

UNIVERSITY OF
ILLINOIS LIBRARY

AT UR3ANA-CHAMPAIQN
ENGMEERIHG

NOTICE: Return or renew all Library_Materialsl The Minimum Fee for

each Lost Book is $50.00. |S| ft £J iftftn

The person charging this material is responsiBle for

its rltuign^o.the library from which it was withdrawn
on Jr b^fore^ the

;
Latest Date stamped below.

s «' Sf * -$ '' '
'• £ » <b

Theff^tntitp^on, and underlining of books aj» reasons for discipli-

nary action an'd rrtay result in dismissal ftoiTi the University.

To renew call Telephone ueflWifg|y«UM M»
UNIVERSITY OF ILLINOIS LIBRARY A^URBANA-CHAMPAIGN

L161—O-1096

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN
URBANA, ILLINOIS 61801

CAC Document No. 2h6

A Network Unix System
Vol. k: COINS Transponder Implementation

by
Richard Balocca

April 1978

CAC Document Number 246

A Network UNIX System

Volume Four: COINS Transponder Implementation

by

Richard Balocca

Prepared for the

Department of Defense

Center for Advanced Computation and

Computing Services Office of the

University of Illinois at Ur'oana-Champaign

Urbana, Illinois 61801

April 1978

Approved for release:

Karl.C. Kellcy, Principal Investigate*

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/networkunixsyste246balo

Tabic of Contents

1 Document Overview 1

1.1 Overview 1

2 Transponder User Manual 2

2.1 Introduction 2

2.2 Controlling the Transponder 2

2.3 Link Status 2

2.4 Commands 3

2.4.1 Miscellaneous Commands 4

2.4.2 Commands affecting Link Status 5

2.5 The Format of the Test Data 8

2.6 Files used by the Transponder 10

2.7 Additional Commands 11

2.8 The Function of the Responder 11

3 Transponder Maintenance Manual 12

3.1 Installation 12

4 Transponder Implementation Manual 14

4.1 Transponder Process Structure 14

4.2 Master-Slave Status Acknowledgements 14

4.3 Responder Internals (Process Structure) 15

4.4 Master Internals (Process Structure) 15

4.5 Slave Internals (Process Structure) 18

4.6 Files used by Transponder 19

5 Transponder Limitations 20

5.1 Number of Slaves (Links) 20

5.2 The Use of Pipes for Inter-process Communication 20

5.3 Data Checking Overhead i 20

6 Sample Transponder Session 22

1 Document Overview

1.1 Overview

This document consist of three major parts: a User Manual, a Maintenance Manual, and an

Implementation Manual. The User Manual describes the operation and control of the Transponder

from the operator's view. The Maintenance Manual describes how to install the Transponder and

where to find the various functional parts of it. It includes a set of source listings, indexed for

convenience. The Implementation Manual describes the principles of Transponder operation.

Transponder User Manual

2 Transponder User Manual

2.1 Introduction

The Unix Transponder is a test program for the Unix Network Control Program (NCP). The
Unix Transponder can be used in conjunction with the Elf "COINS" Transponder, [1) which has a very

similar the user and network interface. In fact the Elf COINS Transponder Program Description can be

used as background to this document.

The Network Unix system is designed to operate with an Arpanet type of network, such as

Platform or COINS, as well as the original Arpanet. The only differences involve user level programs.

The Unix Transponder, although designed for the COINS network, will operate under any of these

networks.

The purpose of the Unix Transponder is to provide an evaluation measure for system

acceptance. It allows test data patterns to be sent and received with a wide dynamic range of demand
rates. The data is sent to a host (possibly the same host) that is running a passive echo program known
as a Responder. The echoed data is returned to the Transponder, where it is checked for accuracy.

Two series of statistics are collected. These involve the timing and size of Network messages sent and

received.

The Unix Transponder, unlike the Elf Transponder, does not require a stand-alone system.

This has several advantages I) It allows a testing of the true production system and NCP. Under Unix

the majority of the NCP is a user level daemon controlled by messages. This fact, combined with the

fact that every user level process has a separate address space, means that the Transponder has no

special relationship with the NCP (that an ordinary user process does not have). 2) Unix users need

not be affected during Transponder testing. 3) Multiple Transponders may be run, allowing the upper

limit on the test load to be Unix' system limits. 4) The full power of the system can be used to

examine the operation of the Transponder, the status of the Network, and the status of Unix.

2.2 Controlling the Transponder

The user issues commands which are interpreted by the Transponder. There are commands for

creating, deleting (liquidating), and controlling network connections (links). The command may,

depending on the command, affect zero or more links.

2.3 Link Status

The Transponder keeps track of the status of each of the links, along with the time at which the

status last changed. There are eight possible status values, five of which correspond to steady states of

the link (and are printed on the user's teleprinter as acknowledgements) and the other three of which

are intermediate status values (never printed as acknowledgements), indicating that another state

[1] Which tests the Elf NCP, naturally.

Transponder User Manual

change is imminent. The status information is kept in a status table.

Since the status is kept not only for timing purposes but also for verification purposes, the

Transponder will print an interpretation of the acknowledgement on the user's teleprinter as it is occurs.

The printed acknowledgements arc presented on their own line, preceded by a left angle bracket and

followed by a right angle bracket. They contain the link number and the type of acknowledgement.

The type can be one of purged, ready, active, closed, ready-wait, active-wait, purge-wait, stop-wait,

unused, or ERROR. The acknowledgement will appear on the user's teleprinter in the format:

<Lack>

where L is the link number in decimal, and ack is the particular status type. The status type will be

surrounded by angle brackets in this document also. This is to distinguish them from commands,
which will be surrounded with double quotes. The intermediate states <ready-wait>, <purge-wait>,

<unused>, and <stop-wait> will never be printed as acknowledgements, but will appear in the status

table (with the further exception of <unused>* which will not even appear in the status table). If an

expected acknowledgement is not forthcoming, the Transponder is not functioning correctly. [2]

2.4 Commands

The Transponder is invoked from Unix with the command "master". There are no parameters

to this command. At this point the user will receive a prompt and a herald with the date. The user

may then type various commands to control the Transponder. A script of the user's commands along

with certain responses such as printed acknowledgements are appended to a file with the name
transponderlog in the current working directory. (These responses are Master responses-see the

Transponder Implementation Manual for further information on what constitutes a Master response.)

Because of the nature of the Transponder, [3] the users should wait to type a command until

the prompt appears. Also for the same reason, at least one line may be lost after the Transponder has

exited.

The available Transponder commands are:

H.M
• »

n jo

"help",

"date",

"time",

[2] Check, for instance, to see that all requisite programs arc present. Most of these

program should be in the current working directory. Unless otherwise notcd-i.e. if the

filename is given by an absolute path name (one starting with a "/")--all files mentioned in this

document will be relative to the current working directory.

[3] Specifically the use of an Echo Master and Command Master connected by

pipes-See the Transponder Maintenance Manual.

Transponder User Manual

"quit",

"pause",

"listen",

"ready",

"start",

"status",

"stop",

"purge",

"kill",

"i" or "indirect",

"p" or "param".

The commands are of the form

command firstarg, secondarg,

where the arguments are, depending on the command, either decimal numbers representing link

numbers (a number assigned by the Transponder), octal numbers, or arbitrary strings. Most commands
expect decimal link numbers. The "param" command, however, accepts all of its arguments in

unsigned octal. This is for compatibility with the Elf Transponder, as well as permitting message

patterns to be specified easily. [4]

2.4.1 Miscellaneous Commands

Prefixing a line with a colon (":") causes the rest of the line to be ignored.

Prefixing a line with an exclamation point ("!") will cause the Transponder to hand the line

(minus the exclamation point) to the Unix shell. The interface between the user's terminal and the

shell will involve a pipe, so the user should be aware that 'raw' mode and control-d will not work as

expected. [5]

[4] It is an easily remedied deficiency of the Unix Transponder that decimal and

octal numbers are not allowed everywhere, distinguished by local syntax.

[5] The Echo Master should be the process to interpret the "!" command even

though currently it interprets no commands. The reason for this is that the Echo Master could

pass the user's keyboard to the sub-shell. Then all commands would work as expected. The

current implementation causes certain programs (those that expect to be able to set raw mode,

for instance) to behave unexpectedly. Also no end of file, interrupt, or signal can be signaled

from a pipe, thus the user must be careful not to execute programs that use those 'out-of-band'

signals for information. For instance, cdb should not be run from the Transponder as the only

way to exit from cdb is with an end of file! If the user gets him/herself into such an

unfortunate dead-end situation, he/she can extradite him/herself by using the quit signal. This

will kill the Echo and Command Master. It will generate a core image, but it will work.

Transponder User Manual

The command "help" produces a list of all the commands with the count and format of their

parameters. [6]

The commands "date" and "time" print Unix' idea of the current date and time respectively.

Note that in contrast to the Elf Transponder, the Unix Transponder has no commands for setting these

values. It is assumed they were supplied at bootstrap time.

The command "quit" causes the Transponder to do just that. The Transponder will make sure

that all links are sent to the <unused> state before quiting. The network connections on any link in

the < active > state, will be closed immediately, possibly in mid-message,

"Pause" followed by a decimal number will cause the Transponder to stop accepting commands
and interpreting acknowledgements for that many seconds.

If the user types "listen", a Responder [7] process is created on the local host. It will listen on

Network socket seven, which is a defacto Arpanet Standard for such echo daemons. This is in contrast

with the Elf Transponder, which uses socket thirteen. [8]

2.4.2 Commands affecting Link Status

"Ready" has one parameter: a single link number corresponding to a <closed> link. The
corresponding link will be put in the <ready> state (restarted) via the <ready-wait> state. A
<ready> acknowledgement should be expected. The following is the state diagram for the ready

command: [9]

[6] There are sharp signs in the help printout. They indicate that what is required in

this position is an unsigned octal number.

[7] See below for a description of the purpose of the Responder.

[8] An additional way to start the Responder is with the Unix command
Vetc/responder>/usr/lpd/responderlog&". The Responder statistics will appear in the file

/usr/lpd/responderlog. Otherwise, there is no acknowledgement that the Responder is running.

If it is desired that the Responder output be recorded somewhere else, it can be redirected to

any file by naming the file to the right of a greater-than sign (">") as in:

7etc/responder> filename&".

[9] All commands which affect the state of a link will be diagrammed, just as the

ready command is diagrammed here. The meaning of

A --stimulus-:> B

is that if we are in state A and is cue the indicated 'stimulus' then the link will enter state B. If

B is followed by a star ("*") then the entry to state B is causes a printed acknowledgement to

appear on the user's terminal.

Transponder User Manual

<close> --"ready""> <ready-wail>

< ready-wait > —internal processing delay— > <ready>*

In actuality not all the data applicable to a link is reinitialized upon restart (return to < ready

>

State). The statistics for instance will not be correct on a restarted link. The implication of this is thai

a link should be "purged" and a new "param" command issued rather than a "ready", if error-free

operation of the Transponder is desired. (This missing "ready" feature is not necessary for the

functioning of Transponder. It would take less than a major effort to repair this lack of re-

initialization.)

"Start" requests that all links in the <ready> state go into the <active-wait> state. This will

cause an acknowledgement to appear on the user's teleprinter. < Active-wait> indicates an open is

being attempted on the network connection. [10] After a short period, [11] each of the links should

transfer from the <active-wait> state to the <active> state, indicating that the connection was

opened.

< ready

>

—"start"-> <active-wait>*

<active-wait> —network open--> <active>*

"Status" causes the printing of the status table including the state of every link not in the

<unused> state, the link number, and the time and date on which the stale was acknowledged.

"Stop" is issued with a link number corresponding to a link in the <active> or <active-wait>

states. The respective link is sent into the < slop-wait> slate and is stopped (sent to the <cIosed>
state) at the end of the current network message. [12] The <closed> acknowledgement indicates that

the link's connection has been closed. The link may be restarted with a "ready" command.

<active-wait> —"stop" that succeeds- > <stop-wait>*

< active-wait > —"stop" that fails-> < unused>*

< active> —"stop" that succeeds- > < stop-wait>*

<active> —"stop" that fails— > <unused>*

<stop-wait> —internal processing delay--> <stop>

[10] Network Initial Connection Protocal begin initiated by the Unix NCP daemon.

See Bolt-Berinek-Neuman document number 1822.

Ill] Assuming a responder is available on the other "side" of the network.

[12] The "stop" command makes use of the Unix signal mechanism, which is a

rather heavy handed device for this purpose, in the sense that it will abort most system calls.

In particular it will abort most read or write system calls. Thus it cannot be guarranlccd that

the "stop" command will always allow the current network message to complete its travels.

Transponder User Manual

"Purge" is followed by a single link number. The link is 'liquidated' (sent to the < unused

>

state via the <purge-\vait> state) and the link number may be reused. The link will no longer appear

in the table printed out by the "state" command. A purge acknowledgement should be seen by the

user.

<c!oscd> --"purge"-> <purge-\vait>

<ready> --"purge"—> <purge-wait>

<purge-wait> —internal processing delay--> <unused>*

"Kill" is followed by a link number. It acts somewhat like a "stop" followed by a "purge" with

the indicated link. However, unlike the "stop", the "kill" abruptly terminates network transmission and

reception by the link. The link is liquidated. The liquidation of the link is not acknowledged--the link

is immediately put in the <unused> state, effectively deleting it from the state table.

<purged> --"kill"—> <unused>*
<ready> --"kill"—> <unused>*
<active> -"kill"-> <unused>*
<closed> —"kill"—> <unused>*
<ready-wait> —"'kill"—> < unused >*

<active-wait> —"kill"—> <unused>*
<purge-wait> —"kill"—> <unused>*
<stop-wait> -"kill"--> <unused>*
<unused> —"kill"—> <ur.used>*

<ERROR> -"kill"-> <unused>*

The "indirect" command, which may be abbreviated "i", is followed by a Unix file pathname.

The contents of this file are interpreted as Transponder commands and immediately executed.

"Indirect" and "i" commands may not appear in the file. The number of possible links is reduced by one

'inside' of an indirect file. [13] There is no printed acknowledgement associated with the "indirect"

command itself.

The "param" or "p" command creates a link with the given attributes. It is one of the first

commands that a user will probably issue. Its form is virtually identical to the Elf Transponder "param"

command, right down to the unwieldly syntax:

param host, dl, d2, II, 12, n, r

where host, dl, d2, 11, 12, n, r are unsigned octal numbers respectively representing the host address,

message data pattern, an increment to the message data pattern, length of the initial message, length

increment, number of messages, and repetition rate per message. The next section (The Format of the

Test Data) describes the meaning of these parameters.

{13] See the Transponder Implementation Manual section on Transponder

limitations for further information. •

8' Transponder User Manual

<unuscd> --"param"--> < ready-wait

>

<ready-wait> -internal processing delay- > <rcady>*

The numbers are separated by commas and should be range between to 0177777 octal, with

the exception of the host number, which must be in the range of to 0377 octal. [14]

The Transponder will respond with a time and a link number (which it assigns). The link is put

in the <rcady-wait> state and eventually (after some internal processing) the user can expect an

acknowledgement that the link is in the <ready> slate.

2.5 The Format of the Test Data

The data is formated into messages, each message intended to be exactly one network message

long. [15] The message is composed of a header and patterned data. The header is four bytes long. It

begins with a byte whose value is 126 octal. This byte is known as the marker. The marker is

supposed to be an unlikely data pattern, allowing some error recovery. Following the marker is a byte

of sequencing information. This sequence byte increments from to 377 octal and then back to

again. Again this allows for some error recovery. Immediately following the sequence byte is the high

order (most significant) byte of a two byte number indicating the length (in bytes) of the patterned

data. The low order byte of the length number immediately follows the high order byte of the length

number. Finally, the next byte starts the patterned data.

The patterned data can be considered to consist of two byte words. There is no attempt to align

these words on even or odd boundaries (of the start of the message). This generality has caused

problems in the Transponder—see the Transponder Implementation Manual, the section on

Transponder Limitations. The last 'word' of the patterned data may be truncated to its high order byte

if the message size for this message is odd. The pattern will be picked up in the next message

(presuming there is a next message) exactly where it is left off. This will mean that the next message

[14] Unix currently does not support the new imp-host header which allows 16 bit

host numbers.

[15] The term network message is technical in nature-it refers to the 'block size' of

the network connection. The size of a network message may, depending upon the host(s)

involved, be fixed or variable, and may vary from 1 bit to the maximum of the number of bits

permitted by Unix and the number of bits permitted by the network. (It would generally be a

mistake for a host to imply data structure information from the network message size.) Unix

always sends messages in multiples of 8 bits up to 8000 bits. Unix makes no attempt to use a

constant network message size. Nor docs Unix quarrantee that the user has control over the

message size. The user may (using the Unix write system call) write a certain size message

into system buffers, but depending upon various events, the buffer may be written in pieces or

it may be combined with other buffered data (within the constraints of sequentially). In

probability, however, the size of the network message will correspond to the size of the buffer

specified in the write system call. The Transponder takes the size of its 'write' buffer to be the

size of the network message.

Transponder User Manual

will have a different boundary than the current one (even if the current one is odd, and odd if the

current one is even).

10 Transponder User Manual

2.6 Files used by the Transponder

Various statistics are kept on link performance. For further information, sec the parallel

Implementation Manual section.

A copy of the user's commands along with some pertinent responses, logged with the time and

date, are kept the file transponderlog in the working directory (in which the the Transponder was

started).

The NCP can also keep a log file (named, by convention, /usr/lpd/ncplog) if so instructed [16]

This file is, by convention at Illinois, /usr/lpd/ncplog.

116] See the ncplog Manual page of the Unix Programmers Manual (Section VI).

for information on how to start and interpret this log file.

Transponder User Manual • 11

2.7 Additional Commands

The exclamation point command can be used to perform some 'Transponder
1

commands. For

instance, to print the receive statistics for link one, the user may type

!cat r-slavcl

after the link has entered the <closed> state. Or to print all statistics accumulated in the current

working directory, use:

!cat [rt]-slave*

The user can make use of the exclamation point command 'inside
1

of the Transponder to start

the Responder: "!/etc/responder>/usr/lpd/responderlog&" is identical to "listen".

For more information see the Unix Manual description of the shell.

2.8 The Function of the Responder

The Responder program is the echo daemon that listens on network socket SOCKNUM (viz.

seven) for the opening of a duplex connection. Once the connection is established, the Responder

retransmits every message that it receives (and no others). The Responder keeps statistics about the

number of messages read and written as well as their rates. The Responder writes the statistics to the

Unix standard output upon the closure of the connection.

12 Transponder Maintenance Manual

3 Transponder Maintenance Manual

3.1 Installation

The sources for the Unix Tranponder can be found in directory ncprogs/xpondcr. In this

directory you will find the files master.c, slave. c, rbuf.c, transpond.h, slave. h, socknum.h, and

responder.c . These sources have been compiled on a number of different C compilers, some of which

accept different input syntax.

These sources are compiled with the following commands (using the Illinois C compiler and

auxiliary library /lib/libj.a):

cc master.c -fOsnlj

cc slave.c rbuf.c -fOslj

cc responder.c -fOsnlj; mv responder /etc

If the Illinois C compiler is not available, but the standard version six C compiler is, the following

command may be used (still assuming /lib/libj.a): .

cc -f -0 -s -n master.c -Ij; mv a.out master

cc -f -0 -s slave.c rbuf.c -lj; mv a.out slave

cc -f -0 -s -n responder.c -lj; mv a.out /etc/responder

Or if the Version seven Unix compiler is used:

cc -f *0 -s -n master.c -o master

cc -f -0 -s slave.c rbuf.c -o slave

Cc -f -0 -s -n responder.c; mv a.out /etc/responder

If the Illinois compiler is not used, [17] the resultant executable files may not work due to bugs in

some versions of the C compiler and problems in the printf routine. In particular the long decimal

print ("%D") will not work. [18]

Also note that if the Transponder is to be run on a system with a floating point processor, the

"-f switch need not be specified. Also note that the "-n" switch (specifying reentrancy) is not specified

with the compile of the slave. This is because on at least some non-floating point machines, the "-n"

Option causes premature termination of the slave. This is very unfortunate, since by all logic it is the

slave that should be reentrant and shared. The cause of this bug may be the compiler used or a bug in

the floating point interpretation. However, at this time there is no evidence one way or another. [19]

117] or the Unix version seven compiler and associated library.

118] Libj.a contains a printf which has "%D". This is the main reason for using libj.a

[19] It is worth while to experiment with your compiler to sec if the
H
-n" switch can

indeed be used with the Transponder, as it will increase the Transponder's performance.

Transponder Maintenance Manual 13

The file slave. h contains macro defines common to the files slave. c and rbuf.c that constitute

the Slave sources. The file transpond.h contains macro and structure defines used by both the Master

and the Slave sources.

The compiles will result in the production of three executable files: master, slave, and

respondcr. Master and Slave should be in the directory from which the Transponder test will be

conducted. Master may be in this directory also, or it may be put in a system binary directory such as

/usr/bin.

The Rcsponder and the Slave must be recompiled if it is necessary to change the socket on

which they listen. This is considered acceptable, since this operation requires only a few minutes and

since it is infrequently done (if ever). There is only one define—SOCKNUM, to be changed.

SOCKNUM resides in socknum.h .

The source listings included later in this document are indexed. The indices are of the form

NNN-MMMM where NNN is a number unique to each source file and MMMM is the number of the

line within the source file. The index number for the Transponder sources are:

170 responder.c

180 transponder.h

181 master.c

190 slave.h

191 slave.c

192 rbuf.c

193 socknum.h

14 Transponder Implementation Manual

4 Transponder Implementation Manual

4.1 Transponder Process Structure

The Transponder functions as several processes. Conceptually it can be decomposed into three
sets of processes-Master, Slave, and Responder. [20] There is what appears to be a monolithic Master
process and many Slaves, one Slave for each network connection to be exercised. The Master
interprets commands issued by the user. There are commands for creating, deleting (liquidating), and
controlling Slaves. The Master may, depending on the command, send controlling messages to zero or
more Slaves. The affected Slaves obey the Master by changing states. Each of the Slaves then sends an
acknowledgement back to the Master, indicating the state they have entered.

4.2 Master-Slave Status Acknowledgements

The Master keeps track of the status of each of the Slaves, along with the time at which the
status last changed. There are eight possible status values, five of which correspond to states of the
Slave (as received via acknowledgements received from the reply pipe described below) and the other
three of which are intermediate status values, indicating that a second state change is imminent. The
status information is kept in a table known, quite naturally, as the status table. Slave processes are
made synonymous with links as used in this document. Controlling messages from the Master are
acknowledged not only for timing purposes but also for verification purposes. The Master will print an
interpretation of the acknowledgement on the user's teleprinter as it is received. The printed
acknowledgements are preceded by a left angle bracket and followed by a right angle bracket. They
contain the link number of the Slave process and the type of acknowledgement. The type can be one
of purged, ready, active, closed, ready-wait, active-wait, purge-wait, stop-wait, or ERROR. These will

appear on the user's teleprinter in the format:

<Lack>

where L is the link number in decimal, and ack is the particular status type. In this document the
status type will be surrounded by angle brackets. This is to distinguish them from commands, which
will be surrounded with double quotes. In actuality < ready-wi-.it >, <purge-wait>, and <stop-wait>
will never be sent as acknowledgements, but will appear in the status table. The state < unused > will

not be printed either. Also, if a Slave is in the <unused> state then the Slave's data will not even be
printed by the "status" command. If an expected acknowledgement is not forthcoming, the
Transponder is not functioning correctly. (Check, for instance, to see that all the requisite programs
are present.)

[20] When a process is rcfered to in these Manuals, it will be capitalized. This is to
help distinguish it from any binary file with the same name (which will not be capitalized).

Transponder Implementation Manual 15

4.3 Respondcr Internals (Process Structure)

The Respondcr program is the echo daemon part of the Transponder. It listens on network

socket SOCKNUM (viz. seven) [21] for the opening of a duplex connection. Once the connection is

established, the Respondcr retransmits every message that it receives (and no others). The Rcsponder

keeps statistics about the number of messages read and written as well as their time intervals. The
Responder writes the statistics to the Unix standard output upon the closure of the connection.

The Responder is very similar in design to server-telnet, only somewhat simpler. The main

procedure (mainlresponder.c) [22] is responsible for the initial network open. This open will succeed

when someone connects to the listen socket. When this happens, a fork is done and the parent loops

back to the open, allowing multiple connections to the socket. The child process calls the procedure

responderjresponder.c . At this point another fork is done and the parent dies, leaving the child an

orphan. [23] This prevents the death of various Responder processes from clogging the process table.

Procedure copierjresponder.c is then called from responderjresponder.c . Copierjresponder.c does all the

work for the Responder. It is a loop with counting and time-keeping code surrounding a read and a

write statement. Copier^esponder.c executes the read/write cycle until the read returns a -1, the

standard Unix error return. At this point copierjresponder.c assumes the connection is closed; it writes

out the available statistics and exits.

A signal four sent to the Responder will cause it to 'dump' itself (write a file named core with

its image, in the current working directory), so that it can be debugged. A signal five will cause the

Responder to die without a whimper.

4.4 Master Internals (Process Structure)

The Master program interfaces the Transponder with the user's terminal. It decodes user

commands and (when appropriate) passes them on to other processes known as Slaves which do the

actual work of data formation, transmission, and verification.

[21] SOCKNUM is a compile time parameter. Socket seven has been chosen as a

defacto standard for 'echo' sockets by various ARPANET Tenex sites. However, the Elf

Transponder chose socket number thirteen for its Responder, so whenever the the Unix and

Elf Transponders are interfaced, one or the other will have to be changed. SOCKNUM is

defined in socknum.h .

(22] Whenever a program name (i.e. procedure name or global structure, or etc) is

referenced it will be (in at least its first appearance, followed by two vertical bars ("(') and by

the source filename in which it resides.

[23] Until a defunct process is claimed by its parents, it stays in the process table.

All orphans are claimed by process one, /etc/init

.

16 Transponder Implementation Manual

The Master is a very peculiar Unix program, because of the lack of asynchrony in Unix

input/output. The Master must wait on the inclusive-or of two e'venls: input from the user keyboard

and input from subproccsscs. There is only one way to implement this in standard Unix—thai is with a

pipe with many writers and one reader. Let us call the pipe a reply pipe.

These writers are 1) a process that wc will call the Echo Master [24] and 2) zero to fifteen

(decimal) Slave processes. [25] The Echo Master sits in a tight loop reading from the user's keyboard

and writing on the reply pipe in procedure initjmaster.c . The Slaves put messages in the reply pipe only

in response to some stimulus from the Master.

The reply pipe messages must be kept short, so as not to be garbled, and there must be some
way of distinguishing between the various writers. This was accomplished by the use of one byte

messages with the high order bit distinguishing between bytes originating from the user's keyboard and

bytes placed on the reply pipe by Slave processes. Advantage was taken of the fact that Unix forces

user terminals to appear as seven-bit ASCII devices. This means that input from the user's keyboard

can be written on the reply pipe exactly as read from the terminal and once written, can be

distinguished by the high order bit of the byte—it must be zero for it to be input from the user (via the

Echo Master), else it is input from a Slave. That is, user input to the Master is of the form:

OX XXX XXX

where the above represent bit positions with off, 1 on, and X's encode the ASCII character data.

Characters from the user's keyboard are read by a process that shares the Master reentrant

image— it will be called the Echo Master. The Echo Master puts these characters on the pipe as it

receives them. [26]

[24] The Echo Master is really a child of the Master, sharing the same reentrant

code.

[25] The number of Slaves is really limited to somewhat less than fifteen by certain

factors mentioned later in the section on limitations.

[26] The Echo Master should be the process to interpret the "!" command (see the

Transponder User's Manual) even though currently it interprets no commands. The reason for

this is that the Echo Master could pass the user's keyboard to the sub-shell as an input file

rather than as a pipe, as it is done currently. Then all commands would work as expected. The
current implementation causes certain programs (those that expect to be able to set raw mode,

for instance) to behave unexpectedly. Also no end of file, interrupt, or signal can be signaled

from a pipe, thus the user must be careful not to execute programs that use those 'out-of-band'

signals for information. For instance, cdb should not be run from the Transponder as the only

way to exit from cdb is with an end of file! If the user gets him/herself into such an

unfortunate dead-end situation, he/she can extricate him/herself by using the quit signal. This

will kill the Echo and Command Master. It will generate a core image, but it will work.

Transponder Implementation Manual 17

The Command Master acts in response to the data it reads from the reply pipe. It accumulates

input from the user until a full line is accepted. (This is done in procedure commandsjmaster.c .) If it

receives data from a Slave process, it updates the array CONTROL(transpond.h . This array ih'JS holds

the current state of each Slave as the Master perceives it, and is the 'status table' mentioned in the

Transponder User Manual.

A Slave process is created every time the user types a "param" command. This Slave is given

the read end of a pipe whose write end is connected to the Command Master. Let us call this pipe a

command pipe to distinguish it from the aforementioned reply pipe. The Command Master gives the

read end of a different command pipe to each Slave created. Note that the write end of the reply pipe

is passed also. [27] The CONTROL array keeps track of which Slave corresponds to which command
pipe file descriptor. The Master controls an individual Slave by writing a single byte down the

respective command pipe.

Data from Slave processes, as they appears on the reply pipe, are of the form:

1Y YYY ZZZ

where the bits represented by the Y's encode the particular Slave subprocess (0 to 17 octal) and those

represented by the Z's encode the data.

Three commands are defined to fill the Z's in the above format. They are (as found in

transpond.h):

READY_CM (viz. 12? octal, that is, the character 'R\> indicates that the Slave is

to go to the < ready> state. It is sent on response to a "ready" command. This

is supposed to reinitialize a Slave in the <closed> state. (See discussion of the

"ready" command in the Transponder User's Manual.) It however does not work

as anticipated. (See discussion of the "ready" command in the Transponder User

Manual.)

.

.
ACTIVE_CM (viz. 101 octal, that is, the character 'A') indicates that the Slave is

to go to the <active-\vait> state. It is sent to all < ready> Slaves in response to

a "start" command. This state indicates that a connection is being attempted.

PURGE_CM (viz. 120 octal, that is, the character 'P') indicates that the Slave is

to commit suicide. It is sent in response to a "purge" command.

The procedure structure of master. c is very simple. It is composed of a command dispatch

routine, a set cf command routines, and a set of auxiliary routines. The command dispatch routine is

named commandsjmaster.c . It dispatches via a table with the name commjmaster.c . Comnijmaster.c is

structured as a (string, procedure name) pair. The procedure commandsjmaster.c has an additional

function— it will dispatch to the Slave reply routines if it sees a reply from a Slave (a byte with the high

order bit set), since it contains the loop waiting (polling) for reply pipe input. [28]

[27] Of course, the fact that Unix hands the reply pipe to every child process makes
the pipe command-reply scheme work.

18 Transponder Implementation Manual

4.5 Slave Internals (Process Structure)

The Slave source files (slave.c and rbuf.c) is (in the program form) the process(cs) that arc

under the command of the Master. Many Slaves processes may be active while the Transponder is

running. There will be a pair of Slave processes per duplex network connection (link). One process of

this pair will transmit on the send side of the duplex connection. This process will be referred to as t-

slave. The other process of the pair will receive data on the receive side of the connection. This

process will be referred to as an r-slave. [29] Each t-slave has the responsibility of formating the data

which will be transmitted across the net to its respective r-slave. The r-siave has the responsibility for

receiving and checking the data.

Both Slaves report statistics about their activity, in a similar manner to the Responder, except

of course that only the write behavior is reported by the t-slave and only the read behavior by the r-

slave. The r-slave also reports any incorrect data that it receives.

The Master actually only creates one Slave per link (per "param" command). The Slave thus

created replicates itself to form a r-slave (the child) and a t-slave (the parent) upon receipt of an

ACTIVE_CM command. There is no communication between the r-slave and the t-slave other than

over the network connection that they share. [30]

The transmitted data can be checked without any other communication between the t-slave and

the r-slave because both Slaves have knowledge of the param statement that created them and the data

pattern is a function solely of the param statement.

[28] There is one other procedure that dispatches to Slave reply routines. It is

verifvjmaster.c .

[29] In fact these processes will alter their own argument list so that the Unix

command ps will print more meaningful data. Their zeroth argument will be "r-slave" or "t-

slave" depending upon their function and will be suffixed by their link number. Another way of

putting this is that the statistics file that the process opens will have the same name as their

zeroth argument as seen by ps. Ps will also display a set of arguments which represent (in this

order) the process id of the process, the value of the file descriptor that constitutes the

command pipe, and the list of param arguments.

[30] Thus, of course, the Master could have exce'ed them individually...

Transponder Implementation Manual 19

4.6 Files used by Transponder

The Transponder will create several files. These include certain files that report on the statistics

gathered by the r-slavcs and t-slaves.

There is one file for each Slave. These are created in the current working directory (at the start

of Transponder execution) under the names r-slavel, t-slavel, r-slave2, t-slave2, and so on. The files

starting with V are statistics on the reception of data, gathered by the r-slaves. The files starting with

V are statistics on the transmission of data, gathered by the t-slaves. The suffixing numbers (they are

decimal) denote the link number of the corresponding Slave.

Each file is created (truncated) with the creation of the Slave. It is updated for the most part

(excluding errors and a one line header) at the Slave's entry into the <closed> state. The t-slaves'

files grow with each "ready", "start" sequence (when the link is made <active>). The r-slaves' files are

created every time the link is made <active>.

Besides r-slave and t-slave files, the Transponder appends a log style script to a file with the

name transponderlog.

The Responder portion of the Tranponder will create a file with the name responderlog. This

file will be in directory /usr/lpd. It is worth noting that the NCP daemon has a log file with the name
/usr/lpd/ncplog.

20 Transponder Implementation Manual

5 Transponder Limitations

5.1 Number of Slaves (Links)

The Transponder has a designed in limitation of 15 (decimal) Slaves. This is not the only

limitation on the number of Slaves. The most severe limitation is the number of file descriptors a

process can have. This limits the number of Slaves to six, if they are created with param statements in

an indirect file, or seven otherwise.

In general more than one Transponder (Master) will have to be run if more than the upper

limit of connections are needed.

The Transponder assumes no special clock device. It thus has only a one second timing

resolution, as provided under standard Unix. A source module by the name of clock. c is included in

the ncprogs/xponder directory. It contains an experimental attempt to access the line frequency clock.

It was never integrated into the Transponder because of contract time limitations. As a consequence of

this, the liming statistics are to be taken as significant only over the long run (that is the user should

send a large number of messages in order to get timing information).

As another consequence of the lack of time resolution, the rate argument on the "param"

command is valid in the long run. Also, a non-zero rate argument will probably result in a 'bursty'

demand curve.

5.2 The Use of Pipes for Inter-process Communication

The pipe structure of the Transponder is rather awkward, causing delays, unnecessary disk

activity, and tying up system buffers. A better solution would be to look beyond standard Unix to an

Inter-process Communication facility.

Because the Slave cannot be reading from both the command pipe and doing 1-0 on the

network file, the Slaves are not able to perform certain functions. The Slaves essentially ignore the

command pipe during the entire time that they are doing network I-O. Also without elaborating the

data header format, the Slaves are not able to keep 'round trip' liming statistics—they are limited to

inter-message intervals only. The lack of a good Inter-process Communication facility also means that

the Slaves are not able to dump their statistics upon demand of the user. [31]

5.3 Data Checking Overhead

[31] Round trip statistics could be collected by putting a timestamp in an (expanded)

header field.

Transponder Implementation Manual 21

Another limitation is the processing time the r-slavc requires to check the received data. The
format of the data (taken from the Elf design for compatibility reasons) was a poor choice for the

PDP-11.

The data pattern designed for the Elf Transponder is a word oriented one, (that is, it uses an

even numbers of bytes) whereas the Transponder does not disallow the use of odd message sizes.

Further, when a Unix user process (such as the Transponder r-slave) reads from the network it

requests a number of bytes and it is handed the minimum of its request and the available data from the

network. There is no attempt to split data coming in from the net on network message boundaries, so

if the user process requests enough data, it may receive more than one network message. Since the

Transponder r-slave specifies a large byte request on its network reads, it often gets multiple messages

in a single read. [32] Now if the Transponder test involves odd message sizes, the word data may or

may not then appear on word boundaries. The data may actually appear on 'in phase' (on word

boundaries) and 'out of phase' (on odd byte boundaries) in the same read buffer!

It requires either a rather complex algorithm for the recognition of correct data, or multiple

procedure with several calls per byte of received data. The use of multiple procedures was used in the

Unix Transponder, as this made for the cleanest, easiest to maintain code.

Because of this problem in data checking, the Transponder seems to have a limit of about

twenty kilobaud when run on an PDP-11/70. This is fortunately approaching the upper limit of the

fifty kilobaud ARPANET. This limit is too low for other, faster networks.

There are several solutions to this problem. One of the easiest is a new C compiler

optimization (being developed at Illinois) which would speed up some procedure calls. Another

solution is to make daia checking optional. This, needless to say, is not a very satisfactory solution.

Another would be to rewrite the data checking code, at the expense of clarity. One of the most

practical solutions is to recognize that the Elf data patterns are simply inefficient and to design more
satisfactory pattern, one that could, for instance, make more use of PDP-11 word instructions and less

use of byte instructions.

[32] It should be noted that the Unix Transponder r-slave allocates buffer space for

the incoming data ont eh basis of the message size and message increment as specified in the

"param" command. It attempts to allocate for two messages of the maximum size that it

expects. This scheme is in contrast to the Elf scheme which requires reassembly and rebooting

of the whole system in order to change the message size.

22 Sample Transponder Session

6 Sample Transponder Session

Begin Typescript of /dev/ptyA at Mon Aug 1 21:19:57 1977

Center for Advanced Computation

Network Unix System

Login: balocca

Password:

Last login Mon Aug 1 21:14:50 1977

% master

COINS Transponder for Unix Mon Aug 1 21:20:39 1977

$: This is an example of the use of the Transponder

Shelp

Commands are:

help quit status kill #
date time purge # !<Unix>
param #,#,#,#,# start stop # ready #
p #,#,#,#,# indirect file i file pause #

param arguments are:

host number, pattern, pattern increment, message length,

length increment, number of messages, repetition rate

$ status

$ param 114,0,1,0,1,100,0

<1 ready>
Assigned link is 1

$ status

1 ready Mon Aug 1 21:21:55 1977

$ start

<1 active-wait>
S Aug 1 21:22:04 TR(47): Begin transponder r-slave

<1 active>
S

<1 closed>
$ status

1 closed Mon Aug 1 21:22:11 1977

Sample Transponder Session 23

$!cat r-slavel

Aug 1 21:22:0.4 TR(47
Aug 1 21:22:10 Til (47

Aug 1 21:22:10 TR(47

Aug 1 21:22:10 TR(47
Aug 1 21:22:10 TR (47

Aug 1 21:22:10 TR(47
Aug 1 21:22:10 TR(47
Aug 1 21:22:10 TR(47

Aug 1 21:22:10 TR(47

Aug 1 21:22:10 TR(47

Aug 1 21:22:10 TR(47
Aug 1 21:22:11 TR(47

Aug 1 21:22:11 TR(47

Aug 1 21:22:11 TR(47
Aug 1 21:22:11 TR(47
Aug 1 21:22:11 TR(47
Aug 1 21:22:11 TR(47
S ready 1

< 1 ready

>

$ start

< 1 active-wait>

$

<1 active>
$

<1 closed>
S pause 10

Sit
<2 ready>
Assigned link is 2

EOF on command file

$ start

1 closed

<2 active-wait>

S Aug 1 21:24:02 TR(99)

r-siavel: 76 1 4 1 64

24 Messages read/written, errors

Inter-mcssngc intervals in seconds:

Minimum:
Maximum:
Average:

Total:

1

0.250

: Message lengths in bytes:

: Minimum:
: Maximum:
: Average:

: Total:

4

952

94

2272

4.00 Messages/second, 3029 Baud

Connected 6 seconds

End transponder r-slave

Begin transponder r-slave

<2 active>

$ status

1 closed Mon Aug 1 21:22:46 1977

2 active Mon Aug 1 21:24:03 1977

$ time

21:25:06

S date

Mon Aug 1, 1977

$ status

2 active Mon Aug 1 21:24:03 1977

S kill 2

$ status

1 closed Mon Aug 1 21:22:46 1977

S purge 1

Sample Transponder Session

purged

>

talus

it

d Typescript of /dev/ptyA at Mon Aug 1 21:26:27 1977

