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Abstract

In capital budgeting analysis, the use of the expected life of a

project instead of the life distribution of the project biases the

estimate of expected net present value. In most situations the bias

results in an overestimate of the expected net present value of the

project. When the exact life distribution is unknown, the bias can be

approximated by Taylor series expansion. The sensitivity of the bias to

the discount rate, to cash flow patterns, and to income taxes is also

investigated.





Introduction

In capital budgeting, there are factors and misapprehensions which

bias the calculation of net present value (NPV) towards systematic

overestimation. As a result, realized yields on implemented projects

tend to be lower than the returns predicted at the time projects are

selected. For example, it has long been understood that the tax ef-

fects of improper provision for inflation results in an overestimate

of a project's NPV (Terborgh, pp. 8-10). More recently, K. Brown [1981]

ascribes the overestimation phenomenon to selection bias. Quite reason-

ably managers select for implementation investment projects from the

upper range of a distribution of potential projects. Overestimation

of NPV will cause otherwise questionable projects to be accepted, while

on the other hand, underestimated projects are more likely to be re-

jected. Therefore, the schedule of selected projects includes more

overestimated ones than does the list of rejected projects. As a re-

sult, NPV of implemented projects tends to be overoptimistic.

This note examines another source of bias which in most cases

systematically overestimates NPV. In most discounted cash flow models,

the calculation of NPV requires the determination of the appropriate

discount rate, of cashflows and of project life. Under conditions of

uncertainty, attention is focused on problems of estimating cash flows

and the cost of capital, project life being treated as given. However,

for many projects, asset life is probabilistic. Even if the physical

life of assets can be treated as deterministic, technological change,

economic conditions or shifts in consumer preference, all can force

projects to be terminated at uncertain times before the end of physical

life.
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The stochastic nature of asset or project life has received some

attention in accounting and other research literature. For example,

Ijiri and Kaplan [1969] and Jen and Huefner [1970] both consider

methods of calculating probablistic depreciation. Greer [1970] ad-

dresses the problem in the context of capital budgeting, pointing out

that the whole distribution of life, rather than only the expected or

the most likely life, should be considered in the calculation of NPV.

He also shows how an asset's life distribution can be estimated' when

beta distribution is assumed. Young and Contreras [Y&C, 1975] and

Rosenthal [1978] demonstrate the mathematical processes in the calcu-

lation of the expected value and variance of NPV when project life

follows certain distributions.

In the above studies, no specific analysis is conducted to deter-

mine the potential bias in capital budgeting when stochastic life dis-

tribution is ignored. This note shows how capital budgeting decision

is biased in this situation. Sensitivity analysis is then performed

to see how the bias is influenced by such factors as the discount rate,

cash flow pattern, and income taxes. It is shown that the bias is

usually in the order of 1 or 2% but can become substantial in some

circumstances.

The Bias in NPV when Expected Life is

Used Instead of Life Distribution

Y&C directed their attention principally at the expected value of

a single payment with stochastic life n. They did demonstrate how the

NPV of such a single payment can be adjusted to the NPV of a uniform

series of payments for the same period. Because of its emphasis on



-3-

capital budgeting, this note will focus attention on the overestimation

bias in the NPV of a series of payments when expected life is used in-

stead of life distribution. It should be noted, though, that the bias

of a series of payments is the opposite of that for a single payment.

We assume that cash flows are uniform in each period. Also assumed

is the nonexistence of salvage value. Following Y&C and Rosenthal's

notations, the expected PV is:

E[P(N)J = A [l-E(e"
rN

)], (1)

where E[P(N)] is the expected value of PV (denoted by P) which depends

on the duration (N) of the expected cash flows annuity (A); and r is

the nominal continuous-compound interest rate. When f(N), the prob-

ability density function of N is known, (1) can be computed by way of

the Laplace transformation, i.e.,

E(e"
rN

) = yr), (2)

where 1^ is the Laplace transformation of f(N).

When the distribution of N is ignored and expected life is used,

the expected PV is:

E[P(m)] -A [l-e~
rm

], (3)

where m = E(N)

.

The bias arises due to the fact that, in general,

_, -rN, , -rm
E[e J t e
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Subtraction of (3) from (1) gives the measure of bias:

E(B) -A [e
_rm - E(e"

rN
)]. (4)

When f(N) is unknown, by the Taylor expansion [Rosenthal, p. 164 J

,

equation (2) can be stated approximately as:

L
N
(r) = E(e"

rN
) 2 (1 +}v2

r
2 - vVk^e"™, (5)

2 •

where v is the standard deviation of N, k is the coefficient of skew-

ness, k = E[ (N-m)
3

] /v
3

.

Substituting (5) into (4)

E(B) 3 - Ae"
rm (yv2

r -jkvV). (6)

A negative value for (6) indicates that the use of expected life, m,

overestimates NPV.

It can be easily seen from (5) and (6) that the bias is the func-

tion of the first three moments of f(N). It decreases when the mean

2
life (m) increases, and increases when the dispersion (v ) increases.

Moreover, the bias is made larger when f(N) has negative skewness

(k < 0), while positive skewness serves to alleviate the bias.

Except for the case when the distribution of N is extremely posi-

tively skewed such that the parenthesis term in (6) becomes positive,

the bias would in general be negative. The bias of symmetric life

distributions is always negative. That is, the use of deterministic N

results in overestimation of NPV when N is in fact stochastic. The

extent of overestimation increases as the dispersion of N increases or

as N becomes more skewed to the left.
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The intuitive reason for the overestimation is as follows. When a

project is terminated before the mean life, a "loss" incurs from the

early termination. Conversely, a "gain" is earned when the project

lasts longer than the mean life. In the symmetric life distribution,

the "loss" is greater than the "gain" since it is discounted at a lower

factor. Thus the PV is reduced when the stochastic nature of life is

considered. When life distribution is positively skewed, the longer

tail on the right hand side of the distribution would offset part of

the overestimation. On the other hand, the overestimation would be

exacerbated when the project life distribution is negatively skewed.

The bias measured by (6) is only an approximation. When the dis-

tribution of N is known, the exact measure of overestimation can be

determined. Table 1 presents the notational and numerical illustra-

2
tions of the bias under some typical distributions of N.

Sensitivity to the Discount Rate
and Cash Flow Patterns

The impact of discount rate (r) on the bias is not unequivocal.

The first derivative of equation (6) with respect to r is (for sim-

plicitly, assume symmetric distribution of n and omit the skewness

3 Nterm )

:

3B 1 -rm 2
-r— = -irAe v (1-rm). (7)
or z

From (7), 3B/3r is negative as long as rm < 1, i.e., when either

m or r is not very large. This means, for rm < 1 the bias becomes more

severe as a higher discount rate is used.
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The impact of cash flow pattern is more interesting to look at. So

far we have assumed a constant cash flow stream which generates the

same annuity (A) for each period. If cash flows are not constant,

equation (1) has to be rewritten as:

N

E[P(N)j = E[/ A(n)e
rn

dn]
, (8)

where n is a random variable denoting time period, A(n) is the cash

flow for each n.

If A(n) increases or decreases exponentially starting from initial

cash flow A, i.e.

,

A(N) = Ae
an

,

then (8) becomes

E[P(N)] = E[— (l-e"
(r~ a)N

)j. (8a)
r-a

With the new E[P(N)J, (4) becomes

E(B )
=-J- [e

- (r-a)m - E(e-
(r"a)N

)]. (9)
r-a

Equation (9) can be computed by the Laplace transformation as for

(2) if f(N) is known. When f(N) is unknown, (9) can be approximated

by the Taylor expansion and the bias measured by (6) becomes:

E(B) = -Ae"
(r"a)m

[4-v
2
(r-a) - -^ v

3
( r-a)

2
k] (10)

Comparing (10) and (6), it is seen that the exponential trend of

cash flows has the same effect on the bias as do changes in the discount

rate. In the symmetric case, when rm < 1, the decreasing trend (a < 0)
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of cash flows would increase the bias. When the life distribution is

negatively skewed, the bias is even larger (see fn. 3), since it is

created by two factors which distort the NPV in the same direction.

It can be shown that the above observations can apply to some

4
simple cash flow patterns. In general, the bias is more severe when

cash flows are decreasing over time. The decreasing trend, together

with the negative skewness of the life distribution, can create sub-

stantial bias. Managers need to be especially cautious in making

capital budgeting decisions under those circumstances.

Income Taxes

Tax considerations have an impact on the bias discussed above.

The impact occurs because the PV of the tax shield might differ for

different project lives. In the discussion that follows, it is assumed

that the book value of assets is written off (without salvage value)

in the year when the project terminates.

Since income taxes are paid periodically, the tax payment and tax

shield should be computed on a discrete basis but for mathematical con-

venience, the after-tax cash flows will be treated as continuous.

Assuming constant cash flows, the after-tax version of (1) is:

l-E(e"
rN

)
E[P(N)J = (l-t)A

X Me L + TS(1) (11)

where P(N) is the PV before deducting the cost of asset, t is the

constant income tax rate, TS(1) is the tax shield derived from the

depreciation charge in the stochastic case.
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The analogue Co (3) with tax is:

, -rm
E[P(m)J = (l-t)A— + TS(2). (12)

where TS(2) is the depreciation tax shield when deterministic life is

used

.

The Economic Recovery Tax Act (ERTA) of 1981 stipulates that most

newly purchased assets can be depreciated over three or five years.

Consider the asset which meets the five-year depreciation requirements.

When the mean life and the least estimated life both exceed five years,

TS(1) would be equal to TS(2), and the difference between (10) and (11)

is the same as (4) except that the bias is proportionally reduced by

the tax rate.

When five-year depreciation is used, it can be assumed that the

mean life is greater or equal to five years; otherwise, a shorter de-

preciation period would have been used. When the mean life is less

than or equal to five years, it is possible that the life distribution

might cover a period of less than five years. In this case, TS(1)

would not be the same as TS(2). The difference between (10) and (11)

becomes:

B» = (l-t)B + [TS(1) - TS(2)], (13)

where B is the before-tax bias measured by (6). Recall that B usually

takes a negative value. On the other hand [TS(1) - TS(2)] is always

positive since additional tax shield is earned when the asset is •

written off before the five-year depreciation period. Therefore, the

tax shield difference offsets part of the bias created by stochastic

life.
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For the asset whose estimated physical life is less than five

years, the estimated life will be the depreciation life. The impact

on the bias is the same as above since [TS(1) - TS(2)] will always be

positive. There is a "gain" of tax shield for the early write-off

of asset, while no "loss" of tax shield is incurred if the asset lasts

longer than the depreciation period.

Conclusion

This note shows that the use of expected project life to calculate

its NPV usually results in overestimation of NPV. When the exact life

distribution is unknown, the bias can be approximated by Taylor series

expansion. If F(N) is known, the exact value of the bias can be cal-

culated. The sensitivity of the bias to the discount rate, to cash

flow patterns and to income taxes, is discussed. The magnitude of the

bias might appear to be small (1% to 2%) but for certain combinations

of high discount rates, large variance or negative skewness of life

distribution could be larger.
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Notes

*

1. The salvage value can be easily incorporated into the analysis.

It can be treated as a lump-sum payment with uncertain timing and

magnitude. Y&C provides a detailed discussion for handling this

problem.

2. The distributions on Table 1 are those exemplified by Y&C and

Rosenthal.

3. When skewness is considered, the derivative in (6) becomes:

3B 1 -rm 2, . . /r. N1-r— - - t Ae v te(l-rm) - vrk(2-rm)J.
or o

The sign of 3B/3r would depend on k and the magnitude of rm. When

k is negative, the sign determined in the symmetric case still

holds, but the impact of r on B is even greater. When k is posi-

tive, the sign of 3B/3r becomes a complicated problem. The rela-

tive magnitude of each variable has to be compared.

4. For example, consider the case when cash flows follow a linear

trend, i.e.

,

A(n) = A(l+an).

By the Taylor expansion (assuming symmetric life distribution),

the bias in (9) becomes:

B" = B + — B(rm-l).
r
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Therefore, when ra < 1, B" > B if a < 0. The decreasing linear

trend increases the bias. This result is consistent with that

derived from (10) in which exponential trend is assumed.
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Table 1 Bias of NPV in Each Life Distribution

Life Distribution (f(N)) Bias (eq. (4))

Numerical Example
of Bias 1 Perc. A

1. Exponential
A

r

~ rm (^ r
\— [e - (1 -

, )
r r+l/m

-.60 15.2

2. Uniform (a<N<b) A. r

~ rm 1

r
te

r(b-a)

, -ra -rb.
,(e -e )J -.061 1.6

3. Normal"
A -rm,. 1/2 r v N— e (1-e ) -.061 1.6

4. Gamma"
A

r
-rm— [e

r o 2, 2
. 2 . .m /v
( 1+rv /m;

-.059 1.5

Notes:

1. Assume A = 1, r = .10, m = 5. The bias can be compared to the

PV in Che case of deterministic life, which is 3.935.

2. a =2.55, b=7.45 (making m = 5, v =2).

3. v^ = 2.
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