

NOVA ACTA

ACADEMIAE CAESAREAE LEOPOLDINO-CAROLINAE GERMANICAE NATURAE CURIOSORUM.

> TOMUS CI. CUM TABULIS XXXVIII.

Abhandlungen

 der

Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher.

101. Band.

Mit 38 Tafeln.

Halle, 1915. Druck von Ehrhardt Karras G.m. b. H. in Halle (Saale).

Für die Akademie in Kommission bei W. Engelmann in Leipzig.

506.43 1.58 62.101 1915 W.Stks

Seiner Majestät

Wilhelm II

Deutschem Kaiser und Könige von Preußen

ihrem hohen Schirmherrn

dem erhabenen Gönner und Beförderer aller wissenschaftlichen Arbeit des deutschen Volkes

widmet die

Kaiserliche Leopoldinisch-Carolinische Deutsche Akademie der Naturforscher

diesen einhundertundersten Band ihrer Abhandlungen

durch den Präsidenten

Dr. Albert Wangerin

Inhalt des CI. Bandes.

1.	F. Thiersch: Die Reflexion eines Parallelstrahlenbündels am Paraboloid	S.1-64.	Tab. I—IX
II.	Hans Rosenberg: Photographische Untersuchung der Intensitätsverteilung in Sternspektren	S. 65—176.	Tab. X—XXIX
III.	Richard Ambronn: Elektrische Leitfähigkeit des Bergkristalles	S. 177-268.	Tab. XXX — XXXVIII.

Vorstand der Kaiserlichen Leopoldinisch-Carolinischen Deutschen Akademie der Naturforscher.

Gegründet am 1. Januar 1652. Deutsche Reichsakademie seit dem 7. August 1687.

Präsidium.

A. Wangerin in Halle a. S., Präsident.

W. Roux in Halle a.S., Stellvertreter.

Adjunkten.

I. Kreis: R. von Wettstein in Wien;	VIII. Kreis: M. Bauer in Marburg.
J. von Hann in Wien;	IX. Kreis: E. Ehlers in Göttingen.
F. Toula in Wien.	X. Kreis: K. Brandt in Kiel.
II. Kreis: E. Wiedemann in Erlangen;	XI. Kreis: W. Roux in Halle.
R. von Hertwig in München.	XII. Kreis: E. Haeckel in Jena.
III. Kreis: P. von Grützner in Tübingen.	XIII. Kreis: W. Pfeffer in Leipzig;
IV. Kreis: F. Himstedt in Freiburg.	F. Marchand in Leipzig.
V. Kreis: G. Schwalbe in Strafsburg.	XIV. Kreis: F. Pax in Breslau.
VI. Kreis: (Vacat.)	XV. Kreis: A. Jentzsch in Charlottenburg;
VII. Kreis: F. Küstner in Bonn.	W. Waldeyer in Berlin.

Sektionsvorstände und deren Obmänner.

- I. Mathematik und Astronomie:
 - R. Helmert in Potsdam, Obmann;
 - G. Cantor in Halle;
 - A. Gutzmer in Halle.
- II. Physik und Meteorologie:
 - F. Richarz in Marburg, Obmann;
 - J. von Hann in Wien;
 - L. von Pfaundler in Graz.
- III. Chemie:
 - O. Wallach in Göttingen, Obmann;
 - E. Beckmann in Dahlem bei Berlin;
 - C. Engler in Karlsruhe.
- IV. Mineralogie und Geologie:
 - F. Becke in Wien, Obmann; W. Branca in Berlin;
 - G. Linck in Jena.
- V. Botanik:
 - A. Engler in Dahlem-Steglitz bei Berlin, Obmann:
 - S. Schwendener in Berlin:
 - H. Graf zu Solms-Laubach in Strafsburg.

- VI. Zoologie und Anatomie: F. E. Schulze in Berlin, Obmann;
 - E. Ehlers in Göttingen; M. Fürbringer in Heidelberg.
 - M. Pulsinger in Herderse

VII. Physiologie:

- S. Exner in Wien, Obmann;V. Hensen in Kiel;J. von Kries in Freiburg.
- VIII. Anthropologie, Ethnologie und Geographie:
 - G. Gerland in Strafsburg, Obmann;
 - A. Penck in Berlin;
 - J. Ranke in München.

IX. Wissenschaftliche Medizin:

W. Waldeyer in Berlin, Obmann; W. von Leube in Stuttgart; P. von Baumgarten in Tübingen.

NOVA ACTA.

Abh. der Kaiserl. Leop.-Carol. Deutschen Akademie der Naturforscher. Band CI. Nr. 1.

Die Reflexion eines Parallelstrahlenbündels am Paraboloid.

Von

F. Thiersch.

Mit 9 Tafeln (Nr. I-IX) und 30 Figuren im Text.

Eingegangen bei der Akademie am 2. Februar 1913.

HALLE. 1914.

Druck von Ehrhardt Karras G. m. b. H. in Halle (Saale).

Für die Akademie in Kommission bei Wilh. Engelmann in Leipzig.

Nachdem in neuerer Zeit die Anwendung von Reflektoren in der Astronomie wieder zunimmt (die Gründe vergleiche man bei Schwarzschild),¹⁾ hat auch die theoretische Behandlung der gekrümmten Spiegel an Interesse gewonnen. Nun ist der für die Praxis in Betracht kommende Strahlengang in der Umgebung der Achse mit der zugehörigen Brennfläche und den Fehlern der Abbildung in die Bildebene als spezieller Fall durch die grundlegenden und umfassenderen Arbeiten von Herrn Geh. Hofrat Dr. Finsterwalder²) und Herrn Prof. Dr. Schwarzschild¹) erledigt. Aber die Frage nach einer von Näherungen freien Untersuchung, bei der also Gesichtsfeld und Öffnung beliebig große Beträge erreichen, hat, wenn auch mehr theoretische Wichtigkeit, doch, insbesondere für den parabolischen Spiegel, der neuerdings mehr Verwendung findet, eine gewisse Berechtigung.

Die exakte Darstellung der Brennfläche eines parabolischen Spiegels ist bisher noch nicht geleistet worden. H. Schaeberle,³) der nachweist, dafs das "Feld" des parabolischen Spiegels nicht eben ist und dafs die Aberrationen durchaus nicht zu vernachlässigen sind, begnügt sich noch mit Näherungen. Aber selbst wo man zu strengen Gleichungen überging, blieben die Ergebnisse lückenhaft. Herr Ch. L. Poor hat in seinen beiden Arbeiten⁴) zwar für einen Achsenschnitt des Rotationsparaboloides bei schief einfallendem Parallelstrahlenbündel die Fokallänge, die longitudinale und die transversale Aberration aufgestellt, sowie den Ort, den ein Punkt der Brennfläche beschreibt, wenn bei festem Punkt des Spiegels der Einfallswinkel variiert; aber es fehlt die Untersuchung der Brennfläche selbst.

¹) Untersuchungen zur geom. Optik I — III. Abh. d. K. Ges. d. Wiss. in Göttingen. Math.-Phys. Klasse. N. F. Bd. IV 1 — 3. Berlin 1905.

²) Die von opt. Systemen größerer Öffn. und größeren Gesichtsfeldes erzeugten Bilder. Abh. d. K. bayer. Ak. d. Wiss. II. Cl. XVII. Bd. III. Abt. München 1891.

³) On a fundamental defect in the images formed by a parab. refl. Astron. Journ. XVII No. 413. Boston 1897.

⁴) The aberration of parab. mirrors a) Astron. Journ. XVIII No. 420. Boston 1897; b) Astroph. Journ. VII, p. 114. Chicago 1898.

1*

4

Auch kann man das räumliche Problem nicht aus dem ebenen durch Drehung um die Achse gewinnen. Herr Crokett¹) gibt Formeln und Figuren für die Abbildung eines unendlich fernen Punktes in die Fokalebene, insbesondere wenn der spiegelnde Punkt auf dem Paraboloid Kreise um die Achse beschreibt.

Schon früher wies Herr Geh. Hofrat Dr. Finsterwalder darauf hin, dafs die Brennlinie einer ebenen Parabel eine einfache Kurve dritter Ordnung sei,²) dafs sich ferner beim elliptischen Paraboloid Parallelstrahlen zur Achse nach der Reflexion in zwei Fokalparabeln schneiden³) und dafs sich wahrscheinlich eine Aufstellung der ganzen Brennfläche ermöglichen liefse. In der Tat kann man dies wenigstens für das Rotationsparaboloid und bei Parallelstrahlen erreichen. Das Ergebnis dieser Untersuchungen wollen folgende Seiten darstellen.

1) The parabolic mirror. Astroph. Journ. VII, S. 362. Chicago 1898.

 Vgl. auch: Crokett, The caustic of the right parabolic cylinder. Astroph. Journ. VII, S. 358. Chicago 1898.

³) Lindelöf, Note on the Caustics produc. by Reflex. Report of the XXX. Meeting of british assoc. of sc. held at Oxford 1860. London 1861.

§ 1.

Die Differentialgleichung der katoptrischen Linien.

Lindelöf hat die Differentialgleichung der katoptrischen Linien bei Spiegelung an der allgemeinen Fläche z = f(x, y) für den Fall aufgestellt, dafs das Licht parallel zur Z-Achse einfällt:¹)

$$\left(\frac{dy}{dx}\right)^2 + \frac{r-t}{s} \cdot \frac{dy}{dx} - 1 = 0$$

wo r, s, t die zweiten Ableitungen von f(x, y) sind.

Eine entsprechende Gleichung soll nun für schief auffallendes Parallellicht aufgestellt werden.

Sind α , β , γ die Winkel, die die Normale R des spiegelnden Flächenelementes mit den Koordinatenachsen bildet, λ , μ , ν die des einfallenden Lichtstrahles, so sind die Winkel ξ , η , ζ des reflektierten Strahles gegeben durch:

 $\cos \xi = \cos 2\alpha \cos \lambda + 2 \cos \alpha \left(\cos \beta \cos \mu + \cos \gamma \cos \nu \right)$ $\cos \eta = \cos 2\beta \cos \mu + 2 \cos \beta \left(\cos \gamma \cos \nu + \cos \alpha \cos \lambda \right)$ $\cos \zeta = \cos 2\gamma \cos \nu + 2 \cos \gamma \left(\cos \alpha \cos \lambda + \cos \beta \cos \mu \right)$ (1)

oder mit Hilfe des Winkels u zwischen einfallendem Strahl und Normale:

$$\begin{array}{c} \cos\xi = 2 \cos\alpha \cos u - \cos\lambda \\ \cos\eta = 2 \cos\beta \cos u - \cos\mu \\ \cos\zeta = 2 \cos\gamma \cos u - \cos\nu \end{array}$$

$$(1')$$

Ist nun wieder z = f(x, y) die Gleichung der spiegelnden Fläche mit den ersten Ableitungen p, q und den zweiten r, s, t, so erhält die Normale im Punkt x, y die Richtung:

1) Lindelöf, a. a. O.

$$\cos \alpha = \frac{p}{\sqrt{p^2 + q^2 + 1}}, \ \cos \beta = \frac{q}{\sqrt{p^2 + q^2 + 1}}, \ \cos \gamma = \frac{-1}{\sqrt{p^2 + q^2 + 1}}$$

also der reflektierte Strahl:

$$\cos \xi = \frac{1}{p^2 + q^2 + 1} \left[(p^2 - q^2 - 1) \cos \lambda + 2p (q \cos \mu - \cos \nu) \right] \cos \eta = \frac{1}{p^2 + q^2 + 1} \left[(-p^2 + q^2 - 1) \cos \mu + 2q (-\cos \nu + p \cos \lambda) \right] \cos \zeta = \frac{1}{p^2 + q^2 + 1} \left[(-p^2 - q^2 + 1) \cos \nu - 2 (p \cos \lambda + q \cos \mu) \right].$$
(2)

Um zu den katoptrischen Linien zu gelangen, muß man jetzt die Bedingung aufstellen, daß die in zwei benachbarten Punkten der Fläche x, y und x + dx, y + dy reflektierten Strahlen einander treffen. Für zwei Gerade:

$$x = x_0 + \varrho \cos \xi, \quad y = y_0 + \varrho \cos \eta, \quad z = z_0 + \varrho \cos \xi$$
$$x = x_1 + \tau \cos \xi_1, \quad y = y_1 + \tau \cdot \cos \eta, \quad z = z_1 + \tau \cos \xi_1$$

ist diese Bedingung:

und

also in unserem Fall:

 $\begin{array}{lll} \cos \xi & \cos \left(\xi + d \, \xi \right) & dx \\ \cos \eta & \cos \left(\eta + d \eta \right) & dy & = 0 \, ; \\ \cos \zeta & \cos \left(\zeta + d \, \zeta \right) & dz \end{array}$

d. h. nach Weglassen gemeinsamer Faktoren:

 $\begin{array}{l} (p^2 - q^2 - 1) \ \lambda + 2p \ (q \ \mu - \nu) & \left[(p + d \ p)^2 - (q + d \ q)^2 - 1 \right] \ \lambda + 2 \ (p + d \ p) \left[(q + d \ q) \ \mu - \nu \right] \ dx \\ 0 = (-p^2 + q^2 - 1) \ \mu + 2 \ q \ (-\nu + p \ \lambda) & \left[-(p + d \ p)^2 + (q + d \ q)^2 - 1 \right] \ \mu + 2 \ (q + d \ q) \left[-\nu + (p + d \ p) \ \lambda \right] \ dy \ ; \\ (-p^2 - q^2 + 1) \ \nu - 2 \ \cdot \ (p \ \lambda + q \ \mu) & \left[-(p + d \ p)^2 - (q + d \ q)^2 + 1 \right] \ \nu - 2 \ \cdot \ [(p + d \ p) \ \lambda + (q + d \ q) \ \mu] \ dz \end{array}$

hierbei ist zur Abkürzung statt $\cos \lambda$, $\cos \mu$, $\cos \nu$ nur noch λ , μ , ν geschrieben, so dafs $\lambda^2 + \mu^2 + \nu^2 = 1$ ist.

Wird nun die zweite Kolumne von der ersten subtrahiert, dann dp^2 , dp dq und dq^2 vernachlässigt, ferner die p fache erste und die q fache zweite Zeile von der dritten subtrahiert, so erhält man nach Wegdividieren von 2 $(p^2 + q^2 + 1)$

$(p^2 - q^2 - 1) \lambda + 2p q \mu - 2p r$	$(p dp - q dq) \lambda + (p dq + q dp) \mu - dp \cdot \nu$	dx
$0 = (-p^2 + q^2 - 1) \mu - 2q \nu + 2p q \lambda $	$(-p dp + q dq) \mu - dq \cdot \nu + (p dq + q dp) \lambda$	dy
$p \lambda + q \mu - \nu$	$dp \cdot \lambda + dq \cdot \mu$	0

Da
$$dp = r dx + s dy$$
, $dq = s dx + t dy$, so erhält man:

 $\begin{aligned} dx \cdot \{(\lambda^2 pq + \mu^2 pq - \lambda \mu - \lambda \nu q - \mu \nu p) (r dx + s dy) + (-\lambda^2 p^2 - \mu^2 p^2 - \mu^2 - \nu^2 + 2\lambda \nu p) (s dx + t dy) \} \\ - dy \cdot \{(-\lambda^2 q^2 - \mu^2 q^2 - \lambda^2 - \nu^2 + 2\mu \nu q) (r dx + s dy) + (\lambda^2 pq + \mu^2 pq - \lambda \mu - \lambda \nu q - \mu \nu p) (s dx + t dy) \} &= 0 \\ \text{oder endlich:} \end{aligned}$

$$\begin{cases} \left(\frac{dy}{dx}\right)^{2} \cdot \left[s\left((\lambda^{2} + \mu^{2})q^{2} - 2\mu\nu q + \lambda^{2} + \nu^{2}\right) - t\left((\lambda^{2} + \mu^{2})pq - \mu\nu p - \lambda\nu q - \lambda\mu\right)\right] \\ - \frac{dy}{dx} \cdot \left[t\left((\lambda^{2} + \mu^{2})p^{2} - 2\lambda\nu p + \mu^{2} + \nu^{2}\right) - r\left((\lambda^{2} + \mu^{2})q^{2} - 2\mu\nu q + \lambda^{2} + \nu^{2}\right)\right] \\ + \left[r\left((\lambda^{2} + \mu^{2})pq - \mu\nu p - \lambda\nu q - \lambda\mu\right) - s\left((\lambda^{2} + \mu^{2})p^{2} - 2\lambda\nu p + \mu^{2} + \nu^{2}\right)\right] = 0 \end{cases}$$
(3)

Dies ist also die Differentialgleichung der Projektion der katoptrischen Linien, die auf der Fläche z = f(x, y) bei Reflexion der in der Richtung λ , μ , ν einfallenden Parallelstrahlen entstehen.

Zunächst sieht man, daß Lichtstrahlen parallel zur z-Achse ($\lambda = \mu = 0$, $\nu = 1$) wieder die Lindelöfsche Gleichung geben.

Ferner war von vornherein klar, daß eine Differentialgleichung erster Ordnung zweiten Grades zu erwarten war: in jedem Punkt der spiegelnden Fläche gibt es zwei Fortschreitungsrichtungen, längs denen die reflektierten Strahlen einander schneiden.

Die Differentialgleichung ist homogen in $\lambda \mu \nu$, ebenso in r s t, und besitzt eine gewisse Symmetrie, die in folgender Form deutlicher zum Ausdruck kommt:

$$(u_2 F_3 - u_3 F_2) \, dy^2 - (u_3 F_1 - u_1 F_3) \, dx \, dy + (u_1 F_2 - u_2 F_1) \, dx^2 = 0,$$

WO

 $egin{aligned} &u_1 = r, \ \ u_2 = s, \ \ u_3 = t \ &F_1 = (\lambda^2 + \mu^2) \, p^2 - 2 \, \lambda \, r \, p + \mu^2 + r^2 \ &F_2 = (\lambda^2 + \mu^2) \, p \, q - \mu \, v \, p - \lambda \, v \, q - \lambda \mu \ &F_3 = (\lambda^2 + \mu^2) \, q^2 - 2 \, \mu \, v \, q + \lambda^2 + r^2 \end{aligned}$

ist, und wo F_3 aus F_1 durch Vertauschen von p mit q, von λ mit μ entsteht.

Es ist zu erwarten, daß sich die quadratische Gleichung in allen den Fällen in zwei lineare zerspalten läßt, wo man nach Natur der Aufgabe die eine Schar katoptrischer Linien schon kennt, also bei den abwickelbaren Flächen, wo die gradlinigen Erzeugenden katoptrische Linien sein müssen.

Als Beispiel sei der allgemeine Zylinder und der Kreiskegel benutzt.

Ist $z = \varphi(x)$ die Gleichung des Zylinders, so ist $p = \varphi'$, q = 0, $r = \varphi''_{1}$, s = 0, t = 0 und man erhält:

$$(\nu^2 + \lambda^2) \cdot \varphi'' \cdot dx \cdot dy - \varphi'' \cdot (\mu \nu \varphi' + \lambda \mu) dx^2 = 0,$$

also

8

1. dx = 0 x = konst., d. h. die Erzeugenden, 2. $\frac{dy}{dx} = \frac{\mu}{\lambda^2 + \nu^2} (r\varphi' + \lambda).$

d. h.

 $y = \frac{\mu}{\lambda^2 + \nu^2} \left[\nu \cdot \varphi(x) + \lambda \cdot x + C \right] \quad (\text{mit} \cdot \lambda^2 + \mu^2 + \nu^2 = 1).$

Ist ferner $z^2 = c^2 (x^2 + y^2)$ die Gleichung des Kreiskegels, so ist:

$$p = \frac{cx}{\sqrt{x^2 + y^2}} = \frac{c^2x}{z}, \quad q = \frac{cy}{\sqrt{x^2 + y^2}} = \frac{c^2y}{z}$$
$$r = \frac{y^2}{c^2 (\sqrt{x^2 + y^2})^8} = \frac{c^4y^2}{z^3}, \quad s = -\frac{xy}{c^2 (\sqrt{x^2 + y^2})^8} = -\frac{c^4xy}{z^3}, \quad t = \frac{x^2}{c^2 (\sqrt{x^2 + y^2})^8} = \frac{c^4x^2}{z^3}.$$

Nach Einsetzen dieser Werte und Multiplikation der ganzen Gleichung mit $\frac{z^5}{c^2}$ wird die Differentialgleichung zunächst:

$$\begin{split} y'^{2} \left[-xy \left((\lambda^{2} + \mu^{2}) c^{4} y^{2} - 2 c^{3} \mu v y \sqrt{x^{2} + y^{2}} + c^{2} (x^{2} + y^{2}) (\lambda^{2} + v^{2}) \right) \\ &- x^{2} \left((\lambda^{2} + \mu^{2}) c^{4} xy - c^{3} v (\mu x + \lambda y) \sqrt{x^{2} + y^{2}} - \lambda \mu c^{2} (x^{2} + y^{2}) \right) \right] \\ -y' \left[x^{2} \left((\lambda^{2} + \mu^{2}) c^{4} x^{2} - 2 c^{3} \lambda v x \sqrt{x^{2} + y^{2}} + c^{2} (x^{2} + y^{2}) (\mu^{2} + v^{2}) \right) \\ &- y^{2} \left((\lambda^{2} + \mu^{2}) c^{4} xy - 2 c^{3} \mu v y \sqrt{x^{2} + y^{2}} + c^{2} (x^{2} + y^{2}) (\lambda^{2} + v^{2}) \right) \right] \\ + \left[y^{2} \left((\lambda^{2} + \mu^{2}) c^{4} xy - c^{3} v (\mu x + \lambda y) \sqrt{x^{2} + y^{2}} - \lambda \mu c^{2} (x^{2} + y^{2}) (\mu^{2} + v^{2}) \right) \\ &+ xy \left((\lambda^{2} + \mu^{2}) c^{4} x^{2} - 2 c^{3} \lambda v x \sqrt{x^{2} + y^{2}} + c^{2} (x^{2} + y^{2}) (\mu^{2} + v^{2}) \right) \right] = 0. \end{split}$$

Man kann c^2 ausscheiden und nach Ausmultiplikation der runden Klammern auch $\sqrt{x^2 + y^2}$ und erhält:

$$\begin{aligned} y'^{2} \cdot x \left[\nu c \left(\mu x^{2} + \lambda x y + 2 \mu y^{2} \right) + \sqrt{x^{2} + y^{2}} \left(\lambda \mu x - \left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \lambda^{2} + \nu^{2} \right\} y \right) \right] \\ &+ y' \cdot \left[2 \nu c \left(\lambda x^{3} - \mu y^{3} \right) - \sqrt{x^{2}} + y^{2} \left(\left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \mu^{2} + \nu^{2} \right\} x^{2} - \left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \lambda^{2} + \nu^{2} \right\} y^{2} \right) \right] \\ &- y \left[\nu c \left(2 \lambda x^{2} + \mu x y + \lambda y^{2} \right) - \sqrt{x^{2} + y^{2}} \left(\left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \mu^{2} + \nu^{2} \right\} x - \lambda \mu y \right) \right] = 0 \\ &\equiv \left(xy' - y \right) \left\{ y' \left[\nu c \left(\mu x^{2} + \lambda x y + 2 \mu y^{2} \right) + \sqrt{x^{2} + y^{2}} \left(\lambda \mu x - \left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \lambda^{2} + \nu^{2} \right\} y \right) \right] \\ &+ \left[\nu c \left(2 \lambda x^{2} + \mu x y + \lambda y^{2} \right) - \sqrt{x^{2} + y^{2}} \left(\left\{ c^{2} \left(\lambda^{2} + \mu^{2} \right) + \mu^{2} + \nu^{2} \right\} x - \lambda \mu y \right) \right] \right\} \end{aligned}$$

Hier gibt der erste Faktor die Erzeugenden $y = k \cdot x$ des Kegels; der zweite liefert eine homogene Differentialgleichung, die durch die Substitution $y = v \cdot x$ auf das Integral führt:

$$\log x + \int \frac{v c (\mu + \lambda v + 2 \mu v^2) + (\lambda \mu - b v) \sqrt{1 + v^2}}{2 v c (\lambda + \mu v) (1 + v^2) - (a - 2 \lambda \mu v + b v^2) \sqrt{1 + v^2}} dv + C = 0,$$

$$a = c^2 (\lambda^2 + \mu^2) + \mu^2 + v^2 \qquad b = c^2 (\lambda^2 + \mu^2) + \lambda^2 + v^2.$$

wo

Das Integral ist auf die Form zu bringen $\int \left(\frac{P_1(v)}{P_3(v)} + \frac{P_2(v)}{P_3(v)\sqrt{1+v^2}}\right) dv$ und durch bekannte Funktionen auszuwerten.

(Einen Überblick über den Verlauf der zweiten Schar katoptrischer Linien erhält man aber schneller, wenn man sie sich auf eine Normalebene zu den einfallenden Strahlen projiziert denkt, wo sie dann nach der Lindelöfschen Gleichung die erste Schar, die hier ein Strahlenbüschel bilden, orthogonal durchsetzen müssen. Die zweite Schar muß also Schnitte des Kegels mit schiefstehenden Kreiszylindern vorstellen.)

Die katoptrischen Linien auf dem elliptischen Paraboloid.

Um im Fall des elliptischen Paraboloides:

 $= 2 a^2$,

$$z = a^2 x^2 + b^2 y^2 \tag{1}$$

die Gleichung der katoptrischen Linien zu integrieren, sollen die Variablen getrennt werden. Dies gelingt durch die Substitution:

$$z = (ax + iby) (ax - iby) = \xi \cdot \eta,$$
(2)
also:

$$\xi = ax + iby \qquad x = \frac{1}{2a} (\xi + \eta)$$

$$\eta = ax - iby \qquad y = \frac{1}{2ib} (\xi - \eta).$$
Dann ist
$$p = 2a^{2}x = a (\xi + \eta) \qquad q = 2b^{2}y = \frac{b}{i} (\xi - \eta)$$

und

also:

$$\frac{dy}{dx} = \frac{a \left(d\xi - d\eta \right)}{i b \left(d\xi + d\eta \right)} = \frac{a}{i b} \cdot \frac{1 - a}{1 + a}$$

s = 0,

Die Differentialgleichung

$$y'^{2}[sF_{3}-tF_{2}]-y'[tF_{1}-rF_{3}]+[rF_{2}-sF_{1}]=0$$

geht über in:

$$\eta^{\prime 2} = \frac{b^2 F_1 - a^2 F_3 - 2 a b i F_2}{b^2 F_1 - a^2 F_3 + 2 a b i F_2},$$
(3)

 $t = 2 b^2$

wo jetzt:

$$\begin{split} F_1 &= a^2 \, (\lambda^2 + \mu^2) \, (\xi + \eta)^2 - 2 \, a \, \lambda \, v \, (\xi + \eta) + \mu^2 + \nu^2 \\ F_2 &= - \, a \, b \, i \, (\lambda^2 + \mu^2) \, (\xi^2 - \eta^2) - a \, \mu \, v \, (\xi + \eta) + i \, b \, \lambda \, v \, (\xi - \eta) - \lambda \, \mu \\ F_3 &= - \, b^2 \, (\lambda^2 + \mu^2) \, (\xi - \eta)^2 + 2 \, i \, b \, \mu \, v \, (\xi - \eta) + \lambda^2 + \nu^2 \end{split} \qquad \text{ist.} \end{split}$$
 Nova Acta CL. Nr. 1.

Führt man dies ein, so verschwindet aus dem Zähler ξ , aus dem Nenner η und mit den Abkürzungen:

 $b \lambda - i a \mu = \sigma_1 \qquad a \lambda - i b \mu = \tau_1$ $b \lambda + i a \mu = \sigma_2 \qquad a \lambda + i b \mu = \tau_2$

erhält man die Trennung der Variablen in der Form:

$$\frac{d\eta}{\sqrt{4a^2b^2(\lambda^2 + \mu^2)\eta^2 - 4ab\sigma_1\nu\eta - \tau_1^2 - \nu^2(a^2 - b^2)}} = \frac{\pm d\xi}{\sqrt{4a^2b^2(\lambda^2 + \mu^2)\xi^2 - 4ab\sigma_2\nu\xi - \tau_2^2 - \nu^2(a^2 - b^2)}}$$

Es ist etwas bequemer das Minuszeichen zu nehmen, dann findet man, da

$$\int \frac{dx}{\sqrt{Ax^2 + 2Bx + C}} = \frac{1}{\sqrt{A}} \log \left[Ax + B + \sqrt{A} \cdot \sqrt{Ax^2 + 2Bx + C} \right] + K,$$

das Integral in der Form:

$$\begin{bmatrix} 4 a^2 b^2 (\lambda^2 + \mu^2) \eta - 2 a b \sigma_1 \nu + \sqrt{4 a^2 b^2 (\lambda^2 + \mu^2)} \\ \cdot \sqrt{4 a^2 b^2 (\lambda^2 + \mu^2) \eta^2 - 4 a b \sigma_1 \nu \eta - \tau_1^2 - \nu^2 (a^2 - b^2)} \end{bmatrix}$$

$$\cdot \begin{bmatrix} 4 a^2 b^2 (\lambda^2 + \mu^2) \xi - 2 a b \sigma_2 \nu + 2 a b \sqrt{\lambda^2 + \mu^2} \\ \cdot \sqrt{4 a^2 b^2 (\lambda^2 + \mu^2) \xi^2 - 4 a b \sigma_2 \nu \xi - \tau_2^2 - \nu^2 (a^2 - b^2)} \end{bmatrix} = C$$

oder nach einiger Rechnung:

 $[N + \sqrt{N^2 - 1}] \cdot [M + \sqrt{M^2 - 1}] = C,$

wo $N = 2 a b \frac{\lambda^2 + \mu^2}{\tau_1} \eta - \nu \frac{\sigma_1}{\tau_1}$ und $M = 2 a b \frac{\lambda^2 + \mu^2}{\tau_2} \xi - \nu \frac{\sigma_2}{\tau_2}$ konjugiert sind, da es η, σ_1, τ_1 zu ξ, σ_2, τ_2 sind.

Schafft man die Wurzeln weg, so entsteht:

$$(1+C^2) MN - C (M^2 + N^2) = \frac{(1-C^2)^2}{4C}$$

oder wenn man den reellen und imaginären Teil von M und N benutzt:

$$N = u + iv, \quad M = u - iv;$$

$$\frac{u^2}{h^2} + \frac{v^2}{h^2 - 1} - 1 = 0,$$
(4)

wo $h = \frac{C+1}{2\sqrt{C}}$ ist.

Führt man die verschiedenen Substitutionen durch, so wird

$$u = a b \frac{\lambda^2 + \mu^2}{a^2 \lambda^2 + b^2 \mu^2} (2 a^2 \lambda x + 2 b^2 \mu y - \nu)$$

$$v = \frac{1}{a^2 \lambda^2 + b^2 \mu^2} (2 a^2 b^2 (\lambda^2 + \mu^2) (\mu x - \lambda y) + (a^2 - b^2) \lambda \mu \nu)$$

umgekehrt:

$$x = \frac{1}{2 a^2 b (\lambda^2 + \mu^2)} (a \lambda u + b \mu v + b \lambda v)$$

$$y = \frac{1}{2 a b^2 (\lambda^2 + \mu^2)} (b \mu u - a \lambda v + a \mu v),$$

d. h. die Projektion der katoptrischen Linien in die xy-Ebene, die bei Reflexion von Parallelstrahlen der Richtung λ , μ , ν am elliptischen Paraboloid $z = a^2x^2 + b^2y^2$ auftreten, ist eine Schar von Kegelschnitten, die auf das schiefwinklige, normierte Koordinatensystem u, v der Gleichungen (5) bezogen, die Gleichung konfokaler Kegelschnitte besitzt.

Die Fig. 2 (S. 12) zeigt den Fall $a = \frac{2}{3}, b = 1; \lambda = \frac{1}{3}, \mu = \frac{2}{3}, \nu = \frac{2}{3}$.

Nun sicht man sofort folgende Beziehungen: Die Achsen der u und vsind für die Kegelschnitte konjugierte Durchmesser. Die U-Achse hat die Richtung der in die xy-Ebene projizierten einfallenden Strahlen: $\mu x - \lambda y + c = 0$. Die V-Achse ist die Projektion der Selbstschattengrenze des Paraboloides in die xy-Ebene. Denn die Bedingung für die Grenze zwischen dem belichteten und dem im Schatten liegenden Teil des Paraboloides ist, dafs der in Fig. 1 mit u bezeichnete Winkel zwischen einfallendem Strahl und Flächennormale gleich $\frac{\pi}{2}$ ist, d. h. dafs

$$a\lambda + \beta \mu + \gamma \nu = 0 \quad \text{oder} \quad p\lambda + q\mu - \nu = 0 \quad \text{oder} \quad \text{für} \quad z = a^2 x^2 + b^2 y^2$$
$$2 a^2 \lambda x + 2 b^2 \mu y - \nu = 0, \quad \text{d. h.} \quad u = 0 \quad \text{ist.}$$

Ferner ist leicht zu zeigen, daß die Achsen U und V auch konjugierte Richtungen für jeden Horizontalschnitt z = k des Paraboloides sind.

Besondere Punkte auf dem Spiegel sind: der Schnittpunkt M der beiden ebenen katoptrischen Linien u = 0 und v = 0, und die beiden brennpunktartigen Punkte B_1 mit u = 1, v = 0 und B_2 mit u = -1, v = 0. Ihre rechtwinkligen Koordinaten seien hier verzeichnet:

	Ŀ	y	z
M(u=0, v=0)	$\lambda \nu$	μν	$(a^2 \mu^2 + b^2 \lambda^2) \nu^2$
(,)	$2 a^2 (\lambda^2 + \mu^2)$	$2 \ b^2 \ (\lambda^2 + \mu^2)$	$4 a^2 b^2 (\lambda^2 + \mu^2)^2$
B_{i} $(u - 1, v - 0)$	$\lambda (a + b \nu)$	$\mu (b + a \nu)$	$\lambda^2 (a + b v)^2 + \mu^2 (b + a v)^2$
$\Sigma_1 (w = 1, v = 0)$	$2 a^2 b (\lambda^2 + \mu^2)$	$2 a b^2 (\lambda^2 + \mu^2)$	$4 a^2 b^2 (\lambda^2 + \mu^2)^2$
$B_{2}\left(y - \frac{1}{2}y - 0\right)$	$\lambda (b \nu - a)$	$\mu (a \nu - b)$	$\lambda^2 (a - b v)^2 + \mu^2 (b - a v)^2$
$D_{2}(w = -1, v = 0)$	$2 a^2 b (\lambda^2 + \mu^2)$	$2 a b^2 (\lambda^2 + \mu^2)$	$4 a^2 b^2 (\lambda^2 + \mu^2)^2$
			2*

11

(5)

Es lohnt sich ferner noch die Projektion der katoptrischen Linien durch die einfallenden Strahlen selbst auf eine ebene Wellenfläche dieser einfallenden Strahlen zu untersuchen.

Die katoptrischen Linien auf dem elliptischen Paraboloid.

Aus der Lindelöfschen Gleichung folgt zunächst, daß man so stets ein Orthogonalsystem erhält. Ferner zeigt man leicht, daß zwei Punkte

des Spiegels auf einer Kurve h = Konst. mit gleichem Wert von v aber entgegengesetzt gleichem von u auf einem Lichtstrahl liegen. So werden also die katoptrischen Linien — Raumkurven vierter Ordnung — in doppelt zählende Kegelschnitte projiziert. Die Schar mit h < 1 kann offenbar nur Parabeln liefern. Die andere Schar sind also die zugehörigen Orthogonalparabeln. Die Punkte B_1 und B_2 liefern den Brennpunkt aller dieser konfokalen Parabeln. Ausgezeichnet ist wieder v = 0 als projizierte Kontur des Spiegels, und u = 0 als Achse aller Parabeln. Hiermit sind B_1 und B_2 geometrisch auf dem Spiegel definiert: als auf dem Strahl liegend, der durch den Brennpunkt der Kontur läuft.

Die Projektion der katoptrischen Linien durch die einfallenden Strahlen auf eine zugehörige Wellenebene ist also ein Orthogonalsystem konfokaler Parabeln.

§ 3.

Die primäre Brennfläche des Rotationsparaboloides.

Es zeigt sich, daß man wenigstens für das Rotationsparaboloid auch die Gleichung der Brennfläche aufstellen kann. Man hat nur die Formeln der Theorie der Strahlensysteme auf die von den reflektierten Strahlen gebildete Kongruenz anzuwenden.

Gehen wir zunächst wieder von der allgemeinen Fläche z = f(x, y)aus. Als Bezugsfläche diene diese spiegelnde Fläche selbst, während die Richtung eines Strahles ist:

$$\begin{split} & \xi = \frac{(p^2 - q^2 - 1)\lambda + 2p(q\mu - \nu)}{p^2 + q^2 + 1} = \frac{2p(p\lambda + q\mu - \nu)}{p^2 + q^2 + 1} - \lambda = \frac{2pm}{n} - \lambda \\ & \eta = \frac{(-p^2 + q^2 - 1)\mu + 2q(p\lambda - \nu)}{p^2 + q^2 + 1} = \frac{2q(p\lambda + q\mu - \nu)}{p^2 + q^2 + 1} - \mu = \frac{2qm}{n} - \mu \\ & \xi = \frac{(-p^2 - q^2 + 1)\nu - 2(p\lambda + q\mu)}{p^2 + q^2 + 1} = -\frac{2(p\lambda + q\mu - \nu)}{p^2 + q^2 + 1} - \nu = -\frac{2m}{n} - \nu \end{split}$$
(1)

wo $m = p \lambda + q \mu - v$ und $n = p^2 + q^2 + 1$ gesetzt wurde.

Um nun z. B. mit den von Bianchi in der Differentialgeometrie gebrauchten Bezeichnungen in Einklang zu bleiben, hat man:

$$u = x, \quad v = y, \quad z = f(x, y)$$

 $\frac{\partial x}{\partial u} = 1, \quad \frac{\partial x}{\partial v} = 0, \quad \frac{\partial y}{\partial u} = 0, \quad \frac{\partial y}{\partial v} = 1, \quad \frac{\partial z}{\partial u} = p, \quad \frac{\partial z}{\partial v} = q.$

Ferner benutzen wir wieder die Bezeichnungen: $\frac{\partial p}{\partial x} = r$, $\frac{\partial p}{\partial y} = \frac{\partial q}{\partial x} = s$, $\frac{\partial q}{\partial y} = t$; endlich noch $\frac{\partial m}{\partial x} = m_1$, $\frac{\partial m}{\partial y} = m_2$, $\frac{\partial n}{\partial x} = n_1$, $\frac{\partial n}{\partial y} = n_2$.

Bilden wir jetzt die Fundamentalfunktionen E, F, G und e, f, f', g. Zunächst ist:

$$\frac{\partial \xi}{\partial u} = \frac{2}{n^2} \left[n \frac{\partial (pm)}{\partial x} - pm \frac{\partial n}{\partial x} \right], \quad \frac{\partial \xi}{\partial v} = \frac{2}{n^2} \left[n \frac{\partial (pm)}{\partial y} - pm \frac{\partial n}{\partial y} \right]$$

mit zwei entsprechenden Gleichungen für η und ζ .

Nun wird:

$$E = \frac{4}{n^4} \left[n^2 \left\{ \left(\frac{\partial p \, m}{\partial x} \right)^2 + \left(\frac{\partial q \, m}{\partial x} \right)^2 + \left(\frac{\partial m}{\partial x} \right)^2 \right\} - 2 \, m \, n \, n_1 \left(p \, \frac{\partial p \, m}{\partial x} + q \, \frac{\partial q \, m}{\partial x} + \frac{\partial m}{\partial x} \right) + m^2 \, n \, n_1^2 \right] \\ = \frac{4}{n^4} \left[n^2 \left\{ m^2 \left(r^2 + s^2 \right) + 2 \, m \, m_1 \left(r \, p + q \, s \right) + m_1^2 \left(p^2 + q^2 + 1 \right) \right\} - 2 \, m \, n^2 \, m_1 \, n_1 \right] \\ E = \frac{4}{n^2} \left[m^2 \left(r^2 + s^2 \right) - m \, m_1 \, n_1 + n \, m_1^2 \right], \quad \text{analog:} \\ F = \frac{4}{n^2} \left[m^2 s \left(r + t \right) - \frac{1}{2} \, m \, (m_1 \, n_2 + m_2 \, n_1) + n \, m_1 \, m_2 \right] \right\}$$

$$(2)$$

$$G = \frac{4}{n^2} \left[m^2 \left(s^2 + t^2 \right) - m \, m_2 \, n_2 + n \, m_2^2 \right].$$

Da nun $m = p \lambda + q \mu - \nu$ $n = p^2 + q^2 + 1$ und $m_1 = \lambda r + \mu s$ $m_2 = \lambda s + \mu t$ $n_1 = 2 (pr + qs)$ $n_2 = 2 (ps + qt)$

so wird:

$$\begin{split} m_1 n_1 &= 2 \left(\lambda r^2 p + (\lambda q + \mu p) \, rs + \mu \, s^2 q \right) & m_2 n_2 &= 2 \left(\lambda s^2 p + (\lambda q + \mu p) \, s \, t + \mu \, t^2 q \right) \\ m_1 n_2 &= 2 \left(\lambda rs p + \lambda rt \, q + \mu \, s^2 p + \mu \, s \, t q \right) & m_2 n_1 &= 2 \left(\lambda rs p + \mu rt \, p + \lambda s^2 \, q + \mu \, s \, t q \right). \end{split}$$

Also:

$$E = \frac{4}{n^2} \left[r^2 \left((\lambda^2 + \mu^2) q^2 - 2 \mu \nu q + \lambda^2 + \nu^2 \right) - 2 r s \left((\lambda^2 + \mu^2) p q - \mu \nu p - \lambda \nu q - \lambda \mu \right) \right. \\ \left. + s^2 \left((\lambda^2 + \mu^2) p^2 - 2 \lambda \nu p + \mu^2 + \nu^2 \right) \right] \\ F = \frac{4}{n^2} \left[r s \left((\lambda^2 + \mu^2) q^2 - 2 \mu \nu q + \lambda^2 + \nu^2 \right) - (r t + s^2) \left((\lambda^2 + \mu^2) p q - \mu \nu p - \lambda \nu q - \lambda \mu \right) \right. \\ \left. + s t \left((\lambda^2 + \mu^2) p^2 - 2 \lambda \nu p + \mu^2 + \nu^2 \right) \right] \\ G = \frac{4}{n^2} \left[s^2 \left((\lambda^2 + \mu^2) q^2 - 2 \mu \nu q + \lambda^2 + \nu^2 \right) - 2 s t \left((\lambda^2 + \mu^2) p q - \mu \nu p - \lambda \nu q - \lambda \mu \right) \right. \\ \left. + t^2 \left((\lambda^2 + \mu^2) p^2 - 2 \lambda \nu p + \mu^2 + \nu^2 \right) \right] \right]$$
(3)

oder mit den schon früher benutzten Abkürzungen:

 $\mathbf{14}$

$$\begin{array}{l} (\lambda^{2} + \mu^{2}) \ p^{2} - 2 \ \lambda \ v \ p + \mu^{2} + v^{2} &= F_{1} \\ (\lambda^{2} + \mu^{2}) \ p \ q - \mu \ v \ p - \lambda \ v \ q - \lambda \ \mu &= F_{2} \\ (\lambda^{2} + \mu^{2}) \ q^{2} - 2 \ \mu \ v \ q + \lambda^{2} + v^{2} &= F_{3} \end{array}$$

$$\begin{array}{l} E &= \frac{4}{n^{2}} \ [r^{2} F_{3} - 2 \ r \ s \ F_{2} + s^{2} \ F_{1}] \\ F &= \frac{4}{n^{2}} \ [r \ s \ F_{3} - (r \ t + s^{2}) \ F_{2} + s \ t \ F_{1}] \\ G &= \frac{4}{n^{2}} \ [s^{2} \ F_{3} - 2 \ s \ t \ F_{2} + t^{2} \ F_{1}]. \end{array}$$

$$\begin{array}{l} (4)$$

Die kleinen Fundamentalgrößen e, f, f', g sind rascher gebildet:

$$e = \frac{\partial \xi}{\partial x} + \frac{\partial \zeta}{\partial x} \cdot p = \frac{2}{n^2} \left(n \left(r \, m + p \, m_1 \right) - p \, m \, n_1 \right) - \frac{2}{n^2} \left(n \, m_1 \, p - m \, n_1 \, p \right)$$

oder:

$$e = \frac{2rm}{n} = \frac{2r}{n} (p\lambda + q\mu - r)$$

$$f = f' = \frac{2sm}{n} = \frac{2s}{n} (p\lambda + q\mu - r)$$

$$g = \frac{2tm}{n} = \frac{2t}{n} (p\lambda + q\mu - r).$$
(5)

Jetzt kann man wieder zur Differentialgleichung der katoptrischen Linien gelangen, indem man die gewonnenen Größen in die Bedingungsgleichung für die Anordnung der Strahlen nach abwickelbaren Flächen einsetzt, also in die Gleichung:

$$(f' E - eF) du^2 + (g E - (f - f') F - eG) du dv + (g F - fG) dv^2 = 0.$$

Andererseits aber kann man auch die quadratische Gleichung aufstellen, die die auf jedem Strahl gemessenen Abszissen ρ der beiden Brennpunkte liefert. Allgemein lautet sie:

 $(EG - F^2) \varrho^2 + (gE - (f + f')F + eG) \varrho + eg - f \cdot f' = 0.$

Nach Weglassen des Faktors $rt - s^2$ erhält man so die quadratische Gleichung für ϱ :

$$4 (F_1 F_3 - F_2^2) (rt - s^2) \varrho^2 + 2mn (rF_3 - 2sF_2 + tF_1) \varrho + m^2n^2 = 0,$$

die noch um den Faktor $m = p \lambda + q \mu - \nu$ gekürzt werden kann, da die Relation besteht:

$$F_1 F_3 - F_{2^2} = m^2$$
,

also

$$4 m (rt - s^2) \varrho^2 - 2 n (rF_3 - 2 sF_2 + tF_1) \varrho + mn^2 = 0.$$
(6)

Und nun ist es das Bemerkenswerte, daß im Fall des Rotationsparaboloides diese Gleichung für ϱ rational in den Parametern der katoptrischen Linien lösbar ist.

Zunächst sollen für das Rotationsparaboloid die bisherigen Formeln zusammengestellt werden. Die Gleichung sei

$$z = \frac{1}{4f}(x^2 + y^2),$$

so dafs also beim elliptischen Paraboloid $a^2 = b^2 = \frac{1}{4f}$ zu setzen ist und f die Brennweite des Spiegels bedeutet.

Dann wird

$$p = \frac{1}{2f}x, q = \frac{1}{2f}y, r = \frac{1}{2f}, s = 0, t = \frac{1}{2f}$$

$$u = \frac{\lambda}{2f}x + \frac{\mu}{2f}y - r, v = \frac{1}{2f}(\mu x - \lambda y)$$

$$x = \frac{2f}{\lambda^2 + \mu^2}[\lambda u + \mu v + \lambda r], y = \frac{2f}{\lambda^2 + \mu^2}[\mu u - \lambda v + \mu r]$$

$$m = \lambda_P + q\mu - r = u,$$

$$n = p^2 + q^2 + 1 = \frac{1}{4f^2}[x^2 + y^2 + 4f^2] = \frac{1}{\lambda^2 + \mu^2}[u^2 + v^2 + 2\nu u + 1].$$
(7)

Das Koordinatensystem u, v ist hier rechtwinklig und hat auf beiden Achsen gleiche und mit dem xy-System übereinstimmende Maßeinheiten. Der Anfangspunkt u = 0, v = 0 liegt in $x = \frac{2 \lambda v f}{\lambda^2 + \mu^2}, y = \frac{2 \mu v f}{\lambda^2 + \mu^2}$. Die U-Achse v = 0 läuft durch den Ursprung x = y = 0.

Die Projektion der katoptrischen Linien in die xy-Ebene beim Rotationsparaboloid ist also ein Orthogonalsystem konfokaler Ellipsen und Hyperbeln mit den Brennpunkten in

$$\begin{aligned} x &= \frac{2\,\lambda\,(1+\nu)\,f}{\lambda^2 + \mu^2} & x &= -\frac{2\,\lambda\,(1-\nu)\,f}{\lambda^2 + \mu^2} \\ y &= \frac{2\,\mu\,(1+\nu)\,f}{\lambda^2 + \mu^2} & y &= -\frac{2\,\mu\,(1-\nu)\,f}{\lambda^2 + \mu^2}. \end{aligned}$$

Die diesen Brennpunkten entsprechenden Punkte B_1 und B_2 auf dem Spiegel liegen auf jenem einfallenden Lichtstrahl, der durch den Brennpunkt F des Spiegels: x = 0, y = 0, z = f geht.

Zur Aufstellung der Gleichung für ϱ braucht man: F_1 , F_3 und $rF_3 + tF_1$:

$$\begin{split} F_1 &= \frac{\lambda^2 + \mu^2}{4f^2} \, x^2 - \frac{\lambda \, \nu}{f} \, x + \mu^2 + \nu^2, \quad F_3 &= \frac{\lambda^2 + \mu^2}{4f^2} \, y^2 - \frac{\mu \, \nu}{f} \, y + \lambda^2 + \nu^2 \\ r \, F_3 + t \, F_1 &= \frac{\lambda^2 + \mu^2}{8f^3} \, (x^2 + y^2) - \frac{\nu}{2f^2} \, (\lambda x + \mu \, y) + \frac{1}{2f} \, (1 + \nu^2) \\ &= \frac{\lambda^2 + \mu^2}{2f} \, n - \frac{\nu}{f} \, u \, = \frac{1}{2f} \, ((\lambda^2 + \mu^2) \, n - 2 \, \nu \, u) \, . \end{split}$$

Nun erhält man für *e* die Gleichung:

$$u \varrho^{2} + f \cdot n \left[(\lambda^{2} + \mu^{2}) n - 2 \nu u \right] \varrho + f^{2} \cdot u n^{2} = 0$$
(8)

Hier sollen jetzt die katoptrischen Parameter eingeführt werden, d. h. jene zwei Werte der Konstante in der Gleichung $\frac{u^2}{h^2} + \frac{v^2}{h^2 - 1} - 1 = 0$, die die beiden katoptrischen Linien charakterisieren, die durch einen Punkt u, v laufen.

 $\frac{u^2}{h_1^2} + \frac{v^2}{h_1^2 - 1} - 1 = 0$ und $\frac{u^2}{h_2^2} + \frac{v^2}{h_2^2 - 1} - 1 = 0$

 $u^2 = h_1^2 h_2^2$ $v^2 = (1 - h_1^2) (h_2^2 - 1);$

Aus

erhält man:

nehmen wir

hmen wir

$$u = + (h_1 h_2) \quad v = + \sqrt{(1 - h_1^2) (h_2^2 - 1)},$$
ist

$$u^2 + v^2 + 1 = h_1^2 + h_2^2$$

$$u^2 + v^2 + 2 v u + 1 = h_1^2 + 2 v h_1 h_2 + h_2^2,$$

$$n = \frac{1}{\lambda^2 + \mu^2} (h_1^2 + 2 v h_1 h_2 + h_2^2)$$
d

$$(\lambda^2 + \mu^2) n - 2 v u = h_1^2 + h_2^2.$$
Die Gleichung für o wird nun:

(9)

also

nnd

SO

Die Gleichung für e wird nun:

$$\begin{aligned} (\lambda^2 + \mu^2)^2 \cdot h_1 h_2 \, \varrho^2 + (\lambda^2 + \mu^2) \, f \cdot (h_1^2 + 2 \nu h_1 h_2 + h_2^2) \, (h_1^2 + h_2^2) \, \varrho \\ &+ f^2 h_1 h_2 \, (h_1^2 + 2 \nu h_1 h_2 + h_2^2)^2 = 0 \end{aligned}$$

mit der Diskriminante:

so dafs hier also \triangle ein reines Quadrat wird. Hiermit ist

$$\varrho = \frac{f \cdot (h_1^2 + 2\nu h_1 h_2 + h_2^2)}{2(\lambda^2 + \mu^2) h_1 h_2} \left[-(h_1^2 + h_2^2) \mp (h_1^2 - h_2^2) \right],$$

also $\varrho_1 = -\frac{f \cdot h_1 (h_1^2 + 2\nu h_1 h_2 + h_2^2)}{(\lambda^2 + \mu^2) h_2} \quad \varrho_2 = -\frac{f \cdot h_2 (h_1^2 + 2\nu h_1 h_2 + h_2^2)}{(\lambda^2 + \mu^2) h_1},$ (10)
Nova Acta CL. Nr. 1. $\qquad 3$

oder abgekürzt:

$$\varrho_1 = -\frac{f h_1 n}{h_2} \qquad \varrho_2 \coloneqq -\frac{h_2 n}{h_1}.$$

Nun läfst sich die primäre Brennfläche einfach zusammensetzen, indem man auf den reflektierten Strahlen vom Spiegel aus die Abszissen ρ_1 und ρ_2 abträgt.

Vorher soll aber noch der mehrdeutige Zusammenhang zwischen u, v und $h_1 h_2$ besprochen werden.

Die durch die erste Zeile der Gleichungen (9) gegebene Beziehung ist acht-vierdeutig. Soll v reell werden, so muß der Punkt $h_1 h_2$ in einem der vier Streifen von Figur 3 liegen, deren jeder aber die u, v-Ebene doppelt liefert. Acht Punkte $A \begin{cases} h_1 h_2; \ -h_1, h_2; \ h_1, \dots, h_2; \ -h_1, \dots, h_2 \end{cases}$ sind äquivalent. Andererseits sind auch vier Punkte: $u, v; \dots u, v; u, \dots v; \dots u, \dots v$ äquivalent.

Um Eindeutigkeit zu erzielen, sei festgesetzt, daß

 $-1 \le h_1 \le +1$, $h_2 \ge +1$, $u = h_1 h_2$, $v = +\sqrt{(1-h_1^2)(h_2^2-1)}$ sei, und als Umkehrung:

$$h_{1} = \frac{1}{2} \left(\sqrt{(u+1)^{2} + v^{2}} - \sqrt{(u-1)^{2} + v^{2}} \right)$$

$$h_{2} = \frac{1}{2} \left(\sqrt{(u+1)^{2} + v^{2}} + \sqrt{(u-1)^{2} + v^{2}} \right),$$
(11)

die Wurzeln selbst stets absolut genommen.

Hierdurch wird der Streifen I der h_1h_2 -Ebene (Fig. 3 u. 6) auf die obere Halbebene u, v abgebildet. Es genügt auch diese halbe uv-Ebene zu betrachten, da die u-Achse Symmetrielinie und die zugehörige Vertikalebene Symmetrieebene für Brenn- und Wellenfläche sein muß.

Die Figuren 4 u. 5 zeigen die Abbildung für $\lambda = 0, 8, \mu = 0, \nu = 0, 6$. Dann fällt die X-Achse mit der U-Achse zusammen. Die Y- und die V-Achse haben entgegengesetzte Richtung. Die Geraden $h_1 = \text{konst.}, h_2 = \text{konst.},$ liefern in u, v die besprochenen konfokalen Ellipsen und Hyperbeln um die Punkte $u = \pm 1, v = 0, d.$ h. $x = 2f \frac{\nu \pm 1}{\lambda}, y = 0$. Die Geraden u = konst. geben in $h_1 h_2$ gleichseitige Hyperbeln, die Geraden v = konst. geben Kurven vierter Ordnung mit den Rändern des Streifens I

> $h_1 = \pm 1$ als Asymptoten. Die Figuren zeigen die Abbildung eines quadratischen Netzes der uv-Ebene in die h_1h_2 -Ebene und eines solchen Netzes der h_1h_2 -Ebene in die uv-Ebene.

Die Aufstellung der primären Brennfläche erfolgt einfach durch Abtragen der Abszissen ρ_1 , ρ_2 auf dem reflektierten Strahl vom Spiegel aus. Die Richtung des reflektierten Strahles war allgemein nach Gleichung (1)

$$\begin{split} \xi &= \frac{2 p \left(\lambda p + \mu q - \nu\right)}{p^2 + q^2 + 1} - \lambda \\ \eta &= \frac{2 q \left(\lambda p + \mu q - \nu\right)}{p^2 + q^2 + 1} - \mu \\ \zeta &= -\frac{2 \left(\lambda p + \mu q - \nu\right)}{p^2 + q^2 + 1} - \nu; \end{split}$$

19

3*

in unserem Falle also ist:

$$\begin{split} \xi &= \frac{2x[\lambda x + \mu y - 2\nu f]}{x^2 + y^2 + 4f^2} - \lambda = \frac{xm}{fn} - \lambda = \frac{xu}{fn} - \lambda \\ \eta &= \frac{2y[\lambda x + \mu y - 2\nu f]}{x^2 + y^2 + 4f^2} - \mu - \frac{ym}{fn} - \mu = \frac{yu}{fn} - \mu \\ \zeta &= \frac{4f[\lambda x + \mu y - 2\nu f]}{x^2 + y^2 + 4f^2} - \nu = -\frac{2m}{n} - \nu = -\frac{2u}{n} - \nu. \end{split}$$
(12)

Von nun an sei $\mu = 0$ gesetzt, also $\lambda^2 + \nu^2 = 1$, was hier beim Rotationsparaboloid nur eine bequemere Anordnung des Koordinatensystems, keine Spezialisation, bedeutet. Die Lichtstrahlen fallen jetzt parallel zur XZ-Ebene ein, diese ist Symmetrieebene beider Brennflächen.

Nun ist

$$u = \frac{1}{2f} (\lambda x - 2\nu f), \quad v = -\frac{\lambda y}{2f}; \quad x = \frac{2f}{\lambda} (u + \nu), \quad y = -\frac{2fv}{\lambda}.$$

Wir erhalten jetzt die Punkte der primären Brennfläche mit den Koordinaten X, Y, Z, indem wir setzen:

 $X = x + \varrho \cdot \overline{z}, \quad Y = y + \varrho \cdot \eta, \quad Z = z + \varrho \cdot \overline{z},$ also für den ersten Mantel:

$$X_{1} = x - \frac{fh_{1}n}{h_{2}} \cdot {\binom{xh_{1}h_{2}}{fn} - \lambda} = x (1 - h_{1}^{2}) + \lambda f \cdot n \cdot \frac{h_{1}}{h_{2}}$$

$$Y_{1} = y - \frac{fh_{1}n}{h_{2}} \cdot \frac{yh_{1}h_{2}}{fn} = y (1 - h_{1}^{2})$$

$$Z_{1} = z + \frac{fh_{1}n}{h_{2}} \binom{2h_{1}h_{2}}{n} + v = z + 2f \cdot h_{1}^{2} + vf \cdot n \cdot \frac{h_{1}}{h_{2}}.$$
(13)

Da $z = \frac{1}{4f} (x^2 + y^2), \quad x = \frac{2f}{\lambda} (h_1 h_2 + \nu), \quad y = -\frac{2f}{\lambda} \sqrt{(1 - h_1^2) (h_2^2 - 1)},$

$$n = \frac{1}{\lambda^2} (h_1^2 + 2 \nu h_1 h_2 + h_2^2)$$
, so wird nach kurzer Rechnung

$$X = f \cdot \begin{bmatrix} h_1 \\ \lambda h_2 \end{pmatrix} (h_1^2 + 3h_2^2 - 2h_1^2 h_2^2) + \frac{2\nu}{\lambda} \end{bmatrix}$$

$$Y = -\frac{2f}{\lambda} (1 - h_1^2) \sqrt{(1 - h_1^2) (h_2^2 - 1)}$$

$$Z = \frac{f}{\lambda^2 h_2} [\nu h_1^3 + 3h_1^2 h_2 + 3\nu h_1 h_2^2 + h_2^3] - f.$$
(14)

Die Variablen u und v sind symmetrisch in h_1 und h_2 (Gleichung 11), also auch x, y, z, n, also auch ξ, η, ζ ; da nun durch Vertauschung von h_1 und $h_2 \rho_1$ in ρ_2 übergeht, so erhält man bei Zusammensetzung des zweiten Mantels wieder die Gleichungen (14), nur mit vertauschten Parameterwerten, d. h. die Gleichungen (14) gelten für die totale Brennfläche, falls man auch

 $h_1 > 1$, $h_2^2 < 1$ zuläfst. Über das Vorzeichen von Y ist zu bemerken, dafs $\sqrt{(1-h_1^2)(h_2^2-1)}$, d. h. v, das umgekehrte Vorzeichen von y hat: $v = -\frac{\lambda}{2f}y$, so dafs Y für den ersten Mantel das gleiche Zeichen wie y, für den zweiten Mantel das entgegengesetzte hat, wie es auch die Gleichung $Y = y(1-h_1^2)$ aussagt.

Die erste Brennfläche des Rotationsparaboloides $z = \frac{1}{4f} (x^2 + y^2)$ bei Reflexion von Strahlen, die parallel zur XZ-Ebene unter dem Winkel $\varphi = \arcsin \lambda$ gegen die Achse einfallen, ist durch die Gleichungen (14) gegeben; dabei hängen die Parameter h_1h_2 mit den Koordinaten x, y des entsprechenden Punktes der spiegelnden Fläche folgendermafsen zusammen:

$$x = \frac{2f}{\lambda}(h_{1}h_{2} + \nu); \ y = -\frac{2f}{\lambda}\sqrt{(1 - h_{1}^{2})(h_{2}^{2} - 1)}$$

$$h_{1} = \frac{1}{4f}\left[\sqrt{\lambda^{2}(x^{2} + y^{2} + 4f^{2}) + 4f(1 - \nu)(\lambda x - 2\nu f)} - \sqrt{\lambda^{2}(x^{2} + y^{2} + 4f^{2}) - 4f(1 + \nu)(\lambda x - 2\nu f)}\right]$$

$$h_{2} = \frac{1}{4f}\left[\sqrt{\lambda^{2}(x^{2} + y^{2} + 4f^{2}) + 4f(1 - \nu)(\lambda x - 2\nu f)} + \sqrt{\lambda^{2}(x^{2} + y^{2} + 4f^{2}) - 4f(1 + \nu)(\lambda x - 2\nu f)}\right]$$

$$(15)$$

f bedeutet dabei die Brennweite des Spiegels.

Die Größen X, Y, Z sind gerade Funktionen der Parameter: bei gleich-

zeitigem Zeichenwechsel von h_1 und h_2 bleiben sie ungeändert. Je zwei in Bezug auf den Ursprung punktsymmetrisch gelegene Punkte $h_1 h_2$ und $-h_1$, $-h_2$ geben denselben Punkt der Brennfläche. Es genügt also, sich auf die beiden Streifen I und II der Fig. 6 zu beschränken, indem man die Beschränkungen $h_1 \ge -1$, $h_2 \ge -1$ einführt. Die Streifen I und II sind dann Bilder des ersten und zweiten Mantels der Brennfläche. Die zwei auf einem reflektierten Strahl gelegenen Punkte der Brennfläche sind in der Parameterebene durch zwei Punkte abgebildet, die zur 45° -Linie

Figur 6.

 $h_1 = h_2$ symmetrisch liegen. Ferner sei hier schon angedeutet, dafs der zweite Mantel in zwei Schalen zerfällt, die durch $h_2 = 0$ getrennt werden, d. h. im Unendlichen zusammenhängen.

§ 4.

Diskussion der Brennfläche.

Wir stellen die Richtung des reflektierten Strahles ausgedrückt durch die Parameter h_1 und h_2 voraus:

$$\boldsymbol{\xi} = \lambda \frac{2h_1^2 h_2^2 - (h_1^2 + h_2^2)}{h_1^2 + 2\nu h_1 h_2 + h_2^2}, \ \boldsymbol{\eta} = 2\lambda \frac{h_1 h_2 \sqrt{(1 - h_1^2)(h_2^2 - 1)}}{h_1^2 + 2\nu h_1 h_2 + h_2^2}, \ \boldsymbol{\zeta} = -\frac{\nu h_1^2 + 2h_1 h_2 + \nu h_2^2}{h_1^2 + 2\nu h_1 h_2 + h_2^2}.$$
(1)

Die Brennfläche ist, wie schon bemerkt, natürlich zur xz-Ebene symmetrisch. Die beiden Mäntel hängen nur zusammen, wo $\varrho_1 = \varrho_2$ ist, d. h. für $h_1 = 1$, $h_2 = 1$ und $h_1 = -1$, $h_2 = +1$ (und in den äquivalenten Punkten $h_1 = -1$, $h_2 = -1$ und $h_1 = +1$, $h_2 = -1$). Diese Punkte, die den brennpunktartigen Punkten B_1 und B_2 der katoptrischen Linien entsprechen, mögen B_1' und B_2' heißen.

$$\begin{array}{c} h_{1} = 1, \ h_{2} = 1 \ \text{gibt} \ B_{1}^{\prime} \ \text{mit}: \\ x = 2f \frac{1+r}{\lambda} \ X_{1} = X_{2} = 2f \frac{1+r}{\lambda} = x \ \xi = 0 \\ y = 0 \ Y_{1} = Y_{2} = 0 \\ z = f \frac{1+r}{1-r} \ Z_{1} = Z_{2} - \frac{4f}{1-r} - f \\ z = -1 \ z = f \frac{1-r}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = f \frac{1-\nu}{1+\nu} \ Z_{1} = Z_{2} - \frac{4f}{1+\nu} - f \\ z = -1 \ z = -$$

Dieser Symmetrieschnitt Y = 0 ist der wichtigste der ebenen Schnitte. Damit Y verschwindet, ist entweder $h_1^2 = 1$ oder $h_2^2 = 1$ zu setzen. a) $h_2^2 = 1$. Nehmen wir die ganze Gerade $h_2 = +1$, d. h. auch für Werte $h_1 < -1$, so brauchten wir nicht mehr eigens $h_2 = -1$ zu betrachten. Man erhält nun offenbar eine einfach zählende Schnittkurve der Brennfläche, die L_1 heiße, nämlich:

$$X = f \cdot \left[\frac{h_1}{\lambda} \left(3 - h_1^2\right) + \frac{2\nu}{\lambda}\right], \quad Z = \frac{f}{\lambda^2} \left[\nu h_1^3 + 3 h_1^2 + 3\nu h_1 + 1\right] - f, \quad (3a)$$
also eine Kurve dritter Ordnung, und zwar eine sehr einfache, wie man erkennt, wenn man die neuen Koordinaten nimmt:

 $x' = v X + \lambda Z - 9 \lambda f$ $X = v x' - \lambda z' + 8 \lambda v f$ umgekehrt: $Z = \lambda x' + \nu z' + (1 + 8 \lambda^2) f$ $z' = -\lambda X + v Z - v f$

dann wird

$$x' = \frac{3f}{\lambda} \left[(h_1 + \nu)^2 - 3\lambda^2 \right], \quad z' = \frac{f}{\lambda^2} (h_1 + \nu) \left[(h_1 + \nu)^2 - 3\lambda^2 \right],$$

oder mit Wiedereinführung der Abszisse x des zugehörigen Punktes auf dem Spiegel: $x = \frac{2f}{\lambda} (h_1 + \nu)$

$$x' = 3 \lambda f \left[\frac{x^2}{4f^2} - 3 \right], \quad z' = \frac{\lambda x}{2} \left[\frac{x^2}{4f^2} - 3 \right]. \tag{3b}$$

Die Elimination von x gibt:

$$L_1 \qquad x'^3 + 9\,\lambda f(x'^2 - 3\,z'^2) = 0. \tag{3c}$$

Die Kurve ist symmetrisch zur x'-Achse und bildet eine Schleife mit dem Doppelpunkt in x' = z' = 0 für $x = \pm 2f/\overline{3}$.

Eine Asymptote hat die Kurve nicht; was ihre Lage zum ur-

sprünglichen System betrifft, so geht die x'-Achse durch den Brennpunkt Fdes Spiegels und bildet mit der Z-Achse den Winkel ψ mit tg $\psi = \frac{\nu}{\lambda}$, d. h. den gleichen Winkel, den der einfallende Lichtstrahl mit der X-Achse bildet. Der Koordinatenanfang x' = 0, z' = 0,ist der Doppelpunkt K von L_1 mit: $X = 8 \lambda v f, \ Z = (1 + 8 \lambda^2) f.$ Vertikale Tangenten sind natürlich für $x = \frac{2f}{2}(\nu \pm 1)$ nämlich in B_1 und B_2 Ferner berührt L_1 die vorhanden. Schnittparabel $z = \frac{1}{4f}x^2$ für $h_1 = 0$,

d. h. $x = \frac{2\nu f}{\lambda}$, d. h. in $X = \frac{2\nu f}{\lambda}$, $Z = \frac{\nu^2 f}{\lambda^2}$; dies ist der schon früher erwähnte Schnittpunkt M, der Linien u = 0 und v = 0 auf dem Spiegel.

Zwischen den Punkten B_1' und B_2' gehört die Kurve L_1 dem ersten Mantel, aufserhalb derselben dem zweiten Mantel an.

b) $h_1^2 = 1$. Wieder genügt es $h_1 = +1$ zu nehmen, wenn man Werte $h_2 < -1$ zuläfst. Die so erhaltene Schnittkurve L_2 ist für die Brennfläche Rückkehrkante, da die Entwicklungen von X, Y, Z für $h_1 = 1 - \alpha^2$; $h_2 =$ konst. folgendermafsen beginnen:

$$X = a + b a^{2} + c a^{4} \dots, \quad Y = a^{3} (a_{1} + b_{1} a^{2} \dots), \quad Z = a_{2} + b_{2} a^{2} + c_{2} a^{4} \dots$$

Die Gleichung dieser ebenen Rückkehrkante wird zunächst:

$$X = f \cdot \left[\frac{1 + h_2^2}{\lambda h_2} + \frac{2\nu}{\lambda} \right] \qquad Z = \frac{f}{\lambda^2 h_2} \left[\nu + 3 h_2 + 3 \nu h_2^2 + h_2^3 \right] - f$$
oder
$$X = \left[\frac{f}{\lambda h_2} \left[1 + 2 \nu h_2 + h_2^2 \right] \quad Z = \frac{f}{\lambda^2 h_2} \left[\nu + h_2 \right] \cdot \left[1 + 2 \nu h_2 + h_2^2 \right] + f. \right]$$
(4a)

 L_2 hat also einen Doppelpunkt für die beiden Wurzeln der Gleichung $1 + 2\nu h_2 + h_2^2 = 0$ in X = 0, Z = f, d. h. im Brennpunkt F des Spiegels; da man findet $h_2 = -\nu \pm i\lambda$, so ist es ein isolierter Punkt; für die Brennfläche hat er keine Bedeutung.

Durch Elimination von h_2 erhält man mit z' = z - f

$$L_2 \qquad \qquad \nu X^3 - \lambda X^2 Z' + \lambda f X^2 + \lambda f Z'^2 = 0. \tag{4b}$$

Figur 9. Die Rückkehrkante L_2 der Brennfläche.

Der Koordinatenanfang ist also jetzt im Brennpunkt F des Spiegels. Die Kurve hat eine Asymptote: $\lambda v X - \lambda^2 Z' + f = 0$ parallel zur einfallenden Lichtrichtung und zieht aufserdem für großes Z parabelartig durchs Unendliche. Vertikale Tangenten sind wieder für $h_2 = \pm 1$ in B_1' und B_2' vorhanden, hier berühren sich also die Kurven L_1 und L_2 . Eine horizontale Tangente ergibt sich für $h = \sqrt[3]{\frac{\sqrt{v}}{1+\lambda} + \sqrt[3]{1-\lambda}}$. Die drei Wendepunkte gehören zu den Wurzeln der Gleichung $h^3 - 3h - 2v = 0$.

Führt man auch in L_2 den Parameter x ein, so wird

$$X = \lambda f \cdot \frac{1 + \frac{x^2}{4f^2}}{\lambda \frac{x}{2f} - \nu}, \quad Z = \frac{\lambda}{2} \cdot \frac{x \left[1 + \frac{x^2}{4f^2}\right]}{\lambda \frac{x}{2f} - \nu} + f. \tag{4c}$$

Den Anteil von L_2 an den beiden Mänteln erkennt man schnell daran, dafs $h_2 = 0$ oder $x = 2f \frac{\nu}{\lambda}$ den unendlich fernen Berührpunkt der Asymptote gibt; also gehören die zwei der Asymptote sich anschmiegenden Äste von B_1 und B_2 an zum zweiten Mantel, während die durchs Unendliche ziehende Schleife dem ersten Mantel angehört.

Durch Zusammenstellung von L_1 und L_2 erhalten wir den vollständigen Schnitt der Brennfläche mit der Symmetrieebene, wie er in Fig. 10 mit seiner Abbildung in die Parameterebene veranschaulicht ist:

Fig. 10.

Abbildung des Symmetrieschnittes in die Parameterebene.

Der Schnitt des ersten Mantels folgt, aus dem Unendlichen kommend, über A der Kurve L_2 bis B_1 , geht hier auf L_1 über, folgt L_1 über M bis B_2 und geht nun längs L_2 über E wieder ins unendliche. Der Schnitt des zweiten Mantels zerfällt in zwei Stücke: er kommt längs L_2 aus dem Unendlichen über K bis B_1 , geht hier auf L_1 über, und folgt L_1 über P ins Unendliche, kommt dann über Q zurück und geht in B_2 wieder auf L_2 über, um längs L_2 über G wieder ins Unendliche zu ziehen. Die als Schnitt dreifach zählende Rückkehrkante L_2 geht also in B_1 und B_2 von einem Mantel auf den anderen über. In der Parameterebene gehört die Rückkehrkante also den zwei Geraden $h_1 = +1$, $h_1 = -1$ an.

Außer Y = 0 ist nur noch ein Schnitt der Brennfläche leicht zugänglich, nämlich die aus u = 0, d. h. $h_1 = 0$ sich ergebende ebene Nova Acta CL. Nr. 1. 4

Berührungslinie der Brennfläche mit dem Spiegel. Sie spielt zugleich die Rolle der Grenze zwischen belichtetem und im Schatten liegendem Teil des Spiegels, die wir Selbstschattengrenze nannten. Sie ist die in der Ebene $X = \frac{2r}{\lambda} \cdot f$ liegende Parabel: $Y = -\frac{2f}{\lambda}\sqrt{h_2^2-1}$, $Z = \frac{fh_2^2}{\lambda^2} - f$.

In dieser Parabel berührt der erste Mantel den Spiegel. Der Schnitt des zweiten Mantels mit der Ebene $X = \frac{2\nu}{\lambda} \cdot f$ hat in $h_1 h_2$ die Gleichung:

$$2 h_1^2 h_2^2 - h_1^2 - 3 h_2^2 = 0.$$

Diese Kurve in der Parameterebene hat vier Asymptoten (Fig. 11) $h_1 = \pm \sqrt{\frac{3}{2}}, h_2 = \pm \sqrt{\frac{3}{2}}$. Man sieht, daß der erste Mantel wirklich nicht

figur Y = 0 als Rückgrat läfst sich nun durch Betrachtung der Parameterlinien h_1 und h_2 die Brennfläche aufbauen.

Von den beiden Scharen muß die eine bekanntlich geodätische Linien, die andere dazu konjugierte Linien darstellen, und zwar ergibt sich durch Untersuchung der Proportion $dX:dY:dZ = \xi:\eta:\zeta$, daß in den Gleichungen 14 von § 3 h_2 = konst. die

geodätischen Linien liefert. Im übrigen sind die beiden Kurven h_1 und h_2 , wie man leicht sieht, von der sechsten Ordnung.

Wir betrachten die Projektionen der Parameterlinien in die Koordinatenebenen. Es lohnt sich, dazu eine Verschiebung vorzunehmen, und aufserdem, da es hier weniger auf die absoluten Mafse ankommt, zur Vereinfachung der Formeln $f = \frac{1}{2}$ zu setzen; die neuen Koordinaten mögen wieder x, y, z heifsen, nicht zu verwechseln mit den Koordinaten x, y, z der Punkte des Spiegels. Also sei

$$x = \frac{X}{2f} - \frac{r}{\lambda}; \ y = -\frac{Y}{2f}; \ z = \frac{Z}{2f} + \frac{1}{2},$$

d. h.

26

h,

Figur 11.

h.

$$x = \frac{h_1}{2\lambda h_2} [h_1^2 + 3h_2^2 - 2h_1^2 h_2^2],$$

$$y = \frac{1}{\lambda} \sqrt{(1 - h_1^2)^3} (h_2^2 - 1),$$

$$z = \frac{1}{2\lambda^2 h_2} [\nu h_1^3 + 3h_1^2 h_2 + 3\nu h_1 h_2^2 + h_2^3].$$
(5)

Die Projektion in die xy-Ebene.

1. $h_1 =$ konst. Die Kurven werden zu beiden Achsen x und y symmetrisch; man erhält durch Elimination von h_2

 $4\lambda^{2} (1 - h_{1}^{2})^{3} x^{2} [\lambda^{2} y^{2} + (1 - h_{1}^{2})^{3}] - h_{1}^{2} [\lambda^{2} y^{2} (3 - 2h_{1}^{2}) + (1 - h_{1}^{2})^{3} (3 - h_{1}^{2})]^{2} = 0,$

also Kurven vierter Ordnung von der Form:

$$ax^2y^2 - by^4 + cx^2 + dy^2 + e = 0$$

Projektion der Parameterlinien $h_1 =$ konst. der Brennfläche in die xy-Ebene.

Schnittpunkte mit der *x*-Achse erhält man für $h_2 = \pm 1$ also $x = \pm \frac{h_1 (3 - h_1^2)}{2 \lambda}$. Asymptoten gibt es vier, nämlich:

 $\frac{y}{x} = \pm \sqrt{-\frac{a}{b}} \quad \text{und} \quad y = \pm \sqrt{-\frac{c}{a}},$ $\frac{y}{x} = \pm \frac{2\sqrt{(1-h_1^2)^3}}{h_1(3-2h_1^2)} \quad \text{und} \quad y = \pm \frac{1}{\lambda}\sqrt{(h_1^2-1)^3},$

also:

d. h. die hyperbelartigen Kurven des ersten Mantels haben auch Asymptoten durch den Anfangspunkt. Beim zweiten Mantel aber liegen die Asymptoten 4*

parallel zur x-Achse und die Scheitel der beiden Zweige rücken für wachsendes h_1^2 gegeneinander und dann übereinander. (Übrigens sind für $1 < h_1^2 < \frac{3}{2}$ auch isolierte Punkte auf der ganzen y-Achse vorhanden.) Die beiden Zweige einer Kurve $h_1 > 1$ gehören den beiden getrennten Schalen des zweiten Mantels an. Die Projektionen von B_1 ' und B_2 ' spielen brennpunktartige Rolle.

2. $h_2 =$ konst. Zunächst ist wieder Symmetrie zu beiden Achsen vorhanden. Als Schnittpunkt mit den Achsen findet man zunächst für den ersten Mantel:

Figur 13. Projektion der Parameterlinien $h_2 =$ konst. in die xy-Ebene.

 $x = 0 \text{ für } h_1 = 0 \text{ mit } y = \pm \frac{1}{\lambda} \sqrt{h_2^2 - 1} \text{ und } \frac{dy}{dh_1} = 0$ $x = 0 \text{ für } h_1^2 + 3h_2^2 - 2h_1^2h_2^2 = 0 \text{ gibt } h_1^2 = \frac{3h_2^2}{2h_2^2 - 1} > 1 \text{ falls } h_2 > 1,$ also ist y imaginär.

y = 0 für $h_1 = +1$ mit $x = \frac{h_2^2 + 1}{2\lambda h_2}$ und $\frac{dy}{dh_1} = 0$; Spitze. y = 0 für $h_1 = -1$ mit $x = -\frac{h_2^2 + 1}{2\lambda h_2}$ und $\frac{dy}{dh_1} = 0$; Spitze.

Tangenten parallel zur y-Achse hat man für

$$h_1 = \pm \frac{h_2}{\sqrt{2h_2^2 - 1}}$$
 mit $x = \pm \frac{h_2^2}{\lambda \sqrt{2h_2^2 - 1}}, y = \pm \frac{(h_2^2 - 1)^2}{\lambda \sqrt{(2h_2^2 - 1)^3}}.$

Die Kurven des ersten Mantels verlaufen ganz im Endlichen; da auch z endlich bleibt, so gilt:

Der erste Mantel der Brennfläche besitzt eine Schar geschlossener geodätischer Linien, deren jede zwei Spitzen besitzt.

Für die Kurven $h_2 = \text{konst.}$ des zweiten Mantels liefert x = 0, $h_1 = 0$, $y = \frac{1}{\lambda} \sqrt{h_2^2 - 1}$ keine reellen Schnittpunkte mit der y-Achse; dagegen x = 0, $h_1^2 + 3h_2^2 - 2h_1^2h_2^2 = 0$ für $h_2^2 > \frac{1}{2}$, da $h_1^2 = \frac{3h_2^2}{2h_2^2 - 1}$. Die Kurven haben wieder Spitzen auf der x-Achse und laufen durchs Unendliche. Die Ordnung der Kurven ist sechs.

Die Projektion in die xz-Ebene.

Hier erhalten wir schon wegen der ganzen Symmetrie zu Y = 0Kurven von der dritten Ordnung.

1. $h_1 = \text{konst.}$ Da $vx - \lambda z = -\frac{1}{2\lambda} [3h_1^2 + h_2^2 + 2vh_1^3h_2]$, so haben wir für $h_2 = 0$ die Ásymptote $vx - \lambda z = -\frac{3}{2\lambda}h_1^2$. Da sich schon in der xy-Projektion eine Asymptote parallel zur x-Achse ergab, so folgt: Die Raumkurven $h_1 = \text{konst.}$ des zweiten Mantels besitzen Asymptoten parallel zur einfallenden Lichtrichtung (bei Annäherung des Spiegelpunktes an die Selbstschattengrenze).

Die Elimination von h2 ergibt mit Benutzung der Abkürzungen:

$$a = 3 h_1 - 2 h_1^3, \quad b = 2 \nu h_1^3; \quad x' = 2 \lambda x, \quad z' = 2 \lambda \nu x - 2 \lambda^2 z + 3 h_1^2, \\ x'' = x' + a b, \quad z'' = a z' - h_1^3$$

die Gleichung:

$$x''^{2}z'' + h_{1}^{3}x''^{2} - a b x''z'' + a z''^{2} = 0;$$

hierbei sind nun

$$x'' = 2\lambda x + 2\nu h_1^4 (3 - 2h_1^2), \quad z'' = h_1 (3 - 2h_1^2) (2\lambda \nu x - 2\lambda^2 z) + 2h_1^3 (1 - h_1^2)$$

schiefwinklige normierte Koordinaten.

Der Anfangspunkt x'' = 0, z'' = 0 ist Doppelpunkt, seine alten Koordinaten sind

$$x = -\frac{\nu}{\lambda} h_1^4 (3 - 2h_1^2), \quad z = -\frac{\nu^2 h_1^4 (3 - 2h_1^2)^2 + h_1^2 (4 - 3h_1^2)}{\lambda^2 (3 - 2h_1^2)}.$$

 $\mathbf{29}$

Die genauere Unterscheidung nach Schleife, Spitze oder isoliertem Punkt hängt von den Wurzeln der Gleichung $h_1^4 (3 - 2h_1^2) (1 - 3r^2h_1^4 + 2r^2h_1^6) = 0$ ab. Die Kurven haben den Charakter der speziellen Kurve L_2 ; sie stellen die Projektion der Parameterlinien der Brennfläche natürlich nur insoweit dar, als die Parameterwerte in einem der vier Streifen I-IV liegen.

2. $h_2 = \text{konst.}$ Wieder hat man Kurven dritter Ordnung. Der Doppelpunkt hat die Parameterwerte

$$h_1 = -\frac{h_2}{2 h_2^2 - 1} \left[\nu h_2^2 \pm \sqrt{3 \left(2 h_2^2 - 1 - \nu^2 h_2^4\right)} \right]$$

und die Koordinaten:

$$\begin{aligned} x_0 &= \frac{r h_2^4}{\lambda (2 h_2^2 - 1)^2} \left[3 \left(2 h_2^2 - 1 \right) - 4 \nu^2 h_2^4 \right], \\ z_0 &= \frac{h_2^2}{2 \lambda^2 (2 h_2^2 - 1)^3} \left[8 \nu^4 h_2^6 + 6 \nu^2 h_2^2 \left(1 - 4 h_2^4 \right) + 9 \left(2 h_2^2 - 1 \right)^2 + \left(2 h_2^2 - 1 \right)^3 \right]. \end{aligned}$$

Durch die Verschiebung $x' = x - x_0$, $z' = z - z_0$ und die Abkürzungen: $2h_2^2 - 1 = k$, $3(2h_2^2 - 1 - \nu^2 h_2^4) = R^2$; $kh_1 + \nu h_2^3 = t$, wird:

$$x' = \frac{-1}{2\lambda h_2 k^2} \left[t^2 - h_2^2 R^2 \right] \cdot \left(t - 3 \nu h_2^3 \right), \quad z' = \frac{1}{2\lambda h_2 k^3} \left[t^2 - h_2^2 R^2 \right] \left(\nu \left(t - 3 \nu h_2^3 \right) + 3 h_2 k \right)$$

und weiter mit

$$\begin{aligned} x'' &= k \,(\nu \, x' + \lambda \, k \, z'), \quad z'' &= \frac{h_2 \, k}{\lambda} \left[(k - \nu^2 \, h_2^2) \, x' - \lambda \, \nu \, h_2^2 \, k \, z' \right] \\ \text{folgt:} \qquad x'' &= \frac{3}{2 \, \lambda} \left[t^2 - h_2^2 \, R^2 \right], \quad z'' &= -\frac{1}{2 \, \lambda^2} \, t \cdot \left[t^2 - h_2^2 \, R^2 \right], \end{aligned}$$

so daß die Verwandtschaft mit L_1 wieder deutlich ist. Durch Elimination von t ergibt sich

$$2 \lambda x''^3 + 3 h_2^2 R^2 x''^2 - 27 \lambda^2 z''^2 = 0.$$

Zur besseren Veranschaulichung der Fläche mögen ferner noch die Horizontalschnitte Z = konst. dienen, ohne daß deren Gleichungen abgeleitet werden sollen. Die Gestalt läßt sich durch Zeichnung der bisherigen Ergebnisse für einen bestimmten Fall erkennen. Man vergleiche hierzu auch die Tafel II.

Beim ersten Mantel ergibt sich oberhalb von B_1 ein Schnitt von der hier (Fig. 14) mit A bezeichneten Form mit zwei eingezogenen Spitzen; unterhalb von B_1 verschwindet die eine Spitze und wird durch eine leichte Einbuchtung ersetzt, die später verschwindet, Figuren B und C. Unterhalb von B_2 verschwindet auch die andere Spitze (D) und schliefslich bleibt ein einfaches Oval E, das sich auf einen Punkt reduziert.

Auch beim zweiten Mantel treten 2, 1 und 0, Spitzen auf, wenn auch in anderer Reihenfolge (Fig. 15). Oberhalb von B_1 ' erscheint ein Schnitt der ersten Schale von der Form B' mit einer ausgezogenen Spitze, unterhalb von B_1 ' Figur A' mit zwei solchen Spitzen. Der Schnitt der zweiten Schale durchläuft die Formen E' (Oval), D' mit Einbuchtung, C'mit einer eingezogenen Spitze, kardioidenartig.

Figur 14.

Soweit sich überhaupt eine so komplizierte Gestalt wie die der ersten Brennfläche mit wenigen Worten beschreiben läßt, kann man die bisherigen Ergebnisse etwa so zusammenfassen:

Der erste Mantel liegt innerhalb des spiegelnden Paraboloides, das er längs der ebenen Selbstschattengrenze berührt. Korbartig umgibt er die Rotationsachse des Spiegels. Zwei ebene eingezogene Rückkehrkanten stehen einander gegenüber. Der zweite Mantel besteht aus zwei Schalen, die im Unendlichen zusammenhängen, die eine Schale besitzt einen nach aufsen, die andere einen nach innen gewendeten scharfen Grat.

Die beiden Mäntel hängen in B_1' und B_2' zusammen und von hier aus laufen natürlich Kurven, längs denen sich die beiden Mäntel schneiden. Über das allgemeine Gestaltliche der Doppelkurve der Brennfläche läfst sich folgendes sagen: Aus dem Symmetrieschnitt, in dem wieder B_1' und B_2'

die beiden Berührungspunkte von L_1 und L_2 , ferner K der Doppelpunkt von L_1 und H der stets vorhandene Schnitt von L_1 und L_2 sei, erkennt man:

Bei kleinem Einfallswinkel (gegen die Achse) gibt es nur Schnitte zwischen dem ersten und dem zweiten Mantel, und zwar zwei getrennte geschlossene Züge; der eine verbindet B_1 ' mit H, der andere B_2 ' mit K. In H, B_1 ' und B_2 ' sind Spitzen vorhanden (Fig. 16). Bei größer werdendem Einfallswinkel schneidet aber einmal die Kurve L_1 die Kurve L_2 in zwei weiteren reellen Punkten U und V; d. h. hier ist noch eine Doppelkurve des zweiten Mantels für sich, ein Schnitt seiner beiden Schalen vorhanden (Fig. 17a). Solange dabei der Einfallswinkel kleiner als $\frac{\pi}{3}$ bleibt, d. h. $\lambda < \frac{1}{2}\sqrt{3}$; $\nu > \frac{1}{2}$ ist, verlaufen die drei nun vorhandenen Züge noch getrennt. Im Fall $\frac{\pi}{3}$, $\lambda = \frac{1}{2}\sqrt{3}$, $\nu = \frac{1}{2}$ rücken K, U und B_1 ' zusammen, die drei Schnittkurven haben B_1 '

gemeinsam. Bei noch größerem Einfallswinkel haben sie zwei zur xz-Ebene symmetrisch liegende Punkte gemein (Fig. 17b). Ist schließlich $\lambda = 1$, so ist auch zur xz-Ebene Symmetrie vorhanden, der Schnitt der beiden Schalen des zweiten Mantels ist eben und liegt in der YZ-Ebene. (Vgl. Tafel IV.)

Um schliefslich die Ordnung der Brennfläche zu ermitteln, kann man sich auf die Untersuchungen von A. Voss über die projektive Zentrafläche¹) beziehen. Dort wird das Strahlensystem (x, y) betrachtet, wenn die homogenen Koordinaten x_i eine Fläche *n* ter Ordnung f = 0 erfüllen und die Punkte y_i als ganze rationale Funktionen ψ_i vom *s* ten Grad gegeben sind. Als Fläche f = 0 diene jetzt das Rotationsparaboloid mit der Brennweite $\frac{1}{2}$, also $f = x_1^2 + x_2^2 - 2x_3x_4$; um geeignete Funktionen ψ_i zu erhalten, trage man auf dem reflektierten Strahl eine beliebige passend gewählte Funktion *t* von

¹) A. Vofs, Über die projektive Centrafläche einer algebr. Fläche *n* ter Ordnung. Bayer. Akademie. Abh. II. Cl. XVI. Bd. II. Abt. München 1887.

x, y als Strecke ab und nehme die Koordinate des Endpunktes. Es empfiehlt sich $t = x^2 + y^2 + 1$ zu nehmen, also

$$\begin{split} \varrho \cdot y_1 &= \lambda \left(x_1^2 - x_2^2 - x_4^2 \right) + 2 \mu x_1 x_2 + (1 - 2 \nu) x_1 x_4 \\ \varrho \cdot y_2 &= \mu \left(x_2^2 - x_1^2 - x_4^2 \right) + 2 \lambda x_1 x_2 + (1 - 2 \nu) x_2 x_4 \\ \varrho \cdot y_3 &= \left(\frac{1}{2} - \nu \right) \left(x_1^2 + x_2^2 \right) - \nu x_4^2 - 2 \left(\lambda x_1 x_4 + \mu x_2 x_4 - \nu x_4^2 \right) \\ \varrho \cdot y_4 &= x_4^2, \end{split}$$

d. h. hier ist s = 2.

Als Ordnung der Brennfläche erhalten wir jetzt nach der Formel N = n (s+1) (3 s+n-1) - 2 n s (a. a. O. S. 9), da n = 2, s = 2 ist:

$$N = 2 \cdot 3 \cdot 7 - 8 = 34.$$

So ergibt sich für die Brennfläche die Ordnung 34. Die Ordnung des Systems der reflektierten Strahlen ergibt sich nach $n(s^2+s+1)$ (S. 9) als 14.

Für den ersten Mantel kann man endlich eine asymptotische Fläche aufstellen. Wir nehmen hierzu wieder die reduzierten Koordinaten x, y, z

$$\begin{split} x &= \frac{h_1}{2\,\lambda h_2} \, [h_1{}^2 + 3\,h_2{}^2 - 2\,h_1{}^2\,h_2{}^2], \\ y &= \frac{1}{\lambda} \sqrt{(1 - h_1{}^2)^3 \,(h_2{}^2 - 1)}, \\ z &= \frac{1}{2\,\lambda^2 \,h_2} \, [\nu \,h_1{}^3 + 3\,h_1{}^2 \,h_2 + 3\,\nu \,h_1 \,h_2{}^2 + h_2{}^3] \end{split}$$

Für sehr große Werte h_2 erhalten wir sehr große Werte x, y, zund zwar Punkte des ersten Mantels. Nimmt man nur die höchsten Potenzen von h_2 , so wird:

$$x = \frac{h_1 h_2}{2 \lambda} [3 - 2 h_1^2], \quad y = \frac{h_2}{\lambda} \sqrt{(1 - h_1^2)^3}, \quad z = \frac{h_2^2}{2 \lambda^2}.$$

Für diese asymptotische Fläche sind die Parameterlinien $h_1 = \text{konst.}$ Schnitte mit Ebenen durch die z-Achse; man hat:

$$\frac{y}{x} = \frac{2\sqrt{(1-h_1^2)^3}}{h_1(3-2h_1^2)}.$$

Die Kurven $h_2 = \text{konst.}$ sind Horizontalschnitte $z = \frac{h_2^2}{2\lambda^2}$. Ferner folgt aus $r^2 = x^2 + y^2 = \frac{h_2^2}{4\lambda^2} (4-3h_1^2) = \frac{z}{2} (4-3h_1^2)$: Die ebenen Schnitte durch die z-Achse, oder die h_1 -Linien sind Parabeln durch r = 0, z = 0. Die Gleichung der Fläche in x y z, von der sechsten Ordnung ist:

$$2 [2 x^2 + 2 y^2 - z]^3 - 27 y^2 z^2 = 0.$$

5

Nova Acta CI. Nr. 1.

Die erwähnten Horizontalschnitte sind zu beiden Achsen symmetrisch, von der sechsten Ordnung, mit Tangenten parallel zur y-Achse in $x = \pm \sqrt{z}$. $y = \pm \frac{1}{2}\sqrt{z}$ und mit Tangenten parallel zur z-Achse in x = 0, $y = \pm \sqrt{2z}$. Die Spitzen liegen in $x = \sqrt{\frac{1}{2}z}$, y = 0, d. h. der Schnitt der Fläche mit y = 0, der scharfer Grat ist, ist die Parabel $2x^2 = z$.

Figur 18.

§ 5.

Aufstellung der Wellenfläche.

Zur Vereinfachung der Formeln sei auch hier die Brennweite f des Spiegels gleich $\frac{1}{2}$ gesetzt.

Die Wellenflächen des einfallenden Strahlensystems sind Ebenen; von diesen aus leiten wir leicht die Wellenflächen der reflektierten Strahlen ab: von dem Punkt xyz des Spiegels aus wird auf dem reflektierten Strahl jeweils die Strecke t abgetragen, die gleich der Entfernung des Spiegel-

punktes von einer der Wellenebenen ist. Diese Normalenebene sei

$$E_k \equiv \lambda x + \nu z + rac{
u}{2} - k = 0,$$

wo man noch k passend bestimmen kann.

Dann ist $t = \lambda x + \nu z + \frac{\nu}{2} - k$ und positiv, wenn der Punkt z. B. *A* vor E_k , negativ, wenn er (z. B. *B*) nach E_k liegt (vgl. Fig. 19).

Demnach erhält man als Koordinaten des Punktes der Wellenfläche W_k mit x, y des Spiegelpunktes als Parametern:

$$X_{k} = x + (\lambda x + vz + \frac{v}{2} - k) \cdot \left(\frac{2x(\lambda x - v)}{x^{2} + y^{2} + 1} - \lambda\right)$$

$$Y_{k} = y + (\lambda x + vz + \frac{v}{2} - k) \cdot \frac{2y(\lambda x - v)}{x^{2} - y^{2} + 1}$$

$$Z_{k} = z - (\lambda x + vz + \frac{v}{2} - k) \cdot \left(\frac{2(\lambda x - v)}{x^{2} + y^{2} + 1} + v\right)$$
(1)

(mit Benutzung der Formeln (12) von § 3 für $\mu = 0; f = \frac{1}{2}$).

Mit den Abkürzungen $x^2 + y^2 + 1 = n$; $\lambda x - \nu = u$ erhält man:

$$X_{k} = -\frac{\lambda \nu}{2} n + \lambda \left(\nu x^{2} + k \right) + \frac{2 x u \left(u + \nu - k \right)}{n}$$

$$Y_{k} = y \cdot \left\{ 1 + \nu u + \frac{2 u \left(u + \nu - k \right)}{n} \right\}$$

$$Z_{k} = \frac{\lambda^{2}}{2} n - \nu \left(2 u + \nu - k \right) - \frac{2 u \left(u + \nu - k \right)}{n} - \frac{1}{2}.$$
(1a)

Durch Einführung der Parameter $h_1 h_2$ wird die Fläche auf die Krümmungslinie bezogen:

$$u = h_1 h_2, \ n = \frac{1}{\lambda^2} [h_1^2 + 2\nu h_1 h_2 + h_2^2], \ \nu x^2 + k = \frac{\nu}{\lambda^2} (h_1 h_2 + \nu)^2 + k,$$

gibt:

$$X_{k} = \frac{\nu}{2\lambda} \left[2h_{1}^{2}h_{2}^{2} - (h_{1}^{2} - 2\nu h_{1}h_{2} + h_{2}^{2}) \right] + \frac{2\lambda h_{1} h_{2} (h_{1}h_{2} + \nu) (h_{1}h_{2} + \nu - k)}{h_{1}^{2} + 2\nu h_{1}h_{2} + h_{2}^{2}} + \lambda k + \frac{\nu^{3}}{\lambda} \right]$$

$$Y_{k} = \frac{1}{\lambda} \left[\sqrt{(1 - h_{1}^{2}) (h_{2}^{2} - 1)} \cdot \left\{ 1 + \nu h_{1} h_{2} + \frac{2\lambda^{2} h_{1} h_{2} (h_{1}h_{2} + \nu - k)}{h_{1}^{2} + 2\nu h_{1} h_{2} + h_{2}^{2}} \right\}$$

$$Z_{k} = \frac{1}{2} \left[h_{1}^{2} + 2\nu h_{1} h_{2} + h_{2}^{2} \right] - \nu \left(2h_{1} h_{2} + \nu - k \right) - \frac{2\lambda^{2} h_{1} h_{2} (h_{1} h_{2} + \nu - k)}{h_{1}^{2} + 2\nu h_{1} h_{2} + h_{2}^{2}} - \frac{1}{2}.$$

$$(2)$$

Man sieht: bei Benutzung der Parameterebene $h_1 h_2$ genügt es, sich auf den ersten Streifen zu beschränken.

Aus der Art der Zusammensetzung der Wellenfläche läfst sich eine Beziehung zwischen ihr, der Ebene E_k und dem Paraboloid ableiten, die man dann leicht an den Formeln bestätigt. Liegt der Punkt P(x, y, z) des Spiegels auf der Selbstschattengrenze $u = \lambda x - v = 0$, so ist der reflektierte Strahl die Verlängerung des einfallenden. Trägt man auf dem reflektierten die Strecke t mit ihrem Vorzeichen ab, so gelangt man wieder zur Ebene E_k und dieser Strahl steht auch normal zu E_k , d. h.:

Jede Wellenfläche W_k berührt die zugehörige Ebene E_k in einer Parabel, die die Projektion der Selbstschattengrenze (auch der Kontur) des Spiegels durch die einfallenden Lichtstrahlen auf die Ebene E_k ist.

 5^{*}

Gehört ferner P zugleich der Ebene E_k an, so ist t = 0, d. h.:

Die Wellenfläche W_k schneidet aufserdem die Ebene E_k zugleich mit dem Spiegel in einer Ellipse.

In der Tat: soll ein Punkt $X_k Y_k Z_k$ der Wellenfläche auch der Ebene E_k angehören, so mufs $\lambda X_k + r Z_k + \frac{v}{2} - k = 0$ sein, d. h. für die Parameter x, y gilt die Bedingung:

$$\begin{split} \lambda^2 \, r \, x^4 + 2 \, \lambda \, (\lambda^2 - r^2) \, x^3 + x^2 \, (\lambda^2 \, r \, y^2 - 3 \, \lambda^2 \, v + v^3 - 2 \, \lambda^2 \, k) \\ &- 2 \, \lambda \, r \, x \, (r \, y^2 - 2 \, k) + v^3 \, (y^2 + 1) - 2 \, r^2 \, k = 0, \end{split}$$

Die linke Seite ist zerlegbar und gibt

 $(\lambda x - \nu)^2 \cdot (\nu x^2 + 2\lambda x + \nu (y^2 + 1) - 2k) = 0;$ (3)

der zweite Faktor stellt auch den Schnitt des Spiegels mit E_k vor.

Der gemeinsame Schnitt der drei Flächen: Spiegel, Ebene E_k und Wellenfläche W_k ist eine Ellipse, deren Projektion in die xy-Ebene ein Kreis ist:

$$\left(x + \frac{\lambda}{r}\right)^2 + y^2 - \frac{1}{\nu^2} (2 \nu k + \lambda^2 - r^2) = 0.$$

Der Mittelpunkt dieses Kreises ist unabhängig von k in $x = -\frac{\lambda}{\nu}$, y = 0, so dafs die verschiedenen Wellenflächen konzentrische Kreise geben.

Unter den ebenen Schnitten der Wellenfläche ergibt sich nur noch der in der Symmetrieebene y = 0, der dann auch die Wellenlinie des ebenen Problems der Parabel liefert, in einfacher Form. Man erhält für y = 0 die Evolvente der Kurve L_1 und zwar die Kurve vierter Ordnung:

$$\begin{aligned} \Sigma_{k} &= -\frac{\lambda r}{2} (x^{2} + 1) + \lambda (r x^{2} + k) + \frac{2 x (\lambda x - k) (\lambda x - r)}{x^{2} + 1} \\ Z_{k} &= \frac{\lambda^{2}}{2} (x^{2} + 1) - r (2 \lambda x - r - k) - \frac{2 (\lambda x - k) (\lambda x - r)}{x^{2} + 1} - \frac{1}{2}. \end{aligned}$$
(4)

Horizontale Tangenten (parallel zur *x*-Achse) hat man unabhängig von *k* für $x_1 = \frac{\nu+1}{\lambda}$, $x_2 = \frac{\nu-1}{\lambda}$, und zwar in $X_k = \frac{\nu+1}{\lambda}$, $Z_k = k - \nu - \frac{1}{2}$ und in $X_k = \frac{\nu-1}{\lambda}$, $Z_k = \nu - k - \frac{1}{2}$. Es sind die zu B_1 und B_2 gehörigen Punkte N_1 und N_2 , die für die Fläche W_k die Rolle von Nabelpunkten spielen, wie aus der Betrachtung über die Krümmungsradien unten sofort erhellt.

Die Spitze der Kurve gehört zu der reellen Wurzel der Gleichung $\lambda x^3 + 3\lambda x - 2k = 0$, d. h. zu dem Parameterwert:

$$x = \sqrt[3]{\frac{1}{\lambda}} \left\{ \sqrt[3]{k + \sqrt{k^2 + \lambda^2}} + \sqrt[3]{k - \sqrt{k^2 + \lambda^2}} \right\}.$$
 (5)

Die Krümmungsradien der Wellenfläche ergeben sich einfach aus dem Aufbau der beiden Brennflächen durch Abtragen der Strecken ϱ und t: $r = \varrho - t$, also

$$r_{1} = -\frac{1}{2\lambda^{2}h_{2}} \left[h_{1}^{3} + 3\nu h_{1}^{2}h_{2} + 3h_{1}h_{2}^{2} + \nu h_{2}^{3} + 2\lambda^{2}h_{2}(\nu - k) \right]$$

$$r_{2} = -\frac{1}{2\lambda^{2}h_{1}} \left[\nu h_{1}^{3} + 3h_{1}^{2}h_{2} + 3\nu h_{1}h_{2}^{2} + h_{2}^{3} + 2\lambda^{2}h_{1}(\nu - k) \right]$$
(6)

und hieraus das Krümmungsmaß:

$$\frac{1}{K} = r_1 r_2 = \frac{1}{4 \lambda^4 h_1 h_2} \left[\nu h_1^6 + 3 \left(1 + \nu^2\right) h_1^5 h_2 + 15 \nu h_1^4 h_2^2 + 10 \left(1 + \nu^2\right) h_1^3 h_2^3 + 15 \nu h_1^2 h_2^4 \right. \\ \left. + 3 \left(1 + \nu^2\right) h_1 h_2^5 + \nu h_2^6 + 2 \lambda^2 \left(\nu - k\right) \left(h_1^4 + 4 \nu h_1^3 h_2 + 6 h_1^2 h_2^2 + 4 \nu h_1 h_2^3 + h_2^4 \right) \right. \\ \left. + 4 \lambda^4 h_1 h_2 \left(\nu - k\right) \right].$$

Die Rückkehrkante der Wellenfläche W_k ist durch die Bedingung $\frac{1}{K} = 0$ oder $\varrho - t = 0$ gegeben; in der Tat ist $\varrho = t$ die Bedingung, daßs man gemeinsame Punkte von Brenn- und Wellenfläche hat. D. h. die Rückkehrkante ist, wenn man die beiden Mäntel wieder unterscheidet, gegeben durch:

$$\begin{array}{l} h_1^{3} - 3 r h_1^{2} h_2 - 3 h_1 h_2^{2} - r h_2^{3} - 2 \lambda^2 h_2 (r - k) = 0 \text{ mit } h_1^{2} \leq 1, \ h_2 \geq 1 \text{ f. d. 1. Mantel} \\ r h_1^{3} + 3 h_1^{2} h_2 + 3 r h_1 h_2^{2} + h_2^{3} + 2 \lambda^2 h_1 (r - k) = 0 \text{ mit } h_1 \geq 1, \ h_2^{2} \leq 1 \text{ f. d. 2.} \\ \end{array} \right\}$$
(7)

In den Parametern x, y lassen sich beide Bedingungen zusammenfassen zu der einen:

$$\lambda^{2} r n^{3} + \lambda^{2} (3 u + 2 r - 2 k) n^{2} + 4 u (u + v - k)^{2} = 0 \quad n = x^{2} + y^{2} + 1$$
$$u = \lambda x - v.$$

Die Rückkehrkante jeder Wellenfläche W_k entspricht als spezielle Kurve r = konst., auf der Evolutenfläche, d. h. ersten Brennfläche einer orthogonalen Trajektorie der geodätischen Parameterlinien, d. h.:

Die Schar der Rückkehrkanten aller Wellenflächen W_k bildet auf der primären Brennfläche eine Schar orthogonaler Trajektorien der in Gleichung 14 von § 3 durch h_2 = konst. gegebenen geodätischen Linien.

Für die Ordnung der Wellenfläche läßt sich eine obere Grenze angeben: ein ebener Schnitt $\alpha_1 X_k + \beta_1 Y_k + \gamma_1 Z_k - 1 = 0$ liefert, in den Parametern x, y eine Gleichung vierter Ordnung; ein zweiter Schnitt $\alpha_2 X_k + \ldots = 0$ eine zweite solche. D. h. die Ordnung ist höchstens 16.

Die Wellenfläche W_{ν}

Die Gleichungen für W_k lassen erkennen, daß $k = \nu$ eine einfacher zu behandelnde Fläche ergibt; (auch k = 0 kommt noch als bequemer Spezialfall in Betracht, besonders beim ebenen Problem, wo die symmetrische Evolvente von L_1 entsteht). Setzt man $k = \nu$ und nimmt die Verschiebung vor: $x_{\nu} = X_{\nu} - \frac{\nu}{2}$, $z_{\nu} = Z + \frac{1}{2}$, so erhält man mit den Parametern x, y:

$$x_{v} = -\frac{\lambda v}{2} (x^{2} + y^{2} + 1) + \frac{v}{\lambda} (\lambda^{2} x^{2} - r^{2}) + \frac{2 x (\lambda x - v)^{2}}{x^{2} + y^{2} + 1}$$

$$y_{v} = y \left\{ 1 + v (\lambda x - v) + \frac{2 (\lambda x - v)^{2}}{x^{2} + y^{2} + 1} \right\}$$

$$z_{v} = \frac{\lambda^{2}}{2} (x^{2} + y^{2} - 1) - 2 v (\lambda x - v) - \frac{2 (\lambda x - v)^{2}}{x^{2} + y^{2} - 1},$$
(8)

oder mit $n = x^2 + y^2 + 1; u = \lambda x - v$:

$$x_{\nu} = -\frac{\lambda \nu}{2} n + \frac{\nu}{\lambda} (u^{2} + 2\nu u) + \frac{2x u^{2}}{n} \\ y_{\nu} = y \left\{ 1 + \nu u + \frac{2u^{2}}{n} \right\} \\ z_{\nu} = \frac{\lambda^{2}}{2} n - 2\nu u - \frac{2u^{2}}{n} \end{cases}$$
(8 a)

und mit den Parametern $h_1 h_2$:

$$\begin{aligned} x_{\nu} &= \frac{1}{2\lambda} \frac{2h_{1}^{2}h_{2}^{2} \left(\nu h_{1}^{2} + 2h_{1}h_{2} + \nu h_{2}^{2}\right) - \nu \left(h_{1}^{2} - h_{2}^{2}\right)^{2}}{h_{1}^{2} + 2\nu h_{1}h_{2} + h_{2}^{2}} \\ y_{\nu} &= \frac{1}{\lambda} \left[\left(1 - h_{1}^{2}\right) \left(h_{2}^{2} - 1\right) \cdot \frac{h_{1}h_{2} \left(\nu h_{1}^{2} + 2h_{1}h_{2} + \nu h_{2}^{2}\right) - h_{1}^{2} + 2\nu h_{1}h_{2} - h_{2}^{2}}{h_{1}^{2} - 2\nu h_{1}h_{2} - h_{2}^{2}} \right] \\ z_{\nu} &= \frac{(h_{1}^{2} - h_{2}^{2})^{2}}{2 \left(h_{1}^{2} + 2\nu h_{1}h_{2} + h_{2}^{2}\right)}. \end{aligned}$$
(9)

Die Bezugsebene E_k wird hier $E_v \equiv \lambda x + v z - \frac{v}{2}$, sie geht durch den Brennpunkt F des Spiegels.

Aus der dritten Gleichung (9) erkennt man, da $h_1^2 + 2 r h_1 h_2 + h_2^2 = \lambda^2 (x^2 + y^2 + 1)$: Die Wellenfläche W_{ν} liegt vollständig oberhalb der Horizontalebene z = 0, d. h. $Z = -\frac{1}{2}$ und berührt diese Ebene in den beiden Punkten $x_{\nu} = \pm \frac{1}{\lambda}$, $y_{\nu} = 0$, $z_{\nu} = 0$, dies sind die beiden Kreis- oder Nabelpunkte der Fläche (vgl. Fig. 20 u. 21).

Die Krümmungsradien sind nun:

$$r_{1} = -\frac{1}{2\lambda^{2}h_{2}} [h_{1}^{3} + 3 v h_{1}^{2} h_{2} + 3 h_{1} h_{2}^{2} + v h_{2}^{3}],$$

$$r_{2} = -\frac{1}{2\lambda^{2}h_{1}} [v h_{1}^{3} + 3 h_{1}^{2} h_{2} + 3 v h_{1} h_{2}^{2} + h_{2}^{3}].$$
(10)

In den Kreispunkten haben wir daher:

in
$$N_1$$
 $x_{\nu} = +\frac{1}{\lambda}$, $r_1 = r_2 = -\frac{2}{1-\nu} = \frac{2}{\nu-1}$
in N_2 $x_{\nu} = -\frac{1}{\lambda}$, $r_1 = r_2 = -\frac{2}{1+\nu} = \frac{2}{\nu+1}$.

Ferner ist das Krümmungsmaß:

$$\frac{1}{K} = r_1 r_2 = \frac{1}{4 \lambda^4 h_1 h_2} \left[r h_1^6 + 3 (1 + r) h_1^5 h_2 + 15 r h_1^4 h_2^2 + 10 (1 + r^2) h_1^3 h_2^3 + 15 r h_1^2 h_2^4 + 3 (1 + r^2) h_1 h_2^5 + r h_2^6 \right].$$

Als Bedingung für eine Kurve von parabolischer Krümmung ergibt sich $h_1 = 0$, also

$$x_{\nu} = -\frac{\nu}{2\,\lambda} h_{2}^{2}, \quad y_{\nu} = \frac{1}{\lambda} \sqrt{h_{2}^{2} - 1}, \quad z_{\nu} = \frac{1}{2} h_{2}^{2} \quad \text{mit} \quad \lambda x_{\nu} + \nu z_{\nu} = 0,$$

dies ist wieder die Bezugsebene $E_{\nu} \equiv \lambda X + \nu Z - \frac{\nu}{2}$, da $X = x_{\nu} + \frac{\nu}{\lambda}$, $Z = z_{\nu} - \frac{1}{2}$ ist. Da E_{ν} längs einer ganzen Kurve berührt, muß diese Kurve in der Tat ein Ort der Krümmung Null sein.

Von anderen ebenen Schnitten ist nur $y_{\nu} = 0$ leicht zugänglich. Der Symmetrieschnitt $y_{\nu} = 0$. Aus (8a) folgt:

1.
$$y = 0$$
, also

$$x_{\nu} = \frac{\lambda \nu}{2} x^{2} + \frac{2 x (\lambda x - \nu)^{2}}{x^{2} + 1} - \frac{\nu}{2 \lambda} (1 + \nu^{2}),$$

$$z_{\nu} = \frac{\lambda^{2} x^{2}}{2} - 2 \lambda \nu x - \frac{2 (\lambda x - \nu)^{2}}{x^{2} + 1} + \frac{1}{2} (1 + 3 \nu^{2}).$$
(11)

Diese Evolvente von L_1 ist eine Kurve vierter Ordnung; die Spitze hat als Parameterwert x die reelle Wurzel der Gleichung

$$x^3 + 3x - \frac{2\nu}{\lambda} = 0$$
, d. h. $x = \sqrt[3]{\frac{1}{\lambda}} (\sqrt[3]{1+\nu} - \sqrt[3]{1-\nu})$.

In den beiden Kreispunkten N_1 und N_2 der Fläche ist eine gemeinsame Doppeltangente $z_{\nu} = 0$ der Kurve vorhanden.

Figur 20 zeigt diesen Teil des Symmetrieschnittes für $\lambda = 0,2$. Die Evolvente W_{ν} der Kurve L_1 berührt die Gerade E_{ν} in C und schneidet sie zugleich mit der Parabel in A und B. Für $\lambda = 0,2$ ist $\nu = 0,9798$ und $\frac{\nu}{\lambda} = 4,899$. Spitze von W_{ν} und Doppelpunkt von L_1 liegen hier nahe beieinander.

Figur 20. Zum Symmetrieschnitt der Wellenfläche.

2. y_{ν} wird auch zu Null für $1 + \nu u + \frac{2u^2}{n} = 0$ oder für $\lambda y^2 (\nu x + \lambda) + \lambda \nu x^3 + 3\lambda^2 x^2 - 3\lambda \nu x + 1 + \nu^2 = 0,$ (12)

und da hier, wie in den Flächengleichungen y das Zeichen wechseln kann, erhalten wir eine ebene Doppelkurve in der XZ-Ebene. Ihre Gleichung wird durch Elimination von n aus den Gleichungen (8a):

$$x_{\nu} = -\frac{u+\nu}{\lambda(\nu u+1)}, \quad z_{\nu} = \frac{1-u^2}{\nu u+1}.$$
 (13)

Die Doppelkurve ist also ein Kegelschnitt, und zwar die Hyperbel

$$\frac{\tilde{s}^2}{2\lambda} - \frac{\zeta^2}{2\lambda} - 1 = 0, \qquad (14)$$

$$\frac{\tilde{s}^2}{\nu^2(1-\lambda)} - \frac{\zeta^2}{\nu^2(1-\lambda)} - 1 = 0,$$

wo

$$\begin{split} \boldsymbol{\xi} &= \frac{1}{\sqrt{2}} \left[\sqrt{1 - \lambda} \left(x_{\boldsymbol{\nu}} + \frac{1}{\lambda \boldsymbol{\nu}} \right) - \sqrt{1 + \lambda} \left(z_{\boldsymbol{\nu}} - \frac{2}{\boldsymbol{\nu}^2} \right) \right];\\ \eta &= \frac{1}{\sqrt{2}} \left[\sqrt{1 - \lambda} \left(x_{\boldsymbol{\nu}} + \frac{1}{\lambda \boldsymbol{\nu}} \right) + \sqrt{1 - \lambda} \left(z_{\boldsymbol{\nu}} - \frac{2}{\boldsymbol{\nu}^2} \right) \right] \text{ ist.} \end{split}$$

v

Hiervon kommt für die physikalische Wellenfläche nur jener Teil in Betracht, der Schnitt zweier reellen Flächenzüge ist; im übrigen verläuft die Hyperbel isoliert und gehört zu komplexen Parameterwerten x, y. Aus (12) folgt $y^2 = -\frac{vu^3 + 3u^2 + 3vu + 1}{\lambda^2 (vu + 1)}$; wenn also u_0 die (stets negative) reelle Wurzel der Gleichung $vu^3 + 3u^2 + 3vu + 1 = 0$ bedeutet, so erhält man reelles y, wenn u eingeschlossen wird durch $-\frac{1}{v} > u \ge u_0$. Für u_0 findet man:

Die Figur 21 zeigt für den Fall $\lambda = 0,2$ zunächst die ebene Wellenlinie, die Symmetrieschnitt Y = 0 der Wellenfläche ist, mit der Spitze T und den beiden Nabelpunkten der Fläche in N_1 und N_2 . Ferner punktiert die Rückkehrkante VT; dann gestrichelt die Doppelkurve VP, endlich strichpunktiert den Schnitt der Ebene E_{ν} mit Y = 0. Darunter in der Nova Acta CL. Nr. 1.

xy-Ebene den Kreis ADB als Projektion des gleichzeitigen Schnittes von Wellenfläche, Ebene E_r und Spiegel. Ferner die Projektion der Kurve parabolischer Krümmung CG; und die zur Doppelkurve VP gehörige Kurve UW der Parameterwerte x, y.

In dem zu u_0 gehörigen Punkt V, in dem der "reelle" Teil der Doppelkurve einsetzt, berührt sie zugleich die Wellenlinie W_{ν} , da hier eben $y^2 = 0$ ist und durch y = 0 die ebene Wellenlinie bedingt ist. Dieser Punkt V ist aber ferner auch Punkt der Rückkehrkante von W_{ν} , die nun betrachtet werden soll.

Zunächst folgt aus den Gleichungen (10):

$$\frac{r_1}{r_2} = \frac{h_1}{h_2} \cdot \frac{h_1^3 + 3\nu h_1^2 h_2 + 3h_1 h_2^2 + \nu h_2^3}{\nu h_1^3 + 3h_1^2 h_2 + 3\nu h_1 h_2^2 + h_2^3} = \vartheta \cdot \frac{\vartheta^3 + 3\nu \vartheta^2 + 3\vartheta + \nu}{\nu \vartheta^3 + 3\vartheta^2 + 3\nu \vartheta + 1}, \text{ wo } \vartheta = \frac{h_1}{h_2}, (15)$$

d. h.: der Quotient der beiden Krümmungsradien der Wellenfläche W_{ν} ist nur abhängig vom Quotient der Krümmungsparameter h_1 , h_2 .

Insbesondere ist die Rückkehrkante eine spezielle Kurve der Schar der Kurven $\frac{r_1}{r_2} =$ konst. oder $\frac{h_1}{h_2} =$ konst. und zwar gegeben durch $\vartheta_0^3 + 3\nu \vartheta_0^2 + 3\vartheta_0 + \nu = 0$, wo $\vartheta = \frac{h_1}{h_2}$ ist. (Man findet $\vartheta_0 = \sqrt[3]{\lambda^2 (1+\nu)} - \sqrt[3]{\lambda^2 (1-\nu)} - \nu = \frac{1}{u_0}$).

Mit Hilfe der Konstante $\vartheta_0^{'}$ läfst sich die Rückkehrkante durch $h_1 = \vartheta_0 h_2$ oder $h_2 = \frac{1}{\vartheta_0} h_1$ in Parameterform bringen.

Es lohnt sich aber auch, die allgemeinen Kurven $\vartheta =$ konst. und ihre Abbildung in die Parameterebene zu betrachten.

Setzt man in (9) $h_1 = \vartheta h_2$, so entsteht:

$$x_{\nu} = \frac{1}{2\lambda} \frac{2 \vartheta^{2} h_{2}^{4} (\nu \vartheta^{2} + 2\vartheta + \nu) - \nu h_{2}^{2} (\vartheta^{2} - 1)^{2}}{\vartheta^{2} + 2 \nu \vartheta + 1}$$

$$y_{\nu} = \frac{1}{\lambda} \sqrt{(1 - \vartheta^{2} h_{2}^{2}) (h_{2}^{2} - 1)} \left\{ \vartheta h_{2}^{2} \frac{\nu \vartheta^{2} + 2 \vartheta + \nu}{\vartheta^{2} + 2 \nu \vartheta + 1} + 1 \right\}$$

$$\varepsilon_{\nu} = \frac{h_{2}^{2}}{2} \cdot \frac{(\vartheta^{2} - 1)^{2}}{\vartheta^{2} + 2 \nu \vartheta - 1}.$$
(16)

Daraus folgt: die Kurven $\vartheta = k$ sind von der vierten Ordnung.

Die Abbildung in die xy-Ebene: durch n oder u ausgedrückt, wird $\vartheta = \frac{1}{2u} (\lambda^2 n - 2\nu u - \sqrt{\lambda^4 u^2 - 4\lambda^2 \nu u n - 4\lambda^2 u^2})$, dies gibt nach Quadrieren und Abspalten von u = 0: $\lambda^2 \vartheta n - u (\vartheta^2 + 2\nu \vartheta + 1) = 0$ oder $\lambda^2 \vartheta (x^2 + y^2 + 1)$ $- (\lambda x - \nu) (\vartheta^2 + 2\nu \vartheta + 1) = 0$. Diese Gleichung stellt ein Kreisbüschel:

$$\left[x - \frac{1}{2\lambda} \frac{\vartheta^2 + 2\nu\vartheta + 1}{\vartheta}\right]^2 + y^2 - \left[\frac{\vartheta^2 - 1}{2\lambda\vartheta}\right]^2 = 0$$
(17)

dar.

Die beiden Nullkreise sind durch $\vartheta = \pm 1$ gegeben; es sind die beiden Brennpunkte B_1 und B_2 des konfokalen Kegelschnittsystems in der xy-Ebene, entsprechend den beiden Punkten B_1 ' und B_2 ' der ersten Brennfläche und den beiden Nabelpunkten N_1 und N_2 der Wellenfläche. Die beiden Nullkreise sind

$$\begin{split} K_1 &\equiv \lambda^2 \left(x^2 + y^2 + 1 \right) + 2 \left(1 - \nu \right) \left(\lambda x - \nu \right) = 0 \\ K_2 &\equiv \lambda^2 \left(x^2 + y^2 + 1 \right) - 2 \left(1 + \nu \right) \left(\lambda x - \nu \right) = 0. \end{split}$$

Die Kurven & in den Parameterebenen.

Hiemit kann das Kreisbüschel in der Form dargestellt werden:

 $K_1 - \sigma K_2 \equiv \lambda^2 (1 - \sigma) (x^2 + y^2 + 1) + 2 (1 - \nu + \sigma (1 + \nu)) (\lambda x - \nu) = 0,$

wo nun o mit & verknüpft ist durch:

$$\sigma = \left(\frac{1+\vartheta}{1-\vartheta}\right)^2. \tag{18}$$

Die Abbildung der Kurven $\vartheta =$ konst. in die $h_1 h_2$ -Ebene gibt einfach Strahlen durch den Ursprung. Die obenstehende Figur ist für $\lambda = 0.8 \ \nu = 0.6$ gezeichnet.

Die Projektion der Kurven $\vartheta =$ konst. in die xz-Ebene gibt nach Gleichung (16) Parabeln; diese sind nur zwischen $h_2 = 1$ und $h_2 = \frac{1}{\vartheta}$ 6*

reell (abgesehen von einem etwa reellen Doppelpunkt, der nach Gleichung (16) aus $\vartheta h_2^2 \frac{v \vartheta^2 + 2 \vartheta + v}{\vartheta^2 + 2 v \vartheta + 1} + 1 = 0$ folgen würde). Die Endpunkte des reellen Stückes jeder Parabel liegen natürlich auf der Wellenlinie W_v . Bei der Rückkehrkante erhalten wir so die Spitze der Wellenlinie und den schon erwähnten Punkt V, in dem die Doppelkurve die Wellenlinie berührt. Denn jene Spitze wird nach früherem aus (9) durch $h_2 = 1$, $h_1^3 + 3 v h_1^2 + 3 h_1 + v = 0$ gewonnen und für die Rückkehrkante ist in (16) $\vartheta = \vartheta_0$ zu setzen, wo ϑ_0 die Gleichung $\vartheta_0^3 + 3 v \vartheta_0^2 + 3 \vartheta_0 + v = 0$ befriedigt. Dafs andererseits $h_2 = \frac{1}{\vartheta_0}$ in (16) den Ansatzpunkt V der Doppelkurve gibt, sieht man daraus, dafs dieser durch den Parameter u_0 mit $v u_0^3 + 3 u_0^2 + 3 v u_0 + 1 = 0$ gegeben war, wo $u = h_1 h_2$, so dafs beide Punkte aus der Gleichung der Wellenfläche durch $h_1 = 1$ und $v h_2^3 + 3 h_2^2 + 3 v h_2 + 1 = 0$ folgen.

Um die Gleichungen der Rückkehrkante in bequemere Form zu bringen, beachte man, daß wegen $\vartheta_0^3 + 3 v \vartheta_0^2 + 3 \vartheta_0 + v = 0$ auch $\frac{v \vartheta_0^2 + 2 \vartheta_0 + v}{\vartheta_0^2 + 2 v \vartheta_0 + 1} = -\vartheta_0$ und $\frac{(1 - \vartheta_0^2)^2}{\vartheta_0^2 + 2 v \vartheta_0 + 1} = -\frac{1}{v} \vartheta_0 (3 + \vartheta_0^2)$ ist.

Dann ergibt sich für die Rückkehrkante mit h_2 als Parameter:

$$x_{\nu} = \frac{1}{\lambda} \left(-\vartheta_{0}^{3} h_{2}^{4} + \frac{1}{2} \vartheta_{0} (3 + \vartheta_{0}^{2}) h_{2}^{2} \right)$$

$$y_{\nu} = \frac{1}{\lambda} \sqrt{(1 - \vartheta_{0}^{2} h_{2}^{2})^{3} (h_{2}^{2} - 1)}$$

$$z_{\nu} = -\frac{\vartheta_{0} (3}{2} \vartheta_{0}^{2} h_{2}^{2}.$$
(19)

Horizontalschnitte der Wellenfläche in der Nähe von V.

Hiemit ist auch eine Kontrolle gegeben, da die Rückkehrkante auf der ersten Brennfläche liegen muß und obige Gleichung wirklich aus dieser für $h_1 = \vartheta_0 h_2$ folgt, wobei in z nur zu beachten ist, daß auch $\nu (\nu \vartheta_0{}^3 + 3 \vartheta_0{}^2 + 3 \nu \vartheta_0$ $+ 1) + \lambda^2 \vartheta_0 (3 + \vartheta_0{}^2) = 0$ ist.

Man bestätigt nun durch bloße Rechnung, daß die Rückkehrkante in V, wo sie eine Spitze besitzt, auch die ebene Symmetriekurve und damit die Doppelkurve berührt. Führt man in der Nähe dieses singulären Punktes V horizontale Schnitte, so erhält man Figuren nebenstehender Art. Die Krümmungs-

linien in V verlaufen regelmäßig; die eine $h_1 = 1$ ist die in der Y-Ebene liegende Wellenlinie, die von der anderen $h_2 = \frac{1}{\vartheta_0}$ normal überschritten wird.

Die Ordnung der Wellenfläche W_{ν} läfst sich ermitteln; sie ist kleiner als 16.

Mit den Parametern n und u schreiben sich die Gleichungen (8a) so:

$$\begin{aligned} \alpha) \quad x_{\nu} &= -\frac{\lambda \nu}{2} n + \frac{\nu}{\lambda} (u^{2} + 2 \nu u) + \frac{2}{\lambda} (u + \nu) \cdot \frac{u^{2}}{n}, \\ \beta) \quad y_{\nu} &= \frac{1}{\lambda} \sqrt{\lambda^{2} n - u^{2} - 2 \nu u - 1} \left\{ 1 + \nu u + \frac{2 u^{2}}{n} \right\}, \\ \gamma) \quad z_{\nu} &= \frac{\lambda^{2}}{2} n - 2 \nu u - \frac{2 u^{2}}{n}; \end{aligned}$$

zunächst soll n eliminiert werden; aus γ folgt:

$$\int \int \frac{2\,u^2}{n} = \frac{\lambda^2}{2}\,n - 2\,\nu\,u - z_{\nu}\,,$$

dies in α) eingesetzt. gibt

 $\varepsilon) \quad 2\,\lambda x_{\nu} = \lambda^2 u n - 2\,\nu u^2 - 2\,z_{\nu} u - 2\,\nu z_{\nu},$

oder auch:

 ϵ') $\lambda^2 u n = 2 (\nu u^2 + z_{\nu} u + v)$, wo $v = \lambda x_{\nu} + \nu z_{\nu}$ ist.

Gleichung β) läßt sich in die Form bringen:

)
$$\lambda^2 y^2 u^2 = (\lambda^2 n - u^2 - 2 \nu u - 1) (v^2 + 2 \nu u + u^2).$$

Eliminiert man nun n mit Hilfe von ε' , so kommt:

 $\eta) \quad u^5 + 2vu^4 + (1 - 2z_v + v^2 + \lambda^2 y_v^2) u^3 - 4vz_v u^2 - (3 + 2z)v^2 u - 2v^3 = 0.$ Eine zweite Gleichung, die nur noch *u* enthält, folgt aus γ) und ε'):

 $\vartheta) \quad u^4 - \nu \, z_{\nu} \, u^3 - z_{\nu} \, v \, u - v^2 = 0.$

Bilden wir noch die Kombination η) – 2 v ϑ), so entsteht nach Abspalten von u:

$$x) \quad u^4 - (1 - 2 z_{\nu} + v^2 + \lambda^2 y_{\nu}^2 - 2 \nu z_{\nu} v) u^2 - 4 z_{\nu} v u - 3 v^2 = 0.$$

Aus ϑ) und \varkappa) lassen sich durch weiteres Kombinieren zwei Gleichungen von der Form bilden:

 $a_1 u^2 + b_1 u + c_1 = 0$ und $a_2 u^2 + b_2 u + c_2 = 0$,

wo $a_1 a_2$ vom zweiten Grade, $b_1 b_2$, $c_1 c_2$ vom dritten in $x_{\nu} y_{\nu} z_{\nu}$ sind. Nach Abspalten des Faktors v wird die Resultante der beiden letzten Gleichungen vom zehnten Grad in $x_{\nu} y_{\nu} z_{\nu}$, d. h.:

Die Wellenfläche W_{ν} ist von der zehnten Ordnung.

§ 6.

Die Begrenzung des Spiegels.

Die Begrenzung des Spiegels wird meistens durch eine Normalebene zurRotationsachse also durch $z = \frac{1}{4f}(x^2 + y^2) = k$ gegeben sein. Die Grenze zwischen den Gebieten reeller und virtueller Vereinigung der reflektierten Strahlen ist $u = \frac{\lambda x}{2f} - v = 0$, d. h. die Vertikalebene durch den schon früher so bezeichneten Punkt M, zugleich die Selbstschattengrenze. Die Abszissen ρ_1 , ρ_2 wechseln ihr Zeichen beim Übergang von der rechten in die linke Hälfte des Streifens I der $h_1 h_2$ -Ebene. Der Rand des Spiegels z = k wird ferner durch die einfallenden Lichtstrahlen in den Spiegel

selbst projiziert und liefert eine ebene Kurve, nämlich den Schnitt des Spiegels mit $2\lambda vx - \lambda^2 z + 4v^2 f$ $+ \lambda^2 k = 0$; die Projektion in die xy-Ebene gibt den Kreis

$$\left(x-\frac{4\nu f}{\lambda}\right)^2+y^2-4fk=0.$$

Somit sind auf dem Spiegel drei Gebiete zu unterscheiden (vgl. Fig. 24): Im ersten Teil Belichtung der konvexen Seite mit virtueller Brennfläche (rechte Hälfte des ersten Mantels und erste Schale des zweiten

Mantels); 2. der im Schatten liegende Teil und 3. Belichtung der konkaven Seite mit reeller Strahlenvereinigung. Dabei sind die Grenzen gegeben durch:

Rand
$$z = k$$
 mit der Projektion $x^2 + y^2 = 4 k f$,
Selbstschattengrenze $u = \frac{\lambda x}{2f} - v = 0$,
Schlagschatten d. Randes $2\lambda vx - \lambda^2 z + 4 v^2 f + \lambda^2 k = 0$ mit d. Proj. $\left(x - \frac{4 v f}{2}\right)^2 + y^2 - 4 f k = 0$.

Diese drei Kurven werden auch auf Brenn- und Wellenfläche abgebildet und bestimmen dort drei zu unterscheidende Teile. Am einfachsten ist u = 0 auf der ersten Brennfläche; sie ist auf dem ersten Mantel die Berührungsparabel mit dem Spiegel, für den zweiten aber das Unendlichferne, das die beiden Schalen trennt. Auf der Wellenfläche ist es die Kurve parabolischer Krümmung, in der E_v berührt wird. Bei den in der Praxis vorkommenden Öffnungsverhältnissen (abhängig von k und f) und

Gesichtsfeldern (λ) liegt nun aber immer der Rand z = k unterhalb von M, so daß sich der physikalische Spiegel ganz im Gebiete 3 befindet. Es ist von praktischer Seite aus also nur die Abbildung des Randes auf die Brennfläche von Bedeutung.

Indessen soll doch die Projektion aller drei Kurven in die xy-Ebene und die Abbildung in die Parameterebene der $h_1 h_2$ betrachtet werden.

In der xy-Ebene bildet die Selbstschattengrenze $\lambda x - 2\nu f = 0$ eine gemeinsame Sehne für jeden Randkreis mit seinem Schlagschatten, d. h. für zwei kongruente Büschel konzentrischer Kreise. In der $h_1 h_2$ -Ebene erhalten wir als Abbildung einer Randkurve die Ellipse

$$h_1{}^2 + 2 \,
u \, h_1 \, h_2 + h_2{}^2 = \, \lambda^2 \left(\! rac{k}{f} + 1\!
ight)$$

und für ihren Schlagschatten die kongruente Ellipse

$$h_1^2 - 2 \nu h_1 h_2 + h_2^2 = \lambda^2 \left(\frac{k}{f} + 1 \right),$$

die gegen die erste um 90° gedreht ist.

Die beiden Ellipsenscharen sind auf ein diagonales Achsenkreuz bezogen, mit

<u>¢2</u>

$$\begin{split} \xi &= \frac{1}{2}\sqrt{2} \, (h_1 + h_2) & h_1 &= \frac{1}{2}\sqrt{2} \, (\xi - \eta) \\ \eta &= \frac{1}{2}\sqrt{2} \, (h_2 - h_1) & h_2 &= \frac{1}{2}\sqrt{2} \, (\xi + \eta) \end{split}$$
 folgende:

Randkurve :

$$\frac{1}{(1-\nu)\left(\frac{k}{f}+1\right)} + \frac{1}{(1+\nu)\left(\frac{k}{f}+1\right)} - 1 = 0,$$

$$\frac{\xi^2}{(1+\nu)\left(\frac{k}{f}+1\right)} + \frac{\eta^2}{(1-\nu)\left(\frac{k}{f}+1\right)} - 1 = 0.$$

 n^2

Schlagschatten:

Die Ellipsen sind also alle ähnlich. Ist r der Radius des Randkreises, so sind ferner die Ellipsenachsen:

$$a = \sqrt{(1-\nu)\left(\frac{r^2}{4f^2}+1\right)}, \ b = \sqrt{(1+\nu)\left(\frac{r^2}{4f^2}+1\right)}.$$

Unter den Randkurven sei besonders r = 0 erwähnt; der Scheitel des Spiegels gibt also die Ellipse $\frac{\xi^2}{1-\nu} + \frac{\eta^2}{1+\nu} - 1 = 0$, die aufserhalb der Streifen I und II liegt und ihren Rand nur in S_1 $(h_1 = -\nu, h_2 = +1)$ und S_2 $(h_1 = +1, h_2 = -\nu)$ berührt. Ferner gibt $r = 2f \cdot \sqrt{\frac{1-\nu}{1+\nu}}$, d. h. $k = f \cdot \frac{1-\nu}{1+\nu}$ die durch B_2 ' laufende und $r = 2f \cdot \sqrt{\frac{1+\nu}{1-\nu}}$ die durch B_1 ' gehende Ellipse.

Betrachten wir jetzt die Abbildung des Spiegelrandes auf die erste Brennfläche. Ohne dafür die Gleichungen der Raumkurven selbst aufzustellen, kann man den allgemeinen Verlauf aus dem Verhalten in der Parameterebene der $h_1 h_2$ entnehmen.

Abbildung der Randkurven und ihres Schattens in die Parameterebenen.

Dazu erinnere man sich, dafs $h_1^2 = 1$ die Rückkehrkante L_2 , $h_2^2 = 1$ aber die einfach zählende Kurve L_1 der Brennfläche war, und dafs $h_2 = 0$ das unendlich Ferne bedeutet. Geht man nun von r = 0, k = 0 aus weiter, so entsteht auf dem ersten Mantel zunächst eine singularitätenfreie geschlossene Kurve um den Punkt S_1 , die vom ersten Mantel eine Kalotte abschneidet. (S_1 das Bild des Scheitelpunktes.) Wird $r = 2f \sqrt{\frac{1-\nu}{1+\nu}} = 2f \frac{1-\nu}{\lambda}$, d. h. $k = f \frac{1-\nu}{1+\nu} = f \frac{(1-\nu)^2}{\lambda^2}$, so trifft die Kurve zum erstenmal die Rückkehrkante (in B_2'); von nun an besitzt die Kurve eine Spitze, bis schliefslich $r = 2f \sqrt{\frac{1+\nu}{1-\nu}}$, $k = f \frac{1+\nu}{1-\nu}$ wird und von nun an auch der andere Zweig der Rückkehrkante (über B_1') in einer (zweiten) Spitze überschritten wird.

Beim zweiten Mantel haben wir anfangs um S_2 herum eine Kurve mit zwei Spitzen, und ganz auf der zweiten Schale liegend. Wird $r = 2f \sqrt{\frac{1-\nu}{1+\nu}}$, so geht die Kurve wieder durch B_2 ' und verliert hier die eine Spitze. Die andere Spitze zieht sich längs der Rückkehrkante mit wachsendem r immer

weiter hinaus, bis sie bei $r = 2f\frac{\nu}{\lambda}$, $k = f\frac{\nu^2}{\lambda^2}$ im Unendlichen liegt. Für größeres r tritt dann die Kurve mit einem neuen Zweig auf der ersten Schale in Erscheinung, zunächst mit einer Spitze unterhalb B_1 . Für $r = 2f \sqrt{\frac{1+\nu}{1-\nu}}$ geht sie wieder durch B_1 , um für noch größeres r auch die zweite Spitze zu verlieren. Vollständig auf der ersten Schale kann die Kurve nicht liegen. Vgl. auch Tafel VII u. VIII und die Bemerkungen dazu.

Betrachtet man sinngemäß die beiden Randbilder auf den zwei Mänteln der Brennfläche als eine Kurve, so sind stets zwei und nur zwei Spitzen vorhanden, wobei allerdings das Verhalten in den singulären Punkten B_1' und B_2' noch nicht mit untersucht ist (hiezu vgl. § 8,1).

Für kleine Werte r vergleiche man die Figuren der Tafel VIII sowie Tafel VIIc.

Bei der Wellenfläche W_{ν} hat man nur in den Gleichungen (8) in § 5 $x^2 + y^2 = r^2$ oder $x = r \cos \varphi$, $y = r \sin \varphi$ zu setzen. Im ersten Fall erhält man im alten Koordinatensystem:

$$\begin{split} X_{\nu} &= \frac{1}{1+r^2} \left[2\,\lambda^2 \,x^3 + \lambda \,\nu \,\left(r^2 - 3\right) \,x^2 + 2\,\nu^2 \,x - \frac{\nu}{2\,\lambda} \left(r^4 - 1\right) \right] = a_0 \,x^3 + a_1 \,x^2 + a_2 \,x + a_3 \\ Y_{\nu} &= \frac{y}{1+r^2} \left[2\,\lambda^2 \,x^2 + \lambda \,\nu \,\left(r^2 - 3\right) \,x + \lambda^2 \left(1 + r^2\right) + 2\,\nu^2\right) = y \left(a_0 \,x^2 + a_1 \,x + a_4\right) \\ Z_{\nu} &= \frac{1}{1+r^2} \left[-2\,\lambda^2 \,x^2 - 2\,\lambda \,\nu \,\left(r^2 - 1\right) \,x + 2\,\nu^2 \,r^2 + \frac{\lambda^2}{2} \left(r^2 + 1\right) \right] - \frac{1}{2} = -a_0 \,x^2 + a_5 \,x + a_6. \end{split}$$

Aus diesem folgt, daß man Kurven sechster Ordnung erhält, deren Projektion in die xz-Ebene von der dritten Ordnung ist; man erkennt ferner, daß es geschlossene, ganz im Endlichen liegende Kurven sind.

Macht man die zweite Substitution und sucht für kleines r die Kurven erster Annäherung, so findet man:

$$egin{aligned} X_{
u} &= 2\,
u^2 r \cos arphi + rac{\lambda
u}{2} \ Y_{
u} &= (1 +
u^2) r \sin arphi \ Z_{
u} &= 2\, \lambda \,
u r \cos arphi - rac{
u^2}{2}. \end{aligned}$$

Dies bedeutet eine in der Ebene $\lambda X - \nu Z - \frac{\nu}{2} = 0$ liegende Ellipse mit dem Achsenverhältnis $\frac{1+\nu^2}{2\nu}$, das mit abnehmendem λ dem Werte 1 zustrebt.

Nova Acta CL. Nr. 1.

§ 7.

Der Fall $\lambda = 1$.

Wegen seiner besonderen Einfachheit möge noch der Fall $\lambda = 1$, v = 0 kurz besprochen werden. Die Strahlen fallen jetzt normal zur Spiegelachse, parallel zur Scheitelebene ein. Auch hier sei $f = \frac{1}{2}$.

Die erste Brennfläche. Die Parameter x y, $h_1 h_2$ stehen in der Beziehung:

$$\begin{aligned} x &= h_1 h_2 \\ y &= -\sqrt{(1-h_1^2)(h_2^2-1)} \end{aligned} \qquad h_1 &= \frac{1}{2} \left(\sqrt{(x+1)^2 + y^2} - \sqrt{(x-1)^2 + y^2} \right), \\ h_2 &= \frac{1}{2} \left(\sqrt{(x+1)^2 + y^2} + \sqrt{(x-1)^2 + y^2} \right); \end{aligned}$$

die Gleichungen der Brennfläche lauten:

$$X = \frac{h_1}{2h_2} (h_1^2 + 3h_2^2 - 2h_1^2 h_2^2),$$

$$Y = (1 - h_1^2) \sqrt{(1 - h_1^2)} (h_2^2 - 1),$$

$$Z = \frac{1}{2} (3h_1^2 + h_2^2) - \frac{1}{2},$$
(1)

nur in der dritten Koordinate tritt also eine wesentliche Vereinfachung ein. Die Kurven L_1 , L_2 im Symmetrieschnitt Y = 0 lauten:

$$\begin{split} h_2^2 &= 1 \quad L_1: \qquad X = \frac{h_1}{2} \left(3 - h_1^2\right), \quad Z = \frac{3}{2} h_1^2 \quad \text{oder } Z \left(2Z - 9\right)^2 - 54 \, X^2 = 0, \\ h_1^2 &= 1 \quad L_2: \qquad X = \frac{1}{2 \, h_2} \left(1 + h_2^2\right), \quad Z = 1 + \frac{1}{2} \, h_2^2 \text{ oder } 8 \, X^2 (Z - 1) - (2 \, Z - 1)^2 = 0. \end{split}$$

Die beiden Punkte B_1 ' und B_2 ', in denen sich L_1 und L_2 berühren, liegen symmetrisch zur z-Achse in $X = \pm 1$, $Z = \frac{3}{2}$, während sich L_1 und L_2 noch in zwei weiteren symmetrisch gelegenen Punkten T_1 und T_2 schneiden mit

$$X = \pm \sqrt{\frac{46 + 7\sqrt{52}}{27}}, \ \ Z = \frac{1}{2}(7 + \sqrt{52}).$$

Die beiden Schalen des zweiten Mantels sind auch zueinander spiegelgleich in bezug auf die yz-Ebene (siehe auch Taf. IV). Die Doppelkurve zerfällt in drei getrennte Züge. Aufser den zwei getrennten Zügen von B_1

nach T_2 und von B_2 ' nach T_1 und zurück hat der zweite Mantel für sich noch eine Schnittkurve seiner beiden Schalen in X = 0, mit dem Scheitel in K. Man erhält eine Kurve fünfter Ordnung, in Parameterform:

$$Y^2 = rac{t^3 \, (t-2)}{2 \, t-1}, \ \ Z = rac{6 \, t^2 + 2 \, t-1}{2 \, (2 \, t-1)}, \ {
m wo} \ \ t = h_1^2 - 1.$$

Die Kurve hat zwei getrennte Zweige; der eine zicht sich mit zwei Ästen vom Punkte Kals Scheitel nach oben, der andere parabelartig von F aus nach unten. Dieser Zweig gehört aber zu negativen Werten von h_2^2 und daher zu imaginären Punkten des Spiegels. Die Abbildung in die Parameterebene $h_1 h_2$ ist schon in Fig. 11 gegeben. Die Abbildung in die Parameterebene xy ist

$$x^4 + 2 x^2 y^2 - 3 y^4 - 2 x^2 - 6 y^2 + 3 = 0.$$

Dies ist eine hyperbelartige Kurve mit den Scheiteln in $x = \pm \sqrt{3}$, y = 0 und den Asymptoten $x = \pm w$ as ist die Preiektion der auf dem Spierel liege

 $x = \pm y$; es ist die Projektion der auf dem Spiegel liegenden Raumkurve:

$$x = \frac{1+t}{\sqrt{2t-1}}, \quad y = \sqrt{\frac{t(t-2)}{2t-1}}, \quad z = \frac{t^2+1}{2t-1}, \text{ wo } t = h_1^2 - 1.$$

Der vollständige Schnitt der ersten Brennfläche mit X = 0 enthält natürlich noch die durch $h_1 = 0$, u = 0 gegebene Parabel $Z = \frac{1}{2}Y^2$, in der der erste Mantel den Spiegel berührt.

Die Wellenfläche. Im ursprünglichen Koordinatensystem sind die Gleichungen:

$$X_{\nu} = \frac{2x^{3}}{x^{2} + y^{2} + 1}, \quad Y_{\nu} = y \left(1 + \frac{2x^{2}}{x^{2} + y^{2} + 1} \right), \quad Z_{\nu} = \frac{1}{2} (x^{2} + y^{2}) - \frac{2x^{2}}{x^{2} + y^{2} + 1}$$
oder mit den Parametern $h_{1} h_{2}$:
$$X_{\nu} = \frac{2h_{1}^{3}h_{2}^{3}}{x^{2} + y^{2} + 1} = \frac{1}{2} \left(\frac{1 + 2h_{1}^{2}h_{2}}{x^{2} + y^{2} + 1} \right) = \frac{1}{2} \left(\frac{1 + 2h_{1}^{2}h_{2}}{x^{2} + y^{2} + 1} \right) = \frac{1}{2} \left(\frac{1 + 2h_{1}^{2}h_{2}}{x^{2} + y^{2} + 1} \right)$$
(2)

 $A_{\nu} = \frac{1}{h_1^2 + h_2^2}, \quad I_{\nu} = \sqrt{(1 - h_1^2)(h_2^2 - 1)} \left\{ 1 + \frac{1}{h_1^2 + h_2^2} \right\}, \quad Z_{\nu} = \frac{1}{2(h_1^2 + h_2^2)} - \frac{1}{2}.$ Berechnet man hiermit die Fundamentalgrößen *E*, *F*, *G*, so wird natürlich

Berechnet man hiermit die Fundamentalgrößen E, F, G, so wird natürlich F = 0 und

$$E = \frac{h_{1}^{2} (h_{2}^{2} - h_{1}^{2}) (h_{1}^{2} + 3h_{2}^{2})^{2}}{(h_{1}^{2} + h_{2}^{2})^{2} (1 - h_{1}^{2})}, \quad G = \frac{h_{2}^{2} (h_{2}^{2} - h_{1}^{2}) (3h_{1}^{2} + h_{2}^{2})^{2}}{(h_{1}^{2} + h_{2}^{2})^{2} (h_{2}^{2} - 1)}$$
und das Bogenelement:

$$ds^{2} = \frac{h_{2}^{2} - h_{1}^{2}}{(h_{1}^{2} + h_{2}^{2})^{2}} \left\{ \frac{h_{1}^{2} (h_{1}^{2} + 3h_{2}^{2})^{2}}{1 - h_{1}^{2}} dh_{1}^{2} + \frac{h_{2}^{2} (3h_{1}^{2} + h_{2}^{2})}{h_{2}^{2} - 1} dh_{2}^{2} \right\}.$$
(3)

Die Aufstellung der expliziten Flächengleichung erfordert immer noch eine umständliche Rechnung. Man benutzt wieder die Abkürzungen n und u und findet mit x y z statt $X_r Y_r Z_r$ geschrieben:

$$\begin{array}{r} 4\,(x^2+y^2-2\,z)^4+(2\,z+1)^2\,(x^2+y^2-2\,z)^3-32\,x^2\,(x^2+y^2-2\,z)^2\\ -72\,x^2\,(2\,z+1)^2\,(x^2+y^2-2\,z)-8\,x^2\,(2\,z+1)^4+64\,x^4\,=\,0\end{array}$$

Die Wellenfläche ist also von der achten Ordnung. Die Fläche ist auf Tafel VI dargestellt mit den Krümmungslinien h_1 , h_2 .

Der Schnitt mit der Symmetrieebene y = 0gibt die ebene Wellenlinie $4x^4 + 4x^2z^2 - 36x^2z$ $- 32z^3 - 27x^2 = 0$ und aufserdem eine doppelt zählende isolierte Parabel $2x^2 + 2z - 1 = 0$, die aber imaginären Spiegelpunkten entspricht.

In der Symmetrieebene x = 0 liegt die Rückkehrkante $y^2 = 2z$, und der Nullkreis $4y^2 + (2z-1)^2 = 0$ im Punkte *F*, als Scheitel der erwähnten isolierten Parabel.

Die Horizontalschnitte in verschiedenen Höhen haben den in beistehender Figur angedeuteten Verlauf.

§ 8.

Näherungsformeln und Anwendungen.

Leitet man aus den aufgestellten exakten Gleichungen Näherungsformeln ab, so müssen sich Übereinstimmungen mit schon bekannten Ergebnissen einstellen.

1. Handelt es sich zunächst darum, die erste Brennfläche in der Umgebung des singulären Punktes B_2 ', wo $h_1 = -1$, $h_2 = +1$ ist, und der die Stelle des Bildpunktes vertritt, durch eine Näherungsfläche zu ersetzen, so sei $h_1^2 = 1 - \eta^2$, $h_2^2 = 1 + \vartheta^2$; da die Koordinaten von B_2 ' $X_0 = -2f \frac{1-\nu}{\lambda}$, $Y_0 = 0$, $Z_0 = \frac{4f}{1-\nu} - f$ sind, so bilde man

$$\bigtriangleup X = \frac{1}{2f} (X_1 - X_0), \quad \bigtriangleup Y = \frac{1}{2f} (Y_1 - Y_0), \quad \bigtriangleup Z = \frac{1}{2f} (Z_1 - Z_0)$$

und entwickle nach Potenzen von η und ϑ bis zur vierten Ordnung mit Hilfe von

$$egin{aligned} h_1 \, h_2 &= - \, [1 - rac{1}{2} \, \eta^2 + rac{1}{2} \, \vartheta^2 - rac{1}{8} \, (\eta^2 + artheta^2)^2], \ h_1 &= - \, [1 - rac{1}{2} \, (\eta^2 + artheta^2) - rac{1}{8} \, (\eta^4 - 2 \, \eta^2 \, artheta^2 - 3 \, artheta^4)]. \end{aligned}$$

Man erhält:

 $\begin{cases} 8\lambda \bigtriangleup X = 3\eta^4 - 6\eta^2 \vartheta^2 - \vartheta^4 & \text{also ohne quadratische Glieder,} \\ \lambda \bigtriangleup Y = \eta^3 \vartheta & \\ 2(1+\nu)\bigtriangleup Z = -3\eta^2 + \vartheta^2 & \text{also ohne Glieder 4. Ordnung;} \end{cases}$ (1)

setzt man zur Abkürzung $8 \lambda \triangle X = x$, $\lambda \triangle Y = y$, $2(1+\nu) \triangle Z = z$, so lautet die explizierte Flächengleichung:

$$2^{12} \cdot 3^3 \cdot y^4 - 2^7 \cdot 3^2 \cdot y^2 \left(z^4 - 4 z^2 x + x^2\right) - (z^2 + x)^3 \left(z^2 - 3 x\right) = 0.$$

Die gefundene Näherungsfläche ist nun nichts anderes als die von Herrn G. H.-R. Finsterwalder in der erwähnten Arbeit S. 33 gegebene Brennfläche bei korrigiertem Kugelgestaltsfehler, wenn man $\eta^2 = -\lambda$, $\vartheta^2 = \mu$ setzt. Die Fläche ist dort diskutiert S. 33-35 und auf Tafel I abgebildet. In der Tat war für kleines λ diese Übereinstimmung zu erwarten, da dann beim parabolischen Spiegel die sphärische Aberration aufgehoben ist. Es ist aber immerhin bemerkenswert, daß sich die erwähnte Näherungsfläche für beliebigen Wert von λ einstellt; natürlich mit veränderlichen Dimensionen. Nebenbei ist hiermit auch das Verhalten der Breunfläche im singulären Punkt B_2 ' aufgeklärt; insbesondere zerfällt der Horizontalschnitt durch B_2 ' selbst in zwei Strahlen mit dem Winkel 60°, sie bilden auch die Durchdringungslinie der beiden Mäntel.

Für den praktisch bedeutungslosen Punkt B_1 ergibt sich natürlich bis auf die Konstanten dieselbe Näherungsfläche.

2. Will man den Zusammenhang zwischen Punkt des Spiegels und Punkt der Brennfläche erkennen lassen, so setzt man in der Nähe von B_2 ':

$$x = -2f \frac{1-\nu}{\lambda} + \delta, \quad y = \varepsilon,$$

dann ergeben sich die in Gleichung (15) von § 3 auftretenden Größen:

$$\begin{aligned} \lambda^{2} (x^{2} + y^{2} + 4f^{2}) + 4f(1 - \nu) (\lambda x - 2\nu f) &= \lambda^{2} \delta^{2} + \lambda^{2} \varepsilon^{2} \\ \lambda^{2} (x^{2} + y^{2} + 4f^{2}) - 4f(1 + \nu) (\lambda x - 2\nu f) &= 16f^{2} - 8\lambda f \delta + \lambda^{2} \delta^{2} + \lambda^{2} \varepsilon^{2} \\ &= (4f - \lambda \delta)^{2} + \lambda^{2} \varepsilon^{2} \qquad = w_{2}^{2}. \end{aligned}$$

Nun hat man in $h_1 = \frac{1}{4f}(w_1 - w_2)$ und $h_2 = \frac{1}{4f}(w_1 + w_2)$ die Größen ε und δ einzuführen, was man am besten dadurch macht, daß man in den Verbindungen $\frac{h_1}{h_2}$, $h_1^2 + 3h_2^2$; $h_1^2h_2^2$; $1 - h_1^2$, $h_2^2 - 1$, $h_2^2 + 3h_1^2$ usw., die in X, Y, Zauftreten, die Trennung von rationalem und irrationalem Teil durchführt. Man erhält dann bei der Brennweite f des Spiegels folgende Verschiebungen gegen den "Bildpunkt" B_2 ':

$$\Delta X = \frac{\lambda}{16f^{2}(2f-\lambda\delta)} \left[8f^{2}(\delta^{2}-\epsilon^{2}) - 8\lambda f \delta^{3} + \lambda^{2}(\delta^{4}-\epsilon^{4}) + \left\{ 4f\delta - \lambda(\delta^{2}-\epsilon^{2}) \right\} \left[\delta^{2}+\epsilon^{2} \cdot \sqrt{16f^{2}-8\lambda f \delta + \lambda^{2}(\delta^{2}+\epsilon^{2})} \right]$$

$$= \frac{\lambda\epsilon}{8f^{2}} \left[4f\delta - \lambda(\delta^{2}-\epsilon^{2}) - \left[\delta^{2}-\epsilon^{2} \cdot \left[16f^{2}-8\lambda f \delta - \lambda^{2}(\delta^{2}-\epsilon^{2}) \right] \right]$$

$$\Delta Z = \frac{\lambda}{8(1+\nu)f^{2}(2f-\lambda\delta)} \left[-32f^{3}\delta + 16\lambda f^{2}\delta^{2} + 8\lambda f^{2}(\delta^{2}+\epsilon^{2}) - 4\lambda^{2}f\delta(\delta^{2}+\epsilon^{2}) - \frac{1}{2}\lambda\nu(1+\nu)(\delta^{2}+\epsilon^{2})^{2} - \left\{ 4f^{2}-2\lambda f\delta - \frac{1}{2}\nu(1+\nu)(\delta^{2}+\epsilon^{2}) \right\}$$

$$= \frac{\lambda}{\sqrt{\delta^{2}+\epsilon^{2}}\sqrt{16f^{2}-8\lambda f \delta + \lambda^{2}(\delta^{2}+\epsilon^{2})}}$$

Dies sind noch völlig exakte Formeln, einfache Umformungen der Gleichungen 14 von § 3. Aus ihnen können jederzeit Näherungsformeln, sei es für kleinen Winkel λ (Gesichtsfeld) oder für kleine Werte von δ und ε (Öffnung) sofort gewonnen werden. Dabei wird es sich empfehlen, δ und ε durch die doppelte Brennweite zu messen, d. h. $f = \frac{1}{2}$ zu setzen. Das doppelte Vorzeichen des Wurzelproduktes in jeder Formel gibt die beiden Mäntel der Brennfläche.

3. Die letzten Gleichungen geben die Brennfläche in der Umgebung von B_2' und beziehen sich auf ihn als Ursprung (auch δ und ϵ sind nicht vom Scheitel des Spiegels aus, sondern von dem B_2' entsprechenden Spiegelpunkt aus gemessen). Sie lassen aber nicht die Lage der Brennfläche zum Spiegel erkennen. B_2' hat die Koordinaten: $-2f \frac{1-\nu}{\lambda}$, 0, $\frac{4f}{1+\nu} - f = f \frac{3-\nu}{1+\nu}$. Will man Näherungsformeln in einem fest mit dem Spiegel verbundenen Koordinatensystem, sowohl für kleines Gesichtsfeld, als für kleine Öffnung, so entsteht die Schwierigkeit, dafs B_2' selbst durch seine Singularität eine Unterscheidung nötig macht, ob λ klein oder groß gegen $\frac{r}{f} (r = \sqrt{x^2 + y^2})$ ist.

Es empfiehlt sich daher zunächst, Reihen aufzustellen, die noch eine Irrationalität enthalten, welche sich dann bei Kenntnis des Verhältnisses von λ zu r entwickeln läfst.

Wir entwickeln also zunächst nach Potenzen von λ und zwar bis zur vierten Potenz, indem dabei über $x, y, r = \sqrt{x^2 + y^2}$ noch keine besondere Annahme gemacht. Man braucht dabei folgende Größen und Verbindungen:

$$\begin{aligned} v &= \sqrt{1 - \lambda^2} = 1 - \frac{1}{2}\lambda^2 - \frac{1}{3}\lambda^4 \\ 1 - v &= \frac{1}{2}\lambda^2 + \frac{1}{5}\lambda^4, \ \frac{1 - v}{\lambda} = \frac{1}{2}\lambda + \frac{1}{5}\lambda^3 \\ - (\lambda x - 2vf) &= 2f - \lambda x - \lambda^2 f - \frac{1}{2}\lambda^4 f \\ w_1^2 &= \lambda^2 (x^2 + y^2 + 4f^2) + 4f(1 - v) (\lambda x - 2vf) = \lambda^2 r^2 + 2\lambda^3 f x + \lambda^4 f^2 \\ &= \lambda^2 f^2 \left(\frac{r^2}{f^2} + 2\lambda \frac{x}{f} + \lambda^2\right) \end{aligned}$$

$$\begin{split} w_{2}^{2} &= \lambda^{2} \left(x^{2} + y^{2} + 4f^{2} \right) - 4f \left(1 + \nu \right) \left(\lambda x - 2\nu f \right) = 16f^{2} - 8\lambda f x - 8\lambda^{2} f^{2} + \lambda^{2} r^{2} + 2\lambda^{3} f x - \lambda^{4} f^{2} \\ &= 16f^{2} \bigg[1 - \frac{\lambda}{2} \frac{x}{f} - \frac{\lambda^{2}}{2} + \frac{\lambda^{2}}{16} \frac{r^{2}}{f^{2}} + \frac{\lambda^{3}}{8} \frac{x}{f} - \frac{\lambda^{4}}{16} \bigg]. \end{split}$$

Während sich hieraus w_2 in eine Reihe nach Potenzen von λ entwickeln läfst, ist es w_1 , das eine derartige Entwicklung nicht zuläfst, so lange man nicht weifs, welche der beiden Gröfsen $\frac{r}{f}$ und λ die kleinere ist. Ferner zeigt sich, dafs man mehr als die drei angeschriebenen Glieder in w_1^2 mitnehmen mufs, wenn die Quadratwurzel daraus noch die Glieder von der Gröfsenordnung λ^4 liefern soll. Wenn wir also nehmen

$$w_1 = \lambda f \sqrt{\frac{r^2}{f^2} + 2\lambda \frac{x}{f} + \lambda^2},$$

so können wir die Reihen für X, Y, Z nur bis λ^3 anschreiben. Für w_2 hat man die Reihe:

$$w_2 = 4f\left(1-\frac{\lambda}{4}\frac{x}{f}-\frac{\lambda^2}{4}\left(1-\frac{y^2}{8f^2}\right)+\frac{\lambda^3}{128}\frac{xy^2}{f^3}\right).$$

Man bilde nun h_1^2 , h_2^2 , $\frac{h_1}{h_2}$:

$$h_{1}^{2} = \frac{1}{16f^{2}} (w_{1} - w_{2})^{2} = \frac{1}{16f^{2}} (w_{1}^{2} + w_{2}^{2} - 2w_{1}w_{2})$$

$$= 1 - \frac{\lambda}{2} \frac{x}{f} - \frac{\lambda^{2}}{2} \left(1 - \frac{r^{2}}{4f^{2}}\right) + \frac{\lambda^{3}}{4} \cdot \frac{x}{f} - \frac{1}{8f^{2}} w_{2}w_{1}$$

$$h_{2}^{2} = \frac{1}{16f^{2}} (w_{1} + w_{2})^{2} = 1 - \frac{\lambda}{2} \frac{x}{f} - \frac{\lambda^{2}}{2} \left(1 - \frac{r^{2}}{4f^{2}}\right) + \frac{\lambda^{3}}{4} \frac{x}{f} + \frac{1}{8f^{2}} w_{2}w_{1}$$

$$- \frac{h_{1}}{h_{2}} = \frac{w_{1}^{2} - w_{2}^{2} - 2w_{1}w_{2}}{w_{2}^{2} - w_{1}^{2}} = 1 - \frac{\lambda^{2}}{8} \frac{r^{2}}{f^{2}} + \frac{\lambda^{3}}{4} \frac{x}{f} \left(1 + \frac{r^{2}}{4f^{2}}\right)$$

$$- \frac{1}{2} \left\{\lambda + \frac{\lambda^{2}}{4} \frac{x}{f} + \frac{\lambda^{3}}{4} \left(1 + \frac{x^{2}}{2f^{2}} + \frac{y^{2}}{8f^{2}}\right)\right\} \sqrt{\frac{r^{2}}{f^{2}} + 2\lambda^{2} \frac{x}{f} + \lambda^{2}}$$

Für $-\frac{h_2}{h_1}$ erhält man den hierzu "konjugierten" Ausdruck, der also sich nur im Vorzeichen der Wurzel unterscheidet.

Durch Zusammensetzung nach den Formeln (13) von § 3 erhält man nun endlich:

$$\begin{split} X &= -\lambda f \left(1 - \frac{x^2}{4f^2} + \frac{y^2}{4f^2} \right) + \frac{\lambda^2}{2} x \left(1 - \frac{r^2}{4f^2} \right) - \frac{\lambda^3}{8f} \left(3x^2 + y^2 + \frac{r^4}{4f^2} \right) \\ &\pm \left\{ \lambda \frac{x}{2} + \lambda^2 \frac{f}{2} \left(1 + \frac{y^2}{4f^2} \right) + \lambda^3 \frac{x}{64f^2} \left(2x^2 + 3y^2 \right) \right) \sqrt{\frac{r^2}{f^2} + 2\lambda \frac{x}{f} + \lambda^2} \\ Y &= y \left[\frac{\lambda}{2} \frac{x}{f} + \frac{\lambda^2}{2} \left(1 - \frac{r^2}{4f^2} \right) - \frac{\lambda^3}{4f} \frac{x}{f} \pm \left\{ \frac{\lambda}{2} - \frac{\lambda^2}{8f} \frac{x}{f} - \frac{\lambda^3}{8} \left(1 - \frac{y^2}{8f^2} \right) \right\} \sqrt{\frac{r^2}{f^2} + 2\lambda \frac{x}{f} + \lambda^2} \\ Z &= f - \lambda x - \frac{\lambda^2}{2} f \left(1 - \frac{r^2}{4f^2} \right)^2 - \lambda^3 \frac{x}{4} \left(1 - \frac{r^2}{2f^2} - \frac{r^4}{16f^4} \right) \\ &\mp \left\{ \frac{\lambda}{2} f \left(1 - \frac{r^2}{4f^2} \right) - \lambda^2 \frac{x}{8} \left(3 + \frac{r^2}{4f^2} \right) - \lambda^3 \frac{f}{8} \left(1 + \frac{x^2}{4f^2} - \frac{3y^2}{8f^2} + \frac{x^4}{8f^4} + \frac{5x^2y^2}{32f^4} + \frac{y^4}{32f^4} \right) \right\} \\ &\cdot \sqrt{\frac{r^2}{f^2} + 2\lambda \frac{x}{f} + \lambda^2}. \end{split}$$

Es sei nochmals bemerkt, dafs die in den Klammern stehenden Ausdrücke in x, y, r, die die Koeffizienten der Potenzen von λ bilden, exakt sind, d. h. noch keine Vernachlässigungen enthalten.

Endlich kann man sehr leicht einen Ausdruck für den Astigmatismus gewinnen, wenn man einfach die Differenz der beiden Werte ρ_1 und ρ_2 von Gleichung (10) § 3 bildet:

$$\begin{aligned}
\varrho_{2} - \varrho_{1} &= \frac{fh_{1}n}{h_{2}} - \frac{fh_{2}n}{h_{1}} = fn\left(\frac{h_{1}}{h_{2}} - \frac{h_{2}}{h_{1}}\right) \\
&= f \cdot \left(1 + \frac{r^{2}}{4f^{2}}\right) \cdot \left(\lambda + \frac{\lambda^{2}}{4} \cdot \frac{x}{f} + \frac{\lambda^{3}}{4}\left(1 + \frac{x^{2}}{2f^{2}} + \frac{y^{2}}{8f^{2}}\right)\right) \sqrt{\frac{r^{2}}{f^{2}} + 2\lambda\frac{x}{f} + \lambda^{2}}.
\end{aligned}$$
(4)

4. Für die Anwendung kommt weniger die Brennfläche selbst als vielmehr das Bild in der Fokalebene in Betracht. Man hat also das System der reflektierten Strahlen mit der Ebene Z = f zu schneiden.

Man erhält dann zu dem Spiegelpunkt mit den Koordinaten x, y den Punkt X, Y in der Fokalebene:

$$X = -\lambda f \frac{\left(1 + \frac{x^2}{4f^2}\right)^2 - \left(\frac{y}{2f}\right)^4}{\nu \left(1 - \frac{x^2 + y^2}{4f^2}\right) - \lambda \frac{x}{f}} = -\lambda \frac{1}{4f} \frac{(4f^2 + x^2)^2 - y^4}{\nu (4f^2 - x^2 - y^2) - 4\lambda f x}$$

$$Y = -\lambda \frac{xy \left(1 + \frac{x^2 + y^2}{4f^2}\right)}{2f \left[\nu \left(1 - \frac{x^2 + y^2}{4f^2}\right) - \lambda \frac{x}{f}\right]} = -\lambda \frac{1}{2f} \frac{xy \left[4f^2 + y^2 + y^2\right]}{\nu (4f^2 - x^2 - y^2) - 4\lambda f x}.$$
(5)

Statt dieser Formeln hat Crokett andere in Polarkoordinaten mit einer Hilfsgröße aufgestellt. Die Abbildung der Scheitelebene auf die

Fokalebene durch unsere Formeln ist ziemlich kompliziert. Nach § 4 ist das System der reflektierten Strahlen von der Ordnung 14. Hier erhalten wir zu gegebenem Punkt XY in der Fokalebene zwei Gleichungen vierten Grades für x und y. Bei kleinem Wert λ erhält man in der Nähe des Bildpunktes Gebiete von vierfacher und von zweifacher Überdeckung (vgl. auch Fig. 29). Einzelne Gerade und Punkte lassen sich indessen auch im allgemeinen Fall verfolgen. Zunächst ist wichtig, daß Y nicht nur für y = 0, sondern auch für x = 0 verschwindet, so daß auch die y-Achse auf die X-Achse abgebildet wird. Hingegen wird X für keinen reellen Punkt der x-Achse zu Null, sondern für Punkte der Hyperbel $4f^2 + x^2 - y^2 = 0$, die also in die Y-Achse abgebildet wird. Dagegen wird X für zwei Punkte der *x*-Achse unendlich; überhaupt liefert der Kreis $\left(x+2\frac{\lambda}{\nu}f\right)^2+y^2=\left(\frac{2f}{\nu}\right)^2$, der den Nenner von X und Y zu Null macht, das Unendlichferne in der XY-Ebene, oder besser gesagt, er liefert reflektierte Strahlen parallel zur Fokalebene. Der Kreis $x^2 + y^2 = 4f^2$ geht als Projektion des Schnittes der Fokalebene mit dem Spiegel in den gleichgroßen Kreis $X^2 + Y^2 = 4f^2$ über. Die Schnittpunkte $C_1, C_2, x = 0, y = \pm 2f$ jener zwei Kreise geben in der Fokalebene unbestimmte, d. h. je nach dem Grenzübergang verschiedene Punkte. Natürlich findet sich auch die Projektion der Selbstschattengrenze Die Gerade $x = 2 \frac{\nu}{\lambda} f$ gibt die Parabel $X = \frac{1}{4 f \lambda \nu} (4 f^2 - \lambda^2 Y^2).$ wieder. Endlich werden Strahlen durch den Brennpunkt F in der Fokalebene geliefert von Hyperbeln, da $\frac{X}{Y} = k$ gibt: $\frac{4f^2 + x^2 - y^2}{2xy} = k$, offenbar eine Schar gleichseitiger Hyperbeln mit drehendem Koordinatensystem. Alle gehen durch die singulären Punkte $C_1 C_2$. Im übrigen geben allgemeine Gerade der Fokalebene natürlich Kurven vierter Ordnung in der Scheitelebene.

Ein Kreis r = k auf dem Spiegel wird, da Y auch für x = 0 verschwindet, eine Kurve der Fokalebene liefern, die die X-Achse viermal trifft (zwei Scheitel und ein Knotenpunkt). Derartige Kurven hat Crokett berechnet und gezeichnet; er bemerkt auch, daß mit wachsendem r der Scheitel nicht monoton auf der X-Achse vorrückt.

Für die Anwendung kommen natürlich wieder nur kleine Werte λ und r in Betracht, so dafs man in einem Gebiet x, y bleibt, das nicht entfernt an den Kreis heranreicht, der in der Fokalebene die unendlich fernen Punkte liefert.

Wir stellen wieder Reihen nach λ auf, wobei diesmal die Koeffizienten selbst wieder abgebrochene Potenzreihen in $\frac{x}{f}$ und $\frac{y}{f}$ vorstellen. Ohne die

. 8

Nova Acta CI. Nr. 1.

allgemeinen Glieder zu berechnen, wurden die Entwicklungen so weit ermittelt, dafs $\frac{X}{f}$ und $\frac{Y}{f}$, falls man $\frac{x}{f}$ und $\frac{y}{f}$ von gleicher Ordnung klein wie λ betrachtet, noch die siebente Potenz kleiner Größen enthalten. Je nachdem dann $\frac{x}{f}$ und $\frac{y}{f}$ von stärkerer oder schwächerer Ordnung als λ klein sind, kann man dann die vorderen oder die späteren Koeffizienten von λ schneller abbrechen.

Es wurden gefunden:

$$- X = \lambda f \left[1 + \frac{3x^2 + y^2}{4f^2} + \frac{r^2x^2}{4f^4} + \frac{r^4x^2}{16f^6} \right] + \lambda^2 x \left[1 + \frac{2x^2 + y^2}{2f^2} + \frac{r^2(5x^2 + 2y^2)}{f^4} \right]$$

$$+ \frac{1}{2} \lambda^3 f \left[1 + \frac{11x^2 + y^2}{4f^2} + \frac{11x^4 + 7x^2y^2}{4f^4} \right] + \lambda^4 x \left[1 + \frac{7x^2 + y^2}{4f^2} \right]$$

$$+ \frac{3}{2} \lambda^5 f \left[1 - \frac{2x^2 + y^2}{2f^2} \right] + \lambda^6 x + \frac{5}{16} \lambda^5 f \right]$$

$$- Y = y \left\{ \frac{\lambda}{2} \cdot \frac{x}{f} \left[1 + \frac{r^2}{2f^2} + \frac{r^4}{8f^4} \right] + \frac{\lambda^2}{2} \frac{x^2}{f^2} \left[1 + \frac{3r^2}{4f^2} \right] + \frac{\lambda^3}{4} \frac{x}{f} \left[1 + \frac{5x^2 + y^2}{2f^2} \right]$$

$$+ \frac{\lambda^4}{2} \frac{x^2}{f^2} + \frac{3}{16} \lambda^5 \frac{x}{f} \right].$$

$$(6)$$

Will man nicht die absoluten Koordinaten, so empfiehlt es sich, hier den Scheitel x = y = r = 0 als Ausgangspunkt zu nehmen. Dieser gibt $X_0 = -\frac{\lambda}{\nu}f = -(\lambda + \frac{1}{2}\lambda^3 + \frac{3}{8}\lambda^5 + \frac{5}{16}\lambda^7 + \ldots)f$, $Y_0 = 0$. Dann erhält man:

$$\begin{split} - \triangle X &= -(X - X_0) \\ &= \lambda f \left[\frac{3}{4} \frac{r^2 - y^2}{4f^2} + \frac{r^2 x^2}{4f^4} + \frac{r^4 x^2}{16f^5} \right] + \lambda^2 x \left[1 + \frac{2}{2} \frac{x^2 - y^2}{2f^2} + \frac{r^2 (5 \frac{x^2 + 2}{4} y^2)}{f^4} \right] \\ &+ \frac{1}{2} \lambda^3 f \left[\frac{11 x^2 + y^2}{4f^2} + \frac{11 x^4 + 7 x^2 y^2}{4f^4} \right] + \lambda^4 x \left[1 + \frac{7 x^2 + y^2}{4f^2} \right] + \frac{3}{16} \lambda^5 \frac{2x^2 + y^2}{f} + \lambda^6 x \end{split}$$
 (6 a)

$$\triangle Y = Y.$$

Ist z. B. $\lambda = 0.01$, $f = 10\,000$ mm, x = 400 mm, y = 300 mm, r = 500 mm, so dafs $\frac{x}{f}, \frac{y}{f}, \frac{r}{f}$ von der Größenordnung 5.10^{-2} sind, so gibt das allererste Glied in $\triangle X$ den Wert $\triangle X$ in mm genau.

Setzt man zur Vereinfachung $f = \frac{1}{2}$, so werden die Formeln bequemer. Ist dann $\lambda = 0.01$, $r \le 0.05$, so erhält man aus

$$\begin{array}{l} -X = \frac{\lambda}{2} + \frac{3 x^2 + y^2}{2} \,\lambda + 2 \,\lambda r^2 x^2 + \lambda^2 x \,(1 + 4 x^2 + 2 \,y^2) + \frac{1}{2} \,\lambda^3 \\ -Y = \lambda x y + 2 \,\lambda x y \,r^2 \end{array}$$

noch Genauigkeit in sieben Dezimalstellen, d. h. bei einer Brennweite von 10 m noch $\frac{1}{500}$ mm.
Die Reflexion eines Parallelstrahlenbündels am Paraboloid.

Mit den letzten Formeln wurde eine Figur (Fig. 29) in Vergrößerung gezeichnet, so daß die Brennweite 1,25 km beträgt, und zwar für $\lambda = 0.01$ und Werte von r = 25, 50, 75, 100, 125 m, so daß die Figur eine 125 fache Vergrößerung des Falles f = 10 m, r = 200, 400, 600, 800, 1000 mm vorstellt.

Wie man sieht, erhält man Kurven der erwähnten Art, je vier Schnittpunkte mit der X-Achse. Das innerste "Winkelfeld" muß ein Gebiet vierfacher Überdeckung sein, da man durch einen gegebenen Punkt vier Kurven der Schar legen kann. In den zwei äußeren Feldern hat man zweifache Überdeckung.

Die Figur befindet sich in völligem Einklang mit den Ergebnissen Schwarzschilds. Denn wie man sieht, ist der Hauptfehler der Abbildung eine starke Komabildung; und diese ist neben der Streuung durch Bildwölbung der bedeutendste Fehler beim parabolischen Spiegel. Um die numerische Übereinstimmung zu zeigen, sei die Länge unserer Figur betrachtet: $\triangle X_{y=0} = \lambda f \left[\frac{3 x^2}{4 f^2} \right] + \lambda^2 x$, wenn man nur die Glieder dritter Ordnung

8*

60 F. Thiersch, Die Reflexion eines Parallelstrahlenbündels am Paraboloid.

nimmt. Um die Schwarzschildschen Zahlen zu erhalten,¹) hat man $\triangle X$ in Sekunden zu messen, d. h. $\frac{\triangle X}{f} \cdot \frac{648\ 000}{\pi}$ zu bilden; ferner muß statt λ das Gesichtsfeld mit 6° als Einheit und statt $\frac{x}{f}$ die Öffnung v mit $\frac{1}{10}$ als Einheit eingeführt werden, d. h. es ist $\lambda = \frac{g \cdot \pi}{60}$; $\frac{x}{f} = \frac{v}{20}$ zu setzen. Man erhält:

$$S = \frac{\bigtriangleup X \cdot 648\,000}{f \cdot \pi} = \begin{pmatrix} g\pi \\ 60 \end{pmatrix} \cdot \frac{3}{4} \cdot \frac{v^2}{400} + \frac{g^2\pi^2}{3600} \cdot \frac{v}{20} \end{pmatrix} \cdot \frac{648\,000}{\pi}$$
$$= 20.25'' g v^2 + 28.27'' g^2 v,$$

während Schwarzschild als Fehler dritter Ordnung:

 $F' g v^2 = 20,3'' g v^2$ als radiale Erstreckung der Koma,

 $2 \cdot C' g^2 v = 2 \cdot 28^{\mu}, 3 g v^2$ als radiale Achse der durch Astigmatismus und Bildwölbung erzeugten Streuungsellipse angibt.

5. Um endlich auch über die Bildwölbung einen Überblick zu erhalten, werde der geometrische Ort bestimmt, den B_2 in der Symmetrieebene Y = 0 bei Veränderung von λ beschreibt:

Aus $X = -2f \frac{1-\nu}{\lambda}, \ Z = \frac{4f}{1+\nu} - f \quad \text{folgt}$ $X^2 - 2Zf + 2f^2 = 0,$

d. h. B_2 beschreibt eine Parabel; diese hat ihren Scheitel in Z = f, natürlich im Brennpunkt F des Spiegels und ihren Brennpunkt Φ noch um $\frac{f}{2}$ höher. Der Krümmungsradius dieser Parabel im Scheitel ist f, dieser ist also auch das Maß für die Krümmung des Bildes.

1) Untersuchungen zur geom. Optik II, § 2 u. 3.

Bemerkungen zu den Tafeln.

Auf Tafel I sind die Symmetrieschnitte von Brenn- und Wellenfläche für die drei Fälle $\lambda = 0,2$; 0,8; 1 nebeneinandergestellt. F der Brennpunkt, M der Berührungspunkt des einfallenden Strahles, in dem auch die ebene Brennlinie L_1 die Parabel berührt. S der Scheitelpunkt der Schleife, er entspricht dem Scheitelpunkt O des Spiegels. K der Knotenpunkt der Linie L_1 . N_1 und N_2 die Kreispunkte der Wellenfläche W_{p} .

Außser dem Schnitt der Wellenfläche W_{ν} ist für $\lambda = 0,2$ und $\lambda = 0,8$ auch die Wellenlinie W_0 eingezeichnet, die zur L_1 symmetrisch liegt. Für das Koordinatensystem mit S als Ursprung und der Symmetrielinie als z'-Achse und bei $f = \frac{1}{2} \left(x' = \lambda x - \nu z + \frac{\nu}{2}, z' = \nu x + \lambda z \right)$ ist die Gleichung von W_0

$$x' = 2 \lambda \frac{x^3}{1+x^2}, \ z' = \frac{x^2 (x^2 - 3)}{1+x^2}$$

mit dem x des Parabelpunktes als Parameter.

Dieser Wellenlinie gegenüber ist W_{ν} dadurch ausgezeichnet, daßs N_1 und N_2 in gleicher Höhe liegen, so daß eine horizontale Doppeltangente vorhanden ist.

Tafel II zeigt links die Projektion der Brennfläche für $\lambda = 0,2$ in die Symmetrieebene, mit den Parameterlinien $h_1 h_2$. Hierzu wurde ein Netz $h_1 = \cos n \cdot \frac{\pi}{12}$, $h_2 = \cosh m \cdot \frac{\pi}{12}$ zugrunde gelegt, so daß die UV —, d. h. die xy-Ebene durch die katoptrischen Linien eine isometrische Einteilung erhält.

Rechts nebenan sind Horizontalschnitte für Z = -20f, 0, +20f, 40f, 80f usw. bis 240f, die grapisch ermittelt wurden, gezeichnet.

Ferner sind die Kalotten der beiden Mäntel in der Umgebung von B_2 ' in 20 facher Vergröfserung und mit engerer Einteilung danebengestellt. Dabei ist in die yz-Projektion noch die Abbildung der Randkurve des Spiegels r = 2f und in die xz-Projektion die Doppelkurve eingetragen.

Auf Tafel III ist die Brennfläche für $\lambda = 0.8$ in der xz- und der xy-Projektion dargestellt. Die beiden Mäntel sind aber der Deutlichkeit wegen getrennt.

Tafel IV zeigt, ebenfalls getrennt, die zwei Mäntel der Brennfläche $\lambda = 1$. Nebenan der Selbstschnitt des zweiten Mantels in der YZ-Ebene.

F. Thiersch.

Tafel V. Die Wellenfläche $\lambda = 0.8$. Man sieht deutlich die Berührungslinie mit der zugehörigen Ebene E_v in der xz-Projektion als geradlinige Kontur erscheinen.

Tafel VI. Die Wellenfläche $\lambda = 1$, nebenan auch die yz-Projektion.

Tafel VII bringt Abbildungen in die Parameterebene für $\lambda = 0.2$ und $f = \frac{1}{2}$. a) Abbildung der Kurven X = k, Y = k, Z = k auf die zwei Streifen I und II. Die X-Kurven sind von der fühften Ordnung:

$$2 h_1^3 h_2^2 - h_1^3 - 3 h_1 h_2^2 + 2 h_2 \left(\lambda \frac{X}{2f} - \nu\right) = 0$$
, punktsymmetrisch zu 0,0.

mit festen, von X unabhängigen Asymptoten: $h_1 = \pm \sqrt{\frac{3}{2}}$ und $h_2 = \pm \sqrt{\frac{3}{2}}$. Eingezeichnet in Strichelung sind die Werte

Х	[$2 f \frac{\nu}{\lambda};$	$2f \frac{\nu \pm 0,4}{\lambda};$	$2f\frac{\nu\pm0,8}{\lambda}$	usw.	bis	$2f\frac{\nu\pm 2}{\lambda}$	mit	Einschaltung	von	$2f\frac{\nu+1}{\lambda}.$
d. h	•	4,899	6,899	8,899	19	22	$14,\!899$	29	29	77	9,899
bzw			$2,\!899$	0,899	57	77		77	77	77	-0,101

Die Kurven achter Ordnung Y = k, d. h. $4 f^2 (1 - h_1^2)^3 (h_2^2 - 1) = \lambda^2 Y^2$ liegen ganz innerhalb der Streifen I und II, mit *U*-förmiger Gestalt und mit den Rändern der Streifen als Asymptoten; die im zweiten Streifen schmiegen sich stärker an den Rand an. Die Scheitel liegen: im ersten Streifen in $h_1 = 0$, $h_2 = \sqrt{1 + \lambda^2} Y^2$, im zweiten in $h_2 = 0$, $h_1 = \sqrt{1 + \sqrt[3]{\lambda^2 Y^2}}$, wenn $f = \frac{1}{2}$ ist.

Es sind (ausgezogen) eingetragen die Werte: $Y = 2 f \frac{0.4}{\lambda}, \ 2 f \frac{0.8}{\lambda} \dots 2 f \frac{2}{\lambda},$ also: 2, 4 ... 10.

Die Kurven dritter Ordnung Z = konst. kann man in zwei Gruppen von ähnlichen Kurven trennen; denn setzt man in

$$\nu h_1{}^3 + 3 h_1{}^2 h_2 + 3 \nu h_1 h_2{}^2 + h_2{}^3 - \lambda^2 h_2 \left(\frac{Z}{f} + 1\right) = 0$$

= $\sigma \cdot h_1$, so wird aufser $h_1 = 0$: $h_1 = \left| \sqrt{\frac{\lambda^2 \left(\frac{Z}{f} + 1\right) \sigma}{\nu + 3 \sigma + 3 \nu \sigma^2 + \sigma^3}} \right|^2}$,

so dafs aus einer einmal mit Hilfe von σ berechneten Kurve Z die anderen ähnlichen bequem berechnet werden können. Die durch Z = -f gelieferte Gerade $\frac{h_2}{h_1} = \sigma_0$, wo σ_0 die reelle Wurzel von $\nu + 3 \sigma + 3 \nu \sigma_0^2 + \sigma_0^3 = 0$ ist, bildet die Asymptote aller Kurven und zugleich die Trennung der zwei erwähnten Gruppen. Für Z > -f erhält man Kurven wie sie in nebenstehender Figur ausgezogen sind, während ein Beispiel Z < -f gestrichelt eingezeichnet ist. Die Horizontalschnitte wurden berechnet für Werte der Schar

 $Z = 2f\left(\frac{2}{1-\nu} - \frac{1}{2} - \frac{n}{5} \cdot \frac{4\nu}{\lambda^2}\right), n = 0, 1, 2, 3, 4, 5,$

so dafs der eine durch B_1' und einer durch B_2' geht.

62

 h_2

Die Reflexion eines Parallelstrahlenbündels am Paraboloid.

Mit Hilfe der gezeichneten Kurven läfst sich die Abbildung der Selbstdurchdringungskurve ermitteln, indem man in beiden Streifen Punkte mit gleichem Wertetripel X, Y, Z sucht (siehe auch Tafel IX a).

b) Abbildung von Randkurven des Spiegels r = k in Zusammenstellung mit Horizontalschnitten Z = k der Brennfläche.

c) 50 fache Vergrößerung der Umgebung von B_2' im zweiten Streifen. Man sieht, daß für gewisses kleines r die Kurve Z = k zweimal getroffen wird, so daß die Kurve r = k auf der Brennfläche beim Überschreiten von Y = 0 eine Einsenkung nach unten erhält, wie es auf Tafel VIII zu sehen ist.

Abbildung der Kurven Z = k in die Parameterebene.

Tafel VIII. Die Umgebung von B_2' auf der Brennfläche in großem Maßstab, mit Darstellung der Kurven $r = \sqrt{x^2 + y^2} = k$ und $\varphi = \arctan \frac{y}{x} = k$. S_1 und S_2 ist das Bild des Scheitels x = y = 0 des Spiegels. $\lambda = 0,2$. $r = 2f \cdot \frac{n}{50}$.

Tafel IX. Einzelheiten.

a) Vergrößserte Darstellung der Umgebung von B_2' im I. u. II. Streifen von Tafel VII a, zur empirischen Ermittlung der Selbstdurchdringungskurve.

b) Photographie des Modells der ersten Brennfläche mit Parameterlinien $h_1 h_2$. $\lambda = 0.2$.

F.Thiersch : Refl.c.Parallelstrahlenbündels am Paraboloid, Taf.1.

F.Thiersch : Refl. e. Parallelstrahlenbündels am Paraboloid. Taf. 2.

Die Brennfläche für $\lambda = 0.8$.

1. Mantel.

2. Mantel.

--- Kurven $h_1 = konst.$ Kurven $h_2 = konst.$ 1. Schale --- Kurven $h_1 = konst. ---- h_2 = konst.$ 2. Schale ----- Kurven $h_1 = konst. ----- h_2 = konst.$

Lith.Paul Schindler,Leipzig

Nova Acta Acad.C.L.C.G. Nat.Cur. Vol.CI.

F.Thiersch: Refl.e.Parallelstrahlenbündels am Paraboloid. Taf. 4.

F.Thiersch : Refl.e. Parallelstrahlenbündels am Paraboloid. Taf. 5.

F.Thiersch : Refl.c. Parallelstrahlenbündels am Paraboloid. Taf. 6.

Die Wellenfläche für \lambda=1

in 3 Projektionen.

E.Thiersch : Refl.e. Parallelstrahlenbündels am Paruboloid. Taf. 7.

Inth Faul Columbia Septig

F.Thiersch : Refl.e.Parallelstrahlenbündels am Paraboloid.Taf. 8.

 $(x_1, \dots, x_n) = (x_1, \dots, x_n) = (x_1, \dots, x_n)$

• •

the second s

F.Thiersch : Refl.c.Parallelstruhlenbündels am Paraboloid.Taf.9.

NOVA ACTA.

Abh. der Kaiserl. Leop.-Carol. Deutschen Akademie der Naturforscher. Band CI. Nr. 2.

Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Von

Hans Rosenberg.

Mit 20 Tafeln Nr. X — XXIX.

Eingegangen bei der Akademie am 24. Oktober 1912.

HALLE.

1914.

Druck von Ehrhardt Karras G. m. b. H. in Halle (Saale). Für die Akademie in Kommission bei Wilh. Engelmann in Leipzig.

Inhalts-Übersicht.

Se Einleitung	eite 5										
Teil I.											
Die instrumentelle Ausrüstung und die photographische Methode	9										
Das Beobachtungsprogramm und seine Erledigung	20										
1. Die Fixsterne	20										
2. Die Sonne	30										
Teil II.											
Die Strahlungsformel nach Wien und Planck	35										
Einreihung der Sterne in eine Temperatur-Serie	37										
Ableitung effektiver Temperaturen der Sterne	39										
Vergleichung der Resultate mit den Spektraleinteilungen von Maury und Vogel	50										
A n hang.											
1. Die Beobachtungsresultate	59										
2. Graphische Darstellung derselben	10										
3. Tafel für $\lg \left(e^{\frac{\omega}{\lambda t}} - 1 \right)$	12										

9*

Einleitung.

Das Emissionsvermögen des schwarzen Körpers ist nach Kirchhoff eine Funktion der Wellenlänge und der Temperatur. Nachdem es im letzten Jahrzehnt dem Zusammenarbeiten der theoretischen und praktischen Physiker gelungen ist, die mathematische Form dieser sogenannten "Kirchhoffschen Funktion" zu finden, ist uns damit die Möglichkeit geboten, durch spektralphotometrische Messungen an Gestirnen und Vergleichung mit Messungen am schwarzen Körper zu einer Kenntnis der auf den Sternen herrschenden Temperaturen zu gelangen, die aber im allgemeinen als "effektive" bezeichnet zu werden pflegen, da a priori nicht angenommen werden kann, daß die Strahlung der Sterne derjenigen des schwarzen Körpers gleicher Temperatur entspricht. Eine gewisse Erschwerung bildet bei derartigen Untersuchungen die Absorption des Lichtes in unserer Erdatmosphäre, von welcher die im Sternspektrum gemessenen Intensitäten befreit werden müssen, um mit den irdischen Messungen verglichen werden zu können, eine Reduktion, die sich bei unserer ungenauen Kenntnis der Transmissionskoeffizienten der Atmosphäre für Strahlen verschiedener Wellenlänge nicht mit der wünschenswerten Schärfe ausführen läßt.

Diese Schwierigkeit wird umgangen, so lange man sich auf die streng differentielle Messung außerirdischer Objekte beschränkt. Dehnt man die spektralphotometrischen Messungen auch auf die Sonne aus, so wird man unter Zugrundelegung einer plausibelen Sonnentemperatur ebenfalls zu einer Bestimmung genäherter effektiver Sterntemperaturen gelangen können. In jedem Falle erhält man aber — auch ohne Hinzuziehung der Sonne — eine Art von Temperaturskala, in die sich die Sterne nach steigenden oder fallenden Temperaturen einordnen lassen; man hat damit das Material für eine Untersuchung des Zusammenhanges zwischen der Spektralklasse eines Sternes und seinem Glühzustande, beziehungsweise dem Stadium seiner Entwicklung.

Hans Rosenberg,

[6]

Aber während die qualitative Spektralanalyse schon sehr früh auf die Untersuchung der Himmelskörper angewandt wurde und sich heute besonders seit Einführung der photographischen Methoden — zu einem der wichtigsten und erfolgreichsten Zweige der Astrophysik ausgebildet hat, sind quantitative Spektraluntersuchungen an Gestirnen bis in die jüngste Zeit arg vernachlässigt worden. Die Ursachen der geringen Vorliebe des Astrophysikers für spektralphotometrische Messungen scheinen mir hauptsächlich in praktischen Schwierigkeiten begründet zu sein, in der durch die Lichtschwäche der Sterne bedingten Anwendung gröfster Instrumente, in der Unvollkommenheit der verschiedenen Spektralphotometer und in den ungewöhnlich hohen Anforderungen, die an das Auge des Beobachters gestellt werden. Auch hier dürfte die Photographie berufen sein, Wandel zu schaffen und der Spektralphotometrie den ihr gebührenden Platz neben den anderen Untersuchungsmethoden in der Astrophysik einzuräumen.

Eine kurze Übersicht über das bisher in dieser Richtung Geleistete möge hier folgen.

Sehen wir von den ersten unvollkommenen Versuchen ab, die weniger ihrer Resultate, als der angewandten Methoden wegen ein Recht auf unser historisches Interesse beanspruchen dürfen, so sind die ersten Erfolge spektralphotometrischer Messungen an Sternen meines Wissens Herrn H. C. Vogel¹) zu verdanken, der mit dem von ihm verbesserten Glanschen Spektralphotometer in Gemeinschaft mit Herrn G. Müller die Energieverteilung im Spektrum der Sonne und einiger weniger heller Fixsterne mit derjenigen einer Petroleumflamme verglichen hat. Die Messungen, die sich auf die Sterne Sirius, Vega, Capella, Arctur, Aldebaran und Beteigeuze beziehen und in sieben verschiedenen Wellenlängen zwischen $\lambda = 444 \ \mu\mu$ $\lambda = 633 \ \mu\mu$ angestellt wurden, ergeben für die Sonne die gleiche Energieverteilung, wie für Capella, und lassen das Überwiegen der kurzwelligen Strahlen bei den Sternen vom Spektraltypus I gegenüber den röteren Sternen deutlich erkennen. Vogel hat auch vorausschauend die Wichtigkeit spektralphotometrischer Messungen für eine Temperaturbestimmung der Sterne erkannt, obgleich damals die Form des Gesetzes, welches den Zusammenhang zwischen Temperatur und Strahlung vermittelt, noch unbekannt war. "Mittels der Kirchhoffschen Funktion dürfte es dereinst gelingen, aus den Beobachtungen der Intensitätsverhältnisse in den Sternspektren die wirklichen Temperaturunterschiede der Himmelskörper abzuleiten" schrieb Vogel im Jahre 1880.

¹⁾ Monatsberichte der Kgl. Preuß. Akademie der Wissenschaften zu Berlin. 1880, p. 801.

[7] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Es möge hier erwähnt werden, daß kürzlich Herr B. Harkányi¹) den Versuch gemacht hat, unter Zugrundelegung des Wienschen Gesetzes die alten Vogelschen Messungen für eine Temperaturbestimmung der betreffenden Sterne zu benutzen.

Die nächsten spektralphotometrischen Untersuchungen an Gestirnen sind von Herrn E. C. Pickering²) angestellt worden. Er benutzte dazu Spektralaufnahmen des "Draper Memorial" und verglich sie mit eigens für diesen Zweck aufgenommenen Spektrogrammen der Sonne, indem für alle Platten die Schwärzungen in je 13 verschiedenen Wellenlängen, die dem Gebiet $\lambda = 390 \ \mu\mu$ bis $\lambda = 510 \ \mu\mu$ angehören, mit einem "standard photographic wedge" ausgemessen wurden; die Intensitätsverteilung im Sonnenspektrum selbst wurde dabei holometrischen Messungen von Langley entlehnt. Die Untersuchungen beziehen sich auf die Sonne, sieben hellere Fixsterne und Saturn. Von den Ergebnissen möge hier nur erwähnt werden, dafs α Canis mai. und α Aurigae die gleiche Energieverteilung zeigen, was allen Erwartungen widerspricht und auch mit den Vogelschen Resultaten nicht in Einklang steht.

Nicht zu den spektralphotometrischen Methoden im eigentlichen Sinne gehören der Vorschlag von Herrn Schwarzschild³) zur Bestimmung der "Farbtönung" der Sterne durch Vergleichung von optischen und photographischen Messungen der Gesamtintensität der wirksamen Strahlung und die von Herrn Nordmann⁴) angestellten photometrischen Untersuchungen an Gestirnen mittels seines "photomètre hetérochrome", doch sollen sie hier erwähnt werden, ebenso wie die von Herrn Hertzsprung⁵) ausgebildete Methode der effektiven Wellenlängen, da sie sämtlich ähnliche Ziele verfolgen, wie die reine Spektralphotometrie.

In allerneuester Zeit ist endlich eine größere Arbeit von J. Wilsing und J. Scheiner⁶) bekannt geworden. Die Verfasser haben die Energieverteilung im Spetrum der Sonne und von 109 Sternen direkt mit derjenigen des schwarzen Körpers verglichen und unter Zugrundelegung der Planckschen Strahlungsformel effektive Temperaturen berechnet. Als Instrument diente in Verbindung mit dem 80 cm-Refraktor des Astrophysikalischen

¹) Astronomische Nachrichten. Bd. 158. Nr. 3770 (1902).

²⁾ Astronomische Nachrichten. Bd. 128. Nr. 3069 (1891).

³) Sitzungsberichte d. Kaiserl. Akad. d. Wiss. in Wien. Bd. 109 (1900).

⁴⁾ Comptes rendus. Bd. CXLIX, Nr. 14 u. 23 (1909).

⁵) Publikationen d. Astrophys. Observatoriums zu Potsdam. Nr. 63 (1911). Vgl. ferner die Literaturzusammenstellung in Astronomische Nachrichten. Bd. 182, Nr. 4362 (1909).

⁶) Publikationen d. Astrophys. Observatoriums zu Potsdam. Nr. 56 (1909).

72 Hans Rosenberg, Photographische Untersuchung der Intensitätsverteilung usw. [8]

Observatoriums zu Potsdam ein dem Crovaschen Typus angehörendes optisches Spektralphotometer, gemessen wurde bei den fünf Wellenlängen $\lambda = 448, 480, 513, 584$ und 638 $\mu\mu$. Auf die Resultate dieser wichtigen Arbeit wird weiter unten ausführlich eingegangen werden.

Die folgenden Untersuchungen beschäftigen sich ebenfalls mit spektralphotometrischen Studien an Gestirnen, bei denen aber, unter Ausschaltung der schwierigen und zeitraubenden Messungen am Fernrohr, photographische Aufnahmen der Sternspektren die Grundlage bilden. Abgesehen von einer größeren Arbeitsökonomie besitzen die auf diesem Wege erzielten Resultate aber auch einen selbständigen Wert neben den optischen Beobachtungen, da sie sich auf ein Wellenlängengebiet beziehen, welches dem Auge verschlossen ist.

Die Aufgabe, die ich mir gestellt hatte, bestand:

1. In der photometrischen Vergleichung der Sonne und einer größeren Anzahl Fixsterne mit geeignet zu wählenden Normalsternen an möglichst zahlreichen Wellenlängen.

2. In einer Vergleichung der Energieverteilung in den Sternspektren mit der Planckschen Strahlungsformel und der Ableitung effektiver Sterntemperaturen unter Zugrundelegung eines wahrscheinlichen Wertes für die Sonnentemperatur (der anderen Arbeiten zu entlehnen ist).

3. In einer Zusammenstellung und Untersuchung des Zusammenhanges zwischen Spektraltypus und Temperatur.

Die Arbeit zerfällt demnach naturgemäß in zwei Teile, von denen der erste die Technik und Methodik der Untersuchungen umfaßt und mit Ableitung der reinen Messungsergebnisse abschließt, während der zweite Teil die Diskussion der Resultate enthalten wird.

Es sei mir an dieser Stelle gestattet, Herrn Schwarzschild, der mir die Hilfsmittel der Göttinger Sternwarte in liberalster Weise zur Verfügung gestellt und mich stets mit seinem Rat unterstützt hat, meinen wärmsten und aufrichtigsten Dank auszusprechen.

Teil I.

Instrumentelle Ausrüstung und Methode.

Als einzig brauchbar für spektralphotometrische Zwecke konnte nur eine auf der Beurteilung von Schwärzungen beruhende photographischphotometrische Methode in Betracht kommen. Die Prinzipien einer derartigen Schwärzungsphotometrie sind für die Ableitung der photographischen Gesamtintensität der Gestirne von Herrn Schwarzschild¹) ausgebildet worden und lassen sich für unsere Zwecke übernehmen. Eine Änderung tritt nur dadurch ein, dafs wir es bei der spektralen Zerlegung mit den Wirkungen von Strahlen sehr verschiedener Wellenlänge zu tun haben, wodurch die für das Gesamtlicht geltenden Gesetze eventuell modifiziert werden können.

Mir stand für meine Untersuchungen eine der Göttinger Sternwarte von der Firma C. Zeifs, Jena, geliehene ultraviolett durchlässige Prismenkamera zur Verfügung. Das Objektiv, aus den neuen U. V.-Gläsern hergestellt, hat eine Öffnung von 110 mm und ein Öffnungsverhältnis von 1:10. Davor befindet sich im Minimum der Ablenkung ein Prisma von 45° brechendem Winkel, ebenfalls aus U.V.-Glas, dessen Seitenlänge 200 mm beträgt. Die damit aufgenommenen Sternspektra haben für das Wellenbereich von $340-575 \mu\mu$, für welches die gewählte Plattensorte sensibilisiert war, eine Länge von rund 37 mm. Das brauchbare Feld der für ein Format von 13/18 cm eingerichteten Kamera war infolge einer schon ziemlich nahe der optischen Achse sich bemerkbar machenden Koma leider nur klein, so daß nicht daran gedacht werden konnte, die volle Plattengröße auszunutzen, sondern die einzelnen Sternspektra mußten nacheinander in der Mitte des Feldes aufgenommen werden. Um den unbenutzten Teil der Platte während der Exposition vor falschem Licht zu schützen, war er durch eine entsprechende Blende abgedeckt, die nur für das aufzunehmende

Publikationen d. v. Kuffnerschen Sternwarte in Wien. Bd. V. Abt. B u. C (1900). Nova Acta CL. Nr. 2.

Hans Rosenberg,

Spektrum in der Mitte einen schmalen Spalt frei liefs und hinter der die Platte nach jeder Aufnahme etwas verschoben wurde; im ganzen konnten auf diese Weise etwa 16 Spektra nebeneinander auf einer Platte photographiert werden. Zum Exponieren diente ein aus freier Hand zu bedienender Schieberverschlufs, bei dem sich die Genauigkeit der Belichtungszeit bis auf einige wenige Zehntelsekunden verbürgen liefs. Um den fadenförmigen Sternspektren die zur Ausmessung der Schwärzung unbedingt nötige Breite zu geben, wurden die Sterne etwas extrafokal aufgenommen. Begrenzt wurde die extrafokale Verschiebung durch die Bedingung, dafs die kräftigeren Linien in den Sternspektren deutlich genug érkennbar bleiben mufsten, um zur Ableitung der Wellenlängen dienen zu können.

Für die Aufnahmen der Sonne läßt sich eine Prismenkamera nicht ohne weiteres benutzen, da wegen der großen Winkelausdehnung dieses Gestirnes das Spektrum äußerst unrein wird. Es wurde daher für diesen Zweck vor dem Objektivprisma ein kleiner Kollimator angebracht mit verstellbarem Spalt und Kollimatorobjektiv aus U. V.-Gläsern, so daß das ganze Instrument nun einem vollständigen zusammengesetzten Spektrographen glich.

Zum Ausmessen der Schwärzungen auf den Platten diente ein Hartmannsches Mikrophotometer in Verbindung mit einem Mefsapparat, der rechtwinklige Koordinaten bis auf 0.1 mm abzulesen gestattete. Das Lummer-Brodhun-Prisma trug nicht den üblichen runden Spiegel, mit dem das Instrument gewöhnlich ausgerüstet wird, sondern einen solchen in der Form eines schmalen Striches, dessen Längsausdehnung senkrecht zur Richtung der Spektren stand und dessen Länge der Breite des unter dem Mikroskop auszumessenden Spektrums entsprach. Der Mefskeil war aus der gleichen Plattensorte hergestellt worden, die für die Aufnahmen am Himmel Verwendung fand.

Nach den bisherigen Erfahrungen über das photometrische Verhalten photographischer Platten ist es nicht zulässig, für verschiedene Platten, auch wenn sie der gleichen Emulsion entstammen, ohne weiteres bei gleicher Behandlung und unter gleichen Umständen auch die gleiche Wirkung vorauszusetzen, wie dies offenbar für die oben erwähnte Arbeit von Herrn E. C. Pickering¹) geschehen ist; sondern jede Platte ist durchaus als Einzelindividuum zu betrachten, bei dem die sogenannte charakteristische oder Schwärzungskurve, d. i. die graphische Darstellung des Zusammenhanges zwischen aufgefallener Lichtmenge und resultierender Schwärzung,

¹) Astronomische Nachrichten. Bd. 128. Nr. 3069 (1891).

[11] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

stark von derjenigen anderer Exemplare abweichen kann und von Umständen abzuhängen scheinen, die sich unserer Kenntnis vorläufig noch entziehen. Die Grundbedingung für jedes photographisch-photometrische Verfahren muß demnach darin bestehen, die Anlage der Beobachtungen so einzurichten, daßs sich die für die Schwärzungskurve nötigen Konstanten für jede Platte aus den auf ihr befindlichen Aufnahmen selbst ableiten lassen. Es geschieht dies, indem man dafür sorgt, daß auf jeder Platte die nötige Anzahl von verschiedenen Schwärzungen vorhanden ist, die durch meßbare Variation der auffallenden Lichtmenge erzeugt sind. Ob diese Veränderung dabei durch Abblendungsmittel, durch Polarisationsvorrichtungen oder durch eine Variation der Expositionszeit bewirkt wird, ist im Prinzip gleichgültig; wichtig bleibt nur, daß sich die Intensitätsänderung korrekt messen läßt.

Nach verschiedenen Versuchen wurde beschlossen, für die vorliegenden Untersuchungen das Prinzip der Expositionsänderung als messenden Faktor einzuführen.

Auf jeder Platte wurde aufser den zu messenden Sternen ein heller Stern mit vier verschiedenen Belichtungszeiten aufgenommen, von denen jede das dreifache der vorhergehenden bildete. Die Helligkeit des Vergleichsternes wurde so gewählt, daß die kürzeste Exposition geringere Schwärzungen lieferte, als die zu vergleichenden Sterne, die längste Exposition kräftigere Schwärzungen; die Länge der Expositionszeiten wurde durch die Bedingung begrenzt, daß die für die anderen Sterne nötigen Belichtungszeiten in diesen Grenzen eingeschlossen bleiben sollten. Eine Verdreifachung wurde der Bequemlichkeit wegen bevorzugt, da bei diesem Intervall nach allen bisherigen Erfahrungen ein ungefährer Zuwachs von rund einer Größenklasse zu erwarten war. Die Aufnahmen des Vergleichsternes selbst sollten möglichst in der Nähe des Meridians geschehen, um für die vier Aufnahmen frei von Extinktionsänderungen zu werden.

Wenn eine Änderung der Expositionszeit als messender Faktor eingeführt wird, muß zunächst der Zusammenhang zwischen der Intensität *I*, der Expositionszeit *t* und der resultierenden Schwärzung *S* untersucht werden. Für die photographisch wirksame Gesamtstrahlung ist dies in ganz ausführlicher Weise von Herrn Schwarzschild¹) geschehen, der für das Schwärzungsgesetz die allgemeine Form aufgestellt hat:

$S = f(I \cdot t^p)$

¹) Publikationen d. v. Kuffnerschen Sternwarte in Wien. Bd. V. Abt. B u. C (1900).

10*

und für gleiche Schwärzungen die Gültigkeit der Gleichung

$$\frac{I}{I'} = \left(\frac{t'}{t}\right)^p$$

bestätigt gefunden hat, wo p im allgemeinen für eine bestimmte Plattensorte innerhalb weiter Grenzen von I und t als eine Konstante aufzufassen ist, deren Wert für verschiedene Plattensorten allerdings stark voneinander abweichen kann. Aus der Konstanz von p folgt, daßs "der Gewinn an Gröfsenklassen bei Verlängerung der Expositionszeit in gegebenem Verhältnis unabhängig sowohl von der absoluten Gröfse der Expositionszeit als der Helligkeit der Sterne ist" und p selbst ist "gleich dem Gewinn an Gröfsenklassen, der bei Multiplikation der Expositionszeit mit 2.512 erzielt wird".

In unserem Falle bleibt noch zu untersuchen, ob p, sowie von Exposition und Helligkeit, auch unabhängig von der Wellenlänge ist, und ferner die numerische Auswertung des Exponenten p für die zur Verwendung gelangende Plattensorte (Agfa-Chromo-Platten der Aktiengesellschaft für Anilinfabrikation).

Zur Untersuchung des Verhaltens von p wurde die Methode angewandt, das von den Sternen kommende Licht durch Abblendung meßbar zu schwächen und mit abgeblendetem und unabgeblendetem Objektiv Aufnahmen des gleichen Sternes bei verschiedenen Expositionszeiten vorzunehmen. Als einwandfreies Abblendungsprinzip konnte nur die Form der Gitterabblendung in Frage kommen. Da ein geeignetes Parallelgitter nicht zu beschaffen war, so wurde ein feinmaschiges Kreuzgitter gewählt, das aus ganz dünnem Kupferdraht bestand, und so vor dem Objektiv angebracht, daßs seine Fadenrichtungen unter 45° zur brechenden Kante des Objektivprismas standen, um die störenden Gitterspektra niederer Ordnungen seitlich von dem prismatischen Spektrum zu erhalten. Gleichzeitig war die Einrichtung getroffen, daß sich das Gitter leicht vor dem Objektiv befestigen und wegschlagen liefs.

Die Absorptionskonstante des Gitters wurde von mir unter freundlicher Beihilfe des Assistenten der Sternwarte, Herrn Birck, auf der optischen Bank mittels eines Lummer-Brodhun-Photometers untersucht. Es wurden dabei alle Vorsichtsmaßregeln auf das sorgfältigste beachtet und die Absorption des Gitters auf beiden Seiten des Photometers in je zwei Lagen sowohl des Gitters als auch des Photometers durch je fünf Einstellungen eines jeden Beobachters kontrolliert. Aus dem Mittel aller Beobachtungen ergab sich eine Abblendung des Gitters für Flächenhelligkeiten

von 0.947 Größenklassen mit einem w. F. von ± 0.004
[13] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

und demnach eine Abschwächung für punktförmige Objekte von

1.894 Gröfsenklassen.

Es wurden jetzt bei den verschiedensten Expositionszeiten, die zwischen 20° und 27° variierten Aufnahmen des gleichen Sternes mit und ohne Vorschaltung des Gitters auf die gleiche Platte gemacht und die Spektra unter dem Hartmannschen Mikrophotometer in Intervallen von 0.5 mm zu 0.5 mm durchphotometriert. Dabei ergab sich, dafs, wenn in dem unabgeblendeten und in dem abgeblendeten Spektrum durch Variation der Belichtungszeit für eine Wellenlänge gleiche Schwärzung erreicht wurde, dies auch für alle anderen Wellenlängen der Fall war, und zwar mußte die Exposition bei Abblendung genau um den neunfachen Betrag vergrößert werden, damit Gleichheit der Schwärzungen in beiden Spektren erreicht wurde. Die Konstanz von p für alle Wellenlängen ist damit bewiesen.

Das folgende Tableau enthält die Schwärzungen derjenigen Spektrogramme, bei denen die Expositionszeit für die abgeblendeten Sterne genau das Neunfache der für die unabgeblendeten Aufnahmen geltenden Belichtungszeit betragen hat. Es sind dies die Platten mit den Katalognummern 661 und 933, die Aufnahmen beziehen sich auf α Aquilae, resp. α Lyrae, die Expositionszeiten liegen zwischen 20^s und 9^m. Die Kolumnen der Tabelle enthalten der Reihe nach für jede Platte die Wellenlänge, in der gemessen worden ist, und die zugehörigen Schwärzungen für die korrespondierenden unabgeblendeten und abgeblendeten Aufnahmen, sowie deren Differenz. Zur Beurteilung der Genauigkeit möge erwähnt werden, dafs 1 mm Keilverschiebung etwa 0.10 Gröfsenklassen entspricht.

<i>ì.</i>	Platte Nr. 6	61. αA Gitter	quilae n blende	nit und	ohne	Platte Nr. 993. <i>«</i> Lyrae mit und ohne Gitterblende						
	20 ⁸ 3 ^m o. G. m. G.	Diff.	1 ^m o. G.	9 ^m m. G.	Diff.	20 ⁸ o. G.	3 ^m m. G.	Diff.	1 ^m o. G.	9 ^m m. G.	Diff.	
$\begin{array}{c} 5677\\ 5609\\ 5542\\ 5481\\ 5418\\ 5361\\ 5303\\ 5248\\ 5194\\ 5138\\ \end{array}$	1		60.3 63.8 55.1	60.1 63.2 56.1	-0.2 -0.6 +1.0	$\begin{array}{c} 55.4 \\ 62.5 \\ 67.8 \\ 70.3 \\ 65.7 \\ 60.5 \\ 57.6 \\ 55.0 \\ 52.9 \\ 52.1 \end{array}$	$57.5 \\ 65.1 \\ 70.0 \\ 70.2 \\ 65.5 \\ 59.8 \\ 56.3 \\ 53.1 \\ 52.0 \\ 51.7 \\$	$\begin{array}{r} + 2.1 \\ + 2.6 \\ + 2.2 \\ - 0.1 \\ - 0.2 \\ - 0.7 \\ - 1.3 \\ - 1.9 \\ - 0.9 \\ - 0.4 \end{array}$	$71.8 \\78.0 \\88.0 \\88.0 \\85.8 \\78.5 \\69.9 \\64.0 \\60.5 \\59.3$	$\begin{array}{c} 70.0 \\ 78.7 \\ 86.3 \\ 88.5 \\ 85.4 \\ 79.3 \\ 71.1 \\ 65.4 \\ 61.6 \\ 60.1 \end{array}$	$ \begin{array}{c} -1.8 \\ -1.3 \\ -1.7 \\ +0.5 \\ -0.4 \\ +0.8 \\ +1.2 \\ +1.4 \\ +1.1 \\ +0.8 \end{array} $	

Tabelle I.

Hans Rosenberg,

	Plat	tte Nr. 6	61. αA Gitter	q uilae r blende	nit und	ohne	Platte Nr. 993. α Lyrae mit und ohne Gitterblende					ohne
1.	20 ^s o. G.	3 ^m m. G.	Diff.	1 ^m o. G.	9 ^m m. G.	Diff.	20 ⁸ o. G.	3 ^m m. G.	Diff.	1 ^m o. G.	9 ^m m. G.	Diff.
5087 4988 $4\cdot42$ 48951 44895 44895 44885 4643 4666 44569 33964 339949 337700 37700 37700 37710 36572 36536 35548 35548 3498	50.1 50.2 50.6 50.9 51.1 51.3 51.5 51.6 51.7 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 52.0 51.8 51.7 51.6 51.5 51.5 51.5 51.5 51.5 51.4 51.2 51.1 51.9 50.7 50.9 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.7 50.6 50.5 50.4	50.4 50.8 51.1 51.2 51.3 51.4 51.5 51.6 51.7 51.7 51.8 51.6 51.5 51.4 51.6 51.5 51.6 50.4 50.2 50.1	$\begin{array}{c} + \ 0.3 \\ + \ 0.6 \\ + \ 0.5 \\ + \ 0.2 \\ + \ 0.1 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.2 \\ + \ 0.2 \\ + \ 0.3 \\ + \ 0.3 \\ + \ 0.3 \\ + \ 0.1 \\ - \ 0.2 \\ - \ 0.2 \\ \end{array}$	$\begin{array}{c} 52.5\\ 53.5\\ 55.0\\ 56.4\\ 57.0\\ 57.7\\ 58.0\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.4\\ 58.5\\ 58.6\\ 57.3\\ 55.6\\ 57.5\\ 55.5\\ 55.5\\$	51.8 52.7 54.1 56.0 57.6 57.9 58.0 58.3 58.3 58.3 58.4 58.4 58.4 58.4 58.4 58.4 58.4 58.2 58.3 58.4 58.4 58.2 58.3 58.4 58.4 58.2 58.3 58.4 58.2 58.3 58.4 58.4 58.9 57.5 56.8 55.3 51.2 50.7 51.5 50.7 50.6 50.3 50.3 50.3 50.4 50.3 50.3 50.3 50.4 50.3 50.3 50.4 50.3 50.4 50.3 50.4 50.3 50.3 50.4 50.3 50.3 50.4 50.3 50.4 50.3 50.3 50.4 50.3 50.3 50.4 50.3	$\begin{array}{c} - 0.7 \\ - 0.8 \\ - 0.9 \\ - 0.4 \\ 0.0 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ - 0.1 \\ + 0.2 \\ + 0.5 \\ + 0.7 \\ + 0.4 \\ + 0.5 \\ + 0.7 \\ + 0.6 \\ + 0.4 \\ + 0.2 \\ 0.0 \\ - 0.1 \\ - 0$	$\begin{array}{c} 51.2\\ 51.0\\ 51.2\\ 51.6\\ 52.9\\ 54.9\\ 54.9\\ 57.7\\ 60.3\\ 61.8\\ 62.5\\ 63.7\\ 64.0\\ 65.4\\ 65.4\\ 66.5\\ 66.6\\ 66.5\\ 66.6\\ 66.6\\ 66.6\\ 66.5\\ 61.3\\ 64.0\\ 65.4\\ 84.1\\ 65.4\\ 84.1\\$	$\begin{array}{c} 50.6\\ 50.5\\ 50.5\\ 50.5\\ 51.9\\ 52.2\\ 54.5\\ 57.8\\ 60.6\\ 60.9\\ 61.4\\ 62.3\\ 7\\ 63.4\\ 63.6\\ 63.9\\ 64.2\\ 56.6\\ 65.6\\ 66.5\\ 66.8\\ 66.6\\ 66.6\\ 66.6\\ 66.3\\ 66.6\\ 66.8\\ 66.6\\ 66.3\\ 55.2\\ 53.5\\ 51.9\\ 50.0\\ 0\\ 48.8\\ 48.4\\ 48.3\\ 48.1\\ 47.9\\ 47.7\\ 47.7\\ \end{array}$	$\begin{array}{c} - \ 0.6 \\ - \ 0.5 \\ - \ 0.7 \\ + \ 0.3 \\ - \ 0.5 \\ - \ 1.0 \\ + \ 0.1 \\ + \ 0.1 \\ + \ 0.1 \\ + \ 0.1 \\ + \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.1 \\ - \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ + \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.1 \\ - \ 0.2 \\ - \ 0.4 \\ - \ 0.5 \\ - \ 0.6 \\ - \ 0.6 \\ - \ 0.6 \\ - \ 0.6 \\ - \ 0.5 \\ - \ 0.4 \\ - \ 0.4 \\ - \ 0.4 \\ - \ 0.4 \\ - \ 0.5 \\ - \ 0.6 \\ - \ 0.5 \\ - \ 0.6 \\ - \ 0.5 \\ - \ 0.4 \\ - \ 0.5 \\$	$\begin{array}{c} 58.7\\ 58.1\\ 58.8\\ 61.1\\ 63.8\\ 66.6\\ 9.5\\ 72.5\\ 75.6\\ 77.7\\ 77.9\\ 77.6\\ 77.7\\ 77.9\\ 78.3\\ 78.5\\ 78.8\\ 79.1\\ 79.6\\ 80.9\\ 80.4\\ 80.9\\ 81.1\\ 81.0\\ 80.9\\ 80.4\\ 80.9\\ 81.1\\ 81.0\\ 80.9\\ 80.6\\ 80.1\\ 79.1\\ 78.2\\ 75.6\\ 75.6\\ 74.3\\ 72.5\\ 76.4\\ 55.5\\ 51.0\\ 55.5\\ 51.5\\ 54.1\\ 55.5\\ 51.5\\ 51.0\\ 50.2\\ 49.5\\ 48.8\\ 80.6\\ 80.1\\ 79.1\\ 78.2\\ 75.6\\ 55.5\\ 51.5\\ 51.0\\ 50.2\\ 49.5\\ 48.8\\ 80.6\\ 55.5\\ 51.5\\ $	$\begin{array}{c} 58.8\\ 58.3\\ 57.9\\ 60.5\\ 63.0\\ 70.4\\ 73.8\\ 75.0\\ 75.7\\ 76.8\\ 76.9\\ 77.0\\ 77.4\\ 77.8\\ 78.2\\ 78.7\\ 77.8\\ 80.0\\ 80.5\\ 80.8\\ 80.9\\ 81.0\\ 80.9\\ 80.8\\ 80.9\\ 80.8\\ 80.9\\ 80.8\\ 80.9\\ 81.0\\ 77.7\\ 76.7\\ 76.1\\ 75.0\\ 74.0\\ 71.2\\ 68.6\\ 65.8\\ 63.5\\ 61.4\\ 59.9\\ 58.5\\ 57.6\\ 56.7\\ 55.8\\ 55.6\\ 56.7\\ 55.8\\ 55.4\\ 55.6\\ 50.7\\ 55.8\\ 55.6\\ 50.7\\ 50.1\\ 49.5\\ 49.1\\ 9.5\\ 10.$	$\begin{array}{c} + \ 0.1 \\ + \ 0.2 \\ - \ 0.9 \\ - \ 0.6 \\ - \ 0.8 \\ - \ 0.1 \\ + \ 0.9 \\ + \ 0.9 \\ + \ 0.9 \\ + \ 0.9 \\ + \ 0.9 \\ + \ 0.1 \\ - \ 0.7 \\$

78

[14]

[15] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Es sind noch eine Reihe anderer Aufnahmen zur Ableitung von pbenutzt worden, teils auf denselben, teils auf anderen Platten, bei denen aber das Verhältnis der Expositionszeiten ein anderes ist, als 1:9, und bei denen demnach die Schwärzungen in den verschiedenen Spektren nicht gleich sind. Die Reduktion ist hier in der Weise vorgenommen worden, daßs aus mit gleichen Expositionszeiten aufgenommenen unabgeblendeten und abgeblendeten Sternspektren in der weiter unten beschriebenen Weise die Schwärzungskurve abgeleitet und mit ihr die Schwärzungen in Intensitäten umgesetzt sind. Im Mittel aus diesen Werten ergibt sich, daß bei einer Verdreifachung der Exposition ein für alle Wellenlängen gleichmäßiger Gewinn von 0.95 Größenklassen zu verzeichnen ist, ein Resultat, das sich mit dem oben gefundenen in guter Übereinstimmung befindet.

Für die Größe des Exponenten p selbst, die allerdings direkt nicht gebraucht wird, ergibt sich aus den oben angeführten Werten für die verwandte Plattensorte:

p = 0.794,

was für eine Verdreifachung der Exposition einem Gewinn von 0.947 Gröfsenklassen entspricht. Mit diesem Werte, der innerhalb der erreichten Genauigkeitsgrenze für alle Platten der gleichen Sorte zu gelten scheint, ist das gesamte Beobachtungsmaterial reduziert worden. Es braucht wohl nicht besonders erwähnt zu werden, daß selbstverständlich eine möglichst gleichartige Behandlung aller Platten vorausgesetzt wird, da eine Änderung von p auch bei der gleichen Plattensorte durch eine Modifikation, z. B. der Entwicklung durchaus im Rahmen der Wahrscheinlichkeit liegt. Alle Platten, die für diese Untersuchung zur Verwendung gelangten, sind in möglichst frischem Zustand aufgebraucht und stets mit Rodinal 1:15 bei einer Temperatur von $+ 15^{\circ}$ C je vier Minuten lang entwickelt worden.

Nachdem festgestellt worden war, daß eine bestimmte Vervielfachung der Expositionszeit in den gegebenen Grenzen einem bestimmten, für alle vorkommenden Intensitäten und Wellenlängen gleichen Zuwachs an Helligkeit entspricht und damit die Berechtigung zur Benutzung der Expositionsänderung als messenden Faktor auch für Spektralaufnahmen dargetan ist, tritt die Frage an uns heran, wie aus den gemessenen Schwärzungsunterschieden der photographischen Platte das Intensitätsverhältnis der aufgenommenen Objekte abzuleiten ist.

Diese Aufgabe, die außer von anderen, ebenfalls von Herrn Schwarzschild¹) behandelt worden ist, lieferte für die photographische Gesamt-

¹⁾ Astronomische Nachrichten. Bd. 172. Nr. 4109 (1906).

intensität der Sterne das bemerkenswerte Resultat, dafs die Gradation der Platte selbst für sehr verschieden gefärbte Sterne praktisch die gleiche ist. Anders liegen die Verhältnisse für homogene Strahlen sehr verschiedener Wellenlänge. Hier ändert sich allem Anschein nach die Gradation mit der Wellenlänge, eine Erscheinung, die wir als eine Art von Purkinje-Phänomen der photographischen Platte bezeichnen können, und die eine gesonderte Reduktion der verschiedenen Strahlungen bedingt.

Es wäre vielleicht möglich gewesen, für eine größere Anzahl von Wellenbezirken, in deren jedem die Gradation als nahezu gleichmäßig angesehen werden durfte, eine eigene Schwärzungskurve zu bestimmen. Dies hätte aber eine größere Anzahl von Aufnahmen des Vergleichsterns vorausgesetzt, als mit der Ökonomie der Platte verträglich gewesen wäre, und ein Übermaß an Messungen und Berechnungen bedingt, ohne dabei den Vorzug eines wirklich strengen Verfahrens zu gewähren; denn da der Übergang der Gradation von einer Wellenlänge zur benachbarten naturgemäßs ein kontinuierlicher ist, so hätte — selbst bei geringer Größe der einzelnen Bezirke — die zugehörige Schwärzungskurve auch hier nur genäherte Richtigkeit besessen.

Es schien vielmehr empfehlenswerter, streng differentiell vorzugehen, und überhaupt nur Schwärzungen miteinander zu vergleichen, die denselben Wellenlängen angehörten, d. h. jede gemessene Schwärzung in einem Sternspektrum zwischen die zugehörigen Schwärzungen der benachbarten Vergleichspektren zu interpolieren. Die Aufgabe wurde dadurch etwas kompliziert, daß der Verlauf der Schwärzungen in diesen Vergleichspektren die Interpolation nicht linear durchführen liefs, sondern die Hinzuziehung der Differenzen höherer Ordnung bedingt hätte. Ich habe daher zunächst unter Benutzung aller gemessenen Schwärzungen des Vergleichsterns und ohne Berücksichtigung der mit der Wellenlänge variabeln Gradation eine "mittlere Schwärzungskurve" berechnet und mit der so gefundenen Kurve alle Schwärzungen in "Quasiintensitäten" umgewandelt. Durch diese Reduktion werden die den verschiedenen Vergleichsternaufnahmen entsprechenden Intensitätskurven so nahe parallel, dafs jetzt unbedenklich eine Interpolation mit nur ersten Differenzen gestattet war. Werden nun die für irgend einen Stern abgeleiteten Quasiintensitäten zwischen die zugehörigen Werte des Vergleichsterns eingehängt, so erhalten wir die direkten, allerdings noch mit Extinktion behafteten Intensitätsverhältnisse für die gemessenen Wellenlängen.

[17] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Das Rechnungsverfahren für die Konstruktion der Schwärzungskurve, das mit dem von Herrn Schwarzschild vorgeschlagenen¹) übereinstimmt, möge an einem Beispiel erläutert werden.

Für Platte Nr. 584 ergaben die vier Aufnahmen des Vergleichsternspektrums (α Aquilae) bei der Ausmessung von 0.5 zu 0.5 mm Distanz folgende Schwärzungen, wo jede folgende Reihe einer Intensitätssteigerung von 0.947 Größenklassen entspricht.

Distanz		Schwär	zungen		Distanz		Schwär	zungen	
mm	1	II	III	IV	mm	I	II	111	IV
$\begin{array}{c} 0.0\\ 5\\ 1.0\\ 5\\ 2.0\\ 5\\ 3.0\\ 5\\ 4.0\\ 5\\ 5\\ 0.5\\ 6.0\\ 5\\ 7.0\\ 5\\ 8.0\\ 5\\ 9.0\\ 5\\ 10.0\\ 5\\ 11.0\\ 5\\ 12.0\\ 5\\ 13.0\\ 5\\ 14.0\\ 5\\ 15.0\\ 5\end{array}$	$\begin{array}{c} 46.5\\ 46.8\\ 47.3\\ 47.5\\ 47.9\\ 48.2\\ 48.5\\ 48.5\\ 49.1\\ 49.3\\ 49.3\\ 49.5\\ 50.1\\ 50.2\\ 50.3\\ 50.4\\ 50.5\\ 50.5\\ 50.4\\ 50.5\\ 50.4\\ 50.4\\ 50.2\\ 50.4\\ 50.4\\ 50.4\\ 50.2\\ 50.4\\ 50.4\\ 50.4\\ 50.2\\ 50.4\\ 50.4\\ 50.4\\ 50.2\\ 50.1\\ 50.0\\ 49.9\\ 49.7\\ 49.6\end{array}$	$\begin{array}{c} 46.5\\ 46.8\\ 47.0\\ 47.3\\ 47.8\\ 48.6\\ 49.6\\ 51.2\\ 52.1\\ 53.3\\ 55.0\\ 55.7\\ 56.1\\ 56.6\\ 56.8\\ 56.9\\ 57.0\\ 57.1\\ 57.2\\ 57.1\\ 57.0\\ 56.8\\ 56.9\\ 56.5\\ 56.2\\ 56.2\\ 56.5\\ 56.2\\ 56.2\\ 55.4\\ 55.1\end{array}$	$\begin{array}{c} 47.0\\ 47.5\\ 48.0\\ 48.7\\ 50.2\\ 52.0\\ 54.5\\ 56.5\\ 58.3\\ 60.0\\ 61.7\\ 62.8\\ 64.0\\ 64.8\\ 65.5\\ 66.4\\ 65.5\\ 66.9\\ 67.4\\ 67.6\\ 67.9\\ 67.9\\ 67.9\\ 67.9\\ 67.9\\ 67.9\\ 67.2\\ 66.9\\ 67.2\\ 66.9\\ 66.2\\ 65.7\\ 65.1\end{array}$	$\begin{array}{c} 47.8\\ 49.0\\ 50.7\\ 52.6\\ 55.8\\ 59.0\\ 61.9\\ 64.5\\ 67.0\\ 69.2\\ 71.4\\ 72.9\\ 74.4\\ 75.6\\ 76.7\\ 77.5\\ 78.0\\ 78.5\\ 78.8\\ 79.2\\ 79.5\\ 79.5\\ 79.5\\ 79.5\\ 79.5\\ 79.5\\ 79.5\\ 79.5\\ 79.4\\ 79.2\\ 79.0\\ 78.5\\ 78.1\\ 77.6\\ 77.0\\ 76.3\\ \end{array}$	$\begin{array}{c} 16.0\\ 5\\ 17.0\\ 5\\ 18.0\\ 5\\ 19.0\\ 5\\ 20.0\\ 5\\ 21.0\\ 5\\ 22.0\\ 5\\ 22.0\\ 5\\ 22.0\\ 5\\ 22.0\\ 5\\ 22.0\\ 5\\ 22.0\\ 5\\ 24.0\\ 5\\ 24.0\\ 5\\ 24.0\\ 5\\ 26.0\\ 5\\ 27.0\\ 5\\ 28.0\\ 5\\ 29.0\\ 5\\ 30.0\\ 5\\ 31.0\\ \end{array}$	$\begin{array}{c} 49.5\\ 49.3\\ 49.1\\ 48.9\\ 48.9\\ 48.5\\ 48.3\\ 48.2\\ 48.0\\ 47.8\\ 47.7\\ 47.6\\ 47.5\\ 47.3\\ 47.1\end{array}$	$\begin{array}{c} 54.8\\ 54.5\\ 54.1\\ 53.8\\ 53.3\\ 52.8\\ 52.2\\ 51.6\\ 51.1\\ 50.5\\ 50.0\\ 49.2\\ 48.8\\ 48.5\\ 48.3\\ 48.0\\ 47.8\\ 47.6\\ 47.5\\ 47.4\\ 47.2\\ 47.2\\ 47.2\\ 47.1\end{array}$	$\begin{array}{c} 64.5\\ 63.8\\ 63.0\\ 62.0\\ 61.0\\ 59.8\\ 58.9\\ 57.7\\ 56.7\\ 55.7\\ 55.7\\ 54.0\\ 53.1\\ 52.5\\ 51.9\\ 51.3\\ 50.8\\ 50.4\\ 50.0\\ 49.7\\ 49.0\\ 48.7\\ 48.5\\ 48.3\\ 48.1\\ 48.0\\ 47.8\\ 47.6\\ 47.5\\ 47.4\\ \end{array}$	$\begin{array}{c} 75.6\\ 74.8\\ 73.9\\ 72.9\\ 71.8\\ 70.7\\ 69.5\\ 68.2\\ 66.9\\ 65.5\\ 64.1\\ 62.7\\ 61.3\\ 60.0\\ 58.8\\ 57.7\\ 55.8\\ 55.1\\ 54.4\\ 53.7\\ 55.8\\ 55.1.3\\ 54.4\\ 53.7\\ 53.1\\ 52.5\\ 51.9\\ 51.3\\ 50.2\\ 49.7\\ 49.2\\ 48.7\\ 48.2\end{array}$

Die Schwärzungsdifferenzen I-II, II-III, III-IV wurden dann auf Millimeterpapier als Funktion der Schwärzungen I, II und III aufgetragen und graphisch ausgeglichen; die einzelnen Funktionswerte zeigen jedoch infolge der Variabilität der Gradation mit der Wellenlänge teilweise ziemlich große Abweichungen von der so gefundenen mittleren Kurve der Schwärzungsdifferenzen, aus der sich die zu jeder mittleren

1) Astronomische Nachrichten. Bd. 172. Nr. 4109 (1906). Nova Acta CI. Nr. 2.

11

Schwärzung s zugehörige Schwärzung s' entnehmen läfst, die einem Intensitätszuwachs von k = 0.947 Größenklassen entspricht. In den beiden ersten Spalten der folgenden Tabelle sind diese ausgeglichenen s und s' in geeigneten Intervallen zusammengestellt.

Die Kurve der Schwärzungsdifferenzen wurde nun für das Intervall von s = 52.0 bis 54.0, s' = 59.2 bis 62.6 ersetzt gedacht durch eine, sich möglichst eng der Kurve anschließende Gerade, deren Gleichung

s' - a = b(s - a)

die Konstanten a = 41.71 und b = 1.70 lieferte. Unter der Annahme, dafs die ganze Kurve der Schwärzungsdifferenzen innerhalb der Beobachtungsgenauigkeit durch diese Gerade dargestellt würde, ergibt sich die zu jeder Schwärzung gehörige Intensität m, ausgedrückt in Gröfsenklassen:

$$m = k \frac{\lg (s - a)}{\lg b}.$$

Nach dieser Gleichung sind die m und m' berechnet worden, die zu den in der Tabelle mitgeteilten s und s' gehören, und finden sich an der gleichen Stelle zusammengestellt.

Da aber die Gerade nur den mittleren Teil der Kurve der Schwärzungsdifferenzen streng darstellt, so müssen für die abweichenden Zweige der Kurve noch Korrektionen angebracht werden, die sich jetzt leicht berechnen lassen. Für denjenigen Teil, wo die Gerade innerhalb der Beobachtungsgenauigkeit mit der Kurve übereinstimmt, sind zweifellos die aus der obigen Gleichung ermittelten Beziehungen zwischen den s und den mals korrekt anzusehen, d. h. in unserem Falle von s = 52.0 bis 62.6.

Zwischen den m und m' besteht aber ferner die Beziehung, daß sie sich gerade um k-Größenklassen unterscheiden sollen. Auf Grund dieser Bedingung ergeben sich sofort die zu den, noch als korrekt zu betrachtenden m und m' gehörenden m' und m; für die kleineren oder größeren Werte lassen sich dann leicht sukzessive durch Interpolation die Korrekturen der m resp. m' für alle Schwärzungen berechnen, welche die wahre Form der Kurve der Schwärzungsdifferenzen erfordert. Die so korrigierten Werte μ und μ' , die in den letzten Spalten der folgenden Tabelle enthalten sind, ergeben als Funktionen der s und s' die Schwärzungskurve, die zur Umsetzung aller auf der Platte gemessenen Schwärzungen in die Quasiintensitäten dient. [19]

S	S	т	Korr.	m'	Korr.	μ	μ'
47.0 48.0 49.0 50.0 52.0 54.0 56.0 56.0 56.0 60.0 62.0 64.0 66.0 68.0	$\begin{array}{c} 48.1 \\ 50.9 \\ 53.3 \\ 55.4 \\ \textbf{59.2} \\ \textbf{62.6} \\ 65.7 \\ 68.5 \\ 70.9 \\ 73.1 \\ 75.3 \\ 77.4 \\ 79.5 \end{array}$	$\begin{array}{c} 2.97\\ 3.28\\ 3.55\\ 3.78\\ 4.17\\ 4.47\\ 4.98\\ 5.19\\ 5.37\\ 5.54\\ 5.69\\ 5.83\end{array}$	$\begin{array}{c} -\ 0.83 \\ -\ 28 \\ -\ 13 \\ -\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ +\ 1 \\ +\ 2 \\ +\ 5 \end{array}$	$\begin{array}{c} \textbf{3.32}\\ \textbf{3.96}\\ \textbf{4.37}\\ \textbf{4.72}\\ \textbf{5.12}\\ \textbf{5.42}\\ \textbf{5.67}\\ \textbf{5.87}\\ \textbf{6.03}\\ \textbf{6.15}\\ \textbf{6.27}\\ \textbf{6.39}\\ \textbf{6.49} \end{array}$	$\begin{array}{c} - \ 0.23 \\ - \ 1 \\ 0 \\ 0 \\ + \ 2 \\ + \ 6 \\ + \ 11 \\ + \ 23 \\ + \ 27 \\ + \ 34 \end{array}$	$\begin{array}{c} 2.14\\ 3.00\\ 3.42\\ 3.77\\ 4.17\\ 4.47\\ 4.98\\ 5.19\\ 5.37\\ 5.55\\ 5.71\\ 5.88\end{array}$	$\begin{array}{c} 3.09\\ 3.95\\ 4.37\\ 4.72\\ 5.12\\ 5.42\\ 5.69\\ 5.93\\ 6.14\\ 6.32\\ 6.50\\ 6.66\\ 6.83\end{array}$

Die oben mitgeteilten Schwärzungen von α Aquilae liefern so die folgenden Quasiintensitäten, zwischen die jetzt die ebenso berechneten Werte für die anderen Sterne der Platte interpoliert werden. Man sieht, daß zwischen diesen Quasiintensitäten nunmehr lineare Interpolation gestattet ist.

mm 2		G	Quasiintensitäten				2	Q	uasiint	ensitäte	en
		I	II	III	IV			I	II	III	IV
0.0	5101			010	0.04	10.0	4005	1 174	0.70	9.70	4.64
0.0	9101			0.19	0.94	10.0	4000	1.74	2.12	0.10	4.04
10	5056		010	1.07	0.00	170	2055	1.07	2.00	0.04 9.57	4.51
1.0	0000		0.19	1.07	2.00	11.0	5955	1.00	0.50	9.04	4.00
90	1050	0.59	0.02	1.42	2.00 9.96	10.0	2000	1.04	2.00	9.40	4.42
2.0	4900	0.54	1.95	1.94	2.00	10.0	5909	1.47	2.49	0.40	4.04
20	1969	0.70	1.00	2.20	0.41 9.40	10.0	9064	1.02	0.90	0.49	4.24
5.0	±000	1 10	9.19	2.14	0.40	19.0	9004	1.44	2.34	0.20	4.10
10	1701	1.17	2.10	2.90	- 2.11 - 2.11	90.0	9004	1.10	2.20	0.01	9.04
4.0	#101	1 4 9	2.50	0.10	0.91	20.0	3821	1.07	2.11	- <u>2.90</u> - 0.05	0.91
50	1609	1.59	2.49	0.0L 9.46	4.11	91.0	9770	0.92	2.00	2.00	0.19
0.0	1030	1.00	, 2.04 9.75	0.40	4.49	21.0	5119	0.80	1.00	2.70	0.07
60	4690	1.07	2.70	0.00	4.40	000	0720	0.79	1.11	2.09	0.04
0.0	4020	1.10	2.80	0.00	4.04	22.0	3138	0.70	1.05	2.40	0.42
70	4517	1.00	2.90	3.10	4.00	0	2000	0.02	1.47	2.30	0.00
1.0	40±1	1.00	2.95	3.19	4.73	23.0	3698	0.29	1.33	2.20	3.19
00	4.400	1.90	2.90	3.84	4.78	0	0000		1.24	2.15	3.08
8.0	±470	1.92	2.97	3.87	4.83	24.0	3660		1.07	2.00	2.96
0	4405	1.95	2.98	3.91	4.87	5	0004		0.93	1.97	2.80
9.0	4400	1.97	2.99	3.95	4.90	25.0	3624		0.79	1.88	2.76
6	-	1.99	3.00	3.97	4.93	5	0500		0.70	1.79	2.66
10.0	43 ± 1	1.99	3.01	3.99	4.91	26.0	3589		0.61	1.70	2.55
6	1000	1.99	3.00	4.00	4.95	5			0.52	1.54	2.46
11.0	4280	1.99	2.99	4.00	4.95	27.0	3555		0.40	1.42	2.36
0	1000	1.97	2.98	3.99	4.95	5			0.29	1.33	2.26
12.0	4220	1.97	2.97	3.98	4.94	28.0	3522			1.24	2.15
0		1.95	2.96	3.96	4.93	5				1.14	2.03
13.0	4163	1.92	2.94	3.93	4.91	29.0	3489			1.07	1.92
õ	1100	1.90	2.91	3.91	4.87	5				0.93	1.79
14.0	4108	1.88	2.89	3.88	4.83	30.0	3459			0.79	1.63
5	10.00	1.85	2.85	3.85	4.80	5				0.70	1.43
15.0	4055	1.80	2.81	3.81	4.75	31.0	3429			0.61	1.19
5	'	1.77	2.76	3.75	4 69						

11*

Das Beobachtungsprogramm und seine Erledigung.

1.

Das Beobachtungsprogramm umfafste die Sonne und sämtliche Sterne des nördlichen Himmels bis zur dritten Größenklasse einschließlich, sowie einige ausgewählte Sterne südlicher Deklination. Es sollten hier in erster Reihe einige der sogenannten Orionsterne mitgenommen werden, die sich durch das Auftreten der Heliumlinien auszeichnen und die jedenfalls zu den heißesten Sternen überhaupt gehören dürften. Die dritte Größenklasse als Grenze wurde bedingt durch die Lichtstärke des Instruments und die unsichere Göttinger Luft, die allzulange Expositionen als unökonomisch nicht ratsam erscheinen ließs.

Als Spektraleinteilung ist die von Mißs Maury¹) aufgestellte zugrunde gelegt worden, da diese von allen derartigen Einteilungen am weitesten ins einzelne geht und daher die größte Aussicht bot, den Zusammenhang zwischen qualitativen und quantitativen Ergebnissen erkennen zu lassen. Eine Zusammenstellung der zweiten Vogelschen²) Einteilung mit den Spektraltypen von Mißs Maury gibt Herr Scheiner in seiner "Populären Astrophysik" S. 588.

Die folgende Tabelle stellt das gesamte Arbeitsprogramm zusammen. Die Spalten enthalten der Reihe nach: 1. die laufende Nummer; 2. die Bezeichnung des Sternes; 3. und 4. Rektaszension und Deklination für 1900.0; 5. die optische Helligkeit nach der "Harvard Photometry;³) 6. die Spektralklasse nach Miß Maury; 7. den Spektraltypus nach der zweiten Vogelschen Einteilung. In der achten Spalte sind Bemerkungen über Duplizität usw. aufgenommen.

Nr.	Bezeichnung	R. A. 1900.0	Dekl. 1900.0	Gröfse	Spektrum (Maury)	Spektrum (Vogel II)	Bemerkungen
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \end{array} $	$\begin{array}{l} \alpha \; {\rm Andromedae} \\ \beta \; {\rm Cassiopeiae} \\ \gamma \; {\rm Pegasi} \\ \alpha \; {\rm Cassiopeiae} \\ \gamma \; {\rm Cassiopeiae} \\ \beta \; {\rm Andromedae} \\ \delta \; {\rm Cassiopeiae} \end{array}$	$\begin{array}{cccc} 0^{\rm h} & 3.^{\rm m}2 \\ 0 & 3.8 \\ 0 & 8.1 \\ 0 & 34.8 \\ 0 & 50.7 \\ 1 & 4.1 \\ 1 & 19.3 \end{array}$	$\begin{array}{r} +28^{\circ} 32' \\ +58 36 \\ +14 38 \\ +55 59 \\ +60 11 \\ +35 5 \\ +59 43 \end{array}$	$2.^{mg}15$ 2.42 2.87 2.47 2.25 2.37 2.80	VIII P. XII ab IVa XVa L XVII a X ab	$I a_2 \\ I a_3 ! \\ I b ! \\ I c \\ I a I I a \\ I a_2$	Spektr. Dupl.

Tabelle II.

1) Annals of the Harvard College Observatory. Vol. XXVIII, part. I.

2) Publikationen d. Astrophys. Observatoriums zu Potsdam. Nr. 39 (1902).

³) Annals of the Harvard College Observatory. Vol. L.

Nr.	Bezeichnung	R. A. 1900.0	Dekl. 1900.0	Gröfse	Spektrum (Maury)	Spektrum (Vogel II)	Bemerkungen
8 9 10 11	α Ursae min. ³ Arietis ^γ Andromedae α Arietis	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$^{+88^{\circ}}_{+20} {}^{46'}_{+20}_{+41} {}^{51}_{51}_{+22}_{-59}$	2. ^{mg} 12 2.72 2.20 2.23	XIII ac Xa XV c XV a	II a — I a ₃ I a ₂ II a — III a	Dupl. 2mg - 9mg; 18."3 Spektr. Dupl. Dupl. 3mg - 5mg; 10."2
$ \begin{array}{c} 12 \\ 13 \\ 14 \\ 14 \end{array} $	γ Persei β Persei (Algol) α Persei	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	+53 7 +40 34 +49 30	3.08 Var. 1.90	XIV c VI a XII a c	II a	Spektr. Dupl.
$15 \\ 16 \\ 17 \\ 18 \\ 19$	δ Persei ζ Persei ε Persi α Tauri ι Aurigae	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$+47 28 \\ +31 35 \\ +39 43 \\ +16 19 \\ +33 0$	$\begin{array}{c} 3.10 \\ 2.91 \\ 2.96 \\ 1.06 \\ 2.90 \end{array}$	V b III a II a XVI a XV a	Ib! Ib Ha!!!	Dupl. 3 ^{mg} -8 ^{mg} ; 8."8
$20 \\ 21 \\ 22 \\ 23 \\ 23 \\ 23 \\ 21 \\ 22 \\ 23 \\ 23$	β Eridani α Aurigae β Orionis γ Orionis	5 2.9 5 9.3 5 9.7 5 19.8 5 19.8	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$2.92 \\ 0.21 \\ 0.34 \\ 1.70 \\ 1.70$	IX b XIV a VI c IV a	II a ! ! Ib ! Ib !!	Spektr. Dupl. Dupl. 1 ^{mg} -8 ^{mg} ; 9"2
24 25 26	δ Tauri δ Orionis ε Orionis	$5 20.0 \\ 5 26.9 \\ 5 31.1 \\ 7$	$ \begin{array}{r} +28 & 31 \\ - & 0 & 22 \\ - & 1 & 16 \\ \end{array} $	$ \begin{array}{r} 1.78 \\ 2.46 \\ 1.75 \\ 1.01 \end{array} $	II b II a	ID! Ib! Ib!	Spektr. Dupl.
27 28 - 29	c Orionis c Orionis α Orionis c Amirco	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	1.91 2.20 Var.	II D II a XVIII a	Ib! Illa	Dupi. 2 ^{mg} - 5. ^{mg} 5; 2.7
30 31 32 33 34 35	9 Aurigae 9 Geminorum α Canis mai. α Geminorum α Canis min.	5 52.2 5 52.9 6 31.9 6 40.7 7 28.2 7 34.1	+44 50 + 37 12 + 16 29 - 16 35 + 32 6 + 5 29	2.01 2.71 1.93 -1.58 1.58 0.48	VIII a VIII a VIII a VIII a XIII a	$ \begin{array}{c} I a_{2} \\ I a_{1} \\ I a_{2} \\ I a_{2} \\ I a_{2} \\ I a_{3} \\ I a_{3} \\ \end{array} $	Spektr. Dupl. Dupl1 ^{mg} -10 ^{mg} ; 6"3 Dupl. 2 ^{mg} -3 ^{mg} ; 5"6 Dupl. 1 ^{mg} -8. ^{mg} 5; 5"4
36 37 38 39 40	β Geminorum α Leonis γ Leonis β Ursae mai. α Ursae mai.	$\begin{array}{ccc} 7 & 39.2 \\ 10 & 3.0 \\ 10 & 14.5 \\ 10 & 55.8 \\ 10 & 57.6 \end{array}$	$\begin{array}{rrrr} +28 & 16 \\ +12 & 27 \\ +20 & 21 \\ +56 & 55 \\ +62 & 17 \end{array}$	$1.21 \\ 1.34 \\ 2.30 \\ 2.44 \\ 1.95$	XV a VI b XV a VIII a XV a	$\frac{\text{IIa} - \text{IIIa}}{\text{Ia}_2?; \text{Ib}}$ $\text{Ia}_2!$	Dupl. 2 ^{mg} -3. ^{mg} 5; 3''8
$ \frac{41}{42} 43 44 45 45 $	δ Leonis β Leonis γ Ursae mai. ε Ursae mai. 12 Can. venat.	$\begin{array}{cccc} 11 & 8.8 \\ 11 & 44.0 \\ 11 & 48.6 \\ 12 & 49.6 \\ 12 & 51.4 \end{array}$	$+21 4 \\ +15 8 \\ +54 15 \\ +56 30 \\ +38 52$	2.58 2.23 2.54 1.68 2.80	IX b IX b VIII b VIII P. VIII P.	$\begin{bmatrix} \mathbf{I} \mathbf{a}_2 \\ \mathbf{I} \mathbf{a}_2 \\ \mathbf{I} \mathbf{a}_2 \end{bmatrix}$	Spektr. Dupl.
$\frac{16}{47}$ $\frac{48}{48}$	ζ Ursae mai. α Virginis η Ursae mai.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+55 26 \\ -10 38 \\ +49 49$	2.09 1.21 1.91	VIII a. III b IV b	I a ₂ ! I b! I b	Dupl. 2 ^{mg} -4 ^{mg} ; 14".5 Spektr. Dupl.
$ \begin{array}{r} 49 \\ 50 \\ 51 \end{array} $	η Bootis α Bootis ε Bootis	$\begin{array}{rrrr} 13 & 49.9 \\ 14 & 11.1 \\ 14 & 40.6 \end{array}$	+18 54 +19 42 +27 30	$2.80 \\ 0.24 \\ 2.59$	XIV a XV a XV c	II a ! II a — III a II a — III a	Spektr. Dupl. Dupl. 3 ^{mg} - 6. ^{mg} 5 ; 2''.8
52 53 54 55	β Ursae min. α Coronae bor. α Serpentis η Draconis	$\begin{array}{rrrr} 14 & 51.0 \\ 15 & 30.5 \\ 15 & 39.3 \\ 16 & 22.6 \end{array}$	$+74 34 \\ +27 3 \\ + 6 44 \\ +61 44$	$2.24 \\ 2.31 \\ 2.75 \\ 2.89$	XVIa VIIIab XVa	Ia ₂ IIa —IIIa	
56 57 58	β Hercalis β Draconis α Ophiuchi	$\begin{array}{cccc} 16 & 25.9 \\ 17 & 28.2 \\ 17 & 30.3 \\ 17 & 30.3 \end{array}$	+21 42 +52 23 +12 38	2.81 2.99 2.14	XVa XIVa Xb	I a ₂	Spektr. Dupl.
	β Ophiuchi γ Draconis α Lyrae γ Aquilae d Cycni	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	+40 37 +51 30 +38 41 +10 22	2.94 2.42 0.14 2.80 2.97	XVa XVIa VIIa XVa VIIb	$I1a - II1a$ $Ia_2 !!$ $I1a - IIIa$ $Ia_2 !!$	
$ \begin{array}{c} 63\\ 64\\ 65\\ 66\\ 67 \end{array} $	α Aquilae γ Cygni α Cygni ε Cygni	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$+$ $\frac{14}{8}$ $\frac{55}{36}$ $+39$ $\frac{56}{56}$ $+44$ $\frac{55}{36}$ $+33$ $\frac{36}{36}$	$\begin{array}{c} 2.34 \\ 0.89 \\ 2.32 \\ 1.33 \\ 2.64 \end{array}$	X b XIII c VIII c XVa	$ \begin{array}{c} Ia_{3} - IIa \\ IIa !! \\ Ia_{2} !! \\ IIa - IIIa \end{array} $	
	α Cephei ε Pegasi α Pegasi	$\begin{array}{cccc} 21 & 16.2 \\ 21 & 39.3 \\ 22 & 59.8 \end{array}$	$ \begin{array}{rrrr} +62 & 10 \\ +9 & 25 \\ +14 & 40 \end{array} $	$2.60 \\ 2.54 \\ 2.57$	X b XV a VIII b	$\begin{matrix} \mathbf{I} \mathbf{a}_2 \\ \mathbf{II} \mathbf{a} - \mathbf{III} \mathbf{a} \\ \mathbf{I} \mathbf{a}_2; \ \mathbf{I} \mathbf{a}_1 \end{matrix}$	

[21] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Nach der in dem vorigen Abschnitt entwickelten Methode sind die Spektra der Sonne und aller Programmsterne mit denjenigen einiger weniger Sterne verglichen worden. Als Vergleichsterne wurden stets α Aquilae, α Aurigae, α Lyrae oder β Orionis benutzt, die sich durch Lage und Helligkeit als besonders geeignet für diesen Zweck erwiesen. Um den Einflufs der Beobachtungsfehler auf das Resultat zu verringern, sollten von jedem Objekt an wenigstens zwei Abenden Aufnahmen gemacht werden. Dieses Programm wurde in den Jahren 1907—1909 durchgeführt; im ganzen wurden an 27 Abenden 36 brauchbare Platten erzielt mit 378 Spektren (einschliefslich derjenigen zur Ableitung von Plattenkonstanten und Extinktion), die sämtlich unter dem Hartmannschen Mikrophotometer ausgemessen worden sind. Die Zahl der exponierten Platten, die durch plötzlich auftretende Bewölkung für eine photometrische Verwertung verdorben wurden, bildet bei den ungünstigen klimatischen Verhältnissen Göttingens leider einen ziemlich großen Prozentsatz der Gesamtaufnahmen.

Um ein möglichst klares Bild von der Energieverteilung in den einzelnen Spektren zu gewinnen, besonders aber auch, um die Einwirkung der bei den extrafokalen Aufnahmen schon ziemlich breit werdenden Absorptionslinien erkennen und eliminieren zu können, beschlofs ich, die Schwärzungsmessungen bei recht zahlreichen Wellenlängen vorzunehmen; als Abstand der einzelnen Messungen im prismatischen Spektrum wurde schliefslich 0.5 mm gewählt, so dafs jedes Spektrum rund in 60 Wellenlängen ausgemessen worden ist, die der weißen Sterne in mehr, die der röteren in weniger. Die Gesamtzahl der Einzelmessungen sellt sich damit etwa auf 23000. Um die Sicherheit der Messungen zu erhöhen und mich besonders vor Beeinflussung zeitlich benachbarter Messungen aufeinander nach Möglichkeit zu schützen, habe ich die Ausmessung nicht fortlaufend von 0.5 zu 0.5 mm über das ganze Spektrum ausgeführt, sondern es wurde zunächst das ganze Spektrum für die vollen Millimeter durchphotometriert und dann die Messungen bei den dazwischenliegenden halben Millimetern wiederholt. Bei dieser Anordnung entspricht das Resultat im wesentlichen dem Mittel aus zwei völlig unabhängigen Messungsreihen, die gleichzeitig einen selbstständigen Wert dadurch erhalten, daß sie für verschiedene Wellenlängen gelten.

Die so erhaltenen Schwärzungswerte wurden auf Millimeterpapier eingetragen — die Schwärzung als Ordinate, die Lage im prismatischen Spektrum als Abszisse — und graphisch ausgeglichen. Da es sich bei den beabsichtigten Untersuchungen lediglich um die Intensität des kontinuierlichen Untergrundes handelte, so wurden in den extrafokalen Spektren die durch kräftigere Absorptionslinien

[23] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

entstehenden und in dem Gang der Schwärzungen sich deutlich ausprägenden Lücken bei dieser graphischen Ausgleichung nicht berücksichtigt, sondern unter möglichst enger Anlehnung an die benachbarten, scheinbar noch nicht beeinflufsten Schwärzungen durch Kurven im glatten Zuge überbrückt. Die so eliminierten Linien waren in den meisten Spektren die Wasserstofflinien H_{β} bis H_{ι} und die Kalziumlinien H und K. Aus diesen Kurven wurden für Intervalle von je 1 mm (im Originalspektrum) die Ordinaten herausgegriffen, die ich als "Ausgeglichene Schwärzungen" bezeichnen will, und diese bilden das Material, aus dem für jede Platte nach der im vorigen Kapitel beschriebenen Art und Weise das Intensitätsverhältnis aller auf der Platte vorkommenden Sterne zu dem Vergleichstern für die betreffenden Wellenlängen abgeleitet wurde.

Die auf diese Weise berechneten Intensitätsunterschiede sind aber noch für Extinktion zu korrigieren, falls nicht zufällig Vergleichstern und der zu untersuchende Stern bei der gleichen Zenitdistanz aufgenommen worden sind.

Unsere Kenntnis über die selektive Absorption in unserer Erdatmosphäre ist noch ziemlich lückenhaft und das bis jetzt vorliegende Beobachtungsmaterial ein äußerst spärliches, bezieht sich auch meist nur auf die optisch sichtbaren Strahlen der längeren Wellen, nicht aber auf die aktinisch wirksamen kürzeren; da überdies noch eine Veränderlichkeit mit dem Beobachtungsort durch Einflüsse lokaler Natur nicht unwahrscheinlich ist, so erschien es angebracht, mit den vorliegenden Untersuchungen eine Neubestimmung der Transmissionskoeffizienten für das photographisch wirksame Strahlungsgebiet zu verbinden. Da die Ableitung aber weniger zu Studien über die Konstitution der Atmosphäre, als vielmehr zur Verbesserung der aus den photometrischen Messungen abgeleiteten Intensitätsunterschiede dienen sollte, so wurde nicht, wie dies vielfach geschehen ist, nur an ungewöhnlich klaren Abenden beobachtet, sondern die betreffenden Aufnahmen wurden absichtlich in Beobachtungsnächten von durchschnittlich guter Beschaffenheit erhalten.

Die einfache Anordnung der Beobachtungen für diesen Sonderzweck bestand darin, dafs ein und dasselbe Gestirn in derselben Nacht bei möglichst verschiedenen Zenitdistanzen auf der gleichen Platte mit gleicher Expositionszeit aufgenommen und die Intensitätsunterschiede über das ganze Spektrum hin abgeleitet wurden. Eine zeitliche Veränderung des Extinktionsvermögens der Luft läfst sich allerdings auf diesem Wege nicht eliminieren, doch wurden diese Beobachtungen nur bei möglichst stabiler Witterungslage angestellt. Ein Vergleich der so abgeleiteten Helligkeitsdifferenzen mit den

von Herrn G. Müller für Potsdam abgeleiteten Extinktionswerten¹) für die gleichen Zenitdistanzen liefs für jede Wellenlänge einen Faktor berechnen, mit dem die Potsdamer Zahl multipliziert werden mufs, um den beobachteten Wert zu ergeben. Es zeigte sich, dafs etwa für $\lambda = 588 \ \mu\mu^2$) die Potsdamer Extinktion mit der hier gefundenen übereinstimmte, während der Faktor für die kürzeren Wellen rasch wächst.

In der folgenden Tafel sind die so erhaltenen Extinktionswerte für eine Reihe von Sternen zusammengestellt. Die Überschrift gibt außer der Plattennummer und dem Objekt die Zenitdistanzen, für-welche die Aufnahmen gelten, und die für diese berechneten Potsdamer Extinktionswerte. Die Kolumnen enthalten der Reihe nach die reziproken Wellenlängen, die Helligkeitsdifferenz und den daraus abgeleiteten Faktor.

Platte 53 ZD. Potsd.	4. α Α 48º.3; E. 0.11;	quilae 70°.7 ; 0.47	Platte ZI Potsc	592. α A). 44º.9; ΄ l. E. 0.09	quilae 75º.2 ; 0.66	Pl. 633 ZD Potso	. α Can). 62º.6; l. E. 0.27	is min. 75°.6 ; 0.68	Platte 940. ZD. 39°.2; 75°.7 Potsd. E. 0.06; 0.69		
1:2	∆ mg	F.	1:2	$ riangle \mathbf{mg}$	F.	1:λ	\triangle mg	F.	1:2	\triangle mg	F.
$\begin{array}{c} 1995\\ 2031\\ 2070\\ 2108\\ 2143\\ 2174\\ 2250\\ 2283\\ 2318\\ 2351\\ 2382\\ 2414\\ 2449\\ 2479\\ 2511\\ 2541\\ 2570\\ 2600\\ 2630\\ 2659\\ 2687\\ 2714\\ 2742\\ \end{array}$	$\begin{array}{c} 0.46\\ 0.65\\ 0.67\\ 0.59\\ 0.61\\ 0.66\\ 0.66\\ 0.71\\ 0.76\\ 0.78\\ 0.82\\ 0.89\\ 0.93\\ 0.97\\ 1.01\\ 1.07\\ 1.15\\ 1.19\\ 1.23\\ 1.27\\ 1.38\\ 1.46\\ 1.35\\ \end{array}$	$\begin{array}{c} 1.28\\ 1.81\\ 1.86\\ 1.64\\ 1.70\\ 1.78\\ 1.83\\ 1.97\\ 2.11\\ 2.17\\ 2.28\\ 2.39\\ 2.47\\ 2.58\\ 2.70\\ 2.81\\ 2.97\\ 3.30\\ 3.42\\ 3.58\\ 3.83\\ 4.05\\ 3.75\end{array}$	$\begin{array}{c} 1851\\ 1890\\ 2048\\ 2085\\ 2121\\ 2158\\ 2193\\ 2229\\ 2330\\ 2362\\ 2396\\ 2429\\ 2461\\ 2491\\ 2552\\ 2552\\ 2581\\ 2612 \end{array}$	$\begin{array}{c} 0.84\\ 0.88\\ 1.23\\ 1.36\\ 1.31\\ 1.23\\ 1.28\\ 1.31\\ 1.38\\ 1.42\\ 1.44\\ 1.47\\ 1.51\\ 1.55\\ 1.63\\ 1.70\\ 1.80\\ 1.86\\ 1.74 \end{array}$	$\begin{array}{c} 1.47\\ 1.54\\ 2.16\\ 2.38\\ 2.30\\ 2.42\\ 2.49\\ 2.52\\ 2.58\\ 2.65\\ 2.72\\ 2.86\\ 2.98\\ 3.16\\ 3.26\\ 3.05\end{array}$	1821 2095 2131 2169 2203 2239 2273 2308 2340 2373 2407	$\begin{array}{c} 0.51 \\ 0.71 \\ 0.79 \\ 0.92 \\ 0.87 \\ 0.89 \\ 0.92 \\ 0.98 \\ 0.98 \\ 0.98 \end{array}$	1.24 1.73 1.93 2.24 2.03 2.12 2.17 2.24 2.39 2.39	$\begin{array}{c} 1757\\ 1801\\ 1842\\ 1878\\ 1922\\ 1963\\ 2002\\ 2040\\ 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2352\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2635\\ 2664\\ 2517\\ 2607\\ 2663\\ 2664\\ 2577\\ 2663\\ 2664\\ 2721\\ 2748\\ \end{array}$	$\begin{array}{c} 0.66\\ 0.68\\ 0.94\\ 1.01\\ 1.02\\ 1.02\\ 1.01\\ 1.02\\ 1.11\\ 1.00\\ 1.07\\ 1.16\\ 1.22\\ 1.31\\ 1.37\\ 1.41\\ 1.46\\ 1.50\\ 1.54\\ 1.61\\ 1.68\\ 1.73\\ 1.77\\ 1.83\\ 1.91\\ 1.98\\ 2.05\\ 2.01\\ 2.08\\ 2.16\\ 2.30\\ \end{array}$	$\begin{array}{c} 1.05\\ 1.08\\ 1.49\\ 1.60\\ 1.62\\ 1.62\\ 1.76\\ 1.60\\ 1.59\\ 1.70\\ 1.84\\ 1.94\\ 2.08\\ 2.18\\ 2.24\\ 2.32\\ 2.38\\ 2.45\\ 2.56\\ 2.67\\ 2.75\\ 2.81\\ 2.90\\ 3.03\\ 3.14\\ 3.26\\ 3.19\\ 3.30\\ 3.43\\ 3.65\end{array}$

Tabelle III.

¹) G. Müller, "Photometrie der Gestirne", p. 515 (1897).

²) Vgl. hierzu: Aktinometrie der Sterne der B. D. bis zur Größe 7.5 in der Zone 0⁶ bis +20⁰ Deklination. Teil B (Abhandl. d. Kgl. Gesellsch. d. Wiss. zu Göttingen. Bd. VIII. Nr. 4 p. 33 [1912)].

[25] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Die so erhaltenen Werte des Faktors F, mit dem die Potsdamer Extinktion für die betreffende Wellenlänge multipliziert werden mußs, um die Beobachtungen darzustellen, sind graphisch dargestellt und ausgeglichen worden, wobei Gewichte eingeführt wurden, die in runder Zahl der Potsdamer Extinktionsdifferenz je zweier zueinander gehöriger Aufnahmen proportional gesetzt wurden. Das folgende kleine Täfelchen, welches alle Daten enthält, die für die Extinktionskorrektionen der beobachteten Sterne in Betracht kommen, gibt der Reihe nach: Reziproke Wellenlängen, den zugehörigen Mittelwert des Faktors F und den daraus abgeleiteten Logarithmus des zugehörigen Transmissionskoeffizienten p. Der letzte Wert (für 1/2 = 3070) stammt nicht aus meinen eigenen Aufnahmen, sondern ist an der Göttinger Sternwarte aus zwei Platten mit ultravioletten Sonnenaufnahmen, die von Herrn Villiger in Jena aufgenommen sind, abgeleitet worden (Vierteljahrsschrift d. Astron. Gesellschaft 43, p. 189).

Tal	elle	IV.	

1:2	F.	lg. p	1:2	F.	lg. p	1:λ	F.	lg. p
1700 1750 1800 1850 1900 1950	$ \begin{array}{c} 1.00 \\ 1.10 \\ 1.21 \\ 1.30 \\ 1.40 \\ 1.51 \end{array} $	9.9216 9.9138 9.9052 9.8981 9.8903 9.8866	$2000 \\ 2100 \\ 2200 \\ 2300 \\ 2400 \\ 2500$	$1.62 \\ 1.84 \\ 2.08 \\ 2.33 \\ 2.61 \\ 2.89$	$\begin{array}{c} 9.8730\\ 9.8558\\ 9.8361\\ 9.8174\\ 9.7954\\ 9.7734\end{array}$	$2600 \\ 2700 \\ 2800 \\ 2900 \\ 3000 \\ 3070$	$\begin{array}{c} 3.18 \\ 3.50 \\ 3.84 \\ 4.18 \\ 4.53 \\ 4.80 \end{array}$	$\begin{array}{c} 9.7508\\ 9.7258\\ 9.6990\\ 9.6726\\ 9.6449\\ 9.6238\end{array}$

Von Interesse dürfte auch ein Vergleich dieser Zahlen mit den von anderer Seite gefundenen Werten für lg. p sein. Eine Zusammenstellung der Transmissionskoeffizienten findet sich in dem Werke: "Die Photometrie der Gestirne" von G. Müller, p. 140. Zu den dort angeführten Werten nach Beobachtungen von W. Abney, S. P. Langley und G. Müller ist in neuerer Zeit nur noch eine größere Reihe von C. S. Abbot und F. S. Fowle¹) hinzugekemmen. Den Gang der von den verschiedenen Beobachtern gefundenen Größen lg. p mit der Wellenlänge gibt die folgende graphische Darstellung (S. [26]) wieder; die Tafel ist so übersichtlich, daß eine Erklärung unnötig erscheint.

Man sieht, dafs nicht nur die absoluten Beträge von $\lg p$ bei den verschiedenen Beobachtern stark schwanken, sondern dafs auch der Gang

12

¹) Annals of the astrophysical observatory of the Smithsonian Institution. Vol II, p. 113 (1909).

Nova Acta CI. Nr. 2.

der I Differenzen teilweise einen völlig verschiedenen Charakter trägt. Während bei Abbot und Fowle, Müller und Langley die Logarithmen der Transmissionskoeffizienten sehr nahe den umgekehrten Quadraten der Wellenlängen proportional sind, gehen die Abneyschen Zahlen ungefähr mit der vierten Potenz. Die von mir gefundenen Werte liegen in der Mitte; sie nehmen etwa mit der 2.7 ten Potenz der abnehmenden Wellenlängen zu. Man sieht, daß nur die Abneyschen Beobachtungen durch das Rayleighsche Gesetz der Molekulardifferaktion befriedigend dargestellt werden. Daß

die Kurve 1 so weit aus dem Mittel der anderen herausfällt, findet seine ungezwungene Erklärung darin, dafs die Beobachtungen, aus denen sie abgeleitet ist, in der reinen Luft des Mount Wilson angestellt sind, während die übrigen Resultate dem Tiefland oder gar der Nähe größerer Städte entstammen.

Mit den zu Kurve 5 gehörigen Werten sind nun sämtliche Beobachtungen von der Wirkung der Extinktion befreit und auf das Zenit reduziert worden. Das ganze Beobachtungsmaterial stellt somit eine direkte spektralphotometrische Vergleichung aller Programmsterne mit einem der vier obengenannten Vergleichsterne dar. Die

[27] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Beziehungen dieser Vergleichsterne zueinander sind auf zweifachem Wege untersucht worden; das eine Mal, genau wie bei allen Programmsternen, wenn mehrere von ihnen auf der gleichen Platte vorkamen; dann war aber auch die Möglichkeit geboten, wenn ein und derselbe Programmstern mit verschiedenen der vier Vergleichsterne photometrisch verglichen war, durch Elimination der ersteren das Intensitätsverhältnis der benutzten Vergleichsterne indirekt abzuleiten. Da die Messungen auf den verschiedenen Platten nicht stets bei genau gleichen Wellenlängen stattgefunden haben, so sind alle auf diese Weise ermittelten Differenzen auf graphischem Wege ausgeglichen worden. Die folgende Tabelle gibt die mittleren Abweichungen von α Lyrae, α Aurigae und β Orionis gegen α Aquilae, den am häufigsten benutzten Vergleichstern. In der ersten Kolumne sind wieder die reziproken Wellenlängen angegeben; die mit Typus II überschriebene Spalte wird weiter unten ihre Erklärung finden. Das positive Vorzeichen bedeutet, dafs der betreffende Stern heller ist als α Aquilae.

1:2	α Lyrae	α Aurigae	ئ Orionis ئ	Typus II (Maury)	1: J	α Lyrae	α Aurigae	β Orionis	Typus II (Maury)
1 750	+ 0.46	+ 0.95	$+$ $\overset{\text{mg}}{0.57}$	1.04 ^{mg}	2000	$+ 0.68^{n g}$	+ 0.68	+ 0.50	^{mg} 0.99
$\begin{array}{r} 60 \\ 70 \\ 80 \\ 90 \\ 1800 \end{array}$	+ 0.47 + 0.48 + 0.49 + 0.50 + 0.50	+ 0.94 + 0.93 + 0.92 + 0.91 + 0.90	+ 0.55 + 0.53 + 0.51 + 0.49 + 0.47	$1.01 \\ 1.00 \\ 0.98 \\ 0.96 \\ 0.94$	$10 \\ 20 \\ 30 \\ 40 \\ 50$	+ 0.69 + 0.70 + 0.70 + 0.71 + 0.72	+ 0.67 + 0.65 + 0.64 + 0.62 + 0.60	$\begin{array}{r} + \ 0.51 \\ + \ 0.52 \\ + \ 0.53 \\ + \ 0.54 \\ + \ 0.55 \end{array}$	$\begin{array}{c} 0.99 \\ 1.00 \\ 1.00 \\ 1.01 \\ 1.01 \\ 1.01 \end{array}$
$ \begin{array}{r} 10 \\ -20 \\ 30 \\ 40 \\ 50 \end{array} $	+0.51 +0.52 +0.53 +0.54 +0.55	$ \begin{array}{c} + 0.89 \\ + 0.88 \\ + 0.87 \\ + 0.86 \\ + 0.85 \end{array} $	+ 0.46 + 0.45 + 0.45 + 0.444 + 0.43 + 0.43	$\begin{array}{c} 0.92 \\ 0.91 \\ 0.90 \\ 0.89 \\ 0.90 \end{array}$	$ \begin{array}{r} 60 \\ 70 \\ 80 \\ 90 \\ 2100 \end{array} $	+ 0.73 + 0.74 + 0.75 + 0.76 + 0.76	+ 0.59 + 0.58 + 0.56 + 0.55 + 0.53	+ 0.55 + 0.55 + 0.56 + 0.56 + 0.57	$1.02 \\ 1.03 \\ 1.04 \\ 1.05 \\ 1.05$
	+0.55 +0.56 +0.57 +0.58 +0.59	$ \begin{array}{r} + 0.84 \\ + 0.83 \\ + 0.82 \\ + 0.81 \\ + 0.80 \\ \end{array} $	+ 0.42 + 0.42 + 0.42 + 0.42 + 0.43 + 0.43 + 0.44	$\begin{array}{c} 0.90 \\ 0.91 \\ 0.91 \\ 0.92 \\ 0.93 \end{array}$	$10 \\ 20 \\ 30 \\ 40 \\ 50$	+ 0.77 + 0.78 + 0.79 + 0.80 + 0.80	+ 0.51 + 0.49 + 0.47 + 0.45 + 0.43	$\begin{array}{r} + \ 0.58 \\ + \ 0.59 \\ + \ 0.59 \\ + \ 0.60 \\ + \ 0.60 \end{array}$	$1.06 \\ 1.07 \\ 1.08 \\ 1.09 \\ 1.10$
$10 \\ 20 \\ 30 \\ 40 \\ 50$	+ 0.60 + 0.61 + 0.62 + 0.63 + 0.64	+ 0.79 + 0.78 + 0.77 + 0.76 + 0.75	+ 0.45 + 0.45 + 0.45 + 0.45 + 0.46 + 0.46	$\begin{array}{c} 0.94 \\ 0.94 \\ 0.95 \\ 0.95 \\ 0.95 \\ 0.95 \end{array}$	$\begin{array}{c} 60 \\ 70 \\ 80 \\ 90 \\ 2200 \end{array}$	+ 0.81 + 0.82 + 0.83 + 0.84 + 0.85	+ 0.41 + 0.39 + 0.37 + 0.35 + 0.33	+ 0.61 + 0.62 + 0.63 + 0.64 + 0.64	$1.11 \\ 1.12 \\ 1.13 \\ 1.14 \\ 1.15$
60 70 80 90	+0.65 + 0.65 + 0.66 + 0.667	$ \begin{array}{c} + \ 0.74 \\ + \ 0.72 \\ + \ 0.70 \\ + \ 0.70 \end{array} $	+ 0.47 + 0.48 + 0.49 + 0.50	$\begin{array}{c} 0.96 \\ 0.96 \\ 0.97 \\ 0.98 \end{array}$	$10 \\ 20 \\ 30 \\ 40$	+0.85 + 0.86 + 0.87 + 0.88	$ \begin{array}{c} + \ 0.31 \\ + \ 0.29 \\ + \ 0.27 \\ + \ 0.25 \end{array} $	+ 0.64 + 0.65 + 0.65 + 0.66	$ 1.16 \\ 1.17 \\ 1.18 \\ 1.19 $

Tabelle V.

 12^{*}

Hans Rosenberg,

1:λ	a Lyrae	a Anrigae	3 Orionis	Typus H (Maury)	1:2	α Lyrae	α Aurigae	β Orionis	Typus II (Maury)
2250	+ 0.89	+ 0.23	$+$ $\stackrel{\text{mg}}{0.66}$	1.20	2600	+ ^{mg} 1.10	- 0.49	$+1.04^{mg}$	^{mg} 1.63
	+ 0.90 + 0.90 + 0.91 + 0.92 + 0.93	+ 0.21 + 0.19 + 0.17 + 0.15 + 0.13	+0.67 +0.68 +0.69 +0.69 +0.70	$1.21 \\ 1.22 \\ 1.23 \\ 1.24 \\ 1.25$	$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array} $	+ 1.09 + 1.08 + 1.07 + 1.05 + 1.02	$\begin{array}{r} -0.45 \\ -0.40 \\ -0.35 \\ -0.30 \\ -0.22 \end{array}$	+ 1.07 + 1.12 + 1.18 + 1.23 + 1.30	$1.67 \\ 1.73 \\ 1.78 \\ 1.85 \\ 1.92$
$ \begin{array}{r} 10 \\ 20 \\ 30 \\ \frac{40}{50} \end{array} $	+ 0.94 + 0.95 + 0.95 + 0.95 + 0.96 + 0.97	+ 0.11 + 0.09 + 0.06 + 0.04 + 0.02	+ 0.70 + 0.71 + 0.72 + 0.73 + 0.74	$ \begin{array}{r} 1.26 \\ 1.27 \\ 1.28 \\ 1.29 \\ 1.30 \end{array} $	$\begin{array}{c} 60 \\ 70 \\ 80 \\ 90 \\ 2700 \end{array}$	+ 1.00 + 0.98 + 0.96 + 0.92 + 0.91	$\begin{array}{c} - 0.14 \\ - 0.05 \\ 0.00 \\ + 0.07 \\ + 0.13 \end{array}$	+ 1.35 + 1.40 + 1.45 + 1.50 + 1.55	2.00 2.09 2.20 2.29 2.38
$60 \\ 70 \\ 80 \\ 90 \\ 2400$	+ 0.98 + 0.99 + 1.00 + 1.01 + 1.01	$\begin{array}{r} 0.00 \\ - 0.02 \\ - 0.04 \\ - 0.07 \\ - 0.09 \end{array}$	+ 0.75 + 0.75 + 0.75 + 0.76 + 0.77 + 0.78	$1.31 \\ 1.32 \\ 1.33 \\ 1.34 \\ 1.35$	$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array} $	+ 0.90 + 0.89 + 0.89 + 0.90 + 0.90 + 0.90	$\begin{array}{r} + \ 0.18 \\ + \ 0.23 \\ + \ 0.26 \\ + \ 0.29 \\ + \ 0.31 \end{array}$	+ 1.60 + 1.64 + 1.68 + 1.71 + 1.74	$2.47 \\ 2.54 \\ 2.60 \\ 2.66 \\ 2.70$
$10 \\ 20 \\ 30 \\ 40 \\ 50$	+1.02 +1.03 +1.04 +1.05 +1.05	$\begin{array}{r} - \ 0.10 \\ - \ 0.12 \\ - \ 0.14 \\ - \ 0.15 \\ - \ 0.17 \end{array}$	+ 0.78 + 0.79 + 0.80 + 0.80 + 0.81	$ \begin{array}{r} 1.36 \\ 1.37 \\ 1.38 \\ 1.39 \\ 1.40 \end{array} $	$\begin{array}{r} 60 \\ 70 \\ 80 \\ 90 \\ 2800 \end{array}$	+ 0.90 + 0.91 + 0.91 + 0.92 + 0.92	$\begin{array}{r} + \ 0.32 \\ + \ 0.32 \\ + \ 0.31 \\ + \ 0.29 \\ + \ 0.25 \end{array}$	+ 1.76 + 1.78 + 1.79 + 1.79 + 1.80	$2.74 \\ 2.75 \\ 2.76 \\ 2.77 \\ 2.75 \\ 2.75 \\$
$\begin{array}{r} 60 \\ 70 \\ 80 \\ 90 \\ 2500 \end{array}$	+ 1.06 + 1.07 + 1.08 + 1.09 + 1.10	$\begin{array}{r} - 0.20 \\ - 0.22 \\ - 0.24 \\ - 0.28 \\ - 0.32 \end{array}$	+ 0.81 + 0.82 + 0.83 + 0.84 + 0.85	$1.42 \\ 1.43 \\ 1.45 \\ 1.46 \\ 1.47$	$ \begin{array}{r} 10 \\ 20 \\ 30 \\ 40 \\ 50 \end{array} $	+ 0.93 + 0.94 + 0.94 + 0.95 + 0.95	$\begin{array}{r} + \ 0.10 \\ + \ 0.01 \\ - \ 0.07 \\ - \ 0.14 \\ - \ 0.21 \end{array}$	+1.75 + 1.70 + 1.65 + 1.58 + 1.55	$2.73 \\ 2.70 \\ 2.66 \\ 2.63 \\ 2.60$
$10 \\ 20 \\ 30 \\ 40 \\ 50$	+ 1.11 + 1.12 + 1.13 + 1.13 + 1.14	$\begin{array}{r} - 0.37 \\ - 0.43 \\ - 0.50 \\ - 0.53 \\ - 0.55 \end{array}$	+ 0.85 + 0.86 + 0.86 + 0.86 + 0.86 + 0.87	$\begin{array}{c} 1.48 \\ 1.48 \\ 1.49 \\ 1.49 \\ 1.49 \\ 1.50 \end{array}$	$\begin{array}{r} 60 \\ 70 \\ 80 \\ 90 \\ 2900 \end{array}$	+ 0.95 + 0.96 + 0.96 + 0.97 + 0.98	$\begin{array}{r} - 0.27 \\ - 0.33 \\ - 0.39 \\ - 0.44 \\ - 0.49 \end{array}$	+1.50 + 1.47 + 1.43 + 1.39 + 1.35	$2.55 \\ 2.51 \\ 2.48 \\ 2.45 \\ 2.41 $
60 70 80 90	+ 1.14 + 1.14 + 1.14 + 1.14 + 1.12	$\begin{array}{r} -0.54 \\ -0.53 \\ -0.51 \\ -0.50 \end{array}$	+ 0.89 + 0.92 + 0.95 + 1.01	$1.51 \\ 1.52 \\ 1.55 \\ 1.58$					

Mit diesen Werten ist das gesamte Beobachtungsmaterial auf α Aquilae reduziert worden. Die Abweichungen aller Programmsterne gegen α Aquilae in den verschiedenen Wellenlängen werden im Anhang ausführlich mitgeteilt. Das positive Vorzeichen bedeutet auch dort, daß der Stern heller ist als α Aquilae, das negative, daß er schwächer ist. Die Resultate sind aber noch nicht recht übersichtlich; um so mehr, da α Aquilae, wie wir im zweiten Teile sehen werden, zu einer Gruppe von Sternen gehört, deren Spektra gewisse Anomalien in ihrem kontinuierlichen Helligkeitsverlauf aufweisen. Wir wollen daher nach Analogie der großen Photometrien des Gesamtlichtes der Sterne die gefundene Helligkeit

[29] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

für die verschiedenen Wellenlängen direkt in "absoluten Größenklassen" ausdrücken, die mit den bekannten Werten vergleichbar sein sollen. Als Nullpunkt der Skala könnte man natürlich jeden beliebigen Stern benutzen, indem man die Festsetzung trifft, daß seine Intensität für alle Wellenlängen als gleich anzusehen sei, und die Differenzen der übrigen Sterne gegen diesen "Nullstern" um seine, aus irgend einer der bekannten Photometrien zu entnehmende Helligkeit vermehrt. Aus praktischen Gründen wird man aber nicht irgend einen willkürlichen Stern von beliebiger Farbe, d. h. Temperatur, dazu wählen, sondern einen solchen, der möglichst nahe dem einen Ende der Temperaturskala liegt; als Idealfall wäre dabei an einen Stern der Grenzfarbe zu denken, die nach der Planck schen Formel ein vollkommener Strahler unendlich hoher Temperatur annehmen müßte. Die heißesten Sterne, die aber überhaupt vorkommen, scheinen die Orionsterne mit den Heliumlinien zu sein (Maury: Typus II), von denen in unserem Programm die Sterne δ , ε , ζ , z Orionis und ε Persei enthalten sind.

Für diese Sterne vom Maury-Typus II setzen wir also fest, dafs ihre Intensität, ausgedrückt in Gröfsenklassen, für alle Wellenlängen die gleiche sein soll.

Bei der Vergleichung der optisch-photometrischen Gröfsendifferenzen der "Revised-Harvard-Photometry" mit den von mir gefundenen Intensitätsunterschieden ergab sich im Mittel eine Übereinstimmung bei der Wellenlänge $\lambda = 550 \ \mu\mu$.¹) Korrigieren wir nun die für jeden der fünf Sterne vom Typus II abgeleiteten Helligkeitsunterschiede gegen α Aquilae um eine konstante Gröfse, die so zu bemessen ist, daß die Intensitätsdifferenzen für $\lambda = 550 \ \mu\mu$ gleich $0.^{mg}89$ werden — der optischen Helligkeit von α Aquilae —, und bilden wir für jede Wellenlänge das Mittel dieser Werte, so gibt uns die Reihe der so erhaltenen Zahlen die Helligkeit von α Aquilae in allen. Wellenlängen, bezogen auf einen Stern Oter Gröfse vom Typus II und ausgedrückt im System der Harvard-Photometry.

Mit diesen Werten, die in der vorigen Tabelle unter der Überschrift "Typus II" zusammengestellt sind, ist das ganze Beobachtungsmaterial von neuem reduziert worden. Die berechneten Helligkeiten, die mit den optisch gemessenen Gesamtintensitäten jetzt direkt vergleichbar sind, habe ich ebenfalls im Anhang in extenso mitgeteilt und graphisch dargestellt. Sie bilden das Hauptresultat dieser Arbeit und gleichzeitig das Material, auf das sich die Untersuchungen des zweiten Teiles stützen.

¹) Vgl. hierzu: Aktinometrie der Sterne der B. D. bis zur Größe 7.5 in der Zone 0^o bis + 20^o Deklination. Teil B (Abhandl. d. Kgl. Gesellsch. d. Wiss. zu Göttingen. Bd. VIII Nr. 4 p. 33 [1912]).

Für die Sonne konnte das zur Erlangung der Sternspektrogramme eingeschlagene Beobachtungsverfahren nicht ohne weiteres angewandt werden, sondern erforderte einige, den Umständen entsprechende Modifikationen.

Es ist klar, dafs das Objektiv-Prisma in seiner gewöhnlichen Form für Spektralaufnahmen der Sonne nicht in Frage kommen kann, da bei der flächenhaften Ausdehnung dieses Gestirns ein völlig unreines Spektrum die naturgemäße Folge sein würde; um hier brauchbare Spektren zu erzielen, ergibt sich die Notwendigkeit, mit einem Spalt-Spektrographen zu arbeiten. Da aber alle Teile des für die Sternaufnahmen benutzten Instrumentes nach Möglichkeit unverändert für die Sonne beibehalten werden sollten, um den differentiellen Charakter der Arbeit zu wahren, so wurde die ganze Prismenkamera nur durch Vorsetzen eines kleinen Kollimators in einen vollständigen zusammengesetzten Spektrographen verwandelt. Das Kollimator-Objektiv bestand aus den gleichen U. V.-Gläsern, wie Kamera-Objektiv und Prisma, so dafs die neu hinzukommende Absorption gegen die Absorption der ganzen Glasmasse vernachlässigt werden konnte. Die Brennweite betrug etwa 300 mm.

Da auch für die Sonne unbedingt daran festgehalten werden sollte, daß die Expositionszeit in die Grenzen der für die Vergleichsternaufnahmen nötigen Belichtungszeiten fiel, so bildete, wie bei allen photometrischen Untersuchungen der Sonne, die Lichtfülle dieses Gestirns das größte Hindernis; denn um sie auf die zum Vergleich mit einem Stern erforderliche Lichtstärke herabzudrücken, hat man einen Betrag von rund 27 Größenklassen Blendgläser, partielle Reflexionen und Polarisationsvorzu überbrücken. richtungen als Abblendungsmittel sind für spektralphotometrische Messungen wegen des in allen diesen Fällen auftretenden und schwer zu übersehenden selektiven ·Absorptionsverlustes nicht zu empfehlen. So blieb schliefslich nur das Mittel der Abblendung durch kleinste Öffnungen, das um so unbesorgter angewandt werden konnte, als es sich für den vorliegenden Zweck nur um die Untersuchung der spektralen Intensitätsverteilung handelte, nicht aber um die Ableitung der absoluten Helligkeit der Sonne, für welche die Berechnung der durch Beugung verursachten Verluste große Schwierigkeiten bereitet. Die erforderliche Abschwächung der Sonne wurde erreicht bei ganz eng gestelltem Spalt (etwa 0.001 mm) und Abblendung des Kollimator-Objektivs auf 1.0 mm.

Allerdings tritt auch bei dieser Anordnung eine Änderung der spektralen Intensitätsverteilung auf, die sich aber streng in Rechnung [31] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

ziehen läfst. Ein Spalt von der Breite γ erzeugt bekanntlich für die Wellenlänge λ das erste seitliche Maximum in einem Winkelabstand, der sich aus der Beziehung: $\sin \varphi = \frac{\lambda}{\gamma}$ ergibt. Für die Wellenlänge 0.0005 mm würde bei der Spaltbreite von 0.001 mm φ also gleich 30° werden. Da die benutzte Öffnung des Kollimatorobjektivs von 300 mm Brennweite nur 1.0 mm betrug, so erscheint sie vom Spalt aus gesehen unter einem Winkel von ungefähr 12'. Bei der großen Ausdehnung des zentralen Beugungsbildes wird also innerhalb der ganzen Kollimatoröffnung sehr nahe die zentrale Intensität des Beugungsbildes herrschen. Diese ist aber der Wellenlänge umgekehrt proportional, da die seitliche Ausdehnung des Beugungsbildes der Wellenlänge direkt proportional ist und die Energie erhalten bleibt. Bei der kolossalen Winkelausdehnung des Beugungsbildes werden wir die Sonne mit ihrem halben Grad Durchmesser dabei als punktförmige Lichtquelle betrachten dürfen.

Die direkte Ausmessung liefert daher für die kürzeren Wellenlängen eine relativ zu große Intensität gegenüber den längeren Wellen. Der durch Beugung hervorgerufene Farbenindex (= Helligkeitsunterschied in Größenklassen) für zwei Wellenlängen λ_1 und λ_2 ist in dem so erhaltenen Sonnenspektrum gleich 2.5 lg $\left(\frac{\lambda_1}{\lambda_2}\right)$.

Diese Größen, um welche alle Helligkeitsangaben der Sonnen korrigiert werden müssen, sind im Anhang ebenfalls mitgeteilt. Zum Ausgangspunkt wurde dabei die Wellenlänge gewählt, deren reziproker Wert 2250 ist.

Mit dieser Anordnung wurden an einer Reihe ausgesucht klarer Tage Sonnenaufnahmen gemacht mit Expositionszeiten, die zwischen 1^s und 3^m lagen; die Platten wurden unentwickelt aufbewahrt und in der folgenden Nacht auf die zum Vergleich gewählten Sterne mit der Prismenkamera in der gewöhnlichen Anordnung exponiert.

Eine gewisse Komplikation bereitete das verschiedene Aussehen von Sonnen- und Sternspektrum; denn während das von der Sonne erzeugte Spektrum für alle Wellenlängen die der zugehörigen Intensität entsprechende Flächenhelligkeit besitzt, variiert in dem ein wenig extrafokal aufgenommenen Sternspektrum die Breite — und damit die Flächenhelligkeit — infolge der chromatischen Fehler des Objektivs, so dafs man die Schwärzungen in beiden nicht ohne weiteres vergleichen kann. Ich habe eine Reihe Versuche angestellt, um diesen Fehler zu eliminieren und schliefslich die beiden folgenden Wege als gangbar gefunden.

Die Helligkeitsverteilung im Sternspektrum kann einmal unabhängig von der Fokusdifferenz für die verschiedenen Farben erhalten werden, wenn man die Aufnahmen so weit aufserhalb der Brennebene erhält, dafs die geringe Verschiedenheit der Brennweiten für Strahlen verschiedener Wellenlänge gegenüber der starken extrafokalen Verschiebung vernachlässigt werden darf. Ein Nachteil dieser Methode besteht darin, dafs dann selbst die kräftigsten Absorptionslinien so verwaschen werden, dafs sie kaum noch zur Ableitung der Wellenlängen benutzt werden können; auch ist es nicht immer leicht, den Einfluß dieser Linien auf den Schwärzungsverlauf im Spektrum zu erkennen und zu eliminieren.

Die zweite Methode, die von diesen Fehlern frei ist, besteht darin, dafs man die Verbreiterung des Sternspektrums dadurch erzielt, dafs man bei ruhendem Fernrohr den Stern "laufen" läßt, und, falls die Lichtschwäche des Sternes dies erfordert, den Stern bei geschlossenem Verschluß zurückführt und den Vorgang in mehreren Überdeckungen wiederholt. Bei dieser Art und Weise könnte man Bedenken haben, ob es statthaft ist, die mit kontinuierlicher Exposition aufgenommenen Spektren mit den durch intermittierende Belichtung erzeugten zu vergleichen. Um diese Fragen zu entscheiden, habe ich auf der gleichen Platte mit derartig verbreiterten Sternspektren dieselben Sterne in der gewöhnlichen, gering extrafokalen Stellung aufgenommen und ihre Breite für die verschiedenen Wellenlängen unter dem Mefsapparat bestimmt. Das Verhältnis der wahren Intensität zur beobachteten ist in einem derartigen Spektrum umgekehrt proportional der gemessenen Breite, woraus sich leicht die Korrektionen für die Farbfehler des Objektivs berechnen lassen. Diese Relation gilt aber nicht für sehr schmale Spektren, d. h. in unmittelbarer Nähe der Brennebene, da hier die Breite des photographierten Spektrums nicht nur von der Entfernung von der Brennebene, sondern auch von der auffallenden Lichtmenge und der Empfindlichkeit der Platte für Licht der betreffenden Wellenlänge ab-Die ausgemessenen Spektra sind aber auch an der schmalsten hängt. Stelle so breit, daß ein derartiger Einfluß kaum zu befürchten ist.

Die folgende Tabelle enthält die gemessenen Breiten für eine Reihe von Platten und die daraus abgeleiteten Resultate. Der Reihe nach sind für jede Platte angegeben: 1. die reziproke Wellenlänge; 2. die dazugehörige Breite in Schraubenrevolutionen für die extrafokalen Spektra; 3. die sich daraus ergebende Korrektion in Größenklassen, bezogen auf den breitesten Teil des Spektrums; 4. die aus den Schwärzungen direkt abgeleiteten Intensitätsunterschiede zwischen dem extrafokalen Bild und dem in der oben gekennzeichneten Weise verbreiterten, die sämtlich um eine

[33] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

konstante Größe verschoben sind; 5. die Differenz zwischen Rechnung und Beobachtung. Eine Vergleichung der R-B zeigt eine der Größenordnung nach befriedigende Übereinstimmung von Rechnung und Beobachtung. Eine gewisse systematische Anordnung in der Zeichenfolge könnte vielleicht auf die Existenz eines mit der Wellenlänge schreitenden systematischen Unterschiedes im Verhalten der Platten bei kontinuierlicher und intermittierender Belichtung deuten, doch sind die absoluten Beträge im Vergleich mit der Unsicherheit der Beobachtungen zu gering, um ihre Realität verbürgen zu können.

Innerhalb der erreichten Genauigkeitsgrenzen dürfen wir jedenfalls den Verlauf der Energieverteilung in den auf beide Weisen erhaltenen Spektren des gleichen Sternes als parallel ansehen und sind demnach berechtigt, auch die mit intermittierender Belichtung aufgenommenen, verbreiterten Sternspektren mit dem bei kontinuierlicher Exposition erzielten Sonnenspektrum zu vergleichen.

Platte 929. a Lyrae						Platte	930. α I	yrae	
1:2	B.	Korr.	Beob.	R — B.	1:λ	B.	Korr.	Beob.	R-B.
1816 1858	3.19 3.51	-0.78 - 0.58	-0.76 -0.43	$-\frac{mg}{-0.02}$ -0.15	1765 1808 1851 1890 1929	2.02 2.50 2.96 3.30 3.68	$\begin{array}{c} {}^{\rm mg}_{\rm -1.18}\\ -0.95\\ -0.77\\ -0.65\\ -0.53\end{array}$	$\begin{array}{r} {}^{\rm mg}_{-1.40}\\ -1.03\\ -0.98\\ -0.72\\ -0.52\end{array}$	$\begin{array}{r} {}^{\rm mg}_{\rm + \ 0.22}\\ {}^{\rm + \ 0.22}_{\rm + \ 0.08}\\ {}^{\rm + \ 0.21}_{\rm + \ 0.07}\\ {}^{\rm - \ 0.01}\end{array}$
$\begin{array}{c} 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2308\\ 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2499\\ 2529\\ 2559\\ 2559\\ 2589\\ 2618\\ 2648\\ 2677\\ 2706 \end{array}$	5.30 5.44 5.60 5.73 5.82 5.89 5.95 5.99 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 5.99 5.95 5.89 5.89 5.89 5.89 5.89 5.89 5.89 5.95 5.99 5.95 5.99 5.95 5.99 5.95 5.99 5.99 5.99 5.95 5.99 5.99 5.99 5.99 5.99 5.99 5.99 5.95 5.99 5.99 5.99 5.95 5.99 5.99 5.95 5.99 5.95 5.99 5.95 5.99 5.95 5.89 5.89 5.89 5.89 5.89 5.80	$\begin{array}{c} - \ 0.14 \\ - \ 0.10 \\ - \ 0.07 \\ - \ 0.05 \\ - \ 0.02 \\ - \ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ - \ 0.01 \\ - \ 0.02 \\ - \ 0.04 \end{array}$	$\begin{array}{c} - \ 0.10 \\ - \ 0.07 \\ - \ 0.02 \\ + \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.04 \\ - \ 0.01 \\ + \ 0.05 \\ + \ 0.02 \\ - \ 0.01 \\ + \ 0.02 \\ + \ 0.01 \\ - \ 0.04 \\ - \ 0.01 \\ + \ 0.09 \end{array}$	$\begin{array}{c} - \ 0.04 \\ - \ 0.03 \\ - \ 0.03 \\ - \ 0.03 \\ - \ 0.03 \\ - \ 0.03 \\ + \ 0.02 \\ + \ 0.02 \\ + \ 0.02 \\ + \ 0.02 \\ + \ 0.01 \\ - \ 0.05 \\ - \ 0.02 \\ - \ 0.01 \\ - \ 0.03 \\ - \ 0.01 \\ - \ 0.13 \end{array}$	$\begin{array}{c} 2121\\ 2158\\ 2198\\ 2229\\ 2264\\ 2298\\ 2330\\ 2362\\ 2396\\ 2429\\ 2461\\ 2491\\ 2522\\ 2552\\ 2552\\ 2551\\ 2611\\ 2671\\ 2671\\ 2700\\ 2729\\ 2753 \end{array}$	$\begin{array}{c} 5.01\\ 5.21\\ 5.40\\ 5.56\\ 5.67\\ 5.74\\ 5.90\\ 5.95\\ 5.99\\ 6.00\\ 6.00\\ 6.00\\ 6.00\\ 6.00\\ 5.99\\ 5.98\\ 5.92\\ 5.92\\ 5.92\\ 5.92\\ 5.52\\ 5.52\end{array}$	$\begin{array}{c} - \ 0.19 \\ - \ 0.15 \\ - \ 0.011 \\ - \ 0.08 \\ - \ 0.06 \\ - \ 0.05 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.01 \\ - \ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ - \ 0.01 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.02 \\ - \ 0.05 \\ - \ 0.09 \end{array}$	$\begin{array}{c} - \ 0.26 \\ - \ 0.25 \\ - \ 0.20 \\ - \ 0.14 \\ - \ 0.10 \\ - \ 0.08 \\ - \ 0.05 \\ - \ 0.06 \\ - \ 0.04 \\ - \ 0.01 \\ + \ 0.02 \\ + \ 0.06 \\ + \ 0.06 \\ + \ 0.05 \\ + \ 0.03 \\ + \ 0.07 \\ + \ 0.06 \end{array}$	$\begin{array}{c} + \ 0.07 \\ + \ 0.10 \\ + \ 0.09 \\ + \ 0.06 \\ + \ 0.04 \\ + \ 0.02 \\ + \ 0.04 \\ + \ 0.06 \\ + \ 0.04 \\ + \ 0.06 \\ - \ 0.06 \\ - \ 0.06 \\ - \ 0.06 \\ - \ 0.06 \\ - \ 0.06 \\ - \ 0.06 \\ - \ 0.05 \\ - \ 0.012 \\ - \ 0.15 \end{array}$

Tabelle VI.

Nova Acta CI. Nr. 2.

97

	Platte	e 931. αI	Lyrae		Platte 941. αLyrae				
1:2	B.	Korr.	Beob.	R – B.	1:λ	B.	Korr.	Beob.	R – B.
$1762 \\ 1804 \\ 1846 \\ 1885$	2.00 2.33 2.70 3.00	$ \begin{array}{r} & {}^{\rm mg} \\ -1.12 \\ -0.95 \\ -0.79 \\ -0.68 \end{array} $	$ \begin{array}{r} \overline{mg} \\ -1.07 \\ -0.91 \\ -0.77 \\ -0.61 \end{array} $	$\begin{array}{c} {}^{\rm mg} \\ - 0.05 \\ - 0.04 \\ - 0.02 \\ - 0.07 \end{array}$	$ 1771 \\ 1814 \\ 1855 $	$ \begin{array}{r} 1.76 \\ 2.12 \\ 2.46 \end{array} $	$-\frac{1.17}{-0.96}$ - 0.80	-1.13 - 1.03 - 0.82	-0.04 + 0.07 + 0.02
$ 1925 \\ 1965 \\ 2005 \\ 2043 \\ 2080 $	$ \begin{array}{r} 3.31 \\ 3.63 \\ 3.91 \\ 4.18 \\ 4.39 \end{array} $	$ \begin{array}{r} -0.06 \\ -0.57 \\ -0.48 \\ -0.39 \\ -0.32 \\ -0.27 \end{array} $	$ \begin{array}{r} -0.01 \\ -0.51 \\ -0.42 \\ -0.31 \\ -0.34 \\ -0.24 \end{array} $	$ \begin{array}{r} -0.04 \\ -0.06 \\ -0.06 \\ -0.08 \\ +0.02 \\ -0.03 \\ \end{array} $					
$\begin{array}{c} 2118\\ 2153\\ 2190\\ 2225\\ 2261\\ 2293\\ 2327\\ 2360\\ 2392 \end{array}$	$\begin{array}{r} 4.61 \\ 4.80 \\ 4.99 \\ 5.17 \\ 5.31 \\ 5.41 \\ 5.51 \\ 5.59 \\ 5.61 \end{array}$	$\begin{array}{r} -0.22 \\ -0.17 \\ -0.13 \\ -0.09 \\ -0.05 \\ -0.04 \\ -0.02 \\ -0.01 \\ 0.00 \end{array}$	$\begin{array}{r} -0.23\\ -0.21\\ -0.17\\ -0.14\\ -0.09\\ -0.05\\ -0.02\\ -0.07\\ -0.07\end{array}$	$\begin{array}{r} + \ 0.01 \\ + \ 0.04 \\ + \ 0.05 \\ + \ 0.03 \\ + \ 0.00 \\ + \ 0.06 \\ + \ 0.07 \end{array}$	$\begin{array}{c} 2161 \\ 2196 \\ 2231 \\ 2268 \\ 2301 \\ 2333 \\ 2368 \\ 2400 \end{array}$	$\begin{array}{r} 4.40 \\ 4.55 \\ 4.70 \\ 4.83 \\ 4.93 \\ 5.00 \\ 5.09 \\ 5.11 \end{array}$	$ \begin{array}{r} -0.17 \\ -0.13 \\ -0.07 \\ -0.05 \\ -0.03 \\ -0.02 \\ -0.01 \end{array} $	$\begin{array}{r} -0.27 \\ -0.26 \\ -0.17 \\ -0.11 \\ -0.09 \\ -0.08 \\ -0.08 \\ -0.05 \end{array}$	$\begin{array}{r} + \ 0.10 \\ + \ 0.13 \\ + \ 0.07 \\ + \ 0.04 \\ + \ 0.05 \\ + \ 0.06 \\ + \ 0.04 \end{array}$
$ \begin{array}{r} 2425 \\ 2458 \\ 2458 \\ 2520 \\ 2550 \\ 2580 \\ 2580 \\ \end{array} $	5.62 5.62 5.62 5.61 5.60 5.54	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.01\\ -0.01\\ \end{array}$	$\begin{array}{r} -0.06\\ -0.04\\ -0.01\\ +0.04\\ +0.07\\ +0.06\end{array}$	$\begin{array}{r} + 0.06 \\ + 0.04 \\ + 0.01 \\ - 0.04 \\ - 0.07 \\ - 0.07 \end{array}$	$ \begin{array}{r} 2431 \\ 2461 \\ 2494 \\ 2525 \\ 2555 \\ 2587 \\ 2587 \\ \end{array} $	5.15 5.15 5.15 5.13 5.10 5.07	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ -0.01\\ -0.02\\ \end{array}$	$\begin{array}{r} - 0.03 \\ + 0.01 \\ - 0.02 \\ 0.00 \\ + 0.01 \\ + 0.02 \end{array}$	$ \begin{array}{r} + 0.03 \\ - 0.01 \\ + 0.02 \\ 0.00 \\ - 0.02 \\ - 0.04 \\ \end{array} $
2610 2639 2668 2697 2723 2752	$5.50 \\ 5.41 \\ 5.38 \\ 5.29 \\ 5.20 \\ 5.11$	$ \begin{array}{r} -0.02 \\ -0.04 \\ -0.05 \\ -0.06 \\ -0.08 \\ -0.10 \end{array} $	$\begin{array}{c} -0.02 \\ -0.06 \\ 0.00 \\ +0.02 \\ -0.02 \\ +0.01 \end{array}$	$\begin{array}{r} 0.00 \\ + 0.02 \\ - 0.05 \\ - 0.08 \\ - 0.06 \\ - 0.11 \end{array}$	$2615 \\ 2643 \\ 2673 \\ 2701 \\ 2730 \\ 2757$	5.03 4.99 4.92 4.83 4.78 4.70	$\begin{array}{r} -0.02 \\ -0.03 \\ -0.05 \\ -0.07 \\ -0.08 \\ -0.10 \end{array}$	+0.03 + 0.01 - 0.04 - 0.05 + 0.07 - 0.01	$ \begin{array}{r} -0.05 \\ -0.04 \\ -0.01 \\ -0.02 \\ -0.15 \\ -0.09 \end{array} $

98 Hans Rosenberg, Photographische Untersuchung der Intensitätsverteilung usw. [34]

Auf den zur Ableitung der Energieverteilung im Sonnenspektrum dienenden Platten befindet sich aufser den üblichen zur Gewinnung der Plattenkonstanten dienenden Spektren ein (oder mehrere) verbreiterte Sternspektra, die entweder durch sehr starke Extrafokalverschiebung oder durch "Laufen lassen" erhalten worden sind, sowie ein (oder mehrere) Sonnenspektren. Die Intensitätsunterschiede zwischen dem Vergleichstern und den anderen Objekten wurden auf die übliche Art und Weise abgeleitet und dann durch Elimination des ersteren das Helligkeitsverhältnis von Sonne und Stern berechnet. Die Reduktion auf a Aquilae und "Typus II" blieb die gleiche wie bei den gewöhnlichen Sternaufnahmen, mit der Ausnahme, daß erstens die Intensitätsunterschiede zwischen Sonne und a Aquilae durch Anbringung einer, für jede Aufnahme konstanten Korrektion bei der reziproken Wellenlänge $1: \lambda = 2250$ auf 0 gebracht wurden, um untereinander vergleichbar zu sein, und daß zweitens die oben erwähnte Korrektion wegen Beugung angebracht wurde. Die ausführliche Wiedergabe und graphische Darstellung der Resultate befindet sich gleichfalls im Anhang.

Teil II.

Den Zusammenhang zwischen Strahlung und Temperatur liefert uns die von Planck¹) angegebene Form der Kirchhoffschen Funktion:

$$I_{\lambda} = \frac{C \cdot \lambda^{-5}}{e^{\frac{C}{\lambda t}} - 1}.$$

Auch die bereits früher von Wien²) aufgestellte Form

$$I_{\lambda} = \frac{C \cdot \lambda^{-\varepsilon}}{e^{\frac{C}{\lambda t}}}$$

stellt die Laboratoriumsversuche gut dar, so lange λt gewisse Grenzen (> 3000) nicht überschreitet. Bei sehr großen Wellenlängen oder sehr hohen Temperaturen ist dagegen unbedingt der Planckschen Gleichung der Vorzug zu geben. Wenn auch die Richtigkeit dieser Gleichung bisher nur bei Temperaturen bis zu 1750° (abs.) und Wellenlängen bis zu 55 $\mu\mu^3$) erprobt ist, so dürfte ihre Benutzung auch bei wesentlich höheren Temperaturen auf Grund ihrer theoretischen Ableitung berechtigt erscheinen.

Der Zusammenhang zwischen der Planckschen und der Wienschen Gleichung ist einfach zu übersehen. Multiplizieren wir bei Planck Zähler und Nenner mit $e^{-\frac{c}{\lambda t}}$, so folgt

$$I_{\lambda} = C \cdot \lambda^{-5} \cdot e^{-\frac{C}{\lambda t}} \cdot \frac{1}{1 - e^{-\frac{C}{\lambda t}}}.$$

Der erste Teil entspricht der von Wien abgeleiteten Form der Kirchhoffschen Funktion; der zweite Teil, den wir als den "Planckschen

 13^{*}

¹⁾ Verhandl. deutsch. phys. Ges. 2 (1900). Drudes Annalen I, p. 719 (1900).

²) Wiedemanns Annalen. Bd. 58, p. 662-669.

³⁾ Vgl. Rubens u. Kurlbaum. Berl. Ber. 929 (1900).

Faktor" bezeichnen wollen, wird für Werte von $\lambda t < 3000$ sehr nahe gleich 1, so daß beide Strahlungsformeln für dieses Gebiet praktisch in eine einzige übergehen; die Differenzen zwischen beiden betragen für

$$\begin{array}{l} \lambda \cdot t = 2000 \quad \text{etwa} \quad 0.07 \, {}^{0}_{/0} \\ \lambda \cdot t = 3000 \quad , \quad 0.8 \, {}^{0}_{-0} \\ \lambda \cdot t = 4000 \quad , \quad 2.6 \, {}^{0}_{/0}. \end{array}$$

Der letzte Wert ist schon größer als die photometrisch gerade noch meßbaren Beträge. Für sehr große $\lambda \cdot t$ berechnet sich der Plancksche Faktor am besten durch eine Reihenentwicklung:

$$\frac{1}{1-e^{-\frac{c}{\lambda t}}}$$
 wird in diesem Falle nahe gleich $\frac{\lambda \cdot t}{c}$.

Für differentielle Messungen geht die Plancksche Gleichung in die Form über:

$$\frac{I_{\lambda}}{I_{\lambda}} = \frac{e^{\frac{c}{\lambda t'}} - 1}{e^{\frac{c}{\lambda t}} - 1}.$$

Wenn wir hier logarithmieren und mit 0.4 dividieren, so erhalten wir die Intensitätsunterschiede von I_{λ} und I_{λ} direkt in Größenklassen ausgedrückt. Die Funktionswerte $\lg \left(e^{\frac{c}{\lambda t}}-1\right)$ sind von mir für diese Arbeit mit den Argumenten λ und t tabuliert worden in den Grenzen $\lambda = 300-600 \,\mu\mu$ und $t = 2000^{\circ} - 100000^{\circ}$ (abs.). Die Tafel wird im Anhang mitgeteilt, da sie äufserst bequem ist, und für ähnliche Arbeiten die Mühe der Berechnung damit erspart bleibt. Nach Messungen von Lummer und Pringsheim¹) wäre die Konstante c gleich 14600 anzusetzen, was nach neueren Bestimmungen aber etwas zu groß sein dürfte. So finden Holborn und Valentiner²) dafür 14200. Nach Paschen,³) der äufserst sorgfältige und ausführliche Messungen gerade zur Ableitung dieser Konstanten angestellt hat, ergibt sich $\lambda_{max} \cdot t = 2890$ und damit

$$c = 4.965 \cdot \lambda_{\max} \cdot t = 14350.$$

1) Verhandl. deutsch. phys. Ges. Bd. 1 (1899).

2) Sitzungsber. d. Kgl. Preuß. Akademie d. Wissenschaften zu Berlin (1906).

³) Sitzungsber. d. Kgl. Preuß. Akademie d. Wissenschaften zu Berlin (1899), p. 5-11; 405-420; 959-976.

[37] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 101

Mit diesem Wert, der ziemlich in der Mitte der anderen liegt und meines Erachtens das gröfste Vertrauen verdient, ist auch die im Anhang mitgeteilte Tabelle für $\lg \left(e^{\frac{c}{\lambda t}}-1\right)$ berechnet worden.

Für das Gebiet von $\lambda \cdot t$, in dem die Plancksche Gleichung mit der Wienschen übereinstimmt, wird

$$\lg \left(\frac{I_{\lambda}}{I_{\lambda}}\right) = \mathfrak{M} \cdot \frac{c}{\lambda} \left(\frac{1}{t'} - \frac{1}{t}\right) = \frac{\mathrm{Konst.}}{\lambda},$$

wo \mathfrak{M} den Modul der briggischen Logarithmen bedeutet. Wenn wir demnach für diesen Wirkungsbereich des Gesetzes die Größen $\lg \left(\frac{I_{\lambda}}{I_{\lambda}}\right)$ als Funktion der reziproken Wellenlängen darstellen, so ergeben sie eine Gerade; aber auch für höhere Temperaturen weichen die derartig angeordneten $\lg \left(\frac{I_{\lambda}}{I_{\lambda}}\right)$ in dem Wellenbereich von $300 - 600 \ \mu\mu$, der allein für photographische Untersuchungen in Betracht kommt, noch nicht sehr von einer Geraden ab. Für unsere Messungen dürfen wir demnach schliefsen: Folgt die Strahlung der Gestirne dem Planekschen Gesetz, so müssen die in Gröfsenklassen ausgedrückten Unterschiede zweier Sterne, wenn man sie nach reziproken Wellenlängen ordnet, angenähert eine Gerade darstellen. Dies zu untersuchen, resp. die Ursachen für die Abweichungen der so dargestellten spektralphotometrischen Resultate von einer Geraden zu erklären, wird unsere nächste Aufgabe sein müssen, zu der die im Anhang mitgeteilten und nach Spektraltypen angeordneten Tafeln das Material bilden.

Ein genaues Studium der Tafeln zeigt, dafs in dem Wellenlängengebiet von $\lambda = 400 \ \mu\mu$ bis $\lambda = 500 \ \mu\mu$ die dargestellten Intensitätsunterschiede innerhalb der Beobachtungsgenauigkeit sich tatsächlich sehr nahe einer Geraden anschmiegen, dafs also die Beobachtungsresultate aus dieser Spektralgegend den für schwarze Strahlung zu machenden Voraussetzungen nicht widersprechen.

Für längere Wellen als 500 $\mu\mu$ finden häufig Abweichungen von dieser Geraden statt, die aber keiner bestimmten Gesetzmäßigkeit zu folgen scheinen. Das Auseinanderfallen der Messungsergebnisse in diesem Spektralbezirk nicht nur für verschiedene Sterne der gleichen Spektralklasse, sondern auch für die beiden Messungen des gleichen Sternes, wie es häufiger stattfindet, trägt im allgemeinen absolut keinen systematischen Charakter, sondern scheint lediglich anzudeuten, daß die mittleren Fehler in dieser Gegend

wesentlich größer sind wie für die kürzeren Wellenlängen. In dieser Tatsache liegt auch kaum etwas Befremdliches, wenn man die Charakteristik der sogenannten "farbenempfindlichen" Platten und die Eigenart des prismatischen Spektrums in Betracht zieht. Die Agfa-Chromo-Platte, die sich im allgemeinen durch eine hohe Empfindlichkeit auch für den gelb-grünen Spektralteil und durch klares, kräftiges und gleichmäßiges Arbeiten auszeichnet, besitzt ein Empfindlichkeitsminimum bei den Wellenlängen $\lambda = 500 - 535 \ \mu\mu$ und ein steil aufsteigendes und ebenso abfallendes sekundäres Empfindlichkeitsmaximum zwischen $\lambda = 540$ und 550 $\mu\mu$. Für die Wellenlängen kürzer als 500 µµ zeigt sie ein den gewöhnlichen Platten analoges Verhalten. Dafs die Messungsresultate in der Gegend des Empfindlichkeitsminimums stark streuen, ist natürlich, da hier nur ganz geringe Schwärzungen vorkommen, und die Schwärzungskurve in der Nähe des Schwellenwertes so flach verläuft, daß geringen Schwärzungsunterschieden bereits große Intensitätsdifferenzen entsprechen. Aber auch für das sekundäre Maximum gibt es Gründe, die die Unsicherheit der in dieser Gegend angestellten Messungen im Vergleich zu dem normalempfindlichen Teil der Platte plausibel erscheinen lassen. Infolge der Eigentümlichkeit des prismatischen Spektrums, die einzelnen Strahlen mit wachsender Wellenlänge immer näher aneinander rücken zu lassen, ist der Helligkeitsabfall nach beiden Seiten dieses Maximums ein äufserst steiler, so dafs ganz geringen Verschiebungen im Sinne der Längsrichtung des Spektrums bereits ganz bedeutende Schwärzungsunterschiede entsprechen. Dieser Umstand in Verbindung mit der Tatsache, dafs der zu dem Mikrophotometer gehörige einfache Mefsapparat höchstens Verschiebungen von 0.1 mm abzulesen gestattete, ist wahrscheinlich die Erklärung für die hier vorkommenden, relativ großen Unterschiede. Man wird demnach wohl am besten tun, die Messungen bei längeren Wellen als 500 $\mu\mu$ gar nicht, oder wenigstens mit einem erheblich geringeren Gewicht in Rechnung zu ziehen, als die für die kürzeren Wellenlängen abgeleiteten Resultate. Übrigens bekommen für die definitiven Temperaturableitungen die längeren Wellen überhaupt ein geringeres Gewicht als die kürzeren, da - wie sich aus dem Planckschen Strahlungsgesetz ergibt — die Genauigkeit der Temperaturbestimmung aus Intensitätsmessungen mit wachsendem $\lambda \cdot t$ abnimmt.

Auch bei Wellenlängen, die kürzer sind als $400 \ \mu\mu$, zeigen die Beobachtungen für eine ganze Reihe von Sternen Abweichungen von der erwarteten Geraden. Diese zeigen aber einen völlig anderen Verlauf. Hier ist bei den betreffenden Resultaten ein ausgesprochener systematischer Gang vorhanden, der auf eine gemeinsame Ursache hinzudeuten scheint.

[39] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 103

Die Abweichungen, die auf jene Sternspektren beschränkt zu sein scheinen, die durch das Vorherrschen der Wasserstoffserie charakterisiert werden — in der Mauryschen Klassifizierung die Gruppen VII bis X —, zeigen sich als eine Art Depression, die etwa bei $\lambda = 400 \ \mu\mu$ beginnend, allmählich bis zu $\lambda = 370 \ \mu\mu$ oder 360 $\mu\mu$ zunimmt, wo in einigen Fällen eine Umkehr angedeutet scheint. Die Ausdehnung dieser Anormalität gerade auf die Wasserstoffsterne und die etwa bei $\lambda = 365 \ \mu\mu$ angedeutete Umkehr, welche nahe mit dem Ende der Serie zusammenfällt — (letzte beobachtete Linie $\lambda = 366.1$, theoretisches Ende $\lambda = 364.6 \ \mu\mu$) — lassen einen engen Zusammenhang zwischen dieser Erscheinung und den Absorptionslinien des Wasserstoffes vermuten.

Und diese Erwartung hat sich auch durchaus bestätigt. Die erwähnte Depression ist eine Absorptionswirkung der sich gegen das Ende der Serie immer dichter drängenden Wasserstofflinien, die sich infolge der extrafokalen Aufnahmen von einer gewissen Wellenlänge ab gegenseitig überlagern und damit ihre Wirkung summieren. Die Rechnung steht in befriedigender Übereinstimmung mit der Beobachtung.

Ich habe die Breite der Wasserstofflinien für verschiedene Sterne aus Gruppe II—X auf fokale Aufnahmen gemessen und dafür Werte erhalten, die zwischen 0.047 mm und 0.019 mm schwanken. Die Breite des extrafokalen Spektrums, wie es für die mikrophotometrische Ausmessung gewöhnlich aufgenommen wurde, betrug im Mittel 0.5 mm. Unter gewissen vereinfachenden Voraussetzungen läfst sich jetzt die durch die Wasserstoffserie hervorgerufene Intensitätsverminderung in bestimmten Wellenlängen berechnen. Wir wollen für diesen Zweck die Wasserstofflinien als scharf begrenzte Linien betrachten, deren Absorption über die volle Breite der Linie eine gleichmäfsige ist, und diese Absorption selbst einmal als eine vollständige ansehen, d. h. dafs kein Licht an der Stelle der Linie vorhanden ist, das andere Mal voraussetzen, dafs nur 50 % des Lichtes absorbiert werden. Die Wahrheit wird vermutlich in der Mitte liegen.

Bei der Breite des extrafokalen Spektrums von 0.5 mm erhält ein Ausschnitt von 0.1 mm Breite — der Strichbreite des Spiegels im Mikrophotometer entsprechend — noch Licht von Strahlen, die im prismatischen fokalen Spektrum gemessen, 0.45 mm nach beiden Seiten von der Mitte des zu untersuchenden Ausschnittes liegen. Der Lichtverlust, welcher durch eine der oben angeführten Breite entsprechende Linie bei vollständiger Absorption verursacht wird, ist dann gleich $\frac{0.047}{0.9}$ resp. $\frac{0.019}{0.9}$ des ganzen auf die zu messende Stelle vereinigten Lichtes. Für eine Absorption von 50 %

erniedrigen sich diese Zahlen auf die Hälfte. Ich habe nun für alle vier Fälle berechnet, wie groß die gesamte Absorptionswirkung aller in das betreffende Gebiet fallender Wasserstofflinien für eine Reihe von Wellenlängen sich stellt. Die folgende Tabelle enthält in der ersten Kolumne die reziproke Wellenlänge, in der zweiten die Anzahl der Wasserstofflinien, die die Intensitätsmessung in der betreffenden Wellenlänge durch ihre Absorptionswirkung noch beeinflussen. In den folgenden Spalten ist die aus diesen Daten abgeleitete Gesamtabsorption für alle vier Fälle einmal prozentual, und dann in Größenklassen angegeben.

1.2	Zahl	Breite der Lin	nien: 0.047 mm	Breite der Linien: 0.019 mm				
1	der Linien	Absorption: $100 {}^{\circ}/_{\circ}$	Absorption: 50 %	Absorption: 100 °/0	Absorption: $50 ^{\text{o}}/_{\text{o}}$			
2600 2620 2640 2660 2680 2700	1 2 3 4 5 7	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 0.021 & 0.02 & 0.02 \\ 0.042 & 0.05 & 0.063 & 0.07 \\ 0.063 & 0.07 & 0.084 & 0.09 \\ 0.106 & 0.12 & 0.148 & 0.17 \\ \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
2710 2720 2730 2733	$\overset{8}{\overset{15}{\overset{15}{\sim}-\infty}}_{\infty}$	$ \begin{array}{c c c} 0.418 & 0.59 \\ 0.782 & 1.65 \\ > 0.782 & > 1.65 \\ 1.000 & - \end{array} $	$\begin{array}{c c c} 0.209 & 0.25 \\ 0.391 & 0.54 \\ 0.500 & 0.75 \end{array}$	$\begin{array}{c ccc} 0.169 & 0.20 \\ 0.317 & 0.41 \\ > 0.317 & > 0.41 \\ 1.000 & - \end{array}$	$\begin{array}{c c c} 0.085 & 0.10 \\ 0.158 & 0.19 \\ > 0.158 & > 0.19 \\ 0.500 & 0.75 \end{array}$			

Tabelle VII.

Ein Vergleich dieser Zahlen mit den graphischen Darstellungen im Anhang zeigt einen, der erwähnten Depression in den Beobachtungen sehr ähnlichen Verlauf. Eine volle Übereinstimmung ist natürlich nicht zu erwarten, da die gemachten Voraussetzungen nicht genau mit den in den Sternspektren auftretenden Bedingungen sich decken; besonders ist dabei hervorzuheben, daß gerade in den Spektralklassen, um die es sich hauptsächlich handelt, die Wasserstofflinien gewöhnlich sehr verwaschen und unscharf sind. Immerhin wird die Erscheinung in ihren Grundzügen so befriedigend dargestellt, dafs wir wohl ein Recht haben, zu behaupten: Die bei den Sternen mit kräftigen Wasserstofflinien auftretenden systematischen Abweichungen zwischen den Wellenlängen $\lambda = 400 \,\mu\mu$ und 365 $\mu\mu$ sind nicht als eine Abweichung von der schwarzen Strahlung aufzufassen. wie sie das Plancksche Gesetz voraussetzt, sondern lediglich eine lokale Absorptionserscheinung, welche durch die Wasserstoffserie hervorgerufen wird. Zu einer Temperaturbestimmung können allerdings diese Teile des Spektrums trotzdem nicht herangezogen werden, da es wegen des individuellen Verhaltens der Linien in einem jeden Stern unmöglich ist, streng geltende Korrektionen zu berechnen. Wir sind demnach zur Ableitung

[41] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 105

der Temperaturen im wesentlichen auf die Intensitätsmessungen zwischen den Wellenlängen 400 $\mu\mu$ und 500 $\mu\mu$ angewiesen, für welches Intervall die Vorbedingungen für die Anwendbarkeit der Planckschen Formel erfüllt scheinen.

Der Winkel, den die Horizontale mit der die Beobachtungen zwischen $\lambda = 400 \ \mu\mu$ und 500 $\mu\mu$ darstellenden Geraden einschließt, gibt bei Benutzung der Planckschen Gleichung ein Maß für die Temperaturunterschiede der Gestirne ab.

Zunächst sind nun alle Sterne nach einer "Temperaturskala" geordnet worden, ohne daß die effektiven Temperaturen selbst bestimmt worden wären; es geschah dies durch möglichst genaue Messung des genannten Winkels. Zeigten die Beobachtungen für einen Stern ein Ansteigen der Geraden über die Horizontale im Sinne der abnehmenden Wellenlängen, d. h. war der Stern heißer wie die Sterne der durch die Horizontale repräsentierten II. Mauryschen Spektralklasse, so wurden die Winkel negativ gezählt. Diese Messungen haben dreimal unabhängig voneinander stattgefunden; die Unsicherheit der einzelnen Messung im Winkelmaßs ausgedrückt, dürfte etwa 2.°5 betragen. Als Resultat ergibt sich das folgende kleine Täfelchen (S. [42]), in dem die Sterne nach steigender Winkelgrößse, also nach sinkenden Temperaturen angeordnet sind.

Aufser dem Winkel wird darin auch das sich ergebende "Intensitätsgefälle" von $\lambda = 500 \,\mu\mu$ bis $\lambda = 400 \,\mu\mu$ in Größenklassen mitgeteilt, wobei der Horizontalen (Maurytypus II) der Wert 0^{mg} entspricht. Diese Größen, die eine Art "Farbtönung" der betreffenden Sterne darstellen, bilden das Material zu einem direkten Vergleich der beobachteten Intensitätsunterschiede mit der Planckschen Strahlungsformel.

Es soll nun versucht werden, im Anschluß an diese Temperatur-Serie und unter Zugrundelegung eines wahrscheinlichen Wertes für die Sonnentemperatur effektive Temperaturen für die anderen Gestirne abzuleiten.

Die effektive Temperatur der Sonne ist von einer großen Reihe von Beobachtern unter Anwendung verschiedener Methoden bestimmt worden. Eine ausführliche Zusammenstellung und teilweise Neureduktion hat Herr Scheiner¹) gegeben; die von ihm mitgeteilten Zahlen gruppieren sich um einen Mittelwert von etwa 6100[°] abs.

Wenn die Sonne tatsächlich strahlen würde, wie ein schwarzer Körper bestimmter Temperatur, so dürfte die Methode, nach welcher ihre

Nova Acta CI. Nr. 2.

¹) Scheiner, "Strahlung und Temperatur der Sonne" (1899). Ferner: Publikationen d. Astrophys. Observatoriums zu Potsdam. Nr. 55 (1908).

¹⁴

effektive Temperatur ermittelt wird, keine Rolle spielen. Ob man die Temperatur aus Messungen der Gesamtstrahlung berechnet mit Hilfe des Stephanschen Gesetzes, oder aus der Wellenlänge gröfster Intensität nach dem Paschen-Wienschen Verschiebungsgesetz, oder aus der spektralen Energieverteilung unter Anwendung der Planckschen Gleichung: Innerhalb der Messungsfehler müfsten alle Resultate übereinstimmen.

- · ·			•					
Bezeichnung	Winkel	Farb- tönung	Bezeichnung	Winkel	Farb- tönung	Bezeichnung	Winkel	Farb- tönung
 ξ Ursae mai. α Coronae γ Pegasi γ Cassiopeiae ε Orionis ≥ Orionis ζ Orionis ζ Persei β Eridani γ Orionis η Ursai mai. α Andromedae γ Ursae mai. α Canis mai. α Pegasi β Tauri ε Persei α Virginis δ Cygni β Aurigae α Lyrae β Orionis α Geminorum 	$\begin{array}{c} -2.^{\circ} 0\\ -2.0\\ -2.0\\ -1.5\\ -0.25\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ +0.25\\ +1.0\\ +1.5\\ +1.5\\ +2.5\\ +2.5\\ +2.5\\ +2.5\\ +2.75\\ +3.0\\ +3.25\\ +3.25\end{array}$	$\begin{array}{c} \begin{array}{c} & & \\ -0.08 \\ -0.07 \\ -0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ +0.01 \\ +0.04 \\ +0.04 \\ +0.07 \\ +0.07 \\ +0.07 \\ +0.07 \\ +0.07 \\ +0.11 \\ +0.11 \\ +0.11 \\ +0.13 \\ +0.14 \\ +0.14 \end{array}$	$\begin{array}{c} \alpha \ \text{Cygni} \\ \alpha \ \text{Leonis} \\ \varepsilon \ \text{Ursae mai.} \\ 12 \ \text{Can. venat.} \\ \beta \ \text{Ursae mai.} \\ \theta \ \text{Aurigae} \\ \beta \ \text{Arietis} \\ \gamma \ \text{Geminorum} \\ \theta \ \text{Arietis} \\ \gamma \ \text{Geminorum} \\ \theta \ \text{Persei} \\ \beta \ \text{Leonis} \\ \alpha \ \text{Ophiuchi} \\ \beta \ \text{Persei} \\ \delta \ \text{Leonis} \\ \delta \ \text{Cassiopeiae} \\ \alpha \ \text{Aquilae} \\ \alpha \ \text{Cephei} \\ \beta \ \text{Cassiopeiae} \\ \alpha \ \text{Canis min.} \\ \alpha \ \text{Persei} \\ \gamma \ \text{Bootis} \\ \gamma \ \text{Persei} \\ \epsilon \ \text{Bootis} \\ \alpha \ \text{Ursae min.} \\ \gamma \ \text{Cygni} \\ \end{array}$	$\begin{array}{r} + \ 3.^{\circ}25 \\ + \ 3.5 \\ + \ 3.75 \\ + \ 4.0 \\ + \ 4.75 \\ + \ 5.0 \\ + \ 5.25 \\ + \ 5.2 \\ + \ 5.25 \\ + \ 6.25 \\ + \ 6.25 \\ + \ 6.25 \\ + \ 6.25 \\ + \ 6.25 \\ + \ 10.0 \\ + \ 10.0 \\ + \ 10.0 \\ + \ 10.0 \\ + \ 10.0 \\ + \ 10.5 \\ + \ 23.75 \\ + \ 23.75 \\ + \ 24.5 \\ + \ 25.0 \\ + \ 25.75 \end{array}$	$\begin{array}{c} \mathrm{mg} \\ +0.14 \\ +0.15 \\ +0.16 \\ +0.17 \\ +0.20 \\ +0.21 \\ +0.22 \\ +0.23 \\ +0.24 \\ +0.27 \\ +0.28 \\ +0.37 \\ +0.44 \\ +0.44 \\ +0.44 \\ +0.74 \\ +0.79 \\ +0.89 \\ +1.10 \\ +1.10 \\ +1.11 \\ +1.17 \\ +1.21 \end{array}$	β Herculis \bigcirc α Aurigae γ Leonis η Draconis ε Cygni β Ophiuchi β Geminorum α Cassiopeiae α Serpentis γ Andromedae β Draconis ι Aurigae α Bootis α Ursae mai. ε Pegasi γ Aquilae α Arietis β Andromedae γ Draconis ι Cysae mai. ε Pegasi γ Aquilae α Arietis β Andromedae γ Draconis β Irsae min. α Orionis α Tauri	$\begin{array}{r} +25.^{\circ}75\\ +26.5\\ +29.5\\ +34.0\\ +35.0\\ +36.25\\ +37.25\\$	$\begin{array}{c} & & & \\ & +1.21 \\ & +1.25 \\ & +1.41 \\ & +1.69 \\ & +1.78 \\ & +1.83 \\ & +1.90 \\ & +1.90 \\ & +1.90 \\ & +1.90 \\ & +2.02 \\ & +2.10 \\ & +2.02 \\ & +2.10 \\ & +2.02 \\ & +2.10 \\ & +2.02 \\ & +2.41 \\ & +2.50 \\ & +2.63 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ & +2.41 \\ & +2.50 \\ & +2.42 \\ &$

Tabelle VIII.

Diese Bedingung scheint aber nicht erfüllt. Die in neuerer Zeit von den Herren Scheiner und Wilsing¹) einerseits, und Nordmann²) andererseits aus optischen spektralphotometrischen Messungen abgeleiteten effektiven Sonnentemperaturen (5130[°] und 5320[°]) liegen wesentlich tiefer, wie die früheren, meist auf Messung der Gesamtstrahlung beruhenden Werte. Eine deutliche Abweichung der Sonnenstrahlung von der Strahlung des schwarzen Körpers läfst sich auch darin erblicken, dafs die Anwendung der Planckschen Strahlungsformel auf die Energieverteilung im Sonnenspektrum zu ganz verschiedenen Temperaturen führt, je nach dem Wellen-

²) Comptes rendus. Vol. CXLIX. Nr. 23 (1909).

¹⁾ Publikationen d. Astrophys. Observatoriums zu Potsdam. Nr. 56 (1909).

[43] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 107

längengebiet, welches man untersucht (vgl. Goldhammer,¹) Abbot und Fowle²) und Abbot).³⁾

Ob diese Abweichungen in der Strahlung der Sonne selbst ihre Erklärung finden, oder auf systematischen Fehlerquellen der Beobachtungsmethoden beruhen, kann vorläufig nicht entschieden werden; doch halte ich es nicht für unwahrscheinlich, daß der mit der Wellenlänge variierende Einfluß der Absorptionslinien im Sonnenspektrum die Energieverteilung im Photosphärenspektrum in einer Weise verfälscht, die zur Deutung der auftretenden Unterschiede ausreicht.

Es entsteht also die Frage, welche effektive Sonnentemperatur wir der weiteren Reduktion unseres Beobachtungsmaterials am zweckmäßigsten zugrunde zu legen haben.

Da die verschiedenen Methoden abweichende Resultate liefern, so dürfte es für den vorliegenden Fall am richtigsten sein, diejenige Sonnentemperatur zu adoptieren, die sich aus einer möglichst verwandten Methode, also aus Energiemessungen im Sonnenspektrum ergibt, und zwar aus Messungen in dem gleichen Wellenlängengebiet, für das auch meine Messungen gelten, d. h. in dem Gebiet von $\lambda = 400 \ \mu\mu$ bis 500 $\mu\mu$.

Den Angaben von Herrn Abbot⁴) entnehme ich für die Wellenlängen 400 $\mu\mu$ und 500 $\mu\mu$ die entsprechenden Intensitätswerte 4345, resp. 6064. Die sich aus diesen Zahlen ergebende effektive Temperatur läßt sich leicht

mit Hilfe der im Anhang mitgeteilten Tafel für $\lg \left(e^{\frac{\tilde{\lambda}t}{\lambda t}}-1\right)$ finden.

Es mögen die zu den Wellenlängen λ_1 und λ_2 gehörigen Intensitäten mit I_1 und I_2 bezeichnet werden. Dann folgt aus der Planckschen Formel

$$\frac{I_1}{I_2} = \left(\frac{\lambda_1}{\lambda_2}\right)^{-5} \cdot \frac{\left(\frac{c}{e^{\frac{1}{\lambda_2 t}}} - 1\right)}{\left(\frac{c}{e^{\frac{1}{\lambda_1 t}}} - 1\right)}$$

oder, wenn man logarithmiert,

$$\lg \left(\frac{I_1}{I_2}\right) + 5 \lg \left(\frac{\lambda_1}{\lambda_2}\right) = \lg \left(e^{\frac{c}{\lambda_2 t}} - 1\right) - \lg \left(e^{\frac{c}{\lambda_1 t}} - 1\right).$$

Die linke Seite dieser Gleichung wird mit Hilfe der bekannten Größen $\lambda_1 \lambda_2$, $I_1 I_2$ ausgewertet; dann werden für die Wellenlängen λ_1 und λ_2

4) 1. c. p. 208.

 14^{*}

¹) Annalen der Physik (4). Bd. 25, p. 905-920 (1908).

²) Astrophysical Journal. Vol. XXIX. 4. (Mai 1909).

³) Astrophysical Journal. Vol. XXXIV. 3. (Oktober 1911).

aus der Tafel die zugehörigen Funktionswerte $\lg \left(e^{\frac{\lambda}{\lambda t}}-1\right)$ für verschiedene Temperaturen entnommen, die Differenzen gebildet und diese als Funktion der Temperaturen dargestellt. Aus der so entstehenden Kurve läfst sich die zu dem aus der linken Seite der Gleichung folgenden Differenzwert gehörige Temperatur direkt ablesen.

Die zur Reduktion meiner Messungen zu benutzende effektive Sonnentemperatur ergibt sich damit aus den oben angeführten Energiewerten zu

4950° abs.

Die weitere Ableitung der Temperaturunterschiede zwischen Sonne und Sternen aus meinen Beobachtungen ist nicht das Resultat einer strengen Ausgleichung nach dem Planckschen Strahlungsgesetz — einer Arbeit, die für 70 Sterne mit je 60 Einzelmessungen die Mühe keineswegs gelohnt hätte — sondern es ist in der folgenden Weise verfahren worden.

Wir können auf Grund der Planckschen Formel die "Farbtönung" (in Größenklassen ausgedrücktes Intensitätsverhältnis) zwischen zwei Wellenlängen λ_1 und λ_2 für alle Temperaturen berechnen, wobei uns die Tafel der lg $\left(e^{\frac{c}{\lambda t}}-1\right)$ wieder gute Dienste leistet. Setzen wir fest, daß die Farbtönungen unendlich heißer Strahlen für alle Wellenlängen gleich Null sein soll, und bezeichnen wir die in dieser Weise gezählten Farbtönungen als "absolute Farbtönungen" (F_A) , so wird

$$F_{A} = 2.5 \left[\lg \left(e^{\frac{c}{\lambda_{2}t}} - 1 \right) - \lg \left(e^{\frac{c}{\lambda_{1}t}} - 1 \right) \right] + 2.5 \left[\lg \lambda_{2} - \lg \lambda_{1} \right].^{1} \right]$$

Die absolute Farbtönung für 4950° zwischen den Wellenlängen $\lambda = 400 \ \mu\mu$ und 500 $\mu\mu$ ergibt sich damit zu 1^{mg}33.

$\frac{c}{T}$	Т	Farbtönung	$\frac{c}{T}$	<i>T</i>	Farbtönung	$\frac{c}{T}$	Т	Farbtönung
$\begin{array}{c} 0.00\\ 0.25\\ 0.50\\ 0.75\\ 1.00\\ 1.25\\ 1.50\\ 1.75\\ 2.00\\ 2.25\\ \end{array}$	$\infty \\ 57 400 \\ 28 700 \\ 19 150 \\ 14 350 \\ 11 500 \\ 9 600 \\ 8 200 \\ 7 200 \\ 6 400 \\ \end{cases}$	$\begin{array}{c} {}^{mg}\\ -1.33\\ -1.27\\ -1.19\\ -1.09\\ -0.97\\ -0.85\\ -0.74\\ -0.61\\ -0.48\\ -0.35\end{array}$	$\begin{array}{c} 2.50\\ 2.75\\ 2.90\\ 3.00\\ 3.25\\ 3.50\\ 3.75\\ 4.00\\ 4.25\\ 4.50\end{array}$	5700 5200 4950 4800 4400 $4100 3800 3600 3400 3200 $	$\begin{matrix} & {}^{mg}_{-0.21} \\ & -0.08 \\ & 0.00 \\ & +0.05 \\ & +0.19 \\ & +0.32 \\ & +0.46 \\ & +0.59 \\ & +0.73 \\ & +0.86 \end{matrix}$	$\begin{array}{r} 4.75\\ 5.00\\ 5.25\\ 5.50\\ 5.75\\ 6.00\\ 6.25\\ 6.50\\ 6.75\\ 7.00\end{array}$	$\begin{array}{c} 3 \ 000\\ 2 \ 850\\ 2 \ 700\\ 2 \ 600\\ 2 \ 500\\ 2 \ 400\\ 2 \ 300\\ 2 \ 200\\ 2 \ 100\\ 2 \ 050\end{array}$	$ \begin{array}{c} {}^{\mathrm{mg}}\\ +\ 1.00\\ +\ 1.14\\ +\ 1.27\\ +\ 1.41\\ +\ 1.54\\ +\ 1.68\\ +\ 1.81\\ +\ 1.95\\ +\ 2.08\\ +\ 2.22\\ \end{array} $

¹) Vgl. K. Schwarzschild, Aktinometrie der Sterne der B. D. bis zur Größe 7.5 in der Zone 0[°] bis + 20[°] Deklination. Teil B p. 30 (Abh. d. K. Ges. d. Wiss. z. Göttingen. Math.-phys. Kl. Bd. VIII Nr. 4. 1912).

[45] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Wir wollen die F_A zwischen 400 und 500 $\mu\mu$ für alle Temperaturen jetzt auf die Sonnentemperatur 4950° als Nullpunkt beziehen, indem wir alle F_A um 1.33 Größenklassen vermindern. Die höheren Temperaturen erhalten dabei negative, die tieferen positive Farbtönungen. Die vorstehende kleine Tabelle enthält die Zusammenstellung der so berechneten Farbtönungen für eine Reihe verschiedener Temperaturen zwischen 2000° und ∞ .

Andererseits sind aber in Tabelle VIII für die Sonne und alle gemessenen Sterne die charakteristischen Winkel der Temperaturskala zusammengestellt und daraus die entsprechenden Farbtönungen zwischen $\lambda = 400 \ \mu\mu$ und 500 $\mu\mu$ gegen den II. Maury-Typus gebildet. Wenn wir die dort abgeleiteten Werte ebenfalls um die Farbtönung der Sonne korrigieren, d. h. auch in diesem System die der Sonne entsprechende Farbtönung zum Ausgangspunkt wählen, dann läßt sich für jeden Stern innerhalb des Gültigkeitsbereiches der Planckschen Formel durch Interpolation der ihm zukommenden Farbtönung in die nach dieser Gleichung berechneten Werte die zugehörige effektive Temperatur bestimmen.

Die auf diese Weise abgeleiteten effektiven Sterntemperaturen T, resp. die Werte $\frac{c}{T}$, wo c = 14350 gesetzt ist, finden sich in Tabelle IX nach sinkenden Temperaturen zusammengestellt. Die einzelnen Spalten enthalten dort der Reihe nach: 1. die laufende Nummer des Beobachtungsprogramms; 2. die Bezeichnung des Objektes; 3. und 4. den Spektraltypus nach Maury und Vogel II; 5. die Farbtönung bezogen auf die Sonne; 6. und 7. die Werte $\frac{c}{T}$ und T nach meinen Beobachtungen; 8. und 9. die von den Herren Scheiner und Wilsing¹) abgeleiteten Werte für $\frac{c}{T}$ und T (wobei zu beachten ist, dafs für ihre Rechnung c = 14600 angenommen wurde; 10. Bemerkungen, die mir für die Charakterisierung des betreffenden Sternes von Wichtigkeit schienen.

Es ist bemerkenswert, dafs die der Grenztemperatur $t = \infty$ entsprechende Farbtönung von keinem einzigen Sterne überschritten wird. Wenn diese Tatsache auch kein Beweis dafür ist, dafs die Intensitätsverteilung in den Sternspektren eine derartige ist, wie sie die Plancksche Gleichung für schwarze Strahler verlangt, so können wir doch behaupten, dafs unser Material auch keine Veranlassung gibt, diese Formel für die Berechnung von effektiven Sterntemperaturen zu verwerfen.

Die Genauigkeit der Vergleichung zwischen Intensitätskurve des Sternes und Temperaturkurve betrug, im Positionswinkel gemessen, etwa

¹) l. c. p. 63-65.

N-	Pozoichnung	Spektrum	Spektrum	Farb-	(Roser	iberg)	(Potsdam)		Bemerkungen	
141.	Dezelenning	(Maury)	(Vogel II)	tönung	$\frac{c}{T}$	T	$\frac{c}{T}$	T	Demerkungen	
	 ξ Ursae mai. α Coronae γ Pegasi γ Cassiopeiae ε Orionis α Orionis 	VIII a VIII a b IV a L II a II a	$\begin{bmatrix} I & a_2 \\ I & a_2 \\ I & b \\ I & c \\ I & b $	$\begin{array}{r} & \text{ing} \\ -1.33 \\ -1.33 \\ -1.32 \\ -1.26 \\ -1.25 \\ -1.95 \end{array}$	$0.000 \\ 0.000 \\ 0.045 \\ 0.285 \\ 0.310 \\ 0.310 \\ 0.310 \\ 0.00$	∞ ∞ >400 000 50 000 46 000 46 000	$\frac{1.520}{1.640}$	9 600 8 900	Spectr. Dupl.	
	 δ Orionis ζ Orionis ζ Persei β Eridani γ Orionis η Ursae mai. α Andromedae 	II b II b III a IX b IV a IV b VIII P	Ib Ib Ib Ib Ib	-1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.25 - 1.24 - 1.21 -	$\begin{array}{c} 0.310\\ 0.310\\ 0.310\\ 0.310\\ 0.340\\ 0.435\\ 0.435\\ 0.435\\ \end{array}$	$\begin{array}{c} 46\ 000\\ 46\ 000\\ 46\ 000\\ 46\ 000\\ 42\ 000\\ 33\ 000\\ 33\ 000\end{array}$	1 995	8 000	Nähortsich Maury VII	
$\frac{1}{43}$ 33 70	α Andromedae γ Ursae mai. α Canis mai. α Pegasi	VIII b VIII b VII a VIII b	$\begin{array}{c} 1 a_2 \\ 1 a_2 \\ 1 a_2 \\ 1 a_2 \\ 1 a_2; 1 a_1 \end{array}$	-1.18 -1.18 -1.18 -1.18	0.435 0.520 0.520 0.520	$ \begin{array}{r} 33000 \\ 27500 \\ 27500 \\ 27500 \end{array} $	1.820	11 500	v vii	
$\frac{24}{17}$ $\frac{47}{20}$	β Tauri ε Persei α Virginis	VI a II a III b	Ib Ib Ib Ib	-1.16 -1.14 -1.14	$ \begin{array}{c} 0.575 \\ 0.625 \\ 0.625 \\ 0.625 \\ \end{array} $	$\begin{array}{c} 25\ 000\\ 23\ 000\\ 23\ 000\\ \end{array}$			"""" Speetr. Dupl.	
63 30 61 22	β Cygni β Aurigae α Lyrae β Orionis	VIIIa VIIIa VIIa VIIe	$\begin{array}{c} I a_1 \\ I a_2 \\ I a_2 \\ I b \end{array}$	-1.14 -1.13 -1.12 -1.11	$0.625 \\ 0.640 \\ 0.660 \\ 0.700$	$23\ 000$ $22\ 500$ $22\ 000$ $20\ 500$	1		Spectr. Dupl.	
$ \begin{array}{c} 34 \\ 66 \\ 37 \\ 44 \end{array} $	α Geminorum α Cygni α Leonis ε Ursae mai.	VIII a VIII c VI b VIII P.	$Ia_2 \\ Ia_2 \\ Ia_2?; Ib$	-1.11 -1.11 -1.10 -1.09	$0.700 \\ 0.700 \\ 0.720 \\ 0.745$	$\begin{array}{r} 20\ 500\\ 20\ 500\\ 20\ 000\\ 19\ 500 \end{array}$	1.555	9 400		
	12 Can. venat. β Ursae mai. ϑ Anrigae	VIII P. VIII a VIII P.	$I \begin{array}{c} \mathbf{I} \\ \mathbf{a}_1 \\ \mathbf{I} \\ \mathbf{a}_1 \\ \mathbf{I} \\ \mathbf{a}_1 \end{array}$	-1.08 -1.05 -1.04	$ \begin{array}{c} 0.765 \\ 0.830 \\ 0.855 \\ 0.855 \end{array} $	$ \begin{array}{r} 19\ 000 \\ 17\ 500 \\ 17\ 000 \\ 17\ 000 \\ \end{array} $	1.870	7 800	Nähertsich Maury VII	
9 32 15 42	β Arietis γ Geminorum δ Persei β Leonis	Xa VIII a Vb IX b	1 a ₂ I a ₂ I a ₂	-1.03 -1.02 -1.01 -0.98	0.875 0.900 0.920 0.990	$ \begin{array}{r} 16\ 500\\ 16\ 000\\ 15\ 500\\ 14\ 500 \end{array} $	1.415	10 300	27 27 39 IX	
	α Ophiuchi β Persei (Algol) δ Leonis	X b VI a IX b	$\frac{\mathbf{I} \mathbf{a}_2}{\mathbf{I} \mathbf{a}_2}$ $\mathbf{I} \mathbf{a}_2$	-0.97 -0.88 -0.81	1.010 1.200 1.350	$\begin{array}{c} 14\ 000\\ 12\ 000\\ 10\ 500 \end{array}$	2.060 2.115	7 100 6 900		
$\begin{array}{c}7\\64\\68\\2\end{array}$	δ Cassiopeiae α Aquilae α Cephei β Cassiopeiae	X a b X b X b XII a b	1 a ₂ Ia ₃ -IIa;Ia ₃ I a ₂ I a ₃	$ \begin{array}{r} -0.81 \\ -0.81 \\ -0.81 \\ -0.51 \end{array} $	$\begin{array}{c} 1.350 \\ 1.350 \\ 1.350 \\ 1.945 \end{array}$	$\begin{array}{c} 10\ 500 \\ 10\ 500 \\ 10\ 500 \\ 7\ 400 \end{array}$	2.060	7 100		
$ \begin{array}{r} 35 \\ 14 \\ 49 \\ 12 \end{array} $	α Canis min. α Persei η Bootis γ Persei	XII a XII a c XIV a XIV c	I a ₃ II a II a	-0.46 -0.36 -0.15 -0.15	2.040 2.225 2.620 2.620	$\begin{array}{c} 7 \ 000 \\ 6 \ 500 \\ 5 \ 500 \\ 5 \ 500 \\ 5 \ 500 \end{array}$	2.920	5000	Spect.Dupl.(XV+IX)	
51 8 65 56	ε Bootis α Ursae min. γ Cygni	XV e XIII a e XIII e	IIa-IIIa IIa-Ia ₃ II a	-0.11 -0.08 -0.04	2.695 2.750 2.820	$5300 \\ 5200 \\ 5100 \\ 5100 $	3.560 2.560		Spect. Dupl. (XV+VIII)	
21 38	\bigcirc α Aurigae γ Leonis	XIV a XIV a XIV a XV a	II a II a	-0.04 0.00 +0.16 +0.44	2.820 2.890 3.195 3.715	$ \begin{array}{r} 5100 \\ 4950 \\ 4500 \\ 3850 \end{array} $	$\frac{5.175}{2.850}$	±000 5130	Spectr. Dupl.	
	η Draconis ε Cygni β Ophiuchi β Geminorum α Cassiopeiae	XV a XV a XV a XV a	II a - III a II a - III a II a - III a	+ 0.50 + 0.58 + 0.65 + 0.65 + 0.65	$\begin{array}{c} 3.825 \\ 3.975 \\ 4.105 \\ 4.105 \\ 4.105 \\ 1.105 \end{array}$	$\begin{array}{c} 3 \ 750 \\ 3 \ 600 \\ 3 \ 500 \\ 3 \ 500 \\ 3 \ 500 \end{array}$	3.560 3.650 3.320	$\begin{array}{c} 4\ 100 \\ 4\ 000 \\ 4\ 400 \end{array}$		
	α Serpentis γ Andromedae	XVa XVc	II a - III a	$^{+0.65}_{+0.65}$	$\frac{4.105}{4.105}$	$\frac{3}{500}$ $\frac{500}{3}$	3.950	3 700		

[46]

Nr.	Bezeichnung	Spektrum (Maury)	Spektrum (Vogel II)	Farb- tönung	(Rose $\frac{c}{T}$	enberg) T	$\begin{array}{c c} (\text{Potsdam}) \\ \frac{c}{T} & T \end{array}$		Bemerkungen
$57 \\ 19 \\ 50 \\ 40 \\ 69 \\ 62 \\ 11 \\ 6 \\ 60 \\ 52 \\ 29 \\ 18 \\ 18 \\ 18 \\ 18 \\ 19 \\ 18 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10$	β Draconis ι Aurigae α Bootis α Ursae mai. ε Pegasi γ Aquilae α Arietis β Andromedae γ Draconis β Ursae min. α Orionis α Tanri	XIV a XV a XV a XV a XV a XV a XVI a XVI a XVI a XVII a	II a - III a II a - III a II a - III a II a - III a II a - III a	$\begin{array}{c} & & & \\ & + 0.77 \\ + 0.85 \\ + 0.94 \\ + 0.94 \\ + 1.16 \\ + 1.25 \\ + 1.38 \\ + 1.73 \\ + 1.92 \\ + 1.98 \\ + 2.04 \end{array}$	$\begin{array}{r} 4.325\\ 4.475\\ 4.640\\ 4.640\\ 5.050\\ 5.215\\ 5.455\\ 6.110\\ 6.450\\ 6.560\\ 6.635\end{array}$	$\begin{array}{c} 3 \ 300\\ 3 \ 200\\ 3 \ 100\\ 3 \ 100\\ 2 \ 850\\ 2 \ 750\\ 2 \ 650\\ 2 \ 350\\ 2 \ 250\\ 2 \ 200\\ 2 \ 150 \end{array}$	$\begin{array}{c} 4.170\\ 4.425\\ 4.425\\ 3.950\\ 5.040\\ 5.040\end{array}$	3 500 3 300 3 300 3 700 2 900 2 900	Nähertsich Maur. XVI

Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 111

2.°5. Diese für alle Spektralklassen ungefähr gleichbleibende Größe entspricht aber nicht einer für alle Sterne gleichbleibenden Unsicherheit in der Temperaturbestimmung selbst, sondern letztere wächst gegen die hohen Temperaturen äußerst stark an. Dagegen wird der mittlere Fehler sehr nahe gleich für die Werte $\frac{c}{T}$. (Bei Anwendung der Wienschen Formel würde der mittlere Fehler für alle Werte $\frac{c}{T}$ vollständig gleich werden, die Plancksche Formel bedingt eine kleine Abweichung für sehr kleine Werte von $\frac{c}{T}$.) Der oben erwähnten Unsicherheit von 2.°5 entspricht in den $\frac{c}{T}$ eine Unsicherheit von 0.19, in den Farbtönungen eine Unsicherheit von 0.^{mg}1.

Die von mir abgeleiteten effektiven Temperaturen bewegen sich für die heifsesten Sterne in der Nähe der Unendlichkeitskurve, die tiefsten vorkommenden Temperaturen sind von der Größenordnung 2000°. Mit der Einteilung nach Spektraltypen zeigt die Temperaturfolge einen im großen und ganzen übereinstimmenden Verlauf, der weiter unten noch im einzelnen zu erörtern sein wird.

Auch die in Potsdam abgeleitete Temperaturfolge scheint im allgemeinen im gleichen Sinne zu verlaufen. Dagegen ist das starke Auseinanderfallen der absoluten Beträge für die effektiven Temperaturen aus Potsdam und nach meinen Beobachtungen an den Enden der Serie sehr auffällig.

Die beiden Reihen, die für Temperaturen um 5000° herum nahe zusammenfallen, zeigen an den Enden Abweichungen in dem Sinne, daß die tiefen Temperaturen in Potsdam höher, die hohen Temperaturen dort tiefer herauskommen, als nach meinen Messungen. Die Unterschiede zwischen den Enden der Serie betragen in $\frac{c}{T}$ ausgedrückt 2.5 bis 3.0 Einheiten, was

[47]

für die Farbtönung zwischen $\lambda = 400 \ \mu\mu$ und 500 $\mu\mu$ rund 1—1½ Gröfsenklassen ausmachen würde. Die Unterschiede sind so kräftig, daß sie keinesfalls den Beobachtungen zur Last gelegt werden können, falls diese nicht durch systematische Fehlerquellen entstellt sind.

Stellen wir die Werte $\frac{c}{T}$ (Potsdam) als Funktion der $\frac{c}{T}$ (Rosenberg) dar, so gruppieren sich die Werte sehr nahe um eine Gerade, die mit der Abszissenachse einen Winkel von rund 32° einschliefst. Da die Gröfsen $\frac{c}{T}$ den Farbtönungen sehr nahe proportional sind, so können wir also die Potsdamer Werte und die aus meinen Beobachtungen abgeleiteten Zahlen in gute Übereinstimmung bringen, wenn wir entweder die Potsdamer Helligkeitsskala im Verhältnis 10:6.2 erweitern, oder die meinige im umgekehrten Verhältnis zusammendrücken.

Auf welcher Seite der Fehler zu suchen ist, muß vorläufig dahingestellt bleiben. Von Interesse für diese Untersuchungen ist auch ein Vergleich mit einigen von anderer Seite abgeleiteten Resultaten, die hier angeführt werden mögen.

Herr Nordmann¹) hat mit seinem Photomètre hetérochrome Intensitäten von Sonne, Fixsternen und von irdischen schwarzen Strahlern gemessen und nach der Planckschen Formel effektive Sterntemperaturen abgeleitet. Es sind im ganzen für 15 Sterne diese Temperaturen berechnet, deren Resultate ich hier mitteilen möchte. Den Spektraltypus nach Maury habe ich hinzugefügt, soweit er im Band XXVIII, 1 der Harvard College Observatory Annals enthalten war.

Bezeichnung	Spectr.	T	Bezeichnung	Spectr.	T	Bezeichnung	Spectr.	Т
ę Persei š Cephei δ Cephei (Min.) Ο γ Cygni	XIX a XIV a c XIV a XIII c	$\begin{array}{c} 2\ 870\\ 4\ 260\\ 4\ 550\\ 5\ 320\\ 5\ 620 \end{array}$	δ Cephei (Max.) γ Tauri RX Herculis α Ursae min. α Lyrae	XIVac XIIIac VIIa	$\begin{array}{r} 6 \ 900 \\ 7 \ 250 \\ 7 \ 350 \\ 8 \ 200 \\ 12 \ 200 \end{array}$	β Persei γ Lyrae ε Persei δ Persei λ Tauri	VI a VII a II a V b IV b	$13 300 \\ 14 500 \\ 15 200 \\ 18 500 \\ > 40 000$

Die effektiven Temperaturen liegen zwischen 2870° und $> 40000^{\circ}$; die heißsesten Sterne übersteigen demnach weit die aus den Potsdamer Beobachtungen sich ergebenden höchsten Temperaturwerte; die tiefen Temperaturen sind von der gleichen Größenordnung, wie die Potsdamer Zahlen.

1) Comptes rendus. Vol. CXLIX. Nr. 23 (1909).
[49]Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 113

Eine Bestimmung effektiver Sterntemperaturen läßt sich auch aus Vergleichung der photographischen Sternhelligkeiten der Göttinger Aktinometrie mit den optisch gemessenen Helligkeiten der Sterne ableiten: Herr Schwarzschild hat das getan sowohl für die Vergleichung mit der "Potsdamer Durchmusterung" als auch für die Vergleichungen im "Harvard-System", indem er aus der Abbotschen Energiekurve des Sonnenspektrums die Sonnentemperatur für das betrachtete Spektralgebiet zu 5900° ableitete. Für die Vergleichung mit den Potsdamer Helligkeiten ergeben sich damit für die heißsesten Sterne Temperaturen, die der Unendlichkeitsgrenze nahe kommen, die tiefsten Temperaturen liegen zwischen den von Wilsing und Scheiner gegebenen Zahlen und den meinigen; nach Vergleichung mit den Harvarder Messungen liegen die höchsten effektiven Sterntemperaturen etwa bei 15000°, die niedersten etwa bei 2700°. Herr Schwarzschild hat die für die optischen Messungen wirksame Wellenlänge zu 570 µµ angenommen. Nun unterscheidet sich aber gerade diese Größe für die beiden photometrischen Systeme erheblich; für die Potsdamer Messungen ist die effektive Wellenlänge noch nicht scharf bestimmt, doch scheint sie in der Nähe von 590 µµ zu liegen (vgl. S. [24] dieser Arbeit); für das Harvardsystem hat sich aus meinen Messungen ergeben (vgl. S. [29]), dafs wahrscheinlich die effektive Wellenlänge bei 550 µµ anzunehmen sein wird, wodurch die Temperaturen in die Höhe schnellen würden.

Es scheint sich also das Vorkommen der sehr hohen Temperaturen für die heißsesten Sterne zu bestätigen. Dabei ist aber zu bedenken, daß die von Wilsing und Scheiner, und auch von Nordmann abgeleitete Sonnentemperatur wesentlich niedriger ist als diejenige, die sich aus den Abbotschen Zahlen für das optisch wirksame Spektralgebiet ergeben würde. (Für das von Wilsing und Scheiner benutzte Gebiet zwischen 448 $\mu\mu$ und 638 µµ liefern die Abbotschen Werte rund 6500°.) Legt man diese Temperatur zugrunde, an Stelle der Temperatur des schwarzen Strahlers, so erreichen auch die höchsten Temperaturen von Wilsing und Scheiner Beträge, die sich in der Nähe der Unendlichkeitsgrenze bewegen.

Es läfst sich im Augenblick nicht entscheiden, welcher von den Werten zu bevorzugen sein wird. Jedenfalls scheint aus dem Vergleich der hier mitgeteilten Zahlen mit Sicherheit hervorzugehen, dafs alle Messungen für die heifsesten Sterne Temperaturen liefern, die sich der Unendlichkeitsgrenze nähern, sobald wir diejenige Sonnentemperatur zugrunde legen, die sich aus der Abbotschen Energiekurve für jedes Wellenlängengebiet ableiten läfst. Eine einheitliche Nova Acta CI. Nr. 2.

Sonnentemperatur zur Reduktion von Messungen zu benutzen, die sich auf verschiedene Spektralgebiete beziehen, scheint nicht gestattet zu sein.

Durch die Annahme einer anderen Sonnentemperatur wird aber der Unterschied in der Größe des Skalenwertes zwischen den Potsdamer Messungen und meinen eigenen nicht erklärt. Doch lassen sich hier auch andere Ursachen als reine Strahlungsunterschiede denken, welche die Intensitätskurven der Sterne bei fortschreitender Abkühlung nur drehen, ohne dafs der geradlinige Charakter verloren geht. Wir wissen, dafs beim Übergang von höheren Spektralklassen auf die tieferen eine Reihe von neuen Absorptionslinien aufzutreten pflegt, deren Zahl in der Regel mit abnehmender Wellenlänge wächst. Bei einer bestimmten Gesetzmäßigkeit in dieser Zunahme kann es nicht als ausgeschlossen bezeichnet werden, dafs die hierdurch in dem extrafokalen Sternspektrum hervorgerufenen Absorptionserscheinungen einen Gang von der Form $\frac{K \circ nst.}{2}$ befolgen. Eine derartige Fehlerquelle würde sowohl in unsere Messungen voll eingehen und sich in einer Dehnung der ganzen Helligkeitsskala äufsern, als auch alle anderen Ergebnisse, die nicht auf sorgfältigster Auswahl ganz linienfreier Spektralbezirke beruhen, im gleichen Sinne verfälschen können - so die Ergebnisse aus der Vergleichung zwischen optischen und photographischen Gesamthelligkeiten, so die mit dem Photomètre hetérochrome angestellten Beobachtungen, bei dem die spektrale Auswahl durch selektiv absorbierende Medien erfolgt.

Aus dem bis jetzt vorliegenden Material läfst sich nicht entscheiden, ob die Fehlerquelle, welche die eine oder die andere Reihe entstellen mufs, den Göttinger oder den Potsdamer Resultaten zur Last fällt. Bevor besondere Untersuchungen darüber Klarheit geschafft haben, schweben beide Skalen — und damit die absoluten Beträge der effektiven Temperaturen in der Luft, und als wichtigstes Resultat beider Arbeiten bleibt die Einreihung der gemessenen Sterne in eine Serie, die einen Vergleich zwischen den qualitativen spektralen Eigenschaften und dem Entwicklungsstadium der Sterne zu ziehen gestattet.

Um diese Beziehungen eingehend prüfen zu können, habe ich in den Tabellen X und XI alle von mir berechneten Werte $\frac{c}{T}$ mit den zugehörigen Spektralklassen nach Mifs Maury und nach Herrn Vogel zusammengestellt, und innerhalb der einzelnen Klassen nach steigenden Werten geordnet. Das arithmetische Mittel für jede Klasse ist am Fuß der einzelnen Kolumnen

[51] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 115

gebildet. Die in Klammern gesetzte Zahl bedeutet die Anzahl der Einzelwerte, die zur Bildung des Mittels beigetragen haben.

Es war mir von Interesse, das Verhalten der Messungen von Wilsing und Scheiner in Beziehung zu den beiden Spektraleinteilungen ebenfalls zu studieren, und zwar nicht nur für die wenigen Sterne, die unseren Arbeiten gemeinsam sind, sondern für das ganze dort gesammelte Material. Wilsing und Scheiner selbst haben auf den Seiten 66 und 67 ihrer Arbeit sowohl alle einzelnen, von ihnen abgeleiteten effektiven Sterntemperaturen nach den Klassen der zweiten Vogelschen Spektraleinteilung geordnet, als auch die daraus folgenden Mittelwerte, und kommen zu dem Schlußs, daß das Prinzip dieser Einteilung als ein entwicklungsgeschichtliches durch ihre Zahlen bestätigt wird.

Nun hat man aber offenbar nicht aus den Temperaturen selbst, sondern aus den Werten $\frac{c}{T}$ das Mittel zn nehmen, weil nur die letzteren gleiche mittlere Fehler haben. Ich habe daher für alle dort mitgeteilten Beobachtungen die Werte $\frac{c}{T}$ gebildet, wobei $c = 14\,600$ gesetzt wurde, und habe die so ermittelten Werte in der gleichen Weise, wie meine eigenen, nach Spektralklassen geordnet. Tabelle XII ist nach der Mauryschen Einteilung, Tabelle XIII nach Vogel II angeordnet.

Diese Zahlen lassen infolge ihrer linearen Beziehung zu den von mir abgeleiteten einen direkten Vergleich zwischen beiden Arbeiten zu. Aus den unserem Programm gemeinsamen Sternen folgt im Mittel:

$$rac{c}{T}$$
 (Rosenberg) $= rac{10}{6.2} \cdot rac{c}{T}$ (Scheiner, Wilsing) $-$ 2.00.

Wir wollen uns zunächst mit der Mauryschen Klassifikation beschäftigen. Das Grundprinzip dieser Einteilung ist das folgende: Die Klassen I-V umfassen die Orion- oder Heliumsterne, VI bildet einen Übergang zu der nächsten Gruppe, die in den Klassen VII-XI die Sterne mit vorherrschender Wasserstoffserie vereinigt. Typus XII bildet wieder eine Übergangsform zwischen dieser Gruppe und der folgenden, die in den Klassen XIII-XVI Sterne mit den charakteristischen Metallinien unserer Sonne zusammenfafst. Die folgenden Klassen XVII-XX zeichnen sich durch allmählich immer stärker werdende Bandenbildung aus. Innerhalb der einzelnen Gruppen sind die Klassen so angeordnet, daß jede einzelne eine Ubergangsform zwischen den zwei benachbarten darstellt. Eine besondere Klasse ist den Sternen mit hellen Wasserstofflinien zugewiesen, von der γ Cassiopeiae als einziger Vertreter in dem Verzeichnis von Mifs Maury unter der Bezeichnung L fungiert.

	[52]		16 Hans Rosenberg,		116		
	r	0.285	$\begin{array}{c} 0.285\\(1)\end{array}$				
	I						
	Π	$\begin{array}{c} 0.310\\ 0.310\\ 0.310\\ 0.625^{1}\end{array}$	0.373 (5)				
	III	0.310	0.468 (2)				
	\mathbf{IV}	0.045 0.340 0.435	0.273 (3)				
	V	0.920	$ \begin{array}{c} 0.920 \\ (1) \end{array} $		I.e 0.285	0.28ŭ	$\binom{0.285}{(1)}$
	IA	0.575 ⁽¹⁾ 0.720 0.720 1.200	0.799 (4)		I b 0.045	$\begin{array}{c} 0.045\\ 0.310\\ 0.320\\ 0.$	$ \begin{array}{c} 0.432 \\ (13) \end{array} $
	ΝII	0.520 0.625 0.660	(3) (0.602)	E	I a ₁ 0.520	$\begin{array}{c} 0.520\\ 0.625\\ 0.830\\ 0.855\\ 1.350\end{array}$	$(6)^{0.824}$
Tabe	VIII	$\begin{array}{c} 0.000\\ 0.000\\ 0.520\\ 0.520\\ 0.520\\ 0.700\\ 0.700\\ 0.700\\ 0.700\\ 0.855\\ 0.855\\ 0.855\\ 0.855\\ 0.900\\ \end{array}$	0.585 (13)	abelle	I a ₂	$\begin{array}{c} 0.000\\ 0.000\\ 0.435\\ 0.520\\ 0.$	$ \begin{array}{c} 0.698 \\ (16) \end{array} $
le X	IX	0.310 0.990 1.350	0.883 (3)) IX	I a ₃	1.350 2.040	
(Maur)	Х	0.875 ¹) 1.010 1.350 1.350 1.350	1.187 (5)	Vogel	Ia ₈ -IIa 1.350	1.350 2.750	2.050 (2)
<i>y</i>).	IX			II).	11 a 2.225	2.225 2.620 2.820 3.195 195	2.750 (5)
	XII	1.945 2.040 2.225	2.070 (3)		11 a - 11) 2.695	2.695 4.105 5.215 5.215	4.281 (9)
	XIII	2.750 2.820	2.785 (2)		[a] III a 6.560	6.56	6.56 (1)
	XIV	2.620 2.820 4.325 2.890 4.325	3.130 (5)) .		0
	XV	$\begin{array}{r} 2.6951\\ 2.8201\\ 3.715\\ 3.715\\ 3.975\\ 4.105\\ 4.105\\ 4.105\\ 4.105\\ 4.105\\ 4.105\\ 4.105\\ 4.105\\ 4.640\\ 4.640\\ 4.640\\ 5.215\end{array}$	$\frac{4.356}{(15)}$				
-	IAX	6.110 6.450 6.635	6.398 (3)				
	XVII		5.455 (1)				
	XVIII	6.560	6.560 (1)				

		2	9.					
	XD	9°	5.06					
	ПИХ	5.040 5.215 5.215	4.988 (3)					
	XVII	5.040 5.040	4.873 (3)					
	IVX	5.215 5.215 5.215	4.805 (4)					
	XV	$\begin{array}{c} 22865\\ 22865\\ 32110\\ 32045\\ 32045\\ 32045\\ 32045\\ 32045\\ 32045\\ 32045\\ 32045\\ 32055\\ 32565\\ 32480\\ 32480\\ 32480\\ 32456\\ 32465\\$	3.641 (33)					
	XIV	22.22.22 25.22 25.25 25.	3.330 (10)					
	XIII							
ry).	IIX	22.22.22.22.22.22.22.22.22.22.22.22.22.	2.620 (5)					
(Mau	XI	2.020 2.2210 2.2355 2.4135 2.4135 2.6155 2.61555 2.61555 2.61555 2.615555 2.615555 2.61555555555555555555555555555555555555	2.259 (7)					
e XH	X	1900 1900 1900 1900	2.055 (2)					
labell	IXI	11400 1140 1140 1140 1140 1140 1140 114	1.818 (7)					
Ľ	VIII	$\begin{array}{c} 1.1270\\ 1.520\\ 1.520\\ 1.605\\ 1.825\\ 1.825\\ 1.825\\ 1.825\\ 1.825\\ 1.825\\ 1.825\\ 1.825\\ 1.875\\ 1.875\\ 1.875\\ 1.875\\ 1.875\\ 1.895\\ 1.875\\ 1.895\\ 1.875\\ 1$	$ \begin{array}{c} 1.680 \\ (11) \end{array} $					
	ΝI	1.490 1.535 1.570 1.660 1.660 1.680 1.700	1.606 (6)					
	IA	1.365 1.555 1.570 1.740 1.740	1.544 (5)					
	Α	2.060	1.760 (2)					
	M	1.640	1.640 (1)					
	111	202	2.395(1)					
	11	1.570	$ \begin{array}{c} 1.570 \\ (1) \end{array} $					
	·	1.140	$ \begin{array}{c} 1.140 \\ (1) \end{array} $					

[53]

Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Ib		I a ₁	I a ₂	1	I a ₃	Ia ₃ -IIa	IIa	II a - III a '	IIIa
1.140 1.460 1.555 1.570 1.570 1.570 2.055 2.395		1.270 1.365 1.740 1.870	$\begin{array}{c} 1.405\\ 1.415\\ 1.415\\ 1.490\\ 1.490\\ 1.520\\ 1.535\\ 1.605\\ 1.605\\ 1.605\\ 1.600\\ 1.680\\ 1.700\\ 1.680\\ 1.700\\ 1.825\\ 1.870\\ 1.825\\ 1.870\\ 2.055\\ 2.435\\ 2.435\\ \end{array}$		2.000 2.210 2.245 2.355 2.610	1.920 2.055 2.115 2.280 2.320 2.520 2.560 2.655 2.655 2.755	2.395 2.560 2.655 2.810 2.980 3.480	$\begin{array}{c} 2.865\\ 2.980\\ 3.045\\ 3.110\\ 3.175\\ 3.320\\ 3.$	3.395 4.710 4.710 4.870 5.040 5.040 5.215 5.215
(9)		(4)	(22)	1	2.284 (5)	(11)	2.829 (7)	(11) 3.720	4.785 (9)

Tabelle XIII (Vogel II).

Vergleichen wir jetzt die in den Tabellen X und XII zusammengestellten Werte mit den Spektralklassen, so sehen wir, daß den Klassen I—VI auch mit die kleinsten Werte $\frac{c}{T}$, also die höchsten Temperaturen zukommen. Bis zu IV ist kein reeller Unterschied nachzuweisen, V und VI deuten entschieden schon ein fortgeschrittenes Entwicklungsstadium an; die absoluten Beträge der effektiven Temperaturen liegen nach Rosenberg zwischen > 400000° und 12000°, nach Wilsing und Scheiner zwischen 12800° und 7100°. [Der einzige zum Typus III gehörige Stern bei W. [55] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 119

und S. — o Persei mit 6100° — ist als Doppelstern verdächtig. Vgl. auch die Bemerkung l. c. p. 64.]

Die Klassen VII-IX scheinen mir keine Weiterentwicklung der ersten Gruppe zu tieferen Temperaturen darzustellen, sondern eher einer koordinierten Serie anzugehören.¹) Die Temperaturen bewegen sich nach Rosenberg zwischen den höchsten, überhaupt vorkommenden Werten (∞) und 10500°, nach Wilsing und Scheiner zwischen 11500° und 6500°, umfassen also etwa das gleiche Gebiet, wie die Helium-Zwischen Klasse VII und VIII vermag ich überhaupt keinen sterne. Temperaturunterschied reeller Natur festzustellen, Klasse IX deutet schon leise eine geringe Abkühlung an. Von Klasse X ab besteht zwischen Spektraltypus und Temperaturabnahme eine durchaus befriedigende Übereinstimmung, indem im Mittel die Temperaturen für jede folgende Klasse niedriger ausfallen als für die vorhergehende. Die Grenztemperaturen in den einzelnen Klassen greifen teilweise allerdings stark ineinander über: doch scheint mir in dieser Tatsache nichts unerwartetes zu liegen. Denn der Spektraltypus ist im allgemeinen nicht als starres Gebilde aufzufassen, sondern als zwischen gewissen Grenzen variable Übergangsform, deren genaue Fixierung in der Nähe der Grenze unmöglich wird.

Ist das Temperaturbereich in den einzelnen Spektralklassen ein sehr ausgedehntes und das Beobachtungsmaterial ein relativ geringes, so wird den Mittelwerten in den einzelnen Klassen nur eine sehr bedingte Bedeutung beizumessen sein; dennoch schien es mir von Interesse, diese Mittelwerte der $\frac{c}{rr}$ als Funktion des Spektraltypus darzustellen.

Die folgende graphische Darstellung (S. [56]) enthält als Abszissen den Spektraltypus nach Maury, als Ordinaten die Werte $\frac{c}{T}$. Das Material bilden sämtliche Mittelwerte der Tabellen X und XII, nachdem die Scheiner-Wilsingschen Zahlen mit Hilfe der Formel von Seite [51] auf "Rosenberg" reduziert worden waren. Die Zahlen sind auf diese Weise gut vergleichbar, trotzdem sie sich auf die Beobachtungen von durchaus verschiedenen Sternen stützen.

Die Kurve zeigt zunächst eine durchaus befriedigende Übereinstimmung beider Reihen, die bis ins einzelne geht, so dafs damit die innere Sicherheit der Messungen eine erfreuliche Bestätigung erfährt.²) Die aus den Einzel-

¹) Vgl. A. Pannekoek. The relation between the spectra and the colours of the stars. (Koninkl. Akad. van Wetenschappen te Amsterdam 1906.)

 ²) Die Abweichung bei Typus III beruht auf einem einzigen in Potsdam gemessenen Stern. Vgl. auch die Bemerkung bei Wilsing und Scheiner, S. 64, Stern Nr. 12.

werten gezogenen Schlüsse ergeben sich in annähernd gleicher Weise auch aus den Mittelzahlen. Abweichend von den Resultaten anderer Arbeiten ergibt sich aus beiden Reihen, dafs der Zusammenhang zwischen der Mauryschen Spektraleinteilung und den $\frac{c}{T}$ nicht linear ist. Offenbar ist die fortschreitende Entwicklung der Sterne in den Klassen VIII—XVI durch weniger augenfällige spektrale Unterschiede gekennzeichnet, als am Anfang und am Ende der Reihe.

Spektraleinteilung nach Mifs Maury.

Genau in der gleichen Weise, wie die Maurysche Einteilung, habe ich auch die zweite Vogelsche Klassifizierung an der Hand der in den Tabellen XI und XIII gegebenen Werte untersucht. In guter Übereinstimmung scheint mir aus beiden Reihen hervorzugehen: Die höchsten Temperaturen kommen den Klassen Ib und Ic zu, welche durch die Heliumsterne und durch die Sterne mit hellen Wasserstofflinien repräsentiert werden. Diesen parallel laufen die Klassen Ia₁ und Ia₂, in denen die Sterne dem gleichen Temperaturbereich angehören, mit dem einzigen

[57] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 121

Unterschied, dafs sich die Klasse Ia₂ noch zu wesentlich tieferen Temperaturen erstreckt als die Klassen Ic, Ib und Ia₁. Von der Unterabteilung Ia₁ möchte ich nicht unbedingt annehmen, dafs sie ein früheres Stadium im Entwicklungsgang der Sterne darstellt als Ia₂. Denn selbst wenn die für Klasse Ia₁ geltenden Mittelwerte der $\frac{c}{T}$ geringer wären wie für Klasse Ia₂ (bei der Scheiner-Wilsingschen Reihe ist dies der Fall), so rangieren doch die einzelnen Temperaturwerte für beide Klassen in

^C /7		+	Rosen Vilsing	berg und	Sche	iner			
50									-
			-						0
5.0									
4.0									
3.0									
2.0									
1.9			+	2					
0.0			•						
	<u>c 1</u>	6]	a, 1	a ₂ 1	a ₃ Ia	Ila II	a Ila	∭a II	la-

Spektraleinteilung nach Vogel.

annähernd gleichen Grenzen. Die spektralen Unterscheidungsmerkmale der beiden Unterabteilungen I a_1 und I a_2 dürften demnach vielleicht auf andere Ursachen zurückzuführen sein, als auf Temperaturdifferenzen. Von Klasse I a_3 ab ist das Fortschreiten der Spektralklasse mit der Temperaturabnahme in guter Übereinstimmung.

Wie für die Maurysche Klassifikation habe ich auch für die Vogelsche Spektraleinteilung den Zusammenhang zwischen Spektralklasse und dem zugehörigen Mittelwert der $\frac{c}{T}$ graphisch dargestellt, nachdem die Pots-

Nova Acta CI. Nr. 2.

122 Hans Rosenberg, Photographische Untersuchung der Intensitätsverteilung usw. [58]

damer Werte wieder auf Rosenberg reduziert worden waren. Ich habe dabei den Übergangsbezeichnungen Ia_3 —II a und II a—III a das Recht eigener Spektralklassen eingeräumt, da diese Bezeichnungen wenigstens so häufig vorkommen, wie die reine Klassenbezeichnung und man also mit Recht wird annehmen dürfen, dafs sie auch durch ähnlich charakteristische Unterscheidungsmerkmale ausgezeichnet sein werden, wie die Klassen selbst.

Auch hier bestätigt sich wieder die gute innere Übereinstimmung der Scheiner-Wilsingschen Messungen mit meinen eigenen. Der Zusammenhang zwischen Spektraltypus und Farbtönung ist auch hier nicht linear, doch scheint er einfacher zu liegen als bei der Mauryschen Einteilung, indem hier mit fortschreitender Entwicklung die spektralen Unterschiede allmählich geringer zu werden scheinen.

Fassen wir noch einmal die Ergebnisse dieser Arbeit kurz zusammen, so scheinen sowohl die zweite Vogelsche als auch die Maurysche Spektraleinteilung die Entwicklungsgeschichte der Sterne im ganzen richtig wiederzugeben.

Zu den "Heliumsternen", welche die heifseste Klasse von Sternen am Himmel vertreten, finden sich Gegenstücke unter den "Wasserstoffsternen", die sich qualitativ durch keine bisher beobachteten Unterscheidungsmerkmale vor den übrigen Sternen der gleichen Serie auszeichnen.

Anhang I.

Die Beobachtungsresultate.

Auszug aus dem Beobachtungsjournal.

Die folgenden Seiten enthalten das gesamte Beobachtungsmaterial.

Die Überschrift gibt für jeden Stern die Bezeichnung, den Ort für 1900.0 und in den in [] gesetzten Werten die Helligkeit nach der Revised-Harvard-Photometry, den Spektraltypus nach Mifs Maury und die Nummern der auf die einzelnen Sterne bezüglichen "Remarks", die zur Ergänzung des Spektraltypus dienen sollen.

Weiterhin enthalten die Tabellen die Plattennummer, den benutzten Vergleichstern und die für die beiden verglichenen Objekte berechneten Zenitdistanzen. Die einzelnen Kolumnen enthalten der Reihe nach die reziproke Wellenlänge, die von Extinktion befreiten Abweichungen des betreffenden Sternes gegen α Aquilae in Gröfsenklassen, und die Helligkeit des Sternes für die verschiedenen Wellenlängen, bezogen auf einen Stern vom Typus II, dem nach der Revised-Harvard-Photometry die Gröfse $0.^{mg}00$ zukommen würde.

Ein den Tabellen angehängter Auszug aus dem Beobachtungsbuch gibt Aufschluß über alle für die verschiedenen Platten wichtigeren Daten.

16*

 \odot

 \odot

1:λ	α Aq. — \odot	(①)	Korr.	\odot
$\begin{array}{c} 1762\\ 1804\\ 1846\\ 1885\\ 1925\\ 1965\\ 2005\\ 2043\\ 2005\\ 2043\\ 2105\\ 2118\\ 2153\\ 2190\\ 2225\\ 2261\\ 2293\\ 2327\\ 2360\\ 2392\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2425\\ 2550\\ 2550\\ 2550\\ 2550\\ 2669\\ 2669\\ 2669\\ 2669\\ 2669\\ 2697\\ 2723\\ 2752\\$	$\begin{array}{c} \mathbf{m}_{-}\\ + \ 0.49\\ - \ 0.07\\ - \ 0.02\\ + \ 0.14\\ + \ 0.33\\ + \ 0.70\\ + \ 0.58\\ + \ 0.34\\ + \ 0.70\\ + \ 0.58\\ + \ 0.34\\ + \ 0.19\\ + \ 0.11\\ + \ 0.08\\ + \ 0.05\\ - \ 0.02\\ - \ 0.09\\ - \ 0.15\\ - \ 0.10\\ - \ 0.11\\ - \ 0.13\\ - \ 0.22\\ - \ 0.32\\ - \ 0.43\\ - \ 0.50\\ - \ 0.27\\ - \ 0.14\\ + \ 0.03\\ + \ 0.07\\ + \ 0.02\\ - \ 0.05\\ \end{array}$	$\begin{array}{c} \overset{\text{ms}}{} \\ 0.52 \\ 1.00 \\ 0.72 \\ 0.78 \\ 0.62 \\ 0.26 \\ 0.41 \\ 0.67 \\ 0.64 \\ 0.88 \\ 0.99 \\ 1.06 \\ 1.13 \\ 1.23 \\ 1.43 \\ 1.41 \\ 1.46 \\ 1.33 \\ 1.43 \\ 1.41 \\ 1.46 \\ 1.55 \\ 1.68 \\ 1.80 \\ 1.93 \\ 2.05 \\ 2.04 \\ 1.99 \\ 2.04 \\ 2.29 \\ 2.52 \\ 2.75 \\ 2.75 \\ \end{array}$	$\begin{array}{c} \begin{array}{c} & & & & & \\ & - & 0.28 \\ & - & 0.24 \\ & - & 0.22 \\ & - & 0.20 \\ & - & 0.17 \\ & - & 0.15 \\ & - & 0.13 \\ & - & 0.01 \\ & - & 0.09 \\ & - & 0.07 \\ & - & 0.03 \\ & - & 0.01 \\ & - & 0.03 \\ & - & 0.03 \\ & - & 0.03 \\ & - & 0.01 \\ & - & 0.03 \\ & - & 0$	$\begin{array}{c} {}^{\rm mg}_{\rm q} \\ 0.24 \\ 0.76 \\ 0.70 \\ 0.58 \\ 0.45 \\ 0.45 \\ 0.56 \\ 0.55 \\ 0.81 \\ 0.94 \\ 1.03 \\ 1.12 \\ 1.23 \\ 1.46 \\ 1.46 \\ 1.57 \\ 1.65 \\ 1.79 \\ 1.92 \\ 2.00 \\ 2.20 \\ 2.17 \\ 2.23 \\ 2.49 \\ 2.73 \\ 2.97 \\ 2.97 \end{array}$
2806 2833	-0.08 -0.20 -0.14	2.8± 2.94 2.79	+ 0.23 + 0.24 + 0.25	3.07 3.18 3.04

Pl. 663 (1). Vergl.-Stern: a Aquilae. ⊙ Z.-D. 540.6; α Aquilae Z.-D. 510.1

PI.	663	(2).	Verg	1St	ern: a	Aq	u i	la	e.
\odot	ZD.	540	.6; e	z Aq	nilae d	ZD.	5	10	.1

1:2	α Aq. — 📀	(①)	Korr.	\odot
	mg	mg	11.22	mg
1762	+0.24	0.77	- 0.28	0.49
180±	-0.02	0.90	-0.24	0.71
1846	-0.08	0.98	- 0.22	0.76
1880	+0.02	0.89	-0.20	0.69
1925	+0.19	0.76	- 0.17	0.59
1960	+0.49	0.17	-0.10	0.32
2005	+ 0.41	0.58	-0.13	0.45
2043	+0.40	0.01	0.11	9.50
2080	+0.30	0.68	- 0.09	0.59
2118	+0.14	0.93	-0.07	0.86
2105	+0.08	1.02	-0.00	0.97
2190	+0.08	1.00	-0.03	1.03
2220	+0.05	1.15	-0.01	1.12
2201	-0.03	1.24	0.00	1.2±
2290	-0.08	1.02	+0.02	±0.1
2021	-0.11	1.99	+0.05	1.44
2000	-0.09	1.09	+0.03	1 10
2002	- 0.08	1.45	+0.00	1.10
9150		1.40	+0.08	1.00
0.100		1.61	+0.10	1.00
2590	-0.13 0.97	1.01	1 0 19	1.14
2550	- 0.27	1.10	+ 0.12	2.01
2550	- 0.37	1 00	+ 0.14	2.01
2610	-0.00	1.86	± 0.10	2.00
2639	-0.08	1.00	+0.10 +0.18	2.02
2668	± 0.09	1 99	+ 0.19	2.18
2697	+ 0.09	$\frac{1.00}{217}$	+0.10	2.10
2723	+ 0.19	2 32	+0.20	9.13
2752	+0.05	2.65	+0.22	2.10
2779	- 0.15	9.89	+0.23	3.12
2806	-0.24	2.98	+0.24	3.99
2833	-0.20	2.85	+0.25	3.10

Pl. 927. Vergl.-Stern: α Aquilae. ⊙ Z.-D. 45°.2; α Aquilae Z.-D. 44°.0

Pl. 930. Vergl.-Stern: α Lyrae. \odot Z.-D. 360.1; α Lyrae Z. D. 180.6

1:2	α Aq. — 🗿	(💽)	Korr.	\odot
1765 1808 1851 1890	$ \begin{array}{c} & & & \\ + & 0.60 \\ - & 0.07 \\ + & 0.03 \\ + & 0.21 \end{array} $	$^{ m mg}_{ m 0.40}_{ m 0.99}_{ m 0.93}_{ m 0.71}$	$- \begin{array}{c} \overset{\text{mg}}{0.27} \\ - \begin{array}{c} 0.24 \\ - \begin{array}{c} 0.22 \\ - \end{array} \\ - \begin{array}{c} 0.22 \\ - \end{array} \\ - \begin{array}{c} 0.20 \end{array}$	$mg \\ 0.13 \\ 0.75 \\ 0.71 \\ 0.51$
$\begin{array}{c} 2048 \\ 2085 \\ 2121 \\ 2158 \\ 2193 \\ 2229 \\ 2264 \\ 2298 \end{array}$	$\begin{array}{r} + \ 0.38 \\ + \ 0.19 \\ + \ 0.11 \\ + \ 0.10 \\ + \ 0.07 \\ + \ 0.03 \\ - \ 0.04 \end{array}$	$\begin{array}{c} 0.63 \\ 0.85 \\ 0.96 \\ 1.01 \\ 1.07 \\ 1.15 \\ 1.22 \\ 1.29 \end{array}$	$\begin{array}{r} - \ 0.11 \\ - \ 0.09 \\ - \ 0.07 \\ - \ 0.05 \\ - \ 0.03 \\ - \ 0.01 \\ + \ 0.01 \\ + \ 0.02 \end{array}$	$\begin{array}{c} 0.52 \\ 0.76 \\ 0.89 \\ 0.96 \\ 1.04 \\ 1.14 \\ 1.23 \\ 1.31 \end{array}$

1:2	α Aq. — 💽	()	Korr.	\odot
1775	mg -1.057	ng	mg 0.96	mg 0.19
1816	+ 0.06	0.85	-0.20 -0.24	0.10
1858	-0.19	1.09	-0.21	0.88
1898	+ 0.24	0.69	-0.19	0.50
1937	+0.67	0.28	-0.17	0.11
1978	+0.81	0.13	- 0.14	-0.01
2018	+0.37	0.63	-0.12	0.01
2000	+0.45 +0.50	0.58 0.55	-0.10 -0.08	0.45
2130	+ 0.20	0.88	-0.06	0.82
2165	+ 0.21	0.90	-0.04	0.86
2200	+0.10	1.05	-0.03	1.02
2235	+ 0.02	1.16	-0.01	1.15
2271	-0.04	1.26	0.00	1.26
OU5	- 0.00	ーしろー	+ 0.02	1.55

				_
1:λ	α Aq.— ⊙	(③)	Korr.	\odot
$\begin{array}{c} 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2499 \end{array}$	$\begin{array}{r} {}^{\rm mg}_{\rm -0.13}\\ -0.17\\ -0.21\\ -0.24\\ -0.35\\ -0.51\end{array}$	$^{\rm mg}_{1.42}\\ 1.49\\ 1.56\\ 1.63\\ 1.78\\ 1.98$	$\begin{array}{c} \mathrm{mg} \\ + \ 0.04 \\ + \ 0.05 \\ + \ 0.07 \\ + \ 0.08 \\ + \ 0.10 \\ + \ 0.11 \end{array}$	$^{\rm mg}_{1.46}\\ 1.54\\ 1.63\\ 1.71\\ 1.88\\ 2.09$
$\begin{array}{c} 2589\\ 2618\\ 2648\\ 2677\\ 2706\\ 2733\\ 2760\\ \end{array}$	$\begin{array}{c} - \ 0.59 \\ - \ 0.45 \\ - \ 0.33 \\ - \ 0.24 \\ - \ 0.17 \\ - \ 0.30 \\ - \ 0.39 \end{array}$	$\begin{array}{c} 2.17 \\ 2.16 \\ 2.24 \\ 2.40 \\ 2.61 \\ 2.90 \\ 3.03 \end{array}$	+0.15 +0.16 +0.18 +0.19 +0.20 +0.21 +0.22	$\begin{array}{c} 2.32 \\ 2.32 \\ 2.42 \\ 2.59 \\ 2.81 \\ 3.11 \\ 3.25 \end{array}$

Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

 \odot

-				
1:λ	α Aq. — 📀	(③)	Korr.	\odot
	mg	mg	ing	mg
2330	-0.12	1.40	+ 0.03	1.43
2362	-0.08	1.39	+ 0.05	1.44
2396	-0.12	1.47	+0.06	1.53
2429	-0.18	1.56	+0.08	1.64
2461	-0.22	1.64	+0.10	1.74
2491	-0.26	1.72	+0.11	1.83
2522	- 0.35	1.83	+0.12	1.95
2552	-0.46	1.96	+0.14	2.10
2581	-0.45	2.00	+0.15	2.15
2612	-0.37	2.04	+0.16	2.20
2641	-0.17	2.02	+0.18	2.20
2671	0.00	2.01	+0.19	2.20
2700	+0.11	2.27	+0.20	2.47
2729	+0.13	2.47	+0.21	2.68
2753	+0.17	2.54	+0.22	2.76
2782	+0.16	2.60	+0.23	2.83
2809	+0.12	2.61	+0.24	2.85
2838	+0.17	2.46	+0.25	271

125

Pl. 931. Vergl.-Stern: α Lyrae. ⊙ Z.-D. 500.9; α Lyrae Z.-D. 230.6

1:2	α Aq. — \odot	(①)	Korr.	\odot
1762	mg 1 0 10 ·	mg 0.61	mg	mg 0.33
1804	+ 0.13	0.81	-0.20	0.60
1846	-0.07	0.97	-0.22	0.75
1885	- 0.06	0.98	-0.20	0.78
1925	-0.03	0.98	-0.17	0.81
1965	+0.07	0.89	-0.15	0.74
2005	+0.14	0.85	-0.13	0.72
2043	+0.17	0.84	-0.11	0.73
2080	+0.16	0.88	-0.09	0.79
2118	+0.08	0.99	-0.07	0.92
2153	+ 0.06	1.04	-0.05	0.99
2190	+ 0.05	1.08	-0.03	1.05
2225	0.00	1.18	-0.01	1.17
2261	- 0.01	1.22	0.00	1.22
2293	-0.08	1.32	+ 0.02	1.34
2327	- 0.13	1.41	+ 0.03	1.44
2360	- 0.09	1.40	+ 0.05	1.45
2392	-0.11	1.45	+ 0.06	1.51
2425	-0.16	1.54	+0.08	1.62
2458	-0.19	1.61	+0.10	1.71
2488	-0.29	1.75	+0.11	1.86
2520	-0.41	1.89	+0.12	2.01
2550	-0.61	2.11	+0.14	2.25
2580	- 0.55	2.10	+0.15	2.25
2610	-0.37	2.04	+0.16	2 20
2639	-0.17	2.02	+0.18	2.20
2008	- 0.05	2.12	+0.19	2.31
2097	-0.02	2.38	+0.20	2.58
2723	-0.02	2.06	+0.21	2.77
270Z	- 0.29	2.99	+0.22	5.21
2119	- 0.33	3.09	+0.23	3.32 2.96
2000	~ 0.58	0.12	+ 0.24	5.30 2.10
2755 9660	0.29	2.94	+ 0.20	0.19 0.00
4000 1	- 0.10	2.10	± 0.20	2.90

Pl. 940 (1). Vergl.-Stern: α Lyrae. ⊙ Z.-D. 39⁰.2; α Lyrae Z.-D. 24⁰.9

	· · · · · · · · · · · · · · · · · · ·		Koff.	\odot
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c} {}^{\mathrm{mg}} \\ - \ 0.27 \\ - \ 0.25 \\ - \ 0.22 \\ - \ 0.20 \\ - \ 0.17 \\ - \ 0.15 \\ - \ 0.13 \\ - \ 0.11 \\ - \ 0.09 \\ - \ 0.07 \\ - \ 0.05 \\ - \ 0.03 \\ - \ 0.01 \\ 0.00 \\ + \ 0.02 \\ + \ 0.03 \\ + \ 0.05 \\ + \ 0.06 \\ + \ 0.08 \\ + \ 0.10 \\ + \ 0.10 \\ + \ 0.11 \\ + \ 0.12 \\ + \ 0.14 \\ + \ 0.15 \\ + \ 0.16 \\ + \ 0.18 \\ + \ 0.19 \\ + \ 0.20 \\ + \ 0.21 \\ + \ 0.23 \\ + \ 0.24 \end{array}$	$\begin{array}{c} & \begin{array}{c} & & \\ & & $

[61]

 \odot

1:λ	α Aq. — \odot	(①)	Korr.	\odot
	g	mg	mg	ing
1757	+0.69	0.33	-0.27	0.06
1801	+ 0.01	0.93	-0.25	0.68
1842	-0.15	1.04	-0.22	0.82
1878	0.00	0.91	-0.20	0.71
1922	+ 0.08	0.86	-0.17	0.69
1963	+ 0.09	0.87	-0.15	0.72
2002	+ 0.44	0.55	-0.13	0.42
2040	+0.36	0.65	-0.11	0.54
2078	+0.35	0.69	-0.09	0.60
2114	+0.15	0.91	-0.07	0.84
2151	+0.12	0.98	-0.05	0.93
2186	+0.08	1.06	- 0.03	1.03
2220	+0.04	1.13	-0.01	1.12
2257	-0.02	1.23	0.00	1.23
2290	-0.05	1.29	+0.02	1.31
2322	-0.05	1.32	+ 0.03	1.35
2358	-0.05	1.36	+ 0.05	1.41
2390	-0.08	1.42	+0.06	1.48
2422	-0.14	1.51	+0.08	1.59
2454	-0.18	1.59	+0.10	1.69
2486	-0.22	1.67	+0.11	1.78
2517	-0.32	1.80	+0.12	1.92
2548	- 0.45	1.95	+ 0.14	2.09
2577	-0.46	2.00	+ 0.15	2.15
2607	-0.41	2.06	+0.16	2.22
2695	-0.15	1.97	+0.18	2.15
2664	-0.02	2 02	+0.19	2.21
2693	+0.07	2.25	+0.20	2.45
2721	+ 0.04	2.51	+ 0.21	2.72
2748	+0.06	2.63	+0.22	2.85
2775	0.00	2.76	+0.23	2.99

Pl. 940 (2). Vergl.-Stern: α Lyrae.
⊙ Z.-D. 61⁰.2; α Lyrae Z.-D. 24⁰.9

1:λ	α A q. — ⊙	(⊙)	Korr.	\odot
$\begin{array}{c} 1757\\ 1801\\ 1842\\ 1878\\ 1922\\ 2002\\ 2040\\ 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290\\ 2322\\ 2358\\ 2390\\ 2422\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2577\\ 2607\\ 2607\\ 2605\\ 2664\\ 2693\\ 2721\\ \end{array}$	$\begin{array}{c} \overset{\mathrm{mg}}{} + 0.79 \\ + 0.79 \\ + 0.22 \\ - 0.02 \\ + 0.07 \\ + 0.16 \\ + 0.39 \\ + 0.44 \\ + 0.40 \\ + 0.39 \\ + 0.21 \\ + 0.15 \\ + 0.12 \\ + 0.04 \\ - 0.02 \\ - 0.008 \\ - 0.00 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.008 \\ - 0.010 \\ - 0.030 \\ - 0.12 \\ - 0.15 \\ + 0.05 \\ + 0.13 \\ + 0.12 \end{array}$	$\begin{array}{c} 100 \\$	$\begin{array}{c} & {}^{\rm mg}_{\rm -} & -0.27\\ & -0.25\\ & -0.22\\ & -0.20\\ & -0.17\\ & -0.13\\ & -0.13\\ & -0.11\\ & -0.09\\ & -0.03\\ & -0.01\\ & -0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.00\\ & +0.01\\ & +0.12\\ & +0.10\\ & +0.11\\ & +0.12\\ & +0.14\\ & +0.15\\ & +0.16\\ & +0.18\\ & +0.19\\ & +0.20\\ & +0.21\end{array}$	$\begin{array}{c} & \overset{\mathrm{mg}}{} & -0.04 \\ & 0.51 \\ & 0.69 \\ & 0.64 \\ & 0.61 \\ & 0.42 \\ & 0.50 \\ & 0.50 \\ & 0.99 \\ & 1.12 \\ & 1.23 \\ & 1.32 \\ & 1.32 \\ & 1.44 \\ & 1.48 \\ & 1.57 \\ & 1.69 \\ & 1.80 \\ & 1.90 \\ & 2.07 \\ & 2.15 \\ & 2.18 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.39 \\ & 2.64 \\ & 2.21 \\ & 2.15 \\ & 2.18 \\ & 2.39 \\ & 2.64 \\ & 2.21 \\ & 2.15 \\ & 2.18 \\ & 2.39 \\ & 2.64 \\ & 2.21 \\ & 2.15 \\ & 2.18 \\ & 2.39 \\ & 2.64 \\ & 2.21 \\ & 2.15 \\ & 2.18 \\ & 2.39 \\ & 2.64 \\ & 2.21 \\ $
2748	+ 0.02	2.67	+0.22	2.89

Pl. 940 (3). Vergl.-Stern: α Lyrae.
⊙ Z.-D. 75⁰.7; α Lyrae Z.-D. 24⁰.9

α Andromedae. [2.^{mg}15; VIII P., Rem. 67.] R. A. (1900.0) 0^h 3.^m2. Decl. (1900.0) + 28° 32'

Pl. 534. Vergl.-Stern: α Aquilae. α Andromedae Z.-D. 23⁰.0; α Aquilae Z.-D. 48⁰.3

Pl. 569. Vergl.-Stern: α Aquilae. αAndromedae Z.-D. 23⁰.4; α Aquilae Z.-D. 57⁰.8

and the second			the second se		
1:λ	α Aq —*	*	$1:\lambda$	α Aq.—*	*
	mg	ing		mg	mg
1995	-0.81	1.80	2010	- 1.03	2.02
2031	-1.07	2.07	2048	- 1.14	2.15
2070	-0.96	1.99	2085	-1.38	2.43
2108	-1.06	2.12	2121	-1.29	2.36
2143	-1.09	2.18	2158	- 1.24	2.35
2178	- 1.13	2.26	2193	-1.17	2.31
2214	-1.10	2.26	2229	- 1.14	2.32
2250	-1.06	2.26	2264	-1.12	2.33
2283	-1.04	2.27	2298	-1.09	2.34
2318	- 1.03	2.30	2330	-1.10	2.38
2351	- 1.00	2.30	2362	-1.07	2.38
2382	-0.98	2.31	2396	-1.01	2.36
2414	- 0.96	2.32	2429	-0.97	2.35

1:λ	α Aq.—*	*	1:λ	α Aq.—*	*
	100	mg		μα	111 ·
2449	- 0.96	2.36	2461	-0.92	2.34
2479	- 0.93	2.38	2491	-0.84	2.30
2511	-0.90	2.38	2522	- 0.77	2.25
2541	-0.84	2.33	2552	-0.67	2.17
2570	-0.76	2.28	2581	-0.60	2.15
2600	- 0.69	2.32	2612	-0.54	5.99
2630	- 0.63	2.11	2611	- 0.56	2.19
2650	-0.61	9.63	2671	- 0.53	9.63
2000	0.61	9.01	2011	0.45	0,00
2001	- 0.07	2.01	9790		2.00
2/1±	- 0.02	0.14	0750	- 0.94	0.04
2742		5.21	2705	- 0.54	5.06
2770	0.49	3.2 1	2782	- 0.35	3.11
2798	-0.47	3.22	2809	-0.37	3.10
2823	-0.16	3.15	2838	-0.32	2.96
2851	-0.49	3.09	2862	-0.28	2.84
2878	-0.45	2.94	2888	-0.18	2.64
2902	- 0.51	2.95	2911	- 0.33	2.69
2929	- 0.52	2.82		1 1	

Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

β Cassiopeiae. [2.^{mg}42; XII a b.] R. A. (1900.0) 0^{h} 3.^m8. Decl. (1900.0) + 58ⁿ 36ⁱ

Pl. 753. Vergl.-Stern: β Orionis. β Cassiopeiae Z.-D. 23°.7; β Orionis Z.-D. 60°.2

Pl. 757. Vergl.-Stern: α Aurigae. β Cassiopeiae Z.-D. 41°.9; α Aurigae Z.-D. 15°.6

ι:λ	α Aq. —*	*	1:2	α Aq —*	*
1741 1783 1825 1865 1905 1945 1985 2024	$\begin{array}{c} \overset{\mathrm{mg}}{-1.31}\\ -1.25\\ -1.24\\ -1.22\\ -1.27\\ -1.35\\ -1.36\\ -1.36\\ -1.39\end{array}$	$\begin{array}{c} \overset{\text{mif}}{2} \\ 2.36 \\ 2.22 \\ 2.14 \\ 2.13 \\ 2.21 \\ 2.30 \\ 2.34 \\ 2.39 \\ 2.39 \\ 2.34 \\ 2.39 \end{array}$	$ 1754 \\ 1796 \\ 1837 \\ 1878 \\ 1918 \\ 2035 \\ 2035 \\ 2079 \\ $	$\begin{array}{r} & {}^{mg} \\ - 1.49 \\ - 1.28 \\ - 1.21 \\ - 1.44 \\ - 1.30 \\ - 1.26 \end{array}$	^{mg} 2.51 2.23 2.10 2.35 2.24 2.27
$\begin{array}{c} 2061\\ 2100\\ 2136\\ 2171\\ 2207\\ 2242\\ 2278\\ 2310\\ 2343\\ 2377\\ 2409\\ 2441\\ 2471\\ 2502\\ \end{array}$	$\begin{array}{c} -1.41 \\ -1.26 \\ -1.22 \\ -1.27 \\ -1.33 \\ -1.36 \\ -1.35 \\ -1.37 \\ -1.32 \\ -1.32 \\ -1.33 \\ -1.36 \\ -1.36 \\ -1.36 \\ -1.30 \\ -1.37 \end{array}$	$\begin{array}{c} 2.43\\ 2.31\\ 2.31\\ 2.39\\ 2.49\\ 2.55\\ 2.58\\ 2.63\\ 2.66\\ 2.66\\ 2.66\\ 2.72\\ 2.75\\ 2.73\\ 2.73\\ 2.84\end{array}$	$\begin{array}{c} 2073\\ 2111\\ 2148\\ 2181\\ 2297\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2512\\ 2512\\ 2481\\ 2512\\$	$\begin{array}{c} -1.31 \\ -1.35 \\ -1.31 \\ -1.34 \\ -1.33 \\ -1.37 \\ -1.38 \\ -1.38 \\ -1.38 \\ -1.43 \\ -1.43 \\ -1.46 \\ -1.46 \\ -1.51 \\ 1.50 \end{array}$	$\begin{array}{c} 2.34 \\ 2.41 \\ 2.47 \\ 2.50 \\ 2.57 \\ 2.62 \\ 2.65 \\ 2.69 \\ 2.77 \\ 2.83 \\ 2.86 \\ 2.96 \\ 2.96 \\ 2.97 \end{array}$
2535 2565 2596 2624 2653 2682 2710 2739	$ \begin{array}{r} -1.37\\-1.47\\-1.44\\-1.43\\-1.37\\-1.33\\-1.28\\-1.28\\-1.14\\-1.05\end{array} $	2.962.963.043.123.283.503.613.71	2513 2544 2572 2603 2632 2662 2691 2719 2745 2774 2774 2787	$\begin{array}{c} -1.59\\ -1.63\\ -1.64\\ -1.51\\ -1.51\\ -1.38\\ -1.24\\ -1.12\\ -1.04\\ -1.00\\ -1.04\end{array}$	3.07 3.12 3.17 3.24 3.31 3.40 3.54 3.66 3.72 3.75 3.81

[63]

γ Pegasi. [2.^{mg}87; IV a.]

R. A. (1900.0) 0^{h} 8.^m1. Decl. (1900.0) $+ 14^{o}$ 38ⁱ

Pl. 534. Vergl.-Stern: α Aquilae.

Pl. 569. Vergl.-Stern: α Aquilae. γ Pegasi Z.-D. 360.9; α Aquilae Z.-D. 480.3 γ Pegasi Z.-D. 360.9; α Aquilae Z.-D. 540.1

						and the second s
1:2	α Aq*	4 p 6 p 8 p		1:λ	α Aq.—*	*
1005	mg 1 11	mg 9.40			mg	ing
2031	- 1 11	9 11		2048	-154	- 2 55
2070	- 1.61	2.61		2085	-1.01	2.98
2108	- 1.61	2.67		2121	-1.98	3.05
2143	-1.57	2.66		2158	-2.02	3.13
2178	- 1.54	2.67		2193	-2.02	3.16
2214	-1.52	2.68		2229	- 1.95	3.13
2250	-1.52	2.72		2264	-1.84	3.05
2283	- 1.53	2.76		2298	-1.80	3.05
2318	-1.52	2.79		2330	-1.79	3.07
2351	-1.52	2.82		2362	-1.75	3.06
2382	· - 1.50	2.83		2396	-1.71	3.06
2414	-1.49	2.85		2429	-1.67	3.06
2445	-1.47	2.87		2461	-1.59	3.01
2479	-1.42	2.87		2491	-1.51	2.97
2511	-1.35	2.73		2522	-1.43	2.91
2541	- 1.30	2.79		2552	-1.36	2.86
2570	- 1.17	2.69		2581	-1.32	2.87
2600	- 1.04	2.67		2612	-1.24	2.92
2630	- 0.90	2.68		2641	- 1.03	2.89
2659	- 0.81	2.80		2671	-0.84	2.93
2687	-0.71	2.98	*	2700	-0.67	3.05
2714	-0.58	3.08		2729	-0.54	3.14
2742	-0.51	3.18		2753	-0.43	3.14
2770	-0.46	3.21		2782	-0.36	3.12
2798	-0.42	3.17 .		2809	-0.32	3.05
2823	-0.38	3.07		2838	-0.24	2.87
2851	-0.32	2.92		2862	-0.21	2.75
2878	-0.33	2.82		2888	- 0.19	2.65
2902	-0.34	2.74				
2929	-0.26	2.56				
2953	-0.31	2.57				

α Cassiopeiae. [2.^{mg}47; XV a.]

R. A. (1900.0) 0^{h} 34.^m8. Decl. (1900.0) + 55° 59'

Pl. 753. Vergl.-Stern: β Orionis. α Cassiopeiae Z.-D. 210.8; β Orionis Z.-D. 600.1

Pl. 757.	VerglStern:	lpha Aurigae.
α Cassiopeiae	ZD. 410.8; αA	urigae ZD. 15º.6

1:λ	α Aq*	24. **	1:λ	α Aq*	*
1741 1783	$ \begin{array}{c c} & & & & \\ & & & & \\ & & -1.10 \\ & & -1.51 \\ \end{array} $	2.15 2.48	$\frac{1754}{1796}$	$-\frac{^{mg}}{1.72}$ - 1.37	2.74 2.31
1825 1865	-1.80 -1.74	$2.70 \\ 2.65$	1837 1878 1918	$ \begin{array}{c c} -1.19 \\ -1.27 \\ -1.12 \end{array} $	$2.08 \\ 2.18 \\ 2.06$
90.91	_ 1.79	9.78	1957 1996 2025	-1.22 -1.49 -1.67	2.18 2.48 2.68
$2024 \\ 2061$	-1.78 -1.68	$\frac{2.78}{2.70}$	2035 2073	-1.67 -1.68	$2.68 \\ 2.71$

			-			
1:2	α Aq*	*	,	1:λ	α Aq *	*
2100	ing	mg	-	0.111	mg	mg
2100	- 1.85	2.90		2111	-1.80	2.86
2136	- 1.97	3.06		2148	-1.91	3.01
2171	-2.06	3.18		2181	- 1.98	3.11
2207	-2.23	3.39		2217	-2.03	3.20
2242	-2.34	3.53		2252	-2.17	3.37
2278	-2.37	3.60		2287	-2.26	3.50
2310	-2.48	3.74		2320	-2.36	3.63
2343	-2.56	3.85		2353	-2.48	3.78
2377	-2.65	3.98		2386	-2.63	3.97
2409	-2.73	4.09		2419	-2.73	4.10
2441	-2.88	4.27		2450	-2.78	4.18
2471	-3.47	4.90				
2503	- 3.36	4.83				
2535	-3.27	4.76				

γ Cassiopeiae. [2.^{mg}25; L. Rem. 162.] R. A. (1900.0) 0^{h} 50.^m7. Deel. (1900.0) + 60° 11'

Pl. 753. Vergl.-Stern: β Orionis.

Pl. 757. Vergl.-Stern: a Aurigae. γ Cassiopeiae Z.-D. 21°.6; β Orionis Z.-D. 60°.2 γ Cassiopeiae Z.-D. 39°.5; α Aurigae Z.-D. 15°.9

 $\mathbf{17}$

1:λ	α Aq*	*	1:λ	α Aq.—*	*
4=00	mg	mg	1=0.0	mg	mg
1783	-1.65	2.62	1796	-1.22	2.17
1825	-1.41	2.31	1837	- 1.03	1.92
1865	-1.26	2.17	1878	- 1.12	2.03
1905	-1.38	2.32	1918	-0.87	1.81
1945	- 1.33	2.28	1957	- 0.90	1.86
1985	- 1.44	2.42	1996	-1.17	2.16
2024	-1.49	2.49	- 2035	- 1.18	2.19
2061	- 1.37	2.39	2073	-1.10	2.13
2100	-1.09	2.14	2111	-1.16	2.22
2136	-1.02	2.11	2148	-1.22	2.32
2171	-1.04	2.16	2181	-1.18	2.31
2207	-1.04	2.20	2217	-1.07	2.24
2242	-1.03	2.22	2252	-1.05	2.25
2278	-1.02	2.25	2287	-1.00	2.24
2310	-1.03	2.29	2320	-0.98	2.25
2343	-0.95	2.24	2353	-0.96	2.26
2377	-0.87	2.20	2386	-0.97	2.31
2409	-0.86	2.22	2419	-0.96	2.33
2441	-0.82	2.21	2450	-0.97	2.37
2471	-0.81	2.24	2481	-0.98	2.43
2503	-0.79	2.26	2513	-0.96	2.44
2535	-0.82	2.31	2544	-0.87	2.36
2565	-0.80	2.32	2572	-0.83	2.36
2596	-0.79	2.40	2603	0.73	2.38
2624	-0.64	2.39	2632	- 0.54	2.33
2653	-0.38	2.32	2662	-0.26	2.28
2682	-0.13	2.35	2691	- 0.01	2.31
2710	+0.92	2.25	2719	+ 0.25	2.28
2739	+ 0.11	2.25	9745	± 0.43	2.31
2766	+0.11	2.24	9774	+ 0.55	2.01
2792	± 0.51	9.92	9800	± 0.55	2.20
2820	+ 0.59	2.20	2800	± 0.33	2.20
2817	+ 0.38	9.92	2020 9854	± 0.31	2.50
9879	± 0.30	9.19	400± 9970	1 0.08	9.40
9907	1 0.02	2.10	2819	+0.08	2.40
2091	T 0.20	2.10	290 4	0.00	4.39

Nova Acta CI. Nr. 2.

β Andromedae. [2.^{mg}37; XVII a.]

R. A. (1900.0) 1^h 4.^m1. Decl. (1900.0) + 35° 5'

Pl. 757. Vergl.-Stern: a Aurigae. β Andr. Z.-D. 540.8; α Aurig. Z.-D. 150.7

1:λ	α Aq. — *	*
1754 1796 1837 1878	$ \begin{vmatrix} -\frac{mg}{1.03} \\ -1.11 \\ -1.19 \\ -1.39 \end{vmatrix} $	2.06 2.06 2.08 2.30
$2035 \\ 2073 \\ 2111 \\ 2148 \\ 2181 \\ 2217 \\ 2010 \\ $	-1.79 -1.84 -1.89 -1.97 -2.08 -2.23 -2.23	$\begin{array}{c} 2.74 \\ 2.80 \\ 2.88 \\ 2.98 \\ 3.12 \\ 3.30 \\ 3.4 \end{array}$
2292 2287 2320	-2.50 -2.55 -2.84	$ 3.40 \\ 3.69 \\ 4.01 $

 δ Cassiopeiae. [2.^{mg} 80; X a b; Rem. 179.] R. A. (1900.0) 1^{h} 19.^m3. Decl. (1900.0) + 59° 43'

Pl. 753. Vergl.-Stern: β Orionis. δ'Cassiop. Z.-D. 190.3; β Orionis Z.-D. 600.1 δ Cassiop. Z.-D. 370.7; α Aurigae Z.-D. 150.6

Pl. 757. Vergl.-Stern: α Aurigae.

L			-	,	0
1:2	α Aq *	*	1:λ	α Aq.—*	*
1783 1825 1865	$-\frac{1.76}{-1.84}$ - 1.84 - 1.74	2.73 2.74 2.64	175 4 1796 1837 1878	$\begin{array}{r} {}^{\rm mg}_{\rm -2.01}\\ -1.75\\ -1.73\\ -1.89\end{array}$	$\begin{array}{c} {}^{\mathrm{mg}}_{3.03}\\ {}^{2.70}_{2.62}\\ {}^{2.80}\end{array}$
$\begin{array}{c} 2024\\ 2061\\ 2100\\ 2136\\ 2171\\ 2207\\ 2242\\ 2278\\ 2310\\ 2343\\ 2377\\ 2409\\ 2441\\ 2471\\ 2508\\ 2535\\ 2565\\ 2596\\ 2596\\ 2624 \end{array}$	$\begin{array}{c} -1.92\\ -1.72\\ -1.84\\ -1.83\\ -1.81\\ -1.82\\ -1.82\\ -1.82\\ -1.82\\ -1.78\\ -1.77\\ -1.75\\ -1.77\\ -1.77\\ -1.71\\ -1.71\\ -1.71\\ -1.71\\ -1.71\\ -1.78\\ -1.96\end{array}$	$\begin{array}{c} 2.92\\ 2.74\\ 2.89\\ 2.992\\ 2.93\\ 2.98\\ 3.02\\ 3.05\\ 3.08\\ 3.07\\ 3.10\\ 3.11\\ 3.13\\ 3.14\\ 3.18\\ 3.19\\ 3.23\\ 3.39\\ 3.71 \end{array}$	$\begin{array}{c} 2035\\ 2073\\ 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544\\ 2572\\ 2603\\ 2632\\ 2662\\ 2662\\ 2661\\ 2719\\ \end{array}$	$\begin{array}{c} -1.81\\ -1.87\\ -1.76\\ -1.71\\ -1.72\\ -1.71\\ -1.70\\ -1.70\\ -1.70\\ -1.70\\ -1.78\\ -1.78\\ -1.78\\ -1.78\\ -1.78\\ -1.85\\ -1.86\\ -1.86\\ -1.81\\ -1.98\\ -1.81\\ -1.98\\ -1.89\\ -1.69\end{array}$	$\begin{array}{c} 2.82\\ 2.90\\ 2.82\\ 2.85\\ 2.85\\ 2.80\\ 2.90\\ 2.94\\ 2.95\\ 3.02\\ 3.15\\ 3.15\\ 3.24\\ 3.33\\ 3.35\\ 3.39\\ 3.35\\ 3.39\\ 3.46\\ 3.78\\ 3.91\\ 4.06\\ 4.23\end{array}$

[67] 131 Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

α Ursae minoris. [2.^{mg}12; XIII a.c] R. A. (1900.0) $1^{h} 22.^{m}6$. Decl. (1900.0) $+88^{\circ} 46'$

Pl. 590. Vergl.-Stern: α Aquilae. α Urs. min. Z.-D. 370.4; α Aquilae Z.-D. 460.7

Pl. 592. Vergl.-Stern: α Aquilae. α Urs. min. Z.-D. 370.2; α Aquilae Z.-D. 440.9

1:2	a Aq —∗	*		1:λ	α Aq — *	*
1807 1850	$-\frac{mg}{0.90}$ - 1.32	^{mg} 1.83 2.22		$1766 \\ 1807 \\ 1850 \\ 1890$	$ \begin{array}{c} -\begin{array}{c} {}^{\rm mg} \\ -1.42 \\ -1.39 \\ -0.94 \\ -1.00 \end{array} $	2.42 2.32 1.84 1.92
$\begin{array}{c} 2085\\ 2121\\ 2158\\ 2193\\ 2229\\ 2264\\ 2298\\ 2330\\ 2362\\ 2396\\ 2396\\ 2429\\ 2429\\ 2461\\ 2491\\ 2522\\ 2552\\ 2552\\ 2552\\ 2551\\ 2612\\ 2671\\ 2671\\ 2671\\ 2700\\ 2729 \end{array}$	$\begin{array}{c} -1.13\\ -1.16\\ -1.21\\ -1.29\\ -1.38\\ -1.43\\ -1.50\\ -1.53\\ -1.59\\ -1.65\\ -1.66\\ -1.70\\ -1.66\\ -1.70\\ -1.61\\ -1.61\\ -1.62\\ -1.61\\ -1.53\\ -1.63\\ -1.53\\ -1.48\end{array}$	$\begin{array}{c} 2.18\\ 2.23\\ 2.82\\ 2.43\\ 2.56\\ 2.64\\ 2.75\\ 2.81\\ 2.90\\ 3.04\\ 3.12\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.17\\ 3.91\\ 4.08\end{array}$. ,	$\begin{array}{c} 2048\\ 2085\\ 2121\\ 2158\\ 2193\\ 2229\\ 2264\\ 2298\\ 2330\\ 2362\\ 2396\\ 2429\\ 2461\\ 2491\\ 2522\\ 2552\\ 2581\\ 2612\\ 2641 \end{array}$	$\begin{array}{c} -1.30\\ -1.31\\ -1.29\\ -1.28\\ -1.33\\ -1.36\\ -1.41\\ -1.45\\ -1.48\\ -1.53\\ -1.56\\ -1.61\\ -1.65\\ -1.61\\ -1.65\\ -1.70\\ -1.73\\ -1.70\\ -1.66\\ -1.53\\ -1.42\end{array}$	$\begin{array}{c} 2.31 \\ 2.36 \\ 3.36 \\ 2.39 \\ 2.47 \\ 2.54 \\ 2.62 \\ 2.70 \\ 2.76 \\ 2.84 \\ 2.91 \\ 2.99 \\ 3.07 \\ 3.16 \\ 3.21 \\ 3.20 \\ 3.21 \\ 3.28 \end{array}$

β Arietis. [2.^{mg}72; X a; Rem. 32, 76, 179.] R. A. (1900.0) 1^{h} 49.^m1. Decl. (1900.0) + 20° 19'

Pl. 585. Vergl.-Stern: β Orionis. β Arietis Z.-D. 35⁰.4; β Orionis Z.-D. 61⁰ 3 β Arietis Z.-D. 48⁰.9; α Lyrae Z.-D. 29⁰.5

Pl. 933. Vergl.-Stern: a Lyrae.

1:2	α Aq*	*	1:2	α Aq *	*
1814 1855	$-\frac{2.05}{-2.28}$	^{mg} 2.96 3.18		mg	mg
2089 2125 2161 2196 2231 2268	$ \begin{array}{r} -2.24 \\ -2.04 \\ -2.07 \\ -2.05 \\ -2.05 \\ -2.02 \\ \end{array} $	3.29 3.11 3.18 3.20 3.23 3.24	$2080 \\ 2118 \\ 2153 \\ 2190 \\ 2225 \\ 2261$	$\begin{array}{r} - 2.26 \\ - 2.24 \\ - 2.12 \\ - 2.16 \\ - 2.17 \\ - 2.09 \end{array}$	3 .30 3.31 3.22 3.30 3.35 3.30

17*

1:2	α Aq.—*	*	1:2	α Aq*	*
0004	mg	mg	0009	ing D.o.*	mg
2301	-2.00	3.20	2293	- 2.05	3.25
2333	-200	3.28	2327	-2.00	3.28
2368	- 1.99	3.31	2360	-1.96	3.27
2400	-1.98	3.33	2392	-1.97	3.31
2431	-1.96	3.34	2425	-1.95	3.33
2461	- 1.95	3.37	2458	-1.92	3.34
2494	-1.98	3.44	2488	-1.92	3.38
2525	-2.06	3.55	2520	-1.91	3.39
2555	-2.24	3.75	2550	-1.97	3.47
2587	-2.31	3.89	2580	-2.09	3.6
2615	-2.42	4.12	2610	-2.29	3.96
2643	-2.62	4 49	2639	-2.28	4 19
2010	2.02	1.10	2668	_ 9 99	4.90
	1		0607 *	010	±.40
	1		2097	- 2.13	4.48

γ Andromedae. [2.^{mg}20; XVc; Rem. 144.]

R. A. (1900.0) 1^{h} 57.^m8. Decl. (1900.0) + 41° 51'

Pl. 755. Vergl.-Stern: a Aurigae. γ Andromed. Z.-D. 550.3; α Aurigae Z.-D. 270.9 γ Andromed. Z.-D. 370.0; α Lyrae Z.-D. 290.5

Pl. 933. Vergl.-Stern: a Lyrae.

				the second se	
1:λ	α Aq.—*	*	1:λ	α Aq.—*	
$\begin{array}{c} 1775\\ 1816\\ 1858\\ 1898\\ \hline\\ 2018\\ 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2499\\ \hline\end{array}$	$\begin{array}{c} {}^{\rm mg} \\ -1.08 \\ -1.22 \\ -1.46 \\ -1.50 \\ \end{array}$		$\begin{array}{c} 1762\\ 1804\\ 1846\\ 1885\\ 1925\\ 1965\\ 2005\\ 2005\\ 2043\\ 2080\\ 2118\\ 2153\\ 2190\\ 2225\\ 2261\\ 2293\\ 2392\\ 2425\\ 2468\\ 2488\\ 2520\\ 2550\\ 2550\\ 2580\\ 2610 \end{array}$	$\begin{array}{c} {}^{\mathrm{mg}}_{-1.15}\\ -1.34\\ -1.36\\ -1.36\\ -1.40\\ -1.66\\ -1.86\\ -1.86\\ -1.49\\ -1.32\\ -1.59\\ -1.59\\ -1.59\\ -1.56\\ -1.77\\ -1.88\\ -1.99\\ -2.14\\ -2.30\\ -2.44\\ -2.62\\ -2.73\\ -2.64\\ -2.62\\ -2.80\\ -3.11\\ -3.04\\ \end{array}$	$\substack{ {\rm mg} \\ 2.16 \\ 2.27 \\ 2.26 \\ 2.32 \\ 2.61 \\ 2.82 \\ 2.65 \\ 2.50 \\ 2.36 \\ 2.66 \\ 2.91 \\ 3.06 \\ 2.91 \\ 3.06 \\ 3.20 \\ 3.38 \\ 3.58 \\ 3.72 \\ 3.96 \\ 4.11 \\ 4.06 \\ 4.08 \\ 4.28 \\ 4.61 \\ 4.66 \\ 4.71 \\ \end{bmatrix}$

132

[68]

[69] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 133

α Arietis. [2.^{mg}23; XVa; Rem. 113, 185.] R. A. (1900.0) 2^h 1.^m5. Decl. (1900.0) + 22^o 59ⁱ

Pl. 585. Vergl.-Stern: β Orionis. α Arietis Z.-D. 32^{0.8}; β Orionis Z.-D. 61^{0.3} Pl. 590. Vergl.-Stern: α Aquilae. α Arietis Z.-D. 29%0; α Aquilae Z.-D. 44%7

1:λ	αAq—*	*		1:λ	α Aq.—*	*
1814	mg 1 13	mg 2.05		1766	$-\frac{^{\rm mg}}{0.72}$	1.72 2.21
1011	- 1.15	2.00		1007	- 1.38	2.31
2051	- 1.93	2.94				
2089 2125 2161	-1.91 -1.97 -2.01	2.96 3.05 3.12	- •	$2085 \\ 2121 \\ 2158$	-1.50 -1.78 -1.85	2.55 2.85 2.96
2196 2231	-2.06 -2.23	3.21 3.41		2193 2229	-1.93 -2.12,	
2268 2301 2333	-2.40 -2.58 -2.74	3.83 4.02		2298 2330	-2.29 -2.46 -2.57	$ 3.50 \\ 3.71 \\ 3.85 $
2368 2400 2121	-2.89 -3.01	$\frac{4.21}{4.36}$		2362 2396	-2.71 -2.82	4.02 4.17 4.00
2431 2461 2494	-3.15 -3.31 -3.45	4.73 4.91		2429 2461	-2.84 -2.88	4.22 4.30

γ Persei. [3.^{mg}08; XIV c; Rem. 149.] R. A. (1900.0) 2^h 57.^m6. Decl. (1900.0) + 53° 7'

Pl. 755. Vergl.-Stern: α Aurigae. γ Persei Z.-D. 35°.7; α Aurigae Z.-D. 27°.9

Pl. 757. Vergl.-Stern: α Aurigae. γ Persei Z.-D. 440.9; α Aurigae Z.-D. 150.6

1:λ	α Aq.—*	*	1:λ	α Aq*	*
1775 1816 1858 1898	$- \frac{1.82}{- 1.59} \\ - 1.53 \\ - 1.69$	^{mg} 2.81 2.50 2.43 2.62	1796 1837	$-\frac{mg}{1.72}$ - 1.75	2.67 2.64
$\begin{array}{c} 2018\\ 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ \end{array}$	$\begin{array}{c} -1.99\\ -2.04\\ -2.00\\ -2.03\\ -2.11\\ -2.12\\ -2.19\\ -2.24\\ -2.27\\ -2.31\\ -2.33\\ -2.36\\ -2.42\end{array}$	$\begin{array}{c} 2 \ 99 \\ 3.05 \\ 3.05 \\ 3.11 \\ 3.22 \\ 3.27 \\ 3.38 \\ 3.46 \\ 3.52 \\ 3.60 \\ 3.65 \\ 3.71 \\ 3.80 \end{array}$	$\begin{array}{c} 2035\\ 2073\\ 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2353\\ 2386\\ 2419\\ 2450\\ \end{array}$	$\begin{array}{c} -1.63 \\ -1.96 \\ -2.02 \\ -2.02 \\ -2.10 \\ -2.12 \\ -2.15 \\ -2.20 \\ -2.23 \\ -2.23 \\ -2.29 \\ -2.35 \\ -2.39 \\ -2.42 \end{array}$	$\begin{array}{c} 2.64 \\ 2.99 \\ 2.98 \\ 3.12 \\ 3.23 \\ 3.29 \\ 3.35 \\ 3.44 \\ 3.50 \\ 3.59 \\ 3.69 \\ 3.69 \\ 3.76 \\ 3.82 \end{array}$
					1

1:2	α Aq*	A A A	1:λ	α Aq *	*
2468	$-\frac{mg}{2.50}$	mg 3.93	2481	$-\frac{mg}{2.47}$	mg 3.92
$\frac{2499}{2529}$	-2.62 - 2.77	$\frac{4.09}{4.26}$	$2513 \\ 2544$	-2.55 -2.56	$\frac{4.03}{4.05}$
2559 2589	$-\frac{2.86}{-3.23}$	4.37			
2618	-3.17	4.89			
2677	-2.83	5.00			

β Persei. [Var. VI a.] R. A. (1900.0) 3^h 1.^m7. Decl. (1900.0) + 40⁰ 34⁴

Pl. 755. Vergl. Stern: α Aurigae. β Persei Z.-D. 480.4; α Aurigae Z.-D. 270.9 β

	PI. 7	57.	Vergl	Stern:	α A	iriga	e.
3	\mathbf{Persei}	ZD.	$47^{0.4};$	α Au	rigae	ZD.	$15^{0.8}$

*

 $\substack{ 1000 \text{ mg} \\ 2.17 \\ 2.00 \\ 1.94 \\ 2.19 \\ 1.74 \\ 1.88 \\ 1.90 \\ 2.051 \\ 1.98 \\ 1.99 \\ 1.99 \\ 1.98 \\ 1.99 \\ 2.06 \\ 2.07 \\ 2.12 \\ 2.24 \\ 1.98 \\ 1.99 \\ 2.06 \\ 2.07 \\ 2.12 \\ 2.36 \\ 2.37 \\ 2.53 \\ 2.66 \\ 2.801 \\ 3.05 \\ 3.00 \\ 3.$

		-		
1:λ	αAq —*	47. 46	1:λ	α Aq*
1775	mg 1 1 2	mg 0.10	1751	mg 1 15
1916	- 1.15	4.14	1706	1.05
1010	- 0.92	1.00	1007	- 1.05
1000	1 20	1.1±	1878	1.00
1090	- 1.50	2.20	1010	- 1.28
			1057	- 0.50
9019	1.90	0.00	1006	- 0.18
2018	- 1.20	1 09	9025	
2000		1.92	2035	-0.09
2031	-0.01	2.50	2013	- 0.85
2165	-0.50 -1.09	9.1.1	2111	- 0.88
2100	-1.02	9.16	9181	- 0.86
2200	-1.01 -1.02	2.10	9917	-0.00
9971		2.21	9959	-0.01
2303	-0.92	2.20	2287	-0.78
2338	- 0.88	2.17	2201	-0.79
2370	-0.81	2.13	2353	-0.77
2402	-0.79	2.10	2386	-0.78
2435	-0.81	2.23	2414	-0.80
2468	- 0.90	2.33	2450	-0.84
2499	- 0.95	2.42	2481	-0.91
2529	-1.04	2.53	2513	-0.93
2559	-0.93	2.11	2544	-0.90
2589	-0.83	2.41	2572	-0.84
2618	-0.75	2.47	2603	-0.89
2648	-0.59	2.50	2632	-0.87
2677	-0.68	2.85	2662	-0.74
2706	- 0.53	2.97	2691	-0.58
2733	-0.38	3.00	2719	- 0.47
2760	- 0.30	3.04	2745	-0.37
2787	-0.24	3.01	2774	-0.27
2813	-0.41	3.13	2800	-0.25
2840	-0.57	3.20	2828	-0.48
2867	-0.64	3.16	2854	-0.51
2892	- 0.56	3.00	2879	-0.52

.

-

[71] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

α Persei. [1.^{mg}90; XII a.c.]

R. A. (1900.0) 3^{h} 17.^m2. Decl. (1900.0) + 49° 30′

Pl. 755. Vergl.-Stern: α Aurigae. α Persei Z.-D. 36⁰.3; α Aurigae Z.-D. 27⁰.9 α Persei Z.-D. 38⁰.1; α Aurigae Z.-D. 15⁰.8

Pl. 757. Vergl.-Stern: a Aurigae.

1:2	α Aq*	꾟	1:λ	α A q.—*	*
$\begin{array}{c} 1775\\1816\\1858\\1898\\1937\\1978\\2018\\2055\\2091\\2130\\2165\\2200\\2265\\2271\\2303\\2338\\2370\\2402\\2435\\2468\\2499\\2529\\2559\\2589\\2618\\2648\\2677\\2706\\2733\\2760\\2733\\2760\\2787\\2813\\2840\\2843\\2840\\277\\2813\\2840\\2847\\2843\\2840\\2848\\2840\\2848\\2848\\2848\\2848\\2848$	$\begin{array}{c} {}^{\rm mg} \\ - \ 0.80 \\ - \ 0.99 \\ - \ 0.94 \\ - \ 0.53 \\ - \ 0.93 \\ - \ 0.92 \\ - \ 0.92 \\ - \ 0.93 \\ - \ 0.92 \\ - \ 0.93 \\ - \ 0.92 \\ - \ 0.97 \\ - \ 1.16 \\ - \ 1.19 \\ - \ 1.16 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.19 \\ - \ 1.18 \\ - \ 1.23 \\ - \ 1.29 \\ - \ 1.36 \\ - \ 1.29 \\ - \ 1.36 \\ - \ 1.23 \\ - \ 1.36 \\ - \ 1.23 \\ - \ 1.13 \\ - \ 1.13 \\ - \ 1.14 \\ - \ 1.21 \\ - \ 1.27 \\ - \ 1.15 \\ - \ 1.37 \\ - \ 1.57 \\ - \$	$\begin{array}{c} {}^{\rm mg} 1.79 \\ 1.90 \\ 1.84 \\ 1.46 \\ 1.62 \\ 1.90 \\ 1.92 \\ 1.79 \\ 2.03 \\ 2.05 \\ 2.19 \\ 2.31 \\ 2.38 \\ 2.40 \\ 2.43 \\ 2.48 \\ 2.49 \\ 2.53 \\ 2.62 \\ 2.72 \\ 2.83 \\ 3.08 \\ 3.10 \\ 3.06 \\ 3.08 \\ 3.10 \\ 3.06 \\ 3.08 \\ 3.14 \\ 3.30 \\ 3.58 \\ 3.86 \\ 4.01 \\ 3.92 \\ 4.09 \\ 4.17 \\ 4.18 \end{array}$	$\begin{array}{c} 1754\\ 1796\\ 1837\\ 1878\\ 1918\\ 1957\\ 1996\\ 2035\\ 2073\\ 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544\\ 2572\\ 2603\\ 2632\\ 2662\\ 2691\\ 2719\\ 2745\\ 2774\end{array}$	$\begin{array}{c} {}^{mg} \\ -1.12 \\ -0.75 \\ -0.89 \\ -0.91 \\ -0.77 \\ -0.76 \\ -0.90 \\ -0.90 \\ -0.90 \\ -0.98 \\ -1.04 \\ -1.05 \\ -1.10 \\ -1.15 \\ -1.19 \\ -1.22 \\ -1.27 \\ -1.30 \\ -1.32 \\ -1.39 \\ -1.45 \\ -1.46 \\ -1.45 \\ -1.54 \\ -1.54 \\ -1.54 \\ -1.54 \\ -1.16 \\ -1.24 \\ -1.30 \\ \end{array}$	$\begin{array}{c} {}^{\mathrm{mg}} \\ 2.14 \\ 1.70 \\ 1.78 \\ 1.82 \\ 1.71 \\ 1.72 \\ 1.89 \\ 1.90 \\ 1.99 \\ 2.00 \\ 2.08 \\ 2.17 \\ 2.22 \\ 2.30 \\ 2.39 \\ 2.46 \\ 2.52 \\ 2.61 \\ 2.67 \\ 2.72 \\ 2.84 \\ 2.93 \\ 2.95 \\ 2.98 \\ 3.19 \\ 3.23 \\ 3.37 \\ 3.46 \\ 3.69 \\ 3.92 \\ 4.05 \end{array}$
2892	-1.76	4.20			

δ Persei. [3.^{mg}10; V b.]

R. A. (1900.0) 3^{h} 35.^m8. Decl. (1900.0) + 47° 28'

Pl. 755. Vergl.-Stern: a Aurigae.

Pl. 757. Vergl.-Stern: α Aurigae. δ Persei Z.-D. 35°.8; α Aurigae Z.-D. 27°.9 δ Persei Z.-D. 40°.7; α Aurigae Z.-D. 15°.6

1:2	α Aq*	*	1:λ	α Aq*	*
1775 1816 1858 1898	$ \begin{array}{c} & \overset{\mathrm{ing}}{-1.84} \\ & -1.96 \\ & -1.84 \\ & -1.72 \end{array} $	2.83 2.87 2.74 2.65	1796 1837	$-\frac{mg}{1.93}$ - 1.82	2.88 2.71

1:2	α Aq.—*	*	1:2	α Aq*	**
2018	$-\frac{mg}{1.88}$	mg 2.88	2035	- 1.60	mg 2.61
2055	- 1.79	2.80	. 2073	-171	971
9091	-1.86	2.91	2111	-1.68	9.74
2130	-1.77	2.85	2148	-1.73	2.83
2165	- 1.73	2.85	2181	-1.70	2.83
2000	-1.70	2.85	2217	-1.65	9.82
2235	-1.68	2.87	2252	-1.62	2.82
2271	-1.73	2.95	2287	- 1.65	2.89
2303	-1.71	2.96	2320	- 1.61	2.88
2338	-1.67	2.96	2353	- 1.61	2.91
2370	-1.63	2.95	2386	-1.62	2.96
2402	-1.62	2.97	2419	- 1.65	3.02
2435	-1.67	3.06	2450	-1.65	3.05
2468	-1.71	3.14	2481	-1.68	3.13
2499	-1.75	3.22	2513	-1.68	3.16
2529	-1.82	3.31	2544	-1.60	3.09
2559	-1.67	3.18	2572	-1.53	3.05
2589	-1.54	3.12	2603	-1.49	3.13
2618	- 1.44	3.16	2632	-1.41	3.20
2648	-1.32	3.23	2662	-1.24	3.26
2677	-1.18	3.36	2691	-1.11	3.41
2706	-1.06	3.50	2719	-0.98	3.51
2733	-1.02	3.63	2745	-0.87	3.55
2760	-0.99	3.73	2774	-0.77	3.52
2787	-0.92	3.69	2800	-0.78	3.53
2813	- 1.08	3.80	2828	-1.06	3.71
2840	- 1.21	3.84			
2867	-1.36	3.88			
2892	-1.34	3.78			

ζ Persei. [2.^{mg}91; III a; Rem. 16.] R. A. (1900.0) 3^h 47.^m8. Decl. (1900.0) + 31^o 35

Pl. 933. Vergl.-Stern: α Lyrae. ζ Persei Z.-D. 63⁰.6; α Lyrae Z.-D. 29⁰.5

					and the second se
1:λ	α Aq *	*	1:2	α Aq*	*
1500	mg 0 F0	mg		ing	mg
1762	-2.50	3.91	2360	- 1.90	3.27
1804	-2.46	3.39	2392	-1.95	3.29
1846	-2.74	3.64	2425	-1.92	3.30
1885	-2.88	3.80	2458	-1.91	3.31
		0.00	2488	-1.92	3.38
			2520	-1.87	3.35
			2550	-1.84	3.34
2043	- 2.10	3.11	2580	-1.74	3.29
2080	1.91	2.95	2610	-1.64	3.31
2118	-2.22	3.29	2639	- 1.35	3.20
2153	-2.07	3.17	2668	-1.17	3.24
2190	-2.10	3.24	2697	-1.02	3.38
2225	-2.11	3.28	2723	-1.11	3.68
2261	-2.07	3.28	. 2752	- 1.18	3.89
2293	-2.04	3.28	2779	-1.26	4.02
2327	-1.98	3.26	2806	-1.27	4.01
	1.00	0.20	10000	1.21	1.01

136

[72]

[73] 137 Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

ε Persei. [2.^{mg}96; IIa; Rem. 2.] R. A. (1900.0) 3^{h} 51.^m1. Decl. (1900.0) + 39° 43'

Pl. 755. Vergl.-Stern: α Aurigae.

Pl. 757. Vergl.-Stern: α Aurigae. ε Persei Z.-D. 360.1; α Aurigae Z.-D. 150.6

8	Persei	ZD.	$48^{\circ}.7;$	æ	Aurigae	Z,-D.	$27^{\circ}.9$

1:2	α Aq*	*	1:λ	α Aq*	*
1775 1816 1858 1898	$\begin{array}{r} & \stackrel{\rm mg}{-2.04} \\ -1.99 \\ -2.20 \\ -2.32 \end{array}$	3.03 2.90 3.10 3.25	1796 1837 1878	-1.90 -1.88 -2.03	^{mg} 2.85 2.77 2.94
$\begin{array}{c} 2018\\ 2055\\ 2091\\ 2130\\ 2130\\ 2200\\ 5235\\ 2235\\ 2338\\ 2370\\ 2402\\ 2435\\ 2402\\ 2435\\ 2468\\ 2499\\ 2529\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2618\\ 2618\\ 2617\\ 2706\\ 2733\\ 2760\\ 2787\\ 2787\\ 2760\\ 2787\\ 2787\\ 2787\\ 2760\\ 2787\\ 2787\\ 2787\\ 2760\\ 2787\\ 2787\\ 2787\\ 2760\\ 2787\\ 2787\\ 2787\\ 2760\\ 2787\\ 2787\\ 2787\\ 2760\\ 2787\\$	$\begin{array}{c} -2.07\\ -1.83\\ -1.85\\ -1.84\\ -1.81\\ -1.73\\ -1.73\\ -1.73\\ -1.73\\ -1.71\\ -1.69\\ -1.67\\ -1.61\\ -1.54\\ -1.54\\ -1.57\\ -1.65\\ -1.73\\ -1.58\\ -1.43\\ -1.28\\ -1.06\\ -0.83\\ -0.62\\ -0.46\\ -0.38\\ -0.33\\ -0.51\\ \end{array}$	3.07 2.85 2.90 2.92 2.93 2.93 2.93 2.93 2.94 2.93 2.94 2.93 2.94 2.93 2.93 2.93 2.93 2.93 2.93 3.00 3.12 3.29 3.00 3.12 3.29 3.00 3.12 3.09 3.01 3.00 2.97 2.99 3.06 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.08 3.12 3.09 3.08 3.12 3.09 3.08 3.12 3.09 3.08 3.12 3.09 3.08 3.12 3.09 3.09 3.00 3.08 3.12 3.09 3.08 3.09 3.08 3.08 3.09 3.08 3.08 3.09 3.08	$\begin{array}{c} 2035\\ 2073\\ 2073\\ 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544\\ 2572\\ 2603\\ 2632\\ 2662\\ 2662\\ 2662\\ 2691\\ 2719\\ 2745\\ 2774\\ 2800\\ 2920\\ \end{array}$	$\begin{array}{c} -1.75 \\ -1.82 \\ -1.80 \\ -1.89 \\ -1.82 \\ -1.75 \\ -1.75 \\ -1.71 \\ -1.68 \\ -1.68 \\ -1.68 \\ -1.68 \\ -1.68 \\ -1.69 \\ -1.73 \\ -1.70 \\ -1.72 \\ -1.73 \\ -1.70 \\ -1.56 \\$	$\begin{array}{c} 2.76\\ 2.85\\ 2.99\\ 2.95\\ 2.92\\ 2.92\\ 2.92\\ 2.93\\ 2.92\\ 2.93\\ 3.03\\ 3.10\\ 3.10\\ 3.10\\ 3.17\\ 3.21\\ 3.13\\ 3.17\\ 3.13\\ 3.17\\ 3.13\\ 3.13\\ 3.17\\ 3.18\\ 3.15\\ 3.10\\ 3.10\\ 3.10\\ 3.10\\ 3.10\\ 3.10\\ 3.10\\ 3.12\\$
$ 2840 \\ 2867 \\ 2892 $	-0.61 -0.76 -0.71	3.27 3.28 3.15	2854 2879 2904	-0.62 -0.67 -0.76	3.20 3.15 3.15

α Tauri. [1.^{mg}06; XVI a.] R. A. (1900.0) 4^{h} 30.^m2. Decl. (1900.0) + 16° 19'

Pl. 585. Vergl.-Stern: β Orionis.

Pl. 619. Vergl.-Stern: β Orionis. α Tauri Z.-D. 35°.4; β Orionis Z.-D. 61°.1 α Tauri Z.-D. 36°.7; β Orionis Z.-D. 65°.2

/	α Aq. — *	24. 20	1:λ	α Aq *	
1814 1855 1895	+ 0.04 + 0.10 - 0.10 - 0.16	0.88 1.00 1.09	1837 1878 1918	$ \begin{array}{c c} & - & \frac{^{mg}}{0.07} \\ & + & 0.11 \\ & - & 0.72 \\ \end{array} $	$0.96 \\ 0.80 \\ 1.66$
			2035	- 0.85	1.86

1:λ	α Aq. — *	99 19	1:2	α Aq *	*
	ing o oo	mg	-	mg	mg
2001	- 0.88	1.89	2073	- 1.09	2.13
2089	-1.05	2.10	2111	0.89	1.95
2125	-1.04	2.12	2148	-0.81	1.91
2161	- 0.95	2.06	2181	-0.84	1.97
2196	-0.97	2.12	2217	-1.07	2.24
2231	- 1.14	2.32	2252	-1.22	2.42
2268	-1.35	2.57	2287	-1.38	2.62
2301	-1.54	2.79	23:20	-1.76	3.03
2333	-1.76	3.04	2353	-1.97	3.27
2368	-1.96	3.28	2386	-2.08	3.42
9400	- 2.15	3.50	2419	-2.16	3.53
9431	- 2.33	3.71	2450	-2.15	3.55
9161	- 9.18	3.90	9481	- 2.33	3.78
9101	_ 258	4.04	2513	_ 2.58	4.06
4±3±	- 2.00	3.UI	2010	- 2.00	7:00

ι Aurigae. [2.^{mg}90; XVa.] R. A. (1900.0) 4^{h} 50.^m5. Decl. (1900.0) -33° 0'

Pl. 733. Vergl.-Stern: α Aquilae. ι Aurigae Z.-D. 380.9; α Aquilae Z.-D. 620.5 ι Aurigae Z.-D. 400.8; α Aurigae Z.-D. 270.5

Pl. 755. Vergl.-Stern: α Aurigae.

1:2	α A α. — *	45	1 • 2	α A α *	
$ 1757 \\ 1801 \\ 1842 \\ 1878 $	$(-1.38) \\ -2.22 \\ -2.23 \\ -2.31$	2.40 3.16 3.12 3.25	1775 1816 1858 1898	$\begin{array}{c} & \overset{\mathrm{mg}}{-1.61} \\ & -1.62 \\ & -1.79 \\ & -2.11 \end{array}$	^{mg} 2.60 2.53 2.69 3.04
$\begin{array}{c} 2040\\ 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290 \end{array}$	$\begin{array}{r} - 2.57 \\ - 2.45 \\ - 2.53 \\ - 2.47 \\ - 2.53 \\ - 2.63 \\ - 2.82 \\ - 3.00 \end{array}$	$\begin{array}{c} 3.58\\ 3.49\\ 3.59\\ 3.57\\ 3.67\\ 3.82\\ 4.03\\ 4.24 \end{array}$	$\begin{array}{c} 2018\\ 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ \end{array}$	$\begin{array}{c} - 2.19 \\ - 2.41 \\ - 2.35 \\ - 2.55 \\ - 2.65 \\ - 2.66 \\ - 2.73 \\ - 3.02 \\ - 3.14 \\ - 3.54 \\ - 3.73 \\ - 3.84 \end{array}$	3.19 3.43 3.45 3.43 3.67 3.80 3.85 3.95 4.27 4.43 4.86 5.08 5.23

[74]

β Eridani. [2.^{mg}92; IX b; Rem. 178.] R. A. (1900.0) 5^h 2.^m9. Decl. (1900.0) -5^o 13^c

Pl. 734. Vergl.-Stern: β Orionis. β Eridani Z.-D. 65°.8; β Orionis Z.-D. 62°.1

1:2	α Aq. — *	et e	1:λ	α Aq. — *	*
1788	$-\frac{mg}{206}$	mg 3 02	<u>9</u> <u>3</u> 11	$-\frac{1}{1}$	mg 3.09
1830	-2.12	3.02	2348	-1.79	3.09
1869	-2.19	3.10	2380	-1.74	3.07
1910	-2.29	3.23	2412	-1.70	3.06
			2444	-1.68	3.07
			2477	-1.61	3.05
2029	-2.06	3.06	2509	-1.56	3.04
2064	-2.09	3.11	2539	-1.61	3.10
2103	-2.10	3.15	2568	-1.61	3.13
2140	-1.99	3.08	2598	-1.62	· 3.24
2175	-1.95	3.08	2628	-1.70	3.47
2210	- 1.93	3.09	2656	-1.71	3.68
2246	-1.84	3.04	2684	1.61	3.85
2281	-1.81	3.04	2713	-1.43	3.92

α Aurigae. [0.^{mg}21; XIV a; Rem. 39, 92.] R. A. (1900.0) 5^{h} 9.^m3. Decl. (1900.0) + 45° 54'

Pl. 585. Vergl.-Stern: β Orionis.

Pl. 733. Vergl.-Stern: α Aquilae. α Aurigae Z.-D. 220.2; β Orionis Z.-D. 610.0 α Aurigae Z.-D. 400.0; α Aquilae Z.-D. 630.8

1:λ	α Aq *	1	1:λ	α Aq*	*
	ing	mg	1757	mg 1 0 66	mg 0.26
1811	+ 0.98	- 0.06	1101	+ 0.00	0.50
1014	7 0.00	- 0.00	1842	+0.64	0.25
			1878	+0.38	0.58
			1922	+0.46	0.48
			1963	+0.40	0.56
2013	+ 0.66	0.33	2002	+0.59	0.40
2051	+0.61	0.40	2040	+0.52	0.49
2089	+0.44	0.59	2078	+0.29	0.75
2125	+0.39	0.69	2114	+ 0.27	0.79
2161	+ 0.35 $+$	0.76	2151	+ 0.34	0.76
196	+ 0.24	0.91	2186	+ 0.31	0.83
231	+ 0.21	0.97	2220	+ 0.23	0.94
2268	+ 0.12	1.10	2257	+ 0.16	1.05
2301	+0.01	1.24	2290	+ 0.12	1.12
2333	-0.08	1.36	2322	+ 0.06	1.21
2368	-0.16	1.48	2358	0.00	1.31
2400	-0.19	1.54	2390	-0.08	1.42
431	-0.22	1.60	2422	-0.13	1.50
461	-0.22	1.64	2454	-0.17	1.57
491			2486	-0.19	1.65
2222			2517	-0.28	1.76
2000			2548	-0.56	2.06
186			2577	-0.57	2.11
610			2607	-0.49	2.15
0±3 050			2635	-0.32	2.13
013			2664	-0.06	2.10

[75]

Hans Rosenberg,

1: λ	α Aq *	**	1:λ	α Aq. → *	*
2701 2730 2757 2782 2811 2839 2863 2863 2889	$\begin{array}{c} {}^{\rm nug} \\ + \ 0.16 \\ + \ 0.19 \\ + \ 0.17 \\ + \ 0.17 \\ + \ 0.12 \\ - \ 0.12 \\ - \ 0.26 \\ - \ 0.43 \end{array}$	2.23 2.41 2.56 2.59 2.61 2.75 2.80 2.88	2693 2721 2748 2775 2803 2830 2858	$ \begin{array}{c} {}^{\rm mg}_{\rm + \ 0.12} \\ + \ 0.22 \\ + \ 0.25 \\ + \ 0.13 \\ - \ 0.02 \\ - \ 0.40 \\ - \ 0.21 \end{array} $	$\begin{array}{c} {}^{\rm mg}\\ 2.20\\ 2.33\\ 2.44\\ 2.63\\ 2.76\\ 3.06\\ 2.76\end{array}$

Pl. 592. Vergl.-Stern: α Aquilae. α Aurigae Z.-D. 280.5; α Aquilae Z.-D. 440.9

1:2	α Aq *	*	1:λ	α Aq*	*
$1765 \\ 1808 \\ 1851 \\ 1890 \\ 1929 \\ 1971 \\ 2010 \\ 2048 \\ 2085$	$\begin{array}{r} \overset{\mathrm{mg}}{+} 0.92 \\ + 0.66 \\ + 0.45 \\ + 0.55 \\ + 0.60 \\ + 0.41 \\ + 0.74 \\ + 0.53 \\ + 0.47 \end{array}$		2362 2396 2429	$\begin{array}{c} & {}^{\rm mg}_{\rm -} & 0.17 \\ - & 0.22 \\ - & 0.28 \end{array}$	^{mg} 1.48 1.57 1.66
2121 2158 2193 2229 2264 2298 2330	$\begin{array}{c} + 0.38 \\ + 0.31 \\ + 0.27 \\ + 0.17 \\ + 0.08 \\ - 0.03 \\ - 0.10 \end{array}$	$\begin{array}{c} 0.68\\ 0.80\\ 0.87\\ 1.01\\ 1.13\\ 1.28\\ 1.38\end{array}$	2700 2729 2753 2782	+ 0.11 + 0.17 + 0.17 + 0.17 + 0.17	2.27 2.42 2.54 2.59

β Orionis. [0.^{mg}34; VI c.] R. A. (1900.0) 5^h 9.^m7. Decl. (1900.0) -8° 19'

Pl. 733. Vergl.-Stern: α Aquilae. β Orionis Z.-D. 71°.9; α Aquilae Z.-D. 62°.9

1:λ

 $\begin{array}{c} 1757\\ 1801\\ 1842\\ 1878\\ 1922\\ 1963\\ 2002\\ 2040\\ 2078\\ 2114\\ 2151\\ 2186 \end{array}$

Pl. 585. Vergl.-Stern: α Aurigae. β Orionis Z.-D. 61°.0; α Aurigae Z.-D. 22°.2

[76]

∝ Aq. — *	*	1:λ	$\alpha \mathrm{Aq.} - *$	
mg	mg		mg	mg
+0.42	0.59			
+0.43	0.51	1814	+ 0.23 .	0.69
+0.39	0.50			
+0.43	0.48	1895	+ 0.33	0.60
+0.45	0.49		0.00	. 0100
+0.50	0.46			
+0.52	0.47	2013	+0.41	0.58
+0.51	0.50	2051	+0.44	0.57
+0.57	0.47	2089	+0.57	0.48
± 0.55	0.51	2125	± 0.58	0.10
0.59	0.52	9161	0.57	0.50
+ 0.00	0.02	2101	+ 0.57	0.04
+0.00	0.04	2196	+ 0.64	0.51

1:λ	α Aq*	*	1:λ	α Aq*	*
2220	$\begin{array}{c} mg \\ \pm 0.61 \end{array}$	mg 0.56	9931	mg + 0.61	mg 0.57
2257	+0.64	0.57	2268	+ 0.65	0.57
2290	+0.68	0.56	2301	+0.72	0.53
2322	+0.72	0.55	2333	+ 0.75	0.53
2358	+0.75	0.56	2368	+ 0.80	0.52
2390	+0.75	0.59	$\bar{2400}$	+0.78	0.57
2422	+0.80	0.57	2431	+0.78	0.60
2454	+0.83	0.58	2461	+0.73	0.69
2486	+0.84	0.62			
2517	+ 0.85	0.63			
2548	+0.86	0.64			
2577	+ 0.93	0.63			
2607	+1.04	0.62			
2635	+ 1.21	0.61			
2664	+ 1.41	0.63	0.70.4		
2693	+1.54	0.78	2701	+1.42	0.97
2721	+1.64	0.90	2730	+1.65	0.95
2/48	+1.71	0.99	2757	+1.80	0.93
2/10	+1.72	1.02	2782	+1.83	0.93
2803	+1.74	1.00	2811	+1.62	1.11
2830	+ 1.0±	1.02	2839	+1.47	1.10
			2805	+1.30	1.17
			2889	+1.28	1.1 (

Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 141

Pl. 950. Mittel aller Sterne vom Typus II gegen β Orionis.

1 : J	*	1:λ	*
	mg		mg
1777	0.45	2500 .	0.64
1820	0.46	2531	0.61
1862	0.45	2562	0.58
1904	0.49	2592	0.59
2020	0.51	2622	0.60
2059	0.51	2651	0.63
2095	0.47	2680	0.71
2131	0.48	2708	0.83
2168	0.50	2737	0.95
2203	0.51	2763	0.97
2240	0.53	2790	0.99
2273	0.53	2817	1.00
2308	0.53	2842	1.03
2341	0.55	2870	1.07
2373	0.55	2895	1.02
2407	0.57	2919	1.03
2439	0.60	2946	1.00
2170	0.62	-010	1.10

[77]

γ Orionis. [1.^{mg}70; IV a.]

R. A. (1900.0) 5^{h} 19.^m8. Decl. (1900.0) $+ 6^{o}$ 16^{*}

Pl. 585. Vergl.-Stern: β Orionis.

Pl. 950. Vergl -Stern: β Orionis. Pl. 585.Vergl.-Stern: β Orionis.Pl. 950.Vergl.-Stern: β Orionis. γ Orionis Z.-D. 490.8; β Orionis Z.-D. 610.0 γ Orionis Z.-D. 510.6; β Orionis Z.-D. 590.9

1:2	α Aq *	<u></u>	1:λ	α A q*	*
· · · · · · · ·	mg	mg	1777	$-\frac{^{mg}}{0.58}$	mg 1.57 1.65
			1820	-0.66	1.56
			1904	-0.75	1.68
			1943	0.10	1.00
			1980		
			2020	-0.67	1.67
			2059	-0.62	1.64
			2095	-0.61	1.66
2125	-0.85	1.93	2131	-0.58	1.66
2161	-0.80	1.91	2168	-0.53	1.65
2196	- 0.69	1.84	2203	-0.47	1.62
2231	-0.58	1.76	2240	-0.44	1.63
2268	-0.51	1.73	2273	-0.42	1.64
2301	- 0.40	1.70	2308	-0.43	1.69
2000	- 0.59	1.07	Z0±1 0979		1.70
2008	- 0.50	1.08	2010	- 0.40	1.70
2121	- 0.25	1.00	2401	-0.32 -0.97	1.00
9161	-0.20	1.00	2433	-0.27 -0.99	1.00
9191	- 0.18	1.0±	2500	- 0 19	1.66
525	-0.18	1.67	9531	-0.21	1.00
2555	-0.12	1.63	2562	-0.21	1.72
2587	-0.10	1.66	2592	-0.10	1.69
2615	+ 0.13	1.57	2622	-0.01	1.75
2643	+ 0.28	1.60	2651	+ 0.18	1.75
2673	+ 0.47	1.65	2680	+ 0.37	1.83
2701	+ 0.64	1.75	2708	+ 0.66	1.79
2730	+0.78	1.82	2737	+ 0.87	1.77
2757	+ 0.89	1.85	2763	+ 0.93	1.81
2782	+0.98	1.78	2790	+ 0.93	1.84
2811	+0.97	1.76	2817	+0.81	1.87
2839	+0.83	1.80	2842	+0.70	1.92
2863	+0.70	1.79	2870	+0.61	1.90
2889	+0.01	1.84	2895	+0.51	1.92
2913	1 + 0.45	1.92	2919	+ 0.44	1.89

β Tauri. [1.^{mg}78; VI a; Rem. 32.] R. A. (1900.0) $5^{h} 20.^{m}0$. Decl. (1900.0) $+ 28^{\circ} 31'$

Pl. 585. Vergl.-Stern: β Orionis.

Pl. 634. Vergl.-Stern: a Aurigae. β Tauri Z.-D. 240.4; β Orionis Z.-D. 610.1 β Tauri Z.-D. 600.0; α Aurigae Z.-D. 5109

1:2	α Aq *	19.0 19.0 19.0	1:λ	α Aq. — *	10 the 0 b
1814 1855	-0.78 - 1.22	^{mg} 1.70 2.12	1788 1830 1869	$-\frac{1.68}{-1.12} \\ -1.07$	2.64 2.02 1.98

	_				
1:λ	α Aq. —*	*	1:2	$\alpha \operatorname{Aq.} - *$	*
$\begin{array}{c} 2051\\ 2089\\ 2125\\ 2161\\ 2196\\ 2231\\ 2268\\ 2301\\ 2333\\ 2368\\ 2400\\ 2431\\ 2461\\ 2494\\ 2525\\ 2555\\ 2555\\ 2555\\ 2587\\ 2615\\ 2643\\ 2701\\ 2730\\ 2757\\ 2782\\ 2811\\ 2839\\ 2863\\ 2863\\ 2889\end{array}$	$\begin{array}{c} & {}^{\rm mg} \\ - 1.07 \\ - 0.91 \\ - 0.91 \\ - 0.68 \\ - 0.62 \\ - 0.61 \\ - 0.57 \\ - 0.55 \\ - 0.53 \\ - 0.52 \\ - 0.50 \\ - 0.48 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.42 \\ - 0.41 \\ - 0.38 \\ - 0.34 \\ - 0.25 \\ - 0.12 \\ - 0.02 \\ + 0.08 \\ + 0.12 \\ - 0.02 \\ + 0.08 \\ + 0.19 \\ + 0.03 \\ - 0.07 \\ - 0.17 \end{array}$	$\begin{array}{c} {}^{\mathrm{mg}}\\ 2.08\\ 1.96\\ 1.89\\ 1.79\\ 1.79\\ 1.77\\ 1.79\\ 1.79\\ 1.70\\ 1.80\\ 1.81\\ 1.84\\ 1.85\\ 1.86\\ 1.88\\ 1.88\\ 1.88\\ 1.91\\ 1.92\\ 2.04\\ 2.12\\ 2.24\\ 2.41\\ 2.52\\ 2.55\\ 2.53\\ 2.54\\ 2.60\\ 2.61\\ 2.62\end{array}$	$\begin{array}{c} 2064\\ 2103\\ 2140\\ 2175\\ 2210\\ 2248\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2444\\ 2477\\ 2509\\ 2539\\ 2568\\ 2656\\ 2668\\ 2656\\ 26684\\ 2713\\ 2740\\ 2769\\ \end{array}$	$\begin{array}{c} {}^{\rm mg}\\ - 0.76\\ - 0.77\\ - 0.70\\ - 0.65\\ - 0.66\\ - 0.62\\ - 0.66\\ - 0.57\\ - 0.51\\ - 0.48\\ - 0.49\\ - 0.53\\ - 0.55\\ - 0.50\\ - 0.35\\ - 0.28\\ - 0.17\\ - 0.12\\ - 0.01\\ + 0.10\\ + 0.19\\ + 0.23\\ \end{array}$	$ \begin{array}{c} mg \\ 1.78 \\ 1.82 \\ 1.79 \\ 1.80 \\ 1.81 \\ 1.86 \\ 1.85 \\ 1.92 \\ 1.87 \\ 1.84 \\ 1.84 \\ 1.88 \\ 1.97 \\ 2.03 \\ 1.99 \\ 1.87 \\ 1.90 \\ 1.91 \\ 2.10 \\ 2.25 \\ 2.39 \\ 2.47 \\ 2.52 \end{array} $

Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 143

[79]

Pl. 733. Vergl.-Stern: α Aquilae. β Tauri Z.-D. 440.2; α Aquilae Z.-D. 630.8

				Contraction of the second s	
1 : 2	α Aq*	34 24	1:λ	α Aq *	1
$ \begin{array}{r} 1: \lambda \\ 1757 \\ 1801 \\ 1842 \\ 1878 \\ 1922 \\ 1963 \\ 2002 \\ 2040 \\ 2078 \\ 2114 \\ 9151 \\ \end{array} $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	* mg 1.67 1.87 1.79 1.90 1.78 1.80 1.76 1.77 1.87 1.93 1.90	$\begin{array}{c} 1:\lambda \\ \\ 2422 \\ 2454 \\ 2456 \\ 2517 \\ 2548 \\ 2577 \\ 2607 \\ 2635 \\ 2664 \\ 2693 \\ 2771 \end{array}$	$\begin{array}{c c} \alpha \mathrm{Aq.} - \ast \\ & - 0.66 \\ - 0.60 \\ - 0.51 \\ - 0.42 \\ - 0.32 \\ - 0.25 \\ - 0.11 \\ - 0.03 \\ - 0.17 \\ + 0.02 \end{array}$	* 2.03 2.00 1.99 1.99 1.92 1.86 1.91 1.92 2.07 2.49 9.59
2131 2186 2220 2257 2290 2322 2358 2390	$\begin{array}{c} - 0.78 \\ - 0.76 \\ - 0.76 \\ - 0.73 \\ - 0.72 \\ - 0.72 \\ - 0.72 \\ - 0.68 \end{array}$	$ 1.92 \\ 1.92 \\ 1.93 \\ 1.97 \\ 1.97 \\ 1.97 \\ 2.03 \\ 2.02 $	$2743 \\ 2775 \\ 2803 \\ 2830 \\ 2858 \\ 2881$	$\begin{array}{c} + 0.11 \\ + 0.06 \\ + 0.10 \\ + 0.05 \\ - 0.03 \\ - 0.15 \end{array}$	2.58 2.70 2.64 2.61 2.59 2.62

δ Orionis. [2.^{mg}46; II b.]

R. A. (1900.0) 5^h 26.^m9. Decl. (1900.0) -0° 22'

Pl. 734. Vergl.-Stern: β Orionis. δ Orionis Z.-D. 580.4; β Orionis Z.-D. 610.8 δ Orionis Z.-D. 530.9; β Orionis Z.-D. 590.9

Pl. 950. Vergl.-Stern: β Orionis.

1:λ	α Aq.—*	*	1 : 2	α Aq.—*	**
$1746 \\ 1788 \\ 1830 \\ 1869 \\ 1910 \\ 1951$	$\begin{array}{r} & \overset{\text{mg}}{-1.39} \\ & -1.41 \\ & -1.49 \\ & -1.50 \\ & -1.35 \\ & -1.18 \end{array}$	$\begin{array}{c} {}^{\rm mg}_{2,43}\\ {}^{2.37}_{2.39}\\ {}^{2.41}_{2.29}\\ {}^{2.29}_{2.13}\end{array}$	1777 1820 1862 1904	$\begin{array}{c} \text{mg} \\ -1.09 \\ -1.10 \\ -1.40 \\ -1.25 \end{array}$	mg 2.07 2.01 2.30 2.18
$\begin{array}{c} 1951\\ 1990\\ 2029\\ 2064\\ 2103\\ 2140\\ 2175\\ 2216\\ 2281\\ 2311\\ 2348\\ 2482\\ 2412\\ 2477\\ 2509\\ 2538\\ 2628\\ 2628\\ 2628\\ 2628\\ 2628\\ 2628\\ 2628\\ 2684\\ 2740\\ 2769\\$	$\begin{array}{c} -1.18\\ -1.15\\ -1.29\\ -1.25\\ -1.12\\ -1.10\\ -1.02\\ -0.94\\ -0.93\\ -0.90\\ -0.82\\ -0.77\\ -0.75\\ -0.75\\ -0.72\\ -0.67\\ -0.64\\ -0.58\\ -0.44\\ -0.35\\ -0.10\\ -0.00\\ +0.27\\ +0.49\\ +0.62\\ -0.59\end{array}$	$\begin{array}{c} 2.13\\ 2.13\\ 2.29\\ 2.27\\ 2.17\\ 2.19\\ 2.15\\ 2.16\\ 2.14\\ 2.16\\ 2.14\\ 2.16\\ 2.14\\ 2.16\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.12\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.11\\ 2.10\\ 2.10\\ 2.11\\ 2.10\\ 2.10\\ 2.11\\ 2.10\\ 2.10\\ 2.10\\ 2.10\\ 2.10\\ 2.11\\ 2.10\\ 2.00\\ 2.24\\ 2.24\\ 2.24\\ 2.24\\ 2.20\\ 2.10\\ 2.00\\ 2.24\\ 2.00\\ 2.24\\ 2.00\\$	$\begin{array}{c} 2020\\ 2059\\ 2095\\ 2195\\ 2195\\ 2168\\ 2203\\ 2240\\ 2273\\ 2308\\ 2341\\ 2373\\ 2407\\ 2439\\ 2470\\ 2439\\ 2470\\ 2530\\ 2550\\ 2550\\ 2562\\ 2592\\ 2662\\ 2592\\ 26651\\ 2680\\ 2708\\ 2708\\ 2737\\ 2763\\ 2709$	$\begin{array}{c} -1.11\\ -1.09\\ -1.11\\ -1.12\\ -1.03\\ -0.96\\ -0.94\\ -0.94\\ -0.94\\ -0.94\\ -0.94\\ -0.91\\ -0.89\\ -0.89\\ -0.89\\ -0.73\\ -0.69\\ -0.73\\ -0.69\\ -0.73\\ -0.69\\ -0.73\\ -0.56\\ -0.44\\ -0.23\\ 0.00\\ +0.27\\ +0.46\\ +0.54\\ +0.54\end{array}$	$\begin{array}{c} 2.11\\ 2.11\\ 2.16\\ 2.20\\ 2.15\\ 2.16\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.20\\ 2.18\\ 2.15\\ 2.16\\ 2.22\\ 2.18\\$
2822 2849 2875 2900	+ 0.70 + 0.60 + 0.49 + 0.39 + 0.30	$2.09 \\ 2.01 \\ 2.09 \\ 2.11 \\ 2.09 \\ 2.11$	$\begin{array}{r} 2430\\ 2817\\ 2842\\ 2870\\ 2895\\ 2919\end{array}$	+ 0.52 + 0.52 + 0.42 + 0.34 + 0.25 + 0.21	$2.19 \\ 2.19 \\ 2.20 \\ 2.17 \\ 2.18 \\ 2.12$

ε Orionis. [1.^{mg}75; II a.]

R. A. (1900.0) 5^{h} 31.^m1. Decl. (1900.0) -1° 16'

Pl. 734. Vergl.-Stern: β Orionis.

Pl. 950. Vergl.-Stern: β Orionis. ε Orionis Z.-D. 61°.0; β Orionis Z.-D. 61°.8 ε Orionis Z.-D. 55°.9; β Orionis Z.-D. 59°.9

			المراجع والمراجع والمراجع والمراجع		
1:λ	α Aq*	*	$1:\lambda$	α Aq.—*	*
1716	mg 1 19	mg 9.17		mg	mg
1788	-1.04	2.00	1777	-0.78	1.77
1830 1869	-0.89 -1.09	$1.79 \\ 2.00$	$1820 \\ 1862$	-0.84 -0.81	$1.75 \\ 1.71$
1910	-0.99	1.93	1904	-0.74	1.67

[80]

1:λ	α Aq. —*	*	1:λ	α Aq*	*
	mg	mg		mg	mg
1951	-0.96	1.91			
1990	0.89	1.87	0.000		
2029	- 1.00	2.00	2020	-0.71	1.71
2064	- 0.89	1.91	2059	-0.89	1.91
2103	-0.76	1.81	2095	-0.70	1.75
2140	-0.69	1.78	2131	-0.62	1.70
2175	-0.54	1.66	2168	-0.58	1.70
2210	- 0.44	1.60	2203	-0.56	1.71
2246	- 0.42	1.62	2240	-0.55	1.74
2281	-0.52	1.75	2273	-0.54	1.76
2311	-0.43	1.69	2308	-0.52	1.78
2348	-0.39	1.69	2341	-0.43	1.72
2380	-0.39	1.72	2373	-0.41	1.73
2412	-0.38	1.74	2407	-0.36	1.72
2111	-0.37	1.76	2439	-0.33	1.72
2477	- 0.34	1.79	2470	- 0.30	1.73
2509	- 0.23	1.71	2500	-0.27	+ 1.74
2539	-0.17	1.66	2531	-0.25 ·	1.74
2568	-0.10	1.62	2562	-0.23	1.74
2598	+ 0.03	1.60	2592	-0.10	1.69
2628	+ 0.15	1.62	2622	+ 0.01	1.73
2656	+ 0.30	1.67	2651	+0.19	1.74
2684	+0.46	1.78	2680	+0.43	1 77
2713	+0.72	1.77	2708	+0.76	1.69
2740	+ 0.91	1.75	2737	+ 0.93	1.71
2769	+1.05	1.70	2763	+1.06	1.68
2795	+1.08	1.68	2790	+1.06	1.00
2892	+0.98	171	2817	+ 0.97	1 74
2849	+0.87	1.73	2812	+0.84	1 78
2875	+0.78	1 70	2870	+0.75	1.10
2000	± 0.71	170	2895	+ 0.15	1 78
_000	1 U.I.L	1.10	2919	+0.00 +0.61	1 72

[81] 145Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

ζ Orionis. [1.^{mg}91; II b.]

R. A. (1900.0) $5^{h} 35.^{m}7$. Decl. (1900.0) $-2^{o} 0'$

Pl. 734. Vergl.-Stern: β Orionis. ζ Orionis Z.-D. 63⁰.6; β Orionis Z.-D. 61⁰.9

Pl. 950. Vergl.-Stern: β Orionis. ζ Orionis Z.-D. 570.5; β Orionis Z.-D. 590.9

1:2	α Aq.—*	*	1 : λ	α Aq.—*	*
1746	mg	mg 9.91		mg	· mg
1788	-1.19	2.15	1777	-0.74	1.73
1830	-1.21	2.11	1820	-0.85	1.76
1869	-1.23	2.14	1862	-0.81	1.71
1910	-1.08	2.02	1904	-0.90	1.83
1951	· - 1.00	1.95			
1990	-0.92	1.90			
2029	-0.98	1.98	2020	-0.82	1.82
2064	-0.96	1.98	2059	-0.70	1.72
2103	-0.76	1.81	2095	-0.66	1.71
2140	-0.71	1.80	2131	-0.68	1.76
2175	-0.64	1.76	2168	-0.65	1.77
2210	-0.57	1.73	2203	-0.62	1.77
2246	-0.52	1.72	2240	-0.60	1.79
2281	-0.54	1.77	2273	-0.57	1.79
2311	-0.53	1.79	2308	-0.56	1.82
2348	-0.48	1.78	2341	-0.51	1.80
2380	-0.42	1.75	2373	-0.46	1.78
2412	- 0.39	1.75	2407	- 0.40	1.76
Nova Acta CI	. Nr. 2.				19

Nova Acta CI. Nr. 2.

1:2	α Aq*	*	1:λ	α Aq *	*
$\begin{array}{c} 1:\lambda \\ 2444 \\ 2477 \\ 2509 \\ 2539 \\ 2568 \\ 2598 \\ 2628 \\ 2628 \\ 2628 \\ 2628 \\ 2628 \\ 2634 \\ 2713 \\ 2740 \\ 2769 \\ 2795 \\ 2795 \end{array}$	$\begin{array}{c} \alpha \mathrm{Aq.} - \ast \\ & - 0.36 \\ - 0.35 \\ - 0.29 \\ - 0.29 \\ - 0.20 \\ - 0.06 \\ + 0.09 \\ + 0.22 \\ + 0.41 \\ + 0.69 \\ + 0.91 \\ + 1.04 \\ + 1.10 \end{array}$	* mg 1.75 1.79 1.77 1.78 1.72 1.68 1.69 1.75 1.85 1.80 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.68	$\begin{array}{c} 1:\lambda\\ \\ 2439\\ 2470\\ 2500\\ 2531\\ 2562\\ 2592\\ 2622\\ 2651\\ 2680\\ 2708\\ 2737\\ 2763\\ 2790$	$\begin{array}{c} \alpha \text{ Aq.} - \ast \\ \hline & & \\ & - 0.35 \\ - 0.31 \\ - 0.27 \\ - 0.27 \\ - 0.27 \\ - 0.20 \\ - 0.07 \\ + 0.13 \\ + 0.36 \\ + 0.69 \\ + 0.90 \\ + 1.03 \\ + 1.06 \end{array}$	$\begin{array}{c} & \ast \\ & & \\$
$2822 \\ 2849 \\ 2875 \\ 2900$	+ 1.01 + 0.89 + 0.77 + 0.66	$1.68 \\ 1.71 \\ 1.71 \\ 1.75$	$2817 \\ 2842 \\ 2870 \\ 2895 \\ 2919$	$ \begin{array}{r} +1.00 \\ +0.84 \\ +0.73 \\ +0.60 \\ +0.56 \end{array} $	$1.71 \\ 1.78 \\ 1.78 \\ 1.83 \\ 1.77$

к Orionis. [2.^{mg}20; Па.] R. A. (1900.0) $5^{h} 43.^{m}0$. Decl. (1900.0) $-9^{\circ} 42^{i}$

Pl. 734. Vergl.-Stern: β Orionis. z Orionis Z.-D. 67⁰.3; β Orionis Z.-D. 61⁰.9 z Orionis Z.-D. 63⁰.3; β Orionis Z.-D. 59⁰.9

Pl. 950. Vergl.-Stern: β Orionis.

1:2	lpha Aq. — *	*		1:λ	α Aq.—*	*
$ 1788 \\ 1830 \\ 1869 \\ 1910 $	-1.60 - 1.60 - 1.67 - 1.48	^{mg} 2.56 2.50 2.58 2.42	m	1777 1820 1862 1904	$- \frac{1.28}{- 1.35} \\ - 1.28 \\ - 1.28 \\ - 1.16$	mg 2.26 2.26 2.18 2.09
$\begin{array}{c} 2103\\ 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2442\\ 2442\\ 2447\\ 2509\\ 2539\\ 2568\\ 2698\\ 2698\\ 2698\\ 2668\\ 2684\\ 2713\\ 2740\\ 2769\\ 2795\\ 2822\\ 2822\\ 2820\\$	$\begin{array}{c} -1.22\\ -1.19\\ -1.10\\ -0.92\\ -0.92\\ -0.87\\ -0.83\\ -0.79\\ -0.79\\ -0.77\\ -0.75\\ -0.77\\ -0.75\\ -0.70\\ -0.67\\ -0.58\\ -0.43\\ -0.31\\ -0.17\\ -0.02\\ +0.26\\ +0.49\\ +0.63\\ +0.71\\ +0.54\end{array}$	2.27 2.28 2.17 2.12 2.13 2.13 2.13 2.12 2.13 2.14 2.15 2.15 2.13 2.12 2.15 2.14 2.16 2.19 2.16 2.105 2.14 2.22 2.17 2.12 2.13 2.12 2.13 2.12 2.14 2.15 2.14 2.15		$\begin{array}{c} 2020\\ 2059\\ 2095\\ 2131\\ 2168\\ 2203\\ 2240\\ 2273\\ 2308\\ 2341\\ 2373\\ 2407\\ 2439\\ 2470\\ 2530\\ 25500\\ 2531\\ 2562\\ 2592\\ 2652\\ 2652\\ 2651\\ 2680\\ 2708\\ 2737\\ 2763\\ 2790\\ 2817\\ 2819\end{array}$	$\begin{array}{c} -1.01\\ -1.07\\ -1.05\\ -0.98\\ -0.92\\ -0.89\\ -0.86\\ -0.81\\ -0.80\\ -0.78\\ -0.78\\ -0.68\\ -0.68\\ -0.61\\ -0.66\\ -0.64\\ -0.50\\ -0.38\\ +0.29\\ +0.48\\ +0.55\\ +0.61\\ +0.55\\ +0.51\\ \end{array}$	$\begin{array}{c} 2.01\\ 2.09\\ 2.10\\ 2.17\\ 2.13\\ 2.11\\ 2.11\\ 2.11\\ 2.12\\ 2.10\\ 2.12\\ 2.14\\ 2.13\\ 2.11\\ 2.13\\ 2.11\\ 2.08\\ 2.15\\ 2.08\\ 2.15\\ 2.09\\ 2.15\\ 2.09\\ 2.12\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.16\\ 2.08\\ 3.12\\ 2.16\\ 3.09\\ 3.12\\$
2875	+ 0.33	2.15		2870	+ 0.47	2.04

146

[82]

Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 147

α Orionis. [Var.; XVIII a; Rem. 128.] R. A. (1900.0) 5^h 49.^m8. Decl. (1900.0) + 7^o 23⁴

Pl. 585. Vergl.-Stern: β Orionis. α Orionis Z.-D. 530.6; β Orionis Z.-D. 610.3

[83]

Pl. 950. Vergl.-Stern: β Orionis. α Orionis Z.-D. 520.8; β Orionis Z.-D. 590.9

1:2	α Aq *	×	1:λ	α Aq. — *	*
181 4 1855 1895	$ \begin{array}{c} {}^{\rm mg} \\ + \ 0.35 \\ - \ 0.20 \\ - \ 0.41 \end{array} $	mg 0.57 1.10 1.34	1777 1820 1862 1904	$\begin{array}{r} {}^{\rm mg} \\ + \ 0.43 \\ + \ 0.13 \\ + \ 0.14 \\ - \ 0.02 \end{array}$	mg 0.56 0.78 0.76 0.95
$\begin{array}{c} 2051\\ 2089\\ 2125\\ 2161\\ 2196\\ 2231\\ 2268\\ 2301\\ 2333\\ 2368\\ 2400\\ 2431\\ 2461\\ 2494\\ 2525\\ \end{array}$	$\begin{array}{c} - \ 0.27 \\ - \ 0.50 \\ - \ 0.69 \\ - \ 0.92 \\ - \ 1.12 \\ - \ 1.32 \\ - \ 1.52 \\ - \ 1.73 \\ - \ 1.93 \\ - \ 2.10 \\ - \ 2.28 \\ - \ 2.42 \\ - \ 2.56 \\ - \ 2.68 \\ - \ 2.82 \end{array}$	$\begin{array}{c} 1.28\\ 1.55\\ 1.77\\ 2.03\\ 2.27\\ 2.50\\ 2.74\\ 2.98\\ 3.21\\ 3.42\\ 3.63\\ 3.80\\ 3.98\\ 4.14\\ 4.31\end{array}$	$\begin{array}{c} 2020\\ 2059\\ 2095\\ 2131\\ 2168\\ 2203\\ 2240\\ 2273\\ 2308\\ 2941\\ 2373\\ 2407\\ 2439\\ 2407\\ 2439\\ 2470\\ 2500 \end{array}$	$\begin{array}{c} - & 0.60 \\ - & 0.56 \\ - & 0.72 \\ - & 0.88 \\ - & 0.98 \\ - & 1.14 \\ - & 1.29 \\ - & 1.44 \\ - & 1.62 \\ - & 1.79 \\ - & 2.02 \\ - & 2.19 \\ - & 2.32 \\ - & 2.40 \\ - & 2.57 \end{array}$	$\begin{array}{c} 1.60 \\ 1.58 \\ 1.77 \\ 1.96 \\ 2.10 \\ 2.29 \\ 2.48 \\ 2.66 \\ 2.88 \\ 3.08 \\ 3.34 \\ 3.55 \\ 3.71 \\ 3.83 \\ 4.04 \end{array}$

β Aurigae. [2.^{mg}07; VIII a; Rem. 56.] R. A. (1900.0) 5^h 52.^m2. Decl. (1900.0) + 44^o 56'

Pl. 633. Vergl.-Stern: α Aurigae. β Aurigae Z.-D. 450.8; α Aurigae Z.-D. 490.4 Pl. 634. Vergl.-Stern: α Aurigae. β Aurigae Z.-D. 49°.7; $\dot{\alpha}$ Aurigae Z.-D. 51°.9

Ι:λ	α Aq. — #	*	1:λ	α Aq*	*
1778 1821	- 1.13 - 1.06	mg 2.11 1.97	1788 1830 1869	-0.99 - 0.75 - 0.71	1.95 1.65 1.62
2095 2131 2169 2203 2239 2273 2308 2340 2373	$\begin{array}{c} -1.11 \\ -1.07 \\ -0.85 \\ -0.85 \\ -0.80 \\ -0.75 \\ -0.71 \\ -0.67 \\ -0.63 \end{array}$	$\begin{array}{c} 2.16\\ 2.15\\ 1.97\\ 2.00\\ 1.99\\ 1.97\\ 1.97\\ 1.96\\ 1.95 \end{array}$	$\begin{array}{c} 2064 \\ 2103 \\ 2140 \\ 2175 \\ 2210 \\ 2246 \\ 2281 \\ 2311 \\ 2348 \\ 2380 \end{array}$	$\begin{array}{c} - \ 0.94 \\ - \ 0.90 \\ - \ 0.83 \\ - \ 0.78 \\ - \ 0.79 \\ - \ 0.80 \\ - \ 0.79 \\ - \ 0.75 \\ - \ 0.75 \\ - \ 0.71 \end{array}$	$1.96 \\ 1.95 \\ 1.92 \\ 1.91 \\ 1.95 \\ 2.00 \\ 2.02 \\ 2.01 \\ 2.05 \\ 2.04$

19*

1:2	αAq —*	*	1:λ	α Aq*	*
$\begin{array}{c} 2407\\ 2439\\ 2470\\ 2500\\ 2531\\ 2561\\ 2591\\ 2621\\ 9651 \end{array}$	$\begin{array}{c} {}^{\mathrm{mg}}_{-0.63}\\ -0.63\\ -0.66\\ -0.71\\ -0.82\\ -1.22\\ -1.26\\ -1.27\\ -1.16\end{array}$	mg 1.99 2.02 2.09 2.18 2.31 2.73 2.85 3.00 2.00	$\begin{array}{c} 2412\\ 2444\\ 2477\\ 2509\\ 2539\\ 2568\\ 2598\\ 2628\\ 2628\\ 2628\\ 2656\end{array}$	$\begin{array}{c} {}^{\rm mg} \\ - \ 0.71 \\ - \ 0.72 \\ - \ 0.72 \\ - \ 0.80 \\ - \ 0.79 \\ - \ 0.65 \\ - \ 0.57 \\ - \ 0.58 \\ - \ 0.58 \end{array}$	$\begin{array}{c} {}^{\rm mg} \\ 2.07 \\ 2.11 \\ 2.18 \\ 2.28 \\ 2.28 \\ 2.17 \\ 2.19 \\ 2.30 \\ 2.56 \end{array}$
2001	1.10	0.00	2684	-0.58	2.82

𝔅 Aurigae. [2.^{mg}71; VIII P., Rem. 70.]
R. A. (1900.0) 5^h 52.^m9. Decl. (1900.0) + 37° 12′

Pl. 733. Vergl.-Stern: α Aquilae. ϑ Aurigae Z.-D. 48^{0.5}; α Aquilae Z.-D. 62^{0.9} Pl. 755. Vergl.-Stern: α Aurigae. ϑ Aurigae Z.-D. 38⁰.2; α Aurigae Z.-D. 27⁰.9

1:λ	α Aq. — *	40 20	1:λ	α Aq. — *	2
$1757 \\1801 \\1842 \\1878 \\1922 \\1963$	$\begin{array}{r} {}^{mg}_{-1.08}\\ -1.57\\ -1.88\\ -2.06\\ -1.91\\ -1.61\end{array}$	2.10 2.51 2.77 2.97 2.85 2.57	1775 1816 1858 1898	$\begin{array}{r} {}^{mg}_{-1.70}\\ -1.67\\ -1.63\\ -1.77\end{array}$	2.69 2.58 2.53 2.70
$\begin{array}{c} 2002 \\ 2040 \\ 2078 \\ 2114 \\ 2151 \\ 2186 \\ 2220 \\ 2257 \\ 2290 \\ 2322 \\ 2358 \\ 2358 \end{array}$	$\begin{array}{r} -1.46 \\ -1.65 \\ -1.50 \\ -1.51 \\ -1.50 \\ -1.48 \\ -1.46 \\ -1.41 \\ -1.38 \\ -1.37 \\ -1.37 \\ -1.34 \end{array}$	$\begin{array}{c} 2.45\\ 2.66\\ 2.54\\ 2.57\\ 2.60\\ 2.62\\ 2.63\\ 2.62\\ 2.62\\ 2.64\\ 2.64\\ 2.65\end{array}$	$\begin{array}{c} 2018\\ 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2303\end{array}$	$\begin{array}{c} -1.88 \\ -1.61 \\ -1.61 \\ -1.51 \\ -1.54 \\ -1.56 \\ -1.56 \\ -1.52 \\ -1.47 \\ -1.43 \\ -1.87 \end{array}$	$\begin{array}{c} 2.88\\ 2.62\\ 2.66\\ 2.59\\ 2.66\\ 2.71\\ 2.75\\ 2.74\\ 2.72\\ 2.72\\ 2.72\\ 2.69\\ 2.69\end{array}$
$\begin{array}{c} 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2577\\ 2607\\ 2607\\ 2635\\ 2664\\ 2693\\ 2721 \end{array}$	$\begin{array}{r} -1.37 \\ -1.35 \\ -1.34 \\ -1.32 \\ -1.33 \\ -1.30 \\ -1.26 \\ -1.25 \\ -1.26 \\ -1.27 \\ -1.29 \\ -1.29 \\ 1.96 \end{array}$	2.71 2.72 2.75 2.78 2.81 2.80 2.80 2.91 3.08 3.31 3.61 2.90	$\begin{array}{c} 2402 \\ 2435 \\ 2468 \\ 2499 \\ 2529 \\ 2559 \\ 2589 \\ 2618 \\ 2648 \\ 2677 \\ 2706 \\ 9732 \end{array}$	$\begin{array}{r} -1.34 \\ -1.36 \\ -1.39 \\ -1.41 \\ -1.49 \\ -1.49 \\ -1.28 \\ -1.20 \\ -1.14 \\ -1.19 \\ -1.20 \\ -1.14 \\ -1.19 \\ -1.20 \\ -1.14 \\ -1.19 \\ -1.20 \\ -1.12 \\ -1.19 \\$	$\begin{array}{c} 2.69\\ 2.75\\ 2.82\\ 2.88\\ 2.98\\ 2.98\\ 2.91\\ 2.86\\ 2.92\\ 3.05\\ 3.35\\ 3.64\\ 3.71\\ 3.71\\ \end{array}$
2748 2775 2803	-1.20 -1.22 -1.18 -1.15	3.91 3.93 3.89	$2760 \\ 2787 \\ 2813 \\ 2840 \\ 2867 \\ 2892$	$\begin{array}{c} -1.12 \\ -1.09 \\ -1.00 \\ -1.15 \\ -1.29 \\ -1.54 \\ -1.51 \end{array}$	$\begin{array}{c} 3.83\\ 3.87\\ 3.77\\ 3.87\\ 3.92\\ 4.06\\ 3.95\end{array}$
[85] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 149

γ Geminorum. [1.^{mg}93; VIII a.]

R. A. (1900.0) 6^h 31.^m9. Decl. (1900.0) + 16^o 29^t

Pl. 633. Vergl.-Stern: a Aurigae. γ Geminorum Z.-D. 62⁰.6; α Aurigae Z.-D. 48⁰.4

Pl. 634.	VerglStern:	α Aurigae.
γ Geminorum	ZD.55 $^{0.9}$; α A	urigae ZD. 520.2

1:2	αAq*	*	1:λ	α Aq.—*	*
1778 1821	$-\frac{mg}{0.98}$ - 1.10	^{mg} 1.96 2.01	1788 1830 1869	$-\frac{mg}{1.06}$ - 1.14 - 1.05	2.02 2.04 1.96
$\begin{array}{c} 2095\\ 2131\\ 2169\\ 2203\\ 2239\\ 2373\\ 2308\\ 2340\\ 2373\\ 2407\\ 2439\\ 2470\\ 2530\\ 2531\\ 2561\\ 2591\\ 2621\\ 2651 \end{array}$	$\begin{array}{c} - \ 0.81 \\ - \ 0.86 \\ - \ 0.90 \\ - \ 0.89 \\ - \ 0.84 \\ - \ 0.82 \\ - \ 0.83 \\ - \ 0.77 \\ - \ 0.77 \\ - \ 0.77 \\ - \ 0.77 \\ - \ 0.83 \\ - \ 0.95 \\ - \ 0.75 \\ - \ 0.75 \\ - \ 0.77 \\ - \ 0.64 \\ - \ 0.51 \end{array}$	$\begin{array}{c} 1.86\\ 1.94\\ 2.02\\ 2.04\\ 2 03\\ 2.06\\ 2.08\\ 2.12\\ 2.10\\ 2.13\\ 2.16\\ 2.26\\ 2.35\\ 2.44\\ 2.26\\ 2.35\\ 2.38\\ 2.44\\ \end{array}$	$\begin{array}{c} 2029\\ 2064\\ 2103\\ 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2444\\ 2477\\ 2509\\ 2539\\ 2568\\ 2598\\ 2656\\ 2684\\ 2656\\ 2684\\ 2713\\ \end{array}$	$\begin{array}{c} - \ 0.88 \\ - \ 0.91 \\ - \ 0.91 \\ - \ 0.84 \\ - \ 0.85 \\ - \ 0.84 \\ - \ 0.83 \\ - \ 0.81 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.79 \\ - \ 0.78 \\ - \ 0.69 \\ - \ 0.68 \\ - \ 0.68 \\ - \ 0.63 \\ - \ 0.63 \\ - \ 0.63 \\ - \ 0.64 \end{array}$	$\begin{array}{c} 1.88\\ 1.93\\ 1.96\\ 1.93\\ 1.98\\ 2.00\\ 2.03\\ 2.04\\ 2.05\\ 2.09\\ 2.07\\ 2.05\\ 2.09\\ 2.07\\ 2.05\\ 2.08\\ 2.17\\ 2.26\\ 2.25\\ 2.20\\ 2.25\\ 2.36\\ 2.59\\ 2.87\\ 3.13\end{array}$

α Canis mai. [-1.^{mg}58; VIIa; Rem. 39.] R. A. (1900.0) 6ⁿ 40.^m7. Decl. (1900.0) -16^o 35ⁱ

Pl. 585. Vergl.-Stern: β Orionis. α Canis mai. Z.-D. 720.3; β Orionis Z.-D. 610.1 α Canis mai. Z.-D. 710.6; β Orionis Z.-D. 590.9

Pl. 950. Vergl.-Stern: β Orionis.

1:2	α Aq *	*	1:λ	αAq.—*	*
1814 1855 1895	mg + 2.05 + 1.97 + 1.86	mg 1.13 1.07 0.93	1777 1820 1862 1904	$\begin{array}{r} {}^{\rm mg}_{\rm + 1.90}\\ {}^{\rm + 1.76}_{\rm + 1.83}\\ {}^{\rm + 2.00}_{\rm - 0}\end{array}$	$\begin{array}{r} & \stackrel{\rm mg}{-} & 0.91 \\ - & 0.85 \\ - & 0.93 \\ - & 1.07 \end{array}$
$\begin{array}{c} 2051 \\ 2089 \\ 2125 \\ 2161 \\ 2196 \\ 2231 \\ 2268 \end{array}$	+2.06 +2.10 +2.15 +2.17 +2.22 +2.23 +2.23 +2.27	-1.05 -1.05 -1.07 -1.06 -1.07 -1.05 -1.05	$\begin{array}{c} 2020 \\ 2059 \\ 2095 \\ 2131 \\ 2168 \\ 2203 \\ 2240 \\ 2273 \end{array}$	+ 2.15 + 2.00 + 2.07 + 2.11 + 2.18 + 2.20 + 2.220 + 2.221 + 2.27	$\begin{array}{r} -1.15 \\ -1.08 \\ -1.02 \\ -1.03 \\ -1.06 \\ -1.05 \\ -1.05 \\ -1.05 \end{array}$

Hans Rosenberg,

1:2	α Aq *	*	1 : λ	« Aq —*	*
$\begin{array}{c} 1:\lambda\\ \\ 2301\\ 2333\\ 2368\\ 2400\\ 2431\\ 2461\\ 2494\\ 2525\\ 2555\\ 2555\\ 2555\\ 2555\\ 2557\\ 2615\\ 2613\\ 2673\\ 2673\\ 2701\\ 2730\\ 2737\\ 2737\\ \end{array}$	$\begin{array}{c} \alpha \mathrm{Aq.} - \ast \\ & + 2.29 \\ + 2.31 \\ + 2.33 \\ + 2.37 \\ + 2.37 \\ + 2.49 \\ + 2.49 \\ + 2.49 \\ + 2.49 \\ + 2.46 \\ + 2.41 \\ + 2.39 \\ + 2.41 \\ + 2.43 \\ + 2.46 \\ + 2.56 \\ + 2.68 \end{array}$	$\begin{array}{c} & \\ & \\ & \\ & -1.04 \\ & -1.03 \\ & -1.01 \\ & -1.02 \\ & -1.01 \\ & -1.00 \\ & -1.03 \\ & -1.01 \\ & -0.95 \\ & -0.90 \\ & -0.71 \\ & -0.52 \\ & -0.31 \\ & -0.07 \\ & 0.04 \\ & 0.05 \end{array}$	$\begin{array}{c} 1:\dot{\lambda}\\ \\ 2308\\ 2341\\ 2373\\ 2407\\ 2439\\ 2470\\ 2500\\ 2531\\ 2562\\ 2592\\ 2622\\ 2651\\ 2680\\ 2708\\ 2737\\ 2763\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2764\\ 2$	$\begin{array}{c} \alpha \mathrm{Aq} - \ast \\ & + 2 29 \\ + 2 29 \\ + 2 29 \\ + 2 29 \\ + 2 40 \\ + 2 45 \\ + 2 50 \\ + 2 50 \\ + 2 50 \\ + 2 38 \\ + 2 38 \\ + 2 38 \\ + 2 36 \\ + 2 31 \\ + 2 260 \\ + 2 60 \\ + 2 61 \\ + 2 71 \\ \end{array}$	$\begin{array}{c} * \\ & \begin{array}{c} & {}^{mg} \\ - 1.03 \\ - 0.99 \\ - 1.00 \\ - 1.04 \\ - 1.06 \\ - 1.09 \\ - 1.03 \\ - 0.95 \\ - 0.87 \\ - 0.79 \\ - 0.62 \\ - 0.39 \\ - 0.16 \\ - 0.15 \\ 0.00 \\ 0.03 \end{array}$
$2782 \\ 2811 \\ 2839 \\ 2863$	+ 2.83 + 2.85 + 2.73 + 2.60	$\begin{array}{r} - 0.07 \\ - 0.12 \\ - 0.10 \\ - 0.06 \end{array}$	$2790 \\ 2817 \\ 2842 \\ 2870 \\ 2895$	+ 2.73 + 2.65 + 2.52 + 2.44 + 2.29	$\begin{array}{c} 0.04 \\ 0.06 \\ 0.11 \\ 0.07 \\ 0.14 \end{array}$

α Geminorum. [1.^{mg}58; VIII a.]

R. A. (1900.0) 7^h 28.^m2. Decl. (1900.0) $+ 32^{\circ} 6'$

Pl. 633. Vergl.-Stern: α Aurigae. α Geminorum Z.-D. 47⁰.1; α Aurigae Z.-D. 48⁰.4

Pl. 635. Vergl. Stern: a Aurigae. α Geminorum Z.-D. 500.3; α Aurigae Z.-D. 570.1

1:λ	α Aq. — *	*	1:λ	α Aq. —*	*
1778 1821	$-\frac{mg}{0.57}$ - 0.20	^{mg} 1.55 1.11	1801 1842	$-\frac{^{mg}}{1.02}$ - 0.71	^{mg} 1.96 1.60
$\begin{array}{c} 2095\\ 2131\\ 2169\\ 2203\\ 2239\\ 2273\\ 2308\\ 2340\\ 2373\\ 2407\\ 2439\\ 2470\\ 2500\\ 2531\\ 2561\\ 2591 \end{array}$	$\begin{array}{c} - \ 0.44 \\ - \ 0.39 \\ - \ 0.36 \\ - \ 0.37 \\ - \ 0.35 \\ - \ 0.38 \\ - \ 0.28 \\ - \ 0.24 \\ - \ 0.28 \\ - \ 0.24 \\ - \ 0.29 \\ - \ 0.45 \\ - \ 0.59 \\ - \ 0.56 \end{array}$	$\begin{array}{c} 1.49\\ 1.47\\ 1.48\\ 1.52\\ 1.54\\ 1.50\\ 1.50\\ 1.50\\ 1.56\\ 1.59\\ 1.63\\ 1.72\\ 1.92\\ 2.07\\ 2.10\\ 2.14\end{array}$	$\begin{array}{c} 2040\\ 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290\\ 2322\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2517\\ 2548\\ 2517\\ 2607\\ 2635\\ 2664\\ 2693\\ 2721\\ 271\\ 8\end{array}$	$\begin{array}{c} - \ 0.52 \\ - \ 0.63 \\ - \ 0.56 \\ - \ 0.43 \\ - \ 0.37 \\ - \ 0.37 \\ - \ 0.32 \\ - \ 0.32 \\ - \ 0.32 \\ - \ 0.24 \\ - \ 0.24 \\ - \ 0.22 \\ - \ 0.26 \\ - \ 0.45 \\ - \ 0.43 \\ - \ 0.38 \\ - \ 0.46 \\ - \ 0.43 \\ - \ 0.33 \\ - \ 0.29 \\ - \ 0.26 \\ - \ 0.43 \\ - \ 0.29 \\ - \ 0.29 \\ - \ 0.29 \\ - \ 0.26 \\ - \ 0.43 \\ - \ 0.29 \\ - \ 0.29 \\ - \ 0.29 \\ - \ 0.25 \\ - \ $	$\begin{array}{c} 1.53\\ 1.67\\ 1.62\\ 1.53\\ 1.53\\ 1.54\\ 1.55\\ 1.56\\ 1.57\\ 1.55\\ 1.58\\ 1.59\\ 1.67\\ 1.82\\ 1.93\\ 1.93\\ 1.93\\ 1.93\\ 1.93\\ 1.93\\ 1.89\\ 2.04\\ 2.27\\ 2.47\\ 2.65\\ 2.83\\ 2.74\end{array}$

150

[86]

α Canis minoris. [0.^{mg}48; XII a.]

R. A. (1900.0) 7^{h} 34.^m1. Decl. (1900.0) + 5° 29'

Pl. 633. Vergl.-Stern: α Aurigae. α Can. min. Z.-D. 62⁰.6; α Aurigae Z.-D. 48⁰.4 Pl. 634. Vergl.-Stern: α Aurigae. α Can. min. Z.-D. 54⁰.6; α Aurigae Z.-D. 51⁰.9

	α Aq*	*
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	^{mg} 0.91 0.69
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.68\\ 0.74\\ 0.78\\ 0.85\\ 0.91\\ 0.99\\ 1.04\\ 1.08\\ 1.16\\ 1.17\\ 1.21\\ 1.28\\ 1.40\\ 1.46\\ 1.42\\ 1.42\\ 1.42\\ 1.54\\ 1.54\\ 1.70\\ 1.86\\ 2.00\\ 2.12\\ 2.25\end{array}$

β Geminorum. [1.^{mg}21; XV a; Rem. 184.] R. A. (1900.0) 7^h 39.^m2. Decl. (1900.0) + 28° 16'

Pl. 633. Vergl.-Stern: α Aurigae β Geminorum Z.-D. 49°.0; α Aurigae Z.-D. 48°.4 Pl. 635. Vergl.-Stern: α Aurigae. β Geminorum Z.-D. 49⁰.5; α Aurigae Z.-D. 57⁰.1

The second se					
1:2	α Aq *	*	1:λ	α Aq*	*
1778 1821	$^{mg}_{-0.00}$ + 0.14	^{mg} 0.98 0.77	$1757 \\1801 \\1842 \\1878 \\1922 \\1963 \\2002 \\2040$	$\begin{array}{r} {}^{mg} \\ - \ 0.21 \\ - \ 0.38 \\ - \ 0.36 \\ - \ 0.45 \\ - \ 0.47 \\ - \ 0.38 \\ - \ 0.48 \\ - \ 0.42 \end{array}$	^{mg} 1.23 1.32 1.25 1.36 1.41 1.34 1.47 1.43

1:λ	α Aq*	*	1:λ	α Aq —*	*
2095 2131 2169 2203 2239 2273	$\begin{array}{c} & {}^{\rm mg}_{\rm -} & 0.59 \\ - & 0.70 \\ - & 0.80 \\ - & 0.88 \\ - & 0.90 \\ - & 1.02 \end{array}$	$rac{mg}{1.64}$ 1.78 1.92 2.03 2.09 2.24	$\begin{array}{r} 2078 \\ 2114 \\ 2151 \\ 2186 \\ 2220 \\ 2257 \\ 2990 \\ \end{array}$	$ \begin{array}{r} & & & & & \\ & & - & 0.61 \\ & & - & 0.67 \\ & & - & 0.60 \\ & & - & 0.75 \\ & - & 0.84 \\ & - & 0.94 \\ & - & 0.94 \\ & - & 0.6 \end{array} $	$\begin{array}{c} {}^{\mathrm{mg}}_{1.65}\\ 1.65\\ 1.73\\ 1.70\\ 1.89\\ 2.01\\ 2.15\\ 9.201\end{array}$
			$\begin{array}{c} & 2290\\ 2392\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486 \end{array}$	$\begin{array}{c} -1.03 \\ -1.13 \\ -1.26 \\ -1.36 \\ -1.38 \\ -1.44 \\ -1.52 \end{array}$	$2.50 \\ 2.40 \\ 2.57 \\ 2.70 \\ 2.75 \\ 2.85 \\ 2.98$

α Leonis. [1.^{mg}34; VI b.] R. A. (1900.0) $10^{h} 3^{m}0$. Decl. (1900.0) $+ 12^{o} 27^{*}$

Pl. 633. Vergl.-Stern: α Aurigae.

Pl. 635. Vergl.-Stern: α Aurigae. α Leonis Z.-D. 43⁰.5; α Aurigae Z.-D. 48⁰.4 α Leonis Z.-D. 46⁰.7; α Aurigae Z.-D. 58⁰.6

			_			
1:λ	α Aq. — *	*	_	1:λ	α Aq. — *	*
1778 1821	$-\frac{mg}{1.12}$ - 0.61	^{mg} 2.11 1.52		1801 1842 1878	$-\frac{^{mg}}{1.27}$ - 0.62 - 0.61	^{mg} 2.21 1.51 1.52
$\begin{array}{c} 2095\\ 2131\\ 2169\\ 2203\\ 2239\\ 2273\\ 2308\\ 2340\\ 2373\\ 2407\\ 2439\\ 2470\\ 2500\\ 2531\\ 2561\\ 2561\\ 2591\\ 2651\\ 2651\\ 2680\\ \end{array}$	$\begin{array}{c} - \ 0.30 \\ - \ 0.13 \\ - \ 0.13 \\ - \ 0.17 \\ - \ 0.13 \\ - \ 0.13 \\ - \ 0.07 \\ - \ 0.03 \\ + \ 0.01 \\ + \ 0.04 \\ + \ 0.05 \\ + \ 0.03 \\ - \ 0.01 \\ - \ 0.08 \\ + \ 0.09 \\ + \ 0.12 \\ + \ 0.13 \\ + \ 0.31 \end{array}$	$\begin{array}{c} 1.35\\ 1.21\\ 1.27\\ 1.32\\ 1.32\\ 1.35\\ 1.33\\ 1.32\\ 1.31\\ 1.32\\ 1.31\\ 1.32\\ 1.31\\ 1.32\\ 1.34\\ 1.40\\ 1.48\\ 1.57\\ 1.42\\ 1.47\\ 1.61\\ 1.80\\ 1.89\end{array}$		$\begin{array}{c} 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290\\ 2322\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2577\\ 2607\\ 2635\\ 2664\\ 2693\\ 2721\\ 2748\\ 2775\\ \end{array}$	$\begin{array}{c} - \ 0.30 \\ - \ 0.24 \\ - \ 0.22 \\ - \ 0.21 \\ - \ 0.22 \\ - \ 0.26 \\ - \ 0.21 \\ - \ 0.26 \\ - \ 0.21 \\ - \ 0.16 \\ - \ 0.09 \\ - \ 0.03 \\ - \ 0.12 \\ - \ 0.11 \\ + \ 0.05 \\ + \ 0.03 \\ + \ 0.09 \\ + \ 0.26 \\ + \ 0.26 \\ + \ 0.36 \\ + \ 0.40 \\ + \ 0.47 \end{array}$	$\begin{array}{c} 1.36\\ 1.34\\ 1.38\\ 1.43\\ 1.50\\ 1.48\\ 1.47\\ 1.43\\ 1.40\\ 1.44\\ 1.58\\ 1.62\\ 1.61\\ 1.63\\ 1.72\\ 1.88\\ 2.06\\ 2.19\\ 2.29\\ 2.29\\ 2.29\end{array}$

152

[88]

[89] 153Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

γ Leonis. [2.^{mg}30; XVa; Rem. 107, 184.] R. A. (1900.0) 10^{h} 14^m5. Decl. (1900.0) + 20^o 21^o

Pl. 633. Vergl.-Stern: a Aurigae. γ Leonis Z.-D. 360.3; α-Aurigae Z.-D. 480.4

Pl. 635. Vergl.-Stern: α Aurigae. γ Leonis Z.-D. 490.9; α Aurigae Z.-D. 570.1

1:2	α Aq*	*	1:λ	α Aq*	*
1778 1821	-0.94 -0.83	^{mg} 1.92 1.7 1	1757 1801 1842		mg 1.84 1.93 1.78
2095 2131 2169 2203 2239 2239 2273 2308	$\begin{array}{c} -1.43\\ -1.48\\ -1.56\\ -1.64\\ -1.68\\ -1.78\\ -1.89\end{array}$	$\begin{array}{c} 2.48\\ 2.56\\ 2.68\\ 2.79\\ 2.87\\ 3.00\\ 3.15\end{array}$	$\begin{array}{c} 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290\\ 2322\\ 2358\\ 2390\\ 2422\\ \end{array}$	$\begin{array}{c} -1.44\\ -1.33\\ -1.27\\ -1.20\\ -1.36\\ -1.54\\ -1.71\\ -1.83\\ -1.97\\ -2.05\\ -1.97\end{array}$	$\begin{array}{c} 2.48\\ 2.39\\ 2.37\\ 2.34\\ 2.53\\ 2.75\\ 2.95\\ 3.10\\ 3.28\\ 3.39\\ 3.34\\ \end{array}$

β Ursae mai. [2.^{mg}44; VIII a; Rem. 32.]. R. A. (1900.0) 10^{h} 55.^m8. Decl. (1900.0) + 56° 55'

Pl. 648. Vergl.-Stern: a Aquilae. βUrsae mai. Z.-D. 510.7; α Aquilae Z.-D. 430.0 βUrsae mai. Z.-D. 630.7; α Aquilae Z.-D. 430.0

Pl. 915. Vergl.-Stern: α Aquilae.

20

1:2	α Aq*	*	1 : λ	α Aq. — *	*
1788 1830 1869 1910	$\begin{array}{r} \mathbf{mg} \\ -0.84 \\ -1.41 \\ -1.64 \\ -1.68 \end{array}$	mg 1.80 2.31 2.55 2.62	1796 1837 1878	$ \begin{array}{r} mg \\ -1.64 \\ -1.52 \\ -1.60 \end{array} $	^{mg} 2.59 2.41 2.51
$\begin{array}{c} 2064\\ 2108\\ 21140\\ 2175\\ 9210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ \end{array}$	$\begin{array}{c} - 1.41 \\ - 1.37 \\ - 1.53 \\ - 1.54 \\ - 1.51 \\ - 1.47 \\ - 1.47 \\ - 1.47 \\ - 1.49 \\ - 1.39 \\ - 1.35 \end{array}$	$\begin{array}{c} 2.43\\ 2.42\\ 2.62\\ 2.67\\ 2.67\\ 2.67\\ 2.67\\ 2.70\\ 2.70\\ 2.69\\ 2.68\end{array}$	$\begin{array}{c} 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ \end{array}$	$\begin{array}{c} -1.40 \\ -1.28 \\ -1.43 \\ -1.43 \\ -1.43 \\ -1.43 \\ -1.40 \\ -1.36 \\ -1.34 \\ -1.32 \end{array}$	2.46 2.38 2.56 2.60 2.63 2.64 2.63 2.64 2.64 2.66

Nova Acta CI. Nr. 2.

Hans Rosenberg

1:λ	α Aq *	*	1:λ	α Aq*	*
	mg	mg		mg	mg
2419	- 1.3 1	2.71	2419	- 1.31	-2.68
2411	-1.32	2.71	2450	-1.30	-2.70
2477	- 1.29	2.75	2481	- 1.29	2.74
2509	-1.27	2.75	2513	-1.25	2.73
2539	-1.25	2.74	2544	-1.22	2.71
2568	- 1.25	2.77	2572	-1.14	2.67
9598	- 1 23	2.85	2603	_ 107	9.71
2628	-191	3.01	2632		2.01
2656	_ 1.19	3 30	2002	- 1.10	<u> </u>
968.1		3.76			
2001	1 59	4.00			
2/15	- 1.05	4.02			
2740	-1.00	4.10		}	
2769	- 1.44	4.19			
2795	- 1.37	4.13			

α Ursae mai. [1.^{mg}95; XVa; Rem. 184.] R. A. (1900.0) 10^h 57.^m6. Decl. (1900.0) + 62^o 17^t

Pl. 648. Vergl.-Stern: α Aquilae. αUrsae mai. Z.-D. 47⁰.5; α Aquilae Z.-D. 43⁰.0 Pl. 915. Vergl.-Stern: α Aquilae. αUrsae mai. Z.-D. 58%.0; α Aquilae Z.-D. 43%.0

1:λ	α Aq*	Š.	-	1:λ	α Aq*	*
1788 1830 1869	$- \begin{array}{c} {}^{\rm mg}_{0.83} \\ - 1.24 \\ - 1.46 \end{array}$	^{mg} 1.79 2.14 2.37		1796 1837 1878	$ \begin{array}{c} & \overset{\text{mg}}{-1.46} \\ & -1.25 \\ & -1.07 \end{array} $	2.41 2.14 2.98
$\begin{array}{c} 2103\\ 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2444\\ 2477 \end{array}$	$\begin{array}{c} -1.44\\ -1.54\\ -1.63\\ -1.89\\ -1.92\\ -2.44\\ -2.86\\ -2.97\\ -2.99\\ -2.99\\ -2.92\\ -2.79\end{array}$	$\begin{array}{c} 2.49\\ 2.63\\ 2.76\\ 3.05\\ 3.12\\ 3.20\\ 3.70\\ 4.16\\ 4.30\\ 4.31\\ 4.23\end{array}$		$\begin{array}{c} 2073\\ 2111\\ 2148\\ 2181\\ 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544 \end{array}$	$\begin{array}{c} -1.62\\ -1.61\\ -1.67\\ -1.74\\ -1.83\\ -2.05\\ -2.05\\ -2.19\\ -2.51\\ -2.51\\ -2.54\\ -2.54\\ -2.54\\ -2.56\\ -2.63\end{array}$	$\begin{array}{c} 2.65\\ 2.67\\ 2.77\\ 2.87\\ 3.00\\ 3.13\\ 3.29\\ 3.46\\ 3.65\\ 3.85\\ 3.93\\ 3.94\\ 3.99\\ 4.04\\ 4.12\end{array}$

δ Leonis. [2.^{mg}58; IX b; Rem. 178.] R. A. (1900.0) 11^h 8^m8. Decl. (1900.0) + 21° 4'

Pl. 633. Vergl.-Stern: α Aurigae. δ Leonis Z.-D. 310.9; α Aurigae Z.-D. 480.4 Pl. 635. Vergl.-Stern: α Aurigae. δ Leonis Z.-D. 35⁰.6; α Aurigae Z.-D. 57⁰.1

1:2	α Aq *	*	1:λ	α Aq *	*
1778 1821		^{mg} 2.73 2.26	$1757 \\ 1801 \\ 1842$	$-\frac{^{mg}}{1.67}$ - 1.40 - 1.22	2.68 2.34 2.11
$\begin{array}{c} 2095\\ 2131\\ 2169\\ 2203\\ 2239\\ 2273\\ 2308\\ 2340\\ 2373\\ 2407\\ 2439\\ 2470\\ 2531\\ 2561\\ 2591\\ 2621 \end{array}$	$\begin{array}{c} -1.41\\ -1.40\\ -1.43\\ -1.47\\ -1.43\\ -1.42\\ -1.42\\ -1.41\\ -1.38\\ -1.42\\ -1.42\\ -1.49\\ -1.49\\ -1.62\\ -1.84\\ -1.74\\ -1.68\\ -1.53\end{array}$	$\begin{array}{c} 2.46\\ 2.48\\ 2.55\\ 2.62\\ 2.62\\ 2.65\\ 2.68\\ 2.70\\ 2.70\\ 2.70\\ 2.70\\ 2.70\\ 2.81\\ 2.82\\ 3.09\\ 3.33\\ 3.25\\ 3.26\\ 3.26\end{array}$	$\begin{array}{c} 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290\\ 2322\\ 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2577\\ 2607\\ 2635\\ 2664\\ \end{array}$	$\begin{array}{c} -1.62\\ -1.46\\ -1.43\\ -1.43\\ -1.43\\ -1.42\\ -1.33\\ -1.44\\ -1.42\\ -1.41\\ -1.42\\ -1.41\\ -1.42\\ -1.46\\ -1.55\\ -1.64\\ -1.65\\ -1.64\\ -1.55\\ -1.47\\ -1.43\\ \end{array}$	$\begin{array}{c} 2\ 66\\ 2.52\\ 2.55\\ 2.57\\ 2.59\\ 2.54\\ 2.68\\ 2.69\\ 2.72\\ 2.77\\ 2.79\\ 2.87\\ 3.01\\ 3.12\\ 3.12\\ 3.17\\ 3.18\\ 3.20\\ 3.28\\ 3.28\\ 3.47\end{array}$

β Leonis. [2.^{mg}23; IX b; Rem. 178.] R. A. (1900.0) 11^h 44.^m0. Decl. (1900.0) + 15^o 8^s

Pl. 635

1:2	α Aq *	×	1:λ	α Aq. — *	*
1757 1801 1842	$ \begin{array}{r} -ng \\ -0.80 \\ -0.73 \end{array} $	2.20 1.74 1.62	$\begin{array}{c} 2290 \\ 2322 \\ 2358 \\ 2390 \\ 2422 \\ 2454 \end{array}$	$\begin{array}{c} & {}^{mg}_{}\\ - \ 0.88 \\ - \ 0.84 \\ - \ 0.81 \\ - \ 0.78 \\ - \ 0.75 \\ - \ 0.79 \end{array}$	^{mg} 2.12 2.11 2.12 2.12 2.12 2.12 2.20
$2078 \\ 2114 \\ 2151 \\ 2186 \\ 2220 \\ 2257$	$\begin{array}{c} -0.91 \\ -0.87 \\ -0.86 \\ -0.89 \\ -0.90 \\ -0.87 \end{array}$	$1.95 \\ 1.93 \\ 1.96 \\ 2.03 \\ 2.07 \\ 2.08$	$\begin{array}{c} 2486 \\ 2517 \\ 2548 \\ 2577 \\ 2607 \\ 2635 \\ 2664 \\ 2693 \end{array}$	$\begin{array}{r} -0.89\\ -1.03\\ -0.97\\ -0.97\\ -1.09\\ -0.97\\ -0.99\\ -0.99\\ -1.04\end{array}$	$\begin{array}{c} 2.35 \\ 2.51 \\ 2.54 \\ 2.51 \\ 2.75 \\ 2.79 \\ 3.03 \\ 3.36 \end{array}$

β Leonis Z.-D. 380.9; α Aurigae Z.-D. 570.1

γ Ursae mai. [2.^{mg}54; VIIIb; Rem. 32.] R. A. (1900.0) 11^h 48.^m6. Decl. (1900.0) + 54^o 15ⁱ

Pl. 647. Vergl.-Stern: α Aquilae. γ ·Urs. mai. Z.-D. 51⁰.1; α Aquilae Z.-D. 43⁰.0

Pl. 648. Vergl.-Stern: α Aquilae. γ Urs. mai. Z.-D. 48⁰.6; α Aquilae Z.-D. 43⁰.0

1:λ	α Aq*	50 700 80	1:2	α Aq*	÷
1775 1816 1858 1898 1937 1978 2018	$\begin{array}{c} & {}^{\rm mg} \\ -1.68 \\ -1.77 \\ -2.51 \\ -2.34 \\ -2.23 \\ -2.51 \\ -2.97 \end{array}$	$\begin{array}{c} {}^{\rm mg} \\ 2.67 \\ 2.68 \\ 3.41 \\ 3.27 \\ 3.18 \\ 3.48 \\ 3.48 \\ 3.27 \end{array}$	1788 1830 1869 1910	$-\frac{^{mg}}{1.40} - 1.78 - 1.90 - 1.84$	^{mg} 2.36 2.68 2.81 2.78
$\begin{array}{c} 2035\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2442\\ 2445\\ 2449\\ 2529\\ 2559\\ 2559\\ 2559\\ 2559\\ 2589\\ 2618\\ 2648\\ 2677\\ 2706\\ \end{array}$	$\begin{array}{c} -2.19\\ -2.22\\ -2.25\\ -2.20\\ -2.08\\ -2.00\\ -1.94\\ -1.87\\ -1.84\\ -1.87\\ -1.84\\ -1.80\\ -1.80\\ -1.76\\ -1.60\\ -1.60\\ -1.55\\ -1.62\\ -1.70\\ -1.75\\ -1.83\\ -1.91\\ \end{array}$	3.20 3.27 3.33 3.32 3.23 3.19 3.16 3.12 3.13 3.13 3.13 3.13 3.13 3.15 3.19 3.16 3.09 3.06 3.00 3.06 3.20 3.42 3.66 4.00 4.35	$\begin{array}{c} 2103\\ 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2412\\ 2412\\ 2414\\ 2477\\ 2509\\ 2539\\ 2568\\ 2598\\ 2628\\ 2628\\ 2656\\ 2684\\ 2656\\ 2684\\ 2713\\ \end{array}$	$\begin{array}{c} -1.87\\ -1.92\\ -1.90\\ -1.85\\ -1.78\\ -1.78\\ -1.78\\ -1.78\\ -1.78\\ -1.77\\ -1.76\\ -1.77\\ -1.76\\ -1.66\\ -1.62\\ -1.59\\ -1.59\\ -1.57\\ -1.65\\ -1.84\\ -1.99\\ -2.14\end{array}$	$\begin{array}{c} 2.92\\ 3.01\\ 3.02\\ 3.01\\ 2.98\\ 3.01\\ 3.04\\ 3.08\\ 3.10\\ 3.13\\ 3.15\\ 3.17\\ 3.14\\ 3.11\\ 3.11\\ 3.11\\ 3.19\\ 3.42\\ 3.81\\ 4.23\\ 4.63\end{array}$
2677 2706	-1.83 -1.91	$\frac{4.00}{4.35}$	$2684 \\ 2713 \\ 2740 \\ 2769$	$ \begin{array}{c c} -1.04\\ -1.99\\ -2.14\\ -2.13\\ -2.24 \end{array} $	$\begin{array}{r} 3.81 \\ 4.23 \\ 4.63 \\ 4.79 \\ 4.99 \end{array}$

ε Ursae mai. [1.^{mg}68; VIII P.; Rem. 66.] R. A. (1900.0) 12^h 49.^m6. Decl. (1900.0) + 56° 30'

Pl. 648. Vergl. Stern: α Aquilae. ε Urs. mai. Z.-D. 44°.0; α Aquilae Z.-D. 43°.0 Pl. 915. Vergl.-Stern: α Aquilae. ε Urs. mai. Z.-D. 5007; α Aquilae Z.-D. 430.1

1:λ	α Aq*	*	1:2	α Aq. — *	- <u></u>
1788 1830 1869	$ \begin{array}{c c} & mg \\ & -0.43 \\ & -0.73 \\ & 0.72 \end{array} $	mg 1.39 1.63 1.63	1796 1837 1878	$-\frac{^{mg}}{1.11}$ - 1.04 - 1.01	mg 2.06 1.93 1.92
$ 1910 \\ 1951 \\ 1990 $	$ \begin{array}{c c} -0.12 \\ -0.68 \\ -1.14 \\ -1.27 \end{array} $	$1.62 \\ 2.09 \\ 2.25$	1918 1957 1996	$ \begin{array}{c} -1.01 \\ -1.01 \\ -0.99 \\ -0.86 \end{array} $	$1.92 \\ 1.95 \\ 1.95 \\ 1.85$
$2029 \\ 2064 \\ 2103 \\ 2140$	$ \begin{array}{c} -0.98 \\ -0.91 \\ -0.99 \\ -1.13 \end{array} $	$1.98 \\ 1.93 \\ 2.04 \\ 2.92$	$2035 \\ 2073 \\ 2111 \\ 21.18 $	$ \begin{array}{r} -1.01 \\ -1.05 \\ -1.01 \\ 0.06 \end{array} $	2.01 2.08 2.07 2.06
2175	-1.05	2.18	2148	-0.90 -0.97	2.10

1:λ	α Aq*	*	1:λ	α Aq *	*
$\begin{array}{c} 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2412\\ 2412\\ 2477\\ 2509\\ 2539\\ 2539\\ 2568\\ 2628\\ 2628\\ 2656\\ 2684\\ 2713\\ 2740\\ 2769\\ 2795\\ 2822\\ 2849\\ 2875 \end{array}$	$\begin{array}{c} & {}^{\rm mg} \\ - & 0.97 \\ - & 0.91 \\ - & 0.82 \\ - & 0.76 \\ - & 0.76 \\ - & 0.77 \\ - & 0.82 \\ - & 0.86 \\ - & 0.83 \\ - & 0.78 \\ - & 0.72 \\ - & 0.63 \\ - & 0.64 \\ - & 0.77 \\ - & 0.77 \\ - & 0.77 \\ - & 0.96 \\ - & 1.15 \\ - & 1.19 \\ - & 1.33 \\ - & 1.45 \\ - & 1.54 \end{array}$	$\begin{array}{c} {}^{\mathrm{mg}} \\ 2.13 \\ 2.11 \\ 2.05 \\ 2.02 \\ 2.06 \\ 2.10 \\ 2.18 \\ 2.25 \\ 2.31 \\ 2.31 \\ 2.37 \\ 2.24 \\ 2.25 \\ 2.41 \\ 2.74 \\ 3.01 \\ 3.45 \\ 3.73 \\ 3.90 \\ 3.95 \\ 4.02 \\ 4.05 \\ 4.03 \end{array}$	 $\begin{array}{c} 2217\\ 2252\\ 2287\\ 2320\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544\\ 2572\\ 2603\\ 2632\\ 2662\\ 2662\\ 26691\\ 2719\\ 2745\\ \end{array}$	$\begin{array}{c} & {}^{\rm mg} \\ & - \ 0.93 \\ & - \ 0.92 \\ & - \ 0.91 \\ & - \ 0.91 \\ & - \ 0.91 \\ & - \ 0.91 \\ & - \ 0.91 \\ & - \ 0.91 \\ & - \ 0.86 \\ & - \ 0.86 \\ & - \ 0.68 \\ & - \ 0.64 \\ & - \ 0.61 \\ & - \ 0.64 \\ & - \ 0.64 \\ & - \ 0.86 \\ & - \ 1.05 \\ & - \ 1.04 \\ & - \ 0.99 \end{array}$	mg 2.10 2.12 2.15 2.18 2.21 2.23 2.23 2.22 2.21 2.16 2.13 2.14 2.25 2.43 2.88 3.35 3.57 3.67

157Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

12 Can. venat. [2.^{mg}80; VIII P.; Rem. 69.] R. A. (1900.0) 12^h 51.^m4. Decl. (1900.0) $+ 38^{-}_{-}52'$

Pl. 914. Vergl.-Stern: a Aquilae. 12 Can. venat. Z.-D. 64⁰.1; α Aquilae Z.-D. 44⁰.2 12 Can. venat. Z.-D. 60⁰.3; α Aquilae Z.-D. 43⁰.0

Pl. 915. Vergl.-Stern: α Aquilae.

1:2	α Aq —*	*	1:λ	α Aq	*
$1783 \\ 1825 \\ 1865$	$-\frac{2.24}{-2.24}$ -2.24 -2.07	mg 3.21 3.14 2.98	1796 1837 1878	$ \begin{array}{c} m_{g} \\ -1.99 \\ -1.98 \\ -1.88 \end{array} $	mg 2.94 2.87 2.79
$\begin{array}{c} 2100\\ 2136\\ 2171\\ 2207\\ 2242\\ 2278\\ 2310\\ 2343\\ 2377\\ 2409\\ 2441\\ 2471\\ 2503\\ 2535\\ 2565\\ 2596 \end{array}$	$\begin{array}{c} -1.69\\ -1.81\\ -1.74\\ -1.73\\ -1.73\\ -1.67\\ -1.65\\ -1.65\\ -1.65\\ -1.65\\ -1.65\\ -1.65\\ -1.65\\ -1.63\\ -1.58\\ -1.58\\ -1.58\\ -1.33\\ -1.37\end{array}$	$\begin{array}{c} 2.74\\ 2.90\\ 2.86\\ 2.89\\ 2.92\\ 2.90\\ 2.91\\ 2.95\\ 2.98\\ 3.01\\ 3.00\\ 3.01\\ 3.00\\ 2.94\\ 2.85\\ 2.98\end{array}$	$\begin{array}{c} 2073\\ 2111\\ 2148\\ 2181\\ 2252\\ 2252\\ 2252\\ 2252\\ 2353\\ 2386\\ 2419\\ 2450\\ 2481\\ 2513\\ 2544\\ 2572\\ 2603\\ 2632\\ 2662\\ 2662\\ 2691\\ \end{array}$	$\begin{array}{c} -1.47\\ -1.59\\ -1.66\\ -1.65\\ -1.68\\ -1.68\\ -1.68\\ -1.67\\ -1.65\\ -1.64\\ -1.60\\ -1.56\\ -1.55\\ -1.54\\ -1.49\\ -1.49\\ -1.49\\ -1.43\\ -1.31\\ -1.13\\ -0.98\\ -0.94\\ -0.98\\ -0.94\\ -0.98\end{array}$	2.50 2.65 2.76 2.85 2.91 2.92 2.94 2.94 2.93 2.93 2.95 2.97 2.92 2.92 2.97 2.92 2.92 2.92 2.83 2.77 2.83 2.77 2.83 2.78 2.92 2.92 2.92 2.92 2.92 2.92 2.93 2.93 2.98 2.98 2.98 2.98 2.98

[93]

ξ Ursae mai. [2.^{mg}09; VIII a; Rem. 56.] R. A. (1900.0) 13^h 19.^m9. Decl. (1900.0) + 55° 26'

Pl. 647. Vergl.-Stern: α Aquilae. ζ Urs. mai. Z.-D. 420.2; α Aquilae Z.-D. 430.0

Pl. 648. Vergl.-Stern: α Aquilae. ζ Urs. mai. Z.-D. 390.9; α Aquilae Z.-D. 420.9

1:2	α Aq. — *	*	1:λ	α Aq *	*
	mg	my	4 200	mg	mg
1//5	-1.00	1.99	1788	- 1 12	2.08
1816	-1.00	1.96	1830	-1.33	2.23
1858	-1.87	2.77	1869	-1.63	2.01
1898	-1.85	2.78	1910	-1.69	2.63
1937	-1.77	2.72			
1978	-1.70	267	4		
2018	-1.66	2.66			
2055	-1.74	2.75	2064	-1.74	2.76
2091	-1.57	2.62	2103	-1.66	2.71
2130	-1.66	2.74	2140	-1.67	2.76
2165	- 1.63	2.74	2175	-1.59	2.72
2200	-1.54	2.69	2210	-1.52	2.68
2235	-1.49	2.68	2246	-1.48	268
2271	-1.44	2.66	2281	-1.43	2.66
2303	-1.39	2.64	2311	- 1.36	2.62
2338	-1.35	2.64	2348	- 1.33	2.63
2370	-1.32	2.64	2380	-1.29	2.62
2402	-1.27	2.62	2412	-1.30	2.66
2435	-1.21	2.60	2444	-1.37	2.76
2468	- 1.13	256	2477	-1.42	2.87
9199	-1.08	2.55	2509	-1.40	2.88
2529	- 1 12	2.6t	2539	-1.12	2.91
2559	- 1.93	2.74	2568	-1.41	2.93
2589	- 1.34	2 92	2598	$-\hat{1}\hat{3}\hat{8}$	3.00
2618	-146	S 17	2628	_ 1.00	318
2618	- 1 51	3.11	2656	_ 1.11	5 20
2677	_ 1 50	3.66	2650	-1.11	3.70
9706	- 1.50	2.00	9713	- 1.9	4 1 1
2700	1.56	4.19	9740	1.70	4.26
2760	1.50	1 21 1 21	2750	-1.70	4.19
2700	- 1.51	4.21	9705	- 1.73	4.40
9919	- 1.04	4.19	2100	- 1.75	t.±0
2010		4.07			
2010		9.09			
2001	1 *** 1.±1	0.30		1	

α Virginis. [1.^{mg}21; III b; Rem. 18.] R. A. (1900.0) 13^h 19.^m9. Decl. (1900.0) -10⁰ 38'

Pl. 635. Vergl.-Stern: α Aurigae. α Virginis Z -D. 62^{0.3}; α Aurigae Z.-D. 56^{0.4}

1:λ	α Aq. — *	×	1:λ	α Aq *	*
1757 1801 1842 1878 1922 1962	$\begin{array}{c} & {}^{\rm mg}_{-} \\ - & 0.56 \\ - & 0.36 \\ - & 0.34 \\ - & 0.27 \\ - & 0.20 \\ - & 0.08 \end{array}$	mg 1.58 1.30 - 1.23 1.18 1.14	$2078 \\ 2114 \\ 2151 \\ 2186 \\ 2220 \\ 2957 \\ 200 $	$\begin{array}{c} & & & & \\ & & + & 0.27 \\ & + & 0.25 \\ & + & 0.22 \\ & + & 0.29 \\ & + & 0.33 \\ & + & 0.25 \end{array}$	0.77 0.81 0.92 0.85 0.84 0.86
2002 2040	-0.03 + 0.17 + 0.39	$0.82 \\ 0.62$	2290 2322	+ 0.35 + 0.35 + 0.42	0.89 0.85

1:λ	αAq*	*	1:λ	α Aq *	*
$\begin{array}{c} 2358\\ 2390\\ 2422\\ 2454\\ 2486\\ 2517\\ 2548\\ 2577 \end{array}$	$ \begin{array}{c} {}^{\rm mg} \\ + \ 0.43 \\ + \ 0.45 \\ + \ 0.48 \\ + \ 0.47 \\ + \ 0.37 \\ + \ 0.35 \\ + \ 0.44 \\ + \ 0.58 \end{array} $	$\begin{array}{c} {}^{\rm mg} \\ 0.88 \\ 0.89 \\ 0.94 \\ 1.09 \\ 1.13 \\ 1.06 \\ 0.96 \end{array}$	$\begin{array}{r} 2607\\ 2635\\ 2664\\ 2693\\ 2721\\ 2748\\ 2775\end{array}$	$ \begin{vmatrix} & {}^{\rm mg}_{\rm + 0.72} \\ + & 0.91 \\ + & 1.05 \\ + & 1.26 \\ + & 1.49 \\ + & 1.65 \\ + & 1.72 \end{vmatrix} $	$\begin{array}{c} {}^{\rm mg}\\ 0.94\\ 0.91\\ 0.99\\ 1.06\\ 1.06\\ 1.04\\ 1.04\\ 1.04 \end{array}$

159Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

> η Ursae mai. [1.^{mg}91; IV b.] R. A. (1900.0) $13^{h} 43.^{m}6$. Decl. (1900.0) $+ 49^{\circ} 49^{\circ}$

Pl. 647. Vergl.-Stern: α Aquilae.

 η Urs. mai. Z.-D. 43°.5; α Aquilae Z.-D. 43°.2

Pl. 648. Vergl.-Stern: α Aquilae. η Urs. mai. Z.-D. 410.0; α Aquilae Z.-D. 420.9

1:2	α Aq*	*	1:λ	α Aq. — *	*
1775 1816	$-\frac{mg}{1.10}$ - 0.75	$2.09 \\ 1.66$	$1746 \\ 1788 \\ 1830 \\ 1869 \\ 1910 \\ 1951 \\ 1900 $	$\begin{array}{r} {}^{\rm mg} \\ -1.02 \\ -1.04 \\ -1.21 \\ -1.25 \\ -1.10 \\ -1.38 \end{array}$	^{mg} 2.06 2.00 2.11 2.16 2.04 2.33 2.34
$\begin{array}{c} 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2499\\ 2529\\ 2559\\ 2559\\ 2559\\ 2589\\ 2618\\ 2648\\ 2648\\ 2647\\ 2706\\ 2733\\ 2760\\ 2733\\ 2760\\ 2787\\ 2813\\ 2840\\ 2867\\ 2892 \end{array}$	$\begin{array}{c} -1.26\\ -1.21\\ -1.24\\ -1.22\\ -1.16\\ -1.10\\ -1.00\\ -0.93\\ -0.85\\ -0.78\\ -0.78\\ -0.70\\ -0.70\\ -0.63\\ -0.52\\ -0.52\\ -0.44\\ -0.33\\ -0.52\\ -0.44\\ -0.33\\ -0.24\\ -0.22\\ -0.21\\ -0.17\\ -0.14\\ -0.17\\ -0.14\\ -0.17\\ -0.23\\ -0.23\\ -0.45\\ \end{array}$	228 2.26 2.32 2.33 2.31 2.29 2.26 2.25 2.22 2.17 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.13 2.14 2.10 2.10 2.16 2.24 2.41 2.666 2.83 2.91 2.90 2.866 2.85 2.89	$\begin{array}{c} 1990\\ 2029\\ 2064\\ 2103\\ 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ 2444\\ 2477\\ 2509\\ 2539\\ 2568\\ 2628\\ 2656\\ 2684\\ 2678\\ 2628\\ 2656\\ 2684\\ 2713\\ 2740\\ 2769\\ 2795\\ 2822\\ 2849\\ 2875\\ 2900\\ 2923\\ \end{array}$	$\begin{array}{c} -1.51\\ -1.50\\ -1.16\\ -1.16\\ -1.12\\ -0.96\\ -0.90\\ -0.90\\ -0.85\\ -0.77\\ -0.77\\ -0.79\\ -0.82\\ -0.89\\ -0.82\\ -0.89\\ -0.82\\ -0.82\\ -0.82\\ -0.64\\ -0.52\\ -0.64\\ -0.52\\ -0.64\\ -0.52\\ -0.21\\ -0.21\\ -0.21\\ -0.21\\ -0.21\\ \end{array}$	$\begin{array}{c} 2.49\\ 2.50\\ 2.18\\ 2.21\\ 2.30\\ 2.25\\ 2.12\\ 2.10\\ 2.08\\ 2.03\\ 2.07\\ 2.12\\ 2.18\\ 2.27\\ 2.36\\ 2.37\\ 2.36\\ 2.31\\ 2.27\\ 2.36\\ 2.38\\ 2.49\\ 2.70\\ 2.77\\ 2.89\\ 2.98\\ 2.97\\ 2.58\\ 2.52\\ 2.53\end{array}$

[95]

η Bootis. [2.^{mg}80; XIV a; Rem. 93.] R. A. (1900.0) $13^{h} 49.^{m}9$. Decl. (1900.0) $+ 18^{\circ} 54^{\circ}$

Pl. 647. Vergl.-Stern: a Aquilae. η Bootis Z.-D. 640.7; α Aquilae Z.-D. 430.0

Pl. 914. Vergl.-Stern: α Aquilae. η Bootis Z.-D. 66⁰.9; α Aquilae Z.-D. 44⁰.2

1:2	αAq *		1:λ	α Aq. — *	47 1921
1775 1816	mg = -1.98 = -2.05	mg 2.97 2.96	$1741 \\ 1783 \\ 1825$	-1.82 -2.16 -2.14	2.87 3.13 3.04
1858 1898 1937 1978 2018	- 2.45	3.35	1865 1905 1945 1985 2024	$ \begin{array}{r} -2.13 \\ -2.15 \\ -2.07 \\ -1.98 \\ -1.83 \end{array} $	3.04 3.09 3.02 2.95 2.83
$\begin{array}{c} 2055\\ 2091\\ 2130\\ 2165\\ 2200 \end{array}$	-2.52 -2.44 -2.32	3.60 - 3.56 - 3.47	2061 2100 2136 2171 2207	$ \begin{array}{r} -2.10 \\ -2.14 \\ -2.25 \\ -2.21 \\ -2.22 \\ -2.22 \\ \end{array} $	3.12 3.19 3.34 3.33 3.38
$2235 \\ 2271 \\ 2303 \\ 2338 \\ 2370$	$ \begin{array}{r} -2.29 \\ -2.30 \\ -2.33 \\ -2.38 \\ -2.48 \end{array} $	3.48 3;52 3.58 3.67 3.80	$\begin{array}{c} 2242\\ 2278\\ 2310\\ 2343\\ 2377\end{array}$	$ \begin{array}{r} -2.31 \\ -2.39 \\ -2.42 \\ -2.43 \\ -2.45 \\ \end{array} $	3.50 3.62 3.68 3.72 3.78
$2402 \\ 2435 \\ 2468 \\ 2499$	-2.55 -2.67 -2.76 -2.84	$3.90 \\ 4.06 \\ 4.19 \\ 4.31$	2409 2441 2471 2503	$-2.48 \\ -2.50 \\ -2.57 \\ -2.67$	3.84 3.89 4.00 4.14

α Bootis. [0.^{mg}24; XV a.] R. A. (1900.0) 14^{h} 11.^m1. Decl. (1900.0) $+19^{\circ}$ 42'

Pl. 647. Vergl.-Stern: a Aquilae. α Bootis Z.-D. 620.7; α Aquilae Z.-D. 430.2 α Bootis Z.-D. 710.4; α Aquilae Z.-D. 430.0

Pl. 648. Vergl.-Stern: α Aquilae.

1:λ	α Aq *	×	1:2	$\alpha \operatorname{Aq} = *$	*
$\begin{array}{c} 1775\\ 1816\\ 1858\\ 1898\\ 1937\\ 1978\\ 2018\\ 2018\\ 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ \end{array}$	$\begin{array}{c} \underline{mg} \\ + 1.70 \\ + 1.45 \\ + 0.84 \\ + 0.77 \\ + 0.72 \\ + 0.72 \\ + 0.71 \\ + 0.82 \\ + 0.70 \\ + 0.55 \\ + 0.43 \\ + 0.22 \\ + 0.07 \end{array}$	$\begin{array}{c} & {}^{\rm mg} \\ & - \ 0.71 \\ & - \ 0.54 \\ & 0.06 \\ & 0.16 \\ & 0.18 \\ & 0.25 \\ & 0.26 \\ & 0.20 \\ & 0.35 \\ & 0.53 \\ & 0.68 \\ & 0.93 \\ & 1.12 \end{array}$	$\begin{array}{c} 1746\\ 1788\\ 1830\\ 1869\\ 1910\\ 1951\\ 1990\\ 2029\\ 2064\\ 2103\\ 2140\\ 2175\\ 2210\\ 2246\end{array}$	$\begin{array}{c} & {}^{\rm mg} \\ + \ 0.96 \\ + \ 1.12 \\ + \ 1.22 \\ + \ 0.90 \\ + \ 0.77 \\ + \ 0.74 \\ + \ 0.49 \\ + \ 0.47 \\ + \ 0.56 \\ + \ 0.51 \\ + \ 0.32 \\ + \ 0.27 \\ + \ 0.21 \\ + \ 0.04 \end{array}$	$\begin{array}{c} & {}^{mg} \\ 0.08 \\ - 0.16 \\ - 0.32 \\ 0.01 \\ 0.17 \\ 0.21 \\ 0.49 \\ 0.53 \\ 0.46 \\ 0.54 \\ 0.77 \\ 0.86 \\ 0.95 \\ 1.16 \end{array}$
$2271 \\ 2303 \\ 2338$	-0.06 -0.17 -0.28	$1.28 \\ 1.42 \\ 1.57$	$2281 \\ 2311 \\ 2348$	-0.11 - 0.21 - 0.36	$1.34 \\ 1.47 \\ 1.66$

1:2	α Aq*	*	1:λ	α Aq.—∗	×
2370 2402 2435 2468 2499	$\begin{array}{c} & {}^{\rm mg} \\ - & 0.38 \\ - & 0.46 \\ - & 0.57 \\ - & 0.65 \\ - & 0.65 \end{array}$	1.70 1.81 1.96 2.08 2.12	2380 2412 2444 2477 2509	$\begin{array}{c} {}^{\rm mg}_{\rm -} 0.47\\ - 0.55\\ - 0.60\\ - 0.61\\ - 0.47\end{array}$	1.80 1.91 1.99 2.06 1.95
2648 2677 2706 2733 2760 2787	$\begin{array}{c} - 0.82 \\ - 0.77 \\ - 0.80 \\ - 0.89 \\ - 1.09 \\ - 1.22 \end{array}$	$2.74 \\ 2.94 \\ 3.24 \\ 3.51 \\ 3.83 \\ 3.99$			

ε Bootis. [2.^{mg}59; XVc; Rem. 150.] R. A. (1900.0) 14^h 40.^m6. Decl. (1900.0) + 27° 30′

Pl. 647. Vergl.-Stern: a Aquilae. ε Bootis Z.-D. 55⁰.1; α Aquilae Z.-D. 43⁰.0 ε Bootis Z.-D. 65⁰.5; α Aquilae Z.-D. 44⁰.2

[97]

.

Pl. 914. Vergl.-Stern: α Aquilae.

Statement of the second se					
1:2	α.Aq.−.*	*	1:λ	α Aq. — *	*
$\begin{array}{c} 1775\\ 1816\\ 1858\\ 1898\\ 1937\\ 1978\\ 2055\\ 2001\\ 2130\\ 2465\\ 2235\\ 2235\\ 2235\\ 2235\\ 2233\\ 2338\\ 2338\\ 2338\\ 2338\\ 2468\\ 2468\\ 2499 \end{array}$	$\begin{array}{c} \begin{array}{c} & {}^{\rm mg} \\ & -1.38 \\ & -1.27 \\ & -1.82 \\ & -1.84 \\ & -2.07 \\ & -2.09 \\ & -2.15 \\ & -2.15 \\ & -2.21 \\ & -2.29 \\ & -2.28 \\ & -2.23 \\ & -2.27 \\ & -2.32 \\ & -2.32 \\ & -2.34 \\ & -2.41 \\ & -2.50 \\ & -2.57 \\ & -2.67 \\ & -2.71 \\ & -2.72 \end{array}$	mg 2.37 2.18 2.72 2.77 3.02 3.06 3.15 3.17 3.26 3.37 3.39 3.38 3.46 3.54 3.54 3.54 3.54 3.54 3.54 3.70 3.82 3.92 4.06 4.14 4.19	$\begin{array}{c} 1741\\ 1783\\ 1825\\ 1825\\ 1865\\ 1905\\ 1945\\ 1985\\ 2024\\ 2061\\ 2100\\ 2136\\ 2171\\ 2207\\ 2242\\ 2278\\ 2310\\ 2343\\ 2377\\ 2409\\ 2441\\ 2471\\ 2503\\ 2535\\ 2565\\ \end{array}$	$\begin{array}{c} & \overset{\mathrm{mg}}{-1.80} \\ & -1.95 \\ & -1.95 \\ & -1.74 \\ & -1.72 \\ & -1.65 \\ & -1.65 \\ & -1.65 \\ & -1.72 \\ & -1.91 \\ & -1.98 \\ & -2.05 \\ & -2.14 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.13 \\ & -2.14 \\ & -2.13 \\ & -2.14 \\ & -2.14 \\ & -2.43 \\ & -2.44 \\ & -2.48 \\ & -2.49 \\ & -2.42 \end{array}$	$\begin{array}{c} & \overset{\mathrm{mg}}{2}, & & & \\ & 2.85 \\ & 2.92 \\ & 2.64 \\ & 2.62 \\ & 2.58 \\ & 2.60 \\ & 2.70 \\ & 2.91 \\ & 3.00 \\ & 3.10 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.23 \\ & 3.64 \\ & 3.72 \\ & 3.90 \\ & 3.93 \\ & 3.93 \\ & 3.93 \\ & 3.93 \\ & 3.93 \\ & 3.93 \\ & 3.94 \end{array}$
					1

Nova Acta CL. Nr. 2.

 β Ursae min. [2.^{mg}24; XVI a; Rem. 32.] R. A. (1900.0) 14^h 51.^m0. Decl. (1900.0) + 74^o 34^o

Pl. 915. Vergl.-Stern: α Aquilae. β Ursae min. Z. D. 36⁰.8; α Aquilae Z.-D. 43⁰.0

Pl. 933. Vergl.-Stern: α Lyrae. β Ursae min. Z.-D. 440.0; α Lyrae Z.-D. 290.5

[98]

1:2	α Aq.—*	*	1:λ	α Aq*	*
1796 1837 1878 1918	^{mg} - 1.21 - 1.09 - 0.98 - 1.25	^{mg} 2.16 1.98 1.89 2.19	$1762 \\ 1804 \\ 1846 \\ 1885 \\ 1925 \\ 1965 \\ 2005 \\ 2043 \\ 2080 \\ $	$ \begin{array}{c} {}^{\rm mg} \\ -1.32 \\ -1.30 \\ -1.17 \\ -1.07 \\ -1.46 \\ -1.80 \\ -1.90 \\ -1.63 \\ 1.66 \end{array} $	$\begin{array}{c} {}^{\rm mg}\\ 2.33\\ 2.23\\ 2.07\\ 1.99\\ 2.41\\ 2.74\\ 2.89\\ 2.64\\ 2.70\end{array}$
$2013 \\ 2111 \\ 2148 \\ 2181 \\ 2217 \\ 2252 \\ 2287 \\ 2320 \\ 2353 $	$ \begin{array}{r} -1.57 \\ -1.77 \\ -1.92 \\ -2.00 \\ -2.09 \\ -2.22 \\ -2.39 \\ -2.64 \\ -2.98 \end{array} $	$\begin{array}{c} 2.83\\ 3.02\\ 3.13\\ 3.26\\ 3.42\\ 3.63\\ 3.91\\ 4.28\end{array}$	$\begin{array}{c} 2080\\ 2118\\ 2153\\ 2190\\ 2225\\ 2261\\ 2293\\ 2327\\ 2360\\ 2392\\ 2425\\ 2458\\ 2458\\ 2458\\ 2488\\ 2520\\ 2550\\ \end{array}$	$\begin{array}{c} -1.00\\ -1.90\\ -1.82\\ -2.11\\ -2.31\\ -2.58\\ -2.93\\ -3.14\\ -3.35\\ -3.47\\ -3.70\\ -3.70\\ -3.89\\ -3.93\end{array}$	2.70 2.97 2.92 3.07 3.29 3.52 3.82 4.21 4.45 4.69 4.85 5.12 5.28 5.37 5.43

α Coronae. [2.^{mg}31; VIII a b; Rem. 51.] R. A. (1900.0) 15^h 30.^m5. Decl. (1900.0) + 27° 3'

Pl. 647. Vergl.-Stern: α Aquilae. α Coronae Z.-D. 49^b.8; α Aquilae Z.-D. 43^o.0 Pl. 648. Vergl.-Stern: α Aquilae. α Coronae Z.-D. 400.7; α Aquilae Z.-D. 420.9

1:2	α Aq *	*	1:2	α Aq. — *	*
	mg	mg		mg	mg
			1746	-1.91	2.95
1775	- 1.50	9.49	1758	- 1.31	2.27
1816	_ 1 55	2.16	1830	_ 1 81	971
1010	1.00	0.00	1000	1.01	0.00
1000	- 1.98	2.00	1009	-1.97	2.00
1898	- 1.95	2.88	1910	-1.85	2.79
1937	-1.92	2.87			
1978	- 1.76	2.73			
2018	- 1 71	971			
2010	1 1 5	1 5 5 9	9061	1.05	9.67
2000	- 1.71	4.10	200±	- 1.05	2.01
2091	- 1.66	2.71	2103	-1.60	2.65
2130	- 1.66	2.74	2140	-1.67	2.76
2165	- 1.64	2.76	2175	- 1.58	2.71
9900	- 1.58	9.73	2210	- 1.53	2.69
0005	1.50	9.50	0016	1.00	5.00
2200	- 1.01	2.70	2240	- 1.52	2.72
2271	— 1. 1 5	2.67	2281	- 1.48	2.71
2303	- 1.40	2.65	2311	- 1.41	2.67
2338	- 1.34	2.63	2348	- 1.36	2.66
_000	1 101		m0.40	1.00	

162

t I

1:2	α Aq.—∗	*	1:λ	α Aq*	*
$\begin{array}{c} 2370\\ 2402\\ 2435\\ 2468\\ 2499\\ 2529\\ 2539\\ 2589\\ 2618\\ 2648\\ 2677\\ 2706\\ 2733\\ 2760\\ 2787\\ 2813\\ 2840\\ 2867\\ 2892 \end{array}$	$\begin{array}{c} {}^{\rm mg} \\ -1.30 \\ -1.27 \\ -1.25 \\ -1.24 \\ -1.19 \\ -1.14 \\ -1.10 \\ -1.08 \\ -1.08 \\ -1.07 \\ -1.08 \\ -1.08 \\ -1.03 \\ -1.19 \\ -1.33 \\ -1.35 \\ -1.31 \\ -1.36 \\ -1.32 \\ -1.24 \end{array}$	$ \begin{array}{c} {}^{\rm mg} \\ 2.62 \\ 2.62 \\ 2.64 \\ 2.67 \\ 2.66 \\ 2.63 \\ 2.61 \\ 2.66 \\ 2.79 \\ 2.98 \\ 3.25 \\ 3.47 \\ 3.80 \\ 4.07 \\ 4.12 \\ 4.03 \\ 3.99 \\ 3.84 \\ 3.68 \end{array} $	$\begin{array}{c} 2380\\ 2412\\ 2414\\ 2477\\ 2509\\ 2539\\ 2568\\ 2598\\ 2628\\ 2628\\ 2656\\ 2684\\ 2713\\ 2740\\ 2769\\ 2795\\ 2822\\ 2849 \end{array}$		

α Serpentis. [2.^{mg}75; XVa; Rem. 185.] R. A. (1900.0) 15^h 39.^m3. Decl. (1900.0) $+ 6^{\circ} 44'$

Pl. 648. Vergl.-Stern: α Aquilae. α Serpentis Z.-D. 590.5; α Aquilae Z.-D. 430.0 α Serpentis Z.-D. 670.2; α Aquilae Z.-D. 440.2

Pl. 914. Vergl.-Stern: a Aquilae.

1: λ	α Aq. — *	10 10 10	1 : 2	α Aq. — *	*
	mg	mg		· mg	mg
1500	1.10	0.00	1741	-0.93	1.98
1788	-1.43	2.39	1783	-1.57	2.55
1830	-1.73	2.63	1825	-1.92	2.82
1869	-1.63	$2.5\pm$	1865	- 1.86	2.77
			1905	- 1.92	2.86
			19 4 5	-18i	2.76
			1985	- 1.81	2.79
			2024	- 1.84	2.84
			2061	-1.90	2.92
2103	- 1.94	2.99	2100	-2.06	3.11
2140	-1.95	3.04	2136	-2.20	3.29
2175	-1.98	3.11	2171	-2.20	3.32
2210	-2.03	3.19	2207	-2.29	3.45
2246	-2.24	3.44	2242	-2.40	3.59
2281	-2.51	3.74	2278	- 2.50	3.73
2311	- 2.65	3.91	2310	-2.60	3.86
2348	- 2.91	4.21	2343	- 967	3.96
2380	_ 3.98	4.61	9377	- 2.72	4.05
E 0(5)5	0.=0	1.01	2109	_ 9.79	4.08
			9111	- 9 69	` <u>4</u> 10
			0171	- 2.65	±.10
			2471	- 2.00	4.05

 21^*

η Draconis. [2.^{mg}89 (G 5).]

R. A. (1900.0) $16^{h} 22.^{\circ}6$. Decl. (1900.0) $+ 61^{\circ} 44^{\circ}$

Pl. 662. Vergl.-Stern: α Aquilae. η Draconis Z.-D. 400.6; α Aquilae Z.-D. 480.6 Pl. 664. Vergl.-Stern: α Aquilae. η Draconis Z.-D. 30⁰.4; α Aquilae Z.-D. 43⁰.2

[100]

1:2	α Aq *	*	1:2	<i>α</i> Aq −∗	*
$1783 \\ 1825 \\ 1865 \\ 1905$	$\begin{array}{r} {}^{\mathrm{mg}}_{-2.03}\\ -1.97\\ -1.90\\ -2.01\end{array}$	mg 3.00 2.87 2.81 2.95	1771 1814 1855	$-\frac{^{mg}}{2.46}$ - 2.22 - 2.21	^{mg} 3.46 3.14 3.14 3.14
$\begin{array}{c} 2061 \\ 2100 \\ 2136 \\ 2171 \\ 2207 \\ 2242 \\ 2278 \\ 2310 \\ 2343 \\ 2377 \\ 2409 \\ 2441 \\ 2471 \\ 2503 \end{array}$	$\begin{array}{c} - 2.56 \\ - 2.50 \\ - 2.50 \\ - 2.55 \\ - 2.65 \\ - 2.73 \\ - 2.83 \\ - 2.94 \\ - 3.03 \\ - 3.10 \\ - 3.21 \\ - 3.29 \\ - 3.27 \\ - 3.26 \end{array}$	$\begin{array}{c} 8.58\\ 8.55\\ 8.55\\ 8.67\\ 8.81\\ 8.92\\ 4.06\\ 4.20\\ 4.32\\ 4.43\\ 4.57\\ 4.68\\ 4.70\\ 4.73\end{array}$	$\begin{array}{c} 2089\\ 2125\\ 2161\\ 2196\\ 2231\\ 2268\\ 2301\\ 2333\\ 2368\\ 2400\\ 2431\\ 2494\\ 2494\\ \end{array}$	$\begin{array}{r} -2.52 \\ -2.61 \\ -2.64 \\ -2.73 \\ -2.79 \\ -2.79 \\ -2.89 \\ -2.96 \\ -3.07 \\ -3.05 \\ -3.02 \\ -3.00 \\ -2.96 \end{array}$	$\begin{array}{c} 3.50 \\ 3.69 \\ 3.71 \\ 3.79 \\ 3.91 \\ 4.01 \\ 4.14 \\ 4.24 \\ 4.39 \\ 4.40 \\ 4.40 \\ 4.42 \\ 4.43 \end{array}$

β Herculis. [2.^{mg}81; XVa; Rem. 32, 184.]
 R. A. (1900.0) 16^h 25.^m9. Decl. (1900.0) + 21^o 42ⁱ

	Pl. 647	. Ver	glSter	n:αAq	uilae.
β	Herculis	ZD. 4	7°.4; α	Aquilae	ZD. 43°.0

Pl. 648. Vergl.-Stern: α Aquilae. β Herculis Z.-D. 39°.3; α Aquilae Z.-D. 43°.0

1:2	α Aq. — *	4.0 1.0 1.0	1:2	α Aq*	*
1775 1816 1858 1898 1937	$\begin{array}{c} {}^{\mathrm{mg}}\\ -1.70\\ -1.98\\ -2.50\\ -2.41\\ -2.54\end{array}$	$ \begin{array}{r} {}^{\rm mg} \\ 2.69 \\ 2.89 \\ 3.40 \\ 3.34 \\ 3.49 \end{array} $	$1788 \\ 1830 \\ 1869$	$ \begin{array}{r} mg \\ -2.03 \\ -2.09 \\ -2.44 \end{array} $	^{mg} 2.99 2.99 3.35
1978 2018 2055 2091 2130 2165 $2200 2285 2971 $	$\begin{array}{r} -2.62 \\ -2.68 \\ -2.72 \\ -2.73 \\ -2.80 \\ -2.83 \\ -2.91 \\ -3.04 \end{array}$		210321402175221022462281	-258 -2.62 -2.64 -2.66 -2.69 -2.80	3.63 3.71 3.77 3.82 3.89 4.03
$ \begin{array}{r} 2303 \\ 2338 \\ 2370 \\ 2402 \\ 2435 \\ 2468 \\ \end{array} $	$ \begin{array}{r} -3.06 \\ -3.11 \\ -3.19 \\ -3.23 \\ -3.26 \\ -3.21 \end{array} $	4.31 4.51 4.51 4.58 4.65 4.64	2311 2348 2380 2412 2444 2477	$\begin{array}{c} -2.95 \\ -2.95 \\ -3.15 \\ -3.33 \\ -3.46 \\ -3.55 \\ -3.66 \end{array}$	$\begin{array}{c} 4.21 \\ 4.45 \\ 4.66 \\ 4.82 \\ 4.94 \\ 5.11 \end{array}$

[101] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

β Draconis. [2.^{mg}99; XIV a.]

R. A. (1900.0) 17^h 28.^m2. Decl. (1900.0) + 52^o 23ⁱ

Pl. 662. Vergl.-Stern: α Aquilae. β Draconis Z.-D. 34⁰.0; α Aquilae Z.-D. 48⁰.6

Pl. 664. Vergl.-Stern: α Aquilae. β Draconis Z.-D. 210.0; α Aquilae Z.-D. 430.2

1:2	α Aq.—*	작	λ: t	α Aq *	÷
1783 1825	$-\frac{^{mg}}{1.85}$ -1.74	^{mg} 2.82 2.64	$ 1771 \\ 1814 \\ 1855 \\ 1895 $	$\begin{array}{c c} & {}^{\rm mg} \\ - 2.28 \\ - 2.31 \\ - 2.21 \\ - 2.10 \end{array}$	^{mg} 3.28 3.23 3.11 3.03
$\begin{array}{r} 2061\\ 2100\\ 2136\\ 2171\\ 2207\\ 2242\\ 2278\\ 2310\\ 2343\\ 2377\\ \end{array}$	$\begin{array}{r} - 2.40 \\ - 2.31 \\ - 2.28 \\ - 2.36 \\ - 2.48 \\ - 2.60 \\ - 2.74 \\ - 2.91 \\ - 3.07 \\ - 3.25 \end{array}$	$\begin{array}{c} 3.42\\ 3.36\\ 3.37\\ 3.48\\ 3.64\\ 3.79\\ 3.97\\ 4.17\\ 4.36\\ 4.58\end{array}$	$\begin{array}{c} 2051\\ 2089\\ 2125\\ 2161\\ 2196\\ 2231\\ 2268\\ 2301\\ 2333\\ 2368\\ 2400\\ 2431\\ 2461\\ 2494 \end{array}$	$\begin{array}{c} -2.10 \\ -2.45 \\ -2.54 \\ -2.60 \\ \div 2.70 \\ \div 2.74 \\ -2.84 \\ -2.92 \\ -2.98 \\ -3.08 \\ -3.10 \\ -3.12 \\ -3.06 \\ -3.01 \end{array}$	$\begin{array}{c} 3.11\\ 3.50\\ 3.62\\ 3.71\\ 3.85\\ 3.92\\ 4.06\\ 4.17\\ 4.26\\ 4.40\\ 4.45\\ 4.50\\ 4.48\\ 4.47\end{array}$

α Ophiuchi. [2.^{mg}14; X b; Rem. 180.] R. A. (1900.0) 17^h 30^m3. Decl. (1900.0) + 12^o 38⁴

Pl. 647. Vergl.-Stern: α Aquilae. α Ophiuchi Z.-D. 48⁰.7; α Aquilae Z.-D. 43⁰.2

1:2	αAq*	120 00	1:λ	α Aq. —*	*
	mg	mg	0.10×	mg	mg
1775	- 1.06	2.05	2435	-1.15	2.54
			2468	- 1.11	2.54
			2499	- 1.09	2.56
1898	- 1.29	2.22	2529	-1.07	2.56
1937	-1.17	2.12	2559	-1.05	2.56
1978	-1.09	2.06	2589	-1.07	2.65
2018	-1.15	2.15	2618	-1.11	2.83
2055	-1.30	2.31	2648	-1.13	3.03
2091	- 1.11	2.16	2677	-1.08	3.24
2130	-1.21	2.29	2706	-1.04	3.48
2165	-1.27	239	2733	- 1.06	3.68
2200	- 1.29	2.44	2760	-1.11	3.85
2235	-1.26	2.45	2787	-1.14	3.90
2271	-1.25	2.47	2813	- 1.14	3.86
2303	-1.23	2.48	2840	-1.18	3.81
2338	- 1.19	2.48	2867	- 1.25	3.77
2370	-1.16	2.48	2892	-1.22	3.66
2402	-1.14	2.49		5	1

β Ophiuchi. [2.^{mg}94; XV a; Rem. 185.] R. A. (1900.0) 17^h 38.^m5. Decl. (1900.0) + 4° 37′

Pl. 648. Vergl.-Stern: α Aquilae. β Ophinchi Z.-D. 500.9; α Aquilae Z.-D. 430.0

1:2	α Aq*	44	1:λ	α Aq. — *	*
1746 1788 1830	$-\frac{1}{2.14}$ - 2.28 - 2.28	^{mg} 3.18 3.24 3.18	$\begin{array}{c} 2140\\ 2175\\ 2210\\ 2246\\ 2281\\ 2311\\ 2348\\ 2380\\ 2412\\ \end{array}$	$\begin{array}{c} {}^{\rm mg} \\ - 2.48 \\ - 2.51 \\ - 2.58 \\ - 2.68 \\ - 2.89 \\ - 3.11 \\ - 3.35 \\ - 3.61 \\ - 3.80 \end{array}$	$\begin{array}{c} & {}^{\rm mg}_{3.57} \\ 3.64 \\ 3.74 \\ 3.88 \\ 4.12 \\ 4.37 \\ 4.65 \\ 4.94 \\ 5.16 \end{array}$
2103	- 2.40	3.45	2444	-3.87	5.26

γ Draconis. [2.^{mg}42; XVI a.]

R. A. (1900.0) $17^{h} 54.^{m}3$. Decl. (1900.0) $+ 51^{\circ} 30'$

Pl. 662. Vergl.-Stern: α Aquilae. γ Draconis Z.-D. 280.2; α Aquilae Z.-D. 480.6 Pl. 664. Vergl.-Stern: α Aquilae. γ Draconis Z.-D. 14°.4; α Aquilae Z.-D. 43°.2

1:λ	α Aq.—*	0.0 1.4 0.0	1: 2	α Aq*	*
$1741 \\ 1783 \\ 1825 \\ 1865 \\ 1905$	$\begin{array}{r} {}^{mg} - 1.09 \\ - 1.26 \\ - 0.99 \\ - 1.02 \\ - 1.15 \end{array}$	$ \begin{array}{r} {}^{\text{mg}} \\ 2.14 \\ 2.23 \\ 1.89 \\ 1.92 \\ 2.09 \\ 2.09 \end{array} $	1771	^{mg} — 1.19	^{mg} 2.19
$\begin{array}{c} 2061 \\ 2100 \\ 2136 \\ 2171 \\ 2207 \\ 2242 \\ 2278 \\ 2310 \\ 2343 \\ 2377 \end{array}$	$\begin{array}{r} - 2.00 \\ - 2.05 \\ - 2.10 \\ - 2.13 \\ - 2.21 \\ - 2.51 \\ - 2.85 \\ - 3.10 \\ - 3.18 \\ - 3.50 \end{array}$	3.02 3.10 3.19 3.25 3.37 3.70 4.08 4.36 4.47 4.83	$\begin{array}{c} 2013\\ 2051\\ 2089\\ 2125\\ 2161\\ 2196\\ 2231\\ 2268\\ 2301\\ 2333\\ 2368\\ 2368\\ \end{array}$	$\begin{array}{r} -1.83 \\ -1.87 \\ -2.04 \\ -2.18 \\ -2.31 \\ -2.38 \\ -2.59 \\ -2.76 \\ -2.99 \\ -3.22 \\ -3.46 \end{array}$	2.83 2.88 3.09 3.26 3.42 3.53 3.77 3.98 4.24 4.50 4.78

α Lyrae. [0.^{mg}14; VIIa; Rem. 40.]

R. A. 4	(1900.0)) $18^{ m h}$	33. ^m 6.	Decl.	(1900.0)) +	38° 41	4
					(

Pl. 533. Vergl.-Stern: α Aquilae. α Lyrae Z.-D. 290.3; α Aquilae Z.-D. 440.6 Pl. 662. Vergl.-Stern: α Aquilae. α Lyrae Z.-D. 25 °2; α Aquilae Z.-D. 49°.0

1:λ	α Aq.—*	*	1:2	α Aq *	*
	mg	mg	$\frac{1741}{1783}$	$+ \begin{array}{c} {}^{mg}_{0.56} \\ + \begin{array}{c} 0.53 \end{array}$	$0.49 \\ 0.45$

[102]

					_
1:2	α Aq*	2	1:λ	α Aq*	*
	mg	mg	1995	mg	mg 0.55
			1965	+ 0.40	0.00
			1005	+ 0.08	0.20
			1900	+0.71	0.20
			1005	+0.00	0.00
			1989	+0.79	0.19
			2021	+ 0.80	0.20
0000	1 0.01	644	2001	+0.72	0.30
2089	+0.91	0.11	2100	+0.76	0.29
2120	+0.89	0.19	2136	+0.85	0.24
2161	+0.89	0.22	2171	+0.92	0.20
2196	$+0.9\pm$	0.21	2207	+0.95	0.21
2231	+0.97	0.21	2212	+ 0.99	0.20
2268	+ 0.97	0.25	2278	+1.02	0.21
2301	+0.98	0.27	2310	+1.04	0.22
2333	+1.01	0.27	2343	+ 1.04	0.25
2368	+1.02	0.30	2377	+1.03	0.30
2400	+1.05	0.30	2409	+ 1.04	0.32
2431	+1.08	0.30	2441	+ 1.06	0.33
2461	+1.10	0.32	2471	+ 1.11	0.32
2494	+1.13	0.33	2503	+1.14	0.33
2525	+ 1.16	0.33	2535	+ 1.17	0.32
2555	+1.18	0.33	2565	+ 1.20	0.32
2587	+ 1.21	0.36	2596	+1.25	0.36
2615	+1.19	0.51	2624	+ 1.24	0.51
2643	+1.11	0.76	2653	+ 1.09	0.86
2673	+ 1.06	1.06	2682	+ 0.98	1.24
2701	+ 1.04	1.35	2710	+ 0.97	1.50
2730	+ 0.96	$1.6\frac{1}{2}$	2739	+ 0.99	1.67
2757	+ 0.94	1.79	2766	+ 1.03	1.72
2782	+ 0.90	1.86	2792	+1.07	1.70
2811	+ 0.86	1.87	2820	+ 1.09	1.61
2839	+ 0.90	1.73	2847	+1.08	1.53
2863	+ 0.91	1.62	2872	+ 1.07	1.43
2889	+ 0.97	1.48			
2913	+1.05	1.30			

[103] Photographische Untersuchung der Intensitätsverteilung in Sternspektren.

Pl. 664.Vergl.-Stern: α Aquilae.Pl. 941.Vergl.-Stern: α Aquilae. α Lyrae Z.-D. 200.8; α Aquilae Z.-D. 430.2 α Lyrae Z.-D. 140.1; α Aquilae Z.-D. 430.0

1:2	α Aq. — *	*	1:2	α Aq *	200 8 0
1051	mg	mg	4 8 8 4	mg	ing
1111	+0.04	0.36	1771	+ 0.51	0.49
1814	+0.60	0.27	1814	+ 0.81	0.11
1855	+0.64	0.26			
1895	+ 0.60	0.33			
1933	+0.75	0.20			
1974	+0.78	0.18	1974	+0.78	0.18
2013	+0.83	0.16	2013	± 0.80	0.19
2051	1 0.83	0.18	2051	± 0.67	0.34
2001	1 0.00	0.10	2001	1 0 79	0.01
2000	T 0.00	0.19	2009	+0.10	0.41
2120	+ 0.80	0.22	2120	+0.82	0.20
2161	+ 0.82	0.29	2161	+0.89	0.22
2196	+ 0.88	0.27	2196	+ 0.87	0.28
2231	+0.94	0.24	2231	+ 0.91	0.27
2268	+ 0.95	0.27	2268	+0.94	0.28
2301	+0.97	0.28	2301	+0.96	0.29
2333	+0.97	0.31	2333	+101	0.27
2368	+0.99	0.33	2368	- 103	0.29
2400	± 1.01	0.34	2100	1.00	0.29
9121	+1.01	0.04	2400	- 1.05	0.02
4401	+1.04	0.04	2431	+1.04	0.34

1:2	<i>c</i> Aq.—*	*	1:2	α Aq *	*
		-			-
A 4.24	in.	ni 2	5104	mg	mg
2401	- 1.07	0.85	2401	+ 1.03	0.39
2494	1.10	0.36	2494	+ 1.05	0.41
2525	-1.16	0.33	2525	+1.09	0.40
2555	-1.18	0.33	2555	+1.14	0.37
2587	+1.14	0.43	2587	+ 1.13	0.44
2615	-1.07	0.63	2615	+ 1.06	0.64
2643	+ 1.01	0.86	2643	+ 0.95	0.92
2673	-0.90	1.00	2673	+ 0.91	1.21
2701	-0.84	1.54	2701	+ 0.89	1.40
2730	-0.87	1.73	2730	+0.88	1.72
2757	+ 0.87	1.86	2757	+ 1.01	1.72
2782	± 0.87	1.89	2782	+ 1.00	1.74
			2811	+1.01	1.71

 γ Aquilae. [2.^{mg}80; XV a.] R. A. (1900.0) $19^{h} 41.^{m}5$. Decl. (1900.0) $+ 10^{o} 22'$

Pl. 915. Vergl.-Stern: α Aquilae. γ Aquilae Z.-D. 420.5; α Aquilae Z.-D. 430.0

1:2	α Aq*	44 40	1:λ	α Aq. —∗	84 840 81
$1754 \\ 1796 \\ 1837 \\ 1878 \\ 1918 \\ 1957$	$\begin{array}{c} {}^{\mathbf{mg}}\\ -1.47\\ -1.96\\ -2.03\\ -1.87\\ -1.87\\ -2.02\\ \end{array}$	mg 2.50 2.91 2.92 2.78 2.81 2.98	$\begin{array}{c} 2181 \\ 2217 \\ 2252 \\ 2287 \\ 2320 \\ 2333 \\ 2336 \end{array}$	$ \begin{array}{r} & {}^{\rm mg} \\ - 2.61 \\ - 2.76 \\ - 2.93 \\ - 3.03 \\ - 3.28 \\ - 3.28 \\ - 3.52 \\ - 3.66 \end{array} $	$\begin{array}{c} & m_{2} \\ & 3.74 \\ & 3.93 \\ & 4.13 \\ & 4.27 \\ & 4.55 \\ & 4.82 \\ & 5.00 \end{array}$
$2073 \\ 2111 \\ 2148$	-2.28 -2.41 -2.51	$3.31 \\ 3.47 \\ 3.61$	2419 2450 2481	$ \begin{array}{r} -3.60 \\ -3.74 \\ -3.73 \\ -3.69 \end{array} $	5.00 5.11 5.13 5.14

δ Cygni. [2.^{mg}97; VII b; Rem. 50, 42.] R. A. (1900.0) $19^{h} 41.^{m}9$. Decl. (1900.0) $+44^{\circ} 53'$

Pl. 584. Vergl.-Stern: α Aquilae. δ Cygni Z.-D. 33°.4; α Aquilae Z.-D. 48°.1 δ Cygni Z.-D. 52°.2; α Aquilae Z.-D. 44°.9

Pl. 592. Vergl.-Stern: α Aquilae.

[104]

Ι.: λ	α Aq.—*	*** ***	1:2	α Aq *	
	mg	mg	1765 1808 1851	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	mg 3.15 3.04 2.68
2055 2091 2130 2165	-1.90 -1.87 -1.84 -1.88	2.92 2.92 2.92 2.99	$^{\circ}2085$ 2121 2158	-1.84 -1.94 -1.89	2.89 3.01 3.00

1:λ	α Aq *	*	1:λ	αAq*	*
$\begin{array}{c} 1:\lambda\\ \\ \underline{2235}\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2499\\ 2529\end{array}$	$\begin{array}{c} \alpha \mathrm{Aq.} - \ast \\ & \overset{\mathrm{mg}}{-1.86} \\ & -1.84 \\ & -1.83 \\ & -1.82 \\ & -1.79 \\ & -1.79 \\ & -1.69 \\ & -1.68 \\ & -1.68 \\ & -1.63 \\ & -1.58 \\ & -1.57 \end{array}$	* mg 3.01 3.03 3.05 3.07 3.08 3.06 3.04 3.07 3.06 3.05 3.06 3.05 3.06	$\begin{array}{c} 1:\lambda \\ 2193 \\ 2229 \\ 2264 \\ 2298 \\ 2330 \\ 2362 \\ 2396 \\ 2429 \\ 2461 \\ 2491 \\ 2522 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} * \\ & \\ & \\ 2.98 \\ 2.99 \\ 3.01 \\ 3.03 \\ 3.06 \\ 3.06 \\ 3.06 \\ 3.08 \\ 3.07 \\ 3.11 \\ 3.12 \\ 3.11 \end{array}$
2529 2539 2618 2648 2677 2706 2738 2760 2787 2813	$\begin{array}{c} -1.54 \\ -1.54 \\ -1.55 \\ -1.63 \\ -1.69 \\ -1.72 \\ -1.73 \\ -1.76 \\ -1.72 \\ -1.81 \\ -1.88 \end{array}$	$ \begin{array}{r} 3.05 \\ 3.13 \\ 3.35 \\ 3.60 \\ 3.89 \\ 4.17 \\ 4.38 \\ 4.46 \\ 4.58 \\ 4.60 \\ \end{array} $	2552 2581 2612 2641 2656	$ \begin{array}{r} -1.55 \\ -1.49 \\ -1.38 \\ -1.26 \\ -1.31 \end{array} $	3.05 3.04 3.06 3.12 3.29

γ Cygni. [2.^{mg}32; XIII e.] R. A. (1900.0) 20^h 18.^m6. Decl. (1900.0) + 39^o 56'

Pl. 533. Vergl.-Stern: α Aquilae. Pl. 533.Vergl.-Stern: α Aquilae.Pl. 534.Vergl.-Stern: α Aquilae. γ Cygni Z.-D. 220.8; α Aquilae Z.-D. 440.5 γ Cygni Z.-D. 440.9; α Aquilae Z.-D. 480.3

Pl. 534. Vergl.-Stern: α Aquilae.

				Contraction of the second s	
1:2	α Aq *	44	1:λ	α Aq *	*
	i ng i	mg	100 AL 1988	mg	mg
			1995	-1.37	2.30
			2031	-1.52	2.52
205t	- 1 45	9.46	207ê	- 1.61	2.64
1.154	-1.67	5 70	2108	- 1.61	2.67
9195	-173	5.80	9119	- 1.65	9.71
9161	1 70	9.00	0179	1.00	0 V I
•)10C	1.50	9.00		1.71	OT
	1.00		231 1	1 01	2.00
	- 1.7±	0.02	6000 6000	- 1.01	0.01
2205	- 1.00	0.10	4400 0040	1.91	0.14
2501	- 1.92	3.17	2518	- 1.98	3.20
23/3		3.23	2301	- 2.05	3.30
2368	-2.02	3.34	2382	-2.08	3.41
2400	-2.03	3.43	2414	-2.12	3.48
2431	- 2.18	3.51	2449	-2.15	3.55
2461	-2.17	3.59	2479	-2.18	3.63
24:14	-2.18	3.64	2511	-2.22	3.70
2525	- 2 23	3.72	2541	-2.26	3.75
2555	-2.19	3.70	2570	-226	3.78
2587	- 2.12	3.69	2600	-2.19	3.82
2615	-2.05	3.75	2630	-2.16	3.94
2643	-2.05	3.92	2659	-2.16	4.15
2673	- 2.04	4.16	2687	-2.06	4.33
			2714	-2.01	4.51
			2712	-1.88	1 55
			9770	-196	1.00
			9708	_ 1 97	A 79
			2100	- 1.01	±.14
	1			1	
ava Acta CI	. Nr. 2.				22

Nova Acta CI. Nr. 2.

	1 -		,		
1:λ	α Aq.—∗	*	1:2	α Aq*	*
	mg	nug	0100	mg	ing
2018	-1.67	2.67	2468	-2.07	3.50
2055	-1.56	2.57	2499	-2.10	3.57
2091	- 1.56	2 61	2529	-2.14	3.62
2130	-1.58	2.66	2559	-2.18	3.69
2165	-1.71	2.83	2589	-221	3.79
2200	-1.79	2.94	2518	-2.24	3.96
2235	-1.84	3.03	2648	-2.24	4.15
2271	-1.90	3.12	2677	-2.24	4.40
2303	-1.97	3.22	2706	- 2.16	4 60
2338	-201	3.30	2733	-2.05	4.67
2370	-2.03	3.35	. 2760	-1.99	4.73
2402	- 2.06	3.41	2787	- 2.01	4 78
2435	-2.06	3.45	2813	-196	4.68

Pl. 584. Vergl.-Stern: α Aquilae. γ Cygni Z.-D. 270.2; α Aquilae Z.-D. 480.1

α Cygni. [1.^{mg}33; VIII c.]

R. A. (1900.0) 20^h 38.^m0. Decl. (1900.0) $+ 44^{\circ} 55'$

Pl. 584. Vergl.-Stern: a Aquilae. α Cygni Z.-D. 270.1; α Aquilae Z.-D. 490.3 α Cygni Z.-D. 370.1; α Aquilae Z.-D. 630.8

Pl. 733. Vergl.-Stern: α Aquilae.

1:2	α Aq*	14	1 : λ	α Aq. — *	*
	ing	ing	1757	-0.35	mg 1.36
			1801	-0.00	1 1 4
			1842	-0.42	1 31
			1878	- 0.43	1.31
			1922	-0.43	1.37
			1963	- 0.46	1.42
2018	-0.58	1.58	2002	-0.29	1.28
2055	-0.38	1.40	2040	- 0.36	1.37
2091	-0.42	1 47	2078	-0.49	1.53
2130	-0.46	1.54	2114	- 0.44	1.50
2165	-0.43	1.55	2151	-0.31	1.41
2200	- 0.44	1.59	2186	-0.32	1.46
2235	-0.41	1.60	2220	-0.40	1.57
2271	- 0.39	1.61	2257	-0.42	1.63
2303	-0.38	1.63	. 2290	-0.45	1.69
2338	-0.35	1.64	2322	-0.43	1.70
2370	- 0.33	1.65	2358	- 0.37	1.68
2402	- 0.33	1.68	2390	-0.27	1.61
2435	-0.29	1.68	2422	-0.22	1.59
2468	-0.26	1.69	2454	-0.22	1.63
2499	-0.22	1.69	2486	-0.17	1.63
2529	-0.18	1.67	2517	-0.17	1.65
2559	-0.14	1.65	2548	-0.12	162
2589	-0.04	1.62	2577	-0.07	1 61
2618	+0.02	1.70	2607	-0.01	1.67
2648	+0.14	1.77	2630	+ 0.13	1.69
2677	+ 0.23	1.93	2004	+ 0.27	1.77
2706	+0.10	2.20	2095	+0.23	2.09
2733	-0.12	2.74	2721	+0.10	2.40
2700	- 0.13	2.87	2148	+ 0.01	2.08
2/8/	- 0.05	4 82 9 80	2740	0.00	4.84
2010	- 0.08	2.00	2803	- 0.09	4.00
2010	0.10	4.40 9.69	2000	-0.25 -0.94	2.89
4804	- 0.10	4.04 9.51	2000 9001	- 0.24	2.00

[107] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 171

ε Cygni. [2.^{mg}64; XVa; Rem. 184.] R. A. (1900.0) 20^h 42.^m2. Decl. (1900.0) + 33° 36'

Pl. 584. Vergl.-Stern: α Aquilae. ε Cygni Z.-D. 240.7; α Aquilae Z.-D. 480.1

Pl. 592. Vergl.-Stern: α Aquilae. ε Cygni Z.-D. 530.0; α Aquilae Z.-D. 440.7

1:λ	α Aq *	50 80	1:λ	α Aq. — *	100
	μıg	mg	$\frac{1765}{1808}$	$-\frac{1.86}{-1.68}$	^{10g} 2.86 2.60
$\begin{array}{c} 2055\\ 2091\\ 2130\\ 2165\\ 2200\\ 2235\\ 2271\\ 2303\\ 2338\\ 2370\\ 2402\\ 2435\\ 2468\\ 2468\\ 2468\\ 2468\\ 2468\\ 2468\\ 2468\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2559\\ 2618\\ 2618\\ 2617\end{array}$	$\begin{array}{c} - 2.02 \\ - 1.90 \\ - 2.03 \\ - 2.15 \\ - 2.25 \\ - 2.39 \\ - 2.55 \\ - 2.81 \\ - 2.81 \\ - 2.88 \\ - 2.92 \\ - 2.96 \\ - 2.96 \\ - 2.96 \\ - 2.96 \\ - 2.96 \\ - 3.01 \\ - 3.05 \\ - 3.04 \\ - 3.07 \\ - 3.09 \\ - 3.15 \end{array}$	$\begin{array}{c} 3.04\\ 2.95\\ 3.11\\ 3.26\\ 3.40\\ 3.58\\ 3.77\\ 3.96\\ 4.10\\ 4.20\\ 4.27\\ 4.38\\ 4.46\\ 4.46\\ 4.49\\ 4.56\\ 2.480\\ 5.00\\ 5.31\end{array}$	$\begin{array}{c} 2085\\ 2121\\ 2158\\ 2193\\ 2229\\ 2264\\ 2298\\ 2330\\ 2362\\ 2396\\ 2429\\ 2461\\ 2491\end{array}$	$\begin{array}{c} - 2.26 \\ - 2.22 \\ - 2.29 \\ - 2.33 \\ - 2.49 \\ - 2.49 \\ - 2.58 \\ - 2.66 \\ - 2.71 \\ - 2.75 \\ - 2.82 \\ - 2.89 \\ - 3.07 \end{array}$	$\begin{array}{c} 3.31\\ 3.29\\ 3.40\\ 3.47\\ 3.60\\ 3.70\\ 3.83\\ 3.94\\ 4.02\\ 4.10\\ 4.20\\ 4.31\\ 4.53\end{array}$

α Cephei. [2.^{mg}60; Xb; Rem. 180.] R. A. (1900.0) 21^h 16.^m2. Decl. (1900.0) + 62^o 10^o

Pl. 590. Vergl.-Stern: α Aquilae. α Cephei Z.-D. 390.9; α Aquilae Z.-D. 460.7 α Cephei Z.-D. 360.1; α Aquilae Z.-D. 440.9

Pl. 592. Vergl.-Stern: α Aquilae.

					b	
1:2	α Aq*	*	1:λ	α Aq *	*	
1766 1807 1850	$ \begin{array}{c} -1.54 \\ -1.41 \\ -1.55 \end{array} $	2.54 2.34 2.45	$1765 \\ 1808 \\ 1851$	$ \begin{array}{r} {}^{\mathrm{mg}} - 1.35 \\ - 1.49 \\ - 1.41 \end{array} $	^{mg} 2.35 2.41 2.31	
2085 2121 2158 2193 2229 2264	$- 1.31 \\ - 1.46 \\ - 1.47 \\ - 1.46 \\ - 1.47 \\ - 1.47 \\ - 1.47 \\ - 1.47$	2.36 2.53 2.58 2.60 2.65 2.65	208521212158219322292264	$-1.45 \\ -1.45 \\ -1.47 \\ -1.50 \\ -1.50 \\ -1.49$	$2.50 \\ 2.52 \\ 2.58 \\ 2.64 \\ 2.68 \\ 2.70$	
					22^{*}	

Hans Rosenberg,

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1:2	α Aq*	*	1:2	α Aq.—*	4.4 4000 4.5
	$\begin{array}{r} 2298\\ 2330\\ 2362\\ 2386\\ 2429\\ 2461\\ 2491\\ 2552\\ 2552\\ 2552\\ 2581\\ 2612\\ 2641\\ 2671\\ 2700\\ 2729\end{array}$	$\begin{array}{c} {}^{mg} \\ -1.49 \\ -1.46 \\ -1.45 \\ -1.43 \\ -1.43 \\ -1.43 \\ -1.43 \\ -1.45 \\ -1.45 \\ -1.45 \\ -1.45 \\ -1.47 \\ -1.44 \\ -1.44 \\ -1.44 \\ -1.66 \\ -1.57 \\ -1.51 \end{array}$	$\begin{array}{c} {}^{\rm mg}_{2.74}\\ 2.74\\ 2.86\\ 2.79\\ 2.81\\ 2.85\\ 2.90\\ 2.93\\ 2.93\\ 2.95\\ 3.02\\ 3.12\\ 3.30\\ 3.76\\ 3.95\\ 4.11\end{array}$	2298 2330 2362 2396 2429 2461 2491 2522 2552 2552 2581 2612 2641	$\begin{array}{c} {}^{mg} \\ -149 \\ -1.49 \\ -1.49 \\ -1.48 \\ -1.47 \\ -1.46 \\ -1.45 \\ -1.47 \\ -1.48 \\ -1.43 \\ -1.43 \\ -1.43 \\ -1.44 \\ -1.38 \end{array}$	274 2.77 2.80 2.83 2.85 2.85 2.91 2.95 2.98 2.95 2.98 2.98 3.12 3.24

ε Pegasi. [2.^{mg}54; XVa; Rem. 2, 116, 185.] R. A. (1900.0) 21^h 39.^m3. Decl. (1900.0) $+9^{\circ}$ 25'

	Pl. 7	33, 1	Vergl	Ste	rn: d	$\alpha \mathbf{A}$	quilae	e.
3	Pegasi	ZD.	500.4;	α	Aqu	ilae	ZD.	620.5

	Pl. 9	15. V	VerglS	Stei	n: (αA	quila	e.
3	Pegasi	ZD.	$42^{0.8};$	α	Aqu	ilae	ZD.	430.0

1 : 2	α Aq.—∗	₩.	1:λ	α Aq.—*	*
$ \begin{array}{r} 1757 \\ 1801 \\ 1842 \\ 1878 \\ 1922 \\ 1963 \end{array} $	$\begin{array}{r} {}^{mg} \\ -1.18 \\ -1.22 \\ -1.13 \\ -1.50 \\ -1.79 \\ -2.03 \end{array}$	^{mg} 2.20 2.06 2.05 2.41 2.73 2.99	1796 1837 1878	тд — 1.65 — 1.55 — 1.75	mg 2.60 2.44 2.66
$\begin{array}{c} 2040\\ 2078\\ 2114\\ 2151\\ 2186\\ 2220\\ 2257\\ 2290 \end{array}$	$\begin{array}{r} - 2.39 \\ - 2.37 \\ - 2.38 \\ - 2.47 \\ - 2.57 \\ - 2.70 \\ - 2.78 \\ - 2.85 \end{array}$	$\begin{array}{c} 3 \ 40\\ 3.41\\ 3.44\\ 3.57\\ 3.71\\ 3 \ 87\\ 3.99\\ 4.09 \end{array}$	$\begin{array}{c} 2073 \\ 2111 \\ 2148 \\ 2181 \\ 2217 \\ 2252 \\ 2287 \\ 2320 \end{array}$	$\begin{array}{r} - 2.04 \\ - 2.16 \\ - 2.28 \\ - 2.44 \\ - 2.61 \\ - 2.78 \\ - 2.78 \\ - 3.11 \end{array}$	$\begin{array}{c} 3.07\\ 3.22\\ 3.38\\ 3.57\\ 3.78\\ 3.98\\ 4.07\\ 4.38\end{array}$

α Pegasi. [2.^{mg} 57; VIII b; Rem. 32, 64.] R. A. (1900.0) 22^{h} 59.^m8. Decl. (1900.0) + 14° 40′

Pl. 533. Vergl.-Stern: α Aquilae. α Pegasi Z.-D. 41⁰.5; α Aquilae Z.-D. 44⁰.5 α Pegasi Z.-D. 37⁰.4; α Aquilae Z.-D. 54⁰.1

	1	
1:2	α Aq*	*
	mg	mg
2010	- 1.74	2.68
2048	-1.37	2.38
2085	-1.70	2.75

172

[108]

1:2	α Aq. — *	*	1:λ	α Aq *	÷
	mg	mg	0101	mg	mg
2120	-1.8(2.90	2121	-1.82	2.89
2161	-1.78	2.89	2158	-1.90	3.01
2196	- 1.71	2.86	2193	-1.92	3.06
2231	-1.68	2.86	2229	-1.86	3.04
2268	- 1.70	2.92	2264	-1.84	3.05
2301	- 1.70	2.95	2298	-1.76	3.01
2333	- 1.68	2.96	2330	- 1.71	2.99
2368	-1.67	2.99	2362	-1.67	2.98
2400	-1.65	3.00	2396	-1.63	2.98
2431	-1.63	3.01	2429	1.61	2.99
2461	-1.61	3.03	2461	- 1.54	2.96
2494	- 1.56	3.12	2491	-1.47	2.93
2525	-1.49	2.98	2522	-1.45	2.93
2555	- 1.45	2.96	2552	- 1.45	2.95
2587	- 1.41	2.98	2581	-1.40	2.96
2615	-1.39	3.09	2612	-137	3.05
2613	-131	3.18	2641	- 1.34	3 20
9673	-191	3 36	2671	- 131	3 41
2701	_ 1.99	3.61	2700	1_43	3.81
0730	_ 1.27	3.87	2729	- 1 35	3.95
9757	1.21	3.96	2753	1.00	4.07
0700	- 1.2±	4.09	2782	-1.00 -1.92	2 00
0011	1.20	4.04	2102	1.20	9.01
2011	1.20	2.07	2009	- 1.10	0.91
4000 0000	- 1.2±	0.01		1	
2803	- 1.23	0.14			
200	- 09	(5,6)+		1 1	

[109] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 173

Auszug aus dem Beobachtungsbuch.

Platten- Nr.	Datum	Ster Anfang	nzeit Ende	Aufgenommene Objekte	Bemerkungen
529	4. IX. 07	20 ^h 53 ^m	23 ^h 30 ^m	α Aquilae, α Lyrae, Extinktionsbe- stimmung	Luft klar, aber nicht sehr durchsichtig.
533	10. IX. 07	20 ^h 38 ^m	23 ^h 8 ^m	α Aquilae, α Lyrae, α Pegasi, γ Cygni, α Cygni	sehr klar.
534	11. IX. 07	21 ^h 31 ^m	0 ^h 37 ^m	α Aquilae, γ Pegasi, α Andromedae, γ Cygni	klar und durchsichtig, aber feucht.
569	12. X. 07	22^{h} 18^{m}	$0^{\rm h}~25^{\rm m}$	α Aquilae, α Pegasi, γ Pegasi, α An- dromedae	Luft gut. Uhrwerk geht schlecht.
584	3. XI. 07	21 ^h 30 ^m	. 23 ^h 33 ^m .	α Aquilae, ε Cygni, γ Cygni, δ Cygni, α Cygni	Luft sehr klar und durch- sichtig.
585	22	1 ^h 53 ^m	4 ^h 40 ^m	α Aurigae, β Arietis, α Arietis, α Orionis, γ Orionis, α Tauri, β Orionis, β Tauri, α Canis mai.	Dasselbe.
590	4. XI. 07	21 ^h 13 ^m	2^{h} 44^{m}	α Aquilae, α Arietis, α Cephei, α Ursae min.	
592	7. XI. 07	20 ^h 47 ^m	2^{h} 19^{m}	α Aquilae, δ Cygni, ε Cygni, α Cephei, α Ursae min., α Aurigae	
619	21. I. 08	3 ^h 5 ^m	3h 38m	β Orionis, α Tauri	Beobachtung wegen E E abgebrochen.
633	23. III. 08	10 ^h 9 ^m	12 ^h 30 ^m	α Aurigae, β Aurigae, β Tauri, γ Geminorum, α Canis min., α Geminorum, β Geminorum, α Leonis, γ Leonis, δ Leonis, β Leonis, Extinktion	klar. Unruhige Blider.
634	25. III. 08	8 ^h 58 ^m	11 ^h 2 ^m	α Canis mai., \varkappa Orionis, δ Orionis, ε Orionis, α Canis min., γ Geminorum, β Tauri, α Aurigae, β Aurigae	sehr klar und durchsichtig. Am südlichen Horizont leichter Dunstschleier.
635	25. III. 08	11 ^h 13 ^m	13 ^h 18 ^m	α Aurigae, β Geminorum, α Geminorum, α Leonis, γ Leonis, δ Leonis, β Leonis, α Virginis	Dasselbe.
647	25. VI. 08	17 ^h 47 ^m	20 ^h 14 ^m	γ , ε, ζ, η Ursae mai.; η, α, ε Bootis; α Coronae; β Herculis; α Ophiuchi; α Aquilae	sehr klar und durchsichtig, zum Schluſs Dämmerung.

Beobachtungsjournal.

Platton- Nr	Datum	Ster Anfang	nzeit Ende	Aufgenommene Objekte	Bemerkungen
648	29. VI. 08	17 ^h 11 ^m	19 ^h 48 ^m		klar und durchsichtig.
661	19.VIII.08	19^{h} 28^{m}	20 ^h 29 ^m	α Aquilae; α Lyrae; Exponent p.	sehr klar.
662	22	20 ^h 39 ^m	21 ^h 49 ^m	α Lyrae; γ , β , η Draconis; α Aquilae; Exponent p.	Dasselbe.
663	20.VIII.08			α Aquilae; ⊙	klar, etwas weiße Luft.
664	20.VIII.08	19^{h} 28^{m}	$20^{\rm h}$ $24^{\rm m}$	γ , β , η Draconis; α Lyrae; α Aquilae	Dasselbe.
665	20.VIII.08	20^{h} 38^{m}	$21^{h} 30^{m}$	α Aquilae; Exponent p.	
733	28. XI. 08	23 ^h 26 ^m	2 ^h 7 ^m	α Aquilae; ε Pegasi; α Cygni; α, θ, ι Aurigae; β Tauri; β Orionis	zuerst etwas dunstig, dann schnell aufklärend.
734	77	2^{h} 12^{m}	3h 59m	β Orionis; β Eridani; ξ , ε , δ , \varkappa , γ Orionis	angewöhnlich gute Luft.
753	10. I. 09	2^{h} 22^{m}	$5^{\rm h}$ $57^{\rm m}$	β , α , γ , δ Cassiopeiae; β Orionis	
755	18. I. 09	6 ^h 59 ^m	8h 39m	γ , α, δ, β Persei; α Andromedae; α, ι, θ Aurigae; ε Persei	Luft klar und durchsichtig bis zum Horizont.
757	19. I. 09	õ ^h 9 ^m	8 ^h 8 ^m	$\beta, \alpha, \gamma, \delta$ Cassiopeiae; β Andromedae; α Aurigae; $\varepsilon, \alpha, \beta, \delta, \gamma$ Persei	Luft klar und durchsichtig. Starkes Scintillieren.
914	6.VIII.09	18 ^h 54 ^m	20 ^h 49 ^m	η Bootis; 12 Can. venat.; α Serpentis; ε Bootis; α Aquilae	leichter Dunst.
915	7.VIII.09	18 ^b 47 ^m	20 ^h 58 ^m	12 Can. venat.; ε , α , β Ursae mai.; β Ur- sae min.; α , γ Aquilae; ε Pegasi	sebr klar. Zum Schlufs störender & &.
927	8.VIII.09			⊙; α Aquilae	klar und durchsichtig.
929	9.VIII.09			⊙; α Lyrae	dunstig.
930	11.VIII.09			⊙; α Lyrae	sehr klar.
931	11.VIII.09			⊙; α Lyrae	Dasselbe.
933	11.VIII.09	21 ^h 2 ^m	22 ^h 35 ^m	 α Lyrae; β Ursae min.; ζ Persei; γ An- dromedae; β Arietis; Exponent p. 	Luft wunderbar klar und durchsichtig.
940	12.VIII.09			⊙; α Lyrae	Luft leicht dunstig.
941	16.VIII.09			α Lyrae; α Aquilae	nicht sehr durchsichtig.
950	16. XII. 09	3 ^h 20 ^m	5^{h} 4^{m}	$\gamma, \alpha, \zeta, \varepsilon, \delta, \varkappa, \beta$ Orionis; α Canis mai.	

[111] Photographische Untersuchung der Intensitätsverteilung in Sternspektren. 175

Tafel der Funktion

$\lg \left(e^{\frac{c}{\lambda t}} - 1 \right)$

für Temperaturen zwischen 2000° abs. und 100000° abs. und Wellenlängen zwischen $\lambda = 300 \ \mu\mu$ und $\lambda = 600 \ \mu\mu$. c = 14350.

t (abs.)	300 µµ	325 µµ	350 µµ	375 μμ	400 µµ	425 μμ	450 µµ	475 µµ	500 µµ	525 µµ	550 <u>µ</u> µ	575 µµ	600 µµ
$\begin{array}{c} 2\ 000\\ 2\ 500 \end{array}$	$ \begin{array}{r} 10.387 \\ 8.310 \end{array} $	9.587 7.670	8.902 7.122	8.310 6.648	7.789 6.232	$7.332 \\ 5.866$	$\begin{array}{c} 6.925 \\ 5.540 \end{array}$		$6.232 \\ 4.985$	$5.935 \\ 4.748$	$5.665 \\ 4.532$	$5.419 \\ 4.335$	$5.193 \\ 4.154$
$\begin{array}{c} 3 \ 000 \\ 3 \ 500 \\ 4 \ 000 \\ 4 \ 500 \\ 5 \ 000 \end{array}$	$\begin{array}{c} 6.925 \\ 5.935 \\ 5.193 \\ 4.616 \\ 4.154 \end{array}$	$\begin{array}{c} 6.391 \\ 5.478 \\ 4.793 \\ 4.261 \\ 3.834 \end{array}$	$5.935 \\ 5.087 \\ 4.451 \\ 3.956 \\ 3.561$	$5.539 \\ 4.748 \\ 4.154 \\ 3.693 \\ 3.324$	5.193 4.451 3.895 3.462 3.116	$\begin{array}{r} 4.888\\ 4.189\\ 3.665\\ 3.258\\ 2.932 \end{array}$	$\begin{array}{c} 4.616\\ 3.956\\ 3.462\\ 3.077\\ 2.769\end{array}$	$\begin{array}{r} 4.373 \\ 3.748 \\ 3.279 \\ 2.914 \\ 2.623 \end{array}$	$\begin{array}{r} 4.154 \\ 3.561 \\ 3.116 \\ 2.769 \\ 2.492 \end{array}$	3.956 3.392 2.968 2.637 2.372	$\begin{array}{c} 3.777 \\ 3.237 \\ 2.832 \\ 2.517 \\ 2.264 \end{array}$	$\begin{array}{r} 3.612 \\ 3.097 \\ 2.709 \\ 2.406 \\ 2.165 \end{array}$	$\begin{array}{r} 3.462 \\ 2.968 \\ 2.596 \\ 2.306 \\ 2.073 \end{array}$
55006000650070007500	$\begin{array}{c} 3.777\\ 3.462\\ 3.196\\ 2.968\\ 2.769\end{array}$	$\begin{array}{c} 3.487 \\ 3.196 \\ 2.950 \\ 2.738 \\ 2.555 \end{array}$	$\begin{array}{r} 3.237 \\ 2.986 \\ 2.738 \\ 2.542 \\ 2.372 \end{array}$	$\begin{array}{r} 3.021 \\ 2.768 \\ 2.556 \\ 2.372 \\ 2.213 \end{array}$	$\begin{array}{r} 2.832 \\ 2.596 \\ 2.395 \\ 2.222 \\ 2.073 \end{array}$	$\begin{array}{c} 2.665\\ 2.442\\ 2.254\\ 2.082\\ 1.950\end{array}$	$\begin{array}{r} 2.517 \\ 2.306 \\ 2.128 \\ 1.974 \\ 1.840 \end{array}$	$\begin{array}{c} 2.383 \\ 2.184 \\ 2.014 \\ 1.868 \\ 1.741 \end{array}$	$2.264 \\ 2.073 \\ 1.912 \\ 1.773 \\ 1.652$	$\begin{array}{c} 2.155 \\ 1.974 \\ 1.820 \\ 1.688 \\ 1.571 \end{array}$	$\begin{array}{c} 2.056 \\ 1.883 \\ 1.735 \\ 1.608 \\ 1.497 \end{array}$	$\begin{array}{c} 1.966 \\ 1.799 \\ 1.658 \\ 1.535 \\ 1.430 \end{array}$	$\begin{array}{c} 1.883 \\ 1.723 \\ 1.587 \\ 1.470 \\ 1.367 \end{array}$
8 000 8 500 9 000 9 500 10 000	$\begin{array}{c} 2.596 \\ 2.442 \\ 2.306 \\ 2.185 \\ 2.073 \end{array}$	$\begin{array}{r} 2.395 \\ 2.254 \\ 2.128 \\ 2.014 \\ 1.912 \end{array}$	$\begin{array}{r} 2.222\\ 2.082\\ 1.974\\ 1.868\\ 1.773\end{array}$	$\begin{array}{c} 2.073 \\ 1.950 \\ 1.841 \\ 1.741 \\ 1.652 \end{array}$	$\begin{array}{c} 1.942 \\ 1.827 \\ 1.723 \\ 1.630 \\ 1.545 \end{array}$	$\begin{array}{c} 1.827 \\ 1.717 \\ 1.619 \\ 1.542 \\ 1.450 \end{array}$	$\begin{array}{c} 1.723 \\ 1.619 \\ 1.526 \\ 1.443 \\ 1.367 \end{array}$	$\begin{array}{c} 1.630 \\ 1.530 \\ 1.443 \\ 1.362 \\ 1.290 \end{array}$	$\begin{array}{c} 1.545 \\ 1.450 \\ 1.367 \\ 1.290 \\ 1.220 \end{array}$	$\begin{array}{c} 1.470 \\ 1.378 \\ 1.297 \\ 1.223 \\ 1.158 \end{array}$	$\begin{array}{c} 1.400 \\ 1.312 \\ 1.235 \\ 1.164 \\ 1.100 \end{array}$	$\begin{array}{c} 1.335\\ 1.250\\ 1.176\\ 1.107\\ 1.045\end{array}$	$\begin{array}{c} 1.277 \\ 1.196 \\ 1.124 \\ 1.057 \\ 0.996 \end{array}$
$10\ 500\\11\ 000\\11\ 500\\12\ 000\\12\ 500$	1.973 1.883 1.799 1.723 1.652	$\begin{array}{c} 1.820 \\ 1.735 \\ 1.658 \\ 1.587 \\ 1.521 \end{array}$	$\begin{array}{c} 1.683 \\ 1.604 \\ 1.535 \\ 1.470 \\ 1.407 \end{array}$	$\begin{array}{c} 1.572 \\ 1.497 \\ 1.430 \\ 1.367 \\ 1.309 \end{array}$	$\begin{array}{c} 1.470 \\ 1.400 \\ 1.335 \\ 1.277 \\ 1.221 \end{array}$	$\begin{array}{c} 1.378 \\ 1.312 \\ 1.250 \\ 1.196 \\ 1.143 \end{array}$	$\begin{array}{c} 1.297 \\ 1.235 \\ 1.176 \\ 1.124 \\ 1.073 \end{array}$	$\begin{array}{c} 1.223 \\ 1.164 \\ 1.107 \\ 1.057 \\ 1.009 \end{array}$	$\begin{array}{c} 1.158 \\ 1.100 \\ 1.045 \\ 0.996 \\ 0.951 \end{array}$	$\begin{array}{c} 1.097 \\ 1.041 \\ 0.991 \\ 0.942 \\ 0.898 \end{array}$	$\begin{array}{c} 1.041 \\ 0.987 \\ 0.938 \\ 0.892 \\ 0.848 \end{array}$	$\begin{array}{c} 0.990 \\ 0.938 \\ 0.890 \\ 0.845 \\ 0.803 \end{array}$	$\begin{array}{c} 0.942 \\ 0.892 \\ 0.845 \\ 0.801 \\ 0.760 \end{array}$
$\begin{array}{c} 13\ 000\\ 13\ 500\\ 14\ 000\\ 14\ 500\\ 15\ 000 \end{array}$	$\begin{array}{c} 1.587 \\ 1.526 \\ 1.470 \\ 1.416 \\ 1.367 \end{array}$	$\begin{array}{c} 1.460 \\ 1.403 \\ 1.351 \\ 1.301 \\ 1.255 \end{array}$	$1.351 \\ 1.298 \\ 1.248 \\ 1.201 \\ 1.158$	$\begin{array}{c} 1.256 \\ 1.205 \\ 1.158 \\ 1.114 \\ 1.073 \end{array}$	$1.170 \\ 1.123 \\ 1.078 \\ 1.036 \\ 0.996$	$\begin{array}{c} 1.094 \\ 1.049 \\ 1.006 \\ 0.967 \\ 0.930 \end{array}$	$\begin{array}{c} 1.023 \\ 0.983 \\ 0.942 \\ 0.904 \\ 0.869 \end{array}$	$\begin{array}{c} 0.964 \\ 0.923 \\ 0.884 \\ 0.848 \\ 0.813 \end{array}$	$\begin{array}{c} 0.908 \\ 0.868 \\ 0.830 \\ 0.794 \\ 0.762 \end{array}$	$\begin{array}{c} 0.856\\ 0.818\\ 0.782\\ 0.747\\ 0.714\end{array}$	$\begin{array}{c} 0.810 \\ 0.771 \\ 0.736 \\ 0.702 \\ 0.671 \end{array}$	$\begin{array}{c} 0.765 \\ 0.728 \\ 0.694 \\ 0.661 \\ 0.630 \end{array}$	$\begin{array}{c} 0.724 \\ 0.688 \\ 0.655 \\ 0.623 \\ 0.593 \end{array}$
$\begin{array}{c} 16\ 000\\ 17\ 000\\ 18\ 000\\ 19\ 000\\ 20\ 000 \end{array}$	$\begin{array}{c} 1.276 \\ 1.195 \\ 1.123 \\ 1.057 \\ 0.997 \end{array}$	$\begin{array}{c} 1.170 \\ 1.094 \\ 1.026 \\ 0.964 \\ 0.908 \end{array}$	$\begin{array}{c} 1.078 \\ 1.010 \\ 0.942 \\ 0.884 \\ 0.830 \end{array}$	$\begin{array}{c} 0.997 \\ 0.930 \\ 0.868 \\ 0.813 \\ 0.762 \end{array}$	$\begin{array}{c} 0.925 \\ 0.860 \\ 0.801 \\ 0.749 \\ 0.700 \end{array}$	$\begin{array}{c} 0.860 \\ 0.799 \\ 0.743 \\ 0.692 \\ 0.644 \end{array}$	$\begin{array}{c} 0.803 \\ 0.743 \\ 0.688 \\ 0.639 \\ 0.594 \end{array}$	$\begin{array}{c} 0.747 \\ 0.692 \\ 0.639 \\ 0.591 \\ 0.548 \end{array}$	$\begin{array}{c} 0.700 \\ 0.644 \\ 0.593 \\ 0.548 \\ 0.505 \end{array}$	$\begin{array}{c} 0.655\\ 0.601\\ 0.551\\ 0.508\\ 0.467\end{array}$	$\begin{array}{c} 0.614 \\ 0.562 \\ 0.513 \\ 0.468 \\ 0.429 \end{array}$	$\begin{array}{c} 0.574 \\ 0.525 \\ 0.479 \\ 0.435 \\ 0.394 \end{array}$	$\begin{array}{c} 0.539 \\ 0.489 \\ 0.444 \\ 0.401 \\ 0.362 \end{array}$
$\begin{array}{c} 25\ 000\\ 30\ 000\\ 40\ 000\\ 50\ 000 \end{array}$	$\begin{array}{c} 0.762 \\ 0.594 \\ 0.362 \\ 0.204 \end{array}$	$\begin{array}{c} 0.686 \\ 0.526 \\ 0.308 \\ 0.152 \end{array}$	$\begin{array}{c} 0.618 \\ 0.467 \\ 0.253 \\ 0.104 \end{array}$	$\begin{array}{c} 0.559 \\ 0.412 \\ 0.204 \\ 0.061 \end{array}$	$\begin{array}{c} 0.505 \\ 0.362 \\ 0.161 \\ 0.021 \end{array}$	$\begin{array}{c} 0.456 \\ 0.318 \\ 0.124 \\ 9.982 \end{array}$	$\begin{array}{c} 0.412 \\ 0.279 \\ 0.086 \\ 9.949 \end{array}$	$\begin{array}{c} 0.371 \\ 0.241 \\ 0.053 \\ 9.913 \end{array}$	$\begin{array}{c} 0.334 \\ 0.204 \\ 0.021 \\ 9.892 \end{array}$	$\begin{array}{c} 0.299 \\ 0.173 \\ 9.991 \\ 9.863 \end{array}$	$\begin{array}{c} 0.265 \\ 0.143 \\ 9.964 \\ 9.839 \end{array}$	$\begin{array}{c} 0.236 \\ 0.114 \\ 9.940 \\ 9.813 \end{array}$	$\begin{array}{c} 0.204 \\ 0.086 \\ 9.914 \\ 9.785 \end{array}$
60 000 70 000 80 000 90 000 100 000	$\begin{array}{c} 0.086\\ 9.991\\ 9.914\\ 9.845\\ 9.788\end{array}$	$\begin{array}{c} 0.037 \\ 9.944 \\ 9.869 \\ 9.799 \\ 9.744 \end{array}$	9.991 9.898 9.826 9.763 9.705	$\begin{array}{c} 9.949 \\ 9.863 \\ 9.785 \\ 9.724 \\ 9.668 \end{array}$	9.914 9.826 9.756 9.690 9.635	$\begin{array}{c} 9.875 \\ 9.792 \\ 9.716 \\ 9.663 \\ 9.604 \end{array}$	9.845 9.763 9.690 9.633 9.575	$\begin{array}{c} 9.820 \\ 9.732 \\ 9.663 \\ 9.602 \\ 9.548 \end{array}$	9.785 9.708 9.633 9.580 9.521	$\begin{array}{c} 9.763 \\ 9.681 \\ 9.613 \\ 9.556 \\ 9.497 \end{array}$	$\begin{array}{c} 9.740\\ 9.653\\ 9.591\\ 9.531\\ 9.474\end{array}$	$\begin{array}{c} 9.716 \\ 9.633 \\ 9.568 \\ 9.505 \\ 9.453 \end{array}$	$\begin{array}{c} 9.690\\ 9.613\\ 9.544\\ 9.477\\ 9.431\end{array}$

Tab.X.

												I											
Tig	15	0.3 11		77	5°0			20	00				50			00		2750			30	00	
2.00																					Cas	Stopeia	e. L
2 30													••••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• •••••• ••••••• ••••••• ••••••••• •••••••••• •••••••••••••• ••••••••••••••••••••••••••••••••••••			0 0 0	 С. 		0		ф 		753
2.50										<u>в</u>											εP	ersei.	Па.,.
3.50																					•	Plaile Plaile	755
2.00						24	a							C C C C C C C C C C C C C C C C C C C			đ.,		δ σ ¹ . (€ 01 + •	ion is I Plaite Plaite	18. 734 950
2.06					3		0			9								Q. 2. 0 C			KOr +	ionis II Platie Platie	a 734 950
2.36					ca						01			et o				e., or d			\$0 .	ionis I Platte Platte	1 b 734 950
1 30 2 69 7 34					4												<i>b</i>				\$0r +	ionis II Platte Platte	b 734 950

uth Real for other Letz a

Hans Rosenberg: Sternspektren. Taf. 1.

2000 2253 1750 25 2750 1130 ma eil III Perl 00 THE * 3 57 TL: ----4.00 0.50 - 4 4+ 1.00 Illb Plaite 635 4 1.50 + IV. yPegasiMa. 2.50 + + ÷ 0 Platte 534 56g Plate 3.00 **0 a** <u>a</u> . 3.150 illi: 1.50 Orionis IV Ø. 4 6. 6 % \$ ₈ * 1 4 Platte 0 0 a a 585 11 2.00 2.00 6 d d 0 H a n Ursae ma + Platte 2.50 \mathbb{N} ____ 647 lio Platte 648 3.00 V. 2.0. ia . 49.49 * d p & Persei V 3 67 9 10 10 12 D Plaife 755 Tpl. + 767 Platte 3.15-6 1±1 4:00

Lith Paul Schmdler, Leipzig.

Hans Rosenberg: Sternspektren, Taf. 2.

	1														VI,																		
X12																																	
-10 	15	90			17	50				20	00				2250				25	od				27	\$Q;				3.Q	¢.0`			
÷50																																	
						×																											
2.60								: X 4						××	× ×	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- X	M ta	+ +		ox e	× o×						<u>jî</u>	Ta			a :	
- 2 ¹ 30																							1.0×	a						Pist	e	503 \$34	
																								-**×		* **	× **		×	Plați	ŧ	733	
-970-																																	
- 12 81																																	
1.20										a l																							
-2.00-						+	_hQ		•	4	P	4 - 4	12 +		a	0 0	÷a																
2 30											+							9 * 0	* b:	.p. a	. a.								Per	sei	VI	a	
																						8	8						+	Plat	е	755	
3.00																								- -		+0	- 		0	Plat	e	75/2	
1-00																																	
1.26							- 	9							* + + 0		*	0	5		*							a	Leo	nis.	VI	b .	
																						a+ a	- 0 -							Plat Plat	e (533 585	
						*																		P &	8								
4.50																																	
								.1		1																							
0.50						•		0.	1		 						0											ß	Oric	mis	VI	C	
																			Ø£.	2 * 0 *		+ ©+	2 ∺ 02	•					*	Plat	e	733	
																								0.	949 94	fo+ o	a	9	0	Fid.	E.	950 	
1.30																																	
								111																									
Lith Paul	Schmdler	Lerpzi	q.												*								_										

Hans Rosenberg: Sternspektren, Taf. 3.

Tab. XIII.

																											+		
												VII.																	
mg		0.0	1	7 59 :			20	0 0				250				25	¢d				27	50			30	9a.			
0 SD																													
0.50				- X	×						X		9 - ₄ 9	<u>t</u> e	2 2 0	ał	a #9 1	•xa +xa						ά	Lvr	aell	11		
																			*						3	Plaife	(33	
<u>3.</u> 00																										Platie	6	62	
4 50																				×e	•				*		- 6	54	
																					2	2 0					:11		
-2 00-																						8-14 8-14 8-14							
47.50																													
				а	···	+ 0 +				1# #01	70	10 HO		to -	¢ \$		- 4 - 0							đ¢.	Gar		ai V		
050																										Plainte	1 9	50	
1																				5									
0 00																						+N €	÷						
			-																										
				-																									
2.50						ан. С																							
3.00									9	0 et	0	а ч он о												\$	Çyç	jni. V	tib		
				-Q									* 94	0' 0		đo	6	+							114	Piatite	15	84	
3 50																									÷¢-	Planks	5	92	
4 90																				-								• • •	
																					* · · · · · · · · · · · · · · · · · · ·								
4 50																					н	*							
Lith Paul	Schmdler	Lepzig.																											

Hans Rosenberg: Sternspektren. Taf. 4.

														VII																	
me	15	50		175(20	00				22 50				25	00				27	æ			30	09			111111111
1.59																															11111111
					-	0 1						a - 5		¢												Au	rig	e.	VIII	a.	
- <u>2</u> -50																			A 10		9							Piai Piai	le le	633 634	
3 32																						a									
1.2																															
2 35					4	+0	0			- 50		2		₹ 8 ₈											X	Ger	nin().rui Piai	n te	VIII a 633	
2 30																					#2.						0	P1a1	re	634	
3.20																						0									
					#	6				•	a	4	-		0.4	pt 6+o	÷.0														
2000																			d C	4	s 0				8	Ger	nin(+	prui Plai	n Le	VIII a 633	
																						0						P1a)		635	
																															1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 3/					*																										
						+					Ŧ																				
3 45					1		P 	+						0 + 7			9-		, a ,e						ß	Ur:	a¢ +	ma Plai	і †е	VIII a 648	
																											o	Ptal	te-	915	
-4 20																															
																															1 1 1 1 1

L. C. Paul Schur Gler, Leipzig

Hans Rosenberg: Sternspektren, Taf. 5.

Lith Paul Schmdler, Leipzig

Hans Rosenberg: Sternspektren. Taf. 6.

-

																																	-		
																	Ţ																		
																																			-
51.																																			
mg.		15	¢0		1		17	501				20	Ç0				22	50			25	09				27	50				30	90	-		
1.00																																			
				12						a			a																						
7.90								69			<u> </u>			*	8	9													α	- C \	gn		V	C.	
																		4	- e - e						a							Plai	FE Fo	584 722	
2.00																									•							1-101	10 111	100	
2.50 -																																			
			1																							₩			+						
3.00			1																								* O+	а 	0						
				: . 																															
																														A.m.	4 m.h. 1	mor	20-		5
2.00													₽ t. c		+								a									Pibl	с.с- На :	53/4	
2.50					1.'										a	e • 9	т <mark>а</mark>	0 [#] C		o †o	* a	a 9 +	*	÷0								Plat	te.	569	
																									• 0				6	a					
3 00																									5	a		- 10							
																										+	a + 1	0 							
3 50																																			
2.50																																			
								a	a			*		5	# 0	+	+ α	± +	¥ +₀ \$ iqi	, a ,															
3 00											4		α										3	10					;9; ;	Au	riga	ę.		VIIII	Σ
																									+						+	Plat	ie	733	
3.55																										c :					0	r ai	re	(35	1
4.00							1																			+	<u>а</u> .д	₩α ₀							
																													Q						
- 2 50														ø																					
										ø							.e	0					+0	• •					10						
3.00																		10	70 +6 4		1 +0				0				14	€ai	1.76	nar Dim			
2 20																															1	Pist	lE fe	915	
																																	- 7'		
Lith. Paul	Schr	n dler,	Leip:	2111 21g		1271		H. T.	li tit.		197			íЩ								1		iIII										::iti	H

Hans Rosenberg: Sternspektren. Taf. 7.

11th Paul Schmdler, Leipzig.

Hans Rosenberg: Sternspektren, Taf. 8.

Tab. XVIII.

$\sqrt{\frac{1}{\lambda}}$															X																			
mg \	15	00				50		÷		20					22	50				27 	60				27	50				3.0	<u>00</u>			
3.00								G			- D	Ð	a ;	• d	12 12	0	•					1						ð	Cas	siç	Deia	re. I	Xal)
																		ta.	10 #	4		÷.								+	Plat	re j	753	
3.50																						D A								.	Plat	:е -	757	
4.00																							d,	D										
3.00							;•						1 1 1 1 1 1																					
3.50												-64		×	q	0 9	* 🕬	01 o	- 59 - 6	е а,	à							3	Ar	ieli	\$ \$	X	b.	
																					4	•								117	Plat	te;	585	
4 00																							9 + 0							0	Pjat	ŀe -	933	
																								X4										
						0																												
			_			-			d		g	9 0	- 6'																					
2.50															9 -19-	DX I	e a	a.	1	a ,	d	0												
3.00				,																			Q											
4 .																								Ø										
3.50																												à	Qp	hiu	;hi .	Х	<u>b</u> .	
1. 20						-::.	T																			0		9		•	Plat	re 	647	
4.00																																		
																																1	1.	
7.00						, a (a.) <u>a</u> (a.	2 20 0	P P																				·	
1.59) a (a	Ag	uila	e	Χ.	5.	
																							s 								Milt	elwe	rt.	
2.00																								d										
																								Ð					01					
2.51																									a		n,	0						
3.00																																		
2 50						a	ŧ.	q :				÷																α	Ce	phe	i.	X	<u>b</u> .	
						++ · · · · · · · · · · · · · · · · · ·						e -	9	ea e	18	Ċ c	*													+	Plat	te-	590	
3.05																		+ *	তা	* •	10 7	5 -								0	Plat	te	592	
7 50																							€)									-		
2.130																																		
4.06																																		
						 	t	HT:		H			HI.	111-		1111	101	1.1.1.1	11144	1111	1111	111.	1111	1 1	1	+ + + + + + + + + + + + + + + + + + + +	1							
					11																			1.1.1										

Lith Paul Schmdler, Leipzig.

Hans Rosenberg: Sternspektren. Taf. 9.

																													13 14				
														Х	1.																		
14																																	
ing \	5 00			1	750				20	00				22 5	0				25	00				275	;0= 				-30	36			
0.50						5 +		1	*		kd																						
7.00					1 98 14								d	#Q													α	Ca	nis			ΧŦ	a.,
															+0	10 7	8	ta 10												िति	16	633	
1 50																			9	9 0 0	0 c	0							P	Plat	l:e	634	
2.00																							e a										
~ ~ ~ ~																																	
.2.50																																	
						-																											
2 30																																	
						9±0	134	+		i a																							
2.50					*		• •				+	<u>0</u>	0,1	40 Ho	÷												3	Cas	\$101	Bia	¢	XII	ab.
																	a ± . a			ŧ.										Plat	ię: Territi ie:	/53	
																				0.									1 1		-		
3.50																						D: :	ο 										
																								1 4 - 1 0	•								
4.33															I																		
																																+	
											1.1																					<u>+</u> г-	
1.50																																	
							+ o	10 	0 + 0	10	1 1 1 1 1																					1.11	
<u> </u>					a.						a,	•	±¤																				
- 2 30														e e	-9	±φ _i #											a	Pe	rse		XII	ac.	
																	12	· 0 +	2 H-1											Ftal	re :	755	
3.7%																														법하	1.8:	757	
3.50																						r p											
										1														Ε.Π α.									
4 G5																								G	н Fa	1711 .€.	1 1						
			1																														
	T			F																								+					
																T.																	
																									+ + + +								
		-																															
															i rii									· · · · · ·	1	1.121							

1.th Paul Schindler Leipzig

Hans Rosenberg: Sternspektren, Tal. 10.

Lith. Paul Schmdler, Leipzig.

Hans Rosenberg: Sternspektren. Taf. 11.

															X	IV.																
mg	78	00				17	50			20	0 0				22	50			25	00				2750				30	¢0			
0.00																																
											*																					
0.50									*	6 *		x															AL	IF IQ (16. 57.1	XIV T	d.	
												•	8																Plai	1 C	723	
															T X	et o													Pigi	ita	592	
1.50																																
																		***	4 D													
2.00																																
																					a l	e 0	9									
.2.50																								‡ 9								
3.00																									10							
3.00										a	4															m	Bc	o fi	8	XIV	a.	
							P					a	8													6			Pia	fe	647	
3.50									•				0		8 8 #													•	Pla	le.	914	
																	¢ * p															
4.00																		а •														
4.50																																
2.50																																
				1 - 1 - 1 1																												
3.00																																
					1.1.		α	α																								
3 50																										3	Pr	<u>aco</u> i	nis I	XIV	3	
														0		6														re	962 664	
																0																
4,50																	= a ≢a															
2.50									1																							
							4				a																					
3.09													P +													X	1 Me	rsei	L X		C	
					• • •									a p	e	0												+	1718 101		750 711	
3.96																- 40	+0 +0											¢	11 1d	HIC:	/ J /	
4.00																		* • •	s + la													
																			1													
4.50																					J.											
5.00																		EI II				t t			I	H.E						
18d.	. un die	, resb	sig.																													

_

Hans Rosenberg: Sternspektren, Taf. 12.

											XV.															
Tr'A	15	¢€	1700			20	00				2250				250	0		27	50			3.9 (×0.			
2.00																										
2.50				9																a	Cas	SIO	oeia	e	XV a	
3.20									а + 4	+0												ø	Piai	ŧę.	737 757	
3.50												•														
4.90													-40	0												
4.50															*	+										
5.00																										
2 00				,+																						
3.30								0												a	A	rieł	isi.	XV	a:	
3 50										÷												+	Piat Piat	18	585 590	
4.06											6	E DE														
4 50													3 0	8												
5.00																										
2.50			9	a																						
3.60				P	-		a																			
3.156									• •	9 4										6.	Au	rig +	ae . Plat	XV Fe	a. 733	
4.00											8											0	Plat	ŀe:	755	
4 35												d	67													
5 35														a												
																							1			

Lith Paul Schmdler, Leipzig

Hans Rosenberg: Sternspektren, Taf. 13.

Lite Paul Schmdler, Leipzig

Hans Rosenberg: Sternspektren, Taf. 14.

Tab.XXIV.

													X	V.											
14																									
mg.) @D			17	50			20	0ð				22	50				29	¢o	2750		30	00 		
0 50					1.58																				
60. Ç					4																				
							¢Q. IE														B,			X.V	2
										8	8.*									2			Plat	te :	647
1 00												a	÷.									16	Plai	ŧę:	648
1 10														3											
															4	3				0 49102 9131 9 68 8 57 7 49 57 6 78 8 8 7 7 49 57 6 78 8 8 8 8 8 8 8 9 79 8 8 8 8 9 79 8 8 8 9 79 8 8 8 9 79 8 8 9 79 9 9 70 9 70 9					
2 00																	* a.,,	3	a						
2.50																									
3 00																				2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
3-50																									
- 4-00																									
2.50																									
																				U 400000 7400 2 19000 7400 U 19000 7400 U 19000 7607 0 19000 7607 1 30000 7607 1 30000 1 30000000000					
3 00																									
3 50		1.				<u> </u>														A UCA 200523 2 Juli 200523 2 Puli 20053 2 Puli 20053 2 Puli 20053 2 Juli 20053 2 Ju	He	ncul	\$	XV	a.
											c												Plai	1¢	647
4.00																						0	Plat	lte	\$48
4 50														+	₩ •										
																ol									
5.00																		0							
3.00																									
8 50																									
												2 1	0												
4.00																					<u>}</u> 01	hin	chi	X	Va.
	,																					0	19 3 P 3	ite I	648
5.00																•									
																		1							

Lith Paul Schmdler, Lerpzig.

Hans Rosenberg: Sternspektren. Tal. 15.

Tab.XXV.

													()												
15																									
mg	15	90		50				20	ψο				22.20			5 UU				2730		- 30	99		
0.00							×	- 15																	
0.50				*					+ 0.														•		
					р С	* 0 X				•	er al	8											Platte	663	(1)
1.00													24 24 26 26 26									×	e lanie	927	
1.50		, , , , , , , , , , , , , , , , , , ,												8 38 - 4 8 - 1	x P. q										
2.00															×	f F	9.6								
																	*	t X X	₽ 						
																			×	ан ж					
3.00																				0 ****					
0.00				X																					
				+				20															ø		
0.50					6 X	*	x	d.															Plaite	930	
											Χ τ											1	Platte	93	
												18				1									
1.50												8	125- 2 ⁵⁶ -25	×								*	Praitte	94)(1)
1.50														* * ,	*	*						*	Prattie	94)(1)
1.50															** *	*	×.*	æ ×.				*	Ptattle	9/1	
1.50 2.00 2.30																8	***	æ					Praitte	946	
1.50 2.00 2.30 3.90																***	× *	ø X.				×	Praitie	940)(1)
2.00 2.30 3.90														* * *		**	**	æ *		ж. ж. х. х.	• •	*	Patte	94)(1)
2.39 3.99														* * *		8 8 8				и ж х х х		*	Partie	94	
2.39														* *		**	¢.	₽×1.		10 x x	* * *		Piaitte		
2.99														* *		*		₽		и	¥ * 0	*	Praitte 1		
2.00 2.00 2.00 0.55 0.55																8	×.**	₽ \$.		ж , , , , , , , , , , , , , , , , , , ,	· · · · · · · · · · · · · · · · · · ·		Piałłe Piałłe Piałłe Piałłe	946 946 946	9(1) () ((2) ((3)
2.09 2.39 3.99 3.99 9.95 0.55																**		<i>₽</i> .			÷	×.	Piałtę Piałtę Piałtę	946 946 946)(1))(2))(3)
1.50 2.00 2.37 3.90 9.95 0.55 1.09					2 2 2 3 3											88	×, *				÷.	*	Piałłte Piałłte Piałłte	946 946 946)(1) (2) (3)
2.00 2.00 2.39 3.30 9.95 0.55 0.55 2.95																						*	Piaitte Piaitte Piaitte	946)(2))(2)
2.99 2.99 2.99 2.95 9.95 9.95 2.95 2.95																88 - 188 - 188 - 191 - 1		₩ ×				×. 	Piaitte Piaitte Piaitte	946 946)(2))(2)
2.32 3.90 2.32 0.55 0.55 2.05 2.05 2.05																89 - 188 - 199 - 1							Piatte Piatte	946 946 946)(1))(2))(3)
2.32 3.90 3.90 3.90 3.90 5.55 5.55 5.55 5.55 5.55 5.55 5.55 5																8 8 8 8 8		æ 4.					Piatte Piatte	946 946 946	X(1)

List Paul Schindler, Leipzig

Hans Rosenberg: Sternspektren, Taf 16.

Lith Paul Schmdler,Leipzig

Hans Rosenberg: Sternspektren, Taf. 17.

Tab. XXVII.

														X	V.														
										00									0.5			07120							
									20																				
-2.00					7. D																								
2.50								9		5 6 75	+		Þ																
3 30													H F . [54]	3	•								8	Ăn	iron	ned Plail	ie. e	XV 755	G. I
3 50																6									•	Plai	e.	933	
4 90																		4	1. 2. d										
4.50																													
5-100																													
- 2 50								a																					
3.00				0	0	• 0	1 + 		0	р 	G													8	Bo	lis	xv	C.	
3.50												, , ,	P)	•	¢										÷		ie Ie	647 914	
4.00																	8	8	6	8									
																						6 / / 20 / 20 / 20 / 20 / 20 / 20 / 20 /							
-2-50																													
2 32							•																						
							0	0																					
2 3ý					0							- a ⁺	o [‡]												UH e	Plai	9 9	662	
														DH	24										•	Plat	e	664	
4.55																	2 - 1 												
5 00																													
The Base	Schmdle																												

Hans Rosenberg: Sternspektren. Taf. 18.

Tab. XXVIII.

Lit Paul Schmdler, Leipzig.

Hans Rosenberg: Sternspektren. Taf. 19.

Lith Paul Schindler, Leipzig.

Hans Rosenberg: Sternspektren. Taf. 20.

$\mathbf{N} \ \mathbf{O} \ \mathbf{V} \ \mathbf{A} \quad \mathbf{A} \ \mathbf{C} \ \mathbf{T} \ \mathbf{A}.$

Abh. der Kaiserl. Leop.-Carol. Deutschen Akademie der Naturforscher. Band CI. Nr. 3.

Untersuchungen über die elektrische Leitfähigkeit des Bergkristalles.

Von

Dr. Richard Ambronn.

Mit 9 Tafeln Nr. XXX - XXXVIII.

Eingegangen bei der Akademie am 10. März 1914.

HALLE.

1915. Druck von Ehrhardt Karras G. m. b. H. in Halle (Saale). Für die Akademie in Kommission bei Wilh. Engelmann in Leipzig.

Einleitung.

1. Im Verlaufe ihrer grundlegenden Untersuchung über den Vorgang der Elektrizitätsleitung in Gläsern¹) prüften E. Warburg und F. Tegetmeier auch eine Anzahl bei gewöhnlicher Temperatur nichtleitender Kristalle auf ihre Leitungsfähigkeit bei höheren Temperaturen. Sie fanden dabei besonders interessante Verhältnisse am Bergkristall, bei dem sich der Widerstand einer aus einem Kristalle geschnittenen dünnen Platte von dem Winkel abhängig erwies, den die Plattenebene mit der kristallographischen Hauptachse einschliefst. Steht die Hauptachse senkrecht zur Plattenebene, so ist die Leitfähigkeit etwa von gleicher Größenordnung wie die der gewöhnlichen Gläser bei derselben Temperatur, liegt sie aber parallel zur Plattenebene, so ist die Leitfähigkeit verschwindend klein.

Warburg und Tegetmeier brachten eine senkrecht zur Hauptachse geschnittene Bergkristallplatte zwischen zwei Elektroden aus reinem Quecksilber, setzten sie der Einwirkung eines hohen Potentialgefälles aus und beobachteten, dass der die Platte durchfliefsende Strom sehr schnell schwächer wurde. Es könnte das ein der kristallisierten Substanz eigener, sonst unbekannter Effekt sein; fügte man aber dem anodischen Quecksilber Natrium bei2) und liefs den Strom wieder durch die Platte fliefsen, so blieb er. nachdem er einige Stunden lang angestiegen war, konstant und es fand sich nach der Beendigung des Versuches in dem kathodischen Quecksilber eine Natriummenge, die der durch die Platte hindurchgegangenen Elektrizitätsmenge genau äquivalent war. Dadurch charakterisiert sich die Leitfähigkeit des Bergkristalles als eine rein elektrolytische. Zusatz anderer Metalle von höherem Atomgewicht als Natrium zum Anodenquecksilber konnte die Polarisation nicht verhindern. Die Träger des Stromes im Bergkristall sind Natriumionen. Nur Lithium³) konnte das Natrium ersetzen und wanderte ebenfalls durch den Bergkristall hindurch.

 23^{*}

¹⁾ E. Warburg und F. Tegetmeier, Wied. Ann. 32. 442-451. 1887.

²) E. Warburg und F. Tegetmeier, Wied. Ann. 35. 455-467. 1888.

³) F. Tegetmeier, Wied. Ann. 41. 18-41. 1890.

Richard Ambronn,

Ferner wurde beobachtet, daß das Ohm'sche Gesetz nicht erfüllt ist, der Strom wächst schneller wie das Potentialgefälle. Aber weder nach dieser Richtung noch auch über den Einfluß der Temperatur auf die Leitfähigkeit, der, wie bei allen und namentlich den festen Elektrolyten, sehr großs ist, konnten Warburg und Tegetmeier quantitative Resultate erzielen.

2. Als Ursache der sicher nachgewiesenen und auf der Beweglichkeit von Natriumionen beruhenden elektrolytischen Stromleitung im Bergkristall nahmen nun Warburg und Tegetmeier kleine Mengen von Natriumsalzen an, die bei der Bildung der Quarzkristalle aus wäßsrigen Lösungen mit in das Kristallgefüge hineingeraten seien. Daß solche Verunreinigungen vorhanden sind, ließ sich durch Abrauchen eines ganz klaren durchsichtigen Bergkristallstückes mit Flußsäure zeigen, wobei ein Rückstand blieb, der etwa einem zweitausendstel des ursprünglichen Gewichtes entsprach.

Die Konzentration der die Leitung übernehmenden Ionen ist also nur sehr klein. Wie oben aber bereits bemerkt wurde, ist die Leitfähigkeit von gleicher Größenordnung, wie die der Gläser; da bei diesen sehr wahrscheinlich bereits bei den hier in Betracht kommenden Temperaturen die Dissotiation der überhaupt dissotiationsfähigen Molekeln fast vollständig erfolgt ist, muß die Beweglichkeit der Ionen in dem Kristallgefüge sehr viel größer sein als in der amorphen Glasmasse.

Es wurde nun die Frage gestellt, in welcher Weise diese Natriumsalze in dem Quarze gelöst seien und ob sie etwa an der Kristallstruktur teilnähmen. Über den letzteren Punkt wird später (§ 43) nochmals eingehender zu sprechen sein. Warburg und Tegetmeier entschieden sich für die Bejahung der Frage. Curie¹) dagegen suchte die Ursache der Leitfähigkeit in Einschlüssen wäßriger Natriumsalzlösungen auf Spalten parallel der Hauptachse, die wegen ihrer winzigen Dimensionen selbst bei so hohen Temperaturen (ca. 300^c) noch flüssig blieben. Durch Erhitzen²) einiger Bergkristallproben im Porzellanofen während längerer Zeit konnte aber die Leitfähigkeit in ihrer Gröfsenordnung nicht geändert werden, und dadurch ist die Curie'sche Annahme wohl sicher widerlegt. Auch die Ergebnisse der von mir erhaltenen quantitativen Messungen wären mit ihr nicht in Einklang zu bringen.

Die Natriumionen sind vielmehr offenbar im kristallinischen Gefüge beweglich und zwar hauptsächlich parallel der Hauptachse. Senkrecht dazu

180

¹) J. Curie, La Lum. électr. 29. 221, 255, 318. 1888.

²) F. Tegetmeier, Wied. Ann. 41. 18-41. 1890.
ist ihnen der Weg durch die Molekularstruktur vollständig versperrt. Die negativen Ionen, die mit den Natriumionen zusammen das neutrale Salz gebildet haben, liegen völlig fest, wie das ja auch bei den Gläsern der Fall ist.

3. Die Untersuchungen Warburgs und Tegetmeiers stellten nur die physikalisch-chemische Seite der Erscheinung klar, nämlich ihre elektrolytische Natur. Über die Abhängigkeit der Leitfähigkeit von Temperatur, Potentialgefälle und Richtung desselben gegen die Hauptachse kamen sie zu keinem quantitativen Resultate. Solche abzuleiten hat Bollé¹) im Anschlufs an eine Untersuchung der Leitfähigkeit der Gläser unternommen, es gelang ihm aber nicht, bei der Widerstandsbestimmung mit Wechselstrom und Telephon in der Nernst'schen Anordnung der Wheatstone'schen Brücke ein deutliches Tonminimum zu erhalten, was er darauf zurückzuführen suchte. dafs der Widerstand des Bergkristalles eine Funktion der Frequenz des zur Messung verwendeten Wechselstromes sei und daß daher der Ton im Telephon immer nur für eine bestimmte Grund- oder Oberschwingung des sehr unsymmetrischen Induktorstromes verschwinde. Es scheint mir indessen. nach den von mir angestellten Versuchen zu urteilen, daß nur die Schwingungsdauer zu lang gewesen ist, so dafs innerhalb derselben noch merkliche Veränderungen in der Verteilung der äußerst verdünnten in dem Bergkristalle enthaltenen Salze vor sich gehen konnten, die eine periodische Vergrößerung des scheinbaren Widerstandes hervorriefen. Bollé versuchte. den Widerstand mit rein periodischem Wechselstrom, den er durch einen Saitenunterbrecher erzeugte, und einem darauf abgestimmten Vibrationsgalvanometer zu messen, aber die Anordnung war nicht empfindlich genug, um bei den hohen Widerständen der Bergkristallplatten sichere Resultate zu ergeben. Feststellen zu können glaubte Bollé nur eine Abnahme des Widerstandes bei Vergrößerung der angelegten elektromotorischen Kraft von 110 auf 1000 Volt, die bei höheren Temperaturen geringer war, als bei tieferen.

4. Als gesicherte Resultate der früheren Untersuchungen können daher den weiteren Betrachtungen nur die folgenden Tatsachen zugrunde gelegt werden.

Die Leitfähigkeit ist elektrolytischer Natur. Der Elektrizitätstransport wird von Natriumionen (ev. auch von Lithiumionen) besorgt, die zwar nur in sehr geringer Konzentration vorhanden, aber mit aufsergewöhnlich hoher Beweglichkeit ausgestattet sind.

[5]

¹) E. Bollé, Inaug. Diss. Berlin 1900.

Richard Ambronn, Elektrische Leitfähigkeit des Bergkristalles.

Diese Ionen sind vorzugsweise parallel der Hauptachse beweglich, senkrecht dazu ist das Kristallgefüge für sie undurchlässig.

Die Leitfähigkeit nimmt mit der Temperatur sehr schnell zut.

Über den Zusammenhang zwischen Spannungsgefälle und Stromstärke liegen auswertbare Beobachtungen nicht vor.

Die zur Erweiterung der vorläufig rein qualitativen Kenntnisse erforderlichen Beobachtungen sind demgemäß diese:

Der Einfluß der Richtung des Potentialgefälles in dem Kristalle auf die Leitfähigkeit soll quantitativ untersucht werden, zu welchem Zwecke die Leitfähigkeit von Kristallplatten gemessen werden muß, die von der Hauptachse schief zu ihren Flächen durchsetzt werden.

Um aber die an verschiedenen Platten erhaltenen Widerstandswerte miteinander vergleichen zu können, muß der Einfluß der Temperatur auf die Leitfähigkeit sowie der Zusammenhang zwischen Spannungsgefälle und resultierendem Strome bei konstanter Temperatur quantitativ festgestellt werden, wobei man aber besonders sorgfältig darauf zu achten haben wird, daß bei dem Versuche selbst die Verteilung der leitenden Substanz in dem Kristalle so wenig als irgend möglich geändert wird, weil ja hier zunächst die Eigenschaften des von der Natur gegebenen unveränderten Bergkristalles gesucht sind. Gerade gegen diese letztere Bedingung ist in allen bisherigen Untersuchungen gefehlt worden, indem durch Anwendung zu hoher elektromotorischer Kräfte das untersuchte Material während der Messungen in wechselnder und völlig unkontrollierbarer Weise durch den Stromdurchgang verändert wurde.

Auf Grundlage der gesicherten elektrolytischen Natur der Leitfähigkeit soll dann, soweit möglich, eine Aufklärung über den speziellen Mechanismus der Bewegung der Ionen in dem Kristallgefüge gesucht werden.

Mefsmethoden und Apparate.

5. Einen sehr großen Einfluß besitzt bei den Messungen der Leitfähigkeit schlecht leitender fester Körper die Art und Weise, in der man sie mit Elektroden versieht, um ihnen den Strom zuzuleiten. Wenn es sich, wie hier, um elektrolytische Leitfähigkeit handelt, würde man offenbar am einfachsten unpolarisierbare Elektroden anwenden und als solche sind auch von Warburg¹) Natriumamalgam und von Heydweiller und Kopfermann²) geschmolzene Natrium- und Kaliumnitratmischungen benutzt worden. Ihre Anwendung ist sehr einfach bei amorphen Körpern, die man in reagenzglasförmiger Gestalt, gefüllt mit dem Elektrodenmateriale und in solches eingetaucht, elektrolysieren kann. Bei kristallisierter Substanz aber ist man auf die Verwendung planparalleler Platten angewiesen. Methoden, auch solche mit flüssigen Elektroden zu versehen, sind zwar von Warburg angegeben, mir ist es aber nicht gelungen, geeignete Substanzen, die zwischen 100° und 450° flüssig sind, zu finden, noch auch mit solchen, die wenigstens für die höheren Temperaturen zu gebrauchen wären, eine völlig konstante. sicher bestimmbare Elektrodengröße zu erhalten. Die Unsicherheiten in dem Querschnitte der benetzten als Elektrode ausgenutzten Fläche gehen aber in ihrem vollen Betrage in die Resultate ein.

6. Es mußsten daher polarisierbare, feste Elektroden angewendet werden, die nun zugleich die Messung der Widerstände mit Strömen wechselnder Richtung zur Aufhebung der Polarisation bedingten. Solche Elektroden sind zwar von manchen Autoren³) als unsicher bezeichnet, bei den von mir untersuchten Gläsern⁴) und bei Bergkristall haben sie sich aber bei richtiger Herstellung sehr gut bewährt und dauernd gleichmäßigen

¹) E. Warburg und F. Tegetmeier, Wied. Ann. 35. 455-467. 1888.

²⁾ Kopfermann, Inaug. Diss. Münster 1909.

³) L. Grätz, Wied. Ann. 29. 314. 1886. — Rosenthal, Wied. Ann. 43. 700. 1891. — O. Reichenheim, Inaug. Diss. Freiburg i. Br. 1906. — F. Horton, Phil. Mag. 11. 505. 1906.

⁴⁾ R. Ambronn, Inaug. Diss. Göttingen 1913.

Kontakt erreichen lassen. Es wurden auf den feinmatt geschliffenen Seiten der Platten kreisförmige Flächen mit einer von der Gold- und Silberscheideanstalt in Frankfurt bezogenen Platinlösung bestrichen und diese bei langsamem Erhitzen in einem kleinen elektrischen Ofen eingebrannt. Die Erhitzung wurde über ca. 2 Stunden ausgedehnt und bei der Höchsttemperatur von etwa 550° einige Zeit konstant gehalten. Die platinierten Platten wurden noch mittels eines weichen Bleistiftes mit Graphit überzogen, um den Verteilungswiderstand längs der Oberfläche zu verkleinern und etwaige feine Risse in der Platinschicht zu überbrücken. Der Zusammenhang der Schicht wurde mittels zweier Nadelspitzen, die durch einen Akkumulator und ein Ampèremeter verbunden waren, an vielen Stellen geprüft. Es wurde noch ein wenig Graphitpulver aufgestreut, beiderseits je eine ebene Platinplatte aufgelegt und dieses System dann zwischen die stark versilberten Kupferklötze in dem unten beschriebenen Einspannapparat gebracht, in welchem sie bei der Widerstandsmessung erhitzt wurden.

7. Um den Einflufs der Polarisation zu eliminieren, mufste mit schnell ihre Richtung wechselnden Strömen gemessen werden, deren Frequenz genau bekannt und in weiten Grenzen zu verändern war. Wegen der sehr hohen zu messenden Widerstände, die zwischen 10^9 und 10^3 Ohm variierten, und der Notwendigkeit, das Potentialgefälle in den Platten so klein als irgend möglich zu halten, war die Messung nach dem Prinzip der Wheatstone'schen Brücke und mit Telephon als Indikator ausgeschlossen. Die Widerstände wurden vielmehr durch Messung des Stromes¹) bestimmt, den eine gemessene elektromotorische Kraft in den Platten hervorrief. Der Strom durchflofs das Galvanometer als Gleichstrom, in die Zuleitungen zur Platte aber wurde ein rotierender Umschalter eingefügt, der die Stromrichtung in dieser bis 200 Mal in der Sekunde zu wechseln gestattete. Da dieser Umschalter den Strom bei jeder Kommutierung, um eine genügende Isolation zu sichern, kurze Zeit völlig unterbrach, mufste er oft geaicht werden, wodurch sich eine Genauigkeit der Strommessungen von etwa $2^{0}/00}$ erreichen liefs.

A. Apparate.

Nachdem der Bereich der zu messenden Größen und der anzuwendenden Messungsmethoden festgestellt ist, soll nunmehr die Beschreibung der als zweckmäßig erachteten Einrichtungen folgen.

¹⁾ Mittels eines d'Arsonval-Galvanometers von Siemens & Halske.

1. Der Einspannapparat.

185

8. Figur 1 zeigt die Vorrichtung, in welche die Bergkristallplatten für die Messungen eingespannt wurden.

Auf einer starken Eisenplatte A sind zwei Messingzylinder B_1 und B_2 aufgesetzt, auf die je ein Messingzylinder C_1 und C_2 , oben und unten durch Hartgummiplatten isoliert, mittels einer Druckplatte und frei durchlaufender Schrauben aufgeschraubt ist. In diesen beiden Klötzen sind genau horizontal die 1 cm starken Stahlrohre R_1 und R_2 verschiebbar, die an ihren inneren Enden zunächst für flüssige Elektrodenmaterialien die Stahlgefäße E_1 und E_2 tragen. R_1 stützt sich mittels des festklemmbaren

Ringes D und der Druckfeder F gegen den Klotz C_1 ; R_2 trägt ein Gewinde und lässt sich mittels der Mutter G, die den Druck auf das an dem isolierten Zylinder C_2 befestigte Joch J überträgt, gegen die Feder F verschieben, um dadurch den Druck, mit dem die Schalen auf der eingespannten Platte ruhen, variieren zu können. Während die Schale E_1 direkt auf das Stahlrohr R_1 aufgeschraubt ist, wird zwischen R_2 und E_2 als Gelenk eine dünne Stahlmembran H eingeschaltet, die etwaige Durchbiegungen der Rohre ausgleichen und bewirken soll, dafs die Schalen ringsum mit möglichst gleichem Druck auf den zwischen sie eingespannten Platten anliegen. Beim Ausdrehen der Schalen waren die beiden Hülsen T_1 bezw. T_2 stehen gelassen, in welche Nova Acta CL. Nr. 3.

[10]

die Lötstellen der durch die Rohre R_1 und R_2 eingeführten Thermoelemente zu liegen kamen.

Nachdem sich gezeigt hatte, daß die Anwendung flüssiger Elektrodenmaterialen nicht die gewünschten Erfolge brachte, wurden die Hohlzylinder E_1 und E_2 durch massive, stark versilberte Kupferzylinder von gleicher äufserer Form ersetzt. Zentrale Durchbohrungen gestatteten, die Lötstellen der Thermoelemente unmittelbar bis an die (S. 184) erwähnten Platinelektrodenplatten zu schieben.

Die Stromzuführung geschah durch dünne Silberdrähte, welche in die Kupferklötze eingekeilt und an die kalten äufseren Enden der Rohre R_1 wo diese blank blieben, angeschraubt waren.

Auf der Grundplatte der Einspannvorrichtung war ein 35 cm langer elektrischer Ofen, der durch ein 4 cm weites Kupferrohr gebildet wurde, welches mit Nickeldraht bewickelt und gut gegen Wärmeverlust isoliert war, koaxial mit den Stahlrohren R verschiebbar. Die Länge von R_1 und R_2 war so bemessen, dafs wenn der Ofen über R_2 an B_2 herangeschoben wurde, die beiden Schalen E_1 und E_2 frei lagen, und dafs die Platten sich gerade in der Mitte des Ofens befanden, wenn dieser bis auf einige Zentimeter an B_1 herangerückt war. Um den Einfluß der Metallmassen C_1 und B_1 in dieser Betriebsstellung des Ofens auf die Temperaturverteilung in ihm zu kompensieren, wurde auf das Rohr R_2 ein Rippenkühler gesetzt, durch dessen Verschiebung kleine Unterschiede der Temperatur in E_1 und E_2 leicht korrigiert werden konnten.

Unsymmetrische Lage der Elektroden im Ofen machte sich sofort in beträchtlichen Temperaturunterschieden der beiden Schalen bemerkbar, woraus die Wichtigkeit der großen Länge des Ofens für die Güte des Temperaturgleichgewichtes in dem System E_1 — Platte — E_2 folgt. Die seitlichen Öffnungen des Ofens wurden mit ringförmigen Pfropfen abgedichtet, die nur einen ca. 1¹/₂ mm breiten zur elektrischen Isolation erforderlichen Luftspalt um die Führungsrohre ließen. Um die Stahlrohre möglichst bis an die Austrittsstelle aus dem Ofen auf hoher Temperatur zu halten, waren beiderseits je drei Kupferhülsen K mit aufgesetzten breiten Scheiben auf die Stahlrohre R geschoben.

2. Die Temperaturregulierung.

9. Wie sich bei der Besprechung der erhaltenen Beobachtungsreihen zeigen wird, mußte nicht allein auf genaue Kenntnis der augenblicklichen Temperatur, sondern auch auf einen möglichst geringen und gleichmäßigen [11]

Gang der Temperatur während längerer Zeit großer Wert gelegt werden. Die aus Nickeldraht gewickelte Heizspirale des elektrischen Ofens wurde mit Strom aus dem Netz der städtischen Zentrale beschickt, wobei die bis zu 7-10% betragenden Schwankungen der Netzspannung zunächst sehr störend wirkten und zwar um so mehr, als sie in doppeltem Betrage die im Ofen in Wärme umgesetzte Energie ändern. In dem Gange der Thermoelemente machten sie sich infolge der Trägheit des Ofens erst etwa 3-5 Minuten später bemerkbar, wann eine rechtzeitige Kompensation durch Änderung der Vorschaltwiderstände nicht mehr möglich war.

Im stationären Zustande muß die dem Ofen zugeführte Energie den Wärmeverlust nach aufsen gerade decken. Da sich aber der Widerstand des Heizdrahtes mit der Temperatur sehr stark ändert, so muß entweder Spannung und Strom oder die Energie direkt mittels Wattmeters gemessen und konstant gehalten werden. Da kurz andauernde Spannungsschwankungen nur in ihrem Mittelwerte auf die Ofentemperatur einwirken, so erhält das Wattmeter zweckmäßig eine schwere bewegliche Spule.

Will man irgend eine Ofentemperatur einstellen, so geht man zunächst mit kräftigem Heizstrom bis in die Nähe dieser erwünschten Temperatur. stellt den Kopf des Torsionswattmeters auf den einer vorher ermittelten Tabelle entnommenen Skalenwert und hält nun mittels der Vorschaltwiderstände den Zeiger des Wattmeters auf Null, wobei man von den Widerstandsänderungen des Ofendrahtes vollständig unabhängig ist. Den bald eintretenden gleichmäßigen Temperaturgang kann man leicht auf einen sehr kleinen Wert bringen durch kurzes starkes Erhöhen bezw. Unterbrechen des Stromes.

10. Diese Methode hatte noch den Nachteil, daß das Wattmeter dauernd beobachtet und die Vorschaltwiderstände von Hand reguliert werden mußsten, was neben den übrigen Ablesungen sehr anstrengend war und die Genauigkeit der Hauptmessungen ungünstig beeinflußte. Es wurde daher ein selbsttätiger Regler für die in den Ofen geschickte Energie eingebaut, der darauf Rücksicht nimmt, daß kurzandauernde, wenn auch starke Schwankungen nur in ihrem Mittelwerte für die Temperatur der Kupferklötze und der Platte in Betracht kommen, und daß auch die längerperiodischen Schwankungen nur um einen Mittelwert oszillieren, wie das bei der Spannung städtischer Netze ja stets der Fall ist. Die Einrichtung ist aus Figur 2 zu ersehen.

An dem Wattmeter sind Kohlenkontakte a_1, a_2, a_3 angebracht, die bei einem Anschlage aus der Nullage nach der einen oder anderen Seite durch die Relais R_1 und R_2 Widerstände W_1 und W_2 in dem Ofenstromkreis

187

 24^{*}

[12]

ein- oder ausschalten, je nach dem Sinne der Störung. W_1 und W_2 sind aber viel größer, als sie es zur Kompensation sein müßten; es tritt sofort eine starke Überkompensation ein, durch welche die Spule aufgehalten und zurückgeschleudert wird. Die Kontaktstücke a_1 und a_3 sind an dünnen Uhrfedern befestigt und stellen der freien Bewegung des an der Spannungsspule befestigten a_2 nur sehr geringen Widerstand entgegen. Die Spule wird zunächst um so kräftiger ausschwingen, je stärker die Anfangsstörung war, die Kontakte a_1 und a_2 bezw. a_3 und a_2 werden um so länger aneinander liegen und daher der überkompensierende Strom entsprechend länger wirken. Einer stärkeren Störung entspricht so eine längere Wirkung der Überkompensation und wenn die Größe der ein- bezw. ausgeschalteten Widerstände entsprechend gewählt ist, wird der zeitliche Mittel-

Fig. 2.

wert der dem Ofen zugeführten Energie konstant bleiben. Damit die Spule nicht fortwährend von einem Kontakt zum andern geschleudert wird, ist eine Öldämpfung angebracht.

Dieses Prinzip der Energieregelung bewährte sich sehr gut, zweckmäßig ist es indessen, grobe Änderungen der Energiezufuhr an den Vorschaltwiderständen zu korrigieren, um dauerndes einseitiges Arbeiten der Relais zu verhindern, wobei allmählich die Wirkung der Dämpfung und die Hemmung der Kontakte auf die Spannungsspule sich störend bemerkbar macht, was bei nur einigermaßen gleichmäßiger Verteilung der Störungen auf beide Kontakte völlig verschwindet.

11. Um die Wirkung dieser Einrichtungen auf die Konstanz des Temperaturganges zu zeigen, sei im folgenden eine Tabelle gegeben, in der für eine Anzahl willkürlich herausgegriffener Beobachtungsserien der Mittelwert Δ der absoluten Beträge der Änderung des Temperaturganges pro Minute angeführt ist, dessen möglichste Kleinheit angestrebt werden muß.

Zu der Verbesserung der Konstanz des Temperaturganges kommt aber noch bei den Messungen mit Energieregler die ganz außerordentlich großse Erleichterung für den Beobachter durch Fortfall der fortgesetzten Überwachung des Wattmeters und der Vorschaltwiderstände, was der Genauigkeit der übrigen Beobachtungen sehr förderlich ist.

Datum	Тешр.	Dauer der Serie	Δ	Regulierungsmethode
$\begin{array}{c} 21.4.10\\ 23.5.10\\\\\\ 26.5.10\\ 15.6.10 \end{array}$	0 223 250 270 280 332 250 289 252	miu. 20 16 16 10 18 20 13 31 Mittelwe	0 0,1215 0,0220 0,0153 0,0140 0,0663 0,1775 0,0258 0,0143 rt: 0,0571	Regulierung von Hand ohne Watt- meter; im allgemeinen durch Konstanthalten des Vorschalt- widerstandes nach erreichtem stationären Zustande.
$\begin{array}{c} 8.8.\ 10\\ 11.8.\ 10\\ 18.8.\ 10\\ 23.8.\ 10\\ 24.8.\ 10\\ 26.8.\ 10\end{array}$	$343 \\ 467 \\ 182 \\ 290 \\ 433 \\ 447$	26 31 33 45 26 32 Mittelwer	0,0236 0,0166 0,0175 0,0218 0,0248 0,0239 rt: 0,0214	Mit Wattmeter; Regulierung von Hand allein.
$\begin{array}{c} 1.12. \ 10\\ 19.12. \ 10\\ 20.12. \ 10\\ 24. \ 1.11\\ 26. \ 1.11\\ 28. \ 2.11\\ 11. \ 7. \ 11\\ 28. \ 7. \ 11\\ 2. \ 8. \ 11\\ 8. \ 8. \ 11\\ 8. \ 8. \ 11\\ \end{array}$	$175 \\ 316 \\ 452 \\ 370 \\ 299 \\ 166 \\ 403 \\ 277 \\ 280 \\ 298 \\ 376 \\ $	34 44 52 64 36 20 50 18 26 17 92 Mittelwei	0,0115 0,0070 0,0098 0,0116 0,0046 0,0231 0,0110 0,0171 0,0360 0,0094 0,0103 ett: 0,0138	Mit selbsttätigem Energieregler und Nachregulierung von Hand nur bei größeren einseitigen Spannungsschwankungen.

Tabelle 1.

Die zur Aufrechterhaltung des stationären Zustandes im Ofen notwendige Energie erwies sich als proportional der Differenz der Temperatur im Ofen gegen die des Zimmers.

3. Die Temperaturmessungen.

12. Die zur Bestimmung der Temperatur der Platten benutzten Thermoelemente bestanden aus Konstanten und Eisen und waren mit Silber

gelötet. Die Lötstellen wurden durch die Rohre R_1 und R_2 bis unmittelbar an die Platinplatten der Elektroden herangeschoben. Die Zuleitungen waren durch Glasröhren gegeneinander und gegen R_1 und R_2 isoliert. Die Verwendung von Eisendraht kann infolge der Inhomogenität desselben bei wechselnder Temperaturverteilung in den Zuleitungen zuweilen Störungen verursachen, doch kommen die Temperaturmessungen in ihrer Genauigkeit den Widerstandsmessungen mindestens gleich.

13. Die E. M. K. der beiden Thermoelemente wurde durch Kompensation derselben gegen einen Teil der Spannung eines Akkumulators bestimmt, der von Zeit zu Zeit an ein Normalelement angeschlossen wurde. Die Temperatur der zweiten Lötstelle wurde mit einem in $1/10^{\circ}$ geteilten Thermometer in einem Ölbade bestimmt und die Korrektion für die mit der Temperatur wechselnde Empfindlichkeit der Thermoelemente geeignet in Rechnung gesetzt. Die Einzelheiten der Schaltung sind weiter unten aufgeführt und in Figur 5 dargestellt.

Die E. M. K. der Thermoelemente sind nach den Angaben von L. Holborn¹) auf das Wasserstoffthermometer bezogen. Als Fixpunkte wurden daher die Siedetemperaturen für folgende Substanzen benutzt:

Wasser:	nach der Tabelle 14a in Kohlrausch, Lehrbuch
	der praktischen Physik.
	0 0
Naphtalin:	$218,04 + 0,0585 \ (p-760)$
Benzophenon:	$306,08 + 0.0638 \ (p-760)$
Quecksilber:	357.0 + 0.0752 (p-760)
Schwefel:	$445,00 + 0,0912 (p-760) - 0,000042 (p-760)^2$.

Die Thermoelemente wurden oftmals geaicht, da die oben erwähnten unangenehmen Eigenschaften des Eisendrahtes zeitliche Änderungen der Thermokraft vortäuschten. Es ergab sich, dafs die Abhängigkeit der E. M. K. von der Temperatur von 100° an sehr nahe linear ist, während die Elemente unter 100° etwas unempfindlicher werden.

4. Der Alternator.

14. Wegen der aufserordentlich großen Abhängigkeit des scheinbaren Widerstandes der Bergkristallplatten von der Frequenz des zur Messung benutzten alternierenden Gleichstromes mußte ein rotierender Umschalter verwendet werden, bei dem die Kommutierungsgeschwindigkeit innerhalb

¹) L. Holborn, Ann. d. Phys. 26. 867, 1908.

[15]

weitester Grenzen verändert werden konnte, ohne daß durch Kontaktunsicherheiten eine unkontrollierbare Schwächung des zu messenden Stromes eintrat.

Figur 3 zeigt eine Gesamtansicht des benutzten für diesen Zweck gebauten Apparates, während die Figuren 4a und 4b die Einzelteile erkennen lassen.

Auf einer Stahlachse *DD* läuft zwischen Spitzen eine 1,4 cm dicke Hartgummischeibe von 8,4 cm Radius, deren Umfang mit einem 3 mm dicken Messingbande belegt ist. An zwölf genau gleichmäßig um den Umfang verteilten Stellen ist das Band durch je einen 0,5 cm breiten Hartgummistreifen unterbrochen, so daß zwölf gut voneinander isolierte völlig gleiche

Fig. 3.

Segmente $S_1 - S_{12}$ entstehen. Zu beiden Seiten der Scheibe sind je zwei gut isolierte Schleifringe $A_1 - A_4$ angebracht, die durch Drähte beliebig mit den Segmenten $S_1 - S_{12}$ verbunden werden können. Um die Verbindung der beiden äußeren Schleifringe mit den Segmenten vornehmen zu können, ohne den auf A_2 und A_3 schleifenden Federn in den Weg zu kommen, sind die Ringe A_1 und A_4 unter den beiden inneren Ringen hindurch gut isoliert mit den schmalen Ringen a_1 und a_4 verbunden, von denen die Drähte zu den Segmenten führen.

Auf dem Umfange der großen Scheibe schleifen einander diametral gegenüber (die eine auch eventuell um 1/12 des Umfanges verschoben) zwei

Schleiffedern, die im allgemeinen mit den Elektroden der zu untersuchenden Platte verbunden waren. Ebenso führten an die vier Schleifringe A über gut isolierte Schleiffedern die Leitungen von den übrigen Vorrichtungen,

Fig. 4 a.

die jeweils zu den Messungen verwendet werden sollten. Man kann mit Hilfe dieses Umschalters eine große Menge verschiedenartiger Schaltungsfolgen herstellen, je nachdem man die Sektoren mit den vier Schleifringen verbindet und die übrigen Apparate an die sechs Schleiffedern anlegt.

Elektrische Leitfähigkeit des Bergkristalles.

Besondere Schwierigkeiten bot die Durchbildung der Schleiffedern an diesem Alternator. Da die Widerstände durch Bestimmung der durch eine gemessene E. M. K. erzeugten Stromstärke ermittelt wurden, gingen die die Länge der zwischen zwei Stromstößen liegenden stromlosen Zeit, innerhalb deren die Schleiffedern auf den zur Isolation unbedingt notwendigen Hartgummizwischenstücken sich befinden, verändernden Kontaktunsicherheiten zwischen Federn und Ringen in ihrem vollen Betrage in die gemessenen Stromstärken und somit auch in die errechneten Widerstände ein, bei denen eine Genauigkeit von mindestens $0,2^{\circ}/_{\circ}$ angestrebt wurde. Nach langen Versuchen erwiesen sich die in den Figuren 4a und 4b gegebenen Schleifaggregate als die zweckmäßigsten.

Da solcher Schwierigkeiten in der Literatur öfter Erwähnung getan wird, mögen die folgenden eingehenderen Bemerkungen über die Anordnung der benutzten Schleiffedern gestattet sein.

Bei geringster Abnutzung müssen diese Schleiforgane mit sanftem genau regulierbarem Drucke gegen die Unterlage wirken, namentlich aber müssen Schwingungen der Federn, wie sie durch kleinste Unebenheiten der Schleifringe leicht eintreten können, sofort abgedämpft werden, damit ein Hüpfen der Federn und damit Stromunterbrechungen oder unsichere Antrittszeiten an die Segmente vermieden werden. Aufserdem dürfen sie sich unter der Wirkung der für verschiedene Umlaufsgeschwindigkeiten verschiedenen Reibung nicht deformieren.

Diese Bedingungen ließen sich mit zwei einfachen fest eingespannten Federn nicht erfüllen. Der Kontakt wurde daher in jedem Aggregat von vier 2 mm breiten und 0,2 mm dicken parallel liegenden etwa $2^{1/2}$ cm langen Stücken besten Uhrfederstahles vermittelt, die an ihrem einen Ende in die Messingstücke *a* eingelötet und am anderen hochpoliert waren. In den Messingstücken *b* sind 1,3 cm breite Streifen stärkeren Uhrfederstahles eingelötet, die federnd gegen die Regulierungsschrauben *c* anliegen, durch die sie unter Zwischenlage der 2 mm dicken Gummistücke *d* gegen die eigentlichen Schleiffedern gedrückt werden, welche so mit gleichmäßig verteiltem Druck an den Schleifbahnen gleiten. Jedes Teil ist für sich verschiebbar, und daher weitgehendste Justierbarkeit gesichert. Die auf den Segmenten schleifenden Aggregate sind besonders sorgfältig durchgebildet, da an ihnen die größte Gleitgeschwindigkeit auftritt, und sie auch auf genau diametrale Lage einstellbar sein müssen.

Trotz dieser komplizierten Vorrichtung änderte sich die Gesamtdauer, während welcher der Alternator den Strom geschlossen hielt, noch langsam mit der Zeit infolge Abnutzung der Federn und auch ein wenig mit der

Nova Acta CI. Nr. 3.

[17]

25

Umdrehungsgeschwindigkeit, bei deren Wechsel eben eine kleine Deformation der Schleiffedern nicht zu vermeiden ist.

Die Bestimmung der Dauer des Stromschlusses bei rotierendem Alternator wurde im allgemeinen so durchgeführt, dafs ein selbstinduktionsund kapazitätsfreier bekannter Widerstand statt der Kristallplatten eingeschaltet und der Galvanometerausschlag bei gemessener Spannung bei ruhendem und mit verschiedenen Geschwindigkeiten rotierendem Alternator bestimmt wurde. In beiden Fällen mußs die wahre (momentane) Stromstärke die gleiche sein; bei rotierendem Alternator wirkt sie nur kürzere Zeit auf die Galvanometerspule. In allen späteren Tabellen ist mit wenigen, dann besonders bezeichneten Ausnahmen unter J diese wahre Stromstärke zu verstehen, indem die Unterbrechungszeiten bei der Umrechnung vom Galvanometerausschlag auf absolute Stromstärken bereits berücksichtigt sind.

Es ist als Reduktionsfaktor auf Stromstärke diejenige Zahl bezeichnet, die mit dem Galvanometerausschlag multipliziert die wahre Stromstärke gibt. Sie ist daher für Messungen mit ruhendem Alternator kleiner, als bei solchen mit rotierendem, und das Verhältnis beider Zahlen gibt das Verhältnis der Länge der Segmente zu der des ganzen Scheibenumfanges an.

Der beschriebene Alternator war vom 7. 7. 1911 ab im Betriebe. Der vorher benutzte war einfacher gebaut, namentlich waren die Schleifaggregate zwar im wesentlichen aus denselben Einzelteilen zusammengesetzt, aber die Justierung war sehr unbequem und nicht so genau ausführbar. Durch oft wiederholte Aichungen ist aber auch bei ihm die erforderliche Genauigkeit eingehalten worden. Bis zum 2. 12. 1910 besafs die Segmentenscheibe des Alternators nur zwei Unterteilungen, am 19. 12. 1910 war eine neue Scheibe mit zehn Segmenten eingesetzt worden, um höhere Kommuntierungszahlen bei kleinerer Umfangsgeschwindigkeit zu erzielen.

Es möge auch hier eine Tabelle 2 folgen, die die allmähliche Verbesserung in der Unabhängigkeit des Reduktionsfaktors des Galvanometerausschlages von der Zeit und der Umdrehungsgeschwindigkeit des Altenators zeigt, wobei zu berücksichtigen ist, daß die überhaupt erreichbare Genauigkeit infolge der Unsicherheit der Spannungsmessung nur ca. $1-2^{0/00}$ beträgt. Die Serien sind ganz zufällig herausgegriffene. Als Frequenz ist die Zahl der vollen Kommutierungsperioden des Stromes pro Sekunde zu verstehen. Die Zahl der einfachen Kommutierungen ist doppelt so grofs.

Man erkennt den Fortschritt namentlich an den Werten des Reduktionsfaktors für extrem große oder kleine Frequenzen, wo Störungen sich besonders leicht bemerkbar machen, die aber von großer Bedeutung sind, indem, wie sich später herausstellen wird, bei der Verwertung der Messungen gerade diese Werte besondere Wichtigkeit erlangen.

Datum	Zeit	Frequenz	RedFaktor	Datum	Zeit	Frequenz	RedFaktor
	h m		10 ⁹ A/em		h m		10-9 A/cm
19.12.10	11.52	0.0	7.346	11.7.11	11.54	45.7	8.839
_	11.59	27.9	8.530		11.59	82.5	.829
-	12. 2	72.5	.527	- 1	12.7	1.26	.831
- 1	3	113.3	.562	—	1. 7	32.3	.843
-	12.6	1.34	8.610	_	2.16	6.63	.839
	4.6	0.0	7.349	_	3.34	26.9	.831
	4.9	113.8	8.587	_	5.11	29.8	8.819
-	4.11	16.5	.570		0.44	2010	0.010
-	6.2	16.4	.580	1 8 11	1.49	191	8 855
-	3	68.0	8.582	. 0. 11	1 46	8.62	8.853
-	6.6	0.0	7.352		9.45	0.0	7 345
					40	1.07	0.017
14.3.11	10.43	0.0	7.367	_	40 50	11 44	0.0±(861
	10.47	13.6	8.810	_	2.59	52.8	.867
_	1.42	87.7	.894	_	$\frac{1}{3.1}$	10.1	.867
-	43	15.0	.865	_	45	3.25	.882
	1.56	15.3	.676	_	$\tilde{49}$	10.7	.884
	2.20	17.0	.696	_	51	44.8	.888
-	23	34.1	.716	_	3.53	74.1	.886
-	2.53	18.1	.716	—	5.19	5.35	.876
	3.42	18.2	.760	_	22	27.4	.898
-	4.55	17.4	.690	-	32	37.3	8.912
-	5.2 4	19.1	8.692	-	5.36	38.1	9.028
			1	. —	6.55	1.34	.014
11.7.11	11.45	0.0	7.364	-	6.58	8.78	.020
_	47	6.29	8.829	—	7.0	40.8	.028
-	ă1	19.12	.831	-	7.5	81.3	9.026
			1	1			

Tabelle 2.

B. Schaltungsanordnung.

16. Grundlegend für das Schaltungsschema ist die Forderung, die Kompensation der E. M. K. der Thermoelemente mit demselben Galvanometer festzustellen, mit dem der die Glasplatten durchlaufende Strom gemessen wurde. Zugleich ist aber zu berücksichtigen, daß die die Thermoelemente umhüllenden Glasröhren bei höherer Temperatur keine vollkommene Isolation derselben gegen die Kupferklötze der Elektroden sichern.

Die in Figur 5 gegebene Anordnung entsprach allen Anforderungen. Der linke Teil enthält die zur Temperaturmessung, der rechte die der Widerstandsbestimmung dienenden Vorrichtungen, während der mittlere sechspolige Umschalter (2) die abwechselnde Verwendung des Galvanometers in 25* beiden Stromkreisen ermöglicht und zugleich die vollständige Isolierung derselben gegeneinander bewirkt.

Durch den Akkumulator J wird in dem aus den beiden festen Widerständen W_a und W_b , dem um je 1 Ohm von 0—10000 Ohm veränderlichen Widerstande W_r und dem der Feinregulierung dienenden Schleifdrahte L gebildeten Stromkreise ein Spannungsgefälle erzeugt. Um bei einer Änderung von W_r die E. M. K. des Akkumulators weniger zu ändern, war ein kleiner Widerstand w dauernd dem Akkumulator parallel geschaltet.

Fig. 5.

Die Widerstände W_a und $(W_a + W_b)$ waren so bemessen, dafs die an ihren Enden herrschende Spannungsdifferenz dazu dienen konnte, die E. M. K. der Thermoelemente A und B innerhalb des Bereiches der in Betracht kommenden Temperaturen bezw. die des Normalelementes N zu kompensieren, das zur Kontrolle der Spannung von J benutzt wurde. Die verwandten Widerstände waren sorgfältig geaicht und wurden dauernd kontrolliert.

Die Gleichheit der Spannungen an den Enden von W_a mit der der Thermoelemente wird am Verschwinden des Ausschlages des Galvanometers G erkannt, wenn in 2 die Verbindung D vorgenommen und in 1 durch die Verbindungen A oder B das betreffende Thermoelement eingeschaltet ist. Durch den doppelpoligen Ausschalter U kann in gleicher Weise die Gleichheit der Spannung an $(W_a + W_b)$ mit der des Normalelementes N festgestellt werden.

Um störende Thermokräfte im Kompensationskreise zu vermeiden, waren die Umschalter 1 und 2 in Petroleumbäder gesetzt; W_a und W_b

sowie die zweiten Lötstellen der Thermoelemente befanden sich in dem Bade von 1, dessen Temperatur durch einen Turbinenrührer stets gleichmäßig erhalten und dauernd mit einem in $1/10^{\circ}$ geteilten Thermometer bestimmt wurde. Aus demselben Grunde waren alle Leitungen bis in die Quecksilbernäpfe dieser Umschalter ununterbrochen durchgeführt. Um andererseits den Widerstand der Platte P zu bestimmen, wurde das Galvanometer Gmittels der Verbindung C im Umschalter 2 mit den übrigen dazu dienenden Apparaten verbunden.

17. Die von der Stromquelle K gelieferte Spannung, die von 0-220 Volt durch Wahl der Batterie und Stellung des Abzweigwiderstandes R verändert werden konnte, wurde mit einem Präzisions-Voltmeter S von Siemens & Halske gemessen und in die übrige Meßanordnung über die Wippe MO geleitet, die die Stromrichtung zwecks Elimination etwaiger unipolarer Effekte im ganzen System umzukehren gestattete.

Der hier nur schematisch angedeutete Alternator verwandelt den Gleichstrom für den Durchgang durch die Platte P in alternierenden Gleichstrom und der Kommutator VH dient dazu, die Stromrichtung im Galvanometer allein unabhängig von der übrigen Anordnung zur Elimination des Nullpunktes umzukehren. Der Widerstand Sh gestattet die Empfindlichkeit des Galvanometers in weiten Grenzen (von 1—2000) zu ändern und dient gleichzeitig dazu, die Bedingungen eines nahe aperiodischen Zustandes für das Galvanometer aufrecht zu erhalten. Zugleich aber bewirkt er, daß der Stromverlauf in dem die Platte enthaltenden Kreise bei Ausschalten der Verbindung Cwährend der Temperaturbestimmungen nicht merklich geändert wird, da bei hohen Widerständen von P der von Sh überhaupt nicht in Betracht kommt, während bei kleinen P-Widerständen Sh so klein gewählt werden mußs, daß er gegen den des Galvanometers, der durchweg 10000 Ohm betrug, verschwindet.

Bei Messung der Widerstände von P in der Wheatstoneschen Brückenanordnung mit Wechselstrom und Telephon wurden die Verbindungen im Alternator unterbrochen und die Zuleitungen zu der dafür verwandten Anordnung direkt an den Führungsrohren R_1 und R_2 der Elektroden angebracht.

Der Antrieb des Alternators geschah mittels eines Elektromotors, bei dem Feld- und Ankerströme unabhängig durch Ruhstrat-Widerstände reguliert werden konnten, wodurch auch bei kleinen Umlaufsgeschwindigkeiten ein großses Drehmoment erreicht werden kann.

Allgemeines über die Messungen an Bergkristallplatten.

18. Die Frage, die bei den mitzuteilenden Untersuchungen über die elektrische Leitfähigkeit von Bergkristall zunächst hatte beantwortet werden sollen, war die nach ihrer Abhängigkeit von dem Richtungsunterschied des Potentialgefälles gegen die kristallographische Hauptachse. Außerdem sollte die Änderung der Leitfähigkeit mit der Temperatur verfolgt werden.

Die ersten Serien von Messungen wurden an einer Anzahl planparalleler ca. 2 mm dicker Platten (Nr. 16-20) ausgeführt, die aus ein- und demselben Kristallindividuum von Dr. Steeg und Reutter geschnitten waren, und zwar an möglichst benachbarten Stellen, um die Wirkung von Inhomogenitäten zu vermindern. Die kreisförmigen Platten von je 2,5 cm Durchmesser waren fein matt geschliffen und an zwei gegenüberliegenden Stellen ihres Umfanges waren kleine ebene Fensterchen anpoliert, um das Innere überwachen zu können. Die Richtungen der Plattennormalen gegen die optische Hauptachse des Kristalles betrugen je 0, 30, 60 oder 90°.

Die Abhängigkeit der Leitfähigkeit von der Richtung der Plattennormale gegen die drei zweizähligen Nebenachsen blieb unbearbeitet, da die Leitung parallel der Achse und die senkrecht dazu ganz verschiedenen Ursachen ihre Existenz verdanken; denn in letzterem Falle wird der Transport der Elektrizität allen Anzeichen nach nicht durch die Ionen sondern durch Elektronen allein, ohne dafs Materie mitgeführt würde, vermittelt.

Alle Platten wurden durch Platinierung mit konzentrischen kreisförmigen Elektroden von je ca. 2 cm Durchmesser versehen, deren Dimensionen in Tab. 3 zu finden sind.

Obgleich die innere Übereinstimmung der Messungen an jeder einzelnen Platte eine sehr gute war, zeigten sich beim Vergleiche verschiedener Platten unter einander Diskrepanzen, die nur durch die sehr große Inhomogenität des Materiales zu erklären sind. Um letztere möglichst zu eliminieren, wurde aus demselben Kristalle, dem die bisher untersuchten Platten entstammten, ein rechtwinkliges Parallelepiped (Nr. 21) hergestellt, dessen eine

[23] Richard Ambronn, Elektrische Leitfähigkeit des Bergkristalles.

Fläche nahe parallel der Hauptachse lag, während die beiden anderen Flächenpaare mit ihr einen Winkel¹) von 30° bezw. 60° einschlossen; man konnte also auf diese Weise Messungen in dreifacher Lage der Elektroden gegen die Hauptachse an genau demselben Materaile anstellen. Es zeigte sich, um das Resultat vorweg zu nehmen, daß allein bei Platinierung derjenigen Flächen, die unter 30° gegen ihre Normale von der Hauptachse geschnitten werden, ein mefsbarer Strom durch das nahezu würfelförmige Parallelepiped ging, was beweist, daß sämtliche im Quarze enthaltenen Ionen sich allein parallel der Hauptachse bewegen können, in welcher Richtung die im Netze der Si 0,-Moleküle vorhandenen Zwischenräume weit genug sein müssen, um jene durchzulassen, während sie senkrecht dazu zu eng sind. Dann kommt aber für die Leitung nur dasjenige Bündel von Elementarstromfäden in Betracht, das an beiden Enden von durch Platinierung gebildeten Elektroden begrenzt wird, während der übrige Teil der Elektrodenfläche völlig unwirksam bleibt. Platiniert man also, wie es an dem erwähnten Parallelepiped bei den von der Hauptachse unter 60° gegen die Normale geschnittenen Flächen (21 A) geschehen ist, zwei Flächen eines Bergkristallstückes so, daß keine der Achse parallele Gerade irgend einen Teil von ihnen verbinden kann, so darf auch keine Leitung stattfinden.

Um weiter einen Einfluß der Länge der die Elektroden verbindenden Stromfäden auf die Größe der Leitfähigkeit zu ermitteln, wurde der Würfel parallel den unter 30° gegen die Normale geschnittenen Flächen in zwei Teile zerschnitten. Leider zersprang der Rest dieses Stückes nach weiterer Zerteilung dann bei der Platinierung und zu seinem Ersatz wurde ein neues Parallelepiped (mit Nr. 34—37 bezeichnet) in wiederum gleicher Orientierung hergestellt. Von diesem Stücke wurden dann durch Zerschneiden und Abschleifen Platten von 1,4—0,02 cm Dicke gewonnen, bei denen man also annehmen sollte, stets gleichbeschaffenes Material zu besitzen.

20. Schliefslich wurde noch eine Platte (22) senkrecht zur Hauptachse aus einem anderen Bergkristallindividuum untersucht, um zu sehen, welche Bestimmungsgrößen einer Eigenschaft des Bergkristalles unabhängig von der Konzentration an ionenbildendem Materiale zukämen, und welche durch Änderung derselben modifiziert würden, also von der zufälligen Beschaffenheit des jeweils benutzten Kristalles abhängig wären.

¹⁾ Die genauen Werte der Winkel, unter denen die Hauptachse die Seitenflächen der Parallelepipede schnitt, sind:

Für Parallelepiped (21.): 30° 57' gegen die eine und 5° 20' """(34.): 30° 38' """"und 6° 3' Die Winkel wurden an den Stücken selbst mit dem Polarisationsapparat bestimmt.

21. Aufser den vier erstgenannten Platten (16, 17, 19, 20), bei denen nur ein Teil der Oberfläche platiniert war, waren stets beide gegenüberliegenden Flächen in ihrer ganzen Ausdehnung als Elektroden benutzt. Die Isolation war, wie sich aus dem völligen Verschwinden des Stromes bei gewöhnlicher Temperatur zeigte, ausreichend und die Berechnung vereinfachte sich dadurch bedeutend.

Die Ausmessung der geometrischen Dimensionen geschah mittelst Mikrometerschraube. Die Berechnung der Querschnitte und der Längen der die Elektroden verbindenden Stromfadenbündel wurde bei den Platten mit großsem Durchmesser so vorgenommen, daß der Umfang der einen Elektrode auf die andere in zehnfacher Vergrößserung mittels der sie verbindenden Hauptachsen graphisch projiziert und die gemeinschaftliche Fläche beider Kurven ausplanimetriert wurde. Bei den übrigen auf den ganzen Endflächen platinierten Platten wurden die gemeinschaftlichen Flächen aus den Dimensionen und Winkeln berechnet.

Die Resultate der Messungen und Berechnungen sind, soweit sie für die Beurteilung des Stromverlaufes in den Platten Wichtigkeit haben, in Tabelle 3 gegeben.

Tabelle	3.	

Nr. der Platte	Genäh. Richtung der Plattennormale gegen die krist. Hauptachse	O Oberfläche der Elektroden	F Wirksame Oberfläche der Elektroden	h Dicke der Platte	l Länge der die Elektroden ver- bindenden Ele- mentarstrom- fäden	Q Querschnitt des ans den Elemen- tarstromfäden gebildeten Bündels
	0	cm^2	cm^2	cm	cm.	cm^2
16 17 19 20 A 20 B 21 A 21 B 21 C 22 A 22 B	$\begin{array}{c} 0\\ 90\\ 60\\ 30\\ 30\\ 30\\ 60\\ 30\\ 30\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}$	$\begin{array}{c} 8.173\\ 3.32\\ 3.666\\ 3.224\\ 8.035\\ 1.222\\ 1.111\\ 1.105\\ 4.471\\ 4.471\\ \end{array}$	$\begin{array}{c} 3.173\\ 0.00\\ 2.830\\ 2.939\\ 2.767\\ 0.00\\ 0.337\\ 0.4431\\ 4.471\\ 4.471\\ 4.471\end{array}$	$\begin{array}{c} 0.2104\\ 0.2103\\ 0.2095\\ 0.2101\\ 0.2101\\ 1.099\\ 1.208\\ 1.017\\ 0.3086\\ 0.3076\\ \end{array}$	$\begin{array}{c} 0.2104 \\$	$\begin{array}{c} 3.173\\ 0.00\\ 1.415\\ 2.547\\ 2.397\\ 0.00\\ 0.2876\\ 0.3783\\ 4.471\\ 4.471\\ 4.471\end{array}$
34 A 34 B 35 36 37	60 30 30 30 30 30	$\begin{array}{c} 1.888 \\ 1.982 \\ 1.735 \\ 1.982 \\ 1.982 \\ 1.982 \\ 1.957 \end{array}$	$\begin{array}{c} 0.00 \\ 0.773 \\ 0.914 \\ 1.620 \\ 1.937 \end{array}$	$\begin{array}{c} 1.442 \\ 1.3728 \\ 0.9196 \\ 0.3848 \\ 0.0206 \end{array}$	$\begin{array}{c}$	$\begin{array}{c} 0.00 \\ 0.6614 \\ 0.7820 \\ 1.3859 \\ 1.6574 \end{array}$

Geometrische Dimensionen der Bergkristallplatten.

An diesem Materiale wurden die im folgenden zu besprechenden Messungsreihen angestellt. Zunächst sollen einige Bestimmungen des zeitlichen Verlaufes des Lade- und Polarisationsstromes unter der Einwirkung einer Gleichspannung mitgeteilt und besprochen werden. Der nächste Abschnitt wird dann die Widerstandsmessungen mit alternierendem Gleichstrom enthalten, deren Ergebnisse eingehend zu diskutieren sein werden.

Messungen mit Gleichspannung.

22. Es sollte zunächst untersucht werden, in welcher Weise die resultierende Stromstärke abnimmt, wenn man an eine Bergkristallplatte eine konstante Gleichspannung anlegt. Bei den Untersuchungen an Gläsern hatte sich aus derartig angestellten Messungen zeigen lassen¹), daß bei niedrigen angelegten E. M. K. die Stromschwächung allein durch eine Polarisationsspannung bewirkt wird und daß sie auch bei hohen polarisierenden Spannungen in der ersten Zeit nach dem Einschalten nur auf diese Ursache zurückzuführen ist, während sich eine zusätzliche Widerstandsschicht erst nach längerer Einwirkung des Stromes in merkbarer Weise ausbildet.

Die Initialstromstärke i_1 unmittelbar nach Anlegen der polarisierenden Spannung E an eine Platte vom Widerstande W ist $i_1 = E/W$. Bildet sich dann eine Gegenspannung e und eine schlechtleitende Schicht vom Widerstande w aus, so wird

$$i_2 = (E - e) / (W + w).$$

Schliefst man jetzt die Spannung E kurz, so wird im ersten Augenblicke der Polarisationsstrom

$$i_3 = e/(W+w).$$

Von Bedeutung ist hier nur der Fall, daß sich in der Zeit, über die sich die Beobachtungen erstrecken, eine Widerstandsschicht von merkbarer Dicke nicht ausbildet; dann muß $i_1 = i_2 + i_3$ sein. Bei Gläsern hatte sich auf diesem Wege der Nachweis, daß die Stromschwächung bei Spannungen bis zu einigen Volt nur aus dem Auftreten der Gegenspannung resultiert, führen lassen.

Um das Gleiche auch für Bergkristall zu zeigen, wurden einige Serien von derartigen Messungen an diesem angestellt und in Tabelle 4 niedergelegt, die durch Kurvenblatt Ia veranschaulicht wird, indem als Ordinaten

¹⁾ R. Ambronn, Inaug.-Diss. Göttingen 1913. Nova Acta CL. Nr. 3.

Tabelle 4.

Messungen an Bergkristallplatten zwischen polarisierbaren Elektroden mit Gleichspannung.

Zeit.	Temp.	Zahl d. Mess- ungen	E	E I	Zeit.	Temp.	Zahl d. Mess- ungen	E	<i>E</i> ,1
m s	0	1	Volt	$\times 10^{5}$	m 8	0	1	Volt	× 105
1	24.1.1	911. F	Platte 21 B		2 45	403.3	3	2.056	+ 5.06
0 0	449.3	I —	0.4173	Spannung angel.	$\frac{4}{0}$.2	3	0.070	6.24
0.30	.3	1	-	+ 9.28	6 30 8 0	·1 1	3	2.006	8.34
0 52	.3	2	0.1179		9 30	403.1	3	2.054	+10.17
$1 \frac{22}{52}$	449.0		0.4175	+14.08 16.11	11 0	.0	3		10.57
2 30	.3	3	_	18.48	13 15	0.	2	2.054	+ 11.26
4 15	.3	3		24.4	$\frac{1+}{2}$	403.0	Stro	mbahn un	terbrochen.
ə 1ə	449.3	5	0.4173	+27.0	10 0	1 102 0	1 0		mailent
2. 14	^m lang Wie	lerstand	lsmessunge	n mit	19 0	403.0	1	pannung a 1 2.053	$1 \rightarrow 741$
91 0	alterniere	endem (fleichstron	l. ISnaunungangel.	19 30	.0	Î	2.052	7.82
$\frac{21}{0}$ 15	.0	1	1.00	+ 6.45	1952	0.	2		8.58
0 30	.ŭ	Î	_	8.85	21 0	0.	3		11.47
052	0.	2		13.22	22 50 91 0	403.0	3	2.052	12.04
1 22	449.0	2	7.96	+ 21.1	25 30	0.01	3		13.91
2 45	.0	1 3		28.7	27 0	403.0	3	2.052	+ 14.24
3 30		3	_	42.2	7.	6. 3.	1911.	Platte 22.	
5 15	0.	3		54.2	0 0	316.2	-	3.99	Spannungangel
5 52	449.0	2	7.96	+57.9	0.45	.3	1		+ 10.7
0 ±0 7 30	.0	3		62.8 66.3	18	.2	2		12.8
8 15	.1	$\frac{5}{2}$		69.4	1 1 0 9 20	.2 216.2	3	3.00	10.9
$10 \ 45$.1	2		80.2	$\frac{2}{4}$ $\frac{30}{22}$.3	4		+15.0 25.4
12 0	+449.1	3	7.96	+ 84.7	$5 \ 45$.4	5	_	29.4
3.	31. 1. 1	911. P	latte 20 B		$6\ 15$.5	4	0.00	33.0
0 0	402.8	-	0.1369	Spannung angel.	830	216.7	3 Stro	Bigg 3.99	+ 33.8
$015 \\ 020$.8		-	+ 1.57	8	010.1		unoann ar	iter broenen.
$0.30 \\ 0.45$.0		_	3.24	10 0 1	916.0	I	2 00	[Spannung angel
1 8	.8	$\hat{2}$		4.10	$\frac{10}{20}$ 15	0.0	1		+ 31.2
1 38	.9	2	· _	5.10	20 38	0.	$\hat{2}$	—	33.6
2 30	402.9		0.1369	+ 6.60	$21 \ 15$.1	3		37.3
$\frac{4}{5}\frac{42}{22}$	405.0	4		10.86	$23 \ 0$ 93 59	316.1	3	3.99	+43.2
$7 \overline{45}$.1	3	_	13.85	$25 \ 52$.1	4	_	50.9
8 30	.2	3	—	14.86	26 22	.2	$\hat{4}$	_	53.7
9 22	.2	4	0.1369	+15.85	28 22	.3	4	3.99	+58.0
TT 0 1	405.2	SLIO	moann un	terprochen.	29 0	316.3		0	Sp. abgeschaltet
15 0 1	402.2	I Strom a	eachlossen of	ne Stromquelle.	9.	010.0			1 914
15 30	405.5	1	0	<u>—</u> 3.17	1 99	316.3	1	0	- 34.1
15 45	.3	î	_	4.06	$\frac{1}{2}$ $\frac{22}{0}$.3	3		43.4
16 8	403.2	2	0	— <u>5.24</u>	2 37	.4	2	—	48.7
16 38	.2		_	6.60	$\frac{4}{5}$ 22	316.4	4	0	-62.5
1922	.2	4	_	13.29	030 715	•±	0 5	0	69.0
$\hat{20}$ $\hat{22}$.3	$\hat{4}$	_	17.20	9 0	316.5	-	3.99	Snannung angel.
21 30	403.3	3	0	18.90	10.				1-1
5. Wide	rstandsmes	sungen	mit altern	ierendem	0 30	316.6	1	3.99	+ 13.32
05 0	Glei	chstrom	, dann		0.45	.6	1		18.22
35 0	403.3		2.057	spannungangel.	$\frac{1}{1}\frac{8}{45}$	-7	2	-	24.2
0 45	.ə 3		2.057	+ 1.000 2.19	3 15		3	_	31.3 40.7
1 15	.3	3	2.056	2.98	4 8	.7	2		48.9
$2 \ 0$	403.3	3	2.056	+ 4.11	552	316.7	2	3.99	+56.6

die Quotienten E/i, die vergleichbare Größenordnungen für die verschiedenen Spannungen ergeben, aufgetragen sind. Auch bei den Messungen der Polarisationsströme ist aus dem gleichen Grunde der Quotient der polarisierenden Spannung durch die Stromstärke gegeben.

23. An sich wären die obigen Betrachtungen zur gesonderten Ableitung von e und w, die an Gläsern recht gute Resultate lieferten, auch bei Bergkristall anwendbar, aber es ist jetzt nicht möglich, die Extrapolation der i₁ und i₃ für die Zeiten des Ein- bezw. Ausschaltens der Spannung mit hinreichender Genauigkeit auszuführen, da infolge der äußerst geringen Konzentration der Ionen und ihrer großen Beweglichkeit der Stromabfall im ersten Augenblicke nach dem Eingriffe sehr bedeutend ist, was bei den Beobachtungen selbst schon an den großen Initialausschlägen des Galvanometers erkannt wurde. Während bei den Gläsern der erste Ausschlag nach dem Einschalten der E. M. K. nur wenig größer war, als die ersten Ablesungen, verschwand bei den Bergkristallplatten die Skala jedesmal zunächst aus dem Gesichtsfelde, um nach wenigen Sekunden zurückzukehren und die in der Tabelle 4 angegebenen Einstellungen anzunehmen. Aus der Abhängigkeit der Widerstandszunahme von der Spannung scheint aber hervorzugehen, daß es sich auch hier hauptsächlich um die Wirkung einer elektromotorischen Gegenkraft handelt, denn der Widerstand nimmt bei mittleren Spannungen (2 Volt) langsamer zu, als bei niedrigeren, während doch eine Widerstandsschicht sich bei stärkeren Strömen schneller ausbilden müßte; wie solches dann auch bei den hohen Spannungen (8 Volt) und hoher Temperatur der Fall zu sein scheint. Dazu kommt hier noch in den ersten Augenblicken nach Ein- bezw. Abschalten der Spannung die Auf- bezw. Entladung einer an den Oberflächen der schlechtleitend gemachten Substanz auftretenden elektrischen Doppelschicht, deren Zusammenwirken mit der Polarisationserscheinung nicht zu übersehen ist, die aber vielleicht den erwähnten großen ersten Ausschlag mit verursacht.

Bei unterbrochener äufserer Verbindung der beiden Elektroden findet eine geringe Diffusion der Ionen oder des ionenbildenden Stoffes im Quarze statt; denn während einer Stromunterbrechung nimmt der Widerstand ab, nach Wiederherstellung der Verbindung der beiden Elektroden aber sehr schnell wieder zu, um allmählich sich an den früheren Verlauf anzuschliefsen (wenn man die Dauer der Stromunterbrechung selbst unberücksichtigt läfst, wie das in den Figuren I geschehen ist). Es wandern vielleicht durch die Diffusion geringe Salzmengen in die niedrigkonzentrierte Schicht zurück und werden dann durch den wieder einsetzenden Strom von neuem schnell vorgetrieben.

[27]

26*

Trägt man statt der E i die Quadrate $(E/i)^2$ als Funktion der Zeit auf (Fig. Ib), so erhält man Kurven, die in einiger Entfernung vom Anfangspunkte nahe geradlinig verlaufen. Man könnte daraus auf eine Beziehung zu der später mit alternierendem Gleichstrome beobachteten Abhängigkeit des Widerstandes von der Quadratwurzel aus der Periodenlänge schliefsen, wenn nicht die Gröfsenordnung der Zeiten, die nach dem Einschalten verflossen sind, in beiden Fällen zu verschieden wäre, indem bei den späteren Beobachtungen Bruchteile von Sekunden in Betracht kommen, während hier gerade innerhalb dieser Zeiten die besprochene Beziehung noch gar keine Geltung zu besitzen scheint.

Widerstandsmessungen an Bergkristallplatten mit alternierendem Gleichstrom.

24. Die Methoden, nach denen die Widerstände sämtlicher in Tabelle 3 aufgeführter Bergkristallplatten bestimmt wurden, sind bereits ausführlich dargelegt worden. Es können daher hier sogleich die Resultate der Beobachtungen selbst mitgeteilt werden.

Gesucht ist zunächst die Abhängigkeit des scheinbaren Widerstandes einer einzelnen Kristallplatte von der Frequenz des Meßstromes, von dessen Spannung und von der Temperatur. Es zeigte sich bei Bergkristall eine sehr große Abhängigkeit des scheinbaren Widerstandes von der Frequenz des zur Messung benutzten alternierenden Stromes; selbst bei den höchsten, in Rücksicht auf die Zuverlässigkeit der Schleifkontakte am Alternator erreichbaren Umdrehungsgeschwindigkeiten desselben, denen mehr als 200 Richtungswechsel des Stromes in der Sekunde entsprachen, war ein Grenzzustand noch nicht zu erreichen. Der Widerstand nahm dann auch noch mit zunehmender Frequenz merklich ab.

Einen zwar bedeutend kleineren, aber doch noch zu berücksichtigenden Einfluß zeigte die Spannung, die zur Widerstandsmessung benutzt wurde, indem (wie es Tegetmeier schon bemerkt hatte) der Widerstand für höhere Spannungen kleiner erhalten wird, wie für geringere. Erst die Extrapolation auf unendlich hohe Frequenzen macht das Resultat auch von der Spannung unabhängig.

Elektrische Leitfähigkeit des Bergkristalles.

Den größten Einfluß auf die Leitfähigkeit besitzt aber die Temperatur, die daher bei den Messungen über die Abhängigkeit der Widerstände von Frequenz und Spannung sorgfältig konstant gehalten werden mußte.

25. Es hatte zunächst die Erwartung bestanden, daß sich die Abhängigkeiten des scheinbaren Widerstandes von der Frequenz und der Spannung für alle Platten in einem einfachen Ausdrucke, der noch die Temperatur und die geometrischen Dimensionen der betreffenden Platte als Parameter enthielte, würde ausdrücken lassen; dann hätte aus einigen umfangreicheren Serien von Beobachtungen bei konstanter Temperatur dieser Ausdruck ermittelt und durch Anwendung desselben aus je wenigen Messungen des scheinbaren Widerstandes bei anderen Temperaturen und Platten der auf unendlich hohe Frequenz und die Spannung 0 reduzierte, wahre Widerstand berechnet werden können. Es zeigte sich aber bald, daß eine derartige allgemeine Behandlung des Beobachtungsmateriales nicht möglich sei, sondern daß für jede Temperatur an allen Platten durch eine hinreichende Zahl von Einzelmessungen bei variierter Frequenz und Spannung die Extrapolation gesondert würde ausgeführt werden müssen. Nur die analytische Form der Beziehung zwischen Frequenz und Widerstandsvermehrung konnte allgemein benutzt werden; die Koeffizienten mußten in jedem einzelnen Falle errechnet werden.

26. Infolge dieser in der Inhomogenität des der Untersuchung unterworfenen Kristallmateriales begründeten Schwierigkeit wurde eine sehr große Anzahl von Einzelmessungen notwendig, deren Hauptdaten hier mitgeteilt werden müssen, da die aus dem Materiale gezogenen unten zu besprechenden Schlüsse rein empirischer Natur sind, und ihre Zulässigkeit daher allein aus den Beobachtungen bewiesen werden kann, die in Tabelle 5 (S. 206 ff.) enthalten sind.

Um unipolare Effekte im Meßkreise zu eliminieren und zugleich die Genauigkeit zu steigern, ist jede Messung unter nahe unveränderten Bedingungen unmittelbar hinter einander zweimal ausgeführt, indem nur der Kommutator *MO* (Fig. 5) umgelegt und damit die Stromrichtung in allen Apparaten außer dem Voltmeter umgekehrt wurde. Bei jeder Messung wurde noch die Stromrichtung im Galvanometer allein kommutiert und stets die Hälfte der Einstellungsdifferenz des Galvanometers nach rechts und links als Maß der Stromstärke genommen.

Jede der in Tabelle 5 mitgeteilten Beobachtungen ist also das Mittel aus vier Messungen, die unter nahe konstanten Bedingungen erhalten wurden. Um etwaige zeitliche Änderungen des Widerstandes nachzuweisen, ist in der ersten Spalte der Tabelle 5 die Zeit der Beobachtung gegeben. Die nächste enthält die Temperatur in Celsiusgraden, die zwischen je zwei Widerstands-

[29]

Tabelle 5.

Nr.	Zeit	Temp.	E	$\sqrt{\tau_m}$	W_m	Ausglei Wm ber.	ichung v
	h m	0	Volt	sec 1/2	$10^5 \Omega$	105 <u>O</u>	0/0
		Nr.	1. Platte 20.	. 18. VIII. 19	$t_0 = 182$	2º.0.	
1 3 5 7 9 11	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{r} 181.4 \\ 181.6 \\ 181.8 \\ 182.0 \\ 182.2 \\ 182.5 \\ \end{array} $	$\begin{array}{c} 2 \ 916 \\ 10.38 \\ 10.39 \\ 1.765 \\ 2.926 \\ 10.40 \end{array}$	$\begin{array}{c} 0.2773 \\ 0.2909 \\ 0.2403 \\ 0.2433 \\ 0.3669 \\ 0.3734 \end{array}$	$183.9 \\179.4 \\177.0 \\181.6 \\195.9 \\187.4$	$\begin{array}{c} 182.1 \\ 183.4 \\ 178.4 \\ 178.6 \\ 191.1 \\ 191.65 \end{array}$	+ 1.0 - 2.2 - 0.8 + 1.6 + 2.7 - 2.4
		Ňr.	2. Platte 20	. 18. VIII. 19	910. $t_0 = 22^{\circ}$	7º.5.	
1 3 5 7 9 11 13	$egin{array}{c} 3 & 14 \\ 3 & 18 \\ 3 & 22 \\ 3 & 27 \\ 3 & 31 \\ 3 & 36 \\ 3 & 40 \end{array}$	227.6 227.3 227.1 227.0 227.5 227.5 227.6	$2.867 \\ 1.524 \\ 6.14 \\ 5.47 \\ 1.312 \\ 1.312 \\ 5.47 \\ 1.47 \\ 1.412 \\ 1.412 \\ 5.47 \\ 1.412 \\ 1$	$\begin{array}{c} 0.2357\\ 0.2367\\ 0.2373\\ 0.2680\\ 0.2709\\ 0.3126\\ 0.3099\end{array}$	$ \begin{array}{c} 16.43 \\ 16.385 \\ 16.36 \\ 16.61 \\ 16.725 \\ 17.21 \\ 17.05 \end{array} $	$\begin{array}{c} 16.322 \\ 16.335 \\ 16.340 \\ 16.685 \\ 16.715 \\ 17.208 \\ 17.047 \end{array}$	+0.7 +0.3 +0.1 -0.5 0.0 +0.1 -0.7
		Nr.	3. Platte 20). 18. VIII. 19	010. $t_0 = 27$	9°.0.	
$ \begin{array}{c} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 14 \\ 13 \\ 13 \\ \end{array} $	$\begin{array}{c} 4 & 13 \\ 4 & 17 \\ 4 & 21 \\ .4 & 27 \\ 4 & 31 \\ 4 & 35 \\ 4 & 42 \\ 4 & 40 \end{array}$	$\begin{array}{c} 280.0\\ 279.7\\ 279.2\\ 279.0\\ 279.0\\ 279.0\\ 279.7\\ 279.3\\ 278.3\end{array}$	$\begin{array}{c} 0.4492 \\ 0.2852 \\ 2.874 \\ 2.874 \\ 0.4114 \\ 0.2420 \\ 0.2420 \\ 0.2420 \end{array}$	$\begin{array}{c} 0.2408 \\ 0.2510 \\ 0.2510 \\ 0.2946 \\ 0.2944 \\ 0.2917 \\ 0.3224 \\ 0.3557 \end{array}$	$\begin{array}{c} 2.307 \\ 2.335 \\ 2.297 \\ 2.377 \\ 2.497 \\ 2.452 \\ 2.554 \\ 2.648 \end{array}$	$\begin{array}{c} 2.287\\ 2.308\\ 2.317\\ 2.451\\ 2.450\\ 2.442\\ 2.536\\ 2.637\end{array}$	$\begin{array}{r} + \ 0.9 \\ + \ 1.2 \\ - \ 0.9 \\ - \ 3.0 \\ + \ 0.3 \\ + \ 0.4 \\ + \ 0.7 \\ + \ 0.7 \end{array}$
		Nr.	4. Platte 20). 18. VIII. 19	910. $t_0 = 33$	±º.0.	
1 3 7 9 11 13	527 531 535 40 540 549 556	$\begin{array}{c} 333.4\\ 333.8\\ 334.0\\ 334.4\\ 334.6\\ 334.7\\ 334.6\\ 334.6\end{array}$	$\begin{array}{c} 0.2269\\ 0.1179\\ 1.064\\ 0.951\\ 0.1029\\ 0.1029\\ 0.940\\ \end{array}$	$ \begin{smallmatrix} 0.3723 \\ 0.3743 \\ 0.4017 \\ 0.3079 \\ 0.3126 \\ 0.2432 \\ 0.2457 \end{smallmatrix} $	$ \begin{smallmatrix} 0.6664 \\ 0.6727 \\ 0.6614 \\ 0.5808 \\ 0.5970 \\ 0.5256 \\ 0.5156 \end{smallmatrix} $	$\begin{array}{c} 0.6542 \\ 0.6557 \\ 0.6838 \\ 0.5945 \\ 0.5927 \\ 0.5213 \\ 0.5237 \end{array}$	$\begin{array}{r} + 1.8 \\ + 2.6 \\ - 3.3 \\ - 2.3 \\ + 0.7 \\ + 0.9 \\ - 1.6 \end{array}$
		Nr.	5. Platte 20). 19. VIII. 1	910. $t_0 = 31$	2º.0.	
1 3 5 7 9 11 13	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 314.4\\ 312.4\\ 312.8\\ 313.1\\ 313.2\\ 313.8\\ 314.2\\ 314.2\end{array}$	$\begin{array}{c} 0.1725\\ 0.2864\\ 1.408\\ 1.408\\ 0.1725\\ 0.1725\\ 1.364\end{array}$	$\begin{array}{c} 0.3232\\ 0.3198\\ 0.3144\\ 0.2890\\ 0.2877\\ 0.2379\\ 0.2367\end{array}$	$ \begin{vmatrix} 1.0147 \\ 1.0005 \\ 0.9646 \\ 0.9371 \\ 0.9317 \\ 0.8648 \\ 0.8514 \end{vmatrix} $	$\begin{array}{c} 1.0023\\ 0.9964\\ 0.9867\\ 0.9416\\ 0.9391\\ 0.8512\\ 0.8484 \end{array}$	$\begin{array}{r} + 1.3 \\ + 0.4 \\ - 2.2 \\ - 0.5 \\ - 0.8 \\ + 1.6 \\ + 0.3 \end{array}$
		Nr.	6. Platte 20). 19. VIII. 1	910. $t_0 = 37$	7º.0.	
1 3 5 7 9 11 13 15 17	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	875.9 876.3 376.5 877.1 877.6 877.3 377.8 377.8 878.1	$\begin{array}{c} 0.4092\\ 0.0519\\ 0.0889\\ 0.0445\\ 0.2955\\ 0.2950\\ 0.0747\\ 0.0747\\ 0.2965\end{array}$		$ \begin{vmatrix} 0.2460 \\ 0.2612 \\ 0.2383 \\ 0.2382 \\ 0.2368 \\ 0.2213 \\ 0.2192 \\ 0.2117 \\ 0.2105 \end{vmatrix} $	$ \begin{vmatrix} 0.2495 \\ 0.2558 \\ 0.2398 \\ 0.2402 \\ 0.2384 \\ 0.2199 \\ 0.2206 \\ 0.2092 \\ 0.2093 \end{vmatrix} $	-1.4 + 2.1 - 0.7 - 0.9 - 0.6 + 0.6 - 0.6 + 1.2 + 0.5

Messungen an Bergkristallplatten mit alternierendem Gleichstrom.

Elektrische Leitfähigkeit des Bergkristalles.

No	Zeit	Temp	E	$\sqrt{\tau_m}$	Wm	Ausglei	chung
110.	ercit.	romp.		V C776	* * 1/6	Wm ber.	v
	h m	0	Volt	sec 1/2	22	$10^{5}\Omega$	°/a
		Nr. 7. Pla	atte 20. 19. 7	VIII. 1910. t _o	= 421°.5.	$h_0 = 694^{\circ}.5.$	
1 3 5 - 9 11	2 6 2 11 2 215 2 24 2 24 2 24	$ \begin{array}{r} 419.9 \\ 420.6 \\ 421.2 \\ 421.6 \\ 421.8 \\ 421.9 \\ 192.0 \\ \end{array} $	$\begin{array}{c} 0.1470\\ 0.0396\\ 0.0390\\ 0.1758\\ 0.2957\\ 0.1361\\ 0.0348\end{array}$	$\begin{array}{c} 0.3582 \\ 0.3399 \\ 0.2977 \\ 0.2971 \\ 0.2743 \\ 0.2735 \\ 0.2757 \end{array}$	$ \begin{array}{r} 10186 \\ 10039 \\ 9570 \\ 9389 \\ 9087 \\ 9150 \\ 9268 \\ \end{array} $		
15 17	2 33 2 37	$\frac{422.0}{422.4}$ $\frac{422.4}{422.4}$	$0.0337 \\ 0.2941$	$0.2489 \\ 0.2512$	9093 8978		_
		Nr. S. Pla	tte 20. 19. V.	III. 1910. t_0	= 466°.0. 9	$= 739^{\circ}.0.$	
1 3 7 9 11 13 15 17 19	3 15 3 21 3 22 3 34 3 38 3 42 3 54 3 54 3 58	$\begin{array}{r} 465.2 \\ 465.6 \\ 465.6 \\ 465.8 \\ 466.1 \\ 466.3 \\ 466.3 \\ 466.5 \\ 466.7 \\ 466.9 \\ 466.9 \\ 466.9 \end{array}$	$\begin{array}{c} 0.0856\\ 0.0856\\ 0.1514\\ 0.1513\\ 0.0847\\ 0.0484\\ 0.3139\\ 0.3139\\ 0.1449\\ 0.0212\\ \end{array}$	$\begin{array}{c} 0.3382\\ 0.2852\\ 0.2852\\ 0.2655\\ 0.2645\\ 0.2644\\ 0.2653\\ 0.2638\\ 0.2308\\ 0.2357\\ 0.2418\\ \end{array}$	$\begin{array}{r} 4733\\ 4562\\ 4504\\ 4416\\ 44485\\ 4527\\ 4438\\ 4221\\ 4282\\ 4438\\ 4241\\ 4282\\ 4445\end{array}$		
					$10^5 \Omega$		
1	1 13	Nr. 9. Pla 1 914 1 1	tte 20. 19. V	III. 1910. t_0	$= 315^{\circ}.0.9$	$_{0} = 588^{\circ}.0.$	+ 0.6
-7 G 6 F	4	314.1 314.5 315.4	$\begin{array}{c} 0.2871 \\ 0.2873 \\ 1.420 \end{array}$	$\begin{array}{c} 0.2936 \\ 0.2936 \\ 0.2476 \\ 0.2463 \end{array}$	$\begin{array}{c} 0.33 \pm 0 \\ 0.9371 \\ 0.8445 \\ 0.8211 \end{array}$	$\begin{array}{c} 0.9467 \\ 0.8328 \\ 0.8300 \end{array}$	+ 0.0 - 1.0 + 1.4 - 1.1
		Nr. 10. Pla	atte 19. 23. 7	VIII. 1910. t _o	= 239°.0.	$\theta_0 = 512^{\circ}.0.$	
$\begin{array}{c} 2\\ 3\\ 5\\ -9\\ 11\\ 13\\ 15\\ 17\\ 9\\ 23\\ 24\\ 22\\ 2\\ 2\\ 2\\ 2\\ 5\\ 2\\ 2\\ 5\\ 2\\ 2\\ 5\\ 2\\ 2\\ 5\\ 2\\ 5\\ 2\\ 2\\ 5\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$	8 22 22 22 22 22 22 22 22 22 22 22 22 22	$\begin{array}{c} 237.8\\ 238.5\\ 239.2\\ 239.0\\ 239.1\\ 239.4\\ 239.2\\ 239.3\\ 239.3\\ 239.3\\ 239.4\\ 239.3\\ 239.4\\ 239.3\\ 239.4\\ 239.9\\ 238.2\\ 239.5\\ 238.2\\ 239.5\\ \end{array}$	$\begin{array}{c} 2.929\\ 1.234\\ 1.235\\ 2.956\\ 2.956\\ 1.234\\ 1.232\\ 2.927\\ 1.234\\ 2.939\\ 9.87\\ 9.88\\ 2.927\\ 2.923\\ 0.910\\ \end{array}$	$\begin{array}{c} 0.7470\\ 0.7294\\ 0.4863\\ 0.4847\\ 0.3973\\ 0.3975\\ 0.4055\\ 0.3973\\ 0.3534\\ 0.3534\\ 0.3534\\ 0.3493\\ 0.3461\\ 0.2578\\ 0.2627\\ 0.2219\\ 0.2267\\ \end{array}$	$\begin{array}{c} 31.30\\ 31.42\\ 29.74\\ 29.74\\ 29.04\\ 29.11\\ 29.04\\ 28.90\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 28.58\\ 25.93\\ 25.93\\ 25.93\\ 25.92\\ \end{array}$	$\begin{array}{c} 31.48\\ 31.36\\ 29.62\\ 29.61\\ 28.97\\ 28.97\\ 29.03\\ 28.98\\ 28.66\\ 28.63\\ 28.62\\ 27.97\\ 28.02\\ 27.74\\ 27.78\end{array}$	$\begin{array}{c} - \ 0.5 \\ + \ 0.2 \\ + \ 0.5 \\ + \ 0.4 \\ + \ 0.2 \\ + \ 0.5 \\ - \ 0.2 \\ - \ 0.2 \\ - \ 0.3 \\ - \ 0.2 \\ - \ 0.3 \\ - \ 0.2 \\ - \ 0.6 \\ - \ 6.4 \\ - \ 6.6 \end{array}$
		Nr. 11. Pla	tte 19. 23. V	TII. 1910. t _o	= 290°.0. 9	$_{\circ} = 563^{\circ}.0.$	
1 3 5 7 9 11 13 15 17	$\begin{array}{c} 3 & 45 \\ 3 & 52 \\ 3 & 56 \\ 4 & 5 \\ 4 & 10 \\ 4 & 20 \\ 4 & 24 \\ 4 & 28 \end{array}$	$\begin{array}{c} 290.6 \\ 290.3 \\ 290.7 \\ 290.5 \\ 290.4 \\ 290.2 \\ 289.6 \\ 289.5 \\ 289.5 \\ 289.3 \end{array}$	$\begin{array}{c} 1.349\\ 1.348\\ 0.4149\\ 0.4108\\ 2.957\\ 1.080\\ 1.076\\ 2.926\\ 0.4266\end{array}$	$\begin{array}{c} 0.2470\\ 0.2470\\ 0.2732\\ 0.3082\\ 0.3103\\ 0.3922\\ 0.5567\\ 0.5603\\ 0.5440\end{array}$	$\begin{array}{c} 3.862 \\ 3.897 \\ 4.138 \\ 4.185 \\ 4.184 \\ 4.345 \\ 4.594 \\ 4.544 \\ 4.556 \end{array}$	$\begin{array}{c} 4.035 \\ 4.035 \\ 4.081 \\ 4.144 \\ 4.147 \\ 4.293 \\ 4.584 \\ 4.591 \\ 4.591 \\ 1.562 \end{array}$	$\begin{array}{r} -3.8 \\ -3.8 \\ +1.4 \\ +1.0 \\ +0.9 \\ +1.2 \\ +0.2 \\ -1.0 \\ -0.1 \end{array}$

Richard Ambronn,

				1		Ausglei	chung
Nr.	Zeit	Temp.	E	τ_m	W_m	Wm ber.	v
	ь.	0	Volt	sec 1/2	105 (2	$10^{5} \Omega$	
		Nr. 12. Pla	atte 19. 23. V	TIII. 1910 i	$t_0 = 338^{\circ}.0.$	$\theta_0 = 611^{\circ}.0.$	
1 3 5 7 9 11 13 15 17	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 336.2\\ 336.5\\ 337.2\\ 337.9\\ 338.1\\ 337.9\\ 337.8\\ 338.0\\ 338.0\\ 338.1\end{array}$	$\begin{array}{c} 0.2293\\ 0.4153\\ 0.4145\\ 0.4149\\ 0.1352\\ 0.1352\\ 1.549\\ 2.811\\ 0.2263\end{array}$	$\begin{array}{c} 0.6726\\ 0.6707\\ 0.5348\\ 0.3732\\ 0.3668\\ 0.2870\\ 0.2814\\ 0.2339\\ 0.2335\\ \end{array}$	$\begin{array}{c} 1.2001\\ 1.1927\\ 1.1685\\ 1.1208\\ 1.0952\\ 1.0952\\ 1.0905\\ 1.0782\\ 1.0808\end{array}$	$\begin{array}{c} 1.2009\\ 1.2002\\ 1.1629\\ 1.1183\\ 1.1168\\ 1.0955\\ 1.0937\\ 1.0807\\ 1.0803\end{array}$	$\begin{array}{c} 0.0 \\ - 0.6 \\ + 0.5 \\ + 0.2 \\ + 0.4 \\ - 0.3 \\ - 0.2 \\ + 0.1 \end{array}$
		Nr. 13. Pla	atte 19. 23. 7	VIII. 1910.	$t_0 = 174^{\circ}.0.$	$\vartheta_0 = 447^{\circ}.0.$	
$ \begin{array}{c} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \end{array} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccc} 173.5 \\ 173.3 \\ 173.4 \\ 173.7 \\ 173.9 \\ 174.1 \end{array} $	$\begin{array}{c} 2.890 \\ 10.51 \\ 10.51 \\ 10.51 \\ 10.51 \\ 10.51 \\ 10.51 \\ 10.51 \end{array}$	$\begin{array}{c} 0.7304 \\ 0.7357 \\ 0.5534 \\ 0.3504 \\ 0.3023 \\ 0.2442 \end{array}$	$\begin{array}{c c} 918.4\\ 919.3\\ 883.6\\ 819.8\\ 762.1\\ 704.5\end{array}$	$\begin{array}{c} 929.4\\ 931.7\\ 861.0\\ 782.4\\ 763.5\\ 741.2\end{array}$	$- \begin{array}{r} 1.2 \\ - 1.3 \\ + 2.7 \\ + 4.8 \\ - 0.2 \\ - 4.9 \end{array}$
		Nr. 14. Pla	atte 19. 24. "	VIII. 1910.	$t_0 = 221^{\circ}.0.$	$\theta_0 = 494^{\circ}.0.$	
1 3 5 7 9 11 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c} 220.7 \\ 220.6 \\ 220.9 \\ 221.3 \\ 221.0 \\ 221.5 \\ 220.0 \end{array}$	$\begin{array}{c} 2.933 \\ 2.936 \\ 8.56 \\ 8.57 \\ 2.886 \\ 2.886 \\ 8.54 \end{array}$	$\begin{array}{c} 0.2182 \\ 0.2319 \\ 0.2323 \\ 0.3060 \\ 0.3062 \\ 0.6034 \\ 0.5762 \end{array}$	$\begin{array}{c} 62.09 \\ 63.24 \\ 62.55 \\ 64.57 \\ 64.38 \\ 68.40 \\ 67.56 \end{array}$	$\begin{array}{c c} 62.72 \\ 62.92 \\ 62.93 \\ 63.98 \\ 63.99 \\ 68.33 \\ 67.94 \end{array}$	$\begin{array}{r} - 0.9 \\ + 0.5 \\ - 0.6 \\ \pm 0.9 \\ + 0.6 \\ \pm 0.1 \\ - 0.5 \end{array}$
		Nr. 15. Pl	atte 19. 24.	VIII. 1910.	$t_0 = 355^{\circ}.5.$	$ \vartheta_0 = 628^{\circ}.5. $	
$ \begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 15 \\ 17 \\ 19 \\ 21 \\ 23 \\ 27 \\ 27 \\ \end{array} $	$\begin{array}{c} 1 & 50 \\ 1 & 54 \\ 2 & 8 \\ 2 & 34 \\ 2 & 34 \\ 2 & 45 \\ 2 & 49 \\ 2 & 49 \\ 2 & 58 \\ 2 & 3 \\ 2 & 58 \\ 3 & 5 \end{array}$	$\begin{array}{c} 353.3\\ 353.1\\ 352.9\\ 353.9\\ 354.4\\ 355.1\\ 356.4\\ 356.4\\ 355.5\\ 355.4\\ 355.5\\ 355.4\\ 355.4\\ 356.1\\ 356.1\end{array}$	$\begin{array}{c} 0.1512\\ 0.1512\\ 0.3157\\ 0.3183\\ 1.470\\ 1.400\\ 0.1455\\ 0.2597\\ 1.386\\ 2.645\\ 0.1497\\ 0.2435\end{array}$	$\begin{array}{c} 0.5408\\ 0.5414\\ 0.5304\\ 0.4675\\ 0.4764\\ 0.3957\\ 0.2844\\ 0.3182\\ 0.3168\\ 0.3168\\ 0.3167\\ 0.2648\\ 0.2706\\ 0.2319\end{array}$	$\begin{array}{c} 0.8047\\ 0.8111\\ 0.8069\\ 0.7739\\ 0.7673\\ 0.7722\\ 0.7507\\ 0.7495\\ 0.7505\\ 0.7510\\ 0.7317\\ 0.7398\\ 0.7327\end{array}$	$\begin{array}{c} 0.8022\\ 0.8023\\ 0.7997\\ 0.7852\\ 0.7873\\ 0.7684\\ 0.7426\\ 0.7504\\ 0.7502\\ 0.7495\\ 0.7380\\ 0.7395\\ 0.7304 \end{array}$	$\begin{array}{c} + \ 0.3 \\ + \ 1.1 \\ + \ 0.9 \\ - \ 1.4 \\ - \ 2.5 \\ + \ 0.5 \\ + \ 0.5 \\ + \ 1.1 \\ - \ 0.1 \\ - \ 0.4 \\ + \ 0.1 \\ + \ 0.3 \end{array}$
		Nr. 16. Pla	atte 19. 24.	VIII. 1910.	$t_0 = 398^{\circ}.0.$	$\vartheta_0 = 671^{\circ}.0.$	
$ \begin{array}{r} 1 \\ 5 \\ 7 \\ 9 \\ 11 \\ 13 \\ 15 \\ 17 \\ 21 \\ 23 \\ \end{array} $	$\begin{array}{c} 3 \ \frac{44}{8} \\ 3 \ 53} \\ 3 \ 53} \\ 4 \ 17 \\ 4 \ 11 \\ 4 \ 15 \\ 4 \ 282 \\ 4 \ 38 \\ 4 \ 38 \\ 4 \ 38 \\ \end{array}$	$\begin{array}{c} 397.9\\ 398.0\\ 397.9\\ 398.0\\ 398.0\\ 398.0\\ 398.1\\ 398.1\\ 398.1\\ 398.2\\ 398.3\\ 398.4\\ 398.4\\ 398.3\\ \end{array}$	$\begin{array}{c} 0.1014\\ 0.3240\\ 0.3240\\ 0.0623\\ 1.028\\ 1.027\\ 0.0630\\ 0.0630\\ 0.0630\\ 0.2980\\ 0.4682\\ 0.1310\\ \end{array}$	$ \begin{array}{c} 0.2357\\ 0.2353\\ 0.2608\\ 0.2811\\ 0.3640\\ 0.3630\\ 0.3663\\ 0.5490\\ 0.5376\\ 0.6990\\ 0.9000 \end{array} $	$ \begin{smallmatrix} 0.3101\\ 0.3095\\ 0.3128\\ 0.3160\\ 0.3147\\ 0.3213\\ 0.3269\\ 0.3293\\ 0.3413\\ 0.3364\\ 0.3511\\ 0.3707 \end{smallmatrix} $	$ \begin{array}{c} 0.3118 \\ 0.3117 \\ 0.3139 \\ 0.3159 \\ 0.3232 \\ 0.3220 \\ 0.3220 \\ 0.3233 \\ 0.3395 \\ 0.3395 \\ 0.3395 \\ 0.3528 \\ 0.3528 \\ 0.3707 \end{array} $	$\begin{array}{c} - \ 0.5 \\ - \ 0.7 \\ - \ 0.4 \\ + \ 0.1 \\ - \ 0.3 \\ - \ 0.6 \\ + \ 1.2 \\ + \ 1.9 \\ + \ 0.5 \\ - \ 0.6 \\ - \ 0.5 \\ 0 \ 0 \end{array}$

208

[32]

Elektrische Leitfähigkeit des Bergkristalles.

x-	7010	Tom	F	./	W	1. Ausgle	ichung	2. Ausgl	eichung	3. Ausglei	chung
141.	2011	remb.		$\vee \tau_m$	IT M.	Wm ber.	v_1	W _m ber.	v_2	Wm ber.	v_3
	h m	0	Volt	sec $1/2$	$10^5 \Omega$	$10^5 \Omega$	0/0	$10^5 \Omega$	0/0	$10^5 \Omega$	0 ,'0
			Nr.	17. Pl	atte 19.	24. VIII. :	1910. t_0	$= 432^{\circ}.5.$	$\theta_0 = 703$	ŏ⁰.ō.	
1	5 6	431.3	0.2967	0.6819	0.1982	0.1960	+1.1			-	
ð ð	$510 \\ 517$	432.1	0.0754	0.0904 0.3688	0.1948 0.1822	0.1900 0.1814	+0.9 +0.5			_	
7	5 21 5 26	432.7	0.577	0.3721	0.1798	0.1815 0.1754	-0.9	_	·	—	
11^{9}	5 30	$\frac{433.2}{433.5}$	2.883	0.2404 0.2392	0.1760	0.1753	+0.1	_		_	_
			Nr.	18. Pl	atte 19.	24. VIП. :	1910. t_0	$= 466^{\circ}.0.$	$\vartheta_0 = 739$	9°.0.	
1	5 51	466.3	1.695	0.2443	0.1080	0.1090	-0.9	-	_	-	
3	556	465.7	0.1945	0.2443	0.1088	0.1090 0.1109	-0.2				-
6		±05.0 ±65.5	0.1948	0.2809	0.1088	0.1099	+0.3 -1.0	_	_		
8	6 10	465.4	0.0337	0.2847 0.4578	0.1130	0.1100 0.1114	+2.7	. —		-	
$10 \\ 12$	6 19	465.9	0.3700	0.4418	0.1128	0.1142	-1.1		_	_	
11	6 25	465.8	0.3700	0.5448	0.1163	0.1168	-0.5		_	-	_
18	6 36	465.5	0.1422	1.0150	0.1292	0.1292	+0.0		_	_	-
20	6 40	465.6	0.4458	1.0286	0.1293	0.1296	-0.2	-	-	_	
			Nr.	19. Pl	latte 16.	26. VIII.	1910. t_0	= 331°.0.	$\vartheta_0 = 60$	4º.O.	
1 2	$10\ 23$ 10 27	329.3	0.1112	0.2449 0.2457	0.2780	0.2813 0.2812	-1.2 -0.9	0.2828	-14		_
5	$10 \ 32$	329.7	0.985	0.2457	0.2789	0.2813	-0.9	0.2020		0.2780	+ 0.3
- 7	$10 \ 38 \\ 10 \ 42$	329.9	0.1114 0.4190	0.2919	0.2912 0.2915	0.2897 0.2904	+0.5 +0.4	0.2901	+0.2		
11	$10 \ 46$	330.4	0.980	0.2959	0.2895	0.2903	-0.3			0.2868	+ 0.9
13	$\begin{bmatrix} 10 & 52 \\ 10 & 56 \end{bmatrix}$	330.9	0.111 ± 0.4120	0.4213 0.4254	0.3172 0.3178	0.3135 0.3155	+1.1 +1.4	0.3129	+1.5	_	
17	11 0	331.4	0.983	0.3915	0.3107	0.3072	+1.0		-	0.3035	+ 2.4
19	111 7 111 11	331.9	0.1112 0.4122	0.8382 0.8632	0.3853	0.3874 0.3913	-0.6 -1.4	0.3880	-0.4	_	_
$\overline{23}$	$\overline{11}$ $\overline{15}$	332.3	0.981	0.9276	0.3862	0.4036	-4.3	_		0.3968	-2.7
			Nr.	20. P	latte 16	26. VIII.	1910. t _o	$= 391^{\circ}.0.$	$\vartheta_0 = 66$	£º.0.	
,			101011	10.0000	Ω	Ω	1 1 0				,
1	11 22 11 56	390.2	0.1341 0.2654	0.2620	7593	$7732 \\ 7725$	-1.8 -0.2		_		
õ	12 0	390.1	0.4456	0.2603	7713	7725	-0.2		_		-
- 9-	12 12 11	390.6	0.1345 0.2652	0.3336	8126	8000	+2.1 +2.1	_	_	_	
11	12 19	391.0	0.2652	0.5946	8958	8966	0.0	-		-	-
$\frac{13}{15}$	$12 23 \\ 12 37$	391.4	0.1343 0.1343	1.0681	10703	10715	+0.3 -0.1		_	_	
17	12 41	392.6	0.0575	1.0247	10593	10558	-0.1		_	-	_
19	12 40	392.8	10.2090	11.0248	1 10494	10998	1			-	-
4	1 10	1491.0	Nr.	21. P	latte 16	. 26. VIII.	1910. t_0	$= 425^{\circ}.0.$	$\vartheta_0 = 69$	S°.0.	1
13	1 12 112 112	421.0 421.8	0.0576	1.000	5610	5547	+1.0 +1.1	_	_	_	_
57	120 197	422.2	0.4531	0.9975	5516	5540	-0.4				-
9	1 31	423.3	0.4525	0.6337	4824	4987	-3.3	_	_		-
11	1 40 1 46	424.7 495.7	0.1499	0.4185	4725	4658	+1.4	-		-	-
15	1 54	425.8	0.0770	0.2940	4467	4468	-0.1		_	_	-
$17 \\ 19$	$ \begin{array}{ccc} 1 & 59 \\ 2 & 5 \end{array} $	425.9 425.9	0.1497 0.4517	0.2453 0.2507	$ \begin{array}{r} 4375 \\ 4389 \end{array} $	$ 4394 \\ 4402 $	-0.4 -0.3		_		-

Nova Acta CI. Nr. 3.

[33]

209

Richard Ambronn,

Nr.	Zeit	Temp	E	$1/\tau_m$	Wm	1. Ausgle	ichung	2. Ausgl	eichung	3. Ausgle	ichung
						Wm ber.	v	Wm ber	. v	Wm ber.	<i>v</i>
	h m	U	Volt	sec 12	\underline{O}	Ω	1 0'u	$\underline{\Omega}$	º/o	105 <u>O</u>	0 0
			Nr.	22. Pla	tte 16.	26. VIII. 1	910. t _o :	$= 447^{\circ}.0.$	$\vartheta_0 = 720$)º.0.	
1	3 23	446.3	0.3112	0.2548	3101	3127	-0.8			—	+ —
5	3 32	446.5	0.0899	0.2457	3239	1 3973	+1.1 +2.7	_		_	=
$\frac{7}{9}$	3 36	$\frac{446.8}{447.0}$	$0.3123 \\ 0.3117$	10.0101	$\frac{3486}{3524}$) 0004			-		_
13 11	4 3	447.1	0.0878	}0.5009 0.5058	$3578 \\ 3586$	} 5094 3706	-3.9	_	-		
15	4 7	447.5	0.0343	0.6244	4081	3979	+2.6	_	U = 1	_	_
17	4 11	±±1.0	0.3120	0.6453	4088	4027	+1.0	_	—	_	
			N.	39 TH	++- +0	OC WITT	4 010	1000 5	0 50	00 5	
			Ar.	23. Pla	atte 16.	26. VIII	1910. T_0	$= 466^{\circ}.5.$	$\theta_0 = 73$	9º.5.	
$\frac{1}{3}$	5 6 5 10	$\begin{array}{ } 466.1 \\ 465.8 \end{array}$	$0.0838 \\ 0.1905$	0.2557	2443	2457	-0.5		-	—	_
57	5 14	466.4	0.3707 0.3710	}0.2919	2428		}1.0	2425	0.0	_	—
.9	521 525	466.5	0.1903	}0.3037	2487		}-1.1	2487	0.0		_
$\frac{11}{13}$	5 29 5 36	$466.4 \\ 467.1$	0.0817 0.0817	$0.2953 \\ 0.5291$	$2527 \\ 2768$	$2503 \\ 2783$	$+0.9 \\ -0.6$		_		_
$\frac{15}{17}$	5 40 5 45	$466.2 \\ 466.2$	$0.1903 \\ 0.3703$]0.5214	2740	_	-1.3	2742	-0.1	_	-
19	550	466.5	0.3707	0.8853	3133	—	}-1.3	3111	0.0	_	-
$\frac{21}{23}$	5 54 58	466.6	0.1882 0.0817	0.8514 0.8514	3175	31 68	+0.2	_	[=
									_		
			Nr. :	24. Pla	tte 16.	1. XII. 191	0. $t_0 =$	174º.83.	$\theta_0 = 447^\circ$.83.	
1	9.93	17871	2 668 1	L N 8991 I	100 32	138 39	1 - 1 4 1	105 52	_ 1		
1	2 45	174.7	10.26	0.8000	136.6	137.98	-1.0		_	—	
8	$249 \\ 254$	174.4 174.8	10.27	0.8237	130.9	131.83	+1.0		_		_
$\frac{10}{12}$	$ \begin{array}{c} 2 58 \\ 3 5 \end{array} $	$175.0 \\ 175.1$	$2.516 \\ 2.517$	0.2565	130.8	130.16	+1.5	_	; =	_	_
$\frac{14}{16}$	3 9 3 15	$175.1 \\ 175.3$	$10.24 \\ 10.24$	0.2614	129.5	130.23	-1.5				
18	2.19	175.4	2.532	}0.2121	128.1	129.52	-1.1	_	—,	_	
			Nu	ות שה	11. 10	A TTT AOA	<u> </u>	0150.00			
			Nr.	2 5. Pla	tte 16.	1, XII, 191	0. $t_0 =$	215°.68.	$\theta_0 = 488^{\circ}$.68.	
$\frac{1}{3}$	$egin{array}{c} 3 \ 58 \\ 4 \ 2 \end{array}$	$\begin{array}{c} 215.3 \\ 215.4 \end{array}$	$\begin{array}{c c} 2.535 \\ 0.405 \end{array}$	$0.9973 \\ 0.9617$	$\begin{array}{c c} 20.66 \\ 20.96 \end{array}$	20.61	$\begin{vmatrix} -0.4 \\ +1.7 \end{vmatrix}$	20.359	+1.5	_	_
57	$\frac{4}{4}$ 6	215.3 215.4	6.83	0.9590	20.02		-2.8			19.711 17.889	+1.6
9	4 18	215.5	2.588	0.6987	17.58	10,410	-4.3	18.061	-2.7		-2.0
11 13	$\begin{array}{c} 4 & 22 \\ 4 & 27 \end{array}$	215.7 215.7	$0.612 \\ 0.611$	0.7057 0.3942	$17.84 \\ 15.79$	$18.419 \\ 15.797$	$\begin{bmatrix} -3.1\\ 0.0 \end{bmatrix}$		_	_	
15 17	$\frac{4}{4}$ $\frac{32}{36}$	215.7 215.8	$2.261 \\ 5.39$	0.3893	$15.56 \\ 15.45$		-1.2 -16	15.507	+0.3	15 335	+0.7
19	4 41	215.9	5.41	0.2775	14.70		-0.7	11 550		14.546	+1.0
23	$ \frac{4}{4} \frac{40}{49} $	215.9 216.0	0.486	$0.2742 \\ 0.2748$	15.08	14.785	+2.0	14.008	+0.0		_
$\frac{25}{27}$	$\begin{array}{ccc} 4&58\\ 5&2 \end{array}$	$216.2 \\ 216.2$	$\begin{array}{c c} 0.474 \\ 1.995 \end{array}$	$0.1990 \\ 0.2019$	$14.09 \\ 14.00$	14.142	$-0.4 \\ -1.2$	13.962	+0.3	_	_
$\overline{29}$	56	216.2	10.21	0.2019	13.92		-1.8	_		13.974	-0.4

210

[34]

Elektrische Leitfähigkeit des Bergkristalles.

N	7.14	Tom	F	1/-	TTZ'	1. Au	sgl.	2. Au	sgl.	3. Au	sgl.	4. Au	sgl.
ML.	Leit.	remp.	Ľ	[∕ Tm	FF m	W_m ber.	v	W_m ber.	v	W_m ber.	v	Wm ber.	\dot{v}
	h m	0	Volt	$\sec^{1/2}$	105 <u>O</u>	$10^5 \Omega$	0/0	$10^{5} \Omega$	0/0	$10^5 \Omega$	0/0	$10^5\Omega$.	0,'0
			Nr.	26. Pl	atte 16	. 1. XII.	1910.	$t_0 = 24$	7º.77.	$\vartheta_0 = 52$	00.77.		
1 3 7 9 11 13 15 17	5 47 5 51 5 55 6 4 6 9 6 14 6 24 6 29 $6 29$	$\begin{array}{c} 248.3 \\ 248.1 \\ 248.6 \\ 247.9 \\ 247.6 \\ 247.5 \\ 247.6 \\ 247.5 \\ 247.5 \\ 247.5 \\ 247.5 \end{array}$	$\begin{array}{c} 5.76\\ 1.811\\ 0.2178\\ 0.2209\\ 4.90\\ 4.83\\ 0.2162\\ 0.2162\\ 5.75\end{array}$	$\begin{array}{c} 0.9793 \\ - \\ 0.9479 \\ 0.4159 \\ 0.4167 \\ 0.3042 \\ 0.2981 \\ 0.1834 \\ 0.1860 \end{array}$	5.0965 - 5.3030 4.168 4.123 3.840 3.9135 3.586 3.5475	$\begin{array}{c}\\ 5.3121\\ 4.1428\\\\ 3.8838\\ 3.6311\\\end{array}$	$\begin{array}{c} -5.3 \\ -0.2 \\ +0.6 \\ -0.5 \\ -1.5 \\ +0.8 \\ -1.2 \\ -2.5 \end{array}$	5.1185 4.0470 3.8328 3.6077	-0.4 				
			Nr.	27. Pl	atte 16	. 2. XII	. 1910.	$t_0 = 22$	27º.19.	$\vartheta_0 = 50$)0° .1 9.		
$ \begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 8 \\ 10 \\ 12 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 227.0 \\ 226.9 \\ 226.8 \\ 226.9 \\ 226.9 \\ 227.1 \\ 227.3 \end{array}$	$\begin{array}{c} 0.3908 \\ 2.544 \\ 1.871 \\ 10.38 \\ 10.38 \\ 10.38 \\ 10.38 \\ 10.38 \end{array}$	$\begin{array}{c} 1.406 \\ 1.406 \\ 0.5467 \\ 0.5485 \\ 0.5478 \\ 0.3463 \\ 0.2646 \end{array}$	$ \begin{array}{c} 12.740 \\ 12.740 \\ 9.793 \\ 9.568 \\ 9.593 \\ 8.861 \\ 8.564 \end{array} $	$\begin{array}{c}\\\\ 9.5757\\ 9.5727\\ 8.8627\\ 8.5744\end{array}$	$-0.1 \\ +0.2 \\ 0.0 \\ -0.1$						
			Nr.	28. Pl	atte 16	. 2. XП	. 1910.	$t_0 = 28$	82º.97.	$\vartheta_0 = 55$	ó5⁰. 9 7.		
$ \begin{array}{c} 1 \\ 3 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 14 \end{array} $	$\begin{array}{c} 12 & 35 \\ 12 & 40 \\ 12 & 47 \\ 12 & 51 \\ 12 & 57 \\ 1 & 1 \\ 1 & 8 \\ 1 & 12 \end{array}$	282.7 282.7 282.9 282.7 282.8 283.1 282.9 282.6	$\begin{array}{c} 0.0817\\ 0.0817\\ 0.4015\\ 1.978\\ 1.1987\\ 0.3897\\ 0.3900\\ 1.835\end{array}$	$\begin{array}{c} 1.4458\\ 1.3600\\ 1.2845\\ 1.3140\\ 0.4189\\ 0.4222\\ 0.2222\\ 0.2258\end{array}$	$\begin{array}{c} 1.6225\\ 1.6110\\ 1.5875\\ 1.5735\\ 1.1210\\ 1.1380\\ 1.0195\\ 1.0255\end{array}$	$\begin{array}{c} 1.6474\\ 1.6037\\ 1.5655\\ 1.5800\\ 1.1247\\ 1.1265\\ 1.0248\\ 1.0267\end{array}$	$\begin{array}{c} -1.5 \\ +0.5 \\ +1.4 \\ -0.3 \\ +1.0 \\ -0.5 \\ -0.1 \end{array}$						
			Nr.	29. Pl	atte 16	. 2. XII	. 1910.	$t_0 = 32$	20º.10.	$\vartheta_0 = 39$	95º.10.		
$\frac{1}{3} \frac{3}{5} \frac{5}{7} \frac{9}{911} \frac{1}{11} \frac{1}{11} \frac{1}{11} \frac{1}{12} \frac{2}{22} \frac{2}{22} \frac{2}{23} \frac{3}{33} \frac{3}{33} \frac{1}{4} \frac{3}{4} \frac{3}{4} \frac{3}{4} \frac{1}{4} \frac$	$1 \begin{array}{c} 1 \\ 4 \\ 4 \\ 9 \\ 1 \\ 5 \\ 3 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 320.1\\ 320.4\\ 320.8\\ 320.9\\ 318.8\\ 319.3\\ 319.6\\ 319.5\\ 319.5\\ 319.5\\ 319.5\\ 319.5\\ 319.5\\ 319.6\\ 319.6\\ 319.6\\ 319.6\\ 319.6\\ 319.0\\ 320.0\\ 320.0\\ 320.1\\ 320.2\\ 320.1\\ 32$		$\begin{array}{c}\\ 1.0680\\ 1.0490\\ 0.6617\\ 0.6883\\ 0.8063\\ 0.7636\\ 0.4527\\ 0.4467\\ 0.4373\\ 0.4432\\ 0.4432\\ 0.2850\\ 0.2823\\ 0.2798\\ 0.2823\\ 0.2798\\ 0.2823\\ 0.2298\\ 0.2298\\ 0.2454\\ 0.2$	$\begin{array}{c}\\ 0.5864\\ 0.5708\\ 0.4322\\ 0.4856\\ 0.4726\\ 0.44856\\ 0.4726\\ 0.4726\\ 0.4726\\ 0.4726\\ 0.3772\\ 0.3776\\ 0.3776\\ 0.3776\\ 0.3776\\ 0.3762\\ 0.3556\\ 0.3562\\ 0.3562\\ 0.3564\end{array}$	0.5869 	$\begin{array}{c} - & 0.1 \\ - & 1.9 \\ - & 9.9 \\ - & 11.1 \\ - & 6.2 \\ - & 6.7 \\ - & 4.6 \\ - & 1.9 \\ - & 0.4 \\ + & 0.6 \\ - & 0.7 \\ - & 1.3 \\ - & 0.1 \\ + & 0.1 \\ + & 0.1 \\ + & 0.1 \\ - & 0.3 \\ - & 2.45 \\ - & 1.4 \\ + & 0.4 \\ - & 1.0 \\ - & 0.1 \\ - & 2.0 \end{array}$	0.5697 	$ \begin{array}{c}$	0.4450 0.4501 0.4729 0.4647 0.4046 	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $		

27*

.

			1	1		1				
Nr	Zeit	Temp.	E	$1/\overline{\tau_m}$	W_m	1. Ausglei	chung	2. Ausglei	chung	
		a cump.		y en		W_m ber.	v_1	Wm ber.	v_2	
	h m	0	Volt	sec 1/2	$10^5 \Omega$	$10^5 \Omega$	0/0	$10^5 \Omega$	0/0	
	Nr. 30. Platte 16. 19. XII. 1910. $t_0 = 315^{\circ}.59$. $\vartheta_0 = 588^{\circ}.59$.									
1	1 44	315.9	0.0283	0.5513	0.50805	0.49311	+ 3.0	-		
3	1 48	315.8	0.1752	0.5539	0.50285	0.49396	+ 1.8		_	
5	1 52	315.8	0.4497	0.5453	0.49655	0.49111	+ 1.1		_	
7	1 06	315.8	1.274	0.5458	0.12795	0.49128	-1.0	0 12560	- 0.1	
9 11	2 8	315.6	6.31	0.3234	0.43725		-10.9 -6.8	0.45509	+ 0.1	
13	2 12	315.6	1.245	0.3282	0.39700	0.41991	- 5:4			
15	2 16	315.6	0.0752	0.3250	0.39250	0.41898	-6.1	-		
17	2 21	315.5	0.0754	0.2172	0.38130	0.38370	-0.6	0.97150		
19 91	2 24	315.6	6.20	0.2177	0.37770		-1.0	0.37±02	+0.9 +10	
23	234	315.7	1.272	0.1280	0.35690	0.35444^{-1}	+ 0.7			
25	2 37	315.7	0.4363	0.1268	0.35900	0.35403	+ 1.4		_	
27	240	315.7	0.1003	0.1277	0.36350	0.35436	+ 2.6	—	—	
29 31	$241 \\ 247$	315.0	5.94	0.1130	0.36020	0.34903	+ 3.1 + 99	0.35590	+ 0.8	
Ŭ.		010.1	0.01	[U.II.O.	0.00000		, 1 , 10, 10	0.000000	1 010	
		Nr. 3	1. Platte	16. 19. X	П. 1910.	$t_0 = 357^{\circ}.55.$	$\vartheta_0 = 0$	330°.55.		
1	435	357.4	0.0333	0.4582	0.16825	0.17008	- 1.1	—		
5 5	4 49	357.6	2.612	0.3446	0.15980 0.15470	0.15912	+ 0.4 - 2.7	0 15365	+0.7	
$\tilde{7}$	5 0	357.7	2.618	0.2280	0.14545	-	- 1.5	0.14369	$+1.2^{\circ}$	
9	53	357.7	0.4330	0.2249	0.14685	0.14745	-0.4	—	_	
11	5 6	357.7	0.2090	0.2205	0.14728	0.14701	+ 0.2			
15 15	5 17	357.4	0.0415 0.0445	0.2275 0.1871	0.15005	0.14708	+ 1.0 + 1.0	_		
17	$5\ 22$	357.6	0.0442	0.1216	0.13665	0.13742	-0.6		_	
19	5 25	357.6	0.1819	0.1192	0.13545	0.13718	-1.3		_	
21	5 28 5 27	307.7	0.3928 1.570	0 1909	0.12510	—	16	0.12450	1.0.4	
$\frac{25}{25}$	541	357.8	2.675	0.1202 0.1189	0.14135	0.13715	+ 3.1	0.13400	+ 0.4	
$\bar{2}\bar{7}$	5 45	357.8	2.677	0.1201	0.13300		- 3.1	0.13449	-1.1	
29	549	357.9	2.679	0.3358	0.15100	0.15.050	- 5.2	0.15290	-1.2	
51	0 00	001.9	0.0000	0.5207	0.19090	0.10672	+0.1	_	_	
		Nr. 32	2. Platte	16. 20. X	II. 1910.	$t_0 = 340^{\circ}.10.$	$\vartheta_0 = 0$	613º.10.		
1		337.8	0.0466	0.6133	0.27945	0.28160	-0.8		t <u> </u>	
3 5	11 48 11 52	555.9 339.5	0.4118 0.4115	0.5585	0.27255	0.27176	+ 0.3 - 0.2	_	_	
7	11 56	339.8	0.0847	0.1738	0.20990	0.20897	+ 0.1		_	
9	11 59	339.9	0.0369	0.1702	0.21255	0.20838	+ 2.0	_		
11	12 4	340.0	0.0778 0.1495	0.1182	0.19870	0.19990	-0.6			
15	$\frac{12}{12}$ 11	340.0	0.4420 0.3752	0.1104 0.0894	0.19800	0.19959	-0.8 -1.3			
$\tilde{17}$	12 14	340.2	0.0784	0.0894	0.19620	0.19520	+1.0	—		
		Nr. 3	3. Platte	16. 20. X	II. 1910.	$t_0 = 400^{\circ}.31.$	$\vartheta_0 = 6$	6730.31.		
1	12 59	398.3	0.0353	0.4115	0.06938	0.06819	+ 1.7			
3	1 3	398.5	0.1419	0.3847	0.06786	0.06734	+ 0.8	<u> </u>	_	
5	1 6	398.4	0.2671	0.3773	0.06738	0.06711	+ 0.4		-	
- 7 6	110 117	398.4 398.0	1.232 1.150	0.3801	0.06626	0.06720	- 1.4	-	_	
11	120	399.2	1.988	0.2978	(0.05789)	0.06459		_		
13	1 23	399.4	0.2583	0.2964	0.06446	0.06455	- 0.1	_	_	
15	126	399.5	0.1234	0.2911	0.06462	0.06438	+ 0.4	—	-	
19	1 29	100.0	0.0372	0.2885 0.2642	0.06427	0.06429 0.06353	+ 0.6 + 19		_	
$\tilde{21}$	1 40	400.1	0.1187	0.2621	0.06372	0.06346	+0.1	_		

[36]

Elektrische Leitfähigkeit des Bergkristalles.

Nr.	Zeit	Temp.	E	τ_m	Wm	1. Ausgleichung					
		P.				W_m	v				
	h m	0	Volt	sec 1/2	$10^3 arOmega$	$10^5 \Omega$	0/0				
23 25 27 29 31 33 35 37 39 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 400.2 \\ \pm 00.3 \\ \pm 00.5 \\ \pm 00.6 \\ \pm 00.8 \\ \pm 00.9 \\ \pm 01.0 \\ \pm 01.1 \\ \pm 01.1 \\ \pm 01.4 \end{array}$	$\begin{array}{c} 1.072\\ 1.964\\ 1.964\\ 0.0403\\ 0.0393\\ 0.980\\ 0.982\\ 0.1159\\ 0.1160\\ 0.4181\end{array}$	$\begin{array}{c} 0.2618\\ 0.2603\\ 0.2052\\ 0.2081\\ 0.1532\\ 0.1578\\ 0.1176\\ 0.1176\\ 0.1167\\ 0.4423\\ 0.4466\end{array}$	$\begin{array}{c} 0.06360\\ 0.06294\\ 0.06142\\ 0.06286\\ 0.05966\\ 0.05988\\ 0.05833\\ 0.05833\\ 0.05846\\ 0.06872\\ 0.06816 \end{array}$	$\begin{array}{c} 0.06345\\ 0.06341\\ 0.06167\\ 0.06176\\ 0.06002\\ 0.06016\\ 0.05890\\ 0.05887\\ 0.06916\\ 0.06929 \end{array}$	$\begin{array}{r} + \ 0.2 \\ - \ 0.7 \\ - \ 0.4 \\ + \ 1.8 \\ - \ 0.6 \\ - \ 0.5 \\ - \ 1.0 \\ - \ 0.7 \\ - \ 0.6 \\ - \ 1.6 \end{array}$				
	Nr. 34. Platte 16. 20. XII. 1910. $t_0 = 426^{\circ}.06$. $\vartheta_0 = 699^{\circ}.06$.										
$\begin{array}{c}1&3&5&7\\&9&1&1&3\\&1&5&7\\&1&1&5&2&5\\&1&1&2&2&5\\&2&2&5&2&2&9\\&3&1&3&3\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 425.3\\ 425.6\\ 425.9\\ 426.2\\ 426.2\\ 426.0\\ 4225.9\\ 4225.9\\ 4225.9\\ 4225.9\\ 4226.0\\ 4226.0\\ 4226.0\\ 4226.0\\ 4226.0\\ 4226.1\\ 426.2\\ 426.3\\ 426.3\\ 426.3\end{array}$	$\begin{array}{c} 0.0422\\ 0.1458\\ 0.785\\ 0.785\\ 0.783\\ 0.0392\\ 0.0392\\ 0.0387\\ 0.2079\\ 0.4119\\ 1.429\\ 1.429\\ 1.429\\ 0.4388\\ 0.0408\\ 0.0408\\ 0.0402\\ 1.053\\ 1.054\\ 0.1092 \end{array}$	$\begin{array}{c} 0.4914\\ 0.4935\\ 0.4862\\ 0.3341\\ 0.3288\\ 0.2438\\ 0.2442\\ 0.2442\\ 0.2442\\ 0.2472\\ 0.1556\\ 0.1556\\\\ 0.1166\\ 0.2850\\ 0.2888\\ \end{array}$	$\begin{array}{c} 0.04166\\ 0.04196\\ 0.04195\\ 0.04073\\ 0.04073\\ 0.04119\\ 0.04182\\ 0.04017\\ 0.04040\\ 0.04065\\ 0.04017\\ 0.03893\\ 0.03922\\ 0.03940\\ \hline \\ 0.03858\\ 0.04113\\ 0.04160\\ \end{array}$	$\begin{array}{c} 0.04228\\ 0.04229\\ 0.04223\\ 0.04098\\ 0.04095\\ 0.04095\\ 0.04094\\ 0.04023\\ 0.04024\\ 0.04024\\ 0.04024\\ 0.04026\\ 0.03952\\ 0.03953\\ 0.03951\\\\ 0.03919\\ 0.04058\\ 0.04061\\ \end{array}$	$\begin{array}{c} -1.5\\ -0.8\\ -0.7\\ -0.6\\ +0.6\\ +2.2\\ -0.1\\ +0.4\\ +1.0\\ -0.2\\ -1.5\\ -0.8\\ -0.3\\ -1.5\\ +1.3\\ +2.4\end{array}$				
	Nr. 35. Platte 16. 20. XII. 1910. $t_0 = 452^{\circ}.29$. $\vartheta_0 = 725^{\circ}.59$.										
$ \begin{array}{r} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 13 \\ 117 \\ 19 \\ 21 \\ 22 \\ 25 \\ \end{array} $	$\begin{array}{c} 5 & 18 \\ 5 & 22 \\ 5 & 30 \\ 5 & 36 \\ 5 & 36 \\ 5 & 38 \\ 5 & 56 \\ 5 & 58 \\ 6 & 10 \\ 6 & 10 \end{array}$	$\begin{array}{c} 452.0\\ 451.8\\ 451.9\\ 452.3\\ 452.3\\ 452.4\\ 452.5\\ 452.3\\ 452.3\\ 452.3\\ 452.2\\ 452.3\\ 452.2\\ 452.3\\ 452.2\\ 452.3\\ 452.4\\ 452.7\end{array}$	$\begin{array}{c} 0.0377\\ 0.4054\\ 0.4058\\ 0.0333\\ 0.1214\\ 0.4084\\ 1.022\\ 1.022\\ 0.1089\\ 0.1095\\ 0.4152\\ 0.4144\\ 0.4144\end{array}$	$\begin{array}{c} 0.6220\\ 0.6024\\ 0.4614\\ 0.3496\\ 0.3537\\ 0.3610\\ 0.3608\\ 0.2484\\ 0.2437\\ 0.1625\\ 0.1546\\ 0.1170\\ 0.3142 \end{array}$	$\begin{array}{c} 0.03169\\ 0.03126\\ 0.02982\\ 0.02934\\ 0.02906\\ 0.02908\\ 0.02908\\ 0.02900\\ 0.02782\\ 0.02782\\ 0.02782\\ 0.02737\\ 0.02753\\ 0.02688\\ 0.02895 \end{array}$	$\begin{array}{c} 0.03151\\ 0.03133\\ 0.03005\\ 0.02902\\ 0.02906\\ 0.02913\\ 0.02913\\ 0.02810\\ 0.02810\\ 0.02806\\ 0.02731\\ 0.02724\\ 0.02690\\ 0.02870\\ \end{array}$	$\begin{array}{c} + \ 0.6 \\ - \ 0.2 \\ - \ 0.8 \\ + \ 1.1 \\ 0.0 \\ - \ 2.2 \\ - \ 0.4 \\ - \ 1.0 \\ - \ 0.9 \\ + \ 0.2 \\ + \ 1.1 \\ - \ 0.1 \\ + \ 0.9 \end{array}$				
			Platte 21. P	latinierung A	. 13. I. 1911.						
1	3 25	246.2	-	∞	∞	—	-				
1 3 5 7 9 11	$\begin{array}{c} 4 & 31 \\ 4 & 35 \\ 5 & 5 \\ 5 & 34 \\ 5 & 38 \\ 5 & 41 \end{array}$	$\begin{array}{c} 453.0\\ 452.0\\ 454.5\\ 455.2\\ 455.4\\ 455.4\\ 455.6\end{array}$	$\begin{array}{r} 4.94 \\ 10.39 \\ 10.38 \\ 10.38 \\ 10.38 \\ 10.38 \\ 10.38 \end{array}$	∞ ∞ 0.3192 0.1772 ∞	5224 5295 4903 3472 2371 4920						

[37]

Richard Ambronn,

Nr	Zeit	Temn	E	1 70	W.,	Ausgleichung		
				1 - //		Wm ber.	ľ	
	h m		Volt	see ¹ 2	$10^{\circ}\Omega$	$10^5 \Omega$	۷',	
		Nr. 36. Wü	rfel 21 B. 20). I. 1911. $t_0 =$	$= 211^{\circ}.17.$	$\vartheta_0 = 484^{\circ}.17.$		
$\frac{1}{3}$	1 11 11 11 11 11	210.8 211.0	$2.844 \\ 10.46$	$0.2302 \\ 0.2232$	$1704 \\ 1814$	_	_	
$\frac{5}{7}$	$ 1 17 \\ 1 21 $	$\begin{array}{c} 211.3 \\ 211.6 \end{array}$	$10.455 \\ 10.46$	$0.3469 \\ 0.1352$	$1983 \\ 1572$			
		Nr. 37. Wü	irfel 21 B. 20). I. 1911. t_0	$= 264^{\circ}.86.$	$\vartheta_0 = 537^{\circ}.86.$		
1	2^{6}	264.1	2.675	0.1183	191.6	I —		
3 5	$\begin{array}{ccc} 2 & 14 \\ 2 & 17 \end{array}$	$264.4 \\ 264.4$	$\begin{array}{c} 4.96 \\ 10.44 \end{array}$	$0.1344 \\ 0.1396$	$\begin{array}{c} 206.8\\ 211.4 \end{array}$		_	
7	$ \begin{array}{ccc} 2 & 21 \\ 2 & 26 \end{array} $	264.6 264.8	$10.44 \\ 10.42$	$0.1391 \\ 0.2925$	208.0 224 7	_	_	
tĭ	2 29	265.0	10.44	0.2135	219.6			
		Nr. 38. Wi	irfel 21 B. 20). I. 1911. t_0	$= 304^{\circ}.55.$	$\theta_0 = 577^{\circ}.55.$		
$\frac{1}{3}$	$\begin{array}{ccc} 3 & 18 \\ 3 & 21 \end{array}$	304.5 304.5	$1.590 \\ 8.36$	0.5105 0.5083	$71.08 \\ 74.59$			
57	$\begin{array}{ccc} 3 & 25 \\ 3 & 29 \end{array}$	304.5 304.6	8.33 8.34	$0.2943 \\ 0.2994$	$67.62 \\ 66.68$		_	
9	3 32	304.5	0.953	0.2303	67.40	-	_	
$11 \\ 13$	3	304.4 304.4	1.774 10.39	0.1353 0.1348	64.48		_	
15	3 44	304.5	10.40	0.1192	64.18			
4		Nr. 39. Wi	irfel 21 B. 20). I. 1911. t_0	$= 354^{\circ}.06.$	$\vartheta_0 = 627^{\circ}.06.$		
13	$ \frac{4}{4} \frac{44}{47} $	353.1 353.2	$0.3970 \\ 2.073$	$0.3347 \\ 0.3287$	$21.910 \\ 21.655$	21.763 21.729	+ 0.7 - 0.3	
$\frac{5}{7}$	$5 11 \\ 5 15$	$354.3 \\ 354.5$	$7.55 \\ 7.55$	$0.2123 \\ 0.1802$	$21.010 \\ 20.915$	$21.065 \\ 20.882$	-0.3 + 0.2	
9 11	$5 18 \\ 5 23$	354.6	1.535 1.534	0.1977 0.1933	20.770 20.780	20.962 20.557	-1.0	
13	5 26	354.8	10.13	0.1229	20.530	20.555	-0.1	
$15 \\ 17$	5 31 5 34	354.9 354.9	10.13 1.050	$0.1122 \\ 0.1127$	20.435. 20.540	20.494 20.497	-0.3 + 0.2	
19	5 38	355.1	2.896	0.2081	21.020	21.041	-0.1	
4	10 14	Nr. 40. Wi	irfel 21 B. 24	4. I. 1911. t_0	$= 319^{\circ}.60.$	$\vartheta_{0} = 592^{\circ}.60.$		
3	$12 14 \\ 12 18$	319.2	8.37	0.7419	47.620	47.867	-0.5	
5 7	$\begin{vmatrix} 12 & 24 \\ 12 & 29 \end{vmatrix}$	$319.3 \\ 319.5$	$8.37 \\ 2.722$	$0.3949 \\ 0.2830$	$45.835 \\ 45.175$	$45.686 \\ 44.983$	$^{+0.3}_{+0.4}$	
9 11	$12 34 \\ 12 39$	319.4 319.4	2.722 2.722	$0.2164 \\ 0.1819$	44.530 44.420	44.565 44.347	-0.1 + 0.2	
13	12 42	319.5	8.62	0.1783	44.350	44.325	+ 0.1	
17	$12 40 \\ 12 49$	319.6 319.6	2.744	0.1432 0.1331	44.110 44.070	$44.104 \\ 44.040$	+ 0.0	
$\frac{19}{21}$	$12 55 \\ 12 58$	319.7 319.8	2.739 2.737	$0.1149 \\ 0.1104$	$ \begin{array}{r} 43.805 \\ 43.430 \end{array} $	$43.926 \\ 43.898$	-0.3 -1.1	
$\frac{23}{25}$	1 5	320.0 320.1	2.737 2.737	0.1594	44.265	44.206 44.809	+0.1 +0.3	
27		320.1	2.737	0.4288	46.140	45.900	+0.5	
49	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							
1	2 37	397.9	2.833	0.1995	9.3755	9.3183	+ 0.6	
9 9	$ \begin{array}{ccc} 2 & 41 \\ 2 & 45 \end{array} $	397.2 397.1	2.833 0.4181	0.3762	9.4690	9.4255	+ 0.5	
$\overline{\overline{7}}$	$12 50 \\ 12 55$	396.9 396.9	0.4181 0.4181	$0.2637 \\ 0.1149$	9.4080	9.3572 9.2670	+ 0.4 - 0.4	

[38]

Elektrische Leitfähigkeit des Bergkristalles.

215

				· · · · · · · · · · · · · · · · · · ·		Ausgleichung				
Nr.	Zeit	Тетр.	E	$\sqrt{\tau_m}$	W_m	Wm ber.	v			
	h m	0	Volt	sec 1/2	$10^{5} \Omega$	$_{10^5} \Omega$	°/0			
$\begin{array}{c} 11\\ 13\\ 15\\ 16\\ 29\\ 23\\ 25\\ 29\\ 31\\ 33\\ 35\\ 37\\ \end{array}$	$\begin{array}{c} 2 & 58 \\ 3 & 6 \\ 3 & 6 \\ 3 & 5 \\ 2 & 5 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 15 \\ 18 \\ 12 \\ 28 \\ 4 \\ 4 \\ 4 \\ 22 \\ 28 \end{array}$	$\begin{array}{c} 396.9\\ 396.9\\ 396.9\\ 397.4\\ 397.6\\ 397.7\\ 397.8\\ 397.9\\ 397.9\\ 397.9\\ 397.9\\ 397.9\\ 397.9\\ 397.9\\ 397.9\\ 398.0\\ 398.0\\ 398.0\\ 398.0\\ \end{array}$	$\begin{array}{c} 2.688\\ 2.689\\ 2.689\\ 0.4402\\ 0.4123\\ 0.4124\\ 0.4123\\ 2.818\\ 2.823\\ 0.4155\\ 0.4138\\ 2.812\\ 2.814\\ 10.36\end{array}$	$\begin{array}{c} 0.1166\\ 0.1428\\ 0.1655\\ 0.1664\\ 0.7580\\ 0.4177\\ 0.2424\\ 0.2469\\ 0.1435\\ 0.1356\\ 0.1034\\ 0.1039\\ 0.1997\\ 0.1884 \end{array}$	$\begin{array}{c} 9.2595\\ 9.2790\\ 9.3025\\ 9.6220\\ 9.4460\\ 9.3510\\ 9.3800\\ 9.2630\\ 9.2580\\ 9.2580\\ 9.2145\\ 9.2270\\ 9.3435\\ 9.3065\end{array}$	$\begin{array}{c} 9.2680\\ 9.2839\\ 9.2977\\ 9.2982\\ 9.6572\\ 9.4508\\ 9.3414\\ 9.3472\\ 9.2844\\ 9.2796\\ 9.2600\\ 9.2603\\ 9.3184\\ 9.3116\end{array}$	$\begin{array}{c} - \ 0.09 \\ - \ 0.05 \\ + \ 0.05 \\ - \ 0.10 \\ - \ 0.37 \\ - \ 0.05 \\ + \ 0.07 \\ + \ 0.35 \\ - \ 0.23 \\ - \ 0.23 \\ - \ 0.23 \\ - \ 0.49 \\ - \ 0.36 \\ + \ 0.27 \\ - \ 0.05 \end{array}$			
		Nr. 42. Wü	rfel 21 B. 24	I. 1911. t ₀ :	= 448°.82. 9	$_{0} = 721^{\circ}.82.$				
1 3 5 7 9 11 13	$\begin{array}{c} 5 & 31 \\ 5 & 34 \\ 5 & 5 \\ 5 & 42 \\ 5 & 47 \\ 5 & 50$	$\begin{array}{c} 448.6\\ 448.7\\ 449.0\\ 448.8\\ 448.8\\ 448.7\\ 448.6\\ 448.5\\ 448.5\end{array}$	$\begin{array}{c} 0.3001 \\ 1.574 \\ 1.574 \\ 6.455 \\ 6.45 \\ 0.3593 \\ 0.3591 \end{array}$	$\begin{array}{c} 0.7365\\ 0.5725\\ 0.3098\\ 0.3102\\ 0.1293\\ 0.1312\\ \end{array}$	$\begin{array}{c} 4.3765\\ 4.3325\\ 4.3165\\ 4.3190\\ 4.2950\\ 4.2840\end{array}$	$\begin{array}{c} 4.3644\\ 4.3451\\ 4.3141\\ 4.3141\\ 4.2928\\ 4.2931\end{array}$	+ 0.28 - 0.29 + 0.06 + 0.11 + 0.05 - 0.21			
15 17 19 21 23 25 27 29		$\begin{array}{c} +12.5\\ +18.9\\ +18.9\\ +18.9\\ +18.8\\ +18.8\\ +18.8\\ +18.9\\ +19.7\\ +150.2\end{array}$	$\begin{array}{c} 6.55\\ 6.55\\ 6.55\\ 6.55\\ 6.55\\ 6.55\\ 6.55\\ 0.4078\\ 0.4169\end{array}$	$\begin{array}{c} 0.1058\\ 0.1808\\ 0.1606\\ 0.2104\\ 0.3387\\ 0.5324\\ 0.3698\\ 0.1939 \end{array}$	$\begin{array}{c} 4.2750\\ 4.3090\\ 4.2995\\ 4.3115\\ 4.3210\\ 4.3305\\ 4.3190\\ 4.3010\end{array}$	$\begin{array}{c} \pm .2901 \\ \pm .2989 \\ 4.2965 \\ \pm .3024 \\ \pm .3175 \\ \pm .3403 \\ \pm .3212 \\ \pm .3004 \end{array}$	- 0.35 + 0.23 + 0.07 + 0.21 + 0.08 - 0.23 - 0.05 + 0.01			
	Nr. 43. Platte 20 B. 26. I. 1911. $t_0 = 209^{\circ}.17$. $\vartheta_0 = 482^{\circ}.17$.									
$ \begin{array}{c} 1\\ 3\\ 5\\ 7\\ 9\\ 11\\ 13\\ 15\\ 17\\ 19\\ 21\\ 23\\ 25\\ 27\\ 29\\ 31\\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 208.6\\ 208.7\\ 208.7\\ 208.7\\ 208.8\\ 208.9\\ 209.0\\ 209.1\\ 209.2\\ 209.7\\ 210.1\\ 210.3\\ 209.6\\ 209.5\\ 209.5\\ \end{array}$	$\begin{array}{c} 2.558\\ 9.355\\ 9.35\\ 2.111\\ 2.111\\ 9.25\\ 9.25\\ 2.111\\ 2.111\\ 2.111\\ 8.22\\ 8.23\\ 1.595\\ 1.595\\ 1.595\\ 1.595\\ 9.31\\ 5.99\end{array}$	$\begin{array}{c} 0.3755\\ 0.3691\\ 0.1946\\ 0.1970\\ 0.1619\\ 0.1536\\ 0.1407\\ 0.1149\\ 0.0911\\ 0.0883\\ 0.1500\\ 0.1446\\ 0.1766\\ 0.6945\\ 0.7246\\ 0.1908\\ \end{array}$	$\begin{array}{c} 12.305\\ 11.850\\ 39.865\\ 40.130\\ 39.470\\ 39.420\\ 39.260\\ 38.680\\ 38.285\\ 38.485\\ 39.185\\ 39.185\\ 39.295\\ 40.290\\ 46.250\\ 45.725\\ 39.780\\ \end{array}$	$\begin{array}{c} 12.083\\ 12.004\\ 39.860\\ 39.888\\ 39.457\\ 39.356\\ 39.197\\ 38.880\\ 38.588\\ 38.553\\ 39.311\\ 39.244\\ 39.638\\ 46.004\\ 46.373\\ 39.812\\ \end{array}$	$\begin{array}{c} + \ 0.53 \\ - \ 0.37 \\ + \ 0.01 \\ + \ 0.61 \\ + \ 0.03 \\ + \ 0.16 \\ - \ 0.52 \\ - \ 0.79 \\ - \ 0.18 \\ - \ 0.42 \\ + \ 0.13 \\ + \ 1.65 \\ + \ 0.54 \\ - \ 1.40 \\ - \ 0.08 \end{array}$			
		Nr. 44. Plat	tte 20 B. 26.	I. 1911. $t_0 =$	= 252°.30. 9°	$= 525^{\circ}.30.$				
1 3 7 9 11 13 15 17	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 250.9\\ 250.9\\ 251.0\\ 251.2\\ 251.3\\ 253.1\\ 253.2\\ 253.2\\ 253.2\\ 252.9\end{array}$	$\begin{array}{c} 0.4197\\ 0.4200\\ 2.481\\ 2.479\\ 8.81\\ 8.81\\ 0.4432\\ 0.4432\\ 0.4427\\ 0.4427\end{array}$	$\begin{array}{c} 0.7323\\ 0.6224\\ 0.6177\\ 0.2648\\ 0.2622\\ 0.2277\\ 0.2112\\ 0.1536\\ 0.1118\\ \end{array}$	$\begin{array}{c} 7.4440 \\ 7.0165 \\ 6.8970 \\ 5.8580 \\ 5.8515 \\ 5.6680 \\ 5.6680 \\ 5.4620 \\ 5.3280 \end{array}$	$\begin{array}{c} 7.3751 \\ 7.0126 \\ 6.9961 \\ 5.8287 \\ 5.8203 \\ 5.7055 \\ 5.6512 \\ 5.4606 \\ 5.3221 \end{array}$	$\begin{array}{r} + \ 0.93 \\ + \ 0.06 \\ - \ 1.42 \\ + \ 0.50 \\ + \ 0.54 \\ - \ 0.06 \\ + \ 0.03 \\ + \ 0.11 \end{array}$			

[39]

Richard Ambronn,

					1	1		1		
37	70:4	Town	F	1/~	TV	1. Ausgle	eichung	2. Ausgl	eichung	
D.L.	wen	Temb.	11	$V \epsilon m$	FFM	W_m ber. :	ŧU.	Wm ber,	2.0	
			l				- *			
	h m	0	Volt	sec 1/2	$10^5 \Omega$	$10^{5} \Omega$	0/0	$10^5 \Omega$	ю′ ₆	
	Nr. 45. Platte 20 B. 26. I. 1911. $t_0 = 298^{\circ}.84$. $\vartheta_0 = 571^{\circ}.84$.									
	4 40 1	9099	0.9965	0.5000	1 1 9615	1 1 2620	0.17			
2	4 49	200.0	1.678	0.5089	1 3980	1.0035	- 26	1 2227	- 0.19	
5	4 55	200.0	1.678	0.9963	1 1795		- 2.0	1 1782	± 0.43	
7	4 58	298.9	1.678	0.2799	1 1715		-0.5	1 1663	± 0.15	
9	51	298.9	1.678	0.2786	1.1720		-0.4	1 1654	+ 0.10	
11	$5\overline{6}$	298.9	1.677	0.1311	1.0512		-0.5	1.0578	-0.62	
13	5 12	298.9	0.1891	0.1407	1.0585	1.0649	-0.60			
15	5 15	298.9	0.1891	0.2408	1.1485	1.1460	+0.22	-		
17	$5 \ 19$	298.8	0.0920	0.1755	1.1005	1.0931	+0.68	_		
19	5 23	298.8	0.0995	0.1326	1.0575	1.0584	-0.09	-		
									5	
		Nr. 4	6. Platte	20 B. 30.	I. 1911. t _o	$= 283^{\circ}.97$	$\vartheta_0 = 5$	56°.97.		
1	1 98	0050	1 0.2064	L 0.4197	1 9 19 15	E 9 1965	0.00	ł.		
3	1 31	281.0	0.3064	0.4071	2 1335	2.1200 9 1175	-0.05 +0.75			
7	1 39	281.2	2.782	0.1746	1.8128	1.8100	+0.15	_		
9	$\hat{1}$ 42	283.9	2.782	0.1740	1.8042	1.8092	-0.28	1 _		
11	1 48	283.7	2.781	0.1385	1.7665	1.7623	+ 0.24	_		
13	1 51	283.7	0.3647	0.1393	1.7632	1.7633	-0.01	- 1		
15	1 55	283.9	0.3647	0.1000	1.7100	1.7114	-0.08	- 1		
17	1 58	284.0	2.782	0.1039	1.7210	1.7166	+0.26	- 1		
19	2 8	284.3	2.783	0.1649	1.7950	1.7971	-0.12	-	_	
21	2 11 9 16	284.4	0.2390	0.1661	1.7970	1.7988	-0.10	I —	_	
25	2 10	28±.0	0.2390	0.4194	2.1180	2.1339	-0.75	I		
		N 4	T D 1.44.	0010 04 -		0100.00	0 5	000.00		
		Nr. 4	· Platte	20 B. 31	1. 1911. t_0	$= 313^{\circ}.08$	$\vartheta_0 = 0$	86°.08.		
1	12 15	311.8	0.2943	0.1204	0.70515	0.70195	+0.46			
3	12 18	311.9	0.0935	0.1187	0.70620	0.70297	+0.46	I	—	
5	12 22	312.1	0.0935	0.2069	0.75377	0.76405	+1.37		—	
7	12 20	312.2	0.0935	0.2395	0.78505	0.77262	+1.74			
44	12 29	312.2	0.0935	0.1200	0.70515	0.70370	+0.33			
12	12 00	014.4 919.4	2.000	0.1100	0.09000	0.70272				
15	12 30 12 40	312.4	2.052	0.2077	0.72335	0.15102	1.04			
17	12 45 12 45	312.8	2.052	0.3225	0.81780	0.80002	-0.32	_	_	
19	12 48	313.0	2.052	0.3085	0.80510	0.81232	0.89	_		
21	12 51	313.0	1.073	0.3108	0.81450	0.81362	+0.09		i —	
23	12 54	313.1	1.073	0.6273	0.99690	0.99622	+0.07	- 1		
25	1 0	313.4	0.999	0.5857	0.97545	0.97212	+0.34			
27	1 3	313.5	0.999	0.1800	0.73405	0.73822	-0.57	_		
29	16	313.5	0.1494	0.1965	0.75475	0.74772	+0.94			
		Nr. 4	S. Platte	20 B. 31.	1. 1911. t_0	$= 353^{\circ}.30$	$\vartheta_0 = 6$	26°.30.		
1	1 54	353.0	0.0744	0.4450	0.33310	0.33279	+ 0.09			
3	1 57	353.1	0.0747	0.3427	0.30995	0.30753	+ 0.79			
5	2 0	353.1	0.4267	0.3447	0.30810	0.30799	+0.04			
7		303.2	0.4267	0.2453	0.28440	0.28349	+0.32	-		
ีย 11	2 10	000.4 959.6	0.918	0.2470	0.28310	0.28389	-0.28	-	-	
13	2 10	0.00 852.6	0.940	0.1655	0.20220	0.20587	- 0.02 - 0.71	-	-	
15	2 17	353.8	0.0634	0.1131	0.25140	0.20375	+ 0.71 + 0.25			
17	$\frac{1}{2}\hat{2}2$	353.8	0.2940	0.1136	0.24975	0.25089	-0.45			
19	$2 \ \overline{26}$	353.9	0.2938	0.1926	0.26950	0.27043	-0.34		_	
21	2 30	354.0	0.4250	0.4035	0.32100	0.32254	-0.46	1		

5

[40]
Nr.	Zeit	Temp.	. E	$\sqrt{\tau_m}$	W_m	1. Ausgl	eichung	2. Ausgl	eichung
						W_m ber.	v_1	W_m ber.	v_2
	h m	0	Volt	$\sec \frac{1/2}{2}$	$10^{5} \Omega$	$10^{5}\Omega$	0,0	$10^{5}\Omega$	0/0
		Nr. 4	9. Platte	20 B. 31. I	. 1911. t_0	$= 402^{\circ}.29.$	$\vartheta_0 = 67$	5º.29.	
1	3 8	$ \frac{401.7}{401.7}$	0.0377	0.1891 0.1253	0.09898	0.09913 0.09525	-0.2	_	_
õ	3 14	401.7	0.0377	0.3522	0.00000000000000000000000000000000000	0.10902	+0.5 +0.7	_	_
7	3 18	401.7	0.2610	0.3365	0.10738	0.10807	-0.6	-	_
11	321 324	401.9	0.2613	0.2132 0.1136	0.10116 0.09494	0.10059 0.09454	+0.6 -0.3		_
13	3 27	402.3	0.2611	0.1778	0.09882	0.09843	+ 0.4	_	·
15 17	3 31	402.3	1.476	0.1676	0.09716	0.09782	-0.7		—
19	5 5± 3 37	402.4	1.476	0.1058 0.1483	0.09518 0.09617	0.09407	-0.9 -0.5		
21	3 40	402.4	1.478	0.2342	0.10064	0.10186	-1.2	-	
23 25	$3 \frac{13}{4}$	402.4	0.1365	0.2315 0.2307	0.10212 0.10212	0.10170 0.10165	+0.4 +05		
27	$\frac{1}{4}$ $\frac{10}{57}$	403.0	1.756	0.1421	0.09746	0.09627	+1.2		
29	51	403.0	0.2824	0.1442	0.09665	0.09640	+ 0.3 ·	-	—
			Ni	. 49 a. Pl	atte 20 B.	31. I. 1911			
1	6 6	452.4	0.0816	0.1415	0.04150	-	_	-	_
3 5	6 10	452.5	0.0816	0.12 ± 1 0.1241	0.04163 0.04094				
Ũ		Nr. 5	0. Platte	22. 28. II.	1911. to :	$= 165^{\circ}.89.$	$\vartheta_0 = 43$	1 18º.89.	I
1	11 27	165.4	2.625	0.7734	903.0	914.9	- 1.3	- 1	
3	11 32	165.4	10.51	0.6346	865.2	858.3	+ 0.8		
9 7	11 36 11 10	165.9 166.0	10.51 10.19	0.2699	628.1	649.0	$+ 8.0 \\ - 3.2$	-	
9	11 45	165.9	143.9	0.2430	667.9	698.8	-4.1	_	_
		Nr. 5	1. Platte	22. 28. II.	1911. t _o =	= 224 .19.	$\vartheta_0 = 49$	7º.19.	
1	12 35	223.5	2.730	0.4157	39.15	38.48	+ 1.74	- 1	-
3	12 39 12 13	223.6 223.6	2.728	0.2861 0.2437	35.38	35.08	+0.86 -0.06	_	_
7	$12 + 10 \\ 12 + 10 \\ 16$	223.7	2.727	0.1852	32.18	32.43	-0.00 -0.77		
9	12 49	223.8	2.727	0.1548	31.54	31.63	-0.28	—	—
11	$12 \ 57$ $12 \ 57$	223.9	2.727	0.1028	30.50	30.65	-0.49 -0.69		_
15	1 1	224.1	2.731	0.0966	30.02	30.10	-0.27	-	_
17		224.2	2.732	0.1732	32.00	32.11	-0.34	—	—
21	$1 \frac{1}{20}$	224.5	2.731	0.6304	44.86	44.10	$^{+1.40}_{+1.72}$	_	_
23	1 25	224.4	2.731	1.0510	$54\ 50$	55.11	-1.11		—
25	1 30	224.4	10.17 10.46	0.5746 0.2628	42.15	$\frac{42.64}{34.46}$	-1.17 -0.46		
29	131	224.5	10.46	0.1229	30.46	30.79	-1.07	·	
31	1 41	224.5	100.9	0.1326	29.12	-		_	
33 35	$1 \frac{1}{1} \frac{1}{49}$	224.0 224.7	$\frac{99.\pm}{2.740}$	0.3732 0.2672	34.17 34.82	34.58	+0.69		
		Nr. 5	2. Platte	22. 28. II.	1911. to =	$= 271^{\circ}.40.$	$\vartheta_0 = 54$	40.40.	
1	2 55	271.1	0.4128	0.2003	5 2760	5 2920	-03	5 2639	± 0.93
3	2 59	271.3	0.4125	0.1390	4.8385	4.9775	-2.8	4.8909	-1.07
5 7	3 6	271.6 271.6	0.4106 0.4119	$0.3302 \\ 0.8276$	6.0270 8.4635	5.9600	+1.1 -0.6	6.0524	-0.42
9	3 16	271.6	1.853	0.8210 0.7921	8.1620	8.3350	-2.1	8.8594	-7.6
11	3 21	271.6	$1.85\pm$	0.4243	6.6565	6.4450	+ 3.3	6.6244	+0.48
13 15	3 27 3 31	271.6	2.075	0.2369 0.1129	5.5700 4 7385	5.4810 4.8350	+1.6 -2.0	5.4854 4 73 1.1	+1.51 +0.00
17	3 35	271.6	8.51	0.1101	4.7065	4.8290	-2.0	4.7154	-0.19
19	3 39	271.6	10.43	0.3798	6.3385	6.2160	+ 2.0	6.3544	- 0.25
<u></u>	040	411.0	0.4402	0.5882	0.3770	0.2080	+1.9	0.4044	- 0.42

Nova Acta CI. Nr. 3.

[41]

 $\overline{28}$

Richard Ambronn,

27	m				TIT	1. Ausglei	chung	2. Ausgle	ichung	3. Ausglei	chung
NT.	Temp.	Zeit.	E	$ \tau_m$	11 m	Wm ber.	ľ 1	Wm ber.	v_2	Wm ber.	v_3
	hm	0	Volt	sec 1'2	$10^5 \Omega$	$10^5 \Omega$	0/0	$10^5 \Omega$	0/0	$10^5 \Omega$	0/0
			Nr.	53. Pl	atte 99	28 IF 1911	<i>t.</i> —	337º 85 9.	$= 610^{\circ}$	85	
$\begin{array}{c}1\\3\\5\\7\\9\\11\\13\\5\\17\\9\\23\\5\\29\\23\\3\\3\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	337.8 337.9 337.9 337.9 337.9 337.9 337.9 337.9 337.9 337.9 337.8 337.8 337.8 337.8 337.8 337.8 337.8 337.8 337.8 337.9 337.9 337.9	$\begin{array}{c} 0.2417\\ 0.2353\\ 0.2350\\ 0.2347\\ 0.2353\\ 0.2353\\ 0.2353\\ 0.2353\\ 2.384\\ 2.384\\ 2.384\\ 10.42\\ 10.42\\ 10.42\\ 10.43\\ 120.9\\ \end{array}$	$\begin{array}{c} 0.1166\\ 0.1287\\ 0.1954\\ 0.2611\\ 0.3122\\ 0.4198\\ 0.6670\\ 0.8968\\ 0.8960\\ 0.2778\\ 0.1566\\ 0.1124\\ 0.0988\\ 0.1309\\ 0.1802\\ 0.3574\\ 0.3378\end{array}$	$\begin{array}{c} 0.7055\\ 0.7142\\ 0.7608\\ 0.8024\\ 0.8292\\ 0.8794\\ 0.9726\\ 0.9726\\ 0.9726\\ 0.9726\\ 0.04888\\ 0.8119\\ 0.7361\\ 0.7016\\ 0.6889\\ 0.7696\\ 0.7544\\ 0.8516\\ 1.2878\\ \end{array}$	$\begin{array}{c} 0.7087\\ 0.7160\\ 0.7561\\ 0.7956\\ 0.8263\\ 0.8910\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} -0.45\\ -0.25\\ +0.62\\ +0.85\\ +0.35\\ -1.30\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	0.9702 1.0541 1.0539	$ \begin{array}{c} - \\ - \\ - \\ + 0.25 \\ + 0.28 \\ - 0.48 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $	$\begin{array}{c} 0.7221\\ 0.7275\\ 0.7572\\ 0.7865\\ 0.8092\\ 0.8571\\ 0.9672\\ 1.0696\\ 1.0692\\ 0.7939\\ 0.7939\\ 0.7203\\ 0.7142\\\\ 0.7505\\ 0.8294\\\end{array}$	$\begin{array}{c} -2.30\\ -1.83\\ +0.48\\ +2.02\\ +2.47\\ +2.60\\ +0.56\\ -1.18\\ -1.90\\ +2.27\\ -0.51\\ -2.60\\ -3.54\\ +0.52\\ +2.68\\ \end{array}$
			Nr. 54.	Platte	e 1. III.	und 6. III. 1	911. t_{0}	$= 315^{\circ} 08.$	$\vartheta_0 = 5$	88°.08.	
$\begin{array}{c}1\\3\\5\\7\\9\\11\\3\\15\\7\\9\\12\\22\\22\\7\\9\\1\\33\\5\\3\\9\\1\\4\\4\\5\end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 313.4\\ 313.9\\ 313.9\\ 314.2\\ 314.6\\ 314.6\\ 314.6\\ 314.6\\ 314.6\\ 314.6\\ 314.6\\ 314.7\\ 314.8\\ 315.0\\ 315.0\\ 315.2\\ 315.5\\ 315.5\\ 315.5\\ 315.5\\ 315.7\\ 315.8\\ 316.7\\ 31$	$\begin{array}{c} 0.2647\\ 0.2647\\ 0.2641\\ 0.2640\\ 0.2640\\ 2.172\\ 2.173\\ 0.3019\\ 0.3019\\ 0.3019\\ 0.3019\\ 1.969\\ 10.23\\ 0.3019\\ 10.23\\ 0.3019\\ 10.23\\ 0.2544\\ 0.2544\\ 10.23\\ 0.2544\\ 10.23\\ 0.2656\\ 0.2649\\ \end{array}$	$\begin{array}{c} 0.2116\\ 0.1367\\ 0.3186\\ 0.8112\\ 0.1176\\ 0.0152\\ 0.0057\\ 0.5440\\ 0.3942\\ 0.2924\\ 0.2893\\ 0.2926\\ 0.2988\\ 0.2096\\ 0.1743\\ 0.1813\\ 0.1411\\ 0.1206\\ 0.1108\\ 0.1114\\ 0.1205\\ 0.1114\\ 0.2305\\ \end{array}$	$\begin{array}{c} 1.5028\\ 1.4078\\ 1.6225\\ 1.9870\\ 1.3586\\ 1.3595\\ 1.3257\\ 1.6840\\ 1.5885\\ 1.5081\\ 1.5136\\ 1.5975\\ 1.5085\\ 1.4275\\ 1.3858\\ 1.4276\\ 1.3426\\ 1.3425\\ 1.2944\\ 1.3116\\ 1.4470\\ 1.4960\\ \end{array}$	$\begin{array}{c} 1.4886\\ 1.3879\\ 1.6325\\\\ 1.3622\\ 1.3590\\ 1.3463\\ 1.7845\\ 1.6867\\ 1.5623\\ 1.4778\\ 1.4753\\ 1.4778\\ 1.4753\\ 1.4778\\ 1.4753\\ 1.4778\\ 1.3557\\ 1.3552\\ 1.3450\\ 1.3352\\ 1.3270\\ 1.3268\\\\\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} + 0.95 \\ + 1.43 \\ - 0.62 \\ - 13.3 \\ - 0.26 \\ + 0.04 \\ - 1.53 \\ - 2.13 \\ - 0.16 \\ + 1.68 \\ + 2.05 \\ + 2.05 \\ + 4.3 \\ + 1.31 \\ + 0.44 \\ + 3.0 \\ - 0.64 \\ - 1.12 \\ - 1.70 \\ - 2.46 \\ - 1.1 \\ - \\ - \end{array}$	1.5453 	$ \begin{array}{c} - & - \\ - & - $		
$ \begin{array}{c} 1 \\ 3 \\ 5 \\ 7 \\ 9 \\ 11 \\ 13 \\ 15 \\ 17 \\ 19 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 402.0\\ 402.1\\ 402.1\\ 402.2\\ 402.4\\ 402.4\\ 402.4\\ 402.4\\ 402.5\\ 402.5\\ 402.7\end{array}$	Nr. 0.0751 0.0751 0.3301 0.3298 0.3295 0.3295 2.816 2.818 0.1378 0.1375	 55. P1 0.2657 0.3676 0.3674 0.2672 0.1689 0.1406 0.1509 0.1191 0.1203 0.1100 	atte 22. 0.20190 0.20695 0.20552 0.20032 0.19192 0.18930 0.19012 0.18617 0.18718 0.18610		$\begin{array}{c} t_0 = \\ +1.15 \\ -0.77 \\ -1.42 \\ +0.28 \\ +0.41 \\ +0.34 \\ +0.30 \\ -0.33 \\ +0.16 \\ +0.06 \end{array}$	402°.29. θ ₀ 	= 675°.	29.	

[42]

Nr	Zeit	Temn	E	$1/\overline{\tau_m}$	Wm	1. Ausglei	chung	2. Ausglei	ichung
F11.		romb.		V 0.276	,, 115	W_m ber.	v_1	W_m ber.	V 2
	h m	0	Volt	sec 1/2	$10^{5} \Omega$	$10^5 \Omega$	0 0	105 \Omega	0 6
		Nr. 56	Platte 2	2. 6. III.	1911. $t_0 =$	= 459°.25. 9	$_{0} = 735$	2º.25.	
1	4 3	458.8	0.3007	0.3248	0.08012	0.07995	+0.21	- 1	_
3	4 7	458.3	0.3007	0.3526	0.08048	0.08035	+0.16	—	-
3 7	$ \frac{\pm 11}{4 16} $	$\pm 38.\pm 458.7$	0.3007 0.3007	0.5579	0.08323	0.08325 0.08599	-0.02 -0.08		_
9	± 21	$\frac{100.1}{159.1}$	0.3007	0.1840	0.07802	0.07797	+0.06		_
11	4 25	$\frac{459.3}{150.6}$	0.2393	0.1405	0.07729	0.07735	-0.08	—	
10	± 40	#00.0	0.2000	1 0.110±	0.01001	0.01104	-0.22	_	1
		Nr. 57.	Platte 2	1 C. 11. V	II. 1911. t	$t_0 = 220^{\circ}.0_{\circ}$	$\vartheta_0 = i$	193°.0.	
1	12 15	319 ± 210.6	7.87	0.7928	949.2	954.9	-0.60	-	
5	$12 21 \\ 12 25$	219.0 219.9	7.88	0.3003 0.4896	881.5	882.6	-0.43		
7	12 29	220.2	7.87	0.3189	848.2	842.0	+0.73		_
9 11	$12 \ 33 \\ 12 \ 37$	220.5 220.6	7.88	0.1668	800.0	805.7	-0.71 +0.32		_
				1 0.2000		1 00110	11000	I	l
	_	Nr. 58.	Platte 2	1 C. 11. V	II. 1911. <i>t</i>	$t_0 = 281^{\circ}.0.$	$\vartheta_0 = 0$	55 4º 0.	
1	1 16	280.3 280.4	2.725 2.725	0.1903	87.68	87.85	-0.19		
5	$1 \frac{1}{25}$	280.4 280.6	2.725	0.6811	103.82	104.08	-0.05	_	
7	1 29	280.9	2.723	0.5469	99.78	99.64	+0.14	·	-
11	1 33	$\frac{281.0}{281.1}$	2.724	0.3778	94.00 87.55	9 1 .00 87.51	+0.18 +0.05		_
13	1 42	281.2	2.725	0.1541	86.54	86.66	-0.14		
15	1 46	281.3	2.724	0.3771	93.97	94.02	−0.05		—
		Nr. 59.	Platte 2	1 C. 11. V	TI. 1911. <i>i</i>	$t_0 = 346^{\circ}.0.$	$\vartheta_0 = 0$	619º.0.	
1	2 23	345.6	2.331	0.3826	17.98	17.99	-0.06	17.84	+0.79
3 5		345.9 346.1	2.331	0.4248 0.6645	18.22	18.23	-0.05	18.04 19.13	+1.00 ± 0.78
7	$\frac{1}{2}$ 36	346.3	2.331	0.9354	20.16	_		20.36	-0.98
9	$2 \frac{41}{5}$	346.4	2.330	0.1996	16.94	16.96	$\left -0.12 \right $	17.01	-0.41
13	2 + 3 2 + 9	346.7	2.331	0.1011 0.1334	16.75	16.59	-0.12 -0.06	16.85 16.71	-0.59 -0.78
15	2 54	346.8	2.331	0.1907	16.93	16.91	+0.12	16.97	-0.24
17	2 58	346.8	2.331	0.2797	17.48	17.42	+0.31	17.37	+0.63
		Nr. 60.	Platte 2	1 C. 11. V	II. 1911. t	$t_0 = 405^{\circ}.0$	$\vartheta_0 = 0$	578°.0 .	
1	3 46	405.0	0.4214	0.6264	5.926			5.915	+0.19
5 5	3 50	$\frac{\pm 00.1}{405.2}$	0.4209 0.4209	0.4806 0.3414	5.782	5.755	-0.02 +0.47	5.829 5.738	+0.81 +0.77
ž	3 58	405.3	0.4209	0.2301	5.674	5.661	+0.23	5.669	+0.09
9	$\frac{4}{1}\frac{2}{6}$	$\frac{105.4}{105.5}$	0.4209	0.1986	5.646	5.635	+0.20	5.649 5.699	-0.05
11	4^{+0}	405.0	$0.\pm 209$ 0.4206	0.1000	5.799	5.795	+0.00 + 0.07	5.025 5.767	+0.75
15	+ 1+	405.6	0.4203	0.8065	6.023	-		6.027	-0.07
17	$\frac{1}{4}$ 18	$\frac{405.5}{105.5}$	2.820	0.8163	5.975	5.857	_0.59	6.033 5.812	-0.96
21	$\frac{1}{4}$ $\frac{23}{27}$	405.5	2.830	0.3006	5.740	5.721	+0.33	5.713	+0.17
23	4 31	+05.1	2.830	0.1842	5.629	5.623	+0.11	5.640	-0.20
20	4 35	404.9	2.831	0.1384	9.998	5.98 1	-0.17	0.612	-0.96

[43]

219

28*

Richard Ambronn,

Nr	Zait	Tama	T	1/-	117	1. Ausglei	chung	2. Ausglei	chung
Nr.	Leit	remp.	Ľ	$\downarrow \tau_m$	VV m	Wm ber.	v_1	Wm ber.	v_2
	h m	0	Volt	sec 1/2	$10^5 \Omega$	$10^5 \Omega$	0/0	10 ⁵ <u>Ω</u>	1 0/0
		N., 44	DI. (4) 0		TT JOJJ	1 1010.0	0	5940.0	
	- 07	Mr. 61	Platte 2	$1 \ C. \ 11. \ V$	/11. 1911.	$t_0 = \pm 61^{\circ}.0.$	$\vartheta_{v} =$	734".0.	
1	5 34	+60.2 +60.6	0.2832 0.2826	0.1631	2.470	$2.\pm 76$ 2.540	-0.21 -0.28	_	_
õ	5 38	460.7	0.2826	0.3764	2.506	2.504	+0.08		i —
7	5 <u>42</u>	$\frac{460.9}{161.0}$	0.2826	0.3182	2.493	2.496	-0.12		-
11	5 ±0 5 50	+61.0	0.2826 0.2826	0.22 ± 8 0.1720	2.474	2.484	-0.12 -0.12		_
13	5 54	± 61.1	0.2828	0.1346	2.470	2.472	-0.08		
15	5 58	$\frac{161.2}{161.2}$	0.2828	0.2000	2.488	2.480	+0.32		-
19		$\frac{\pm 01.2}{\pm 61.1}$	2.155 2.134	0.1244 0.1696	$2.\pm0\pm$ 2.472	2.476	-0.24 -0.16		_
21	6 12	± 60.9	2.134	0.2876	2.496	2.492	+0.16	_	-
23 25	6 16 6 20	$\frac{460.8}{160.8}$	2.135 2.125	0.3972 0.6790	2.512 2.511	2.506	+0.24	_	—
27	$6 \frac{20}{25}$	$\frac{100.0}{160.9}$	2.135 2.136	0.0750 0.9745	2.531 2.580	2.583	+0.28 +-0.12	_	
29	6 29	461.0	2.136	1.3150	2.609			—	1
31	6 30	± 61.0	2.136	0.3178	2.504	2.496	+0.32		I —
		Nr. 62	• Platte 2	ei C. 11. V	7 II. 1911.	$t_0 = 354^{\circ}.0.$	$\vartheta_{\upsilon} =$	627°.0.	
1	7 5	353.9	2.800	0.5891	15.721	15.760	-0.25	. —	, —
0 5	7 10 7 14	354.8 354.7	2.798 2.796	$0.2960 \\ 0.1560$	14.800 14.214	$1\pm.753$ 14.272	+0.66 -0.41		
	·			012000			0.11	2	
	40.10		Nr.	63. Plati	ie 34 A. 2	5. VII. 1911.			
1-7	12 ± 0	214.2	10 21	0.0	∞		_	—	-
1	1 1 0	444.0	10.22	$\infty - 0.5$	∞	—	_	-	_
		Nr. 64.	Platte 3-	4 B. 28. V	II. 1911.	$t_0 = 213^{\circ}.0.$	$\vartheta_0 =$	±86°.0.	
1	11 ±	213.2	10.40	0.4462	1790.6	1799.2	-0.48	—	
8 5	11 8 11 19	213.2 913.1	$10.\pm0$ 10.40	$0.3366 \\ 0.1611$	1683.0 1456.1	1669.2	+0.83		_
0	11 12	210.1	10.10	0.1011	1100.1	1101.0	0.01		
		Nr. 65.	Platte 34	B. 28. V	II. 1911.	$t_0 = 277^{\circ}.0.$	$\vartheta_0 = i$	550°.0.	
1	$11 ext{ } 04 \\ 11 ext{ } 58 $	276.8 277.0	10.43 10.43	0.0708 0.3397	120.61 145.86	10600 14551	-0.28 ± 0.21	_	_
ð -	$12^{11} 2$	277.2	10.43	0.0001 0.1741	137.54	137.96	-0.30	_	_
7	12 6	277.2	10.42	0.3292	145.34	145.03	+0.21	—	- 1
υ	12 10 1	211.0	10.42	0.±9±2	192.10	192.99	+0.14		
		Nr. 66.	Platte 34	B. 28. V	II. 1911. <i>i</i>	$t_0 = 340^{\circ}.0.$	$\vartheta_0 = 0$	313°.0.	
1	12 57	340.1	2.668	0.2496	26.38	26.27	+0.42	26.27	+0.42
อ ถ	1 1 1 1 1 5	-340.3 -340.6	2.668 2.668	0.1685 0.2971	25.80 26.54	$20.8\pm$ 26.52	-0.15 ± 0.08	20.90 26.48	-0.39 +0.23
$\ddot{7}$	1 38	339.7	2.681	0.7594	$\frac{20.01}{28}50$			28.58	-0.28
9	1 41	$\frac{340.0}{210.1}$	2.678	0.3356	26.78	26.72	+0.22	26.66	+0.45
13	$1 \pm \pm 1$ 1 ± 8	$\frac{5\pm0.1}{3\pm0.3}$	$\frac{2.076}{10.42}$	0.175 ± 0.1514	25.65 25.65	25.00 25.75	+0.04 -0.39	$\frac{25.95}{25.83}$	-0.13
15	1 52	3 ± 0.4	10.42	0.2662	26.37	26.36	+0.04	26.34	+0.11
17	1 55	340.6	10.42	0.4281	27.11	26.20	-0.33	27.08	+0.11
		Nr. 67.	Platte 3	4 B. 28. V	Л. 1911.	$t_{\circ} = \pm 02^{\circ}.0.$	$\vartheta_0 =$	675°.0.	
1	2 43	401.2	0.4252	0.1249	7.873	—		7.882	-0.12
3	2 46	$\frac{401.2}{101.2}$	0.4240 0.4920	0.2056	8.014		-	7.997	+0.21
7	$252^{\pm 9}$	401.2	0.4230	0.3201	8.243			8.258	-0.18

[44]

Nr.	Zeit	Temp.	E	$\sqrt{\tau_m}$	Wm	1. Ausgle	eichung	2. Ausgl	eichung
						W_m ber.		W_m ber.	v_2
	h m	0	Volt	sec 1/2	$10^5 \Omega$	105 Ω	0/0	$10^{5} \Omega$	0/0
9 11	256	401.5	2.453 2.468	0.3752 0.7302	8.263	8.241	+0.27 -0.42	_	_
13	3 6	±01.8	2.468	0.3046	8.207	8.174	+0.40	_	_
15 17	$\begin{vmatrix} 3 & 10 \\ 3 & 14 \end{vmatrix}$	$\begin{array}{c c} 401.8 \\ 402.0 \end{array}$	$\begin{bmatrix} 2.469 \\ 2.470 \end{bmatrix}$	$0.1966 \\ 0.1426$	8.063	8.070	-0.09 -0.25	-	
19	3 18	402.2	2.471	0.1316	7.966	8.007	-0.51	_	_
21	3 23	402.3	2.471	0.3700	8.285	8.237	+0.58	-	
		Nr. 68	• Platte a	84 B. 28. V	II. 1911.	$t_0 = 457^{\circ}.0$). $\vartheta_0 =$	730°.0.	
1	3 56	456.5	0.3886	0.1901	3.530	3.533	-0.09		
5 5	$\frac{\pm}{4}$	±00.± ±56.6	0.3897	0.1545	3.584	3.577	+0.11 + 0.19		_
7	<u>4</u> 8	456.9	0.3891	0.8370	3.667	3.670	-0.08	—	
9 11	$\frac{\pm 12}{416}$	± 30.9 ± 57.0	2.826	0.3507	3.548	3.567	+0.19 -0.50	_	
13	4 20	457.3	2.831	0.1622	3.512	3.527	- 0.43	-	
		Nr. 6	9. Platte	36. 2. VI	II. 1911. t	$= 214^{\circ}.0.$	$\vartheta_0 = 4$	87°.0.	
1	11 35	213.7	10.44	0.7380	342.5	332.6	$+ \frac{3.0}{5.7}$	-	-
6 ±	11 ± 0 11 51	$21\pm.5$ 212.9	10.44 10.44	0.3296	272.0	288.5	- 0.7 - 3.5		_
6	11 55 19 0	212.9	10.44	0.2737	274.9	281.4	-2.3	-	
10	$12 \ 0 \ 12 \ 4$	213.4 213.4	10.44	0.1281	275.8	265.3	$^{+1.4}_{+4.0}$		_
12	$12 16 \\ 12 10$	214.5	10.44	0.1502	275.2	267.8	+ 2.8 + 0.5		
TI	1-10	No		0.1000		9000 0	T 0.0		
1	1 1 2	лг. 4 1 970 1	0. Platte	50. 2. VH 1 0.5839	L. 1911. 7 ₀	$= 280^{\circ}.0.$	$\vartheta_0 = 0$	03°.U. I 90.18	_ 1.99
3	110 17	279.5	2.824	0.3861	24.91	25.22	-1.23	24.58	+1.34
5 7	$121 \\ 195$	279.7	$\frac{2.825}{2.826}$	0.3075 0.2147	23.21	23.08 20.51	+0.56 +0.83	22.75 20.58	+ 2.02 + 0.63
9	1 29	280.0	2.827	0.1585	18.96	19.00	-0.21	19.27	-1.61
11 13	$1\ 33$ $1\ 37$	280.2 280.2	2.827 2.827	0.1325 0.3023	18.08 23.18	18.29 92.94	-1.15 + 1.05	18.66 22.63	-3.11 + 2.43
	2 01	Nr. 7	1. Platte	36. 2. VIJ	I. 1911. t.	$= 336^{\circ}.5.$	$\vartheta_0 = 6$	09%5.	1 2:10
1	2 16	336.1	1.291	0.6371	6.105	6.401	- 4.7	6.163	-0.94
31 60	2 20	336.2	1.291	0.3705	5.347	5.381	-0.63	5.285	+1.17
7	224	336.4	1.292 1.292	0.2164	4.832	4.792	+0.40 +0.84	4.778	$^+$ 1.55 $^+$ 1.13
9	2 32	336.4	1.292	0.1558	4.581	$\frac{4.559}{4.199}$	+0.48	4.578	+0.07
13	2 42	336.5	1.292 1.292	0.1330	4.350	4.399	+ 0.02 - 1.12	4.440	-2.03
15	2 47	336.6	1.292	0.1730	4.622	4.625	- 0.06	4.635	-0.28
1	9.11	Nr. 7	2. Platte	36. 2. VII	II. 1911. t_0	$= 403^{\circ}.0.$	$\vartheta_0 = 6$	76°.0.	
3	$341 \\ 345$	402.6	0.3951	0.4108	1.4312	1.4352	-0.28		
	3 49	402.6	0.3954	0.3233	1.3790	1.3769	+0.15	-	
9	3 57	403.0	0.4081	0.1626	1.2749	1.2699	+ 0.39	_	
11 13	$\frac{1}{4}$ 1	$\frac{403.1}{103.2}$	$0.\pm081$	0.1524 0.1324	1.2665	1.2631 1.2505	+0.27		
15	4 11	403.4	0.4079	0.1390	1.2525	1.2505 1.2542	-0.01 -0.14		
17 19	417 492	$\frac{403.7}{403.8}$	0.4138 0.3472	0.1117	1.2310	1.2361	-0.41	_	
21	+ 31	403.7	1.967	0.1464	1.2562	1.2599 1.2592	-0.24	-	
100	+ 30	403.9	1.967	1 - 0.5813	1 4657	1 7 5506	- 56	·	

[45]

			1	1	1	1.4.4.		1.0.1	
Nr.	Zeit	Temp.	E	$\sqrt{\tau_m}$	W_m	I. Ausgie	chung	2. Ausglei	chung
			Vol4		101.0	H m Der.		1) m Der.	<i>P</i> ₂
	1. 10		VOIL	sec 72	105 22	10-32	0/0	105 32	v
		Nr.	73. Platt	e 36 - 2 V	III. 1911.	$t_{0} = 465^{\circ}0$	9. 738	0.0	
1	5 23	464.4	0.1694	0.6166	0.5377	0.5398	-0.39	-	_
3	5 27 5 31	464.4 464.5	$0.1694 \\ 0.1696$	0.4200 0.3304	0.5277 0.5215	0.5258	+0.36	_	_
$-\frac{6}{7}$	5 35	$\frac{101.0}{464.7}$	0.1696	0.2090	0.5118	0.5107	+0.22		-
9 11	$5 \frac{39}{543}$	$\pm 6\pm .8$ $\pm 6\pm .9$	$0.1696 \\ 0.1694$	0.1750 0.1403	0.5087 0.5041	0.5083	+0.08 -0.34	_	_
13 15	5 1 7 5 59	$\frac{+65.0}{+65.3}$	0.1694 0.1694	0.1167 0.2182	0.5022 0.5120	0.5041 0.5114	-0.38 ± 0.12	_	_
17	5 56	465.2	0.1694	0.4847	0.5303	0.5304	-0.02		_
19 21	$6 \ 4$	465.3	$\frac{1.039}{4.000}$	0.1683	0.5095 0.5057	0.5078	+0.33 -0.37		=
		Nr. 7	4. Platte	35. 4. VII	I. 1911. t _o	$= 220^{\circ}.0.$	$\vartheta_0 = 49$	93º.0.	
1 3	$ \begin{array}{ccc} 2 & 0 \\ 2 & 5 \end{array} $	220.0 220.1	$10.26 \\ 10.24$	0.3277 0.1585	$634.9 \\ 590.2$	630.3 599.4	+0.73 1-1.53		1
5	2 9	220.2	10.24	0.1790	607.5	603.2 627.5	+0.71		_
9	$213 \\ 217$	220.3	10.24	0.4185	611.4	646.9	+0.01 -0.39		
11	2 21	220.4	[10.2±] 0.698±	696.8	697.9		_	
		Nr. 7	5. Platte a	35. 4. VII	I. 1911. t _o	$= 298^{\circ}.0.$	$\vartheta_0 = 57$	71º.O.	
1	3 7	297.6	6.95	0.3137	39.59	39.54	+0.13	39.26	+0.84
3 5	$ 3 11 \\ 3 15 $	297.6 297.8	6.955 6.955	$0.1691 \\ 0.1476$	$37.71 \\ 37.41$	$37.71 \\ 37.44$	-0.00	$37.88 \\ 37.68$	-0.40 -0.71
7 9	$3 19 \\ 3 23$	297.8 297.8	6.95 6.95	0.3143 0.7295	$ \begin{array}{r} 39.52 \\ 43.08 \end{array} $	$ \begin{array}{r} 39.55 \\ 44.83 \end{array} $	-0.08 -40	39.27 43.22	+0.64 -0.32
		Nr. 70	6. Platte	35. 4. VII	I. 1911. t _o	$= 375^{\circ}.0.$	$\vartheta_{0} = 6$	£8º.0.	
1 3	$\frac{4}{4}$ $\frac{2}{6}$	374.1 374.1	$1.209 \\ 1.209$	$0.3659 \\ 0.2080$	6.957 6.771	6.963 6.764	+0.09 +0.10	6.892 6.761	+0.94 +0.15
$\frac{5}{7}$	$\frac{4}{1}$ 10	374.1 371.2	1.210	0.1524 0.1196	6.692	6.694	-0.03	$6.714 \\ 6.687$	-0.33 -0.37
9	4 18	374.3	1.210	0.2150	6.785	6.773	+0.14 +0.18	6.766	+0.28
$\frac{11}{13}$	$\frac{4}{4} \frac{22}{28}$	374.5 374.9	1.211 10.17	$0.9280 \\ 0.7592$	7.336 7.207			$7.361 \\ 7.220$	-0.34 -0.18
15 17	$\frac{4}{4}$ 32 $\frac{32}{36}$	375.1 375.1	10.17	$0.1700 \\ 0.1356$	6.712 6.668	6.716 6.673	-0.06	6.729	-0.25 -0.48
19	$\frac{1}{4}$ $\frac{50}{40}$	375.1	10.17	0.3027	6.877	6.883	-0.09	6.839	+0.56
		Nr. 73	. Platte	85. 4. VII	I. 1911. <i>t</i> .	<u> </u>	$\vartheta_{0} = 7$	35º.0.	
1	542	462.4	0.2732	0.4082	1.7816	1.7810	+0.03	— —	
3 5	$5 \frac{47}{5}$	462.0 461.8	0.2734 0.2734	0.2919	1.7750 1.7664	1.7719 1.7649	+0.17 +0.09		_
$\tilde{7}$	5 55	$\frac{461.7}{161.7}$	0.2734	0.1338	1.7583	1.7595	-0.07	_	_
11	6 3	462.0	0.2735 0.2735	0.2022	1.76 ± 1 1.76 ± 6	1.7648	-0.24 -0.01		_
$\frac{13}{15}$	$\begin{array}{ccc} 6 & 7 \\ 6 & 12 \end{array}$	$ 462.0 \\ 461.9 $	$0.2737 \\ 1.927$	$0.5842 \\ 0.5537$	1.7941 1.7931	1.7948 1.7924	-0.01 + 0.01	_	
17 19	6 16 6 20	$\frac{461.8}{461.9}$	1.929	$0.1804 \\ 0.1165$	1.7658 1.7561	1.7631	+0.15		-
21	6 24	462.1	10.21	0.1140	1.7402	1.7580	-1.0	1.7458	-0.32
23 25	6 28 6 37	462.2 462.2	10.21 10.21	$0.1528 \\ 0.3967$	1.7496 1.7707	1.7610 1.7802	-0.6 -0.5	1.748_{0} 1.7654	+0.06 + 0.30
$\cdot 27$	6 40	462.1	10.21	. 0.8911	1.7988	1.8189	-1.1	1.7996	-0.04

[46]

					· · · · · ·	1 1 1	രി	9 4 11		2 4 11		4 4 11	a]
Nr.	Zeit	Temp.	E	$\sqrt{\tau_m}$	W_m	W_m ber.	sg1. v1	W_{m} ber.	v _a	W_m ber.	v_{2}	W_m ber.	v_{Λ}
	h m	0	Volt	sec 1/2	$10^{5}\Omega$	105.Ω	0/0	105 \Q	0/0	105 Ω	0/0	105.2	0/0
		l	•	1 000 - 1						,			
			Nr.	78. Pla	atte 37.	8. VIII.	1911.	$t_0 = 212$	°.0.	$9_0 = 485$	°.0.		
1	$12 6 \\ 12 10$	210.0 211.2	10.47 10.47	0.5663 0.3470	$ 83.62 \\ + 48.83 $	86.22 53.12	-3.0 -8.1		_		_		
$\frac{5}{7}$	12 14	211.5	10.47	0.2048	28.52	31.68	-10.0			-		-	
9	12 10 12 10 12 12	211.9	10.47	0.1295	21.52	20.30	+ 6.0				_	. 	
11 13	$12 \ 27 \ 12 \ 31$	$212.1 \\ 212.2$	$10.46 \\ 10.46$	$0.1144 \\ 0.1798$	20.90	$18.01 \\ 27.89$	+16.0 -4.0		_		_	_	
15 17	$12 \ 36 \ 12 \ 40$	212. 1 212.5	10.46 10.46	0.5053	77.81 138.20	77.03 141.35	+ 1.0 - 2.2				_		
19	12 11	212.6	2.119	0.9983	157.20	151.42	$+ \frac{1}{3.8}$		—			-	_
$\frac{21}{23}$	$12 + 9 \\ 12 - 53$	212.0 212.7	2.115 2.115	0.5272 0.1599	26.92	24.89	+ 8.2		_				
25	12 57	212.8	2.115	0.1266	24.14	19.86	+21.6			I			_
			Nr.	79. Pla	atte 37.	8. VIII.	1911.	$t_0 = 297$	°.0.	$\theta_0 = 570$	°.0.		
1	$1 \frac{11}{10}$	296.2	1.647	0.3784	2.1530	2.2439	$-\frac{4.05}{2.17}$	-	_	I - 1		-	
5	1 ± 0 1 52	296.2 296.4	1.649 1.650	0.2790 0.1745	1.9005 1.6514	1.5005 1.5390	$+ 5.\pm 7$ + 7.31		_				_
7	$\frac{1}{2} \frac{56}{1}$	$296.6 \\ 296.8$	$1.649 \\ 1.650$	$0.1355 \\ 0.1182$	1.4558 1.3477	1.4041 1.3443	+ 3.68 + 0.25			_		_	
11	$\frac{2}{2}$ 6	297.0 207.3	1.650 1.650	0.2184 0.8421	1.7712 2.4675	1.6908	$+ \frac{4.76}{-36.6}$	_			_		
15	$\frac{2}{2}$ 14	297.±	0.1626	0.5087	1.9260	—	-29.9			_	_	—	_
17	$ \begin{array}{c} 2 & 18 \\ 2 & 22 \end{array} $	297.± 297.5	10.4192 10.31	$0.5002 \\ 0.5182$	1.9976 1.6361		-29.0 -39.9			_		_	
21 23	$\frac{2}{2} \frac{26}{30}$	297.6 297.7	$10.31 \\ 0.4071$	$0.1354 \\ 0.1332$	1.4300 1.2701	1.4035 1.3961	+ 1.89 - 9.01		_	_	_	_	_
25	$\frac{5}{2}$ $\frac{3}{4}$	297.7	0.1608	0.1298	1.2602	1.3843	- 8.98			_	_	— ·	
			Nr.	80. Pla	atte 37.	8. VIII.	1911. 1	$t_0 = 376^{\circ}$	0.0. d	$\theta_0 = 649$	¹⁰ .0.		
1	3 19	375.5	0.2432	0.4552	0.2442	0.2544	-4.0	i —	_	-		-	
3 5	$\begin{array}{c} 3 & 28 \\ 3 & 32 \end{array}$	375.6 375.7	$0.2429 \\ 0.2429$	$\left[\begin{array}{c} 0.3151 \\ 0.1870 \end{array} \right]$	0.2225 0.1943	0.2256 0.1992	-1.4 -2.5	_	_				
7	$\begin{array}{c} 3 & 36 \\ 3 & 40 \end{array}$	$375.8 \\ 375.9$	0.2429 0.2429	0.1357 0.1190	0.1811 0.1771	$0.1886 \\ 0.1852$	$- \frac{4.0}{4.4}$						
11	3 11	376.1	0.2432	0.1821	0.1962	0.1982	-1.0				—	—	—
15	3 54	376.1	0.2112 0.0572	0.5909 0.5102	0.5164 0.2674	0.2657	+0.6	_			_		
$\frac{17}{19}$	$\frac{3}{4}\frac{58}{15}$	$376.1 \\ 376.6$	$0.1749 \\ 0.1748$	$0.4923 \\ 0.5162$	$0.2641 \\ 0.2731$	$0.2621 \\ 0.2669$	+ 0.8 + 2.3	_			_		
21 23	$\frac{1}{4}$ 19	376.4 376.1	0.4298	0.4993	0.2663 0.2579	0.2635 0.2605	+ 1.1 - 1.0	_	_			_	_
25	4 27	376.5	2.813	0.5044	0.2359	0.2000	-12.1		_	. —		_	
$\frac{27}{29}$	$ \frac{4}{4} \frac{32}{36} $	$376.6 \\ 376.7$	2.814 1.009	$0.1657 \\ 0.1602$	$0.1956 \\ 0.1999$	0.1948 0.1937	+ 0.1 + 3.2		-	_			
31 33	$\frac{1}{4}$ 39 $\frac{1}{43}$	376.7 376.5	$0.3726 \\ 0.0598$	0.1605 0.1637	0.2004 0.2033	0.1937 0 1914	+ 3.5 + 16		_			_	
35	1 17	376.5	0.0597	0.1179	0.1887	0.1850	+ 2.0		—	—	_		
91	# 91	570.0	2.695	0.1184	0.2831			! — I	_	_			_
			Nr.	81. Pla	atte 37.	8. VIII.	1911.	$t_0 = 461$	°.0.	$\theta_0 = 734$	°.0.		
1	$5 \frac{49}{553}$	$\frac{459.6}{459.8}$	0.01756 0.01750	0.4367 0.2912	0.04941 0.04725	0.04872 0.04643	+ 1.42 + 1.77	_		0.04872 0.04648	+1.42 +1.66	_	_
5 7	5 57	$\frac{160.1}{160.2}$	0.01747	0.1760	0.04504	0.04463	+ 0.92		—	0.04471	+0.74		
9	6 6	$\frac{400.5}{460.5}$	0.01746 0.01744	0.1350 0.1141	0.04373 0.04278	0.04398 0.04365	- 0.57 - 1.99	_	_	0.04408 0.04376	-0.79 +2.24	_	_
11	6 10	460.7	0.01745	0.1936	0.04560	0.04490	+ 1.56	-		0.04498	+1.38	-	

[47]

Richard Ambronn,

Nr.	Zeit	Temp.	E	τ_m	W_m	1. Au Win ber.	v_1	2. Au Waber.	sgl. v_2	3. Au Wmber.	sgl. v_3	4. Au Wmber.	sgl. v.
	h m	0	Volt	see 1/2	$10^5 \Omega$	$10^5 \Omega$	0,0	105 <u>Q</u>	0,0	105 Ω	º/o	$10^{5} \Omega$	0,0
13		$\frac{460.7}{100.7}$	0.01755	0.6966	0.05263	0.05280	-0.32	-		0.05270	-0.13	- !	
10 17	6 21	$\frac{400.7}{460.8}$	0.001757	0.5045	0.05455	0.03343	+ 2.65	-	_	0.00029	-1.23	0.05121	-0.18
19 21		$\frac{461.0}{461.0}$	0.00606	0.1893 0.1243	0.0460_{10} 0.04402	0.04483 0.04381	+ 2.67 + 0.48				_	0.04558 0.04142	+1.08 - 0.90
23 25	$\begin{array}{c} 6 & 37 \\ 6 & 41 \end{array}$	$\frac{461.0}{461.0}$	$0.1394 \\ 0.3827$	0.1209 0.1185	0.04356 0.04330	$0.04376 \\ 0.04372$	-0.46 - 0.96	-	_	0.04387 0.04383	-0.71 -1.21	Ξ	
27	6 45	460.8	1.042	0.1133	0.04223	0.04364	- 3.24	0.04270	-1.10 ± 1.35	—	-	-	-
29 31	6 53	$\frac{100.0}{160.6}$	1.046	0.4313	0.04726	0.04864	-2.84	0.04530 0.04737	-0.23			_	_
-33	6 56	<u>4</u> 60.6	0.3073	0.4160	0.04898	0.04840	+ 1.20	-		0.04840	+1.20		-
			Nr.	82. Pla	atte 37.	8. VIII.	1911. <i>t</i>	= 275	o.0. E	$\theta_0 = 548$	8º.0.		
	= 011	0 0 0 0 1	0 -0-	0.1100	1 * 00	1 2050	00.1	1 1 000	0.0	1 1		I .	

-
-
-
_

messungen als Mittel der von den beiden Thermoelementen einzeln angezeigten Temperaturen erhalten wurde. Ferner ist die Spannung angegeben, die an der Platte gelegen hat. Von der Angabe der Stromstärken und der unmittelbar gefundenen Widerstandswerte ist abgesehen worden. Die beiden nächsten Spalten enthalten vielmehr sogleich die Quadratwurzel (wegen der späteren Rechnungen) aus dem Mittelwert der vier Periodenlängen des alternierenden Gleichstromes, die je während der vier Widerstandsmessungen bestimmt wurden, deren Resultat selbst zum Mittel vereinigt und auf die der Serie vorangestellte Mitteltemperatur t_0 reduziert unter W_m gegeben ist.

Aus diesen Größen wäre nun ihre Abhängigkeit von den drei Veriabeln: der Temperatur, der Frequenz und der Spannung zu ermitteln. Das ist hier am einfachsten dadurch zu erreichen, daß man zwei von ihnen durch Näherungswerte zunächst ersetzt und sukzessive vorrückend, eine nach der anderen genauer untersucht. In jeder Serie von Messungen ist die Temperatur nahe konstant gehalten und es ist daher nur noch eine kleine Korrektion an den gemessenen Werten anzubringen, um sie alle für gleiche Temperatur gültig zu machen. Andererseits ist der Einfluß der Frequenz nicht allzu groß gegenüber dem der Temperatur, der der Spannung sogar fast verschwindend, wie schon unmittelbar aus den Zahlenwerten der W zu ersehen ist, weshalb man den Temperaturkoeffizienten leicht mit ziemlich großer Annäherung erhalten kann. Dabei tritt allerdings das Bedenken auf, ob der von der Frequenz unabhängige Teil des gemessenen Widerstandes (der wahre Widerstand) und der den Veränderungen der den Elektroden benachbarten Quarzschichten entstammende, die Abhängigkeit von der Frequenz

224

[48]

darstellende Teil den gleichen Temperaturkoeffizienten besitzen, was ohne weiteres nicht festgestellt werden kann. Es ist das, wie später gezeigt wird, auch nicht der Fall, aber die dadurch bedingten Fehler erweisen sich als so klein, daß sie völlig vernachlässigt werden können.

Die genäherten Temperaturkoeffizienten nebst ihrer Abhängigkeit von der Temperatur wurden aus einer größeren Zahl von Platten bestimmt und zeigten sich so weit übereinstimmend, daß die gleichen Mittelwerte auf alle Platten angewendet werden konnten. Mit diesen ist dann die oben bereits erwähnte Reduktion der direkten Messungsresultate jeder Serie auf die Mitteltemperatur ausgeführt worden.

28. Nach mannigfachen Versuchen, die Abhängigkeit des scheinbaren Widerstandes von der Periodenlänge in einfacher Form darzustellen, war als die weitaus beste Annäherung an den wahren Verlauf der Ausdruck

$W = W_0 + a \sqrt{\tau}$

gefunden, in dem W_0 den gesuchten Widerstand für unendlich hohe Frequenz, der offenbar allein eine vergleichbare Größe zwischen verschiedenen Platten und Temperaturen in bezug auf den Widerstand darstellt, und *a* das Maßs für die Widerstandszunahme mit wachsender Periodenlänge des alternierenden Gleichstromes darstellt.

Infolgedessen müßte W_0 allein von der geometrischen Form der Platte und der Konzentration c der in ihr enthaltenen dissoziierbaren Verbindungen abhängig sein, während auf a die Art der Polarisationserscheinungen, der Dissoziationsgrad und die Beweglichkeit der Ionen einen besonderen Einfluß haben muß, auf die auch die jeweilig angelegte Spannung eine Einwirkung besitzen kann. Beide Größen ändern sich mit der Temperatur in hohem Maße, doch wird die genauere Behandlung dieses Einflusses erst in den nächsten Abschnitten erfolgen können.

29. Zunächst müssen W_0 und *a* aus sämtlichen auf konstante Temperatur reduzierten Serien bestimmt werden, um das Material in eine kürzere und daher übersichtlichere Form zu bringen.

Um die Allgemeingültigkeit der aufgestellten Beziehungen zu prüfen, grobe Rechnungs- und Beobachtungsfehler aufzufinden und um die Anordnung bei der Ausgleichung nach der Methode der kleinsten Quadrate möglichst zweckmäßig zu gestalten, wurden die Beobachtungen jeder Serie je in ein Koordinatensystem eingetragen. Leider ist es ausgeschlossen, die 82 Diagramme hier beizugeben. Es seien nur in Fig. II einige charakteristische Beispiele aufgeführt. Die Werte von W_0 und *a* hätten aus diesen Kurven

Nova Acta CI. Nr. 3.

29

[49]

graphisch ermittelt werden können, es schien aber doch, da es sich bei dem hauptsächlich interessierenden W_0 um eine Extrapolation handelt, durchaus notwendig zu sein, die Bestimmung durch Rechnung auszuführen, wobei auch der sehr stark wechselnden Sicherheit der Messungen in den verschiedenen Serien genügend Rechnung getragen werden kann. Denn ein brauchbares Maß für die Genauigkeit ist nur auf Grund einer Ausgleichung zu erzielen, die überdies bei nur zwei Variabeln sehr einfach und mit geringem Zeitaufwand durchzuführen ist.

Dabei ist es aber notwendig, die Fehler auf eine der Bestimmungsgrößen, auf die Widerstandsmessungen oder auf die Frequenzen allein zu werfen, sonst wird die Rechnung zu kompliziert. Es wurde für zweckmäßiger erachtet, die Widerstände als fehlerhaft anzuschen, weil bei ihnen wegen ihrer geringen Änderung innerhalb einer Serie die Genauigkeit nahe konstant ist, während die von 0,008-2,0 schwankenden Werte von $\sqrt{\tau}$ stets um einen bestimmten, gleichbleibenden Prozentsatz ihrer Größe unsicher sind. Denn τ wurde durch Abzählung der in etwa 20 Sekunden erfolgenden Umdrehungen einer mit dem Alternator fest verbundenen Scheibe ermittelt, wobei die Unsicherheit in der Zeitbestimmung auf etwa $\pm 1-2$ % zu schätzen wäre, die sich zudem durch die in der Formel auftretende Quadratwurzel auf die Hälfte vermindert. Wenn die Zahl der Messungen ausreichte und die Diagramme einen merklichen Einfluß der Spannung auf die gemessenen Widerstände erkennen ließen, wurde für jeden Satz mit nahe konstanter Spannung die Ausgleichung gesondert ausgeführt.

30. Die aus diesen Rechnungen gewonnenen Werte von W_0 und a sind in Tabelle 6 zusammengestellt. Um etwaige systematische Einflüsse irgend welcher bis jetzt noch nicht berücksichtigter Faktoren erkennen zu können, wurden die gewonnenen wahrscheinlichen Werte der W_0 und a in die zugehörigen Bedingungsgleichungen eingesetzt, die relativen Fehler

$$v = \frac{W_m - W_m}{W_m}$$
 ber.

aufgesucht und zusammen mit den $W_{m \text{ ber.}}$ (ev. für jede Spannungsgruppe getrennt) in Tabelle 5 aufgeführt. Die je für den Satz mit kleinster Spannung berechneten Werte sind in alle Bedingungsgleichungen der Serie eingesetzt, die entsprechenden berechneten Widerstände $W_{m \text{ (ber.)}}$ und die Fehler v aber kursiv gedruckt.

Bei höherer Spannung werden die scheinbaren Widerstände stets kleiner, da v negativ ist. Der Einfluß der Spannung wächst mit der Periodenlänge, was auch vollständig plausibel erscheint, wenn man annimmt,

Tabelle 6. Zusammenstellung der aus den Beobachtungen (5) berechneten W_0 und α .

Nr.	Platte	Datum	θ	Zahl d. Mess- ungen	W_0	$\log W_0$	a	$\log a$	(†renzen der Strom- stärke	m	p_w	p_a	muc	ma
			0		$10^{5} \Omega$		105	1	10-6 Amp.	0/0			0/0	0/0
1 2 3 4 5 6 1)	20 A "" "" ""	18. 8. 10 " 19. 8. 10 "	$\begin{array}{c} 455.0 \\ 500.5 \\ 552.0 \\ 607.0 \\ 585.0 \\ 650.0 \end{array}$	$12 \\ 14 \\ 16 \\ 14 \\ 14 \\ 18 \\ 18$	$\begin{array}{c} 154.37\\ 13.665\\ 1.5533\\ 0.27114\\ 0.42813\\ 0.12895 \end{array}$	$\begin{array}{c} 7.1886 \\ 6.1356 \\ 5.1913 \\ 4.4332 \\ 4.6316 \\ 4.1104 \end{array}$	$\begin{array}{c} 99.932 \\ 11.282 \\ 3.0459 \\ 1.0283 \\ 1.7762 \\ 0.3494 \end{array}$	$\begin{array}{c} 6.9997\\ 6.0524\\ 5.4837\\ 5.0121\\ 5.2495\\ 4.5433\end{array}$	$\begin{array}{c} 0.1 {-} 0.6 \\ 0.8 {-} 3.7 \\ 1.0 {-} 12.6 \\ 1.7 {-} 18.4 \\ 1.7 {-} 16.4 \\ 1.7 {-} 22.0 \end{array}$	$^{+2.35}_{0.51}$ $^{1.49}_{2.45}$ $^{1.43}_{+1.22}$	$\begin{array}{c} 0.185 \\ 0.09 \\ 0.130 \\ 0.225 \\ 0.093 \\ 0.22 \end{array}$	$\begin{array}{c} 0.0171 \\ 0.0066 \\ 0.0108 \\ 0.0238 \\ 0.0078 \\ 0.0189 \end{array}$	± 5.47 1.70 4.13 5.17 4.69 ± 2.61	+18.0 6.3 14.3 15.9 16.2 + 8.9
9	"	25	588.0	8	0.22087	4.3441	2.4703	5.3928	1.8-17.5	+1.52	0.027	0.0021	± 9.23	+33.2
$ \begin{array}{r} 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ \end{array} $	19 	23. 8. 10 24. 8. 10 	512.0 563.0 611.0 447.0 494.0 628.5 671.0 705.5 739.0	$23 \\ 18 \\ 18 \\ 12 \\ 14 \\ 26 \\ 24 \\ 12 \\ 21$	$\begin{array}{c} 26.129\\ 3.5949\\ 1.0167\\ 646.14\\ 59.533\\ 0.6764\\ 0.29086\\ 0.16411\\ 0.10257\end{array}$	$\begin{array}{c} 6.4171\\ 5.557\\ 5.0072\\ 7.8103\\ 6.7748\\ 4.8302\\ 4.4537\\ 4.2151\\ 4.0110\end{array}$	$\begin{array}{c} 7.1537\\ 1.7752\\ 0.2732\\ 387.90\\ 14.585\\ 0.23259\\ 0.08868\\ 0.04676\\ 0.02622\end{array}$	$\begin{array}{c} 5.8545\\ 5.2492\\ 4.4366\\ 7.5887\\ 6.1639\\ 4.3666\\ 3.9478\\ 3.6698\\ 3.4187\end{array}$	$\begin{array}{c} 0.4 {-} 3.7 \\ 0.9 {-} 7.2 \\ 1.2 {-} 26 \\ 0.03 {-} 0.15 \\ 0.4 {-} 1.4 \\ 1.7 {-} 36 \\ 1.8 {-} 32 \\ 3.7 {-} 166.5 \\ 2.7 {-} 158.0 \end{array}$	± 0.425 1.85 0.36 3.8 ± 0.79 1.06 0.84 0.92 ± 1.13	$\begin{array}{c} 1.13\\ 0.726\\ 1.295\\ 0.86\\ 1.103\\ 1.02\\ 2.20\\ 0.947\\ 2.555\end{array}$	$\begin{array}{c} 0.246\\ 0.127\\ 0.2496\\ 0.337\\ 0.164\\ 0.160\\ 0.480\\ 0.214\\ 0.8075\end{array}$	$\begin{array}{r} \pm 0.399\\ 2.17\\ 0.315\\ 4.1\\ \pm 0.75\\ 1.05\\ 0.57\\ 0.974\\ \pm 0.71\end{array}$	$\begin{array}{c} \pm 0.85 \\ 5.2 \\ 0.72 \\ 7.8 \\ \pm 1.94 \\ 2.66 \\ 1.22 \\ 2.00 \\ \pm 1.26 \end{array}$
$\begin{array}{c} 19\\ 19\\ 20\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22\\ 22$	116 37 37 37 37 37 37 37 37 37 37	26. 8. 10 " " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 604.0\\ 604.0\\ 604.0\\ 604.0\\ 698.0\\ 720.0\\ 739.5\\ 739.5\\ 147.83\\ 148.68\\ 148.68\\ 148.68\\ 148.68\\ 148.68\\ 148.68\\ 1520.77\\ 520.77\\ 500.19\\ 555.97\\ 500.19\\ 500.19\\ 503.10\\ 593.10$	$\begin{array}{c} 8\\ 8\\ 9\\ 20\\ 18\\ 14\\ 17\\ 10\\ 10\\ 8\\ 8\\ 6\\ 6\\ 15\\ 16\\ 8\\ 14\\ 6\\ 22\\ 10\\ 18\\ 10\\ 18\\ 40\\ 225 \end{array}$	$\begin{array}{c} 0.23751\\ 0.24009\\ 0.23526\\ 0.06760\\ 0.04195\\ 0.02538\\ 0.02151\\ 0.02132\\ 126.47\\ 12.456\\ 12.296\\ 12.445\\ 3.2281\\ 3.2535\\ 7.9150\\ 7.6417\\ 0.91176\\ 0.30421\\ 0.30612\\ 0.31253\\ 0.33379\\ 0.12561\\ 0.31253\\ 0.33379\\ 0.12561\\ 0.12423\\ 0.18060\\ 0.05518\\ 0.03823\\ 0.02583\\ 0.02583\\ \end{array}$	$\begin{array}{r} 4.3757\\ 4.3804\\ 4.3715\\ 3.8300\\ 3.6042\\ 3.4045\\ 3.3326\\ 3.3288\\ 7.1020\\ 6.0954\\ 6.0898\\ 6.0950\\ 5.5089\\ 5.5089\\ 5.5089\\ 5.5089\\ 5.5089\\ 4.4832\\ 4.4859\\ 4.4859\\ 4.4859\\ 4.5235\\ 4.0990\\ 4.2567\\ 3.7418\\ 3.5824\\ 3.4121\end{array}$	$\begin{array}{c} 0.17888\\ 0.17140\\ 0.17417\\ 0.03705\\ 0.01526\\ 0.02308\\ 0.01196\\ 0.01168\\ 14.383\\ 8.4788\\ 8.2522\\ 7.5755\\ 2.1990\\ 1.9047\\ 3.4300\\ 3.5256\\ 0.5086\\ 0.26478\\ 0.25126\\ 0.19328\\ 0.27390\\ 0.32745\\ 0.19328\\ 0.27390\\ 0.32745\\ 0.18712\\ 0.09707\\ 0.08539\\ 0.16324\\ 0.03160\\ 0.00823\\ 0.00914\\ \end{array}$	$\begin{array}{r} 4.25266\\ 4.2340\\ 4.2410\\ 3.5687\\ 3.1837\\ 3.6687\\ 3.9676\\ 6.1578\\ 5.9166\\ 5.8794\\ 5.3422\\ 5.2753\\ 5.5353\\ 5.5472\\ 4.7064\\ 4.4286\\ 4.4286\\ 4.4271\\ 3.9871\\ 3.9314\\ 4.2128\\ 3.4996\\ 2.9152\\ 2.9609\end{array}$	$\begin{array}{c} 3.4\\ 13.5\\ 32\\ 6.0-57\\ 9-104\\ 9-99\\ 25-33\\ 60-151\\ 0.2-0.8\\ 0.2-0.4\\ 1.2-1.7\\ 3.3-7.5\\ 0.4-0.6\\ 11.5-13.3\\ 0.3-2.0\\ 10.7-12.1\\ 0.5-17.6\\ 0.9-5.7\\ 9.7-16.4\\ 27.0-32.7\\ 10.5-35.7\\ 1.8-29.3\\ 117-202\\ 1.5-22.0\\ 4.3-320\\ 9.2-355\\ 11-366\end{array}$	$\begin{array}{c} \pm 1.28\\ 1.485\\ 2.64\\ 1.25\\ \pm 1.135\\ 2.95\\ 0.855\\ 0.091\\ 1.335\\ \pm 2.96\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.83\\ 1.91\\ 1.14\\ 1.15\\ 1.10\\ 0.965\\ 1.277\\ \pm 0.759\end{array}$	$\begin{array}{c} 0.85\\ 0.88\\ 1.16\\ 1.54\\ 1.87\\ 0.778\\ 0.775\\ 0.633\\ 1.55\\ 1.20\\ 1.224\\ 1.210\\ 1.224\\ 1.210\\ 1.174\\ 0.313\\ 2.327\\ 2.35\\ 1.224\\ 0.895\\ 0.036\\ 2.70\\ 1.25\\ 0.036\\ 2.70\\ 1.25\\ 0.779\\ 3.637\\ 2.25\\ 2.21\\ 1.25\\ 2.21\\ 1.25\\ 1.25\\ 2.21\\ 1.25\\ 1.25\\ 1.224\\ 1.25\\ $	$\begin{array}{c} 0.218\\ 0.2365\\ 0.295\\ 0.6997\\ 0.692\\ 0.171\\ 0.225\\ 0.212\\ 0.515\\ 0.407\\ 0.419\\ 0.419\\ 0.411\\ 0.343\\ 0.370\\ 0.624\\ 2.169\\ 0.551\\ 0.0624\\ 2.169\\ 0.551\\ 0.0023\\ 0.375\\ 0.1245\\ 0.0969\\ 0.330\\ 0.199\\ 0.218\\ 0.298\\ \end{array}$	$\begin{array}{c} \pm 1.385\\ 1.58\\ 2.45\\ 1.004\\ \pm 0.830\\ 3.35\\ 0.971\\ 0.114\\ 1.072\\ \pm 2.15\\ 1.66\\ 1.74\\ 1.06\\ 1.69\\ \pm 2.57\\ 6.14\\ 1.92\\ 0.990\\ 0.906\\ \pm 1.41\\ 1.92\\ 0.990\\ 0.906\\ \pm 1.41\\ 0.582\\ 0.643\\ 0.852\\ \pm 0.510\end{array}$	$\begin{array}{c} \pm 2.74\\ 3.06\\ 4.87\\ 1.49\\ 7.15\\ 7.15\\ 1.80\\ 0.198\\ 2.83\\ 2.98\\ 1.95\\ 3.01\\ \pm 0.729\\ 0.678\\ 1.08\\ 1.28\\ \pm 4.31\\ 24.3\\ 5.17\\ 3.20\\ 3.25\\ \pm 4.51\\ 1.93\\ 2.16\\ 2.74\\ \pm 1.39\end{array}$
°) 39	21 B	20. 1. 11	627.06	19	19.853	6.2978	5.7096	5.7566	0.2-5.1	+0.622	1.425	0.062	<u>+</u> 0.52	+ 2.50

) Nr. 7 und 8 bei den absoluten Temperaturen 694°.5 und 739°.0 sind nicht sicher genug, um W_0 und a finden zu können. *) Resultate nur durch Mittelungen erhalten. *) Nr. 36-38 an Platte 21 B bei den absoluten Temperaturen $\vartheta_0 = 484^{\circ}.17, 537^{\circ}.86$ und 577°.55 sind nicht sicher genug, um W_0 und a aus ihnen finden zu können.

 29^{*}

Grenzen der Strom-stärke Zahl d. Mess-ungen W_0 Datum θ $\log W_{\circ}$ a $\log a$ m PicРa 10~6 Amp. $10^{\circ} \Omega$ 0/0 105 ± 0.426 4.38 0.329 5.72 0.200 3.72 0.712 5.98 0.752 2.48 +0.551 1.27 0.603 0.705 ± 3.204 $5.7984 \\ 4.7833 \\ 4.0711$ 6.6355 6.28630.6 - 2.00.519 +0.20328 $\begin{array}{r}
 28 \\
 36 \\
 27 \\
 32 \\
 18 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\
 10 \\$ $\begin{array}{r} 6.2863 \\ 0.6072 \\ 0.1178 \\ 12.287 \\ 3.3098 \end{array}$ 5.96375.63129.197 0.431 0.138 $\begin{array}{r} 9.197\\ 4.278\\ 37.468\\ 4.9521\\ 0.9510\\ 0.9620\end{array}$ 0.4740.104 6.57375.69484.97824.98320.5870.4360.0980.073 $0.291 \\ 0.478 \\ +0.489 \\ 0.718$

14 45 45 45 45 45 45 45 45 45 45 45 45 45	77 77 77 77 77 77 77 77 77 77 77	30. 1. 11 ⁿ 30. 1. 11	525.30 571.84 571.84 556.97 586.08 626.30 675.29	18 10 10 22 30 22 30 30	$\begin{array}{c} 4.9521\\ 0.9510\\ 0.9620\\ 1.5792\\ 0.6345\\ 0.22279\\ 0.08764\end{array}$	$5.6948 \\ 4.9782 \\ 4.9832 \\ 5.1984 \\ 4.8024 \\ 4.3479 \\ 3.9427$	$\begin{array}{c} 3.3098\\ 0.80995\\ 0.7305\\ 1.3219\\ 0.5765\\ 0.2473\\ 0.06072 \end{array}$	5.5198 4.9085 4.8636 5.1212 4.7608 4.3932 3.7834	$\begin{array}{c} 0.5 - 16 \\ 0.9 - 2.1 \\ 12.7 - 15.9 \\ 1.1 - 16 \\ 1.1 - 29 \\ 2.1 - 35 \\ 3.1 - 160 \end{array}$	$\begin{array}{c} 0.752 \\ +0.551 \\ 0.603 \\ 0.393 \\ 0.956 \\ 0.505 \\ +0.712 \end{array}$	$\begin{array}{c} 2.48 \\ 1.27 \\ 0.705 \\ 2.622 \\ 3.81 \\ 1.75 \\ 1.80 \end{array}$	$\begin{array}{c} 0.436\\ 0.098\\ 0.073\\ 0.164\\ 0.351\\ 0.133\\ 0.077\\ \end{array}$	$\begin{array}{r} 0.478 \\ +0.489 \\ 0.718 \\ 0.243 \\ 1 & 0.490 \\ 0.381 \\ \pm 0.530 \end{array}$	$\begin{array}{r} 1.14 \\ +1.76 \\ 2.23 \\ 0.972 \\ 1.61 \\ 1.38 \\ \pm 2.56 \end{array}$
50 512 523 533 5344 5555 55555 555555 555555 5555555 555555555 5555555555	29 77 77 77 77 77 77 77 77 77 7	28. 2. 11 " " " " " " " " " " " " " " " " " "	$\begin{array}{r} 438.89\\ 497.19\\ 544.40\\ 544.40\\ 610.85\\ 610.85\\ 610.85\\ 588.08\\ 588.08\\ 588.08\\ 588.08\\ 675.29\\ 732.25\\ \end{array}$	$10 \\ 32 \\ 22 \\ 18 \\ 6 \\ 24 \\ 30 \\ 12 \\ 22 \\ 6 \\ 20 \\ 14$	$\begin{array}{c} 599.75\\ 27.571\\ 4.263\\ 4.046\\ 0.7264\\ 0.6386\\ 0.6702\\ 1.2041\\ 1.2351\\ 1.1794\\ 0.17634\\ 0.07538\end{array}$	$\begin{array}{c} 7.7778\\ 6.4405\\ 5.6297\\ 5.6071\\ 4.8612\\ 4.8052\\ 4.8262\\ 5.0807\\ 5.0917\\ 5.0917\\ 4.2463\\ 3.8772 \end{array}$	$\begin{array}{c} 407.44\\ 26.226\\ 5.1411\\ 6.0774\\ 0.3655\\ 0.6013\\ 0.4453\\ 1.3448\\ 0.8300\\ 1.2721\\ 0.08765\\ 0.01412 \end{array}$	$\begin{array}{c} 7.6101\\ 6.4187\\ 5.7111\\ 5.7837\\ 4.5629\\ 4.7791\\ 4.6486\\ 5.1287\\ 4.9191\\ 5.1045\\ 3.9428\\ 3.1498\end{array}$		$^{+5.55}_{-1.056}$ $^{2.22}_{-0.78}$ $^{-0.608}_{-0.847}$ $^{+0.847}_{-2.21}$ $^{-1.198}_{-1.836}$ $^{-1.533}_{-0.753}$ $^{+0.164}_{-0.164}$	$\begin{array}{c} 1.37\\ 5.08\\ 3.37\\ 1.56\\ 0.047\\ 2.15\\ 5.60\\ 1.03\\ 3.12\\ 0.37\\ 3.109\\ 1.971\end{array}$	$\begin{array}{c} 0 \ 314\\ 0.917\\ 0.623\\ 0.125\\ 0.034\\ 0.124\\ 1.027\\ 0.035\\ 0.340\\ 0.016\\ 0.093\\ 0.330\\ \end{array}$	$\begin{array}{c} \pm 4.74 \\ 0.469 \\ 1.208 \\ 0.625 \\ 2.81 \\ \pm 0.678 \\ 0.932 \\ 1.181 \\ 1.051 \\ 2.52 \\ 0.427 \\ \pm 0.117 \end{array}$	$\begin{array}{r} \pm 9.90 \\ 1.073 \\ 2.81 \\ 2.20 \\ 3.29 \\ \pm 2.41 \\ 2.18 \\ 6.42 \\ 3.18 \\ 12.2 \\ 2.47 \\ \pm 0.286 \end{array}$
$57 \\ 58 \\ 59 \\ 59 \\ 60 \\ 60 \\ 61 \\ 62$	21 C "" " " " " " " " " " " " " " " " " "	11.7.11 n 27 27 27	$\begin{array}{c} 493.0\\ 554.0\\ 619.0\\ 619.0\\ 678.0\\ 678.0\\ 734.0\\ 627.0\\ \end{array}$	$12 \\ 16 \\ 14 \\ 18 \\ 20 \\ 26 \\ 30 \\ 6$	$\begin{array}{c} 766.05\\ 81.558\\ 15.84\\ 16.10\\ 5.467\\ 5.526\\ 2.454\\ 13.736 \end{array}$	$\begin{array}{c} 7.8843\\ 6.9115\\ 6.1998\\ 6.2069\\ 5.7378\\ 5.7424\\ 5.3898\\ 6.1379\end{array}$	$\begin{array}{c} 238.3 \\ 33.06 \\ 5.627 \\ 4.556 \\ 0.845 \\ 0.622 \\ 0.1322 \\ 3.436 \end{array}$	$\begin{array}{c} 7.3771 \\ 6.5193 \\ 5.7503 \\ 5.6586 \\ \underline{4.9269} \\ \underline{4.7936} \\ \underline{4.2121} \\ 5.5360 \end{array}$	$\begin{array}{c} 0.08 - 0.1 \\ 0.26 - 0.32 \\ 1.4 \\ 0.7 - 5.1 \\ 0.7 - 5.1 \\ 1.1 - 8.7 \\ 1.8 - 2.0 \end{array}$	$^{+0.655}_{0.431}$ $^{0.183}_{0.183}$ $^{\pm0.826}_{0.369}$ $^{0.615}_{0.224}$ $^{\pm0.816}_{\pm0.816}$	$\begin{array}{c} 1.526\\ 1.583\\ 1.022\\ 2.824\\ 1.463\\ 3.182\\ 4.75\\ 0.638\end{array}$	$\begin{array}{c} 0.427\\ 0.244\\ 0.077\\ 0.578\\ 0.142\\ 0.655\\ 0.832\\ 0.097 \end{array}$	$\begin{array}{c} \pm 0.53 \\ 0.342 \\ 0.182 \\ \pm 0.492 \\ 0.305 \\ 0.345 \\ 0.103 \\ \pm 1.02 \end{array}$	$\begin{array}{c} \pm 1.002 \\ 0.872 \\ 0.661 \\ \pm 1.09 \\ 0.979 \\ 0.760 \\ 0.270 \\ \pm 6.82 \end{array}$
	34 B " " " "	28. 7. 11 " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 486.0\\ 550.0\\ 613.0\\ 613.0\\ 675.0\\ 675.0\\ 750.0\\ 730.0 \end{array}$	$ \begin{array}{c} 6 \\ 10 \\ 16 \\ 18 \\ 14 \\ 8 \\ 14 \\ 8 \\ 14 \\ \end{array} $	$\begin{array}{c} 1270.0\\ 130\ 0\\ 24.96\\ 25.14\\ 7.881\\ 7.706\\ 3.493 \end{array}$	$\begin{array}{c} 8.1038 \\ 7.1140 \\ 6.3972 \\ 6.4003 \\ 5.8966 \\ 5.8869 \\ 5.5432 \end{array}$	$\begin{array}{c} 1186.2 \\ 45.63 \\ 5.242 \\ 4.526 \\ 0.961 \\ 1.413 \\ 0.211 \end{array}$	$\begin{array}{c} 8.0742 \\ 6.6592 \\ 5.7195 \\ 5.6557 \\ 4.9827 \\ 5.1501 \\ 4.3243 \end{array}$	$\begin{array}{c} 0.06 - 0.07 \\ 0.7 \\ 1.0 - 4.0 \\ 0.9 - 4.0 \\ 3.0 \\ 0.5 \\ 1.0 - 8.1 \end{array}$	$^{+1.018}_{0.311}$ $0.294_{0.412}$ $0.412_{0.432}$ $0.226_{\pm}0.474$	$\begin{array}{c} 0.365\\ 0.582\\ 0.838\\ 2.184\\ 1.829\\ 0.537\\ 2.036\end{array}$	$\begin{array}{c} 0.041 \\ 0.096 \\ 0.063 \\ 0.285 \\ 0.256 \\ 0.042 \\ 0.347 \end{array}$	$\begin{array}{c} \pm 1.68 \\ 0.407 \\ 0.321 \\ 0.279 \\ 0.319 \\ 0.308 \\ \pm 0.332 \end{array}$	
	36 ກ ກ ກ ກ	2.8.11 " " " " " " " " " " " " " " " " " "	$\begin{array}{c} 487.0\\ 553.0\\ 553.0\\ 609.5\\ 609.5\\ 676.0\\ 738.0 \end{array}$	$15 \\ 10 \\ 12 \\ 14 \\ 16 \\ 20 \\ 22$	$\begin{array}{c} 251.22\\ 14.666\\ 15.572\\ 3.963\\ 4.0645\\ 1.1617\\ 0.4958\end{array}$	$\begin{array}{c} 7.4001 \\ 6.1663 \\ 6.1924 \\ 5.5980 \\ 5.6090 \\ 5.0651 \\ 4.6953 \end{array}$	$110.35 \\ 27.34 \\ 23.35 \\ 3.828 \\ 3.294 \\ 0.666 \\ 0.07133$	$\begin{array}{c} 7.0428\\ 6.4368\\ 6.3682\\ 5.5830\\ 5.5177\\ 4.8233\\ 3.8533\end{array}$	$\begin{array}{c} 0.4 \\ 1.0 - 1.6 \\ 1.1 - 1.6 \\ 2.4 - 3.0 \\ 2.1 - 3.0 \\ 2.7 - 16 \\ 3.1 - 3.3 \end{array}$	± 3.76 1.114 2.36 0.748 1.285 0.312 ± 0.336	$\begin{array}{c} 2.346 \\ 0.678 \\ 1.309 \\ 0.988 \\ 2.260 \\ 1.947 \\ 2.661 \end{array}$	$\begin{array}{c} 0.276 \\ 0.048 \\ 0.143 \\ 0.048 \\ 0.212 \\ 0.088 \\ 0.369 \end{array}$	+2.46 1.35 2.07 0.753 0.855 0.223 +0.206	+7.17 5.09 6.26 3.40 2.79 1.05 ± 0.553
$74 \\ 75 \\ 75 \\ 76 \\ 76 \\ 77 \\ 77 \\ 77$	35 ກ ກ ກ ກ	4.8.11 " " " "	$\begin{array}{c} 493.0\\ 571.0\\ 571.0\\ 648.0\\ 648.0\\ 735.0\\ 735.0\end{array}$	$ \begin{array}{r} 12 \\ 8 \\ 10 \\ 16 \\ 20 \\ 8 \\ 20 \\ \end{array} $	$\begin{array}{c} 570.53\\ 35.57\\ 36.27\\ 6.502\\ 6.587\\ 1.738\\ 1.749\end{array}$	$\begin{array}{c} 7.7563 \\ 6.5510 \\ 6.5596 \\ 5.8131 \\ 5.8187 \\ 5.2400 \\ 5.2428 \end{array}$	$\begin{array}{c} 182.52\\ 12.67\\ 9.531\\ 1.260\\ 0.834\\ 0.0693\\ 0.0784 \end{array}$	$\begin{array}{c} 7.2613\\ 6.1028\\ 5.9791\\ 5.1004\\ 4.9212\\ 3.8407\\ 3.8943 \end{array}$	$0.16 \\ 1.8 \\ 1.6 - 1.8 \\ 1.7 - 15 \\ 1.6 - 15 \\ 57 \\ 1.5 - 11$	± 1.001 0.122 0.801 ± 0.121 0.498 0.315 ± 0.132	$\begin{array}{c} 1.257 \\ 0.396 \\ 1.405 \\ 1.033 \\ 3.869 \\ 1.553 \\ 2.642 \end{array}$	$\begin{array}{c} 0.194 \\ 0.025 \\ 0.219 \\ 0.052 \\ 0.711 \\ 0.384 \\ 0.280 \end{array}$	$^{\pm 0.892}_{0.194}$ $^{-0.675}_{0.253}$ $^{\pm 0.117}_{0.253}$ $^{-0.252}_{0.252}$	$^{+2.27}_{-0.777}_{-1.71}_{-1.71}_{-1.533}_{-0.590}_{-0.508}_{-0.508}_{-1.249}$
$75 \\ 79 \\ 80 \\ 81$	37 "	8.8.11 ""	$\begin{array}{c} 485.0 \\ 570.0 \\ 649.0 \\ 734.0 \end{array}$	$ \begin{array}{c} 26 \\ 18 \\ 32 \\ 6 \end{array} $	$\begin{array}{c} 0.75275 \\ 0.93562 \\ 0.16072 \\ 0.04103 \end{array}$	$\begin{array}{c} 4.8766 \\ 4.9711 \\ 4.2061 \\ 3.6131 \end{array}$	$\begin{array}{c} 150.98 \\ 3.457 \\ 0.2059 \\ 0.01471 \end{array}$	$\begin{array}{c} 7.1789 \\ 5.5387 \\ 4.3137 \\ 3.1676 \end{array}$	0.1 - 5.0 1.3 - 12 2.1 - 145 220 - 246	$^{+9.06}_{-6.37}$ 2.89 ± 1.755	$\begin{array}{c} 4.995 \\ 1.459 \\ 3.778 \\ 0.707 \end{array}$	$\begin{array}{c} 1.100 \\ 0.062 \\ 0.421 \\ 0.055 \end{array}$	$^{+4.43}_{5.27}$ 1.49 $^{+2.09}$	+9.44 25.5 -4.45 +7.46

228

Nr. Platte

 $\frac{40}{41}$ $\frac{42}{42}$

43 44 45

[52]

mir

0,0

 m_a

0/0

+0.592

0.502

0.291

0.930

229

Nг.	Platte	Datum	9	Zahl Mes ung	W ₀	$\log W_0$	a	$\log a$	der Strom- stärke	m	p_w	pa	$m_{\iota 0}$	ma
-			0		$10^5 \Omega$		105		10-6 Amp.	º/0			0/0	, ⁰⁷ 0
81 81 81 81 82	37 	8.8.11 "	734.0 734.0 734.0 548.0	$22 \\ 6 \\ 34 \\ 3$	$\begin{array}{c} 0.04201 \\ 0.04220 \\ 0.04185 \\ 1.6307 \end{array}$	3.6234 3.6253 3.6218 5.2124	$\begin{array}{c} 0.01536 \\ 0.01784 \\ 0.01572 \\ 26.93 \end{array}$	$\begin{array}{c} 3.1863 \\ 3.2513 \\ 3.1963 \\ 6.4302 \end{array}$	$\begin{array}{r} 2.7 - 62 \\ 0.9 - 1.0 \\ 0.9 - 246 \\ 3.1 - 5.7 \end{array}$	${}^{\pm}$ 1.058 1.417 1.866 3.21	$3.984 \\ 0.812 \\ 5.869 \\ 0.305$	$\begin{array}{c} 0.656 \\ 0.048 \\ 0.813 \\ 0.011 \end{array}$		$ \pm ext{ 1.31 } \\ $
82		77	548.0	10	4.5229	5.6554	11.904	6.0757	1.9-5.7	<u>+</u> 17.3	1.703	0.373	+13.22	± 28.3

wie auch bereits aus den Gleichstrommessungen (§ 23) gefolgert war, dafs zumal in der ersten Zeit der Stromrückgang fast allein durch das Auftreten der entgegengesetzten elektromotorischen Kraft einer Konzentrationskette bewirkt wird. Diese wird offenbar bei höherer Spannung sich langsamer ausbilden, als bei niedrigerer, während bei einer schlechtleitenden Schicht als alleinige Ursache der Stromabnahme das Produkt aus Zeit und Stromstärke maßgebend sein müßte. Denkt man aber an die Wirkung einer sich abwechselnd ladenden und entladenden Kapazität, so würde diese zwar eine Widerstandsvermehrung bedeuten, aber die Zunahme müßte der Periodenlänge selbst wenigstens angenähert proportional sein, während die Spannung keinen unmittelbaren Einfluß haben könnte.

In der folgenden Zusammenstellung (Tabelle 7) der aus verschiedenen Spannungsgruppen derselben Serien berechneten W_0 und a zeigt sich dieser Effekt noch deutlicher. Während die W_0 sich nur ganz unregelmäßig innerhalb ihrer Fehlergrenzen ändern, werden die a fast immer mit wachsender Spannung kleiner; der scheinbare Widerstand nimmt bei hoher Spannung langsamer zu, als bei kleinerer.

Um einen gesetzmäßigen Zusammenhang der Änderungen von a mit der Spannung aufzusuchen, reicht die Genauigkeit der Messungen nicht hin. Wäre es möglich gewesen, Beobachtungen mit alternierendem Gleichstrom von der Periodenlänge mehrerer Sekunden auszuführen, so hätte sich eventuell, da der Einfluß der Spannung mit der Periodenlänge stark wächst, eine genauere Beziehung finden lassen, aber die Schwingungsdauer des Galvanometers war nicht großs genug, um noch den Wert der Integralstromstärke über so lange Perioden ablesbar anzugeben.

Zeigten sich die bei langsamen Schwingungen bestimmten Widerstände bedeutend kleiner, als es nach den mit höheren Frequenzen angestellten Beobachtungen zu erwarten war, so ist die Ausgleichung einmal unter Weglassung dieser Messungen und dann auch mit ihnen ausgeführt. Da die zur Bestimmung von W_0 notwendigen Extrapolationen nach der Seite der hohen Frequenzen hin vorzunehmen sind, so ist im allgemeinen

[53]

für die weiteren Betrachtungen den auf dem ersteren Wege erhaltenen Resultaten das größere Gewicht beizulegen.

Serie	Spannung	$W_{ m o}$	a
	Volt	Ω	
$\begin{array}{c} 19\\ 19\\ 23\\ 225\\ 225\\ 226\\ 29\\ 29\\ 20\\ 30\\ 31\\ 554\\ 45\\ 54\\ 67\\ 77\\ 81\\ 81\\ 81\\ \end{array}$	$\begin{array}{c} 0.1\\ 0.4\\ 1.0\\ 0.08\\ 0.2-0.4\\ 0.4-0.6\\ 2.0-2.5\\ 5-10\\ 0.2\\ 4-5\\ 0.03-0.3\\ 0.4-0.9\\ 1.1-1.4\\ 2.4-2.5\\ 0.03-1.3\\ 6-7\\ 0.03-0.5\\ 1.6-2.7\\ 0.03-0.5\\ 1.6-2.7\\ 0.09-0.3\\ 1.68\\ 0.26-2.17\\ 0.25-2.0\\ 10.23\\ 0.423\\ 2.45-2.47\\ 0.25-2.0\\ 10.23\\ 0.423\\ 2.45-2.47\\ 0.27-1.93\\ 10.21\\ 0.006-1.05\\ 0.006\\ 0.017-0.38\\ 1.04\\ \end{array}$	$\begin{array}{c} 23751\\ 24009\\ 23526\\ 2150.6\\ 2132.2\\ 1245600\\ 1229600\\ 1229600\\ 1244500\\ 325350\\ 30431\\ 30612\\ 31707\\ 29214\\ 31253\\ 33379\\ 12561\\ 12423\\ 95100\\ 96200\\ 120410\\ 123510\\ 117940\\ 788080\\ 770650\\ 173790\\ 174900\\ 4103\\ 4186\\ 4220\\ 4201\\ \end{array}$	$\begin{array}{c} 17888\\ 17140\\ 17417\\ 1196\\ 1168\\ 847900\\ 825220\\ 757550\\ 219900\\ 190470\\ 26478\\ 25126\\ 19328\\ 27390\\ 32745\\ 18712\\ 9707\\ 8539\\ 80995\\ 73050\\ 134480\\ 83004\\ 127210\\ 96100\\ 141300\\ 6930\\ 7840\\ 1471\\ 1571\\ 1783\\ 1536\end{array}$

Tabelle 7.

31. Die Genauigkeiten, mit denen die W_0 und a aus den verschiedenen Serien folgen, sind sehr ungleich und nehmen im allgemeinen mit wachsender Temperatur zu, einmal weil die kleineren Widerstände leichter zu messen sind, andererseits und wohl hauptsächlich deshalb, weil die der jeweiligen Periodenlänge entsprechende Ionenverteilung in der untersuchten Platte sich bei höherer Temperatur schneller einstellt. Bei der weiteren Diskussion der erhaltenen Werte in bezug auf ihre Abhängigkeit von der Temperatur und von der geometrischen Form der Platte muß man diese Genauigkeit berücksichtigen, und sie ist daher bei den Ausgleichungen der Serien nach W_0 und a für beide Veränderliche ermittelt.

Da stets gleichartig berechnete Größen verglichen werden, so konnte als mittlerer Fehler der Gewichtseinheit die Quadratwurzel aus der durch die um zwei verminderte Zahl der Beobachtungen dividierten Summe der Quadrate der relativen Fehler (v) angesetzt werden, aus der dann durch Division durch die Quadratwurzel der für W_0 und a erhaltenen Gewichte ein vergleichbares Maß für die Fehler dieser beiden Größen folgt, wobei der Einfluß der bei hohen Frequenzen erhaltenen Werte etwas vergrößert wird. Gewichte und mittlere Fehler sind für alle Serien in Tabelle 6 eingetragen, in die auch die zur Identifikation und zur besseren Übersicht notwendigen sonstigen Angaben aufgenommen sind.

In allen den so ermittelten Größen wäre noch die Unsicherheit der genäherten Temperaturkoeffizienten enthalten. In der folgenden Tabelle ist nun für einige Platten der oben angenommene genäherte und der später aus den W_0 folgende Temperaturkoeffizient mitgeteilt. Der Einfluß der etwas abweichenden Temperaturkoeffizienten von a kann um so eher vernachlässigt werden, als er auf die Messungen bei hohen Frequenzen ohnehin nur wenig einwirkt, während bei langsameren Richtungswechseln die Unsicherheit in der Bestimmung von τ überwiegt, und diese Werte auch auf die Größe der wichtigeren W_0 nur sehr geringen Einfluß besitzen. Für die Temperaturen 200°, 300°, 400° erhält man:

THE OTHER OF

Abs. Temp.	Genäherter Wert	v	Vahrer Wert	bei den Platt	en
		16	20	22	35
$473 \\ 573 \\ 673$	$\begin{array}{c} 0.0223 \\ 0.0124 \\ 0.0075 \end{array}$	$0.0241 \\ 0.0125 \\ 0.0076$	$\begin{array}{c} 0.0254 \\ 0.0131 \\ 0.0080 \end{array}$	$\begin{array}{c} 0.0248 \\ 0.0124 \\ 0.0074 \end{array}$	$\begin{array}{c} 0.0229 \\ 0.0117 \\ 0.0070 \end{array}$

 $\Delta \log W$ für je ein Grad Celsius.

Die infolge der Unsicherheit der Temperaturkoeffizienten des Widerstandes auftretenden Fehler liegen also wegen der Kleinheit der innerhalb einer Serie vorkommenden Temperaturunterschiede stets innerhalb der durch die Fehler der Temperaturbestimmungen selbst gegebenen Fehlergrenze, nur bei den niedrigsten Temperaturen dürfte diese erreicht werden, bei denen aber wiederum die Widerstandsmessungen die entsprechende Genauigkeit nicht mehr besitzen.

[55]

Über die Gröfse Wo, den wahren Widerstand.

32. Zunächst soll für jede Platte gesondert die Abhängigkeit des auf unendlich hohe Frequenz extrapolierten Widerstandes W_0 von der Temperatur abgeleitet werden, und die dabei ermittelten Konstanten, wie sie aus den Ausgleichungen folgen und in Tabelle 10 samt ihren mittleren Fehlern gegeben sind, müssen dann die gesuchten Einflüsse der geometrischen Form und der Orientierung der Platte gegen die Kristallachsen auf die Leitfähigkeit erkennen lassen. Die Gewichte p_w und p_a der Konstanten W_0 und *a* lassen erkennen, dafs die Unsicherheit hauptsächlich dem *a* entstammt. Die Betrachtung von W_0 wird daher auch zuverlässigere Schlüsse ergeben.

Wie bereits ausführlich gezeigt, konnte bei den Werten von W_0 der Einfluß der Spannung, mit der die Beobachtungen angestellt sind, genügend eliminiert werden, indem bei mehreren Ausgleichungen für verschiedene Spannungen in einer Serie aus den erhaltenen Werten von W_0 unter entsprechender Berücksichtigung ihrer Genauigkeit ein Mittelwert abgeleitet wurde, wobei aber das bei der kleinsten Spannung gemessenen W_0 noch erhöhtes Gewicht erhielt. Dem Mittelwerte wurde dann für das folgende ein seiner Genauigkeit entsprechendes Gewicht beigelegt.

Die so gewonnenen und allen weiteren Betrachtungen zugrunde gelegten Werte der W_0 und ihre Gewichte p_w , die gleich $1/m_w^2$ zu setzen sind, sind in Tabelle 9 aufgenommen.

33. Zunächst war zu erwarten, dats die Abhängigkeit der W_0 von der Temperatur eine ähnliche, wie die an Glas gefundene, nämlich

$$W_0 = \alpha e^{B/\vartheta}$$

sein würde. Es erschien zweckmäßig, die thermische Ausdehnung des Quarzes bei der Berechnung des Temperaturkoeffizienten der Leitfähigkeit nicht in Rechnung zu setzen; was darauf hinauskommt, daß man stets die gleiche Zahl achsenparalleler Röhrchen betrachtet. Die Größe der eventuellen Vernachlässigung überschreitet innerhalb der Grenzen der Beobachtungstemperaturen nie $1^{0}/_{0}$, was neben den anderen Fehlerquellen nicht schwer wiegen dürfte, zumal die Änderung von W_{0} selbst in diesem Intervalle $10^{6}-10^{60}/_{0}$ beträgt.

Aus Tabelle 8 ist aber bereits ersichtlich, daß der obige einfache Zusammenhang zwischen Widerstand und absoluter Temperatur keinesfalls mehr zutrifft, daß vielmehr die Widerstandszunahme mit steigender Temperatur immer langsamer erfolgt. Es ist also eine andere Darstellung auf-

Tabelle 9.

Abhängigkeit des Widerstandes der Bergkristallplatten von der Temperatur.

Nr.	Ð	Geme	ssen	1. Näh	erung	$2. N \ddot{a} h \\ C =$	erung = C1	С	$= 224^{\circ}$	9	Mittl.	Werte
	Ď	$\log W_0$ 1	$m_{tc}^{2}=p_{tc}^{2}$	$\log W_1$	$100 \cdot \varDelta_1$	$\log W_2$	$100 \cdot \varDelta_2$	$1000/(\vartheta \cdot C)$	$\log W_{\rm s}$	$100 \cdot \varDelta_3$	$\log W_m$	100 · <i>A</i> m
						Platt	e 20 A.					
123+56	$\begin{array}{c} 455.0\\ 500.0\\ 552.0\\ 607.0\\ 585.0\\ 650.0\end{array}$	$\begin{array}{c} 7.1886\\ 6.1356\\ 5.1913\\ 4.4332\\ 4.6316\\ 4.1104 \end{array}$	$\begin{array}{c} 0.033 \pm \\ 0.3460 \\ 0.0586 \\ 0.0374 \\ 0.0455 \\ 0.1468 \end{array}$	$\begin{array}{c} 7.2561 \\ 6.1177 \\ 5.2066 \\ 4.5018 \\ 4.7581 \\ 4.0765 \end{array}$	$\begin{array}{r} + \ 6.75 \\ - \ 1.79 \\ + \ 1.53 \\ + \ 6.86 \\ + 12.65 \\ - \ 3.39 \end{array}$	$\begin{array}{c} 7.2553 \\ 6.1171 \\ 5.2064 \\ 4.5016 \\ 4.7571 \\ 4.0765 \end{array}$	$\begin{array}{r} + \ 6.67 \\ - \ 1.85 \\ + \ 1.51 \\ + \ 6.84 \\ + 12.55 \\ - \ 3.39 \end{array}$	$\begin{array}{c} 4.347\\ 3.629\\ 3.058\\ 2.618\\ 2.777\\ 2.353\end{array}$	$\begin{array}{c} 7.2626\\ 6.1163\\ 5.2037\\ 4.5008\\ 4.7563\\ 4.0780\end{array}$	$\begin{array}{r} + & 7.40 \\ - & 1.93 \\ + & 1.24 \\ + & 6.76 \\ + 12.47 \\ - & 3.24 \end{array}$	$\begin{array}{c} 7.2504 \\ 6.1119 \\ 5.2056 \\ 4.5074 \\ 4.7611 \\ 4.0874 \end{array}$	+6.18 -2.37 +1.43 +7.42 +12.95 -2.30
						Pla	tte 19.					
$10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18$	512.0 563.0 611.0 447.0 494.0 628.5 671.0 705.5 739.0	$\begin{array}{c} 6.\pm171\\ 5.5557\\ 5.0072\\ 1.8103\\ 6.77\pm8\\ 4.8302\\ \pm.4637\\ 4.2151\\ 4.0110\end{array}$	$\begin{array}{c} 6.2814\\ 0.2124\\ 10.0781\\ 0.0595\\ 1.7778\\ 0.9070\\ 3.0779\\ 1.0541\\ 1.9837 \end{array}$	$\begin{array}{c} 6.4026\\ 5.5737\\ 4.9991\\ 8.0379\\ 6.7731\\ 4.8246\\ 4.4590\\ 4.2108\\ 4.0024 \end{array}$	$\begin{array}{r} -1.45 \\ +1.80 \\ -0.81 \\ +22.76 \\ -0.17 \\ -0.56 \\ -0.47 \\ -0.43 \\ -0.86 \end{array}$	$\begin{array}{c} 6.4133\\ 5.5827\\ 5.0070\\ 8.0519\\ 6.7846\\ 4.8321\\ 4.4657\\ 4.2171\\ 4.0082 \end{array}$	$\begin{array}{r} - 0.38 \\ + 2.70 \\ - 0.02 \\ + 24.16 \\ + 0.98 \\ + 0.19 \\ + 0.20 \\ + 0.20 \\ - 0.28 \end{array}$	$\begin{array}{c} 3.483\\ 2.958\\ 2.590\\ 4.503\\ 3.717\\ 2.478\\ 2.242\\ 2.081\\ 1.945\end{array}$	$\begin{array}{c} 6.4101 \\ 5.5868 \\ 5.0107 \\ 8.0071 \\ 6.7750 \\ 4.8349 \\ 4.4651 \\ 4.2131 \\ 4.0006 \end{array}$	$\begin{array}{c} -0.70 \\ +3.11 \\ +0.35 \\ +19.68 \\ +0.02 \\ +0.47 \\ +0.14 \\ -0.20 \\ -1.04 \end{array}$		
						Pla	tte 16.					
$\begin{array}{c} 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34\\ 35\\ \end{array}$	$\begin{array}{c} 604.0\\ 664.0\\ 698.0\\ 720.0\\ 739.5\\ 447.83\\ 520.77\\ 500.19\\ 555.97\\ 593.10\\ 588.59\\ 630.55\\ 613.10\\ 673.31\\ 699.06\\ 725.29 \end{array}$	$\begin{array}{r} 4.3757\\ 3.8300\\ 3.6042\\ 3.4045\\ 3.3288\\ 7.1020\\ 6.0930\\ 5.5100\\ 5.8832\\ 4.9599\\ 4.4840\\ 4.5000\\ 4.2567\\ 3.7418\\ 3.5824\\ 3.5824\\ 3.4121\end{array}$	$\begin{array}{c} 0.7561\\ 0.9921\\ 1.4516\\ 0.08911\\ 76.9443\\ 0.8702\\ 0.8702\\ 9.7656\\ 2.2477\\ 4.0000\\ 9.7656\\ 2.2477\\ 4.0000\\ 0.2770\\ 1.2183\\ 2.9523\\ 2.4187\\ 1.3776\\ 3.8447 \end{array}$	$\begin{array}{c} - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - $	$\begin{array}{c}\\\\\\ + 3.39\\ + 1.42\\ - 1.73\\ - 1.34\\ - 0.79\\ + 0.71\\ + 4.21\\ + 1.09\\ + 2.19\\ + 0.92\\ - 1.69\\ - 1.63\end{array}$	$\begin{array}{c}\\\\\\\\\\\\\\\\\\$	$\begin{array}{c c} - \\ - \\ - \\ + & 3.81 \\ + & 1.75 \\ - & 1.46 \\ - & 0.93 \\ - & 0.56 \\ + & 0.90 \\ + & 4.41 \\ + & 1.25 \\ + & 2.36 \\ + & 1.04 \\ - & 1.58 \\ - & 1.53 \end{array}$	$\left \begin{array}{c} 2.638\\ 2.278\\ 2.114\\ 2.020\\ 1.944\\ 4.486\\ 3.791\\ 3.381\\ 3.633\\ 3.021\\ 2.716\\ 2.750\\ 2.465\\ 2.576\\ 2.230\\ 2.109\\ 1.998\\ \end{array}\right.$	$\begin{array}{c}\\\\\\\\\\\\\\\\\\$	$\begin{array}{c}\\\\\\ + 6.04\\ + 1.97\\ - 1.87\\ - 1.01\\ - 1.17\\ + 0.40\\ + 3.89\\ + 1.01\\ + 1.99\\ + 1.21\\ - 1.15\\ - 0.82\end{array}$	$\begin{array}{c} 4.3740\\ 3.8313\\ 3.5849\\ 3.4282\\ 7.1565\\ 6.1106\\ 5.4913\\ 5.8717\\ 4.9502\\ 4.4915\\ 4.5443\\ 4.1140\\ 4.2809\\ 3.7601\\ 3.5778\\ 3.4113\end{array}$	$\begin{vmatrix} - & 0.17 \\ + & 0.13 \\ - & 1.93 \\ + & 3.89 \\ - & 0.06 \\ + & 5.45 \\ + & 1.76 \\ - & 1.87 \\ - & 1.15 \\ - & 0.97 \\ + & 0.75 \\ + & 4.23 \\ + & 1.50 \\ + & 2.42 \\ + & 1.83 \\ - & 0.46 \\ - & 0.08 \end{vmatrix}$
						Plat	te 21 B.					
39 40 41 42	$\begin{array}{c} 627.06 \\ 592.60 \\ 670.82 \\ 721.82 \end{array}$	$\begin{array}{c} 6.2978 \\ 6.6355 \\ 5.9637 \\ 5.6312 \end{array}$	$\begin{array}{c} 24.266 \\ 3.698 \\ 52.510 \\ 92.458 \end{array}$								$\begin{array}{c} 6.3043 \\ 6.6337 \\ 5.9594 \\ 5.6340 \end{array}$	$\begin{array}{c} + \ 0.65 \\ - \ 0.18 \\ - \ 0.43 \\ + \ 0.28 \end{array}$
						Plat	te 20 B.					
$\begin{array}{r} 43 \\ 44 \\ 45 \\ 46 \\ 47 \\ 48 \\ 49 \end{array}$	$\begin{array}{r} 482.17\\ 525.30\\ 556.97\\ 571.84\\ 586.08\\ 626.31\\ 675.29\end{array}$	$ \begin{vmatrix} 6.5737 \\ 5.6948 \\ 4.9782 \\ 5.1984 \\ 4.8024 \\ 4.3479 \\ 3.9427 \end{vmatrix} $	$\begin{array}{r} 11.8092 \\ 4.3766 \\ 4.1820 \\ 16.9348 \\ 4.1648 \\ 6.8890 \\ 3.5599 \end{array}$	$\begin{array}{c c} 6.5729 \\ 5.6937 \\ 4.9852 \\ 5.1905 \\ 4.8041 \\ 4.3610 \\ 3.9263 \end{array}$	$\begin{array}{r} - \ 0.08 \\ - \ 0.11 \\ + \ 0.70 \\ - \ 0.79 \\ + \ 0.17 \\ + \ 1.31 \\ - \ 1.64 \end{array}$	$\begin{array}{c c} 6.5739\\ 5.6951\\ 4.9869\\ 5.1922\\ 4.8059\\ 4.3630\\ 3.9286\end{array}$	$\begin{array}{c c} + & 0.02 \\ + & 0.03 \\ + & 0.87 \\ - & 0.62 \\ + & 0.35 \\ + & 1.51 \\ - & 1.41 \end{array}$	$\begin{array}{c} 3.888\\ 3.330\\ 2.883\\ 3.012\\ 2.769\\ 2.492\\ 2.220\\ \end{array}$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{r} + & 0.45 \\ - & 0.18 \\ + & 0.65 \\ - & 0.90 \\ + & 0.20 \\ + & 1.64 \\ - & 0.81 \end{array}$	$\begin{array}{c c} 6.5788 \\ 5.6933 \\ 4.9848 \\ 5.1895 \\ 4.8045 \\ 4.3643 \\ 3.9345 \end{array}$	$\begin{array}{c} + \ 0.51 \\ - \ 0.15 \\ + \ 0.66 \\ - \ 0.89 \\ + \ 0.21 \\ + \ 1.64 \\ - \ 0.82 \end{array}$

Nova Acta CI. Nr. 3.

233

- 30

Richard Ambronn,

Nr.	J.	Gemessen	1. Näherung	2. Näherung $C = C_1$	$C = 224^{\circ}.9$	Mittl. Werte
	U	$\log W_0 \stackrel{1 m_{tC}^2 = r_{tC}}{=} r_{tC}$	$\log W_1 = 100 \cdot I_1$	$\log W_2$ 100 · J_2	1000 (9-C) $\log W_3$ 100 - I_3	$\log W_m = 100 \cdot J_m$
				Platte 22.		
$50 \\ 51 \\ 52 \\ 53 \\ 54 \\ 55 \\ 56 \\ 56 \\ 56 \\ 56 \\ 56 \\ 56$	$\begin{array}{r} 438.89\\ 497.19\\ 544.40\\ 610.85\\ 588.08\\ 675.29\\ 732.25\end{array}$	$\begin{array}{c ccccc} 7.7780 & 0.0445 \\ 6.4405 & 4.5463 \\ 5.6071 & 2.5600 \\ 4.8052 & 2.9932 \\ 5.0807 & 0.5102 \\ 4.2463 & 5.4845 \\ 3.8772 & 73.0500 \end{array}$	$\begin{array}{c ccccc} 7.8657 & + 8.77 \\ 6.3529 & - 8.76 \\ 5.5419 & - 6.52 \\ 4.7429 & - 6.23 \\ 4.9830 & - 9.77 \\ 4.1971 & - 4.92 \\ 3.8316 & - 4.56 \end{array}$	$\begin{array}{c ccccc} 7.9732 & +19.52 \\ 6.4372 & -0.33 \\ 5.6138 & +0.67 \\ 4.8026 & -0.26 \\ 5.0464 & -3.43 \\ 4.2484 & +0.21 \\ 3.8774 & +0.02 \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
				Platte 21 C.		
$57 \\ 58 \\ 59 \\ 60 \\ 61 \\ 62$	$\begin{array}{c} 493.0\\ 554.0\\ 619.0\\ 678.0\\ 734.0\\ 627.0 \end{array}$	$\begin{array}{cccc} 7.8843 & 3.5599 \\ 6.9115 & 8.5490 \\ 6.1998 & 30.3221 \\ 5.7378 & 10.7780 \\ 5.3898 & 94.4400 \\ 6.1379 & 0.9574 \end{array}$	$\begin{array}{c c c} 7.8847 & + 0.04 \\ 6.9096 & - 0.19 \\ 6.2013 & + 0.15 \\ 5.7338 & - 0.40 \\ 5.3899 & + 0.01 \\ 6.1299 & - 0.80 \end{array}$		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
				Platte 34 B.		
$ \begin{array}{c} 64 \\ 65 \\ 66 \\ 67 \\ 68 \end{array} $		$\begin{array}{cccc} 8.1038 & 0.3522 \\ 7.1140 & 6.0370 \\ 6.3987 & 11.1113 \\ 5.8869 & 10.5415 \\ 5.5432 & 9.0724 \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
				Platte 36.		
69 70 71 72 73	$\begin{array}{c} 487.0 \\ 553.0 \\ 609.5 \\ 676.0 \\ 738.0 \end{array}$	$\begin{array}{cccc} 7.4001 & 0.1652 \\ 6.1924 & 0.2341 \\ 5.6090 & 1.3679 \\ 5.0651 & 20.1095 \\ 4.6953 & 23.5644 \end{array}$	$\begin{array}{c ccccc} 7.3758 & - 2.43 \\ 6.2342 & + 4.18 \\ 5.5925 & - 1.65 \\ 5.0567 & - 0.84 \\ 4.6896 & - 0.57 \end{array}$	$\begin{array}{c ccccc} 7.3811 & - & 1.90 \\ 6.2395 & + & 4.71 \\ 5.5978 & - & 0.12 \\ 5.0620 & - & 0.31 \\ 4.6949 & - & 0.04 \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 7.3297 & - & 7.04 \\ 6.2446 & + & 5.22 \\ 5.6115 & + & 0.25 \\ 5.0698 & + & 0.47 \\ 4.6911 & - & 0.42 \end{array}$
				Platte 35.		
74 75 76 77	$\begin{array}{c} 493.0 \\ 571.0 \\ 648.0 \\ 735.0 \end{array}$	$\begin{array}{c cccc} 7.7563 & 1.257 \\ 6.5510 & 26.571 \\ 5.8131 & 72.678 \\ 5.2428 & 152.041 \end{array}$	$\begin{array}{c cccc} 7.7429 & & -1.34 \\ 6.5536 & & +0.26 \\ 5.8112 & & -0.19 \\ 5.2429 & & +0.01 \end{array}$		$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
				Platte 37.		
78 79 80 81 82	$\begin{array}{c} 485.0 \\ 570.0 \\ 649.0 \\ 734.0 \\ 548.0 \end{array}$	$\begin{array}{cccc} 4.8766 & 0.0509 \\ 4.9711 & 0.0360 \\ 4.2061 & 0.4504 \\ 3.6234 & 1.0000 \\ 5.2124 & 0.0298 \end{array}$			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccc} 6.2901 & +141.35 \\ 4.9513 & - & 1.98 \\ 4.1881 & - & 1.80 \\ 3.6316 & + & 0.82 \\ 5.2302 & + & 1.78 \end{array}$

zusuchen, die für sämtliche Platten dieselbe sein müßte und von der man wohl auch verlangen darf, daß sich aus ihr die für Gläser gefundene Formel als ein Spezialfall ergibt.

Von J. Königsberger und von E. Rasch und W. Hinrichsen¹) sind Erweiterungen von der Form

 J. Königsberger, Physik. Ztschr. 8, 833. 1907. J. Königsberger und O. Reichenheim, Physik. Ztschr. 7, 570. 1906. J. Königsberger, Jahrbuch der Elektronik 4, 158-194.

$$W = (\alpha \pm \beta t + \gamma t^2) \cdot W_{(t=0)} \cdot e^{B_t \theta}$$

gegeben, wo das +-Zeichen für metallische und das --Zeichen für elektrolytische Leitungsvorgänge gelten soll und ϑ die absolute, t die Temp. in Celsiusgraden angibt. Dem Klammerausdruck wird dann der Einfluß der Beweglichkeit und der Exponentialfunktion der des Dissoziationsgrades zugeordnet, aber bei Glas¹) hatte sich bereits gezeigt, daß auch in dem $e^{B/\vartheta}$ ein Faktor enthalten sein müsse, der die Veränderung der Beweglichkeit mit der Temperatur darstelle. Die Faktoren β und γ müßsten etwa in den Grenzen der in den Formeln für die Abhängigkeit der elektrischen Leitfähigkeit der Metalle von der Temperatur auftretenden Koeffizienten liegen, die sie in dem jetzt vorliegenden Falle durchaus nicht einhalten könnten. Die von den genannten Forschern zur Begründung der Erweiterung ihrer Formel angestellten Betrachtungen zeigen aber, daß es sich hier nur um eine Analogiebildung zu der Art des Verlaufes anderer Effekte (nämlich der Leitfähigkeit der Metalle) handelt, deren Berechtigung allein auf der Übereinstimmung der nach dieser Formel in den zitierten Abhandlungen berechneten mit den beobachteten Werten beruht. In Wirklichkeit stellt der obige Ausdruck eben nur eine für die behandelten Fälle (Metalloxyde, -sulfide usw.) gültige Interpolationsformel dar. Außerdem enthält sie vier Konstanten, während die jetzt neu aufzustellende mit deren drei ausreicht.

34. Es zeigt sich nämlich, und der Beweis für diese Behauptung aus dem Beobachtungsmateriale wird die Hauptaufgabe dieses Abschnittes sein, daß der Ausdruck

$$W = A' e^{B'(\vartheta - C)}, \tag{1}$$

wo A', B' und C die zu bestimmenden Konstanten sind, die Beobachtungen sämtlich gut darstellt. Er sagt aus, daß die für die Temperaturmessung zu benutzende Skala nicht am absoluten Nullpunkte zu beginnen hat, sondern bei der absoluten Temperatur C. Bei dieser Temperatur müßste also, wenn die Gültigkeit der Beziehung in derartig weit die Beobachtungsgrenzen überschreitenden Gebieten zugelassen wird, die Leitfähigkeit, soweit sie auf Ionenwanderung beruht, verschwinden, was bei Gläsern erst beim absoluten Nullpunkte selbst der Fall ist. Zur Erklärung könnte an eine Modifikationsänderung oder vielleicht auch daran gedacht werden, daß bei dieser Temperatur die Zwischenräume zwischen den Kristallmolekülen so klein werden, daß die Ionen nicht mehr zwischen ihnen hindurchschlüpfen können.

30*

[59]

^{1907.} E. Rasch und W. Hinrichsen, Ztschr. f. Elektrochemie 14, 41-48. 1908. E. Rasch, Mitteil. a. d. Kgl. Material-Prüf.-Amt Grofs-Lichterfelde-West, Bd. 30, 320-348. 1912.

¹⁾ Vgl. R. Ambronn, Diss. Göttingen.

Denn es ist kaum anzunehmen, daß die Ionen imstande sind, die Kristallmoleküle merklich von ihren aus der Gitterstruktur folgenden Plätzen zu verschieben, da sich solche Störungen sonst auch bei anderen kristallphysikalischen Phänomenen bemerkbar machen müßten.

Ein Beweis für die Anwendbarkeit der angenommenen Formel ist aber eben nur dadurch zu erbringen, daß sie die Beobachtungen mit genügender Annäherung innerhalb der aus ihrer inneren Übereinstimmung zu erwartenden Fehler darstellt. Von diesem Gesichtspunkte aus ist auch die verhältnismäßsig umständliche Ableitung der W_0 und *a* zu betrachten, denn die graphischen Methoden hätten ein Maß für die Genauigkeit der Messungen, zumal für W_0 und *a* gesondert, auch nicht einfacher erzielen lassen, als es jetzt durch Rechnung frei von jeder Willkür und für alle Serien in genau gleicher Weise erhalten wurde.

35. Einige Eigenschaften der drei Konstanten sind bereits im Voraus anzugeben und gewisse Bedingungen müssen, um die Darstellung überhaupt zu rechtfertigen, erfüllt sein. Die Temperaturgröße C wird jedenfalls durch die Art der Lösung der Salze im Bergkristalle und durch die räumlichen Verhältnisse der Molekülanordnung in ihm bedingt. Ihr Wert muß daher an sämtlichen untersuchten Platten, wenigstens soweit sie einem Kristalle entstammen, derselbe sein. Denkbar wäre noch ein Einfluß der chemischen Beschaffenheit der gelösten Salze, indem für Lithiumsalze etwa ein anderer Wert, wie für Natriumsalze erhalten würde, entsprechend der Verschiedenheit ihrer Molekularvolumina. Dann könnten die C mit der Herkunft des untersuchten Bergkristalles wechseln.

Ein Versuch, ob bei künstlicher Änderung der im Bergkristalle gelösten Salze (etwa durch elektrolytische Einführung von Lithium) der Wert von C merklich geändert werden könnte, ist noch nicht gemacht worden. Auch die Untersuchung der dabei eintretenden Veränderungen von A' und B'wäre von großsem Interesse gewesen, dürfte aber sehr viel Zeit erfordern, weshalb vorläufig davon abgesehen wurde.

Das B' stellt die Abhängigkeit der Leitfähigkeit von der Temperatur dar und es wäre zu erwarten, daß auch diese Konstante von der Eigenart der jeweilig untersuchten Platte unabhängig sein müßste, wenigstens solange man Platten aus ein und demselben Kristallindividuum benutzt.

In A' dagegen ist der Einfluß der Dimensionen der Platten und der Lage der kristallographischen Hauptachse in ihnen enthalten und die Konstante A' wird dann auch zur Bestimmung dieser Einflüsse zu verwerten sein.

36. Um zu erkennen, inwieweit die oben bezeichneten Voraussetzungen erfüllt sind und welche Genauigkeit den Bestimmungen der verschiedenen Konstanten zukommt, muß auch jetzt der Auswertung des Materiales nach der Methode der kleinsten Quadrate der Vorzug vor der graphischen Methode erteilt werden, zumal da die Konstante C bei falscher Annahme eine Krümmung der durch die den Beobachtungen in der $(\log W; 1/(\vartheta - C))$ -Ebene entsprechenden Punkte zu legenden wahrscheinlichsten Kurve bedeutet, die aus der Zeichnung wegen der zufälligen Fehler der Beobachtungen nur sehr schwer zu erkennen ist, wobei der Genauigkeit der einzelnen Werte überhaupt kaum hätte Rechnung getragen werden können.

Die strenge Ableitung der drei Konstanten A', B' und C auf diesem Wege ist aber nicht möglich, da sich eine Gleichung von der Gestalt:

$$W = A' e^{B'/(\vartheta - C)}$$

in bezug auf die Größen A', B' und C nicht auf eine lineare Form bringen läfst. Es mußste deshalb eine etwas umständlichere Näherungsmethode angewendet werden, die jedoch, weil aus je drei Beobachtungen schon ziemlich gute Näherungswerte erhalten werden konnten, für die Unbekannte C bereits in erster Näherung zu genügenden Werten führte. Wird C als bekannt vorausgesetzt, so kann mit den gewonnenen B' und A' als Näherungswerten nach der bei den Gläsern angewendeten Methode weiter gerechnet werden.

37. Es wurde demnach auf folgende Weise vorgegangen: Die Gleichung (1) läfst sich in der Form schreiben:

$$\log W_0 = w_0 = \log A' + B' \log e / (\vartheta - C) = A + B / (\vartheta - C).$$
(2)

und es sollen die wahrscheinlichsten Werte von A, B und C gesucht werden.¹)

Es wurden aus drei mit kleinen mittleren Fehlern erhaltenen Widerständen Näherungswerte A_0 , B_0 und C_0 für die drei Unbekannten berechnet und für C_0 ein Mittelwert aus den Bestimmungen an allen Platten berechnet. Die wahrscheinlichsten Werte A_2 , B_2 , C_2 der Konstanten unterscheiden sich von den genäherten je um die Größen α , β , γ , so daß

$$A_0=A_2+lpha,\quad B_0=B_2+eta,\quad C_0=C_2+\gamma$$

ist. Setzt man nun einmal die wahrscheinlichsten Werte und dann die genäherten Werte der Konstanten in die Gleichung ein und subtrahiert beide Gleichungen voneinander, so wird

$$w_0 - w + v = r + v = \alpha + B_0 / (\vartheta - C_0) - B_2 / (\vartheta - C_2),$$

¹) Es ist zu beachten, dass im Gegensatze zu der bei den Messungen an Gläsern (Ambronn, l. c.) angewendeten Bezeichnung B jetzt den log e bereits enthält.

[61]

wo v den Fehler bezeichnet, den man durch Einsetzen der wahrscheinlichsten Werte gegenüber den gemessenen erhält, und dessen Quadratsumme über alle Serien zu einem Minimum gemacht werden soll.

Entwickelt man die Differenz

$$B_0 / (\vartheta - C_0) - B_2 / (\vartheta - C_2)$$

nach $B_0 - B_2 = \beta$ und $C_0 - C_2 = \gamma$, so wird

$$r+v = \alpha + \beta / (\vartheta - C_0) + \gamma B_0 / (\vartheta - C_0)^2 + \dots$$

Vernachlässigt man die höheren Glieder, so kann man Näherungswerte $\alpha' \beta' \gamma'$ für $\alpha \beta \gamma$ berechnen und erhält für jede Platte so viele Bedingungsgleichungen, wie Serien bei verschiedenen Temperaturen gemessen sind. Es folgen daraus für A, B, C die Werte erster Annäherung

$$A_1 = A_0 - \alpha', \quad B_1 = B_0 - \beta', \quad C_1 = C_0 - \gamma'.$$

Die auf diese Weise errechneten C_1 kommen bereits den wahrscheinlichsten Werten genügend nahe; zudem hat eine geringe Änderung derselben nur einen ganz verschwindenden Einfluß auf die Summe der Fehlerquadrate, und es wird also $C_1 = C_2$ gleich dem wahrscheinlichsten Werte von Cgesetzt und nun mit diesem C_2 für alle Serien der Ausdruck gebildet:

$$w_0 + v = A_2 + B_2 / (\vartheta - C_2),$$

wo jetzt die wahrscheinlichsten Werte $A_2 B_2$ der A_1 und B_1 , die die Summe der v^2 zu einem Minimum nach der bei den Gläsern angewendeten Näherungsmethode streng berechnet werden können, samt ihren mittleren Fehlern m_{A_2} und m_{B_2} . Der mittlere Fehler von $C_1 = C_2$ ist gleich dem von γ' aus der ersten Ausgleichung zu setzen.

38. Die Werte von $A_1 B_1 C_1$, $A_2 B_2$ sind in Tabelle 10 mit ihren mittleren Fehlern zusammengestellt¹), die jetzt nicht mehr in Prozenten, sondern in Einheiten der Größen, zu denen sie gehören, gegeben sind. Setzt man die Konstanten in die Bedingungsgleichungen ein, berechnet die daraus folgenden log W_1 und log W_2 , so erhält man die in Tabelle 9 mit-

¹) Die Beobachtungen an Platte 16 sind mit zwei verschiedenen Thermoelementen zu sehr verschiedenen Zeiten ausgeführt und es wurden daher einmal die Serien 24-35, die mit den neuen Thermoelementen angestellt waren, allein für sich ausgeglichen (die Resultate sind stets mit 16₁ bezeichnet) und dann auch noch alle zusammen (19-35) ausgewertet und unter 16₂ zitiert.

geteilten Werte, deren der Übersicht halber mit 100 multiplizierten Differenzen Δ_1 und Δ_2 gegen die aus den Beobachtungen unmittelbar errechneten Größen ein Urteil über die Güte der Darstellung zu bilden erlauben. Dabei ist noch zu bemerken, daß die Δ multipliziert mit 2, 3 den Fehler der Widerstände selbst genähert in Prozenten geben.

Die Ausdrücke

 $\log W_2 = A_2 + B_2 / (\vartheta - C_2)$

stellen, unabhängig von einer theoretischen Begründung der Form, sehr brauchbare Interpolationsformeln dar, die später dazu benutzt werden sollen, um die Widerstände für alle Platten für eine Anzahl mittlerer Temperaturen zu interpolieren, um von allen Hypothesen unabhängig die an verschiedenen Platten erhaltenen Widerstandswerte unmittelbar miteinander vergleichen zu können.

Tabelle 10.

Zusammenstellung der bei der Berechnung der Konstanten der Formel $W_0 = A' e^{B'/(\vartheta - C)}$ erhaltenen Werte.

Platte	d der rien		1. Näb	ierung	5	2. N	äheru	ng C =	$= C_1$		C =	224º.9			Mittl. V	Verte	
	Zal	A_1	B_{t}	C_1	m_{C_1}	A_2	B_2	100 m _{A2}	m_{B_2}	A_{8}	B_3	$100 m_{A_3}$	m_{B_3}	A_m	$100 m_{Am}$	B_m	m_{B_m}
$\begin{array}{c} 20 \text{ A} \\ 19 \\ 16_1 \\ 16_2 \\ 21 \text{ B} \\ 20 \text{ B} \end{array}$		$\begin{array}{c} 0.2561 \\ 1.0766 \\ 0.2722 \\ 0.3807 \\ 0.3005 \end{array}$	$1640.1 \\ 1473.7 \\ 1590.5 \\ 1522.3 \\ \\ 1660.5$	220.7 235.3 216.1 223.0 217.6	$\pm $ 5.65 4.83 8.35 5.77 - 8.86	$\begin{array}{c} 0.2570 \\ 1.0765 \\ 0.2705 \\ \\ 0.3045 \end{array}$	$ \begin{array}{r} 1639.7 \\ 1476.7 \\ 1591.9 \\ - \\ 1658.7 \\ \end{array} $	+14.4 0.85 2.16 	+44.6 2.9 7.37 - 2.29	$0.3209 \\ 0.9537 \\ 0.3846 \\ 0.4021 \\ \\ 0.4136 \\ 0.4136 \\ 0.5209 \\ 0.52$	$1597.0 \\ 1566.3 \\ 1510.7 \\ 1505.6 \\ - \\ 1585.7$	$\begin{array}{r} \pm 12.5 \\ 2.14 \\ 2.24 \\ 0.94 \\ - \\ 2.38 \end{array}$		0.3559	 	1586.1	± 2.17 1.96 1.96 1.36 2.17
22 21 C 34 B 36 35 37	7 6 5 5 1 5	$\begin{array}{r} 0.9894 \\ 2.5981 \\ 2.4903 \\ 2.1832 \\ 2.4897 \\ \end{array}$	$1421.3 \\ 1425.8 \\ 1598.1 \\ 1216.1 \\ 1400.0 \\ -$	$\begin{array}{c} 232.0 \\ 223.3 \\ 201.9 \\ 252.8 \\ 226.5 \end{array}$	$^{+11.2}_{-2.79}$ 17.4 13.3 6.03 —	0.9917 2.5084 2.1885 	$ \begin{array}{c} 1443.0 \\ \hline 1600.4 \\ 1216.1 \\ \hline \end{array} $	± 1.18 $ 2.30$ 2.29 $-$	± 5.32 9.90 10.2 	$\begin{array}{c} 0.9156 \\ 2.6126 \\ 2.7212 \\ 1.9576 \\ 2.4768 \\ \end{array}$	1502.2 1413.9 1425.9 1403.2 1410.9	$\begin{array}{c} \pm & 1.15 \\ & 0.45 \\ & 3.04 \\ & 4.14 \\ & 0.79 \\ & - \end{array}$	± 5.28 2.02 12.4 19.6 3.56 -	$\begin{array}{c} 0.9090\\ 2.6138\\ 2.7517\\ 1.9363\\ 2.4714\\ 0.8552\end{array}$	 	$\begin{array}{c} 1505.4\\ 1413.4\\ 1413.4\\ 1413.4\\ 1413.4\\ 1413.4\\ 1413.4\\ 1413.4\end{array}$	± 1.96 1.36 1.36 1.36 1.36 ± 1.36 ± 1.36

39. Die Zusammenstellung in Tabelle 10 läfst erkennen, dafs die Übereinstimmung der an verschiedenen Platten erhaltenen Werte von C_1 überraschend gut ist, wenn man die mittleren Fehler derselben betrachtet. Aufser bei Platte 19, wo ein Grund nicht dafür erkannt werden kann, weichen nur die Werte für die Platten 34 B und 36 über die Fehlergrenze hinaus von dem Mittelwerte ab; bei ihnen ist aber die Genauigkeit so gering, dafs sie bei der Mittelbildung fast völlig ausfallen. Für die Platten 21 B und 37 reichten die Beobachtungen nicht aus, um die langwierige Ausgleichung zu rechtfertigen. Die Gewichte wären so klein geworden, dafs sie auf den Mittelwert doch gar keinen Einflufs gehabt haben würden.

[63]

Bildet man aus allen Werten von C_1 unter Berücksichtigung ihrer Genauigkeit das Mittel, so erhält man

$$C_m = 224^{\circ}, 9 \pm 2^{\circ}, 3.$$

Unter der Annahme, dafs dieser Wert von C aus allen Beobachtungen erhalten wäre, wenn sie mit genügender Genauigkeit hätten angestellt werden können, wurden dann, genau wie die Werte A_2 und B_2 mit den aus der ersten Ausgleichung erhaltenen Werten von C_1 bestimmt waren, jetzt die Werte A_3 und B_3 für $C_m = 224^{\circ},9$ berechnet und in Tabelle 10 samt den für die beiden Konstanten folgenden mittleren Fehlern zusammengestellt. Dafs in einigen Fällen die Genauigkeit der A_3 und B_3 sogar gegen die der A_2 und B_2 noch gesteigert ist, ist darauf zurückzuführen, dafs die C_2 ja gleich den Näherungswerten C_1 gesetzt waren, und daher noch mit kleinen Fehlern behaftet sein können; auch machen sich hier bereits Abrundungsfehler aus den Rechnungen bemerkbar, die mit fünfstelligen Logarithmen geführt wurden.

In Tabelle 9 sind die Werte von $1000/(\vartheta - C_m)$ gleich $1000/\tau$ und die durch Einsetzen von C_m , A_3 und B_3 in die Bedingungsgleichungen erhaltenen log W_3 eingetragen, die sich von den beobachteten Werten um A_3 unterscheiden. Die Verteilung der Fehler auf positive und negative Werte ist eine sehr gleichmäßige geworden und irgend ein systematischer Einflußs der Temperatur oder mehrfacher Erhitzung derselben Platte an verschiedenen Tagen ist nicht zu bemerken.

In den Kurventafeln III sind die Werte von $\log W_0$ zu $1/(\vartheta - C_m)$ als Abszissen aufgetragen (Kreise), und man kann hier deutlich die gute Annäherung der beobachteten Werte an eine gerade Linie erkennen.

40. Nach den oben angestellten Überlegungen müßsten auch die Werte der B_3 für alle Platten innerhalb der Fehlergrenzen einander gleich sein. Tabelle 10 läßt aber erkennen, daß dieses keineswegs allgemein der Fall ist. Nur Platten, die aus identischem Materiale hergestellt sind, ergeben auch nahe gleiche Werte von B_3 .

Die unter 20 A und 20 B mitgeteilten Serien unterscheiden sich allein dadurch voneinander, daß die Platte 20 einen neuen Platinüberzug erhalten hat. Die beiden Werte von B_3 in diesen Fällen sind

$20 \mathrm{A}$:	$1597,\!0$	\pm	38,0
2 0 B:	1585,7	±	7,6
Mittel:	1586,1	+	2,2

und ihr Mittelwert besitzt eine recht große rechnerische Genauigkeit.

Die beiden rechtwinkligen Parallelepipede 21 A und 34 A waren an unmittelbar benachbarten Stellen dem Quarzkristalle entnommen und die für die aus ihnen durch Teilung erhaltenen Platten berechneten B_3 stimmen recht gut miteinander überein. Als Mittelwert folgt aus allen an ihnen ausgeführten Bestimmungen:

 $B_m = 1413, 4 \pm 1, 4.$

Der Umfang und die Genauigkeit der an den Platten 21 B und 37 bei konstanter Temperatur beobachteten Serien reichte, wie bereits bemerkt, nicht aus, um eine Ausgleichung der für sie erhaltenen W_0 zu rechtfertigen: die Übereinstimmung der Temperaturkoeffizienten aller anderen Abkömmlinge der beiden in Rede stehenden Parallelepipede läfst aber erwarten, dafs der Mittelwert 1413,4 auch auf diese beiden Platten anwendbar ist. Die Zulässigkeit dieser Annahme zeigen die sehr kleinen für A_m berechneten Fehler in Tabelle 10.

Auffallend ist die Übereinstimmung der beiden aus verschiedenen Quarzkristallen hergestellten Platten 16 und 22. Aus den Beobachtungen folgen die Werte:

Mittel:	1505,4	$\pm 2,0$
22	1502,2	5,3
16_{2}	1505,6	4,1
16 ₁	1510,7	\pm 7,4

Ihr Mittelwert liegt durchaus innerhalb der den einzelnen Werten zukommenden Fehlergrenzen.

Gerade diese Übereinstimmung scheint ein wichtiges Beweismittel für die Allgemeinheit der Konstante C zu sein, wenn man sie nicht als rein zufällig ansehen will, was bei nur zwei Proben verschiedener Bergkristallsorten immerhin möglich sein könnte. Eine kleine Änderung von Chat bereits eine bedeutende Abweichungen in den Werten von B zur Folge.

Der an Platte 19 für B gefundene Wert ist mit keinem der übrigen zu vergleichen.

41. Es könnte noch die Richtung, unter der die Hauptachse die Elektroden durchsetzt, einen Einfluß auf die Größe von B haben, da diese für die Platten, deren Temperaturkoeffizienten zu Mittelwerten zusammengezogen werden konnten, stets die gleiche ist; aber eine Zusammenstellung (Tabelle 11) zeigt, daß diese Annahmen nicht zutreffen.

Nova Acta CI. Nr. 3.

[65]

241

Tabelle 11.

Platten-Nr.	Achse : Platten- normale	B_m
$\begin{array}{c} 16, \ 22\\ 20; \ 21, \ 34, \ 36\\ 19\end{array}$	0 30 60	$\begin{array}{r} 1505, 4\\ 1586, 1; \ 1413, 4\\ 1566, 3\end{array}$

Weiter könnte die Oberflächenbeschaffenheit noch in Frage kommen, aber da die Platten 16-20 bei Dr. Steeg & Reutter in Homburg, die übrigen bei Voigt & Hochgesang in Göttingen hergestellt sind, indem bei letzteren die Flächen auf meinen Wunsch etwas gröber mattiert waren, so ist auch hier ein systematischer Unterschied nicht zu erkennen.

Dafs Veränderungen an den Elektroden bei der Erhitzung die Gröfse von *B* gefälscht hätten, ist nicht anzunehmen, da derartige Wirkungen sich bei sinkender Temperatur in der mangelnden Übereinstimmung der dabei erhaltenen Widerstände mit den für steigende Temperatur gemessenen hätten bemerkbar machen müssen, was, wie oben bereits erwähnt wurde, durchaus nicht der Fall ist.

Möglich wäre endlich noch, dafs die Extrapolation der W_0 irgendwie fehlerhaft vorgenommen wäre, dagegen spricht aber die Übereinstimmung der an den Platten 34 B — 36 gewonnenen Werte von B, bei denen ja Elektrodenoberfläche und Dicke der Platte, also auch die Zusammensetzung der direkten Messungsresultate aus Oberflächen- und Volumen-Effekt (*a* und W_0) sehr stark wechselt.

Es bleibt demnach nichts anderes übrig, als die mangelnde Übereinstimmung auf Inhomogenitäten im Quarze zurückzuführen, wenn auch nicht verhehlt werden darf, dafs diese Erklärung unbefriedigend ist, da man nicht recht einzusehen vermag, auf welche Weise diese Inhomogenitäten den Temperaturkoeffizienten beeinflussen können. Dafs indessen derartige Störungen vorhanden sein müssen, ergibt sich mit noch viel gröfserer Deutlichkeit aus den für A gefundenen Werten. Bei früher von mir untersuchten Gläsern war B mit der Natriumkonzentration veränderlich und man könnte vielleicht daran denken, dafs ein derartiger Effekt auch hier im Quarze auftreten könnte. Später wird noch einmal kurz auf diese Analogie zurückzukommen sein, weil dabei auch das Verhalten der Konstanten A_m zu berücksichtigen ist.

42. Alle bisher erwähnten Einflüsse müssen sich auch in den Konstanten A bemerkbar machen und dazu kommen dann diejenigen der geometrischen Form und der Orientierung der Platten im Kristalle, die zu ermitteln unsere eigentliche Aufgabe bildet.

242

[66]

[67]

Aus den in Tabelle 5 mitgeteilten Beobachtungen an den Platten 20 A und 34 A ergibt sich, dafs für diese der Wert von *A* aufserordentlich großs sein muß, da die Widerstände bei allen erreichbaren Temperaturen unmessbar hoch waren. Die Hauptachse durchschneidet in diesen Fällen die platinierten Elektrodenflächen unter einem Winkel von 60° gegen die Normale. Um zu erklären, daß trotzdem keine merkliche Leitung auftritt, muß angenommen werden, daß, wie in dem einleitenden Abschnitte dieses Kapitels bereits vorweggenommen werden mußte, die Verschiebbarkeit der Ionen allein parallel der kristallographischen Hauptachse möglich ist.

In den beiden Platten 21 A und 34 A erfüllen die achsenparallelen von platinierten Teilen der Oberflächen ausgehenden Bündel von Elementarstromfäden, innerhalb deren also eine Leitung möglich wäre, zwei keilförmige Räume, die mit ihren inneren Flächen nur 3,2 bezw. 5,4 mm voneinander entfernt sind, während die Größen dieser Grundflächen etwa 150 bezw. 220 mm² betragen. Wenn also in einem auch nur kleinen Winkel gegen die Richtung der Hauptachse irgend eine Verschiebung der Ionen stattfinden könnte, so müßte sich das zum mindesten im ersteren Falle an Platte 21 A bemerkbar machen. Die geringen Stromstärken, die an diesen beiden Platten konstatiert sind, werden in Form eines reinen Elektronenstromes übergeführt; denn es zeigt sich hier nicht der geringste Einfluß der Frequenz. Die mit Gleichspannung erhaltenen Werte sind von der gleichen Größenordnung, wie die nach der Alternatormethode bestimmten, die allerdings wegen des überwiegenden Einflusses der Verschiebungsströme infolge der Kapazität der Zuleitungen und der Belegungen der Platten gegeneinander als sehr unsicher bezeichnet werden müssen; handelte es sich um eine elektrolytische Leitung nach Art der parallel der Achse stattfindenden, so müßte bei den Gleichstrommessungen eine Polarisationserscheinung aufgetreten sein, von der aber keine Spur zu entdecken war.

43. Durch die an diesen beiden Platten konstatierten Phänomene ist die Frage nach der Abhängigkeit der elektrischen Leitfähigkeit im Bergkristalle von der Richtung der Plattennormale gegen die kristallographische Hauptachse schon durchaus beantwortet. Ein Stück Bergkristall verhält sich in bezug auf die Eigenschaften seiner elektrolytischen Leitfähigkeit wie ein Bündel paralleler feiner Röhrchen, deren Richtung die kristallographische Hauptachse bestimmt.¹)

 31^*

¹⁾ Dieser Struktur halber ist auch bei der Ermittelung des Temperaturkoeffizienten der Leitfähigkeit der thermische Ausdehnungskoeffizient der Substanz fortgelassen. Es bleiben ja stets die gleiche Anzahl von Röhrchen an der Leitung beteiligt und die Widerstands-

Dieser schematische Aufbau ist aus der Gitterstruktur der den Kristall aufbauenden $Si O_2$ -Moleküle durchaus plausibel. Als Elementarbereich wäre für Bergkristall ein gerades gleichseitig-dreieckiges Prisma einzusetzen. Spricht man den Molekülen die Form von Kraftfeldern kugelförmiger Symmetrie zu, so müßten, damit die Natriumionen sich nur parallel der Kanten bewegen könnten, nicht aber senkrecht dazu (also die Bedingung bestände, daßs sich die Zentren der Ionen denen der Kristallbausteine nur bis auf eine gewisse Entfernung nähern könnten, ohne auf unüberwindliche Kräfte zu stoßen), die Höhe der Prismen kleiner sein, als das 0,58-fache der Länge der Dreieckseiten der Endflächen. Gibt man aber, was aus anderen Gründen ja wahrscheinlich ist, diese höchste Symmetrie der Elementarkörper auf, so ist natürlich über die Abstände der Moleküle voneinander in den verschiedenen Richtungen auf Grund des hier behandelten Phänomens nichts mehr auszusagen.¹)

Es ist hier am Platze, nochmals auf die in der Einleitung berührte Frage zurückzukommen, in welcher Weise sich das in dem Bergkristall eingeschlossene die Leitung vermittelnde Natriumsalz an der Kristallstruktur beteiligt.

Bei der Beantwortung ist zu bedenken, daß die Ionen in dem Kristallgefüge nur außerordentlich selten eingestreut sind, indem günstigstenfalls, bei vollständiger Dissoziation der gelösten Natriumsalze, jedes 4000. Teilchen ein Natriumion wäre. Nun muß man sich vorstellen, daß die Quarzmoleküle (oder auch die Silizium- und die Sauerstoff-Moleküle einzeln), die Bausteine des Bergkristalles, sich durch die gegenseitige Verkettung ihrer Attraktionskräfte in der kristallinen Ordnung erhalten, daß dieselben Kräfte aber auch auf die Ionen wirken müssen. Das natürlichste wäre also, daß die Ionen durch die Molekularkräfte an bestimmten ausgezeichneten Stellen des Kraftfeldes festgehalten würden, um die sie ihre thermische Agitation ausführten. Die Kraft, mit der die Ionen an diesen Stellen festgehalten werden, ist sicher sehr viel kleiner, als die, welche die Quarzmoleküle selbst an ihren Ort zwingt, und da sich die thermische Energie im Mittel über alle Freiheitsgrade gleichmäßig verteilt, so werden die Amplituden der Bewegung

änderung wird mit der Änderung der Weite derselben in einem gewissen Zusammenhange stehen, auf den der äußserlich sichtbare Ausdehnungskoeffizient keinen Rückschluß zu ziehen erlaubt.

¹) Eine Darstellung, die die Röhrchenstruktur der Quarzkristalle in einer Art, wie sie hier gefordert werden muß, sehr deutlich zeigt, ist in dem Aufsatze von J. Beekenkamp, Der tetrakishexagonale oder oktaedrische Typus der Kristalle, als Fig. 5 in den Annalen d. Physik 39, S. 381, 1912 gegeben.

[69]

der Ionen sehr viel größer sein, als die der Quarzmoleküle. Wenn Diffusion, infolge deren sich die Ionen bei Anlegung einer E. M. K. vorzugsweise in Richtung des Potentialgefälles bewegen, einsetzen soll, muß die Amplitude der Teilchen mindestens so groß sein, daß sie aus dem Bereiche einer Gleichgewichtslage in einen anderen benachbarten gelangen können. Zur Erreichung einer bestimmten Minimum-Amplitude ist aber eine bestimmte Mindestenergie eines Teilchens oder im Mittel für den Kristall eine bestimmte Mindesttemperatur erforderlich, erst dann könnte Diffusion und die auf dieser begründete elektrolytische Leitfähigkeit einsetzen. Mit dieser Minimumtemperatur könnte vielleicht die Temperaturkonstante $C (= 225^{\circ} \text{ abs.})$ in Verbindung gesetzt werden, bei der der Formel gemäß die Leitfähigkeit der untersuchten Quarzplatten verschwinden soll.

Eine Prüfung, ob eine solche Beziehung bestehen kann, wäre vielleicht auf dem Wege zu erbringen, daß man den Widerstand einer Bergkristallplatte als Funktion der Temperatur nach den beschriebenen Methoden zweimal bestimmt, und zwar einmal, nachdem man sie eine Zeitlang einer Gleichspannung zwischen Natriumamalgam-Elektroden ausgesetzt hat, so dafs alle beweglichen Ionen in ihr sicher Natriumionen sind, und ein zweites Mal, nachdem man sie hinreichend lange zwischen Lithiumamalgam-Elektroden elektrolysiert hat, bis das Natrium völlig durch Lithium ersetzt ist; dann müßten sich bei Gültigkeit der obigen Betrachtung in den beiden Fällen verschiedene Werte von C ergeben, indem das für Lithiumfüllung erhaltene kleiner sein müßste, wie das für Natrium. Denn die leichteren Lithiumionen werden schon bei niedrigerer Temperatur die Mindestamplitude erreichen können, als die Natriumionen. Leider war es mir nicht mehr möglich, solche Versuche auszuführen. Daß die Werte von C für die beiden untersuchten Bergkristallproben übereinstimmen, kann daher rühren, daß beide sehr wahrscheinlich das in der Natur viel häufiger vorkommende Natrium als Verunreinigung enthalten.

Um die der elektrolytischen Leitung sich überlagernde, sehr schwache, durch Elektronen vermittelte Leitung zu bestimmen, müßte man, wie es von Le Blanc und Kerschbaum an Gläsern geschehen ist, zuvor die ionenbildende Substanz elektrolytisch entfernen und das übrigbleibende Kanälchengerüst auf seinen Widerstand untersuchen. Die Größe des letzteren ist aber so bedeutend, daß er mit den auf kleinere Widerstände berechneten, von mir zu diesen Messungen benutzten Vorrichtungen nicht genau genug zu messen gewesen wäre, weshalb derartige Beobachtungen unterlassen werden mußten. Es wäre dann aber auch unbedingt notwendig gewesen, sämtliche drei Hauptleitfähigkeiten aufzusuchen bezw. nachzuweisen, daß

[70]

die beiden zur Hauptachse und zueinander senkrechten Richtungen stets gleiche Werte ergeben.

44. Unter der Annahme der alleinigen Beweglichkeit der Ionen parallel der Hauptachse sollen nun die aus den Messungen an den übrigen Platten gewonnenen Werte von A in ihrer Abhängigkeit von den geometrischen Dimensionen miteinander verglichen werden. Es müßte offenbar die Summe

$$A_m + \log Q/l =$$
const.

für alle Platten sein; wo Q den Querschnitt des wirksamen Kanälchenbündels bedeutet und l die Länge der Kanäle wäre. In Tabelle 12 ist in der letzten Spalte der Wert dieses Ausdruckes für sämtliche Platten angegeben. Dabei zeigt sich aber, daß der absolute Wert der Leitfähigkeit nicht konstant ist, wie es verlangt war, sondern vielmehr ganz beträchtlich von Platte zu Platte sich ändert und es ist daher zu untersuchen, welcher Umstand diese Veränderlichkeit verursacht.

Tabelle 12.

Platte . Nr.	A_m	log O	$\log Q$	$\log h$	$\log l$	$\log O/h$	$\log Q/l$	$A_m + \log O/h$	$A_m + \log Q/l$
20 A 19 16 21 B 20 B	$\begin{array}{c} 0.3559\\ 0.9537\\ 0.4016\\ 2.7895\\ 0.4125\end{array}$	$\begin{array}{c} 0.5084 \\ 0.5642 \\ 0.5015 \\ 0.0457 \\ 0.4822 \end{array}$	$\begin{array}{c} 0.4060 \\ 0.1508 \\ 0.5015 \\ 9.4587 \\ 0.3797 \end{array}$	$\begin{array}{c} 9.3224 \\ 9.3212 \\ 9.3230 \\ 0.0821 \\ 9.3224 \end{array}$	$\begin{array}{c} 9.3852 \\ 9.6218 \\ 9.3230 \\ 0.1502 \\ 9.3852 \end{array}$	$\begin{array}{c} 1.1860 \\ 1.2430 \\ 1.1785 \\ 9.9636 \\ 1.1598 \end{array}$	$\begin{array}{c} 1.0208 \\ 0.5290 \\ 1.1785 \\ 9.3085 \\ 0.9945 \end{array}$	$\begin{array}{c} 1.5419 \\ 2.1967 \\ 1.5801 \\ 2.7531 \\ 1.5723 \end{array}$	$\begin{array}{c} 1.3767 \\ 1.4827 \\ 1.5801 \\ 2.0980 \\ 1.4070 \end{array}$
$\begin{array}{c} 22 \\ 21 \text{ C} \\ 34 \text{ B} \\ 36 \\ 35 \\ 37 \end{array}$	$\begin{array}{c} 0.9090 \\ 2.6138 \\ 2.7517 \\ 1.9363 \\ 2.4714 \\ 0.8352 \end{array}$	$\begin{array}{c c} 0.6504 \\ 0.0432 \\ 0.2972 \\ 0.2972 \\ 0.2394 \\ 0.2916 \end{array}$	$\begin{array}{c} 0.6504 \\ 9.5779 \\ 9.8205 \\ 0.1417 \\ 9.8932 \\ 0.2194 \end{array}$	$\begin{array}{c} 9.4895 \\ 0.0074 \\ 0.1376 \\ 9.5853 \\ 9.9636 \\ 8.3139 \end{array}$	$\begin{array}{c} 9.4895 \\ 0.0754 \\ 0.2047 \\ 9.6524 \\ 0.0307 \\ 8.3810 \end{array}$	$\begin{array}{c} 1.1609 \\ 0.0358 \\ 0.1596 \\ 0.7119 \\ 0.2758 \\ 1.9777 \end{array}$	$\begin{array}{c} 1.1609 \\ 9.5025 \\ 9.6158 \\ 0.4893 \\ 9.8625 \\ 1.8384 \end{array}$	$\begin{array}{c} 2.0699 \\ 2.6496 \\ 2.9113 \\ 2.6482 \\ 2.7472 \\ 2.8329 \end{array}$	$\begin{array}{c} 2.0699\\ 2.1163\\ 2.3675\\ 2.4256\\ 2.3339\\ 2.6936\end{array}$

45. Nur die für die Platten 16 und 22, die aber verschiedenen Kristallen entstammen, abgeleiteten spezifischen Widerstände sind von jeder Annahme über die Abhängigkeit der Leitfähigkeit von der Richtung völlig unabhängig. Die Annahme, dafs die Leitung streng parallel der Achse vor sich geht, scheint nun die radikalste aller möglichen Hypothesen zu sein. Jede andere würde einen, wenn vielleicht auch geringen, Einfluß der übrigen nur einseitig von platinierten Oberflächen begrenzten, achsenparallelen Elementarstromfäden zulassen und würde daher den an Stelle von log Q/l tretenden Faktor vergrößern. Eine Verkleinerung dieses Termes könnte nur durch anderweitige noch gar nicht berücksichtigte Ursachen

[71]

hervorgebracht werden. Andererseits muß aber auch als größte mögliche den log Q/l vergrößernde Annahme die gelten, daß bis dicht an die zu den Achsen senkrechte Richtung die Leitfähigkeit nur sehr wenig geändert würde, um dann plötzlich zu verschwinden (obgleich das mit den Resultaten an den Platten 21 A und 34 B schon nicht mehr verträglich wäre). Dann käme für die Leitung fast der ganze Querschnitt O und die Dicke h der Platten in Betracht, und der Ausdruck

$A_m + \log O/h$

müßte für alle Platten denselben Wert annehmen. Als Grenzfall ist dieser in Tabelle 12 ebenfalls gegeben. Man sieht aber, daß eine solche Auffassung noch viel abweichendere Werte bedingt, wie die erstere Annahme. Die Störungen müssen also in gerade entgegengesetzter Richtung gesucht werden; das ist aber nach den obigen Ausführungen auf dem bisher eingeschlagenen Wege ausgeschlossen.

Die Hypothese der ausschließlichen Leitfähigkeit parallel der Hauptachse ist also immerhin diejenige, die die aus den Beobachtungen erhaltenen Wert von A_m am besten zusammenfaßt, vielleicht mit Ausnahme der, allerdings nur wenig, abweichenden Platten 20 und 19.

Die Abweichungen der A untereinander sind aber noch so groß, daß sie auf irgend welche anderen regel- oder unregelmäßig auftretende Ursachen zurückgeführt werden müssen.

Der große Wert von A_m für die Platte 21 B ließ zunächst daran denken, es könnte ein Einfluß der Länge l der Kanäle zwischen den Elektroden sich geltend machen, indem durch ganz kleine Störungen in der Kristallstruktur oder infolge von Verstopfungen durch größere Verunreinigungen, etwa durch Salzmoleküle anderer chemischer Beschaffenheit, die dem freien Durchgang der Ionen zur Verfügung stehende Kanallänge einen endlichen Mittelwert besäße, wobei dann die Wahrscheinlichkeit, einen gewissen Prozentsatz freier Kanäle in dem für die Leitung verfügbaren Bündel zu besitzen, mit der Zunahme der Länge des Bündels schnell abnehmen würde.

Um darüber eine Entscheidung zu erhalten, wurden die Messungen an den Platten 21 C und 34 B - 37 angestellt, die aber keine derartigen Effekte erkennen lassen. Der Wert von A_m steigt hier sogar im allgemeinen mit abnehmender Kanälchenlänge.

Dagegen, daß die Unregelmäßigkeiten durch die Nichtberücksichtigung einer etwa vorhandenen schraubenförmigen Anordnung der einander folgenden Molekülschichten im Bergkristalle hervorgebracht würden, ist einzuwenden,

dafs wie immer dieser Einflufs auch sei, er für diekere Platten die Zahl der für die Leitung verfügbaren Kanälchen vermindern müßste, was den Beobachtungen an den Platten 34 B - 37 wiederspricht.

Eine Störung könnte daher resultieren, dafs beim Abschleifen der Elektrodenflächen, bei ihrer Reinigung, Platinierung usw. ein Teil der Kanalenden verstopft würden. Aber es würde sich dabei doch wohl stets um den gleichen Prozentsatz von Kanälen pro Oberflächen- und damit auch pro Bündelquerschnitts-Einheit handeln, so dafs man eine zwar nicht recht übersehbare, aber doch rein zufällige Widerstandsvermehrung erhielte.

Mit dieser Überlegung kommen wir aber schon nahe an die schliefslich allein übrig bleibende Erklärung, daß nämlich der wechselnde Wert von A_m der Eigenart des Bergkristalles zuzuschreiben sei, daß die die Leitung übernehmenden ionenbildenden Verunreinigungen in sehr ungleichförmiger Weise in das Material eingesprengt sind. Dafür spricht, daß die Platten, die demselben Materiale entstammen, nämlich:

Tabelle 13.

Platte Nr.	$A_m + \log Q/l$	Platte Nr.	$A_m + \log Q \; l$
$\begin{array}{c} 20 \ \mathrm{A} \\ 20 \ \mathrm{B} \end{array}$	$1.3767 \\ 1.4070$	$\begin{array}{c} 34 \ \mathrm{B} \\ 35 \end{array}$	2.3675 2.3339
21 B 21 C	$2.0980 \\ 2.1163$	36 37	$2.4256 \\ 2.6936$

auch nahe denselben Wert für $A_m + \log Q/l$ ergeben. Stark weicht nur Platte 37 ab, bei dieser könnte sich aber, wie das auch bei den Gläsern der Fall ist, die Versilberung der platinierten Elektroden widerstandsvermehrend bemerkbar machen, die bei dieser Platte angewendet war, da befürchtet wurde, der Ausbreitungswiderstand längs der Oberfläche könnte wegen der äufserst geringen Dicke der Platte gegen ihren Eigenwiderstand in Betracht kommen. Eine Färbung der Platte, wie es bei Glas beobachtet wurde, trat aber hier in irgend erkennbarer Weise nicht auf.

Dafs ein Teil der vorhandenen Ionen durch die Plattenelektroden eingefangen werden könnte und dadurch die Ionenkonzentration verändert würde, ist nicht anzunehmen, da dann bei mehrfacher Erhitzung der gleichen Platte oder bei Messungen bei sinkender Temperatur andere Werte gefunden werden müßsten, wie vorher, was, wie Tabelle 9 zeigt, in keiner Weise der Fall ist.

46. Ein gewisser Zusammenhang scheint nun zwischen der Inkonstanz von B_m und von $A_m + \log Q/l$ zu bestehen; ordnet man nämlich die Platten nach ansteigenden Werten von $(A_m + \log Q/l)$, so erhält man für B_m eine fallende Reihe, wie die nachfolgende Tabelle zeigt:

Platte Nr.	$A_m + \log Q/l$	B_m
$\begin{array}{c} 20 \text{ A} \\ 20 \text{ B} \\ 19 \\ 16 \\ (22 \\ 21 \text{ B} \\ 21 \text{ C} \\ 35 \\ 34 \text{ B} \\ 36 \\ 37 \end{array}$	$\begin{array}{c} 1.3767\\ 1.4070\\ 1.4827\\ 1.5801\\ 2.0699\\ 2.0980\\ 2.1163\\ 2.3339\\ 2.3675\\ 2.4256\\ 2.6936\end{array}$	$\left.\begin{array}{c}1586.1\\1556.3\\1505.4\\1505.4\end{array}\right)\\1413.4\end{array}\right\}$

Tabelle 14.

47. Dieser entgegengerichtete Verlauf der beiden Konstanten bewirkt, dafs die Widerstände, die für die Beobachtungstemperaturen berechnet werden, etwas besser miteinander übereinstimmen, als die Konstanten A_m , indem sich die Einflüsse zum Teile aufheben. In Tabelle 15 sind zunächst die Widerstandslogarithmen, wie sie sich aus den Konstanten $A_2 B_2 C_2$ der Tabelle 10 interpolieren, für jedes volle Hundert Grade von 200 bis 500 ° C gegeben. Um die Verschiedenheit der Temperaturkoeffizienten zu zeigen, sind sämtliche Werte um den bei entsprechender Temperatur an Platte 16, als der den kleinsten Widerstand aufweisenden, bestimmten Widerstandslogarithmus vermindert. Die Dimensionen der Platten sind bereits in Tabelle 3 zu finden; mit ihrer Hilfe ist der Ausdruck

$\log (W \bullet Q/l)$

für alle Platten bei den genannten Temperaturen gebildet. Die Übereinstimmung ist nicht viel besser geworden; sie variiert außerdem mit der Temperatur und könnte zu einem Beweise der Theorie der allein achsenparallel erfolgenden Bewegung der Ionen keinesfalls dienen. Dieser ist nur durch die Ergebnisse an den Platten 21 A und 34 A erbracht; die übrigen Messungen können ihn aber auch nicht widerlegen, denn es war oben gezeigt, daß jede andere Annahme, die die Leitfähigkeit in weniger strenger Weise von der Richtung gegen die Hauptachse abhängen läfst,

Nova Acta CI. Nr. 3.

die Übereinstimmung der spezifischen Leitfähigkeiten für die verschiedenen Platten nur noch schlechter machen würde. Es bleibt eben nichts anderes übrig, als die Unstimmigkeiten auf die Eigenschaft des Bergkristalles zurückzuführen, daß die Konzentration der die Elektrizitätsleitung vermittelnden ionenbildenden Substanz eine von Ort zu Ort außerordentlich stark wechselnde ist, so daß sie auch bei nicht sehr weit entfernt aus einem Kristalle geschnittenen Platten bereits großen Änderungen unterworfen sein kann. Das würde seine Erklärung in der äußerst langsamen Bildung der Kristalle finden, während welcher die Konzentration und Zusammensetzung der sie bildenden Laugen beliebigen Veränderungen unterworfen sein kann.

Tabelle 15.

Abhängigkeit der Bergkristallplatten-Widerstände von der geometrischen Form der Platten.

Platte Nr.	$\log W_2$				$\log{(W_2/W_2(16))}$				$\log W \cdot Q/l$			
	20 0°	3000	40 0°	5 00°	200°	3000	400°	500°	2 00°	3000	4000	5000
$20 \text{ A} \\ 19 \\ 16 \\ 21 \text{ B}$	$\begin{array}{c} 6.7559 \\ 7.2889 \\ 6.4671 \\ 8.4872 \end{array}$	$\begin{array}{r} 4.9112\\ 5.4493\\ 4.7308\\ 6.8503\end{array}$	$\begin{array}{c} 3.8822 \\ 4.4502 \\ 3.7546 \\ 5.9440 \end{array}$	3.2258 3.8228 3.1290 3. 3684	$\begin{array}{c} 0.2888 \\ 0.8218 \\ 0.0000 \\ 2.0201 \end{array}$	$\begin{array}{c} 0.1804 \\ 0.7185 \\ 0.0000 \\ 2.1195 \end{array}$	$\begin{array}{c} 0.1276 \\ 0.6956 \\ 0.0000 \\ 2.1894 \end{array}$	$\begin{array}{c} 0.0968 \\ 0.6938 \\ 0.0000 \\ 2.2394 \end{array}$	$7.7767 \\ 7.8179 \\ 7.6456 \\ 7.7957 $	5.9320 5.9783 5.9093 6.1588	$\begin{array}{c} 4.9030\\ 4.9792\\ 4.9331\\ 5.2525\end{array}$	$\begin{array}{r} 4.2466 \\ 4.3518 \\ 4.3075 \\ 4.6769 \end{array}$
20 B 22 21 C 34 B	$\begin{array}{c} 6.7991 \\ 6.9843 \\ 8.3081 \\ 8.4118 \end{array}$	$\begin{array}{c} 4.9716 \\ 5.2259 \\ 6.6753 \\ 6.8210 \end{array}$	$\begin{array}{c} 3 \ 9468 \\ 4.2653 \\ 5.7687 \\ 5.9056 \end{array}$	$\begin{array}{c} 3.2910 \\ 3.6599 \\ 5.1918 \\ 5.3107 \end{array}$	$\begin{array}{c} 0.3320 \\ 0.5172 \\ 1.8410 \\ 1.9447 \end{array}$	$\begin{array}{c} 0.2408 \\ 0.4951 \\ 1.9445 \\ 2.0902 \end{array}$	$\begin{array}{c} 0.1922 \\ 0.5107 \\ 2.0141 \\ 2.1510 \end{array}$	$\begin{array}{c} 0.1620 \\ 0.5309 \\ 2.0628 \\ 2.1817 \end{array}$	$\begin{array}{c} 7.7936 \\ 8.1452 \\ 7.8106 \\ 8.0276 \end{array}$	5.9661 6.3868 6.1778 6.4368	$\begin{array}{c} 4.9413 \\ 5.4262 \\ 5.2712 \\ 5.5214 \end{array}$	$\begin{array}{r} 4.2855 \\ 4.8208 \\ 4.6943 \\ 4.9265 \end{array}$
36 35 37	$\begin{array}{c} 7.7111 \\ 8.1692 \\ 6.5529 \end{array}$	5.9865 6.5302 4.9160	$5.0826 \\ 5.6252 \\ 4.0097$	$\begin{array}{c} 4.5263 \\ 5.0514 \\ 3.4341 \end{array}$	$\begin{array}{c} 1.2430 \\ 1.7021 \\ 0.1858 \end{array}$	$\begin{array}{c} 1.2557 \\ 1.7994 \\ 0.1852 \end{array}$	$\begin{array}{c} 1.3280 \\ 1.8706 \\ 0.2551 \end{array}$	$\begin{array}{c} 1.3973 \\ 1.9224 \\ 0.3051 \end{array}$	$8.2004 \\ 8.0317 \\ 8.3913$	$\begin{array}{c} 6.4758 \\ 6.3927 \\ 6.7544 \end{array}$	$5.5719 \\ 5.4877 \\ 5.8481$	$5.0156 \\ 4.9139 \\ 5.2725$

Damit kann die Betrachtung über die Eigenschaften der Konstante W_0 , d. h. der die Abhängigkeit des Widerstandes von der Frequenz enthaltenden Formel abgeschlossen werden, und es sind nun die Untersuchungen über die Bedeutung des Koeffizienten a und über seine Abhängigkeit von der Temperatur und von den geometrischen Dimensionen der untersuchten Platten zusammenzustellen.

Der Koeffizient a.

48. Die Abhängigkeit des scheinbaren Widerstandes einer Bergkristallplatte von der Periodenlänge des zur Messung benutzten alternierenden Gleichstromes wurde in dem früher dafür aufgestellten Ausdrucke

$$W = W_0 + a \sqrt{\tau}$$

durch den Koeffizienten a ausgedrückt. Die Ermittelung dieser Größe aus dem Beobachtungsmateriale konnte, wie die Angaben über die mittleren Fehler in Tabelle 6 ersehen lassen, nur mit weit geringerer Genauigkeit erfolgen, wie die von W_0 . In den Kurventafeln III sind die aus der Ausgleichung gewonnenen Werte von a durch Punkte dargestellt.

49. Durch die Zusammenfassung aller Bestimmungen von W_0 an einer Platte nach allgemeinen Gesichtspunkten waren für dieses im vorigen Abschnitte Ausdrücke gewonnen, aus denen man durch Einsetzen der entsprechenden Temperatur verbesserte Werte an Stelle der beobachteten erhalten kann, wodurch die zufälligen Beobachtungsfehler einigermaßen eliminiert werden. In den Tafeln III sind die log W_0 durch kleine Kreise bezeichnet und man kann aus ihnen ersehen, daß fast stets, wenn ein Kreis über bezw. unter der durch die Formel

$$W_2 = A'_2 e B'_2 / (9 - C_2)$$

gegebenen Gerade liegt, der Punkt in entgegengesetzter Richtung von den aus den Nachbarpunkten zu erwartenden Werten abweicht. Um a möglichst sicher zu erhalten, wurde in den Fällen, in denen sich aus den Kurvenblättern eine größere Abweichung erkennen ließs, a aus den Beobachtungen nochmals in der Weise berechnet, daß das aus der Ausgleichung erhaltene W_0 als richtig vorausgesetzt wurde, also

$$a=rac{W_2-W_0}{\sqrt{ au}}$$

wird. In jeder Serie wurde dann das Mittel genommen, und die Logarithmen der so gewonnenen Werte sind mit Kreuzen in die Kurvenblätter III eingetragen. Indem dann eine Kurve gezogen wurde, die mit gleichmäßiger Krümmung sich allen Punkten und Kreuzen möglichst gut anpaßte, konnten aus dieser für die Temperaturen 200°, 250°, 350° und 450° C die Werte von a interpoliert und in der folgenden Tabelle 16 zusammengestellt werden.

 32^{*}

Tabelle 16. $\log W_0$ $\log a/W_0$ Dimensionen $\log a$ Platte Nr. 2500 3500 4500 200° 250° 350° 450° 2000 250° 3500 4500 2000 $\log h \log l \log Q$ 5.6920 A6.60 6.76 4.333.52 -0.16 + 0.11 + 0.44 + 0.639.32 9.39 5.804.160.414.77£.33 3.52 6.22 4.89 -0.53-0.599.32 19 6.76 5.69 $\dot{2}\dot{9}$ 4.11-0.53-0.569.620.15 16 5.293.99 3.01 5.44 $\pm.18$ 3.41-0.42 - 0.15 - 0.19 - 0.409.329.32 0.50 6.056.47 $21 \mathrm{B}$ -0.70 - 1.585.644.056.345.630.080.159.46 $\overline{20}$ B 6.20 6.81 -0.61 - 0.19 - 0.01 - 0.285.745.55 9.32 4.383.304.393.58 9.38 0.385.957.35 7.50 6.707.20 -0.08 + 0.09 - 0.12 - 0.64224.563.29 4.683.93 6.90 6.046.989.499.490.65 $\begin{array}{c} -0.63 + 0.03 - 0.12 - 0.03 \\ -0.67 - 0.42 - 0.51 - 1.10 \\ -0.41 - 0.30 - 0.64 - 1.15 \\ +0.03 + 0.05 - 0.08 - 0.57 \\ -0.48 - 0.34 - 0.70 - 1.29 \end{array}$ 21 C 34 B 7.646.93 5.65 4.35 8.31 6.16 5.450.01 0.08 9.58 $\frac{8.42}{7.72}$ $5.58 \\ 4.77 \\ 5.31$ 9.82 8.017.205.674.436.310.140.20 $6.75 \\ 6.86$ 4.2036 7.755.395.479.589.650.1435 37 $7.68 \\ 7.0$ 5.324.028.16 6.029.96 0.03 9.89

3.70 + 0.4 + 0.78 + 0.30 - 0.38

8.31

8.38

0.22

5.60

4.41

50. Während die $\log W_0$ in der benutzten Darstellung sehr gut auf einer geraden Linie liegen, zeigen die log a stets eine nach unten konkave Krümmung. Vielleicht wäre es möglich, auch diese Krümmung zum Verschwinden zu bringen durch Annahme eines anderen (niedrigeren) Anfangspunktes der Temperaturzählung. Einmal müßte aber dieser für jede Platte ein anderer sein, da die Krümmungsradien in den Kurven sehr verschieden sind, und dann scheint es auch völlig unzulässig, für Größen, die so nahe miteinander zusammenhängen, wie Wo und a, verschiedene Temperaturskalen anzusetzen.

In Tabelle 16 sind noch die Logarithmen der Quotienten a/W_0 und die Dimensionen der Strombahnen beigefügt, um einen Vergleich der an verschiedenen Platten gewonnenen Werte zu erleichtern.

51. Es wurden viele Versuche gemacht, die Abhängigkeit der Konstanten a von irgend welchen der betreffenden Platte charakteristischen Größen zu ermitteln. Es haben aber hier die Inhomogenitäten des Materiales und zufälligen Eigenarten der Oberflächen so großen Einfluß, daß aus den mitgeteilten Werten keine Schlüsse zu ziehen sind.

Ebensowenig führt eine rechnerische Verfolgung des Vorganges in der Platte zu einem brauchbaren Resultate. Im einfachsten Falle besteht die Einwirkung des Stromes auf die Platte nur in der Ausbildung einer auf der Differenz der Logarithmen der Ionenkonzentrationen an beiden Seiten der Platte beruhenden elektromotorischen Gegenkraft e, deren Größe und zeitlicher Verlauf von der Periodenlänge τ abhängig ist. Die Momentanstromstärke i ist

$$i = \frac{E - e}{W}$$

6.38

4.71

3.32

6.6

[76]
Elektrische Leitfähigkeit des Bergkristalles.

und es wird daher, wenn $W = W_0 + a \sqrt{\tau}$ gesetzt wird:

das Stromintegral
$$I = \frac{2}{\tau} \int_{0}^{\tau/2} i dt = \frac{E}{W_0} - \frac{2}{\tau \cdot W_0} \int_{0}^{\tau/2} e dt$$

woraus in Verbindung mit der Grundformel

$$I \cdot a \sqrt{\tau^3} = 2 \int_{0}^{\tau/2} e(\tau/2, t) dt$$

folgt, wo die Funktion unter dem Integralzeichen noch sehr stark von der oberen Grenze, bis zu der integriert werden soll, abhängig ist. Es ist also eine Schar von Funktionen von t gesucht, deren jede nur zu einem Werte der oberen Grenze $\tau/2$ gehört. Für ein bestimmtes $\tau/2$ ist über eine eben zu diesem $\tau/2$ gehörige der Kurven vom Nullpunkt der t-Zählung bis zu $\tau/2$ zu integrieren, für $\tau/2 + \delta$ ist aber das Integral auch für eine Nachbarkurve von Null bis zu $(\tau/2 + \delta)$ zu bilden und zur Bestimmung einer solchen Kurvenschar reicht die obige Gleichung nicht aus.

Schon aus dem Vergleiche der an Platte 20 in ihren Platinierungen A und B gefundenen Werte erkennt man, daß die störenden Einflüsse, die sich bereits bei den Konstanten B_m und A_m des vorigen Abschnittes bemerkbar machten, hier in noch verstärktem Maße auftreten und die wirklichen Beziehungen zwischen den Dimensionen der Platten völlig verwischen.

Berücksichtigt man alle im vorhergehenden aufgeführten Gründe, so kann man mit recht großer Sicherheit die Unstimmigkeiten in den an verschiedenen Platten gemessenen Konstanten von W_0 und *a* als eine konstitutive Eigenschaft des Bergkristalles bezeichnen, die durch die Art der Verteilung der Salze in ihm bedingt wird.

Messungen einer Art Polarisationskapazität . an Bergkristall.

52. Aus den vorangehenden Erörterungen über die Natur der Größe awar ein tieferer Einblick in die Vorgänge an den Elektroden bei der Elektrolysierung einer Bergkristallplatte mit alternierendem Gleichstrom nicht zu erlangen. Es wurde daher versucht, auf andere Weise diesem Probleme

näher zu treten. Obgleich auch hier keine quantitativ verwertbaren Resultate erlangt wurden, sollen die dazu angestellten Messungen doch kurz mitgeteilt und besprochen werden, da auch die qualitative Bestätigung einiger früher bereits aufgestellter Hypothesen auf diesem Wege von Bedeutung sein dürfte.

Die Erscheinung, die hier mit Polarisationskapazität bezeichnet ist, ist eine etwas andere, wie die, welche man gewöhnlich unter diesem Ausdrucke zu verstehen pflegt.¹) Es wurden die Beobachtungen so angestellt, dafs während eines Zeitintervalles $\tau/2$ eine elektromotorische Kraft an die Elektroden der Bergkristallplatte gelegt wurde und dafs während des unmittelbar folgenden gleichen Zeitintervalles $\tau/2$ die Spannung fortgenommen und die Belegungen durch das Galvanometer kurzgeschlossen wurden, worauf wieder geladen, dann entladen wurde usw. Die hierzu notwendigen Schaltungen liefsen sich mittels des Alternators in genau gleichen und mefsbaren Zeitabschnitten durch eine Anordnung herstellen, wie sie aus Fig. 6 ersichtlich ist.

Nach dem Auschalten der Spannung ladet sich in der ersten halben Periode die Platte etwas auf. Ein Teil der Ladung gleicht sich in der zweiten halben Periode durch das Galvanometer aus. Die nächste Ladeperiode erhöht die gegenelektromotorische Kraft noch, aber auch der Kurzschlufsstrom wird stärker, und so ist nach einiger Zeit zunächst ein Gleichgewicht zwischen Ladung und Entladung erreicht. Während der Ladung steigt die Gegenspannung der Polarisation um gerade so viel, wie sie bei der Entladung gesunken ist (vgl. auch Fig. 7). Bei einer quantitativen Verwertung der Messungen wäre noch zu berücksichtigen, dafs der äufsere Stromkreis während der Ladezeit nahezu widerstandsfrei ist, während in der Entladeperiode der Widerstand des Galvanometers bezw. der des Shuntes hinzukommt. Diese Unsymmetrie kann hier indessen zunächst vernachlässigt

¹) F. Kohlrausch, Pogg. Ann. 148. 443. 1872; E. Warburg, Wied. Ann. 67. 493. 1899; Fr. Krüger, Zeitschr. f. phys. Chemie 45, 1. 1903 und Inaug.-Dissertation, Göttingen.

werden; sie würde die Gleichgewichtsspannung etwas erhöhen, da der Entladestrom geschwächt wird.

Über den schnell einem Gleichgewichtszustande zueilenden Einfluß der elektromotorischen Gegenkraft lagert sich nun die von der Ionenbeweglichkeit abhängige Widerstandsvermehrung durch Ausbildung einer ionenarmen Schicht an der Anode. Diese bildet sich unter der Einwirkung der stets gleichgerichteten Ladeströme allmählich in immer größerer Dicke aus, beeinflußt ihrerseits wohl auch etwas die Höhe der elektromotorischen Gegenkraft und bewirkt, daß der Polarisationsstrom trotz nahe gleicher Polarisationsgegenspannung mit der Zeit abnimmt. Um hier einen Gleichgewichtszustand abzuwarten, müßten die Messungen außerordentlich lange ausgedehnt werden, was mit ihrer Bedeutung an dieser Stelle in Widerspruch stände. Es müßte daher von der genaueren Berücksichtigung dieses Effektes abgesehen werden. Die Fehler, die dadurch aufgetreten sind, wachsen mit der polarisierenden Spannung.

53. In Fig. 7 sind die Ladespannung E und die Polarisationsspannung e als Funktionen der Zeit schematisch für zwei verschiedene Periodenlängen aufgetragen, indem die ausgezogenen Kurven den e, die gestrichelten den E entsprechen. Setzt man den Widerstand des Stromkreises konstant, so ist die Stromstärke der Spannung und demnach auch der zeitliche Mittelwert der Stromstärke dem der Spannung, der durch den Inhalt der in den Kurven schraffierten Flächen gegeben ist, proportional. Wirkt die Ladespannung E länger, so wächst die Gegenspannung e nur noch langsam; sie nimmt am schnellsten ab unmittelbar nach dem Momente des Umschaltens, und es wird daher der Gesamtinhalt der schraffierten Flächen pro Zeiteinheit mit zunehmender Periodenlänge kleiner, die Integralstromstärke im Galvanometer sinkt, wie es auch die Beobachtungen zeigen werden.

Für die Integralstromstärke erhält man, wenn der Widerstand der Schicht mit geringerer Konzentration w ist, während W den des übrigen Stromkreises bezeichnet, der konstant gesetzt werden kann,

[79]

$$I = 1/\tau \int_{0}^{\tau} \int_{0}^{2} e \, dt \, / \, (W + w). \tag{1}$$

[80]

Die 2 im Zähler fällt fort, da der Strom nur während der Hälfte der Zeit durch das Galvanometer geschlossen ist. Hierin sind aber e und w unbekannte Funktionen der Zeit und der Periodenlänge; es lassen sich daher wieder keine quantitativen Schlüsse herleiten. Da den Beobachtungen für E/I ein Ausdruck von der Form

$$E/I = A + B/\overline{\tau} \tag{2}$$

am besten entspricht, so folgt nur ganz allgemein

$$\frac{\tau E \left(W+w\right)}{\int_{0}^{\tau/2} e \, dt} = A + B \sqrt{\tau} \qquad (3)$$

54. Es seien dann die Resultate der mit verschiedenen Ladespannungen E bei wechselnden Periodenlängen angestellten Messungen in Tabelle 17 mitgeteilt. Hier ist unter der Stromstärke I die wirkliche, durch das Galvanometer pro Zeiteinheit hindurchgehende Elektrizitätsmenge zu verstehen. Der durch die Kapazität der Zuleitungen und der Belegungen der Platten bedingte Verschiebungsstrom ist bei kalter, völlig isolierender Platte bestimmt und stets bereits abgezogen. Die Übersicht über die gemessenen Stromstärken in ihrer Abhängigkeit von polarisierender Spannung und Frequenz wird durch die Fig. IV ermöglicht, in denen das Verhältnis E/I als Funktion von $\sqrt{\tau}$ aufgetragen ist.

Tabelle 17.

Messungen der Polarisations-Kapazität an Bergkristallplatten.

Nr.	Zeit	Temp.	τ	√ī	E	I	E I	Nr.	Zeit	Temp.	τ	$\sqrt{\tau}$	E_{\cdot}	1	E/I
	h m	0	sec	sec 1/2	Volt	10 ⁻⁸ Amp.	105		h m	0	sec	sec 1/2	Volt	10-8Amp.	105
			3. III.	1911.	Platte 2	22.		7	$\begin{array}{ccc} 1 & 58 \\ 2 & 1 \end{array}$	228.7 228.7	$0.0186 \\ 0.383$	$0.1365 \\ 0.6189$	2.827	$21.13 \\ 14.70$	$133.7 \\ 192.3$
1	1 44	228.2	0.0327	0.1809	2.826	18.82	150.3	ğ.	124	228.7	0.219	0.4680	_	16.39	172.5
2	1 45	228.3	0.0312	0.1766	2.827	15.86	178.4	10	2 6	228.8	0.0831	0.2883		19.01	148.7
3	1 48	228.4	0.0312	0.1767	_	18.03	156.7	11	2 9	228.8	0.0418	0.2043	—	19.92	141.9
4	1 51	228.5	0.0288	0.1697		19.75	143.2	12	2 25	228.5	0.0256	0.1600		21.21	133.3
5	1 53	228.6	0.0300	0.1732		20.02	141.3	13	12 27	228.5	0.01727	0.1324		21.64	130.6
6	1 56	228.6	0.0184	0.1357	2.827	20.91	135.3	14	12 29	228.4	0.01260	0.1123	2.827	21.94	-129.0

[81]

Elektrische Leitfähigkeit des Bergkristalles.

257

Nr.	Zeit	Temp.	τ	$\sqrt{\tau}$	Ε	I	E I	Nr.	Zeit.	Temp.	τ	Vτ	E	I	$oldsymbol{E}/oldsymbol{I}$
	h m	0	sec	sec 1/2	Volt	10-SAmp.	105		h m	0	sec	sec 1/2	Volt	10-8Amp.	1.04
15 16	$12 \ 31 \ 12 \ 33$	228.4 228.4	0.01795 0.0314	$0.1340 \\ 0.1772$	2.827	21.69 21.09	130.3 134.0	75	6 34	334.9	1.067	1.0333	10.27	409.8	250.60
$10 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 93 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	$\begin{array}{c} 12 & 35 \\ 12 & 35 \\ 2 & 38 \\ 2 & 41 \\ 2 & 51 \\ 2 & 54 \\ 2 & 56 \\ 3 & 0 \end{array}$	$\begin{array}{r} 228.4 \\ 228.4 \\ 228.5 \\ 228.6 \\ 228.6 \\ 228.6 \\ 228.6 \\ 228.7 \end{array}$	$\begin{array}{c} 0.0811 \\ 0.0867 \\ 0.165 \\ 0.402 \\ 0.406 \\ 0.0928 \\ 0.0567 \\ 0.0269 \end{array}$	$\begin{array}{c} 0.2944\\ 0.4067\\ 0.6342\\ 0.6377\\ 0.3046\\ 0.2381\\ 0.1640\\ \end{array}$	$ \begin{array}{c} 2.827 \\ 10.32 \\ 10.32 \\ 10.34 \\ $	$\begin{array}{c} 19.09 \\ 17.59 \\ 15.16 \\ 53.09 \\ 70.04 \\ 75.27 \\ 81.14 \end{array}$	$\begin{array}{c} 134.0\\ 148.1\\ 160.7\\ 186.4\\ 192.6\\ 147.4\\ 137.1\\ 127.4 \end{array}$	76 77 78 79 80 81	$\begin{array}{cccc} 6 & 47 \\ 6 & 50 \\ 6 & 52 \\ 6 & 54 \\ 6 & 56 \\ 6 & 58 \end{array}$	335.0 335.0 335.0 335.0 335.0 335.0 335.0	$\begin{array}{c} 0.448\\ 0.303\\ 0.01552\\ 0.01175\\ 0.02505\\ 0.1193 \end{array}$	$\begin{array}{c} 0.6695\\ 0.5504\\ 0.1246\\ 0.1084\\ 0.1583\\ 0.3455 \end{array}$	$0.3794 \\ 0.3791 \\$	$\begin{array}{r} 84.30\\ 96.52\\ 112.05\\ 114.08\\ 108.60\\ 95.46\end{array}$	4500 3928 3384 3323 3492 3971
24 95	3	$\frac{228.6}{228.6}$	0.01684	$0.1298 \\ 0.1181$	10 34	83.55 83.66	123.7 123.5				9. III. :	911. 1	Platte 23	2.	
23 26 27 28 29 30 31 32	3 13 3 15 3 17 3 19 3 21 3 23 3 27	$\begin{array}{c} 228.6\\ 228.6\\ 228.6\\ 228.6\\ 228.6\\ 228.5\\ 228.5\\ 228.5\\ 228.5\\ \end{array}$	$\begin{array}{c} 0.01128\\ 0.01128\\ 0.01124\\ 0.01808\\ 0.0307\\ 0.0621\\ 0.0972\\ 0.621\\ \end{array}$	$\begin{array}{c} 0.1161\\ 0.1062\\ 0.1060\\ 0.1345\\ 0.1753\\ 0.2492\\ 0.3118\\ 0.7880\end{array}$	10.35	$\begin{array}{c} 83.66\\ 84.54\\ 83.62\\ 81.01\\ 75.34\\ 71.22\\ 51.48\end{array}$	$123.3 \\ 122.5 \\ 122.3 \\ 123.8 \\ 127.8 \\ 137.4 \\ 145.4 \\ 211.1 \\ 10^{\circ}$	12345678	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{r} 452.8 \\ 452.9 \\ 453.0 \\ 453.0 \\ 453.0 \\ 453.2 \\ 453.3 \\ 453.2 \end{array}$	$\begin{array}{c} 0.0226\\ 0.0223\\ 0.01115\\ 0.0240\\ 0.0779\\ 0.1455\\ 0.441\\ 1.187\end{array}$	$\begin{array}{c} 0.1505\\ 0.1495\\ 0.1056\\ 0.1549\\ 0.2792\\ 0.3814\\ 0.6641\\ 1.0893\end{array}$	0.0606	$141.3 \\137.5 \\147.3 \\147.1 \\144.6 \\142.1 \\129.65 \\126.78$	$\begin{array}{r} 428.8\\ 440.7\\ 411.3\\ 411.9\\ 418.9\\ 426.4\\ 467.3\\ 478.0\end{array}$
33 34 35 36 37 38 39 40	$\begin{array}{r} 4 & 22 \\ 4 & 25 \\ 4 & 28 \\ 4 & 36 \\ 4 & 39 \\ 4 & 42 \\ 4 & 44 \\ 4 & 46 \end{array}$	334.7 334.8 334.8 334.9 334.9 334.9 334.9 335.0 335.1	$\begin{array}{c} 0.507\\ 0.1873\\ 0.1111\\ 0.1053\\ 0.0394\\ 0.0314\\ 0.01882\\ 0.01492\end{array}$	$\begin{array}{c} 0.7120\\ 0.4328\\ 0.3333\\ 0.3247\\ 0.1985\\ 0.1772\\ 0.1372\\ 0.1221 \end{array}$	0.379± 0.3794 0.3788 0.3785 	$\begin{array}{r} 72.00\\ 81.45\\ 87.14\\ 87.53\\ 94.31\\ 97.58\\ 102.15\\ 104.20\\ \end{array}$	10^{2} 5270 4660 4360 4014 3879 3706 3633	$9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16$	$\begin{array}{c} 2 & 23 \\ 2 & 32 \\ 2 & 35 \\ 2 & 37 \\ 2 & 44 \\ 2 & 47 \\ 2 & 49 \\ 2 & 51 \\ 2 & 53 \end{array}$	$\begin{array}{r} 453.2\\ 453.2\\ 453.1\\ 453.1\\ 453.2\\ 453.2\\ 453.2\\ 453.2\\ 453.2\\ 453.2\\ 453.2\end{array}$	$\begin{array}{c} 1.137\\ 0.340\\ 0.240\\ 0.0962\\ 0.03325\\ 0.0259\\ 0.01229\\ 0.01748\\ 0.01104\end{array}$	$\begin{array}{c} 1.0893\\ 0.5833\\ 0.4900\\ 0.3102\\ 0.1823\\ 0.1609\\ 0.1109\\ 0.1322\\ 0.1051 \end{array}$	 0.0606	$\begin{array}{c} 120.78\\ 134.60\\ 138.20\\ 140.4\\ 144.85\\ 144.6\\ 143.95\\ 145.95\\ 145.95\\ 148.00\\ \end{array}$	478.0 450.3 438.4 431.6 418.3 418.9 420.9 415.3 409.4
$ \begin{array}{r} 41 \\ 42 \\ 43 \\ 44 \\ $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	335.2 335.2 335.2 335.3 335.2 335.2 335.3	$\begin{array}{c} 0.01164 \\ 0.01704 \\ 0.0408 \\ 0.0620 \\ 0.0963 \\ 0.1518 \end{array}$	$\begin{array}{c} 0.1079 \\ 0.1306 \\ 0.2019 \\ 0.2490 \\ 0.3103 \\ 0.3897 \end{array}$	 0.3785 0.3791 	$\begin{array}{c c} 106.05\\ 103.42\\ 94.60\\ 92.27\\ 88.56\\ 84.54\\ \end{array}$	$3568 \\ 3658 \\ 4002 \\ 4102 \\ 4280 \\ 4484$	$17 \\ 18 \\ 19 \\ 20$	$ \begin{array}{ccc} 3 & 1 \\ 3 & 3 \\ 3 & 7 \\ 3 & 10 \end{array} $	$\begin{array}{c} 453.1 \\ 453.0 \\ 452.8 \\ 452.7 \end{array}$	$\begin{array}{c} 0.0231 \\ 0.0221 \\ 0.02265 \\ 0.01370 \end{array}$	$\begin{array}{c} 0.1520 \\ 0.1487 \\ 0.1505 \\ 0.1170 \end{array}$	0.4073 	$\begin{array}{r} 4464 \\ 895.5 \\ 958.1 \\ 979.9 \end{array}$	$ \begin{array}{c} \Omega^{1} \\ 9109 \\ 455.0 \\ 425.2 \\ 415.7 \\ 10^{\circ} \end{array} $
$\begin{array}{r} 47\\ 48\\ 49\\ 50\\ 52\\ 53\\ 55\\ 56\\ 58\\ 59\\ 60\\ \end{array}$	$ \begin{array}{c} 5 & 5 \\ 5 & 7 \\ 5 & 12 \\ 5 & 12 \\ 5 & 22 \\ 5 & 22 \\ 5 & 23 \\ 5 & 33 \\ 5 & 35 \\ 5 & 34 \\ 5 & 34 \\ 5 & 5 \\ 5 & 43 \\ 5 & 5 \\ 5 & $	335.3 335.2 335.2 335.2 335.2 335.2 335.2 335.2 335.2 335.2 335.2 335.2 335.1 335.1 335.1 335.0 335.0 335.0 335.0	$\begin{array}{c} 0.1973\\ 0.604\\ 0.613\\ 1.342\\ 0.1457\\ 0.0708\\ 0.0530\\ 0.0253\\ 0.01867\\ 0.01237\\ 0.01794\\ 0.1023\\ 0.1540\\ 0.785\end{array}$	$\begin{array}{c} 0.4443\\ 0.7773\\ 0.7831\\ 1.1585\\ 0.3817\\ 0.2661\\ 0.2303\\ 0.1591\\ 0.1366\\ 0.1112\\ 0.1340\\ 0.3925\\ 0.3925\\ 0.886\end{array}$	0.3791 0.3791 2.807 2.808 2.809 	$\begin{array}{c} 80.99\\ 71.64\\ 289.2\\ 217.9\\ 444.7\\ 529.9\\ 557.9\\ 637.3\\ 662.7\\ 702.6\\ 666.3\\ 487.3\\ 427.2\\ 250.9\end{array}$	$\begin{array}{c} 4680\\ 5293\\ 9709\\ 12880\\ 6317\\ 5302\\ 5034\\ 4409\\ 4238\\ 3997\\ 4217\\ 5768\\ 6576\\ 6576\\ 11230\end{array}$	$\begin{array}{c} 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \end{array}$	$\begin{array}{c} 3 & 12 \\ 3 & 14 \\ 3 & 17 \\ 3 & 20 \\ 3 & 23 \\ 3 & 26 \\ 3 & 28 \\ 3 & 31 \\ 3 & 34 \\ 3 & 37 \\ 3 & 39 \\ 3 & 41 \end{array}$	$\begin{array}{c} 452.8\\ 452.8\\ 452.8\\ 452.7\\ 452.7\\ 452.6\\ 452.6\\ 452.5\\ 452.5\\ 452.4\\ 452.4\\ 452.3\\ 452.4\end{array}$	$\begin{array}{c} 0.0255\\ 0.0825\\ 0.1228\\ 0.293\\ 0.367\\ 0.916\\ 0.590\\ 0.1657\\ 0.1064\\ 0.0500\\ 0.0174\\ 0.01259\end{array}$	$\begin{array}{c} 0.1597\\ 0.2872\\ 0.3505\\ 0.5408\\ 0.6057\\ 0.9570\\ 0.7683\\ 0.4070\\ 0.3263\\ 0.2237\\ 0.1319\\ 0.1122\end{array}$	$\begin{array}{c} 0.4068 \\ \\ \\ 0.4068 \\ 0.4067 \\ \\ 0.4073 \\ 0.$	$\begin{array}{c} 967.4\\ 838.0\\ 926.3\\ 894.6\\ 879.8\\ 832.3\\ 855.6\\ 916.7\\ 931.7\\ 953.7\\ 983.0\\ 990.9 \end{array}$	$\begin{array}{c} 10^{2} \\ 420.7 \\ 433.9 \\ 439.1 \\ 454.7 \\ 462.4 \\ 488.7 \\ 475.3 \\ 448.7 \\ 436.5 \\ 427.3 \\ 414.6 \\ 411.2 \\ 01 \end{array}$
$\begin{array}{c} 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\end{array}$	$ \begin{array}{c} 5 & 46 \\ 5 & 54 \\ 5 & 58 \\ 6 & 2 \\ 6 & 6 \\ 6 & 9 \\ 6 & 13 \\ 6 & 15 \\ 6 & 18 \\ 6 & 20 \\ 6 & 28 \\ 8 & 28 \\ 6 & 28 \\ 8 & 28 $	335.0 335.1 335.1 335.1 335.1 335.1 335.0 335.0 335.0 335.0 335.0 334.9 334.9 334.9 334.8 334.8	$\begin{array}{c} 0.785\\ 2.06\\ 0.806\\ 0.283\\ 0.1344\\ 0.0884\\ 0.03515\\ 0.01829\\ 0.01173\\ 0.01293\\ 0.02465\\ 0.0695\\ 0.1359\\ 0.929\end{array}$	$\begin{smallmatrix} 1.4355\\ 0.8977\\ 0.5322\\ 0.3627\\ 0.2973\\ 0.1875\\ 0.1353\\ 0.1083\\ 0.1138\\ 0.1570\\ 0.2636\\ 0.3687\\ 0.2636\\ 0.3687\\ 0.04718\\ 0.4718\\ 0$	2.809	250.2 334.2 530.5 878.5 1186.0 1365.0 1755.0 2017.0 2193.0 2133.0 1839.5 1387.2 1084.0 876.8	$\begin{array}{c} 11230\\ {}^{104}\\ 307.5\\ 193.6\\ 106.9\\ 86.59\\ 75.26\\ 58.53\\ 50.93\\ 46.83\\ 48.16\\ 55.85\\ 74.07\\ 94.74\\ 94.74\\ 117.15\end{array}$	$\begin{array}{c} 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ 41 \\ 42 \\ 43 \\ 44 \end{array}$	$\begin{array}{c} 3 \ 47 \\ 3 \ 56 \\ 3 \ 58 \\ 4 \ 0 \\ 4 \ 5 \\ 4 \ 8 \\ 4 \ 11 \\ 4 \ 15 \\ 4 \ 18 \\ 4 \ 21 \\ 4 \ 23 \end{array}$	$\begin{array}{c} 452.4\\ 452.2\\ 452.2\\ -452.1\\ 452.1\\ 452.1\\ 452.2\\ 452.2\\ 452.2\\ 452.4\\ 452.4\\ 452.4\\ 452.4\\ 452.4\end{array}$	$\begin{array}{c} 0.01593\\ 0.01652\\ 0.01326\\ 0.0436\\ 0.1149\\ 0.3225\\ 0.334\\ 0.854\\ 1.565\\ 0.255\\ 0.0397\\ 0.01805\end{array}$	$\begin{array}{c} 0.1286\\ 0.1152\\ 0.2088\\ 0.3390\\ 0.5678\\ 0.5780\\ 0.9242\\ 1.2508\\ 0.5052\\ 0.1992\\ 0.1344\end{array}$	2.003 2.009 2.009	$\begin{array}{c} (21780 \\ 3631 \\ 3712 \\ 3133 \\ 2745 \\ 2429 \\ 2418 \\ 2157 \\ 2002 \\ 2474 \\ 3148 \\ 3492 \end{array}$	$\begin{array}{c} \Omega^{1} \\ 9192 \\ 10^{2} \\ 553.5 \\ 541.5 \\ 641.6 \\ 732.2 \\ 827.4 \\ 831.2 \\ 932.0 \\ 1004.0 \\ 812.2 \\ 638.5 \\ 575.5 \end{array}$
74	6 31	334.8	0.499	0.7065	10.27	594.3	172.85		1) Wi	derstan	lsmessun	g.			

Nova Acta CI. Nr. 3.

258

Richard Ambronn,

[82]

Nr.	Zeit	Temp.	τ	\sqrt{r}	E	1	$E_{i}I$	$\bar{e}_{_{I}}E$	Nr.	Zeit	Temp.	τ	Vī	E	I	E , 1	ē E
	h m	0	sec	sec 1/2	Volt	10 ⁻⁸ Amp.	102	10-5	-	h m	0	sec	sec 1/2	Volt	10-8 \up.	101	10-5
$\begin{array}{c} 45\\ 446\\ 447\\ 49\\ 551\\ 523\\ 556\\ 556\\ 556\\ 661\\ 23\\ 666\\ 666\\ 668\\ 69\end{array}$	$\begin{array}{c} 1 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	$\begin{array}{c} 452.4\\ 452.4\\ 452.4\\ 452.3\\ 452.3\\ 452.3\\ 452.4\\ 452.3\\ 452.4\\ 452.4\\ 452.4\\ 452.4\\ 452.4\\ 452.4\\ 452.4\\ 451.0\\ 451.0\\ 451.0\\ 451.0\\ 451.1\\ 451.2\\ 45$	$\begin{array}{c} 0.01335\\ 0.0294\\ 0.204\\ 0.416\\ 0.512\\ 1.375\\ 0.240\\ 0.1003\\ 0.0619\\ 0.01198\\ 0.01198\\ 0.01166\\ 0.0258\\ 0.0934\\ 0.1515\\ 0.456\\ 1.054\\ 0.447\\ 0.4385\\ 0.1720\\ 0.0913\\ 0.0298\\ 0.0233\\ 0.01978\\ 0.01546\\ 0.01147\\ \end{array}$	$\begin{array}{c} 0.1156\\ 0.1715\\ 0.4517\\ 0.6450\\ 0.7155\\ 1.1727\\ 0.4898\\ 0.3167\\ 0.2488\\ 0.3167\\ 0.2488\\ 0.3057\\ 0.6753\\ 1.0270\\ 0.6685\\ 0.6624\\ 0.4148\\ 0.3022\\ 0.6753\\ 0.6624\\ 0.4148\\ 0.3022\\ 0.1726\\ 0.1526\\ 0.1243\\ 0.1021\\ \end{array}$	$\begin{array}{c} 10.31\\ 10.31\\ 9.94\\ 9.90\\ 9.89\\ 9.89\\ 10.24\\ 10.25\\ 10.26\\ 59.6\\\\\\\\\\\\\\\\ 59.6\\\\\\ 59.6\\\\\\ 59.6\\\\\\ 59.6\\\\\\ 59.6\\\\\\\\\\\\\\\\ -$	$\begin{array}{c} 7456\\ 5116\\ 2230\\ 1597\\ 1431\\ 1119.5\\ 1619\\ 2292\\ 2792\\ 4236\\ 11412\\ 6296\\ 2618\\ 2024\\ 1374\\ 1074\\ 1433\\ 1436\\ 1921\\ 10374\\ 5289\\ 5213\\ 6142\\ 7011\\ 8364\\ 10370\\ \end{array}$	$\begin{array}{c} 1383\\ 2015\\ 4457\\ 6225\\ 6911\\ 8835\\ 6329\\ 4474\\ 3676\\ 2423\\ 5225\\ 5225\\ 5225\\ 5225\\ 5248\\ 22770\\ 29468\\ 22770\\ 29440\\ 43380\\ 41590\\ 41590\\ 41590\\ 41590\\ 41590\\ 41590\\ 41590\\ 41590\\ 41590\\ 55490\\ 55690\\ 55690\\ 55690\\ 55690\\ 5560\\ $		$\begin{array}{c} 356\\ 367\\ 389\\ 411\\ 423\\ 445\\ 447\\ 490\\ 551\\ 23\\ 455\\ 556\\ 589\\ 60\end{array}$	$\begin{array}{c} 220\\ 2324\\ 2222222222222222222$	$\begin{array}{c} 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.6\\ 351.8\\ 351.9\\ 35$	$\begin{array}{c} 0.01632\\ 0.0702\\ 0.1850\\ 0.208\\ 0.1216\\ 0.0628\\ 0.0435\\ 0.0287\\ 0.0201\\ 0.0158\\ 0.0507\\ 0.1782\\ 0.513\\ 0.471\\ 0.1524\\ 0.1854\\ 0.0992\\ 0.0686\\ 0.0480\\ 0.0285\\ 0.0224\\ 0.0192\\ 0.0183\\ 0.0396\\ 0.1588\\ 0.3875\end{array}$	0.1277 0.2649 0.4303 0.4567 0.2506 0.2506 0.2086 0.12086 0.2252 0.4222 0.7163 0.6867 0.3904 0.25192 0.1495 0.1354 0.1354 0.1354 0.3986 0.2192 0.1386 0.1354 0.1991 0.3986 0.6224	$\begin{array}{c} 0.694\\ 0.695\\ 0.695\\ 2.323\\ 2.322\\ 2.321\\\\ -\\ -\\ 2.321\\ 2.320\\ 2.320\\ 5.045\\ 5.045\\ 5.045\\ 5.045\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ 5.04\\ 5.03\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\ -\\$	$\begin{array}{c} 21.33\\ 30.02\\ 30.16\\ 94.06\\ 98.22\\ 96.94\\ 91.60\\ 84.30\\ 76.36\\ 71.44\\ 93.06\\ 96.00\\ 79.06\\ 146.6\\ 181.1\\ 169.6\\ 189.05\\ 188.6\\ 183.6\\ 171.45\\ 162.35\\ 156.35\\ 154.8\\ 180.6\\ 182.25\\ 155.0\\ \end{array}$	$\begin{array}{c} 325.3\\ 231.6\\ 230.5\\ 247.1\\ 236.6\\ 239.6\\ 4\\ 275.4\\ 303.9\\ 325.0\\ 249.4\\ 293.5\\ 344.1\\ 298.5\\ 241.7\\ 293.5\\ 344.1\\ 298.6\\ 267.2\\ 274.4\\ 293.0\\ 310.4\\ 322.4\\ 322.0\\ 278.5\\ 276.5\\ 2278.5\\ 2278.5\\ 2278.5\\ 324.5\\ \end{array}$	$\begin{array}{c} 2866\\ 4018\\ 4022\\ 3764\\ 3927\\ 3878\\ 3066\\ 28653\\ 3066\\ 28653\\ 3066\\ 28653\\ 3143\\ 3734\\ 3842\\ 3161\\ 3475\\ 3462\\ 3324\\ 3475\\ 3462\\ 33462\\ 2867\\ 2852\\ 3340\\ 2867\\ 2852\\ 3320\\ 3340\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2867\\ 2852\\ 2$
$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \end{array}$	$\begin{array}{c} 12 \\ 23 \\ 12 \\ 25 \\ 12 \\ 30 \\ 12 \\ 35 \\ 12 \\ 357 \\ 12 \\ 42 \\ 12 \\ 45 \\ 12 \\ 55 \\ 12 \\ 55 \\ 12 \\ 55 \\ 12 \\ 55 \\ 12 \\ 12$	$\begin{array}{c} 272.2\\ 272.2\\ 272.2\\ 272.2\\ 272.2\\ 272.3\\ 272.4\\ 272.5\\ 272.5\\ 272.5\\ 272.5\\ 272.5\\ 272.5\\ 272.5\\ 272.6\\ 27$	$\begin{array}{c} 10. \ \mathrm{VI} \\ 0.0228 \\ 0.01748 \\ 0.0837 \\ 0.1154 \\ 0.1786 \\ 0.317 \\ 0.681 \\ 0.788 \\ 0.397 \\ 0.1210 \\ 0.0443 \\ 0.0260 \\ 0.0171 \\ 0.03405 \\ 0.0337 \\ 0.03305 \\ 0.0341 \\ 0.03375 \\ 0.0346 \\ 0.03375 \\ 0.0346 \end{array}$	$\begin{array}{c} \text{II. 1911.} \\ 0.1510 \\ 0.1322 \\ 0.2893 \\ 0.3398 \\ 0.4226 \\ 0.5630 \\ 0.8254 \\ 0.8877 \\ 0.6300 \\ 0.3478 \\ 0.2105 \\ 0.1613 \\ 0.1613 \\ 0.1845 \\ 0.1845 \\ 0.1845 \\ 0.1846 \\ 0.1847 \\ 0.1860 \\ 0.1837 \\ 0.1860 \\ \end{array}$	$\begin{array}{c c} \text{Platta}\\ 8.50\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 22 \text{ B.} \\ 19.98 \\ 14.34 \\ 21.67 \\ 22.85 \\ 25.52 \\ 26.03 \\ 26.33 \\ 111.4 \\ 123.1 \\ 117.4 \\ 107.1 \\ 94.22 \\ 79.68 \\ 17.21 \\ 19.64 \\ 8.57 \\ 4.42 \\ 2.54 \\ 20.07 \\ 20.17 \end{array}$	$\begin{array}{c} 10^{4} \\ 5319 \\ 5928 \\ 3924 \\ 3719 \\ 3331 \\ 3227 \\ 5195 \\ 5026 \\ 4948 \\ 5376 \\ 6083 \\ 7230 \\ 4943 \\ 5332 \\ 5355 \\ 5307 \\ 5227 \\ 5224 \\ 5192 \end{array}$	$\begin{array}{c} 1493\\ 1342\\ 2024\\ 2135\\ 2535\\ 2418\\ 2445\\ 2512\\ 1567\\ 1590\\ 1464\\ 1293\\ 1088\\ 1587\\ 1471\\ 1466\\ 1479\\ 1500\\ 1501\\ 1509 \end{array}$	$\begin{array}{c} 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ 77\\ 78\\ 79\\ 80\\ 81\\ 89\end{array}$	$\begin{array}{c} 150\\ 55\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5\\ 5$	$\begin{array}{c} 351.9\\ 351.9\\ 352.0\\ 352.0\\ 352.0\\ 352.0\\ 352.0\\ 352.0\\ 352.0\\ 352.0\\ 351.9\\ 351.9\\ 351.9\\ 351.9\\ 351.9\\ 351.9\\ 351.8\\ 351.4\\ 35$	$\begin{array}{c} 0.3855\\ 0.254\\ 0.1158\\ 0.0844\\ 0.0454\\ 0.0300\\ 0.0212\\ 0.0179\\ 0.0152\\ 0.0421\\ 0.1772\\ 0.858\\ 0.738\\ 0.3375\\ 0.1472\\ 0.0583\\ 0.1396\\ 0.0408\\ 0.0222\\ 0.0181\\ 0.0286\\ 0.0467\end{array}$	$\begin{array}{c} 0.6208\\ 0.6208\\ 0.5040\\ 0.3404\\ 0.2905\\ 0.2132\\ 0.1734\\ 0.1456\\ 0.1339\\ 0.1234\\ 0.2052\\ 0.4208\\ 0.9262\\ 0.8590\\ 0.3836\\ 0.2415\\ 0.3736\\ 0.2022\\ 0.1491\\ 0.1647\\ 0.1647\\ 0.2026\\ 0.2162\\$	$\begin{array}{c} 10.45\\\\\\\\\\\\\\\\ $	$\begin{array}{c} 243.5\\ 265.7\\ 309.7\\ 316.2\\ 321.7\\ 308.7\\ 294.6\\ 285.5\\ 278.3\\ 321.8\\ 297.0\\ 196.3\\ 410.6\\ 525.0\\ 642.3\\ 674.4\\ 625.6\\ 704.0\\ 698.2\\ 703.4\\ 724.0\\ 720.6\\ \end{array}$	429.0 393.4 337.4 330.5 325.0 338.6 354.7 366.0 375.4 324.7 351.9 532.5 1403 1093 873.8 806.9 563.8 506.8 593.2 587.3 572.0 573.3 373.8	$\begin{array}{c} 21555\\ 21555\\ 22550\\ 2735\\ 2782\\ 2833\\ 2717\\ 2592\\ 22518\\ 24655\\ 2465\\ 2838\\ 2619\\ 1732\\ 6577\\ 845\\ 1059\\ 1149\\ 1410\\ 1590\\ 1573\\ 1589\\ 1632\\ 1696\end{array}$
$\begin{array}{c} 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 34 \end{array}$	$\begin{array}{c} 1 & 50 \\ 1 & 53 \\ 1 & 56 \\ 2 & 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 12 \\ 14 \\ 2 \\ 12 \\ 1$	350.4 350.6 350.8 350.9 351.1 351.2 351.5 351.6 351.6 351.6 351.5 3	$\begin{array}{c} 0.1516\\ 0.115\\ 0.04615\\ 0.0366\\ 0.0245\\ 0.01906\\ 0.1004\\ 0.740\\ 0.4835\\ 0.1728\\ 0.1106\\ 0.0412\\ 0.0284\\ 0.02035 \end{array}$	$\begin{array}{c} 0.3893\\ 0.3392\\ 0.2148\\ 0.1913\\ 0.1565\\ 0.1381\\ 0.3169\\ 0.8604\\ 0.6954\\ 0.4157\\ 0.3327\\ 0.2031\\ 0.1685\\ 0.1427\\ \end{array}$	$\begin{array}{c} 0.2311\\ 0.2311\\ 0.2308\\ 0.2306\\ 0.2302\\ 0.2302\\ 0.694\\\\\\\\ 0.694\\\\ 0.694\\ \end{array}$	$\begin{array}{c} 10.01\\ 10.31\\ 9.39\\ 9.02\\ 8.10\\ 7.62\\ 10.34\\ 21.87\\ 24.69\\ 30.40\\ 39.99\\ 27.68\\ 25.38\\ 25.79\end{array}$	$\begin{array}{c} 230.8\\ 224.2\\ 245.7\\ 255.6\\ 284.3\\ 302.1\\ 222.7\\ 317.4\\ 281.0\\ 228.3\\ 223.9\\ 250.7\\ 273.4\\ 304.5\end{array}$	$\begin{array}{c} 4128\\ 4238\\ 3855\\ 3688\\ 3307\\ 3105\\ 4210\\ 2937\\ 3313\\ 4075\\ 4150\\ 3712\\ 3410\\ 3058 \end{array}$	83 84 85 86 87 88 89 90 91 92 93 94 95 96	555555555555555555555555555555555555	351.6 351.6 351.6 351.6 351.7 351.7 351.7 351.8 351.8 351.8 351.8 351.9 351.9 351.9 351.9 351.9 351.9 351.9	$\begin{array}{c} 0.1074\\ 0.1076\\ 0.1072\\ 0.1058\\ 0.1046\\ 0.1014\\ 0.1014\\ 0.1010\\ 0.0988\\ 0.0956\\ 0.0947\\ 0.0976\\ 0.0997\\ 0.0997\\ 0.0986\end{array}$	$\begin{array}{c} 0.3277\\ 0.3280\\ 0.3274\\ 0.3253\\ 0.3234\\ 0.3185\\ 0.3178\\ 0.3143\\ 0.3092\\ 0.3077\\ 0.3114\\ 0.3157\\ 0.3144\\ 0.3157\\ 0.3144\\ 0.3157\\ \end{array}$	$\begin{array}{c} 41.3\\ 41.3\\ 41.3\\ 41.3\\ 24.4\\ 24.4\\ 10.43\\ 10.41\\ 5.96\\ 5.97\\ 2.741\\ 2.740\\ 1.063\\ 1.063\end{array}$	$\begin{array}{c} 670.4\\ 650.2\\ 639.4\\ 455.3\\ 459.9\\ 267.4\\ 269.7\\ 181.6\\ 183.1\\ 96.96\\ 97.96\\ 40.52\\ 40.60\end{array}$	616.5 635.5 646.5 646.9 535.8 530.6 390.1 386.3 328.3 326.1 282.7 279.7 262.4 261.9	$\begin{array}{r} 1508\\ 1467\\ 1438\\ 1438\\ 1736\\ 1750\\ 2370\\ 2392\\ 2822\\ 2829\\ 3272\\ 3303\\ 3518\\ 3528 \end{array}$

[83]

Elektrische Leitfähigkeit des Bergkristalles.

259

_								-	_	_							
Nr.	Zeit	Temp.	τ	$\sqrt{\tau}$	E	I	E I	$\vec{e}_i^{\dagger} E$	Nr.	Zeit	Тешр.	τ	Vτ	E	I	E, I	$\bar{e} E$
	h m	0	sec	sec 1/3	Volt	10-8Amp.	101	10-5		h m	0	sec	sec 1/2	Volt	10-8Amp.	101	10-5
97 98 99 100	529 530 533 534 534 537	351.9 351.9 351.9 351.9 351.9 351.9	$\begin{array}{c} 0.0966 \\ 0.0989 \\ 0.0934 \\ 0.0924 \\ 0.01734 \end{array}$	$\begin{array}{c} 0.3108 \\ 0.3143 \\ 0.3056 \\ 0.3040 \\ 0.1317 \end{array}$	$\begin{array}{c} 0.4228 \\ 0.4224 \\ 0.2423 \\ 0.2423 \\ 0.2423 \\ 0.2429 \end{array}$	$16.62 \\ 16.63 \\ 9.59 \\ 9.59 \\ 6.45 \\ 6.45 \\ 16.62 \\ $	254.3 254.0 252.7 252.7 375.5	3630 3636 3645 3645 2463	$50 \\ 51 \\ 52 \\ 53 \\ 54$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	387.0 387.1 387.0 387.0 387.0	$\begin{array}{c} 0.239 \\ 0.1102 \\ 0.0291 \\ 0.0189 \\ 0.0289 \end{array}$	$\begin{array}{c} 0.4889 \\ 0.3319 \\ 0.1708 \\ 0.1376 \\ 0.1700 \end{array}$	21.7 21.7 13.68	$\begin{array}{r} 482.5 \\ 549.4 \\ 653.6 \\ 664.2 \\ 507.6 \end{array}$	$\begin{array}{r} 449.7 \\ 395.0 \\ 331.8 \\ 326.7 \\ 269.5 \end{array}$	$1028 \\ 1168 \\ 1392 \\ 1415 \\ 1715$
102 103 104 105 106	5 38 5 41 5 42 5 45 5 46	351.9 351.9 351.8 351.8 351.8 351.8	$\begin{array}{c} 0.01151\\ 0.01558\\ 0.0257\\ 0.0247\\ 0.0250\\ 0.0249 \end{array}$	$\begin{array}{c} 0.1249\\ 0.1605\\ 0.1573\\ 0.1583\\ 0.1578\end{array}$	0.2425 0.2425 0.0748 0.0748 0.0748	$\begin{array}{c} 6.52 \\ 7.35 \\ 7.38 \\ 2.21 \\ 2.35 \end{array}$	372.0 330.0 328.6 338.4 318.3	$\begin{array}{ } 2479 \\ 2795 \\ 2529 \\ 2735 \\ 2910 \end{array}$	55 56 57 58 59	$ \begin{array}{c} 2 & 29 \\ 2 & 32 \\ 2 & 33 \\ 2 & 36 \\ 2 & 37 \\ \end{array} $	387.0 387.0 387.0 387.1 387.1	$\begin{array}{c} 0.0265\\ 0.0275\\ 0.0286\\ 0.0287\\ 0.0286\\ 0.0291 \end{array}$	$\begin{array}{c} 0.1660 \\ 0.1691 \\ 0.1694 \\ 0.1690 \\ 0.1708 \end{array}$	$13.67 \\ 7.82 \\ 7.81 \\ 4.17 \\ 4.17$	513.5 337.3 339.9 202.3 204.7	266.3 231.7 229.7 206.1 203.6	$ \begin{array}{r} 1736 \\ 1996 \\ 2010 \\ 2240 \\ 2262 \end{array} $
			44 77	TT 1011	Dlatt	. 99 P			60 61	$2 40 \\ 2 41$	$\frac{387.1}{387.2}$	$0.0298 \\ 0.0278$	$\begin{array}{c} 0.1728 \\ 0.1669 \end{array}$	$2.603 \\ 2.603$	$135.6 \\ 135.1$	$192.0 \\ 192.7$	$\frac{2400}{2383}$
1	12 19	383.3	11. VI 0.1890	0.4347	0.0891	5.02	177.4	2782	$\frac{62}{63}$	$2 \frac{44}{245}$	$\frac{387.2}{387.2}$	$0.0273 \\ 0.0264$	$0.1654 \\ 0.1624$	$1.280 \\ 1.280$	$ \begin{array}{r} 67.02 \\ 67.92 \end{array} $	$\begin{array}{c} 191.0\\ 188.5 \end{array}$	$2411 \\ 2442$
2 3 4 5 6	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	383.4 383.6 383.8 383.9 384.1	$\begin{array}{c} 0.1414 \\ 0.0525 \\ 0.02875 \\ 0.01688 \\ 0.02425 \end{array}$	$\begin{array}{c} 0.3761 \\ 0.2292 \\ 0.1696 \\ 0.1299 \\ 0.1567 \end{array}$	$\begin{array}{c} 0.0891 \\ 0.0892 \\ 0.0894 \\ 0.0893 \\ 0.0893 \\ 0.0892 \end{array}$	$5.24 \\ 5.67 \\ 5.52 \\ 5.01 \\ 5.43$	170.0 157.3 161.9 178.2 164.2	$\begin{array}{c} 2900 \\ 3125 \\ 3028 \\ 2738 \\ 2970 \end{array}$	$ \begin{array}{r} 64 \\ 65 \\ 66 \\ 67 \\ 68 \end{array} $	$ \begin{array}{r} 2 & 48 \\ 2 & 49 \\ 2 & 52 \\ 2 & 53 \\ 2 & 56 \end{array} $	$\begin{array}{c} 387.2 \\ 387.2 \\ 387.1 \\ 387.1 \\ 387.1 \\ 387.1 \end{array}$	$\begin{array}{c} 0.0334 \\ 0.0314 \\ 0.0290 \\ 0.0268 \\ 0.0314 \end{array}$		$\begin{array}{c c} 0.4362 \\ 0.4363 \\ 0.2700 \\ 0.2698 \\ 0.0701 \end{array}$	$\begin{array}{r} 23.58 \\ 23.93 \\ 14.28 \\ 14.88 \\ 3.59 \end{array}$	$184.9 \\182.2 \\189.1 \\181.3 \\195.3$	$\begin{array}{c} 2490 \\ 2525 \\ 2435 \\ 2540 \\ 2360 \end{array}$
78	$12 33 \\ 12 36 \\ 12 6$	384.2 384.5	0.2625	0.5126	0.0892 0.0892	$\frac{4.80}{4.55}$	$185.8 \\ 196.0 \\ 100.$	$2613 \\ 2467$	69	2 57	387.1	0.0256	0.1601	0.0701	3.85	182.0	2530
9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	384.9 385.0 385.0	$\begin{array}{c} 0.562 \\ 0.1002 \\ 0.01808 \\ 0.03305 \end{array}$	$\begin{array}{c} 0.7498 \\ 0.3168 \\ 0.1345 \\ 0.1818 \end{array}$	0.2422	$ \begin{array}{c c} 12.52 \\ 14.89 \\ 13.87 \\ 15.31 \end{array} $	$ \begin{array}{r} 193.3 \\ 162.6 \\ 174.5 \\ 158.1 \end{array} $	$2482 \\ 2950 \\ 2744 \\ 3026$	70 71 72 73	$ \begin{array}{r} 3 53 \\ 3 56 \\ 3 58 \\ 4 0 \end{array} $	$\begin{array}{c} 459.3 \\ 459.4 \\ 459.5 \\ 459.6 \end{array}$	$\begin{array}{c c} 0.1714\\ 0.1088\\ 0.0306\\ 0.0196\end{array}$	$\begin{array}{c} 0.4140 \\ 0.3300 \\ 0.1748 \\ 0.1400 \end{array}$		$ \begin{array}{c c} 6.58 \\ 5.64 \\ 4.18 \\ 4.12 \end{array} $	$ \begin{array}{r} 69.0 \\ 80.52 \\ 108.6 \\ 110.2 \end{array} $	$ \begin{array}{r} 2178 \\ 1866 \\ 1380 \\ 1362 \end{array} $
13 14 15 16	$ \begin{array}{r} 12 & 49 \\ 12 & 50 \\ 12 & 53 \\ 12 & 54 \\ \end{array} $	384.9 384.9 384.9 385.0	$\begin{array}{c} 0.1614 \\ 0.1528 \\ 0.0281 \\ 0.01534 \end{array}$	$\begin{array}{c} 0.4018 \\ 0.3910 \\ 0.1676 \\ 0.1239 \end{array}$	$\begin{array}{r} 0.2422 \\ 0.4324 \\ 0.4325 \\ 0.4324 \end{array}$	$\begin{array}{r} 13.92 \\ 25.03 \\ 26.47 \\ 24.10 \end{array}$	$ \begin{array}{r} 173.9 \\ 172.7 \\ 163.3 \\ 179.5 \\ \end{array} $	2762 2778 2935 2665	$ \begin{array}{c} 74 \\ 75 \\ 76 \\ 77 \end{array} $		$\begin{array}{r} 459.7 \\ 459.8 \\ 459.8 \\ 459.8 \\ 459.7 \end{array}$	$\begin{array}{c c} 0.0891 \\ 0.1392 \\ 0.0891 \\ 0.0286 \end{array}$	$\begin{array}{c c} 0.2985 \\ 0.3730 \\ 0.2985 \\ 0.1691 \end{array}$	$0.0454 \\ 0.1532 \\ 0.1529 \\$	$5.38 \\ 20.46 \\ 17.58 \\ 13.88$	$ \begin{array}{r} 84.4 \\ 74.9 \\ 87.02 \\ 110.2 \end{array} $	$1773 \\ 1994 \\ 1666 \\ 1359$
17 18 19 20	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	385.0 385.1 385.1 385.1 385.1	$\begin{array}{c} 0.0837 \\ 0.303 \\ 0.617 \\ 0.1366 \end{array}$	$\begin{array}{c} 0.2893 \\ 0.5503 \\ 0.7855 \\ 10.3695 \end{array}$	$\begin{array}{c} 0.4323 \\ 0.4323 \\ 1.133 \\ 1.135 \end{array}$	26.86 23.02 61.24 67.24	161.0 187.8 185.1 168.5	2968 2545 2582 2838	78 79 80 81	$\begin{array}{r} 4 & 10 \\ 4 & 16 \\ 4 & 17 \\ 4 & 20 \end{array}$	459.7 459.8 459.7 459.7	$\begin{array}{c} 0.0224 \\ 0.0148 \\ 0.0189 \\ 0.0316 \end{array}$	$ \begin{array}{c} 0.1497 \\ 0.1218 \\ 0.1376 \\ 0.1778 \\ \end{array} $	0.1529	$ \begin{array}{c c} 13.69\\ 13.42\\ 13.63\\ 13.88\\ \end{array} $	$ \begin{array}{c} 111.7\\ 113.9\\ 112.2\\ 110.2 \end{array} $	1340 1312 1333 1358
21 22 23 91	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	385.2 385.2 385.3 385.4	$0.0446 \\ 0.0266 \\ 0.01856 \\ 0.0256$	$\begin{array}{c} 0.2113 \\ 0.1632 \\ 0.1362 \\ 0.1600 \end{array}$	1.135 1.136 1.137 1.137	71.16 70.09 65.84 69.99	159.5 162.1 172.8 162.5	2987 2942 2750 2028	82 83 84 85	$ \begin{array}{r} 4 & 21 \\ 4 & 24 \\ 4 & 26 \\ 4 & 26 \\ 4 & 20 \end{array} $	$ 459.8 \\ 459.9 \\ 460.0 \\ 460.0 $	$\begin{array}{c c} 0.228 \\ 0.514 \\ 0.548 \\ 0.450 \end{array}$	$\begin{array}{c} 0.4770 \\ 0.7169 \\ 0.7404 \\ 0.6708 \end{array}$	$\begin{array}{c} 0.1526 \\ 0.1523 \\ 0.3247 \\ 0.3246 \end{array}$	$\begin{array}{c} 23.82 \\ 31.15 \\ 68.32 \\ 63.06 \end{array}$	$ \begin{array}{c} 64.10 \\ 48.90 \\ 47.53 \\ 51.48 \end{array} $	2330 3045 3130
	115 115 116 119	385.6 385.6 385.8	$\begin{array}{c} 0.0230\\ 0.1060\\ 0.1012\\ 0.0549\\ 0.059\end{array}$	$\begin{array}{c} 0.1000\\ 0.3255\\ 0.3181\\ 0.2343\\ 0.4540\end{array}$	$ \begin{array}{c} 1.137 \\ 2.809 \\ 2.810 \\ 2.800 \end{array} $	$\begin{array}{c} 69.18 \\ 166.9 \\ 174.9 \\ \end{array}$	164.3 168.3 160.6	$ 2882 \\ 2815 \\ 2937 $	86 87 88	$ \begin{array}{c} 4 & 31 \\ 4 & 33 \\ 4 & 34 \\ 4 & 34 \end{array} $	459.9 459.8 459.8 459.8	$\begin{array}{c} 0.430\\ 0.1714\\ 0.1978\\ 0.1380\\ 0.0030\end{array}$	$\begin{array}{c} 0.0703 \\ 0.4140 \\ 0.4448 \\ 0.3715 \\ 0.0014 \end{array}$	0.3246	$\begin{array}{c} 03.00\\ 45.04\\ 47.43\\ 43.08\end{array}$	72.08 68.44 75.33	2068 2180 1982
28 29 30 31	$ \begin{array}{c cccccccccccccccccccccccccccccccc$	385.8 385.9 386.0 386.1	$\begin{array}{c c} 0.0239 \\ 0.01430 \\ 0.1046 \\ 0.344 \end{array}$	$\begin{array}{c} 0.1546 \\ 0.1196 \\ 0.3234 \\ 0.5870 \end{array}$	2.809 2.807 2.807 2.807 2.807	169.6 156.4 167.9 153.2	$ \begin{array}{c c} 165.6 \\ 179.5 \\ 167.1 \\ 183.2 \\ \end{array} $	2850 2620 2816 2563	89 90 91 92	$ \begin{array}{r} 4 & 38 \\ 4 & 39 \\ 4 & 42 \\ 4 & 43 \end{array} $	$\begin{array}{c c} 459.9 \\ 459.9 \\ 459.9 \\ 460.0 \end{array}$	$\begin{array}{c} 0.0853 \\ 0.0316 \\ 0.0254 \\ 0.0199 \end{array}$	$\begin{array}{c} 0.2921 \\ 0.1776 \\ 0.1594 \\ 0.1412 \end{array}$	$\begin{array}{c} 0.3245 \\ 0.3244 \\ 0.3262 \\ 0.3265 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c} 89.92 \\ 108.1 \\ 112.4 \\ 111.5 \end{array} $	$1659 \\ 1380 \\ 1326 \\ 1336$
82 83 84 85	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	386.3 386.3 386.4 386.5		$\begin{array}{c} 0.5925 \\ 0.3393 \\ 0.1806 \\ 0.1282 \end{array}$	7.74 7.73	321.8 366.8 410.2 398.5	$ \begin{array}{r} 240.4 \\ 210.7 \\ 188.4 \\ 194.0 \end{array} $	$ \begin{array}{r} 1949 \\ 2218 \\ 2473 \\ 2401 \end{array} $	$93 \\ 94 \\ 95 \\ 96$	$\begin{array}{c cccc} 4 & 46 \\ 4 & 47 \\ 4 & 51 \\ 4 & 52 \end{array}$	$\begin{array}{c c} 460.1 \\ 460.2 \\ 460.2 \\ 460.2 \end{array}$	$ \begin{array}{c c} 0.0126 \\ 0.0224 \\ 0.121 \\ 0.0360 \end{array} $	$\begin{array}{c} 0.1126 \\ 0.1497 \\ 0.3478 \\ 0.1898 \end{array}$	$\begin{array}{c c} 0.3265 \\ 0.3247 \\ 0.3241 \\ 0.3244 \end{array}$	$\begin{array}{c c} 28.98 \\ 27.17 \\ 40.23 \\ 29.76 \end{array}$	$ \begin{array}{c c} 112.7 \\ 119.5 \\ 80.55 \\ 109.0 \end{array} $	1319 1244 1846 1365
36 37 38	1 42 1 42 1 44 1 47 1 50	386.6 386.7 386.7	0.0270 0.1612 0.1668 0.0768	$\begin{array}{c} 0.1644 \\ 0.4014 \\ 0.4084 \\ 0.9759 \end{array}$	7.73 41.0	413.8 347.2 751.2	$\begin{array}{c cccc} 186.8 \\ 222.7 \\ 545.9 \\ 497.6 \end{array}$	$ \begin{array}{c c} 2485 \\ 2083 \\ 851 \\ 1001 \end{array} $	$97 \\ 98 \\ 99 \\ 100$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 100.2 \\ 460.2 \\ 460.2 \\ 460.3 \\ 460.3 \end{array} $	$\begin{array}{c} 0.0388 \\ 0.0351 \\ 0.0372 \\ 0.0372 \end{array}$	$\begin{array}{c} 0.1970 \\ 0.1970 \\ 0.1875 \\ 0.1930 \\ 0.250 \end{array}$	0.4252 0.987 1.758	$ \begin{array}{c} 29.16 \\ 38.62 \\ 88.46 \\ 167.4 \\ 222.0 \\ \end{array} $	$ \begin{array}{c c} 110.1 \\ 111.6 \\ 105.0 \\ 50.17 \end{array} $	1351 1331 1461
40 41 42	$ \begin{array}{c} 1 & 50 \\ 1 & 53 \\ 1 & 54 \\ 1 & 57 \end{array} $	386.7 386.7 386.8	$\begin{array}{c} 0.0168 \\ 0.04595 \\ 0.0292 \\ 0.0227 \end{array}$	$\begin{array}{c} 0.2112 \\ 0.2144 \\ 0.1709 \\ 0.1506 \end{array}$	41.05	$\begin{array}{c} 959.4 \\ 1041.5 \\ 1117.0 \\ 1185.5 \end{array}$	437.6 394.1 367.5 346.3	$ \begin{array}{r} 106 \pm \\ 1178 \\ 1265 \\ 1338 \end{array} $	$ \begin{array}{r} 100 \\ 101 \\ 102 \\ 103 \end{array} $	$ \begin{bmatrix} 5 & 4 \\ 5 & 6 \\ 5 & 7 \\ 5 & 10 \end{bmatrix} $	$\begin{array}{c c} 400.3 \\ 460.3 \\ 460.3 \\ 460.2 \end{array}$	$\begin{array}{c c} 0.403 \\ 0.357 \\ 0.1616 \\ 0.1224 \end{array}$	$\begin{array}{c} 0.0330 \\ 0.5975 \\ 0.4020 \\ 0.3498 \end{array}$	$ 1.758 \\ 1.758 \\ 1.757 \\ 1.767 $	325.9 253.2 232.8	$\begin{array}{r} 52.17 \\ 53.92 \\ 69.44 \\ 75.91 \end{array}$	2840 2755 2135 1957
43 41 45 46	$ \begin{array}{c} 1 58 \\ 2 2 \\ 2 3 \\ 2 7 \end{array} $	386.8 387.0 387.0 387.0	$\begin{bmatrix} 0.0226 \\ 0.01404 \\ 0.0296 \\ 0.1624 \end{bmatrix}$	$\begin{array}{c} 0.1504 \\ 0.1185 \\ 0.1721 \\ 0.4028 \end{array}$		$1179.0 \\ 1221.5 \\ 1165.5 \\ 769.6 \\ $	348.3 336.0 352.3 533.2	$ 1332 \\ 1373 \\ 1312 \\ 869 $	$104 \\ 105 \\ 106 \\ 107$	$5 12 \\ 5 15 \\ 5 16 \\ 5 10 \\ $	$ \begin{array}{r} 460.2 \\ 460.1 \\ 460.1 \\ 460.1 \end{array} $	$\begin{array}{c c} 0.0950 \\ 0.0274 \\ 0.0308 \\ 0.0136 \end{array}$	$\begin{array}{c} 0.3082 \\ 0.1656 \\ 0.1754 \\ 0.1167 \end{array}$	1.770 1.770	$\begin{array}{r} 224.7 \\ 176.9 \\ 170.4 \\ 179.9 \end{array}$	78.80 100.08 103.8 98.8	1886 1488 1431 1519
47 48 49	$ \begin{array}{ccc} 2 & 9 \\ 2 & 12 \\ 2 & 14 \\ 2 & 14 \end{array} $	387.1 387.1 387.1	$\begin{array}{c} 0.402 \\ 0.874 \\ 0.809 \end{array}$	$\begin{array}{c} 0.6344 \\ 0.9349 \\ 0.8994 \end{array}$	$\frac{41.05}{21.7}$	$ \begin{array}{c c} 103.0\\ 573.6\\ 486.1\\ 405.9\\ \end{array} $	715.6 844.7 534.8	644 545 863	108 109 110	520 523 524	$\begin{array}{c} 460.1 \\ 460.0 \\ 460.0 \end{array}$	$ \begin{array}{c} 0.0130 \\ 0.0213 \\ 0.0864 \\ 0.1284 \end{array} $	$\begin{array}{c} 0.1462 \\ 0.2940 \\ 0.3563 \end{array}$	$\begin{array}{c c} 1.770 \\ 1.757 \\ 1.757 \end{array}$	$ \begin{array}{c} 169.2 \\ 207.2 \\ 227.8 \end{array} $	104.6 84.86 77.14	1423 1754 1932

33*

 260^{-1}

Richard Ambronn,

EE/Ie EZeit Temp VT 1 Nr. Zeit Temp Vτ EI $E_{I}I$ $\bar{c} E$ Nr. τ τ 10 SAmp 10-8.1mp 10 3 0 Volt 104 10 - 3 m Volt 104 h 10 sec h sec sec 1/2 sec 1/2 0.9903 313.6 0.08422.82 1655 6 0.1654 0.40671091.0 5 27 460.089.95194 4 459.98.84 81.05 1842 111 2085 ĕ $\overline{5}$ 112 113 114 1238 125459.90.5735 71.41 0.16840.41041473 459.9 0.3298.8414.61441.0101.375.93 6 12 459.8 116+1966 126 0.0262520.5 137.95 1084 459.9 0.2610.51090.16201486.00.285599.33 6 13 0.1722 20.4 1241 459.9 0.0815 890 1500 127459.80.41481695.0 120.3õ 0.3007 8.84 912.496.91 1540128616459.80.1941974206.7723 115 44 459.80.09040.440440.8217.7 $114.8 \\ 115.7$ $\frac{1302}{1290}$ $\begin{smallmatrix} 6 & 17 \\ 6 & 20 \end{smallmatrix}$ 1165 46 459.80.03290.18148.90 775.2129459.80.09280.30461874687 214.6 695 $\frac{1}{50}$ 768.8 č č 0.0259 0.1609130 459.90.035040.8117459.8 0.18711901 119.3 1252 6 21 0.1285 8.90 745.6 459.90.02115 205.9 726 459.80.0165 131 40.91986 118 0.14540.1219 119 õ 53 111.21346 132 6 24 778 459.80.01498.84794.6459.90.014020.1184 2134191.6 $\begin{array}{c} 6 & 25 \\ 6 & 28 \end{array}$ 459.9 120 š 56 0.0213 0.1459794.6 111.21343133 459.90.34750.58952028 201.7 740 ____ 214.3 695 121 5 57 459.90.02800.1673800.2 110.451351134460.00.9700.984940.91909 200.2 830.4 6 30 1402 2048743 122 $\frac{6}{6}$ 0 459.90.04120.2030106.45135460.00.02800.167441.084.44 1767 8.84123 1 459.90.12820.35791047.0

Aus den Kurven IV ist auch zu ersehen, daß mit wachsendem E die Größe B im Ausdrucke (3) zunimmt, $\int_{0}^{\tau} e^{dt}$ muß also langsamer zunehmen, wie die polarisierende Spannung, wenn man in erster Annäherung (W+w)= konstans setzt. Die Krümmung, die sich bei höherer Spannung in den $(E/I:\sqrt{\tau})$ -Kurven zeigt, entspringt vielleicht daraus, daß in diesen Fällen die Polarisationsspannung bereits in Zeitintervallen, die wesentlich kleiner als $\tau/2$ sind, einem von der angelegten Spannung verschiedenen oberen Grenzwerte nahekommt und daher zu langsam ansteigt; auch eine Vergrößerung von w würde in demselben Sinne wirken.

55. Man könnte aus (3) für ein gegebenes $\tau/2$ den Mittelwert \bar{e} von *e* berechnen, wenn (W+w) bekannt wäre. Aus den Messungen Nr. 35—69 am 9. III. 1911 geht hervor, dafs mit wachsender Ladespannung die Entladestromstärke nicht zu- sondern abnimmt, was auf Rechnung der Widerstandszunahme *w* gesetzt werden muß, denn $1/\tau \int_{0}^{\tau/2} e dt$ ist sicher mit *E* gröfser geworden, wenn es auch langsamer als die Ladespannung ansteigt. Nimmt man $1/\tau \int_{0}^{\tau/2} e dt$ als konstant an, so müßsten bei einem Werte $\tau = 1$ see die Widerstände bei E = 2,0, E = 10,0 und E = 59,6 Volt sich verhalten wie die reziproken Stromstärken, also wie

$$\frac{1}{2100}:\frac{1}{1250}:\frac{1}{1100},$$

sie müßsten also auf mindestens das Doppelte angewachsen sein. Auch für E = 2,0 Volt wird w nicht gleich Null gewesen sein. W ist bei den in Frage kommenden Temperaturen nahe gleich 9000 Ohm. Nimmt man

[84]

[85]

(W+w) bei E = 2,0 Volt nur gleich 10000 Ohm, so würde es also bei E = 59,6 Volt etwa 20000 Ohm betragen. Dafs (W+w) in merklichem Mafse von τ abhängt, ist aber nicht anzunehmen, und man erhält daher aus (2)

$$I \cdot (W+w) = \bar{e}/2 = 1/\tau \int_{0}^{\tau/2} e \, dt > I \cdot 20\,000,$$

wo \bar{e} den Mittelwert der Polarisationsspannung während der Entladephase bezeichnet:

$$\bar{e} > 2 \cdot I \cdot 20\,000.$$

Einige der beobachteten Werte liefern für E = 59.6 Volt die in folgender Zusammenstellung gegebenen Daten für \bar{e} :

Nr.	·√τ	τ	2.1.20000
	sec 1/2	sec	
55 56 57	$0.1080 \\ 0.1606 \\ 0.3057$	$0.01166 \\ 0.0258 \\ 0.0934$	4.57 2.52 1.05
58 59	0.3057 0.3892 0.6753	$0.0354 \\ 0.1515 \\ 0.456$	$ \begin{array}{c} 1.05 \\ 0.81 \\ 0.55 \end{array} $
60	1.0270	1.054	0.43

Tabelle 18.

Aus diesen Mindestwerten von \bar{e} ist zu ersehen, daß die Initialspannung unmittelbar nach dem Abschalten der Ladespannung E weit höher gewesen sein muß, als man sie bei flüssigen Elektrolyten beobachtet, selbst wenn man annehmen würde, daß der Wert von (W+w) von τ abhängig und daher bei kleinem τ zu hoch gewählt wäre. Man erhält Polarisationsspannungen, die sicher über 5 Volt betragen und allem Anscheine nach sogar 10 Volt übersteigen, da ja die \bar{e} nur Mittelwerte der e sind. Die außserordentlich geringe Diffusion der gelösten Salze im Bergkristalle ermöglicht in diesem Materiale Konzentrationsunterschiede an Natriumionen, wie sie bei Flüssigkeiten unmöglich sind.

Den Wert von e als Funktion von τ und t kann man aus \overline{e} nicht berechnen. Würde man e von τ unabhängig ansehen, so wäre

$$\tau \frac{d\bar{e}}{d\tau} + \bar{e} = 1/2 \, e.$$

Man erhält dann für e selbst aber Werte, die kleiner sein müssen, als die e an derselben Stelle, da letztere ja die Mittelwerte der e bis zu eben dieser Stelle sind. Gerade der Verlauf von e unmittelbar nach dem Einschalten der Spannung wäre wieder nicht zu erkennen und es hat daher kaum Zweck, die weitere Durchrechnung des obigen Beispieles nach diesem Gesichtspunkte hin hier mitzuteilen.

56. Über die Abhängigkeit der Polarisationskapazität von der Temperatur ist zu bemerken, daß bei niedrigen Temperaturen die Einstellungsgeschwindigkeiten sehr klein sind, und die bei 228° beobachteten Werte daher wohl kaum einem Gleichgewichtszustande entsprechen dürften. Es ist aus ihnen auch kein Einfluß der Spannung zu erkennen. Die Anpassung der Stromstärke an die Frequenz vollzieht sich am schnellsten und dieser Einfluß ist daher auch in jener Serie noch vorhanden. Eine Einstellung auf den Gleichgewichtswert von w ist natürlich hier unmöglich. Mittlere Temperaturen lassen den Spannungseinfluß gut erkennen und es scheint, als wenn in dem B der Formel (2), wenigstens soweit die Werte von E in dieser Serie reichen, die Quadratwurzel aus E enthalten wäre.

Bei den hohen Temperaturen (453°) kommt dann noch die Wirkung der Vergrößerung von w hinzu und läfst die $(E/I; \sqrt{\tau})$ -Kurve steiler ansteigen, bezw. den steileren Anstieg bei größerem E besser erkennen.

Extrapoliert man die bei den drei Temperaturen gefundenen Werte von A auf unendlich hohe Frequenz, d. h. berechnet E/I für $\tau = 0$, so wird näherungsweise:

Т	A = E/I	$\log A$	$\log W$	$\frac{\log A/W}{=\log \varrho}$
$^{\circ}_{228.5}\ _{335.0}\ _{452.5}$	$10^{3} \\ 11400 \\ 316 \\ 40.3$	$7.057 \\ 5.500 \\ 4.605$	$6.367 \\ 4.829 \\ 3.922$	0.690 0.671 0.683

Tabelle 19.

Für $\tau = 0$ sind e und w als zeitlich konstant aufzufassen. Es wird $2 \cdot I = e/(W+w)$ und daher

$$A = \frac{E}{I} = \frac{2E}{e} (W + w).$$

Dividiert man durch den Plattenwiderstand W, wie er aus dem vorigen Abschnitte folgt, so wird

$$\frac{A}{W} = \frac{E}{IW} = \frac{2E}{e} \cdot \frac{(W+w)}{W} = \varrho.$$

Die Werte von ρ sind in der vorstehenden Tabelle 19 aufgeführt und erweisen sich als nahe konstant für alle Temperaturen. Eine Deutung dieser Erscheinung wird aber wieder dadurch vereitelt, daße e und w in ρ enthalten sind und keine weiteren Beziehungen zwischen diesen beiden Größen erhalten werden können. Sollte w, was immerhin einen gewissen Grad von Wahrscheinlichkeit besitzt, für $\tau = 0$ auch gleich Null zu setzen sein, so würde

zu setzen sein, also mit Rücksicht auf Tabelle 19:

$$e_{(t=0)} = 2 \cdot E \cdot 0.208 = 0.42 E,$$

und zwar würde diese Beziehung von der Temperatur, bei der die Messung angestellt wird, völlig unabhängig sein.

Ist hier w > 0, so erhöht sich der Faktor ρ noch um den Faktor (1 + w/W).

Da diese Beziehungen den Kurven IV gemäß mindestens bis E = 10 Volt gelten, so ergibt sich auch hieraus wieder, daß die auftretenden Polarisationsspannungen in festen Elektrolyten höhere Beträge annehmen können, als man sie in Flüssigkeiten beobachtet.

57. Bei den nach dieser Methode angestellten Messungen machte sich stets die Unbestimmbarkeit des Zusatzwiderstandes w störend bemerkbar und seine langsame Einstellung zum Gleichgewicht liefs die absoluten Werte der beobachteten Wirkung sehr unsicher werden. Es wurde daher

versucht, die Größe *w* dadurch dauernd verschwindend klein zu halten, daß die Ladeströme nicht stets in gleicher Richtung durch die Bergkristallplatte geschickt wurden, sondern während der einen Periode in dem entgegengesetzten Sinne wie in der vorhergehenden und folgenden. Die Polarisationsströme dagegen durchliefen das Galvanometer stets in gleicher Richtung, was durch die in Fig. 12 dargestellte Schaltungsweise der Alternatorsegmente erreicht wurde.

In Tabelle 17 (S. 256 u. ff.) sind die Resultate der auf diese Weise angestellten Messungen mitgeteilt, und zwar in der gleichen Form, wie die nach der ersten Methode

erhaltenen. In den Kurvenblättern V wurde zunächst wiederum die Abhängigkeit des Quotienten E/I von der Quadratwurzel aus der Periodenlänge,

263

oder

die hier unter Vernachlässigung der Vorzeichenänderung des Ladestromes gerechnet ist, aufgetragen, obgleich sich jetzt der Zusammenhang nicht mehr so einfach, wie bei der ersten Methode erkennen läfst. Eine übersichtlichere Darstellung war aber nicht zu finden und die angewendete bietet doch immerhin den Vorteil, eine bessere Vergleichbarkeit mit den nach der ersten Methode gemessenen Serien zu gewähren. Die Kurven für E/I als Funktion von $\dot{\tau}$ selbst zeigen eine analoge Form und die für $(E/I) \cdot \tau$, die die reziproke Kapazität dargestellt hätten, sind langgestreckt und nur mäfsig gekrümmt, so dafs aus ihnen gar nichts zu ersehen ist.

Der zeitliche Verlauf der Ladespannung E und der Polarisationsspannung e sei ebenso, wie es für den ersten Fall in Fig. 7 geschehen ist, in Fig. 9 für zwei Periodenlängen schematisch eingetragen:

58. Wiederum ist der Inhalt der schraffierten Flächen pro Zeiteinheit gleich dem Mittelwert der Polarisationsspannung während der Halbperioden, in denen die Belegungen durch das Galvanometer verbunden sind. Diesmal kann sich aber ein Zusatzwiderstand w nicht in merklichem Maße ausbilden, da die Stromstöße stets in wechselnder Richtung erfolgen. Man erhält daher

$$I = \frac{1/\tau \int_{0}^{\tau 2} e \, dt}{W} \, .$$

Die Komplikation tritt nunmehr aber leider in dem Werte des Integrales auf, denn jetzt ist e in höchstem Maße von τ abhängig. Für unendlich hohe Frequenzen würde überhaupt kein Integralstrom I erhalten, da die unendlich kleine Wirkung eines Stromstoßses sogleich von der des nächsten kompensiert wird und e daher dauernd Null bleibt. Mit wachsenden Werten von τ wird I dann zunächst größer. Die Polarisationsspannung

Elektrische Leitfähigkeit des Bergkristalles.

kann aber nur einen endlichen Grenzwert annehmen und sinkt aufserdem stets beim Kurzschlusse durch das Galvanometer schnell. Für genügend große τ wird also mit wachsendem τ der Initialwert der elektromotorischen Kraft e nicht mehr merklich größer werden, dagegen nimmt aber die Länge des flachen Teiles der Kurve für e noch zu, wodurch der Mittelwert $\bar{e} = 1/\tau \int_{0}^{\tau/2} e^{dt}$ mit ansteigenden Periodenlängen kleiner wird. In gleichem Sinne würde die bei großen Werten von τ auftretende Widerstandsvermehrung der Platte um das früher definierte w die Polarisationsstromstärke beeinflussen. Diese kann sich aber bei den von mir hier benutzten stets verhältnismäßsig kleinen Werten von τ noch kaum bemerkbar machen.

59. Da die Polarisationsstromstärke demnach mit wachsendem τ zunächst steigt und später wieder abnimmt, so muß sie für mindestens einen Wert τ_m von τ ein Maximum besitzen. Daß ein solcher ausgezeichneter Wert von τ bei nicht zu hohen Temperaturen innerhalb des den Beobachtungen zugänglichen Bereiches liegt, zeigen die Kurven auf den Blättern V (a-d). Mit steigender Ladespannung E nimmt τ_m ab. Die erregte Polarisationsgegenspannung klingt um so schneller ab, je höher sie ist.

Man kann bei diesen Messungen den Widerstand des Stromkreises stets gleich dem Widerstande der unveränderten Platte vermehrt um den der Mefsanordnung, also bei gleichbleibender Temperatur konstant setzen, so dafs

$$I \cdot W_0 = \bar{e}/2$$

wird, da e nur während der Hälfte der Beobachtungszeit am Galvanometer liegt. Aus den in Tabelle 17 (S. 258) gegebenen Werten von I und den aus den früheren Angaben zu berechnenden W_0 kann also \bar{e} berechnet werden. Es zeigt sich, daß bei den hier besprochenen Messungen \bar{e} den Wert 0,5 Volt nicht überschreitet, im allgemeinen sogar wesentlich kleiner ist. Sein Verlauf ist (da W_0 konstant) aus den Kurven für E/I zu ersehen.

Eine gewisse Schwierigkeit bietet der Erklärung die Erfahrung, daß bei sinkender Spannung E die Stromstärken kleiner sind, als unter gleichen äußeren Umständen vorher bei zunehmendem E. Ein merkbarer Zusatzwiderstand müßte infolge der dauernd die Richtung wechselnden Beeinflussung durch die Spannung E schnell verschwinden, falls er überhaupt bei hohen Spannungen auftritt. Es ist möglich, daß ein Rest der Aufladungen durch die hohe Spannung zurückbleibt und die Polarisationsspannungen verändert, obgleich nach bei Gläsern mit Gleichspannung gemachten Erfahrungen die Wirkungen der beiden elektromotorischen Kräfte sich ohne gegenseitige Störung superponieren sollten.

Nova Acta CL. Nr. 3.

[89]

34

Um den Einfluß der Temperatur auf den Vorgang zu klären, wurde der Ausdruck $2IW_0/E$, der mit \bar{e}/E identisch ist, gebildet und in der Kurve VI als Funktion der $\sqrt{\tau}$ aufgetragen. Man erkennt dort, daß die Temperatur auf die Größenordnung von \bar{e} nur einen sehr kleinen Einfluß besitzt, indem \bar{e} mit wachsender Temperatur ein wenig kleiner wird.

60. In weitgehendem Maße wird die Abhängigkeit des Integralstromes von der Periode τ durch die Temperatur beeinflußt. Bei den drei bei niedriger Temperatur gemessenen Serien liegt der oben definierte Maximalwert τ_m innerhalb des den Beobachtungen zugänglichen Bereiches. Bei der vorkommenden höchsten Temperatur war der entsprechende Wert mit dem Alternator nicht mehr herstellbar.

In der dritten Serie macht sich dann noch eine neue Krümmung der $(E/I; \sqrt{\tau})$ -Kurven bemerkbar, die der ersten entgegengesetzt ist, und diese Krümmung dürfte es sein, die auch in dem vierten Blatte der Kurven Vd bei $T = 460^{\circ}$ allein zum Ausdrucke kommt. Es nimmt hier mit steigender Periodenlänge die Polarisationsspannung wieder zu, nachdem sie ein nicht sehr deutliches Minimum bei sehr kleinen $\sqrt{\tau}$ überschritten hat. Eine plausible Erklärung für dieses Verhalten zu finden, ist mir nicht gelungen; nach den früheren Ausführungen müßte mindestens auch noch ein weiteres Maximum von I vorhanden sein, da $I(\tau = 0) = I(\tau = \infty) = 0$ werden mufs. Die hier auftretende Funktion e von Zeit, Periodenlänge, Ladespannung und Temperatur ist aber so kompliziert, daß eine vollständige Übersicht über ihre Eigenschaften noch nicht erlangt werden konnte.

Zusammenfassung der Ergebnisse.

Zum Schlusse seien noch einmal die hauptsächlichsten Resultate der Untersuchungen zusammengestellt.

Um die Leitfähigkeit von Bergkristall zu bestimmen, müssen sehr kleine Spannungen verwendet werden, da stärkere Ströme das Material verändern. Die Leitfähigkeit ist elektrolytischer Natur; unpolarisierbare Elektroden liefsen sich nicht anwenden, weshalb die Platten platiniert und die Ströme in wechselnder Richtung durch die zu untersuchenden Bergkristallplatten geschickt werden mufsten. Da es Instrumente zur zweckmäfsigen Messung solcher schwachen Wechselströme nicht gibt, wurde eine Einrichtung benutzt, bei welcher die in dem Materiale selbst alternierenden Ströme als Gleichstrom gemessen werden.

[91]

Es wurde die Abhängigkeit der Stromstärke von der Zeit bei Einwirkung einer Gleichspannung untersucht, wobei das Auftreten sehr großer Polarisationsspannungen wahrscheinlich gemacht wurde.

Durch Messungen mit alternierendem Gleichstrome wurde dann die Abhängigkeit des Widerstandes von der Temperatur und von der Orientierung der Platten im Kristalle festgestellt. Die sehr große Abhängigkeit der gemessenen Widerstände von der Frequenz des zur Messung benutzten alternierenden Gleichstromes liefs sich durch Abzug eines der Quadratwurzel aus der Periodenlänge proportionalen Gliedes von dem gemessenen Widerstande eliminieren.

Der auf unendlich schnelle Schwingungen extrapolierte Widerstand war dann durch eine Exponentialfunktion darzustellen, deren Exponent einer Temperatur umgekehrt proportional ist, die von -48° C an zählt.

Durch besondere Versuche wurde nachgewiesen, daß die Elektrizitätsleitung im Bergkristalle durch Ionen vermittelt wird, die sich allein streng parallel der Hauptachse bewegen können.

Infolge der außerordentlich inhomogenen Verteilung der ionenbildenden Substanz im Innern der Bergkristallindividuen stimmen die aus dieser Theorie zu ziehenden Folgerungen an den meisten untersuchten Platten nicht so, wie aus der Übereinstimmung der Messungen an jeder Platte allein zu erwarten war; indessen wird gezeigt, daß jede andere weniger radikal, als die obige, verfahrende Erklärung die wahren Verhältnisse nur noch viel weniger darzustellen imstande ist.

Um den Einfluß der Periodenlänge auf die auftretenden elektromotorischen Gegenkräfte zu klären, wurden noch Messungen über Polarisationskapazität angestellt, die das Resultat ergaben, daß an Bergkristall elektromotorische Kräfte auftreten können, die die an flüssigen Elektrolyten gemessenen um das Vielfache übertreffen; die quantitative Verwertung der Messungen vermochte aber nur dahin zu gehen, daß die elektromotorische Gegenkraft, die durch unendlich schnell wechselnde Ladung und Entladung einer Platte erzeugt wird, von der Temperatur nahezu unabhängig ist und stets in demselben Verhältnis zur angelegten polarisierenden Spannung steht, wobei aber dem Einfluß der Widerstandsvermehrung durch die bei derartiger einseitiger Beanspruchung der Platte auftretende schlechtleitende Anodenschicht noch nicht mit Sicherheit Rechnung getragen werden konnte, da dieser aus den Messungen in keiner Weise rein zu erhalten ist.

Der Vorgang bei einer zweiten Messungsreihe, bei der das Auftreten einer solchen Widerstandsschicht vermieden war, indem die Aufladungen in beiden Richtungen abwechselnd geschahen, während der Polarisationsstrom

267

34*

268 Richard Ambronn, Elektrische Leitfälrigkeit des Bergkristalles.

stets in gleicher Richtung das Galvanometer passierte, ist der Komplikation der Resultate halber nicht restlos diskutierbar; es ergab sich wiederum, daß auch hier die Größe der Polarisationsspannung von der Temperatur nahezu unabhängig ist.

Die vorliegenden Untersuchungen wurden im Physikalischen Institute der Universität Göttingen ausgeführt. Für die Anregung zu dieser Arbeit bin ich Herrn Geh. Rat W. Voigt zu besonderem Danke verpflichtet, was ich auch an dieser Stelle zum Ausdruck bringen möchte. Ganz besonders aber hat mich Herr Dr. Rümelin, der leider der Wissenschaft durch den Heldentod entrissen wurde, bei der Überwindung mancher experimentellen Schwierigkeiten mit seinem nimmermüden, liebevollen Rat unterstützt. Ihm werde ich stets das dankbarste Gedenken bewahren. —

Göttingen, im Juli 1915.

[92]

1.0 100 × 10⁵ J25 150 175 200 225 1.00 , 17 я, 0.75 0.75 0 • 0.50 0.50 ٢. T= 228° 1) № 1–19 • Spannung gleich 2,827 † 2) = 20–32 ° " " 10,35 " 2) "20-32 0 025 0.25 . . 21 . 8 ε. J. x10⁵ 0.0 0.00 225 125 150 ×10² 175 200 Vergl. dazu S. 256 v. 260. Lith.Paul Schindler,Leipmg

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf. 1.

Kurven IV.

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf.2.

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf. 3.

Tab.XXXIII.

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf. 4.

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf. 5.

Tab. XXIV.

Vergl. dazu S. 261 u. 266. R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf.7.

Lifh.Paul Schindler, Leipzig.

R.Ambronn : Elektrische Leitfähigkeit des Bergkristalles. Taf.8.

Tab.XXXVIII

53 H 1098

