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FOREWORD 

Oceanic volume reverberation can adversely affect the performance of Navy sonars. Small swimbladder- 

bearing fish are the primary cause of this reverberation at ship sonar frequencies. This report describes a new 
acoustic model of a swimbladder-bearing fish. This model is an improvement over previous models and should be 

of value in future volume reverberation studies. 
This report was originally a dissertation submitted in partial fulfillment of the requirements for the Ph.D. degree 

in acoustics at the Catholic University of America. 
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EXECUTIVE SUMMARY 

Anew model of a swimbladder-bearing fish has been developed in order to provide improved predictions of the 

resonant frequency and acoustic cross section of such a fish. The model consists of a small spherical shell in 

water, enclosing an air cavity which supports a surface tension. The shell is a viscous, heat-conducting Newtonian 

fluid, with the physical properties of fish flesh. A comparison of the results obtained with the new model to 

experimental data indicates that the new model constitutes a definite improvement over previous models. The new 

model can predict the high values of damping and elevated resonant frequencies that previous models could not. 

The model appears to be most accurate for fish in which tension in the swimbladder wall has a minor effect on 

resonant scattering. This includes the fish which are of interest in studies of volume reverberation and therefore, 

the new model should be of considerable value in such studies. 

NN 

wi 
NIN 



ACKNOWLEDGMENTS 

It is my pleasure to acknowledge the guidance and advice provided by Dr. Thomas J. Eisler. My appreciation 

also goes to Drs. Ronald New and John J. McCoy for their critical review of the manuscript. Special thanks go to Mr. 

Robert S. Winokur, for his cooperation and support throughout the course of this work. 



CONTENTS 

Page 

(L UNTIRIOIDUICITION ook cssoceoodcedeoocoohbospoucoucobenun conc ooooosa robo cde nooo oer aoeaenioG 1 

Wrolluinirs) REM=T ET EMCIN co 4s can poenbadeboussmecnnomecsun dd mucHamoomooDo UDO ono od mt oamaoor 1 

Bfeting MOS. 65cbduedhodsobecoteasnbonomoneoudsuopalssbocuuseEeuppocodupoedsponmaaavot 2 

SqoreViientell DEVE) odecnbooconsboncoscasdnocmeaboeccsosn55cnooo UGE HBoDsadupcouEngoagoDonDod 4 

(0 AN INEM CDE ic hs es erpicion mamtees ee eeeomeiioics common nde do seeald oman sumocicorkais osc means 7 

THM LM Lee Pel goa sre a ares eet bei Glee eee Pe ee trae i i UTERO CRA ea re ek ater ri ear eo hh 

HimitsrandiPhysicalirOpentlOSi aameie ccc cieer re s aeetensteieners pens it ovelebanerenael el ocelot tle Rsn-tet-scastieten creteitellele i 

FonmulationtofiEqQuatlomSpe m1 sserrwncesc cicero rtricre ricieter-teccre crctensnayete a el evensuaeMenetatetn (Cilia r= eeceseltsienal 8 

YOUITCE I) ComchiChiS... oeccksnecabonoosoounonesconstnoueentcouucwamononddoooonnannioocodsn 16 

Ml, SOUUNMON wxdccetodeaaedecectanes hb cevaceeen uot aed Mudie memeNnuoED cmon nlamcoc panera ac 19 

IM; DISCUSSION Se 22 Be ee oe cae coe pheno nue padi orEcie ad ommpemciccn ooo u gman o amota Be 23 

(RLU ye Aes es dis erotnn o OGM AAG Ten Bethan cana an 8 ccoercalue pro Blok ot cemnotoia: obaraicher diet hyc/aloe a Aecknee eaatosce th 23 

ComparisonitolFree Bubble rig cease tees e ete cree sr hitece lel agesattch (elfen ced sks ett hs pep -Try-Penetadnucis terete: 25 

GompanisonmitoiExpenitme nite etter ceees teva sores easy ese = bans ey lieve openly el opeiceke ch ene-p-Hsneu enero oka =P 28 

We CONGCUUSIONS soccedooccodosucsadoosponcussacsbouuusaeesoocnseousesacnocooecumo pee ne otd 33 

REEERENGES Perera Peery ee eae ett gi oye eleven teeeyrs tects cicyalocausnoreteded Ret eeu Rens cay8-Rer SKK 35 

APRPENDIXVAss iehysicallPropentioSrofiGiSty ae osetia so) steeds ets cieycleistel ot stedereuepenet atte ote -v-t-y = anata ot 37 

APPENDIX/Bs = SimplifiediExpressiomton (By /A)i ssc. ccs cre gelas tse ole aelere crete icens en is crates 42 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Table |. 

Table Il. 

LIST OF ILLUSTRATIONS 

Resonant frequency of a prolate spheroidal bubble .......... 0... 0. cee eee 5 

Resonant frequency of the new model of a swimbladder-bearing fish......................... 24 

Viscous and radiation damping factors for the new model of a swimbladder-bearing fish ......... 26 

Thermal damping factors for the new model of a swimbladder-bearing fish..................... 2 

LIST OF TABLES 

Physical Properties aan. aa ect foci snc sme cteraie cecal cases eacnepeue CCIn ep etere cieeeesteetc rae een ate ernie seg 8 

Experimental Data and Results of Comparisons to the New Model.....................0.2... 29 



CHAPTER | 

INTRODUCTION 

Volume Reverberation 

When sound is propagated in the ocean any inhomogeneities in the medium will scatter a portion of the 

sound incident upon them. This scattered sound is termed volume reverberation. If volume reverberation levels 

are high, the operation of an active sonar can be adversely affected. Specifically, high reverberation levels can 

mask an echo reflected from a particular target of interest. 
During World War II, researchers studying sonar echo ranging at the University of California Division of War 

Research (UCDWR) discovered that volume reverberation levels were usually vertically stratified. Layers of 

high reverberation, on the order of 100 m thick, were found, usually within the upper 1,000 m of the water column, 

extending over large geographic areas of the Pacific Ocean [1,2]. Other researchers subsequently found such 

layers in other oceans [3,4]. These layers came to be known as deep scattering layers (DSL). In addition, it was 

found that these layers frequently rose to shallower depths around sunset and descended around sunrise. This 

gave rise to the hypothesis that deep scattering layers were caused by biological organisms, which were known 

to undergo diurnal vertical migrations [5]. 
The great difference between the acoustic impedances of air and sea water causes an air bubble to be a 

much more effective scatterer than other objects of comparable size [6]. This fact led Marshall to examine the 

possibility that small mid-water fish which contained air-filled swimbladders were the cause of DSL [7]. His study 

strongly implicated such fish as major components of DSL. The primary scattering mechanism was considered 

to be swimbladders which could resonate in the fundamental, or volume pulsation, mode when insonified at the 

proper frequency. Subsequent research by Hersey and co-workers displayed the frequency dependence of 

reverberation levels and provided further qualitative proof that resonant scattering by swimbladder-bearing fish 

was the major cause of volume reverberation in the ocean [8-1 1]. The study of volume reverberation in the world 

ocean has continued (for example, see reference 12) and it is now generally accepted that swimbladders of fish 

are the predominant scattering mechanism in most geographic areas. However, it has not been until very 

recently that quantitative comparisons between fish distribution data and acoustic volume reverberation data 

have been made. 
The fundamental volume reverberation parameter is the back-scattering coefficient of a unit volume of 

ocean, M, which is the ratio of the scattered intensity at a unit distance from the unit volume, |,, to the 

incident intensity, |;, [13], 

p= VAL (I-1) 

If it is assumed that the scattered signals add incoherently [13], then M can be defined in terms of the scatterers 

as 

(1-2) 
j=1 

where n is the number of scatterers in volume V and gq; is the ratio of scattered power to incident intensity of the 

jth scatterer. o is called the acoustic cross section of the scaiterer. 
Although M is the fundamental parameter, the quantity which is most often utilized in any discussion of 

volume reverberation is the scattering strength per unit volume, S,, which is M expressed in decibels. 

S,=10logM . (I-3) 

S, is often simply called scattering strength [14]. 
In any acoustic measurement of volume reverberation, S, is obtained basically from the equation 

S, = 10 log (I,/I,) . (1-4) 

The determination of |, and |, is relatively straightforward and acoustic measurements of S, are fairly routine. 

However, if a determination of S, is to be made from the distribution of scatterers, the equation employed is 
n 

S, = 10 log [aa x: I (I-5) 
j=1 



The difficulty in making quantitative comparisons between acoustic measurements of volume reverberation and 

the distribution of swimbladder fishes lies in the determination of both n and g. The determination of the number 

of fish and the species, size and swimbladder size of each is strictly a biological problem which will not be 

considered here. However, the difficulty of this problem is not to be minimized. Given the size and swimbladder 

size of an individual fish, calculation of o is also difficult, due to the complex structure of fish. 

Simplified models have been developed in order to estimate o near resonance for an individual fish. These 

models are based on the premise that only the swimbladder is a significant contributor to O near resonance. 

Experimental evidence [15] shows, in fact, that this is so, whereas, at frequencies much higher than the 

resonant frequency, the swimbladder and the body of the fish contribute about equally to o [16]. 

Experimental evidence indicates that the existing models have some shortcomings. After a review of the 

models and the experimental data, it will be the purpose of this report to develop an improved model 
of resonant scattering from an individual swimbladder-bearing fish in order to eliminate or at least decrease 

the shortcomings of the existing models. 

Existing Models 

A swimbladder is essentially just an air bubble within the fish, so that the simplest acoustic model of a 

swimbladder fish is an ideal spherical air bubble having the same volume as the swimbladder. The 

frequency of the fundamental mode of resonance of a small ideal spherical air bubble in water was 

determined by Minnaert [17] to be 

W°a? = SY2Po_ (I-6) 

Pow, 

where W, is the circular frequency of resonance, a the equilibrium bubble radius, P, the ambient pressure, Y, 

the ratio of specific heats of air, and p,,, the density of water. The acoustic cross section of a small ideal 

spherical air bubble in water is [18] 

4ma? 
Ch re re Uti ROE | (1-7) (ey Ss 

oy Cre 

where w is the insonifying frequency and c,, is the sound velocity in water. The limiting factor on these 

equations is the size of the bubble, which is limited to values such that (wa/c,)<<1. 

For a small real air bubble in water, the above equations for w, and o remain the same, except that the 

term (w2a?/c,2) in equation |-7 is replaced by d? [18]. d is an unspecified damping constant which includes 

the effects of heat conduction, surface tension, viscosity, and other processes. 

Devin [19] studied the damping at resonance of real air bubbles in water. He found that the damping 

constant at resonance, 5, was the sum of three damping processes: thermal damping, 5,,, viscous 

damping, 5,,,, and radiation damping, 5,24, 

5 = Sai + Sys + By (1-8) 

5 is defined such that, at w = w,, d = 5. Devin determined the values of 5,,4, 5, aNd 5,,, for bubbles of the 

size which are of present interest, to be 

Wa 
Orad a oa , (I-9) 

= Any : 

= 3 (Ya = 1) K, i i 
ote Gee) a 

where n,,, is the shear viscosity of water, k, is the thermal conductivity of air, A, is the density of air, and c,, 



CHAPTER Il 

A NEW MODEL 

The Model 

The purpose of this report is to improve the equations which are presently utilized to predict the 

resonant frequency and acoustic cross section of a swimbladder fish, in order to facilitate the correlation of 

acoustic and biological volume reverberation data. A new model for a swimbladder fish is proposed and the 

appropriate equations developed for it. The model consists of a small spherical shell, enclosing an air cavity, 

in water. The shell is chosen to be a viscous, heat-conducting Newtonian fluid, with the physical properties of 

fish flesh, and the interface between the shell and the cavity supports a surface tension. 

The shell is insonified by a harmonic plane compressional wave whose wavelength is large compared to 

the shell diameter. For convenience, the center of the shell will be taken as the origin of the coordinate system 

and the wave will travel in the positive direction along the z-axis. Spherical coordinates (r, 8, @) will be used 

to describe the field, where r is the distance from the origin, 6 the polar angle and @ the azimuthal angle. 

Since the problem is axisymmetric, 9/d@ = 0. 

Acoustically, fish flesh may be considered to resemble soft rubber. In such a substance, shear waves are 

much less important than transverse waves and the substance can be closely approximated by a viscous fluid. 

Modelling fish flesh as a viscous liquid has advantages over modelling it as an elastic solid with a complex shear 

modulus. Specifically, exact equations (Navier-Stokes) exist for the motion of viscous fluids, whereas a 

phenomenological approach is required if a complex shear modulus is utilized. 

The body of a fish which surrounds its swimbladder will cause an increase in stiffness over that of a free 

bubble. It is assumed that most of that increased stiffness in concentrated in the swimbladder wall and may be 

modelled by a surface tension at that interface. Unlike an elastic modulus, swimbladder tension may be under 

the fish’s control and could account for otherwise unexpected variations in resonant frequency. 

Limits and Physical Properties 

Several limits will be placed on this model. These include limits on applicable depth, frequency, and size 

ranges. The depth range of interest is from the surface to 1,000 m, which corresponds to an ambient 

pressure of 10° to 108 dynes/cm?. The frequency range is 100 Hz to 40 kHz, which corresponds to a circular 

frequency, w, of 2m x 10? to 8m x 10* rad/sec. The fish size range is 1 cm to 1 m. This roughly corresponds 

to an inner shell radius, a, of 10-1 to 5 cm. (Appendix A contains a discussion of swimbladder volumes.) The 

ratio of outer shell radius, b, to ais 2.5 b/a< 6 for small fish and 2.5 < b/a < 3.2 for large fish. Two further 

limitations will be that 6 x 102cm/sec S$ was 2.4 x 104 cm/sec and that wb < 7 x 10* cm/sec. 

In addition to swimbladder size, the surface tension at the swimbladder wall must be specified. For small 

fish, 

IA 102 dyne/cm < s < 10° dyne/cm 

and for large fish, 
102 dyne/cm < s < 109 dyne/cm. 

The rationale for this choice of ranges is discussed in Appendix A. 

Several other parameters must also be specified. These include the velocity of a compressional wave 

(sound velocity), c; density, P,; specific heat at constant pressure, c,; ratio of specific heats, y; thermal 

conductivity, k; shear viscosity, n,; and bulk viscosity n,; for air, sea water, and fish flesh. Subscripts a, w, 

and f will be utilized to indicate the properties of air, sea water, and fish flesh, respectively. For convenience, 

a viscosity parameter, &, is defined as 

E = fn, + ny. (4) 
The parameters are listed in Table 1, for a temperature of 10°C and, unless specified, a pressure of one 

atmosphere (10° dyne/cm2). The properties of air were obtained from references 42 and 43 and those of 

sea water from reference 44. The properties of fish flesh are discussed in Appendix A. 



Table 1 — Physical Properties 

Air Sea Water Fish Flesh 

c, cm/sec 3.3 x 104 1.50 x 108 12550 1102 

Po, gm/cm? 1.3 x 10-3 (at 1 atm) 1.026 1.050 

1.3 x 10°' (at 100 atm) 

Yy 1.40 1.01 1.01 

Cc cal 
>) Gm °C 0.24 0.93 0.89 

’ om sec °C _ ze 5.5 x 10°° 1.34 x 10-3 1.32 x 10-3 

N;, poise 1.8 x 10-4 1.4 x 10-2 
&, poise 1 to 1.07 

Preliminary analysis of the new model indicated that considerable simplification resulted, with virtually 

no loss of accuracy, if several approximations were made concerning the physical properties. The first 

approximations were that y,, = y; = 1. Secondly, since k,# k;>>k,, it was assumed that any heat generated 

in the air is rapidly conducted away, so that the temperature in fish flesh and water is constant. Thirdly, 

SINCE Ny>>N1s,,>>Ns,, it was assumed that n,, = N., = 0. 

One further assumption which greatly simplifies the problem is made in this model. As discussed in 

Chapter |, only the fundamental, or zeroth mode of oscillation will be considered. 

Formulation of Equations 

The first step in the determination of the resonant frequency and acoustic cross section of the new 

model is the determination of the proper wave equations in water, fish flesh, and air. The wave equations 

are determined from the basic equations of motion as given by Hunt [45], generally following the method 

discussed by Epstein and Carhart [46]. The basic equations are the continuity equation, 

>t + V: (pu) = 0 ; (Il-2) 

the equation of conservation of momentum, 

p af = —p(0°V)G — VP + EV(VU) — nV x (Vx) ; (II-3) 

the equation of conservation of energy, 

oT — | A> —W y.g4y-q _ = , \|-4 

and the equation of state, 

p = e(P,T) ; (II-S) 

where p is density, t is time, U is a velocity vector, P is pressure, c, is specific heat at constant volume, T is 

absolute temperature, B is the coefficient of thermal expansion, q is a heat conduction flux vector, 

Ge Eo (II-6) 
and @, is a viscous dissipation function. 



Equations II-2 through II-5 are linearized by assuming that 

T= © & oh, ed) 
Py PometsPn) (II-8) 

geil tee a, (I-9) 
and 

P(p,T) = Po(Po,To) + Pi » (II-10) 

where the subscripts 0 and 1 refer to the average and perturbation values of the parameters, respectively. 

The first-order equations are 

oP. Lets O, (I-11) 

oye EVV UN) = neVex (vy xu) | (Il-12) 

(Cac 
Poy a + By vt, SKN ETO (II-13) 

since @, is of second order [45], and 

Oo (rasa ea Gees cee (1-14) 

It has been assumed that T,, = T,, = 0 and that y, = y, = 1. Hence, in fish flesh, equations II-11 through 

ll-14 are 

a so pSV! 1U,)) =" Ole (I-15) 

Po SS = — VP, + EV(V-O,) — nV x (VXd)) , (ll-16) 
and 

0 Po 
— pA EAU fe Il-17 on (aaa (11-17) 

These equations are the same in water, with the exception that the viscosity is set to zero. The isothermal 

compressibility, K,, is defined as 

1 Are) (Il-18) Kai esi (Ee) ' 
i Po aPo ij 

and the adiabatic sound velocity, c, as 
Y Cae — z 2 PoK, (II-19) 

Since y; = Y, = 1, equation II-17 is 

Sp (11-20) 
Pr; iat o? 

and equation II-15 is 

OP, 
ot 

According to Helmholtz’s theorem [47], the U, vector field can be represented in terms of a vector 

potential A and a scalar potential Q such that 

ts Po Cie Wan Ut) a Ole: (11-21) 



U, VxA-VQ, 

(Il-22) 

with VA) Oe, (I-23) 
so that V0, <= — V2", (I-24) 

and Vxi, = —-VWA. (II-25) 

Thus, equations II-21 and IIl-16 become 
P 

p,c2V2Q = aa (I-26) 
and 

Po; tv x A) — nV x (V2A) = — VP, — EV(V2Q) + Po, v9) : (Il-27) 

If the curl of equation I-27 is taken, 

Vx VP. = Vx VO =] V <V(V20) —0- (II-28) 

Thus, 

Do, 9 x A) — nV x (V2A) = 0, (\I-29) 

or 

nN V2A — py, 38 =). (I-30) 

Therefore, 

UP, + EV (V2) ~ Py (VO) = 0. (1-31) 
Then substituting equation II-26 into I-31 and taking the divergence yields: 

3 ( oP, ) Une 2 2 eye eae = Il-32 V?P, + ance aT Ge at OF ( ) 

Equations II-30 and II-32 are the wave equations in the fish flesh. In water, where the viscosity is zero, the 
wave equation is 

1 92P 
VPs a oer aE = 0. (I-33) 

Cre 

The harmonic time dependence is now introduced, such that 

P, = P,e™ , (I-34) 

T, = Toe , (II-35) 

and 

A=A,e-* , (II-36) 

Then equations II-30, II-32, and II-33 are, after eliminating the numerical subscripts, 

10 



NsV2A sF iWP,A = 0 , (II-37) 

(ie ioe SS ae nD 279 , (11-38) 
PoC? Cy 

and 
W2 

V2P seers = (0) , (II-39) 

The coefficient of thermal expansion, B, is defined as 

pas (ea, (II-40) 

so that, in air, equation Il-14 is 

P 

Pi, = = nes Po,Baly . (II-41) 

In addition, equations II-11 through II-13 for air are, after substitution for U: 

Sat 7 Gees =) (I-42) 

0 a (I-43) 
Poa ay x A 02 Dp (VY) VP, ’ 

and 

oT, (Cy, “i Cy.) 2 
PosPva eta” Poa ae ae ae OQ = TWF, = ©. (I-44) 

Taking the curl of equation II-43 and utilizing equation II-28 indicates that 

VxA=0, (I-45) 
so that 

VP, — Po, a4 (VO) =0 (I-46) 

Then, substitution of equation II-41 into Il-42 yields: 

zs YaP 
Vox Tee ial | (II-47) 

Hence, taking the divergence of equation II-46 and substitution of equation I-47 yields: 

2 a* VP; — Pose [sa cr ~ BT: |e: (II-48) 

In addition, substitution of equation II-47 into I-44 yields: 

oT hiGa = GA) oe a 
Poalpa maith aa Bee 2 aa i K,V°T, =O); (Il 49) 

Introduction of the harmonic time dependence into equations |I-48 and II-49 yields, after eliminating the 

numerical subscripts: 

wep + 2Y¥ep — w2p.,8,7 = 0 (II-50) 
a 



and 

vet + sek) — JOVaG = op = Og - (I-51) 

Equation II-50 can be written in terms of P alone by taking the Laplacian and substituting equations II-51 and 

Il-50 for V?T and T, respectively, into the resulting equation. The result of this procedure is 

2 ; THe 
vV4p | — ait —— | yep + /° PoaTpa P =u (II-52) 

Equation II-52 is reduced by considering it as a quadratic equation in V2. Then 

(V2 = ikise) (V2 Fk) Po 0. | (II-53) 

where 

= WV. iWPo,Cp, + iWPo,Cp [ = w?K,7 Ya" = 2iWK.(Y2 a 2) | 
2(K;,52,)° Gr aE Ka inet K, 3 1 Dreccicte Po,Ca cm 

(II-54) 

The second and third terms under the radical are much smaller than 1 for the ranges of parameters selected for 
this study, so that the radical can be approximated as 

eae (\I-55) (2) 1 7 

Thus, 

Doe ae IWPo Con w?(Y, =a 1) a iw?K,Y4" Ss crn ecient es 

and 
a? 1@siKaVes 2 = SEE eV 

agi cz * Ape CSC (I-57) 

An examination of the relative magnitudes of the terms in equations II-56 and II-57 shows that 

k. 2 w~ !WPoaCpa (I-58) 
la wo mK sen 

or 

ie WPo,Cp4 ) I-59 ky Ce) — (I-59) 

and 

vee eos 
Cpe | (I-60) 



Since k,, and k,, are never equal, the general solution of equation 11-53 is 

P=W+h , aie) 
where wW, and w, satisfy the equations 

(V2 + k,2)W, = 0 (II-62) 

and 

(V2 + k,,?) Wo OW: (I-63) 

Equations I-37 through II-39 can be written in a form similar to equations II-62 and II-63. Thus 

(V2 +ky2)A = 0 , (II-64) 

(V2 +k,2)P = 0 , (I-65) 
and 

(V2 +k,2)P = 0, (II-66) 

where 

iwp 
ke? = ie (I-67) 

Ww? iwe \-1 ae eo ae Ss \l-68 
kp? CG? ( 1 PoC; ) ’ ( ) 

and 
2 

kee = = (II-69) 

Comparisons of the equations for air and water indicate that w, represents a compressional wave. Hence, W, 

represents a thermal wave. 

Equation II-64 can be transformed into a scalar equation. It can be shown that a vector T exists such that 

[48] 

= Ver (Il-70) 

and 

Ae Vian (I-71) 

Since the problem is axisymmetric, 0/3 @ = u, = 0, which implies that [,, = 0. Thus 

Vx F=F(0) + 6(0) +> [era - SE | 30 (II-72) 

so that 

A = PA, > (II-73) 

where T, 6, and @ are unit vectors. Therefore 

Ge A ] 
ZA = bay Ne ape SL EEG) I-74 
ESS) [v A» r sin?@ ( ) 

13 



and equation II-64 can be written as 

VAG = oe a k3,2 Ag =0. (I-75) 

The plane wave impinging on the shell will be represented by 

Py, = Aekow , (II-76) 

where P,, is the perturbation pressure of the wave in water, and A is the pressure amplitude. P,,, can be 
expanded in spherical waves as 

= AD (224 1)i Pi okKowt) P, (cos 8) , (II-77) 
2=0 

where & is the mode number, j, (k,,,r) is a spherical Bessel function and P, (cos 6) is a Legendre polynomial. 

The incidence of the wave upon the shell gives rise to five additional waves, which are represented by the 

solutions of equations II-62, II-63, II-65, II-66, and II-75. These equations can be solved by standard 
separation of variables techniques. The solutions are: 

= 2 Dagig (k,,") P 9 (cos 6) , (II-78) 

W, = > B.gig(ks,F) Pe(cos 6) , (II-79) 
2=0 

ai anaes (Kar) + Ey on o(kar)] Pp (cos) , (II-80) 

Phe = = By ghe(ko,r) Po(cos 6) ) (II-81) 

2=0 

and 0 

Aor = DS [Figi olka) + GioMo(kat)] P’ g (os 8) , (I-82) 
Q=I 

where B, D, E, F, and G represent the amplitudes of the waves, n Kz,f) is a spherical Neumann function, 

and h,(k,,") is a spherical Hankel function of the first kind. P,,, indicates the scattered compressional wave in 

water, so that 

P, = Py, + Pu. - (1I-83) 

One of the assumptions of this model is that only the fundamental mode contributes to the scattering. Thus 
only the &£ = 0 mode is considered. Examination of equation II-82 shows that for & = 0, 

A, = 0. (11-84) 

The remaining equations are now written for & = 0: 

Py = Ajo(Koyt) + Bwho(Koyr) (II-85) 

P, = Bilo(kar) + Epno(kar) , (II-86) 

Wi = Dajo(k,,") . (I-87) 



and 

Wo = Bajo(Ko,") ; 

where the numerical subscripts have been eliminated from the coefficients for convenience. 
The scattering cross section of the shell is 

Oo = ©, / fF ’ 

where @®, is the average scattered power and |, the incident intensity. 

1 

®, 7 rahe Uws qv, 

where v is the area of an element of a sphere [49]. 

vVv=nv, 

dv = 1rdx ; 

where n is the normal to the area and x is the solid angle. Also, 

ioe 
i = 2 Pe Uy; 

so that it is necessary to determine U,,, and u,, in terms of P,,, and P,,,, respectively [49]. 

In the fundamental mode u = — VQ, so that utilizing equation II-31 for water, 

00 
Pw — Pow ag = 9 

Introducing the harmonic time dependence yields: 

O.. = == (Pes 
Mw WPoy 

so that 

one OPV. 
TWs WPo, or 

and 

Uy — — Salli ORs 

l WPo, 02 

Thus, from equations II-76 and II-97, 

A2 

iF = > 

Z2Pouce 

From equation II-81, 

Pws = ByNo(Ko,,F) 5 

where 
eikowr 

No(koyF) an ik r 

2w 
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(I-88) 

(II-89) 

(II-90) 

(II-91) 

(II-92) 

(II-93) 

(II-94) 

(II-95) 

(II-96) 

(II-97) 

(II-98) 

(II-99) 

(II-100) 



so that for r— oo, 

ho’ (Koyf) = (11-101) 

Thus, as r+, 

: oe Bera i are Uwe Wo, Koy (II-102) 

and 

= e0B.Ba (Il-103) 
WPoyKoy, 

Therefore, 

AnIB,, 2 
oO = aw ; ba K,2At (II-104) 

and in order to determine o, it is necessary to solve equations II-85 through II-88 for (B,,/A). 

Boundary Conditions 

Equations II-85 through II-88 contain five unknown coefficients. Thus, five boundary conditions are 

required for the solution of this set of equations. These conditions are the continuity of normal velocity, u,, and 

normal stress, T,,, at both interfaces and continuity of temperature at the inner interface. The first step in 

solving for B,,/A, therefore, is to obtain u,, T,, and T in terms of P,,, P;, W,; and Wo. 

Equation II-50 gives T, in terms of P,. Substitution of equations I-58 and II-60 through II-63 into equation 

Il-50 leads to 

2 { [va — Posferoe Jus + (va — 1) He (1-105) 
Po,Ca oa 

u,,, is given in terms of P,, by equation II-96. Following the same procedure to obtain u,,, equation I-31 may 

be written as 

P, + EV2Q, — p, Be ai (II-106) 

Then substitution of equation II-26 into II-106 yields, with introduction of the harmonic time dependence: 

i iwé %=->-[1-~e]e - 
WPo, PoC (II-107) 

Similarly, from equation II-46 and II-61: 

i 
ES Dp., (Y + Wo) . (Il-108) 

Thus, 

= = Ae Hi OG eRe 
Ot Oy [ Pc?) ar (1-109) 

and 

= i OW, dW. y= —-— pee eens - a Po, at + oe | (II-110) 



The normal stress in fish flesh is [45] 

Qu 
Tort = = P, oP Sette . hs 

eG aaa (II-111) 

so that utilization of equation II-109 yields: 

ig = 02P, : 
Tan Spe ; (II-112) 

"WP, PoC? Or 

Also, 

ta oP, (II-113) 

and 

a ey (II-114) 

At the air fish-flesh interface the surface tension must be included in the stress equation. For a bubble in 

water [50], 

2 
Py = Pou te (\I-115) 

where P ,, and P,,,, are the total pressures inside and outside the bubble and R is the radius of the bubble at any 

instant. If g represents the small changes in the radius of the bubble and a is the average radius, such that 

R = at+g, (II-116) 

where g<<a, then 

Qi hone Coe _ aia ai Tae) rer g/a) , (II-117) 

so that 

2s 
Pin = Rong as (1 3 g/a) . (II-118) 

Since P,,and P ,,,, are total pressures, equation II-118 can be linearized utilizing equation II-10. Thus, the first 

order equation is 

Peay) = Pinch soe (I-119) 

Due to the harmonic time dependence, 

UAMOR tas 11-120 Web o O9) ( ) 

Thus 

: 
Poy = Pm = =a - (\l-121) 

The boundary conditions are: 

BC 1 Ue Ul ate —ib), (II-122) 

BC 2 Tee area bir (II-123) 



BC 3 u, = U, at r=a, (1-124) 

2iu,,S 
BC 4 Ty = Trra = wae at r=a, (II-125) 

BC 5 fe 00)" vat’ Gr—a (II-126) 

Equations |I-122 through II-126 have been labeled BC 1 through BC 5 for later convenience. Substitution of 

equations II-105, II-109, II-110, II-96, II-112, II-113, Il-114, and [I-85 through II-88 into equations II-122 

through II-126 yields: 

; 
BC 1, (_) [ Akewio’ Koy) + Bakeyo’ (Koy) | 

1 ors - , = (1) (1 - ES +) [Baio hab) + Eiken’ kab) | (127) 

BC 2, Ajo(k2b) + Byho(K2,,0) = Brjo(Kab) + E,no(Ka,b) 

ing 77 ” . + (BS-) (1 ~ SEE) [Btetie' hb) + Eikatn" kab) | (1-128) 

1 IW - y , BC 3, (ie) (1 - oe ) [ Bikaio’ (kaya) + Esky’ (koa) | 

Ea 
( Paz )[ Dak, oho’ (Ki,4) + Bakoaio’ (Koa) | ; (II-129) 

BC 4, Bio(kaa) + Eino(kea) + (22) (1-3) [Bike 2ie" (keya) + Exke?no"(kea) | 
Poy Po Ci* 

. 2 a ais ; 

= Dajo(k;,8) + Bajo(k2,a) + ( —— ) [ Dak, ao (Ki,€) + Bakoalo (k,,a) | » (II-130) 

(l-131) iPoaCpaCa® - 

and BC 5, ( Ya ebb rea) Dajo(Ki,8) + (Ya — 1) Bajo(kK2,a) = 0 



CHAPTER Ill 

SOLUTION 

The first step in the solution of equations II-127 through II-131 for(B,, /A) is to solve II-131 for D, and 

substitute the result into equations II-129 and II-130. For conciseness the boundary conditions will now be 

written in a tabular form: 

BC By B, E, 

1 $i; Si. Sis 

2 S>, Soo Sos 
3 0 S32 S33 
4 0 S42 Sag 

The Sis are taken such that 

$B, + SB, + S,E, + $,B, = aA 

The S,’s and as are as follows: 

Si = — (2) ho’ (head) 
Ow 

Ww? ee 
S12 = ( 9o,02Ko, ) jo (K2,b) , 

W2 

S,, = son ) No! (Ke,b 
ie ( PorCi2Ks, 0 ( = ) 

tye | (PE) tect) 
Ww 

S2; = S- No(K2,,b) , 

2 
32 (Geecten Jo’ (Kaa), 

w?2 i 
S33 = IGescres)) No’ (Kaa) , 

Sa = ( 1 ) (Wa) Ky Jo! (K1,) jo (Ko,€) 

Poa i 24y 07 
1 (Ye | jo(K;,€) 

Seo = jolkaa) + (ZPS-) jo"(kaa) 

S43 = Mo(kz,a) + ( mer) No"(Ka,a) , 

19 

nnoo 

wo .S 

A 

a, 

a, 
0 
0 

(III-1) 

(III-2) 

(III-3) 

(II-4) 

(II-5) 

(III-6) 

(III-7) 

(IIl-8) 

(III-9) 

(IIl-10) 

(I-11) 

(I-12) 

(I-13) 

(IIl-14) 



_ a~ 1)Jo(K2,4) 2s Ky alo’ (ks ,€) S = (Y : O\R25 1ajo la ) 

a 1, C.-C... [ xs ( Wa? Po, ) ( Jjo(K; 8) | 
(ve Z RK ) 

+ jolkega) + ( 
where equation II-68 has been used for k,,2. 

The solution of the boundary conditions for B,, is 

28K, ae 

wa) Jo’ (Koa) (Ill-15) 

By _ a,U + a,W_ (Ill-16) 
A $,,U0+S;,W 

where 

U = S44(S22S33 — S23S32) + S54(So3S42 — So2Sa3) (IIl-17) 

and 

W = Sa4(Si3S32 al $12S33) =f S34(Si2Sa3 = $1384) : (IlI-18) 

This solution is easily arrived at after several pages of substitutions. 
Equation III-16 could be solved numerically with a computer by choosing values for the various physical 

parameters and calculating the S,'s and a,'s. However, this will not be done because the purpose of this 

report is to obtain simplified equations for w, and o which can be solved without resorting to use of a 
computer. The simplified solution is based on the ranges of the physical properties and the limits of the 

variables given in Chapter Il. Itis obtained by assuming that | k,,a | is large and that k,,b, k,,b, and k,,a are 

small and accepting any errors which are less than ten percent. Order of magnitude comparisons are then 
made between various terms and any term which is always less than ten percent of another term is 

neglected. This simplification process is shown in Appendix B. The result of this process is: 

Sy = (1 + A+i0 | ae 

3PoCy =) te 2s 

Seer |G)! (eae 
i CwPo 3P0,Ca? 2s 11& = 

+i (who 2 Po.Cat = eos 
( wap, ) [ (wats, ) ( 30.0,78) os ( 319,2C,2a2 ) | | ’ (III-19) 

where 

AS ae a _ 1) (III-20) 
Po,2C;4.a8 9Po,,Cw? 

and 

= (Zoe) | (Pose, 1) - (Pate YC 
A = = Spyera a3 [ —— 2 1) (once sls 4 )\G) | : (IIl-21) 

Equation III-19 can now be substituted into II-104 to yield o. However, before doing this, equation III-19 

will be manipulated so that the final results can be easily compared to those of other researchers. Thus, the 
resonant frequency is determined by setting the imaginary part of the denominator of equation III-19 equal 

to zero and the real terms of the denominator represent the damping [18]. Therefore, letting 
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CE) (1— ae) eB) W?a? Do, 3Po,Caa 3Po,C;2a? 

and solving for w?a? yields the resonant frequency of the new model: 

3P,Ca? ( ees ) 
dytigy wide ctor 30,6228 

Wp-ae = (; 118 

ui 3Po,2C;2a? ) 

Now [42], 

Po,Ca? a YaPo, 

and from equation II-115, 

2s 2s 
Po. = Po, tf eae Row ara 

Therefore, substitution of equations III-24 and III-25 into III-23 yields: 

W 2a? = Fr 182 

(1 + ap,20287) 3Po,2C;2a2 

The damping factor, H, will be defined by 

w Po, wa 26 SW es 
1) PoCw Po, Wa? 

+e (= yi (1+ 2s Ny. 

wa 2Po,Cpa Po, W2a3 

Thus, following Devin [19], 

1 1 1 1 
a= +an +a e=d, 
H Hrad Hvis Ain 

where 

— Do PoSw 
Had @2P,a , 

Hvis Tz a ’ 

and 

Hy = gto (2Prstms)" (1 428)” 
28 3(Ve—a) WK, Po, Was 

As before, at w = w,, H = Q. Thus, substitution of equations III-26 and III-27 into III-19 yields: 

ei 

(Il1-22) 

(IIl-23) 

(IN1-24) 

(IN1-25) 

(IN1-26) 

(IN1-27) 

(IN1-28) 

(II1-29) 

(Il1-30) 

(IN-31) 



A ( Wo \ , i (Fe, = ( 1+ Uns ) es 
WH ) ay ) 3Po,C,2a2 

Then, substitution of equation III-32 into II-104 yields the scattering cross section of the new model: 

Pow A4na2'( 1+ A)? + 2 
7 ame (BE) ARM (\lI-33) 

(BR) + SE - 10 ge (3 2 + Ww2 1 ee 3Po,2C,2a2 

where A, A, ®,, and H are given in equations III-20, III-21, II|-26, and III-27. 
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CHAPTER IV 

DISCUSSION 

Results 

The equations developed for w,, 0, and H in Chapter III for the new model can be considered to be 

accurate within ten percent only for the parameter ranges given in Chapter II. The ranges of &, for which 

exact values are not known, and s, which may be varied, were extended beyond the limits of present 

available data. However, the largest values of a, w, and P,, used in this model are not beyond the range of 
possible values. These limitations were imposed by the assumption that k,,a is small. This required that, for 
the error caused by using just the first term of the spherical Bessel function expansions to be less than ten 

percent, 

wa < 2.4 x 10* cm/sec. 

The limitation of k,,a being small is a factor in all the previous models, but in most cases it is not mentioned 

or, if it is mentioned, no limiting value is given. 
The range of & utilized in the solution of the new model was 

1 poise < &€ < 104 poise. 

However, a more likely range of &, as shown in Appendix A, is 

50 poise < & < 2 x 103 poise. 

This narrower range will be utilized in the remainder of the discussion because it results in a simplification of 
equations III-26 and III-34 without, in all probability, affecting the results. Equations III-26 and III-34 simplify 

to P 2s 3Y @peae = et 3y, — 1 IV-4 0 Do, Da | Y ) (IV-1) 

a ane (Bs) PSs Ream CREA Sela UR Er Py Cae (IV-2) 
W,2 W,2 2 

min cae |) || 
respectively, when the upper limit of & is reduced to 2 x 10° poise. A and A are negligible compared to 1 for 

&< 2 x 103 poise. A and A were the only remaining terms which contained b. Thus, for the a/b range given 

in Chapter II, b is unimportant for § $2 x 10° poise. 
Figure 2 gives w,a as a function of depth and surface tension, calculated from equation IV-1. s has 

essentially no effect on w,a for s/a < 10° dyne/cm? at any depth and for s/a < 10° dyne/cm? for depths 
below 100 m. For s/a values around 5 x 10’ dyne/cm?, pressure has essentially no effect on wa for depths 

less than 100 m and at a depth of 1000 m, w,a is increased by only 50 percent over its value near the 

surface. 

At resonance, 

Ana2Q2 Pow \* Oo = 4mla awe iS 
( Pos ) (IV-3) 

and 
= PorCw 

OF Poy, @oa ’ 
(IV-4) 

— Wo Po? hy Qi tae (IV-5) 

and 
ja Wa ( a a ( 2s —1 

On 3(¥, — 1) Ka As ses) (IV-6) 

Thus, 0 is proportional to Q? at resonance. 
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Figure 3 shows Q,,, and Q,,, as functions of w,a. Q,,, increases with increasing W,a and decreases with 

increasing &/a. Values of 

2 x 102 poise/cm < &/a < 10° poise/cm 

give values of Q,,, which are comparable to values obtained for Q in near-surface swimbladder resonance 

experiments [15, 33, 36-38]. Q,,, decreases with increasing w,a and, depending upon the value of &/a, may 

be significant for all w,a considered. 

Figure 4 shows Q,, as a function of w,a, a, s/a, and depth D. Any individual numbered curve indicates 

that Q,, increases gradually with increasing s/a. The set of numbered curves indicates that Q,, increases 

with increasing a and D. The lettered curves are for the case where the effect of surface tension is 

insignificant, and also indicate that Q,, increases with increasing a and D. A comparison of figures 3 and 4 

shows that Q,, is significant only at depths above 100 m and then only if €/a < 10° poise/cm. 

At off-resonance frequencies 

ty = (Sy Gn 2 (Iv-7) 
lis Fi Qiis ’ 

(IV-8) 

and 1 2s 
+ a 

V2 p W,2a3 

Hn = (S2)" | 2 Ja, wv) 
' Po, W2. as 

Thus, at frequencies above resonance, H,,, may be the dominant damping term, even for relatively high 

values of E/a. Conversely, at frequencies below resonance, H,,, may be the least important damping term. 

The variation of H,, with (w,/w) is complicated by the presence of the surface tension term. !t can be shown, 

utilizing equation IV-1, that 

Wee eee Fe yaa vane) 
Po, Wo? a2 

so that, for the purpose of establishing a trend, 
w Ya 25 -1 i 

His (22) (1+ tn) On (IV-11) 

Hence, at frequencies above resonance and at frequencies below resonance for which (o,w°a® >>(28/ a), 
(0) Va 

ns (=) Qn (IV-12) 

At frequencies below resonance for which (2s/a) >> Po,W*a?, 

Wo \ "2 / Po, 2a i 

Hin ~ (3) (a— ) Qi = (IV-13) 

Thus, H,, becomes relatively less important than H,,, aS frequency increases and conversely. 

Comparison to Free Bubble 

The validity of the results developed for the new model must be determined. This will be done by first 

checking that the equations developed for the new model approach the equations for a free bubble in water 

as a limiting case and then comparing values calculated using the new model with experimental values. 

The equations obtained in Chapter III for the resonant frequency and scattering cross section of the new 

model can be readily compared to the equations given for a free bubble. Equations I-6 and |-7 give w, and o 

for an ideal bubble, neglecting surface tension. Equation II|-26 reduces exactly to equation I-6 when & = s = 

O. If thermal losses are also neglected, equation III-33 reduces to equation I-7 when € = s = 0, except for 

factors of (P,/Po,). If surface tension is included, w, for an ideal bubble is given by equation I-12 with 

1);,, = 0. Equation Ill-26 reduces exactly to equation I-12 when & = n,,, = 0. Thus, when viscous and thermal 

dissipation effects are eliminated from the new model, the results are equivalent to results obtained for an 

ideal bubble. 

When the viscosity of water is considered for an air bubble in water, w, is given by equation I-12. A 

comparison of equation II|-26 with I-12 shows that the form of the viscosity factor for the new model differs 

from that given for a bubble. However, as was noted earlier, equation |-12 is only valid for small viscosities, 

so that this difference is not surprising [25]. Both equations I-12 and III-26 indicate that w) decreases as the 

viscosity increases, which should be the case for a viscously damped system [51]. 
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The damping in the new model can also be compared to that for a real bubble in water as determined by 
Devin [19]. For ease in comparison with Devin’s results, equations IV-4, IV-5, and IV-6 will be rewritten as: 

Poy oa OF eee IV-14 
‘ Po; Cw ( ) 

On = ae IV-15 vis Wo Po,? ( ) 

and 

B(Ve = 1) Ka \ 2s IV-16 
Om = Wo”a (cones) (1 ? aura ) ; \ 

Equation IV-14 is equivalent to equation I-9, except for the factor (P,/>,). Devin has considered only the 

shear viscosity, so that equation Il-1 appears to indicate that equations IV-15 and I-10 differ by a factor of 

24. However, nN, and n, are related to the dilatational viscosity ny, by [45] 

Mm = Ta + MN, - (IV-17) 

Therefore, if ny is neglected, equation II-1 indicates that § = 2n,. Hence, equations IV-15 and I-10 are 

equivalent. Equations IV-16 and I-11 are also equivalent, except for the surface tension factor in equation 

IV-16. Devin considered surface tension, but since the surface tension of an air bubble in water is only 74 
dynes/cm, its effect is insignificant for the frequencies and bubble sizes of present interest. Hence, the form 

of the damping factor at resonance for the new model is essentially equivalent to that of a real bubble in 
water. 

Comparison to Experimental Data 

The previous comparisons compared the spherical model to spherical bubbles. In order to compare the 

model to experimental measurements made on swimbladder-bearing fish, it is obvious from figure 1 that the 

effect of swimbladder shape should be included. This is done by letting 

Wo, = GW (IV-18) 

where W,, is the theoretical resonant frequency for the spherical model, ¢ is given by equation I-25, and Wy, 

is the value which is utilized in the comparisons to the experimental data. 

There are five sets of experimental data to which calculations based on the new model can be 

compared. These are contained in references 15, 33, 36, 37, and 38. In each of these, the measured 

resonant frequency, W,,,, and the calculated Q are either given directly or can be obtained from a curve. The 
data in reference 36, which was collected a decade before any of the other data, have variations which 
require some interpretation to obtain a,, and Q. This required interpretation makes the w,,, and Q values 
obtained from reference 36 less reliable than those obtained from other sources. 

Comparisons of the data to the model require that values for a and € be known. In some cases, a and € 

were measured and the values given. In the other cases, it was possible to determine a indirectiy from other 

data in the report. When values of € were not given, average values were obtained from other sources. 
Measurements of a and € were all made at atmospheric pressure. There is some question as to what effect 

increasing depth has on swimbladder volume [e.g. 11, 12]; that is, whether the fish retains a constant 

swimbladder volume or a constant swimbladder mass (Boyle’s Law) or some other, intermediate process. 

(McCartney and Stubbs [87] assumed an intermediate process, due to the effect of tension in the 

swimbladder wall.) It is probable that different species react to changing depth in different ways and that 

different experimental methods can affect the way a fish would normally react. Hence, there are 

uncertainties in the actual values of a at depth. Since the swimbladder is attached to various other parts of 

the fish, there is no reason to expect a change in swimbladder volume to cause a uniform change in its 
linear dimensions. Thus, the uncertainty in a at depth produces a smaller uncertainty in €. Various depth 
variations in a were examined when comparing the data to the model. However, since the individual 

researcher is in the best position to interpret his own data, the final comparisons utilized the depth variations 

chosen by those researchers. 
The new model requires values of & and s. Since the exact value, or range of values, of & is presently 

unknown and s is quite likely under the control of the individual fish, direct comparisons of the model and 
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experimental data are not possible. However, indirect comparisons are possible. The first step in a 

comparison is to determine the experimental values of w,,, Q, a, and €. Then W,, is set equal to wW,,, and s 

calculated utilizing equations IV-1 and IV-18 and figure 1. If surface tension has a negligible effect on w,,, 
can be assumed to be equal to 10* dyne/cm, based on the data given in Appendix A. Q,,, and Q,, are then 

calculated from equations IV-4 and IV-6 and Q,,, is determined from the equation: 

1 1 1 1 

Q 4 Qraa i Qvis bi @iy f (IV-19) 

Finally, § is calculated from equation IV-5. The results of this procedure are given in Table II, where L is the 
fish length, D, a, @,,,, and Q are experimental data, and s and & are calculated by equating the model to the 
data. 

The new model can be indirectly compared to the experimental data by examining the values of s and & 
given in Table li. The values shown in Table I! are within the limits chosen in Appendix A to give reasonable 
ranges for s and €. This is a necessary condition for the model to be valid, but it is by no means a sufficient 
condition. In order that the model can be used with some degree of confidence to predict resonant 
scattering from swimbladder-bearing fish, the variations in s and & shown in Table II must also be explained. 

The five sets of data can be separated into two groups, based upon the magnitude of tension in the 
swimbladder wall. Swimbladder tension had little or no effect on the measurements made by Coate, Batzler and 

Pickwell, and Sundnes and Sand, where s < 10° dyne/cm. Swimbladder tension appears to have had a significant 

effect on the measurements by McCartney and stubbs and Sand and Hawkins, where 

2 x 10° dyne/cm < s < 4 x 10° dyne/cm. 

Table Il — Experimental Data and Results of Comparisons to the New Model 

Source Fish L D a Wo, Q s eS 
cm m cm rad/sec dyne/cm poise 

Coate [36] Crappie 20 46 1.10 2400 4.6 104 300 

Batzler and Goldfish U 6 0.51 5650 Si 6 x10 130 

Pickwell [15] Goldfish 6 6 0.44 6600 3.8 5 x104 160 
; Anchovy 11 6 0.40 8000 4.5 7 x104 130 

McCartney and Coalfish 30 10 Wee 4150 ileal 1.7x 10° 2600 

Stubbs [37] 20 1.08 5200 (1.7 1.9x 108 1750 
30 1.03 6000 2.5 1.7x 10° 1200 

Pollack 35 30 Uses} 4800 1.4 3.6 x 10° 2200 

40 1.09 5800 16} 6.1 10° 2600 

Ling 50 30 1.60 3150 225 3} S102 1500 

Cod 35 30 leo2 3500 2.0 1.6x 108 2000 

Sand and Cod 16 11 0.69 10700 1.0 3.8 x 10° 2500 

Hawkins [33] 25 0.58 g000. «1.3 2.8105 1000 
30 0.55 8800 1.6 2.1x105 830 

35 0.53 9900 2.2 3.3x 105 610 

40 Ori 10900 2s) 3.8x 105 540 

45 0.50 12000 3:2 5.1 10° 430 

50 0.48 12800 $)45) 4.7x* 10° 370 

Sundnes and Charr 40 2 0.95 3000 5x2 10¢ 240 

Sand [38] (Averages 6 0.87 4000 45 104 300 

for 5 10 0.80 4900 5.0 10¢ 280 

fish) 15 0.74 5800 6.1 108 220 
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Goldfish, anchovies, and charr are physostomes, that is, their swimbladders have an opening into their 

stomachs. Hence, based on consideration of equation II-115, it is to be expected that the tension in 

physostome swimbladders would be relatively low. The data show that this is so. The other fish are 

physoclists, that is, their swimbladders are completely closed. These fish may well obtain some benefit, either 

hydrostatic or otherwise, by maintaining a tension in the swimbladder wall. The data indicate that cod, ling, 

pollack, and coalfish maintained relatively high values of s. Physiologically, it should be possible for a 

physoclist to vary the tension in the swimbladder wall from very taut to flaccid. It appears that the crappie 

swimbladder was in a flaccid condition. 
Since physoclists probably can vary the tension in their swimbladders, any shock to their systems, such as 

a rapid increase in pressure, might cause the swimbladder tension to change dramatically. This seems to be 

the situation for the cod examined by Sand and Hawkins. This fish had been allowed to become adapted to a 

depth of 11 m for at least 48 hours. At this depth, its measured resonant frequency was several times higher 

than that of a bubble of the same presumed size and shape. This difference was attributed to a high 

swimbladder tension. Rapidly shifting this fish to a depth of 25 m significantly decreased the measured resonant 
frequency to a value only about 10 percent greater than that expected for a bubble of the same presumed size and 

shape. This ratio remained essentially constant as the fish was shifted in 5 m increments to 50 m. The 

decrease in w,,, as the fish was shifted from 11 m to 25 m is readily explained by the new model by a 

sudden decrease in s, which seems quite feasible from a physiological standpoint. 
Thus, the variations in the values of s calculated using the new model can be explained by the 

differences between physostomes and physoclists and by the ability of physoclists to vary swimbladder 

tension. Hence, the new model is an improvement over the models of Andreeva and Lebedeva. By using a 

variable swimbladder tension, rather than a fixed shear modulus, to model tissue stiffness, the new model 

can predict resonant frequencies significantly higher than those expected for a free bubble, whereas the 

other models cannot. 
As a practical matter, a parameter that can be randomly varied over several orders of magnitude is not 

very useful in a predictive model. However, the variations in tension indicated in Table II were obtained from 

fish which were subjected to other than natural conditions, such as rapid changes in depth. It is quite 

possible that, under more natural conditions, values of swimbladder tension would be much more uniform. 

Thus, it could very well be that further experiments, in which the experimental conditions more closely 
approximate natural conditions, could provide much information about swimbladder tension. This would 

enhance the value of the new model as a predictor of resonance in large physoclists. 

Although the variations in s can be adequately explained by variations in fish physiology, the uncertain 

variation of a with depth definitely causes some degree of variation ins. In order to calculate s, the difference 

between w,,,and W, for a bubble of the same assumed size and shape is required. Thus, the accuracy of the 

estimate of a greatly affects the accuracy of the calculated value of s. 
Sundnes and Sand measured the resonant frequencies of charr in order to determine their swimbladder 

volumes. In the case of these physostomes, this was a valid procedure. However, in the case of large 

physoclists, where swimbladder tension affects w,,,, this procedure would be invalid. Hence, experiments 
which might be designated to acoustically examine swimbladder tension require an accurate and 

independent measurement of swimbladder volume at depth. 
The values of € given in Table II are also grouped on the basis of the magnitude of swimbladder tension. 

For the cases where 

s < 105 dyne/cm, 

the values of — range from 130 to 300 poise, with the values being quite consistent for a particular set of data. 

For the cases where 

s > 2 x 105 dyne/cm, 

the values of E range from 370 to 2,600 poise, with wide variations within a particular set of data. Based on the 

consistent results obtained, and the reasonableness of their values, it appears that the new model can be 

used to predict the damping for the first group. However, the high values and variability of § in the second 

group must be examined more closely before any conclusion can be reached. 
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There are essentially two sources of the variations in the calculated values of € between the two groups 

and within the group where s> 2 x 10° dyne/cm. One source is the experimental data and the other is the 

model. The most likely, and probably greatest, source of error in the experimental data is the uncertainty in 

swimbladder volume. Since the calculated values of & are proportional to a2, an error in a can cause a large 

error in —. However, as mentioned earlier, the experimental data were examined assuming various 

swimbladder volume-depth relationships. None of these relationships produced consistent results or values 

as low as those obtained for the first group, although in some cases the variability was reduced. For example, 

if aconstant a=0.69 cm is assumed for the cod examined by Sand and Hawkins, & varies from 1,500 to 900 

poise as the depth increases from 25 to 50 m. This variation is smaller than that for the swimbladder-depth 

relationship which was utilized, but the values are still much higher than those of the first group and are by no 

means consistent. It is possible, though, that the cod-like fish, which have a well-developed muscle system, 

have an intrinsically higher tissue viscosity than fish such as goldfish or anchovies. 

At the beginning of this chapter, it was assumed that 

— < 2 x 10° poise 

and the equations were simplified accordingly. It might be suspected that this could be a source of error in the 

cases where & > 2 x 10% poise. However, the error caused by simplifying equations IIl-26 and III-34 to 

equations IV-1 and IV-2 is less than ten percent for values as high as & = 6 x 10° poise. Thus, the simplified 

equations are not a significant source of error. 
The other primary source of error is the model itself. Since it does not seem to be possible to attribute all 

the variations in & to the errors in the data, it appears that the remaining variations are due to inadequacies 

in the model. 

An examination of all the data in Table II indicates that € generally increases with s. There is no indication 

that this is so for the group of data for which s < 10°dyne/cm. However, there is definite correlation between s 
and &— when the two groups of data are compared. Also, despite the wide variations of € within the group of 

data for which s > 2 x 10° dyne/cm, there is a rough indication that € increases with s for this group of data. 

Thus, it appears that increasing tension in the swimbladder wall has little or no effect on & for s < 10° dyne/cm, 
but that it does cause E to increase for s > 2 x 10° dyne/cm. The apparent increase in viscosity with increasing 
tension in the swimbladder wall for s > 2 x 105dyne/cm would not be expected to occur in a Newtonian 

fluid. This indicates that modelling a fish as a Newtonian fluid may not be appropriate for s > 2 x 10° 
dyne/cm and that some type of non-Newtonian model, such as a dilatant or viscoelastic fluid, may be more 

appropriate. However, the present model is appropriate for s <10° dyne/cm. 
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CHAPTER V 

CONCLUSIONS 

The new model of a swimbladder-bearing fish as a viscous shell enclosing an air cavity with surface 

tension at the inner interface was developed because older models, of which Andreeva’s model [26] is mosi 

widely employed, do not accurately predict the results obtained in experiments on the characteristics of 
swimbladder resonance. The principal difference between the older models and the data is that the values 

of Q predicted by the models are always higher than those obtained experimentally. A second difference is 
that the older models can not account for the high resonant frequencies obtained for some large 
physoclisits. The new model sought to correct these differences by explicitly including the viscosity of fish 
tissue and by including a tension in the swimbladder wall. 

For convenience, the equations developed for the new model will be restated here: 

3YaPo 2s 
W 2a2 = —=— + SV ata) es 4 0 Da, Da (3y ) (V-1) 

2 

4nae(5) 

Pe eM NO TS (V-2) 
Wo? ( Wo? 2 ei (e+) | weH2 w? 

H = Wo Po;Cw (V-3) 
rad @2o,a ’ 

ye (V-4) 
Menaea 20o2Cp, \” ( 2s ) =i 

ian Siva) ( WK, +) as Po Wass ve 
Comparable equations for an air bubble in water are available at only w = W), where H = Q. The equations 

for o and Q obtained for the new model are essentially the same as those for an air bubble in water, the only 

significant difference being in the value of the viscosities of fish flesh and water. However, the equations for 

Wp for the new model and an air bubble in water for which viscosity and surface tension are included are not 

the same. If the viscosity of fish flesh were used in the equation obtained for an air bubble, w, could be zero 
or imaginary. However, for the new model, the effect of viscosity on w, was shown to be small enough to be 

neglected. 
Equations V-1 and V-2 are valid for an upper limit for § = 6 x 10° poise. If € > 6 x 10° poise, then the 

outer shell radius, b, appears in the o-equation. This implies that this is a boundary layer-type problem. 

Thus, if the fish flesh-water interface is outside the boundary layer, the magnitude of b is immaterial. 

All of the models are spherical in nature. However, the swimbladders of some fish are sufficiently 

elongated that their shapes can have a significant effect on w). Thus, equation V-1 should be modified to 

include this effect. Hence: 

and 

Wo2a2 = C[—*2 ow + = (3y, — 1) | : (V-6) 
f 

Although G was determined for a bubble in water, its use here is quite reasonable, especially when the 

similarity between the equations for a bubble and the new model are considered. 
Several other conclusions can be reached for the new model. One is that, for the ratios of outside to 

inside shell diameters considered, the actual value of the outside diameter has no effect on the results. 

Another is that thermal losses are not very significant and, in most cases, can be neglected. A third is that, 

for low values of H, (W./wH)? can be comparable to [(w,2/w?) — 1]? at off-resonant frequencies. Hence, 

considering the experimental values of Q obtained, it is apparent that H, rather than Q, should be used to 

calculate o. 
A comparison of the new model with available experimental data indicates that the new model 

constitutes a definite improvement over previous models. The new model can predict low values of Q and 
elevated values of wy which the previous models could not. In addition, the new model can be used to 

obtain the magnitude of damping at any frequency, whereas many previous models only produced the 

value at resonance. 
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The comparison of the new model with experimental data indicates that the model is most accurate for 

fish in which s < 105 dyne/cm. Table II indicates that this includes physostomes up to at least 40 cm in 

length. In addition, Appendix A indicates that small physoclists, 10 cm or less in length, are also included 

in this group. Most of the fish found in deep scattering layers are smaller than 10 cm and none have the well 

developed musculature of fish such as cod. Thus, it appears that the new model will be of considerable 

value in studies of volume reverberation. Table II indicates that a value of & of approximately 200 poise is 

appropriate for these studies. 

The variations in s and & required to match the values calculated using the new model to the 

experimental data for large physoclists indicate that the new model is not completely adequate for these 

fish. Even so, the new model is still better than previous models and, as such, is of some value in studies of 

resonance of large physoclists. Table II indicates that values of s = 10° dyne/cm and 10 poise < — $2 10 
poise should give reasonable results for these studies. 

The new model introduces two new parameters, & and s. Few measurements of these parameters exist 

and those that do vary widely. The accuracy of the new model could be determined with much more 

confidence if better information on & and s were available. In addition, the variations of swimbladder volume 

with depth for different fish species are required for all models. Hence, further experiments to determine s. 

€, and swimbladder size and shape versus depth are recommended. This recommendation is made with 

the realization that the complexities involved in these experiments will be significant. 
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APPENDIX A 

PHYSICAL PROPERTIES OF FISH 

Several of the physical properties of fish flesh which must be known for this study have not been 

accurately measured. In this appendix, the available data will be discussed and, where necessary, 

appropriate approximations determined. Properties which must be specified include compressional wave 

velocity (or sound velocity), c,; density, Qo,; specific heat at constant pressure, c,,; ratio of specific heats, y;; 

thermal conductivity, K; shear viscosity, ne: and bulk viscosity, Ne In addition, the ratio of swimbladder 

volume to total fish volume and the surface tension, s, at the air-fish flesh interface must be determined. 
Experimental evidence indicates that swimbladder volumes of small mid-water fishes range from about 

0.5 to 5 percent of the total fish volume [32]. For larger, near surface marine fishes, swimbladder volumes 

are about 4 to 5 percent of the total fish volume [A1]. For small fish, the ratio of outer radius, b, to inner 

radius, a, of the fish flesh shell is chosen to be 2.5 Sb/a $6, which corresponds to swimbladder percentage 

volumes of about 6 to 0.5 percent. For large fish, b/a is chosen to be 2.5 <b/a $3.2, which corresponds to 
swimbladder percentage volumes of about 6 to 3 percent. The fish size range of interest is about 1 cm to 1m, 

which roughly corresponds to 0.1cm <a S$ 5cm (82, A2, A3]. 
The acoustic properties of fish flesh have been measured by several researchers [31, A1, A4-A6]. 

Experimental values of density range from about 1.02 to 1.09 gm/cm’, with an average of about 1.05 

gm/cm%. Experimental sound velocities range from about 1.50 x 105 to 1.60 x 105 cm/sec, with an average 

of 1.55 x 105 cm/sec. The average values are used in this report. 

Measurements on the thermal properties of fish flesh are not available. However, data on the thermal 

conductivity and specific heat at constant pressure of human and dog tissue do exist [A-7]. These data 

provide sufficiently close approximations to the required values. Thus, for fish tissue 

a Cal 
C,, = 0.89 gm°C 

and | 
Kalo 20X 10-24 _. 

u cm sec °C 

These values are quite close to those for sea water of 35 parts per thousand salinity, which are [45] 

cal 
Cow = 0.93 =—5 

and i ginie 

Ky = 1.34 x 10-9 __. 
cm sec °C 

Also for sea water [45], 

Vw 2 1.01. 

Thus, it will be assumed that, since other thermal properties of flesh and sea water are very similar, 

y, ~ 1.01. 

Both the shear viscosity, n,,, and the bulk viscosity, n,,, are required for the present model. However, for 
convenience, a viscosity parameter, &, will be defined as 

& = 4/3 ng + Ny - (A-1) 

The ratio, n,/n,, for animal tissue is similar to that for water, which is approximately 3 [A8, A9]. Thus, 

& RAS Ney ¥ 1.4 Noy - (A-2) 

Only one set of data on the viscosity of animal tissue is available. However, other data exist from which 

tissue viscosity can be determined indirectly. These data are measurements of absorption, complex shear 

modulus, and cell viscosity of animal tissue. In all cases it will be assumed that the viscosity of all animal 
flesh is approximately equal. 

The direct measurements of viscosity were performed on mammalian tissue [A10]. n.,, was determined 
by four different methods. The results ranged from 100 to 420 poise, with an average value of 175 poise. 

Thus the values for & range from 430 to 1800 poise, with an average value of 760 poise. 
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Viscosity can be determined from measurements of absorption of sound by utilizing the equation [A111]: 

2P,c3a g = =P (A-3) 
where a is the absorption and w the circular frequency. Many measurements of absorption in tissue have 

been made at high frequencies. However, tissue exhibits relaxation phenomena at high frequencies so that 
viscosities at frequencies above relaxation cannot be directly related to those below and can be used only 

as lower limits. It has been found that for muscle, n, relaxes near 400 kHz and n, relaxes near 40 kHz 

[A12]. Only one set of absorption measurements has been conducted below the Megahertz range. These 

measurements were made at 300 to 350 kHz [A13]. Utilizing equation A-3, & was calculated from these data 

to range from 30 to 220 poise, with an average value of 130 poise. However, n, has already relaxed at the 

measurement frequencies, so that its contribution to the absorption is unknown. Thus, equation A-3 

provides a lower limit to €&. An upper limit can be determined for & if it is assumed that the absorption is due 

solely to n,. Then, at lower frequencies, & would range from 130 to 950 poise, with an average value of 580 
poise. Thus, from the absorption measurements: 

30 poise < &€ < 950 poise. 

Viscosity can also be estimated from measurements of complex shear modulus by utilizing the equation 
[AQ]: 

_ 
AE ger (A-4) 

where u, is the imaginary part of the complex shear modulus. One set of measurements of the complex 

shear modulus of fish tissue has been made from about 2 to 14 kHz [27]. Utilizing equations A-4 and A-1, & 

was calculated from these data to range from about 4 to 90 poise, with an average value of 28 poise. 
The viscosity of animal tissue can also be estimated from the viscosity of animal cells if it is assumed 

that the tissue viscosity is equivalent to the cell viscosity. Separate measurements have been made on the 

viscosities of both cell protoplasm and membrane. Thus, to estimate the viscosity of the complete cell, a 

geometric average of the membrane and protoplasmic viscosities is calculated based on the proportional 

thicknesses of membrane and protoplasm. The equation used to calculate cell viscosity is 

ae ce Sp Gm lig (A-5) 
where €,, & and €,, are the viscosity parameters of the cell, protoplasm and membrane, respectively, and a 

and b are the inner and outer membrane radii. Cell radii range from 2 x 10-4 to 15 x 10-4 cm and cell 

membranes are 75 x 10-8 to 10-6 cm thick [A14]. Thus 

5 x 10-4 < 2-8 <5 x 10-3, 
and a/b 1. Measurements have been made on n, of protoplasm and n, of membranes. For protoplasm, n, 

was found to range from 4 x 10-2 to3 x 10-1 poise [A15]. For membranes, n, was found to range from 2.7 

x 10’ to 2.7 x 108 poise [A16]. Therefore, utilizing equations A-2 and A-5, 

60 poise < € < 1,600 poise. 

This estimate is probably subject to the greatest error of the three indirect estimates of viscosity due to all 
the assumptions required. 

Summarizing the ranges of & determined by the various methods in their probable order of accuracy: 

direct measurement, 

430 poise < & S 1,800 poise; 

absorption, 

30 poise < € < 950 poise; 

complex shear modulus, 

4 poise < & < 90 poise; 

cell viscosity, 

60 poise < & < 1,600 poise. 
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The total range of data is 

4 poise < € < 1,800 poise. 

Thus, for this study, limits of 

1 poise < & < 10% poise 

will be used, with a more likely range being 

50 poise < & < 2 x 10° poise. 

The swimbladder wall of a fish is a membrane which is capable of supporting tension. In the present 

model, the swimbladder wall has zero thickness, so that the tension in the membrane is effectively a surface 

tension. Measurements of the internal swimbladder pressure can be used to calculate surface tension 

since 

AP = (2s/a), (5) 
where AP is the difference between the internal swimbladder pressure and the ambient pressure [50]. 

Several researchers have measured internal swimbladder pressures, but since it is probable that a fish can 

control the tension in the swimbladder wall, only measurements on live, unanesthetized, fish are 

considered. Excess internal pressures from 2 x 104 to 6 x 10° dynes/cm? have been measured in fishes 

which were 2 to 20 cm long [A17]. These results correspond to surface tensions of 6 x 10° to 7 x 10* 

dyne/cm for fish with swimbladder radii of about 0.1 to 1.0 cm. The majority of these fish were less than 10 

cm long with swimbladder radii less than 0.5 cm. 

Surface tension is probably a function of fish size, so that measurements on larger fish are needed for 

the present study. No measurements of excess pressure of larger, unanesthetized fish are available. 

However, another means can be used to estimate the upper limits of surface tension in larger fishes. As 

discussed in the text, Sand and Hawkins have attributed high experimental resonant frequencies to 

swimbladder tension [33]. If this is true, then an upper limit of surface tension can be calculated by 

assuming that the fish is a free bubble with surface tension and utilizing equation I-12, neglecting viscosity, 

and equation I-25 to account for spheriodal swimbladder shapes. Although this method does not 

necessarily give accurate estimates of surface tension, it does produce values which can be used as upper 

limits. These limits are useful because it is the possible range of surface tension that is required. Surface 

tensions calculated from resonance measurements range from about 10° to 10° dyne/cm for swimbladder 

radii from 1 to 2.5 cm [33,37]. 
The surface tension of an air bubble in water is 74 dyne/cm [50]. Hence, the range of surface tension for 

small swimbladders (as 0.1 cm) is chosen to be 

10? dyne/cm <s <= 10® dyne/cm. 

For larger swimbladders (a& 5 cm) the range is chosen to be 

102 dyne/em £s ¥ 109 dyne/cm. 
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APPENDIX B 

SIMPLIFIED EXPRESSION FOR (Bw/A) 

Simplification of (B,,/A) as given in equation III-16 is based on the ranges of physical properties and the 
limits of the variables given in Chapter II. 

The first step in the simplification of equation III-16 is the simplification of the spherical Bessel, 

Neumann, and Hankel functions in the S,'s. In the k,,a terms: 

, sin(k,,a) 
jo(ki.€), = (aca (B-1) 

and 
—, _ cos(k,.a) sin(k,.a) 
Jo'(K1,8) = sea a ae (B-2) 

Now, if 

sin(k,,a) = sin[(1+i) xa] , (B-3) 

then 

sin(k,,a) = sin(xa)cosh(xa) — i sinh(xa)cos(xa) (B-4) 

Similarly, 

cos(k,,a) = cos(xa)cosh(xa) — i sin(xa)sinh(xa) . (B-5) 

An examination of the parameters involved shows that xa > 10, so that, 

cosh(xa) % sinh(xa) 2 = (B-6) 

and 

sin(k,,a) = i cos(k,,a) . (B-7) 

Thus, 

Hes) =e Ee) 
and ie 

ae any 1 
Jo'(Ki,8) = —Jo(K:.8) ft ea | (B-9) 

One of the assumptions in the model is that the shell is small compared to the wavelength of the incident 
compressional wave. This means that k,,,b, k,,b, and k,,a are small. The definition of “small” will now be 
determined by examining the expansions for spherical functions of small argument: 

jo(z) = (1-2+....), Bio 

jo'(2) = -2 (0-34...) a 

jo"(2) = — (1 -e.. ) (B-12) 

no(z) = -2(1 -3 4... ) (B-13) 

no'(2) =se (1+ -....), coe 

noi(z)= — 2 (1 to), Bee 
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hoz) = (1-2+...)-£(1-3+... i (B-16) 

ho'(2) = -> (1-24... js5(1+3-... ). (B-17) 

” 1 322 2i z4 
het(z)=-4 (1-324...) -8 (+2-... ). (B-18) 

In order to limit errors in these functions to under ten percent, it must be assumed that 

eae nen (B-19) 

Oa Ona (B-20) 
and 

Keseae 6 10e! (B-21) 

This implies that in fish flesh and water 

wb < 7 x 104 cm/sec (B-22) 

and in air 

wa < 2.4 x 104 cm/sec . (B-23) 

Then with these limitations and the acceptance of at most a ten percent error, equations B-10 through B-18 

can be written as: 

ete (B-24) 
jo'(2) = -, (B-25) 

Jo (Z) = -4, (B-26) 

no(z) = -—>, (B-27) 
no'(z) = > . (B-28) 

no"(z) = -£ (B-29) 

ho(z) = 1 -+, (B-30) 

ho'(z) = -Z+4 . (B-31) 

ho"(Z) = _ -4 (B-32) 

It is necessary to keep both the largest real and largest imaginary term in the spherical Hankel function 

expansions, regardless of their comparative magnitudes. 

Equations B-24 through B-32 will now be utilized to simplify equations IIl-2 through III-15. In addition, 

equations II-59, II-60, II-68, and II-69, will be substituted for k,., kz,, k.,, and k,,,. These substitutions yield, 
after neglecting any term which causes an error of less than ten percent, the following expressions for the 

S,'s: 
F , 

S., w2b ick 

 Bpo,Gu? Pog DBE a 
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Pe 
(B-34) Sa aa 3Po,C/? 

a YSU SS eeey 
sae 

w2b 
rhs ee 

(B-36) 
iu 

(B-37) Sa = = + Ob 

iwe 

; 

ara ae 

(B-38) 

fs 3&2 2iE 
B-39 S23 =e (ais) [1 iy Po262b2 * Po, Wb2 | : 

(B-40) a> > 1 ’ 

Ss w2a 

au 
ae 3PoC 

¢, 3iEw 

F 

: an 

(B-42) Soo = (tesa ) ( 2 PoC? ) 

aie 

Yo 

(B-43) S34 ~ 3p,,c2 7 | seh (ome 3) Ma )(2p,,6 3) 

ee iwe 

(B-44) 22 3Po,C; 

C; 3&? 25 | 
: 

S43 = - (ar) } lpetctay Po, Wa? ; 
wie 

2s 2s(va—1) ] (_@K._)" Se Wp tarrcea Aoeacccee ll Seay) 

alata) (fan CH 26, zi) [ Wrioee = ba ann Obs . le oot 
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Substitution of equations B-33, B-36, B-37 and B-40 into III-16 yields: 

- (5) veiw 
By 

3Poy Cw? 

AG a ; 7 , (B-47) 
A W2b  ~— icy u— —1-21]w 

SPoyCw2 — Poy Wb? wb 

or 

Be =i ; 

A Y-zZ ti 

where 

v= (a=. uw (B-49) 
3 Poy Cw? 

and 

z= (4 )E (ste) e-w ] (B-50) 

The remainder of the simplification process for equation III-16 will be conducted in several steps. In each 

step, the order of magnitude of the various terms will be compared and terms which cause an error of less than 

ten percent will be neglected. This procedure will be done in such a way that no term is neglected which could 
become important due to a later subtraction. It should be mentioned that most of the terms which are 

neglected result in errors of much less than ten percent and in those cases where the errors approach ten 

percent, that error is approached only at the limiting values of the terms involved. In order that the 

simplification process can be checked by the interested reader, the results of each step will be given, rather 

than just the final result. 
The next step is to simplify the terms in the parentheses in equations IIl-17 and III-18. The results are 

) ; (B-51) _ Cy ig 4a3 
$22833 — So3S32 = i=) = (ha) ( 11+ 3 

S23S42 7 S22S43 = 

(Gas) sos) sop ien) et) omen) lig 
(B-52) 

a wb _ 2) _ | (__w?&b_) (4 
$3832 _ $12833 a (aera ) (1 =) ! ease ) ( b3 ) " 

(B-53) 

and 

CS ee Oa oe _ wb ae _@&*b 42943 13942 = (Gamer ) (ferscaas ) 

- Cy iE Abs (B-54) 
( Po, Wb? ) (once) Gh Tas ) 

The next apparent step would be io simplify the expressions for U and W. This, however, can lead to errors 

when the subtractions indicated for Y and Z are made. Hence, the next step is to simplify Y and (Y-Z). Before 

writing the simplified expressions for Y and (Y-Z), several intermediate steps will be given in order to assist the 

interested reader in checking the final expressions. 
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Substitution of equations B-43, B-46, B-51, and B-52 into III-17 yields: 

C; 2s 2sc,(Y,— 1) 
= — (—+_) (1 - ———— )+ 

" ( p,008?) ( 3Po,Ca°a ) Po; Poala “Bo, c.20Fa | (enaon Cy, . 

wesc] [+ GE) Gem)” | (01-44) 6 Po;2C;P0,Ca2Cp, a? wa? Po, WK, b3 

C; wa ek 11wW& ass 

(5,,0,7a) ( 3 )(1 Bh Speer ( i a) 

a7 emai we ave | WK, —) Picea ia + a- 0 (get—)'(1-8) - [se] (ae) (er) 

a a WK, VC mace 
3Po)2C;2a? 2P0,Cp, bs ) 

3 ( 2s 4a3 
+ = — ee 

W(eayccee ) a) (11 "TE ) 

ah &s(Ya— 1) Oia Niaitfay) oe 
Tere ( Spee) ( bs ) 

4 Pete [1+ = )( Cpa )" 
PoaCa? Po;Cp, iPorcs205.c,2a2 wa2 20 ,WK, 

‘ (or 2& ) ( -=) 2 WK, \% es 

an (saa ) ( 3P,a i be J War!) ae! (1 b ) 

[eae] ( WK, )*( as ) —— = | ——— 
Po, a? 2PoaCpa b° 

11€2(y, — 1) ae + —_—_— - 

3Po,2C;2a2 eran | ores Cpa is @ bs ) e522) 

Substitution of equations B-43, B-46, B-53, and B-54 into IIl-18 yields: 

rat wb _ a = “4 2s 2s(Y,—1) WK, Ye 

ae (Sp.28 ) (1 o ) | ( 3Po,Ca7a ) * bpp,0.208 ( 2Po2Cpa ) 

_3w?EK, (V2 — 1) dS] [1 ( ) ( Coa Ni ] 
2precs2pnceen 20o,C;2C,, wa2 229, WKa 

w w2b w?E&2b ca 
oe ——— ah | ee 
( o.02) ( Po Cy ) ( 3Po,3C,3a2 ) ( 3P,b2 ) 

wb(Y.— “1 WK, ) 
3PoCa 2PoaCpa 

w&b(y,— 1) ain tye | ( WK, y 

Po Pc sas Sorat (Gere =) Po, wb? 2P0.Cpa 
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- beter GE) 01+) | 

ee ea 
3&s(Ya— 1) i= " 

Po,Ca? PoC? a? 2Po2Cpa 

Va 

+e (GSS) [1+ (Ger) (tr) ] | 

aBa) | Gost) (0S) ERS) 
ste) ee ee 
6 Po,2C;b2 2052p. PoPc3as 20o.Co. 

_ pclya—1) (ses ) B-56 
“Po, Wb? = 2o,Cp, | ; { 

Substitution of equations B-55 and B-56 into B-49 yields: 

__ Pogla2we;b pees wc;b aie (Po.Ca2)Y¥ = eae) (1 TRE, * (5...) Gs ) 

+ 

(gnceee ro 2s re ay _ wb in wea 

3Po,2C,a? ) ( oe) ( a) (ara ) ( zp,08) 

+ 

11&? wb , ay (_&o*b % c(¥2— 1) WK, ig 

(arp nc.t. ea ) ( bs ) (ap,sasa ) [ Po, b? ] race ) 

V2 2c,sb(y,—1) WK, Ye a w2c,b(Y, — 1) WK, el 

RT (orace) [ SPowCw2a | (Ga) ( D) 

a 

=) ( WK, Ye ay web(y, — 1) wk, \” 

3Po?C,a4 soe) ( bs ) SPo,Ca \ Gexes, 

= Ye 4a3 

opened] [1 > (BE) (ete) ]) 18 Powlw? Po)? CC, a? wa? 2 Po, WK, bs 
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2&c.C (Ya — 1) ( OK, ) (1- 110& ) peste ene ee 
W*Po,,P,a°D* 2P0.Cpa BPC? 

+i(e)[ (S82) (- mez) -'] 

11&°¢y © [SvG(¥a — 1) | WK, \” 2s 
iis ( 9Po,Po,°Ca°*b* ) es WPp,,ab? laZe ) (1 . Po,w°a? ) 

2&c,,C,(Ya— 1) ( WK, Ne 4 — 1108 
WP oy Poj°D 2Po.Cpa ( BPo,C\" ) (B-61) 

Then a comparison of all terms in equation B-61 yields: 

( Po;Po,Ca2 )z ( 2Ec, ) Cw Po(Y ma) (ie ) 2s ote z= - Ger) -E SIG) (1 + se) 
Cc; 3WPpo,,a2b2 apReab= auch BA Po, W2as 

Cw Poy (Pu Pole) (1 - 2s )-1] 

= Uae Spee) [ Po, W2 ae 3Po,Ca7a 

; WAZo, 5 POH Wa = 1) WK, ve 2s 

ee 9 Poy Po, Ci2a2b? )+ ; WP,,ab? (caren ) (' a Po, W?as ) * (B-62) 

Examination of equations B-60 and B-62 shows that all the viscothermal terms are negligible. 

Subtraction of equation B-62 from B-60 and a subsequent comparison of terms yields: 

Po; PoaCa? , fa ( wa ZEGH 
( Ci )(v Z) z a) ieara sae) 

3Po,C KAS 2s 

Pow @)?a2 ee Ce Coa )" (1 ss Fate) 

; Gn 3P,Ca? = 2s i 2 lathes ) 

+i Gone) [( w? a? )(3 CALY, pe Gree ] eee) 

Equation II|-32 indicates that | By, leis required to determine o. This implies, from equation B-48, that | Y k 

is required. If 

Ve ig ae ING (B-64) ’ 

then 

lyl2 =Y2 + Y2, (B-65) 

where Y, and Y, are the real and imaginary parts of Y, respectively. Thus, in light of equation B-65, itis possible 

to simplify equation B-60 by comparing magnitudes of real and imaginary terms. This comparison yields: 

(Fe )y i = ) [ aN ey I (B-66) 
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where 

Nee Pascua hin) (8-67) 
PoP C4 a8 9PowCw? 

and 

_ 2wé&b3 PoCe (Por? aa) (=) 8-68 

a ( 3Po,C2.a? ) [ ( PowCw? ') a x 4 b3 | : ( ) 

This set of equations does not give Y,, and therefore B,, to the desired accuracy of ten percent, but it is 

sufficiently accurate in the final answer for | Be lz 

Thus, the simplification process of equation III-16 yields: 

By id 1 2ECy 

3PoCw(Ya— 1] Ka ) ( 2s 

i [ Po,, 0? a? (s5.-85 wi Po, Was ) 

Weis 3P,Cq? eS meeak= ] I +i (—Stt —— aa lee == , 
(car ) [ (a7) ( TRC) : (cers, (B-69) 

where A and 2d are given by equations B-67 and B-68. 
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