard

return

status not zero?
yes: log error

call FLOWCTL

status = SERVICE ERROR?
pass TRANSMIT Response on to service

TRANSMIT
(from service)

A TRANSMIT is generated when data becomes available for

the associated host process.

Logic

FINDCHAN return zero?
yes: log error and discard?

return

increment currseq mod 16
copy currseq to message myseq

(struct myseq + hiscredit)mod 16 >= currseq?
yes:

call FLOWSEND
no :

-32- 1/15/77

queue TRANSMIT to be sent by FLOWCTL later
number of queued TRANSMITS = MAX_QUEUABLE?
yes:

send XOFF event to service

TRANSMIT Response (from service)

A TRANSMIT Response is generated by a service when it

finishes sending TRANSMIT data over a network connection.

Logic

FINDCHAN return zero?
yes:

log error and discard
return

increment mycredit

call FLOWSEND

END (
from host with or without flush)

An END Command is generated by the host when it wishes to

terminate a logical channel. Only messages in transit to the

host are queued here. Because the host has requested the des-

truction of the logical channel, queued TRANSMITS waiting for

flow control permission before they would be sent to the host are

released to the system and not sent to the host.

Logic

FINDCHAN return 0?
yes

:

return END Response w/status <- CHAN_N0T_F0UND(1)
return

state <- TERM

release any queued TRANSMIT Commands
release any unacknowledged TRANSMIT Commands

-33- 1/15/77

Pass END to service

END (from service)

An END Command is generated by the services when they

wish to terminate a logical channel.

Logic

FINDCHAN return zero?
yes

:

return END Response
w/status <- CHAN_N0T_F0UND(1)
return

state <- TERM

flush requested?
yes: release any queued TRANSMIT Commands
no: any queued TRANSMIT Commands?

yes:
queue END at end of TRANSMIT queue. It
will go out after the last TRANSMIT,
return.

call FLOWSEND

END Response (from service or host)

An END Response is generated when either the service or

the host wishes to acknowledge the closing of a channel.

Logic

FINDCHAN return zero?
yes: log and discard

return

release any queued TRANSMIT Commands
release any unacknowledged TRANSMIT Commands

call FREECHAN

call HOSTSEND or pass to service

-34- 1/15/77

SIGNAL (from host)

A SIGNAL Command is generated when the host wishes to

change the status of either the logical communication channel, or

the service at the opposite end of the channel.

Logic

FINDCHAN return zero?
yes:

return SIGNAL Response
w/status <- CHAN_N0T_F0UND(1)
return

call FLOWCTL

CONTROL = 0?
yes:

(return flow control information)
return SIGNAL Response w/status <- SUCCESS (0)
return

bit 2 of CONTROL on?
yes:

flush any queued TRANSMITS

pass SIGNAL Command to service.

SIGNAL Response (from host)

A SIGNAL Response is generated by the host when it wishes

to acknowledge a SIGNAL Command.

Logic

FINDCHAN return zero?
yes: log error and discard

return

call FLOWCTL

pass SIGNAL Response to service

-35- 1/15/77

SIGNAL (from service)

A SIGNAL Command is generated by the service when it

wishes to modify the state of a logical channel or the process at

the opposite end of the channel.

Logic

FINDCHAN return zero?
yes: log error and discard

return

bit 1 of CONTROL on?
yes:

flush any queued TRANSMIT Commands

bit 3 of CONTROL on?
yes:

any TRANSMITS waiting to be sent?
yes:

queue SIGNAL at end of queue. It will
go out after the last TRANSMIT goes out.
return

call HOSTSEND

SIGNAL Response (from service)

A SIGNAL Response is generated by a service when it

wishes to acknowledge a SIGNAL Command.

Logic

FINDCHAN return zero?
yes: log error and discard

return

call FLOWSEND

EXEC (from host)

An EXECUTE Command is generated by a process when it

-36- 1/15/77

wants to request a special function from the service.

Logic

FINDCHAN return zero?
yes

:

return EXECUTE Response
w/status <- CHAN_N0T_F0UND(1)
return

call FLOWCTL

pass EXECUTE on to service.

EXEC Response (from host)

An EXECUTE Response is generated by a process when it

wishes to acknowledge an EXECUTE Command.

Logic

FINDCHAN return zero?
yes: log error and discard

return

call FLOWCTL

status = CHAN_NOT_FOUND(l) ?

yes: log error
return

pass EXECUTE Response on to service

EXEC and EXEC Response (from service)

An EXECUTE Command is generated by a service when it

wishes to request a special action from the process at the other

end of the logical channel.

An EXECUTE Response is generated by a service when it

wishes to acknowledge an EXECUTE Command.

-37- 1/15/77

Logic

FINDCHAN return zero?
yes: log error and discard

return

call FLOWSEND

FINDCHAN

FINDCHAN is called by the various command/response

routines to locate a specific channel data structure.

Logic

Set up search thru channel data structure list

while entries in list
current channel group = list channel group

and
current channel member = list channel member
yes:

return address of channel data structure

get next channel list member

(all entries searched!)
return zero

GETCHAN

GETCHAN is called by the command/response routines to get

an unused channel data structure from the channel free list.

Logic

any entries in free list?
no: return zero

delink entry from list
copy current channel group and member into data structure

search active channel list for correct entry point
link new entry into active channel list
return address of channel data structure

-38- 1/15/77

FREECHAN

FREECHAN is called by the command/response routines to

release a channel data structure.

Logic

search active channel list for channel entry

delink it from active list

link structure into free channel list

FLOWCTL

FLOWCTL is called by command/response routines that re-

ceive HFP messages from the host. Its principal function is to

update channel acknowledgement and flow control variables. If

any TRANSMIT Commands have been acknowledged, the associated IPC

message segments may be released to the system-free pool. If the

number of outstanding TRANSMITS is less than eight and TRANSMITS

are queued to be sent to the host, send as many TRANSMITS as pos-

sible.

Logic

copy credit to hiscredit (save received host credit)
copy yourseq to myseq (save last acknowledged TRANSMIT)

release any acknowledged TRANSMIT Commands

number of queued TRANSMITS = MAXQUEUEABLE?
yes:

set XONFLAG

while any queued TRANSMIT Commands

map first queued TRANSMIT
(structure myseq + hiscredit) mod 16

> =

TRANSMIT myseq?

-39- 1/15/77

yes

no

delink TRANSMIT
copy his_seq to yourseq
copy mycredit to credit
call HOSTSEND
unmap queued TRANSMIT

XONFLAG lit?
yes:

number of queued TRANSMITS
<

MIN QUEUED
yes:

return
send XON event to service

FLOWSEND

FLOWSEND is called by the command/response routines to

copy the current flow control and acknowledgement information

into the header of HFP Messages going to the host.

Logic

copy currseq to myseq
copy mycredit to credit
copy his_seq to yourseq
call HOSTSEND

HOSTSEND

HOSTSEND is called by many command/response routines to

pass messages to the output side of the H6000-11/70 hardware dev-

ice driver for ultimate delivery to the H6000.

-40- 1/15/77

APPENDIX II

ARPANET HOST-HOST SERVICE MODULE

-41- 1/15/77

ARPANET Host - Host Service (HHS) Module

Current status . The detailed description of the module

which follows is a preliminary version and is subject to change.

Function . The ARPANET Host-Host Service (HHS) module

will enable programs running in the H6000 to use the ARPANET NCP

in the front end. It will implement the ARPANET Host-Host

process-to-service protocol described in CAC Technical Memorandum

No. 80. The HHS module will perform several functions, using the

ARPANET NCP in the front end.

1. It will open and close ARPANET connections to
hosts on the network.

2. It will pass data between the H6000 and hosts
on the network.

3. It will maintain connection status informa-
tion.

The HHS module will communicate with programs in the H6000 via

the CPM.

Structure . The HHS module will be implemented as a fin-

ite state machine which relays information flowing in two direc-

tions:

1. from the CPM (and thus from the H6000) to the
NCP and

2. from the NCP to the CPM (and thus to the
H6000)

.

The HHS module will communicate with the CPM via the IPC mechan-

ism. It will communicate with the NCP via the non-blocking I/O

mechanism.

-42- 1/15/77

Operation , The HHS module will wait for IPC messages

from the CPM and IPC events from the NCP.

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the HHS module receives each message,

it will call a routine appropriate to the message type. These

routines will perform Command-specific functions, handle error

situations, initiate state transitions, and generate HFP

Responses.

IPC events from the NCP will signal the completion of

network I/O operations. As the HHS module receives each event,

it will call an appropriate routine. These routines will gen-

erate the necessary HFP Message sequences.

-43- 1/15/77

Software Architecture

The procedure calling structure of HHS is relatively sim-

ple.

MAIN

I

HFEIN
I

I

I
XMIT | EXEC | XON |

BEGIN SIG END XOFF

I

NETIN

CHVRFY | SIG2HFE | READNEI
I I

WRTNET NETNAK

-44- 1/15/77

State Transition Table

The following table depicts HHS logical channel states,

actions, and state transitions.

STATE

NULL

PEND

ESTAB

BUSY

TERM

EVENT (input)

BEGIN Command

net open success
net open fail
END Command

SIGNAL Command
EXECUTE Command
net error

TRANSMIT (partial)
TRANSMIT (full)
data from net
END

ACTION (output) NEXT STATE

open net channel PEND

notify host ESTAB
notify host NULL
close net channe 1

free resources NULL
error PEND
error PEND
notify user
free resources NULL
data to net BUSY
data to net ESTAB
send to host ESTAB
close channel
free resources NULL
do it ESTABSIGNAL do it ESTAB

EXECUTE do it ESTAB

neterror notify host
flush buffers
free resources NULL

TRANSMIT buffer data BUSY
data from net send to host BUSY
data to net gone ESTAB
END let data drain TERM
SIGNAL do it BUSY
EXECUTE do it BUSY

data drained notify host NULL
SIGNAL do it TERM
EXECUTE do it TERM
net error notify host NULL

-45- 1/15/77

Channel Data Structure

Channel information is kept in a singly linked list of data

structures. At any one time, each of these structures is linked

into either an active or free list. The following fields are

necessary to hold channel information (the numbers in parens are

the field widths in bits)

:

link (16)
group (16)
member (16)
state (8)
flag (8)
size (16)
currseg (16)
fid (8)

sindex (8)
segs [N*8]

- address of new channel list element
- channel group ID
- channel member ID
- channel state
- channel flag bits
- number bytes waiting to be read from NCP
- ID of TRANSMIT being sent to the NCP
- NCP file ID for this channel
- next queued TRANSMIT to send
- list of HFP Messages being output

Open structure

When HHS performs a network open on a given channel, it must

pass parameters with the request. This is done with a structure

containing the following fields:

o op (8) - used internally by the NCP.

o type(8) - connection type:

bit
bit 1

bit 2

init/listen
icp/direct
duplex/simplex

o id (16) - internal to NCP.

o lskt (16)
- host's local socket for this connection.

o f skt (32) - socket in foreign host to which connection is
to be attempted.

o frnhost(8) - foreign host identifier.

-46- 1/15/77

o bsize (8) - sizes of bytes used on the connection.

o nomall (16)
- nominal allocation in bytes.

o timeo (16)
- number of seconds to wait before timing out an

attempt.

o relid(16) - internal to NCP.

-47- 1/15/77

Program Logic

HFP Response status codes and their names are defined in

the HFP Specification. In the software logic descriptions, each

status code is represented by its name followed by its value in

parentheses.

MAIN

The MAIN subroutine provides the driving loop for the

program. MAIN waits for IPC events and messages from the CPM and

NCP. As these IPC communications are received, the event source

and type are used to call lower level routines in the hierarchy.

Each of these routines implements state transition operations.

MAIN sets up the necessary resources and falls into a loop

where it waits for an event to occur. For security purposes, any

event that does not originate from the CPM or the NCP is logged

as an error and ignored.

Logic

Link Channel structures into the free list
Initialize IPC variables
loop:

wait for IPC event

event source = CPM?
yes:

call HFEIN

return

event source = NET?
yes

:

call NETIN

return

-48- 1/15/77

(if we got here, event is from bad source)

log event as an error and discard

HFEIN

HFEIN obtains the IPC messages from the CPM and attempts to

determine if the Command is implemented. If the message is an

HFP Response, it is discarded, since Responses are not currently

used.

Logic

Get IPC message from CPM
error getting message?
yes:

log error and return

message an HFP Response?
yes:

discard
return

implemented Command?
no:

send Command Response
w/statUS <- C0MM_N0T_IMPLEMENTED(3)

return

call FINDCHAN

call Command procedure

Following are the five routines immediately subordinate to

HFEIN that handle the HFP Commands from the host.

BEGIN

A BEGIN Command is received when a host process wants an

-49- 1/15/77

ARPANET connection opened. The Command TEXT contains parameters

for that open request.

Logic

Channel structure found?
yes

:

return BEGIN Response
w/statUS <- ILLEGAL_STATE(2)
return

fill in
connection type
foreign host
foreign socket
local socket
nominal allocation
timeout
bytesize

initiate network file OPEN request

error in OPEN request?
yes:

send BEGIN Response
w/status <- ACTION_FAILED(66)

return

call MAKCHAN
MAKCHAN fail?
yes:

send BEGIN Response
w/status <- NO_RESOURCES(34)

return

set channel state <- PEND

XMIT

XMIT transfers data to the NCP when it arrives from the CPM.

A channel is considered busy when a previous non-blocking I/O

request could not accept all data, or HHS is awaiting

-50- 1/15/77

confirmation of transfer to the foreign host.

Logic

Channel found?
no:

return TRANSMIT Response
w/status <- CHAN_N0T_F0UND(1)

return

channel state not <- ESTAB or BUSY?
yes:

return TRANSMIT Response
w/status <- ILLEGAL_STATE(2)

return

set up transfer

channel state = BUSY?
yes:

queue TRANSMIT to be sent to network
no:

write TRANSMIT data to network
error in network write?
yes:

return TRANSMIT Response
w/status <- ACTION_FAILED(66)

return

call KILLCHAN
return

all bytes transferred?
yes:

return TRANSMIT Response
w/status <- SUCCESS (0)

no:
return

set channel state <- BUSY
save TRANSMIT information

SIGNAL

As data is received from the network, it is passed on to the

CPM for transmission to the host. Therefore, signals asking to

-51- 1/15/77

flush data in transit to the host are ignored here and handled by

the CPM.

Logic

bit 1 of CONTROL on?
yes

:

release any queued segments

bit 2 of CONTROL on?
yes

:

ignore. data going to the host is not
buffered here.

bit 3 of CONTROL on?
no:

bit 1 of CONTROL on?
yes

:

send ARPA INS for this connection.

send SIGNAL Response w/status <- SUCCESS (0)

yes

:

bit 1 of CONTROL on?
yes

:

mark signal so that INS is sent
later .

room to queue signal?
no

:

send SIGNAL Response
w/status <- ACTION FAILED(66)

yes

:

return

queue SIGNAL Command
SIGNAL Response will be returned
when all TRANSMITS have been
sent to the network.

EXEC

At this time, the Network change-allocation mechanism is not

available. Any requests for this feature will be given an 'unim-

plemented' error.

-52- 1/15/77

Logic

find channel data structure?
no:

return EXECUTE Response
w/status <- CHAN_NOT_FOUND(l)

return

request channel state information?
yes

:

get network status information from system

copy information into an EXECUTE Response

send EXECUTE Response w/status <- SUCCESS (0)

return

(option wasnt found, tell host)
send EXECUTE Response
w/status <- NOT IMPLEMENTED (4)

END

If there is no queued output when an END is received, the

channel is immediately closed; otherwise, its state is set to

TERM and the data is allowed to drain to the network. The END

Response is successful as long as the channel exists.

Logic

channel data structure found?
no:

return END Response
w/status <- CHAN_N0T_F0UND(1)

return

flush requested?
yes:

flush queued TRANSMIT Commands

channel busy?
no

:

call KILLCHAN
return END Response w/status <- SUCCESS (0)

yes:
set channel state <- TERM

-53- 1/15/77

CPM-SERVICE Flow Control

XON and XOFF events are used by the CPM to flow control

TRANSMIT Commands from the services. When a service receives an

XOFF event from the CPM, it should not send TRANSMIT Commands

until an XON event for the associated channel arrives.

XON

XON is called in response to an XON event received from

tne CPM.

Logic
clear XOFF bit in channel state
data to read?
yes:

call READNET

XOFF

XOFF is called in response to receiving an XOFF event

from the CPM.

Logic
set XOFF bit in channel state
clear channel size

-54- 1/15/77

Network Section of HHS

NETIN

When an event from the NCP comes in, NETIN is called to

determine the next state. If the file descriptor cannot be found

in the channel list, an error is logged and the event is discard-

ed. The event source determines which subordinate routine is

called.

Logic

find network file ID?
no:

log error and return.

known event source?
no

:

log error and return.

call event routine

CHVRFY

CHVRFY is called when a network file OPEN request completes

It sends a BEGIN Response previously saved by the BEGIN routine.

Logic

OPEN request successful?
yes:

channel state <- ESTAB

return BEGIN Response
w/status <- SUCCESS (0)

no:
call KILLCHAN (don't send END Command)

-55- 1/15/77

send BEGIN Response
w/status <- ACTION FAILED(66)

READNET

NETIN or CHVRFY calls READNET when data is available on a

channel

.

Logic

data available?
yes:

no

call BLDMSG (to get an IPC data segment)

set up network read

read data into IPC segment

call SNDMSG to transfer data to host.

(channel is dead)
call KILLCHAN

WRTNET

When a write to a channel completes, WRTNET is called. Ter

minating channels are handled here.

Logic

channel dead?
yes:

call KILLCHAN
return

get current segment

more data in current TRANSMIT Command
to send to the network?
no:

call NEWSEG

more TRANSMITS to send?

-56- 1/15/77
i

no:
channel state = TERM?
yes:

call KILLCHAN

return

set up network write

write data to network

error in network write?
yes:

call KILLCHAN
return

save bytes remaining to be written

NEWSEG

NEWSEG is called when data from a TRANSMIT Command has been

sent to the network and its successful transfer has been con-

firmed. Wait-for-drain SIGNAL Commands are handled here.

Logic

return TRANSMIT Response w/status <- SUCCESS (0)

loop:
more TRANSMITS queued to send?
yes:

get first queue element
element a SIGNAL Command?
yes:

send ARPA INS
return SIGNAL Response

w/status <- SUCCESS (0)

NETNAK

When a network transmission to a foreign host fails, NETNAK

is called to resend the data.

-57- 1/15/77

Logic

Set up network write
write as many bytes as possible to network
error in writing?
yes:

call KILLCHAN
return

save write information

SIG2HFE

SIG2HFE is called when an event from the NCP is received

stating that an ARPA network INS has been received.

Logic

find network file ID?
no:

log error and discard event
return

send SIGNAL Command to host
w/control specifying interrupt for
correct data flow direction

-58- 1/15/77

Auxil iary Routines

MAKCHAN

MAKCHAN builds a new channel node and inserts it into the

channel list, returning a pointer to it.

Logic

any free channel data structures?
no:

log error and return zero

delink channel structure from channel free list

link structure into active list

copy channel group and member into structure field

initialize rest of channel data structure

return address of structure

KILLCHAN

This routine destroys a channel and deallocates all the

resources associated with it.

Logic

free any queued IPC segments

send END Command?
yes:

send END Command without flush

delink channel data structure from active list

link channel data structure into channel free list

-59- 1/15/77

APPENDIX III

PROGRAM ACCESS SERVICE MODULE

60- 1/15/77

Program Access Service (PAS) Module

Current status . The detailed description of the module

which follows is a preliminary version and is subject to change.

Function . The Program Access Service (PAS) module will

enable programs running in the H6000 to execute arbitrary pro-

grams in the front end. It will implement the Program Access

process-to-service protocol described in CAC Technical Memorandum

No. 81. The PAS module will perform several functions using the

Unix pseudo-Teletype (PTY) mechanism.

1. It will enable programs on the H6000 to log in
to and log out of the Unix system.

2. It will enable programs on the H6000 to run
programs under Unix (for example, User Tel-
net) .

3. It will pass data between programs on the
H6000 and programs running under Unix.

The PAS module will communicate with programs on the H6000 via

the CPM.

Structure . The PAS module will be implemented as a fin-

ite state machine which relays information flowing in two direc-

tions:

1. from the CPM (and thus from the H6000) to the
pseudo-Teletypes, and

2. from the pseudo-Teletypes to the CPM (and
thus to the H6000)

.

The PAS module will communicate with the CPM via the IPC mechan-

ism. It will use the pseudo-Teletypes via the non-blocking I/O

-61- 1/15/77

mechanism. The PAS module will be a user-level program.

Operation . The PAS module will wait for IPC messages

from the CPM and IPC events from the pseudo-Teletypes.

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the PAS module receives each message,

it will call a routine appropriate to the message type. These

routines will perform Command-specific functions, handle error

situations, initiate state transitions, and generate HFP

Responses.

IPC events from the pseudo-Teletypes will signal the com-

pletion of pseudo-Teletype I/O operations. As the PAS module

receives each event, it will call an appropriate routine. These

routines will generate the necessary HFP Message sequences.

-62- 1/15/77

Software Architecture

The call structure, shown below, is a tree with three

branches. The right branch communicates with front-end

processes. The center branch handles login responses. The left

branch communicates with the H6000 through the CPM.

MAIN

I

HFEIN
I

FRMLOG

1 1

I
XMIT

PROCS
I

I

EXEC XON
I \ \ T I

OPEN | DEATH
I
PTYREAD

BEGIN SIG END XOFF WRTCOM
I

REATTA

-63- 1/15/77

State Transition Table

The following table defines states, actions, and state

transitions.

STATE

NULL

PEND

ESTAB

BUSY

EVENT (input) ACTION (output) NEXT STATE

BEGIN Command send login msg
open PTY PEND

login success notify Host
fork process ESTAB

login fail notify Host NULL
END Command send kill

close PTY
free resources NULL

SIGNAL Command error PEND
EXECUTE Command error PEND

PTY error notify Host
send kill
free resources NULL

TRANSMIT (partial) data to PTY BUSY
TRANSMIT (full) data to PTY ESTAB
data from PTY send to Host ESTAB
END close PTY

send kill
free resources NULL

SIGNAL do it ESTAB
EXECUTE do it ESTAB

child death

PTY error

TERM

TRANSMIT
data from PTY
data to PTY gone
END
SIGNAL
EXECUTE
child death

data drained

notify Host
free resources
close PTY

notify Host
flush queue
send kill
close PTY
free resources
buffer data
send to Host

let data drain
do it
do it
close PTY
free resources
notify Host

notify Host

NULL

NULL
BUSY
BUSY
ESTAB
TERM
BUSY
BUSY

NULL

-64- 1/15/77

send kill NULL
SIGNAL do it TERM
EXECUTE do it TERM
PTY error notify Host NULL
child dea th notify Host

free resources
close PTY NULL

-65- 1/15/77

Channel list

Channel information is kept in a linked list of structures.

The following fields hold channel information (numbers in parens

are the number of bits in the field)

:

link (16) - address of new channel list element
group (16) - channel group ID
member (16) - channel member ID
state (8) - channel state
flag (8) - channel flag bits
size (16) - number bytes waiting to be read from NCP
currseg(16) - ID of TRANSMIT being sent to the NCP
fid (8) - NCP file ID for this channel
sindex (8) - next queued TRANSMIT to send
segs[N*8] - list of HFP Messages being output

PTY Table

The PAS module communicates with front-end processes by

means of pseudo-Teletypes (PTY) . These are software terminals

which appear to the process as a hardware terminal, thus enabling

one process to control another interactively.

A table of suffixes of known PTY's is kept to speed the

search for an available one. The two ends of the pseudo-Teletype

are known by different names: PTY<n> (the master) , and TTY<m>

(the slave). Two characters for each entry are necessary.

Each table entry has the following form:

master (8) - The suffix of a PTY; the end which acts as the
keyboard and printer of a terminal.

slave (8) - The suffix of a TTY; the slave end which is used
by a program as a normal terminal.

-66- 1/15/77

Program Logic

HFP Response status codes and their names are defined in

the HFP Specification. In the software logic descriptions, each

status code is represented by its name followed by its value in

parentheses.

MAIN

MAIN provides the driving loop for the service. MAIN

procures IPC resources, links channel data structures into a free

list, and falls into a loop. MAIN loops waiting for an event.

When an event arrives, MAIN determines whether the the source is

the CPM or the pseudo-Teletype software. Based on the event

source, HFEIN is called (event from CPM) or PROCS is called

(event from pseudo-Teletype software)

.

Logic

Link channel structures into the free list
Initialize IPC variables
Loop:

wait for IPC event

event source = CPM?
yes:

call HFEIN
return

event source = login service?
yes:

call FRMLOG
return

event source = front-end process?
yes:

call PROCS
return

(if we got here, event is from bad source)

log event as error and discard

-67- 1/15/77

HFEIN

HFEIN reads the message from the CPM. If the message is an

HFP Response it is not processed. The service does not use

Responses in its present form. If the Command is implemented,

the Command procedure is called.

Logic

Get IPC message from CPM
error getting message?
yes:

log error and return

message an HFP Response?
yes:

discard
return

legal Command?
no

:

send Command Response
w/status <- C0MM_N0T_IMPLEMENTED(3)

return

call FINDCHAN

call Command Procedure

Following are routines immediately subordinate to HFEIN.

These are the handlers of the HFP Commands.

BEGIN

A BEGIN Command is sent when a host process requests the

execution of a front-end program.

Logic

Channel data structure found?
yes

:

-68- 1/15/77

return BEGIN Response
w/status <- CHAN_IN_USE (32)

return

Get a message segment

Can't get it?
yes:

return BEGIN Response
w/status <- ACTION_FAILED(66)

return

Copy security field to IPC message

Send it to login service

error?
yes:

return BEGIN Response
w/status <- ACTION_FAILED(66)

return

Call MAKCHAN

MAKCHAN fail?
yes:

return BEGIN Response
w/status <- NO_RESOURCES(34)

return

set channel state <- PEND

END

An END Command is received when the host process wants to

terminate communications.

Logic

Channel data structure found?
no:

return END Response
w/status <- CHAN_N0T_F0UND(1)

return

-69- 1/15/77

flush requested?
yes:

flush queued TRANSMITS

channel BUSY?
no

:

call KILLCHAN

return END Response
w/status <- SUCCESS (0)

yes:
set channel state <- TERM

EXEC

At this time, no functions have been assigned to the EXECUTE

Command. An "option not implemented" Response will be sent back

to the sender with no other action taken.

Logic

Return EXECUTE Response
w/status <- OPTN NOT IMPLEMENTED (4)

XMIT

XMIT is called when a TRANSMIT Command is received from the

CPM.

Logic

Channel found?
no:

return TRANSMIT Response
w/status <- CHAN_NOT_FOUND(l)

return

Channel state not ESTAB or BUSY?
yes

:

return TRANSMIT Response
w/status <- ILLEGAL_STATE(2)

return

-70- 1/15/77

set up transfer

Channel busy?
yes:

no

queue TRANSMIT to be sent to PTY
return

write TRANSMIT data to PTY
error in write?
yes:

return TRANSMIT Response
w/status <- ACTION_FAILED(66)

call KILLCHAN
return

all bytes transferred?
yes:

return TRANSMIT Response
w/status <- SUCCESS (0)

no:
set channel state BUSY
save TRANSMIT information

SIG

SIG is called when a SIGNAL Command is received from the

CPM.

Logic

Default case:
(Command not implemented)

return SIGNAL Response
w/status <- N0T_IMPLEMENTED(4)

return

KILL:
return SIGNAL Response
w/status <- SUCCESS (0)

call KILLCHAN
return

INTERRUPT:
send INTERRUPT to process

-71- 1/15/77

QUIT:
send QUIT to process

return SIGNAL Response
w/status <- SUCCESS (0)

CPM-Service Flow Control

XON and XOFF events are used by the CPM to flow control

TRANSMIT Commands from the services. When a service receives an

XOFF event from the CPM, it should not send any TRANSMIT Commands

until an XON event for the associated channel arrives.

XON

XON is called in response to an XON event received from

the CPM.

Logic

Clear XOFF bit in channel state
data to read?
yes:

call PTYREAD

XOFF

XOFF is called in response to receiving an XOFF event

from the CPM.

Logic

Set XOFF bit in channel state
clear channel size

-72- 1/15/77

Login Handler

FRMLOG

A message from login for this channel tells whether or not

the security field sent in a BEGIN is valid.

If the user is correctly logged, a PTY is opened for the

channel

.

Logic

Login failure?
yes:

send BEGIN Response
w/status <- ACTION_FAILED(66)

free channel data structure
return

Find a free PTY

Cannot find one?
yes

:

send BEGIN Response
w/status <- NO_RESOURCES(34)

free channel data structure
return

Execute a non-blocking OPEN on the PTY
error?
yes:

send BEGIN Response
w/status <- NO_RESOURCES(34)

free channel data structure
return

-73- 1/15/77

Process Section of PAS

The process side of PAS handles write completion events,

child deaths, read events, PTY reattaches, and PTY open comple-

tions. The PTY reattaches are made possible by a special mechan-

ism that allows open files to be passed between processes.

PROCS

PROCS calls FINDFID to seek the channel node. If it exists,

the event source is validated as a system source and the event-

specific routine is invoked; otherwise the event is logged and

discarded.

Logic

Call FINDFID

channel found?
no

:

log error and return

event source legal?
yes:

call event specific routine

return

(if we get here, it's an illegal source)
log as error and return

WRTCOM

If all of the data in a TRANSMIT Command could not be ac-

cepted by the kernel, an event will arrive when more can be ac-

cepted. That type of event is handled here. Data queued will be

-74- 1/15/77

written until no more is accepted or the queue is empty.

When a channel's queue empties and it is in state TERM, the

PTY will be closed, a kill will be sent to the process, and the

state will be set to NULL.

Logic

Did the event return a channel error?
yes

:

call KILLCHAN
return

set up write

WRITE as much as possible.
error?
yes:

call KILLCHAN
return

Did all the data go out?
yes

:

return TRANSMIT Response
w/status <- SUCCESS (0)

no:

Loop:

save what didn't transfer
set channel state to BUSY
return

Is all data gone?
yes

:

Is state <- TERM?
yes:

return END Response
w/status <- SUCCESS (0)

return

Get next element in queue

Write as much to PTY as possible
error in Write?
yes:

call KILLCHAN
return

All bytes transferred?
no:

save where transfer stopped

-75- 1/15/77

channel state to BUSY

return

send TRANSMIT Response
w/status <- SUCCESS (0)

OPEiM

OPEN is called when an OPEN issued on a PTY completes.

If the non-blocking OPEN done by FRMLOG tailed, channel set

up cannot complete. In this case all resources are released to

the system and a BEGIN Response with an error indication is re-

turned.

Logic

Did the PTY OPEN fail?
yes:

return BEGIN Response
w/status <- ACTION_FAILED(66)
free channel data structure
return

execute a FORK system call
FORK fail?
yes:

return BEGIN Response
w/status <- NO_RESOURCES (34)

free channel data structure
close PTY's
return

FORK return 0?
yes: (This is the child process)

Change user ID
Change group ID
Change PTY owner to user ID
Change to user's working directory

close all files except PTY

Setup standard input and outputs

-76- 1/15/77

no

:

Close PTY

Setup arguments for execute

execute desired program

Execution of program failed?

Call EXIT with status = CHILD_FAILED (34)

(parent process)

return BEGIN Response
w/status <- SUCCESS (0)

close PTY

set state to ESTAB

DEATH

DEATH is called when a child process dies

Logic

call KILLCHAN

REATTA

REATTA is called in response to a "reattach" event from the

system.

Logic

Close PTY file.

Call KILLCHAN

PTYREAD

Called in response to a READ event, PTYREAD builds a message

large enough to hold the number of bytes indicated by the READ

-77- 1/15/77

event and reads the data into it. The message is then sent to

CPM. If there is an error on the channel, the channel is des-

troyed.

Logic

Error on channel?
yes:

call KILLCHAN
return

Call BLDMSG (to get IPC segment)

Read data into text field
error on read?
yes:

Call KILLCHAN
free message segment
return

send TRANSMIT to CPM
error?
yes:

free message segment
log error and return

-78- 1/15/77

Auxil iary Routines

MAKCHAN

MAKCHAN builds a new channel node and inserts it into the

channel list, returning a pointer to it.

Logic

Any free channel data structures?
no:

log error and return zero

delink channel data structure from channel free list

link data structure into active list

copy channel group & member to data structure fields

initialize rest of channel data structure

return address of data structure

KILLCHAN

This routine destroys a channel and deallocates all the

resources associated with it.

Logic

Close PTY

free any IPC resources

child still executing?
yes:

send KILL to process

send END Command?
yes:

send END Command without flush

-79- 1/15/77

delink channel data structure from active list

link channel data structure into channel free list

-80- 1/15/77

APPENDIX IV

ARPANET SERVER VIRTUAL TERMINAL SERVICE MODULE

-81- 1/15/77

ARPANET Server Virtual Terminal Service (SVTS) Module

Current status . The detailed description of the module

which follows is a preliminary version and is subject to change.

Function . The ARPANET Server Virtual Terminal Service

(SVTS) module will enable programs in the H6006 to be accessed by

terminals on the ARPANET. It will implement the ARPANET Server

Virtual Terminal process-to-service protocol described in CAC

Technical Memorandum No. 82. It will also implement the ARPANET

Telnet protocol described in NIC Document No. 15372. The SVTS

module will perform several functions, using the ARPANET NCP in

the front end.

1. It will open and close ARPANET connections to
hosts on the network.

2. It will pass data between the H6000 and hosts
on the network, transforming the data in ac-
cordance with Telnet protocol.

3. It will maintain connection status informa-
tion.

4. It will perform Telnet option negotiation.

The SVTS module will communicate with programs in the H6000 via

the CPM.

Structure . The SVTS module will be implemented as a fin-

ite state machine which relays and transforms information flowing

in two directions:

1. from the CPM (and thus from the H6000) to the
NCP and

2. from the NCP to the CPM (and thus to the H6000)

.

-82- 1/15/77

The SVTS module will communicate with the CPM via the IPC mechan-

ism. It will communicate with the NCP via the non-blocking I/O

mechanism.

Operation . The SVTS module will wait for IPC messages

from the CPM and IPC events from the NCP.

The IPC messages from the CPM will have the form of HFP

Commands and Responses. As the SVTS module receives each mes-

sage, it will call a routine appropriate to the message type.

These routines will perform Command-specific functions, transform

data, handle error situations, initiate state transitions, and

generate HFP Responses.

IPC events from the NCP will signal the completion of

network I/O operations. As the SVTS module receives each event,

it will call an appropriate routine. These routines will gen-

erate the necessary HFP Message sequences and perform Telnet

option negotiation.

-83- 1/15/77

Software Architecture

The SVTS procedure calling structure is similar to PAS.

MAIN
I

1

I

HFEIN
I

i
1 1 1 1

r

I
XMIT | END | XOFF

I I I

BEGIN SIG XON

I

LOGMSG

r

I

NETIN
I

i
1

r—i

r

CHVRFY | SIG2HFE | READNE1
I I

WRTNET NETNAK

-84- 1/15/77

State Transition Table

The following table shows states, actions, and state

transitions.

STATE EVENT(input) ACTION (output) NEXT STATE

NULL BEGIN Command open net chan PEND

PEND net open success notify Host ESTAB
net open fail notify Host NULL
END Command close net chan

free resources NULL
SIGNAL Command error PEND
EXECUTE Command error PEND

ESTAB net error notify user
free resources NULL

TRANSMIT (partial) data to net BUSY
TRANSMIT (full) data to net ESTAB
data from net send to Host ESTAB
END close channel

free resources NULL
SIGNAL do it ESTAB
EXECUTE do it ESTAB

BUSY

TERM

neterror

TRANSMIT
data from net
data to net gone
END
SIGNAL
EXECUTE

data drained
SIGNAL
EXECUTE
net error

notify Host
flush buffers
free resources NULL
buffer data BUSY
send to Host BUSY

ESTAB
let data drain TERM
do it BUSY
do it BUSY

notify Host NULL
do it TERM
do it TERM
notify Host NULL

-85- 1/15/77

SVTS Data Structures

Channel 1 ist

Channel information is kept in a linked list of structures.

The following fields are necessary to hold channel information

(numbers in parens are the number of bits in the field):

link
group

(16)
(16)

member (16)
state (8)

flag (8)
size (16)
currseg (16)
fid (8)

sindex (8)

segs[N*8]

- address of new channel list element
- channel group ID
- channel member ID
- channel state
- channel flag bits
- number bytes waiting to be read from NCP
- ID of TRANSMIT being sent to the NCP
- NCP file ID for this channel
- next queued TRANSMIT to send
- list of HFP Messages being output

Open structure

When SVTS performs a network OPEN on a given channel, it

must pass a larger amount of information to Unix than is normal

for an OPEN. This is done with a structure containing the fol-

lowing fields:

o op (8) - used internally by the NCP.

o type (8) - connection type:

bit
bit 1

bit 2

init/listen
icp/direct
duplex/simplex

o id (16) - internal to NCP.

o lskt (16)
- host's local socket for this connection.

o fskt (32) - socket in foreign host to which connection is
to be attempted.

-86- 1/15/77

o frnhost (8) - foreign host identifier.

o bsize (8) - sizes of bytes used on the connection.

o nomall (16)
- nominal allocation in bytes.

o timeo (16)
- number of seconds to wait before timing out on

attempt.

o relid(16) - internal to NCP.

-87- 1/15/77

Program Logic

HFP Response status codes and their names are defined in

the HFP Specification. In the software logic descriptions, each

status code is represented by its name followed by its value in

parentheses.

MAIN

MAIN sets up all of the necessary resources and falls into a

loop where it waits for an event to occur. For security purposes,

any event that does not originate from the CPM module or the NCP

is ignored.

Logi c

Link Channel structures into the free list
Initialize IPC variables
loop:

wait for IPC event

event source = CPM?
yes:

call HFEIN
return

event source = NET?
yes:

call NETIN
return

(if we got here, event is from bad source)
log event as an error and drop on floor

HFEIN

HFEIN reads the message from the CPM and attempts to deter-

mine if the Command is a legal one.

-88- 1/15/77

Logic

Get IPC message from CPM
error getting message?
yes:

log error and return

legal Command?
no

:

send Command Response
w/status <- COMM_NOT_IMPLEMENTED(3)

return

call FINDCHAN

call Command procedure

Following are the five routines immediately subordinate to

HFEIN that handle the HFP Commands.

BEGIN

A BEGIN Command is received when a host process wishes to

"listen" on an ARPANET socket. The Command TEXT contains parame-

ters for that "listen" request.

Logic

Channel structure found?
yes:

return BEGIN Response
w/status <- CHANNEL_IN_USE(32)

return

Get a message segment
Can't get it?
yes:

return BEGIN Response
w/status <- ACTION_FAILED(66)

return

Copy security field to message

-89- 1/15/77

Send it to login service
error sending to service?
yes

:

return BEGIN Response
w/status <- ACTION_FAILED(66)

return

Call MAKCHAN
MAKCHAN fail?
yes

:

return BEGIN Response
w/status <- NO_RESOURCES(34)

return

set channel state <- PEND

XMIT

XMIT transfers data to the network when it arrives from the

CPM. A channel is considered BUSY when a previous non-blocking

WRITE did not accept all of the data.

Logic

Channel found?
no:

return TRANSMIT Response
w/status <- CHAN_N0T_F0UND(1)

return

Channel status not <- ESTAB or BUSY?
yes:

return TRANSMIT Response
w/status <- ILLEGAL_STATE(2)

return

set up transfer

Channel state = BUSY?
yes

:

queue TRANSMIT to be sent to network
no

:

-90- 1/15/77

write TRANSMIT data to network
error in network write?
yes:

return TRANSMIT Response
w/status <- ACTION_FAILED(66)

call KILLCHAN
return

all bytes transferred?
yes:

return TRANSMIT Response
w/status <- SUCCESS (0)

no:
set channel state <- BUSY
save TRANSMIT information

SIGNAL

As data is received from the network, it is passed on to the

CPM for transmission to the Host. Therefore, signals asking to

flush data in transit to the Host are ignored here and handled by

the CPM.

Logic

bit 1 of CONTROL on?
yes

:

release any queued segments

bit 2 of CONTROL on?
yes:

ignore, data going to the Host is
not buffered here.

bit 3 of CONTROL on?
no:

bit 1 of CONTROL on?
yes:

send ARPA INS for this connection.

yes

:

send SIGNAL Response
w/status <- SUCCESS (0)

bit 1 of CONTROL on?
yes

:

-91- 1/15/77

mark signal so that INS is sent
later

.

room to queue signal?
no

:

send SIGNAL Response
w/status <- ACTION_FAILED(66)
return

yes:
queue SIGNAL Command
SIGNAL Response will be returned
when all TRANSMITS have been
sent to the network.

END

If there is no queued output when an END is received, the

channel is immediately closed; otherwise, its state is set to

TERM and the data is allowed to drain to the net. At this time,

the response is always successful as long as the channel exits.

Logic

Channel data structure found?
no:

return END Response
w/status <- CHAN_N0T_F0UND(1)
return

flush requested?
yes:

flush queued TRANSMITS

channel busy?
no

:

call KILLCHAN
return END Response
w/status <- SUCCESS (0)

yes:
set channel state <- TERM
save END Command.

CPM-Service Flow Control

XON and XOFF events are used by the CPM to flow control

-92- 1/15/77

TRANSMIT Commands from the services. When a service receives an

XOFF event from the CPM, it should not send any TRANSMIT Commands

until an XON event for the associated channel arrives.

XQN

XON is called in response to an XON event received from

the CPM.

Logic

clear XOFF bit in channel state
data to be read?
yes:

call READNET.

XOFF

XOFF is called in response to receiving an XOFF event

from the CPM.

Logic

set XOFF bit in channel state
clear channel size

-93- 1/15/77

Login Handler

L0GM5G

LOGMSG is called when the login service returns the suc-

cess or failure of a user verification request. A success is

indicated by a message event. A failure is indicated by the

absence of a message accompanying the event.

Logic

Login failure?
yes:

send BEGIN Response
w/status <- ACTI0N_DENIED(2)

free channel structure
return

fill in
connection type
foreign host
foreign socket
local socket

initiate network file OPEN request

error in OPEN request?
yes:

send BEGIN Response
w/status <- ACTION FAILED (66)

-94- 1/15/77

Network Section of SVTS

NETIN

When an event from the NCP arrives, NETIN is called to

determine the next state. If the file ID cannot be found in the

channel list, the event is discarded. Otherwise the source

determines which subordinate routine is called.

Logic

Find network file ID?
no:

log error and return

Known event source?
no

:

log error and return

call event routine

The following are the routines called by NETIN.

CHVRFY

•

CHVRFY is called when a foreign host asks for a connection.

Logic

Get saved BEGIN Command.

error returned by NCP?
yes:

return BEGIN Response
w/status <- ACTION_FAILED(66)
call KILLCHAN
return

set channel state <- ESTAB
return BEGIN Response

-95- 1/15/77

READNET

channel

.

w/status <- SUCCESS (0)

NETIN or CHVRFY call READNET when data is available on a

Logic

data available?
yes

:

no:

call BLDMSG (to get an IPC data segment)
set up network read
read data into IPC segment
call SNDMSG to transfer data to Host.

(channel is dead)
call KILLCHAN

WRTNET

When a write to a channel completes, WRTNET is called. Ter-

minating channels and wait-for-drain signals must be handled

here

.

Logic

Channel dead?
yes

:

call KILLCHAN
return

get current segment

more data in current TRANSMIT Command
to send to the network?
no:

call NEWSEG

more TRANSMITS to send?
no:

Channel state = TERM?
yes:

-96- 1/15/77

call KILLCHAN

return

set up network write
write data to net
error in network write?
yes

:

call KILLCHAN
return

save bytes remaining to be written

NEWSEG

NEWSEG is called when the data from a segment has been sent

to the network and its successful transfer has been confirmed.

Logic

return TRANSMIT Response
w/status <- SUCCESS (0)

Loop:
more TRANSMITS queued to send?
yes:

get first queue element
element a SIGNAL Command?
yes:

send ARPANET INS
return SIGNAL Response
w/status <- SUCCESS(0)

NETNAK

When a transmission to a foreign host cannot reach that host

for some reason, NETNAK is called to resend the data.

Logic

Set up network write
write as many bytes as possible to network
error in writing?
yes:

-97- 1/15/77

call KILLCHAN
return

save write information

SIG2HFE

SIG2HFE is called when an event for the NCP is received

stating that an ARPANET INS has been received.

Logic

find net file ID?
no:

log error and discard event

send SIGNAL Command to Host
w/Control specifying Interrupt

-98- 1/15/77

Auxil iary Routines

MAKCHAN

MAKCHAN builds a new channel node and inserts it into the

channel list, returning a pointer to it.

Logic

Any free channel data structures?
no:

log error and return

delink channel structure from free list

link structure into active list

copy channel group and member into structure field

initialize rest of channel data structure

return address of structure

KILLCHAN

This routine destroys a channel and deallocates all the

resources associated with it.

Logic

Free any queued IPC segments

send END Command?
yes:

send END Command without flush

delink channel data structure from active list

link channel data structure into channel free list

-99- 1/15/77

iiNCT.ASSTF rr.r)

SECURITY CLASSIFICATION OF THIS PAGF (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1 REPORT NUMBER
CAC Document Number 221

CCTC-WAD Document Number 7502

2. GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle)

Network Research in Front Ending and Intelligent
Terminals, Experimental Network Front End
Functional Description

5. TYPE OF REPORT A PERIOD COVERED

Research

6. PERFORMING ORG. REPORT NUMBER
CAC Document No. 221

7. AUTHOR''*;

S. F. Holmgren, P. A. Alsberg, g.R. Grossman
and P. B. Jones

8. CONTRACT OR GRANT NUMBERf*}

DCA-100-76-C-0088

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Center for Advanced Computation
University of Illinois
Urbana, Illinois 61801

10. PROGRAM ELEMENT, PROJECT, TASK
AREA 4 WORK UNIT NUMBERS

II. CONTROLLING OFFICE NAME AND ADDRESS
Command and Control Technical Center
WWMCCS ADP Directorate 11440 Isaac Newton Sq. N,

Reston, VA 22090

12. REPORT DATE

January 15, 197 7

13. NUMBER OF PAGES

101
14 MONITORING AGENCY NAME ft ADDRESSf/f different from Controlling Office) 15. SECURITY CLASS, (of thle report)

UNCLASSIFIED

15*. DECLASSIFI CATION /DOWN GRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Copies may be requested from the address given in (11) above.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, It different from Report)

No restriction on distribution

IB SUPPLEMENTARY NOTES

None

'9 KEY WORDS (Continue on reverse side if necessary and Identify by block number)

network front end
network protocol

20. ABSTRACT (Continue on reverse side If necessary and identify by block number)

The CAC is engaged in an investigation of the benefits to be gained by
employing a network front end. A DEC PDP-11/ 70 is being used as front end
for connecting a Honeywell 6000 host to the ARPANET. This document presents
a functional description of the software required in the PDP-11/70 for
allowing H6000 access to the ARPANET. Some implementation - specific details
not supplied in other documents are presented.

DD , JAN 73 1473 EDITION OF 1 NOV 65 |S OBSOLETE
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

v>0N0 «T

UNIVERSITY OF ILLINOIS-URBANA
510.84IL63C C0D1

220
C

2

D

2n
U
9

M
7

E

7

NT$URBANA

3 0112 007264002

.'

:-!ii:
i

-

