

Digitized by the Internet Archive in 2013

ANTENNA LABORATORY

Technical Report No. 45

NUMERICAL ANALYSIS OF THE EIGENVALUE PROBLEM OF WAVES IN CYLINDRICAL WAVEGUIDES

by
C.H. Tang and Y.T. Lo

11 March 1960

Contract AF33 (616) -6079
Project No. 9-(13-6278) Task 40572

Sponsored by:
 WRIGHT AIR DEVELOPMENT CENTER

```
Electrical Engineering Research Laboratory Engineering Experiment Station
University of Illinois
Urbana, Illinois
```


ACKNOWLEDGMENT

The authors wish to express their gratitude to Professors G. A. Deschamps P. E. Mayes for their helpful suggestions and comments and to Professor Scott for suggesting this investigation.

CONTENTS

Page

1. Introduction 1
1.1 Equivalent Network Approach 1
1.2 Numerical Methods 3
1.2.1 Variational Method 3
2. Finite Difference Method 5
2.1 Approximations 8
2.2 Higher Order Formula 9
2.3 Approximation in Neumann Boundary Condition 11
2.4 Computational Procedure 12
2.5 Study of Convergence 15
2.6 Ridge Waveguide 15
3. Computations Based upon Various Boundary Condition Approximation 30
3.1 Results Obtained from Improved Approximation for Wave Equation 30
3.2 Results Obtained from Improved Approximation for Neumann Boundary Condition 30
4. Conclusion and Discussion 33
References 36
Appendix A 37

ILLUSTRATIONS

Figure Pag

1. Ridged Waveguide and Its Equivalent Network 2
2. Equivalent Circuit in the Transverse Plane of a Ridged Waveguide 2
3. Window in a Rectangular Guide and Its Equivalent Circuit 2
4. Mesh Pattern for Finite Difference 5
5. Mesh Pattern with a Curved Boundary 6
6. Mesh Points in a Given Cross-Section 7
7. Relation of Interior, Exterior and Boundary Point 11
8. Computation Procedure Diagram 12
9. Convergence Curves for TE_{10} and TE_{20} 17
10. Convergence Curves for TE_{11} and TM_{11} 18
11. Comparison between Approximated Cut Off Wavelength ($\mathrm{n}=21$) and Exact Cut Off Wavelengths of a Rectangular Guide for Various TE Modes 21
12. Comparison between Approximated Cut Off Wavelengths ($\mathrm{n}=78$) and Exact Cut Off Wavelengths of a Rectangular Guide for Various TE Modes 22
13. Mode Designations 23
14. Mode Designations 24
15. Field Distribution in Ridged Guide 25
16. Field Distribution in Ridged Guide 26
17. Field Distribution in Ridged Guide 27
18. Comparison between Sets ($\mathrm{n}=9$ and $\mathrm{n}=57$) of Approximate Cut Off Wavelengths of a Ridged Guide 28
19. Convergence Curves of Cut Off Wavelength of a Ridged Waveguide 29
20. Convergence Curves for Neumann Problem with Different Orders of Approximation on Wave Equation but with Same Order $O(h)$ on Boundary Condition 31
21 Convergence Curves for Neumann Problem with Different Orders of Approximation on Boundary Condition but with the Same Order on Wave Equations 32
21. Convergence Curves for Various Approximations for Wave Equation and That for Boundary Condition (Neumann Problem) 34

1. INTRODUCTION

The waves in a cylindrical waveguide are found from solutions of the two dimensional differential equation

$$
\begin{equation*}
\nabla^{2} u+k^{2} u=0 \tag{1}
\end{equation*}
$$

where u is a function of the coordinates in the transverse plane and k is a constant. The Dirichlet boundary condition, $u=0$ on the boundary of the crosssection, corresponds to Transverse Magnetic modes and the Neumann boundary condition, $\partial \mathrm{u} / \partial_{\mathrm{n}}=0$ on the boundary, corresponds to Transverse Electric modes. In (1) k is the wave number and the function u, which is independent of the longitudinal coordinate z, represents the component of electric (TM-case) or magnetic (TE-case) field intensity along longitudinal direction. The time dependence is assumed to be of the form $e^{-i \omega t}$ in this formulation.

The permissible values of k are also called eigenvalues of the differential Equation (1) and u is the eigenfunction. Since the wave is confined to a finite region, the spectrum of the eigenvalues $\left\{k_{n}\right\}$ is a discrete set. According to mode theory, these eigenvalues k_{n} determine the cut off frequency of each mode propagating along the waveguide. It is necessary only to find the resonant frequency of the two dimensional problem defined by the guide boundary since there is no axial variation at cut-off; all energy does propagate back and forth in the transverse plane.

The exact solution of (1) with prescribed boundary condition can be obtained only when the given boundary constitutes a (or a set of) coordinate surface of the separable coordinate system. It has been shown only few regular cross sections can be treated by the method of separation of variables. Waveguides with odd cross section, yet valuable in practical use (such as folded waveguide and ridged waveguide), demand the result for engineering design.
1.1 Equivalent Network Approach

Some of the "non-separable" problems can be treated by using the equivalent circuit representation of the cross-section ${ }^{1}$. For ridged waveguide, the approximate equivalent circuit is obtained by considering region I (Figure 1) as a capacitor of capacity $C_{B}=\epsilon S / h$ and regions II as inductances of value $L_{A}=\mu l b$

$$
\begin{equation*}
f_{C}=\frac{1}{\partial \pi \sqrt{C_{B} L_{A} / 2}} \tag{2}
\end{equation*}
$$

Figure 1. Ridged Waveguide and Its Equivalent Network

It is seen that it applies only for the case of $b \gg h$.
More accurate equivalent representation for cut off calculation has bee obtained by considering the ridges as two step discontinuities ${ }^{2}$ (Figure 2) where the step susceptance B is approximated by using that of a capacitive window (Figure 3).

Figure 2. Equivalent Circuit in the Transverse Plane of a Ridged Waveguide

Figure 3. Window in a Rectangul Guide and Its Equival Circuit

Then by symmetry, the resonant input function at the center is either zero or infinity. Thus we have

$$
\begin{array}{ll}
\cot \beta \ell-\frac{b}{d} \tan \frac{\beta S}{2}-\frac{B}{Y_{01}}=0 & \text { For } T E_{n o} n=o d d \tag{3}\\
\cot \beta l+\frac{b}{d} \cot \frac{\beta S}{2}-\frac{B}{Y_{01}}=0 & \text { For } T E_{m o} m=\text { even }
\end{array}
$$

where

$$
Y_{01}=\frac{\beta}{\omega_{\mu}} \frac{1}{b} \quad Y_{02}=\frac{\beta}{\omega_{\mu}} \frac{1}{d}
$$

Numerical solutions of above transcendental Equations (3) and (4) can be obtained by tabulation. It is again restricted to the wavelength range of $2 b / \lambda<1$ for the single ridge and $b / \lambda<1$ for the double ridges.

1.2 Numerical Methods

The approximate solution of (1) with "non-separable" boundary can also be obtained from numerical analysis; such as the variational and finite difference methods or the analogue method of a network analyzer ${ }^{4}$.

1.2.1 Variational Method

The approximate eigenvalue of the wave equation can be obtained by using the approximated Rayleigh-Ritz formula

$$
\begin{equation*}
\mathrm{k}_{1}^{(o)^{2}} \approx-\frac{\Sigma \mathrm{u}^{(0)} \nabla^{2} \mathrm{u}^{(0)}}{\Sigma_{\mathrm{u}}(\mathrm{o})^{2}} \tag{5}
\end{equation*}
$$

We start with the unperturbed eigenfunction $u^{(0)}$ in the given cross-section (which corresponds to the eigenfunction of the rectangular guide of same aspect ratio, but without ridge). After obtaining the first approximation value of $k_{l}^{(o)}$, the wave equation in finite difference form can be used as a formula to obtain the higher order value of the eigenfunction $u^{(1)}$ (the formula will be derived later). Hence the iterative process consists of successive corrections between the value $\mathrm{k}^{(\mathrm{i})}$ and eigenfunction $\mathrm{u}^{(\mathrm{i})}$.

It has been shown that the formula (5) always converges to the lowest eigenvalue. For higher order eigenvalue, say the second, the first term of the orthogonal expansion $\Sigma c_{n} u_{n}$ must be eliminated from the assumed function
(o)
u. By using the orthogonality properties of these normal functions, C_{1} can be determined, and ($u^{(0)}-C_{1} u_{1}$) is then used for the computation of th: second eigenvalue.

A combination of variation and relaxation methods has been used by Blac and von Rohr ${ }^{3}$ to calculate the cut off wavelength of semicircular ridges in rectangular waveguide. A typical sequence of values for k^{2} has been given as $11.1 / a^{2}, 8.3 / a^{2}$ and $7.7 / a^{2}$ for nets containing respectively 19,97 and 4 pts. (where a is the broad face demension of the guide), with the error clai to be less than 2 percent.

2. FINITE DIFFERENCE METHOD

Another way of solving this particular boundary value problem is by the use of finite differences ${ }^{*}$ 。 The differential operator is first approximated by a finite difference formula. Then by setting up a finite number of mesh points, we transform, approximately, the wave equation and the boundary condition into a matrix eigenvalue problem. From the matrix we get a set of approximate eigenvalues corresponding to a set of cut-off frequencies of the particular waveguide structure.

The study reported here was initiated to investigate the practicality of using a general purpose, high speed digital computer to perform the calculation of cut-off frequencies for cylindrical waveguides with irregular crosssection.

The Laplacian ∇^{2} operating on a function u as in the scalar Helmholtz equation, can be replaced by a set of finite difference approximations relating the values of the function at the nodes of a mesh pattern such as shown in Figure 4.

Figure 4. Mesh Pattern for Finite Difference

[^0]From a Taylor's series expansion we have

$$
\begin{aligned}
& \left.u_{1}\right|_{0}=u_{0}+\left(\frac{\partial u}{\partial x}\right)_{0} h+\frac{1}{2!}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{0} h^{2}+\frac{1}{3!}\left(\frac{\partial^{3} u}{\partial x^{2}}\right) h^{3}+0\left(h^{4}\right) \\
& \left.u_{3}\right|_{0}=u_{0}-\left(\frac{\partial u}{\partial x}\right)_{0} h+\frac{1}{2!}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)_{0} h^{2}-\frac{1}{3!}\left(\frac{\partial^{3} u}{\partial x^{2}}\right) h^{3}+0\left(h^{4}\right)
\end{aligned}
$$

adding these two equations and neglecting the terms after the third gives:

Similarly

$$
h^{2}\left[\frac{\partial^{2} u}{\partial x^{2}}\right]_{0}=u_{1}+u_{3}-2 u_{o}+0\left(h^{4}\right)
$$

Hence

$$
\begin{equation*}
h^{2}\left[\nabla^{2} u\right]_{0}=u_{1}+u_{2}+u_{3}+u_{4}-4 u_{o}+0\left(h^{4}\right) \tag{6}
\end{equation*}
$$

For a curved boundary we have

$$
\begin{equation*}
\nabla^{2} u \approx \frac{1}{h^{2}}\left[\frac{2 u_{B}}{\xi(1+\xi)}+\frac{2 u_{c}}{\eta(1+\eta)}+\frac{2 u_{3}}{(1+\xi)}+\frac{2 u_{4}}{(1+\eta)}-\left(\frac{2}{\xi}+\frac{2}{\eta}\right) u_{0}\right] \tag{7}
\end{equation*}
$$

Thus for an ordinary point the wave equation becomes

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+u_{4}+(a-4) u_{0}=0 \tag{8}
\end{equation*}
$$

In terms of mesh pattern, ∇^{2} can be expressed as

$\nabla^{2}=\frac{1}{h^{2}} \quad$| | 1 | |
| :---: | :---: | :---: |
| 1 | -4 | 1 |
| | 1 | |

and

$$
\begin{equation*}
a=h^{2} k^{2} \tag{10}
\end{equation*}
$$

Setting up a suitable number of meshes for a given cross section, and applying the above procedure for each point, we would have as many-simultaneous equations as the number of points in the cross section:

Figure 6. Mesh Points in a Given Cross-Section

The difference equations corresponding to points 1,2 , and 5 with Dirichlet boundary condition are respectively

$$
\begin{align*}
(a-4) u_{1}+u_{2}+u_{4} & =0 \\
u_{1}+(a-4) u_{2}+u_{3}+u_{5} & =0 \\
- & - \tag{11}\\
u_{2}+u_{4}+(a-4) u_{5}+u_{6}+u_{8} & =0
\end{align*}
$$

Point 1 is a corner point, point 2 is an ordinary boundary point and point 5 is an interior point.

Writing in matrix form, we get the general formula

$$
\begin{equation*}
\overline{\overline{\mathrm{A}}} \overline{\overline{\mathrm{u}}}=a \overline{\overline{\mathrm{u}}} \tag{12}
\end{equation*}
$$

where $\overline{\bar{A}}$ is the matrix with its element $a_{i j}$ corresponding to the coefficient of u_{j} at ith equation, $\overline{\bar{u}}$ is the eigenvector ($u_{1} u_{2} \ldots u_{n}$). In order to get the non-zero eigenvector $\overline{\bar{U}}$, we set

$$
\begin{equation*}
\operatorname{det}(\overline{\bar{A}}-a \overline{\bar{I}})=0 \tag{13}
\end{equation*}
$$

where $\overline{\bar{I}}$ is the identity matrix. This equation leads to the set of eigenvalues, $\left\{a_{n}\right\}$, corresponding to the roots of the nth order polynomial derived from (13

The relative cutoff wavelength λ_{i} / a, of the $i t h$ mode, in terms of the eigenvalues will be

$$
\begin{equation*}
\frac{\lambda_{i}}{a}=\frac{2 \pi \mathrm{~h}}{a \sqrt{a_{i}}} \tag{14}
\end{equation*}
$$

2.1 Approximations

The approximations involved in the finite difference method are
(1) Finite mesh size, h
(2) Truncation error in Taylor series expansion
(3) Approximation in Ncumann boundary condition which will be discussed in 2.3.

In order to improve the accuracy of the result, especially in the TE case, more terms in the Taylor series expansion may be taken into account. The point pattern representation (see Figure 4) of the Laplacian when neglecting the terms after the third is

$$
\begin{equation*}
\nabla^{2}=\frac{1}{h^{2}} \tag{9}
\end{equation*}
$$

	1	
1	-4	1
	1	

that for neglecting the terms after the fifth is ${ }^{5}$

$$
\begin{equation*}
\nabla^{2}=\frac{1}{840 \mathrm{~h}^{2}} \tag{15}
\end{equation*}
$$

-3	-16	-32	-16	-3
-16	176	800	176	-16
-32	800	-3636	800	-32
-16	176	800	176	-16
-3	-16	-32	-16	-3

Due to the complexity of (15) and the fact that it results in an unsymnetrical matrix in the Neumann problem, the derivation of an alternative formula is desired.

Define the following operators:

$$
\begin{aligned}
& E f(x)=f(x+h) \\
& D f(x)=f^{\prime}(x) \\
& \delta f(x)=f\left(x+\frac{h}{2}\right)-f\left(x-\frac{h}{2}\right) \\
& E^{n} f(x)=f(x+n h) \\
&- \delta=E^{\frac{1}{2}}-E^{-\frac{1}{2}} \\
& E^{\frac{1}{2}}=\left(1+\frac{1}{4} \delta^{2}\right)^{\frac{1}{2}}+\delta
\end{aligned}
$$

By Taylor series expansion

$$
E f(x)=f(x+h)=\left[1+\frac{h D}{1!}+\frac{h^{2} D^{2}}{2!}+\frac{h^{3} D^{3}}{3!}+\ldots\right] f(x)
$$

we obtain

$$
\begin{aligned}
& E=e^{h D} \\
& h D=\log E=2 \log \left[\left(1+\frac{1}{4} \delta^{2}\right)^{\frac{1}{2}}+\frac{1}{2} \delta\right]=2 \sin h^{-1} \frac{\delta}{2} \\
&=\left(\delta-\frac{1^{2}}{2^{2} \cdot 3!} \delta^{3}+\frac{1^{2} \cdot 3^{2}}{2^{4} \cdot 5!} \delta^{5}-\frac{1^{2} \cdot 3^{2} \cdot 5^{2}}{2^{6} \cdot 7!} \delta^{7}+\ldots\right)
\end{aligned}
$$

hence

$$
\begin{align*}
D^{2} u & =u^{\prime \prime}=\frac{1}{h^{2}}\left[\delta^{2}-\frac{1}{12} \delta^{4}+\frac{1}{90} \delta^{6}-\frac{1}{560} \delta^{8}+\ldots\right] u \\
& \approx \frac{1}{h^{2}} \delta^{2}\left[1-\frac{1}{12} \delta^{2}\right] u \approx \frac{1}{h^{2}} \delta^{2} \frac{1}{1+\frac{1}{12} \delta^{2}} u \tag{16}
\end{align*}
$$

The approximate formula is thus obtained

$$
\begin{equation*}
h^{2}\left[1+\frac{1}{12} \delta^{2}\right] u^{\prime \prime}=\delta^{2} u \tag{17}
\end{equation*}
$$

For the one dimensional wave equation

$$
\begin{equation*}
u^{\prime \prime}+k^{2} u=0 \tag{18}
\end{equation*}
$$

we get

$$
\delta^{2} \mathrm{u}=-\mathrm{h}^{2} \mathrm{k}^{2}\left[1+\frac{\delta^{2}}{12}\right] \mathrm{u}=-\mathrm{a}\left[1+\frac{\delta^{2}}{12}\right] \mathrm{u}
$$

hence

$$
\begin{gather*}
u_{n+1}-2 u_{n}+u_{n-1}=-a u_{n}-\frac{a}{12}\left[u_{n+1}-2 u_{n}+u_{n-1}\right] \\
\left(1+\frac{a}{12}\right) u_{n+1}-\left(2-\frac{5}{6} a\right) u_{n}+\left(1+\frac{a}{12}\right) u_{n-1}=0 \tag{19}
\end{gather*}
$$

or

Similarly, for a two dimensional wave equation, we get
24

1	4	1
4	-20	4
1	4	1

$u=-a$

1	10	1
10	100	10
1	10	1

u

The order of approximation of (20) corresponds to that of (15).

2.3 Approximation in Neumann Boundary Condition

In the Neumann boundary condition, several possible approximations are considered. Let u_{o} be the value of u at a boundary point adjacent to an interior mesh point with value u_{1} and an exterior point with value u_{-1}

$$
\begin{align*}
& u_{1}=u_{0}+h u_{0}^{\prime}+\frac{h^{2}}{2!} u_{0}^{\prime \prime}+\ldots \\
& u_{0}^{\prime}=0 \\
& u_{1}=u_{0}+0\left(h^{2}\right) \tag{21}
\end{align*}
$$

Figure 7. Relation of Interior, Exterior and Boundary Point.
b.

$$
\begin{align*}
& u_{-1}=u_{1} \\
& u_{1}=u_{0}+h u_{0}^{\prime}+\frac{h^{2}}{2!} u_{0}^{\prime \prime}+\frac{h^{3}}{3!} u_{0}^{\prime \prime \prime}+0\left(h^{4}\right) \\
& u_{-1}=u_{0}-h u_{0}^{\prime}+\frac{h^{2}}{2!} u_{0}^{\prime \prime}-\frac{h^{3}}{3!} u_{0}^{\prime \prime \prime}+0\left(h^{4}\right) \\
& u_{0}^{\prime}=0 \\
& u_{1}=u_{-1}+0\left(h^{3}\right) \tag{22}
\end{align*}
$$

c. In this case, we relate the wave equation to the boundary approximalion as following:

$$
\begin{aligned}
u_{1}-u_{0} & =(E-1) u_{0}=E u_{0}-u_{0}=e^{h D} u_{0}-u_{0} \\
& =\left[1+h D+\frac{h^{2} D^{2}}{2!}+\ldots\right] u_{0}-u_{0}
\end{aligned}
$$

hence with the wave equation relation $u_{o}^{\prime \prime}=-k^{2} u_{o}$ we have

$$
\begin{align*}
& u_{1}-u_{o}=h u_{o}^{\prime}+\frac{h^{2}}{2!} u_{0}^{\prime \prime}+\frac{h^{3}}{3!} u_{0}^{\prime \prime \prime}+\ldots \\
& =h u_{o}^{\prime}-\frac{a}{2} u_{o}-\frac{a h}{6} u_{o}^{\prime}+\ldots \\
& \text { Since } \\
& u_{o}^{\prime}=0 \\
& u_{1}=\left[1-\frac{a}{2}+\frac{a^{2}}{24} \ldots\right] u_{o} \\
& u_{1}=\left(1-\frac{a}{2}\right) u_{0}+0\left(h^{3}\right) \tag{23}
\end{align*}
$$

2.4 Computational Procedure

The computational procedure used in this finite difference method is as follows

Figure 8. Computation Procedure Diagram

The matrix $\overline{\bar{A}}$ is first scaled so that its norm is less than 1 ; i.e.,

$$
\sum_{i j} a_{i j}^{2}<1
$$

Then by using the ILLIAC, the University of Illinois digital computer, we can determine the eigenvalues a up to a maximum matrix size of 128×128 (Library Routine M20-234, Digital Computer Laboratory, University of Illinois) and we can determine both the eigenvalue a and eigenvector U up to a maximum matrix size of 40×40 (Library Routine M18-213). However, in this procedure, we are restricted by the present technique of computer programming to the symmetric matrix, since the possibility of complex eigenvalue for an unsymmetrical matrix makes the programming much more involved.

In some cases, the results thus obtained can be very simply improved by using the Richardson's extrapolation ${ }^{6}$.

It is reasonable to suppose that the error in the approximation is a function of mesh size h. If this function is expanded into a Taylor series we can write

$$
\begin{equation*}
\lambda_{o}-\lambda(h)=B h+c h^{2}+\ldots \tag{24}
\end{equation*}
$$

where

$$
\lambda_{0}=\lim _{h \rightarrow 0} \lambda(h)
$$

we assume that the term $B h$ is the major part of the error. If we calculate two approximate solutions λ_{1} and λ_{2} with different mesh size h_{1} and h_{2} respectively then

$$
h_{2}\left(\lambda_{0}-\lambda_{1}\right)-h_{1}\left(\lambda_{0}-\lambda_{2}\right)=h_{2}\left(\mathrm{ch}_{1}^{2}+\ldots\right)-h_{1}\left(c h_{2}^{2}+\ldots\right)
$$

solving for λ_{o}, we obtain the extrapolation formula

$$
\begin{equation*}
\lambda_{0}=\frac{1}{h_{2}-h_{1}}\left[h_{2} \lambda_{1}-h_{1} \lambda_{2}\right]-c h_{1} h_{2}+\ldots \tag{25}
\end{equation*}
$$

If the error function can be expressed as an even function of h

$$
\begin{equation*}
\lambda_{o}-\lambda(h)=c h^{2}+E h^{4}+\ldots \tag{26}
\end{equation*}
$$

which is the case for our wave equation approximation, we have

$$
\begin{equation*}
\lambda_{\mathrm{o}}=\frac{\mathrm{h}_{2}^{2} \lambda_{1}-\mathrm{h}_{1}^{2} \lambda_{2}}{\mathrm{~h}_{2}^{2}-\mathrm{h}_{1}^{2}}+0\left(\mathrm{~h}_{1}^{2} \mathrm{~h}_{1}^{2}\right) \tag{27}
\end{equation*}
$$

For a set of data which increases monotonically

$$
\lambda_{2}>\lambda_{1} \quad \text { if } h_{2}>h_{1}
$$

the extrapolated value λ_{e} obtained by dropping the higher order terms in (27), becomes

$$
\begin{equation*}
\lambda_{e}=\lambda_{2}+\frac{\lambda_{2}^{-\lambda_{1}}}{h_{1}^{2}-h_{2}^{2}} h_{2}^{2}>\lambda_{2} \tag{28}
\end{equation*}
$$

If $h_{2} \longrightarrow 0$ then λ_{e} approaches λ_{2} which in turn approaches the exact value λ_{o} as seen from (27).

On the other hand, for a set of data decreasing monotonically

$$
\begin{gather*}
\lambda_{1}>\lambda_{2} \quad \text { if } h_{2}<h_{1} \\
\lambda_{e}=\left(\lambda_{2}-\frac{\lambda_{1}-\lambda_{2}}{h_{1}^{2}-h_{2}^{2}} h_{2}^{2}\right)<\lambda_{2} \tag{29}
\end{gather*}
$$

As $h_{2} \longrightarrow 0$, the same conclusion as before is reached. In many cases, this methoc shows a great improvement with practically no further labor added in the overall computation.

By using two data λ_{1}, λ_{2}, we can eliminate the necessary knowledge of coefficient c; therefore, the result is accurate to $O\left(h^{4}\right)$. By generalizing this idea with a set of a data $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, it seems that n coefficients can be eliminated and the result will be accurate to $O\left(h^{2 n}\right)$. This is probably better than repeatedly using the same formula for just a pair of data at a 11 me as has been done later. This may also explain why the extrapolated value for small $h\left(\right.$ such as $h=1 / 12$, and $1 / 14$) is better than that from all the $h^{\prime} s$ as shown later.

2.5 Study of Convergence

The convergence of the above methods has been tested by the application to a rectangular guide where the exact solution is available for comparison. When the first approximation formula (9) is applied to the wave Equation (1), it shows a better result for the TM case than that for the TE case (Figures 9, 10). It is believed that this is a result of poor approximation in the boundary condition for the TE case. In fact, in the $T M$ case there is no approximation for the boundary condition.

Table I and Figure 9 and 10 show the results (from ILLIAC) for a particular rectangular waveguide $(b / a=0.5)$ as compared with exact solution.

Table II shows results obtained by repeatedly using the extrapolation Formula (27). They show a remarkable improvement over the results of Table I.

Figures 11 and 12 show the difference between exact relative cut off wavelength and the calculated value where λ_{c} / a are obtained from the finite set of eigenvalue $\left\{a_{h}\right\}$.

$\frac{2.6 \text { Ridge Waveguide }}{7,8}$

Many authors ${ }^{7,8}$ have shown that the insertion of rectangular ridges have the following effects

1. A decrease in the lowest cut off frequency.
2. An increase in mode separation.
3. An increase in attenuation.
4. A concentration of electric field intensity at corners of the ridges.

The results obtained in our calculation have shown good agreement with the data in existing literature.

A typical example shows, for

$$
\frac{b}{a}=0.625 \quad \frac{s}{a}=0.375 \quad \frac{2 d}{b}=0.4 \quad \text { with net point }=22
$$

mode	TE_{10}	TE_{01}	TE_{11}	TE_{20}	TM_{11}	TM_{21}	TM_{12}	TM_{22}
$\lambda_{\mathrm{c}} / \mathrm{a}$	2.541	1.059	1.051	1.038	0.675	0.638	0.468	0.466

where the ridge guide modes are given the same designation as the corresponding modes in the rectangular guide. Figures' 13 and 14 show the method of mode designations for ridge guide where the boundary condition are shown for only $1 / 4$
of the cross section. The eigenfunctions for this particular ridge guide have also been obtained. Figure 15, 16 , and 17 indicate that the largest cut-off wavelength (i.e., dominant mode which corresponds to smallest eigenvalue) are increased due to the distortion of the field distribution.

Sets of higher order mode cut-off wavelength are given in Table III.
Figure 18 shows the difference between two sets of cut-off wavelength obtained by using different numbers of mesh points, namely 9 points and 57 points.

Figure 19 shows the convergence curve for a particular ridge size.

TABLE I
Set of Approximated Cut Off Wavelengths
For a Rectangular Waveguide

$\overbrace{\lambda^{\prime} / a}^{(p \times q)}$	(3×7)		(4×9)		(5×11)		(6×13)		Exact Solution	$\frac{\lambda_{c}}{\mathrm{a}}=\frac{2}{\sqrt{m^{2}+4 n^{2}}}$
	TE	TM	TE	TM	TE	TM	TE	TM	TE TM	m, n
	∞	0, 0^{*}								
	1.765		1.82		1.84		1.861		2	1,0
	0.905		0.919		0.931		0.938		1	2,0 0, 1
	0.785	0.915	0.822	0.908	0.848	0.904	0.867	0.901	0.895	1,1
	0.718	0.726	0.748	0.72	0.77	0.716	0.787	0.714	0.708	2, 1
	0.63		0.628		0.631		0.637		0.667	3, 0
	0.594	0.583	0.613	0.573	0.626	0.567	0.633	0.564	0.555	3, 1
	0.503		0.499		0.507		0.511		0.5	4,0 0, 2
	0.491	0.535	0.49	0.517	0.485	0.507	0.483	0.501	0.488	1,2
	0.454	0.488	0.445	0.473	0.446	0.465	0.449	0.46	0.448	2, 2 4, 1
	0.44	0.437	0.433	0.423	0.433	0.416	0.437	0.412	0.4	3,2 5, 0
	0.436	0.429		0.407		0.396		0.389	0.372	5, 1
	0.424	0.416		0.382		0.371		0.366	0.354	4, 2
	0.405								0.333	6, $0 \quad 0,3$
	0.403	0.393		0.378		0.365		0.355	0.329	1, 3
	0.381	0.373		0.363		0.349		0.339	0.316	2,3 6, 1
	0.368	0.365							0.312	5, 2
	0.358	0.36							0.298	3, 3
	0.346								0.285	7,0
	0.314	0.338							0.278	4,3 6, 2
	0.301	$\downarrow .325$							0.274	7, 1

* There is no field corresponding to this particular eigenvalue.

TABLE II

Results Obtained by Extrapolation

1. TE_{10} Exact value 2

$1 / 3 \quad 2.0 \quad 1.48 \quad 1.84$
$1 / 4 \quad 1.0 \quad 1.57 \quad 1.88$

$1 / 5$	0.585	1.641	1.965	1.945	1.942	1.918	1.936

$1 / 6$	0.381	1.695	1.94	1.953	1.97	1.96	1.984	1.96		1.947
$1 / 7$	0.269	1.73	1.94	1.975	2.008	1.999	1.98	1.975	1.977	1.966
$1 / 8$	0.198	1.765	2.01	2.03		.1 .995		.1 .983		

$1 / 10 \quad 0.12061 .82$
$1 / 12 \quad 0.081 \quad 1.84 \quad 1.987$
$1 / 14 \quad 0.0581 \quad 1.861$
2. TE_{20} Exact value 1

h	a	λ_{c} / a			
$1 / 8$	0.753	0.905			
$1 / 10$	0.468	0.919	0.977		0.983
$1 / 12$	0.317	0.931	0.991	0.98	0.967
$1 / 14$	0.229	0.938			
$1 / 982$					

2 Figure 11. Comparison between Approximated Cut Off Wavelength ($\mathrm{n}=21$) and Exact Cut Off Wavelengths of a Rectangular Guide for Various TE Modes
$\sqrt{1.8}$

गili
$U=0$

$$
\begin{aligned}
& \frac{\partial U}{\partial n}-0 \\
& \text { Field Distribution in Ridged Guide }
\end{aligned}
$$

2.0

[^1]

3 l Results Obtained from Improved Approximation for Wave Equation
When Formula (20) was applied to the rectangular guide (with $\mathrm{b} / a=05$), considerable 1 mprovement was obtained for the Dirichlet problem, but the result for the Neumann problem becomes even worse than the first approximation (Figure 20) It seems to indicate that Formula (20) received more propagation error from approximation in Neumann boundary condition than that of first approximate Formula (9) and it is probably also true that, in our case, the error due to boundary approximation predominates over that of wave equation approximation. In short, we can say that merely improving the wave equation approximation but not the boundary condition does not guarantee better results.

In our first calculation, the wave equation has been approximated with the formula which takes $O\left(h^{3}\right.$) into account with the boundary approximation only up to $O(h)$, while in the second computation a higher order approximation to the wave equation up to $O\left(h^{5}\right)$ is considered but with boundary approximation still to $0(h)$. $1 t$ happened in our case, that the higher order approximation is only an lmprovement for the wave equation and is a worse formula when it combines with $O(h)$ Neumann boundary approximation。

The above argument is strengthened by the fact that for Dirichlet boundary condition $u=0$, we do get better results for higher order approximation It thus seems likely that the approximation for the wave equation and the boundary condition should be of the same crder

32 Results Obtalned from Improved Approximation for Neumann Boundary Conditior
Owing to the above undesirable results, the application of the improved approximation for Neumunn boundary condifion (22), (23) becomes necessary The mitrix obtained by using the boundary approximation b (see (22)) and wave equation approximation (9) becomes non-symmerric, a case which is difficult to treat However for a small matrix, computations can be done by a desk calculator The results are plotied in Figure 21. It is seen that not only is the approximation greally improved but the direction of convergence is changed from ibove

4. CONCLUSION AND DISCUSSION

To connect the differential equation of a boundary value problem to a difference equation one must replace the differential operator by a different operator wherein a truncation of the series representing the operator is involved. Unless the rigorous solution to the problem is known the actual error committed in truncation is unknown, although the upper bound of the truncation error can be determined. A higher order approximation in this process results only in a decreased upper bound of the error, but does not necessarily guarantee lower actual error in a particular computation.

Improving the approximate formula for the wave equation does not necessarily give better results; it will depend also on the order of approximation for the boundary condition. In the present investigation, it turns out that the later approximation is of even greater importance.

In our analysis, two different orders of approximations have been considered for the wave equation and two for the boundary condition.

| For the wave equation | (I) $O\left(h^{3}\right)$ |
| :--- | :--- | :--- |
| | (II) $O\left(h^{5}\right)$ |
| For the boundary condition | (a) $O(h)$ |
| | (b) $O\left(h^{2}\right)$ |

It turns out that different combinations give results in the following order of accuracy: IIb (best, Ib, Ia, IIa (worst).

Convergence curves show that the Dirichlet boundary problem converges faster than that of the Neumann boundary problem. Furthermore, they converge in different directions, i.e., in Dirichlet boundary problem, the exact value is the lower bound of the set of approximated results $\left\{\left(\lambda_{c} / a\right)_{n}\right\}$, where n indicates the number of points used in the approximation while in Neumann boundary problem the exact value is the upper bound of the set of approximation results.

This method can be applied to both TE and TM cases. The approximate cutoff wavelength and field distribution have been obtained. However, only the data of a limited range for TE case is available in literature. They are found in good agreement with the present results.

This investigation indicates that better results for ridge waveguide might be obtained by the following considerations.
(a) Apply better approximation for boundary condition. It is probably preferable to use the same order of approximation for the boundary condition as for the wave equation. Since these higher order approximation formula always result in non-symmetric matrix, it is thus desirable to investigate the properties of the eigenvalues of a non-symmetric matrix. In general a non-symmetric matrix has complex eigenvalues; however, the computation which has been done for a few small matrices, as indicated in Figure 22, with a desk calculator shows that they possess only real eigenvalues. Therefore, it may infer that in our present problem the non-symmetric matrices could have only real eigenvalues. If this is the case the computation procedure could be . simplified somewhat.
(b) An alternative method to solve this ridge guide problem may be suggested as follows: To consider ridged cross section as composed of a few simple regions where their eigenfunction expansion are known, by matching the eigenfunction at the common boundary we may arrive at a set of integral equations. These equations may be solved approximately.
(c) In one-dimension problems, as demonstrated in the Appendix, the fields at interior mesh points can be expressed in terms of those at boundary points only. It is not known whether it is possible to achieve the same goal in a two-dimensional problem. If it can be done, the problem will be solved.

REFERENCES

1. S. Ramo and J. R. Whinnery, Fields and Waves in Modern Radio, Second Editic, p. 409 .
2. N. Marcuvitz, Waveguide Handbook, Radiation Laboratory Series, Vol. 10, p. 399 .
3. J. Van Bladel and O. von Rohr, Jr., "Semi-Circular Ridges in Rectanguler Waveguides," IRE Transactions, MTT-5, No. 2, April 1957, p. 103.
4. G. Swenson and T. J. Higgins, A Direct-Current Network Analyzes for Solving the Wave-Equation Boundary Value Problem, Journ. Appl. Phys., Vol. 23, 1952 pp. 126-1 31 .

5 W. E. Milne, Numerical Solution of Differential Equation, John Wiley and Sons, Inc., 1953, pp. 133.
6. L Fox, The Numerical Solution of Two-Point Boundary Value Problems, Oxfor Press, 1957, p. 332.
7. S. B. Cohn, "Properties of Ridge Waveguide," Proc. IRE, Vol. 35, August 1957, p. 783-788.
8. Sammel Hopfer, "The Design of Ridge Waveguides," IRE Transactions, MTT-3, No. October 1955, p. 20.
9. F. B. Hildebrand, Introduction to Numerical Analysis, McGraw-Hill, 1956.

APPENDIX A

Closed Form for One-Dimensional Case

For the lowest mode of a rectangular guide as discussed previously, the problem is essentially one dimensional. In order to see how the eigenvalue varies with n, the number of mesh points, their difference equations are studied and solved.

Applying (8), we have the approximate wave equation

$$
\begin{array}{cccc}
0 & i-1 & i & i+1 \\
\hline 1 & a-2 & 1 & N \tag{Al}\\
& u_{i-1}+(a-2) u_{i}+u_{i+1}=0
\end{array}
$$

Similarly from (19) we have
$1-1$
$1+\frac{a}{12} \quad \frac{5}{6} a-2$
$1+\frac{a}{12}$
$u_{i-1}+\frac{\frac{5}{6} a-2}{1+\frac{a}{12}} u_{i}+u_{i+1}=0$

Equations (A1) and (A2) can be generalized as

$$
\begin{equation*}
u_{i-1}-2 m u_{i}+u_{i+1}=0 \tag{A3}
\end{equation*}
$$

where $\begin{aligned} m & =1-\frac{a}{2} \quad \text { For (A1) } \\ m^{\prime} & =1-\frac{a^{\prime}}{2+\frac{a}{6}^{\prime}}\end{aligned}$ For (A2)

Let $m=m^{\prime}$, hence

$$
\frac{a}{2}=\frac{a^{\prime}}{2+\frac{a^{\prime}}{6}}
$$

$$
a<a^{\prime}
$$

Since

$$
\begin{equation*}
\lambda_{c}=\frac{2 \pi}{k}=\frac{2 \pi h}{\sqrt{a}} \tag{A6}
\end{equation*}
$$

we have that λ_{c} / a obtained from (Al) is always greater than that from (A2) irrespective of boundary approximation, (21) or (22). This also agrees with the numerical results obtained previously. Therefore, for TM case we have better results by applying improved Formula (20), yet the same formula gives worse results for $T E$ case since they converge to their exact value in different directions as shown in Figure 22.

The general solution of Equation (A3) is

$$
\begin{equation*}
u_{i}=a z_{1}^{i}+b z_{2}^{i} \tag{A7}
\end{equation*}
$$

where z_{1} and z_{2} are the roots of the quadratic equation

$$
\begin{equation*}
z^{2}-2 m z+1=0 \tag{A8}
\end{equation*}
$$

Applying the boundary conditions 21,22 , 23 respectively we would have the following cases
(a)

$$
u_{0}=u_{1} \quad u_{N-1}=u_{N}
$$

From (7) we obtain

$$
\begin{gather*}
a+b=a z_{1}+b z_{i} \\
a z_{1}^{N-1}+b z_{2}^{N-1}=a z_{1}^{N}+b z_{2}^{N} \tag{A9}
\end{gather*}
$$

In order to get a non-trivial solution for (29) we set

$$
\left.\left|\begin{array}{ccc}
\left(1-z_{1}\right) & \left(1-z_{2}\right) & \tag{A10}\\
\left(1-z_{1}\right) & z_{1}^{N-1} & \left(1-z_{2}\right)
\end{array} z_{2}^{N-1}\right| \right\rvert\,=0
$$

Hence

$$
\left(1-z_{1}\right)\left(1-z_{2}\right)\left(z_{2}^{N-1}-z_{1}^{N-1}\right)=0
$$

The solutions $z_{1}=z_{2}=1$ lead to trivial solution $a=0$ for $\left(z_{z}^{N-1}-z_{1}^{N-1}\right)=0$, we get

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\sqrt[N-1]{\sqrt{e^{j 2 \rho \pi}}}=\frac{2 \rho \pi}{N-1} \quad p=0,1,2, \ldots N-2 \tag{All}
\end{equation*}
$$

From (A8)

$$
z_{1}=m+\sqrt{m^{2}-1} \quad z_{2}=m-\sqrt{m^{2}-1}
$$

Substituting in (All) and solving for m from

$$
\tan \left(\frac{\rho \pi}{N-1}\right)=\frac{\sqrt{1-m^{2}}}{m}
$$

we have

$$
m= \pm \cos \frac{\rho \pi}{N-1}
$$

Following the same routine, we obtain for the other two boundary approximations (22), (23)
(b)

$$
\begin{gathered}
u_{-1}=u_{1} \quad u_{N-1}=u_{N+1} \\
m= \pm \cos \frac{\rho \pi}{N}
\end{gathered}
$$

(c)

$$
\begin{gathered}
u_{1}=\left(1-\frac{a}{2}\right) u_{0} \quad u_{N-1}=\left(1-\frac{a}{2}\right) u_{N} \\
m= \pm \cos \frac{\rho \pi}{N}
\end{gathered}
$$

for the lowest normal mode, $p=1$, thus we have the lowest cut off wavelength for (21), (22), (23) respectively,
(a)

$$
\frac{\lambda_{c}}{\mathrm{a}}=\frac{\sqrt{2} \pi}{\mathrm{~N} \sqrt{1-\cos \pi / \mathrm{N}-1}}
$$

(b)

$$
\frac{\lambda_{c}}{a}=\frac{\sqrt{2} \pi}{N \sqrt{1-\cos \pi / N}}
$$

(c)

$$
\frac{\lambda_{c}}{a}=\frac{\sqrt{2} \pi}{N \sqrt{1-\cos \pi / N}}
$$

It can be shown that the value of cut of wavelength Formula (a) is always less than 2, while those of (22) and (23) are always greater than 2. Again this
"Synthesis of Aperture Antennas," Technical Report No. 1, C.T.A. Johnk, October, 1954.*
"A Synthesis Method for Broad-band Antenna Impedance Matching Networks," Technical Report No. 2, Nicholas Yaru, 1 February 1955.*
"The Asymmetrically Excited Spherical Antenna," Technical Report No. 3, Robert C. Hansen, 30 April 1955.*
"Analysis of an Airborne Homing System," Technical Report No. 4, Paul E. Mayes, 1 June 1955 (CONFIDENTIAL).
"Coupling of Antenna Elements to a Circular Surface Waveguide," Technical Report No. 5, H. E. King and R. H. DuHamel, 30 June 1955.*
"Axially Excited Surface Wave Antennas," Technical Report No. 7, D.E. Royal, l0 October 1955.*
"Homing Antennas for the F-86F Aircraft (450-2500mc)," Technical Report No. 8, P.E. Mayes, R. F. Hyneman, and R. C. Becker, 20 February 1957, (CONFIDENTIAL).
"Ground Screen Pattern Range," Technical Memorandum No. l, Roger R. Trapp, 10 July 1955.*

Contract AF33 (616)-3220
"Effective Permeability of Spheroidal Shells," Technical Report No. 9, E. J. Scott and R. H. DuHamel, 16 April 1956.
"An Analytical Study of Spaced Loop ADF Antenna Systems," Technical Report No. 10 D.G. Berry and J.B. Kreer, 10 May 1956.
"A Technique for Controlling the Radiation from Dielectric Rod Waveguides," Technical Report No. 11, J. W. Duncan and R. H. DuHamel, 15 July 1956.*
"Directional Characteristics of a U-Shaped Slot Antenna," Technical Report No. 12, Richard C. Becker, 30 September 1956.**
"Impedance of Ferrite Loop Antennas," Technical Report No. 13, V. H. Rumsey and W. L. Weeks, 15 October 1956.
"Closely Spaced Transverse Slots in Rectangular Waveguide," Technical Report No. 14, Richard F. Hyneman, 20 December 1956.
"Distributed Coupling to Surface Wave Antennas," Technical Report No. 15 , Ralph Richard Hodges, Jr., 5 January 1957.**
"The Characteristic Impedance of the Fin Antenna of Infinite Length," Technical Report No. 16, Robert L. Carrel, 15 January 1957.*
"On the Estimation of Ferrite Loop Antenna Impedance," Technical Report No. 17, Walter L. Weeks, 10 April 1957.*
"A Note Concerning a Mechanical Scanning System for a Flush Mounted Line Source Antenna," Technical Report No. 18, Walter L. Weeks, 20 April 1957.
"Broadband Logarithmically Periodic Antenna Structures," Technical Report No. 19, R.H. DuHamel and D.E. Isbell, l May 1957.
"Frequency Independent Antennas," Technical Report No. 20, V.H. Rumsey, 25 October 1957.
"The Equiangular Spiral Antenna," Technical Report No. 21, J.D. Dyson, 15 September 1957.
"Experimental Investigation of the Conical Spiral Antenna," Technical Report No. 22, R.L. Carrel, 25 May 1957.**
"Coupling Between a Parallel Plate Waveguide and a Surface Waveguide," Technical Report No. 23, E.J. Scott, 10 August 1957.
"Launching Efficiency of Wires and Slots for a Dielectric Rod Waveguide," Technical Report No. 24, J.W. Duncan and R.H. DuHamel, August 1957.
"The Characteristic Impedance of an Infinite Biconical Antenna of Arbitrary Cross Section," Technical Report No. 25, Robert L. Carrel, August 1957.
"Cavity-Backed Slot Antennas," Technical Report No. 26, R. J. Tector, 30 October 1957.
"Coupled Waveguide Excitation of Traveling Wave Slot Antennas," Technical Report No. 27, W. L. Weeks, l December 1957.
"Phase Velocities in Rectangular Waveguide Partially Filled with Dielectric," Technical Report No. 28, W.L. Weeks, 20 December 1957.
"Measuring the Capacitance per Unit Length of Biconical Structures of Arbitrary Cross Section," Technical Report No. 29, J.D. Dyson, 10 January 1958.
${ }^{\text {"N Non-Planar }}$ Logarithmically Periodic Antenna Structure," Technical Report No. 30, D.W. Isbell, 20 February 1958.
"Electromagnetic Fields in Rectangular Slots," Technical Report No. 31, N.J. Kuhn and P.E. Mast, 10 March 1958.
"The Efficiency of Excitation of a Surface Wave on a Dielectric Cylinder," Technical Report No. 32, J. W. Duncan, 25 May 1958.
"A Unidirectional Equiangular Spiral Antenna," Technical Report No. 33, J.D. Dyson, 10 July 1958.
"Dielectric Coated Spheroidal Radiators," Technical Report No. 34, W.L. Weeks, 12 September 1958.
"A Theoretical Study of the Equiangular Spiral Antenna," Technical Report No. 35, P.E. Mast, 12 September 1958.

Contract AF33 (616) -6079
"Use of Coupled Waveguides in a Traveling Wave Scanning Antenna," Technical Report No. 36, R. H. MacPhie, 30 April 1959.
"On the Solution of a Class of Wiener-Hopf Integral Equations in Finite and Infinite Ranges," Technical Report No. 37, Raj Mittra, 15 May 1959.
"Prolate Spheroidal Wave Functions for Electromagnetic Theory," Technical Report No. 38, W. L. Weeks, 5 June 1959.
${ }^{" L}$ Log Periodic Dipole Arrays," Technical Report No. 39, D.E. Isbell, 1 June 1959.
"A Study of the Coma-Corrected Zoned Mirror by Diffraction Theory," Technical Report No. 40, S. Dasgupta and Y.T. Lo, 17 July 1959.
"The Radiation Pattern of a Dipole on a Finite Dielectric Sheet," Technical Report No. 41, K. G. Balmain, 1 August 1959.
"The Finite Range Wiener-Hopf Integral Equation and a Boundary Value Problem in a Waveguide," Technical Report No. 42, Raj Mittra, 1 October 1959.
"Impedance Properties of Complementary Multiterminal Planar Structures," Technical Report No. 43, G. A. Deschamps, 11 November 1959.
"On the Synthesis of Strip Sources," Technical Report No. 44, Raj Mittra, 4 December 1959.

* Copies available for a three week loan period.
** Copies no longer available

One copy each unless otherwise indicated

*Commander

Wright Air Development Center
Attn: E.M. Turner, WCLRRB
Wright-Patterson Air Force Base, Ohio
(2 copies)

Commander

Wright Air Development Center
Attn: WCOSI, Library
Wright-Patterson Air Force Base, Ohio

Commander
U.S. Naval Air Test Center

Attn: ET-315, Antenna Section
Patuxent River, Maryland

Chief
Bureau of Ordnance
Department of the Navy
Attn: Mr. C.H. Jackson, Code Re 9a Washington 25, D.C.

Commander
Air Force Missile Test Center
Attn: Technical Library
Patrick Air Force Base, Florida

Director
Ballistics Research Lab.
Attn: Ballistics Measurement Lab. Aberdeen Proving Ground, Maryland

Office of the Chief Signal Officer
Attn: SIGNET-5
Eng. \& Technical Division
Washington 25, D.C.

National Bureau of Standards
Department of Commerce
Attn: Dr. A. G. McNish
Washington 25, D.C.

Director
U.S. Navy Electronics Lab.

Point Loma
San Diego 52, California

Commander
Wright Air Development Center
Attn: N. Draganjac, WCLNI-A
Wright-Patterson AFB, Ohio

Commander
USA White Sands Signal Agency
White Sands Proving Command
Attn: SIGWS-FC-02
White Sands, New Mexico

Director
Air University Library
Attn: AUL-8489
Maxwell AFB, Alabama

Army Rocket and Guided Missile Agency
U.S. Army Ordnance Missile Agency

Attn: ORDXR-OMR
Redstone Arsenal, Alabama

Commander
Aero Space Technical Intelligence Center Attn: AFCIN-4c3b, Mr. Lee Roy Hay
Wright-Patterson AFB, Ohio

Commander
801st Air Division (SAC)
Attn: DCTT, Major Witry
Lockbourne Air Force Base, Ohio

Director
Air University Library
Attn: AUL-9642
Maxwell Air Force Base, Alabama

Chief
Bureau of Aeronautics
Attn: Aer-EL-931
Department of the Navy
Washington 25, D.C.

Armed Services Technical Information
Agency
ATTN: TIP-DR
Arlington Hall Station
Arlington 12 , Virginia
(Excluding Top Secret and Restricted Data) (Reference AFR 205-43)

Director
Naval Research Laboratory
Attn: Dr. A. Marston
Anacostia
Washington 25, D.C.

Commander
Wright Air Development Center
Attn: F. Behrens, WCLKR
Wright-Patterson AFB, Ohio
Commander
Air Research \& Development Command Attn: RDTC
Andrews Air Force Base
Washington 25, D.C.
Commander
Hq. Air Force Cambridge Research Center
ATTN: CRRD, C. Sletten
Laurence G. Hanscom Field
Bedford, Massachusetts
Commander
Air Proving Ground Command
Attn: Classified Technical Data Branch D/OI
Eglin Air Force Base, Florida
Director
Research and Development Command Hq. LSAF

Atin: AFDRD-RE
Washington 25, D.C.
Commander
Air Force Ballistics Missile Division
Attn: Technical Library
Air Force Unit Post Office
Los Angeles 45, California
Commander
Air Force Missile Development Center
Atın Technical Library
Holloman Air Force Base, New Mexico
Commander
801st A1r Division (SAC)
Altn DCTTTD, Major Hougan
Lockbourne Air Force Base, Ohio
Crmenander
Rome Air Development Center
Attn R RCERA-1 M. Diab
Grifilss Air Force Base, New York
Director, Surveillance Dept.
Evans Area
Autn Technical Document Center
[3elour, firw Jurscy

Chief, Bureau of Ships
Department of the Navy
Attn: Code 838D
Washington 25 , D.C.
Commanding Officer \& Director
U.S. Navy Electronics Laboratory

Attn: Library
San Diego 52, California
Andrew Alford Consulting Engineers
Attn: Dr. A. Alford M/F Contract AF33 (600) - 3610
299 Atlantic Avenue
Boston 10, Massachusetts
ATA Corporation
1200 Duke Street
Alexandria, Virginia
Bell Aircraft Corporation
Attn: J. D. Shantz M/F Contract AF33 (600)-3324:
Buffalo 5, New York
Bell Telephone Labs., Inc.
Attn: R. L. Mattingly M/F Contract AF33 (616) - 5499
Whippany, New Jersey
Bendix Radio Division
Bendix Aviation Corporation
Attn: Dr. K. F. Umpleby M/F Contract AF33 (600) - 35407
Towson 4, Maryland
Boeing Airplane Company
Attn: C. Armstrong M / F Contract AF33 (600)-3631s
7755 Marginal Way
Seattle, Washington
Boeing Airplane Company
Attn: Robert Shannon M/F Contract AF33 (600)-35992
Wichita, Kansas
Canoga Corporation
M/F Contract AF08 (603)-4327
5955 Sepulveda Boulevard
P. O. Box 550

Van Nuys, California

Dr. C. H. Papas
Department of Electrical Engineering California Institute of Technology Pasadena, Calıfornia

Chance-Vought Aircraft Division United Aircraft Corporation

Attn: R.C. Blaylock
THRU: BuAer Representative M/F Contract NOa(s) 57-187
Dallas, Texas
Collins Radio Company
Attn: Dr. R. H. DuHamel M/F Contract AF33 (600) -37559
Cedar Rapids, lowa
Consolidated Vultee Aircraft Corp.
Fort Worth Division
Attn: C.R. Curnutt
M/F Contract AF33 (038)-21117
Port Worth, Texas
Sonsolidated-Vul tee Aircraft Corp.
Attn: Mr. R. E. Honer M/F Contract AF33 (600) -26530
?.O. Box 1950
jan Diego 12, California
OONVAIR
Attn: R. Honer
M/F Contract AF33 (600) -26530
jan Diego Division
jan Diego 12, California
ONVA IR
Port Worth Division
Attn: C. R. Curnutt
M/F Contract AF33 (600) -32841 \&
AF33 (600) -31625
'ort Worth, Texas
lepartment of Electrical Engineering
Attn: Dr H. G. Booker
:ornell University
thaca, New York
niversity of Denver
enver Research Institute
niversity Park
enver 10, Colorado

Dalmo Victor Company
Attn: Engineering Technical Library M/F Contract AF33 (600) - 27570
1515 Industrial Way
Belmont, California
Dorne \& Margolin, Inc.
M/F Contract AF33 (600)-35992
30 Sylvester Street
Westbury
Long Island, New York
Douglas Aircraft Co., Inc.
Attn: G. O'Rilley
M/F Contract AF33 (600)-25669 \&
AF33 (600) -28368
Tulsa, Oklahoma
Douglas Aircraft Company, Inc.
Long Beach Plant
Attn: J. C. Buchwalter
M/F Contract AF33 (600) -25669
Long Beach 1, California
Exchange and Gift Division
The Library of Congress
Washington 25 , D.C.
(2 copies)
Fairchild Engine \& Airplane Carp.
Fairchild Aircraft Division
Attn: Engineering Library
S. Rolfe Gregory

M/F Contract AF33 (038) -18499
Hagerstown, Maryland

Dr. Frank Fu Fang

Boeing Airplane Company
Transport Division, Physical Research
Renton, Washington
General Electric Company
Attn: D.H. Kuhn, Electronics Lab.
M/F Contract AF30(635)-12720
Building 3, Room 301
College Park
113 S. Salina Street
Syracuse, New York
General Electronic Laboratories, Inc.
Attn: F. Parisi
M/F Contract AF33 (600) -35796
18 Ames Street
Cambridge 42, Massachusetts

Goodyear Aircraft Corporation
Attn: G. Welch M/F Contract AF33(616)-5017
Akron, Ohio

Granger Associates
M/F Contract AFl 9 (604) -5509
966 Commercial Street
Palo Alto. California

Grumman Aircraft Engineering Corp.
Attn: J.S. Erickson Asst. Chief, Avionics Dept. M F Contract NOA (s) 51-118
Bethpage, Long Island, New York

Gulton Industries, Inc.
Attn: B Bittner M/F Contract AF33 (600) - 36869
P.O. Box 8345

15000 Central, East
Al buquerque, New Mexico

Hallicrafters Corporation
Attn: D. Herling M/F Contract AF33 (604) -21260
440 W. Fifth Avenue
Chicago, 111 inois

Technical Reports Collection
Attn: Mrs. E.L Hufschmidt Librarian
303 A. Pierce Hall
Harvard University
Cambridge 38, Massachusetts

Hoffman Laboratories, Inc.
AtLn. S. Varian (for Classified)
Technical Library (for
Unclassificd)
M F Contract AF33 (604) -17231
Los Angeles, California
llughes Aircraft Corporation
Altn D Adcock
M/F Contract AF33 (616) -5648
Florence Avenue at Teale
Culver City, California

Dr. IR. F. Ilyncman
P.O 13ッ\% 2097
datl Station $\mathrm{C}-152$
Building 500
Hughe Ground Systems Group
foullerton, Callfornia

HRB-Singer, Inc.
Attn: Mr. R. A. Evans
Science Park
State College, Pa.

Mr. Dwight Isbell
4620 Sunnyside
Seattle 3, Washington

ITT Laboratories
Attn: A. Kandoian
M/F Contract AF33 (616) -5120
500 Washington Avenue
Nutley 10, New Jersey

ITT Laboratories
Attn: L. DeRosa
M/F Contract AF33 (616) -5120
500 Washington Avenue
Nutley 10, New Jersey

ITT Laboratories
A Div. of Int. Tel. \& Tel. Corp.
Attn: G. S. Giffin, ECM Lab.
3700 E. Pontiac Street
Fort Wayne, Indiana

Jansky and Bailey, Inc.
Engineering Building
Attn: Mr. D. C. Ports
1339 Wisconsin Avenue, N.W.
Washington, D.C.

Jasik Laboratories, Inc., 100 Shames Drive Westbury, New York

John Hopkins University
Radiation Laboratory
Attn: Librarian M/F Contract AF33 (616) -68
1315 St. Paul Street
Baltimore 2, Maryland

Applied Physics Laboratory
Johns Hopkins University
8621 Georgia Avenue
Silver Spring, Maryland

Lincoln Laboratories
Attn: Document Room M/F Contract AF19(122)-458
Massachusetts Institute of Technology P.O. Box 73

Lexington 73, Massachusetts

Litton Industries, Inc. Maryland Division

Attn: Engineering Library M/F Contract AF33 (600) -37292

4900 Calvert Road

College Park, Maryland

Lockheed Aircraft Corporation
Attn: C. D. Johnson M/F Contract NOA (s) 55-172
P.O. Box 55

Burbank, California

Lockheed Missiles \& Space Division
Attn: E. A. Blasi
M/F Contract AF33 (600) -28692 \&
AF33 (616) -6022
Department 58-15
Plant 1 , Building 130
Sunnyvale, California

The Martin Company
Attn: W. A. Kee, Chief Librarian M/F Contract AF33 (600) - 37705
Library \& Document Section
Baltimore 3, Maryland
W. L. Maxson Corporation

WF Contract AF33 (600) -31225
160 W. 34 th Street
New York 1, New York

Ennis Kuh1man
McDonnell Aircraft
?. O Box 516
-ambert Municipal Airport
j̀t Louis 21, Missouri

Melpar, Inc.
Attn: Technical Library M/F Contract AFl9 (604) -4988
Intenna Laboratory 3000 Arlington Blvd. 'alls Church, Virginia

Melville Laboratories
Valt Whitman Road
lelville, Long Island, sew York

University of Michigan
Aeronautical Research Center
Attn: Dr. K. Seigel
M/F Contract AF30 (602) -1853
Willow Run Airport
Ypsilanti, Michigan

Microwave Radiation Co., Inc.
Attn: Dr. M. J. Ehrlich M/F Contract AF33 (616) -6528
19223 S. Hamilton Street
Gardena, California

Motorola, Inc.
Attn: R. C. Huntington
8201 E. McDowell Road
Phoenix, Arizona
Physical Science Lab.
Attn: R. Dressel
New Mexico College of A and MA
State College, New Mexico

North American Aviation, Inc.
Attn: J. D. Leonard, Eng. Dept. M/F Contract NOa(s) 54-323
4300 E. Fifth Avenue
Columbus, Ohio

Autonetics
North American Aviation, Inc.
Attn: S. Kerber
M/F Contract AF33 (600) -27109
9150 E. Imperial Way
P. O. Box "AN"

Bellflower, California

North American Aviation, Inc.
Attn: H. A. Storms
M/F Contract AF33 (600) -36599
Department 56
International Airport
Los Angeles 45, California

Northrop Aircraft, Inc.
Attn: Northrop Library, Dept. 2135 M/F Contract AF33 (600) -27679
Hawthorne, California

Dr. R. E Beam
Microwave Laboratory
Northwestern University
Evanston, Illinois

Ohıo State University Research Foundation

$$
\begin{aligned}
\text { Attn: } & \text { Dr T. C. Tice } \\
& \text { M F Contract AF33 }(616)-6211
\end{aligned}
$$

1314 Kinnear Road
Columbus 8, Ohio

University of Oklahoma Res. Inst.
Attn: Prof. C. L. Farrar M/F Contract AF33(616)-5490
Norman, Oklahoma

Prof A. A. Oliner
Microwave Research Institute Polytechnic Institute of Brooklyn 55 Johnson Street - Third Floor Brooklyn, New York

Philco Corporation

Government and Industrial Division
Attn: Dr Koehler
M/F Contract AF33 (616)-5325
4700 Wissachickon Avenue
Phıladelphıa 44, Pennsylvania

Radiation, lnc.
Technical Library Section
Attn: Antenna Department M F Contract AF33 (600) -36705
Melbourne, Florida

Radio Corporation of America
RCA Laboratiries Division
Attn: Librarian
M F Contract AF33(616)-3920
Princeton, New Jersey

Radioplane Company
M/F Contract AF33 (600) -23893
Van Nuys, Calıfornia

Ramn-Wonldrıdge, a division of
Thompson Rmau Wooldridge, Inc.
Atin Technical Information Scrvices
84.33 Falltrorsk Avenure

P O Bro\% 1006
Canosga Park, California

Dr. D. E. Royal
Ramo-Wooldridge, a division of
Thompson Ramo Wooldridge Inc.
8433 Fallbrook Avenue
Canoga Park, California

Rand Corporation
Attn: Librarian
M/F Contract AFl8(600)-1600
1700 Main Street
Santa Monica, California

Rantec Corporation
Attn: R Krausz
M/F Contract AFl9(604)-3467
Calabasas, California

Raytheon Electronics Corp.
Attn: H. K. Hudson
M/F Contract AF33 (604) -1563
1089 Washington Street
Newton, Massachusetts

Raytheon Manufacturing Corp.
Attn: Dr. R. Borts
M/F Contract AF33 (604) -15634
Wayland, Massachusetts

Dr. Harry Letaw, Jr., Manager
Systems Marketing
Raytheon Company
1089 Washington Street
West Newton, Massachusetts

Republic Aviation Corporation
Attn: Engineering Library M/F Contract AF33 (600) -34752
Farmingdale
Long Island, New York

Republic Aviation Corporation
Guided Missiles Division
Attn: J. Shea
M/F Contract AF33 (616)-5925
223 Jericho Turnpike
Mineola, Long Island, New York

Sanders Associates, Inc.
95 Canal Street
Attn: Technical Library
Nashua, New llampshire

Smyth Research Associates
Attn: J. B. Smyth 3555 Aero Court
San Diego ll. California

Space Technology Labs, Inc.
Attn: Dr. R. C. Hansen
P.O. Box 95001

Los Angeles 45, California
M F Contract AF $04(647)-361$

Sperry Gyroscope Company
Attn: B. Berkowitz
M/F Contract AF33 (600) -28107
Great Neck
Long Isl and, New York

Stanford Electronics Laboratory
Attn: Applied Electronics Lab. Document Library
Stanford Univeristy
Stanford, Calıfornia

Stanford Research Institute
Attn: Mary Lou Fields, Acquisitions Documents Center
Menlo Park, California

Stanford Research Institute
Aircraft Radiation Systems Lab.
Attn: D. Scheuch
M/F Contract AF33 (616) -5584
Menlo Park, California

Sylvania Electric Products, Inc. Electronic Defense Laboratory
M/F Contract DA 36-039-SC-75012
P O Box 205
Mountaln View, California
lir Roger Battie
Supervisor, Technical Liaison Sylvania Electric Products, Inc.
Electronic Systems Division
P O. Box 188
Mountaln View, California

Sylvania Electric Products, Inc.
Electric Systems Division
Attn: C. Faflick
M/F Contract AF33(038)-21250
100 First Street
Valtham 54, Massachusetts

Tamar Electronics, Inc.
Attn: L. B. McMurren
2045 W. Rosecrans Ave.
Gardena, California
Technical Research Group
M/F Contract AF33 (616) -6093
2 Aerial Way
Syosset, New York

Temco Aircraft Corporation
Attn: G. Cramer
M/F Contract AF33 (600) -36145
Garland, Texas

Electrical Engineering Res. Lab.
University of Texas
Box 8026, University Station
Austin, Texas
A. S. Thomas, Inc.

M/F Contract AF04 (645) -30
161 Devonshire Street
Boston 10, Massachusetts
Westinghouse Electric Corporation
Air Arm Division
Attn: P. D Newhouser
Development Engineering
M/F Contract AF33 (600) -27852
Friendship Airport
Baltimore, Maryland
Professor Morris Kline
Institute of Mathematical Sciences
New York University
25 Waverly Place
New York 3, New York

[^0]: * The application of the finite difference method to ridge waveguide problems was initiated in this laboratory by Professor E. J: Scott.

[^1]: Figure 18. Comparison Between Sets ($n=9$ and $n=57$) of Approximate Cut Off Wavelengths

