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PEEFAOE

NuMBEKS Universalized is believed to embrace all

algebraic subjects usually taught in the preparatory and

scientific schools and colleges of this country. For con-

venience, it is divided into two parts, which are bound sepa-

rately and together, to accommodate all kinds and grades
of schools sufficiently advanced to adopt its use.

Part Second is treated in five chapters, as follows : One

embracing serial functions, including development of func-

tions into series, convergency and divergency of infinite

series, the binomial formula, the binomial theorem, the

exponential and logarithmic series, summation of series,

reversion of series, recurring series, and decomposition of

rational fractional functions
;
one treating of complex num-

bers, graphically and analytically, including fundamental

operations with complex numbers, general principles of

modulii and norms, and the development and representa-

tion of sine, cosine, and tangent ;
one embodying a discus-

sion on the theory of functions, including graphical repre-

sentations of the meaning of the terms independent and

dependent variables, continuous and discontinuous func-

tions, increasing and decreasing functions, and turning
values and limits of functions, and also a treatment of

differentials and derivatives, and maxima and minima val-

ues of functions
; one treating of the theory of equations,

including a discussion of the properties of the roots, real

and imaginary, of an equation, methods of determining
the commensurable roots of a numerical equation, Sturm's

theorem for detecting the number and situation of real

roots, Horner's method of root extension. Cardan's for-

183681
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mnla for solving cubic equations, and a short treatment

of reciprocal and binomial equations ; one treating of de-

terminants and probabilities, so far as these subjects are of

interest and value to the general student. The volume
closes with a supplementary discussion of continued frac-

tions and theory of numbers.

The aim of the author in preparing this part of his work
has not been so much to give completeness to the various

subjects treated as to lead the student to a comprehension
of the fundamentals of a wider range of subjects, and to

cultivate in him a taste for mathematical investigation.
It is believed that the plan adopted will give the general
student a broader and more practical knowledge of algebra,
and will lead to better results in a preparatory course of

study for the university than would a completer treatment

of fewer subjects requiring an equal amount of space in

their development and more time in their mastery. While
a sufficient number of examples have been placed under
each head to offer opportunity for the application of the

principles and laws developed, there will not be found an

unnecessary multiplicity of them to retard the progress of

the pupil in his onward course.

In conclusion, the author desires to acknowledge his in-

debtedness to the English authors, Hall and Knight, Chr^s-

tal, Aldis, Whitworth, and 0. S. Smith, whose works he

frequently consulted, and from which he obtained many
new and valuable ideas.

David M. Sensei^ig.

Normal School, West Chester, Pa., \

December 2, 1889, \ •
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CHAPTER IX.

SERIAL FUJVCTIOJTS.

I. Definitions.

662. Any expression containing a variable is called a

function of the variable.

Thus, ax -{-!?, a x~\ Va-\-a^, a", log. {a -\- x), and

a-{-l)x-\-cx^-{-doi?-\- etc. , are functions of x.

663. Any series containing variable terms is called a

serial function,

664. The expression f{x) represents any function of x,

and is read function x,

666. When two or more functions of the same variable

are used in a discussion, modified forms are used for dis-

tinction
; as,

1. f{x), F{x), <f>(x); read, / minor, f major, phi

functions of x.

^' f (^). /" i^\ f" (^) ; read, / prime, f second,

f third functions of x.

3. /i (x), /2 (x), fs (x) ; read, / one, f two, f three

functions of x.
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Development of Functions into Series.

Theorem of Indeterminate Coefficients.

566. If A-\-Bx-{-Ca^-\-D^etc. := A^-^- B^x-{-C^x^

-\- DiO^-\- etc., for any assigned value of x from — cx) to

+ 00, atid A, At, B, B^, C, C^, D, D^, etc., are independ-

ent of X, then will A = A^, B = B^, C=^Ci, D~ D^ etc.

Demonstration: Given

A->c Bx^- Cx^ -{-Dq? + etc. = A^ + B^x + CiX^ + D^a^ + etc., (A)
for any assigned value of x. Let a; =

; then A = Ai.

Therefore, A = Ai for every value of x. (1)

Subtract (1) from (A),

Bx + Gx^ ^Da?-^ etc. = BiX ^t CxX^ + D^a? -\- etc. (B)

Divide (B) by cc,

B ^Cx + Dxy^ \- etc. = ^1 + (7i a; + Di a;2 + etc. (C)

Let a; = 0, 5 = B^.

Therefore, B = Bi for every value of x. (2)

etc., etc., etc.

567. Corollary l.— If A + Bx -^ Cx^ + Dx^ -{- etc.

= 0, for any assigned value of x, then will A=0, B = 0,

(7=0, D = 0, etc.

568. Cor. 2.—A function of a single variaUe can he de-

veloped into a series of the ascending powers of the variable

in only one way.

For, if possible, let

f{x) = a-\-'hx-\-co? -\- etc. ;
and

f{x) = «i + Jj a;+ Ci x^+ etc. ;
then will

a-^-lx-^cx^ -\- etc. = ax-^-lyX-^-c^o? -\- etc. ;

whence a = ai, J = Ji, c = c^, etc., and the two develop-

ments will be identical. -

2. Applications.

1. Expansion of Rational Fractions.

569. A rational fraction of a single variable may gen-

erally be developed into a series by dividing the numerator
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by the denominator, but a more expeditious method con-

sists in the application of the principle of indeterminate

coefficients.

1 — x
Ulustrations.—1. Develop ^

into a series of the

ascending powers of x.

Let \^ = A + Bx + Cx^ + Da^ + etc. (A)
1. •{• X

Clear of fractions, and arrange the coefficients of the like powers
of X into columns.

1-x = A + B
+ A

x + C
+ B

x^ + D
I

x^+ etc. (B)

+ C

Equate the coefficients of the like powers of x [566],

A = l', A + B = -1, B + G = 0; C + D = 0, etc.

/. A = 1, B = -2, C = 2, D = -2, etc.

Substitute these values of the coefficients in (A),

2-^ = 1 - 2a; + 2a;2 - 2a;8 + etc.
1 + a;

Let the student divide the numerator by the denominator, and

show that the same result will follow.

570. The first term of the expansion may be obtained

by dividing the first term of the numerator by the first

term of the denominator, and the remaining terms by

indeterminate coefficients.

2. Develop , „ in the ascending powers of x.
X —J~ Xr

^^^ A 2
= »^~* + B^ + Cic + Dx^ + etc. (A)X "T X

Clear of fractions and column coefficients,

x^+ D
+ Cb

ic« + etc. (B)a = a + B
I

x+ C
+ ab

\
+ Bb

Equate coefficients,

(!) B + ab = 0. (2) G + Bb = 0. (3) i) + C& = 0, etc.

B = — ab, G = ab\ D = - ab\ etc.

Substitute these values in (A),

J—^ = aa;-* — aft + a6'a; — a62a;' + etc.
a; + &a;*
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EXERCISE 87.

Develop to four terms :

2x — S

x-\-x^ + l

2.

3.

1-x
1

2x

1

l-x-\-x^

5.

9.

a-\-x

6x+ 2x^

l-\-x-{-a^

2. Expansion of Irrational Functions.

Elnstrations.—1. Expand to four terms Vl—x-\- x^,

^- 1 + Bx + Cx^ + Do? + etc.Put Vl — a: + a;'

Square both members and column the coefficients,

Equate the coefficients,

+ 3(7

a;8+ 2i)

+ 3^(7
7? + etc.

(A)

(B)

(1)3^=-
B^-

(2) ^ + 3(7= 1.

3
(3) 32> + 3^C = 0.

^-8 D = W etc.

Substitute these values in (A)
1

2a;
+
|a;«+^a:«+etc.-s/l

- a; + ^2 = 1

2. Expand to three terms v8 — ^.

Put V8-a;2 = 2 + ^a; + Cx^ + Z>a:3 + ^a;* + etc.

Cube both members and column coefficients.

8-a;8 = 8 + 13^ I a; + 13 C
' + 6^

a;
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EXERCISE 88.

Expand to four terms :

1. a/4 — a; 4. Vl + a; 7. Va-{-x

2. ^l^X'-x' 5. a/27 + 0,-2 8. Vo^^
3. V9 + a;-3a;2 6. Vs+M^ 9. VoH^

Convergency and Divergency of Infinite Series.

General Definitions.

671. The limit of a series is the limit of the sum of n

terms of the series, when n is indefinitely increased ; that

is, when lim. n= co,

672. A series is convergent when its limit is a finite

constant, including zero,

673. A series is divergent when its limit is infinity.

674. A series is indeterminate when the sum of n terms

is finite hut does not approach any definite yalue as n is

indefinitely increased.

Thus, 1 — 1 + 1 — 1 + 1 — 1 + is indeterminate,

since, when n is even the sum is 0, and when n is odd

the sum is 1, however great n he taken.

676. For convenience of discussion, the following nota-

tion will be adopted :

1. The terms of a series will be represented in order

by Wi, Uz, Us w„, Un+i

2. The sum of n terms will be represented by Z7„, so

that Un = Ui-{-U2-\-Us-{- + w«. .

3. The limit of the series will be represented by U, so

that [7= wi + t^2 + % + ....+ «^n + w«+i +
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Fundamental Principles.

576. X No series whose terms are all of the same sign

can he indeterminate.

For either the sum of n terms increases numerically

without limit as n is increased indefinitely, or else it can

never exceed some fixed value which it approaches as a

limit. Such a series is, therefore, either convergent or

divergent.

577. 2, A series of finite terfns whose signs are all

alike is divergent.

For, if we let a represent the numerical value of the

smallest term, then, numerically, U>na, whose limit

is c»
, when lim. n = co and a is a finite quantity.

Thus, the series 1 + 2 + 44-8 + 16 + .... is divergent.

678. 3. If a series is convergent it will remain con-

vergent, and if divergent it will remain divergent, if any

finite number of terms he added to or subtracted from
the series.

For, the sum of any finite number of terms is finite,

and, therefore, can not change the nature of the limit of

the series when combined with the series by addition or

subtraction.

579. Ji.. If a series is convergent when its terms are

all positive, it is also convergent when its terms are all

negative, or some positive and some negative.

For its limit will have the same numerical value when

its terms are all negative as when they are all positive,

and will be numerically less when the terms do not all

have the same sign as when they do.

It must not be inferred from this principle that a series
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is necessarily divergent when its terms are not all of the

same sign, if it is divergent wh«n they are alike in sign.

Such may or may not be the case.

Theorems.

580. I. In order that a series may he convergent, the

limit of the {n+ l)th term, and the limit of the sum of

. any numder of terms beginning with the {n + ^)th term

must he zero, and conversely.

DemonBtration : If a series is convergent, then ultimately, if ti is

indefinitely increased,

(1) U-Un = o [4981 (2) U- Un+l = o
(3) U- Un+^ = o (4) U- Un+z = o

Subtract (1) from (2) ; (1) from (3) ; (1) from (4), etc. ; then,

(a) Un — Un + \ = o
; or, Un+\ = o

; whence, lim. w^^ i =
(6) Un — Un+i = o

; or, Un+\ + w„4.8 = o ; whence,

lim. (Wn+l + Wn+j) =
(c) Un — Un + 3 = o

; or, Un + 1 + Un + i + Un+z = o
; whencc,

lim. (Un + l + Un+ 1 + Un + z)
=

etc., etc., etc., etc.

581. II. If each term of a series whose terms are alter-

nately positive and negative is numerically greater than

the following term, the series is convergent.

Demonstration : Let U=ui — Ui + U9 —Ui+ ± w« T Un+i. . . .,

in which -Mi > 'Wa > Ws > '^4. . . ., be the given series.

(1) U — {Ui
—

Wa) + (Ws
—

Ui) + (We
—

w«) + etc.

(2) U = Ui — (Ui — Ws)
—

{Ui
—

-Mb)
— etc.

From (1) it is evident that U is positive.

From (2) it is evident that, since U is positive, U<,Ui.
.'. U approaches Wi or some quantity less than Ui as a limit,

and the series is, therefore, convergent.

582. III. A series is convergent if after some particu-

lar term the ratio of each term to the preceding term is less

than unity.
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Demonstration: The most unfavorable case to convergency sup-

posable, under the conditions given, is evidently the one in which all

the terms have the same sign (say plus) and all the ratios described

are equal and each equal to the greatest of them. This is, therefore,

the only case that needs proof.

Let r be the greatest ratio after the nth term, but < 1
; then,

Un + ^n+ l + t^n+ 2 + ^n+ S + etC. = W„ + W» 7* + Wn r« + CtC. = q—^?—
1 — r

[499, P.] = a finite quantity. Therefore, the whole series is con-

vergent [578J.

683. IV. A series of all positive or all negative terms

is divergent, if after some particidar term the ratio of

each term to the preceding term is equal to or greater

than unity.

Demonstration : The most unfavorable case to divergency, and the

only one that needs investigation, is the one in which all the ratios

described are equal and each equal to the least of them.

Let r be the least ratio after the nth term, but = or > 1
; then,

«*n + w«+i + -Wn+s + 'Wn+s + ctc. is divergent [577] ;
and hence the

whole series is divergent [578].

584. V. A series of positive terms is convergent if

each term is less than the corresponding term of a given

convergent series of positive terms.

Demonstration : Let CT = Wi + w, +....+ w„ + u^^i + be a

given convergent series ;
and T = Vi + Va + + Vn + Vn+\ + . . . .

a series in which Vi < Wi , iJa < "Wa, . . . . t^n < w„ , VnJ^\ < w„+i ,

From the nature of addition, it is evident that Vn < Cn ; and

hence, too, lim. F„ < lim. C/« ,
or V <U', therefore, if U is converg-

ent V is convergent.

585. The foregoing principles and theorems will serve

to test the convergency and divergency of a very large

number of series, but are not of universal application,

inasmuch as they do not apply to all classes of series.

Note.—If the terms of a series are not all of the same sign no gen-
eral method can be obtained for testing their convergency or divergency.

586. The convergency or divergency of a series may
often be determined by grouping terms, as follows :
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1 1 i i i

= 1 +
(^3

+ p) +
(^3

+
5^3
+

^3
+

fa)
+
(p

+••••+
1^3)

+ etc.

••• C^ < 1 + I +
^8

+ I + etc.; or CA < J =
3

.

,'. The series is convergent.

EXERCISE 89.

1. Is the series T+o + o+T + "i' + ^^^' convergent ?
1 /C o 4

2. Test the series : l-\-^x-\-hoi?-{-^3?-\- for con-

vergency
1. When x<l. 2. When x>l. 3. When x = l.

3.
Testtheseries:i-^ + ^-^+....

for convergency.

when a; < 1 ?

6. Testtheseries:i +^ +^ +^ + etc.

for convergency.

6. Test the series :

.
1 rr^

1 3 ^5 1 . 3 . 5 ^.7

^+2-3+2T4-5+2TT:^-T + '*'-

for convergency
1. When x<l. 2. When x>l. 3. When ic = 1.

Suggestion.—Lim. jj

" =
-j. Why!

7. Test the series : l + aj-f-a^^ + a^^H- etc. for con-

vergency
1. When x = l. 2. When x< 1. 3. When x>l,

8. Test 1 + 1 +^ + ^^^+.... for con-

vergency.
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The Binomial Formula.

587. The binomial formula is used to find the prod-

uct of any number of binomial functions of the form of

Development.

{x+ a){x+ 'b)
= x^+ (a+b)x+ab

Multiply both members hj x + c,

{x+ a){x+b){x+ c)
= x^+(a+ b)x^ + abx + cx^ + (ac + bc)x+abc
= x^+ {a+b+ c)x^+ {ab + ac + bc)x +abc

Multiply both members hj x + d,

{x+ a) (x+ b) {x+ c) (x+ d) =
a^+{a+b + c)x^+ {ab + ac+ bc)x^+abcx

+ dx^+ {ad+ bd+cd)x'^ + {abd+ acd+ bcd)x+abcd
= a^+{a+ b+ c+ d)a^ + {ab + ac+ad+ bc + bd+cd)x^ +

{abc + abd +acd+ bcd)x+ abcd

Observe the following laws in these products :

i. The number of terms is one greater than the num-

ber of binomial factors,

2. The exponent of x in the first term equals the num-

ber of binomial factors, and decreases by unity in each

succeeding term,

S, The coefficient in the first term is unity ; in the

second term the sum of the second terms of the binomial

factors ; in the third term the sum of the products of the

second terms taken two together j in the fourth term the

sum of the products of the second terms taken three to-

gether, etc,

4' The last term equals the product of all the second

terms.

Are these laws true for any number of factors ?

Assume them true for r factors, so that

{x-{-a){x-\-b) {x-\-m) = x^-^pi of-^-\-pz af-*+ ....

Pr-\ x-\-p^, in which
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p^ = a-\-h-{- +m
p^ = al)-\-ac-{- am-\-hc+ bd-{- + Jm+ etc.

^3 = abc-\-aI)d-\- + «5m + ....

p, = abc m. (A)

Multiply by {x + n), the (r + l)th factor, then

{x-\-a){x-{-b)..,.(x+ n) =
X'+^+PlX'-\- ^2^-^ + ....+ Pr^

-\- nx'+ npi iC"-
^ + ....+ npr-i x + npr

=:af+-'-^{pi-\-n)3f+ (p2-{-np^)af-''-\-....+ npr

Laws 1 and 2 are evidently still true.

Pi-\-n = a -\- h -\- c -{- n,

Vi+ ^A = {d^ -\- d -\- am-\-'bc-\-hd-\-.,,.

•\-lm-\- etc.) -\-{an-\-ln-{- -^-mn),

which is still the product of the second terms taken two

and two.
• •••••

np, = alcd n. Therefore, all the laws still hold

true. Hence, if they are true for r factors, they are true

for r+ 1 factors. But we found them true for four fac-

tors by multiplication ; hence, they are true for five fac-

tors
; and, if so, for six factors

;
and so on. Therefore,

formula (A) is general.

Uote.—The number of products that enter into each coeflBcient

may be determined by the principles of combination.

Applications.

Ulnstrations.—
1. Expand {x+ 1) (^ + 2) {x

-
3) (a;+ 4).

Solution :

pi = 1 +2-3 + 4 = 4

i?a = (1 X 2) + (1 X -3) + (1 X 4) + (2 X -3) + (2 x 4) + (-3 x 4) = -7
i)3
= (lx2x-3) + (lx2x4) + (lx-3x4) + (2x-3x4) = -34

i>4
= lx2x—3x4= —24
/. (x+l)(a;+2)(a;-3)(a;+4) = ic4+ 4ic»-7a;»-34a;-24.
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2. Factor a;* + 14 a;^ _|. ^^ ^2 _|_ I54 ^ _l_ ^go, if possible.

Let {x+ a){x+ h){x+ c){x+d) = o^+ l^a? + 1l\x^ + l^^x+ \20.

Then, 1. a-\-h + c + d = +14:

2. ab + ac +ad+bc+ bd+ cd = +71
3. a&c+ a6c^+ «C(^+ 6ccZ = +154
4. aJc6? = +120

Resolve if possible +120 into four factors whose sum is +14.

These we find to be 2, 3, 4, 5.

.*. a = 2, b = d, c = 4, and d = 5.

Will these values satisfy 2 and 3 ?

ab + ac + ad+bc + bd+ cd = 6+ 8 + 10 + 12+ 15 + 20 = 71, correct.

abc + abd+ acd + bcd = 24:+S0+ 40+ 60 = 154, correct.

.-. x^+ Ux^+ 71x^ + 154:X + 120 = (x+2)(x+d)(x + 4)ix+n).

EXERCISE 90.

1. Expand (x -{-2){x-\- 3) (^+ 1)

2. Expand (x -j-3)(x
—

2) (x
—

3)

3. Expand {x + 2) (ir + 3) {x
-

1) {x - 2)

4. Expand (:r + 3) (:r + 5) (a;
-

2) (:c
-

6)

5. Expand {x + 2) (rr + 2) {x -\-%){x-\- 2)

6. Expand {x
—

h){x
—

5) (ic
—

5) (a;
—

5)

7. Expand (2a; + 1) (2a; + 3) (2:r
-

5) (2 a;- 1)

Suggestion.
—Put y for 2 a:.

8. Factor a;^ _j_ 9 ^^^s _{_ 26 a; + 24

9. Factor x^ -%x^ -%^x-\-m

10. Factor a:* + 5 a;^ + 5 a;^ — 5 a; — 6

11. Factor it-*
- 2 a;^ - 25 a;^ + 36 a; + 120

12. Factor a;^ + 4 a;* - 13 a;^ - 52 ar^+ 36 a;+ 144

The Binomial Theorem.

I . For Positive Exponents.

588. If, in the binomial formula [587, A], we assume

a = h=:c = dy etc., and r = w, then will
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1. {x^a){x+ h){x-{-c).... ={x^ay.
2. a;'" = cc"

;
x'-^ = aj~-^ ;

a:'-
^ = x""-^

;
etc.

3. p^z=a-\-a-\-a-{- to n terms = na.

4. j92
= «^ + «^ + ^^+ = ^^ taken as many times

as there are combinations of 2 in 7i
; or,

n(n — l) 2

5. p^ = fl^aa + aaa + «a« + = a^ taken as many

times as there are combinations of 3 in w ; or,

Ps = -^
i ^'

• ••••••
6. p'=aXaXaXa to n factors = a\

589. Cor, 1,—If a and x le interchanged, {a + xy =

ar^na--^x-{-'^^^^a^-^x^-^...,-\-x\ (C)

From (B) and (C) it will be seen that the coefficients of

any two terms equidistant from the first and last terms

are numerically equal.

590. Cor, 2,—If X le made negative in (C), (a
— xf =

a- -na''-^x-\-
^^^"^^

a'^-^x^ -,...±x\

591. Cor. 3,—The sum of the coefficients in (C) equals

zero.

For, put a = 1 and a: = 1
;
then

Li Li
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2. For any Rational Exponents.

———
J

= Tir*"^ for any

Demonstration : I. Let n = any positive integer.

Now, —^-^ = ic"-^ + ra;«-2 + r^a;"-^ + + r«-J [134].

I =: lim. a:"— ^ + lim. roc:^—^ +x-r Jx = r

+ lim. r»-i [401, 413] = r^-^ + r»-> + r«-i + . . . .

to n terms = nr^—'^.

If)

II. Ze^ w, = i-
,
a positive fraction.

-T a?^ — r"^ Xq — rq ..

Now, = — -. (1)'

a; — r x — r ^ '

Put Xq =y, or x = y9 '^
and r? = s, or r = s?

; then

a;» — r** yp
— sp yp

— sp y^ — s?

X — r
~

yt
— si

~
y — s y — 8

'

Since x-=yi and r = s^, lim. y = s when lim. ic = r.

., Lim. (^^^:r.\ = ita.
-S

^^^1^' ^ ^1^' i =
\aJ — r/x = r

i y — s y — s)y = 8

pyP-i ^ qyq--^ [I, 416] = ^
yp-<i =

p J_ p—<i p P. _i— (xq) = — xg =^na^—'^.

III. Lei n = —p, a negative integer or fraction.

__ x* — r* x—P — r-P /a;p — rP\
Now, = = — x-P r-P

( I .' x — r x — r \ x — r J

VaJ — r/a: = r | \x — rj\x = r

—
—r-^p,prP-^ [415] = —

r'^«(— ?ir-»*-') = nr»-i.

General Dennonstratlon of BInonnial Theorem.

593. Let it be required to develop (a-\-xy, for any-

rational value of n, into a series of the descending powers

of X,
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(a + ^)« =
ja(l

+
f)["=a«(l+f)"

Put- = ^, or (1+ -y=(l + ^)«

"Put {\ + zY = I + Az Jr B z"^ + C z^ \- Dz/^ + . . , ,

Since z may have any finite value, put z — r\ then,

(1 + r)» = 1 + uir + i?r2 + Cr3 + i)r* + . . . .

Subtract (D) from (C),

(1 + zY - (1 + r)» = ^ (2;
-

r) + ^ (2«
-

r2) + C (2«
-

r3) + . . . .

Put ^ for 1 + 2; and R for 1 + r
; or Z— i2 for 2 — r ; then,

Z^ - R^ = A{z - r) + B{z'^
-

r«) + C{z^ - r^) + . . . .

Divide hj Z— R = z — r,

Z

329

(A)

(B)

(C)

(D)

(E)

(F)

(G)Z— R \ z — r J \ z — r J

Let lim. 2; = r, then lim. Z=R, since Z=l + z, and i? = 1 + r
;

andlun.(§=|-")z=B
=

.-. nR^-^ [592]

or, n(l + r)"-*

(H)

J. + 2 J5r + 3 02 + 4i)r3+ . . . .

(1)

(J)

Multiply by 1 + r, and column coefficients,

w (1 + r)*

+ 2B
r^ + dC
+ 4:D

r3 + (K)r-¥2B
+ 3(7

Multiply (D) by n,

n(l + r)» = 71 + J.nr + -e7ir2 + Cwr» + Z^nr4+ (L)

Equating the coefficients of the second members in (K) and (L),

we have

(l)A = n (2) A + 2B = An
{^)2B + dC= Bn (4) 3C + 4i> = i>w; etc.

A = n, B =—g— , C= ^
n{nD= '''

^''^
^,etc.

Substituting the values in (C),

{1 + zY = l + nz+ -^
—'-z^ +

r£
2» +

n(n-l)(n-2)(n-S)^,_^^^^^ ^^^
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Substitute — for z (B), and multiply by o*» (A),
Cb

n(7i-l)(w — 2)a"-3 , w(7i
—

l)(w
— 2)(n— 3) , ^

'

^t.—5^

'-j^
x'+— '^ '^

^-a^-*x*+ (N)

594. Cor. 1. {X+ i/)"
= a-

^1
+ ^=

= X"+ «a?-' y + ^i^^af-^/
+

"('^-^>("-^> x-V+etc. (P)

This is the most general form of the binomial theorem, inasmuch

as X and y may be both variables.

595. Cor, 2,—By inspection it will le seen that

1, The rth term of the development of {x -\- yY =
n(n-l){n-^)..,.{n-r-^%) ^«_,+, ,_i

|r
— 1

* ^

2, The {r + l)th term =
n{n^l){n-^2).,.,{n-r + 2)(n-r+ l)

|r-l xr = |r
'^ ^

3, The ratio of the (r -f- l)th term to the rth term =
n^r-\-l y

r x' '

{
r

) X

596. Cor, 3,—1. If n is a positive integer equal to

r — 1, the coefficient of the {r + l)th term, which is also

the coefficient of the (n + 2)th term, will reduce to zero.

Therefore, the series will terminate with the {n-\-l)th

term, which will he y\
2. If n is negative or fractional no factor of the rth
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term (r being a positive integer) will reduce to zero, how-

ever great r he taken. Therefore, the series will he infinite.

597. Cm-. 4,—

Since Urn, \ I
—^

-'^ll'
= —1 ,^ , it follows :

1. That the coefficients of all terms in the hinomial

theorem are finite hoioever far the theorem he expanded.

2. That if y <x the expandedform is convergent [583].

3. That if y> X, the literal part {not coefficient) of the

{r + Vjth term will increase indefinitely as r increases and

will ultimately become infinitely great, and as the coefficient

remains finite the whole term will become infinitely great.

Therefore the expanded form will be divergent [580].

Jf.. If y =. ±x the expansion will be indeterminate ;

hut (x+ y)''
= (2 a:)" or (0)"

= 2" a;* or 0.

5. The expansions of {x-\-yY and {y-\-xY can not

both be convergent for particular values of x and y ; only

the one that has the greater first term.

598. Cor, 5,—1. The coefficient of the rth term will evi-

n "^ r I 1
dently be greatest when ^^— is first < 1 ; or when

n — r-\-l is first <r ; or when 2 r is first > w + 1, or

when r is first > T" .

2. The rth term when the expansion is convergent, or

n ~~ r I 1 1/

when xy y, is evidently greatest when ^^^—-
.
— is

r X

first < 1 ; or when {n
—

r-\-\)y is first <,rx ; or when

{n-\-l) y is first < {x-\-y) r ; or when r is first > ( -^— | y.

Illustration.— In the expansion of
(8 + -^) , the
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greatest coefficient belongs to the term whose number is

— 4 + 1 1
first greater than —^— > ^^ TKy which is the first term.

The greatest term in the expansion of I 8 + -^ j
is the

one which immediately follows in number, —\7~ x -5- ,

1 . .

^t ^

or — , which is again the first term.
00

EXERCISE 91.

Expand :

1. (a
- 3 T'Y 3.

(a;
- 3 af 5. {x^

-
5)8

2. (2 + 5 xY 4. (2a^-\- 5y 6. (3 x^ + a^y

Expand to four terms :

7. (1
-

x)i 9. (a^- 1)^ 11. («rr+ b)-^

8.{a—x)^ 10. (a;^+ «)~^ 12. {x^
— a^~^

13. Extract the cube root of 126 to six decimal places.

Suggestion :

Vl26 = Vi25Tr = (125 + l)i =
j53(l

+^)P =
5(l

+
ji^)*

-^r 3 125+ \2_

""

V125;
+

[3_

(^y+ etc.
[
= 5(1 + 0026666 - -0000071 + -0000001) = 5-0132975.

14. Find to 5 decimal places : V65, VSO, V344, V3128

15. Find the 7th term of {2x-}-SY^

16. Find the 5th term of V4+^
a

17. Find the 6th term of
Va-\-x

18. Find the rth term of {a
—

x)~^

19. Find the greatest coefficient of (2 + x)^

20. Find the coefficient of the 5th term of {a
—

a^)~^.

21. Find the numerical value of the 10th term of

(7
— 5 3/^)", when y = 27 and n = S
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The Exponential Theorem.

599. The exponential theorem is the expansion of a" in

ascending powers of x, and is derived as follows :

T> ^ /^ lA"" - 1 nx(nx — l) 1

And
(l

.
1)'=

1 . 1 +^ . ^-—I^^^ etc. (C)

Substitute (B) and (C) in (A),

x{x-l) x(x-^)(x-l)
1 + ^+—\r^*- \r

—-^'"'-

Suppose lim. n = ao, then

Put e for 1 + 1 + i-ft- + fo" + iT" + 6tc. ; then,
[£_ l£_ l±

e» = l+a: +
j^

+ -- +
g-+

etc. (F)

Put ca; for a;, then e"" = 1 + ex + -rjr- + -r^- + etc. (G)

Let e" = a, and assume e as the base of a system of logarithms

[465], then c = loge a, read logarithm a to the base e. Substitute

these values in (G),

»- = l +
^log.a+^<!2|^

+
?!(l5|^

+ eto.. (H)

which is convergent for all finite values of x [582].

This is the Exponential Theorem.

600. SchoUum. e = l + l+-i- + J- + ,-^ + etc. = 2-7182818. . . .

l^ l£- lL
is the base of the Napierian or natural system of logarithms, a system

universally used in theoretical work instead of the system based on 10,

which is used in practical work only.
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The Logarithmic Series.

601. The logarithmic series is the expansion of loge

(1 -f- ^) in the ascending powers of x, and is derived as

follows :

a> = l + ,log. a+t^^ +t^^^ ,t,. p99,H]. (A)

Transpose 1 and divide by y,

-y-
= logea + 2/f-^ +

'-^"-^
+

etcj.
(B)

Let lim. y = 0, then

loge a = lim.
I I

Put 1 + a; for a, then

loge (1 + a;)
= lim. -

^1
+ xy

-l\-^^^

y r 12. |3_ ij/=o

= a; —
-^r^ + -o

— etc. Therefore,
lO o

logo (l+a:) = aj-^a;2+ -^x^— jX^
+ etc. (C)

This is known as the Logarithmic Series.

602. The ratio of the (w+ l)th term to the nth. term

x'^'^'^ x"" ^ n _ 1
IS

I 7 ! —
j

—
. X — r- . X .

n-{-l n n-\-l i_4__

Now, lim. / .x\ =x. Therefore, if a; < 1, numerically

li+i'7„=»
the series is convergent. It is, therefore, convergent for all values

of X between — 1 and + 1.

When x = l, loge 2 = 1— — +
-^
—

-j
+ etc., which is converg-

ent [5831.

When x= — l, log, ^=-'^('^+2+'o+T +
^^^-j'

which is

divergent, since lim. (
-^-^

)
= lim.-! —1 ( r | > = —

1,

and all the terms have the same sign [583].
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603. Eesume

Put — X for oCf then

\og.{l-x)^-x-\x^-\7?-\^-\o?-.... (3)

Subtract (3) from (1), then

log. (1 + *)
-

log. (1
-

X), or log,
([±|)

[467, P. 3] =

2(.+ J
+

|'+....)
(3)

171 — n ^ '

Put —
I

— for X, then.
m-{-n

Put m = n-{-l, then

iog,(„+i)-iog.«=2J^+i(^^y+

iog.(«+i)=iog.»+3J^-^+j(^^y+

+ ....[ (D)5 \2 ^ + 1/

As this formula converges very rapidly for all values

of n, it may be used to find the Napierian logarithm of

any number from that of the next preceding number,

n being regarded an integer.

Computation of Logarithms.

604. The logarithms of composite numbers may be

readily found, when the logarithms of primes are known,

by Art. 467, P. 2.

/ OF THE
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The logarithms of prime numbers are found by formula

D, Art. 603.

niustrations.—
loge 1 = [466, P.]

loge 2 = loge (1 + 1)
=

^ "*" ^

\3
+ d^iW + 5l<^ + 7x~3^

+ • • • •

j
= 0-69314718 (by actual reduction).

loge 3 = loge (2 + 1) =

=1-09861228....

loge 4 = 2 loge 2 = 1 -38629436 ....

loge 5= loge (4 + 1) =

loge4+
2(i

+ 3^3 + 5^+
....)

= 1-60943791....

loge 6 = loge 3 + loge 2 = 1 '79175946 ....

loge 7 = loge (6 + 1)
=

loge 6 +
2(1

+3^ +^^+
....)

= 1-94591....

loge 8 = 31oge2 = 2-07944

loge 9 = 21oge3 = 2-19722

loge 10 = loge 5 + loge 3 = 2-30258509

etc., etc., etc.

605. Let a and i represent the bases of two systems

of logarithms and n any number.

Let logb n •= Xf then l' = 7i (1)

Let loga l — m, then oT =.1) (2)

dT" z=: If =: n, or log. n = mx (3)

loff. n mx
.*. ,

^ =— = m : or
logb n X

log, n = m logb n. Therefore,
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Principle.—Multiplying the log^ of a number hy the

loQa of b gives the log^ of the number.

606. Loge n = logio n X loge 10 [605, P.]

.-. log.o^ = loge^ X j^ = log.^ X ^^30^
= loge /J X 0-4342944....

607. The number 0-4342944 is called the modulus

of the common system, and is represented by m.

Therefore,

JPrin, 2,— Log^Q n = m log, n.

By means of this principle the Briggean or common

logarithms may be derived from the Napierian or natural

logarithms.

I. Since loge (^ + 1) =

logio (»+ !) =

]og.„»t +3mj^^ +
i(^^y+....| (H)

By means of this formula the common logarithms may
be computed directly.

Summation of Series.

609. No general method of summing series can be

given. Series of special types may sometimes be summed

by special methods. The student has already learned how-

to sum an arithmetical progression [486], a geometrical

progression [493], an infinite series of the geometrical

type [499], an arithmetico-geometrical progression [«500],

a series of square numbers [506], a series of cubic num-
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bers [507], and series dependent upon or resolvable into

these. A few additional methods will be given here.

610. I. Method by Indeterminate Coefficients.

This method is applicable when the nih. term is a

rational integi-al function of n.

niustration.—Find the sum Sn of n terms of the series :

lX22 + 2x32 + 3x4:2 + ...,+ w(w+ 1)2.

Solution :

Put Sn= 1 X22 + 2x32 + 3x42 + 4x52 +....+ 7i(W+l)2

== ^ + ^n + (7n2+i>w3+^7i4+

and, Sn+\ = 1x22 + 2x32 + 3x42 + 4x52 +....+ (?i+ l)(n+ 2)2

= ^ + ^(71+ 1) + (7(?i+ l)2 +Z>(n+ l)3 + ^(n + l)4+....

Then, by subtraction,

(w+l)(w+ 2)2 = ^ + (2w + l)(7+(3n2 + 3n + l)i)

+ (4n3+ 6n2 + 4?i+ l)^ + ,
or w3 + 5n2 + 8w + 4 =

{B+G+D+E) + {2G+^D + 4.E)n + {^D+QE)'n? + 4:En\

since all coefficients after E are zero, there being no more than four

terms in the expansion.

Equating the coefficients of the like powers of ti,

1.4^=1, 2. 3i> + 6^=5,
3. 2C+3i) + 4^=8, 4. 5 + C+Z) + ^= 4;17 7 5

whence, E =
-^,

7) =
-^,

C = -r, and B =
-^»

5 7 7 1
Sn= A+ -^n+ -^'n?

+
-^n^

+ -jn^

To find A, put n = 1, then Sn = Si — the first term = 1 x 22.

...(lx2)2 = A+| + | +
|-

+ i = ^ + 4;

whence A = 0; and

5 7 7 1

= i^(3n* + 14 n8 + 21^2 + lOn)
la

=
^(3n»+147i»+21»+10)=^(w+l)(n+2)(3w+5)
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611. 2. Method by Decomposition.

This method is sometimes applicable when the wth

term is a rational fractional function of n, and is resolv-

able into the algebraic sum of the nth. terms of two or

more other series of the same nature.

niustration.—
Find the sum S,, of n terms of the series : ^r

—
^
—

7 +
7

,

10
,

,

37^ + l

3x4x5 ' 4X5X6 '
•**•

'

(/i + 1) (/^ + 2) (/^+ 3)
*

Solution :

3/1 + 1 _ A B C
^^^

(w + l)(w + 2)(n + 3)

-
n + 1

"^
n + 2

"^
71 + 3'

^^®"

A = —ly B =z 5, and C = — 4 ; whence

3n + l _ / 1_ 5 4_\
(n + l){n + 2)(n + S)~ \ n + l'^n + 2 n + dj'

•• "
](7i + i)(n + 2)(w + 3)f

^V n + lj 2 3 4

\ n + 2)

4 n + 1

5 5 5
o +^ +
3 4 n + 1 n + 2

2/ 4_\ _4_ 4 4 ^
V ^ + 3/ 4 71 + 1 n + 2 n + S

Adding the last three series, we have

"~V 2"^3"^w4-2 n + s)~6'^n + 2 n + 3

If lim. n = ao, then /Soo = 77 .

The Differential Method.

612. If the first term of any series be taken from the

second, the second from the third, the third from the

fourth, and so on, a new series will be formed which is
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called the first order of differences. If the first order of

differences be treated in the same manner as the original

series, a second order of differences will be formed, and

so on.

Thus, if we let a, I, c, d, e, , , . , be any series, then

h — a, c — h, d— Cy e — d, .... will be the first order

of differences ;

c — %'b-\-a, d — 2c-}-b, e — 2d-^c, the second

order of differences ;

d — dc-\-3b-a, e — Zd^^c-h, the third

order of differences, and so on.

613. If we let «!, Ji, Ci, fZi, represent the first

order of differences ;

«2? ^2? Cgj ^2* • • • • the second order of differences ;

^3 J ^3> ^3? ^3^ •••• the third order of differences;

and so on, we have the following scheme :

Series : a, l, c, dy e,

1st Differences: ^i, Jj, Ci, (?i,

2d Differences : ct^, hi c^y

3d Differences : ^3? ^3?

4th Differences : ^4, , and so on.

(hi ci2f (hy <^if are the^r^^ terms of the succes-

sive order of differences.

614. Problem 1. To find the {n + l)th term of a series.

Solution : Take the series a, 6, c, d, e, then from the above

scheme,

1. b —a =ai, whence b = a + ai (1)

bi — ai = a%,
"

bi = ai + a^ (2)

&a — aa = Os ,

"
63 = O9 + as (3)

&3 — as = a4 ,

"
ba = a3 + at (4)

2. c =b +bi = a +2ai + tti, from (1 and 2) (5)

Ci = &i + 6a = ai + 2 as + as ,
from (2 and 3) (6)

Ca = Ja + 6s = as + 2 as + a4 ,
from (3 and 4) (7)
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3. <? = c + Ci
— a 4- 3 «! + 3 aa + aa ,

from (5 and 6) (8)

<?i = Ci + Ca = «! + 3 aa + 3 aa + a 4, from (6 and 7) (9)

4. e = 6^ + cZi = a + 4 «! + 6 CTa + 4 as + ^4 ,
from (8 and 9) (10)

Now, since

&r=a + ai, c = a + 2ai + aa,

(? = a + 3aj + 3aa + «3, e = a + 4ai + 6a3 + 4a8 + a4,

it will be observed that the coefficients of any term are the same as

the coefficients of a power of a binomial, whose index is one less than

the number of the term. Hence, the

/ H•.l^ X n(n—\) w(w— l)(w—2) ^.,
(71+ l)th term = a+w Oi + -^—- a^ + —

j^^
~ aa + [A]

615. Car,—The nth term =

;+in-l)a,+ ^''-^^^-'K
+ .... [B]

Illustrative Example.—Find the 7th term, also the nth

term, of the series : 1, 3, 6, 10,

Solution : 1st differences = 2, 3, 4, . . . .

2d " = 1, 1, . . . .

3d " =0, ....

.*. 1st. n = 7, a = 1, ai = 2, a<, = l, as =
Substitute these values in [B],

7th term = 1 + 6x2 + ^-^ x 1 = 28

2d. Put n = n, a = l, ai = 2, aa = 1, and aa = 0,

i-i, i-u i -. / ^^ n (n
— l)(n — 2) . 7i(n—l)then nth term = l + (w

— l)x2+ ^^

'-^
x 1 = —^—-

.

« 2

616. Problem 2. To find the sum of n terms of a series.

Solution: Let it be required to find the sum of n terms of the

series a, b, c, d, e,

Assume the series 0, a, a+ b, a+ b + c, a+ b + c + d, , then,

1st. The first order of differences of the assumed series is the

given series.

2d. The second, third, and ?ith orders of differences of the as-

sumed series are the first, second, and {n
—

l)th orders of differences

of the given series.

3d. The {n + l)th term of the assumed series is the sum of n
terms of the given series.

Hence, if in formula [A] we put for a, a for ai, ai for aa,
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etc., we shall have the sum of n terms of the given series. Doing so,
we shall have

c, n{n — l) w (n — 1) (n — 2)
Sn = na+ "^ '

ax+ -^
^ U^+..,, [C]

Note.—This method is applicable only when some finite order of

differences will reduce to zero.

Example.—Find the sum of 10 terms of the series :

1 + 4 + 10 + 20 + 35+....
Solution : First Differences = 3, 6, 10, 15,

Second Differences = 3, 4, 5,

Third Differences = 1, 1,

Fourth Differences = 0, ....

.-. Put w = 10, a = 1, tti = 3, a, = 3, a^ — 1, and a^ = in

formula [CJ ; then,

^ _^10x9 „10x9x8 _ 10x9x8x7 ,
/S; = 10 + —5— X 3 + ^ ., X 3 + —s-^—7— X 1 = 715

3 2x3 2x3x4

617. Problem 3. To interpolate terms at regular inter-

vals between the terms of a given series.

Formula [B] may sometimes be used with advantage

to interpolate terms at regular intervals between the terms

of a given series.

Illustrations.—1. Given

(651)3 = 423801, (653)3 = 426409,

(655)3 = 429025, and (657)3 = 431645,
to find the value of (652)3, (554)3^ ^^^ {'o^^f.

Solution: Series = 423801, 426409, 429025, 431649

First Differences = 2608, 2616, 2624

Second Differences = 8, 8

Third Differences =

Take formula a„ = a + (n
—

1) «t + 10 «s + . . . .

L~_

Put a = 423801, a, = 2608, a, = 8, and 7i=
l-^-

,
2
g,

and 3^
successively; then,

1. (652)8
_ 423801 +

-|-
x 2608 - | x 8 = 425104

2. (654)8 = 423801 + | x 2608 + | x 8 = 427716

3. (656)8 = 423801 + | x 2608 + ^ x 8 = 430336
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V65T= 8-666831, V652'= 8-671266,

V653 = 8-675697, V654 = 8-680123, and

V655 = 8-684545, find V653-75.

Solution : Here a = 8-666831, «i = -004485, a, = -
0-000004,

tta = — 0-000001, 0^4 = 0, and tj- = 3
-j

. Substitute these values in

n n^(. in-\){n-^) (n-l)(7i-2)(n-3)
a« = a + (71

—
1) «! H r^ tta H rK ^s ; then,

li
/T'J'

OQ1

V653-75 = 8-666831 + ^ x '004435- ^ x -000004-
g^^

x -000001

= 8-666831 + -012196 - -000009 - -000001 = 8-679017.

EXERCISE 92.

Find the wth term and the sum of n terms of the

following series :

1. 2 + 6 + 12 + 20 + .... 4. 3 + 8 + 15 + 24 + ....

2. 1 + 9 + 25 + 49 + .... 5. 1 + 4+ 9 + 16 + ....

3. 1 + 3 + 6 + 10 + . . . . 6. 2 + 12 + 30 + 56 + . . . .

7. 6 + 24 + 60 + 120 + 210 + ....

8. 45 + 120 + 231 + 384+ 585 + ....

9. 1.3 .22 + 2.4.32 + 3 .5.42+ ....

10. 3. 5. 7 + 5. 7. 9 + 7. 9. 11 + ....

Sum to n terms and to infinity :

1.1. 1
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Find the value of :

16. %{n^{^n-2)} 17. :S
j|(w + l)(^ + 2)

20. The log. 950 = 2-977724, log. 951 = 2-978181,

log. 952 = 2-978637, log. 953 = 2-979093,
find log. 952-375.

Reversion of Series.

618. If
2/

is a serial function of x, then may x be de-

veloped into a serial function of y, and the process is

called Reversion of Series.

Example.—Kevert y = a-\-lx-\-cx^+da?-{-ea^-\-,,,.
into a serial function oi y.

Solution : Put the series in the form

y—a = l)x-{-cx^-{-da^-\-ea^

Vvitx=zAiy-a)^B(jj-af + C{y-af + D{y-ay-\-....

Now, hx =bA(i/-a) + bB(i/-af+ bC(y-af+bD{y-ay+....
cx^ = cA^ (y-a)^ + 2 c A B (y-af+ {c B^ + 2c AC)(y-ay+
d a^ = d A^ (y-af+ 3d A^B {y-a)*+ . . . .

ere* = eA*{y—ay +

,\ y-a = bA(y-a) + (bB+cA^)(y-af
+ {b C+2cA B+d A^)(y-af
+ {b D+ cB^+ 2c A C+2d A^ B+eA*)(y-a)*+ . . . .

Equating the coefficients,

1. bA = l; whence A =
-j-

2. bB + cA^ = 0; whence B=- ^
3. bC+2cAB + dA' = 0; whence C= ^^^^^-^

4. bD + c& + 2cAC + SdA^B-\-eA* = 0;
¥e — 5bcd + 5c^

whence D =
jji

•

/. x = j{y-a)-y^{y-af+ ^ (y-af

bU — 5bcd + 5c*,
^i

(y-a)*+....
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619. Cor.—It a = 0, then

1 c 3 ,
2c^-bd , b^e-5bcd+6€^ .

,

EXERCISE 93.

Revert the following serial functions of x into serial

functions of y:

1. y=zx-\-x^-\-a^-\-xf^-\-

3. y = x-]-2x^-{-63^ + Ua^-\-.,J,

4. y = a; + a:^ + 2a;^ + 5a;^ +
Suggestion.—Let x = Ay + By^ + Cy^ + Dy'' +

5. y = l+a;+i^2+ia^+^a;*+ ....

6. y = l + a;-2a:2_j_^

7. Find one value of x in the equation a^-{-43^ -]-6xz=l

Suggestion.
—

Put 1 = 2/, and assume x = Ay + By^ + Cy^ + Dy*+...,

8. Find one valut of a; in ic^ + l^^ x = l

Recurring Series.

620. A series in the ascending powers of x, in which

each term, after one or more fixed terms, is px times the

preceding term, or px times the preceding -\-qa^ times

the next preceding term, or ^ a; times the preceding -{-qx^

times the next preceding -]-rx^ times the next preceding

term, or and so on, is a Recurring Series,

621. A recurring series is of the firsts second^ or nth

order, accordingly as each term, after the law begins, is

derived from one, two, or n preceding terms.
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622. The forms px, px-{-qx^, px-\- qx^ -\- rx^, and

so on, are called the order scales of the series ; and p,

p-\-Qy i? + 5' + ^^ and so on, the order scales of the co-

efficients.

Illustrations.—If we put p = 3, q = 4:, and r= —2,
then

1. 2-{-(ix-\~lSx^-\-64:X^ + .... isaseriesof the first

order.

2. 2-\-6x-^26x^-{-102x^-\- is a series of the

second order.

3. 2 + 6a; + 26a;2 + 98rz;-^ + 386i5^ + .... isaseriesof

the third order.

623. Prohlem 1. To determine the scale of coeflacients.

1. Let a-{-I)x-\-cx^-\-da^-\-..., be a recurring series

of the first order.

Then, bx = apx; cx^=p bx^
;
dx^ =pcx^ ;

and so on.

b c d ^

i^
= -

; ^ = ^ 5 i?
= -

;
and so on.

2. Let a-\-hx-\-cx^-\-dx?-\- be a series of the

second order.

Then, a q x^ -{-hp x^ = cx^ (1); l)qx^-\-cpoi^ = da? (2);

whence, aq-\-lp =c {^)', hq -\-cp =: d (4).

Then, by elimination,

_ be — ad , _bd—(?^ ""
b^ — ac ^ ~ ¥ — ac

3. Let a-{-bx-\-cx^-\-da?-\-ex''-\-fx^-{-.... be a

recurring series of the third order. Then,

1. ar-\-bq-{-cp = d 2. br-}-cq-\-dp = e

3. cr-\-dq-\-ep =zf

By elimination the values of p, q and r may be found.

In the same manner the scale of coefficients of a recurring

series of any order may be found.
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624. SchoHum,—In order that the scale of coefficients

of any recurring series may he found, there must le given

at least twice as many terms of the series as there are

terms in the scale. In the exercises concluding this sub-

ject just twice as many terms of each series will he given

as are contained in the scale of the series. This will

enable the student to determine at a glance the order of
the series.

When this law of notation is not followed, as when the

nth term of a series only is given, it is usually hest to

expand the series and malce trial for a scale of two terms,

and, if the results thus obtained will not satisfy the series,

then make trial for a scale of three terms, and so on until

the proper scale is determined.

Example.—Find the scale of coefficients in the series

l-{-%x-\-^x^-\-^o(?-\' and expand the series.

Solution : This is a series of the second order, since four terms are

given. Hence,
1. g + 2i? = 3 2. 2 g + 3i? = 4

whence, p = 2 and q = —1, and the scale is 2 — 1. The series is

1 + 2a: + 3a;2 + 4a;3 + 5a;* + nos^-h

625. Problem 2. To find the sum of n terms of a

recurring series.

The method of finding the sum of a recurring series

is the same, whatever be the scale of the series. For the

sake of simplicity we will here assume a series of the

second order, whose scale is p-{-q, for illustration.

Let «o + «i ^ + «^2^ + • • • • «»-i ^^^ be a series of the

second order. Then,

>S„ = «o + aiX-{- a^x^ -\- + «„_! x'"'^

—pxSn= —pa^x—pa^T? — —
^«„_2a;"~*

— qx^S^ = —qa^x^ — —
qa^^^af-^

—
q a^-z^"" — q cin-\^'^'^
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Adding and remembering that the sum of the co-

efficients of each term from the third to the nth. in-

clusive is zero,

(1 —px — q 0^) /S'«
= «o + («i

—
i? «o) ic

-
(P «n_i + q a^-z) x^-q a^-i a;"+i

;

whence, S. = ^o + {a.-pa,)x
1 —px — qar

{pan-i-{-qan-2)x''-{-qan-i3f^'^
1 —px — qx^

626. Cor,—If X <1 and Urn. n = co, then

^ ___ ao-\-{ai—pao)x
1 ^px — qoir

Example.—Sum l^^x^bx^-\-l^ a;3+48 rr^+145 x^-{-

.... to 7 terms and to infinity, when x <1,
Solution: 1. 5jt? + Sg- + r = 18 3. 18^9 + 5g + 3r = 48

3. 48p + 18^ + 5r = 145

.*. p = 2, g = 3, and r = — 1.

S-, = l + 3a:+5a;2+ 18a;8 + 48a;4+1453:5^.4i6a;6

-2 a; /S't = -2a;-6a;2-10a;8-86a;4- 96a;«-290a;«-832a;''

-3a;2,S'T= -3a;2- 9a;8-15a;4_ 54a;*-144a;«-435a;''-1248ic8

+ x3>S'7= + x^+ 3a;4+ 5^^+ iga^e^ 48a;7+ 145a:«

+ 416a;9

.-. (l-2a;-3a;2 + a;3)>S'7
= l+a;-4a;2-1219a;''-1103a;8+ 416a:»

l + a;_4a:2_1219a;'-1103a:8 + 416a;9
/St

1+X—4:X^

l-2a;-3a;2+a;»

627. If /S'ao is developed into a series by the method

of indeterminate coefficients, the original series may be

reproduced to any number of terms desired. Therefore,

/Soo is often called the generatrix of the series.

628. If the generatrix can be decomposed into partial

fractions, the general, or ni\i term, of the series may

easily be obtained, and hence, too, the sum of n terms.
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niustration.—Let it be required to find the nth term

and the sum of n terms of the series

Solution : It may readily be determined that i? = 2, g = 3, and the

l + 3a; 11 3 1

generatrix = ^_^^_.^^,
= "

2
' iT^ +

3
'

T^Ts^'

11 1.11,
^^^'-2 •n:T-=-2 + 2^-2^+••••

r_ l^n ^ _ (-1)"^"-^
r493 b1 •

3 1 3 9 27 ,^^^ 2T335=2 + 2^+-2^ +••••

_ (-l)na;n_l 3n+la;n_3
'^''~

2a; + 2
"^

6a;- 2
'

2^—1 3»i

nth term = (— 1)** . -g— +
-g-

. a?*-*.

EXERCISE 94.

Sum to infinity :

1. l + 3ic + 5a;2 + 13a;3 + ....

3. 2 + 2a; + 4a;2 + 14a;34-....

4. 3 + 2a;-7a;2- 38:^3-....

5. l + 2a; + 3a;2+ll:r3^35^_j_121a;5 + ....

6. l-3:zj + 5a;2_^5^^13^_|.61^5_|.__

7. Sum l + 2ir+ 9a;2 + 33iz^+ to 6 terms.

8. Sum 1 — 2a;— 7a;2 — 8a;3 4- to 7 terms.

9. Sum 2 — a; + 6a;2 — 14a;3 + to 8 terms.

10. Sum l — ^x-{-^x^^Qo(?^x^— ^x^-\- to 9 terms.

Find the nth. term and the sum of n terms of

11. l + 2a;-82;2+ 20a;3-

12. 1 + 5 a; -f 9 a;2 4- 13 a;3 _^
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Decomposition of Rational Fractional Functions.

629. To decompose a rational fraction is to find two

or more other fractions whose sum equals the rational

fraction.

630. It will be only necessary to show how to decom-

pose proper fractions, as all improper fractions may be

reduced to mixed numbers, which process will already

lead to a partial decomposition.

Principles.

631. 1. Any rational fraction of the form of

p
, .,

_.-,. j—j-
—r may he decomposed so that

[X -f- a) \x -\- 0) .... {x-\-n)

(x-]-a){x-\-I)) (x-{-n) x-\-a x-\-b x-{-n

Illustration.—Put

3^24. 14:^-29 _ A . B . C .,.

{x-l){x-\-%)(x-^) x-1 '

x-{-2
' x-3

Clear of fractions and arrange the terms according to the descend-

ing powers of a;,

3x^ + Ux -29 = (A + B + C)x^ - {A + 4:B - C)x -
{6A-SB + 2C).

Equating the coefficients [566], we have

(1) A +B+C=d (2) A + 4B-C= -U
(S) 6A-BB + 2C= 29

Finding the values of A, B, and C by elimination, and substi-

tuting them in (A), we obtain

dx'^ + Ux-29 _ 2 d_ 4

{x
—

l)(x + 2){x-S)~ x-l x + 2'^ x-S'

632. In a similar manner it may be shown that

(a X -{- b) (c X -\- d) {mx-\-n)

ax-\-l) cx-\-d
'

mx-\-n
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633. 2, Any rational fraction of the form of

P
{p(^ -{- a X -{- h) {x^ -\- c X -\- d) {a^ -\- m x -\- n)

may he decomposed so that

P
{x"^ ax ^h) {7^ -\- ex ^ d) . . . . {x^ -\- mx^ n)

^

Ax+ B Cx-\-D Mx-^JV
~r ^2 I ^ ^ I ,7 "T • • • • ~r

x^-\-ax-{-bx^-\-cx-\-d x^-\-mx-{-n'

„, , ^. T, i. 4:X^-8x^-63^-Ux-{-3
mustration.-Put

(^^^^i)(^_^^i)(^.^^^^)
Ax + B Ox-^D Bx-\-F ..^
x^-\-x-\-l

'

x^ — x-\-l
'

x^-\-x^%

Clear of fractions and arrange the terms according to the descend-

ing powers of ic,

4a;4 - 8a:3 - 5a;2 - 15a; + 3 =
{A + C + E)0!^ + {B + 2 C + D + F)a^
+ {2A-\-4.C + 2D-[-E)x'-^{-A + 2B + ^C+4:D + F)x^
+ (2A-^ + 2(7+3i) + ^)a; + (25 + 2i> + i^) (1)

Equating the coefficients [566],

(1) A + C+E =
(2) ^ + 2C+Z) + ^=4
(3) 2A + 4(7+2/> + J^= -8
(4)^-25-3(7-4i9-i^=5
(5)2A-^ + 2(7 + 3i; + ^=-15
(6) 2^ + 2Z) + ^=3

Finding by elimination the values of J., B, C, D, E, and F^ and

substituting them in (A), we have

4a4_8a^_5a;2_i5a;4.3 _
(a;2 + ic + 1) {x^-x+ 1) (ic* + a; + 2)

~

3 4 5

x^ + X + 1 x^ — X + 1 x^ + X + 2'

634. In a similar manner it may be shown that

P
{a x^ -^ b X -\- c) {dx^-\-ex-\-f) {m x^ -\- n x -{p)

Ax-\-B Cx-\-D Mx-\-N
ax^-\-bx-{-c d:x^ -\-ex +/ mx^ -\-nx -{-p

*
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P
635. S, A rational fraction of the form of -,

—
;

—
r-

-' J J J
{x-\-aY

may he decomposed so that

p A B jsr

t /^ I ^\2 ~r • • • • "r
(x-^aY x-\-a (x-\-aY {x-\-ay

Illustration.—Put
i^-^r

_ A B G D"
x-%'^ {x-%)^^ {x-^f'^ {x- 2)*

^^^

Clear of fractions and arrange the terms according to the descend-

ing powers of x
; then,

3a:3 _ i4a;2 + 19a. _ 5 _ ^^3 _ (6 ^ _ ^)a;2 +
(12J-4^+ C)x-{%A-4:B + ^G-D).

Equating the coefficients, we have

1. ^ = 3 2. 6.4-5 = 14

3. 12A-4:B + C= 19 4. 8^ -45 + 2 C- 2) = 5

Solving these equations, and substituting the values of A, B, C,

and D in (A), we obtain

Sa^-Ux^ + 19x-5 3 4 1 1

{x-2)* x-2 (x- 2)2 (x
- 2f {X

—
2)4

636. In a similar manner it may be shown that

1 _p _^_+ -g + + ^
(ax-i-by ax + b

'

(ax-^-bf
' '

(ax-^by

2
P ^ Ax-]-B

(x^ + ax-\-by a^-\-ax-\-b^

Cx+ D Mx-^-N
{^j^ax^bf

'
••••

•

{x'-^-ax-irby

{aT^^bx-^cy a:^+ bx-^c'^

Cx^D Mx-{-JSr

{as^ + bx^cf
'
•••*

'

{a3^-\-bx-\-cy

4. Any rational fraction whose denominator may be

resolved into linear and quadratic factors may be decom-

posed by a combination of the above methods.
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Ulustration.—
To decompose

^^^_ a)^^-iY i^^+p^ + ^y
' P^*

{x
—

a) {x
— iy {x^ -\- p X -\- qY x — a x — b

,

M Px^Q P'x-\-Q'

{x
— df af-\-px-{-q {x^ -\-p x -{- q)*

EXERCISE 93.

Decompose into partial fractions :

5cc + 2 2a;-5 _ A B
^'

A ^2 1 O ^ I -I I

x(x-{-l){x-\-2) X '

ic + 1
'

x-^2

3x-2 x^-x-{-l ^ 3x^-Ux-{-25
(a;4-lf (^+ 3)3 (a;-3) (a;2-a:+6)

aJ+ (a
—

^)a;
— ic^ {px-{-qy

^ ^
10.

X^-{-X^ + l X(1-4:X^)

3a:3_8a:2+ 10 2a; + l
11< 7 TTT 12*

(a;
-

1)* (a;
-

1) (a;^ + 1)

13. -n r^ 14.
a^^6x-{-6 (x-l)(x^-i- ly

X5. .4t^+l^ 16.
^

(a; + 1) (x^ + 1)
-"•

a^ _|. :r7 _ 2^ _ ^
2a;g~lla; + 5 5 ^^3 _p g ^ _j_ 5 ^.

^

(^~3)(a;2_|.2a;-5)
'

(ic^
_

j) (^ _|_ 1)3

1 x^-{-x-\-l10 on^^-
a^^x'-x^-a^ (a;+l)(^' + l)

21. ^+^t^ . 22.
^' + ^

l_a;-a.'*-|-a:«
"'••

{x-\-lf{x-2){x-{-3)



CHAPTER X.

COMPLEX J{UMBERS,

Graphical Treatment.

637. If a straight line of any assumed length be taken

to represent the number one, then will a straight line

twice as long represent the number two, one three times

as long the number three, and so on. Thus, we see that

any number may be represented by a line.

638. A line representing a number is called a graph

number, or a vector. The point where a vector is sup-

posed to begin is called the origin, and the point where

it ends, the extremity.

639. A vector is fully determined when both its length

and direction are given. In a system of graphical repre-

sentation of numbers, a vector running rightward from

its origin represents a positive number and is positive, and

one running leftward from its origin represents a nega-

tive number and is negative,

640. If the vector +« be made to revolve about its

origin A, through an angle of 180°, or ir, it will become

the vector —
a, or will be

multiplied by
— 1

;
and if

j^,

~ ^
i

"'" "
r^

the vector — a be revolved

about its origin A through an angle of 180°, or tt, it will

become the vector -|- a, or will be multiplied by — 1.
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Therefore,

1. Revolving a vector through an angle of 180°, or tt, is

equivalent to multiplying it hy
— 1.

2. Revolving a vector about its origin through an angle

of 360°, or 2 tt, is equivalent to multiplying it twice hy
—

1, or once ly + 1^ which does not affect its length or

direction.

3. Since — 1 = V— 1 X V— 1, revolving a vector

about its origin through an angle of 90°, or \ tt, is equiva-

lent to multiplying it by V— 1, or i [v. P. I. 299].

641. Motion about the origin of a vector in the direc-

tion the hands of a clock go is considered negative, and

counter-motion positive. The factor -\-i may, therefore,

be taken to represent circular motion about an origin

through an angle of 90°, or \ it, counter-clock-wise ; and

— i through an angle of 90°, or \ tt, cloclc-wise.

642. Since (+ i) X (+ i) X (+ i), or (+ if = -
i, the

factor symbol
— i may also denote circular motion about

an origin through an angle of 270°, or | tt, in a positive

direction.

643. Since {± i) X (± i), or (± if = -
1, the factor

symbol
— 1 may denote

circular motion about an

origin through an angle of

180°, or TT, in either direc-

tion.

Illustrations.— 1. The B- ^
vector -\-a multiplied by
-{-i = AB revolved about

A in the positive direction

through an angle of 90° =
AB\

B'

+a

—at
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2. The vector + a multiplied by —l^AB revolved

about A in the positive or the negative direction through
an angle of 180° = A B",

3. The vector + a multiplied by —i = AB revolved

about A in the negative direction through an angle of 90°,

or in the positive direction through an angle of 270° =
A B'".

4. In a similar manner it may be shown that (— a) X
(+^) =AB"'', (-«)x(-l) =AB, and {- a) X {- i)

= AB\

644. From what has been explained thus far it will be

seen that, if a vector a units long running rigJitward from

its origin represents + «^ running leftward from its origin,

it will represent
— a ; running upward from its origin,

-\-ai'y and running doiunward, — ai.

646. One vector is added to another by placing its ori-

gin to the extremity of the other and giving it the direc-

tion indicated by its factor symbal. The vector of their

sum is the length and direction of the line joining the

origin of the vector to which addition is made with the

extremity of the vector

added. ^ +« ? +5 ^

Illustrations.—
1. The vector B C ^ ±^

(=+&) added to the G

vector A B {= -\-a) —h

^^r-B

gives the vector A C ^
A ~^^

(= + (« + 5)).

2. The vector B C (= - b) added to the vector A B
(= -f a) gives the vector A C {= -{- {a

—
h)] , when a>h.

3. The vector BO (= — !))
added to the vector AB

(= -f a) gives the vector A C {= — (b
—

a)}, when a<b.

Note.—To subtracit a vector is to add the vector with contrary sign.
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Representation of Complex Numbers.

646. Let it be required to represent graphically the

complex numbers a-^hi, a — hi, ^a-\-hi, and —a — hL

1. a^bi = +a+(+Ji).
.-. Vector {a-\-bi) = A C^ [645].

2. a — 'bi=-\-a-]-{—'bi).

.'. Vector {a-hi) = A C^ [645].

3. —a-\-hi=—a-\-{-\-hi).
.'. Vector {-a^hi) = AC^ [645].

4. — a — hi=— a-{-{— hi).

.-. Vector {--a-hi) = AC^ [645].

647. The vectors of the two terms of a complex num-

ber are called the components of the vector of the number.

Thus, A B and B C^ are the components of A C^.

648. The length of the vector of a complex number is

called the modulus of the vector, or the modulus of the

complex number, and is equal to the square root of the

sum of the squares of the lengths of the components.

Thus, mod. {a-\-hi) = mod. (a
—

hi) = mod. {—a-\-hi)
= mod. {—a — hi) = Va^ + h\

649. The direction of the vector of a complex number

is determined hy the angle which the vector makes with
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its horizontal component, which angle is called the ampli-

tude of the yector.

Thus, the amplitude of the vector A Ci is the angle

Ci A B, which for distinction will be represented by u)^ ;

the amplitude of A Cz is CzA B', represented by Wg ;
the

amplitude of A G^ is G^ A B\ represented by 6)3 ;
and the

amplitude of A C4 is G^AB, represented by 0)4.

650. It is equally accurate, and sometimes more con-

venient, to define the amplitude of a vector as the angle

included between the vector and the vector + a, measured

in a positive direction from the vector +«.

Thus, the amplitude of A Gz is Gz A B, The ampli-

tude of A C3 is the reflex angle BAGs, described by re-

volving A B about A in Si positive direction until it coin-

cides with A C3. The amplitude of A C4 is the reflex

angle BAG4,.

651. A vector and its components may be constructed

from its modulus and amplitude as follows :

1. Draw an indefinite horizontal line, and select some

point in this line for the origin of the vector.

2. At the origin, deflect an angle with a protractor

equal to the amplitude of the vector, and in the proper

position.

3. Lay off from the origin, on the deflected side of the

angle, from a scale of equal parts, the modulus of the

vector. The vector is then determined.

^. At the extremity of the vector let fall a perpendicu-
lar to the horizontal line. This perpendicular and the

part of the horizontal line intercepted between the origin
and the foot of the perpendicular will he the components

of the vector. Their lengths may he ohtained hy actual

measurement on the scale of equal parts.
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Problems.

652. To find the sum of two complex numbers, graphically.

the sum of a-\-hi and

+ a

Let it be required to find

— c-\-d i.

1. Add — c-\-di to a -{-hi,

graphically.

Solution : Construct a +1)i. Its

vector is A C. At its extremity, (7,

construct —c-^di. Its vector is C E.

Join A with E. AE is the vector of

the sum [645]. V(6 + df + (a- cf
is its modulus, and the angle EAB its

amplitude.

Proof : Add —c + di to a + bi

algebraically, and construct the sum.

Thus,

{a + bi) + {—c + di) =
{a
—

c) + {b + d) i.

Construct AB = +a, B C = —c
;

then AC = a — c. At C erect CE =
{b + d) i. Join A with E. The vector

A E will be identical with AE in. the

preceding diagram ; therefore, the solu-

tion is correct.

2. Add a-\-hi to —c-\-di.

Solution : Construct —c + di.

Its vector is A C. At its extremity,

C, construct + a + bi. Its vector

is CE. Join A with E. The vector

A E will be identical with the vector

AE in the first case, which proves
the commutative law of addition

graphically as applied to complex
numbers.

Exercise.—Find graphically the sum of :

1. a -{-hi and c-\- di 4. — a — hi and — c — di

2. a — hi and c — di 5. a -{-hi and a — hi

3. a -{-hi and c — di 6. 0-{-hi and — di

-\-di

+ bi
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653. To multiply a complex number by a rational num-

ber, graphically.

Let it be required to multiply a-^-ii hy
— c.

Solution :

Construct a-\-hi. Pro-

long its vector JL (7 to Z),

making AD z= G y. AG.
Revolve A D about A
through 180°, then AD
is the vector of — c times

a + & *.

Exercise.—Construct the vectors of :

1. (« + ^ t) X c 4. {—a — b i) X c

2. {a
— bi)Xc b. {a

— h i) X (— c)

3. {—a-\-bi)Xc 6. {— a -^ ii) X (— c)

664. To multiply a complex number by a simple im-

aginary number, graphically.

Let it be required to multiply

Solution : Construct — a + bi.

making AD = c x AG. AD
is the vector of c times — a

+ b i. Revolve AD about

A through an angle of 90°

clock-wise [641], or, which is

the same, draw AD — AD
and perpendicular to A D.

AD is the vector of — ci

times — a + bi. DAA! is

its amplitude.

Exercise.—Construct the vectors of

a -{-hi by
— ci.

Prolong its vector AG to D^

d'

1. {a-{-li) Xci
2. (—a — bi) X ci

3. {a
—

bi) X (—ci)
4. (a + bi) X (—ci)
5. (—a + bi) Xci

6. (a
— b i) Xci

7. (—a — bi)x (—ci)
8. (0

—
bi) X (—ci)

9. (0 + b i) Xci
10. (O + bi) X (—ci)
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^x

655. To multiply a complex number by a complex num-

ber, grraphically.

Let it be required to multiply
— a-{-di by c — di.

Solution: The vector of

the sum of c times —a+ bi

and — di times —a+bi
is required. Construct — a

+ b i. Its vector is A C.

Prolong AC to D, making
AD = c times AC; then

AD is the vector of c times

— a + bi. Prolong ^ Z> to

E, making DE = d times

A C, and revolve DE about

D through an angle of 90°

clock-wise, then is DE' the

vector of —di times —a
+ bi constructed at the extremity of A D. Join A and E'. A E' is

the vector of the sum of c times —a + bi and —di times —a + bi.

Exercise.—Multiply graphically :

1. a-\-bihyc-\-di 4. — a-^-bi hj c-\-di

2. a — hi hj c-\-di b, — a — lihj— c-\-di

3. a — bihjc — di 6. — a — bi hy
— c — di

General Principles.

656. 1. The sum, the difference, the product, and the

quotient of two complex numbers are, in general, complex

numbers.

For, 1. {a^bi)-\r(c^-di) = {a^c)-\-{b-\-d)i.

2. {a-^bi)-(c+ di) = {a-c)-{-{b-d)i.
3. {a-{-b i) {c+ di) = ac-}-bci-{-adi — bd

= {ac
— bd)-\-{bc-i-ad)i,

a-{-bi _ {a-\- bi) (c
—

di)

c-\-di
~

(c-\- d i) {c — d i)

4.

{a c -\-b d) -\- {b c — a d) i _ ac-\-bd +
(be

— ad\.
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667. 2. The sum and the product of two conjugate

complex numbers are real.

Eor, 1. {a-\-hi)-^{a — 'bi) z=%a.

2. {a-\-di)(a-bi) =a^ + bK

Scholium, a^+ b^ is the square of the modulus of

±a-\rbi and of ± a — bi, and is called the norm of

each. Therefore,

Cor,—The product of two conjugate complex numbers

equals their norm.

668. 8. The norm of the product of two complex num-

bers equals the product of their norms.

For, norm {a-\-b i) {c + di)

= norm {{ac
—

bd)-\- (ad-\-hc)i]

-{ac-bdf-\-{ad-\-b cf [657, Sch.]

= a^ c" -\-b^ d^ -^ a^ d^ -^-b^ d"

= norm {a-\-b i) multiplied by norm {c-\- d i).

Cor,—The modulus of the product of two complex num-

bers equals the product of their moduli.

669. Jf. If a-^bi = 0, then a = and b = 0.

For, it a -\- b i = 0, bi= —a and —b^ = a^;

whence, a^-\-P = 0, which is possible only when a =
and b = 0.

Cor,—If a complex number vanishes, its modulus van-

ishes ; and conversely, if the modulus vanishes, the complex
number vanishes.

660. S. Ifa-^bi = c-\-di, then a = c and b = d.

For, if a-\-bi = c-\-di, (a
—

c) -{- {b
—

d)i = ;

whence, a — c = and b •— d = [P. 4],

and a = c and b = d.
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661. Problem. To find the value of e*+^*.

Solution : Assuming the exponential law of multiplication [275, P.],

and Formula (G), Art. 599, sufficiently general to include imaginary-

exponents; then
( 2/H"2 y^i^ y*i* ^ )

e«+y» = e' X ev' = e' <l+yi+^ +^ +^ + etc.
j-

v^ v* y^
662. The expression 1~J2"I"|4~^ + ^*^* ^^ called

cosine y, and is written cos. y.

ti^ if* ip
The expression V ~ f^ ~\- h. vi "^ ^^^' ^^ called

sine y, and is written sin. y. Therefore,

e^' = cos. y-\-i sin. y. (B)

663. Resume the equations

ifi ^ -^/^

cos.y = l-| + |-|+etc. (1)

sin.
3/
=

2/-|-
+
|--|-

+ etc. (2)

e''* = COS. y -\-i sin. «/. (3)

Put —y tor y in (1), (2), and (3), then

COS. (- 2/)
= 1 -

||
+

1^

-
^

+ etc. = COS. y (4)

sin. {- y) = - y + y- -U- + y
etc. = - sin. y (5)

e-** = COS. (— y) + i sin. (— y) — cos. y — i sin. y (6)

Multiply (3) by (6),

1 r= (cos. yf — i^ (sin. y)^
— cos.^ y + sin.' y (C)

Note, cos.*^ y denotes (cos. y)^ and sin,^ y denotes (sin. y)'.

Cor, sin. y = vl — cos.^ y ^

COS. y = a/1 — sm.^ y.
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664. Put ny ioT y in (B) ;
then

e"*'* = COS. ny -\-i sin. n y,

Eaise (B) to the n'Cd power ;
then

e""* =. (cos. y -\-i sin. yf.

.-. COS. ny -\-i sin. ny = (cos. y -\-i sin. «/)" (D)

665. Let n = % in (D) ; then

COS. 2 ?/+ ^ sin. %y •=
(cos. «/ + *' sin. yY

= cos.^ «/
— sin.^ y -\-^ (sin. y cos. y) i.

.*. cos. 2«/ = cos.^ y
— sin.^ ?/ [660] (E)

sin. 2y = 2 sin. y cos. «/ [660] (F)

666. Put x-\-y tor y in (B) ;
then

g(x
+ y)i _.

gxi ^ gyi
_

gQg^ ^^ _|_ 1^) _|_ i; gin^ (^ _j_ ^)^

But e'* . y'^
=

(cos. a; + ^ sin.
ir) (cos. y ^i sin.

?/) (B)

COS. X COS. «/
— sin. x sin. «/+ * (sin. x cos. ly + cos. x sin. ?/)

'. COS. {x-\-y) = cos. a; cos. y
— sin. a; sin. y [660] (G)

sin. (^ + ?/)
= sin. x cos. ?/ + cos. x sin. ?/ [660] (H)

Graphical Representation of sin. y and cos. y.

667. It is evident that all the conditions expressed in

the equation sin.^ y + cos.^ «/
= 1 will be satisfied by as-

suming 1 as the modulus of a vector whose amplitude is

the variable angle y and whose components are sin. y and

COS. y. But, to make this expression conform to the nu-

merical values of sin. y and cos. y as expressed in Art. 662,

y must be taken to represent the number of vector units

in the arc which measures the amplitude, and sin. y as

the vertical and cos. y as the horizontal component of

the vector ;
for in this way only would sin. y = and

cos. y = l when y = 0,
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668. The ratio of sin. y to cos. y is called tangent y,

and is written tan. y. It may be expressed graphically

as follows :

Let BC = y, CE
= sin. y, and AE =
cos. y. At B draw an

indefinite tangent to

the circle. Prolong the

yector AC until it

meets the indefinite

tangent at i>. BD will

be tan. y. For, from

the similar triangles

DAB and CAB we

have BD'.CE '.'.AB'.AE', or,

BD : sin. y ::1 : cos. y ; whence,

sin. yBD = tan. y.

sin. y, and A L ^ cos. «/. The tri-

ces, y
If BF=zy, FL

angles A FL and B A K will be similar, and B K=^ tan. «/.

If BF G = y, then G L =. sin. y, and ^ Z = cos. ?/.

The triangles GAL and DAB wiU be similar, and D B =:^

tan. y.

If ^ i^ZT = y, then HE = sin. y, and AE = cos. «/.

The triangles KAB and -ST^ ^ will be similar, and KB
— tan. y.

Scholium,—So long as y < \ it [90°], sin. y and cos. y
are positive ; hence, tan. y (B D) is positive. When y >
i TT but < IT, sin. y is positive and cos. y negative ; he^ice,

tan. y (B K) is negative. When y > tt tut < f t, sin. y
is negative and cos. y negative ; hence, tan y {D B) is posi-
tive. When y > i TT but < 2 v, sin. y is negative and
cos. y is positive; hence, tan. y {KB) is negative.



CHAPTER XI.

THEORY OF FUJVCTIOJVS.

Definitions.

669. A quantity whose value changes, or is supposed to

change, according to a definable law, is a definite variable,

or simply a variable.

670. A variable whose law of change is not dependent

upon that of another variable is an independent variable,

671. A variable whose law of change is dependent upon
that of another variable is a dependent variable, and is

called a function of that variable.

Hence it is, that any expression containing a variable

is a function of that variable [562].
•

672. Any law of change may be imposed upon an inde-

pendent variable ; but, when it is once imposed, the law

of change of any function of the variable becomes de-

termined.

673. The simplest treatment of functions of a single

variable is that in which the variable is supposed to in-

crease or decrease uniformly by equal increments, finite or

infinitely small.

674. A function is said to be continuous so long as an

infinitely small change in the independent variable pro-

duces an infinitely small change in the function, and dis-
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continuous when an infinitely small change in the inde-

pendent variable produces a finite or infinitely great change

in the function.

Ulustration.—Thus, the function -—— assumes all

values between + 1 and + oo as a; assumes all values be-

tween and + 1, and is, therefore, continuous from to

+ 00
; but, as the value of x continues to increase from a

quantity infinitesimally less than + 1 to a quantity infini-

tesimally greater than + 1, or takes an infinitely small step

across + 1, the function takes a leap through the whole

gamut of numbers from + "^ to — oo
, and is, therefore,

discontinuous between these values.

675. So long as a function increases in value as the

independent variable increases in value, and hence, too,

decreases in value as the independent variable decreases in

value, it is an iticreasing function ; but when it decreases

in value as the independent variable increases in value,

and, hence, increases in value as the independent variable

decreases in value, it is a decreasing function.

Ulustration.—Let y =f(x) = x^ — 4,x-\-3.

Assign values to x and calculate the corresponding
values of y by synthetic division [106], you will obtain

results as follows :

For a; = -
3,
-

2, -1, 0, +1, +2, +3, +4, +5
y = +24, +15, +8, +3, 0, -1, 0, +3, +8

Here y decreases from + 24 to — 1 as a; increases from
— 3 to +2, and is, therefore, a decreasing function be-

tween these values of x
;
and it increases from — 1 to +8

as X increases from +2 to +5, and is, therefore, an in-

creasing function between these values of x.

676. The maximum value of a function is the value at

which the function changes from an increasing to a de-

creasing function.
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677. The minimum value of a function is the value at

which the function changes from a decreasing to an in-

creasing function.

678. The maxima and minima values of a function are

often called the turning values of the function.

679. A turning value of a function may be a finite

constant, zero, or infinity.

niustrations.—1. Take ^^
=

/(i»)
= 3 + (4

-
xf.

As X increases from to 4, «/ decreases from 19 to 3 ;

and as x continues to increase from 4 to oo
, y increases

from 3 to 00. Therefore, 3 is a turning value (a mini-

mum) of y.

2. Take y = {a- xf.
As X increases from to a, y decreases from a^ to

;

and as x continues to increase from a to co
, y increases

from to 00 . Therefore, is a turning value of y.

As X increases in value from to + 1, (1
— xy decreases

from 1 to 0, and y increases from 1 to oo
;
and as x con-

tinues to increase from 1 to oo
, (1

— xY increases from

to 00
,
and y decreases from oo to 0. Therefore, oo is a

turning value (a maximum) of y.

680. The limit of a function is the value of the func-

tion at which it ceases to be continuous.

Note.—Notice the distinction between the meaning of the word

limit as here used and as used in Art. 398. In the latter sense, <x>

would be the limit of y in illustration 3, Art. 679, instead" of a

maximum.

681. The limit of a function may be a finite constant,

zero, or infinity.

Illustrations.—1. Take y =f(x) = 2 — —,
2

As X increases from to oo
,
~ decreases from 2 to 0,
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and y increases from to 2
; and, as x can n(# be sup-

posed greater than oo
, y can not become greater than 2,

neither can y begin to decrease at 2. Therefore, 2 is the

limit of y.

2. Take y z=z f{x) = x^{l^ x^).

As X decreases from 1 to 0, y decreases from 2 to
;

and as x can not be taken less than (negative) without

making y imaginary, y can not become less than 0, neither

can y change from an increasing to a decreasing function

at 0. Therefore, is the limit of y,

3. We have already seen [674] that y
—

f(x) = __

increases from 1 to oo as a; increases from to +1, and

thereafter becomes discontinuous. Therefore, (» is the

limit of y,

682. A function may have two sets of values approach-

ing the same or different limits for the same set of values

of the independent variable.

niustrations.—1. Take y^ =/(a:) = 16 — a;^
;

then y = ± a/16 - a;^.

Here are two values of y for each value of x, numeri-

cally equal but opposed in sign. As x increases from

to 4 one value of y decreases from 4 to 0, and the other

increases from — 4 to 0. It x becomes infinitesimally

greater than 4 both values of y become imaginary. There-

fore, is the limit of both values of y.

2. Take?/2 =/(^) = 4a:;

then «^
= ± 2 Vx.

Here, again, are two values of y for each value of x.

As X increases from to + oo , one value of y increases

from to -f °° and the other decreases from to — oo
;

and as x can not be supposed greater than -\- co , + °o ^s

the limit of one value of y and — oo the limit of the other

value.

683. The limit of an increasing function is a superior
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or maximum limit
;
that of a decreasing function an iw-

ferior or minimum limit.

Graphical Representation of Functions of a
Single Variable.

684. Every function of a single variable may be ap-

proximately represented by a line, straight or curved,

called the graph of the function.

Method.—Let y = f{x). Assign successive values to x

and calculate the corresponding values of y. Construct

two indefinite straight lines intersecting each other at right

angles, one running right and left and the other up and

down from their intersection. These are the axes of refer-

ence. The first is the a;-axis and the second the i^-axis,

and their intersection the origin. Regard distance right-

ward from the y-axis positive^ and distance leftward nega-
tive ; distance upward from the a^-axis positive, and dis-

tance downward negative.

Assume a fixed length as a unit of scale, and lay off on

the a;-axis from the origin the successive values of x based

on this scale, and at the extremity of each x value, and on

a line parallel to the y-axis, lay off the corresponding values

of y. Thus will be located a series of successive points ;

draw a continuous line through these points ; it will be

the graph of the function, and its accuracy will depend

upon the nearness to each other of the successive values

of X taken, the relation of the unit of scale to that of x

and y, and the correctness of the instruments used in

plotting.

niustrations.— 1. Take y =f{x) = x^ — 20 x^ -\- QL

Assign special values to x and calculate the correspond-

ing values of y by synthetic division [106]. You will

readily derive the following table of values and make the

following plot :
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X



372 ADVANCED ALGEBRA.

2. Plot y = ± Va^-x = ± Vx(x+l){x -1).
The following table of values may readily be obtained

-^07
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5. The first branch has a turning-point (maximum) somewhere

between (— '5, + -61) and (— '8, + 'SS). The second branch also has a

turning-point (minimum) between (— '5,
—

'61) and (— '8,
—

'53).

6. The branches of the graph meet the a;-axis when a: = 0, +1,
and — 1. These values are, therefore, the roots of f{x) = x^ — x=.0,

3. Plot 2/2 = a;3_9^^24a;^16^
or y = ± v^

yX
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EXERCISE 96.

Plot and discuss the following functions :

(Use paper ruled in squares, called l)lotting-paper.)

1, y =^x-\-Q 6, 1/^ = a;^

2. y =Sx 1. y^ =:x^{x— 1)

3, y =81a;-3 8. y =a^ -'8x^-\-20x -10

4. y^ = 4:X 9. y =3x-\-lSx^ — 2a^

b. y^ = 16-x^ 10. y^ = 3^-{-ds^-5x-20

Differentials and Derivatives of Functions.

Definitions.

685. The limit of the ratio of the increment of a func-

tion to the increment of the independent variable pro-

ducing the increment of the function, when the limit of

the increment of the independent variable is zero, is called

the derivative of the function.

Thus, if we let y =/(a;), and represent the increment

of a; by A a; and the corresponding increment of y hj Ay,

then will lim. (
—-

] = the derivative of the function.m
686. The limit of the increment of the independent

variable is called the differential of the independent vari-

alle, and is represented hy dx\ and the limit of the incre-

ment of the function is called the differential of the func-

tion, and is represented by dy.

dy
:-

(fl)
Therefore, x^^x. , ,

_ ,

Q ax

Notice, dy and dx represent single quantities (differentials) and

are not equivalent to d x y and d y. x.
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Ulustration.—
Let y = 7^ (1)

then, y-\- /\y = {x -^ /^xf = x^ -{-%x(Ax) -\-{^xf (2)

Subtract (1) from (2), ^y = '^xi^x) + {^xf (3)

Divide by a x,
-^ = 2a; + A a; (4)A X

.-. Lim.fA|) ^lim.(2a: + Aa;) [401,P.] (5)

.: -r^ = 2x = the derivative of a;',dx
and dy = 2xdx = the differential of a;'.

687. The differential of a function equals the derivative

of the function multiplied ly the differential of the inde-

pendent variable,

688. The derivative of a function equals the differential

of the function divided by the differential of the independ-

ent variable.

689. // the differential of a function, and hence, too,

the derivative of a function, is positive, the function is an

increasing one; if negative, a decreasing one.

Principles.

690. Let y =f{x) = x% (1)

then, y-]- Ay =
{x-\- Axy

= x''-\-nx''-'^ .Ax-{-A.{AxY (2)

in which A =
n{n-l) ^_, _^

n(n-l)in-2) ^_3 . ^ ^+ ^tc. [593].

Subtracting (1) from (2), Ay = nx^-^ . Ax + B .{Axf (3)

A tJ

Dividing by A x,
—~ = wa;*-i + -B . A a; (4)A X

Lim. (
^^

)
= lim. (na;«-i + 5. A a;)^ ^_o

.'.
~ = nx^-\ since Km. ^ = a finite constant [582], and

lim. A a; = 0. (5)

.'. dy = nx^-'^dx. Therefore,
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JPrin, 1.—The differential of a variable with a con-

stant exponent equals the continued product of the expo-

nent, the variable with its exponent diminished by unity,
and the differential of the independent variable.

Ulustrations.—
1. d{a^) = 4.a^dx 2. d{x)-^= -^x'^dx
3. dia + bxy^pia + bxy-'^dia + bx)

691. Let y = ax (1)

then, y -\- Ay = a(x-\- Ax) =zax-\-a{Ax) (2)

Subtracting, Ay = a{Ax) (3)

Dividing,
—- = a
A X

Lim. —- = a
A X

whence, -j^ = a, and dy = adx. Therefore,

Prin, 2,—The differential of a constant times a vari-

able equals the constant times the differential of the vari-

able.

Thus, d{dx') = d . d(x') = 3 X 6x^ dx = 15a^dx.

692. Let y = ax-\-b (1)

then, y-\- Ay = a{x-{- Ax)-]-b =
ax-\-a(Ax)-\-b (2)

Subtracting, Ay = a(Ax)

Dividing, -^ = a; whence, ^ = «»

and dy = adx. Therefore,

I*rin, 3,—The diffetential of a constant term is zero.

693. Let V = f{x), w =/' (x), and z =/" {x) ;
and

let y =z v-\-w — z (1)

then, y -\- Ay = v-Yav-^w-\-Aw — {z-]rAz)

=V-\-W — Z-\-AV-[-AW— AZ (2)
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Subtracting, Ay = Av + aw— a z (3)

T^. .,. , Ay A V AW AZ
DmdmgbyA^,— =— +—-— (4)

, ,. Ay T AV ,. AW ,. AZ
whence, lim. -—~ = lim. h lim. lim. (5)

[413,P.].
^"^ ^^ ^"^ AX '>

dy _dv dw d z

dx
~
dx dx dx ^ '

whence, dy = dv + dw — dz. Therefore,

Prin, 4,—The differential of a polynomial whose terms

are functions of the same independent variable equals the

algebraic sum of the differentials of its terms,

niustration. ^
(a;^ + 3 a;^ — 2 a;+ 5)

= d{7^) + d{^x^) ^ d(-%x) -\- d{h)

= da^dx-{-6xdx^2dx= {Sa^ -\-6x — 2)dx.

694. Let V =f(x) and z =f {x),

and y = vz (1)

then, y-\- Ay = {v -\- /\v) {z -\- A z)

=iVZ-\-V./\Z-{-Z.l\V-\-llV.AZ (2)

Subtracting, 'Ay = v.Az + z.Av-\-Av.Az (3)

TV. .,. , Ay A z A V A V
Dividing by a x,

—- = v . + z . + —-
. a z^ ^ 'ax ax ax ax

Lim. —~ — lim. |
v . ) + lim. ( z . )AX \ AxJ \ AxJ

+ lim. (-^ . A
zj

whence, dy = vdz + zdv. Therefore,

rrin, 5.—The differential of the product of two con-

tinuous functions of the same independent variable equals
the swn of the products obtained by multiplying each func-
tion by the differential of the other.

niustration.—
d{--^7^Xhx^) = -dar'xd(6x^)-\-6x^Xd{-Sa^)

= {-da^XiX6x-^-{-6xixSxi-3a^)}dx
= — 65x^ dx.
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Cor, d{vwz) = v.d{wz)-\-wz.dv [694, P.]

='Vwdz-\-vzdw-\-wzdv. [694, P.] ; etc.

696. Let V =: f{x), and z =f'(x); and

^ -1
y = — = vz ^

:

z

then dy = v , d {z-^) -\- z-"" d v [694, P.]

= —vz~^ dz-\-z~'^dv

_dv vdz_zdv — vdz

Therefore,

Prin» 6,—The differential of a fraction whose terms

are continuous functions of the same independent variable

equals the denominator into the differential of the numera^

tor minus the numerator into the differential of the de-

nominator, all divided by the square of the denominator,

\yy y'

_2xy^dx-'3x^y^dy"
?

•

696. Let y = log, x

then y-\- Ay = ]og,{x+Ax) = log, x(l +^j
= log, X+ loge

(l
+
-^)

[467, P. 2]

= log.a;+
— -

^
. L_^ + -

.
L_l - etc. [601, C]

— = - + 5. A2:; in which 5=_-.- + -.--^_ etc.;

which for very small values of A a; is convergent [582].

.-. Lhn. (^\ = lim. (^ +B. ax)\AxJi,x = \X J^x-0

whence, -^ = —; and dy = — . Therefore,
CuX X X
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Prin, 7.—The differential of the log, of a quantity

equals the differential of the quantity divided hy the quan-

tity itself

Cor,—Since logio x — m log, x [607, P.]

, ., . mdx
^.(logio^) = —^.

Illustration.—

— ^
J ^^^-\- (x-\-a)dx \ __ 1 /2x-\-a\ ,

"^
x-\-a{ x^ \'~ x-\-a\ X J

697. Let y = «*, in which « is a constant,

then, log. y =^ X log. a [468, P.]

d (log. y) = log. a . dx

or, -^ = log. a . t?a;

whence, dy = a" log. a .dx. Therefore,

JPrin, 8,—The differential of a constant with a vari-

able exponent equals the continued product of the original

quantity, the logarithm of the constant, and the differential

of the variable exponent.

Thus, d{a-\-l)'^=-d{a-^b)^={a^ bf^ log. {a+ b)

X d (x^) = i x-^ (a+ if^ log. (a + J) ^ x.

698. Problem. Find the differential of 05*.

Let y — ^
then, log. y = X log. a;

and d (log. y) = x . d (log. ic) + log. x , dx

dy dx . , J
or,

—J = a; . 1- log. X . dx
X/ X

whence, dy — xf{\-\- log. x) dx,
G
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EXERCISE 97.

Differentiate :

1. y=.hao[^ —'^Ix^-^-'ilcx
— d 2. y = 5x^z^ -\-z

^ '

14. ?/ =

5' y— 2^ jg_ y = {x-\- ay (x
-

h)

= /^
7. 2^=V5aJ+6 19.

2/
= 3^'

z.f^%px 20. y = a;^^

9.f = Za^ 21.
2^
= ic*(a+ ^^)-i

•^ '

,
22. «/ = lOge (a+ Xf

^ ' '

23. y = (f -^ d"

13. 2/
=

Vx-\-a 25. y = d'^-'

Applications.

EXERCISE 98.

1. At what rate is the area of a circle increasing when
the radius is 6 inches and is increasing at the rate of 3

inches per second ?

Solution : Let y = the area, and x = the radius ; then,

y z=z V x^

and dyz=2'irxdx.
This denotes that at any instant the rate of increase of the area is

2 rr X times as great as the rate of increase of the radius at the same

instant. But when the radius is 6 inches, it increases at the rate of 3

inches per second ; or, when x = 6 inches, dx = B inches.

.'. dy = 2ir X 6 inches x 3 inches = 36 ir square inches
;
that is,

the area is increasing at such a rate that, if kept uniform for one sec-

ond, the increase would amount to 36 v square inches.
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2. At what rate is the area of a square increasing when

the side of the square is 4 inches and is increasing at the

rate of 2 inches per second ?

3. The volume of a sphere increases how many times as

fast as its radius ? When its radius is 6 inches and in-

creases at the rate of 1 inch per second, at what rate is the

volume increasing ?

4. At what rate is the diagonal of a square increasing

when the side of the square is 8 inches and is increasing

at the rate of 2 inches per second ?

5. The radius of a circle is 4 inches and its circumfer-

ence is increasing at the rate of 2 tt inches per second. At

what rate is the radius increasing at the same instant ?

6. A boy approaches a tree 90 feet high standing on a

level road at the rate of 3 miles an hour. At what rate

is he approaching the top of the tree when he is 220 feet

from the base ?

7. The diagonal of a cube is increasing at the rate of

36 inches per second, when the side of the cube is 5 inches

long. At what rate is the side increasing at the same

time ?

8. If X increases at the rate of '5 per instant, at what

rate is logio x increasing when a: = 42 ?

9. The logio 42 = 1-62325. What, then, would be the

logio 42*5, if the increase were uniform ? How does the

result compare with logio 4:2 '5 as found in the table ?

Successive Derivatives.

699. If the derivative of f{x) be treated as a new func-

tion of X [/i(^)], there may be found from it a second

derivative of f(x) [/g {x)"]
in the same way as /i {x) was

derived from f{x), and so on, until a derivative is found

that is independent of x \_f{x^\
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Illustration.—
Let/ (a:)

= x^ -]-4:a^
- '^a^ ^%7? - bx^^ -, then,

f^{x)
- 5a:* + 16a,-3-9a;2 + 4^-5 [693, P. 688]

f^{x) = 20a;3^48^2_i3^_j_4

f^{x) = 60a:2_^96^,_i8

/4(a;)
= 120a;4-96

f{x,) = 120

EXERCISE 99.

Find the first derivative of :

1. ic3_4ic2 + 7a; + 2 4. (a + a:)5 (a
_

a:)3

2.
(a;+ 2)3 (:z;

-
2)* 5. {a + a:^) (a

-
t?)

3. 2:(a; + 2) + a;2(:r+ 3) 6. (« + a;)^ ^ («
-

ic)*^

Factorization of Polynomials containing Equal
Factors.

700. Let f{x) = {x-\- tti) {x+ a^) {x-\-a^) . . . . {x-^ a^)

= any polynomial composed of binomial factors of the

form of x-\-a; then

/i (x)
= {x-\- ttz) (x + as) (x-\-a^) ....(x + «„) +

{x+ «i) (a?+ %) {x-{-a^) .... (x+ aj +
{x + «i) (:r+ «2) (:r + «4) . . . .

(a; + o^J +
(^+ «i) (a; + ag) (^ + «3) i«^ + «» H-

[694, Cor. 688].

Observations.—1. If no two factors of f(x) are alike, f{x) atid

fx (a;) have no common factor.

2. If two, three, or r factors of f{x) are equal, and all equal to

jc + a, then will a; + a, (a; + a)*, or (a; + a)'"^ be a common factor of

S{x) and /i (x).
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3. In general, if f{x) contains the factor x -^ a p times, {x + h)

q times, {x + c) r times then will {x + a)p-'^ {x + 6)?-* {x + cy-'^

.... be the H. C. D. of f(x) and /i (x).

4. The H. C. D. of f{x) and /i {x) contains one factor less of each

kind than does f{x).

701. Theorem,—Every polynomial composed of bino-

mial factors of the first degree, some of which are equal,

may he decomposed into factors containing no equal bino-

mial factors of the first degree.

For, let f{x) be a polynomial composed of binomial

factors of the first degree, some of which are equal, /i {x)

its first derivative, /' {x) the H. C. D. of f{x) and /i {x),

and <\>{x) the other factor oi f{x) ; then,

1. <^{x) will be devoid of equal factors of the first

degree [700, 4].

2. If /' {x) still contains equal factors of the first de-

gree it may be resolved into two factors, /" {x) and <^' {x),

in which <ii' {x) is devoid of equal factors [700, 4].

3. This process may be continued until no factor is

left that contains equal factors of the first degree, which

will be when the last H. C. D. found is unity.

Ulustration.—Eesolve x'' -\- x^
— 1% x^ — 1% 3^ -\- A:% x? -{-

48 a;^ — 64 ic — 64 into factors devoid of equal binomial fac-

tors of the first degree.

Solution :

f{x) = ic' + a;« - 12a;5 - 12a:* + ^oi? + 48a;2 - 64a; - 64

/a (a;)
= 7a;6 + 62:6 - 60 a:* - 48a:3 + 144a;2 + 96a; - 64

f{x) = a:4 _ 8a;2 + 16 [158] = {x^
-

4)2 = {x +2)(a; + 2) (a;
-

2) (a;
-

2)

4>{x)=f{x)-^P{x) = x + l

.-. /(a;) = (a; + 2)(a; + 2)(a;-2)(a;-2)(a; + l).

EXERCISE 100.

Factor :

1. x^-^-'^Q^-llx^-VUx-m

2. a;«-5ic5 + a^+ 37tc^-86a;2_j_Y6a;-24
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3. o^-^x'-^Q x^-'^l ic5_|_2i6 2^+243 a^-^^Q x^-^^ a;-739

4. x^"" _ 30 a:8 + 345 x"^ - 1900 cc*+ 5040 3? — 5184

5. a;^«-13a;8 4-42ic6-58ar*+ 37a;2_9

Graphical Significance of /i (x).

702. Let m/i be the graph of y =f(x).

Let P be a point on the graph whose co-ordinates are x and y.

Let GE: = PR = Ax\ then will F'R = Ay.
Draw the secant line P'JPS, also the tangent line T'P T.

Take SB = 1, and draw BC = sin. /S and /SC = cos. S.

Now, the triangles P' PR and jB/SC are similar.

.-. ^ =
§^=tan.>S'[668] (1)

.-.
-^ =:tan. /S (2)AX ^ '

Let the point P' approach the point P on the graph* so as to

make ax diminish uniformly; then will the secant line P' P S re-

volve about P and approach the tangent line T' P T &s its limit, and

the angle S will approach the angle T as its limit.

Lim. f-^"i = lim. (tan. S)i

or, :t-
dy^
dx

tan. T. Therefore,

The first derivative of a function is equivalent to the

tangent of the angle which a tangent line to the graph of
the function makes with the axis of abscissas.
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Maxima and Minima of Functions.

703. The maximum or minimum value of a quadratic

function may readily be found, as follows :

Example 1.—What is the maximum or minimum value

of x^-\-^x-\- 6, and what value of x will render it a maxi-

mum or minimum ?

Solution : Let f{x) = a;* + 8a: + 6 = w
Complete the square, ic* + 8 a: + 16 = w + 10

Extract the \/, x + 4 = ± ^/nl + l6

Transpose, x = —4± ^m + 10

Now, w < —
10, else would x be imaginary.

m = — 10 is the minimum value of / {x).

But when m — —
10, a; = —4; then, a; = — 4 renders f{x) =

a;* + 8 a; + 6 = —
10, a minimum.

Example 2.—What is the maximum or minimum value

of 8 a; — 3 2;^ + 9, and what value of x will render it a

maximum or a minimum ?

Solution : Let f{x) = 8a;-3a;2 + 9 = m
Complete the square, 9 a;* — 24 a; + 16 = 43 — 3m
Extract the V» 3 a; - 4 = ± \/4S-dm

Transpose and divide, x =
-^

± -w \^4d — 3m

Now, 3 wi > 43, or m > 14 -o ,
else would x be imaginary.

1
^

.'. w = 14-^ is the maximum value of f(x).11 1

But, when m = 14-^ ,
x = 1-^; therefore, x = l-^ renders f(x)

= 8a;— 3a;* + 9 = 14-;3- ,
a maximum.

o

Example 3.—Divide 36 into two parts whose product
shall be the greatest possible.

Solution : Let x and 36 — a; = the two parts,

and X (36
—

a;),
or 36 a; — a;* = m.

Then, a; =i 18 ± \/^24:
- m.

Now, m = 324 is a maximum ;

x = 18 and 36 - a; = 18.
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704. General Method.—
Let mn he the graph ot y = f(x).

Y
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707. Observations.—1. So long as f{x) remains continuous, its

maxima and minima values succeed each other alternately.

2. If two successive turning values of f{x) have the same sign,

the graph of f{x) between these values can not cross the a;-axis, or

f{x) 4= between these values.

3. If two successive turning values of
f(^)

have opposite signs,

the graph of f{x) must cross the ic-axis between these values, or

f{x) = somewhere between these values.

4. \i x = a and x = h render f{x) = 0, and a^h, there must be

a turning value of f{x) between x = a and a; = 6.

Example.—Find the turning values of

f{x) = a;3 - 9 a;2 _^ 24 a;+ 16.

Solution : f{x) = a:3 — 9a;2 + 24a;+16

/, {x) = 3a;« - 18a; + 24 = 0;

or, /,(a:) = a;2 — 6a; + 8 = 0;

whence, a; = 4 or 2, critical values.

/i(a;-Aa:). ^^4 ,

= (4
- A a;)*

- 6(4- A a:) + 8 = -
( A a; = o f

/i(a;+ Aa;), ^^4 > = (4 + A a;)*
- 6(4 + A a;) + 8 = +

) A « = o
)

.'. f{x) is a minimum when a; = 4

But f{x)x = 4 = 43 - 9 X 42 + 24 X 4 + 16 = 32.

.*. Minimum value of f{x) = 32

/i(a;-Aa;), ^^g . = (2
- a a;)»- 6(2 - A a;) + 8 = +

j
A a; = o

j

fi(x+ Ax)^ ^^2 I

= (3 + A a;)«
- 6(2 + A a;) + 8 = -

I
A a; = o

I

.*. f(x)x = 2 is a maximum

But f(x)x = 2 = 2» - 9 X 22 + 24 X 2 + 16 = 36

.*. Maximum value of f(x) = 36.

The value of f(x)x = a is best obtained by synthetic division, as in

Art. 106.

EXERCISE 101.

Find the maxima and minima values of :

1. 4:a^-15a^-}-12x-l 5. x^ -dx^ - 9x-\-6

2. 23^-21a^-{-36x-20 6.
(a;
-

1)* (a;+ 3)^

3. x^-{-6x+ 6 7. (re
- af {x+ bf

4.ic2_6a; + 5 B. x^ -3x^ -\-3x-\-H
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9. a^-^Qx-6 11. a^-^3(?-{-U

\0. a^ — Qx — h 12. a;* + a;3 + a;2 — 16

13. Show where a line a feet long must be divided so

that the rectangle of the two parts may be the greatest

possible.

14. Find the altitude of the maximum cylinder that can

be inscribed in a sphere whose radius is r.

Suggestion.—Let B C = Xy BD = r — x, and AB —
y^

then, 2/^
= (^ + ^) (r

—
a;)
= r* — ic*, and

/(a;) = F=ir2/2 X 2 a; = 3 ir a; (r^
—

jr*)

/i(a;) = 2ira; X (-2 a;)

+ (r3_a;8)x2ir =

whence, x = -^ ^J~^o
2

and, 2/2
_

^3 _ 3.3
_

,.2

o
2 /-

15. Find the altitude of the maximum cylinder that can

be inscribed in a cone whose altitude is a and whose radius

is J.

16. Find the volume of the maximum cone that can be

inscribed in a given sphere.

17. Find the area of the maximum rectangle that can

be inscribed in a square whose side is a,

18. What is the maximum convex surface of a cylinder

the sum of whose altitude and diameter is a constant a ?

19. Find the altitude of the maximum cylinder that

can be inscribed in a right cone whose altitude is a and

the radius of whose base is J.

20. Eequired the area of the maximum rectangle that

can be inscribed in a given circle.

21. Required the greatest right triangle which can be

constructed upon a given line as hypotenuse.



CHAPTER XII.

THEORY OF EQUATIOJ^S,

Introduction.

708. Equations of the first and second degree have

already been treated, and need no further attention here.

709. Jerome Cardan, an Italian mathematician (1501-

1576), published in 1545 a method of solving cubic equa-

tions, now known as *' Cardan's Formula." But, as this

formula is not finally reducible when the roots of an equa-

tion are real and unequal, it is not of much practical

value.

710. Eene Descartes, a French mathematician (1596-

1650), transformed the general bi-quadratic equation so as

to make its solution depend upon that of the cubic equa-

tion
; but, as he invented no new method of solving the

latter, the same difficulties are encountered in the applica-

tion of his rule as are met in Cardan's.

711. Nicholas Henry Abel, a Norwegian mathematician

(1802-1829), demonstrated, in 1825, the impossibility of a

general solution of an equation of a higher degree than

the fourth. Previous to that date many such solutions

were attempted.

712. The real roots of numerical equations of any de-

gree are, however, attainable through laws and principles

to be developed in this chapter.
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Normal Forms.

713. Theorem I.—Every equation of one unhnown

quantity with real and rational coefficients can he trans-

formed into an equation of the form of

Ax^-\-Bx^-'^-{-Cx^-^-i- .... +i; = 0,

in which A and all the exponents of x are positive in-

tegers, and each of the remaining coefficients, including L,

is either an integer or zero.

Note. L may be regarded the coefficient of a:P.

Demonstration.—1. If the equation contains fractional terms, it

may be cleared of fractions.

2. If there are any terms in the second member, they may be

transposed to the first member.

3. All terms containing like exponents of x may be collected into

one term by addition.

4. If A is negative, both members may be divided by — 1.

5. If X contains negative exponents, both members may be multi-

plied by X with a positive exponent numerically equal to the greatest

negative exponent.
6. If X contains fractional exponents, x^ may be substituted for x,

in which m is the L. C. M. of the denominators of the fractional ex-

ponents.
The roots of the transformed equation will he the mth root of the

roots of the original equation.

1. The terms may now be arranged according to the descending

powers of x.

714. The equation

A af-i-Bx''--' + (7:r"-2-f . . . . + X = 0,

is known as the first normal form of an equation of one

unknown quantity, and will hereafter be represented by

Example.—Transform 3x^+-r—S-[-7 x~^ = - + -r-

x^ o xt

into the first normal form, and compare the corresponding

roots of the two equations.



NORMAL FORMS, 391

Solution: Given 3a;§ + -r — 8 + 7a;—f = — + -j. (A)
xi ^ xt

Clear of fractions, 9x + 12 — 24:X^ + 21 x—^ = 4xi + 9xi (B)

Transpose and collect terms,

9a; + 21a;-i-28a;i-9a;* + 12 = (C)

Multiply by xt
,

9a;t + 21-28a:f-9a;l + 12a;i = (D)

Puta; = a;«, 9a;9 + 21 - 282;* - 9^:^ + i2a:3 _ q (E)

Rearrange terms,

9a;9+ 0a;8 + 0a;' + 0a;«-28a;5-9a:4+ 12a:3+ 0a:2 + 0a: + 21 = (F)

The roots of (A) = Vof the roots of (F).

715. An equation that contains all the powers of x,

from the highest to the lowest, is called a Complete Equa-

tion, An incomplete equation may be written in the form

of a complete equation by supplying the wanting terms

with coefficients of zero.

Thus, a;^ — 4a;^ + 2a; — 5 = may he written 2:^ ± ar*

— ^7? ±0x^-\-2x — b = 0.

716. Theorem II,—The equation F^ {x)
= ?nay be

transformed into an equation of the form of

x^-\-p,x''--' +p,x--'-\-., . .+^„ = 0,

in lohich the coefficient of a:" is unity^ and each of the

remaining coefficients is either an integer or zero.

Demonstration.—

Take Fn{x) = Ax"" + Bxf^-'^ ^Cx!^-'^ ¥ + L =

^ ^ X Ax"" Bx»-^ Cx»-^
Put X = -r,

—r- + .„ ,
+ -j^r^T + +L =A A" A'*-^ A»-2

Multiply by .4„_i ,

a;« + Bx^-^ + A Cx'^-^ + + J.«-^ X =
Put pi for B, Pi iov AC, p„ for J.«-» L,

x"* + pi X^-^ + Pi X^-^ + + Pn=
This is the second normal form of an equation of one unknown

quantity, and will hereafter be represented by /« {x)
—

0.
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717. Cor. 1,—Each root of /„ {x)
= is A times as

great as the corresponding root of F^ {x)
— 0.

718. Cor, 2,—The coefficient of the second term of

/„ {x) is the same as the coefficient of the second term of

F^ {x), and the succeeding coefficients of /„ {x) are obtained

ly multiplying the succeeding coefficients of F^ix), in

order, ly A, A^ , A^, ^"~^.

Note.—If terms are wanting, supply them with coeflScients of 0.

Example.
—Transform the equation Ax^ — dx^-\-2a^ —

7 = into an equation of the form of f(x) = 0.

Solution :

Given Fix) = Aafi -Sx^ + Ox^ + 2x^ + Ox-7 = 0,

thenwm fix) = x^-dx^ + 4:x0a^+ Px2x^ + ¥x0x-4^x'7=z0 [718]

or, fix) = x^-dx^ + d2x^- 1792 = 0.

The roots of fix) = are 4 times as great as those of Fix) — 0.

EXERCISE 102.

Transform the following equations into equations of

the form of f{x) = 0. Compare the roots of the trans-

formed equation with the roots of the original equation.

1. Sa^-\-2x^-da^i-l!x^6 =

2. 2x' + 4:a^-x^-{-x^-1l =

3. 4:X^-\-3a^-5x^+llx-l=:0

4. Sx^-2x^ + 3xi-2x^-{-4:X^-2 =

5. x-^ 4_ 2 ic-^ + 3 x-^ - x-^ -^x-^-2x-^ + 2 =

6-lx+^x-i+lxi-^lx-^+ 3 =

7. x^'-dx^^2x^-\-dx-^-\-2 =

8. |^t+J^t_
1^ + 1 =



DIVISIBILITY OF EQUATIONS.

Divisibility of Equations.

719. Theorem III.—If a is a root of F^ (x) = 0, then

X — a is a factor of F^ (x).

For, let F. {x) ^ {x
-

a) = F^_, {x) +^
then, {i^„_i {x)\{x-a)-\-r = F^ {x)

=
but, x — a = 0, since x = a.

r = 0;

whence, F„ (x) -^ (x
—

a) = i^„_i (x),

720. Cor. 1.—If a is an integral root of F^ {x) = 0,

it is a divisor of the absolute term of F^ {x) [163].

721. Cor. 2.—If X — a is a factor of F^ {x), then a is

a root of F^ {x)
= 0.

For, F^{x) = {F,_, (x)} (a;
-

a) = ;

whence, x — a = 0, and x = a.

722. Cor. 3*—If x is a factor of F^ {x), then zero is a

root of Fr,{x)-0.

Number of Roots.

723. Theorem IV, F^ {x) = has at least one root.

The demonstration of this theorem may be found in

special treatises on the Theory of Equations. It is too

long and tedious to be introduced here.

724. Theorem, V. F^ {x)
= has n roots and only n.

For, F^ {x)
— has at least one root. [T. IV.J

Let a = one root of F^ {x)
=

;

then, F„ (x) = { F„_t (x)] {x
—

a} =0 [T. IILl

.-. F,,_^{x) = 0,

Let b = one root of i^„_i (x)
=

; [T. IV.]

then, F„_^ (x)
= {F^^s (x)] {x-b}=0 [T. III.]

.-. F^_,{x) = 0.
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Now, as F^ {x) = is of the nth. degree, and each time

a root is removed by division the degree is lowered by

unity, it follows that n roots and only n can be removed

before F^{x) reduces to an absolute factor. Therefore,

Fn {x)
= has n roots and only n.

725. Car, F^ (x)
= may he written

A{x — a){x
—

b){x
—

c) (x
—

l)
= Q;

or simply {x
—

a){x
—

b) (x
—

c) (x
—

l)
= 0, in which

there are n factors of the form of x — r, the second terms

of which are the roots of F^ {x)
= with their signs

changed, and may he positive or negative, fractional or

integral, rational, irrational, or imaginary, subject only

to restrictive conditions explained hereafter.

Relation of Roots to Coefficients.

726. OThearem Vl.—If F^ (x)
= be put in the form

of x^+ B^ a;»-i+ Ci a;*-^+ . . . . -|- Xi = 0, 5^^ dividing both

members of the equation by A, the coefficient of x"", then will

1. Bx = the sum of the roots vnth their signs changed.

2. Ci= the sum of the products of the roots taken two

together.

3. Di = the sum of the products of the roots with their

signs changed, taken three together.

4' El = the sum of the products of the roots taken four

together. And so on to

5. Li = the product of all the roots with their signs

changed.

Demonstration : Let the n roots of the equation he a, b, c, I;

then, Fn (x) = x'* + Bi x^-^ + Ci x^-^ + + Li
= {X

-
a){x

-
b){x

-
c) . . . . (X

-
I) [725].

After which the theorem is a direct inference from the binomial for-

mula [587], and the principle that "
changing the signs of an even
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number of factors does not change the sign of their product
"

[page

26, Ex. 3].

Cor.—Changing the signs of the alternate terms of

F^ {x)
= changes the signs of its roots.

Imaginary Roots.

727. Theorem VII,—Imaginary roots can enter F^ {x)

= only in conjugate pairs.

For in this way only will their sum and the sum of

their products be real [657], as they must be [713].

728. Cor, 1,—The product of the imaginary roots of

Fn {x)
= is positive.

For the product of each pair is positive.

Thus, (a -\-bi) {a '-bi) = a^-\- W.

729. Cor, 2,— When all the roots of F„ {x)
= are

imaginary the absolute term is positive.

Suggestion.
—For the equation is then of an even degree.

730. Cor, 3, F^ {x)
= has at least one real root oppo-

site in sign to the absolute term, when n is odd.

731. Cor, 4, F„ (x)
= has at least two real roots,

one positive and the other negative, if n is even and the

absolute term is negative.

732. Car. 5,—The sign of F^ {x) for any real value of

X depends on the real roots of F^ (x)
= 0.

For the product of x — {a-\-b i) and x — {a
—

bi) =
{x
— aY+ b^, a positive quantity ;

and this is true of every

pair of factors containing conjugate imaginary terms.
'

733. Cor, 6,—Every entire function of x with real

and rational coefficients may be divided into real factors

of the first or second degree.
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Fractional Roots.

734. Theorem VIII,—JVo root of /„ {x)
= can he a

rational fraction.

Take fn(x) = x^ + PiX^-''-{-p2X--^+ ....+jo^ =

[716]. If possible, let a; = t- , a rational fraction in its

lowest terms. Then, by substitution,

Jni- Jn-1
-1-

Jn-2
"h • • • • "f^« " ^.

Multiplying by 5**"^ and transposing terms, we have

an integer, which is impossible.

Scholium.—From this theorem it follows that the ra-

tional fractional roots of F^ {x) = may be obtained by

transforming F^ {x)
= into /« (x)

= and dividing the

roots of the latter equation by A, the coefficient of ic"~^ in

the former.

Relations of Roots to Signs of Equation.

735. Theorem. IX.—If F„ (x)
= has no equal roots,

then Fn (x) will change sign-if x passes through a real root.

For, take F^{x) =\x— a){x
—

b){x
—

c) {x—l) =

[7^5] ;
conceive x to start with a value less than the least

root and continually increase until it becomes greater than

the greatest root. At first, every factor of F^ (x) is nega-

tive, but, at the instant it becomes greater than the least

root, the sign of the factor containing that root will be-

come plus, while the others remain minus
; whence, F^ {x)

will change sign. It will, moreover, retain its new sign

until it passes over the next greater root, when it will

again change sign, and so on.
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736. Cor, 1,—If for any two assigned values of x,

Fr, {x) has different signs, one, or, if more than one, an

odd number of roots of F^ [x)
= lie between these values,

737. Cor. 2,—If for any two assigned values of x,

F^ {x) has the same sign, either no root or an even number

of roots of Fr, {x)
= lie between these values,

738. Some of the properties of F^ {x)
= 0, already dis-

cussed, are beautifully illustrated by the following graph.

Y

1. It is seen that y = Fn{x)=:0 when a; = 1, 2, 3, and 5. There-

fore, these values of x are roots of i^„ {x) = 0.

2. Immediately before a; = 1, 2/ is positive, and immediately after

x = l, y is negative ; immediately before x = 2, y is negative, and

immediately after x = 2, y is positive, etc. ; illustrating that when x

passes over a real root, Fn (x) changes sign.

3. At a; = 3 two values of y become zero
; therefore, two roots

become identical, or, in other words, 3 is twice a root. Were the abso-

lute term of i^„ {x) so changed as to make y somewhat less, the a:-axis

would cross the graph twice between a; = 2 and a; = 4, once before

a: = 3, and once after, thus proving conclusively the duality of the

root 3, when y = 0.

4. Immediately before a; = — 2 and a; = 6, the graph approaches
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the ic-axis, but in each case makes a turn before reaching it, prevent-

ing, thereby, equal roots or unequal real roots. These turns locate the

position of imaginary roots. The truth of this statement becomes

manifest when we suppose the absolute term of Fn {x) to so change as

to cause y to gradually decrease, the a;-axis will gradually arise and

finally touch the graph at ic = — 2, thereby making two equal roots,

and, if y continues to decrease, the ic-axis will cross both branches

above the turn at x= —2, making two unequal real roots.

The student will be interested in observing the changes in the

roots if the absolute term of the equation so changes as to cause the

a;-axis to gradually move from the position Aix\ to the position A^x^-
5. It must not be assumed, however, that imaginary roots always

denote a turning point in the graph of the equation. Such may or

may not be the case.

739. If any two successive terms in a complete equa-

tion have like signs, there is a permanence of sign ;
if

unlike signs, a variation of sign. Thus, in the equation

cc« - 5 a;5 + 8 a;* + 7 a;3 - 3 rc2+ 2 re
- 5 =

there are five variations and one permanence.

740. Theorem X.—No complete equation has a greater

number of positive roots than there are variations of sign,

nor a greater numher of negative roots than there are per-

manences of sign.

Demonstration : Let the following be the successive signs of a com-

plete equation :

+ -- + + —
There are here two permanences and three variations. To intro-

duce another positive root, the equation must be multiplied by x — a.

The signs of the product will readily appear from the following

work :

+ — - + + —
-I-

—

+ — — + + —
— + + -- +

+ —

The double sign denotes a doubt, growing out of an ignorance of

the relative numerical magnitudes of the terms added.

Now, a careful inspection will show that, whether we regard both

doubtful signs negative, both positive, or one negative and the other
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positive, the number of permanences will not be increased, but the

number of terms is increased by one
; therefore, the number of varia-

tions must be increased by at least one. Since the introduction of a

positive root introduces at least one variation, it follows that the num-

ber of positive roots can not exceed the number of variations.

In a similar manner, by introducing the factor x -\- a, it may be

shown that the number of negative roots can not exceed the number

of permanences of sign.

This is Descartes' celebrated rule of signs.

741. Car, 1,—If all the roots of an equation are real,

the number of variations equals the number of positive

roots, and the number of permanences equals the number

of negative roots.

742. Cm*. 2,—An equation whose terms are all positive

can have no positive roots,

743. Cor. 3.—An equation tvhose terms are alternately

positive and negative can have no negative roots.

Limits of Roots.

744. A nnmber known to be equal to or larger than

the largest root of an equation is called a superior limit

to the roots of the equation.

745. A number known to be equal to or smaller than

the smallest root of an equation is called an inferior limit

to the roots of the equation.

746. Theorem XI.—If the first h coefficients of F^ (x)

are positive, and P is the smallest of them, then, if Q is

numerically the largest subsequent coefficient, \/ ^ + 1 is

a superior limit to the roots of F^ {x)
= 0.

Demonstration : It is evident that the case in which x must have

the greatest value to make Fn (x) = when the first h coefficients are

positive, is the one in which these coefficients are all equal to the least

one of them (P), and the remaining n + 1 — h coefficients are all
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negative and each- equal to the greatest among them {Q). Therefore,
the value of a; is a superior limit to the roots of Fn {x) — 0, if

Pa^ + i — Paari + i-k _ Qx'^
+^-^—Q

or, z — zX— 1 X— 1

or, Pa?' + i-A(a;*-l) = ^(a;»
+ ^-*-l)

or if, P(x^ - 1) = ^, since 1 >
(l
-
^^^^^

+ 1.= l/|
747. Cor,—If the signs of the alter^iate terms of an

equation he changed, then loill the superior limit to the

roots of the transformed equation, with its sign changed,

be the inferior limit to the roots of the original equation

[726, Cor.].

Equal Roots.

748. Theorem XII,—If F^ {x) = has equal roots, it

may he separated into two or more equations with unequal

roots.

This is a direct inference from Art. 701.

Commensurable Roots.

749. The integral and rational fractional roots of F^ (x)

= are called its commensurable roots.

750. Problem 1. To find the commensurable roots of

Fn {X) = 0.

Solution : Pursue the following line of investigation :

1. Determine the number of roots the equation has [724].

2. Determine how many roots may be positive and how many
negative [739].

3. Determine the limit to the positive and the negative roots

[746, 747].
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4. Determine what integral numbers may be roots [720].

5. Find and remove the integral roots by synthetic division [719,

105].

6. Determine whether there are any equal roots [701], and if so,

remove them by synthetic division.

7. Find the rational fractional roots from the equation resulting

from the removal of the integral roots, and according to Theorem

VIII, Scholium.

niustrations.—1. Find the commensurable roots of

F^ (x)
= 24 cc* + 122 a;3+ 5 a;2 - 26 a; - 5 = 0.

Solation :

1. This equation has four roots, all real, or two real [724, 731].

2. There are one variation and three permanences of sign ; there-

fore, there can not be more than one positive nor more than three

negative roots [739].

3. The only integral roots possible are +1, —
1, +5, and — 5

[720].

4. The largest positive root < 4/ — + 1, or < 2 [746].

5. Neither + 1 nor — 1 is a root, since F^ (x) is not divisible by
either a; — 1 or a; + 1, as witness :

-1)24 + 122+ 5- 26- 5
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8. /s {x) = has three roots [724], only one of which can be posi-

tive, and the largest positive root possible is ^^77 = 24.

9. The divisors of 576 not exceeding 24 are 1, 2, 3, 4, 6, 8, 9, 12,

16, 18, 24. From the relative values of the positive and negative co-

efficients it will be seen at a glance that a; > 6.

10. + 8 and + 9 are not roots, but + 12 is a root, as witness :

4-8)1+ 2-120-576



COMMENSURABLE ROOTS. 403

4. a:3 + 6a:2_j_i4^_{.12 =

5. :r*-3a;3_2a;2 + 12a:-8 =

6. 12:^3 _|_3a;2_3^._2 = o

7. a:* + 2a:3-7a;2-8a; + 12 =
8. 2r* - 8 a;3 + 10 a;2 + 24 a;+ 5 =
9. a;5 + 3a;4-3a:3-9a:2-4a;-12 =

10. a;*-5ic3 + 3a;2+ 2iC+ 8 =
11. 8a:3_i6^8_3^_|_2i = o

12. 16a;^-48a:3_^ 32^:2 _^12a;-9 =
13. 3a;5 + 2a:*-21a:3-14a:2 + 36a;+ 24 =
14. 9 a;5 + 81 :r* + 203 a:3 + 99 a,-2

- 92 a; - 60 =
15. 18a;5 + 9a;* + 22a;3 + lla;2-96a;-48 =
16. a:*+ 4ic3_i3 2;3_28a; + 60 =
17. ar*+ 2a:3_ii^2_12a; + 36 =
18. ic5 + 4a;* + a:3_iQ^_4^_|.3^0
19. 3 a;6 + 22 a;5 + 8 a;* - 42 :z;3

_ Y9 ^2 _ 52 ^ _ 12 =

Incommensurable Roots.

751. The incommensuraUe roots of an equation are

best sought for after all the commensurable roots have

been removed by division and the resulting equation trans-

formed into an equation of the form of /« {x)
= 0.

752. The first step necessary in the search for the

values of the incommensurable roots of an equation is to

find the number and situation of such roots.

Jacques Charles Frangois Sturm, a Swiss mathemati-

cian (1803-1855), discovered a method of doing this in

1829, known as Sturm's method.



404 ADVANCED ALGEBRA.

753. Sturm's Series of Functions. — Assuming that

f^ (x)
= has no equal roots, this eminent mathematician

formed a series of functions, as follows :

The first two terms of the series are /„ (x), and its first

derivative, which we will now represent by /«_i (x).

The other functions, and which are called Sturmian

functions, are derived as follows : Divide /„ (x) by /„_i (x),

and represent the remainder with its sign changed by

/«_2 {x). Divide /„_i {x) by /„_2 {x), and represent the re-

mainder with its sign changed by /„_3 (x) ; continue this

process until the last remainder with its sign changed is

an absolute term. Eepresent this remainder /o {x). There

will then be n-\-l of these functions, as follows :

/n (^), /«-l {X), fn-2 {x) ....fo [x).

Caution.—Care must be taken in the operation of successive divis-

ion not to reject any negative factors except in the remainders.

764. Relation of the terms of Sturm's series of func-

tions.—If we put qi, qz, q^ as the successive quo-

tients obtained in finding the Sturmian functions, it is

evident that

/»(^)=/«-l(^)^l-/n-2W (1)

/„_! {X)
= /._2 (X) q2

-
fn-3 (^) (^)

fn-2 (X)
= fn-3 (x) §'3

"
/«-4 (^) (3)

/„_3 (x)
=

./;_4 (x) q,
-

/„_5 (x) (4)

/„_4 (x)
= /«_5 (x) q,

-
/„_6 (x) (5)

etc., etc., etc.

755. Fundamental Principles.

1. No two consecutive functions can vanish, i. e., be-

come 0, for the same value of x.

For, if possible, \Qtx = a make /„_2 = and /„_3 = ;

then will /„_4 = [754, 3], and hence, too, /n_6 =
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[754, 4], and so on until lastly /« (:?;)
=

;
but /o {x) is

the absolute term and can not be zero. Therefore, etc.

2, If any one of the functions intervening hetween

/„ {x) and /o {x) vanishes for any value of x, the two ad-

jacent functions have opposite signs for this value.

Thus, \i x=:a causes /„_3 {x) to vanish, /„_2 (x)
—

-f.-,{x) [754, 3].

3. If any value of x, as x = a, causes any intervening

function to vanish, then will the number of variations and

the nuniber of permanences in the signs of the functions

he the same for the immediately preceding and the imme-

diately succeeding values of x, i. e., for x = a — <z> and

x = a-\- <^ .

For the two adjacent functions will have opposite signs

when x-=a [755, 2], and will not change their signs for

any value of x from x = a — c> and a; = « -|- o , since no

root of either can lie between these values [755, 1]. But

the function in question does change its sign, since x passes

over a root of the function in going from a; = a — o
to ^ = « + o . If the signs of the three functions for

x = a — <^ are +? +> —
> for x = a-\-o they will be

+ ,
—

,
—

, which in either case form one permanence

and one variation. Similarly, +, —
,
— will change to

+,+,—; —
, +, + will change to —,—,+; and

—
,
—

, + will change to — , +, +.

4' If any value of x causes /„ {x) to vanish, then will

one variation in the signs of the functions be lost in pass-

ing from the immediately preceding value of x to the im-

mediately succeeding value.
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758. Cor, 1.—The theorem is equally true for F„ {x)

= 0, there being nothing in the demonstration of it to

restrict its application to /« {x)
= 0.

769. Cor, 2,—The difference between the number of

variations when + oo and — cc are substituted for x in

the series is the number of real roots in the equation.

760. Cor. 3,—The difference between the number of

variations when and + oo are substituted for x is the

number of positive roots, and, when and — oo are sub-

stituted for X, the number of negative roots.

761. Eemark 1.—It is evident that the sign of the absolute term

of a function is the sign of the value of the function, when a; = 0.

762. Remark 2.—The sign of the first term of a function is the

sign of the value of the function, when a; = ± oo .

For, Ax^ = Acc^-^ .x> Bx:^-'^ + Ca;"-* + Dai^-^ +
+ Lx""-^ > Bx^-^ + Cx:^-^ + Dx?"-^ + + L, when a; = ± oo .

763. Remark 3.—The sign of the value of a function for any

integral or decimal value of x is best determined by the method ex-

plained in Art. 106.

Illustration.—Find the sign of i^4 (a:)
= 3 a:* — 2 a;^ +

7a;2 — 3a;-8 when x=l'2.

Solution : The value of i^4 {x) when a: = 1-2 is + -3808, as witness:

1.3)3 _ 2 +7-3-8
3-6 + 1-92 + 9-984 + 8-:

1-6 + 8-92 + 6-984 + -3808*

.'. The sign of F^{x) is +.'

Note.—In practice it is usually not necessary to make the last

multiplication and addition to determine the sign of the value.

764. Remark 4.—Though it is not usually best to apply Sturm's

method of solution to equations before the commensurable roots have

been removed by division, on account of the great labor involved in

deriving and evaluating the different functions when the equation is

of a high degree, yet such a course may be pursued. If there are

equal roots, the fact will appear in deriving the functions, and if there

are integral or fractional roots they will be discovered in evaluating
the functions to determine their signs.
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Example.—Determine the number and situation of the

real roots in /s (a:)
= o^ — 12 a;^ + 57 a; — 94 = 0.

Solution : /a {x) = a;^ — 13 a;2 + 57 a; - 94

/2(a;) = 3a;2-24a; + 57

fi{x) = —x + ^

foix)=-

Substituting in these functions as follows, we shall have :

For x=+Go, + + — — one variation.

For X = 0,
_ 4- 4. _ two variations.

For x= —cOy _ + + _ two variations.

There is, therefore, one real root between and 4- oo . There is

no negative root. Therefore, there are two imaginary roots.

To find the situation of the real root, we proceed as follows :

For re = 1, we have — + + _ two variations.

For a; = 2, we have — + + _ two variations.

For ic = 3, we have — + ± _ two variations.

For aj = 4, we have + + — — one variation.

Therefore, there is one real root between 3 and 4, or the first

figure of the real root is 3.

To find the next figure, we proceed as follows :

For X — 3-1, we have — + _ — two variations.

For a; = 3*2, we have — + _ _ two variations.

For X = 3-3, we have — + _ _ two variations.

For X = 3-4, we have + + — — one variation.

Therefore, the root lies between 3*3 and 3'4, or the first two fig-

ures of the root are 3-3.

By a continuation of this process the root might be extended to

any number of figures. A more expeditious method, however, is

known, and will be explained hereafter, for extending a root after a

sufficient number of figures have been found to distinguish the root

from any other root lying near it. Thus, if an equation had the two

roots 3*1256. . and 3*1234. . ., the first four figures of each root only
would be found by Sturm's theorem.

When it is known, as in the above example, that only one real

root lies between two numbers, it becomes necessary only to study
the signs of /„ (x), since passing over the roots of the intermediate

functions does not cause a change in the number of variations.

The same conclusion will be reached by the simple application of

Art. 735, since /a (x) changes sign between a; = 3 and a; = 4.
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EXERCISE 104.

Find the number and situation of the real roots in the

following equations :

1. a:3_4a;2-6a;+ 8 = 4. x^-10a^-[-Qx-\-l =
2. x^ + 6x^'-Sx+ 9 = 5. 2:r*-lla;2^82,_16_0

3. a^-{-3s^-'6x-[-2 = 6. xf" - Ux^+ Ux -3 =

Horner's Method of Root Extension.

765. In 1819, W. G. Horner, an English mathema-

tician, published an elegant method of extending a root

of an equation to any desired number of places, after a

sufiBcient number of initial figures have been found by-

other methods to distinguish the root from other roots of

the equation. This method is based upon the following

principle :

766. Principle,—If F^ {x) he continuously divided hy
X — a, the successive remainders will he the coefficients in

inverse order of an equation whose roots are a less than

the roots F^ {x)
= 0.

Demonstration :

Take En (x) = A a?— ^ + 5a:«-2 +
+ Jx^ + Kx + L = (A)

Put Xi + a = X, or Xi=x — a;

En {Xi + a) = A(xi + «)«-! + i? (a;, + a)«-2 +
+ J{Xi + af 4- K{xi + a) + i = (B)

Expand terms, bracket coefBcients of like powers of Xx ,
and rep-

resent the coefficients of the transformed equation by -4j , ^i , . . . .

«/i , Kx, Li', then,

En {Xx) = Ax a;i»-i + Bx Xx^-^ + . . . .

Jx Xx^ -{ KxXx-\- Lx = (C)

Now, the roots of (C) are evidently a less than those of (A).

Substitute Xi = x — a m. (C),

En{x -a) = Ax{x- ay + Bx(x- a)"-! +
+ Ji{x- af + Kx{x-a) + Lx = (D)

Of 1 HE

-NIVERSITY \
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Now, Fn (x
—

a) is evidently equivalent to Fn (x), and will leave

the same remainder when divided by a; — a as will Fn (x) -i-{x
—

a).

But, if Fn {x
—

a) is continuously divided by x — a, the successive

remainders will he Li, Ki, Ji, £i, and Ai, or the coefficients

of Fn (xi) in inverse order. Therefore the theorem.

Applications.

1. Transform aH^ -\- x^ -}- x^ -^ 3 x — 100 = into an

equation whose roots are 2 less than those of the given

equation.
Foniii

( + 3
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2. Transform rz;* + 9 a;^+ 31 a;^ + 51 a; - 66 = into an

equation whose roots are '8 less than those of the given

equation.

1+9 +31 +51 -66 (-8

-8 7-84 31-072 656576

-0-3424*9-8

-8
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4. The integral part of one of the roots of a^ -f x^+ ^^

+ 3 a; — 100 = is 2. Extend the root.

Form.

1 +1
+ 2

+ 3
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is a superior limit. We therefore use -8 for the next term of the

root, and transform the equation into one whose roots are '8 less. The

transformed equation is x^ + 12'2a;3 + 56-44 a;^ + 119-9282; - -3424 = 0.

The root of this equation is now less than -1.

3. Omitting the first three terms of the equation on account of

their smallness, and using the coefficient of x as a trial divisor, we see

that the root is less than '01 and is about -002. The next figure of

the root is therefore 0, and the following one 2. Transform the equa-

tion into one whose roots are less by '002 ; the resulting equation is

Q^ + 12-208 a;3 + 56-513224 a;^ + 120-153906432 a; - •102318142384 = 0.

The work may be extended as far as we please.

76 7o Bemark 1.—When the number of decimal places in the

absolute term becomes equal to the number of such places desired in

the root, we may begin to drop one figure in the preceding term (trial

divisor), two in the next preceding term, and so on toward the left.

When all the figures of the first term are exhausted, the remaining fig-

ures of the root may be found by simply dividing by the trial divisor.

768. Bemark 2.—The absolute term after each transformation

must be negative, else would the last figure of the root used be too

large (a superior limit).

769. Bemark 3.—The method may be applied with equal facility

to extending an integral root after a sufficient number of initial fig-

ures have been obtained by trial or by Sturm's Theorem to distinguish
the root from others of the equation. It may be used with exactness

whenever there is an exact root ; hence, the incorrectness of the title

"Horner's Method of Approximation" given the method by most

authors.

770. Bemark 4.—The negative roots are the numerical equiva-
lents of the positive roots of the equation resulting from changing the

signs of the alternate terms, and may be found accordingly.

5. Solve a? - 1728 = 0, or find the Vi728,

Solution.

(12+
10

10
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6. Extract the 5tli root of 4312345 to thousandths,

e., solve approximately x^ — 4312345 = 0.
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EXERCISE 108.

Solve :

1. x^ - 704 a; - 58425 = 2. a? - 15348907 =

3. x^-\-Za?'-^x-'i =
4. iC*-4a;3-6a:2+ 32a;-26 =
5. ir*-19a;3+ 24a;2 + 712a;-40 =

6. 2^5 + 12 a;*+ 59a;3 + 150a:2 + 201a; + 94 =

7. 3a;* + 24a:3 + 68a:3_^g2^_964 =
8. Find the cube root of 2 9. Find the fifth root of 5

10. a:3 4-ii<?;2_io2a;+181 =
11. a:*+ 9ar^ + 31a;2 + 51rr-66 =
12. a;5 + 2 2;* + 3 i?^ + 4ic3 + 5 a; - 54321 =
13. One root of the equation o? -\-2x^ -\-^x — 13089030 is

235. Find a cubic equation whose root is 225.

Cubic Equations.

771. A cubic equation containing an integral root may
be readily factored.

Let — a be a root of a cubic equation, then x-\-a \^

a factor of the equation [719]. Let x^-{-mx-\-n be the

other factor
; then,

(x-\-a){ci^-\-mx-{'n) = (A)

or, x^ -\- {a -\- m) 7? -\- {am -\- n) X -\- a n = (B)

We now observe that if we subtract the factor a of the

absolute term from the coefficient of x^, and the factor n

from the coefficient of .t, the latter remainder divided by

the former will give a, the root with the sign changed.

This, then, is the condition under which a factor of the

absolute term is a root with the sign changed.
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Illustration.—Solve a? — x^ — 4:X-\-4: = 0,

Solution : 1. The factors of + 4 are +3 and + 2
;

— 2 and — 2
;

+ 4 and + 1 ; and — 4 and — 1

Try whether + 4 is a root with the sign changed.

Take — 1 and — 4, the coeflScients of x^ and x.

Subtract, + 4 and + 1, the factors of the absolute term.

Divide, —5) — 5 ( which =}= 4.

.'. 4 is not a root with the sign changed.

2. Try whether — 2 is a root.

Take - 1 and - 4

Subtract, + 2 and + 2

Divide, -3) -6( + 2

.'.
— 2 is a root.

Now, x^ — x^ — 4tx + 4: = {x + 2){x^
— ^x \- 2) = 0;

whence, a; = —
2, 2, and 1.

Cardan's Formula.

772. I. The general cubic equation a^ -\- a oi? -{- h x -\- c

= may be transformed into an equation of the form of

y''-\-py^q = 0, by putting x = ij- -a.

Demonstration : Take a^ + ax"^ + hx + c = Q. (A)

Put x = y-
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773. II. The equation y^-{-py-\-q=^0 may be trans-

formed into a quadratic by putting y — z— —o z

Demonstration: Take y^ -^-py + {
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aginary, and, therefore, irreducible when h is positive, or

when the roots are all real and unequal.

Illustrations.—1. Solve ic^ — 3 a;^ -}- 4 = 0.

Here a = — 3
; hence, x = y — I —^- j

= ^ + 1.

Substitute, (2/ + l)^
- 3 (y + 1)^ + 4 = 0.

Reduce, 2/3
— 3^ + 2 = 0. (1)

P 1
Here « = — 3

; hence, y = z — :^ = z + —
.

oz z

Substitute,
(^0

+ ^V - 3 T^ + i) + 2 = 0.

Reduce, z^ + 2 z^ = — 1.

Complete the square, z^ + 2z^ + 1 = 0.

Extract the V* z^ + 1 = 0.

Factor, (z + l)iz^
- z + 1) = ;

1 1 /—T
whence, z = — i

or-^ i-^V
— 3*

x = y + 1 = z + — +1= —
1, or 2, or 2.

776. Sometimes an integral root can only he approxi-

mately found.

2. Solve x^-\-dx^-{-9x^l3 = 0. (A)

Here a = 3 ; hence, x = y — l^)=y — l.

Substitute,

(2/
- 1f + 3 (2/

-
1)2 + 9 (2/

-
1)
- 13 = 0.

Reduce, y^ + 6y-20 = 0. (1)

p 2
Here p = Q; hence, y = z — ^ z= z .^ ' ' ^ dz z

Substitute in (1),

(._|)%e(._|)_.o
= o.

Reduce, z^-20z^ = 8. (2)

Complete the square, 2« -20z^ + 100 = 108.

Extract the \/, z^ - 10 = ± 10-392304.

Transpose, ^« = 20-392304 or - -392304+

Extract the V» '^ = 2*73+ or - -73 +

x=:y-l = z-- r\-l = 2-73 --73 + 1 = 3, or --73 + 2-73 + 1 = 3.
z

These two values are identical. The other two roots are found by

dividing equation (A) by x — d.
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EXERCISE 106.

Solve :

1. a;3-3a:2 + 7a;-5 = 8. iC^H- a;^ _ 8a; — 12 =

2. x^ — Q7^-\-l()x
— S = 9. a:3_a;2 — 8a;+12 =

3. rc3 - 11 0:2+ 41 2; — 55 = 10. ar^ - 11 2; - 20 =
4. a:3 + 6a:2^i4^_^12 = 11. a:^ - 26^:+ 60 =
5. a:3_4a;8+ 5a;-6 = 12. a:^ _ 4 ^jS _|. 3

_. q

6. a?-\-^x'-\-Qx-\-S = 13. a;3_4a;2_Ya;_^10 =

7. a:3_|.7^_j_i6a;4-12 = 14. a:3_|_4a;2_ 7^;- 10 =

Recurring Equations.

777. A Recurring Equation is one in which the co-

efficients of the first and last terms, and of those equi-

distant from the first and last terms, are numerically

equal, and the signs of the corresponding terms are either

alike throughout or unlike throughout ; as,

1. a;5-4a;* + 5a:3 + 5a:2~4ic + l=:0.

2. a;^ + 3a:*-2a;3 + 2ic2_3^_l_0.
3. a;« + 4a;5-5a,-* + 3ic3-5a;2 + 4ir+ l = 0.

778. In a recurring equation of an even degree in

which the corresponding terms have unlike signs, the

middle term is wanting.

For, according to definition, it is both positive and

negative.

779. A Reciprocal Equation is one such that, if a is a

root,
— is also a root.
a

780. Thetyrem I,—A recurring equation is also a re-

ciprocal equation.
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Demonstration : Let a be a root of

f^{x) = x^ + Ax^-'^ + Bx^-'^ + . . . .± Bx^ ± Ax ± 1 = (A)

then, a« + J.a«-» + J5a«-2 + ±Ba^ ±Aa±\ = (B)

Substitute — for x in /„ {x) = 0,

whence, 1 + Aa + Ba^+ ±B w^-^ ± A a»-' ± a* = (D)

or, a" + ^a«-i + 5a«-2+ ± ^a^ j|. ;ia^ ^ 1
_

(E)

Now, (E) is identical with (B) ; therefore, if a is a root of (A),

— is also a root.
a

781. Theorem II.—A recurring equation of an odd

degree has -\- 1 for a root when the signs of the correspond-

ing terms are unlike.

Demonstration :

Let a;2» + i + ^a;2« + ^a;2«-» + -Bx^-Ax-1=0' (A)

then, (a;2»+i
-

1) + Axix^''-^ - 1) + Bx^ix^''-^ - 1) + =0 (B)

Now, each term of (B) is divisible hj x — 1 [134, P.] ;

.'. a; — 1 = 0, or x=l.

782. Theorem III,—A recurring equation of an odd

degree has — 1 for a root when the signs of the correspond-

ing terms are alike.

Demonstration :

Let ir2« + i + J.a;2« + 5a;2«-i +....+ 5a;2 + Aaj + 1 = (A)

then, (a;2«
+ i + 1) + Ax(x^''-'^ + 1) + Bx^x^-""-^ + 1) + =0 (B)

Now, each term of (B) is divisible by a; + 1 [135, P.] ;

.*. a; + 1 = 0, or a; = — 1.

783. Theorem, IV.—A recurring equation of an even

degree has + 1 and — 1 for roots when 4he signs of the

corresponding terms are unlike.

Demonstration :

Let a;2» + ^a:'"- ^ + 5a:2«-2+ — Bx^ — Ax — \ = (i (A)

then, (x2
«-

1) + ^ a: (a;2«-2
-

1) + 5 a;2(a;2"-4-1)+ =0 (B)

Now, (B) is divisible by both a; - 1 and a; + 1 [134, 136, P.] ;

.*. a; — 1 = and x + 1 = 0; whence, a; = ± 1.
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784. Thetyrem V,—A recurring equation of an even

degree may le transformed into an equation of one half

the degree when the signs of the corresponding terms are

alike.

Demonstration :

Let a;2»+^a;2»»-J + 5a;2«-2+ + ^a;^ + ^a; + 1 = (A)

Divide by x*, and collect terms,

(^»+l)
+A(^-.+ ji^)+£(x«-«+jjL)

+ ....+P=0 (B)

Put X ^ = z
; then will

X '

x^ + -. = z^-2
x^

and, in general, each term of (B) may be transformed into a term of

only half the degree.

Illustration.—
Take a;^+ ^o;''^ - 3 a:* + 2 a;^ - 3 2;3 + 4a;+ 1 = 0. (A)

Divide by a:8, jc« + 4a:2-3a; + 2- - + -^ + -^ = (B)•' X x^ x^
^ '

Rearrange the terms and factor,

Put x->r - = y\ (1)

then, a;2 + 2 + -2
=

2/^ ; (2)

or, a;2 + |,
= 2/2-2;

JO

3 1
and, a;3 + 3a;+ - + ^ =

2/«;

^'^'+^+K'^-'^)=^'

a;3+ J-=y3_3y. (3)

Substitute (1), (2), and (3) in (C),

(2/3
-

32/) + 4(2/2
-

2)
- 3y + 2 = 0;

whence, j/^ + 4 2/*
— 6 2/

— 6 = 0.
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EXERCISE 107.
Solve :

Z. QC^ — dx^-\-^x — l = 4. ic* + 3a;=^ — 3a;— 1 =
5. 2a;*-5a;3 + 4a;2~5a; + 2 =
6. a;s + 5a;*+ 10a;3 + 10:z;2_j_5^_^l_0

7. 6a;5-ir*-432;-'' + 43a;2+ ir-6 =
8. bx'>-\-ll7^-^%x?-^^x^-^llx-{-b =

Reduction of Binomial Equations.

785. A Binomial Equation is an equation of two terms,

one of which is absolute
; as, a;" ± « = 0.

786. Every Mnomial equation can te reduced to the

form 2/** ± 1 = 0.

Demonstration : Take the general binomial equation a;* ± a = 0.

Put ^"^
for X,

y



chapter xiii.

determij^a:n'ts akb probabilities.

Introduction.

788. In the polynomial

«! 1)2 Ci
—

«i ^3 C2+ «8 ^3 ^1
—

«2 ^1 ^3+ ^3 ^1 ^2
—

^3 ^2 ^1 ^ (-^)

it will be seen :

1. That the letters a, h, and c of each term are ar-

ranged in natural order.

2. That the subscript figures, 1, 2, and 3, are dis-

tributed among the letters in the six different terms in

as many ways as possible, using all in each term and

making no repetitions.

3. That the first term contains no inversions of sub-

script figures, they advancing in natural order from left to

right ; the second term contains one inversion, 3 standing

before 2
;
the third term contains two inversions, 2 and 3

both standing before 1
; the fourth term contains one in-

version, 2 standing before 1
; the fifth term contains two

inversions, 3 standing before 1 and 2
;
and the sixth term

contains three inversions, 3 and 2 both standing before 1,

and 3 standing before 2.

4. That in the positive terms there is an even number

of inversions (zero being regarded an even number), and

in the negative terms there is an odd number of inver-

sions.
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(B)

789. If we now arrange the nine different quantities

found in (A) in a square, as follows :

«i a2 a^

h h h ;

Ci Cg C3

form all the possible products of them taken three to-

gether, using in each product one and only one from each

row, and one and only one from each column
; arrange

the factors of the products in the natural literal order ;

consider those products positive which have an even num-

ber of inversions of subscript figures, and those negative

which have an odd number
;
and take the algebraic sum

of these products, we will have :

«i ^2 C3
—

a^ J3 (?2+ «3 ^3 Ci
—

«3 li C3 + a^ bi <?2
— % ^2 Ci . (A)

Therefore, form (B) may be taken as the representative

of form (A), and when so taken it is called a determinant,

and (A) its development.

790. Definition.—A Determinant is any n^ quantities

arranged in a square, as follows :

at
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791. The quantities contained in a determinant are

called the elements of th^ determinant.

792. Determinants are divided into orders, named

second, third, nila., accordingly as they contain 2^, 3^,

n^ elements.

Thus, is a determinant of the secondh h
order. Form (B) is a determinant of the tMrd order, and

form (C) a determinant of the ntli order.

793. The diagonal joining the upper left-hand element

with the lower right-hand element is called the 'principal

diagonal ; and the one joining the upper right-hand ele-

ment with the lower left-hand element the secondary

diagonal.

794. The product of all the elements along the principal

diagonal is called the principal term of the development.

795. If the elements on the principal diagonal are

known in order, the entire determinant may be written
;

hence it is that a determinant is often expressed by a

modified form of the principal term of its development ;

as, \_a^lzc^ ^J, or S(±ai^2^3 i?«)-

796. It is evident that there are as many terms in the

development of a determinant of the wth order as there

are permutations of n things taken all together, or \n.

Properties of Determinants.

797. If we rearrange the factors of the terms in form

(A) so as to place the subscripts in natural order, we shall

have

«! ^8 ^3
—

«i Cg ^3 + Ci ttg ^3
—

5i ^2 <^3 + ^1 ^2 <^3
"

^1 ^3 «3' (^i)
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It will be observed that in form (Aj),

1. The value of each term and of the entire polyno-

mial is the same as in form (A).

2. The first term contains no literal inversion
; the

second term contains one, c standing before h
; the third

term contains two, c standing before both a and b
;
the

fourth term contains one, h standing before a; the fifth

term contains two, h and c both standing before a ; and

the sixth term contains three, c and h both standing before

a, and c before h

3. The terms which contain an even number of literal

inversions are positive, and those which contain an odd

number negative,

798. If we now interchange the rows and columns in

(B), giving us the form

ttx hi Ci

«2 h ^2 ; (D)

% h ^3

make all the possible products of three elements, using,

each time, one and only one from each row, and one and

only one from each column ; arrange the factors of the

products so that the subscripts stand in natural order
;

consider those products positive which have an even num-

ber of literal inversions, and those negative which have an

odd number ; and take the algebraic sum of these prod-

ucts, we shall have

«1 ^2 ^3
"~

^1 ^2 ^3 + ^1 ^2 ^3
—

^1 ^2 ^3 + ^1 <^2 ^3
"

^1 ^2 ^3 •
(-^-i)

This shows that in a determinate of the third order an in-

terchange of rows and columns does not change the value.

Is this law true for a determinant of the nth order ?

1. It is evident that the number of terms in the de-

velopment of both forms is the same, each being [w.
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2. Each term in the development of either form has a

corresponding term of equal numerical yalue in the devel-

opment of the other form, because both developments con-

tain all the possible products of n elements that can be

formed from the n^ elements by taking one and only one

from each row and one and only one from each column.

3. The signs of the corresponding terms toill be the

same. For the number of literal inversions in a term of

the second development is equal to the number of sub-

script inversions in the corresponding term of the first

development, as will readily appear from the fact that, if

a subscript in any term of the first development follows r

subscripts greater than itself, then, in the second develop-

ment, the letter containing this subscript must precede r

letters antecedent to it in the natural order. Therefore,

JPrin. 1.—An interchange of rows and columns in a
determinant of any order does not change the value of the

determinant.

799. In form (A) and in form (Ai) the second term

equals minus the first term with the subscripts of h and c

interchanged ; the third term equals minus the second

term with the subscripts of a and c interchanged ;
and so

on, showing that any term in the development of a deter-

minant of the third order equals minus some other term in

the development with the subscripts of two factors inter-

changed.

Is this law true for the development of a determinant

of the nth order ?

1. It is evident that, if Pcr^^ be any term in the de-

velopment of a determinant of the nth order, then will

Fcrnhhe numerically another term of the development;
because P in both instances is the product oi n — 2 ele-
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ments, none of which are taken from rows c and Jc, and

none from columns r and w; and c^h^ and c^h, are

different elements taken from these rows and columns

and combined with P. Therefore, the products are not

identical.

2. The signs of the original and the derived terms are

always opposite. For,

(1) Suppose the two subscripts interchanged to be con-

secutive. Let the original term be P c^ h^ Q, and the de-

rived term P c„ k^ Q. Since m and n follow all the sub-

scripts contained in P and precede all contained in Q, an

interchange of them can not affect the number of inver-

sions they make with the subscripts of either P or Q ; but

such an interchange will either change a natural into an

inversion or an inversion into a natural, either of which

will evidently cause a change of sign,

(2) Suppose the two subscripts interchanged to be non-

consecutive. Let the original term be Pc^Q Jc^ R, and

the derived term P c^Qhn R. Suppose Q to contain q

subscripts. Let m, in the original term, interchange con-

secutively with each of the subscripts in Q and with the

subscript of c, then will it make q-{-l interchanges before

it becomes the subscript of c, n will now be the subscript

of the first element in Q. Let it now interchange con-

secutively with each of the remaining subscripts in Q and

with the subscript of h
;
then will it make q interchanges

before it becomes the subscript of Ic. Therefore, for the

two subscripts of c and Jc in the original term to inter-

change there must be made 2q-{-l, or an odd number of

consecutive interchanges, each one of which will cause a

change of sign (1) in the entire term. Therefore, the sign

of the term will be changed. Therefore,
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Prin. 2.—If tioo subscripts he interchanged in any
term of the development of a determiiianty another term

of the development will be obtained whose sign is opposite

to that of the original term.

800. If we let Ph,^QKR be a term in the develop-

ment of a determinant, then will Ph^QKR be the term

formed by the elements which occupy the same places, if

rows h and h be interchanged, and will have the same

sign. But Ph„,QKR is also a term of the development

of the original determinant, and has there an opposite sign

to Ph„,QKB [P. 2]. Therefore,

Prin, 3,—Interchanging two rows in a determinant

changes the sign of the determinant.

Cor. 1,—Interchanging two columns in a determinant

changes the sign of the determinant.

801. It is evident that if two columns or two rows of a

determinant are in every respect alike, an interchange of

them would not affect either the form or value of the de-

terminant. But, according to Principle 3, the sign of the

value would be changed. Now, both these statements can

be true only when the value of the determinant is zero.

Therefore,

Prin, 4,—A determinant that has two rows or ttvo col-

umns identical equals zero.

802. Since every term in the development of a deter-

minant contains one factor and only one from each row

and one and only one from each column, it follows that,

Prin, 5.—Multiplying or dividing all the elements of
one row or one column of a determinant by any quantity

multiplies or divides the determinant by that quantity.
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Cor, 1,—Changing the signs of all the elements in any
row or column changes the sign of the determinant.

Car, 2,—If two rows or tiuo columns of a determinant

differ only hy a common factor, the value of the deter-

minant is zero,

803. Definitions.—If any number of rows and the same

number of columns be deleted (stricken out) of a deter-

minant, the remaining elements, taken in order, form a

determinant called a minor, and the elements common to

the deleted rows and columns form another minor. These

minors are said to be complementary.

Thus, in the following determinant of the fourth order.

h
-do

^T

d,

-dr

the complementary minors are

h di

h ds
and

«2

t?4

804. If a single row and a single column be deleted,

the remaining minor is called the principal minor, and it,

together with its complementary minor, which in this in-

stance is a single element, are called cofactors.

805. Problem. To develop a determinant.

Let it be required to develop

«i «8 ^3 a^

h h h h
C\ Cg ^3 C4

d\ d^ dz di^

into a series of determinants of a lower order.

Let ^1, Ai, At^ and A^ represent respectively the cofactors of

«i , «a , as ,
and a^ . Then, it is readily seen that ail the terms in the
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development containing the factor a^ are formed from ai and its co-

factor Ai ,
and the sum of these terms is ai Ai . Similarly, the sum

of all the terms containing a^ is a^ At, the sum of all the terms con-

taining aa is tta Aa, and the sum of all the terms containing a* is

at At . Now, in each term of a^ A^ there occurs one more inversion

than in each term of ai Ai ,
since a subscript 2 will precede a subscript

1
; similarly, in each term of as -4s there occur two more inversions

of subscripts than in ai Ai, and in each term of a* A^ there occur

three more inversions of subscripts than in Ui Ai.

Therefore,

«! tti az at

b\ bi bz bi

C\ Ci Cz C4

di di dz d^
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EXERCISE lOa

Find the value of :

10.

13.

3 15
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a
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Demonstration.

a\ + paz aa (H
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in the pih. column and the cofactors of the corresponding elements of

the ^th column, when the products are taken alternately plus and

minus, is apAq — bpBg +
The value of the second determinant is

agAg-bgBq + ..,. [805, R.] = [801, P.J.

But it is evident that aq , bq ,
are identical with Up, bp, ....

Therefore, apAq — bpBq + =0.

EXERCISE 109.

Find the value of

3 2

5 3

7 4

8

6

-8

3

4

5

-1
5

9

4

6.
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Demonstration.—

ax h\ ci I m n

ai h Ci p q r

as bs Cz s t u

x\ y\ Zi

a:2 2/2 ^2

() xz yz Zz

+ az

= ai

bi Ci p q r



MULTIPLICATION OF DETERMINANTS. 437

Explanation :

a\ hi C\
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Applications.

817. I. Solution of Simultaneous Equations of the

First Degree,

1. Solve aiX-\-'biy = ri (A)

«2^+^2 2/
= ^2 (B)

Solution : Multiply (A) by ^i and (B) by —A^ ,
in which ^i and

Ai are the eofactors of ai and as in the determinant [ ai h ],
and

take the sum,

{ai Ai — tti Aii)x + {hi Ai — h Ai)y = ri Ai — r2 A^ (C)

Now, hi Ai-hA.i = [814, P.]. Therefore,

(ai A\ — tti Ai) X = ri Ai — n An ; whence,

aiAi — a^Ai [ ai os J
^ ' -

Again, multiply (A) by Bi and (B) by — -Bs ,
in which Bi and

Bi are the eofactors of h\ and B^ ,
and take the sum,

(ai Bi - tti Bci)x + (bi Bi -h Bi)y = n Bi - n Bi (D)

Now, ai Bi-a2Bi = [814, P.]. Therefore,

2. Solve aiX-\-biy-\-CiZ = ri (A)

«2^+^2«/+^2^=^2 (B)

a3^ + hy+ CsZ = rs (C)

Solution : Multiply (A) by J.i , (B) by —Ai, (C) by J3 ,
in which

Ai , Ai ,
and ^Is are respectively the eofactors of ai , as ,

and as in

the determinant [ ai fts Cs ], and add the resulting equations,

(ai Ai — tti Ai + as A3 )x + (bi Ai — bi At + bzAz)!/
+ (ci Ai — Ci Ai + C3 Az)z

— n Ax — Ti Ai + r% Az

Now, the coefficients of y and z vanish [814, P.]';

^ ^ nA,-r,A,^nA, ^ [n t, ..]

ai J.1 — as J-s + as -43 [ ai 02 C3 J

Then, by symmetry,

^
[ ai 62 C3 ] [ ai 62 cz ]

In a similar manner it may be shown that, if we take n equations
of the first degree of the form of ai ic + 61 2/ + Ci 2 + . . . . = ri ,

mul-
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tiply the first by A\ ,
the second by —A2 ,

the third by Az , ,
in

which Ai , A2, A3, ,
are the cofactors ot ai , a^ , as , ,

and

take the sum, the coefficients of all the unknown quantities, except x,

will vanish, and we shall have

X = F
—^-^—^

j ; and, by symmetry,
[ai h cz ]'

•"

[a, r, ^3....]
^^^^ Therefore,^

[ai bi cz ]'

Principle,—Any unknown quantity in a complete sys-

tem of simultaneous equations of the first degree equals a

fraction whose denominator is a determinant formed from
the coefficients of the terms of the equations taken in order,

and whose numerator is formed from the denominator hy

replacing the coefficients of the unknown quantity hy the

corresponding right members of the equations,

EXERCISE 111.

Solve :

I. 3a;-|-2y = 16 2.6x — ^y= 6

'Zx — ^yz^ 2 2x-\-5y = 21

3. ax-]-by = c 4. (a-\-b)x
—

(c-\-d)y=: m
mx-\-ny

— d (a-^b)x-{- (c
— d)y = n

5. 2x-\-dy — 2z=5 6. x--y-\-z=6
dx-2y-{-4:Z=16 Sx-{-6y — Sz=14:
4:X — 3y— z=—6 2x-{-4:y + Sz = 20

1. ax-\-by-\- cz = d s, {a-\-b)x-\-by-\-az = m
cx-\-by-\-az = e ax-\-{a-{-b)y-{-bz = n

bx-\-cy-\-az = h bx-\-ay-\-{a-\-b)z = r

9. x-\-y-{-z-\-u = 14: 10. ax-{-by+cz=m
X — y~^z — u= — 2 bx-^ cy-\-au = n

x-\-y
— z — u= — 4: cx-\-az-\-bu=p

X — y — z-\-u= ay-{-bz-\-cu = q

11, 2x^Sy + 2z-{- u = -12
3x-[-2y-dz-{-2u = 12 -

x — Sy-\-4:Z+ 3u= — 24:

2x-]-2y-dz-4cU=z2S
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12. ax-\-'by-{-cz-\-du=p
ax — dy-\-cz — du = q

ax-\-'by
^ cz — du = r

ax^by — cz-\-du = s

13. 2x+ 3y — 4:Z + 2u + 3v = 19

dx-2y-\-2z — du + 4:V = 13

2x — 4:y-\-3z
— 2u + 2v= 5

ic+ y
— dz-\-2u-\- v= 7

x-\-2y-{-dz
— 4:U-\-5v = 2d

818. II. To determine under what condition (n + 1)

equations of n unknown quantities may he simultaneously

true.

Assume the equations

«i^+ ^iy + ^i = 0, (A)

«2^'+ ^22/ + ^2 = 0, (B)

and «3 a^ + ^3 y+ ^3 = (C)

to be simultaneously true.

Multiply (A) by d , (B) by - ^ ,
and (C) by Cs ,

in which C^ ,

Ci ,
and Oa are the cofactors of ci , ca ,

and Cs in the determinant

[ ai 62 C3 ], and add the results. Then,

(ai C — aid + tti Cs) X + (bi Ci — h Ci + h Cs) y

+ {ci Ci - Ci d + cs Cz) = [Ax. 2].

But, ai C — aid + «3 G = &i (7i
— &2 Ci + bsC9 =

ci Ci -Cid + cz Cz = [ ai bi Cz] [814, P. ; 805, R.].

.'. [ «! bi C3 ]
= is the condition under which (A), (B), and

(C) are simultaneously true.

Note.—The equation [ ai bi Ca ]
= is called the eliminant of

the group.

In a similar manner it may be shown that n + 1 equations of n

unknown quantities, of the form of

ai a; + 61 y + . . . . + ri = 0,

are simultaneously true, when

[ai 62 C8 rn4i ]
= 0.

Note.—Equations that are simultaneously true are said to consist^

that is, they are consistent.
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EXERCISE 112.

Test the consistency of :

1. 2a;+ 3y-13 = 2. 3a;-f-2y-17 =
bx — '^y— 3 =
2a;-5«/ + 15 =

819. III. To eliminate x from any two rational inte-

gral equations in x.

Ulustrations.—1. Eliminate x from the equations

aoi?-\- bx-\-c =
ma^-\-nx-{-r =

Solution : It is evident that

ax^ + bx^ + ex =
ax^ + bx + c =

mx^ + nx^ + rx =0
and
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Probabilities.

Definitions and Fundannental Principles.

820. When the number of ways in which an event may
occur is greater than the number of ways in which it may
fail, and the ways are equally likely to happen, we say :

1, The event is 'probable.

2, The event is likely to happen,

3, The chance is in favor of the event,

U* The odds are in favor of the event,

821. When the number of ways in which an event may
fail is greater than the number of ways in which it may
occur, and the ways are equally likely to happen, we say :

1, The event is improbable,

2, The event is not likely to happen,

3, The chance is against the event,

U, The odds are against the event,

822. When the number of ways in which an event may
occur is equal to the number of ways in which it may fail,

and the ways are equally likely to happen, we say :

1, The occurrence and failure of the event are equally

probable,

2, The event is as liJcely to happen as to fail.

3, There is an even chance for and against the event,

U' The odds are even for and against the event,

823. If an event can occur in a ways and fail in b

ways, and the ways are equally likely to happen, we need

more definite language to express the exact probability or

chance of the event. Thus, we say :

1, The odds are as a to b in favor of the event,

2, The odds are as b to a against the event.
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824. If we let k represent the probability of any par-

ticular way happening, a the number of ways favorable to

the event, and h the number of unfavorable ways, then

will ah represent the probability of the event happening,

and h k the probability of its failing, and ak-\-hk, or

{a + h) k, certainty^ which is taken as the unit of measure,

then (a-\-V)k = \\ whence, k = , ;

and ak — -, , the probability or chance of the

event, and Ik — , , the probability or chance against

the event. Therefore,

Prin, 1,—The prolaMUty or chance of an event hap-

pening equals the number of favorable ways divided by the

whole number of ways,

Prin. 2.—The probability or chance of an event fail-

ing equals the number of unfavorable ways divided by the

ivhole number of ways,

825. Since an event is certain to happen or fail, and

certainty is expressed by unity, it follows that,

Prin, 3,—The probability of an event happening equals

unity minus the probability that it will fail j and the prob-

ability that it will fail equals unity minus the probability
that it will happen.

Illustration.—If there are 3 black and 2 white balls in

a bag containing only 5 balls, what is the chance,

1. That a black ball will be drawn on the first trial ?

2. That a black ball will not be drawn on the first trial ?

Solution : 1. There are 3 favorable ways out of 5 to draw a black
Q

ball
; therefore, the chance is -=• (Prin. 1).

3. There are 2 unfavorable ways out of 5 to draw a black ball,

namely, the two favorable ways for drawing a white ball
; therefore,

2
the chance of failing to draw a black ball is

-g
. Or,
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That a black ball will be drawn or not drawn on the first trial

Q
is certainty. The chance for drawing a black ball is ^; therefore,

3 2
the chance of failure is 1 —

-^
= -= .

826. Exclusive Events.—Two or more events are mu-

tually exclusiye when the happening of one of them pre-

cludes the possibility of any other one happening. Thus,

if a coin be thrown up, it may fall either head or tail. If

it fall head, or is supposed to fall head, it can not fall tail,

or be supposed to fall tail, in the same throw. Falling

head and falling tail are, therefore, mutually exclusive

events.

827. In a bag are d balls ; a of them are white, h blue,

c red, and the remaining ones yellow. What is the chance

of drawing, on the first trial,

1. Either a red or a white ball ?

2. A red, a white, or a blue ball ^

Solution : 1. The chance of drawing a red ball is -r ,
and the

chance of drawing a white ball is
-^ ;

and the chance of drawing

either a red or a white ball is —-j- = -j +
-^

.

2. The chance of drawing a red ball is -^ ;
of drawing a white

h

ball, -^ ;
of drawing a blue ball, -^ ;

and of drawing a red, a white, or

a blue ball, ^ ; which equals "^
+ ^ +

"^
• Therefore,

JPrin. 4,—The chance that one of several mutually ex-

elusive events will happen equals the sum of their separate

chances of happening.

EXERCISE 118.

1. "What is the chance of throwing 4 with a single die ?

Suggestion.—A die has six faces, which are equally liable to turn up,

but only one of these contains four dots. Therefore, the chance is
-^

.
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2. What is the chance of throwing an even number
with a single die ?

,

—Three of the faces have an even number of dots;

3 1

therefore, the chance is ^ ,
or ^.

3. If the odds be 4 to 3 in favor of an event, what are

the respective chances of the success and failure of the

event ?

Suggestion.
—There are 4 points out of 7 favorable and 3 out of 7

unfavorable to the happening of the event
; therefore, the respective

chances of success and failure are
-y

and -=- .

4. If 4 coppers are tossed, what are the odds against

exactly 2 turning up head ?

Suggestion.
—Each coin may fall in two ways; hence, the four

coins may fall in 2* = 16 ways [550, Cor.]. The two coins that may
4x3

turn up head can be selected from the four coins in
.^ ,

or 6 ways.

fi ^
—

Therefore, the chance of success is ir^ , or -5- ?
and the chance of fail-

3 5
16 8

ure is 1 —
-^
= ^ . Therefore, the odds are as 5 to 3 against the

event.

5. In a bag are 7 white and 5 red balls
;

if two are

drawn, find the chance that 1 is red and 1 white.

12 X 11
Solution : Two balls can be selected from 12 balls in —r^

— = 66
if.

ways. One white ball can be selected from 7 white balls in 7 ways, and
1 red ball from 5 red balls in 5 ways. Hence, 1 white ball and 1 red

ball can be selected from 7 white and 5 red balls in 7 x 5, or 35 ways.

Therefore, 35 out of 66 ways are favorable to drawing 1 white and 1

35
red ball. Therefore, the chance is p^s .

66

6. Twenty persons take their seats at a round table.

What are the odds against two persons thought of sitting

together ?

Solution: Let the two persons be A and B. Besides the place
where A may sit, there are 19 places, two of which are adjacent to

him, and the remaining 17 not adjacent. Any of these B may select.

Therefore, the odds are as 17 to 2 against A and B sitting together.



446 ADVANCED ALGEBRA.

828. Expectation,
— The value of any probability of

prize or property depending upon the occurrence of some

uncertain event is called an Expectation,

7. A person holds a tickets in a lottery in which the

whole number of tickets issued is n. There is only one

prize offered, and this is worth %p. What is the person's

expectation ?

Solution : It is evident that the n tickets are worth ^p, and that

the tickets are of equal value before the drawing; therefore, the a

tickets are worth — of $ jo, which is $ « x —
. Therefore,

829. Prin, 5.—The expectation of an event equals the

product of the sum to he realized and the chance of the

8. A person is allowed to draw two bank-notes from a

bag containing 8 ten-dollar bills and 20 two-dollar bills.

What is his expectation ?

28 X 27
Solution : The two notes can be drawn from 28 notes in —r^

—
\jL

= 378 ways. Two ten-dollar notes can be drawn from 8 ten-dollar

8x7
notes in . = 28 ways. Two two-dollar notes can be drawn from

—
20 X 19

20 two-dollar notes in —^— = 190 ways.
\A

One ten-dollar note and one two-dollar note can be drawn from

8 ten-dollar notes and 20 two-dollar notes in 8 x 20 = 160 ways.

Therefore,
28

The chance of drawing $20 is 5^^, and the expectation is $ 1.482V*

190
The chance of drawing $4 is

-^^^ ,
and the expectation is $2.01-iV5.

1 fiO

The chance of drawing |12 is 5^=5 , and the expectation is $5.07ff.

o7o

.'. The entire expectation is $1.48^ + $2.01^ + $5.071 = $8.57 y.

9. A bag contains a £5 note, a £10 note, and six pieces

of blank paper of the same size and texture as a bank-note.

Show that the expectation of a man who is allowed to draw

out one piece of paper is £1 17^. 6d,
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830. Independent Events,—Two or more events are in-

dependent of each other when the happening of one of

them does not affect the probability of any other one's

happening.

10. There are h balls in one bag, a of which are white ;

d in another, c of which are white ;
and / in another, e of

which are white. Show that the chance of drawing one

white ball from each bag in a single trial is -r X ^ X ^ .

Solution : One ball can be drawn from each bag in b x d x f ways

[550]. One white ball can be drawn from each bag in a x c x e ways

[550]. Therefore, the chance of drawing a white ball from each bag
. a X c X e ^^.. T^ ^^ a c e _,, .

«
hlTdlTf t^^*' P- 1] = 6

"^

d
><

7
• T'^^'^'o^^'

831. JPrin. 6,—The chance of two or more independent

events happening simultaneously is the product of their

several chances of happening,

832. Car. 1,— The chance of two or more independent

events failing simultaneously is the product of their several

chances of failing,

833. Cor, 2.—The chance of one of two independent

events failing and the other happening is the product of

the chance that one fails and the chance that the other

happens.

11. A can solve 3 problems out of 4, B 5 out of 6,

and C 7 out of 8. What is the chance that a certain

problem will be solved, if all try ?

Solution : Unless all fail, the problem will be solved. The chance

that A will fail is i
,
that B wUl fail

-^
,
that C wiU fail

g , that aU

will fail -J X
-^

X
-^
=

Yq^
• Therefore, the chance of success is -^ ,

834. Dependent Events.— In a series of events, any

assumed event is said to be dependent upon a preceding
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event, if the happening of the preceding event changes the

probability of the happening of the assumed event.

12. Find the chance of drawing 3 white balls in suc-

cession from a bag containing 5 white and 3 red balls.

Solution : The chance of drawing a white ball on the first trial

K
is -5- . Having drawn a white ball, there remain in the bag 7 balls,

o

4 of which are white. The chance of drawing a white ball on the

4
second trial is therefore -=- . Similarly, the chance of drawing a white

Q
ball on the third trial is -k . Therefore, the chance of drawing three

5 4 3 5
white balls in succession is

q-
x -=- x -^ [831] = -^r^ . Therefore,

835. Prin, 7.— The chance that a series of events

should happen is the continued product of the chance that

the first should happen, the chance that the second should

then happen, the chance that the third should follow, and

so on,

13. In one of two bags are 3 red and 4 white balls, and

in the other 5 red and 3 white balls, and a ball is to be

drawn from one or other of the bags. Find the chance

that the ball drawn will be white.

Solution : The chance that the first bag will be chosen is -^ . Then,
a

4
the chance of drawing a white ball from the first bag is

-y ; hence, the

14 2
real chance of drawing a white ball from the first bag is

-^
of -=r = -=^ .

Similarly, the chance of drawing a white ball from the second bag is13 3— of -Q
= T5 • These events are mutually exclusive ; therefore, the

\
^ ^ . 3 3 53

chance required ^^
-y
+
jg
= htr •

836. Inverse Probability.
—When an event is known

to have happened from one of two or more known causes,

the determination of the chance that it has happened from
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any particular one of these causes is a problem of inverse

prohalility,

14. It is known that a black ball has been drawn from

one of two bags. The first of these bags contained in balls,

a of which were black, and the second n balls, b of which

were black. What is the chance that the ball was drawn

from the first bag ?

Solution : Suppose that 2N drawings were made. The chance is

that N were made from each bag. In the N drawings from the first

bag the chance is that ~ x N were black balls. In the drawings

from the second bag the chance is that — x iV were black balls.

Therefore, in 2 JV drawings, the chance is that (
— H jN were

black balls. Therefore, the chance that a black ball was drawn from

the first bag is (— xiV") -^(— + —) N =—"'\ .

837. Theorem,—If an event is believed to have been

produced by some one of the causes Pi, Pg? A^ P»>

which are mutually exclusive, and Pi, Pzy Pzy Pn rep-

resent the respective probabilities of these causes when no

other causes exist, then the probability that P, produced

the event is -^ t—^ "-p^ i-^— .

Demonstration.—Let N be the number of trials made in produc-

ing the event. The first cause operated N x Pi times ; therefore,

on the supposition that no other causes operated than those named,
the probability that the event was produced by the first cause is

iV X Pi X pi. Under similar restrictions, the probability that the

event was produced by the second cause is iV x Pg x jsa ; by the third

cause, N X Pz x ps; by the rth cause, N x Pr x pr ; by any one of

the causes, N{Pipi + P^p^ + Psps + + P«i?«). Therefore, the

real chance of its having been caused by the rth cause, or P, ,
is

N X Pr X Pr _ Pr X Pr

N{Pipi + Ps^s +.... + PnPn)
~

P\ P\ + P^Pi + + PnPn'

15. Four bags were known to contain 3 red and 4 white,

4 red and 3 white, 5 red and 1 white, and 4 red and 4
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white balls respectively. A white ball was drawn at ran-

dom from one of the bags. Find the chance that it was

drawn from the second bag.

Solution: Pi =P2 = Ps = P4 = i, i?i
=

y, i>2
=

|, Pi = \,
and i?4

=
o" . Therefore, the required probability is

1 ^ i4^7 T 9

2_/4 i 1 1\ :5

4V7
"^

7
"*

6
*

2/ 3

35

838. Probability of Testimony.—HhQ following exam-

ples illustrate how to deal with questions relating to the

credibility of testimony :

16. A speaks the truth a times in W2, B J times in n,

and c times in r. What is the chance that a statement

is true which all affirm ? Which A and B affirm and

C denies ?

Solution : 1. The statement is either true or false. If true, all have

spoken the truth ; the probability of which is — x — x — = .^ ' ^ •' m n r mnr
If false, all have lied

;
the probability of which is

\ m)\ n)\ r) mnr
Hence, the probability of the truth of the statement is,

ahc
^
{abc (m—a){n—b)(r—c))_ abc

mnr '

{mnr mrir
)

~
abc + {m—a){n—b)(r—c)'

2. If the statement is true, A and B have told the truth and C

has lied ; the probability of which is — x — xfl )
= —^^

,^ ' m n \ r J mnr
If the statement is false, A and B have lied and C has told the truth

;

the probability of which is fl- ») (l-
*

) (^) =
'"'-"»"-^>'

.^ J
\ mj\ nj\rj mnr

Hence, the probability of the truth of the statement is,

ab{r—c) ^ \ab{r—c) {m—a){n—b)c\_ a b (r—c)

mnr '

{
mnr mnr

)

~
ab{r—c) + {m—a){n—b)c

17. A, B, and tell the truth to the best of their

knowledge and belief. A observes correctly 4 times out

of 5, B 3 times out of 5, and C 5 times out of 7. What
is the probability that a phenomenon occurred (which was
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just as likely to fail as to occur), provided all had equal

opportunity of observing, and all report its occurrence ?

What if A and B report its occurrence and its failure ?

Solution : 1. The phenomenon either occurred or failed. If it oc-

curred, A, B, and C observed correctly ; the probability of which is

-^ X -^ X -=-. The inherent probability that it would occur is -^ .

o o 7 -©

Hence, the probability that the assumption that it occurred is correct

• 1 1 1 A -Ais
2

X
g

X
g

X
^ _gg.

If it did not occur, all observed falsely ; the probability of which12 2
is -^ X -= X = ;

and the probability of the correctness of the assump-11222
tion that the phenomenon failed is7rX-=-x-=-x-=- = r-— , Hence,2 5 7 175

the chance that the phenomenon occurred is 5^ -^ ( ^^ + 7^ )
= --

.

do \35 175/ 16

2. The probability of the correctness of the assumption that the

, . 1 4 3 2 12
phenomenon occurred iS7rX-=-x-=-x-7=- = 77==.^ 2 5 5 7 175

The probability of the correctness of the assumption that the

, ..,,.1125 1
phenomenon failed \s -z -k

-^
y.

-^
y.

-p^

= ^.

Hence, the chance of the event is ^^ -«- f r^ "^ s^)
~

17*

Note.—For a fuller treatment of Choice and Chance than space will

permit to give in this book, see Whitworth's " Choice and Chance."

EXERCISE 114.

1. If A's chance of winning a race is — and B's chance

1 17
Z-. show that the chance that both will fail is rr.
o 24

2. If the odds be m to w in favor of an event, show

that the chance of the event is —
;

—
, and the chance

m-{-n
against the event is —

;

—
.

7n-\-n

3. If the letters e, t, s, n be arranged in a row at ran-

dom, show that the chance of having an English word is — .

M O
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4. Show that the chance that the year 1900 + 2?, in

which X < 100, is a leap-year, is ^ .

5. A draws 3 balls from a bag containing 3 white and

6 black balls
;
B draws 1 ball from another bag containing

1 white and 2 black balls. Show that A's chance of draw-

ing a white ball is to B's chance as 16 to 7.

6. Show that when two dice are thrown the chance that

the throw will amount to more than 8 is -5 .

lo

7. Show that the chance of throwing exactly 11 in one

throw with two dice is :7^ .

lo

8. One purse contains 5 sovereigns and 4 shillings ;

another contains 5 sovereigns and 3 shillings. Show that

the chance of drawing a sovereign is —rj , if a purse is

selected at random and a coin drawn from it at random.

Show that the expectation of the privilege is 125. 2 Yig d,

9. There are three independent events whose several

chances are ^, -r-, and ^. Show that the chance that

one of them will happen and only one is
j^

.

10. If two letters are taken at random out of esteemed,

show that the odds against both being e are the same as

the odds in favor of one at least being e,

y. 11. A letter is taken at random out of each of the

words choice and chance. Show that the chance that they

are the same letter is — .

b

12. A bag contains 6 black and 1 red ball. Show that

the expectation of a person who is to receive a shilling for

every ball he draws out before drawing the red one is 3

shillings.
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13. Two numbers are chosen at random. Show that

the chance is ^ that their sum is even.

14. An archer hits his target on an average 3 times out

of 4. Show that the chance that he will hit it exactly
27

3 times m 4 successive trials is 77-7 .

15. A box contains 10 pairs of gloves. A draws out a

single glove ;
then B draws one ; then A draws a second ;

then B draws a second. Show that A's chance of drawing
a pair is the same as B's ; and that the chance of neither

^ . . . 290
drawmg a pair is ^^ .

16. Show that with two dice the chance of throwing
more than 7 is equal to the chance of throwing less than 7.

17. Two persons throw a die alternately, with the under-

standing that the first who throws 6 is to receive 11 cents.

Show that the expectation of the first is to that of the

second as 6 to 5.

18. A's chance of winning a single game against B is ^ .

Show that his chance of winning at least 2 games out of 3

. 81

^^-25-

19. A party of n persons take their seats at random at

a round table. Show that it is w — 3 to 2 against two

specified persons sitting together.

20. Show that the chance that a person with 2 dice

will throw double aces exactly 3 times in 5 trials is

\m)
^

\36J
X 10.

21. There are 10 tickets, five of which are numbered

1, 2, 3, 4, 5, and the rest are blank. Show that the prob-

ability of drawing a total of ten in three trials, one ticket

33
being drawn each time and replaced, is

r^r^
.



SUPPLEMEl^T.

COJ^TIJfUED FBACTIOJfS,

I. Definitions.

839. An expression in the form of

a

h-{-c

d-\-e

/+ etc.,

is a Continued Fraction,

840. The discussion in this section will be limited to

continued fractions in the form of

1

«4-i
J+i

c+ etc.,

and -, -7-, -, etc., will be called Partial Fractions,
a' h c

841. A continued fraction may be written in a more

convenient form, as follows :111 ill
842. When the number of partial fractions in a con-

tinued fraction is finite, it is a terminating continued frac-

tion ; when infinite, an interminate continued fraction.

843. If at some stage in an interminate continued frac-

tion one or more partial fractions begin to repeat in the

same order, it is called a periodic continued fraction.
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844. A periodic continued fraction is pure when it

contains no other than repeating partial fractions, and

mixed when it contains one or more partial fractions be-

fore the repeating ones.

rrt.
1 1 1 1



456 ADVANCED ALGEBRA.

Will these laws hold true in the formation of any con-

vergent from the two preceding convergents ?

P O Tf ^
Let p-, -~f -^, and -^ be respectively the (/i

—
2)th,^1 Vi -^1 ^1

{n
—

l)th, nth, and {n + l)th convergents ;
and p, q, r,

and s the denominators of the (n
—

2)th, {n
—

l)th, nth,

and (?i + l)th partial fractions.

Suppose the laws to hold true in the formation of the

convergent
^^

, then will ^ = 7Q^, ' (^)

Now, from the nature of the continued fraction, -^ may
1 R ^1

be formed by putting r-\
— for r in -^ . Therefore,

S 2il

^_ (r+l)8+i- («r + l)e +^
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Example.
—Find the first 8 convergents of the con-

tmued fraction ^^3_^i^4^5^^ + 4 + 3-
Solution :

R _ rQ -\-P _\ i i 1? ^ ?1? ^ 3118

Ri~ rQx-^Px~ 2' 7' 9' 43' 324' 491' 2188' 7055"

Properties of Convergents.

847. Take the continued fraction

_1 1 1 1

«zx.ll .1>..11

whence, i^i<2/

I, .1 1^.111
whence, «+ -

_^

- < « + -_^-^-_^..
. . ;

and -
,

-T
,

- > Vi etc. Therefore,

Prin. 1,—The successive convergents are alternately

greater and less than the continued fraction {the odd orders

being too great and the even orders too small).

848. The difference between the first two conyergents

= 5—7-T = , , . ^x = unity divided by the prod-
a aJ + 1 a (a 5+ 1)

^ ^ ^

uct of their denominators. Is this a general law ?

P Q J?

Let -^f -TT, and ^- be the (w—l)th, wth, and {n-\-l)th.

convergents, and p, q, and r the denominators of the
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{n
—

l)th, nth, and {n -f l)th partial fractions, and let '^

denote difference hetioeen.

Assume -— r^ -^ = — „ ^—- = „ .. ; then will

Ri'^ Qi QiRi QiRi

_ PQ.^QPr _ _j_"
Gi^i "ft A* ^^

Therefore, if the law holds good for the difference be-

tween the {n
—

l)th and wth convergents, it will also for

the difference between the {n+ l)th and the wth conver-

gents. But we have seen that it does hold good for the

difference between the first and second convergents, and,

hence, it will for the difference between the next higher

pair, and so on. Therefore,

JPrin. 2,—The difference between any two consecutive

convergents equals unity divided by the product of their

denominators.

849. Since PQ^'^QP^ = 1 [848, A], P and P^ can

not have a common factor, neither can Q and Q^.

Therefore,

Prin, 3,—Bvery convergent is in its lowest terms.

850. If we let ^=- represent the true value of the con-

tinned fraction ; then will

P U ^P Cmn 1
^ Q ^ P Q

'''

p[-u.<p;Q.^^'''^''''''urQ;^p;Qr'

Hence, if either -^ or^ be used for -^, the error will

be less than p ^ , or less than -^ .

-^1 Vi VI
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P Q R
851. Let -^, -jr, and -^ be three consecutive con-

-t 1 vi ^1
-^ ^

versrents whose terminal partial fractions are -, -, and

1 U ,

P ^
—

: and -77- , the true value of the continued fraction.
r Ui

TT 7? 1

Then, y^ differs from ^- only in the use of r H—— etc.
t/i

^
III s-\- ,

for r. Put r H r etc. = a;.

s-\r

1

ftC^ft + i'i)

, P U _P_ xQ +P _ x{PQ^-P,Q)

a;

A (a: ft + Pi)
Now, a; > 1, and Pi < ft ,

1 ^ a;

< p /^ /. . D X ; or.••

ft(^ft + i^i) ^A(^ft+ A)

-^ is nearer -^ than is ^-. Therefore,
vi ^1 -^1

2*Hn. 4.—The MgJier the order of a convergent the

nearer does it approach to the true value of the continued

fraction.

852. Cor.—A continued fraction is the limit of its con-

vergents ; or, if y be a continued fraction and x its vari-

able convergent, y = lim. x.

853. The denominators of successive convergents in-

crease more rapidly than their numerators [846 ; 1, 2] ;

therefore, of any two convergents, that is the greater

which has the greater denominator. But may there not
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be some other fraction, not a convergent, with smaller de-

denominator, that is a nearer approximation to a continued

fraction than a given convergent ?

Suppose -Yjr not a convergent, and nearer to -^ than —,
^^ U M Q U ^' ^'

and ifi < §1 ; then — ^
-^

< ^ ^
-^ ;

M P ^ Q P MP^^M^P
/^ < -^ -- D- ; or, TT-B <

But MtPi < QiPi, since M^ < ft.

,'. MPi '^ MiP < 1; which is impossible, since M,

Ml, P, and Pi are integral. Therefore,

Brin* 5,—Any convergent is nearer the true value of
a continued fraction than any fraction with smaller de-

nominator.

Problems.

851. 1. To reduce a common fraction to a terminating
continued fraction.

Since an improper fraction is equivalent to an integer

and a proper fraction, it will be necessary only to investi-

gate a method for extending a proper fraction.

Let - = a proper fraction in its lowest terms.

Divide both terms by h, and put for the improper frac-

a c
tion -T , the mixed number p-\- -r] then.

h

a
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d c p

Again, divide both terms of - by d, and put -7 = r + 77 ;

then, _5 ^ 1 1 1

a
~
p -\- q -\- r -\- e_

d

It will now be seen that the denominators of the suc-

cessive partial fractions have been obtained as follows :

b) a {p

bp

11.

d) c (r
rd

e etc.

Since a and I are integral, they have a highest com-

mon divisor, and the division will eventually terminate.

Therefore, the continued fraction will be a terminat-

ing one,

Rule.—To reduce a proper fraction to a terminating
continued fraction, find the highest common divisor of its

terms by successive division, and use the quotients in regu-
lar order for the denominators of the partial fractions,

855. 2. To reduce a quadratic surd to a continued

fraction.

Ulnstrations.—1. Eeduce ^26 to a continued fraction.

Solution : V36 = 5 + —

= 10 + :4— . = 10 +
"^

10 + 1
^

10 + 1

10 +
Jl_

X

• '»^ = «+fo + K + ^+--=5+^
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2. Eeduce a/iQ^ to a continued fraction.

Solution : ^19 = 4 + —
X

Vl9-4 3 ccj

3 Vl9 + 2
,

1
iCi = —y= = -—= = 1 + —

5 ^19"+ 3 „ 1
ars = -7= = -—

s = 3 + -
VlQ - 3 2 iCs

Scholiwm,—A quadratic surd may always le reduced

to a periodic continued fraction if the expansion is carried

sufficiently far,

856. 3. To reduce a periodic continued fraction to a

simple fraction.

The periodic continued fraction

ili_lll __

p + q -h r
~

p-\- q -i- r -\-x~

qr+ qx-^1 _^
pqr-\-pqx-\-p-{-r-\-x

whence, {pq-{-l)x^-\-ipqr
—

q -\-p + r)x = qr-^-l

The value of x found from this equation is the value

of the continued fraction.

857. 4. To approximate the ratio of two numbers.

Example.—When the diameter of a circle is 1, the cir-

cumference is 3 •1415926+ . Approximate the ratio of the

diameter to the circumference.

Solution :

-I oi^iKno« 10000000 1111 rp^ , .,
1 : 3.1415926 = 3^jj^= 3 ^ y ^ j^ ^ J ^.... [Prob. 1].

The successive convergents, which are also the successive approxi-

^ ^, ^. 17 106 113
,mationsof the ratio, are :

-g, ^, ^, g^g,
etc.
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EXERCISE 1 18.

Reduce to continued fractions :

125
^'

317
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THEORY OF JfUMBEBS.

Systems of Notation.

I. Definitions.

858. Notation is the art of expressing numbers by

means of characters.

869. A system of notation is a method of expressing

numbers in a series of powers of some fixed number.

860. The order of progression on which any system of

notation is founded is called the scale of the system, and

the fixed number on which the scale is based is called the

radix,

861. Any integral number, except unity, may be taken

as the radix. When the radix is two, the scale and system

are called binary ;
when three, ternary ;

when four, qua-

ternary ;
when five, quinary ;

when six, senary ; when

seven, septenary ;
when eight, octary ;

when nine, nonary ;

when ten, denary or decimal ;
when eleven, undenary ;

when twelve, duodenary ;
etc.

862. In the decimal or denary system,

56342 = 5x10,000 + 6x1000 + 3x100+ 4x10 + 2 =
5Xl0* + 6xl03 + 3Xl02+ 4xl0 + 2; ,

or, in inverse order,

2 + 4x10 + 3x102 + 6x10^ + 5x10*.

In the octary system,

34725 = 3 X8* + 4X83 + 7x88+ 2x8 + 5;

or, in inverse order,

5 + 2x8 + 7x82 + 4x83 + 3x8*.
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.*. In general, if r be taken as the radix, and

ttQ, a-i, «3, «3 . . . . ««_!

as the n digits of a number, reckoning in order from right

to left, the number is represented by

«•-! y-""^ + a^«-2 ^""^+ ««-3 ^""^ + ....+ «2 r^ -}- «i r+ «o

863. Theorem,—Any integral number may he expressed

in the form of

ar^'-^-h r"~^ + ^ ^*~^ + -\-p r^-\-qr+ s,

in which the coefficients are each less than r.

Demonstration : Let N equal the number of units in any number,
and r" the highest power of the radix less than N.

Divide N by r", and let the quotient be a and the remainder N',
Then N=ar'' + N'.

Now, a is less than r, else r" would not be the highest power of

r less than N; and JV' is less than r".

Divide N' by r«-^ and let the quotient be b and the remainder

iV". Then N' = Ir^-"^ + iV", in which 6 < r and N" < r«-i.

In like manner, divide N" by r*-^, and let the quotient be c, and
the remainder N'". Then iV" = cr'-^ + N"\ in which c <r and
N'" <r*-8.

If this process be continued, a remainder, 5, will eventually be

reached less than r. Therefore, JV= ar* + 6r*— * + cj*—''^+

+ pr^ + qr + s, in which the coeflacients are each less than r.

864. Car,—In any system of notation, the number of

digits including is equal to the radix,

866. Problem. To express a given number in any pro-

posed scale.

Solution : Let N be the number and r the radix of the proposed
scale.

Suppose JV= ar" + &r«-» + cr«-2 + + pr^ + qr + s, it is

required to find the values of a, b, c, p, q, s.

N 8— = ar^-^ + br^-^ + ci-*^—^ + + pr + q {— .

r T

Therefore, the remainder, after dividing N by r, is the last digit.

Suppose N' = ar^-i + br^—^ + cr*-^ + + ^r + q.

— = ar»— 2 + 6r"— 3 + cr^—^ + +«? + —.
r r

Therefore, the remainder, after dividing N' by r, is the next digit.
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Suppose iV" = ar"-2 + 6r"-' + cr*-^ + + ^,
N" n= ar»-3 + 6r«—* + cr«-6 + + ^.
r r

Therefore, the remainder, after dividing N" by r, is the next digit.

Etc., etc., etc.

Therefore,

Hvle,—Divide the numher ly the radix, then the quo-
tient hy the radix, and so on until the quotient becomes less

than the radix ; the successive remainders will he the digits

of the number, beginning with the units.

Illustrative Examples.—1. Express 35432 (denary scale)
in the senary scale

; also, 35432 (senary scale) in the octary
scale.

(1) 6 )35432 (2) 8 )35432
6 )5905 -2 8 )2545 -4
6 ) 984 -1 8 )212 -1
6 ) 164 -0 8) 14-0
6)_2_7-2 1-2

4-3 .-. 35432,. = 6 = 12014r=8

.-. 35432r = io = 432012^ = 6

Explanation of (2) :

35 -T- 8 = (3 X 6 + 5) -5- 8 = 23 8 = 2, and 7 over ;

74-^8 = (7x 6 + 4) -^8 = 46^8 = 5, and 6 over;
63 -f- 8 = (6 X 6 + 3) -^ 8 = 39 -^ 8 = 4, and 7 over;
72-f"8 = (7x6 + 2)-s-8=44-^8 = 5, and 4 over.

2. Express 35439 (denary scale) in duodenary scale ;

also, 34439 (nonary scale) in undenary scale.

Kote-^The undenary scale needs a character to represent ten, and
the duodenary scale two characters to represent ten and eleven. We
will represent ten by t and eleven by e.

(1) 12 )34439 (2) 11 )35439
12 ) 2 8 6 9 - e 11 ) 2852 -5
12 )239 -- 1 11 )236 -8
12}J^-e 11)18-8

1-7 1-6
.-. 34439r = io = 17eler=i2 .-. 35439^ = 9 = 16885^ = 11
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EXERCISE 116.

1. Find the sum in senary scale of 4532^ = 6,

3452r = 6, 5423^ = 6, and 3251^ = 6

2. Find the difference (octary scale) of 3574^ = 8 and

2756r = 8

3. Multiply 36425r = 7 by 8; also 26436,. = 8 by 10

4. Divide 4765^54^ = 11 by 9; also 2e58if3r = i2 by 11

5. Express 43250^ = 5 in the denary scale.

6. Express 38472r = 9 in the septenary scale.

7. Express 35243^ = e in the duodenary scale.

8. Express Set 950r = 12 in the quaternary scale.

9. Find the sum (denary scale) of 3472^ = s and 5842^ = 10

10. Find the difference (nonary scale) of 5 ^34^ = 11 and

6432r = 7

11. What is the radix of the scale in which 476^ = 10

= 2112?

Suggestion.—Let r = the radix
; then will 2r' + r^ + r + 2 = 476.

12. In what scale is 3 times 134 = 450?

13. In what scale is 135^ = 6 = 43 ?

14. What is the H. C. D. of 36^ = 8, 48^ = 8, and 60r = 8 ?

15. Multiply 28r = 9 by 45r = 9; also square 25^ = 6

16. In what scale is 1552 the square of 34 ?

17. Show that 35, 44, and 53 are in arithmetical progres-
sion in any scale of notation.

18. Show that 1331 is a perfect cube in any system of no-

tation.

19. Show that 14641 is a perfect fourth power in any sys-

tem of notation.

20. Show that 11, 220, and 4400 are in geometrical pro-

gression in any system of notation.
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Divisibility of Numbers and their Digits.

866. Theorem I.—If a number^ Ny he divided hy any

factor of r, r^, r^ etc., respectively {r being the radix), it

will leave the same remainder as when the number ex-

pressed by the last term, the last two terms, the last three

terms, etc., is divided by the same factor.

Dem(mstration : Suppose x a factor oi r, y a factor of r^, and z a

factor of r^, etc.

iV= ar«-* + Jr~-2 + + pr^ + qr + s.

Now, X is certainly a factor of every term of N, except s; y, a,

factor of every term, except qr + s; and z, a factor of every term,

except pr^ + qr + s, etc. Therefore,

N s
1. — = an integer h— .

rt
iV . , qr + 8

2. — = an integer + .

N^ t)r^ + <7 7* 4- s
3. — = an integer + ; which was to be proved.z z

867. Car,—In the decimal system of notation,

1. A number is divisible by any factor of 10, if the

units^ digit is divisible by that factor,

2. A number is divisible by any factor of 100, if the

number expressed by the last two figures is divisible by

that factor.

S. A number is divisible by any factor of 1000, if the

number expressed by the last three figures is divisible by

that factor.

868. Theorem II.—The difference between a number

and the sum of its digits is divisible by the radix less one.

Bemonstration :

Let N =z ar"— > + &r»-2 + + pr^ -^ qr {• s = any number;
then, a + 6+....4-jp + g' + 5 = the sum of the digits.

Now, a (r«-» —1) + b (r»-9 -1) + + p (r^— 1) + q (r— 1) = the

difference between the number and the sum of its digits, and every
term is divisible by r — 1.



DIVISIBILITY OF NUMBERS, 469

869. Cor.—In the decimal system of notation,

The difference letween a number and the sum of its

digits is divisible by 9 or S.

870. Theorem III,—A number, N, divided by r—1,
leaves the same remainder as the sum of its digits divided

by r — 1, r being the radix.

Demonstration.—Put s for the sum of the digits; q and q' for

the quotients; and c and c' for the remainders.

1. N= q{r-l) + c

2. s = q' (r
—

l) + c'

.*. N—s = (q
—

q') (r
— 1) + (c

—
c').

Now, iV — s is divisible by r — 1 [T. II], and (q
—

q') (r—1) is

evidently divisible by r — 1; therefore, c — c' is divisible by r — 1.

But c and c' are each less than r — 1
; hence, c — c' = 0, or c = c',

871. Car,—In the decimal system,

A number is divisible by 9, if the sum of its digits is

divisible by 9.

872. Theorem IV,—If from a number, N, we sub-

tract the digits of the even powers of r, and add those of

the odd powers, the result will be divisible by r+ 1.

Demonstration.—Let iV= ar* + br^ + cr^ + dr + e.

Add —a + b — c + d —
e^

then, a(r*
—

1) + b (r^ + 1) + c{r^
—

1) + d{r + 1), the result, is divis-

ible by r + 1, since every term is divisible by r + 1.

873. Theorem, V,—If a number, N, be divided by

r + 1, the remainder will be the same as when the differ-

ence between the sums of the digits of the even and odd

powers of r is divided by r-\-l.

Demonstration.—Put d for the difference between the sums of the

digits of the even and odd powers of r
; g and q' for the quotients ;

and c and c' for the remainders
; then will

iV= g(r + 1) + c,

and d = q* {r + \) + c'.

.-. N-d = {q-q'){r + l) + c-c'.

Now, N— d is, divisible by r + 1 [T. IV], and {q
—

q') (r + 1) is

evidently divisible by r + 1. Therefore, c — c' is divisible by r + 1.

But c and c' are each less than r + 1
; hence, c — c' = 0, or c = c'.
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874. Cor,—In the decimal system of notation,

A number is divisible by 11, if the difference between

the sums of the digits in the even and odd places is divis-

ible by 11,

Even and Odd Numbers.

875. An even number is a number that is exactly di-

yisible by 2.

876. An odd number is a number that is not exactly

divisible by 2.

877. If we let x represent any integral number in-

cluding zero, and regard zero as an even number, it be-

comes evident that the general formula for an even num
ber is 2 x, and for an odd number 2 ic+ 1.

878. Theorem, I,—The sum, of any number of even

numbers is even.

Demonstration.—Let 2 a:i ,
2 iCa ,

2 X8 , 2xn represent n even

numbers ;
then will their sum be

2a;i + 2a:a + 2a:8 + + 2xn = ^{xi + x^ -^ Xt + + a^n)

an even number.

879. Jlieorem II.—The sum of an even number of

odd numbers is even.

Demonstration.—Let 2a;i + 1, 2a;a + 1, 2a;8 + 1 + + 2a;an + 1

represent 2» odd numbers ; then will their sum be

(2a;x + 1) + {2xu + 1) + (2xs + 1) +.... + (2x2n + t) =
2xi +2Xi + 20^8 + + 2a;an+ 2n =
2 (a^i + a:a + iCa + . . . . + x^n + n), an even number.

880. Theorem III,—The sum of an odd number of

odd numbers is odd.

Demonstration.—Let 2xi + 1, 2ira + 1, 2a;8 + 1, 2a;9«+i + 1

represent 271 + 1 odd numbers ;
then will their sum be

(2a;i + 1) + (2a;a + 1) + (2a:8 + 1) + . . . . + 2a;3«+i + 1) =
2xi + 2a;a + 2a;8 + + Sa^sn+i + 27i + 1 =
2{xi-\-Xi + Xf\- + x%n+\ + n) + 1, an odd number.
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881. Theorem IV,—The sum of an equal even number

of even and odd numbers is even.

Demonstration.—Let (2xi + 1) + (2a;a + 1) + . . . . + (3a:an + 1) =
the sum ot %n odd numbers ;

and 2a;'i + 2a;'a + +2ic'a« =
the sum of 2 n even numbers ; then will their sum be

{2(a;i + a:'x) + 1} + 1
2 (a^a + ic'a) + If + + \'i{Xin + x'^n) + 1},

which is even [T. II].

882. Thefyrem V.—The sum of an equal odd number

of even and odd numbers is odd.

Demonstration.—Let (2a;i + 1) + (2a;a + 1) + + (2a'9» + i +1) =
the sum of 2 ?i + 1 odd numbers ;

and 2a;'i + 2a;'a + + 2a;'2» + i =
the sum of 2n + 1 even numbers ; then will their sum be

{2{Xi + x\) + 1\ + {2(2:2 + a;'a) + 1} + + {2{Xin+i + x'^n + i) +1},
which is odd [T. IIIj.

883. Theorem VI.—The difference bettoeen two num-

bers, if both are odd or both even, is even.

Demonstration.—1. Let 2 x and 2 x' be two even numbers.

Their difference is 2 a; — 2 a;' = 2 (a;
—

a;'), which is even.

2. Let 2 a; + 1 and 2 a;' + 1 be two odd numbers.

Their difference is (2 a; + 1)
—

(2 a;' + 1) = 2 a; — 2 a;' = 2 (a;
— x%

which is even.

884. Theorem; VII,— The difference between an odd

and an even number is odd.

Demonstration.—Let 2 a; + 1 be any odd number, and 2 x' any
even number.

Their difference is (2 a; + 1)
— 2aJ' = 2 (a;

—
a;') + 1, which is odd.

885. Theorem VIII,—The product of any number of

even numbers is even.

Demonstration.—Let 2 a:, ,
2 a^a ,

2 a^s , . . . 2 a:„ be n even numbers.

Their product is 2(2*-ia;i , Xi, Xz, a;„), which is even.

Cot,—Any power of an even number is even,

886. Theorem IX,—The product of any number of

odd numbers is odd.
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Demonstration.—Let SiCi + 1, 2a;a + 1, 2a;n + 1 be n odd num-
bers. It is evident, from the nature of multiplication, that the prod-
uct of these numbers will contain the factor 2 in every term, except
the last, which will be 1. That is, the product will have the form of

2 a;' + 1, which is odd.

887. Cm;—Any power of an odd number is odd.

888. Theorem X,—The product of any number of odd

and even numbers is even.

Demonstration.—The product of the odd numbers is odd [T. IX],

and may be represented by 2 a; + 1.

The product of the even numbers is even [T. VIII], and may be

represented by 2 x'.

.-. The entire product is 2x' {2x+l) = 2(xx'+x'), which is even.

Example.—It is required to divide one dollar among 15

boys, giving to each boy an odd number of cents. Is this

question possible ?

Prime, Composite, Square, and Cubic Numbers.

I. Definitions.

889. A Prime Number is a number that can not be

produced by multiplying together factors other than itself

and unity.

A prime number is divisible only by itself and unity.

890. A Composite Number is a number that may be

produced by multiplying together other factors than itself

and unity.

A composite number is divisible by other factors than

itself and unity.

891. A Square Number is one that may be resolved

into two equal factors.

892. A Cubic Number is one that may be resolved into

three equal factors.
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893. Two or more numbers are prime to each other

when they have no common factor, except unity.

2. Primes.

894. Theorem I,—The number ofprimes is unlimited.

For, let n be the number of primes, and, if n is not

unlimited, let p be the greatest prime number. Then will

2x3x5x7xllX .... XphQ divisible by all primes not

greater than jo ;
and (2 X 3 X 5 X 7 X 11 X X i?) -f 1

not be divisible by any prime not greater than j9. There-

fore, (2X3X5X7X11X Xi?) + 1 is itself a prime

greater than p, or is divisible by a prime greater than p.

In either case, p is not the greatest prime. Therefore, n

is unlimited.

895. Theorem II,—Every prime number, except 2 and

3, belongs to the form 6 ;^ ± 1.

For, every number evidently belongs to one of the

forms Qn, 6 w + 1, 6 w + 2, 6 ?^+ 3, 6 tj + 4, or 6 w+ 5,

in which n may be any integer including 0. Now, 6w,

6 ?i + 2, and 6 w + 4, are each divisible by 2, and 6 tj + 3

by 3
; hence, these forms are composite, except when ^ =

in 6 ?^ + 2 and 6^ + 3, in which case we have the primes

2 and 3.

The only forms remaining to contain primes are Qn-\-l

and 6^+ 5. But 6 w + 5 = (67^ + 6)
- 1 = 6

(?i + 1)-1
= 6 7^' — 1. Therefore, the general form 6 7^ ± 1 contains

all primes, except 2 and 3.

Scholium,—It must not be inferred from this propo-

sition that all numbers expressed by 6 7i ± 1 are prime.

Thus, when w = 4, 6^ + 1 = 25; and when n = 11,

6 71 — 1 = 65.
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Cor,—Every prime above S, increased or diminished

hy unity, is divisible by 6,

896. Theorem III,—iVo rational formula can repre-

sent primes only.

For, if possible, let a-{-bx-\-cc(^-}-dcc^-\- be

prime for all values of x.

When X = m, let a-\-bx-^cx^-\-da?-\- =i?;

then, p = a-\-bm-\-cm^-{-dm^-\-

When X = m-{-np, leta-\-bx-\-cx^-\-da^-\- =g ;

then, q = a-{-b{m-{- np) -{- c{m-\- npf+
d(m-\- npY+ . . . .

= a-\-bm-\-cm^-\-dm^-}- -\-rp

=zp -{- rp =p (1 -\- r)f a composite number.

897. Scholium,—Theform n^-\-n-\-4:l is prime for all

values of n from to 39 inclusive, and theform 2 ^^+ 29

for all values of n from to 28 inclusive. These forms

have been discovered by trial, and are not demonstrable.

898. Theorem, IV,—If a number is not divisible by a

factor equal to or less than its square root, it is a prime.

For, let N=xxy be any number not prime. Then,

if x = y, W= /, and y = VW, But, if ic > VW, then

y < ViV, since x X y = J^- But JV is divisible by y.

Therefore, if iV is not prime, it is divisible by a factor

equal to or less than VJSf, Hence, too, if a number is not

divisible by a factor equal to or less than its square root,

it is prime.

3. Composites.

899. Theorem I.—If a number is a factor of the prod-

uct of two numbers and is not a factor of one of them, it

is a factor of the other.
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Thus, let a; be a factor of a h, and not a factor of a
;

then will it be a factor of 5.

For,
— may be reduced to a terminating continued

fraction [854]. Let — be the conyergent next in yalue

to -. Then, ^ ^ — = — [848, P.] ; whence,
X q X qx

^ -^^

px'^aq = l; and hpx ^ abq =: h.

Now, hp X and abq ?iie each divisible by x
; therefore,

their difference, h, is divisible by x,

900. Car,—If a number is prime to each of two or more

other numbers, it is prime to their product.

901. Theorem II.—Every composite number may be

resolved into one set of prime factors and into only one

set.

1. Any composite number {N) is the product of two

or more factors each less than N, which are all composite,

all prime, or some composite and some prime. As many
of these as are composite are again resolvable into other

factors less than themselves, and so on, until no factor is

further resolvable into factors less than itself and greater

than unity, at which stage all the factors are prime.

2. Let one set of prime factors oi N he a, b, c, ,

and, if possible, let another set be ^, g', r, ;
then will

axbxcx =pXqXrX
Now, suppose a different from q, r, ,

then it is not

contained in q X r X [900] ;
it must, therefore, be

contained in p, but this can only be when a=p, since p
is a prime. But, it a=p, bXcX =qXrX ;

from which it follows as before that b is identical with one

of the factors in qXr X ;
etc.
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902. Theorem III,—The product of any r consecutive

numbers is divisible hy [r.

^ n(n — l)(n — 2) (n — r-\-l) .
,
, , ,

For,
—^ —

1

^^ '—- IS the product

of r consecutive numbers divided by [r,
and it is also the

number of combinations of n things taken r together,

which is evidently a whole number.

903. Cor, J.—The coefficient of the {r + l)th term of

^, , . .... . n{n-l)(n-2)....{n-r-\-l)
the bmomial theorem is -^ —

,

[595] ; therefore,

The coefficient of every term of the binomial theorem is

integral when n is a positive integer,

904. Cor, 2,—If we represent

n(n-X)(n-2) (n-r±V)
^^ ^^ .^ ^^jj^^^ ^^^^^

All factors of the numerator that are prime and are

greater than r are divisors of q.

905. Theorem IV,—Fermafs Theorem. If p be any

prime number, and a be a number prime to p, then

a^~^ — 1 will be divisible by p.

Demonstration : a^ = [1 + (a
—

1)]p

=^ 1 + p{a-l) + ^^^~^\a-lf + . . . .+ {a- V)p (A)

.-. aP — {a
-

\)P -1 = p{a -1) + --^g
+ ^*^^-

= a multiple of p [901. 140, P.].

"~
(B)

Let a = 3, then

ap ~.{a — l)P
— \ = 2/' — 2 = a multiple of p.

Let a = 3, then

aP - (a-\)P -1 = ^p -2p -I = {^P
-

3)
-

{2P
-

2)

= a multiple of p.

... Si* — 3 is a multiple of p [157, P.].



PERFECT SQUARES, 477

By continuing this process, it may be shown by induction that

aP — a is a multiple of p.

But aP — a = a(aP—^ — 1) and a is prime to p; therefore,

aP-^ — 1 is divisible by p.

Perfect Squares.

906. Theorem I.—Uvery square number is of theform
3 m or 3 m + 1.

For, every number is of the form of 3x or 3 a: ± 1.

Now, {3xY = dx^ = d{3x^)=z3m; and

{3x±lY=(9af±6x + l)
= 3{3x±2)-\-l = 3m-{-l.

907. Theorem II.—Every square number is of the

form 4^m or 4 m + !•

For, every number is of the form of ^x, 4cX-\-l,

4a:+ 2, or 4a-+ 3.

Now, {4.xf = 16a^ = 4.(4:3^)
= 4:m;

{4:X + iy =16a^-^ 82; + l = 4(4a;2 + 2:r) + l

= 4m + l;

{4:X + 2Y = 16a^-\-lGx + 4. = 4:
(4:

a^ + 4: x -\- 1)

= 4:m;

and {4:X-{-3y = 16 a^ -\- 24: x -{- 9 = 4:
{4:

x^ -{- 6 x -\- 2) + 1

=4/7i + l.

908. Theorem, III,—Uvery square number is of the

form 5 m or 5 m ± 1.

For, every number is of the form 6x, 5 ic ± 1, or

5 a: ± 2.

Now, (5 xY =z 25x^ = 5 {6a^) = 5m;
(5a; ±1)2 = 25a;2±10a;+ l = 5(5a;2±2^) + l

= 5m-\-l ;

and (5.'c±2)2 = 25a;2±20a;+ 4 = 5 (5 3^ ± 4:X + 1) -1
= 5 m — 1.
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909. Theorem IV,—If a^-\-l^ = (^ when a, h, and c

are integers, then luill ale he a multiple of 60,

For, 1. a^ and h^ can not both be of the form 3 m + 1,

else would c^ be of the form 3m + 2, which is not a

square. Therefore, either a or J is a multiple of 3 [906].

2. a^ and h^ can not both be of the form of 4^ + 1,

else would c^ be of the form 4m+ 2, which is not a

square. Therefore, either a ov h must be a multiple of 4,

or each of them a multiple of 2 [907]. In either case,

ahc is a multiple of 4.

3. a^ and ¥ can not both be of the form 5 m + 1 or

5 m — 1, else would (^ be of the form 5 m ± 2, which is

not a square. Therefore, either a^ or h^ must be of the

form 5 m, or one of the form bm-\-l and the other of

6 m — 1 [908]. In the former case, either a or 5 is a

multiple of 5, and in the latter, c is a multiple of 5, and

in either case, ahc is a multiple of 5.

4. Since ale is a multiple of 3, 4, and 5, and these

numbers are prime to each other, ale is a multiple of 60.

Scholium,—By means of this theorem and the formula

a = V{c -{-l){c
—

I), rational values of a, I, and c may
he determined ly inspection that will satisfy the equation

a^^¥=:(^.

910. Problem. To determine the rational value of x

that will render x^ +px + q a perfect square.

Solution : Let x^ +px + q = (x + mf
then, x^ + px + q = x^ + ^mx + m^

whence, x = ^ ,
in which m may have any

rational value from -- oo to + oo .

Illustration.—What value of x will render a;^ — 7 a;+ 2

a perfect square ?
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Solution : Here p = —
7, g = 2, and let m = 5,

25-2 23 ,6
then, X =

_^_-^Q
=

1117
= - 1

17

. r, o 529 161 „ 3844 /62\2

911. Cor, 1,—For m > Vq and 2m <p, or m < Vq
and 2m > p, m being positive, x will be positive,

912. Cor. 2.—Put m^ — q = n{p — 2m); then

q = m^ — n {p
— 2 m) ;

X = n, an integer ; and

oi?-\-px-\-q — x^ -\-p X -\- m^ — n (p — 2 m)
= {n-\- my, an integer.

7f? —
913. Cor. 3.—Put X = -^ — — m; or

p — 2m

m=^ ± a/^
-

q, then,

x^-\-px-\-q = 0, and a; = —
| :f a/^

which conforms to Art SSI.

Perfect Cubes.

914. Theorem I.—Every cube is of the form 4om or

4m ±1.

For, every number is of the form 4:X, 4:X-{-l, 4 a; + 2,

or 4 a; + 3.

Now, {4:xY = 64:X^ = 4.(16x^) = 4:m;

{4:X-\-iy = 64:a^-\-A83^-\-12x-{-l

= 4 (16 a:^ + 12 rc2 + 3 a;) + 1 = 4m + 1

(4a;4-2)^ = 64a:3_^96^2_j_43^_|_8

= 4(16x3 + 24a;2 + 12a;+ 2)=4m
(4a; + 3)^ = 64ar^ + 144a;2 + 108a;+ 27

= 4:{Ux^-\-36x^-i-27x+'7)-l = 4:m-l
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915. Problem. To determine rational values of x that

will render a? + px^ \- qx + r a perfect cube.

Solution : Put x^ -{ px"^ + qx ^^ r = {x + mf \ then,

(^ — 3m)a;2 + (5'-3m2)a; + (r
—

m3) = 0. (A)

1. Put bm—p, or m =
-^p\

then

_ m^ — r _ jp«-27r^-
q-'dm^- 27q-9p'

' ^^"^

(pS
27 r « \'

~
V 27g-9i?2 )

'

Cor.—If9pq-27r-'2p^ = 0, or r = ^^^Il^^\
3 Q '^*

x^-\-p^+ qx-\-r = 0, and x =
^^—^^.

2. Put m* = r, and suppose r = ri% then m = ri ; and (A) will

become (i?
— 3 ri) x^ + {q

— B Ti^) x = 0; whence,

x= ^o ;
and x^+px^ + qx + r = x^+px^+ qx+ ri^;

and (re + m)^ = (^^3^^)
. Therefore,

^ — 3ri _o )

Cor,—If q =p n, x= —ri, and
7? -\-p :i^ -\-qx-\-rx ^^'

, Scholium,— Other values under particular suppositions

may he obtained hy putting 3m^ = q = 3qi^.

EXERCISE 117.

1. Find which of the following numbers are prime :

19r, 251, 313, 281, 461, 829, 957.

2. Find the least multiplier that will render 3174 a

perfect square.

3. Find the least multiplier that will render 13168 a

perfect cube.
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4. Find which of the following numbers are divisible

by 9, which by 11, and which by both 9 and 11 : 11205,

24530, 342738, 25916, 558657.

5. Show that, if ^+ 3'
is an even number, then is j9

—
g

also an even number, provided p and q are integral.

6. Show that every cube number is of the form 7 w or

7/^±l.

7. Find such a value of x as will render the wax
rational.

Suggestion.
—Put ^/a x = p.

8. Find such values of a; as will render vax-\-h
rational.

9. Prove that 2*" — 1 is a multiple of 15.

'

10. Show that no square number is of the form 3 » — 1.

11. Show that n{n-\-l){^n-\-l) is divisible by 6.

12. Show that {n^ -f 3) (w*+ 7) is divisible by 32, when
n is odd.

13. Show that n^ — n is a multiple of 30.

14. Show that the fourth power of any number is of

the form 5 m or 5 m+ 1.

15. Every even power of every odd number is of the

form 8 w+ 1'

16. Show that every square can be expressed as the

difference between two squares.

17. Show that a' -\-a and a' ^a are even numbers.

18. Show that every number and its cube leave the

same remainder when divided by 6.

19. If ?^ > 2, show that n^ — 5n^-{-4:n is divisible by
120.

20. It n is a, prime number greater than 3, show that

n^ — 1 is divisible by 24.
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21. Find such a value of x as will render Vox rational.

Suggestion.—
Let ^/a x = p, any rational quantity, then will re = — .

22. Find such a value of a; as will rationalize vax-{-h.

Suggestion.—Put ^/ax + b = p, and prove x = —
.

23. Find such a value of x as will rationalize

Suggestion.
—Put \/ax^ + bx = px, and prove x = g_ .

24. Find such a value of x as will rationalize

Suggestion.
—

Put '\/ax^ + bx + c^ = px + c, and prove x = ^_ ^
.

25. Find such a value of a; as will rationalize

Va^a^-\-bX'^c.
Suggestion.

—
Put ^/a^ x^ + bx + c = ax + p, and prove a; = , _ ^

—
.

26. Find such a value of a; as will render Vax^-{-bx-\-c

rational when J^ — 4 « c is a perfect square.

Suggestion.—Put \/ax^ + bx + c = 0, and b^ — 4ac=z q^, and

-b ±q
prove a; = -2^.

27. Find such a value of x as will rationalize

, , p^-b
Suggestion.—Put ^a^ ->cbx^ = px, and prove x =

^
.

28. Find such a value of a: as will rationalize

Vaa^-^ba^-\-cx-\-dK
Suggestion.- ^,_^^^
Put Va^ + 6a;« + ca; + d« =

2^ a:+d, and prove x = -^ d«



ANSWEES.

1. l+x+x'+x'

Exercise
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5, a;4 + 8a:3 + 24a:2 + 32a:+ 16 6. a;4_20a;3+ 150a:2-500a;+625

7. 16 a;4-16 2:3-64.1:2 + 4 a; +15 8. (a:+ 2) (a; +3) (a: + 4)

9. (a:-3)(a:-4)(a:+5) 10. (a:+ 2)(a:+3)(a:+ l)(a;-l)

11. (a;+ 2)(a:-3)(a:+ 4)(a:-5) 12.
(a;+ 2)(a;-2)(a;+3)(a;-3)(a;+4)

Exercise 91.

1. a4_i2a3a;2+ 54a2a:4_i08aa;«+ 81a:4

2. 32 + 400 a: + 2000 x^ + 5000 x^+ 6250 a:* + 3125 a:*

3. a:6-18aa:^ + 135a2a:4_540a3a;3+i2i5a4a:2_i458a6a:+729a«

4. 128 a:!^+ 2240 x^^ + 16800 a;io+ 70000 a?+ 175000 a:« + 262500 a:^+
218750 a:2 + 78125

5. a;4-40 xl + 700 3:^-7000 a;t + 43750 a:2-175000a:l +437500 x

- 625000 a:i + 390625

6. 2187 a;¥ + 5103 at a:^ ^. 5103 ^3 ^^.^ + 2835 ai a:l + 945 a« a:^ +

189 a¥a:f+ 21 a9a:§+a¥

7.
l__a:-ga:2-_a:3

8. at — -5-
a~i ^ — 77 ^~ ^ ^^ — 01 ^~~ ^ ^

o 9 81

9.xt-|x-i-|x-5-j|g^-|

10. a;— 4 — — aa;~4 + —a^x—i — r-^a^a:~4
-o o Id

11. a~%x~% — — a~V Ja:~ (T + —a~V h^x~^ —

12. a:— ^ +
-^
aix—^ + -^aia;—

V + — a^a;"^

14. 8-06225; 8*94427; 7*006796; 5-000980

15. 2449440a.-* 16. -
-^^a^

17. - ^a""^^'

,3, ^r(r+l)(r+2)(r
+
3)^_,,^,,^_.

Li

19. 2^ 20. iJ^ 21.
343

Exercise 92.

1. n(n + l); |n(n+ l)(n+2) 2. (2n-l)«; |n(4w«-l)
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3.
^n(n + l)', ^n(n+ l)(n+ 2) 4. w(n + 3); ^n(n + l)(2n+ 7)

5. w2; ^nin+l){2n+l) 6. 2n{2n-l); -n{n + l){4n-l)o o

1. n{n+ l)in+2); -^n(n
+ l){n + 2)(n+S)

8. n(n+ 4)(n+S); -jn(n+ l){n + 8)in+ d)

9. n(n+ 2)(n+ lf; ^n(n+ l)(n + 2)(n + d)i2n + d)

10. {2n+ l){2n+ 3){2n+ 5); -i(2w+ l)(2n + 3)(2w+ 5)(2w+ 7) -IS^o o

n 1 J./ 1
1^

1 1 1_\ 11

3?i + l' 3 3 V
"^

2
"^

3 w + l w+ 2 n + dj' 18

13 iri____i___V 1
8 V4 2(?i + l)(n+ 2)y' 32

^ 6 n+ ll
^ 21

180 12(2n+ l)(2n + 3)(2w+ 5)' 180

15. i _ -_1^+^; 4 16. ^(9n^+ 10n^-Sn-4)4 2(ri+ l)(w + 2)' 4 12^ ^

^^
n(n+ l)(n+ 2)(n+3) ^g _w_

[4 n+ 1

19. n+ 1 K; 20. 2-978809

Exercise 93.

1. x = y-y^ + y^-y*+ 2. x = y+ -^y^+ -^y^+ 24 2/*+

3. x = y—2y^ + Sy^—4:y^+ 4. x = y—y^+y^—y'' +

b.x = (y-1) - 1
(i/-l)2 + 1

(^-1)3 _ ^ (y_l)4 + . . . .

6.x = (y-1) + 2iy-lf + liy-lf + 30(2/-l)*+ ....

7. a; = i-|2 + |^-^ = '17590144 8. a; = -00999999

Exercise 94.

1.^ = 3, ^=-1; ., i~^ ,
2. » = 2, q = 2; , ^^"*"^^ ^^ ^ 1— 3a;+ a;2
^ ' ^ 1—2aj—2a;2

o *, ;t Q 2+ 8a; ^ . ^ 3-lOa;
3.i? = 5, 5= -3; , r:^.Q^2 4.i? = 4, ^=-5;l_5a;+ 3«2 -./---,«- "'

i_4a;+5a;2
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TOO o 1—x—^x^

^ o o A
l-5x+ Sx^

„ ^ ^ l-x-1809x^-Udlx-'
'J'P = ^^9 = ^; 1_3^_3^.

8. p = 2, ^ = —3
;

9.p=-2, q = 2;

l-2ic+ 3a;2

2 + 3a:-2208a;« + 1616ic9

10. i)=l, q=-l, r=l; 1—a;+ a;2— ic*

Exercise 95.

, 2 3 „ 3 2
1. —TR + 7i

2.
a:+2 a;-2 2a;+ l 2a;-l

,12 3 ^3 5
3. - + -—

r + —^ 4.
X x+ 1 x + 2 x+ 1 (x+ l)^15 7 - 3 4

°'
^J_.q /'^_La\2

"'"
/^j..q\3

^'
<rJ_9.

"^
a:+3 (a;+3)2 (a;+ 3)3 iC+2

'

(x-df

P , Q
7. + 8. —^-— +a—x o+x px + q (px+q)^^2 3 ,^222

x^+ x+ 1 x^—x + 1 X l + 2a; 1— 2a;

5 7_ 1 3

(rc-l)* (a;-l)3
"^

(ar-l)^
"^

a:-l

12
^

4.
^-^^

13 1
3

4.
»

1 a;+l a;+5 ,, 1 x+ l_
1)

^^'
4(a;-l)

"^

4(a;«+ l)
"*"

2(a;«+ l)«

^^"
2(a;+l)

"^

2(a;2 +

,^111 1 9 1 x+1
16. - - + -^ . + jt; TT +

X
'

x^ x^
'

8(a;-l)
'

8(a;+ l) 4(a;+ l)« 4(a;2+ l)

3a: 1 ,„ 1 1 3 3 2
17. -o-t; = K 18. r -: + ^—-^ - . ..o +

a:«+ 2ic-5 a;-3 ic-l ic+ 1 (a;+ l)« (a;+ l)2 (a:+l)*,^111 1 9 1 a;+ l
19. + -J 8 +

a; a:» a:» - 8(2;-l) 8(2; + l) 4(a; + l)» 4(a;» + l)



1 x+ 1
^""

3(a;+ l) "^2(0:2 + 1)

^^'

22.

^iV^6'Tf^i2;S^.
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Exercise 100.

1. {x+ Zf{x-2f 2. (x-2)^{x-iy(x+d)

3. {x+ Sf(x-3f(x^+x+l) 4. (x-2)\x + 2f{x-df(x+Sy
5. {x-lY(x+iy{x+d)(x-d)

Exercise 101.
Q

1. Max. 1 -J ;
min. —5 2. Min. —3

;
max. —128

3. Min. -4 4. Min. -4 5. Max. 10
;
min. -22

6. Min. 0; max. 18+ 7. Max. (^Y
8. No turning values. 9. Min. —14 10. Min. —14

11. Min. 12. Min. —16 13. At the middle point.

1 32 8
15. o-a 16. ^ V r*, or ^r^ of the vol. of the sphere.

O ol at

17. -^a^ or an inscribed square. 18. -j <ir a^ 19.
-^
a

20. Square = 2r' 21. An isosceles triangle.

Exercise 102.

1.x*+ 2 a^-9 x^ + 63 a;-135 = ;
roots of fn {x) = dx roots of Fn (x)

2. x^i-4: x*—2 x^+4 a;2—112 = ; roots of /« {x) = 2x roots of Fn (x)

3. x^ + 12 a;*-320 x^ + 1792 a;-1024 = ;
roots of /„ (x) =

4x roots of ^n(a;)

4. a;'^-2a;*+ 9a;3-18a;2 + 108a;-162 = 0; roots of /„ (a:)
=

3 V^oots of (A)

5. a:«-2 a;5+ 2 x*-4: a:*+ 24 a:^ + 32 a;+ 32 =
;
roots = 2 Vroots of {A)

6. a;3«+ 8 . 9^x^+36 . 9»a;24 + 10 . 9^9a;'«-4 .934 = 0; roots =
9 Vroots of {A)

7. a;''-a;6+ 18a:*-162a;9-2187 = 0; roots = 3 Vroots of {A)

8. a;«-10a;*-36a:4_i2288 = 0; roots = 4 Vroots of (^)

9. a;4+ 6800a;-9000 = ;
roots = 10 Vroots of (A)
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13. ic = 3, -2, -1 14. a:=-3, -5, -1, ±|
15. a: = -l, ll, -li 16. ic = 2, -3, -5, 2

17. re = 2, 2, -3, -3 18. a; = 1, 1, -2, -2, -2

19. a; = -1, -1, -1, 2, -3, -|
Exercise 104.

1. -1 + ,
4 + , -9+ 2. -6-6+ 3. 0-3+

4. 0-8 + ,
3 + ,

-3 + ,
-0-1 + ,

-0-6+

5. 2 + , -2+ 6. 2 + ,
0-6 + ,

0-4 + ,
-3 +

Exercise 105.

1. 775 2. 240 3. -87938, -2*53208, -1-34729

4. 3-85808, 1-60601, 1-44327, -2-90737

5. -5, 4-05607, 11-15306, 12-79085

6. -1-12579 7. 2-34244 8. 1-25992 9. 1-3797

10. 3-2131, 3-2295, -17-4426 11. -80285, -5-4335

12. 8-41445 13. a;3 4.32a;2 + 343a;-13087800 =

Exercise 106.

1. a; = l, 1±2\/^ 2. a; = 4, 1±\/^
3.a; = 5, 3±\/^ 4,x=-2±^/^
6,x = d, i(l±V^ 6,x=-4, _i(l±v^
1, x= -2, -2, -3 8. x = 3, -2, -2
9. a: = 2, 2, -3 10. a; = 4, -2±'v/-^

1

2

13. a; = 5, 1, -2 14. a: =-5, -1, 2

11. a;=r-6, 3±'\/^ 12. a; = 1,
^
(3± V^l)

Exercise 107.

1. a; = l, i(l±^Z3") 2. a^ = -l, 2±\^

Z.x = \, -1, i(3±V5) 4. a: = l, -1, \{-^±V~^)

5. a; = i(5±V2T, ±a/^ 6. a; = -l, -1, -1, -1, -1

7. a; = l, 2, i, -3, -i 8. a; = -l, -5, -1, 2±V3
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y = -{a

11. a; = 2, _

_p+ q—r—s

n a
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Esercise 116.
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