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A NOTE ON THE ARCH EFFECTS IN HEDGE RATIO ESTIMATION:
STOCK INDEX FUTURES

ABSTRACT

This paper investigates the validity of the simple OLS model

developed by Johnson (1960) and Stein (1961) and used by numerous sub-

sequent studies to estimate the optimal hedge ratio using futures

contracts. Focusing on the variance structure of the model, this

paper provides some theoretical reasons for possible existence of

heteroscedasticity (conditional as well as unconditional). Using data

on three index futures we find significant heteroscedasticity and non-

normality in the conventional model. Alternative hedge ratios are

obtained using an autoregressive conditional heteroscedastic (ARCH)

model. Information provided by empirical results in this paper

suggests the importance of taking account of the ARCH effects in esti-

mating the optimal hedge ratio.





A NOTE ON THE ARCH EFFECTS IN HEDGE RATIO ESTIMATION:
STOCK INDEX FUTURES

I. INTRODUCTION

One of the important functions of futures contracts is to facilitate

hedging, i.e., transferring the risk inherent in spot positions to

speculators in the futures market. In this regard, stock index futures

contracts are of particular interest to investors since they can provide

a means to hedge the market risk exposure.

The key to any hedging strategy using futures contracts is a knowl-

edge of the hedge ratio, i.e., the number of futures contracts to sell

short per a long position in the cash market. Following Johnson (1960)

and Stein (1961), the predominant method used in previous studies to

estimate the optimal hedge ratio is the regression approach (the ordi-

nary least squares regression) relating changes in cash prices to

changes in futures prices. Inherent in the regression is the assump-

tion that the optimal combination of cash position with futures is the

one whose variance is minimized (see Ederington 1979 for a literature

review on the hedging theory).

This paper investigates the validity of the simple regression model

to estimate the optimal hedge ratio in stock index futures, focusing on

the variance structure of the model. We provide some theoretical

reasons for possible existence of heteroscedasticity in the conven-

tional hedge ratio estimation model, and attempt to reestimate the

hedge ratio taking heteroscedasticity into account. The most common

method to correct for heteroscedasticity is to introduce some exoge-

neous variables which may predict the variance. However, as pointed
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out by Engle (1982), this method requires a specification of the causes

of the changing variance in an ad-hoc fashion rather than recognizing

that both means and variances conditional on the past information

available may jointly evolve over time. We obtain alternative hedge

ratios based upon the autoregressive conditional heteroscedastic

(ARCH) model, introduced by Engle (1982), which is characterized by

mean zero, serially uncorrelated processes with non-constant variances

conditional on the past but constant unconditional variances.

In Section II, we provide some reasons for possible existence of

heteroscedasticity in the conventional hedge ratio model for index

futures. In Section III, we discuss econometric methodology. Section

IV describes the data and presents empirical results. A brief summay

is contained in Section V.

II. HETEROSCEDASTICITY IN THE CONVENTIONAL MODEL

Following Johnson (1960) and Stein (1961), the commonly used

ordinary least squares (OLS) technique to estimate the optimal hedge

ratio can be written as:

AS = a + 8AF + e (1)

where AS and AF are the random changes in spot and futures prices,

respectively, in period t. The slope coefficient 8 measures the optimal

hedge ratio. Apart from assuming that the functional form of model

(1) is correct, the success of the OLS procedure heavily relies on at

least three assumptions on the distribution of e ; (i) homoscedasticity

(both conditional and unconditional), (ii) normality and (iii) serial

independence. Although we discuss issues (ii) and (iii), this paper
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mainly deals with the problem of heteroscedasticity
,
particularly con-

ditional heteroscedasticity.

Following Engle (1982), suppose we could write:
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whereas unconditionally E(e ) = and V(e ) = y_/(1- E y.). There-

i=l

fore, the disturbances are conditionally heteroscedastic but unconditionally

homoscedastic. We can have both conditional and unconditional

heteroscedasticities just by assuming y as a time varying parameter,

say Y , and there will be only unconditional heteroscedasticity if

Y, = y„ = .. = y =0. However, there are a number of reasons to
1 2 p

suspect possible existence of conditional heteroscedasticity.

First, omitted variables in the model may cause heteroscedasticity.

As pointed out earlier, the regression model in (1) is based solely on

risk-minimization alone. Recall that hedging in the modern portfolio

theory should be viewed as an activity that reduces total expected

return in exchange for a smaller variance (see Howard and D 'Antonio

(1984)). Taking account of the risk-return tradeoff, the hedge ratio

can be alternatively derived as (see the Appendix for proof):



-4-

Cov(AS ,AF ) E(F )-F
6* = — - — (it)

Var(AF ) 2* Var(AF )
' *"

'

t
r

t

where $ represents risk, aversion parameter and t > t.

For analytical convenience, suppose that an investor holds a futures

position until its maturity date, i.e., E(F ) = E(S ), where T repre-

sents the maturity date. Note that on the maturity date, the futures

price should be equal to the spot price to rule out the costless

arbitrage (see Cox, Ingersoll and Ross (1981), and Richard and

Sundaresan (1981)). Then, it becomes clear that eq. (4) narrows down

to the conventional hedge ratio only if the futures price is an

unbiased estimate of the expected spot price and/or a hedger is ex-

tremely risk averse (<}> + °°).

Whether or not the futures price is a systematically biased estimate

of the expected spot price has been a long-time controversial issue in

financial literature, i.e., the issue of normal-backwardation or con-

tango (e.g., Keynes (1930), Hicks (1939), Houthakker (1957), Cootner

(1960), Carter, Rausser and Schmitz (1983), Rockwell (1967), Richard

and Sundaresan (1981) and Telser (1958)). However, the existence of

normal backwardation or contango, if any, and/or changing risk aver-

sion over time will be reflected in the disturbance term, e , in the
' t

'

simple regression model. It is more clear by rewriting (1) using (4)

as

E(AF )
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= a + 6*AF + [e
t
+ri

t
],

where E(AF ) = E(F
t

> - F
fc

.

We can easily see from (5) that as long as the futures price is a

systematically biased estimate of the expected spot price over time

and thus E(AF ) depends on t, the variance of (e +n ) may depend on t

even if we assume that e and n are independent.

Second, conditional heteroscedasticity may exist because of the

basis risk (the changes in the relationship between spot and futures

prices). Figlewski (1984) provides evidence that the basis risk is

positively related to the market trend and decreases as the time to

maturity decreases. To the extent that the basis risk is significant

and related to market trend (i.e., the underlying index itself) over

time, the heteroscedasticity may exist and be reflected in y . .

Intuitively, the variance of e represents the uncertainty about the

agents choice of the hedge ratio in each period. As the maturity of a

futures contract approaches, investors will have more information about

the spot price in the future, so that the heterogeneity of information

among investors will be reduced and thus the variance of e will

decrease over time. Therefore, the possibility exists that V(e )

depends in part on the past information, e_ . This error-learning

hedging behavior, if any, will be reflected in y. and its impact will

be smaller as the maturity approaches. The reasoning is quite

conceivable in light of the speculative behavior of investors due to

heterogeneous information, and the ample evidence of maturity effect

(e.g., Figlewski (1984) and Ederington (1979)).
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III. ECONOMETRIC METHODOLOGY

Effects of unconditional heteroscedasticity are well known and one

of them is the inconsistency of the standard errors if we use the usual

formula. However, asymptotically valid influences can be drawn by

using the White (1980) heteroscedasticity consistent covariance matrix

estimator. This consistent covariance matrix is easily obtained by

running an instrumental variable (IV) regression (see Messer and White

(1984)). The procedure can be summarized as follows:

Suppose we have the OLS estimates a and 6 and the residuals

e = AS - a - BAF . Then define the variables:
t t t

*
AS

t * AF
t

s = *
, f = * and z = AF • e ,

t £ t g t t t£
t t

and run an IV regression of s on f using z as an instrument. The
t t t

resulting covariance matrix from this regression will provide the

correct standard errors. White (1980) also provides a test for the

presence of unconditional heteroscedasticity which does not assume any

particular form of heteroscedasticity. Assuming that the e 's are

homokurtic, the White test statistics can be calculated as the product

of the sample size and the coefficient of determination of the regres-

-2 2
sion of e on AF and AF . Under homoscedas ticity , this test sta-

t t t
J

2
tistic asymptotically follows x distribution with 2 degrees of

freedom. We also test for the normality of the disturbances and use

the following test statistic:

(/b^ 2
(b

2
-3)

2

6
+

24
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where n is the sample size, and /b and b are the sample skewness and

kurtosis coefficients of the OLS residuals e , respectively. Under normality,

2
this statistic also asymptotically follows x distribution with two

degrees of freedom (see Bera and Jarque (1982) for details).

Concerning conditional heteroscedasticity , Engle (1982) has shown

that ARCH disturbances are uncorrelated (but dependent) and have a

fatter tail than the normal distribution. Therefore, the above nor-

mality test may also reveal ARCH effects and vice-versa. For simplic-

ity, we consider only a first order ARCH model, i.e., p = 1 in (3).

vogs.j.) =^ + Y
i
e
t-i •

2 2
Note that Y-. is the simple correlation coefficient between e and e

Therefore, the first order ARCH model postulates a non-linear

relationship between e and £__.•

The log-likelihood function for the first-order ARCH model can be

written as

1
n

2
£ = constant - — Y. log [y + y, (AS , - a - 6AF ••

, ) ]

2 o 1 t-1 t-1

. n (AS - a - 8AF )

-\ z E l- . < 6 >

t=2 y +Y,(AS^ - a - 6AF^ )
o 1 t-1 t-1

Maximum likelihood estimates (MLEs) are obtained by maximizing (6)

with respect to (a , 8 , Y , Y,) using the GRADX Subroutine of the R.E.

Quandt's program GQ0PT3. The program also gives the asymptotic stand-

ard errors of MLEs. A significance test on y, provides evidence of

the presence of ARCH effects.
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This type of conditional heteroscedastic model has particular

appeal for estimating hedge ratios. First, realistic measures of hedge

ratios can be estimated when the underlying variance may change over

time and is predicted by past forecasting errors rather than making

conventional assumptions about the disturbance. Second, it provides

more efficient estimators using the maximum likelihood method. Third,

it does not employ an arbitrary exogeneous variable to explain heterosce-

dasticity. Lastly, by the nature of the ARCH process, the effect of

possibly omitted variables from the estimated model as discussed

earlier might be picked up.

IV. DATA AND EMPIRICAL RESULTS

In February 1982, the Commodity Futures Trading Commission

approved the trading of futures contracts on the Value Line Index in

the Kansas City'Board of Trade. This action was followed by the intro-

duction of futures contracts on the S&P500 Index (Chicago Mercantile

Exchange) and the NYSE Index (New York Futures Exchange) in April and

May of 1982, respectively. This paper uses daily data on S&P500, NYSE

and Kansas City Value Line futures (KCVAL) from the first trading dates

of each contract to June 1985. All of the data (spot and futures

3
closing prices) were secured from the MJK associate computer tapes.

The OLS and ARCH model results on three stock indexes: S&P500, NYSE

and KCVAL for 36 futures contracts are presented in Table 1. First,

for the OLS results, the White test indicates the presence of strong

unconditional heteroscedasticity in two thirds of the cases. The

normality test statistics are significant for almost half of the

contracts. The D.W. test statistics, which are not presented here to
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save space, do not show any presence of serial correlation. In the

presence of non-normality and heteroscedasticity, the estimates of the

OLS hedge ratios are inefficient and the t-statistics are unreliable.

For each of the contracts, we calculate the White consistent esti-

mate of the variance and report the resulting modified t-statistics in

brackets in Table 1. It is interesting to note that these t-statistics

are overall lower than those calculated using the standard formula

which in most cases underestimates the variance. These alternative

estimates of the variances of the hedge ratios have some practical

importance. They take account of unconditional heteroscedasticity and

provide reliable confidence intervals which are of interest to the

investors.

It is difficult to formulate an explicit model for the non-normal

disturbances. Non-normality coupled with zero autocorrelation may

imply some form of dependency among the disturbances. As we mentioned

before, the ARCH model whose distrubances allow a simple form of

dependency is a very convenient tool to capture non-normality. The

results in the first-order ARCH model are given in the last columns of

Table 1. Significance of the test H : y. =0 indicates the presence
o I

of first-order ARCH effects, i.e., conditional heteroscedasticity. Note

that the test statistics are significant in all of the contracts of

S&P500 and NYSE, and half of the contracts of KCVAL.

Comparing the OLS with ARCH hedge ratios, we can see that the OLS

regressions overestimate (underestimate) significantly the optimal

hedge ratio for some cases and thus cause the investors to sell short

too many (few) futures contracts. Of particular interest is the
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improved efficiency of the hedge ratio through the ARCH model. Since

the ARCH model takes account of conditional heteroscedasticity and in

part of dependency and non-normality, they are more efficient than the

OLS regression. The results on the tests for non-normality and

homoscedasticity are similar to those for the OLS model. The ARCH

model incorporates non-normality, but the presence of unconditional

heteroscedasticity once again make the t-statistics given in paren-

theses invalid. A somewhat better estimate of the variance can be

obtained by computing the White variance estimate using the ARCH

residuals. The resulting t-statistics are in brackets. As before,

these t-statistics are much lower, and they are more reliable in the

presence of conditional and unconditional heteroscedasticity.

We also broke down the data of each index futures into four cate-

gories in terms of time-to-maturity of the futures to examine the

impact of the time-to-maturity on the hedge ratio estimates. Four

non-overlappig time-to-maturity contracts were chosen for each index

futures: contracts maturing within three months, three to six months,

six to nine months, and finally over nine months.

Table 2 shows the results of the OLS and ARCH models on each cate-

gory of the three index futures. Presence of strong heteroscedastic-

ity (conditional as well as unconditional) and non-normality is evi-

dent in all the cases. We do not observe much evidence of the rela-

tionship between the degree of heteroscedasticity (or non-normality)

and the time-to-maturity in both the OLS and ARCH models. Only for

KCVAL, the conditional and unconditional heteroscedas ticities become

stronger with the length of the time horizon. An interesting result
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to note in Table 2 is a general pattern of decreasing hedge ratios as

the time-to-maturity horizon is lengthened. Theoretically, this is

what we should expect. For shorter horizon, in equation (4), the

numerator of the first part increases because of close correspondence

between spot and futures prices and the numerator of the second part

becomes smaller.

V. SUMMARY

We have investigated the validity of the conventional OLS model

developed by Johnson (1960) and Stein (1961) and used by numerous sub-

sequent studies to estimate the optimal hedge ratio using futures

contracts. Focusing on the variance structure of the model, we pro-

vide some theoretical reasons for possible existence of heterosce-

dasticity (conditional as well as unconditional).

Using data on spot and futures prices of three indexes: S&P 500,

NYSE and K. C. Value Line indexes from the first trading date of each

contract to June 1985, we find significant heteroscedasticity

(conditional and unconditional) and non-normality of the disturbance

term of the OLS regression. This paper provides alternative hedge

ratios based on an ARCH model, introduced by Engle. Comparing the OLS

and ARCH hedge ratios, we find that the conventional hedge ratio esti-

mating model causes investors to sell short too many or few futures

contracts. Of particular interest is the markedly improved efficiency

of the hedge ratio estimates. Information provided by the empirical

results in this paper suggests the importance of taking account of the

ARCH effects in estimating the optimal hedge ratios for futures con-

tracts.
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Footnotes

See Ederington (1979) for a brief derivation of the hedge ratio.

2
Normal backwardation/contango refers to the process in which

futures prices are systematically downward/upward biased estimates of

expected spot prices over time.

3
The MJK Associate is a computer service in California specializing

in futures markets. All prices are quoted in their normal trading units
as determined by the various exchanges.
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Appendix

An alternative hedge ratio can be derived using the basic princi-

ples of the modern portfolio theory. Let us use the following notations

S : Spot price at time t today

S : Spot price at time t , where t > t and x - t represents
hedging period.

F : Futures price at time t maturing at sometime later than x

F : Futures price at time x maturing at sometime later than x

N: The proportion of the portfolio held in futures
contracts with N > representing a long position and
N < representing a short position

W : End-of-period return distribution at x
x

<J>
: Hedger's risk aversion parameter

U: Hedger's utility which is a function of only expected
return and its variance.

Holding N futures contracts short per spot position, the hedger's

return distribution at time x will be

W = S - S - N(F - F ) (Al)
X X t X t

Then, the hedger's expected utility can be written as

EU = E(W ) -
<}> Var(W ) = E(S ) - S - N(E(F ) - F ) (A2)

t X X X t X t

- d> [Var (S -S ) + N
2

Var(F -F )T
x t x t

- 2N Cov(S
T
-S

t
, F

T
-F

t
)]

The first order condition of (A2) yields the optimal hedge ratio as:

Cov(S -S , F -F ) E(F )-F
t_

N = t t x t x t

Var(F -F ) 2<j> Var(F -F ) '

x t x t

which is eq. (4),
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ARCH Results
Normality
Homosce-
dastlcity

Test
8 Y Y

l
Statistics

Table 2

Results Based on the OLS and ARCH Models for Different Maturity Periods
( t-statis tics are in parentheses and White modified t-statistics are in brackets)

OLS Results
Normality
Homosce-

dastlcity
Index/Maturity Period _ _ Test

(t: month) a 8 Statistics o

S&P500/t <_ 3 .040 .784 77.65a .037 .752 .281 .126 94.95 a

(n=748) (2.46) a (64.06) a 38.30 a (2.64) a (81.97) a (22.53) a (4.48) a 55.35 a

[40.74] a [41.83] a

S&P500/3 < t _< 6 .038 .768 60.60a .034 .736 .290 .126 67.93a

(n=748) (2.26) b (62.77) a 37.85a (2.42) a (80.51) a (22.35) a (4.40) a 38.90 a

[42.12] a [43.31] a

S&P500/6 < t < 9 .040 .720 117. 64a .034 .724 .290 .141 134. 88a

(n=748) (1.88) b (57.00) a 39.87a (2.38) a (80.33) a (21.65) a (4.49) a 43.38a

[40.35] a [41.65] a

S&P500/t > 9 .037 .772 35.63a .035 .733 .296 .138 36.07a

(n=647) (2.04) b (58.16) a 31.19a (2.26) a (74.99) a (20.07) a (4.01) a 21.35a

[39.93] a [40.46] a

NYSE/t < 3 .027 .660 68.00a .023 .663 .090 .183 79.61a

(n=745) (2.15) b (53.00) a 29.43a (2.87) a (75.29) a (22.01) a (5.81) a 43.96a

[37.83] a [38.65] a

NYSE/3 < t _< 6 .026 .644 47.85 a .023 .645 .092 .177 52.47 a

(n=745) (2.07) b (52.72) a 29.13a (2.81) a (73.95) a (22.14) a (5.73) a 32.04a

[39.36] a [39.80] a

NYSE/6 < t <_ 9 .025 .635 41.91 a .023 .635 .092 .177 45.28a

(n=745) (1.98) b (52.59) a 27.34 a (2.80) (73.54) (22.19) (5.79) 30.55a

[39.66] a [40.04] a

NYSE/t > 9 .023 .632 26.42a .023 .626 .094 .160 26.64 a

(n=707) (1.83) b (51.45) a 19.30a (2.72) (69.99) (21.66) (5.23) 16.97a

[40.52] a [40.64] a

KCVAL/t < 3 .055 .509 19.69a .051 .504 .471 .076 16.77a

(n=79Z") (2.19) b (38.14) a 18.52a (2.88) a (50.57) a (22.81) a (2.74) a 54.06 a

[28.15) a [28.89] a

KCVAL/3 < t <_ 6 .063 .480 12.96 a .052 .476 .498 .112 12.18a

(n=795) (2.36) a (35.26)a 23.61 a (2.79) a (46.75) a (22.69) a (3.92) a 27.83a

[30.25] 3
[29.68J

a

KCVAL/6 < t £ 9 .057 .483 12.46 a .047 .480 .478 .135 12. 15 a

(n=767) (2.13) b (35.12) a 23.85a (1.73) b (46.60) (21.78) (4.31) 30.68 a

[29.64) a [29.18] a

KCVAL/t > 9 .066 .433 85.95a .047 .420 .624 .188 12.34 a

(n-514) (1.71) b (24.26) a 44.79a (1.73) b (31.32) a (15.36) a (3.35) a 37.84 a

[18.01] a [16.68J 3

Significant at the 1 percent level. The critical values for t-statistics and x statistics
are respectively 2.57 and 9.21.

Significant at the 5 percent level. The critical values for t-statistics and x
-
" statistics

are respectively 1.66 and 5.99
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