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PREFACE. 

IN  publishing  the  following  work  my  principal 

intention  is  to  explain  difficulties  which  may  be 

encountered  by  the  student  on  first  reading  the 

Principia,  and  to  illustrate  the  advantages  of  a 

careful  study  of  the  methods  employed  by  Newton, 

by  shewing  the  extent  to  which  they  may  be 

applied  in  the  solution  of  problems.  I  have  also 

endeavoured  to  give  assistance  to  the  student  who 

is  engaged  in  the  study  of  the  higher  branches  of 

Mathematics,  by  representing  in  a  geometrical  form 

several  of  the  processes  employed  in  the  Differential 

and  Integral  Calculus,  and  in  the  analytical  investi- 

gations of  Dynamics. 

In  my  version  of  the  first  section  and  the  begin- 
ning of  the  second  I  have  adhered  as  closely  as 

I  could  to  the  original  form;  and,  in  the  cases 

in  which  sections  have  been  interpolated,  or  the 

form  of  demonstration  changed,  I  have  indicated  such 

changes  and  interpolations  by  brackets. 
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It  is  generally  advisable  not  to  deviate  from 

Newton's  words  in  the  demonstrations  of  the 

Lemmas ;  but  in  many  cases,  I  suppose  purposely, 

lie  expressed  himself  very  concisely,  as  in  Lemmas 

iv.  and  x.,  and  he  was  contented  with  simply  giving 

the  enunciation  of  Lemma  v. ;  therefore  in  these  cases 

interpolations  have  been  made  which,  I  believe,  are 

in  accordance  with  Newton's  plan  of  demonstration. 
Throughout  the  Problems  and  Theorems  which 

depend  upon  the  sixth  proposition,  the  variations  are 

replaced  by  equations.  By  this  method  of  treating 

the  subject  I  conceive  that  clearer  ideas  of  the 

meaning  of  each  step  are  obtained  by  the  student. 
In  this  edition  I  have  introduced  some  notes  on 

the  geometrical  solution  of  some  problems  relating 

to  maxima  and  minima,  and  I  have  placed  the 

investigations  of  the  properties  of  the  curves,  which, 

after  the  conic  sections,  are  the  best  examples  for 

illustrating  geometrical  methods,  in  a  more  pro- 

minent position,  at  the  end  of  the  first  section. 

I  have  derived  great  assistance  in  the  preparation 

of  my  notes  from  the  study  of  WhewelPs  Method 

of  Limits,  and  from  several  early  editions  of  Newton, 

especially  that  of  Carr. 

With  respect  to  the  three  Laws  of  Motion,  I  may 

remark  that  I  have  not  commenced  the  work  by 

enunciating  and  making  observations  upon  them, 

partly  because  I  should  only  have  been  repeating 



PREFACE.  Vii 

what  has  been  said  so  well  by  Thompson,  Tait, 

and  Maxwell,  whose  works  are  in  everybody's  hands, 
and  partly  because  in  the  course  of  reading  recom- 

mended to  students,  for  whose  benefit  my  work 

was  especially  intended,  those  laws  will  have  been 

already  discussed  in  the  elementary  treatises  on 

Dynamics. 

The  Problems  are  principally  selected  from  the 

papers  set  in  the  Mathematical  Tripos,  and  in  the 

course  of  the  College  Examinations,  and  I  have 

generally  divided  them  into  two  portions,  the 

first  of  which  contains  those  problems  which  are 

capable  of  solution  by  more  direct  applications  of 

the  propositions  which  they  illustrate,  and  are 

within  the  powers  of  a  larger  number  of  students 

In  both  portions  I  have  been  careful  to  introduce 

very  few  problems  which  are  not  capable  of  solution 

by  methods  given  in  the  work. 

At  the  end  of  the  work  I  have  given  hints  for 

the  solution,  and  in  many  cases  complete  solutions, 

of  the  problems ;  and  in  doing  so  I  am  acting  in 

direct  opposition  to  my  previously  expressed  opinion, 

but  additional  experience  of  fifteen  years  has  shewn 
me  that  it  a  satisfaction  to  a  student  who  has  not 

been  able  to  solve  a  problem  to  see  a  solution  of 

it;  and,  even  when  he  has  been  successful,  to 

compare  his  solution  with  that  of  an  older  hand. 

The  principal  objection  to  the  publication  of  solutions 



viii  PREFACE. 

is  that  they  are  frequently  referred  to  prematurely; 

but  a  wise  student  will  treat  them  only  as  a  dernier 
ressort. 

In  solving  the  Problems  I  have  noticed  two  errors 
which  should  be  corrected  as  follows : 

XIII.  13   half  the  chord. . .  .is  the  harmonic  mean,  &c. 

XXVIII.  6   velocity  in  a  circle  whose  radius  is  the  length 
of  the  unstretched  string,  &c. 

Two  sets  of  Problems  have  been  numbered 

XXVII.,  the  second  is  written  XXVII.  Us  in  the 
Solutions. 

I  take  this  opportunity  to  express  my  thanks 

to  Mr.  Steam,  of  King's  College,  for  his  kindness 
in  correcting  the  errors  of  the  press  and  for  many 

valuable  suggestions. 

PERCIVAL  FROST. 

CAMBRIDGE, 

February,  187-8* 
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NEWTON'S   FIRST   BOOK 
CONCERNING  THE  MOTION   OF  BODIES. 

SECTION  L 

ON  THE  METHOD  OF  PRIME  AND  ULTIMATE  RATIOS- 

LEMMA    I. 

Quantities -,  and  the  ratio  of  quantities,  tohich,  in  any  finite 
time,  tend  constantly  to  equality,  and  which,  before  the 
end  of  that  time,  approach  nearer  to  each  other  than  by 
any  assigned  difference,  become  ultimately  equal. 

If  not,  let  them  become  ultimately  unequal,  and  let  their 
ultimate  difference  be  D.  Hence  [since,  throughout 
the  time,  they  tend  constantly  to  equality],  they 
cannot  approach  nearer  to  each  other  than  by  the 
difference  D,  contrary  to  the  hypothesis  [that  they 
approach  nearer  than  by  any  assigned  difference. 
Therefore,  they  do  not  become  ultimately  unequal, 
that  is,  they  become  ultimately  equal]. 

Variable   Quantities. 

1.  The  Quantities,  of  which  Newton  treats  in  this  Lemma, 

are  variable  magnitudes,  described  by  a  supposed  law  of  con- 
struction, the  variation  of  these  magnitudes  being  due  to  the 

arbitrary  progressive  change  of  some  element  of  the  construc- 
tion employed  in  the  statement  of  the  law. 

When,  in  the  progressive  change  of  this  element,  it  receives 
the  last  value  which  is  assigned  to  it  in  any  proposition,  the 
hypothesis  is  said  to  arrive  at  its  ultimate  form,  or  to  be 
indefinitely  extended. 

B 
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Thus,  let  ABP  be  a  semicircle,  A  CB  its  diameter,  BP  any 
tire,  PM  the  ordinate  perpendicular  to  ACB,  then,  as  the  arc 

BP  gradually  diminishes,  AM  is  a  variable  magnitude,  con- 
tinually increasing,  and  BP  is  the  element  of  the  construction, 

to  the  arbitrary  change  of  which  the  variation  of  A M  is  due ; 
and  if  BP  may  be  made  as  small  as  we  please,  AM  may  be 
made  to  approach  to  AB  nearer  than  by  any  difference  that  can 
be  named,  and  the  hypothesis  approaches  its  ultimate  form. 

Again,  if  ABC  be  a  triangle,  and  AB  be  divided  into  a 

number  of  equal  portions,  Aa,  ah,  Z>c, ...,  and  a  series  of  parallelo- 
grams be  inscribed  upon  those  bases,  whose  sides  #«,  &/3,  07,  ... 

are  parallel  to  BG  and  terminated  in  AC,  the  sum  of  the  areas 

of  the  parallelograms  will  be  a  variable  magnitude,  defined  by 
that  construction,  and  changing  in  a  progressive  manner,  if  the 

cu 

number  of  parts  into  which  AB  is  divided  be  continually 
increased.  In  this  case  the  number  of  parts  is  the  variable 
element  of  the  construction.  In  the  ultimate  form  of  the 

hypothesis,  it  will  be  shewn,  Lemma  IT.,  that  the  sum  of  the 
parallelograms  is  the  area  of  the  triangle  when  the  number 
is  increased  indefinitely. 

2.    The  variation  of  a  magnitude  is  continuous^  when  in  the 

passage  from  any  one  value  to  any  other,  throughout  its  change, 
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it  receives  every  intermediate  value,  without  becoming  infinite,. 
When  this  is  not  the  case,  the  variation  is  discontinuous* 

According  to  the  hypothesis  in  the  last  illustration,  the 
number  of  parts  into  which  AB  is  divided  being  exact,  the 
magnitude  varies  discontinuously,  i.e.  the  sum  of  the  areas  does 
not  pass  through  all  the  intermediate  values  between  any  two, 
states  of  the  progress. 

If  the  hypothesis  be  changed,  equal  portions  being  set  off- 
commencing  from  B,  and  Aa  remaining  over  and  above  after 

ba,  the  last  of  the  portions  for  which  there  is  room,  these  equaj. 
portions  could  be  made  to  diminish  gradually,  and  the  sum  of 
the  areas  would  in  that  case  vary  continuously. 

Tendency  to  Equality. 

3.  Quantities  are  ultimately  equal,  when  they  are  ultimately 
|n  a  ratio  of  equality, 

4.  Quantities,  which   always  remain  finite,  throughout  the. 
change  of  the  hypothesis  by   which  they  are   described,  tend 

continually  to  equality,  when  their  difference  continually  dimi- 
nishes. 

Thus,  in  fig.  1,  page  2,  let  BQ  be  an  arc,  always  in  a  given 
ratio  to  BP,  and  let  QN  be  the  corresponding  ordinate ;  as 
]3P  continually  diminishes,  AM  and  AN  remain  finite,  and, 

since  their  difference  continually  diminishes,  they  tend  con- 
tinually to  equality. 

5.  Quantities,  which  may  become  indefinitely  small,  or  in- 
definitely great,  as  the  hypothesis  is  indefinitely  extended,  tend 

continually  to  equality,   when  the  ratio   of  their  difference  to, 
either  of  them  continually  diminishes, 

To  illustrate  this  test  of   a   tendency   to    equality,   let   us 

suppose,  in  fig.  1,  page  2,  that  the  arc  BP  is  double  of  the  arc 

-,  then,  since  (chdPPf  =  AB.BM,  and  (vMBQ)*  =  A 

BM  :  BN::  (chd£Pj2  :.  (chd#<3)2 

: :  (arcBPy  :  (arc^)2  : :  4  :  1  ultimately, 
,%  MN :  BN : :  3  :  1  ultimately  j 
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hence,  we  observe  that  BM  and  BN  have  a  difference,  which 
tends  continually  to  become  3BN,  the  ratio  of  which  to  either 
is  finite,  so  that,  although  both  tend  to  become  indefinitely 
small  as  the  hypothesis  tends  to  its  ultimate  form,  BM  and 

.BAT"  do  not  satisfy  the  condition  requisite  for  a  tendency  to 
equality. 

Observations  on  the  Lemma. 

6.  We  will  now  proceed  to  examine  the  force  of  the  other 
important  terms  employed  in  the  statement  of  the  first  Lemma. 

The  expression  "  in  any  finite  time  "  (tempore  quovis  finito), 
signifies  what  has  been  called  the  indefinite  extension  of  the 

hypothesis  from  some  definite  state  to  its  ultimate  form.* 
The  law  of  the  variation  of  the  magnitudes  under  considera- 

tion is  obtained  by  the  examination  of  their  construction  while 
the  element,  to  which  the  change  is  due,  is  at  a  finite  distance 
from  its  final  value,  and  the  finite  time  is  the  supposed  time 
occupied  in  the  passage  from  this  definite  to  the  ultimate  state. 

In  the  first  illustration,  Art.  1,  it  denotes  the  progressive 
diminution  of  BP,  from  being  a  finite  magnitude  to  the  point 
of  evanescence. 

In  the  second,  the  progress  from  any  finite  number  of  equal 
portions  to  an  indefinite  number. 

7.  The  expression  "  which  constantly  tend  "  (quae  constanter 
tendunt)   signifies  that,  from  the   commencement  of  the  finite 

time  to  the  limit  of  the  extension  of  the  hypothesis,  the  dif- 
ferences continually  diminish. 

To  illustrate  this  mode  of  expression,  let  BC  be  a  quadrant 

*  WhewcU'a  Doctrine  of  Limits. 
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of  a  circle  whose  bounding  radii  are  OB,  OC,  and  let  BDA 
be  a  straight  line  cutting  the  arc  BDG  and  the  radius  OC  in 

D  and  A,  and  let  OP  be  a  radius  jrevolving  from  OC  to  OB, 
and  cutting  BA  in  Q,  E  the  point  of  bisection  of  the  arc  BD. 

OP  and  OQ  twice  tend  to  equality,  viz.  from  OC  to  OD 
and  from  OE  to  OB,  and  once  from  equality  from  OD  to 

OE]  it  is  only  from  OE  to  O#  that  OP"  and  OQ"  tend  to 
equality  constantly  during  the  progress,  and  it  is  from  some 
position  between  OE  and  OB  that  the  finite  time  must  be  con- 

sidered to  commence, 

8.  "  Before  the  end  of  that  time "   (ante  finem  temporis) 
implies  that,  however  small  the  given  difference  may  be,  a  less 
difference  than  that  difference  is  arrived  at,  while  the  distance 
from  the  ultimate  state  is  still  finite,  however  near  to  the  final 
state  it  may  be  necessary  to  proceed. 

Thus,  if,  in  the  last  figure,  the  angle  BOD  be  60°,  the 
radius  one  inch,  and  the  given  difference  Too5j(Jo  or  To^for  °f 
an  inch,  the  difference  PQ  will  be  less  tlian  the  given  difference, 

if  the  revolving  radius  be  2'  or  1',  respectively,  from  the  ultimate 
position;  and  so  on,  however  small  we  choose  the  difference, 

9.  In  the  proof  of  the  Lemma,  if  the  ultimate  difference  bo 

D,  the  quantities   cannot  approach  nearer  than  by  that  given 
difference ;    otherwise,   they   would,    in    one    part  of   the  pro- 

gression, have  been  tending  from  equality  in  order  to  arrive 
ultimately  at  that  difference,  contrary  to  the  statement  of  the 

proposition  in  the  words  t(  ad  sequalitatem  constauter  tendunt." 
The  nature  of  the  proof,  which  is  more  difficult  than  may  at 

first  sight  appear,  can  be  illustrated  as  follows,  by  examining 
the  effect  of  the  omission  of  some  of  the  points  in  the  statement 
of  the  Lemma. 

Draw  Oy,  Ox  at  right  angles,  AB  any  straight  line  meeting 
Oy  in  A,  CED  a  curve  touching  AB  in  E  and  meeting  Oy  in 

(7,  CD'  another  touching  a  straight  line  parallel  to  AB  in  (7, 
MQPP'  a  common  ordinate. 

As  OM  diminishes  until  it  becomes  indefinitely  small, 

MQPP'  moves  up  to  Oy. 
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In  both  curves,  the  ordinates  MQ  and  MP  or  MP'  have  an 
ultimate  difference  CA,  equal  to  D  suppose. 

Omit  the  word  "  constanter,"  and  the  curve  CED  is  admissi- 
ble  in  a  representation  of  the  approach  of  the  quantities ;  because 
the  ordinates  approach,  before  the  end  of  the  time,  nearer  than 
by  any  assignable  difference,  as  at  2£,  although  the  condition  of 
continual  tendency  to  equality  is  not  satisfied. 

Omit  the  words  "  ante  finem  temporis,"  and  CD'  will  be  suf- 
ficient ;  for,  in  this  case,  they  tend  continually  to  equality,  but 

before  the  end  of  the  time  they  do  not  approach  nearer  than  by 
any  assignable  difference,  and  they  are  ultimately  unequal. 

In  the  case  of  the  dotted  line  AEF  touching  AB  at  A,  all 
the  conditions  are  satisfied.  QM  and  EM  tend  continually  to 

equality,  and  their  difference  may  be  made  less  than  any  giver* 
difference  before  OM  vanishes. 

Limit  of  a  Variable  Quantity. 

10.  When  a  variable  quantity  tends  continually  to  equality 
\vith  a  certain  fixed  quantity,  and  approaches  nearer  to  this 
quantity  than  by  any  assignable  difference,  as  the  hypothesis 
determining  its  variation  is  approaching  its  ultimate  form,  this 
fixed  quantity  is  called  the  Limit  of  the  variable  quantity. 

The  tests  are :  that  there  should  be  a  tendency  to  equality ; 
that  this  tendency  should  be  continued  from  some  finite 

condition;  and  that  the  approach  should,  during  the  progres- 
sion to  the  ultimate  form,  be  nearer  than  by  any  assignable 

difference. 

Thus,  as  is  mentioned  in  the  Scholium  at  the  end  of  the 
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section,  the  variable  quantity  does  not  become  equal  to,  or  surpass 
the  limit,  before  the  arrival  at  the  ultimate  form. 

Limiting  Ratio  of  Variable  Quantities. 

11.  If  two  quantities  continually  diminish  or  increase,  and 
the  ratio  of  these  quantities  tends  continually  to  equality  with 
a  certain  fixed  ratio,  and  may  be  made  to  differ  from  that  ratio 

by  less  than  any  assignable  difference,  as  the  hypothesis  deter- 
mining their  variation  is  indefinitely  extended,  this  fixed  ratio 

is  called  the  limiting  ratio  of  the  varying  quantities. 

Ultimate  Ratio  of  Vanishing  Quantities. 

12.  When  the  ultimate  form  of  the  hypothesis  brings  the 
quantities  to  a  state  of  evanescence,  they  are  called  vanishing 
quantities /  and  the  limiting  ratio,  or  the  limit  of  the  ratio,  is 
the  ultimate  ratio  of  the  vanishing  quantities. 

The  expression  "  vanishing  quantities  "  does  not  imply  that 
the  quantities  are  indefinitely  small  while  under  examination,  but 

only  that  they  will  be  so  in  the  ultimate  form ;  which  observa- 
tion implies  that  the  ratio  of  the  vanishing  quantities  is  not  an 

equivalent  expression  with  the  ultimate  ratio  of  the  vanishing 

quantities^  the  former  being  taken  "  ante  finem  temporis." 
"  Ultimas  rationes  illae  quibuscum  quantitates  evanescunt,  re- 

vera  non  sunt  rationes  quantitatum  ultimarum."  See  Scholium, 
at  the  end  of  the  section. 

Thus,  let  G-C,  FO  be  two  straight  lines  intersecting  AB  in 
G,  F,  and  draw  ADE,  MPQ,  perpendicular  to  AB. 

Let  a,  /3  be  the  areas  AMPD,  AMQE,  then  it  is  easily  found 
C 
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that  a:  &::  AD+MP:  AE+MQ;  now,  let  MPQ  be  sup- 
posed to  move  up  to  ADE,  then,  in  the  ultimate  form  of  the 

hypothesis,  a  and  /3  vanish,  and  are  called  vanishing  quantities 
from  this  circumstance. 

Also,  the  ultimate  ratio  of  the  vanishing  quantities  is 
AD  :  AE. 

In  this  case,  since  MP:  MQ  is  not  equal  to  AD  :  AE,  the 
ratio  of  the  vanishing  quantities,  viz.  AD  +  MP :  AE+  MQ, 
is  different  from  AD  :  AE,  the  ultimate  ratio. 

Orders  of  Vanishing  Quantities. 

13.  When  we  have  to  consider  various  kinds  of  vanishing 

quantities,  it  is  necessary  to  consider  their  relative  magnitudes, 
and  for  this  purpose  if  one  of  them  he  selected  as  a  standard 

of  small  quantities,  this  quantity,  and  all  the  X^anishing  quan- 
tities of  which  the  ultimate  ratio  to  it  is  finite,  are  called 

vanishing  quantities  of  the  first  order. 
If  a,  ft  be  any  two  vanishing  quantities,  and  /3  :  a  vanish 

in  the  limit,  /3  is  said  to  be  a  vanishing  quantity  of  a  higher 
order  than  a. 

If  a  be  of  the  first  order,  and  /3  :  a2  be  ultimately  finite, 
/3  is  called  a  vanishing  quantity  of  the  second  order,  and  so  on 
for  higher  orders. 

Trigonometrical  functions  give  familiar  illustrations  of  these 
orders;  let  6  be  taken  as  the  standard  of  vanishing  quantities; 

B*m0  tan 20,  sinitf  are  all  of  the  first  order,  since  their  ratios 
to  6  are  ultimately  1,  2  and  £;  vers0,  which  is  equal  to 

2sin'£0  is  of  the  second  order,  tan0-  6  and  0-sin0  are  of 
the  third  order. 

Quantities' which  become  infinite  in  the  ultimate  state  are 
also  classified  in  a  similar  manner  according  to  orders. 

Prime  Eatios. 

"  14.  If  the  order  of  the  change  in  the  form  of  the  hypo- 
thesis be  reversed,  or  the  varying  quantities  be  tending  from 

equality,  having  started  into  existence  from  the  commencement 
of  the  time,  the  quantities  are  called  nascent  quantities;  and  the 
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ratio  with  which  they  commence  existence  is  called  the  prime 
ratio  of  the  nascent  quantities. 

1  -f  x 
(1)    Limit  of     ——-t  os  x  gradually  diminishes,   and  ulti- 

Application  of  Lemma  I  to  the  investigation  of  certain  Limits. 

(1)  Limit  c 

mately  vanishes. 
1 4-  x           1             %x 

Since  the  difference  between  -      -  and  -  is   —   -,  this 2  —  x  2        2  [2  —  X) 

difference  continually  diminishes  as  x  gradually  diminishes,  and, 
by  diminishing  x  sufficiently,  may  be  made  less  than  any 
assignable  difference. 

Hence,    -- —   will  tend  continually  to  equality  with  J,  if  we 

commence  from  some  value  of  x  less  than  2,  and  the  difference 

may  be  made  less  than  any  assignable  quantity  ante  finem  tem- 
poriSj  therefore  \  satisfies  all  the  conditions  of  being  the  required 
limit. 

O    t    n» 

(2)  Limit  of   ,  when  x  increases  indefinitely. 

2  +  x        1  1 

Since  the  difference  -  -     '-  —  -  =    —  - — - —  ,  which  continu- 5  +  oJO      6      0(0  +  3x) 

ally  diminishes  as  x  increases,  and  may  be  made  less  than  any 

assignable  difference ;  therefore,  as  before,  J  satisfies  all  the  con- 
2  4-  x 

ditions  of  being  a  limit  of   — —  . 0  ~f"  oX 

(3)  Tangents  are  drawn  to  a  circular  arc,  at  its  middle  point, 
and  at  its  extremities.     Shew  that,  when  the  arc  diminishes^  th& 

area  of  the  triangle  formed  by  the  chord  of  the  arc,  and  the  twd- 
tangents  at  the  extremities,  is  ultimately  four   times  that  of  th& 
triangle  formed  by  the  three  tangents. 

Let  C  be  the  middle  point  of  the  arc,  AB  the  chord,  FA, 
,  DCE  the  three  tangents,  and  0  the  centre  of  the  circle, 

A  FDE  :  A  FAB  :  FC*  :  FG\ 

Now  FC(FC+2CO)=FA*  = 
.:  FC:FG::FO:FC+2CO; 
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therefore,  since  PC  Vanishes  in  the  limit,  FC  :  FG  ::CO  :%CO 
and  FG  =  %FC,  ultimately  5 

.-.    bFDEi  A  FAB::  1  :  4. 
xm  —  1 

(4)    Limit  of  -   — —  ,  when  x  differs  from  1  by  an  indefinitely 

small  quantity,  m  being  any  number,  integral  or  fractional,  posi- 

'tive  or  negative. 
First,  where  m  is  a  positive  whole  number, 

eilz2   _.^->  + *''<-*  +  •         , X-  I 

which  may  be  made  to  differ  from  m  by  less  than  any  assignable 
difference  by  taking  x  sufficiently  near  to  unity. 

Next,   let   ?n  =  ,   p,    q,    and   r   being    positive    whole 

numbers,  and  let  x  —  ij\ 

ar-1 

This  may  be  made  to  differ  from  *- — ?  or  m  by  a  quantity 

less  than  any  assignable  quantity  by  taking  x,  and  therefore  T/, 
sufficiently  near  to  unity;  hence,  whether  it  be  integral  or 
fractional,  positive  or  negative,  m  is  the  limit  required. 

When  we  divide  the  numerator  and  denominator  by  y-  J, 
y  is  not  equal  to  1,  the  time  chosen  being  ante  finem  temporis 
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while  the  difference  is  finite.  See  the  direction  in  the  Scholium 

referred  to  above  :  "  Cave  inteliigas  quantitates  magnitudine 
determinates,  sed  cogita  semper  diminuendas  sine  limite." 

/e\     T  •    -*     £  lP42p  +  3p-K..-f  n*        , (5)    Limit  of  -  —  p+i  ----  ,  when  n  is  indefinitely  in- 

creased, p  being  any  positive  number. 
Since  this  sum  is  the  arithmetic  mean  of  the  n  fractions 

i       /a 

therefore,  for  all  positive  values  of  p,  integral  or  fractional,  it 

lies  between  f-J   and  f  -  J    or  1,  therefore  its  ultimate  value  lies 
between  0  and  1. 

This  being  an  important  limit,  we  will  investigate  it  first  for, 
the  particular  case  in  which  p  is  integral  and  positive,  and  then. 
generally  when  p  is  any  positive  quantity. 

Let    5.  =  1'  +  2'  +-.+  «'; 

then    8n+l  =  1"  +  2P  +...,+  np  +  (n  +  1)"| 

v    ̂ -^  =  (^  +  l)P- If  therefore  we  assume  that 

then    ̂ n+l  =  ̂ (w  +  l 

.%    (n  +  ljp  =  A  {(n 

l)wr«+..  .)+...,. 

we  obtain,  by  equating  the  coefficients,  p.+  l  equations  for 
determining  the  values  of  the  p  +  1  constants  A,  B^  ...  L,  which 
reduce  the  equation  to  an  identity. 

The  first  of  these  equations  is  1  =  (p  +  1)  A  ; 

.    S,         1         B      G  M and       -  - 



12  N  I:\VTOX. 

hence,  if  n  be  increased,  since  the  number  of  the  terms  following 
1  JS  1 

—  is  finite,  we  may  make  the  difference  between  -^  and  -  — 

diminish  until  it  becomes  less  than  any  assignable  quantity  ; 

therefore  -      T  is  the  limit  required. 

+1 Next,  let^>  be  any  positive  quantity,  and  let  I  be  the  limit  of 

.-.   1"  +  2"  4-...+  np  =  lnp+l  +  Bnft  -f  Cn7  +...  , 
, 

in  which  p  +  1,  /S,  7-"  ai^  m  descending  order,  and 

vanishes,  when  n  is  made  infinitely  large  ; 

n  n 

therefore,  observing  that,  when  n  is  increased  indefinitely, iY-i 

•where  e,  e',  ...  vanish  ultimately.     Let  Sj  be  the  greatest  of  the 

quantities  e,  e',  ...,  and  let  all  the  terms  be  positive,  then 

£  (1  +  e)  Bif+...  is  less  than  (1  +  t^Brf  +|  (7ny  +...) 
c\ 

and,  since      ,       ...  are  each  less  than  1, 

-fe+...  . 
—      -  is  less  than  (1  +  8,)^  x 
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which  vanishes  in  the  limit,  hence  1  =  (p  +  1)  I  ultimately; 

p+ 

therefore  -  -   is  the  limit  required. 

+l 
COR.         7  is  evidently  also  the  limit  of  the  sum 

^+1 lp  +  2p+...+  (n-}}*      .          if -  -~  •  -  ,  since  —  TJ  vanishes  in  the  limit. «,  n 

(6)  If  a  straight  line  of  constant  length  slide  with  its  ex- 
tremities in  two  straight  lines,  which  intersect  at  a  given  angle  A, 

and  BC,  be  be  two  positions  of  the  line  intersecting  in  P,  which 
become  ultimately  coincident,  find  the  limits  of  the  ratios  Cc  :  Bb 
and  PC:  PR 

By  hypothesis, 

but  BC*  =  BA*  +  CA*  -  2BA  .  GA 

and   be*  =  bA*  -f  cA*  -  2bA  .  cA  cos^l  ; 

Cc:  Bb:  :  BA  +  bA-  2cA  cos  A  :CA  +  cA-  2BA  cos  A 

::  BA-  CA  cos  A  :  CA-BA  cos  A  ultimately. 

Draw  CN,  BM  perpendicular  to  AB,  A  C,  therefore  the  limit 
of  the  ratio  Cc  :  Bb  is  BN :  CM. 
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Again,  let  BQ,  drawn  parallel  to  AC,  meet  be  in  Q, 

then  PC:PB::  Cc  :  BQ\ 

also    Cc  :  Bb  :  :  BN  :  CM  ultimately, 

and   Bb  \  BQ  ::  Ab  >,  Ac] 

.-.  Cc  :  BQ  :  :  BN.AB  :  CM,  AC  ultimately. 

Diaw  AR  perpendicular  to  BC,   then    BN.AB=BR.BC 
and  CM.AC=CE.BC]  7? 

/.  PC:PB::BR:CPi] 

.-.  PC=BR  and  PB=CR. 

I  -   ̂  

*• 
1.  ARE  the  limits  of  the  ratios  y*  :  #  equal  in  any  of  the  three 

equations 

(1)   y~=ax\     (2)   y*  =  ax-l\     (3)   y*  -«*-**, 
when  #  is  indefinitely  diminished  ? 

2.  Find  the  limit  of  ̂ |-  , 1  4-  O# 

(1)  when  #  is  indefinitely  diminished, 
(2)  when  x  is  indefinitely  increased. 

8.  Find  the  ultimate  ratio  of  the  vanishing  quantities  ax  +  fix*, 
bx  +  ax*,  when  x  is  made  indefinitely  small. 

4.  Prove  that  a-lx  and  I  -ax  tend  to  equality  as  x  diminishes 
to  zero,  and  yet  have  not  their  limits  equal. 

5.  B  AC,  I  Ac  are  two  triangles,  in  which  AB,  Ab  and  AC,  Ac 
are  coincident  in  direction,  and  BC,  bo  intersect  in  P;   prove  that, 
if  the  areas  of  the  triangles  be  equal,  as  B,  C  and  j,  c  approach, 
each  to  each,  P  will  be  ultimately  in  the  point  of  bisection  of  BC. 

6.  APQ,  ABC  are  two  straight  lines  whicli  are  intersected  by 
two  fixed  lines  BP,  CQ,  prove  that,  as  APQ  moves  up  to  ABC, 
PC  and  QB  intersect  in  a  point  whose  ultimate  position  divides  BC 
in  the  ratio  of  AB  :  A  C. 

1.  Tangents  are  drawn  to  a  circular  arc  at  its  middle  point, 
and  at  its  extremities,  and  the  three  chords  are  drawn.  Prove 
that  the  triangle  contained  by  the  three  tangents  is  ultimately 
one-half  of  that  contained  by  the  throe  chords,  when  the  arc  is 
indefinitely  diminished. 
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8.  AP  is  a  chord  of  a  given  circle,  A  Q  a  chord  near  AP,  find 
the  position  of  the  point  of  ultimate  intersection  of  circles  described 
on  AP,  AQ  as  diameters,  when  AQ  approaches  to  and  ultimately 
coincides  with  A  P. 

9.  A  circle  passes  through  a  fixed  point,  and  cuts  off  from  a 
fixed  lino  a  chord  PQ  of  constant  length,    prove  that  the  chord 
of  ultimate  intersection  of  two  consecutive  circles  bisects  PQ. 

10.  PN  is  an  ordinate,  and  PT  a  tangent  to  an  ellipse,  cutting 
the  axis-major  in  N  and  T  respectively ;  A  being  the  vertex,  shew 
that  as  P  approaches  A,  NT  is  ultimately  bisected  in  A. 

11.  APQ  is  a  parabola,  PM,  QN  ordinates  to  the  axis  AMN, 
with  centres  M  and  N  and  radii  PM,  QN  two  circles  are  drawn ; 
prove  that,  when  N  approaches  indefinitely  near  to  M,  if  the  two 
circles  intersect,  the  distance  of  their  point  of  intersection  from  PM 
is  ultimately  equal  to  the  serni-latus  rectum.    What  is  the  condition 
that  the  circles  may  intersect  ? 

II. 

1.  What  is  the  test  of  tendency  to  equality  ?     If  two  quantities 
diminish  so  that  their  difference  diminishes,  prove  that  they  will 
tend  to  or  from  equality  according   as  the  ratio  of  their  rates  of 
decrease  is  greater  or  less  than  the  ratio  of  the  greater  to  the  less. 

2.  ABC  is  an  isosceles  triangle,  base  BC;    P,  Q  are  points  on 
the  straight  lines   CA,    CB  such  that  AP  is   always  twice  £Q', 
prove  that,  if  PQ  and  AB  intersect  in  R,  and  R'  be  the  ultimate 
position  of  JR,  when  AP  is  indefinitely  diminished, 

R'B:  AC:-.  AC:  2BC-  AC. 

3.  PMP'  is  a  double  ordinate  of  an  ellipse,  whose  centre  is  C; 
R  is  the  point  of  ultimate  intersection  of  the  circles  described  on 
PP'  and  the  next  consecutive  double  ordinate  respectively,  and  RT 
is  the  ordinate  of  R.     Shew  that  TM  :  CM:  :  £C*  :  AC\     What 
is  the  condition  that  these  circles  may  intersect  ? 

4.  Two  concentric  and  coaxial  ellipses  have  the  sum  of  the 
squares  of  their  axes  equal;    if  the  curves  approach  to  coincidence 
with  each  other,  shew  that  the  ratio  of  the  distances  of  any  one 
of  their  points  of  intersection  from  the  axes  will  be  ultimately 
equal  to  the  inverse  ratio  of  the  squares  of  the  axes. 

5.  If  a  triangle  be  inscribed  in  a  given  circle,  prove  that  the 
algebraic  sum  of  the  small  variations  of  its  sides,  each  divided  by 
the  cosine  of  the  angle  opposite  to  it,  will  be  equal  to  zero. 
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6.  ABC,  APQ  are  drawn  to  cut  a  circle  from  an   external 
point  A ;   BU,  CT  are  tangents  at  B  and  C  to  the  circle,  meeting 

APQ,  in    U,  T\    shew  that  the  ultimate  ratio  of  PU ':  QT,  when 
APQ  moves  up  to  ABC,  is  AB*  i  AC2. 

7.  BCRA  is  a  diameter  of  a  circle  whose  centre  is  C,  and  PRQ 
is  a  chord  in  it  perpendicular  to  BA.     PR  is  bisected  in  S,  and 

CS  meets  the  circle  in  S'.      If  tangents  at  P  and  S'  meet  BA  in  T 
and  T\  shew  that  when  P  moves  up  to  A,  AT=  4 AT  ultimately. 

8.  If  the  quadrilateral  A  BCD  be  slightly  displaced  in  its  own 
plane,  so  as  to  occupy  the  position  abCl),  and  0  be  the  point  of 
intersection  of  I) A,  CB,  prove  that  the  point  of  ultimate  inter- 

section of  ab  and  AB  will  be  the  foot  of  the  perpendicular  from  0 
upon  AB. 

9.  PSp,  QSq>  are  focal  chords  of  a  parabola,  prove  that,  ulti- 
mately, when  P  moves  up  to  Q, 

PQipq::  SP>  :  Sp*. 

10.  The  extremities  of  a  straight  line   slide  upon  two  given 
straight  lines,  so  that  the  area  of  the  triangle  formed  by  the  three 
straight  lines  is  constant ;   find  the  limiting  position  of  the  chord 
of  intersection  of  two  consecutive  positions  of  the  circle  described 
about  that  triangle. 
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LEMMA  II. 

If,  in  any  figure  AacE,  bounded  by  the  straight  lines  Aa,  AE 
and  the  curve  acE,  any  number  of  parallelograms  Ab,  Be, 
Gd,  6fc.  be  inscribed  upon  equal  bases  AB,  BO,  CD,  fyc., 
and  having  sides  Bb,  Cc,  Dd,  fyc.  parallel  to  the  side  Aa 
of  the  figure  ;  and  the  parallelograms  aKbl,  bLcm,  cMdn, 
6fc.  be  completed;  then,  if  the  breadth  of  these  parallelo- 

grams be  diminished,  and  the  number  increased  indefi- 
nitely, the  ultimate  ratios  which  the  inscribed  figure 

AKbLcMdD,  the  circumscribed  figure  AalbmcndoE,  and 
the  curvilinear  figure  AabcdE  have  to  one  another,  will 
be  ratios  of  equality. 

C  JO  JG 

For  the  difference  of  the  inscribed  and  circumscribed 
figures  is  the  sum  of  the  parallelograms  Kl,  Lm,  Mh, 
Do,  that  is  (since  the  bases  of  all  are  equal)  a  paral- 

lelogram whose  base  is  Kb,  that  of  one  of  them,  and 
altitude  the  sum  of  their  altitudes,  that  is,  the  paral- 

lelogram ABla.  But  this  parallelogram,  since  its 
breadth  is  diminished  indefinitely  [as  the  number  of 
parallelograms  is  increased  indefinitely]  becomes  less 
than  any  assignable  parallelogram ;  therefore,  by 
Lemma  I.,  the  inscribed  and  circumscribed  figures, 
and,  a  fortiori,  the  curvilinear  figure,  which  is  inter- 

mediate, become  ultimately  equal. 
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LEMMA  III. 

The  same  ultimate  ratios  are  also  ratios  of  equality,  when 
the  breadths  of  the  parallelograms  AB,  BC,  CD, ...  are 
unequal^  and  all  are  diminished  indefinitely. 

MFC  J> 

For,  let  AF  be  equal  to  the  greatest  breadth,  and  the 
parallelogram  FAaf  be  completed.  This  parallelo- 

gram wiil  be  greater  than  the  difference  between  the 
inscribed  and  circumscribed  figures.  But,  when  its 
breadth  is  diminished  indefinitely,  it  will  become 
less  than  any  assignable  parallelogram.  [Therefore, 
a  fortiori,  the  difference  between  the  inscribed  and 
circumscribed  figures  will  become  less  than  any 
assignable  areas.  Hence,  by  Lemma  I.,  the  ultimate 
ratios  of  the  inscribed  and  circumscribed  and  the 
curvilinear  figure,  which  is  intermediate,  will  be 
ratios  of  equality.] 

COR.  1.  Hence  the  ultimate  sum  of  the  vanishing  paral- 
lelograms coincides  [as  to  area]  with  the  curvilinear 

figure, 
COR.  2.  And,  a  fortiori,  the  rectilinear  figure  which  is 

bounded  by  the  chords  of  the  vanishing  arcs  ab,  be, 
cd,  &c.,  ultimately  coincides  with  the  curvilinear 
figure. 

COR.  3.  As  also  the  rectilinear  circumscribed  figure, 
which  is  bounded  by  the  tangents  at  the  extremities 
of  the  same  arcs. 

COR.  4.  And  these  ultimate  figures,  with  respect  to 
their  perimeters  acE,  are  not  rectilinear  figures,  but 
curvilinear  limits  of  rectilinear  figures. 
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Observations  on  the  Lemmas  II.  and  III. 

15.  The  statements  of  the  propositions  concerning  limits  of 
quantities  and  their  ratios  contain : 

L   The  hypothesis  by  which  the  quantities  are  defined. 

II.  The   manner   in   which   the   hypothesis   approaches   its 
ultimate  form. 

III.  The  ultimate  property   when   the   hypothesis    is   thus 
indefinitely  extended. 

The  strength  of  the  proofs  lies  in  the  examination  of  the 

quantities  while  the  hypothesis  is  in  a  finite  state,  before  arrival 
at  the  ultimate  form,  and  the  deduction  of  properties  by  which 
the  relations  of  the  quantities  can  be  pursued  accurately  to  the 
ultimate  state. 

If  in  this  manner  we  analyse  the  statement  of  Lemmas  II. 

and  III.,  the  hypothetical  constructional  are  given  in  the  manner 

of  describing  the  parallelograms;  the  extension  of  the  hypo- 
thesis towards  its  ultimate  form  is  the  continual  increase  of  the 

number  of  parallelograms  ad  infinitum  •  the  ultimate  property  is 
the  equality  of  the  ratio  of  the  sums  of  the  parallelograms  and 
the  curvilinear  area. 

In  the  proof  of  the  Lemmas,  the  continual  decrease  of  the 
parallelograms  Al  or  Af  shews  that  the  conditions  of  ultimate 
equality  of  two  quantities  are  all  satisfied,  viz.,  that  the  sums 
of  the  two  series  of  parallelograms,  since  they  are  finite,  tend 
continually  to  equality,  and  that  they  approach  nearer  to  each 

other  than  by  any  assignable  difference  "  ante  finem  temporis," 
i.e.,  while  the  number  of  the  parallelograms  still  remains  finite, 

Volum es  of  Revolution. 

16.  In  a  manner  exactly  similar  to  Lemma  IT.  it  may  be 
shewn   that,  if  Aa  be  perpendicular  to  AE,   and   the   whole 
figure  revolve  round  AE  as  an  axis,  the  ultimate  ratios,  which 
the  sums  of  the  volumes  of  the  cylinders,  generated  respectively 
by  the  rectangles  Ab,  Be,  ...  and  aB,  bC,  ...  and  the  volume 
of  revolution  generated  by  the  curvilinear  area  AJEa  will  have 
to  each  other,  will  be  ratios  of  equality. 
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The  figure  represents  the  cylinders  generated  by  the   in- 
scribed rectangles. 

a 

Ji. 

Thus  the  difference  of  the  cylinders  generated  by  Ab  and 
aB  is  the  annulus  generated  by  the  rectangle  a&,  and  the 
difference  of  the  two  series  of  cylinders,  which  have  all  equal 
heights  AB)  BC,  ..,  is  the  sura  of  such  annuli,  and  is  easily 
seen  to  be  the  cylinder  generated  by  aB,  which,  since  the  height 
continually  diminishes,  may  be  made  less  than  any  assignable 
volume,  hence  the  conditions  that  the  two  series  may  have  the 
same  limit  are  satisfied,  and  hence  also  the  volume  of  revolution, 

•which  is  greater  than  one  sum  and  less  than  the  other,  is 
ultimately  in  a  ratio  of  equality  to  either  sum. 

The  same  argument  applies  when  the  revolution  is  only 
through  a  certain  angle  instead  of  being  complete,  in  which 
case  the  cylinders  are  replaced  by  sectors  of  cylindrical  volumes. 

Sectorial  Areas^ 

17.   The    Lemmas  may    he    extended   to    sectorial    areas. 
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Thus,  let  SABCFbe  a  sectorial  area,  and  let  the  angle  ASF 
be  divided  into  equal  portions  ASB,  BSC,  ...  and  the  circular 

arcs  Ab',  aBc,  bCd',  ...  be  drawn  with  centre  $;  then,  since 
the  difference  of  the  two  series  of  circular  sectors  is  the  sum 

of  the  areas  «&',  5c',  ..,,  it  is  equal  to  the  difference  of  the 
greatest  and  least  of  the  sectors,  viz.  A  Glib'  ;  therefore  the 

two  areas  SAb'Bc '...  and  SaBbC...  tend  continually  to  equality 
as  the  number  of  angles  is  increased  and  their  magnitudes 
diminished,  and  the  ratios  which  these  areas  have  to  each  other 
and  to  the  area  SABF  are  ultimately  ratios  of  equality. 

Similarly,  as  in  Lemma  III.,  if  ASB,  BSC,  ...  be  unequal. 

Surfaces  of  Revolution.' 
18.  The  following  proposition  is  the  extension  of  the  prin- 

ciples of  the  Lemmas  to  the  determination  of  a  method  for 
finding  the  area  of  a  surface  of  a  solid  of  revolution. 

Let  CD  be  a  plane  curve  which  generates  a  surface  of  revo- 
lution by  its  revolution  round  AB^  a  line  in  its  plane. 

CD  is  divided  into  portions,  of  which  PQ  is  one,  PM,  QN 

are  perpendicular  to  AB\  Pp,  Qq  are  drawn  parallel  to  AB,  and 
each  equal  to  PQ  in  length ;  pm,  qn  are  perpendicular  to  A B. 
The  surface  generated  by  CD  shall  be  the  limit  of  the  sum  of 

the  cylindrical  surfaces  generated  by  such  portions  as  Pp  or  Qgr. 
For,  the  cylindrical  surfaces  generated  by  Pp  and  Qq  are 

one  less  and  the  other  greater  than  the  surface  generated 

since  every  portion  of  Qq  is  at  a  greater,  and  every  portion  of 
Pp  at  a  less,  distance  from  the  axis  than  the  corresponding 
portions  of  PQ. 
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But  these  surfaces  are  respectively  ZirPM.Pp  and 

and  their  difference  is  2?r  ( QN—  PM)  PQ,  and  the  ratio  of  this 
difference  to  the  surfaces  themselves  is  QN—  PM :  PM  or  QN, 
which  ratio  is  ultimately  less  than  any  given  ratio. 

Hence  the  sums  of  the  surfaces  generated  by  the  lines  corre- 
sponding to  Pp  and  Qq  have  the  ratio  of  their  difference  to  either 

sum  less  than  the  greatest  value  of  the  ratio  QN—  PM :  PMy 
which  may  be  made  less  than  any  finite  ratio.  Therefore  the 
sums  of  the  cylindrical  surfaces  and  the  curved  surface,  which 
is  intermediate  in  magnitude  to  these  sums,  are  ultimately  in 
a  ratio  of  equality. 

Centre  of  Gravity. 

19.  Tt  is  easily  seen  that  the  same  methods  are  applicable  to 
the  determination  of  the  position  of  the  centre  of  gravity  of  any 
body,  since  it  is  known  that,  if  a  body  be  divided  into  any 
number  of  portions,  the  distance  of  the  centre  of  gravity  of  the 
body  from  any  plane  is  equal  to  the  sum  of  the  moments  of  all 
the  portions  divided  by  the  sum  of  all  the  portions. 

General  Extension. 

20,  The  most  general  extension  may  be  stated  as  follows: 

If  any  magnitude  A  be   divided  into  a  series  of  magnitudes 

A^A^...An,  each  of  which,  when  their  number  is  increased  indefi- 
nitely, becomes  indefinitely  small,  and  two  series  of  quantities 

a"a   an(^  ̂ -  ~b   can  be  found  such  that 

and  also  such  that  each  of  the  ratios  a,-^  :  tft,  «2-  \  :  aa,  ... 
becomes  less  than  any  finite  ratio  when  the  number  is  increased ; 

then  a,-f  a2+...+  aM,  bt  +  b9+...+  bn  and  A  will  be  ultimately 
in  a  ratio  of  equality.  For,  let  1 :  1  be  equal  to  the  greatest 

of  the  ratios  al  —  b1  '  «,,  &c. ; 

/.   aj-^-f  «a-Z>8+... :  rt1  +  «a+... 

is  a  ratio  less  than  1 :  1,  and  may  therefore  be  made  less  than 
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any  assignable  ratio  by  increasing  the  number.  Therefore  the 

two  series  ̂ +^4...  and  b^  +  bz+...  tend  continually  to  equality, 
and  the  difference  may  be  made,  before  the  end  of  the  time,  less 
than  any  assignable  magnitude ;  therefore  the  three  magnitudes 
are  ultimately  in  a  ratio  of  equality. 

21.  COR.  1.  "Omni  ex  parte"  has  not  been  adopted  from 
the  text  of  Newton,  because  it  requires  limitation,  for  the 
perimeters  do  not  ultimately  coincide  with  the  perimeter  of  the 
curvilinear  area. 

In  the  figure  for  Lemma  II.  the  perimeter  of  the  inscribed 
series  of  parallelograms  is 

A K  +  Kb  +  bL  +  LC+...+  DA  =  2 AK 4  2AD, 

and  the  limit  of  this  perimeter  is  2Aa  4-  2AE. 
The  perimeter  of  the  other  series  of  parallelograms,  being 

2Aa  4-  2 AE  is  constant  throughout  the  change,  and  has  properly 
no  limit. 

COR.  2.  The  perimeter  of  the  figure  bounded  by  the  chords 
ab,  be,  ...  ultimately  coincides  with  that  of  the  curvilinear  figure. 
This  coincidence  will  be  discussed  under  Lemma  V. 

COR.  3.  The  same  is  true  for  the  figure  formed  by  the 
tangents. 

COR.  4.  Instead  of  "propterea,"  as  in  Newton,  it  is  advisable 
to  state,  as  in  Whewell's  Doctrine  of  Limits,  that,  if  a  finite 
portion  of  a  curve  be  taken,  and  many  successive  points  in  the 
curve  be  joined  so  as  to  form  a  polygon,  the  sides  of  which, 
taken  in  order,  are  chords  of  portions  of  the  curves,  when  the 
number  of  those  points  is  increased  indefinitely,  the  curve  will 
be  the  limit  of  the  polygon. 

Application  to  the  Determination  of  certain  Areas,  Volumes,  &c. 

(1)    Area  of  a  parabola  bounded  by  a  diameter  and  an  ordinate. 

Let  AB,  BC  be  the  bounding  abscissa  and  ordinate.  Com- 
plete the  parallelogram  ABCD. 

Let  AD  be  divided  into  n  equal  portions,  of  which  suppose 

AM  to  contain  r,  and  MN  to  be  the  (r  4-  l)th ;  draw  MP,  NQ 
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parallel  to  AB,  meeting  the  curve  in  P,  <),  and  Pn  parallel  to 
MN]  the  curvilinear  area  A  CD  is  the  limit  of  the  sum  of  the 

JL  Jt 

series  of  parallelograms  constructed,  as  PJV,  on   the   portions 

corresponding  to  MN. 
But  parallelogram  PN  :  parallelogram  ABCD 

::  PM.MN-.CD.AD, 

and,  by  the  properties  of  the  parabola, 

PM:  CD  :  :  AM*  :  AD2  :  :  r*  :  n\ 
also   MN:  AD  ::  1  :  w; 

/.  PM.MN-.CD.AD  :  -.  r*  :  n9; 
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hence,  the  sum  of  the  series  of  parallelograms 

±l"8t_          L'  x  parallelogram  ABCD, 
and,  when  the  number  of  parallelograms  is  increased  indefinitely, 

therefore,  proceeding  to  the  ultimate  form  of  the  hypothesis,  the 
curvilinear  area  A  CD  and  the  parabolic  area  ABC  will  be, 

respectively,  one-third  and  two-thirds  of  the  parallelogram 
ABCD. 

Note  1.  If  we  had  inscribed  the  series  of  parallelograms  in 
ABC,  AH  being  divided  into  n  portions,  we  should  have  arrived 
at  the  result 
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for  the  ratio  of  the  series  of  parallelograms  to  the  parallelogram 

ABO),  which  might  thus  have  been  directly  shewn  to  be 
ultimately  f ;  but  the  former  method  is  preferable,  since  the 
proof  of  the  value  of  the  limit  depends  upon  simpler  principles. 

Note  2.  If  BC  had  been  divided  into  n  equal  portions,  the 

ratio  of  the  parallelogram  corresponding  to  PN  to  the  parallelo- 

gram ABCD  would  have  been  w'2-r2:wV,  and  that  of  area  ABC 
to  parallelogram  ABCD  the  limit  of 

n3  3  ~  3  ' 

(2)    Volume  of  a  paraboloid. 

Let  AKH  be  the  area  of  a  parabola,  cut  off  by  the  axis  AH 

and  an  ordinate  fflT,  which  by  its  revolution  round  the  axis 
generates  a  paraboloid. 

Let  All  be  divided  into  n  equal  portions,  and  on  MN  the 

(r-f  l)tb,  as  base,  let  the  rectangle  PBNMbe  inscribed. 
Cylinder  generated  by  PN  :  cylinder  by  AHKL 

::PM\MN:HK\AH. 

But  PM2  :  HK*  :  :  AM  :  AH:  :  r  ;  n, 
and  MN:  AH::  1  :  w; 

/.   PM\MNi  HK\AH::  r  :  n\ 

Hence  cylinder  generated  by  PN=  —^  x  cylinder  by  AHKL  ; 

therefore  the  sum  of  the  cylinders  inscribed  ia 

x  circumscribed  cylinder, 

and  the  paraboloid  is  the  limit  of  the  series  of  inscribed  cylinders  ; 
hence  the  volume  of  the  paraboloid  is  half  that  of  the  cylinder 
on  the  same  base  and  of  the  same  altitude. 
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^3)    Volume  of  a  spherical  segment. 

Let  AHK  generate,  by  its  revolution  round  the  diameter  AB, 
the  spherical  segment  whose  height  is  AH, 

A  MJS 

Divide  A3,  as  before,  and  make  the  same  construction  ; 

then 
*  =  AM.(AB-AM}=-AII.AB-  ~» * 

Volume  of  cylinder  generated  by  PN—irPM^.MN 

\  , 

J 
 ' 

*.  — 
n 

whence,  as  before,  the  limit  of  the  sum 

~AB--a  AH 
n 

which  is  the  volume  proposed. 

COR.  If  AH=\AB=AC,  the  segment  is  a  hemisphere  whose 

volume  is  irAC*  (AC-  %AC)  =  $7rAC5,  which  is  two-thirds  of 
the  cylinder  on  the  same  base  and  of  the  same  altitude. 

(4)    Area  of  the  surface  of  a  right  cone. 

As  an  illustration  of  the  method  of  finding  surfaces  given 

.above,  suppose  ARK  to  be  a  right-angled  triangle,  which 
revolves  round  AH^  a  side  containing  the  right  angle,  then 
the  hypothenuse  AK  generates  a  conical  surface. 

Let  MN  be  the  (r+l)th  portion  of  AH,  after  division  into 

M   If 

n  equal  portions;  J/P,  NQ  ordinates  parallel  to  HK\  Pp, 
each  equal  to  PQ  and  parallel  to  AH. 
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The  areas  generated  by  Pp  and  Qq  respectively  are 

ZirPM.Pp   and   ZirQN.Q^ 

and   PM  :  HK  : :  AM :  AfT :  :r\n, 

QN-.HK'.:  AN:AH::r  +  l  :  7?, 
:  AKiiMNiAHii  l:n: 

therefore  the  areas  are    ̂ -.ZirHK.AK  and  ̂ —^r 
n*  n* 

respectively;  and  the  conical  surface  is  intermediate  in  magni- 
tude between 

and   ZTrHK.AKx  *
+2+-+* w 

each  of  which  has  for  its  limit  nrHK.AK^  which  is  therefore 
the  area  of  the  conical  surface. 

Note.  The  reader  may  notice  the  following  method  of 
obtaining  the  conical  surface  by  development,  although  it  is 
not  related  to  the  method  of  limits. 

If  a  circular  sector  KAK\  traced  on  paper,  be  cut  out,  the 

bounding  radii  AK,  AK'  can  be  placed  in  contact,  so  that  the 
boundary  KLK'  will  form  a  circle. 

The  figure  so  formed  will  be  conical,  AK  will  be  the  slant 
side,  and  HK  in  the  last  figure  will  be  the  radius  of  the  circular 

base,  whose  length  will  be  the  arc  of  the  sector  KAK'. 
Hence,  the  area  of  the  conical  surface  is  equal  to  that  of  the 

sector  KAK'  =  \AK.  27rHK=  irHK.AK. 

(5)  Mass  of  a  rod  whose  density  varies  as  th  wth  power  of 
the  distance  from  one  extremity. 

Let  AB  be  the  rod,  and  let  J/JVbe  the  (r4  l)th  portion,  when 

its  length  has  been  divided  into  n  equal  parts;  and  let  p.AMm» 
be  the  density  at  M^  or  the  quantity  of  matter  contained  in  an 
unit  of  length  of  the  rod  supposed  of  the  same  substance  as  th_e. 
rod  at  the  point  M. 

The  quantity  of  matter  in  MN  is  intermediate  between^        t 

f!,AMm.MN  and 
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and  the  ratio  of  the  difference  of  these  to  either  of  them  is  less 

than  any  assignable  ratio  when  n  is  indefinitely  increased. 

Therefore,  since  A  H=  -  AB9  and  MN=  -  AB,  the  mass 

of  the  whole  rod  is  the  limit  of 

\m+ 

\th 

-  J    of  the  mass  of  a  rod  of  length  AB  and  of  uniform 

density  equal  to  that  of  the  rod  AB  at  'B. 

(6)    Centre  of  gravity  of  the  volume  of  a  hemisphere. 

Let  CAB  be  a  quadrant,  which  by  its  revolution  round  the 
radius  CA  generates  the  hemisphere, 

Let  ME  be  the  rectangle  which  generates  the  rth  inscribed 

cylinder,  so  that  CM=  -  x  CA   and  MN=  -  x  CA. n  n 

If  the  mass  of  a  unit  of  volume  be  chosen  as  the  unit  of 

mass,  the  mass  of  the  cylinder  generated  by  MR  will  be 

irPMz.MN=  TT  ( CA*-CM*)  MN=  (l  -  £\  irCA*.  -~  j 

hence,  the  mass  of  the  series  of  inscribed  cylinders  will  be 

and  the  mass  of  the  hemisphere 

=  TT  CA9  -  JTT  CA*  =  } TT  CA9. 
Again,  the  moment  of  the  mass  of  the  cylinder  generated 

by  MR,  with  respect  to  the  base  of  the  hemisphere,  will  be 
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which  differs  from  irPM*.MN.CM  by  a  quantity  which  vanishes 

compared  with  it,  and  is  therefore  ultimately  (^  -  —\  vGA*; \fl  71  / 

therefore  the  moment  of  the  hemisphere,  with  respect  to  its 
base,  is 

(i-i)TrC^4,   or  i7r044; 
hence  the  distance  of  the  centre  of  gravity  of  the  volume  of  the 

hemisphere  from  (7,  which  is  the  moment  with  respect  to  the 
base  divided  by  the  mass,  is  $,CA. 

III. 

1.  Illustrate  the  terms  "tempore  quovis-finito"  and  "constanter 
tendunt  ad  sequalitatem "  employed  in  Lemma  I.  by  taking  the 
case  of  Lemma  III.  as  an  example. 

2.  Shew,  from  the  course  of  the  proof  of  Lemma  II.,  that  the 
ultimate  ratio  of  vanishing  quantities  may  be  indefinitely  small  or 

great. 

3.  Shew  that  the  ratio  of  the  area  of  the  parabolic  curve,  in 

which  PM 3  oc  AM,  to  the  area  of  the  circumscribing  parallelogram, 
of  which  one  side  is  a  tangent  to  the  curve  at  A,  is  3  :  4. 

4.  Shew  that  the  volume  of  a  right  cone  is  one-third  of  the 
cylinder  on  the  same  base  and  of  the  same  altitude. 

5.  AHK  is  a  parabolic  area,  AIT  the  axis,  and  HK  an  ordinate 
perpendicular  to  the  axis,   AHKL  the  circumscribing  rectangle. 
Shew  that  the  volumes  generated  by  the  revolution  of  AHK  round 

AIT,  KL,  AL,  and  UK  are  respectively  i,   |,   f,   and  —.  of  the 
cylinder  generated  by  the  rectangle. 

6.  The  volume  of  a  spheroid  is  two- thirds  of  the  circumscribing 
cylinder. 

7.  Find  the  centre  of  gravity  of  the  volume  of  a  right  cone 
by  the  method  of  Lemma  II. 

8.  Shew  that  the  centre  of  gravity  of  a  paraboloid  of  revolution 
is  distant  from  the  vertex  two-thirds  of  the  length  of  the  axis. 

9.  Find  the  mass  of  a  rod  whose  density  varies  as  the  distance 
from  an  extremity.     Find  also  its  centre  of  gravity,  and  shew  that 
it  is  in  one  of  the  points  of  trisection  of  the  rod. 
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10.  The  limiting  ratio  of  an  hyperboloid  of  revolution,  whose 
axis  is  the  transverse  axis,  to  the  circumscribing  cylinder  is  1  :  2 
when  the  altitude  is  indefinitely  diminished,  and  1  :  3  when  it  is 
indefinitely  increased. 

IV. 

1.  Prove  that  the  areas  of  parabolic  segments,  cut  off  by  focal 
chords,  vary  as  the  cubes  of  the  greatest  breadths  of  the  segments. 

2.  Find  the  mass  of  a  circle  whose  density  varies  as  the  mih 
power  of  the  distance  from  the  centre. 

3.  Shew  that  the  abscissa  and  ordinate  of  the  centre  of  gravity 
of  a  parabolic  area,  contained  between  a  diameter  AB  and  ordinate 
£C,  are  \AB  and  \BC  respectively. 

4.  A  number  of  equal  squares  in  one  plane  with  their  centres 
coincident  are   arranged  consecutively,   their  sides  making  equal 
small  angles,  each  with  the  adjacent  ones;   prove  that  the  limit 
of  the  length  of  the  serrated  edge,  when  the  number  of  squares 
is  indefinitely  increased,  is  equal  to  the  circumference  of  a  circle 
whose  radius  is  a  side  of  the  square. 

5.  By  supposing  the  axis  of  a  parabola  portioned  off  into  suc- 
cessive lengths  in  the  ratio  1:3:5,  &c.,  apply  Lemma  III.  to  find 

the  area  contained  by  the  curve  and  a  double  ordinate. 

6.  Find  the  volume  generated  by  the  revolution  of  an  elliptic 
disc  about  an  axis  parallel  to  its  major  axis,  and  at  such  a  given 
distance  as  not  to  intersect  the  disc. 

7.  In  the  curve  A  CD,  BE  is  an  ordinate  perpendicular  to 

and  FC  is  the  greatest  value  of  BE,  and  ,_,  =  sin  p 

Shew  that  the  area  ABE  varies  as  HG,  where  GE  is  the 

ordinate  equal  to  BE  of  the  circle  CZ7",  whose  centre  is  F  and radius  FC. 
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8.  In  the  curve  of  the  last  problem  shew  that  the  ratio  of  the 
area  A  CD  to  the  triangle  whose  sides  are  AD,  and  the  tangents AT,  DT  at  the  extremities,  is  8  :  TT. 

9.  In  the   curve   APC,    in   which   the   relation   between   any 
rectangular    ordinate    PM    and    abscissa    OM  is    —  =  log~~, 

prove  that  the  area  contained  between  the  curve,  the  abscissa  OB 
and  ordinate  £C,  is  OA(BC-AO). 
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LEMMA  IV. 

If  in  two  figures  AacE,  PprT  there  be  inscribed  (as  m 
Lemmas  II.,  III.)  two  series  of  parallelograms,  the  num- 

ber in  each  series  being  the  same,  and  if,  taken  the  breadths 
are  diminished  indefinitely,  the  ultimate  ratios  of  the 
parallelograms  in  one  figure  to  the  parallelograms  in  the 
other  be  the  same,  each  to  each,  then  the  two  figures- 

AacE,  PprT  will  be  to  one  another  in  that  same  ratio-. 

A  E       P  T 

[Since  the  ratio,  whose  antecedent  is  the  sum  of  the 
antecedents,  and  whose  consequent  is  the  sum  of  the 
consequents  of  any  number  of  given  ratios,  is  inter- 

mediate in  magnitude  between  the  greatest  and  least 
of  the  given  ratios,  it  follows  that  the  sum  of  the 
parallelograms  described  in  AacE  is  to  the  sum  in 
PprT  in  a  ratio  intermediate  between  the  greatest 
and  least  of  the  ratios  of  the  corresponding  inscribed 
parallelograms;  but  the  ratios  of  these  parallelograms 

*  are  ultimately  the  same,  each  to  each,  therefore  the 
sums  of  all  the  parallelograms  described  in  AacE, 
PprT  are  ultimately  in  the  same  ratio,  and  so  the 
figures  AacE,  PprT  are  in  that  same  ratio ;  for, 
by  Lemma  III.,  the  former  figure  is  to  the  former 
sum  and  the  latter  figure  to  the  latter  sum  in  a  ratio 
of  equality.]  Q.  E.  D. 

COR.  Hence,  if  two  quantities  of  any  kind  whatever  be 
divided  into  any,  the  same,  number  of  parts,  and 
those  parts,  when  their  number  is  increased  and 
magnitude  diminished  indefinitely,  assume  the  same 
given  ratio  each  to  each,  viz.  the  first  to  the  first; 

C"V 
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the  second  to  the  second,  and  so  on  in  order,  the 
whole  quantities  will  be  to  one  another  in  the  same 
given  ratio.  For  if,  in  the  figures  of  this  Lemma, 
the  parallelograms  be  taken  each  to  each  in  the  same 
ratio  as  the  parts,  the  sums  of  the  parts  will  be  always 
as  the  sums  of  the  parallelograms ;  and,  therefore, 
when  the  number  of  the  parts  and  parallelograms  is 
increased  and  their  magnitude  diminished  indefi- 

nitely, the  two  quantities  will  be  in  the  ultimate 
ratio  of  parallelogram  to  parallelogram,  that  is,  (by 
hypothesis)  in  the  ultimate  ratio  of  part  to  part. 

Observations  on  the  Lemma. 

22.   The  general  proposition  contained  in  the  Corollary  may 
be  proved  independently  in  the  following  manner : 

Let  A,  B  be  two  quantities  of  any  kind,  which   can   be 

divided  into  the  same  number  n  of  parts,  viz.  «l5  «2,  a3...an 
and  6t,  £2,  £3..-&M  respectively,  such  that,  when  their  number  is 
increased   and   their  magnitudes  diminished   indefinitely,   they 
have  a  constant  ratio  L  :  1  each  to  each,  so  that 

4  *.&  u  £(1  +  4)11} 
«:  S  t:  £1+0:1 

where  at,  a2,  ...  vanish  when  n  is  increased  indefinitely. 

Then,  al  +  az+.,.:  ̂   +  ̂2+...  being  a  ratio  which  is  inter- 
mediate between  the  greatest  and  least  of  these  ratios,  each  of 

which  is  ultimately  L  :  1,  we  have,  proceeding  to  the  limit, 
A  :  B  : :  L  :  1 ; 

that  is,  A  and  B  are  in  the  ultimate  ratio  of  the  parts. 

23.  The  proof  given  in  the  Principia  is  as  follows :  "  For, 
as  the  parallelograms  are  each  to  each,  so,  componendo,  is  the 
sum  of  all  to  the  sum  of  all,  and  so  the  figure  AacE  to  the  figure 

PprTj  for,  by  Lemma  III.,  the  former  figure  is  to  the  former  sum 

and  the  latter  figure  to  the  latter  sum  in  a  ratio  of  equality.'7 
The  proof  given  in  the  text  is  substituted  for  this,  because 

the  demonstration  breaks  down  for  any  finite  distance  from  the 
ultimate  form  of  the  hypothesis. 

F 
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Application  to  the  determination  of  certain  Areas,  Volumes,  (fee. 

X      (1)   Area  of  an  ellipse. 

Let  A  Ca  be  the  major  axis  of  an  ellipse,  BC  the  semi-minor 
axis,  ADa  the  auxiliary  circle,  and  let  parallelograms  be  in- 

scribed, whose  sides  are  common  ordinates  to  the  two  curves. 

Let  PMNR,  QMNU  be  any  two  corresponding  parallelo- 
grams. The  ratio  of  these  parallelograms  is  PM :  QM  or 

BC:AC. 

€        IT    3C          A. 

Hence,  area  of  ellipse  :  area  of  circle  ::  BC  :  AC,  but  area 

of  circle  =  TrA  C*  ;    therefore  area  of  ellipse  =  TrA  C.BC. 

(2)    Area  of  a  sector  of  an  ellipse,  pole  in  the  focus. 

If  S  be  a  focus  of  the  ellipse,  and  SP,  SQ  be  joined, 
&SPM:  ASQMuBCiAC, 

and  area  APM  :  area  A  QM  :  :  BC  :  A  C, 

hence,  area  ASP  :  area  ASQ  ::  BC:  AC, 

but  area  ASQ  =  &SCQ  +  sector  A  CQ 

(3)  Area  of  a  parabolic  curve  cut  off  by  a  diameter  and 
an  ordinate  to  the  diameter. 

In  the  following  investigation  it  is  asserted  that  when  a 

chord  PQ  is  drawn  to  a  curve  from  a  point  P,  as  Q  moves  up 
to  P,  PQ  assumes  as  its  limiting  position  that  of  the  tangent 
at  P,  which  is  deducible  from  the  idea  of  a  tangent  being  in  the 
direction  of  the  curve  at  the  point  of  contact. 

Let  AB,  BC  be  the  diameter  and  ordinate;  AD  the  tangent 

at  A;  CD  parallel  to  AB',  P,  Q  points  near  each  other; 
PM,  QN  and  Pm,  Qn  parallel  respectively  to  AD  and  AB. 

Let  QP  produced  meet  BA  in  T,  and  complete  the  parallelo- 
grams TAmSj  TAnU. 
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Then,   since   QP  is  ultimately  a  tangent  at  P,  AT=AM 
ultimately,  and  the  parallelogram  PU  is  ultimately  double  of 

c 

,T  JL  M    ..JIT  & 

the  parallelogram  Pn,  and  the  complements  PN,  PU  are  equal ; 
therefore  the  parallelograms  PN,  Pn  are  ultimately  in  the  ratio 
2:  1, 

Hence,  in  the  curvilinear  areas  ABC,  ACD  two  sets  of 
parallelograms  can  be  inscribed  which  are  ultimately  in  the  ratio 
2:1,  each  to  each ;  therefore  area  ABC  is  ultimately  double  of 

area  ACD,  and  is  therefore  two-thirds  of  ABCD. 

(4)    Volume  of  a  paraboloid  of  revolution. 

Let  AH  be  the  axis  of  the  parabola  APR,  AEKL  the 

circumscribing  rectangle.      Also  let  PN)  Pn  be  rectangles  in- 
scribed in  the  portions  AEK,  AKL. 

Volume  generated  by  PN=7rPM\MN=7r.PM.PN. 

Volume  generated  by  Pn  =  7rQN \AM-irPM\AM 

.%  vol.  by  PN:  vol.  by  Pn  ::  PM.PN:  (QN+PM).Pnr 

but   QN+  PM=ZPM  and  PN=2Pn,  as  in  (3),  and  therefore 
vol.  by  P.JV=vol.  by  Pn  ultimately;  hence,  by  Cor.,  Lemma  IV., 
the  volume  of  the  paraboloid  generated  by  AHK  is  half  the 

volume  of  the  circumscribing  cylinder  generated  by  AHjKL. 
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(5)  Centre  of  gravity  of  a  paraboloid  of  revolution. 

Since  the  volumes  generated  by  PN  and  Pn  are  ultimately 
equal,  the  moment  of  the  volume  generated  by  PN  with  respect 
to  the  tangent  plane  at  A  :  moment  of  that  generated  by  Pn, 

::  AM  :  \Pm  ultimately,  i.e.  : :  2  :  1 ; 

hence  the  moment  of  volume  generated  by  AHK  is  twice  that 
of  the  volume  generated  by  AKL,  and  the  moment  of  the 

paraboloid  =  f  moment  of  the  cylinder 

=  |  volume  of  cylinder  x  \AH=  f  volume  of  paraboloid  x  AH\ 

hence  the  distance  of  the  centre  of  gravity  of  the  paraboloid  from 

the  vertex  is  two-thirds  of  the  height  of  the  paraboloid. 

(6)  Centre  of  gravity  and  mass  of  a  rod  whose  density  varies 
as  the  distance  from  an  extremity. 

Let  AB  be  the  rod,  MN  a  small  portion  of  it,  then  the 
density  at  M  GQ  AM, 

Construct  on  AB  as  axis  an  isosceles  triangle  CAD,  whose 

base  is  CD,  and  draw  PMR,  QNS  parallel  to  CD ;  then  PR, 

QS,  CD  are  proportional  to  the  densities  at  M,  N  and  B* 
therefore  the  mass  of  MN  is  proportional  to  a  rectangle  inter- 

mediate to  the  rectangles  PR,  MN  and  QS,  MN,  which  are 

ultimately  in  a  ratio  of  equality. 
Hence  the  mass  of  MN  is  ultimately  proportional  to  the  mass 

of  the  rectangle  PR,  MN,  supposed  of  uniform  density,  and  the 
moment  of  MN,  with  respect  to  the  line  CD,  is  proportional  to 
the  moment  of  the  same  rectangle,  since  their  distance  is  the 

same;  hence,  by  the  Lemma,  the  moment  of  the  whole  rod 

:  the  moment  of  the  triangle  with  respect  to  CD 

: :  the  mass  of  the  rod  :  the  mass  of  the  triangle ; 
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therefore,  the  distances  of  the  centres  of  gravity  of  the  rod  and 
triangle  from  CD  being  the  same,  the  centre  of  gravity  of  the 
rod  is  at  a  distance  \AB  from  B. 

Also,  the  mass  of  MN  being  proportional  to  the  area  PEN, 
the  mass  of  the  rod  is  proportional  to  the  area  of  the  triangle 
A  CD,  and  the  mass  of  a  rod  of  uniform  density  equal  to  that 
at  B,  and  of  length  AB,  being  in  the  same  proportion  to  the 
rectangle  AB,  CD,  is  therefore  double  of  the  mass  of  the  rod. 

(7)    Centre  of  gravity  of  a  circular  arc. 

Let  0  be  the  centre  of  an  uniform  circular  arc  ABC,  OB 
the  bisecting  radius,  aBc  a  tangent  at  B,  .OD  parallel  to  ac, 
and  Aa,  Cc  parallel  to  OB. 

Let  QR  be  the  side  of  a  regular  polygon  described  about  the 

cu 

arc,  P  the  point  of  contact,  Qq,  Rr  perpendicular  to  ac,  and  PM 
to  OB.  Then,  since  OP,  OB  are  perpendicular  to  QR,  qr, 

qr:  QR::  OM :  OP::OM:  OB; 

but,  since  OM,  OB  are  the  distances  of  the  centres  of  gravity  of 

QR  and  qr  from  OD,  and  QR.OM—qr.OB,  the  moments  of 
QR  and  qr  with  respect  to  OD  are  in  a  ratio  of  equality,  and 
the  same  is  true  of  every  side  of  the  circumscribing  polygon ; 
therefore,  by  Cor.,  Lemma  IV.,  the  moment  of  the  arc,  which  is 
ultimately  that  of  the  polygon,  is  equal  to  the  moment  of  ac 

=  ac.OB  =  chord  A  C. radius  OB. 
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Hence,  the  distance  of  the  centre  of  gravity  of  the  arc  from  0 

radius  x  chord 
=  -  —  . arc 

(8)    Surface  of  a  segment  of  a  sphere. 

Let  AKH  be  the  portion  of  a  circle  which  generates  by 
revolution  round  AH  the  spherical  segment,  0  the  centre  of 
the  circle,  PQ  the  chord  of  a  small  arc,  PMy  QN  perpendicular 
to  AH. 

Let  AOCD  be  the  rectangle  circumscribing  the  quadrant 
and  generating  the  circumscribing  cylinder. 

Produce  MP,  NQ,  HK  to  meet  CD  in  p,  q,  L  Since  PQ 
is  in  its  limiting  position  a  tangent  at  P,  PQ  is  ultimately 
perpendicular  to  the  radius  OP,  also  pq  is  perpendicular  to 

.:  PQ:pq::  OP:  PM  ultimately, 

and  the   surface   generated   by  PQ  is   ultimately 

Art.  18,  =  27r.0P.^?2  =  the  surface  generated  by  jpq. 

Jf 
Nm/     H. 

The  same  is  true  for  each  side  of  the  inscribed  polygon  when 
the  number  is  indefinitely  increased. 

Hence  the  surface  generated  by  AKy  or  the  surface  of  the 
spherical  segment,  is  equal  to  the  surface  of  the  circumscribed 
cylinder  cut  off  by  the  plane  of  the  base  of  the  segment. 

COR.  Hence,  also,  the  surface  of  any  belt  of  a  sphere  cut  off 
by  two  parallel  planes  is  equal  to  the  corresponding  belt  of  the 
cylindrical  surface. 
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(9)  Centre  of  gravity  of  a  belt  of  the  surface  of  a  sphere  con- 
tained between  parallel  planes. 

The  moment  of  the  belt  generated  by  PQ  with  respect  to  the 

plane  through  A,  perpendicular  to  AH,  is  evidently  ultimately 

equal  to  that  of  the  belt  generated  by  pq  •  therefore  the  moment 

of  any  belt  generated  by  K'K  is  equal  to  that  of  the  cor- 
responding belt  generated  by  k'k. 

Hence,  the  centres  of  gravity  of  the  two  belts  are  coincident, 
viz.  in  the  bisection  of  HE!  ,  that  is,  the  distance  of  the  centre  of 

gravity  of  a  spherical  belt,  contained  between  parallel  planes,  is 
half-way  between  the  two  planes. 

(10)  Volume  of  a  spherical  sector. 

Let  the  spherical  sector  be  generated  by  the  revolution  of  the 
sector  A  OP  about  A  0. 

The  volume  of  the  spherical  sector  is  equal  to  the  limit  of  the 
sum  of  a  series  of  pyramids  whose  vertices  are  in  0,  and  the  sum 

of  whose  bases  is  ultimately  the  area  of  the  surface  of  the  seg- 
ment ;  also  the  volume  of  each  pyramid  is  -J  base  x  altitude. 

Hence,  the  volume  of  the  spherical  sector  is  one-third  of  the 
area  of  the  surface  of  the  spherical  segment  x  radius 

(11)  Centre  of  gravity  of  a  spherical  sector. 

If  we  suppose  each  of  the  pyramids  on  equal  bases,  they  may 
be  supposed  collected  at  their  centres  of  gravity,  whose  distances 
are  \A  0  from  0  ultimately,  and  they  form  a  mass  which  may 
be  distributed  uniformly  over  the  surface  of  a  spherical  segment 
whose  radius  is  \AO,  viz.  that  generated  by  ar,  whose  centre 

of  gravity  will  be  in  the  bisection  of  am,  if  rm  be  perpendicular 
to  AH. 

Therefore  the  distance  of  the  centre  of  gravity  of  the  spherical 

sector  from  0  =  J  (  Oa  +  Om)  =  f  OA  .  cos^POA. 
If  the  angle  POA  become  a  right  angle,  the  distance  of  the 

centre  of  gravity  of  the  corresponding  sector,  which  in  this  case 
will  become  the  hemisphere,  will  be  §0-4,  as  in  page  29. 

(12)  To  find  the  direction  and  magnitude  of  the  resultant 
attraction  of  a  uniform  rod  upon  a  particle,  every  particle  qf  the 
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rod  'being  supposed  to  attract  with  a  force  which  varies  inversely 
as  the  square  of  its  distance  from  the  attracted  particle. 

o 

TT~  P 

Let  AB  be  the  attracting  rod,  O  the  particle  attracted  by  the 

rod;  draw  OG  perpendicular  to  AB,  join  OA,  OB,  and  let  a 
circle  be  described  with  centre  0  and  radius  OG  meeting  OA, 

OB  in  a,  b.  Let  OpP,  OqQ  be  drawn  cutting  off  the  small 
portions  pq,  PQ  from  the  arc  aCb  and  the  rod,  respectively, 
and  draw  PR  perpendicular  to  OQ. 

Then   PR  :  PQ  :  :  OG  :  OP    ultimately, 

and   pq  :PE::  Op:  OP    .............  ; 

.-.    pq  :PQ::  Op*:  OP*  .............  , 

and,  if  a  Cb  be   of  the  same  density  as  the  rod  and   attract 
according  to  the  same  law, 

attraction  of  pq  on  0  :  attraction  of  PQ  :  :  - 
ultimately. 

Therefore  the  portions  PQ,  pq  of  the  rod  and  arc  attract  0 
in  the  same  direction  with  forces  which  are  ultimately  equal. 

Hence,  by  Cor.,  Lemma  IV.,  the  resultant  attraction  of  the 
rod  is  the  same  as  that  of  the  arc  aCb,  which,  by  symmetry, 
is  in  the  direction  OD,  bisecting  the  angle  A  OB. 

Again,  draw  qn  perpendicular  to  OD,  pr  to  qn ;  then,  by 
similar  triangles,  pqr,  qOn, 

pq  :  qr  ::  Oq  :  On; 

pq       On  _     qr 

'*'   ~0(f  *   Oq  ~  1)G*  ' 

that  is,  the  resultant  attraction  of  pq  in  the  direction  OD  is  the 
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same  as  that  of  qr  at  the  distance   0(7;   hence  the  whole  re- 
sultant attraction  of  AE  is 

or 
where  /*  is  the  attraction  of  a  unit  of  mass  at  the  unit  distance. 

V. 1.  Shew  that  the  area  of  the  sector  of  an  ellipse  contained 
between  the  curve  and  two  central  distances  varies  as  the  angle 
of  the  corresponding  sector  of  the  auxiliary  circle. 

2.  Prove  that  the  volumes  of  two  pyramids  will  be  equal  if 
they  stand  on  the  same  base,  and  have  their  vertices  in  the  same 
plane  parallel  to  the  base. 

3.  Find  the  volume  of  a  paraboloid  by  comparison  with  the 
area  of  a  triangle  whose  vertex  and  base  are  those  of  the  generating 
parabola. 

4.  Find  the  centre  of  gravity  of  the  paraboloid  by  reference 
to  the  same  triangle. 

5.  Find  the  mass  of  a  straight  rod,  whose  density  varies  as  the 
square  of  the  distance  from  one  extremity,   by  comparison  with 
a  cone  whose  axis  is  the  rod. 

6.  Shew  that  the  orthogonal  projection  of  any  plane  area  on 
another  plane  is  the  given  area  x  the  cosine  of  the  inclination  of 
the  two  planes. 

As  a  first  step,  prove  that,  pqsr  being  the  projection  of  the 
inscribed  parallelogram  PQSR,  pqsr  :  PQSR  : :  cos  £  AC :  1. 

7.  Find  the  volume  of  a  hemisphere  by  comparing  the  volumes 
generated  by  the  quadrantal  sector  and  the  portion  of  the  circum- 

scribing square  which  is  the  difference  between  the  square  and  the 
quadrantal  sector. 

0 
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VI. 
1 .  Find  the  volume  of  a  paraboloid  generated  by  the  revolution 

of  a  semi-cubical  parabola,  in  which  PM*  «  AM3,  by  means  of  a cone  on  the  same  axis. 

2.  Assuming  that  the  area  of  a  belt  of  a  sphere  cut  off  by  two 
parallel  planes  varies  as  the  perpendicular  distance  between  them, 
find  by  the  aid  of  Lemma  IV.  the  area  of  any  portion  of  the  curve 
of  sines. 

3.  Prove  that,  if  PQ  be  a  small  arc  of  an  ellipse,  and  CD  be 
conjugate  to   CP,  the  limit  of  the  sum  of  all  the  ratios  PQ  :  CD, 
taken  over  the  whole  perimeter  of  the  ellipse,  will  be  2?r. 

4.  P  is  any  point  of  a  curve  OP;   OX,  OYany  lines  drawn  at 
right  angles  through  0,  PM,  PN  perpendicular  to  OX,  OF  respec- 

tively.     Prove  that,  if  area  0PM :  area  OPN ':  :  m  :  1  always,  and the  whole  system  revolve  about  OX,  volumes  generated  by  0PM, 
OPN  will  be  as  m  :  2. 

5.  Prove   that  the  surface  generated  by  the  revolution  of  a 
semi-circle  round  its  bounding  diameter  is  to  the  curved  surface 
generated   by  the  revolution   of  the  same  semi-circle  round  the 
tangent  at  the  extremity  of  the  diameter  in  the  ratio  of  the  length 
of  the  diameter  to  the  length  of  the  arc  of  the  semi-circle. 

6.  Common  ordinates  MPP',  NQQ'  are  drawn  to  two  ellipses which  have  a  common  minor  axis,  and  the  outer  of  which  touches 
the  directrices  of  the  inner;    shew   that  the  area  of  the  surface 
generated  by  the  revolution  of  PQ  about  the  major  axis  bears  a 
constant  ratio  to  the  area  MP'Q'N. 

7.  Prove  that  the  area  included  between  an  hyperbola  and  the 
tangents  at  the  vertices  of  the  conjugate  hyperbola  is  equal  to  the 
area  included  between  the  conjugate  hyperbola  and  the  tangents  at 
the  vertices  of  the  hyperbola. 
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All  the  homologous  sides  of  similar  figures  are  proportional, 

whether  curvilinear  or  rectilinear -,  and  their  areas  are  in 
the  duplicate  ratio  of  the  homologous  sides., 

[Similar  curvilinear  figures  are  figures  whose  curved 
boundaries  are  curvilinear  limits  of  corresponding 
portions  of  similar  polygons. 

Let  SABCD,..,  sabcd...  be  two  similar  polygons,  of 
which  JSAj  AB,  BO,  ...  are  homologous  to  sa,  ab, 
Icy  ...  respectively. 

Then  AB  :  ab::.SA  :  sa^ 

Similarly,  BC :  be  ::AB  :  ab  : :  SA  :  sa^ 
CD:  cd::BO:  be  ::  SA  :  sa, 

therefore,  componendo, 

AB  +  BC  +  CD  +  ...  :  ab  +  be  +  cd  -f  ... : :  SA  :  sa, 

Now  this,  being  true  for  all  similar  polygons,  will  be 
true  in  the  limit,  when  the  number  of  the  sides  AB, 
BO,  ...  and  ab,  be,  ...  is  increased,  and  their  lengths 
diminished  indefinitely ;  if,  therefore,  AE,  ae  be 
curves  which  pass  through  the  angular  points  A,  B, ... 
and  a,  b,  ...  of  the  polygons,  these  curves  will  be 
curvilinear  limits  of  AB  -\-BO+...  and  ab  +  be  +  ...^ 
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and  will  be  the  boundaries  of  similar  curvilinear  figures; 
therefore  the  curved  line  AE .:  the  curved  line  ae 

:;  SA  :  sa::  SJE:  se. 

Again,  polygon  SAB  C. . . :  polygon  sale ...  ;:  SA* :  sa*9 
and  this  is  true  in  the  limit ;  hence,  by  Lemma  III, 
Cor.  2j  curvilinear  area  SAE :  curvilinear  area  sae 

; :  SA*  :  so?  : :  AN' :  ae*  : :  SJEZ  :  se\ Q.E.D.] 

Observations  on  the  Lemma. 

24.  In  order  to  deduce  the  properties  of  similar  curves,  it 
is  premised,  as  before  mentioned  under  Cor.  4,  Lemma  III., 
that,  if  a  finite  portion  of  a  curve  be  taken,  and  if  a  polygon 
be  inscribed  in  the  curve,  the  sides  of  which  are  chords  taken 
in  order  of  portions  of  the  curve,  and  the  number  of  sides  of 
the  polygons  be  increased  indefinitely,  and  the  magnitudes  a 
the  same  time  diminished  indefinitely,  the  curve  will  be  the  limit 

of  the  perimeter  of  the  polygon.^ 
It  is  not  assumed  that  each  chord  is  equal  to  the  corre* 

spending  arc  ultimately;  this  is  afterwards  proved  for  a  con* 
tinuous  curve  in  Lemma  VII. 

Criteria  of  Similarity. 

25.  From  the  definition  of  similar  curve  lines,  that  they  are 
curvilinear  limits  of  homologous  portions  of  similar  polygons, 
the  following  criteria  of  similarity  can  be  deduced,  all  of  which 
are  very  convenient  in  practice ;  namely : 

(1)  One   curve    line    is    similar   to   another  when,  if  any 
polygon  be  inscribed  in  one,  a  similar  polygon  can  be  inscribed 
in  the  other. 

(2)  If  two  curves  be  similar,  and  any  point  S  be  taken 
in  the  plane  of  one  curve,  another  point  s  can  be  found  in  the 
plane  of  the  other,  such  that,  any  radii  SP,  SQ  being  drawn  in 
the  first,  radii  spt  sq  can  be  drawn  in  the  second,  inclined  at 

»  Whewell's  Doctrine  of  Limits, 
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the   same   angle   as   the  former,   and  such  that  the  following 
proportion  will  hold, 

sp'.  sq-.i  SP:  SQ. 

(3)  If  two  curves  be  similar,  and  in  the  plane  of  one 
curve  any  two  lines  OX,  O  Y  be  drawn,  two  other  lines  ox,  oy 
<;an  be  drawn  in  the  plane  of  the  other  curve^  inclined  at  the 
same  angle,  having  the  property  that  the  abscissa  and  ordinate 
OM,  MP  of  any  point  P  in  the  first  being  taken,  the  abscissa 
and  ordinate  om,  mp  of  a  corresponding  point  p  in  the  second 
will  be  proportional  to  the  former,  viz., 

om  :  mp::  OM :  MP. 

And  the  converse  propositions  can  also  be  deduced,  that  if 
these  proportions  hold,  the  curves  will  be  similar. 

26.  In  order  to  illustrate  test  (1),  let  the  arcs  AB,  db  of 
two  circles  have  the  same  centre  C,  and  let  the  bounding  radii 
be  coincident  in  direction. 

Let  A  DEB  be  any  polygon  inscribed  in  AB,  and  let  CD, 
CE  cut  ab  in  d,  e;  join  ad,  de,  eb,  these  are  parallel  to  AD, 

DE,  EB  respectively,  and  ad :  de  :  eb  : :  AD  :  DE :  EB',  hence 
adeb  is  similar  to  ADEB;  and  therefore  the  arcs  ab,  AB  are 
similar. 

27.   Test  (2)  may  be  deduced  as  follows : 

If  ABCD...,  abed...,  fig.  p.  43,  be  corresponding  portions 
of  similar  polygons,  AB,  BC,  ...  ab,  be,  ...  being  homologous 
sides,  and  AS,  BS,  ...  be  drawn  to  any  point  S,  construct  the 

triangle  sab  equiangular  with  SAB,  and  join  sc,  sd,  .... 

Then  sb  :  8B  : :  ab  :  AB  : :  be  :  BC,   and  L 
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therefore  SBC,  sic  are  similar  triangles; 

hence  sc  :  SC  ::  sb  :  SB  ::  sa  :  SA  • 
and  similarly  for  sd,  se,  &c. 

Hence,  if  two  polygons  be  similar,  and  any  point  be  taken 
in  one,  another  point  can  be  found  in  the  other,  such  that  the 

radii  drawn  to  corresponding  angular  points  will  be  propor- 
tional and  include  the  same  angles. 

If  we  now  increase  the  number  of  sides  indefinitely  and 
diminish  their  magnitude,  the  same  property  will  hold  with 
respect  to  the  curvilinear  limit  of  the  polygon. 

Test  (3)  can  be  deduced  from  test  (1)  in  a  similar  manner. 

Centres  of  Similitude. 

28.  When  two  similar  curves  are  so  situated  that  a  point 
can  be  found,  such  that  the  radii  drawn  from  that  point,  either 
in  the  same  or  opposite  directions,  are  in  a  constant  ratio,  such 
a  point  is  called  a  centre  of  similitude. 

If  the  radii  be  measured  in  the  same  direction,  the  point 
will  be  a  centre  of  direct  similitude,  and  of  inverse  similitude 
if  they  be  measured  in  opposite  directions. 

It  is  easily  shewn  that  there  can  be  only  one  centre  of 
similitude  of  one  kind. 

Properties  of  similar  curves  and  application  of  tests  of 
Similarity. 

(1)  Similar  conterminous  arcs,  which  have  their  chords  coin- 
cident, have  a  common  tangent. 

A.  -B 

Let  APB,  Apb  be  similar  conterminous  arcs,  ABb  the  lino 
of  their  chords,  AQq,  APp  any  straight  lines  meeting  the 
curves  in  Q,  q  and  P,  p  respectively ;  then  A  will  evidently 
be  a  centre  of  direct  similitude  for  the  two  curves;  therefore 

A  Q  :  Aq  : :  AP :  Ap ;  hence  AP,  Ap  are  similar  portions  of 
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the  curves,  and  arcAP:  arcAp  ::  AP :  Ap  ::  AS  :  Ab;  there- 
fore the  arcs  AP,  Ap  vanish  simultaneously,  or,  when  AP 

assumes  its  limiting  position  AD  for  the  curve  APB^  this  is 
also  the  limiting  position  of  Ap  for  the  curve  Apb,  that  is, 
the  curves  have  a  common  tangent. 

(2)    To  find  the  centres  of  direct  and  inverse  similitude  of  any 
two  circles. 

If  one  of  the  circles  do  not  lie  entirely  within  the  other, 
let  S  be  the  intersection  of  two  common  tangents  to  the 
circles  which  intersect  in  the  produced  line  Cc  joining  their 
centres,  and  let  CQ,  cq  be  radii  to  the  points  of  contact. 

Draw  SpP  through  8  cutting  the  circles  in  p,  P,  then  cq 

is  parallel  to  CQ,  and  CP :  cp  : :  CQ:cq::  CS:cS', 

.',   CS:  CP::cS:cp', 

also  CPSj  cpS  are  each  greater  or  each  less  than  a  right  angle, 

and  CSP  is  common  to  the  triagles  CPSj  cpS',  therefore  the 
triangles  are  similar,  Euclid  VI.  7,  and  the  sides  about  the 
angle  CSP  are  proportional,  that  is,  SP  i  Sp  ::  SC  :  Sc ; 
therefore  S  is  the  centre  of  direct  similitude. 

Similarly,  the  intersection  of  two  common  tangents  which 
cross  between  two  circles  is  the  centre  of  inverse  similitude. 

(3)    To  find  the  condition  of  similarity  of  two  conic  sections. 

Let  the  conic  sections  be  placed  so  that  their  directrices 

-SCD 
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are  parallel  and  foci  coincident,  and  let  SpP  be  any  line 
through  the  focus  meeting  them  in  />,  P;  draw  SaAD  and 
PQ  perpendicular  to  the  directrix  DQ  of  AP,  and  join  SQ, 

and  let  pq1  parallel  to  PQ,  meet  it  in  <?,  and  draw  gd  per- 
pendicular to  SD. 

Then  Sd  :  SD  : :  Sq  :  SQ  : :  Sp  :  SP;  and,  if  the  curves 
be  similar,  Sp  :  SP  will  be  a  constant  ratio ;  therefore  Sd  :  SD 
is  a  constant  ratio,  and  dq  is  a  fixed  straight  line  for  all 

positions  of  p ;  also,  since  pq  :  Sp  :• :  PQ  :  SP,  pq  :  Sp  is  a 
constant  ratio ;  therefore  qd  is  the  directrix  of  ap,  and,  the 
constant  ratio  being  the  same  in  both,  the  eccentricities  are 
the  same. 

(4)  Instruments,  like  the  Pantagrapfi  and  the  EidograpTi,  for 
copying  plans  on  an  enlarged  or  reduced  scale  are  founded  upon 
the  properties  of  similar  figures ;  as  are  also  other  methods  of 

copying,  such  as  by  dividing  plans  or  pictures  into  squares. 
The  Pantagraph  is  an  instrument  for  drawing  a  figure 

similar  to  a  given  figure  on  a  smaller  or  larger  scale  j  one  of 
its  forms  is  as  in  the  figure.  AD,  EF,  GC  and  AE,  DG,  FG 

are  two  sets  of  parallel  bars,  joined  at  all  the  angles  by 

compass-joints;  at  B  is  a  point,  which  serves  to  fix  the 
instrument  to  the  drawing  board;  at  A  is  a  point  which  is 
made  to  pass  round  the  figure  to  be  reduced  or  enlarged ;  at 

C  is  a  hole  for  a  pencil  pressed  down  by  a  weight,  and  the 
pencil  traces  the  similar  figure,  altered  in  dimensions  in  the 

ratio  of  BO:  AD  or  BF ':  AD. 
The  similarity  of  the  figure  traced  by  the  pencil  is  a  con- 

sequence of  continual  similarity  of  the  triangles  ABD,  BFC. 
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By  changing  the  positions  of  the  pegs  at  F  and  G  the  figure 
described  by  G  may  be  made  of  the  required  dimensions. 

For  a  description  of  the  Eidograph,  invented  by  Professor 

Wallace,  see  the  Transactions  of  the  Royal  Society  of  Edinburgh^ 
vol. 

(5)  Volume  of  a  cone  whose  'base  is  a  plane  closed  figure  of 
any  form. 

Let  V  be  the  vertex,  AB  the  base,  VH  perpendicular  to  the 

base  from  V;  let  VH  be  divided  into  n  equal  portions,  of 

2 

which  MN  is  the  (r  -f  I)th ;  and  let  PQ  be  the  section  through  M 
parallel  to  AB. 

Take   VPA  any  generating  line   of  the  cone  meeting  the 
section  PQ  and  the  base  AB  in  PA  respectively,  then 

PM-.AH::  VM:  VH; 

therefore  PQ  is  similar  to  AB,  M,  H  being  similarly  situated 
points;  and,  by  Lemma  V., 

areaP$  :  are  a  A  B  : :  r2  :  ri*, 
also  MN:  VH::  1  :  w; 

therefore  the  volume  of  the  cylinder  whose  base  is  PQ  and 
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by  Lemma  II.,  is  one-third  of  the  cylinder  whose  base  is  AB 
and  height  VH. 

VII. 

1.  Apply  a  criterion   of  similarity  to  shew  that  segments  of 
circles  which  contain  equal  angles  are  similar. 

2.  From  the  definition  of  an  ellipse,  as  the  locus  of  a  point 
the  sum  of  whose  distances  from  two  fixed  points  is  constant,  shew 
that  ellipses  are  similar  when  the  eccentricities  are  equal. 

H 
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3.  Prove  tliat  the  centre  of  an  ellipse  is  a  centre  of  inverse 
similitude  of  two  opposite  equal  portions  of  the  circumference  of 
the  ellipse. 

4.  Employ  the  properties  of  similar  figures  to  inscribe  a  square 
in  a  given  semicircle. 

6.  Construct,  by  means  of  similar  figures,  two  circles,  each 
of  which  shall  touch  two  given  straight  lines  and  pass  through  a 
given  paint. 

6.  Deduce  the  position  of  the  centre  of  gravity  of  a  circular 
sector  from  that  of  a  circular  arc;   shew  that  the  distance  from 

2     radius  x  chord 
the  centre  is  •-  .  --  . o  arc 

7.  If  A  be  the  vertex  of  a  conical  surface,    G  the  centre  of 
gravity  of  the  base,  H  that  of  the  volume  of  the  conical  figure, 
shew  that 

8.  Find  the  centre  of  gravity  of  the  surface  of  a  right  cone 
on  a  circular  base.  Does  the  method  apply  to  the  surface  of  an 
oblique  cone? 
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LEMMA  VI. 

If  any  arc  ACB  given  in  position  be  subtended  by  a  chord 
AB,  and  if  at  any  point  A,  in  the  middle  of  continuous 
curvature,  it  be  touched  by  the  straight  line  AD  produced 
in  both  directions,  then,  if  the  points  A,  B  approach  one 
another  and  ultimately  coincide,  the  angle  BAD  contained 
by  the  chord  and  tangent  will  diminish  indefinitely  and 
ultimately  vanish. 

For,  if  that  angle  do  not  vanish,  the  arc  ACB  will 
contain  with  the  tangent  AD  an  angle  equal  to  a 

rectilineal  angle,  and  therefore  the  curvature  at  the 
point  A  will  not  be  continuous,  which  is  contrary  to 
the  hypothesis,  that  A  was  in  the  middle  of  con- 

tinuous curvature. 

Definitions  of  a  Tangent  to  a   Curve. 

29.  (1)  If  a  straight  line  meet  a  curve  in  two  points  A,  B, 
and  if  B  move  up  to  A,  and  ultimately  coincide  with  A, 
AB  in  its  limiting  position  will  be  a  tangent  to  the  curve  ajt 
the  point  A. 

If  two  portions  of  a  curve  EA  and  AB  cut  one  another 
at  a  finite  angle  in  A,  there  will  be  two  tangents  AD,  AD\ 
which  will  be  the  limiting  positions  of  straight  lines  AB  and 
AE,  when  B  and  E  move  up  to  A  along  the  different  portions 
BA  and  EA  of  the  curve  respectively.  And,  similarly,  if  there 
be  a  multiple  point  in  A,  in  which  several  branches  of  the  cnrve 
cut  one  another  at  finite  angles, 

(2)  The  tangent  is  the  direction-  of  the  side  of  the  polygon, 
of  which  the  curve  is  the  curvilinear  limit,  when  the  number 
of  sides  are  increased  indefinitely. 
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This  is  founded  on  the  same  idea  of  a  tangent  as  defini- 
tion (1). 

(3)  The  tangent  to  a  curve  at  any  point  is  the  direction  of 

the  curve  at  that  point. 
In  order  to  apply  geometrical  reasoning  to  the  tangent  by 

employing  this  definition,  we  are  obliged  to  explain  the  notion  of 
the  direction  of  a  curve,  by  taking  two  points  very  near  to  one 
another,  and  asserting  that  the  direction  of  the  curve  is  the 
limiting  position  of  the  line  joining  these  points  when  the 
distance  becomes  indefinitely  small,  a  statement  which  reduces 

this  definition  to  the  preceding, 

Observations  on  the  Lemma. 

30.  <{  Curvatura  Continua,"  if  we  consider  curves  as  the 
curvilinear  limits  of  polygons,  requires  the  curves  to  be  limits 

of  polygons  whose  angles  continually  increase  as  the  number  of 
the  sides  increase,  and  may  be  made  to  differ  from  two  right 

angles  by  less  than  any  assignable  angle  before  the  assumption 
of  the  ultimate  form  of  the  hypothesis. 

If,  however,  as  we  increase  the  number  of  sides  and  diminish 
their  magnitude,  one  of  the  angles  remains  less  than  two  right 
angles  by  any  finite  difference,  the  curvature  of  the  curvilinear 
limit  is  discontinuous,  and  the  form  is  that  of  a  pointed  arch,  in. 
which  the  two  portions  cut  one  another  at  a  finite  angle. 

A  curve  may  be  of  continued  curvature  for  one  portion 
between  two  points,  while  for  another  its  curvature  changes 

^per  saltum." Thus,  if  ABC  be  a  curve  forming  at  B  a  pointed  arch,  it 

may  be  of  continued  curvature  from  B  to  A  and  from  C  to  B, 
though  not  from  C  to  A, 

la  this  case  the  tangents  in  passing  from  C  to  A  assume  all 
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positions  intermediate  to  CT,  Bt,  and  Bt',   TA,  but  at  B  they 
pass  from  Bt  to  Bt'  without  assuming  the  intermediate  positions. 

31.  u  In  medio  curvaturae  continuae,"  implies  that  the  point 
A  in  the  enunciation  of  the  Lemma  is  not  such  a  point  as  B 

in  the  last  figure,  but  that,  in  passing  from  a  point  on  one  side 
of  A  to  another  on  the  other  side,  the  tangents  pass  through  all 

the  intermediate  positions. 
The  curvature  is  supposed  to  be  in  the  same  direction  in 

the  figure  of  the  Lemma,  which  in  all  curves  of  continuous 
curvature  is  possible,  if  B  be  taken  sufficiently  near  to  A  at 
the  commencement  of  the  change  in  the  construction. 

If  the  point  A  be  not  "  in  medio  curvaturae  continuae,"  two 

tangents  AD,  AD'  may  be  drawn  at  A  to  the  two  parts  of  the 
curve,  and  the  curve  BCA  will  make  a  finite  angle  with  one  of 

the  tangents  AD'. 
But,  even  in  this  case,  the  angle  between  the  chord  and 

that  tangent  which  belongs  to  the  portion  of  the  curve  con- 
sidered continually  diminishes  and  ultimately  vanishes. 

The  Subtangent. 

32.  DEF.   The  part  of  the  line  of  abscissae  intercepted  be- 
tween the  tangent  at  any  point  and  the  foot  of  the  ordinate 

of  that  point  is  called  the  sub  tangent. 

33.  The  subtangent  may  be  employed  as  follows,  to  find  a 

tangent  at  any  point  of  a  curve. 
Let  OM,  MP  be  the  abscissa  and  ordinate  of  a  point  P  in 

cr       T      o          ja:    JST          .z: 

a  curve,  and  let    Q  be  a  point  near   P,   ON,  NQ  its  abscissa 
and  ordinate. 
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Let  QPUmeet  OX  the  line  of  abscissas  in  U;  then,  if  PR 
parallel  to  OM  meet  QN  in  R, 

PM:  MU::  QR  :  PR  ::  QN-PM  :  ON-  OM. 
!NW  as  Q  .approaches  to  P,  the  limiting  position  of  QPUla 

that  of  the  tangent  at  P,  viz.  tPT,  and  PM :  MT  is  the  limiting 

ratio  of  QN-  PM :  ON-  OM. 

The  Polar  Subtangent  and  the  Inclination  of  the  Tangent  to 
the  Radius  Vector^  at  any  Point  of  a  Spiral. 

34.  DBF.  Let  S  be  the  pole,  P T  the  tangent  to  the  curve  at 

any  point  P,  and  let  /ST,  perpendicular  to  SP,  meet  PT  in  T\ 
then  S  T  is  called  the  polar  subtangent  at  the  point  P. 

35.  To  find  the  inclination  of  the  tangent  at  any  point  of 
a  curve  to  the  radius  vector. 

Let  Q  be  a  point  near  P,  QM  perpendicular  to  SP,  pro- 
duced if  necessary,  QR  the  circular  arc,  centre  S,  meeting 

SP  in  R. 

Let  (JPmeet  ST'm  U,  then 
SU:  SP::  QM-.PM, 

and  MR  :  QM::  QM:  SM+SR> 

but,  when  Q  approaches  indefinitely  near  to  P,  QM  vanishes 

compared  with  SM+  SR ;  therefore  MR  vanishes  compared 

with  QM  or  PM\  therefore  SU:SP::  QM :  PR,  ultimately; 
therefore  ST :  SP  is  the  limiting  ratio  of  QR\PR\  or 

QR-.SQ-  SP. 
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Hence  ST,  and  also  the  trigonometrical  tangent  of  the  angle 
SPT  between  the  tangent  and  the  radius  vector  can  be  found. 

Illustrations. 

(1)  If  SY  be  the  perpendicular  on  the  tangent  PY  at  P  in 
a  curve,  Y  will  trace  out  a  curve,  called  the  pedal  of  the  original 
curve ;  to  shew  that  if  YZ  be  a  tangent  to  the  locus  of  Y,  SZ 

perpendicular  to  it,  SY*=SP.SZ. 

Let  P'  be  a  point  near  P,  SY'  perpendicular  on  P'P,  SZ 

perpendicular  on  Y'Y. 
Since  angles  SYP,  SY'P  are  right  angles,  a  semicircle  on 

SP  will  pass  through  Y,  F';  therefore  the  angles  SY'Y,  SPY 
in  the  same  segment  will  be  equal ;  the  right  angles  SZY', 
SYP  also  are  equal;  therefore  the  triangles  SPY,  SY'Z  are 
similar,  and  SZ :  SY'  ::  SY:  /SP;  but,  ultimately,  as  P'  moves 

up  to  P,  P'PF'  becomes  the  tangent  at  P,  and  Y'YZ  that  at  Y 
to  its  locus,  also  SY'  =  SY; 

.-.  SZ.SP=SY*. 

(2)    To  find  the  subtangent  in  the  semi-cubical  parabola. 

In  the  semi-cubical  parabola  PM 2  oc  OM 3 ; 

.-.   QN*-PM* :  PJ\P  : :  ON3-  OMS :  OM9, 

but  QN+PM=1PM, 

and  ON*+  ON.OM+  OM*  =  30M*,  ultimately; 

.-.  QN-  PM:  ±PM::  ON-  OM:  J  OM  ultimately, 

and  QN-PM:  PM::  ON-  OM=MT', 
therefore  M T  is  two-thirds  of  OM. 
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(3)  To  find  the  inclination  of  the  tangent  at  any  point  of 
a  cardioid  to  the  radius  vector. 

DEF.  If  BqpC  be  a  circle,  whose  centre  is  S  and  diameter 
BC,  and  pm  be  drawn  perpendicular  to  BG\  then,  if  Sp  be 

produced  to  P,  making  SP=Bm,  P  will  trace  out  a  cardioid 
APS. 

JL 
Making  the  same  construction  as  before,  in  Art.  35T 

ST :  SP::  QR  :  SP-  SQ  ultimately. 
Let  SQ  meet  the  circle  in  ̂ ,  and  draw  gn  perpendicular 

to  BC, 

then  QR  :  pq  : :  SP :  Sp  ultimately, 

also    pq  :  mn  ::  Sp  \ pm    , 

.-.   QR:  mn::  SP :  pm    ; 

but  mn  =  Bm-Bn=SP- SQ, 

.-.   QR  :  SP-  SQ  ::  SP: pm  ultimately ; 
/.  ST:  SP: :  Bm  : pm ; 

hence   LPTS=LpBm  =  \LPSA; 

and  it  follows  that  the  cardioid  cuts  the  axis  SCA  at  right 

angles,  that  it  touches  SB  at  S,  and  that  it  cuts  the  circle  BDO 
at  an  angle  equal  to  half  a  right  angle. 
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LEMMA  VII. 

If  any  arc,  given  in  position,  be  subtended  ly  the  chord  AB, 
and  at  the  point  A,  in  the  middle  of  continuous  curvature, 
a  tangent  AD  be  drawn,  and  the  subtense  BD,  then,  when 
B  approaches  to  A  and  ultimately  coincides  with  it,  the 
ulimate  ratio  of  the  arc,  the  chord,  and  the  tangent  to  one 
another,  is  a  ratio  of  equality. 

For  whilst  the  point  B  approaches  to  the  point  A,  let 
AB,  AD  be  supposed  always  to  be  produced  to  points 
b  and  d  at  a  finite  distance,  and  Id  be  drawn  parallel 
to  the  subtense  BD,  and  let  the  arc  Acb  be  always 
similar  to  the  arc  ACB,  and  have,  therefore,  ADd 
for  its  tangent  at  A. 

But,  when  the  points  B,  A  coincide,  the  angle  I  Ad,  by 

the  preceding  Lemma,  will  vanish,  and  therefore  the 
straight  lines  Ab,  Ad,  which  are  always  finite,  and 

the  arc  Acb,  which  lies  between  them  [and  is  of  con- 
tinuous curvature  in  one  direction,  if  the  Change 

commence  when  B  is  near  enough  to  A],  will  coin- 
cide ultimately,  and  therefore  will  be  equal. 

Hence,  also,  the  straight  lines  AB,  AD  and  the  inter- 
mediate arc  ACB,  which  are  always  proportional  to 

them,  will  vanish  together,  and  have  an  ultimate 
ratio  of  equality  to  one  another. 

COR.  1.  Hence  if  BF  be  drawn  through  B  parallel  to 

the  tangent,  always  cutting  any  straight  line  AF 

passing  through  A  in  F,  then  BF  will  have  ulti- 
mately to  the  vanishing  arc  AGB  a  ratio  of  equality, 
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since,  if  the  parallelogram  AFBD  be  completed,  it 
will  always  have  a  ratio  of  equality  to  AD* 

COR.  2.  And  if  through  B  and  A  be  drawn  many 
straight  lines  BE,  BD^  AF,  AG  cutting  the  tangent 
AD  and  BF,  parallel  to  it ;  the  ultimate  ratios  of  all 
the  abscissae  AD,  AE,  BF,  BG  and  of  the  chord  and 
arc  AB  to  one  another  will  be  ratios  of  equality. 

COR.  3.  And,  therefore,  all  these  lines  in  every  argu- 
ment concerning  ultimate  ratios  may  be  used  indif- 

ferently one  for  the  other* 

Observations  on  the  Lemma. 

36.  DEF.   The  subimse  of  the  angle  of  contact  of  an  arc  is  a 

straight  line  drawn  from  one  extremity  of  the  arc  to  meet,  at 
a  finite  angle,  the  tangent  to  the  arc  at  the  other  extremity. 

This  subtense  is  the  secant  which  defines  the  limited  line 

called,  in  the  Lemma,  "  the  tangent." 
The  chord  is  called  by  Newton  the  subtense  of  the  arc,  see 

Lemma  XI. 

37.  In   the  construction  for  this  Lemma,  BD  must  be  a 

subtense,  t.e.  inclined  throughout  the  change  of  position  at  a 
finite  angle  to  the  tangent,  for,   otherwise,  the    angles  BAD 
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and  ADB  being  then  both  small,  the  ultimate  ratio  of  the 
chord  to  the  tangent  might  be  any  finite  ratio  instead  of 

being  one  of  equality. 

This  is  the  only  limitation  of  the  motion  of  BD  •  the  fignro 
representing  changes  which  may  take  place  in  the  approach 
towards  the  ultimate  state  of  the  hypothesis. 

Here  b,  d  are  the  distant  points,  that  is,  points  at  a  finite 

distance  from  A'  BD,  B'D',  B"D"  are  consecutive  positions 

of  the  subtense,  when  B  approaches  towards  A,  and  db,  db',  db" 
are  parallel  to  these,  Acb',  Ac'b"  are  the  forms  of  Acb  changed 
so  as  to  be  always  similar  to  the  corresponding  portion  of  A  CB 
cut  off  by  the  chord. 

It  should  be  remarked  that  the  curve  Acb  is  not  inter- 
mediate in  magnitude  to  the  two  lines  Ab,  Ad,  but  only  in 

position;  for  example,  Ab  may  be  equal  to  A  d,  if  BD  make 
equal  angles  with  the  two  lines,  and  the  curve  line  will  then 
be  greater  than  either  Ab  or  Ad\  but  it  becomes  in  all  cases 
less  bent,  until  it  is  ultimately  rectilinear;  hence  the  three 
Ad),  Ab^  Ad  will  be  ultimately  equal,  the  only  alternative 
being  that  the  curve  may  become  doubled  up,  as  in  the  figure, 

which  is  precluded  by  the  supposition  that  the  curvature  near  A 
is  continued  in  the  same  direction  throughput  the  passage  from 
B  to  A. 

38.  The  subtense  ultimately  vanishes  compared  with  the  arc. 

For  BD  :  A  CB  : :  bd  :  Acb,  and,  since  bd  vanishes  and  Acb 
remains  finite  in  the  limit,  the  ratio  BD  :  ACB  ultimately 
vanishes.  It  will  be  afterwards  seen  that  in  curves  of  finite 

curvature  BD  varies  as  the  square  of  ACB  ultimately. 
The  ultimate  equality  of  the  lines  AD,  AE  with  the  chord 

or  arc,  whatever  be  the  direction  of  the  subtense,  is  due  to 
the  vanishing  of  BD,  and  therefore  of  DE  with  respect  to  AD. 

39.  If  two  curves  of  continuous  curvature  which  do  not  inter- 
sect have  a  common  chord,,  the  length  of  the  exterior  curve  will  be 
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greater  than  that  of  the  interior,  provided  that  the  curvature  of 
the  interior  be  always  in  the  same  direction. 

Let  AcdeB,  ACDEFB  any  two  polygons,  having  a  common 
side  AB,  be  such  that  the  first  lies  entirely  within  the  second 

and  that  neither  has  internal  angles,  the  perimeter  of  the  first 
is  less  than  that  of  the  second. 

For,  produce  Ac,  cd,  de  to  meet  the  perimeter  of  the  exterior 

in  c',  d'j  e' ;  then  A0+Cc'>  Ac' ;  .-.  A CDEFB >  AcDEFB ; 

similarly  AcDEFB >  Ac d'EFB,  and  on  on; 
.-.  a  fortiori,  ACDEFB  >  AcdeB. 

And,  since  the  same  is  true  in  the  limit,  when  the  number 
of  sides  is  increased  indefinitely,  the  curvilinear  limits  of  the 

polygons  have  the  same  property,  and  the  proposition  is  proved. 
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LEMMA  VIII. 

If  two  straight  lines  AR,  BE  make  with  the  arc  A  CB,  the 
chord  AB,  and  the  tangent  AD,  the  three  triangles 
RACB,  RAB  and  RAD,  and  the  points  A,  B  approach 
one  another ;  then  the  ultimate  form  of  the  vanishing 
triangles  is  one  of  similitude,  and  the  ultimate  ratio  one 
of  equality. 

For,  whilst  the  point  B  is  approaching  the  point  A,  let 
AB,  AD,  AR  be  always  produced  to  points  b,  d,  r  at 
a  finite  distance,  and  rid  be  always  drawn  parallel  to 
ED,  and  let  the  arc  Acb  be  always  similar  to  the  arc 
ACB,  and  therefore  have  Dd  for  the  tangent  at  A. 

at. 

Then,  when  the  points  B,  A  coincide,  the  angle 
vanish,  and  therefore  the  three  triangles  rAb,  rAcb, 
rAd  will  coincide,  and  will  therefore  in  that  case  be 
similar  and  equal.  Hence  also  RAB,  RA  CB,  RAD, 
which  are  always  similar  and  proportional  to  these, 
will  be  ultimately  similar  and  equal  to  one  another. 

COR.  And  hence,  in  every  argument  concerning  ulti- 
mate ratios,  these  triangles  can  be  used  indifferently 

for  one  another. 

Observations  on  the  Lemma. 

40.   If  EB  throughout  the  change  in  the  hypothesis  make  a 
finite  angle  with  EA,  the  three  triangles  rAb,  rAcb,  rAd  will 
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remain  always  finite,  and  will  be  ultimately  identical  and  equal. 
But,  if  the  angle  ARB  be  ultimately  not  finite,  for  example,  if 
EB  revolve  round  a  fixed  point  -ft,  the  three  triangles  rAb^  .., 
will  become  infinite,  since  r  will  move  to  r  and  so  on  to  an 
infinite  distance,  and  there  will  be  the  same  kind  of  objection 

to  dealing  with  these  infinite  triangles,  as  to  reasoning  im-» 
mediately  upon  the  relation  of  the  triangles  RAB,  RAD  in 
the  former  case. 

In  this  case  we  can  at  once  deduce  the  equality  of  the  tri- 

angles without  producing  AD  to  a  point  d  at  a  finite  distance. 
For,  the  ratio  of  the  difference  of  RAD  and  RAB  to  RAB  is, 
BD :  RBj  which  vanishes  ultimately,  since  RB  is  finite  in 
this  case;  hence  RAB  and  RAD  and  also  the  curvilinear 
triangle,  which  is  intermediate  in  magnitude  to  them,  will  be 
ultimately  in  a  ratio  of  equality. 
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LEMMA  IX. 

If  a  straight  line  AE  and  curve  ABC,  given  in  position,  cut 
one  another  in  a  finite  angle  A,  and.ordinates  BD,  CE  b& 
drawn,  inclined  at  another  finite  angle  to  that  straight 
line,  and  meeting  the  curve  in  B,  C ;  then,  if  the  points 
B,  C  move  up  together  to  the  point  A,  the  areas  of  the 
curvilinear  triangles  ABD,  A  CE  will  be  ultimately  to  one 
another  in  the  duplicate  ratio  of  the  sides. 

For,  as  the  points  B,  C  are  approaching  the  point  A, 
let  AD,  AE  be  always  produced  to  the  points  d,  e  at 
a  finite  distance,  such  that  Ad  :  Ae::  AD  :  AE]  and 

let  the  ordinates  db,  ec  be  drawn  parallel  to  DB, 
EC  meeting  the  chords  AB,  A  C  produced  in  b,  c. 

Then  [since  Ab  :  AB  : :  Ad  :  AD  : :  Ae  :  AE  : :  Ac  :  AC, 

and  therefore  Ab  :  Ac  : :  AB  :  AC~]  a  curve  Abe  can be  supposed  to  be  drawn  always  similar  to  ABC, 
while  B  and  C  move  up  to  A. 

Let  the  straight  line  Ag  be  drawn  touching  both  curves 
at  A,  and  cutting  the  ordinates  DB,  EC,  db,  ec  in 
F,$,f,g. 

[Now  areas  ABD,  Aid,  by  Lemma  V.,  are  always  in  the 
duplicate  ratio  of  AD,  Ad,  and  areas  A  CE,  Ace  in  the 
duplicate  ratio  of  AE,  Ae,  and  AD  :  Ad  : :  AE  :  Ae] 

therefore  ABD  :  Abd  : :  ACE :  Ace, 

and  ABD  :  ACE::  Abd  :  Ace.~] 
If,  then,  the  points  B  and  C  move  up  to  A  and  ultimately 

coincide  with  it,  the  angle  cAg  will  ultimately  vanish, 
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and  the  curvilinear  areas  Aid,  Ace  will  coincide  with 
the  rectilinear  triangles  Afd,  Age,  and  therefore  will 
be  ultimately  in  the  duplicate  ratio  Ad,  Ae. 

But  ABD,  ACE  are  proportional  to  Aid,  Ace  always, 
also,  AD,  AE  are  proportional  to  Ad,  Ae ;  therefore 
also  areas  ABD,  ACE  are  ultimately  in  the  duplicate 
ratio  of  AD,  AE. 

Observations  on  the  Lemma. 

41.  By  a  finite  angle  is  to  be  understood  an  angle  less  than 
two  right  angles,  and  neither  indefinitely  small  nor  indefinitely 
near  to  two  right  angles. 

The  angles  between  AD  and  the  curve  and  between  AD 
produced  and  BD  are  different  finite  angles,  because  otherwise 
BD  would  not  meet  the  curve. 

42.  If  the  angle  DAF  be  greater  than  a  right  angle,  the 

figure  may  assume  a  form  in  which  AD  will  lie  below  ABC', 
in  this  case  DB,  EC,  ...  must  be  produced  to  meet  the  tangent, 
and  the  argument  may  proceed  in  the  same  manner  as  before. 

43.  It  is  not  necessary  that  d  and  e  be  fixed,  but  only  that 
they  remain  at  a  finite  distance  from  A,  and  that  the  proportion 

be  retained ;    and   the  first  part  of  this  observation  applies  to 
d  in  the  previous  Lemmas. 

The  student,  by  reference  to  Arts.  37  and  40,  will  be  able  to 
exhibit  the  change  in  the  figure  which  will  correspond  to  a 
change  of  the  position  of  B  and  C  in  the  progress  towards  the 
ultimate  position. 

44.  When  the  angle  CAG  vanishes,  the  curvilinear  areas 

Aid,  Ace  coincide  with  the  rectilinear  triangles  Afd^  Age,  and 
so  are  in  the  duplicate  ratio  of  Ad :  Ae.      But  if  the  angle 
DAF  be  not  finite,  those  triangles  will  not  themselves  be  finite, 
and  the  object  aimed  at  by  producing  to  a  finite  distance  will 
not  be  attained. 

The  fact  is,  that  the  triangle  Adb  is  made  up  of  the  triangle 
4df  and  the  curvilinear  triangle  Afb,  of  which  the  latter  is 
indefinitely  small  ultimately,  and  the  former  is  finite ;  therefore, 
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in  the  Lemma,  Afb  vanishes  compared  with  Adf'  but  this  will 
not  be  so  if  Adf  be  indefinitely  small,  the  ratio  of  the  triangles 
AFB,  AGO  must,  therefore,  be  found  by  another  process,  and 
it  will  be  found,  by  referring  to  Lemma  XL,  that  the  ratio  will 
be  ultimately  that  of  the  cubes  of  the  arcs  if  the  curvature  of 
the  curve  at  A  be  finite. 

VIII. 
1.  RQq  is  a  common  subtense  to  two  curves  PQ,  Pq,  which 

have  a  common  tangent  PR  at  P.      When  RQq  approaches  to  Pt 
RQ  and  Rq  ultimately  vanish;    will  the  ratio  RQ  :  Rq  be  ulti- 

mately a  ratio  of  equality  ? 

2.  If  PY,  a  tangent  to  an  ellipse  at  P,  meet  the  auxiliary  circle 
in  Y,  and  ST  be  perpendicular  to  the  tangent  at  Y,  ST  will  vary 
inversely  as  HP. 

3.  If  a  subtense  BD  be  drawn  to  meet  the  tangent  at  A  at 
a  finite  angle  a,  which  remains  constant  as  B  moves  up  to  A,  and 
DB  meet  the  normal  at  A  in  C,  shew  that  the  ultimate  ratio  of 
£0  to  AB  will  be  sec  a. 

4.  In  the  curve  in  which  the  abscissa  varies  as  the  cube  of 

the  ordinate,  shew  that  the  subtangent  is  three  times  the  abscissa. 

5.  Prove  that  the  extremity  of  the  polar  subtangent  from  the 
focus  of  a  conic  section  is  always  in  a  fixed  straight  line. 

6.  AB  is  a  diameter  of  a  circle,  P  a  point  contiguous  to  A> 
and  the  tangent  at  P  meets  BA  produced  in  T\   prove  that  ulti- 

mately the  difference  of  BA,  BP  will  be  equal  to  one-half  of  TA. 

7.  In  any  curve,  if  Q  be  the  intersection  of  perpendiculars  to 
two  consecutive  radii  vectores  through  their  extremities,  and  SY 
be  the  perpendicular  from  the  pole  S  on  the  tangent  at  P,  prove 

that  ultimately  SP'=SY.SQ. 

8.  PQ,  pq  are  parallel  chords  of  an  ellipse  whose  centre  is  O; 
shew  that,    if  p   move   up   to   P,    the  areas   CPp,    CQq   will  be 
ultimately  equal. 

9.  From  a  point  in  the  circumference  of  a  vertical  circle  a  chord 
and  tangent  are  drawn,  the  one  terminating  at  the  lowest  point, 
and   the  other  in  the  vertical  diameter  produced;    compare  the 
velocities  acquired  by  a  heavy  body  in  falling  down  the  chord 
and  tangent  when  they  are  indefinitely  diminished. 

10.  A  point  moves  so  that  the  product  of  its  distances  from  two 
fixed  points  is  constant ;    shew  that  the  normal  to  its  path  divides 
the  angle  between  the  two  radii  into  two  whose  sines  are  pro- 

portional to  the  radii. 

.K 
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IX. 
1.  On  the  radii  vectores  of  a  curve  as  diameters  circles  are 

described  ;  find  their  envelope. 

2.  If  the  intercept  PQ  between  two  curves  of  their  common 
radius  vector   OPQ   be   constant,   and  the  normals  at  P  and   Q 
intersect  in  Nt    ON  will  be  at  right  angles  to 

3.  A  right  angle  slides  on  any  oval  curve,  so  that  the  sides 
containing  the  right  angle  always  touch  the  curve  ;    shew  that  the 
angle  one  tangent  makes   with  the  tangent  to  the  locus  of  the 
vertex   is   equal   to   that   which   the   other   tangent    makes    with 
the  chord  of  contact. 

Hence  shew  that,   if  the  oval  be  an  ellipse,   the  locus  of  the 
vertex  will  be  a  circle  concentric  with  the  ellipse. 

4.  A  point  moves  so  that  the  rectangle,  whose  sides  are  equal 
to  the  distances   of  the   point  from  a  given  point  and  a  given 
straight  line,  is  equal  to  the  square  described  on  the  perpendicular 
from  the  given  point  on  the  given  line.      Find  the  position  of 
the  point  at  which  the  tangent  to  the  curve  passes  through  the 
fixed  point. 

5.  Two   points  A,   £   describe    two   curves  according  to  any 

finite  and  continuous  law.    If  A',  B'  be  the  consecutive  positions  of 
A,  JB,  and  ABC,  A'B'C'   be   similar   triangles,    then   the   corre- 

sponding sides  of  the  two  triangles  will  ultimately  intersect  in  the 

•  *    z>  n    z>        v  *u  *  AA>  BC     SB'.CA      CC'.AB points  P,  Q,  £}  such  that       ̂ R      =      £p  -  =      ̂          . 

6.  If  SP*  =  AB.PM,   where  PM  is   perpendicular  to  a  fixed 
straight  line,  prove  that  the  locus  of  the  centre  of  the  circle  cir- 

cumscribing the  triangle  formed  by  the  tangent,  the  radius  vector, 
and  the  polar  subtangent,  will  be  a  straight  line. 

7.  In  the  figure  on  page  30  let  FBf  be  taken  equal  to  AB, 
and  let  the  corresponding  ordinate  to  the  curve  be  B'E  \   prove 
that  the  subtangent  at  E'  varies  inversely  as  that  at  E. 

8.  In  the  hyperbolic  spiral,  in  which  the  radius  vector  varies 
inversely  as  the  spiral  angle,  prove  that  the  subtangent  is  constant. 

9.  In  the  spiral  of  Archimedes,   in  which  the  radius  vector 
varies  directly  as  the  angle,   prove  that  if  a  circle  be  described, 
of  which  a  radius  is  the  radius  vector  of  the  sjiril,   the  polar 
Bubtangent  will  be  equal  to  the  arc  of  the  circle  subtended  by 
the  spiral  angle. 
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LEMMA  X. 

The  spaces  ivhich  a  bod/  describes  \^from  rest]  under  the 
action  of  any  finite  force,  whether  that  force  be  constant 
or  else  continually  increase  or  continually  dimmish,  are 
in  the  very  beginning  of  the  motion  in  the  duplicate  ratio 

of  the  times. 

[Let  the  times  be  represented  by  lines  measured  from  A, 
along  AK,  and  the  velocities  generated  at  the  end 
of  those  times  by  lines  drawn  perpendicular  to  AK. 
Suppose  the  time  represented  by  AK  to  be  divided 
into  a  number  of  equal  intervals,  represented  by  AB, 

A.    U      € 

EC,  CD,  ...,  let  Bb,  Cc,  Dd,  ...Kk  represent  the  ve- 
locities generated  in  the  times  AB,  AC,  ...^^respec- 
tively, and  let  Abed  be  the  curve  line  which  always 

passes  through  the  extremities  of  these  ordinates. 
Complete  the  parallelograms  Ab,  Be,  Cd,  ...... 

In  the  interval  of  time  denoted  by  CD,  the  velocity  con- 
tinually changes  from  that  represented  by  Cc  to  that 

represented  by  Dl,  and  therefore  CD  being  _  taken 
small  enough,  the  sp  ice  described  in  that  time  is 
intermediate  between  the  spaces  represented  by  the; 
parallelograms  DC  and  Cd\  therefore  the  spaces, 
described  in  the  times  AD,  AK  are  represented  by 
areas  which  are  intermediate  between  the  sums  of 

the  parallelograms  inscribed  in,  and  circumscribed 
about,  the  curvilinear  areas  ADd,  AKk  respectively, 
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Therefore,  by  Lemma  II. ,  the  number  of  Intervals  being 
increased,  and  their  magnitudes  diminished  indefi- 

nitely, the  spaces  described  in  the  times  ADy  AK 
are  proportional  to  the  curvilinear  areas  ADd,  AKk. 

Now  the  force  being  finite,  the  ratio  of  the  velocity  to 
the  time  is  finite  ;  therefore  Kk :  AK  is  a  finite  ratio, 
however  small  the  time  is  taken;  hence,  if  AT  be 
the  tangent  to  the  curve  line  at  A,  meeting  Kk  in  T, 
KT  :  AK  will  be  a  finite  ratio  ;  therefore  the  angle 
TAK  will  be  finite,  or  AK  will  meet  the  curve  at  a 
finite  angle. 

Hence,  by  Lemma  IX.,  if  AD,  AK  be  indefinitely 

diminished,  area  ADd  :  area  AKk  ::  AD*  :  AK*\ 
therefore,  in  the  beginning  of  the  motion,  the  spaces 
described  are  proportional  to  the  squares  of  the  times 
of  describing  them.  Q.  E.  D.J 

COR.  1.  And  hence  it  is  easily  deduced  that  the  errors 
of  bodies  describing  similar  parts  of  similar  figures 
in  proportional  times,  which  are  generated  by  any 
equal  forces  acting  similarly  upon  the  bodies,  and 
which  are  measured  by  the  distances  of  the  bodies 
from  those  points  of  the  similar  figures,  to  which  the 
same  bodies  would  have  arrived  in  the  same  propor- 

tional times  without  the  action  of  the  disturbing 
forces,  are  approximately  as  the  squares  of  the  times 
in  which  they  are  generated. 

COR.  2.  But  the  errors  which  are  generated  by  pro- 
portional forces,  acting  similarly  at  similar  portions 

of  similar  figures,  are  approximately  as  the  forces 
and  the  square  of  the  times  conjointly. 

COR  3.  The  same  is  to  be  understood  of  the  spaces 
which  bodies  describe  under  the  action  of  different 
forces.  These  are,  in  the  beginning  of  the  motion, 
conjointly,  as  the  forces  and  the  squares  of  the  times. 

COR.  4.  Consequently,  in  the  beginning  of  the  motion 
the  forces  are  as  the  spaces  described  directly,  and 
the  squares  of  the  times  inversely. 
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COR.  5.    And  the  squares  of  the  times  are  as  the  spaces 
described  directly  arid  the  forces  inversely. 

The  proof  given  in  the  original  Latin  is  as  follows : 

Exponantur  tempora  per  lineas  AD,  AEf  et  veloci- 
tates  genitse  per  ordinatas  DB,  EC]  et  spatia,  his 
velocitatibus  descripta,  erunt  ut  arese  ABD,  ACE  his 
ordinatis  descriptae,  hoc  est,  ipso  motus  initio  (per 
Lemma  IX.)  in  duplicata  ratione  temporum  AD,  AE. 

Q.E.D. 
45.  This  proof  has  been   amplified  in  order  to  exhibit  in 

what  manner  the  description  of  areas,  by  the  flux  of  the  ordi- 
nates,  corresponds  to  that  of  spaces  by  the  velocities  represented 
by  the  ordinates;  also  to  shew  the  propriety  of  the  application 
of  the  ninth  Lemma  by  reference  to  the  definition  of  finite  force 
which  may  be  stated  as  follows :  A  force  is  finite  when  the  ratio 
of  the  velocity  generated  in  any  time  to  the  time  in  which  it  is 
generated^  is  finite^  however  small  the  time  be  taken. 

Observations  on  the  Lemma. 

46.  In  the  proof  of  this  Lemma,  time  is  represented  by  the 
length  of  a  straight  line,  and  a  distance  traversed  by  a  body  is 

represented  by  an  area. 
If  the  length  of  a  straight  line  be  always  proportional  to  the 

period  of  time  elapsed,  the  straight  line  will  be  a  proper  repre- 
sentation of  the  time.  Thus  a  length  of  n  inches  has  the  same 

ratio  to  one  inch  which  an  interval  of  n  seconds  has  to  one 

second ;  and  on  this  scale  the  length  n  inches  is  a  proper  repre- 
sentation of  n  seconds. 

If  an  area  be  always  in  the  same  ratio  to  the  unit  of  area 
that  the  length  of  a  straight  line  is  to  the  unit  of  length,  the  area 
will  be  a  proper  representation  of  the  length  of  the  straight  line. 

Thus,  if  Ab  be  one  foot,  AB,  n  feet,  Ac  one  inch,  and  AG^ 
t  inches:  complete  the  parallelograms  ABDC,  Abdc,  and  £ct 
then  ABCD  will  contain  nt  such  areas  as  Abdc. 

If  now  a  particle  move  with  a  uniform  velocity  of  n  feet 
a  second,  and  A  C  represent  t  seconds,  on  the  scale  of  one  inch  to 
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a  second,  the  parallelogram  Be  will  represent  the  space  travelled 

over  in  the  first  second,  since  it  contains  n  times  the  parallelo- 

gram Abdc,  and  ABDG  will  represent  the  space  travelled  over 
in  t  seconds. 

There  will  be  no  difficulty  in  the  representation  of  a  period 

of  time  by  a  line,  or  of  a  distance  by  an  area,  if  the  student 
bear  in  mind  that  periods  of  time  and  lengths  of  lines,  although 
existing  absolutely,  are  only  estimated  by  their  ratios  to  certain 
standard  periods,  and  standard  lengths,  and  they  are  therefore 
determined  whenever  these  ratios  are  given,  either  directly  in 

numbers  or  by  the  comparison  of  any  magnitudes  whatever  of 
the  same  kind. 

47.  COR.   1,2.    If  bodies  describe  orbits   under  the  action 
of  certain  forces,  and  small  forces,  extraneous  to  those  under  the 
action  of  which  the  orbits  are  described,  be  supposed  to  act  upon 
the  bodies,  the  orbits  will  be  disturbed  slightly,  and  the  errors 
spoken  of  are  the  linear  disturbances  of  the  bodies,  at  any  time, 
from  the  positions  which  they  would  have  occupied  at  that  time, 
if  the  extraneous  forces  had  not  acted. 

Thus,  in  calculating  the  motion  of  the  Moon  considered  as 
moving  under  the  attraction  of  the  Sun  and  Earth,  it  is  conve- 

nient to  estimate  the  motion  which  she  would  have,  if  subjected 
to  the  attraction  of  the  Earth  alone,  and  then  to  calculate  what 
would  be  the  disturbing  effect  of  the  Sun  upon  this  orbit. 

48.  If  .47?  be  a  portion  of  an  orbit  described  by  a  body  in 

any  time,  A  C  the  portion  of  the  orbit  described  when  a  disturb- 

ing force  is  introduced,  BC  is  "  quam  proxime"  the  space  which 
would  have  been  described  in  the  same  time  from  rest  by  the 
action  of  the  disturbing  force  alone.     When  the  time  is  taken 

small,  but  not  indefinitely  small,  the  expression  in  the  statement 
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of  the  corollaries,  "approximately,"  is  necessary  for  two  reasons; 
for,  in  the  first  place,  the  position  of  the  body  in  space  is  not 
the  same  at  the  end  of  any  interval  in  the  lapse  of  the  time 
as  if  the  body  had  moved  from  rest  under  the  action  of  the 
disturbing  force  alone,  and  therefore  the  magnitude  of  the  force 

is  not  generally  the  same  either  in  direction  or  magnitude;  and, 
in  the  second  place,  since  the  force  is  not  generally  uniform,  the 
variation  according  to  the  duplicate  ratio  of  the  times  is  not 
exact,  except  in  the  limit. 

But,  when  the  times  are  taken  very  small,  the  variation  of 
direction  and  magnitude  of  the  force  may  be  neglected,  as  an 
approximation  to  the  true  state  of  the  case. 

49.  Application  of  the  method  of  Lemma  X  to   determine 
the  space  described  in  a  finite  time  from  rest  by  a  particle  under 
the  action  of  a  constant  force. 

Let  /  be  the  measure  of  the  acceleration  caused  by  the 

constant  force,  so  that  at  the  time  t  the  velocity  V=ft. 
Since  the  velocity  varies  as  the  time,  the  curve  Ak  in  the 

figure  of  the  Lemma  is  a  straight  line,  dD  :  AD  being  constant. 

Therefore  the  space  which  is  described  in  the  time  #,  re- 
presented by  AK,  is  represented  by  the  area  of  the  triangle 

AKk  or  \Kk.AK.  The  space  described  in  time  t  from  rest 

is  therefore  \Vt=\ft\ 

50.  General  geometrical  representation  of  the  space  described 
by  a  body  when  it  moves  with  a  variable  velocity  for  a  finite 
time. 

PisOP.  If  a  curve  be  found,  such  that  the  ordinate  at  each 
point  represents  the  velocity  corresponding  to  a  time  represented 
by  the  abscissa,  then  the  space  described  by  the  body  will  be 
represented  by  the  area  bounded  by  the  curve,  the  line  of 
abscissae,  and  the  ordinates  corresponding  to  the  commencement 
and  end  of  the  time  of  motion. 

Let  OA,  OS  represent  the  times  at  the  commencement  and 
end  of  the  interval  during  which  the  motion  of  the  body  is  to 

be  examined.  Let  OM  be  any  other  time,  and  let  A  (7,  MP,  BD^ 
perpendicular  to  GAB,  represent  the  velocities  at  the  ends  of 
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the  times  represented  by  OA,  0J/",  OB;    CPD  the  curve  which 
passes  through  the  extremities  of  all  such  ordinates  as  HP. 

O  jSL          HI.      JT  JL  -B 

Let  AB  be  divided  into  any  number  of  small  portions,  such 
as  MN]  and  let  NQ  be  the  ordinate  corresponding  to  ON. 

Complete  the  parallelograms  PMNq,  QNMp,  and  suppose  cop- 
responding  parallelograms  to  be  constructed  on  all  the  bases 
corresponding  to  MN. 

The  body  during  the  time  represented  by  MN  moves  with 

a  velocity,  which,  if  MN  be  taken  small  enough,  will  be  inter- 
mediate in  magnitude  between  the  velocities  represented  by  PM 

and  QN,  and  the  space  described  during  that  time  will  be 
intermediate  in  magnitude  between  the  spaces  which  would  have 
been  described  with  uniform  velocity  represented  by  PM  and 
QN,  or  between  the  spaces  represented  by  the  areas  PN,  QM. 

Hence  the  whole  space  described  in  the  interval  of  time 
represented  by  AB  is  greater  than  that  represented  by  the 
inscribed  series  and  less  than  that  by  the  circumscribed  series 

of  parallelograms,  and  each  of  these  is,  by  Lemma  II.,  ulti- 
mately equal  to  the  area  A  CDB,  when  the  number  of  portions 

into  which  AB  is  divided  is  indefinitely  increased,  and  their 
magnitudes  diminished ;  therefore  the  proposition  is  proved. 

51.  COR.  1.    Since  the  area  PMNQ  is  ultimately  equal  to 
the  rectangle  PM.MN,  it  follows  that  the  measure  of  the  velocity 
at  any  time  is  the  limit  of  the  quotient  of  the  space  described  after 
that  time  by  the  time  of  describing  it. 

52.  COR.  2.   Let  MR  represent  the  unit  of  time,  and  com- 
plete the  parallelogram  PMRr ;   then  the  area  PMRr  represents 
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the  space  which  would  be  described  in  an  unit  of  time  with  a 
velocity  represented  by  PM^  whence  it  follows  that  the  velocity 
of  a  body  at  any  instant  may  be  measured  by  the  space  which  it 
would  describe  if  it  moved  with  that  velocity  unchanged  for  an 
unit  of  time. 

Measures  of  Variable  Force,  Kinetic  Energy ,  Work  of  a  Force; 

53.  When  a  particle  of  mass  m  is  moving  in  a  straight  line 
under  the  action  of  an  uniform  force  F,  if  F,  v  be  the  velocities 
at  the  beginning  and  end  of  the  interval  of  time  t,  and  s  be 
the  space  described  in  that  time,  the  following  equations  will 

hold :  m  (v  -  V)  =  Ft  and  \m  (v*  -  F2)  =  Fs. 
These  equations  represent  respectively  that : 

(1)  The  increase  of  momentum  in  a  given  time  is  equal  to  the 
whole  force  which  has  acted  during  that  time. 

(2)  Half  the  increase  of  vis  viva,  or  the  increase  of  the  kinetic 
energy  in  a  given  space  is  equal  to  the  work  of  the  force  in  that 

space. 
If  F  be  a  variable  force,  and  F^  F^  be  its  least  and  greatest 

values  during  the  time  tj  m(v  —  V]  will  be  greater  than  Fj  and 
less  than  Fj;,  each  of  which  will  become  Ft  ultimately  when  t 

is  indefinitely  diminished ;  and  similarly  for  \m  (v*  —  F2). 
Hence  we  obtain  two  measures  of  variable  force  in  the  form 

of  the  two  limits : 

(1)  The  quotient  of  the,  increase  of  the  momentum  by  the  time, 
when  the  time  is  diminished  indefinitely. 

(2)  The  quotient  of  the  increase  of  the  kinetic  energy  by  the 
space   through   which   the  force   has   acted,   when  that   space  is 
diminished  indefinitely. 

54.  In  the  velocity  curve,  Art.  50,  the  velocity  Qq  is  added 
in  the  time  MN^  the  measure  of  the  acceleration  at  the  time  OM 
is  therefore  the  limit  of  the  ratio  Qq  :  Pq,  or  the  trigonometrical 
tangent  of  the  angle  which  the  tangent  at  P  to  the  velocity  curve 
makes  with  the  line  of  abscissae. 

55.  Geometrical   representation   of  the   momentum  generated 
L 
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liy  a  finite  and  variable  force  acting  for  a  finite  time  upon  a 
particle  moving  in  the  direction  of  the  action  of  the  force. 

In  the  figure  of  p.  72,  let  OA,  OB  represent  the  times  at 
the  commencement  and  end  of  the  interval  during  which  the 
action  of  the  force  is  considered. 

Let  AB  be  divided  into  any  number  of  small  portions,  such 

as  J/A7,  and  let  PJ/,  QN,  perpendiculars  to  AB,  represent  the 
forces  acting  on  the  particle  at  the  times  OM,  ON  respectively, 
and  let  parallelograms  be  constructed  and  the  curve  drawn  as 
in  Art.  50. 

The  momentum  gerer  ited  in  the  time  MN^  if  MN  be  taken 

small  enough,  will  be  intermediate  between  the  momenta  re- 
presented by  the  parallelograms  PN  and  QM\  therefore,  by 

Lemma  II.,  the  whole  increase  of  momentum  is  represented 

by  the  area  A  CDB  bounded  by  the  curve,  the  line  of  abscissae, 
and  the  ordinates  at  the  commencement  and  end  of  the  finite 

interval  of  time  represented  by  AB. 

56.  As  in  Arts.  51,  52,  the  measure  of  force  given  in   (1) 
Art.  53  can  be  deduced  5  also  that  the  force  at  any  instant  may 
be  measured  by  the  momentum  which  would  be  generated  if 
the  force  were  to  continue  unchanged  for  an  unit  of  time. 

57.  Geometrical  representation  of  the  kinetic  energy  generated 

7)y  a  force  which  acts  upon  a  particle  moving  in  the  direction 

oj  the  force's  action  through  a  finite  space. 
Let  OAB  be  the  line  of  motion  of  the  particle,  and  when 

it  arrives  at  M  let  PM  perpendicular  to  OAB  represent  the 

force,  and  let  the  construction  be  made  as  before. 
The  increase  of  kinetic  energy  in  the  passage  from  M  to 

N  is  intermediate  between  the  work  done  by  the  forces  re- 

presented by  PM  and  QN,  ̂ e-  ̂   'ls  represented  by  an  area which  is  intermediate  between  PN  and  QM\  therefore,  by 

Lemma  II,  the  increase  of  kinetic  energy  or  the  work  of  the 
force  during  the  motion  from  A  to  B  is  represented  by  the 
xre&ACDB. 

58.  The  measure  of  force  given  in  (2),  Art.  53,  is  deducible 

jus  before,  since  PJ/.MZV=area  PMNq  ultimately. 
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59.  In  rectilinear  motion  of  a  particle  under  the  action  of 
any  variable  force^  the  sum  of  the  kinetic  and  potential  energies 
is  constant. 

If  the  motion  of  the  particle  be  considered  only  within  the 
limits  A,  B)  the  area  PMBD  represents  the  whole  work  which 
the  force  will  be  able  to  do  as  the  particle  moves  from  M 
to  the  end  of  its  path  ;  this  work  is  called  the  Potential  Energy, 
and  since  the  kinetic  energy  at  M  is  represented  by  the  area 
CAMP,  it  follows  that  throughout  the  motion  the  sum  of 
the  kinetic  and  potential  energies  is  constant. 

Application  to  the  determination  of  the  motion  of  a  particle 
under  various  circumstances. 

(1)  To  find  the  space  travelled  over  in  a  given  time  by  a 
body  moving  with  a  velocity  which  varies  as  the  square  of  the 
time  from  the  beginning  of  the  motion. 

Let  AB  represent  the  time,  and  let  BG  perpendicular  to  AB 
represent  the  velocity  at  the  end  of  that  time. 

Let  AB  be  divided  into  any  number  of  equal  portions  of 
which  MN  is  one,  and  let  J/P,  NQ  represent  the  velocities  at 
the  ends  of  the  times  represented  by  AM,  AN. 

Then,  since  MP :  NQ  :  BC ::  AMZ  :  AN*  :  AB\  a  parabola 
can  be  described  touching  AB  and  passing  through  P,  Q,  O 
and  the  extremities  of  all  ordinates  by  which  velocities  are 
represented. 

Hence  the  space  described  in  the  time  represented  by  AB 
is  represented  by  the  parabolic  area  ABC  or  ̂ AB.BG. 

And  ifp  be  the  velocity  at  end  of  1",  ptf  will  be  that  at 
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the  end  of  t"  ;  therefore  ̂ pt*.  t  =  %pf  will  be  the  space  described in  the  time  t. 

NOTE.  The  following  method  of  representing  the  space 
serves  to  illustrate  Art.  46. 

Join  AC,  and  let  pM,  qN  be  the  ordinates,  and  suppose 
the  figure  to  revolve  round  AB  ;  pM  generates  a  circle  whose 

area  cc  pM*  oc  AM*  ;  therefore  this  circle  may  be  taken  to 
represent  the  velocity  at  the  time  corresponding  to  AM,  and 
the  solid  generated  by  pqNM  represents  the  space  described  in 
time  MN.  The  whole  space  is  therefore  represented  by  the 

cone  generated  by  ABC^  or  ̂ AB.TrBC*,  which  gives  the  same 
result  as  before, 

(2)  To  find  the  space  described  from  rest  at  any  time  by  a 
particle  under  the  action  of  a  force  whose  accelerating  effect 

varies  as  the  mih  power  of  the  time. 
This  problem  is  more  simply  solved  by  applying  directly 

the  method  of  summation,  since  in  order  to  find  the  area  of 
the  curve,  constructed  as  in  Lemma  X.,  we  should  eventually 
be  obliged  to  have  recourse  to  that  method. 

Let  the  time  t  be  divided  into  n  equal  intervals,  and  let  the 

acceleration  by  the  force  at  the  time  t  be  ptm  ;  hence,  at  the  com- 

frt\m 

mencement  of  the  (r+l)th  interval,  the  acceleration  will  be  p  f  —  I  , 

and,  if  the  force  be  continued  uniform  during  this  interval,  the 

velocity  generated  will  be  p  (  —  j  .  -  ,  and  if  the  same  arrange- 

ment be  made  during  each  interval,  the  whole  velocity  generated 

will  be  lm+  2w+---+(^-  l)mj>r»i  hence,  when  the  number  of 
intervals  is  increased  indefinitely,  it  follows,  by  the  reasoning 

ptni+
l 

of  Lemma  II..  that  the  velocity  at  the  time  t  =  •—  —  , wi-f  I 

In  the  same  manner,  if  the  velocity  at  the  commencement  of 
each  interval  were  continued  uniform  during  the  interval,  tho 

space  described  could  be  shewn  to  be 
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whence,  proceeding  to  the  limit,   the    space   described   in   the 

»*"" 
(3)  To  find  the  velocity  acquired  from  rest,  ivhen  a  body  is 

acted  on  by  an  attractive  force  whose  accelerating  effect  varies 
as  the  distance  from  a  fixed  point. 

Let  S  be  the  fixed  point,  A  the  point  from  which  the  motion 
commences,  and  let  AB,  perpendicular  to  8A,  represent  the 

accelerating  effect  of  the  force  at  A.  Join  SB,  and  let  HP,  per- 

Jo. 

pendicular  to  SA,  meet  SB  in  P-  then,  since  PM\  BA::  SM:  SA, 
PM  represents  the  accelerating  effect  of  the  force  at  M,  and  the 
square  of  the  velocity  acquired  at  M  is  represented,  Art.  57,  by 
twice  the  area  BAMP  or  8A.  AB-  SM.MP. 

With  centre  S  and  radius  SA  describe  a  circle  AQR,  and 
let  MPQ,  NR  be  ordinates  at  Q,  R  ;  then,  if  jj,D  be  the  measure 

of  the  accelerating  effect  of  the  force  at  a  distance  D,  (vel.)a 

at  M  =  //,  (SA9  -  SM'2)  ;  therefore  the  velocity  at  M=  V(/*)  QM. 

(4)    Time  of  describing  a  given  space  from  rest  under  the 
action  of  a  force  varying  as  the  distance  from  a  fixed  point. 

The  time  of  describing  MN  is  ultimately,  when  MN  is  in- 
MN  OR  1 

indefinitely  diminished. 
~.j. 

QM 

x  circular 

measure  of  QSR;    therefore,  if  t  be  the  time  from  A  to  M, 
t  VW  will  be  the  circular  measure  of  ASQ. 

Let  SA  =  a,  then  the  distance  from  $  at  the  time  t=a  cos[t  VO1*)} 
and  the  velocity  =  a  V(/*)  sin  [t hence,  when  t  V(/-0  = 
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the  particle  will  come  to  rest  at  the  point  A'  on  the  opposite 
side  of  /S,  where  SA'  =  SA,  and,  the  time  of  oscillation  from 

rest  to  rest,  being   -T-   ,  will  be  independent  of  the  distance 

from  which  the  motion  commences. 

(5)  Simple,  harmonic  motion. 

DEF.  The  motion  of  a  particle  oscillating  under  the  action 
of  a  force  tending  to  a  fixed  point,  and  varying  as  the  distance 
from  it,  is  called  simple  harmonic  motion. 

From  the  preceding  propositions  the  following  construction 
for  simple  harmonic  motion,  which  may  also  be  taken  as  a 
definition,  is  obtained. 

When  a  point  Q  moves  uniformly  in  a  circle,  and  an  ordinate 
QM  is  drawn  from  its  position  at  any  instant  to  any  diameter 

A  A',  the  motion  of  M,  the  foot  of  the  ordinate,  is  simple 
harmonic  motion.* 

DEF.  The  amplitude  of  a  simple  harmonic  motion  is  the 
range  SA  or  SA  on  each  side  of  the  centre. 

The  period  is  the  time  which  elapses  from  any  instant  until 
the  moving  point  again  moves  in  the  same  direction  through 
the  same  position. 

(6)  A  particle  is  subject  to  the  action  of  a  force,  whose  accele- 
rating  effect  varies  as  the  distance  from  a  fixed  point,  in   the 

direction  of  which  it  acts,  the  particle  is  projected  from  a  given 

point  in  a  direction  perpendicular  to  the  direction  of  the  force  at 
that  point,  to  find  the  path  described  by  the  particle. 

Let  the  force  tend  to  C,  and  let  A  be  the  point  of  projection, 
P  the  position  of  the  particle  at  any  time. 

Let  CB,  perpendicular  to  CA,  be  the  distance  in  which  a 
particle  would  be  reduced  to  rest,  if  projected  from  C  with  the 

velocity  of  projection;  so  that  if  V  be  the  velocity  of  projec- 
tion, and  fjuCP  be  the  accelerating  effect  of  the  force  at  P, 

*  Thomson'^  and  Tait's  Natural  Philotophy,  Art,  53. 
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Describe  circles  Bb,  Aa  having  the  common  centre  C,  and 

draw  CpP'  cutting  the  circles  in  p  and  P'}  and  draw^w  perpen- 
dicular to  CBj  and^?w,  P'M to  CA. 

Referring  to  (4)  supra,  it  will  be  seen  that  two  particles  start- 
ing respectively  one  from  rest  at  A  and  the  other  with  the 

velocity  of  projection  at  C,  under  the  action  of  the  same  force, 
would  arrive  simultaneously  at  M  and  n,  since  the  time  in  both 

cases  is  proportional  to  the  angle  P'  CA. 
But  the  particle  in  the  proposed  problem  is  acted  on  at  P  by 

a  force  which  is  represented  by  PC,  whose  accelerating  effect 

parallel  to  AC  and  CB  is  represented  by  MC  and  PM,  there- 
fore the  acceleration  in  A  C  is  the  same  as  that  of  the  particle 

supposed  to  move  in  A  C  from  rest,  and  the  retardation  parallel 
to  BC  the  same  as  that  of  the  particle  in  CB,  projected 

from  C,  therefore  P  is  in  the  intersection  of  np  and  MP  ',  and 
PM  :  P'M  ::pm:  P'M  :  :  Cp  :  CF  \\GB\CA\  therefore  the  re- 

quired path  of  the  particle  is  an  ellipse  whose  semi-axes  are 
CA  and  CB. 

COR.  1.  Area  ACPcc  area  ACP'<x  /.ACP'cc  time  from  A 
to  P,  hence  the  area  swept  out  by  the  radius  vector  is  propor- 

tional to  the  time. 

COR.  2.    The  square  of  the  velocity  at  P  is  the  sum  of  the 

squares  the  velocities  of  the  particles  at  J/  and  n=jj,.PM*+/u,.pri* 
\  where  CD  is  the  semi-diaineter  conjugate  to  CP. 

(7)  The  space  described  by  a  body  moving  in  a  medium,  in 
which  the  resistance  varies  as  the  velocity,  when  no  other  force 
acts  on  the  body,  varies  as  the  velocity  destroyed. 
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Let  the  time  AK  be  divided  into  equal  intervals  AB,  BC, 

CD, ...;  and  let  Aa,  Bb',  ...  be  the  velocities  at  the  beginning' 
of  the  intervals,  the  space  in  time  AK  is  represented  by  the 

area  aAKk'. 

.2*       C     JD 

Suppose  the  force  of  resistance  ta  be  constant  throughout  the 
intervals  of  time  AB,  BC,  ...,  and  equal  to  the  amount  at  the 
commencement  of  each,  and  let  Aa,  Bb,  ...  be  the  measures  of 
the  retarding  effect  of  those  forces,  then  the  velocity  destroyed 
s  represented  by  the  limit  of  the  sum  of  the  parallelograms 

«Z?,  &(7,  ...  or  the  area  a-AKk\  hence  the  space  described  and 

the  velocity  destroyed  vary  respectively  as  the  areas  a'AKk 
and  aAKk]  and,  since  the  resistance  varies  as  the  velocity,  the 

ratios  Aa  :  Aa,  Bb'  :  Bb,  &c.,  are  all  equal  *  therefore,  by 
Lemma  IV.,  the  areas  a'AK/c'j  aAKk  are  in  a  constant  ratio  ; 
hence  the  space  described  varies  as  the  velocity  destroyed. 

X. 

1.  If  the  square  of  the  velocity  of  a  body  be  proportional  to 
the  space  described  from  rest,  prove  that  the  accelerating  force  is 
constant. 

2.  At  what  point  of  the  proof  of  Lemma  X.   is  it  assumed 
that  the  body  starts  from  rest  ? 

3.  State  the  proposition  by  which  Lemma  X.  is  replaced,  when 
the  body,  instead  of  starting  from  rest,  commences  its  motion  with 
a  given  velocity. 

4.  If  a  body  move  from  rest  under  the  action  of  a  force  which 
varies  as  the  square  of  the  time  from  the  beginning  of  the  motion, 
shew  that  the  velocity  at  any  time  will  vary  as    the  cube  of  the 
time,  and  the  wpace  described  as  the  fourth  power  of  the  time. 
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5.  If  the  velocity  after  a  time  t  from  rest  be  equal  to  a  (It  +  tf*), 
•what  will  be  the  shape  of  the  curve  in  the  figure,  and  the  space 
described  in  any  time  ? 

6.  If  the  square  of  the  velocity  of  a  moving  point  vary  as  the 
time,  find  the  space  which  will  be  described  in  a  given  time;    and 
shew  that  the  acceleration  will  vary  inversely  as  the  velocity. 

7.  If  the  curve  employed  in  the  proof  of  the  Lemma  be  an 
arc  of  a  parabola,  the  axis  of  which  is  perpendicular  to  the  straight 
line  on  which  the  time  is  measured,  prove  that  the  accelerating 
effect  of  the  force  will  vary  as  the  distance  from  the  axis  of  tho 
parabola. 

XI. 

1.  If  in  the  velocity  curve  of  Lemma  X.  there  should  occur 
a  point  where  the  two  parts  of  the  curve  cut  one  another  at  a 
finite  angle,  what  would  be  the  interpretation  of  this  singularity  ? 
Explain  also  what  a  point  of  inflexion  would  imply. 

2.  A   particle   is  placed  in   the   line  joining   two   centres   of 
attracting  force,  the  accelerating  effect  of  each  of  which  varies  as 
the  distance,  find  the  time  in  which  the  particle  oscillates. 

3.  When  a  body  moves  from  rest  at  A  under  the  action  of  a  force 

which  varies  as  the  square  of  the  distance  from  S  (=  fj, .  SM2  at  Jf), 
the  square  of  the  velocity  at  M=  $p  (SA3  -  SM3). 

4.  If  a  body  be  acted  on  from  rest  by  a  repulsive  force  which 
varies  as  the  distance  from  a  fixed  point,  find  the  velocity  when  the 
body  arrives  at  any  position. 

5.  Two  points  move  from  rest  in  such  a  manner  that  the  ratio 
of  the  times  in  which  the  same  uniform  acceleration  would  generate 
their  respective  velocities  at  those  times  is  constant.      Shew  that 
their  respective  accelerations,  at  any  time  bearing  that  ratio,  are 
equal. 

6.  Two  forces  reside  at  S,  one  attractive  and  whose  accelerating 
effect  on  a  particle  varies  as  the  distance  from  S,  and  the  other 
constant  and  repulsive;   prove  that,  if  a  particle  be  placed  at  S, 
it  will  move  until  it  be  brought  to  rest  at  a  point  which  is  double 
the  distance  from  S  at  which  it  would  rest  in  equilibrium  under  the 
action  of  the  forces. 

7.  A  particle  moves  from  rest  at  A  under  the  action  of  a  force 
tending  to  S,  and  varying  as  the  distance  from  S,  and  in  its  path 
towards  S  it  strikes  another  particle  of  equal  mass  at  rest  at  B ; 
prove  that,  if  the  particles  be  perfectly  elastic,  they  will  meet  again 
on  the  opposite  side  of  S  at  a  distance  equal  to  &#,  and  continue 

to  impinge  at  B  and  B'  for  ever. 
If 
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The  vanishing  sultenses  of  the  angle  of  contact,  in  all  curves 
which  have  finite  curvature  at  the  point  of  contact,  are 
ultimately  in  the  duplicate  ratio  of  the  chords  of  the  con- 

terminous arcs. 

Case  1.  Let  AB  be  the  arc  of  a  curve,  AD  its  tangent  at 
A,  BDjtlie  subtense  of  the  angle  of  contact  BAD,pev- 
pendicular  to  the  tangent,  AB  the  chord  of  the  arc. 

Draw  AG,  B  G  perpendicular  to  the  tangent  AD  and 
the  chord  AB  respectively,  meeting  in  G ;  then  let 

the  points  D,  B,  G  move  towards  the  points  d,  J,  g, 
and  let  /  be  the  point  of  ultimate  intersection  of  the 
lines  BG,  AG,  when  the  points  B,  D  move  up  to  A. 

It  is  evident  that  the  distance  GI  may  be  made  less 
than  any  assigned  distance  by  diminishing  AB. 

But,  since  the  angles  ABD  and  GAB  are  equal,  and 
also  the  right  angles  BDA,  ABG,  the  triangles  ABD, 
GAB  are  similar;  therefore  BD  :  AB  : :  A  B  :  A  G, 

or  BD.AG  -  AB\  and,  similarly,  Id.Ag  =  Ab*; 
.-.  AB'2  :  AV  =  BD.AG  :  U.Ag ; 

therefore  the  ratio  AB2  :  Ab*  is  a  ratio  compounded of  the  ratios  of  BD  :  Id  and  A  G  :  Ag. 
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But,  since  CrI  may  be  made  less  than  any  assigned 
length,  the  ratio  A  Gf, :  Ag  may  be  made  to  differ  from 
a  ratio  of  equality  less  than  by  any  assigned  dif- 

ference ;  therefore  the  ratio  AB*  :  AW  may  be  made 
to  differ  from  the  ratio  BD  :  bd  less  than  by  any 
assigned  difference. 

Hence,  by  Lemma  L,  the  ultimate  ratio  AB* :  AV  is  the 
same  as  the  ultimate  ratio  of  BD_\J)d.  Q. E. D. 

Case  2.  Let  now  the  subtenses  BD',  Id'  be  inclined  at 
any  given  angle  to  the  tangent;  then,  by  similar 

triangles  DBD,  d'bd  ,  BD' :  bd'  :\BD\  Id,  but  ulti- 
mately BD  :  bd  ::  AB*  :  AV -,  therefore  ultimately 

BD  :  bd'  ::  AB*  :  Ab\  Q.E.D. 

Case  3.  And,  although  the  angle  D  be  not  a  given 
angle,  if  BD  converge  to  a  given  point,  or  be  drawn 
according  to  any  other  [fixed]  law  [by  which  the 

angle  D  remains  finite,  since  BD'  is  a  subtense],  still 
the  angles  D',  d',  constructed  by  this  law  common 
to  both,  will  continually  approach  to  equality  and 
become  nearer  than  by  any  assigned  difference,  and 
will  be  therefore  ultimately  equal,  by  Lemma  L, 

and  hence  BD,  Id'  will  be  ultimately  in  the  same 
—ratio  as  before.     Q.  E.  D. 

COR.  1.  Hence,  since  the  tangents  AD,  Ad,  the  arcs 
AB,  Ab  and  their  sines  BC,  be  become  ultimately 
equal  to  the  chords  AB,  Ab,  their  squares  also  will 
be  ultimately  as  the  subtenses  BD,  Id. 

COR.  2.  The  squares  of  the  same  lines  also  will  be 
ultimately  as  the  sagittse  of  the  arcs,  which  bisect 
the  chords,  and  converge  to  a  given  point;  for  those 
sagittae  are  as  the  subtenses  BD,  Id. 

COR.  3.  And  therefore  the  sagittse  will  be  ultimately 
in  the  duplicate  ratio  of  the  times  in  which  a  body 
describes  the  arcs  with  a  given  velocity. 

COR.  4.  The  rectilinear  triangles  ADB,  Adb  are  ulti- 
mately in  the  triplicate  ratio  of  the  sides  AD,  Ad, 
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and  in  the  sesquiplicate  ratio  of  the  sides  DB,  db ; 
since  these  triangles  are  in  the  ratio  compounded  of 
AD  :  Ad  and  BD  :  Id.  So  also  the  triangles  ABC, 
Abe  will  be  ultimately  in  the  triplicate  ratio  of  the 
sides  BC,  be.  The  sesquiplicate  ratio  may  be  re- 

garded as  the  subduplicate  of  the  triplicate,  or  as 
compounded  of  the  simple  and  the  subduplicate 
ratios. 

COR.  5.  And,  since  DB,  db  are  ultimately  parallel  and 
in  the  duplicate  ratio  of  AD,  Ad  [therefore,  this 
being  a  property  of  a  parabola,]  at  every  point  at 
which  a  curve  has  finite  curvature  an  arc  of  a  parabola 
can  be  drawn  which  will  ultimately  coincide  with  the 
curve ;  and  the  curvilinear  areas  ADB,  Adb  will  be 
ultimately  two-thirds  of  the  rectilinear  triangles 
ADB,  Adb',  and  the  segments  AB,  Ab  the  third 
parts  of  the  same  triangles.  And  hence  these  areas 
and  these  segments  will  be  in  the  triplicate  ratio  as 
well  of  the  tangents  AD,  Ad  as  of  the  chords  and 
arcs  AB,  Ab. 

SCHOLIUM. 

But,  in  all  these  propositions,  we  suppose  the  angle  of 
contact  to  be  neither  infinitely  greater  nor  infinitely 
less  than  the  angles  of  contact  which  circles  have 
with  their  tangents ;  that  is,  that  the  curvature  at 
the  point  A  is  neither  infinitely  great  nor  infinitely 
small;  in  other  words,  that  the  distance  AI  is  of 
finite  magnitude. 

For  DB  might  be  taken  proportional  to  AD*,  in  which 
case  no  circle  could  bo  drawn  through  the  point  A 
between  the  tangent  AD  and  the  curve  AB,  and  the 
angle  of  contact  would  be  infinitely  less  than  that 
of  any  circle. 

And,  similarly,  if  different  curves  be  drawn  in  which 

DB  varies  successively  as  AD",  AD?,AD*,  &c.,  a  series 
of  angles  of  contact  will  be  presented  which  may  be 
continued  to  an  infinite  number,  of  which  each  will 
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be  infinitely  less  than  the  preceding.  And  if  curves 

be  drawn  in  which  DB  varies  as  AD*,  AD*,  AD$, 
AD*,  AD*,  &G.,  another  infinite  series  of  angles  of 
contact  will  be  obtained,  of  which  the  first  will  be 
of  the  same  kind  as  in  the  circle,  the  second  infinitely 
greater,  and  each  infinitely  greater  than  the  pre- 

ceding. But,  moreover,  between  any  two  of  these 
angles  an  infinite  series  of  other  angles  of  contact 
can  be  inserted,  of  which  each  may  be  infinitely 
greater  or  infinitely  less  than  any  preceding;  for 

example,  if  between  the  limits  ADZ  and  AD3  there 
be  inserted  AD^,AD^,AD^,  AD*,  AD$,  AD^AD^, 

A  D^,AD}*,  &c.  And,  again,  between  any  two  angles of  this  series  there  can  be  inserted  a  new  series  of 

intermediate  angles  differing  from  one  another  by 
infinite  intervals.  Nor  does  the  nature  of  the  case 

admit  any  limit. 

The  propositions  which  have  been  demonstrated  con- 
cerning curved  lines  and  the  included  areas  are  easily 

applied  to  curved  surfaces  and  solid  contents. 

These  Lemmas  have  been  premised  for  the  sake  of 
escaping  from  the  tedious  demonstrations  by  the 
method  of  reductio  ad  absurdum,  employed  by  the  old 

geometers.  The  demonstrations  are  certainty  ren- 
dered more  concise  by  the  method  of  indivisibles ; 

but,  as  there  is  a  harshness  in  the  hypothesis  of  indi- 
visibles, and  on  that  account  it  is  considered  to  be 

an  imperfect  geometrical  method,  it  has  been  pre- 
ferred to  make  the  demonstrations  of  the  following 

propositions  depend  on  the  ultimate  sums  and  ratios 
of  vanishing  quantities  and  on  the  prime  sums  and 
ratios  of  nascent  quantities,  i.  e.  on  the  limits  of  sums 
and  ratios ;  and  therefore  to  premise  demonstrations 
of  those  limits  as  concise  as  possible.  By  these 
demonstrations  the  same  results  are  deducible  as  by 
the  method  of  indivisibles ;  and  we  may  employ  the 
principles  which  have  been  established  with  greater 
safety.  Consequently,  if,  in  what  follows,  quantities 
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should  be  treated  of  as  if  they  consisted  of  particles 
[indefinitely  small  parts],  or  small  curve  lines  should 
be  employed  as  straight  lines,  it  would  not  be  in- 

tended to  convey  the  idea  of  indivisible,  but  of 
vanishing  divisible  quantities,  not  that  of  sums  and 
ratios  of  determinate  parts,  but  of  the  limits  of  sums 
and  ratios ;  and  it  must  be  remembered  that  the  force 
of  such  demonstrations  rests  on  the  method  exhibited 
in  the  preceding  Lemmas. 

An  objection  is  made,  that  there  can  be  no  ultimate 
proportion  of  vanishing  quantities ;  inasmuch  as 
before  they  have  vanished  the  proportion  is  not 
ultimate,  and  when  they  have  vanished  it  does  not 
exist.  But  by  the  same  argument  it  could  be  main- 

tained that  there  could  be  no  ultimate  velocity  of  a 
body  arriving  at  a  certain  position  at  which  its 
motion  ceases ;  for  that  this  velocity,  before  the  body 
arrives  at  that  position,  is  not  the  ultimate  velocity ; 
and  that,  when  it  arrives  there,  there  is  no  velocity. 
And  the  answer  is  easy :  that,  by  the  ultimate  velo- 

city is  to  be  understood  that,  when  the  body  is 
moving,  neither  before  it  reaches  the  last  position 
and  the  motion  ceases  nor  after  it  has  reached  it, 
but  at  the  instant  at  which  it  arrives ;  i.  e.  the  very 
velocity  with  which  it  arrives  at  the  last  position  and 
with  which  the  motion  ceases. 

And,  similarly,  by  the  ultimate  ratio  of  vanishing 
quantities  is  to  be  understood  the  ratio  of  the  quan- 

tities, not  before  they  vanish  nor  after,  but  with  which 
they  vanish.  Likewise,  also,  the  prime  ratio  of  nas- 

cent quantities  is  the  ratio  with  which  they  begin  to 
exist.  And  a  prime  or  ultimate  sum  is  that  with  which 
it  begins  to  be  increased  or  ceases  to  be  diminished. 

There  is  a  limit  which  the  velocity  can  attain  at  the 
end  of  the  motion,  but  cannot  surpass.  This  is  the 
ultimate  velocity.  And  the  like  can  be  stated  of 
the  limit  of  all  quantities  and  proportions  com- 

mencing or  ceasing  to  exist.  And,  since  this  limit 
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is  certain  and  definite,  to  determine  it  is  strictly  a 

geometrical  problem.  And  all  geometrical  propo- 
sitions may  be  legitimately  employed  in  determining 

and  demonstrating  other  propositions  which  are 
themselves  geometrical. 

It  may  also  be  argued  that,  if  the  ultimate  ratios  of 
vanishing  quantities  be  given,  the  ultimate  magni- 

tudes will  also  be  given,  and  thus  every  quantity 
will  consist  of  indivisibles,  contrary  to  what  Euclid 
has  demonstrated  of  incommensurable  quantities,  in 
his  tenth  book  of  the  Elements. 

But  this  objection  rests  on  a  false  hypothesis.  Those 
ultimate  ratios  with  which  quantities  vanish  are  not 
actually  ratios  of  ultimate  quantities,  but  limits  to 
which  the  ratios  of  quantities  decreasing  without 
limit  are  continually  approaching ;  and  which  they 
can  approach  nearer  than  by  any  given  difference, 
but  which  they  can  never  surpass,  nor  reach  before 
the  quantities  are  indefinitely  diminished 

The  argument  will  be  understood  more  clearly  in  the 
case  of  infinitely  great  quantities.  If  two  quantities, 
of  which  the  difference  is  given,  be  increased  infi- 

nitely, their  ultimate  ratio  will  be  given,  namely,  a 
ratio  of  equality,  yet  in  this  case  the  ultimate  or 
greatest  quantities  of  which  that  is  the  ratio  will 
not  be  given. 

In  what  follows,  therefore,  if  at  any  time,  for  the  sake 
of  facility  of  conception,  the  expressions  indefinitely 
small,  or  vanishing ,  or  ultimate  be  used  concerning 
quantities,  care  must  be  taken  not  to  understand 
thereby  quantities  determinate  in  magnitude,  but  to 
conceive  them  in  all  cases  quantities  to  be  diminished 
without  limit. 

Curvature  of  Curves. 

60.  The  curvature  of  a  curve  at  any  point  is  greater  or  less 
as  the  amount  of  deflection  from  the  tangent  at  that  point,  in 

the  immediate  neighbourhood  of  the  point,  is  greater  or  less. 
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Two  curves  will  have  the  same  curvature  at  two  points,  taken 
one  in  each,  if  at  equal  distances  from  the  points  of  contact,  in 
the  immediate  neighbourhood  of  the  points,  they  have  the  same 
deflection  from  the  tangents  at  those  points. 

61.  An  exact  geometrical  test  of  equality  of  curvature  may 
be  obtained  as  follows : 

If  AB,  ab  be  two  curves  which  have  the  same  curvature  at 

A,  a  respectively,  draw  the  tangents  AC,  ac  and  take  A0=  ac. 

A  C  <*-  & 

Draw  subtenses  BC,  be  inclined  at  equal  angles  to  the  tangents. 
If  BC  and  be  were  equal,  for  all  equal  values  of  AC,  ac,  the 

curves  would  be  equal  and  similar.  If  BC :  be  be  ultimately 
a  ratio  of  equality,  when  AC,  ac  are  taken  indefinitely  small, 
the  curves  will  have  the  same  deflection  from  the  tangents  in  the 
immediate  neighbourhood  of  At  a,  or  the  curves  will  have  the 
same  curvature  at  those  points. 

If  the  chords  AB,  ab  be  drawn,  it  will  be  an  immediate  con- 
sequence that  the  ultimate  ratio  of  the  angles  BA  C,  bac  will  be 

a  ratio  of  equality.  These  angles  are  called  the  angles  of  contact. 
Hence,  curves  will  have  the  same  curvature  at  two  points, 

one  in  each,  if,  equal  tangents  being  drawn  at  those  points, 
and  subtenses  inclined  at  any  equal  angles  to  the  tangents,  the 
limiting  ratio  of  the  subtenses  be  a  ratio  of  equality,  or  if  the 
limiting  ratio  of  the  angles  of  contact  be  a  ratio  of  equality. 

62.  The  curvature  of  one  curve  will  be  infinitely  greater  or 
infinitely  less  than  that  of  another  if  the  limiting  ratio  of  the 
subtense  of  the  first  to  that  of  the  second  be  infinitely  great 
or  infinitely  small. 

63.  The  ratio   of  the   curvature  ot   one  curve   to  that   of 

another  at  two  points,  or  of  the  curvature  of  the  same  curve  at 
two  different  points,  is  the  limiting  ratio  of  the  subtenses  drawn 
from  the  extremities  of  equal  tangents  and  inclined  at  equal 
angles  to  the  tangents. 
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64.  The  curvature  of  a  curve  is  said  to  be  finite,  at  any 
point,  when  the  ratio  of  the  curvature  at  that  point  to  that  of 
any  circle  whose  radius  is  finite,  is  a  finite  ratio. 

65.    The  curvature  of  a  circle  is  the  same  at  every  point. 

Let  Aj  a  be  any  two  points  on  a  circle,  AC,  ac  equal  tan- 
gents at  Aj  a,  CBj  cb  subtenses  perpendicular  to  the  tangents, 

0Z>,  Od  perpendicular  to  the  subtenses  produced;  therefore 
CD  —  cdj  each  being  equal  to  the  radius,  and  BD  —  ld\  hence 
BC  =  bc  always,  and  therefore  ultimately,  when  the  arcs  are 
indefinitely  diminished,  BC  :  be  is  a  ratio  of  equality  ;  therefore 

the  circle  has  the  same  curvature  at  any  two  points. 

66.    In  different  circles  the  curvatures  vary  inversely  as  the 

In  the  last  figure,  produce  CB  to  the  circumference  in  E. 

Then,  A  C*=  CB.  GE\  also,  if  A  C'  be  a  tangent  to  another  circle, 
and  AC'  be  taken  equal  to  A  (7,  and  the  same  construction  be 
made,  A'C'Z  =  C'B'.C'E'  ;  therefore  CB.CE^C'B'.C'E',  and 
CBiC'B'  ::  C'E'  :  CE;  and  when  AC,  AC'  are  indefinitely 

diminished,  GE=ZAO  5  therefore  CB  :  C'B'  ::  A  0'  :  AO,  ulti- 
mately, or  the  curvatures  are  inversely  proportional  to  the  radii. 

Measure  of  Curvature. 

67.  The  curvature  of  a  circle  is  the  same  at  every  point  ; 
the  curvatures  of  different  circles  vary  inversely  as  the  diameters 

N 
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of  the  circles ;  and  a  circle  can  be  constructed  of  any  degree 
finite  curvature  by  varying  the  magnitude  of  the  diameter. 

Hence,  a  circle  can  always  be  found  whose  curvature  at  any 
point  is  equal  to  that  of  a  curve  at  a  fixed  point. 

The  curvature  of  a  curve  at  any  point  is  therefore  completely 
determined  when  the  diameter  of  the  circle  is  found,  which  has 
the  same  curvature  as  the  curve  at  the  given  point. 

The  diameter  of  the  circle,  which  has  the  same  curvature  as 

the  curve  at  a  given  point,  is  called  the  diameter  of  curvature  of 
the  curve  at  that  point. 

The  chord  of  the  circle,  drawn  in  any  direction,  is  called  the 
chord  of  curvature  in  that  direction. 

The  circle  itself  is  called  the  circle  of  curvature,  and  is  the 
circle  which  has  the  same  tangent  as  the  curve  at  any  point,  and 
also  the  same  curvature. 

68.  Any  other  curve  might  have  been  chosen  to  establish  a 
standard  measure  of  finite  curvature;    but,  since  no  curve  but 
the  circle  has  the  same  curvature  at  every  point,  it  would  then 
have  been  necessary,  after  selecting  the  curve,  to  specify  the 

point,  the  curvature  at  which  might  be  made  the  measure  of 
curvature. 

Thus,  if  the  standard  curve  were  a  parabola,  we  must  choose 
the  curvature  of  the  parabola  at  the  vertex  or  at  the  extremity 
of  the  latus  rectum  or  at  some  determinate  point,  by  which  to 
obtain  the  measure. 

The  inconvenience  is  obvious. 

General  Properties  of  the   Circle  of  Curvature. 

69.  If  a  circle  be  drawn  touching  a  curve  at  a  given  point, 

and  cutting  it  at  a  second  point,  as  the  second  point  approaches 
indefinitely  near  the  point  of  contact,  the  circle  will  assume  a 
limiting  magnitude,  and  will  evidently  satisfy  the  condition  of 
having  the  same  curvature  as  the  curve  at  that  point. 

70.  Since  a  tangent  at  any  point  is  the  limiting  position 
of  a  side,  terminated  in  that  point,  of  a  polygon  inscribed  in 
the  curve,  when  the  number  of  sides  is  increased  indefinitely, 
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so  the  circle  of  curvature  at  any  point  is  the  limiting  circle 
which  passes  through  three  consecutive  angular  points  of  the 
polygon,  one  of  which  coincides  with  the  point. 

71.  No  circle  can  be  drawn  whose  circumference  lies  between 
a  curve  and  its  circle  of  curvature^  in  the  neighbourhood  of  the 
point  at  which  the  circle  of  curvature  is  drawn. 

For,  let  AQ  be  the  arc  of  the  curve,  Aq  of  the  circle  of 
curvature  ;  and  let,  if  possible,  another  circle  be  drawn,  of  which 

the  arc  AS  lies  between  the  curve  and  circle,  and  having  there- 
fore the  same  tangent  AR  at  A ;  and  let  RQ,  the  subtense  per- 

pendicular to  the  tangent,  cut  the  circles  in  S}  q. 

n 

Then  SR  :  qR  will  be  ultimately  in  the  inverse  ratio  of  the 
diameters  of  the  circles;  therefore  SR  will  be  ultimately  unequal 
to  qR]  but,  since  qR  and  QR  are  ultimately  in  a  ratio  of 

equality,  SR,  which  is  intermediate  in  magnitude,  will  be  ulti- 
mately equal  to  either,  which  is  absurd ;  therefore  no  circle,  &c. 

This  proposition  corresponds  to  Euclid  III.,  Prop.  xvi. 

72.    The  circle  of  curvature  generally  cuts  the  curve. 

For  the  curvature  of  the  curve  at  different  points  taken  along 
the  curve  continually  increases  or  continually  diminishes,  until 
it  arrives  at  a  maximum  or  minimum  value. 

If  therefore  the  circle  of  curvature  be  drawn  at  any  point,  ̂  
on  the  side  on  which  the  curvature  is  increasing,  as  we  proceed 
from  the  point,  the  curve  will  lie  within  the  circle,  and  on  the 
other  side,  on  which  the  curvature  is  diminishing,  the  curve  will 
lie  without  the  circle ;  which  proves  the  proposition  for  the 
general  position  of  the  point. 

For  the  particular  case,  in  which  the  point  is  at  a  position 
of  maximum  or  minimum  curvature,  as  at  the  extremities  of  the 
axes  of  an  ellipse,  if  the  curvature  be  a  maximum  the  curvature 
at  adjacent  points  on  either  side  will  be  less  than  that  of  the 
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circle  of  curvature  at  the  point  tinder  consideration;  therefore 
the  circle  will  lie  entirely  within  the  curve  on  both  sides  near 
the  point  of  maximum  curvature;  and,  similarly,  it  will  lie 
without  the  curve  at  points  of  minimum  curvature. 

We  can  illustrate  this  by  reference  to  the  polygon  inscribed 
in  the  curve ;  see  the  figure  in  the  following  page. 

If,  in  the  curve,  equal  chords  AB,  BC,  CD,  DEr..  be  placed 
in  order,  generally  the  angles  ABC,  BCD,  CDE,...  will  increase 
or  decrease,  commencing  from  any  point,  which  property  of  the 

polygon  will  have  in  the  curvilinear  limit,  when  the  chords  are 
diminished  indefinitely,  the  corresponding  property,  that  the 
curvature  decreases  or  increases  continually. 

Suppose  the  angles  are  increasing  from  B;  make  the  angles 

CBA',  CDE1  equal  to  the  angle  BCD,  and  BA ',  DE'  equal  to 
BC,  CD...]  then  a  circle  through  B,  C,  D  will  pass  also  through 

A'  and  E',  and  these  points  will  be  on  opposite  sides  of  the 
perimeter  of  the  polygon,  whence,  if  we  proceed  to  the  limit, 
the  circle  of  curvature  at  a  point  in  the  middle  of  increasing 
curvature  will  cut  the  curve. 

If  the  angles  ABC  and  DEF  be  each  less  than  the  angles 

BCD)  CDE,  supposed  equal,  the  curvature  will  decrease  and 
then  increase,  and  the  circle  about  BCD  will  pass  through  E, 

and  BA,  EF  will  lie  within  the  circle,  and,  proceeding  to  the 
limit,  the  circle  of  curvature  will  lie  without  the  curve,  near 

the  point  of  minimum  curvature. 

Evolute  of  a  Curve. 

73.  DEF.   If  the   circles  of  curvature  be  drawn   at  every 

point  of  a  curve,  the  centres  of  those  circles  will  lie  in  a  curve 
which  is  called  the  evolute  of  the  proposed  curve. 

Proftertics  of  the  Evolute. 

74.  TJie  extremity  of  a  string  unwrapped  from  the  evolute  of 
a  curve  traces  out  the  curve. 

Let  ABCDE  be  any  equilateral  polygon,  and  let  a'a,  b'b,  cc 

d'd  be  drawn  perpendicular  to  the  sides  from  the  middle  points 
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«',  Z/,  &c.,  these  intersect  in  the  angular  points  abed...  of  another 
polygon. 

If  a  string  were  wrapped  round  a  abed...  the  extremity  a 
would  as  the  string  was  unwrapped  pass  through  the  points 
a'b'c'd1. 

Let  now  the  number  of  sides  of  the  polygon  be  increased  and 
the  magnitude  diminished  indefinitely. 

The  points  a'b'c ...  will  be  ultimately  in  the  curve  which  is 
the  limit  of  the  polygon,  and  since  a,  5,  c...  are  the  centres 
of  the  circles  described  about  ABC,  BCD,... ,  a,  5,  c,...  will  be 

ultimately  the  centres  of  the  circles  of  curvature  at  db'c... ,  and 

the  curve,  which  is  the  limit  of  the  polygon  abed...,  will  be  the 

evolute  of  the  curve  a'b'c ... ,  and  the  property  proved  for  the 
polygons  will  be  true  for  the  limits  of  the  polygons,  therefore 
the  extremity  of  the  string  unwrapped  from  the  evolute  will 
trace  the  curve  of  which  it  is  the  evolute.  This  property  gives 
rise  to  the  name  of  evolute. 

DEF.  The  curves  formed  by  the  unwrapping  of  a  string 
from  a  curve  are  called  involutes. 

75.  The  tangent  to  the  evolute  of  a  curve  is  a  normal  to  the 
curve. 

Since  b'b  is  ultimately  the  tangent  to  the  evolute  and  is 
perpendicular  to  BC,  which  is  ultimately  the  tangent  to  the 

curve  a'b'c ... ,  therefore  the  tangent  to  the  evolute  is  a  normal 
to  the  curve. 
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Propositions  on  Diameters  and  Chords  of  Curvature. 

76.  If  a  subtense  be  drawn  from  the  extremity  of  an  arc 
of  finite  curvature,  in  any  direction,  the  chord  of  curvature 

parallel  to  that  direction  will  be  the  limit  of  the  third  pro- 
portional to  the  subtense  and  the  arc. 

Let  PQ,  Pq  be  arcs  of  a  curve  and  its  circle  of  curvature 
at  P,  let  PR  be  the  common  tangent,  and  RQq  the  direction 
of  a  common  subtense,  meeting  the  circle  in  U. 

Draw  the  chord  PV  parallel  to  R  Q.  Then,  since  Rg^.R  U=PR\ 
RU  is  the  third  proportional  to  Rq  and  PR. 

But,  ultimately,  when  PQ  is  indefinitely  diminished,  RU=PV, 
and  PR  =  PQ,  by  Lemma  VIL  also,  Rq  =  RQ  by  the  properly 
of  the  circle  of  curvature. 

Therefore  PV  is  the  limit  of  the  third  proportional  to  R  Q 
and  PQ. 

Con.  The  diameter  of  curvature  is  the  limit  of  the  third  pro- 
portional to  the  subtense  perpendicular  to  the  tangent  and  the  arc. 

77.  The  two  chords  of  curvature  at  any  point  of  a  parabola 

drawn  through  the  focus,  and  in  the  direction  of  the  diameter,  are 
each  equal  to  four  times  the  focal  distance  of  that  point. 

Let  AP  be  a  parabola,  P  any  point,  RQ  a  subtense  parallel 
to  the  diameter  PMx,  QM  the  ordinate  at  Q,  S  the  focus. 

Then,  by  a  property  of  the  parabola,  QM*  =  4SP.PM;  there- 
fore 4&P  is  a  third  proportional  to  PM  and  QM,  i.e.  to  RQ 

and  PR. 

Hence,  4$P  is  the  limit  of  the  third  proportional  to  the 
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subtense   QR  and  the  arc  PQ,   and   is  therefore  equal  to  the 
chord  of  curvature  at  P  in  direction  of  the  diameter. 

And,  since  PS,  PM  are  equally  inclined  to  the  tangent  at  P, 
the  chords  in  those  directions  are  equal ;  therefore  the  chord  of 
curvature  through  S  is  four  times  the  focal  distance  SP. 

78.  One-fourth   of  the  diameter  of  curvature  at  any  point 
of  a,  parabola  is  a  third  proportional  to  the  perpendicular  from 

the,  focus  on  the  tangent  at  that  point,  and  the  focal  distance  of 

that  point. 

For,  draw  8Y,  QR'  perpendicular  to  PR,  and  let  PI  be  the diameter  of  curvature  at  P. 

Then  PI.  QR'  =  PQ*  =  PB"  ultimately,  =  4£P.  QR ; 

.-.  PI-.4SP::  QR:  QR  : :  SP :  SY; 

since  the  triangles  SYP,   QR'R  are  similar;   therefore  %PI  is 
a  third  proportional  to  SY  and  JSP. 

79.  The  chord  of  curvature  at  any  point  of  an  ellipse  draion 

through   the   centre  of  the  ellipse  is  a  third  proportional  to  the 

diameter  through  that  point  and  the  diameter  conjugate  to  it. 

Let  P  be  any  point  in  an  ellipse,  PCG  the  diameter,  LCD' 
conjugate  to  it,  Q  any  point  near  P,  QR  a  subtense  parallel 

to  CP,  QM  an  ordinate  parallel  to  DC,  PV  the  chord  of  curva^ 
ture  drawn  through  C. 

Then  PV.  QR  =  PQ2  =  QM2  ultimately, 

and  QM2  :  PM.MG  : :  CD*  :  CP*; 

.-.  PV.  QR  :  QR.MG::  CD2  :  CP2  ultimately; 
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.-.  PV-.2CP::  CD2:  <7P2  ultimately; 

.-.  PV.  CP :  CP*  : :  2  CD* :  CP\ 

and  PV.CP=2CD*; 

or  PV  is  a  third  proportional  to  PG  and  DCD'. 

80.  2%e  chord  of  curvature  at  any  point  through  tne  r  ecus  is 

a  third  proportional  to  the  major  axis^  and  the  diameter  parallel 
to  the  tangent  at  that  point. 

Draw  the  focal  distance  SP  cutting  the  diameter  DCD'  in  E, 
let  PV  be  the  chord  of  curvature  through  Sj  and  draw  the 
subtense  QR  parallel  to  SP. 

Then  PV  :PV::  QR  :  QR  ultimately 

:  :  CP:  PE  by  similar  triangles  ; 

.:  PV  is  a  third  proportional  to  2PE  and  DCD', 

and  2PE  is  equal  to  the  major  axis.  OS'  CT>V*^ 
Similarly  for  the  other  focus  H. 

81.  The  diameter  of  curvature  at  any  point  is  a  third  pro- 
portional to  twice  the  perpendicular  from  the  point  on  the  diameter 

parallel  to  the  tangent  and  that  diameter. 

Draw  QR'  perpendicular  to  the  tangent,  and  PF  perpen- 
dicular to  DCD'j  and  let  PI  be  the  diameter  of  curvature. 

PI:  PV::  QR  :  QR"  ::  CP-.PF; 
.-.  PI.PF=PV.CP=2CD*; 

A  PI  is  a  third  proportional  to  2PFand  DCD'. 
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82.  Since  the  chord  of  curvature  in  any  direction  varies 
inversely  as  the  subtense  QR  drawn  in  that  direction,  it  is  easily 
seen  that,  if  PL  be  the  portion  of  the  chord  intercepted  between 

P  and  DCD'j  the  chord  of  curvature  at  P  in  the  direction  PL 
will  be  the  third  proportional  to  2PL  and  DCD'. 

83.  The  propositions  concerning  the  chords  and  diameter 
of  curvature  of  an  ellipse  may  be  proved  in  the  same  words  for 
the  hyperbola,  employing  the  following  figure. 

84.  Tlie  radius  of  curvature  at  any  point  of  a  conic  section 

is  to  the  normal  in  the  duplicate  ratio  of  the  normal  to  the  semi- 
latus  Return. 

JKet  PK  be  the  normal,  PO  the  radius  of  curvature  at  P, 
L  the  semi-latus  rectum, 

(i)   For  the  parabola, 
PO:2SP::  SP :  SY::  SY :  SA; 

.'.  PO:  2SY::  SP :  SA  : :  ±SP.  SA  :  U ; 

but  PK=2SY;    .-.  PK*  =  ±SP.SA;  .-.  PO  :  PK : :  PK* :  U. 
(ii)   For  the  ellipse  or  hyperbola, 

PO.PF=  CD*  and  PK.PF=BC*; 

.-.  PO  '.PK-.'.  CD*  :BC'2::  AC2 :  PF>; 
but  PF.PK=BCZ=--L.AC',    .-.  AC  :  PF::  PK:  L; 

.-.  POiPK'.'.PK*'.U. 
0 
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85.  To  find  the  chord  common  to  a  conic  section  and  the 
circle  of  curvature  at  any  point. 

If  a  circle  intersect  a  conic  section  in  four  points,  as  PQ  UR 

and  these  points  be  joined  in  pairs  by  two  lines,  these  lines  will 

be  equally  inclined  to  the  axis  of  the  conic  section.  Thus,  in 
the  conic  section,  PQ,  RU  are  equally  inclined  to  the  axis. 

For,  if  UR,  QP  intersect  in  0,  OR.OU=  OP.OQ,  hence 
the  diameters  of  the  ellipse  parallel  to  £7/2,  QP  will  be  equal, 
and  therefore  equally  inclined  to  the  axis. 

Let  Q  and  R  move  up  to  and  ultimately  coincide  with  P, 
then  the  intersecting  circle  becomes  the  circle  of  curvature  at  P, 
and  PQ  is  in  the  direction  PT  of  the  tangent,  ultimately,  and 
RU  assumes  the  position  of  the  chord  common  to  the  conic 
section  and  the  circle  of  curvature  at  P.  Hence,  if  PV  be 
drawn  at  an  equal  inclination  with  PT  to  the  axis,  PV  will  be 
the  common  chord  required. 

And,  if  VI  be  drawn  perpendicular  to  PV,  meeting  the 
normal  at  P  in  /,  PI  will  be  the  diameter  of  curvature  at  P. 

86.  To  find  the  radius  of  curvature  of  a  curve  defined  by 
the  relation  between  the  radius  vector  and  the  perpendicular  from 
the  pole  on  the  tangent. 

Let  PYjPP'Y'  be  ,the  directions  of  consecutive  sides  of  a 

polygon  inscribed  in  a  curve,  SY,  SY'  perpendiculars  on  these 
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sides;    draw  P0,  P'O  perpendicular  to  the  same  si 

99 

inter- 

01 secting  in  0,  and  P'U  perpendicular  to  SP,  and  let  £T,  PY' intersect  in  W. 

A  semicircle  on  SP  as  diameter  passes  through  Y  and  Y' ; 

.-.  L  YPW=L  YSY'  =  LPOF,   and  L  WYP=L  OP'P; 

therefore  the  triangles  POP',  TFPFare  similar; 
.-.  POiPP'  ::PW:  YW, 

also  PP':  SP::PU:PYr, 

by  similar  triangles  FUP,  8TP,  and  PW=PY'  ultimately; 
.-.  PO:  SP::  PU :  YW::  SP  -  8F  :  SY~>  SY'  ultimately. 

Also,  if  PF  be  the  chord  of  curvature  through  $, 
PF:2PO::  SY:  £P; 

.-.  PF:  2/ST::  SP  ~>  SF  :  SY~>  SY'  ultimately. 

Observations  on  the  Lemma. 

87.  In  the  proof  of  Lemma  XI.,   AI  is  the  limit  of  the 
third  proportional  to  BD  and  AB,  hence  it  is  the  diameter  of 
curvature  of  the  curve  at  A. 

88.  For  an  example  of  a  law  according  to  which,  in  Case  3, 
the  directions  of  the  subtenses  may  be  determined,  we  may 
suppose  that  they  always  pass  through  a  point  given  in  position 
at  a  finite  distance  from  A,  or  that  they  always  touch  a  given 
curve;    but  it  must  be  observed  that  the  case  in  which  they 
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touch  a  curve  which  has  the  same  tangent  AD  at  A  is  excluded, 

since  in  this  case  the  angles  D,  d'  do  not  in  the  limit  remain 
finite,  a  property  required  in  the  name  subtense. 

89.  DEF.   If  a  line  be  drawn  from  the  middle  point  of  an 
arc  of  a  curve,  making  a  finite  angle  with  the  chord,  the  part 
intercepted  between  the  chord  and  the  arc  is  called  the  sagitta 
of  the  arc. 

90.  The  sagitta  of  an  arc  is  ultimately  one  quarter  of  the 
subtense  drawn  at  the  extremity  of  the  arc  parallel  to  the  sagitta. 

Let  the  sagitta  FE  bisect  the  arc  AB  in  E,  and  be  pro- 
duced to  the  tangent  at  A  in  (7,  and  let  BD  be  a  subtense 

parallel  to  FE. 

Then  EG  :  BD  ::  AW  :  AB*  ultimately ;     .- 
also  BD  :  FG  ::  AD  :  AG  ::  AB :  AE  ultimately ; 

.-.  BD  =  2FG  =  ±EG;   hence  FE=EG  =  %BD  ultimately. 

91.  COR.  5.  The  parabola  mentioned  in  this  corollary  is  a 

parabola  of  curvature  at  that  point ;  for,  since  DB  is  taken  in 

any  given  direction,  the  proportion  BD  :  bd  ::  AD*  :  Ad'2  proves that  the  curve  is  ultimately  in  the  form  of  a  parabola,  and  that, 

therefore,  the  line  through  A  drawn  in  the  given  direction  is  the 
corresponding  diameter  of  the  parabola  of  curvature. 

Hence  the  axis  of  the  parabola  may  be  taken  in  any  as- 
signed direction. 

If  the  subtenses  be  perpendicular  to  the  tangent,  the  parabola 
of  curvature  will  be  the  parabola  whose  curvature  at  the  vertex 
will  determine  the  curvature  of  the  curve,  since  the  axis  will  be 

perpendicular  to  the  tangent,  and  if  ±AU,  in  the  figure  page  104, 
be  the  third  proportional  to  the  subtense  and  arc,  the  limiting 

position  of  U  will  be  the  focus  of  the  parabola. 
By  means  of  this  corollary  the  proposition  alluded  to  under 

Lemma  IX.,  Art.  44,  is  established ;  viz.  that  the  ratio  of  the 
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areas  which  takes  place  of  the  duplicate  ratio,  obtained  in  that 

Lemma,  is  the  triplicate  ratio  of  the  same  lines,  when  the  line, 
AE,  instead  of  cutting  the  tangent  at  a  finite  angle,  coincides 
with  the  tangent. 

92.    Scholium.    Let    AB,    AC    be   two    curves,   having  a 

common  tangent  AD  at  A,  and  let  subtenses  DB,  DBG  of  the 

4 

angles  of  contact  be  drawn  from  D  at  any  point  in  the  tangent 

in  the  same  direction,  and  let  BD  cc  ADm,  CD  oc  ADn  in  the 
curves  AB,  AC  respectively.  Draw  dbc  a  common  ordinate 
from  a  fixed  point  d,  parallel  to  DBC.  Then 

ADm  :  Adm  ::  BD  :  bd, 

and  ADn  :  Adn  ::  CD  :  cd, 

and  if  m  be  greater  than  n,  =  n  +  r  suppose, 

AD\ADr :  Adn.Adr  ::BD:bd', 
.\  CD.ADr :  cd  .Adr ::  BD  :  Id 

::BD  .ADr:M.AD", 

.-.  CD  :  BD  ::  cd  .Adr ::   Id  .ADr, 
and  since  b,  c,  d  are  fixed,  and  AD  vanishes  in  the  limit,  there- 

fore CD  is  indefinitely  greater  than  BD  •  also,  since  the  angles 
of  contact  BAD,  CAD  are  ultimately  proportional  to  BD,  CD^ 
it  follows  that,  if  in  two  curves  the  subtenses  vary  according 
to  different  powers  of  the  arcs  or  tangents,  the  angle  of  contact 
of  that  curve  in  which  the  index  of  the  power  is  the  least  will 

be  infinitely  greater  than  the  angle  of  contact  of  the  other. 

Illustrations. 

(1)  Two  tangents  AT,  BT  are  drawn  at  the  extremities  of 
an  arc  AB,  to  prove  that  A  T  is  ultimately  equal  to  BT,  when  AB 

is  indefinitely  diminished. 
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Draw  TCUV  in  any  direction  making  a  finite  angle  with  the 

tangents,  and  meeting  the  circles  of  curvature  at  A  and  B  in  UV. 

Then  since  the  circle  of  curvature  at  A  is  the  limit  of  the  circle 

which  passes  through  C  and  has  the  tangent  AT  at  At  and 
similarly  for  that  at  B,  we  have  ultimately 

TA2  :  TB*::  TO.  TV:  TG.  TV, 

and  TU=  TV  ultimately  ;   /.  TA  =  TB  ultimately. 

COB.   If  BD  be  any  subtense  of  the  arc  AB, 

AT+  TB=AB  =  AD  ultimately; 

therefore  AD  will  be  ultimately  bisected  by  the  tangent  BT. 

(2)  If  BT  be  a  tangent  at  B,  AB,  BG  equal  chords  of  a 
curve  of  finite  curvature,  drawn  from  B,  and  AB  be  produced 

to  c,  making  Bc  —  AB,  and  Cc  be  joined  meeting  BT  in  T,  cT 
will  ultimately  be  equal  to  CT,  when  the  arcs  AB,  CB  are 
diminished  indefinitely. 

Let  A  U  be  drawn  parallel  to  CT,  meeting  the  tangent  at  B 

in  U,  and  let  two  circles  touch  UB  T  at  B  and  pass  one  through 

A  and  the  other  through  (7,  and  let  BV,  B  V  be  chords  of  theso 

circles  drawn  parallel  to  AU  or  CT,  then  AU.BV=AB\  and 
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CT.BV'  =  BCZ;  but  BV=BV  ultimately,  since  the  two  circles 
are  each  ultimately  the  circle  of  curvature  at  B  and  AB  =  BG, 
therefore  A  U=  CT  ultimately. 

Through  B  draw  RBR'  parallel  to  A  C,  meeting  A  U  in  R' 
and  Cc  in  R,  then  R'U=RT,  therefore  2RT  is  the  difference 
between  AU  and  CT,  hence  RT  ultimately  vanishes  compared 

with  CT,  and  since  CR  =  Rc,  therefore  CT=  Tc  ultimately. 

(3)  If,  from  the  point  of  contact  of  a  curve  with  its  tangenV 
equal  distances  be  measured  along  the  curve  and  tangent,  the  line 
joining  their  extremities  will  ultimately  be  parallel  to  the  normal 
at  the  point  of  contact. 

In  the  last  figure,  let,  BC,  BT  be  equal  distances,  measured 

along  the  arc  and  the  tangent ;  join  CT,  let  the  tangent  at  G 

meet  BT'm  D,  produce  BT  to  .F  making  DF=DC,  take  BE= 
the  chord  BC,  and  join  EC  and  FC. 

Since  the  arc  BC  is  intermediate  in  magnitude  between 
BD  +  DC  and  BC,  therefore,  BT  being  equal  to  arc  BC,  the 

point  T  lies  always  between  E  and  F.  But  the  triangles  BCE, 
DCF  being  both  isosceles,  each  of  the  angles  BEG,  BFC  will 
ultimately  be  a  right  angle,  therefore  the  angle  B  TC,  which  is 
less  than  BEG  and  greater  than  BFC,  will  also  ultimately  be 

a  right  angle. 
Hence  CT  will  ultimately  be  parallel  to  the  normal  at  B. 

NOTE.  In  order  to  shew  the  danger  of  falling  into  an  error 

by  a  careless  employment  of  the  propositions  proved  in  the 
first  section,  the  following  fallacious  proof  may  be  noticed  of 
the  above  proposition. 

In  the  figure  page  102,  join  BC,  then  BT ':  CB  will  be 
ultimately  a  ratio  of  equality,  by  Lemma  VII ;  therefore  CBT 
being  an  isosceles  triangle  ultimately,  CT  will  be  perpendicular 
to  the  line  bisecting  the  angle  CBT,  and  therefore  to  the 

tangent  BT,  since  .BTand  BC  will  ultimately  coincide  with  the 
bisecting  line. 

The  fact  is  that  Lemma  VII.  only  allows  us  to  assert  that 
BT  and  the  chord  BC  differ  by  a  quantity  Tt,  which  vanishes 

compared  with  either  of  them,  and  therefore  Tt  may  oc  BC*' 

but,  by  Lemma  XI,  CT oc  BC*',  hence  Tt :  CT  may  possibly 
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be  a  finite  ratio,  or  CT  may  be  ultimately  inclined  at  any  finite 
angle  to  B T,  at  least  as  far  as  the  reasoning  given  in  the  above 
proof  is  concerned. 

(4)    To  construct  for  the  focus  of  the  parabola  of  curvature 
whose  axis  is  in  a  given  direction. 

^r 

Let  AB  be  a  curve  of  finite  curvature,  BD,  Id  subtenses 
parallel  to  AE  the  given  direction.  Draw  A  U  perpendicular  to 
AD,  and  AS  making  angle  UA8  —  UAE;  then  since  AEis  a 
diameter  of  the  parabola  by  Art.  91,  AS  is  in  the  direction  of 
the  focus. 

Also,  if  ± AS  be  taken  a  third  proportional  to  BD  and  AD, 
the  limiting  position  of  S  will  be  the  focus  of  the  parabola. 

(5)  To  find  the  locus  of  the  focus  of  the  parabola  of  curvature, 
when  its  axis  changes  its  direction. 

Let  BC\)Q  perpendicular  to  AD,  and  AUbe  chosen  so  that 

±AU.BC  =  AC2,  then  the  limiting  position  of  Uis  the  focus  of 
the  parabola  whose  curvature  at  the  vertex  is  the  same  as  that 
of  the  curve  at  A  ;  also,  if  S  be  the  focus  of  the  parabola  whose 

axis  is  parallel  to  DB,  4AS.DB  =  AD*  =  AC*,  ultimately; 
therefore  AU:  AS  ::  BD  :  BC,  and  /  SAU  =  L  DBC',  hence 
if  we  join  SU,  the  triangles  SAU,  CBD  will  be  similar,  and 

L  ASU '=  L  BCD  =  a  right  angle  ;  therefore  the  locus  of  S  is a  circle  on  -4Z7as  diameter. 

(6)  ABC  is  an  arc  of  finite  curvature,  and  is  divided  so  that 

AB  :  BC  ::  m  :  n,  a  constant  ratio',  join   AB,    AC,   BC,    and 

shew  that,  ultimately,  &ABC :  segment  ABO::  %mn  :  (m  -f  n)*. 
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For,  by  Cor.  5,  Lemma  XL 

seg  AB  :  seg  ABC::  AB3  :  ABC3  ::  m*  :  (m  +  n}3 

seg  BC  :  seg  ABG  ::  n3  :  (m  +  n)3  ; 

/.  seg  AB  -f  seg  BC  :  seg  ABC  ::  m*  +  n3  :  (m  4  w)3, 

and  A  ABC  =  seg  ABC  -  seg  AB  -  seg  £<7; 

.-.   A  .450  :  seg  A5(7  ::  3  (m*n  +  ?rf)  :  (m  +  nf 

:  (m  -f  w)a. 
(7)    To  find  the  chord  of  curvature,  at  any  point  of  the  cardioid, 

through  the  focus. 

It  is  easily  seen  from  p.  56  (3),  that  8Y  being  perpendicular 
to  PT,  the  triangles  PSY,pBm,  and  CBp  are  similar; 

:  SP::  Bm  :  Bp  ::  Bp  :  BO', 

.-.  tf Y" :  SP2 ::  SP:  BC,  since  Bm  =  /S'P, 

=  SP3,  and  (&F2  -  /S'F2)  BC  =  SP3  -  SP'3; 

:  8Y->8T  ::  ZSY.BCiZSP*  ultimately; 

.  by  Art.  86,  chord  of  curvature  :  2SY::  2/SP:  3/ST; 

therefore  the  chord  of  curvature  through  S  = 

XII. 

1.  Prove  that  the  focal  distance  of  the  point  in  the  parabola  at 
which  the  curvature  is  one-eighth  of  that  at  the  vertex  is  equal  to 
the  latus  rectum. 
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2.  Prove  that  the  diameter  of  curvature  at  the  vertex  of  the 
major  axis  of  an  ellipse  is  equal  to  the  latus  rectum  :  and  shew 
that  the  ratio  of  the  curvature  at  the  extremities  of  the  axes  is  that 
of  the  cubes  of  the  axes. 

3.  Shew   that   at  no   point   of    an   ellipse   will   the   circle   of 
curvature  pass  through  the  centre,   if  the  eccentricity  be    less 
than  Vi. 

4.  Find  for  what  point  of  an  ellipse  the  circle  of  curvature 
passes  through  the  other  extremity  of  the  diameter  at  that  point, 
shew  that  the  distance  of  this  point  from  the  centre  is  the  side  of 
the  square  of  which  AB  is  the  diagonal. 

5.  In  a  rectangular  hyperbola,  the  diameter  of  curvature  at  any 
point,  and  the  chords  of  curvature  through  the  focus  and  centre  are 
in  geometrical  progression. 

6.  Prove  that  at  a  point  P  in  an  ellipse  for  which  the  minor 
axis  is  a  mean  proportional  between  the  radius  of  curvature  and 
the  normal,  PC  =  AC  -  BC.     Shew  that  this  is  impossible  unless 

2BC. 

7.  If  the  radius  of  curvature  for  an  ellipse  at  P  be  twice  the 
normal,  prove  that  CP  =  CS. 

If  moreover  A  C=  2B  C,  prove  that  CP  =  3PM. 

8.  If  the  circle  of  curvature  at  a  point  P  of  a  parabola  pass 
through  the  other  extremity  of  the  focal  chord  through  P,  and  the 
tangent  at  P  meet  the  axis  in  T}  prove  that  the  triangle  PST  will 
be  equilateral. 

9.  Prove  that  the  distance  of  the  centre  of  curvature,  at  any 
point  of  a  parabola,  from  the  directrix  is  three  times  that  of  the 

point. 
10.  If  tne  circle  of  curvature  at  a  point  on  a  parabola  touch 

the  directrix,  the  focal  distance  of  the  point  will  be  &  of  the  latus 
rectum. 

11.  PQ  is  a  normal  at  a  point  P  of  a  rectangular  hyperbola, 
meeting   the  curve   again  in   Q,   prove  that  PQ  is  equal  to  the 
diameter  of  curvature  at  P. 

12.  Prove  that  the  portion  of  the  normal  intercepted  between 
the  line  joining  the  extremities  of  the  two  chords  of  curvature  through 

tke  foci  of  an  ellipse,  and  the  point  of  contact  P,  is  -r 
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13.  A  fixed  hyperbola  is  touched  by  a  concentric  ellipse.     If 
the  curvatures  at  the  point  of  contact  be  equal,  the  area  of  the 
ellipse  will  be  constant. 

14.  Shew  that  the  directrices  of  all  parabolas  touching  a  curve 
of  finite  curvature  at  any  given  point,  and  having  the  same  curvature 
at  that  point  as  the  curve,  pass  through  a  fixed  point. 

XIII. 

1.  Prove  that  the  chord  of  curvature  through  the  vertex  A 
of  a  parabola  :  2PY :  :  2PY :  AP,  T  being  the  intersection  of  the 
tangents  at  P  and  A. 

2.  Apply  the  property  that  the  radius  of  curvature  at  any  point, 
of  an  ellipse  is  to  the  normal  in  the  duplicate  ratio  of  the  normal  to 
the  semi-latus  rectum,  to  shew  that  the  radius  of  curvature  at  the 
extremity  of  the  major  axis  is  equal  to  the  semi-latus-rectum. 

3.  Assuming  only  that  a  curve  has  a  subnormal  of  constant 
length,  prove  geometrically  that  its  radius  of  curvature  varies  as 
the  cube  of  its  normal. 

4.  If  Pp  be  any  chord  of  an  ellipse,  PT,  pT  tangents  at  P 
and  p,  shew  that  the  curvatures  at  P  and  p  are  as  the  cubes  of  pT 
and  PT. 

5.  Shew  that  the  sum  of  the  chords  of  curvature  through  ̂  
focus  of  an  ellipse  at  the  extremities  of  conjugate  diameters  is 
constant.     Also,  if  p,  «  be  the  radii  of  curvature  at  those  points, 

prove  that  p*  +  a*  is  constant. 
6.  Prove  that  the  chords  of  curvature  through  any  two  points 

on  an  ellipse  in  the  direction  of  the  line  joining  them  are  in  the 
same  ratio  as  the  squares  on  the  diameters  parallel  to  the  tangents 
at  the  points. 

7.  Prove  that  the  distances  of  the  centre  of  curvature  at  any 
point  of  an  ellipse  and  of  that  point  from  the  minor  axis  are  in  the 
duplicate  ratio  of  the  distances  of  the  point  and  the  directrix  from 
the  same  axis. 

8.  An  hyperbola  touches  an  ellipse,  having  a  pair  of  conjugate 
diameters  of  the  ellipse  for  its  asymptotes.     Prove  that  the  curves 
have  the  same  curvature  at  the  point  of  contact. 

9.  Shew  that,  if  D  be  the  diameter  of  an  ellipse  parallel  to  the 
tangent  at  a  point  P,  whose  eccentric  angle  is  <f>,  the  length  of  the 
chord  common  to  the  ellipse  and  circle  of  curvature  at  P  will  be 
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1 0.  Determine  a  parabola  of  curvature  in  magnitude  and  position 
for  any  point  in  a  circle,  when  the  subtenses  are  inclined  at  45°  to 
the  tangent. 

11.  If  x,   y  be  the  coordinates  of  a  point  P  of  a  curve  OP, 
passing  through  the  origin  0,  the  diameter  of  curvature  at  0  will 

y*  -|-   y* 

be  — -. —  —  ultimately,  a  being  the  inclination  of  the  tangent x  sm  a  <-  y  cos  a 
at  0  to  the  line  of  abscisses.  Hence  shew  that,  if  the  equation  of 
a  curve,  referred  to  rectangular  areas,  be  ̂   +  20y-2a#  =  0,  the 
radius  of  curvature  at  the  origin  will  be  2  V2 .  a. 

12.  A  circle  is  a  circle  of  curvature,   at  a  fixed  point  in  the 
circumference,  to  an  ellipse,  one  focus  of  which  lies  on  the  circle, 
shew  that  the  locus  of  the  other  focus  is  also  a  circle. 

13.  Prove  that  the  chord  of  curvature  at  any  point  P  of  an 
ellipse  in  any  direction  PQ  is  half  the  harmonic  mean  between  the 
two  tangents  drawn  from  P  to  the  confocal  conic  that  touches  PQ, 
the  tangents  being  reckoned  positive  when  drawn  towards  the 
interior  of  the  ellipse. 

XIV. 

1.  If  AEB  be  the  chord,  AD  the  tangent,  and  ED  the  subtense, 
for  an  arc  ACE  of  finite  curvature  at  A,  find  the  limit  of  the  ratio 
area  ACBE  :  area  AC  ED,  as  E  approaches  A. 

2.  An  arc  of  continuous  curvature  PQR  is  bisected  in  Q,  PT  is 
the  tangent  at  P ;   prove  that,  ultimately,  as  R  approaches  P,  the 
angle  MPT  is  bisected  by  PQ. 

3.  If  AE  be  an  arc  of  finite  curvature  bisected  in  C,  and  T  be 
a  point  in  the  tangent  at  A,  at  a  finite  distance  from  A,  prove  that 
the  angle  ETC  will  be  ultimately  three  times  the  angle  CTA,  when 
B  moves  up  to  A. 

4.  Two  curves  touch  one  another,  and  both  are  on  the  same 
side  of  the  common  tangent.     If  in  the  plane  of  the  curves  this 
tangent  revolve  about  the  point  of  contact,  or  if  it  move  parallel  to 
itself,  the  prime  ratio  of  the  nascent  chords  in  the  former  case  will 
be  the  duplicate  of  their  prime  ratio  in  the  latter  case. 

5.  ACS  IB  a.  small  arc  of  finite  curvature ;   prove  that  the  mean 
of  the  distances  of  every  point  of  the  arc  from  the  chord  AE  is 
equal  to  £  of  the  distance  of  the  middle  point  of  the  arc  from  the 
chord,  and  that  the  mean  of  the  distances  of  every  point  of  the  arc 
from  the  tangent  at  either  extremity  of  the  arc  is  equal  to  $  of  the 
distance  of  the  middle  point  of  the  arc  from  the  same  tangent. 
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6.  When  on  an  arc  of  continuous  curvature  there  is  no  point 
where  the  curvature  is  a  maximum  or  minimum,   the  circles  of 
curvature  at  the  extremities  of  the  arc  cannot  intersect. 

7.  If  S  be  any  point  in  the  plane  of  a  curve,  P  any  point  on 
the  curve,  Y  the  corresponding  point  on  the  pedal  for  which  S  is 
the  pole,  V  the  point  where  PS  cuts  the  circle  of  curvature  at  P, 

V  the  corresponding  point  for  the  pedal,  then  4SP.SF'=PV.  TV. 

8.  The  radius  of  curvature  in  a  curve  increases  uniformly  with 
its  inclination  to  a  fixed  radius.     Prove  that  the  area  between  the 

curve,  its  evolute,  and  the  two  radii  of  curvature  of  lengths  a,  b, 

which  contain  an  angle  <p,  is  i  (#2  +  db  +  bz)  0. 

9.  A  curve  is  such  that  the  radius  vector  makes  half  the  angle 
with  the  normal  that  it  does  with  a  fixed  line;   find  the  chord  of 
curvature  through  the  pole. 

10.  In  a  segment  of  an  arc  of  finite  curvature  a  pentagon  is 
inscribed,  one  side  of  which  is  the  chord  of  the  arc,  and  the  remaining 
sides  are  equal.     Shew  that  the  limiting  ratio  of  the  areas  of  the 
pentagon  and  segment,    when  the  chord  moves  up  towards  the 
tangent  at  one  extremity,  is  15  :  16. 

11.  APQ,  is  a  curve  of  continued  and  finite  curvature,  P  and  Q 
are  two  points  in  it,  whose  abscissae  along  the  normal  at  A  are 
always  in  the  ratio  m  :  1,  and  from  B,  C,  two  points  in  the  normal, 

straight  lines  BPb,  CPc,  £Qb',  CQc'  are  drawn  to  meet  the  tangent 
at  A.      Shew  that,  when  P  and  Q  move  up  to  A,  the  areas  01 

the  triangles  bPc,  b'Qc'  are  ultimately  in  the  ratio  m%  :  1. 

12.  AB  is  an  arc  of  finite  curvature  at  A,  and  a  point  P  is 
taken  such  that  AP  :  PB  is  in  the  constant  ratio  of  m  :  n.    Tangents 
at  A  and  B  intersect  the  tangent  at  P  in  T  and  jft,    and  AB  is 
joined.     Prove  that  the  ultimate  ratio  of  the  area  ATRB  to  the 

segment  APB,  as  B  moves  up  to  A,  is  3  (mz  +  mn  +  nz)  :  2(m  +  n)*. 

13.  The  tangent  to  a  curve  at  a  point  B  meets  the  normal  at 
a  point  A  in  T}  C  is  the  centre  of  curvature  at  A,  and  0  a  point 
on  AC\   prove  that,  in  the  limit,  when  B  moves  up  to  A,  the 
difference  of  OA  and  OB  bears  to  AT  the  ratio  OC  :  OA. 

14.  0  is  a  point  within  a  closed  oval  curve,  P  any  point  on  the 

curve,  QPQ,'  a  straight  line  drawn  in  a  given  direction,  such  that 
QP  =  PQ'  =  PO',   prove  that,  as  P  moves  round  the  curve,   Q,  Q' 
trace  out  two  closed  loops,  the  sum  of  whose  areas  is  twice  the  area 
of  the  original  curve. 
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NOTE  ON   MAXIMA   AND   MINIMA. 

93.  When  a  variable  magnitude  changes  its  value  in  con- 
sequence  of  the  change  of  some  element  of  its  construction, 

the  law  of  its  variation  can  be  graphically  represented  by  the 
form  of  a  curve  in  which  the  ordinate   and  abscissa  of  every 
point  represent  respectively   the   corresponding  values   of  the 
variable  magnitude  and  of  the  element  on  which  it  depends. 

Examples  of  this  mode  of  representation  have  been  given 
in  Arts.  55  and  57,  in  which  the  time  or  space  is  the  element 
upon  which  depends  the  velocity  or  kinetic  energy,  which  are 
the  variable  magnitudes  respectively  considered. 

94.  This    graphic   representation   enables   us    to   obtain    a 
property  of  any  maximum  or  minimum  value   of  a  variable 
magnitude   which  is   applicable   to   the  solution  of  a   variety 
of  problems. 

For,  let  Ox  be  the  line  of  abscissae  and  B  a  point  in  the 
auxiliary  curve  at  which  the  tangent  RBS  to  the  curve  is 

parallel  to  Ox,  and  let  the  abscissa  OA  represent  the  corre- 
sponding value  of  the  element,  then  the  ordinate  AB  is  a 

maximum  or  minimum  according  as  the  portion  of  the  curve 
PBQ  in  the  neighbourhood  of  B  is  concave  or  convex  to 
the  line  Ox. 

Let  a  chord  PQ  be  drawn  parallel  to  the  tangent  EB8y 
the  two  points  P  and  Q  one  on  each  side  of  B  have  equal 
ordi nates  MP,  NQ,  which,  as  PQ  moves  up  to  and  continues 

parallel  to  the  tangent,  become  nearer  and  nearer  and  are 
ultimately  equal  to  the  maximum  or  minimum  value,  while 
the  difference  between  the  corresponding  abscissae  ultimately 
vanishes. 

Hence  is  derived  the  following  theorem  : 

If  a  variable  magnitude  have  a  maximum  or  minimum  value 
there  will  be  two  values  of  the  element  of  construction,  one  greater, 
and  the  other  less  than  the  critical  value^  which  will  give  equal 

values  of  the  variable  magnitude. 
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95-    Stationary  value  of  a  magnitude. 
Let  the  equal  ordinates  MP,  NQ  be  produced  to  meet  the 

tangent  in  R  and  S,  then  by  Lemma  XL,  PR  and  QS  vanish 
compared  with  AM  or  AN,  and  the  ratio  of  the  rates  of 
increase  of  the  ordinate  to  that  of  the  abscissa,  which  is  gene- 

rally finite,  vanishes  for  the  critical  case  of  a  maximum  or 
minimum ;  on  this  account  the  magnitude  is  said  to  have  a 
stationary  value. 

One  or  two  examples  are  sufficient  to  shew  the  application 
of  this  method. 

96.  To  find  at  what  point  on  the  bank  of  an  oval  pond  a 
person  must  land  in  order  to  pass  from   a  given  point  on   the 
pond  to  a  given  point  on  the  bank  in  the  shortest  possible  time, 
having  given  the  ratio  of  his  rates  by  land  and  by  water. 

Let  A,  B  be  the  two  given  points,  P  the  point  at  which  he 
must  land,  and  let  nv,  v  be  the  velocities  by  water  and  along 
the  bank.  On  opposite  sides  of  P  there  are  two  points  Q,  R  at 
which  if  he  land  the  time  to  B  will  be  the  same,  in  AR 

take  AM=AQ,  then  MR  in  water  and  QR  on  land  are 
described  in  the  same  time,  therefore  n.QR  =  MR,  which  is 

true,  however  near  Q  and  R  may  be  to  P;  therefore  cos<£  =  ??, 
where  <j>  is  the  angle  between  AP  and  the  tangent  at  P;  whence, 
when  the  exact  form  of  the  oval  is  given,  the  position  of  P 
can  be  found. 

97.  To  find  the  chord  of  an  oval,  which,  drawn  through  a 
given  point,  cuts  off  a  maximum  or  minimum  segment. 

Through  the  fixed  point  A  it  is  possible  to  draw  two  chords 

PA  Q  and  pAq,  one  on  each  side  of  the  required  chord,  for 
which  the  areas  cut  off  are  exactly  equal;  take  away  the 

common  part,  and  the  remainders  PAp,  QAq  are  equal;  there- 
fore, ultimately,  when  the  angle  between  them  vanishes, 

PA.pA  =  QA.qA,  and  the  chord  which  cuts  off  a  maximum 
01?  minimum  area  must  be  bisected  by  the  fixed  point. 

98.  If  a  triangle  of  constant  shape  be  described  about  a  given 

triangle,  prove  that  when  the  area  is  a  maximum  the  normals  to 
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the  sides  of  the  circumscribed  triangle  at  the  angular  points  of  the 
given  triangle  will  meet  in  a  point. 

Let  ABC  be  the  given  triangle,  a£y,  a'fi'y'  two  positions 
of  the  circumscribing  triangle  whose  areas  are  equal,  the 
triangle  of  maximum  area  being  intermediate  in  position. 

Since  the  angles  at  a,  a'  are  equal,  the  points  a,  a'  lie  in 
the  same  segment  of  a  circle  whose  base  in  BC,  and  the  angles 

j  a/fa'  are  equal.  Hence  the  triangles  a(7a',  /30J3',  fiAft', 
')  &c.,  are  ultimately  proportional  to  (7aa,  (7/32,  .... 

But  the  sum  of  the  areas  a(7a',  pAp',  ySy'  are  ultimately 
equal  to  the  sum  of  #(7/3',  yAy',  a/fa', 

Let  the  normals  at  A  and  C  meet  in 

if  ND  be  perpendicular  to  ay  ; 

.-.  OLB-yB=aD-yD'j    / 

which  proves  the  proposition. 
XV. 

1.  In  an  arc  AB  of  continuous  curvature  n  points  P,,  P2,  .  . 
are  taken  so  that  the  polygon  AP^P2.  .B  has  a  maximum  area; 
prove  that,  when  the  arc  AB  is  indefinitely  diminished,  the  arcs 
APV  P,P2,  .  .  are  all  equal. 

2.  Find  the   greatest  rectangle  which  can  be   inscribed  in  a 
triangle,  one  side  of  which  is  on  a  side  of  the  triangle. 

3.  Prove  that  the  diagonals  of  the  greatest  rectangle  which  can 
be  inscribed  in  an  ellipse,  having  its  sides  parallel  to  the  axes,  are 
the  equi-conjugate  diameters. 

4.  Prove  that  the  parallelograms  of  smallest  area  which  can  be 
described  about  a  given  ellipse  are  those  which  have  their  sides 
parallel  to  conjugate  diameters. 

5.  A  point   0  is  taken  on  the   major  axis  A  A'  of  an  ellipse 
produced,  and  a  line  is  drawn  through  0  cutting  the  ellipse  in  the 

points  P  and  P  '.     Prove  that  when  the  area  of  the  quadrilateral 
APPA  is  a  maximum  the  projection  of  PP'  upon  AA'  is  equal  to 
the  semi-axis-major. 
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6.  Prove  that  the  quadrilateral  of  maximum  area  that  can  be 
formed  with  four  straight  lines  AB,  BC,  CD,  DA,  of  given  lengths 
is  such  that  a  circle  can  be  described  about  it.     Hence  prove  that 
the  curve  of  given   length   which   on   a   given  chord  encloses  a 
maximum  area  is  an  arc  of  a  circle. 

7.  From  a  point  T  on  the  exterior  of  two  oval  curves  tangents 
TP,  TQ  are  drawn  to  the  inner;  shew  that,  when  the  arc  PQ  is  a 
minimum  or  maximum,  the  radii  of  curvature  at  P  and  Q  are  in 
the  ratio  TP  sec  a  :  TQ  sec/3,  where  a,  /3  are  the   angles  which  TP, 
TQ  respectively  make  with  the  normal  at  T. 

8.  Find  the  ultimate  intersection  of  the  chords  common  to  an 
ellipse  and  two  consecutive  circles  of  curvature,  and  shew  that  when 
the  common  chord  attains  its  maximum  length  for  a  given  ellipse, 
it  cuts  the  ellipse  at  angles  whose  tangents  are  as  1  :  3. 

9  A  triangle  inscribed  in  a  closed  oval  curve  moves  so  that  two 
of  its  sides  cut  off  constant  areas.  Prove  that  when  the  area  cut 
off  by  the  third  side  is  stationary  the  three  lines  formed  by  joining 
each  angular  point  of  the  triangle  to  the  intersection  of  tangents 
at  the  other  two  points  are  concurrent. 

10.  Any  two  normal  chords  of  an  ellipse  at  right  angles  to  each 
other  cut  off  equal  areas  from  the  curve.     Hence  find  the  position 
of  the  normal  chord  which  cuts  off  the  minimum  area. 

11.  An  endless  string  just  reaches  round  the  circumference  of 
an  oval,  and  when  it  is  cut  at  any  point  it  is  unwrapped  until  it 
becomes  a  tangent  at  the  point  of  section ;   shew  that  the  involute 
so  formed  will  have  a  maximum  or  minimum  length  if  the  point 
of  section  be  chosen  so  that  the  length  of  the  oval  shall  be  equal 
to  the  circumference  of  the  circle  of  curvature  at  that  point. 
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DIGRESSION 

ON  THE  PROPERTIES   OF   CERTAIN   CURVES. 

THE  CYCLOID. 

99.  DEF.   If,  in  one  plane,   a  circle  roll  along  a  straight 
line,  any  point  on   its  circumference  will  describe  a  curve  called 
a  Cycloid. 

Let  C,  D  be  the  points  where  the  tracing  point  P  meets  the 
straight  line,  on  which  it  rolls ;  A  the  point  where  it  is  furthest 
from  CD,  AB  being  the  corresponding  diameter  of  the  circle. 

The  rolling  circle  is  called  the  generating  circle,  AB  is  called 
the  axis,  A  the  vertex,  CD  the  base,  and  C,  D  the  cusps. 

100.  Let  EPS  be  the  generating  circle  in  any  position,  then, 
since  the  points  of  the  base   and    circle  come   successively  in 

contact  without  slipping,  CS=  arc  PS,  CB    and  BD  are  each 

half  of  the  circumference  of  the  circle,  and  £S='dYC  HP. 

101.  To  draw  a  tangent  to  a  cycloid. 

Let  the  generating  circle  be  in  the  position  EPS,  then,  con- 
sidering a  circle  as  the  limit  of  a  regular  polygon  of  a  large 

number  of  sides,  it  will  roll  by  turning  about  the  point  of  con- 
tact, which  will  be  at  rest  for  an  instant,  being  an  angular  point 

of  the  polygon ;  therefore  for  an  instant  P  will  move  per- 
pendicular to  SP,  or  in  the  direction  PR  of  the  supplemental 

chord,  which  will  therefore  be  the  tangent  to  the  cycloid  at  P. 
If  AQB  be  the  circle  on  AB  as  diameter,  PQM  an  ordi- 

nate  perpendicular  to  AB,  the  tangent  at  P  will  be  parallel  to 
the  chord  QA. 

102.  To  find  the  length  of  the  arc  of  a  cycloid. 

Let  EPS  be  the  position  of  the  generating  circle  corre- 
sponding to  the  point  P  in  the  cycloid,  PR  being  the  tangent 

at  P. 
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When  the  circle  has  turned  through  any  angle  POp  the 
centre  0  will  have  moved  through  a  distance  equal  to  Pp^ 
and  the  motion  of  the  generating  point  will  be  the  resultant 

C 

of  Pp  due  to  the  rotation,  and  pP  =  Pp  parallel  to  the  base 
due  to  the  translation  of  the  centre  of  the  circle  ;  and  PP 
will  ultimately  coincide  with  PR.  Draw  pn  perpendicular  to 

PR,  then,  since  Pp  =  P'p,  PP'  =  2Pti  =  2  (RP-  Rp]  ultimately. 
Hence  the  arc  of  the  cycloid  measured  from  the  vertex  increases 
twice  as  fast  as  the  chord  of  the  generating  circle,  which  is  a 
tangent  to  the  cycloid,  and  they  vanish  simultaneously,  therefore 
the  arc  of  the  cycloid  is  double  of  the  chord  of  the  generating 
circle,  or  referring  to  the  circle  on  the  axis  AB  as  diameter, 
the  arc  AP  is  double  of  the  corresponding  chord  A  Q> 

103.    To  find  the  relation  between  the  arc  and  abscissa.. 

Let  AM  be  the  abscissa  of  the  point  P,  theu 

AM'.AQr.AQ:  AB-y 

104.  To  shew  that  the  evolute  of  a  given  cycloid  is  an  equal 

cycloid^  and  that  the  radius  of  curvature  of  a  cycloid  is  twice  the 
normal. 

Let  APG  be  half  the  given  cycloid,  AB  the  axis,  A  the 

vertex,  and  BG  the  base.  Produce  AB  to  C",  making  BO'  equal 
to  AB,  and  complete  the  rectangle  BJB'C',  and  let  the  semi- 
cycloid  C'P'C  be  generated  by  a  circle,  whose  diameter  is  equal 
to  that  of  the  generating  circle  of  the  given  cycloid,  rolling  on 

C'B'  ;  C  being  the  vertex,  CB'  the  axis  of  this  cycloid. 
Let  SPR)  SP'R'  be  two  positions  of  the  respective  gene- 

rating circles,  having  their  diameters  US,  SB'  in  the  same 
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straight    line,  P,   P    being   the   corresponding   points   of  the 

cycloids  5  join  JSP,  PR  and  SP,  PR. 

By  the  mode  of  generation,  arc  SP=SC,  and  arc  SPR=BC', 

.-.  arc  PR  =  BS  =  C'R  =  arcPTZ' ; 

.-.  LP8R  =  LP8R\  and  PSP'  is  a  straight  line. 

Also,   arcP/S^arcPS;  .-.  chd.P'/Sf=chd.P/Sf; 

/.  P'/fiP=2P'£=P'Cthe  cycloidal  arc; 

also  P'£P  touches  the  cycloid  C'PC&t  P'; 

therefore,  a  string  fixed  at  <7',  and  wrapped  over  the  arc  of 
the  semicycloid,  will,  when  unwrapped,  have  its  extremity  in 

the  arc  of  the  given  cycloid ;  hence,  the  evolute  of  a  semi- 
cycloid  is  an  equal  semicycloid,  and  the  radius  of  curvature  at 
P  is  2PS  or  twice  the  normal.  If  another  equal  semicycloid  be 

described  by  the  circle  rolling  on  B'  C'  produced,  the  extremity 
of  the  string  wrapped  on  this  curve  will  trace  out  the  remainder 
of  the  given  cycloid. 

Thus  a  pendulum  may  be   made   to   oscillate  in  a  given 

cycloid. 

105.    To  find  the  area  of  the  cycloid. 

Let  P,  P  be  two  points  very  near  each  other  in  a  cycloid, 
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$,  Q  corresponding  points  in  the  generating  circle,  p,  p'  in  the 
evolute,  ft,  R  the  intersections  of  the  base  with  normals  Pp, 

\  T,  S  the  intersections  of  BQ'  and  Fp'  with  PQ.  Then 
pR  =  PR  =  BQ,  and  &p'PS  =  k&p'RR  ultimately  =4A  BQT- 
therefore  trapezium  PRR'S=3&BQT  ultimately,  and  the  same 
being  true  for  all  the  inscribed  triangles  and  trapeziums,  whose 
sums  are  ultimately  the  areas  of  the  semicircle  and  semicycloid, 
therefore,  by  Cor.,  Lemma  IV.,  the  area  of  the  cycloid  is  three 
times  that  of  the  generating  circle. 

106.  The  following  method  of  finding  the  area  of  a  cycloid 
is  independent  of  the  properties  of  the  evolute. 

In  the  figure  of  Art.  1  04  let  P'  be  any  point  in  the  cycloid 
CP'C',  P'S  the  chord  of  the  generating  circle  which  touches 
the  cycloid,  and  let  Q  be  a  point  in  the  cycloid  near  P\  then 

the  arc  PQ  ultimately  coincides  with  P'S.  Let  Q'N',  Q'N 
be  the  complements  of  the  parallelogram  whose  diagonal  is 

P'S,  and  sides  parallel  and  perpendicular  to  the  base,  these  are 
equal  ultimately ;  therefore,  by  Lemma  IV.,  the  cycloidal  area 

CNP  =  circular  segment  SP'N'. 
The  exterior  portion  CB'BC'is  equal  to  the  area  of  the 

semicircle,  and  the  whole  parallelogram  BOB'  0'  is  the  rectangle 
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under  the  diameter  and  semi-circumference  of  the  generating 
circle,  and  is  equal  to  four  times  the  area  of  the  semicircle; 

therefore  the  cycloidal  area  CC'B'  is  three  times  the  area  of  the semicircle. 

107.   All  cycloids  are  similar. 

Let  two  cycloids  APC,  Ape  be  placed  so  that  their  vertices 
are  the  same,  and  their  axes  coincident  in  direction,  and  describe 

circles  on  the  axes  AB,  Ab  as  diameters.  Draw  AqQ  cutting 
the  circles  in  q,  Q.  Then,  since  the  segments  Aq,  AQ  are 
similar,  zrcAq  :  arcAQ  ::  Aq  :  AQ]  and,  if  mqp,  MQP  be 

ordinates  to  the  cycloids,  arcs  Aq,  AQ  =  qp,  QP  respectively ; 
therefore  qp  :  QP : :  Aq  :  A  Q,  and  ApP  is  a  straight  line. 
Also  Ap  :  AP::  Aq  :  AQ  ::  Ab  :  AB,  a  constant  ratio;  hence 
the  cycloids  satisfy  the  condition  of  similarity,  and  in  this 
position  of  the  cycloids  the  point  A  is  a  centre  of  direct 
similitude. 

108.  To  construct  a  cycloid  which  shall  have  its  vertex  at  a 

given  point,  its  base  parallel  to  a  given  straight  line,  and  which 
shall  pass  through  a  given  point. 

Let  A  be  the  given  vertex,  AB  perpendicular  to  the  given 
line,  P  the  given  point.  In  AB  take  any  point  b,  and  with 
the  generating  circle,  whose  diameter  is  Ab,  describe  a  cycloid 
Ape,  join  AP  intersecting  this  cycloid  in  p. 

Take  AB  a  fourth  proportional  to  Ap,  AP,  and  Ab ;  then 
AB  will  be  the  diameter  of  the  generating  circle  of  the  required 
cycloid;  for,  since  Ap  :  AP::  Ab  :  AB,  and  all  cycloids  are 
similar,  P  is  a  point  in  the  cycloid  whose  axis  is  AB. 
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109.  A  particle  slides  down  the  smooth  arc  of  a  cycloid, 
whose  axis  is  vertical,  and  vertex  downwards,  to  find  the  time 
of  an  oscillation. 

Let  AB  be  the  vertical  axis  of  the  cycloidal  arc  APL,  L  the 

point  from  -which  the  particle  begins  to  move,  PQ  a  small  arc  of 

its  path,  LR,  PM,  QN  perpendicular  to  AB]  and  take  Al,  Ap, 
Aq  on  the  tangent  at  A  respectively  equal  to  AL,  AP,  A  Q. 

Suppose  a  point  to  move  from  I  to  A  in  the  same  time  as 
the  particle  moves  on  the  cycloid  from  L  to  A,  their  velocities 
being  always  equal  at  equal  distances  from  A. 

Let  v  be  the  velocity  at  P  or  p,  and  T  the  time  of  falling 

from  B  to  A,  so  that  vi  =  <2gEM  and  2AB  =  gT*;  therefore 
=  4.AB.AR  -  4AB.AM=  AU-  AP2,  Art.  103, 

Describe  a  circle  with  centre  A  and  radius  Al,  and  draw  the 

ordinates  pt,  qu,  then  AF  —  Apz=pt\  &u<lpt  =  vT;  and  if  T  be 
the  time  from  P  to  Q,  PQ  =pq  —  VT  ultimately,  hence 

tu  :  Al  :  :  pq  :  pt  :  :  r  :  T; 

therefore,  if  a  point  move  in  the  circle  from  I  with  uniform 
Al 

velocity   -^  ,  the  point  moving  in   IA  will  always  be  in  the 
foot  of  the  ordinate  and  the  motion  in  IA  or  LA  will  therefore 

be  a  simple  harmonic  motion,  by  (5)  page  78. 
The  time  from  L  to  A  is  the  time  of  describing  the  quadrant 

Al  /2AB 

\  TrAl  with  velocity  -^F  ,  =^irT=^-jT  .  /  ---  . 
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The  length  of  the  string  which,  by  the  contrivance  of  Art.  104, 

makes  a  particle  oscillate  in  this  cycloid  is  2AB=l  suppose; 
therefore  the  time  of  the  oscillation  of  a  cycloidal  pendulum 

of  length  ?from  rest  to  rest  =  IT  .  /-  . 

NOTE.   The  time  from  L  to  P  is  .  /  -  x  cos"1  -?-=  * 

V     9  AL 
110.  We  can  shew  that  the  motion  on  the  cycloid  is  a 

simple  harmonic  motion  by  the  first  definition,  (5)  page  78  ;  for, 
referring  to  the  figure,  page  115,  since  the  tangent  at  P  is 
parallel  to  AQ,  the  acceleration  along  the  curve  at  P  is 

AO          AP 
g.         =.9-      -   j  which  varies  as  AP,  and,  by  (4)  page  77,  the 

time  from  L  to  A  is  obtained. 

111.  To  find  the  time  of  a  very  small  oscillation  of  a  simple 
pendulum  suspended  from  a  point. 

A  simple  pendulum  is  an  imaginary  pendulum  consisting  of 
a  heavy  particle  called  the  bob,  suspended  from  a  point  by  means 
of  a  rod  or  string  without  weight. 

In  this  case  the  pendulum  describes  the  small  arc  of  a  circle 
which  may  be  considered  the  same  as  a  cycloidal  arc,  the  axis 
of  which  is  half  the  length  I  of  the  pendulum,  therefore  the 

Na'
 

time  of  oscillation  from  rest  to  rest  is  TT 

112.  To  count  tlie  number  of  oscillations  made  by  a  given 

pendulum  in  any  long  time. 

In  consequence  of  the  liability  to  error  in  counting  a  very 

great  number  of  oscillations,  since  in  the  case  of  a  seconds  pen- 
dulum there  would  be  3600  oscillations  for  each  hour,  it  becomes 

necessary  to  adopt  some  contrivance  for  diminishing  the  labour. 
For  this  purpose  the  pendulum  is  made  to  oscillate  nearly  in  the 
same  time  as  that  of  a  clock;  it  is  then  placed  in  front  of 
that  of  the  clock,  so  that  when  they  are  simultaneously  near 
their  lowest  positions  the  bob  of  the  pendulum  and  a  cross 
marked  on  the  pendulum  of  the  clock  may  be  in  the  field  of 
viu\v  of  a  fixed  telescope. 
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Suppose  that  after  n  oscillations  of  the  given  pendulum 
they  are  again  in  coincidence  close  to  the  same  position;  if 
there  be  m  such  coincidences  in  the  whole  time  of  observation, 
the  number  of  oscillations  in  that  time  will  be  mn\  thus  the 
only  labour  has  been  to  count  the  n  oscillations,  and  to  estimate 
the  number  of  the  coincidences  before  the  last  one  observed. 

113.  To  'measure  the  accelerating  effect  of  gravity  by  means 
of  a  pendulum. 

Let  g  be  the  measure  of  this  effect  or  the  velocity  generated 
by  the  force  of  gravity  in  a  second. 

Let  I  be  the  length  of  a  simple  pendulum  which  makes  n 

oscillations  in  m  hours,  then  -      —  =  number  of  seconds  in  one 

oscillation  =  TT  .  /-  :  therefore  a  —  j-~       —  =  .  in  whatever  unit 
Y  g  '  (3600)  m  ' 

of  length  Z  is  estimated. 
This  would  be  a  very  exact  method  of  determining  g,  if  we 

could  form  a  simple  pendulum  ;  but  it  is  impossible  to  do  this, 
and  it  is  only  by  calculations  of  a  nature  too  difficult  to  be 
explained  here  that  it  can  be  shewn  how  to  deduce  the  length  of 
the  simple  pendulum,  which  would  oscillate  in  the  same  time  as 
a  pendulum  of  a  more  complicated  structure. 

114.  The  seconds  pendulum  at  any  place  is  the  simple  pen- 
dulum which  at  the  mean  level  of  the  sea  at  that  place  would 

oscillate  in  one  second. 

If  L  be  the  length  of  the  seconds  pendulum,  I  the  length 

of  a  pendulum  making  n  oscillations  in  m  hours, 

L  n'2l 
7T 

L= 

wr™>- 

115.  To  determine  the  height  of  a  mountain  "by  means  of  a 
seconds  pendulum,  the  force  of  gravity  at  any  point  being  supposed 
to  vary  inversely  as  the  square  of  the  distance  from  the  centre  of 
the  earth. 

Let  L  be  the  length  of  a  seconds  pendulum,  x  the  height 
,  of  the  mountain  above  the  mean  level  of  the  sea,  a  the  radius 

R 



122  NEWTON. 

of  the  earth,  all  expressed  in  feet;  and  let  n  be  the  number  of 

seconds  lost  in  24  hours  by  the  pendulum  at  the  top  of  the 
mountain. 

If  g  be  the  measure  of  the  accelerating  effect  of  gravity  at 

the  mean  level  of  the  sea,  then  ,  ̂  —  --„  will  be  its  value  at 

the  top  of  the  mountain,  and  the  time  of  oscillation  at  the  top 

/(L  /a  +  x\z)  a  +  x  /L will  be  TT  .  /  ̂  -  -    V  ,  or  --  seconds,  since  TT  A  /  —  =  1  ; 
V  \g\    a    )y  a  V  9 

hence,    writing   N   for    24x60x60,    (N-n)-—  =JV,    and 

x          N  n        n2  a          a 
l+-=-N—  =  l  +  -  +  _...;    /,  x  =  ftn+-^n,  nearly,  but 
a  =  4000  x  1760  x  3  and  ̂ =24  x  60  x  60,  therefore  the  height 

of  the  mountain  will  be  244'4w  +  '0027wa  ;  thus,  if  n  ==  10,  the 

height  will  be  2444'7  feet. 
NOTE.  The  attraction  of  the  mountain  would  make  a  sensible 

variation  from  the  law  of  the  inverse  square,  this  law  being  true 

only  if  the  earth  consisted  of  homogeneous  spherical  strata. 

116.  To  find  the,  number  of  seconds  lost  in  a  day,  in  con- 
sequence of  a  slight  error  in  the  length  of  the  seconds  pendulum  / 

and  conversely. 

Let  N  be  the  number  of  seconds  in  a  day,  L  the  length  of 

the  seconds  pendulum,  L  +  \  that  of  the  incorrect  pendulum, 
N—n  the  number  of  its  oscillations  in  a  day; 

ff /L  X      2n 

7r  v  ̂   •'•  z  =  N  nearl7' 
THE  EPICYCLOID  AND  HYPOCYCLOID. 

117.  DEF.  The  curve  traced  out  by  a  point  on  the  cir- 
cumference of  a  circle,  which  rolls  upon  that  of  a  fixed  circle, 

is  called  an  Epicycloid  if  the  concavities  of  the  two  circles  be 

in  opposite  directions,  a  Hypocycloid  if  the  concavities  be  in 
the  same  direction. 
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118.  To  skew  that  the  evolate  of  an  epicycloid  is  a  similar 

epicycloid. 
Let  FA  be  the  fixed  circle,  APE  the  rolling  circle  in  any 

position,  P  the  generating  point,  CAE  a  line  drawn  through 

the  point  of  contact,  meeting  the  rolling  circle  in  A,  E;  and 
let  GfPF  be  the  epicycloid,  of  which  PA  and  PE  will  be  a 
normal  and  tangent. 

Draw  the  chord  EQ  parallel  to  PA  and  join  CQ  meeting 
PA  produced  in  0.  Since  EQ  is  parallel  to  A  0, 

CO:  CQ::  CA  :  CE; 

therefore  0  and  Q  describe  similar  figures.  But  §,  being  the 
other  extremity  of  the  diameter  through  P,  will  describe  an 
epicycloid  similar  and  equal  to  GPF,  being  at  its  cusp  when 
P  is  at  G  the  greatest  distance  from  C. 

Draw  Oa  parallel  to  QA  and  therefore  perpendicular  to  PO, 
meeting  CA  in  a,  then  0  generates  an  epicycloid  fF  by  the 
rolling  of  a  circle  AOa,  whose  diameter  is  Aa,  on  a  fixed 
circle  of  radius  Ca. 
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Also  PO  the  normal  to  GF  is  perpendicular  to  a  0  and  is 

therefore  a  tangent  to/F,  hence  fF  is  the  evolute  of  the  given 
epicycloid  and  is  a  similar  epicycloid. 

Let  a,  b  be  the  radii  of  the  fixed  and  rolling  circles  for  the 

given  epicycloid,  then 

Aa  :  CA::  OQ  :  CQ:i  AE :  CE  : :  25  :  a +  25; 

therefore  Aa  :  AE : :  a  :  a  +  25,   and  if  a  —  oo  ,  Aa  =  AE,  and 
w4.F,  a/  become  straight  lines,  whence  the  evolute  of  a  cycloid 
is  an  equal  cycloid. 

119.  Since    AO  :  PA  : :  A  0  :  EQ  : :  CA  :  CE,  therefore 

PO  :  PA  : :  2  (a  -f  5)  :  a  +  25,   which   gives   PO  the  radius   of 
curvature  at  P  of  the  given   epicycloid;    this   will  be   found 

independently  of  the  evolute  in  Art.  121  below. 

120.  To  find  the  length  of  any  arc  of  the  epicycloid. 

By  the  properties  of  the  evolute,  see  the  last  figure,  the 

arc  OF  of  the  evolute  =OP=2AP.  -Ll^,  and  the  arc  of  the 

epicycloid  generated  by  <?,  measured  from  Q  to  the  highest 

point,  =  OFa-^-=2AP.  ̂ ;  therefore  the  arc  GP  from 

the  highest  point  G  of  the  epicycloid  GPF=  2EP.  -    - . 

121.  To  find  the  radius   of  curvature  at  any  point  of  an 

epicycloid. 
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Let  AB,  BC  be  consecutive  sides  of  a  fixed  regular  polygon 
of  m  sides,  AB,  Be  sides  of  another  regular  polygon  of  n  sidea 
equal  to  those  of  the  former,  on  the  outside  of  which  it  rolls, 
in  a  position  in  which  two  sides  are  coincident. 

Let  P  be  any  angular  point  of  the  rolling  polygon  ;  P  will 
generate  a  figure  composed  of  a  series  of  circular  arcs  such 

as  PP',  P'  being  the  position  of  P  when  Be  coincides  with  BG. 
Produce  PA,  P'B  to  meet  in  0. 

Then  t.APB=-,  and  LPBP'  =  LcBC=  —  -f  —  ; n  m        n 

-  -f  - 
m      nj  \m      n 

When  the  number  of  sides  is  indefinitely  increased,  the 
polygons  ultimately  become  circles,  the  curve  traced  out  by  P 
becomes  an  epicycloid,  and  PO  the  radius  of  curvature  at  P. 

If  a,  b  be  the  radii  of  the  fixed  and  rolling  circles  infi.AB—  2?ra 

and  n.AB  —  ̂ irb,  ultimately  ;  therefore  m  :  n  :  :  a  :  I  ; 

/.  POiPA::  2/'i  +  ->):-  +  -::2(a  +  Z>)  :a  +  2&: \m      nj    m      n 

therefore  the  radius  of  curvature  is  %PA  .  -  T  ,  where  PA 

a  +  Vb  ' 
is  the  part  of  the  normal  intercepted  between  the  generating 
point  and  the  point  of  contact. 

If  a  =  co  ,  or  the  fixed  circle  become  a  straight  line,  the 
epicycloid  will  become  a  cycloid,  and  the  radius  of  curvature 
will  be  twice  the  normal,  as  in  Art.  104. 

122.    To  find  the  area  of  an  epicycloid. 

In  the  last  figure,  area  APP'B=  &PAB+  sector  PBP'  ;  now 

sector  PBP'  =  ±PB\  27r(-+-}  and    LPAB  =  \PB>  sin-  ; 
\m      n)  n  ' 

.-.  area  APP'B=  &PAB    l  +  ultimately  ; 

hence,  by  Lemma  IV.  Cor.,  the  area  of  the  segment  of  the 
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epicycloid  included  between  two  normals  anrl  the  fixed  circle 

is  f  3  -f-  — J  x  the  corresponding  segment  of  the  rolling  circle. 

Compare  Art.  105. 

123.  The  corresponding  properties  of  the  hypocycloid  may 
be  proved  in  a  similar  manner;   and  the  results  obtained  will 
be  the  same  as  for  the  epicycloid,  if  in   the   latter  the   sign 
of  b  be  changed. 

Thus,  if  the  diameter  of  the  fixed  be  double  that  of  the  rolling 
circle,  the  li/pocycloid  will  become  a  straight  line,  which  agrees 

with  the  result  of  Art.  121,  since  a  +  25  =  0,  and  therefore  the 
radius  of  curvature  at  every  point  will  be  infinite. 

THE  EQUIANGULAR   SPIRAL. 

124.  DEF.    The  equiangular  spiral  is  a  curve   which  cuts 
all  the  radii  drawn  from  a  fixed  point  at  a  constant  angle. 

125.  If  a  series  of  radii  SA,  SB,  SC,  ...  be  drawn  inclined 

at  equal  angles,  and  AB,  BC,  CD,  ...  make  equal  angles  SAB, 
SBC,  ...   with  these   radii  respectively,   the   curvilinear    limit 

of  the  polygon  ABCD  ...,  when  the  equal  angles  ASB, 
B8C,  ...  are  indefinitely  diminished,  will  be  an  equiangular 

spiral. 

126.    To  find  the  length  of  an  arc  of  an  equiangular  spiral 
contained  between  two  radii. 

Let  a  be  the  constant  angle  SAB,  and  let  SL  be  the  nth 
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radius  from  SA  ;  then,  since  the  triangles  ASB,  BSC,  ...  are 
similar,  SA  :  SB::  SB:  SO.... 

Let  SB=\.SA,  then  BC=\.AB,  CD=V.AB...FL=\n-\AB; 

.:  AB+BC+...+  FL:AB::  1  +  X+...+  V1:  1  ::  l-\w:  l-\ 

::  SA-\*.8A  :  SA-SB::  SA-SL:  SA-  SB, 

but  AB  cosa  =  8A  -  SB  cosASB  =  SA  -  SB  ultimately,  and 
AB  +  BC+...  is  ultimately  the  arc  of  the  spiral;  therefore 

arc^Z  =  (SA  -  8L)  seca. 

127.    To  find  the  area  of  an  equiangular  spiral  bounded  by 
two  radii. 

Employing  the  same  construction  as  above, 

&A8B+&B8C  +  &CSD+...  :  &ASB::  1  +\2  ...+  V""2  :  1 

::  l-Vn:  1-X'2::  SA2  -  SU  :  8A*  -  8B*, 

but  SB*  =  8A*-  2SA.AB  cosa  +AB*  and  &ASB=\  SA.AB  sina  ; 

/.  8  A*  -SB*  =  ±AASBy  cot  a,  ultimately  ; 
/.  area  ASL  =      ̂ "  -  SU  tana. 

128.    To  find  the  radius  and  chord  of  curvature  through  the 

pole  at  any  point  of  an  equiangular  spiral. 

Let  SPj  SQ  be  radii  drawn  to  two  points  P  and  §,  near  to 

one  another,  let  PB,  QR,  tangents  to  the  spiral  at  P  and  <), 
intersect  in  R,  and  let  the  normals  P0>  QO  intersect  in  0\ 
join  OR,  SR. 
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Then,  since  angles  SQR,  SPR  are  equal  to  two  right  angles, 
and  each  of  the  angles  OQR,  OPR  is  a  right  angle,  the  circle 
which  passes  through  P,  R,  and  Q  will  also  pass  through  S 
and  (?,  and  OR  will  be  its  diameter ;  therefore  L  OSR  is  a 
right  angle.  Hence,  proceeding  to  the  limit,  0  is  the  centre 
of  the  circle  of  curvature  at  P,  and  OSP  is  a  right  angle. 

Therefore  if  a  be  the  angle  of  the  spiral,  OP=  SP  coseca  will 
be  the  radius  of  curvature,  and  2SP  the  chord  of  curvature 
through  the  pole. 

129.  The  following  is  an  illustration  of  Art.  86. 
If  PV  be  the  chord  of  curvature  through  $, 

8Y'-8Y:  SP'-SP::2SY:P7; 

but  in  the  equiangular  spiral  87  :  SY'  ::  SP:  SP' ; 

.-.  8Y'  -  SY :  SP'  -  SP : :  SY  :  SP]  whence  PF=  2SP. 

THE   CATENARY. 

130.  DEF.   The  Catenary  is  the  curve  in  which  a  uniform 

and  perfectly  flexible  string,  of  which  the  extremities  are  sus- 
pended at  two  points,  would  hang  under  the  action  of  gravity, 

supposed  to  be  a  constant  force  acting  in  parallel  lines. 
The  directrix  is  a  horizontal  straight  line  whose  depth  below 

the  lowest  point  is  equal  to  the  length  of  string  whose  weight  is 
equal  to  the  tension  at  the  lowest  point. 

The  axis  is  the  vertical  through  the  lowest  point 

131.  The  tension  at  any  point  of  the  catenary  is  equal  to  the 
weight  of  the  string  which,  if  suspended  from  that  point,  would 
extend  to  the  directrix. 

Let  A  be  the  lowest  point  of  a  uniform  and  perfectly  flexible 
string  hanging  from  two  points  under  the  action  of  gravity, 
P  any  other  point,  A  0  the  length  of  string  whose  weight  is 
equal  to  the  tension  of  the  string  at  A.  Take  a  point  B  in  OA, 
and  let  OJ/,  BC  drawn  horizontally  meet  a  vertical  PM  in 
M  and  C. 

If  a  string  pass  round  smooth  pegs  at  APCB,  it  is  evident 
that  tlicre  will  be  a  position  of  equilibrium  whatever  be  the 
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length  of  the  string,  or  the  position  of  BG,  and  for  some  length 
and  some  position  of  BG  the  tangent  at  A  will  be  horizontal. 

T     O 

Also,  since  BDG  will  hang  symmetrically,  the  tensions  of 
the  string  at  B  and  C  will  be  equal,  and  BDG  may  be  removed 
and  replaced  by  equal  lengths  BO,  CM  of  the  string,  without 
disturbing  the  equilibrium  of  AP,  therefore  the  tension  of  the 
catenary  at  P  is  equal  to  the  weight  of  a  string  of  length  PM. 

132.  The  proposition  of  the  preceding  article  may  be  proved 

by  considering  the  catenary  as  the  limit  of  the  polygon  formed 
by  a  series  of  equal  rods  of  the  same  substance  jointed  freely 
at  the  extremities  and  suspended  from  two  fixed  points,  when 

the  length  of  the  rods  is  indefinitely  diminished. 

The  equilibrium  will  be  undisturbed  if  each  rod  be  replaced 
by  two  weights  at  the  extremities,  each  equal  to  half  that  of 
the  rod,  connected  by  a  rod  without  weight. 

Let  AB,  BG  be  two   consecutive   positions    of  the   rods, 
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weights  equal  to  those  of  the  rods  being  placed  at  A,  B,  C;  let 
AM  be  vertical  and  BM  horizontal,  and  produce  CB  to  meet 
AM  in  D;  draw  DN  perpendicular  to  AB. 

The  forces  which  keep  B  in  equilibrium  act  in  the  directions 
of  the  sides  of  the  triangle  ABD,  and  are  proportional  to  them. 

Therefore  the  difference  of  the  tensions  of  AB  and  BC  is 

to  the  weight  of  the  rod  AB  as  AB-  BD  :  AD,  that  is,  ulti- 
mately, as  AN:  AD  or  AM:  AB;  hence  the  difference  of  the 

tensions  is  the  weight  of  a  rod  of  length  AM. 

Therefore,  proceeding  to  the  limit,  the  difference  of  tensions 
at  any  two  points  of  the  catenary  is  equal  to  the  weight  of 
string,  which  is  equal  in  length  to  the  vertical  depth  of  one 

point  below  the  other,  whence  the  truth  of  the  proposition. 

133.  P  is  a  point  in  a  catenary,  PM  perpendicular  to  the 
directrix,  PT  a  tangent  at  P,  MU  perpendicular  to  PT  ;    to 
shew  that  PU  is  equal  to  the  arc  measured  from  the  lowest  point , 
and  that  MU  is  constant. 

Let  PT,  fig.  for  Art.  131,  meet  the  directrix  OM  in  T,  and 
let  A  0  be  the  axis,  then  since  the  arc  AP  supposed  to  become 

rigid  is  in  equilibrium  under  the  action  of  the  tensions  at 
A  and  P  and  the  weight,  and  these  forces  are  in  the  directions, 
of  the  sides  of  the  triangle  TPM, 

.-.  AP:AO:PM::PM:MT:  TP ::  PU :  MU :  PM> 

by  similar  triangles  TPM,  MPU', 
.*.  PU=AP  and  MU=AO. 

134.  To  draw  a  tangent  to  a  catenary  at  any  point. 

With  centre  M  and  radius  equal  to  A  0  describe  a  circle,  and 

draw  PU  touching  this  circle  in  U',  then,  since  MU,  which  is 
perpendicular  to  PU,  is  equal  to  A  0,  PU  will  be  the  tangent 
at  P. 

135.  If  a  rectangular  hyperbola  be  described,  having  centre 

0  and  semi-transverse  axis   OA,  the  ordinate  of  the  hyperbola 
will  be  equal  to  the  arc  of  the  catenary* 

For,  let  AE  be  the  hyperbola,  therefore 

EX*  -  ON2  -  OA*  =  PM*  -  UM*  =  PU* ;   .%  EN=  PU=  AP. 
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136.    To  find  the  radius  and  vertical  chord  of  curvature  of 
a  catenary. 

Let  PQ  be  a  small  arc  of  a  catenary,  RSPT,  QS  tangents  at 
P  and  Q,  PM,  QN  ordinates,  TOM  the  directrix. 

Since  QES  is  a  triangle  of  the  forces  acting  upon  PQ, 

tension  at  P  :  weight  of  PQ  : :  RS  :  QR, 

.'.  PM :PQ:'.RS:QR::  \PQ  :  QR,  ultimately ; 
therefore  2PM  is  the  vertical  chord  of  curvature,  and  PG,  the 
part  of  the  normal  intercepted  between  the  point  P  and  the 
directrix  is  equal  to  the  radius  of  curvature  at  P. 

Also  PG  :  PM : :  PT :  TM : :  tension  at  P  :  tension  at  A 

: :  PM :  A  0,  therefore  the  radius  of  curvature  is  a  third  pro- 
portional to  A  0  and  PM. 

THE  LEMNISCATE. 

137.  DEF.  The  Lemniscate  is  the  locus  of  the  feet  of  the 

perpendiculars  drawn  from  the  centre  of  a  rectangular  hyperbola 

upon  the  tangent. 

138.  To  find  the  inclination  to  the  tangent  at  any  point  of 
the  radius  from  the  centre  of  the  lemniscate. 

Let  OF  be  perpendicular  on  PT  the  tangent  at  the  point  P 
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in  the  Lyperbola,  then  CY. CP=  PF. CD  =  A C\  since  AC=BC 
and  CP=-  CD  in  the  rectangular  hyperbola. 

R 

Draw  the  ordinate  PM,  then  CT.CM=AC*  = 
A  CY:  CT::  CM:  OP; 

and  CMP,  OFT7  are  right  angles;  therefore  L  PCM=  L  TCY. 
Draw  CZ  perpendicular  on  the  tangent  at  Fto  the  lemniscate; 

then  ZCY  and  YCP  are  similar  triangles,  see  page  55  ; 

.-.  L  ZYC  =  L  CPY=  complement  of  twice  L  YCA. 

139.    To  find  the  perpendicular  on  the  tangent  at  any  point 

of  the  lemniscate. 

CZ.CP=CYZ,  and  CY.CP=AC*; 

/.  CZ:  CY::  CY*  :  AC2; 

140.    To  find  the  chord  of  curvature  through  the  centre^  and  the 
radius  of  curvature  at  any  point  of  the  lemniscate. 

Let  YV  be  the  chord  of  curvature  ; 

/.   YV:  2CZ:  :  CY-  CY'  :  CZ-CZ',  ultimately,  Art.  86, 
and 

/.  CY-CY':  CZ-CZ'::AC*:3CY*::  CY-.3CZ; 

/.  YV=%CY,  or  the  chord  of  curvature  through  the  centre 
ia  two-thirds  of  the  radius  vector. 
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Also,  the  radius  of  curvature  :  J  YV 

::CY:CZ::  AC*  :  CY2::CP:  CY, 
hence  the  radius   of  curvature  is  %CP,  or  J  of  the  radius  at 
the  corresponding  point  of  the  hyperbola. 

141.    Poles  of  the  lemniscate. 

Let  &,  H  be  the  foci  of  the  hyperbola,  s,  h  the  middle  points 
of  OS  and  CH]  s,  h  are  called  the  poles  of  the  lemniscate. 

Draw  SY'y  HZ  perpendicular  to  the  tangent  to  the  hyper- 
bola at  P,  and  let  8Y1  meet  the  auxiliary  circle  again  in  Zf, 

and  join  sF',  sZ1,  sF,  AF,  and  JiZ. 
Since  Cs  =  sS,  the  perpendicular  from  5  on  FF'  bisects  it  ; 

therefore  s  Y'  =  s  F,  similarly  h  F=  hZ=  sZ'. 

Now    8C.88  =  $SC*  =  AC9  =  SY'.8Z'; 

therefore  a  circle  can  be  drawn  circumscribing  CsY'Z',  there- 
fore LY'sZ'=.LY'CZ';  also  A  Y'sZ'  =  ̂ ^  Y'CZ',  since  the 

altitude  of  Y'CZ'  is  double  of  that  of  Y'sZ'; 

therefore  s  F.  h  F=  J  CAZ,  which  is  the  property  of  the  poles  of 
the  lemniscate. 

For  this  proof  I  am  indebted  to  Prof.  Tait. 

XYI. 

1.  If  a  line  move  parallel  to  the  base  of  a  cycloid,  find  the 
limit  of  the  ratio  of  the  segment  of  the  cycloid  to  the  corresponding 
segment  of  the  generating  circle,  when  the  line  becomes  indefinitely 
near  to  the  tangent  at  the  vertex. 
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2.  A  balloon  was  found  to  be  sailing  steadily  before  the  wind 
at  an  invariable  elevation  above  the  earth.     A  seconds  pendulum 
suspended  to  the  car   was  observed  to  make  2997  oscillations  in 
50  minutes ;  shew  that  the  height  of  the  balloon  was  4  miles  and 
7  yards  nearly,  the  radius  of  the  earth  being  4000  miles. 

3.  If  a  particle  be  made  to  oscillate  in  a  cycloid  on  a  smooth 

inclined  plane,   whose  inclination  to  the  horizon  is  30°,  and  the 
base  of  the  cycloid  be  horizontal,  find  the  radius  of  the  generating 
circle  in  order  that  the  particle  may  perform  a  complete  oscillation 
in  n  seconds. % 

4.  If  P  be  a  point  in  a  cycloid,  and  0  the  corresponding  position 
of  the  centre  of  the  generating  circle,  shew  that  PO  will  touch 
another  cycloid  of  half  the  dimensions. 

5.  Shew  that  the  limit  of  the  whole  length  of  an  epicycloid 
or    hypocycloid,    corresponding   to   a   complete   revolution   of  the 
generating  round  the   fixed   circle,    is  eight  times  the  radius  of 
the  latter,  when  that  of  the  former  is  indefinitely  diminished. 

6.  Prove  that  the  epicycloid  of  one  cusp  is  the  pedal  of  a  circle 
referred  to  a  point  in  its  circumference. 

7.  Shew  that  the  evolute  of  an  equiangular  spiral  is  a  similar 
spiral,  and  that  the  extremities  of  the  diameters  of  curvature  lie 
in  a  similar  spiral. 

8.  An  equiangular  spiral  rolls  along  a  straight  line,  shew  that 
its  pole  describes  a  straight  line. 

9.  Prove  that,  if  a  catenary  roll  on  a  fixed  straight  line,  its 
directrix  will  always  pass  through  a  fixed  point. 

10.  If  S  T  be  drawn  perpendicular  to  the  tangent  to  a  lemniscate 
at  a  point  P,  and  SA  be  the  greatest  value  of  SP,  prove  that 
SP*=SA\SY;  S  being  the  centre. 

XVII. 

1.  From  the  consideration  that  the  diameter  of  curvature  is  the 

limit  of  the  third  proportional  to  the  subtense  perpendicular  to  the 
tangent  and  the  arc,  prove  that  the  radius  of  curvature  of  a  cycloid 
at  any  point  is  twice  the  normal  cut  off  by  the  base. 

2.  On  the  normal  to  a  cycloid  a  constant  length  is  measured 
both  inwards  and  outwards;   find  the  area  included  between  the 
loci  of  the  points  so  obtained. 
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3.  P,  Q  are  consecutive  points  on  an  epicycloid  of  two  cusps ; 
from  p,  q,  the  corresponding  points  of  contact  of  the  rolling  with 
the  fixed  circle,  pm,  qn  are  drawn  perpendicular  to  the  cusp-line ; 
prove  that  the  elementary  area  PQpq  is  twice  the  elementary  area 
pmnq.     Hence  find  the  area  of  the  epicycloid  and  of  its  e volute. 

4.  Prove  that  the  diameter  through  the  point  of  a  rolling  circle 
which  generates  an  epicycloid   always  touches  another  epicycloid 
generated  by  a  circle  ol  half  the  dimensions. 

5.  A  hypocycloid  of  n  cusps  has  at  any  point  a  tangent  drawn, 
prove  that  the  length  of  the  tangent,  intercepted  between  the  gene- 

rating circle  and  the  j  oint  of  contact,  is  to  the  arc  measured  from 
the  point  to  the  vertex  of  the  branch  in  which  the  point  is  taken, 
as  n  :  2(»-l). 

6.  A  bead  slides  on  a  hypocycloid  being  acted  on  by  a  force 
which  varies  as  the  distance  from  the  centre  of  the  hypocycloid  and 
tending  to  it ;  prove  that  the  time  of  oscillation  will  be  independent 
of  the  arc  of  oscillation. 

7.  If,  along  the  several  normals  to  an  epicycloid,  a  system  of 
particles  move  from  the  curve  under  the  action  of  a  force,  tending 
to  the  centre  of  the  fixed  circle,  and  varying  as  the  distance,  prove 
that  they  will  all  arrive  at  the  fixed  circle  at  the  same  instant. 

8.  A  plane  curve  rolls  along  a  straight  line,   shew  that  the 
radius  of  curvature  of  the  path  of  any  point,  fixed  with  respect  to 

TZ
 

the  curve,  is  —    — : —  ,  r  being  the  distance  of  the  fixed  point  from 
r  -  p  sin  $  ' 

the  point  of  contact,  0  the  angle  between  this  line  and  the  fixed 
line,  and  p  the  radius  of  curvature  of  the  curve  at  the  point  of 
contact. 

9.  In  an  equiangular  spiral,  which  is  its  own  evolute,  the  area 
included  between  the  curve  and  PQ,  the  radius  of  curvature  at  P 

touching  the  evolute  in  Q,  is  ̂ PQ'tana,  where  a  is  the  angle  of 
the  spiral,  and  PQ  is  supposed  not  to  cut  the  curve  between   P 
and  Q. 

10.  Prove,  by  the  method  of  Lemma  IV.,  that  the  area  included 
between  a  catenary,  the  axis,  the  directrix,  and  the  ordinate  at  any 
point  P  is  twice  the  area  of  the  triangle  formed  by  the  axis,  the 
tangent  at  the  vertex,  and  the  straight  line  drawn  perpendicular  to 
the  tangent  at  P  from  the  point  of  intersection  of  the  axis  and 
directrix. 



SECTION  II. 

CENTRIPETAL   FORCES. 

PROP.  I.      THEOREM  I. 

When  a  body  revolves  in  an  orbit,  subject  to  the  action  of 

forces  tending  to  a  fixed  point,  the  areas  which  it  de- 
scribes by  radii  drawn  to  the  fixed  centre  of  force,  are  in 

one  fixed  plane,  and  are  proportional  to  the  times  of 
describing  them. 

Let  the  time  be  divided  into  equal  parts,  and  in  the 
first  interval  let  the  body  describe  the  straight  line 

AB  with  uniform  velocity,  being  acted  on  by  no 
force.  In  the  second  interval  it  would,  if  no  force 
acted,  proceed  to  c  in  AB  produced,  describing  Be 
equal  to  AB ;  so  that  the  equal  areas  ASB,  BSc  de- 

scribed by  radii  AS,  BS,  cS  drawn  to  the  centre  8, 
would  be  completed  in  equal  intervals. 

But,  when  the  body  arrives  at  B,  let   a  centripetal 
force  tending  to  S  act  upon  it  by  a  single  instanta- 
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neous  impulse,  and  cause  the  body  to  deviate  from 
the  direction  Be,  and  to  proceed  in  the  direction  BO. 

Let  cC  be  drawn  parallel  to  BS,  meeting  BO  in  Oj  then, 
at  the  end  of  the  second  interval,  the  body  will  be 
found  at  0,  in  the  same  plane  with  the  triangle 
ASB,  in  which  Be  and  cO  are  drawn.  Join  SO; 
and  the  triangle  SBC,  between  parallels  SB,  Oc, 
will  be  equal  to  the  triangle  SBc,  and  therefore 
also  to  the  triangle  SAB. 

In  like  manner,  if  the  centripetal  force  act  upon  the 
body  successively  at  C,  D,  E,  &c.,  causing  the  body 
to  describe  in  the  successive  intervals  of  time  the 
straight  lines  CD,  DE,  EF,  &c.,  these  will  all  lie 
in  the  same  plane ;  and  the  triangle  SCD  will  be 
equal  to  the  triangle  SBC,  and  SDE  to  SCD,  and 
SEF  to  SDE. 

Therefore  equal  areas  are  described  in  the  same  fixed 
plane  in  equal  intervals ;  and,  componendo,  the 
sums  of  any  number  of  areas  SADS,  SAFS,  are  to 
each  other  as  the  times  of  describing  them. 

Let  now  the  number  of  these  triangles  be  increased, 
and  their  breadth  diminished  indefinitely ;  then  their 
perimeter  ADF  will  be  ultimately  a  curved  line ;  and 
the  instantaneous  forces  will  become  ultimately  a 
centripetal  force,  by  the  action  of  which  the  body  is 
continually  deflected  from  the  tangent  to  this  curve, 
and  which  will  act  continuously ;  and  the  areas 
SADS,  SAFS,  being  always  proportional  to  the  times 
of  describing  them,  will  be  so  in  this  case.  Q.E.D. 

COR.  1 .  The  velocity  of  a  body  attracted  towards  a 
fixed  centre  in  a  non-resisting  medium  is  recipro- 

cally proportional  to  the  perpendicular  dropped 
from  that  centre  upon  the  tangent  to  the  orbit. 

For  the  velocities  at  the  points  A,  B,  C,  D,  E  are  as 
the  bases  AB,  BO,  CD,  DE,  EF  of  equal  triangles, 
and,  since  the  triangles  are  equal,  these  bases  are 
reciprocally  proportional  to  the  perpendiculars  from 
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8  let  fall  upon  them.  [And  the  same  is  true  in  the 
limit,  in  which  case  the  bases  are  in  the  direction 
of  tangents  to  the  curvilinear  limit,  therefore  the 
velocity,  &c.] 

COR.  2.  If  on  chords  AB,  BC  of  two  arcs  described  in 
equal  successive  times  in  a  non-resisting  medium  by 
the  same  body  the  parallelogram  ABCV  be  com- 

pleted, and  the  diagonal  BV  of  this  parallelogram 
be  produced  in  both  directions  in  that  position  which 
it  assumes  ultimately  when  those  arcs  are  diminished 
indefinitely,  it  will  pass  through  the  centre  of  force. 

COR.  3.  If,  onAB,  BC  and  on  DE,  ̂   chords  of  arcs 
described  in  a  non-resisting  medium  in  equal  times, 
the  parallelograms  ABCV,  DEFZ  be  completed, 
the  forces  at  B  and  E  will  be  to  one  another  in  the 
ultimate  ratio  of  the  diagonals  B  V,  EZ,  when  the 
arcs  are  indefinitely  diminished. 

For  the  velocities  of  the  body  represented  by  BC,  EF 
in  the  polygon  are  compounded  of  the  velocities 
represented  by  Be,  BV  and  Ef,  EZ]  and  those  re- 

presented by  BV,  EZ,  which  are  equal  to  cC,  fF,  in 
the  demonstration  of  the  proposition  were  generated 
by  the  impulses  of  the  centripetal  force  at  B  and  E, 
and  are  thus  proportional  to  those  impulses.  [And 
the  same  is  true  in  the  limit,  in  which  case  the  ulti- 

mate ratio  of  the  impulses  at  any  two  points  is  the 
ratio  of  the  continuous  forces  at  those  points]. 

COR.  4.  The  forces  by  which  any  bodies  moving  in 
non-resisting  media  are  deflected  from  rectilinear 
motion  into  curved  orbits,  are  to  one  another  as 
those  sagittae  of  arcs  described  in  equal  times,  which 
converge  to  the  centre  of  force  and  bisect  the  chords, 
when  those  arcs  are  indefinitely  diminished. 

For  the  diagonals  of  the  parallelograms  ABCV,  DEFZ 
bisect  each  other,  and  these  sagittae  are  halves  of  the 
diagonals  BV,  EZ  when  the  arcs  are  indefinitely 
diminished.  [And  the  same  will  be  true  whether 
AL>  C  and  DEFbv  parts  of  the  same  or  of  different 
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orbits  described  by  bodies  of  equal  mass,  if  the  arcs 
be  described  in  equal  times]]. 

COR.  5.  And  therefore  the  accelerating  effects  of  the 
same  forces  are  to  that  of  the  force  of  gravity  as 
those  sagittse  are  to  vertical  sagittse  of  the  parabolic 
arcs  which  projectiles  describe  in  the  same  time. 

COR.  6.  All  the  same  conclusions  are  true  by  the 
Second  Law  of  Motion,  when  the  planes,  in  which 
the  bodies  move  together  with  the  centres  of  force 
which  are  situated  in  those  planes,  are  not  at  rest, 
but  are  moving  uniformly  and  parallel  to  themselves. 

The  statement  of  the  proposition  in  the  original  Latin  is, 

"  Areas,  quas  corpora  in  gyros  acta  radiis  ad  immobile 
centrum  virium  ductis  describunt,  et  in  planis  immo- 

bilibus  consistere,  et  esse  temporibus  proportionales." 

Observations  on  the  Proposition. 

142.  In  all  cases  of  motion  of  bodies  it  is  of  great  importance 
for  the  student  to  distinguish  between  the  forces  themselves 
under  the  action  of  which  the  bodies  may  be  moving,  and  the 
effects  which  these  forces  produce. 

It  is  only  by  an  examination  of  the  motion  of  a  body  that 
we  are  able  to  infer  that  it  is,  or  is  not,  acted  on  by  any  force ; 
if  we  find  that  the  body  is  moving  with  uniform  velocity  in  a 
straight  line,  we  infer  that  it  is,  during  such  motion,  acted  upon 
by  no  force,  or  that  the  forces  which  are  acting  upon  it  are  in 
equilibrium ;  if  we  find  that  there  is  any  change  of  direction  or 
velocity,  gradual  or  abrupt,  we  infer  that  the  body  is  moving 
under  the  action  of  some  force  or  forces;  if  the  change  be 

gradual,  we  infer  that  such  forces  are  finite,  by  which  we  mean 
that  the  forces  require  a  finite  time  to  produce  a  finite  change 
whether  of  direction  or  velocity ;  if,  on  the  contrary,  the  change 

be  abrupt,  we  infer  that  the  forces  are  what  are  called  impulsive, 
that  is,  such  as  produce  a  finite  change  in  an  instant. 

Since  then,  in  order  to  make  any  inference  with  respect  to 

the  forces  supposed  to  act,  a  clear  conception  of  the  motion  of 
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a  body  must  be  first  attained,  it  becomes  necessary  for  the 
student  to  be  able  to  describe  the  motion  of  a  particle  of  matter 
as  he  would  that  of  a  point,  independently  of  the  causes  of  such 
motion. 

In  doing  this  he  must  give  a  geometrical  description  of  the 
line  traced  by  the  point  either  in  a  plane  or  in  space,  and  then 
he  must  describe  the  rate,  uniform  or  variable,  with  which  this 
line  is  traversed. 

He  may  then  proceed  to  attribute  any  change  of  direction  or 
velocity  to  the  action  of  forces  upon  the  particle  whose  motion 
he  has  been  examining. 

143.  In  accordance  with  this  method  of  separating  the  geo- 
metry of  the  motion  from  the  causes  of  the  deviations,  the  first 

proposition  would  be  stated  in  such  a  manner  as  the  following : 

"  When  a  point  moves  in  a  curve,  in  such  a  manner  that  the 
accelerations  at  every  point  are  in  the  direction  of  a  fixed  point, 
the  areas,  which  it  describes  by  radii  drawn  to  the  fixed  point  to 
which  the  accelerations  tend,  are  in  one  fixed  plane,  and  are 

proportional  to  the  times  of  describing  them." 
And,  generally,  if  the  words  force,  and  body,  employed  by 

Newton,  be  replaced  by  acceleration  and  point,  the  resulting 
statements  will  be  in  accordance  with  this  geometrical  method 
of  description.  It  will  then  be  easy  to  use  such  terms  in  the 

proofs  as  will  not  imply,  in  the  manner  of  expression,  the  action 

of  force ;  thus,  instead  of  saying  "  let  a  centripetal  force  tending 

to  8  act  upon  the  body  by  a  single  instantaneous  impulse," 
we  may  use  the  words  "  let  a  finite  velocity  be  communicated 

to  the  point  in  the  direction  of  8." 

144.  It  should  be  carefully  observed  that,  before  proceeding 
to   the   limit,   it  is  proved  that  any   polygonal   areas   SADS, 
SAFSj  are  proportional  to  the  times  of  description   of  their 

perimeters ;   so  that  ultimately  these  areas  become  finite  curvi- 
linear areas,  described  in  finite  times. 

145.  In  proceeding  to  the  ultimate  state  of  the  hypothesis, 
it   is   concluded  readily  from    Lemmas  II.   and  III.  that  the 

curvilinear  areas  are  the  limits  of  the  polygons;  but  a  greater 



PKOP.    I.      THEOREM    I.  141 

difficulty  arises  in  the  transition  from  the  discontinuous  motion 
under  the  action  of  instantaneous  impulsive  forces  to  the  con- 

tinuous motion  under  the  action  of  a  continuous  force  tending 
to  S.  For,  in  the  curvilinear  path  of  the  body  which  is  the 
limit  of  the  perimeter  of  the  polygon,  the  direction  of  the  motion 
at  the  angular  points  of  the  polygon  is  different,  and  also  the 
deflection  from  the  direction  of  motion  is  twice  as  great  in  the 
polygon  as  it  is  in  the  curve. 

Now,  although  we  may  assume  that  the  curvilinear  limit  of 
the  perimeter  of  the  polygon  may  be  described  under  the  action 
of  some  force,  is  that  force  the  same  which  is  the  limit  of  the 
series  of  impulses  ? 

The  centripetal  force  supposed  to  act  with  a  simple  in- 

stantaneous impulse,  "  impulsu  unico  et  magno,"  is  supposed 
to  generate  a  finite  velocity  at  once,  which  effect  a  finite  force 
cannot  produce. 

If,  instead  of  this  imaginary  impulse,  we  suppose  a  force 
finite,  but  very  great,  and  acting  for  a  very  short  time,  the 
effect  upon  the  figure  would  be  to  round  off  the  angular  points 
of  the  polygon. 

The  transition  from  the  impulses  to  the  continuous  force,  in 
the  ultimate  form  of  the  hypothesis,  must  be  considered  as 
axiomatic,  like  the  ultimate  equality  of  the  ratio  of  the  finite 
arc  to  the  perimeter  of  the  inscribed  polygon. 

146.  We  can,  however,  shew  that  if  the  curvilinear  limit  of 
the  polygon  be  described  under  the  action  of  some  continuous 
force  tending  to  $,  the  effect  of  this  force,  estimated  by  the 

quantity  of  motion  generated  in  the  interval  between  the  im- 
pulses, will  be  ultimately  the  same  as  that  generated  by  the 

Consider  first  the  geometrical  properties  of  the  limit  of  the 
polygonal  perimeter.  Let  BT,  CU  be  tangents  at  B,  C  to  the 

curvilinear  limit,  and  let  Cc  intersect  BT'm  T,  fig.  page  136. 
Now,  since  Cc  ultimately  vanishes  compared  with  Be,  BO 

and  Be  or  AB  and  BG  are  ultimately  in  a  ratio  of  equality, 
and  Cc  is  ultimately  bisected  by  B2\  by  (2)  page  102;  also, 
CU=BU=  UT  ultimately,  by  (1)  page  102, 
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Consider  next  the  effects  produced  by  the  different  kinds  of 
force  which  act  in  the  two  cases. 

In  the  polygonal  path,  the  impulsive  force  at  B  generates 
a  velocity  with  which  the  body  describes  Cc  in  the  time  t  in 
which  AB  or  BG  is  described,  the  measure  of  the  effect  of  the 

impulse  is  therefore  the  velocity  —  . 

In  the  curvilinear  path,  the  deflection  from  the  direction  B  I 
at  Bj  in  the  same  time  £,  is  TC,  by  means  of  the  continuous 
action  of  finite  forces,  and  if  we  suppose  the  force  ultimately 

uniform  in  magnitude  and  direction,  the  measure  of  the  ac- 

celerating  effect  of  the  force  will  be  —  ̂ —  ,  and  the  velocity 

2  TO         Cc 
generated  in  that  time  will  be      2    .t=  —  . v  L 

Hence  the  effects  of  the  finite  and  impulsive  forces,  measured 
by  the  quantity  of  motion  produced,  are  the  same. 

147.  We  can  also  shew  that  a  continuous  force,  which  gene- 
rates the  same  quantity  of  motion  as  the  impulse  at  B  in  the 

time  from  B  to  (7,  would  cause  the  body  on  arriving  at  C  to 
move  in  the  direction  of  the  tangent  to  the  curvilinear  limit  of 

the  perimeter. 
For  the  velocity  due  to  the  action  of  the  finite  force  at  the 

2  TG 

end  of  time  t  being  ultimately  —  —  in  the  direction  TG,  and 

BT     2  TU 
that  in  the  direction  BT  being  -  -  =  -    -  ;  therefore  T<7,  UT t  t 

represent  the  velocities  in  those  directions  ;  therefore  UC  is  the 

direction  of  motion  at  (7,  that  is,  the  body  moves  in  the  direction 
of  the  tangent  at  C. 

148.  COR.  1.   The  corollary  may  be  proved  directly  from 
the  proposition,  for  the  proportionality  of  the  areas  to  the  times 
of  describing  them  will  be  true  if  the  force  suddenly  cease  to  act, 
in  which  case  the  body  will  proceed  in  the  direction  of  the  tangent. 

Let  V  be  the  velocity  at  the  point  A,  A  SB  the  curvilinear 

area  described  in  any  time  T,  AT=V.T  the  space  described 
if  the  force  cease  to  act.  Join  ST  and  draw  SY  perpendicular 
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to   AT,    then    area   ASB  =  triangle    SAT=%V.  TxSY,   also 
area  ASBce  T\  therefore  V  varies  inversely  as  SY. 

Again,  if  h  be  twice  the  area  described  in  the  unit  of  time 

employed  in  estimating  the  accelerating  effect  of  the  force  tend- 
ing to  8  and  the  velocity  of  the  body, 

By  the  use  of  this  area  the  proportions  employed  in  subse- 
quent propositions  by  Newton  may  be  converted  into  equations, 

for  the  convenience  of  calculation. 

If  bodies  move  in  curves  for  which  the  areas,  described  in 

the  same  time,  are  not  equal,  V<x    -~. 

149.  COR.  4.   The  statement  in  this  corollary  requires  modi- 
fication, for,  unless  the  forces  be  considered  only  with  reference 

to  their  accelerating  effects,  or  unless  the  bodies  be  supposed  of 
equal  mass,  the  forces  will  not  be  proportional  to  the  sagittse. 

150.  COR.  5.    The  object  of  this  corollary  is  to  determine 
the  numerical  measure  of  the  central  force  which  governs  the 
motion  of  a  body,  when  the  circumstances   of  the  motion  are 
known  ;  for  it  supplies  us  with  the  ratio  of  this  force  to  the  force 

of  gravity  on  the  same  body  at  any  place,  the  measure  of  which 
can  be  determined  by  experiment. 

Applications  of  the  Proposition. 

151.  PROP.    When  the  force,  instead  of  tending   to  a  fixed 
point)  acts  in  parallel  lines,  the  property  of  the  motion  enunciated 
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in  the  proposition  may  be  replaced  by  the  property  that  the 
resolved  part  of  the  space  described  perpendicular  to  the  direc- 

tion of  the  force  is  proportional  to  the  times. 

This  is  immediately  deducible  from  the  second  law  of  motion, 
since  there  is  no  force  in  the  direction  perpendicular  to  that  of 
the  forces,  and  the  velocity  in  that  direction  is  uniform. 

That  this  is  the  result  of  the  properties  in  the  proposition 
may  be  shewn  by  removing  the  centre  of  force  to  an  infinite 
distance. 

C 

8 

Let  S  be  the  centre  of  force,  A MN  perpendicular  to  SB,  the 
area  ABCS  is  proportional  to  the  time  of  describing  A  C,  and 
the  areas  AMNS  and  ABCS  are  ultimately  equal  when  S  is 
removed  to  an  infinite  distance  in  BMS,  hence  the  triangle  A  SN 
is  proportional  to  the  time,  and  therefore  the  base  AN^  which 
varies  as  the  triangle  ASN,  is  also  proportional  to  the  time, 

and  therefore,  since  CN  'is  ultimately  perpendicular  to  AN, 
the  proposition  is  proved. 

152.  PROP.  If  a  body  describe  a  curvilinear  orbit  about  a 
force  tending  constantly  to  a  fixed  point,  the  area  described  in  a 
given  time  will  be  unaltered,  if  the  force  be  suddenly  increased 
or  diminished,  or  if  the  body  be  acted  on  at  any  moment  by  an 
impulsive  force  tending  to  that  point. 

For,  if  in  the  polygon  the  impulse  at  any  point  B  be  in- 
creased or  diminished  by  any  force  tending  to  or  from  S,  the 

only  effect  will  be  to  remove  the  vertex  C  of  the  triangle  SBC  to 
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some  other  point  in  the  line  cC  parallel  to  BS,  hence  the  area 
will  be  unaltered,  and  the  argument  which  establishes  the 

equality  of  polygonal  areas  in  a  given  time  will  proceed  as 
before.  Hence  in  the  limit  the  curvilinear  areas  described  in 

a  given  time  will  be  unaltered. 
If  the  new  force  introduced  at  B  be  impulsive,  the  angle 

A  BC  will  remain  less  than  two  right  angles  when  we  proceed 
to  the  limit,  and  the  two  parts  of  the  curve  will  cut  one  another 
at  a  finite  angle. 

Hence,  in  any  calculation  made  upon  supposition  of  such 

changes  of  force,  the  value  of  -h,  Art.  148,  will  be  the  same 
before  and  after  the  change  of  the  force. 

Apses* 
153.  DEF.   In  any  orbit  described   under  the   action  of  a 

force  tending  to  a  fixed  centre,  a  point  at  which  the  direction 
of  the  motion  is  perpendicular  to  the  central  distance  is  called 
an  apse,    the   distance   from    the    centre    is   called   an   apsidal 
distance,   and  the  angle  between  consecutive  apsidal  distances 
is  called  an  apsidal  angle. 

Thus,  in  the  ellipse  about  the  centre,  the  four  extremities  of 
the  axes  are  apses;  there  are  two  different  apsidal  distances, 
and  every  apsidal  angle  is  a  right  angle* 

In  the  ellipse  about  a  focus,  the  apses  are  at  the  greatest  and 
least  distances,  and  the  apsidal  angle  is  two  right  angles. 

154.  In  a  central  orbit  described  under  the  action  of  forces 

tending  to  a  fixed  point,  each  apsidal  distance  will  divide  the  orbit 

symmetrically,  if  the  forces  be  always  equal  at  equal  distances. 

It  is  easily  shewn  that,  in  any  orbit  described  by  a  body 
under  the  action  of  forces  tending  to  a  fixed  point,  the  forces 
depending  only  upon  the  distance,  if  a  second  body  be  projected 

at  any  point  with  the  velocity  of  the  first  in  the  opposite  direc- 
tion, it  will  proceed  to  describe  the  same  orbit  in  the  reverse 

direction,  under  the  action  of  the  same  forces. 
For,  let  ABC  be  a  portion  of  the  polygon  whose  limit  is 

the  curvilinear  path  of  the  body,  and  produce  AB  to  c,  and 

CB  to  a,  making  Be  =  AB,  and  Ba  =  CB. 
U 
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The  impulse  at  B  is  measured  by  cG  when  the  body  de- 
scribes ABC,  and  if  the  motion  be  reversed,  the  same  impulse 

at  B  would  cause  the  body  to  move  in  BA^  with  the  velocity 
which  it  had  in  AB,  since  a  A  =  c  C.  And  the  same  is  true 

throughout  the  polygonal  path,  hence  the  assertion  is  true  for 
the  whole  path,  described  under  the  action  of  impulses  which 

are  always  the  same  at  the  same  points,  and  therefore,  proceed- 
ing to  the  limit,  the  statement  made  for  any  orbit  is  proved. 
Hence,  since  the  forces  are  equal  at  equal  distances  on 

both  sides  of  the  apse,  the  path  of  the  body  from  an  apse 
being  similar  and  equal  to  the  path  which  would  be  described 
if  the  velocity  were  reversed  at  the  apse,  is  similar  to  the  path 
described  in  approaching  the  apse;  whence  the  proposition  is* 
established. 

155.  There  are   only   two   diff  rent  apsidal   distances,,   and 
all  apsidal  angles  are  equal. 

For,  after  passing  a  second  apse,  the  curve  being  symme- 
trical on  both  sides,  a  third  apse  will  be  in  such  a  position  that 

the  apsidal  distance  is-  the  same  as  for  the  first  apse,  and  all  the 
apsidal  angle*  are  shewn  similarly  to  be  equal. 

156.  COR.    Hence  a  central  orbit  can  never  re-enter  itself 

unless  the  ratio  of  the  apsidal  angle  to  a  right  angle  be  com- 
mensurable, and  if  it  be  so,  the  curve  will  always  re-enter. 

Illustrations. 

(1)  If  a  l)ody  describe  an  ellipse  under  the  action  of  a  force 
tending  to  one  of  the  foci,  tJie  square  of  the  velocity  varies  inversely 
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as  the  distance  from  that  focus,  and  directly  as  the  distance  from 
the  other. 

For  BC*  :  SY*  ::  HZ:  SY  ::  HP:  SP; 
.  1  HP 

(2)  The  velocity  is  greatest  when  the  body  is  at  the  extremity 
of  the  major  axis  which  is  nearer  to  the,  focus  to  which  the  force 
tends,  and  least  at  tiie  other  extremity. 

For  SYis  the  least  in  the  first  and  greatest  in  the  second 

position, 

(3)  The   velocity   at  an    extremity   of  the  minor   axis  is  a 
geometric  mean  between  the  greatest  and  least  velocities. 

For  at  this  point  HZ=  BC,  and  at  the  extremities  of  the 

major  axis  the  values  of  HZ  are  Sa  and  J3A,  and  BC*  =  8  A  .  Sa. 
(4)  In  the  equiangular  spiral  described  lender  the  action  of  a 

/orce  tending  to  thefocus^  the  velocity  oc  -^p« 

For,  ̂ Foc  SP. 

(5)  If  the  force  tend  to  the  centre  of  the  elliptic  orbit  described 
by  a  body*)  the  time  between  the  extremities  of  conjugate  diameters 
will  be  constant, 

For  the  area  PCD  is  constant. 

\6)  The  velocity  at  any  point  of  an  ellipse  about  a  force  tend- 
ing to  a  focus  is  compounded  of  two  uniform  velocities,  one 

perpendicular  to  the  radius  vector^  and  the  other  perpendicular  to  the 
major  axis* 

Let  8  be  the  centre  of  force,  SY,  EZ  perpendiculars  on  the 

tangent  at  P,  join  JSP}  CZ.  Then  HZ,  ZC  parallel  to  PS,  and 
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CH  are  perpendicular  to  the  three  directions  ;  therefore  the 
velocity  represented  by  HZ  in  magnitude  is  the  resultant  of 

the  two  represented  by  CZ  and  HCj  but  the  velocity  perpen- 

dicular to  HZ=  -qy=  72  'HZ-j  therefore  the  velocities  perpen- 

dicular to  HC  and  CZ  are      ae  and    5  a. 

XVIII. 

1.  If  different  bodies  be  projected  with  the  snme  velocity  from 
a  given  point,  all  being  attracted  by  forces  tending  to  one  fixed 
point,  shew  that  the  areas  described  by  the  lines  drawn  from  the 
fixed  point  to  the  bodies  will  be  proportional  to  the  sines  of  the 
angles  of  projection. 

2.  When  a  body  describes  a  curvilinear  orbit  under  the  action 
of  a  force  tending  to  a  fixed  point,  will  the  direction  of  motion  or 
the  curvature  of  the  orbit  at  any  point  be  changed,  if  the  force  at 
the  point  receive  a  finite  change  ? 

3.  A  body  moves  in  a  parabola  about  a  centre  of  force  in  the 
vertex,  shew  that  the  time  of  moving  from  any  point  to  the  vertex 
varies  as  the  cube  of  the  distance  of  the  point  from  the  axis  of  the 

parabola. 

4.  In  a  parabolic  orbit  described  round  a  force  tending  to  the 
focus,  shew  that  the  velocity  varies  inversely  as  the  normal  at  any 
point.     Shew  also  that  the  sum  of  the  squares  of  the  velocities  ta 
the  extremities  of  a  focal  chord  is  constant. 

5.  If  the  velocity  at  any  point  of  an  ellipse  described  about 
the  centre  can  be  equal  to  the  difference  of  the  greatest  and  least 
velocities,  the  major  axis  cannot  be  less  than  double  of  the  minor. 

6.  If  an  ellipse  be  described  under  the  action  of  a  force  tending 
to   the   centre,   shew  that  the  velocity  will  vary  directly  as  the 
diameter  conjugate  to  that  which  passes  through  the  body;    also 
that  the  sum  of  the  squares  of  the  velocities  at  the  extremities  of 
conjugate  diameters  will  be  constant. 

7.  In  an  ellipse  described  round  a  force  tending  to  the  focus, 
compare  the  intervals  of  time  between  the  extremities  of  the  same 
latus  rectum,  when  AC=2CS. 

8.  In  the  ellipse  described  about  the  focus  S,  A  SIT  A1  being  the 
jnajor  axis,  time  in  AB  :  time  in  B.A'  : :  ir-2e  :  IT  +  2e. 
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9.  If  the  velocities  at  three  points  in  an  ellipse  described  by 
a  particle,  the  acceleration  of  which  tends  to  either  of  the  foci,  be 
in  arithmetical  progression,  prove  that  the  velocities  at  the  opposite 
extremities  of  the  diameters  passing  through  these  points  will  be 
in  harmonical  progression. 

10.  If  #„  vz  be  the  velocities  at  the  extremities  of  a  diameter 
of  an  ellipse  described  about  the  focus,  and  u  the  velocity  at  either 
of  those  points  when  it  is  described  about  the  centre,  prove  that 
u  (vv  +  vz]  will  be  constant. 

11.  In  a  central  orbit,  the  velocity  of  the  foot  of  the  perpen- 
dicular from  the  centre  of  force  on  the  tangent  varies  inversely  as 

the  length  of  the  chord  of  curvature  through  the  centre  of  force. 

12.  A  particle  is  describing  a  parabola  about  its  focus  S;  if  P 
and  Q  be  two  points  of  its  path,   shew  that  its  velocity  at  Q  will 
be  compounded  of  the  velocity  at  P  and  a  velocity  which  will  be 
constant  if  the  angle  PSQ  be  constant. 

XIX. 

1.  A  body  describes  a  parabola  about  a  centre  of  force  in  the 
focus;    shew  that  its  velocity  at  any  point  may  be  resolved  into 
two  equal  constant  velocities,  respectively  perpendicular  to  the  axis 
and  to  the  focal  distance  of  the  point. 

2.  A  "body  describes  an  ellipse  under  the  action  of  a  central 
force  tending  to  one  of  the  foci ;  shew  that  the  sum  of  the  velocities 
at  the  extremities  of  any  chord  parallel  to  the  major  axis  varies 
inversely  as  the  diameter  parallel  to  the  direction  of  motion  at 
those  points. 

3.  A  body  moves  in  an   ellipse  under  the  action  of  a  force 
tending  to  the  centre  ;   shew  that  the  component  of  the  velocity  at 
any  point  perpendicular  to  either  focal  distance  is  constant ;    and 
that  the  sum  of  the  squares  of  the  velocities,   at  the  extremities 
of  any  pair  of  semi-conjugate  diameters,  resolved  in  any  given direction  is  constant. 

4.  In  an  ellipse  described  about  a  focus,  the  time  of  moving 
from  the  greatest  focal  distance  to  the  extremity  of  the  minor  axis 
is  m  times  that  from  the  extremity  of  the  minor  axis  to  the  least 
focal  distance ;    find  the  eccentricity,  and  shew  that,  if  there  be 
a  small  error  in  m,  the  corresponding  error  in  the  eccentricity  will 
vary  inversely  as  (1  +  m)z. 

5.  If  the  velocity  of  a  body  in  a  given  elliptic  orbit  be  the  same 
at  a  certain  point,  whether  it  describe  the  orbit  in  a  time  t  about 
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one  focus,  or  in  a  time  t'  about  the  other,  prove  that,  2a  being  the 2at'  lat 
major  axis,  the  focal  distances  will  be  - — —,  and  - — -  . t  + 1  t  •+  t 

6.  A  body  describes  a  parabola  about  the  focus;    if  the  seg- 
ments PS,  Sp  of  the  focal  chord  PSp  be  in  the  ratio  n  :  1,  prove 

that  the  time  in  pA  :  time  in  AP  : :  3»  +  1  :  n~  (n  +  3). 
7.  If  /SFbe  perpendicular  to  the  tangent  to  a  curve  at  P,  and 

P  and  Fboth  move  as  if  under  the  action  of  a  central  force  tending 
to  S,  prove  that  the  radius  of  curvature  at  P  will  vary  as  SY. 

8.  If  P,   Q  be  any  two  points  in   an  ellipse  described  by  a 
particle  under  the  action  of  a  force  tending  to  the  centre,  prove 
that  tl;e  velocity  acquired  in  passing  from  P  to  Q  will  be  in  the 

direction    QP't   where  P'  is  the  other  extremity  of  the  diameter 
through  P. 

9.  Two  points  P,  P'  are  moving  in  the  same  ellipse,  in  the 
same  directions,  with  accelerations  tending  to  the  centre  C\    shew 
that  the  relative  velocity  of  one  with  regard  to  the  other  is  parallel 
and  proportional  to  CT,  where  T  is  the  point  of  intersection  of  the 

tangents  at  P  and  P'.     If  the  points  move  in  opposite  directions, 
what  will  be  their  relative  velocity  ? 

10.  Two   particles   revolve  in  the  same  direction  in  an  oval 
orbit  round  a  centre  of  force  8,  which  divides  the  axis  unequally, 
starting  simultaneously  from  the  extremities  of  a  chord  PQ,  drawn 
through  S.     Prove  that,  when  they  first  arrive  in  positions  £,  T 

respectively,  such  that  the  angle  RS2J  is  a  minimum,  the  time  from 
R  to  the  next  apse  will  be  an  arithmetic  mean  between  the  times 
from  P  to  the  next  apse  and  to  Q  from  the  last  apse. 

11.  Two  equal  particles  are  attached  to  the  extremities  of  a 
string  of  length  2/,  and  lie  in  a  smooth  horizontal  plane  with  the 
string  stretched ;    if  the  middle  point  of  the  string  be  drawn  with, 
uniform  velocity  o  in  a  direction  perpendicular  to  the   nitial  direc- 

tion of  the  string,  shew  that  the  path  of  each  particle  will  be  a 

cycloid,  and  that  the  particles  will  meet  after  a  time  —  . 

12.  If  the  velocity  in  a  central  orbit  can  be  resolved  into  two 
constant  components,  one  perpendicular  to  the  radius  vector,  and 
the  other  to  a  fixed  straight  line,  shew  that  the  curve  must  be 
a  conic. 

13.  The  velocity  in  a  cardioid  described  about  a  force  tending 
to  the  pole  varies  in  the  inverse  sesquiplicate  ratio  of  the  distance. 

14.  The  velocity  in  the  lemniscate  varies  inversely  as  the  cube 
of  the  central  distance,  when  a  particle  moves  in  the  curve  round 
a  force  tending  to  the  centre. 
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PROP.  II.      THEOREM  II. 

Every  body,  which  moves  in  any  curve  line  described  in  a 
plane,  and  describes  areas  proportional  to  the  times  of 
describing  them  about  a  point  either  fixed  or  moving 
uniformly  in  a  straight  liae,  by  ra  Hi  drawn  to  that 
point,  is  acted  on  by  a  centripetal  force  tending  to  the 
same  point. 

Case  1.  Let  the  time  be  divided  into  equal  intervals, 
and  in  the  first  interval  let  the  body  describe  AB 
with  uniform  velocity,  being  acted  on  by  no  force ; 
in  the  second  interval  it  would,  if  no  force  acted,  pro- 

ceed to  c  in  AB  produced,  describing  Be  equal  to  AB\ 
and  the  triangles  ASB,  BSc  would  be  equal.  But 

when  the  body  arrives  at  B,  let  a  force,  acting  upon 
it  by  a  single  impulse,  cause  the  body  to  describe 
BC  in  the  second  interval  of  time,  so  that  the  tri- 

angle BSC  is  equal  to  the  triangle  ASB,  and  there- 
fore also  to  the  triangle  BSc ;  therefore  BSC  and 

BSc  are  between  the  same  parallels,  hence  BS  is 
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parallel  to  c(7,  and  therefore  J38  was  the  direction  of 
the  impulse  at  B. 

Similarly,  if  at  C,  D,  ...  the  body  be  acted  on  by  im- 
pulses causing  it  to  move  in  the  sides  CD,  DE,  ...  of 

a  polygon,  in  the  successive  intervals,  making  the 
triangles  CSD,  DSE,  ...  equal  to  ASB  and  BSC,  the 
impulses  can  be  shewn  to  have  been  in  the  directions 
CS,  DS,  ....  Hence,  if  any  polygonal  areas  be  de- 

scribed proportional  to  the  times  of  describing  them, 
the  impulses  at  the  angular  points  will  all  tend  to  S. 

The  same  will  be  true  if  the  number  of  intervals  be 

increased  and  their  length  diminished  indefinitely, 
in  which  case  the  series  of  impulses  will  approximate 
to  a  continuous  force  tending  to  $,  and  the  polygons 
to  curvilinear  areas,  as  their  limits.  Hence  the  pro- 

position is  true  for  a  fixed  centre. 

Case  2.  The  proposition  will  also  be  true  if  S  be  a 
point  which  moves  uniformly  in  a  straight  line,  for, 
by  the  second  law  of  motion,  the  relative  motion  will 
be  the  same,  whether  we  suppose  the  plane  to  be  at 
rest,  or  that  it  moves  together  with  the  body  which 
revolves  and  the  point  $,  uniformly  in  one  direction. 

COR.  1.  In  non-resisting  media,  if  the  areas  be  not 
proportional  to  the  times,  the  forces  will  not  tend 
to  the  point  to  which  the  radii  are  drawn,  but  will 
deviate  in  consequentid,  i.e.  in  that  direction  towards 
which  the  motion  takes  place,  if  the  description  of 
areas  be  accelerated  ;  but  if  it  be  retarded,  the  devi- 

ation will  be  in  antecedentid. 

COR.  2.  And  also  in  resisting  media,  if  the  description 
of  areas  be  accelerated,  the  directions  of  the  forces 
will  deviate  from  the  point  to  which  the  radii  are 
drawn  in  that  direction  towards  which  the  motion 

takes  place. 

SCHOLIUM. 

A  body  may  be  acted  on  by  a  centripetal  force  com- 
pounded of  several  forces  In  this  case,  the  meaning 
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of  the  proposition  is,  that  that  force,  which  is  the 
resultant  of  all,  tends  to  S.  Moreover,  if  any  force 
act  continually  in  a  line  perpendicular  to  the  plane 
of  the  areas  described,  this  force  will  cause  the  body 
to  deviate  from  the  plane  of  its  motion,  but  will 
neither  increase  nor  diminish  the  amount  of  area 
described,  and  therefore  must  be  neglected  in  the 
composition  of  the  forces. 

Observations  on  the  Propositiont 

157.  The  description  of  an  area  round  a  point  in  motion 
may  be  explained  by  the  following  construction  for  the  relative 
orbit,  in  the  case  of  motion  about  a  point  which  is  itself  moving 
uniformly  in  a  straight  line. 

Let  88'  be  the  line  in  which  S  moves  uniformly,  and  let  the 
body  move  from  A  to  B  in  the  same  time  that  8  moves  from  S 

to  $',  and  let  P,  cr  be  simultaneous  positions  of  the  body  and  of  S. 
A. 

If  PP'  be  drawn  equal  and  parallel  to  <r$,  and  the  same 
construction  be  made  for  every  point  in  the  path  of  the  body, 

the  curve  APE',  which  is  the  locus  of  P',  will  be  the  orbit  which 
the  body  would  appear  to  describe  to  an  observer  at  $,  who 
referred  all  the  motion  to  the  body  ;  for  SP  will  be  equal  and 
parallel  to  <rP,  and  therefore  the  distance  of  the  body,  and  the 
direction  in  which  it  is  seen,  will  be  the  same  in  the  two  cases. 

If  Q,  Q'  be  corresponding  points  near  P  and  P',  and  the  force 
at  a-  be  supposed  to  act  impulsively,  the  relative  motion  round  <t 
will  be  unaltered  if  we  apply  to  both  P  and  a  velocities  equal  to 

X 
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that  of  <r  and  in  a  contrary  direction,  but  in  this  case  a  will 

be  reduced  to  rest  and  the  velocity  of  P  will  be  the  velocity 

relative  to  er.  Take  PQ  and  crcr',  which  are  described  in  the 
same  time,  to  represent  the  velocities  of  P  and  cr,  and  let  Qq  be 
equal  and  parallel  to  <rV,  then  Pq  represents  the  velocity  of  P 

relative  to  a ;  and,  since  Q'q=  Sv-  (r'<r  =  P'P,  P' Q'  is  equal 
and  parallel  to  Pq,  and  therefore  the  velocity  in  the  orbit  ABr 
about  8  at  rest  is  equal  to  the  relative  velocity  about  S  in 
motion. 

158.    COR.  1.    Reverting  to  the  polygonal  area>  if  the  tri- 

V1  C' 

angle  SBC'  be  greater  than  the  triangle  SAB,  the  impulse  at  B 
will  not  be  in  the  direction  BS,  but  BU,  parallel  to  cG\  that  is, 
if  the  areas  be  not  proportional  to  the  times  but  be  in  an 
increasing  ratio,  the  direction  of  the  force  will  deviate  towards 
the  direction  in  which  the  description  of  areas  is  accelerated ; 
and  vice  versa,  when  the  description  is  retarded. 

159.  COR.  2.  The  effect  of  a  resisting  medium  is  to  retard 

the  motion,  or,  supposing  it  the  limit  of  a  series  of  impulses,  we 
must  conceive  an  impulse  at  J3,  in  the  case  of  the  polygon,  in  the 
direction  BA  ;  if  therefore  the  description  of  areas  be  accelerated, 

the  impulse  applied  at  B  in  the  direction  BU'  must  act  still 
further  in  consequenttd  than  that  in  BU,  in  order  that,  with  the- 
impulse  corresponding  to  the  resistance  of  the  medium,  it  may 
produce  a  resultant  impulse  in  the  direction  of  BU.  The  effect 
of  the  resistance  alone  is  to  retard  the  description  of  areas. 

If  the  force  act  in  cousin,  ntid,  the  resultant  of  this  force 
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and  the  resistance  of  the  medium  may  act  in  the    direction  US, 
and  the  proportionality  of  the  areas  to  the  times  be  preserved, 

160.  PROP.  Let  ABCDE  be  any  plane  curve,  S  any  point 
in  the  plane,  to  shew  that,  generally,  the  curve  can  be  described 

tinder  the  action  of  a  force  tending  to  or  from  S,  with  finite  velo- 
city, the  velocity  at  any  given  point  being  any  given  velocity. 

for  arcs  AB,  BC,  ...  can  be  measured  from  any  point  A, 
along  the  curve^  such  that  the  areas  SAB,  SBCr..  are  all  equal, 

and  of  any  magnitude.  Also  a  body  can  be  made,  by  some  force 
to  move  along  the  curve  with  finite  velocity,  so  as  to  describe  the 
arcs  AB,  BC,  ...  itj  equal  times,  unless  the  tangent  to  one  of 
the  arcs,  as  DE,  pass  through  8,  in  which  case,  if  the  arcs  be 
indefinitely  diminished,  DE:AB  will  not  be  finite  ultimately. 

Hence    by  Prop.  II.  a  body  can  move  with  finite   velocity 
under  the  action  of  some  force  tending  to  or  from  S,  generally. 

161.  NOTE  1.   Since  in  making  the  motion  of  the  body  such 

that  it  shall  describe  equal  areas  in  equal  times  we  are  only  con- 
cerned with  the  ratio  of  the  velocities,  the  velocity  at  any  point 

A  may  be  any  given  velocity. 

162.  NOTE  2.   Or  if  we  please  we  may  suppose  the  force  at 
any  point  any  given  force  ;  for,  in  the  case  of  the  polygon,  the 
velocity  generated  by  the  impulse  at  B  is  to  the  velocity  in  AB 
as  cC  to  Be,  hence  the  impulse  at  B  may  be  of  any  magnitude 
if  we  choose  the  velocity  in  AB  properly. 

163.  NOTE  3.   The  ratio  of  the  velocities  will  be  the  same 

at  two  given  points,  for  all  forces  tending  to  a  given  centre, 
«nder  the  action  of  which  the  curve  can  be  described. 
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164.  NOTE  4.   Hence   a  body    can   move    throughout   any 
ellipse   under  the  action  of  a   centripetal  force  tending  to  the 
centre  or  focus,  the  force  depending  only  on  the  distance,  since 
in  these  cases  the  curve  is  symmetrical  on  opposite  sides  of  any 
apse ;  or  about  any  point  within  the  ellipse,  if  the  forces  do  not 
depend  only  on  the  distance,  since  no  point  within  an  ellipse  lies 
on  any  tangent. 

165.  NOTE  5.    In  the  case  of  an  oval,  S  being  an  external 

point,  a  body  can  move  with  finite  velocity  under  the  action  of 
a  force  tending  to  the  point  $,  in  the  portion  which  is  concave  to 
£,  and  from  S,  in  that  which  is  convex  to  $,  but  not  from  one 

portion  to  the  other. 

XX. 

1.  If  an  ellipse  be  described  so  that  the  sum  of  the  areas 
swept  out  by  radii  drawn  to  the  vertices  is  proportional  to  the 
times  of  describing  them,    prove   that  the  resultant  acceleration 
will  tend  to  the  centre. 

2.  A  body  is  moving  in  a  parabola,  and  the  time  from  the 
vertex  to  any  point  varies  as  the  cube  of  the  ordinate ;    shew  that 
this  motion  could  be  caused  by  the  action  of  a  central  force. 

3.  A  body  was  moving  in  a  circle,  and  it  was  observed  that  the 
time  of  describing  any  arc  from  a  fixed  point  varied  as  the  sum  of 
the  arc  and  the  perpendicular  distance  from  one  extremity  of  the 
arc  on  the  diameter  through  the  other ;   shew  that  the  body  was 
acted  on  by  a  central  force. 

4.  A  heavy  particle  falls  from  the  cusp  to  the  vertex  of  a 
cycloid,  whose  axis  is  vertical ;  shew  that  a  particle  could  describe 
the  cycloid  in  the  same  manner  under  the  action  of  a  constant  force 
directed  to  a  certain  moving  point. 

5.  From  the  centre  of  a  planet  a  perpendicular  is  let  fall  upon 
the  plane  of  the  ecliptic ;   prove  that  the  foot  of  this  perpendicular 
will  move  as  if  it  were  a  particle  acted  on  by  a  force  tending  to  the 
3un's  centre. 



PROP.   III.      THEOREM   III.  157 

PROP.  III.    THEOREM  III. 

Every  body,  which  describes  areas  proportional  to  the  times 
of  describing  them  by  radii  drawn  to  the  centre  of  another 
body  which  is  moving  in  any  manner  whatever,  is  acted  on 
by  a  force  compounded  of  a  centripetal  force  tending  to 
that  other  body,  and  of  the  whole  accelerating  force  which 
acts  upon  that  other  body. 

Let  the  first  body  be  Z,  the  second  T,  T  moves  under 
the  action  of  some  force  P,  L  under  the  action  of 

another  force  F.  At  every  instant  apply  to  both 
bodies  the  force  P  in  the  contrary  direction  to  that 
in  which  it  acts,  as  represented  by  the  dotted  arrows. 

L  will  continue  to  describe  about  jP,  as  before,  areas 
proportional  to  the  times  of  describing  them,  and 
since  there  is  now  no  force  acting  on  T}  T  is  at  rest 
or  moves  uniformly  in  a  straight  line. 

Therefore,  by  Theorem  II.,  the  resultant  of  the  force  F 
and  the  force  P  applied  to  L  tends  to  T. 

Hence  F  is  compounded  of  a  centripetal  force  tending  to 
T,  and  of  a  force  equal  to  that  which  acts  on  T.  Q.E.D. 

COR.  1.  Hence,  if  a  body  L  describe  areas  proportional 
to  the  times  of  describing  them  by  radii  drawn  to 
another  body  T]  and  from  the  whole  force  which 
acts  upon  L,  whether  a  single  force  or  compounded  of 
several  forces,  be  taken  away  the  whole  accelerating 
force  which  acts  upon  the  other  body  T\  the  whole 
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remaining  force,  which  acts  upon  Z,  will  tend  to  the 
other  body  T  as  a  centre. 

COR.  2.  And  if  these  areas  be  very  nearly  proportional 
to  the  times  of  describing  them,  the  remaining  force 
will  tend  to  the  other  body  very  nearly. 

COR.  3.  And,  conversely,  if  the  remaining  force  tend 

very  nearly  to  the  other  body  I7,  the  areas  will  be 
very  nearly  proportional  to  the  times. 

COR.  4.  If  the  body  L  describe  areas  which  are  very 
far  from  being  proportional  to  the  times  of  describing 
them,  by  radii  drawn  to  another  body  T,  and  that 
other  body  T  be  at  rest,  or  move  uniformly  in  a 
straight  line,  then  either  there  will  be  no  centripetal 
force  tending  to  that  other  body  T,  or  such  centri- 

petal force  will  be  compounded  with  the  action  of 
other  very  powerful  forces,  and  the  whole  force  com- 

pounded of  all  the  forces,  if  there  be  many,  may  be 
directed  towards  some  other  centre  fixed  or  moving. 

The  same  will  hold,  when  the  other  body  moves  in  any 
manner  whatever,  if  the  centripetal  force  spoken  of 
be  understood  to  be  that  which  remains  after  taking 
away  the  whole  force  acting  upon  the  other  body  T* 

SCHOLIUM. 

Since  the  equable  description  of  areas  is  a  guide  to  the 
centre  to  which  that  force  tends,  by  which  a  body  is 
principally  acted  on,  and  by  which  it  is  deflected 
from  rectilinear  motion,  and  retained  in  its  orbit,  we 
may,  in  what  follows,  employ  the  equable  description 
of  areas  as  a  guide  to  the  centre,  about  which  all 
curvilinear  motion  in  free  space  takes  place. 

Illustration. 

166.  As  an  illustration  of  the  last  propositions  and  their 

corollaries,  we  may  state  some  of  the  observed  facts  in  the 
motion  of  the  Moon,  Earth,  and  Sun,  and  make  the  deductions 
corresponding  to  them. 
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Suppose  the  Moon's  orbit  relative  to  the   Earth  to  be  nearly 
circular,  and  let  ABCD  be  this  orbit,  E  the  Earth. 

(1)  The  areas  described  by  the  radii  drawn  from  the  Moon 
to  the  Earth  are  nearly  proportional  to  the  times  of  describing  j 
hence  the  resultant  force  on  the  Moon  tends  nearly  to  E. 

(2)  If  E8  the  line  joining  the  centres  of  the  Earth  and  Sun 

meet  the  Moon's  relative  orbit  about  the  Earth  in  A,  Cj  and 
DEB  be  perpendicular  to    CS,  the  description  of  areas  will  be 
accelerated  as  the  Moon  moves  from  1)  to  A  and  from  B  to  (7, 
and  retarded  from  A  to  B  and  from  C  to  D ;  hence  the  direction 

of  the  resultant  force   on  the  Moon  in   the  positions  M^  M^ 
MS,  M^  will  be  in  the  directions  of  the  arrows  slightly  inclined 
to  the  radii  drawn  to  E. 

From  these  observed  facts,  we  see  that  when  the  force,  under 
the  action  of  which  E  moves,  is  applied  to  the  Moon  in  the 
contrary  direction,  the  remaining  force  tends  in  the  directions 
of  the  arrows. 

By  the  supposition  that  the  Earth  and  Moon  are  acted  on 
by  forces  tending  to  the  sun,  whose  distance  compared  with  EM 
is  very  great,  and  that  the  differences  of  the  forces  on  these 
bodies  are  not  very  great,  the  accelerating  effect  of  the  force  on 
the  Moon  in  DAB  being  greater  than  that  on  the  Earth,  and  in 
BCD  less,  the  circumstances  of  the  description  of  areas  in  the 
motion  of  the  Moon  are  accounted  for. 
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PKOP.  IV.    THEOREM  IV. 

The  centripetal  forces  on  equal  bodies,  which  describe  dif- 
ferent circles  with  uniform  velocity,  tend  1o  the  centres  of 

the  circles,  and  are  to  each  other  as  the  squares  of  arcs 
described  in  the  same  time,  divided  by  the  radii  of  the 
circles. 

The  bodies  move  uniformly,  therefore  the  arcs  described 
are  proportional  to  the  times  of  describing  them  ;  and 
the  sectors  of  circles  are  proportional  to  the  arcs  on 
which  they  stand,  therefore  the  areas  described  by 
radii  drawn  to  the  centres  are  proportional  to  the 
times  of  describing  them ;  hence,  by  Prop.  II. y  the 
forces  tend  to  the  centres  of  the  circles. 

Again,  let  AB,  ab  be  small  arcs  described  in  equal  times, 
<L 

AD,  ad  tangents  at  A,  a]  ACSG,  acsg  diameters 
through  A,  a.  Join  AB,  ab,  and  draw  BC,  be  per- 

pendicular to  A  G,  ag. 

When  the  arcs  AB,  ab  are  indefinitely  diminished,  since 
AC,  ac  are  sagittse  of  the  double  of  arcs  AB,  ab 
described  in  equal  times,  they  are  ultimately,  by 
Prop.  L,  Cor.  4,  as  the  forces  at  A  and  a. 

But  AC.AG  =  (ckdABf  and  ac.ag  =  (clida*)"j 
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.*.  force  at  A  :  force  at  a  ::  AC  :  ac  ultimately, 

(clida&y     (arc^ff)*    (arc  aft)' ~~        ~^       ~ 

Take  AE,  ae  two  arcs  described  in  any  equal  finite 
tiriies,  then  AE:  ae  ::  AB  :  ab,  since  the  bodies  move 
uniformly,  and  this  is  also  true  in  the  limit  ; 

P  r  AE*    a# 
.*.  force  at  A  :  force  at  a  ::     r~  :  —  .     Q.E.B. AS     as 

COB.  1.  Since  these  arcs  are  proportional  to  the  velo- 
cities of  the  bodies,  the  centripetal  forces  will  be  in 

the  ratio  compounded  of  the  duplicate  ratio  of  the 
velocities  directly,  and  the  simple  ratio  of  the  radii 
inversely. 

That  is,  if  F,  v  be  the  velocities  in  the  two  circles,  R,  r 
the  radii,  ̂ ,/the  centripetal  forces,  AE:  ae::  V  :  v; 

V*     v* 

COR.  2.  And  since  the  circumferences  of  the  circles  are1 
described  in  their  periodic  times,  the  velocities  are  in 
the  ratio  compounded  of  the  ratio  of  the  radii  directly 
and  the  ratio  of  the  periodic  times  inversely  ;  hence 
the  centripetal  forces  are  in  the  ratio  compounded 
of  the  ratio  of  the  radii  directly,  and  of  the  ratio  of 
the  squares  of  the  periodic  times  inversely. 

If  Pj  p  be  the  periodic  times  in  the  two  circles  re- 
spectively, 

R     r 

r F2    0*      R 
•     Ji1  -  f  •• 

'  R  '  r  "  P2'/' 

COR.  3.  Hence,  if  the  periodic  times  be  equal,  and  there- 
fore the  velocities  proportional  to  the  radii,  the  cen- 

tripetal forces  will  be  as  the  radii ;  and  conversely. 
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If  P  =  p,  then  F:  v  ::  It  :  r; 

COR.  4.   Also  if  the  periodic  times  be  in  the  subduplicate 
ratio  of  the  radii,  the  centripetal  forces  will  be  equal. 

That  is,  if  P2  :  /  :  :  R  :  r,  then  F=f,  by  Cor.  2. 
COR.  5.  If  the  periodic  times  be  as  the  radii,  and 

therefore  the  velocities  equal,  the  centripetal  forces 
will  be  reciprocally  as  the  radii  ;  and  conversely. 

COR.  6.  If  the  periodic  times  be  in  the  sesquiplicate 
ratio  of  the  radii,  arid  therefore  the  velocities  recipro- 

cally in  the  subduplicate  ratio  of  the  radii,  the  cen- 
tripetal forces  will  be  reciprocally  as  the  squares  of 

the  radii  ;  and  conversely. 

R2     r*       \      1 

then  V   :v  ::  p  :  -.  ::  -  :  -; 

. 
•"  R  '  r"  lPmfm 

COR.  7.  And,  generally,  if  the  periodic  times  vary  as 

any  power  Rn  of  the  radius  72,  and,  therefore,  the  velo- 

city vary  inversely  as  the  power  R11'1,  the  centripetal 
force-  wiH  vary  inversely  as  7t"l~1;  and  conversely. 

COR.  8.  All  the  same  proportions  can  be  proved  con- 
cerning the  times,  velocities,  and  forces,  by  which 

bodies  describe  similar  parts  of  any  figures  whatever, 
which  are  similar  and  have  centres  of  force  similarly 
situated,  if  the  demonstrations  be  applied  to  those 
cases,  uniform  description  of  areas  being  substituted  for 
uniform  velocity,  and  distances  of  the  bodies  from  the 
centres  of  force  for  radii  of  the  circles. 

Let  AE,  ae  be  similar  arcs  of  similar  curves  described 
by  bodies  about  forces  tending  to  similarly  situated 
points  Sj  s;  and  let  AB,  ab  be  small  arcs  described 
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in  equal  times;  BD,  bd subtenses  parallel  to  SA9  sa^ 
A  V9  av  chorda  of  curvature  at  A,  #,  so  that 

A  V :  av  ::  AS  :  as* 

d 

y  r 

Then,  force  at  A  :  force  at  a  ::  DB  :  db,  ultimately, 

AB2    atf      AB*     aV      ,,. ::  --==  :  -  -  ::  -~-r  :  -- ,  ultimately: A  V    av       SA      sa  . 

and  if  F,  v  be  this  velocities  at  A,  a  since  AB,  ab  are 
described  in  equal  times,  AB  :  ab  ::  F:  e>,  ultimately; 

F2     'i;8 .*.  force  at  -4  :  force  at  a  ::  -,  T  :  —  ,  as  Cor.  L ' 

5  be  small  similar  arcs  described  in  times 

j  t,  instead  of  being  arcs  described  in  equal  times, 
;and  P,  p  be  the  times  of  describing  similar  finite 
arcs  AJEy  ae, 

T:  P  ::  area^l&Z?  :  area  ASE  :  :  ̂ rea^sJ  :  area«S6  \\t\p\ 

therefore,  when  AB}  ab  are  indefinitely  diminished, 
T  :  t::  P  :  p. 

„     ,      Fa      w1        Aff        atf      ... 
Hence,  F:f::  -^  :  -  ::  ̂ -^  :  ?_  ultimately, 

SA  t  sa  ̂   SA    sa         p       g 
:  '  ̂^  '  ?  '  *  ̂P7  *  ̂  '  as 

COR.  9.  It  follows  also  from  the  same  proposition,  that 
the  arc  which  a  body,  moving  with  uniform  velocity 
ina  circle  under  the  action  of  a  given  centripetal  force, 

describes  in  any  time,  is  a  mean  proportional  be- 
tween the  diameter  of  the  circle,  and  the  space 

through  which  the  body  would  fall  from  rest  tinder 
the  action  of  the  same  force  and  in  the  same  time. 
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For,  let  ALbe  the  space  described  from  vest  in  the  same 
time  as  the  arc  AE,  then  since,  if  BD  be  perpendi- 

cular to  the  tangent  at  A,  BD  will  be  ultimately  the 
space  described  by  the  body,  under  the  action  of  the 
force  at  A,  in  the  time  in  which  the  body  describes 
the  arc  AB,  and  the  times  are  proportional  to  the  arcs ; 

.-.  AL:BD::  AE*  :  AB* ; 

.-.  AL.AG  :  BD.AG  ::  AE*  :  AT?'; 

and  BD.AG  =  (chdAB)*  =  (arcABJl,  ultimately; 
therefore  AL.AG  =  AE\  or  AL  :  AE  ::  AE  :  AG. 

Q.E.D. SCHOLIUM. 

The  case  of  the  sixth  Corollary  holds  for  the  heavenly 
bodies,  and  on  that  account  the  motion  of  bodies  acted 
upon  by  a  centripetal  force,  which  decreases  in  the 
duplicate  ratio  of  the  distance  from  the  centre  of  force, 
is  treated  of  more  fully  in  the  following  section. 

Moreover,  by  the  aid  of  the  preceding  proposition  and 
its  corollaries,  the  proportion  of  a  centripetal  force 
to  any  known  force,  such  as  gravity,  can  be  obtained. 
For,  if  a  body  revolve  in  a  circle  concentric  with 
the  earth  by  the  action  of  its  own  gravity,  this 
gravity  is  its  centripetal  force. 

But,  from  the  falling  of  heavy  bodies,  by  Cor.  9,  both 
the  time  of  one  revolution  and  the  arcs  described  in 

any  given  time  are  determined. 

And  by  propositions  of  this  kind  Huygens,  in  his  ex- 
cellent tract,  De  Horologio  Oscittatorio}  compared  the 

force  of  gravity  with  the  centrifugal  force  of  re- 
volving bodies. 

The  preceding  results  may  be  proved  in  this  manner. 
In  any  circle  let  a  regular  polygon  be  supposed  to 
be  described  of  any  number  of  sides.  And  if  a  body 
moving  with  a  given  velocity  along  the  sides  of  the 
polygon  be  reflected  by  the  circle  at  each  of  its 
angular  points,  the  force  with  which  it  impinges  on 
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the  circle  at  each  of  the  reflections  will  be  propor- 
tional to  the  velocity  ;  and  therefore  the  sum  of  the 

forces,  in  a  given  time,  will  vary  as  the  velocity  and 
the  number  of  the  reflections  conjointly.  But  if  the 
number  of  sides  of  the  polygon  be  given,  the  velo- 

city will  vary  as  the  space  described  in  a  given 
time,  and  the  number  of  reflections  in  a  given  time 
will  vary,  in  different  circles,  inversely  as  the  radii  of 
the  circles,  and,  in  the  same  circle,  directly  as  the 
velocity.  Hence,  the  sum  of  the  forces  exerted  in  a 
given  time  varies  as  the  space  described  in  that  time 
increased  or  diminished  in  the  ratio  of  that  space  to 
the  radius  of  the  circle ;  that  is,  as  the  square  of 
that  space  divided  by  the  radius,  and  therefore,  if 
the  number  of  sides  be  diminished  indefinitely  so 
that  the  polygon  coincides  with  the  circle,  the  sum 
of  the  forces  varies  as  the  square  of  the  arc  described 
in  the  given  time  divided  by  the  radius. 

This  is  the  centrifugal  force  by  which  the  body  presses 
against  the  circle,  and  to  this  the  opposite  force  is 
equal,  by  which  the  circle  continually  repels  the 
body  towards  the  centre. 

Symbolical  representation  of  Areas,  Lines,  <&c. 

167.  In  the  statement  of  the  proposition  the  words  "  arcuum 

quadrata  applicata  ad  radios,"  in  the  text  of  Newton,  is  rendered 
the  squares  of  arcs  divided  by  the  radii.  Such  expressions  as 

AB* — ^   may   be   regarded   as   representations   of  lines    (e.g.   this A  (JT 

expression  denotes  AC]  whose  lengths  are  determined  by  such 
constructions  as  the  following : 

To  AG  apply  a  rectangle  whose  area  is  that  of  the  square  on 
AB,  and  let  AG  be  the  side  adjacent  to  AG]  AG  is  thus 
obtained  by  applying  the  square  on  AB  to  A  G.  The  propriety 

AB* 
of  the  symbol  -j-^  employed  to  represent  a  line  A  C,  assumed ^l  (jT 

from  algebra,  is"  obvious,  since  the  mr.nVjr  of  units  of  area  in 
the  square  on  AB  and  in  the  rectangle  whoso  sides  are 
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AC  are  the  same;   hence,  if  wi,  w,  r  be  the  number  of  units  of 

m*
 

length  in  these  lines,  m*  ~nxr  and  r=  —  . 

168.   If  symbols  of  this  kind,  viz.  ̂ —r^  ,  be  used  in  the  same J\  (jT 

manner  as  a  fraction,  we  may  either  treat  them  numerically, 

considering  AB*  to  represent  the  number  of  units  of  area  con- 
tained in  the  square  on  AB,  and  AG-  as  the  number  of  units  of 

length  in  A  6r,  and  thus  apply  the  rules  of  Arithmetical  Algebra  ; 

or  we  may  look  upon  AB*  as  the  absolute  representation  of  an 

area,  and  ACr  as  that  of  a  line,  in  which  case  -,  ~  would  have 

no  meaning  except  by  interpretation.  In  this  interpretation  we 

are  guided  by  the  principles  upon  which  Symbolical  Algebra  is 
applied  to  any  science,  the  laws  of  operation  by  symbols  being 
the  same  in  Arithmetical  and  Symbolical  Algebra,  and  the 

symbols  being  interpreted  so  that  these  laws  are  not  contra- 
dicted. Thus  if,  in  the  application  to  Geometry,  the  symbol  A 

be  supposed  to  denote  an  area  equal  to  that  of  a  rectangle  whose 

sides  are  represented  by  a  and  &,  the  assumption  that  A  —  ab 
or  la  will  imply  that  ab  =  bo,,  hence  the  laws  remain  the  same 

^ 
as  in  Arithmetical  Algebra,  and  —  =  Z>;  so  that  the  interpretation 

is  legitimate,  that,  if  a  rectangle  be  applied  to  a,  whose  area  is  -4, 
£ 
—  will  denote  the  other  side  of  the  rectangle. a 

Observations  on  the  Proposition. 

1G9.  In  the  statement  of  the  proposition  the  word  l  equal' 
Las  been  inserted  before  c  bodies  '  in  order  to  make  the  theorem 
correct,  whether  we  suppose  the  centripetal  force  to  be  estimated 
with  reference  to  the  momentum  or  the  velocity  generated. 

It  would,  perhaps,  be  better  to  state  the  proposition  as 

follows  :  "  The  resultant  of  the  forces,  under  the  action  of  which 
bodies  describe  different  circles  with  uniform  velocity,  are  centri- 

petal and  tend  to  the  centres  of  the  circles,  and  their  accelerating 

effect  are  to  each  other,  &c.,"  for  it  is  not  known,  prior  to  tho 
proof,  that  the  forces  are  centripetal. 
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170.  CorvS.  1  and  9.  The  first  corollary  asserts  that  the 

centripetal  forces  on  bodies  moving  in  different  circles  vary  as 

F2 
-p-  ,  but  the  ninth   shews  that  the  accelerating  effects  of  the 
A  y* 

centripetal  forces  are  in  each  circle  equal  to  -^-  . 

For,  if  V  be  the  velocity,  F  the  accelerating  effect  of  the 
force  in  any  circle,  Tthe  time  of  describing  any  arc,  FT  will  be 

the  lengtb  of  the  arc,  \FT*  will  be  the  space  through  which 
the  body  would  move  under  the  action  of  the  same  force  con- 

tinued constant,  in  the  same  time  in  which  the  arc  is  described, 

171.  Scholium.  In  uniform  circular  motion  the  centripetal 

force  is  employed  in  counteracting  the  tendency  of  the  body  to 
move  in  a  straight  line,  which  it  would  do,  according  to  the  first 
law  of  motion,  with  the  uniform  velocity  which  it  has  at  any 

point  of  the  circle,  if  the  centripetal  force  were  suddenly  to  cease 
to  act.  This  tendency  to  recede  is  called  a  centrifugal  force 

improperly  5  for  the  effect  of  a  force  being  to  accelerate  or 
retard  the  motion  of  a  body,  or  to  alter  its  direction,  if  the 

tendency  could  properly  be  termed  a  force  and  the  centripetal 
force  which  counteracts  it  were  removed,  it  would  accelerate  or 

retard  the  motion  of  the  body,  or  alter  its  direction,  which  it 
does  not. 

The  only  sense  in  which  the  term  centrifugal  force  can  be 

used  with  propriety  as  a  force  may  be  obtained  by  the  con- 
sideration of  relative  equilibrium,  in  which  case,  if  the  same 

centripetal  force  acted  on  the  body,  the  centrifugal  force  would 

keep  it  in  equilibrium,  supposing  the  bod)>  were  at  rest  as 

it  would  appear  to  be  to  an  observer  moving  w*:a  it. 
Thus,  if  a  body  be  supported  on  the  surfeee  of  the  earth, 

since  the  body  describes  a  circle  about  the  axis  of  the  earth 

with  uniform  velocity,  the  pressure  of  the  support  and  the 
attraction  of  the  earth  must  have  a  resultant,  whose  direction 

will  pass  through  the  centre  of  this  circle,  and  whose  magnitude 
will  be  such  as  would  cause  the  body  to  describe  it;  this  re- 

sultant and  the  centrifugal  force  will  be  in  statical  equilibrium. 
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172.  In  this  case  of  circular  motion  the  force  is  exerted 

not  in  accelerating  or  retarding  the  motion,  but  in  changing  its 
direction. 

Thus,  referring  to  the  figure  of  Prop.  I.,  if  the  direction  of 
the  impulse  at  B  bisect  the  angle  ABC,  the  triangle  CBc  will 

be  isosceles,  and  BG—Bc  —  AB\  therefore  the  velocities  in  BO 
and  AB  will  be  equal,  and  the  effect  of  the  impulse  has  been  to 
change  the  direction  without  altering  the  velocity  of  the  body. 

Hence,  the  regular  polygon  inscribed  in  a  circle,  centre  $,  can 
be  described  with  uniform  velocity  under  the  action  of  impulses 
tending  to  the  centre  ;  and,  by  similar  triangles  SBC,  CBc, 

CciBGr.  BG:BS. 

And  if  V  be  the  uniform  velocity  in  the  polygon,   T  the 

time  in  a  side  EC.  BC  =  V.  T:  therefore  Cc=  -D~-  . 
.00 

If  now  the  number  of  sides  be  indefinitely  increased,  Cc  will 
be  ultimately  twice  the  space  through  which  the  body  will  be 
drawn  from  the  tangent  by  the  continuous  force,  see  Art.  146  } 

Co      V2 therefore  -^  =  ̂ -~  will  be  the  measure  of  the  accelerating  effect 

of  the  centripetal  force  tending  to  the  centre  of  the  circle. 

Illustrations  of  Circular  Motion. 

(1)  A  small  body  is  attached  by  an  inelastic  string  to  a 

point  on  a  smooth  horizontal  table,  to  determine  the  tension  of  the 
string  when  the  body  describes  a  circle. 

If  the  body  be  set  in  motion  by  a  blow  perpendicular  to  the 

string,  the  string  will  remain  constantly  stretched,  and  the  only 
force  which  acts  on  the  body  in  the  horizontal  plane  being  in  the 

direction  of  the  fixed  point,  the  areas  described  round  this  point 

will  be  proportional  to  the  time,  and  the  body  will  move  in  a 
circle  with  uniform  velocity. 

Let  v  be  the  velocity  of  projection,  and  I  the  length  of  the 

string,  then  the  accelerating  effect  of  the  tension  of  the  string 

is  Vj  ;  that  is,  ̂    is  the  velocity  which  would  be  generated  in  an 
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unit  of  time  from  rest  by  the  action  of  this  tension  continued 
constant,  therefore  the  tension  of  the  string  :  the  weight  of  the 

body  ::  j  :  g> 

Ex.    If  a  velocity  of  two  feet  a  second  be  communicated 
perpendicular  to  a  string  whose  length  is  a  yard, 

v*  :  Ig  ::  4  :  3x32  ::  1  :  24, 

hence   the   tension    is  ̂ 77  th   of  the   weight,  and   the   time   of 

.,       ,      2-rrZ  GTT" 
revolution  is  evidently  -   -  seconds  =— -  =  9'4  ,  nearly. V  £ 

(2)  If  a  particle  be  attached  by  a  string  of  given  length  to  ck 

point  in  a  rough  horizontal  plane,  and  a  given  velocity  be  communi- 
cated to  it,  perpendicular  to  the  string  supposed  tight,  find  the 

tension  of  the  string  at  any  time,  the  time  in  which  it  will  be 
reduced  to  rest,  and  the  whole  arc  described. 

Let  Fbe  the  velocity  of  projection,  I  the  length  of  the  string 
in  feet,  v  the  velocity  at  any  time  &  Since  the  particle  describes 
a  small  arc  ultimately  with  uniform  velocity  the  accelerating 

effect  of  the  tension  at  the  time  t  is  -j  .     Again,  if  fi  be  the 

coefficient  of  friction,  the  retarding  effect  of  friction  is  fig,  which 
is  constant,  hence  the  velocity  destroyed  in  the  time  t  since 
friction  is  the  only  force  acting  in  the  direction  of  the  tangent 

is  fjigt,  and  v  =  V—  figt. 
V 

Therefore   the    particle  comes  to  rest  in  —   seconds  after 

p  W 
describing  the  arc   feet. tyff 

The  tension  of  the  string  at  the  time  t :  the  weight  of  the 

particle  ::  -j  :  g  ::   ,  ̂  :  g ;  therefore  the  tension  oc  f   t) 
cc  the  square  of  the  time  which  will  elapse  before  the  particle 
comes  to  rest 

(3)  .  Supposing  that  the  Moon  describes  a  circle  with  uniform 

velocity  about  the  centre  of  the  Earth  as  its  centre,  to  find  the  ̂ atio 

of  the  centripetal  acceleration  of  the  Moon's  motion  to  gravity  at 
the  Earths  surface* 
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Let  n  =  number  of  seconds  in  the  Moon's  periodic  time, 

R  =  the  radius  of  the  Moon's  orbit  in  feet ;  therefore  the  velocity 
.    27T.R       ,   1      /27r#\2  . 

of  the  Moon  is  -    -  and  -^  .          -     is  the  measure  of  the  acce- n  H     \    n   / 

lerating  effect  of  the  force  exerted  on  the  Moon,  and  the  measure 

of  the  same  for  gravity  at  the  Earth's  surface  =  32.2 ;  hence, 
the  ratio  required  is  kir*R  :  32.2/12. 

(4)  A  body  is  suspended  by  a  string  from  a  fixed  point,  and 

"being  drawn  out  of  the  vertical  is  projected  horizontally  so  as  to 
describe  a  horizontal  circle  with  uniform  velocity.  Find  the 
velocity  and  the  tension  of  the  string. 

Let  A  be  the  point  of  suspension,  BC  the  radius  of  the  circle 

described ;  therefore,  the  circle  being  described  uniformly,  the 
resultant  force  on  the  body  tends  to  the  centre  B,  and  the 

P 
measure  of  the  accelerating  effect  of  this  resultant  force  is 

BO, 

in  the  direction  CB.  Let  T,  W  be  the  tension  of  the  string  and 
the  weight  of  the  body,  acting  in  CA  and  parallel  to  AB 

respectively,  therefore  T:  W::  CA  : 

also,  ̂:g::CJ3:  AB,  Art.  171,  .-.  P  = AB 

and,  if  CD  be  perpendicular  to  AC,  BC*  =  AB.BD  ;  and  the 
velocity  will  be  that  due  to  falling  through  the  space  \BD. 

XXI. 

1.  If  the  cube  of  the  velocity,  in  circles  uniformly  described,  be 
inversely  proportional  to  the  periodic  time,  she\v  that  the  law  of 
force  will  vary  inversely  as  the  square  of  the  radii. 
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2.  Compare   the   areas   described   in   the   same   time   by    the 
planets,  supposed  to  move  in  circular  orbits  about  the  Sun  in  the 
centre  exerting  a  force  which  varies  inversely  as  the  square  of  the 
distance. 

3.  If  the  forces  by  which  particles  describe  circles  with  uniform 
velocity  vary  as  the  distance,  shew  that  the  times  of  revolution  will 
be  the  same  for  all. 

4.  If  the  velocity  of  the  Earth's  motion  were  so  altered  that 
bodies  would  have  no  weight  at  the  equator,  find  approximately  the 
alteration  in  the  length  of  a  day,  assuming  that,  before  the  altera- 

tion,   the  centrifugal  force  on  a   body  at  the  equator   was  to  its 
weight  : :  1  :  288, 

5.  A  particle  moves  uniformly  on  a  smooth  horizontal  table,  being 
attached  to  a  fixed  point  by  a  string,  one  yard  long,  and  it  makes 
three  revolutions  in  a  second.     Compare  the  tension  of  the  string 
with  the  weight  of  the  particle, 

6.  A  body  moves  in  a  circular  groove  under  the  action  of  a 
force  to  the  centre,  and  the  pressure  on  the  groove  is  double  the 
given  force  on  the  body  to  the  centre,  find  the  velocity  of  the  body. 

7.  If  a  locomotive  be  passing  a  curve  at  the  rate  of  twenty-four 
miles  an  hour,  and  the  radius  of  the  curve  be  I  £-  of  a  mile,  prove 
that  the  resultant  of  the  forces  which  attain  it  on  the  line,  viz.  of 
the  action -of  the  rails  on  the  flanges  of  the  wheels,  and  the  horizontal 
part  of  the  forces  which  act  perpendicular  to  the  inclined  road- way, 
will  be  TOO  of  the  weight  of  the  locomotive,  nearly, 

$.  If  a  body  be  attacked  by  an  extensible  string  to  a  fixed 
point  in  a  smooth  horizontal  table,  find  the  velocity  with  which  the 
body  must  move  in  order  to  keep  the  string  constantly  stretched 
to  double  its  length, 

If  Wbe  the  weight  of  the  body,  and  »7Pbe  the  weight  which  if 
suspended  at  the  extremity  of  the  string  would  just  double  its  length, 
I  the  length  of  the  string,  shew  that  the  square  of  the  required 
velocity  =  'Inlg, 

9.  A  man   stands  at  the  North  Pole  and  whirls   24lbs.  troy 
weight  on  a  smooth  horizontal  plane  by  a  string  a  yard  long  at  the 
rate  of  100  turns  a  minute;    he  finds  that  the  difference  of    the 
forces  which  he  has  to  exert  according  as  he  whirls  it  one  way  or 
the  opposite  is  roughly  39  grains  ;  find  the  period  of  the  rotation  of 
the  earth. 

10.  Two  equal  bodies  lie  on  a  rough  horizontal  table,  and  are 
connected  by  a  string  which  passes  through  a  small  ring  on  the 
table ;  if  the  string  be  stretched,  find  the  greatest  velocity  with 
which  one  of  the  bodies  can  be  projected  in  a  direction  perpendicular 
to  its  portion  of  the  string  without  jnoving  the  other  body. 
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Having  given  the  velocity  with  zvhich  a  lody  is  moving  af 
any  three  points  of  a  given  orbit,  described  ly  it  under 
the  action  of  forces  tending  to  a  common  centre,  to  find 
that  centre. 

Let  the  three  straight  lines  PT,  TQV,  VR,  touch  the 
given  orbit  in  the  points  P,  Q,  R  respectively,  and 
let  them  meet  in  T  and  F. 

Draw  PA,  QB,  RC  perpendicular  to  the  tangents,  and 
inversely  proportional  to  the  velocities  of  the  body 
at  the  points  P,  Q,  R.  Through  A,  B,  C  draw  AD, 
DBE,  CE  at  right  angles  to  PA,  QB,  ̂ 67meetingia 
D  and  E.  Join  TD,  VE;  TD  and  reproduced,  if 
necessary,  shall  meet  in  S  the  required  centre  of  force. 

For,  the  perpendiculars  SX,  SY,  let  fall  from  S  on  the 
tangents  PT,  TQ  V,  are  inversely  proportional  to  the 
velocities  at  P,  Q  (Prop.  i.  Cor.  1),  and  are  therefore 
directly  as  the  perpendiculars  AP,  BQ,  or  as  the 
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perpendiculars  DM,  DN v\\  the  tangents.  Join  XY, 
MN,  then,  since  SX-.SY::  DM:  DN  and  the  angles 
XSY,  MDN  are  equal,  therefore  the  triangles  SXY, 
MDN  are  similar;  therefore  SX :  DM::  XY:  MN 
::XT:MT,  and  the  angles  SXT,  DMT  are  right 
angles ;  therefore,  $,  Z>,  T  are  in  the  same  straight 
line.  Similarly  S,  E,  V  are  in  the  same  straight 
line,  and  therefore  the  centre  S  is  the  point  of 
intersection  of  TD,  VE.  Q,E.  D. 

XXII. 

1.  If  AB,   BC,    CD,   the  three  sides   of  a  rectangle,   be  the 
directions  of  the  motion  of  a  body  at  three  points  of  a  central  orbit, 
and  the  velocities  be  proportional  to  these  sides  respectively,  prove 
that  the  centre  of  force  will  be  in  the  intersection  of  the  diagonals 
of  the  rectangle. 

2.  If  the  velocities  at  three  points  of  a  central  orbit  be  respec- 
tively proportional  to  the  opposite  sides  of  the  triangle   formed 

by  joining  the  points,  and  have  their  directions  parallel  to  the  same 
sides,  prove  that  the  centre  of  force  will  be  the  centre  of  gravity  of 
the  triangle. 

3.  Three  tangents  are  drawn  to  a  given  orbit,  described  by  a 
particle  under  the  action  of  a  central  force,  one  of  them  being  parallel 
to  the  external  bisector  of  the  angle  between  the  other  two.     If  the 
velocity  at  the  point  of  contact  of  this  tangent  be  a  mean  propor- 

tional between  those  at  the  points  of  contact  of  the  other  two,  prove 
that  the  centre  of  the  force  will  lie  on  the  circumference  of  a 
certain  circle. 

4.  If  the  velocities  be  inversely  proportional  to  the  sides  of  the 
triangle  formed  by  the  tangents  at  the  three  points,  the  centre  of 
force  will  be  the  point  of  concourse  of  the  straight  lines  joining  each 
an  angular  point  of  this  triangle  to  the  intersection  of  the  tangents 
to  its  circumscribing  circle  at  the  ends  of  the  opposite  side. 

5.  If  the  velocity  of  a  particle  describing  an  ellipse  under  the 
action  of  a  centre  of  force  vary  as  the  diameter  parallel  to  the 
direction  of  its  motion  directly,   and  as   its  distance   from  one  of 
the  axes  inversely,  prove  that  the  centre  of  force  will  be  at  an 
infinite  distance. 



174 NEWTON. 

PEOP.  VI.    THEOREM  V. 

If  a  body  revolve  about  a  fixed  centre  of  force,  in  any  orbit 
whatever,  in  a  non-resisting  medium,  and  if,  at  the  ex- 

tremity of  a  very  small  arc,  commencing  from  any  point 
in  the  orbit,  a  subtense  of  the  angle  of  contact  at  that  point 
be  drawn  parallel  to  the  radius  from  that  point  to  the 
centre  of  force,  then  the  force  at  that  point  tending  to  the 
centre  will  be  ultimately  as  the  subtense  directly  and  the 
square  of  the  time  of  describing  the  arc  inversely. 

Let  PQbe  the  small  arc,  PS  the  radius  drawn  from  P 
to  S)  the  centre  of  force.  RQ  the  subtense  of  the 

angle  of  contact  at  P,  parallel  to  PS.  T  the  time  of 
describing  PQ.  F  the  accelerating  effect  of  the 
force  at  P. 

Then,  when  the  body  leaves  P,  it  would,  if  not  acted  on 
by  the  central  force,  move  in  the  direction  PR,  and  if 
the  force  F  continued  constant  in  magnitude  and 
direction  throughout  the  time  T,  QR  would  be  the 
space  through  which  it  would  have  been  drawn  by  F 

in  that  time;  therefore  ultimately,  F= 

-  oc 

COR.  1.  Draw  Q  ̂perpendicular  to  $P,and  let  h  =  twice 
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the  area  described  in  an  unit  of  time.  Then  area 

PSQ  =  ±hT,  Prop,  i.,  also,  since  triangle  PSQ 
=  ISP.  QT,  andareaP#$  =  triangle  PSQ,  ultimately, 
Lemma  VIII.,  therefore  hT  =  SP.QT,  ultimately; 
,  u.      .  ,       _    0  QR     2tf      QR 
hence,  ultimately,  ̂ =  2  ~/     = 

COR.  2.    Draw  8T  perpendicular  on  PR.   Then,  A  PSQ 
=  A  PSR  =  c>^  -*  •  PR  j 

.-.  hT=SY.PR  =  SY.PQ,  ultimately; 

.  QR      ZW     QR 
hence,  ultimately,  F=2  -     =      ̂ '        *' 

COR.  3.  If  the  orbit  have  finite  curvature  at  P,  and  P  V 
be  the  chord  of  the  circle  of  curvature  whose  direction 

passes  through  $?  PV.QR  =  PQ*,  ultimately; * 
~ 

COR.  4.    If  Fbe  the  velocity  at  P,  then  F=>  and 

^    2QR     2QR    fPQ\z     u. 
F=  ~T*  =  JTQ*  •  [-^rj  ,  ultimately  ; 

9  F* 
.•.F

=~,°
*V< 

that  is,  the  velocity  at  any  point  of  a  central  orbit 
at  which  the  curvature  is  finite  is  that  which  would 
be  acquired  by  a  body  moving  from  rest  under  the 
action  of  the  central  force  at  that  point  continued 
constant,  after  passing  through  a  space  equal  to  a 
quarter  of  the  chord  of  curvature  at  that  point  drawn 
in  the  direction  of  the  centre  of  force. 

COR.  5.  Hence,  if  the  form  of  any  curve  be  given,  and 
the  position  of  any  point  S,  towards  which  a  centri- 

petal force  is  continually  directed,  the  law  of  the 
centripetal  force  can  be  found,  by  which  a  body  will 
be  deflected  from  its  direction  of  motion,  so  as  to 
remain  in  the  curve.  Examples  of  this  investiga- 

tion will  be  given  in  the  following  problems. 
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Observations  on  the  Proposition. 

173.  In  Newton's  enunciation  of  the  proposition,  the  sagitta 
of  the  arc,  which  bisects  the  chord  and  is  drawn  in  the  direction 
of  the  centre  of  force,  is  employed  instead  of  the  subtense  used 

in  the  text,  but  these  are  ultimately  proportional  by  Art.  90. 
The  variations  by  which  Newton  expresses  the  results  of  the 

first  three  corollaries  are  replaced  by  equations,  in  order  to 
facilitate  the  comparison  of  the  motion  of  bodies  in  different 
orbits  and  the  forces  acting  upon  them. 

174.  The   figure  employed  in  proof  of  the  proposition  is 
drawn  upon  supposition  that  the  force  is  attractive,  the   orbit 

being  concave  to  the  centre  of  force ;   the  same  proof  will  apply 
also  to  the  case  of  a  repulsive  force,  if  the  curve  be  drawn  in 

the  direction  of  the  dotted  line  PQ'  and  the  same  construction 
be  made. 

The  exception,  however,  should  be  made,  that  the  method  fails 
in  the  particular  positions  in  which  the  body  is  at  the  points  of 
contact  of  tangents  drawn  from  the  centre  of  force  to  the  curve ; 
in  such  cases  QE  does  not  ultimately  meet  the  tangent  at  a  finite 

angle  or  is  not  a  subtense ;  the  result  of  the  proposition  is  there- 
fore not  demonstrated  for  these  particular  positions.  A  further 

discussion  of  the  case  is  given  on  the  next  proposition. 

175.  In  the  proof  it  is  assumed  that  the  body  moves  ulti- 
mately in  the  same  manner  as  if  the  force  at  Premained  constant 

in  magnitude  and   direction,  in   which    case   the   body   would 
describe  a  parabola,  whose  axis  is  parallel  to  P$,  and  which  is 
evidently  the  parabola  which  has  at  P  the  same  curvature  as 
the  curve.     By  this  consideration  the  proposition  contained  in 
Cor.  4  can  be  readily  proved.     For,  since  the  body  moves  in 
a  parabola  under  the  action  of  a  constant  force  in  parallel  lines, 

the  velocity  at  P  is  that  acquired  by  falling  from  the  directrix 
under  the  action  of  the  force  at  P,  continued   constant,   i.e. 
through  a   space   equal   to   the   distance   of  the   focus   of  the 

parabola,  which  is  equal  to  a  quarter  of  the  chord  of  curvature 
at  P,  drawn  through  S. 
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176.  The  supposition  that  the  force  at  P  continued  constant 
in  magnitude  and  direction,  causes  the  body  to  move  in  a  curve 
which  is  ultimately  coincident  with  the  path  of  the  body,  may  be 
justified  by  considering  that  if  PQ  be  the  arc  of  the  parabola 

•described  on  this  supposition  in  the  same  time  as  the  arc  PQ 

actually  described,  the  error  Q'  Q  is  due  to  the  change  in  the 
magnitude  of  the  forces  and  the  direction  of  their  action  in  the 

two  cases;  now,  the  greatest  difference  of  magnitude  varies  as  the 
difference  of  SP  and  8Q  ultimately,  and  the  ratio  of  the  error 

from  this  cause  to  Q'B  vanishes  ultimately  ;  also,  since  L  PSQ 
vanishes  ultimately,  the  ratio  of  the  error,  arising  from  the  change 

of  direction,  to  Q'R  vanishes  ;  therefore,  Q'  Q  ;  Q'R  vanishes,  and 
the  curves  may  be  considered  ultimately  coincident, 

177.  It  is  evident  that  the  results  of  the  Proposition  and  of 
the  fourth  corollary  are  true  of  the  resultant  of  any  forces,  under 
the  action  of  which  any  plane  orbit  is  described,  for  this  resultant 

may  be  supposed  ultimately  constant  in  direction  and  magnitude, 
in  which  case  the  curve  described  is  a  parabola.     Hence,  as  in 
Art.  175,  if  F  be  the  accelerating  effect  of  the  resultant  of  the 

fcces,  QR  the  subtense  parallel  to  the  direction  of  the  resultant, 

p  =  2F.        ,   and  F=  2  limit  -       . 

Homogeneity. 

178.  COR.  1,2.  In  the  expressions  for  F  obtained  in  these 
corollaries,  it  is  of  great  importance  to  observe  the  dimensions 
of  the  symbols.  Thus  kT  represents  an  area  and  h  is  of  twd 

dimensions  in  linear  space  and  of  -  1  in  time  ;  therefore  Ji2.  QR 
Is  of  five  in  space,  and  of  —  2  in  time,  and  SP\QT*  of  four 

2h\  OR 
dimensions  in  space  ;   hence,  •  ,±  is  of  one  dimension  m 

space  and  of  —  2  in  time,  and  represents  either  twice  the  space 
through  which  a  force  would  draw  a  body  in  an  unit  of  time,  or 
the  velocity  generated  by  the  force  in  an  unit  of  time,  either  of 
which  may  be  taken  as  the  measure  of  the  accelerating  effect  of 

the  force  ;  moreover,  this  unit  is  the  same  by  which  the  magni- 
tude of  h  is  determined. 

AA 
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Hence,  if  the  actual  areas,  lines,  &c.,  be  represented  by  the 
symbols,  and  not  the  number  of  units,  as  mentioned  in  Art.  168, 
every  term  of  an  equation  or  of  a  sum  or  difference  must  be 

homogeneous,  or  of  the  same  number  of  dimensions,  both  in  space 

and  time;  for  example,  PQ+  V.T  representing  a  line,  V  must 
be  of  —  1  dimensions  in  time. 

Tangential  and  Normal  Forces. 

179.  To  find  the  accelerating  effect  of  the  components  of  tlie 

forces^  under  the  action  of  which  a  body  describes  any  plane  curve^ 
taken  in  the  directions  of  the  normal  and  tangent  at  any  point. 

Let  PQ  be  a  small  arc  of  the  curve  described  under  the 

action  of  any  forces,  T7,  N  the  measures  of  the  accelerating  effect 
of  these  forces,  in  the  direction  of  the  tangent  and  perpendicular 
to  it.  Then,  if  V  be  the  velocity  at  P,  t  the  time  of  describing 

PQ,  the  forces  may  be  supposed  ultimately  to  remain  constant  ; 
therefore,  if  QR  be  perpendicular  to  PR,  we  shall  have 

ultimately  QR  =  %N.f,  and  PR  =  V.t  +  %T.f  =  V.t  since  the 

ratio  of  T.t*  :  Vt  vanishes  ultimately;  hence,  if  p  be  the  radius 
PR*     2  F2  F2 

of  curvature  at  P,  2p=  ni^  =  —^r  ultimately;  therefore  —  will 
(tfJLt  J\  p 

be  the  measure  of  the  normal  acceleration  estimated  towards 
the  centre  of  curvature. 

Again,  if  V  be  the  velocity  at  Q,  V  will  be  ultimately  the 
component  of  the  velocity  in  the  direction  PR\  therefore,  by 
Art.  53,  we  obtain  two  measures  of  the  tangential  acceleration, 

V*  -V* the  limits  of 

180.  To  find  the  velocity  at  any  point  of  an  orbit  described 

\inder  the  action  of  any  forces  in  one  plane. 

Let  AB  be  any  arc  of  an  orbit,  F,  v  the  velocities  at  A  and 

J5,  and  suppose  the  arc  AB  divided  into  a  large  number  of  small 

portions,  of  which  PQ  is  one,  v,,  vr+l  velocities  at  P  and  $,  T  the 
accelerating  effect  of  the  tangential  component  of  the  forces  at  P, 

vrj  _  tv2  =  2T.PQ  ultimately, 

find  v*-  F*  is  obtained  by  taking  the  limit  of  the  sum  of  the 
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magnitudes  2T.PQ  corresponding  to  the  different  arcs  when 
their  number  is  indefinitely  ir:  creased. 

That  this  is  rigidly  correct  may  be  shewn  by  considering  that 

vr+12  —  v*  :  2  T.PQ  is  ultimately  a  ratio  of  equality  ;  therefore,  by 
Cor.,  Lemma  IV.,  or  Art.  22,  the  limiting  ratio  of  the  sums  is 
also  a  ratio  of  equality. 

In  the  case  of  a  central  force,  whose  accelerating  effect  is  F^ 

2F(SP-SQ)  ultimately, 

whence  v2  —  F2,  if  F  depend  only  on  the  distance. 

Radial  and  Transversal  Forces. 

181.  To  find  the  accelerating  effect  of  the  components  of 

force,  under  the  action  of  which  a  body  describes  any  plane  curve$ 
taken  in  the  direction  of  a  radius  vector  drawn  from  a  fixed 

pointy  and  perpendicular  to  it. 

Let  PQ  be  a  small  arc  described  in  the  time  T;  QRU^ 

PU  parallel  and  perpendicular  to  SPj  P,  Q  the  measures  of  the 
accelerating  effects  of  the  components  in  PS  and  PU\  PR  a 

tangent  at  P.  If  V  be  the  velocity  at  P,  make  PT=V.T> 
draw  TN  perpendicular  to  /SP,  and  let  Qq  be  the  arc  of  a 
circle,  centre  S. 

Since  the  forces  may  be  considered  ultimately  constant  in 

magnitude  and  direction, 
-  ultimately. 



180  NEWTON. 

Let  h  be  twice  the  area  which  would  be  described  in  an 

unit  of  time  by  radii  from  $,  if  the  transverse  force  Q  ceased 

to    act,   then  Qn.SP=  TN.  SP=  h.  T-,     therefore   $?-•  =  ~gj~8 
ultimately ;  and  if  P  be  the  measure  of  the  accelerating  effect 
of  a  force,  under  the  action  of  which  the  body  would  move 
in  PS,  so  that  its  distance  from  S  would  be  always  equal  to 

that  of  the  body  in  PQ  at  the  same  time,  ̂ P'.T2  =  Nq  ulti- 

mately ;  therefore  P=  Pf  -f  -~p§ » 

Again,  if  at  Q  k'  correspond  to  ̂ ,  Ti  —  h,  the  increase  of  #, 
will  be  due  to  the  increase  of  velocity  in  direction  PU,  which 

is  equal  to  Q.  T  ultimately;  therefore  (h' -  h}  T=  Q.T'.SP 

ultimately;  hence  Q=  op- rr,  ultimately. 

Angular   Velocity. 

182.  DEF.    Angular  velocity  of  a  point  moving  about  a  fixed 

point  is  the  rate  at  which  angles  are  described  by  radii  drawn 
to  the  fixed  point. 

Uniform  angular  velocity  is  measured  by  the  angle  described 
in  an  unit  of  time. 

Variable  angular  velocity  is  measured  by  the  angle  which 
would  be  described  by  a  radius  in  an  unit  of  time,  if  moving  with 
uniform  angular  velocity  equal  to  the  angular  velocity  at  tho 
time  under  consideration:  this  is  the  limit  of  the  angle,  described 

in  a  time  T,  divided  by  T,  when  T  is  indefinitely  diminished. 

183.  To  find  the  angular  velocity  in  a  central  orbit. 

Let  PQ  be  a  small  arc  described  in  the  time  T7,  draw  QN 
perpendicular  to  SP,  then  h.T=  twice  the  area  PSQ=  QN.SP 
ultimately ;  and,  if  the  angles  be  supposed  estimated  in  circular 

measure,  /.PSQ=  ̂ ~  =  ̂4-  ultimately;  therefore  the  angular 

velocity,  which  is  L       ?  ultimately,  =  -7, . 
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184.  To  find  the  angular  velocity  of  the  perpendicular  on  the 
tangent  from  the  centre  of  force. 

Draw  8Y  perpendicular  on  the  tangent  PF,  and  let  PV  be 
the  chord  of  curvature  through  S. 

The  angle  described  by  SY  in  the  time  T  is  equal  to  the 

angle  between  the  tangents  at  P  and  Q,  or  to-  twice  the  angle 
PVQ\  therefore  angular  velocity  of  SY  :  angular  velocity  of 
/SP  :  :  2  z  PVQ  :  L  PSQ  :  :  2SQ  :  Q  V  ultimately  ;  hence  the 

2k 
angular  velocity  of  SY  =  pv     „. 

Illustrations. 

(1)  To  find  the  tension  of  a  string  by  which  a  body  is  attached 
to  the  centre  of  a  vertical  circle  in  which  it  revolves. 

Let  P  be  the  position  of  the  body  at  any  time,  (?P,  GA 
radii  drawn  to  P  and  the  lowest  point,  and  let  v,  u  be  the 
velocities  at  P  and  A.  Draw  PM  perpendicular  to  GA.  Then 

v* 

u*  —  v*  =  Zg.AM  and  -~-r  is  the  accelerating  effect  of  the  forces (jA. 

in  the  direction  P<7,  viz.  the  tension  of  the  string  and  the  com- 
ponent of  the  weight  of  the  body.  Let  T  be  the  tension  of 

the  string  and  m  the  mass  of  the  body  ; 
a  m 
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therefore  the  tension  of  the  string  :  the  weight  of  the  body 

::  u*  -  2ff. CA  +  Sg.GM  :  g.CA. 

NOTE  1.  In  order  that  the  complete  circle  may  be  described, 
since  the  string  must  be  stretched  at  the  highest  point  where 

—  CA  must  be  written  for  CM,  w2=  or  >  5g.CA,  and  if  the 
circle  be  just  described,  the  tension  at  the  lowest  point  will  be 
six  times  the  weight. 

NOTE  2.  If  the  body  oscillate,  the  extent  of  the  oscillation 

will  be  given  by  the  consideration  that  at  the  extremity  P  of 
the  arc  of  oscillation  there  will  be  no  velocity,  therefore 

tt*  =  '2g.AM',  and  AM'  is  less  than  AC,  otherwise  the  string 
would  not  be  stretched,  so  that  the  tension  at  A  :  the  weight 

(2)  Find  the  force  under  the  action  of  which  a  body  may 
describe  the  equiangular  spiral  uniformly. 

The  velocity  being  constant,  there  is  only  a  normal  force 
T/*2       * 

measured  by  (vel.)2  -*•  radius  of  curvature  =  — ^ —  ,  Art.  128. 

(3)  Find  the  force  tending  to  the  pole  of  the  cardioid^  under 
the  action  of  which  the  curve  is  described. 

Since  PF=  £ SP,  and  (vel.}2  =  -^=i  =  -^  ,  see  page  105, 
q72    'PC*  1 

therefore  the  accelerating  effect  of  the  force  is  -^i*-  °c  -o*  • 

(4)  Two  equal  rings  P,  Q  slide  on  a  string  which  passes  round 
two  fixed  pegs  A,  B  in  a  smooth  horizontal  plane  ;  the  rings  are 
brought  together,  and  then  projected  with  equal  velocities,  so  as  to 

ke^p  the  string  stretched  symmetrically.  Shew  that  the  tension  of 
he  string  varies  inversely  as  the  distance  AP. 
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The  figure  represents  the  position  of  the  system  at  any  time. 
Let  CH  bisect  AB  and  PQ,  and  let  DE  be  drawn  parallel  to 

CR,  so  that  EP=PA,  then  EPR  =  AP+PR  is  constant; 
therefore  DE  is  fixed,  and  P  moves  in  a  parabola  whose  focus 
is  A  and  directrix  DE. 

Also,  the  tensions  of  the  string  in  PA,  PQ  being  equal  and 

equally  inclined  to  the  tangent  to  P's  path,  the  resultant  of  these 
tensions,  which  are  the  only  forces  acting  in  the  plane  of  the 
curve,  acts  in  the  normal,  hence  the  rings  move  with  uniform 

velocity  equal  to  the  velocity  of  projection  F,  and  if  T  be  the 
measure  of  the  accelerating  effect  of  the  tension,  PG  the  normal, 
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==  chord  of  curvature  through  A  =  ±PA  ;  therefore 

T=Z1        J_ 

±PA       PA ' (5)  A  lody  revolves  in  a  smooth  circular  tube  under  the  action 

of  a  force  tending  to  any  point  in  the  circumference,  and  varying 
as  the  distance  from  that  point.  Find  the  pressure  on  the  tube,  and 
the  point  where  there  is  no  pressure,  the  motion  commencing  from 
a  given  point. 

Take  A  the  centre  of  force,  C  that  of  the  circle ;  let  B  be  the 

point  of  starting,  PQ  a  small  arc,  BD,  PM,  QN  ordinates  to  the 

diameter  through  the  centre  of  force,  Am,  Qn  perpendicular  on 
CP\  let  fji.PA  be  the  measure  of  the  accelerating  effect  of  the 

force  at  P;  therefore  p.mA,  [jL.Pm  are  those  of  the  tangential 
and  normal  forces,  =fj,.PM  and  p.  AM  respectively. 



184 NEWTON. 

(vel.)2  at  Q-(vel.)8  at  P=2n.PM.PQ=2fj,.CP.MN ultimately, 
see  Art.  179,  whence,  taking  the  limit  of  the  summation  for  all 

the  small  arcs  in  BP,  (vel.)a  at  P=2fj,.CP.Z>M. 
fve\  )2  at  P 

Also,   - — 7YQ —  =ft.AM+t\iQ   accelerating   effect   of  the Gx 

pressure  of  the  tube,  the  upper  or  lower  sign  being  taken 

according  as  the  pressure  is  from  or  towards  CT;  therefore  the 
pressure  on  the  tube  has  for  the  measure  of  its  accelerating  effect 

±  fju  (AM-  2DM)  =  ±  (3AM-  2 AD) ; 

hence  the  pressure  is  outwards  from  B  until  AM=$AD,  at 
which  point  there  is  no  pressure,  and  inwards  from  that  point  to 
the  corresponding  one  on  the  opposite  side,  having  its  greatest 
value  at  A,  and  the  outward  pressure  at  B  is  half  the  inward 

pressure  at  A. 

(6)  If  in  a  smooth  elliptic  tube  a  particle  be  placed  at  any 

point ,  and  be  acted  on  by  two  forces  which  tend  to  the  foci  and 
vary  inversely  as  the  square  of  the  distances  from  those  points, 
shew  that  the  pressure  at  any  point  will  vary  as  the  curvature. 

Let  0  be  the  point  of  starting,  PQ  a  small  arc  described  by 

the  body,  Q2]  Q  U  perpendiculars  on  SP,  HP. 

R,  as  the  measures  of  the  accelerating .lake    oa  ? 

effects  of  the  forces,  and  of  the  pressure  of  tube  outwards. 

Then,  employing  the  usual  letters  for  the  lines  of  the  figure, 
the  accelerating  effect  of  the  tangential  component  of  force 
to  S  is 

fji       PT 
PQ 

SP2 

fi(SP-J8(fi_       fi  n         ,. 

SP.SQ.PQ  ~  PQ.SQ     PQ.SP  u 

IT 

and  similarly  for  the  force  tending  to  //; 
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(vel.)2  at  P      /  /*'          /*  \  PF 
Also,  v-  --  -  =  +'-  R>  lf  ̂  be  the  radlU3 

PF       ,T/     2CZ>?      ZSP.HP of  curvature  at  P,  and  2/3.  -      =  PF  = 

*' 
AC.SP 

.     _  _ 

HO*  SO     ~AG  ~
" 

which  is  constant  j  therefore  j^  varies  as  the  curvature. 

XXIII. 

1.  A  body  is  attached  to  a  point  by  a  thread,  and  is  projected  so 
as  to  describe  a  vertical  circle,  prove  that,  if  Tv   T2  be  the  tensions 
of  the  string  at  the  extremities  of  any  diameter,  the  arithmetic  mean 
between  Tv  T^  is  independent  of  the  position  of  the  diameter,  and 
that  TZ^T!  is  six  times  the  component  of  the  weight  in  the  direction 
of  the  diameter. 

2.  A  string  of  given  length  I  is  capable  of  sustaining  a  weight  7F*. One  end  is  fixed,  and  a  given  weight  P  less  than  JF,  attached  to  the 
other  end,  oscillates  in  a  vertical  plane,  find  the  greatest  arc  through 
which  the  weight  can  oscillate  without  breaking  the  string. 

3.  A  ring  slides  on  a  string  hanging  over  two  pegs  in  the  same 
horizontal  line,  find  the  tension  of  the  string  at  the  lowest  point,  if 
the  ring  begin  to  fall  from  the  point  in  the  horizontal  line  through 
the  pegs,  the  string  being  stretched. 

4.  AB  is  the  vertical  axis  of  a  cycloid,  A  the  highest  point, 
AM,  AN  are  the  abcissse  of  points  at  which  a  body  begins  to  slide 
down  the  arc  of  the  cycloid,  and  at  which  it  leaves  the  curve ;  prove 
that  JV  is  the  middle  point  of  MB. 

5.  If  in  a  central  orbit  the  direction  of  motion  change  uniformly, 
prove  that  the  normal  force  will  vary  as  the  radius  of  curvature. 

BB 
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6.  Given  the  Sim's  motion  in  longitude  at  apogee  and  perigee 
to  be  57'  10"  and  61'  10"  ;  find  the  eccentricity  of  the  Earth's  orbit, 
supposed  to  be  an  ellipse  about  the  Sun  in  one  of  the  foci. 

7.  Prove   that  the  angular  velocity  of  a  projectile  about  the 
focus  of  its  path  varies  inversely  as  its  distance  froux  the  focus. 

8.  A  particle,  constrained  to  move  on  an  equiangular  spiral,  is 
attracted  to  the  pole  by  a  force  proportional  to  the  distance,  prove 
that,  at  whatever  point  the  particle  be  placed  at  rest,  the  times  of 
describing  a  given  angle  about  the  centre  of  force  will  be  the  same. 

9.  A  body  slides  down  a  smooth  cycloidal  arc,  whose  axis  is 
vertical  and  vertex  downwards,  find  the  pressure  at  any  point  of  the 
cycloid,  and  shew  that,  if  it  fall  from  the  highest  point,  the  pressure 
at  the  lowest  point  will  be  twice  the  weight  of  the  body. 

10.  Find  the  law  of  force,  tending  to  the  centre,  under   the 
action  of  which  a  lemniscate  can  be  described, 

XXIV. 

1.  Two  straight  lines  AB  and  BC  are  united  at  B ;  A  B  revolves 
about  A,  and  BC  about  B  with  the  same  uniform  angular  velocity  ; 
shew  that  the  acceleration  on  C  tends  to  A  and  varies  as  CA. 

2.  A  particle  describes  an  ellipse,  the  centre  of  force   being 
situated  at  any  point  within  the  figure.     Shew  that  at  the  point 
where   the   true   angular  velocity   is   equal   to   the   mean   angular 
velocity,  the  radius  vector  is  a  mean  proportional   between  the 
semiaxes. 

3.  A  particle  begins  to  move  from  any  point  of  a  smooth 
parabolic  tube,  being  attracted  to  the  focus  by  a  force  which  varies 
inversely  as  the  square  of  the  distance ;  find  the  greatest  pressure. i 

4.  If  S  Y  be  the  perpendicular  on  the  tangent  at  a  point  P  of 
an   orbit,    described   about   a   centre   of  force    S,  prove  that   the 
acceleration  at  P  will  be  equal  to  the  product  of  the  velocities  of  P 
and  Y  divided  by  SY. 

5.  A  smooth  cone  is  placed  with  its  axis  vertical  and  vertex 
upwards,  shew  that  there  is  a  certain  portion  of  the  surface  upon 
which  a  particle  can  describe  a  circle,  if  properly   projected   and 
acted  on  by  gravity  and  by  a  force  tending  to  the  vertex  and 
varying  as  the  distance. 
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6.   Shew  that  the  force  required  for  the  description  of  an  ellipse 
* 

about  the  vertex  A  varies  as  -jWa  >  where  PJVis  the  perpendicular 
on  the  axis. 

7.  If  a  particle  describe  an  ellipse  under  the  action  of  a  force 

DD  '6 

tendin
g  

to  any  fixed  point 
 
0,  the  force  will  vary  as  ̂   p,       

  
3  ,  where

 

P  is  the  position  of  the  particle,  PP'  the  chord  through   0,  and 
T)D'  the  diameter  parallel  to  this  chord. 

8.  Shew  that  in  the  elliptic  orbit  described  under  the  action  of 
a  force  tending  to  a  focus,  the  angular  velocity  round  the  other 
focus  varies  inversely  as  the  square  of  the  diameter  parallel  to  the 
direction  of  motion. 

9.  A  particle  moves  in  a  circular  tube,  under  the  action  of  si 
force  which  tends  to  a  point  in  the  tube,   and  whose  accelerating 
effect  varies  as  the  distance,  shew  that,  if  the  particle  begin  to  move 
from  a  point  at  a  distance  from  the  centre  of  force  equal  to  the 
radius,  there  will  be  no  pressure  on  the  tube  at  an  angular  distance 

from  the  centre  of  force  equal  to  cos~Jf  . 

10.  A  particle  moves  in  a  smooth  elliptic  groove,  under  the 
action  of  two  forces  tending  to  the  foci  and  varying  inversely  as  the 
squares  of  the  distances,  the  forces  being  equal  at  equal  distances. 
Prove  that,  if  the  velocity  at  the  extremity  of  the  axis  major  be  to 
that  at  the  extremity  of  the  axis  minor  as  AC  to  B  C,  then  the 
velocity  at  any  point  will  vary  inversely  as  the  normal  ;  find  the 
pressure  on  the  tube. 

1  1  .  Determine  the  relation  between  p  and  X  and  the  velocity  of 
projection,  in  order  that  an  ellipse  may  be  described  under  the 

u          ti 

action  of  forces  ̂   pi>  frps  to  the  foci  and  X  CP  to  the  centre,  acting 

simultaneously. 

12.  A  particle  is  attached  to  a  point  C  by  a  string,  and  is 
attracted  by  a  force  which  tends  to  a  point  /S,  and  varies  inversely  as 
the  square  of  the  distance  from  8.  Find  the  least  velocity  with 
which  the  particle  can  be  projected  from  a  point  in  CSt  or  CS  pro- 

duced, so  as  to  describe  a  complete  circle.  If  CS  be  less  than  the 
length  of  the  string,  prove  that  the  tension  will  be  a  maximum  at 
a  point  D,  where  SD  is  perpendicular  to  CSt  and  that  if  CS  be  half 
the  length  of  the  string,  the  two  minimum  and  the  maximum- 
tensions  will  be  as  0,  4  and  3  V3. 
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PROP.  VII.  PROBLEM  II. 

A  body  moves  in  the  circumference  of  a  circle,  to  find  the  law 
of  the  centripetal  force,  tending  to  any  given  point  in  the 
plane  of  the  circle. 

Let  AP  Fbe  the  circumference  of  the  circle,  $the  given 
point  to  which  the  centripetal  force  tends,  P  V  the 

chord  of  the  circle  drawn  through  S  from  P,  the 
position  of  the  body  at  any  time,  and  VGA  the 

diameter  through  F".  Join  PA,  and  draw  SY perpendicular  to  PYy  the  tangent  to  the  curve  at  P. 

By  Prop.  vi.  Cor  3,  if  F  be  the  measure  of  the  accele- 

rating effect  of  the  centripetal  force,  F  =  -  , 

and,  since  the  angles  SPY,  VAP  are  equal,  and  also 
the  right  angles  PYS,  APV,  the  triangles  SPY, 
VAP  are  similar,  and  SY :  SP  : :  P  V :  VA-, 

= 

therefore,  since  li  and  VA  arc  given,  F  varies 
inversely  as  SP\PV\ 
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COE.  1.  Hence,  if  the  given  point  $  to  which  the 
centripetal  force  tends,  be  situated  on  the  circum- 

ference of  the  circle,  V  will  coincide  with  $,  and  F 
vary  inversely  as 

COE.  2.  The  force,  under  the  action  of  which  a  body 
P  revolves  in  a  circle  APTV,  is  to  the  force,  under 
the  action  of  which  the  same  body  P  can  revolve  in 
the  same  circle  in  the  same  periodic  time  about  any 
other  centre  of  force  R,  as  RP\SP  to  SG\  SG  being 
a  straight  line  drawn  from  the  first  centre  $,  parallel 
to  the  distance  EP  of  the  body  from  the  second 
centre  of  force  E,  to  meet  P6r,  a  tangent  to  the  circle. 

For,  by  the  construction  of  this  proposition,  since  the 
periodic  times  are  the  same,  the  areas  described  in 

a  given  time  are  the  same  ;  therefore,  h  is  the  same 
for  both  centres,  hence,  if  PET  be  the  chord  through 

R,  the  force  to  S  :  the  force  to  R  :  :  RP\PT* 
:/ST2.PF3;  but,  by  similar  triangles  TPV,  GSP, 
PT  :PV\\SP:Sa\  therefore  force  to  S  :  force  to  R 

:  SP'.Sff  : 

COE.  3.  The  force,  under  the  action  of  which  a  body 
P  revolves  in  any  orbit  about  a  centre  of  force  S,  is 
to  the  force,  under  the  action  of  which  the  same 
body  P  can  revolve  in  the  same  orbit  in  the  same 
periodic  time  about  any  other  centre  of  force  R,  as 
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£P\SPto  SG\  SG-  being  the  straight  line  drawn  from 
the  first  centre  of  force  8,  parallel  to  RP  the  distance 
of  P  from  the  second  centre  of  force  R,  to  meet  PG 
the  tangent  to  the  orbit. 

For,  in  each  case,  the  body  may  be  supposed  for  a 
short  time  to  be  moving  in  the  circle  of  curvature, 
and  the  forces  are  the  same  as  those  which  would 
retain  the  body  in  the  circular  orbit;  therefore, 
since  the  areas  described  in  a  given  time  are  equal, 
the  ratio  of  the  forces  is  RP\SP 

Observations  on  the  Proposition. 

185.  In  the  figure  employed  in  the  proposition,  the  force  is 
supposed  to  be  attractive,  but  the  investigation  of  the  law 
of  force  applies  also  to  the  case  in  which  the  centre  of  force 

8  is  exterior  to  the  circle,  in  which  case  the  force  is  repulsive 
through  the  arc  Z?(7,  which  is  convex  to  the  centre  offeree,  and 
contained  between  the  tangents  drawn  from  8  to  the  circle. 

It  is  important,  however,  to  observe  that  this  problem  is  to 
find  what  would  be  the  law  of  force  tending  to  8,  under  the 
action  of  which  a  body  would  be  moving,  supposing  that  it 
could  move  in  the  circle,  or  any  portion  of  the  circle,  under  the 
action  of  such  a  force,  but  it  does  not  assert  the  possibility  of 
such  a  motion,  which  is  considered  in  Art.  165. 
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In  fact,  the  complete  description  of  a  circle  ABC,  under  the 
sole  action  of  a  central  force  tending  to  an  external  point  S,  is 

impossible,  because,  as  the  body  approaches  the  point  J9,  the 
component  of  the  velocity  perpendicular  to  SB  remains  finite 
however  near  the  body  approaches  B,  and  since  there  is  no 
force  to  generate  a  velocity  in  the  opposite  direction,  the  body 
must  proceed  to  describe  an  arc  BU  on  the  opposite  side.  SB 
would  be  a  tangent  to  both  curves,  because  the  velocity  in 
direction  BS  becomes  larger  than  any  finite  quantity,  as  the  body 
approaches  B,  and  therefore  the  angle  between  BS  and  the 
direction  of  motion  is  indefinitely  small  at  B. 

That  a  finite  velocity  in  the  direction  perpendicular  to  SB 
could  remain  up  to  B,  may  be  shewn  by  producing  SB  to  T 
in  the  tangent  PY  at  P;  then  the  component  of  the  velocity 

7          QV         7)  7} 

at  P  perpendicular  to  SB  is  -       .          =  -       =        ,  when  the 

body  arrives  at  a  point  very  near  to  B. 

186.  The  force  at  a  point  indefinitely  near  to  B  cannot  be 

properly  determined  by  the  method  of  Prop.  VI.,  because  the 
lines  parallel  to  the  direction  of  the  force  from  which  the  mea- 

sures  of  the  force  are  obtained  are  not  subtenses,  or  sagittse, 
since  they  are  in  this  case  not  inclined  at  a  finite  angle  to  the 
tangent. 
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But  it  can  be  seen  in  another  manner  from  the  polygon  of 

Prop.  I,  that  the  force  is  infinitely  great,  when  the  distance  from 
B  becomes  infinitely  small. 

Thus,  if  CDEF  be  a  portion  of  the  polygon  whose  limit 
touches  the  radius  from  S  between  D  and  E,  the  angle  between 
DE  and  DS  or  ES  may  be  made  as  small  as  we  please  compared 
with  the  angle  between  CD  and  DE,  hence  the  velocity 

generated  by  the  impulse  in  the  directions  DS  and  SE  will 
become  infinitely  great  compared  with  the  velocities  in  CD 
and  EF.  In  the  figure,  the  impulses  at  D  and  E,  whose 
directions  are  denoted  by  the  arrows,  have  corresponding  to  them 
in  the  limit  the  forces  on  opposite  sides  of  the  tangent,  which 
are  attractive  and  repulsive  respectively. 

187.  COR.  1.  For  the  reasons  given  above,  a  limitation 
should  be  made,  viz.,  when  P  is  at  a  finite  distance  from  S.  In 

8AajR2 
this  case  PV—  SP  and  F=  -r  j  ̂  being   the  radius  of  the 

circle. 

We  may  also  observe  here  that  impossibility  of  a  description 
of  a  circle  is  not  asserted,  but  only  the  law  of  force  required 
in  case  of  description  of  any  portion  of  the  circle.  The  complete 
description  of  the  single  circle  is,  in  fact,  impossible,  for,  under 
the  action  of  the  force  obtained,  the  body  would  pass  to  the  other 
side  of  the  tangent  on  arriving  at  S,  then  proceed  to  describe 
another  equal  circle,  and,  on  arriving  again  at  $,  return  into  the 

original  circle. 

188.  COR.  3.  The  orbit  being  the  same,  and  also  the 

periodic  times  about  S  and  E  being  equal,  the  value  of  h}  in 
the  two  cases,  is  the  same;  also,  the  force  tending  to  S  for 
the  orbit  being  of  the  same  magnitude  at  P  as  that  under  the 
action  of  which  the  circle  of  curvature  would  be  described,  and 

SYj  PV  being  the  same  in  the  orbit  and  the  circle,  h  is  also 
the  same,  Prop.  VI.  Cor.  3  ;  and,  similarly,  h  is  the  same  in  the 
circle  and  orbit  described  about  R  ;  therefore  it  is  the  same  in 
the  circle  described  about  S  and  R  as  centres  of  force,  and  hence 

Cor.  2  applies. 
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Absolute  Force. 

189.  If  the  force  upon  a  body  placed  at  any  distance  from 

the  point  S  vary  inversely  as  the  wth  power  of  that  distance, 
the  magnitude  of  the  force,   or   its   ratio  to  any  given  force, 
as  that  of  gravity,  will  be  determined  when  the  distance  SP  is 
given.     The  measure  of  the  accelerating  effect  of  the  force  is 

written  -4^,  where  JJL  the  constant  part  of  this  measure  is  an 

algebraical  symbol  of  n  +  1  dimensions  in  linear  space.  If  the 

unit  of  space  =  a,  —n  is  the  measure  of  the  accelerating  effect  of ct> 

the  force  on  a  body  at  an  unit  of  distance,  and  /A  is  called  the 
Absolute  Force,  being  the  measure  of  the  accelerating  effect  of 
the  force  at  an  unit  of  distance  x  the  rath  power  of  that  unit. 
The  absolute  force  is  not  the  measure  of  the  accelerating  effect 
of  any  force,  unless  the  symbols  be  treated  numerically,  in  which 
case  /A  is  twice  the  number  of  units  of  space  through  which  a 

constant  force,  equal  to  the  force  at  pn  unit  of  distance,  would 
draw  a  body  from  rest  in  an  unit  of  time. 

Law  of  Force  in  a   Circular   Orbit. 

190.  The   law  of  force  may  be  expressed  in  terms  of  the 
distance  $P,  for  SD,  Sd  being  the  greatest  and  least  distances 

of  the  body  from  S,  8D.Sd  =  SP.S7;  see  figure,  page  188. 

.-.  SP.PV=SP*±SD.Sd, 

+  or  —  according  as  S  is  within  or  without  the  circle  ; 

*" 

If  S  be  on  the  circumference  Sd  =  0,  therefore  F=  ~-^-pd  —  . 

If  S  be  exterior  to  the  circle,  SD.Sd=SB\  and  the  lower 

.       ,       _         ** sign  must  be  taken  ;  therefore  F= 

-(•<?&* 

Velocity  in  the   Circular   Orbit. 

191.  To  find  the  velocity  in  the  circular  orbit  described 

under  the  action  of  a  force  tending  to  any  point  in  the  plane  of 
the  orbit. 

CO 
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h         h     SP       h     VA  I 
The  velocity  at  P=  ̂   =  gp-  3-3,=  gp-  py^^P^V 

COR.   If  yS  be  in  the  circumference  of  the  circle,  and  -„„ 

be  the  accelerating  effect  of  the  force,  fi  =  2h*SA*  ; 

hence  the  velocity  at  P= 

Or,  we  may  employ  the  mult  of  Prop,  vi.,  Cor.  4, 

Periodic  Time. 

192.  2T>  j^w<f  f^e  periodic  time  in  a  circular  orbit  described 
under  the  action  of  a  force  tending  to  a  point  in  the  circumference. 

Let  P  be  the  periodic  time,  R  tlie  radius  of  the  circle,  and 

let  ̂ 6  be  the  measure  of  the  accelerating  effect  of  the  force  at 

P,  then  h.  P=  twice  the  area  of  the  circle 

and  p  =  2AM  S*  =  8A2^2  ;  /.  P 

193.  To  compare  the  periodic  times  in  the  same  circle  wJien 
described  under  the  action  of  a  force  tending  to  a  point  in  the 
circumference,    and  a  force    tending    to    the  centre,  of  the  same 
magnitude  as  that  of  the  first  force  at  a  distance  equal  to  the  radius 

of  the  circle. 

Let  P'  be  the  periodic  time,  and  Fthe  uniform  velocity  in 

the  circle  in  the  second  case,  V2  =  j^.  7?;  /.  ̂ —~Wii 

and  F  .  F=  2irR  -  .:  P'  =  —  f * 

Illustrations. 

(1)    When  the  force  in  a  circular  orbit  tends  to  a  point  within 
the  circle,  to  find  the  pointat  which  the  true  angular  velocity  is 
eyual  to  the  mean  angular  velocity. 
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The  true  angular  velocity  =  -~™  ,  the  mean  =  -p  =  2ir  .  —  ̂   ; 

therefore  at  the  required  point  SP=  R,  or  the  perpendicular  from 
the  required  point  upon  the  line  joining  S  to  0  the  centre  of  the 
circle  bisects  OS. 

(2)  A  body  describes  a  circle  under  the  action  of  a  force, 
tending  to  a  point  within  it^  the  measure  of  whose  accelerating 
effect  at  the  greatest  and  least  distances  SD  and  Sd  are  the  radius 
and  twice  the  diameter  respectively  ,  the  unit  of  time  being  a  second] 
find  the  number  of  seconds  in  passing  from  D  to  d. 

StfR'         p    _8^_       p 6  *~     >3~       > 

and  the  number  of  seconds  from  D  to  d  =  —  f-  =  —  -  , h         4: 

XXY. 

1.  If /u  be  the  absolute  force  in  a  circular  orbit  described  under 
the  action  of  a  force  tending  to  a  point  in  the  circumference,  prove 
that  the  time  in  a  quadrant  commencing  from  the  extremity  of  the 

diameter  through  the  centre  of  force  will  be  (*•  +  2)  IP  (i/u)~*. In  what  unit  of  time  is  the  result  expressed  ? 

2.  A  point  describes  a  circle,  with  an  acceleration  tending  to  any 
point  within  the  circle.     Prove  that,  if  three  points  be  taken  at 
which  its  velocities  are  in  harmonical  progression,  the  velocities  at 
the  other  extremities  of  the  diameters,  passing  through  those  points, 
will  also  be  in  harmonical  progression. 

3.  In  the  case  of  a  centre  of  force  5  within  a  circle,  if  two  points 
Z,  M  be  taken,  such  that  LS,   MS  make  equal  angles  with  the 
diameter  through  S,  and  on  the  same  side  of  it,  then  the  forces  at 
L  and  M  will  be  to  each  other  in  the  inverse  ratio  of  the  squares  on 
OL  and  OM. 

4.  The  sum  of  the  reciprocals  of  the  velocities  at  the  extremities 
of  any  diameter  is  independent  of  the  position  of  the  centre  of  force, 
and  varies  as  the  periodic  time. 

5.  Prove  that,  when  a  circular  orbit  is  described  about  an  in- 
ternal point,  the  sum  of  the  square  roots  of  the  accelerations  at  the 

extremities  of  any  chord  passing  through  that  point  varies  inversely 
as  the  square  root  of  the  length  of  the  chord. 
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6.  Prove  that,  if  the  law  offeree  tending  to  S,  a  point  without  a 
circle,  be  the  law  of  force  under  which  part  of  the  circle  can  be  de- 

scribed, the  body  will  move  near  B  as  if  acted  on  by  a  force  tending 
to  B  and  varying  inversely  as  the  cube  of  the  distance  from  B. 

7.  OE  is  a  radius  perpendicular  to  the  diameter  through  S  in  a 
circular  orbit  about  a  central  force  tending  to  a  point  S  within  the 
circle,  SB  an  ordinate,  perpendicular  to  OS,  shew  that,  if  the  force 
at  B  be  an  arithmetic  mean  between  the  forces  at  the  greatest  and 

least  distances,  0£3~  SB.SE2. 

8.  Prove  that,  if  a  circle  be  described  about  a  force  tending  to  a 
point  in  the  circumference,  and  PQ  be  a  chord  parallel  to  the  dia- 

meter through  that  point,  the  times  of  describing  equal  small  arcs 
near  P  and  Q  will  differ  by  a  quantity  which  varies  as  PQ. 

9.  When  a  particle  is  describing  a  circle  under  the  action  of  a 
central  force,   shew   that   at   every  instant  the  angular  velocities 
about  all  points  in  the  circumference  are  the  same. 

10.  The  period  in  an  orbit  described  under  the  action  of  a  central 

force,  whose  accelerating  effect  is  prn  is  given  to  be  A0'H  -r  p.%,  a  be- 
ing a  line  and  X  a  number,  find  n. 

11.  Apply  the  proposition  contained  in  Cor.  3,  to  prove  that  if 
in  an  elliptic  orbit  described  under  the  action  of  a  force  tending 
to  the  centre,  the  force  vary  as  the  distance  from  the  centre,  then 
the  force  tending  to  the  focus  will  vary  inversely  as  the  square  of 
the  focal  distance. 

12.  Deduce,  by  Cor.  3,  the  law  of  force,  when  a  parabola  is 
described  under  the  action  of  a  force  tending  to  the  focus,  from  the 
constant  force  parallel  to  the  axis,  under  the  action  of  which  the 
eame  parabola  may  be  described. 

13.  Shew,  by  the  method  of  projections,  that  the  centripetal 
force  at  any  point  P  tending  to  a  fixed  point  0  in  the  axis  major 
of  an  ellipse  under  which  the  ellipse  can  be  described,  varies  as 

being  the  chord  of  the  ellipse  through  0. 
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PEOP.  VIII.    PROBLEM  III. 

A  lady  moves  in  a  semicircle  PQA  under  the  action  of  a 
force  tending  to  a  point  S  so  distant  that  the  lines  PS,  QS 
drawn  from  the  Itody  to  that  point  may  be  considered 
parallel;  to  find  the  law  of  force. 

Let  OA  be  a  semidiameter  of  the  semicircle  drawn  from 
the  centre  perpendicular  to  the  direction  in  which  the 
force  acts,  cutting  PS,  QS  in  M  and  N:  and  join  OP. 

Let  PRZ  be  the  tangent  at  P,  ZQT  perpendicular  to 
PMS,  meeting  PEZ  in  Z}  and  let  SJVQ  meet  PRZ 
in  ft. 

Then  the  force  at  P= ultimately,  if  the  arc 

PQ  be  indefinitely  diminished,  and  SP  may  be  con- 
sidered constant  ;  also,  by  Euclid  in.  36, 

and,  since  RQ  is  parallel  to  PI7,  and  the  triangles 
PZT,  0PM  are  similar, 

RP  :  QT::  ZP  :  ZT  ::  OP  : 

.    QF     QT  t  RP*  _  PM*  N) 
QR  ~RP  ~"~^  v    ; 

ultimately  $ 

h*CP*  1 

pj/ 
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Aliter. 

In  fig.  page  190  draw  OE  a  semidiameter  perpen- 
dicular to  SD,  and  let  the  distance  SP  cut  the 

circle  in  F",  and  OE  in  M,  then,  by  the  pre- 

ceding   proposition,    F  =  ~    ,     ̂ 3  j    and,  if  S  be 
very  distant,  the  ratio  PM  :  SM  or  SO  will  vanish  ; 
therefore,  SP  =  SO  ultimately,  and  PV  is  ulti- 

mately perpendicular  to  OE  and  equal  to  2PM; 
I 

PM 
''* 

SCHOLIUM, 

A  body  moves  in  an  ellipse,  hyperbola  or  parabola, 
under  the  action  of  a  force  tending  to  a  point  so 
situated  and  so  distant  that  the  lines  drawn  from 
the  body  to  that  point  may  be  considered  parallel, 
and  perpendicular  to  the  major  axis  of  the  ellipse, 
the  axis  of  the  parabola  or  the  transverse  axis  of 
the  hyperbola.  To  shew  that  the  force  varies 
inversely  as  the  cube  of  the  ordinates. 

Let  AMCr  be  the  axis  to  which  the  direction  of  the 
forces  may  be  considered  perpendicular,  PM,  PGr 

O 

the  ordinate  and  normal,  PO  the  diameter  of 

curvature,  and  PFthe  chord  of  curvature  in  direc- tion PS. 
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a2  2  li        P&  SP 

SY\PV   tiP\PV%  PM* 
pg2         pa5        i ,%  Poc 

PJf  2.P  F     PM\PO     PM3 

since  POocP£3,  Art.  84. 

Observations  on  the  Proposition. 

194.  It  Las  been  shewn  in  Art.  151,  that  the  equable  de- 
scription of  areas  may,  in  the  case  of  forces  acting  in  parallel 

lines,  be  replaced  by  the  uniformity  of  the  resolved  part  of  the 
velocity  in  the  direction  perpendicular  to  that  of  the  forces.     In 

the  proof  given  in  the  text,  when  8  is  removed  to  an  infinite  dis- 
tance, h  and  SP  are  both  infinite  magnitudes,  but  the  expression 

•^p  is  finite,  for  area  SPQ  described  in  the  time  T  is  ultimately 

equal  to  area  SMN,  whose  base  is  equal  to  uTj  u  being  the  com- 
ponent  of  the  velocity   perpendicular  to  the  direction  of  the 

7  a 

forces;  therefore  hT=uT.SP  ultimately,  and   ™§  =u\  hence 

the  acceleration  due  to  the  force,  when  a   body  describes  the 

.  .    ,     i    u^Ei semicircle,  is  7777-5  * JL  jjJ. 

195.  The  accelerating  effect  of  the  force,  acting  in  parallel 
lines,  may  be  obtained  directly  from  the  proposition  of  Art.  151, 
as  follows. 

Let  u  be  the  constant  component  of  the  velocity  F,  perpen- 

dicular to  the  direction  of  the  force,  and  let  Fbe  the  accelerating 

2  p-2       y* effect  of  the  force,  therefore  F= 

also  F  .  u  ,",  CP  i  PIT;   .«.  F=    —  . 

Extension  of  Scholium. 

196.    When  a  lody  describes  any  curve  under  the  action  of  a 
force  tending  to  a  point  $,  so  distant  that  the  lines  drawn  from  & 
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to  the  body  may  be  considered  parallel ;  to  find  the  law  of  force 
and  the  velocity  at  any  point. 

Let  AP  be  any  curve,  AMG  the  line  to  which  the  forces  are 

perpendicular,  PJf,  PG  the  ordinate  and  normal  at  the  point  P, 
PFthe  chord  of  curvature  in  the  direction  of  the  force,  PO  the 
diameter  of  curvature. 

Let  F  be  the  accelerating  effect  of  the  force  at  P,  u  the 
component  of  the  velocity  V  in  the  direction  AMG ; 

.-.  F:  u::PG:  PM, 

also  PV'.POr.  PM-.PG; 
PO       Z 

PV     PM\PO'  PV     PO.JPM*' PG 

and  the  velocity  =u. 

Illustrations. 

(1)  A  cycloid  is  described  by  a  particle,  under  the  action  of  a 

force  acting  in  a  direction  parallel  to  the  axis  ;  find  the  accelera- 
tion and  the  velocity  at  any  point. 

In  the  cycloid  PO  =  4P#,  and  PM.AB=PG\  AB  being 
the  length  of  the  axis  ; 

'  PO  ~  2PM* 

and  the  velocity  at  P—  u.  -       =  u.  -       QC 

(2)  A  particle  moves  in  a  catenary  under  the  action  of  forces 
acting  in  vertical  lines  ;  find  the  accelerating  effect  of  the  force 
and  the  velocity  at  any  point. 

Let  AM  be  the  directrix,  AB  the  ordinate  at  the  lowest 

point. 
Then  PG  :  PM\\  PM  :  AB  and  PO  = 

u*.PM 

PG         PM 
and  the  velocity  at  P=  u  .         =  u.  -      oc  PM. 



PKOP.   VIII.      PROBLEM   III.  201 

XXVI. 

1.  A  body  is  moving  in  a  semicircle  under  the  action  of  a  force 
tending  to  a  point,  so  distant  that  the  lines  drawn  from  the  body 
to  that  point  may  be  considered  parallel ;  if  the  centre  of  force  be 
transferred  to  the  centre  of  the  circle,  when  the  direction  of  the 

body's  motion  is  perpendicular  to  that  of  the  force,  its  magnitude 
at  that  point  being  unaltered,  prove  that  the  body  will  continue  to 
move  in  the  circle. 

2.  If  a  cycloid  be  described  under  the  action  of  forces  in  the 
direction  of  the  base,  the  force  at  any  point  will  vary  inversely  as 
AM.MQ;   AM,  MQ  being  the  abscissa  and  ordinate  of  the  cor- 

responding point  of  the  generating  circle. 

3.  A  catenary  is  described  under  the  action  of  a  horizontal 
force,  prove  that  the  force  varies  as  the  distance  from  the  directrix 
directly,  and  the  cube  of  the  arc  from  the  lowest  point  inversely. 

4.  If  the  same  parabola  be  described  by   particles  when  the 
force  tends  to  the  focus,  and  when  it  is  parallel  to  the  axis,  the 
velocities  will  be  equal  at  the  points  at  which  the  forces  are  equal. 

5.  A  parabola  having  its  vertex  at  A  and  its  axis  coincident 
with  AS  the  diameter  of  a  semicircle,  is  described  so  as  to  cut  the 
semicircle  in  P ;  prove  that,  if  a  body  move  in  the  semicircle  under 
the  action  of  a  force  perpendicular  to  AB,  the  time  of  moving  from 
A  to  P  will  vary  as  the  difference  between  AB  and  the  latus  rectum. 
Prove  also,  that  if  a  second  body  move  from  A  to  P  in  the  parabola 
in  the  same  time  under  the  action  of  a  force  perpendicular  to  its 
axis,  and  the  velocities  in  the  two  curves  at  P  be  equal,  the  latus 
rectum  of  the  parabola  will  be 
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PEOP.  IX.    PEOBLEM  IV. 

If  a  body  revolve  in  an  equiangular  spiral,  required  the 
law  of  centripetal  force  tending  to  the  pole  of  the  spiral. 

Draw  8Y  from  S,  the  pole  of  the  spiral,  perpendicular 

to  the  tangent  PI7,  and  let  PV  be  the  chord  of 
curvature  at  P,  whose  direction  passes  through  $; 

then  I1',  the  measure  of  the  accelerating  effect  of 

2  A2
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a  be  the  angle  of  the   spiral,   SY=  SP  sin  a  and 
PF=2#P,  Art.  128; 

197.    To  find  the  velocity  of  a  "body  describing  an  equiangular 
spiral  under  the  action  of  a  force  tending  to  the  pole. 

If  -i  be  the  accelerating  effect  of  the  force  tending  to  89 

—~^—  SP-    •    V-^- ~*'"  "  SP' 

198.  To  find  the  time  of  describing  any  arc  of  the  equi- 
angular spiral. 

Let  AL  be  any  arc,  SA,  SL  bounding  radii,  P  the  time  of 

describing  the  arc.  Then  arezSAL=±  (SA*~  SL*)  tana,  Art.  127  ; 

2  x  zrezSAL  _  SA*  ->  SL'  _  SA*  ~  SL* ~~~  "  ~ 

199.  In  any  orbit,  described  under  the  action  of  a  force  tending 

to  any  point  S,  when  the  angle  between  the  tangent  PY  and  the 
radius  SP  is  a  maximum  or  minimum,  the  velocity  is  equal  to 

the  velocity  in  a  circle  at  the  same  distance  about  the  same  force 
in  the  centre. 

For,  the  curve,  near  this  point,  may  be  considered  an  equi- 
angular spiral  ultimately,  since  the  angle  is  constant  for  a  short 

time;  therefore  the  chord  of  curvature  is  =  2/SP,  and  V*=F.SP 
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XXVII. 

1.  In  different  equiangular  spirals,  described  under  the  action 
of  forces  tending  to  the  poles  which  are  equal  at  equal  distances, 
shew  that  the  angular  velocity  varies  at  any  point  as  the  force  and 
the  perpendicular  on  the  tangent  conjointly. 

2.  The  angular  velocity  of  the  perpendicular  on  the  tangent  is 
equal  to  that  of  the  radius. 

3.  The  velocity  of  approach  towards  the  focus,  called  the  para- 
centric velocity,  varies  inversely  as  the  distance. 

4.  A  body  is  describing  a  circle,  whose  radius  is  a,  with  uniform 
velocity,  under  the  action  of  a  force,  whose  accelerating  effect  at 

any  distance  r  is  ̂  .     Prove  that,  if  the  direction  of  its  motion  be 

deflected  inwards  through  any  angle  (3  without  altering  the  velocity, 

the  body  will  arrive  at  the  centre  of  force  after  a  time  •    t    .    n  . 2  ̂is  sin/3 

5.  Deduce  from  the  time  in  an  equiangular  spiral  the  time  of 
passing  from  one  point  to  another,  when  a  body  moves  along  a 
straight  line  with  a  velocity  which  varies  inversely    as  the  distance 
from  a  fixed  point  in  that  line. 

6.  A  body    describes    an    equiangular   spiral   in   a   resisting 
medium  with   uniform   angular   velocity   under   the    action   of  a 

force  tending  to  the  pole;  prove  that  the  "force -to  the  pole  varies as  the  distance  and  the  resistance  as  the  velocity. 

7.  Two  particles  of  equal  mass  m,  and  at  a  distance  20  apart, 
are  projected  simultaneously  with  velocity  F  in  the  same  direction 
perpendicular  to  the  line  joining  them,   the  only  force  acting  is  a 
mutual  force  of  attraction  varying  inversely  as  the  cube  of  the 
distance  between  the  particles,  and  equal  at  the  distance  20  to  mf. 

Prove  that,  if  after  a  time  */(•%  .    yz_af\  one  of  the  particles  be 
stopped  and  kept  at  rest,   the  other  will  proceed  to  describe  an 
equiangular  spiral  about  it  as  pole. 

8.  Three  particles  A,   B,    C  start  from  rest  and   move  with 
uniform   velocities,    A    always    directing   its    course    towards    B, 
B  towards   (7,  and  C  towards  A.     Prove  that  if  their  velocities 

be  proportional  to  izc,  c^a,  a2b,  where  a,  b,  c  are  the  initial  distances 
of  B  from   (7,    C  from  A,  and  A  from  B  respectively,   they  will 
describe  similar  equiangular  spirals  with  a  common  pole. 
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PROP.  X.    PROBLEM  V. 

If  a  bod//  be  revolving  in  an  ellipse,   to  find  the  law  of 
centripetal  force  tending  to  the  centre  of  the  ellipse. 

Let  GA,  CB  be  the  semiaxes  of  the  ellipse,  P  the 
position  of  the  body  at  any  time,  PCG,  DCD 
conjugate  diameters,  Q  a  point  near  P,  QT,  PF 
perpendiculars  from  Q  and  P  on  PC,  DD ;  draw 
QU  an  ordinate  to  PCGr}  QR  a  subtense  parallel 
to  CP. 

J? 

Then  F=-  QT*  ultimately. 

But,  by  similar  triangles  QTU,  PFC, 

QT*      PFZ  QU*        CD* 

QU*      CP* ,   and pu.ua    CP*: 

AC\BC* •  pu.ua  "     CP*          CP* 
ultimately,  and  PU=QR\ 

AC*.  EC*    ... 

r    .,    f        . =l"nit  of        rll  = 
h\CP 

CP; 

therefore  the  force  is  proportional  to  the  distance 
from  the  centre. 
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A  liter. 

Let  CY  be  perpendicular  on  the  tangent  at  P,  and 
PV  be  the  chord  of  curvature  at  P  which  passes 

2  CD* 
through  the  centre  =  -77^-  ,  Art.  79. C.Z 

O/'1*  2L2    S^T)  "IP 

Then  F=  =  '  ~  AC\BC*  °P  =  **'  °P' 
COR.  1.  And  conversely,  if  the  force  be  as  the 

distance,  a  body  will  revolve  in  an  ellipse  having 
its  centre  in  the  centre  of  force,  or  in  a  circle, 
which  is  a  particular  kind  of  ellipse. 

COR.  2.    And  the  periodic  times  will  be  the  same  in 
all   ellipses   described  by   bodies  about  the   same 
centre  of  force. 

For  the  periodic  time  in  any  ellipse 

__2  x  area  of  ellipse  _  2irAC.  EC 
~TT  ~h          ' 

and  the  forces,  at  different  distances  in  the  same 
or  different  ellipses,  vary  as  the  distance  ;  therefore 

—  —  —  —  —  a  =  fj,    is   the    same   in    different    ellipses, AL>  .  Jj  C/ 

therefore  the   periodic   times   in   different   ellipses 

•  '     *!.  J          2?r is  the  same,  and  =  -r-  . v> 

SCHOLIUM. 

If  the  centre  of  an  ellipse  be  supposed  at  an  infinite 
distance,  the  ellipse  will  become  a  parabola,  and 
the  body  will  move  in  this  parabola  ;  and  the  force, 
now  tending  to  a  centre  at  an  infinite  distance, 
will  be  constant  and  act  in  parallel  lines.  This 
theorem  is  due  to  Galileo.  And,  if  the  parabola 
be  changed  into  an  hyperbola,  by  the  change  of 
inclination  of  the  plane  cutting  the  cone,  the  body 
will  move  in  this  hyperbola  under  the  action  of  a 
repulsive  force  tending  from  the  centre. 
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200.  To  find  the  velocity  in  the  elliptic  orbit  under  the  action 
of  a  force  tending  to  the  centre,  the  measure  of  whose  accelerating 
effect  is  n  x  distance. 

h          h.CD          h.CD 
The  velocity  at  P-         = 

Aliter. 

an* 

(Vel.)*  at  P=F.=fjL.CP.~  ;    .%  vel.  at  P=  ̂ .  CD. 

201.  If  a  hyperbolic  orbit  "be  described  under  the  action  of 
a  repulsive  force  tending  from  the  centre,  the  force  will  vary  as  the 
distance,  and  the  velocity  at  any  point  as  the  diameter  of  the 
conjugate  hyperbola  parallel  to  the  tangent  at  the  point. 

This  may  be  proved  exactly  as  in  the  case  of  the  ellipse, 
employing  the  proper  figure. 

202.  To  find  the  time  in  any  arc  of  an  elliptic  orbit  about  a 
force  tending  to  the  centre. 

If  Pbe  any  point  of  the  orbit,  Q  the  corresponding  point  in  the 
auxiliary  circle,  time  in  AP  oc  area  A  (7Pcc  area  ACQcc  LACQ; 
therefore  time  in  AP  :  periodic  time  ::  </>  :  2?r,  if  <£  be  the 

circular  measure  otLACQ,  and  periodic  time  =-7-;  therefore 

tme  n         —--  . 

*/f* 

203.  If,  at  a  given  point,  the  velocity  of  a  body  be  known, 
and  the  direction  of  its  motion;  to  determine  the  curve  which 

the  body  will  describe  under  the  action  of  a  given  centripetal 
force,  which  varies  as  the  distance  from  the  point  to  which  it 
tends. 

Let  Pt  be  the  direction  of  motion  at  P,  V  the  velocity  at  P, 
p  .  CP  the  measure  of  the  accelerating  effect  of  the  force  tending 
to  C.  On  PC  produced,  if  necessary,  take  PV  equal  to  four 
times  the  space  through  which  a  body  must  move  from  rest, 
under  the  action  of  the  force  at  P  continued  constant,  in  order 

to  acquire  the  given  velocity  F;  so  that  V*  =  2p  CP.  JPF. 
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Draw  CD  parallel  to  Pty  a  mean  proportional  to  CP  and 
and  let  an  ellipse  be  constructed  with  CP,  CD  as  semi- 

conjugate  diameters,  then  PV  is  the  chord  of  curvature  at  P 
through  C. 

In  this  ellipse  let  a  body  revolve  under  the  action  of  a 
force  tending  to  (7,  whose  magnitude  at  P  is  that  of  the  given 
force,  see  Arts.  160,  162,  then,  when  it  arrives  at  the  point  P, 
it  will  be  moving  in  the  direction  Ft,  also  the  square  of  the 

velocity  at  P=  p. CD2  =  fj,.CP.%PV=V'\  or  the  velocity  at  P, 
in  the  constructed  ellipse,  is  V.  Hence  the  body  revolving 
in  this  ellipse  is  under  the  same  circumstances  as  the  proposed 
body,  in  all  respects  which  can  influence  the  motion  of  a  body ; 
therefore  the  proposed  body  will  describe  the  ellipse  constructed 
as  above. 

A  direct  solution  of  the  problem,  which  is  solved  syntheti- 
cally in  this  Article,  is  given  in  pages  78  and  79. 

204.  Geometrical  construction  for  the  position  and  magnitude 
of  the  axes  of  the  elliptic  orbit,  described  by  a  body  about  the  centre, 
when  the  velocity  at  a  given  point  is  known,  and  also  the  direction 

of  motion. 

Produce  CP  to  It,  making  PR  a  third  proportional  to  CP  and 
CD\  bisect  CR  in  U,  and  draw  UC  perpendicular  to  CJR, 
meeting  the  tangent  at  P  in  0,  and  with  centre  0  describe  a 

circle  passing  through  C,  R,  and  cutting  the  tangent  in  T  and  t ; 
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Let  TG  intersect  the  ellipse  in  A,  A',  and  draw  PM  parallel 

to  the  diameter  conjugate  to  AC  A  '; 
then  PT*  :  CD*  ::  TA.  TA  :  CA* 

::  CT*-CA*:  CA2  ; 
.-.  PT2  :  PT.Pt  ::  CT*-CT.CM:  CT.CM; 

.-.  PT:Pt::MT:  CM; 
hence  Ct  is  parallel  to  PM,  and  C  T,  Ct  are  in  the  directions  of 

conjugate  diameters;  but  TCt  is  a  right  angle,  therefore  CT, 
Ct  being  in  the  direction  of  perpendicular  conjugate  diameters, 
are  the  directions  of  the  axes  of  the  ellipse,  and  if  PM,  Pm  be 
perpendiculars  from  P  upon  these  directions,  the  semiaxes  are 
mean  proportionals  between  CM,  CT,  and  Cm,  Ct.  Q.E.F. 

205.  Equations  for  determining  the  position  and  dimensions 
of  the  orbit. 

Let  fjb.  R  be  the  measure  of  the  accelerating  effect  of  the  force 

at  the  distance  CP=R,  Fthe  velocity,  a  the  angle  between  CP 
and  the  direction  of  motion  at  the  given  point  P.  Let  a,  ft  be 
the  semiaxes  of  the  ellipse,  OT  the  angle  which  CP  makes  with 
the  major  axis. 

Then  Fa  =  /i.tfl>a  and  CD*  +  <7P2  =  a2  +  V  ; 

...  ««  +  &*  =  --  +  #*  ..................  (1), 

Also   V.R  sina  =  h  =  *Jp.ab; 
-       V.R  sin  a  .  , 

and,  by  the  properties  of  the  ellipse, 
IP  IP 

—5  cosV+  -p-  sinV  =  l  ..................  (3). 

The  equations  (1),  (2),  and  (3)  determine  a,  b,  and  CT,  whence 
the  magnitude  and  position  of  the  ellipse  is  determined. 

We  can  obtain  an  equation  for  tsr,  immediately  in  terms  of 
the  data,  as  follows  : 'o8V,    by  (3), 
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5  +  fr  =  cosec'a  (l  +  ,  by  (1)  and  (2), 
by  (2), 

,(£-,)(,-£)  =.,,„; 
cos^-sr        sin2"CT 

'"'  ~         "IT2 

cosec2a  f  1  +  ̂TT-T)  —  2 

.••  cot  2cr  =  -  tan  a  f  cot2a  —  1-1-  cosec2a .  — ^  J 

=  cot  2a  +  cosec  2a .  ̂j-    (4) ; 

whence  txr  is  known  immediately  from  the  initial  circumstances  of 
the  motion. 

206.   If  the  force  be  repulsive,  the  equations  for  determining 
«,  bj  ts  will  be 

72s               jR2 
and  —5  cosV— -w-wnV»  1   (3). 

The  direction  and  magnitude  of  the  axes  of  the  hyperbola 
may  be  determined  geometrically,  by  observing  that  the 
asymptotes  are  the  diagonals  of  the  parallelograms  of  which  the 

conjugate  semi-diameters  are  sides,  and  that  the  axes  bisect  the 
angles  between  the  asymptotes. 

207.  When  a  particle  is  acted  on  "by  any  nuniber  of  forces, 
which  tend  to  different  centres^  and  vary  as  the  distances  from  those 
centres^  to  find  the  resultant  attraction. 

EB 
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Let  p.  R,  fjL1.  R  be  the  magnitudes  of  two  of  the  forces  at  tho 
distance  R,  A,  B  the  centres  to  which  they  tend,  P  the  position 
of  a  particle  acted  on  by  the  forces. 

Let  G  be  the  centre  of  gravity  of  two  particles  at  A  and  B 
masses  are  in  the  ratio  of  ̂   to  ///,  join  PA,  PB,  PG. 

The  components  of  the  force  p. PA,  in  the  directions  PG, 

GA,  are  /*.  PG  and  p.  GA,  and  those  of  the  force  p' .  PB,  in  the 
directions  PG,  GB,  are  p.PG,  and  p  .GB,  but  fi.GA  =  ̂ '.  GB, 
therefore  the  resultant  of  the  forces  tending  to  A  and  B  is 

(//,  +  fi)  PG,  which  is  a  single  force  of  magnitude  (/*.  +  /A')  It,  at 
the  distance  R,  tending  to  the  centre  of  gravity  of  masses  /*,  yu.' 
placed  at  A  and  B. 

Let  p"R  be  the  magnitude  of  a  force  at  the  distance  R, 
tending  to  C,  the  resultant  attraction  is  that  of  a  force  tending 
to  the  centre  of  gravity  H  of  particles  at  C  and  G,  whose  masses 

are  in  the  ratio  yu,"  :  p  +  /*',  which  varies  as  the  distance  from  //, 
and  whose  magnitude  at  the  distance  R  is  (/A  +  /*'  +  /*")  R. 

And  generally,  the  resultant  of  any  number  of  forces  is  a 
single  force,  tending  to  the  centre  of  gravity  of  a  system  of 
particles,  placed  at  the  different  centres,  whose  masses  are 
proportional  to  the  magnitudes  of  the  forces  at  the  unit  distance, 
and  whose  magnitude  at  any  distance  is  the  sum  of  those  of  the 
forces  at  the  same  distance. 

208.  COR.  1.  If  every  particle  of  a  solid  of  any  form  attract 
with  a  force  which  varies  as  the  mass  of  the  particle  and  the 
distance  conjointly,  the  resultant  attraction  of  the  solid  upon 
any  body  will  be  the  same  as  that  of  the  whole  mass  of  the  solid 
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collected  Into  its  centre  of  gravity  and  attracting  according  to  the 
same  law. 

209.  COR.  2.  If  any  of  the  forces  be  repulsive,  as  that 
whose  centre  is  B,  Gf  will  lie  in  AB  or  BA  produced,  according 

as  /*'  is  greater  or  less  than  yu,,  and  the  resultant  of  the  forces, 
tending  to  A  and  from  B^  will  be  (/*'  —  JJL)  PQ-  from  (?,  or 
(fjL  -  ft,')  PG  towards  G. 

Illustrations. 

(1)  A  body  revolves  in  a  circular  orbit  about  a  force  which 
varies  as  the  distance,  and  tends  to  the  centre  of  the  circle,  and  the 
centre  of  force  is  suddenly  transferred  to  a  point  in  the  radius 
which  at  the  moment  of  change  passes  through,  the  body ;  to  find 
the  subsequent  motion  of  the  body. 

Since  the  force  varies  as  the  distance,  and  is  attractive,  the 
orbit  will  be  an  ellipse.  And,  since  the  force  is  a  finite  force, 
the  body  will  move  in  the  same  direction  as  before,  at  the 
moment  of  the  change.  Also,  the  velocity  will,  for  the  same 
reason,  be  unaltered  at  that  moment. 

Let  CA  be  the  radius  passing  through  the  body  at  the 
moment  of  change,  CB  perpendicular  to  CA,  p.GA  the  force, 
at  distance  OA9  V  the  velocity  in  the  circle. 

Then  F3  =  p.CA.CA  =  ̂ .CAZ;  and  if  8,  the  new  point  to 
which  the  force  tends,  be  in  CA,  let  AB'  be  the  ellipse  described, 
8A  will  be  one  of  the  semi-axes  of  the  ellipse,  since  A  is  an 
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apse,  and,  SB1  being  the  other,  if  a  body  revolved  in  this  ellipse 
round  $,  /it.  SB'*  would  be  the  square  of  the  velocity  at  A,  that 
is,  fi.  SB"'  =  fju.  CA\  and  therefore  SB'  =  CA  =  CB;  hence  the 
magnitude  and  position  of  the  two  semi-axes  SA  and  SB'  are 
known,  and  the  ellipse  is  completely  determined. 

The  ellipse  lies  without  the  circle  at  A,  because,  the  velocity 
being  unaltered,  the  force  has  been  diminished  in  the  ratio  of 
SA  :  CA,  and  therefore  the  curvature  diminished  in  that  ratio. 

If  S  had  been  in  AC  produced,  as  at  /S",  the  force  would 

have  been  increased,  and  the  orbit  AB"  would  be  within  the circle  near  A. 

The  greatest  distance  from  CA  which  the  body  reaches  is  in 
all  cases  the  same  for  this  law  of  force,  because  the  component  of 
the  force  perpendicular  to  CA  is  the  same  at  the  same  distance 
from  CA  in  whatever  curve  the  body  moves ;  therefore,  in  each 

orbit,  the  velocity  being  the  same  at  -4,  the  velocity  perpen- 
dicular to  AC  is  destroyed  by  the  force  at  the  same  distance 

from  AC. 

(2)  A  body  is  describing  a  circle  about  a  force  which  varies  as 
the  distance  and  tends  to  the  centre  ;  if  the  centre  to  which  the 

force  tends  be  suddenly  transferred  to  a  point  in  the  circumference, 

at  an  angular  distance  of  60°  from  the  position  of  the  particle  at 
any  time,  to  determine  the  orbit  described. 

The  orbit  is  an  ellipse,  since  the  force  is  attractive. 

Let  P  be  the  position  of  the  body  at  the  instant  the  centre  of 
force  is  transferred  from  (7,  the  centre  of  the  circle,  to  $,  where 

SCP  is  an  equilateral  triangle. 
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The  velocity  at  P  is  *Jfj,.CP=  \Jp.SP]  and,  since  it  is  un- 
altered by  the  change  of  the  centre  of  force,  the  semi-diameter 

conjugate  to  SP  is  equal  to  SP. 

Draw  DSD'  perpendicular  to  (7P,  meeting  it  in  F,  and  take 
SD  =  SD'  =  SP.  Construct  an  ellipse  having  SP,  SD  as  equal 
conjugate  semi-diameters  5  SA,  SBihe  semi-axes  bisect  the  angles 
PSDj  PSD.  The  ellipse  so  described  will  be  the  orbit  required. 

Prove  the  following  construction : 

On  CP  as  diameter  describe  a  circle  cutting  SD'  in  B'^  A' 
SA,  SB'  are  the  lengths  of  the  semi-axes. 

Explain  why  the  orbit  is  exterior  to  the  circle. 

(3)  Two  bodies  whose  masses  are  m,  m'  revolve  m  an  ellipse 
under  the  action  of  a  force  tending  to  the  centre ;  shew  that,  if 

they  be  at  one  time  at  the  extremities  of  two  conjugate  diameters 
they  will  always  be  so,  and  in  this  case  find  the  locus  of  their 
centre  of  gravity. 

Let  P,  D  be  their  positions  at  any  time,  CP,  CD  being 

semi-conjugate  diameters.  Let  the  ordinates  JfP,  ND,  meet 
the  auxiliary  circle  in  Q  and  R. 

Since  the  angles  ACQ,  ACE  are  always  proportional  to  the 
times,  RCQ  will  always  be  a  right  angle;  therefore  the  bodies 
will  always  be  at  the  extremities  of  conjugate  diameters. 

A'       ff        C      If 

Let  GH  be  the  ordinate  of  their  centre  of  gravity. 
Join  RQ  and  produce  HG  to  meet  RQ  in  K\ 

.'.  KU\  GH=  QM  :  PM,  a  constant  ratio, 

also,  RK-.KQ=DG'.  GP,     ; 
hence  CK  is  constant,  or  the  locus  of  K  is  a  circle,  and  the 
locus  of  G  is  an  ellipse,  whose  axes  are  proportional  to  those 
of  APD. 

Shew  that  the  semi-major  axis  :  CA  ::  (W24  m'2)* : 
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(4)  A  body   is  composed  of  matter  which   attracts    with   a 

^orce  varying  as  the  distance  ;   shew  that,  however  a  particle  be 
projected,  unless  it  strike  the  body,  it  will  describe  its  orbit  in 
the  same  periodic  time. 

This  is  obvious  immediately  from  Art.  208,  relating  to  the 
resultant  of  attracting  forces. 

(5)  A  body  moves  in  an  ellipse  under  the  action  of  a  force 
varying  as  the  distance  ;  if  the  velocity  at  any  point  be  slightly 
increased  in  the  ratio  1  +  n  :  1,  find  the  consequent  changes  in  the 
axes  of  the  ellipse. 

If,  when  the  change  takes  place,  the  body  be  at  the  end  of  one 
of  the  equal  conjugate  diameters,  shew  that  the  eccentricity  will  be 
unaltered,  and  that  the  apse  line  will  regrede  through  a  small  angle, 

nab 
whose  circular  measure  is  -5  —  —  „ 

When  F  is  changed  to  (1+w)  V,  CD  is  changed  to 

(1  +  n)  CD  ;  let  the  corresponding  changes  of  a,  b  and  -cr  be 
aa,  ftb  and  7  ;  a,  /#,  7,  and  n  being  so  small  that  we  may  neglect 
their  squares.  Then  by  the  equations  of  Art.  205, 

(1  +  a)V  +  (1  +  0)*b*  =  (14  nfCD*  +  £*  =  a"  -1-  b9  +  2nCD*  ; 
.'.  aa*  +  ̂   =  n.  CD\ 

Again  (1  +  a)a.  (1  +  j3)b  =  (1  +n)  CD.  £sina  =  (1 

/.  a  4  0  =  n,  and  a(o*  -  CD*}  =  ft  (  QD1  -  i" 
a  ft  n 

In  the  particular  case  2#J  =  a2  +  Z>2,  .-.  a  =  /3  =  Jrc,  hence, 
a  and  b  being  altered  in  the  same  proportion,  the  eccentricity 
will  be  unaltered. 

7?a  7?2 

Also,  -^  cos"  (w  4-  7)  +  TS-  sm2  («"  +  7)  =  1  +  « 

and  —  j  cosV  +  -75  sinV  =  1  ; 

CR     a  \  (  .  v V~  ~a^J  I 
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and,  since  the  axes  bisect  the  angles  between  equal  conjugate 

diameters,  ab  =  IF  sm2iv,  therefore  7,  being  expressed  in  circular 
nab 

measure,  =  -5  —  ̂   . 

(6)  In  any  position  of  a  particle  describing  an  ellipse,  under 
the  action  of  a  force  tending  to  the  centre,  the  centre  of  force  is 
suddenly  transferred  to  the  focus.  Find  the  axes  of  the  new  orbit 

and  shew  that  its  major-axis  bisects  the  angle  between  the  focal 
distance  and  the  major-axis  of  the  given  ellipse. 

Employing  the  equations  of  Art.  205,  if  a,  /3  be  the  semi- 
axes  of  the  new  orbit,  P  the  position  of  particle  when  the  centre 

s  transferred  to  S,  since  the  semi-diameter  conjugate  to  SP  in 
the  new  orbit  will  be  equal  to  CD, 

a*  +  /32  =  CD*  +  SP*  =  SP.  HP+  SP*  =  2a.  SP, 

and  8Y*  :  BC*  ::  SP:  HP::  SP*  :  CD*-, 

...  (at  _.  py  =  4  (0«  _  j«)  si*,  and  a«  -  /32  =  <2aeSP, 

.'.  a2  =  a  (1+e)  SP,  and  0*  =  a  (1-e)  SP. 

SP*      ,        SI*  .  , 
Also  —  r  cosV  4-  —55-  sin  V  =  1, 

(1  4  e)  sinV  =  1  -  e  cos  2^  ; 

therefore  2s7  =  Z  P/S^,  or  the  major-axis  of  the  new  orbit 
bisects  the  angle  between  PS  and  the  major-axis  of  the 
original  orbit. 

NOTE.  By  the  construction  of  Art.  204,  since  PR  is  a  third 

proportional  to  8P  and  CD,  and  therefore  is  equal  to  HP,  the 
circle  which  determines  T  and  t  passes  through  H,  and  the  arcs 
HT,  TR  are  equal,  that  is,  ST  bisects  the  angle  PSA. 

XXVII. 

Y 

inJ 

a  circle  
at  the  

same  
distance. 

1.    Shew  that  the  velocity  in  an  ellipse  about  the  centre  is  the 
same  at  the  points  whose  conjugate  diameters  are  equal  as  that  in 
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2.  A  body  is  revolving  in  a  circle  under  the  action  of  a  force 
tending  to  the  centre,  the  law  of  force  at  different  distances  being 
that  the  force  varies  as  the  distance  ;  find  the  orbits  described  when 
the  circumstances  are  changed  at  any  point  as  follows  : 

i.    The  force  is  increased  in  the  ratio  of  1  :  ft. 

ii.    The  velocity  is  increased  in  the  ratio  1  :  n. 

iii.  The  force  becomes  repulsive,  remaining  of  the  same  mag- 
nitude. 

iv.   The  direction  is  changed  by  an  impulse  in  the  direction  of 
the  centre,  measured  by  the  velocity  equal  to  that  in  the  circle. 

3.  If  a  body  be  projected  from  an  apse,  with  a  velocity  double  of 
that  in  a  circle  at  the  same  distance,  find  the  position  and  magnitude 
of  the  axes  of  its  orbit. 

4.  A  particle  is  revolving  in  a  circle  acted  on  by  a  force  which 
varies  as  the  distance  ;  the  centre  of  force  is  suddenly  transferred 
to  the  opposite  extremity   of   the  diameter   through  the  particle 
and  becomes  repulsive  ;  shew  that  the  eccentricity  of  the  hyperbolic 
orbit 

5.  A  body  is  moving  under  the  action  of  a  force  tending  to  a 
fixed  centre,  and  varying  as  the   distance.      The  force  suddenly 
ceases,  and  after  an  interval  commences  to  act  again.     Prove  that 
the  radii  of  curvature  of  the  orbit  at  the  points  where  the  body 
ceases  and  recommences  to  be  attracted  are  equal. 

6.  A  body  moves  in  an  ellipse  about  a  centre  of  force  in  the 
centre,  and  its  velocity  is  observed  when  it  arrives  at  its  greatest 
distance,  and  again  after  a  lapse  of  one-third  of  its  periodic  time. 
If  these  velocities  be  in  the  ratio  of  2  :  3,  prove  that  the  eccentricity 
of  the  ellipse  will  be  V$- 

7.  The  particles  of  which  a  rectangular  parallelepiped  is  com- 
posed attract  with  a  force  which  varies  as  the  distance,  and  a  body  is 

projected  so  as  to  describe  a  curve  on  one  of  the  faces  supposed 
smooth  ;  find  the  periodic  time. 

8.  An  elastic  ball,  moving  in  an  ellipse  about  the  centre,  on 
arriving  at  the  extremity  of  the  minor  axis  strikes  directly  another 
ball  at  rest  ;  find  the  orbits  described  by  both  bodies. 

9.  A  body  is  projected  in  a  direction  making  an  angle  cos"1  -  - 

•with  the  distance  from  a  point  to  which  a  force  tends,  varying  as 
the  distance  from  it,  and  the  velocity  =  Vf  x  velocity  in  the  circle  at 
the  same  distance  ;  prove  that  one  axis  is  double  of  the  other  and 

that  the  inclination  of  the  major  axis  to  the  distance  is  %  cos1"!. 
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10.  From  points  in  a  line  CA  between  C  and  A  particles  are 
projected  at  right  angles  to  CA  with  velocities  proportional  to  their 
distances  from  A,  C  being  a  centre  to  which  the  force  tends,  and 
the  force  varying  as  the  distance ;  find  the  ellipse  of  greatest  area 
which  is  described. 

11.  Two  particles  are  projected  in  parallel  directions  from  two 
points  in  a  straight  line  passing  through  a  centre  of  force,  the 
acceleration  towards  which  varies  as  the  distance,  with  velocities 
proportional  to  their  distances  from  that  centre.     Prove  that  all 
tangents  to  the  path  of  the  inner  cut  off,  from  that  of  the  outer, 
arcs  described  in  equal  times. 

12.  An  hyperbola  and  its  conjugate  are  described  by  particles 
round  a  force  in  the  centre.      They  are  at  an  apse  at  the  same 
instant ;  shew  that  they  will  always  be  at  the  extremities  of  con- 

jugate diameters.     Also  if  v,  v'  be  their  velocities,  a2  - 1?"  =  p  (a"  -  i3). 

13.  An  ellipse  and  an  hyperbola  have  the  same  centre  and  foci. 
They  are  described  by  particles,  under  the  action  of  forces  in  the 

centre  of  equal  intensity.     If  a,  a'  be  their  semi-transverse  axes, 
the  square  of  the  velocity  of  each  body  at  a  point  where  the  curves 

cut  will  be  /i  a2  -  a'2). 

14.  If  any  number  of  particles  be  moving  in  an  ellipse  about  a 
force  in  the  centre,  and  the  force  suddenly  cease  to  act,  shew  that, 

after  the   lapse   of  r—   of  the   period   of  a  complete   revolution, 

all  the  particles  will  be  in  a  similar,    concentric,   and    similarly 
situated  ellipse. 

15.  A  particle  is  describing  an  ellipse  under  the  action  of  a 
force  tending  to  the  centre.  Prove  that  its  angular  velocity  about; 
a  focus  is  inversely  proportional  to  its  distance  from  that  focus. 

XXVIII, 

1.  CX,  CY  are  straight  lines  inclined  at  any  angle,  and  a  force 
tends  to   C,  and  varies  as  the  distance  from   C.     If  from  various 
points  in  CY  different  particles  are  projected  parallel  to  C%  at  the 
same  moment,  and  with  the  same  velocity,  they  will  all  arrive  at 
CX  at  the  same  time  and  place;  and  they  will  also  do  so,  if  the 
force  cease  to  act  for  any  interval  of  time. 

2.  A  number  of  particles  move  in  hyperbolas,  under  the  action 
of  the  same  repulsive  force  from  their  common  centre.     Shew  that, 
if  the  transverse  axes  coincide,  and  the  particles  start  from  the 
vertex  at  the  same  instant,  they  will  always  lie  in  a  straight  line 

F  F 
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perpendicular  to  the  major-axis.  If  the  hyperbolas  have  all  the 
same  asymptotes,  shew  that  the  particles  will  at  every  instant  be  in 
a  straight  line  passing  through  the  centre,  if  they  be  so  at  any  given 
time. 

3.  A  body  is  revolving  in  an  ellipse  under  the  action  of  a  force 
tending  to  the  uentre,   and  when  it  arrives  at  the  extremity  of  the 
major-axis,  the  force  ceases  to  act  until  the  body  has  moved  through 
a  distance  equal  to  the  semi-minor  axis,  it  then  acts  for  a  quarter 
of  the  periodic  time  in  the  ellipse ;  prove  that,   if  it  again  cease  to 
act  for  the  same  iime  as  before,  the  body  will  have  arrived  at  the 
other  extremity  of  \he  major  axis. 

4.  A  small  bead  slides  on  a  smooth  wire  in  the  form  of  an  arc 
of  a  circle,  under  the  action  of  a  force  tending  to  the  other  end  of 
the  diameter  through  its  middle  point  and  varying  as  tiie  distance. 
If  the  bead  be  initially  situated  at  the  middle  of  the  arc  and  just 
displaced,  prove  that,  whatever  be  the  length  of  the  arc,  the  sum  of 
the  squares  on  the  axes  of  the  elliptic  orbit,   which  the  bead  will 
describe  after  leaving  the  wire,  will  be  equal  to  the  square  on  the 
diameter  of  the  circle. 

5.  A  point  is  moving  in  an  equiangular  spiral,  its  acceleration 
always  tending  to  the  pole  S      When  it  arrives  at  a  point  P,  the 
law  of  acceleration  is  changed  to  that  of  the  direct  distance,  the 
actual  acceleration  being  unaltered.     Prove  that  the  point  will  then 
move  in  an  ellipse,  whose  axes  make  equal  angles  with  SP  and  the 
tangent  to  the  spiral  at  P,  and  that  the  ratio  of  the  axes  is  tan  £a  :  1, 
where  a  is  the  angle  of  the  spiral. 

6.  A  particle  is  attached  by  an  elastic  string  to  a  centre  of 
attractive  force  of  constant  intensity,  and  of  such  magnitude  that 
it  would  exactly  double  the  length  of  the  elastic  string.     The  string 
is  now  stretched  and  the  particle  projected  at  right  angles  to  it. 
Shew  that  the  particle  will  begin  to  move  in  an  ellipse ;  but  if  the 
velocity  of  projection  be  less  than  the  velocity  in  a  circle  at  the 
same  distance,  the  ellipse  will  be  deserted  after  a  certain  interval  of 
time.    In  the  latter  case  find  the  velocity  and  direction  of  motion  at 
the  moment  of  leaving  the  ellipse. 

7.  A  particle  is  projected  from  a  point  P,  in  a  given  ellipse, 
perpendicular  to  the  major-axis,  and  is  acted  on  by  a  force  which 
tends  to  the  centre   C,  and  varies  as  the  distance  from  it ;  and  the 
velocity  is  that  in  a  circle  whose  radius  is  (7$;  prove  that  the  major- 
axis  of  the  orbit  is  equal  to  that  of  the  given  ellipse,   and  that 
CP'  =  the  sum  of  the  squares  of  the  semi-minor  axes  of  the  orbit 
and  of  the  given  ellipse ;  also  that  the  tangents  of  the  inclinations 
of  CP  to  the  major-axes  of  the  elliptic  orbit  and  of   the   given 
ellipse  are  in  the  duplicate  ratio  of  the  minor-axes. 
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8.  A  body  describes  an  ellipse  about  a  centre  of  force  in  the 

centre ;  prove  that  if  r,  r'  be  two   radii  vectores  and  a  the  angle 
between  them,  the  time  of  describing  the  intercepted  arc 

1  .  (rr*  sin  a\ 
=  -;-  sm"1  I   T — ). 
VP  \      ab     I 

What  is  this  time  when  rr'  sin  a  =  £«J,  and  the  periodic  time  in 
the  ellipse  is  12  days? 

9.  If  two   particles   describe    the    same   ellipse,    in    opposite 
rotatory  directions  with  accelerations  tending  to  the  centre,  prove 
that  the  line  joining  them  will  move  parallel  to  itself  with  a  velocity 
proportional  to  its  length. 

10.  A  triangular  plate  is  made  of  material,  each  particle  of 
which  attracts  with  a  force  which  varies  as  its  mass  x  distance.     A 

particle  is  projected  so  as  to  pass  through  its  angular  points ;  prove 
that  its  velocity  at  each  of  the  angles  is  proportional  to  the  side 
opposite,  the  time  between  any  two  angles  being  the  same ;  also 

that  the  mean  of  the   squares  of  these  three  velocities  is'also  the 
mean  of  the  squares  of  the  greatest  and  least  velocities  in  the 
orbit. 

11.  Two  ellipses  are  described  by  two  particles  about  a  common 
centre,  the  axes  of  the  two  are  in  the  same  directions,  and  the  sum 
of  the  axes  of  one  is  equal  to  the  difference  of  those  of  the  other ; 
prove  that,  if  the  particles  be  at  corresponding  extremities  of  the 
major-axes   at  the    same   moment,    and   be   moving   in    opposite 
directions,  the  line  joining  them  will  be  of  constant  length  during 
the  motion,  and  will  revolve  with  uniform  angular  velocity. 

12.  The  angle  A  of  a  triangle  ABC  is  a  centre  of  force  which 
is  pit  at  any  distance  R.     A  particle  is  projected  in  any  direction 
from   B  so  as  to  pass  through    C,  shew  that  the  time  of  passage 

from  B  to  C  is  /u~4  sm"1(2*»*),  where  m  is  the  ratio  of  the  area  of  the* triangle  to  that  of  the  orbit. 

13.  A  number  of  bodies  which  describe  ellipses  about  the  centre 
of  force  as  centre  in  the  same  periodic  time,  are  projected  from  a 
given  point  with  a  given  velocity  in  different  directions  in  a  plane. 
Prove  that  their  paths  will  all  touch  a  fixed  ellipse  with  the  given 
point  as  focus. 



SECTION  III. 

ON  THE  MOTION   OF   BODIES  IN   CONIC   SECTIONS,  UNDER 
THE   ACTION  OF  FORCES  TENDING   TO  A  FOCUS. 

PKOP.  XL    PROBLEM  VI. 

A  body  is  revolving  in  an  ellipse,   to  find  the  law  of  force 
tending  to  a  focus  of  the  ellipse. 

I) 

Let  S  be  the  focus  to  which  the  force  tends,  P  tlie 
position  of  the  body  at  any  time,  PCG,  DCK 
conjugate  diameters,  Q  a  point  near  P,  QT,  PF 
perpendiculars  on  SP,  DCK,  from  Q,  P  respectively, 
PR  a  tangent  at  P,  QR  parallel  to  SP,  Qxv  parallel 
to  PR,  meeting  SP  in  x,  and  PC  in  v,  and  let  SP, 
DCK  intersect  in  E. 

2hz    OR 

ThenP=        .*:        ultimately,    when  PQ  is  inde- 
finitely diminished. 

But,  by  similar  triangles  QTx,  PFE, 

_ 

AC*  ~  CD*  ' 

Now,  -p  -  -g  =  ̂ p,  ,  by  the  properties  of  the  ellipse, 
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,  Pv     Pv      CP    , 

a  =       =  ~r)     y  similar  tri 

__  __ 

*  QE.vG~CP.AC> 
and  v  £  =  2  <7P,  $z  =  $y,  ultimately  ; 

QT2    2BC*     T     ... 
,.—R=—=L,  ultimately, 

if  Z  be  the  latus  rectum  of  the  ellipse  ; 

2A*      1  1 
•     f1  —  _    _  or    _ 

~  L  'SP*     SP*' 
Aliter. 

Since  the  force  tending  to  the  centre  of  an  ellipse, 
under  the  action  of  which  the  ellipse  can  be 
described,  varies  directly  as  the  distance  CP  from 
the  centre  C\  let  CE  be  drawn  parallel  to  the 
tangent  PC  to  the  ellipse;  then  if  8  be  any  point 
within  the  ellipse,  and  SP,  CE  intersect  in  JE,  force 
tending  to  C:  force  tending  to  S 

::   OP.  SP*  :  PE*  (Prop.  vn.  Cor.  3)  ; ~P  F3         1 

.*.  force  tending  to  #oc  -^p2oc  -™;, 

since  PE  is  constant. 

PROP.  XII.    PROBLEM  VII. 

A  lody  is  revolving  in  a  Jiyperlola^  to  find  the  law  of  force 
tending  to  a  focus  of  the  figure. 

The  investigation  is  exactly  the  same  as  in  the  last 
proposition,  employing  the  subjoined  figure. 

Also,  repulsive  force  from  C  oc  CP,  and  by  Prop.  vn. 
Cor.  3,  force  from  C:  force  to  S  ::  CP.SP*  :  PE», 

whence  force  to  8  oc  -~9  ,  since  PE  is  constant. 
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In  the  same  manner  as  in  these  propositions,  it  can  bo 
shewn  that  the  repulsive  force  tending  from  a  focus, 

under  the  action  of  which  the  body  describes  the 
opposite  branch  of  the  hyperbola,  varies  inversely 
as  the  square  of  the  distance. 

PROP  XIII.    PROBLEM  VIII. 

A  lodi)  is  moving  in  a  parabola,  to  find  the  laiv  of  force 
tending  to  the  focus. 

Let  S  be  the  focus  of  the  parabola,  P  the  position  o 
the  body  at  any  time,  Q  a  point  near  P,  PRY  a 
tangent  at  P,  QR  parallel  to  SP,  Qxv  parallel  to 
PR,  meeting  SP  in  #,  and  the  diameter  through 
P  in  v,  QT,  SY  perpendicular  to  £P,  PY 
respectively. 

Then  P=o,-  TV?*  >  ultimately,  when   QP   is   indefi- 

nitely diminished. 

Since  SP,  Pv  make  equal  angles  with  the  tangent, 
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Pxv  is  an  isosceles  triangle,  therefore  Pv  =  Px  =  Qfi, 
and  by  similar  triangles 

QT2  _  SY*  _  AS.  JSP  _  AS 
~Qxz  ~~  SI*  ~      SP*     ~  SP  ' 

and  Qv2  =  4£P .  Pv  =  4SP .  QR ; 

also,  Qx  =  Qv,  ultimately, 

QT*        AS         QT* 

2^  L 
=       - 

COR.  1.  It  follows  from  the  last  three  propositions, 
that  if  any  body  move  from  the  point  P  in  any 
direction  PR,  with  any  velocity,  and  be  at  the 
same  time  acted  on  by  a  centripetal  force,  which  is 
inversely  proportional  to  the  square  of  the  distance, 
the  body  will  move  in  some  one  of  the  conic 
sections,  having  a  focus  in  the  centre  of  force,  and 
conversely. 

For  when  the  focus,  the  point  of  contact,  and  the 
position  of  the  tangent  are  given,  a  conic  section 
can  be  described  which  will  have  a  given  curvature 
at  that  point.  But  when  the  force  is  given  and  the 
velocity  of  the  body,  the  curvature  is  known  ;  and 
two  orbits  touching  one  another  cannot  be  described 
with  the  same  centripetal  force,  and  the  same 
velocity  at  the  point  of  contact. 

COR.  2.  If  the  velocity,  with  which  a  body  leaves  its 
position  Pj  be  such  that  the  body  would  describe 
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the  small  space  PR  in  some  very  small  time,  and  in 
the  same  time  the  centripetal  force  were  able  to  move 
the  same  body  through  the  space  RQ,  this  body  will 
move  in  some  conic  section  whose  latus  rectum  is  the 

QT* 

limit
  
of  -y  

  
when

  
the 

 
lines

  
PR, 

 
QR  are  inde

fini
tely

 

diminished. 

In  these  corollaries  the  circle  is  included  as  a  particular 
case  of  an  ellipse ;  and  the  case  is  excluded  in  which 
the  body  moves  in  a  straight  line  to  the  centre  of 
force. 

Observations  on  the  preceding  Propositions. 

210.  If  /*  be  the  absolute  force,  in  any  conic  section,  whose 
latus  rectum  is  L,  described  under  the  action  of  a  force  tending 

to  the  focus,  /*  =  -£  >  an<*  /*  *s  g'lv€1!  >  either  when  the  force  at 
any  point  is  given,  or  when  the  velocity  at  any  point  in  a  given 
conic  section  is  given,  for,  in  the  latter  case,  L  and  F.  SY  or  h 
are  given.  , 

21 L  If  we  assume  the  chord  of  curvature  through  the  focus 

for  any  point  in  an  ellipse  or  hyperbola,  we  may  obtain  the  law  of 

force  from  the  expression  F  =  0^2  py  • 

For,  PV.  AC  =2 CD1  =  2SP.  HP\ 1  / 

and  SY2:BC*::  SP :  HP; 
V.AC  V.AC 

"  SY\  HP.  SP  ~  BC*.  SP* ' 
Similarly  for  the  parabola, 

since  PV  =  4#P,  and  SY*  =  AS.  SP, 

2A*_  /^ 

"AS.  SP.PV~2AS.SI-1' 

COR.  1.  It  is  assumed  in  this  corollary  that  a  conic  section 
can  be  described  under  the  action  of  a  force  tending  to  the 
focus:  see  Art.  164. 
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PROP.  XIV.    THEOREM  VI. 

If  any  number  of  bodies  revolve  about  a  common  centre, 
and  the  centripetal  force  vary  inversely  as  the  square  of 
the  distance,  the  later  a  recta  of  the  orbits  described 
will  be  in  the  duplicate  ratio  of  the  areas,  which  the 
bodies  will  describe  in  the  same  time  by  radii  drawn  to 
the  centre  of  force. 

For  in  each  orbit  the  latus  rectum  is  equal  to  the  limit 

QT* 
Cor.  2,  Prop,  xm.)  when  the  arc  PQ 

is  made  indefinitely  small. 
But  QR  in  a  given  time  is  ultimately  in  the  different 

orbits  as  the  centripetal  force,  that  is,  reciprocally 
as  the  square  of  the  distance  8P. 

QT* 

Hence
,    

ultim
ately

,    

-¥— 
 
oc   QT\ 

 
SP, 

   
or    the  

  
latus

 

rectum  is  in  the  duplicate  ratio  of  QT  .  SP  or  of 
twice  the  area  PSQ  described  in  the  given  small 
time,  which,  since  the  area  in  each  orbit  is  pro- 

portional to  the  time,  varies  as  the  area  described 
in  any  given  time. 

COR.  Hence  the  whole  area  of  the  ellipse,  and  the 
rectangle  under  the  axes,  which  is  proportional  to 
it,  vary  in  a  ratio  compounded  of  the  subduplicate 
ratio  of  the  latera  recta  and  the  ratio  of  the  periodic 
times. 

For  the  whole  area  is  as  QT  x  SP  described  in  a  given 
small  time,  multiplied  by  the  periodic  time, 

PROP.  XV.    THEOREM  VIL 

On  the  same  supposition,  the  squares  of  the  periodic  times 
in  ellipses  are  proportional  to  the  cubes  of  the  major 
axes. 

For,  by  Prop.  xiv.  and  the  Corollary,  since  QT.SP)  in 
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each  ellipse,  described  in  a  given  small  time  varies 
BC 

as  -j-^  j  and  the  area  <*  AC.J3C,  the  periodic  time, 

which  varies  as  the  area  divided  by  QT.SP,  oc  AC*. 
COR.  Hence  the  periodic  times  in  ellipses  are  the  same 

as  in  circles  whose  diameters  are  equal  to  the  major 
axes  of  the  ellipses. 

Observations  on  tJie  preceding  Propositions. 

212.   Prop.  xiv.  and  Cor.  may  be  also  proved  as  follows. 
Let  A,  h!  be  the  double  areas  described  in  the  unit  of  time  in 

any  two  of  the  orbits,  L,  L'  the  latera  recta  ;  then,  since  the 
absolute  forces  are  the  same  in  the  different  orbits, 

2  A8      2  A"  „ 
-r  =  -Zr,/.Z:Z  ::A  :  7,   ; 

Lence  the  latera  recta  are  in  the  duplicate  ratio  of  the  areas 
described  in  a  given  time. 

COR.  Let  P,  P  be  the  periodic  times  in  any  two  of  the 

orbits.  Then  the  areas  are  as  hP  :  AT'  :  Z*.  P  :  Z/».  P.' 

213.    Jb  ̂ rcc?  $Ae  periodic  time  in  an  ellipse  described  unde 
the  action  of  a  given  force  tending  to  the  focus. 

Let  Pbe  the  periodic  time,  /*  the  absolute  force, 

then  £A  .  P=  the  area  of  the  ellipse  =  IT  A  C  .  BC, 

AC.h* 

\  /*  / 

Therefore,  in  different  ellipses  described  about  the  same 

centre  of  force,  the  squares  of  the  periodic  time  vary  as  the  cubes 
of  the  major  axes, 

214.  To  find  tie  time  from  an  apse  to  any  point  of  an  elliptic 

orl,'t  described  um7cr  the  action  of  a  force  tending  to  the  focus. 
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Let  ASa  be  the  apsidal  line,  A  being  the  further  apse,  AQa 
the  circle  on  the  major  axis  as  diameter,  P  any  point  in  the  orbit, 

Q  the  corresponding  point  in  the  circle.  Join  SP,  SQ,  CQ. 

Time  in  AP:  periodic  time  ::  area  ASP:  irAG.  BO 

and  area  ASQ  =  sector  A  CQ  +  A  SCQ  =  \A  C.  A  Q  +  %SO.  QM] 

therefore,  if  u  be  the  circular  measure  of  LACQ,  and  e  the 

eccentricity  of  the  ellipse,  area  ASQ  =  \A  G*  (»  -f  e  sin  u) 

, 
and  time  in  AP:  ---  ,  —  ::  w  -I-  e  smw  :  27r, 

/** 

t.c.  the  time  from  the  further  apse  to  Pis  —  ̂ -   M  -f  esnw 

Similarly,  if  u  be  the  circular  measure  of  a  CQ^  the  time  from 

AC^ 
the  nearer  apse  will  be  —  T-  (u  —  e  sin  u). 

P* 

215.  DEP.   LaCQ,  from  the   nearer   apse,    Is    called    the 

eccentric  anomaly  ',  L  aSPthQ  true  anomaly  ̂   and  the  mean  anomaly 
is  the  angle  which  would  be  described  in  the  same  time  as  L  aSP 

by  a  body  moving  with  uniform  angular  velocity  equal  to  the 
mean  angular  velocity  in  the  ellipse. 

216.  To  find  the  relations  between  the  mean}  the  true,  and  the 
eccentric  anomalies. 

Let  wi,  v,  and  u  be  the  three  angles. 
Since  the  mean  angular  velocity  in  the  ellipse  is  2?r  divided 

LL  ' 

by  the  periodic  time,  or  -^—  -  ,  m  =  u  —  e  sinw,  Art.  214  ; 
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and,  if  a  be  the  semi-major  axis, 
SPcosv  =  a  COSM  —  aei 

—  c    cosy 
/.  cos  u  =  -  -  +  e  = 

1+ecosv  l+ecosyj 

1  —  COSM      1  —  e     1  — 
__ 

cosw  ~"  1  -f  e  '  1  +  cosv  ' 

u          l\  —  e  ,      v 

SP=*AC+e. 

217.    To  find  the  time  of  describing  any  angle  from  the 
t n  a  parabolic  orbit. 

Let  T  be  the  time  of  describing  the  angle  ASP  in  a 
parabolic  orbit,  whose  focus  is  S  and  vertex  A  ;  draw  PJ/T  /SF 
perpendicular  to  the  axis  ASM^  and  the  tangent  PY,  and  let 
PK  be  the  normal  at  P. 

Then  PJf  =  JOT  tan  PKM = 

therefore  ̂ 13f  =  ASh 

.MP-SM.MP 

where,  if  /A  be  the  absolute  force,  A'  = 

Kepler's  Laws. 

218.  The  three  laws  discovered  by  Kepler  are  : 

I.  That  planets  move  in  ellipses  having  the  sun's  centre  in 
one  focus. 

II.  That  the  areas  swept  out  by  the  radii  drawn  from  the 

planet  to  the  sun's  centre  are,  in  the  same  orbit,  proportional  to 
the  time  of  describing  them. 

III.  That  the  squares  of  the  periodic  times  are  proportional 
to  the  cubes  of  the  major  axes. 

219.  Kepler's  lawi,  although  not  rigidly  true,  are  sufficiently 
near  to  the  truth  to  have  led  to  the  discovery  of  the  law  of 
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attraction  of  the  bodies  of  the  solar  system.  The  deviation 
from  complete  accuracy  is  due  to  the  facts,  that  the  planets  are 
not  of  inappreciable  mass,  that,  in  consequence,  they  disturb 

each  other's  orbits  about  the  sun,  and,  by  their  action  on  the 
sun  itself,  cause  the  periodic  time  of  each  to  be  shorter  than 
if  the  sun  were  a  fixed  body,  in  the  subduplicate  ratio  of  the 
mass  of  the  sun  to  the  sum  of  the  masses  of  the  sun  and  planet ; 
these  errors  are  appreciable  but  very  small,  since  the  mass 

of  the  largest  of  the  planets,  Jupiter,  is  less  than  j^^th  of  the 

Deductions  from  Kepler*s  Laws. 

220.  From  the  law  of  the  equable    description    of  areas, 
stated  as  the  second  law,  it  is  deduced,  by  Prop.  II.,  that  the 
forces  acting  on  the  planets  are  centripetal  forces  tending  to  the 

sun's  centre.     But  this  law  gives  no  information  regarding  the 
nature  or  intensity  of  the  forces. 

From  the  elliptic  motion  of  the  planets,  as  asserted  in  the 
first  law  it  is  deduced,  by  Prop.  XI.,  that  the  force  which  acts 
upon  each  planet  varies  inversely  as  the  square  of  the  distance 
from  the  centre  of  the  sun. 

From  the  relation  between  the  periodic  times  and  lengths  of 
the  major  axes,  stated  in  the  third  law,  it  is  inferred,  by  Prop.  XV., 
that  the  planets  are  acted  on  by  the  same  centripetal  force ;  and 
that  the  attraction,  being  the  same  for  all  bodies,  independently 
of  their  form  and  substance,  is  not  of  the  nature  of  the  elective 
action  of  chemical  or  magnetic  forces. 

221.  The  same  laws  hold  for  the  motion  of  the  satellites  of 

Jupiter,  Saturn,  and  Uranus,  and  the  first  two  for  our  moon, 
their  respective  primaries  taking  the  place  of  the  sun  in  the 
statement  of  the  laws.     Hence  it  is  inferred  that  forces  tend  to 

the  centre  of  the  planets,  varying  according  to  the  same  law  as 
the  forces  tending  to  the  sun. 

222.  By  such  deductions  the  law  of  gravitation  is  rendered 

probable,  that  every  particle  attracts  every  other  particle  with  a 



230  NEWTON, 

force,  which  acts  in  the  line  joining  the  particles^  and  varies 
inversely  as  the  square  of  the  distance. 

The  law  thus  suggested  is  assumed  to  be  universally  true, 
and  calculations  are  made  of  the  effects  of  the  action  of  the 

bodies  of  the  solar  system  upon  one  another  in  disturbing  their 
elliptic  motion  ;  and  also  of  the  disturbances  of  the  motion  of  the 
satellites  due  to  a  want  of  exact  sphericity  in  the  primaries ;  and 
these  calculations  have  been  found  to  agree  with  the  results 
of  most  minute  astronomical  observations. 

Predictions  of  the  return  of  comets  have  been  fulfilled, 
founded  on  the  supposition  of  the  truth  of  the  law,  and  the 
existence  and  position  of  a  planet  have  been  recognized,  before 
its  discovery  by  actual  observation,  from  its  assumed  action 
according  to  this  law  upon  another  planet. 

Thus  the  law  of  gravitation  has  satisfied  every  test  which 
has  hitherto  been  applied  to  it,  and  it  is  so  far  proved  to  be  true 
where  our  system  is  concerned. 

£ROP.  XVI.    THEOREM  VIIL 

On  the  same  supposition,  the  velocities  ef  the  bodies  are  in 

the  ratio  compounded  of  the  inverse  ratio  of  the  per- 
pendiculars from  the  focus  on  the  tangent  and  ihc 

subduplicate  ratio  of  the  later  a  recta. 

For,  in  any  two  orbits, 

_ 
"  SY*  8Y>"  SY*  SY" 

COR.  1.    The  latera  recta  of  the   orbits   are   in  the 
ratio  compounded   of  the   duplicate   ratio    of  the 
perpendiculars    and    the    duplicate    ratio    of  the 
Velocities. 

For  L  :  L  :  :  h*  :  A"  :  :  V\  SY*  :  V'\  SY*. 
COR.  2.  The  velocities  of  the  bodies,  at  their  greatest 

and  least  distances  from  their  common  focus,  are  in 
the  ratio  compounded  of  the  ratio  of  the  distances 
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inversely,  and  the  subduplicate  ratio  of  the  latera 
recta  directly. 

For  the  perpendiculars  on  the  tangents  are  these  very 
distances. 

COE.  3.  And  therefore  the  velocity  in  a  conic  section, 
at  the  greatest  or  least  distance  from  the  focus,  is  to 
the  velocity  in  a  circle  at  the  same  distance  from  the 
centre  in  the  subduplicate  ratio  of  the  latus  rectum 
to  twice  that  distance. 

For  the  latus  rectum  of  a  circle  is  the  diameter, 
therefore  if  SA  be  the  greatest  or  least  distance, 
velocity  in  the  conic  section  :  velocity  in  the  circle 

COR.  4.  The  velocities  of  bodies  revolving  in  ellipses 
are,  at  their  mean  distances  from  the  common 
focus,  the  same  as  the  velocities  of  bodies  revolving 
in  circles  at  the  same  distances  ;  that  is  (by  Cor.  6, 
Prop,  iv.),  in  the  inverse  subduplicate  ratio  of  the 
distances. 

For  the  perpendiculars  are  now  the  semiaxes  minor, 
that  is  SY=  BC,  and  the  distance  SB  =  AC,  therefore 
velocity  in  the  ellipse  at  the  mean  distance  :  velocity 
in  the  circle  at  the  same  distance 

(2  AC)* 
j 

AC  \ACf 

COR.  5.  In  the  same  figure,  or  in  different  figures 
having  their  latera  recta  equal,  the  velocity  varies 
inversely  as  the  perpendicular  from  the  focus  on  the 
tangent. 

COR.  6.  In  the  parabola,  the  velocity  varies  in  the 
inverse  subduplicate  ratio  of  the  distance  of  the  body 
from  the  focus,  in  the  ellipse  it  varies  in  a  greater, 
and  in  the  hyperbola  in  a  less  inverse  ratio. 
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For  (vel.)*  oc  -~~,  oc  -^  in  the  parabola 

HP      2AC-SP  . 
oc  -  —  --  -  in  the  ellipse, 

HP      2AC+SP.    ,,     , 
oc  -      oc      —  ~   --  in  the  hyperbola. 

COR.  7.  In  the  parabola,  the  velocity  of  the  body  at 
any  distance  from  the  focus  is  to  the  velocity  of  a 
body  revolving  in  a  circle  at  the  same  distance 
from  the  centre,  in  the  subduplicate  ratio  of  2  :  1  ; 
in  the  ellipse  it  is  less,  in  the  hyperbola  greater  than 
in  this  ratio. 

For,  velocity  in  the  conic  section  :  velocity  in  the 
circle  at  the  same  distance 

UP 
::  V2  :  1  in  the  parabola, 

BC*.SP\* . 

AC.SY)  :l::  \AO)      l  m  the  elhpse  °r 

bola,  and  HP<2AC  in  the  ellipse,  and>2AC'in 
the  hyperbola. 

Hence  also,  in  the  parabola,  the  velocity  is  every- 
where equal  to  the  velocity  in  a  circle  at  half  the 

distance,  in  the  ellipse  less,  and  in  the  hyperbola 
greater. 

COR.  8.  The  velocity  of  a  body  revolving  in  any 
conic  section  is  to  the  velocity  in  a  circle  at  the 
distance  of  half  the  latus  rectum,  as  that  distance 
is  to  the  peprendicular  from  the  focus  on  the  tangent. 

For,  the  velocity  in  the  conic  section  :  the  velocity  in Z*      D 

the  circle  at  distance  \L  :  :  -      :        :  :  |Z  :  8Y. 

COR.  9.    Hence,  since  (Cor.  6,  Prop,  iv.)  the  velocity 
of  a  body  revolving  in  a  circle  is  to  the  velocity  in 
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any  other  circle  in  the  inverse  subduplicate  ratio  of 
the  distances,  the  velocity  of  a  body  in  a  conic  sec- 

tion will  be  to  the  velocity  in  a  circle  at  the  same 
distance  as  a  mean  proportional  between  that 
common  distance  and  half  the  latus  rectum  to  the 
perpendicular  from  the  focus  on  the  tangent. 

For  velocity  in  a  circle  at  distance  \L  :  velocity  in  a 
circle  at  distance  JSP  :  :  SP  :  (\L)*,  therefore  velocity 
in  conic  section  :  velocity  in  circle  at  distance  SP 

SY. 

Notes. 

223.    To  find  the  velocity  in  a  conic  section  described  under 
the  action  of  a  force  tending  to  the  focus. 

In  the  central  conic  sections 

Ja 

8Y*      AG.SY*~  AC.SP' 

or  else    V*-F  ±PV-  -      '          • 
se>  \  ~  SP*'  AC~  SP.AC* 
but  HP=2AC-SP  in  the  ellipse, 

and,  HP=  SP—  2  AC,  in  the  hyperbola,  force  repulsive, 

=  SP+2AC,  in  the  hyperbola,  force  attractive  5 

.      y,_     ff/f  ,-    SP\ "  SP  I2  +  AC)  ' 
In  the  parabola, 

_    ̂ _ 
~          ~ 

or  else,  V>  =  F.\PV=  -        .2SP=      ,. 

224.    The  expression  -        2~~         ̂ or  ̂ e  s^uare  °f 

velocity  in  the  ellipse  reduces  itself  to  that  for  the  hyperbola 
under  an  attractive  force  by  changing  the  sign  of  CA,  which 
corresponds  to  the  opposite  direction  in  which  A  C  is  measured 
in  the  hyperbola;  it  is  reduced  to  that  for  the  hyperbola  undei 

H  H 
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a  repulsive  force  by  changing  the  sign  of  //.,  which  corresponds 
to  changing  the  direction  of  the  force;  and  to  that  for  the 
parabola  by  making  A  C  infinite. 

225.    To  compare  the  velocity  in  the  ellipse  or  hyperbola  with 
that  in  the  circle  at  the  same  distance. 

Let  U  be  the  velocity  in  the  circle, 

The  Hodograph. 

226.  DBF.    If  from  any  point  lines  be  drawn  representing 
in  direction  and  magnitude  the  velocity  of  a  particle  describing 
an  orbit  under  the  action  of  a  force  tending  to  a  fixed  centre, 
the  locus  of  the  extremities  of  these  lines  is  the  Hodograph. 

This  name  is  given  to  the  curve  by  Sir  William  Hamilton, 
in  his  work  on  Quaternions. 

227.  Since  the  velocity  in  a  central  orbit  is  -i  if  &Q  ke 

taken  in  SY  equal  to  -~r,  the  locus  of  Q  will  be  the  polar  reci- 

procal of  the  orbit  with  respect  to  a  circle,  the  square  of  whose 
radius  is  h  ;  and  if  it  be  turned  about  S  through  a  right  angle 
will  be  the  hodograph  of  the  orbit. 

228.  If  a  conic  section  be  described  under  the  action  of  a 

•force  tending  to  a  focus,  the  hadograph  will  be  a  circle. 

For,  in  the  case  of  an  ellipse  or  hyperbola,  the  velocity 
varies  inversely  as  $Y,  and  therefore  directly  as  HZ,  to  which 
its  direction  is  perpendicular,  and  the  locus  of  Z  is  a  circle. 
And,  in  the  case  of  a  parabola,  A  Y  being  the  tangent  at  the 
vertex,  AU  perpendicular  to  SY9 

SY:  AS::  AS:  SU, 

therefore  SU  varies  as  the  velocity,  and  the  locus  of  £7  is  a  circle 
which  passes  through  S. 
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229.    General  properties  of  the  hodograph  of  a  central  orbit. 

In  the  figure  of  Prop.  I.,  AB  or  Be  and  BG  are  propor- 
tional to  the  velocities  with  which  the  body  moves  along  AB 

and  J5(7;  therefore,  if  Oa,  0/3  represent  these  velocities  in 

magnitude  and  direction,  (i)  a/3  will  be  parallel  to  Co  or  SB, 

and  will  represent  the  velocity  generated  by  the  impulse  at 

B\  and  if  Oy,  08,  OB...  represent  the  velocities  in  CD,  DE, 

EF ...,  fiy,  y§,  5s  ...  will  represent  the  velocities  generated  by 

the  impulses  at  C,  D,  E ...;  (ii)  hence  the  perimeter  of  any 

portion  of  the  polygon  a/Byfe  will  represent  the  sum  of  the 

velocities  generated  by  all  the  impulses  tending  to  /Sin  the  cor- 
responding perimeter  of  the  polygon  ABODE;  (iii)  also  the 

chord  as  will  represent  the  resultant  of  these  velocities  in 

magnitude  and  direction. 

Proceeding  to  the  limit,  a^ySs..,  becomes  the  hodograph 

of  the  central  orbit  which  is  the  curvilinear  limit  of  the  polygon 
ABODE. 

Hence  we  arrive  at  the  following  properties  of  the  hodo- 
graph of  a  central  orbit. 

(i)  The  tangent  to  the  hodograph  at  any  point  is  parallel  to 
the  radius  drawn  to  the  corresponding  point  of  the  orbit. 

(ii)  Any  finite  arc  of  the  hodograph  represents  the  sum  of 

the  velocities  generated  by  the  central  force  in  the  correspond- 
ing arc  of  the  orbit. 

(iii)  The  chord  of  the  arc  represents  in  magnitude  and 
direction  the  resultant  of  the  whole  action  of  the  central  force  in 

the  passage  through  the  corresponding  arc. 

From  Art.  227,  it  follows  that 

(iv)  If  r,  p  and  r,  p  be  the  radius  and  perpendicular  on  the 

tangent  at  corresponding  points  in  the  orbit  and  hodograph 

rp  =  h  —  rp,  and  the  angles  between  r,  p  and  r,  p  will  be  equal. 
NOTE.  In  this  article  and  in  Art.  227,  h  represents  an  area 

and  not  a  rate  of  description  of  areas. 

Illustrations, 

(1)  The  hodograph  for  an  ellipse,  described  under  the  action 
of  a  force  tending  to  the  centre,  is  a  similar  ellipse. 
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For  CD  is  parallel  to  the  direction  of  motion  and  propor- 
tional to  the  velocity. 

(2)  The  hodograph  for  an  hyperbola,  described  under  the  action 

of  a  force  repelling  from  the  centre,  is  a  hyperbola  similar  to  the 
conjugate  hyperbola. 

(3)  The  hodograph  for  a  parabola,  described  under  the  action 

of  a  constant  force  parallel  to  the  axis,  is  a  straight  line  parallel 
to  the  axis. 

For  the  square  of  the  velocity  oc  SPac  8Y\  and  the  locus  of 
Y  is  a  horizontal  line,  therefore,  since  SY  is  perpendicular  to 

the  direction  of  motion,  and  proportional  to  the  velocity,  turning 
the  locus  of  Y  through  a  right  angle,  the  hodograph  is  a 
vertical  line. 

(4)  If  p,  p  be  the  radii  of  curvature  at  corresponding  points 
of  a  central  orbit  and  its  hodograph,  r,  r    corresponding  radii, 

p,p  the  perpendiculars  on  the  tangents,  then  willpp'pp  =rV2. 
Let  PQ,  pq   be  corresponding  small  arcs,  then  LPSQ   is 

equal   to   the  angle  between  the  tangents   at  p,  q,  and 
to  the  angle  between  the  tangents  at  P,  Q; 

and,  if  The  the  time  in  PQ,  we  have  ultimately 

_h          PSQ  _h       PQ_vpq 

T        r.'PV       T  ,      r2'      T  ~      '    T 

V.F.PV.r3 

(5)  If  F  be  the  accelerating  effect  of  the  force  in  a  central  orbit, 

and  F'  that  of  a  force  tending  to  the  pole  of  the  hodograph  by 
which  it  can  be  described  as  a  central  orbit,  FF'  oc  rr. 

For.F*o4  —  ,   -F1*--^-^; p   pp  P    PP 

/.  FF'v    ,  ̂  ',  >2  oc  rr'. 

p'p  Vr  2 NOTE.  The  motion  in  the  hodograph  considered  as  a  central 

orbit,  is  not  generally  the  same  as  that  of  the  point  which  is 
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guided  by  the  motion  of  the  corresponding  point  in  the  original 
central  orbit,  so  as  to  generate  the  hodograph. 

(6)  The  only  central  orbits,  whose  holographs  are  also  central 

orbits,  with  accelerations  tending  to  their  poles,  the  motions  being 

the  same  as  in  the  description  of  the  hodograph,  are  those  in 

which  the  acceleration  varies  as  the  distance.* 

Let  8  be  the  centre  of  force  taken  as  the  pole  of  the 

hodograph,  P,  P',  P"  corresponding  points  in  the  orbit,  the 
hodograph,  and  the  hodograph  of  the  hodograph.  Then  the 

hodograph  being  a  central  orbit,  the  tangent  at  P"  is  in  the 
direction  of  the  acceleration  of  P',  hence  it  is  parallel  to  SP', 
and  therefore  to  the  tangent  at  P.  Also  SP"  represents  P'  's 
velocity,  and  therefore  P's  acceleration  in  magnitude  and  direc- 

tion; hence  P" SP  is  a  straight  line,  and  the  tangents  at  PP' 
are  parallel,  therefore  P'"s  orbit  is  similar  to  the  central  orbit. 
Hence  /SPcc  SP"  oc  acceleration  of  P. 

PROP  XVII.    PROBLEM  IX. 

Given  that  the  centripetal  force  is  inversely  proportional  to 
the  square  of  the  distance  from  the  centre,  and  that  the 
absolute  force  of  the  centre  is  known ;  it  is  required  to 
find  the  curve  which  will  be  described  by  a  body  which  is 
projected  from  a  given  point  with  a  given  velocity  in  a 
given  direction. 

Let  Fbe  the  velocity,  PFthe  direction  of  projection 
from  Pj  S  the  point  to  which  the  force  tends,  and  let 
PZ7be  measured  on  PS,  produced,  if  necessary,  equal 
to  twice  the  space  through  which  the  body  must  be 
drawn  from  rest  by  the  action  of  the  force  at  P  con- 

tinued constant,  in  order  that  the  velocity  V  may  be 
generated;  therefore  since  the  absolute  force  is  given, 
PUis  given.  Draw  PG  perpendicular  to  PJT,  and 
PH  so  that  HP,  or  HP  produced,  and  SP  make 
equal  angles  with  PG.  Draw  UG  perpendicular  to 
P  a  and  join  SG. 

*  Tait,  R.S.E.,  67-68. 
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Here  three  distinct  cases  arise : 

I.  If  PU\>e  equal  to  2SP,  S  will  be  the  centre  of  a 
circle  described  about  PGU,  and  LSGP  =  L&PG 
=  LHPG\  therefore  8G}  produced  either  way,  will 
not  meet  PH. 

F- 

In  this  case,  draw  GL  perpendicular  to  PS,  and  with 
S  as  focus  and  2PL  as  latus  rectum,  describe  a 
parabola  whose  axis  is  in  the  direction  SG. 

Then  PU  is  half  the  chord  of  curvature  at  P  through  S. 

II.  IfP  J7be  less  than  2SP,  tSGPi*  greater  than  L  SP  G 
or  LlIVG,  therefore  JSG  produced  meets  PHin  H. 

In  this  case,  with  S  and  H  as  foci,  and 
major  axis,  describe  an  ellipse,  then  PU\&  half  the 
chord  of  curvature  at  P  through  S. 

III.    If  Ptf  be  greater  than  28 P  L$GP  is  less  than 
L&PG,  and  angles  SGP,  HPG  are  together  less  than 
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two  right  angles,  therefore  GS  produced  meets  PH in  H. 

In  this  case,  with  S  and  H  as  foci,  and  HP- SP as 
transverse  axis,  describe  an  hyperbola,  then  PU  is 
half  the  chord  of  curvature  at  P  through  S. 

In  all  these  cases,  a  body  may  be  supposed  to  revolve 
in  the  conic  section  described,  under  the  action  of  the 
force  tending  to  S,  Art.  164,  and  the  velocity  at  P  is 
that  due  to  falling  through  one-fourth  of  the  chord 
of  curvature  through  S,  or  half  PU,  under  the  action 
of  the  force  at  P  supposed  constant,  and  is  therefore 
equal  to  F,  the  velocity  of  the  projected  body ;  also, 
since  SP  and  IIP,  or  HP  produced,  make  equal 
angles  with  IG,  PT  is  a  tangent,  therefore  the 
direction  of  motion  is  that  of  the  projected  body. 

Therefore,  the  circumstances  of  the  two  bodies  are  the 
same  in  all  respects  which  can  influence  the  motion 
at  the  point  P,  and  they  will  therefore  describe  the 
same  orbits  ;  that  is,  the  projected  body  will  describe 
a  conic  section  of  that  kind  which  corresponds  to 
the  velocity. 

The  orbit,  therefore,  will  be  an  ellipse,  parabola,  or 
hyperbola,  accordingas  PUis  less,  equal  to,  or  greater 

than  2SP,  that  is,  since  V*  =  F.PU,  accordingas  F2 
is  less,  equal  to,  or  greater  than  2F.  SP,  or  twice  the 
square  of  the  velocity  in  a  circle  whose  radius  is  SP. 
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COR.  3.  Hence  if  a  body  move  in  any  conic  section,  and 
be  disturbed  from  its  orbit  by  any  impulse,  the  orbit 
in  which  it  will  proceed  to  move  may  be  discovered. 
For,  by  compounding  the  motion  of  the  body  with 
that  motion  which  the  impulse  alone  would  generate, 
the  motion  and  direction  of  motion  will  be  found, 
with  which  the  body  will  proceed  from  the  point  at 
which  the  disturbance  took  place. 

COR.  4.  And  if  the  body  be  disturbed  by  any  con- 
tinuous extraneous  force,  its  course  can  be  deter- 

mined, approximately,  by  calculating  the  changes 
which  the  force  produces  at  certain  points,  and 
estimating  from  analogy  the  changes  which  take 
place  at  the  intermediate  points. 

SCHOLIUM. 

If  a  body  P  move  in  the  perimeter  of  any  conic  section, 
whose  centre  is  £7,  under  the  action  of  a  centripetal 
force  tending  to  any  given  point  R,  and  the  law  of 
force  be  required,  draw  CG  parallel  to  RP  and 
meeting  in  G  the  tangent  PG  to  the  conic  section. 

Then,  by  Prop,  vn.  Cor.  3,  the  force  tending  to  R : 

the  force  tending  to  C::CG*  :  CP.RP\  but  the  force 
tending  to  C  varies  as  CP,  therefore  the  force  tend- 

T> 

ing  to  R  QC 

Observations  on  the  Proposition. 

230.  In  the  solution  of  Prob.  ix.  it  is  assumed  that  if,  in 
any  conic  section,  G  be  the  intersection  of  the  axis  and  normal 
at  P,  and  GU,  parallel  to  the  tangent,  meet  SPin  U,  PU  will 
be  half  the  chord  of  curvature  at  P  drawn  through  the  focus ; 
this  property  may  be  proved  as  follows. 

1.  In  the  ellipse  and  hyperbola,  let  PG  meet  the  conjugate 
diameter  in  F\  then  CD.  PF=AC.BC,  and  PG  .PF= 

PUPE      CD 
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W  _Pa_BC_OD 

•"'    CD  ~  BC~~  PF~  AG 

CD* 
.:  PU= 

 
—-^  =  half  the  chord

  
of  curva

ture 
 
at  P  throu

gh  
S. *a.  \J 

Also,  if  GL  be  perpendicular  to  SP,  PL  will  be  equal  to 
the  semi-latus-rectum. 

•p-r         "PTT 

For    ̂ -    =  -=r  •   /.  PL—  —.r-^,  —half  the  latus  rectum. 

2.   In  the  parabola, 

.-.  PU=  2SP=  half  the  chord  of  curvature  at  P  through  8. 

PL  _SY S°>  PG  "  SP  ' 

.'.  PL  =         -  =  2/S-4  =  half  the  latus  rectum. 
bJr 

231.  To  shew  that  if  the  central  force  vary  inversely  as 
the  square  of  the  distance,  a  body,  projected  from  any  point  in  any 
direction^  will  describe  a  conic  section. 

Let  S  be  the  centre  of  force,  P  any  point  of  the  orbit 

described,  PP'  an  arc  described  in  a  small  time.  Draw  SY,  SY' 
perpendicular  to  the  tangents  -PI7,  P'Y'  at  P  and  jP,  and 
produce  them  if  necessary  to  <?,  #',  so  that  SY.SQ=  SY'.  SQ'=h, 
then  SQj  SQ'  represent  the  velocities  at  P,  P'  in  magnitude, 
and  are  perpendicular  to  their  directions;  hence  QQ'  represents 
the  velocity  generated  by  the  force  PS,  and  is  perpendicular 

to  PS]  that  is,  the  tangent  to  the  locus  of  Q  at  Q  is  perpen- 

dicular to  SP.  Now  the  angle  PSP'  described  in  a  given  small 
time  varies  inversely  as  SP\  so  also  does  the  velocity  generated 

in  the  same  time  j  therefore  QQ'cc  LPSP',  and,  by  Lemma  IV., 
if  PPj  be  any  finite  arc  of  the  orbit  described,  QQ^  the  cor- 

responding arc  of  the  locus  of  $,  w^l  vary  as  the  angle  P$P,, 
and  therefore  will  vary  as  the  angle  between  the  tangents  at 
Q  and  Qt,  which  is  a  property  peculiar  to  a  circle.  Hence,  tin 
locus  of  Q  being  a  circle,  that  of  Y  is  either  a  circle  or  a 

II 
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straight  line,  being  the  inverse  of  the  locus  of  Q.  Hence,  the 
feet  of  the  perpendiculars  from  the  centre  of  force  on  a  tangent 

to  the  body's  path  lie  in  a  circle  or  straight  line,  which  is  a 
property  of  a  conic  section  only,  since  straight  lines  drawn 
according  to  a  fixed  law  can  only  have  one  envelope. 

Therefore,  the  path  will  be  an  ellipse,  parabola,  or  hyperbola^ 
according  as  S  lies  within,  upon,  or  without  the  perimeter  of  the 
locus  of  Q. 

NOTE.   The  radius  of  the  circular  locus  of  Q  is 

QQ'        IJL       h       /JL 

PSP'  =  ?  "  ?  =  h  ' 

232.  Geometrical  construction  for  the  conic  described  by  a 
body  projected  with  a  given  velocity  in  a  given  direction. 

Let  V  be  the  given  velocity,  PY  the  given  direction.  Draw 
SY  perpendicular  to  PF,  and  produce  if  necessary  to  $,  so 

that  SQ=V)  then  SQ.SY=h  is  given.  Draw  QO  parallel 

to  PS  and  equal  to  j- ,  and,  since  the  tangent  to  the  circular 

locus  of  Q  is  perpendicular  to  $P,  0  is  its  centre  and  is,  by 

symmetry,  on  the  axis  of  the  conic  described.  Draw  SZ  per- 
pendicular to  SP,  meeting  PY  in  Z,  then  ZD  perpendicular 

to  SO  is  the  directrix  of  the  conic. 

NOTE.  Let  SZ,  QO  intersect  in  M,  since  the  angles  at 

D)  M)  Y  are  right  angles,  SD.SO  =  SZ.  SM=  SY. SQ  =  A,  and 

«./SX>==semi-latus-rectum  =  —  ,  therefore  SO  =  -j- ,  therefore  V 

is  compounded  of  7  and  -=-  perpendicular  respectively  to  OQov 

SP  and  80. 

233.  Equations  for   determining    the    elements    of   the  orbit 

described  by  a  body  projected  from  a  given  point  with  a  given 
velocity  in  a  given  direction. 

Let  V  be  the  velocity  of  projection,  a  the  angle  between 
SP  and  PY  the  direction  of  projection,  /-t  the  absolute  force. 



PROP.    XVII.      PROBLEM   IX.  243 

the  orbit  will  be  an  ellipse,  hyperbola,  or  parabola,  according  as 

I.  For  the  elliptic  and  hyperbolic  orbits,  let  a,  5,  L,  e  be  the 

semi-axes,  senai-latus-rectum,  and  eccentricity,  and  let  SP=R, 

and  -vjr  be  the  angle  PTS  between  PY  and  the  transverse  axis 
in  the  figures  on  pages  238,  239  ; 

Also,  fj,.L  =  K1=V!S1sm'a; 

Draw  /ST",  HZ  perpendicular  to  the  tangent,  and  UK  to  SY, 
then  8Hw*8HK=HK=  YZ=  (HP±  SP)  costfPF; 

/.  2ae  cosi|r  =  2a  cos  a  j 

Also,  8H  sin  SHK=  SK=  SY+  HZ; 

.-.  2ae  sin  ̂   =  (SP+  HP)  sin  a 
=  {E  +  (2a  +  B}}  sin  a  j 

C7-?    
     \ 

-+  lj  sina;
 

'J8 

.*.  tan>|r=  r-  +  1J  tana " 
tana   (iv). 

The  equations  (i)  and  (ii)  determine  a,  b,  and  e,  and  (iv)  de- 
termines ijr  immediately  from  the  given  circumstances  of  pro- 

jection, (iii)  is  also  a  convenient  equation  for  determining  the 
position  of  the  axes  when  e  has  been  previously  found. 

Instead  of  (iii)  or  (iv)  we  might  employ  the  equation 
L 

to  determine  the  angle  ASP,  which  also  gives  the  direction  of 
the  axes. 
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II.  For  the  parabolic  orbit,  fig.  1,  page  238,  SY*=SP.AS1 
and  the  tangent  makes  equal  angles  with  the  axis  and  SP; 

therefore  AS=  E  sin*a,  and  i/r  =  a,  which  determine  the  position and  dimensions  of  the  orbit. 

234.  To  find  the  elements  of  the  orbit  described  under  the 

action  of  a  repulsive  force  varying  inversely  as  the  square  of  the 
distance  from  the  point  from  which  the  force  tends. 

Let  H  be  the  point  from  which  the  force  tends,  HP—  jft, 

p.SP_        p    HP-2AC_  p  (R 
~  HP.  AC  ~  HP        AC        ~"S(a 

The  other  equations  are  similar  to  those  in  Art.  233. 

Illustrations. 

(1)  A  "body  is  revolving  in  a  circle  under  the  action  of  a  force 
which  tends  to  the  centre  and  varies  inversely  as  the  square  of  the 
distance  from  it.  When  the  body  arrives  at  any  point,  if  the  force 

"begin  to  tend  to  the  point  of  bisection  of  the  radius  through  the 
body,  to  determine  the  orbit  described  by  the  body. 

Let  CA  be  the  radius,  S  the  new  centre  of  force.  Then, 
since  the  force  is  finite,  the  velocity  at  A  is  unaltered,  and  A  is 

an  apse  of  the  new  orbit.    Also  (vel.)"  in  the  circle  =  ̂    <  J~r  ; C/^L  O-4 

hence  the  body  moves  in  an  ellipse  ; 

' 

and  /t  -  =  V  =  -£-;  .  8  A'  by  (ii)  ;    .-.-[  =  f  and  e  =  \. a>  L/-/X  en 

Instead  of  equation  (ii)  we  might  determine  e  from  the  con- 
sideration that  A  is  one  extremity  of  the  major  axis  ; 

.•.  SA  —  a(l±e)'j   .'.  l±e  =  f,  and  e  =  £, 

since  the  upper  sign  must  be  taken,  and  therefore  A  is  the 
greatest  focal  distance. 

The  orbit  lies  entirely  within  the  circle,  since  the  force  at  A 
ia  increased,  and  therefore  the  curvature  is  greater  than  that 
in  the  circle. 
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(2)  If  the  new  centre  of  force  be  in  the  bisection  of  the 
radius  which,  if  produced,  passes  through  the  body,  to  determine 
the  orbit. 

The  orbit  must  be  elliptic  since  — —.  =  f  <  2  ; 

hence  —7-7  =  -£ CA      St 

also  SA  =  a  (I  ±  e) ;    .'.  e  =  \, 

and  A,  in  the  new  orbit,  is  the  nearest  point  to  8. 

In  this  case  the  force,  and  therefore  the  curvature,  is  dimi- 
nished, which  accounts  for  the  orbit  being  exterior  to  the  circle. 

(3)  A  particle,  acted  on  by  a  force  which  varies  inversely  as 
the  square  of  the  distance,  is  projected  from  a  fixed  point,  with  a 
velocity  which  is  to  the  velocity  in  a  circle  at  the  same  distance  as 

\/5  :  2,  making  an  angle  tan~l2  with  the  line  joining  the  point  of 
projection  to  the  fixed  point ;  shew  that  the  eccentricity  of  the 
orbit  is  \,  and  that  the  major  axis  is  perpendicular  to  the  distance 

of  projection. 

/*«  (1  -  ea)  =  F^  !==/*£  by  (ii); 

therefore  a  =  $B,e  =  %,  and  R  being  the  semi-latus-rectum,  is 
perpendicular  to  the  major  axis. 

Or,  since  e  costy  =  cos  a  by  (iii) ;  ,\  COST/T  =  •— - -  =  sin  a ;  hence, 

Vo 

the  angle  between  the  direction  of  projection  and  major  axis  is 
the  complement  of  a,  that  is,  the  major  axis  is  perpendicular 
to  the  distance  of  the  point  of  projection. 

(4)  A  body  revolves  in  a  circle  under  the  action  of  a  force 
tending  to  the  centre  and  varying  inversely  as  the  square  of  the 
distance.  Find  the  orbit  described,  if  the  force  suddenly  tend  to 

a  point  8  in  the  circumference  of  the  circle,  at  an  angular  dis- 

tance 60°  from  the  body. 
Since  the  velocity  is  unaltered  at  A  by  the  change, 
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that  is,  A  is  the  extremity  of  the  minor  axis  of  the  new  orbit ; 

hence  the  major  axis  is  parallel  to  the  tangent  at  A,  or  perpen- 
dicular to  CA,  and  the  centre  is  in  the  bisection  of  CA. 

The  curvature  is  less  than  that  of  the  circle,  because  the 
normal  force  is  diminished  by  the  change. 

(5)  A  body,  revolving  in  an  ellipse,   under  the  action  of  a 
force  tending  to  a  focus  S,  has  the  direction  of  its  motion  altered 
at  a  given  point  of  its  path,  the  velocity  remaining  unaltered  • 
to   determine   the   corresponding   change   in    the  position   of  the 

major  axis. 

Since  the  velocity,  as  well  as  the  distance  SP,  in  the  new 
orbit  is  the  same  as  in  the  old,  the  length  of  the  major  axis  is 
the  same ;  therefore  PH  is  the  same  in  the  two  orbits ;  that  is, 
the  other  focus  lies  in  a  circle  whose  centre  is  P,  and  SP,  PH 
make  equal  angles  with  the  new  direction. 

(6)  To  find  at  what  point  of  an  elliptic  orbit  a  slight  alteration 
may  be  made  in  the  direction  of  motion,  the  velocity  remaining 
unaltered,  so  that  the  direction  of  the  major  axis  may  be  the  same 
as  before. 

The  direction  of  the  major  axis  being  unaltered,  SH  must 

be  a  tangent  to  the  locus  of  H,  hence  P  must  be  at  one  of  the 
extremities  of  that  latus  rectum  which  does  not  contain  the 
centre  of  force. 

(7)  Prove  that  if,  when   a  body  is  at  the  extremity  of  the 
latus   rectum   which  does   not   contain    the   centre   of  force,    the 
direction  of  motion  be  defected  through  a  small  angle,  without 

altering  the  velocity,  the  alteration  of  the  eccentricity  will  be  to  th& 

circular  measure  of  the  angle  of  deflection  as  BC*  :  AC*. 

A.      S  C 

For,  let  P  be  the  position  of  the  body,  77/7'  the  small  arc  of 
the  circle  described   by  II,   which    nearly    coincides  with    the 
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direction  of  the  major  axis,  HPH'  is  double  the  angle  of  de- 

flection, and  —  j-?,  —  rrrTY)  or  n'A  ni  'ls  tne  cnange  of  eccentricity  ; 

/.  change  of  eccentricity  :  deflection  of  direction 

HH'     HH' '  2AC'  2HP ::HP:AC::£C'2:AC\ 

(8)  If  a  body,  moving  in  an  ellipse  about  the  focus,  be  acted  on 
by  an  impulse  towards  the  focus  when  it  arrives  at  the  extremity 
of  the  lotus  rectum,  the  axis  major  will  be  unaltered  in  direction. 

For,  the  force  being  central,  h  is  unaltered ;  therefore,  if  SL 

be  the  semi-latus-rectum,  p.SL  is  unaltered,  or  SL  is  the 
semi-latus-rectum  of  the  new  orbit,  and  the  axis  major  is  per- 

pendicular to  SL. 

(9)  A  particle  moving  in  an  ellipse  under  the  action  of  a 
fV\    jl 

force  tending  to  the  focus  has  a  very  small  velocity  -~  impressed 

upon    it  in   the  direction  of  the  focus  ;   find  the  corresponding 
changes  of  the  eccentricity  and  position  of  the  apse. 

By  (6),  page  147,  the  velocity  at  P  is  the  resultant  of  the 

constant  velocities       and  --  respectively  perpendicular  to   SP 

and  ASA.     And,  since  the  impressed  velocity  Is  towards  $,  h  is 
unaltered ;  hence  the  components  of  the  velocity  in  the  new  orbit / 

are   j-  perpendicular    to    SP    and  —•  to   the  new  axis   SM' ; 

therefore   -~  in  direction  PM'  is  the  resultant  of    j-  in  PM h  h 
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72  LL 

and  -v-  in  PS.     Let  Z  MSM'  =  &  in  circular  measure,  then 

e  sin  or  =  rz  coaPSM)    and  e'  cosw  =  e  +  n  smPSM, 
or,  neglecting  squares  of  small  quantities, 

era-  =  n  cosPSM,   e  —e  —  n  sin  P&lf. 

XXIX. 

1.  The  velocity  in  an  ellipse  at  the  greatest  distance  is  half  that 

•with  which  a  body  would  move  in  a  parabola  at  the  same  distance ; 
required  the  eccentricity  of  the  ellipse. 

2.  A  body,  moving  in  a  parabola  about  a  centre  of  force  in  the 
focus,  meets  at  the  vertex  with  an  obstacle  which  diminishes  the 

square  of  the  velocity  by  one-fourth,  without  altering  the  direction 
of  the  motion ;    shew  that  the  body  will  afterwards  move  in  an 
ellipse  whose  axis  major   is   equal  to  the  latus   rectum  of  the 

parabola. 

3.  A  body  revolves  in  an  ellipse  about  a  centre  of  force  in  the 
focus   S.     Shew  that  there  is  always  some  determinate  point  at 
which    the    absolute   force  may   be  supposed  to  change  suddenly 
from  p.  to  w/i,   so  that  the  subsequent  path  of  the  body  may  be 
a  parabola  about  S  in  the  focus,  provided  n  is  not  situated  beyond 
the  limits  £  (1  +  i)  and  %  (1  -  e).     Prove  also  that  the  latus  rectum 
of  the  ellipse  :  that  of  the  parabola  ::  n  :  I. 

4.  A  particle,  describing  an  ellipse  about  a  force  in  the  focus, 
comes  to  the  point  nearest  to  the  centre  of  force ;  find  in  what  ratio 
the   absolute   force    must  then    be    diminished  in  order  that  the 

particle  may  proceed  to  describe  a  hyperbola,  whose  eccentricity  is 
the  reciprocal  of  that  of  the  ellipse. 

5.  The  ratio  of  the  axes  of  the  Earth's   and  Venus's  orbits 
is  18  :  13 ;  find  the  periodic  time  of  Venus. 

6.  A  body  is  projected,  with  a  velocity  of  100  feet  per  minute, 
from  a  point  whose  distance  from  a  centre  of  force,  which  varies 
inversely  as  the  square  of  the  distance,  is  32  feet,  the  velocity  in  a 
circle  at  that  distance  being  80  feet  per  minute  j  find  the  periodic 
time. 

7.  If  at  any  point  of  an  ellipse,  which  is  the  orbit  of  a  particle 
moving  under  the   action  of  a   force   tending   to    the   focus,    the 
direction  of  motion  be  turned  through  a  right  angle,  the  velocity 
remaining  unchanged,  prove  that  the  sum  of  the  squares  on  the 
minor  axis  of  the  new  and  old  orbits  wilJ  be  equal  to  the  square  on 
the  diameter  parallel  to  the  tangent  in  either  the  old  or  new  orbit. 
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8.  If  a  body  be  projected  with  a  given  velocity  about  a  centre 
of  force  which  varies  inversely  as  the  square  of  the  distance,  shew 
that  the  minor  axis  of  the  orbit  described  will  vary  as  the  perpen- 

dicular from  the  centre  of  force  upon  the  direction  of  projection  j 
and  determine  the  locus  of  the  centre  of  the  orbit  described. 

9.  A  body  is  moving  in  a  given  hyperbola  under  the  action  of 
a  force  tending  to  the  focus  S ;   when  it  arrives  at  the  point  P,  the 
force  becomes  suddenly  repulsive,  find  the  position  and  magnitude 
of  the  axes  of  the  new  orbit ;  shew  that  the  difference  of  the  squares 
of  the  eccentricities  of  the  new  and  old  orbits  varies  inversely 
as  SP. 

10.  A  comet  moves  in  a  parabola  about  the  Sun  and  a  planet 
in  a  circle  of  which  the  radius  is  half  the  latus  rectum  of  the  para- 

bola;   shew  that  the  planet  will  move  through  about  76°  22'  of 
longitude,  while  the  comet  passes  from  one  extremity  of  the  latus 
rectum  to  the  other. 

11.  The  perihelion  distance  of  a  comet  moving  in  a  parabolic 
orbit  is  half  the  radius  of  the  Earth's  orbit,   supposed   circular. 
The  planes  of  the  orbits  coinciding,  find  the  time  in  days  from 
perihelion  to  the  point  of  intersection  of  the  orbits. 

12.  A  body  is  moving  in  a  given  parabola  under  the  action 
of  a  force  in  the  focus ;  and,  when  it  comes  to  a  distance  from  the 
focus  equal  to  the  latus  rectum,  the  force  suddenly  becomes  re- 

pulsive j  determine  the  nature,  position,  and  dimensions  of  the  new 
orbit. 

13.  A  particle  is  describing  an  ellipse  under  the  action  of  a 
force  tending  to  the  focus ;  if,  on  arriving  at  the  extremity  of  the 
minor  axis,  the  force  has  its  law  changed,  so  that  it  varies  as  the 
distance,  the  magnitude  at  that  point  remaining  unchanged,  prove 
that  the  periodic  time  will  be  unaltered,   and  that  the   sum  of  the 
new  axes  will  be  to  their  difference  as  the  sum  of  the  old  axes  to 
the  distance  between  the  foci. 

14.  PO  is  perpendicular  on   the  directrix  from   any  point  of 
an  elliptic  orbit  described  by   a  particle  about  the  focus  S,   and 
when  the  particle  is  at  P  the  force  suddenly  tends  to   0  instead 
of  St  prove  that  the  new  orbit  may  be  a  parabola  if  e  >  £,  and  that, 
in  this  case,  SP  passes  through  the  intersection  of  the  two  circles, 
one  described  on  SIT  as  diameter,  and  the  other  with  centre  S  and 
radius  SA,  the  shortest  focal  distance. 

15.  A  particle  P  is  moving  in  an  ellipse  about  the  focus   S, 
and  has  a  normal  impulse  which  generates  a  velocity  equal  to  the 
velocity  at  the  end  of  the  minor  axis.     Prove  that  the  particle  will 
now  describe   a  parabola,  and  that  the  angle  through  which  the 
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16.  A  particle  is  projected  from  a  given  point  with  a  given 

velocity  F",  and  moves  under  the  action  of  a  force  pR  *,  prove  that there  may  be  two  directions  of  projection  for  which  the  direction 
of  the  major  axis  will  be  the  same,  and  if  a  be  the  angle  between 

these  directions,  e,  e'  the  eccentricities  of  the  two  orbits, 

/u  («'  ±  *)  =  V'U  sin  a. 

17.  A  body  moves  in  an  ellipse  about  a  focus,  and  is  at  the  ex- 
tremity of  the  minor  axis  when  its  velocity  is  doubled.     Find  the 

new  orbit,   and  shew  that  the  body  will  come  to   an  apse  after 
describing  a  right  angle,  if  the  ratio  of  the  axes  of  the  given  ellipse 
be  2  :  1. 

18.  A  body  is  revolving  in  an  ellipse  under  the  action  of  a  force 
tending  to  the  focus  S,  and,  when  it  arrives  at  the  point  P,  the 

centre  of  force  is  suddenly  transposed  to  the  point  S1  in  PS  pro- 
duced so  that  P*SY  is  equal  to  the  major  axis  of  the  ellipse,  and  the 

force  becomes  repulsive ;   shew  that  if  HP  be  produced  to  II'  and 
PIT  =  PH,   the  length  of  the  transverse  axis  of  the  hyperbola 

described  will  be  £P,  and  U'  will  be  the  other  focus. 

XXX. 

1.  Prove  that  the  periodic  time  of  two  bodies  round  each  other 
VlTffi 

is  7         — rr ,  where  20  is  their  maximum  distance,  and  m,  m'  their V(m  +  m  ) 
masses  expressed  in  astronomical  units. 

2.  Of  all  comets  moving  in  the  ecliptic   in  parabolic  orbits, 
that  which  has  the  latus  rectum  of  its  orbit  equal  to  the  diameter  of 

the  Earth's  orbit  will  remain  within  the  latter  for  the  longest  period, 
the  Earth's  orbit  being  considered  circular. 

3.  A  particle  is  moving  in  an  ellipse  about  a  centre  of  force  in 
the  focus,  and  the  centre  of  force  is  transferred  to  one  end  of  the 
latus  rectum  as  the  particle  passes  through  the  other.     Prove  that 
«,  e,  the  eccentricities  of  the  old  and  new  orbits,  are  connected  by 

the  relation  *'2  =>  1  +  -U'2. 

4.  The  same  parabolic  orbit  is  described  by  two  particles  acted 
on  respectively  by  forces,  one  constant,  and  the  other  tending  to 
the  focus.     If  they  start  from  the  same  point,  they  will  reach  the 

vertex  in  equal  tini"*  it'  the  difference  between  their  initial  velocities 
is  to  that  of  the  particle  acted  on  by  the  constant  force  as  'IT A  :  3SP, 
where  T  is  the  point  in  which  the  initial  direction  of  motion  meets 
the  axis  SA. 

5.  Two  equal  perfectly    elastic    particles    describe   the   same 
ellipse,  in  the  same  period,  in  opposite  directions,  one  about  each 
focus;   prove  that  th»>  major  axis  of  the  orbit  is  a  lumnonic  mean 
Between  those  of  tho  orbits  they  will  describe  ivfUT  tho  impact- 
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6.  Prove  that  the  rate,  at  which  areas  arc  described  about  the 
centre  of  a  hyperbolic  orbit  described  by  a  particle  under  the  action. 
of  a  force   tending    to   a   focus,    is    inversely   proportional   to  the 
distance  of  the  particle  from  the  centre  of  force. 

7.  Two  ellipses  are  described  by  two  particles  about  the  same 
centre  of  force  in   the   focus ;    the  eccentricities  are   £  and  £  >/3 
respectively,   and  the  major  axes  are  coincident  in  direction  and 
equal  in  length.      Compare  the   times   which  each  body  spends 
within  the  orbit  of  the  other. 

8.  A  particle  is  attracted  to  a  centre  of  force  varying  inversely 
as  the  square  of  the  distance,  and  is  projected  from  a  fixed  point  so 
as  to  describe  a  parabola ;  prove  that  the  tangent  to  the  path  at 
the  other  extremity  of  the  focal  chord   through   the   fixed  point 
envelopes  a  parabola  of  which  that  point  is  the  focus. 

9.  If  a  number  of  equal  particles  bo  projected  from  the  same 
point  with  equal  velocities  so  as  to  describe  ellipses  in  one  plane 
under  a  force  tending  to  the  common  focus,   these  ellipses  will  all 
touch  a  fixed  ellipse  which  has  one  focus  at  the  centre  of  force  and 
the  other  at  the  point  of  projection. 

10.  A  body  revolves  in  a  parabola  under  the  action  of  a  force 
tending  to  the  focus,  and  when  it  arrives  at  a  point  whose  distance 
from  tbe  axis  is  equal  to  the  latus  rectum,   the  force  is  suddenly 
transferred  to  the  opposite  extremity  of  the  focal  chord  passing 
through  the  body.     Shew  that  the  new  orbit  will  be  a  hyperbola 
whose  axes  are  as  2  :  1,  and  that  the  conjugate  axis  and  the  direc- 

tion of  motion  at  the  point  make  equal  angles  with  the  focal  chord. 

11.  A  particle  is  describing  an  ellipse  about  a  centre  offeree  in 
the  focus,  and  the  absolute  force  is  suddenly  diminished  one  half; 

shew  that  the  chance  of  the  particle's  new  orbit  being  a  hyperbola 
is  TT  -  2e  :  2?r,  all  instants  of  time  being  supposed  equally  probable 
for  the  change. 

12.  Two  particles  are  revolving  in  the  same  direction  in  an 
ellipse  under  the  action  of  a  force  tending  to  the  focus  ;   prove  that 
the  direction  of  the  motion  of  one  as  it  appears  to  the  other  is 
parallel  to  the  line  bisecting  the  angle  between  their  distances  from 
the  focus. 

13.  A  force  tends  to  the  centre  of  a  given  circle,  and  varies  in- 
versely as  the  squnre  of  the  distance ;   prove  that  all  elliptic  orbits 

which  can  be  inscribed  in  any  triangle  inscribed  in  the  circle  will  be 
described  by  a  particle,  under  the  action  of  the  force,  in  the  same 
periodic  time. 
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14.  Two  equal  particles  are  revolving  in  the  same  direction  in 
the  same  ellipse,  under  the  action  of  a  force  tending  to  a  focus ; 
shew  that  if  they  become  rigidly  connected  when  they  are  at  the 
extremities  of  a  focal  chord,  they  will  afterwards  move  about  their 
centre  of  gravity  with  an  angular  velocity  which  varies  inversely 
as  the  length  of  the  chord,  and  that,  wherever  this  takes  place,  the 
initial  velocity  of  the  centre  of  gravity  will  be  the  same. 

15.  A  body  revolves  in  an  ellipse  about  the  focus  from  nearer 
to  farther  apse,  and  the  angle  which  its  direction  makes  with  the 
focal  distance  is  constantly  being  increased  without  altering  the 
velocity ;   shew  that  the  motion  of  the  apse  line  will  change  from 
progression  to  regression,  when  the  true  anomaly  of  the  instantaneous 

orbit  is  £?r  -f  2  tan"1^,  e  being  the  eccentricity. 
16.  A  particle  is  describing  an  ellipse  about  the  focus ;  when  it 

comes  to  the  extremity  of  the  minor   axis  the  absolute  force  is 
diminished  by  one-third.     Determine  the  position  and  dimensions 
of  the  new  orbit,  and  prove  that  the  distance  between  its  focus  and 
its  centre  bisects  and   is  bisected  by  the   semi-minor-axis  of  the 
original  orbit. 

17.  When  the  earth  is  at  an  end  of  the  minor  axis  of  its 

elliptic    orbit,   a  small  meteor  falls  into  the  sun,    whose  mass  is 

n  x  sun's  mass,  prove  that  the  year  is  diminished  by   2n  of  itself. 
Prove  also  that  the  apse  line  turns  through  the   angle  n  tan  A, 

•where  cos  \  is  the  excentricity  of  the  earth's  orbit. 

18.  A  body  is  describing  an  ellipse  about  a  centre  of  force  in 
the  focus,  and  when  its  radius  vector  is  half  the  latus  rectum  it 
receives  a  blow  which  causes  it  to  move  towards  the  other  focus 
with  a  momentum  equal  to  that  of  the  blow.     Shew  that,   a  the 
angle    between  the   tangent   and   radius   vector   being  <  f  TT,    the 
eccentricity  of  the  new  elliptic  orbit  will  be  -  cot  2a,  ratio  of  the 
old  and  new  major  axes  =  cot2  2a  -  1  :  cot2a  -  1,  and  that  these  axes 
>re  in  the  same  line. 

19.  If  a  small  velocity  be  communicated  when  a  body  moving 
in  an  ellipse  about  the  focus  is  at  the  extremity  of  the  latus  rectum, 
in  a  direction  parallel  to  the  axis,  shew  that  the  change  of  the 

eccentricity  will  be   ,  and  that  the  angle  through  which  the  axis 
2A/ 

will  be  turned  =  - 0fi 

20.  If  at  any  point  of  the  elliptic  orbit  of  a  body,  moving  under 
the  action  of  a  force  tending  to  the  focus,  the  force  cease   to  act 
for  a  given  very  short  time,  find  the  angle  through  which  the  line 
of  apses  will  have  turned  and  the  change  of  eccentricity,  and  shew 
that  they  will  vary  as  the  components  of  the  force  respectively 
parallel  and  perpendicular  to  the  line  of  apses. 
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SECTION  VII. 

ON  RECTILINEAR  MOTION. 

PROP.  XXXII.  AND  PROP.  XXXVI. 

To  find  the  time  of  motion  and  the  velocity  acquired,  when  a 

body  falls  through  a  given  space  from  rest,  under  the 
action  of  a  force  which  varies  inversely  as  the  square  of 
the  distance  from  a  fixed  point. 

Let  S  be  the  centre  of  force,  A  the  point  from  which 
the  body  begins  to  fall. 

Let  APA'  be  a  semi-ellipse,  whose  focus  is  S,  and  axis 
major  ASA',  AQA  the  circle  upon  A  A  as  diameter, MPQ  a  common  ordinate  ;  let  C  be  the  common 
centre,  and  join  CP,  CQ,  SP,  SQ. 

If  a  body  revolve  in  the  ellipse  under  the  action  of  the 
force  tending  to  $,  the  measure  of  whose  accelerating 

effect  at  a  distance  SP  is   ~^  ; 

time  in  AP  :  time  in  APA  :  :  area  A8Q  :  semi-circle  AQA 

::  sector  A  CQ  +  triangle  SCQ  :  semi-circle^^'; 
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,  -jrAC*    AC.wcA therefore  time  in  ̂ .P  = 

This  is  true  whatever  be  the  magnitude  of  the  minor  axis 
BC,  and  therefore  when  it  is  indefinitely  diminished, 

213  C* 

in  which  case  the  diameter  of  curvature  at^l  =  —  ryr  =  0> A.  O 
and  therefore  the  body  has  no  velocity  at  A  ;  that  is, 
the  elliptic  motion  ultimately  degenerates  to  a  recti- 

linear motion  in  which  the  body  starts  from  rest  at  A. 

Also,  since  AS.SA  =  BQ*,  SA  ultimately  =  0; 

.\  SC=ISA  ;    .-.  time  in 

Again,  the  velocity  in  the  ellipse  at  Pis  ]   '^     n  ~     '         , v        A  t/.o.i          ) 

and,  when  the  minor  axis  is  indefinitely  diminished, 
the  velocity  at  M,  in  the  rectilinear  motion  of  the  body, 

1      AS.SM 
COR.  If  a  body  be  projected  directly  towards  or  from  a 

centre,  to  which  a  force  tends  which  varies  inversely 
as  the  square  of  the  distance,  the  time  and  velocity 
acquired  in  a  given  space  may  be  determined  by 
means  of  an  ellipse,  parabola,  or  hyperbola,  whose 
latus  rectum  is  indefinitely  diminished,  so  con- 

structed that  at  the  point  of  projection  the  velocity 
is  properly  represented. 

Notes. 

235.  It  must  not  be  supposed  that  the  motion  will  be  repre- 
sented throughout  by  the  ultimate  motion  in  an  ellipse,  whose 

axis  minor  is  indefinitely  diminished,  in  which  case  the  body 
would  return  to  A  j  for,  since  in  this  case  the  ellipse  passes 
through  S,  we  are  precluded  from  applying  the  results  of  the 
second  and  third  sections  in  determining  the  motion  of  the  body 

after  arriving  at  £;  but  we  may  correctly  apply  these  results  to 
determine  the  motion  before  arriving  at  8. 
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In  order  to  determine  ttfe  motion  after  arriving  at  $,  we 
must  observe  that  at  S  the  force  is  zero,  since  its  direction  is 

indeterminate,  although,  when  the  body  is  at  any  point  very 
near  to  $,  there  will  be  a  very  great  force  tending  towards  $; 

on  approaching  S,  therefore,  the  velocity  will  continually  in- 
crease, and  the  body  will  pass  through  8  with  very  great 

velocity ;  but  the  motion  will  be  retarded,  according  to  the  same 

law,  as  rapidly  as  it  was  generated,  and  the  body  will  proceed 
to  a  distance  equal  to  SA  on  the  opposite  side  of  8. 

PROP  XXXVIII. 

To  find  the  time  of  motion  and  the  velocity  acquired  tuhen 
a  body  fails   through  a  given   space  from  rest,    under 
the  action  of  a  force  which  varies  as  the  distance  from  a 

fixed  point. 

Let  S  be  the  centre  of  force,  A  the  place  from  which  the 
body  begins  to  move ;  make  SA  =  SA^  and  on  ASA 

A 

as  major  axis,  describe  a  semi-ellipse  A  PA  and  a  semi- 

circle AQA'y  and  let  MPQ  be  a  common  ordinate. 
Suppose  a  body  to  revolve  in  the  ellipse,  under  the 

action  of  the  force  tending  to  S,  the  measure  of  whoso 
accelerating  effect  at  P  is  p.SP,  then  time  in  AP 

oc  area  ASP  oc  sector  ASQ  x  arc  A  Q  • 

therefore  time  in  AP  :  time  in  ABA  ::  arcAQ  :  irAS, 

,  ..  TT      arcAQ  ,     1 
and  time  in  AP  =  --  .  -     —^  =  - 

arc  ,4 

x  - 
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and  the  same  is  true  when  the  minor  axis  is  indefi- 
nitely diminished,  in  which  case  the  velocity  at  A 

vanishes,  since  the  diameter  of  curvature  vanishes. 
Therefore  the  elliptic  motion  is  reduced  to  the  recti- 

linear motion  of  a  body  originally  at  rest  at  A,  and 

the  time  in  AM  is  thus  shewn  to  be  —  -  x  -    .  „     . 

Again,  the  velocity  in  the  ellipse  at  P 

=  \ffjL.SD,  where  $D  is  conjugate  to  JSP 

therefore  the  velocity  at  M  in  the  rectilinear  motion 

=  VM  (AST  -  SMJ  = 

COR.    Time  from  A  to  /Sr=  ~-y-,  or  the  time  of  reaching 
S  is  the  same  whatever  be  the  initial  distance. 

SECTION  VIII. 

PROP.  XL.    THEOREM  XIIL 

]f  the  velocities  of  two  bodies,  one  of  which  is  falling  directly 
towards  a  centre  offeree  and  the  other  describing  a  curve 
about  that  centre,  be  equal  at  any  equal  distances  they 
will  always  be  equal  at  equal  distances ,  if  the  force  depend 
only  on  the  distance. 

Let  S  be  the  centre  offeree,  and  let  one  of  the  bodies  be 
moving  in  the  straight  line  APS,  the  other  in  the 

curve  A  Qq.     Suppose  the  velocities  at  P,  Q  to  be 
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equal,  and  let  Qq  be  an  arc  of  the  curve  described  in 
a  short  time.  With  centre  S  and  radii  SQ,  Sq 
describe  circular  arcs  QP,  qP,  let  SQ  meet  j^  in  m, 
and  draw  mn  perpendicular  to  Qq. 

Since  the  centripetal  forces  at  equal  distances  are  equal, 
they  will  be  so  at  P  and  Q,  and  Pp,  Qm  may  represent 
them  ;  Pp  is  wholly  effective  in  accelerating  P,  Qn 
is  the  only  effective  part  of  Qm  on  $,  the  component 
nm  being  employed  in  retaining  the  body  in  the  curve. 

Also,  since  the  velocities  are  equal  at  P  and  Q,  the 
times  of  describing  Pp,  Qq  are  ultimately  proportional 
to  Pp,  Qq,  when  the  time  is  indefinitely  diminished. 

Hence  force  at  P  in  PS  :  force  at  Q  in  Qq  ::  Pp  :  Qn, 

and  time  in  Pp  :  time  in  Qq  ::  Pp  :  Qq, 

.'.  vel.  acquired  at p  :  vel.  acquired  at  q  : :  P/ :  Qn.  Qq, 

but  Qn.Qq=Qm=P/; 

therefore  the  velocities  added  in  Pp  and  Qq  are  equal, 
and  the  actual  velocities  at  p  and  q  are  equal. 

By  proceeding  in  the  same  way  through  any  number 
of  small  times,  the  proposition  is  proved, 

XXXI, 

1.  If  a  particle  slide  along  a   chord   of  a  circle,    under  the 
action  of  a  force  tending  to  any  fixed  point,  and  varying  as  the  dis- 

tance, the  time  will  be  the  same  for  all  chords,  provided  they  ter- 
minate at  either  extremity  of  the  diameter  which  passes  through, 

centre  of  force. 

2.  If  the  velocity  of  the  earth  in  its  orbit  were  suddenly  de- 
stroyed, find  the  time  in  which  it  would  reach  the  sun. 

3  A  particle  moves  from  any  point  in  the  directrix  of  a  conic 
section,  in  a  straight  line  towards  a  centre  of  force,  which  varies 
inversely  as  the  square  of  the  distance,  in  the  corresponding  focus. 
Prove  that  when  it  arrives  at  the  conic  section,  if  £  be  the  latua 

tectum,  the  velocity  will  be  \-~\  . 

LL 
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4.  If  three  centres  of  force  reside  in  the  three  angles  of  a 
triangle,  attracting  with  a  force  whose  accelerating  effect  is 
p  x  distance,  prove  that  a  particle,  placed  in  0  the  intersection  of 

the  perpendiculars,  will  oscillate  in  the  line  OO'P  drawn  through 
0'  the  centre  of  the  circumscribing  circle,  where  OP  =  $00'  in  a 
time 

5.  A  particle  revolves  in  an  ellipse  about  a  centre  of  force  at 
one  of  the  foci  S,  S'.     If  PL7,  PV   be  the  spaces  through  which 
a  particle,  falling  from  any  point  P,   of  the  curve,  would  have  to 

move  in  order  to  acquire  the  velocity  at  P,   according  as  8  or  >S" 
is  the  centre  of  force,  prove  that 

PV:  PV  :  :  2SP  +  S'P  :  2S'P  +  SP. 

6.  A  perfectly  elastic  ball  falls  from  rest  towards  a  centre  of 
force  varying  inversely  as  the  square  of  the  distance,  and  when  it  has 
fallen  half  the  distance  it  is  reflected  by  a  plane,   so  as  to  move 
in  a  direction  making  an  angle  a  with  its  former  direction  ;   show 
that  the  eccentricity  of  the  ellipse  subsequently  described  is  cos  a. 

7.  A  particle  is  attached  to  each  of  two  equal  and  similar  elastic 
strings,  whose  other  ends  are  fixed  at  points  whose  distance  apart 
is  greater  than  the  sum  of  the  natural  lengths  of  the  strings; 
initially  the  particle  is  at  rest  between  the  fixed  points  and  in  the 
straight   line  joining  them,    arid    one    of  the   strings    is  just    un- 
Btretched.     Determine  the  subsequent  motion,  and  the  velocity  of 
the  particle  in  any  position. 

8.  A  perfectly  elastic  ball  falls  from  a  distance  a  towards  a 
centre  of  force  varying  as  the  distance.     When  it  has  described  a 
space  %a  it  impinges  at  an  angle  of  45°  on  a  plane  and  is  reflected, 
»SJM-\v  that  the  suiuiaxes  of  the  orbit  subsequently  described  will 
Ue  a  cos  GO0  and  a  sin  60°.     Suppose  that  the  ball  again  impinges 
on  the  opposite  side  of  the  same  fixed  reflecting  plane,  shew  that  it 
will  be  reflected  to  the  centre,   and  that  the  time  of  arriving  at 
the  centre  will  be  five  times  the  time  of  falling  directly  to  it. 

9.  Suppose  e  to  be  the  elasticity  of  the  ball  in  the  last  problem, 

prove   that,    if  the  angle  of  incidence  =  tan"1  \fe,   the   subsequent orbit  will  have  its  axis  major  or  minor  in  the  direction  in  which 
lh',«  Lai  I  was  originally  falling,  according  as  thn  distance  iruni  the 
cuiitro  C  to  the  point  of  impact  is  greater  or  less  thau 

Vi 



GENERAL    PEOBLEMS. 

XXXII. 

1.  Find  the  limit  of  X-2  +  2'3+  •;•+«(«  +  !)     wen 

W
3
 

increased. 

2.  ABCD  is  a  quadrilateral,  which  is  slightly  displaced  into 
the  position  ab  CD  in  its  own  plane,  CD  remaining  fixed ;    prove 
that  the  small  angular  displacements  of  the  sides  DA,  AB,  BC 
are  ultimately  in  the  inverse  ratio  of  the  perpendiculars  upon  the 
side  AB  drawn  from  the  points  Z),  E^  Cj   E  being  the  point 
of  intersection  of  DA  and  CB. 

3.  If  a  point  P  move  so  that  the  product  of  its  distances 
from  a  fixed  point  S  and  a  fixed  straight  line  is  constant,  and 
if  ST  be  the  polar  subtangent,  and  the  tangent  meets  the  fixed 
line  in  V,  prove  that  TV  will  be  bisected  in  P. 

4.  A  particle  describes  an  elliptic  orbit   about  a  centre  of 
force  in  the  focus  S;  if  F,  V  be  the  components  of  the  velocities 
in  the  directions  P$,  D8  at  the  ends  P,  D  of  two  conjugate 

diameters,   prove   that   (V.SP? +(V'.8D)*   will  be   invariable 
throughout  the  motion. 

5.  A  body  is  describing  an  ellipse  about  a  centre  of  force 
in   the   centre,    and   its   velocity  is    observed    when   it   arrives 
at  its  greatest  distance,  and  again  after  a  lapse  of  one  third  of 
its  periodic  time.     If  these  velocities  be  in  the  ratio  of  2  :  3, 
prove  that  the  eccentricity  of  the  ellipse  will  be  \/f  • 

6.  Given   the   velocity  and   direction    at   two   points   of  a 
central  orbit,  find  the  locus  of  the  centre  of  force. 
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7.  Shew  that  in  the  elliptic  orbit  described  under  the  action 
of  a  force  tending  to  a  focus,  the  angular  velocity  round  the 
other  focus  varies  inversely  as  the  square  of  the  diameter  parallel 
to  the  direction  of  motion. 

8.  A    particle    slides    down    the   arc    of   a   vertical   circle, 
starting  from  rest  at  a  given  point ;    find  the  point  where  it 
will  leave  the  curve. 

9.  If  at  any  point  of  an  ellipse,  described  under  the  action 
of  a  force  tending  to  the  focus,  the  velocity  be  increased  in 
the  ratio  n  :  1,  prove  that  the  latus  rectum  will  be  increased 

in  the  ratio  n3  :  1. 

10.  Supposing  the  major  axis  of  an  ellipse  =  200  feet,  the 
eccentricity  =^   and   the   periodic   time    10   days;    find   the 
number  of  square  inches  in  the  area  swept  out  by  the  radius 

vector  in  1". 

11.  When  a  body  describes  a  parabola  about  the  focus,  the 
intersection  of  its  direction  with  the  axis  of  the  parabola  moves 
most  rapidly  when  the  body  is  at  the  extremity  of  the  latus 
rectum. 

12.  Shew    how    to   find   the   weights   of  equal   bodies   on 
planets  which  have  secondaries. 

13.  A  body  describes  a  hyperbola  under  a  repulsive  force 
tending  from  the  farther  focus,  and  when  the  body  arrives  at 
the  vertex,  the  force  suddenly  becomes  attractive ;    shew  that,  if 
the  new  orbit  be  a  parabola,  e  the  eccentricity  of  the  hyperbola 

=  3  ;  if  the  new  orbit  be  an  ellipse  of  eccentricity  e,  e  ±  e  —  2. 

14.  From  every  point  of  an  ellipse  particles  are  projected 
in  the  direction  of  the  tangent  with  velocities  such  that,  when 

acted  upon  by  a  centre  of  force  or  D~2  to  one  of  the  foci  of 
the  ellipse,  they  proceed  to  describe  parabolas.     Shew  that  the 
directrices  of  these  parabolas  all  touch  one  or  other  of  two  fixed 
circles,  whose  radii  are  equal  to  the  major  axis  of  the  given 
ellipse. 
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XXXIII. 

1.  ABC,  abC  are  two  right-angled  triangles,  the  angle  at  0 
being  a  right  angle,  and  their  perimeters  are  equal.     Prove  that, 
as  ab  moves  up  to  AB,  the  distance  of  the  point   of  ultimate 
intersection  of  AB  and  ab  from  the  middle  point  of  AB  is  half 
the  difference  between  CA  and  CB. 

2.  T,  T'  are  two  neighbouring  points  on  the  outer  of  two 

confocal  ellipses;     TP,   TQ,   T'P,   T Q'  tangents  to  the  inner, 
P,  P'  being   points   which   coincide  when   T'  moves  up  to   T. 
Prove  that  ultimately  PP  :  QQ  ::  TP2  :  TQ\ 

3.  In  a  parabola  described  under  a  force  to  the  focus  shew 
that  if  the  direction  of  motion  meet  the  directrix  in  F,  then  the 

velocity  of  V  will  vary  inversely  as  the  abscissa  of  the  corre- 
sponding point  on  the  curve. 

4.  A  parabola,  whose  vertex  is  A,  is  described  by  a  body 
under  the  action  of  a  force  in  its  focus  S.      If,  with  S  as  centre 

and  SA  as  radius,  a  circle  be  described  cutting  the  axis  again 

in  .Band  the  radius  vector  SP'm  Q,  prove  that  BQ  will  represent 
the   velocity   at   P,   and   hence   find  the  law  of  force   in   the 

parabolic  path. 

5.  Shew  that  if  a  body  describe  an    ellipse  of  very  small 
eccentricity  under  the  action  of  a  force  tending  to  a  focus,  the 
angular  velocity  about  the  other  focus  will  be  very  nearly  uniform. 

6.  Shew  that  the  intersection  of  the  string  of  a  cycloidal 
pendulum,  which  makes  complete  oscillations,  with  the  base  of 
the  cycloid  moves  uniformly  along  the  latter. 

7.  If  a  closed  string,  lying  on  a  smooth  horizontal  plane, 

pass  loosely  round  three  vertical  pegs  in  the  angles  of  an  equi- 
lateral triangle,  and  if  a  bead  be  projected  along  the  string  so  as 

to  keep  it  stretched  tightly,  shew  that  the  tension  of  the  string 
will  have  two  minimum  values,  and  that  they  will  be  inversely 

proportional  to  the  free  lengths  of  the  string  in  the  two  cases. 
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8.  The  latus  rectum  of  a  comet's  parabolic  orbit  is  equal  to 
tlie  diameter  of  the  earth's  orbit  supposed  circular ;   if  the  earth 
describe  an  arc  of  its  orbit  equal  to  the  radius  in  58J  days,  find 
Low  long  the  comet  will  take  to  move  from  one  extremity  of  the 
latus  rectum  to  the  other. 

9.  When  a  particle  moves  from  rest  in  a  smooth  equiangular 
spiral  tube  under  the  action  of  a  constant  force  tending  from  the 
pole,  starting  from  the  pole,   shew   that  the  pressure  on  the 
curve  is  constant. 

10.  The  angular  velocities  of  a  body  moving  in  an  ellipse 

about   a  force  in  the   centre  are  4°  and  9°   per   hour  at  the 
extremities  of  the  major  and  minor  axes  respectively ;    find  the 

periodic  time. 

11.  Find  the  locus  of  a  point,  in  order  that   the  resultant 
attraction  of  a  uniform  rod  upon  it  may  pass  through  a  given 

point,  equidistant  from  the  extremities  of  the  rod;    the  law  of 
attraction  being  that  of  the  inverse  square, 

12.  Prove  that  if  the   velocity  at  any  point  of  an  ellipse 
described   about   a  centre  of  force  in  the  focus  be  resolved  at 

every  point  into  two  velocities  in  the  directions  perpendicular 
to  the  focal  distance  and  the  axis  major,  the  greater  of  these 
velocities  will  be  the  actual  velocity  in  the  orbit  at  a  point  where 
the  direction  of  motion  makes  an  angle  with  the  axis  major 
whose  sine  is  \e. 

13.  A  particle  is  acted  upon  by  two  forces,  tending  to  the 
foci  of  an  ellipse  whose  major  axis  is  2a  and  varying  according 

to  the  law  //.  f       3  a  •  j ,  the  absolute  intensities  being  the  same. 

Shew  that,  if  it  be  projected  along  the  tangent  to  the  ellipse 
with  a  certain  velocity,  then  it  will  continue  to  describe  the 

ellipse  freely,  and  its  velocity,  in  any  position  given  by  the  focal 

distances  r,    r',  will    be  n  (  — -— -. — -f — )  ,  n  being  the  mean \      2  yrr       J 

angular  motion  of  the  ellipse  under  a  force  ̂   to  a  focus. 
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XXXIV. 

1.  Prove  that  the  area  of  an  ellipse  cut  off  by  any  chord 

PQ  is  ̂ ab  (</>  -  sin$),  where  a,  b  are  the  semi-axes  of  the  ellipse, 
and  0  is  the  angle  subtended   at  the   centre  by  the  points  on 
the  auxiliary  circle  corresponding  to  P1  Q.     Deduce  from  this 

that  the  area  cut  off  by  any  chord  of  a  parabola  is  -r^j-^  ? 

where  I  is  the  length  of  the  chord,  0  its  inclination  to  the  axis 
of  the  parabola,  and  L  the  latus  rectum. 

2.  An  ellipse  and  parabola  whose  axes  are  parallel  have  the 
same  curvature  at  a  point  P  and  cut  one  another  in  Q;  if  the 
tangent  at  P  meet  the  axis  of   the  parabola  in  T,  prove  that 
PQ  will  be  equal  to  four  times  PT. 

3.  Having  given  rad.  of  earth  =4000  miles  nearly,  shew- 

that  gravity  in  latitude  \  =  G  1 1  — f    - -  ]  ,  the  earth  being  con- 
289  . 

sidered  spherical,  and  G  gravity  at  the  pole. 

4.  A   heavy   particle   is    projected    horizontally    from    any 
point  in  the  interior  of  a  surface  of  revolution,  whose  axis  is 
vertical,  the  velocity  being  that  due  to  the  height  above  a  given 
horizontal  plane  of  the  point  of  projection,  find  the  form  of  the 
surface  so  that  the  particle  may  always  remain  in  the  horizontal 

plane  of  projection. 

5.  A  body  describes  a  circle  to  the  centre  of  which  it  is 

connected  by  a  string;  it  is  attracted  to  a  point  in  the  circum- 
ference by  a  force  varying  as  the  distance;    shew  that,  if  the 

string  be  always  kept  stretched,  the  greatest  and  least  velocities 
will  be  in  a  ratio  less  than  \/3  :  1. 

6.  Find,  when  possible,  the  point  in  an  elliptical  orbit  at 
which,    if  the   centre   of  force  were   transferred  to  the  empty 
/ocus,  the  orbit  would  be  a  parabola.     Prove  that  such  a  point 
cannot  exist  unless  the  eccentricity  of  the  elliptical  orbit  be 

greater  than  *Jo  —  2. 
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7.  A  particle  describes  an  ellipse  about  a  centre  of  force 
in  tbe  focus,  and  anotber  particle  describes  tbe  circle  upon  tbe 
major  axis  about  another  force  in  the  same  point  in  the  same 
periodic  time.     If  the  particles  start  simultaneously  from   the 

vertex,  prove  that  the  line  joining  them  will  be  always  per- 
pendicular to  the  axis. 

Also  shew  that  the  velocity  at  any  point  in  the  circle  will  be 
inversely  proportional  to  corresponding  focal  distance  in  the 
ellipse. 

8.  A  body  moves  in  elliptic  arcs  about  a  centre  of  force 

varying  as  r-r= — -a  situated  in  a  perfectly  elastic  plane  perpen- ( QlSl  ) 

dicular  to  the  plane  of  the  orbits;  shew  that  those  arcs  are 
portions  of  similar  ellipses  whose  major  axes  are  equally  inclined 
to  the  elastic  plane,  and  that  the  time  between  the  first  and  third 

impact  is  equal  to  that  between  the  second  and  fourth. 

9.  A  body  is  projected  about  a  centre  of  force  cc  (dist.)~* 
perpendicular  to  the  distance;    shew   that   as  the    velocity    of 
projection  is  increased,  the  centre  of  the  curve  moves  through 
the  centre  of  force  to  infinity,    then    suddenly    starts   back  to 

infinity  on  the  other  side  of  the  point  of  projection  and  returns 
to  it.     But  when  the  force  oc  dist.  the  nearer  focus  moves  to 

a  given  point  and  then  suddenly  starts   at  right  angles  to  its 

previous  direction. 

10.  A  body  is  describing  an  ellipse  about  the  focus  £,  and, 
when   it   arrives  at   the  mean   distance,  the  force   is  doubled ; 
shew  that  the  new  line  of  apses  passes  through  the  foot  of  the 

perpendicular  from  the  other  focus  upon  the  tangent. 

11.  In  an  elliptic  orbit  about  the  focus,  when  a  particle  is 
at  a  distance  r  from  the  focus,  the  direction  of  motion  is  turned 

through  a  small  angle  S«?  shew  that  the  corresponding  change 

in  the  apsidal  line  is  -Y  f  1  +  e"  —  J ,  2a  being  the  major  axis, 
and  c  the  eccentricity. 
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12.  Prove  that,  neglecting  the  disturbances  produced  by  the 

planets  on  each  others  orbits,  the  statement  of  Kepler's  third 
law  should  be  amended  to  "  The  cubes  of  the  mean  distances  of 
the  planets  from  the  sun  are  as  the  squares  of  the  periodic  times 
multiplied  into  the  sum  of  the  masses  of  the  sun  and  the  planet. 

13.  Prove  that,  when  the  distance  between  the  centres  of 
the  sun  and  the  earth  is  r,  the  attraction   between  them  is 

~.  .  -~ — =-, .  - -t ,  where  T  is  the  periodic  time,  S  the  mass  of JL        o  4  &     T 

the  sun,  E  of  the  earth,  in  astronomical  units,  and  a  is  the  mean 
distance  between  the  centres. 

14.  Prove  that  the  periodic  time  of  a  body  describing  an 

elliptic  orbit  under  an  attraction  to  a  fixed  point  0  within  the 

27T1?  ̂  
ellipse  is  — f  °-  ,  where  pQ  is  the  perpendicular  from  the  centre 

VA* of  the  ellipse 
 
on  the  polar  of  0]   assumi

ng  
the  acceler

ation  
of 

IL¥ 

the  body  at  distance  r  from  0  to  be  — ^  ,  -where  p  is  the  pcr- 

penJicular  from  the  body  on  the  polar  of  0. 

XXXV. 

1.  A   tangent   and   normal  are   drawn   at   any   point  of  a 
catenary,  prove  that  when  the  area  of  the  triangle  formed  by 
these  straight  lines  and  the  directrix  is  the  greatest  possible,  the 
distance  of  the  point  from  the  directrix  is  twice  the  length  of 
the  arc  measured  from  the  point  to  the  vertex. 

2.  A  curve  is  traced  out  by  a  point  P  in  a  straight  line 
of  given  length,  which  moves  with  its  extremities  in  the  arc 
of  an  ellipse  ;   shew  that  the  area  included  between  the  ellipse 

and  the  locus  of  P  is  TTCC',  c  and  c    being  the  distances  of  P 
from  the  extremities  of  the  line. 

3.  If  a  circle  touch  two  coils  of  an  equiangular  spiral,  one 
internally,  the  other  externally,  the  line  joining  the  pole   to 
the  centre  of  the  circle  will  bisect  the  angle  between  the  radii 
vectores  of  the  spiral  drawn  to  the  points  of  contact. MM 
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4.  P  oscillates  in  a  circle,  of  which  S  is  the  highest  point, 
SP  intersects  the  horizontal  diameter  in   Q,  and  B,  C  are  the 

extremities  of  $'s  path.     Prove  that  the  square  of  Q'a  velocity 
varies  as  J3Q.QC.SQ*. 

5.  A  particle  moves  in  an  elliptic  tube  under  the  attraction 
of  a  material  line  joining  the  foci,  each  element  of  which  attracts 
with  a  force  varying  inversely  as  the  square  of  the  distance. 
Shew  that  the  velocity  is  constant;   and  find  the  pressure  on  the 
tube  when  the  particle  is  at  the  extremity  of  the  minor  axis. 

6.  An  attractive  force  equal  to  r^  —  ̂   resides  in  each  focus 

of  a  smooth  elliptic  groove  ;   if  a  particle  start  from  the  end  of 

the  nuijor  axis  with  a  velocity  —  J~      >  ̂  w^  reach  the  end  of 

the  minor  axis  in  a  time  —  •  -,--  (  1  --  ]  ,  a,  ft,  e  being  the  semi- 
4  Vf*  V        2/  J 

axes  and  eccentricity. 

7.  A  body  is  attached  to  the  end  of  a  string,  which  just 
winds  round  the  circumference  of  a  circle,  in  whose  centre  there 

is  a  repulsive  force  =  yu.  (dist.).    Prove  that  the  time  of  unwinding 

c=  —  —  .     Also  find  the  tension  of  the  string  at  any  time. 
tJfA 

8.  A  body  moves  in  an  ellipse  under  the  action  of  a  force 
tending  to  a  fixed  point  0  in  the  transverse  axis;   prove  that 

PU3 

the  force
  

at  any 
 
poin

t  
P  varie

s  
as  7-7^,

  
wher

e  
L  is  the  point

 

in  which    OP  meets   the   diameter  conjugate   to   that   passing 
through  P. 

9.  An    elastic  string  just   fits  a  fixed  straight   tube   when 
it  is  of  its  natural  length  ;   it  is  fixed  at  one  end,  and  pulled  out 
at  the  other,  so  as  to  double  its  length  ;   a  particle,  fixed  at 
the  free  end,  is  then  projected   at  right  angles  to  the  string 
along  a  smooth   horizontal  plane  with   the   velocity   which   it 

would    acquire   in  falling  freely,  under  the  action  of  gravity, 

through  a  space  equal  to  the  length  of  the  tube;  prove  that 
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tl*e  weight  of  the  particle  must  be  f  or  f  of  that  which  would 
double  the  length  of  the  string,  in  order  that  it  may  describe  an 
ellipse  whose  eccentricity  is  ̂ . 

10.  Prove  that,  if  the  velocity  in  the  hodograph  of  an  orbit 
be  proportional  to  the   angular  velocity   of  the  corresponding 
point  in  the  orbit  about  the  centre  of  attraction,  the  orbit  will 
be  an  ellipse  about  the  focus. 

11.  A   particle  is  describing  a  parabola  under  the  action 
of  gravity;  when  it  is  at  one  extremity  of  the  latus  rectum, 
gravity  is  replaced  by  a  force  tending  to  the  other  extremity 
of  the  latus  rectum  and  varying  as  the  distance,  such  that  the 
accelerating  effort  in  that  position  is  equal  to  that  of  gravity. 
Shew  that  the  ratios  of  the  axes  of  the  ellipse  described  to  the 

latus  rectum  of  the  parabola  are  2  \/2  COS^TT  and  2  \/2  sin  JTT. 

12.  If  S  be  the  centre  of  force,  A  the  nearer  apse,  P  the 
body,  and  a  small  velocity  u  be  applied  to  the  body  at  right 
angles  to   £P,  prove  that  the  change  in  the  direction  of  the 
apse  line  will  be  given  approximately  by 

4  oosASp   SPsmASP, 

where  e  is  the  eccentricity  of  the  orbit  and  h  twice  the  rate 
of  description  of  area  about  S. 

13.  If  an  imperfectly  elastic  particle  fall  from  an  infinite 
distance,  under  the  action  of  a  central  force  varying  inversely 
as  the  square  of  the  distance,  and  impinge,  before  arriving  at 

the  centre  of  force,  on  a  small  plane  area  inclined  to  the  direc- 
tion of  its  motion,  shew  that,  if  the  orbit  after  the  first  impact 

be  a  circle,  the  elasticity  will  be  J;  and  shew  that  after  an 
infinite  number  of  impacts,  twice  the  major  axis  of  the  final 
orbit  will  be  three  times  the  distance  of  the  plane  area  from  the 
centre  of  force. 



HINTS  FOR  SOLUTIONS  OF  PROBLEMS. 

I. 
1.    Limits  are  0  in  (1),  oo  in   (2),  a   in   (3).     2.    3   and  \. 

3.  a  '.  b.     4.    Difference  does  not  vanish.     5-    Triangles  PBb, 
PCc  equal;   .-.  PB  :  PC  ::  PC  :  Pb.      6.    R  the  point  of  inter- 

section, R'  its  ultimate  position.     Draw  RS,  QT  parallel  to  PB, shew    that    RS  :  PB  ::  R  C  :  BC,    ult.,    and     QT:  R8  ::  BG 

:  BR;    .'.  R'C  :  BR  ::  QT:  PB  ::  AC  :  AB.      7.    By    result 
of  (3)  p.  9.     8.    In  tangent  at  P  to  the  given  circle.     9.   AB 

the    common    chord    of    circles    APQ,    AP'Q,    meeting    PQ 
in  M;   /.  PM.MQ  =  AM.MB  =  P'M.MQ,  whence  P'M=  QM. 
10.    CN.NT=QN*  =  A'N.NA,    QN  being   ordinate   of  aux- 

iliary circle,  and   A'N  —  '2CN  ult.      11.    R  the  point  of  inter- 
section,    RU    its     ordinate.;     RM*  =  PM*,    .'.   RU*  -f  UM* 

—  kAS.AM,   similarly   for    QN  and   subtract.      PM  must    be 
greater  than  UM  or  2 A  8. 

II. 

1.   If    A,   B    tend    to    equality    A  -  B  :  A  >  A'  -  B' :  A', 
\vhence   shew   that   A  -  A'  :  B-  B' >  A  :  B.      2.    PS   parallel to  BC,  shew   that   PS :  BQ  ::  2BC  :  AC.      3.    As   in  I.   11, 
shew  that  A  C*  -  CM* :  A  C*  -  CN* : :  R  T*  +  TM* :  R  T  +  TN 
.-.  CM2 -  CN* :  TN* -  TM*  r.  AC*  -  CM* :  PM* ::  AC*:BC 
Also  PM>  TM,  deduce  that   CM* :  AC*<AC* :  AC*  +  BC\ 
4.  Shew     that     a"-  v?  +  /  :  y*  : :  aa  +  tf  :  b*,     deduce       that 
a* -  x*  +  y*  :  a* -x*  +  y*  : :  b'*  :  b*,   and    thence   that   a2 -  x*  4  ?/ 
=  Z»'2.     5.   ABC,  AB'C'  be  two  inscribed  triangles  BC-B'C' 
=  BB'  cos^t  -f  CC'  cos  A,  BB'  cwC=AB'-AB,  &c.      6-    CV 
parallel  to  BU,  CT:  CV::  AT-.AV.  CT=  OF  ult.     PU.QU 
:  QT.PT::  BIT1  :  CT*  ::  AB*  :  AC2.       7.    8'T  :  8R  ::  C8' 
:  CR;    .'.  S'T'=SR  ult.      AT.BT:  AT'.BT  ::  PT2 :  S'T* 
i:CT.RT:8R*    and    CT.  RT  =  CR.  RT \x\t.  =  PR*  =  4 £72". 
8.    Triangle   OAB  turns  about   0  into  the  position   Gab,   the 
foot  of  the  perpendicular  on  AB  moves  along  AB.     9.    PQ 
sin  SPQ  :  pq  sin  Sqp  ::  $$  :  Sp,    PQ,    pq    being    ultimately 
tangents  intersect  in  D  in  the  directrix;   /.  PQ  :  pq  ::  SP.PD 

iSp.pD    and    PD*  :  pD*  ::  SP.Pp:  Sp  .  Pp.      10.    Triangle 
ABC  =  triangle  Abe;  BC,  be  intersect  in  P',  BD,  CD  perpen- 

dicular to  AB,  AC;   AD  is  diameter  of  circle  about  ABC; 
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Ad  that  of  circle  about  Abe,  AM  perpendicular  to  Dd  is  the 
common  chord.  PN,  PR  perpendicular  AB,  AC,  PN.Bb 
=  PK.Cb,  and  Cc  =  Dd  sin  MAC,  &c.j  /.  PN  :  PR  :  :  sin  MA  G 
:  MABj  hence  L  MAB  =  LPAG. 

III. 

3.  Fig.  p.  25,  parallelogram  Pn  =  —  KL  x  -  AL.  5.  Fig. 

p.  25,  vol.  by  Pn  round  KL  —  TT  (  Lm2  —  Ln2)  Pm  =  irmn  .  2Lm  .  Pm, 

ultimately  =7r-AL.2  (  I  -  -}  AL.  T—  LK.     Vol.  round n  \        nj  n 

TT  (AH-Pm]\mn.  10.  PM'v.  AM.AM.  7rPM'.MN:7rSK\AH 

::  ̂   hAQ*-AR\  ̂ :2AC  +  AH',  hence  hyperboloid  :  cylinder 
::  AC+±AH:  2AC+AH. 

IV. 

1.  PV  diameter  bisecting  QSq.  QV<x  SPx  SY*;  *QV.  SY 
oc  SY3.  2.  Mass  is  to  that  of  a  homogeneous  circle,  den- 

sity that  of  given  circle  at  circumference,  as  2  :  m  4  2.  4.  Let 
w  be  the  number  of  squares,  each  straight  portion  of  the  serrated 

(«7
T  irp 

 \ 
-  —  —  j  ,  8w  in  number.     5.   ̂ 43/  contain- 

ing r  divisions  =r2  —  5-  and  MN—  (2r  4  1)  —  j-  .     6.    a  a  small 

area  near  P,  PM",  (7ZT  perpendicular  to  the  axis  of  revolution, 
2  (2?rPM.a)  =%7rCH  x  area  of  ellipse.  7.  ̂ th  inscribed  paral- l     .     r^45  /  7r^45\ 
lelogram  ex:   —  sm  -2~n~'   an  sum  I          os  ~Z7T  / 

AT) 
ultimately    oc  FH  -  OF.        8.    area  ̂   CD  =  -  =-  and 

~±,  =  limit          =-      9-   ̂   6>^=a.OJ    area  will   be 
ro  a 

S  (  ---  .  OAe  n  J  and  n  (en  -  1)  =  a,  ult. 
V. 

1.  Fig.  p.  34,  sect.  AGPtt  sect.  .4  <7<?  oc  L  A  CO,.  2-  Prove 
that  the  areas  of  sections  made  by  the  same  plane  parallel 
to  the  base  are  equal.  3.  Fig.  p.  25,  join  AK  cutting  PM9 

QN  m  P,  Q.  Vol.  by  PN=ir.4A8.AM.MN:  .'.  vol.  by 
PN:  47r.4£.area  P'N::  AM:  P'M  ::  AH:  KH ::  KH :  ±AS'9 
.-.  vol.  by  APKH=7rKH.AAHK.  4.  Vol.  by  PN  oc  area 
P'N  Moments  with  respect  to  AL  are  equal ;  .*.  centres  of 
gravity  coincide.  5.  Fig.  p.  26  (4)  mass  of  MN<x  AM* 



270  NEWTON. 

vol.  generated  by  PN.  Mass  of  AH=  Cx  cone.  If  pAM*  be 
density  at  M,  prove  that  p  =  C.7r  tan2 a.  7.  CM#,  CADB 
the  sector  and  square  revolving  about  CB.  PQ  a  small  arc, 
PM,  QN  pern,  on  CL4,  Pm,  Qn,  on  ̂ Z>.  Vol.  by  Pn  :  vol. 

by  PJV ::  (OA»  -  C1T)  ron  :  2  .  C7J/.  PJ/.  MN,  ult,  ::  PJf.«in  : 2CM.MN::  1  :  2. 

VI. 
1.  Vol.  by  PNce  moment  of  vol.  of  corr.  slice  of  cone,  as  in 

V.  3.     2.   In    a   curve    of  sines    let    ̂ ,  =  sin    ,  ~ ,    QN  an 

ordinate  near  PM,  take  AP'  an  arc  of  a  circle,  radius  A  C=  AM, 
P'Q'  =  MN,  P'M'  perp.  to  AC,  PM.MNv  P'M'.P'Q* 
surface  generated  by  P'Q'  oc  M'N'.  Hence  area  APM=C~A'M' f  AM\ 
*=C.ACll  —  cos-j-~  j ,  and  to  determine  the  constant  C,  when 

A  Kf* 

AM  is   indefini
tely  

small,  \AM .  MP=  C.  AC. 2  .  ~,a  ult.; 

/.  C=BC.  3.  Let  P',  <8',  7>f  correspond  to  P,  §,  D  on  the 
auxiliary  circle, PQ  :  CD::P'Q':  CD'  ::  P' Q'  :  CP'.  4.  P'M', 
P'N'  perp.  from  P'  near  P;  then  area  PIT  =  w.  area  PA^', 
volumes  are  as  MM'.  PM* :  2NN1.  PN.  PM=m:  2.  5.  ̂ ^^' 

the  semicircle,  centre  C}  CB  perp.  to  ̂ 4^1',  IfPP',  ̂ $(2'  perp. 
to  tangent  at  A,  cutting  off  small  arcs  PQ,  P'Q',  surface 
generated  by  these  =2?r  (MP+MP1)  P<2  =  4?r.  AC.  PQ]  then 
see  p.  38  (8).  6.  A"CA  major  axis  of  exterior  ellipse,  P'J/2 
:  BC*::A'M.A"M:A'C*;  .-.P'lPac  SP.HP*  CD*  v PG\ 
surface  generated  by  PQv:  PQ .PMv:  PG  .MNv:  PM.MN. 
7.  P,  j9  adjacent  points  on  the  hyperbola,  Q,  q  on  its  conju- 

gate; PM,  pm  perp.  BC  intersect  the  asymptote  in  R,  r,  QRNy 
qrn  perp.  AC.     Prove  that  PJf :  QN ::  AC  :  BC::  Nn  :  Mm. 

VII. 
2.  In  the  ellipses  make  LPSH  the  same,  produce  SPtv  Q, 

making  PQ  =  PH.       SH :  SQ  is  the   same,  triangle   SQH  is 
equiangular.       Shew   that    SPII  is   equiangular.      4.   In    the 
base  take  AB  bisected  by  the  centre    0,   describe   a   square 
A  BCD    and    let    CD    meet    the    semicircle    in   P,   P  is   an 
angle   of    the     square    required.      5.    0   the    centre    of    any 
circle   touching   the  lines  AB,  AC;   AD   drawn   through  the 

given  point  D  meets  this  circle  in  P,  Q;   DO',  DO"  parallel  to 
PO,  QO  meet  AO  in  0',  0"  the  centres  of  the  circles  required. 
8.  Surface  of  a  right  cone  is  made  up  of  an  infinite  number 
of  triangles  of  equal  mass,  which  may  be   collected  in  their 
centres  of  gravity   and  re-distributed  uniformly  over  a  circle, 
whose  centre  is  the  centre  of  gravity  of  the  surface.     In  the 
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oblique  cone  the  triangles  are  of  unequal  mass  and  the  centre 
of  gravity  of  the  circle  is  not  its  centre. 

VIII. 

1.    Curves  can  be  drawn  in  which  RQ,  Rq  have  any  ratio. 

2.    8T.8P*  /ST'oc  1^.     3.   As  in  Lemmas  VIL,  produce 
AD  to  a  finite  distance.  4.  Shew  that  QN-PM:  ON-  OM 
:  :  PM  :  ?>OM  ult.  5.  The  fixed  line  is  the  directrix.  6.  PM 

perpendicular  to  AB,  AT.  TB  =  PT*=  MT.  TC,  TM=2A2\ 
ult.,  AB*-BP*  =  AP*  =  AM.AB=AT.AB,  ult.  7.  8PP  Q 
is  a  quadrilateral  in  a  circle  ;  .-.  L  SPY=  L  SQP'.  8.  Pp,  Qq 
intersect  in  the  diameter  bisecting  the  chords,  prove  the  tri- 

angles CPp,  CQq  equal.  9.  PM  perpendicular  to  vertical 

diameter  BA  ;  (vel.)2  down  PA,  PT  are  as  MA  :  MT::  1  :  2. 
10.  SP(HP-HP')=-HP'  (SP-  SP)  ;  ultimately  normal  PG  is 
perpendicular  to  PP'  and  SP'-SP=PP'  smSPG. 

IX. 

1.  Circles  on  SP,  SP'  have  SY  perpendicular  to  PP'  for 
common  chord.  Envelope  is  the  pedal.  2.  OPQ,  Opq  con- 

secutive radii,  PM,  QR  perp.  to  Opq,  Nn  to  OPQ,  ult.  pM: 

PM'.-.Nn  :  nP,  QR  :  qR  ::  nQ  :  Nn]  .'.  nQ  :  nP::  QR  :  PM 
::  OQi  OP;  .'.  nQ=OQ.  3.  P,  P'  consecutive  positions  of 
the  vertex,  T,  T'  intersections  of  corresponding  sides,  P,  P' 
are  in  semicircle  on  TT',  and  TT'  is  the  chord  of  contact  ult. 
Normal  to  locus  of  P  bisects  TT'  and  passes  through  centre 
of  ellipse.  4.  Chord  joining  P'P  ult.  passes  through  S;  SD, 
PM,P'M'  perp  fixed  line,  PN  perp.  SD,  (SP1  -  SP)  PM 
=  SP'(PM-P'M'),  .-.  SP.PM=8P'.8N;  /.  ND  =  $SD, 
and  SP=2SD.  5.  AD  diam.  of  circle  round  AQR,  AA'  =* OR 

AD  s,'mABA'=  -?—j  sin  ABA.     6.  P',  P  consecutive  points, 

jSTperp.  8P  meets  PP'  in  T,  TU  perp.  PM,  P'm,  P'n  perp. 
SP,  PM.  SP*  -  /SP"2  =  AB  (PM-  P'M  '),  <2SP.  Pm  =  AB.Pn  ; 
.-.  2SP*  =  AB.PU.  2PM  =PU:  centre  of  circle  is  in  the  fixed f)TJ 

line.     7.   eb  an  ordiuate  near  EB,  BU  subtangent  at  E,  ——  -^ 

lim.  -  =  ~D  FG  .  cos  .    Prove  that  HE  =FC  cos 

-     and  BU.B'U'  is  constant.       8.    SP.  L  PSA  =  constant. 

SP  :  SP-  SP'  :  :  L  PSA  :  L  PSP,  circular  measure,  8T  :  SP 
:  :  SP.  L  PSP'  :  SP-  SP'  ult.  :  :  L  PSA  :  1  ;  .-.  ST  constant. 
9.  As  in  8- 
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X. 

1.  In  the  construction  of  Art.  57,  the  locus  of  P  is  a  line 
parallel  to  OAB.  4.  As  (2)  p.  76.  5.  In  lig.  p.  67,  produce 

KA  to  Hj  so  that  AH—  1,  draw  HO  perpendicular  to  HAK=  a, 

the  curve   is  a  parabola,  vertex   0,  latus  rectum   -  ,  passing 

through  A.  Space  in  time  t=  \a  (3£2  -f  f).  6.  Velocity 
curve  is  a  parabola  AP,  time  measured  on  the  axis,  acceleration 
oc  PM:  2AM,  Art.  54.  7.  Acceleration  oc  2^L1/:  PM<xPM, 
Art.  54. 

XT. 

1.  At  the  time  corresponding,  the  acceleration  changes 
discontinuously.  A  point  of  inflexion  implies  that  the  ac- 

celeration passes  a  maximum  or  minimum  values.  2.  If 

/j,  .  SP,  fjt>'  .  S'P  be  the  accelerations  of  the  forces  on  the 
particle  at  P,  that  of  the  resultant  fciTe  will  be  (/*  +  /*')  GP, 
where  G  is  centre  of  gravity  of  /JL  at  8,  and  /LA'  at  S'.  Time 
=  TT  (fi  4  n')~*.  3.  Curve  described  as  in  Art.  57  is  a  parabola. 
4.  Curve  of  Art.  57  is  a  straight  line  inclined  at  tan'1/*  to 
the  line  of  motion;  (vel.)2  at  distance  #  =  //,  (x2  —  a2).  5.  AP, 
op  their  velocity  curves;  draw  chords  AP,  ap.  Uniform 
acceleration  which  would  generate  velocity  PM  is  tanP-41f; 
therefore,  if  /  PAM=/.pam^  AM:  am  is  constant,  therefore 
also  AP  :  ap,  i.e.  arcs  AP,  ap  are  similar.  6.  Let  C  be  a 
point  at  which  the  two  forces  are  equal.,  whole  force  towards 
C  on  the  particle  at  Poc  CP.  7.  After  impact  M  comes  to 

rest,  M  gains  A's  velocity.  If  they  meet  at  B'  :  w's  time  in 
B8+  SA'  +  A'ff^M'*  time  in  BSE'  =  twice  nt'0  time  in  8A'  ; 
.-.  SB'=SB. 

XII. 

3. 

hence  a11  4  5*  =  3  CT»  >  35*.     4-    By   Art.  85, 
/.   CP=C£.      5.   They  are  inversely  as  PF-.AC:  CP,  and 

/nr  7)2 

CP=CD.     6. 
7.  (1) 

8.    By  Art.  85,   tPST=  L  STP=  L  SPT.     9.    Chord   parallel 
to  the  axis  =  4/SP;  distance  from  its  middle  point  to  the  direc- 

trix =  3SP.     10.   3£P=  2£P.         ,   95^'  =  4SY*  -  4/S'P.  6'^. 
11.  PQ  and  CP  are  equally  inclined  to  the  axis,  circle  on  PQ 
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as  diameter  has  PGP'  as  a  common  chord.    2  CP=  PQ  cos  %PCA, o  njy-     pj? 

and  A  C2  =  CP*  co&VPCA.     12.  Portion  proposed  =  -^~  .  ~ 
%CD>      2AC\BC*  . 

13.   Diameter  of  curvature  =  --  =  —  -      -  m pp 
both  hyperbola  and  ellipse,  and  PF  is  the  same  in  both  ; 
.*.  AC.BC  is  constant  for  all  the  ellipses.  14.  In  fig.  p.  104, 

produce  UA,  EA  to  V,  £',  making  AU'=AU,  AS' 
S'  U'  is  the  directrix,  U'  fixed. 

XIII. 

,   SP    AZ     4SP.AM     4PF2 
1.   Chord  through  A  -  ±SP.  -      .  —p  = 

2.  Normal    at    A  —  radius    of    curvature  =  semi-latus-rectum. 

3.  MG,  M1  G1  subnormals  for  P,  P'.     PF  sin£  =  MM'  =  GG'. 
PP1       GG1  sin  6^     1        sin*^        cos2£         1  „,      , 

—  -7—  p5-»pes^rp&==T^GCp^-     6'  Chords 
in  direction  P(?  are  as  PT*  sin  TP()  :  QT3  smTQP::  PT2  :  QT. 

n      CD*    GM     SP.HP  „.,    n.,  n 7.    pcosG  =  -.r=    -,     CM,   CM-  p  cosG  : 

e*CM*\AC\  8.  TPt  tangent  at  the  point  of  contact  meets 
asymptotes  in  T,  t;  PT—CD  in  both  curves,  and  PZ^is  the  same 
in  both.  9.  PQ  common  chord,  pq  diameter  parallel  to  PQ, 

•P'j  Q'i  P'I  Qi  corresponding  points  in  auxiliary  circle.  PQ  : 
P'Q  ::pq'.pq.  Prove  that  Q'P'C=  2</>-  Jw;  .:P'Q'  =  2AG 
sin  2</>.  10.  0  bisects  radius  CA,  AB  chord  perp.  to  the  sub- 

tenses, OS  perp.  to  AB.  S  is  the  focus,  SA  the  semi-latus- 
/£»         .     qj 

rectum.     11.   y  —  x  is  the  tangent,  P§a  =  o;a  +  v2,   QR=  —  ,n    = 

2"*          <  AC  -' 
polar  of  P  for  confocal  touching  P$,    QPF=RPF=a,  HPF 

=  8PF=/3,  QHP  =  PHR  =  e,   QSP=PSR  =  0'.     Produce  SQ 
TT'  xi.    ,     /orr»      /->rr      T> 

to  H,  so  that   §J?  =CIT.     By  ,  -  ~  ̂  

"sin  ~0f     '     *• 
1  ,         J_      "J^        /  1          l\     cos/3 

-HP         sinTa5      M3    PQ+  PR"  \SP+  HP) 

cosa 

2PF 

CD*  cosa  ' NN 
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XIV. 

1.  Complete  ADBF.  ACBF=$ADBF,  ACBE^^ABD 
-ABD.  2.  QM,  RN  perpendicular  to  PT,  PR  =  2PQ  ;  .*.  EN 
=  4#3fult.  3.  EM,  ON  perpendicular  to  AT,  BM=±CN, 
and  BT=  CT  ult.  4.  a,  b  diameters  of  curvature  of  AP, 

A  Q  at  A,  APQ  chord  through  A,  R'P'PR  parallel  to  tangent 
AT.  PM,  QN  perpendicular  to  AT:  AP  :  AQ  ::  AM:  AN 

AM*    AN* 
:  :  -pyr  :  7)  W  '••  a  •  b  ::  PP  2  '•  RR'*>     5.  Inscribe  n  rectangles 

in  A  CB  of  which  PMNQ  is  one  ;    l-2  (PM)  =  -      S  (PM.  MN) 
are&ACB      Q.    . 

.     Similarly  for  the   tangent.     6.    Any  small  arc 

PQ  of  AB  lies  between  the  circles  of  curvature  at  P  and  Q, 

which  lie  one  entirely  within  the  other.  7.  SP  '.  BZ  '=  SY*, 
(SPr  -  SP)  SZ'  +  (SZ1  -  SZ)  SP=  SY12  -  SY*  ;  .'.  (Art.  86) 
2SZ.PV  2SP.SZ  _  PV  SY  0 -1-  8-  (  " 

=  /JL  (a  +  0)  ;  /.  area  =  JS/x'2  (a  1  ̂V  ̂  =  \^  (a2  -f 

9.    FA1»}PA1   or  fP/S^l,  radius  of  curvature  =2  -  -  -  -,  or 

PP' 
o  chord  through   /S=4>SPor  |>SP,  parabola  or  cardioid. 

10.  ABODE  the  pentagon,  P3f,  CN  perpendicular  to  AE.    Con- 
sider  the  curve  as  parabola  of  curvature,  vertex    G.      Prove 

that  BM=\CN,  AM=MN  ult.  ;  the  ratio  is  f  A  ACN:  ABCN. 
11.  Bm  parallel  to  Ab  meets   CP  in  m.     be  :  Bm  :  :  Pb  :  PB, 

Bm:  BC::  PM:  CM-,    .-.  be  :  BG  ::  Pb  .  PM  :  AB.AC  ult.; 
.-.  bcib'c'uPb.PM:  Qb'.QN::  PM>  :  QN*  by  Lemma  XI., 
case  3;    .-.  6c.-43f  :  b'c'.AN::  ml  :  1.     12.    Sec:.  >f  P=  {  tri- 

angle    A  TP,     A  TRB  =  seg.  APB  +  J  seg.  AP  +  £  Reg  .  JSP, 

seg.  ̂ 4P#  :  seg.  AP  :  seg.  BP::  (m  +  n)'  :  mj  :  /ia,    /.  Al'RB  : 
seg.  ̂ 4P5  :  :  (m  +  w)8  +  ̂  (m3  +  w3)  :  (m  +  n)».     13.  BO2=A  (7  + 
^4^  -  2^1  0  .  ̂4  J/;     ̂ 4P2  =  2  AC.  AM=  2  AC.  AT,  page  9  (3); 
/.   BO*  ̂   A0*  =  20C.A  T  ult.      14.    QOQ  is   a   right    angle, 

0<?*+  OQ'*  =  ±OP*,  and  0(?,  0§'  turn  half  as  fast  as  OP. 
XV. 

1.  P,  <>,  Jft  consecutive  angles  of  the  polygon,  Q'  near  <?, 
A  PQR=&  PQ'R',  /.  tangent  at  §  parallel  to  PI!  .  AY'Y,'// 
a  rect.  inscribed  in  ABC,  GU  on  BG,  E  on  ̂ #,  JF1  on  AC. 

AD  perp.  j5(7  meets  EF  in  A",  rect.  EFGH  :  rect. 
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::  BC:  BD.  Let  K'EH'D  =  KEHD,  KE,  H'E'  meet  in  L, 
rectangles  K'E,  E'H  are  equal  and  about  diagonal  DL  ; 
.-.  LRDB=L  ABD  when  EKDH  or  EFGH'is  a  max.  3.  Shew 
that  PC  and  tangent  at  P  make  equal  angles  with  the  major 
axis,  P  being  an  angle  of  the  rectangle.  4.  PQE8  minimum 

parallelogram,  PQ,  RS  shifted  slightly  so  that  PQRS=P  Q'R  S\ 
shew  that  PQ  and  ES  are  bisected  by  the  points  of  contact. 

5.  Prove  for  the  auxiliary  circle.  OQQ'  near  OPP',  OA'.P'M' 
-OA.PM  =  OA.Q'M'-OA.QN,  and  PQ  :  P'Q'  : :  OP:  OQ'i 
.-.  OA .  OP1.  CM'=  OA  .  OP.  CM,  .-.  OA\  CM'  =  OP2.  CM, 
OC=c,  CA  =  a.  (c  +  a)2,  x  ={(c  -  a;)2  +  a2-  x*}  x,  .:  2c  (st+ax1) 
=  (c2 +  aa)  l<e  -  x'}  =  2c  (a/2  +  ax) ;  /.»+»'-  a.  6.  Suppose 
AB  fixed,  5(7,  -4Z>  to  intersect  in  0,  <7Z>  turns  to  C'D' 
about  0;  .-.  A  OCD=  A  OC'/)',  ̂ ^0/>  being  a  max.  =ABC'D'i 
/.  &OAD'=LOBC',  OA.DD'=OB.CC'  or  OA.OD=OB.OC. 
7.  TT'  a   small   arc,    T'P',    T'^'   tangents  to   interior   oval, 
PP'=QQ',  radii  of  curvature  are  inversely  as  z.  TPT'  :  z  T^T'. 
8.  PZ7JT,  P'?7'TF'  equal  common  chords  through  P,  P',  inter- 

secting the  major  axis  in  £/,  27'  and  each  other  in  F,  triangles 
UP2\  U'P'T'  are  isosceles,  Art.  85.      Q,  Q'  in  aux.  circle,  cor- 

respond to  P,  P;  join  $£/;  #7;  §'?7',  Q[T,  and  let  £7^,  C/'^' 
intersect    in    F',    then    L  UVU' =  angle    between    QI\     Q'T 

QQ'cosUQC      QQ          ,    „_,      1    ,.  ̂ rrr> 
Oy,   =  ̂t~<7>    and   ̂ ^  =Jchd.«8KB 

,  „  F=3PF.     PP'cosa=  TFPF' cos/3  and  PPp'j"a 

^'Si^     ,.  tan^Stana.     9.     —    — 
IfF 

consecutive  positions;  P(7,  P'(7'  intersect  in  D,  BD  =  D C  ult. 
GHK  is  triangle  formed  by  the  tangents,  prove  that  BB  sin  (7/>  6r 

=  GC.HA.KB.  10-  POP,  QOQ  normals  at  P,  ft  tangent 

at  Q  is  parallel  to  PP,  QC  bisects  PP',  PC  bisects  QQ'; 
project  into  a  circle,  P  into^>,  &c. ;  50  and  pc  perp.  to  /?//,  qq' • 
•'•  PP  i  q.%  cut  on°  equal  areas.  If  P6^,  QG  be  perpendicular 
normals  intersecting  in  an  axis,  perp.  normals  through  P',  $' 
near  P  and  ft  cutting  the  axis  in  G',  G",  P"  G"  normal  at  P" 
near  P,  area  cut  off  by  P  G' =  area  by  <?'#"  =  area  by  P"<2", 
and  P'G  and  P"6r"  are  on  opposite  sides  of  PG\  .'.  the 
required  normals  are  inclined  at  45°  to  the  axes. 

XVI. 

1.   Prove  that  it  is  ult.  PM :  QM::  QM+AQ  :  QM::  2  :  1. 

2.   Art.  115.      3.   n^/-..      4.    Fig.  p.  115. 
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PO  cuts  circle  on  diameter  OS  in  £>,  shew  that  arcpS=arcRP 
=  BS.  5.  Epicycloid  degenerates  to  a  cycloid,  length  =  8&,  or 
see  Art  120;  and  ?i.27r£  =  2-Tra.  6.  QR  diameter  through  the 
point  of  contact  (?,  P  the  generating  point,  A  its  initial  position 
on  the  fixed  circle  A  Q,  tangent  at  Q  bisects  AP  at  right  angles. 
Shew  that  P3/perp.  QR  touches  circle  through  A  of  twice  the 
diameter  of  the  fixed  circle.  7.  PO  radius  of  curvature  touches 

the  e  volute,  L  SOP=  a,  PD  the  diameter,  A  PDS  is  of  constant 
form.  8.  S  moves  perp.  to  &P,  at  a  constant  angle  to  the 
straight  line  AP.  9.  Fig.  p.  129,  PU=AP,  U  fixed,  UM  con- 

stant —  AO.  10.  Q  the  corresponding  point  in  the  hyperbola 
SQ.SP=SA\  SY.SQ 

XVII. 

1.  Pp,  Qq  corresponding  arcs,  Pf,  pt  tangents,  pm  perp.  Pt, 
Bq,  AQ  cut  in  ?*,  Lptm  =  L  QAq  =  L  QBq,  ultimately  p  :  Pp 
::Pp:2pm::pt:pm::BQ:  Qn,  and  Pp  =  2Qn.  2.  Fig.  p.  117. 

PV=PV  constant,  difference  of  areas  =  2  (Pp.VV'.L  Pp'P). 
3.  Pp,  Qq  intersect  in  R,  PR  =  IpR,  pB  diameter  of  rolling 
circle,  pBP  and  pCm  are  similar,  PQqp  =  %pqR  =  4pE.pq  cosBpP 
=  2pm.mn.  4.  Fig.  p.  123.  c  centre  of  APE,  ̂ 41fperp.  to  cQ, 
arc  AM  of  circle  on  Ac  as  diameter  =  arc  A  Q^  M  generates  an 

epicycloid   touched   by  cQ.      5.   In  Art.  120,  --  for  b  gives 

EP\  GP.  6.  Fig.  p.  123.  CR  perp.  AO.  Tangential  force 
oc  OR^AO^FO.  7.  Force  at  Q  in  PA  oc  PR  and  PA  :  PR 

is  constant.  8.  SP,  $'P',  consecutive  positions  of  r,  intersect 
in  0.  SO  —  p.  SP  has  turned  to  S'P  through  an  angle  equal O  C"  PP' 

to  the  angle  between  the  tangents   at  P,  P'  ;    .*.  -  —  ; 

.-.  ?-  =  —.  —  -  =  -  ;  —  -  .     9.   pq*  p'q    consecutive   radii    of r       psmcj)      r  ̂   p  sin<f> 

curvature  touch  the  spiral  at  qq',  LpSq  is  a  right  angle,  area  = 

2  (\p<f  x  pqp)  =  2  fySp*  cosec'Ja  x  pSp)  =  %SP2  tana  cosec'2a, Art.  127.  10.  AC,  PT  tangents  at  A,  P;  OC,  1/t/perp.  PT, 

OC=PM,  and  AC=AP,  Art.  133,  P',  M',  C'  consecutive  posi- 
tions of  P,  M.  C:  CC1  smCC'0  =  PP'  cosT=MM',  A  CC'O 

XVIII. 

1.   h  =  V.  SPBmSPYaz  s'mSPY.      2.    Curvature  changed, but  not  direction.      3.   Time  oc  APM<x  AM.MP.      4.   Normal 

2SY.    -        4^00  ̂ +^7.    5.  Velocity  oc  GO; 

^4  C  -  -BO  not  less  than  P(7.     6.    C^2  -f  CPa  constant.     7.   In 
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area,  A  SI/      4?r—  3  \/3       n  A  -run 
aux.  circle  L  L  CA=±Tr.  -       Al  or/  =  -  -  -^  .     8.  Area  AB  S 

7  area  4  '  SL       877  +  3  V3 

:  area  A'B'S::  %iraz  -a.ae:  \TTC?  -\-a.ae.  9.  PGP'  a  diameter. 
Vel.  at  Pxvel.  at  P'  is  constant.  10.  V^  V^  HZ,  8Y, 
and  ±(HZ+SY)u  constant.  11.  Fig.  p.  99.  L  YY'P 
=  L  YSP  =  L  SPO.  YY'  cos  YY'P  :  PP'  :  :  £F'  :  P<9  ult.  ; 
.-.  vel,  of  Fx  JPF=  vel.  of  P  x  £F=  constant.  12-  ffZ,  £F, 
perp.  to  tangents  at  P,  Q,  intersect  any  circle  through  F,  Z 

in  F,  ̂',  £F,  SZ1  are  as  velocities  at  P  and  Q,  and  F'^'  :  /SF 

1        F/7 ::  F^:  >S^,  vel.  compounded  with  that  of  Pec  -or/-.  -^77?  con- 

stant; since  F^.^S^F.SZsinFS^and  Y8Z=±PSQ. 

XIX. 
r>  7 

1.   Yel.  perp.  P(^  has  components  perp.  PS,  SG 

2.   Vel.  at  Poo  Z?Z.    Sum  required  oc  .HZ+  5Foc  PF. 

P/T* 

3.   Compo
nent 

 
perp.  to  /SPx 

 
(7Z>.  -p.   

  
If  ̂   be  inclina

tion  
of 

fixed  direction  to  the  axis,   0  eccentric   angle  of  P,  resolved 
vels.  at  P  and  Z^oc  a  sin</>  cos#—  b  cos</>  sin^  and  a  cos$ 

sin</>  sin  9.     4.  TT  +  2e  =?rc  (TT—  2e),  prove  e'—  e  cc   —  -   —  ult. 

h        I_     x*    y/.         Jl_        L-*±^       A    -L          T 
~SY~  HZ>  '  '  SP~HP~2AC'       '    SP+  S 

crj    hence 

7.   Vel.  of  Foe  -,  see  XVIII.  11  ;  /.  PFoc  6'Z,  andp  oc  /S'F. 

8.  Tangents  intersect  in  I7,  P'  Q  and  PI7  in  £7,  CT  bisects  PP' 
and  P§,  and  .-.  PU;    /.  vels.   at  P  and  $  are  as    TU:  TQ. 
9.  OZ>,  CD'  parallel  to  2!P,  TP',   TG  bisects  DD'  in  J/,  2  CM 
represents  resultant  of  vel.  of  P'   and  reversed  vel.  of  P,  and 
2  CM  :  CTis  constant  =sin2<£  :  1  ;  20  difference  of  the  eccentric 

angles  of  P,  P'.     If  they  move  in  opposite  directions,  and  t  be 
the  intersection  of  PT  and  tangent  at  the  other  end  of  diameter 

through  P',  Ct  will  represent  their  relative  vel.      10.   PS>QS, 
A,  A  nearer  and  further  apse.     AR  —  ATfor  a  minimum  angle 
RST.      P  moving  towards    A,  PSA  -USA  =  ESA  -  ASQ; 

P    moving    towards     A\     QSA  +  RSA  =  P8A'  +  A'SR;    and 
A'SR+RSA=QSA  +  ASQ',  .'.2RSA=PSA'+ASQ.     11.   AP 
half  the  string,  P  begins  to  move  with  vel.  v  relative  to  -4,  and 
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force  on  P  tends  to  A  moving  uniformly,  therefore  P  moves  in 
a  circle  with  velocity  v,  which  rolls  on  a  line  PQ  perp.  AP, 
%7rl=vx  time  of  meeting.  12.  PD  parallel  to  fixed  line,  SY 
perp.  tangent  PY  intersects  PD  in  Z,  SZP  is  a  triangle  of 7  QP 

velocities  -*  othe  vel.  perp.  SP  is  constant,  and  PZ  =  e.SP. 

Take  PD:  SP::  SP  :  PZ,  triangles  PSD,  PZS  are  similar; 

draw  /S  £7,  ZA^  perp.  PZ),  /SP.  SY.SZ=  SN.8P;  .'.  SN  is 
constant;  .'.  DU=e.SN\$  constant,  .•.  ZU/  perp.  PZ>  is  fixed, 
and  8P=e.PD.  13.  (7)  p.  105.  14.  Art.  139. 

XX. 

1.  In  auxiliary  circle   A  A  QQ  +  A  A'QQ'  +  2  seg.  .  QQ'  = 
2  sector  (JC^'.      2.    seg.  ̂ IPoc  parabolic  area  APM-  A  ̂ IPJf 
ocPJtf8.     3.    PM  perp.  to  ̂ 4S,  arc  AP+  PM  oc  sector  ACP 
+  A  /SOP.     4.    Fig.  p.  115,  (vel.)*  at  Pec  Pl/cc  /SP2,  vel.  at  P, 
perp.  /SP,  has  equal  components  perp.  08  and  OP;   /.  constant 
force  tends  to  0.     5.   Projections  of  areas  <x  areas  oc  times. 

XXI. 

2.  ̂   oc  JL  ,  5  x  FToc  5*  .      3.  ̂   oc  P,  —**  constant. 
4.  /=  attraction  of  the  earth,   F,  v  velocities  at  the  equator. 

_      /f-9_i "V    f-~, 

5.  2":  Jfy::^v*:32.2,   w=187r,    ratio    is    5i7r2:lG.l.     6-    3F 
v2  ,         r  ,    ,  .  -,          F        15tf* =  —  .       7-    «  =  tne  number  or  teet  in  a  mile,      -r-?-  = 
r  My      Hag 

9.  o>  =  angular  velocity  of  the  earth,  tension  of  the  string  in  the 

two  cases  3  (yV+o^x  mass  of  24lbs.  ;  .-.  40?rco  x  24x5760gr. 
=  32.2  x  39  gr.  10.  fJ>  the  coefficient  of  friction,  v*  =  yu/y, 
1  =  length  of  moving  part. 

XXII. 

1.  Perp.  from  the  intersection  are  inversely  proportional  to 
the  sides.  2.  DCE,  EAF,  FED  parallel  to  AD,  BG,  CA,  S 
lies  in  the  intersection  of  AD,  BE,  CF.  3.  AB,  AC,  BC  three 
tangents,  AB—AC^  P  a  point  in  a  circle  touching  AB,  AC  at 
B,  C,  if  a,  /3,  7,  be  perp.  from  P  on  BG,  CA,  AB,  shew  that 

o?  =  @y.  4.  0  centre  of  circle  circumscribing  ABC',  BA,  GA, 
perp.  to  OB,  OC',  shew  that  perps.  from  A  on  AB,  A  C  are  as 
^16'  :  A  1>  inversely  as  the  velocities,  /.  S  lies  in  AA.  5.  PTt 
BT  tangents  at  P  and  B,  PT,  CB  intersect  in  f,  T7^/  parallel  to 

-a----  . 
R-         ,  R      i       9     288"  289'      v  V 
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EC  meets  DC'mU.  UZperp.  PI7,  vel.  at  Poc 
TU:  UZ::  vel.  at  P:  vel    at  B,  /.  centre  of  force  lies  in   TU 
perp.  A  C,  for  all  positions  of  P. 

XXIII. 

1.    By  (1)  p.  181,  Tt  and  T2  :%  ::  t*1-  2^.  04  ±  30O3f  :  ?.C4. 
IF—  P    w2  3P—  IF 

2.  2a  =  greatest  angle,  —  ̂   —  =  —  =2  (1—  cos  a),  cos  a  =  -  s  —  . Jr  CfL  2P 

3.  £,  $',  the  pegs,  are  foci  of  the  semi-ellipse  described  by  tbe 
ring,  BC  its  greatest  distance  from  SS',  L  $Z?/S"  =  2a,  22Tcosa 
—  W  ':  W:i  2yB  C+-  radius  of  curvature  at  B  i  g  ::  2  cos'^a  :  1. 
4.  No  pressure  at  Pthe  point  of  leaving,  /.  g. 

5.    (0t=  change  of  direction  in  time  t^p  —  —  1ult.  =  —  .     6.  (1—  e)* 

:  (1  -f  e)*  ::  57'10"  :  Gl'10".     e=  -016905.      7.   Angular   velocity ~     T,  sin  TP/5      hor.  vel. 
about  S=  V  --  yjj—  —  —  ̂ 777—  .      8.    lang.  ace.  oc  /SPoc  arc, 
time  depends  only  on  the  ratio  of  the  bounding  radii.     9.   DE, 

P/¥perp.  ABi'rom  starting  point  and  at  any  time.   Pressure  at  P 

-  W.  ||:  W::  :  g,   .:  pressure  :  W::  BM+  EM:  BQ. 

1W  3V       _3h*.ACt 1U.    Arts,  loy,  14U,  J:  —  /~iyv  YV~~  C7*  CY  —      CY**     * 
XXIV. 

1.  Ace.  of  C  relative  to  A  is  the  resultant  of  ace.  BC.a?  and 

AB.co\  of  C  rel.  to  B  and  B  rel.   to  -4,  and  equal  to  AC.  CD* 

in   direction    CA.       2.   -       =  —     —  ;    .'.    SP2  =  AC.BC. 

per.  time  ' 3.    At    the   vertex,   as    in    (6)    p.    184,   v2  =  2ytt  [  -=-j  —  ~—^\  . \  0^4.  O-O/ 

-  ace.  effect  of  pressure  =  2/i  -  -         --       ,  pressure 

4.    As  in  XVIII,  11,   V  :  V::SY:  1PF,   and 

=  F2.      5.    r  =  distance  of  the  particle  from  the  vertex, 

— -.-  —   is  the  resultant  of  fj.r.  q  and  E  the  ace.  effect  of  the r  sin  a 

pressure ;    /.  pr  —  g  cos  a  =  —  ,    and  g  —  JJLT  cos  a  =  E  sin  a  >  0, 
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AY 

-.,_, 

/.  fj,r   lies  between  g  cos  a   and  g  sec  a.     6.    PFoc  OZ)3. 

jp  j__ 
°  '       ̂ '  ~"~  CT~     ~  CT~~    ~ 

ac  AN.   7.  PO  meets  C#  conjugate  to  CP  in  Jf.  .Foe  -^g  . 

C\ 

^YJ  .  PH  oc  ±^?t  .     Ptf  ordinate  to  CZ>  ;  PM.  CN= 

*CN=PP.     8.  Ang.  vel.  round  ' 
9.   In   (5),   p.   183,  AD  =  %AC,  CM=$AC.     10.    As  in   (6), 

p.  184,   (vel.)1  at  A  -  (vel.)2  at  P=4«/*(i-  ̂ )  ;  /.  (vel.)a 

at  ̂ x(l  -  y  =  4«M  (i  -  I)  ;  .-.  v*  =  ̂   oc  -^  ,  ace.  effect 
.  .  4fl/a          /  ̂   ft    \  /S'P.J/P of  pressure  on  tube  x  p  =  -  + 

11.  Prove  that  v*  =  vf  -  —  +  X5a  +  ™  -  x-  CP*>  also  tnat  ~ a 

.  CP.cosCPG  ;   /.   v>2=  ̂ 2  .(4as-2rr'j  .  - 

=          -  —  +  X  (a2+  V-  OP2)  ;  therefore  the  ellipse  can Cl 

be  described  if  v/  =  Xa*--.  12.  ̂   =  vel.  at  P,  T,  the 
ace.  effect  of  the  tension,  AS,  P$the  least  and  greatest  distances 

=  aTc,  prove  that  v02-V=2 

and   vf**aTf+—£  --  J/ftf  --       8    J  ,    Tp   is    a    maximum 

when  r2  =  a2  -ca,  and  Ta<Tb;  least  vel.  is  at  B  when  Ta  =  0, 

—  '^•••"'=(^-^'  »•>**-* 
v4  least. 

XXV. 

1.  Ar=  JTT^  -f  P2.  Express  A  in  terms  of  /A.  2.  Sum  of 
pcrps.  on  parallel  tangents  is  constant.  3-  LM  intersects  dia- 

meters through  S  in  0,  OL  :  OM::  SL  :  SM;  PV  the  same 
SY      SY'      2E        1  .   ,.      .. for  L  and  J\L      4.    -r-  +  —  r—  =  -r-  =  —  ̂   x    periodic    time. n  n          n        Trlt 

5.    P/S(3  any  chord,  ace.  at  P  cc  inversely  as  SP*.  PQ*,  and  the 
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sum  named  cc  (=  -f  ̂  )  __,  cc  ̂ ^ .  6.  Force  oc  (8P-i 

Art.  190.     7.  -        =  +  -       ;  «£•=&!.&  ; 

=2(0-E"!  +  C>51!}.    8.   FT  is  the  same  at  P  and  #,  .-.  Tec  SY. 
Prove  that  SF~  SF'  =  PQ.      9.   -P.fi  a  diam.      Ang.  yel.  at  P _     Fsin()PF      FsinPfi<?        F 
about  <?= 

dimensions,  /.  m  4  J  (w  -  1)  =  0.  11.  See  Prop.  XL,  Prob.  VI., 
Aiiter,  p.  221.  12.  ̂ P  parallel  to  the  axis,  being  infinite  is 
constant,  arid  SG  =  SP.  13.  Project  tbe  ellipse  into  a  circle 
described  in  the  same  periodic  time,  p,  q  projections  of  P,  Q, 
small  arcs  PR,pr  are  described  in  same  time,  forces  at  P,  p  are 
as  the  subtenses  parallel  to  OP,  Op,  i.e.  ::  OP:  Op,  .*.  force 

p  .f  pq 

XXVI. 

w8  (7P2 1.    For,  by  Art.  195,  at  the  point  considered     '  r.3 

0     ,,.  
a 

0    ,-,. 3.    Fig.  p.   129, 

and  =          .   4.  ̂ the  ace.  at  Pin  both  cases.    V*=<2F.SP 

in  both  cases.  5.  P/¥  the  common  ordinate.  ^4Jf=w27,  and 
AM.  MB=  PM*  =  L.AM.u  is  the  same  in  both,  therefore  at  P 
normals  are  equally  inclined,  and  if  0  be  the  centre,  OM= 
or  OB-L  =  \L. 

XXVII. 

**  ̂ =       is  constant;  •*• 
constant.     3.    Being  Fcosa.     4.    Since  the  vel.  *J/jb  +  a  is  that 
in  a  spiral,  \ir  —  /3  is  the  spiral  angle,  and  time  to  the  centre 

a2  cot/3-f-2^,  Art.  127.     5.   In  a  spiral  of  angle  a,  vel.  =  -o 

time  from  A  to  L=  -    -,  -  .  which  is  true  when  a  is  inde- 
2/A*  cos  a 

finitely  diminished.      6.   Angular  velocity  =  --  ,  /.  v  cc  r. 
v54  ** 

=  -  cc  r,  and  v2-v'a  =  2  (F  cos  a  ~^)  (r-/)  seca,  ult., 
00 
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jPcosa  —  J?cc  v.      7.   v,   v'  velocities   of  approach  at   distances 

2s,  2s',  v'z  -  v*  =  2-~s   (s  -  s)   ult.  =/a3  (  (/7  +  -^  \  (s  -  s)  =/a3  X 

(—.   r, )  ult.     v2  =  fas  f-j   r,  ] .     Draw  P3/  ordinate  to  semi- s        s  J                          \s       aj 

circle  on  2a,  (7  the  centre,   CM=s,  v  =  \/(fa)  TTTT*      Time  in 

JO/'       CM.  MM'       1          P'M'-PM 
MM  =  -  —  =   ^ -.•-—    -,-Tr-r  =   TT-F^ — )  u^«   •'•  time  to v  PM       \A/a)  V(/(0 

P3/  I  la     V*-1af\  ,     2_  .  F*-2a/     2_     /a8 

" V(/«T  "  V  V'T^^^rJ '  •'  !  F2 -a/' s  =  T^VJ 
vs  ='^-7  — /«j  v2  -f  F2  =  2  ( F2  -  o/)  =  j4  =  (ve^)2  ̂ n  equiangular 5  •       4£ 

spiral.     8.   After  a  short  time  T,  let  a&c  be  the  position  of  the 
i         ̂      -s      -      A       r>7      ̂   b        c      .          „  ,      Bb  sin  B 

triangle,  velocities  in  Aa^  Bb  =  X  -  ,  X  =- , rt  O 

=  TX — r— ,     hence    abc  is  similar  to  ABC:     if 6 

«a'  :  ̂ la  ::  ab  :  AB,  hence   if  Aa,  ad  subtend   at  S  the  same 
angle  <£,  S  will  be  the  focus  of  the  spiral  described  by  A ;  let 

SA      si 

SAa  =  6,      -ga=- 

—  and  —  =TX  - 
ab  c  c  ac 

.'.  cot (9  =  cot  A  +  cot  5  +  cot (7,  /.  SAB=SBC=SCA,  and  the 
spirals  have  a  common  focus,  subtending  at  -4P,  2?(7,  CA  the 
supplements  of  .#,  (7,  ̂. 

XXVII.  ^>. 

1.  (Vel.)2  in  circle  =fiCP2  =  ̂ CD\  2.  (Vol.)2  in  circle 
=  /uc2,  in  (1),  (*2),  (3),  c  is  a  semi-axis;  square  of  the  other 
semi-axis  is  (l)ca-rH,  (2)  nV,  (3)  .c".  In  orbit  (4)  2c"=  CD", 
fl6  =  ca,  a,  5  =  (V5  ±1),  inclination  of  major-axis  to  c  =  ̂   tan"1 2. 
3.  Semi-axes  are  c  and  2c.  4.  pc*  =  fib*,  a  =  2c,  e2  — 1  =  ̂ . 
5.  /i  and  6'/)  are  unchanged,  radius  of  curvature  =  CD3  ̂ /fju-r-h. 
6.  ecc.  angle  of  D  is  JTT,  C/>*  =  Jaa  +  J^  :  &»  : :  9  :  4,  3a2  =  862. 
7.  ft  =  attraction   of  unit  mass  at    unit  distance,  m  =  mass   of 
parallelepiped,  GIL  perp.  from  centre  of  gravity  on  the  smooth 
face,  force  tending  to   12  at  P=fjun.IIP,  periodic  time  =  2?r 
-r-V(Mw).     8.   Vel.   of  m  —  ̂ fju.aj  semi-axes  perp.   to  b    are 
rn  —  em  ,    m  (1  +  e)  0  ^         ̂ n2     7VS      4    ̂  -r  .  a    and  —7^  .  a.       9.     |yiar  =  pCD  ,   7r  =  ̂ /?  , 
?«  +  W  771  -f  771 

&•  +  £*-$£&,  4  cos*«r  +  2  sinV-1.      10.    P  the  point  of  pro- 
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jection,  vel.  oc  AP,  area  cc  CP.AP,  maximum  when  CP=AP. 

11.  P,   P'   the    points    of    projection    CD:  CP::  CD':  CP  ', 
ellipses    are   similar   and   project    into    two    concentric   circles. 
12.  Let  the  two  particles  be  at  extremities  of  conj.  diameters 

CP,  CD,  and  in  small  time  T  let  P  be  at  P',  CD'  conj.  to  CP', 
VA*  .  CD,   V/*  .  CD   are   velocities    at  P,  P',  /.  ̂   .  DD  =  vel. 
acquired   in   PP'  =  /j,CP.T  ult.,    .-.  Z>£'  =  V/<*  .  CP.  T  =  vel.   at 
D  x  T,  and  the  particle  in  the  conj.  hyperbola  is  at  Z>'  when P  is  at  P,  thus  it  once  at  extremities  of  conj.  diams.  they  will 

be  always,  and  «*  -  «'"  =  ̂   (  CD*  ̂   CP*)  =  p  (a*  -  V).      13.    At 
P  the  point  of  intersection  (vel)*  =  pCD*  =  fjiSP.HP  in  both. 
CP2  =  a*  -  &"  4  6Y/  =  a2  +  6"  -  OZX1,  also  aa  -  ft*  =  CS*=  a*+V\ 
14.    Distance  described  by  a  particle  at  P—GD,  at  the  end  of  the 
given  time  it  will  be  at  the  angle  opposite  C  of  the  parallelogram 
CPRD,  the  theorem  follows  by  the  aux.  circle.     15.    Vel.  perp. 
£P=  V/*  .  CD  sin  SPY=  >Jp.CD.  PF+  PE,  constant. 

XXVJII. 

1.  CX,  CY  are  directions  of  conj.  diameter,  and  all  pass 
through  D  in  CX  in  a  quarter  of  the  periodic  time,  which  is  the 
same  for  all,  V/-6  •  CD  being  the  vel.  of  projection.  Resolving 
vel.  and  ace.  in  CX,  CY,  all  are  equally  accelerated  parallel  to 

CX,  .-.  lie  at  any  time  in  a  line  parallel  to  CY,  whether  the 
ace.  cease  or  not  ;  hence  the  tangents  to  their  paths  at  any  time 
pass  through  the  same  point  in  CX.  2.  (i)  Ace.  perp.  conj. 
axis  is  the  same  for  all,  and  initial  vel.  is  zero,  (ii)  Hyperbolas 

are  similar.  .'.  -J^D*  =  nv<*  or  an£'  ve^  e(lual'     3.    AP  equal C_t  Ox 

and  parallel  to  CB,  vel.  at  P=\//j,.CB,  CP,  CB  are  semi-conj. 
diameters  of  the  quarter  ellipse  described  in  the  second  period. 
Vel.  at  B=  VAC.  CP=  ̂ p.BA.  Time  from  B  to  A  =  time  from  A 

to  P.  4.  8  the  centre  of  force,  BAB'  the  arc,  (vel.)2  at  B  = 
p  (8  A*  -  SB2),  SA*  -  SB*  =  (i  diam.)*  conj.  to  8B.  5.  In  the 
spiral  V*  =  nSP-*.SP=fjL'SP.SP',  .'.  in  the  elliptic  orbit 
2SP*  =  a2+tf  and  SP*  sina  =  a&.  6.  /  the  ace.  effect  of  the /        T 
constant   force,  c  =  natural   length   of   string  ;    r  =  c  f  1  4  — 

T  f  f 
total  central   force  =  --  \-f--r.  a  =  initial  length,  (vel.)'2  ='-  &2, m     J      c   '  '  v       '      c 
a,  b  are  axes  of  the  ellipse,  b  <  c,  i.e.,  vel.  of  projection  <  vel.  in 
circle  at  distance  equal  to  length  of  unstretched  string;*  the 
ellipse  is  deserted  when  r  =  c,  the  string  becoming  slack, 

*  Note  an  error  in  the  statement  of  the  problem. 
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(vel.)*  =  -  (a*-f  £*  —  c*),  angle  between  c  and  the  direction    of c 

motion  =  cot'1  —  -  *-r^  —   —  .     7.   a,  /3  semi-axes  of  orbit ao 

a/3  =  CS.CM,a*  +  F  =  CS*  +  CP*,  prove  that  a*  (CP*  -  b*)  = 
C&.  CM*,  .'.  a2  (a9  +  /32  -  a2)  =  a*£",  and  a  =  a,  /.  CP*=b*  +  £»  ; 
0,  6'  the  inclinations  of  CP  to  the  axes,  prove  that  tan51  6  = 
a*_c*  #•  a*_c'  5«  ft  £ 

ra-^^'PV^  'I*    8.0,0m- 
clinations  of  r',  r  to  major  axis,  /3'  /3  eccentric  angles  of  their 

extremities.  fi'  —  @  =  t  VA*,  sin  (£'  -  /3)  =  —  (/•'  sin  0'  r  cos  0  - 

f  ai         •     a\        rr>  Sma  rr-  1         7T  1    27T r  cos0  r  sin  0)  =  --  ̂   —  .      Time  =  -7-  .  -  =  —    -7-  =  one  day, 
ab  V/f     6       12  V/^ 

9.  P,  Q  the  particles  at  any  time  moving  in  directions  TP,  TQ 

with  vels.  which  are  as  TP:  TQ,  reversing  P's  vel,  Q's  vel.  rel. 
to  P  is  in  PQj  and  if  P'  Q'  be  the  corresponding  chord  in  the 
aux.  circle,  since  OP',  CQ'  revolve  with  equal  vel.,  P'  Q  and 
.•.  PQ  moves  parallel  to  itself.  10.  C  centre  of  gravity  of 
&PQB,  fju.CP  ace.  to  C.  PG  biseots  QR  in  p.  pR*  :  CD1 
:  :  CP*  -  Cp2  :  OP2  :  :  3  :  4.  v?  =  (i  CD*  =  ̂   QR\  Corresponding 
A  in  aux.  circle  is  equilateral,  /.  times  from  P  to  Q  and  QtoR  are 

equal.  PR  +  PQ*  +  QR*  =  f  (?/**  +  2P/>2  =  |  (CD*  +  CP*), 

s.$(9£+9f  +  9$-t*(f  +  y}*  11.  APB,  A'P'B'  the  two ellipses,  PP'  joining  the  two  particles  indined  at  6  to  CA. 
Be  verse  ace.  on  P',  rel.  ace.  of  P=^iPP'cos0,  ^,PP'sin0 
parallel  and  perp.  to  CA,  rel.  vel.  at  A  =  V  V  (&  +  ̂')  =  V/^  («-«') 
=  vel.  in  a  circle,  .*.  PP'  —  a  —  a',  0x  time.  12.  2^1a  major  axis 
of  orbit;  jB',  C"  points  on  aux.  circle,  rad.  Aa,  corresponding  to 

B}    (7,   time    in    BC  =  p*  x  L  B'A  C'  =  f*  sin"1  2?r  A  f  ̂  C' 
area  ot  circle 

=  /.T*  sin'1  (27rw).  13.  >Jjj,.CD  =  vel.  of  projection  from  P, 
DQP,  D'  Q'P  consecutive  orbits,  common  tangent  at  Q,  Q'  meets 
OZ>,  CZ>'  in  *,  «'  and  (7P  in  T;  Q  F,  §'  V  ordinates  at  Q,  Q'  are 
equal,  /.  Ct=Ct'\  .:  ult.  QV  is  normal  at  Q]  CP'  =  CP, 
CT:  CP::  CP:  GV,  hence  P'T:  P'  F  ::  PT  :  PF,  / 

XXIX. 

a       -ea+e 
HP      Znj,  HP  ,          fj,    1-He 

Also  A  is  unaltered.    4.-.— 
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=  ̂   .  ?!±I  ,  a  (I  -  e)  =  a  (e-  1],  .'.  n  =  e.    5.  Nearly  225  days. ci       &  ~~~  J. 

6.   About  8'40".      7.    In  both  orbits  F*  =  ,  V*SF2  sin'a 

2  2  .    8. 
:  :  HP  :  $P,  prove  that  HP  is  constant,  locus  of  C  is  a  circle, 

1        4       1      I  4F   1 

1O.   A£=fa.4a  =  4a2  circ.  meas.  of  angle  described  by  planet. 

-  x  180°  =  76°.22'  nearly.     11.   Time  :  a  year  :  :  J  .£5  .  E  :  27rfi\ O7T 

time  is  39    days   nearly.      12     HP  parallel    to  the  axis    and 

.  ASH=W°,  £#=&Psin60,  .'.e  =  ̂3.     13.    ̂ =/«, 

—  ;   conj.   diameters   are  equal;    a,  ft  the    semi-axes, 

a2  +  &  =  2a<,  2a/3  =  ab.    14.   ̂ ,  (2  -  *|]  =  ̂   .    2e  c 

=  !-«.      15.  V*+     =  *.      <f,   the    angle,   tan"*-,- 

=  -777^  .     16.   Locus  of  #  is  a  circle,  two  points  H,  H'  lie  in L>JJ 

r  a  i  iTDZT'       4-    •      SH  ̂   SH'       HPsma the  same  line  as  5,  a  =  %HPH  ,  6  +  ̂ =-+--  =  -          -. 2(!/  Z(^  6K 

17.    a  is  transverse  axis  of  the  hyperbolic   orbit,  H'P  in   ZTP 
produced   =2a,    and    if  a  =  2&,     /S'P/f  =  60°,     .-.    H'SP=  90°. ' 

XXX. 

1.    6r  centre  of  gravity  of  P  and  P'.      —  r  =  ----  =  —     —  -,  . in          m         m  +  m 

Force  on  P=^-  =  -^^  .  f-     —  ̂ J  towards  G  fixed.     2.   2c,  4a 

the  diameter  and  latus  rectum  Ji2=fju  .  2«,  prove  that  *J(c-a}(c+%a} 
is  a  maximum,  two  nearly  equal  values  a,  a'  make  the  time  the 

(c  +  2a)a  _  (c  V2ay  _  4  (c  +  a  +  a')  (a  -  a')        .\V" Sciinc.   .  •    ~       —  ,  —  —   •  —  7  —        —  «     •  •  o  T  ̂ ct c—  a  c  —  a  a  —  a 

—  4  (c  —  a)  and  c  =  2a.     3.    Prove  that  in  the  old  and  new  orbit 

h'  =  2h  and  a  :  a  ::  e2  :  1  -  e2.     4.   w,  u  init.  vel.,  prove  that 
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-  SM)PM_       PM  v  _ 

v.SY  =  u  cos  TP]\P  '''  u  ~~       3#P  D<    (      ' 
of  m  and  m   round  S  and  //=  -  -  and  -  -  are  interchanged. a  r  a  r 

/.    for   wi's   new   orbit   -  -=——-,  -  =  —  ,  (rr  -f  r'8  —  r2}. a  r         r        a      a.      arr 
PQ.CZ    .  CZ  1  1 

6.   Rate   =     --   ult.  « 

angles  in  tbe  two  aux.  circles  of  tbe  point  of  intersection  are 

30°  and  60°,  periodic  times  are  equal,  times  proposed  are  as 
V3  (2?r4  3)  :  8?r-  9.  8.  (7£Pthe  focal  chord,  tangents  at  6V, 
P  intersect  in  SZ  perp.  CS.  PZ,  P'Z'  intersect  in  Q,  circle 
goes  round  CQZ'Z,  hence  CQ  .  CS  =  CZ\  9.  C  fixed.  H,  H' 
tbe  empty  foci  of  two  consecutive  orbits  intersecting  in  P, 

/.  PH=PH',  and  8P+  PH=  SC  +  C1I,  .'.  SP+PC=  SC+2CH 

constant.     10.   SP=5AS,  P8Q=*SP,  k'=  jA,  -=2$. 

Prove  that  90°  +  PSY=IIQP.  11.  New  orbit 
is  an  hyperbola  if  SP<AC,  chance  is  area  BAB'S',  area  ot 
ellipse  =7T-2e:27r.  12.  Resolve  as  in  (6),  p.  147,  and 

apply  $'s  vel.  reversed  to  P.  Vel.  of  P  rel.  to  Q  is  resultant 

of  equal  vels.  j-  perp.  to  SP  and  SQ.     13.   ABC  an  inscribed 
triangle,  AD,  BE  perp.  to  7?(7,  CA  intersect  in  //  the  empty 
focus  of  an  inscribed  ellipse;  AD  and  the  circle  intersect  in  <?, 
SQ  and  BC  in  P,  SQ=SP+PUj  major  axis  constant  for  all 

ellipses.     14.   Velocity  of  centre  of  gravity  is  -j-  perp.  to  the 
LU      2 

axis,  and  angular  velocity  is  -j-  .  r-~  .     15-    Change  takes  place 
when  the  body  is  at  the  extremity  of  the  latus  rectum  through 

H,  a  (1  -  e')  tan  SPH=  2ae,  ASP'=  JTT  +  2  tan^e.  16.  a  =  2a. 
3tf  =  V*.  BH  '  =  3BS,  K  bisects  HH'  .-.  CK  parallel  to  5//'f 
SH'  meets  PC^'  in  (?,  GC  =  \BC,  SG  :  GH1  ::  8B-.BU', 

axis  is  turned  through  tan*'        .     17.   ̂   =  ̂ il^ 2ae  a  a 

x  (2  --  ,  J,  —  =  1  +  n.   Periodic  time  changed  in  ratio  1  :  (l-fw)~* 

,  5ZT'  BinBSH     2na  V(l  -e'2) =1:1—  2w  ;  axis  turns  through—  -=-  -=fttan\. /oa  2ae 

18.   Old  vel.  =  2  cos  ax   new  vel.   and   h  unaltered,    /.   -7  «= 
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1-e'2 

-cot2a<l. 

19.    u  —  impressed  vel.    -sr  =  displacement  of  the  axis,     j-  H-  u 

e'/jb       efj,      e'fj,      ,  ,     ,         #*         e'  -  e      h'  —  h      uh 
~Ti   )        -7  -  =  ~TT  }       ">   —  H  =  U  ~  j    •'•   -  "  =     —7  -  —   -  J n         n        n  p,  e  h          fju 

«r  ̂   =  £  (/*'  -  fc)  +  w  =  2u.     20.   PP'  =  vt,  h  unaltered,  P'SP= fi       ti 

_      vt  sin  a      lit          ,  ,.  ,  ,      ̂ j-.,        ,    .  ~  eu,    .     _      e'/tt /3=  -       -  =  -¥  ,  resolve  parallel.to  SP    and  A8.  -r  sin  ̂ =  -7- 
r  r  7  ^   h  li 

x  sin(<9+OT)-     £,     sin  (9  =     sin  (6>  -  0)  +        «r,  /.  esr  =  /3  cos  6>, 

(e'  —  e)  sin  $  =  /3  —  ear  cos  #  =  /3  sin'^,  e'  —  e  =  /3  sin  ̂ . 
XXXI. 

1.  ̂ IPa  chord  from  v4,  OB  perp.  0^4  from  the  fixed  point, 
force  in  AP  tends  to  B  and  varies  as  the  distance  ;  time  depends 

on  AB  :  AP  a  constant  ratio.  2.  About  64f  days.  3.  (vel.)* 
atPfrom  Q=2pPQ+SP.8Qi  8D=SQco*e,  e.SD=SP(l+ecos0). 

4.  O'Q,  ̂ .ff,  AODp&iy.  BC;  BE  :  BQ\  BD  ::  J(ccos5+a) 
:  ia  :  ccos#,  hence  I/<2  :  DH,  and  00'  =  ̂ 0'G.  Force  tends 

.       .    2^.P£T       M.5'P  SP.S'P to  (y  mot10n  harrnomc.    5. 

6.    (vel.)1  =  J^  =  ̂   (2  -        )  ,   a  =  i^flf  and  p*  (1  -  e2)  = 

7.    -4,  5  the  fixed  points,  AD  the  natural 

length,  and  0  bisects  AB,  n  x  weight  of  particle  =  modulus,  P  the 
(BP-AD      AP-AD\ 

particle  at  any  time,  ace.  towards  G—ng  (  —  -r-=.  ----  -j-=-  —  J 

8<  (vel<)*  on  reflectlon  = 
/u.(a2  —  Ja2).  Time  direct  to  centre  =  \ir+-  \/IJL,  time  added  by 
reflection  =  2?r  -r-  A//*-  9-  ̂ »  i77"  —  0  the  angles  of  incidence  and 
reflection,  tan  (9  =  e  cot  0,'  (vel.)"  at  M=  p  (A  C*  -  CM*),  after  re- 

flection =  IJL  (A  C*  —  CM*}  (sin*0  +  e2  cos>20j,  square  on  semi-axis 
perp.  CM=e(AC*-CM*). 

XXXII. 

1.  Limit  is  -J.  2.  AB  revolves  round  E  to  « 
perp.  ̂ J5.  L  ADa  :  L  AMa  (=  L  AEa)  ::  AE  :  AD  ::  EM  :  DN. 
3.  p  near  P,  PI/,  jp;/z  perp.  fixed  line,  TU  perp.  JfP,  prove 
that  SP-  Sp  :  pm  -  P^¥  :  :  SP  :  PJf  ult.  and  PU=  PM. 
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9P 
4.     V.  £P<x  -av  COB  SPY*  CD  cosDCA  oc  CM.      5.    Ecc. 

angle  of  P=-  .     CD*  =  J«f  +  Ji9  =  \l>\     6.   A  straight   line o 

through  the  intersection  of  the  tangents  making  with  them  angles 
Al         ,     .  .         ...     V  sina  1 

whose  sines  are  inversely  as  the  velocities.    7.    —      —  <* ^  p 

8.  Starting  a  given  distance  from  the  horizontal  diameter, 
it  leaves  at  two-thirds  of  that  distance.  9.  h  is  increased  in 

the  ratio  n  :  1.  10-  ±ir*/ll.  •  11.  Vel.  of  Toe  vel.  in  SP i     -4F    PM 
00       '        *        "    ̂ '        c  mass 

w,  a  the  periodic  time  and  mean  distance  of  the  secondary, 

M  a8  10  ..fjue-l  2fj,  ..pll-e 
-s-oc-^nj.  13.  1)  ̂   -T-TT=  >/  '  .  i\?  or  (2)  -  ->  and 
c  TZ  c  «  e  +  1  o  («  +  1)  '  yrt1±e7 
fl  (1  +  e)  ==  a  (e  +  1).  14-  The  directrices  touch  the  circle  whose 
centre  is  the  other  focus  and  radius  the  major  axis  of  the 
ellipse. 

XXXIII. 

1.    Prove    that    Bb  :  Aa  :  :  AB  +  AC  :  AB  +  BC,    also 
::  PB.BC  :  PA,  AC,  hence  PA-PB  :  PA+PB  ::  AB(BC-AC) 

2.  Radii  of  curv.  at  P,  Q  are  as  TP3  :  TQ3,  and  7P,  TQ  are 
equally  inclined  to  the  tangent  TT\  .'.  TP.L  TPT'=  TQ.LTQT' 
ult.  3.  SVj  SP  have  equal  angular  vels.,  vel.  of  V  x&inSVD 

.  vel.  of  Foe  J  oc 

JBQiAB::  SY:  SP::  AS:  SY. 

8P\  5.  See  XXXII.  7. 

6.  F  ig.  p.  117.  jff^'  iPP'  ::  $PS  :  PP'  ::  £45  :  J5#,  ult. 
vel.  of  Pec  BQ,  .'.  vel.  of  E  constant.  7.  -4,  B,  C  the  three 
pegs,  bead  P  describes  two  portions  of  ellipses  with  uniform  vel., 
of  which  Bj  C  are  foci,  A  and  P  on  same  or  opposite  sides  of 

-- 
BC.    Tension  oc  -rn     >  «  -o    when  BP=  CP-    8-  Time  :  58i 

::  |o.2a  :  a2.     78  days.      9.    (Vel.)8  =  2/  cos  a.  ̂ P  sec  a,    p  = 
^  9-7T  A  4?r 

SPcoseca.      10-    7^5*  =  fgo  '  ZTTT?  =  WO  '  *  "  *' 

periodic  time  =  —  j-   in  hours  =  2^  days  nearly.     11.   AB  the 

rod,  C  fixed  point;   P  point  in  a  circle  about  ACB'   attraction 
on  P  bisects  APB  and  passes  through  (7.     12.   P27  tangent  and 
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PU  perp.   SP  meet  major-axis  in   I7,  U\  PM  perp.  TU  must 

bisect  L  TPU.  ̂ i^'.^'.iPT:  2PM:  PU,    /.  2PM  =  e  ,  PU. 1  h      h      n, 

13.   If  no  pressure  at  P,  <?*•£**=  p  (-L  +  i  +  l)cos£P#, 
D      ̂   /rr1       4a*-2rr'\       /*      (4af  -  r/)" hence    (vel.)*   at   P  =  -    —  2  +  -  ;  —    =  ̂   .  J  —  .    f    y  = a  \4a  rr       /       a  4rr 

w2.  L-.    __—.  —  L  ?  also(vel.)2  generated  by  the  forces  from  -4  to  P 

the  variable  part  is  the  same  as  in  the  above. 

XXXIV. 

1.  p,  q  correspond  in  the  aux.  circle  to  P,  Q.   ty  =  inclination 

of  _p#  to  the  major-axis.     Area  PCQ--  x  sector  pCq.  -tan  -^ 

=  tan0,  tantjr  =  -=  tan^,  /.  ̂ |r  =  |TT  ult.  when  5  =00  .  j?^ 

=  2a  sin  J(jE>,  Z  sin0  =  -  pq  sini/r  =  25  sin  J<£  ult.,  .*.  <f>  vanishes  ult. 

Area  PGQ  =  -^  dbp  ult.  =  —^  (Z  sin  6>)3.      2.   Common  chord 
of  circle  of  curvature  and  either  conic  is  inclined  to  the  axis  at 

the  same  angle  as  PI7,  and  is  /.  PQ.  Tang,  at  Q  meets  PT  in 
Z7,  diam.  through  U  bisects  PQ  and  meets  the  parabola  in  JB,  -S27 
is  tang,  at  E.  3.  rad.  of  earth  =  4000  x  1760  x  3  in  feet  =  a, 
o>  =  ang.  vel.  =  2ir-^  (24  x  60  x  60).  QGE=\  QJfperp.  the 

axis  CP.  QM.a)  is  vel.  in  §'s  circular  path;  a  cos  X.  to'2,  ace. 
to  If,  is  resultant  of  O  in  Q6Yand^  ;  <f=  6r2+2  ̂ acosX.w2  cos(7r—  X) 
+  (acosX.o)'2)";  neglecting  to*^g—  G  —  aw*  cos'^X.  4.  PM  radius 
of  circle  described  by  P;  (vel)2  =  2#  .  AM  ;  P^,  PT  normal  and 

tang,   to   surface,  :  g  ::  PM  :  MG, 
jt\M 

=  TM.MG,  and  ̂ T=  AM,  property  of  parabola.     5.    F=vel. 

at/S;   atP»^-P-;Xi-"T4^ir.^.S    .'.    F^aTif^r2, (I  &0b 

en  r  greatest  at  A  and  is  positive,   V  —  vel.  at  A' 
+  2^0*,  F"  :    F'2  ::  6yu,a2  -f  a  I"  :  2/^a8  +  «T'  <  3  :  1. 

8,          =  f^i  ̂P2  =  2a(2a-^P),  .'.  JZP=(V5-l)a< PP 

T  least  when  r 

V*  = 
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7.    P£P,  QSQ'  corr.  chds.  of  ellipse  and  circle.     ASP:  ASQ 

::  Trab  :  TT^,  /.  PQ  is  perp.  AS,   Vel.  in  circle  cc  .-       cc  - 

o/y  ojy  -I 

00  OO'  *  PP  *  £P"  '  ®*  **QP'  ̂ e  arc  Between  first  and  second 

impact  ;  complete  ellipse  PQP'R,  second  arc  will  be  the  reflection 
of  PEP  in  the  plane  as  a  mirror.  9.  A  the  point  of  projection, 
21  21 

cc    --j  -  -       for  ellipse,  and  GC         +  -       for  hyperbola. 

changes  from  £&4  to  co  ,  6Y  on  same  side  as  S,  then 
diminishes  from  QC  ,  0  on  the  opposite  side.  Force  oc  dist.  SA 
is  one  semi-axis,  the  other  oc  vel.  10.  a  the  new  mean 

distance,  ̂   =  ̂  (2  -  ?)  ,  a  =  |a,  5J7'  =  Ja  = 

perp.  ̂ Zfad  tangent  at  7?,  #3f  :  SZ:  :  5,lf  :  /S'H".    11.  H'PH=2Sx, 
.,  .    ..  EH'  cos  SPH     2  HP  cos  i7.  Sa 

change   in  the   apsidal   line   =  - 
2ae 

=  ??  .  (2ae  -  r  cosP5/f  )  =  ̂  (2ae*-r+a  (1-e8)}.  12.  See  xxx.  1. 

13.  a',  r  distances  of  E  from  centre  of  gravity  G  of  E  and  #, 

which  is  at  rest  or  moves  uniformly.  -t  =  -=  -  —  /a  f 

between 

OZperp.  tangent  PT;   CO  meets  PTm  T,  polar  in  <),  and  PJ/" 
parallel  to  polar  in  M,  .'.  CT.  CJ/=  (7$.  CO,  whence  CT.MQ 
=  CQ.OT.      PO  meets  (7Z>  in    U.     Ace.  to    0 

A»   OF-  P,T       ,  GY     PIT     GT      GQ      Po =          ^  P6>  and      =      =      =       "  '>  •'•  acc-  to 
h*    fp\*  .    ,.      . —  --    —  )  r,  hence  periodic  time a  6  \p  / 

XXXV. 

1.  Fig.  p.  131.  <?r',  QO'  tangent  and  normal  at  #,  0 
entre  of  curvature  A  TPG=  A  T'QG',  .:  A  TQT'  =  GPQG'  ult. 
OP=P#,  .\  PT*xt.TQT'=30P.PQ,  PT*=3PG*,  LUPM  = 
ZPOT=600,  .'.PM=2PU=2AP.  2.  Take  §P^  any  posi- 

tion of  the  line,  Rp  —  QP^  when  OP  has  revolved  through  TT,  P 
comes  to  p,  P  ana  ;?  trace  the  whole  curve,  let  G  bisect  QR,  let 

#/?  turn  through  a  small  angle  to  Q'R  about  0,  P',  0',  p 
the  new  positions  of  P,  0,  p,  corresponding  area  between 
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locus  of  P  and  ellipse  =  J-  (  0  Q*  -  OP*  +  OR2  -Op*)*LQO  Q', 
=  4  (2  (0<7a  +  <?<?)--  2  (CP2-f  00*)}xzG0G,  /.  whole  area 
=  TT  fi  (c'  -f  c)a  -  J  (c'  -  c)'2}  =  Tree.  3.  0  the  centre  of  the  circle 
touching  at  Pand^>,  $P,  Sp  meet  the  circle  in  §,  q.  pl\  PT 

tangents.  pQq  =  SpT=  SPT=PqQ,  .-.  Pq,  pQ  parallel,  and 
SO  bisects  pSP.  4.  P',  Q  consecutive  positions  of  P,  §, 

vertical  diam.  meeting  BG  in  0.  SP.8Q=SO.SA. 

res.  attraction  bisects  /SPZ7,  and  at  B  —  —  —  j—-    -  ,  pressure  at 

6.   PP'  a  small  arc,   QPM,  Q'P'M'  ordi- 
nates  to  the  ellipse  and  aux.  circle.   Prove,  as  in  (6),  p.  184,  that 

/    IN.         z>      ̂ a     *•         •       DO'      PP'-CD        MM'     CD* 
(vel.)*  at  P  =  g^,   time    m    PP  =  ̂ ~^-  =  -^^  - 

JO/'      <?QM*  +  b*         A 

=  2      '  ~       "  J  and 
tlme  to  B  =  aV  +  *"'   7'  Pe  the 

unwound  string  at  time  £  =  arc^l(  of  the  circle,  centre  (7,  P'  Q' 
near  P$,  P§  is  the  radius  of  curvature  of  the  path,  tang.  ace. 

.,    .  ..,        ..-, 

.'.  AP.CA=±AQ'i=%fjL.CA2.t?,  when  AQ=Vir  .CA,  t^ir^  >. =  *JfjiCA.t,  /.  ace.  effect  of  tension  =2fj.%CA.t. 
I       PL      PL.PF*      PL*        _     _ 

8.   Foc,.          ^—^^*'  n   times 

weight  double   the   length.     c=OC  the   length   of  the   tube. 

Tension  in  CP=  —  -  .  (7P.    d  the  semi-axis  perp.   0(7,  .'.  2gc c 

=  -$d\  tf  =  -|c'2  or  |c8;  .-.  w  =  f  or  f.      10.    ace.   in  orbit  oc c 

vel.  in  hodograph  cc  ang.  vel.  cc  (dist.)"*.  11.  LSS'  the  latus 
rectum  L  ;  LD,  S'D  tangents  at  Z,  8'  intersect  in  directrix  at 
right  angles.  /j,.4;AS  =  g.  (Vel.)"  at  L  =  2g  .  DS=  p  .  (±AS)\ 
conj.  diameters  equal  L  and  a58  +  i*  =  2^,  «5  =  Z'2  sin  JTT, 

)*  =  2L*  (cosj?r  +  sin  J^r)2.  12.  "or  the  change  in  direc- 

tion;   h'-k  =  u.SP)  resolve  parallel  to  the  axis,    (TV  ~  T)  x \A       «/ 

(u  +  jp«.fi 

=    u 



292  NEWTON. 

and   — ~p  =  1  +  e  cos  A  SP.     13.    0  the   angle  of  incidence,  v 

the  vel.    of  striking ;  v  sin  6  =  vel.  parallel   plane   after   every 
impact,  env  cos  0  perp.  plane  after  M  n  impact.     If  first  orbit  be 

a  circle,  tan  6  =  e  cot  0,  v*  (sin2  (9  +  e2  cos2  6}  =  ey2,   .*.  e.  ~  =  ̂  , 

and  /.  e  =  i.      If  w  =  co  .    (vel.)2  =  —  sin*  6  =  -  [  2  —  -  )  ,  -  = r  r   \        aj     a 
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W.  METCALFE,  AND  SON,   PRINTERS,   ROSE   CRESCENT,   CAMBRIDGE. 



BY  THE  SAME  AUTHOR. 

AN  ELEMENTARY  TREATISE 

CURVE      TRACI  NG. 

BY 

PERCIVAL   FROST,   M.A., 

FORMERLY   FELLOW    OF  ST.   JOHN'S    COLLEGE,   CAMBRIDGE, 

MATHEMATICAL   LECTURER   OF  KING'S  COLLEGE. 

THE  Author  has  selected  the  subject  of  this  work  with 

a  view  of  assisting  the  Student,  who  is  acquainted  with 

the  ordinary  processes  of  Algebraical  Geometry,  in  the 

training  in  which  he  must  undergo  in  some  form,  if  he  wishes 

to  become  an  accomplished  mathematician.  It  would  be 

difficult  to  find  another  subject  which  requires  so  limited 

an  extent  of  reading,  and  which  yet  foreshadows  so  many 

processes  which  are  employed  in  all  departments  of  the 

higher  branches  of  Mathematics,  Pure  or  Applied.  Espe- 
cially the  student  will  acquire  in  an  agreeable  manner  the 

power  of  discriminating  the  different  orders  of  magnitude 

of  large  and  small  quantities,  which  will  be  of  avail  at  the 
outset  of  his  more  advanced  studies. 

MACMILLAN  &  Co.      London  and  Cambridge. 





BY  THE   SAME  AUTHOR.  \ 

SOLID     GEOMETRY 

BY 

PERCIVAL   FROST,   M.A., 

FORMERLY  FELLOW  OF  ST.  JOHN'S  COLLEGE,   CAMBRIDGE, 

MATHEMATICAL  LECTURER   OF^KING'S  COLLEGE. 

A  NEW  EDITION, 

REVISED  AND  ENLARGED,  OF  THE '/TREATISE  BY 
FROST  AND  WOLSTENHOLME. 

FOR  the  convenience  of  Students  who  may  wish  to  have 

in  one  volume  all  those  portions  of  [Solid  Geometry  which 

would  be  useful  to  them  in  their  studies  of  Physical 

subjects,  I  have  endeavoured,  as  far  as  1^  could  without 

material  departure  from  the  arrangement  which  I  con- 
sidered best  for  the  proper  treatment  of  the  subject,  to 

include  in  the  first  volume  nearly  all  that  will  be  required 

from  their  point  of  view. 

MACMILLAN  &  Co.     London  and  Cambridge, 









CADnPLEASE  D0  NOT  REMOVE CARDS°*  SUPS  FROM  TH.S  POCKET 

UNIVERSITY  OF  TORONTO 

LIBRARY 

P&ASci 

Newton's 
Principia 




