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1 . INTRODUCTION

The waves in a cylindrical waveguide are found from solutions of the two

dimensional differential equation

2 2
V u + k u = (1)

where u is a function of the coordinates in the transverse plane and k is a

constant. The Dirichlet boundary condition, u = on the boundary of the cross-

section, corresponds to Transverse Magnetic modes and the Neumann boundary

condition, 9u/3n = on the boundary, corresponds to Transverse Electric modes.

In (1) k is the wave number and the function u, which is independent of the

longitudinal coordinate z, represents the component of electric (TM-case) or

magnetic (TE-case) field intensity along longitudinal direction. The time

dependence is assumed to be of the form e ' in this formulation.

The permissible values of k are also called eigenvalues of the differential

Equation (1) and u is the eigenfunction. Since the wave is confined to a

finite region, the spectrum of the eigenvalues jk I is a discrete set. Accord-

ing to mode theory, these eigenvalues k determine the cut off frequency of

each mode propagating along the waveguide. It is necessary only to find the

resonant frequency of the two dimensional problem defined by the guide boundary

since there is no axial variation at cut-off; all energy does propagate back

and forth in the transverse plane.

The exact solution of (1) with prescribed boundary condition can be

obtained only when the given boundary constitutes a (or a set of) coordinate

surface of the separable coordinate system. It has been shown only few regular

cross sections can be treated by the method of separation of variables. Wave-

guides with odd cross section, yet valuable in practical use (such as folded

waveguide and ridged waveguide), demand the result for engineering design.

1 .1 Equivalent Network Approach

Some of the "non-separable" problems can be treated by using the equiva-

lent circuit representation of the cross-section . For ridged waveguide, the

approximate equivalent circuit is obtained by considering region I (Figure 1)

as a capj

L
A

= pib

as a capacitor of capacity C = £S/h and regions II as inductances of value
B
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Figure 1. Ridged Waveguide and Its Equivalent Network

It is seen that it applies only for the case of b » h.

More accurate equivalent representation for cut off calculation has beei

2
obtained by considering the ridges as two step discontinuities (Figure 2)

where the step susceptance B is approximated by using that of a capacitive

window (Figure 3).
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Figure 2. Equivalent Circuit
in the Transverse
Plane of a Ridged
W.-iveguide

Figure 3
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Then by symmetry, the resonant input function at the center is either zero

or infinity. Thus we have

b 3s B
cot (3i - - tan -*- - -— = For TE n = odd (3)a *

c\\
no

R„ b PS B
cot Pi + - cot — - -— = For TE m = even (4)d ^ Y mo v '

Wh6re Y
01 = ^ i

Y
02 = ^ \

Numerical solutions of above transcendental Equations (3) and (4) can be

obtained by tabulation. It is again restricted to the wavelength range of

2bA < 1 for the single ridge and b/\ < 1 for the double ridges.

1.2 Numerical Methods

The approximate solution of (1) with "non-separable" boundary can also

be obtained from numerical analysis; such as the variational and finite dif-
4

rerence methods or the analogue method of a network analyzer .

1.2.1 Variational Method

The approximate eigenvalue of the wave equation can be obtained by using

the approximated Rayleigh-Ritz formula

,
,2 y (o) 2 (o)

(o) _ Sju Vu
(5)

1

T (o)
2

2j u

We start with the unperturbed eigenfunction u in the given cross-section

(which corresponds to the eigenfunction of the rectangular guide of same aspect

ratio, but without ridge) . After obtaining the first approximation value of
(o)

k , the wave equation in finite difference form can be used as a formula to

obtain the higher order value of the eigenfunction u (the formula will be

derived later) . Hence the iterative process consists of successive corrections

between the value k and eigenfunction u

It has been shown that the formula (5) always converges to the lowest

eigenvalue. For higher order eigenvalue, say the second, the first term of

the orthogonal expansion 2c u must be eliminated from the assumed function
n n



u . By using the orthogonality properties of these normal functions, C

can be determined, and (u - C u ) is then used for the computation of tb

second eigenvalue.

A combination of variation and relaxation methods has been used by Blacl
3

and von Rohr to calculate the cut off wavelength of semicircular ridges in
2

rectangular waveguide. A typical sequence of values for k has been given
2 2 2

as ll.l./a , 8.3/a and 7.7/a for nets containing respectively 19, 97 and 42

pts, (where a is the broad face demension of the guide), with the error clai

to be less than 2 percent.

e



FINITE DIFFERENCE METHOD

Another way of solving this particular boundary value problem is by the

use of finite differences The differential operator is first approximated

by a finite difference formula. Then by setting up a finite number of mesh

points, we transform, approximately, the wave equation and the boundary con-

dition into a matrix eigenvalue problem. From the matrix we get a set of

approximate eigenvalues corresponding to a set of cut-off frequencies of the

particular waveguide structure.

The study reported here was initiated to investigate the practicality

of using a general purpose, high speed digital computer to perform the calcu-

lation of cut-off frequencies for cylindrical waveguides with irregular cross-

section.
2

The Laplacian V operating on a function u as in the scalar Helmholtz

equation, can be replaced by a set of finite difference approximations relat-

ing the values of the function at the nodes of a mesh pattern such as shown

in Figure 4

.

-I-Z

-r-

h

o L

-A

Figure 4. Mesh Pattern for Finite Difference

' The application of the finite difference method to ridge waveguide problems

was initiated in this laboratory by Professor E. J'. Scott.



From a Taylor's series expansion we have

/8u\ u 1 /9
2
u\ 2 1 /9

3
u\ 3 n , 4,

= u
o

+
(ax)o

h +
2\K^2j

h +
3\\^2j

h + 0(h }

/8u\ . i /a
2
u\ 2 i /a u\ 3

adding these two equations and neglecting the terms after the third gives:

r
fl
2

o u

Ldx J

= u, + u„ - 2u + 0(h )13 o

Similarly
ft
2

'o u

a 2
Ldv -I

u n + u. - 2u + 0(h )
2 4 o

Hence
2 2 4

h [V u] = u. + u„ + u_ + u A
- 4u + 0(h )

o 1 2 3 4 o
(6)

For a curved boundary we have

h

2 u„ 2 u_ 2 u„ 2 u
B

6d+fe) n(

U
C ;

U
3 ;

U
4 /2 2N

i+n) " d+fe)
+
d+n) U

+
n/

u
°

(7)

Mesh Pattern with a Curved Boundary



Thus for an ordinary point the wave equation becomes

u + u + u + u + (a-4) u =
1 *s o 4 o (8)

In terms of mesh pattern, V can be expressed as

2 1

h

1

1-4 1

1

and
2 2

o = h k

(9)

(10)

Setting up a suitable number of meshes for a given cross section, and

applying the above procedure for each point, we would have as many simultaneous

equations as the number of points in the cross section:

1
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Figure 6. Mesh Points in a Given Cross-Section



The difference equations corresponding to points 1, 2, and 5 with Dirichlet

boundary condition are respectively

(a-4) u + u + u =0

u
1

+ (a-4) u
2

+ u
g

+ u =0

u
2

+ u
4

+ (a-4) u
5

+ u
g

+ u
g

= (11)

Point 1 is a corner point, point 2 is an ordinary boundary point and point 5

is an interior point.

Writing in matrix form, we get the general formula

A u = a ii (12)

where A is the matrix with its element a. . corresponding to the coefficient

of u. at ith equation, u is the eigenvector (u n un . . . u ) . In order to get
J _ 1 2 n

the non-zero eigenvector U, we set

det (A - a I) = (13)

where I is the identity matrix. This equation leads to the set of eigenvalues,

a
n

, corresponding to the roots of the nth order polynomial derived from (13

The relative cutoff wavelength \ /a, of the ith mode, in terms of the

eigenvalues will be

^i = 2^- (i4>
& ;

a a.
v i

2.1 Approximations

The approximations involved in the finite difference method are

M) Finite mesh size, h

(2) Truncation error in Taylor series expansion

('}) Approximation Ln Neumann boundary condition which will be discussed

i n 2 . 3



2.2 Higher Order Formula

In order to improve the accuracy of the result, especially in the TE case

more terms in the Taylor series expansion may be taken into account. The point

pattern representation (see Figure 4) of the Laplacian when neglecting the

terms after the third is

2 1
V = —

1

1-4 1

1

(9)

that for neglecting the terms after the fifth is*

2
V =

840 h

- 3 -16 - 32 -16 - 3

-16 176 800 176 -16

-32 800 -3636 800 -32

-16 176 800 176 -16

- 3 -16 - 32 -16 - 3

(15)

Due to the complexity of (15) and the fact that it results in an unsymmetrical

matrix in the Neumann problem, the derivation of an alternative formula is

desired

.

Define the following operators:

E f(x) = f(x + h)

D f(x) = f'(x)

6 f(x) = f(x + |) - f(x - |)

hence f(x) = f(x + nh)

6 = E a - E"

2A
E 2 = (1 + 4 6 )



By Taylor series expansion

E f(x) = f(x+h) =

2 2 3 3
hD h D h D

1 +
T7

+ ^T~ + TT + f(x)

we obtain

E = e
hD

hD = log E = 2 log
., 1 .2,2 lc
(1 + - 6 ) + -6 -1 6

= 2 sin h —

2 2 2 2 2 2
j- 1 K3 1 -3 j-5 1 -3 -5 ,-7

- — o + - o +

2
2
.3 2

4
-5! 2

6
-7

t^
2 « 1 r R2 1 A4 1 A6 1 A8 ihence D u = u = — [6 -— 6 + — 6 -— 6 +...]„

h

1 c2
r

1 .2, 1 .2 1

h h 1 + - 6

(16)

The approximate formula is thus obtained

h
2

[1 + \-
2

6
2

] u" = 6
2

u (17)

For the one dimensional wave equation

u + k u = (18)

we get

*2 2 2
r

6
2

. 6
2

6 u = - h k [l + — ] u = - a [l + — ] u

hence u , - 2 u + u
n + 1 n n-1

Q
r r, 1au -- u , - 2 u +u

n Jn 12 n+1 n n-l J

oi (1 + 75 } u ,.i " (2 " I a > u + (1 + ts) u . =
1 <s n+1 6 n 12 n-1

(19)



Similarly, for a two dimensional wave equation, we get

11

24

1 4 1

4 -20 4

1 4 1

u = -a

1 10 1

10 100 10

1 10 1 (20)

The order of approximation of (20) corresponds to that of (15).

2. 3 Approximation in Neumann Boundary Condition

In the Neumann boundary condition, several possible approximations are

considered. Let u be the value of u at a boundary point adjacent to an interior
o

mesh point with value u and an exterior point with value u

u = u,

Boundary
l h ii

u, = u +hu + —ru +
1 o o 2 . o

u' =
o

u = u + 0(h )
1 o

Figure 7. Relation of Interior, Exterior and

Boundary Point.

(21)

b. U
-l

= U
l

2 3

u, = u +hu + —r u + —j u + 0(h )

1 o o 2 o 3 o

2 3

u n =U -hu + —7 u - -xt u + 0(h )
-1 o o 2 o 3! o

u' =
o

U
l
= U

-l
+ ° (h )

(22)

c. In this case, we relate the wave equation to the boundary approxima-

tion as following:

hD
u - u = (E-l) u = E u - u = e u - ulo o oo oo

, 2„2
h D

= [ 1 + hD + —r + 1 u - u
J o o

2 2 ,33



// 2
hence with the wave equation relation u = - k u we have

o o

2 3
/ h // h ///u_-u =hu + —

;

u +-r-ru +
1 o o 2.! o 31 o

v,
2

i

2
/ h k h , 2 /

= h u - r~ u ~ 7TT k u +
o 2[ o 3! o

to. ah /

= hu - ~ u 2~ u +
o 2 o 6 o

Since u =
o

i-

. a a -,

U
l

= [1 -2 +
^i

'•• ] U
o

(1 - f) u + 0(h
3

)
^ o

(23)

2

,

4 Computational Procedure

The computational procedure used in this finite difference method is as

f ol lows

WAVE EQUATION

AND

BOUNDARY COND-

NUMERICAL

ANAD5I5

DET (A-JLl)=0

~1

MATRIX

EI6EN VALUE

PROBLEM

COMPUTER PROGRAMING L

1
EIGEN VALUES

AND

EIGENVECTORS

l i ure 8. Computation Procedure Diagram
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The matrix A is first scaled so that its norm is less than 1; i.e.

2 a. < 1

tj
1J

Then by using the ILLIAC, the University of Illinois digital computer, we can

determine the eigenvalues a up to a maximum matrix size of 128 X 128 (Library

Routine M20-234, Digital Computer Laboratory, University of Illinois) and we

can determine both the eigenvalue a and eigenvector U up to a maximum matrix

size of 40 X 40 (Library Routine M18-213) . However, in this procedure, we

are restricted by the present technique of computer programming to the symmetric

matrix, since the possibility of complex eigenvalue for an unsymmetrical matrix

makes the programming .much more involved.

In some cases, the results thus obtained can be very simply improved by

i 6
using the Richardson s extrapolation .

It is reasonable to suppose that the error in the approximation is a func-

tion of mesh size h. If this function is expanded into a Taylor series we can

write

X. - \(h) = B h + c h
2

+ ... (24)
o

where X- = lim \(h)
° h^o

we assume that the term B h is the major part of the error. If we calculate

two approximate solutions \ and \ with different mesh size h and h respec-12 i z

tively then

h.(\ -V,) - h(\ -\_) = h 9 (ch 1

2
+ ..) - h (ch +...)

2 O 1 1 O ^ A i. i- &

solving for X. , we obtain the extrapolation formul a
o

x
o = irV [h2\ " h

i V - ch
i

h
2

+ ••• <25)

2 1

If the error function can be expressed as an even function of h

\ - \(h) = c h
2

+ E h
4

+ ... (26)



which is the case for our wave equation approximation, we have

\ = 2

—

71— + 0(h
i

h
i

>

h
2 " \

(27)

For a set of data which increases monotonically

\ > \ if h
2 > h

l

the extrapolated value \ obtained by dropping the higher order terras in (27),

becomes

.1 *_<

(28)

If h —^o then X. approaches \_ which in turn approaches the exact value \
2 ' e A o

as seen from (27).

On the other hand, for a set of data decreasing monotonically

\>\ if h Q < h
<& 1

\ I \
l 2

h
2

) < \
e I 2 , 2 , 2

u
2 2

h
l

" h
2 /

(29)

As h —^ o, the same conclusion as before is reached. In many cases, this methoc

shows a great improvement with practically no further labor added in the over-

all computation.

By using two data \ , \ , we can eliminate the necessary knowledge of

4
coefficient c; therefore, the result is accurate to 0(h ). By generalizing

this idea with a set of a data \ X. ... \ , it seems that n coefficients

be '•! i mi nated and the result will be accurate to 0(h ). This is probably

ter than repeatedly using the same formula for just a pair of data at a

i Lme as has been done later. This may also explain why the extrapolated value

II h (such as h = 1/12, and 1/14) is better than that from all the h's

iwn 1 a t < ii
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2.5 Study of Convergence

The convergence of the above methods has been tested by the application

to a rectangular guide where the exact solution is available for comparison.

When the first approximation formula (9) is applied to the wave Equation (1),

it shows a better result for the TM case than that for the TE case (Figures

9, 10) . It is believed that this is a result of poor approximation in the

boundary condition for the TE case. In fact, in the TM case there is no

approximation for the boundary condition.

Table I and Figure 9 and 10 show the results (from ILLIAC) for a particular

rectangular waveguide (b/a = 0.5) as compared with exact solution.

Table II shows results obtained by repeatedly using the extrapolation

Formula (27). They show a remarkable improvement over the results of Table I.

Figures 11 and 12 show the difference between exact relative cut off

wavelength and the calculated value where \ /a are obtained from the finite

set of eigenvalue < a. ? .

2.6 Ridge Waveguide
7 8

Many authors ' have shown that the insertion of rectangular ridges have

the following effects

1. A decrease in the lowest cut off frequency.

2. An increase in mode separation.

3. An increase in attenuation.

4. A concentration of electric field intensity at corners of the ridges.

The results obtained in our calculation have shown good agreement with

the data in existing literature.

A typical example shows, for

- = 0.625 - = 0.375 — = 0.4 with net point = 22
a a b

mode TE
1Q

TE
Q1

TBn TE^ TM^ TM^ TM^ TM^

\ /a. 2,541 1,059 1.051 1.038 0.675 0.638 0.468 0.466
c

where the ridge guide modes are given the same designation as the corresponding

modes in the rectangular guide. Figures- 13 and 14 show the method of mode desig-

nations for ridge guide where the boundary condition are shown for only 1/4
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of the cross section. The eigenfunctions for this particular ridge guide have

also been obtained. Figure 15, 16, and 17 indicate that the largest cut-off

wavelength (i.e., dominant mode which corresponds to smallest eigenvalue) are

increased due to the distortion of the field distribution.

Sets of higher order mode cut-off wavelength are given in Table III.

Figure 18 shows the difference between two sets of cut-off wavelength

obtained by using different numbers of mesh points, namely 9 points and 57

points

.

Figure 19 shows the} convergence curve for a particular ridge size.
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TABLE I

Set of Approximated Cut Off Wavelengths

For a Rectangular Waveguide

19

-4pXq)

X. /a\
c

Exact
Solution

\
c 2

(3X7) (4x9) (5X11) (6X13)
a

Vm 2
A

2
+4n

TE TM TE TM TE TM TE TM TE TM m, n

OO OO CO CO OO
*

0,0

1.765 1.82 1.84 1.861 2 1,0

0.905 0.919 0.931 0.938 1 2,0 0,1

0.785 0.915 0.822 0.908 0.848 0.904 0.867 0.901 0.895 1,1

0.718 0.726 0.748 0.72 0.77 0.716 0.787 0.714 0.708 2,1

0.63 0.628 0.631 0.637 0.667 3,0

0.594 0.583 0.613 io.573 0.626 0.567 0.633 0.564 0.555 3,1

0.503 0.499 1 0.507 0.511 0.5 4,0 0,2

0.491 0.535 0.49 0.517 0.485 0.507 0.483 0.501 0.488 1,2

0.454 0.488 0.445 0.473 0.446 0.465 0.449 0.46 0.448 2,2 4,1

0.44 0.437 0.433 0.423 0„433 0.416 0.437 0.412 0.4 3,2 5,0

0.436 0.429 0.407 0.396 0.389 0.372 5,1

0.424 0.416 0.382 0.371 0.366 0.354 4,2

0.405 0.333 6,0 0,3

0.403 0.393 0.378 0.365 0.355 0.329 1,3

0.381 0.373 0.363 0.349 0.339 0.316 2,3 6,1

0,368 0.365 0.312 5,2

0.358 0.36 0.298 3,3

0.346 0.285 7,0

0.314 0.338 0.278 4,3 6,2

0.301
\

0.325
t

\ 1
\ f

1
r

0.274 7,1

(21) (36) (55) (78)

* There is no field corresponding to this particular eigenvalue,



2C

TABLE II

Results Obtained by Extrapolation

*• ^lO Exact

\ /a

value 2

h a c

1/3 2,0 1 ,48
1.84

1/4 1 .0 l r 57
1.925

1 .88
1 .91

1/5 0,585 1,641
1.965

1 .945
1 .942

1/6 0,381 1.695
1 ,94

1 .953
1 .97

1/7 0,269 1,73
2.01

1 .975
2 .008

1/8 0,198 1.765
2.04

2 ,03
1 .994

1/10 0.1206 1 ,82
1.94

1 .99
1 .989

1/12 0.081 1,84
1.987

1 .961

1/14 0,0581 1 .861

2
> ^20 Exact

\ /a
value' 1

h a c

1/8 753 0,905
0.977

1/10 0,468 0,919
0.991

.983
.982

1/12 317 931
0,98

.967

1.918
1.936

1.96 1.96
1.984 1.947

1.999 ' 1.975 1.966
1.98 1.977

1.995 .1.983
1.987

1.992

1/14 229 ,938
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Figure 11 Comparison between Approximated Cut Off Wavelength
(n = 21) and Exact Cut Off Wavelengths of a Rectan-
gular Guide for Various TE Modes

Sequences of Relative Cut- off Wave Length
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3 COMPITATIONS BASED T PON VARIOUS BO' MDARY CONDITION APPROXIMATION

3 1 Results Obtained from Improved Approximation for Wave Equation

When Formula (20) was applied to the rectangular guide (with b/a = 5),

considerable improvement was obtained for the Dirichlet problem, but the result

for the Neumann problem becomes even worse than the first approximation (Figure

20) It seems to indicate that Formula «20) received more propagation error

from approximation in Neumann boundary condition than that of first approximate

Formula (9) and it is probably also true that, in our case, the error due to

boundary approximation predominates over that of wave equation approximation.

!n short, we can sav that merely improving the wave equation approximation

but not the boundary condition does not guarantee better results,

In our first calculation, the wave equation has been approximated with
3

the formula which takes 0(h > into account with the boundary approximation

only up to 0(h),, while in the second computation a higher order approximation
5

to the wave equation up to 0(h ) is considered but with boundary approximation

still t 0th' . ft happened in our case, that the higher order approximation

is only an improvement for the wave equation and is a worse formula when it

combines with 0'h) Neumann boundary approximation.

The above argumpnt is ^trengthpned by the fact that for Dirichlet boundary

condition u = o. we do get better results for higher order approximation It

thus seems likely that the approximation for the wave equation and the boundary

condition should be of the same order,

3.2 Re 0b1 m ned f rom Improved Approximation for Neumann Boundary Cond i tior

Owing to the above undesirable results, the application of the improved

jpproxi mat i on for Neumann boundary condition (22), (23) becomes necessary

r'.x obt nn<-d bv using 'he boundary approximation b (see (22)) and wave

equation approximation (9> becomes non- symmel ri c, a case which is difficult

Howevei for a small matrix, computations can be done by a desk cal-

Clllator The results are plotted in Figure 21, It is seen that not only is

ipproximatlon greatly Lmproved bu1 the direction of convergence is changed
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4, CONCLUSION AND DISCUSSION

To connect the differential equation of a boundary value problem to a

difference equation one must replace the differential operator by a different

operator wherein a truncation of the series representing the operator is

involved. Unless the rigorous solution to the problem is known the actual

error committed in truncation is unknown, although the upper bound of the

truncation error can be determined. A higher order approximation in this

process results only in a decreased upper bound of the error, but does not

necessarily guarantee lower actual error in a particular computation.

Improving the approximate formula for the wave equation does not necessarily

give better results; it will depend also on the order of approximation for

the boundary condition. In the present investigation, it turns out that the

later approximation is of even greater importance.

In our analysis, two different orders of approximations have been con-

' sidered for the wave equation and two for the boundary condition.

3
For the wave equation (I) 0(h )

(II) 0(h
5

)

For the boundary condition (a) 0(h)

(b) 0(h
2

)

It turns out that different combinations give results in the following order

of accuracy: lib (best, lb, la, Ila (worst).

Convergence curves show that the Dirichlet boundary problem converges

faster than that of the Neumann boundary problem. Furthermore, they converge

in different directions, i.e., in Dirichlet boundary problem, the exact value

is the lower bound of the set of approximated results
-j
(\ /a)^ L where n

indicates the number of points used in the approximation while in Neumann

boundary problem the exact value is the upper bound of the set of approxima-

tion results.

This method can be applied to both TE and TM cases. The approximate cut-

off wavelength and field distribution have been obtained. However, only the

data of a limited range for TE case is available in literature. They are found

in good agreement with the present results.
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This investigation indicates that better results for ridge waveguide might

be obtained by the following considerations.

(a) Apply better approximation for boundary condition. It is probably

preferable to use the same order of approximation for the boundary condition

as for the wave equation. Since these higher order approximation formula

always result in non-symmetric matrix, it is thus desirable to investigate

the properties of the eigenvalues of a non-symmetric matrix. In general a

non-symmetric matrix has complex eigenvalues; however, the computation which

has been done for a few small matrices, as indicated in Figure 22, with a desk

calculator shows that they possess only real eigenvalues. Therefore, it may

infer that in our present problem the non-symmetric matrices could have only

real eigenvalues. If this is the case the computation procedure could be

simplified somewhat.

(b) An alternative method to solve this ridge guide problem may be sug-

gested as follows: To consider ridged cross section as composed of a few simple

regions where their eigenfunction expansion are known, by matching the eigen-

function at the common boundary we may arrive at a set of integral equations.

These equations may be solved approximately,

(c) In one-dimension problems, as demonstrated in the Appendix, the

fields at interior mesh points can be expressed in terms of those at boundary

points only. It is not known whether it is possible to achieve the same goal

in a two-dimensional problem. If it can be done, the problem will be solved.



3(

REFERENCES

1. S, Ramo and J„ R, Whinnery, Fields and Waves in Modern Radio , Second Editic,

p , 409 ,

2 N„ Marcuvitz, Waveguide Handbook , Radiation Laboratory Series, Vol. 10,

p. 399,

3, J. Van Bladel and 0. von Rohr, Jr„, Semi -Circular Ridges in Rectanguler
Waveguides," IRE Transactions , MTT-5 , No 2, April 1957, p. 103.

4. G, Swenson and T c J Higgins, A Direct-Current Network Analyzes for Solving

the Wave-Equation Boundary Value Problem, Journ. Appl . Phys

.

, Vol. 23, 1952

pp. 126-131.

5 W, E, Milne, Numerical Solution of Differential Equation, John Wiley and
Sons, Inc., 1953, pp. 133,

6

.

L Fox, The Numerical Solution of Two-Point Boundary Value Problems , Oxf o]

Press, 1957, p. 332.

7. SB, Cohn, "Properties of Ridge Waveguide, 1

Proc . IRE, Vol. 35, August
1957, p. 783-788.

8. Sammel Hopfer, "The Design of Ridge Waveguides," IRE Transactions , MTT-3
,

No , October 1955, p. 20.

9 F B, Hi Idebrand, Introduction to Numerical Analysis , McGraw-Hill, 1956.



37

APPENDIX A

Closed Form for One-Dimensional Case

For the lowest mode of a rectangular guide as discussed previously, the

problem is essentially one dimensional. In order to see how the eigenvalue

varies with n, the number of mesh points, their difference equations are studied

and solved.

Applying (8), we have the approximate wave equation

i-1 i+1 N

a-2

u.
n

+ (a-2) u. + u. =
l-l i l+l

(Al)

Similarly from (19) we have

i-1 i+1

a 5 a
1 +

12 6
Q" 2 l +

12

a-2
u
i-l

+ ~

a "I "i+1
u

- + u
, .i = °

1 +
12

(A2)

Equations (Al) and (A2) can be generalized as

u - 2m u . + u . , =
i-1 i i+l

(A3)

where m = 1 - | For (Al)

m' = 1 — , For (A2)

*!

(A4)

(A5)

Let m = m , hence

a

2 +
a



3,

Therefore a < a

Since
. 27T 27Th

(A6)

Va

we have that \ /a obtained from (Al) is always greater than that from (A2)

irrespective of boundary approximation, (21) or (22). This also agrees with

the numerical results obtained previously. Therefore, for TM case we have

better results by applying improved Formula (20), yet the same formula gives

worse results for TE case since they converge to their exact value in different

directions as shown in Figure 22.

The general solution of Equation (A3) is

u. = a z, + b z„
i 1 2

(A7)

where z and z are the roots of the quadratic equation

z - 2mz +1=0 (A8)

Applying the boundary conditions 21, 22, 23 respectively we would have

the following cases

(a)
o 1 N-l N

From (7) we obtain

a + b = a z, +bz
1 l

N-l . N-l N , N
a z + b z = a z + b z (A9)

In order to get a non-trivial solution for (29) we set

(1-z^ (l-z
2

)

(1-
Zi ) z

2
(l-z

2
) z

2

= (A10)

(1-Z.) ( L-Z.) (z
2

- 2 ) =
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The solutions z = z = 1 lead to trivial solution a = for (z
N_1

- z
N_1

) =i a z 1 ' '

we get

\ N
-\li2fm 2p7T

N-l p = 0, 1, 2, ... N-2 (All)

From (A8) z = m + v m -1 z
2

= m -/^

Substituting in (All) and solving for m from

,p7T Vl-m
2

tan (itt) =N-l m

we have m = + cos
pit

N-l

Following the same routine, we obtain for the other two boundary approximations

(22), (23)

(b) U
-l

= U
l

U
N-1 " U

N+1

m = + cos
pn
N

(c) = (1 -
2 O

m = + cos

N-l

N

(1 " V u
n

for the lowest normal mode, p = 1, thus we have the lowest cut off wavelength

for (21), (22), (23) respectively,

(a)
fY ir

N ]/l - cos 7T/N-1

(b)
c

a

\[~2 7T

N |/l - cos ff/N

(c)
2 7T

a
N v/l " cos 7T/N

It can be shown that the value of cut of wavelength Formula (a) is always less

than 2, while those of (22) and (23) are always greater than 2. Again this

—>iMi uij-£L -*- 1 .W+ r^ •; ~ ^.^4 ««/M.-{/Min1» ^ Pi /rtivi^ Oil
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