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Summary;

Recently a number of researchers have attempted to employ the

market model to estimate systematic risk (i.e., beta) for bonds. In

this study we reviewed theoretical evidence which suggests bond

betas can be expected to be nonstatlonary. This nonstationarity is

a function of the duration of a bond, the standard deviation of the

change in the yield to maturity of a bond relative to the standard

deviation of the return on the market portfolio, and the correlation

betv7een the change in the yield to maturity of a bond and the return

on the market portfolio. Hotjever, all bonds will not necessarily
have nonstatlonary betas in a given time period since it is possible

that these factors may occasionally counteract one another.

Empirical tests indicated that over 80 percent of the bonds ejc»

amined had nonstatlonary betas. The primary factor differentiating

bonds with nonstatlonary betas from those with stationary betas was

the substantially higher relative standard deviation in the change in

the yield to maturity for bonds with nonstatlonary betas. The larger

standard deviation was caused by the higher average coupon rates and

yields to maturity for bonds \rLth nonstatlonary betas. The theoretical

and empirical results of this study indicate bond betas, in general,

tend to be nonstatlonary. Hence, further use of them appears to be

of very questionable value.





THE NONSTATIONARITY OF SYSTEMATIC RISK FOR BONDS

I, INTRODUCTION

In the last decade Increasing use has been made of the Capital Asset

PrlclTig Model (CAFM) developed by Sharpe [31], Llntner [7] and extended

by Bl£.ck [2]. In this model the only relevant risk of an asset Is the

systematic risk which Is measured by the covarlance of the ex-ante return

on th(t asset with the ex-ante return on the market portfolio. Since the

ex-anl.e returns cannot be observed, researchers have used historical data

to estimate the systematic risk. The market model, which has been the

most common method of estimating the relative systematic risk (3.) states

that:

R.^ - a. + e.R ^ + e.^, (1)it 1 1 mt it'

where R. . and R are returns on 1 asset and the market portfolio

2
respeiitively, and B. is computed as cov(R. ,R )/o (R ). The use of

historical data to estimate B. is justified only if the Joint distribu-

tion of returns on the asset and the market portfolio is stable over time.

Under these conditions 3. will be stationary and hence the market model

will ]>e an appropriate method of estimating fi..

]lecently a number of researchers have applied the market model to

estlxuite systematic risk for bonds. Percival [27] estimated bond betas

and tlien attempted to explain them as a function of the bond character-

istic)}. Friend and Blume [14] and McCallum [21] also estimated bond

systematic risk while Rellly and Joehnk [28] examined the relationship

betwe>3n bond betas and bond ratings. Finally, Warner [34] estimated
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bond betas and then examined the risk adjusted performance of bonds for

firms in bankruptcy versus the performance of bonds for similar firms

not in bankruptcy.

The Increasing use of the bond betas appears to be without support

since there are theoretical considerations suggesting bond betas are

inherently nonstationary. In the presence of this nonstatlonarlty , bond

betas appear to be poor estimates of systematic (or any other kind of)

risk for bonds. The purposes of this stxidy are threefold: 1) to examine

the theoretical considerations indicating nonstatlonarlty of bond betas;

2) to test empirically whether the betas of individual bonds are stationary

over the 1969-1975 time period; and 3) to explain the observed stationarlty/

nonstationarity in terms of the factors that cause the nonstatlonarlty

In bond beta. In Section II theoretical arguments for the nonstatlonarlty

of bond betas are reviewed, while Section III contains the methodology em-

ployed. The empirical results are presented and discussed in Section IV

and the conclusions are contained in Section V.

II. THEOEIETICAL CONSIDERATIONS

Several recent studies [4,15,18,35] have examined a specific

time-risk relationship using a measure of time known as duration. The

concept of duration was first introduced by Macaulay [19] in his study

of bond yields. Unlike the time to maturity, which looks only at the

last payment, duration gives some weight to the time at which each cash

payment is received. The weight assigned to each period is the present

value of the cash payment for that period divided by the current market

price of the security. For a bond, duration at time t^ is computed as:
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N N

D^ - [ Z (t.-tf.) A 1 / 2 A (2)

where A Is the present value measured at time t^ of cash flows to be

3

received at time t. and N is the number of years to maturity. From (2)

it is apparent that duration is a function of the time to maturity, the

size of interim coupon payments, the yield to maturity and the size of the

principal payment. For a zero-coupon bond, duration is identical to the

time to maturity. The litik between the bond price volatility and dura-

tion was developed by Fisher [13] and extended by Hopewell and Kaufman [15]

.

Assuming continous compounding, the percentage change in a bond price is

related to duration by:

dP,
^' - -D,, dy,,, (3>

^it ^' '^^

where dP. and P. are the price change and initial price of bond i at

time t respectively. D. is the duration of the bond at time t and dy.

is the change in the yield to maturity. Equation (3) shows that duration

is a constant of proportionality relating percentage changes in boiui prices

to changes in the yield i^Vj^^ •

Boquist, Racette and Schlarbaum [4] developed a theoretical model

which links the beta of a default free bond to duration:

cov(dy ,R ) o(dy )

^it - '\t i'" ; ° -^it ^^'Ht>\t^ Torr '

<^>

a (R^j.) mt

where a(dy. ) is the standard deviation of dy^ , o(R^^) is the standard

deviation of the return on the market portfolio, and P(*iy4t»^mt^ ^® *^^®

correlation coefficient between changes in the yield to maturity and the

return on the market portfolio. (As argued by Boquist et al., the corre-

lation coefficient is expected to be negative for most bonds.) From
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eqiiation (4) it is apparent that &. is dependent upon the duration of

the bond, the correlation coefficient between changes in the yield to

maturity of the bond and the return on the market, and the standard devia-

tion of the changes in the yield to maturity for the bond relative to the

standard deviation of the return on the market portfolio. Therefore,

depending upon the interaction of changes over time in the following three

factors: 1) U^^; 2) -P(^yit'\t^' ^^ ^^ °^^^±t^^°^\t^ ^^^ ^°^ ^^^^

may be stationary or nonstantionary. As a bond progresses toward

maturity the duration, D. , will shorten which, ceteris paribus, should

cause 3. to decrease. The second factor, -p(dy. ,R ), may also cause

p. to decrease over time. Through the passage of time the maturity of

a bond becomes shorter. In general short-term yields tend to be less cor-

related with the return on the market portfolio than the long-term yields.

2
Therefore as time passes the second factor will cause ^. to decrease.

Finally, the third factor, o(dy, )/o(R ), should cause p. to increase

because, as Malkiel [20] has shown, short-term yields tend to be more

volatile than long-term yields. Unless these factors exactly offset each

other bond betas estimated from historical time series data will be non-

stationary.

III. METHODOLOGY

A. SAMPLE

In order to empirically test for the nonstationarity of bond

systematic risk a homogeneous group of bonds was required. The selection

criteria employed resulted in bonds being selected if they were public

utility or industrial bonds continuously rated (without any change) in

the top four bond rating categories by both Moody's and Standard & Poor's
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between May 31, 1969 and May 31, 1975, were issued between January 1,

1966 and March 1, 1969, had an original maturity of at le^tst 20 years

3
and an original issue size of at least !?10 million. In jiddition, the

bonds could not be subordinated or convertible, nor could they be Issued

4
with warrants attached. In cases where there were more than one bond

per company that met the selection criteria, the most rectsnt issue was

selected. Application of these criteria resulted in 84 bonds being

selected of which 42 were public utility bonds and 42 were industrial

bonds.

B. VARIABLES

1. Holding Period Return

Monthly holding period returns for bonds were comput(id as:

- I + AP^

where I is the periodic interest payment per $100 of par value;
m is the number of holding periods between interest payments (for most
bonds m = 6 months) ; n is the number of periods accrued toward the next
interest payment at the end of period t; and P - is the laarket price
of the bond at the end of period t-1.

Some authors have used different methods to measure the riiturn on bonds*

Yawitz and Marshall [36] used purchase yield as a measure of return on

U.S. Government bonds. They reasoned that it is a better measure of the

expected return because over the life of the bond, price i:hanges must

stim to zero. This argiunent is valid only if the investorii' holding period

is equal to the life of the bond. Yield to maturity has also been used

as a measure of the returns on bonds by Duvall and Cheney [10] . They
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argued that yield to maturity is a more reliable estimate of the expected

return than the ex-post measure as formulated in equation (5). Reilly and

Joehnk [28] employed the percentage change in the yield to maturity as a

measure of the bond return. Again these authors are implicitly assuming

that investors have a holding period equal to the life of the bond, the

bond Is default free, and investors can reinvest the intermediate interest

payments at a rate equal to the yield to maturity. Because of the above

mentioned problems with these return measures, we prefer to use equation

(5) to measure the holding period return.

2. Market Portfolio

Traditionally a portfolio of common stocks has been employed as a

proxy for the market portfolio. According to the CAPM, the market portfolio

should contain all risky assets such as common stocks, bonds, preferred

stocks, real estate, human capital, etc. Construction of such a portfolio

is very difficult, if not impossible, because the data on thesa assets are

not readily available.

A review of the literature on bonds reveals that different proxies

for the market portfolio have been employed. Percival [27] and McCalium

[21] used an equally weighted portfolio of their bonds. Friend and Blume

[14] and Warner [34] utilized a common stock portfolio, while Reilly and

Joehnk [28] used three different bond portfolios and two different common

stock portfolios. As demonstrated by Roll [29] the choice of the market

portfolio greatly affects the estimated beta. In this study a value

weighted market portfolio is constructed which includes common stocks,

corporate bonds and government bonds each weighted by their corresponding
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market value. We believe this is a more reasonable proxy for the

market portfolio and clearly superior to the proxies employed in other

studies.

C. STATISTICAL TECHNIQUES

Since the stationarity of beta is a time related phenomenon, the

traditional method of testing for stationarity using correlation coeffi-

cients is inappropriate. There are basically two problems with the use

of the correlation coefficient as a measure of stationarity. First,

when using equation (1) to estimate 3, it is implicitly assumed that g

is stationary during the estimation period. Second, the correlation

coefficient cannot be used to determine the stationary of the individual

securities. It is, in essence, an aggregate measure of stationarity of

the betas for a group of aecurities or portfolios. An ideal test for

stationarity should detect the constancy of the security beta over time

by examining whether or not the regression coefficients in the market

model vary over time.

Since we were primarily interested in the stability of S. (not

o, and e. simultaneously) we also estimated g. by;

^it
== ^iV ^ ^it*

^^>

where r^^ = R^^ - R^^, r^^ - R^^ - R^^, R^^ is the risk free rate of

7
interest and the intercept (a.) was supressed. To correctly examine

the behavior g, over time, equation (6) is rewritten as;

y, = e, x^ + e, (7)
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where subscript t on 3 indicates that it may vary over time, y is

the vector of returns on a bond, x is the vector of returns on the

market portfolio, and e is the vector of disturbances. The null

h3rpothesis for stationarity is formulated as:

Hq! Bj^ = 32 " ••• =
^T*

^^^

In words, the null hypothesis states that 3 is stable over time. The

alternate hypothesis is that not all 3's for an individual bond are

equal

.

The stationarity of 3 problem is a special case of the general class

of problems concerned with detection of changes in the regression model

structures over time. Early work on detecting changes in a model struc-

ture employed the ordinary least square (OLS) residuals or the cumulative

sum of the OLS residuals. The difficulty with these approaches, however,

is that there is no known method of assessing the significance of the

nonstationarity in the regression coefficients (cf., Mehr and McFadden

[22]). To avoid problems associated with the OLS residuals. Brown and

Durbin [6], and Brown, Durbin, and Evans (BDE) [7] proposed using recur-

sive residuals. BDE have shown that under the null hypothesis of station-

arity the recursive residuals have the desirable properties of being

uncorrelated, with zero mean and constant variance, and therefore are

Independent of each other under the normality assumption. Recursive

residiials are also preferrable to OLS residuals for detecting nonstation-

arity in 3 because until a change takes place the recursive residuals

behave exactly as specified in the null hypothesis. Recursive residuals

are defined as:
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w « (y -x'b -)/[! + x' (X' ,x j"-^x
3*^ (9)

r ^-^r r r-1' r r-1 r-1 r

r = kt-l, ..., T

where k Is the number of regression coefficients (1 in equation (7)),

^r-1
" [x^.---.\_iK \ = (x;x^)~^x;y^, and Y^ = (y^ y^

.

For each value of r, which in our study takes a value between 2 and 72,

g
the recursive residual was computed using equation (9)

.

BDE derived a statistical test for stationarity using the cumu-

lative sum of the squared recursive residuals. This test, the cusum

of squares test, detects both systematic and random changes in the 3

and is based on the following formulation:

r T
s = ( Z w^)/( Z w^), r=k+l T. (10)
^ j=lH-l ^ j-'lcfl

^

Under the null hypothesis s has a beta distribution with mean

(r-k)/(T-k). BDE suggested constructing a confidence internal for s as

[(r-k)/(T-k)] + C where C is chosen from Table 1 of Durbin [9]. The

stationarity hypothesis will be rejected if |s -((r-k)/(T-k)) |>C for

any r Included in [fc4-l,T].

If 6 is expected to change systematically over time another test

can be used to detect such changes [7]. This type of nonstationarity can

be tested using an F-test. Under the null hypothesis of stationarity,

equation (7) can be rewritten as:

where 3^ denotes that the beta coefficient is stationary. Equation (11)

is the reduced model; under the alternate hypothesis 3 is assumed to

change linearly with time, or
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y, - x; 3^ + e^.
^

(12)

where
^t

" ^0 "*" ^'^* ^°^ ^^'^^

where 6 Is the coefficient of time. Substitution of equation (13) into (12)

yields:

^t ' ""t^^O
"^ ^'^^ "^

^t»
^^'^^

which is the full model. The null hypothesis of stationarity is tested

by a comparison of the mean-square increase in the explained variation

with the error variance. This F-test is:

SSE(R)-SSE(F) . SSE(F)
^ ' df(R)-df (F) ^ df (F) (15)

where SSE(R) and SSE(F) are the error sum of squares of the reduced and

full models, respectively. Likewise, df(R) and df (F) are the degrees of

freedom associated with the SSE(R) and SSE(F). It should be noted that

this F-test detects only systematic changes in g, whereas the cusum of

squares test detects both systematic and random changes in 3. In this

study the nonstationarity detected by the F-test is called "systematic

nonstationarity", while the nonstationarity detected by the cusum of squares

test but not with the F-test is called "random nonstationarity".

IV. EMPIRICAL RESULTS

A. SAMPLE CHARACTERISTICS

In Table 1 the sample characteristics are reported broken down by

industrial versus public utility bonds. In general, the coupon rates

are lower for the industrial bonds as are the years to maturity while
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TABLE 1

Characteristics of the Sampled Bonds

TOTAL

INDUSTRIAL

Number

84

42

PUBLIC UTILITY 42

Coupon
Rate

6.452 .

Issue Years to

Size Maturity 3^

60.071 27.274 .410 .181 .423

(.638) (48.646) (3.671) (.187) (.126) (.178)

6,129 81.905
(.564) (65.490)

6.775 38.238

(.541) (41.194)

25.714 .412 .177 .428

(2.361) (.245) (.154) (.232)

28.833 .407 .185 .419

(4.090) (.104) (.092) (.102)

Standard deviation in parethesis.

In millions of dollars.

'^From the market model given by equation (1)

.

^rom the market model given by equation (6).
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the Issue sizes are larger for the Industrial bonds than for public

utility bonds. These findings are consistent with the typical charac-

teristics of public utility bonds which have higher coupon rates and

longet maturities. The average 3 of 84 bonds obtained from equation

2
(1) is 0.410 with an average R of 0.181. The average 3 of the bonds

obtained by employing equation (6) is .423 (where a, was suppressed)

which is virtually the same as that obtained by using eqxiation (1)

.

There are no significant differences in bond betas between the public

9
utility and industrial groups. In the rest of the study $. as

estimated by equation (6) is employed.

B. STATIONARITY OF SYSTEMATIC RISK FOR BONDS

The cusum of squares test (for random nonstationarity) and the F-test

(for systematic nonstationarity) were applied to each bond to detenoine

whether the individual bond betas were stable or not over the period

examined. The results of these tests (employing a 5 percent significance

level) are reported in Table 2. Examination of this table indicates

that 69.05 percent [(24+5)/42] of the industrial bonds had nonstationary

betas, while 95.24 percent [ (24+16) /42] of the public utility bonds had

nonstationary bond betas. Overall, 82.14 percent [ (48+21) /84] of the

bonds examined had nonstationary betas with 25 percent (21/84) of the

bonds exhibiting systematic nonstationarity and 57.14 percent (48/84)

indicating random nonstationarity. Not only were more of the public

utility bond betas unstable, but they also exhibited more systematic

nonstationarity than did the Industrial bonds. These results, for a ^

very homogeneous set of bonds, provide strong empirical support for the
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TABLE 2

Niimber of Bonds With Nonstatlonary Beta
Based on the Cusum of Squares and F Tests

(5 percent significance level)

INDUSTRIAL 13

PUBLIC UTILITY 2

TOTAL 15

Nonstatlonary
Stationary Random Systematic Total

24 5 42

24 16 42

48 21 84
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theoretlcal considerations presented in section II indicating that bond

betas are inherently nonstationary.

Since our concern is not with the nature of the nonstationarity,

per se, the rest of the analysis will focus on two groups of bonds—those

with stationary betas and those with nonstationary betas (encompassing

both random and systematic nonstationarity) . In Table 3 the salient char-

acteristics of these two groups of bonds are presented. As expected

(based on Table 1 and the knowledge that more public utility bonds are

Included in the nonstationary group), the nonstationary bonds had a

significantly higher average coupon rate, significantly smaller average

size and significantly lower betas than bonds with stationary betas.

While not statistically significant (at the 5 percent level), the bonds

with nonstationary betas tend to have slightly lower bond ratings, while

there is virtually no difference in the average years to maturity. The

higher average coupon rate for bonds with nonstationary betas can also

be seen by examining Table 4. Almost 50 percent (34/69) of the bonds

with nonstationary betas have coupon rates greater than 6.5 percent while

only 13 percent (2/15) of the bonds with stationary betas have coupon

rates greater than 6.5 percent.

As presented in Section II, theoretical considerations indicate

bond betas should be inherently unstable and this instability is related

to: 1) the duration of the bond, D, ; 2) the correlation between the

change in the yield to maturity of the bond and the return on the market,

-p(dy. ,R ); and 3) the standard deviation of the change in the yield ^

to maturity of the bond relative to the standard deviation of the return

on the market, a(dy. )/a(R ). (As indicated in equation (4) the
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TABLE 3

Statistics on Bonds with Stationary
and Nonstationary Bond Betas

Number
Stationary

15
Nonstationary

69
F Ratio Probability

Coupon Rate 6.005
(.577)^

6.550
(.612)

9.93^ .0023

Years to Maturity'^ 19.267
(4.399)

20.043
(3.771)

.91 .3439

Issue Size 110.000
(73.969)

49.217
(49.001)

16.61 .0001

Bond Rating® 2.333
(.900)

2.696
(.845)

2.21 .1407

Bond Beta .535

(.166)
.399

(.173)

7.83 .0064

Standard deviation in parenthesis.

With 1 and 82 degrees of freedom.

'As of January 1, 1975.

In millions of dollars.

'1 = Aaa/AAA, 2 = Aa/AA, 3 = A/A and 4 = Baa/BBB.
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TABLE 4

Coupon Rates for Bonds with
Stationary and Nonstationary Bond Betas

COUPON RATE

< 5.5
5.51

to 6.00
6.01

to 6.5
6.51

to 7.00
7.01

to 7.50 > 7.50 TOTAL

Stationary

Nonstationary

3

4

6

14

4

17

1

16

1

17 1

15

69
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relatlonship between 3. and these factors carries a negative sign—for

convenience we have appended the negative sign to the correlation.) In

order to examine the relative Impact of these factors on the observed

stability/instability of the bond betas, we arbitrarily divided the study

period into three 24 month periods. Then we calculated the average dura-

tion, Djj.* the average correlation, p(dy. ,R ) and the average

standard deviation, a(dy. ) for the first and last 24 month periods

and the relative change in these variables from the first to the last

period. (Since the standard deviation of the market, a(R ) is the same

for all bonds, we ignore it and focus solely on o(dy. ),

The results of this analysis of the change in duration, correlation

and standard deviation for the two groups of bonds are presented in Table

5. For the bonds with stationary betas, the duration decreased, the

standard deviation in the yield to maturity increased, and the correla-

tion between the change in the yield to maturity and the return on the

market portfolio decreased from the first to the third 24 month period.

The same directional changes occurred for the bonds with nonstationary

betas. However, the Important difference in the two groups of bonds is

the relative change (columns (3) and (6) of Table 5) in these three

variables for the two bond groups.

Starting with duration. Table 5 indicates that the relative change

in duration between bonds with stationary or nonstationary betas are

approximately the same. Hence, differences in average duration are not

significant In dlfferrentiating between bonds with stationary versus

nonstationary betas (given the relatively homogeneous maturity of the

bonds under study)

.





cr p
£^ o
H. »
rt t-'

sr n
eH j-i

o>

& rt
(t>

PL. p.

00 i-ti

ro H
P- ^
«
<M H»
H H-
(0 OQ
<t) C
CO H

<t)

o 03

M>
«

Ml H-
M rt
<0 B*
(S

O. s
Q o
B H
m (a

a.
(C

o

to

D

Ui

D Q
/-N ^•-N

o. Cl
VcJ ^

H- H-
r+ rt

«* •v-'

„!«
@
rt
N—'

• •

ON -^

O OO OO U>
•c- o

CD
VOW

/-v M
• •

M 4S
• •

O O
00 ^ O O M 00O O o w 00 00
VO "vl o\ M vj o

OJ 00
!- 00
u> *-
00 «sl

• •

H O
On CTv

VO O

to wi
ro to
00 CTi

O OO OM toO -vj

O VO

00 ^

j<~« to
• •

-si l->

U> VO
00 ON

• •

to to
• «

o o
• •

00 W
l-n to o o 00 M
(J) W *- CO O^ -sj
*- to M CO U1 00

ON ON
*- OS

to Ul

> to
to VOW I-"
to o

O VO
to toW ON

to

to

M O <
a en
rr rt
cr
w

to

to t
_ B
3 rt
rt

rt
l»
rt

O
o
(0

r5

u>

^^ so
to pi

o

lO

•> g H
O (0

rt
rt
tr
0)

to

v^

o

n
rt
(t>

rt

I
M

o
to

or*

to
C/1

o
-p-

en »
N-- rt

On "-^ H*
-^ O

M>

rt 6j

O rt

ON

»t3

H
O

• VH fo
Ui C
VO H-

t~^

H-
rt
v<J

5
C/1





-19-

Moving to the changes in the standard deviation of the change in

the yield to maturity, the instability of the change in the yield to

maturity increased for both groups of bonds. (This is to be expected

because of the shorter average maturity of all bonds in the last period

relative to the first period. In addition, the wider dispersion In

corporate bond returns in the last period relative to the first

period may also contribute to the increase in the observed standard

deviations.) However, the important point concerning the standard de-

viations is that the standard deviation of the nonstationary bonds

increased relatively more (1.291 to 1.064) than for bonds with stationary

bond betas. We believe the primary reason for the higher relative stan-

dard deviation for the bonds with nonstationary betas is due to the higher

coupon rates and associated higher yields to maturity for the nonstationary

bonds. (Not only do the nonstationary bonds have higher average coupon

rates, but they also have lower average bond ratings. It is well known,

ceteris paribus that the yield to maturity on lower rated bonds are larger

than for higher rated bonds.) As interest rates in general fluctuate, the

changes in the yield to maturity is larger for the nonstationary bonds

(which have higher average coupon rates and lower bond ratings); hence,

they have larger relative standard deviations than bonds with stationary

12
betas. Thus, the most important factor identified in this study

which differentiates between bonds with stationary betas versus those

with nonstationary betas is the relative standard deviations in the changes

in the yield to maturity. Higher coupon rates and yields to maturity

(leading to larger standard deviation in the changes in the yield to

maturity) are associated with bonds having nonstationary betas.
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Finally, it is noted that the correlation between the changes in

the yield to maturity and the return on the market decreased for both

stationary and nonstationary bonds from the first to the last periods.

This is as expected since the sampled bonds in the third period have

shorter maturities and hence their yields tend to move less with the re-

turns on the market which are influenced by common stock as well as bond

13
returns. While not significantly different (at the .15 level), the ab-

solute value of p(dy.^,R ^) tended to be lower over time for the non-
it mt

stationary bonds (.6875 to .8847) than for bonds with stationary betas.

Again, this difference appears to be due to the higher coupon rates and

yield to maturity carried by the nonstationary group of bonds relative

to the stationary bonds.

In order to test the overall ability of the three hypothesized fac-

tors to differentiate between bonds with stationary betas and those with

2
nonstationary betas, Hotellings T was employed. It resulted in an

F ratio of 2.22 which, with 3 and 80 degrees of freedom, has a probability

value of .091. Thus, at the 10 percent significance level the three

hypothesized factors (in combination) differentiated between bonds with

stationary betas and those with non-stationary betas.

V. SUMMARY AND CONCLUSIONS

Recently a number of researchers have attempted to employ the market

model to estimate systematic risk (i.e., beta) for bonds. In this study

we reviewed theoretical evidence which suggests bond betas can be expected

to be nonstationary. This nonstationarity is a function of the duration

of a bond, the standard deviation of the change in the yield to maturity
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of a bond relative to the standard deviation of the return on the market

portfolio, and the correlation between the change in the yield to maturity

of a bond and the return on the market portfolio. However, all bonds

will not necessarily have nonstationary betas in a given time period since

it is possible that these factors may occasionally counteract one another.

Empirical tests indicated that over 80 percent of the bonds examined

had nonstationary betas. The primary factor differentiating bonds with

nonstationary betas from those with stationary betas was the substantially

higher relative standard deviation in the change in the yield to maturity

for bonds with nonstationary betas. The larger standard deviation was

caused by the higher average coupon rates and yields to maturity for bonds

with nonstationary betas. The substantial presence of nonstationarity

in public utility bond betas is caused by the peculiar nature of long term

financing in the public utility industry which results in generally higher

coupon rates and yields to maturity than in the industrial sector. The

theoretical and empirical results of this study indicate bond betas, in

general, tend to be nonstationary. Hence, further use of them appears

to be of very questionable value.
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FOOTNOTES

Livingston [18] extended Boquist et al.'s work by taking into

account the duration of both the security and the market portfolio.
He shows that:

D^ P(dy,,,dR^pa(dy^^)

where D is the duration of the market portfolio and dR is the

change xn the return on the market portfolio. Since the duration of

the market portfolio (which is dominated by common stocks with infinite
maturity) does not change much over time we have chosen to work with
equation (4). The notation follows that of Boquist et al. [4] and

Livingston [18] except y, , rather than r. , is used for the yield
to maturity,

2
To provide some empirical evidence for the proposition that

-p(dy. ,R ) is smaller for shorter-term bonds than for longer-term
bonds we computed -p(dy. ,R ) using basic yields on corporate bonds
with 1, 5, 10, and 15 years^'to maturity. Over the time period of 1941-

1970 the value of -p(dy. ,R ) are .47, .52, .55 and .56 for bonds
with 1, 5, 10, and 15 years'^'to maturity, respectively. Therefore, as
expected, -p(dy, ,R ) becomes smaller the shorter the term to

maturity.

3
The requirement that the bonds be consistently rated (without

any change in rating) insures that the relative risk of default (as per-
ceived by the two major rating agencies did not change over the time

period employed. Thus, even though the bonds are not default free as

required by the Boquist et al.'s model presented in equation (4), the

relative probability of default was held constant.

Recent theoretical work by Merton [23], Black and Cox [3] and

Brennan and Schwartz [5] suggests that subordination or specific bond

Indenture provisions influence the value of bonds. Subordination is not
a problem since all bonds selected for this study are non-subordinated.
In addition, an examination of the call provision indicated that the

vast majority of Issues required a five year delay if they were to be
called for refunding at a rate appreciably lower than the bond's coupon
rate. Given the general rise in interest rates during this time period

there was no economic incentive to refund. Finally, virtually all of

the industrial bonds and a small portion of the public utility bonds are

debentures. While some minor differences in the characteristics of the

bonds examined exist, there is no reason to believe that any systematic

tendencies are present which influence the results.
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A list of 84 bonds Is available from the authors. The primary
source of the monthly price data (for the period May 31, 1969 through
May 31, 1975) was the Bank and Quotation Record [1]. Secondary sources in-
cluded Commercial and Financial Chronicle [8], Moody's Bond Record [24]

and Standard and Poor's Bond Guide [321. The closing bid or sale price
was employed; however, it occasionally became necessary to use an opening
ask price. The availability of data was less of a problem for the public
utility bonds than for the industrials in that closing bid or sale prices
were almost uniformly available for the public utility issues examined.
Other features of the bonds were deteirmined by reference to Moody's Public
Utility [26] and Moody's Industrial [25] manuals.

The common stock returns employed were those from the CRSP value-
weighted index while the corporate and government bond returns were those
(as updated) provided by Ibbotson and Sinquefleld [16]. The common stock
weights employed were obtained from the Statistical Bulletin [33] while
the corporate and government bond weights were obtained from the Economic
Report of the President [11]. It can be shown that the use of a common
stock index for R will result in lower estimated bond betas. We
conducted part of™the analysis with the CRSP values-weighted index—there
were no significant differences between those results and the reported
findings.

We also examined the statlonary/nonstationarlty of a. and
3. simultaneously as estimated by equation (1) . The subsequent find-
ings are virtually the same whether we focus on the statlonarity of both
a. and 3^ as estimated by equation (1) or only the statlonarity
or 3j as estimated by equation (6)

.

o
The computer program to test the statlonarity of 3 is pro-

vided by BDE [7].

9
The bond betas did vary by bond rating group with a mean of 0.570

for the Aaa/AAA group, 0.450 for the Aa/AA group, 0.391 for the A/A group
and 0.372 for the Baa/BBB group. A one-way analysis of variance yielded
an F-ratlo of 2.87 which, with 3 and 80 degrees of freedom, was significant
at the .041 level. Schwendlman and Pinches [30] reported that mean common
stock betas Increased as bond ratings decreased; our results indicated
that bond betas decrease as bond ratings decrease. While the instability
of the bond betas casts serious doubt on the interpretablllty of bond
betas, there appears to be no consistency between bond betas, common stock
betas and bond ratings. No other material differences are noted in the
sample.

Since duration changes each period, we calculated duration at
the middle of the first time period (month 12) and the middle of the
third time period (month 60).

'xhe standard deviation of returns on corporate bonds, using
the Ibbotson and Sinquefleld [16] data, was .0290 for the first time
period and .0309 for the last time period. Hence, bond returns in gen-
eral were more volatile in the last time period.
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12
As an example of the relationship between bond ratings and stan-

dard deviation of the change in yield to maturity, weekly yields to

maturity were gathered for Standard and Poor's AAA., AA, A and BBB in-

dustrial and public utility bonds from July through December 1977. The
standard deviations of the change in yield to maturity for the four

bond groups over that time period were:

Industrial—AAA - .0393, AA - .0428, A - .0510, BBB - .1962; and

Public Utility—AAA - .0415, Aa - .0422, A - .0441, BBB - .0527. In all

cases the standard deviation in the changes in the yield to maturity in-

crease as the bond ratings decrease.

13
See footnote 2.
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