|||||||||||||||||||||||

OBSERVATIONS

TERRESTRIAL MAGETISII

I N

M E X I C O.

CONDUCTED UNDER THE DIRECTION OF BARON VON MÜLLER,
witil notes and illustrations of an examination of the volcano popocatepetl AND ITS VICINITY

BY
AUGUST SONNTAG.
[accrpted for publication, may, 1859.$]$

COMMISSION

TO WIIICII TIIS MEMOIR IIAS BEEN REFERRED.

Prof. Stephen Alexander, Prof. Arnold Guyot.

Joseph Henry,
Secretary S. 1.

PREFICE.

Ix 1856 , Baron von Miiller, of Germany, undertook an exploration in reference to the natural history of Mexico, and proposed to the Smithsonian Institution to make in its behalf a magnetic survey of the same country.

The offer having been accepted by the Institution, an appropriation was made to pay a portion of the salary of Mr. Somntag, the assistant of Baron von Miiller; and the magnetic instruments were intrusted to lim which had previously been lent to Dr. Kane, and used by Mr. Somntag himself, as one of the assistants of this lamented explorer in his last expedition.

Several records of observations, made at various places in Mexico, were at different times forwarded by Baron von Müller previous to his return to Germany, after which the Institution was informed by him that the instruments had been captured and destroyed by robbers.

No final report having been furnished by Baron ron Müller, the erude observations made previous to the loss of the instruments have been reduced for publication at the expense of the Institution, by Mr. Sonntag, and the results given in the following pages.

Appended to the magnetical observations will be found a series of notes by Mr. Sonntag, upon the rolcano of Popocatepetl and its vicinity.

The present memoir was critically examined by Mr. C. A. Schott, of the C'ast Survey, and has been submitted to l'rofessors Guyot and Alexander, of l'rinceton, as a commission of reference.

Jusepli Ilenky,
Secretary S. I.

CONTENTS.

Part I. - MAGNETICAL OBSERYATIONS.
lnstruments and methods of making the observations 1
Olservations at Tera-Cruz 3
Observations at Potrero 12
Obscrvations at Orizaba 18
Observations at San Andres Chalchccomula 2.2
Obscrvations at Mirador 26
Observations at the eity of Mexico 32
Obscrrations at Rancho Tlamacas 38
Results of the magnetieal observations 45)
Pant II. -NOTES ON TIIE TOLCANO POPOCATEPETL AND ITS VICINITY.
General remarks 51
Iyppometrical determinations 8.3
Miseellaneons notes 8.3

PARTI.

OBSERVATIONS

TERRESTRIAL MagNETISM IN mexico.

MAGNETICAL OBSERVATIONS.

INSTRUMENTS AND METHODS OF MAKLNG THE OBSERVATIONS.

The following observations were made with a set of magnetic instruments, furnished to Baron Von Müller by the Smithsonian Institution. The set contained a small theodolite, a declinometer, and a unifilar-magnetometer, made by Jones, and a Barrow dip-eircle. The last-mentioned instrument I had formerly used in Dr: Kane's Aretic expedition, where it was subjected to some rough usage; and although it had been carefully adjusted before it was taken out to Mexico, the axis of the needles proved not to be as perfectly cylindrical as was desirable.

The determinations of absolute declination were made by means of the small theodolite and the declinometer. The azimuth circle of the first named instrument reads to thirty seconds by means of three verniers. It carries also a vertical cirele, reading to single minutes. On its transit from Vera-Cruz to Potrero it suffered much, and the clamping-screws and the arms which carry the verniers were bent; this accounts for the great differences in the readings of the single verniers after the first observations. This instrument was used to determine the true [astronomical] and the magnetical azimuth of a mark, for the purpose of obtaining the magnetic deelination. 'The first of these operations consisted in observing the mark and the first and second [western and eastern] limb of the sun, and in determining the error of the ehronometer, by which the time of the solar observations was noted.

This error of local time was found generally by double altitudes of the sun, taken either with the theorlolite or by means of a pocket-sextant, reading to single minutes, and a mercurial horizon. As the level attached to the vertical circle of the theodolite was not sufficiently sensitive, it was generally thought best to observe also with this instrument the reflected image of the sun. An equal number of observations of the upper and lower limb of the sun were always taken. A pocket-chronometer of Parkinson $\mathbb{\&}$ Frodsham was used, and its rate on mean time continued always very small.
'The deelinometer carried a wooden box with a glass-tube of ten inches in length for suspending the magnet. This box was fastened to a table of the same material. After bringing the sides of the box nearly into the magnetic meridian and levelling it, the torsion was taken ont of the silk thread by means of a brass collimater,
containing a very weak magnetic needle, and the torsion-circle turned until the collimater stood parallel to the box. Then the magnet was put in the place of the collimater and adjusted in height and illumination. It was of cylindrical form and hollow, the nortli-end being closed by a lens, and the south-end by a plane-glass into which a fine scale was cut.

The theodolite was mounted about one foot to the northward of the declinometer, and so adjusted that the seale on the magnet appeared distinctly. The vertical wire was put near the centre division, and after a set (generally three) of readings had been made, the magnet was turned 180° around its axis, so that the numbers of the scale, if they had appeared upright before, were now inverted. The first position of the scale is always marked D. (direct.), the sccond R. (reversed). 'This operation was several times repeated, and the scalc-division, corresponding to the axis of the magnet, determined by combining the means of the 1 st and $3 d$ set with the mean of the middle set. Next, the angle between the axis of the magnet and the mark was measured by means of the theodolite; and thus the magnetic azimuth of the mark was determined. By these observations the telescope of the theodolite was always several times reversed, so as to climinate the error which might arise from a deviation of the optical axis, which changes with the focal length.
'The declinometer was also used for observing the vibrations in the determination of horizontal intensity. lor this purpose two wooden arms were attached to it, one carrying a telescope and ivory scale, the other a counterpoise-weight. After levelling the instrument and taking the torsion out of the supension-threads by means of the phmmet, the magnet $D 3$ was suspended. It was of cylindrical form and 3.87 inches in length, and carries a small mirror (intended to reflect the ivory scale), the plane of which was perpendicular to the axis of the magnet. A thermometer was placed in the box and read after each set of observations. The magnet was steadied and the instrument turned in azimuth until the vertical wire of the telescope covered the centre division of the reflected scale. The magnet was found to hang so nearly horizontally, that it was not necessary to nse a balance-ring. All vertical motion was carefully checked and the magnet deftected from 100 to 180 scale-divisions from the meridian by means of another small magnet, and then left to vibrate. The time of a passage of the central-division over the wire of the tclescope was now observed, and recorded as the time of commencement or 0 vibration, and afterwards the time, when the centre-division passed the wire again at the completion of the 10 th, 20 th, 30 th, 40 th, and 50 th vibrations, was accurately noted. The 100 th, 200 th, and 300 th vibrations were also noted, and generally the extreme scale readings were recorded at the same time. After the 300 th again every 10 th to the 350 th vibration was observed, thus obtaining six values for the time, in which the magnet made 300 vibrations, viz., from 0 to 300 , from 10 to 310, etc.

Occasionally the cocfficient of torsion was determined by reading at first the torsion-circle and the scale, then turning the torsion-circle 90° and reading the scale again, then turning it 180° in the opposite direction, and finally turning it back 90° to its original position, and reading the scale each time. It remained always nearly the same and was very small.

The mifilar-magnetometer was only used for experiments of deflection. The horizontal circle of this instrument read to 20 seconds. It supported a heary copper box, which quieted the magnet, suspended in it, to a considerable extent. 'To this box were fastened two arms, of about 1.5 feet in length, with grooves, in which the deflecting magnet rested. One of these arms carries also the telescope and the scale, which was reflected from a small mirror, attached to the magnet in such a mamer that its axis was parallel to the plane of the mirror. The deflecting magnet was the same used in the vibration experiments. After the instrument was levelled, and the torsion taken out of the silk thread, a magnet of somewhat smaller dimensions than the deflecting magnet was suspended. 'This last one was placed in the groove on the eastern arm at the distance of one foot, and the instrument turned until the middle of the scale appeared behind the vertical wire of the telescope. 'Then the circle was read and the magnet placed on the western arm at the same distance and the same pole pointing in the same direction (so that the opposite pole was now turned towards the deflected magnet), when the circle was read off again, and the south pole of the deflecting magnet placed where its north pole was before, without altering the distance. The instrument was now turned until the middle of the scale was again behind the vertical wire and the circle-reading noted. Then the magnet was placed on the eastern arm, at the same distance, and without changing the poles, etc. Afterwards the distance was increased to 1.3 feet, and the operation repeated. At the end of each set the temperature of the deflecting magnet was noted. In the observations with the dip-circle the instrument was brought into the meridian by turning the horizontal circle in azimuth until the dipping-needle indicated 90°. Then the circle was read and turned about 180°, when the needle was brought again into a vertical position and the horizontal circle was read onee more. By means of these readings the needle was put in the magnetic meridian. The poles of the needles were reversed at each observation.

OBSERTATIONS A'T YERA-CRCZ.

Description of Station No. I.-The instruments were mounted in the centre of a room, situated on the first floor, and in the northern comer of a villa or cottage, called "la Guacca," two hundred yards outside of the walls of Vera-Cruz, and on the south side of this city. 'The floor was of marble, and no basement below it. 'There was no iron in the neighborhood, the locks and hinges of the doors, etc., being of brass. On the walls of the city, two hundred yards to the north, were several heary iron guns. The grounds near the villa consisted of sand and clay. The instruments were elevated about fourteen fect above the level of the sea, which is only five liundred yards distant.

Station No. I. Vera Cruz, villa "La Guacca."
Latitude $19^{\circ} 12^{\prime}$. Longitude $96^{\circ} 9^{\prime} \mathrm{W}$. of Greenwich.

1856. A	Absolute magnetie declination.		True azimuth of the mark A. ${ }^{1}$						
circle to the left.			circle to tremight.						
Object.	Chronometer.	Circle reading.	Ohject.	Cbronometer.	Circle reading.				
\bigcirc Ist limb	$0^{\mathrm{h}} 59^{\mathrm{m}} \quad 6^{\text {s }}$	$\begin{array}{cccc}118^{\circ} & 20^{\prime} & 30^{\prime \prime} \\ 18 & 0 \\ 19 & 30\end{array}$	Mark A	$1^{\mathrm{h}} 16^{\mathrm{ma}}$ - 5	$\begin{array}{cccc}356^{\circ} & 34^{\prime} & 30^{\prime \prime} \\ 36 & 0 \\ 34 & 45\end{array}$				
IId limb	130	118 1 30 1 30 0 30	\odot Ist limb	11842	$\begin{array}{cccc}88 & 41 & 0^{2} \\ & 39 & 30 \\ 41 & 0\end{array}$				
Mark A	18 -	$\begin{array}{llr}356 & 34 & 0 \\ & 35 & 15\end{array}$	$\odot \mathrm{Ifd}$ limb	12139	88 2030 1930				
		- $3+30$			20- 2000				
Mark A	$127-$	$\begin{array}{lll}326 & 16 & 45 \\ & 18 & 0\end{array}$	Mark A	124 -	$\begin{array}{lll}325 & 1630 \\ & 16 & 30\end{array}$				
		160 9			150				
\bigcirc Ist limb	12920	$\begin{array}{lll}89 & 27 & 0 \\ & 26 & 0\end{array}$							
\bigcirc © Id limb	13132	$\left.\begin{array}{c} \\ 89 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ 2\end{array}\right)$	-	-	-				
Absolute magnetic declination. 1856. August 8, A. M. Altitudes of the sun, for the determination of time. Small theodolite.									
mirect.			beflected.						
Sun's limb.	Chronometer.	Circle reading.	Sun's limb.	Chronometer.	Circle reading,				
Upper	$\begin{array}{ccc} 2^{\mathrm{h}} & 9^{\mathrm{m}} & 20 \mathrm{~s} \\ 10 & 21.5 \\ 11 & 27 \end{array}$	$\begin{array}{cc} 29^{\circ} & 0^{\prime 3} \\ 15 \end{array}$	Lower	$2 \mathrm{~h} 4^{\mathrm{m}} 58^{8}$	$332^{\circ} 15^{\prime}$				
		$\begin{aligned} & 15 \\ & 33 \end{aligned}$			$331 \begin{array}{r}0 \\ 45\end{array}$				
Lower	21340	293045	Upper	21846.5	$\begin{array}{rr}328 & 30 \\ & 15 \\ & 0\end{array}$				
	1 ± 40			1950					
	1547	$30 \quad 0$		2052					
Upper	2 27 24 28 27.	$\begin{array}{r} 3315 \\ 30 \end{array}$	Lower	2 22 23 4	32815				
					20. 0				
Iower		4045$41 \quad 0$			$\begin{array}{lr}324 & 45 \\ 320 & 0\end{array}$				
	243		Lower	$\begin{array}{r}257 \\ -58 \\ \\ \\ \hline\end{array}$	320 319				
Upper	$\begin{array}{lll}3 & 4 & 4 t \\ & 5 & 4 t\end{array}$	$\begin{array}{ll}41 & 0 \\ 42 & 0\end{array}$	Upper	$\begin{array}{rrr}3 & 8 & 54 \\ & 10 & 4\end{array}$	$\begin{array}{ll}316 & 45 \\ & 30\end{array}$				
	Index error assumed $+0^{\circ} \varepsilon^{\prime} .6$. Temperature of the air $7^{\text {h }} 0^{\text {ra }} \Lambda . M ., 80^{\circ} .5 \mathrm{~F}$. $\text { " } \quad \text { " } \quad 9 \quad 0 \quad \text { А. М., } 83.0 \mathrm{~F} \text {. }$ Barometer $9^{\text {h }} 0^{\mathrm{m}}$ A. M., 29.98 inches. Attached thermometer $8 t^{\circ} .0 \mathrm{~F}$. Chronometer slow of Greenwich mean time $+2^{\mathrm{m}} 57^{\mathrm{s} .7}$. Daily rate $6^{5} .3$ slow.								

${ }^{1}$ The mark A is the cross on the dome of the "Parroquia" [Parish Churcb], situated on the sonth side of the "Plaza de Armas," Vera Cruz. It is 2,310 feet distant from the Station No. I.
${ }^{2}$ After $1^{\mathrm{h}} 10^{\mathrm{m}}$ (Chron.) the sun had risen too high to be visible from the station, the theodolite was, therefore, put at another place, 12 feet distant, and bearing east by north (magn.) from the station.
${ }^{2}$ In these observations only one vernier of the vertical cirele was read.

Horizontal intensity. Experiments of vibration.
1856. August 7, A. M. Magaet D 3 suspended.

1856. August 7, A. M.

Magnet D 3 suspended.

Extreme seale readings.

0	90	51.0
100	13.0	47.0
200	160	440
300	18.0	42.0
350	188	41.2

Temperature $82^{\circ} \mathrm{F}$.
Time of 1 vibration $2^{5} .6: 54$.
1857. August 8, A. M.

Magnet D suspended.

No.	Chronometer.		No.	Chronometer.	Time of 300 vibrations.	
0	$5^{\text {h }} 21^{1}$	$34^{\text {s }} .0$	300	$5^{\mathrm{h}} 34^{\mathrm{m}} 42^{5} 0$		$8^{5} .0$
10	20	0.0	310	3590.0		9.0
20	22	26.5	320	$35 \quad 34.0$		7.5
30	22	53.0	330	360.5		75
40	23	19.0	310	$36 \quad 270$		8.0
50	23	450	350	$30 \quad 53.5$		85
100	25	56.5	200	$30 \quad 20.0$	13	808
Extreme seale readings.						
0	8.0	52.0	Temperature $84^{\circ} .2 \mathrm{l}$.			
50	100	500	Time of 1 vibration $2^{5} 6260$.			
100	12.0	48.0				
200	16.0	44.0				
350	19.0	41.0				

1856.	zontal inte ust $7,5{ }^{\text {h }}$	$\begin{array}{r} \text { Experime } \\ 05^{\mathrm{h}} 52 \mathrm{~m} \mathrm{P} \cdot \mathrm{M} . \end{array}$	of deflect	Distanc eting magnet	Temp.
Magnet.	North pole.	Circle reading.	Mean.	2 u .	
Id.	W.	132° 47^{\prime} 47 47 47 10	$47^{\prime} 32^{\prime \prime}$	$6^{\circ} 51^{\prime} 31^{\prime \prime}$	84.5
"	W.	132 480	4740		
W.	1.	182 47 182 49 10	4830		
"	E.	182 1% 18	4823		
"	W.	$\begin{array}{ccc} & 48 & 15 \\ 139 & 10 & 0\end{array}$	8) 50		
"		(3) 40			
	W.	$13940 \div 0$	$\begin{aligned} & 40 \quad 5 \\ & \text { Mcan } \end{aligned}$		
				$6 \quad 51 \quad 9$	
Leperiments of deflections.1850. August 7, $5^{\text {h }} 57^{\text {1n }}$ to $6^{\text {h }} 17^{\mathrm{m}}$ P. M.					
Magnet.	North pole.	Cirelereading.	Mean.	2 u .	Temp
W.	Is.	$\begin{array}{ccc}128^{\circ} & 42 \prime & 50 \prime \prime \\ 42 & 20\end{array}$	$42^{\prime} 35^{\prime \prime}$	$15^{\circ} 9^{\prime} 30^{\prime \prime}$	$84^{\circ} .2$
"	12.	128 4:3 10	4250		
"	W.	$\begin{array}{llrr}143 & 52 & 40 \\ & 52 & 0\end{array}$	5220		
"	W.	$\begin{array}{llrr}143 & 5 & 30 \\ & 52 & 5\end{array}$	5217		
E.	E .				
		$\begin{array}{lll}143 & 44 & 10 \\ & 43 & 40\end{array}$	4355	1547	
"	F.	$\begin{array}{llrr}143 & 44 & 5 \\ & 43 & 40\end{array}$	4352		
"	W.	$128 \quad 40 \quad 5$	3947		
"	W.	$\begin{array}{rrr}128 & 40 & 0 \\ & 39 & 30\end{array}$	3945		84.2
			Mcan	$15 \quad 6 \quad 52$	

OBSERV'ATIONS AT POTRERO.

Description of Station No. II.-Potrero is the first large sugar estate on the road from Vera Cruz to Orizaba, about twenty miles to the east of the last-mentioned town. Its clevation above the level of the Mexican Gulf was found 1,988 English feet (by barometrical observations). The magnetical observations have been made in a shed or barn, consisting of a roof of palm leaves supported by a number of poles. There is no iron within several hundred yards of it. The shed is situated about cighty yards to the N. N. W. of the store. A tree, nearly four miles to the west of the station, was used for a mark (A) in the determination of the absolute declination,

Station No. II. Putrero.
Latitude $18^{\circ} 56^{\prime}$. Longitude $96^{\circ} 48^{\prime} \mathrm{W}$. of Greenwieh.

Absolute magnetic deelination. True azimuth of the mark A. 1856. August 18, А. M. Small theodolite.					
circle to the left.			chacle to theright.		
Object.	Chronometer	Circle reading.	Object.	Chronometer.	Circle reading.
\odot Ist limb	$1^{\mathrm{h}} 3^{\mathrm{m}} 48^{\mathrm{s}}$	249	\bigcirc IId limb	$I^{\mathrm{h}} 27^{\mathrm{m}} \quad 7^{\text {s }}$	$\begin{array}{cl} 250^{\circ} & 40^{\prime} \\ & 33.5 \\ & 35 \end{array}$
¢ Ist limb	648	$\begin{array}{ll}249 & 44 \\ & 38 \\ & 38\end{array}$	\bigcirc Ist limb	2846	$\begin{array}{ll} 251 & 19 \\ & 13 \\ & 14 \end{array}$
\bigcirc IId limb	831	$\begin{array}{ll} 249 & 19 \\ & 18 \\ & 18.5 \end{array}$	Mark Λ	\square	$\begin{array}{ll} 94 & 14 \\ & 20 \\ & 27 \end{array}$
© IId limb	10 I	$\begin{array}{ll} 249 & \begin{array}{l} 10.5 \\ \\ \\ 21.5 \\ \\ 20 \end{array} \end{array}$	Mark A	-	$\begin{array}{ll} 94 \quad 18 \\ & 20 \\ & 26 \end{array}$
Mark A		$\begin{array}{ll} 94 & 14 \\ & 18 \\ & 23 \end{array}$	\bigcirc Ist limb	$\begin{array}{lll}1 & 37 & 10\end{array}$	$\begin{array}{ll} 251 \quad 55 \\ & 47 \\ & 47 \end{array}$
Mark A	--	$\begin{array}{ll} 94 & 17 \\ & 18 \\ & \underline{2} \end{array}$	\bigcirc © Id limb	3914	$\begin{array}{ll} 251 & 26 \\ & 22 \\ & 20 \end{array}$
\odot Ist limb	11822	$\begin{array}{ll} 250 & 31 \\ & 26 \\ & 23 \end{array}$			
\odot Ist limb	$20 \quad 16$	$\begin{array}{ll} 250 & 40 \\ & 34 \\ & 33.5 \end{array}$			
\odot IId limb	2150	$\begin{array}{cc} 250 & 12 \\ & 9 \\ & 7 \\ & 50 \end{array}$			
\odot Idd limb	23.20	250 19.5 14 14			

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Altitudes of the sun, for the deternination of time. 1856. August 17, P. M. Small theodolite.} \\
\hline \multirow[b]{2}{*}{Sun's limb.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
refiected. \\
Chronometer.
\end{tabular}} \& \& \multicolumn{3}{|c|}{mimet.} \\
\hline \& \& Circle reading. \& Sun's limb. \& Chronometer. \& Circle reading. \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
Upper \\
Upper \\
Tpper
\end{tabular}} \& \multirow[t]{3}{*}{\[
\begin{array}{ccc}
10^{h} \& 1^{1 \mathrm{IL}} \& 49^{4} \\
\& 3 \& 9 \\
\& 6 \& 59
\end{array}
\]} \& \(38^{\circ} \stackrel{9}{5}\)
\(-1 ;\) \& Upper \& \(10^{\mathrm{h}} 11^{\mathrm{m}} 58{ }^{5}\) \& \(324^{\circ} \frac{21}{20.5}\) \\
\hline \& \& \(\begin{array}{ll}38 \& 5.5 \\ \& 6\end{array}\) \& \({ }^{\text {r pryer }}\) \& 1611 \& 32438 \\
\hline \& \& \(\begin{array}{ll}37 \& 1385 \\ \& 13\end{array}\) \& Tpper \& \(17 \quad 15\) \& 324 \\
\hline \multicolumn{6}{|l|}{Absolute magnetic declination. Altitudes of the sun, for the deter
1856. August 17, P. 11 . Small theodolite.} \\
\hline \multicolumn{3}{|c|}{meflectid.} \& \multicolumn{3}{|c|}{mirect.} \\
\hline Sun's limb. \& Chronometer \& Circle reading. \& Sun's limb. \& Chronometer. \& Circle realing. \\
\hline Jower \& \(10^{\text {l }} 8^{\mathrm{mm}} 9^{*}\) \& \(\begin{array}{cc}360 \& 23.5 \\ 24\end{array}\) \& Lower \& \(10^{\mathrm{h}} 18^{\mathrm{mm}} 0^{\mathrm{s}}\) \& 325 \\
\hline Jower \& \(10 \quad 7\) \& 35 \(\quad 54\) \& Lower \& 1845 \& \(\begin{array}{ll}325 \& 47 \\ 47\end{array}\) \\
\hline Lower \& 1146 \& 3.) \(\quad 31\) \& Tuwer \& 1930 \& \(325 \quad 58\)

58

\hline \multicolumn{6}{|l|}{Temperature of air $77^{\circ} \mathrm{F}$. Barometer 28.17 English inches. Attached thermoneter $76^{\circ} \mathrm{F}$. During the observations the sum was often obscured by clouds.}

\hline \multicolumn{2}{|l|}{1856. August 18, A. M.} \& \multicolumn{2}{|r|}{Small theodolite.} \& \&

\hline \multicolumn{3}{|c|}{direct.} \& \multicolumn{3}{|c|}{reflectid.}

\hline Sun's limb. \& Chronometer \& Circle reading. \& Sun's limb. \& Chronometer. \& Cirele reading

\hline \& $1^{\mathrm{h}} 51^{\mathrm{m}} 36^{8}$ \& $23^{\circ} 30^{\prime \prime}$ \& \multirow{3}{*}{Upper} \& $1^{14} 57^{-11}$ \& $334^{\circ} 20^{\prime}$

\hline Lower \& $\begin{array}{lr}52 & 17 \\ 53 & 0\end{array}$ \& 40

50 \& \& | 57 |
| :--- |
| 58 |
| 58 |
| 8 | \&

\hline \multirow{3}{*}{Upper} \& \multirow[t]{2}{*}{| 154 |
| :--- |
| |
| |
| 54 |
45	} \& \multirow[t]{2}{*}{$\begin{array}{r}24 \quad 40 \\ \\ \hline 50\end{array}$} \& \& \multirow[t]{2}{*}{	3
$-\quad 0$		
0	} \& \multirow[t]{2}{*}{	384
---:		
10		
0	} 	

\hline \& \& \& \multirow[t]{2}{*}{Lower} \& \&

\hline \& 5543 \& 250 \& \& \multirow[t]{2}{*}{, $\begin{array}{r}1 \\ 2\end{array}$} \& 33350

\hline \multirow{3}{*}{Lower} \& 283 \& \multirow[t]{2}{*}{$27 \quad 20$
30} \& \multirow[b]{2}{*}{Lower} \& \& 33330

\hline \& 8
9
9 \& \& \& - $\begin{array}{r}1 \\ 3 \\ 4\end{array}$ \& \multirow[t]{2}{*}{20
10}

\hline \& 2 \& 28
20
30 \& \multirow{3}{*}{Upper} \& \multirow[t]{3}{*}{$\begin{array}{rrr}2 & 5 & 24 \\ & 6 & 6 \\ & 6 & 47\end{array}$} \&

\hline Upper \& - 1123 \& - 40 \& \& \& \multirow[t]{2}{*}{$\begin{array}{rr}332 \quad 20 \\ & 10 \\ & 0\end{array}$}

\hline \& 124 \& 50 \& \& \&

\hline \multicolumn{6}{|l|}{Temperature of air $75^{\circ} .0$. Barometer 28.10 English inches. Attached thermometer $74^{\circ} .0$.}

\hline
\end{tabular}

[^0]

OBSERVATIONS AT ORIZABA.

Deseription of Stution No. 11I.-The instruments were mounted muder a roof of palm leaves, in the garden of Mr. Thomas Grandison, at Cocolapam, abont a thousand yards to the south of the town of Orizaba. A few hundred yards west of the magnetic station rises a huge mountain ridge, of ancient volcanic rock, to a height of 1,500 to 2,000 feet above the plain. This may possibly cause some small local disturbance.

The elevation of the station above the level of the sea was found by barometrical observations 4,042 English feet.

In the determination of absolute declination a break in a distant mountain ridge to the castward was used as a mark (A).

No experiments of deflection have been made at Orizaba.

Station No. LII. Coculapam near Orizaba.
Latitude $18^{\circ} 53^{\prime}$. Longitude $97^{\circ} 4^{\prime} \mathrm{W}$. of Greenwich.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
Magnetic inelination. \\
1856. August 26, \(3^{h} 30^{\mathrm{m}}\) P. M. Needle No. 2. A. South pole.
\end{tabular}} \\
\hline \multicolumn{4}{|c|}{circle east.} \& \multicolumn{4}{|c|}{circle west.} \\
\hline \multicolumn{2}{|r|}{Face east.} \& \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Face east.} \& \multicolumn{2}{|r|}{Face west.} \\
\hline \[
\begin{gathered}
43^{\circ} 21^{\prime} \\
36
\end{gathered}
\] \& \(42^{\circ} 34^{\prime}\)
48 \& \(12^{\circ} 41^{\prime}\)
35 \& \(\begin{array}{cc}42^{\circ} \& 0^{\prime} \\ 41 \& 51\end{array}\) \& \(189^{\circ} 57^{\prime}\)
89 \& \(140^{\circ} 18^{\prime}\)
1 \& \(138^{\circ} 52^{\prime}\)
35 \& \(139{ }^{\circ} 2^{2}\) \\
\hline \begin{tabular}{l}
\(43: 28.5\) \\
43
\end{tabular} \& \[
\begin{array}{rr}
42 \& 41.0 \\
4.7 \& 42
\end{array}
\] \& \[
\begin{array}{rr}
42 \& 38.0 \\
1.1 \& 42
\end{array}
\] \& \[
\begin{array}{rr}
\hline 41 \& 57.0 \\
17.5 \& \\
\& 41
\end{array}
\] \& \[
\begin{array}{cc}
139 \& 48.0 \\
\& 139 \\
36.1 \&
\end{array}
\] \& \[
\begin{array}{rl}
140 \& 9.5 \\
587 \& 139
\end{array}
\] \& \[
\left\lvert\, \begin{array}{cc}
138 \& 43.5 \\
\& 138 \\
29.0 \&
\end{array}\right.
\] \& \[
\begin{array}{rr}
139 \& 15.0 \\
59.3 \&
\end{array}
\] \\
\hline \multicolumn{8}{|l|}{1856. August 26, \(3^{\text {h }} 30^{\mathrm{m}}\) P. M. Needle No. 2. A. North pole.} \\
\hline \multicolumn{4}{|c|}{circle west.} \& \multicolumn{4}{|c|}{circle east.} \\
\hline \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Face cast.} \& \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Face cast.} \\
\hline \(136^{\circ}{\stackrel{28}{ } 8^{\prime}}_{11}\) \& 136

7 \& $136^{\circ} 19^{\prime}$
4 \& $1360^{\circ} 27^{\prime}$
11 \& $45^{\circ}{ }^{1}{ }^{\prime}$ \& $44^{\circ} \quad 20$
30
30 \& $45^{\circ} 21^{\prime}$
36 \& $44^{\circ} 24^{\prime}$
38

\hline $$
\begin{array}{lc}
136 & 10.5 \\
& 136
\end{array}
$$ \& \[

$$
\begin{array}{rr}
\hline 136 & 16.0 \\
17.7 & \\
& 136
\end{array}
$$

\] \& | $136 \quad 11.5$ |
| :--- |
| 16.5 | \& \[

$$
\begin{array}{rr}
136 & 19.0 \\
15.3 & \\
& 44
\end{array}
$$

\] \& | $\begin{array}{rr} 45 & 7.5 \\ & 44 \end{array}$ |
| :--- |
| 8.3 | \& \[

$$
\begin{array}{rr}
44 & 25.0 \\
46.2 & 44
\end{array}
$$

\] \& \[

$$
\begin{array}{|cc|}
\hline 45 & 28.5 \\
530 & 41
\end{array}
$$

\] \& \[

$$
\begin{array}{|cc|}
\hline 41 & 31.0 \\
59.8 &
\end{array}
$$
\]

\hline \multicolumn{4}{|l|}{1856. August $26,6^{\text {h }} 0^{\text {mi }} 1$ P. M. Needle} \& \multicolumn{4}{|l|}{Vo. 1. A. North pole.}

\hline \multicolumn{4}{|c|}{circle east.} \& \multicolumn{4}{|c|}{circle west.}

\hline \multicolumn{2}{|r|}{Face east.} \& \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Face east.} \& \multicolumn{2}{|r|}{Face west.}

\hline $$
\begin{gathered}
44^{\circ} 43 \prime \\
55
\end{gathered}
$$ \& 43°

448^{\prime}
44 \& $46^{\circ} \quad 7^{\prime}$
20 \& 45°

2
20 \& $138^{\circ} 30^{\prime}$
13 \& 138°
41^{\prime}

23 \& | 138° |
| :--- |
| 137 |
| 137 |
| 13 | \& $138^{\circ} 23^{\prime}$

5

\hline $$
\begin{array}{r}
44 \quad 49.0 \\
44
\end{array}
$$ \& \[

$$
\begin{array}{ll}
& \begin{array}{ll}
43 & 55.5 \\
22.2 & 45
\end{array}
\end{array}
$$

\] \& \[

$$
\begin{array}{cc}
46 & 13.5 \\
& 55 \\
2.6 &
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
45 & 12.5 \\
48.0
\end{array}
$$
\]

\[
43

\] \& | $\begin{array}{rr} 138 & 21.5 \\ 138 \end{array}$ |
| :--- |
| 2.2 .5 | \& \[

$$
\begin{array}{cc}
138 & 32.0 \\
26.7 & \\
& 138
\end{array}
$$

\] \& \[

$$
\begin{array}{cc}
\hline 138 & 3.0 \\
& 138 \\
17.6 &
\end{array}
$$

\] \& \[

$$
\begin{array}{cc}
138 & 14.0 \\
8.5 &
\end{array}
$$
\]

\hline \multicolumn{4}{|l|}{1856. August 26, $6^{\text {h }} 0^{\text {ma }}$ P. M. Needle} \& \multicolumn{4}{|l|}{No. 1. A. South pole.}

\hline \multicolumn{4}{|c|}{circle east.} \& \multicolumn{4}{|c|}{circle west.}

\hline \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Frae east.} \& \multicolumn{2}{|r|}{Face west.} \& \multicolumn{2}{|r|}{Face east.}

\hline $46^{\circ} \begin{array}{r}8 \\ 80\end{array}$
20 \& \& $40^{\circ} 34^{\prime}$

49 \& | 39° |
| :---: |
| 40 |
| 40 | \& \[

$$
\begin{gathered}
136^{\circ} 33^{\prime} \\
17
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
136^{\circ} 33^{\prime} \\
17
\end{gathered}
$$

\] \& \[

$$
\begin{aligned}
& 141^{\circ} \quad 5^{\prime} \\
& 140 \quad 47
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& 141^{\circ} 12^{\prime} \\
& 140 \quad 53
\end{aligned}
$$
\]

\hline \multicolumn{4}{|l|}{430.2} \& $$
\begin{array}{rr}
136 & 25.0 \\
& 136
\end{array}
$$ \& \[

$$
\begin{array}{rr}
136 & 25.0 \\
25.0 & \\
& 138
\end{array}
$$

\] \& \[

$$
\begin{array}{|cc|}
\hline 140 & 56.0 \\
& 140 \\
42.1 &
\end{array}
$$

\] \& \[

\left\lvert\, $$
\begin{array}{rr}
141 & 2.5 \\
59.2 &
\end{array}
$$\right.
\]

\hline
\end{tabular}

obseryations at san andres cilalchecomula.

Description of Station No. IV.-The town of San Andres is situated in a plain at the foot of the Peak of Orizaba, and this voleano rises, to the east of it at a distanee of about ten miles, to the height of $10,(000$ English feet above the plain, which is elevated 7,800 English feet above the level of the Mexican Gulf.

The instruments were mounted in the yard of the house of Mr. Canto. The azimuth of a very distant tree (A) was originally determined by obscrvations of the sun, but after the declinometcr had been mounted this tree was obseured by fog, and the magnetie azimuth of another, nearer mark (B), having nearly the same dircetion as A, was determined. Afterwards the angle between A and B was measured and found $\mathrm{A} 32^{\prime} .3$ to the right of 1 B . This quantity has to be added to the circle readings of B to get the corresponding readings for the mark A .

Deflections have not been obscrved at this station.

Station No. IV. San Andres.
Latitude $18^{\circ} 59^{\prime}$. Longitude $97^{\circ} 15^{\prime} \mathrm{W}$. of Greenwieh.

Absolute magnetie declination. True azimuth of the mark A . 1856. September 17, A. II. Small theodolite.					
chrcle to the leeft.			circle to tiee rigit.		
Object.	Chronometer.	Circle reading.	Object.	Chronometer	Circle realing.
\bigcirc Ist limb	In $52^{\mathrm{m}} 13^{\text {s }}$	$\begin{array}{rr}266^{\circ} & 18 \\ 3 \\ 3\end{array}$	\bigcirc Ist limb	$2^{\text {h }} 5^{\mathrm{m}} 17^{8}$	$\begin{gathered} 207^{\circ} 28^{\prime} \\ 14 \\ 18.5 \end{gathered}$
\odot IId limb	5424	$\begin{array}{ll}265 \quad 52 \\ & 37\end{array}$	\bigcirc © IId limb	642	207 2061 206
		41			5 I
Mark A	- -	$167 \begin{array}{r}30 \\ 38 \\ 3\end{array}$	Mark A	-	$\begin{array}{ll}167 & 24 \\ & 27.5\end{array}$
		- $\quad \stackrel{27}{29}$			2I. 5
Mark 4	- -	$\begin{array}{ll}167 & 29 \\ & 32\end{array}$	Mark A	-	$\begin{array}{ll}167 & 24 \\ & 28\end{array}$
		${ }^{20}$			208 22
\bigcirc Ist limb	20047	$\begin{array}{lr}267 & 8.5 \\ 266 & 53.5\end{array}$	\bigcirc Ist limb	$\simeq 1110$	$\begin{array}{cc} 208 & 3 \\ 267 & 48.5 \end{array}$
		- 58.5			52
\bigcirc IId limb	$\simeq 50$	26645.5	\bigcirc IId limb	1246	$267 \quad 37.5$
		$\begin{aligned} & 31 \\ & 35 \end{aligned}$			23 25.5

Altitudes of the sun, for the determination of time.
1856. September 17, A. M. Small theodolite.

${ }^{1}$ D. demotes direet, IR. reflected observations.
$=$ Between $2^{h} 36^{m}$ and $2^{\mathrm{h}} 42^{\mathrm{m}}$ the instrument was reversed.

Note.-In these observations only one vernier of the dip circle was read.

OBSERVATIONS AT MRADOR.
Description of Stution No. V.-Mirador is a large sugar estate, sitnated on the eastern foot of the high volcanic ridge, which comects the Peak of Orizaba and the Coffre of Perote. Its elevation above the level of the sea is about 2,400 English feet. The soil is compact red clay, containing some iron.
'The instruments were mounted under the veranda (poreh) of the house of the proprictor, Mr. Satorius, about 10 feet to the east of the entrance.

A distant tree, bearing E. by S. (magn.) was used for a mark at the determination of absolute declination.

Station No. Y. Mirador.
Iatitude $19^{\circ} 13^{\prime}$. Longitude $96^{\circ} 37^{\prime} \mathrm{W}$. of Greenwich.

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Absolute ragnetic declination. Magnetical azimuth of the mark Λ.
1856. October $10, \mathrm{~A} . \mathrm{M}$. Theodolite and deelinometer.}

\hline \multicolumn{5}{|c|}{circle to the right.}

\hline Chronometer. \& Scale. \& Circle reading. \& Mean. \& Bearing of A .

\hline $1^{\text {h }} 16^{\mathrm{m}}$ \& 74.1
74.1 \& $182^{\circ} \quad 22^{\prime} .5$ \& $18: 2^{\circ} 1.2$ \& \multirow[b]{3}{*}{N. $101^{\circ} 50^{\prime} .3 \mathrm{~L}$.}

\hline \multirow[t]{2}{*}{$$
\stackrel{1)}{\text { Mark } A}
$$} \& \multirow[t]{2}{*}{$$
741
$$} \& $\begin{array}{ll}181 & 56 \\ 103 & 48.5\end{array}$ \& \multirow[t]{2}{*}{10351.5} \&

\hline \& \& $\begin{array}{ll}103 & 48.5 \\ & 51\end{array}$ \& \&

\hline Mark A \& - \& 10348.5 \& 10350.8 \& \multirow[t]{2}{*}{10149.3}

\hline 128 \& $7!0$ \& $182 \stackrel{5}{2}$ \& 1821.5 \&

\hline \multirow[t]{2}{*}{D} \& \multirow[t]{2}{*}{74.0} \& \multirow[t]{2}{*}{18157} \& \multirow[b]{2}{*}{Mean} \& \multirow[b]{2}{*}{N. 10149.8 E.}

\hline \& \& \& \&

\hline \multicolumn{2}{|l|}{1856. Oetober 10.} \& \multicolumn{3}{|l|}{Theodolite and declinometer.}

\hline \multicolumn{5}{|c|}{circle to the left.}

\hline Chronometer. \& Scale. \& Circle reading. \& Mean. \& Bearing of A.

\hline $1^{\text {h }} 23^{\text {ns }}$ \& 74.2 \& $182^{\circ} \quad 0^{\prime} .5$ \& \multirow[t]{2}{*}{$182^{\circ} 7.3$} \&

\hline \& 7+3 \& 8.0 \& \&

\hline $$
\stackrel{\mathrm{D}}{\text { Mark }} \mathrm{A}
$$ \& \multirow[t]{2}{*}{$$
72
$$} \& \multirow[t]{2}{*}{$\begin{array}{ll}103 & 53.5 \\ & 55.5\end{array}$} \& \multirow[t]{2}{*}{10356.0} \& \multirow[t]{2}{*}{N. $101^{\circ} 48^{\prime} .7 \mathrm{~L}$.}

\hline \& \& \& \&

\hline \multirow[t]{2}{*}{Mark A} \& \multirow[t]{2}{*}{-} \& \multirow[t]{2}{*}{103583.0

560} \& 10355.8 \& \multirow[t]{2}{*}{10150.5}

\hline \& \& \& \&

\hline \multirow[t]{2}{*}{$1: 8$} \& 74.1 \& \multirow[t]{2}{*}{1826.0} \& 18.25 .3 \&

\hline \& $6+1$ \& \& \&

\hline \multirow[t]{2}{*}{D} \& 74.1 \& 1.5 \& Mean \& N. 10149.6 L

\hline \& \multicolumn{4}{|l|}{Magnetical azinuth of the mark A , N. $101^{\circ} 49^{\prime} .7 \mathrm{LJ}$.}

\hline \multicolumn{5}{|c|}{llorizontal intensity. Experiments of vibratio}

\hline \multicolumn{2}{|l|}{1856. Oetober 9, A. M.} \& \multicolumn{2}{|l|}{ibrating magnet D 3.} \&

\hline No. \& Chronometer. \& No. \& Chronometer. \& Time of 300 vibrations.

\hline 0 \& $5^{4} 87^{\text {m }}$ 292s 4 \& 300 \& $5^{\text {h }} 50$ mm $33^{\text {m }}$. 2 \& $13^{\mathrm{mm}} 10^{\text {s. }}$.

\hline 10 \& 3748.8 \& 310 \& $0 \quad 50.6$ \& 10.8

\hline 20 \& 38150 \& 320 \& $51 \quad 26.1$ \& 11.1

\hline 30 \& $38 \quad 41.2$ \& \multirow[t]{2}{*}{330
340} \& $1 \quad 52.7$ \& \multirow[b]{2}{*}{11.2}

\hline 40 \& $39 \quad 7.6$ \& \& 188 \&

\hline 50 \& $39 \quad 34.0$ \& 340

350 \& \multirow[t]{2}{*}{$$
\begin{array}{rr}
2 & 456 \\
6 & 9.2
\end{array}
$$} \& 11.6

\hline 100 \& \& 200 \& \& $13 \quad 1117$

\hline \multicolumn{5}{|c|}{Extreme scale readings.}

\hline 0 \& 19.0 - 41.0 \& \multicolumn{3}{|c|}{Temperature $76^{\circ} .0 \mathrm{~F}$.}

\hline $\stackrel{200}{20}$ \& 22.3 - 27.7 \& \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Time of 1 vibration $2^{\text {s }} .63 \%$.}}

\hline 350 \& $24: 35.7$ \& \& \&

\hline
\end{tabular}

ODSERVATIONS AT TIIE CITY OF MEXICO.

Description of Station No. VI.-The instruments were mounted on the arehed roof of the church in the Convent San Augustin. This is the same place where Baron ron Mumboldt made his observations about fifty-seven years ago. 'The roof is entirely of bricks, and there is no iron within fifty fect of the station, farther off are some iron railings, etc.

The station is Ti5 feet above the ground, or 7,550 Linglish feet above the level of the sea.

A church steeple, abont fifteen miles west of the station, was used for a mark (A) at the determination of absolute declination.

Station No. Vit. Mexico, Convent San Augustin.
Latitude $19^{\circ} 26^{\prime}$. Longitude $99^{\circ} 5^{\prime} \mathrm{W}$. of Greenwich.

5

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{1856. Magactic inclination.} \\
\hline \multicolumn{3}{|c|}{chrcle east.} \& \multicolumn{6}{|c|}{circle west.} \\
\hline Face east. \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{Face east.} \& \multicolumn{4}{|c|}{Face west.} \\
\hline \begin{tabular}{cc|cc}
\(41^{\circ} 377^{\prime}\) \& \(39^{\circ}\) \& 43 \\
\(5 t\) \& 40 \& 0
\end{tabular} \& \begin{tabular}{c}
\(41^{\circ}\) \\
42 \\
42 \\
\hline
\end{tabular} \& \begin{tabular}{l}
\(39^{\circ}\) \\
40 \\
40 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
139 \& \\
138 \\
138 \\
\hline \(14^{\prime}\) \\
\hline
\end{tabular} \& \(137{ }^{\circ} 14^{\prime}\)
\(136 \quad 56\) \& \(139^{\circ}\)
138 \& \(10^{\prime}\)
53 \& \({ }_{1: 37}{ }^{\circ}\) \& \(14^{\prime}\)
56 \\
\hline \[
\begin{array}{cccc}
41 \& 45.5 \& 39 \& 51.5 \\
\& 40 \& 48.5 \& \\
\& \& \& 40
\end{array}
\] \& \[
\begin{array}{rr}
\hline 41 \& 54.5 \\
\& 40
\end{array}
\] \& \[
\begin{array}{rr}
40 \& 3.0 \\
58.7 \& \\
\& 41
\end{array}
\] \& \[
\begin{array}{|cc|}
\hline 189 \& 5.0 \\
\& 138 \\
24.7 \& \\
\hline
\end{array}
\] \& \[
\begin{array}{cc}
187 \& 5.0 \\
5.0 \& \\
\& 138
\end{array}
\] \& \[
\begin{gathered}
139 \\
4.1
\end{gathered}
\] \& \[
\begin{gathered}
15 \\
138
\end{gathered}
\] \& \[
\begin{aligned}
\& 137 \\
\& 3.2
\end{aligned}
\] \& \[
5.0
\] \\
\hline \multicolumn{9}{|l|}{1856. December 17, \(2^{\text {h }} 30^{\text {m }}\) P. M. Needle No. 2. A. South pole.} \\
\hline \multicolumn{3}{|c|}{carcle west.} \& \multicolumn{6}{|c|}{circle east,} \\
\hline Face west. \& \multicolumn{2}{|c|}{Face east.} \& \multicolumn{2}{|l|}{Face west.} \& \multicolumn{4}{|c|}{Face east.} \\
\hline \begin{tabular}{|c|r|}
\(137^{\circ}\) \& \(29^{\prime}\) \\
12 \\
\hline
\end{tabular} \& 139 \({ }^{16} \begin{gathered}1 \\ 1\end{gathered}\) \& \(137^{\circ} \frac{24^{\prime}}{7}\) \& \(42^{\circ} \begin{array}{r}11 \\ \\ 25\end{array}\) \& \(40^{\circ} 26^{\prime}\)
42 \& \multicolumn{2}{|l|}{\(\begin{array}{ll}41^{\circ} \& 50 \\ 42 \& 5\end{array}\)} \& \multicolumn{2}{|l|}{\(40^{\circ}\)

23}

\hline \[
$$
\begin{array}{cccc}
139 & 26.0 & 137 & 20.5 \\
& 138 & 23.2 & \\
& & & 138
\end{array}
$$

\] \& | 139 | 8.5 |
| :---: | :---: |
| 17.6 | 138 | \& \[

$$
\begin{array}{rr}
137 & 15.5 \\
12.0 & \\
& 41
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
\hline 42 & 18.0 \\
& 41= \\
29.3 &
\end{array}
$$

\] \& \[

$$
\begin{array}{rr}
40 & 34.0 \\
26.0 & \\
& 41
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 41 \\
& 16.2
\end{aligned}
$$

\] \& \[

$$
\begin{array}{r}
57.5 \\
41
\end{array}
$$

\] \& \[

$$
\begin{aligned}
& 40 \\
& 0.5
\end{aligned}
$$

\] \& \[

15.5
\]

\hline
\end{tabular}

observations at rancio thamacas.

Description of Station No. VIII. ${ }^{1}$-The magnetic station was established at the sulphur foundry, called Raucho Tlamacas, on a small depression of the ground between the foundry ovens (to the north) and three Indian huts (to the south and southwest.)

The height of the station above the level of the Mexican Gulf is 12,750 English feet.

A pointed rock on the northeast side of the volcanic cone, a little below the limit of perpetual snow, was used for a mark (A) in the determination of absolute declination.

Station No. Vifi. Rancho Tlamacas.
Latitude $19^{\circ} 3^{\prime}$. Longitude $98^{\circ} \mathrm{W}$. of Greenwich.

Absolute magnetie deelination. True azimuth of the mark A. 1857. January 25, P. M. Small theodolite.					
circle to the left.			circle to the right.		
Object.	Chronometer.	Circle reading.	Object.	Chronometer	Circle reading.
Mark A	-	$\begin{gathered} 179^{\circ} \\ \\ \\ 69^{\prime} .5 \\ 6.5 \end{gathered}$	Mark A	-	$\begin{array}{cc} 180^{\circ} & 15^{\prime} .5 \\ & 17.0 \end{array}$
Mark A		 179 57.0 	Mark A	-	180 15.5 15.0 17.0
\bigcirc Ist limb	$4^{\mathrm{h}} 16^{\text {mim }} 51^{\text {s }}$	268 268.0 42.0 26.0	\bigcirc Ist limb	$4^{\mathrm{h}} 30^{\mathrm{m}} 44^{\text {s }}$	$\begin{array}{ll}12.5 \\ 270 & 35.0 \\ & 18.0\end{array}$
\bigcirc © IId limb	1921	 $268 \begin{array}{r}35.0 \\ 26.5 \\ 100 \\ 105\end{array}{ }^{105}$	\bigcirc IId limb	326	$\begin{array}{ll} & 26.5 \\ 270 & 11.0 \\ 269 & 54.0 \end{array}$
\bigcirc Ist limb	$20 \quad 58$	$269 \quad 21.5$ 5.0 	© IId limb	$33 \quad 17$	$\begin{array}{rr}270 & 19.0 \\ & 2.5 \\ & 1.5\end{array}$
\bigcirc IId limb	$22 \quad 37$	 $268 \quad \begin{array}{l}14.5 \\ 59.5 \\ 44.0 \\ 5.0\end{array}$	\odot Ist limb	3447	$\begin{array}{rr} & 120 \\ 271 \\ 270 \\ 270 & 45.0 \end{array}$
Mark A	-	$180 \begin{array}{r}53.0 \\ 7.0 \\ 10.0\end{array}$	Mark A	-	180 $\begin{array}{l}55.0 \\ 20.0 \\ 21.0\end{array}$
Mark A	-	$\begin{array}{r}18.0 \\ \\ 180 \\ \\ \\ \\ \hline 10.5 \\ \\ \\ \hline 6.5\end{array}$	Mark Λ	-	$\begin{array}{ll} & 18.0 \\ 180 & 20 \\ & 21.5 \\ & 17.5 \end{array}$

[^1]

6

Experiments of deflection. Distance 1 foot.
1857. January 26, $11^{\text {h }} 6^{\mathrm{m}}$ A. M. Deflecting magnet D 3.

\begin{tabular}{|c|c|c|c|c|c|}
\hline Magnet. \& North pole. \& Circle reading. \& Mean. \& 2 u . \& Temp.

\hline L. \& W. \& $78^{\circ} 49^{\prime} \quad 0^{\prime \prime}$ \& $48^{\prime} 30^{\prime \prime}$ \& \multirow{3}{*}{$14^{\circ} 27^{\prime} 17^{\prime \prime}$} \& \multirow[t]{12}{*}{90.7 C.

9.7}

\hline \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{E.} \& $93 \quad 1610$ \& \multirow[t]{2}{*}{1547} \& \&

\hline \& \& 1525 \& \& \&

\hline W. \& W. \& $93 \quad 4850$ \& 4845 \& \&

\hline \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{E .} \& | 78 | 28 |
| :--- | :--- |
| 10 | | \& 2737 \& \multirow[t]{2}{*}{$15 \quad 218$} \&

\hline \& \& - 275 \& \& \&

\hline " \& E. \& $\begin{array}{ll}78 & 28 \\ 45\end{array}$ \& 2817 \& \&

\hline \multirow[t]{2}{*}{"} \& W. \& $93 \quad 4745$ \& $47 \quad 25$ \& $15 \quad 198$ \&

\hline \& \& 475 \& \& \&

\hline E. \& 1. \& $\begin{array}{llll}93 & 10 & 25\end{array}$ \& 167 \& \multirow[b]{2}{*}{$14 \quad 27 \quad 27$} \&

\hline \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$78 \quad 490$} \& 4840 \& \&

\hline \& \& \& Mcan \& $14 \quad 53 \quad 45.0$ \&

\hline \multirow[b]{2}{*}{1857.} \& \multicolumn{2}{|l|}{Llorizontal intensity.} \& \multicolumn{2}{|l|}{Experiments of deflections.} \&

\hline \& uary 26, 11 \& A. M. I \& \multicolumn{2}{|l|}{Deflecting magnet D 3.} \&

\hline Magnet. \& North pole. \& Circle reading. \& Mean. \& 2 u . \& Temp.

\hline F. \& W. \& $82^{\circ} 40^{\prime} 40^{\prime \prime}$ \& $49^{\prime} 30^{\prime \prime}$ \& \multirow{3}{*}{$6^{\circ} 33^{\prime} 15^{\prime \prime}$} \& $9^{\circ} .7 \mathrm{C}$.

\hline " \& E. \& $89 \quad 2310$ \& 2245 \& \&

\hline W. \& W. \& $\begin{array}{llll}89 & 22 & 20 \\ 33 & 35\end{array}$ \& 3312 \& \&

\hline \& \& 3250 \& \multirow[b]{2}{*}{4155} \& \multirow[t]{2}{*}{$6 \quad 5117$} \&

\hline " \& Lis. \& $82 \quad 42 \quad 20$ \& \& \&

\hline " \& E. \& | $82 \quad 41$ |
| :--- |
| 80 | \& 3847 \& \&

\hline \& \& - 3830 \& \& \multirow{3}{*}{$6 \quad 5423$} \&

\hline " \& W. \& $\begin{array}{llll}89 & 33 & 30\end{array}$ \& 3310 \& \&

\hline \& \& 3250 \& \& \&

\hline E. \& E. \& 89 2315 \& 2247 \& \& \multirow{3}{*}{9.7}

\hline \multirow[t]{2}{*}{"} \& \multirow[t]{2}{*}{W.} \& \multirow[t]{2}{*}{$\begin{array}{llll}82 & 46 & 20 \\ & 45 & 20\end{array}$} \& 4550 \& 63657 \&

\hline \& \& \& Mean \& 64558 \&

\hline
\end{tabular}

resulis of the magnetical observations.

MAGNETIC JECLINATION.

Station No. I. Vera Cruz.

Magnetic azimuth of the mark Λ. . . . N. $52^{\circ} 19$. 8 .
Astronomical " " N. 44 2.9 W.
Magnetic declination, 1856, August 7, at noon
8 16.9 E.
Station No. II. Potrero.
Magnetic azimuth of the mark Λ. N. $8.3^{\circ} 23.8 \mathrm{~W}$.
Astronomical " " 6 14 22.9 W.
Magnetic declination, 1856, August 17, $7^{\text {h }} 13^{\text {m }}$ A. M.
$8 \quad 39.2 \mathrm{E}$.
Station No. III. Cocolapam near Orizaba.
Magnetic azimuth of the mark A N. $799^{\circ} 32^{\prime} .8 \mathrm{~F}$.
Astronomical " " " N. 88 1.I E.
Magnetic declination, 1850 , August 27, $10^{\text {h }} 8^{14}$ A. 1
828.3 H.

Station No. IV. San Andres Chalchecomura.
Magnetic azimuth of the mark Λ. N. $10^{\circ} 40^{\prime} 4 \mathrm{~T}$.
Astronomical " " 6 N. 227.6 W .
Magnetic deelination, 1856, September 17, $0^{h 1} 40^{\mathrm{mm}} \mathrm{P}$. M.
8 I2.8 E.
Station No. V. Mirador.
Magnetic azimuth of the mark Λ. . . N. $101^{\circ} 49.7 \mathrm{~F}$.
Astronomical " 6 N. 109 51.3 F
Magnetic declination, 1850, Oetober $10,7^{\text {h }} 122^{\mathrm{m}} \Lambda$. M.
81.9 E

Station No. VI. City of Mexico.
Maguetic azimuth of the mark Λ. N. 10G² 22. $6 \mathrm{~W}^{\circ}$.
Astronomical " " 6 N. 97 36.I W.
Magnetie declination, 1856, December 11, $10^{\text {h. }} 19^{m 1}$ A. M. . . . 846.5 F.

Station No. VIII. Rancho Tlamacas.

Magnetic azimuth of the mark N. 145° º. 3 F .
Astronomical " " N. 15335.7 E.
Magnetic declination, 1857, January 25, $1^{\mathrm{h}} 19^{\mathrm{m}}$ P. M.

HORIZONTAL INTENSITY.

The constants K and g for the magnet D 3, which was exelusively used in the experiments of vibrations and deflections, had been determined in 1855 by Mr. Chas. A. Schott, U. S. Coast Survey, and found :Moment of incrtia $K=2.6072$, at temperature $76^{\circ} .2$.
Coefficient of temperature $y=0.00022$.

The value of log. $\pi^{2} K$ was computed for the following temperatures:-

$$
\begin{aligned}
& \text { At temp. } 76^{\circ} \text { log. } \cdot \pi^{2} K=1.41047 \\
& \quad \text { " } \quad 50 \quad \text { log. } \pi^{2} K=1.41032
\end{aligned}
$$

Change of $\mathrm{log} . \pi^{2} K$ for $1^{\circ} \mathrm{F} ., 0.6$ units of the 5 th decinal.
The observations of deflection at distances of 1 foot and 1.3 feet, and at five different stations, give the value of the induction-coefficient P :-

Station I. 1856, August 7				$I^{\prime}=+0.000 \cdot 4$
" II. 1856, August 17				-0.0007
" V. 1856, October 10				-0.0085
" VI. 1856, December 10				-0.0037
" VIII. 1857, January 26				$+0.0118$
Mean				$P=-0.0001$

This value of l^{\prime} is so small that it was neglected in the computation of the intensity.
The experiments of vibrations and deflections at the same five stations give for the magnetic moment m of magnet D 3 .

Station I. 1856, August 7			$m=0.4952$,	temp	83°
" 11. 1856, August 17			0.4945 ,	"	78
" V. 1856, October 9			0.4915 ,	"	74
" VT. 1856, December 10			0.4899 ,	"	69
" VIII. 1857, January 25			0.4895 ,	"	50

The means of the 1 st and 2 d , and of the 3 d and 4 th values give:-

$$
\begin{array}{llll}
\text { 1856, August } 12 & . & . & . \\
1856, \text { November } 9 & . & . & . \\
m=0.4907,
\end{array}
$$

Loss of magnetism for ten days $0.00046 .{ }^{1}$
From these the values of m were interpolated for the two stations, at which no experiments of deffections have been made, viz:-

$$
\begin{array}{lllllr}
\text { Statiou III. August } 26 & \text {. } & \text {. } & . & . & m=049.42 \\
\text { " IV. September 17 } & . & . & . & . & 0.4931
\end{array}
$$

m and N are expressed in fect and grains.
Station No. I. Vera Cruz.

Station No. II. Potrero.

August		of I vibrati	Temp.	$\begin{gathered} \text { August } 17 . \\ \text { :: } \quad 17 . \end{gathered}$	Angles of deflection.				
	16.	$2^{3} .6203$	$77^{\circ} .0$		Distance.		u.		Temp.
" 1	16.	. 6217	78.0		1 foot	7°	30^{\prime}		$81^{\circ} .0$
" 1	17.	. 6197	78.0		1.3 feet	3	24	29	80.7
"	17.	. 6192	78.0	Horizontal intensity, August 16 and 17.					
$T^{\prime}=\overline{2.6202}$			$\overline{77.8}$						

[^2]Station No. III. Cocolapam near Orizaba.

| Time of 1 vibration. | | | |
| :---: | :---: | :---: | :---: | Temp. \quad No deflections obscrved.

Station No. IV. San Andres Cifalchecomula.

Time of 1 vibratio			Temp.	No deflections observed. m assumed 0.4931.
September 1	17.	$2^{8.6217}$	$71^{\circ} .9$	
" 1	17.	. 6220	71.8	
" 1	17.	.6220	66.0	
" 1	17.	. $0 \div 24$	68.7	
	$T^{\prime \prime}=$	$=2.62 \because 0$	69.6	IIorizontal intensity, September 17. $x=7.589 .$

Station No. V. Mirador.

October		of 1 vibrat	Temp.	Angles of deflection.						
		$2^{8.63 \%}$	$76{ }^{\circ} .0$			Distance.		,		Temp.
"	9.	. 6396	75.5	$\begin{gathered} \text { Oetober } 9 . \\ \text { " } 9 . \end{gathered}$		1 foot	7°	29^{\prime}		$77^{\circ} .0$
"	9.	. 6367	72.0		9.	1.3 feet	3	24		76.9
"	9.	. 6360	71.6							
$T^{\prime}=\overline{2.6375}$			73.6	Morizontal intensity, October 9.$X=7.522 .$						

Station No. VI. City of Mexico.

Time of I vibration. Temp,
Deeember 10. $2^{8} .6321 \quad 68^{\circ} .2$
" 10. . $6319 \quad 68.6$ December 10. 1 foot $7^{\circ} 25^{\prime} 30^{\prime \prime} \quad 68^{\circ} .6$

" 10. . 6337

IHorizontal intensity, Deeember 10.

$$
X=7.576
$$

Station No. Vili. Rancho tlamacas.

MAGNETIC INCLINATION.

Station No. I. Vera Cruz.

Resulting dip, August $8,49^{\circ} 57^{\prime} .7$.

Station No. II. Potrero.

					Need	No. 1		No. 2
A. North pole	-	-		-	43°	$11^{\prime} .8$		$13^{\prime} .2$
A South pole	-	-	.	.	42	44.4	41	15.3
Mean					42	58.1	42	44.3

liesulting dip, August $17,42^{\circ} 51^{\prime} .2$.
Station No. III. Cocolapam near Orizaba.

Station No. IV. Sin Andres Cifalciecomula.
Needle No. L.
A. North pole $44^{\circ} 7^{\prime} .7$
A. South pole 41 8.7

Resulting dip, September 18 . . . $42 \quad 38.2$
Station No. V. Mirador.

Station No. VI. City of Mexico.

Station No. Vili. Rancho Tlavacas.

recapitulation of results of tie magnetical observations.

No. of station.	Name.	Lat. N.	Long.W. of Greenwieh.	Date.	Deelina. tion east.	Dip N.	Morizental intensity.	IIeight above the sea.
I.	Vera Cruz	$19^{\circ} 1 \underline{20}^{\prime}$	$96^{\circ} 9^{\prime}$	1856, Aug. 7-8	$8^{\circ} 17^{\prime}$	$43^{\circ} 58^{\prime}$	7.533	Unglish feet. 14
II.	Putrero	1856	9648	" "6 16-17	839	4251	7.574	1,988
III.	Cueolapam	1853	$97 \quad 4$	" " 20-27	828	4251	7.579	4,042
IV.	Sau Audres	1859	9715	" Sept. 17-18	813	$42 \quad 38$	7.589	7,800
V.	Mirudor	1913	$90 \quad 37$	" Oet. 10-1 I	8 2	4350	7.522	2,400
VI.	City of Mexico	1926	$99 \quad 5$	" Dee. 10-17	846	4126	7576	7,550
VII.	Chateo	1918	9851	1857, Jan. 6	9 3	$43 \quad 12$	7.540	7,480
V111.	Tlamaeas	193	$98 \quad 39$	" " 25	828	4234	7.571	12,750

PARTII.

N O T E S

ON THE

VOLOANO POPOCATEPETL AND ITS VICINITY.

GENERAL REMARKS.

Witmen the last three years several ascensions have been accomplished of the voleano Popocatepetl, and also two or three attempts made to reach the highest point of the Txtaccihnatl. Mr. Walker Fearn, Secretary U. S. Legation in Mexico, and Dr. Crawford, U. S. A., who ascended these momntains in January, 1857, have published such excellent general descriptions of them, in different joumals, that little is to be added on this subject. I confine mrself therefore to a geographical and geological description, ${ }^{1}$ and give a few notes in regard to the difficulties of the ascent and the necessary precautions to be observed in the undertaking, which may perlaps prove of use to travellers, hereafter attempting the exploration of these or similar mountains.

The Popocatepetl and Ixtaccihuatl are the highest peaks of a momntain ridge, having a mean breadth of about fifteen and a length of forty English miles; running from Lat. $18^{\circ} 55^{\prime}$ to Lat. $19^{\circ} 30^{\prime} \mathrm{N}$., in a direction nearly N. $10^{\circ} \mathrm{W}$., at a distance of thirty-five to fifty miles east of the city of Mexico. The average height of the ridge is about 5000 feet above the platean from which it rises, or 13,000 English fect above the level of the sea ; the Popocatepetl forms its southern termination, and to the south of it the platean also falls off-at many places abruptly-several thonsand feet.

To the east of this ridge is the alluvial phain of Amecameca, 8200 feet above the sea, and separated from the valley of Mexico, which is 700 feet lower, only by a low ridge of voleanic origin-containing several cones with extinct craters-the height of which above the plain does not exceed a thousand feet; the waters from the west side of this ridge rum into the lakes, which oceupy the centre of the valley of Mexico.

On the east side the momntains are bounded by the ralley of Pucbla, which is about 5500 feet above the level of the sea; and the waters from this and the south side run into the "Rio Mescal," a river which passes through the city of Puebla and empties into the Pacific Ocean. 'To the north the ridge decreases gradually in lieight until it loses itself in the plains of Apam (los llanos de Apam),

[^3]which have nearly the same cleration above the level of the sea as the plain of Amecameca.

The most convenient starting point for ascending the mountains is the town of Amecameca, situated in the plain which takes its name from it, at the eastern base of a hill, called "Sacremonte." A chapel stands upon the summit and another on the eastern slope of this hill, which is about 400 feet above the plain. At the town seven or eight Indians should be engaged as guides and to man the capstan, by which, with a rope attached, the traveller is lowered down into the crater. The first spurs of the ridge are reached a mile east of the town. They rise rery gently for a considerable distance, but gradually become steeper and stecper. Where they are intersected by small ravines or gullies, washed out by the torrents, there appear just beneath the surface alternate layers of yellow pumice and black volcanic sand, in which boulders of feldspathic and porphyritic lava are entirely or partially imbedded. The surface in the upper regions is covered with a long wiry grass, and studded with pinc-trees. Boulders of various sizes and shapes are seattered over it in all directions.

No lava streams appear to have run down on the west side of the mountain, and the absence of such streams is explained by the fact, that the western wall of the crater is nearly 600 feet higher than the eastern rim. A similar eleration of the western or sonthwestern wall above the opposite, as far as I lave noticed, exists in all recent Mexican craters. It is particularly well defined on the peak of Orizaba, where even from Vera Cruz a horizontal black line is seen just below the highest point, strongly contrasting with the snow around it: this line is the western wall of the crater.
'Ihe voleano of the Colima, and the voleano of Toluca also, have their lighest points at the west sides of their craters. The same peculiarity marks the outline of a volcano of very extraordinary form, situated in the valley of Mexico, about twelve miles S. L. by E. from the city, near the village of Ayotla, and called the voleano of San Isidro: it has two distinct craters; the castern is much lower than the western, and divided from it by a wall of very compact lava; the highest point-about 1500 fect abore the level of the lakes-is W.S. W. from the western crater. The bottoms of the craters of this voleano are at present cornfields.

Fic. 1.

yolcano of san isidro, seef prom n. n. w.
I might add many more instances, in which I have observed the western walls of the craters of Mexican volcanoes to be considerably higher than their eastern edges, but it will be sufficient to state that, in no case, have I seen a volcanic cone whose crater is of recent formation, the east side of which was higher than the
west side, nor do I recollect to have seen one, the east and west sides of which had the same elevation. But this singular law holds grood not alone for voleanie cones.

On the plain of Perote, near a silver mine called "La Preciosa," there are three small lakes of nearly circnlar form, which are evidently of voleanic origin. The one nearest to the mine is the largest ; its longest diameter runs from N. $31^{\circ} \mathrm{E}$. to S . $: 31^{\circ} \mathrm{W}$., and measures nearly 2000 yards. The surface of the water is about twentyfive feet lower than that of the surrounding plain, and the banks are perpendicular. The Director of the mine informed me that he lad attempted to somed the lake, but found no bottom at 250 fathoms. The water is brackish, and its temperature was $69^{\circ} .2$, while the temperature of the air in shade was $65^{\circ} .0$ (noon, Sept. 20, 1856). The two other lakes are of similar form, but somewhat smaller. No one of them has an outlet, nor do any streams empty into them, as it does not rain more than four or five times a year in their vicinity. Nevertheless the water is perfectly clear, and of the dark color of sea-water in deep somelings. The shores of these three lakes on the east side, are not elevated above the general level of the surrounding plain, but on the west side they rise into hills (the one at the larger lake being about 160 feet high) sloping gently towards the plain, but falling off abruptly towards the lake, presenting the appearance of an excaration, of which the material was thrown up on its western banks. The surface of the hill consists of coarse sand. The trade-winds, which are prevalent in these regions and blow from E. N. E., may, perhaps, furnish an explanation of this peculiar elevation of the western walls of the more recent craters above their eastern rims.

As stated before, no lava is seen at the surface of l'opocatepetl on its northem and eastern slopes; but at rare intervals, in the deeper ravines (barrancas), solid ledges of very compact lava are to be found. Passing around the volcano from the north through cast to the south, the first lava-stream on the surface is met with on the eastern slope of the cone, commencing a little below the limit of perpetual snow; this strean has probably its origin at or near the present crater, but the upper part of it is covered by voleanic sand and snow. It is soon joined by another and larger stream, the outlines of which are distinctly defincel above the snow-mantle of the cone up to the edge of the crater, where it forms a point projecting a little above the general profile of the mountain, when seen from the north. The altitude of this point was determined trigonometrically, and in the following observations it is distinguished by the name of the "eastern peak," from the highest or "western peak." 'The stream is called "el espinazo del diablo" (the devil's backione), and extends about three miles down, losing itself near the eastern base of the momntain.

On the sontheastern and southern slopes large lavi-streams extend from the rater down to the edge of the platean (from which the voleano rises ten thonsand fect vertically), aud cover a space of many square miles. The surface of the lower and nearly lomizontal parts of these lava-fields (pedregals) is studded with boulders of all dimensions, mostly approaching to a globular form, or to scoments of globes, imd contaming much iron and nickel. The lava of these fiekds is sometimes of a red (cimabar) or brownish, but more generally of a dark gray,
color, and not rarely perfectly black, sometimes with a glazed surface not milike obsiclian.

Within six or seren miles from the crater, the layers of volcanic sand and pumice become very regular, as seen at all places where they are exposed on the sides of the ravines and gullies. The stratum immediately beneath the surface is a layer of coarse, black sand, theee feet thick, then succeeds a layer of reddish-yellow pumice, only one quarter of this thickness, then again a layer of sand, and so on alternately; showing that at the last eruptions a shower of pumice first issued, which covered the ground from three inches to a foot in thickness, to a distance of six or seven miles from the erater; this was followed by a shower of gray or black sand, the deposit from which reached a thickness of from three to six feet. An interesting proof that the last cruption was at no very remote date is afforched by the trunk of a pinc-tree, which was found, when I last ascended the volcano, in company with Prof. Monross, in June, 185\%, imbelded in the last layer of pumice, below the uppermost strata of volcanic sand, more than three fect below the surface. The outside or sapwood of the tree had decaycd, but the interior wood being impregnated with turpentine was still perfectly fresh and well preserved. Certainly not many centmries can have passed since this tree was buried.

About three miles from the point where the trunk of the pinc-tree was found, we reached the highest hmman resilence in this part of the world. It consists of a few Indian huts and a \log house, in front of which are the orens for purifying the sulphur which is bronght down from the crater. The place is called "Rancho Tlanacas," and has an elevation of nearly 1 见, 800 English fect above the level of the sea. Here the traveller can remain for the night, and, leaving early the next morning, may reach the edge of the erater about noon without much exertion.

About half a mile to the west of this "rancho" we crossed a ridge of rock, which runs from the "Pico del fraile," sitnated on the west side of the highest peak, to the Istaccihuatl, rising at several points into irregular peaks. This ridge is not a strean of lava from the present crater, but a dike of ancient volcanic rock (gray stone), upheared by the later action of the volcano. About 400 feet above the rancho, or at nearly 13,200 feet of absolute height, the last stunted pinc-trees are seen, and this may be assumed as the limit of vegetation; some wiry grass, only, growing in bunches, is found for a short distance higher up. During the summer months, or, more properly, the rainy season, the snow often extends on the north and west side of the volcano down to this limit, or cren lower, as we experionced during the latter part of Jme, having been for three days enveloped in a dense fall of snow, at the Rancho Tlamacas, which covered the gromnd nearly twelve inches decp, although much of it melted immediately. This snow-storm extended at least a thousand feet further clown, terminating at a height of from 11,700 to 11,800 fect.

The limit of perpetual snow is about 1000 feet higher than the limit of vegetation, or, on the north and northwest site of the mountain, 14,200 feet. On the sonth and sontheast side it is much higher, and from below there can be traced black lines, which are in reality lara-streams, up to the edge of the crater (17,200)
feet). The snow extends mach lower down during the summer (from June to September) than during the winter months (fiom October until May). 'This is caused by the supply of moisture from the clonds, in which the momntain tops are wrapt almost constantly during the rainy (or summer) scason. Snow falls the greater part of this time, and though the sun is very powerful, it rarely breaks through the clouds. The snow, melted by the heat, is replaced almost immediately by a fresh fall, whilst in winter, when the sky is generally clear, the accumulated snow is melted to a great extent by the direet rays of the sum.

Before reaching the limit of perpetual snow, there appears a layer of transparent ice beneath the upper strata of black sand. I observed the first traces of this iee at a height of 14,000 fcet. I coukd not ascertain its average thickness, although this is evidently considerable. The sand lies from two to four feet deep abore it. In ian attempt to ascend the peak of Orizaba, in September, 1856 , I also noticed, near the limit of perpetual snow, a layer of similar ice bencath the first stratum of sand. This seems to prove that, at the time when the last eruption occurred, the snow extended as low or lower down than the ice does at present. The ejected sand, still warm when it reached the ground, would melt the surface of the snow, and the water, thus produced, penetrating into the lower layers of snow, would frecze again, changing the strata with which it is mixed into a kind of glacier ice. This ice, protected from the solar heat by the covering of sand, is not liable to thaw, and that part of the rain or melted snow, which filters every year through the layer of sand, frecezes as soon as it comes in contact with the stratum of ice, thus increasing its bulk; and, as ht this height the mean temperature of the year is below the freezing point, it is not probable that it would ever melt again.

A deep gully or ravine, the head of which is about 16,000 feet above the level of the sea, issues from between the highest or westem peak and the " I'ico del fraile." It runs for some distance in a N. N. S. direction, turning afterwards more to the arast. This gully exposes the strata as they were deposited just on the foot of the roleanic cone by many shecessive eruptions. The lower beds are of a light brownish-red or of a yellowish-white color, and consist of pumice and scoria, while the last six layers are alternately pumice and black sand. From this it would appear that the rast mantle of black sand, which covers the cone as well as the slopes of the mountain for many miles, is the product of the last efforts of the expiring volcano. ${ }^{1}$

After leaving the " liancho 'llamacas" it is still possible to ride for a considerable distance on horseback, and travellers gencrally dismount and leave their horses only a few hundred yards below the limit of perpetual snow. The animals can, of course, only make slow progress in ascending the stecp slopes of the mountain, as they are obliged to walk in deep sand, affording no seeure footing, and olten slide back as much as they advance; but the traveller, in riding, saves his strength meanwhile for the toil of ascending the last $350(0)$ feet.

It is always best to get upon the snow as soon as posible after learing the horses, because this affords a much better footing than the loose sand. 'The eyes should
now be protected by colored glasses or by a green veil. In consequence of neglecting this precaution when I attempted to reach the crater of the peak of Orizaba in September, 1856, I suffered severely for several days with snow blindness. It is well to send four or five of the Indians ahead that they may tread steps into the snow, or where the surface is hard, cut them in with a hatchet. By means of these steps the ascent is rendered at once safe, casy and short, as, the average slope being about 30°, abont one foet is gained in height for cvery two fect of distance. I found ice spurs and long iron-pointed sticks or boat-hooks entirely umecessary, only encumbering the traveller, and followed, in my second and third ascent of this voleano, the example of the Indians, who use nothing but a common rude walkingstick, notwithstanding that each one carries a load of from twenty-five to fifty pounds on his back. I did not pass or see a single dangerous spot, and consider myself rery fortunate in not cncomntering any of those places, where "one slip of the foot or a single false step would precipitate the wanderer into the fearful abyss which yawns bencath him," such as some travellers, who ascencled the mountain a short time before I did, found on their road, althongh it must have coincided nearly with the one I took. On the peak of Orizaba, howerer, and also on the Ixtaccihuatl, I have seen erevices in the snow which might well prove fatal to the carcless momntancer.

A very umpleasant sensation is experienced in approaching the summit of a high mountain, in consequence of the difficulty of breathing during the ascent. It is not felt as much while walking as during the intervals of rest, which become necessary every fifteen or twenty minutes, and is so much like choking, that the traveller is sometimes impelled to tear the reil from his face and to throw oft his neckcloth to obtain air.

But, although I have been five times on lieights exceeding that of Mont Blancbetween 16,400 and 17,400 English feet, and gencrally accompanied by eight or more persons, I have never seen an instance of blood rushing from the nose, month and ears, as observed by many travellers; and my opinion is, that whenever it oceurs, the cause of it is more the exertion than the rarefied air. Neither have 1 ever experienced the painful sensation in the limbs, often mentioned, and ascribed to the relaxation of atmospheric pressure upon the joints.

The slope of the snow-covered part of the volcano on its east and north side is very uniform, and the surface is only slightly undulating, so that it approaches the form of a regular cone. When half way up, the sulphurous odor with which the air above is impregnated is sensibly perecived.

On reaching the crater the snow-mantle breaks off abruptly, showing that here (on the north side) its thickness does not exceed five, at many places seareely three, fect. The sides of the crater at the place where it is entered, fall off with an inclination of about 40° for the first humdred fect. The steep slopes are covered with black volcanie sand of the same nature as that which covers the surface at the foot of the cone. Above the sand project hage rocks of a very compact, dark gray or black lava, most of which present a rounded surface, except where they have been split after their formation. Thirty-two feet (perpendicularly) below the point where the crater is entered, is an overhanging rock, against which the Indians, who carry
the sulphur, have phaced a few boards. This place is called by them "la cueva" (the eave). and it aftords a little protection, at least, against the piercing winds and the snow. Here I slept two nights, in January and February, 1857, on one of these the thermometer going down as low as $-11^{\circ} .8 \mathrm{C}$. (February 9 , at 4 o'clock A. M.).

About thirty- fect below "la cueva" is placed a rudely-constructed capstan of wood, by means of which the sulphur is raised. It is also used in lowering persons down the vertical part of the crater, which has here the least height, but which still amoments to about 250 feet. From this point there is a magnificent view of the crater, the southern and western walls of which indicate, by their shelved or terraced form, that the lava must have accumulated in suceessive thiek and irregular beds.

Fig. 2.

The accompanying sections of the crater and the upper part of the cone may, perhaps, serve to illustrate its general structure. The mucleus of the cone is composed of compact lara, which, at least in the upper parts, is arranged in nearly vertical beds. 'This has little or nothing of the light, spongy or scoriaccous character of that seen in some volemoes; as, for instance, in the modern erater of Jorullo (according to Prof. Monross), but is hard and very heary, mostly of a darkred, or bluish-black color. These beds nowhere show a basaltic or cohmmar structure. The muldens of the cone is covered by a thick mantle of sand, scoria, and pumice, where it is not too precipitous.

In descending into the crater, the traveller is usually preceded by an Indian, and there is some danger of being liurt by the stones which are constantly falling from above him. 'The action of the frost is doubtless a prineipal agent in detaching these stones. The sun shining on the snow which covers the edge of the crater, and the shelves or narrow terraces, melts a part of it, the water penetrates into the minute crevices of the rocks, where it freczes again, and, expanding while it changes into ice, has an effect similar to that of grupowder.

One of the guides, who had been many times in the crater, asserted that the botton of it rises six feet ammally by the accumulation of the detached stones. This is certainly an sxaggeration; nevertheless, the amount of rise is considerable, since at least ten stones fall per hour, of more than two feet diameter, or certainly more than 2000 cubie feet in a day (probably double this quantity). If now we
assume the diameter of the bottom of the crater, including the debris on which many of the falling stones remain-(the horizontal part of the bottom has a diameter of only 750 feet)-to be 1200 fect, the surface will be $1,130,000$ square feet, and the quantity of stones falling annually at the rate of 2000 cubic fect for a day, amounts to 730,000 cubic fect, so that, if the bottom was covered uniformly, it would rise about 0.65 of a foot in a year. But as the stones do not reach the middle, the sides or debris must increase considerably more rapidly. This would indicate that the crater must fill up, and the height of the cone sensibly decrease within a thousand years if the voleano should remain inactive. The diminution of depth will, however, be less and less cvery year, in proportion as the upper part of the crater expands and the depth diminishes. (Figs. 3 and 4 exhibit a section and plan of the summit)

Besides stones of smaller sizes a large quantity of sand is continually falling which tends to fill up the empty spaces left between the larger stones. It is set in motion by the wind, which generally blows very fresh on the summit, and by falling stones. Very little is required to disturb the sand, as it is deposited on the steep walls of the crater.

After being detached from the rope, and while continning the descent of the talus, we were several times compelled to take refuge from the falling stones behind a large boulder or a vertical wall. In Jannary and February the debris was nearly clear of snow, but in June we found it covered with a thick layer, the surface of which was so hard that we were obliged to eut steps in it with a
latchet by which to descend. Our guide, whilst engaged in this work, at one time lost his footing, and slid down about thirty paces before he succecded in stopping limself.

The lorizontal part of the bottom of the crater is covered with snow, above the surface of which rise only a few large boulders. In February, I noticed on the northeast side, at a place where the snow was wanting, some water of a bluishwhite color and a sour taste. In June this water had disappeared, and the surface was covered uniformly with snow, except in the vicinity of the chimneys, called by the guides "respiradores." These exhibit the last, feeble eridence of the former activity of the volcano, but its main throat has been so effectually choked up by the rubbish, which has fallen into it, that at the lowest and central part of the bottom no rapors issue. The present vents are a little way up the slope, and from the two largest of these, one on the cast, the other on the south side, rise volumes of vapor which extend to the edge of the crater, and sometimes in clear, calm weather are seen above it. The noise of these jets may be heard at the top of the crater, where it sounds much like the roaring of the wind, which may lave given rise to the belief common among the Indians, that a passage exists between the crater and the surface of the cone near the top of "Pico del fraile," through which the wind whistles. At the "respiradores" the steam issues from the crevices between the stones, which, as well as the sand in their vicinity, are covered with erystalline sulphur.
'The principal vent on the south side is about thirty fect in diameter, and filled up with stones of all sizes, whicl are entirely encrusted with sulphur, and decomposed by its action to such a degree, that small pieces of them may be crumbled to powder between the fingers. The large rent to the cast does not cover so much ground, but the steam issues muder a higher pressure; stones of cight or mine inches in diameter, when cast upon one of the erevices, through which the vapor escapes, are thrown back with such foree as to fall to the ground several feet from the opening. When we removed one of the larger stones from the rent, by the aid of a long pole, sand, small stones, and sulphur, which had been covered by it, were thrown up more than ten feet into the air. We tried also to measure the temperature of the vapor issuing from the "respiradores," but the thermometer being graduated only to $160^{\circ} \mathrm{F}$., burst from the heat, which exceeded this temperature.

There is not much sulphur seen in the erater except near the rents, where it is precipitated from the rapor and deposited on the rocks and the ground. 'This may be accounted for by the fact that the falling stones and the debris, which is constantly renewing the surface of the bottom of the erater, must certainly cover any old beds of sulphur which may exist. The rapor which escapes consists of steam, highly charged with sulphur in the form of sulphuretted hydrogen and of free sulphur in vapor. Very little sulphurous acid issues, although this acid as well as sulphuric is fomed in the air of the crater, as is proved by the sour taste of the ieicles and by incrustations of sulphate of lime on some of the rocks. As already mentioned, the air not ouly in the crater, but outside half way down the cone, is impreguated with sulphur, proving that a wery large quantity of it is discharged.

At the time of our explorations, in June, there was a clond resting on the top
of the mountain while we were at the bottom of the crater. The combined effect of this and the vapor on the light was very interesting. While standing near the chimneys, we noticed that every light object was tinged with a reddish color; patches of snow appeared of a pink hue; a white pocket handkerchicf was of a light rose-color, and the gold of a watch-case resembled copper.

The last part of the ascent of the volcano, from the snow line to the crater, is generally accomplished in four hours and a half; the vertical height of this part of the cone is 3300 feet, and therefore only a little over twelve feet in height is gained in one minute. The same distance is descended in an hour or an hour and a half. The horses were left at an elevation of 14,000 fect, and the edge of the crater, where we descended into it, is 17,300 feet above the sea.

The lower part of the Ixtaccihuatl has a more checrful appearance than the corresponding parts of the Popocatepetl. The soil, less covered with volcanic sand, is more favorable to regetation; while nothing but pine-trees are seen on the slopes of the "smoking mountain" (the meaning of the Aztec word "Popocatepetl"), the spurs of the Ixtaceihuatl (Aztec for "white woman") are covered to a considerable height with a varicty of flowers and trees of luxuriant foliage. Nevertheless, this mountain is also entirely of volcanic formation, and its upper parts are nearly as much covered with volcanic sand as the Popocatepetl, which probably has been thrown thus far by the latter voleano, since the entire ridge which comects the two mountains is covered with the same material, and their distance does not exceed ten miles. Many persons are of opinion that there has formenly been a crater between the highest and the northern peak of the Ixtaccihuatl, the walls of which are now broken down and have filled up the cavity. The appearance of the northern side favors this hypothesis. I regret much that I had not an opportunity of approaching the north and east sides of this mountain near enough to decide whether the beds of dark-colored rock seen there are streams of lava or upheaved ancient volcanic rock. The south and west sides, which I explored, are of graystone formation. Passing a perpendicular wall of this material a little below the line of perpetual snow, I noticed, near some crevices in the rock, yellow spots, having exactly the appearance of crystalline sulphur; the spots were, however, so high up the wall that I could not reach them. If the Ixtacciluatl has ever been an active voleano, a much longer time must certainly have elapsed since its last eruption than since that of the Popocatepetl.

The ascent of the Ixtaccihuatl offers much greater difficultics than that of "Popocatepetl," on account of its steep sides and deep fissures in the snow, which are sometimes concealed by a thin crust, and in that case they become very dangerous to the explorer. I doubt, indeed, whether the highest point of this mountain has ever been reached, althongh I am convinced that it might be attained by parties properly prepared. The last point which I reached (in February, 1857) was 600 feet vertically below the highest peak. To this I ascended withont much exertion, following for the greater part of the way a ridge of boulders on the north side of the deep ravine, which, starting near the top, on the west side of the mountain, extends in a westerly direction and loses itself in the plain of Amecameca.

The enormous size of the boulders on the western slope of this mountain must always attract the attention of the traveller. Many of the blocks are from twentyfive to thirty feet in diameter, not rounded, like those on Popocatepetl, but having plane faces and angular edges. They are sometimes isolated, but more generally in ridges roming down the slopes of the mountain, and commencing often far above the line of perpetual snow.

IIYPOMETRICAL DETERMINATIONS.

BAROMETRICAL AND IRIGONOMETRICAL MEASUREMENTS OF HEIGIITS.

Determinations of the heights, derived from one or eren from several barometrical observations, are liable to a considerable error, if they are continned only for a few hours at the upper station, and if the lower station is very distant; but for a sojourn of several days at a height of nearly 18,000 English feet above the seathough within the tropies-preparations on an extensive seale become so necessary, that I coukd not think of adopting this plan, although it would have been very interesting in many respects.

I concluded, therefore, to make a series of barometrical observations extending over several days, at the highest convenient point; to determine the elevations of the different peaks above this point trigonometrically; and to observe barometers at the lighest points to which I might ascend, so that the two measurements would check each other.

For the lower station I took the eity of Mexico as the nearest place of known altitude, at which I could obtain corresponding observations. The most convenient places I found for trigonometrical stations were; on the base of the cone of the Popocatepetl; the "Rancho 'Tlamacas," which is 5000 fect below the highest peak, and a little more than $5(0) 0)$ feet above the city of Mexico; and on the base of the Ixtaccilnatl, a small plain, 11,600 English feet above the sea. At the two latter stations a French syphon-barometer was employed, and before and afterwards compared with two barometers, which were observed simultanconsly in Mexico.
'I'his barometer could not be used at much greater heights than those of the trigonometrical stations, and several other French and English syphon-barometers which were at that time at my disposal were also rendered useless at these great clevations: the mercury in the long arm retreating into the brass tube, or below the limit of the scale; and in the short arm rising abore the divisions. Besides this, it was very difficult to transport long glass tubes, filled with mercury, over such rough ground as the upper part of these mountains presents. I took, therefore, two barometer tubes of large diameter, and cut them off, one to the length of 500 and the other to 440 millimetres. The open end was then heated under the blowpipe, and the apertme reduced to so small a size that it could be easily closed air-tight by the point of the finger; to cach of the tubes a scale of dry cedarwood was attached, on which minute divisions might be read withont difficulty,
and which extended orer the entire length of the tube. In addition to the empty tubes and the scales, I carried with me two small wooden ressels or eisterns cach of two inches diameter, and two inches deep, together with a quantity of mercury. On arriving at the point to be measured, the two cisterns were filled to the depth of an inch and a half, and the tubes entirely, with pure mercury; care being taken to expel the small bubbles of air by slight shaking. The aperture of each tube was then closed with the finger, and the whole inverted with the open end below the surface of the mereury in the cistern. After the mercury had settled in the tube, the scale was read at the top, and also at the level of the quicksilver in the cistern. The difference of these readings gave the length of the mercurial column. This should be reduced for temperature, on account of the expansion of mereury and the wood, but the correction, arising from the latter, was neglected, being very small. At the trigonometrical station on the Ixtaccihuatl, at a temperature of $+9^{\circ} .6 \mathrm{C}$., the longer of the tubes was found to agree perfectly with the syphonbarometer. In Tlamacas the difference scarecly excecded $0^{\text {man }} .2$, showing that the result, obtained by this simple barometer, has claims to a considerable degree of accuracy.

The instrument used for measuring the vertical angles, and for the triangulation, was made by Ertel, of Munich. It had a repeating cirele, which could be mounted rertically for measuring altitudes, or horizontally for azimuths; and by means of four verniers it read to $10^{\prime \prime}$. When the cirele was in a horizontal position it carried a telescope with broken axis; for observations of altitudes an extra telescope had to be attached as well as a level, and so many adjustments were required, that much time was consumed in mounting it vertically. The instrument belonged to the Mining School, in Mcxico, and was kindly lent to me by that institution. It had been treated rather roughly before, and, owing to this as well as to its complieated construction, it required great eare and much paticnce in using it. The readings when the telescope had been moved from the left to the right, or from above downwards, were always different from the readings when it had been moved from the right to the left, or from below upwards. This difference, sometimes amounting to more than two minutes, was the principal cause of the want of agreement among the single measurements, and I have on this account given them, in full detail. The obscrvations were, however, so arranged, that all constant crrors, which might arise from torsion, or from tension, and collimation, were eliminated.
'Ihe standard used in measuring the base-line was a brass scale, the length of which was determined in Mexico, and found to be 622 millimetres, at a temperature of $+15^{\circ} \mathrm{C}$. With the aid of this standard the length of a rod used in measuring the base-line was accurately determined. The direction of the line was carefully marked by a thin rope, stretched, and at several places supported, so as to form sery nearly a straight line. Besides the wooden rod, a steel-tape of ten metres length was used, and the two measurements of the base, obtained with these instruments, agreed in both cases within 0.06 of a metre.

Corresponding barometrical observations were made in Mexico by Mr. DiazCorarrubias, at a temporary obscrvatory near the gate "San Lazaro," and by Mr.

Poole, at the Hotel Iturbide. The barometer of Mr. Diaz-Covarrubias stood $0^{\mathrm{mm}} .20$ lower than the instrument I used, and a correction for this has been taken into account in the computation of the observations. Mr. Poole's barometer and my own agreed perfectly. I give his obscrvations, which he kindly communicated to me, in the following pages, together with my own. The observations of Mr. Diaz-Covarrubias I am not able to give at present.

The dircction of the wind is not giren, as it is difficult to determine its true course with any accuracy among the mountains, where it follows the direction of the valleys and ravines. Generally the weather is nearly calm in the mornings, and at two o'elock P. M. a fresh easterly wind sets in, which continues to blow until scven or eight o'clock I'. M., when it becomes caln again. The atmosphere during the obscrvations was mostly clear, and is always nearly so from November till May, exeept when northerly winds blow.

OBSERVATIONS OF BAROMETER AND TEMPERATURE.

City of Mexico.-Barometer 55.5 English feet above the ground. Observer W. Poone.

Town of Amecaneca, I'ublie s'quare [Plaza]. - Barometer 2 feet above the ground. Observer A. Aonnecag.

1857.	Hour.	Temperature of air.	Barometer.	Attached thermometer.	Reduction.	Barometer at freezing point
Jan. 19	$1^{\text {h }} .8$ P. M.	$16^{\circ} .3 \mathrm{C}$.	$574^{\mathrm{mm} .08}$	$18^{\circ} .5 \mathrm{C}$.	$-1^{\text {mun }} 72$	572 2n+4. 30
19	3.0 P. M.	14.4	73.61	16.3	1.51	2.10
19	4.0 P. M.	13.0	73.41	15.0	1.39	202
20	7.0 A. M.	8.0	74.02	9.9	0.92	3.10
20	7.8 A. 11.	9.0	73.76	9.0	0.83	2.93
27	7.5 P. M.	6.0	73.70	13.0	1.21	2.49
27	10.0 P.M.	2.0	73.93	11.0	1.02	291
28	8.0 A. M.	5.0	73.96	11.3	1.05	2.91
28	40 I'. M.	11.5	73.93	122	1.13	2.80
Sacre Monte, near Amecameca.-Barometer 2 feet above the roof of the upper ehapel.						
Jan. 28	11.0 A. 11.	15.4	506.42	15.4	-1.40	565.02
28	0.30 P.M.	16.0	505.99	19.0	1.73	564.26

Rancio Thamacas.-The barometer 2 feet abore the ground. Observer A. Sonntag.

1857.	Hour.	Temperature of air.	Barometer.	Attached thermometer.	Reduction.	Barometer at freezing point.	Place of observation.
Jan. 20	$3^{\text {h }} 5.5$ P. 11.	$+8^{\circ} .0 \mathrm{C}$.	$485^{\text {rum }} .39$	$+9^{\circ} .1 \mathrm{C}$.	—0mm. 71	$484^{\text {mm }} .68$	Indian huts.
20	4.5 P M.	+ 5.9	484.50	$+5.9$	-0.46	8101	
20	5.5 P. M.	+ 1.1	481.32	+ 1.4	-0.11	84.21	"
20	6.5 P. M.	-0.3	48.1.73	-0.3	$+0.02$	81.75	"
20	7.5 P. M.	- 20	485.94	+10.7	-0.81	85.10	"
23	11.0 A. M.	$+6.0$	48.42	+ 8.2	--0.6t	83.78	Station Λ.
23	12.0 M	+ 6.3	483.88	$+6.4$	-0.50	83.88	
23	5.0 P. M.	+ $3 \xrightarrow{2}$	482.80	$+34$	-0.26	82.54	"
23	7.5 P. l .	- 3.0	484.33	$+8.6$	-0.67	83.66	Indian huts.
24	8.5 A. 11.	+ 1.5	485.18	+11.2	-0.88	84.30	
24	10.0 A. II.	$+40$	48.1.71	+ 8.0	-0.63	84.08	Station 1.
24	$11.5 \mathrm{~A} . \mathrm{M}$.	+ 6.0	485.15	$+100$	-0.78	84.37	Indian huts. ${ }^{1}$
25	8.5 A. 11.	$+15$	485.48	$+11.5$	-0.30	84.58	"
25	11.2 A. 11.	+ 5.5	485.5 -	+11.7	-0.92	8462	"
25	2.0 P. M .	$+10.0$	484.81	$+10.5$	-0.82	83.99	"
25	6.0 P. 11.	-3.5	484.94	$+11.0$	-0.86	S4.08	"
26	6.0 A. M.	-4.5	-	-	-	1.	"
26	7.0 A. M.	-20	485.40	$+10.5$	-0.82	84.58	" 6
20	0.7 P. 11.	$+10.0$	485.64	$+12.0$	-0.94	84.70	"
26		+ 1.2	485.69	+ 6.5	-0.51	85.18	"
27	0.0 А. M .	$+10.2$	486.37	+14.5	-1.14	85.23	" 6
Feb. 7	5.5 P. M.	$+1.6$	482.07	+2.0	-0.16	81.91	"
7	8.0 1. II .	-1.0	483.05	+8.0	-0.63	8.242	" 6
	9.0 1. M.	-3.1	483.43	+6.0 +8.0	-0.47	82.96	" 6
9	I. $51 . \mathrm{M}$.	$+8.0$	485.36	+ 8.0	-0.63	84.73	"
Cero Tlamacas.-The barometer on a level with the highest point.							
Jan. 24	1.0 P. 11.	8.5	474.44	12.8	-0.98	473.16	
	2.8 P. M.	9.0	473.95	105	-0.81	73.14	
24	3.5 P. M.	9.0	473.78	10.0	-0.77	73.01	
dan. 27	12.0 II.	10.0	496.31	10.0	-0.80	495.51	
Point of function of the roads from Puebla and Tlamacas to Ameeameca. -The barometer 2 feet above the level of the water, where the two creeks join.							
Jan. 27	0.5 P. M.	11.5	508.44	14.5	-1.19	507.25	

${ }^{1}$ Station A is 8 metres abovo the Indian huts.
${ }^{2}$ This is the highest point of the road, and at the same time the lowest point of the summit of the ridge, which connects the lopocatepetl and Ixtaccihuatl.

Foot of the Ixtaccinuatl. Trigonometrieal Station B.-The barometer 2 feet above the ground.

1857.	Hour.	Temperature of air.	Barometer.	Attached thermometer.	Reduction.	Barometer at freezing point.	
Feb. 3	$2^{\text {h. }} 5$ P.M.	$9^{\circ} .2 \mathrm{C}$.	$506^{\mathrm{mm}} .16$	$9^{\circ} .2 \mathrm{C}$.	$-0^{\text {mm. }} 75$	$505^{\text {mm }} .41$	(1)
	3.5 P. M.	8.4	505.88	10.0	0.81	5.07	(${ }^{\text {a }}$)
4	8.0 A. 11.	5.0	507.09	10.6	0.86	6.23	
4	9.0 A. M.	7.2	507.31	7.2	0.59	6.72	
4	10.0 A.M.	9.0	507.38	9.1	0.74	6.64	
4	11.0 A. M.	10.5	507.53	13.0	1.07	6.46	
4	1.0 P. M.	12.0	507.24	12.0	0.98	6.26	
4	3.0 P. M.	12.0	506.63	13.7	1.12	551	
4	5.0 P. M.	6.0	506.49	10.3	0.83	5.66	
4	6.0 P.M.	4.0	506.04	5.0	0.41	5.63	

Ixtaccimuatl, at the top of the easeade, where the Indian "Nieveros" eut ice to supply the City of Mexico.

Feb. 3	5.5 P.M.	4.0	483.60	9.0	-0.70	482.90	

Ixtaccmuatl.-Roek projecting above the snow, about 600 feet (vertieal) below the highest peak.

Fcb.	1.0 P. M.	1.0	422.5	+1.0	-0.07	422.43	Cistern bar. I.
	1.0 P .11.	1.0	422.3	+1.0	0.07	22.23	" II.
	1.1 P. M.	1.0	42.0	+1.0	0.07	21.93	" I.

Popocateretl.

1857.	Hour.	Temperature of air.	Barometer.	Attached thermometor.	
Bottom of the erater.					
February 8	$\begin{aligned} & \text { 2.0 P.M. } \\ & 2.1 \mathrm{P} . \mathrm{M.} \end{aligned}$	$\begin{aligned} & +2^{\circ} .0 \mathrm{C} . \\ & +2.0 \end{aligned}$	$\begin{aligned} & 416.0 \\ & 4160 \end{aligned}$	$\begin{aligned} & +7^{\circ} 5 \mathrm{C} . \\ & +7.5 \end{aligned}$	$\underset{\text { "s }}{\text { Uistern barometer }} \text { " I. }$
Cave ("la cueva") in the crater.					
February 8 8	$\begin{aligned} & \text { 4.0 P.M. } \\ & \text { 4.1 I.M. } \end{aligned}$	$\begin{aligned} & -2.0 \mathrm{C} . \\ & -2.0 \end{aligned}$	$\begin{aligned} & 406.5 \\ & 406.0 \end{aligned}$	$\begin{array}{r} 2.0 \\ -2.0 \end{array}$	$\underset{\text { Cistern barometer I. }}{\text { I. }} \text { II. }$

Observations of Temperature on the Popocatepetl. -The obscrvations were made at "la eueva," in the erater.

1857.	Hour.	Temperature.	1857.	Hour.	Temperature.
Jauuary 21	$4^{\text {h. }} 0$ P. M.	$-2^{\circ} .5 \mathrm{C}$.	February 8	$8^{\text {h }} .0$ P. 11.	$-7^{\circ} .5 \mathrm{C}$
22	7.0 A. M	-9.0	9	4.0 A. M.	-11.8
22	8.0 A. 11.	-7.0	9	6.0 A. M.	-9.0
February 8	4.0 P. M.	-2.0	9	7.0 A. M.	-7.0
- 8	6.0 P. M.	-4.0	9	8.0 A. M.	- 5.8

${ }^{1}$ The longer eistern barometer (I.) read $506^{\mathrm{mm}} .3$ at temperature $+9^{\circ} .2 \mathrm{C}$.
${ }^{2}$ The cistern barometer I. read $505^{\mathrm{min}} .8$ at temperature +10.0 C .

OBSERVATIONS OF HORIZONTAL AND VERTICAL ANGLES.

All observations of altitudes and horizontal angles, except the measurement of the elevation of the highest peak above the edge of the crater, were made with the instrument of Ertel, before described. One division of the level of this instrument corresponds to three seconds.

For the determination of the elevation of the highest peak of "Popocatepetl" above the crater, a small theodolite, belonging to the set of Smithsonian magnetic instruments, was used. It had a vertical circle reading to single minutes.

OBSERVATIONS OF VERTICAL ANGLES.
Rancio Tlamacas, January 23, 1857.-Ertel's altitude and azimuth instrument.

Station A.					
Object.	Position of circle.	Level.	Circle reading.		ans.
Popocatepetl, West peak. 66	Right	6.2	$20^{\circ} 19^{\prime} 25^{\prime \prime}$	$19^{\prime} 26^{\prime \prime} .2$	$20^{\circ} 19^{\prime} 12^{\prime \prime} .0$
		7.2	35 40	Level +1.5	
	\propto	6.8	$\begin{array}{lrr}20 & 18 & 60 \\ & 75 \\ & 50 \\ & 40\end{array}$	1856.3	
		6.8		0.0	
"	Left	6.0	$\begin{array}{lr}338 & 57 \\ & 25 \\ & 55 \\ & 40 \\ & 40\end{array}$	5747.5	3385736
		7.2		$+1.8$	
"	"	6.0	$\begin{array}{rr}338 & 57 \\ & 40 \\ & 35 \\ & 10 \\ & 10\end{array}$	5723.7	
		6.5		$+0.8$	
	Point of zenith on the cirele Altitude of West peak.		-	. .	$\begin{array}{rrr}359 & 38 & 24.4 \\ 20 & 40 & 47.6\end{array}$
			-	.	
Popocatepetl, Last peak.	Right	6.0	$\begin{array}{ll}18 \quad 57 & 25 \\ & 30 \\ & 20 \\ & 25\end{array}$	5725.0	
		7.3		+ 1.9	
"	*	6.5	$\begin{array}{rr}18 & 57 \\ & 40 \\ & 30 \\ & 30 \\ & 55\end{array}$	5738.8	$18 \quad 5733.2$
		6.9		+ 0.6	
"	Left	5.8	$\begin{array}{lrr}310 & 18 & 60 \\ & 70 \\ & 30 \\ & 40\end{array}$	1850.0	$340 \quad 1855.0$
		7.3		+ 2.2	
"	"	7.0	$\begin{array}{ll}340 \quad 18 \quad 80 \\ & 75 \\ & 40 \\ & 50\end{array}$	1858.8	
		6.3		-1.0	
					$350 \quad 38111$
	of Eisst ${ }^{\text {d }}$.	\cdots	$\begin{array}{rrrr}309 & 38 & 14.1 \\ 19 & 1 \text { ¢1, } & 19.1\end{array}$

OBSERVATIONS OF HORIZONIAL ANGLES.
Rancho Tlamacas, January 24, 1857.-Ertel's altitude and azimuth instrument.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Station \(\Lambda\).} \\
\hline \multirow[t]{2}{*}{\[
\frac{\text { Object. }}{\text { Station B. }}
\]} \& \multicolumn{4}{|c|}{Circle readings.} \& \multicolumn{2}{|c|}{Means.} \\
\hline \& \(\begin{array}{|cc|}119^{\circ} \& 6^{\prime} 20^{\prime \prime} \\ \& 30 \\ \& 40 \\ \& 20\end{array}\) \& \(7^{\prime} 15^{\prime \prime}\)
15
35
30 \& \(6^{\prime} 50^{\prime \prime}\)
50
65
50 \& \(6^{\prime} 20^{\prime \prime}\)
25
45
20 \& \(\begin{array}{cccc}119^{\circ} \& 6^{\prime} \& 27^{\prime \prime} .5 \\ \& 7 \& 23.7 \\ 0 \& 53.7 \\ \& 6 \& 27.5\end{array}\) \& \(119^{\circ} 6^{\prime} 48^{\prime \prime} .1\) \\
\hline Pico del Fraile. \& \(\begin{array}{lr}39 \& 44 \\ \& 20 \\ \& 40 \\ \& 30 \\ \& 45\end{array}\) \& \(45 \quad 20\)
0
10
15 \& 4320
0
10
15 \& 4350
40
40
55 \& \(\begin{array}{lll}39 \& 44 \& 33.7 \\ 45 \& 11.2 \\ 43 \& 11.2 \\ 43 \& 46.2\end{array}\) \& \(39 \quad 4410.6\) \\
\hline West peak. \& \(\begin{array}{lr}32 \& 315 \\ \& 10 \\ \& 20 \\ \& 15\end{array}\) \& 215
0
0
10 \& \(\begin{array}{ll}1 \& 10 \\ 0 \& 50 \\ 0 \& 50 \\ 1 \& 0\end{array}\) \& 065
50
50
60 \& \(\begin{array}{rrr}32 \& 3 \& 15.0 \\ \& 2 \& 6.2 \\ 0 \& 57.5 \\ \& 0 \& 56.3\end{array}\) \& \(32 \quad 148.7\) \\
\hline Fast peak. \& \(\begin{array}{rr}20 \quad 5210 \\ \& 0 \\ \& 5 \\ \& 20\end{array}\) \& 5040
30
30
40 \& 4940
25
30
40 \& 49
50
40
40
45 \& \(\begin{array}{rrr}20 \& 52 \& 8.7 \\ 50 \& 35.0 \\ 49 \& 33.7 \\ 49 \& 43.7\end{array}\) \& \(20 \quad 50 \quad 30.2\) \\
\hline \& \[
\begin{gathered}
\text { Angle } B, \\
\text { "، } \\
\text { "، } \\
\text { " } \\
\\
\end{gathered}
\] \& \begin{tabular}{l}
ico del Fr \\
Test peak \\
Last peak
\end{tabular} \& \[
\begin{array}{rr}
79^{\circ} \& 22^{\prime} \\
87 \& 4 \\
98 \& 16
\end{array}
\] \& \& \begin{tabular}{l}
the right. \\
" \\
"
\end{tabular} \& \\
\hline \multicolumn{7}{|c|}{Station B. \({ }^{\text {a }}\)} \\
\hline Ohject. \& \multicolumn{4}{|c|}{Circle readings.} \& \multicolumn{2}{|l|}{Means.} \\
\hline Station 1. \& \(177^{\circ} \because 4^{\prime} 45^{\prime \prime}\) \& \(24^{\prime} 30^{\prime \prime}\)
30
40 \& \(23^{\prime} 25^{\prime \prime}\)
30
33 \& \(24^{\prime} 30{ }^{\prime \prime}\)
40
40 \& \[
\begin{gathered}
177^{\circ} 24^{\prime} 51^{\prime \prime} .7 \\
2433.3 \\
2329.3 \\
2436.7
\end{gathered}
\] \& \(177^{\circ} 24^{\prime} 22^{\prime \prime} .7\) \\
\hline East peak. \& \(\begin{array}{|ccc|}256 \& 35 \& 35 \\ \& \& 30 \\ \& \& 40\end{array}\) \& \(3+40\)
40
30 \& \(3 \pm 40\)
50
40 \& 3420
20
40 \& \[
\begin{array}{r}
256 \quad 35350 \\
3436.7 \\
3443.3 \\
3426.7
\end{array}
\] \& 2563450.4 \\
\hline West peak. \& \(\begin{array}{|cr|}267 \& 51 \\ \& 30 \\ \& \\ \& \\ \& 20\end{array}\) \& 5050
50
.40 \& \(52 \quad 20\)
30
20 \& \(51 \quad 50\)
40
40 \& \(267 \quad 51267\)
5046.7
52233
5143.3 \& 2675135.0 \\
\hline \multirow[t]{2}{*}{Pico del Fraile.} \& \(\begin{array}{lll}275 \& 0 \& 5 \\ \& \& 0 \\ \& \& 0\end{array}\) \& 0
0
10

0 \& 0
50
40
40 \& _ \& $\begin{array}{rrr}275 & 0 & 1.7 \\ & 0 & 3.3 \\ & 0 & 43.3\end{array}$ \& \multirow[t]{2}{*}{$275 \quad 0 \quad 16.1$}

\hline \& \multicolumn{5}{|l|}{| Angle A, East peak | 79° | 10^{\prime} | $27^{\prime \prime} .7$ | A to the left.0 | |
| :---: | :--- | :--- | :--- | :--- | :--- |
| " | A, West pealk | 90 | 27 | 12.3 | " |
| " | " | | | | |
| " Pico del Traile | 97 | 35 | 53.4 | " | " |} \&

\hline \multicolumn{7}{|c|}{Length of base line $173^{\mathrm{m}} .200 \pm 0^{\mathrm{m}} .006$. Direction of base line N. $95^{\circ} 32^{\prime} \mathrm{W}$. (true).}

\hline
\end{tabular}

${ }^{1}$ At this station only 8 verniers were read.

OBSERVATIONS OF V1BRTICAL ANGLES.
Piain on tiee Ixtaccinuatl, February 4, 1857.-Frtel's altitude and azimuth instrument.

${ }^{2}$ The altitude of this station, seen from station A, is $2^{\circ} 45^{\prime}$.

OBSERVATIONS OF HORIZONTAL ANGLES.
Plain on the Ixtaccinuatl, February 4, 1857.-Ertel's altitude and azimuth instrument.

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{Station Λ.}

\hline Object. \& \multicolumn{4}{|c|}{Circle readings.} \& \multicolumn{2}{|c|}{Means.}

\hline \multirow[t]{2}{*}{Station B.

"} \& \multirow[t]{2}{*}{$$
\left.\begin{array}{|ccc|}
\hline 49^{\circ} & 22^{\prime} & 60^{\prime \prime} \\
& & 50 \\
& & 75 \\
& & 60 \\
& & \\
49 & 23 & 10 \\
& & 0 \\
& & 15 \\
& & 10
\end{array} \right\rvert\,
$$} \& \multirow[t]{2}{*}{$23^{\prime} 35^{\prime \prime}$

30
40
40
2245
30
55

35} \& \multirow[t]{2}{*}{$$
\begin{array}{r}
23^{\prime} 30^{\prime \prime} \\
20 \\
40 \\
30 \\
32 \quad 50 \\
22 \\
40 \\
65 \\
60
\end{array}
$$} \& \multirow[t]{2}{*}{$23^{\prime} 10^{\prime \prime}$

5
25
25
2330
45
45

40} \& \multirow[t]{2}{*}{$$
\begin{array}{rrr}
49^{\circ} 23^{\prime} & 1^{\prime \prime} .2 \\
23 & 36.2 \\
23 & 30.0 \\
23 & 16.2 \\
& & \\
49 & 23 & 8.8 \\
22 & 41.2 \\
22 & 53.8 \\
23 & 40.0
\end{array}
$$} \& \multirow{2}{*}{$49^{\circ} 23^{\prime} 13^{\prime \prime} .4$}

\hline \& \& \& \& \& \&

\hline \multirow[t]{2}{*}{| Ixtaccihuatl, Ifighest peak. |
| :--- |
| " |} \& | $113 \quad 12 \quad 40$ | |
| :--- | ---: |
| | 25 |
| | 30 |
| | 5 | \& \[

$$
\begin{array}{r}
1245 \\
40 \\
45 \\
20
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1245 \\
50 \\
70 \\
30
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
1235 \\
30 \\
65 \\
25
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
113 & 12 & 25.0 \\
12 & 37.5 \\
12 & 48.8 \\
& 12 & 38.8
\end{array}
$$
\] \&

\hline \& | $113 \quad 1240$ | |
| ---: | ---: |
| | 30 |
| | 40 |
| | 10 | \& 1235

25
35

10 \& $$
\begin{array}{r}
1220 \\
10 \\
25 \\
1150
\end{array}
$$ \& \[

$$
\begin{array}{r}
1170 \\
50 \\
60 \\
50
\end{array}
$$

\] \& \[

$$
\begin{array}{lll}
113 & 12 & 30.0 \\
12 & 26.2 \\
12 & 11.2 \\
11 & 57.5
\end{array}
$$
\] \& 1131226.8

\hline Ixtaccihuatl, South peak. \& $\begin{array}{lll}130 & 37 & 50 \\ & 50 \\ & 45 \\ & 45\end{array}$ \& \[
$$
\begin{array}{r}
37 \quad 50 \\
40 \\
70 \\
45
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3760 \\
60 \\
65 \\
40
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
3770 \\
60 \\
75 \\
50
\end{array}
$$

\] \& | 130 | 37 | 47.5 |
| ---: | ---: | ---: |
| 37 | 51.2 | |
| 37 | 56.2 | |
| 38 | 3.8 | | \& 1303754.7

\hline Popocatepetl, West peak. \& $$
\begin{array}{rr}
197 \quad 55 \quad 20 \\
& 25 \\
& 5 \\
& 10
\end{array}
$$ \& \[

$$
\begin{array}{r}
55 \quad 20 \\
20 \\
0 \\
10
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
5555 \\
50 \\
30 \\
40
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
55 \quad 70 \\
60 \\
40 \\
60
\end{array}
$$

\] \& \[

$$
\begin{array}{rrr}
197 & 55 & 15.0 \\
55 & 12.5 \\
55 & 43.7 \\
& 55 & 57.5
\end{array}
$$
\] \& \multirow[t]{2}{*}{$197 \quad 5536.0$}

\hline " \& | 197 | 55 | 40 |
| :---: | ---: | ---: |
| | 35 | |
| | 15 | |
| | 30 | |
| | | | \& \[

$$
\begin{array}{r}
55 \quad 50 \\
40 \\
30 \\
35
\end{array}
$$

\] \& \[

$$
\begin{array}{r}
55 \quad 60 \\
55 \\
40 \\
55
\end{array}
$$

\] \& 555 \& \[

$$
\begin{array}{lr}
197 & 55 \quad 30.0 \\
& 38.8 \\
& 52.5 \\
& 37.5
\end{array}
$$
\] \&

\hline \multicolumn{7}{|c|}{Station B.}

\hline Ohject. \& \& \multicolumn{3}{|l|}{Circle readings.} \& \multicolumn{2}{|c|}{Means.}

\hline Station A. \& $$
\begin{array}{r}
91^{\circ} 14^{\prime} 10^{\prime \prime} \\
5 \\
20 \\
5
\end{array}
$$ \& \[

$$
\begin{gathered}
14^{\prime} 20^{\prime \prime} \\
15 \\
30 \\
20
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
14^{\prime} 5^{\prime \prime} \\
20 \\
30 \\
15
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
13^{\prime} 60^{\prime \prime} \\
50 \\
70 \\
60
\end{gathered}
$$

\] \& \[

$$
\begin{array}{rrr}
91^{\circ} & 14^{\prime} & 10^{\prime \prime} .0 \\
14 & 21.2 \\
14 & 17.5 \\
14 & 0.0
\end{array}
$$
\] \& \multirow{2}{*}{$91^{\circ} 14^{\prime} \quad 6{ }^{\prime \prime} .7$}

\hline " \& $$
\begin{array}{rr}
91 & 14 \quad 20 \\
& 5 \\
& 20 \\
& 5
\end{array}
$$ \& \[

$$
\begin{array}{r}
1420 \\
10 \\
25 \\
10
\end{array}
$$

\] \& \[

1350

\] \& \[

$$
\begin{array}{r}
1350 \\
40 \\
45 \\
50
\end{array}
$$
\] \& $\begin{array}{rrrr}91 & 14 & 12.5 \\ 14 & 16.2 \\ 13 & 50.0 \\ 13 & 46.2\end{array}$ \&

\hline Popocatepetl, West pcak. \& $\begin{array}{rrr}60 & 3 & 10 \\ & 0 \\ & 20 \\ & & 15\end{array}$ \& $\begin{array}{rr}3 & 5 \\ 0 \\ & 15 \\ & 5\end{array}$ \& 335
35
50
40 \& 30
10
30
10 \& $60 \begin{array}{rrr}60 & 3 & 11.2 \\ & 3 & 6.2 \\ & 2 & 40.0 \\ & 3 & 12.5\end{array}$ \& $60 \quad 252.2$

\hline
\end{tabular}

Station B-Continued.						
Object.	Circle readings.				Means.	
Popocatepetl, West peak.	$\begin{array}{cccc}60^{\circ} & 3^{\prime} & 10^{\prime \prime} \\ & 2 & 50 \\ 3 & 10 \\ 3 & 10 \\ & 3 & 10\end{array}$	$2^{\prime} 20^{\prime \prime}$ 20 40 30	$2^{\prime} 10^{\prime \prime}$ 10 20 10	$3^{\prime} 0^{\prime \prime}$ 0 10 0	$\begin{array}{cccc}60^{\circ} & 3^{\prime} & 5^{\prime \prime} .0 \\ 2 & 2 \\ 2 & 7.5 \\ 2 & 12.5 \\ 3 & 2.5\end{array}$	
Ixtaccihuatl, Sonth peak.	$\begin{array}{lr} 353 & 55 \\ & 20 \\ & 10 \\ & 10 \end{array}$	5 ± 40 20 35 40	$\begin{array}{r} 5540 \\ 15 \\ 35 \\ 30 \end{array}$	$\begin{array}{r} 5165 \\ 40 \\ 50 \\ 65 \end{array}$	$\begin{array}{ll} 353 & 55 \quad 10.0 \\ & 5433.8 \\ & 55300 \\ & 5455.0 \end{array}$	$353{ }^{\circ} 55^{\prime} 2^{\prime \prime} .2$
Ixtaccihuatl, llighest peak.	$\begin{array}{lr} 336 & 30 \\ & 30 \\ & 20 \\ & 25 \\ & 25 \end{array}$	3040 30 20 30	3045 30 20 30	$\begin{array}{r} 3050 \\ 25 \\ 50 \\ 30 \end{array}$	$\begin{array}{rrr} 336 & 30 & 25.0 \\ 30 & 30.0 \\ 30 & 31.2 \\ 30 & 38.8 \end{array}$	
"	$\begin{array}{rrr}336 & 30 & 35 \\ & 10 \\ & 20 \\ & 20\end{array}$	2960 30 40 50	3040 20 20 20	3045 15 20 40	$\begin{array}{rrrr}336 & 30 & 21.2 \\ & 29 & 45.0 \\ 30 & 25.0 \\ 30 & 30.0\end{array}$	$336 \quad 30 \quad 23.2$

At Station A.

Angle B, IIighest peak						63			$13^{\prime \prime}$
Angle B, South peak			-			81	1		41.3
Angle B; Popocatepcti						14	3		

At Station B.

Length of base line $150^{\mathrm{m}}+433 \pm 0^{\mathrm{m}} .00^{2} 2$.
Direction of base line N. $7^{\circ} 0^{\prime} \mathrm{E}$. (truc).

Altitude of the West peak of Popocatepetl above the cave in the crater. February 8, 1857. Small theodolite (3.5 feet above the ground).

Station A.

Depression of the cave in the crater . . . $32^{\circ} 20^{\prime}$
Distance of the eave from station A $20^{\text {m2 }} .4$.
Angle B, West peak 4411
Altitude of West peak 1543
Altitude of station B $9 \quad 23$

Station B.

Angle A, West peak		.	-	.	129	37
Altitude of West peak					16	4.5

Length of base line $73^{\mathrm{m}} .40$.

COMPUTATION OF IIEIGIITS.

Porocatepetl.-Only a few of the barometrical observations in the city of Mexico were made at exactly the same time as the observations at Tlamacas, and at the trigonometrical station of the Ixtaccihuatl. For this reason all barometer readings made on the same day have been reduced to the mean height of the mercurial column at the freezing point for that day, and the differences of level deduced from the means of the observations thus corrected. The reduction was made by means of the following tables.

> Correction to be applied to tile hourly readings to reduce then to the nean heioit of tie barometer during tie day, from jandary 20 to february 10 .

1 Iour.	Correction.	Hour.	Correction.	Hour.	Correction.	Hour.	Correction.
City of Mexico.							
8^{h} A. M.	$-0^{\text {mm }} 55$	$12^{\mathrm{h}} \mathrm{M}$.	$-0^{\text {mm. }} 14$	$4^{\text {h P P. M. }}$	$+1^{\text {mam }} .19$	$8^{\text {h }}$ P. M.	-0 $0^{\text {mm. }} 60$
9 A. M.	-0.93	$1 \mathrm{P} . \mathrm{M}$.	+0.11	5 P. M.	+0.80	9 P. M.	-0.80
10 A. M.	-0.65	$2 \mathrm{P} . \mathrm{M}$.	+0.44	$6 \mathrm{P} . \mathrm{M}$.	+0.30	$10 \mathrm{P} . \mathrm{M}$.	-0.89
$11 \mathrm{~A} . \mathrm{M}$.	-0.40	3 P. M.	+0.85	$7 \mathrm{P} . \mathrm{M}$.	-0.24	11 P. M.	-0.70
Rancho Tlanacas and trioonometricala station on the Ixtaccinuatl.							
8 A. M.	-0.15	12 M.	-0.20	4 P. M.		8 P. M.	-0.46
$9 \mathrm{~A} . \mathrm{M}$.	-0.55	$1 \mathrm{P} . \mathrm{M}$.	-0.01	5 P. M.	$+0.66$		
I0 A. M.	-0.51	$\stackrel{2}{2} \mathrm{P} . \mathrm{M}$.	+0.20	${ }_{7}^{6} \mathrm{P} . \mathrm{M}$.	+0.36 +0.36		
11 A. M.	-0.43	3 P. M.	$+0.12$	7 P. M.	-0.06		

The table for the city of Mexico has been deduced from observations of days on which the mean height of the barometer was nearly the same as on the preceding and following days.

The other table has been interpolated from observations at Tlamacas, and at the foot of the Ixtaccihuatl.

Barometrical obscrvations, which I made at very different heights in several parts of the Mexican Republic, seem to indicate that the daily maximum and minimum set in later in proportion as we aseend higher, at the rate of abont six minutes for every thousand feet change in elevation. I computed, therefore, from the table of corrections for the city of Mexico, a table corresponding to a height of 12,500 feet, by supposing the time of maximum and minimum at this height half an hour later than in Mexico, and reducing the corrections; then interpolated from the table for the eity of Mexico, in proportion to the mean daily range of the two stations, which was assumed to be 0.615 . In this way the following table was obtained.

CORRECTION OF HOURLY OBSERVATIONS, CORRESPONDING TO A HEIGHT of $\mathbf{1 1 , 6 0 0}$ to $\mathbf{1 2 , 8 0 0}$
ENGLISII FEET.

IIour.	Correction.	Difference.	Hour.	Correction.	Difference.	Hour.	Correction.	Difference.
$8^{\text {h }}$ A. M.	$-0^{\text {mma }} 22$	$+0^{\text {mm }} .07$	$12^{\mathrm{h}} \mathrm{M}$.	$-0^{\text {mm }} .17$	$-0^{\text {mm }} .03$	$4^{\text {b }}$ P. M.	$+0^{\text {mm }} .68$	$-0^{\text {mm }} .08$
9 A. M.	-0.50	-0.05	1 P. M.	-0.01	-0.03	5 P.M.	+0.67	-0.01
10 A. M.	-0.54	+0.03	$2 \mathrm{P} . \mathrm{M}$.	+0.17	+0.03	$6 \mathrm{P} . \mathrm{M}$.	+0.34	+0.02
$11 \mathrm{~A} . \mathrm{M}$.	-0.32	-0.11	3 P. M.	+0.39	+0.03	7 P. M.	+0.02	-0.08

The column headed "Difference" shows the differences of the values in this table from those in the table interpolated from actual observations. These differences would have been much greater and more irregular, if the time of maximum and minimum had been assumed to be the same at both elevations.

The heights have been computed by the tables of Gauss; some of them were recomputed by Delcros' tables, published in the Smithsonian Miscellaneous Collections. It was found that in a single case only the difference between the two tables amounted to three feet, hence it was not thought necessary to alter the results found by Gauss' tables.

The height upon which all other elevations are based, namely, the-
City of Mexico (plaza) was assumed above the Mexican gulf to be
7472.8 Eng. feet.

This value is the mean between Humboldt's determination and my own, deduced from two month observations by myself, in Mexico, and from corresponding observations by Dr. Berendt, in Vera Cruz. There is a difference of only three feet between the two values.

The observations at the Rancho Tlamacas give-all reduced to the trigonometrical station A-

Tlamacas, trigonometrical station A, above Mexico . . 5319.6 feet. " " " above the Mexican gulf . 12792.4 "
The barometrical observations at the bottom of the crater give-
Bottox of crater, above Mexico 9322.7 feet.

$$
\text { " " above the Mexican gulf } 16795.5 \text { " }
$$

And the observations at the cave in the crater give-
Cave in the crater, above Mexico 9830.0 feet.
The computation of the depression of the cave, measured at station A, near the edge of the crater, gives-

Cave, below station A
32.3 feet.

And the small triangle, measured at the edge of the crater, gives-
Highest peak of Popocatepetl, above station A . . . 482.5 feet.

$$
\begin{array}{llll}
66 & 66 & 66 & \text { above Mexico } \\
66 & 66 & 66 & \text { above the Miexican gulf }
\end{array}
$$

The triangulation at Rancho Tlamacas gives two values for the height of each point of the Popocatepetl, one for each station. The reduction of the heights,
observed at station B, to those of station A, is +26.42 feet. 'This correction applied, the results are-

HEIGHTS ABOVE STATION A.

ifeigits above the level of the mexican dulf.
Popocatepetl, Highest (Western) peak . . . 17783.7 English fect.
" Lastern peak 17186.4 " "
" Pico de Frailo 16504.2 " "

The highest peak is, according to this triangulation, 33.9 feet lower than it was found from the barometrical measurement at the cave in the crater, but the smaller value is probably the more accurate, and has been adopted. These heights, as also those of the Ixtaccihuatl, differ sereral feet from those found by a first computation, and communicated by me to Baron von Müller ${ }^{2}$ and M. Leverricr, who published them in Dr. Petermanu's "Geographische Mittheilungen," and other periodicals. 'The difference was caused by an error in the former reduction of the base line to the horizon, and some other accidental error.

Ixtaccheuatl.-The height of the trigonometrical station B on the foot of the Ixtaccihuatl was found to be 4124.4 feet above the city of Mexico, or-

Station B, above the Mexican gulf 11597.2 Eng. feet.
The reduction of station A to station 13 was found to be 23.68 fect. This gives the elevations of the three points, of which the altitudes have been observed, as follows:-

HEIGIITS ABOVE STATION B.

IIEIOIIT AbOVE THE LEVEL of TIIE MEXICAN GULF.
Ixtaccinuatl, IIighest peak . . . 17076.9 English feet.
Popocatepetl, West peak 17757.0 " "

[^4]This makes the Popocatepetl 26.7 feet lower' than the determination at Tlamacas, a quartity within the limits of crror, to which the last determination is liable, as the two lines, drawn from the Popocatepetl to the cuds of the base line $A B$ on the foot of the Ixtaccihuatl, form an angle of only $16^{\prime} 23^{\prime \prime}$ with each other.

> Miscellaneous IIeights.-The barometrical observations at Amecameca giveAmecaneca (plaza) above the city of Mexico " above the Mexican gulf

The observations at Sacremonte, if compared with those made at Amecameca on the same day, after applying the correction for the hours of obscrvation, giveSacremonte, above Amecameca 420.6 Eng. fcet. " above the Mexican gulf 8602.4
The lowest depression in the ridge, connecting the Popocatepetl and Ixtaccihuatl, which is identical with the highest point of the road from Puebla to Amecameca, was found to be 12,118 English feet above the sea.

The junction of the roads from Pucbla and Clamacas to Amecameca is 11,485 English fect above the level of the sea, and the absolute height of a cascade on the Ixtaccihuatl, where ice remains all the year, was found to be 12,788 Eng. feet. The height of Cerro Tlamacas is 13,359 "
Vegetation does not extend within 200 fect of the top of this mountain.
The licights of a considerable number of points on the western slope of the mountain ridge have been determined for the purpose of constructing a map. The method employed consisted generally in taking bearings from the point itself to two known objects, one of these was always Sacremonte, near Amecameca, which is very prominent, the other, cither the Ixtaccihmatl or the Popocatepetl. The position of the point was thus fixed. Afterwards the small theodolite was mounted on Sacremonte, and the altitudes of the different points determined, which were easily recognized by the bearings, formerly taken from them to Sacremonte. The heights, obtained by this method, are sufficiently accurate for the purpose for which they were intended.

To render comparisons with other determinations of the principal heights more convenient, the results have been changed into metres and collected in the follow ing table:-

IIEIGHTS AbOVE TIIE LEVEL OF THE MEXICAN GULF.

This height of Mexico is sixty metres different from the height determined by Messrs. Truqui and Craveri (Petcrmann's Geogr. Mittheilungen, 1856, page 360). The difference scems to be caused by an extremely low period of the barometer in

Vera Cruz during the time in March, when Mr. Craveri was observing. He gives as the mean height of the barometer $759^{m \mathrm{~min}} .16$ at the temperature $24^{\circ} .79$. If we suppose this to be Centigrade, the mean height, reduced to the freezing point, would be $756^{\text {man }} .12$, or reduced to the level of the sea, $757^{\mathrm{mm}} .12$ (the barometer being $11^{\mathrm{m}} .5$ above the sea). But the mean height of the barometer in Narch is, in the northern tropics, above the anmual mean, which is at Vera Cruz (reduced to the level of the sea and to the freczing point) $760^{\mathrm{mm}} .5$, according to the observation of Dr. Berendt, which have been continued for nearly three years. If we suppose (as is the case in Havana) the mean height of the barometer in Nareh to be $0^{\text {min }} .7$ above the mean of the year, this height would become $76 L^{\mathrm{mm}} \cdot 2$, or $4^{\mathrm{mm}} .08$ higher than that M. Craveri observed; this would make the city of Mexico 46.3 metres higher, and come within 14 metres of IIumboldt's determination and my own.

geograpitical positions.

At the Rancho Tlamacas I made several sets of circum-meridian observations of the sun for determining the latitude, and also observations of equal altitudes in the forenoon and afternoon for obtaining the local time; as I had only one pocket chronometer, the rate of which was rather irregular in consequence of being transported on horseback, the last observations are of no value for the determination of the difference of longitude between the Popocatepetl and the city of Mexico. I have, therefore, given the longitudes of the different points, as deduced from the triangulation, upon the western or highest peak of the Popocatepetl. The observations were made with the instrument of Ertel, the circle being mounted vertically.

The latitude from two sets of circum-meridian obscrvations of the sun, was found to be for-

$$
\text { Rancho Tlamacas, trig. station A. } \quad 19^{\circ} 3^{\prime} 0^{\prime \prime} .0 \mathrm{~N} \text {. }
$$

The co-ordinates of the principal points of the Popocatepetl, taking station A as zero point and supposing X positive when west, I when north of A, were found to be for-

Western peak.	Wastern peak.	Pico del Fraile.
$\mathrm{N}^{-} \mathrm{CO} 03 \mathrm{fect}$.	- 2986 feet.	+ ! 45 feet.
y^{-13193} "	-12152 "	-10621

From the first two sets of co-ordinates, combined with the difference of height of the eastem and western peak (597.3 feet), was computed the-
Upper diameter of the crater $\quad . \quad . \quad . \quad . \quad 2668$ Eng. fect.
Direction of this diameter . $\quad . \quad . \quad . \quad$ S. $66^{\circ} 24^{\prime}$ W. (true).

The diameter of the level part of the bottom of the crater, running from north to south, was estimated by pacing to be 750 feet.

The co-ordinates of the principal points determined at the trigonometrical station on the Ixtacciluatl, referred to station l3 as zero point, are-

Ixtacomiata.		Purocateretl.
Highest peak.	South peak.	Western peak.
. ${ }^{\prime}$ - 16968% feet	- 19.425 feet.	-20123 feet.
$1+502 \%$ "	$+11 \%$	-4025

Or, if all co-ordinates are referred to the western peak of the Popocatepetl as zero point, the results are as follows:-

These co-ordinates, changed into minutes and seconds of are, give the followinggeographical posittons.

MISCELLANEOUS NOTES.

In ascending from the low-lands, whiell are elevated but little above the level of the sea, into the higher monntainous regions, the interval between two successive respirations deereases in proportion as the air becomes more rarefied. This fact may be accounted for by assuming that the lungs always require nearly the same quantity of air in weight, and this quantity increases in volnme in the same ratio, as the density of the air decreases, but we cannot draw a larger volume of air in a single breath on a high mountain than at the level of the sea.

In Mexico, near the level of the sea, I fonnd that I breathed from twenty-two to twenty-three times in a minute (the barometer standing at 760 millimetres or 30 inches), while in the city of Mexieo, with the barometer at 588 millimetres or 2.2 .5 inches, the number of respirations in a minute was inereased from twenty-seven to thirty; at the Rancho Tlanacas the barometer at 484 millimetres, the number was from thirty-three to thirty-six, and at the crater of the Popocatepetl with the barometer at 406 millimetres, the respirations were from forty to forty-four.

Another series of observations of a similar character relative to the frequeney of the pulse, gave the following results: Near the level of the sea I counted from sixty-four to seventy-four; at a height of 7500 English feet above the sea from seventy-five to eighty-four; at 12, 800 English feet elevation from eightysix to ninety-four, and at the crater of the Popocatepetl, 17,300 feet above the level of the sea, from ninetysix to one hundred pulsations in a minute.

The observations on the frecueney of respiration and on the pulsations, were made ouly when I felt perfectly well, and was not in tho slightest degree exeited; generally after several hours' rest, and in the crater of the Popoeatepetl early in the morning, before rising, after I had been sleeping ten hours or more. Persons who are accustomed to live in low countries, experience considerable inconvenience for some time after their arrival on the high platean, in consequence of this aceeleration of respiration, which is particularly felt at every exertion, for instance in walking up hill, or only up stairs, in raising heavy weights, ete.; but after they have lived for several months at these elevations, their breathing and pulsations again become slower. The natives of the ligh table-lands probably do not breathe any faster or have more frequent beats of the pulse than the natives of the countries near the eoast, owing perhaps to an increased capacity of the lungs.

Similar observations have also been made on different animals, particularly on horses and dogs, which had been imported from the low conntries. Hace horses and gray hounds for instanee, brought over from the United States and England, have not the same speed on the high plains of Mexieo as in their native country. This, however, does not affeet the flectness of their offspring, if born and raised on the high lands.

At an elevation of more than 11,000 feet, a person in a good state of health never perspires, not even after great exertions; and in an artificially inereased temperature, only a feverish heat is experienced. Eveu at the height of the eity of Mexico, anything more than a slight perspiration is rarely felt. It has been before stated, that I never observed a case of bleeding of the nose, whilst ascending very high mountains, but generally headache, aecompanied by a painful sensation in the eyes, which swell out considerably, is felt. The odor of sulphor, besides the rarefied air, is one of the principal causes of this pain, as it is much more severe at the bottom of the erater of the l'opoeatepetl than near its edge or outside.
louring the rainy season, from June to September, the tops of the higher monutains are rarely seen, as they are almost constantly enveloped in clouds or fog, producel by the contact of the warm air (at this season, nearly saturatel with humidity) with the coll, partially snow-covered surface of the monn-
tains. The chilled air is not able to contain the same quantity of aqueous vapor, and part of it beeomes visible as fog or snow. From June 18 to 22, 1857, I was delayed at the Rancho Tlamacas on the foot of the Popocatepetl, at an elevation of 12,800 feet, for three days, the fog being so dense that we could scarcely see at twenty yards distance; an image of the eamp-fire, at night time, being refleeted from it. It snowed continually, while the thermometcr during the day was about two degrees F . above, and at night as much below the freczing point.

During the dry scason, from Octover till May, the atmosphere of the high lands is always clear, except when northerly winds blow; but generally about nine or ten o'clock in the mornings, mist begins to form around the highest mountain peaks and accumulates rapidly, so that at eleren o'clock those parts of the mountains, which are clevated nore than 13,000 fect, are entirely wrapped in clouds. Small floating clouds, which form sometimes in the vieinity, in calm weather generally unite with the larger masses which envelope the peaks. In the aftermoon these clouds sink lower down, and the upper snow-covered part beeomes visible again above them a short time before sunset. At this time they appear most beautiful, tinged with a rosy, or sometimes of a reddish golden color, but immediately after sunset these brilliant tints change into a dull lead color (bluish gray), and the clouds entircly disperse about this time, only occasionally a light mist being noted in the valleys and on the meadows during the evening. There are, however, times, particularly in January and February, when not a cloud is seen near the mountains for two or three days in suecession.

The cumuluseclouds never extend much abore the highest mountain-peaks, and their greatest height probably does not execed 20,000 English feet. At greater elevations eirrus clouds only are observed, which appear here of a purcr white eolor than when they are seen from the low-lands. This lighter appearance is probably caused in a great measure by their contrast with the sky, which is here of a darker blue than near the level of the sea. I had no means of estimating accurately the height of the cirrus-clouds, but from their size and appearance, which do not differ sensibly from that which they exhibit near the level of the sea, as also from their slow motion, it would appear that they were at least from three to five miles above the station of observation, or from six to cight miles above the level of the sca.

A sensible effect of the rarcfaction of the air on the duration of the twilight is also observed; twenty minutes after sunset, stars of the fifth magnitude become visible, and fifteen minutes later the last traces of twilight disappear on the western borizon. If the air is calm the stars appear in a quict, planetary light, and lose very little of their brightness as they approach the horizon. Stars of the sixth magnitude may be still distinguished at an altitude of five degrees.

I have never observed any striking electrical phenomena in heights above 13,000 feet, and during my stay on the high plateau of Mcxico, thunder and lightning occurred very rarely. On the plains it rained, during the rainy season, on an average, not more than every third day, and gencrally only in the afternoon from three to five o'elock, but at this time the fall was oceasionally very hcary. The two last seasons (1857 and 1858) were, however, considered by the natives as unusually dry. In the higher mountain ridges (from 10,000 to 13,000 feet elevation) a drizzling rain falls, sometinies for days in succession, inereasing generally in the afternoon.

My obscrvations on the limits of animal life are so restricted as to be of little value.
Several classes of birds, among which I noted the raven, are found near the limits of vegetation (13,200 feet), and great numbers of parrots were noted on the western slopes of the peak of Orizaba, at more than 10,000 feet of altitude. Wolves ascend as high, or even higher, than the ravens; and I have seen deer 12,000 fect above the level of the sea.

14 DAY USE

RETURN TO the circulation desk of any
University of California Library
or to the
NORTHERN REGIONAL LIBRARY FACILITY Bldg. 400, Richmond Field Station
University of Californla
Richmond, CA 94804-4698
ALL BOOKS MAY BE RECALLED AFTER 7 DAYS
2 -month loans may be renewed by calling (510) 642-6753

1 -year loans may be recharged by bringing books to NRLF
Renewals and recharges may be made 4 days prior to due date

DUE AS STAMPED BELOW

MAR 301994

, Prb:
$F 801190$
-mnacruz'
DEL U 69995
$14 n \quad 123$

\qquad

[^0]: ${ }^{1}$ In these observatious ouly one vernier of the vertical circle was read.

[^1]: ${ }^{1}$ There has also been made a complete set of magnetical observations at the town of Chalev, in the valley of Mexico (latitude $19^{\circ} 18^{\prime}$, longitude $98^{\circ} 51^{\prime}$ west of Creenwich), and this station is called No. VII. The results of these observations only will be given in the following pages, as the reeord of them was lost.

[^2]: ${ }^{1}$ Mr. Chas. A. Schott found 1855, September $13, m=0.5104$, which gives the less in 334 days $=0.0156$, or the loss in 10 days 0.00047 , showing a very regular decrease of the maguetism of D 3.

[^3]: ${ }^{1}$ I take this opportunity to express my obligations to Prof. Monross, who kindly furnishod me with some valuable notes on the geology of Popocatepetl, after we aseended the volemo torether in dume, 1857. Free use of these notes has been made in the present description.

[^4]: ${ }^{2}$ This correction includes the effect of curvature, terrestrial refraction, and the height of the instrument above the ground.
 ${ }^{2}$ Baron von Miiller has, by mistake, given the height of the Eastern peak [Espinazo del diablo] for that of the Western or highest peak [l'ioo mayor].

