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PREFACE.

The following pages are intended to assist a be-

ginner in realizing the value of the quantitative

results, which he himself and others have obtained,

in physical and chemical experiments.

Questions involving higher mathematics and dis-

puted proofs are omitted as unsuited to the object of

the book
;
but it is hoped that the references given

may be of assistance to those who desire to pursue

the subject more thoroughly.

No attempt is made to give a complete account

of the method of least squares, but only an outline

sufficient to enable one unacquainted with mathe-

matics to use it for practical purposes.

S. L.
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CHAPTER I.

IDEAS.

When a man in his ordinary and normal condition

considers how he thinks, he is conscious of two

different entities. He feels that he himself possesses

the power of thinking,^ or that he has an indi-

viduality distinct from everything else. This self

in philosophical language constitutes the ego, the

I-myself, the subject. He feels also that he is

affected by things outside himself, which constitute

the non-ego, the not-I, the object, the environment.

It is impossible to state accurately in what indi-

viduality consists, or to give any satisfactory definition

of it. Though it is much influenced by the body,

it does not entirely depend upoii it, since the body

may be considerably changed by time, accident, or

disease without loss of individuality. If individu-

ality be defined as the possession of the power of

thinking and of the consciousness of exercising that

power, the ordinary meaning of the term is much

restricted, and individuality is denied to infants, to

L.N. A
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persons asleep, unconscious, or cataleptic, and to the

mentally alienated. In some rare but extremely

interesting cases of dual or triple consciousness^ the

same bodily form presents at different times two

or three distinct mental personalities, each of which

has no apparent connection with the other, except

that it influences the same body.

It may perhaps be assumed that every being

which is conscious of the power of thinking has a

separate individuality ;
but it must always be borne

in mind that the converse—every being which is

not endowed with the power of conscious cerebration

is not an individual—is probably untrue.

So far as is known all thinking requires the action

of some portion of the brain, and if certain portions

of the brain are injured or removed, corresponding

powers of thought are lost. That which thinks,

whether it be identical with the individual or not,

is spoken of as the mind, and is supposed to be

localized in the brain.

Any presentation to or impression upon the mind

of a subject is called an idea. An idea is said to

be concrete when it is supposed to have a co-relative

in the external world, and abstract when it is sup-

posed to have no such co-relative. We believe that

a class of animals represented by the word dog

exists, and therefore dog is a concrete idea
;

a

mathematical straight line does not exist, and there-

fore the idea of a straight line is an abstract one.

Ideas may possibly be produced by the action
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of the mind itself, by the action of the external

world through the bodily senses, that is, by sen-

sations,^ or by remembrance of, and reflection upon,

those sensations. It must be carefully noted that

external objects may act upon the body of the

subject without affecting the mind. Such actions,

of which automatic and reflex actions are familiar

instances, are not sensations as above defined.

Everything exterior to ourselves can only be per-

ceived and appreciated by our own senses, we know

the environment only by its effect upon the I. Hence

we have no means of determining how far our

sensations really represent the phenomena which

are assumed to produce them, or how far the same

phenomena produce similar sensations in different

individuals. When we say that we reason from

facts, we really mean that we argue from ideas which

more or less truly represent phenomena.
The familiar phenomenon that the earth revolves

on its axis, owing to an incorrect interpretation of

the sensations, produced for many centuries the false

idea that the sun goes round the earth.

It has long been a vexed question, if any, and if

so what, ideas are innate,* or due to the mind itself.

Most of the ideas which are by some assumed to

be innate are abstract, and are of more importance
in ethics and theology than in natural science. Many
of the older philosophers held that all ideas are

derived directly or indirectly from experience; but

the question has recently passed into a fresh stage,
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owing to the general acceptance of the doctrine of

heredity.^

The theory that Hke produces like is now very

generally admitted so far as bodily form and function

are concerned, and very striking applications of it are

shown in the improved breeds of our domestic animals.

There seems no reason for excluding the brain, or

those portions of it which are the organs of thought,

from the operation of the general law, hence we

should expect to find somewhat similar mental char-

acteristics transmitted from parents to offspring. In

many cases facts seem to bear out the theory, though

the complication of the circumstances often renders

the interpretation doubtful.

Many cases of inherited instincts among the lower

animals are well known. Ducklings hatched by a

hen take readily to the water. A young pointer

often points the first time it has seen game. A
puppy, deprived of its begging mother, has been

known to beg. It is much more difficult to obtain

trustworthy evidence in the case of man,° but such

varied tendencies as drunkenness, powers of arith-

metical calculation, and facility in learning languages

seem to descend. It may, of course, be argued that

these are merely tendencies, and that no definite idea

can be proved to be transmitted in the case of man.

Speaking generally, any irritation of a sensorial

nerve is conveyed through the nerve substance to

the brain, where it produces a sensation which evokes

an idea.
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Thus the radiant energy fronj a burning candle

passes as a series of vibrations through the ether

until it falls upon the pupil of the eye, producing
an image of the flame upon the retina. The irritation

of the retina is transmitted through the optic nerve

to the brain, and produces the sensation of light.

The idea of a lighted candle is produced by many
sensations aided by memory and reflection. If the

light be very bright the sensation is that of pain,

and the eyelid closes automatically without any act

of will on the part of the subject.

Our sensory apparatus is at best very imperfect,

thus our sensations are liable to deceive us. We
also frequently err in interpreting a sensation into

an idea. A sharp blow on the eyeball causes a

sensation which is interpreted into the idea of a

flash of light, until the false idea is corrected by a

subsequent sensation of pain.

In making any observation, therefore, it is neces-

sary to be on our guard against self-deception in

our sensations and in the incorrect representation

of them as ideas.

REFERENCES AND NOTES.

1. Descartes (1596-1650):
"

Cogito, ergo sum."

2. Binet : Alterations of Personality. London, 1896.

3. Sensation is frequently used for what is here called the idea

produced by it. For details, see Huxley : Elementary Physiology.

Bernstein : The Five Senses of Man.



6 NOTES ON OBSERVATIONS.

4. Plato, Aristotle, Descartes, Leibnitz, Kant held that some ideas

are innate ; Bacon, Locke, Hume, James Mill, J. S. Mill that all ideas

are derived directly or indirectly from experience.

5. C. Darwin (1809-82) : The Origin of Species {\%<>,ci). Inheritance

is discussed in Chapter i., and Instinct in viii. See also H. Spencer:

Biology, viii.

6. F. Galton : Hereditary Genius, 1869.



CHAPTER II.

REASONING.

When ideas are coordinated so that similarities and

differences between them are perceived, the state-

ment of the relationship is called a premiss.^

Premisses may be derived from three sources :

(i.) Subjectively, from our own minds. Some ideas

may be innate, hereditary, or derived unconsciously
from the environment. Some of these premisses,

such as that of our own personality, are among the

most certain which we know
;
others are extremely

doubtful, since they depend upon the evidence of

one mind only, our own.

Certain definitions and axioms, which may be due

to ourselves or others, are so thoroughly accepted

by our own minds that they seem to be inherent

in them. They are almost all abstract, generally

mathematical, and universally admitted by all capable
of understanding them. Thus, "if equals be added
to equals the wholes are equal," can hardly be

disputed.

7
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(ii.) Objectively, by the observation of external

objects. Premisses of this class vary much in value

with the special facilities, natural aptitude, and

adequate training of the observer. A keen-eyed
man can see two of the moons of Jupiter, extra-

ordinary sight is required to see four, a first-rate

and well-situated telescope is needed to obtain any

knowledge of the fifth.

(iii.) Authoritatively, by communication from an

intelligence supposed to be better informed than our

own.

The intelligence may be human, and, as we

suppose, more or less similar to our own
;
or super-

human and quite different from ourselves. Since

by common consent no natural knowledge has been

directly revealed, natural science, as such, has to

deal only with human intelligences.

The proportion of our knowledge gained by this

method tends to become larger the better instructed

we are, since our individual observations and re-

flections must be very few in comparison with the

total number accumulated by mankind.

It must be always carefully borne in mind that

the authoritative intelligence, if human, has itself

gained its information in one of these three ways.

Hence, other things being equal, the validity of

a premiss obtained by this method is less than

that of one obtained by either of the other methods,
since there is additional chance of misunderstanding,
and error in the transmission of the information from



REASONING. 9

the intelligence to ourselves. On the other hand

this chance may be more than counterbalanced by

the superior knowledge, skill, or appliances of our

informant. Any ordinary person would assume a

value given in the Nautical Almanac to be more

accurate than one obtained by his own obser-

vation.

Generally speaking, authority, especially if it be

ancient, is accepted with too little question. The

race is older than it was in the time of our ancestors,

hence in many respects we are wiser than they were.

A schoolboy can now use knowledge and appliances

which were quite beyond the reach of Newton.

Further, the conception that accuracy in quotation

and description is an essential duty is of late growth.

It is very doubtful if the speeches in Thucydides

were ever delivered, and tolerably certain that the

crimes of the Caesars were heightened by the art

of Tacitus.

An authority may give the reasons on which his

statement is based, when we are generally able, if

sufficiently instructed, at least to see that there are

no glaring faults in the argument. Far more com-

monly, however, we have to deal with a statement

for which no reasons and no further evidence is

given. In such a case we can only form a more or

less probable guess as to the truth of the statement

based upon its inherent probability or improbability,

the good faith of our informant, and the means at

his disposal for ascertaining the truth.



lO NOTES ON OBSERVATIONS.

The statement that the twenty-second figure in

27r
the value of cos— is o will be readily believed.

7

The statement that by the methods of Euclid a

construction had been found for squaring the circle,

trisecting the angle, or duplicating the cube would

be unhesitatingly disbelieved.

Fermat claimed to have discovered a general proof

that no integral solution oi x''^-\-f^
=

s'^, if n>2 and an

integer, can be found. During 330 years, the state-

ment has been shown to be true for some half-dozen

values of n, but the general proof is still unknown.

How far is Fermat's statement credible .-•

When the premisses have been obtained by either

of these methods, they may be reasoned upon by
induction or by deduction. In inductive reasoning

a number of individual instances are compared, and

a general statement^ or proposition is made which in-

cludes them all, and also other similar instances which

have not been examined. Induction then is the opera-

tion of discovering and proving general propositions.^

When a proposition is found to be true of every

member of a class and then applied to the whole

class by a kind of short-hand, some logicians consider

that a perfect induction has been made
; others,

that there has been no induction at all, but only a

colligation of instances. The cases in which we can

examine every possible instance are comparatively

few, and may for the purposes of natural science

be neglected.
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In general we can only select a very limited from

a very large number of instances, and to a certain

extent assure ourselves that they are fairly repre-

sentative of all possible cases of the same kind.

From these special instances we frame a general

proposition which includes them all, and is assumed

also to include all instances of a like kind, past,

present, and future. We then verify the general

proposition by finding fresh instances in which it

applies, and by making deductions from it, and prov-

ing that the results of the deductions agree with

facts.^

In deductive reasoning, particular results are shown

to follow from definitions or from general statements.

Having examined gold, silver, copper, iron, etc.,

we may, by induction, lay down the general state-

ment, that at ordinary temperatures all metals con-

duct electricity well. A new metal, e.g. gallium,

is discovered. We argue deductively that gallium,

beine a metal, will be found to conduct elec-

tricity well. We make the experiment, and find

that our deduction agrees with the fact. So far as

this one instance goes, we have verified our original

induction, and our belief in its validity is so far

justly increased.

No conclusion can be more certain than the

premisses from which it is derived. Since, except

in mathematics, in which the definitions are precise

and generally admitted, in almost every case we

must be doubtful as to the exact correspondence
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of our ideas with the actual facts, very few of our

conclusions are absolutely certain. In general we
have to accept and act upon conclusions which are

only more or less probable. Hence, as Butler says,^
"
Probability is the very guide of life."

A conclusion which we recognize as not certain,
but only probable, is expressed by the word belief.
"

Belief,*' assent, or opinion, is the admitting or re-

ceiving any proposition for true upon arguments or

proofs that are found to persuade us to receive it

as true, without certain knowledge that it is so."

REFERENCES AND NOTES.

1. Books on Logic are very numerous, but the older authors pay
little attention to induction, or to examples in science.

S. Jevons : Logic (Science Primer), a clear outline.

J. S. Mill : A System of Logic.

S. Jevons : The Principles of Science.

J. Venn : Inductive Logic.

2. Statements may be expressed at full length in words, but especially
if they are quantitative, conciseness of expression and facility of

manipulation are frequently gained by the use of symbols. In addition

to the use of s>Tnbols as a general expression for quantities, they are

also used to express operations upon quantities. This conception has

led in mathematics to the valuable "calculus of operations," in logic
to the "symbolic logic" of Boole, and in chemistry to the "ideal

chemistry" of Brodie.

3. Mill : Logic, iii. i.

4. Laplace : Essai Philosophique. Des divers moyens d'approcher
de la certitude.

5. Introduction to the Analogy of Religion, p. 3.

6. Locke: A71 Essay concerning Human Understanding, iv. 15, 3.



CHAPTER III.

FALLACIES.

Besides uncertainty due to the constitution of our

own minds, our conclusions, whether they be derived

from our own observations and reflections or from the

authority of others, are Hable to errors, which may lurk

unperceived in the premisses, in the reasoning, or in

the conclusion. These errors are termed fallacies, and

occupy a prominent position in every work on logic.

Some fallacies are more common in inductive,

and others in deductive reasoning. The latter were

discussed with great care and subtilty by writers of

the Middle Ages ;
but the discussion followed certain

classical lines, and was hampered by medieval terms

which are now unfamiliar.

The most common cause of error in inductive

reasoning is neglecting to consider sufficiently num-

erous and sufficiently widely distributed instances.

We must assure ourselves, as far as possible, that

the instances selected cover the zvhole class of cases

with which we are dealing.

13
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If after examining the instances of sound, heat,

light, and electricity, we lay down the general pro-

position—all forms of energy take a finite time to

traverse space, the induction is imperfect, and, so

far as we at present know, untrue—the case of

gravitation has been neglected.

Again the general proposition may be expressed

inaccurately, because the true points of similarity
between the instances have not been adequately

grasped. These are called by Mill fallacies of

generalization.

Until early in 1895 the general statement that

all elements are capable of entering into chemical

combination seemed a nearly certain induction. The

discovery of argon and helium proved the fallacy
of it.i

In deductive reasoning
" The great source of

fallacies is confusion, the great safeguard against
them is to think and express oneself clearly."

-

The premisses may be unduly assumed, or not

clearly expressed. A premiss may assume or depend
upon the conclusion. The premisses may have only
an apparent or verbal, and not a real or necessary
connection.

In the course of the reasoning, especially if it be

long and not fully expressed, an untrue premiss may
be tacitly assumed, a word or phrase may be used

in different senses or in one place with reservations,

and in another without.

The conclusion may not follow from the premisses
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because the ground of the argument has been

consciously or unconsciously shifted, which often

occurs in stating an opponent's case, or because an

irrelevant conclusion, such as a jest, a personal attack,

or an appeal to sentiment, has been introduced by
accident or on purpose instead of the true con-

clusion.

It is often assumed that failure to prove a con-

clusion proves the opposite. This is of course never

the case, though if a well-informed and skilful

reasoner fails, there is some ground for supposing
that the proof, if it be possible, is not easy. This

illegitimate assumption must not be confused with

the legitimate method so often used by Euclid. A
premiss is assumed and shown by correct reasoning
to lead to a false conclusion qitod est absurditm,

hence it follows that the assumed premiss' is itself

untrue. Care must of course be taken that the error

does not lie in the reasoning.

Perhaps the most widely spread and insidious

fallacy is from doubtful premisses to reach a con-

clusion, which is assumed to be absolutely certain,

instead of a more or less probable belief

Every additional doubtful premiss in a chain of

evidence lessens the probability of the conclusion,

so that comparatively few doubtful premisses render

the result of little validity. If there be only four

independent premisses, the probability of each of

which is W, the validity of the conclusion, so far as

it depends upon this chain of reasoning, is only

V- OF THE ^"V'

UNIVERSITY
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about |, or it is an equal chance that it is true or

false.^

Since all beliefs are merely more or less probable,

they should be held subject to revision on fresh

evidence or further consideration. The majority of

mankind, however, cherish most closely those beliefs

which they hold on the most doubtful evidence, and

from their own point of view wisely refuse to listen

to any arguments against them.^

The remarks made so far refer to reasoning in

general. The use of reasoning for the purposes of

physics and chemistry is but little obnoxious to

some forms of errors which have been mentioned,
while it is very liable to some forms, e.g. arith-

metical,^ which are more or less peculiar to itself

REFERENCES AND NOTES.

1. Early in 1895 ^^ least 73 elements were known, all of which

would enter into combination. The chance that the next element

discovered would enter into combination was by Bayes' theorem (cf.

t 7^ + 1

Bertrand, Probabihtes, p. 172) ,
or only ^ agamst argon enter-

73 "T 2

ing into combination. This instance shows with what doubt and care

such calculations must be applied in practice.

2. J. S. Mill : An Examination of Sir W. Hamilton's Philosophy,

P- 525-

Whately : Logic. The chapter on fallacies is amusing and inter-

esting.

Shute ; A Discotirse on Truth, More technical.
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3. If there be n independent premisses, the chance in favour of

each of which is p and against it q, and if

A y P-2 ^ __ y^
Pn _ 1

A + <7i A + ?2
'" A + !7«

^'

the chances in favour and against the conclusion are equal, or such

a chain of reasoning, even if technically correct, adds no weight to

whatever other arguments there may be in favour of the conclusion.

4. In this connection Lecky, The History of Rationalism, will be

found most interesting. It is difficult for one brought up in a more

enlightened atmosphere to realize the terrible struggle portrayed in

J. A. Fronde's The Nemesis of Faith.

5. Besides very frequent and unexpected errors, arithmetical results

frequently pretend to an impossible degree of accuracy, cf. S. Lupton :

"The Art of Computation for the Purposes of Science," Nature, Jan.

5th and 1 2th, 1888.

L.N.



CHAPTER IV.

THE LAWS OF NATURE.

The word law is used with two entirely different

significations, and is therefore frequently a source of

misconception and fallacy.

In common usage, a law means an edict or rule

imposed by superior power, which either must be

obeyed, or if disobeyed, deserves, and possibly en-

tails, pains and penalties.

In science, however, the meaning of the word

is quite different. "Laws of Nature"^ are simply

propositions stating uniformities which have been

observed in the relations of phenomena, and may
therefore be expected to obtain in similar cases.

Up to the end of last century it was always
observed that a substance which had a metallic lustre

was several times heavier than an equal volume of

water. The discovery of potassium, with a high

metallic lustre, but with a density much less than

that of water, broke no authoritative edict, but merely
showed that the old law was not sufficiently wide,

i8
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The study of natural science consists in the obser-

vation of, and reflection upon, differences and changes
in two manifestations which are spoken of as matter

and energy.
" We are acquainted with matter only as that

which may have energy communicated to it from

other matter, which may in its turn communicate

energy to other matter. Energy, on the other hand,

we know only as that which in all natural pheno-
mena is continually passing from one portion of

matter to another. Energy cannot exist except in

connection with matter." ^

Matter and energy, though they may change their

form in a great variety of ways, so far as our ex-

perience extends, can never be created or destroyed.^

Hence every change is due to some form of previously

existing energy, or every effect is due to a cause.

When two changes always take place together, it

may in general be assumed that the first is the cause

of the second, or that both are due to the same

cause.

There are only two general methods by which a

scientific law or any other general proposition can

be established, of which the second is far less definite

and far more liable to error, but far more generally

applicable than the first.

In mathematics, and in some of the better explored

parts of the experimental sciences, we may lay down
certain definitions or theories, and by deductive

reasoning arrive at further results. Of such reason-
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ing Euclid is a typical instance. Maxwell, assuming
the laws of motion, gravitation, and the viscosity of

gases, showed that a ring of gas could not continue

to rotate round a planet. The ring of Saturn has

recently been proved by observation to consist of

solid particles.

In the great majority of cases, owing to our ignor-

ance of general laws, we are obliged to use inductive

reasoning. By passive observation of phenomena
presented to us, or by active observation under

conditions brought about by ourselves, that is, by

experiment, we collect a number of instances of a

uniformity. Reasoning upon these instances, we
make an hypothesis which includes them all. If

this hypothesis agrees with all instances already

known, and especially if it agrees with fresh instances

as they arise, we consider that it is more or less

probably true, and call it a theory. The hypothesis
must be discarded and another formed if any instance

is found to contradict it. When a theory has stood

the test of time, and if deductions made from it

are found to agree with observation, it is considered

to be very probably true, and spoken of as a law

of nature.

The motions of the planets are accounted for if

an original impulse was given to them, and if every
other particle of matter attracts every other particle

directly as the product of the masses, and inversely

as the square of the distance between them. The

theory of universal gravitation was found to account



THE LAWS OF NATURE. 2 1

for the tides and for the shape of the earth
;
Adams

and Leverrier deduced from it the existence of the

planet now known as Neptune. Few truths are held

to be more certain than the Newtonian law.

REFERENCES AND NOTES.

1. H. Spencer: Essays, iii. 81.
" Of Laws in General."

2. J. Clerk Maxwell : Matter and Motion, p. 93.

The conception of matter and energy as two separate entities is

probably the most simple for the beginner. He will find later that all

the different properties assigned to various kinds of matter may be due

to energy, which produces different modes of motion in one medium—
the ether. Going a step further back, energ}' and ether seem so

necessarily connected in thought, that it is impossible to distinguish
between them. Hence all the forms of matter, and all the forms of

energy, may be simply presentations of various modes of motion of the

ether,

3. H. von Helmholtz : Popular Lectures, p. 277. "On the Con-

servation of Force.
"
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CAUSE AND EFFECT.

The connection between causes and the effects which

follow them has been discussed by philosophers from

time immemorial, but no general agreement has yet

been reached.

Metaphysicians attacked the question from the

side of the human will, which they assumed to be

the cause of various effects. Thus volition can

produce an idea in the mind and motion in the

body. From the human will they have argued by

analogy that a Divine Will exists, which has planned
out the universe, and is the ultimate cause of all

phenomena. The analogy is, however, so imperfect

that, valuable as it may be as an illustration, the

use of it as an argument seems absurd.

To consider only two points of difference. It is

very doubtful if human volition can evoke any idea,

the separate portions of which are not supplied by

memory. Though I can call up the idea of a unicorn,

the separate concepts of which the idea is composed
22
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are due to my own observation, or to communication

from others. The Divine Will is presumed to be

self-originating.

The connection between volition and muscular

action is still very obscure. Each act of will appears

to be produced by, or to produce a change in, a

special portion of the brain, and this stimulus is con-

veyed by one or more nerves to the special muscles

concerned. Muscular tissue is apparently of at least

two different kinds
;
the one variety which, with the

exception of the heart, is generally unstriped, acts

more or less automatically, though it may be stimu-

lated by external means. Voluntary muscles are

generally striped, and, when acted upon by a stimulus

conveyed through a nerve from the brain, or from

an external source, contract or expand, producing

motion in the corresponding parts.

The contraction or expansion of a muscle requires

a certain amount of energy which is supplied by
the oxidation of the blood in vessels lying in the

interstices of the muscular fibres. The oxygen is

supplied to the blood in the lungs, and the oxidizable

constituents by the digested food. The products of

the combustion are ejected.

Each muscle then may be regarded as an engine

which converts the potential energy of the food and

oxygen into kinetic energy. The amount of energy

which must be supplied in any given case is, so

far as we can tell, exactly the same whether an act

of will has been performed or not. Food is required
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to keep up the temperature of the body, to repair

the waste of tissue, and to perform external work.

The human will only produces mechanical effects

after a long series of changes, each of which is

limited by extremely stringent conditions. Hence

we are not justified in assuming that the act of

will is the cause of mechanical action and not merely
a condition, possibly not even a necessary condition,

since a very minute electric stimulus may produce
a very considerable muscular action. The Divine

Will is assumed to act directly without conditions,

and to Itself supply the energy required to produce
the effect. It is thus conceived to be totally distinct,

not merely in quantity but also in quality, from the

human will, and no analogy can be pressed.

The question of cause and effect has been further

complicated by the introduction, in many instances,

of interminable discussions as to the limits of free-

will and necessity. Human intelligence is unable

to reconcile a perfect plan, omniscience, and omni-

potence on the part of the Divine Will with freedom

of choice and action, and therefore with moral re-

sponsibility on the part of the human will.

So far as physics and chemistry are concerned all

questions of the action of will may be omitted, and

the inquiry restricted to inanimate causes, and thus

rendered more comprehensible.
The language of some philosophers has been

affected by the loose popular use of terms. The
word " cause

"
has often been applied by analogy in
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cases to which it is not really applicable. It has

also been used to express the absence of a condition

which would have prevented the occurrence. Strictly

speaking, non-existence cannot be the cause of any-

thing. Hence any accurate definition of the relation-

ship of cause and effect must much restrict the

popular use of the words.

Before any effect can be produced several or many
conditions must be present, the most marked of these

conditions is picked out and spoken of as the cause

of the effect, though in reality several of the little

noticed conditions may be as necessary for the pro-

duction of the effect as the one selected as the

cause.

So far as we know every change stands in the

relation of effect to some change which has preceded

it, and in that of cause to some change which follows

it. Hence every phenomenon may be compared to

a link in a chain which stretches backwards and

forwards beyond our ken.

When we attempt by the aid of experiment and

reflection to pass back from the phenomena we

observe to the causes which produce them, we are

able gradually to include several less general uni-

formities under one more general law, and to ascribe

a greater number of phenomena to one cause. How-

ever far we may be able to carry this process, we

are stopped at last by an impassable boundary which

recedes slowly before the greater knowledge of the

race. On the other hand, when we attempt to trace
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the effects produced by any cause, we soon find

ourselves in a tangled skein, owing to effects due to

causes external to the one we are trying to inves-

tigate. In any attempt to discuss ultimate or final

causes natural science ceases to be experimental,
and passes into metaphysics.

Such different phenomena as the shape of the

earth, the falling of a stone to it, the motion of the

tides on its surface, the motion of the moon round

it, the fact that it does not fly to pieces, and that

it is mountainous, may be said to be caused by the

law of universal gravitation, though the phrase is

apt to mislead unless the meaning of "law" be

remembered. But we are quite unable to discover

the cause of gravitation, why it obeys the law of the

inverse square of the distance, and why it differs

from all other known forms of energy in its infinite

velocity of propagation. The highest mathematics

are unable to solve exactly the motion of three nearly

equal heavy particles. We are unable to say when

and where the next chain of mountains will be

formed. We can only approximate to the true theory

of the tides, and the true motion of the moon.

Some philosophers regard universal sequence as

the true and only test of causation. In the words

of Mill,^
" To certain facts, certain facts do, and, as

we believe, will continue to succeed. The invariable

antecedent is termed the cause, the invariable con-

sequent the effect."

Stanley Jevons- objects to the rigidity of this de-
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finition :

"
If a cause is an invariable and necessary

condition of an event, we can never know certainly

whether the cause exists or not. To us then a

cause is not to be distinguished from the group of

positive or negative conditions, which with more or

less probability precede an event."

Both definitions are so wide that some reservations

must be understood. The stars disappear before the

sun rises
;

is their disappearance the cause of his

rising } Can we correctly speak of the cause of an

event which has happened only once, and is the title,

" On the causes of the present discontents," a mis-

nomer 1 The words "
positive and negative

"
require

definition
;

it seems unnecessary to include among
the causes of an event all the conditions which, if

present, might with more or less probability have

prevented the occurrence. Such a tedious enumera-

tion would too often divert attention from the true

points at issue.

A second condition, frequently assumed to be

necessary, is a material connection between the body
assumed to be the cause and the body affected,

"since nothing can act where it is not." Nothwith-

standing the high authority of Newton,^ this condition

is by no means universally accepted. So far as

experiment at present goes, gravitation acts im-

mediately and directly across space with infinite

velocity.^ It is difficult to conceive the constitution

of an elastic ether, which is truly continuous with

no space between the particles.^
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A third condition is now universally admitted,

and since it includes the first and possibly the second

condition, it may be provisionally used as a defini-

tion of the relation of cause and effect.

When more energy passes from one material

system to another than returns from the second to

the first and produces an evident change in the

second system, the first system is said to be the

cause of the effect in the second system. This de-

finition suffices for the purposes of physics and

chemistry, but restricts the use of the terms within

far narrower limits than is usual.

A few remarks and examples may render some

points in this very difficult subject more clear, A
comparatively small cause by setting free potential

or stored up energy may produce very great effects.

A single spark may cause the explosion of a barrel

of gunpowder; the amount of energy set free in

such a case is practically infinite in comparison with

that transferred from the cause.

It is now universally admitted that every effect

must be produced by a cause, but in many cases

the causes are imperceptible or doubtful. Substances

pass into isomorphous forms with the evolution or

absorption of heat apparently by mere lapse of time,

e.g. viscous or prismatic into octohedral sulphur,

yellow into red mercuric iodide. The action of

traces of impurities such as water vapour in assisting

chemical combination is little understood. Traces

of impurity also greatly decrease the conductivity



CAUSE AND EFFECT. 29

of metals, and alter the properties of steel. More

boys than girls are born every year in the proportion

of about 104 : 100, and all the ingenuity of Laplace

failed to discover a cause. Generally speaking it is

more difficult to determine causes from their effects,

than effects from their causes.^

When two bodies are separated by media trans-

parent to a form of energy possessed by either or

both of them, that form of energy passes from one

or each of them to the other in equal or unequal

amounts. Every substance known is transparent to

gravitation, and all known bodies show that form

of energy, two bodies always attract one another

equally.

If two bodies are separated by air, radiant heat

perpetually passes from each to the other. If the

temperature of the two bodies be the same, the same

amount of energy passes in each direction, no evident

change takes place, and we do not consider either

body as the cause of the temperature of the other.

If, however, the one body be a red-hot cannon ball,

and the other a lump of ice, more energy passes

from the ball to the ice than in the reverse direction.

Hence we are justified in saying that the ball is

the cause of the melting of the ice, but we are not

strictly correct in saying that the ice is the cause

of the cooling of the ball.

In the absence of the atmosphere, a raindrop

falling from the height of a mile would strike the

earth with a velocity of 580 feet per second, and a
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shower would be as destructive as a torrent of shot.

Strictly speaking, the air is a condition and not a

cause of the harmlessness of showers. No energy-

passes from the air to the drops; but the energy, as

it is produced by the action of gravitation, is more
or less expended in tearing the air asunder, and in

heating the air and drops.
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CHAPTER VI.

OBSERVATION AND EXPERIMENT.

When we notice a change in any phenomenon, or

compare any quality of two objects, we are said to

make an observation. At first observations were

purely qualitative, and merely denoted the presence
or absence of certain phenomena, or rough impres-
sions of shape, colour, and other qualities. Gradually,

however, observations became more precise, and were

extended to size and number, or became quanti-

tative.^ At first numerical estimates were made

directly, as when a man is said to weigh twice as

much as a boy ;
in modern times, measurements are

made by the aid of instruments with increasing

accuracy, and the quality or change observed is

expressed in terms ot a unit by a numeric ;- the

man is said to weigh twelve stone, and the boy six.

The accuracy attained in any case depends upon
the special circumstances of the observation, the care

with which the operations are conducted, and the

personal skill of the observer. There is a natural

31
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tendency to overestimate the accuracy and value of

observations upon which one has expended much
time and trouble, and this common failing must be

carefully guarded against. The exact numeric which

connects any observed quantity with the unit can

never be obtained except by accident, and when it

has been obtained, there is no means of ascertaining

the fact. The difficulty of observing, and the number
of necessary corrections increase very rapidly, as

the accuracy aimed at is greater ;
in many delicate

measurements corrections have to be applied which

are larger than the quantity to be measured. Hence

very few of the numerics found by observation or

experiment are reliable beyond the sixth significant

figure, and the great majority to a far smaller extent.

It is well to bear in mind the ironical answer of

Dulong, when asked why he gave indices of refraction

to eight figures, when his results only agreed to

three :

"
I do not see why I should suppress the last

decimals, for if the first are untrue, possibly the

last are correct."

It is useless, wearisome, and misleading to extend

the numeric beyond the first doubtful figure, all the

rest should be suppressed or replaced by ciphers.

If the phenomena which we wish to investigate

are or can be reproduced near to us, we are generally

able to alter the conditions under which they occur,

and thus render our observations more general, more

definite, or more precise. We are then said to make
an experiment. .
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After observing a rainbow, we may experiment
on bows formed by spheres of various transparent

substances in the laboratory, and show that the

position of the bow depends upon the refractive

index of the substance by which it is formed, and

hence that our theory of its formation is probably

correct, and applies to all transparent substances,

as well as to water.

We may observe the effect of different soils upon
the growth of wheat, and make our observation more

definite by the addition of one substance such as

guano to a portion of a plot. If the other circum-

stances remain the same, any increase in yield must

be due to the guano.
The velocity of a freely falling body soon becomes

so great, that it is difficult to determine the space

passed through in a given time with any accuracy.

By attaching a heavy body to a grooved wheel which

was caused to run down an inclined wire, Galileo

obtained much better results.^

When great accuracy is desired, each observation

must be repeated a considerable number of times,

if possible, by several different persons, since all

observers are liable to personal errors. Some read

late or early, some read high or low, some are

more or less colour blind. In arranging experi-

ments it is most important, so far as possible, to

measure only one property or one change at once,

and to avoid great size or complexity in the appar-
atus. It is well also to use different samples of the

L.N. c
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substance under examination obtained from different

sources, and at least two different methods and sets

of apparatus. We may thus avoid or allow for errors

due to the personal defects of the observer, to the

impurity of the substance, and to imperfection in

the apparatus.

Many persons had weighed samples of nitrogen

obtained from the atmosphere before Lord Rayleigh,

by weighing samples obtained from different sources,

noticed a difference in weight which led to the dis-

covery of argon.

Dumas based most of his determinations of atomic

weights on weighed quantities of pure silver. Hence

a certain doubt attaches to almost all his results,

since he did not get rid of, or allow for the oxygen
occluded by the silver. Stas in most cases used

several different methods to determine each atomic

weight.

However carefully observations may be made, they

cannot be accurate or comparable with those of other

observers, unless the units in terms of which the

results are expressed are accurate and comparable

with those used by others. Hence before any quanti-

tative observations are made, the units in terms of

which they are to be recorded must be carefully

considered.
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If the mass of the particle and wheel be 771, the angle between the

wire and horizon d, and the acceleration due to gravity g, resolving

perpendicular to the wire mg cos 6 produces pressure on the wire but no

motion, and along the wire ;«^sin^ is an accelerating force causing

motion in the system. But by making 6, and therefore sin 0, small,

we may make the accelerating force as small as we please, and therefore

the motion as slow as we please.

4. Compare the large apparatus for determining the constant of

gravitation G, used by Cavendish and Baily, with the far smaller and

more accurate one used by Boys.
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UNITS AND DIMENSIONS.

That measurements may be exact the unit used

must not vary with change of time or place, and
must be easily reproduced or represented by accurate

and permanent copies.

Some units^ are said to be natural, because they
are, as it were, presented to us ready-made; when
available they are generally the most convenient.

In many cases no natural unit exists, and we
are obliged to construct and define an artificial

one.

Astronomers use as their unit of time the sidereal

day, or the interval between two successive passages
of a star across the meridian, and divide it into

hours, minutes, and seconds. By noting the times

of two transits of the same star an astronomer can

readily determine the error of his clock. The ordinary
unit of time, the mean solar day, is not a natural

unit, since it is obtained by adding nearly four

minutes to the sidereal day ;
it is, however, easily

36
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and readily obtained at all places in telegraphic

communication with Greenwich Observatory.

Though no available natural units of length or

mass exist, artificial units of these quantities have

been constructed and legally recognized in all civilized

countries. The best material has been found to be

an alloy of platinum with one ninth of its mass of

iridium. The standard metre is an X-shaped bar

of this material with fine lines traced on the depressed

part, the distance between two of these lines, when

the bar is at the temperature of melting ice, con-

stitutes the metre. The standard kilogram is a

cylinder of iridio-platinum, the diameter of which is

equal to the height. Both these standards are pre-

served at Breteuil, and copies of them have been

sent to all civilized governments. England and the

United States still use the yard and pound as

units.

Though some other fundamental units, such as

those of angle, temperature, and illumination, are

required, it is a great convenience as regards both

cheapness and simplicity of calculation, to use as

few fundamental units as possible, and to measure

all quantities in terms of units derived from them.

Instead of constructing new fundamental units to

measure area and volume we may use for the one a

square surface, a metre along each edge, and speak
of a surface containing so many square metres

;
and

for the other a cube, a metre along each edge, and

speak of so many cubic metres or steres.
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The frequent use of derived units has brought
into prominence the modern theory of dimensions.'^

If any quantity Q be measured in terms of a

length L, a mass M, and a time T, so that

the quantity Q is said to be of the dimensions a in

length, b in mass, c in time. Thus the stere is of

the dimension 3 in length, o in mass and time.

The following are the dimensions of the chief

limits used in mechanics :

Length,
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composed of not more than one digit of whole

numbers and a decimal multiplied by a positive or

negative power of ten. Thus the velocity of light,

according to Cornu, is 3.004x10^*^ cm. per sec, and

the wave length of the mean D line is 5.893 x lO"^

cm. For practical purposes, however, one unit of

each kind is not sufficient, and submultiples or

multiples of the unit are used as subsidiary units.

It is most convenient, as in the metric system, to

use only powers of ten as the multipliers, the very
various multipliers used in the English system

severely tax the memory, and render arithmetic

unnecessarily laborious. The choice of ten depends

upon the universal use of it as the basis of numera-

tion
;

if everything could be commenced afresh, pro-

bably two would be found more convenient than

ten. Even now, for some purposes, such as weighing
and interposing resistance coils, it is convenient to

reduce to the scale of two.^

In some cases it is necessary or convenient to

make use of provisional units in terms of which the

results are expressed, and to wait for the full ex-

pression of our results until our provisional has been

accurately determined in terms of the fundamental

units.

Thus physicists refer their densities to water,

waiting till the number of grams in a cubic centi-

metre of water has been exactly determined.

Chemists refer their atomic weights to oxygen

0=16, waiting till the true value of O is known.



40 . NOTES ON OBSERVATIONS.

Astronomers measure distances in terms of the mean
distance of the earth from the sun, waiting till this

distance is known in miles.
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CHAPTER VIII.

AVERAGES.

In popular language the words average^ and mean

are used as though they were synonymous to express

a value intermediate between various measurements

of a quantity.

Though the same processes are used, and the

results arrived at are identical in each case, the

words express ideas which are in reality quite dis-

tinct, they therefore should be carefully defined and

accurately used.

If a number of individuals is sufficiently large to

form a class, and a quality common to all be measured,

the numerics found differ more or less from one

another. For simplicity of conception and expression

the quality of the class may often be represented

with sufficient accuracy for certain purposes by a

value intermediate between the values in each indi-

vidual case. This intermediate value is called an

average.

An average then is a value, which may or may
41
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not represent an actual individual, but which ex-

presses the value of a quality in the case of a class.

A mean 2
{g.v.), on the other hand, expresses the

most probable value of one actual quantity.

An average may be obtained in several different

ways, but three methods are most important and

most generally used. The methods nearly coincide

in their results if the number of instances be large ;

the first is in general most accurate, but the two

latter are often more simple in the case of a great

number of instances. In every case all the measure-

ments must be expressed in terms of the same

unit.

(i.) The numerics expressing the quality in the

case of each individual are added together. The

sum divided by the number of individuals gives the

arithmetical average,^ often called simply the average,

y=—— n

If the number of grains of sulphur per lOO cubic

feet of coal gas be determined every hour, and

numerics varying from 14 to 16 be obtained, on

adding all the results together and dividing by 24

the average sulphur impurity in the gas for the

day is obtained.

Occasionally, and especially in statistical results

which obey the compound interest law, it is prefer-

able to use the geometrical, which is always smaller

than the arithmetical average. To obtain it the
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logarithms of the individual numerics are added

together, the sum divided by the number of in-

dividuals gives the logarithm of the geometrical

average,

^^ n

If there are only two values of x, the geometrical

average is the square root of their product.

The population of England (millions) was in

1801, -
8.9 1841,

-
15.9 1871,

-
22.7

1811, - 10.2 1851,
-

17.9 1881, - 26

1821, - 12 1861, - 20 1891,
- 29

1831,
-

13.9

The arithmetical average of these numbers is 17.65,

but the geometrical average 16.44 is in all probability

a more correct estimate of the population in 1846.

(ii.) If all the individuals are divided into groups
so that in each group the individuals are very nearly
identical in respect to a quality, the measurement of

that quality in the most numerous group may be

taken as the average. It of course comes to the same

thilig, when all the individuals have been measured,
to select the numeric which most frequently occurs

as the average. It is convenient to follow Prof.

Karl Pearson^ in calling an average obtained by
this method—the mode.

After measuring a regiment of guards, if we find

5' 1 1" occur more frequently than another value,

we call it the mode of the regiment.
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(iii.) Another average is very convenient in some
cases. If all the individual results are ranged in

the order of their magnitude, the middle result of

the row constitutes the median.^ If all the results

are divided into four equally numerous groups or

quartiles, the median lies between the two middle

groups, the other extremes of which give limits be-

tween which it is equally probable that any given
result does or does not lie. The median then is a

value such that an equal number of the observed

values lie on each side of it. It is easily found, un-

affected by exceptional cases, and, since the results

cluster thickly round it, any error in the estimation

of it is usually small and of little moment.
To obtain an average of any real value, the results

from which it is derived must be sufficiently numerous
and sufficiently widely distributed to be fairly re-

presentative of the entire class under discussion.

Neglect of this point is a common source of error

in statistics, and therefore in the arguments based

upon them.

In trade analyses great care must be exercised

that the sample operated on is a fair average of !he

total bulk.

In obtaining the average height of Englishmen
we must not select our instances solely from the

slums of London, or the dales of Westmoreland.
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DIFFERENCES.

When two quantities vary simultaneously, a number
of values of a variant or function for different values

of the variable or argument is frequently presented
in the form of a table. The values may be obtained

in pure mathematics by calculation from a formula,
or in natural science as the result of observations.

By finding a series of difi"erences between the

consecutive values of the function given, great assist-

ance may be rendered in testing the accuracy of the

figures, in determining the value of the function for

values of the argument intermediate between those

given in the table, and in finding the form of the

function best suited to express the experimental
results.

Differences are obtained by subtracting each value

of the function from the following one which gives
the column of first differences, subtracting each first

difference from the succeeding one to obtain the

column of second differences, and continuing the

46
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process until the differences become irregular, or

very small.

Several different systems for the notation of differ-

ences are in use. It is perhaps most simple to

denote values of the variable by X-.-^, ;tr_^, x^, x^, x^,

etc., and the corresponding values of the variant by
?^_2, n_^, 71^, 11^, 11^,

etc. It is usual to mark the line

where calculation is to begin, or the values im-

mediately below the new value required by the

suffix o, and values further up the table by negative
suffixes. Differences are denoted by a capital A
prefixed to the ?/, but the ti may be omitted for

simplicity. The column in which the difference

stands is marked by the affix i, 2, 3, etc., and its

X
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place in the column by a suffix which may be a

whole number or a proper or improper fraction with

2 as the denominator. Dififerences in the same

horizontal line are marked by the same suffixes,

and the suffixes in each column are the means

between those of the values from which they are

derived.

Each column of differences is less by one member
than the column to the left of it.

These points will be seen in the table on the

preceding page.

Let X represent a series of numbers, and 7i the

corresponding natural logarithm multiplied by io,ooo

to avoid decimals :

X
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The numbers decrease as we descend each column,

and also as we pass towards the right. The irregu-

larity of the numbers in the last column shows that

the process has been carried further than the accuracy

of the original values warrants
; this, of course, is

owing to the omission of all figures in the logarithms

beyond the fourth.

If it be required to find the value of u for a value

of X intermediate between 1.5 and 1.6, 1.5 is taken

as x^, Uq as 4055, A^ as 645, A\ as —39, and

A^3 as 1;. The fourth difference is too uncertain

to be available.

Suppose that by accident or the omission of figures

any value of the function is in error by |
=

.5, this

error increases in each column of differences
;
there

will be two errors of .5 in A\ two errors of .5 and

It

one error of i in A'-^, and so on. If we write s=-
2

or ,
whichever is a whole number, the maximum

2

value for the error in the n^^ order of differences will

in this case be

in.n—i.n — 2...n — s-Yi i \n
,
or _ J=.

2 1.2.3....? 2
|j2

This being the average case, if none of the differences

exceed twice the above limit, the given values may
be assumed to follow a regular law, or to be correct

to a unit in the last figure. The quotient of a differ-

ence in the last column by twice the above value

r- OP THE

UNIVERSITY
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may be considered to show the maximum error with

which the number opposite to it is affected.

For the fourth difference i- = - =
2, and the value

2

of ^^ is 6, hence the values o-iven in the table are
1.2

probably correct to the last figure.

If, however, 4702 had been written by mistake

for 4700, the differences would have been

4055 -43
647 o

4702 -43 II

604 II

5306 -32

Hence there is an error in the value of 4702, and

its probable amount is - ,
,
or about 2.

REFERENCES AND NOTES.

Newcomb : Logarithmic and other Mathematical Tables, New York,

1895.
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INTERPOLATION.

When a series of values of a function is given for

different values of the argument, the process of find-

ing one or more values of the function corresponding

to intermediate values of the argument is spoken of

as interpolation. A similar process applied beyond
the series of given values is called extrapolation ;

but

this process must always be used with caution, and

not applied far beyond the limits of the given values.

The problem is treated differently according to

whether the given values of the argument are equi-

distant as in an ordinary table of logarithms or not,

as is generally the case in observational results.

If the differences between the given values of the

function are comparatively small and regular, it is

generally sufficiently accurate to assume that the

change in the value of the function is proportional

to the change in the value of the variable. The

calculation of the proportional parts is obviated by
the use of small tables, or by the assistance of a

SI
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slide rule. If the intervals are large and the first

differences increase or decrease with comparative

rapidity, the method of simple proportion becomes

so inaccurate as to be useless.

The general form of the problem is, given that

a series of equidistant values of the argument

X-^X-^x.-^XqX-^x^x^, etc., make the value of the

function u -^ti -^ii _^7i(^ii-^u.^u^, etc., to find the value of

the function Un where 7i is a proper fraction lying

between x^ and Xy

Making the assumption that the formula connect-

ing the argument and function is a continuous one,

or that there is no sudden change of value between

the given values of the function, Newton's formula

of interpolation gives

,«., n .n—i .„ 11.11— I .n— 2 .^ , ^
^/»
=

?^o+ -A^+ ^^ ^\ +
j-y-^ A^l+ etc,

the series being continued until the differences

become negligible. Since n is less than i the co-

efficients of the even terms are negative.

When ?/o
is not the first term given and the fifth

differences are approximately equal, it is more con-

venient to use Bessel's formula :

" ^1-1.2 2 1-2.3

n+i .u.n—i .n— 2 A%-|- A\
1.2.3.4

1^5
n+i .n.u—i .n— 2.n— \.^

1.2.3.4.5
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Since n is less than one, the coefficient of A" is

always negative ;
the coefficient of either A^ or A^

is negative according to whether n is < or >.5 ;
if

n = .^, A^ and A^ vanish.

Suppose that it is required from the following
table to find the value of e'^^, which is 1.733252, etc.

The fifth differences are so irregular and small that

they may be neglected.

X
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By Newton's method—
2/o= 1.64872

|Aii= .08670

iA2i= -.00228

.o625A^3= .00012

.039^*2 = --000007

Un= 1.73325

By Bessel's method—
u^= 1.64872

iA^i = -08670

, A^o+A^ _
.00217

A*o+A^
.02344

— i= .000004

?^,= 173325

In this case both methods give the results correct

to the last figure, but Bessel's method requires fewer

figures than Newton's.

The more general and more difficult problem is,

given a series of values for a rational integral function

which are not equidistant to find an intermediate

value.

The method generally used is known by the name

of Lagrange.^ Let ?^ become ii^ii^u^u^ when x be-

comes Xi^x^x^x^ given a value x find 21^,

u ^ {x-x^{x-x^})...{x-x,^
^^

(-^0
~~

•*'l) (•*'o •*'2/
• • •

V-*'o
~

-^n)

^

{X-X^){x-X^)...{x-Xn)
^^

(X-^
—'

^q) \^\ -^2 /
• • •

\-^\ ^n)

(X-X^){x-X^){x-X^)...{x-Xn)
^^ _^^^^

{x^-XQ)(x.^-X^){x^-X^)...(X2-Xn)
^

If the function be periodic we may assume

sin(;ir— ;i;^)/2 X sin(A'— .t:2)/2
X ... X s'm{x—Xn)l2

Ur. = u^

?:m{xQ—x^\2 X sin(.ro-A-.,)/2 x ... X sin(;ro
—

x„)/2
°

-l-etc.
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A very simple and convenient formula to convert

readings on the scale of a spectroscope into wave-

lengths may easily be arrived at. In the case of

substances of medium refractive index the increment

of the index of refraction is nearly proportional to

the increment of the square of the reciprocal of the

wave length.^ Hence if the indices of refraction, the

angular deviation, or the scale readings of three lines

near together are given, and also the wave lengths

of two of them, the wave length of the third can

be calculated.

Suppose Ao, Ap A., the wave lengths n^, n-^, n^ the

scale readings of the three lines substituting in

Lagrange's formula.

I _ I n^
—n^\ n^

—
tiQ

^\
~
^\ ^^0

-
^h ^^2 ^h

-
^h

In the case of three bright lines of magnesium

Ao
= 5iS3, A2

= 5i67, ;/o
=

74-5, ^^
= 74-8, ^^2

= 75,

.
I I -2

,

I .3" V (5183)^5^(5167)^5'

.-. A^=5i73 instead of 5172.

REFERENCES AND NOTES.

1. Boole : Finite Differences, 2nd edition, 38, 42.

2. Stokes: B.A. Report, 1849.

W. Gibbs : Silliman's American Journal, 11. 1. 45. The result is

only approximate.
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MENSURATION.

It is frequently required to find the length of a

curve, the area of a plane, the surface or volume of

a solid, or the contents of a vessel. If the equations
to the curve, the bounding line, or surface be given,

it is in general necessary to consider the line, surface,

or volume to be cut up into a number of infinitesimal

elements, and then to find the sum of all these

elements by integration between the limits imposed

by the question.

If the lines are, or can be, broken up into straight

lines, or certain well-known curves, and the surfaces

are plane or formed by the revolution of well-known

curves, the lengths, areas, and volumes can generally
be found by the simple formulae given in treatises

on Mensuration.^

Various mechanical appliances are used to avoid

difficult measurements or tedious calculations. The
course of a curve may be followed by bending a

strip of card along it, and the straightened card

56



MENSURATION. 57

may then be directly measured. For many purposes
the ofisometer, which consists of a rough-edged wheel

rotating on a screw, is very convenient. The wheel

is run forward along the curved or broken line, and

then backwards through the same number of revolu-

tions along a straight measure.

Many ingenious planimeters have been suggested
to find the area of planes by tracing their contours.

The one invented by Prof. Amsler^ is in most general
use

; by its aid the area of an irregular figure, such

as an indicator diagram is readily found.

The volume of a vessel is generally found by

weighing the water or mercury which it will hold,

and that of a solid by finding the weight it apparently
loses when immersed in water or some liquid of

known density.

In the absence of a planimeter the following rules

may be of use in measuring a plane area.

A convenient line is drawn across or along one side

of the figure, and divided into a number of equal

parts. From each point ordinates or offsets are

drawn at right angles to meet the boundary of the

area, and the length of each offset is measured.

.Speaking generally, the more numerous the offsets

the more accurate the results, but great accuracy is

not to be expected if there is very great difference

between the ordinates, or if the curve meets the

base line nearly at a right angle. This difficulty may
be often avoided by the proper choice of a base line,

or by treating different portions of the area separately.
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The most simple rule, which is generally sufficiently

accurate, is :
—

Add half the sum of the first and last ordinates

to the sum of all the other ordinates, and multiply

by the common distance between the ordinates.

It is generally more simple to obtain greater

accuracy by taking more ordinates than by applying
a more complicated rule, such as that of Weddle.^

Divide the base into six equal parts, add into one

sum the first and every alternate ordinate, five times

the sum of the intermediate ordinates^ and the middle

ordinate. Multiply by ^ oi the common distance

between the ordinates.

To find the area of a portion of a semicircle, radius

6, cut off by the curve, the diameter, and ordinates

at X— ±^.

y = sj

'-^'=-3. Ji = 5-1961 5;

x=-2\, y =5.45436;

x^.-2, J, = 5.65685;

^= -
1 1, J =5-80947;

'^'=-1. ^3= 5-91608;

x=- h y =5-97913;
X= o, y^ = 6.00000

;

Take first only the seven ordinates with subscript

figures which are one inch apart. Add one extreme

to the other values, the area is found to be 34.342.

Taking the whole thirteen ordinates half an inch

36-;^.
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apart, add them all with the exception of one extreme

and multiply by \, the area is found to be 34.414.

Applying Weddle's rule, add

Ji +73 +^5 ^y-i+ 5 {y=i +f4 -\-n) +74.

and multiply by y%-, the area is found to be 34.4379.

Since the figure is made up of two right-angled

triangles and a circular sector containing 60°, its

area is

3x5.19615+^^^^-^=15.58845
+ 18.849556=34.438.

Hence the accuracy of the first method increases

with the number of ordinates, and in this case

Weddle's rule is nearly exact.

REFERENCES AND NOTES.

1. Lupton, Numerical Tables, p. 7-

2. Williamson, Integral Calculus, 214, for theory.

3. Boole, A Treatise on the Calculus of Finite Differences, p. 47.

Many formulae have been proposed by Stirling, Simpson, and others,

that of Weddle combines simplicity with considerable accuracy.



CHAPTER XII.

THE USE OF TABLES.

In pure mathematics the results of tedious arith-

metical operations, which are frequently required,

are registered in tables, which facilitate and conduce

to the accuracy of calculation. If every logarithm

had to be calculated when required, the labour would

entirely prohibit their use
;

but logarithms, when

printed in tables, are of the very greatest assist-

ance to the calculator.

The most generally useful tables are multiples,

Crelle's Rechentafeln go to looox looo
; reciprocals,

Oakes, gives five figure numbers to seven figures ;

squares, cubes, square and cube roots, Barlow gives

to 10,000 to seven figures ; logarithms, of numbers

and of the trigonometrical functions.^

It is useless, misleading, and tiresome to carry

the calculation far beyond the accuracy of the

observation, hence, for the ordinary work of a

beginner, Barlow and Schlomilch's logarithms are

amply sufficient. If due care be exercised, they will

60
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give an accuracy of one or two units in the fifth

place.

The series of values of the variable, by which the

table is arranged, is called the argument, and the

corresponding values of the variant the entry. In

general, each entry corresponds to only one argument,

but in a few cases such as the multiplication table,

there are two arguments to each entry. Tables with

two or more arguments are liable to become very

complicated and bulky.

Tables are most convenient when the differences

between consecutive arguments and entries are so

small, that intermediate values may be found by

simple proportion ;
if this is not the case, second,

and even third differences must be used.

,

n ., 11 .n—\ .^
iin
=

?^o+ Y
A^+

^ ^
A2.

Thus, to find log 108.79379, having given

log 108 = .03342376
.00400274

109 = .03742650 —.00003655.
.00396619

1 10 = .041 39269

//o
=

.03 342 376
ft

-Ai = .oo3i7733

fi ti^ I— A'^ = .00000299

2.03660408
The more correct value is 2.0366041063326...
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In many cases special formulae for the differences

e more

Thus,

are more convenient and exact than the general one.

log a ±;ir= log a ±2M
/ A' I x^ \

\2a + x T, (2a±x)^ J^ ^ \2a±x 3 {2a±xf

where the tabular argument is represented by a and

the difference, or if it be greater than 0.5, the com-

plement of the difference is represented by ±x. In

the case given above,

2a = 2i2), 2«—^=217.79379, x= —.20621,

\oga= 2.03742650,

2Mx
2a—x

= —.00082239

2.0366041 1

The error is < 4 in the ninth decimal place, the

omitted term is less than 3 in the ninth place.

The sin, cos, tan of an angle which is nearly 0°

or 90'^ approach their limiting values o, i, 00, and

the differences, especially of the logarithms of the

functions, become too irregular to be available. Thus

the differences for i' of a 5 -figure logarithmic table

are
tan sm cos tan

1° 717 o 718 8s° 2 145 146

3° 240 o 241 87° I 242 243

5° 144 I 145 89° o 630 730

If possible it is generally best to modify the ex-

periments so as to avoid very small or very large
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angles ;
if this is impossible, special methods of

calculation must be used.

Some tables give a much closer range of argu-

ments for the first few degrees, and almost all give

Delambre's method or Maskelyne's modification

of it.

The following series due to Borda are not often

given, but are easily applied in the case of small

angles. Convert the angle into circular measure.

log sin Q

= io+ logO-iJ/]^+-V-+-^+—^ + etc.k^
l6 180 2835 37800 J

log cos

.JO'
, e\ e\ I70S 31010 I

{2 12 45 2520 1417s J

log tan 6

^
1 3 90 2835 18900 J

These series decrease very rapidly for small values

of and hold good at least from 0° to 90°.

Thus in the case of 0— 5° 43' 46".48 = .i radian.

,
. ^ ,./.oi

,
.0001

,
.00000 1\ .0000000 1 \

logsm 0= io-i-AI{-^-\ ~
^ \6 180 2835

^
37800 /

= 9- J/(.ooi66 72225 75221)
= 9-0.0007240655 64522
= 8.999275934435477.

The fourth term of the series only affects the

thirteenth decimal place, and the third term the
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tenth, so that a few terms of the series suffice for

small values of 0.

In large tables second differences may be required
to obtain correct results with all the trigonometrical
functions. Suppose the argument be lo" or i",

log sma-{-x=\og sin «+a-AVio+ ^;i:(io— ;f)AViOO,

log cos a-\-x= log cos a — .I'A^/ 1 o+ hx{ lo—x) A'7 1 oo,

logtan rt+,r=logtan ^+,t--AVio ± hr{io— x)i:^^lioo,

where in the last term + is used for angles less than

45°, and — for angles greater than 45°.

Almost every branch of science is supplied with a

variety of special tables-
;

a few of those most

generally useful in physics and chemistry will be

mentioned in the notes, and the methods by which

they are calculated from experimental results will

be discussed later.

REFERENCES AND NOTES.

I. De Morgan : "Tables" in English Encyclopadia.

B. A.: Report'^of Committee on Mathematical Tables, 1873-1875, gives

very complete critical lists of tables in pure mathematics.

A few more recent or specially convenient tables of logarithms may
be mentioned :

Bottomley : 4-figure mathematical tables to 6'.

Ilouel 1 ^ , , /

„ , ... ., , /-^-figure tables to i .

SchlomilchJ
-^ "^

Tones
~| - . , , ,

J (O-ngure tables to i .

Chambers : 7 -figure tables to i'.
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indicator, may be used, the burette may be calibrated,

the eye may be assisted by a horizontal telescope.

Such sources of error as these, when so large that

taken singly, they can be reduced by greater care,

are spoken of as constant errors
; though the term

is misleading since they are generally not exactly
the same in two observations.

All observers also are liable to make mistakes,

such as misreading a figure on the burette, or for-

getting to add in a weight. Mistakes are often

corrected by the check of a second observer.

When all mistakes have been removed, and all

constant errors have been reduced as far as possible,

the small differences between the numerics found are

supposed to be due to, and are themselves called

errors of observation. These errors are supposed to

be in each case the resultant of a number of partial

errors, to which every separate portion of each observ-

ation is liable.

The light may vary in intensity, or the eye of the

observer in precision, so that he cannot accurately

distinguish a change of colour or the first formation

of a precipitate. The burette may vary in temper-
ature or may drain more or less thoroughly. The eye
of the observer may not be exactly in the optical axis

of the telescope, or the position of the screen may
affect the reading of the meniscus. All these and

many other partial errors, each of which may vary
within narrow limits, combine to produce the total

error of the observation. In any given case the
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partial errors are very numerous, and, if we assume

that the great majority of them are equally likely to

err in excess or defect of the true value, it is about an

equal chance that their sum, the total error of the

observation, is positive or negative. It is generally

assumed, that, when any quantity is measured many
times in succession with the greatest possible

accuracy, positive and negative errors are about

equally numerous, and that the sum of the positive

is about equal to the sum of the negative errors.

Again, if it be assumed that each partial error is

nearly constant and is equally likely to be positive or

negative, the most unlikely case is that all the partial

errors should be positive or all negative, and the most

likely case that half should be positive and half

negative.^ Hence in any series of results, the smaller

the errors the more likely and the more frequent the

cases.

Since, in any carefully conducted experiment, the

partial errors are extremely small, and their number

though large is not infinite, except in rare instances,

their sum is very small in comparison with the

quantity measured. It is therefore far more advan-

tageous to give time and attention to the removal of

mistakes and constant errors, than to take excessive

trouble in attempting to allow for errors by calcu-

lation.'-^

If the positive and negative partial errors happen
to balance one another, the true result is obtained,

but we have no means of knowing when this is the
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case. Hence we have no means of arriving at the

actual value, of which our observational results are

more or less correct representatives.
It is generally assumed that a mean of the observ-

ational results gives the best and most probable

representative of the actual value, and that we can

render the mean more accurate and more probable

by increasing the number of the observations.

The above remarks are very theoretical, and are

merely suggestive of what really takes place in any
observation. The best proof of the whole theory of

errors is that the results obtained by the use of it are

found approximately to agree with the results of long
series of accurate observations.

As the remarks in this section are very important,
somewhat vague and difficult to remember, it may be

worth while to recapitulate them briefly.

All observations are liable to mistakes due to the

observer and to constant errors due to the method,
the instrument, or the observer. These may be of

any magnitude compared to the quantity measured,
and can be removed or decreased by greater care and
skill.

When a considerable number of observations are

made with the greatest care under similar conditions

upon the same quantity, and all mistakes and con-

stant errors have been as far as possible removed, the

differences between the results are due to, and are

themselves called, errors of observation.

(i.) Errors in excess and in defect of the true value
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are about equally numerous, and the sums of the

positive and of the negative errors are about equal,

(ii.) Errors are small in comparison with the

quantity measured, and are more numerous the

smaller they are.

REFERENCES AND NOTES.

1. The chance of the occurrence of any special combination of n

partial errors, each of which is equally likely to be positive or negative,

is expressed by the value of the (;'+i)"* term in the expansion of

/i l\" . .

I

- + -
I , where r varies from o to «, this is

\2 2/

\n-r\r\2.) \2/

If the chances of the occurrence of positive and negative partial

errors is not equal ; \ must be replaced by the requisite fractions.

To find the greatest term in the expansion of the binomial (x +_)-)"> find

s-
x-Vy

If J is a whole number there are two equal maximum terms, the

j"^ and the (j-+ i)"', if j be a mixed number neglect the fractional part,

and the
(
j 4- 1 )**> is the maximum term. The maximum term expresses

the most frequent and most probable case.

If there are lOO partial errors, the maximum term is the fifty-first,

the chance that all are positive or all negative is 1/1.27x10^°; the

chance that one error is positive or negative and the rest negative or

positive is 100/1.27X 10^"; the chance that half are positive and half

negative io'*/i.27 x 10^", or about 1/13 ; and these chances represent

the average occurrence of each combination in a large number of

instances.

2. Bertrand : ProbabiliU's, Introd. ,
xxxix.



CHAPTER XIV.

MEANS.

The word means^ is used in mathematics to signify

a term or a series of terms inserted according to a

given rule between two given extreme terms. The
eleven different kinds of means, which were recognized
in the middle ages, have only an antiquarian interest.

The use of the term in science is entirely different.

When one observation only has been made, the

result must be taken as the most probable value of

the quantity measured, since no further data are

available. If several results have been obtained,

which differ slightly owing to errors of observation,

it is generally assumed that the most advantageous
and most probable approximation to the true value

can be found by taking a mean of the results. In

scientific language then, the word mean signifies a

value derived from a series of observational results,

and intermediate between them, which is believed

to express the most probable and most advantageous
value of the quantity measured.
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Many varieties of means are conceivable, and the

choice in any special case depends upon several

considerations.

Thus we may range the results obtained in the

order of their magnitude and take the middle term,

the median, as the most probable mean. We may
count the number of results lying between equal

narrow limits, and assume that the value which

occurs most frequently, the mode, is the most pro-

bable mean. We may assume that the sum of the

positive is equal to the sum of the negative errors,

and take the arithmetical mean of the observational

results by adding them all together and dividing by
the number of them. This mean is far the most com-

monly used, and is generally spoken of as the mean.

Some mathematicians regard the assumption that

the arithmetical mean is the best and most probable

value to choose as axiomatic; others, with Encke,

have attempted to prove it, but all the proposed

proofs are more or less unsatisfactory. The most

advantageous and the most probable mean need not

necessarily coincide, and in each case a different

"law of error" gives a different result.

If the usual form of the law of error holds good
and the observations are sufficiently numerous, the

median, the mode, and the mean coincide, and the

last is generally adopted for convenience of calcula-

tion
;
but the least unsatisfactory proofs of the law

of error depend upon the assumption that the arith-

metical is the most probable mean.^
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If we assume with Laplace, that the mean, which

makes the sum of the squares of the errors least,

is most advantageous, we again arrive at the arith-

metical mean.^

As we are not justified in assuming that the mean
of a series of observational results is exactly equal to

the actual quantity measured, we cannot in strictness

call the difference between the mean adopted and

any observational result the error of the observation
;

the word residual is generally used to express this

difference. Of course, if the mean is assumed to be

equal to the true value, the residuals become equal
to the errors.

REFERENCES AND NOTES.

1. De Morgan: "Mean" in English Encyclopcedia. The word

mean is derived from the Old French meien, a contracted form of the

Latin medianus, from medius.

2. Cf. Airy : Theory of Errors, p. 53.

3. Cf. Chauvenet : Method of Least Squares, p. 476. The common
method by differentiating is not quite satisfactory.



CHAPTER XV.

"

THE LAW OF ERROR.

It is a matter of much interest and importance to

find a formula which will connect the number of

errors of any g-iven magnitude with that magnitude,
or if y expresses the number of errors equal to ±x
to determine the form of the function j/

=
(p(xy.

The general problem of connecting the frequency
and magnitude of occurrences in any given case by
an equation or curve is very difficult, and can only
be solved approximately,^ but in the case of errors

of observation the problem is simplified by the fol-

lowing considerations. Positive and negative errors

are found to be about equally numerous, x must

therefore occur only in even powers ; comparatively

large errors occur very rarely, hence jf must decrease

very rapidly as x increases.

Several different lines of argument, no one of which

is quite free from objection, lead to the equation

y —. g- x"-ic-i
^
vvhere e is the Naperian base 2.718..., and c

is a numerical value of the same kind as x, which
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is known as the modulus.^ \{ h be written for \\c,

the equation is conveniently expressed as

y = exp. (
—

/^lt'2),

and Jl is called the measure of precision of the

observations, since the more accurate they are the

greater is h. In any given case c or h can generally
be put equal to one, or omitted, if it be remembered
that all measurements and values are given in terms

of them.

The value of j corresponding to any value of Jix

is easily found, and from these values the graph
can be traced.^

hx
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on each side of it
;

it rapidly approaches, though it

never meets, the ;r-axis. The area of the whole

curve is cjiz^ 1.77245 x c. If the base between any
two abscissae -\-x and —x be divided into a number

of small parts, each equal to a, and ordinates be

drawn at each subdivision, the area contained by
the curve, the base, and the two extreme ordinates

is nearly

rt {one extreme + all the intermediate ordinates}.

More exact values are obtained by integration.^

The probability of the occurrence of an error

< ±x is expressed by the ratio of the area contained

between the curve, the two ordinates at +-1' and

—X, and the .r-axis, to the area of the whole curve.

The value of this ratio for different values of x is

given in the second column of Table I.

In practice, it is more convenient to replace the

modulus by one of the following so-called
"
errors

"

obtained by calculation from the residuals.

If all the positive residuals be added together, the

sum divided by the number of them gives the mean

positive error
;

the mean negative error may be

obtained in the same way from the negative residuals.

Half the sum of the mean positive and of the mean

negative error gives the mean error;

M..Y.. = c\J'K = cY. 0.564189.

If the sum of the positive and the sum of the negative

residuals do not differ much, as is usually the case

when the observations are numerous, all the residuals
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may be added together without regard to sign. The

sum divided by the number gives the M.E.

If the squares of the residuals be added together

and the sum be divided by the number of observa-

tions less one,^ the square root of the result gives

the error of mean square ;

E.M.S. = c/x/2 = ^ X 0.707 1 07.

The E.M.S. can also be obtained by subtracting n

times the square of the mean from the sum of the

squares of the observational results, dividing by

n—i, and taking the square root of the quotient.

The probable error is an error of such a value, that

half the results lie on each side of it, so that it is

an equal chance if any given error is greater or less

than the probable error. It is the value of x which

bisects each half of the probability curve.

P.E. = ^ X 0.476948.

Some writers, especially in America, call the E.M.S.

the mean error, omitting all notice of the true M.E.

Though it is really immaterial which of these errors

is adopted for practical use, generally either the
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E.M.S. or the P.E. is selected. The modulus, the mean

error, the error of mean square, and the probable error,

are represented by four positive, and by four negative

abscissae, as shown in the figure. They are con-

nected by the numerics shown in the preceding table.

A convenient test of the fidelity of the observations

and of the accuracy of the calculations is afforded

by the fact, that in any sufficiently numerous series

of observations, the mean of the squares of the errors

divided by the square of the mean of the errors is

constant
;

Thus twenty-four readings of a certain angle in the

United States coast survey gave 3.84/2.56=1.5.

Though the safe application of the law of error

or of results derived from it requires the considera-

tion of a considerable number of results, it may be

sufficiently exemplified by the use of a small number.

Suppose the following five readings of a barometer

have been obtained :

M.M.
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The mean result is 760 M.M., and the sum of the

residuals is nothing. The E.M.S. is

J.01 18/4= ±0.0543.

The probable error of any one observation is

0.6745 X E.M.S.

The probable error of the mean of n observations is

0.6745 X E.M.S.//v/;^ or 0.6745 X 0.0543/^5^= ±0.0164.

Hence it is an equal chance that 760 M.M. does not

err in excess or defect of the true value by so much

as ±0.0164 M.M.

The square root of the sum of the squares of the

residuals multiplied by the proper number from

Table II., gives the probable error of any one of, or of

the mean of all the observations.

If the abscissa be measured in terms of the pro-

bable error, instead of in terms of the modulus, or

if t be written for 0.479636 x ;r/P.E., the area of the

curve cut off by each positive and negative ordinate

represents the number of observations, the error of

which is smaller than the abscissa. Thus, if /= i,

half the observations have errors < i. The ratio of

the area cut off by a given abscissa to the total area

of the curve is given in the third column of Table I.

Airy found the probable error of 636 Greenwich

observations of the N.P.D. of Polaris to be o".57ii.

To find the number of observations with errors > 2",

take /=27o".57ii =3.5 nearly. From the table, if

/=3.5, 7^=0.98176, hence the proportion of results
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with errors greater than 2" is 0.01824; or out of 636

observations, 636x0.01824 or about 11.6 may be

expected to have errors greater than 2".

Since all the proofs of the law of error are more or

less unsatisfactory, a series of reductions of a great

number of accurate observations, such as those of

Airy on Polaris, and of Bessel on Sirius and Altair

are extremely valuable, since they show that the

numbers given by theory are in very fair accordance

with those actually found. In each case, however,

comparatively large errors were found to be rather

more frequent than theory warranted. This shows

that the extension of the theoretical limits to ± 00 has

not introduced any inaccuracy.

The ordinate through the vertex of the ordinary

probability curve may be considered from three points

of view :

(i.) Since the ordinate bisects the area enclosed by
the curve and the base, the sums of the magnitudes
of the errors on each side of it are equal. It is the

ordinate "to which the arithmetical mean of all the

different values directs us."

(ii.) Since the ordinate bisects the base, an equal

number of observational results lie on each side of it,

or it corresponds to the median.

(iii.) Since it is the maximum ordinate, the result

'no error' which it represents is more probable than

a result with any given error. It has been called "the

mode" by Prof K. Pearson.

If, then, the curve representing the frequency of
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errors be symmetrical, as is most generally the case,

the mean, the median, and the mode coincide. If,

however, the frequency curve be cut short or be skew

these three kinds of means may differ more or less

widely, and it becomes a matter of doubt and

difficulty to select the most advantageous and most

accurate one in any given case.

REFERENCES AND NOTES.

1. Mansfield Merriman : A Text-book of Least Sqziai-es. The prac-

tical and theoretical portions are separated, so that the book can be used

without much mathematical training. A useful bibliography is given.

Chauvenet : The Method of Least Squares ; a reprint of the well-

known manual of astronomy.

Airy : The Errors of Observations, more difficult.

2. Pearson: Phil. Trans., 185, A. 72.

Sheppherd : On the Geometrical Treatment of the Normal Curve,

etc. ; read R.S., Nov. 25th, 1897.

3. Edgeworth : Trans. Camb. Phil. Soc., 18S7. xiv. 2. 138, dis-

cusses several possible laws of error.

Glaisher : Mem. Astron. Soc., 1871. 2. xxxix. 75, criticises various

proofs of the ordinary law of error.

Herschel : Essays, 398, gives a simjale proof of the law of error,

which, however, is far from being universally accepted as satisfactory.

4. logt'-'''*^=
- o. 43429/rJt-2.

5. To integrate / e-'^'^l'^-, that is to find the area of the probability

curve or of a portion of it cut off by two ordinates. If all values

are expressed in terms of the modulus ^ = I . Since the curve is

symmetrical

/ e-^yx = 2 (?-'^Va = 2 /%-^Vj; + 2 / e-^'Mx.

-00

To mtegrate / e-'^dx - k suppose.

»i

L.N. F
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Write ax for x, and therefore adx for dx,

/ e~"-''''a dx - k.

"o

Multiply by <?-%

r I °°^-„2,i+^2,^ ^^^ ^^ ^ rke-'^'da =
/C'2,

U

but
^r^-«^(i+*^)^(«2)=-^

^

2 / 2 I + ;r''

.-.

j
6'-^Vx = 2/- = v^T^

= 1 .77245385 • ;

— ao

also, 2 / e-^'^dx = -F (
-

j

=
>,'7r.

If jf^ be small write in the exponential value,

r^i „ , f^i / x^ X* x^ \ ,

e~^-dx= / I + + etc. ]dx,
J J \ I 1.2 1.2.3 J

f=" , ,
r I x^ 1 X^ I A-'?

,

x2«^ ~i^
e-'^^dx=\x + —

±7 Ti
/ L 23 1.25 1.2.37 2«-I «-lJ

,00 _
If Xi be large, integrate / e~^'dx, and subtract the result from \TrJ2.

Write x^=j>, 2xdx = dy, dx = h,y~}dy,

d- = - dy + -^ dy ;

a a ' a

where in the given case m =
^, a = ~

1,

aj a a a a J
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subsliluting their values for y, ni, and a,

r.-Vx-P— -''i --L+J^3__i^_3^^ i-3-5-^^|T
j

'

'^^-\_2X\J- 2X-^(2XT~ (2A-2)3

*
(2;t:2)»-l J J

The values thus found for these integrals are doubled and divided by

slv to give the ratio of the area of the curve between a positive and

negative ordinate to the total area of the curve.

De Morgan, "Probability," Eiic. MetropoL, gives very complete

tables.

The integral found above expresses the relative probability of an

error less than x, in very exact work the probability of an error ±x
must be added, and the formula becomes

-j= e-=''dx^--e-^- ,

where a is an infinitesimal thickness arbitrarily given to the ordinate,

it is usual to add half the tabular difference to the entry, cf.
" Proba-

bility," Enc. Brit.

The last column of Table I. is obtained by writing 0.476948X for x

in the series.

6. If it could be assumed that the mean of the results gives the

true value of the quantity observed, the sum of the squares of the

residuals divided by their number would give the (e.m.s.).^

But suppose, as is more probably the case, that the mean differs

from the true value by a small quantity /, each residual v differs from

the error {v±k), and the sum of the squares of the true errors is

\v±k^ or [z/2]±2/-[zO + «/J2_

Since [z/]
= o the second term vanishes, and the squares of the

residuals must be corrected by a small quantity nk"^.

It is generally assumed that the best approximation is to suppose

nk''- = (e.m.s.)^

hence «(e.m.s.)2
-

[v'^]-\-(k.m.s.)^ ;

., (E.M.S.)2 = i^.
« - I



CHAPTER XVI.

THE WEIGHTS OF OBSERVATIONS AND THE
GENERAL MEAN.

It has been assumed hitherto that every observation

is equally good, or that there is no reason for con-

sidering one better than another. In practice this

is by no means always the case
;
some results may

have been obtained under unfavourable conditions,

by less skilful observers, or with less perfect instru-

ments.

It is generally best to reject entirely observations,

which there is any real reason for considering less

satisfactory, but the rejection of doubtful results is

a most delicate and difficult subject. Great care

should be exercised, that it never takes place con-

sciously or unconsciously in favour of a preconceived

theory, by which the judgment is very liable to be

biassed.

In some cases it may be better to retain the

doubtful results, but to diminish their effect upon

the final result.

84
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The opinion of the observer as to the value of

different observations is expressed by multiplying
each result by a number supposed to represent its

relative weight ;
this is equivalent to assuming each

observation to be repeated a number of times in

proportion to its supposed accuracy. The fictitious

results thus arrived at are dealt with just as though

they were real, and the "
general mean "

is obtained

by multiplying each observation by its weight,

and dividing the sum by the sum of the weights.

Theoretically, the weights of different series of

observations of the same quantity are inversely pro-

portional to the squares of their errors of mean

square, but generally numbers supposed to represent

the weights are arbitrarily assigned.

The following results were obtained by different

observers, and methods for the " available oxygen
"

in a solution of potassium permanganate.

A 23.10; B 22.77, 22.55; C 22.58, 22.69;

D 22.27, 22.67, 22.52 ;
E 22.71, 22.67.

If all the results are taken as of equal value, the

mean is 22.653 ;
but the values are not equal.

D were obtained by the hydrogen oxalate method,
and are liable to error due to moisture, hence we

may give them the arbitrary weight 2
;
B and C

were obtained by the iron method with ordinary

burettes, but C are rather closer together than B,

hence we may assign the weight 4 to B, and 5 to C.

E were obtained by the same observer as B with
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a weighing burette weight 6, and A was obtained

by the teacher, the others being pupils, weight 8.

Taking values above 22 :

I.I weight 8

•77l

.55/

.58

.69

.27-

.67

•52J

•71

.67

5
Is-

6.53 44

8.80

3-08

2.20

90

3-45

To. 54

]i-34
1 1.04

U.26

I4.02

31-63

^16^^-^-^ = 0.719, hence on the above assumptions the
44

general mean is 22.72.

In any large series of observations made with all

possible care, some results, generally in excess of

the number indicated by the law of error, show a

comparatively large divergence from the mean. The

general tendency is to reject such results as mistakes,

or to weight them so that they produce little effect

upon the final result. Both these methods are un-

satisfactory, and a "
criterion

"
has been proposed by

Prof. Peirce :

^

"Observations should be rejected when the proba-

bility of the system of errors obtained by retaining

them is less than that of the system of errors obtained
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by their rejection, multiplied by the probability of

making so many and no more abnormal observations."

This theory is not universally accepted, and the

general application of it requires special tables, and

presents some difficulties. A simple criterion for

the rejection of one doubtful observation has been

proposed by Prof. Chauvenet.

If there be n observations the error of mean square

"Zfi — I

of which is e, assume that T=
,
and obtain /

2n

from Table I. One observation with the residual a

must be rejected or retained according as

« > or < 0.6745/^.

Thus if the E.M.S. of fifteen observations be o".572,

r=(30- i)/30 = o.9667 and /= 3.155.

One observation with a residual greater than

0.6745 X 3.155 XO".572=l".2l7

must be rejected.

REFERENCES AND NOTES.

I. Chauvenet : Method of Least Squares, p. 558, gives a full account

of the method with the necessary tables.

Peirce : Astiviiovn'ealJournal {Cz.m\:>. Mass.), ii., 16 1.

Airy, iv. 137, doubts the validity.

Winloch, iv. 145 answers Airy.

Glaisher, loe. cit. agrees with Airy.
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THE METHOD OF LEAST SQUARES.

The more general problem, to determine the most

probable values of a number of unknown quantities,

of which the observational results are functions, is

so complicated as to be practically insoluble, unless

the observational equations are of, or can by some

artifice be reduced to, the linear form. The most

general method of effecting this is to assume ap-

proximate values for the unknowns, and to solve

for small corrections to be applied to the assumed

values.

If the last terms of the equations have not the

same probable error, each equation must be multi-

plied by the measure of precision or square root of

the weight of the observational value, which renders

the probable error of each the same. If the number

of the equations is equal to that of the unknowns

only one value of each of the latter can be obtained.

If there are more equations than unknowns, the

equations must be so combined that the probable
88
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errors of the deduced values of the unknowns shall

be minima, or that the sum of the squares of the

errors remaining after correction for the deduced
values of the unknowns shall be minimum.

Both these results are reached as follows :

Multiply each equation by the coefficient of x in

it, and add all the equations to obtain the " normal

equation for ,t-." Proceed in the same way to find

normal equations for y, 2 and the other unknowns.

The normal equations are equal in number to the

unknowns, and when solved give the most probable
values for them.

Thus to find the most probable values for x, y, z

from the five equations

A'= 10, y— x='J, x— s=2, y=iS, y — a= g.

x= 10 y=iS —y+ ^ = —
9

—j+ .i-=— 7 J/— .1-= 7
—x+,o'= — 2

—z+x= 2 y — ,a=g

^x-y-z= 5 -.r+3j-.3-=34 -^-7+ 20=- 11

are the normal equations for x, y, and z.

Solving by any method we find

,r=io|, y=i7i, z=8l,

as the most probable values for the unknowns.
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CONDITIONED EQUATIONS.

The unknown quantities are sometimes subject to

conditions, which, if exact, they must rigorously

satisfy. Thus all the angles measured in one

plane round a point must be equal to 360', all

the angles of a plane triangle must together equal
180°. The sum of the weights of the constituents

of a body must be equal to the weight of the

body.
In such a case to obtain the most probable values

one of the unknowns is eliminated by the aid of

the conditional equation ;
the normal equations of

the other unknowns are then formed and solved in

the ordinary way.

Suppose that the angles between the normals to

the faces of a triangular prismatic crystal have been
found to be 0=i2f 10', 0=119° 36', \^=ii9° 30',

the sum of which is 360° 16', instead of the true

value 360°.

Write + «/»
=

360-1,/,
= 240° 30', and there are

90
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now three equations to determine and ^, the

normal equations are

20+ = 361' 40', e+ 20=36o°6',

.'. Q= 121° 4' 40", 0=119' 30' 40", -f
= 1 19° 24' 40".

In all cases it is safer and more satisfactory to give

both the uncorrected observational results and those

which have been reduced for further use
;
since the

former furnish the real test of the accuracy and

fidelity of the experiments, and obviate any uncon-

scious tendency to
" cook."

The percentage composition of a substance must

theoretically add up to 100, some chemists multiply

or divide their results to get rid of discrepancy, or

leaving one result undetermined, calculate it by
difference. In accurate work both these practices

should be avoided. Far too often a valuable product

or a considerable error has been overlooked by being

reckoned as a difference. Again, in stating the

results of an analysis, it is well to give the absolute

amount, or at least the percentage of each substance

found, and not, as is too often done, only the percent-

ages of the substances, which the radicals actually

found are supposed to form. In a water analysis the

amount of sodium, magnesium, and chlorine present

should be stated as well as the percentage of sodium

chloride and of magnesium chloride.
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GENERAL FORMULAE.

It frequently happens that a series of values of two

or more inter-dependent quantities have been deter-

mined by observation, and it is required to find a

general expression for one in terms of the other. A
general formula decreases the burden on the memory,
and enables us to find values intermediate between

those given by observation, or even to a certain

extent beyond them.

The problem is essentially an indeterminate one,

since various formulae can be found, which will express
the results within the limits of the errors of obser-

vation
;
but the formulae may be so cumbersome as

to be practically useless.

In general it is very difficult to find a suitable

formula if more than two variable quantities are con-

sidered at once
; though two or more known formulae

may often be used simultaneously.

Thus, if we wish to find the change in volume of a

mass of gas produced by change of temperature and

92
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change of pressure, keeping the temperature constant

we find the relation between volume and pressure,

and then keeping the pressure constant we find the

relation between volume and temperature. Had all

three quantities been allowed to vary together, it

would have been difficult to determine the two

formulae at once, though, when found, they are easily

used in conjunction.

There are three common methods of attempting to

find a general formula, which are usually tried in the

following order: by deduction from general principles

the form of the function connecting the quantities is

determined, the constants in the formula are then

found from the experimental results
; by graphical

methods, which essentially consist in drawing a curve

through the observational results suitably plotted out;

by the trial of a succession of purely empirical

formulae, until one is found which expresses the results

within the limits of error and with sufficient con-

venience.

If no sufficiently convenient formula can be found,

and the results are frequently required, they are

generally tabulated.

Considerable practice and skill is required in the

application of each of these methods, and no rules can

be given which will apply in every case, or even afi"ord

much assistance. All the observational results must

ht fairly represented by the formula, but it must not

be expected that they can be exactly represented. It

is usually assumed that the variable and variant

OF THB
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change continuously, unless a marked change of state

or conditions occur, but this general rule must not be

too much relied upon, as we may not know when a

sufficient change takes place.

Suppose a body is dropped from a height down a

coal-mine, the attraction of the earth varies at first

inversely as the square of the distance of the particle

from the centre, but, when the surface of the earth

(considered homogeneous) is passed, the attraction

varies directly as the distance of the particle from the

centre.

If a ray of light be passed from water to air, and

the angle between the ray and the normal be grad-

ually increased, at 48° 30' the light ceases to emerge
at all.



CHAPTER XX.

THE DEDUCTIVE METHOD.

Too little is known as to the ultimate constitution

of matter to enable us safely to deduce formulae in

the majority of cases which occur in physics and

chemistry. Even in mechanics and astronomy the

method must be used with great caution, and the

results obtained are in general only approximate.
It has been applied to determine the equations

representing planetary orbits, the figure of the earth,

atmospheric refraction, and the measurement of

heights by the barometer.

Suppose it be desired to find a formula giving
the value of the attraction of the earth (g) in difi"erent

latitudes
{<}>). Assuming the earth to be a homo-

geneous spheroid of small eccentricity {e), we find

.^^=.-o(i+^sinv)

But the earth is not a true spheroid, it increases

rapidly in density towards the centre, and it is in

95
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rapid rotation
;

hence the above formula can be

only a rough approximation to the truth, though
we may adopt the form of it. In fact the value

of e^1 10 is about 0.000665, while that of the coefficient

found by observation is 0.00534.

The exact representation of any phenomenon or

change, which actually occurs, by mathematical

symbols and processes is impossible ;
an analogous

but much simplified case must be assumed and

worked out, various small corrections being intro-

duced, when possible, to fit the results to the actual

facts.

Thus it is frequently assumed that solids are rigid

and without weight, that liquids are without internal

friction, that gases are perfect, that the earth is at

rest, and that gravity acts towards its geometrical
centre. Material particles are treated merely as

centres or points of application of force, and small

surfaces of emission as though they were points.

It is a good and humbling exercise to compare
the theoretical action of a lever of the first kind

with the actual action of a crowbar in lifting a

stone. How many small changes are neglected ?



CHAPTER XXI.

GRAPHICAL METHODS.

Owing to their simplicity and convenience, graphical
methods^ are very frequently used for three different

purposes : to record and connect a series of separate
observations

; by the aid of special instruments to

keep a continuous record of a perpetually changing

quantity ; or, in cases where great accuracy is not

required, to replace calculation by the measurement

of lines which represent quantities and directions.

Graphical methods of the third kind have recently
been introduced with considerable success into

practical mechanics and engineering, but apparently
have not yet been found of great utility in physics
and chemistry, hence they may be omitted from

further consideration. The other two applications of

graphical methods must be treated rather more fully.

The observational results are plotted by pricks,

dots, or cross lines on a sheet of metal or paper,^ ruled

into squares of a convenient size. A curve is drawn

by the free hand or by the aid of a flexible lath of
L.N. G
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wood or steel, so as to pass as evenly as possible

among the dots. The curve is assumed to give the

most reliable expression for the general formula con-

necting the experimental results, and deviations from

it are assumed to be due to errors of observation.

The problem of drawing a curve through any given

points is essentially an indeterminate one, since any
number of curves can be drawn to pass through all

the points. Hence other assumptions, such as the

following, are introduced. The curve with the fewest

changes of curvature, which passes through many of

the points, and within a comparatively small

distance, representing the probable error of the

observation, of the majority of the rest must be

selected. Nearly an equal number of the experi-

mental results should lie on each side of each small

portion of the curve. Very few experimental points

must be at a comparatively considerable distance

from the curve selected.

It is evident that the form of the curve adopted

depends much upon the judgment of the operator ;

and that two operators might represent the same

series of results by different curves, especially if they

considered the probable error of the observations, as

having very different values. One might consider the

probable error as comparatively large, and prefer a

simple curve which did not represent the experiments

very closely. Another might consider the probable

error very small, and prefer a more complicated curve

passing more nearly among the experimental points.
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A third might consider it more in accordance with the

experimental results to use instead of the complicated
curve two or more simpler curves which intersected

one another.

Imagine a steel wire, a square millimetre in section,

and 20 metres long, to which a light scale pan is

attached, suspended vertically. If a weight of i kilo,

be placed in the pan, the wire stretches i MM. A
second weight of i kilo, produces a second stretch of

I MM., and so on. This connection, the simplest we
can have between any two quantities, is expressed by
Hooke's law :

" Ut tensio sic vis."

Draw two straight lines at right angles, which

meet in the point O, call the horizontal line (which is

generally by convention drawn from left to right) the

,i'-axis, and the vertical line the j-axis. Measure off

units of weight parallel to x horizontally, and units of

increase of length parallel \.o y vertically.

We thus obtain a series of intersections of the x
and y ordinates, through which the straight line OP
can be drawn, this line represents the connection

between the stress and the strain, or the result of our

experiments. If we wish to know the strain corre-

sponding to any stress, or the stress corresponding to

any strain, we have only to draw the ordinate repre-

senting the given quantity, and then to measure the

ordinate representing the unknown quantity. In this

special case the two ordinates are equal.

A very small proportion of the observational results

are accurate, even so far as our means of measure-
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ment extend, hence, in the great majority of cases,

the points, which represent them, do not He upon, but

upon one side or the other of the straight Hne. A
test of the accuracy of the observations and of the

care with which the hne is drawn is afforded by the

equal distribution of the points on the two sides of

each part of the Hne, and by the relatively short

distances they lie away from it.

Invaluable as the graphical method is in very many
cases, and useful as it always is, in extremely accurate

work the errors introduced by it become comparable
with those due to the observations, and therefore it

cannot be entirely trusted.

A graphical reduction comprises five operations,

each liable to error. Measurement of the abscissae,

measurement of the ordinates, drawing the curve,

measurement of the abscissa, measurement of the

ordinate of the new value required.

There is a certain limit of size beyond which in-

crease of the scale does not conduce to increase in

accuracy, and this limit seems to be about a square

metre, so that the unaided eyesight can only read to

about 1/2000.

No result is accurately represented by a point, but

more truthfully by a circle, the radius of which is

equal to the
"
probable error

"
of the observation

expressed on the same scale as the diagram. So far

as that one observation goes, no evidence is afforded

against any curve which cuts the circle.

It is very difficult to assign the accuracy attainable
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by this method. Probably most draftsmen would con-

sider it greater than i/iooo of the quantity measured,

or, that the third figure is accurately represented, few

would claim for their work an accuracy of i/ioooo, or

that the fourth figure is exactly true.

Suppose that an ordinate of length a makes a

small angle, the circular measure of which is 0, with

the true normal to the base, the error in the position

of the extremity of the ordinate is nearly aQ, or if

be i', about 1/3400 of the length of the ordinate.

When the quantity observed varies rapidly or

irregularly, a continuous series of observations is

required to record its changes, hence much trouble is

saved, and frequently accuracy is gained by making
the instrument self-recording.

Many different forms of recording instruments are

in use, but almost all depend upon two actions.

Instead of reading the instrument, the result is

photographed upon a sheet of sensitive paper, either

stationary or slowly moving by clock-work. When

developed the sheet gives a continuous record of the

observations. An ink-pencil connected with the

instrument moves over a sheet of paper, either

stationary, connected with some other moving part of

the instrument, or with independent clock-work
;
the

paper may be flat or more usually rolled round a

cylinder. The paper is sometimes replaced by
smoked glass, and the ink-pencil by a pointer.

One of the simplest recording instruments is

Jordan's Sunshine Recorder, in which sunshine passing
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through a slit in a brass box acts upon a sheet of

sensitive paper placed below. In this case the sun

itself acts as the clock, and simply records the times

at which it is powerful enough to affect the sensitive

paper.

In Watt's Indicator, a pencil connected with a

piston pressed down by a spring, records the pressure
of the steam in the cylinder of an engine on a sheet

of paper rolled on a drum, which rotates in connection

with the piston rod of the engine. The closed curve

traced out records at any time the pressure and the

volume of the steam in the cylinder of the engine.
The area of the curve measured by a planimeter gives
the work done by the steam.

The marvellous instruments invented by Lord
Kelvin " to record and predict the height of the tide

at any given place, furnish a more complicated but an

almost theoretically perfect example.
The tide raises or lowers a float which records its

position by means of an ink-pencil upon a sheet of

paper rolled on a cylinder rotated by clock-work.

When the sheet is unrolled the tide-gauge thus

gives a continuous record of the state of the tide,

as a sinuous line traced on a flat sheet of squared

paper.

This sheet of paper is then put into a very com-

plicated machine, the harmonic analyser, by which the

observational results are, as it were, broken up, and

referred back to the action of the moon, the sun, and

eight minor causes.
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On supplying the ten data obtained from the

analyser to a third machine, the tide-predictor, and

turning a handle a sinuous curve is produced similar

in character to that given by the tide-gauge, but the

new curve shows the state of the tide at any future

instead of at any past time !

REFERENCES AND NOTES.

1. Hele Shaw: B.A. Reports, 1892, gives an excellent account of

graphic methods.

2. A very convenient paper of French manufacture consists of sheets

a metre square ruled into millimetre squares by dotted lines. Since

the dots are 0.2 mm. apart, o. i mm. can be estimated with fair

accuracy.

3. Kelvin: Popular Lectures III., "The Tides."



CHAPTER XXII.

EMPIRICAL FORMULAE.

There are no general rules for finding empirical
formulae

;
success depends upon tact and experience.

If the value of the function increases or decreases

continuously as x increases, some algebraic formula

will probably be suitable, but if the value of the

function increases and decreases alternately, a series

of sines or cosines is suggested. When the form of

the function has been chosen by the aid of theory,

analogy, or the shape of the plotted curve, the con-

stants are determined from the results of observation,

and the calculated are compared with the observed

values.

In many cases the value of the variant may be

expressed by one or more terms of the series

where a, b, c, d are constants which may be positive,

zero, or negative.

The assumption that
f/)(.v) can be expressed in a

104
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series of ascending powers of x is by no means

always true, as it only applies to some mathematical

functions.

It is often found in practice that the number of

terms required renders the series unmanageable.

There are several methods of determining the con-

stants, one of the simplest of which is as follows.

By subtracting the constant term in the series,

reduce each equation to the form

u^
=

bx^+ cx^"+ dx^.

Subtract each equation from the one below it, divide

by x^—x^ and similar terms, write

8u, = -2JZZfi = 1;^ X.,+ -r,
c+ .1-2+x^^+x^ d,

?/o
— n

Su.^
= ^ ^ = l>+x.,-hx, c+x^-\-x^,+ x^ d,

^3 -^2

U, — U
(5//3

=
-^ ^3^^+x^+X3 c-[-x^-+x^x^-\-x^ d\
x^-x.^

subtract again, and divide by x^—x^ and similar

terms,

S\ = ^ -2 ^ = c+x^+x^+x^ d,

'^'s-'h

Su„ — Sih
S'^u,= ^-'^=^c+x,+x.,-\-x.,d;

subtracting again, and dividing by x^—x^,

8^u^
= d.
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Substituting successively in the equations

c= S^u^
—

A'3 +x^-\-x^ S^u^,

^= 6X-^'2+^i S\+^'s^2+^^1+^2^1 8^^h'

a = u — bx— cx^— dx^.

When, as occasionally happens, x^, x^, x.^
are in

arithmetical progression with a common difference /r.

r, ^/o
— U,

^ '~
2/1'

'

Owing to errors of observation the differences

found are never exact. Dr. John Hopkinson^ has

proposed the following convenient method for ob-

taining probable results : Add together the various

values of each quantity obtained, and take the mean
as the most probable value.

He makes the following remarks :

"
Though the

method has no theoretical basis to rest upon, it is

comparatively easy and should give the same results

in all hands, while any method of plotting and curve

drawing introduces a further series of observations

liable to personal error.
" There are three advantages :

"(a) The sum of the differences of the observed

and calculated values = 0.
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"(^) If the values in the last column of differences

regularly increase or decrease, another term must be

added to the equation.

"(f) If the differences are very irregular, there is

a want of accuracy in the observations, or the theo-

retical equation is carried further than the experi-

ments warrant."

IfN be the number of the observational equations,

each differencing removes one, so that going as far

as ^^u there are really only N—2) = n complete

equations to deal with. The following separate

values must be found from each equation, added

together and divided by ;/, so as to obtain

l^xfri, 2a'-/w, 1,x^/n,

"Ellin, 2^///^, HS^u/n, UShi/u ;

also the following rather complicated sums which

may be a little simplified :

I^ix^+ -rg -\-X2+x.^+...+ x'n+ A'-rt+] )\n

2,ZjX-, to -J-jj -|- -^ M -f 1
—

X-^
J

71

'E{.X\+.r.,+.r.^+ . . +Xn-\-Xn+i +Xn+2)/'i

3 1,X^ tO Xn+Xn+2+ 2X„.yx
—
X^
—

2X^

n

^ix^X.^+X^X.^+X-^X^ +... +XnXn+ i+ Xn+iXn+-2+^n+2^n)/^i

"EX^X.^ to X,^X„^2+2l.X^X.y tO X^.X^+i+Xn+iXn+Z— X^X.^

n

As an example of the reduction of a series of
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experimental results, we may examine the apparent

expansion of phosphorous oxide in a glass dilato-

meter determined by Dr. Thorpe and Mr. Tutton.^

r c.
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, .1063 ^
/;+ii3.2r +12814.24^' =——^ = .000939046,

I I 3-2

b+ 62.38^+ 3 89 1.

2644^^=^-1
= .000902 5 3 3,

109

/;+ 8.97r+ 8o.46o9<ri!'=
.0078

Hence
8.97

.000869565.

„ , .000036513 „

^+175.58^=—
-"g^^

= 0.0000007 1 8477

, .000032968 ^ ^
c+ 7i.35<:/=

^-^^— = 0.000000617263

I04.2 3<'/=O.OOOOOOIOI2I4.

^/= o 00000000097 1
,

<f= 0.000000548,

/; = 0.00086458 1,

a= I,

from which the following table is calculated :

X
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Though the calculated agree fairly well with the

observed results, it is probable that the experimental
results are low in the two last selected equations,

or that c and d ought to be slightly larger. Further,

d is so small, that probably the term involving it

might be neglected. In fact

u= I +0.0008 59.r+o.oooooo67;tr^

though it makes the individual differences rather

larger, renders them alternately positive and negative
with a smaller sum.

As another example, we may apply Dr. Hopkinson's
method to find the coefficients in the equation

ii = a-\- bx+ ex-

from the same experiments.

Since the values of 8-n are irregular and two of

them are negative, the experimental values are not

sufficiently accurate to require a fourth term.

From the tabular values :

f = ^-2// = 0.00000089336

b = ^u - Shcl^^,\n = Su - ^2,,
^ X

345-^+
103.6

o

= 0.00092841 —0.00000089336 X 99.31

= 0.00083969,

,r= 43.i8, ,r- = 2788.8074,

a — n — bx— cx^

= 1.0388
— 0.00083969 X 43.18
— 0.00000089336 X 2788.8074

= 1.0388—0.038749= 1.00005 1.
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Hence we find the values given under u calc. from

the equation

ti = 1 .00005 + o.ooo83969;i-+ 0.00000089336.1-^.

Since the sum of the differences is +0.00057,

0.00005 may be omitted in the first term, and pro-

bably the last figures of the other coefficients. In

fact

21= I +O.OOO84.V+ 0.00000089,1-2

gives a very approximate result, the sum of the

differences being only 0.00002.

It may be noted that

instead of 77/2. This result, and the two negative

second differences, probably point to some accidental

error in two of the experiments.

The two methods just given are usually the most

simple, and suffice to determine the constants with

considerable accuracy. But when three equations

as widely separated as the experimental results

permit have been selected and reduced to the

form

l?.x\+ ciY+ dxx
—

?/i
= o,

hx\+ cx.^+ dx.^
—

u.y
= o,

bx^-\-cx^-\-dx^
—

?i^
= o,

the constants may be determined by the theory of



EMPIRICAL FORMULAE. 113

determinants, by the rule of cross-multiplication, or

by indeterminate multipliers, which gives :

~
Xx{x.?xi - x-?Xf)+ x. {x^x-^

-
xi^x-i)+ Xz {x-cx-? - Xi^X-?)'

_ tti {x-?Xi
-

x-a'-f) + U-, (xix/
-
XyX-^+ Uz {x^x^

-
x^xj)

.r,
-

{x-hx-i
-

x-2.xi)+ x-i {xxxi - x-^x-^+ x-i {x^x-i
-
XxX.Fj

III {x.,x-i-
- xjxj)+ zh {xi-x.i

-
Xixj-) + tij {xiX-r

-
Xi'X-^

.fi^ (-l-o-lV
-

X-?Xi) + xi{XxXz
-

XiX-f)+ X-i^ {XiX.f
-

X1-X2)'

Were all the experimental results absolutely accurate,

the same values for the constants would be found

whatever experimental results were chosen, but owing
to errors of observation the values found are never

identical.

The most probable values are found as follows :

Reduce all the experimental equations to the

form

b.\\ + ci'j-+ dx.^
—

//^
= o.

If the observational results
(7/^ etc.) have not the

same probable error, multiply each equation by the

reciprocal of the probable error, by the measure of

precision, or by the square root of the weight of the

observed value in it. Equations thus prepared are

spoken of as equations of condition.

Multiply each equation of condition by the co-

efficient of b in it, and add all the equations together;

the resulting
" normal equation for b

"
gives, when

solved, the most probable value for b. Proceed in

the same way by multiplying each equation by their

coefficients to find normal equations for c and d.

L.N. H
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Writing
X2 for 2,tV-+;i^2^+ etc.,

X^ for i:x\'+xi+ etc.,

U^ for ^21yI\ +n.^ro +etc.,

^2 for lu,.x\'+ u.^v.2' + etc.;

the normal equations are

X^+X^c+X^d- U^ = o,

X^+X^c+Xhi- V^^o,

X^b+X^c+XM- C/^ = o.

After carrying the arithmetical reduction as far as

possible, the necessarily tedious solution may be

effected by substituting X^ for x^ etc., in the formula

given above. In physics and chemistry it is rarely

necessary to employ the symmetrical but still tedious

method of solution due to Gauss. The simple ex-

ample which has been used before will serve to

exemplify the method. The following values are

required, X^ X^ X\ U\ U\

45857.659/^+ 4184166.79^-42.127727 = 0,

41 84166.79Z' + 404927806^- 3861.45076 = 0,

^+ 9 1 .2448845c
— 0.0009 1 866283 = o,

b+ 96.7762 105c-— 0.00092287208 = o,

.= •oooQQ420|25 ^ o 00000076098 5.

<5 = 0.0009 1 8662 83— 0.00006943599

= 0.00084922684;

.-. // = I + 0.00084922684.1-+ o.oooooo76o985.;i^.



EMPIRICAL FORMULAE. 115



Il6 NOTES ON OBSERVATIONS.

Since x<ii^, and the experimental results are

only true to o.oooi, 0.00005/114 = 0.0000004 may be

neglected or b taken as 0.000849 ;
also x^ < 1 3000,

and 0.00005/13000 = 0.000000004 may be neglected
or c taken as 0.00000076.

We have then found the following equations :

w= I +0.00088824.1-— 0.00000013873^-2

+ 0.000000003 8446.1-^,

?/= I +0.0008645 8 i.t-+o.oooooo548;r2

+0.00000000097 \x^,

u = I +0.000859,1-+ 0,00000067,1--,

u= I +0.00084.1-+ 0.00000089.1-2,

u= I +0.000849.1-+ 0.00000076.1-2.

It is evident from the above that several different

formulae can be found, which more or less adequately

represent any given series of observational values.

It is frequently a matter of considerable difficulty

to decide which formula to select as most convenient

and sufficiently accurate. Excluding the first, the

last formula in the above case is to be preferred for

theoretical reasons.

To complete the reduction in the above case it

is necessary to allow for the expansion of the glass

dilatometer, which must be determined by another

series of observations.

If the equations representing the apparent ex-

pansion of the liquid and that of the envelope are

identical in form, and in each case the constant term

is unity and the coefficients small and decreasing;



EMPIRICAL FORMULAE. 117

when great accuracy is not required, it is sufficient

to add the coefficients and obtain an equation of

the form

otherwise the two results must be obtained at each

temperature and a new general formula must be

calculated from the sums of the two values.

From the general formula a table of the values of

the variant is calculated for equal increments of the

variable. It is convenient to take these increments

so small that intermediate values of the variant can

be found by simple proportion without the trouble

of applying an interpolation or the general formula.

If the formula involving only constants and

ascending whole powers of the variable fails, and

theory affords no clue, even the greatest tact and

experience may not succeed in finding any satis-

factory expression.

Many formulae have been suggested to express
the relation between the temperature and the tension

of aqueous vapour; the one generally preferred, which

is due to Biot, is complicated and tedious to use.

Several formulae have been employed by different

experimentalists to express the alteration in the

resistance of platinum with change of temperature.
The assumption of a new variable or variant con-

nected with the one observed may give a less

complicated function
;

thus the reciprocal or loga-

rithm of the variable may sometimes be more

easily formulated than the variable itself.
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The observational values may differ from those

given by a simple equation only for certain values,

which may be corrected by the addition of a term,

which becomes less than the errors of observation

above and below the required values. Thus a term

11 11

of the form — or - sech x becomes insensible

for positive and negative values of x which are

large compared to n. If n = 2, the function becomes

I for x=o and <o.oooi when x=±io.

Occasionally when no formula can be found to

represent the connection between two quantities

over a long range, each part of the range may be

more easily represented by a separate equation.

Thus Kopp gave four equations to represent the

expansion of water from o° to ioo° C, each of which

only held good for 25"".

If after equal increments in the value of x the

value of the function f = (p{x) is found to recur, the

form of the function is probably trigonometrical.

The simplest form of such an equation is

j/
= sin,t'

1 TT 27r Stt Stt 6x 77r
when x= o, -, —, —

, tt,
—

,

—
-,
—

, 27r;444 444
j = o, 0.7, I, 0.7, o, -0.7, -I, -0.7, o.

The curve is symmetrical and sinuous, the loops

are alternately above and below the -I'-axis, cutting

it at angles 77/4. The length of the base of each
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loop is 7r=3.i4, and its height, i
;

the length of

the curved loop is 3.8212, and its area, 2.

Comparing the curve with a cycloid traced out by
a point on the circumference of a circle of diameter

I which rolls through an angle along the base,

,r=i(0_sin0),

y= \{\ —cos Q).

The length of the cycloid is 4 and its area 2.356;

it meets the base at right angles, and lies outside

the sine curve, meeting it in the points

(o, o),
(^, ij,

(tt, o).

The sine curve expresses the passage of a radiant

vibration through the ether. A constant which

multiplies the sine is spoken of as the amplitude

of the vibration, and the recurrent value as the

phase of the vibration.

It rarely happens in practice that the loop of the

sine curve is symmetrical, and can therefore be ex-

pressed by a single term. The more general problem
is to find a curve which will pass through n points,

the abscissae of which are unequal. This can gener-

ally be effected by taking n terms of the series

y=A sin^'+^sin 2,r+(7sin 3;i'+etc.,

and determining the constants.

The simplest way to draw a curve representing

a sine series is to plot each term successively and
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add the new ordinate to the sum of the ordinates

found from the earHer terms.

To take an extreme case, since

I = (sin;r+ -sin ^x+~ sin 5,r+to co
),

7r\ ^ ^ /

y = s{nx+ sin 3,r+-sin 5,r+etc.,

gradually approximates to a rectangle, the base of

which is the ,t'-axis, the opposite side of which is at

a distance J'
=

7r/4 from it.

The cosine curve j/
= cos.sr is similar to the sine

curve, except that the phase differs by 7r/2, or the

origin has been moved along the ;ir-axis. The com-

plete expression ^^
sin (2//+ i)-II 2

cos.«'+ cos 2;ir+cos3,r+...cos ;/;r = — + — —
.

-^
2 2 . .r

sm -
2

The curve
_)'
= vers, .r= I —cos.f is also similar to

the sine curve except that it lies above the .ar-axis,

the origin having been moved to f
—

,

— i
)•

Any discussion of Fourier's series is quite beyond
the scope of elementary notes, and intimately con-

nected with spherical harmonics.^
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REFERENCES AND NOTES.

1. Hopkinson : Messenger of Mathematics, 1872, ii. , 65.

2. Thorpe and Tutton : Journal of th'i Chemical Society, June, 1 890,

P- 559-

Owing to a misprint or a slip in arithmetic my calculation does

not agree so closely with the observed values as that given by the

authors.

This example, owing to special difficulties, must not be considered

typical of the highest attainable accuracy, but merely as serving to

briefly exemplify some methods of reduction. For examples of greater

accuracy and length, consult—
Travajix et Mimoires. Bureau International des Poids et Mesures.

Thorpe and Rucker : "On the Expansion of Sea-Water by Heat."

Phil. Trans., clxvi. pt. 2, p. 405.

3. Byerly : Fo^irier's Series and Spherical Hannonics, Boston. 1893.

Gray and Matthews : A Treatise on BesseVs Functions.
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TABLE I.

X ox t
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TABLE II.

If '^{e^Y represent the square root of the sum of

the squares of the residuals of n observations, the

probable error of an observation is

0.67452 {e'-flJli^i =A1 (e'-f,

and the probable error of the mean of n observations

is 0.6745 i:{e^f/x/n{n-i) = Bl (e'f-

n.
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TABLE III.

USEFUL CONSTANTS.



INDEX.

\The figures refer to the pages.]

Amplitude, 119.

Authority, 8.

Average, 41.

Belief. 12.

Bessel's interpolation, 52.

Borda's Series, 63.

Causation, 26.

Cause and effect, 22.

Chauvenet's criterion, 87.

Computation, 17.

Conditioned equations, 90.

Deduction, 11.

Deductive formula, 94.

Differences, 46.

Differences of logarithms, 62.

Dimensions, 38.

Empirical formula;, 104,

Energy, 19.

Equations of condition, 1 13.

Errors, 66.

Errors, law of, 74.

,, of mean square, 77.

Experiment, 31.

Fallacies, 13.

General formulse, 92.

General mean, 85.

Graphical methods, 97.

Heredity, 4.

Hopkinson's method, 106.

Hypothesis, 20.

Ideas, I.

Individuality, I.

Induction, 10.

Integral [e'^'t/x, 81, 122.

Interpolation, 51.

Lagrange's interpolation, 54.

Law of error, 74.

Laws of Nature, 19.

Least squares, 88.
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Matter, 19.

Means, 71.

Mean, error, 76.

Median, 44.

Mensuration, 56.

Mode, 43.

Modulus, 75.

Newton's interpolation, 52.

Object, I.

Observation, 31.

Ofisometer, 57.

Peirce's criterion, 86.

Phase, 119.

Planimeter, 57.

Precision, measure of, 75.

Premiss, 7.

Probable error, 77.

Quartile, 44.

Reasoning, 7.

Recording instruments, loi.

Rejection of observations, 84.

Residuals, 73.

Sensation, 3.

Sine-curve, 1 18.

Subject, I.

Symbols, 12.

Tables, 122.

,, use of, 60.

Theoiy, 20.

,, of exchanges, 29.

Units, 36.

Wave-lengths, 55,

Weddle's rule, 58.

Weight of observations, 84.

Will, 22,
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