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INTRODUCTION.

" The scientific part of Arithmetic and Geometry would be of more
use for regulating the thoughts and opinions of men than all the great

advantage which Society receives from the practical application of

them : and this use cannot be spread through the Society by the prac-

tice
;
for the Practitioners, however dextrous, have no more knowledge

of the Science than the very instruments with which they work. They
have taken up the Rules as they found them delivered down to them by
scientific men, without the least inquiry after the Principles from which

they are derived : and the more accurate the Rules, the less occasion

there is for inquiring after the Principles, and consequently, the more
difficult it is to make them turn their attention to the First Principles ;

and, therefore, a Nation ought to have both Scientific and Practical

Mathematicians." — James Williamson, Elements of Euclid with Dis-

sertatio7is, Oxford, 1781.

The preceding arraignment is nearly as pertinent to-day

in this country as it was in England more than a centui-y

ago. But so far as Geometry is concerned blame no longer

rests with the scientific mathematicians. Their investiga-

tions of First Principles have not only furnished us with

Euclid in his purity, but have developed entirely new

and equally consistent geometries, under postulates alter-

nate to Euclid's petition of the angle-sum of a rectilineal

triangle. Thus has been fulfilled what must at least have

opened up as dim vistas to Euclid's mind when he dis-

cerned the necessity for assuming, or petitioning as the

old geometers called it, his indemonstrable postulate.*

* Called variously the 5th postulate, or the 11th or 12th axiom.
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Still further, scientific mathematicians, besides offering
the true Euclid in available text-books with desirable ad-

ditions and extensions, have corrected several errors in

definitions and demonstrations which constituted the sole

blemishes in the most perfect work ever performed by a

single man. There is no longer good excuse for teachers

choosing texts which present the postulate as a common
notion or axiom; to say nothing of such as baldly omit
the whole doctrine of ratios and proportionality. There is

a momentous difference between ratios and fractions, and
text-books which present a proportion simply as an equality
of fractions have set up a miserable cause of stumbling.

They consider "merely a special case of no importance,
whose only excuse for existence lies in the general case

omitted." *
Incommensurability is the rule, commensura-

bility the exception.

On the other hand, when we consider Arithmetic and

Algebra the cap of censure fits the other head. If our

scientific mathematicians have furnished satisfactory text-

books in these subjects, I am not acquainted with them.
All of us who are teaching mathematics must agree with

good old Williamson when he complains, in the'dissertation

already quoted, that he found it more difficult " to make
a rational arithmetician than an enlightened geometer."

Let me hasten to say that the apparently controversial

tone of this preface springs from no polemical spirit. I

approach the task I have set myself with utmost modesty;
nay, oppressed by a sense almost of presumption in at-

tempting to clarify what so many have left confused. But
so sorely needed is a successful accomplishment of what I

* Catalogue Univ. of Texas, 1891-1892.
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attempt, that an honest effort needs no apology. I wish

also to explain that the present treatment takes its form

from the immediate practical aim in view
; viz., that of a

syllabus for a rapid review of such ground of arithmetic

and algebra as will best prepare for the study of what

goes in our curricula by the name of "
higher algebra,"

with special adaptation to the needs of that large portion
of my classes who are taking the course in order to qualify
as teachers in the public schools.

I write this Introduction, and dedicate the little work to

the teachers in the common schools, however, in the hope
of attaining a wider usefulness, in the way of awakening
in some Practical Mathematician a desire ""to make ra-

tional arithmeticians "
of the youths whose studies he is

directing. It is proper to explain still further that, work-

ing away from any great library, I have been compelled
to prepare this matter for printing without having time to

procure a few published works which I would like to see

before committing myself to publication.

I must not be understood as advancing anything new to

mathematicians, though I know of no English text-book

which consistently expounds and maintains the theories

of number and algebra here presented. The work is ad-

dressed, not to mathematicians, but to inquiring students

and teachers. A sound doctrine of number and its algebra

seems to be left by our text-books to chance inference, or

deferred to stages seldom reached in undergraduate courses

of study. A straightforward development, comprehensible

by beginners, of the number concept would be of immense

service in mathematical instruction.

For six years I have given my classes the substance of

this syllabus as the best explanation I could offer of dififi-
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culties which could not honestly be avoided. In July,

1894, I read in the current issue of the Monist an article

by Hermann Schubert, writing in Hamburg, on Monism in

Arithmetic, enunciating a unifying principle which he called

the Principle of No Exception, referring it originally to

Hankel. Of course some such principle is more or less

clearly in the mind of every student of mathematics, but

having never read Hankel's own statement, I cannot say

whether his Prlticlple of Permanence is substantially iden-

tical with the developing principle I set forth, or rather

in line with the notion of algebra as "the science which

treats of the combinations of arbitrary signs and symbols,

by means of defined, though arbitrary, laws,"*— the view

of the famous Dean of Ely, and the long line of algebraists

of whom he is the prototype. The bare statements of

such a principle from radically different standpoints might
be confusingly similar to one not fully alive to the fun-

damental variance. For example, in Schubert's statement

of his Principle of No Exception, I recognized what I

conceive to be a somewhat inadequate expression of the

postulate I had called the Principle of Continuity (I still

prefer this name as pointing with direct emphasis to its

cardinal outgrowth— the conception of number as continu-

ous), whereas in the next preceding issue of the same

journal he is at utter variance with me in declaring that,

"all numbers, excepting the results of counting, are and

remain mere symbols, nothing but artificial inventions of

mathematicians."

* Peacock's Report on the Recent Progress and Present State of cer-

tain branches of Analysis, in the British Association Report for 1833,

p. 195. Cf. also Peacock's Treatise on Algebra, 1830, republished and

enlarged in 1842.
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In the article above referred to, Schubert claims that in

his System of Arithmetic, Potsdam, 1885, he '' was the lirst

to work out the idea referred to fully and logically, and in a

form comprehensible for beginners ;

"
although it had been

previously expressed by Grassman, Hankel, E. Schroeder,

and Kronecker. Such is the bibliography of this special

presentation of the subject, so far as I am aware, not to

mention Dr. Halsted's Number, Discrete and Continuous,*

whose title promises a treatment of this subject, but which

remains a fragment, dealing only with discrete number —
what I have called Primary Number. Should I be able to

spur Dr. Halsted to a completion of this work I shall not

have written in vain.

Of course, Hankel's principle must be expounded in his

Theorie der complexen Zahlansysteme, Leipzig, 1867
;
but

I am yet ignorant of the specific publications of the other

authors named, except that in Zeller's jubilee work the

matter is referred to in an essay by Kronecker.

On the other hand, the theory here advocated must not

be deemed retrogressive, and referred to such writers as

Frend,t who, though he very philosophically maintains

that, since algebra has its origin and termination in arith-

metic, it cannot be considered independent, and fairly

enough regards algebra as " the science which teaches the
'

general properties and relations of numbers," yet ends by

practically throwing the greater part of the science of

number overboard, in rejecting all algebraic forms which

do not agree with his undeveloped concept of number.

My theme may be regarded as the underlying harmony

* Preface and four chapters (22 pp.) in Scientiae Baccalaureus, June,

1891.

t Algebra, 1796.
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of the great makers of analytical mathematics, — and my
purpose, as an attempt to present to beginners fundamental

theory commonly left for the speculations of the most

advanced.

Number is such a perfect and typical abstraction that

it is difiScult to see how a man who has, to use Newton's

phrase,
" in philosophical matters a competent faculty of

thinking," could ever associate the terms concrete and num-

ber ; nevertheless this confusion muddles many popular

text-books. The question hardly requires or admits of

argument. Since it is a vicious habit rather than an illogi-

cal deduction which is to be combated, good-tempered ridi-

cule is perhaps the only fit rejoinder. In this spirit may
I be permitted to relate an anecdote ? Some years ago at

the University of Virginia the Professor of Mathematics

assigned several problems to be worked upon the black-

boards by members of the Junior Class. To one he gave a

problem concerning the number of oranges in a pyramidal

pile of stated proportions. After expounding the error or

propriety of the solutions of some of the other problems,

the turn of the orange problem came. The student stood

proudly beside his mechanically correct solution. "
Well,

Mr. Blank," exclaimed the Professor,
" how many apples

did you find ?
" A look of consternation overspread the

youth's countenance. With a gesture of impatient annoy-

ance he swept the erasing brush over the figures his chalk

pencil had traced :
''
Oh," said he,

" I thought you said

oranges !
" In all seriousness, the text-books we have all

been abused by, expounding
" concrete numbers," solemnly

cautioning against confusion of multiplicand and multi-

plier, divisor and quotient, and unallowable combinations of

the terms of a numerical proportion, are quite as ridiculous
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as our hero of the oranges. He displayed at least one

virtue,
—

consistency. Such questions, however, though of

great practical importance to the efficiency of our elemen-

tary schools, present no real difficulties. A little knowledge
of psychology and mathematics will, if attention he called

to the question, correct mistaken, and develop inchoate

concepts of Primary I^umber. A far more difficult matter

remains— to attain for ourselves, and to lead our pupils to

attain, a rational concept of number as continuous, a con-

cept absolutely essential to modern mathematics, and now

universally assumed as a fact,
—

implicitly so assumed, even

when explicitly denied. It is also necessary to pass beyond
the great step already made by Newton, who discerns the

continuity of number, but leaves it only
''

triplex
"

:

" Est-

que (Humerus) triplex ; integer, fractus, et surdus : Integer

quem unitas metitur, Fractus quern unitatis pars submulti-

plex metitur, et Surdus cui unitas est incommensurabi-

lis
"

*, with the implied limits zero and infinity. Xewton

also recognized qualitative distinctions, positive and nega-

tive, but the consequent neomonic (so-called
"
imaginary ")

and complex numbers remain to be assimilated. I must

return, however, to notice a uniquely erroneous view of

primary number presented in the last issue of the Inter-

national Education Seriks, The T'sycliology of Number,

by James A. McLellan, A.M., LL.D., Principal of the On-

tario School of Pedagogy, Toronto, and John Dewey, Ph.D.,

Head Professor of Philosophy in the University of Chi-

cago, edited like all of the series by W. T. Harris, U. S.

Commissioner of Education.

The astounding thesis is maintained that number is not a

* Arithmetica universalis: quoted fi-oiu Halsted's Number, Discrete

and Continuous.
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magnitude, does not possess quantity at all, and that " no

number can be multiplied or divided into parts."
* The

authors vehemently assert that we might as well talk of

any absurdity
" as to talk of multiplying a number." f

It is much to be regretted that a Avork of such prestige

should merely shift the misconception of concreteness from

numbers to the subjects of calculation, which we are told

to believe are never numbers at all. Number is most em-

phatically shown to be "
purely abstract," | yet multipli-

cation is claimed to be only of concretes. It is nonsense,

we are told, to think of multiplying six by four
; you can

only multiply six inches, six oranges, by four. Of course,

that numbers are multiplied is a fact, a fact that psy-

chology may explain, but can in no wise question. After

repeatedly insisting upon
" the absurdity of multiplying

pure number or dividing it into parts," § the authors admit

without comment, and in seeming hesitation,
'•' of course,

in all mathematical calculations we ultimately operate with

pure symbols." ||
What are these "

pure symbols
"

? What
can they be in arithmetic but the pure numbers them-

selves ? It woiild be an error, shared by many algebraists,

to conceive algebra as lacking specific content— as operat-

ing with '''

pure symbols," whatever that may mean. The

chapter on the Psychical Nature of Nurnber is admirable,
and I gratefully invoke its corroboration of what will be

found in my syllabus on the subject; but that upon the

Origin of Number, though very acute in tracing the de-

pendence of measurement upon
"
adjustment of activity,"

seems to me mistaken in finding the origin of number in

* Psychology of Number, p. 70. § Ih., p. 71, foot-uote.

t lb., p. 70.
II lb., p. 71.

X lb., p. 69.
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measurement. Measurement is not the source of the con-

cept of number, but a stimulation to clarify and develop
the concept; and this is what the facts cited really show.

The primary concept of number, as so correctly defined

in the preceding chapter, is prerequisite to any attempt at

measurement. The savage referred to needs the concept

that the length of his arrow is some number of hand-

breadths before he can attempt to discover how many.
And long before this he has learned to recognize a small

group of objects as a "vague whole," and to "discriminate

the distinct individuals," i.e., in the very terms employed
to define number, the concept originated before any meas-

urement became possible. Nor, in truth, does number ori-

ginate in counting, as so commonly asserted; and for a

like reason, viz., the concept of some number must pre-

cede any device for naming or anywise specializing it.

The position that number has its origin in measurement

cannot seek strength from the procession toward the ab-

solute of Hegel's ascending categories, quality, quantity

(including number, as "
quantum in its complete spe-

cialization "), measure {das Maass), essence
;

* for Hegel's

Maass, i.e.,
"
qualitative quantity or measure," f is a very

different matter from Dr. Dewey's measurement, in fact,

it seems very nearly the same as number according to the

growing insight of modern mathematics.

Having mentioned Hegel, it is proper to remark that we

are just now being reminded on every side— Helmholtz

not long ago admonished us — that students of science are

frequently driven by the very logic of their subjects into

* The Logic of Hegel, translation, Wallace, p. 192 ("quantum, i.e.,

limited quantity," p. 190).

t lb., p. 200.

WV -^-T -f

•;_ii-^ri.-<'_^-'
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the regions of philosophy. A vital service will be rendered

any serious student, should he be led to consider, either at

first or at second hand, the aperqus of Hegel and the power

of his method. Without doubt, Hegel has pointed out the

true way of logic, if he did not always follow that path.

His system is far from fully elaborated
;
much is tentative,

doubtless much mistaken
;
but the fundamental business of

logic (in the Hegelian sense) must remain as he appointed

it, a criticism of the very terms of scientific and ordinary

thought ;
nor is a better method than his dialectic likely

to be discovered. Dr. Harris (who
—

inice
— writes better

than he edits) has done our nation substantial service in

his HegeVs Logic, by condensing, elucidating, and compara-

tively popularizing a work of prime importance in the prog-

ress of human thought. If any reader has perused even

the preface of this book, I beg him to recall the suggestive

and tonic way in which Dr. Harris recounts his gradual

and successive attainment of various ''insights" in mat-

ters philosophical, and to find encouragement therefrom

should he stumble at the development of the concept of

primary number which mathematics imperatively demands.

D'Alembert's advice to beginners in the differential calcu-

lus was " allez en avant et la foi vous viendra."

It remains only to say that in this attempt to elucidate

a unifying principle of number, and to display the nature

of any algebra, I have kept in mind the capacity of ''fresh-

man "
students, and have avoided all reference to ultimate

categories, psychological or ontological.

I am well aware that there are other avenues of approach

to the thesis here maintained,— that " various new mathe-

matical conceptions have been employed by Weierstrass,

G. Cantor, and Dedekind in establishing three independent
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and equally cogent theories which, should prove the conti-

nuity of number icithout horroiving it from space,'"
* to say

nothing of such theories (e.g.,
Fine's Number-System) as

are '•' content to get continuity from the line." f Something

tangible for beguaners is a great desideratum. My aim is

practical, and it may be claimed that even if difficulties

have not been surmounted, or obscurities illuminated, they

have at least been reduced to one clear-cut postulate. The

student may take stock of his knowledge, and rationally

prosecute his studies, even though he consider a gratuitous

assumption left in the rear
;

" la foi viendra."

To such as may condemn the occasional analogical sug-

gestions, and references to general philosophy in this

treatise, as unbecoming the proprieties of the severest of

the sciences, I would beg to reply that the style of an

attempt to explain how mathematics came to be, and what

it is, of an effort to lead those who sit in darkness to form

the concepts with which mathematics deals, ought not to

be judged by the standards of the severe and self-contained

procedure of the full-fledged science. My subject soon

enters, but begins outside of mathematics
;
nor is it ped-

antry to be philosophical in explaining the fundamental

concepts of any science. It would be impertinent to be

anything else,

I would also deprecate any charge of presumption on

account of several innovations in terminology. I am fully

aware that reformation must come, if at all, from powerful

leaders
;
but it seemed appropriate in a work of pedagogi-

* Number, Discrete and Continuous, George Brace Halsted, Preface.

The italics are mine. So far as I know no one of these demonstrations

has appeared in English.

t /i.
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cal intent to point out certain misnomers, and even to

"practice what I preach." No confusion can arise from

using neomonic and protomonic for '•'

imaginary
" and " real

"

etc.
;
and those who deem the current terms consecrated

by the usage of the great geometers who have made the

science, may ignore the suggestions.

My practical aim must explain the apparently arbitrary
intrusion of detail, especially in the final chapter. In this

final chapter, it should be said, I have drawn freely from
Professor Chrystal's Text Book of Algebra, Adam and
Charles Black, Edinburgh, 1886. Such points only are

touched upon as have been shown by experience to bear

directly on the preparation proper to our freshman course
in algebra. Especially in freedom of arrangement and

allusion, some familiarity with the subject-matter is pre-

supposed; but the knowledge assumed need be neither

great nor accurate in order to comprehend what is presented.
The vague acquaintance with terms and processes possessed

by the ordinary high-school graduate has sometimes war-

ranted the projection of a particular discussion beyond the

parallel development of cognate topics in a way which would
not be admissible in teaching children. My classes stand

upon a vantage ground whence it is permitted to look both

forward and backward, and so at last to command a really

comprehensive view. A teacher should never forget, how-

ever, that at every stage there should be an index pointing

upward. Any period of schooling which lacks this incen-

tive must be a barren tract in the experience of the pupil
who has traversed its dull course.

I have thus here, as always, striven to avoid what may
be deemed the most insidious and mischievous of all mis-

takes in teaching and textbook-making, — such a stooping
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to the fancied incapacities of pupils as requires the ob-

scuration of pure thought, the blurring and distortion of

truth by substituted analogies and illustrations. Half-

truths are dangerous. Pupils nurtured on such philosoph-

ical pap too often take up the role of teachers without

deepened insight, and the spawn of error procreates with

the fecundity so characteristic of parasites. This mis-

take of shutting up all vistas into regions not presently
under exploration stultifies the learner, and necessitates

a weary process of unlearning at each stadium. It is in

the intellectual sphere the analogon of that contemptible

principle of school government which, in the sphere of

morals, appeals to timidity or vanity, and depends on

espionage, basely ignorant that '^ the human character is

susceptible of other incitements to correct conduct more

worthy of employ and of better effect." *

In conclusion, the difficulties, practical and theoretical,

of the central problem in this little work entitle it to

be judged with leniency. It is submitted to my classes

and to fellow-teachers for such uses as it may deserve.

ARTHUR LEFEVRE.
University of Texas, January, 1896.

* Thomas Jefferson, quoted in " The University and the Common-
wealth," an address by Professor Thornton of the University of Virginia,
delivered in the University of Texas on Commencement Day, 1894.





SYLLABUS.

NUMBER AND ITS ALGEBRA.

I. Primary Number.

1. Whole, Litegral, Natural, Exact, are all terms in

vogue to designate the primary concept of number. The

former two are equivalent, and objectionable as equally

applicable to positive and negative numbers. They thus

fail of exact designation. Though they would hardly be

chosen de novo, they may be retained in that one of their

present uses which is really proper, viz., to designate Pri-

mary Numbers, and their negatives after the distinction of

positive and negative has been clearly made. Each of the

latter two is repugnant to any concept of number adequate

to the comprehension of mathematical sciences. No num-

ber must be conceived as either unnatural or inexact. The

ratio of absolutely incommensurable sects, the diagonal of

a square and its side, for instance, is just as exactly what

it is as the ratio of an inch to a foot. By the term primary
number no question is begged, and the very name points to

the development so soon found necessary.

2. Primary Number, a normal and universal creation of

the human mind, applies originally only to artificial wholes,

discrete aggregates. The group whence " twelve "
is ab-

19



20 NUIMBER AND ITS ALGEBRA.

stracted must be conceived as a Avhole before discriminated

into " twelve." Number is in nowise a sense-perception ;

it is purely the product of a rational process. Because the

adult finds a number concept in his mind when a group of

objects is attended to, he must by no means suppose any
such concept in the mind of a child, though the same objects
be attended to. The objects may not even be a groiqj at

all to the child. Adults forget how gradually any idea

developed in their minds. Neither is the concept one

necessarily in the mind of a child when a single object
is attended to. The mind of the child is inclined to be

absorbed in sense facts. The concept one is only in con-

trast to the concept many. It is not my purpose to inves-

tigate the origin and psychological processes of these

concepts, one and many ; nor how it comes to pass that

the infant mind slowly tends to group, aggregate, make
wholes of, distinct individual objects of sense-perception.
It is enough to point out that from these concepts the

primary concept of number springs. Various manys are

specialized, and so distinct numbers arise in the mind.

We will not enter upon the question of infant psychology

concerning the stages at which the manys are specialized
into ''two," "three," etc. It may be remarked, however,
that the special many " two "

is recognized very early and

long before " three." The concepts one, many, two, come
almost together ;

and then after a long gap further special-

izations are attained— another distinct gap perhaps coming
after fo^ir.

3. Definition-.— Primary Number is an abstraction

from a group of objects which represents their individual

existence.

4. Each number-picture of a group is wholly abstract,
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in that it represents the individual existence of the ele-

ments of the group and nothing more. For use in pictur-

ing special manys a system of abstract elements is framed,

where no characteristic of any element is retained beyond
its simple separateness from all others.* This brings us to

Counting.

II. Counting.

5. The fundamental concept of primary numbers is

prior to, prerequisite for, not derived from,
<'
Counting."

The word is used in two senses, though its general syno-

nyms, numeration and enumeration, seem sometimes par-

ticularly assigned to the first meaning. In the first sense.

Counting is the naming of primary numbers. This nam-

ing, if carried to any great extent, must of necessity be

methodical, and of course the numbers must be conceived

before named. In the second sense, Counting is essentially

the numerical identification, by a one-to-one correspond-

ence, of an unfamiliar with a familiar group. In this

meaning. Counting consists in assigning to each individual

in a group one distinct individual in a familiar fixed series

of different things— originally the fingers, usually a fixed

series of different words, or different marks.

6. We must pass by many interesting facts and theories

concerning word-numerals (i.e.,
fixed series of different

Avords used for counting) as belonging to the domain of

language, only remarking that etymology confirms what

might have been surmised, that the fingers were the origi-

nal series of things which mankind made use of to apply

in thought to a group of objects in order to count them.

* Vide, Number, Discrete and Continuous, Halsted, cliap. i.
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7. lu all systems of numeration or counting (in the first

of the senses defined in Section 5
)

it soon becomes neces-

sary, from the very limitations of human memory, to form

or mark off a numerical group which the reckoner can peri-

odically repeat. Otherwise there would be no end to the

number of different words required. The number-group

chosen by a majority of races at a pre-historic time, and

for the reason that we possess ten fingers, is ten. As soon

as any such group has been chosen, it becomes easy to

express by a few number-names any number within the

mental scope of the speakers.

For instance, in English with fifteen words (two of

which are disfiguringly superfluous) and two significant

suffixes, i.e., with seventeen words, any number whatever

may be expressed.

8. The student should write out a detailed explanation

and criticism of the English series of word-numerals, not-

ing the superfluous words, also such as are not internally

suggestive of their relation to the fundamental group, and

^hat larger groups lack the simple name that would be

suggested by symmetry. Let him then compare the Eng-

lish series with that of some other language, noting where

the English is better, and where worse, than the other.

All this totally irrespective of any system of notation, and

purely as a question of thought and language.

According to the best practice the last of the larger

groups to receive a simple name for repetition is the mil-

lion. Charles W. Merrifield, F.E.S., observes,
" It is worth

while to remark that as regards billions there is a differ-

ence between the French and English practice ;
in French

a hillion (or milliard) is one thousand millions, in English

a billion is a million millions, . . . the word is seldom used
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in our language. . . . The old books use a scale of this

kind: A million of millions is a billion, a million of

billions is a trillion, and so forth; but these names are

never used in practice, and can hardly be said to belong
to the language of arithmetic or to English speech.''

* In

the late vulgar use of the Avord in American newspapers,

billion, of course, signifies one thousand millions
;
for it is

a comment upon the vastness of such numbers that even

the Fifty-first Congress could not expend the thousandth

part of a billion dollars in the sense of one million

millions.

9. By the method just discussed a distinct name is

given to each element in the series of counters; and in

counting the elements, the units, the ones in any discrete

magnitude or manifoldness, a one-to-one application is made
to this series of names in a fixed order. The order being
learned by rote, any word-numeral, by suggesting its defi-

nite place in the fixed series of words, recalls all those

gone before
;
and from this comparison the mind conveys

or receives an exact notion of the number of individuals

in the group of objects numerically characterized by any
such number-name.

10. These number-names are sometimes called cardinal

numbers, to distinguish them from a series called ordinal

numbers. Ordinals have little to do with arithmetic, the

distinction belonging to grammar : instead of saying the

last-counted one of five objects, we may say the fifth, etc.

These concepts, first, second, third, fourth, etc., are the
" ordinal numbers."

* Arithmetic and Mensuration, p. 4, Longmans, Green, & Co., 1882.
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III. Primary Number. — Some Fundamental Theory.

11. The number of objects in one group is said to be

equal to the number in another when their units being
counted (vide § 5) come to the same finger, the same nu-

meral-word or mark. That is to say, two primary numbers

each equal to a third are equal. Also, of two such num-

bers one is always less than, equal to, or greater than,

the other, according as in a one-to-one application to the

counter-series the process ends with a prior, the same,
or a subsequent, element. Also a primary number may be

added to itself so as to double. (Cf.% 229.) I am not

concerned whether these dicta be regarded as axioms or as

postulates.

Primary number is thus at once classed as a magnitude.

(Indeed it may be that the method of Hegel's dialectic

of the mathematical catgeories would display magnitude
and number as essentially the same

;
that is, as co-ordinate

transitions to the same ultimate. At least, any object
—

as a line, a surface, a solid, a time, a temperature — is a

TYiagnitude or manifoldness only as number, in the final

concept thereof, can be abstracted.)
12. There is much of prime import to be said of meas-

urement {vide Chapter XIII.), but it may be remarked in

this connection that the concept of measurement develops

pari passu with that of number. To the man whose con-

cept of number is only what has been defined as primary
number, measurement is hardly to be distinguished from

counting. Por measurement of discrete magnitude is

counting ;
and to the intelligence supposed there is no real

measurement of continuous magnitude, but any continuous

magnitude is "measured" by violently discreting it, and
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counting the units contained, the residue being regarded as

merely a fractional redundancy. In short, he measures in

what are popularly called " round numbers." True meas-

urement of continuous magnitude is conceivable only under

the developed concept of number which includes ratios.

13. Theorem. — Primary Number is independent of the

order of counting.

This fact is discerned immediately from the individuality
of the objects in the group. Since in counting the cor-

respondence is one-to-one, the same extent of the counter-

series is always necessary and sufficient to correspondence
with any group of objects in whatever order they be applied
to the counters.

The obviousness of this truth must not blind to its

importance ; for, as Clifford affirms,
"
upon this fact the

whole of the science of number is based." *

IV. Notation.

14. Notation is primarily the representation of primary
numbers by written symbols ;

but in the developed science

of arithmetic it must include the symbolic representation

of ways of combining numbers, and qualitative distinc-

tions, which arise upon investigation. Notation in the

primary sense is intimately blended with numeration, for

it is merely the recording of the results of counting. It

is of vast importance, however, and a good invention for

the purpose could have been no easy task
;
because cen-

turies on centuries passed after a symmetrical system of

numeration had been developed in thought and language

* Common Sense of the Exact Sciences, W. K. Clifford, chap. i.
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before a thoroughly fitting notation was achieved. Whether
the beautifully simple and perfect algorithm now so famil-

iar to little children was perfected at a single stroke of

genius on the part of a nameless Hindoo, or was a grad-

ually consummated invention, history does not reveal.

15. Just as we passed over the etymology of numeral

words, we must pretermit interesting facts and surmises as

to how each written sign came to have its particular mean-

ing in the various series of signs which mankind has in

times past employed or still uses. Such signs for number

are older than any other form of writing, older even than

the development of language in the denary system. For

an entertaining monograph on this subject, consult Profes-

sor Eobertson Smith's article on " Numerals " in the ninth

edition of the Encycloprndla Britminica, from which much
of the following section has been taken.

16. The simplest representation of unity is a single

stroke. The next step would be to devise a sign to repre-

sent a definite group of strokes, as it would be confusing

to repeat single strokes too often. Soon a sign for a defi-

nite group of the primary groups would be required. The

Babylonian inscriptions well exemplify this simplest mode

of notation. The mark for unity, a vertical arrow-head, is

repeated up to ten, whose symbol is a barbed sign pointing

to the left. These by mere repetition serve to express

primary numbers up to one hundred, for which a new sign

was employed.
The most important principle of meaning-signified-by-

position appears in this system. Though the symbol of

the smaller number put to the right of the hundred symbol

represented addition, the same symbol to the left repre-

sented a multiplier. This principle was still more signifi-
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cant in another system developed by the Babylonians.

Strange to say, they oftened reckoned by powers of sixty,

calling sixty a soss, and sixty times sixty a sar. Survivals

of this sexigesimal method remain in our divisions of time,

angles, and the circle. For example, the square of 59 is

found recorded (translating into our symbols) 58.1, that is,

58 soss and one (58 X 60 -(- 1) ;
but on the same tablets the

cube of 30 is recorded 7.30, that is, 7 sai^ and 30 soss. We
thus see that because they had devised no sign for zero, it

could only be left to the judgment of the reader whether

sixty or its square was intended.

After alphabets became established in a fixed order, they

began to lend themselves to numerical notation. In the

old Greek notation, said to go back to the time of Solon,

and often called the Herodian system, after Herodian who
described it in a work written about 200 a.d., 1 stood for

one, n
(-TrivTe)

for five, A (Se'/ca)
for ten, H (e/carov) for hun-

dred, X (xlXlol) for thousand, M (/xupt'ot)
for ten thousand.

As an artifice of condensation a great 11 enclosing any sym-
bol signified five times the number represented within.

Another application of alphabets is more to my purpose.

In this system (common to Greeks, Syrians, and Hebrews
— in Greece displacing the Herodian), the first nine letters

stood for units, the second nine for tens, the third nine for

hundreds, and diacritic marks below the first nine trans-

formed them into thousands. A great M multiplied the

number after whose sign it was written by ten thousand.

The notation was subsequently improved by writing the

greater element always to the left, thus disjieyising with the

diacritic marks. The regular alphabet furnishing only

twenty-four letters, the necessary twenty-seven were made

up by calling in two old letters no longer used in phonetic
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writing, to signify six ancV ninety, and a final symbol called

samjn represented nine hundred. Approaches still nearer

to our algorithm were devised by Greek mathematicians,

notably Archimedes and ApoUonius of Perga; but in all

the lack of the zero rendered the systems very imperfectly

adapted to calculation, however perspicuous as a record.

Only one more system can be glanced at before survey-

ing our own. This, known as the Roman, we are still

familiar with. It more resembles the clumsy Herodian

than the later Greek notation. The symbols were, 1 = 1,

V = 5, X = 10, L = 50, C = 100, D = 500, M = 1,000.

Some older forms were afterwards discarded. To the ex-

tent of a few subtractive forms (IV = 4, IX = 9, XL = 40,

XC = 90, and occasionally IIX = 8, XXC = 80) some mean-

ing is attached to position, but in a way rather to hinder

calculation.

In a mechanical contrivance, used in Europe from a very

early date, was attained the nearest approach to our own

system. The abacus (which could be ruled on waxen tab-

lets or roughly drawn on the ground), in a permanent form,
consisted of a frame in which by one means or another sets

of counters were kept in separate rows or columns. These

columns might represent various denominations of money
value, or weight, or units, tens, hundreds, thousands, etc.

In the latter case there should be only nine counters in a

column. From such an abacus there are but two steps to

our notation: first, to establish marks to represent respec-

tively one, two, ... or nine counters in any column
;

sec-

ond, to conceive a sign for a vacant column. The inven-

tion of our nine digits and zero came slowly. The history
is very obscure. Our " Arabic "

system is of Indian origin,

but appears to have been introduced into Europe by the
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Arabs. It has been traced as far back as the fifth century
of the Christian era in India, but does not seem then to

have been a novelty. Hindoo writers nowhere lay claim to

its invention. It was probably brought to Baghdad in the

eighth century. In the ninth century Abu Jafar Moham-
med al-Ivharismi published a work on the subject, and by
the tenth it had spread into general use throughout the

Arabian world. About the twelfth century it began to be

received by Christian Europe. Arithmetic using this sys-

tem was called by the barbarous name AJgoritmus (our

algorithm), probably a derivation from al-Kharizmi. Leo-

nardo of Pisa promulgated the matter in the West, and

Maximus Planudes in the East. The word zero is perhaps
derived from the Arabic sifr, through zepliyro, used by
Leonardo. The algoritmus was at first used chiefly in

astronoDiical tables, etc. (e.g., those published about 1252

by Alfonso the Wise). Gradually the immense superior-

ity of the system above all others became apparent, and it

has long been used by all civilized nations. In winning its

way there was some confusion with prevailing notations :

e.g., such forms as X2 = 12 and 504 = 54 are found, where

the very essence of the method is lost sight of.

17. Our notation exactly conforms to our system of nu-

meration. The symmetr}" or regularity of the notation, how-

ever, is perfect. No such anomaly as is found in the word
" eleven " or " twelve "

is tolerated.

The familiar symbols always mean one, two, ... or

nine
;
but they signify units, tens, ten-tens, ten ten-tens,

etc., according to their position in the first, second, third,

fourth, etc., place, counting from right to left. That is to

say, they represent in definite positions corresponding

powers of ten.
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Under the generalization of "
powers

" the notation at

once lends itself to the expression of fractions, the expo-

nents becoming negative. For example, 4072.605 means—

(10)3 -^ 4 ^ (10)2 X + (10)^ X 7 + (10)° X 2 + (10)-^

X 6 + (10)-- X + (10)-^ X 5.

It is in this regular use of a base-number that the merit

of the system consists, and by no means in the choice of

the base ten. Our decimal system is a perfect instrument,

exciting the grateful admiration of every enlightened stu-

dent of science, not because it is decimal, but because the

digit figures by means of the zero always express, in their

orderly position, to left or right of a point, ascending ot

descending powers of one basal number.

In regard to the particular base, ten, it may be remarked

that, while it were idle to think of changing the confirmed

habits of language, it is clear that ten is an inconvenient

base. Twelve would be better. To see this, it is enough
to express decimally and duodecimally a few simple frac-

tions. '

,
t
'"'

Decimally 1/3 = 0.3333333 . . . Duodecimally 1/3 = 0.4

1/4 = 0.25 1/4 = 0.3

1/6 = 0.1666666 ... 1/6 = 0.2

1/8 = 0.125 1/8 = 0.16

1/9 = 0.1111111 ... 1/9 = 0.14

18. A thoughtful consideration of our notation will

enable the student to adapt its essential principles to any
base. So long as he feels hesitation in doing this, he

may be sure he does 7wt understand what he has deemed
so familiar.
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It is obvious that a number is the same, whether ex-

pressed in tens, or dozens, or scores,
— to take, for example,

two numbers, other than ten, familiar as bases to English

minds, but which have never been developed into symmet-
rical systems of counting.

Plainly the number of digit figures required is one less

than the base
;
since 10 must represent the base, whatever

it may be.

19. The student should express various numbers, inte-

gral and fractional, on various bases, employing, say, the

letters of the English alphabet in order, for additional

digit figures when more than nine are required. He
should also perform additions, subtractions, multiplica-

tions, divisions, with numbers so expressed.

There is no other way to test or gain a thorough com-

prehension of the notation so glibly used. Such an exer-

cise will remedy many defects, and will be found to repay

amply the slight cost in time and labor. ( Vide § 277 et seq.)

V. Algebra.

20. An algebra is an artificial language. Its symbols
have laws of combination

;
but these laws are the expres-

sion of actual properties and relations of the subject-matter,

not laws of the algebra in any immediate sense. There is

no such thing as an algebraic law
;

there are only alge-

braic conventions. The peculiar advantage of an algebra

is that actual relations are given manifestations which can

be experimented upon, according to organized processes, to

give new knowledge. The first algebra was slowly formed

through centuries to investigate the properties of number.*

* Vide Halsted's Number, Discrete and Continuous, § 1.



32 NUMBER AND ITS ALGEBRA.

21. Algebras of formal logic, of physics, of geometry,

have been developed to more or less usefulness. In these

the subject-matters immediately discoursed of are respec-

tively logical, physical, geometrical entities and their rela-

tions and combinations
; just as the algebra with which

we have to do discourses of number and its relations and

combinations. The specific entities, relations, and combi-

nations in any case require definition, and yield laws upon
their own merits.

22. A geometrical algebra must be clearly distinguished

from that supremely powerful and distinctively modern

branch of analysis (from whose establishment by Des-

cartes, 1637, dates the modern, the scientific era) commonly
called Analytical Geometry. In this discipline the alge-

bra is still of number, the immediate subject of discourse

is ever number
;

but under systematic conventions the

algebra talks in numbers about geometry, just as it might

be made to talk about money or temperatures. In a true

and proper algebra of geometry, a and b might represent

sects,* and ab be defined as the definite plane surface

known as the rectangle of a and b. In this case there

could be no ratio between ab and a. Also a^ would mean

the actual surface, the square on a
; a^, the actual solid,

the cube on a
;
and a^, etc., would be devoid of meaning in

tri-dimensional space.

23. However mechanically we may at times use the

symbols, it cannot be too much emphasized that in the

algebra of number each expression must be a rational dis-

course upon number to any mind, or to that mind it is

nonsense, or rather a blank, like a sentence in an unknown

* Definite pieces of straight lines.
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tongue. Clifford maintains,
" We may always depend upon

it, that algebra which cannot be translated into good Eng-

lish and sound common sense, is bad algebra."
*

24. Although of immense utility, the algebra of number

must not be conceived as theoretically necessary to the

investigations it has so signally served. The instrument

has been practically prerequisite to the results that have

been attained on account of the limitations of mankind's

power of attention to complex details without symbolic

expression, but its essentially derivative nature must not

be lost sight of. Under any concept subversive of this

relation— the fallacy being even more baneful Avhen im-

plied than when explicit
— the study of an algebra be-

comes abusive of the noblest qualities of mind
;
and no

irrational skill in the use of the tool can compensate for

the intellectual debasement which is the price of content-

ment in its use and study upon such terms. It is as if

one conceived the vocabulary of a spoken language as

independent of the constructive thought ;
back of any

mode of symbolic expression must lie the substantial

thought.

To understand our algebra of number, we must under-

stand number. However difficult the task, it cannot hon-

estly be shirked.

25. Many eminent mathematicians, to say nothing of

popular text-books, persist in seeking explanation of the

algebra of number in the facts of geometry. They seem

blind to the view that it is only adaptations of number

that they thus discover; that it is numbers, not lines,

surfaces, solids, that they deal Avith, even when they so

* Common Sense of the Exact Sciences, p. 21.
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usefully make the algebra of number "talk geometry."*
The individual symbol in trigonometry or analytical geom-

etry, for examjjle, never means the geometrical concept.
An equation may under a proper system of interpretation

describe a line
;
but no x or y in it ever means a line,

but the length of a line, which is a ratio, a number.

Would it be less sophisticated to try to discover the nature

and properties of number by studying temperatures, be-

cause, forsooth, an algebraic equation may under appro-

priate conditions talk temperatures as well as geometry ?

The confusion arising from such misconceptions is well

exemplified in the following quotation from an essay by
E. W. Hyde in the American Journal of Mathematics for

September, 1883, p. 3 :
—

'<

If, in the equation 1/1 = 1x1, 1 be taken as a unit

of length, then the meinbers of the equation have evi-

dently not the same meaning, 1/1 being merely a numeri-

cal quantity, while 1x1 is a uuit of area
;

it being a

fundamental geometric conception that the product of a

length by a length is an area, that of a length by an area

a volume, while the ratio of two quantities of the same

order as that of a length to a length is a mere number
of the order zero."

So far from just are these observations that one would

suppose it clear to any student of the subject that the

physical fact is the line, the surface, the solid, and that

the length, the area, the volume, are numbers, viz., the

ratios of the line, surface, and solid respectively to other

magnitudes of like kind chosen arbitrarily as units. It is

a theorem which we have established geometrically, that

* A felicitous i)hrase of Dr. Halsted's.
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the ratio of the rectangle of two sects to the square on

any third sect equals the product of the ratios of the two

given sects to the third sect. That is to say, the area of

a rectangle equals the product of the lengths of two adja-

cent sides, it being distinctly understood that the unit-

surface is the square on the unit-line. This truth having

been established, consistent numerical statements may be

referred to such spatial entities. It is only and always in

some such Avay that the algebra of number '' talks ge-

ometry."

26. Objections to the mistake of explaining number geo-

metrically are often made at a fatally late stage. There

are writers who protest against geometric definitions of

the so-called imaginary numbers after having supinely

ignored a geometric, or some unnumerical, definition of —1.

Their alertness comes too late when they refuse a like

definition of V— 1. In this, as in many other cases, it

is the first principles that have been neglected. It is

futile to begin inquiry with V — 1. AYith beclouded

concepts of prior phases of number, how can it be any-

thing but vain to attempt to be critical at the final stage

of that development of number which has forced itself

alike upon the most practical and the most theoretical ?

{Cf. § 192.)

27. Concerning other extant or possible algebras than

that of number, I Avill only add that I have grave doubts

of the propriety of Professor Macfarlane's aspirations

towards a final and comprehensive algebra,*
'' which will

apply directly to physical quantities, will include and unify

* "Principles of the Algebra of Physics," by A. Macfarlane, M.A.,

D.Sc, LL.D., in Proceedings of the American Association for the Ad-

vancement of Science, vol. xl., 18U1, p. (i5. The italics are mine.
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the several branches of analysis, and when specialized will

become ordinary algebra." Far from being the "
special-

ized" form, the algebra of number appears to me to be

the very generalization sought by Dr. ]\Iacfarlane
;
and it

is algebras of physics, vector algebras, etc., which are the

specializations. Number itself in its full development

appears to my mind the very ultimate common property
of all quantity, magnitude, manifoldness (^vlde § 229) what-

soever. Search for further generalization seems mistaken.

I set forth this opinion tentatively and in all modesty,

fully recognizing Dr. Macfarlane's profound learning and

skill in mathematics.

Negative, neomonic, and complex numbers afford the

qualitative distinctions under Avhich, it seems, the algebra

of number might be made to talk physics and geometry
to our full satisfaction. Should it be found inadequate to

the needs of the physicist, of course, a true and proper

algebra of physics may be fashioned. The physicists

must decide this question. Might not better results, how-

ever, be attained by seeking perfectly satisfactory means

for interpreting, physically or geometrically, numerical

statements, the algebra for which is ready to hand, than

by attempting to construct any real algebra of physics to

"apply directly to physical quantities
"

?

I may invoke here the authority of no less a physicist

than James Clerk Maxwell. After pointing out the con-

tradictions which would otherwise occur in calculation,

he says :
" We shall therefore consider all the symbols

as mere numerical quantities, and therefore subject to

all the operations of arithmetic. But in the original

equations and the final equations in which every term

has to be interpreted in a physical sense, we must con-
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vert every numerical expression into a concrete quantity

b}' multiplying it by the unit of that kind of quantity.''

28. If ^ye will regard the algebra of number from the

standpoint of recognition of its true nature, we may take

up its natural use without more ado, (Vide § 156.) There

is nothing mysterious about the algebraic vocabulary, or

even recondite in the algebra, liutil we reach more ad-

vanced investigations concerning algebraic form. The

original obscurities and difficulties are in the arithmetic
;

that is, in the theory and import of number itself. For

the most j^art I shall consider what is algebraical already

familiar, and bend all energy to expounding the numerical

content, as distinguished from the algebraic form. (But
see § 236.)

VI. CALCUIiATIOX.

29. Calculation, or computation, is primarily counting.

As its methods gradually become organized, it involves a

thorough investigation of the laws of thought, which, upon
consideration by any normal mind, will be seen to govern
the various possible combinations of numbers and the

processes of these combinations.

30. In solving particular problems, whether concerning
numbers or the application of numbers to concrete magni-

tudes, it is to be borne constantly in mind that all that

can be tauglit in general terms is how to conceive and

perform numerical operations ; that, knowing this, all that

remains is to understand the terms of a particular problem
and the properties, real or conventional, of these terms,

under which they yield numerical relations
;
and that until

one recognizes this fact he cannot take the first rational

step.
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Although it is proper and necessary in teaching to make
constant applications of pure or theoretical arithmetic,

yet the way in which these applications are presented
in ordinary text-books is grossly misleading. There is

no arithmetical distinction whatever between such topics

as "
percentage,"

"
interest,"

"
discount,"

"
commission,"

'•'

brokerage,"
"
partial payments," etc.

; yet from flaring

chapter-headings the distinctions appear co-ordinate with

those between numeration, numerical operations, and gen-

eral devices, such as methods for finding the greatest com-

mon submultiple, or the least common multiple. No new
arithmetical lore is required in order to calculate about

these mercantile transactions
;

the task for the pupil is

merely to comprehend a few technical terms, and the

numerical relations subsisting, or in practice assumed to

subsist, among them. Nevertheless, it is a common result

of the misconceived method of presentation that a pupil

fancies he is advancing to a new development of the arith-

metic when he passes from ''commission" to "brokerage,"
for instance, as if there were the faintest arithmetical dis-

tinction between calculating a percentage on the value of a

barrel of apples and the value of a block of capital stock.

In like manner, pupils often make pathetic attempts to

excogitate the conventional method of calculating a bal-

ance due on an account Avith partial payments, being

blinded by incompetent teaching to the fact that the data

do not afford numerical relations sufficient to a definite

theoretical solution. In this matter (as in many others

in Applied Arithmetic), arbitrary convention is neces-

sary to a solution
;
the " rule "

varies with the practice

of individuals, enactments of legislatures, and rulings of

courts of law and equity. No act of pope or parliament
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could affect the proper decision of any truly arithmetical

question. Of course there is more or less numerical pro-

priety in the substantial justice between man and man
which is sought in each of the various rules for calculating

a balance after partial payments, but there are questions

involved whose decision is not afforded by inherent numer-

ical relations of the facts.

31. In teaching, it is supremely helpful always to empha-
size the difference between Pure Arithmetic and Applied
Arithmetic. The pupil's knowledge is surely in confusion

unless he sees the fundamental difference between, for ex-

ample, studying how to find a least common multiple (a

matter of insight), and a broker's commission (a matter of

empiric information so far as it is anything new when met

in a systematic course). Applied Arithmetic should be

presented in text-books as merely selected specimens of

many other practical applications which could be made,
and as problems, not as new arithmetical topics. The

necessary information should be set forth in an entirely

different tone from that in which arithmetical matters

proper are expounded. The particular applications usually
made are sufficiently well chosen; viz., calculations concern-

ing lines, surfaces, solids, times, weights, temperatures, and

money values, Avith special reference to the transactions of

mercantile and banking business.

But no candid criticism, even the most cursory, could

avoid complaint on account of the usual results of teaching

the metric system of units. Text-books are at fault here,

rather negatively than positively ; though some are found

to write ImSdmScm, when the system was devised ex-

pressly to avoid this— it is as if one should write 1 dollar,

3 dimes, 8 cents. They might be expected, however, to
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put tlie matter in a]i appreciative and tonic way, instead of

leaving the discovery of its perfections to the chance alert-

ness of the pupil. Eor, because a matter is perfectly clear

and simple, it does not follow that it will be so esteemed.

The case in question demonstrates this paradox. The

metric system of units was invented for its perfect simpli-'

city ; yet, pitiful to say, it remains a bugbear to the average

teacher and pupil in the common schools. Nothing could

be more blind and irrational— it is exactly as if an Eng-
lishman could not be made to see that decimal money units

are simpler for all calculation than pounds, shillings, and

pence. Any student may be sure that, unless he regards

the metric system as perfectly clear, and vastly easier than

our barbarous English units, he has entirely failed to un-

derstand it— nor could one fail to appreciate it who really

understood anything of arithmetic. Its essential merit is

twofold : it is decimal, and therefore fits our numerical

notation
;

its units for lines, surfaces, solids, masses, and

weights are all symmetrically dependent on one unit, the

linear.

The advantages of the second property ought to be as

manifest as those of the first
;
but I Avill briefly illustrate.

If the volume of some homogeneous material is given as

2.76 cu. m. and its sp. gr. 3.5, the weight may be found

by multiplying the numbers : 2.76 X 3.5 = 9.66 tonneaux,

or, pointing oif to reduce to kilograms, 9660 kg.

Now, in comparison let the student calculate the weight,

given volume 2 cu. yd., 7 cu. ft., 6 cu. in., and sp. gr. 3.5.

In the first place, exact calculation is impossible in the

English units
;
for the pound and the weight of a cu. yd. of

water are, of course, incommensurable. The first task is

to look up in some compendium of useful information the
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approximate weight of a cubic yard of standard water, or

of a cu. ft., or of a cu. in., as may be vouchsafed. Then

reduce the volumetric terms accordingly, then multiply,

and finally (to be thoroughly English) reduce the approxi-

mate decimal fraction of the pound to ounces and grains.

One who has stupidly despised the metric system ought
to perform, as a penance, this calculation a VAnglaise.

32. It may be helpful to state explicitly that I always
use the term arithmetic in the sense of the Science of

Number.

There is no difference either in subject-matter or in

scope between arithmetic and the algebra of number. The

distinction made by the term algebra refers to the mode of

expression (vide § 20), and in a special sense to the pro-

fou.ndly important subject of algebraic forms of numerical

expression. Any arithmetical statement is of particular

numbers
; while, from the very nature of the conventions,

algebraic statements are general. It was to this end that

algebra was invented
;
but it must never be forgotten that

any algebraic expression may be made particular (x'ide

§ 23), and that the form then becomes arithmetical.

'^ Arithmetic "
is too often limited (very illogically and

contrary to the best practice) to denote merely some primi-

tive developments of the science of number. Even the

distinction positive and negative is often expressly set

forth as peculiarly a matter of algebra. In our view this,

of course, is utterly subversive.

Arithmetic needs and uses the same symbols of opera-

tion and qualitative distinctions a.s the algebra of number
;

indeed, logically, the statement should be made the other

way, viz., the algebra iTses the same symbols of operation

and quality as arithmetic. The symbols +, — (in both
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senses of each), tlie exponential notation, etc., belong

equally to the notation of arithmetic and to number's

algebra.

Newton preferred to call the algebra Universal Arith-

metic.

33. It would be a very good exercise for the student

(especially those who are taking this course in order to

qualify as teachers in the public schools) to critically

examine some text-book on arithmetic which he has heard

extolled.*

VII. Primary Number, — Numerical Operations.

34. There are seven distinct numerical operations.

Three of these are direct, and four inverses of these three.

The three direct arise from three different modes of com-

bining two numbers, and the four inverse, from inverse

problems, viz., given one of the two numbers in the former

combination and the resulting number, to find the second

of the two originals. Inasmuch as two of the direct oper-

ations are commutative (vide § 38), they give rise each to

only one inverse
;
that is, it is the same problem, given

either and the result, to find the other. But the third of

the direct operations is not commutative
;
and it therefore

gives rise to two inverses, it being a very different prob-

lem, whether the first or the second of the originals be

given, to find the other.

These seven operations are, by name, Addition and its

inverse, Subtraction
; Multiplication and its inverse, Divis-

* Upon a reperusal, this expression seems almost satirical, since it

would be impossible to find one which has not been extolled. I let the

phrase stand, however, in all its innocent irony.
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ion
;

Involution and its two inverses, Evolution and

Finding the Logarithm.
No numerical operations have been developed showing

characteristics essentially different from these modes of

operational combination. (For fuller discussion of this

point, vide § 104.)

35. It would be a sad comment on previous instruction if

any one is surprised to hear of the seventh of these funda-

mental operations ;
for when we find a^ = c, the two in-

verse problems are equally obvious
;
we may have given

b and c, to find a (this is familiar as evolution), or we

may have a and c given, to find h. Scientific mathematicians

(Cf. Introduction, p. 5) are to blame that no single name

denoting^ this operation is current. We must iise the

accepted phrase, finding the logarithm. Because the pro-

cess of this last operation is comparatively recondite, is

no excuse for not calling attention to the problem in the

very beginning of any systematic teaching of arithmetic.

Indeed, under any rational instruction it^ existence could

not be concealed. It should be said to the pupil,
"
Evidently

such a result as «* = c presents two inverse problems. At
this stage you will investigate only how a few very simple
roots may be extracted. The question how the exponent
or logarithm may be determined must be deferred until

you have acquired more knowledge and greater skill."

36. In this chapter the fundamental operations will be

tentatively considered for primary number. It will be-

come apparent that for any two primary numbers the

direct operations are always possible, but that the inverse

operations have meaning only in particular cases. Equally
obvious will become the urgent need and propriety ot

extending the concept of number, both for the theoretical
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science, and its application to the measurement of concrete

magnitudes,

Tlte numerical symhols of the algebra evvployed in this

chapter are general only for irriniary number ; -j- and —
have only their operational meanings. This strict limita-

tion must be distinctly recognized.

37. To add one primary number to another is to so com-

bine the former with tlie latter that in the resulting num-
ber each unit of the components shall retain independence
and precisely the same functional relation to the result

(the sum) that it fulfilled in its original group. The con-

cept is so immediate to that of primary number itself (C/.

the specialization of various manys, % 2 et seq.), that, while

definition is appropriate for the purposes of scientific dis-

course, it hardly admits of explanation. The numbers are

aggregated, just as objects now thought in two groups

may be thought in one group. Also, the addition of any
two primary niimbers is always possible. (But note that

the definition is only for primary numbers, vide § 45.)

38. It is an immediate corollary from the absolutely

primary theorem of number {inde § 13), and the definition

of addition, that
,

, ,
,' a -^ h = -[- a,

that is to say, addition is a commutative operation. The

fact is called the Commutative law of Addition. It obvi-

ously extends to the sum of any number of numbers.

39. In like manner the addition of three or more pri-

mary numbers is associative, that is,

(,, _^ h)j^c = a^{h + r).

This fact is the Associative law of Addition.

40. An algebraic statement like the foregoing, the truth
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of which depends on the very nature of operations, may-

be called a formula, as distinguished from a synthetic equa-

tion. In a formula any numerical symbol may be made

particular without restricting the generality of any other
;

in a synthetic equation (e.g., a -{- h =
c),

on the contrary,

to particularize any symbol more or less restricts the

meaning of every other. To solve a synthetic equation /or

any symbol, means to find a definite number which, sup-

posing the significance of every other symbol known,
substituted for the unknown symbol will satisfy the equa-

tions
;
that is to say, make of it a formula in terms of the

other symbols. The name identitij is often used for for-

mula as here defined. When it is necessary to distinguish

between a formula or identity and a synthetic equation,

the sign = designates the former, and = the latter.

41. If the sum of tAvo primary numbers and one of

them be given, the other may be formed by pairing off

every unit of the given part with a unit of the sum, and

counting the unpaired units of the sum. Since addition

is commutative, the operation, as just defined, is the same,

whichever of the two parts of a sum be given. Addition

has therefore only one inverse, called Subtraction, and rep-

resented by the minus sign (
—

).

42. The problem is to solve for x the synthetic equa-

tion—
,

,

a -\- X =^ b.

Counting off a from the number represented by each mem-
ber of the equation, we obtain x = h — a\* that is to say,

* Of course the common notion or axiom, '"if equals be taken from

equals the remainders are equal" is here involved. But truly common
notions can be doubted by no sane man, and explicit statement of uni-

versal axioms is hardly required anywhere except in systematic treatises

on logic or epistemology.
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{h
—

a) is the numbei- wliicli added to a gives h. This
number {b

—
a) is called the remainder or diiference result-

ing from the subtraction of a from b. Substituting (b — a)
for X gives the formula—

a -\- {b
~

a)
= b

;

or, by the commutative law of addition,

b ~ a -\- a = b,

which is the formula of definition of subtraction.

43. Under the developed concept of number, any chain
of additions and subtractions enjoys perfect freedom of

commutation; but the first thing to strike the thoughtful
student in subtraction under the primary concept, is the

futility of seeking general laws, because the operation is

possible only in special cases. If b is less than a, b — a
makes no sense.

We may observe, moreover, that provided the expres-
sions mean anything, association may take place as fol-

lows : a — m — n = a — (in + n) ; for, adding m + n to

each member of the equation, we obtain a = a. (Cf. foot-

note to § 42.)

In like manner, a -i- b ~ m ~ u = a —
(jii -f n — b) =

a — VI — (ji
—

b), etc.

Also a -\-b
~ m — n = a -{- (I)

— vi —
?;).

This is the ground of the familiar rule about "
signs

"

and parentheses. Of course, the rule applies only under

great restrictions to primary numbers.
44. In practice the problem often occurs to find the

sum of a number of equal numbers
; e.g., how many shoes

are required to shoe twelve horses ? With primary num-
ber this is only a special case of addition. It was a true
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instinct, however, which recognized a distinct operation.

But the instinct was too often disavowed in the next

breath by defining multiplication as "
repeated addition."

Multiplication with primary numbers is repeated addition
;

])ut this concept is incapable of development without doing

great violence to the word ''

repeated." How can one so

define multiplication, and then say V2xV3 = V6?
Xo repeated addition can attain this result. This is antici-

pating ;
but nevertheless we may, in the expectation of de-

velopment, at least be careful not to prejudice opinion. If

possible, let us try to say enough to define multiplication

for primary number without saying so much that the way
of development is barred.

45. The gradual extension of the meaning of terms is

perhaps the most powerful instrument for that ordering

and simplification of knowledge, that transformation of

chaos into cosmos, which is the vocation of science. The

procedure should take place with the caution befitting its

importance, and demands at every stadium a consummate

restraint of judgment in order not to say too much. The

severest self-criticism alone can repress the tendency of

tyros in every science to set delimitations which confine

development, and entomb thought in empiricism.

Note carefully that even addition must not be declared

as necessarily increasing a number. AVith primary num-

bers a number is increased by addition
;
but to so define

would bar development. jSTeither in general does multipli-

cation increase a number, nor division decrease it, and to

so define would hide-bind mathematics.

46. The operation of multiplication can hardly be de-

fined for primary number without prejudice to the develop-

ment so necessary to mathematics, pure and applied. A
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satisfactory definition has never been framed
;
nor must it

be supposed tliat I consider the feat achieved in the fol-

lowing definition, which (or something like
it) was first

offered, I believe, by De Morgan. The matter is one of

paramount importance ;
for all rational views of number

have been developed under the principle of the persistence
of the laws of the operations, addition, multiplication, and

involution. (Their inverses would be adequately defined

merely as such.) Nor, until satisfactory definitions of

these operations in their utter generality are attained, can

the fundamental theory of the subject be regarded as per-

fect or completely established. I make an effort, not in

contentment with the result, but to display the difficulties.

The Multiplication of any number by another consists

in affecting the former (multiplicand) in precisely the

same way as one is affected in the other (multiplier).

Or, in Multiplication one number is so combined with

another that one of them shall fulfil in the result the

same functional relation that the number one fulfils in

the other.

The result is called the product.

The multiplication of any t\yo primary numbers is al-

ways possible.

With primary numbers the foregoing tentative definition

amounts to "
repeated addition," nor is it claimed that it is

much better as a scientific achievement. The difference is

rather pedagogical : if you tell a pupil that "
multiplica-

tion is repeated addition," he is disposed to think he fully

understands the nature of the operation ;
but if you tell

him that in this operation the multiplicand is affected in

the same way as one is affected in the multiplier, although
he will not at first receive more information than before.
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he is in a position to Avitlen liis concept of tlie "
ways

"
in

which. 07ie may be affected in a nnmber. And when he

recognizes ratios as numbers, and that any number is its

own ratio to one, the composition of ratios at once falls

into his definition of multiplication. (Vide §§ 80, 81. 82,

83.) In other words, if ultimate development is not prej-

udiced by the definition suggested, it is only on the score

of its vagueness ;
since in each new extension it is from

the principles of multiplication itself that the A\'ay in

which 07ie is affected, or its functional relation to the mul-

tiplier, can be comprehended. Nevertheless, it may be

considered that (when ratios have been recognized as num-

bers, and therefore necessarily a ratio of any two num-

bers, and any number as its own ratio to
o7ie'),

in the light

of the independently discovered operation, the "
composi-

tion of ratios,'"'
* the definition might be read in a fuller

sense than it could convey to a beginner. This may seem

a pitiful plight for a definition
;
but I can only point out

that many things have to be seen to be understood, that

before such vision they must in their very nature be '' unto

the Jews a stumbing-block, and unto the Greeks foolish-

ness." The extended meanings of multiplication are un-

dreamed of to the man whose only notion of number is his

abstraction from a flock of sheep, or a pile of coins.

it might be better to leave the numerical operations un-

defined in words, and in the case of multiplication to rest

upon its commi;tative and associative laws (which alone

would not distinguish it from addition), and its law of dis-

tribution with addition, as at once governing and defining

the operation. (For these laws, vide infra.)

*
Cf. Euclid, Book YI., 23; and VI., def. 5; or, better, IIalsted'.s

Elements of Geometry, §§ 540, 544.
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It may be objected that even addition has been defined

only for primary number
;

but when number has been

seen to be a continuous magnitude, and the qualitative

difference, ^^osi'z^iye and negative, revealed, the "common
notion "

of addition immediately applies. And, as sug-

gested in Section 37, to define addition is like defining

such terms as more or less.

The only point at all recondite is that, from the very

clean-contrary nature of positive and negative, the addi-

tion of a negative number to another decreases the latter.

Attention is called candidly to this generalization of addi-

tion, as well as to the application of greater and less to

negative numbers {Cf. §§ 116, 117, 198) ;
but the propriety

of these concepts is left to be justified of their fruits.

47. The multiplication of primary numbers is commuta-

tive, i.e.,
—

ah = ha.

This is the Commutative Law of Multiplication.

Its truth is obvious, for three rows of four dots in each

row is the same group as four columns of three dots in

each column, thus—

Also, commutative freedom is shown to extend to the

factors in a sefies of successive multiplication, i.e.,
—

ahcde = ahedc, etc.

Multiplication with equal generality is associative
;
that

is, any group of factors may be replaced by their product,

i.e, ahcde = a(hcd)e.

This is the Associative Law of Multiplication.
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48. From the commutative nature of multiplication, it

follows that when a problem is discerned as requiring the

multiplication of one number by another, it never makes

the slightest difference theoretically which is taken as the

multiplicand. All the talk about carefully distinguishing

multiplier and multiplicand so prevalent in text-books is

sheer nonsense. If you wish to find how many oranges

you must provide to give 3 to each of 278 children, it is

utterly indifferent whether you multiply 3 by 278, or 278

by 3. As a matter of convenience in this particular ex-

ample the latter process, absurdly decried as it is, is the

sensible course. The problem requires the combination in

multiplication of the number of children and the number

of oranges. The product is interpreted as a number of

oranges. In neither case have oranges or children been

multiplied ; processes of horticulture or procreation would

be necessary in such a performance.

Concrete magnitudes can be multiplied by numbers, but

such processes are not purely arithmetical. For example,

a sect of a straight line can be really multiplied ;
but the

process is a geometrical construction. Thus, to multiply a

sect by 3, lay off the given sect three times in a straight,

so that one of the three shall lie end-point to end-point

with the other two, but no other points in common. The

sect between the non-coincident end-points is the required

product. It would be an easy construction to multiply a

sect by y/2, for this would be accomplished by the fa-

miliar process of '^
altering

"
it in the ratio of the diagonal

of any square to its side.

Of course, it is perfectly legitimate to speak of the mul-

tiplication of concretes in the sense merely of an interpre-

tation of a numerical process. Thus, there can be no
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objection to saying 8 pounds multiplied by 152 make

1,216 pounds ;
but it is utterly mistaken to protest against

multiplying 152 by 8 in performing the calculation.

49. Since multiplication is commutative, there is only

one inverse problem ; viz., given a product and one fac-

tor, to find the other. The operation is called Division.

Division requires the solution for x of the synthetic equa-

tion— ,ax = 0.

The formula of definition of division is—
a {l> I a)

= h.

dotationally a line laterally
*
presented to the number

symbols (— or / ),
a colon

(
:

),
or a combination of both

(-f-) represents division. The first is generally to be

preferred.

50. With primary number division amounts to repeated

subtraction, but it is only safely defined as the inverse of

multiplication. (Vide § 45.)

51. Under the developed concept of number, if a num-

ber is to be combined with a series of others which operate

successively in multiplication and division, there is free

commutation and association in using the operators in the

manner displayed in the following :
—

(1) (a X f^)
-^ c = (a -i- c) X b = a X h / c = a -i- c / b;

(2) {a
-~

h) -i- c = a / he = aj c -^ h
;

(3) (ft -V- h) X {c -^ d)
= ac

j
bd = a

j
d -~ b / e = ac j h

-^ d, etc.
;

(4) {fi ^ b) -^ (c -^ d) ^ ad jbc = a I c-^b-d = ad / b

-f- c, etc.
;

* The " minus "
sign is presented endwise to tlie number .symbols.
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as may easily be proved from the laws of multiplication

and the definition of division, to be true for primary

number, if the opei'ations have any meaning at all.

But as in the case of subtraction (§ 43), it is vain to

attempt generalizations with division under the primary

concept of number, for division is possible only in par-

ticular cases.

Thus, considering that the primary numbers represented

are such that the statement (ct X h) -^ c makes sense,

(a -^ c) X l^ ii^ay, or may not, have meaning ; e.g. (3 X 4) -v-

6 makes sense, for there is a primary number which mul-

tiplied by 6 gives 12
;
but (3 -i- 6) X 4 is meaningless in

terms of primary number, for there is no primary number

which multiplied by 6 gives 3. Again (15 X 4) -;- 6 is

intelligible, but not (15-4-6) X 4
;
since no primary num-

ber multiplied by 6 gives 15.

52. If a sum of two primary numbers is to be miiltiplied

by a primary number, the product is the same as the sum

of the products of each summand by the multiplier, i.e.,
—

(rt -{- h) c = ac -[- be.

For 4 rows of 5 in a row is the same group as the sum

of two groups each of 4 rows, 2 and 3 respectively in a

ruw, thus :
—

The principle evidently extends to the sum of any num-

ber of summands, and is called the Distributive Law of

Multiplication and Addition.

53. If the multiplier be a sum, of course redistribution

'univ.'ehsi'i

California
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will display the final result as a sum of simple products,

e.g.,

{a + h) {c -\- d)
= a{r-\- d) -\.h {c -\- d)

= ae -\- ad + he -\- hd.

54. If eacli one of a number of factors be a result of

mixed addition and subtraction, the Distributive Law ap-

plies, but with primary numbers only, under the miserable

restrictions inherent in inverse operations.

55. Also a series of additions and subtractions is dis-

tributable with a divisor. It is sufficient to give formal

proof in one instance :
—

To prove {rt -\- V) -^ c = (a -4-
r-) -f- (Ij

-f- c).

Now, {(a -\- b) -^ c] c = a -\- b hy definition of division.

Again, {(a -^ c) + (i -f-
<-)}

=
(a ^ c) c -\- (b -i- c)

c by
distribution of multiplication and addition

;
but this last

also = a -{- b hj definition of division,

.: (a -\- b) ^ c = (a -h c) -\- (b ^ c). (Cf. foot-note to § 42.)

56. If factors be sums, redistribution is possible, since

the original case merely recurs (vide § 53) ;
but if a divisor

be a sum, it cannot be distributed.

(a -\-b)^ (e-\- d) = a -
(^ + d) + // -

(. + d),

but a -i- (c -)- d) does not equal (a -^ c) -f- (a -f- d),

as the student may easily satisfy himself.

Let this truth emphasize the principle that all such

questions are matters of fact, and not to be convention-

ally decided.

57. It frequently occurs in practice that it is required to

repeatedly multiply a number by itself. Given the basal

number and the number of times it is to occur as a factor,

the process is completely determined. The original num-
ber is called the base

;
the number of times it is to occur

as a factor is called, according to the point of view, the
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exponent of the base, or the logarithm of the result to the

specific base. The result is called the power. The expo-

nent is sometimes called an index.

Numbers in this relation are notationally represented

thus : 4^ = 64, or «* = e, where a is base
; h, the expo-

nent
; c, the power. The phrase logarithm of c to base

a is written in algebraic shorthand thus, log„ c.

58. When the exponent is two, the power is commonly
called the "

square ;

" and when the exponent is three, the

"cube." These names refer to true and proper geometrical

applications of number, but have no doubt had their share

in postponing general recognition of number's real nature.

{Cf. § 25, and §§ 230, 231.)

59. The operation of combining two numbers in the

sense represented notationally, as above explained, by a*,

is called Involution. But just as we restrained ourselves

from prematurely regarding multiplication as repeated ad-

dition, we must prejudice no subsequent questions by

regarding involution as repeated multiplication. It is re-

peated multiplication for primary numbers
;
but when we

discern other modes of number we shall see that such is

by no means the essential nature of the operation.

60. It is impossible (for me) to frame a definition of

involution in terms of primary number which will satis-

factorily connote the simplest and the general meaning of

the operation. {Cf. §§ 45, 46.) In lieu of something more

satisfactory I make the following attempt : Involution is a

combination of two numbers such that the base shall appear

factorially in the result in a mode corresponding to that

in which unity exists additively in the exponent. While

this definition expresses primary involution, it is not in-

consistent with ultimate meanings. For example, if unity
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exists three times aclditively in the exponent, the base

must appear three times factorially in the power ; yet when
niimbers are conceived in which unity fulfils a relation

the inverse of primary addition, we need not be surprised

to discover that the base appears in the power in a relation

the inverse of that of a direct factor.

[
«3 = aaa, and a~^ = -.-.-] .

\ a a aj

Again, when a number such as the ratio 1 / 3 is discerned,

it becomes a development, not a recantation of former opin-

ion, to discover that the exponent 1/3 imposes upon a base

an operation which shall cause it to appear in the result as

one of three equal factors of itself, since 1 / 3 is one of three

equal summands of 1. (a*
= V«-)

It would be anticipating too much to carry testing any
further. I set forth the definition merely as the best that

I can offer. Perhaps the most scientific attitude in the

dilemma is merely to note the sense of involution for pri-

mary number, alertly waiting to discover what its nature

may be as deepening insight reveals other modes of num-

ber, and surmising upon general grounds that if a* means

repeated multiplication when i is a primary number, it

will not have this meaning if b is not a primary number.

61. I have dwelt upon this matter because it is an

exceedingly important point. The application here of the

Principle of Continuity {vide § 103) has led to un-

dreamed-of advances, not only in the mathematics, but

in the physical sciences.

62. Involution is evidently not commutative : «* is not

!)". A unique case is commutative
;
2* = 4^.

Neither are successive involutions associative : a/^^ is

not equal to
((I'^y.
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63. Let the student find the difference between 2(2==')

and
(2-^)

(=').

64. "Law of Indices."— For primary numbers it fol-

lows immediately from the definition (let the student deduce

the forms, however) that oVa"^ = «* + ^ +
''; (a^y = a^'^,

and a'^b'' = (aby.

Also iib> c, rt* ~r- a' = a^''. (See also §§ 158, 191.)

65. Because involution is not commutative there are

two inverse operations, requiring respectively the solution

for X of the synthetic equations (1) a'« = b, and (2) a-^ = //.

66. Operation (1) is called Evolutiox, or finding the

ath root of b. In algebraic shorthand the rtth root of b is

written -\^b. The radical sign is derived from the letter r

(radix). In actual computation (arithmetical or alge-

braical) after the theory of exponents has been general-

ized, it is far better to employ indices than radical signs.

67. Operation (2) is called Finding the Logarithm

{aide § 35).

68. The Formula of Definition of Evolution is (V^)« = b.

69. The Formula of Definition of finding the Logarithm

is a^^-a* = b.

70. As has been seen to be the case with all inverse

operations in terms of primary number, these inverses of

involution are evidently possible only in very special cases.

71. With the discovery of the seven operations, and their

laws, Commutative, Associative, Distributive, and the Law

of Indices or Exponents, the foundation of arithmetic and

the algebra of number is complete. I repeat (Cf. §§ 20, 23)

these laws could never have originated arbitrarily, or as

springing essentially from the algebra. As ^'
algebraic

laws "
they must be merely the expression of actual prop-

erties and relations of number.



68 NUMBER AND ITS ALGEBRA.

VIII. Devices of Computation.

72. Various devices of computation, of more or less

practical utility, are familiar to all
;
but it will be clear

upon any thoughtful consideration that they possess none

of the fundamental importance suggested by the promi-

nent role they play in ordinary text-books. AVhat is usu-

ally set forth as a general exhibition of addition must

be seen to be several partial additions and a convenient

association of resulting summands. The same numbers

would have their parts differently associated to suit dif-

ferent notations, e.g., XXXVII -f XXXVIII = LXXV
;
or

37 + 38 = 75.

The average high-school graduate labors under the im-

pression that his fashion of "
multiplying

"
is essential to

the matter, and arises from the very nature of things. In
" division " he learns what he sometimes regards as two

ways, ''Short'"' and ''Long." The names are, in truth,

appropriate enough, for the sole difference is that more of

the necessary thought is actually written down in the

Long than in the Short way. Yet the abbreviated form is

taught first, and the pupil fancies he is learning some-

thing new and more difficult when he learns " Long divis-

ion."

The rational method would be to teach first an expres-

sion still longer than the "Long"; then, as skill and

power of retaining conclusions in mind increase, conve-

nient abbreviations should be explained and recommended.

73. Let the student critically examine his habitual

ways of "adding," "subtracting," "multiplying," and "di-

viding
"
primary nunil)ers, bf)t]i in the common algorithm

of arithmetic, and algebraically. Let him denote every
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act of his mind in each process as an addition, subtraction,

multiplication, division, commutation, association, or dis-

tribution of numbers, under the definitions and laws set

forth in the preceding chapters. To take a very simple

example: {an^ c^) {a^ h^
c"^)

~-
{aH>^ c^"-)

= (a^ a^¥ V^ c^ c") -f- («•*
b^

c^^)
... by association and

commutation.

=
(a^h^c^^)

-=-
(a*b^c^^) ... by three partial multi-

plications by law of indices.

=
(o^/a*) (P /h^) (c^^ I c^°)

... by association and

commutation.

= a^ ^^ c . . . by three divisions by law of indices.

74. Explain how a multiplying machine, which can

do no more at one time than multiply a number of ten

places by another of ten places, may be used to multiply
13693456783231 by 46381239245932.

. 75. The involution of primary numbers may be ac-

complished merely by repeated multiplication. As soon,

however, as one investigates logarithmic series, and the

construction and use of Tables of Logarithms, he learns

command of a more facile waj^ of performing this labo-

rious operation. Before learning the use of logarithms,

one ought to demand good wages for the toil it would cost

him to find 9^"
;
afterwards it becomes the Avork of a few

minutes.

76. Evolution, as we have seen, is only occasionally pos-

sible under the primary concept oi number
;
but even in

the simplest of these possible cases the device of calculation

familiarly used by the high-school pupil is rarely under-

stood, else he would be able to find (however laboriously)

the fifth root as well as the third. Of course evolution is

too laborious to be carried to any extent until Logarithmic
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Tables are comprehended, Avhen it becomes easy. But if

one understood how his device for extracting a second or

third root was invented, he coukl on occasion make his own

rule for finding a fifth root. Let us investigate. Properly

distributing and associating, it is seen that—
{a J^ hf = a- -\- b {2 a -\- h).

Also {a-{-h -\- c)-
= (a + i)- + c {2 (a + Z-) + c], etc.

Here is declared a rule for the evolution of a second root

of a number
;
for a specific composition of the power is

displayed in a way to make decomposition easy. Likewise

the formulae for the evolution of a cube root are

(a + by = a^ + Z. (3 a^ _^ 3 ab + b''),

and (a-\-b -^ cf = (ci ^ b'f J^ c {^ {a -^ bf + 3 (a + b) c

-f- c-}, etc.

In exactly the same way the formula for the evolution of

a fifth root is

(ft + bf = «5 ^Jj(pa^j^l0 an> + 10 a%'' + o ah^ + b'),
etc.

Suppose the fifth root of 33554432 is required.

liow the preceding formulse show that, if the root be

considered as the sum of three numbers, the corresponding

power of the sum of the first two is to be taken away, and

the remainder decomposed to reveal the third summand of

the root, and so on. Therefore we could not go wrong
even by choosing parts of the root at random. But a con-

sideration of the arithmetical notation may save much

trouble
;

for it is plain that a fifth root of the number

before us has two digit figures, that is, it is to be regarded

as the sum of a number of tens and a number of ones. We
compute as follows :

—
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foot to a yard. That is, numbers which are fractions (vide

§ 83) of primary number were discerned. This advance

still leaves number discrete, that is, increasing per saltum.

But again, as a second step, if there is a numerical relation

between two magnitudes, one of which is a fraction of the

other, surely there must be a numerical relation between

an
3^
two magnitudes of the same kind, even though neither

be a fraction (vide § 83) of the other. Thus, when it is

proved that the diagonal and side of a square are absolute-

ly incommensurable {Euclid, Book X, 117), the mind can-

not tolerate the thought that a numerical relation would

exist, provided the diagonal were just the least bit shorter,

yet, de facto, does not exist. This thought, I repeat, is in-

tolerable. Moreover, since the ratio of a yard to a foot

is an exact number, surely the ratio of a metre to a foot is

exactly whatever it is. It is, of course, well known that

the metre and foot are incommensurable

81. The connotation of all ratio (fractional and surd) as

number evidently makes number continuous one ivay, to

use a space metaphor on account of the exigencies of lan-

guage. Thus, under this concept, number begins with a

ratio smaller than any assignable fraction of 1, increases

continuously, passing through all the discrete stages of

primary number, to a ratio greater than any assignable

primary number.

82. To illustrate: Start with the ratio of the weight

of these pages to the weight of a granite bowlder. We
begin either with a very small fraction of 1, or a surd

smaller than a very small fraction of 1 (as the weights are

commensurable or not, probability being vastly in favor of

the latter case). Now, by gradual abrasion of the bowlder,

decrease its mass; the ratios of the weights increase con-
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tinuously until they reach 1. Continue the abrasion, and

the ratios increase continuously, passing through 2, 3, 4,

etc. At length when the bowlder has been reduced to a

grain of sand, the ratio will be greater than some high

primary number.

83. The foregoing discourse presumes sufficient familiar-

ity with the subject to insure the reception of the terms

employed in their precise meaning ; yet it may be service-

able to set forth the following definitions {Cf. § 205) :
—

(1) Multiple. — One magnitude is a multiple of an-

other when the former may be separated into equal parts,

each equal to the latter. (Of course ''

multiple
" includes

the limiting case where the ''part" is the whole, i.e., jiiulti-

plication by 1. It is merely an imperfection of language
which might seem to exclude this case.)

(2) SuBMULTiPLE. — lu (1) the " latter
"

is a submulti-

ple of the '' former."

(3) Fraction. — Any multiple of a submultiple is a

fraction. (Of course if a is a fraction of J, i is a fraction

of a
;
also a multiple of a submultiple may reduce either

to submultiple or multiple.)

(4) Commensurable. — Two magnitudes are commen-

surable if either is a fraction of the other
;

(5) Incommensurable.— if neither is a fraction of the

other.

(6) Ratio.— That definite (exact) numerical relation

{Cf. § 80) of two magnitudes of the same kind, in virtue

of which one is either a fraction of the other, or greater

than one and less than another fraction of the other,

which differ as little as we please, is called the ratio of

the former to the latter.

Of course, from the very concept of ratios, and the
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continuity of possible ratios, the ratio of the first of two

magnitudes to the second is greater than the ratio to the

second of any magnitude less than the first. Also two

ratios are equal if every numerical fraction greater than

either is greater than the other, and less than either is

less than the other.

A ratio is often spoken of as "incommensurable," of

course as an abbreviated expression, since it takes two

things to be incommensurable. You might as well say,
" x

is equal," as to say "x is incommensurable." The abbre-

viation is for incommensurahle with 1. Incommensurable

ratios may be called surds.

Let it be clearly noted that a multiple, a submultiple,

or a fraction of any magnitude, is another of the same

kind : but that the ratio of two is a number. Thus a

fraction of a time is a time, of a surface a surface, of a

solid a solid. Bvxt the ratio of one solid to another is

a number,— in this case called the volume of the former

with respect to the latter.

Note also, any number may be regarded as its ratio to

1, and that all numerical fractions are ratios, but not all

ratios are numerical fractions.

In illustration of the definition of a ratio, and its nota-

tion, if of incommensurables, consider the yard and the

metre. Measurement {vide § 203} not excessively refined,

gives the number 0.9143 + for the ratio of a yard to a

metre. This is to be understood to mean that a yard is

greater than -fVVotT ^^ ^ metre and less than tVoVo- Meas-

urement more refined would yield a numerical fraction still

more closely approximating the ratio. The ratio in ques-

tion has been found to be greater than 0.914392, and less

than 0.914393.
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(7) Surd. — Of the one-icay continuous Kumber, the

concept of "which we have now attained, those numbers

which are incommensurable with 1 may be called surds.

It is matter of discovery that the V^ is incommensur-

able or a surd.

The term surd is sometimes exclusively referred to the

results of such operations as V2 ;
but Newton's use is

a philosophical one. For the V2 is found out to be

1.41421 -f-, that is a number, no fraction of one, but greater

than 1.41421, and less than 1.41422, which is surely a

number of precisely the same kind as the ratio of a j^ard

to a metre, or of a circle to its diameter (0.914392 -)- and

3.14159 -}- respectively). Incommensurable numbers re-

sulting from evolution may be distinguished as radical-

surds, or simply radicals. (Vide § 145.)

X. Significance of Operations, and Special Opera-

tional Devices, Appropriate to the First

Extension of the jS^umber—Concept.

84. Euclid probably never clearly unified his concepts

of ratio and number; but following Euclid (q.v., and cf.

Halsted's Elements of Geometry), it may be shown that

there is a combination of ratios which obeys the same

laws that govern the addition of primary numbers, or of

fractions of concrete magnitudes, an inverse operation

corresponding exactly to subtraction; another operation

('' composition of ratios "), which obeys the same laws as

the multiplication of primary numbers, and an inverse

("altering" a magnitude in a given ratio), corresponding

to division.

But, from the very definition of a submultiple of any
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magnitude, the finding of a siibmultiple is identified as an

operation of division, since the problem is to find a magni-

tude which imdtijylied produces the given magnitude. Now,
when number has been discerned as a magnitude, these

reflections make it plain that a fraction of a number is the

number resulting from the division of that number liy

another, that one-half of 1 is 1 -f- 2, etc.* Also, when ratios

have been identified as numbers, and number thus be-

comes one-way continuous, the operational significance of

the principles, established in Chapter YII. for Addition

and Multiplication and their inverses, extends to all num-

ber (primary, fractional, and surd) thus far conceived.

Finally, inasmuch as a fractional number is the result

of dividing one primary number by another, it may be

represented most conveniently by the notation already

established for division. (Vide § 49.)

It would be impracticable to invent individual symbols,

since an unending' number of different symbols would be

demanded to designate even the fractional numbers lying

between two consecutive primary numbers
;
nor could any

such symbol be used otherwise than as a record, since in

any calculation with fractions it is the generating numbers

which are utilized, and not the fractional number itself.

85. It seems to me that there is no way substantially

different from the lines of thought I have followed, where-

by one can really understand what he is doing in the oper-

ation 7/8 X 9/5 for instance. Teachers of arithmetic

would do well to ponder their methods at this point.

* The only explanation ( ?) of such conclusions to be found even in the

splendid Text Book of Algebra by Professor Chrystal, is
" the statement

that /i X K isK oi % is merely a matter of some interpretation, arithmeti-

cal or other, that is given to a symbolical result demonstrably in accord-

ance with the laws of symbolical operation." Vol. i., p. VS.
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86. It remains to investigate devices for performing tlie

seven numerical operations in this extended region of num-

ber, and in t^vo cases to discover the effect, the meaning, of

an operational combination; viz., in involution, if the expo-

nent be a fraction or a surd. In the first place, it is to be

borne in mind that it is one thing to conceive an operation,

and another to perform it. For example, at the conclusion

of these introductory lectures, it will be plain to all (if
now

obscure) thq,t such operations as involving 10 under the

exponent tt, or finding the logarithm of 5 to the base 12,

are perfectly intelligible, even though ignorance of loga-

rithmic series, or of the use of a table of logarithms, should

leave one without devices adequate to the performance of

the calculations.

87. It should be observed that the terms iiumerator and

denoininator applied to the numbers involved in a numeri-

cal fraction, or even to the "terms" of a ratio of incom-

mensurables (e.g., V2 / 6) may be used as convenience

suggests ;
but conceived operationally they are to be

thought as dividend and divisor. Tlie numerical symbols

ill tlie algebra of this chajjter are still to be understood as

representinr/ 2^^i'>^i(^fl/
ninnbers.

88. The '•' rules
" for the operations of addition, multi-

plication, and division of fractions follow immediately from

the definition of a fractional number, which is merely the

recognition that the inverse of multiplication is always

possible, that the result of the division of any primary

number by any other is a number.

Substraction remains refractory, and meaningless unless

the minuend be greater than the subtrahend.

The rules are only the generalization of Sections 51 and

55, q.v., yet it may be serviceable to discuss them.
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89. By the distributive ]uw —

therefore the common rule.

Also a
I
d — h I d = by the distributive law, if

a y b
;
therefore the common rule.

But how shall we perform a -{- h
j c, or a

j
h -\- c

j d, if

a / h, h / c, and c / d are fractions ? The operation is dis-

tinctly conceivable
;

but the device for performing it re-

quires an intermediary step of multiplication, which must

therefore be investi.trated. Consider -^'o*^

(1) a / b X c = ac / b = a -i- h / c = c -^ h / a.

(2) a/b -^ c = a
I
bo = ac H- b.

(3) a/b X c/d = ac/bd, etc. (Cf §51, (3)).

(4) a/b -i- c/d = ad /be, etc. (Cf §51, (4)).

(5) a / b = a
/
b X c / c = ac / be, also a

/
b = {ci J h -i- c)

ale
X c = -J—

.

b
I

c

(6) a X b I c = ab
I e — a -^ c I b,

all by the laws of division and multiplication (vide § 51).

Therefore the common rules : From (1), To multiply a

fraction, multiply the numerator or divide the denomina-

tor
;
from (1), to multiply by a fraction, multiply by the

numerator and divide by the denominator
;
from (2), to

divide a fraction multiply the denominator or divide the

numerator
;
from (1), to divide by a fraction divide by the

numerator and multiply by the denominator, etc.
;
from (3)

and (4) for cases where both terms of the operation are

fractions. Also from (5) it is obvious that to multiply or

divide both terms of a fraction by the same number neither

increases nor diminishes it
;
and from (G), the result is
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indifferent whether we multiply by a fraction, or divide by
its reciprocal.

90. It may be remarked that there is a distinction be-

tween dividing by a fraction and multiplying by its recipro-

cal, though the results are indifferent, as declared in Section

89 (1). The operations are not identical. The results of

4^, 4 X 16, 4 + 60 are the same, but the operations are by
no means identical, b / a is called the recijjr'ocal of a / b,

and may be obtained operationally from the latter by

dividing 1 hy a / b
;
for 1 -i- a / b = b / a. Moreover " in-

vert "
is a short-cut term which may be used among those

whose knowledge of first principles is assured
;

but it

should never be used in explanation, as designating an

operation
— one can as little turn a number upside-down

as inside-out.

In the United States of America the custom is almost

universal, never to divide by a fraction, but to choose

instead the equivalent operation of multiplying by its

reciprocal. In Europe this is not so commonly felt to be

more convenient. As a question of practical calculation

the matter is of no importance ;
but it is surely lamentable

if pupils are led to think that they are dividing by a

number when they are actually multiplying by a different

number of such relative value that the results are equiv-

alent. Notationally a fractign expressly represents an

unperformed operation. The unexpressed result is the

definite number : thus, 7/6 means 7 divided by 6
;
and the

result is a number greater than 1 and less than 2, a defi-

nite value of the continuous magnitude we call Number.
A fraction in operation is to be employed as a composite

term consisting of a dividend and a divisor. Now, it can

be reasonably explained even to a very young student of
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aritlimetic that to divide by a quotient is equivalent to

dividing by the dividend and multiplying by the divisor.

This having been established, he can see that the problem
to divide by ajh resolves itself into dividing by a and

multiplying by b. If the dividend is an integer, he has

simply to do this. If the dividend is a fraction, he must

first have been led to see that a fraction is rmiltiplied by

multiplying its numerator, or dividing its denominator
;

and divided by dividing its numerator, or multiplying its

denominator.

If these principles are discerned, he can proceed in any
manner he prefers. It is of no theoretical consequence
how he sets down on paper mental conclusions. There

is no obstacle to performing the division, under the princi-

ples stated, just as the symbols stand : 7/6-^3/5 =
35/18.
A very low order of convenience is subserved by mak-

ing a different problem of identical result :7/6 X 5/3 =
35/18.

This discussion may seem almost trifling ;
but if one will

reflect that the average common-school pupil thinks he must

transform any such problem of division into a problem
of multiplication, some deficiency in the usual instruction

at this point will be apparent. I am convinced that our

schools require systematic,instruction in arithmetic of chil-

dren entirely too young to be capable of the reasoning and

insight demanded.

In such cases the best one can do is never to leave any-

thing totally unreasonable to the child. Even to a young
child very recondite matters can be a little explained —•

brought within a dim light of reason, if not clearly illu-

minated. One thing is certain,
— bad history, bad gram-
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mar, bad chemistry, or bad mathematics, is always bad

pedagogy as well.

If instruction in so-called arithmetic is always to have

reference to concrete magnitudes, as recommended *
by the

latest "psychology of number" (Cf. Introduction), the

simplest method for division by a fraction would be to

reduce to common denominator : thus, 7/6-i-3/5 = 35/
30 -^ 18 / 30 = 35 / 18. Indeed, it may well be, when

arithmetic has to be taught to children too young for the

subject, that this method is the best as a first pi'ese7itation

of the matter. Because the crudest notion of numerical

fractions, and blindness to the true significance of our nota-

tion of fractions, is not incompatible with some rational

comprehension of this process.

91. We may now return to ovir problems, a -\- h [ c and

a
I
h -{- c I d. By Section 89 (5) they may be brought under

the case oi a I d -\- b j d. For a -{- h j c = ac / c -|- b / c =

'^^_±A. And a/b-i- c/d = ad/bd-\- cb / db ^^I^Al^.

There is often a better way of solving the second prob-

lem. Evidently if b and d have a common multiple, vi,

less than their product, it would be advantageous, es-

pecially if several fractions were to be added, to reduce

to a common denominator by multiplying both terms of

each fraction by m-divided-by-the-denominator. No doubt

all are familiar with a device for finding the least common

multiple of two or more numbers. (Vide § 242.)

92. Inasmuch as an exponent of involution when a

primary number requires merely repeated multiplication,

we see—

* Psychology of Number, McLellan .and Dewey, p. IIG.
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(a Jh)P
= a /h-a /h-a /h

• • • = av J bP.

Also, since V^ / V^ • Va / V^ r= a J b,

therefore, V* / ^ = V^/ / V^, etc.

93. If a fraction is expressed as a sum of decimal frac-

tions, e.g., 41.2164, evolution is apparently performed pre-

cisely as in Section 76. This is permissible, because—•

41.2164 = -VoVoV- and V-VoVoV" = V412164 -- VlOOOO.

Our notation renders it easy to perform a portion of this

calculation at a glance by
"
pointing off;

" but the operation

must be understood as finding the •\/412164, and then di-

viding it by VlOOOO.

Let the student perform the calculation, not losing sight

of ivhat he is doing in how he does it.

Let him also fully express the operations involved in the

conclusion, 41.2164 = -VoVoV- ^^^^ notation is so perfect

that it may almost be said to work automatically, and for

this very reason it often blindfolds teacher and pupil.

It would richly repay the student to perform just once in

his life such a calculation as V41.2164 under an imperfect

notation. Let him do this, expressing everything in the

Roman characters.

94. As has been said (§ 83 (7)), it is a matter of dis-

covery whether or not, in any particular case, Va is a surd.

(Cy. § 156.) For example, if in the process displayed in

Section 76, it appears that no primary number is the root

in question, we may go on in the process of Section 93, and

find a fraction approximating as near as we please the surd

number which is the true root. Under such conditions the

root is a surd, and the process described interminable
;
but

it would carry us too far afield to investigate just now

general criteria for deciding whether the result of given
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combinations of given numbers is a commensurable or

incommensurable number.
( Vide § 249.) Let the student

critically examine his familiar process in "
finding V2."

95. In general an incommensurable number cannot ope-

rate, or be operated upon, in ultimate calculation in com-

binations with primary or fractional numbers. In lieu of

using the surd itself, we must use a fraction differing from

it by as little as we please ; e.g., if the ratio of a circle to

its diameter enter into the calculation, we employ some

approximate fraction, such as 3.14159. Su.rds which are

roots of primary numbers or of fractions may operate with

their exact force in special cases, and in a partial way ; e.g.,

(a/2)3
= 2; V2 V3 = V6

;
2 Vl2 = 4 V3

; V2/3 =
1/3 V6, etc.

;

but investigations into such combinations must be post-

poned to the next chapter, as well as the interpretation

of a% if s is a fraction or a surd.

96. Finally, let it be distinctly recognized that the great

stumbling-block which confronts us at every turn is the

wretched limitation to special cases of the operation the

inverse of addition, that a — b is meaningless if a < b.

XI. Final Extension of the Numbek-Concept.
Principle of Continuity.

97. Primary number is a discrete magnitude. The first

extension of the number-concept (the connotation of ratios

as number) made number one way continuous. (^Vide

§81.)
The conception of number as continuous in a far more

general sense grew from the application of a principle, at

first presented as an assumption, but which is so inces-
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santly and overwhelmingly corroborated that its rank as a

genuine and compulsory theory is perhaps as firmly estab-

lished as that of any scientific jDrinciple whatsoever.

98. As has been repeatedly shown in the foregoing

chapters, the combination of numbers in the inverse opera-

tions is meaningless under the primary concept except in

special cases. For example, 5 — 5, 5 — 6, 5 -f- C, V5,
logs 6, etc., result in no primary numbers at all.

The " first extension "
gives meaning to the last three of

the cases just cited
; for, although in the treatment here

presented, a^, where s is fractional or surd, was not inter-

preted from the recognition of all ratio as number, the true

meaning might have been developed at that point, and

logs 6 thereby rendered intelligible.* All this, be it noted,
without understanding 5 — 5, or 5 — G as a number, or

even imagining the development yet to come after this

insight is attained.

99. For centuries science rested here, either not regard-

ing such combinations as intelligible, and their results as

numbers
;
or only in a halting fashion, regarding the com-

binations as symbolic jugglery, and the results as ''

imagi-

nary numbers." And at the present day it is only by the

enlightened van among men of science that this stage has

been passed.

Negative numbers were in this way long called "
imagi-

nary ;

"
but, as they gradually forced themselves into reluc-

tant minds, the appellation was narrowed to denote V— 1.

100. It was only after a long struggle that negative

numbers gained recognition. I have not the erudition to

* It was deemed more convenient to take the final step at once; since

the principle which displays ratio as nuniher, and the general iirinciple

to which the whole treatment converges, are really one and the same.
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furnish exact dates, but I know that Cardan in 1545 in

his Ars Magna calls them ^' numeri Jicti;" and it is com-

monly asserted that Descartes in the seventeenth century

was the first to rend this portion of the veil : and I sup-

pose that those who half-heartedly follow in the wake of

science continued long afterward to regard negative num-

bers as "
imaginary," and all operation therewith as some-

how a trick of algebraic signs empty of numerical meaning.

Certain it is that such is the attitude even to-day, not, it is

true, of those who follow in the wake, but of those who do

not follow science at all, though engaging a large share of

public attention as teachers thereof. For certain also it is,

that at the close of the seventeenth century, Newton with-

drew negative numbers (and therefore, as will duly appear,

zero, and positive and negative infinity) from the befogged

region of " nuvierl ficti," and revealed them as " numeri

veri.

The last stage of this gradual process of enlightenment,

in which V— 1 is still regarded as "
imaginary," is yet the

stronghold of ignorance of fact, of prejudice, and of color-

blindness to philosophic evidence.

101. I would have no war of words over the appellation
''

imaginary." The term in this connection historically

has meant, and yet baldly means,
"
impossible," or incom-

prehensil/le. Of course it has no such meaning among the

best mathematicians of to-day; but that it is so received

by the unscientific, by many teachers of mathematics, and

by the vast majority of undergraduate students, cannot be

disputed.

The matter of a change in terminology is not of prime

importance, for terms may be disassociated in technical

use from their general meaning. It is a question of ex-
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pediency. While sympathizing with the conservative who
object to all innovations as tending to confuse the vast

literature of the science, neomo7i{c is so much more appro-
priate, and '<

imaginary" or "impossible" so misleading,
that the benefits of the change appear to outweigh the in-

conveniences. A reformation in terminology is not nearly
so confusing as changes in notation, such as have often been

brought about; for example, the famous propaganda of

"d-isni versus dot-age" (dy / dx versus y), which Dr. Pea-
cock began while yet an undergraduate, in league with

Herschel, Babbage, and Maule. The reform was finally

adopted at Cambridge, and Newton's notation soon became

entirely excluded. Nowadays mathematicians find no con-

fusion in using both notations.

102. The principle which has so fruitfully widened the

concept of number, yielding perfect self-consistency of

number, and ever deepening adaptation to Nature, I call

the Principle of Continuity, in emphasis of its most im-

portant outgrowth, the unlimited, twofold continuity of

number.

This principle may be stated as follows :
—

103. Principle of Continuity.— The coynhination of
two numbers in any defined operation is always possible, the

result real, and a number
;
and the precise effica-cy in any

operation of a number thus revealed is determined by, and

may be discovered from, the formula and laws of definition

of til e operation in question.

104. Before considering details, a glance at the results

which have more than justified the postulation of this

principle may be useful in giving the student the proper

perspective of the subject.

The principle at once makes negative numbers, zero, in-
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finities, fractions, surds, neonionic and complex numbers,
all equally numbers. Also Number thus becomes unlim-

itedly continuous in a double sense, whereby undreamed

of adaptability to Nature is revealed, and all numerical

operations proceed untrammelled by particularity.

One who will logically apply the Fr'inciple of Continuity

will arrive at all classes of numbers— or divisions of

Number— with equal necessity and facility. Negative or

fractional numbers will appear as much derived, as little

original, or primary, as those numbers still commonly
called " irrational " or •'

imaginary." One of these classes

is as foreign as any other to the primary concept of num-

ber
;
that is, the concept of number as discrete, the concept

which knows only one number between, say, 5 and 7.

If the symbol i be set apart to represent the neomon

(V —
1), we seem to have in the expression x -f- yi the

most general numerical form to which the laws of number

lead.* For it has appeared upon investigation that no

combination of numbers in any conceived operation can

result in a form essentially different. Neither has any

operation essentially different from the seven fundamental

operations developed from them. It might be surmised

that investigation would -reveal some fourth direct opera-

tion growing out of involution, as involution grew out of

multiplication, and multiplication out of addition
;
but such

does not seem to be the case. No ground of distinction is

furnished for a new species of operation. That is to say,

the operation, if assumed ta be distinct, would show itself

not essentially so, by failing to lead to new modes of

Number. In other words, if the investigations referred

* For this expression, a complex number in algebraic form, is numer-

ically neomouic if x = 0, aud numerically whatever x is, if y = 0.
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to are trustworthy (as is no doubt the case), there can arise

no new opportunity to apply the Principle of Continuity,
so as to still further widen the meaning of ISlumber.

Number in its ultimate sense is therefore seen to form

(what primary numbers do not, nor any curtailed concept)
a universe complete in itself, such that starting in it we
are never led out of it. Cayley says, whether with sound

philosophy or essential contradiction of terms I will not

attempt to discuss,
" There may very well be, and perhaps

are, numbers in a more general sense of the term (quater-
nions are not a case in point, as the ordinary laws of com-

bination are not adhered to) ; but, in order to have to do

with such numbers (if any), Ave must start with them.'' *

105. I believe that very few, even among students of

mathematics, are aware of the chaos of their conception
of number, in spite of long and familiar use.

The difficulty here, as everywhere, is the attainment of

true concepts, insight into the principles involved.

I balieve that the present condition is due to the fact

that successive generations of students have not had the

difficulties honestly presented to them, and have seldom

even considered fundamental theory. They have been

entrapped into .an unwarranted complacency; they have

juggled with symbols which are meaningless to them, and

for the most part without even noticing that no concept

* From note made long ago ; exact reference lost. In regard to qua-
ternions it may be observed, tliat though in their ordinary presentation
certainly not numbers, it is possible that they may yet be divested of

extra-numerical properties. Speaking of the anomaly according to which
quaternions in the common interpretation would make 'A niv- negative,
whereas >^ ?;i is positive and tlie wliole positive, Dr. INIacfarlane, in his

Algebra of Physics, remarks,
"
If this is a matter of convention merely,

then the convention in quaternions ought to conform to the established

convention of analysis; if it is a matter of truth, which is true ?
"
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rises "witli the words tliey utter, tlie symbols they write,
—

tliat their discourse upon number is vox et i:)raeterea nihil.

I believe that an opposite result would be prevalent, had

an opposite course been pursued by teachers and authors,

and tliat we would now be reaping harvests instead of

sowing seed.

106. Some one ignorant of trigonometry, of the ana-

lytical treatment of geometry, of the Calculus, of the

varied fields of applied mathematics, and to whom the

boundless realms of pure mathematics loom misty and

fantastic — some such one, I say, may ask, "Why all this

striving to make number continuous, this travail to pro-

duce concepts of number and numerical operations, which

shall be perfectly general and unrestricted ? The answer

is, the need, intellectual and practical, is urgent, impera-

tive. Establish the Principle of Continuity, and Arith-

metic becomes a logically perfect universe, and besides,

all Xature becomes harmoniously numerical
;
number and

its laws pervading it as an essential principle. Emerson's

noble lines, in which, with the poet's seer gift, he speaks

truer than he knew, then become literal fact :
—

"For Nature beats in perfect tune,

And rounds with rliynie her every rune
;

Whetlier slie work in land or sea,

Or hide imderground her alchemy.
Thou canst not wave thy staff in air,

Or dip tliy paddle in the lake,

But it carves the bow of beauty there.

And the ripples in rhymes the oar forsake . . .

Not unrelated, unaffied,

But to each thought and thing allied

Is perfect Nature's every part.

Rooted in the mighty heart."
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Besides, the assumption has been made, and its first

fruits are the attainments of the physical sciences during
the last two centuries. The progress in exact physical
science and the dependent arts has been due to the power
and freedom conferred upon analysis by this postulate ;

for, as I have said, it is implicit in all modern analysis,

even whcTi denied with the mouth of the calculator. (See
also §§ 110, 117.)

107. Like all profound principles, this one of the con-

tinuity and qualitative distinctions of number is a onatter

of insight, and does not admit of easy demonstration. One
man cannot think for another any more than he can eat for

him
;
but if a student will fix alert and intelligent atten-

tion upon the inherent development of the idea, and upon
the manifold Avitness borne by almost every phenomenon,
he will at last behold the Principle, manifest in ten thou-

sand undreamed-of relations.

108. Tt is not practicable to give more than one example
of the mental attitude I desire to excite. I choose one

which affords a double illustration : in the first place, yield-

ing a geometrical instance of the Avay in which concepts in

every science are extended to conform to deepening insight,

an extension analogous to the development of the primary

number-concept ;
and in the second place, displaying (as a

consequence of this attainment of an adequate geometric

definition) an impressive discovery of supreme law— pro-

vided ratios are numbers, and number positive and nega-

tive— in what seems, to nai've observation, utter fortuity.

109. Illustration.— (1) The primary concept of the

division of a sect by a point is, of course, that the point is

on the sect
;
but investigation shows that a widening of the

concept is required to fit facts presented by Nature. It is
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discovered that if any point, P, in the straight of a sect,

AB (on or out of tlie sect), shall divide it into the segments
FA and PB, then innumerable theorems only partially

true, and therefore none of their inverses true (^vide infra),

under the primary concept, become universally true, and

therefore their inverse propositions true, under the extended

concept.

(2) The same term, division, is necessarily retained for

this new relation
;
for it is the very essence of the dialectic

to display the inherent identity of the two relations. To
conceive (or name) the relations in contradistinction would

be to miss the very truth revealed by the connotation. It

is everywhere discovered that the process of philosophical
advance is in great part the identification of old ideas, long
in use by the mind in its experience, with ideas which to

brute or naive observation appear irrelevant or distinct.

Reflection upon the pure thought brings out the implicit

identity with the category already named.

(3) In particular the case of external and internal di-

vision in equal ratios is discovered to be a harmony very

prevalent in nature. Such division of a sect is styled

"harmonic division." (Cy. any Geometry and any scien-

tific treatise on physics.)

(4) Now consider the two plane figures {A), a triangle

and any straight (cutting the triangle or not) ;
and {B), a

triangle and straights joining any point (in or out of the

triangle) to the vertices of the triangle. Under the ex-

tended conception of the division of a sect by a point, the

straight in A divides each side of the triangle ;
and of the-

straights in B, each divides the side of the triangle oppo-
site to the vertex through which it passes, in such wise

that the product of the three ratios of the segments of the
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sides is 1 (provided that, of adjacent segments in different

sides, if one be tlie antecedent, then the other sliall be the

conseqnent of its respective ratio). Tliis is assuredly a

most impressive exhibition of unsuspected laivfulness in

a fact seemingly a very type of haphazard. But, be it

noted, the inverse of neither A nor B is true. Now, it is

an established principle that when the inverse of any prop-

osition is not true, it is because the subject of the direct

statement has been more closely limited than truth required.

It is clear that the inverses of A and B are flat contra-

dictions.

But if the ratio of sects from the same point be consid-

ered positive if one sect is part of the other, and negative

if extending oppositely, then the easily demonstrated con-

clusion of A is that the product of the said ratios is -f 1
5

and of B that the product is — 1. The inverse of each

now holds
;
that is, if three points divide the sides of a

triangle so that the product of the ratios taken as stated is

+ 1, then the points are co-straight ;
and if the product of

the ratios is — 1, then the joins of the points with the ver-

tices concur.

(5) The student should fully realize what is here as-

serted
;
and to this end let him draw a triangle and then

dash straights at random, cutting the triangle or not:

Every one of them divides the sides of the triangle in pre-

cisely the same way ;
and ifnumher he positive and negative,

given three points so dividing the sides, they are co-straight.

Again, draw a triangle, dot at random points, in or out

of the triangle : Any one of these points joined to the ver-

tices gives straights which divide the opposite sides in

precisely the same way ;
and if number be jjosltlve and

negative, given this Avay of division .of the sides by three
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points, the straights joining the point to the vertices come

together in one point.

110. When it is considered that the preceding ilhistra-

tion recites merely one of ten thousand examples, number

is proved to be positive and negative,— not, be it under-

stood, as a convention, but as a necessity of thought. Men
who represent this qualitative distinction as arbitrary, or

as purely a matter of algebraic symbols, do not appreciate

the evidence, or do not understand what proof in such

premises means. Moreover, it must never be overlooked

that a stiir higher order of proof is afforded in the devel-

opment of the pure idea, regardless of any adaptations to

external facts. When this or that development of the

pure science of number is to lind application to facts of

other sciences is a secondary matter. {Cf. § 117).

111. Similar illustrations might be given to show the

adaptability of number to facts presented by nature, if the

other modes of number resulting from the application of

the Principle of Continuity are recognized. Presentation

of such evidence must be postponed for the most part to

subsequent mathematical studies
;
and I shall in this con-

nection only ask you to observe that the Principle of Conti-

nuity, as enunciated in Section 103, unities all the partial

explanations of number which you will find advanced, or

implied, in various treatises
;
and to reflect that the man

who in his own opinion discovers the entirely New is prob-

ably on the pathway, not of truth, but of estrangement.

If his system refutes, in utter antagonism, preceding sys-

tems, it is likely to be refuted by a successor. In all

philoso})hy and science, advance has been genuine only in

systems which have been synthetic, and unifying of pre-

vious efforts in a harmony of thought. No development of
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thought must be regarded as a disjoined succession of dead

results, but as living insights in one line, each piercing

deeper and deeper.

112. In this light, note that the revelation in antiquity
of fractional and surd numbers, and the recognition of

number as positive and negative which has prevailed for

two centuries (these may be regarded as the " first
"

(§ 78)

and second extensions of the number-concept), are both

merely special cases of the universal principle here ad-

vanced.

113. To generalize is to see in a multiplicity of objects

similar relations to one form of mental activity that knows

those objects. But until one sees the need of a deeper

principle than that which he has hitherto employed, he

does not seek a way leading from what is known to him to

knowledge beyond. Any idea is at first bare of manifold

essential relations, external and internal. By reflection

such relations are slowly revealed. During the process

the idea may seem derivative from the relations {Cf. geo-

metric definitions of number, § 25) ;
but finally this loose-

ness must be reduced to order, and then all its belongings

are seen to unfold from the idea itself,
— *' first the blade,

then the ear, after that the full corn in the ear."

114. What has just been said would do for a description

of the famous dialectic which Hegel describes as "the

self-movement of the notion (^Begrlff).'^ Indeed, it is not

much more than a paraphrase of its description by Dr.

Harris,
" Seize an imperfect idea and it will show up its

imperfection by leading to and implying another idea as

a more perfect or complete form of it. Its Imperfection

tv'dl slioia itself as dependence on another.'''' (Italics mine.)
115. I know no other method by which the teacher can



ZERO. 85

lead a student to attain for himself a concex^t of number

adequate to any comprehension of modern mathematical

analysis. Each tentative idea of number must pass over

into the next deeper as the result of further and further

insight into the subject.

It remains to apply in characteristic cases the Principle

of Continuity, discovering from the formula of definition of

any operation X^Q nature of the resulting number, as well

as the efficacy of any such new phase of number in any

combination in the defined operations.

XII. SiGXIFICAK-CE A?^D EfFICACT OF NUMERICAL OPER-

ATIONS Under the Ultimate Concept.

116. The very first application of the Principle of Con-

tinuity to the generalization of the operation Subtraction,

displays a number sui generis, which is of immense impor-

tance in analysis. The formula of definition of subtrac-

tion is (tnde § 42) b — a -{- a = b. Then a — a = what

number ? The formula declares that it is a number which,

added to a, makes a
;
that is, it is a number which has

710 efficacy in addition, and therefore none in subtraction.

The best and only unprejudicial name for this number is

zero. Its symbol in arithmetic and in the algebra of

number is 0.

I trust that at least it has been made clear to the

student that it is only the very primary and crudest con-

cept of number which would consider zero "
nothing ;

" for

although of no efficacy in addition or subtraction, it will

presently be seen to exert extraordinary effect in every

other operation. I entreat the student not to slip at this

point ;
for the human mind, once made sensible of its



86 NUMBER AND ITS ALGEBRA.

powers, will never afterwards suffer its conception to be

clogged by the tyranny of material categories. Moreover,

it may quite commonly be found necessary to translate

into correct terms much discourse in mathematical trea-

tises, even when written by men eminent for skill and

learning, to say nothing of inadequate or erroneous pre-

sentations in works on physics and applied mathematics

in general. For example, you may read a Trigonometry

which defines the trigonometric ratios not as numbers, but

as sects (pieces of straight lines) ; yet you can often catch

the author adding one of his bits of straight lines to 2

or 32, and in a context where he really means the number

2 or 3^, etc. Occasionally you will meet denial or even

ridicule of all that I endeavor to lead you to see, and per-

haps by a man of world-wide fame. For example, in a

didactic treatise on Mathematics by De Morgan, published

in a serial Library of Useful Knowledge, London, 1836,

zero is conceived to be ''
nothing

"
;
for on page 23 one

reads,
" Above all, he must reject the definition, still some-

times given of the quantity
—

a, that it is less than nothing.

It is astonishing that the human intellect should ever have

tolerated such an absurdity as the idea of a quantity less

than nothing ;
above all, that the notion should have out-

lived the belief in judicial astrology and the existence of

witches, either of which is ten thousand times more possi-

ble." The truly astonishing thing concerning the human

intellect is that such a man as De Morgan could have writ-

ten this sentence, familiar as he must have been with

Newton's distinction,
'' Quantitates vel Aflirmativa^ sunt

seu majores nihilo, vel Negativse seu nihilo minores."

But, although deficiency is quite as quantitative as excess,

the whole remark is impertinent ;
for zero is not "

nothing."
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Negative numbers are unquestionably less than zero. Yet,

taking liim at his own word, De Morgan should have hesi-

tated before ridiculing as crazy the careful dictum of as

powerful and piercing an intellect as has ever served man's

will.

117. Before investigating the efficacy of zero in other

operations, let us look into further results of the generali-

zation of subtraction.

What are the properties of the resulting number in the

operation b — a, ii b <.a? Consider the results of the

following series of operations, 1 + 2; 1 + 1; 1; 1 — 1;

1_2; 1-3; 1-4, etc.

Here we have a series of numbers which at first decrease

by 1, viz., 3
;
2

;
1

;
0. The subsequent numbers respec-

tively answer the questions, what number added to 2

makes 1, added to 3 makes 1, added to 4 makes 1 ? Now,
in these operations the sums remain the same, and the

given summands in each case increase by 1
;

it is clear,

therefore, that the required summands must decrease by
1. Moreover, these numbers in additive combination nul-

lify 1, 2, 3, etc.
;
that is, make the sum in each case zero.

Thus, 1 + (1
-

2)
=

(1 + 1)
- 2 == 0; 2 + (1

-
3)
=

(2 +
1)
_ 3 =

;
3 + (1

-
4)
=

(3 + 1)
- 4 = 0. Such reflec-

tions reveal an unending series of discrete numbers de-

creasing from zero, each less than the preceding by 1.

Their effect in nullifying 1, 2, 3, etc., in addition, renders

appropriate the appellations ^jostYive and negative to pri-

mary numbers and these now discerned. These terms are

established terms in logic, and are expressive of just such

a relation of clean-contradictory as has been discovered in

these modes of number. On this score, either might be

called positive and the other negative ;
but every propriety
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commends the course adopted— primary numbers are posi-

tive, and such results as we have just considered, negative.
That negative number finds unlimited corroboration in

adaptation to the facts of other sciences, has been amply
illustrated (§ 109) ;

but its existence for pure mathematics
is nowise dependent upon such circumstances. Negative
number should never be defined or explained by such oppo-
sitions as right and left, up and down, forivard and hack-

ward, north and south, past and future, capital and debt ;

but always in its essential character as number.

118. Writing pos. for positive, and neg. for negative, it

is evident that pos. a + neg. b = pos. a — pos. b
;
for pos. 1

—
pos. 2 = neg, 1, therefore, by definition of subtraction,

pos. 2 + neg. 1 = pos. 1
;
but pos. 2 — pos. 1 = pos. 1, etc.

Also, since subtraction is the inverse of addition,

pos. a — neg. b — pos. a -f pos. h.

119. Hereby Section 42 is completely generalized, and
the common rule about "

signs
" and parentheses for addi-

tions and subtractions established without restriction.

120. We are arrived now at a matter of extreme impor-

tance, viz., the dual significance of the signs + and — .

One of the most salient imperfections of ordinary text-

books is their failure to make a clear-cut distinction be-

tween the essentially double meaning of +, and of —
.

Too often the operational significance alone is defined,

although on the next page }'ou may find a complacent
statement « -f (_ o)

= 0; whereas, if + means add, and
— means subtract, a -\- (— a) means, "starting with a, add
and then subtract a," of course, Avith the result a. And
under a purely operational definition such an expression as

a
I
— h is like a " sentence " made by writing words on
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dice and rolling them out of a box. Clifford, in liis zeal

against this abomination, goes too far, and gives three

totally distinct meanings to each of the signs.* His first

two for each are all that are needed or justifiable.

The names of the signs are respectively
"
plus

" and
" minus

;

" their meanings respectively add or positive, and

subtract or negative.

It is, perhaps, to be regretted that beginners are not

taught to use at first different symbols for these wholly
distinct thoughts, and afterwards led to observe that the

notation would be simplified if one symbol were used in

both meanings ;
because the context always makes it clear

which is meant,- if the simple convention be established,

that, if nothing is expressed,
^^
positive

"
is understood, and

if one is omitted, it is the qualitative, and not the opera-

tional, symbol. Thus, in (2) (- 3), 2
/
-

3, 3--, V -
1,

etc., the meaning subtract would not make sense, and ambi-

guity is impossible ;
and in 2 -|- 3 — 4 the convention makes

it clear that the meaning is pos. 2 -\- pos. 3 — pos. 4. It is

true that 2 -f 3 — 4 = pos. 2 + pos. 3 -f neg. 4, and although
less consistent than the notational convention I recite, the

expression might be understood in this sense
;
for the result,

as we have seen in Section 118, is indifferent. But see

clearly that the sign cannot have both meanings at one

time
;
for 7 — 9 = pos. 7 — pos. 9 = pos. 7 -\- neg. 9 = neg.

2, whereas pos. 7 — neg. 9 = pos. 16.

Kote, as in accordance with the convention stated, that in

solving a synthetic equation for an unknoAvn number, its

qualitative nature is unknown, and no sign is to be under-

stood after the sign meaning add or subtract.

* Common Sense of the Exact Sciences, p. 34 et seq.
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If for any purpose it is desirable to be quite explicit, the

qualitative sign may be put in parentheses with the number-

symbol, with the operational sign preceding. Parentheses

would hardly be used for the first term, or for a term stand-

ing alone
; e.g., + 7 - (+ 8) + (+ G)

- (+ 9)
= -

4, is

the full expression of what is meant by 7— 8 -}- G — 9 = — 4.

Of course, if occasion rose, write -|-7-l-(— 8)
—

(
—

6)
—

(+ 9) = — 4. In short, write Avliat you mean, if you
express fully, but remember that abbreviations must be

doubly conventional. {Vide § 162.)
121. What is the product of (— a) (+ h) ?

Consider
{-(- m —

( -{- «)} (-}- b) where vi > a.

By the distributive law, this equals + bm — (+ ba) ;
but

by Section 118 it equals {+ m +( — a)} ( + /'); but
{-{-

m
+ (— <0} (+ ^0

= + ^"^ +(— ") (+ f') by distributive law
;

therefore, since -\- bm — ( -\- ba)
=

-\- bm -\- (~ ba), -\- bm

-j-(_ ba)= -f bm+(— a) (+ b) ;
therefore (— a) (+ b)

=
— ba.

Hence the common rule of signs.

122. What is the product of (— a) (— b) ?

Consider {+ m —
(-f a)} (— b). Distributing and ap-

plying Section 121 gives (4- m) (— b)
—

(-\- a) (— b)
=

— bm — {— ba) = — bm -\- (+ ba) ;
but by Section 118,

{+ m - (+ a)} (- b)
= {+ m+ (- a)} (- b)

= - bm +
{— a) {— b), therefore (^— a) {— b)

=
-[- ba = + ab.

Hence the common rule.

123. Division's definition as the inverse of multiplica-

tion, of course, establishes the rule of signs for division.

124. Sections 121, 122, and 123 render complete under

the common " rule of signs
" the freedom of distribution

and commutation referred to in Sections 54, 55, and 56.

125. We are now prepared to investigate still further
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the properties of zero. We have seen that it has no effi-

cacy in combination with other numbers in addition and in

subtraction. What is its efficacy in multiplication, in

division, in involution, in evolution, and in finding the

logarithm ?

126. ^Vhat is the product (a) (0) ?

Consider ba — ba = 0. By distributive and commutative

laws, and Section 122, ba — ba = (b
—

b) (+ «)
= (+ a)

(b
-

b)
=

{b
-

?y) (- o)
= (- a) (b

-
b); whence (0)

(+ a)
= (+ a) (0)

=
(0) (- «)

= (- ") (P)
= 0' o^' ^^^^^y>

regardless of positive or negative quality of a,

(«) (<^)
=

(0) («)
= 0.

127. Note that as an independent number zero is with-

out qualitive distinction of positive and negative ;
for

a 4- = a — 0, hence -f-
= — 0.

128. It may be a profitable comparison to call atten-

tion expressly to a unique property of 1 in multiplication

and division
; thus, —

(r?) (-(- 1)
=

rt, and a
/ -{- 1 = a, that is to say, x (+ 1)

=
- (+ !)•

Also (a) (— 1)
= —

a, and o /
— 1 = —

a, i.e., X (— 1)

= - (- !)•

129. X = 0, for (a
_

a) (Z»
-

?;)
= X = ab — ah

_ ah + aJ> = 0.

130. r.ut what is the result /O ?

This case is of extreme importance. Failure to compre-

hend it when it comes into systematic use in the Calculus

has put a veil of irrational mystery over that whole dis-

cipline. Thousands of students, although they have met

and slightly used this indeterminate form before, yet inas-

much as they have regarded it a matter of special con-
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vention that 0/0 should represent any number, are

dumfounded to find a discipline where a number is, they

say, made zero in one member of an equation, and some-

thing else in the other. After a pathetic struggle to see

reason in their procedure, they commonly give over, and

accept the outrageous extravagance that a concatenation of

deductions to be valid need not have meaning in every
link

;
that a compulsory conclusion of an argument does

not require intelligibility of its several steps; or that

results may be thoroughly made out true for reasons no-

wise understood.

131. "When the ratio 0/0 is first presented for consider-

ation, one may be disposed to jump to the decision that

0/0 = or 0/0 = 1; but it is clear, from the definition

of division, that in the synthetic equation 0/0 = y, any
number

(0, 3/5, 1, V2, 2, 3, etc.) substituted for y will

make a formula (§ 40), an identity. That is to say, / =
anv number.

V

Indeed, this statement is merely another way of saying,

"any number multiplied by zero gives zero," which is com-

monly accepted without objection. And both of these

statements are only particular applications of the postulate

expressed in the Principle of Continuity.
The ratio 0/0, then, may be any number; but in par-

ticular instances it is often a number which may be deter-

mined by independent considerations.

132. If two numbers (or any other two magnitudes of

the same kind) vary, their ratio varies
;
but the ratio at

any assigned limits of the variables is the same as at values

of the variables only infinitesimally (vide § 222) removed

from such limits. In fact, the original definition of equality
of ratios contains this doctrine. •

( Vide § 83 (6).)
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Consider the functions of x, x^ — 1, and x — 1.

3.2 _ 1
What is the ratio wlien x = 1?

X — 1

The ratio may be evahiated Avithout hesitation, as x

assumes various values, until a; = 1 is reached, when both

functions vanish, and the ratio assumes the indeterminate

form, 0/0. But when x differed only infinitesimally from

1, beyond objection, = x -\- 1, which differs only
X — 1

infinitesimally from 2. Therefore, when x = 1, the ratio

- = ~— = a; + 1 = 2, absolutely,x-1 ^ ' -^

There is no trickery here. The Calculus, with its

astonishingly powerful algorithm, applies such numerical

interpretations to concrete magnitudes ;
nor would it, in

my opinion, be out of place in this connection to give illus-

trations of the wonderful propriety, and accordance with

independent facts, of this method, but out of deference to

established custom— usus tyranmis
— I leave such corrobo-

rations to future studies, with the simple assurance of

their cogency. I shall only set forth one more very simple

illustration of an. evaluation of a ratio 0/0. Consider

the following two functions of y, 2 y -|- 3 y- + 4 y^, and

3 y -\- ^ y"^ -\- 21 y^. Their ratio would be easily evaluated

for particular finite values of y ;
but suppose the variable

y becomes zero, what then is the ratio of the functions ?

If y = Q,
li^L+ll!+li^ = 0/0.

And if each term be divided by y we have

2 + 3.v-f-4.v^ _ 2 /3, when y = 0.
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Now, it might well be objected that in dividing by y, if

y = 0, the most we could say would be

2(y/y) + 3yO////)+4rO////)
3(y/z/) + 9y(y/y) + 27y^(y/y)'

and that this remains as obscure as the original if /
is any number. The explanation is, that the ratio of one

and the same variable to itself is constantly 1
;
a J a = 1

always. Therefore, even when y == 0, y / y = 1, and if so,

^(y/y)+3y(y/y)+4y^(y/y) _ 2 + 3y + 4y^ _^

It would take us too far afield to go further into the doc-

trine of limits of variable magnitudes and infinitesimals,

and the appropriate application of number. The whole

question of the use of this indeterminate form 0/0 may
not improperly be postponed by the student, who for the

present might content himself with the discernment that,

whether it be possible to evaluate / or not in particular

problems, 0/0 may be any number.

133. What is the result of the operation / ct ? and

what of ffl / ?

The first asks the question, what number multiplied by
a gives zero

;
and from the formula of definition and Section

126, the answer is evidently zero.

Also 0/ + a = = 0/-a.
The second asks the question, what number multiplied

by zero gives a ?

Erom Section 126 it is evident that no number 3-et dis-

cerned answers this question.

But a consideration of the continuously increasing ratios

(vide §§ 81, 82) of the same number to a decreasing series
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of numbers, reveals that, if the ratio -)- a / is a number,
it is one greater than any primary number, and of peculiar

"efficacy in operational combination. This number, whose

reality is requisite for untrammelled numerical analysis,

is called 2^ositive infiiiity, and notationally expressed as

-|- CO -

Similar generalization under the Principle of Continuity

makes — a / negative infinity, written -co .

134. The discovery of many properties of infinity, posi-

tive and negative, must be left to future studies
;
as well

as the principles of evaluation of ratios of infinities dif-

ferently derived, analogous to evaluations of ratios 0/0.

{Vide § 132.)

It Avill be found that in the application of ISTumber to cer-

tain magnitudes (e.g., straight lines in Euclidean Geome-

try) that for them it appears the points at infinity coincide.

Other " one-dimensional "
(vide § 232) magnitudes show

a double absolute : for example, ProhahiUty ranges from

absolute certainty /or, to absolute certainty against.

Without going too deeply into philosophical questions,

it may be remarked that Hegel, in discussing the mathe-

matical infinite,
"
points out that the mathematical infinite

. . . uses the idea of the true infinite, and therefore stands

higher than the so-called metaphysical infinite. The latter

opposes the infinite to the finite as the mere negative of

the latter, and thereby makes two finites, the former the

void of the latter
;
whereas the mathematical infinite ex-

presses self-relation as its true form."* Much might be

said also of how important to philosophy is the mathe-

matical concept of continuity. Indeed, many of Hegel's

* HegeVs Logic, Harris, !>.
278.
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conceptions are true only as glimmerings of wliat mathe-

maticians had before made clear, or have since illuminated.

135. I present in tabular form * the possible meanings'
of the ratio x j ij,

as x and y independently vary from

to ao . The student can readily verify the statements, and

extend them to cover distinctions of positive and negative
in X and y :

—
(
1

)
X

I y'\'& finite if x is finite and y finite.

(
2

) may be finite if a; = and y = 0,

( 3 )
or if a; ^= CO and v/

= cc .

(4)a:'/?/ = ifa; = and y not 0,

( 5 ) or if .T not co and y ^ c/j .

(
6

) may =0 if a; = and y = 0,

( 7 ) or if a- = oo and y = cc .

(8) x / y = ao ifa-=co and y not cci
,

(
9

) or if a; not and y = 0.

(10) may = oo if a; = and y = 0,

(11) or if a; = CO and ?/ = oo .

136. Of course oo + oo = co . But oo — oo is indeter-

minate
;
since any number (0, finite, or infinite) substi-

tuted for X satisfies the synthetic equation oo + a; = oo .

137. Of course oo X co = oo . But OXco = coXO is

indeterminate
;
since the multiplications of which Section

135 (5), (7) are the inverses, show X oo = any number.

138. Various considerations dependent iq^on the con-

tinuity of number confirm the interpretation that a;" = 1,

if X is finite. But it may suffice to consider that if x, y,

and z are finite, a;^ -=- a;^ = x^-'
;
and it y = z, 1 = x'J -i-

xy = xy-y = x".

* A similar table occurs in Chrystal's Text Book of Algebra, Part I.,

p. 317.
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139. Evidently (1) 0-^ = if a: is finite.

(2) a;+* =00 if ic is finite and > 1.

(3)
= if rr < 1 and > 0.

(4) x"^ = if 33 is finite and > 1.

(5)
= CO if ic < 1 and > 0.

(6) 0+- =0. (8) a;
+=» = 00 .

(7) 0-= = 00 . (9) ^ -=" = 0.

As the student may convince himself. (§ 143 is anticipated.)

140. But the results (1) 0°, (2) ^ °, (3) 1+^, (4) l-« are

indeterminate
;
as may be seen most readily by considering

that x^ = m2'^°^ra-^, where m is finite and greater than -|- 1.

x^' is accordingly determinate when y log„j x is determinate,

and indeterminate when ylog^a; is indeterminate. The

cases when ?/log,„« is indeterminate are, by Section 137 :
—

(1) When y = 0, log,„ x = -co"; i.e., when y = 0, cc = 0.

(2) When y = 0, log„j,x
=

-[- co
; i.e., when y = 0, .r = oo .

(3) When ?/ = -j- oo , log,„a3 = ; i.e., when y = -j-c/^ ,x ^ 1.

(4) When y = — cc
, log,„ic

=
; i.e., when y = —

ct) ,x = 1.

141. Every indeterminate form may be reduced to 0/0,
and in this sense it may be said that the one fundamental

case of indetermination is 0/0. For example :
—

00-^ = 1/0-1/0 = 1^ = 0/0;

^/^ =^ = 0/0.

142. Let the student tabulate from the foregoing sec-

tions all the indeterminate operations.

He must be content to postpone investigation into the

evaluation of these indeterminate results as they arise
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from particular functions of variables, regarding Section

132 as a simple example of the general principle.

143. It remains to investigate the efficacy, as exponents
of evolution, of fractional, surd, and negative numbers.

What is the meaning of the operation a^, if a is positive

and finite, and x a fraction ?

The conclusion is corroborated by the continuity of num-

ber, by countless correspondences, and by perfect consist-

ency with all other laws
;
but regarding the Law of Indices

as the essential definition of the operation, the meaning is

immediately revealed. Thus : let a'" '
", where 7n and n are

positive integers, equal z. Then, since «"«/« is subject to

the Law of Indices, z^ = zzz . . . n factors = a"'^"a'"^"

. . , n factors = «"-/"+«/» n terms ^ „m_ rj^^r^^ -^ ^^

say, z is a. number whose nth power is a'"; or z is an «th

root of a"'; i.e., a""'" = V«'".

In particular, if m = 1, ct}
' ^ = V«.

As we saw in Section 94, the operation >/« (where a is

positive) is always possible, in the sense that, if the result

be a surd number, it can be determined to any degree of

approximation. (But see § 153, et seq.)

144. It will appear in the studies to which these lec-

tures are introductory that there are n nth. roots of a,

where n. is a primary number ;
but the student may observe

now, that when n is even there are at least two roots of

a, one the negative of the other; e.g., 4}/^= J^ 2. But

note that the law of indices has regard only to the corre-

sponding roots of numbers, simply because V« Va does

not equal a, if one positive and one negative root be taken.

(ride%^ 191 and 146.)

145. It is necessary to say at this point that we must

either use the terms "
rational/'

"
irrational,"

''
real," and
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"
imaginary," or invent equivalents. ( Vide Introduction,

p. 16, and § 101.) The terms are unquestionably abusive,

and perhaps the time is ripe for a protest. No number is

irrational, and all numbers are real. Therefore, if merely
as an experiment, I shall be consistent in calling numbers

commensurable (tvith 1, understood) where the text-books

say "rational
;

"
either incommensurable or surd, where they

say "irrational;" radical-surd, where they say ''surd"

(^Cf. § 83) ; protomonic, where they say "real"
; neoinonic,

where they say
"
imaginary

"
(unless they say

"
imaginary

"

when they mean complex) ;
and when functions or opera-

tions are spoken of as "rational" or "irrational," in sub-

stituting stlrpal and radical respectively. These words,

except 2}'>'otomonic and sthpal, are in good usage either

exactly or approximately in the senses defined. Proto-

monic and sthyal I coin
; reluctantly, but unavoidably. I

hope they justify themselves as antitheses of neomonic and

radical. Of course, surd is not much better etymologically
than " irrational ;" but the metaphor is dead, and. conse-

quently harmless. Concerning commensurable, see Section

205. (See also § 156.)

146. Before passing to other cases of the exponential

function a^, it is proper to call attention to certain para-

doxes which may arise in the interpretation of such

functions. (Cy*. § 191.) For example, a* ^-= a'^. But as a

fractional index, a^ ''^ means Va* = i a'^ which at first sight

might seem to assert that a" = -^ a~. Likewise, one might
be led to say, since (a'")"

= a""> =
(a")"', (-i^'-y

= (i-y^,
and so (-t- 2)^ = J- 4, that is, + 4 = ^ 4. (Cf. § 144.)

Such difficulties will arise in a"'^", etc., when mfn is

not in its lowest terms, a*'^ = a^ is not a radical function

at all; though it is quite true that the second roots of
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a* are + a^ and — a^. The law of indices is not a matter

of arbitrary or meaningless symbols, but of facts. If

algebraic expressions are not regarded as logical state-

ments, and full account taken of the nature of the

derivation of one equation from another, apparent con-

tradictions will often arise. (^Cf. § 319 et. seq.)

147. What is the effect of a negative exponent of invo-

lution ?

Consider «-"» = a"'" X a™- j a"^.

By law of indices,

a-'" X a''' I
a''' = a- '" + '"'

-r- a'" = a" / a'" = 1 /a™,

by Section 138
; therefore,

«-"» = 1 /a"".

That is to say, a~'" is the reciprocal of a"^.

148. The continuity of number at once extends all that

has been shown to be true of integral and fractional ex-

ponents to surd exponents.

Thus in the function a^, whether x be commensurable or

surd, we can always find two fractions, m / n and
,

between which x lies, and which differ by as little as we

please. As stated in Section 95, in calculation we use

a^jn instead of a^, where m/nis a fraction closely approxi-

mating the surd x.

149. When a is positive and > 1, and regarding only

protomonic positive roots, a^ is a continuous function of x,

passing through all values from to -(- co
,
as x varies from

— oo to -f CO . Thus,—
a^ is 0, < 1, 1 /«, 1, > 1, a, + 00

when X is — oo ,
—

,

—
1, 0, -\-, -]^ 1, -]- cc .
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When a is positive and < 1, the vahies of «^ are + co
, > 1

1 / a, 1, < 1, a, 0, corresponding to the same values of x.

150. As has been explained, b = a^ and x = log„ b, are

merely different ways of writing the same functional rela-

tion. Thus all laws and properties of logarithms are de-

rivable from the principles of involution, in brief, from the

law of indices. Until the uses of logarithms and the con-

struction of logarithmic tables are investigated, it is enough

to say that for the same base the following are the leading

properties of logarithms,
— as the student may easily dis-

cover from the law of indices :
—

(1) The log. of a product of positive numbers is the

sum of the logs, of the factors.

(2) The log. of the quotient (ratio) of two positive

numbers is the log. of dividend minus log. of divisor.

(3) The log. of any power of a positive number is the

log. of the number multiplied by the exponent. (Power is

used in the general sense
;
for the statement is true for all

exponents, and therefore inclusive of the commonly sepa-

rated rule for roots.)

(4) (log,, b) (logs a)
= 1, and log„m = -51^ .

The base of " common "
logarithms for piirposes of final

calculation is 10
;
but the base discovered to be primarily

appropriate to mathematical investigations is an incommen-

surable number, called e.

e = l-ul + — 4- — H \- to CO terms *

= 2- 7182818284 +.

* 1 X 2 may be abbreviated 2 !

-p^^^^
„ factorial two,"

1X2X3 may be abbreviated 3! .. factorial three," etc.

1X2x3X4 may be abbreviated 4 !
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The base 10 gives logarithms vastly more convenient in

calculation
;
the base e,

in analysis.

Formulae (4) yield the simple process for deducing from

a given table of logarithms to any base, the logarithms to

any other base. Thus, to deduce log„ m from logj m, mul-

tiply by .

logs a ^
The constant multiplier, ^j

,
is called the modulus of

the system whose base is a with respect to the system

whose base is b.

The modulus of the system whose base is 10 with respect

to the system whose base is e, is
:;

— = 0-4342944819 +.^
loff.lO'a e

The modulus of the system, base e,
with respect to the

common system, is = 2-7182818284 -\-.

-I logio e

Of course, = logio ^
;
that is to say, the recipro-

log.lO
cal moduli of two systems are reciprocals in the numerical

sense.

151. For interesting historical sketches, the student is

referred to the articles,
"
Logarithm's

" and " John iSTapier of

Merchiston," by J. W. L. Glaisher, in the Encydopcedia Bri-

tannica, ninth edition. A perusal of these monographs will

lead him to appreciate the brilliancy of Napier's invention,

and the merit of Briggs and Vlacq, as well as the claims of

Byrgius, a Swiss contemporary of Napier, as an indepen-

dent but crude inventor. He should bear in mind that this

achievement came prior to the exponential notation, or any
clear idea among mathematicians of exponential functions.

An attempt to prove— to say nothing of discovering— the

laws of logarithms, after divesting one's self of knowledge
of the generalization of involution and all moderji advan-
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tages from the correspondences of two series of numbers,

one in " arithmetic " and the other in "
geometric

"
progres-

sion, would alford a very high estimate of ISTapier's genius

and acumen.

152. The student can easily discern tlie laws of the

function a^ if a is negative, and x zero or integral. If x

is zero or a multiple of 2, the power is positive ;
if x is

odd, the power is negative.

153. Also, if a is negative, and x fractional, with odd

denominator, the power is protomonic (vide § 145). In

other words, if a is negative and n odd, there is always
a protomonic nth. root of a. For consider the function y",

where n is an odd positive integer. The function passes

through all values from -co to 0, as ?/ passes from — co

to 0. Therefore, there must be some protomonic negative

number, y, for any negative nvipiber, a, such that y^ = a.

That is to say, there is always a protomonic odd root of

a negative protomonic number.

154. But if in the operation a-^, a is negative and x a

fraction in its lowest terms, with even denominator, there

is no result whatever, nor is the operation intelligible with-

in protomonic number. For the function y", where n is

an even integer, is always positive. Therefore there is no

protomonic number, y, such that ?/" is negative when n is

even. That is to say, there is no protomonic even root of
4

a negative protomonic number.*

155. Evidently, then, unless the Principle of Continuity

* Also in terms of protomonic number there is no logarithm of a

negative number to a positive base. At this stage we cannot investigate

such functions
;
but log (+ a) (

—
b) has been shown to be indeterminately

any member of an infinite series of complex numbers. Thus in no case

are we led out of complex number as the ultimate generalization.

(Cf. § 202.)
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shall widen our concept of number, the generality of

numerical operations abruptly fails at this point. But the

Principle of Continuity does apply here as everywhere
else

;
and the power of analysis is enhanced, and the appli-

cability of Number to the relations of concrete magnitudes
perfected beyond the dreams of mathematical science prior
to this development.

Before taking this step, however, we must investigate a

few fundamental properties of radical-surds.

156. In all algebraic expression of number the student

must avoid confusion on account of any possible value of a

function for particular numbers in place of the algebraic

symbols. Thus
{j^^'^)"" is a radical function of 2> in alge-

braic form
; although, of course, in cases where m = 2n,

and n an integer (p^
'

"^y = j)^, the nature of which again

depends on the character of p. Or, the -y/x is algebrai-

cally a radical-surd
; although if a? = 4, it is commensura-

ble, and so forth.

It is not necessary to be constantly
"
providing

" obvious

conditions. Intelligent attention will always secure com-

prehension of the algebraic statements in the sense in-

tended, whenever explicit provision is omitted.

157. A radical-surd number, or multiple, or fraction

thereof, is called a simple, monomial radical-surd. The

suD^ or difference of two such, or of one such and a com-

mensurate number, is called a simple binomial radical-surd.

It will be seen that every stirpal function of a radical-

surd can be expressed as a simple radical-surd.

Two radical-surds are called similar when they can be

expressed as multiples or fractions of the same radical-

surd : e.g., V3/4 and VlS are similar; for V3/4 =
1/2 V3, and Vl2 = 2 V3.
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E-adical-surcIs with the same base and same root-index

are called equiradical ; e.g., a^'^, a"^, a"'^.

Radical-surds with the same root-index are called of the

same order— quadratic, cubic, biquadratic, quintic, . . .

n-tic; e.g., V3, 5^'", x"'^ are quadratic surds; V3, 5^^^,

x"'^ are quintic surds.

158. From the Law of Indices (a'» a" = a"' + ") it is

easily proved for protomonic numbers (but see § 191) that

a"' a"'' = (aa.y^, or (('" [>'" = (ab)"K Thus, if m is integral

f^m ^m _ ^^^(j . . . m factors) X (phb . . . m factors) by

definition,

= {ab.ah.ab . . . m factors) by laws of association

and commutation,
= (a^)™ by definition.

And if m is fractional, say ?/i. = 1 / n where w is a posi-

tive integer, («i'"a"''a^"' . . . n factors) X (^^
'" ^^ '"^' ^"

. . . n factors)
= (a^'^'h^"') (a^'^b^'") . . . n factors;

but the left-hand member equals ab; therefore (a^'"i^'")

(a^^"6^'") . . . n factors = ab, therefore a^'^'b^'" (aby'\

if positive roots of a, b, and ab are alone considered (vide

§§ 144, 146). _
159. A special case, -\/a"b = a^b, is important in re-

ducing radical-surds to similarity.

160. Note also ^a = VaP ;
for aV» = «"/"? = V«p.

pn + q

161. Also, ^(1^^
+ " = aP^ai;iov a » =aPaih.

162. Similar radical-surds are " added " or " subtracted "

by distributing the radical-surd factor with the coefficients.

{Vide § 73.) If possible, first reduce by the principle of

Sections 159, 160, e.g. , 1/3 V32 - Vl8 + 3 -v'64 = 1/3
V(16) (2)

- V(9H2) + 3 V(4) (2)
= 4 /3 V2 - 3 V2

-\-Q-j2 =(4/3 - 3 -f 6) V2 = 13/3 V2.
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Staxements involving radicals are usually intended to

concern only positive roots
;
but in abstract operation such

statements are necessarily various, including the roots in

every combination. The whole truth about the result in

the example is

{±4/3 - (± 3) + (± 6)} V2 = ± 13/3 V2, or

±5/3 V2, or -i-23/3 V2, or ±31/3 V2.
The V2 is also both positive and negative; but since

each commensurable factor has already occurred with both

signs, no new value would be obtained from the double

value of the V2. But if all this is to be signified, it would

be better to be explicit, and write 1/3 (zl=V32)
—

(-j-VlS)

+ 3 (±-^64). (Vide § 120.)

163. Section 158 affords the rule for the multiplication
or division of similar radical-surds, or of radical-surds of

the same order.

If radical-surds are not of the same order they may be

made so by Section 160.

The Law of Indices immediately furnishes the rule for

the involution or evolution of radical-surds.

164. The student should exercise himself in these opera-
tions.

165. Two simple binomial quadratic surds are called con-

jugate when one is the sum and the other the difference of

the same two terms :. e.g., a -\- -y/h and a — -y/h, or V« +
V^ and -yja — -y/b.

166. Theorem.— The product of conjugate binomial

quadratic surds is a stirpal function of their bases (a com-

mensurate number if the bases are commensurate numbers),

namely, the difference of the squares of the terras.

Proof: (Va -f V^*) (Va — ^h) = a + V« V^* - -\/h

yja — h = a — b.
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167. It is usuall}^ preferable in the division of one radi-

cal-surd by another, or of a commensurable number or

non-radical surd by a radical-surd, to stirpalize
* the de-

nominator.

This is accomplished when the divisor is a monomial

radical-surd, as Va"*, by multiplying both dividend and

divisor by -v/«"~"'. For example,—
3 _ 3 V2 _ ^ _c c Va^ _

4V2 ~4V2V2~^/^^^' bVa'~ hVa'Va^~

When the divisor is a binomial quadratic surd, multiply
both dividend and divisor by the conjugate quadratic surd

;

when a trinomial, make it a binomial by association, and

apply the principle twice.

168. Let the student find a stirpalizing multiplier for

This is the most general case of a monomial.

169. A stirpal integral tervi with respect to any num-

bers, means the product of positive integral powers of those

numbers.

A stirpal integral function of any numbers is a series

(one or more) of stirpal integral terms combined in addi-

tion or subtraction.

Where no ambiguity is to be feared we may say merely

"integral function." xj a -\- yfh + ;s/c
— 1 is an integral

function of .r, y, z
;
but is not an integral function of a, b, c.

In integral functions the degree of any term is the sum

* The common term is
"
rationalize;

" but having eschewed this, we
must say stirpalize.
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of the exponents of the numbers considered (commonly
called variables) ;

and the degree of the function is the

highest of the degrees of its terms.

An integral function of the 1st degree is often called a

linear function.

The term degree applies only to integral functions.

Thus, -
-I ^ + 1 is of no degree at all : the term does not

X x^

apply.

Functions in Avhich the variables are affected by positive,
but not integral, exponents are called radical functions.

For example, a + -yjh + x, or a + (Z> + xf ''\
is a radical

function of x (also of I) ;
and Vx + \j]), or {x — if '^f '«,

is a radical function of x and y.

Functions in which the variable occurs with negative
index are called fractional functions, and distinguished as

stirpal or radical fractional functions, according as the nega-

tive index is integral or not. Thus, ^-, or «a;-^, is a stirpal
X

fractional function of a;; and ~, or ax-^'-, is a radical

fractional function of x. "^^

Integral, radical, and fractional functions are classed, not

very felicitously, as "algebraical" functions, in distinction

from others equally algebraical, called " transcendental."

I shall have no occasion to use these objectionable terms,
since the other functions are all particularly named upon
their own merits.

Functions in which the number considered occurs as an

exponent are called exponential functions; e.g., «^, a-^""

are exponential functions of x.

The foregoing classes of functions are those organically
involved in numerical operations. Others, less essentially
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connected with orgauic laws, are named from their several

points of view
; e.g., log cc, logarithmic function

;
sin

a;,

cos X, tan x, etc., trigonometric functions, etc.

Numerical functions (Cf. §§230, 234) of every variety

are termed analytical functions (Cf. §§ 145 and 156.)

170. Theorem.-—^ Every integral function of quadratic

surds (V«, V^, Vc . .
.)

can be expressed as a sum of a

non-radical term and multiples or fractions of the radicals

and their products —
(V'«5 V^, V c . . . 's/iiO, \ac, -yhc . . . -y/abc . .

.).

Proof: Consider any integral function of one quad-
ratic surd, say </> (Va). Terms of even degree are non-

radical, and terms of odd degree can all be reduced to the

form na"^ V«. Collecting the even and odd degree terms,

we have <^ (Vc') = Z; -)- A Va, where k and h are stirpal.

If we have <^ (V«, V^), proceeding as before, we get

^ (V«, V^) = K -\- H a/a, where K and If are stirpal so

far as V^ is concerned, and each.an integral function of

V^. These can be reduced, and will yield only terms such

that ^ (Va, V^) = k -{- h V« + '»i' 'Vb + n ^/ab.

171. CoKOLLAKY. — It follows that <^ (— V«) = k — h

Va ;
and therefore if

</> Va be any integral function of Va,

then, </) (
— V«) is a stirpalizing factor of ^ V«. {Cf.% 166.)

Also if in
</> (Va, V^, Vc, . . . ) we change the sign of

any one, say, V^, then ^ (Va, V^, Vc, . . .
) X <^ (Va

— Vi, Vc, . . .
) is stirpal so far as V^ is concerned.

172. Extension of the theorem to all stirpal functions,

integral or not, of quadratic surds— and of the corollary

to the entire stirpalization of ^ {-yja, -\/b, Vc, . .
.) is

left as an exercise to the student.

173. As a very simple example of the utility of these prin-

ciples, suppose one had to calculate to five decimal places,
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1
. Time and labor would be saved by redu-

1 -)- V2 -|- V3 cing to the equivalent integral function

of the radicals, 1/2 + 1/4 V2 -
1/4 V6, before cal-

culating.

174. Theorem.— '^ If p, q, A, B, be all commensurable,
and V/? and Vg" incommensurable, then we cannot have

Vi> = A + B Vq.
"
For, squaring, we should have, as a consequence, j)

= A^

-\- B"^ q -\- 2 AB V«7 ; whence, Vv = —^ ~
, which-r i -r I, , 1 2AB

asserts, contrary to our hypothesis, that -y/q is commen-

surable."

The proof of this theorem, Avhich is copied verbatim

from Chrystal's Text Book of Ahjebra, Vol. I, p. 200, estab-

lishes what may seem at first sight a contradiction of the

doctrine of the Continuity of Number. Especially so, under

the somewhat ambiguous title of the section in Professor

Chrystal's work (perhaps the best yet written in English),
the ^^Independence of Surd Numhers.^^ Eadical-surds are

definite parts of the continuous magnitude, Number
;
nor

does the theorem contradict this
;

nor are radical-surds

<'
independent

" in any other sense than that there are no

commensurable numbers such that V^^ = A -{- B ^ q.

175. Since, by Section 170, any integral function of a

quadratic surd can be expressed as in the form, A -\- B -y/q,

it follows from Section 174 that one quadratic surd cannot

be expressed as an integral function of a dissimilar surd.

176. It is an obvious corollary of Section 174 that if A; +
h -yja -\- m V^ + n "y/ab = 0, where neither a nor b is zero,

then k = 0, A = 0, m = 0, and n = 0.

177. One case, whose utility is experienced very early

in algebraic studies deserves special mention. If a -\- Va;
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= b -\- -y/i/, then a = h and x = y, provided a, b, x, and y
are all commensurable, and -\/x and V*/ surds.

178. Let the student prove that the product or quotient
of two similar quadratic surds is commensurable

;
and

inversely.

The like is not true for radical-surds of higher orders
;

but let him show that the product of two similar, or of two

equiradical, surds is either commensurable or an equirad-

ical surd.

179. We are now prepared to take up the consideration

of the problem presented in a}''^ where a is negative, and

n an even, positive integer.

As Ave saw in Section 154, the operation is unintelligi-

ble under the concept of Number thus far attained. But

if the Principle of Continuity is valid, the result must be

a number
;
and if not any number hitherto conceived, we

must investigate the characteristics of this unknown num-

ber, X in the synthetic equation (— 1) Y^ = x.

180. Whether fortunately or unfortunately, this prob-

lem confronts pupil and teacher at a very elementary

stage of numerical analysis. In every high school the

solution of quadratic equations is attempted; and these,

even in the simplest form, are in general solvable only in

terms of neomonic and complex numbers. The question,

therefore, cannot be postponed ;
and it behooves every

teacher to clear up his ideas on this subject.

181. Mathematicians of to-day have left the point of

view of the sixteenth century, from which numbers were

characterized as " rational
" and "

irrational,"
" real

" and

"imaginary ;

"
they use V— 1 as naturally as — 1. Neo-

monic one, and negative one, bear a similar relation to

Primary Number.
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The conception of neomonic number is not essentially

more difficult than that of negative number. He who can

conceive the one, can conceive the other. The V— 1 is no

more an impossible and meaningless operation in terms of

protomonic number, than 1 — 2 is impossible and unintel-

ligible in terms of primary number. Terms are often bab-

bled in unconscious vacuity of thought. Many speak quite

familiarly of negative number, who nevertheless regard

neomonic number as some irrational and meaningless trick

of handwriting. As suggested in Chapter XII, I lament

imperfect concejits of Number on the imrt of us all, but let

no man pigeon-hole in his mind contradictory opinions. It

seems to me something to put neomonic numbers on the

same footing as negative numbers, or even numerical frac-

tions.

When this point of view is attained, I think we stand

in the dawn
;
or rather that the sun has risen upon Arith-

metic, even as it has risen upon Geometry. Perhaps we

shall not have long to wait for still fuller and more satis-

fying interpretations of number than have been expounded
hitherto

;
because not one man, but hundreds, have reached

some such standpoint as that from which I have endeav-

ored to present the subject. During two thousand years

after Euclid saw that he must assume the "
parallel postu-

late
"

it was universally regarded either as an axiom, or as

a theorem capable of demonstration. But finally the true

insight was gained (regained) by many minds about the

same time
;
and then the Non-Euclidean Geometry, and

daylight became, indeed, "inevitable."*

* The MoJiist, July, 1894,
'

Xon-Eudidean Geometry Inevitable, by-

George Bruce Halsted. Of course tVie majority of text-books still pre-

sent Geometry at this crucial place from the mediaoval standpoint ;
but
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182. If the V — 1 is a number, we have by definition

V-1 V-l= -1,
also Va ^a = a, where a is any positive protomonic

number
;

therefore (Va V— 1) (V« V— 1)
= —

a, multiplying

member by member
;

therefore Va V— 1 = V— «, taking square root of each

member.

Consequently it appears that the square root of any

negative number is the product of the square root of the

corresponding positive number and V — 1- Considering

also all multiples and fractions of V— 1, and the nega-

tives of each, we discern a continuous Number whose unit

is V— 1> and which has, therefore, been called Neomonic

Number. The Number whose unit is 1 may be called Pro-

tomonic in contradistinction.

Writing i for V— Ij this continuous series may be rep-

resented—
— cx> i . .

— 2 i . .
— -y/2 i . .

— i . .
—

^ i . . (i)
. ,

-f ^ i . . . -\- i . . + V2 i . . + 2 t . . + CO i.

The protomonic series may be represented
—

— CO .
- 2 . . .

- V2 . . .
- 1 . .

-
1/2 . . ...

-f 1/2 . . + 1 . . + V2 . . . + 2 . . . + 00 .

183. No neomonic number can equal any protomonic

number except i = 0. For it is deducible from various

this is probably as much due to the mercantile rule of using up a stock-

on-liand before advancing to something better, as to ignorance of recent

developments. No doubt hundreds of teachers put the " axiom "
in its

right place in their expositions of the text
;
and so, as it were by a note,

bring their text-books "
up to date."
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premises that 1 = 0. Thus, ii xl = 0, then (xi) (xi)
= 0,

that is,
— x^ = 0; therefore x = 0, and therefore * = 0.

184. Most laws of operation with neomonic numbers

are evident from familiar princixDles. Thus:—

ai 4- bi = (a -\- h)
i . . . hence the sum of two neomonic

numbers is neomonic.

ai — hi = (a
—

b) i . . . hence the difference of two neo-

monic numbers is neomonic.

ai X b = abl . . . hence the product of a neomonic and a

protomonic number is neomonic.

ai X bi = — ab . . . hence the product of two neomonic

numbers is protomonic.

ai -ir b r= (a 1 0)1 i
_ , hence ratios of protomonic and

h -r- ai = (^— b I a) I
) neomonic numbers are neomonic.

ai ^ bl = a I b . . . hence ratios of neomonic numbers are

protomonic.

^2 = - 1
;
P = - 1 V- 1 = - *

;
^^ = *2 r _ + 1

;
and

where n is a positive integer,

(aiy = {ai . ai . . . n factors)
= {aaa . . . n factors)

(iii . . . n factors)
= a"*",

that is, the positive integral power of a neomonic number

is protomonic or neomonic according as the same power of

i is protomonic or neomonic. Moreover, the integral powers

of * are seen to recur in a period or cycle of four different

values. Negative exponents result as always in the recip-

rocal of the same number Avith like positive exponent.

185. Discussion of radical functions of i, and the inter-

pretation of neomonic exponents, is postponed to more
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advanced studies
;
but we are not led to any new applica-

tion of the principle of Continuity, and therefore to no new

mode of jSTumber, beyond the result of combining proto-

monic and neomonic numbers in addition and subtraction.

186. The extension of the number-concept reaches its

own essential terminus in the operation a + hi, where a

and h are protomonic.

In a -{-hi we have the most general expression of num-

ber
;
for it is protomonic, neomonic, or complex, according

as ^ = 0, a = 0, or neither equals 0.

187. The result of the operation a -\- hi, is called a com-

plex number
;
and is seen to be really a new mode of Num-

ber by considering the series of complex numbers formed

in a + hi, as a and h pass independently through all pro-

tomonic values.

188. It is highly important to note this two-fold, two-

dimensional (vide § 229, et seq.), character of complex

number, and its consequent contrast with protomonic and

neomonic number. There is only one way of varying x

continuously (without repetition of intermediate values)

from — 2 to + 3, if it remains protomonic. Likewise, only

one way for continuous passage of x from — 2 i to -\- 3 i,

if it is to be always neomonic. But in utter contrast, there

is an infinite variety of ways for x to pass continuously

from — 2 + 3 i to + 2 + 3 /, remaining always a complex

number. (Vide § 197.)

189. If a = and b = 0, a -\- hi = 0; and inversely.

190. Complex number contains all protomonic and all

neomonic number as special cases, and is therefore Number

in its final generalization.

191. The student should everywhere carefully avoid con-

fusion in dealing with the alternate square roots of any
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number
;

but especially is this the case with neoinonic

numbers. Having been accustomed to write {vide §§ 64,

158) Va V6 = V"^, he may fall into the error of writing

V— a V^^ = V(— «) (— h)
= -y/ah. I call this an error

because we must be consistent in algebraic conventions
;
and

in such contexts the positive root is understood by -y/ab*

It is not a true statement that Vf'- V^ = Vo^, if the

square roots are to be taken at random. One cannot make

various assertions in the same sentence. Therefore, in

Va V^ = Vab, we evidently mean only the positive

square roots to be considered. If negative roots are to be

taken into account, we must say what we mean. Thus

(writing -j- V* for j^ositive square root of a, and — V« for

negative square root of a) (— V«) (— V^) = + 'Vab; or

(— V") (+ "v^)
= — Vcib, etc.

Now, if in accordance with the algebraic convention

plainly exhibited above, we consider only positive square

* In a translation just published of Durege's Theory of Functions of

a Complex Variable, by Professors Fischer and Schwatt of the Univer-

sity of Pennsylvania, Philadelpliia, 189(3, it is stated on Page 10 of the

Introduction: "Euler himself taught, as now generally accepted, that,

if a and b denote two positive quantities, V— « V^^ = y/ab ; i.e., that

the product of two imaginary quantities is equal to a real quantity."

The omission of the minus sign before Vab may be a typographical

error; for the authors, like all others, use \/— a \/^^ =— Vab.

In the translators' Introduction it is very appropriately remarked:—
"To follow the gradual development of the theory of imaginary quantities

is especially interesting, for the reason that we clearly perceive with what diffi-

culties is attended the introduction of ideas, either not at aU known before, or

at least not sufficiently current. The times at Avhich negative, fractional, and

irrational quantities were introduce.l into mathematics are so far removed from

ns, that we can form no adequate conception of the difficulties which the intro-

duction of those quantities may have encountered. Moreover, the knowledge

of the nature of imagi)iiiry quantities has helped us to a better understanding

of negative, fractional, and irrational quantities, a common bond closely unit-

ing them all."

Of course I would have one read numbers in the place of
"
quantities."
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roots of neomonic numbers, V— « V— ^ does not equal

\/ab, but — V«6 ;
—

for V— a V— b =^ai^bi =i^^ab =(— 1)V«^ = — Vf<6.

One need find no difficulty in reconciling with the Prin-

ciple of Continuity the statements that, regarding only

positive roots, Va V^ = -s/ab, while V— « V— * is not

equal to V(— «) (— b).
The law of indices must be

applied with due regard to other laws. The essential

statement of the law of indices is «^ av = a^ + y. This

includes all particular cases as a, x, and y assume differ-

ent characters. But it has been necessary with every

phase of number to understand in this statement that only

corresponding roots are considered when x and y are frac-

tional with even denominators. (Cy. §§ 144, 146.) For

example, V'^ X 1^^^ would not equal 11/2 + 1/2^ ^^ \^ if

one positive and one negative root were taken. Now,
this fundamental statement of the law of indices hokls

for all number. It is the very definition of V— 1, that

(_ 1)W2 (^_ iy/2 ^ ^_ ;Ly/2
+ i/'2^ (-_ ly = _ 1.

It was easily proved for protomonic number that, regard-

ing only corresponding roots when a; is a fraction with

even denominator, a^ a^ =
(«ff)^,

and a'-' b^ = (abY ;
but

when a and aa differ in quality, the very conditions of

the original statement are abolished (it is as if one posi-

tive and one negative root of a^ had been taken), and

different conclusions might be anticipated under the same

laws.

In fine, all this is not an anomaly of V— 1 in operation,

but merely an alternative statement of its existence. The

difficulty lies in the origin of neomonic number, not in its

operation.

On the other hand, a^/b'^
=

(ct / by, established for pro-
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tomonic number, does hold if a^ and h'^ are neomonic,—
simply because, in this case, no qualitative difference arises

in the direct performance of the operations indicated by
the two members of the equation, if, in accordance with

the meaning of the formula, only positive roots are

regarded.

For example, (- ^Y'-i (- 9)^
^2=

(4/9)^
'^

;
for (- 4)^

'^

= 2
i, and (- 9)7^ = 3 *

; therefore, (- 4)77 (_ 9)^
'''-

= 2ilZi = 2j2>. Also the positive square root of 4/9
is 2 / 3.

Note, also, that for a like reason V« V— h = V— ab;

for -y/a -y/— 6 = -y/a -\b i = '\ab i, and V— cih = ~vab i.

The safe practice is to express every neomonic number

in its essentially proper form, as based upon a new unit.

Rules of thumb would conduct one to true results in all

operations except multiplication ;
but for many reasons,

always express -y/— a as -\/at. If you do this, correct

calculation will be easy under the very definition of the

neomon, i^ = — 1.

192. As a natural consequence of the view that Algebra
is some mysterious conglomeration of "

pure symbols
"

(C/l Introduction, pp. 8, 12) without content, existing for

itself, void of numerical meaning, it was long discussed,

as if it were a matter to be settled by parliament, whether

V— (f^ V— b should equal V— «^, or — V«^. Only one

hundred years ago English mathematicians were divided

on this question. One party argued that the product must

be V— ab; because the product of one "impossible quan-

tity
"

by another, could not possibly equal a " real

quantity
"— as if a priori deduction of Avhat is, or is

not, possible with imjjossihle quantities was not ab initio

an impossible discussion within the realm of Reason.
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May not tlie foregoing discussion (as well as every other

investigation we have pursued) serve to emphasize the car-

dinal thesis of these lectures
; namely, that the essential

nature of any algebra is as defined in Section 20
;
that it is

Arithmetic, as the science of Number, which everywhere

underlies, shapes, and organizes our Algebra ;
that it is

real numerical laws and operations that the algebra conven-

tionally expresses; that, although Number is certainly a

creation of the human intellect, it is not, therefore, the

creature of our choice or whim; that, once formed, the

Idea unfolds itself
;

that every numerical problem is a

question of Truth
;
that the explanation is to be discov-

ered; and that the verdict is nowise subject to conven-

tional decision or parliamentary settlement.

193. It might be very helpful to illustrate the proper-

ties of complex number by the graphic representation

known as Argand's diagram, which constitutes the foun-

dation of a beautiful application to geometry; but we

shall here confine ourselves to purely analytical inves-

tigations.

We have seen (§ 188) the two-dimensional nature of

complex number, and the infinite variety of ways in

which it may vary continuously from a -\- hi to c -f di,

because the protomonic and neomonic parts may vary

independently.
In order that x -\- yl shall become zero, x and y must

vanish simultaneously. Por, li x -\- yi = 0, ic = —
yi, and

hence cc = and y = 0,
— else would a protomonic number

equal a neomonic, Avhich is impossible except both be zero.

(Vide § 183.)

On the other hand, if either x or y becomes infinite, x -{-

yi=cc. (FicZe§198).
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194. li a -\- bi = G -\- di, then a = c and b = d.

For, subtracting c -f- di from each member of the given

equation, a — c-\-(b — d)i = 0; therefore, by Section 193,

d — c = and b — d ^=
;
that is, a = c and b = d.

Of course, since x + (— y)
= x — (+ y) ox x — y {% 120),

the preceding formula inckides all combinations as a, b, c,

and d are positive or negative ; e.g., if a -f bi = c — di,

a = c, b = — d.

195. Two complex numbers which differ only in that

one is the result of the addition, the other of subtraction,

of the neomonic part, are called conjugate ; e.g.,
— 1

/
2 + 2 i

and — 1/2 — 2i, 0T2i and — 2 i, or generally x -\- yi and

X — yi.

Obviously the sum of conjugate complex numbers is pro-

tomonic, but so also is their product :
—

(x -j- yi) (x — yi)
= x^ — y"^

i"^ = x"^ -[- y^.

196. Let the student prove the inverse proposition.

197. x^ 4- ?/^ is called the norm of the complex number

X -|- yi, ox X — yi] and, as seen in Section 195, the product

of conjugate complex numbers is the norm of each.

But note that also norm (— a? — yi)
= (— xy -\- y'^

=
x^ + if'j although — X — yi is not conjugate with x + yi,

nor is their product the norm of either; for (— x —yi)

(x -\- yi)
=

y"^
— x"^ — 2 xyi.

198. The positive square root of the norm of a complex
number is called its modulus : mod (x + yi)

= + Vic^ + y'^.

This modulus has extremely important properties.

The attentive student may have already discerned diffi-

culty in applying comparisons of greater or less to complex
numbers

;
for example, which is the greater, 3 + 4 i or

2 + 5i?
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The quantity {vide § 229) of a complex number is discov-

ered to depend upon its modulus. Complex numbers with

equal moduli are quantitatively equal, though not identical

numbers. Any magnitude of two dimensions must exhibit

this mode of equivalence without congruence. Argand's

diagram would give a good illustration of this relation :

the points representing (or terminating the radii which

represent) complex numbers of equal moduli would all lie

on a circle
; points corresponding to complex numbers of

less moduli would lie within the circle, and of greater

moduli without.

This property of the modulus is exhibited analytically in

the fact that, since mod {x + yi)
= + V^^ + y^ which is

positive regardless of the quality of x or y, if either x ox y

increases, the modulus increases, and if either x ox y de-

creases, the modulus decreases. And this change is continu-

ous, the modulus vanishing with the number, and inversely.

If two numbers are equal, their moduli are equal ;
for

we have seen (§ 194), \i a -\- hi = c -\- di, a = c and b = d.

But the inverse is not true
;
for if cv' -{- b'^ r= d^ -\- d% it

does not follow that a = c and b = d.
^

Note that if 7/
= in x + yi, that is, if the complex

number be wholly protomonic, the modulus becomes + Vx^

=
_|_ X,

— and this whether x in the complex number be

positive or negative. Thus, the mod (+ 3)
= + V(+ 3)"'^

= + 3
;
and mod (- 3)

= + V(- 3)^
= + 3.

For this reason, many European continental writers use

the term modulus of x ('^mod x") where a:; is a protomonic

number, instead of the term " numerical value of a;," em-

ployed by English writers. For example, we constantly

speak of + 3 and — 3 as "numerically equal," whereas,

if equal
— being numbers— they could only be numerically
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equal ;
and they are not equal, for their difference, instead

of being zero, is 6.

It would therefore serve accuracy and propriety to fol-

low the practice of the writers referred to.

199. Evidently the sum of any number of complex num-

bers is a complex number.

Likewise the product of any number of complex num-

bers is a complex number.

Also the ratio of two complex numbers is a complex

number. For—
a -\- bi _ (a -\- hi) (c

—
di) _ (ac -\- hd)

— (ad — cb) i

c + di
~

c2 + cZ-

~
~c2 + d^

_ f ac-\- bd\ _
-\c^^d^'

which is a complex number.

Since stirpal functions can involve only the operations

of addition, multiplication, and their inverses, we have

thus established the theorem : Every stirpal function of

one or more complex numbers is a complex number.

200. Several other fundamental theorems concerning

stirpal functions of complex numbers, and moduli of com-

plex numbers, are deferred to the final chapter.

In regard to radical functions of complex numbers, we

can consider here only the particular case of the square

root :
—

Assume that the square root of a complex number is a

complex number, and let—
V« + bi = A + Bi,

where a, b, A, and B are protomonic.

Squaring each member : a -\- bi = A"^ — B^ -\- 2 ABi ;
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therefore, by Section 194, a = A^ — B^ (1)

and b = 2AB. (2)

Adding the squares of (1) and (2)

a2 -|_ J2 = (^2 _^ ^2y^ (3>)

Taking square roots of (3), and remembering that

j2 _|_ ^2 jg essentially positive :

Adding (1) and (4) : + V«M^ -\-a = 2A^

therefore = .v/
+ Va"-^ + b'^ + a

2

Subtracting (1) from (4) : + Va^ + b'^ — a = 2 B%

therefore ^ = ± y/+
Va2 + 6^ _^

Since -J- Va'^ + ^^ > «> these values of A and i> are pro-
tomonic. Since b = 2 AB, like signs in the values of A
and B must be taken if b is positive, and unlike, if b is

negative, therefore if b is positive,

v;r+l5=±{v/+^ffl±i!+.-y/+Vi!±^!^| r.

and if b is negative,

Let the student verify by multiplication.

If the protomonic part of the complex number vanish,
we have here the formula for the square root of a neomonic

number.

Particularly if a = 0, and b = -\-l, formula I becomes,—
/ -.

1 + i
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If a = 0, and & = —
1, we have from formula II,

—
1 -iV-^= ±
V2

By means of these results the student can readily find

four 4th roots of -|- 1> and of — 1.

201. Since radical functions of any number involve only
fractional exponents besides stirpal operations upon the

number, if we show that the nth. roots, when w is a primary

number, of a complex number are complex numbers, we
establish the theorem : All radical functions of complex
numbers are complex numbers.

The investigation must be postponed to future studies
;

for more powerful instruments of analysis (e.g., Demoivre's

theorem) are required than are at the command of the

students to whom these lectures are primarily addressed.

But the theorem has been established.

202. Command of the proper means of analysis (e.g.,

logarithmic series) would enable the student to prove that

exponential functions (^vide § 169) of complex numbers
lead to no new mode of number.

Thus, finally, it has appeared that the ultimate gener-

alizatioii, (a -\- hiY+y\ is still a complex number; and that

therefore the Universe of Number closes, returns upon
itself, is comjjlete.
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XITI. Measurement.

203. The measurement of any magnitude (concrete or

abstract) is the process of finding its ratio to another mag-

nitude of the same kind, arbitrarily chosen as a unit.

204. The measure of a magnitude is this ratio — a

number.

Under the conventions of English speech, the measure

of any magnitude is expressed by a phrase made up of this

number and the name of the chosen unit.

205. The noun, measure, is commonly used in the sense

of Section 204, in the sense of submultiple {vide § 83), and

in the sense of unit. There may be no very good ground

of choice in these terms, but consistency in the same dis-

course is desirable. It may be better not to say,
'* the

greatest common measure " of two or more magnitudes,

since any magnitude of the same kind woiild be a common

measure, in another meaning of the word
;

for example,

the yard may be the common measure of all lines, and so

may the metre. It may be better to say, instead, the

greatest common submultiple. On the other hand, commen-

surable and incommensurable point the same way as common

measure.

The use of measure in the sense of unit is superfluous

in the presence of the clearer term, unit, and appears to

foster a confusion of concepts with commensurability ;

whereas it is very seldom that a unit is commensurable

with the magnitude measured. Attention is merely called

to this confusion in our language, and consequently in our

thought. Under the necessity of some choice, I have se-

lected cornvfiensurahle, submultiple., and unit, and have simply

avoided measure as the inconsistent synonym both of sub-

multiple and unit.
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206. The unit of any kind of magnitude may be any

magnitude of the same kind.

Convenience, or lack of concerted choice, ofteia establishes

in common usage many units for magnitudes of the same

kind.

207. Magnitudes are of the same kind when, of any two,

one is necessarily greater than, equal to, or less than the

other.

Magnitudes between which there is no such comparison

are of different kinds
;
and between such there is no ratio,

nor could one be added to the other.

208. The ratio of any two magnitudes is independent of

any unit, or units, of measurement. Their absolute values

can in no way depend upon the arbitrary standard, or stan-

dards, by which they may happen to be estimated. For

example, the ratio of the time of rotation of Mars to the

time of rotation of Venus is that exact numerical relation

of the former to the latter, in virtue of which the former is

a fraction of the latter
;
or greater than one, and less than

another fraction of the latter, which differ as little as we

please. (Cf.^ 83.) Evidently this ratio can nowise de-

pend upon other comparisons of these times with any other

periods of time whatsoever.

209. But the ratio of any two magnitudes equals the

ratio of their respective measures in comparison with the

same unit. For example, the ratio of the two periods of

planetary rotation just mentioned equals the ratio of their

respective ratios to any third period of time, say, the time

of the earth's rotation,
— tlie period we name a day.

210. There is such a thing as direct operation with con-

crete magnitudes ;
but it is only through their measures,

that is, their ratios to some unit, that magnitudes other



MEASUREMENT BY PROPORTIONALITY. 127

than Number can become subjects of genuine calculation,

the proper subjects of which are numbers, and numbers

alone. {Cf. §§ 27 and 48.) For example, the sum of two

sects is a sect, which may be found directly by placing the

given sects end to end in a straight, with none but these

end-points in common. The sect between the non-coinci-

dent end-points is the sum. But in calculation we add the

lengths (i.e.,
the numbers which are the ratios of the sects

to any unit-sect) of the sects, and obtain the length of their

sum
(i.e.,

the number which is the ratio of the sum-sect to

the same unit).

211. As stated in Section 203, the measurement of a

magnitude consists in finding its ratio to another magni-
tude of the same kind, chosen as a basis of comparison.

Howsoever this ratio may be found, the magnitude is

measxwed.

In physical science magnitudes are commonly measured,
not directly, but indirectly; that is, the direct comparison
is not between the magnitude which is to be measured and

a chosen unit, but between two magnitudes of a different

kind which are proportional to the magnitude which is to

be measured and its unit. It is highly important that this

fact be recognized by all students of physical science. It

also emphasizes very clearly the absurdity of omitting a

sound exposition of the doctrine of proportionality from

elementary instruction in mathematics.

The doctrine of proportionality is not especially difficult

or recondite
; but, even if it were, its thorough exposition

cannot be postponed, because comprehension thereof is pre-

requisite for understanding ordinary measurements in the

most elementary physical science, and the commonplace

problems of daily life. For example, temperatures are
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never measured directly, but always by raeaus of tlieir

assumed proportionality to the volumes of some body at

the temperatures in question. Again, masses are usually

measured by their proportionality to the corresponding

weights in the same place, etc.

212. Arcs of a circle are so conveniently measured by

means of their proportionality to the angles they subtend

when the vertices of the angles are at the centre of the

circle, that they are seldom measured directly. It must

be carefully noted, also, that only angles less than a peri-

gon are so proportional, and therefore so measurable. The

indirectness of such measurement of arcs is not sufficiently

emphasized in many text-books. The most faithful Eng-

lish translator of Euclid long ago warned teachers of the

dangers lurking around this question. In the first of his

introductory Dissertations, he gives good advice for leading

a pupil to attain an exact and adequate concept of an

angle, and especially deprecates any association of angles

and arcs, averring himself at this stage
" afraid to meddle

with circular arches, lest we should conjure up a prejudice

which we might want art afterwards to layP

In more than one instance— old Roger Ascham's sage

counsel anent teaching Latin comes to mind— modern

tyros in pedagogics would have done better to consult wise

predecessors than to follow every fad of educational milli-

ners as they vie with each other in designing latest fash-

ions. In many of our high schools it would be difficult to

find a pupil who knows exactly what an angle is
;
and not

impossible to find some who would speak of an arc as

equal to, or half of, an angle.

213. Definition. — One series of magnitudes of the

same kind is proportional to another series of magnitudes
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of the same or of a different kind, corresponding one-to-one

to the first series, when the ratio of any two of the one

series equals the ratio of the corresponding two of the

other series.

Tliis is the direct meaning of the statement tliat one

series of magnitudes is proportional to another series.

Criteria sufB.cient to prove this relation Avill be discussed

presently.

214. Too much prominence is commonly given to the

case where each series consists of two magnitudes. Of

course two magnitudes are proportional to two others,

when a ratio of the one pair equals the corresponding ratio

of the other pair.

215. Criteria sufficient to prove the relation of propor-

tionality are often, and on high authority, set forth as defi-

nitions of proportionality. Of course there is no error in

this
;
but it appears to create confusion. I believe it is

the principal explanation of the not uncommon opinion

that the true doctrine of proportionality is unteachable to

high-school pupils.

216. Euclid's definition of equality of ratios affords the

usual criterion of proportionality : Two series of magni-

tudes will be proportional provided that, if any equimulti-

ples of a corresponding pair of magnitudes one in each

series be taken, and any equimultiples whatsoever of any
other corresponding pair be taken, then the multiple of the

first magnitude in one series is greater than, equal to, or

less than the multiple of the second of the same series,

according as the multiple of the first taken of the other

series is greater than, equal to, or less than the multiple

of the second of that series.

217. That these requirements are capable of being ap-
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plied as a test, may be shown by the following case : Rec-

tangles of equal bases are proportional to their altitudes

upon those bases.

Here a series of surfaces (vide § 229), corresponding one-

to-one to a series of lines, is declared proportional to the

latter. It is so, for the ratio of any two of the surfaces

equals the ratio of the corresponding two of the lines
;
be-

cause, if upon sects equal to the given base two rectangles

be constructed whose altitudes are any multiples of the

altitudes of any two of the given rectangles, the rectangles

so formed are respectively the same multiples of the ori-

ginal rectangles. Thus equimultiples of a corresponding

pair, one in each series, and any equimultiples of a second

corresponding pair, have been taken. Also, if the altitude

of one of these trial rectangles be greater than the altitude

of the other, the first rectangle is greater than the second
;

and if equal, equal ;
and if less, less. Therefore, the ratio

of any two of the series of rectangles equals the ratio of

the corresponding two of the altitudes
;
that is to say, the

rectangles are proportional to the altitudes.

Note that all this is regardless of commensurability of

the altitudes or of the rectangles.

218. Euclid's criterion has been objected to because it

is required that the conditions be satisfied for any, that is

all, multiples ;
and it is impossible to try all primary num-

bers. This objection is not valid, though there may be

cases which require a searching test in order to avoid error.

For example : Consider the numbers, 4 and 3, and 5 and 4.

]\Iultiplying the two antecedents each by 6, and the two

consequents each by 9, we get 24, 27
; 30, 36— where

24 < 27, and 30 < 36. Making multiples in like manner
with 6 and 7, we get 24, 21

; 30, 28— where 24 > 21, and
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SO > 28. ISTevertheless, 4 and 3 are not proportional to

5 and 4. Thus we see that the criterion may be satisfied

for certain multiples, and yet not satisfied
;
for it demands

that the excess or defect be on the same side for all mul-

tiples under the stated conditions. In the example cited,

if Ave use 10 and 13 for multipliers, Ave get 40, 39
; 50,

52— Avhere 40 > 39, but 50 < 52.

Of course, Avhere the question concerns the jDroportion-

ality of four given numbers there is no occasion to apply

any general criterion
;
but the relation may be tested im-

mediately by a comparison of the ratios. Thus, if 4, 3
; 5,

4 are proportional 4/3 equals 5/4; but 4/3 does not

equal 5/4, because 4/3 - 5/4 = 16/12 - 15/12 = 1/12.
219. Alternative criteria, especially adapted to test pro-

portionality in many cases Avhich arise in geometry and

physics, are presented and their adequacy established, on

page 93 of Halsted's Synthetic Geometry (John Wiley and

Sons, NcAV York) :
—

Tavo series of magnitudes Avhicli correspond one-to-one,

are proportional (that is to say, the ratio of any tAvo of the

first series equals* the ratio of the corresponding two of

the second series) provided (1) If any tAvo of the one

series are equal, so are the corresponding two of the other

series
;
and (2) To the sum of any tAvo of the One series

corresponds the sum of the corresponding tAvo of the other

series.

For example :
— The intercepts made by a system of

parallel straights upon one transversal are proportional to

the intercepts made upon any other transversal : for if any
two intercepts on one transversal are equal, so also are

* Fide Section 83 (6).
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the corresponding two on another transversal
;
and to the

sum of two on one transversal corresponds the sum of

the corresponding two on the other transversal.

Again, consider arcs of the same or equal circles and

their chords. Arcs are not proportional to their chords,

because, although if two of the arcs are equal their chords

are equal, yet to the sum of two arcs does not correspond

the sum of their chords.

220. For the continuous magnitude, Space, the scientific

fundamental unit is the metre, which is the sect between

two marks on a metal bar preserved at Paris. The sect

is to be taken when the bar is at the temperature of melt-

ing ice. This temperature has the advantage of being

readily fixed
;
but a point so far from ordinary working

temperatures requires the correction of all observations of

objects not iced, and coefficients of expansion need to be

accurately known for all substances employed. The origi-

nal (1799) French standard metre is a platinum bar

end-standard about 1 inch wide and i inch thick. End-

standards are objectionable because they can be observed

only by contact, and attrition at the ends is inevitable.

The new standard of the International Metric Commission

is a line-standard of platino-iridium, about 40 inches long

and 0.8 inch square, grooved on four sides so that its

section is between an X and H form. This gives rigidity

and a surface in the axis of the bar to bear the lines of the

standard.

This standard is preserved at the International IMetric

Bureau at Paris, where the most refined methods of com-

parison are provided for, and which is supported and di-

rected by seventeen nations.

The legal theory of the Metric System of Units is :
—



PHYSICAL UNITS. 133

(1) The standard metre, with decimal fractious and mul-

tiples thereof. (2) The litre (declared to be a cube of 0.1

metre edge), with decimal fractions and multiples. (3)

The kilogram (defined as the weight in vacuum of a litre

of water at 4°C.), with decimal fractions and multiples.

No standard litre exists, all liquid measures being fixed

by weight.

When established in 1799 the metre was supposed to be

one ten-millionth of the terrestrial quadrant through Paris.

It differs from this fanciful value by about ^oVo-

The merits of the metric system of units were briefly

discussed in Section 31.

221. The fundamental units for the measurement of

physical magnitudes, chosen by the Units Committee of

the British Association, and unquestionably the most sci-

entific ever agreed upon, are the centimetre, gram, and

second. The system is known as the C.G.S. sj^stem. For

details of its application to all branches of physical sci-

ence (e.g., to electricity) the student is referred to Pro-

fessor Everett's Units and Physical Constants, Macmillan

and Co.
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XIV. ^Mathematics

222. rormal thouglit, consciously recognized as such, is

the means of all exact knowledge ;
and a correct under-

standing of the main formal sciences, Logic and !Mathe-

maticSj is the proper and only safe fovmdation for a scientific

education.

The origin and nature of the truths of the formal sci-

ences are not so recondite as they are often made to appear.

The validity of Eeason is the sole postulate. Mathematical

truths are discovered as the results of rational operations

upon certain elementary concepts determined by the defini-

tions with which the science begins. The operations are

not capricious, nor is their nature arbitrary. They are not

empty words, but realities— not '• material
"'

realities, but

all the more real. For example, numbers, as we have seen,

are not concrete things ;
and as soon as we forget that they

are the products of rational processes, we at once fall into

error and confusion. Such confusion is most prominent
in concepts of zero and infinity. A vague concreting of

infinity is often observable, even among those who do not

make a like mistake with any other number. Because In-

finity as a concrete is inconceivable, the number infinity

is commonly spoken of as inconceivable, and a prevalent

opinion regards finite numbers as the only ones we can

reason about. Charles S. Pierce, eminent as logician and

mathematician (and mastery of both sciences is requisite

to authority in either), says, "I long ago showed that finite

collections are distinguished from infinite ones only by one

circumstance and its consequences ; namely, that to them

{the finite) is applicable a peculiar and unusual mode of

reasoning called by its discoverer, DeMorgan, the 'syllo-
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gism of transposed quantity.' . . . DelVIorgan, as an actu-

ary, might have argued that if an insurance company pays
to its insured on an average more than they have ever paid

it, including interest, it must lose money. But every mod-

ern actuary would see a fallacy in that, since the business

is continually on the increase. But should war, or other

cataclysm, cause the class of insured to be a finite one, the

conclusion would turn out painfully correct after all. . . .

If a person does not know how to reason logically, and

I must say that a great many fairly good mathematicians
—

yea, distinguished ones — fall under this category, but

simply uses a rule of thumb in blindly drawing inferences

like other inferences that have turned out well, he will,

of course, be continually falling into error about infinite

numbers. The truth is, such people do not reason at all.

But for the few who do reason, reasoning about infinite

numbers is easier than about finite numbers." *

In regard to infinitesimals (the word is simply the Latin

ordinal form of infinity), and contending opinions concern-

ing the methods of the Infinitesimal Calculus, it may be

remarked that, under the true doctrine of continuity and

limits, infinitesimals are presupposed, and that there can

be no reason except expediency to shun them in the differ-

ential calculus. And since they are indispensable for the

integral calculus, Mr. Pierce is probably right in his view

of the proper procedure of the Avhole discipline, when he

says, in the paper quoted above,
'' as a mathematician, I

prefer the method of infinitesimals to that of limits, as

far easier and less infested with snares." At all events^

any avoidance of infinitesimals as absurdities, or as offer-

* "Law of Mind," Monht, July, 1892.
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ing obstacles to sound and lucid reasoning, is unneces-

sary.

223. Mathematics has often been characterized as the

most conservative of all sciences. This is true in the

sense of the immediate dependence of new upon old re-

sults. All the marvellous new advancements presuppose
the old as indispensable steps in the ladder. It is on this

account that " there is no royal road "
to mathematics.

This inaccessibility of special fields of mathematics, ex-

cept by the regular way of logically antecedent acquire-

ments, renders the study discouraging or hateful to weak

or indolent minds. In reality similar demands are made

by every science
;
but elsewbere they are not so imperious,

so uncompromising. It is possible for one who has not

mastered fundamental knowledge in the sciences of phi-

lology, history, biology, physics, chemistry, etc., to nurse

the delusion of proficiency and comprehension of advanced

problems ;
but mathematics is inviolable against such vain

assaults. Instant and conscious is the curb upon her vota-

ries of inadequate knowledge.
The modern tendency to dangerously narrow specializa-

tion within the bounds of one science is, also, more surely

checked in mathematics than elsewhere. The attempt
was made in mathematics as in the other sciences

;
but it

has been restrained. Professor Felix Klein remarked at

the opening of the Mathematical and Astronomical Con-

gress at Chicago, in 1893 :
" When we contemplate the de-

velopment of mathematics in this nineteenth centur}^, we

find something similar to what has taken place in other

sciences. The famous investigators of the preceding pe-

riod were all great enough, to embrace all branches of

mathematics. . . . With the succeeding generation, how-



MATHEMATICS. 137

ever, tlie tendency to specialization manifests itself. . . .

Such conditions are unquestionably to be regretted. . . .

I wish on the present occasion to state and to emphasize
that in the last two decades a marked improvement from

within has asserted itself in our science with constantly

increasing success. The matter has been found simpler

than was at first believed. It appears indeed that the dif-

ferent branches of mathematics have actually developed—
not in opposite, but in parallel directions, that it is possible

to combine their results into certain general conceptions.

... A distinction between the present and the earlier

period lies evidently in this : that what was formerly

begun by a single master mind, we now must seek to ac-

complish by united efforts and co-operation."

224. Another trait of mathematics which renders it at-

tractive to some minds and repellant to others, is its self-

sufficiency, its isolation, its independence of other sciences.

But it must never be forgotten that mathematics is ever at

the service of other sciences
;
and it is for them to so

formulate their problems as to make them susceptible of

mathematical treatment. Indeed, in some instances, the

difficulties which balk a thorough investigation of certain

physical phenomena consist in the mathematical problems
encountered in the solution of numerical equations, the

summation of numerical series, etc., which the skill of

experimenters has succeeded in deducing from the phenom-
ena in question. Thus, on the one hand, the physicist or

economist is unceasingly occupied in attempting to express

the relations of the entities with which he deals, as some

numerical function known to be within the reach of mathe-

matical reduction, — for so compendious is the language of

Algebra, that theoretically most quantitative and many



138 NUMBER AND ITS ALGEBRA.

qualitative relations are somehow expressible as numerical

relations. On the other hand, the algebraist is constantly

striving to bring more and more algebraic forms within the

powers of his analysis. By their joint labors the confines

of knowledge are steadily widened.

225. It may be helpful to offer a definition of INIathe-

matics, not in the sense of final delimitation, but in order

to afford a clear notion of what is meant by subjects or

relations capahle of viathematlcal treatment. I cannot do

better than quote Professor George Chrystal in his article

on "
Mathematics," Encydopcedia Britannica, ninth edi-

tion, who makes the folloAving definition :
" Any concept

*

which is definitely and completely determined by means

of a finite number of specifications, say by assigning a

finite number of elements, is a mathematical concept.

Mathematics has for its function to develop the conse-

quences involved in the definition of a group of mathe-

matical concepts. Interdependence and mutual logical

consistency among the members of the group are postu-

lated, otherwise the group would either have to be treated

as several distinct groups, or would lie beyond the sphere

of mathematics."

226. Examples of concepts completely determined by a

finite number of specifications are familiar. On the other

hand, horse, tree, gold, becmty, love, are examples of non-

mathematical concepts. Of course, Kumber may be ab-

stracted from these, or any other separate objects of

thought or sense-perception, and Number is a mathemati-

cal concept ;
but the concept of a number of trees is not at

all the concept of the trees. Again, the form of an irregu-

* I have taken the liberty of changing the word "
conception

"
to

concept three times in this passage.
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lar piece of wood canuot be determined by a finite number
of specifications, and its form therefore cannot be mathe-

matically treated (its weight of course could). But if from

this irregular piece of wood a sphere be turned, its form

is specified by stating that it is a sphere, and giving the

length of its radius. This illustrates at once the bounda-

ries of mathematics, and the relation of mathematics to

the arts.

227. ]Mensuration is an important function of mathemat-

ics
;
but it occupies too prominent a place in some notions

of the subject-matter of the science. I have already ((7f.

Introduction, p. 13, and § 12) referred to the mistake of

assigning the origin of Number to measurement. Nor is

the prevalent notion that mathematics is the '^ science of

quantity
"

correct. Projective geometry in the purity of

its recent development is displayed as a mathematical

treatment and method well-nigh void of quantitative rela-

tions, and dealing for the most part with qualitative re-

lations of spacial manifoldnesses.*

228. When we reach elementary concepts we always
find that they cannot be defined except in cognate terms.

Such elemental concepts are quality, one, many, space, time,

and the interrelated concepts, whole, part, more, less, equal,

quantity. All that can be done in the way of defining such

concepts, is to exhibit the phenomena from which they
have been abstracted, and the processes of abstraction

;

and then, for purposes of exact expression, make the def-

inition in cognate terms. A good, short definition of

quantity according to a standard dictionary (the Century)
is :

" The intrinsic mode by virtue of which a thing is more

* See a work on projective geometry by Dr. Halsted, just now in

press.
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or less than another." {Mode = system of
relationship.)

It is plain that some things exist in this mode; that is,

possess quantity, which are not magnitudes, or manifold-

nesses, in the mathematical sense. For example, beauty is

quantitative, is more or less ; but in no proper sense can it

be added to itself so as to double. It is a loose figure of

speech to say, the beauty of one thing is tAvice that of

another, as is at once apparent, should we go on to say
that it was eleven times that of some other.

229. ]\Iany words have been used to denote the charac-

teristic relation of a mathematical concept to its elements.

Magnitude and quantity are the familiar terms. In the

preceding discourse I have employed the former term
;
but

for reasons both of intrinsic propriety, and less ambiguity
owing to irregular usage, the word manifoldness, which
has lately come into use,* is perhaps the most fitting
term

; though manifoldness is also used to denote a group
of correlated magnitudes differing in kind.

Quantity and magnitude are each used in two respec-

tively synonymous senses. Either magnitude or quantity
may be found defined for mathematical purposes as ''

any-
thing which may be added to itself so as to double

;

" and

yet the same writer may be found speaking of the magni-
tude of some such magnitude, or the quantity of some
such QUANTITY. The ancient, and still universally cur-

rent, categorical sense of quantity seems to me to render
it the more appropriate terra for the sense of the italicized

words in the phrases cited
;
and therefore, by exclusion,

*
Cf. the article on "

:Matliematics" by Prof. Chrj'stal, above referred

to; also the article on "Measurement" by Sir Robert Ball, Royal As-
tronomer for Ireland.
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magnitude should be confined to the sense of the capi-

talized words.

Manifoldness in one sense is entirely synonymous with

magnitude in the use I have made of the latter. But be-

sides a single totality, manifoldness often means a single

system of different totalities, and the difference may be in

kind. Thus, a line is a manifoldness, so is a surface, so is

an angle ; yet the system of lines, along with the angles

and surface determined, which we call a triangle, is also

termed a manifoldness.

Now, a triangle, in the sense of the whole figure, is not a

magnitude ;
its surface is a magnitude, its sides are magni-

tudes, and its angles are magnitudes. The word triangle

often plainly means exclusively the surface of the triangle,

and the abbreviation is legitimate where there is no danger
of confusion

((7/*. § 217) ;
but if triangle means the entire

definite system of surface, lines, and angles, then, clearly,

a triangle is not a magnitude, but a system of different

magnitudes. But a triangle, in this sense of the whole

figure, the system of magnitudes, three sects, three angles,

and one surface, is called a manifoldness. Such manifold-

nesses have been termed discrete
;
but this is a totally dif-

ferent sense of discrete, from its meaning in any statement

that a single magnitude is discrete, e.g., Primary Number
is a discrete magnitude. Discrete is the antithesis or an-

tonym of co7itimious. Most magnitudes are continuous
;

number, time, and space are the great continuums, with

which mathematics has most to do. If mayiifoldness is to

be used in this double sense, it is necessary to distinguish

the meanings by some adjectives ;
and discrete is not a

good term for the latter sense. Homogeneous and dis-

parate would not be abusive terms. I shall use them.
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230. Xumber is tlie very web of mathematics, the mani-

foldness iipon which are woven investigations concerning

all other manifoldnesses whatsoever. All other manifold-

nesses are even fundamentally determined (as will pres-

ently appear) by means of Xumber
;
but Number determines

itself.

Geometry cannot even apparently proceed without arith-

metic. Euclid makes the formal connection in his fifth

book
;
but there is a more primary and essential connec-

tion. We have considered the error of seeking geometric

definitions of number, particularly negative, neomonic, and

complex number. But the tables are entirely turned Avhen

we consider that geometric or any other manifoldnesses are

defined in some very fundamental properties by means of

number.

231. Most text-books on stereometry set forth that all

solids have three dimensions, length, breadth, and thick-

ness. But what does this exactly mean ? What is the

length, breadth, and thickness of a pyramid, a rough stone,

a bunch of grapes ? Xo solids, except cubes or right paral-

lelopij)eds, clearly determine three principal directions in

which length, breadth, and thickness may be discerned.

The dimensions are clearly and sharply defined only by

considering the number of specifications necessary and suf-

ficient to fully determine any element. Thus, solid space

regarded as point aggregates is tri-dimensional, because,

given three concurrent straights or planes, as ground of

reference, three numbers are necessary and sufficient to

determine any one point-element, distinguishing it from all

others.

Note also that the space of our experience is four-dimen-

sional if regarded as an assemblage of geodesic lines,
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because in that case four numbers are required to deter-

mine one element.

232. Manifoldnesses, homogeneous or disparate, are one-

dimensional, two-dimensional, etc., (or one-fold, two-fold,

etc.), according as in the totality or system considered, one

number, or two numbers, etc., are necessary and sufficient

to determine and distinguish any particular element in the

homogeneous totality, or in the system.

The distinction between homogeneous and disparate mani-

foldnesses must not be confounded with that between

continuous and discrete manifoldnesses. A homogeneous
manifoldness is either continuous or discrete

;
a dispa-

rate manifoldness is a system of homogeneous (continuous
or discrete) manifoldnesses. Disparate denotes a system
of manifoldnesses differing in kind

;
that is, such as could

not be compared with one another {vide § 207), e.g., the

surface, lines, and angles of a triangle. As already said,

most homogeneous manifoldnesses are continuous. Pri-

mary Number is the conspicuous discrete magnitude with

which we have to do.

According to different standpoints, the same manifold-

ness may be of various dimensions.

233. Examples.—A straight line regardless of position,

time, temperature, probability, the totality of all spheres dis-

tinguished, not in respect of position, but solely in regard

to size or quantity, are one-fold manifoldnesses. All such

are homogeneous, for of course no one-fold manifoldness

could be disparate.

The assemblage of points on a plane, the sphere as sur-

face {Cf. latitude and longitude), are two-fold manifold-

nesses.

Space as an assemblage of points is a tri-dimensional
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manifoldness. A triangle considered without reference to

position' (because it may be completely determined in vari-

ous ways by assigning three elements) is a triple disparate

manifoldness.

The totality of all spheres each to be completely deter-

mined is a four-fold manifoldness.

Since a plane quadrilateral is completely determined

when five elements are known, it is a quintuple or five-

fold disparate manifoldness.

A plane w-gon in like manner is a (2 ?i — 3)-fold dis-

parate manifoldness.

234. There are two general methods in the mathemati-

cal investigation of manifoldnesses. They are called the

synthetic, or synoptic method, and the analytic method.

The analytic method is mainly numerical; the synthetic

deals directly with the magnitudes considered, and only

unavoidable numerical relations are involved. Of course

there is no sharp line of demarcation, and the two methods

yield identical results.

In geometry metrical relations are in general more readily

investigated by the analytic ; descriptive properties by the

synoptic method.

235. The synthetic method is peculiarly fitted to pure

geometry, but this is not its only field. Ever since Rie-

mann's epoch-making dissertation, Ueher die Hypothesen

u-elclte (lev Geometrie zu Grunde Ueyen, 1854, synoptic

methods have been applicable to w-fold manifoldnesses
;

and the applications to Statistics and Physics are familiar.

236. In mathematics all analytic methods employ an

algebra {vide § 20 et seq.) ;
but it is the Algebra of Number

which is the most highly developed and powerful instru-

ment of such methods of research. It is to the study of
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this organized and compendious instrument of numerical

expression that these lectures are introductory. Plainly

the first step to the understanding of the algebra of num-

ber is to understand the nature and laws of number. It

is hoped that these lectures have been a fairly adequate

guide and stimulus to this step. After mastering what

may be called the vocabulary of the language (proficiency

in this matter has been assumed), the next step is to

grasp the idea of algebraic /b;v/i. In the study of Algebra

this should be the main standpoint. It is only by follow-

ing out the problems which arise in a systematic study
of algebraic form tljat the modern developments of pure

algebra, or its applications to geometry, can be rightly

comprehended.
237. In conclusion, I may say, in reference both to this

little work, and to any text-book which may engage j^our

attention, that if a mathematical treatise is worth reading

at all, it is worth re-reading, and reading backwards and

forwards, and in special topics. As Professor Chrystal

says in the preface to his Text Book of Algebra, ''When

you come on a hard or dreary passage, pass it over
;
and

come back to it after you have seen its importance or

found the need for it further on."

"UNIVE
C.4-..

'"'



146 NUMBER AND ITS ALGEBRA.

XV. Some Theorems axd Problems.

238. Every primary number is a multiple (§ 83) of one

and of itself : if it has no other submultiple, it is called a

prime number
;

if it has another submultiple, it is called

comjiosite.

If one primary number is a submultiple of each of two

or more others, it is called a common suhmidtij)le.

Primary numbers (prime or composite) with no common

submultiple other than unity, are said to be prime to each

other.

239. Theorem.— Every composite primary number can

be resolved into factors which are positive integral powers
of prime numbers.

Every primary number less than a composite number

either is, or is not, a submultiple of the latter : let a be

the least primary number (> 1), that is a submultiple of

the composite number, A.

Then A = ax. If x be also a multiple of a, x = oij, and

A = a^y. Einall}' A = a"^i(, Avhere u is either 1, or prime
to a, and either prime, or a multiple of some prime > a

and < A, say, b.

In like manner ti=h"v, where v<Cn- and v^cPw,
where to < v, and so on.

Clearly the process must end with 1
;
therefore

A = aI"h'"cP . . .
,

where a, b, c . . . are prime numbers.

It will be seen below that this resolution can be effected

in only one way ; also, that positive integral powers of

prime numbers are prime to each other.

240. Understanding the numerical symbols as represent-
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ing integers (positive or negative), and extending* the

meaning of the term multiple to include the relation of

one number to another if the ratio of the former to the

latter be integral, then :
—

If ^ is a multiple of a, any multiple of A is a multiple of

a. Tliis is obvious.

Also, if A and B have a common submultiple, m, then

Ax -J- By is a multiple of m.

For, say, A = pm. and B = qm ;

then Ax -|- By = xpm -\- yqvi,

and therefore, distributing the right-hand member,
Ax -J- By = m (xp + yj).

From these two theorems is deduced a means of finding

the highest f common submultiple (h. c. s.) of two or more

integers.

For, if A = pB -\- c, the h. c. s. of A and B is the h. c. s.

of B and c. To prove this it is necessary and sufficient to

show —
(1) Every submultiple of B and c is a submultiple of A

and B.

(2) Every submultiple of A and i? is a submultiple of B
and c.

(1) As just shown, every submultiple of B and c is

a submultiple of p) B -\- c, that is of A; therefore, every

submultiple of B and c is a submultiple of A and B.

(2) Since A =pB ^ c, c = A — pB. Therefore, again,

every submultiple of A and i? is a submultiple of ^ — ^; B,

* A violent extension {Cf. definition, § 83) ;
but custom is a tyrant,

and brevity tempting. Some such term as co-multiple would adequately
distingui-sh this relation, e.g., of 12 to — 3.

t The term highest is employed in order to avoid contradictory uses of
"
greatest" in regard to negative numbers. {Cf. § 242.)
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that is of c, and consequently every submultiple of A and B
is a submultiple of B and c.

Thus, to find the h. c. s. of A and B, where yl > J5, we

have, by successive divisions,
—

A = 2>B -\- c . . . Avhere c <i B,

c = rd -\- e

where d <i c,

where e < rf.

where m < /,

Avhere n < ?», and may be 1,

where, if ?i = 1, «• = vh.

of ^ and B
;
for the h. c. s. of A

Iz = vl -\- m
I = vm -\- n

and, finally, vi = loi

Whence, 7i is the h. c. s

and B = h. c. s. of B and e = h. c. s. of c and d = . . . =
h. c. s. of m and n. But m = wn, and therefore 7i is the

h. c. s., since n can have no submultiple higher than itself.

If n = 1, A and B have no common submultiple but

unit}', and are prime to each other.

For example, find the h. c. s. of A = 2911 and B = 1763.

The calculation may be compared with the foregoing as

follows :
—

^ = 1763)2911 =.4(1 =i>
1763

= 1148)1763(1 = q

(^ = 615) 1148(1 = r

615

e = 533
)
615 (

1 = 5

533

/*
= 82

)
533 (6 = t

492

whence, y = 41 is the h. c. s.

^ = 41)82(2 = ?^

82
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It must be discerned that the essence of this process is

merely that the quotients be integral, and the moduli (^vide

§ 198) of the dividends be in decreasing order, for qualita-

tive distinctions are ignored ; -[- 4, for instance, being in-

differently the h. c. s. of 8 and 12.

In accordance with these considerations the process may
be abbreviated in various ways. If convenient, remainders

may be negative, and any submultiple of a divisor evi-

dently prime to the dividend, or submultiple of dividend

prime to divisor, may be cast out. The above calculation

might have been abbreviated thus :
—

*&'

Since neither

3 nor 5 is a sub-

multiple of 1763,

15 may be cast

out of 615.

1763)2911(2
3526

- 15) -615

41)1763(43
164

123
123

Every common submultiple of A, B, C . . . is a common

submultiple of A and B, and therefore of vi, the li. c. s. of

A and B. Consequently, to find the h. c. s. oi A, B, C . . .
,

find the h. c. s. of m and C, and so on.

241. It follows from the preceding discussion, that, if a

and b be prime to each other, any common submultiple of

aN and b must be a submultiple of N.

Also, if a be a submultiple of bN and prime to b, it is a

submultiple of N.

Also, if a be prime to
I, m, n . . ., it is prime to their

product, Imn
;
and consequently if a, b, c . . .

,
be each

prime to all of I, vi, n . . .
,
the product, abc . . .

,
is prime

to the product, Imii ....
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In particular, if a be prime to h, «" is prime to Z/™. This

is true, of course, when a and h are prime numbers
;
that

is to say, positive integral powers of prime numbers are

prime to each other.

Moreover, an integer can be resolved into factors which

are powers of prime numbers in only one way. {Vide

§ 239.)

For, if two resolutions be possible, let alcd = hnnrs.

Then ahcd is a multiple of Z; but since / is a positive

integral power of a prime number, it is prime to each of a,

h, c, d, except one which is a not less power of the same

prime number; and there must be such a one, or I could

not be a submultiple of cd>nl
;

— say a is this one. Again

hnnrs is a multiple of a, and it follows as before that I

must be a multiple of a. But if a is a multiple of I,

and / of a, a = I. Likewise three more of vmis must

respectively equal h, c, and d, and tlierefore the unpaired

factor must be 1.

242. The lowest common multiple* of two integers equals

their product divided by their highest common submultiple.

For if A = sx and B = sy, where s is the h. c. s. of A and

B, then AB = s^-xy. But s, x, and y are prime to each

other, and therefore sxy is the 1. c. m. of A and B,— and

AB
sxy =

* In respect to primary numbers, the term least common multiple

means exactly what it says; hut in reference to both positive and nega^

tive integers a variance in the meaning of the term "least" is to he

noted, such as was remarked in the foot-note of Section 240 concerning

"greatest." Indifferent alternatives— one positive, the other negative

— are always considered in the highest common submultiple, and the

lowest common multiple of two integers.



LOWEST COMMON MULTIPLE. 151

Therefore, to find the lowest common multiple of two

integers, we have the rules :
—•

Divide their product by their h. c. s.
;
or

Divide either by their h. c. s., and multiply the other by
the quotient ;

or

Divide each by their h. c. s., and take the product of the

quotients and the h. c. s.

Any one of these three rules may in a special case be the

most convenient.

The 1. c. m. of more than two integers is the 1. c. m. of

the 1. c. m. of the first two and the third, and so on.

243. Plainly (symbols meaning integers) a = xh -\- r in

an infinite variety of ways ;
for x may be fixed arbitrarily

and r found, so that r = a — xh. But important special

cases arise if
(/, h, and x are positive, and r restricted :

—
(1) When r < b.

(2) When, though r is negative, mod r < mod h. (Vide

§ 198.)

In both cases a = xb -\- r in only one yvciy.

(1) Tf xb be the greatest multiple of b, not > a, then

r = a — xb, where r < b. Nor could there be a second

resolution under the same conditions, else xb -f- *' would

equal x' b -}- r
',
and therefore r — r' = (x'

—
x) b, and there-

fore )• — r' would be a luultiple of b,
— an impossibility,

since r and r', being each less than b, r — r' is less than b.

(2) If xb be the least multiple of b not < a, then

a — xb = r, where r is negative, but mod / < mod b
;
and

the resolution is unique as before.

In these cases r is called the least positive remainder

and " least
" *

negative remainder of a with respect to b.

*
Cf. foot-notes to Sections 240 and 242.
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Least remainder^ unqualified, is to be understood in the

former sense.

Obviously a is prime to h if the least remainder of a

with respect to h does not vanish, and not prime if it does

vanish.

244. Let the student prove, if the least remainders of x

and y with respect to z be equal, a; — ?/ is a multiple of z,

and inversely.

245. When the ratio a; /y is not integral, a- /y is said to

be essentially fractional, or briefly, fractional.

li a jh = c I cl when ay h and c > d, prove that the frac-

tions, reduced to form n -{- r/h, where r < h, must have

their integral and fractional parts equal separately.

246. Pi^ove : 11 A [ B = a
/
h and a

/
h is at its lowest

terms (i.e.,
a prime to h), then A = na and B = nh.

247. Prove that, using only positive remainders in the

process of finding the h. c. s. of two positive integers, A and

B, every remainder equals i {Ax — By), where x and y

are positive integers, and the upper sign goes with the 1st,

3d, etc., and the lower with the 2d, 4th, etc., remainders.

Also, if a and h be prime to each other, positive integers

can always be found such that xa — yh = J^l.

It is obvious that these numbers, when determined, will

be prime to each other, for by Section 240, 1 is a multiple

of every common submultiple of x and y.

248. Prove :

(1) If X prime to y, {x + y)" and {x
—

?/)"
have h. c. s.

not > 2".

(2) If X prime to y, x" + ?/" and a;" — y" are prime, or

have h. c. s. = 2.

(3) If X prime to y, a; + y and x^ -\- y"^
—

oty are prime,

or have h. c, s. = 2 or 3.
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(4) The difference of the squares of two odd integers is

a multiple of 8.

(5) The difference of the squares of two consecutive

integers equals their sum.

(6) The product of three consecutive even integers is a

multiple of 48.

(7) The sum of the squares of three consecutive odd

numbers and 1 is a multiple of 12, but never

of 24.

(8) The product of the cubes of three consecutive inte-

gers is a multiple of their sum.

249. At several points in preceding chapters, it has been

taken for granted that the operation of evolution upon

many integers results in essentially surd or incommensu-

rable number
;
that is to say, that no fraction can possibly

be the required root—• although fractions approximating
the surd as nearly as desired can be obtained. Fractional

number is still discrete, fractions are continuous through
surds. (Vide U 94, Sl-82.)

To demonstrate these propositions, it is enough merely
to consider that no power of an essentially fractional num-

ber can be an integer. For, ii x / y is a fraction in its

lowest terms, x is prime to
i/,
and therefore, by Section 241,

any power of x is prime to any power of
i/,
and consequently

any power of a-/ ^ is still essentially fractional.

For example : Obviously no integer is the square root

of 7, but some number greater than 2 and less than 3. But

this number is no fraction, for, as just shown, no power
Avhatsoever of any essentially fractional number can be an

integer. Thus, it is proved that the familiar process of ap-

proximate calculation of roots of such integers is absolutely

interminable. (Moreover, the endless decimal fraction



154 NUMBER AND ITS ALGEBRA.

obtainable can never form a repeating period of figures —
(vide § 284).

In tliis Avay it is plain that no integers except the series,

1, 4, 9, 16 . . .
, (the squares of 1, 2, 3, 4 . . .

,
and called

"
square numbers ") can have any but incommensurable

square roots
;
that the cube roots of all integers but 1, 8,

27, 64 . . . (1^, 2% 3^, 4^ . .
.)

are incommensurable, and

so on.

250. For proof of the proposition : The number of prime

integers is infinite (see Euclid, IX, 20).

251. Attentive perusal of the following sections Avill

bring out a general distinction (correct apprehension of

which is highly important) between the applications of a

confusingly similar terminology to individual numbers and

to analytical functions of such numbers,— the distinction

between algebraic form, and particular numerical values.

For example, note the distinction between "
exactly di-

visible
"
applied to algebraic forms, and stibmu/fiple applied

to numbers. It is not even true that the highest common

submultiple of two niimbers which are obtained from the

substitution of particular numbers for the numerical sym-
bols in two analytical functions, is the same number that

would be obtained by substituting the same values in the

highest common factor of the two algebraic forms
;
nor

would it be possible to make a definition of the algebraical

highest common factor, so that this should be true.

The investigations immediately following apply only to

integral functions.

A
252. If A and 1> be integral functions of x, and -- = Q,



ALGEBRAIC DIVISION. 155

() is a stirpal but not necessarily an integral function of x.

( Vide § 169.)

When Q is an integral function of the variables, A is

said to be exactly* divlsihle by D.

When ^ (x) cannot be transformed into an integral func-

tion, it is said to be essentially fractional, or fractional.

An essentially integral function cannot be identically

{vide § 40) equal to an essentially fractional function.

A
In — = (), if all the functions are integral, the degree of

Q is the degree of A minus the degree of D.

If the degree of yl ? 9 less than the degree of D, Q is

essentially fractional.

253. If ^ = PD + P (all integral functions) P is ex-

actly divisible by P or not, according as A is exactly

divisible l)y P or not.

For, since A = pp _]_ p

A_
P

PP
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(The subscripts represent the respective degrees of the

functions.)

Arranging A,„ and X*,, according to descending powers of

the variable, we would get by dividing the first term of A^
by the first term of i>„ ,

^m — 1^ -^ -'^H ~r -"'TO — 1 (at utmost).

Dividing by D„ gives

/f 7?

B
~ '"-"^

J)
•

Moreover, this result can occur in only one way ; for, if

— = PH——^=F'A—^, where the functions satisfy the
D 1) D .

foregoing conditions, then Avould

-D r,, R' -K /i 1 i- ^- T>/ ,

-K from each\P—P'= by subtracting P
-| ;D D \ D member j

-pt r>

and therefore P~P'^= —
.,
which is impossible; since

7?' 7?P—P' is an integral function, and cannot be inte-
D

gral, since the degrees of P' and R are less than the degree

of D.
1 P

255. If — = P-\—-
,
the degrees and character of the

functions being as stated in the preceding section, P is

called the integral quotient and R the remainder (^par

excellence).

Plainly, the necessary and sufficient condition for " ex-

act divisibility
"

is that the remainder vanish.

256. Example of the "
long rule " for division of inte-

gral functions :
—•

Divide \ x^ -f ^\ j-ir + ^\ /f ^'J i ^ + i 2/-
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The work may conveniently be arranged thus :
—

1
4

1

4
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Therefore integral quotient = S x^ -\- 6 x^ -}- 17 x -\- 25,

and remainder = -f Gl.

258. The general process which disj)layed the foregoing

theorem proves
* also the following :

—
Remainder Theorem. — If any integral function of x

be divided by x — a, the remainder is the same function of

a as the dividend is of x. That is to say, the remainder

may be obtained by substituting a for x in the dividend.

Thus, in the example above,

61 = 3 (2y + 5 (2)2
_ 9 (2) + 11.

If the divisor were x -\- 2, we need only consider x -\- 2

= X — (— 2), where a is — 2.

For instance, {3x* -\- ox^ — 9 x -\- 11} -^ (.y + 2)

gives +3+0+5-9 + 11

_ 6 + 12 - 34 + 86

_|_ 3 _ 6 + 17 - 43 + 97

Therefore integral quotient = 3 x^ — 6 ./- + 17 ic — 43,

and remainder = + 97.

And, in accordance with the remainder theorem,

97 = 3 (- 2)-' + 5 (- 2)2
- 9 (- 2) + 11.

259. The remainder theorem is clearly proved in the

process of dividing the general function of x of the ?ith

degree by x — a; but on account of its fundamental im-

portance in the theory of equations, I transcribe an inde-

pendent proof :
—

Let
<f>,^ (x) be an integral function of x of the nth

degree ;
then

* Proved iudependently in Section 359.
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^" ^' ' = Qn-\-\ where R does not involve x
;

X — a X — a

therefore, (/>„ (.r)
= <?« _ i (a?

—
«) + ^•

But this equation, being an identity, holds Avhen cc = a,

when, (/)„ («)
= + -^j

which, remembering the meaning of <^„ (o), is merely an

algebraic statement of the ''remainder theorem."

The full meaning of this statement must not be missed
;

for it at once declares the remainder when </> (x) -^ (x — a),

and the value of ^ (x) when x — a:— the statement is

<^ {(I)
= E.

Thus in the preceding examples

3 ^^ + 5 U-- — 9 a; + 11 = Gl when x = 1, and = 97 when x
_ _ 2.

This method of calculating the value of an integral

function of x for a particular value of the variable gen-

erally saves work in comparison with direct substitution.

260. Prove : If an integral function of x, ^ (x), be di-

vided by aa; -f J, / / \

261. Note that if <^ (x) vanishes for any value of a-,

say V, then upon division by a; — r, 7? = 0, and inversely.

262. If «!, ^2, «3 . . . a^ be r different values of x, for

Avhich an integral function of x of the ?ith degree vanishes

where n > r, then

(|) (.7-)
=

{x
—

«,) {x — Qa) ... {x.
—

a;)f„ _ r (x),

where/,, _^ (x) is an integral function of x of the (n — r)th.

degree. And when 71 = r,

^ (x)
=

(x
—

«i) (x
—

a^) . . . (x
—

a„) /, (;x),

where /, (x) must be a constant. (But see § 268.)
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263. An integral function of any number of variables

is called, homogeneous when the degree of every term is

the same
; e.g., ax -\- hi/,

or ax^ -\- hxy -(- y^.

264. Prove : I-f each variable in a homogeneous function

of the nth degree be multiplied by iii, the result is the

same as if the function were multiplied by ?>i".

Also : The product of two homogeneous functions of the

mt\\ and nth. degrees respectively, is a homogeneous func-

tion of the (jn -\- ?^)th degree.

Let this last theorem always be applied to test the accu-

racy of distribution of a jjroduct of homogeneous functions.

265. An integral function is called symmetrical with

respect to its variables when their interchange leaves the

function unaltered. Several approximations to symmetry
have received special names

; e.g., if a function be not

altered except in sign by interchange of variables, it is

called alternating. Functions are often both homogeneous
and symmetrical.

266. From the definition, it follows that the sum, differ-

ence, product, or quotient of two symmetrical functions is

a symmetrical function,— a useful rule in testing and

abbreviating algebraic work.

Since symmetry concerns only coefficients, general forms

are easily written down.

Write down the general integral symmetrical function of

X, y, z of third degree.

267. Since the coefficients are independent of the varia-

bles, if two integral functions are equal as an identity (vide

§ 40), and the coefficients of one are determined by any

means, then these coefficients are determined once for all.

This theorem has been called (not very happily) the

Theorem of Undetermined Coefficients.
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It is most useful even in its elementary applications to

integral functions, and becomes an indispensable instru-

ment in dealing Avith infinite series.*

For example : Required the product

(^ + 2/ + -) (^'' + y' + -' - ^y - ^- - y^) ;

we can write down by symmetry

(x + y + z) (x^ -\. ,f ^ z^ - xy - xz - yz)
= A {x^ + 7/

+ ^3) + ^ (xhj + x-'z + xy^ + xz'' + y-'z + zhj)

-\- Cxyz.

Since this identity must hold for all values of x, y, z,

taking
X = 1, y = 0, z = 0, gives 1 = A.

Putting x = 1, y = 1, and ;v = 0, and using the discov-

ered permanent value of A, we have

* Since the whole matter of infinite series is postponed to subsequent

studies, this subject cannot be entered upon further than to caution tlie

student that in sucli an algebraic statement as

=^ \ -\- X -\- X- -\- x^ + x^ . . . it is never to be understood that
1 — X 1 — X

equals, or even approximates, the infinite series unless the series be con-

vergent; i.e., unless the sum continually approximates a definite limit.

Evidently if a; > 1, it would be absurd to take the above statement into

consideration for a moment. In fine, such statements are understood as

plainly concerning only such values of the variable as make the series

convergent. Compare various obvious ellipses common in all expression
of thought.

Let this be the student's reply to the cavilling he may sometimes hear

upon this matter.

Of course if the remainder is added at any point, the expression is an

identity, always true
; e.g.,

= 1 + x + x'^ -\
—

; thus, if x = 10,
1 — X 1 — X

we have = 1-1-10-1- 100 -{- 1000 + more and more untrue, the more

numerous the terms; but if the remainder be added at any stage, we
have a true equation:

_L^ 1 + 10 + 100+ T<^^ ^ + ffl + ^o_lM = _ 1.
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1 ^1 + 1; (^i + 1 - 1;
= 1 (1 + 1; + i>Hi + 1; ;

or 2 = 2 + 2i?5

therefore i? = 0.

Using these determined values of A and B and x = 1,

9/
= 1, z = 1, we get,

(1 + 1 + 1)0 = 1(1 + 1 + 1)+ C;
therefore C = — 3.

Therefore the required product is a;^ + y^ + z^ — 3 xj/z.

268. Returning now to Section 262, it is plain from Sec-

tion 267 that/o (x) must equal the coefficient of x" in <^ (x).

The " if
" in Section 263 must be carefuPy noted. It

has not been shown that n integral, 1st degree functions

can be found, such that

4>n {x)
= A- {x

—
«i) {x

—
«o) (.r

—
03) . . . (x.

—
a,).

This question is also deferred to subsequent studies in

Theory of Equations, when it will be proved that every

equation has a root, and that every equation of the ni\\

degree has n roots (all of Avhich need not be different).

By a root of the equation ^ (x)
= is meant a value of

the variable which causes the function to vanish
;
that is,

satisfies the equation ^ (x)
= 0. AVe have seen (§ 261),

that when an integral function of x is exactly divisible by
x — a, a is, 2^, root of the equation, and inversely.

The general formal proof that "
every eqiiation has a

root
" must be postponed ; yet Ave might almost assume

the fact as implicit in the Principle of Continuity (§ 103).

Assuming this, we can prove that every integral equation

of the «th degree has n roots, and no more.

Let a be one root
; then,

,/;
(.r)

=
(x-
—

«)/„_i(.r);
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but/„_i(.r) must have a root, and so on for u roots (some
of which might be repeated), and a constant factor, fg (x)

(vide § 262). Moreover, ^„ (ic)
cannot have more than 7i dif-

ferent roots, because if any integral function of ?/th degree

vanish, for more than ii values of the variable, it must

vanish identically; that is, for all values of x
(i.e., every

coefficient in form cr" -j- ^*"~' + ex""- -\- . . . -\- dx -{- k

must be zero). For, let

<|)„ (a:)
= a (x

—
i\) (x

—
r.) {x

—
r^) . . . (x — ?'„)

... (1).

Now, if possible, let ;• be another value of the variable

for which the function vanishes. Since (1) holds for all

values of x, then

^ (.'')
= f* ('

—
''i) (''

—
^'2) ('

—
''3) ..•('• — r„)

=
;

and since each '' r" by hypothesis is different, a must be

zero.

But a is the coefficient of the .r" term in ^„ (x). In this

way, step by step, each coefficient in
(f),, (x) is shown to

vanish if more than n values of the variable satisfy the

equation (|)„ (./;)
= 0.

For example, x'^ — (x -\- 1) (x — 1)
— 1 is of the 2d degree,

yet plainly it vanishes for 0, 1, 2,
— and therefore for all

values of x.

269. The preceding section affords an independent proof

of the theorem of undetermined coefficients, Avhich may be

re-stated as follows :
—

Any function of x is transformable into an integral func-

tion in only one way. For, if possible, suppose the two

following different integral functions, derived from the

same function, as identities, and therefore equal for all

values of x :
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No generality is lost in regarding them as of the same de-

gree ; for, if not, it would simply mean that the coefficients

concerned were zero. Subtracting the right-hand member
froin each, we get

{a
—

ai) cc" + {h
—

h^) a;"-' + (c
—

c^)
a;"-^ -|- . . .

for more than n values of x.

Therefore, a — a^ = 0, b — h^ = 0, . . . k — k^ = ;

that is to say, a = a^, b = l/^, . . . k = k^.

270. Professor Chrystal remarks at this point in his

Text Book of Algebra,
" the danger with the theory we

have just been expounding is not so much that the student

may refuse his assent to the demonstration given, as that

he may fail to apprehend fully the scope and generality of

the conclusions." Their utility cannot fail to be more and

more highly appreciated by the attentive student.

271. (1) Determine the value of Z; such that 2 a'^ — 8

x"^ -{- 1 X -\- k shall be exactly divisible by x -{-2. By
Section 259, the remainder to division by x — (— -) is

2 (_ 2)3
_ 8 (- 2)2 + 7 (- 2) + /.• = - 62 + k.

If the function is to be exactly divisible by a- -J- 2, this

remainder must vanish, or — G2 -|- ^^ must be zero
; i.e.,

k = 62.

(2) In like manner the question of exact divisibility

may be readily tested :

/y»n j,n

AVhen —
,
72 = y"

—
?/"
=

;
the division is always

x — y
exact.
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When - ~^^^i
,
i? = (_ y)"

—
?/"
—

0, if n be even, =
^' + y

— 2 y if n be odd.

When —J^^
,
^ =

_j/» -}-?/" = 2 ^" ;
the division is

^ - y
never exact.

When ^^li.^", R = (— yY -]- y''
= 0, if ?i be odd, =

2 ?/" if n be even.

(3) If A -~ D gives remainder R, and B -^ D remainder

i2', show that AB -=- 2) and RR' -^ i>* give identical re-

mainders.

(4) Observe that, in the proposition that an equation of

the ?ith degree has n roots and no more, we prove that

any finite number has n nth roots and no more, — all of

which need not be different.

To find these roots of any number, a requires the solu-

tion of the equation »•" = a, or ic" — a =
;
that is to say,

the factorization of a-" — a in the form,

{x
—

ri) (a-
—

7\) {x
—

I's)
. . . (x

—
?•„).

(5) We are also enabled to make an integral equation of

given roots. Thus, to form an equation whose roots are 0,

+ 1, — V2, —
1, we have simply to write,

Cx (x
—

l)(x-\- V2) (x ~\-l)
= 0,

where C is any constant we please; e.g., thts equation,

taking C = 1, is

a-" + V2 a;3 _ a;2 _ ^2 a- = :

or, taking C = V2,
V2 a;-* + 2 a;=5 ^ V2 a;- - 2 x = 0.
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272. Having thoroughly explained the meaning of " ex-

act" divisibility as api^lied to the division of one integral
function by another, the sense in which one function

is termed the highest common factor of two others is

apparent :
—

The integral function of x of highest degree which

''exactly divides" each of two or more integral functions

of X, is their highest common factor (h. c. f.). (But see

§ 251.)

If the given functions are easily resolvable into factors

which are integral functions of the first degree, the h. c. f.

is readily taken by inspection; since it is simply the

product of such of these first degree factors as are com-

mon, each raised to the lowest power in which it occurs

in either of the given functions.

Otherwise we may proceed very much as in Section 240,
since if A = BQ-]- R, the h. c. f. of A and B is the h. c. f.

of B and R : proved by considering Section 253.

Consequently, to find the h. c, f. of two integral func-

tions of X, A and B, where the degree of B is less than

that of A, we may
divide A hy B so that A = BQ^-^- Ry
and divide B by ^i so that B = R^Q^ -\- Rr,,

and divide R^ by R^ so that R^ = R^Q^ -\- R., etc., until

Rn-i/Rn gives R„_i = R„ ^„+i + R,
where R vanishes, or is of zero degree, that is, a constant.

In the latter case, there is no h. c. f.
;

in the former R^ is

the h.c.f. For by Section 253, A and B, B and ^i,

^1 and R2, . . . R„_i and R„, are of descending degree,

and all have the same h. c. f., and no factor of higher

degree than R^ can exactly divide R„. In case R is a

constant, R„_i and R„ have no common exact divisor other
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than R
;
that is to say, there is no common clivisoi- in the

sense intended, although any constant will ''exactly di-

vide "
any integral function in the sense of giving an

integral quotient ; i.e., remainder zero.
(
Vide § § 255,

256.)

It follows from the nature of this process of finding the

h. c. f. that at any stage either divisor or dividend may
be multiplied, or divided by any integral function of the

variables (of course including any constant), provided it is

certain that the factor so introduced or removed has no

factor in common with the other functions. Any function

which is obviously a common factor of both dividend and

divisor at any stage may be removed from each, provided
we multiply the h. c. f. afterwards resulting by the re-

moved common factor. In dealing with factors which are

constants, regard "factor" in the sense of common suh-

multlple of the coefficients. Finally, it must be observed

that the recurring operations are, on account of such modi-

fications as have been ascribed, not divisions in the ordi-

nary sense
;

for the " division "
may, if convenient, be

arrested at any stage (while the remainder is yet of higher

degree than the divisor), to remove common, or introduce

independent, factors.

273. (1) Find h. c. f. of 9 .^^ - 30 .r* + 4.j .7-^+ 24 x and

15 x^ - 30 X* — 90 a;3 + 60 x^ -f 195 a; + 90. (Problem
worked out on page 168.)

Of the originally removed factors, 3 x and 15, 3 is com-

mon
; therefore, cc^ — 3a:;^-|-3a;-|-l must be multiplied by

3 to obtain the h. c. f., 3 a-^ + 9 a;^ -f 9 a; + 3.
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(2) What is the necessary relation among their coeffi-

cients in order that aar- + hx + c and cx^ + te + a may
have an exact common divisor of the first degree ?

ax
/^_.^)'

ax"^ -\- hx -|- c

ax 2 I «(«+ g) X

^^_a{a+c)\

cx'^-\-l>x-{-a

cx^-\ x-\
—

a a

(dividing by
coef . of X gives)

,

fl.+ C

V'c a

c— a— c-\ ^—!—-^Jt.

Now, if the functions have an exact common divisor of

the first degree, It must vanish
;
therefore the condition

c — a — c A ^^ —^— = U.^
b''

Whence - ab"" + a {a ^ cf = ;

or, dividing by «, {a -\- cy = b-
;

or a -{- c = ^ b.

274. From Sections 253 and 272 it is plain that the

h. c. f . of three integral functions is the h. c. f. of the h. c. f.

of two and the third, and so on.

275. Integral functions which have no common exact

divisor are said to be algebraically prime. Many condi-

tions of algebraic primeness, more or less analogous to
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those estaBlished concerning absolute numerical primeness,

might be investigated.

276. The precise meaning of algebraic lowest common mul-

tijjle of two integral functions will now easily be understood

as the integral function of lowest degree exactly divisible

by both.

Let A = HQ and B = HQ', where the symbols repre-

sent integral functions, and H the h. c. f. of A and 7>. Let

M be any common multiple of A and B
;
then —

M = AE, where E is an integral function of x.

Therefore M = HQE.
But Jf is an algebraic multiple of i? = HQ'\

^1 r M HQE QE , QE , ,

therefore = —-— = -^—
, where -i— must be an m-

HQ' HQ' Q' Q'

tegral function. But since Q and Q' are by hypothesis

algebraically prime, E jQ' = X or E = (i'X, where X
is integraL Consequently

Jf = HQE = HQQ'X.
But this last algebraic statement (translated) declares

that any common multiple of A and B is the product of

H, Q, and^', as defined, and some other integral function,

X. Hence, 31 is of the lowest possible degree when X is

of zero degree ;
that is, a constant. And since constants

are not altogether ignored in the desired result, M is the

''lowest common multiple" when X=l; that is to say,
—

A P
since HQQ' = —-, the 1. c. m. of two integral functions is

the quotient of their product divided by their h. c. f.

Alternative rules are similar to those for single numbers

{vide § 242). The algebraic 1. c. m. has neither the practi-

cal nor the theoretical importance of the algebraic h. c. f.
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277. The fundamental theorem in the expression of

numbers, in a notation such as our common system, is tlie

following :
—

Any primary number may be expressed finitely, and in

only one way in the form —•

^o + ^1 (''i) + ^2 OVo) + ^3 (rir^rs) -j- . . . c„ ()\r.r3 . . . r„),

where Vi, Vo, r^, . . . r„ is a series of primary numbers,

unrestricted except that there are as many as may be

required, and Co< rj, c^-C r.2, c.2< r^, etc.

For if / be any primary number, dividing I liy r^ gives

(1) / = Co + Qi)\ where CoKn;

and dividing Q^ by r^ gives

(2)
'

Qi = r^ -{- Q.,r-2 where <?i< r^;

and dividing Q.^ by rg gives

(3) Q. = C.2 + (^3/-3 where Co< rg;

and so on until Qn< r„^i is reached.

(1) and (2) give

^ =-
<'o + (''i + Q'^ro) i\

= ^0 + ^I'-i + Q-ir^ro ;

and svibstituting for Q.2 from (3)

1= Co-\- c^r^ + c, (ri7\) + Qsnr.Vs ;

and so on until Q„_i = <"„_i + (?„'"«> where, writing 6'„ for

Q„, we have

I = Co -\- c^ (ri) + C2 (i\r.2) + (-3 (t\r^rs) + . . . r„

(7\r^r3 . . .

?•„).

Moreover, this expression is unique for the same series

of r's, because, if not, let

^0 + <-i'-i + ^2 QV2) + . . . = Co' + r^'r^ + e/ (}\ro) + . . .
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dividing each member by ?*i, gives

-0 + q + f2»-2 +...= — + Cl' + C2''-2 +
y-l

But since Cq <ri, and Cq' < i\, by Section 245 the essen-

tially integral and essentially fractional parts of these

numbers must be equal separately; that is to say,
—

£2 = £2.
,
or Co = Co ,

and so forth.

Example. — Express the number represented in our

notation by 200 on the scale, 7, 3, 5, 2, etc.

7
1

200

3
1

28 ... 4

5\j)_.
. . 1

1 ... 4

since the quotient 1 is less than i\ = 2, the process ter-

minates, and

200 = 4 + 1 X 7 + 4 (7 X 3) + 1 (7 X 3 X 5).

Express 100 in the scale 3, 4, 5, 6, 7, etc.

278. A corresponding theorem for the expression of

numbers essentially fractional (§ 245) where numerator <
denominator (''proper" fractions), may be proved; that is

to say :
—

— = r ~
"T" r • • • ' r»' '

D ri i\i\ r^r^n n^'2^3 • • • »« ^
where Jj' = {riTor^ . . . r„) D,

where d^ < i\ , d^ < i\ , etc., and where / may vanish. The

general proof, and demonstration that /= 0, when r, r^ is

... r„ is a multiple of B, is left as an exercise for the

student.
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Example. — In this way express 7/ 10 in scale 5, 7, 9,

11, 13, 15, 17, . . .

5
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It is our custom to omit the 7''s, whose powers are under-

stood from the order of the c's and c^'s, the proper place

being displayed by never failing to express the zero when

any c or d has this value. Also we omit the signs of addi-

tion, and write the integral series from right to left, so

that it may be regularly continued by the fractional series,

a mere point amply serving to separate the two. In this

way the powers of the radix or base decrease by ones from

left to right, thus :

Cn ''" + ^„-i ''""' + • • • ^2 '•'' + ^1 ^^ + -^0
'>'" + ^1 ^~^ + ^2 r-^

-\- d^r-^, etc.
; or, omitting -f's and r's and pointing off the

281. From the condition that the c's and d's must all be

less than r, it is obvious that in any such notation r — 1

figures are required to uniquely designate the jDOssible

values of c's and c^'s.

It is also plain that all the rules of the decimal algo-

rithm apply to any other base, say 12, except that the

"
carriages

" would go by 12's instead of lO's. Of course

for radix 12, tAvo new digit figures would be required ;
and

for radix 2, symbols for 1 and only could be used. Thus

teM on the binary scale would be 1010
;
that is,

1 X 2^ + X 2-2 + 1 X 2^ + X 2°.

282. Example.— Express 102305 (radix ten) on base

twelve
121102305

19 ^KOK K

12 710 ... 5

12 59 ... 2

(using a and h as digits for ten and eleven).

Therefore 102305 (r
= ten) is 4 ^^ 255 (r

= twelve).
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Inversely, to express 4 h 255 (radix twelve) on decimal

base.

Consider the expression means (using our common nota-

tion for calculation),

4 (12)* + 4 (12/ + 2 (12/ + 5 (12; + 5
;

or, performing the indicated operations.

5 =
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283. Fractions expressed in sucli notations as are under

discussion are called radix fractions, decimal if the base is

ten, duodecimal if the base is twelve, etc.

A fraction ^^ expressed as a radix fraction cannot termi-

nate unless iVr" is a multiple of D
;
for

±=.d,d,d, ' ^^

JJ
^ ^ " '

r"i>

Multiplying each member by ?•" reduces the radix fraction

part of the right-hand member to an integer, giving

^-_ = d^d„ds . , . d,^-\-
j-

,

where tZj do . . . is the integral part of the quotient ;
and

there must be a fractional part unless lir" is a multiple
of D. Also if N I D is in "lowest terms," i.e., if N be

prime to D, it is plain that a radix fraction cannot termi-

nate unless ?'" is a multiple of I). Nor can ?•" be a multiple
of D unless it be resolvable into powers of primes which

are jDrime factors of ;•. For example, to express N jD (in

its lowest terms) as a decimal fraction, we must have

D = 2'' 5", where either x or y may be zero.

N .

284. If, when the proper fraction — in its lowest terms

is expressed as a radix fraction, the latter does not termi-

nate, its digit figures must repeat in a cycle of not more

than _D — 1 figures. For, evidently only D — 1 different

remainders can occur, and Avhen one recurs, the figures of

the quotient must repeat. Such radix fractions are called

repeating, recurring, or circulating.

The repeating period may begin at once, or may begin

after figures which do not repeat,
— commonly distin-

guished as ^^wre and mixed circulates. The repeating
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period is sometimes called perfect when it consists of the

full complement {D — 1) of figures. The repeating period

is denoted by dotting its first and last figures.

This subject could be better discussed in connection

with infinite series, and "geometrical" progression; but

repeating decimals occur so frequently in practice that

their reduction to simple fractions cannot be left in the

dark.

Consider—
3[lj 1

0-333333 +
3 X ]^Q6

• • • 1/S =0-3

7L1: 1
0-142857142857 + ^-TTTTTT

• • • 1/7 =0-142857
<xioi-

1111-

'•'''^'+1T^^ ...1/11 = 0-09

24
[Ij

0-04133 + ^—- ... 1/24 = 0-0413.^
24 X 10^

'

The remainders, inexpressible as a radix fraction, may
be introduced at any point. I express them to avoid

discussion of infinitesimals; and if regarded as implicit

in the notation of the repeating decimals, the reasoning

in this section is exact in terms of thought familiar to

beginners.

Now 1 = 0-111 +
^^ =0-010101 +
^1^ = 0-001001 +
j__ = 0-00010001 +

The law is plain, and furnishes a way to transform

repeating decimals into simple fractions.
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For example : Express 0-324 as a common fraction in its

lowest terms. Evidently 0-324 = 324 x 0-OOi. But 0-6oi
= ^iT ;

therefore 0-324 = §|f = ^Yt = if-
Hence the rule: To express any pure circulating deci-

mal as a common fraction, write the repeating period for

numerator, and for denominator as many nines as there are

decimal places in the repeating period.
'

To find the rule for mixed circulates, consider :
—

F = 0-3i8

1000 F = 318 'ISIS 4- ft ^^'^^^^6 these remainder frac-

-tf\ p< S-1 S1 S -U V (
tions, /, are absolutely the

^^—"^ '"
1 same.

therefore 990i^=315

and F=U^ = ^^.

Again consider :
*—
i^=0-03G93is

10,000,000 F = 369318-18 +/ )
^^'^ remainder frac-

100,000 i^= 3693-18 + /•( ['^'"f t''
^^""^

,, „
——— —^ I lutelv the same.

therefore 9900000 F = 365625
^

and F= r^f^-Aesji- — jis
!? 9 00000 — 35 J"

Hence the rule .- To express a mixed circulating deci-

mal as a common fraction, subtract the non-repeating part
from the whole circulate for the numerator, and for the

denominator write as many nines as there are decimal

* The same result may he obtained thus :

0-03693i8 = 0-0.3693 + Q-OOOOOiS

^3fi9 3._ _| 1 V n-i«!— TOOOOO ' 10000(7 A U lO
3fi93 I 1 s/18

— T05p(J + JT^h^V — TT ffff§7 = ^V
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places in the repeating period, followed by as many zeros

as there are places in the non-repeating part.

285. Inasmuch as we have seen that any integer is ex-

pressible in only one way in any radix scale, it is clear

that a common fraction in any scale of notation is expres-

sible as a common fraction in any other scale. Con-

sequently any terminating or repeating radix fraction in

any scale transforms into a common fraction, and therefore

into a terminating or repeating fraction in any other scale.

Note carefully that a terminating radix fraction in one

scale need not transform into a terminating radix fraction

in another scale, but into a terminating or repeating radix

fraction.

286. To transform a fraction from one scale to a radix

fraction in another, simply multiply by the new base, and

the fractional part of the product again by the new base,

and so on. The integral parts of these products in due

order are the figures of the transformation. For example,

to express | as a duodecimal fraction :
—

3 X 12 = 4i

i X 12 = 6,

therefore | = 0.46 (radix twelve).

Or again, to express 0.13 as a radix fraction in the seven

scale :
—

q -l^g

7

0.91

7
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here 13 recurs, and the fraction repeats this period, so,
—

0.13 (radix ten) = 0-6024 (radix 7).

To prove the propriety of this process, consider a proper

fraction, F, and let—•

r I- r

in some new scale of notation whose base is r.

Then rF =7-, + ^^^+ . . .

r /•-

say vF = x^ -\- F, where F must be a proper fraction
;

therefore x^ is the integral part of rF.

Again rF = :r„ -[-
^ -f "li.

_)_

And in like manner Xn is the integral part of rF
;
and

so on.

287. If / be any integer, and s the sum of its digits, and

r the radix of the scale of notation, then the remainder of

= the remainder of —^^—
.

r - 1 r -1
For, let / = Co + ("i

?' 4- ^2 '"^ + ^3 '"^ + • • • <'n ^''•

Subtracting the sum of the digits from each member of

the equation gives

/ _ s = q (;•
-

1; + r^ (/-'^
-

1) + ^3 (>''- 1)+ . . . c,^ (/"
-

1).

Since, by Section 271, each term of the right-hand mem-
ber is a multiple of (r

—
1), if we divide each member by

(?'
—

1) (or any submultiple) we get

= some integer.r-1 r-1 "

Therefore, by Section 245. the essentially fractional parts

of IJ r — 1 and s J r —1 must be equal.
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288. From this theorem follows the special corollary

that in our decimal notation any integer and the sum of

its digits give the same remainders to 9 or 3.

This is the reason of the familiar rule for "casting out

9's," in order to test the accuracy of calculations.

If P = MN = 9 a; + ^>
=

(9 y + m) (9 s + n), where jh

111, and n are the respective remainders to 9 of P, M, and

N, it follows that 2^ ^^tl- "^'^ gi'^e the same remainders to 9,

since ^ x -\- p = (9 y + ?») (9 z -\- n)
=

9-1/." + 9 (/?y + mz) -J- 17171

= 9 (9 l/Z -(- 711/ -\- mz) -\- 77171.

In practice, find 7?, 171, and n, not hy dividing P, M, and

N, by 9, but, in accordance with the theorem, by dividing

their digit-sums by 9
;

'' cast out " the nines. It is plain

also that the remainder to 9 (or 3) of ^ + i> -|- C equals

the like remainder to a -\- h -\- c, where a, h, and c are the

respective remainders to A, B, and C.

Therefore to test addition :
—•

(1) 8277
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(2) To test subtraction :
—

87235 remainder to 9 ... 7

14505 remainder to 9 ... 3

72670 X
The difference, 72670, and 4 give same remainder, 4, to 9.

(3) To test multiplication :
—

349751 remainder to 9 . . . 2

28637 remainder to 9 . . . 8

10015819387 l6

The product and 16 give the same remainder, 7.

(4) To test division, let the student prove that if

The remainder to nine of P = remainder to nine of

{qd 4- ?•),
where q, d, and r are the respective remainders

to nine of Q, D, and B. Thus to test the division,

27220662 ..o
,

398

47923 47923

remainder to 47923 (divisor)
=^ 7

remainder to 568 (quotient)
= 1

remainder to 398 = 2

remainder to 7 X 1 + 2 =0
remainder to dividend =

289. Problems :
—

(1) Expressed in a certain scale seventy-nine becomes

142, what is the radix ?

(2) In what scale of notation does 301 express the

second power of an integer ?

(3) Dediice a test of multiplication by "casting out

elevens."

(4) Prove that any integer of four digits in the scale of



ALGEBRAIC SQTTARE ROOT. 183

ten is a multiple of 7, if its first and last digits be equal,

and the hundreds digit twice the tens digit.

(5) In ten scale a number of 6 digits whose 1st and 4th,

2d and 5th, 3d and 6th digits are respectively the same, is

a multiple of 7, 11, and 13.

290. The common process of finding algebraic square

roots, cube roots, etc., is familiar to all, most text-books

making far too much of it. The method has little interest,

theoretical or practical.* Even the analogous numerical

calculations are better dispensed with, if a table of log-

arithms is at hand
;

and the method for the algebraic

problem is rendered superfluous by the simpler method

of "undetermined coefficients." AVe consider only cases

where the function is a perfect square, because further

discussion would take us into the question of infinite

series.

Example.— Eequired the algebraic square root of—

^
12 3 9

If a "
perfect square," the root must be of the form, ax^

-\-l>x -\- c, the square of which is (rx* + 2 abx^ -\-(2 ac -f Z»^)

a;2 _|_ 2 l,e.v + cl The corresponding coefficients must be

equal ; therefore, o = 1. 2 ab = 1 .-. h = 1 / 2. 2 he =
— 1/3.'.6=— 1/3; therefore the required square root is

x^-\--- 1/3.^2 '

* Professor Chrystal remarks: "The metlioil was probably obtained

by analogy from the arithmetical process. It was first given by Recorde

in The Whetstone of Witte (black letter, 1557) the earliest English work

on algebra." It would be serviceable to the student to compare the

difference between the numerical and the algebraic ijroblems.
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To find c we might have taken either of the last three

coefficients.

A similar method would yield the cube root of a function

which is a "
perfect cube," etc.

291. Without going too far into the subject, it is proper
to add here several fundamental theorems concerning com-

plex numbers, postponed from Chapter XII.

If
<f>

(x 4" yi) be an integral function of a complex num-

ber, we saw in Chapter XII. that it is reducible to a com-

plex number, say A -j- BL Now, if all the coefficients of

^ (x -{- yi) are protomonic, A and B are protomonic, and A
can contain only even, and B only odd, powers of y ;

there-

fore, if X -\- yi be changed to x — yi, A will remain unal-

tered, and B changed to — B. That is to say, if
(|) {x -{-

yi)
= A -\- Bi, ^ (x

—
yi)

= A — Bi.

The theorem is readily extended to include all stirpal

functions, integral or fractional, of a complex number, and

generalized for such functions of more than one complex
number.

292. As a corollary, if all the coefficients of the stirpal

function ^ (ii)
be protomonic, and if ^ (u)

= 0, when ?* =
a + bi, then ^ (u)

= 0, when u = a — bi; for if ^ -|- -^'<- =
0, ^ = and ^ = (§ 193).

State the corollary for ^ (u, v, iv . .
.).

293. Since
<|) (x -f yi)

= A -{- Bi and ^ (x
—

yi)
= A

—
Bi, when all the coefficients in the functions are proto-

monic
;
and since

norm
4, (x + y i)

=^ norm {A + Bi) = A"-\-B-= (A + Bi)

(A — Bi) ;
therefore

norm
<^ (x -\- yi)

= norm ^(x — yi)
= ^ (.« -(- yi) (f) (x

—
yi) ;

and therefore :
—
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mod
<f)(x -\- yi)

= mod <^ (re
—

y?")
=

-f- V<^ (x + yi) (j> (x —yl) ;

and in general

mod ^ [x + yi, u -\- v'l, . . .^ = mod <^{x
—

yl, ?< — vi, . . . }

= + V {(/) (a- + 2/^',
n + '(;/,

. . .

) (fi(x
—

yl, w

-t-.-. . . )}.

294. If the function be the product of several complex

numbers, this theorem gives

mod{(r+ si) (t -\- ui){y -\- u-lj)
= V{(^"+ si) (t + nl) (v -\- n'l)

(r —si){t —in)(v
—

2rl)}
= + V{{r-~\-s-)(t'-\-u^)(v^-\-tv^)}

= V/'^ + s' ^/t'^ + u- Vv- -\- w'^ — mod
l^r -\- si) mod

(t -\- III)
mod (y + wi) ;

that is to say, the modulus of the product of any number

of complex numbers equals the product of their moduli.

It might plausibly be taken for granted (since we have

seen that it x -\- yi = 0, x = 0, and ?/
=

0) ;
but it is better

to prove distinctly that the product of two complex num-

bers cannot be zero, unless one of the complex numbers is

zero :

If yz = 0, where y and z are complex numbers, mod (yz)

= 0. But mod (yz)
= mod y mod z

; therefore, mod y mod
z = 0.

But mod y and mod z are protomonic. Therefore, either

mod y = 0, or mod z =
;
and consequently, by Section

198, either y = 0, or z = 0.

295. Again, as a special case of the general theorem in

Section 293, if the particular function be the quotient of

two complex numbers, we have

mod
S

^ +
"\ \^+J\ ^+"\ .

^ - '"'

I
V -{- tvl

) \ I
V -\- ivl V — u-i

Y I v-'-{- 'W-'
\ Vw' + W mod (v + wl)
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that is to say, the modulus of the quotient of two complex
numbers is the quotient of their moduli.

296. The modulus of the sum of complex numbers may
equal the sum of their moduli, cannot be greater, and

is in general less. For consider two complex numbers,
t -f- «^ and v -f- iH.

By Section 293, mod (t -\- ul -[- v -{- vi) =
-\- s/ {{t -\- ui -}- V -\- wi) (t

— ui -\-v
—

u-i)}
=

+ ^ {(* + ^)^ + (^ + '^y^}} therefore we desire to prove,

+ ^{(t-\-vy-\-{u-^wy} not > + V(^^+<)+ V(z;^+w;2),

or, since only positive roots are concerned, that (t + i.')^ +
(u + tvf not > t^-\- u' + V- + IV- + 2 V{b-' + u') (v'^ + w^).

Subtracting t' + n^ -{- v" -\- n-^ from both members of this

inequality gives, 2 fv -\- 2 mv not > 2 V(^^ + u^) (v'^ + w"^),

and dividing by 2, tv -\- uw not > -\J {^^ + m^) (v'^ -f it--).

The right-hand member is essentially positive, and there-

fore not less than the left, if the latter is negative (as

might be on accomit of the original quality of t, n, v,

or
ir) ;

and the theorem is consequently proved for that

case.

If the left-hand member is not negative, by squaring
both sides* we get

t-v- + 2 tuviv -f iihv'^ not > f-r" + nhr" + fic^ + v^u^,

or 2 tvwu not > t'-^u-" -\- v-i(%

or not > t-ir- + r'~n- — 2 tvwu,

or not > (fir
—

?';/)-.

But this is true, since the right-hand member is essen-

tially positive.

297. Argand's diagram beautifully apjilies to geometri-

cal relations these properties of complex numbers, thus

analytically displayed.
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• 298. It would be interesting and instructive to follow

a great many very curious and useful investigations of

various properties of primary or discrete (to say nothing

of complex, or continuous) number^of which no mention

ever has been made. But to do so Avould carry us into

ideas and notations equally strange, and would be deemed

a transgression of appropriate bounds for such an elemen-

tary treatise as is this little work. For instance, Gauss

makes the notion of congruence fundamental in his Disqui-

sitiones Avithmeticae, Congruence meaning the relation of

I and J, if 7 = ayx + r, and J =^ h^-\- r, where
[x.

is termed

the modulus of / and J, and / and J are called congruent

with respect to modulus /a.
Some astonishing facts are

directly deducible from this simple mode of classification.

It is not from the difficulties of the more elementary por-

tion of the Theory of Numbers * that the field lies fallow

for our undergraduate courses in mathematics, and I be-

lieve the interest of students would be less disposed to

flag if the firmer grasp of thought were commanded Avliich.

such studies would infallibly encourage.

299. If the equation ^ (x, y, z)
=

ifr (x, y, z) is satisfied

for all values of the variables, it is called an identical

equation, or an identity, or a formula. ( Vide § 40.)

In this case the equation is formally true, under the

very laws of numerical operation, regardless of particular

values of the variables.

If, on the other hand, an equation is satisfied only for

special values of the variables, it is called a synthetic, or

conditional, equation. From this point of view, the con-

* For bibliography of tlie interesting and important subject which

bears tliis name, see Numbers, Theory of, Cayley, Ency. Brit., 9tli eil.
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stants are commonly spoken of as known, and the varitl-

bles as unknown "quantities,"
— numbers, in the algebra

of number.

Synthetic equations are classified and named with refer-

ence to their unknown numbers, precisely as functions are

characterized in regard to their variables. {Vide § 169.)

Synthetic equations involving only stirpal and radi-

cal functions (exponential, etc., equations are deferred to

future studies) can always be made to depend upon an

equation of the form

<\> (a-, y, z, . . .
)
= Q,

where
(/>

is an integral function.

This form, therefore, is of prime importance in the

theory of equations.

300. Synthetic equations concerning the same variables

may occur in sets, or systems. In this case they are

called simultaneous, and the problem is to find the sets of

values of the variables which render every equation of the

. system an identity.

Such a set of values is said to satisfy the system, and

is called a solution of the system.

Such solutions are to be distinguished in many ways
from the solutions of one integral equation in one variable,

where a solution is called a root.

301. It is important to distinguish between two differ-

ent kinds of solution :
—

(1) Numerical solution, exact or

approximate, which can often be obtained where formal

algebraical solution would be out of the question ;
and (2)

What may be called formal solution, that is, a solution in

which the variables are expressed as definite analytical

functions of the constants. Such solutions of equations of

degree higher than the fourth cannot, in general, be found.
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302. The final test of any solution is the satisfaction

of the equation, upon substitution therein of the values

obtained for the unknown numbers. No matter how the

solution has been obtained, if it does not stand this test,

it is no solution
;
and no matter how obtained, if it does

stand this test, it is a solution. It is often a good way to

guess a solution, and make the test.

303. FUK^DAMEKTAL PkOPOSITIOX IX THE TlIEORY OF

Equations. — If in the equation <j),^ (x)
= 0, (/>„ (x) be an

integral function of x of the ?ith degree (the coefficients, in

general complex, in particular, protomonic, numbers) where

the coefficient of the a;" term is not zero, then ^„ (x) is the

product of n factors, each of the first degree.

With one provision we proved this proposition in Section

268, and it has also been shown that these factors can

always be in the form

C (x
—

r{) (x
—

?-2) (a-
—

Ts) . . . (x
—

?„),

where C is the coefficient of a:" in
(^,^ (x), and Vi, ?-2, r^,

...?•„ are the roots of the equation. Consequently, the

problem of solving an integral equation with one unknown

number, is identical with the problem of resolving the

general function of one variable, of like degree, into factors

of form
C (x

—
?-j) (x

—
r^) (x

—
vs) . . . {x

—
?„).

304. It is worth while to call attention to the fact that

x^ -\- X -{- 1 = (x -{- 1 -\- Va-) (x -\-l
—

Va-),

often given by beginners when required to factor x'^ ~{- x -\- 1,

although a true identity, is no factorization in the sense

intended, because the factors are not integral functions.

305. ISTothing need be said of the solution of integral
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equations of the first degree : properly associating the

terms, and reducing by the distril^utive law to the form
iV"

Cx = N. gives X = — .

306. Eecurring to Section 271 (4), we know that

(x
—

a) (x
—

h){x — c)... {x
—

n)
=

is an equation whose roots are a, h, c, . . . n.

Performing the multiplications, we have the form :

a.» + r^.r«-i + r„.r"-^+ . . . +r-„_j a- + c„
=

0,

where, c^
= —

{a, J^ h -{- c -\- . . . -\- n)
Co = ab -f- "<' -{- he -\- . . . -\- vin

Cz= — {'ihe 4- uhd -\- acd -[-.,. -)- liiui'

r„ = -j- ahrd . . . n.

(Plus or minus, as 7i is even or odd).

Hence, if an integral equation of the ?ith degree is in

the above general form :

The coefficient of the second term is minus the sum of

the roots.

The coefficient of the third term is the sum of their

products, taken two at a time.

The coefficient of the fourth term is minus the sum of

their products, taken' three at a time, etc.

The last term (the constant) is plus or minus the product
of all the roots, according as w is even or odd.

307. It follows : In every equation of the nth. degree
in the general form,

If the second term is wanting, the sum of the roots is

I the last term is wanting, at least one root is zero,

[f all the roots are integral, they are submultiples of

tiie last term, which must be integral. But the inverse
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does not follow
;
siuce tlie last term may be integral, yet

roots be fractional. But if the last term is not integral,

some of the roots are not integral.

If all but one of the roots are known, the remaining one

may be found by adding the sum of the known roots to

the coefficient of the second term, and changing the quali-

tative sign of the result. Or, by dividing the last term by

l^lus or minus the product of the known roots, according

as 71 is even or odd.

If m roots are known, the equation may be depressed

to another of the {ii
— m)th degree, by dividing by the

product of lit factors of the form,

(x
—

7\) (x
—

Vo)
. . . (x

—
''m)j

^^^^ therefore :
—

If all but two roots are known, the coefficient of the

depressed equation is the sum of the known roots and the

coefficient of the second term of the given equation. And
the last term of the depressed equation is the last term of

the given equation, divided by plus or minus the product

of the known roots, according as n is even or odd.

308. From the process of multiplication required in Sec-

tion 306, it is evident that if all the r's are positive, the

quality of the terms is alternately + ^^^^ — • Hence, if

the roots of an equation are all positive, the signs of its

terms (supplying missing terms by zeros) are alternately

-J- and —
,
and inversely.

Again, if all the r 's be negative, there is no change in

the signs of the terms.

It would not be difficult to deduce here Descarte's Rule

of Signs : An integral equation cannot have more positive

roots than it has changes of signs, nor more negative roots

than it has continuations of the same sign.
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309. Prove : Any integral equation may be transformed

into another whose roots are the negatives of the original

roots, by changing the signs of alternate terms, beginning
with the second.

310. To transform an integral equation into another,
whose roots are the roots of the original equation multi-

plied by a given number, k :
—

In tlie general form substitute y / /- for x, obtaining, —

Multiplying by k"- gives

//" + ^iAr-' + ^./.y--+ . . .r„_i7.-«-V+^„A- = (2)

The roots of (2) are the values of ?/ that satisfy it; but

1/
= kx

; therefore, noting the coefficients in (2), to effect

the desired transformation, multiply the second term by k,

the third by k'-^,
and so on.

311. Equations may be transformed in many other use-

ful ways ;
for example, so that the roots shall be the ori-

ginal roots ^ some constant. This mode of transformation

is most serviceable in the special case of making the exact

increment which will cause the second term to vanish, — a

device for preparing cubic and biquadratic equations for

solution. For a simple illustration see Section 316.

312. Seeing that we have the unique resolution :
—-

^u (^-)
= = c(x — ?-j) (x

-
;•.,)

. . . (x
-

?•„),

it follows from Section 292 that if ^„{x) has all its coeffi-

cients protomonic, and vanishes when x = a-{- hi, it must

vanish when x = a — hi.

This is to say, that in any integral equation whose

coefficients are protomonic, roots which are complex num-

bers must occur in conjugate pairs.
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In like manner {vide § 170) surd roots can enter equa-

tions with commensurable coefficients only in conjugate

pairs.

Thus, all such equations, if of an odd degree, must have,

in the former case at least one protomonic, and in the

latter at least one commensurable, root.

313. The general equation of the second degree in one

variable is ax^ + hx -(- ^ = 0. The general theory of solu-

tion is already in our hands, and in this case the formal

solution (vide § 301) is always obtainable. Various methods

may be followed.

The general equation,

ax^ -f- ^^-" + c = Oj

may be reduced without altering the roots (§ 303) to

a a

or X-
-\
— x = .

a a

From consideration of the formula (x -\- yy z= x- -\-2 xy

-f- ij'\
it is plain that the left-hand member may be made a

/ h \2
''

complete square
" in x by adding f 7y~~

)

to each member,
which gives —

X'^
-\

X
-\

=
1

= .

a 4 a^ a 4 a^ 4 a^

Taking the square root of each member,
*

* The double sign before the left-hand member would be superfluous,

since nothing more would be said than is expressed as the statement

stands; e.g. :
—
± (a -\- h) — ^ {c -\- d) says no more than

a -f ?> = ± {c-^ d), as one may readily satisfy himself.

See also Section 325. _„.»—__
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X + ^-^
= ± .—V^/' - 4 ae,la la

or
3. ^ Z-IL i "^^''' — 4 «c

2 a

We have here a formal solution of the general quadratic

equation.

Also the quadratic function, ax^ -\- hx -[- c, has been fac-

tored. For, by the principles clearly exhibited in Section

303,—
ax--\-bx-\-c=^n{ x — " -'

2 a J

314. In solving a particular quadratic in one variable,

we may give this process of *'

completing the square
"

its

particular application ;
or we may employ the formal solu-

tion as a rule; that is, after reducing the given equation
to the form ax" -)- /y^ -|- c = 0, simply write down the partic-

ular values in

X — — ^ jz V^' - 4 ac

2 a

Of course, if the given equation in form ax- -{- hx -\- c =
0, affords a function readily factorable by inspection, it

would be absurd to feign an investigation for what is

already known. For instance, one with any skill in the

algebra cannot fail to see that in a-^ + 5 a; -f G = 0, we
have (x + 3) (a; -f 2)

=
;
which is to say, that x = —

3,

and X = — 2.

The device of reducing the given equation to the

form, 4 a'^x- -\- 4 ahx + 4 ac = 0, before "completing the

square" (known as the Hindoo Method), is hardly Avorth

mentioning, since it merely avoids fractions which offer no

obstacle to calculation. It is doubtless a relic of the times

when fractional number was regarded with suspicion.
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315. If i\\e formal solution of ax- -\- hx -\- c ^ 0,

— h A- -Vb- — 4 ac
X = ^

,

2a

be coDsidered, it will be seen that, when the coefficients are

protomonic, the roots are :
•—•

(1) Protomonic and unequal, if Ir — 4 ac is positive.

(2) Protomonic and equal, if //- — 4 ac = 0.

(3) Commensurable, if V^" — 4 ac is commensurable.

(4) Conjugate surds, if V^- — 4 ac is incommensurable.

(5) Conjugate complex numbers, if ^- — 4 ac is negative.

(6) Equal, if //- = 4 ac.

(7) Equal moduli, but one positive, other negative, if

as — - is + or —
]

.

protomonic or neomonic,

(8) One zero, other = —
h/ a, if c = 0.

(9) Both zero, it b = and c = 0.

It may be profitable to find, from a different standpoint,

more or less the same criteria :
—•

From Section 306, the equation, ax' -j- bx -\- c ^ 0, gives

the following relations of roots and coefficients,
—

r^ -(-?•„
=

,
and /^ ?'o == - .

a 'a
Consequently 1\ and r^ are

. ." . b . c
positive if - is negative and -

positive ;

a a

negative if - is positive and - positive ;

a a
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of opposite quality if - is negative.
a

Tliese statements presuppose (1) above, ^- — 4 ac > 0.

ri = — To if 0.

a

ri = or ?-o = if - = 0.
a

ri = and r. = if - = and - =- 0.
' a a

If ax^ -|- ix + c = be still regarded as a quadratic

when a = 0, then one root is co . If ^ also is zero, both

roots become infinite.

These criteria may be tabulated :
—

KouTs.
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Ji X =
7/ -{- e, (1) is equivalent to

«
(1/ + ey-i-b(y + e) + c = 0;

or of?/2 ^ (2 ae -\- b) y -\- ae"- -\- he -\- c = 0. (3)

To make the second term vanish, 2 ae -\- b must be zero,

b
or e =
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being analytically derivable from the others. Also it may
happen that a system of analytically independent equations

may have more equations than variables, yet not be con-

tradictory.

Let the student frame examples of such conditions.

318. A determinate system of integral equations involv-

ing the variables, x, y, z, . . .
,
cannot have more than, and

in general has exactly abc . . . solutions, where a, b,c, . . .
,

are the degrees of the system in the respective variables.

Proof of this proposition must await future studies
;
but

it is useful to know the theorem, and the question presents

itself at once, and should not be ignored by the teacher.

319. Two systems of equations, each of which may con-

sist of only one, are termed equivalent when every solution

of each is a solution of the other.

From any system we may, in an infinite variety of ways,
deduce another system ;

but the derived system is not gen-

erally equivalent to the original.

This matter is of fundamental importance, even at the

most elementary stages. It is commonly (with several

notable exceptions) left in the dark by our text-books,

though
" there are few parts of algebra more important

than the logic of the derivation of equations, and few, un-

happily, that are treated in more slovenly fashion in elemen-

tary teaching. Xo mere blind adherence to set rules will

avail in this matter
;
while a little attention to a few simple

principles will readily remove all difficulty."
*

320. If A and B are two functions, which do not become

infinite for any finite values of the variables (such cases

must be considered separately), the only values of the vari-

* Text Book of Algebra, Chrystal, vol. i., p. 285.
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ables which make ^ x ^ = are such as make yl = 0, or

^ = 0, according to laws already fully demonstrated.

321. Axiomatically, ii A = I>, (1)

then A-^C= B ^ C. (2)

Also, (1) and (2) are equivalent, for neither can be true

xmless the other is true.

Note the corollaries whereby we "
transpose a term with

changed signs," or "
change all signs," or reduce any equa-

tion to the form () = 0, without destroying equivalence.

322. On the other hand, although, if

A = B, (1)

then AC=BC,
'

(2)

the derivation being perfectly legitimate, and the resulting

equation true, yet (2) is not equivalent to (1), unless C is

a constant not zero
; for, by Section 321 (2) is equivalent

^° AC-BC=0
that is to C(A- B) =0 (3)

Now, if C is a constant not zero, (3) is equivalent to (1) by
Section 320

;
but not otherwise, for if C is a function of

the variables, (3) is satisfied by all values of the variables

that satisfy the equation, C = . . . (4), which in general

will not satisfy (1). Therefore (2) is not equivalent to

(1), but to (1) and (4).

In this way it is plain that multiplying both members of

an integral equation by an integral function introduces

roots, and dividing the members of such an equation by
an integral function loses roots.

Also, from any integral equation another equivalent

equation can always be derived in which the coefficient of

any term shall be as desired, say -f- 1 for the highest term
;

for this is obtainable by multiplying by a constant.
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323. Fractional equations must never be confounded,

in the matter of degree and number of roots, with, integral

equations. The very term degree does not apply to frac-

tional equations. Fractional functions of x may sometimes

be integral functions of some function of .r f e.g.,
-

j;
but

in general no sucli relations as obtain between degree and

number of roots in integral equations subsist for fractional

equations. The latter must be solved under the logic of

the equivalence of derived integral equations.

From any fractional equation an integral equation may
be deduced, which may or may not be equivalent. If

E ^= F, where E and F are fractional functions, and

Jf= 1. c. m. of the denominators in E and F, then EM=
FM is integral.

Here extraneous solutions of M= may be introduced,

but not necessarily or generally. E and F contain frac-

tions whose denominators are factors in 31, and in general

roots of M=0 would make E ov F infinite, and conse-

quently M (E — F) not necessarily zero.

See examples below for clear understanding of this

point.

324. If both members of an equation be raised to the

same power, in general the resulting equation is not equiva-

lent. Thus A = B; then A^ = B% or A^ - B^ = 0. But

the last is equivalent to {A -\- B) {A — B) = 0; hence the

solutions of A -\- B = would in general be introduced.

It may be noted that in squaring A = B the result is

the same as if the members of the equivalent equation,

A- B = 0, were multiplied by A + B. {Vide § 322.)

325. Neither the equation between the positive, nor that

between the negative, square roots of the members of the
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equation A = B, is an equivalent equation ;
but the two

equations (generally written together with double signs)

between the positive root of one, and both roots of the

other, constitute an equivalent system. (Vide § 313.)

+ VX= + V^ (1)

nd + VA = -VB (2)

is a system equivalent to ^ = Z?.

For A = B is equivalent to A — B = 0, which is equiva-

lent to {-y/A -\- -y/B) (VA — -y/B)
= 0, which is equivalent

to the system (1) and (2).

326. li A = B he Q, radical equation, repeated involu-

tions Avill deduce an integral equation which may or may
not be equivalent. Extraneous solutions may be intro-

duced
; and, if like roots in the original equation alone be

regarded, often no solution of the derived equation will

satisfy the original.

327. Two equations which are not equivalent are called

indejjendent. Two or more independent equations involv-

ing a corresponding number of variables may be capable of

coincident solution
;

if so, they are termed simultaneous,

that is, consistent, or involving variables which, though un-

known, are the same. Contradictory statements, no matter

how artfully veiled the contradiction, can lead only to non-

sense in algebra, as elsewhere.

Compare again Sections 300, 317, 318.

The devices of elimination, whereby an equation in one

variable is deduced from a system of simultaneous equa-

tions in several variables, are familiar
;
but the logic of

such derivations, and the paramount question of the equiv-

alence of the derived and original systems may have been

overlooked.
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The present discussion must be concluded with two

propositions specially concerning the equivalence of simul-

taneous systems. The subject will have been by no means
exhausted

;
but my purpose of stimulating alert and intelli-

gent observation in the important matter of solving alge-
braic equations will probably be fulfilled. The student's
skill and knowledge will steadily increase, if strict atten-

tion be always paid to the question of equivalence.
328. The system,

P
^^

n S^^ !
I i« equivalent to

^ =
(1) |

for any solution of I makes A zero, and B zero, and there-

fore satisfies II; and any solution of II makes A zero, and
therefore reduces II (2) to q B = 0, ov B = 0.

Conseqviently any solution of either satisfies both.

It may be suggestive to state this proposition again in

the form

A = B) A — P
^ ? is equivalent to

C = D\ AA-C = B-\-D
On the other hand,—

^~ ^}I is not equivalent to
^ = ^

| ,jC = B\
^ AC = Bd]

For, though all the solutions of I are solutions of II, II

has in addition all the solutions of C = 0, and D = 0.

Let the student satisfy himself of the truth of this propo-
sition. It explains many ''answers" which may have
been incomprehensible to him.

The following examples may serve to impress what has
been said concerning the equivalence of derived equations
with their originals, although at every point the student

should have found specific illustrations.
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329. (1) Solve

^ ^^ =1. (1)
X — 3 X -\- (J

Multiplying each member by (.r
—

3) (.r -f G) gives

a-2 -3x - 18 = 0,

or, (x
_

6) (x + 3)
= 0, (2)

whence x = 6 and x ^= — 3.

Both of these are solutions of (1). i^o roots of (x — 3)

(x -j- 6)
= were introduced, because x ^ 3 or x = — 6

would make the left-hand member of (1) infinite, and

therefore M {E - F) not zero. {Cf. § 323.)

(2) Solve 1 — = — 6. (1)

Transposing, and adding the fractions, gives

1 - -^

J
= -

6,
X — 1

or 1 — (x + 1)
= —

G,

or a- = G . . . equivalent to (1).

But a beginner might multiply by a; — 1, deriving

ic - 1 - a--^ = - 1 - G a; + 6 (2)

whence x = \ and a* = G,

where 1 is no solution of the original, and therefore (2) is

not equivalent to (1).

Multiplying by any integral function, not nesessary to

clear of fractions, will derive an equation not equivalent.

Accordingly, every device for identical simplification should

be employed before multiplying by the lowest common

multiple.

(3) Solve i_^
^'' + ^-6 ^ ^^-3a- + 2

^ ^
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Multiplying each member by (x
—

2) (x + 2), and redu-

cing identicall}-, gives

3 «2 _ 4 a; _ 4 = 0, (2)

whence x = ^ Jz VI6 + 48 ^^_Al = 2o.- 2/3.
6 6 '

Equation (2) is not equivalent to (1), the root, 2, of

(x
—

2) (x 4- 2)
= having been introduced, because the

fraction in the left-hand member of (1) is not in its lowest

terms. If (1) be reduced before clearing of fractions we
obtain

14-0^ + 3^ ^ ~
o"^*^ ?

X -^ 2

whence, multiplying hj x -j- 2,

x^ -\- 6 X -\- 8 = x^ - 3 X -\- 2, (3)

or X = -
2/3,

where (3) is equivalent to (1).

(4) Solve V4 - .T = ic — 4.
(1)

Squaring 4 — x = x- — 8 x -\- 16,

or a"2 — 7 a- 4- 12 = 0,

or (x
-

3) (x
-

4)
=

0, (2)

whence x = S and x = 4.

Of these solutions of (2), 4 is a solution of (1) if the

l^ositive square root be taken, and 3 is not a solution
;

whereas, if the negative root be taken, 3 is a solution and

4 is not. Thus (2) is equivalent to

-\- V4 — X = X — 4: and — V4 — x = x — 4.

(5) Solve V3rK-|- 1 = V9a; + 4 - V2 x-l (1)

Squaring twice, and reducing identically, gives

a;2 _ I a; _ 5 ==
(2)

whence x = 5 and x = —
^
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Using only positive roots of the radicals, 5 is a solution of

(1) ;
but — ^ substituted in (1) gives

or ^ V2 i = h V2 i — V2 i, (3)

an absurdity if the statement be restricted to positive

roots
;
but if the negative root of the left-hand member be

taken with the positive roots of the terms in the right-

hand member, (3) is an identity.

Therefore (2) is equivalent to

-f VSu; + 1 = + VOu; -f 4 - (+ V2 X — 1),

and — V3 a; + 1 = + V9 ic + 4 — (+ V2 a; — 1).

(6) Solve 2 - V2 X + 8 -f 2 v./; + 5 = (1)

Squaring twice^ we deduce

a-2 = 16 (2)

whence a; =
-JL 4.

In this case, using the positive roots of the radicals in

(1), neither -|- 4 nor — 4 is a solution.

So far as I am acquainted with them, treatises upon

algebra, if they notice such cases, merely declare that the

original equation is impossible and has no solution. Pro-

fessor Chrystal states the theorem :
—

" From every algebraical equation we can derive a

rational integral equation, ivhlch to'ill he satisfied Inj antj

solution of the given equation ; but it does not follow that

every solution, or even that any solution, of the derived

equation will satisfy the original one."

The italics are mine, and would mark logical contradic-
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tions if there is "
any solution " of the original. Professor

Clirystal's example is :
—

V* + 1 4- V^' — 1 = 1.

The derived equation yields the single solution, x ~ &
.

The only remark is,
" it happens here that a; = | is not a

solution."

Note, I is a solution of + V*' + 1 + (— V.e — 1)
= 1.

Professor Taylor, in his Academic Algebra, Boston, 1893,

which deserves rare praise for emphasizing from the begin-

ning the question of equivalence of equations, uses example

(6) above, concluding "2 — V2 x + 8 + 2 Vx + 5 = is

an impossible equation, for it has no solution."

Now, I must not be understood as disputing these state-

ments
; they are true, taking the numerical statements to

be restricted to positive roots. But it seems to nie that

the student stands in need of further explanation : he

should be directed to observe, that though one may write

down what he pleases, as an isolated statement, no restric-

tions can be put upon the operational effect of such nu-

merical relations. The square root of 4, as an inexorable

fact, is -|- 2 or — 2. In general operation, radical surds

necessarily include all their roots. If one says, V-*^, he has

expressed six distinct subjects of affirmation, nor can the

logical consequences of these alternatives be avoided in

numerical analysis.

The conclusion of the particular problem under consid-

eration is, that no finite number satisfies the equation,

taking positive square roots
;
but by reason of the perfect

generality and freedom of numerical operations, if there is

a number such that either of the square roots concerned

fulfils the conditions, it must be yielded as a solution of
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the equation. We had occasion to notice in Section 323,

and in example (1) above, that indeterminate infinite solu-

tions do not obliterate or interfere with finite solutions, if

there be any such.

And in general, the complete analysis of any radical

equation would seem to require the investigation of all the

alternative equations arising from the indifferent roots of

radical surds. Some of these niay be impossible, in the

sense of having no finite solution
;
but if a finite number

will satisfy any one in the system, it will certainly discover

itself in the attempted solution of an}' other,— and simply
because the choice of particular roots is arbitrary, and an

equation cannot be made to yield nonsense, or contradic-

tion, so long as there is possible consistency of its terms.

(7) Solve the simultaneous system

x-2 + 2y2 = 9 (2) f

Solving (1) for x x = 5 — 2>j (3)

Substituting in (2) from (3) (5
-

2//)^ -(- 2i/ = 9.

or 3y-
- lOy + 8 =

or (3y_4)(y-2) =
•

(4)

System A is equivalent to system B (calling (3) and (4)

system B). But system B is equivalent to the double

system
^ =

^--^U, and
^ = ^-^^1^

3y_4 = 0) 7/_2 = 0[
r' A

The solution of c is a; = —,?/ = —.
3

-^

3

The solution of fZ is x = 1, ?/
= 2.

Hence these are the two solutions of A. (Vide § 318.)
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(8) Solve the simultaneous system

x^-2xy= (1) I
4x2 ^ 9^2 _ 225 (2) I

^

Factor (1) x{x- 2y) = 0.

Hence A is equivalent to the double system

4^2 ^ 92 = 225 ") , , 4*2 -L 9y2 _ 225 )' -^
V ^, and ' "^ - c.

a; = ) ic-2^ = i

The solutions of •'^ are obviously a- = 0, ?/
= 5

;
and a* =

0, ^ = — 5. Substituting ;r = 2// in the first equation of

' ^^^^^ r = 0, or y = ± 3.

Substituting in a: — 2// = we have for the solutions of

c, X ^
Q>, 1/

= 3
;
and x = —

6, y = ~ 3.

Hence the four (vide § 318) solutions of A are x = 0,

7/
= 5

;
X = 0, 7/

= ~ 5; X ^6, 7/
= 3; X = —

6,7/ = —3.
In the solution of simultaneous systems, attention must

always be given to the correct association of values of

the variables.

330. When a simultaneous system has its equations of

the second degree, its solution demands in general the

solution of a biquadratic equation in one variable. Inas-

much as the studies to which these lectures are intro-

ductory may be regarded as beginning about at this point,

I bring these discussions to a close, without treating of

the solution of simultaneous quadratic systems, or of cubic

equations, or of biquadratic equations, to say nothing of

equations of liigher degree, except in so far as the general

fundamental theory may suffice in particular instances.

Such matters are to be studied in detail
;
but it may

be remarked in closing tliat, if a simultaneous quadratic

system has only one of its equations of the second degree,

or if the equations are homogeneous or symmetrical (vide
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§ 263), means are offered for the deduction of equivalent

equations in one variable of the second degree, and the

system may in these cases be solved by the methods for

quadratics. Indeed, it is often the case that, on account of

symmetry, this is true for a system of simultaneous equa-

tions of degree higher than the second. Again, any equa-

tion of form, aa;-" + hx^ -|- c = 0, may be solved as a

quadratic in cc", and the two unaffected equations, a;" =
-1- k, which result may then be solved by factoring the

functions a'" -|- k and a,-" — 1:, if n be integral, or by invo-

lution of the members of x"- = -J- k if n be fractional with

numerator 1, or by both devices if n be fractional with

numerator > 1. For it must never be overlooked that the

solution of an integral equation in one variable, in form

yi = 0, is identical with the problem of factoring the func-

tion A into the form c
(.«
—

)\) (x
—

r^) . . . (x
—

?•„).

Example.—-Find the six sixth roots of -f 1, and of — 1.

(1) Let x^ = 1-

then ic" - 1 = =
(x^ + 1) (x^

-
1),

or (x + 1) (x-
- X + 1) (.c

-
1) (a- + x + 1)

= 0.

This equation is satisfied when any factor = 0. Taking
the factors in order, and equating to zero, gives the follow-

ing six roots :
—

any one of Avhich, of course, taken six times as a factor,

makes -j- 1.

(2) Let a-« = _ 1
;

then a-« + 1 == =
(x^ + i) (x^

-
i),

or (x
—

i) {x- -f IX — 1) {x + t) (a;^
— /^ — 1)

=
;

whence, as before,
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%Aj V • *Aj '—- ^"
• t//

~^~ € a «jC

' • rvt ^.^ ^^ ^ « ^y, _^ 1
*

2
' '

2

any one of which, taken six times as a factor, makes — 1.

331. In the application of JSTumber to concrete problems,
the logic of the connection of the numerical statements

with the particular concrete conditions must be thoroughly

comprehended. It should constitute one of the most im-

portant parts of mathematical studies and training. It

ought to be no matter for surprise that numerical results

are often obtained, totally meaningless in regard to the

particular problem. On the contrary, such results should

be generally expected, alertly watched for, in order to reject

them from the problem in question.

Number is a twofold continuous magnitude, and there-

fore its thoroughgoing application is possible only to two-

fold continuous magnitudes. {Cf. § 188). In reference

to time, a one-dimensional continuum, all protomonic num-

ber (positive and negative, fractional and surd) has intel-

ligible application ;
but neomonic and complex number

could have no application to temporal relations. To space,

all number, protomonic, neomonic, and complex, may have

due application. Sj)ace, in fact, being a threefold con-

tinuum, in a manner transcends Kumber, in the sense of

permitting an infinite reapplication of number. We have

seen, however, that, given three planes of reference, it is

possible to uniquely determine any point in solid space by
means of three protomonic numbers, and that it is this

circumstance which constitutes the ultimate meaning of

the statement that space is tri-dimensional.

On the other hand, if a problem require a number of

men, it is limited in its very terms to primary number;

since \ men, or V3 men, would be as inapplicable as 2 -|- 7 t
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men, unless, indeed, implicit reference to some continuous

magnitude afforded ground for the application of such

results
; e.g., if a problem concerns the number of men in

a regiment, applicable results are exclusively in primary

number, and if such are not found, there is contradiction

in the problem as given ; whereas, if a problem concerns

the number of men required to dig a ditch, any positive

protomonic number might be interpretable.

Not only must the student expect to find solutions of

his equations which have no bearing on a particular prob-

lem, but it may be that no solution of a correct algebraic

translation of the numerical conditions of a problem is

applicable. The interpretation of such results is that

the problem is self-contradictory, the required conditions

impossible.

The clear logical principle is, that, if the problem have

any solution, it must be yielded among the solutions of

any system of algebraic equations which correctly state

the numerical conditions of the prolilem, no matter how

many inapplicable solutions may also be yielded. If no

numerical solution is applicable, the problem is impossible,
that is to say, its conditions constitute an absolute contra-

diction of any such outcome as was contemplated.
In many minor ways, also, it is impossible to restrict

the perfect generality of numerical operations, and the

numerical symbols of the algebra. For example, an un-

known number may be added to another; but whether the

addition increases or decreases a given number, it is rash

to say before the quality of the unknown is discovered.

Thus it is ill-considered to demand that 15 be divided
'' into two such parts that the greater shall exceed 3 times

the less by as much as half the less exceeds three." For
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(representing the greater by x, and the less by 15 — x) the

numerical conditions are plainly intended to be

a; _ 3 (15
-

a-)
= i (15

-
»•)
-

3,

whence x = 11, and 15 — a; = 4.

But on turning to the requirement it is seen that 11 falls

short of, not " exceeds " 3 times 4 by as much as half of 4

falls short 3. In line, one cannot choose the issue of abso-

lute facts according to his whim, and the problem as given

is presumptuous ;
all that could have been safely required

were numbers which would give equal differences for the

intended subtractions.

The indeterminate result - has already been referred to
;

it may mean that any number answers the requirement, or

it may be susceptible of evaluation.

332. Very often all that is required may be discovered

from equations Avithout solving them, by transformations

into various equivalent forms. Consequently the principles

governing the equivalence of derived and original systems,

and the study of functions, as distinguished from equations,

have, besides their theoretical importance, a practical use-

fulness quite apart from their bearing upon solution. In-

deed, the whole subject of the solution of equations has

widened into that of the variation offunctions. For a long

time equations have been losing, and functions gaining,

prominence, both in analytical importance and practical

utility. Nowadays, instead of seeking merely the values

of the variables which cause the function to vanish, that is,

solving the equation ^ (x)
= 0, all values of the variable,

as it varies continuously, and the corresponding values of the

function, are considered. The function is calculated for

enough specific values of the variable to give a clear idea
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of its variation. Especial attention must be given to such

values of the variable as cause the function to pass through
critical values,

-— zero among others.

Independently of the analytical treatment of geometry

(where the purpose of geometrical investigation is so

powerfully served by the numerical analysis), this modern

way of regarding analytical functions receives reciprocal

assistance— if not theoretically, at least as affording the

bodily eye a clear representation
— by drawing what is

called the graph of the function.

The graph of a function of one variable is plotted by

laying off, to any scale, sects proportional to {vide § 213)

arbitrarily chosen values of the variable, in a straight line,

to the riglit or left of a point, according as the chosen

value is positive or negative ;
and at the points so deter-

mined, laying off perpendicularly (one way for -|-, the other

for —
)

sects projjortional to the corresponding values of

the function, plotting the end points of tiiese sects. By
sketching a curve through such points, a representation of

the corresponding variations of function and variable is

afforded. The curve so obtained will generally give warn-

ing of critical values of the function, at which stages closely

consecutive values of the variable must be taken to insure

a correct graph of the function.

It is iisual to write
j/
=

4> (-^O'
^^^*^ ^^^^ ^^^® values of y

corresponding to selected values of x.

For example, let the student plot the graphs of the

following functions, also tabulating the chosen values of x

with the corresponding ij 's.

(l)y =
l-^

(2) y=(yi^. (3)y = r4i;-
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At first one may be disposed to examine far more values

than necessary. Always plot first the y's corresponding
to X 's which allow evaluation by inspection,

— often these

will suffice.

A systematic study of the variations of functions would

be surprisingly interesting, even to students who have

hitherto found their mathematics dull. The subject could

be introduced profitably, even at very elementary stages of

algebraic studies, and, while stimulating interest and sus-

taining attention, would give a better preparation, both for

continued study of pure mathematics, and for the manifold

I^ractical uses of mathematics in other sciences, than do the

methods at present in vogue.

333. The general theor^^ of Inequalities, and of Maxima
and Minima values of functions also, deserves a more

thorough and independent treatment than it commonly
receives in our elementary text-books. The fundamental

principles are of so simple and instructive a character, and

form so valuable an introduction to the methods of analysis

employed in more advanced studies, that our usual elemen-

tary courses need in this matter thoroughgoing reformation.

The theory of inequalities is the best introduction to that

of infinite series, and the latter is indispensable in the

study of logarithms and many other subjects which are at

once entered upon in the first-year courses of our colleges

and universities.

For the most part, the logic of inequalities, and the deri-

vation of equivalent inequalities, runs parallel to the

analogous theory for equations, except where restrictions

intervene in regard to inequalities, owing to the fact that

the members of an inequality cannot, like the members of

anequation, be interchanged.
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The student may be reminded (vide § 198), in this con-

nection, that there is no comparison in the ordinary sense

of greater and less between complex numbers, because such

numbers are in terms of heterogeneous units. Of course

this general statement includes particular cases where one

of the numbers is either protomonic or neomonic, and the

other complex, or where one is protomonic and the other

neomonic. With complex numbers, as we have seen, the

comparison must be between their moduli.

A fruitful source of error with beginners (on account of

the prevailing inadequacy of number concepts) is neglect

of the fact that any negative number is less than zero

(—00 < 0), and that « > ?/,
or x < y, according as x — ?/

is positive or negative.

The freedom of transposition of terms with changed

signs, in an inequality, is quite as immediate a corollary of

axiomatic judgments, and the significance of the symbols,

as the like freedom in equations. For it is the same

axiom that, if equals be added to unequals, the results are

correspondingly unequal, as that, ''if equals be added to

equals, the results are equal." (Vide § 42, foot-note.)

Examples.

(I.) Prove: x" -\- y- ':> 2 xy, if x and y are protomonic
numbers, (x — y)' is positive whether x > ?/ or a- < y ;

but

(x — yY — cf- — 2 xy + y-, therefore x"^ — 2 xy -\- y- is posi-

tive, and therefore x- + y"^ > 2 xy.

In order to emphasize the extreme importance of limit-

ing values, I have allowed a fallacy to pass unchallenged

in this argument. It is not true that x"^ -]- y^ > 2 xy. For,

although (x — ?/)- is positive, it ma}^, if x = y, be zero,

when x"^ -\- y'^
= 2 xy ; consequently the true statement is

x- -\- y" not < 2 xy.
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(II.) Prove: The sum of a positive fraction and its

reciprocal is not less than 2.

Consider ? + 1^ not < 2. (1)
y ^

Multiplying each member by ocij gives

a-2 + f- not < 2 :nj

'

(2)

But (2) has just been proved ;
therefore its equivalent

inequality, (1), is true.

(III.) Prove : Half the sum of two iwsitive numbers is

not less than the square root of their product.

OC 1 7/ 1

Consider —~^—-^ not < (xi/)^ (1)

'7*" I ' '/*?/ I 7/

Squaring gives — '

" '
-^ ' "^ not < xy. (2)

But, by Ex. I, a:^ -|- y- not < 2xij;

therefore x^ -\- 2 xy -\- y- not < 4
a-^/ ;

therefore (2), and therefore its equivalent inequality (1), is

true.

This proposition is readily generalized by the reasoning

called " mathematical induction,"
*
by showing that if it

is true for any number of numbers, it is true for one more :

— but it is true for two, therefore for three, and so on.

Thus we prove for n numbers t :
—

a-{-h -\-c-\- .

n
not < {(the . .

.)
'/'\

* Not true and proper iuduction, but absolutely cogent deduction,

involving no assumption except the validity of reason, the postulate of

all thought.

t Tlie left-hand member is called the "arithmetic mean," and the

right, the "geometric mean," of the n numbers.
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A maximzim of a function does not mean its greatest pos-

sible, nor a minimum its least piossihle, value. A maximum
value of a function is a value toward which it increases,

and from which it decreases as the variable continuously

varies, whether by increasing or decreasing. And a mini-

mum value of a function is a value before which the func-

tion decreases, and after Avhich it increases as the variable

varies continuously, whether by increasing or decreasing.

Maxima and minima for a function may repeat, definitely

or indefinitely ;
or there may be only one maximum or one

minimum for a function, in which case the maximum is

the greatest possible, or the minimum the least possible

value.

The general connection between inequalities and the

theory of maxima and minima values of functions is ex-

emplified in the principle, that if <^ (.y, y, z, . .
.)

and

xj; (x, y, z, . .

.)
be two functions of the same variables

such that

<^ {x, y,z, . . .)= N, (1)

and xp (x, y,z,.. .)
not > <^ (.r, y,z, . . .); (2)

and if any values oi x, y, z, . . .
, say, a, h. c, . . .

,
can be

found which satisfy (1) and at the same time make (2)

an equation, then
i/^ («, h, c, . .

.)
is a maximum value of

Also, if
xp (x, y,z, . .

.)
= N, (3)

and
</, (.r, y, z, . .

.)
not < ^ {x, y, z, . .

.) ; (4)

and if any values oi x, y, z, . . .
, say, a, b, c, . . .

,
can

be found which satisfy (3) and simultaneously make (4)

an equation, then ^ (a, h, c, . .
.)

is a minimum value of

Example.— Find the maximum volume of a rectangular
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parallelopiped of given surface, and minimum surface for

given volume.

Let X, y, and z be the lengths of three adjacent edges ;

then the geometrical data of the problem are, the area of

the surface is 2 (xij -f- ^^ -\-y^i ^-nd the volume of the solid

is xyz. (
Vide § 25.) Writing u = xy, v = xz, w = yz, the

area becomes 2 (w + v -)- iv), and the volume, ^ uviv.

Hence the analytical problem is to find the maximum

(or maxima) of the function -y/uviv, given the function

2
(^u -\- V -\- w) = a constant. Since the meaning of the

problem excludes negative number
(ynVZe § 331), the prob-

lem as assigned is equivalent to finding the maxima of

y/uvw given, — ^

— = k
;

for (considering only posi-

tive protomonic numbers, all that apply to the problem)
yjuvw is maximum for the same values of the variables

that y/uvtv is maximum
;
and given 2

(^u -\- v -{- ?/')
= a

constant, we have —^——— = k. But this transforma-
'

3

tion was adopted because we know (Ex. Ill, above) that

' - not < {iivn'Y
o

which is to say mat

(iivw)''^ not > -—t—IL—
J

o

Consequently we have

"+;+"
= k, (1)

and (uvwy not > !L±_L+J1'. (2)
o

It only remains to find values of u, r, ?<• Avhich satisfy

(1) and make (2) an equation. But (2) cannot be an equa-
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tion unless if = v = v\ This, therefore, is the condition,

and (uviv)^^ is uniquely maximum when m = i; = ?<;
;
and

(remembering the meaning of xi, v, and w), if u = v = w,

then X = 2/
= z =i —

j
,
where K = the given area.

The reciprocity, implicit in the theorem immediately pre-

ceding this example, gives the same condition (x
=

>/
=

z)

for the solution of the second part of this problem ;
but the

beginner may have failed to note the reciprocal relations

of the conditions for maxima and minima of two functions

displayed in the general investigation.

In like manner, then, the second part of the problem

gives 1

(uvwy = I, (1)

11 -A- V -\- w 1

and not < (uvw')^ ;
o

w + V + ?y . . . .

whence, is uniquely minimum when ic = v = tv
,

and therefore, as before, the area is minimum when x = y
= .v = (i)"% where L is the given volume.





APPENDIX.

PEDAGOGICAL NOTE.

The primary concept of number is the same in all men, and the

conception conld not be obstructed, even if teachers set tliemselves

to thwart it. As an original question, therefore, there is little peda-

gogical import in discussion of methods of stimulating the infant

mind to definite specialization of various manys. ( Vide § 2.)

It would be enough to jjoint out to the inexperienced teacher that

when the time for definite and systematic specialization of manys

comes, a child can learn the general system as a Avhole better than

he can learn it piecemeal; that the so-called arithmetic of the first

two or three grades in our schools is properly a matter of language,
a matter of naming, in the manner of the child's linguistic environ-

ment, universal concepts already attained by the young innocents

when committed to the mercies of the primary school. There is no

more sense in attempting to explain icJiut "twelve" is, than in

making a like effort in regard to "time" or "space," or such

concepts as "more,"
"

less," "greater," "equal." The child really

knows these things as well as his teacher. Even if a child lived

eight years in an English-speaking society Avithout learning the

English name for the special many,
"
twelve," or even without

having definitely recognized it, the substance of the thought, as

distinguished from the symbolism of a particular language, would

nevertheless be familiar to him, and nearly as well known as it can

be until one gives profound study to epistomology.
The simple and easily taught subjects of counting, and the ele-

mentary phases of numerical operations, have been confused by the

inane verbosity of pedagogical writers. In his admirable Philos-

ophy of Education* (one of the best books ever written on the

* Translated in the International Echication Serks.

221



^
222 APPENDIX.

subject) Piosonkranz justly remarks,
" Treatises written upon it

[education] abound more in sballowness than any other literature.

Shortsightedness and arrogance find in it a most congenial atmos-

phere, and uncritical methods and declamatory bombast flourish as

nowhere else."

It is enough to point out one example of injurious methods of

dealing with imaginary difficulties. Ignorance of psychology and
lack of common-sense have led many superintendents, even where the

minimum school age is eight years, to i:>rohibit all mention of num-
bers greater than ten in the "first grade," and greater than twenty
in the "second." This makes both the teaching and the learning a

sham, and the nemesis of all dishonesty dogs it. It is benumbing to

honest, depraving to vain or deceitful, pupils. 1 know a city whose
school superintendent has instituted such methods with fatuous

braggadocio, where a visitor, after witnessing an hour's counterfeit

teaching,
— What is one and two? one and three? two and three ?

If you had five apples, and gave one to Mary and one to John, how

many would you have left ? and so forth, with occasional introduc-

tion of such prodigious numbers as nine or ten,
— followed the class

to the playground. It was the season of huUn-gnll. Each urchin

knew well the score of the treasures in his bulging pockets. "Iluliy-

gull, hand-full, how many ?
"

challenged one 3'oung plunger.

"Twenty-two," guessed his opponent. One second for the count

and the subtraction, and back came the triumphant cry,
" Give me

seven to make it twenty-tMo!
"

On the other hand, there seem to be peculiar difficulties, even for

adults, in attaining the concept of nmnber absolutely essential to

comprehension of arithmetic,
— the discernment of number as a

continuous magnitude with fractional parts and qualitative distinc-

tions termed positive and negative. Here pedag6gical devices are

sorely needed. It is not enough to warn against mistaken interfer-

ence; the teacher's skill will be taxed to the utmost to stimulate the

minds he is guiding to develop concepts of a high order of abstrac-

tion, and such as, left to himself, the pupil would never form at all.

As "object-lessons" to young children— the aim being to clear

up normal and universal concepts of quantity— presentation of

yard-sticks and foot-rules, gallon and quart measures, etc., may be

ii useful practice, and it does teach about fractions
;
but it does not
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at all immediately suggest fractions of numbers. A fraction of a

line is a line, of a solid is a solid
;
and these can be and universally

are discerned under the primary concept of number, and without

discernment of numerical fractions. Every savage knows that a

quart is a fraction of a gallon. The "object-lessons" mentioned

really constitute an elementary discipline in geometry (if every

primary school exercise must be labelled with the name of some

science). Lines and solids are spacial entities, and contempla-
tion of their relations is primarily a geometrical exercise. I say

X>riniarili/, because any two magnitudes of the same kind have an

absolute numerical relation
;
but to see that a quart is one-fourth of

a gallon (only another way of saying that four quarts equal a

gallon) is not at all to see the number called one-fourth in the

systematic terminology of arithmetic. Every child sees the former,
an obvious geometric fact,

— too many of his teachers have never

discerned the latter. {Vide §§ TS-90.) The primary concept of

number is universal and normal to the human mind, just as the

concei^t of space is common and original to all men. Systematic

development of the latter gives geometry, of the former gives arith-

metic. The developments of the one are quite as much matters of

fact as the developments of the other.

Ontological definition of number is as little to be required of

arithmetic as like definitions of space of geometry, or of matter and
force of physics. Each science simply takes its respective common

notions, which it develops according to inherent characteristics.

The developed science always casts light back upon primary notions

(Cy. the effect of Xon-Euclidean geometries upon native ideas of

space, or the exigencies of dilemmas in physics upon naive con-

cepts of matter) ;
but no such questions are to be raised for young

students beginning to study arithmetic, geometry, or physics. The
most important maxim for wise teaching in any science is never to

set delimitations which confine development and entomb thought in

empiricism,
— never to clip the growing tree at the top.

Now every man (and every dog) knows that one side of a triangle

is less than the sum of the other two sides
;
but no one would sup-

pose that this circumstance entitled every man to opinions concern-

ing the conclusions of geometry ; yet similar presumptions are rife

among teachers of arithmetic. Men possessing (in common with
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their most savage brethren) only the primary concept with which

arithmetic begins, often misrepresent as matter of convention or

symbolic jugglery the arithmetical conclusions that number is a

continuous magnitude, with fractional parts, and qualitative dis-

tinctions—• as much matters of fact as any conclusions of geometry.
The developments of the number concept are undreamed of to the

man whose only thought thereof is his abstraction from a flock of

sheep or pile of coins. As soon as man's energetic and organizing

thought develops this concept, the insight is infallibly attained that

number is a continuous magnitude, not concrete, not material, but

none the less real.

The concept which appears to me most like the first development
of primaiy number, which includes all ratio (including fractions),

and the qualitative distinctions, positive and negative, is Time.

Even children recognize time as a continuous magnitude,— as more

or less; that of two times one must be definitely greater than, equal

to, or less than the other,-
— and the qualitative distinctions of i^ast

and future. The analogy of jjresejii and zero is also perfect.

I suggest that teachers, called upon as they always are to teach

arithmetic to children somewhat too 3'oung for the reasoning and

insight required, would do well, in attempting to stimulate the con-

ceptual energies of their pupils, to use definite times rather than

lines, surfaces, solids, etc., in illustrating numerical relations sub-

sisting between any two magnitudes of the same kind. Altliough

no better success can be assured in this way (for any fraction or part

of a time is a time and not a number); yet from the very fact that

times cannot be seen or handled, the abstracting functions of the

mind are brought into play, and there is better ground of hope that

the desired conception will take place than if objects of sense-

perception had been presented. It may be well to remark in this

connection that in all illustration great care is demanded lest the

analog hide instead of revealing. Rosenkranz, in his valuable Phi-

loHophy of Education, already referred to, wisely cautions :
" Our age

inclines at present to the superstition that man is able, by means of

simple sense-perception, to attain a knowledge of the essence of

things, and thereby dispense with the trouble of thinking. It is

vain to try to get behind things, or to comprehend them, except by

thinking,"
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I am not aware that the suggestion has been made hitherto
; but,

in the Hght of tlie above warning against abuse, 1 am convinced that

teachers of arithmetic would do well to contemplate the similarity

of the concepts Time and Number, as the latter is conceived, not in

the savage stadium of thought, but in its first scientific develop-

ment.

There are many subsidiary advantages also in choosing the uni-

versally conceived magnitude, time, for such illustrations. The

mind is unconsciously but directly led from the tyranny of material

categories of thought; and the human mind, once made sensible of

its powers, will never again suffer its conceiJtions to be shackled in

this native slavery of the race.

Rightly employed, arithmetic might be used with more efficacy in

the intellectual emancipation, which is one of the chief ends of edu-

cation, than any subject in the curricula of common schools. There

is no other field where one pure idea is developed in such unbroken

consistency, and such freedom from involvement in complex rela-

tions with foreign elements.

In conclusion, no matter whether the pupil at a given stage be in

a position to see the end of his studies or not, it is evident that the

teacher, with no notion of the end, will be a faulty guide, since he

leads he knows not whither.
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Multiple, 83.

Multiple, Lowest Common, 242.

Multiplication, 34, 44-48, 73, 89,

121, 163, 184, 199.

Negative Number, 27, 99, 104, 110,

117, 143, 181, 333.

Neomon, 26, 104, 181, 182, 191.

Neomonic Number, 27, 104, 145i

181- 191.

Nine, Remainders to, 287-.

Nines, Casting out : vide Nine,
Eemainders to.

Norm of Complex Numbers, 197,

293.

Notation, 14, 17, 57, 90, 120, 150,

156, 277-, 280-, 284-.

Notation, History of, 16.

Number Concept, 2-, 27, 34,71, 78-,

80, 84-, 96-115, 155, 179-, 186,

192, 202, 226, 230.

Number, —
Development of : vide Number

Concept.

Origin of : vide Origin.

Primary, Fractional, Surd, Posi-

tive and Negative, Neomomic,

Complex : vide Corresponding
heads.

Numbers, Theory of : vide Theortj

of Numbers.

Numerals, 6, 8, 15.

Numeration, 5, 7, 17.

Numerator, 87.

One, 2, 128, 181.

Operations, 30, 34, 45-, 60. 73, 86,

104, 116, 130-, 135-184, 199,

210.

Ordinals, 10.

Origin of Number, 2, 5, 2.'50.

Physics, 21, 27, 211, 221, 224.

Plus, Double Meaning of +, 120.

Primary Number, 1-4, 11, 54, 60.

70, 96, 181.

Prime Numbers, 238-.

Primeness, Algebraic, 251, 275-.

Principle of Continuity, 61, 97-,

103-, 107, 155.

Projective Geometry, 227.

Proportionality, 211-219.

Protomonic Number, 101, 145, 154.

Quadratics : vide Equations.

Quality, 14, 27, 32, 78, 110, 117, 120,

224, 228.

Quantity, 198, 224, 228-.

Radix Fractions, 17, 284-.

Radix Notations, 17, 280-.

Radicals, Radical-Surds, 83, 94,

145, 157-, 170-, 249.

Ratio, 25, 78-, 83, 84, 132, 203, 208.

Reciprocal, 90.

Remainder, Least, 243, 255.

Remainder Theorem, 258-.
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Remainder to Nine, 287-.

Repeating Decimals, 249, 284-.

Roots of Equations, 268, 271, 300,

306-, 315, 323.

Rules, 43, 88, 93, 119, 121, 124, 242.

Scales, Notational, 277-.

Series, 267, 333.

Solutions of Equations, 300-302,

331.

Square : Square Root, 58, 76, 93-,

191, 200, 249, 290.

Stirpal, 145.

Submultiple, 83, 84, 205, 251.

Submultiple, Highest Common,
205, 240, 251.

Subtraction, 34, 41-, 45, 89, 98, 117,

162, 199.

Surds, 80, 83, 94, 143, 145, 174, 249.

Symbols, 14, 17, 20, 23, 32, 192.

Symmetrical Functions, 265.

Synoptic Mathematical Methods,
234.

Synthetic Mathematical Methods :

vide Synoptic.

Synthetic Equation, 40.

Systems : vide Equivalence of

Equations, and Manifoldness.

Terminology, 83, 101, 145, 198, 205.

Theory, Fundamental, 2, 11, 26, 30,

71, 97-, 107, 132, 207, 222, 225,

228, 230, 331.

Theory of Equations, 268-, 303-.

Theory of Numbers, 298.

Undetermined Coefficients, 267-

268.

Unit, 203-206, 220.

Unity, 2, 16, 128, 181, 203-.

Variation of Functions, 332.

Variables, 299.

Zero, 16, 116, 125-, 182, 189, 222.



ERRATA.

Page 52.

2d. line from bottom : instead oi b — d read h j d.

Page 83.

Top line : instead of "
point to the vertices

" read points

to the ojjj^osite vertices.

Page 105.

13th line from bottom : sign of equality is omitted in

latter portion of the line.

Page 115.

7th line from bottom : read § 198.

Page 165.

3d line : read x — y in denominator.

Page 174.

11th line: read c?3r~^

Page ISO.

7th line: read^ +^.
r v

Page 203.

11th line : instead of 1 — 6 in second denominates-, read

1-x.
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