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THE

AUTHOR'S PREFACE
TO THE

SECX>ND EDITION.

THE motives that first gave birth to the

ensuing Work, were not so much any

extravagant hopes the author could form for

himself of greatly extending the subject by

the addition of a large variety of new improve-

ments (though the Reader will find many things

here that are no where else to be met with) as

an earnest desire to see a subject of such gene-

ral importance established on a clear and rati-

onal foundation, and treated as a science, capable

of demonstration, and not a mysterious art, as

some authors, themselves, have thought proper

to term it. ^ j t

How well the design has been executed, must

be left to others to determine. It is ])ossible

that the pains here taken, to reduce the
funda-

mental principles,
as well as the more difficult

parts of the subject to a demonstration, may be

looked upon, by some, as rather tending to

throw new difficulties in the way of a Learner,

than to the facilitating of his progress.
In order

to gratify, as far as might be, the inclination ot

this class of Readers, the demonstrations are

now siven by themselves, in the manner ot

Notes (so as to be taken or omitted at plea-

sure) : though the Author cannot by any means

be induced to think, that time lost to a Learner
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which U taken np in comprehending
the grounds

whereon he is to raise his superstructure ;
his

progress may indeed, at first be a httle retard-

ed ; but the re«Z knowledge he thence acquires

will abundantly compensate his trouble and

enable him to proceed, afterwards, with certamty

and success, in matters of greater difficulty,

where authors, and their rules can yield tliem no

assistance, and he has nothing to depend upon

but his own observation and judgement.

This, second, Edition has many advantages

over the former, as well with respect to a num-

ber of new subjects and improvements,
inter-

spersed throughout the whole, as in the order

and disposition of the elementary parts:
in

which particular regard has been had to the ca-

pacities
of young beginners.

Ihe Work, as it

now stands, will, the Author flatters himself, be

found equally plain
and comprehensive,

so as

to answer, alike, the purpose ot^
die lower, and

of the more experienced
class of Readers.

PS The great reputation of Mr. S i m p s o n "s

Treatise 0/ Algebra, and the favorable
re~

ception it has universally met with since the jirst

publication,
and which testifies

it to be
Jhekst

elementary work upon the subject, has induced the

froprietor to have this Tenth edition carefuUi/

revised and corrected by an eminent matkemafician:

he therefore trusts it will be found as ^^orthy tM

approbation ofthepublic,
as f revised by the Author

himself.
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TREATISE

OF

ALGEBRA.
SECTION I.

NOTATION,

ALGEBRA
is that Science which teaches, in a

general manner, the relation and comparison of
abstract quantities: by means whereof such Questions
are resolved whose solutions would be sought in vain

from common Arithmetic.

In Algebra, otherwise called Specious Arithmetic^
Numbers are not expressed as in the common Notation,
but every Quantity, whether given or required, is com-

monly represented by some letter of the alphabet ; the

given ones, for distinction sake, being, usually, denoted

by the initial letters a, 6, c, d, &c. ; and the unknown,
or required ones, by the fmal letters u^ ?c, x, y. &c.
There are, moreover, in Algebra, certain Signs or Notes
made use of, to shew the relation and dependence of

quantities one upon another, whose signification the

Learner ought, first of all, to be made acquainted with.

The Sign +- , signifies that the quantity, which it ispre*

fixed to, is to he added, Thus a -f 6 shews that the
number represented by b is to be added to that repre-
sented by fl, and expresses the sum of those numbers ;

»o that if a was 5, and b 3, then would a -f 6 be 5 -f 3,
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or 8. In like manner a -^ b + c denotes the number
arising by adding all the three numbers a, b, and c,

together.

Note, A quantity which has no prefixed sign (as the

leading quantity a in the above examples) is always un-
derstood to have the sign + before it ; so that a signifies
the same as 4- a; and a + b, the same as 4- a f 6.

The Sign— , signifies that the quantity which itprecedes
Is to be subtracted. Thus a — b shews that the quan-
tity represented by b is to be subtracted from that repre-
sented by a, and expresseth the difference of a and b ;

so that, if a was 5 and b 3, then would a— ^ be 5 — 3,
or 2. In like manner a + b— c — d represents the

quantity which arises by taking the numbers c and d
from the sum of the other two numbers a and b

; as if

a was 7, b 6j c 5, and c?3, then would a -f b — c — d
be 7 f 6— 5 — 3, or 5.

The Notes + and — are usually expressed by the

words plus (or more) and minus (or less). Thus, we
read, a + 6, a plus b ; and a — b, a minus b.

Moreover, those quantities to which the sign -f is

prefixed are called po^/^/re (or affirmative) ; and those to

which the sign
— is prefixed, ?iegative.

The Sign x , signifies that the quantities between which
it stands are to be multiplied together. Thus axb denotes

that the quantity a is to be multiplied by the quantity
by and expresses the product of the quantities so multi-

plied; and a y: b X c expresses the product arising by
multiplying the quant ities ^ , b, and c, continually to-

gether: thus, likewise, a -{- b y. c, denotes the product of

the compound quantity a -\- b by the simple quantity
c ; and a f 6 4- c x a — b -{- cxa -\- c represents the

product which arises by multiplying the three com-

pound quantities a + b + c,a— 6 + c, and a + c con-

tinually together; so that, if a was 5, h 4 , and c 3, then

would a -h Z> f c X a — b -{- c x a -{- c be 1 2 X 4 X 8,

which is 384.

But when quantities denoted by single letters are to

be multiplied together, the Sign x is generally omit-

ted, or only understood ; and so ab is made to signify
(he same as a x ^; and aba, the uarae as a x i x c.
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It is likewise to be observed, that when a quantity is

to be multiplied by itself, or raised to any power, the

usual method of Notation is to draw a line over the

given quantity, and at the end thereof place the Expo-
nent of the Power. Thus a -i- bf denotes the same as

a + h X a -f b, viz, the second power (or square) of

a + b considered as one quan tity : thus , also, ah -t- 6cl

denotes the same as ab -\- be x ab -t be y: ab ^ be, viz*

the third power, (or cubej of the quantity ab + ic.

But in expressing the powers of quantities repre-
sented by single letters, the line over the top is com-

monly omitted ; and so a^ comes to signify the same
as aa OY a x a, and h^ the same as bbb or b x b x 6 :

whence also it appears that a^b^ will signify the same
as aabbb ; and a^c"^ the same as aaaaaec ; and so of
others.

The Note . (or a full point) and the word into, are

likewise used instead of x , or as Marks of Multipli-
cation.

Thus a 4- 6 . a + c and a {- b into a -{- c both signify

the same thing as a + /; x a 4- c, namely, the product
of a + 6 by a + c.

The Sign -f- is used to signify that the quantity pre*

ceding it is to be divided by the quantity which comes

after it : Thus c -f- 6 signifies that c is to be divided by
b

; and a -\~ b -^ a— c, that a + 6 is to be divided by
a — c.

Also the mark
)

is sometimes used as a note of Divi-
sion ; thus, a -{- b) ah, denotes that the quantity ab is

to be divided by the quantity a -\- b; and so of others.

But the division of algebraic quantities is most com-

monly expressed by writing down the divisor under the

dividend with a line between them (in the manner of

c
a vulgar fraction). Thus —

represents the quantity

arising by dividing c hy b; and , denotes the

quantity arisingby dividing a-{-bhy a— c. Quantities
thus expressed are called algebraic fractions ; whereof

B 3
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the upper part is called the numerator, and the lower

the denominator, as in vulgar fractions.

The sio-n v/~ is used to express the squarej;oot
of

anv quantity to which it is prefixed:
thus n/23 sig-

nifies the square-root of 25 (which is 5, because 5 x 5 is

25) : thus also >/ab denotes the square root of ah ; and

""^^ "" ^'"^

denotes the square root of
"" '

^

'

or of

d

the quantity which arises by dividing ah-^hchy d:

but YJ^-JI^ (because the line which separates the

d

numerator from the denominator is drawn below / )

signifies that the square root of ah + he is to he first

taken, and afterwards divided by ^: so that,
ifa^was

2,

,,v/rt/>-f-6c, v/36
,,,

^

16, c 4, and d 9, then would j— be — oi
-^

.

but ^^^' is a/f ,
or v/4, which is 2.

The same mark /, with a figure over it, is also used

to express the cube^ or biquadratic root, &c. of any

quantity : thus 1/64 represents
the cube

root^
64, (Which is 4, because 4 / 4 X 4 is 64Uind x/ «^ + cd

the cube root of ah + cd ; also V i6 denotes the

biquadratic root of 16 (which is 2, because 2 x 2 x 2 x

2 is \6)"dnd\/ab f cd denotes the biquadratic root

of ab V re/ ; and so of others. Quantities thus ex-

pressed are called radical quantities, or suids; whej;e-

of those consisting of one term only, as /a and n/ ab,

are called simple surds ;
and those consistingjDf^^^eral

terms, or members, as \/a^— b' and Va^— ^' + ^c.

compound surds.

Besides! this way of expressing radical quantities,

(which is chiefly followed) there are other methods

made use of by different Authors ;
but the most com-

modioHS of all. and best suited to practice,
is that where

the root is designed by a vulgat fraction, placed at the

^nd of a line drawn over the quantity given. Accord-
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in^ to this Notation the square root is designed by the

fraction i, the cube root by ^, and the biquadratic
root

by ir, &c. Thus c^i^ expresses the same thing with

\/a^ viz. the square root of a ;
and a^ 4- ab ^^ the

same as \/a'' 4- cib^ that is, the cube root of o* 4- at •

also T'^ denotes the square of the cube root of a ; and

a~+n^ the seventh power of the biquadratic root of

a -^ z; and so of others. But it is to be observed, that,

when the root of a quantity represented by a single

letter is to be expressed, the line over it may be ne-

glected ;
and so a^ will signify the same as a* S and b'^

the same asP 3- or -v/Zj. The number, or fraction, by
which the power, or root of any quantity, is thus de-

signed, is called its Index, or Exponent.

The Mark —
fcalled the Sign of equalityJ is used to

signify that the quantities standing on each side of it are

equal. Thus 2 + 3
—

5, shews that 2 more 3 is equal to

5 ; and x —a — 6, shews that x is equal to the dif-

ference of a and b.

The Note : : signifies that the quantities between which
it stands are proportional : As a : b :: c : d, denotes
that a is in the same proportion to 6, as c is to c?, or that

if a be twice, thrice, or four times, &c. as great as /;,

then accordingly is c twice^ thrice, or four times, &c.
as great as d.

To what has been thus far laid down on the signifi-
cation of the signs and characters used in the Alge-
braic Notation, we may add what follows

; which is'

equally necessary to be understood.

When any quantity is to be taken more than once,
the number is to be prefixed, which shews how many
times it is to be taken : thus 5a denotes that the quan-
tity a is to be taken five times ; and 3bc stands for three
times bcy or the quantity which arises by multiplying be

by 3 : also 7 v/a^ + b^ signifies that \/ a' + P is to be
taken 7 times

;
and so of others.

B 3
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The numbers thus prefixed are called coefficients ;

and that quantity which stands without a coefficient is

always understood to have an unit prefixed, or to be
taken once, and no more.
Those quantities are said to be like that are expressed

by the same letters under the same powers, or which
differ only in their coefficients : thus 36c, bhc, and bbc
are like quantities ; and the same is to be understood of

the Radicals 21/ ^-^^ii and 7 V^Ali". -Qxxt unlike

quantities are tiiose which are expressed by different

letters, or by the same letters under different powers :

thus 2a6, 2a6c, 5ab^, and ^hd^, are all unlike.

When a quantity is expressed by a single letter, or by-

several single letters joined together in Multiplication

(without any Sign between them), as a, or 2ah, it is

called a simple quantity.
But that quantity which consists of two or more such

simple quantities, connected by the signs 4- or — , is

called a compound quantity ; thus a— <2ah + bahc is a

compound quantity; w^iereof the simple quantities o,

Qah and bahc are called the Terms or Members.
The Letters by which any simple quantity is expressed

may be ranged according to any order at pleasure, and

yet the signification continue the same ; thus ah may
be wrote ba ; for ab denotes the product of a by b, and
lia the product of 6 by a ; but it is well known, that,

when two numbers are to be multiplied together, it

matters not which of them is made the multiplicand,
nor which the multiplier, the product, either way,
coming out the same. In like manner it will appear
that flic, ach, bac, bca, cab, and cba, all express the same

thing, and may be used indifferently for each other (as

will be demonstrated further on'
;
but it will be some-

times found convenient, in long operations, to place the

several Letters according to the order which they obtain

in the alphabet.
Likewise the several members, or terms of which

any quantity is composed, may be disposed according
to any order at pleasure, and yet the Signification be no

ways'affected thereby. Thus a — Qab -f baV) may
be wrote a 4- ba^b — <2ab, or —2ab + a + ba^b, kr.

for all these represent the same thing, viz. the quantity
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which remains, when, from the sum of a and 5a*5, the

quantity ^ab is deducted.

Here follow some examples wherein the several

Forms of Notation hitherto explained are promiscuously
concerned, and where the signification of each is

expressed in numbers.

Suppose a — Q,h zz 5, and c r= 4 ; then will

a« + 3ah — c* zr 36 -1- 90— 16 = 110,

2a' — 3a'^h {- c^ — 432— 540 -f 64 =: — 44,

a^ X a + b '—'iahc = 36 X 11 — 240 zi 156,

a^ , 216 ^

^-^-^+c' =—+,6 = 12 +16 ^28.

\/<2ac + c^ (or 2ac-|-c1^)
- v/64 = 8 (for 8 x 8=: 64),

2/;c . 40
= = 2 +— = 7,

a'—s/ h"" - ac _ 36 -~l __ £5 _
oa^^yip- + ac

""
12—7

""
5

"" *

v/6^ — cfc -h v/2a!C + c» := 1 + 8 =: 9,

v/ ja — ac 4- \/ 2ac + c^ = v/25— 24 4- 8 = 3.

This method of explaining the signification of quan-
tities [ have found to be of good use to Young Begin-
ners: And would recommend it to Such, who are

desirous of making a Proficiency in the Subject, to get
a clear idea of what has been thus far delivered, before

They proceed farther.

B 4
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SECTION ir.

ADDITION.

ADDITION,
in Algebra, is performed by connect-

ing the quantities by their proper signs, and join-
ing into one sum such as can be united : For the more
ready effecting of which, observe the following Rules:

1°. 7/, in the quantities to he added, there are terms
that are like and have all the same sign, add the coefficients
of those terms together, and to their sum adjoin the letters

common to each term, prefixing the common sign.

Thus 5a And 5a f 7b Also 5a — 7h
added to 3a added to 7a f- 3h added to 7a — 3^

makes 8a. makes isa + loi. makes I2a— lob.

Hence C 2 \/ ab -^ 7 \/ he ^^^ the^-f^— ^^

likewise < 3 \/'ah -\- 2 \/l^
^^^^^ ^^ \ a ~7~

the sum of ( 6 \/ ab -\- g \/~Tc

will be \\ \/~ah ^isv^Tcl
c

willbeli-l^

2°. IVhen in the quantities to he added, there are like

terms, tvhereof sorne are affirmative and others negative,
add together the affirmative terms fif there he more than

one) and do tlie same by the negative ones , then take the

difference of the two sums (not regarding the sig7isj by

subtracting the coefficient of the lesserfrom that of the

greatery and adjoining the lexers common to each; to

which difference prefix the sign of the greater.

The Reasons on which the precedino- Operations are

grounded, will readily appear by reflecting a little on the

nature and signification of the quantities to be added ;

For, with rej?:ard to the first example (where 3a is to be

added to 5a) it is plain, that three times any quantity
whatever, added to five times the same quantity, must
make eight limes that quantity : 'J'herefore 3a, or three

times the quantity denoted by a, being added to 5a, or
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Examples of this Rule may be as follow :

.1. 12« — hh 2. — Zah -^^ bhc— 3a f 26 4- lah— ghc

Sum 9« — 3^. Sum 4a/) — 46c.

3. Gah \- \9hc— Scd 4. 5 \/«^' — T \/hc -i-8c?

—
7^/>— 95c4- 3cc? 3v/a6 + 8v//^

— 12^
— 2a5 — bhc + I2c(i 7 v/a/> + 3 \/^c + 9c?

Sum— 3rt/> — 26C -+ 7cc?. Suml5\/a^ f 4 \//;c 4-5</.

5. \<2ahc — \(jahd + 25acri — 72icrf

l6fliiC + 12a^7f^ f 20«cc? — iS^^cc?
* — 13a^c — 26«/;ry — 15acd \^ Vlhcd

3^ahc -\- ISaJd — \oacd — iGhcd

Sum
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In the last example, and all others, where fractional

and radical quantities are concerned, every such quan-
tity, exclusive of its coefficient, is to be treated in

^11 respects like a sioiple quantity expressed by a single
letter.

3°. When in the quantities to be added, there are Terms
without others like to them, write them down ivith their

proper signs.

Thus a + 2b And aa -f bb
added to 3cj\-d added to a 4- b

makes a + 26 + 3c +- (/. makes aa + bb-\-a-{-b.

Here folJov^r a few examples for the Learner*s exer-

cise, wherein all the three foregoihg rules take place

promiscuously.

1. 2aa + Sab + See 4- d^

baa—lab -f bcc — d^

— 2aa + Aah + Sec 4- 30

Sum
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SECTION in.

SUBTRACTION.

CiUBTRACTION, in Algebra, is performed by^
cha?igvig all the Sis^ns of the Subtrahend for con-

ceiving them to be changedj and then connecting the

quantities, as in addition.

Ex. 1. Froiii Sa + 5h Ex. 2. From 8a + 5h
take ba -\- 3h take ba — 3 6

Rem. 3a \- 26. Rem. 3a + 86.

Ex. 3. From 8a — bh Ex. 4. From 8a — bb
take ba 4- Sb take ba — 3b

Rem. 3a — 8A. Rem. 3a — 26.

In the second example, conceiving the signs of the

subtrahend to be changed to their contrary, that of

3b becomes 4- ; and so the signs of 3b and bb being
alike, the coefficients 3 and 5 are to be added together,

by case 1 of addition. The same thing happens in

the third example ;
since the sign of 36, when changed,

is —, and therefore the same with that of bb. But
in the fourth example, the signs of 3b and bb, after

that of 3b is changed, being unlike, the difference of

the coefficients must be taken, conformable to case 2

in addition.

Other examples in Subtraction, may be as follow ;

From sOQcT \ bbc — 7«« t;rom 7 \/ax -h 9 v/^
take 12aT — 3bc — 5aa take— 5 s/ax + 12 s/by
Rem. Sax + she— 2aa. Rem. 12 \/ ax — 3^ by.

From 6 \/ aa — xx -f 10 s/ a^ — a?^ — 7 \/ ^^V
^ c

take 9 v/ aa — a-x —. 15 \/ a^ — 0?^ — 9 y aa

c

Rem.— 3v/aa— xx + ^b \/~a^ — x^ -\- 2y aa—
«

c
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From 7a' -~ -h 6 \/-^'
+ d

take c* + Y '
1- ^

Rem. 6a^ — -l^+7v/-^+c/-

In this last example the quantity a* in the sub-

trahend, being without a coefficient, an unit is to

be understood; for la* and a^ mean the same thing.
The like is to be observed in all other similiar cases.

The Grounds of the general rule for the subtraction

of alfifebraic quantities may be explained thus : Let it

be heje required to subtract ba — 3h fron) 8a f 5h

{as in ex. 2.)« It is plain, in the first place, that if

the affirmative part 5a were alone to be subtracted,
the remainder would then be 8a + bb — 5a ; but,
as the quantity actually proposed to be subtracted

is less than 5a by 36, too much has been taken

away by 36 ; and therefore the true remainder will

be greater than 8a -+• 56 — 5a by 36; and so will

be truly expressed by 8a + 56 — 5a + 36 : wherein

the signs of the two last terms are both contrary to

what they were given in the subtrahend; and where
the whole, by unitmg the like terxns^ is reduced

to 3a 4- 86, as in the example.
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SECTION IV.

MULTIPLICATION,

BEFORE
I proceed to lay down the necessary rules

for multiplying quantities one by another, it may
be proper to premise the following particulars, in order

to give the Learner a clear idea of the reason and

certainty of such rules.

First, then, it is to be observed, that tvhen several

quantities are to be multiplied contintially together, the re-

sult, or product, will come out exactly the same, multiply
them accordino; to what order you ivilL Thus a x 6 x c,

a >c c y. b, b X c X a, ^c. have all the same value,
and may be used indilferently : To illustrate which we
may suppose a —

2, b —
3, and c th 4; then will

ax^xczi 2X3X4 = 24 ;aXcx6:r2X4X3zi 24;
and 6xcxa=:3X4X2 = 24.

Secondly. If any member of quantities be multiplied

continually together, and any other number of quantities
be also multiplied continually together, and then the two

products one into the other, the quantity thence arising
will be equal to the quantity that arises by multiplying all

the proposed quantities continually together. Thus will

abc y.de — a x 6 x c x c? x e; so that, if a was — ^,bzz 3,
c
—

A, d — 5, e — 6, then would abc X (/e = 24 x 30
= 720, and axb Acxdy^e ~ 2x3x4X5x6 z= 720.
The general Demonstrations of these observations is

siven below in the notes.

The following demonstrations depend on this Prin-

ciple, i/i^^ if two quantities, whereof the one is n times as

great as the other (n being any number at pleasure), be

multiplied by one and the same quantity, the 'product, in

the one case, icill also be n times as great as in the other.

The greater quantity may be conceived to be divided
into n parts, equal, each, to the lesser quantity ; and
the product of each part (by the given multiplier) will
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The multiplication of algebraic quantities may be
considered in the seven following cases.

be equal to that of the said lesser quantity ; therefore

the sum of the products of all the parts, Avhich make
lip the whole greater product, must necessarily be n
times as great as the lesser product, or the product of
one single part, alone.

This being premised, it will readily appear, in the

first place, that 6 x « and a a h are equal to each
other : For, b y. a being b times as great as 1 x a

(because the multiplicand is b times as greatJ it must
therefore be equal to 1 x a (or a], repeated b times,
that is, equal to a x b, by the defimtioii of multiplz-.

cation.

In the same manner, the equality of all the variations,
or products, ate, hac, acb, cab, bca,cba (where the num-
ber of factors is 3) may be inferred : for those that have
the last factors the same fichich I call of the same classJ
are manifestly equal, being produced of equal quantities

multiplied by the same quantity : And to be satisfied

that those oi different classes, as abc and acb, are like-

wise equal, we need only consider, that, since ac x b

is c times as great as a x i (because the multiplicand is

c times as great) it must therefore be equal to a x b

taken c times, that is, equal to a x b x Cy by the

definition of midtipUcation,

Universally, If all the Products, when the number
of factors is w, be equal, all the products, when the

number of factors is « + 1, will likewise be equal :

for those of the same class are equal, being produced
of equal quantities multiplied by the same quantity :

and to shew that those of different classes are equal

also, we need only take two Products which dither in

their two last factors, and have all the preceding ones

according to the same order, and prove them to be

equal. These two factors we will suppose to be repre-
sented by r and s, and the Product of ali the preceding
ones by/); then the two Products themselves wiii be

represented by prs and jo^r, which are equal.^y cusc i»
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1°. Simple quantities are multiplied together by multi*

plying the coefficients one into the othery and to the product

annexiiig the quantity which, according to the method of

notation, expresses the product of the species; prefixing
the sign + or — , according as the signs of the given

quantities are like or unlike.

Thus 2a Also Qab And lladf
mult, by 3h mult, by be mult, by lab

makes 6ab, makes 30ahc. makes llaabdf

Thus, by way of illustration, abcde will appear to be
= abced, &c. For, the former of these being equal to

every other product of the class, or termination e {by

hypothesis and equal multiplication), and the latter

equal to every other Product of the class, or termination

d; it is evident, therefore, that all the Products of
different classes, as well as of the same class, are

mutually equal to each other.

So far relates to the first general observation : It

remains to prove that abed x pqrst is=ax6xcx
d X p X q A r X s X t. In order to which, let abed
be denoted by x, then will abed x pqrst be denoted

by a; X pqrst or pqrst x a? (by case 1), that is, by
p X q X r X s A t A X; which is equal to x x p x q
xrxsxt, oraxbxcxdxpxqxrxsxt,
by the preceding Demonstration,

The Reason of Rule 1 depends on these two Gfeneral

Observations : for it is evident from hence, that 2a x 36

{in the first example) is zz 2 xaxsxbzz^x
3Xaxb=:6xaXb — Gab : And, in the same
manner, lladf x Tab (in the third example) appears
tobezrlj XaxdxfXT xaxb— II X IX.

aXaxbxdxf— TTX aabdf
~

11 aahdf. But
the grounds of the method of proceeding may be other-

%vise explained, thus : It has been observed that ab

(according to the method of notation) defines the pro-
duct of the Species a, b (in the first example), therefore
the product of a by 3b, which must be three times as

great (because the multiplier is here three times as
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In the preceding examples all the products are

affirmatirej the quantities gi\Qw to be iTiiiltif)lied being
so ; but, in those that follow, some are affi'rmatice, and
others negative, according to the different cases speci-
fied in the latter part of the rule; whereof the reasons
will be explained hereafter.

Mult. + 5a Mult. — 5a Mult. — 5a

^y — ^^^ l^y + 6b by
— 6f)

Prod. — 30ab, Prod. — 30^/;. Prod. 3()«6.

Mult. + 7 \/ £za? Mult.— 7a \/ aa \- ocx

by — 5 \/ cy by — Qh %/ aa — yy

Pr0._35 X\/ 6ir/v/c^.Pro.-f42a6 as/ gg-^xx /\/ au-^yy.

In the two last examples, and all others, where
radical quantities are concerned, every such quantity
may be considered, and treated in all respects as a

simple quantity, expressed by a single letter ; since it

is not the Form of the expression, but the value of
the quantity that is here regarded.

2°. A Fraction is multiplied, by multiplying the nume*
Tatar thereof by the given multiplier^ and making thepro*
duct a numerator to the given denominator,

rr,, a . ac . Sac , , Qancd
Thus— X c makes -—/-; also—, x 2aa makes—-;— ;

great), will be truly defined by 3ah, or ab taken three

times-: but since the product of « by 3b appears to be

3fl6, it is plain that the product of 2a by 36 must be

twice as great as that of a by 3i, and therefore will be

truly expressed by Qab. Thus also, the product of the

Species ab and c (in the second example) being abc

(by bare notation) it is evident that the product of 6a6

by c will be truly defmed by Qahc, or ahc six times

taken, and consequently the product of Qab and 5c,

by 30abc, or 6uhc taktn five times, the multiplier
here being five times as great.

1 helleasonof Rules'* may be thus demonstrated: Let

the numerator ofany proposed fraction be denoted by A,
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likewise^--- x 7\/ax make3 7—; lastly ^

X Qab makes —
\/ua 4-a\r

3**. Fraction}! are multiplied into one another by
muUiplyins[ the numerators inp^etherfor a new mimerator^
and the denominators togetherfor a new denominator.

Thnc ^ c _ ac <2ah bad lOa^bd

lOa'v/7 , SflV'Ty" 5h\/aa + 070?——
; and —7-==^ X

:
=

3bbc y/ah a + z

a -f « X \/ab

the denominator by B, and the given multiplicator by C:

AC A AC
then, I say, that —^ is equal to ~ x C. For since-^
denotes the quantity which arises by dividing AC by B,

and — the quantity which arises by dividing A by B, it

is evident that the former of these two quantities must
be C times as great as the latter (because the dividual is

C times as great in the one case as in the other) and there-

fore must be equal to the latter C times taken, that is,

AC A
-^ must be equal to z^ x C, as was to be shewn.

The Reason of Rule 3^ will appear evident from
the preceding demonstration of Rule 2°. For it being

A AC
there proved that

g"
x C, is equal to

-g-,
it is ob#

A C AC
tious that

g-
X

g-
can be only the D part of

-g-;
be-
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4 . Surd quantities under the same radical sign are

multiplied like rational quantities, only the product must
stand under the same radical sign.

Thus, \/J X \/'5 = \/35 ; Va x \/S = \/ab ;

l/Tbc X K^5ad n K/Zbahcd; 3 /oS X 5v/c= 1 3\/^;
Sfl t/icp X 3h y/~bax {— ^ah x v^icy x \/bax)

?^^ ./T04^

cause,
-g,

the multiplier here, is but the D part of

AC
the former multiplier C : But -^ is also equal to the

ACD part of the same -^ ; because its divisor is D times

AC
as great as that of

-:^ ; therefore these two quanti-

A C AC
ties, ^ X

Y)
^"^

Tvn ^^^"S *^*^ ^^^® P^^* ^^ ^^®

and the same quantity, they must necessarily be equal
to each other ; ichich was to be proved.
As to Rule 4° for the multiplication of similar

radical quantities, it may be explained thus : Suppose
VA and v/B to represent the two given quantities
to be multiplied together; let the former of them
be denoted by a, and the latter by b, that is, let

the quantities represented by a and b be such that

flajnay be == A, and bb — B ; then the product of

V'A by \/B, or of a by b, will be expressed by ab^

and its square by ab x ab: but ab x ab is = a x
6 X a X 6 zi aa X bb {hy the general observations

premised at the beginning of this section) : whence

the square of the product is likewise truly expressed

by aa x bby or its equal A x B ; and consequently
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5*^. Powersy or roots of the same quantity are muU
tiplied together, by adding their exponents: But the

exponents liere understood are those defined in p. 5,

where roots are represented as fractional powers.

Thus, x^ X oc^ is- x^; a \- z\^ x a + zY = a + z\^ ;

a-' X x^ z: x^ ^ zz x"^ ; and a?^ x a:^ =: x* = x ;

.2 , t .1

also aa + zzr x aa + zz\^ is
— aa -h zz\ = aa + ss;

1 »i 1^ »i -4- 4- 4-*
and c -\- y\^ X c -{ y\^ — c ^ y\^

^ = c -f y,^ ,

the product itself, by \/A x B, that is by the quan-
tity which, being multiplied into itself produces
A X B.

In the same manner the product of y/X x V^B will

appear to be ^AB : for if V^A be denoted by a, and

i/B by b; or, which is the same, if aaa —
A, and

566 — B ; then will \/a X \/^ — a x h (or ab) and
its cube ~ ab A ab X ab zz aaa x bbb ~

AB{by the

aforesaid observations) whence the product itself wiil

evidently be expressed by V^AB.

* The Grounds of these Operations may be thus

explained. First, when the exponents aie whole num-
bers, as in example 1 , the demonstration is obvious,
from the general observations premised at the begin-
ning of the section : For, by what is there shewn,
a?* X x^y or XX x xxx is -xxxxxxxxxz x^ (by No"

tationj. But in the last example, where the exponents
are fractions, let c 4- yF be represented by x; that

i&, let the quantity x be such, that xxxxxxxa
CO X X, or x^ may be equal to c 4- y ; so shall c 4- y]^
be expressed by x^

; because, by what has been already
shewn, x^ x x^ is

—
a?** : and in the same manner,

will G -\r y\^ be expressed by x*; because x» x a?' x ** ii

C 2
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6°. A Compound quantity is multiplied by a simple
me, by muliipbjing every term of the multiplicand by
the multiplier.

Thus; a -I- 25— 3c Also a'^ ^ ba^yx \- yh
mult, by 3a mult, by 8c

makes 3a^^ Qab— Qflc; makes 8a'c-40acv/x+ 566c;

And 5fl*— 8a6 + 6ac—- 75c + 126' — 9c»
mult, by 3a 5c

makes l5a^5c-24fl*5'c+18a*5c'-21o5=c''+36a5^c-27fl5c'.

likewise — x^. Therefore c + y]^ x c ir yV is
—

a:^

X x^ — x^
— the fifth power of c + «/ F ; which i&i

c + ^/fj ^^ Notation,

To explain the Reason of the two last Rules, let it

he^Jirstj proposed to multiply any compound quantity,
as a -f 5 — c — ^, by any simple quantity /; and,
I say, the product will be a/ + bf— cf — df. For,
the product ot the affirmative terms, a + 5, will be

af-^- bf, because, to multiply one quantity by ano-

ther, is to take the multipHcand as many times as

there are units in the multiplier, and to take the

whole multiplicand (a + b) any number of times {/),
is the same as to take all its parts {a, b) the same num-
ber of times, and add them together. Moreover, see-

ing a + b — c— c? denotes the excess of the affirmative

terms (a and b) above the negative ones (c and c?,)

therefore, to multiply a -h 6 — c — c? by y; is only
to take the said excess / times; but / times the

excess of any quantity above another is, manifestly,

equal to /times the former quantity, mi?ius f times

the latter; but/ times the former is, here, equal to

qf -f hf (by what has been already shewn), and /
times the latter (for the same reason) will be equal
to cf + df, and therefore the product of a 4- 5— c— d

by/, is equal to af + bf— cf — df; as was to be

proved. Hence it appears, that a compound quantity
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7*. Compound quantities are multiplied into one

mnother, by multiplying every term of the multiplicand

by each term of the multiplier, successively, and coum

necting the several products thus arising with the signs

of the multiplicand, if the multiplying term he affir^

mative, but loith contrary signs, if negative^

Thus the product of 5a + 30?

multiplied by 3a + 2x

is multiplied by a simple affirmative quantity, by
multiplying every term of the former by the latter,
and connecting the term thence arising with the signs
of the multiplicand.
But to prove that the Method also holds when both

the quantities are compound ones, let it be^ now, pro-

posed to multiply A— B by C — D; then, I say, the

product will be truly expressed by AC— BC— AD 4-

BD. For, it has been already observed, that to multiply
one quantity by another, is to take the multiplicand as

many times as there are units in the multiplier ; and
therefore, to multiply A — B by C — D is only to

take A— B as many times as there are units in C— D :

Now (according to the method of multiplying com-

pound quantities) I first take A— B, C times (or mul-

tiply by C) and the quantity thence arising will be
AC — BC (by ivhat is demonstrated above). But, I

was to have taken A — B only C — D times
; there-

fore, by this first Ope^ration,.I have taken it D times too
much ; whence, to have the true product, I ought to

deduct D times A — B from AC — BC, the quantity
thus found ; but D times A — B fby what is already
proved) is equal to AD— BD : which subtracted from
AC— BC, or wrote down with its signs changed, gives
the true product, AC — BC— AD -f ^T> as was to he

demonstrated. And, universally^ if the sign of any
proposed term of the multiplier, in any case whatever,
be affirmative, it is easy to conceive that the required

c 3
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Likewise the product
of a^ + a^b + ab^ + b^

by a — b

,
a* + a'b + a*b' -1- «/>' /

^ a3^ _^a^l)'i_ah'— b*s

Which, by striking out the terms that destroy one
another, becomes a* — b\

product will be grenter than it would be if there were
no such term, by the product of that term into the

whole multiplicand ; and therefore it is, that this pro-
duct is to be added, or wrote down with its proper
signs, which are proved above to be those of the mul-

tiplicand. But if, on the contrary, the sign of the

term, by which you multiply, be negative; then, as

the lequired product must be less than it would be, if

there were no such term, by the product of that term
into the whole multiplicand, this product, it is manifest,

ought to be subtracted, or wrote down with contrary
signs.
Hence is derived the common Rule, that like Signs

produce 4 , and unlihe Signs
—

,

For, first, if the signs of both the quantities, or

terms, to be multiplied are afrirmative fand therefore

like) it is plain that the sign of the product must like-

wise be alfirmative.

Secondly, also if the signs of both quantities are

negative (and therefore still like), that of the product
will be affirmative, because contrary to that of the mid"

tiplicand, by what has been just now prated.

Thirdly, but it the sign of the multiplicand be affir-

mative, 9nd thut of the multiplier negative (and there-

fore unlike y the sign of the product will be negative,
because contrary to that of the multiplicand.

Lastly, if the sign of the multiplicand be negative
and that of the multiplier affirmative, (and therefore

still unlike) the si^n of the product will be negative,
because the same with that of the multiplicand.

And thehC four are all the Cases that can possibly

happen with regard to the variation of signs.
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Other examples in Multiplication, for the Learner's

exercise, may be as follow; from which he may (if he

pleases) proceed directly to Division, by passing over

the intervening Scholium.

I. Multiply
by
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which, it may be thought, that these reasons ought to
have been given before, along v^ith the rules for simple
cuantiiies, as it is the way that almost all Authors on
the subject have followed.

But. however indirect the method here pursued may
seem, it appears to me the most clear and rational ; and
I believe it wili be found very difficult, if not impossible,
without explaining the rules for compound quantities
first, to give a Learner a distinct Idea how the product
of two simple quantities, with negative signs, such as— b and — c, ought to be expressed, when they stand

alone, independent of all other quantities; And I can-
not help thinking farther, that the difficulties about
the si^ns, so generally complained of by Beginners,
have been much more owing to the manner of ex-

plaining them, this way, than to any real intricacy
in the subject itself; nor will this opinion, perhaps,
appear ill grounded, if it be considered that both — a
and— h^ as they stand here independently, are as much
impossible, in one sense, as the imaginary surd quan-
tities \/— b and \/— c; since the sign

—
, according

to the estab ished Rules of notation, shews that the

quantity to which it is prefixed, is to be subtracted ;

but, to subtract something from nothing is impossible,
and the notation, or supposition of a quantity less than

nothing, absurd and shocking to the imagination: And,
certainly if the matter be viewed in this light, it would
be very ridiculous to pretend to prove, by any shew of

reasoning, what the product of — b by
—

c, or of

%/— b by \/— c, must be, when we can have no

Idea of the value of the quantities to be multiplied.

If, indf ed, we were to look upon — b and — c as real

quantities, ttie same as represented to the mind by b

and c f which cannot be done consistently, in pure Alge-
bra, where magnitude only is regarded) we might then

attempt to explain the matter in the same manner that

some others have done; from the consideration, that^

as the sign
— is opposite in its nature to the sig^n +,

it ought therefore to have in ail operations an oppo*
site eii'ect ; and consequently, that as the product when
the sign + is prefixed to the multiplier, is to be added^
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80, on the contrary, the product, when the sign
—• is

prefixed, ought to be subtracted.

But this way of arguing, however reasonable it may
appear, seems to carry but very little of science in it^

and to f'-ill greatly short of the evidence and conviction

of a demonstration : nay, it even clashes with First

Principles, and the more established Rules of notation ;

according to which the signs +• and — are relative only
to the magnitudes of quantities, as composed of diffe-

rent terms or members, and not to any future operations
to be performed by them : Besides, when we are told

that the product arising from a negative multiplier is

to be subtracted, we are not told what it is to be sub-

tracted from ; nor is there any thing from whence it can
^e subtracted, when negative quantities ^re indepen-

dently considered. And farther, to reason about oppo-
site effects, and recur to sensible objects and popular
considerations, such as debtor and creditor, &c. in order

to demonstrate the principles of a science whose object
is abstract Number, appears to me, not well suited to

the nature of science, and to derogate from the dignity
of the subject.

It must be allowed, that in the application of Alge-
bra to different branches of mixed mathematics, where
the consideration of opposite qualities, effects, or

positions can have place, the usual methods have a

better foundation; and the conception of a quantity

absolutely negative becomes less difficult. Thus, for

example, a line may be conceived to be produced out,
both ways, from any point assigned ; and the part on
the one side of that point being taken as positive, the

other will be negative. But the case is not the same in

abstract Number; whereof the beginning is fixed in

the nature of things, from whence we can proceed only
one way.

There can, therefore, be no such things as negative
numbers, or quantities absolutely negative in pure
Algebra, whose Object is Number, and where every
multiplication, division, &c. is a multiplication, divi-

sion, &c. of Numbers, even in the application thereof:

For, when we reason upon the quantities themsehes^
and not upon the numbers expressing the measures of
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them, the process becomes p7irely geometrical, whatever

symbols may be used therein, from the algebraic nota-

tion; which can be of no other use here than to

abbreviate the work.

However, after all, it may be necessary to shew upon
what kind of evidence the multiplication of negative,
and imaginary quantities is grounded, as these some-
times occur, in the resolution of problems : In order

to which it will be requisite to observe, that, as all our

reasoning regards real, positive quantities, so the alge-
braic expressions, whereby such quantities are exhi-

bited, must likewise be real and positive. But, when
the problem is brought to an equation, the case may
indeed be otherwise ; for, in ordering the equation, so

much may be taken away from both sides thereof, as to

leave the renlaining quantities negative ; and then it is,

chiefly, that the multiplication by quantities absolutely

negative takes place.

Thus if there were given the equation a — "T — ^

(in order to find x) ; then by subtracting the quantity a

from each side thereof, we shall have r — c —- a;
o

which multiplied by — b, according to the general Rule,

,T

^ives X =: — cb -\- ab; that is r by— b will give

-}- X; chy '— 6,
— cb; and— a by — b, + ab ; which

appear to be true ; because the products being thus ex-

pressed^ the same conclusion is derived, as if both sides

of the original equation had been first increased by

-T c, and then multiplied by b ; where both the mul-

tiplier and multiplicand are real, affirmative quantities,
and where the whole operation is, therefore, capable of

a clear and strict demonstration : but then it is not in

consequence of any reasoning I am capable of forming
rf>

about Y and— 5, or about + c and— J, considered
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independently, that I can be certain that their product
ought to be expressed in that manner.

So likewise, if there were given the equation a —
~T~ ~ c\ hy transposing a and taking the square root

on both sides we shall have \/ — "t~ — V^— ^' ^^^

this tnultiplied by \/— /), will give v/J^ (or x) zz

\/— cb 4- ah: which also appears to be true, because
the result, this w^y, conies out exactly the same, as if

the operations, for finding t, had been performed alto-

gether by rea/ quantities : But notwithstanding this,

it is not from any reasoning that I can form, about the

multiplication of the imaginary quantities "^ ir

and \/— b, &c. considered independently, that T can

prove their product ought to be so expressed ; for it

would be very absurd to pretend to demonstrate what
the product of tw<» express-ions must be, which are

impossible in themselves, and of whose values we
can form no idea It indeed seems reasonable, that

the known rules for the si^ms, as they are proved to

hold in all cases whatevc, where it is possible to

form a demonstration, should al«o answer here: But
the stronLjest evidence we can have of the truth and

certainty of conclusions derived by means of negative
and imaginar} quantities, is, the exact, and constant

agreement ot such conclusions with those determined
from more demonstrable methods whereiu no such

quantities have place.

In the foregoins: considerations, the negative quan-
tities — 6, — c, &c. have been represented, in some
cases, as a kind of imaginary, or impossible quan-^
tities; it may not, therefore,* be improper to remark

here, that s'jch imaginary quantities serve, many
times, ^s much to discover the impossibility of a

problem, as nnaginaiy surd quantities: for it is plain
that, in all question-; relating to abstract Numbers,
or such wherein magnitude onlt^ is regarded, and
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where no consideration of position, or contrary va-

lues, can have place; I say, in all such cases, it is

plain that the solution will be altogether as impos-
sible, when the conclusion conies out a negative quan-
tity, as if it were actually affected with an imaginary
surd ; since, in the one case, it is required that a

number should be actually less than nothing; and in

the other, that the double rectangle of two numbers
should be greater than the sum of their squares;
both which are equally impossible: But, as an in-

stance of the impossibility of some sort of questions,
when the conclusion comes out negative, let there

be given, in a right-angled Triangle, the sum of the

hypothenuse and perpendicular =: a, and the base — 6,

to find the perpendicular; then (by what shall here-

after be shewn in its proper place) the answer will

come out —"^—
, and is possible, or impossible,

according as the quantity
— is affirmative or

negative, or as a is greater or less than b; which
will manifestly appear from a bare contemplation ofthe

problem: and the same thing might be instanced in a

variety of other examples.
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SECTION V*

DIVISION.

DIVISION
in species, as in numbers, is the con-

verse of multiplication, and is comprehended
in the seven following cases.

1°. When one simple quantity is to be divided by
another, and all the factors of the divisor are also

found in the dividend, let those factors be all cast off
or expunged, then the remaining factors of the divi^

dend, joined together, will express the quotient sought*
But it is to be observed that, both here and in the suc-

ceeding cases, the same rule is to be regarded in rela-

tion to the signs, as in multiplication, viz, that like

Signs give +, and unlike — . It may also be proper to

observe, that, when any quantity is to be divided by
itself, or an equal quantity, the quotient will be ex-

pressed by an unit, or 1.

Thus tf -f- a, gives l ; and ^ah -f- 2ah gives 1 ;

moreover 3ahcd -f- ac, gives 3hd ;

and \()bc -f- Sh, gives 2c : for the dividend here, by
resolving its coefficient into two factors, becomes 2X8
xbxc; from whence casting olf 8 and b, those common
to the divisor, we have 2 x c, or 2c. In the same man-
ner, by resolving or dividing the coefficient of the
dividend by that of the divisoi', the quotient will be had
in other cases : Thus, QOabc divided by 4c, gives Sab ;

and -^ 5labV xy y.\/ XX -^ yy, divided by— 1 7a^xy,

gives f 36 \/xx + yy.
' ' ..I.I I ,1.. I II I >

The first Rule, given above, being exactly the con-
verse of Rule 1° in the preceding section, requires no
other demonstration than is there given. The second
Rule (as well as those that follow hereafter upon Frac-

tions) depend on this principle, that, as many times
as any one proposed quantity is contained in another,

just so many times is the half^ third, fourth, or any other

assigned part of the former, contained in the half, third,
fourth or other corresponding, part of the latter; and
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Q\ But if all the factors of the divisor are not to

he joitnd in the dividend, cast off those fif any such
there he) that are common to both, and irrite down
the remainiigjactors of the divisor, joined together, as
a denominator to those of the dividend ; so shall the

fraction thus arising express the quotient sought. But

if, by proceedina thus, all the factors in the dividend
should happen to go off, or vanish, then an unit will be
the numerator of the fraction required.

Thus, abc divided by bed, gives -r :

And iGa^hx^ divided by 8ahcx^, gives :

Likewise 27^6\/^ divided by 9 a'x/x^, gives

And 8ab\/ay divided by iGa^l^v^ay, gives 2a

just so many times likewise is the double, triple, quad-
ruple, or uny other assigned multiple of the former
contained in the double, triple, quadruple, or other cor-

responding multiple of the latter. The Demonstration
of this Principle (though it may be thought too obvious

to need one) may be thus: Let A and B represent any
two proposed quantities, nnd AC and BC their equimuU
tiples (or, let AC and BC be thtrtwo quantities, and A

AC A
and B their like

parts)
: I say, then, that

-r-p
=

-^
:

' AC
For the multiple of -5-7^ by BC is manifestly zz AC;

A A
and -r- X BC, the multiple of ~ by the same BC is

A/BC . , . ,^. ,. ^. ,
ACB

, .,=—rr— (by rule 2 in viultiplicationj—
—-r
—

{vid, p*

14 and 15) =r AC : Therefore, seeing the equimultiples
of the two proposed quantities are the same, the quan-
titie<J themselves must necessarily be equal.

The second Rule, given above, is nothing more than
a bare application of the Principle here demonstrated ;

since, by casting off the factors common to the dividend
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3'. One fraction is divided by another, by multiply^

ing the denominator of the divisor into the numerator of
the dividendfor a neio numerator, and the numerator of
the divisor into the denominator of the dividend for d
new denominator.

«,..,,, c . ad

he
Thus -7 divided by

—r , gives

. , 5ax ,. .
,

, , Qhc . 35adx
Also --—divided by-—7-, gives ---7— •

3c ^
7d

^ ISbcc

. J ea'-b ,. ., , , 5a¥ . ISa^'bx
And _ divided by -^, gives ^^^^.
But in cases like this last, v^here the two numerators,

or the denominators, have factors common to both, the

conclusion will become more neat by first casting off

such common factors.

Thus casting away ab out of the two numerators,

and X out of both the denominators, we have -~- to be
5

divided by — ; whereof the quotient is —77- : In the

game manner 77 -^- -7V, or—7 -4- t gives
1066

~
bbd*^' ^2b

' d '=''' 2bx

, Qa»/xii 7a \/xy 6 7a .

smd—^^—^ -i- '—v-^, or '^ ^f- giv
5c '

lObc
'

1
*

26 ^
126

res -—-
7a

and divisor (as directed in the rule) it is plain that we
take/zVice parts of those quantities: therefore the quotient
arising by dividing the one part by the other, will be the

same as that arising by dividing one whole by the other.

A C AD
As to Rule 3°,wherein it is* asserted ^^^^^ — -^t=-^ rc*

it is evident that AD and BC are equimultiples of theAC A
given quantities

~ and =r ; because
— x BD is {by Rule

2° in
multiplicatioyi)

~ —rr— — AD, and r~ x BD 1=

'

yy
- = CB: Whence it follows that the quotient of
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When either the divisor or the dividend is a whole

quantity (instead of a fraction) it may be reduced to the
form ot a fraction, by writing an unit or l under it,

^, \Qab
,. .J , , ^ J / Td\ \<2ah

inus divided by 7a for -- gives —
r ;

5c ''
\ I J

° 35cd

And 5a (or—— ] divided by —« erives ^.
^ 1 /

^
3y

^
QXT

4°. Surd quantities under the same radical sign, are
divided by one another like rational quantities, only the

quotient must stand under the given radical sign.

Thus, the quotient of \/ab by \/ b is \/a :

That of l/i Qxxy by \/Qxy is \/^xi

And that of Gah \/ioacxy by 2a s/o^y is 3h\/bax^

5°. Different powers , or roots of the same quantity
are divided one by another ^ by subtracting the exponent
of the divisor from that of the dividend, and placing
the remainder as an exponent to the quantity given,
liut It must be observed, tliat the exponents here under-
stood are those defined in p. 5 ; where all roots, are re«

presented as fractional powers. It will likewise be

proper to remark further, that, when the exponent of
the divisor is greater than that of the dividend, the quo-
tient will have a negative exponent, or which comes to

the same thing, the result will be a fraction, whereof
the numerator is an unit, and the denominator the same

quantity with its exponent changed to an affirmative

one.

A C
-^ divided by -rr will be the same with that ofAD di-

A D
vided by BC ; which, by Notation, is

-^^,
as was to

be shewn. The Grounds of the note subjoined to this

Rule are these: By casting away all factors common
to the two numerators we lake equal parts of the quan-
tities ; and by throwing otf the factors common to both

denominators, we take equimultiples of those parts.
The two preceding Rules, being nothing more than

the converse of the 4th and 5th Rules in niaitipUcatioa
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Thus x^ divided by x^ gives x^ :

divided by a + z? gives a + z*:

Likewise x^ divided by x^ gives x^ :

Moreover, c + yY divided by c + yt gives c + yU :

Lastly, x^ divided by x^ gives cT"', or —^." X

6\ A compound quantity is divided by a simple one^

by dividing every term thereof hy the given divisor.

Thus, 3ah) 3abc + IQabx — Qaab {c -{ 4x — 3a:

A\sOy—5ac)\5a'^bc—l2acy''+ 5adH—3ab^—^ ~:

and so of others.

7°. But if the divisor as well as the dividend^ be

a compound quantity ^ let the terms of both quantities
be disposed in order, according to the dimensions ofsome
letter in them, as shall he judged most expedient, so that

those terms may itand first uherein the highest poiver of
that letter is involved, and those next where the next higlu
est power is involved, and so on : this being done, seek hoio

7nany times thefirst term of the divisor is contained in the

first term of the dividend, ivhich, whenfound, place in the

quotient fas in division in vulgar arithmeticJ and then

inultiply the whole divisor thereby, subtracting the pro-
ductfrom the respective terms of the dividend; to the re-

mainder bring dowUf with their proper signs, as many of
the nextfolloiving terms ofthedivid€?idasare requisitefor
the next operation, seeking again how often the first term

of the divisor is contained in the first term of the remain"

are demonstrated in them : though perhaps the case, in

Rule 5, where the exponent comes out negative, may
stand in need of a more particular Explanation. Accord-

ing to the said Rule, the quotient of x' divided by x^

Mras asserted to be x~^ , or —r-. Now that this is

the true value is evident ;
because l and x"^ being like

parts of cT^ and x^ (which arise by dividing by x^) their

quotient will consequently be the same with that of the

quantities themselves.
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der, ichich also write down in your quotient, and proceed
as before, repeating the operation till all the terms of the

dividend are exhausted, and you hate nothing remaining.

Thus, if it were required to divide a^ f 5a^x + 5aoc^

-^-x^hya+x [where the several terms are disposed ac-

cording to tlie dimensions of the letter a) I first write

down the divisor and dividend, in the manner below,
with a crooked line between them, as in the Division

of whole Numbers; then I say, how often is a con-
tained in a^, or what is the quotient of a^ by a\ the

answer is a*, which I write down in the quotient, ami

multiply the whole divisor, a -{- x, thereby, and there

arises a^ V a^x; which subtracted from the two firstjterms
of the dividend leaves 4a^x; to this remainder I bring
down -f 5«a7^, the next term of the dividend, and then
seek again how rrany times a is contained in 4a^x ; the

answer is 4a:r, which I also pi\t down in the quotient,
and by it multiply the whole divisor, and there arises

4a^x + 4ax^, which subtracted from 4a^x + 5ax' leaves

dx^, to which I bring down x^, the last term of the

dividend, and seek how many times a is contained in ax^,
which I find to be x"^ ; this 1 therefore also write down
in the quotient, and by it multiply the whole divisor ;

and then, having subtracted the product from ax^-hx'^t

find there is nothing remains ; whence I conclude, that

the required quotient is truly expressed by a^-^Aax + x"^.

See the opperation.

a V x) a' -f ba^x -f bax^ f a' (a^ f Aax + x^

a^ f d'x

Aa^x + bax"^

4a^x -f 4ax^

ax^ + x^

nx"^ V x^

6 o~

In the same manner, if it be proposed to divide a'—
ia^x f XOa^x''— lOa^x^ + 5aJ7*— x^ by a*— 'iax f x^,

the quotient will come out a' — 3a^J -t- 3ax^ — x%
as will appear from the process.
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—Sa^x \- 3ax^—x^

—3 a'^x +- gaV— 1 Oa^x^

-f 3a^T^— 7a^x^-\- 5ax^

+ Sa^a?^— Ga'^x^ ]r3ax*

— a'x^+ Qaa;*—x^

So likewise, if a^—a?' be divided by a—x, the quotient
will be a* + a^x + aV + ax^ + x*; as by the work
will appear.

a^x) a^ — x^ (a"^ \- a^x 4- aV + ax^ + x*

a^ — a'^x

a*x— x^

a'^x— a^x^

a'x — ax'

ax'^

Moreover, if it were required to divide a® -r- 3a^x^ +
3a*a?*— x^ by a^ — 3a^x + zax' — x^, the process will

stand thus :

a^—3fl*a7 4->a^—-SaV+SflV—x^ (a^ + Sa'x + Saaj^-f
/j.?

+ 3a^a7—6a*a?* 4- a^^^ + 3a'^x'

+ 3a^a?^—Qd^x^ 4 Qfl^Jg'
—3 ax^

o

D 2
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But it is to be observed, that it is not always that

the work will terminate without leaving a remainder ;

and then this method is of little use ; and in all these
cases it will be most commodious to express the quo-
tient, in the manner of a fraction, by writing the divisor

under the dividend, with a line between them, as has
been shewn in the method of notation.

It would be needless to offer any thing by way of de-

monstration to the two last rules, the grounds thereof

being already sufficiently clear from what has been
delivered in the last section, and the rules themselves

nothing more than the converse of those there demon-
strated.—I shall here shew the reason why, in division

(as well as multiplication) like signs produce -f , and
urdike — . In order thereto it must first be observed,
that according to the nature of division, every quotient
whatever multiplied by the given divisor, ought to pro-
duce the given dividend ; whence it is evident,

1 . That \- a) -\- ah (\- h \ because 4- a mult, by + h,

gives + ah ;

2. That + «)
— ah

[
— h ; because -f a mult, by — b^

gives
— ah ;

3. That— a) -\- ah
(
— h ; because— a mult, by— 6,

gives + ah ;

i. That— a)
— (z6

( + h\ because — a mult, by -f b,

gives
— ah :

And these four, are all the cases that can possibly

happen in respect to the variation of the signs.
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SECTION VI.

INVOLUTION.

INVOLUTION
is the raising of powers from

any proposed root, and may be performed by the

followina;' Rules.•o

1°. If the Quantity, or Root proposed to he involved

has no index, ihat is, if it be not itself a power or surd,

the power thereof ivill be represented by the same quan-

tity under the given index, or exponent.

Thus, the fifth power of a i s expressed by a^ ; and

the seventh power of a 4- 2 by a + z\^ ,

2°- But if the quantity proposed be itselfa power, or

surd, it will be involved by multiplying its exponent by
the exponent of the proposed power.

Thus, the cube, or third power of a* is a^' ; the

fifth power of x^ is x^^ ; the fourth power of ax -\- yy\^

is ax 4- 2/2/1*' ;
and the third power of a— x] is a— x\

•

3°. A Quantity composed of several factors fnulti-

plied together, is involved by raising each factor to the

power proposed.

The first of the Rules, here given, being mere nota-

tion, does not require, nor indeed admit of a demon-

stration : The second may be explained thus ; let A^^

be proposed to be raided to the power whose exponent
is n : then I say, that the power itself will be truly ex-

pressed by A'"" : For since (by notation) A'" is the same

thing as A X A X A X A, Sec, continued to ?n factois*

This raised to the 7/th power, or m>iltiplied n times,

will, (by the general observation at p. 13) be equal to

AxAxAxAxAxA, &c. cojntinued to n times m
factors, that is, to mn factors ; which, by notation,

is A""*. But the same thing may be otherwise demon-
strated in a more general manner, by means of rule 3^

in multiplication : For, since powers raised from the

D 3
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Thus, the square, or second power of ah is a^h^
;

the cube, or third power of 2ah is raV)^, or 8a^b^ ;

the fifth power of 3 x aa — xx x « + 5 4- c is

243 X aa — xx'.^ X a -+^6 + cV ; and the square, or

second power of the radical quantity a' x a -f a:f is

,2
« X a -I- arr-

4°. yi Fraction is involved, by raising both the mimera"
tor and the denominator to the power proposed.

Thus, the second power of -r is
-jr ; the third power

r,
<2ab . Sa^b^ .i r- ., r ^a'b . I6a'6*

01 —-- IS ^ ;
the fourth power ot is

3c 27c'
'^ 3c^ 81c3 »

the square of ——, or — is -
; the cube of — is -^

1 ^, . ^1 p aa \ xx^^ . aa -{- xx\^and the sixth power of '

is

a— x\^ a — x\

When any quantity to be involved has the sign
—

prefixed, the power itself, if the index is an odd num-
ber, must be expressed with the same negative sign,
but if an even number, with the contrary sign, or +.

same root are multiplied by addition of their indices,

it is evident that the square of A"* (or A*"' X A'"] whe-
ther the exponent m be a whole number or a fraction,

will be truly defined by A^"*: whence it likewise ap-

pears, that the cube of A''' (or A^"' x A'") will be de-

fined by A"'" ; and the fourth power of A"' (or A^^'" x A'")

by a'^ &c.

The Reason of the third Rule is also grounded on

the same general observations : For, in the first ex-

ample, where the square of ab is asserted to be 0*6*

we know that square to be ab xab fby the definition of
a square), which quantity is there proved to be the same
with a xb Aa / b, or aa x bb. So likewise, in the se-

cond example, the cube of 2ab, or 2ab a 2ab x 2ab,
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Thus the second power of — «, or — a x — «, is

+ a^ because — into— produces -f-; • also the cube
of — a, or + a* X — a is — a^ (because 4- into —
produces — ), so likewise the fourth power of — «, or
-— «3 ^ «_ fl is + «+, and the fifth power, or + a"^ X— «,

is— a', &c. &c. Hence it appears that all even Powers,
whether raised from positive or negative Roots, will be

positive.

5°. Quantities compounded of several terms are involv-

ed hy an actual multiplication of all their parts.
Thus if a 4- 6 was proposed to be involved to the

sixth power; by multiplying a ^ h into itself, we shall

first have a^ + 2a/; -f ^% which is the second power of

«+ 6; and this, again, multiplied by a + ^, gives a^ +
3a"bi-Sab^'\'h^, for the third power of « + h : whence

by proceeding on, in this manner, the sixth power of
a -^ b will be found to come out a^ + Qa^b -f l5tt*6*

+ QOaV + \5d'b' + Qab^ -f 6^ See the operation.
a + ft, the root or first power.
a + b

aa + ab

+ ab + V'

a' + »2ab + 6% the square or second power.
a ^ b

will be=:2x«x6x2x«x6x2xax b — 2 A 2 X
QA ax a A a X b /. b y. b

— 8 X a^ X b^ - 8a^b^, And
the case will be the same when radical quantities are

concerned (as in the fourth example) : for the square
1 1 I T I

oftt'' X a^oc\\ OY a^ X a + ocf x a^ x 0"+^^^ is =z

1 I I

a Xa X a ^r x'\ X a \- XV — a X a X a H- a/ X
~~

T I 1

a + a'F: buta^ x a^ (by rule 5"^ in multiplication)

is
— g'

-
a, and a \ x\ x a" I- a\^ ~ a -r ^)^; there-

fore our square, or its equal product, is likewise ex-

pressed by a X a r a?l^.

The 4th rule, or case, for the involution of fractions,

is grounded on rule 3" in multiplication, and requires no

other demonstration than is there given.
D 4



40 INVOLUTION.

4- a-h-V Qah^-A- h^

a^
\ 3a'b^- 3ab' + b^ the cube, or third power,

a-r b
^

a*+ 4a'6+ 6a^6'4- 4a6^+ "^Vthe fourth power.
fl4- ^>

Q^+ 4a*64- aa'6 4- 4a'6 + a//

4- fl'^64- 4a^5^4- 6g-7)^ f 4flM-{- fe
s

«M-5a*6+10a^6 -t-10tf"65+ 3a6^+ 6^ the 5th power.
g 4- /;

a^\ba^b\\ Qa^b'^WQa^b^ \ ha^b'^^ah^
Ar a^b-^ 5aW-{-lOa^h^ h I0a''b''^,',ab^^-b^

<^*4 6a5Z)i-l5ft*6-+ 20«'/>Hl5a*6*4-6o65+ ^^ the 6th
or required power of a -ib.

So likewise, if it be required to involve or raise a—h

to the sixth power, the Process will stand thus :

a — b

a — b

a'— ab— abh h

G'— <2ab 4- b\ second power,
a — b

fl3— 2d'b^ ah'

— a:'b-\-2ab''— ¥
a^— 3a^b-^'6ab'— 6', third power.
a — b

ft*__ 3a'^4 3aV;^— ab^

— a'b-\-3a'b^— 3ab'^ b*

a*— 4G^6 + 6a'6^— 4ab^ + b*, fourth power.
a — b

a^^ 4a*b\-6a'b^'- 4a-()^-^ at)-"

— a'^b-\^4a'h^— 6(vb^-\-4ab'' — b'

a^—5a'b^\0a^b*— 10a b^ -{ 5ab' -^ b^Cifth power.
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a^^Ga'b 'r I5ab'— QUa'd' i- i5a'b' — 6ah' f 6^ the

sixth power of u — b ; and so of any other.

But there is a Rule, or Theoreni, given by Sir Isaac

Newton, ^demonstrated hereafter) whereby any power
of a binomial a -f />, or « — 6, may be expressed in

simple terms, without the trouble of those tedious mul-

tiplications required in the preceding operations; which
is thus:

Let n denote any number at pleasure; then the 72th

power of a 4- ^ will be a^ + wa""^ b -f
-^
—

^^^r

n-27 9 n.n^X.n— 2 n-S-i-, .
^.^— X .n— Q,n—3.

« ^+
1 .. . F-^ ^-*-

1 r2-T-3-T-i

1.2.3*4.5
And the nth power of a — b will be expressed in the

very same manner, only the signs of the second, fourth,

sixth, &c. terms where the odd powers of6 are involved,
must be negative.

An example or two will shew the use of this general
Theorem.

First, then, let it be required to raise a \-bio the third

power. Here n, the index of the proposed power, be-

ing 3, the first term, a^, of the general expression, is

equal to a^; the second na'^b — 3a b
; the third

-—
. a' "^b^

—
3ab'; the fourth1.2 1.2.3

^w-J^3 _ J3 .^^^^ |.|-jg ^j^j.|^

I . 2

a"" 6\ &c. — nothing. Therefore the third power of
tf 4- 6 is truly expressed by a' -f 3a^6 + 3ab' -\- b\

Again, let it be required to raise a '\- b to the sixth

power. In which^case the ir.dex, n, being 6, we shall

by proceeding as in the last example, have a" zi a%
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na''h zz 6a% ^^^ \ a'-^b' -
I5a'b\ &a and

consequently q + b]^ = a^ 4- 5aV; 4- i5a7r + 202V>^

4- 15a'// + 6a/j^ + 6^; being the very same as was
above determined by continual multiplication.

Lastly, let it be proposed to involve cc + xy to the

fourth power.

Here a must stand for cc, b for xy, and w for 4 ; then,

by substituting these values, instead of a, b, and »,

the general expression will become c^ -\-4:C^xy-\-6c X'y^

4. 4c^x^y^ + x^y\ the true value sought.

From the preceding operations it may be observed,
that the unciae, or coefficients, increase till the indices

of the two letters a and b become equal, or change
Talues, and then return, or decrease again, according to

the same order: therefore we need only find the co-

efficients of the first half of the terms in this manner ;

since, from these the rest are given.
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SECTION VII.

EVOLUTION.

THVOLUTION, or the Extraction of Roots, being di-

^-^rectly tke contrary to Involution, or raising ofpowers,
is performed by converse operations, viz. by the division

of indiceSy as Involution was by their multiplication*
Thus the square root oF x^, by dividing the exponent

by 2, is found to be x^ ; and the cube root of x^, by di-

viding the exponent by 3, appears to be oc' ; moreover,

the biquaflratic root of a +- a:P will be a A- xY' -,
and

the cube root of aa + xx^^ will be aa v xx^"^.

In the same manner, if the quantity given be a frac-

tion or consists of several factors multiplied together,
its root will be extracted, by extracting the root of

each particular factor.

Thus the square root of a'^b'^ will be ah\ that of

a^h- .,, , ah „81 X «* /"cyTT^^ -n u—— will be — ;
and that oi ,, will be

c~ c \Q X a—^^
9a X aa f xx^" ^.-^ ^, ^ r ^—

tl-'

- : Moreover, the square root of aa — xcd ^

4 X a — X

will be aa — ocx\^ ; its cube root aa — a;ai";andits

biquadratic root, aa— xx\^ ; and so of others. All
which being nothing more than the converse of the

operations in the preceding section, requires no other
demonstration than what is there given.

Evolution of compound quantities is performed by
the following Rule.

First, place the several Terms, whereof the given quan-
tity is composed, in order, according to the dimensions of
some letter therein, as shall bejudged most commodious;
then let the root of the first term befound, and placed in

the quotient; ichich termheing subtractedJet the first term

of the remainder he brow^ht down, and divided by twice

the first term of the quotient, or by three times its S(/uare
orfour times its cube, ^c. according as the root to be ex-

tracted is a square, cubic, or biquadratic one, <§c. and Icf
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the quantity thence arising he also lurote down in the

quotient, and the whole be raised to the second, third, or

fourth, S^c, poller, according to the aforesaid Cases, re-

spectitely, and subtracted from the given quantity : and

(if any thing remains) let the operation be repeated,

by always dioiding the first term of the remainder by the

same divisor, found as above.

Suppose, for example, it were required to extract the

square root of the compound quantity 2ax + a~ + x~:

then havins^ ranged the terms in order according to

the dimensions of the letter a, the given quantity will

stand thus, a^ 4 2ax -h x^, and the root of its first

term will be a; by the double of which I divide Qax,

(the first of the remaining terms) and add + x, the

quantity thence arising to a (already found) and so have

a \-x in the quotient : which being raised to the second

power, and subtracted from the given quantity, nothing
remains : therefore a + a: is the square root required,
bee the operation.

«* + Qax + a* (a + X

ea) Qax

^ fl' 4- Qax f X*, second power of a -f a%
~

O

In like manner, if the quantity a*— Qa-x + 3aV
— Qax^ -\- .T* be proposed, to extract the square root

thereof; the answer will come out c/^ — a.v j x', as

appears by the process.

a*-^Qn\v-\-3a^x*—Qax^\-x*{a^—ax fa*

Qa-)
—Qa^X

G*—Qa^x^ a'^x^, second power of «' — ax,
"

^aF) Q^x\ first term of the remainder.

a*—2«'a7-f 3o*a*—Qax^ \ x\ square of a^— ax-\-x*,
"

Q O

Again, let it be required to extract the cube root of

a^ — 6a^x \-\2ax'— 8x^, and the work will stand thus:

a 3 __ 6a'x 4- 12ax'— 8i' {a
— Qx

3a-)
— Ga'^x

a^ — aa«x + iSfl.T*— 8.T^ cube of a— 2r.
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Lastly, let it be required to extract the biquadratic
root of 16^* — 96x^y + 2l6a;y — 2l6xy^ -f 81z/%
and the process will stand as follows:

l6x^ — Qda^y + 216j:V — QlGxy^ + 81 y^ (Six
— 3y

3 23?^)
- ijGx ^y

"

16T'' — 96Vv h 216A-V — 216j:/ -f 81y*

O O O

And, in the same manner the root may be deter-

mined in any other case, where it is possible to be ex-
tracted ; but if that cannot be done, or, after all, there

IS a remainder, then the root is to be expressed in the

mauner of a surd, according to what has been already
i?hewn. As to the truth of the preceding Rule, it is

too obvious to need a formal demonstration, eveiy
operation being a proof of itself. I shall only add here,
that there are other rules besides that, for extracting
the roots of compound quantities ; which, sometimes,
bring out the conclusions rather more expeditiously ;

but as these are confined to particular cases, and would
take up a great deal of room to explain in a manner
sufficiently clear and intelligible, it seemed more eligi-
ble to lay "down the whole in one easy general method,
than to discourage and retard the Learner by a multipli-

city of Rules. However, as the extraction of the square
root is much more necessary and useful than the rest, I

shall here putdown one single example thereof,wrought
according to the common method of extracting the

square root, in numbers; which [ suppose the reader
to be acquainted with, and which he will find more
expeditious than the general Rule explained above.

Examp. a*+4a^a:+6aV4-4aa?^4-a?^ (a* + Qax + a?*

+ 4a'a7 + 4a'a7'*

-i-2aV-f 4qa^^4-a?*



C 46 ]

SECTION VIII.

OF THE REDUCTION OF FRACTIONAL AND RADICAL
QUANTITIES.

THE
Reduction of fractional and radical quantities

is of use in changing an expression to the most

simple and commodious form it is capable of; and

that, either by bringing it to its least terms, or all the

members thereof (if it be compounded) to the same
denomination.

A Fraction is reduced to its least terms, by dividing
hoth the numerator and denominator by the greatest
common divisor.

Thus, -r-, by dividing by 6, is reduced to ~ ;

^abc . 2c
And

^^-jT-* by dividing by ba, is reduced to -r-;

,_ 20abd .,, , , , , Ad
Moreover, ^ . will be reduced to — , or 4c?:

5ab 1

And A^.^^ will be reduced to-^-.
72a\x^^xy 6a

1 \'2aa — ^2ab , ,. ... ^ ^
Thus also, 5 , by dividmg every terra of

the numerator and denominator by 2a, is reduced to

6a— b

.2a

And =— 3 , by dividmg every terra
6a X + Aax

1 .
4a* — Gar + 3x*

by Qax. IS reduced to ———
:

•^ * 3a f Qx

^-t.y. iil±i^y,f^^ by dividing both

the numerator and denominator by the compound divi-

, . , , ^ aa 4- 2ab + bb
sor a + 6, IS reduced to —r •

But the compound divisors whereby a Fraction can,

sometimes, be reduced to lower terms, are not so easily
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discovered as its simple ones ; for which reason it may
not be improper to lay down a Rule for finding such
divisors.

Firsty divide both the numerator and denominator hy
their greatest simple divisors, and then the qtwtlents one

by the other (as is taught in Case 7, Section 5,) alicays

observing to make that the divisor which is of the least

dimensions ; and if any thing remains, divide it by its

greatest simple divisor, and then dhide the last com^

pound divisor by the quantity thence arising; and if any
tiling yet remains^divide it likewise by its greatest simple
divisor, and the last compound divisor by the quantity
thence arising; proceed on in thi^ manner till nothing re^

mains; so shall the last divisor exactly divide both the nu-

Qnerator and denominator, without leaving any remainder^

Note, If, after you have divided any remainder by its

simple divisor, you can discover a compound one which
will likewise measure the same, and is prime to the di-

visor, from whence that remainder arose, it will be con-
venient to divide, also, thereby. And, if in any case

it should happen that the first term of the divisor does
not exactly measure that of the dividend, the whohe di-

vidend may be multiplied by any quantity, as shall be

necessary to make the operation succeed.

Ex, 1. Let it be required to reduce the Fraction

to its lowest terms, or to find
a b 4- <2a"b- + 2ab' 4- //

'

the greatest common measure of its numerator, and de^

nominator. Here, dividing first by the greatest simple
divisors, 5a^ and b, we have a* + 2a5 -F 6*, and a^ -h

'2(fb -h ^tz/;^ 4- b^ : and if the latter of these be divided

by the former, the work will stand thus :

a' 4- 2ab + h") a' + <2a^b + Sfl^^ + b' (a
a' + '2anj + ab"-

where the remainder is h ab^ -{- V\ which be-

ing divided by b\ its greatest simple divisor, gives
a + Z> ; by this divide a^ + '2ab + b\ and the quotient
will come out a -^ b, exactly; therefore the last divisor,
a \- b, will exactly measure both quantities, as may
be proved thus :
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a-^b) 5a^ + 10a*6 + 5a^b^ (5a' + 5a^b

5a^ -f 5a*b

5a*b -f 5a^b^

5a*b f 5a'i*

a

a 4- ^,)
a^b + 2a7/ + 2rt6' + b* (a'^b + «&* + b^

a'b + a'6*

fl'^^' -V- ab'

O

In both which cases nothing remains; therefore the

.,,1 J J X 5a* 4- 5a^b
fraction given will be reduced to —rrr—t? , ta »

Ex, 2, Let it be proposed to reduce the fraction

^^ ar"

-^-——5
——

, to its lowest terms : then the
a^ — (rx— ax^ + ^^

Avork will stand as follows :

fl3^ a'^x -^ ax" + x') a* -{ 4- + o — :c* (a + x

a* —a^x—aV-f flx'

a^x 4- a~x^—ax — x^

Q?x— a^x'—av^ h -r*

4-2aV-+- — 2x'

a* f —
x^) o?— ax— ax^ -f x^ (a

— x

q^ —" — ax^

— rt r -f + ^''— a'I 4- + «'

These operations are founded on this Principle,

That whatever quantity measures the whole^ and one part

of another, must do the like by the remaining part. For,

that quantity (whatever it is) which measures both

the divisor and dividend, in the first example, must

evidently measure a^ + 2«*Z» + ai* {being a multiple of

the farmer) : whence, by the Principle above quoted,
the same quantity, ^ it measures the whole dividend.
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From whence it appears that a'+o—J?% or a*—a;*

will measure both a* — a?* and a^ — a'x — ax'^'h x^ ;

and, by dividing thereby, the fraction proposed is re-

duced to -•
a — X

Example 3. In the same manner the fraction

^'-3a.r'-8aV-H 8alr-8a- ^jn be reduced to
x~^ax' — aa'x + 6a'

^A- 5fiL-h±l' . See the process.
:f — 3a

.x^ax-8 a'x-1 6a^) x^'-Sax^ -Sa^x^ + ISalr— 8a*(a-2<*

X*— ax^— Sa'^x" 4- 6a^x

"^2ax2-f + 12a^x—8a*

— <2ax^ + ^a\T" 4- 1 6a\v— 1 2a*

remainder —2a"x" — 4a'^x + 4a*;

ifvhich divided by— 2a% gives a;^ + 2aa7 — Sa^ for the
next divisor.

X' + 2aa,'— 2a") .t^ — ax- — 8a"x + 6a^ (a?
— 3a

a3-h 2a r- — 2a2a?

— 3aa:- — 6a"x + 6a^— 3aa- — 6a'2.T + 6a^

a?- -f- 2ox-2a-) a?*—aax^— 8a~a:^+ IBa^x-Sa* (a:2-5ax+4a^
a:*+ 2ax^— 2a^a^

—- 5ax^— 6a''X" -\- 1 8a^a-

— 5aa^3—10a%" + lOa^o?

+ 4a"X- + Sa^x—8a*

+ 4a"a-'- + 8a''x—Sa*

Now if, by proceeding in this manner, no compound
divisor can be found, that is, if the last remainder be

only a simple quantity, we may conclude the case pro-

posed does not admit of any, but is already in its lowest

must also measure the remaining part of it, ub'^ + 5' :

but, the divisor we are in quest of, being a compound
one, we may cast olf the simple divisor b^, as not for

our purpose ; whence a -f 6 appears to be the only
compound divisor the case admits of : which, therefore,
must be the common measure required, if the example
proposed admits of any such.

£
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terms. Thus, for instance, if the fraction proposed

were to be- ; it is pUiin by

inspection, that it is not reducible by any simple divi-

sor; but to ki:ow whether it may not, by a compound
one, I proceed as above, and find the last remainder to

be the simple quantity 7xx: whence [ conclude that

the fraction is already in its lowest terms.

Another observation may be here made, in relation

to fractions that have in them more than two ditferent

letters. When one of the letters rises only to a single

dimension, either in the numeiator or in the denomi-

nator, it will be best to divide the said numerator or de-

nominator, (v/hich ever it is) into two parts^, so that tlie

said letter may be found in every term of the cne part,
and be totally excluded out of the other ; this being
done, let the greatest common divisor of I hese two parts
be found; which will, evidently, be a divisor to the

whole, and by which the division of the other quantity
is to be tried ; as in the following example, where the

. x^ +01- + hx-— 2a-x 4- hax— ^ba-
traction given is —

-.
—- ~-t .° XX —• ox -{- '2ax — Qao

Here the denominator being the least compounded, and

ib rising therein to a single dimension only, I divide the

same into the parts x* f eax, and — bx— 2ab ; which

by inspection, appear to be equal to a: 4- 2a /. x, and

r -ir 2a X — b» Therefore a? f 2a is a divisor to both

the parts, and likew ise to the whole, expressed by
„__^^_ X X — b; so that one ot these two factors,

if the fraction given can be reduced to lower terms,

must also measure the numerator: but the former

will be found to succeed, the quotient coming out

x2 .^ ax -{- bx — ab, exactly : whence the fraction it-

j-c — ax + bx — ab i • i
• 4.^^

self is reduced to
^^-^;^

; which is not re-

ducible farther, by x— b, since the division does not

terminate without a remainder, as upon trial will be

Having insisted largely on the reduction of fractions

to their least terms, we now come to consider their

reduction to the bame denominator.
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Fractions arc reduced to the same denominator by muU
tiplying the numerator of each into all the denominators^

except it9 own, for a new corresponding numerator, and

all the denominators continually together, for a common
denominator.

Thus, -7- and — will be reduced to -^-r and 7-7.^ *
b d bd od*

a c y € ^ adf chf , bde
"J-

> -ry and — ' to 7-~> y-jrr»
awd

-j-r-y,
b d J bdf bdf bdf

, Qax , 5hx ^ Ga'^x , Sbxcd ,

and —r-' and , to -—
j, and , »

cd 3a 3acd 3acd
and so of others.

But when the denominators have a common divisor,

the operation will be more simple, and the conclusion

neater, if, instead of multiplying the terms of each

fraction by the denominator of the other, you only
multiply by that part which arises by dividing by the

common divisor. As, if there were proposed the frac-

tions—; and —r; then, the denominators having the
ad cd ^

factor d common to both, I multiply by the remaining
factors a and c; whence the two fractions will be

, , bhc , aah
,

. . . . .

reduced to ,
and -—^ where d remams as before,

acd acd

nothing having been done therewith). By the same

method —^ and ——;- are reduced to r^ and
5abc 4aoa _____ ^Oabcd

35bcx^ , 6a\/ax , 7c\/aa +xx ^ ISa^v/oi
^^ , J and

;

— and --r * to ,
—

QOabcd 5 he 3ab Idaho

J 35c'^\^aa -f .1^
and j-^— •

I5abc

But, as has been before hinted, the principal use of
this sort of reduction is to transform compound quanti-
ties to the most commodious forms of expression ;

>vhich, for the general part, are more easily managed,
(whether they are to be added, substracted, multiplied,
or divided) when all their members are brought to the
same denomiriation.

Thus the compound quantity r + i- will be trana-

E2^
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formed to
f^- + ^, or to 'lL±j£. for it is evident,oa oa Lid

that the quotient which arises by dividing the whole, is

equal to the quotients of all the parts, by the same
divisor.

T„ .1 .,, a c . ad— he ,m tne same manner will -^ r- be zr rr^ »

b d hd

and ?^ 4-1'^
^ — 2a^?//'c? 4- 1 5aaxd —

5anJ>c^ ^

baa h IT
~

daabdT'

, 2dx ^dx h
.,,

, 2dx + ah,also —— 4- 6 or + — will be z= ~
;

a * a i a

. 9ah c^ah -f <7a — ah ah -f aa
and -—-

-\- a zz -. =: — .—
</ — a — o a —

-» aSo likewise, by reduction, + — — 2a
a — X a -{- X

• lit a" y a -h X H-a'y a—x—'ia y a -f- x x a—.r

will be = -^
a— X A a {- X

_ Sfl.T* ^ , 5\/x7f ,
10a — 5x _

fl^
'— '^^ a V xij -h d

bxy 4- Sas/xy 4- ioa'' — 5«r
, . ,—— 7^^~ '" ; and so in other cases.

as/ xy -\r a'

Besides these, there are yet two other sorts of reduc-

tion which Authors have treated of under the head of

fractious ; wiiich are, the reduc?r?<r of a whole quantity to

The reason of the two kinds of reduction hitherto

explained, is grounded on this obvious prmciple, that

the equimultiples, or like parts of quantities, are in the

same ratio to each other, as the quantities themselves,

or, that the quotient which arises by dividing one quan-
tity by another, is the .same as arises by dividing any
part or multiple of the former, by the like part or mul-

tiple of the latter : for in reducing to the lowest terms,
it is plain that, instead of the whole numeratorand de-

nominator, we only take that part of each which is de-

fined by the greatest common measure ; whereas, in re-

duction to the same denominator, we, on the contrary,
make use of equimultiples ofthose quantities ; since, ir\
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an equivalent fraction of a green denomination, ^v\di a

compound fraction to a simple one of the same value.

Neither of these, indeed, are of any great use in the so;

lution of problems, however it might be improper to

leave them entirely untouched.

1^. Aichole quantity in reduced to an equivalent frac-
tion by multiplying it by the given denominator^', and

icriting the multiplier underneath the product, with a

line between them.

Thus the quantity a, reduced to the denominator h,

will be ~, and the quantity c -f t/, to the denominator

.„ , a ^- h X c 4 d GC 4- he + ad -f hd
« 4- 6, will be 7 or —-7 .

a \- b a -\- b

2°. A compoundfraction is reduced to a simple one of
the same value, by multiplying the numerators together

for a new numerator, and the denominators together for
a new denominator.

But by a compound fraction here, we are not to un-

derstand one consisting of several terms, connected

together by the signs -f and — (which is the general
definition of a compound quantity) but such an one as

expresses a given part of some other fraction.

Thus —of — will be equal to — ; and the -r-

3 3 ^15 b

part of
,

will be — -^.*^ a hd

multiplying any numerator into all the denominators,

except its own, we multiply it by the very same quan-
tities by which its denominator is multiplied.
The Rule, for reducing a compound fraction to

a simple one, may be explained thus. It is plain

that the part of — defined by —
, which arises by

dividing by b^ will be equal to -jy (the divisor here

c
beitig b times as great) ; therefore the part of ^ de-

E 3
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OF THE REDUCTION OF RADICAL QUANTITIES.

The Reduction of surd quantities, like that of

fractions, may be either to the least terms, or to the

same denomination.

A radical quantity is reduced to its hast terms, ly
resohin^ it into tivo factors, and extracting the root of
that which is rationaL

Thus, v'^ is reduced tov/S" X v/j ; which, by

extracting the square root of 4, becomes 2 \/^ : also

v/oV; is reduced to \/a* >c \/ b; which, by extracting

the root of a^, becomes a v^/j ; likewise \/a^//V, or

«36V 1^" is reduced to v/a^6' x \/bc\ or ab\/hc^:

moreover i/l^IlEj^ is reduced to 4/i£L x^
be' ^ c*

^ b c V
ij

* V
8\b''c^--l6jrb^x

IS reduced to \/ -^-- x 1/ —= -7
— ,or -r-r X

1/

816* y c"" — 2bx
*

3b

—
; and so of anv other : all which is

evident from case 4 of multiplication, and case 3 of in-

volution. But it is to be observed, that in resolving any

expression in this manner, the factor out of which the

root is to be extracted, is always to be taken the greatest

the case will admit of It afso may be proper to take

notice, that this kind of rrduction is ( hitfly useful in

the addition and subtraction of surd quantities, and in

uniting the terms of compound expressions that are

commensurable to each other, where the irrational part,

or factor, after reduction, is the same in each term.

fined by -^, being d times as great as that defined
by-g-,

c .
y

ac
must be tr ly expressed by^^

X a, or its equal -^;
.as teas to be shncn.
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: 71ius\/i8 + \/32 is reduced to 3v^Q ! 4v/2ror

7v/2; and v^BtP \- \/ 50a^ — x/jQa'^ is reduced to

2a\/2 + 5t7v/2 — 6av/;^ = «>/?. Moreover, by re-

;" . ^ /Tsa-r . ^ / Tsa^ . ^ /48a^
duction,1/ -h V becomes zi v

*^ 20 *^ 20 *^ 20 *^ 20

And 3as/'4carx" -y sx^ 4- Socx/ga"^ + I8a"a?^ becomes

6Q!X\/a" -f 2a;2 + Qa^v/'a^ 4- 2x^ r: loa.Tv/a^ + 2a?2.

S?^r£? qnantitiesy under diff'erefH radical signs, are
reduced to the same radical sign, by reducing their in-

dices to the least common denoininator.

Thus a^ and a^, reduced to the same radical sign,

\yill become a« and a^ (for the indices are here i- and

I, and these are equivalent to I and
J,

where both have

the same denominator). In the same manner^"^ and

"s^'^ will become 2^^ and Tl', or 8j and "g^ . And,
n p

universalh/, A '"
and B ^

, will when their expo-
nents are reduced to the same denomination, become

nrr inp

At and bl .

That the reduction of a radical quantity to another
of a different denomination, by an equal multiplication
of the terms of its exponent, makes no alteration in the
value of the quantity, may be thus demonstrated.

vt

Let A" be any quantity of this kind; then, the

terms of its exponent being equally multiplied by any
VI r

number r, I say, the quantity A '"", hence
arising, is

equal to the given one A "
.

E 4
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The principal use of this sort of reduction is, when
quantities under different radical signs are to be mul-

tiplied or divided by each other.

Thus, x/J multiplied by v/To, orTj- into lo^^'

will give 123)5 X 1000 or 1 25001"^: also \/ax into

y/a"x, or ^- into 'a^^ will give ahi^^ x ^^^
Or uTx^f: and \/ax divided by K^a'x will give

7'
^^

Z\ . Lastly, 207 multiplied into \/3ax,

will give v/JI^ X N/soir, or v/fsox^

For, if X be assumed — A~^'\ or, which is the same,

if the value of x be such, that a:"'"
— A; then the nth

root of a -
being x'' (by case 2 0/ section 6) and the «th

root of A be'mg A'^{by notation), these two quantities
1

a:'* and A" must, likewise, be equal to each other:

and, if they be both raised to the ?wth power, the equa-

lity will stili continue ; but the mth power of the former

(X'*) is
—

x"^^ (by case 2 of involution)-, and the mth

1 li*

power of the latter {
A «

) is A "
{by notation) ; there«

- i_

fore j:"*^ is r= A". But, x being
—

A"'\ we have

x*"^
- A "**, br/ notation ; and consequently A '""

— A "^; which was to he proved.
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SECTION IX.

EaUATIONS.

AN EQUATION" is, when two equal quantities,

differently expressed, are compared together, by
means of the sign = placed between them.

Xhus, 8 — 2 zi 6 is an equation, expressing the

equality of the quantities 8—2, and 6 : and x — a -\- b

is an equation, shewing that the quantity represented

by X is equal to the sum of the two quantities repre-
sented by a and b.

Equations are the means whereby we come at such

conclusions as answer the conditions of a problem ;

wherein, from the quantities given, the unknown ones

are determined ;
and this is called the resolution, or

reduction of equations.

REDUCTION OF SINGLE EQUATIONS.

Single equations are such as contain only one un-

known quantity ; which, before that quantity can be

discovered, must be so ordered and transformed, by the

addition, subtraction, multiplication, or division, &c.
of equal quantities^ that a just equality between the two

parts thereof may be still preserved, and that there may
result, at last, an equation, wherein the unknown quan-
tity stands alone on one side, and all the known ones
on the other. But, though this method of ordering an

equation is grounded upon self-evident principles, yet
the operations are sometimes a little diificult to ma-

nage in the best manner ; for which reason the follow-

ing Rules are subjoined.

l^ Any Term of an equation, may be transposed to

the contrary side, if its sign he changed*.

* The reason of this Rule is extremely evident; since

transposing of a quantity thus, is nothing more than

subtracting or adding it on both sides of the equation,
according as the sign thereof is positive or negative.
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Thus, if X -f 6 n 16 ; then will x = 16 — 6, that

is, X _ 10:

And, if X— 4 = 8 : then will x - s + 4, or a; r= 12 :

Also, if 3X — 2X -f 24 : then will 3x — 2x — 24,
that is, a: = 24 :

Again, if 5t — 8 ::: 3x 4- 20: then will 5X— 3x zz

20 f 8, or 2X — 28 :

Lastly, if ax i- Z>.r*— c ^~ d— ex —f— g -{-hx— Jcx ;

then, by transposition, ax -f- hx— ex— kx -^ kx
— f—

g -^ c — d ; where all the terms affected by x (the un-
known quantity) stand, now, on the same side of the

equation.

2'. If there is any qvantity hy which all the terms of
the equation, are multiplied, let them all he divided hi) that

quantity ; hut if all of them he divided hy any quantity,
let the common divisor he cast aicay.

Thus, the equation ax =: ah is reduced to x — hi

also, lOr ~ 70 (or 10 /^ x zz 10 x 7; is reduced to

X — 1 \ and x^ — ax~ -f hx-, is reduced \,ox — a ^ h-.

X h
Moreover [hy the latter part of the Rule] — ——is

, ax^ ahx~— acx^ ,

reduced to x — h ; and— =: , to ax^ =z
c c

ahx'^ — acx^; which, if the whole be divided by ax*,

will be farther reduced to x — b — c.

3°. Tf there are irreducible fractions y let the whole

equation be multiplied hy the product of all their deno-

minators, or, which is the same, let the numerator of

every term in the equation he multiplied by all the deno^

minators, except its own, supposing such terms fif any
there he) that stand without a denominator, to have un

unit subscribed.

Thus, in the equation .r 4- 6 = 16 (which by trans-

position becomes x = 16 — 6 - 10) the number 6

is subtracted from both sides ; and in the equation .r—
4 = 8 (which by transposition becomes .r zz 8 -f 4 n
12) the number 4 is added on both sides.



EQUATIONS. 6S

Thus, the equation a: + — 4- ^ = H, is re-

X -\- Q
duced to 6x -{ 3x -\- 2x

— 66 ; and x + —-— r= 12 +
5

^-^^^, to 40:c 4- 8x 4- 16 = 4S0 + 5jp — 15 : so
8

X X -\~

likewise a —
, is reduced to a*c — ex nz ax

a c

ox f"X!

4- abi and -h a — ~. to ahx 4- o^h + ahx zz
a -{- X

acx f cx"^.

4^. /f, in your equation, there is an irreducible surd^

wherein the unknown quantity enters, let all the other

terms he transposed to the contrary side (by rule 1) ; and
then, if both sides he involved to the power denominated

by the surd, an equation will arisefree from radical quan^
titles ; unless there happens to he more surds than one^ in

which case the operation is to be repeated.

Thus, \/~x 4- 6 —
10, by transposition, becomes

\/x (=z 10 — 6) == 4 ; which, by squaring both sides,

gives X —
i6.

So, likewise, \/aa -\- xx— c —x, becomes \/aa+ xx
-=2 -[-X ; which, squared, gives aa -\- xx — cc -f- Qcx
+ XX, or aa— cc = 2cx {by rule i). The Reasons of

this, as well as of the two preceding rules, depend on
self-evident principles: for, when the equal quantities,
on each side of an equation, are multiplied or divided

b}?-

the same, or by equal quantities, or raised to equal pow-
ers, the quantities resulting must necessarily be equaK

5°. Having, by the preceding rules fij there is occasion]
cleared your equation of fractional and radical quanti-
ties, and so ordered it, by transposition, that all the

terms, ivherein the unknown quantity isfound, may stand
on the same side thereof, let the whole he divided by the

coefficient, or the sum of the coefficients, of the highest

power of the said unknoton quantity. And then, ifyour
equation be a simple one (that is, it the first power or the

quantity itself, be only concerned) the work is at an end :

but if it be a quadratic, or cubic one, &c. something
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further remains to be done; and recourse must be had
to the particular methods for resolving these kinds of

equations, hereafter to be considered in a proper place.
I shall here subjoin a few examples for the Learner's

exercise, wherein all the aforegoing Rules obtain pro-

miscuously.

Eoc. 1. Let 5x — \6 — 3x + 12 : then {hy rule l)

5x — 3a:
— 12 4- l6, or 2j: — 28 ; whence {by rule 5)

28
^ = - = 14.

Ex, 2. Let 20 — 3x —8 = 60 — 7a' : then — 3.r,

+ 7x zz 60 — 20 + 8, that is, 4a: =z 48 ; and conse-

48
quently X rr — zz: 12.

Ex. 3, Let ax— b ~ ex -^ d', then ax — ex :^ d + b

, d '\~ b ,

or a— c X x z= d -f 6
;
and therefore x = [by

rule 5.)

Ex. 4. Let 6x* — 20X =z I6x -h 2t' ; then dividing

by 2x [according to rule 2) we have 3x— \0 := 8 { x :

whence 3x — x - 8 + 10, that is, 2x zz 18; and

I 8
therefore x zz —-- = 9 '•

2

Ex, 5. LetSax'—abx^ zz ax^ 4- Qacx^ : here dividing

the whole by aa% we have 3x —-b zz x + 2c ; there-

7 J 2c -F i
tore 2x zz 2c + 0, and a: = — •

Ex. 6. Let - + - =: 21 : then {by rules) 4x + 3i
\j ^

050
=: 252 ; and therefore x z= ^^-^— 36.

7

Ex. 7. Let "L + —-— =: 16 -—
: then,

2 3 4

12x + 12 -f 8x 4- 16 zz 384 — 6x — 18 ;
whence

J 33 8
S6j: =: 338, and x zz —^ = 13.

26
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Ex, 8. Let a — c : theu ax—bb = ex; whence

ex— cxziz bb, and x ~
.

a — c

f! ft' f
Ex, 9, Let — + -J- + — — c?: then, bcx + acx -^

abx — abed, or be 4- ae + ab y. x zz abed ; and conse-

quently x
zz^-^-j-^^--^ fly rule 5,J.

Ex, 10. Letaa: + b^ - ^?1±J?^: then, ax + 6* x
a-f- d:

« 4- a; z= ajj- -j- ae^, that is, a-x + ab^ + aj?' -h i"a:zr

ax^ + ac'
; whence a^x + ax* -\- Px — ax^ zz ae^—

ab^, or a^x + b'^x
— ac' — a5*; and therefore x —

ae" -^ a b^

aa + bb
'

Ex, 11. Let
;

+ - =z I: then ax -{- ab -{- bx
a -^ X X I ^

zz ax + XX ; whence — xx -h bx — — ab ; which, by
changing all the signs (in order that the highest power
of X may be positive) gives xx

— bx zz ab. But the
same conclusion may he otherwise brought out, by first

changing the sides of the equation ax + ab -{- bx zz ax
+ XX

; which thereby becoming ax -[- xx zz ax -\- ab -{-

hx, we thence get xx— bx ^ ab, the same as before,

Ex. 12. Let ^J-i£ +12 = 17: then l_if -
5, and

3 3

v/ix =15; whence, (6y rule 4) 5x zz 225, and there*-

« 925
fore X zz -— = 45.

5

• Ex, 13. Let v/12 + X = 24- n/J": then {by rule 4)

12 + .T = 4 + 4 \/x + X; whence, by transposition,

8 = 4 \/a?; and by division, 2 = y/x; consequently
4 zz X.
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Ex. 14. Let X + s/a- -+ x- = ,

"^
- > Here {by

\/a^ ^- X-

rule 3) X y. v/ a' -h a;* + a' -f a--
- 2a^ ; whence x X

Va2 -f x« = a2_ j,2^ and a:^ x a-1- a* = a* ~2a'j?-

4- x* (% rule 4) y
that is, a^or^ -t- x* —a*— 2a"x- + a,"* ;

therefore 3aV —
a\ and x' — —- ~ — .

*

3a2 3

i:^. 15. Let v/x + \/a + X - —--^~—- . Then
\/a + X

\/ax-^xx -\-a^x
—

2a, or \/ axi^ xx=:a—^x; whence

ax + XX — a' — 2ax + x*, and x =z — — - •'
3tt 3

Ex, i6. Let >/a:^ — a^ zz x — c: then, by cubing

both sides, x'^ — a^ — x^— 3c.r* + 3c^x — c^ ; whence

3cx" — 3C-X — a^ — c^ and a* — c;^ n by
3C 3

"^

dividing the whole by 3c.

Ex. 17. Lei \/aa + xx — \/b^ + x* : then, by rais «

ing both sides to the fourth power we have aa + xx^'^

=: b* -\- x\ that is, a* + eaV + x* zz b* -j- x*
; and

consequently a:* iz ^
— zr — — '

q",

Ex. 18.
Lel^^jz v/Vjf

X ^bb }r XX — a: Here

a? + a =: va' -i"J^v/56 + j-j? : which,, squared gives x^-\'
^ax + «'= a2+ J:v/Z;F4^a', or a^- 4- 2ax- xx/W^cc]
divide by x, so shall x + 2a - v^^^ -h 0:0; ; this squared
again, gives x^ + 4aa: -f- 4a2 ^r i6 + a-or ; whence 4a^

= i6 —. 4a% therefore x = a.
Aa
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OF THE EXTERMIXATIOKOF UNKNOWN QUANTITIES,
OR THE REDUCTION OF TWO Oil M.ORE EQUATIONS
TO A SINGLE ONE.

It has been shewn above, how to manage a single

equation; but it often happens, that, in the solution

of the same problem, two, or three, or more equations
are concerned, and as many unknown quantities, mixed

promiscuously in each of them ; which equations,
before any one of those quantities can be known, must
be reduced into one, or so ordered and connected, that,

from thence, a new equation may at length arise, af-

fected with only one unknown quantity. This, in

most cases, may be performed various ways, but th^

following are the most general.

1°. Observe luhich, of all your unknown quantities, is

the least involued, and let the value of that guantlti/ be

found in each equation f^y the methods already explain^

edj looking upon all the rest as known ; let the values

thusfound be put equal to ea'Ji other (for they are equal,
because they all express the same thingJ ; whence new

equations tcill arise, out of which that quantity will be

totally excluded; luith which new equations the opera-
tion may be repeated, and the -unknown quantities ex^

terminated, one by one, till, at last, you come to art,

equation containing only one unknwn quantity*

2°. Or, let the value of the imknown quantity, ichick

you would first exterminate, be found in that equation
wherein it is the least involved, considering all the other

quantities as known; and let this value, and its poioers,
be substitutedfor that quantity, and its respective powers
in the other equations ; and with the new equations thus

arising, repeat the operation, till you have only one un^

known quantity, and one equation,

3°. Or, lastly, let the given equations be multiplied
or divided by such numbers or quantities, whether known
or unknown, that the term which involves the highest

power of the unknown quantity to be exterminated, may
he the same in each equation: and then, by adding, or

subtracting the equations, as occasion shall require, that
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term will tanish; and a new equation emerge, wherein

the number of dimensions (if not the number oj unknown

quantities) loill be diminished.

But the use of the different methods here laid down
will be more clearly understood by help of a few

examples.

EXAMPLE I,

Let there he given the equations x -V y — 12, and
5x -^ 37/ zz 50 ;

to find x and y.

According to thefirst Method, by transposing y and 3y,
we get X — 12 — ?/, and 5x -zz 50 — 3^ : from the last

of which equations, x ————^. Now, by equating

these two values of cT, we have 12 — y —— -\
o

and therefore 6o — 5y n 50 — 3y ; from which, y is

given = — zz 5 : and ar(— 12 — y
—

12 — 5)
—

7,

According to the second Method, x being, by the firsfe

equation, =z 12 — y, this value must therefore be sub-

stituted in the second, that is, 60 — 5y must be wrote

in the room of its equal 5x ; whence will be had 60—

5y + 3y — 50; and from thence y rz -- zz 5,as before.

But according to the third Method, having multiplied
the first equation by 3, it will stand thus, 3.r + 2//

— 60 ;

from whence subtracting the 2d equation, 5x4- Syzz 50,
there remains 2^ zi 1 ;

whence y — 5, still the same as before.

The first of these three ways is much used by some
Authors, but the last of them is, for the general part,
the most easy and expeditious in practice, and is, for

that reason, chiefly regarded in the subsequent ex-

amples.
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EXAMPLE II.

» . < 5x + Sy = 124

( 3X — 2t/ = 20.

Here the second equation being multiplied by 4 (in
order that the coefficients of y in both equations may-
be the same) we have I2x— 8y = 80.

Let this equation and the first be now added together;

whence?/ will be exterminated, there coming out 17 a? =

204; from which a; zz -— = 12: therefore, by the

f, ^ ,. , 124—5a? 124—60 64. _
first equation, y [- g

— =— ^ — ) =i 8.

EXAMPLE III.

Given J 5x^3y =: 90
^^^^^

i 2.T+ 5y =160.

Here multiplying the first equation by 2, and the

second by 5, in order that the coefficient of x may be

the same in both, there arises

lOacr— 6y = 180

10.T? -f 25?/ = 800. ,

By subtracting the former of which from the latter we

have 31?/ zi 620: hence y = —*- =: 20; and so, by

the first equation, x [=:?l±±y= Sl+J^) = 30.

But the value of x may be otherwise found, inde-

pendent of the value ofy; for, by multiplying the first

equation by 5, and the second by 3, and then adding
them together, y will be exterminated, and you will get

930
esx + 6.r r: 450 f 480; whence x zz —- =: 30,

the same as before.



66 E Q U A T I O X S.

EXAMPLE IV,

Given
T + f = '«

Heve our equation?, cleared of fractious, will be

3x + 9y
—

96
9x — 5^

~
90.

And, if from the triple of the former the latter be sub-

tracted, we shall have 6y -{- 5]/
=z 288 —• 90, that is,

II7 = 198; whence^^zi 18; andx(= ?^ZllV) := 20.

EXAMPLE V.

Given
-|--=l + s

Here 4a?— 96 — Qy + 64, and
12.r + IQy -\- eox — 480 = 30^ — 15a: + 1620;
which, contracted, become
4x — Sy =: 160, and 470? — I8y z= 2100 : from the

last of which subtract 9 times the former : so shall

llx — 2100— 1440 =: 660 ; therefore 0? = 60, and y

(zz4x— 160 ^ X .^

^
r: 2X — 80) = 40,

\ EXAMPLE VI.

to find Xy y, and z.

By subtracting the first equation from the second (in

order to exterminate x) we have z^- y zz 1 ; to which
the third equation being added, y will likewise be ex-

terminated, there commg out 2z zz 16, or 2 =. 8;
whence y (=: z— 1} = 7 ; and x{zz 13— yj = 6.
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EXAMPLE VII.

Here the given equations, cleared of fractions* become

IQX +
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therefore z {- 55^^ = 75 —
|-

z: 75 — 1 if^) =

63iV; and a: (= ?/ 4- 1 — 100 = 109^— lOO) iz 9tt-

EXAMPLE IX,

Let X — y zz Q, and xy + 5x — 6y — 120; to

exterminate i\

By the former equation a: zr t/ -f 2 ; which value be-

ing substituted in the latter according to the second ge^
neral method, it becomes y+2xy + 5X2/ + 2—6y zz 1 20,
that iSj ?/* f- 2^ 4-5^4- 10— by =. 120, or ^' + 3/

= lio.

EXAMPLE X.

Let there be given x + y =z a, and of^ + y^ n b; to

exterminate x*

Here, by the first equation, x zz a— y; and there-

fore T^ zr a— yl^; which value being wrote in the

other equation, we have a — yl* -{• y*
—

b, that is,

«'—lay \ r^7j'^
—

b; and therefore 3/*
— ay =: —"^

— .

EXAMPLE XI.

^ . i axy -^ bx -{- ex iz d } . ^ . ^

^^^'^^ifxy^gx -^hy zzk\ ^^ exterminate y.

Multiply the first equation by/, and the second by a^

and subtract the latter product from the former; whence

yov will have bfx
—agx+cfy— ahy= df— ak ; which,

.
• JJ-. • • df—akjuasx^-'bfx

by tr^nspos. and division, gives y = -=2 'T
^ .—^^^

Let tliis value of y be now substituted in the first

equation, and there will arise

adfx—gVcx \ a^gx'^-^ahjx^+cdf-^cak 4- cagx-^ cbfx—
c/— ah ;

"*

hx — d: which, multiplied by cf-^ah, and contracted,

gives ag'-^df x x*
-J- <(/

— ak-^cg-^ bh y.x =. ck-^hd.
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EXAMPLE XII.

Supposing ax' \-hxArC—0, and /i' + gx' \ h^O ;

to exterminate x.

Proceeding here as in the last example, we have/^x

\-fc-^agx— ah n 0; and, from thence, x — yj—^ .

ah—fcX 6 X ah-^fc
Whence, by substitution, a x ~—^^ +~7a

—
Ti^^

JO— ah\ y ""-^"fe

I c zz 0. This, by uniting the two last terms, an4

,. .,. , , 1 , . ah-^fcT hh--ce
dividingthewholebya, gives =^=:^—-z + v>t-^— = 0;

/b—ag\ fb'—ag ^

consequently ah—fc\' -{-fb
— ag x bh—og

—
O.

After the same manner x may be expunged out of the

equations ax^ -f bx' -f c.r -f c?
—

o, and/x* -\^ gx -h h =: O^
&c. But, to shew the use of the above example, sup-

pose ther€ to be given the equations x'^ + yx — t/* =0,
and x^ + 3xy — 10 zi o : then, by comparing the terms

of these equations with those of the general ones, dx^ -f-

bx -\- c~ 0, andy^i;^ + gx 4-^ = 0; we have a = 1
,

b = y, c = — 2/% /= 1, g = 3y, and A = —- 10 ;

which values being substituted in the equation ah-^fc\^

'^ f^ — ^§ X M — eg =z 0, it thence becomes

— 10 + y'yl^ + y— 3y x -^ioy + 3y^ = o, that is,

100 — 20?/* + y* 4- 20/ -^ 6/ = O ; or, 100 = 5?/* ;

whence ?/ may be found, and from thence the value of

X also.

F 3



C 70 ]

SECTION X.

PROPORTI ON.

QUANTITIES,
of the same kind, may be compared

together, either with regard to their differences,
or according to the part or parts, that one is of the

other, called their ratio. The comparison of quantities

according to their differences, is called arithmetical ;

but according to their ratios, geometrical.
When, of four quantities, 2, 6, 12, 16, the difference

of the first and second is equal to the difference of the

third and fourth, those quantities are said to be in arith-

metical proportion. But, when the ratio of the first and
second is the same with that of the third and fourth (as

in 2, 6, 10, 30) then the quantities are said to be in geo-
metrical proportion. Moreover, when the difference, or

the ratio, of every two adjacent terms (as well of the se-

cond and third, as cf the first and second, &c. j
is the

same, then the proportion is said to be continued: thus

S, 4, 6, 8, &c, is a continued arithmetical proportion :

and 2,4, 8, 16, &:c. a continued geometrical one. These
kinds of proportions are also called Progressions, being
carried on according to the same law throughout.

ARITHMETICAL PROPORTION.

THEOREM I.

Of any four qvantities, a, b, c, d, in arithmetical

progression*, the sum of the two means is equal to the

sum of the two extremes.

For since, by supposition, 6— a\s — d — c, there*

fore isb -{- c =: d + a,hy transposition.

THEOREM II.

In any continued arithmetical progression (3, 7> 9. 11 »

13, 15) the sum of the two extremes, and that of every
other tico terms equally distantfrom them, are equal,

*
Although, in the comparison of quantities accord-

ing to their differences, the term proportion is used ; yet

theword/jroore^^zo/jris frequently substituted in its room,
and is, indeed, more proper; the former term being, in

the common acceptation of it, synonymous with ratio,

which is only used in the other kind of comparison.
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For since, by the nature of Progressionals, the second
term exceeds the first byjust as much as its correspon«:f-

iijg term, the last but one, wants of the last, it is

manifestthat when these corresponding terms are added

tocfcther, the excess ofthe one will make good the defect

of the other, and so their sum be exactly the same with

that of the two extremes.: and in the same manner it
\y

ill

appear, that the sum of any two other corresponding
terms must be equal to that of the two extremes.
When the number of terms is odd, as in the progres-

sion, 4, 7, 10,^13, 16, then the sum of the two extremes

being double to the middle term, or mean, the sum of

any other two terms, equ^illy remote from the extremes,
must likewise be double to the mean.

THEOREM III.

In any continued arithmetical progression, a,a + d,a
-|-2fl?, (i-^3d, a \-4d ^c. the last, or greatest term, is equal
to thefirst for leastJy more the common difference of the

terms drawn into the number of all the terms after the

first, or into the whole number of the terms^ less one.

For, smce every term, after the first, exceeds that

preceding it, by the common ditTerence, it is plain that

the last must exceed the first by as many times the

common differev^ce as there are terms after the first %

and therefore must be equal to the first, and the com-
mon difference repeated that number of ti fries.

THEOREM IV,

The sum of any rank or series of quantities, in con^

tinned arithmetical progression, {5, 7, 9, 1\, 13, \5) is

equal to the sum of the two extremes multiplied into half
the number of terms*

For, because'(by the second Theorem) the sum of the

tw^o extremes,and that ofevery two other terms equally
remote from them, are equal, the whole series consist-

ing of half as many such equal sums as there are terms,
will therefore be equal to the sum of the two extremes

repeated half as many times as there are terms. The
same thing also holds, when the number of terms is odd,
as in the series 8, 12, 16, 20, 24 ; for theii, the mean,
or middle term, being eJqual to haif the sum of any two
lerms equally distant from it, on contrary »ides, it is ob-

f4
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yious that the value of the whole series is the same, as

if every tei-m thereof was equal to the mean, and there-

fore is equal to the mean (or half the sum of the two
extremes) multiplied by the whole number of terms ;

or to the whole sum of the extremes multiplied by half

the number of terms.

GEOMETRICAL PROPORTION.

THEOREM I.

If four quantities a, b, c, c?, (2, 6, 5, 15) are in

geometrical proportion, the product of the two means, be,
will be equal to that of the two extremes, ad.

For, since the ratio of a to 6 (or the part which a

is of 5) is expressed by -r-, and the ratio of c to d, in

like manner, by- ; and since, by supposition, these twoa
ratios are equal, let them both be multiplied by bd, and

a c
the products

j-
x 6c? and

-^
x bd wiW likewise be equal;

that is, -r- = -v-j or ad zz cb (by case 2, sect, 4).

THEOREM II.

Jf four quantities c, 6, c, «f, are such, that the product

of two of them, ad, is equal to the product of the other

two, hc^
then are those quantities proportional.

For since, by supposition, the products ad and be

are equal, let both be divided by bd, and the quotients

Tk'd^ /
^^^ h^ ("TT ]

^^^^^ ^^^^ ^^ equal ; and there-

fore a: b :: c : d,

THEOREM III.

Jffour quantities a, b, c, d, (2, 6, 5, \5) are propar^

tional, the rectangle of the means divided by either

extreme, will give the other extreme.

For, by the second Theorem, cd =i 5c (2 x 15 —
6 X 5), ^yhence dividing both sides of the equation by

a (2), we havcc? = ~
(15 =: -—^~\ Hence, if the

two means and one extreme be given, the other ex-

treme may be found.
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THEOREM IV.

The 'products of the corresponding *terms of tioo geo^
metrical proportions are also proportionaL

. That is, if a : i : : c : ff, and e : f :i g i h, then
will ae I bf : : eg : dh.

For ~ =-^,and y =~/ » by supposition; whence

-T- X
-^
—

;v
X

-y-, by equal multiplication; and coa-

ae c*
frequently -r? :=

;^'(by P* 18); that is, ae : hf'.\ eg : dh^

Hence it follows, that, \f four quantities are pro*

portional, their squares, cubes, &c. will likewise be

proportional.

THEOREM V.

Iffour quantities a, h, c, d (2, 6, 5, 15) are proportional^

1. inversely, h i a i: d i c (6:2::15: 5)
2. alternately, a : c :: b i d (2:5:: 6:] 5)

3. compoundedly, fl:a + 6::c :c+ f/(2:8:: 5:20)
c 4, dividedly, a :h—a::c %d—c(2:4::5:l0)

^"^ 5. mixtly, b^-a^.h—a::d\-c:d—c(8:4::2o:]o)
6. by multiplication, ra : rb i: c i d (2r :6r:: 5:1 5)

7. by division, —.;-*-:: c : cff— :— ;: 5:15)

Because the product of the meai>s, in each case, is

equal to that of the extremes, and therefore the quan«
titles are proportional, by Theorem 2,

THEOREM VI,

If three numbers a, b, c, (2, 4, 8) be in continuef^ pro-

portion, the square of thefirst icill he to that of the second^

as thefirSt number to the third; that is, a"^ : b'' :: a : c.

For, since a : b :: h : c, thence will ac — bh, by
Theorem 1 ; and therefore aac z=l abb, by equal multi-

plication ; consequently a" : ¥ :: a : c, by Theorem 2.

In like manner it may be proved, that of four quan-
tities continually proportional, the cube of the first is

to that of the second^ as the first quantity to the fourth.
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THEOREM VII.

In any coniinned geometricalproportion ( 1 , 3, 9, 27» SI

t;c.) th^ product of the two extremes, and that of every
other two terms, equally distant from them., are equaL

For the ratio of the first term to the second, bcino^^ the

same' as that of the last' but one to the last, these four

terms are in proportion ; and therefore, by Theorem 1,

the rectangle of the extremes is equal to that of their

two adjacent terms : and, after the very same manner,
it will appear, that the rectangle of the third and last

but two» is equal to that of their two adjacent terms, the

second aijd last but. tue; and so for the rest. Whence
the truth of the proposition is manifest,

TIIEOKEM TUT.

Th€ sum of any nitmher of quantities, in contlnned

geometrical proportion, is equal to the difference of the

rectangle of the second and last terms, and the square
of the first, divided by the difference of the first and
second terms.

For, lei the first term of the proportion be denoted

by tty the common ratio by r, the number of terms by
5»,and the sum of the whole progression by x\ then it is

manifest that the second term \yill be expressed bya x r,

or ar ; the third by ar y r, or ar*; the fourth by ar^ x r,

or ar^ ; and the ?/th, or last term by ar ; and there-

fore the proportion will stand thus, a f «r -f ar* -f ar^

11—2 n— 1
.

. . . . + flr 4- cr •=. x\ which equation, mul-

liplied by r, gives ar + ar- + ar' -f- ar^ + ar

-for'' zr rx; from which the first equation being sub-

tracted there will remain— a 4- ar^~ rx—x\ whence

ar X ar^"^— aa

(ar^—a
_ r x ar" ^'^a\ ^

ar— a

as was to be demonstrated.
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SECTION xr.

THE APPLICATION OF ALGEBRA TO THE RESOLU*
TION OF NUMERICAL PROBLEMS.

WHEN"
a Problem is proposed to be solved alge.

braically, its true design and signification ought,
in the first place, to be perfectly understood, so that {it'

needful) it may be abstracted from all ambiguous and

unnecessary phrases, aud theconditions thereof exhibit-

ed in the clearest light possible. This being done, and
the several quantities therein concerned being denoted

by proper symbols, let the true sense and meaning ot

the question be translated from the verbal, to a symbo-
lical form of expression ; and the conditions thus ex-

pressed in algebraic terms, will, if it be properly limit*

ed, give as many equations as are necessary to its solu-

tion. But, if such equations cannot be derived without
/jome previous operations (which frequently happens
to be the easel, then let the Learner observe this rule,

viz. let him consider what method or process he would
use to prove, or satisfy himself in, the truth of the solu-

tion, were the numbers that answer the conditions of
the question to he given, or adirmed to be so and so;
and then, by following the very same steps, only using
unknown symbols instead of known numbers, the

question will be brought to an equation.

Thus, if the question were to find a number, which

being multiplied by 5, and 8 subtracted from the pro-
duct, the square of the remainder shall be 144; then,

having put a zz 5, b — 8, and
number sought
to be
then 5, or a times that number

^
will be .... .. . . i

from which 8, or /; being sub- >

tracted, there remains . . J

which, squared, is

Therefore o*a?* — '^axb 4- i' is = c (or 144) accordr

ing to the conditions of the question, In the same man-

c zz
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ncr may a question be brought to an equation when
two or more quantities are required.

After the conditions of a problem are noted down
m algebraic terms, the next thing to be done is to

consider whether it be properly limited, or admits of

an indefinite number of answers ; in order to discover

whiGh, observe the following rules.
,

RUIiE I.

iVhen the number of quantities sought, exceeds the

number of equations given, the question (for the general

partJ is capable of innumerable answers.

Thus, if it be required to find two numbers (a:
and y)

with this one single condition, that their sum shall be

100; we shall have only one equation, riz. .x + y z: 100,

but two unknown quantities, x and y, to be determined ;

therefore it may be concluded, that the question will

^dmit of innumerable answers.

RULE II.

But if the number of equations, givenfrom the eoU"

ditions of the questions, isjust the same as the number

of quantities sought, then is the question truly limited.

As, if the question were to find two numbers, whose
?um is 100, and whose difference is 20 ; then, x being

put for the greater number, and y for the less, we shall

have .r + y
—

100, and a:— y = 20 : therefore, there

being here two equations and two unknown quantities,
the question is truly limited ; 60 and 40 being the only
two numbers -that can answer the conditions thereof.

RULE III.

IVhen the number of equations exceeds the ?iumhcr of

quantities sought, either the coiiditions of the problem are

inconsistent one with another, or what is proposed, in ge-
neral term?, can only be possible in certain particular
cases.

But it is to be observedj^that the equations understood

here, as well as in the preceding rules, are supposed
to be no ways dependent upon, or, consequences of



TO THE RESOLUTION 01^ PROBLEMS. .77

one another. If this be not the case, the question may
be either Unlimited, or absurd, or perhaps both, at the

same time that it seems truly limited ; as will appear

by the following example.
Wherein it is required to find three numbers, under

these conditions ; that the sum of once the first, twice

the second, and three times the third, may be equal to

a given number b ; that the sum of four times the first,

five times the second, and six times the third, may be

equal to a given number c; and that the sum of seven

times the first, eight times the ?econd, and nine times

the third, may be equal to a third given number d.

Now, tlie three numbers sought being respectively
denoted by a?, //, and s, the question, in algebraic

terms, will stand thus,

X -{- Qy + 3z z= I)

4x + 5y -{ 6z — c

7x -^ 8y + gz
-

d.

Here, there being three equation? and just the same
number of unknown quantities, one might conclude the

question to be truly limited •

but, by reflecting a little

upon the nature and form of these equations, the con-

trary will soon appear: because the last of them in-

cludes no new condition but what is comprised in and

may be derived from tlie other two ; for if from the
double of the second the first equation be taken away,
the value of Tx + 82/4-92 will from thence be given
= 2c— 6. Hence it is manifest, that giving the value
of 7^ -+- 8^ -f 92, in the third equation, contributes

nothing towards limiting the problem ; and that the

problem itself is not only unlimited, but also impos-
sible, except when d is given equal to 2c— 6.

Having laid down the necessary rules, for bringing

problems to equations, and for discovering whea they
are truly limited, it remains that we illustrate what
is hitherto delivered by proper examples.

ARITHMETICAL PKOBLEMS,

PKOBLEiyi I.

To find that number, to- which 7 5 heing]added, the sum
shall b€ the quadruple of the said required number.
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Let the number sought be represented by x;
then will its quadruple be denoted by 4a:;

whence, by the conditions of the question, a: + 75 zz 4x;
this equation, by transposing a:, becomes . . . . 75 z: 3.i ;

from whence, dividing by 3, we have a: = — = 25,

which is the number that was to be found (for it is

plain that 25 + 25 X 3 z:: 23 X 4 r= lOO).

PROBLEM II,

What number is that, which being added to 4, and also

multiplied by 4, the product shall be the triple of the sum ?

Let the number sought be denoted by x\
so shall the sum be denoted by a; + 4;
and the product by . , 4x ;

whence, by the conditions of the question, 4a:
'

zz

0. -f 4 X 3; that is, 4.r
~ 3x ^ 12 ; from which, by

transposition, x — 12.

PROBLEM III.

To find two numbers such, that their sum shall be 30,
and their difference 12,

If X be taken to denote the lesser of the two num*
b^rs ; then, by adding the diirerence 12, the greater
number will be denoted by.T -t- 12 ; and so we shall

hftve 2a: 4- 12 = 30, by the question.

From which equation, 2a: = 30— 12= 18;andconse«
1 8

quently x zz -- zz 9 ; whence the greater number

(X 4- 13) is also given =21.

PROBLEM IV.

To divide the number 60 into three such parts, that the

fir^t may exceed the second by 8, and the third by 16.

Let the first part be denoted by x ; then the second

will be xr— 8, and the third rr— 16; the aggregate of

all which, or 3a:— 24 is j= 60, by the question.
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84
Hence 3:i? = 60 + 24 = 84, and x~ —- = 28 : so

that 28, 20, and 12, are the three parts required.

PROBLEM V.
'

The sum of GGOL teas raised (for a certain purposeJ
by four persons A, B, C, andD; lohereof B advanced

twice as 7nuch as A ; C as much as A and B; and D as

much as B and C : what did each person contribute 9

Let the sum or number of pounds advanced >

by A be called S

then will the number of B*s pounds be denoted by 2x,
that of C's by 3x,
and that of D*s by Hx:

the sum of all which is given equal to 66o/. that is,

1 la? = 660: from which a: = —— =^0. Tlierefore,

^O, 120, 180, and 300/. are the respective sums that

were to be determined.

PROBLEM VI.

A certain sum oj money was shared amon^ Jive per^
sons, A, B, C, D, and E; ivhereof B received T^/. less

than A; C 16/. more than B; D 5/. less than C; E
I5t» more than D: moreover it appeared, that the shares

of the two last together were equal to the sum of the

shares of the other three : What was the whole sum
shared, and how much did each receive f

Let X denote the share of A :

then)i^i ?> will be the share of ^^'

C^ + 16) CE;
and therefore so? + 17 = 3.r—4, hy the question : from
whence, by transposition. 21 = x; so that 21, 1 1, ^7,
22, and 37/. are the several required shares ; amount-
ing, in thjB whole, to lis/.



80 THE APPLICATION OF ALGEBRA

PROBLEM VII.

Tofind three numbers, on these conditions, that the

sum of thefirst and second shall he 15; of thefirst and
third 16 ; and of the second and third 17.

If the first number be denoted by .r ; then it is plain,

by the question, that the second will be represented by
15—j:, and the third by 16—.r. But the sum of these
two last is given equal to 17; that is, 31 — 2a7 n 17;

whence, by transposition, 14 = 2a:; and consequently
14

T -zi ~ zi T. Hence 15 — x — 8, and 16 — x = 9;

which are the other two numbers required.

PROBLEM vili.

To find that number, which being doubled, and IQsuh"
tracted from'the product^ the remainder shall as much
exceed \00 as the required number itself is less than 100.

The number sought being denoted by x, the double
thereof will be represented by 2r; from which subtract-

inor 16, the remainder will be 2x — 16; and its ex-
cess above lOO, equal to so? — 16 — 100 : therefore

2.r — 16 — 100 = 100 — Xy by the question', whence
2l6

,3x zi 216; and consequently x zz -— = 72.

PROBLEM IX.

7 divide the number 75 into two such parts, that tliree

times the greater may exced seven times the lesser by 15,

Let the greater part be = .r ; then will the lesser

part = 75— X, and we shall have 3x— liir 75— x
X 7; or, which is the same, 2x— 15 z= 525—7x: from
whence 10 x = 540, and consequently x z= 54,

PROBLEM X.

TuiMpcrsoJis, A and B, having received equal sums of
money ^ A out of his paid away 25/., and B of his 60/.,

and then it appeared that A had just twice as much mo»

nty as B : lohat money did each receive ?

Suppose X to denote the sum received by each per-

son; then A, after paying away 25/, had a? »25 ; and B,
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after pav ine: away 60/. had x — 60: hence x— 25 ~ 2r
— 120, by the question; and therefore 120—-25x2x—a\,

that is, 95
~

X,

PROBLEM XI.

To find that numler, whose \ pari exceeds its J part
hy 12.

Let the number sought be represented by sc ; then

X X

lem ; which equation (by multiplying every numerator
into all the denominators, except its own) gives 4x—3x
—

144, that is, X — 144.

PROBLEM XII,

What sum of money is that ichoae ^ party ^ part^ and

-^ part, added together, shall amount Co 94 pounds 9

If X be the number of pounds required, then will

X X X
-- + ^ + "T = 94 : from whence, by reduction,343 J i>

20T+ 1 5x 4- I2x = 94 X 60, that is, 47.T =1 94 X 60 ; and
and therefore a^ = 2 x 60 ~ 120.

PROBLEM Xril.

In a mixture of copper, tin, and lead, one half the
whole— I6lb. was copper ; one third of the icliole— 12lb,

tin; and one fourth of the lohole + 4 lb. lead : what

quantity of each icas there in the composition 9

Let X denote the weight of the whole ;

£._l6l ^ copper,
2

X
then will •<

— 12 > be the weight << tin.

i of the
j

.T
"^^

J I lead;

and, if all these be added together, we shall have

SC XX— 4- —+ T "* 2^ — ^> ^y ^^^ question. Hence
J d 4
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by reduction, I2.r + 8j? 4- 6x~576 n 24x; tlierefore

2x = 576, and x n —- = 288. So that there were

128lb. of copper, 84lb. of tin, and 76lb. of lead.

PROBLEM xiy.

What sum of money is that, from which 5l. being sub-

tracted, two-thirds of the remainder shall he 40l- ?

Let X represent the required sum; then, 5 being sub-

tracted, there will remain x — b \ two-thirds of which

will be X—5 X -, Qf
^^——

; and so, by the question^

Or—-10
,we have — = 40: whence ex -^ lo = 120-

o

J 130 ^and X zz: — n 65,
2

PROBLEM XV.

What number is that, ichich being divided by 12, tht

fjuotient, dividend, and divisor, added all together,
shall amount to 64 ?

Let 0? rr the required number; so shall

-^ + :c -f 12 :ir 64, by the conditions of the question.

Whence ;t + 12>r = 52 X' 12, or \dx zz 624; and con-

.1 ^24
sequently a;- ,z^

•--— :;:; 48.

PROBLEM XVI.

To find two numbers in the proportion of 2 to i, so

that if 4 be added to each, the two sums thence arising
shall be in proportion as 3 to 2.

Let X denote the lessor number ; then the s^reater will

be denoted by ^x ; and sr^, hy the (/uestion, we shall have

2a: -4- 4 : X I 4 :: 3 : 2. From whence, as the product
of the two extremes, of any four proportional num-
bers, is equal to the product of the two means, fsee
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Sectioyi 10, Theorem 1 ) we have the following equation,
viz,

2.x. 4- 4 X 2 :^ X + 4 X 3, that is, 4x + 8 —
3a' 4- 12 ; whence x n 4, and 2:r

—
8 : which are the

two numbers that were to be found.

PROBLEM XVII.

A prize of 20001. ivas divided heUceen two persons^
whose shares therein were in proportion as 7 to g : lohat

was the share of each ?

Ifx — the share of the first, then ^/tai of the second v;ill

be 2C0O — x ; and we shall have x : 9000— x : : 7 : 9-

Hence, by multiplying the extremes and means^

gx — 14000 — 1x ; from which x is found =: — .— n^
16

875/. and 2000 — x zz 1125/.

PROBLEM XVIil,

A bill of 120l. ivas paid in guineas and moldores^ and
the number of pieces of both sorts was just 100 ; to find
hoiv many there were of each 9

If a?
— the number of guineas, then will 100 — a? be

the number of mo'dores : therefore the number of

shillings in the guineas being 21x, and in the moidores,

27 X 100 — X, we have 2lx + 27 x 100 — x zz

120 X 20 r: the shillings in the whole sum: hence,

by multiplication, 2lx + 2700 — 27^ = 2400; and

300xzz~ =50.

PROBLEAr XIX.

A labourer engaged to serve 40 days, on these condi*

tionsf that for every day he vmrked he was to receive 20

pence, but thatfor every day he played, or ivas absent, he
was to forfeit S pence; now after the 40 days were ex*

pired, it wasfound that he had to receive, upon the whole,
380 pence : the question is, tofind how many days of the
40 he worked, and how many he played.

Let the number expressing the days he worked be re-

presented by X ; then the number of days he played wiH
G 2
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be expressed by 40—a:: moreover, since he was to re-

ceive 20 pence tbrevery day he worked, the whole num-
ber of pence gained by working, will be 20r j and for

the like reason, the number of pence forfeited by play-

ing, or being absent, will be 8 x 40—.r, oi^ 320— 8x ;

which deducted from 20x, leaves 28i^—320, for the sum
total of what he had to receive : whence we have this

equation, QSx— 320 =:: 380 ; from wdiich 28x - 380 -f

320 ~ 700, and consequently j;
— ~~ —

25, equal to

the number of days he worked ; therefore 40 — 25
zz 15, will be the number of days he played.

PROBLEM XX.

^farmer would mix two sorts oj grain, viz. wheat,
worth 4s. a bushel, with rye, worth 2s, 6d. the bushel, so

that the tchole mixture may consist of 100 bushels, and
be worth 3s. and 2d. the bushel: now it is required to

Jind how many bushels of each sort must be taken to

make up such a mixture ?

Let the number of bushels of wheat be put r: a',and
the number of bushels of rye will be 100—x\ but the

number of bushels multiplied by the number of pencq
per bushel, is equal to the number of pence the whole
is worth ;

therefore 48^^ is the whole value of the wheat,
and 30 X 100 — X, or 3000 — SOx, that of the rye;
and conseiquently, 48.r -f 3000— 30t, the sum of these

two, the whole value of the mixture: which, by the

question, is equal to 100 x 38, or 3800 pence: hence

we have ASx + 3000 — 3Qx —
3800; and therefore

X — -— — AA^, the number of bushels of wheat ;

1 8

whence the number of bushels of rye will be loO —
44f- - 53f

'

PROBLEM XXI#

A farmer sold, to one man, 30 bushels ofwheat and 40

of barley, andfor the ichole received 270 shillings; and to

another he sold 50 bushels of wheat and 30 of barley, at
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the same prices^ and for the ivhole received 340 shil^

lings : now it is required to find what each sort of grain
was sold a^ per bushel ?

Let X and y be, respectively, the number of shillings
which a bushel of each sort was sold for; then, from
the conditions of the question, we shall have these

two equations, viz.

30t + 40y = 270,
box 4- 30^

— 340;

from 4 times the second of which subtract 3 times the

550
first, so shall llOi- =: 550; and consequently x —

-—
= 5 ; moreover, by subtracting 3 times the second, from
5 times the tirst, you will have 1 lOy, z= 330, and there-

r 330 ^lore // z: zz 3

For

PROBLEM XXII.

A son asldng his father hotv old he icas^ received the

following reply : My age, says the father, 7 years ago,
was just four times as great as yours at that time; but^

7 years hence, if you and I live, my age will then he

only double to yours: it is required to find from hence,
the age of each person ?

Let X represent the age of the son seven years be-

fore the question ; then the age of the father, at that

time, was 4.r, by the conditions of the question ; and,
if each of these ages be increased by 14, it is plain that

X -{ J 4 and 4JC + 14 will respectively express the two

ages 7 years after the time in question ; whence, again,

by the problem, we have4.r 4- 14 =: 2 x x-\- 14 ; from
which X zz 7, and 4t zi 28 ; therefore 7 -+- 7 = 143,
and 28 + 7 — 35, are the two ages required.

110
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PROBLEM XXIII.

A ^evtleman hired a servant for \ 2 monthf:^ and agreed
to allow him 90l. and a livery, if he staid till the year
was expired ; hut at the end of 8 moJiths the servant went

away and received 12l. and the livery, as a proportional

part of his wages: the question is, what was the livery
valued at?

Let X be the value sought ; then 20 4- x will be the

whole wages for 12 months, and 12 -V- x the part there-

of which he received for 8 months.
But the wages being in the same proportion as the

times in which they are earned, or become due, we
therefore have, as 12 : 8 :: 20 -f x : 12 4- a^ ; whence

12 ^ T2 ^ .T
-

8 X 20 t x,(>x 144 + 12>r =: 160 4- Sx

(byTheor. 1. p. 72; ; consequently I2a? — 8r ~ 160—

144, and X = -, z= 4I.

PROBLEM XXIV.

Four persons A, B, C, D^, spent twenty shillings in

company together ; whereof A proposed to pay y ; B i;
C^; and Depart; hut, when the money came to be

collected^ they found it icas not sufficient to answer the

intended purpose : the question then iSy to find how much
each person must contribute, to make up the whole reck-

oning, supposing their several shares to be to each other

in the proportion above specified ?

Let X be the share of A ; then it will be, as

J :
'^, or, as 4 : 3 : : a: : — - the share of B ; and, as

11 3 f
rr ; t-, or^ as 6 : 3 : : x I -7-

~ the share of C ; also, as

I : r, or, as 2 : I : : jr :
— =: the share of D.

3X 3x X
Therefore, hy the qitestion,xh—~> ~r+'^=20.

•^A'hence, AOx + 30jc -f £4a: + 20x = 800, that is 114a:
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~ 800 ; and consequently x ~ ~*-^ n 7fr» ^^e share

of A ; therefore {^) that of B will be = 5\^ : that of

C
(^j^

= 4if : and that of D
(|)

ri 3|f.

PROBLEM XXV.

A market looman bought in a certain number of eggs
at 2 penny, and as many at 3 a penny, and sofd them all

out again, at the rate of 5 for two pevce^ and lost four
pence by so doing : u^hat 7iumber of eggs did she buy
and sell ?

Let 0? be the number of eggs of each price, or sort ;

then - will be the number of pence which all the first

sort cost, and - the price of all the second sort ; bu^t

the whole price of both sorts together, at the rate of
5 for two pence, at which they were sold, will be

—
(for as 5 : 2 :: 2.r (the whole number of eggs) :

— \

X C€ Ax
hence, by the question,

- -f - -— ~ — 4 ; whence
^ o d

]5x -f lOx — e^x — 120, and therefore^ r- 120.

Forli3 + i|?-215? X 2 = 60 + 40-96 = 4.
2 3 5

PROBLEM XXVI.

^ composition of copper and tin, containing 100 cuhic

inches, being weighed, its iceight was found to be 505
ounces : how many ounces of each metal did it contain^

supposing the loeight of a cubic inch of copper to be 5^
ounces, and that of a cubic inch of tin 4-^?

Let X be the number of ounces of copper; then
503 — X will be the number of ounces of tin, and we
shall have

5i ; 1 (cubic inch) : : a? : —^ inches of copper^

C4
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4^ •• 1 (cubic inch) : : 505 — oc :
—— ~- inches of tin.

Therefore -^ -f —r;
— = JOO, by the questhn

Whence 4i X a: + 5^^ 505— a:
—
5|x4iX 100, that is,

17 X .T
,
21X505—cT/ 21X17X100\ 21X17X25.

h — « I
—

J ri »

4 i V 4X4 >' 4

which, by rejecting the common divisor, becomes

nx + 21 X 505 -^ a?
—

21 X 17 X 25 —
8925.

or 17^' — 21ar = 8925 — 10605 zz — 1680. From
"

, 1680 ,
,

.
,whence a; n n 420 ; and 505 — x — 85 ; which

4

are the two numbers required.

The same otheriinse.

Suppose X to be the number of solid inches of cop-

per ; then the number of inches of tin being 100 — x,

we have 5^ x x -{- 4\ x lOO — x —
505, that is,

5^v -\- 425 — 4jX
—

505, or T - 505 — 425 -
S(»:

which; multipHed by 5^, gives 420, tor the ounces of

copper.

PROBLj:^ XXVII.

A shepherd, in time of tear, fell in with a party of sol*

diers, who plundered him of half hisjloch, and half a

sheep over; qftencards a second partij
mtt him, who took

half wha^ he had Icft^ a^td half a sheep over; and, soon

after this, a third partu met him, and used him in the

same manner and then he had only fve sheep left : it is

required tojind what numher of sheep he had at first ?

Let x (as usual) be the number souc^ht; then ac-

corcjing to the question, the nuniber of sheep left, after

bemg plundered tlie first time, will be expressed by
JC X —~"

1 X —"• I

I.or^- ', the half of which is ; from2^2 4

^_ ^
j.

will be the number of sheep left after being plu!)-



ro TflE RF^SOLUTION OF PROBLEMS. 89

X —- 3
dered the second time: in like manner, if from '—-—

8

^

(the half of '^—-i) you, again, take f, there will re-

main'-^^^^-^ i or --^^ the number of sheep remain-

iiig at last. Hence we have zz 5 ; therefore

X — 7
-

40, and x —
47.

PROBLEM XXVIir.

The difference of two mimhers being glvefi, equal to 4
and the difference of their squares, equal to 40 ; to find
the numbers.

Let the lesser number be.r; then, the difference be-

ing 4, the greater must consequently be a; -1- 4, and it's

square xx ] Sr + 1 6, from which xx, the square of the

lesser being taken away, the difterence is So; + 16:

therefore 8.r + 16 zz 40; which, reduced, gives a; = 3;

whence ^-i- 4 = 7; therefore the two required num-
bers are 3 and 7.

All the problems hitherto delivered are resolved by a

numeral exegesis^ wherein the unknown quantities,

only, are represented by letters of the alphabet ; which
seemed necessary, in order to strengthen the Beginner's
idea, at setting out, and lead him on by proper grada-
tions : but it is not only more masteriy and elegant,
but also more useful, to represent the known, as well
as the unknown quantities, by algebraic symbols; since

from thence a general theorem is derived, whereby
all other questions of the same kind may be resolved.
As an instance hereof, let the last problem be again

resumed; then the given difference of the required
numbers being denoted by «, the difference of their

squares by b, and the lesser number by x ; the greater
will be X + a, and its square x^ -h Qax -h a^; from
which, x^, the square of the lesser number, being de-

ducted, there remains 2«r -f a"
— b : whence if aa

be subtracted from both sides, there will remain Qaxzz

h-^aa; this, divided by 2a, givesa?z: —; and
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consequently x -^ a :=: ^ -h —
. Hence it appears

that, if the difference of the squares be divided by
twice the difference of the numbers, and half the dif-

ference of the numbers be subtracted from the quotient,
the remainder will be the lesser number; but if half

the difference of the numbers be added to the quotient,
the sum will give the greater number. Thus, if the dif»

ference {a) be 4, and the difference (b) of the squares

•10 fas in the case above) ; then (
—

) the difference of

the squares, divided by twice the difference of the

mimbers, w^ill be 5; from which subtracting {<2) half

the difference of the numbers, there remains 3, for the

lesser number sought ; and by adding the said half dif-

ference, you will have 7
— the greater number. In

the same manner, if the ditlerence of the two numbers
had been given 6, and the difference of their squares
60, the numbers themselves would have come out 2

and 8 : and so of any other.

PROBLEM XXIX.

Havincr ^hen the sum of tiro iiiimhen^, eqnal to 30,

nnd the difference of their s(juares, equal to 120 ; tofind
the numbers.

Put o-:30, and 6 = 120, and let a* be the lesser num-
ber sought, and then the greater will be a—x ; whose

square is aa— 2ax ~V oc'^ ; from which the square of the

lesser being subtracted, we havea^— ^ax zz b ; this re-

duced, gives j-, the lesser number, ::=
•— ~ 13.

Therefore the greater (a
— x) will be =: a 4-

h a. h-_n— -I
—

17. But if the greater number

had been first made the object of our inquiry, or been

put = a:, the lesser would have been a— x, and it*s

square a^— oax 4- x'^i which subtracted from a* leave.<
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iifltx
—-a^ ^ h

; whence 2ajp =: Z* -h a% and x r= ^+ ^ '

—
1 7, the same as before.

PROBLEM XXX.

If one agent A, alone, can produce an effect c, in tk^

time «, and another agent B, alone, in the time h ; in how

long time will they both together produce the same effect .^

Let the time sought be denoted by x, and it will be,

as a : a; : : e : —
,
the part of the effect produced byA :

(TheoT. 3. p. 7-2?) also, as 6 : rr : : e :

-j--,
the part pro-

duced by B ; therefore ^-^ \-
~ zz e, Dii'ide the

•^ a

whole by e, aad you will have -—h -r- = 1 ; and this,

reduced, gives x zz ~. After the same manner,a \~

if therf be three a£:euts. A, B, and C, the time wherein

they will altogether produce the given effect, will come

abc
out — —. y~ •

ab -\- ac -\- be

Example. Suppose A, alone, can perform a piece of
work in 10 days ; 6, alone, in 12 days; and C, alone,
in 16 days; then all three together will perform the
same piece of work in 4^V days; for in this case,
(3! being = 10, i —

12, c
—

16, it is plain that

abc / 10 >; 12/ 16 \_ ,

ab ^ ac + be \\o X 12 -f- 10 x 16 i- I'J A 16/
" ^^^*

PROBLEM XXXI.
Tivo travellers, A and B, set out togetherfrom ^hesame

place, and travel both the same way ; A goes 29 miles the

first day; 26 the second, 24 the third, and so on, decreasing
two miles every day ; but E travels uniformly 20 miles

every day : now it is required tofind how many miles each
person must travel before B comes up again with A ?
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Let X r: the number of days in which B overtake;?

A : then the miles travelled by B, in that lime, will be

200;; and those travelled by A, 28 26 H- 24 + 22,

&c. continued to ar terms ; where the last term /^/;?/

Section 10, Theorem 3) will be equal to 28— 2 ax— i
,

or 30 — Qx; and therefore the sum of the whole pro.

gjession equal to §8 f 30— 2a' x ix, or 29x — .r^ fby
Theorem 4.). Hence we have 20a: ii: 29.r—x^ ; whence
20 =: 29 — X, and x —

g; therefore 20 x 9
—

i so,
is the distance which was to be found.

PROBLEM XXXII.

To find three numbers, so that | thefirst, X of the se-

condy and ^ of the third, shall be equal to 62 ; f of the

first, I- of the second, and y of the third, equal to 47 ;

and ^ of the first,
4- of the second, and ^ of the third,

equal to 38.

Put a = 62, b zz 47, and c
—

38, and let the num-
Tiers sought be denoted by x, y, and z ; then the con-

ditions of the problem, expressed in algebraic terms^
will stand thus.

b.

6
=" ''

Which, cleared of fractions, become

6v + 4y 4- 35 =z 120,

20X + loy -f 12z =: 60b,
I5x f 12«/ 4- 102 = 60c.

And, by subtracting the second of these equation?
from the quadruple of the first, (in order to exterminate

z) we have 4x -[- y
— 48a— 6ob ; moreover by takinj,^

3 times the third from 10 times the first, we have 15.r+

4y
—

\<20a.— J 80c; this subtracted from 4 times the

last, leaves a: ^ 72a — 2406 + 180c z: 24; whence

^
'

,
/ 12a— 6a?-— 4y\

y (4Sa ^ C0Z> — 4x) =. 6o, and z I

^ J

= 120.

.r
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r^jL + I + H2 = ,2 + 20 + 30 = 62,

For<4- +— + -^ = 8 4- 15 4- 24 = 47,-

I

3 4 3

!24 ^60^ ^^ 6+,2 + 20=:38.
^4 5 6

PKOBBEM XXXIII.

yif gentleman left a sum of 7noney to he divided amons^

four servant?, so that the share of thefirst icas j the sum
of the shares of the other three ; the share of the second |

4)f the sum of the other three ; and the share of the tliird

- of the sum of the other three ; and iticas also fornid
that the share of the first exceeded that of the last by 14/,;

the cjuestion is, lohat icas pieiohole stim, and ichat teas

the share of each person ?

Let the shares be represented by a?, ?/, 2, and «, re-

spectively, and let a =- 14 ; then, ly the question, we
shall have

Z = 3

4
u — X -^ a.

Which equations, cleared of fractions, become

so: zr
2/ + 2 + w,

3y zz X -^ z -^ u,
4z iz x + 2/ + «,
u zz X — a,

Now, if X be added to the first, y to the second, and

^ to the third, we shall get (:r +> + 2: + w) zr So? = 4y

=z 5z ; and from thence z =z-—, and y = — ; which5^4
values being substituted in the first equation, we have

sr r. H. + -^ + ,,, or« z= ^; bJt, by the 4th
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\3x
, equation, u zz x — a; therefore .r — a =: —^ ,

and

* ~ -^ = 40 : consequently y f—
j

r: 30, 2 (~]
~

24, and u, {x— 14)
—

2^\ and the whole sum

[x -{- y \- z ^ u) zi 120/.

PROBLEM XXXIV,

To findfour numbers^ so that the first together uilh

half the second may be 357 faJ, the second with -j of the

third equal to 476 fbj, the third with A 0/ the fourth

equal to 595 fcj, and the foiirth with 4 of the first

equal to ti^(dj.

The required numbers being denoted by or, y, z, and

a, and the conditions of the question expressed in alge-
braic terms, we have the four following equations :

* +
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125— 24a -4- 1 20d— 4c

119
676 ; whence z [c

—
)

y
426,^ {—b ) -334, nud x (- a ~-)~ 1

3 ' ^ J
90.

Othencise,

Let the first of the required numbers be denoted by j£

(as above) ; then, the sum of the first and i the second,

being 8:iven equal to a, it is manifest that i the second
must be equal to a minus the first, that is =: a — x, and
therefore the second number — 2«— ^x: moreover, the

sum of the second, and | of the third, being given = 5;
it is likewise evident, that 5 of the third must be equal
to b minus the second, that is

— b — 2a -V- 2x, and

consequently the third number itself -- 36— 6a 4- fia: :

In the same manner it will appear that ^ of the fourth

number zz c — 36 -f 6a — Qx\ and consequently the
fourth number itself,

—
4c--l26-h24a—^24x1 w^hence,

hy the question^ 4c — 12& + 24a — 24a: + — =^,

J ,, . — 5rf -f 20c — 60h -f 12Qa
and therefore x = - ' - -——-—— —~ — igo;

as above.

PROBLEM XXXV.

To divide the number 90 fa) into four such parts,
that if the first be increased by 5 (hj^ the second de^

creased by 4 {cj, the third multiplied by 3 fd), and
the fourth divided by 2 fej, the result in each case,
shall be exactly the same.

Let X, y, 2, and u be the parts required ; then, by the

question^ we shall have these equations, viz,

X + y -^ z -{- u zz Cy and

X -{- b zz y— c zz dz zz —.

t

Whence, by comparing dz with each of the three

other equal values, successively, x zz dz— Z», y tz dz

+ c, andw := dez\ all which, being substituted, for

their equals, in the first equation, we thence geidz—
^-fJs + c-fs-^ dez zz a ; whence dez -h 2dz + z
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zr a -f 6 — c, ^ndz zz -^-—--rj^, - 7- Therefore

X (— dz — h) zz 16; y {~ dz ^ c) zz 'J 3; and,

u {— dez) zz 42»

PROBLEM XXXVI.

If A and B together, can perform a piece of icork in

S fa J days, A a/?c? C together in g (hj days, and B and

C in XOfcJdays : hoio many days will it take each per-

son, alone, tO perform the same work ?

Let the three numbers sought be represented by .r,

y, and ;:, respectively; then it will be, as x (days) : a

(days) : : 1, the whole work, to — , the part thereof

performed by A in a days ; and, as ?/ : a : : i :
—

, the
y

part performed by B, in the same time ; whence, hy the

qtiestion,
~ + — = 1 (the whole work). And, byX y

proceeding in the very same manner, we shall have

these two other equations, viz, — -f -- = 1» and

V — —
1 : let the first of these three equations

y z

be divided by a, the second by h, and the third by c,

you will then have

X y a *

X
^

;r

"
6

'

y ^ c
*

which added all together, and the sum divided by 2,

give -^-i- — + — :=-— -^ -rr + ir I ^^om^ X . y z Qa Sb Sc

I
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whence, each of the three last equations being succes*

sirely subtracted, we get

J__ L4.i4.JL— —^^ + f^c + g^

z
"

2a 2b Qc
'^

Qabc
'

1
_^ 1 1 I ^ he — ac }- ab

y 2a 2b 20 2abc

J 1^ _ be \- a

2b 2c
"

2a

2ahc 1440

1 I
. 1 1 6c 4- «c — ah ,,— r: — +—r = —-

^ r • Hence
X 2a 2b 2c 2abc

= 23fI.--he ^ ac •\' ab — 90 + 80 + 72

— ^^^^ — 1440 __ ,^
^ "

be — ac t ab
"

QO— 80 ^ 72
"~ ^*'

— ga/^c _ 1440 __^ ""
bc + ac^ab ""90 4-80—72

"* ^^*

Let the work performed by A in one day be de-

noted by X : then his work in a days will be ax, and in

I) days it will be bx; therefore the work of B in o days
will be 1 — ax; and that of C, in b days, I — hx, by
the conditions of the problem ; whence it follows

that the work of B, in one day, will be expressed by
1 •— ax 1 -— bx

, and that of C, in one day, by —7— ; but

the sum of these two last is, by the question, equal to —

part of the whole work, that is,
—

-f .5 2x — —^ a b c ;

^ 1.1 1 ic -f ac— ah ,

whence a? = ~~ + ~ ^—-^
.
—~, equal2a 2b 2c 2ahc

* ^

to the work done by A in one day ; by which divide

1 (the whole) and the quotient,? r.will give

the required number of days iii which he can finish

the whole,
H
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PROBLEM XXXVII.

Tofind three numbers, on these conditiovs, that a times
the first, h times the second, and c times the third, shall
he equal to a given number p : that d times the first, c

times the second, and f times the thirds shall he equal
to another given number q ; and that g times the first,
h times the second, and Jc times the third, shall be equal
to a third given lumber r.

Let tiie three required numbers be denoted by cc, y,
and z, and theli we shall have

ax -{- by -\- cz tiz p,
dx + cy + fz

—
q,

gx -\- hy ^ kz — r.

From 0? times the first of which subtract a times the

second, and from g times the first subtract « times the

third, and you will have these two new equations,

j.^'2
,^ hdy— aey -f cdz—afz

—
dp^aq,

i 'bgy
— ahy + cgz

— nkz h: gp — nr
;

or, which are the same,

. bd— ae X 2/ + cd— af x z ~ dp — aq,

and,/?i>-— <zA X y + eg— ak x z = gp — ar.

Multiply the first of these two equations by the coefli-

cient of?/ in the second, and vice versa, and let the last of

the two products be subtracted from the former, and you

^v i1I next have cd—af / bg
— ah az— bd— aex eg

—uk

X z iz hg - ah X dp —aq — hd — ae y: gp — ar ; and

. ^ hg^^^^i X dp —an— bd— ae x gp— nr
therefore z - -^ r .- —^

, .

cd— af X bg
— ah— bd— ae X eg

— ak>

vvherice x and y may also be foundi

TLxaivple. Let the given equations be

X A- y \- z zz \<2,

9.x + 3y + 42 =: 38.

. 3x 4- G/y 4-102-83;

Or, which is the sj^me thing, let «- \,h—\,c~\,p-\'2,
d-Q, e-3,f-^, q-38,g-3,hzz6,k-\0, and r-83 :

then thp.>e vnlues being substituted above in that of z,
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-n u 3 — 6 '' 24 — 38 — e — 3 X 36 — 83
It Will become ^

2— 4rX 3-r.6 — 2 — 3X 3

Ha vino: exhibited a variety of ej^amples of the use
•nnd application of Al::eb«a. in the resoiutipn of prob-
lems producins simple eq nations, I shall now proceed
to give some instances thereof in such as rise to qii^^
dratic equations ; but, fir>t of all, it will be necessary
to premise something, in general, with regard to these
kinds of equations.

It has been already observed, that quadratic equations
are such wherein the hi-' best ppwer of the unknown
quantity rises to two dimensions ; of whi^jb there are

two sorts, viz. simp 9 quadratics, and ^df c ted ones,
A simple quadratic equation is that "wherein tht square
only of the unkn ivn quantity is concerned, as xx zz ab ;

but an adfected one is, whep both the square and its

root are found involved in different terms of the same
equation, as in the equation a^ \- <2ax z=. bb. The re-

solution of the tir?t of these is performed by, barely,
extracting the square root, pn both sides thep of: ' ')us

in the equation x^z= ah, the value of x is given := i/oS

(for if two quantities be equal, their squaie roots must

necessarily be equal > The method ui solut'on -vhen
the equation is adfected, is likewise by extracting the

square root; but, first of all, so much is to be added to

both sides thereof as to make that where the unknown

quantity i;-, a perfect square ; this is usual y (ailed com-

pletlnji the square, and is a ways done by taking-; half

the coefficient ot the single powder of the unknown

quantity, in the second term, and squarmg it, and
then adding that square to both sides of the equation,
'i'hus, in the equation xo." -h Qax — b^\ the ( oefiicient

of X in the second terrn being <2a, its half wd. be o,

which, squared and added to both sides, gives x^ -f 2«.r

H 2
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h a^ zz b- -^ a^; whereof the former part is, now, fi^

perfect square. "The square being tluis completed, its

root is next to be extracted ; in order to which, it is to

be obsen^ed, that the root, on the left-hand side, where
the unknown quantity stands, is composed of two

terms, or members; whereof the former is always the

square root of the first term of the equation, and the

latter the half of the coefficient of the second term:

thus, in the equation, .r^ + 9ax 4- a^ = h~ -\- a', before

us, the Fquare root of the left-hand side, x'^ ! Sax 4- «">

will be expressed by x f a (for x -f a x .t -f a = x' +
9ax -f «'). Hence it is manifest that x + a zi

s/h~ + a% and therefore .r
— \/W\~ar — o ;

from

which X is known. These kinds of equations, it is also

to be observed, are commonly divided into three forms,

according to the different variations of the signs : thus

x^ -i- <2ax zr h^, is called an equation of the first form ;

x~ — ^ax — ¥, one of the second form ; and ar^— ^ax
=: — />*, one of the third form; but the method of

extracting the root, or finding the value of x, is the

same in all three, except that, in the last of them, the

root of the known part, on the right-hand side, is to

be expressed with the double sign ± before it, a^ having
two different affirmative values in this case. The reason

of which, as well as of what has been said in general,
in relation to these kinds of equations, will plainly ap-

pear, by considering, that any square, as a:^— ^ax +
a^^ raised from a binomial root, x — a (or a — x) is

composed of three members; whereof the first is the

square of the first term of the root ; the second, a rect-

angle of the first into twice the second; and the third,

the square of the second : from whence it is manifest,

that, if the first and second terms of the square be given
or expressed, not only the remaining term, but the root

itself, will be found by the method above delivered.

But now, as to the ambiguity taken notice of in the

tljird form, where x"^ — ^ax zz — h", or.r' — ^ax -\-

a- zz a-— h^i the square root of the left-hand side

may be either x — «, or a — x (for either of these,

squared, produce the same quantity) therefore in :Iie

former case, x zz a + \/a'^ — 6^, and in the latter,

X - a —\/a'^~^b^\ both which values answer the
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coiiclitions of the equation. The same ambiguity would
also take place in the other ibrms, were not the root (a)

coufmei] to a positive value.

Wlieu the highest power of the unknown quantity

happens to be affected by a coefficient, the whole equa-
tion must be divided by that coefficient ; and if the sign
of that power is negative, all the signs must be changed
before you set about to complete the square.

All equations, whatever, in which there enter only
two diflerent dimensions of the unknown quantity,
whereof the index of the one is just double to that of

the other, are solved like quadratics, by completing
the square : thus, the equation a:* + ^ax^ — b, by com-

pleting the square will become x* + ^ax- -f a- n
b + a^; whence, by extracting the root on both sides,

X" ^ a :=: \/b -j- a* ; therefore x^ — \/b + a^ — a

and consequentl}^ x — v^v^d + a^ — a.

These things being premised, we now proceed on in

the resolution of Problems.

PIIOBLEM XXXVIII.

To find that number, to which 20 being added, and

from which 10 being subtracted, the square of the sum
added to twice the square of the remainder, shall be

17475,

Let the number sought be denoted by x ; then, by the

conditions of the question, we shall have x + 20*^ + 2

X X— idl^ = 17475 ;
that is, x^ + 40a? + 400 + ^x"^— 40x -h 200 = 17475; which, contracted, gives Zx'*~

1^^^' Hence x^ n: 5625 ; and consequently, x ~
V^5625 = 75.

PROBLEM XXXIX.

To divide 100 into tioo such parts, that, if they be muU
tiplied together, the product shall be 2100.

Let the excess of the greater part above (50) half the

number given, be denoted by x; then 50 + a? will be
the greater part, and 50— x^ the lesser ; therefore^ by

H 3
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the question^ 50 ^r x .50 — v, or 2500— x- = 2100;

whence
'

400, and cohsequentiv x - \/400 = 50 ;

therefore 50 \ x — To — the greater part, and 50— ^'

^ 30 — the less.

PROBLEM XL.

What two numhers art those which are to one anotiiti

in the r tw of 3 fa) to 5 fbj, and whose squares ^ added

together, make i666 fcj 9

Let the lesser of the two required nunibers be a-
;

hx
then, a :b ::x :— — the greater; therefore, by

the question, x'^ rl- —^ = c; whence a"x^ + h^x-- a-c,

and 3£-
- ——r, ; consequently x zz a/ __1^

(^ 1/
-

^

,7 1= 21 r= lesser numberj and— rz 35 _
'' a f "

the greater.

PROBLEM XLI,

To frjd tico numbers, ichose difference is 8, and pro^

duct 240.

If the lesser number be denoted by x, the areater will

be ,r + cS ; and so, by the question, we shall have .t* 4- 6x
— 24a. Now^ by completing- the square. ^* H- 8x

4- >6 (i:: 240 V 16) =^ 2^6. and by exrra<ting the

root, a' -4- 4 = V^^ - 16 : whence x z: \6 — 4 —

12; and T I 8 — 20; which are the two numbers that

were to be found.

PROBLEM XLII.

To find two 7uim'^ers ich".>;e difference shall he 12, and

the sum of their squares 1424.

Let the lesser be x, and the greater will be :r 4- 12 ;

therefore, by the problem, x 4- 12]' -f oc^ = 1424, or
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2a" -I- 24x \- 141 —
1424; this, ordered, gives j^ 4-

12X ~ 640; which, by completing the square, becomes
it- -f- 12.r i 36 (zz 640 + 36) =: 676; whence, extracting
the root on both sides, we have.r + 6 =: (v/676) 26;
therefore x —

20, and x + 12 zr 32, are the two
numbers required.

For ^ 32 •— 20 = 12,

? 32- V 20* - 1424-

PJIOBLEM XLIII.

To divide 36 into three such parts, that the second maj/
exceed thefirst by 4, and that the sum of all their squares
may be 4:64. »

Let X be the first part, then the second will be:r -f 4 ;

and, the sum of these two being taken from (36) the

whole, we have 32 — 2a?, for the third, or remaining

part; and so, by the question, x* + xT4\ ""

-h 32— Q.x\
^

— 464, that is, 6^^ — 12O2' + 1040 zz 464; whence
6x"— 120X =: — 576, and x- — 20.i' =: — 96. Now,
by completing the square: x- — 20x -f 100(=: loo—-

96) — 4
; and, by extmcting the root, x — 10 —

4- 2. Therefore a?
— 10 4. 2, that is, x ~ 8, or a? =:

12; so that 8, 12, and 16 are the three numbers re-

quired.

PROBLEM XHV.

To divide the number 100 fa) into two such parts,
that their product and the difference of their squares
may be equal to each other,.

Let the lesser part be denoted by Xi then the greater
will be a— x, and we shall have «— x a x — a —

j"]*— x^, that is, ax— x- — d^— 2ax; whence x'^— 3ax
= — ^2. and, by completing the square, x^ — Zax

+ — = (
— ci- -f ~~r~^— ; 01 which the root being

extracted, there comes out x =: ± i/ ^^^ and

H4



104 THE APPLICATION OF ALGEBRA

therefore x = ~ ± \/^. But cr, by the nature;

of the problem, being less than a, the upper sign (-f-)

3a /baa
gives a? too great; so that a^z: —- —y —- = 38,19658,

&c. must be the true value required.

PROBLEM XLV.

The sum, and the sum of the s guares, of two numbers

hevig given ; tofind the numbers.

Let half the sum of the tuo numbers be denoted bye,
half the sum of their squares by 6,and half the difiierence

of the numbers by x ; thtn will the numbers themselves
be represented by a— x, and a + a:, and their squares

by a^— 9,ax -4- x^, and ci* + 2ax + a:^ ; and so we
have a^ - ^ax + a^ + a^ + <2ax + a:^

~
s';, by the ques"

tion. Which equation, contracted and divided by 2

gives a- -fx^ ir 6; whenbe x^ — b — a-, and conse-

quently X z= \/ b— a*. Therefore the numbers sought
are a — \/b — «% and a 4- Vb— a*.

PROBLEM XLTI.

The sum, and the sum of the cubes of two numbers

being given; tofind the numbers^

Let the two numbers be expressed as in the preceding
problem, and let the sum of their cubes be denoted by
c. Therefore v^^ill a — xV \ a -H a?P = c, that is, by
involution and reductioni 2a^ + ^ax- = c ; whence

6aa^ =: c— 2a', x = -—
-; :=.--, -r, and x =:
6a ba 3

a*

6a 3

PROBLEM XLVII.

The sum, and the sum of the biguadrates forA^th pow-

ers) of two numbers being given; tofind the numbers.
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The numbers being denoted as above, we shall here

have a— x(* +• a + xY - d, that is, 2a* + 12a'a* -f

Sa;*r=rf; from which, by transposition and division^

a:* -t- 6a%* :^ ici
— a*; and, by completing the square,

X* f 6a a:^ -I- 9a* = ici + 8a^; whence a,-* + 3a^ =
\/ld V 8a^; andjConsequently^.rziv/—3a'+ v/|7i+Ba*.

PROBLEM XLYIII.

T/itf sutYit and the siim of the 5th powers of two nujn*

hers being given, to find the numbers.

The notation in the preceding problems being still

retained, we shall have 2a^ + SOa^x* -f lOax* ~ e; and

therefore x* + 2a^x'^ n ; and a;* + a' zr
10a 5

4/_L. 4-i^; whencex = a/ ^JL. .

^a^

PROBLJEM XLIX.

fTAflt fico numbers are those, ivhose product is 120

fa)9 and if the greater be increased by 8 ChJ, and the

lesser by 5 (cj, the product of the two numbers thence

arising shall be 300 (dj ?

If the greater number be denoted by x, and the lesser

by y, we shall have

xy
—

a, and

X -^ b y y {- c = d, by the conditions of the question.
Subtract the fi rat of these equations from the second, and

you will have x \- b x y -t- c— xy
~ d-^a, that is,

ex + by + he = d— a\ where both sides being multi-

plied by X (in order to exterminate ?/j, we thence have
cx^ 4- bxy + bcx — dx— ax ; but xy being zz a, there-

fore is bxy
—

abf and consequently, by substituting this

value in the last equation, ex* \. ah ^ hex ~ dx— ax',

whence cx^ +• bcx -{-ax — dx — — ah^ and therefore

„ , ax dv ah ... .
i . ,

x^ + bx ^
— zz ; which, by making/

~
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— /' (= 2S), will become x"— fx rr — -^

hence x^ -fx + if- = -^ + if. T-if=±

or z= 12; and consequently y ( -) =z 10, or = 7, 5.

1, W2 / 10 = 120
1 or

12 4- 8 X 10 -f 3 = 300,

AlsoS^^x 7,3 =
I20_

^ 16 -h S X 7,3 + 3 =: 300.

PROBLEM L.

To find tii'o numhers, so that their sum, their product,
and the difference of their squares, may he all equal to

one another.

The greater being denoted by .r, and the lesser by z/,

we have x t- y = ^ */, and x f y
—

x'- — ?/^: the last of

these equations, divided by :r -f y, gives l
— x — y,

Avhence x ~
\ f

yy ; this value, substituted for .fin the

first equation, gives 1 -^^y
—

y -^ y' ; therefore y"^
—

y
= 1, and y zz --

-{ \/-^\ consequently .t {1 4- y)
~

-^

kWZ
PROBLK'M LI.

To divide the number 100 fa) into two such parts,
that the sum oj their square roots may be 14 fbj^

Let the greater part be x, and the lesser will bee—x;

therefore, by the problem, \/x + v/a — x —
b\ and,

by squaring both sides, x {• 2\/ ax— xx \- a — x — bb;

whence, by transposition and division^ \/ ax — xx rz:

—
-^^^ : therefore, by squaring again, ax — xx —

hb— aV 5 , bb
. , or x^

bb^a~\ b*
ax (= -^J zr — -_

-f.
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a
-, and X - ~ \- Y

'2 4." 2 '^ 4

-l^<2a— t)^ — 64 — the greater part; whence a — x

1= 36 = the lesser part

PROBLEM LII.

A grazier bought in as many sheep as cost him 60L
•ut of which he reserved 15, and sold the remainder for
54 1. and gained two shillings a head by them : the ques-
tioH is, how many sheep did he buy, and what did they
cost him a head ?

Let the number of sheep be x\ tlien if 1200, the

number of sliillings which they all cost, be divided by.r,

the quotient, -^^ , will, it is evident, be the number

of shillings which they cost him a piece ; and so the

number of shillings they were sold at per head will

be- -f 2, by the question -y
and therefore this, mul-

tipliedby.T
—

13^ the numberof sheep so sold, will give

1206 V 2^ '— 30> equal to the whole numbei

of shillings which they v/ere ail sold for; that is, 11 70

^ 2^-^ ii229 =: 1080: hence we have ll70r + 2.?^
X

— 18000 = 1080.Y, 2J^- H- 9OX
—

18000, JP^ + 43x =r

9000, ando? = v/2306.23 — 22,5 — 75, the number

of sheep ; an^

price of each.

of sheep; and consequently
——- — 16 shillings, the

PROBLEM Liir.

Two cowitry-women, A and B, betwixt them brought
100 fcj eggs to market ; they both received the same sum

for their eggs, but A. (who had the largest and bestJ says
to B, had I brought as many eggs as you I should have
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feceired IS faJ pence for them: but, replies E, had t

brought no more than you, / should have received only 8
(bj pence Jor mine: the question is, to find how mami
eggs each person had ?

If the number of enfgs which A had be =z x, tlie
number of B's eggs will be z: c— a: ; therefore, hij the

problem, it will be, c— :r : c : : a? : -^^ - the num-
c—X

ber of pence which A received ; and as a^ : 6 :: c x -.

-—
^
—- ~ the number of pence which B received •

whence, again, hij the problem, -^^ — —^i-^_J^; and

therefore ax^ — 6 x c — a
j^

=. bc'^ — ^hcx + bx^ ;

which equation, ordered, gives x* +
'^^

a — b a— b

from whence x comes out (
~ V

he X c\/ab^hc -r.
'

,

^;^l)— ZD
— — ^^' But the value of 0? may

be othervvisCj more readily, derived from the equation
ax"^ := 6 X c — xf ,

without the trouble of completing-
the square; for the square root beinsr extracted on both

sides thereof, we have a \/a zz c— .i- x \/b; whence

Xy/a^-x\/b
—

c\/'by and consequently x
— - .^ f

lOOi/S lOO-v/4 , -

n ^ = — 40, as before.

PROBLEM LIV.

One bought 120 pounds of pepper, and as mamj of

ginger, and had one pound of ginger more for a crown
than ofpepper ; and the whole price of the pepper ex^

ceeded that of the ginger by six croivns: hoto many
pounds of pepper had he for a crown, and hoic many of
ginger ?

Let the number of pounds of pepper which he had

for a crown be x, and the number of pounds of ginger
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will he X + 1 : moreover, the whole price of the pep-

per will be— crowns, and that of the ginger

120 120
therefore, by the question,

-—— •=. 6; whence
X 1.1' "T* 1

120X +120— 120.r = 6.r* + 6.r, and therefore .t^ + x
— 20; which, solved, gives x ~ A — the pounds of

pepper, and x -{- \ zz 5
— those of ginger.

PROBLEM LI.

To find three numbers in arithmetical progression,
whereof the sum of the squares shall be 1232 ( aj, and
the square of the mean greater than the product of the

tivo extremes by 16 fbj.

Let the mean be denoted by x, and the common dif-

ference by tj ; then the numbers themselves will be x—y,

.r, and a; -h y; and so, by the problem, vfe shall have
these two equations,

X — yV + 07* 4- 0? 4- 7/1'
z: a, and

X- — X —
2/ X a: i- y -\- b'. these, contracted, become

3.r* + 2,v* - a, and a;'
-

x^—?/' 4- ft; from the latter,

whereof we get t/^ iz 6 — l 6 ; and consequently y
~

\/b — 4
; which, substituted for y in the former, gives

:t^ + 26 zz ci; whence eT^
— ~, and therefore

- . / « -- <2b _
20; so that the three required

numbers are 16, 20, and 24.

For ^ ^^' ^ ^^' + ^'^' - ^^^^'
i 20' — 16 X 24 =: 16.

PROBLEM LVI.

To fi,>)d two numbers whose difference shall be 10 faj,
arid if 600 fbJ he divided by each of them, the difference
if the quotients shall also be equal to 10 faJ,

1 he lesser number being represented by r, the greater
will be represented bya; + a; and therefore, by the prob^
J

b h
lem — — -—— ~rt; which, freed from fractions.X X ~\- a '
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gives bx + ha — hsr - aoc^ - a^r, that is, ha = ax^ -\-

a^a; whence, dividing by t/, and compltting the square.
Vie have a: f ax -r ^a'^ _ Z> -hl-a ; theieture x t [a zz

\/ b \
-J-o',

and consequently x — v b ^a-
— la

—

SO, the leaser number, whence x + a zz ZQ, the greater
number.

PKOBLEM LVII,

To fi'td tivo nnmhers ichjse sfim is SO faJ, and if they
he divided a: emattlq by each otktr, the sum c/ the (quo-

tients shall be 3^ (hj.

If one of the numbers be t, the other will be a — Xj

X a ~~~X
and we shall therefore hcive -\ — b: which

a — X X

equation, brought out of fractions, becomes x 4-fl^ —
2ax -\- x'-

- ax — 6a*; and this, by transposition,

p:ives 2.x* -f bx' — -^ax — obx — — a\ thjt is,

"2 -^ h y x'— 2 h /: ax ~ — a^ ; whereof both sides

being divided by 2 -h /*, w'e have x — ax — —

2 + 6
; whence, by completing the square, a*— ax -i

a* a"" a^ , r . . /a- a
- _ . , hence x — {a zz ± l/ .,
^ 4: <2 V b y ^ a \- b'

andr = — ± a/ - —
^ '^\ ,

- ^O? or -
20; which

2 ^ 4 ' 2 f 6

two, are the numbers that were to be found.

PROBLEM LVII I.

To divide the numher 134 fa) into three such parts,

that once thefrH, ticice the second, and three times the

third, added together, may be - ^7SfbJ, and that the smn

of the squares of all the three parts may Lc zz 6036 fcj.

Lot the three parts be denoted by x, //,
and 7, respec-

tively ; then, from the conditions of ttie problem, wf

shall have these three equations.

.r + 7/ + z -zz a,

X ^r 2?/ 1- 32 -
b.
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Let the first of these equations be subtracted iVoin the

second, whence
?/ -f 22 — b — a^ ov y zz b — a— 2z;

also, if the double of the first be subtracted from the

second, there will come out z— x — b — 9a, orx z= z

\- 2a — b : wherefore, if/ be put = b ~ a {— 144),

g — h — 2(2 (— 10), and for y and Xy their equals/—2z
and z — g, be substituted, bur third equation, x''^ -f y~
\- 2* = c, will become zz — '2gz -f gg -¥ (f

— 4A
4- zz =z c; which, ordered, gives 2^ —

—
L^—^-

; whence, bv putting; h -in

•—-), and completeing- the square, &c. ;:^ i-^

3

=: 50 : therefore y {
— f— 2c) = 44, and .t

(

—
z — g)

z: 40.

PROBLEM LIX.

A traveller sets out from one city B, to go to another C,
at the same time as another traveller sets outfrom Cfor
B; they both travel uniformly, and in such- proportion^
that the former, four hours after their meeting, arrives

at C, and the latter at B, in nine hours after : noic the

question is, to find in how many hours each person per-

formed the journey ?

D
3

j
C

Let D be the place of meeting, and put a — 4^h — 9,

and X — the number of hours they travel before they
r.YieX : tlien, the distances gone over, with >he sume uni-

form motion, being always to each other as the times m
which they are described, we therefore have, BD :

DC : : X ftlie time in which the first traveller goes the

distance BD) : a (the time in which he goes the distance

DC) : and for the same reason, BD : DC ::'h (the time

in which the second goes the di'^tance BD) ; x (the time
in which he goes the distance DC) : wherefore, since it

appears that x is to a in the ratio of B D to DC, and h to

X in the same' ratio, it follows that x : an b : x; whence

x'^-ab, and ^ ~\/ ab [zz 6); therefore a -^s/ab
-

10,

<^nd b -f \/ah zz 15, ae the two numbers required.
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PROBLEM LX.

There are four numbers in arithmetical progression^

whereof the prodw^t of the extremes is 3250 faj^ and
that of the means 3300 (bj ; what are the numbers ?

Let the lesser extreme be represented by y, find the
common difference by x ; then the four required num-
bers will be expressed byy, y -\- x^y -{ 2r, and y + 3x :

therefore, by the question, we have these two equations,
viz.

y y y -\- 3x^ or y
- + 3xy

—
cr, and

y + X y + 2x, or ?/* + ^xy 4- 2a:' = b ; whereof

the former being taken from the latter, we get so?-
—

h— a : and from thence x — \/
^ = 5. But, to

find y from hence, we have given y'^ + 3.rr/ rz a (by the

first step) ; therefore, by completing the square, &c.

X Q t
^ SX

y zz 4/ G 4- = 50 : and so the four^ V 4 2

numbers are 50, 55, 60, and Q5.

PROBLEM LXI.

The sum fso), and the sum of the squares (308) of
three numbers in arithmetical progression being given;
to find the numbers.

Let the sum of the numbers be represented by 3//,

the sum of their squares by c, and the common diffe-

rence by x: then, since the middle term, or number,
from the nature of the progression, is

—
6, or ^ of the

whole sum, the least term, it is evident, will be ex-

pressed by b — a:, and the greatest by 6 + x\ and

therefore, by the question, we have this equation,

/7— xl' -h b^ "+- b + xV — c
; which, contracted,

dves 'z¥ -f 2^2 —
c; whence 2a;* - c — z¥, and

oc zz y
^ — - 2. Therefore 8, 10, and 12, are

the three numbers sought.
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PROBLEM LXII.

Having given the sum (h), and the sum of the

squares fcj of any given number of terms in arithme-

tical progression ; to find the progression.

Let the common difference be e, the first term x -{- e,

and the number of terms n : then, by the question^ we
shall have

X f e + .T + 2e + T f 3e x ^r ne —
b, and

X 4- e|' -1- X + 2eV- + x + 3e\" x -^ ne]" z= c.

But {by Sect. 10, Theo. 4.) tlie sum of the first of these

progressions is nx 4- -^— —'—
: And the sum of the

second (as will be shewn further on) is =: nx^ -h

n . n -{- I . 2n + \ . e
n , n + I . xe ^ '-

'

: therefore our
6

two equations will become

nx -i zz 0, and

n , n ^ \ . 2n \- ] » e-

vx^ -[- n , n ^ I . xe H —„— — = c.
o

Let the former whereof be squared, and the latter

multiplied by n, and we shall thence have

n'^x' 4- n^ . ^Tl . ^e +
^-^^+^^'''^'

_ h\ and

w*a?2 + w"- . w + 1 . xe -h
g

— = nc

let the first of these be subtracted from the second, so

;hall t^IL±^^l±ll^ «
^ ^n^-xV,^ ^ ^^__^,

C 4

W^ . W 4- 1 . 2/2 +- I »- . W -i- 1
>

But -
* ^ \

' '

is -«- .w -I- 1 X
6 4

2/2 1-1 w 4- 1 , 8/2 + 4 — 6/2—6
w . /2 t- I X 24



^

<**3 «i 1 1
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€(\ together, must, by the conditions of the question,
be equal to 500 miles, the whole given distance

; which
we will call b, and then we shall have p 4- m x ar -h

X X X— 1 xe— d , ^.g-a?x X— 1 _
.= b,ovfx + ^- = h, by

writing / = /> -f m, and g = e— d\ which equation
is reduced to gx"^

-^ gx \- ^fx ir 26, or a^* — x -\~

2 fx qI)^ ~
F' ^^^"^^» ^y completing the square, &c. x

o o _______________

.L+L But ill

g 2

. 1/26 7 1
comes out — V —

-{-
^

g g ^

the particular case proposed, the answer is more simple,
and may be more easily derived from the first equation

X X X— 1 X e— d
p-\-mAx\ z= b; for, e being r: J,

^ — will here entirely vanish out of

the equation; and therefore x will be barely
—

^
p -\- m

— — — 5. The same conclusion is also readily

derived, without algebra, by the help of common
arithmetic only : for seeing the sum of the two dis-

tances travelled in the first day is 100 miles, and that

the post B increases his distance, every day, by just as

much as the post A decreases his, it i^ evident, that

between them both, they must travel 100 miles every

day ; therefore, if 500 be divided by ipO, the quotient
5 will be the number of days, in which they travel

the whole 500 miles, %^

PROBLEM LXIV.

Tico persons, A and B, ^e^ o?.it togetherJrom the same

place, and travel both the same n-ay : A goes 8 mileF. the

first day, 12 the second, 16 the third, and so on, increasing
4 miles every day : hut B goes 1 mile the first day, 4 the

second, 9 the third, a-tid so on; according to the square of
the number of days : the question is, to find how many
days each must travel before B comes up again with A.

I 2
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Let (4) the common difference of the progression 8,

12, 16, &c. be put
—

e, and the first term thereof minus
the said common difference iz w?, and let the number of

terms, or the days each person travels, be expressed by
X : then the sum of that progression, or the number of

^ X }' -\' 1 X c
miles which A travels will he x y. m ^- -—^

(by Sect, 10, Theor.4.) And [by whatfoUoics hereafter)
the sum of the progression l + 4+9 x", or the dis-

tance travelled by B, will appear to be^£i!LJlL?li±J :

.IP 7 x7 X. 1
-^ X .T-1- 1 X 2.1- 4- I

therefore, by the question, we have — —_
X X X 1 \ yc €

-=, mx + ^— : which, divided by x and con-

, , . 2.T- -1- 307 4- 1
.

ex 4 e
tracted, gives

~ = m -f ; whence
O 2i

„ .
3a? Zex ^ ;

3e 1
, ,

x" ^r ~ rp = 3m + -; and, by complet-
f

,, .
,

3x sex ,9 18e
ing the square, a- + -- + ---._—- +

9^' „ .

3e 1,9 18e
, 96-_ (^ 3m -1-

— - - + ^ -
-^ + ^^ z.

A 48m + I -f 3er ,

] =
-^

-'
; whence

48m + 1 + 6e 4 9^^^ _ 48m + I -f Te]'

-.3 3e v/48m + 1 +^3^]* ,

a? +
-^
— — = ~

, and x =:

v/48m -h 1 + 3ei* + 3e— 3 ^ . , „_.—_ -.
7^ the number of

days required. >^

PROBLEM LXV.

The sum of the squares faj, and the continual pro-
duct fbjy offour numbers in arithmetical progression

being given; to find the numbers.
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Let the common difference be denoted by <2x\ and

the lesser extreme hy tj
— 3x; then, it is plain, the

other three terms of the progression will be expressed

hy y — X, y + x, and y ^ 3x respectively ; and so, hy

^ ^Ae question, we have

y— 3x1* -h y— a^r + y + a^P + y +3x1^ rz a, and

y — 3x X y — X X y + X x y -{^ 3x zz h,

that is^ by reduction,

4y~ 4- 20*'' — a, and

from the former of which ?/* = ^a — 5x" : and there-

fore y'
—

Te-tt*
—

^ax'' 4- esx"^: these values being
substituted in the latter, we have -^-^a-

— ^ax- + 25x'*

— ^ax^ '\- 50x* -t- 9a?^ — b, and therefore a*

zz — — -^
——

; whence, by completing the square84 lo X 84

x* ^ + ( = — + 1
=

84 4 X 84 X 84 V 84 84 X 84;

?i^; therefore a- - -^ = ±^^^*±Z
84 X 84 2 X 84 84

and X = y/3« ± 2V/846 + «^. ^j,^„^^ ^
lo8

\/^a— 3x*
)
is also known.

PROBLEM LXVI.

The difference of the means fa), and the difference of
the extremes (hj, of four numbers in continued geome-
trical proportion being given; to find the numbers.

Let the sum of the means be denoted by x\ then the

X -\- a
greater of them will be denoted by , and the les-

ser by : whence, by the nature of proportionals, it

I 3



WWi# '- m

118 THE APPLICATION OF ALGEBRA

will
be.i^J^

: iZZ^ .... -^ , ^EUL, the lesser

extreme, and ^Tl?
: ^±-^ .. ^±f .

^ "^ «''
thp

2 2
'•

2
•

2x— 2a'
"^

greater extreme : therefore, by the problem, we have

i^="2"^"~iITiS
== ^' ^"d consequentlyFT^ -

a?— a^' = 26 X a?— a x a: + a, that is, 6x'a + 20^ 1=

Qb X ct""—«*; whence x^ =: -7 ,
and consequently

X z= ay
b + a

b—3a

PROBLEM LXVII.

The sum, and the sum of the squares of three numbers
in geometrical proportion being given; to find the num^
bers.

Let the sum of the three numbers be denoted by a,
and the sum of their squares by b, and let the numbers
themselves be denoted by x, y, and z : then we shall have

a? + y -h 2 = a,

cT* f y^ + z^ zz b,

and xz = y\ ^

Transpose y in the first equation, and square both

sides, so shall x^ + 2az + z^ = a^ — Qay -f- y^ ; from
whence subtracting the second equation, we have 2xz

^—y^
— a- — 9oy + y*

-- b: but, by the third, Qxz
=: 2y'; therefore y'

— a- — 2ay +5^*— b; and conse-

quently V == =^ • -T—- Now, to find X and

2, y may be looked upon as known ; and so, by the
-^1^

second equation, we have given x* + z^ zz b — y' ;

^^

from which subtracting Qxz = Qy^, there arises x' —
2xz i- z^ zz b — 3y^ ; where, the square root being

extracted, we have x — z zz \/b — 3y* ; but, by the

first equation, we have x -^ z
— a — y ; whence, by

adding and subtracting these last equations, there results

Qxzza-^y \r\/ b—Syy^ and <2z
- a—y—s/b—Syy.
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PROBLEM LXVIII.

The sum fsj, and the product fp) of any two num.'*

hers being given ; to find the snm of the squares ^ cubes ^

biguadrates, ^c, of those numbers.

If the two numbers be denoted by x and
?/ ; then will,

^^ + y = ^
}

btj the problem.and a ?/ = p S
•;

^

^ The former of -which, squared, gives xx + Qxy + yy ;

fc

il'

from whence subtracting the double of the latter, we
have a;' + y-

—
s"^ -- 2p, the sum of the squares.

Let this equation be multiplied hy x -{• y zz s
; so

shall x^ -h xy X xT~y + y^ — s^ — Qsp, that is, x^ +
X -^ -H y^ — s^— Qsp {because xy •=. p, and x -V y —s),

nd therefore x^ -i- y^ zn s'^ — 35/), the sum of the cubes.

Multiply, again, hy x + y = s, then will x* + xy
y ¥M^~^ -f ?/" =. 5*— 35'p, or x' '{- p X s^ — 2p -f

y* z= 5*— Ss'^p (because x'^ + y-
—

s^ — 2/?). Conse-

quently cT* -f ?/* z= 5* — 45*jt> -t- 2p^, i/ie 5?<w 0/ the

biquadrates.

Hence the law of continuation is manifest, being-^^.
such, that the sum of the next superior powers will bew
always obtained by multiplying the sum of the powers
last found by s and subtracting from the product, the

sum of the preceding ones multiplied by p. And the

sum of the n\h powers, expressed in a general manner,

•n V n n—2 .
^ 3 72—4 „ 72 -— 4

Will be 5 — ns p + n , . s p^— n , .

« — 5 v—6^n . ^ n — 5 w — 6 n— 7 tz-s^*
, s p^ -{- n , .

—
. . s p f

3
^

2 3 4
^

&C.

PROBLEM LXIX.

The sum of the squares (a)^ and the excess fbj of
the product above the sum of two numbers being given ;

tofind the numbers.

Let the sum of the numbers be denoted by ^, and
their product by r : then the sum of their squares will be

I 4
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s^— 2r{by the last problem), and we shall have r— s

— b, and s^— 2r = a, whence, by adding the double ^
of the former equation to the latter, 5'—2s — a^ 2b; wgjk
and consequently 5 in %/ a 4- 26 -f 1 f 1. From which ^^
r {— b -\-,s) is likewise known; and from thence the

numbers themselves. m
PROBLEM LXX.

The sum (a), and the sum of the squares fbj offour
numbers, in geometrical progression, being given; tofnd
the numbers^

If a: andy be taken to denote the two middle numbers,
the two extreme ones, by the nature of progressionals,

a?* y'~

will be truly represented by — and -^—
.

Put the sum of the two means —
s, and their rect-

angle
—

r; so shall the sum of the two extremes

(
__ j^}!y\\^Q

~ a — 5, and their rectangle also = r

\y X J

.tor (by the nature of the question). But [hy Problem 68}
,r the sum of the squares of any two numbers whose
'- sum is 5, and rectangle r, will be — 5i — 2r ; and (for

thevery samereason) the sum ofthe squaresofourother
two numbers (whose sum is a—Sy and rectangle r,) will

be z: a—s\^— 2r. Therefore, by adding these aggre-
gates of the squares of the means and extremes toge-

ther, we get this equation, viz. ^^ + a— ^1*— Ar zz. b.

Moreover, from the equation —- ^- — —a — ^,

2/
^

we get x^ + 2/^
—

xy a a— s ~ r x a— s: but {by the

same Prob, just now quoted) x^^-y^zzs^
—3sr \ therefore

"'•• s^
f3— 3^^

— ar — sr, oyr— : which value be-
2s -i- a

ing substituted for r, in the preceding equation, wc

have s' + a^' — ^
—

I

— - ^* '^^'^^* solved, gives
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0,' r: \/ — i \
~

: whence every thini?

t^lse is readilv found.

PROBLEM LXXI.

The sum [a) and the sum of the squares (h) of five

numbers, in geometrical progression, being giren; t^

find the numbers.

Let the three middle nambers be denoted by x, y,

and z : then the two extreme ones will be -^— and — ;

// y
and therefore we shall have

, 4 r" by the question._ + x'-\-y"^z'+
j^

-
b, )

Put 0? + z
—

u; then, by the first equation, — h —
y y

= a — u —y. Wherefore, seeing the sum of the two
extremes is expressed by a—u—i/,and their rectangle

by y^ [See Theor. 7. Sect. 10), the sum of their squiires

will [by Prub. 6S) be ~ a — u -^
y''^
— 2V* • ^"^» ^" ^'^^

very same manner, the sum of the squares of the two
terms (rand z) adjacent to the middle one [y) will be

•zz w* — 2^-. Whence, by substituting these values^

our equations become -^-—^
-\- u -\- y

~
a, and

a — u—yi
^ —

2y^ + ?/ — 2?/'' -[- ?/^
—

6; which, by
reduction are changed to

aa — 2«« — 2a?/ -f ^uu -f 2Zf?/
— 2yy — &,

and ay — uu — wy 4- ?/?/
= 0.

To the former of which add the double of the latter,

so shall aa — 2az^
—

b-, and therefore u — *

2 2a

f
^Hr
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Jrom whence, and yy ^- a — u x y — uu, the value of jr

(=• uu 4- ) IS likewise sriven.
4 2 /

"^

PROBLEM LXXII.

The sum (a), the sum of the squares [h], and the sum
of the cubes [c), of any four numbers in geometrical
proportion being given; to find the numbers.

Let half the sum of the two means be x, and half

their difference y ; also let half the sum of the two ex-
tremes be z, and half their difference v^ and then the
numbers themselves will be expressed thus, z — i?,

X— yt X -\- y^ z -^ v\ whence, by the conditions of
the problem, we have

z-



m
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that is, 6aa?''— 3a"x + ~ + — —
c; therefore x""—

4 4

ax c b a^ ^
, a

--=
;5 ; and consequently oc — -

^ ^'^'T'^ TS» whence, 2, v, and 2/,
are likewise

ufl 8 4o

known.

7^Ae same otherwise.

Let the sum of the two means = s, and their rect-

angle 1= r; so shall the sum of the two extremes = n—
5, and their rectangle also —r [hy the question;

from whence, and Proh. 68, it is evident, that the sum
of the squares of the means will be —

s^''
— '

2r\ and

the sum of the squares of the extremes ~ a— s^— 2r; also, that the sum of the cubes of the means

will be — s^— 3r5, and that of the extremes =: a — s\^

— 3r X a— s\ by means whereof, and the condi-

tions of the problem, we have given the two follow-

ing equations,
viz, s 4- a—s^'-— 4r ~ 5, or 2/^— 2a.9— Ar — b — ««;

and^^ -}- 10^^^ ^—3ra — c,OY3as'— 3a-s — 3ar — c—a^z

divide the former by 2, and the latter by 3a, and then

subtract the one from the other, so shall r = —x
6 2

C CL

H ; whence the value of .9 (

~
3a ^2

V -^^ h 2r -1 , by the first equation) is also

given, being {when substitution is made) zr
2*

4 / aa h 2C

12 T ^'

PROBLEM LXXIII.

Having given the sum, faj, and the sum of the squares

(b)^ of any number of quantities in geometrical pro*

gression; to determine the progression.
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Let the first term be deRote(J by x, the common latio

by z, and the given ijumber of terms by n: then, by
the conditions of the problem, we shall have

a; + xz -{- xz"" + xz^ -f xz* ... f ^2«-^ =: a,

x^+ :rV 4- x"z' + x^~z^ + a;V ... + cT's^""^ := h.

Multiply the first equation by l — 2, and the second

by 1 — 2^ ; so shall

X — xz^ ~ a x 1 — z
, and

Divide the latter of these by the former ;
whence will

be had x + xz^ — — x 1 + z: let this equation and

the first be now multiplied cross-wise, into each other,

in order to exterminate x ; so shall a x 1 + s** =:

— X 14-2; X I + z-^ z^ + z^ .,, z^'—K

If n he an even number, put ^m — n; then our last

equation, when multiplication by i -f 2 is actually

made, will stand thus, ^ x 1 + z"" :r 1 + 22 f^ 22*

.:.. + 2/'"-"2 _j. ^^2m^\ _j_ ^2;.. ^^,|^i^h, divided

by s"», becomes -^ + — •+ z"" zz ~ + r +

2.2.2 .

-;^:::2....+ -^ + -7 + 2 + 22 + 23= .... + 22'«-2
X- z

\r Qz"'—'^ + 2'". Let s be now put {

~ — + z) zz
z

the sum of the halves of the two terrhs of the series

adjacent to (2) the middle one ; then, the rectangle of
these quantities being 1, the sum of their squares (or
half the sum of the tuo terms of the series next to

those) will be — s^ — 2 {by Problem 68) ; and iIjc sum

/J- 4- 2^) of half the two next terms to these last =
\z^

s^ — 3s, &c. &c.
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Hence, by making d — -~ — —and putting the va-

lues of -;;;
+ z^ (as expressed in the said problem 68)

= Q, and then subtracting above, &c. our equa-
tion becomes dQ, — l +^-h^* — 2+*^ — 3^ +
s^— 4^-2 -t- 2, &c. continued to m terms ; v^^hence the

value of .9 may be determined.

Thus, let n, the number of terms given, be four;

then m being =z 2, Q (= -^ + %") will be s'^— 2;

and our equation will, here, he d x s^ — 2 1= 1 -\- s.

If w be -
6, O (=r -3 + z^) will be = s^— 3S', and

we shall have d :k s^ — 35 = J +5 + 5^ — 2 =:

^^ -f ^ — 1
; and so in other cases, where n is an even

number.

If n be an odd number, put 2m =: n — 1 ; and let;

both sides of the equation

« X 1 + 2" = — X 1 + s X 1 4- 2 + 2' ... 2

be divided by 1 + s ; so shall

w~l

a X 1—z 4-s'—a'...—3'*—^+ s"—^= - X H-2 4-s^..+ 3«--^

(because 1 -f 2 x l —. z 1- 2^— z^-h s* ...—s'^^^+s"—^

_ U — 2 + 2- — 2' 4- 2* ... — 2"-2 + 2"-^ *
>
__

C+3 Z -fx^^z*... 4-2; 2 -f2>
1 — 2") : whence, by transposition, and substituting m.

b
a — -- X 1 -f 2* 4- 2* ... + 2^^"* = « + "TT ^

z + z' -h 2^ . . . 2'^'"—^ ; put ^^ =: c, and let the^ aa — b '

whole equation be divided by a x 2"*
; then will

a

m
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so 5 + ^f
— 3s zz c X 1 + /^ — 2, or ^^— Qs zz c X.

s^— I, by case 2, Lastly, if n ~
g^ then m z= 4,

and therefore 1 + *"— 2 + s*— 4^^ + 2 = c x 5 + s^-^3s,
or i' — 3s" + i zz c X s^ — 25, ^»3/

ca^e 1.

PROBLEM LXXIV.

- -:r* X ^rui^^'^TL^ ^ :.« X ^!l±-^!_Li be.
« 2 '— 1 X 2'* — 1

Z" + 2 + 1

cause _ -
;s' 4- 2 + 1, and —• zz z ^

2 1 Zn 1

z'* + 1). Let this equation, and the square of the first

a- zz x" X
^^'^ ^^

t-i, be now multiplied, cross-
2'' — 2z + 1

wise, irf order to exterminate x ; whence wifl be had

b z^"-—<lz^ \- \ „ z2« 4- z" + 1 u- u— X -7
'— = a" X : which,

a. 2^ — 2z 4- 1 2* 4- 2 + 1

the numerators being divided by z", and the denomi-
nators by z, will stand thus,

1 1

22_2_j. _ z«+ 1 -I-
—-

6 , il^„. ^ -^ f . Put (as be-

2— 2 _j-_L 2 4- 1 4- —
2 2

^

Haviag given the sum faJ, and the sum of the cubes

fbj, of any number of terms in geometrical progression; -^<

to determine the progression.

By retaining the notation in the last problem, and

proceeding in the same manner, we here have

a zz X \' xz -f .rz" . . . + xz""^^ zz ""^^LlZJ^ and

bzzx^^ xH' + a;V . . . + a;^2'«~^ zz —^ ^ (6^ -::,

Theorem 8, Sec^ 10.) ^^ Nf*

Divide the last ofthese equations by the former, so shall wB^

#
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before) the sum of z and — ^ si then, their rectan-
z

gle being i, the sum of their wth powers {z^ -\ \

will be had in terms of s (from Problem 68,) which
sum let be denoted by S; so shall our equation become

5 X —-^ — a' X : w^ience the value df s
.9
— 2 5+1

may, in any case, be determined.

Thus if {n) the given number of terms be 3 ; then

S (the sum of the cubes of z and—
) being

—
s^ — 3s,

that
i

, by division, 6 x 5* + 2^ + 1
—

a^ X

Is^ If the number of terms be 4; then will S —
**—

ihi ^» 4*' + 2 ; and therefore b x —
a^ x ;

IP ^F s— 2 s \- I

which, by an actual division of the numerators, is

«^ reduced to 6 x 6-' -f 2*^ = a^ X s'^ — 5*— 3* •+• 3.

Again, taking w = 3, we have S ~
s^ — 5s^ + 5*;

..t i- I s^—5s^^-:is-2 ^ s^-^ds"^ ]r 5s i- 1
and thereiore 6 X - — a^ x

s— 2 s f 1

'i

which, by division, is reduced to h x 6* -f 2*^— a''*
—2^ f l

. ip = a"^ X s* — s^ — 4a"* 1- 4* 4- 1 : and so of others ;

where it may be observed, that the values of S — 2,

,^v
and S-f*l, will be always divisible by their respective
denomina'ors; except the latier, when n is either 3,

or a multiple of a,

PROBLEM LXXV.

The sum of any rank of quantities (a + 6 f c + c? -4-

€ 4- &c.) being given
—

P, the sum of all their rectan-

gles [ab f ac + ftc/ &c. -f- he ^ bd &c. 4* cd &c.)— Q, the sum of all their solids [abc -f a^d + abe &c.

I

4- acd f ace &c. + bed &c )

— R &c. &c. it is pro-

\ posed to determine the sum of the squares, cubes, biqua-^

dratesy &c. of those quantities.



TO THE RESOLUTION OF PROBLEMS. 129

rp
— b + c -^- d &CC,

— sum of all the quan-
tities after the first [a),

q
— be {- bd + be &c. + cd -[- ce &c. =r the

Put^ sum of their rectangles,
'' r = bed -{- bee &c. + cde &c. =z the sum of

I their solicls.

L &c. &c.

Then will ? zz a •+ /?,

Q —
pa + g,

R —
qa + r,

S — ra + ^,

T — sa ^ t, &c.

By squaring the first of which equations, we have

P* = a" f 2ap + p- ;
from whence the double of the

second being subtracted (in order to exterminate Qap),

there results P^ — qQ = a' + p'
-—

2q. Where
p*— 2Q expresses the true sum of all the proposed

squares a- -\- b^ + c^ -^^ d^ &c. ; because, all the

quantities a, 6, c, d, &c. being concerned exactly alike

in the original, or given equations, they must neces-

sarily be alike concerned in the conclusions thence de-

rived; so that if substitution for p and q were to be

actually made in the equation P*— 2Q = a^ 4- />"
—•

29,
here brought out, it is evident that no other dimensions
of b, c, d, e, &c. besides the squares, can remain there-

in, as no dimensions of «, besides its square, has place
in this equation.

In order to find the sum of all the cubes,

put A(zz ?)
— a -{' p

— sum of the roots,
and B (- P^— qQ) = a^ -f p^

—
29 zi sum of the

squares ; then, by multiplying the two equations toge-
ther, we have PB =: a^ -f pa^ f p^a— 2qa -f p^— Qpq.
From whence (to exterminate pa- the next inferior

power of a after the highest, a') let QA —
pa^ -h

p'^a \- qa -f pq (the product of the equations Q arid A)
be subducted

; and there will remain PB — QA =
a?— 3qa + p^— Zpq, To this last equation (in order
to take away the next inferior power of a) add three

times the equation R zi 9a -t- r, so shall PB —
QA -f 3R IT a^ + p3 — 3pq -f- sr. From whence
it is evident that PB — QA + sR must be the re-

quired sum of all the cubes a^ + 6^ + c^ + d^ ^q,
K
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for reasons already specified with respect to the pre-

ceding case.

To determine the sum of the biquadrates, put
C zz a^ + p^

— 3pq -4- 3r = the sum of all the cubes;
then multiplying- by the equation F — a -t- p (as be-

fore), we get PC
— a^ + pa"" ~\- p^a — 3pc/a + 3ra 4-

p*— 3p"q 4- 3pr, From which (to exterminate pa^)
subtract QB •= pa? + p^a — ^pqa -\- qa' -f p'^q

—
29*

(the product of the equations Q and B;) so shall

PC — QB = a* — qa}
—

pqa + 3ra + p* — ^p'q +
3pr 4- 29- ; to this add RA —

9a* -f pqa -\~ ra + rp;
then will PC — QB + RA =z a* + 4ra -f p*^4p^q
-f 4pr -I- 29*; lastly, subtract 4S = 4?'flc 4- 4^, so shall

PC — QB 4- K A — 4S = a* 4- p* — 4p"q 4- 4pr 4-

2g-
— 4:S

—
D, the sum of all the biquadrates.

In like manner (the last equation being, again, mul-

tiplied by P = a 4- p, the preceding one by Q —
joa

4- q, &c. &c.) the sum of the fifth powers will be

found =: PD — QC + RB — SA 4- 5T: from

whence, and the preceding cases, the law of continua-

tion is manifest; the sum (F) of the sixth powers being
PE — QD 4- RC— SB + TA •— 6U; and the sum

(G) of the seventh powers = PF —- QE 4- KD —
SC 4- TB— UA 4- 7W, &c. &c.

But, if you would have the several values of B, C,
D, E, &c. independent of one another, in terms of the

given quantities P, Q, R, S, T, &c. then will

B = P^ — 2Q,
C = P' — 3PQ -I- 3R,
D r= P^ — 4P^Q 4- 4PR 4- 2Q2 — 4S.

E - ps __ 5p3Q ^ 5p:R 4. 5pQr _ 5PS _ 5QR
f 5T, &c. &c. which values may be continued on,
at pleasure, by multiplying the last by P, the last but

one by — Q, the last but two by R, the last but three

by— S, &c. and then adding all the products toge-
ther ;

as is evident from the equations above derived.

These conclusions are of use in finding the limits of

equations, and contain a demonstration of a rule, given
for that purpose, by Sir Isaac Newton, in his Universal

Arithmetic,
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SECTION XII.

OF THE RESOLUTION OF EQUATIONS OF 6EVERAL
DIMENSIONS.

BEFORE
we proceed to explain the methods of re-

solving cubic, biquadratic, and other higher equa-
tions, it will be requisite, in order to render that subject
more clear and intelligible, to premise something con-

cerning the origin and composition of equations.

Mr. Harriot has shewn how equations are derived by
the continued multiplication of binomial factors into

each other : according to which method, supposing x—a,
.T—b, X—c, X—d, &c. to denote any number of such
factors, the value of a:, is to be so taken that some one of
those factors may be equal to nothing : then, if they be

multiplied continually together, their product must also

be equal to nothing, that is, x— a X a?— 6 X x~^c x
.T — d, &c. z: 0: in which equation x may, it is plain, be

equal to any one of the quantities a, 6, c,c?,&c. since any
one of these being substituted insteadof ar, the whole ex-

pression vanishes. Hence it appears, that an equation
may have as many roots as it has dimensions, or as are

expressedby thenumber of the factors, whereof it is sup-
posed to be produced. Thus the quadratic equation

X— ax X— b = or a?^ , I x -\- ab —
0, has

two roots , a and b ; the cubic equation x— a x x— b

X X— c — 0, or

— a i ab
^

x^ -^
— 6 C a?' + «c N X — abc — o, has three roots,—

c\ be)

«, bf andc; and the biquadratic equation, x -r- a x

abed = 0.
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has four roots, a, 5, c, and d. From these equations it is

observable, that the coefficient of the second term i*

always equal to the sum of all the roots, with contrary
signs; that the coefficient of the third term is always
equal to the sum of their rectangles, or of all the pro-
ducts that can possibly arise by combining them, two
and two; that the coefficient of the fourth is equal to

the sum of all their solids, or of all the products which
can possibly arise, by combining them three and three;
and that the last term of all, is produced by multiply-
ing all the roots continually together. And all this,
it is evident, must hold equally, when some of the

roots are positive and the rest negative, due regard
being had to the signs. Thus, in the cubic equation

-«>
X — a X X — h X cr f c — 0, or .r5 H h Vx" -\-

{ ab^— ac> X + ahc zz o (where two of the roots, c, h, are—
bc^

positive, and the other—c, is negative) the coefficient of

the second term appears to be— o-— Z>+ c, ^xiAthat of the

third, ab— ac— be, or ab^^-a x — c-f /; x — c, conform-
able to the preceding observations. Hence it follows,

that, ifone of the roots of an equation be given, the sum
of all the rest will likewise be given ; and that, in every

equation where the second term is wanting, the sum of

all the negative roots is exactly equal to that of all the

positive ones ; because, in this case, they mutually de-

stroy each other. But when the coefficient of the second

term is positive, then the negative roots, taken together,
exceed the positive ones. But the negative roots, in any
equation, may be changed to positive ones, and the po-
sitive to negative, by changing the signs of the second,

fourth, and sixth terms, and so on alternately. Thus,
the foregoing equation,

(a;
— a x x—b X X -{- c —)x^ -\ 6>-:r-— <7cV a? +

i- c) ^bcy
ahc == 0, by changing the signs of the second and fourth

+ a} + ab'}

terms, becomes a:' 4- + b>x^ -^
ac}-

x -^ abc = o, or
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X -^ a X X -\- b X oc— c=:0; where the roots, from
4- a, + &, and— c, are now become— a,

—
/;, and + c.

Moreover the negative roots may be changed to positive
ones, or the positive to negative, by increasing or di-

minishing each, by some known quantity. Thus in the

quadratic equation x" + Sx f 15 = 0, where the two
roots are — 3 and — 5 (and therefore both negative)
if z — 7 be substituted for x, or which is the same, if

each of the roots be increased by 7, the equation will

become z — 7^ + 8 x g— 7 + 15 =: 0; that is, z^—
63 4-8 = 0, or 2 — 2 X 2 — 4 = 0; where the roots

are 2 and 4, and therefore both positive. This method
of augmenting, or diminishing the roots of an equation
is sometimes of use in preparing it for a solution, by
taking away its second term ; which is always perfoum-
ed by addins*, or subtracting y, -j, or -^ part, &c. of the

coefficient of the said term, according as the proposed
equation rises to two, three, or four, &c. dimensions.

Thus, in the quadratic equation x-— Sa? -f 15 =0, let

the roots be diminished by 4, that is, let a? — 4 be put
= 2;, or a; = 4 + 2 ; then, this value being substituted

foric, the equation will become z 4 4r — 8 x z + 4 +
15 = 0, or 2*— 1 =

; in which the second term is

wanting.

Likewise, the cubic equation 2^— az" -i- bz— c = 0,

by writing x — h 2, and proceeding as above,

7 + iab ^
will become x^ *

, ^Ix -^ c >- = 0; and

01 others.

so

Hence it appears, how any affected quadratic may
be reduced to a simple quadratic, and so resolved with-
out completing the square; but this, by the bye. I

now proceed to the matter proposed, viz, the Resolution
of cubic, biquadratic, and other higher equations ; and
shall begin with shewing

K 3
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HOW TO DETERMINE "WHETHER SOME, OR ALL THE
ROOTS OF AN EQUATION BE RATIONAL, AND, IF

SO, WHAT THEY ARE.

Find all the divisors of the last term, and let them be

substituted, one by one, for x in the given equation ;

and then, if the positive and negative terms destroy each

other, the divisor so substituted is manifestly a root of
the equation ; but if none of the divisors succeed, then
the roots, for the general part, are either irrational or

impossible : for the last term, as is shewn above, being
always a multiple of all the roots, those roots, when ra-

tional, must, necessarily,be in the number of its divisors.

Examp, 1. Let the equation x^— 4a* «— 7x -\- 10
= 0, be pi'oposed; then, the divisors of (lo) the last

term being + 1,-1, + 2, -— 2, -+- 5, -— 3, + 10,— 10, let these quantities be, successively substituted

instead of x, and we shall have,

1 — 4— 7 f 10 — 0, therefore 1 is a root;— 1 — 4 -f 7+10—12, therefore— 1 is no root;

8— l6 — 14 4 10=: — 19, therefore 2 is no root;—8 — 16 -h 14 + 10 = O, therefore—2 is another root;

125 —100— 35 + 10 ~ 0, therefore 5 is the third root.

It sometimes happens that the divisors of the last

term are very numerous; in which case, to avoid trou-

ble, it will be convenient to transform the equation to

another, wherein the divisors are fewer; and this is best

effected by increasing or diminishing the roots by an

unit, or some other known quantity.

Examp. 2. Let the equation propounded be y*--^y^—
81/ + 32 =0; and, in order to change it to another

whose last term admits of fewer divisors, let a? -h 1 be

substituted therein for v, and it will become a?*— ^x"—
\Qx + 21 =: ; where the divisors of the last term are,

1,
—

I, 3,
— 3, 7, — 7, 21, and — 21; which being,

successively substituted for x, as before, we have,

1 — 6 — !6 + 21 —
0, therefore 1 is one of the roots;

1 — 6 -fl()-l-21:=32, therefore — 1 is not a root ;

81 — 54— 48+ 21 = o, therefore 3 is another root.
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But the other two roots, without proceeding further,

will appear to be impossible; for, their sum being equal
to—4, the sum of the two positive roots (already found),
with a contrary sign (as the second term of the equation
is here wanting), their product, therefore, cannot be

equal to (7) the last term divided by the product of the

other roots, as it would, if all the roots were possible.

However, to get an expression for these imaginary roots,
let either of them be denoted by v, and the other

will be denoted by — 4— v; which, multiplied toge-

ther, give— 4y— v^
—

7; whence 2?
— — 2 f \/—3,

and consequently — 4 — v ~ — 2 — \/— 3. Now
let each of the four roots found above, be increased by
unity, and you will have all the roots of the equation
proposed.

When the equation given is a literal one, you may
still proceed in the same manner, neglecting the known
quantity and its powers, till 3'Ou find what divisors suc^
ceed ; for each of these, multiplied by the said quantity
will be a root of the equation Thus, in the literal

equation x^ V- 3ax^ — 4a^i? — I2a^ =: 0, the numeral
divisors of the last term being 1,

— 1,2, — 2, 3, — 3,
&c. I write these quantities, one by one, instead of cT,

not regarding a ; and so have

I + 3 — 4— 12 =— 12, therefore a is not a root;— If 34- 4— 12=-- 6, therefore— « is no root;
8 -f 12 — 8— 12=0,therefore2aisoneoftheroots;

-^8-fl2-f 8— 12 ± 0, therefore— 2a is another root;
27 f 27 — 12 — 12 = 30, therefore 3a is not a root ;—27+ 27 + 12-^12 =0, therefore—3a isthe 3d root;

The reason of these operations is too obvious to need
a further explanation. I shall here subjoin a different

way, whereby the same conclusions may be derived,
from Sir Isaac Newtoris Method of Divisors

; which is

thus :

Instead of the unknoicn quantity substitute, successively
three, or more adjacent terms of the arithmeticalprogres-
sion 2, 1, 0, — 1, -—2; and, having collected all the
terms of the equation into one sum, let the quantities thus

resulting, together with all their divisors, he placed in a
line, right against the corresponding terms of the progres-
sion ^^ 1,0, — 1,

— 2
; then seek among the divisors an
K4
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arithmetical progression, ivhose terms correspond with^ or

stand according to the order ofthe terms 2,1,0,— 1,
— 2,

of the first progression, and tchose common difference is

either an unit, or some divisor of the coefficient of the

highest power of the unknown quantity [x) in the given
equation. If any such progression can he discovered, let

that term of it ichich stands against the term 0, in thefirst

progression!, he divided by the common difference, and let

the quotient, with the sign + or— prefixed, according as
the progression is increasing or decreasing, be tried (as
aboveJ by substituting itfor x in the proposed equation.

Thus, let the proposed equation be x^

+ 6zz
X* 1007

0; then, by substituting successively the terms
of the progression, 2, ], 0, — 1, instead ofo, there will

arise— lo, — 4, 6, und 14, respectively; which, toge-
ther with their divisors, being placed right against the

corresponding terms of the progression 2, 1,0,— 1, the

work will stand thus :

2
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third term, 5, standing against the term o in the first

progression, being divided by 2, the common difference,
and the quotient (4) substituted for Xj the business

succeeds, tlie positive and negative terms destroying
each other.

Moreover, if the equation x"^ + x^— sgx'— 9x 4- 1 80
~ were proposed, the work will stand as follows :

2
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ap—3):r* + J?'— 29^*— 9Y + 180(a?^ + 4x*— IJjr— 60

+ 4:i^—S>9i-
+ 4x^—l2x^
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— 1 is not continued far enough, to know whether the

corresponding progression may not break off, after a

certain number of terms ; which it never can do when
the business succeeds. Thus, in the last example, where
we had two different progressions resulting, had the

operation, or series, 2, I, 0, — 1, been continued only-
two terms farther, you would have found the first of

those progressions to fail ; whereas, on the contrary,
the last (by which the business succeeds) will hold,

carry on the progression, 2, 1, 0, — 1 as far as you
will. The grounds of which, as well as of the whole

method, upon which the foregoing observations are

founded, may be explained in the following manner.

Let there be assumed any equation, as a:c* -f bx^ -f

ex' ^ dx-^ c =0, wherein a, h^ c, d, and e, represent

any whole numbers, positive or negative, and \^tpx-\-q
denote any binomial divisor by which the said expressipn
ax"^ -h bx^ -4- ex" -h dr 4- e is divisible, and let the quo-
tient thence arising; be represented hyrx^ 4 sx' 4- tx+ r,

or, which is the same in effect, let ax^ -4- bx^ + ex* -f-

dx-J^e
—

px -h q X rx^ \- sx'' H- tx V v. This being
premised, suppose x to be now, successively expounded
by the terms of the arithmetical progression 2,1,0, — 1 ,— 2 {as above); and then the corresponding values of

our divisor pa? -4- q, will, it is manifest, be expounded
by 2/) -f q,p -f <7, q,

— p f q, and — 2p ^ q respec-

tively ; which also constitute an arithmetical progres-
sion, whose common difference is p ; which common
difference

{ p ) must be some divisor of the coefficient

(
«

) of the first term, otherwise the division could not

succeed, that is, p could not be had in a, without a

remainder.

Hence it appears that the binomial divisor, by which
an expression of several dimensions is divisible, must

always vary as x varies, so as to be, successively ex-

pressed by the terms of an arithmetical progression,
whose common difference is some divisor of the first, or

highest term of that expression.

It also appears, that the said common difference is

always the coefficient of the first term of the general

divisor; and that the term {q) of the progression, which
arises by taking x — 0, is the second term. Therefore,
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whenever,by proceed in<>' according to the method above

prescribed, a progression is found, answering to the

conditions here specified, the terms of that progression
are to be considered only as so many successive values

of some general divisor, as px + q. Whence the rea-

son of the whole process is manifest.

After the same manner we may proceed to the in-

vention of trinomial divisors, or divisors of two dimen-

sions: for, let mx' + px \- 9, be any quantity of this

kind, wherein m, p, and q represent whole numbers,

positive or negative, and let the terms of the progres-
sion 3, 2, 1, 0, — 1,

—
2,
— 3, be wrote therein, one

by one, instead of a;; whence it will become gw 4- 3/>

+ 9, 4m 4 2p -^ qy7n \- p + g, q, m — p + q, 4m—
^p + 9, and Qm— 3p + q, respectively; where m must
be some divisor of the coefficient of the first term of the

given expression; otherw^ise, the division could not

succeed. Hence it appears,

1°, That the coefficient (m) of the first term of the

divisor must always be some numeral divisor of the

coefficient of the first term of the proposed expression.

2<=, That the product of that coefficient by the square
of each of the terms of the assumed progression, 3, 2, 1,

0^ — 1^
— 2, — 3, being subtracted from the corres-

ponding value of the general divisor, the remainders

(3/) + q, 2/) -h 9, p + ^, q,
—p + q,

— 2p + 9*
—

3/>

4- q) will be a series of quantities in arithmetical pro-

gression, whose common difference is the coefficient of

the second term of the divisor.

3°, And that the term (9) of this progression, which

arises by taking x —
O, will always be the third, or last

term of the said divisor. From whence we have the

following rule, histead of x in the quantity proposed,

substitute^ successively, four or more adjacent terms of
the progression 3, 2, 1,0, — 1,

— 2, — 3 ;
andfrom all

the several divisors of each of the numbers thus resulting^

subtract the squares of the corresponding terms of that

progression multiplied by some inimeral divisor of the

highest term of the quantity proposed, and set down the

remainders right against the corresponding terms of the

progressions 3, 2, 1, 0,— 1,
—

2,
— 3 ; and then seek out

a collateral progression ir/uch runs through these re*

mainders; which beingfound, let a trinomial be assumed.
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ivhereofthe coefficient of thejirst term is theforesaid nu*
meral divisor ; that of the second term, the common diffe-
rence of this collateral progression; and ivhereofthe third

term is equal to that term of the said progression which
arises by taking x — O; and the expression so assurned
will he the divisor to he tried. But it is to be observed
that the second term must have a negative or positive

sign, according as the progression^ found among the di-

visors, is an increasing or a decreasing one^

Thus, let the quantity proposed be x*— x^— 5a?'*+

12.r — 6; and then, by substituting 3, 2, 1, 0, — i,—
2, successively, instead of a:, the numbers resulting

will be 39, 6, 1, —6, — 21, and — 26 respectively;
which, together vi^ith all their divisors, both positive
and negative, I place right against the corresponding
terms of the progression 3, 2, 1, 0,

— 1,— 2, in the

followino^ manner :

13 . 3 . 1 . — I .
— 3 . — 13 .

— 39
3.2.1.— 1.-2. — 3. — 6

•I
3.2.1. — 1. — 2. — 3.— 6
7.3.1.— 1. — 3.— 7.—-21
13 . 2 . 1 . — 1 .

— 2 .
— 13 ; — 26

3
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This invention of trinomial divisors is sometimes of
wse in finding out the roots of an equation when they
are irrational, or imaginary. Thus, let the equation
given be a;*— 4tx' + dx"^— 4x + 1 = ;

and let x be

successively expounded by the terms of the progression
3, 2, 1, O, and the numbers resulting will be 7,

— 3,
-^ 1 and 1; which, together with their divisors, being
ordered according to the preceding directions, the

operation will stand as follows :

3 7.
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j)Iain the more general methods, by which the roots

of equations, of several dimensions, are determined;
and shall begin with

THE RESOLUTION OF CUBIC EQUATIONS, ACCORD-

ING TO CARDAN,

If the given equation has all its terms, the second
term must be taken away, as has been taught at the be-

ginning of this section ; and then the equation will be
reduced to this form; viz. x^ + ax — b

;
where a and b

represent given quantities. Put a: zz y -{- z; and then,
this value being substituted for x , our equation becomes

y^ + 3y''z f 3^ 2- + 2
^ + « X y -^ z zz b, or i/^+z'

-f 3yz xy-{-z^axy\-zzzb. Assume, now, 3yz
— — a ; so shall the terms 3yz x y \- z and a x y \- z

destroy each other, and our equation will be reduced to

y^ ^ z^ —b. From the square of which, let four times
th« cube of the equation yz

- —^a be subtracted, and

we shall have y^-^ 9.y'^z^ -j- ^^ _.
j2 ^1^ . ^nd there-

fore, by extracting the square roots, on both sides, y^—
= s/

4a
6^ 4- _; which added to, and subtracted

27

from t/3 -f ^3
_

j^ gj^gg 2^3 =zb ^Y b^ + —, and

^z^ = h ^\/bz -f 1^: hencey zz ^ + \/ ^-^f -^'^
27 ^ 2 "^ 4 27

and z zz~~ — y -— -f.— ^; and consequentIy;ir(—y

' 2
^ '^ 4 271 2 »^ 4 271

Which is Carc?a/z*sTheorem: but the same thingmay
be exhibited in a manner rather more commodious for
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practice, by substituting for the second term its equal

V^4:^«^

=rrC
y

— 2, because yz zz —

2
'

"" 4
•

27

•J-a). And this being done, our Theorem stands thus,—
^ ,

=^w *T,
-a

Example l. Let the equation v^ 4- 3y* + gy
— ishe

propounded ; and, in order to destroy the second term

thereof, let x — 1 be put
—

y, so shall jT^i' -h

3 X 07— l)^ 4-9 XX — 1 i:: 13, or.r^ + Gx = 20;

therefore, in this case, a being = (5, and b — 20, we

have

V ! + •-,- i| /
2 4

"^

27^

10-f\/lG0 + S^^

10 4- n/ioo + sI^

20,39231

;
=: 2,732 — ,732

—
2 ; and consequently

20,3923|T

y(-x-^l) := 1.

Examp. 2. If the equation given be y^
—

3y' — 2?/*

8=0; then, by writin.^- x + 1 fo r y'^, i t will be-

comeir+TI'— 3 X FTTl* — 2 X x + i — 8 = o,

oro;^ — 5j = 12: therefore, a being = — 5, and

h zi 12, X will here be equal to 6 -}- \/36 — '^V^^ y
—

6 ^ 5,600 1^ +
;,^

1,6666 &c.

<5 + 5,6009!^6+V/36-VV
S.26376 -f ,736-24 = 3; and consequently y"- {= x
-^ 1) := 4; which is the only possible value of y^
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in the given equation. And it will be proper to take

notice here, that this method is only of use in cases

where two, of the three roots, are impossible (except

when they are equal); for — + -—
being, in all

other cases, a negative quantity, its square root is

manifestly impossible.

I shall now give the investigation of the same ge-
neral theorem, for the solution of cubics, by a different

method; which is also applicable to other higher

equations.

Supposing, then, the sum of two numbers, z and y
to be denoted by .v, and their product {zy) by p, it

will appear ^/rom Prob. 68, p. II9) that the sum of
their cubes (2^ 4- ^^) will be truly expressed by s^—
3ps,

If, therefore, 2' + y'^ be assumed — 5, we shall also

have s^— 3ps
—

b; but, zy being
—

p, or y = —, our
z

first equation, z' 4-2/^ = 5, will become x^ + -j- —b;
z

from which, by completing the square, &c. z is found

= 16 + y/^bb—p']^: whence 3^ i— —) is given =z

P
- '

,
; and consequently s {zz z-t y) zi

ib-^>/ibb-^~p^^

W+y/W—p'^+ -^z::^ r ; which is,

evidently, the true root of the equation s'-—3ps = h.
From whence the root of the equation x^ + ax - b,
wherein the second term is positive, will be given, by
wntmg X for s, and ^a for — ;>; whence x is found
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=i6+v/"" + ^r_ i«

the same as before.

In like manner, if things be supposed as above, and

there be, now, given z^ -\- 2/ :=: b; then, by the prohlem

there referred to, v^e likewise have s^ — bps^ + 5p^s— h.

But the first equation, by substituting
— for its equal

y, becomes 2' + -^j- zzibi whence 2*° --b^ z=z — p'.

z^ ±\b v\/ i^f^
— P^ and z 1= 16 +v/ ^bb — p^l

^

^

and consequently 5(=zz4- i/
—

2; + ^\ ~

ib + \/i^6— p'l
' + _ = the true

ib -i- \/ ibb -^ f]^
root of the equation s^ — 5p^' + 5p*^

~
b. Which

by substituting x for j, and — -— for p, gives a? n:

true root of the equation x^ -{- ax"^ -\- ^a'x — bi

Generally, supposing z"" -{ y"^ = b, or z"" + -^ = b

(because y zz ^\ y^e have s-'* — bz"" = — p";

whence 2« = |6 -h s/:J:66— />«, and z =•

P
|6 -i- V ^66—p'i" : therefore i(z + y = z+--)z:



OF SEVERAL DIMENSIONS. 147

\b + >/ibb— p'^" 4- i^ ; which is

ib ^• ^/ ^bb — H"
the true root of the equation s" —

nps'^'^^ -f n .

/2 — 3 . n—^ n--4 n^ 5 3 n—6

w — 5 n — 6 n — 7 . n—S ^ ( » 1 "\

= 6,

This equation, by writing x for s, and ~ for — p,

becomes x + ax + —^
—

• «^ +
""i^^

3« 2/2 3/2 4/i

zz b
; and its root a?=z~r-+V — +~ —
'

2 4: nn{

a
X Wherein the two preceding

h
^ ./ b' a^

Theorems are included, with innumerable others of the
same kind ; but as every one of them, except the first,

requires a particular relation of the coefficients, seldom

occurring in the Resolution of problems, I shall take no
further notice of them here, but proceed to

THE RESOLUTION OF BIQUADRa^TIC EQUATIONS^
ACCORDING TO DES CA-RTES.

Here the second term is to be destroyed as in the so-

lution of cubics ; which being done, the given equation
will be reduced to this form, x* + ax"^ -f fix 4- c iz: .

wherein a,6,andcmay represent any quantities whatever*
L 2
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positive, or negative. Assume x^ -\- px-\- q x x"-k-rx+s
=: a:* + ax* -^ bx -^ c; or, which is the same, let

the biquadratic be considered, as produced by the mul-

tiplication of the two quadratics x^-^-px-^- 9=0, and
x^ '\- rx + s zzO: then, these last being actually mul-

tiplied into each other, we shall have x* -f ax- + bx

+ c z: a?' i Ma:^ 4- Q>x" -^ P^l X ^ qs; whence,

by equating the homologous terms (in order to deter-

mine the value of the assumed coefficients, p, q, r, and s)

we have p + r zz 0, s -\- q -{- pr
—

a, ps -\- qr — b,

and qs zz c; from the first of which r zz —p; from

the second s + q (— a— pr)
— a '\- p^ ; and iwm the

third s — q
— —. Now, by subtracting the square of

the last of these from that of the precedent, we have

4qs zz a' + Qap^ + />* -, that is, 4c zz a" -{- Qap^

4- p* (because gs zz c); and therefore p^ +
"^

PP

tap*i 4 \ P* = ^' 5
from which p will be determined,

as in example the second, of the solution of cubits.

Whence ^(= la + ip' + —)»
andg'(=ia4- I/—

—\ are also known. And, by extracting the roots of

the two assumed quadratics x^ -{- px ^- q zz 0, and

p
«'. + r;c + X zi 0, we have x, in the one, = ^ ±

y Pt^q-^ and, in the other, = ^± y j
—

-^

— i-f. '1/ 2Z — $. because r = — p. Therefore the
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four roots of the biquadratic, x* 4- «a?' + bx -^ c

EXAMPLE.

Let the equation propounded be y^
—

4y'^
— Sy f 32

r: 0; then, to take away the second term thereof, let

X ^ \ zz y ; whence, by substitution, x* * — 6r^ —
l6x + 21 -

0; which being compared with the ge-
neral equation, a:*

* + ax"-\- hx + c — o, we here

have a = — 6, b = ^^ l6, and c =z 21 ; and conse-

quently p'*
—

12p*
—

48p' (= p** + 2ap* ^ ^^ J p2)
-

256 (= b-). Now, to destroy the second term of this

last equation also, make z ^- 4 zz p' ;
and then, thij,

value being' substituted, you will have z^ — 96^
z= 576; whence, by the method above explained, z

will be found (= 288 f \/28sl^ — 32)']
^ +

-^ )
= 12. Therefore p ( =

32

288 4- V^288j*
-^ 32!

v/TTI) is = 4, ^ (- -|^+ -|-
+ - )

= 3, and

V^f- <?
= -2 +v/—and- IVf^

- — 2 — v/— 3; which are the four roots of the

equation a;*—• Gx'— l6;v + 21 ; to each gf which let

L3
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unity be added, and you will have 4,9, — 1 4- V^ — 3,

and — ] — \/— 3, for the four roots of the equation
proposed ; whereof the two last are impossible.

And, that these roots are truly assigned, may be easily

proved, by multiplying the equations, y — 4 := O,

y— 9 — o,y+ 1 — \/— 3 = 0, and ?/ + i + v/— 3
— O, thus arising, continually together; for, from
thence, the very equation given will be produced.

THE RESOLUTION OF BIQUADRATICS BY ANOTHER
METHOD.

In the method of Des Cartes, above explained, all

biquadratic equations are supposed to be generated from
the multiplication of two quadratic ones; but, accord-

ing to the way which I am now going to lay down,
every such equation is conceived to arise by taking the

difference of two complete squares.

Here, the general equation a:* + ax^ -|- bx^ -\-

cx -\- d zz being proposed, we are to assume

X* + iax + Al' - Bx +~C\^^ = a:* 4- ax^ + hx"" +
ca? -f d; in which A, B, and C, represent unknown

quantities, to be determined.

Then, x^ + ^ax -\- A, and Ba: 4- C being actually

involved^ we shall have

a:* 4- fia:^ -h 9Ax" * *
i

* *
4- T«V 4- aAx + A'lzz X* + ax^ + Z>jc*— BV — sBCx— C^S

+ ex + d; from whence^ by equating the homologous
terms, will be given,

I.2A4- ia'— B^ = b,or,2A +^a'^b=: B';
2. aA — 2BC z= c, or, aA — c =2BC ;

3. A2— C2 = d, or. A' — d - CK
Let now the first and last of these equations be multi-

plied together, and the product will, evidently, be

equal to ^ of the square of the second, that is 2A^ 4-

laaTZTb X A' — 2r/A — rf x \aa - 6
{

"
B^C*) =

^ X a^A* — 2ac'A + c'^ (- BC). Whence, denoting

the given quantities ^^ac
— d, and ic' 4- <£ x ^aa — b
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by k and /, respectively, there arises this cubic equation,
A' — {hk^ + /t'A — \l zz 0: by means whereof the
vahie of A may be determined (as hath been already
taught) ; from which, and the preceding equations, both
B and C will be known, B being given from thence —

\/2A + iaa- b, and C - ^^7"^
2d

The several values of A, B, and C, being thus found,
that of X will be readily obtained : for x'' \- \ax ^ AY
— Bx ^- Cr being universally, in all circumstances of

.T, equal to a?* 4- ax^ + bx"^ 4- ex + c?, it is evident
that when the value of x is taken such, that the latter

of these expressions becomes equal to nothing, the for-

mer must likewise be — ; and consequently
a- -h \ax -^ A]"^ —Ex^ Cp; whence, by extracting the

square root on both sides, x^ 4- \ax + A =: ± Bo? + C ;

which, solved, givesa?=+iB—|a±V^^aq-iBl^±C—A
= ± tB — ia ± VrV «* =f It aB + \W ± C — A ;

exhibiting all the four different roots of the given equa-
tion, according to the variation of the signs.

This method will be found to have some advantages
over that explained above. In the first place, there is

no necessity Aere,of being at the trouble of exterminat-

ing the second term of the equation, in order to prepare
it for a solution: secondly, the equation A^— \bA-
4- kA — \l

—
0, here brought out, is of a more simple

kind than that derived by the former method : and,
thirdly (v/hich advantage is the most considerable) the
value of A, in this equation, will be commensurate and
rational (and therefore the easier to be discovered), not

only when all the roots of the given equation are com-'

mensurate, but when they are irrational and even impos»
sible; as will appear from the examples subjoined,*

Examp. 1. Let there be given the equation x*^ l'2x—
17 = 0.

* It is now well-known thst the author's concluding observation, in the
above paragraph, is incorrect, as the instances in which the method holds,
are very few indeed, compared with those in which it fails.

L 4
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Which, being compared with the general equation
a?* 4- ax^ + hx'^ + ex -\- d —

0, we have a =z O,

6 =z 0, c zz 12, and d = — 17 ; therefore k l\ac
— d)

= 17, ^(tc' + c? X ^(/a
—

^) = 36; and consequently
A'— |iA* + ^'A— j/=z A^ + 17A— iszro; where
it is evident, by bare inspection, that A zz I. Hence

B (= v/sA + iaa-^b) -\/¥, C {- ^^^^) =-

= ±fv/2 TVt 3\/2 - 4--
Therefore the four

roots of the equation are | \/2 + V — 3\/2 — — »

.| v/i"- V — 3\/2 - 4", - 1/2+ V 3v/2 —4'

and — I v/s— V 3v/2 ; whereof the first and

second are impossible.

Examp, 2. Let the equation given be x^ —^x^—dSx^
— 114a— 11 = 0.

Here a —— 6, & = — 58, c = — 1 14, and J =— 1 1 ;

whence A: (^ac
— d) =182,/ (-^cc 4- rf x ^aa — b) :=

25! 2 ; and therefore A^ + 29 A"" -f 182A — l'^56 = O.

Where, trying the divisors 1, 2, 4, 157, &c, of the last

term (according to the method delivered on p. 134) the

third is found to succeed; the value ofA being, therefore,

zz 4. Whence there is given, B zz v/75 = 5\/3,

go y—C z=
Y^--r=

zz 3v/3, and X (= ± iB -^ ^a ±

v/tV^' -T- 4-«B + iB* ± C — A) = ± i\/3 +
-J ±
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Examp. 3. Let there he now proposed the literal equa-
tion z' -f ^az^ -^ SI a"z — ?>Sa^z -^ a* = 0.

This equation, by dividing the whole by a*, and

writing a? zi — ,
is reduced to the following numeral

one, x'^ -jr 2a?^ — 31 x^-— 38.r + l n o. If, therefore,

cz, 6, c, and d, be now expounded by 2,
— 37, —38,

and 1, respectively, we shall here have /^ [\ac
— d) =:

— 20, /(Jc* + c? X ^aa
—

b)
-

399; and therefore

by substituting these values,

A^ 4 3_7 A^ — 20A - iL^ z: 0.

or, 2A^ 4 37A' — 40A — 399 =0.-

Which equation, by the preceding methods, will be

found to have three commensurable roots, f,
—

3,

and — 19 : and any one of these may be used, the re-

sult, take which you will, coming out exactly the same.

Thus, by taking
—

3, for A, we shall have x" -^ x —
3 r= ± \/^ X 4jc 4- 2 : but, if A be taken =: i, then

will ^* + :r 4- i = ± v/5~ X 3a: 4- f : lastly, if A be

taken =: — 19, then <r' 4 ^ — 19 :=: 4- 6v/To7 All

w^hich are, in effect, but one and the same equation,
as will readily appear by squaring both sides of each,
and properly transposing; whence the given equation.
x'^ 4- 2jc^ — Six"-— 38a: +1=0, will, in every case,

emerge. And the same observation extends to all

other cases, where there are more roots than one ; it

being indifferent which value we use
; unless, that some

are to be preferred, as being the most simple and com-
modious.

Having given the general solution of biquadratic
equations, by the means of cubic ones, I shall now
point out two or three particular cases, where every
thing may be performed by the resolution of a quad-
ratic only.

These are discovered from the preceding equations,

2A 4- ^fl'
— 6 z= B%

aA — c zz 2BC,
and h.^'^d - CU
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wherein, if A he supposed = 0, it is plain that {a"^
—

h- W, —c ~
2uC, and — d = C* : whence B =

•^— c

\/iaa — b, C— -

.^
=: r: s/ — d, and conse-

Qv laa —
cc

quently d - —r; by making/
— h — {aa,

cc \
Therefore, in this case, (wherein d z=l

—-
)
the gene-

ral equation x" + \ax -fAzz ±Bx±C, will become

x^+ \ax i=± x\/'^ qp >/— c?.

But, (fB he supposed — ; then will 2A -f \a^
— 6

rz O, and also aA— c ;z o ; whence A = ^6
—

^a"

= 1/ = ~; and therefore C (= x/A'—d) -\/^ff^di

so that in this case (where c— ?-^
)
the general equation

becomes x' + \aX'\-\fzz -f- ^/^ff—d-, which, solved,

gives a: =— fa ± \^
^A"-
— \f± V^i#^=^.

Lastly, ifC he supposed -=. 0, then will aA — c = 0,

and A*— d = ; consequently A =: — = v/"fl?^ and

B
(

- v/2A 4- |a'
— 6 ) =:V ——/: therefore, in

re \
this case (where c? =r -—

j
we shall have x

^ a ^

' + i«x + -^

From the whole of which it appears, that, if c be

fiT cc cc
zz -^ ; or d, either, equal to —., or to — f/ being =

2
^

4/ aa^^

b — \aa) ; then the roots of the given equation.
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X* -^ ax^ 4- 5x^ -\- ex ^ d —
0, may be obtained^ by

the resolution of a quadratic, only.

Examp. 1. Let there he given x* * — 25x^ + 6ox—
36 iz 0.

Here a = 0, b zz — 25, c z= 60, and d zz — 36 ;

cc
therefore, /(= — 25) being

—
--^ (— — 25], we

have, hy case l, x"^ 4- {ax zz. ± xV—/ + \/— dx

that is, a^' =: ± 5r q: 6 : which, solved, gives x zz.

±i ± v/ V =t 6» that is, X zz ^ ± i, or, x zz — 4,

± -1^: so that 3, 2, 1, and — 6, are the four roots of

the equation propounded.

Examp, 2. Let there be now given x- -r 2*2*'^ + Sq^x'^

+ 29^0;
— r* - 0.

Then, a being
—

29', 5 = 3<7*, c =z 2q^, and (^ rr.

J?

~r*, thence will/ (=5 — ^aa) — 29% and -^ zz (2?/^)

ZZ c; and so, the example belonging to case 2, we

have a^ ( = - |a + V^:^^ — i / ± v/T/ ~^^0
= — 19 ± v/— i7? ± v/'TT^.

Examp. 3, Lastly^ suppose there to he given the equa^
tion a?* — 9.T^ 4- 15a;' — 27a7 +9 = 0.

Here, a being zz — 9, 6 zr 15, c = — 27, and ^ =: 9,*

cc
it is evident that —

(
—

9) zz d [zzg)i therefore by

c / Qc
case 3, we have x^ -f \ax + — zz ± a?V —. -^iaa—5,

a ^ a

that is, x"'— 4f^ -{- 3
[

— ± X \/ Q ^ %'
— lb ) zz

± fx\/ 5 : which, solved, gives

9 ± 3v/ 5 ± V^TS ± 54\/^
X zz :

•
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^HE RESOLUTION OF LITERAL EQUATIONS, WHERE-
IN THE GIVEN, AND THE UNKNOWN QUANTITY,
ARE ALIKE AFFECTED,

Equations of this kind, in which the given and the
unknown quantities can be substituted, alternately, for

each other, without producing a new equation, are

always capable of being reduced to others of lower
dimensions. In order to such a reduction let the equation,

if it be of an even dimension, he first divided by the equal
powers oj its two quantities in the middle term; then aS"

sume a new equation, by putting some quantity for letter)

equal to the sum of the two quotients that arise by divide

ing those quantities one by the other, alternately ; by
means of ivhich equation, let the said quantities be eX'

terminated; ichence a numeral equation will emerge , of
half the dimensions with the given literal one.

But, if the equation proposed be of an odd dimension,
let it be, first, divided by the sum of its two quantities,
so will it become of an even dimension, and its resolu-

tion will therefore depend upon the preceding rule.

Examp. 1. Let there be given the equation x^'—4ax'^-{'

Here, dividing by a'^x^, we have -^ >— 4-5 —° "^ aa a

4a ,
aa ^ ,

XX
,

aa
^ x

,
a ^ ^—

-I =0, (or
-—4X 1 \- 5

X XX ^ aa XX ax
zz 0, byjoining the corresponding terms) ; and by making

X a
z
—

1 -, and squaring both sides we have also
a X

XX
,

aa o \ x^''^ o"-
z"' zz — +2+ —

,
or z^ — Q — '— +.— .

aa XX aa xx

Therefore, by substituting these values, our equa-
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tioii becomes »* — 2— 43 + 5
—

o, or 2* — 42 =

— 3 ; whence z = 3. But -— + — beinff =r z^ weax
have x"- — zax = — a- ; and consequently x =: \zii ih

\/ ^a^z-— aa =z |(2 X 2± \/ 22;— 4= = ^a X 3± \/ 5,

2?2 ^Ae present case,

Examp, 2. Le^ there he given x"^ + 4a;c*— I2a-a?^ —
12a^a/2 + 4a*a7 + a^ zi 0.

In this case we must first divide hy x -V a, and the

quotient will come outx* -h 3ax^ — 15a*x* 4- 3a^x +
fi*
—

: whence, by proceeding as in the former ex-

am
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4, 13, &c. the third is found to answer; z, conse-

quently, being = 4.

Examp. 4. Wherein let there he given ^x'—13a'a?'—
I3a5A* + 2a^

~
O.

Here dividing, first, by x + a, the quotient will be

^r 2a^ = O; which, divided again by a^a'% gives

.T^ a^ xa^- X
,

a

a^ a^ tf- a;* ax
H = 0, that is, 2 X 2^— 33— 2 X 2^— 2 — \\z +
11 zi O, or 22^ — 22--— 172 4-13 = {vid, p. 119):
whence z — 3.

A literal equation may be made to correspond with
a numeral one, by substituting an unit in the room
of the given quantity (or letter) : and equations that

do not seem, at first, to belong to the preceding class,

may sometimes be reduced to such, by a proper substi-

tution; that is, by putting the quotient of the first

term divided by the last, equal to some new unknown

quantity (or letter) raised to the power expressing the

dimensir>n of the equation. Thus, if the equation given
be 2,r' + 24x' — Sldx' + 2l6x + 162 zz 0; by put-

ting
-__ ZI !/, we have x —

Sy, whence, after substi-

tution, the given equation becomes l62i/* + 648y^ —
28331/ 4- 648?/ f 162 zz 0: which now answers to the

rule, and may be reduced down to 23/*+ ^y^
—

33^*-i-

62/ -f 2 = 0.

OF THE RESOLUTION OF EQUATIONS BY APPROXI-
MATION AJS'D CONVERGING SEIUES's.

The methods hitherto given, for finding the roots of

equations, are either very troublesome and laborious,

or else confined to particular cases; but that by con-

verging series's, which we are here going to explain,
is universal, extending to all kinds of equations; and

thouf;h not accurately true, gives the value sought, with
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little trouble, to a very great degree of exactness. When
an equation is proposed to be solved by this method,
the root thereof must, first of all, be nearly estimated

(vt^hich, from the nature of the problem and a few trials,

may, in most cases, be very easily done) ; and some let-

ter, or unknown quantity (as z) must be assumed, to ex-

press the difference between that value, which we call

r, and the true value {x) ; then, instead of x, in the

given equation, you are to substitute its equal r ± z,

and there will emerge a new equation, affected only
with 2 and known quantities; wherein all the terms

having two, or more dimensions of z, may be rejected,
as inconsiderable in respect of the rest; which being
done, the value of z will be found, by the resolution of

a simple equation; from whence thatof a:(— r± z) will

also be known. But, if this value should not be

thought sufficiently near the truth, the operation may
be repeated, by substituting the said value instead of r,

in the equation exhibiting the value of z; which will

give a second correction for the value of x.

As an example hereof, let the equation x^ 4- lOx*

4- ^Ox — 2600, be proposed : then, since it appear*
that X must, in this case, be somewhat greater than

10, let r be put _- 10, and r -h z zz x; which value

being substituted for x, in the given equation, we have
r^ + 3r-z 4- 3rz^ + z^ + lOr^ -f 20rz + lOz* 4- 50r
4- 502 =z 2600: this, by rejecting all the terms where-
in two or more dimensions of z are concerned, is re-*

duced to r^ 4- 3r~z + lOr^ + 20rz 4- 50r + 5O2 —

2600; whence . comes out = gSOO-r^-lOr^-^Or
3r2 4 20r 4 50

= 0,18, nearly: -which, added to \0
{

zz r), gives
10,18 for the value of x. But, in order to repeat 'the

operation, let this value be substituted for r,in the last

equation, and you will have z — — ,0005347 ; which,
added to 10,18, gives 10,1794653, for the value of x,
a second time corrected. And, if this last value be

again, substituted for r,you will have a third correction
of x; from whence a fourth may, in like manner, be
found; and so on, until you arrive to what degree of
exactness you please.
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But, in order to get the general equation from whence
these successive corrections are derived, with as little

trouble as possible, j-ou may neglect all those terms,

which, in substituting forcf and its powers, would rise

to two or more dimensions of the converging quantity :

for, they being, by the rule, to be omitted, it is better

entirely to exclude them, than to take them in, and
afterwards reject them.

Thus, in the equation a?' + x^ + a:' — 90, let r -|- 2

he put z= .r, and then, by omitting all the powers of
2 above the first, w^e shall have r^ + 2rz -

rc^, and
i^ \- 3fz — .t\ nearly; which, substituted above, give
r^ -h 3r's ^r r^ '\- '2,rz \- r -^ z:=z 90; whence z is found

= —-. Therefore, if r be now taken equal

to 4 {which, it is easy to perceive, is nearly the true value

, .
I 1, 1 , 90— 64— 16—4 6 X

o{ x) we shall have z(— :=—-) —
^ ^

48 i- 8 + 1 57/

0.10 &c. which, added to 4, gives 4.1, for the value of jc

unce corrected; andjif thisvalue of o" be now substituted

90— T^— r^ — T\
for r, we shall have z

{

- —
^-—

__-_—
) -^ 00283 ;

which, added to 4.1, gives 4.10283, for the value of j-,

a second time corrected.

In the same manner, a general theorem may be de-

rived, for equations of any number of dimensions. Let

ax" + /a:"-^^ -h cx"-2 -f dx""-^ 4- ea""^^ &c. = Q,

be such an equation, where ??, a, h, c, d, &c. represent

jmy given quantities, positive, or negative ; then, put-

ting r \^ z
—

X, Vie have, by the Theorem in p. 41.

x" 1= r" 4- nv^^'^z &c.

x"-^ - r""-^ + 71—1 X r^'-^z &c.

^v^2 ^ ^n-2 ^ 72—2 X f«-^2 &C.

&C.

Which values being substituted in the proposed equa-

.tion,27 becomes ar" -f nmn^^z + br^'^^ -h n— l X br^'^^z
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&c. =1 Q. From which z is found =

As an instance of the use of this Theorem, let the

equation— x^ + 3000? z: 1000 be propounded. Here
n being = 3, a=z — i, 6irO, czz 300, and Q =
1000, we shall, by substituting these values above, have

lOob 4- r^ — 300r . .-. , -^ K,rm which (as it appears, byz z:
3r^ + 300

inspection, that one of the values of at must be greater
than 3, but less than 4) let r be taken z: 3 ; and z

127
v/ill become — —

o.5, and consequently x (z=. t

4-2) = 3'5, nearly. Therefore, to repeat the opera-
tion, let 3.5 be now wrote instead of r, and z will

come out zz -~-i
— = — 0.027 ; which added to

3.5, gives 3.473, for the value of x, twice corrected*

And, by repeating the operation once more, x will be
found —

3,47296351 ; which is true to the last

figure.

If the root of a pure power be to be extracted, or,
which is the same, if the proposed equation be x'^ = Q-
then, a being

—
1, and h, c, rf, &c. each := ; z, in

this case will be barely
— ^ "^^

; which may serve
.w— I

as a general Theorem for extracting the roots of pure
powers. Thus, if it were required to extract the cube
root of 10; then, n being

—
3, and Q :=, 10, z will

be =: —r~i— ; in which, let r be taken =r 2, and it

will become 'z — ^ n0.l6: therefore xi= 2.16; from

whence, by repeating; the operation, the next Value of
X will be found zz 2.1544.

M
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The manner of approximating hitherto explained,
as all the powers of the converging quantity after the

first are rejected, only douhles the number of figures
at every operation. But I shall now give the investi-

gation of other rules, or form uia\ whereby the number
of places may be tripled, quadrupled, or even quin-

tupled, at every operation.

Let there be assumed the general equation az + bz^

+ cz^ + dz* &;c. = p; z, as above, being the converging

quantity, and a, 6, c, d, &c. such known numbers as

arise by substituting in the original equation, after the

value of the required root is nearly estimated.

Then, by transposition and division, we shall have

z — ^ — -^^ — -— &c. from whence, by
a a a a

rejecting all the terms after the firsthand writing g =~~

there will be given z
—

q: which value, taking in only
one term of the given series, 1 call an approximation
of the first degree, or order.

To obtain an approximation oi the second degree,
or such a one as shall include two terms of the series,

let the value of z found above, be now substituted in

the second term —
, rejecting all the following ones ;

so shall z = -^ ^ =z g —, which triplesa a ^ a ^

the number of figures at every operation.

For an approximation of the third degree, let this

last value of z be now substituted in the second and
third terms, neglecting every where all such quantities
as have more than three dimensions of g : whence z

will heh^d(=q-!!l' +^^-^)=q-
\

^ a aa a J
^

b . Qbb— ac^—
9« + g\a ^ aa ^

The manner of continuing these approximations is
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sufficiently evident : but there are others, of the same

degrees, dilVeriug in form, which are rather more com-
modious; and whereof the investigation is also some-
what different.

It is evident from the given equation, that

s = ——J—— ^-—i-T-o— . If, therefore, the first va-

lue of 2, found above, be substituted in the denomi-

nator, and all the terms afier the second be rejected,

we shall have z
— —^^-p- zz —^^-- • w^hich is aa

a + bg aa -\' bp

approximation of the second degree.

bq'^
But, if, for z you write its second value, q

—*

you will then have z (= ^i^t^ ) =
a -^ bq

^ + c^'a

, , ; being an approximation
a + bq c . 0*

a ^

of the third degree.

Again, by writms^ q q" -f . q^ in the° ^ a ^ aa

room of 2;, and neglecting every where all such terms
as have more than 3 dimensions of q, you will have

(=
^ a ^ aa ' ^ a ^

-—?— : which
.7 ^^^

o ,
26' 3bc

,
.

a + bq
.— c.o'2+ -\-d.q^* a ^ aa a

is an approximation of the fourth degree.

It is observable, that the powers of the converging
quantity 9, in the former approximations, stand, all of
them in the numerator; but here, in the denominator :

but there is an artifice for bringing ihem, alike, into

M 2
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both, and thereby lessening the number of dimensions,
without taking away from the rate of convergency.

To begin with the approximation z =

=—
, which is of the third degree.

a + bn c , n
' a '

b c
put s =: 7-

— the co-efficient'of the last term of the'^ a b

denominator divided by that of the last but one; so shall

z zz , —-; whereof the numerator and the
a -f bq

—
hsq^

denominator being, equally, multiplied by l 4- sq, it

becomes 2 —
j -^ Zt-^—— —.

a -{- oq
—

bsq* 4- asq + bsq^
—

bs-q^

but, the approximation being only of the third degree,

bs-q^ may be rejected, and so we have

z zz P + Pqs a + sp .p
a + b + as . q

~
aa -^ b -^ as , p

In the same manner, in order to exterminate the

third dimension of q out of the equation.

Pz — ===== —
^ a ^ aa a ^

,

26 ad—be , ^ . « , ,

put ?o n: —\- ~j~,

— the co-efficient of the last term^ a bb—ac

of the denominator divided by that of the last but one ;

then will z
— ^ :=,==

a + bq c . ^ + c . ivq^' a ^ a ^

•— * ——_^_____ I hppftiisp s ""^
. ^^ \ •"~

a -{ bq
—

bsq^ -f bsicq^ \ a b )
*

whereof the terms being equally multiplied by 1 + tcq,

&c. we thence have z zz r—^-7—a —
a •\- bq — bsq^ -f awq 4- bwq"^
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JD X 1 -^ wq
b -\- aw , q + 10 — s *

hq'^

__,«P_x,lill^ : which is an ap-

a y, aa -\- h ->f aw . p •]- 10 — s , pp

proximation of the fourth degree, and quintuples the

number of figures at every operation.

By pursuing the same method, other equations might
be determined to include 3 or more terms of the given
series ; but, then, they would be found more tedious,

and perplexed in proportion ; so that no real advan-

tage, in practice, could be reaped therefrom. I shall,

therefore, proceed now to illustrate what is laid down
above by a few examples.

Examp, 1. Let the equation gioen be x'^ -f 20x zz 100.

Here, x appearing, by inspection, to be something

greater than 4, make 4+2 =: a:; then the given equa-
tion, by substitution, becomes 282 -f z^ —4:. There-

fore, in this case, a = 28, b zz 1, c = 0, &c. and

p zr 4; and consequently ^ (

~ - =1 1 =^ ^ J
aa\-bq

^

788 197/

0.14213; which is one approximation of the value of z.

b c
But, if greater exactness be required, then s

(
-r-

)

I . , 1
1 / 26 .

ad— bc^ 1

being here —-
,
and 10 ( —^ + n \ = —

> we^ 28* \ a bb— ac) 14

shall, according to our two \nstformulce, have

/ a -^ sp , p \
__ _28 -h_T_x 4_ _

V aa ^ b -{ as , p)
~

28 X ~28^"2 X 4
"

28 + i 197 ^ ,
,

^8-̂ 7+2 =
"13^

- 0.14213564, nearly; and

______ ap X a 4- lop 28 X 4 X 28 + f
Z [

— —T—- ______
.

— '.^.=-.^
^ a /. aa-\-b \- aw.p-^w—s,pp 28 x 784-r 12 + -f

— -S X 28T^ _ 28 X 198 _ 5544"
7 X 796 +- f

""
49 X 796 + 1

~"
"39005"

~

0.1421356236, more nearly; which value is true to the
last figure.

M 3

M
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Examp. 2. Suppose the given equatiori, when prepared
for a solution, to he 7682 f 482^ + z^ zz — 96.

In this case a — 768, h —
AS, c ~ \, d —

0, p
—

^\ a ) 8 V a b ) \Q 48

1 , f ^h
,
ad— hc\ 1 48

=: —
, and w

(

— — + T. ) =
^4 "< a bb— acJ 8 48x48-768

— ~^
—

, -^ == —• I hcrefore z
—

,
—-

8 48—16 32 a+ 6+ 05 . 7

- — 96—96x— i>c^V _ —
96^fJ _ -191

768 + 48 + 32 X —i 768-6—4"" 1516
"^

—0.1259894, nearly; or^ - 'P±131^
a + 6 f aicq + z^— s ,hqq

__
— 96 — 96 X — i X ^^ —96 -h f

768 + 48 172 X—I+ ^VXtI 768-6 — 9 + t4t»
— 96x 128 + 9X 16 12144=—^ ^-^ — z: — O.I 259894802
753 X 128 + 5 96389

.i-^^yoj^ou^

more nearly.

In the same manner the roots of other equations may
be approached: but, to avoid trouble in preparing the

equation for a solution, you may every where neglect
all such powers of the converging quantity z as would
rise higher than the deoTee or order of the approxima-
tion you intend to work by. And further to facilitate

the labour of such a transformation, the following

general equations for the values of p, a, h, c, d, &c.

may be used.

p zz k — ar — /3r*
—

yr^
— cr* &c.

a = a + 2/3r + 3yr* + 4'>' &c.
ft = ^ + 3yr + 6icr* + lOar &c.
c = y -\- 4?r 4- 10ir^+ Sec,

d —
B + 5ir + &;c.

The original equation being ax + ^.t* + yx^ + ^x*

-f £X^ Sec.
— k: from whence, by making r + z :=. .r,

the above values are deduced.

The better to illustrate the use of what is here laid

down, I shall subjoin another example; wherein let
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there be given x^ -f 22* + 3.r^ 4- 4x- f 'ix (or 5x +
4a?2 + 3x3 ^. 2x' 4- ^') = 51321; to find x by an

approximation of the second degree.

In this case, k being = 51321, a z: 5, /S =: 4, y =z 3,

^ 1= 2, and e =: 1 ,
we have

p
— 54321 — 5r — Ar" — 3r^ — 2r' — r',

a - b -^ Sr ^- 9/- t- 8r 4. 5r*, and
6 = 4 + 9'' + 12r^ -I- lOr^

Which values, by assuming r ir 8, will become p zz

11529, a zz 25221, and h —
5964; whence q (zz

p\ , , P \ 11529

r)
= °''*'' ""•* ^ '=

rrr,)
=

25221 ^ 2683
=

0.41 ; and therefore x {zz r + z) zz SAl, nearly.

To repeat the operation, let 8.41 be now substituted

for r; so shall p — 135.92, a zz 30479, b zz 6876,

q(=^)= 0.00445, and z (= -^-j-) = -1|M£_^v «/ \ a \- bq) 30479 f 30

=: 004455: which, added to 8.41, gives 8.414455,
for the next value of x.

TheformulcB, or approximations determined in the

preceding pages, are general, answering to equations of

all deo^rees howsoever affected; but in the extraction of

the roots of pwre powers the proces-* will be more simple,
and the theorems themselves very much abbreviated.

For let x" ~ k be the equation whereof the root x is

to be extracted ; then, by assuming r nearly equal to x
and making r x I -^ z zz x, our equation will become

r" X 1 4- zf zz k, or l \- zf zz -7, that is, 1 + nz

n — l„ n — In — 2 ,
n — 1

+ n, z- -\r n , , . 2^ -f 72 .
—-—

*

.
- "

. 2* &c. = — : from whence, by trans-
3 4 ^n

position and division, z + —
„
—

• 2 H .z^

M 4
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a— 1 W---2 n— 3 ,„ k— r»+—»_ , — . —— , z*(x.c,z=. .
2 3 4 wr»

Here, by a comparison with the general equation,
az + bz^ -f cz^ + dz' &c. = p, we have a = 1,

, __
n— 1 __

w— 1 7i — 2 . __ w— 1 w— 2

2 2 3 2 3

w— 3p J A;— r**
, .P.—-— &c. and p zz : whence o

(
~

) = » ; s

(5

c\ n— 1 w— 2 W4-1 , /26..— ^

: J
= — —-— = —

^— ;
and w I h

a bJ 2 3 6 \a

-^
— c\ n— 1 ^V- w—2 . ??—3—i . 7?— 1 . w—2

i

__ n — 1 w — 2 . w — 3 —-_2« — '2 , n — 2 __^1 2 . « + 1

~"

71 — 1 7j — 2 n — 1
. : J ==4- X «— 3 - 2/J + 2 = : +

1 2 , w f 1 1

n— 2 n — 1 n— 2 n —,
X — 72 + 1 =—:

-— = -- . There-
2 . ?^ + 1 1 2 2

fore, for an approximation of the third degree, we have

1 _ a -\- sp,p __
1 •+- ip . n, 4- 1 .p

""

aa+bT~as.p
""

, ,
« -^ 1

,
w + 1

»,
"T" —

1
— *P

P±n+ ^ •Ip'' . r . .—— ~
: and lor an approximation of the

1 + 2/2 — 1.-5/?

fourth degree z z: p X 1 + ?r7

p \- \np^

2 2 i( 6 2 P
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._
P + i"P'

-. Hence it is evi-
2/i— 1 2/2—1 n— 1 a

dent that the rootx (r x 1 + z) of the given equation

^"^ = k, will be equal to r + ^^T^ ^i '^ "» wear/^;

and equal to r -|
^ ^

- . 1

, .
2«— 1

.
2/2— l.w— l^p"

1 + -2—p+ [^
—

more nearly.

But both tliese theorems will be rendered a little more

commodious, by putting v z=
^,
and substituting^

tC —— r

—
, in the place of its equal p, whence, after proper

reduction, x will be had n r -f
—

,

V X 6o -t- 4/2 — 2

nearly; and equal to r -|

r x 2!? f tz
_^

2;X2i?-|-2/2— l + J.w
—1.2/1—1

TMore nearly,

I shall now put down an example, or two, to shew
the use and great exactness of these last expressions.

1. Let the equation ,:^lven be x"^
—

2, or, which is the

same, let tlie square root of 2 be required.

Then, assuming r zz 1.4, we have n —
2, k — 2,

/ nr"" \ 2 X 1.96 , , n
'

[V^"nJ^ 2~::r7.g6
= ^^^ ^'^^ therefore r

+ ^-JL^SEEJ = 1.4 + hL^i-^ = 1.4 +
V X 6v -{- 4/2— 2 98 X 594

— l-'^ -^ •

;,^ 1= 1.41421356; which is
70X198

'

13860

the value of j; according to the former approximation
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but, according to the latter, the answ er will come out

1.4 + ---- - 1.41421356236; which is true to the

last figure: and, if with this number the operation be

repeated, you will have the answer true to nearly 60

places of decimals.

2. Let it be required to extract the cube root of

1728. Here, taking r
—

1 1, we shall have v
(

^

n -5— —
10.03793 ;

and therefore r 4-
397

r X 2y -h «-=====
;

= --— = 11.99998;
2n \~ Qn— 1 xtJ-h-g-xw — IX 2w— i

which differs from truth by oniy part of an
50000

unit.

3. Let it be proposed to extract the cube root of
500. Here, the required root appearing to be less than

8, but nearer to 8 than 7, let r be taken -
8, and

/ 3 ^ 512\
we shall have i^ [— .

-
) = — 128; and there-

r X 2r -f n
fore r -h

2t7 + 2/2— 1 XV + T>^« — 1 X2« — 1

^8 — —i_ — 7.937003259936 ; which number is

96389

true to the last place.

4. Lastly, let it be proposed to extract the first sur-

solid root of 123000. In which case k being = 125000,
n --

5, r =z 10, and v
—

20, the required root will be

found - 10.456389.

Besides the different approximations hitherto deli-

vered, there are various other ways whereby the roots

of equations may be approached; but, of these, none

more general, and easy in practice, than the follow-

ing.
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Let the general equation, az +• ftz" + cz^ -f dz* -f

ez^ &c. —
p, be here resumed; which, by division, be-

comes z
—

; i

=

_^+l, V^ z-^+^z^-^ ^ z^ &c.
p p p p p

if, therefore, we make A = —
; and neglect all the

^ "
1 .

terms after the first, we shall have —-
; being an ap-

proximation of the first degree.
And if this value of z be now substituted in the se-

cond term, and all the following ones be rejected, we

1 A A
shall then have z

—
-, = j — -rr

p p A p p

by making B = -^-
; which is an approximation

of the second degree.
In order now to get an approximation of the third

degree, let this last value be substituted in the second

term, neglecting all the terms after the third; so shall

•
: but here, in the room of

a
,

h A c

p p i> p

x% either of the squnres of the two preceding values

of z, or their rectangle may be substituted, that is, either

A^ 'a' W '^'~^*^^~A
^ R ' ^"^ ^^^ ^^^^ ^^ ^^^^^^

(=: -—-) is the most commodious; whence we have z zz

B B . ^ aB^-/;Afc
.

supposmsf C —
.

P P P

Again, for an approximation of the fourth degree, we

. h 5Bc„cBAcAhave — 2
— — X —; — Jj- =; — X — '< -^ = — X 7^-

p p K> p pCiipC'
, d ^ d B A 3 d 1 ...

and— z^ zz — X -p,- x —- X -r- = — x -7^; which
p p C Jd A p t
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I lies being substituted in the general equation and all the

terms after the four first rejected, there now comes out

1 C
2=- =: ~

p pL pC pC p p p p
C ,

,
. _ aC + 5B + cA + df=

g-; by makmg D =
^

In like manner, for an approximation of the fifth de-

unu f> b C c ^ cCB
gree.we shall have — szr — x-rr, — 2== -X^Xts

p pup pDC
_cB d

^ _ d C B A_dA . e ^ _
-^pD'^^

-
p ^D^C ^B"-^'^""* p^

-

C B A 1 € ,

D~ C"
^ B ^

"a
~

oD ' consequently 2

D D= ^ T
2 e

-
F ' supposing

p p p p p

tinuationismanifest; whereby it appears, «/iai ifthere be

. A « u flA + 6 ^ aB + 6A 4- c
taken A =: — , B = , C zz —

^ ,

p p P
^ aC^bB^-cA+d ^ aD + ^C+cB+^A + e

JL> zz '—
i sL,

~ ——
>

p P
^ rtE+ftD+rC+r/B+eA+f^ aF+bE+cD+nC-\-eB+f\+g

^
C D E /

&c. then will-i.A -C-.4' E'T' -f'
^''- ^^ '"

many successive approximations to the value of z, as-

cending gradually from the lowest to the superior
orders.

An example will help to explain the use of what is

above delivered ; wherein we will suppose the equation

given to be 12s f 6z* + 2^ m 2.

Here a == 1 2, i = 6, c = 1 , rfiz 0, e= 0, &c. and ;>
= 2 ;

whence A ( = --) z: 6, B (=:
—

^
—J= ^

aB + AA-f-c 12 X 39 4-6 /6fl\= 39, c( = — =
^ ;



BY APPROXIMATION. 173

505
p.

aC-\-bB-[-cA-hd _ 6 X'5Q5 + 6x 39"f-6

A 2
Therefore, -^ —— zz. z, nearly,a 13

zz 1635, &C

B 78 ,
-— zz — —

z, more nearly*C 305
' ^

_ — —- = z, 5^7/ nearer, S^

From the same equations the general values of B, C,
D, &c. may be easily found, iu known terms, inde-

pendent of each other.

Thus nizz 1 zi-^ A (because A zi— 1;^

P V J V V pJ

also C/iz — + h—
j =-!-+ —;^- + ~:

\ p p p ) p p" p'

and D
(
z: — -f — + — + -—

)
=z -^ -f . +\ p p p p J p^ p-

^

r—- 4- — &c. Therefore
P P

A ap
B"

^
a'-t bp

'

B _ p X a^ \- bp

"C
""

a^ + 2ahp + c/>'

*

C p X q^ -t- 2a6p + cp^

15
~"

a* + 3a'6p + 2ac~T~bb . p" + c?p^

D p X a' i- Sa-bp -V- 2rtc + bb . p^ 4- c?/)'

£ a^ -h 4a^bp + 3«c + 37>/) . ap^ + be {-ad, 2p^ -f ep^

&c. which are so many different approximations to

the value of /.

Thus far regard has been had to equations which
consist of the simple powers of one unknown quantity,
and are no ways afiected, either by surds or fractions.

If either of these kinds of quantities be concerned in

an equation, the usual way is to exterminate them by
multiplication, or involution (as has been taught in
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Sect. IX.) But as this method is, in many cases, very
laborious, and in others altogether impracticable, es-

pecially., where several surds are concerned in the same

equation, it may not be amiss to shew how the method
ot" converging series*s may be also extended to these

cases, without any such previous reduction. In order

to which it will be necessar}'^ to premise, that if A + B
represents a compound quantity, consisting of two

terms, and the latter
( B) be but small in comparison of

the former ; then will.

A-r-B
^ A

B 1

A
A^B

2Ai 2A

1 1 B 1 B
3°. 7 =77 J

or—
A^" 2Ai A^

^.nearly.

A^ A^ 3A X A^

6°. X+Bl* r: A^ +—
,

or A* 4- -?A
4A^ ^^

^
!

B 1— or —— B

4A k 4Ax A

All which WMJI appear evident from the general theo-

rem at p. 41 ; from whence these particular equations,

or theorems, may be continued at pleasure ; the values

here exhibited l)eing nothing more than the two first

terms of the series there given. But now, to apply
them to the purpose above mentioned, let there be given

v/i \- x^ + v/2 1 .<" f n/3 + 0^ - 10, as an exam-

ple, where, x being about 3, let 3 + e be therefore sub-

stituted for X, rejecting all the powers of e above the

iirst, as inconsiderable, and then the given equation
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will stand thus, ^ lOf 6e + n/i 1 + 6e + \/l2 + 6«
— 10: but, by Theorem 2, n/io + 6e will be =: Vu)

^-
3v/l0 X

e^ nearly; for, in this case, A = lo,
10

I

I A^B
and B zz 6e, and therefore A^ -f —r-

—
\/l0 4-

2A
3\/l0 X e

10
in like manner is n/ii -\- 6e — \/ n ^

3v/ 1 1 / e „ , ^, /—-
.

3 >/To X e
,—

, &c. and consequently v 10 4
r^r

+

y/ll 4- Ti
+v 12 f — = 10; which

contracted, gives 9.944 + 2.7l8e= 10; whence 2.718C
zz .056 and e zz .0205; consequently x zz 3.0205,

nearly. Wherefore, to repeat the operation, let 3.0205

+ e be now substituted for x; then will

v/l0.12342 + 6.041e + v^U. 12342 -f 6.041e +

\/ 12. 1^-^342 4- 6.04 le = 10; whence, by Theorem ^3,

, 6.04 le /
^^^-^'^^^^ +

2v/iai2342
+ V/1 1.12342 -f

6.04 le / 6.04 le

4-\/l2.12342 + —7
~ = 10, or

I

2\/ 11.12342 2v^l2. 12342

9.9987814 + 272246 z: 10: from which e comes out

zz .000447, and therefore x zz: 3.020947; which is true

to the last place.

Again, let it be proposed to find the root of the equa-

20.T x/'ir 4- T^
*'- ^7TF^^T^ + ^^^ = ''' P"' ^° +

e — x: then, by proceeding as before, we shall have

400 + 20£_ ^ 20 4- g X v/405 + 40e
^^ . ^^^

v/516 + 45e 25

(6v Theorem 3.) ^ .. is nearly =: ,
—

;=-

—
^ ^

\/5l6-i- 45e V516
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45e

•

iosF^Tv/Md'
^"^ ^^^ Theorem 2.) >/403 + 40e =

20e
which values being substituted

\/ 405

above, our equation becomes

— 1 45<? 20-f« ,,^ .
20e

Vb]6 1032XV/516 25 ^
V4o5

— 34, that i s, 400 -f 20e X ^044022 — .00]92e +
20 + e X .S04984 + .0398e

— 34 ; whence rejecting
^% &c. we have 1.7l3e = .1915; and consequently

€ = .1118.

Thirdly, let there be given \/i ~.t + ^/i— qx^ 4.

v/l— 32^ — 2. Then, if 0.5 -f e be substituted there-

in for cT, it wil l become y/o 5 — e -f \/o75 ~ 2e 4-

\/o.625—-2.256 zz 2; or v/o.5 — ^0^5 X c f V^OS

— -/oJ" X 2e H- v^^eiJ — '^'-^ = 2 ; whence
2V^.625

3.545e = .204, e - .057, and x ~
0.557, with which

the operation being repeated, the next value of x will

come out — .5516.

astly, let the/e be given 1 + .rlf f T^f -4.TTFI*
6.5, Here, by writing 3 + e for x, and pro-

ceeding as above, we shall have 2 + —
1 "j^T _|^

1

-f 1,23 = Q.^', whence e =r .036, and x zz 3.036. '*\

It may be observed that this method, as all the

powers of e above the first are rejected, only doubles

the number of places, at each operation : but, from
what is therein shewn, it is easy to see how it may be

extended, so as to triple, or even quadruple, that

number; but then the trouble, in every operation,
w^ould be increased in proportion, so that little or no

advantage could be reaped therefrom.



BY APPROXIMATIOX. 177

Hitherto we have treated of equations which include

one unknown quantity, only. If there be two equa-
tions given, and as many quantities {x and y) to be

determined, one of these quantities must first be exter-

minated, and the two equations reduced to one, ac-

cording to what is shewn in Sect, 9. But, if this can-

not be readily done (which is sometimes the case) and
the unknown quantities be so entangled as to render

that way impracticable, the following method may be

of use.

Let the values of x and y be assumed pretty near the

truth (which, from the nature of the problem, may
always be done) ; and let the values so assumed be de-

noted by/, and g, and what they want of truth by s,

and t respectively ; that is, let/ -+- ^ n x, and g -^ i
—

y:
substitute these values in both equations, rejecting (by
reason of their smallness) all the terms wherein more
than one single dimension of the quantities s and t are

concerned ; let all the terms in the first equation, which
are affected by .9, be collected under their proper signs
and denoted by A*; in like manner, let those affected

by t, be denoted by B^ ; and those affected neither by
s nor t, by Q : moreover, let the terms of the second

equation, wherein s and t are concerned, be denoted by
as, and bt^ respectively ; and let the known terms, on
the right-hand side of this equation, or those in which
neither ^, nor t enters, be represented by q. Then the

equations (be they of what kind they will) will stand,

thus, A5 -f B^ IT Q, and as + bi zz q. By multi-

plying the former of which by h, and the latter by B,
and then subtracting the one from the other, we shall

have bAs — Bas — bQ -^ Bq ; and therefore s
—

X .

^ ; whence x (zzf \ s) is given.

Again, by multiplying the former equation by a, and
the latter by A, &c. we shall have aBt— Abi~ aQ —

A 7, and therefore t z. ,,^-~-,-? — ".? ,^
'' whence

y {
zz g '\- t) is likewise given.



178 THE RESOLUTION OF EQUATIONS.

It is easy to see that this method is also applicable,
in cases of three,or fourequatioiis,and asmany unknown
quantities ; but as these are cases that seldom occur in

the resolution of problems, and, when they do; are re-

ducible to those already considered, it will be needless

to take further notice of them here : I shalU therefore,
content myself with giving an example, or two, of the

use of what js above laid down.

I. Let there be given a-* 4- 2/*
= 10000, and x^ — y*= 25000; to find x and y. Then, by writing/+ s

=
cT,

o- + t~y, and proceeding according to theafore-

going directions, we shall have /* + 4/^5 + g* -f 4^"^^

= 10000, and /5 -f sf^s — g!
— ^g*i= 25000, or

4f^s+ 4gH~ 10000—/-^
—

g*, and 5f*s — 5g^t^=
25000 + g^

— /^: therefore, in this case, A =,4/^
B = 4g\ Q = 10000 - r—g\ a = 5f\ h = —
5g\ and q

= 25000 + g^
— fK But it appears, from

the first of the two given equations, that x must be

somethmg less than 10, and from, the second. that y
must be less than x: I therefore take/ = 9, andg = 8 ;

and then A becomes = 2916, B = 2048, Q = — 657,
a = 32805, b ~ — 20480, q

= — 1281; and thier^-

— 0.14; hence x ~ 8.87, and ?/
= 7.86, nearly.

Therefore, in order to repeat the operation, let/ be

now taken = 8.87, and g = 7.86; then will A = 2791,
B = 1942, Q = — 6.76,— a = 30950, b == — 19083,

and 7
= 94 ; consequently 5 ( = l7^u M= .00047,

and t {= ^I ZlaB j
"^ "~ •^^'^^^' whence x =

8.87047, and y = 7.85585 ; both which values are true

to the last figure.

Example 2. Let there be given 20x~flcy^^ + 8x^'-

xy= 12, and\/x- I y'^ + -
,

= 13. Here the

given equations, by writing/ + s for x, and g \- t
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*

iofy will become 20/ -f 20^ +- /g^ + 2/gi + g'sj^

+ v/s/T'sy = 12, and v// ' + g' + 2/5 + 2gf

+ ^^±A±-gi—- ^ 13: but

2o/-f /g-' + 20^ + 2/g« -f g'^JT, by what is shewn in

--.f 20/ + /^""^
p. 1 74, will be transformed to20/4-/g1^ + r-~vV^
X 20^ + 2/^^ + g-5 (supposing all the terms that have
more than one dimension of 5 and t, to be rejected, as

inconsiderable) ; also \//^ l- g^ + 2/> + 2gt, is trans-

equations will stand thus,

•

20/+/rl +
3 xW+7? ""

fi-- gt
/^ + ^' + ^^ x^Tjf^. -7^:=^, ^yrz:^
= 13 : which equations, if/ be assumed = 5, and ^= 4, will be reduced to 5.6462 4- .01043 x 36^ -t- mt
>t- 6.3245 -f .6324^ =r 12, and 6.4031 4- 78U + .625 1

+ 20 + 5« + 4^ X .3333 — .1852^ -\- .1482^ = 13 ;

whence 1.008>9 4- .418« =.0293, and 1.59^— 5.255^
= ,0698, therefore, in this case, A = 1.008, B rr
0.418, Q = .0293, a = 1.59, Z> = — 5255 and q

= .0698 : consequently 5
( n:^-—|)

== 0.305, and

*
'
^ Kb —-ff-B

^ ~ '~ .0040; therefore x ~
5.0305

and y
—

3.9960.
N 2
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SECTION XIII.

OF INDETERMINATE, OR UNLIMITED PROBLEMS.

AProblem is said to be indeterminate, or unlimited,
when the equations, expressing the conditions

thereof, are fewer in number than the unknown quan-
tities to be determined ; such kinds of Problems, strictly

speaking, being capable of innumerable answers : but
the answers in whole numbers, to which the question is

commonly restrained, are, for the general part, limited
to a determinate number ; for the more ready discover-

ing of which, I shall premise the following"

LEMMA,

Supposing
—

to be an algebraic fraction, in its
c

lowest terms, x being indeterminate, and a, h, and c,

given whole numbers ; then, I say, that the least inte-

ger, for the value of x that will also give the value of

?^ — an integer, will be found by the following
c

method of calculation.

Divide the denominator (c) hy the co-efficient fa) of

the indeterminate quantity : also divide the divisor by the

rejnainder, and the last divisor, again, hy the last re-

mainder; and so on, till an unit only remains.

Write doivn all the quotients in a line, as theyfollow;
under the first of which write an unit, and under the se-

co7id write the first ; then multiply these two together,

and having added the first term of the loiver line for an

unitJ to the product, place the sum under the third term

of the upper line : multiply. In like manner^ the next

two corresponding terms of the tivo lines together, and,

havifig added the second term of the lower to the
product,

put down the result under the fourth term of the upper
one : proceed on, in this way, till you have multiplied

hy every number in the upper line.
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Then multiply the last number thus found hy the abso-

lute quantity fbj in the numerator of the givenfraction,
and divide the product by the denominator ; so shall the

remainder be the true value of x, required ; provided the

number of terms in the upper line be even, and the sign

of h negative, or, if that number be odd and the sign of
i) affirmative ; but, if the number of terms be even, and
the sign of b affirmative, or vice versa, then the differ-
ence between the said remainder and the denominator of
the fraction will be the true answer.

In the general method here laid down a is supposed
less than c, and that these two numbers are prime to

each other : for, were they to admit of a common mea-
sure, whereby 6 is not divisible, the thiog would be im-

possible, that is, no integer could be assigned for x,

so as to give the value of ~ an integer : the rea-
c

son of which, as well as of the lemma itself, will be

explained a little farther on : here it will be proper to

put down an example or two, to illustrate the use of
what has been delivered.

Examp, 1, Let the given quantity be —^—~— ,

Then the operation will stand as follows :

87)256(2

82)_87(I 2, 1, 16, 2

5) 82^(16 1, 2, ,3, 50, 103

2)^(2 50
1 256)5150(20

30 = X,

Examp. 2. Given —~ _ ,

89

71 ) 89( 1

18^) n^(3 1, 3, ,^

17)j_8(l 1, 1, 4, 5

f . JO
50 =: X.

N 3
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Examp.3, Given ^llf=l^.
450

377)_4£0(1 1^ 5, 6,

73) 377(5 I, 1, 6, 37

12 ) 73_(6
250

1 1850

74

450
) 9250 (

20
250
450

200 :z X

Examp, 4. Given
9STX + 651

1235

987) 1235 ( 1 1,3,1,48, 1, 1

248)987(3 1,1,4, 5,244,249,493
243 ) 248 ( 1 651

5
)
243 (48 493

3)£_(1 2465

2)J_(1 2958

1 1235) 3230943(259
7394

12193

ij|l^
1078
1235

157 := X.

These four examples comprehend all the different

cases that can happen with regard to the restrictions

specified in the latter part of the rule. I shall now
shew the use thereof in the resolution of problems.

PROBLEM I.

To find the least whole number, which divided by n,
shall have a remainder of 7 ; but being divided by 26,
the remainder shall be 13.

Let a- be the quotient, by 17, when 7 remains, or

which is the same, let 17a + 7 express the number
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sought? tlien,since this number, when 13 is subtracted

from it. is divisible by 26, it is manifest that

17^7+7 — 13, I7.r
— 6 ^ V 11 I

il—Z_! 1 or -—
-^
— must be a whole number:

26 26

whence, by proceeding according to the lemma, x will

be found = 8; and consequently nx \- 'J =i 143, the

number required. See the operation

17)26(1
17
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corresponding value of x, Heiice it follows, that, if

the greatest value of a: be divided by the co-efficient ofy,
the remainder will be the least value of x, and that the

quotient + 1 will give the number of all the answers.

But it is to be observed, that the equations here spoken
of, are such, wherein the said co-eflicients are prime
to each other; if this should not be the case, let the

equation given be, first of all, reduced to one of this

form, by dividing by the greatest common measure.

PROBLEM III.

, To find hoiv many different loays it is possible to pay
lOOl. in guineas and pistoles, only ; reckoning guineas at

21 shillings each, atid pistoles at 17,

Let X represent the number of guineas, and y that

of the pistoles; then the number of shillings in the

guineas being 9.\x, and in the pistoles, 17^> we shall

tlierefore have 2la7 f I7y= 2000, and consequently a —

which being a whole

17?/
— 5

2000 —
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2 la? 4- 27y n 2000; and consequently x — — ^

— 05 «-. ?/ LZJ
: where, the fraction being in^21

its least terms, and the numbers 6 and 21, at the same

time, admitting of a common measure, a solution in

whole numbers (by the note to the preceding lemma) is

impossible. The reason of which depends on these

two considerations ; that, whatsoever number is divi-

sible by a given number, must be divisible also by all

the divisors of it ; and that any quantity which exactly
measures the whole and one part of another, must do
the like by the remaining part. Thus, in the present

case, the quantity (yy
—

3, to have the result a whole

number, ought to be divisible by 21, and therefore di-

visible by 3, likewise (which is, here, a common mea-
sure of a and c) : but 6//, the former part of 6?/

—
5,

is divisible by 3, therefore the latter part
— 5 ought

also to be divisible by 3 ; which is not the case, and
shews the thing proposed to be impossible,

PROBLEM V.

A butcher bought a certain number of sheep and oxen,

for ichich he paid lOOl. ; for the sheep he paid 17 shil^

lings apiece, and for the oxen, one with another^ he paid
7 pounds apiece, it is required to find how many he had

of each sort ?

Let X be the number of sheep, and y that of the

oxen; then, the conditions of the question being ex-

pressed in algebraic terms, we shall have this equation
viz. \Tx + 1401/

—
2000; and consequently x —

2000—140// ^^^ ^ 4v — 11 ,., ,.___ -
117 — 8?/-^

\l'
' ^^^^^^ ^^^^^'

a whole number,
^ "~— must therefore be a whole

number likewise : whence, by proceeding as above, we
find y — 7, and x — 60 ; and this is the only answer
the question will admit of; for the greatest value of x
cannot in this case be divided by the co-elhcient of y,
that is 140 cannot be had in 60; and therefore, ac-
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cording to the preceding note, the question can have

only one answer, in whole numbers.

PROBLEM VI.

A certain number of men and women being merry-
making together^ the reckoning came to 33 shillings, to-

icards the discharging of which, each man paid 3s. 6d.

and each iuo?nan Is, ^d,: the question is, to find how

many persons of both sexes the company consisted of?

Let a? r^resent the number of men, and y that of
the women; so shall 42a: + \Qy — 396, or 21a: -f 8y

, ., 198— 21jf
= 198 ; and consequently y

— z: 24 — 2x

—1- : whence, y being a whole number, -^—-—
must likewise be a whole number; and the value of

a:, answering this condition, will be found = 6 ; and

consequently that of ?/ (zz 24 — 12 — 3) = 9; Avhich

two will appear to be the only numbers that can an-

swer the conditions of the question; because 21, the

co-efficient of x, is here greater than 9, the greatest
value of y,

PROBLEM VII.

One bought 12 loavesfor 12 pence, whereof some were

two-penny ones, others penny ones, and the rest farthing
ones : what number were there of each sort ?

Put X zz the number of the first sort, y — that of

the second, and z that of the third ; and then, by
the conditions of the question, we have these two equa-
tions, viz,

X -V r/ 4- 2 r: 12, and
8a: + 4.y 4- z = 48

Whereof the former being subtracted from the latter,

in order to exterminate 2, we thence get lx-\-Sy — 30,

and therefore y - —-— - 12 — 2r — — ; whence
3 o

it is evident that the value of .r
-

3, and consequently
that y = 5, and s

—
4 ; which are the numbers that

were to be found.
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PROBLEM VIII.

Tofind the least integer^ possible, which being divided

hy 28, shall leave a remainder of IQ; but, being divided

by 19, the remainder shall be 15; and, being divided by
15, the remainder shall be 1 1,

First, to find the least whole number that can an-

swer the two first conditions, let the quotient by 28,
the first of the given divisors, be denoted by x, or which
is the same, let the said number be expressed by 26a: 4-

19; then this number, when 15 is subtracted from it,

being divisible, by 19, it is manifest that , or its

gx -4- 4
equal x -\

— - must be an integer; from whence

the least value of x will be found —
8 ; and conse-

quently QSx + 19 zz 243; which is the least whole
number that can possibly satisfy the two first condi-
tions. This being found, let the least number that is

exactly divisible by both the said divisors 28 and 19, be
now assumed ; which, because 28 and 19, are prime to

each other, will be equal to 28 x I9, or 532 : then,
since the number required, by the nature of the pro-
blem, must be some multiple of 532, increased by 243,
it is plain that the said number may be represented by
532X -V- 243 : from which, if 1 1 be subtracted, and the

(53Qx

'

1 23'^

15

=- 35x + 15 -h -^~
—

j
will be a whole number ^by

7 T 4- 7
the question, and consequently

-—
:
—- a whole num-

ber also; from whence the least value of x will be
found =: 14 ; and consequently that of 532.r + 243 zz

7691 ; which is the number that was to be found. In
the same manner the least number, possible, may be

found, which being successively divided by four or
more given divisors, shall leave given reniuinderb.
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PROBLEM IX.

Supposing Six 4- 256^ =: 15410; to determine the

hast value of x, and the greatest of y^ in whole positive
mtmhcrs.

By transposition and division, we have

13410— 87a: ^ 87*— 50 1 ^1 r
t/ = -r-x——^ 60 —

: where the frac-
•^ 256 256

tion .being the same with that in Exanip. I. to the pre-
mised lemma, the required value of a? will be given from
thence — 30 ; from thence that of y will likewise be
known. But I shall in this place shew the manner of

deducing these values, independent of all previous con-

siderations, by a method on which tire demonstration
of the lemma itself depends.

In order to this, it is evident, as the quantity 87a:—h

(supposing h
—

50) is divisible by 236, that its double
3 74j: — 26 must be likewise divisible by 256. But
236^ is plainly divisible by 256; and if from this the

quantity in the preceding line be subtracted, the re-

mainder, 820? 4- 2 A, will be likewise divisible by the

same number ; since whatsoever number measures the

ichole, and one part of another, must do the like by the

remaining part : for which reason, if the quantity last

found be subtracted from the first, the remainder,5a;—3b,

will also be divisible by 256: and, if this new remain-

der multiplied by 16, be subtracted from the preceding
one (in order to farther diminish the co-efFicient of

.r),

the difference 2x 4- 50^ must be still divisible by the

same number. In like manner, the double of the last

line, or remainder, being subtracted from the preceding
one, we have a;— 103b, a quantity, still, divisible by

256: but —- = 20 + —-; therefore a:— 30 must
256 ^56

be divisible by 256 ; and consequently x be either equal
to 30, or to 30 increased by some multiple of 236; but

30, being the least value, is that required.

It may not be amiss to add here another Example, to

illustrate the way of proceeding by this last method;

. . . , 987.r4-65I
wheremletussupposetnequantitygiveutobe

—-~-—



INDETERMINATE PROBLEMS. 189

Then making h — 651, the whole process will stand

as follows :

From 1235.17

sub 987^1^ 'X- h

1, rem 248a: — 6

1 . rem. X 3 744.Y —zh
2. rem 2433? 4- 4 6

3. rem. bx — 5h

3. rem. X 48 240.r — 240^

4. rem ,,.. 3a? + 244/;

5. rem ^x — 249^^

6. rem oc -\- 493^:

where, x being without a co-elTicient, let 493^; or its

equal 320943 be now divided by 1235, the common
measure to all those quantities, and the remainder will

be found 1078; therefore a: -+- 1078 is likewise divi-

sible by 1235 ; and consequently the least value of x

(zz 1235 — 1078) = 157. The manner of workinir,

according to this method, may be a little varied ; it

being to the same effect, whether the last remainder, or

a multiple of it^ be subtracted from the preceding one,
or the preceding one, from some greater multiple of the

last. Thus, in the example before us, the quantity
248X— 6, in the third line, might have been multi-.

plied.by 4, and the preceding one subtracted from the

product; which would have given 5x — bh (as in the

sixth line) by one step less. If the manner of proceed-
ing in these two examples be com|)ared with the pro-
cess for finding the same values, according to ihclemma,
the grounds of this will appear obvious.

PROBLEM X.

Supposing e,/, and g to denote given integers to deter-

• '»-> __ g ^ -f

mine the value of x. such that the quantities ^
,

~*
^ '

i>8 19
X —— fT

and •

, may all of them he integers.
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By making zz y.'we have x =z <2Sy + e
; which

'

value being substituted in our second expression, it

becomes—^^^^ ^
; which, as well as y. is to He a

19

whole number: but —"i ^ by making b zz c

—
/, will be zr

2/ + ~ ; and therefore igy and

18?/ + ^b being both divisible by 19, their difference

y — 2/> must be also divisible by the same number;
whence it is evident, that one -value of 'r/ is 2i ; and.
that 26 f IQz (supposing z a whole number) will be a

general value of y ; and consequently that x
{

—
<2Sy

4- e) = 5323 -v 56b 4- e is a general value of x, an-

swering the two first conditions. Let this, therefore,

jf or

be substituted in the r€maining expression——^; whtch,
i o

14-1,. u 5322-}- 566 4- e —^
by that means, becomes ^ — 35z

1 o

+ 3/> -h
'^

(^supposing /3
= lift f e — g — I2<r

—
1.1/
—

g.) Here 15s and 142 + 2/3 being both di-

visible by 15, their difference z— 2;3 must likewise be

divisible by the same number ; and therefore one value

of z will be 2/3, and the general value of 2 = 2/3 +
15?^ : from whence the general value of x {

zz 5322 +
56b -\- €) is given =: 7980mj + 1064/3 '\- 56b + e ;

which, by restoring the values of b, and /3, becomes .

7980U; + 12825e— II76O/— 1064^>-.

Now to have all the terms affirmative, and their co-

efficients the least possible, let w be taken ::= — c + 2/
-f- g; whence there results 4b45e + 4200/ + 6916^,
for a new value of x : from which, by expounding e, /,

and^, by their given values, and dividing the wiiolc by
7980, the least value of .r, which is the remainder of

the division, will be known.
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PROBLEM XI.

If 5x 'i- ly + llz zz 224; it is required to find ail

the possible values of r, y, and z, in tvhole numbers,

*

• In.this, and other questions of the same kind, where

you have three or more indeterminate quantities and

only one equation, it will be proper, first of all, to

find the limits of those quantities. Thus, in the pre-

sent case, because a? is = ~ -, and because

the least values of y and z cannot (by the question) be
less than unity, it is plain that x cannot be greater than

—^ ^^—
,* or 41 : and, in the same manner it will

5

appear that y cannot be greater than 29, nor z greater
than 19 ; which therefore are the required limits in this

,* . . 224 — 7?/
- llz

onse. Moreover, since .r is
— — 43

5

I + Qy h z , , ,— y — 22 zz a whole number, it is ma-

nifest that~4 ^ must also be a whole number:

let 2 + 1 be therefore considered as a known 'quaji-

tity, and let the same be represented by b, and then

the last expression will become ; from which

by proceeding as above, we shall get y
—

Q,h
— ^z

4- 2 ; whence the corresponding value of x comes out

^ 42 — 5z.

Let z be now taken = 1, then will a; = 37 and y—
4; from the former of which values, let the co-elli-

cient of y be, continually, subtracted, and to the latter,

let that of a?be continuallyadded, and we shull thence

have 37, 30, 23, 16, 9, and ^, for the successive values

ofx; and 4, 9, 14, 19i 24, and 29, for the correspond-
ing values of y. which are all the possible answers
when 2 =1.
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Let z be, now, taken =: 2, then x :z 32, and
3/
= 6;

let the former of these values be increased or decreased

by the multiples of 7, and the latter by those of 5, as

far as possible, till they become negative; so shall we
have 39> 32, 25, 18,11, and 4, for the successive values

of a?, in this case, and 1, 6, 11, 16, 21, and 26, for the

respective values ofy; which are all the answers when
z zzQ.

Again, let z be taken = 3 ; then, by proceeding as

above, the corresponding values of x, and y will be
found equal to 34, 27, 20, 13, 6; and 3, 8, 13, 18, 23,

respectively. And so of the rest: whence we have the

following answers, being 59 in number.

2
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>«OBLEM XII.

//17^ rf 19y + 21z = 400; it is proposed to find
all the possible values of x, y, and z, in ivhole positive

numbers.

When the co-efficients of the indeterminate quaiiti-

ties Xy tj, and z, are nearly equal, as in this equation, it

will be convenient to substitute for the* sum of those

quantities. Thus, let x + y + z be put
— m ; then

by subtracting 17 times this last equation from the pre-

ceding one, we shall have Qy A- 4z — 400 — l7??i ; and

by subtracting the given equation from 21 times the

assumed one x -h y + z — m, there will remain

AX + 2y zz 21m — 400. Therefore, since y and z can
have no values less than unjty, it is plain, from the first

of these two equations, that 400 — 1 7m cannot be less

400 6
than 6, and therefore m not greater than —

, or

23 : also, because by the second of the two last equa-
tions, 21m — 400 cannot be less than 6, it is obvious

that m cannot be less than , or 19 : therefore
21

19 and 23 are the limits of m, in this case. These

being determined^ let 4x be transposed in the last equa-
tion, and the whole be divided by 2, and we shall hare

yzz 10m — 200 — 2a' -1-
—

: which being a whole

711

number, by the question,— must likewise be a whole

number, and consequently 7n an even number ; which,
as the limits of m are 19 and 23, can only be 20, or 22 :

let, therefore, m be first taken = 20, then y will be-
come =: 10 — 2x, and z (m — x — y] = 10 + 0?;

wherein a; being taken equal to l, 2, 3, and 4, suc-

cessively, we shall have y equal to 8, 6, 4, 2, and z

equal to 11, 12, 13, 14, respectively, which are four
'

of the answers required. Again, let m be taken =: 22 ;

then will 1/ = 31 — 2.v, and 2 zz a^ — 9 : wherein, let

.The interpreted by 10, li, 12. 13, 14, and 15, succes-

sively, whence y will come out 11, 9, 7, 3, 3, and 1 ;

o
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ind X equal to 1,2, 3. 4. 5, and 6, respectively. There-
fore we have the ten following answers ; which are all
the question admits, of.

y = 8

X = 11

2
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tion for m, is positive or negative. But, besides this, there

is anotherUmit,or particular value of 9 to be determined,
which is of great use in finding the number of answers.

It is evident from the given equations, that the

values of x will begin to be negative, when z is so

increased as to exceed -; and that those ofm
y will, in like manner, become negative, when z is

taken greater than —
^

—-
: therefore, as long as

S — ^Q M ^ -\- aQ , . 1
' contmues greater than ?

(supposing the

value of g to 'be varied) so long will x admit of a

greater assumption for z than y will admit of, without

producing negative values ; and vice versa. By making,
therefore, these two expressions equal to each other,

the value of a will be given ( = -^^—j-—) -^ ^
;

;
^ ° ^ am -i- nb

'
c

expressing the circumtsance wherein both the values of
X and y, by increasing z, become negative together.
But this holds only when w is a positive quantity;
for, rn the other case, the last term

(
—mz) in the ge-

neral value of X being positive, the particular values do
not become negative by increasing, but by diminishing
the value of z; it being evident, that no such can re-

sult from any assumption for «, but when 9 is greater

than -f*

To apply these observations to the equation, 7x 4-

9^ -k- 232 -
9999, proposed, we shall, in the first

place, by taking 3=0, have x =z 1428 — y ?^ZlL:

whence the least value of y is given = 5 ; and the

greatest of a' r= 1422. Again, from the equation am -f
bn zr c, or 7??2 -{- gn

—
23, we have ?n zz 3 — n —

—-—
; in which the least positive value of n is given

= 1 : and the corresponding value of m = 2 ; and so
the general values of x and y do here become 1422

o 2
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9g — 2r, and 5 -f- 7q — 2, respectively. From the
former of which the greater limit of q is given n
1422— 2

, or 157^; and from
flQ on I

, expressing the

^
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true arithmetical progression ; whereofthe common dif-

ference being 1 8, and the number of terms —

=: 48, the sum will therefore be given
— 20880 : to

which adding 13483, the number of ayiswers when q
was less than 62, the aggregate 34365 will be the whole
number of all the answers required.

PROBLEM Xir.

To determine how many different ways it is possible to

pay 1000 1. icithout using any other coin than crowns,

guineasf and moidores.

By the conditions of the problem we have 5x -f Qly
j- Q7z zz 20000; where taking z — o, x \s found

— 4000—4?/ v-> ^"cl from thence the least value

of 2/
= (0 being to be included, Jiere, by the question) :

whence the greatest value of .t is given = 4000. More-

over, from the equation 5m f Qin —
27, we have

71 —— 2m — 5 — 4« — ; from which « =: f , and m =
3

— 3 : so that the general values of x and y, given in

the preceding problem, will here become 4000 — 21^7

+ 32, and 5q
— 22. Moreover, from the given equa-

tion, the greatest limit of z appears to be ~ —

740; whence we also have iJ=^" = J"°0+3X740
6 21

= 296 zz the greatest limit of q ; and -y
zr ^522 ^

190, expressing the lesser limit of 9, when the value of
X, answering to some interpretations of z, will become
negative, while those of y will continue affirmative.
To find the number of all these affirmative values, up
to the greatest limit of q, let 0, 1,2, 3, 4, 5, &:c. be
now wrote in the room of9 (as in the margm). Whence
it is evident that the said number is composed of the

o 3
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series 1 +3 + 64-8 + li + 13, &c. continued to

297 terms; which terms'

(setting aside the first) be-

ing united in pairs, we
shall have the arithmetical

progression 9 + 19 + 29
&c. where the number of

terms to be taken being
148. and common diffe-

rence loathe last term will

therefore be J 479, and the

sum of the whole progres-
sion 110112 : to which adding (i) the term omitted,
Ave have 110113, for the number of all the answers, in-

cluding those wherein the value of x is negative ; which
last must therefore be found and deducted.

'

9
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must be united by twos, threes, or fours, &c, according
as one and the same fraction occurs every second, third,

or fourth, &c. term (the odd terms, when there happen
any over, being always to be set aside, at the begin-

ning of the series).

*

And it may be observed farther,

that, to determine the sum of the progression thus

arising, it will be sufficient to find the first term only,

by an actual addition ; since, not only the number of

terms, but the common difference also, will be known;

being always equal to the common difference of the

limits of z {or of the quotients in the said third column)

multiplied by the square of the number of terms united

into one ; whereof the reason is evident. But all this

relates to the cases wherein the coefficients of tho inde-

terminate quantities, in the given equations, are {two
of them at least) prime to each other : I shall add one

example more, to shew the way of proceeding when
those coefficients admit of a common measure.

PROBIEM XV.

Supposing I2x + 15y + 20?: r: 100001 ; it is required
tofind the number of all the answers in positive integers.

It is evident, by transposing 202 : and dividing by (3)
the greatest common measure ofx and y, that 4x -f 5y,

and consequently its equal 33333 — 6z — ff-ZILr^

must be an integer, and therefore ez — 2 divisible by
3 : but 32 is divisible by 3, and so the difference of
these two, which is z + 2, must be likewise divisible

by the same number, and consequently z
—

1 + some

multiple of 3. Make, therefore, l + 3m —
z {u be-

ing an integer) : then the given equation, by substituting
this value, will become 12j7 -f- 15?/ 4- 60u + 20 =:

10000 J ; which, by division, &c. is reduced to 4x +
5^ -h 20M =: 33327 : wherein the coefficients of x and

y are now prime to each other, and we are to find the

number of all the variations, answering to the different

interpretations of u, from to the greatest limit, in-

clusive.

o 4
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By proceeding, therefore, as in the aforegoing cases,

we have x = 8331 — y — -—~
; whence the least

value of y is given zz 3, and the greatest of a? = 83^8.

Moreover, from the equation 4w 4- 5 /z
—

20, we have

m —
5 — n : whence n = 0, and m z: 5.

4

Therefore the general values of x and y [given in Problem
13) do here become 8328 — 5q — du, and 3 + 49 ;

from the former of which the greatest limit of 9 is given
8328= ——- =: 1663. Now, since the value of v will here

5

continue positive, in all substitutions for 7 and u (as
r.o negative quantity enters therein) ;

the whole num-
ber of answers will be determined by the values of x
alone.

In order to this, let q be successively expounded by
1663, 1664, 1663, &c.
and it will thence appear
thatthe said numberwill
be truly defined by 1666
terms of the arithmetical

progression 1 + 2 f 3

+ 4+3 &c. . whereof
the sum is found to be

1388611.

When there are four indeterminate quantities in the

given equation, the number of all the answers may be
determined by the same methods : for, any one of those

quantities may be interpreted by all the integers, suc-

cessively, up to its greatest limit (which is easily de-

termined); and thenunlberof answers, corresponding
to each of these interpretations may be found, as above;
the aggregate of all which will consequently be the

whole number of answers required : which sum, or

aggregate may, in many cases, be derived by the me-
thods given in Section 14, for summing of series's by
means of a known relation of their terms. But this

being a matter of moro speculation than real use, I

shall now ])ass on to other subjects.

7
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SECTION XIV. .

the investigation of the sums of powers of
'numbers in arithmetical progression.

BESIDES
the two sorts of progressions treated of

in Section 10, there are infinite varieties of other

kinds; but the most useful, and the best known, are

those consisting of the powers of numbers in arithmeti-

cal progression ; such as V + 2^ -h 3* + ^- . , , . n-,

and 1^ + 2' + 3^ + 4' . . . . w^, &c. where n denotes,
the number of terms to which each progression is to be
continued. In order to investigate the sum of any such

progression, which is the design of this Section, it will

be requisite, first of all, to premise the following

LEMMA.

If any expression, or series, as

An + Bw« + C«^ + D;^* &c.; .
,

.
,,^an^ hn^ - en' - dn^ &c.^ mvolvmg the powers

of an indeterminate quantity w, be universally equal to

nothing, whatsoever be the value of n ; then, I say,
the sum of the co-efficients A— a, B — Z>, C — c, &c.
of each rank of homologous terms, or of the same
powers of n, will also be equal to nothing.

For, in the first place, let the whole equation
An -V Bn" ^Cn'hcf , ......

^an-^ bn"— cn^ &c. S
= ^» "^ divided by n, and

we shall have
I_t l^l^ ""J^H = 0; ^ni

this being universally so, be the value of n what
it will, let, therefore, n be taken =z o, and it will

become
|__^ |

=0; which being rejected, as

such, out of the last equation, we shall next have

4- B/i + Cw^ 4- D/z^ &c. > ^ ,: .,— hn — c?i' — dri^ 8icA
- ^ » whence, dividing

again by n, andproceeding in the very same manner.
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B-'b is also- proved to be iz o ; and from thence,
C — c, D — (/, &c. &c.

, Q.E.D.

Now, to apply what is here demonstrated to the pur-
pose above specified, it will be proper to observe, first,

that, as the value of any progression (l^-h 2^ -f. 3«

"t 4' w') varies according, as [n) the number of
its terms varies, it must (if it can be expressed in a ge-
neral manner) be explicable by n and its powers with
determinate CO- efficients; secondly, it is obvious that
those powers, in the cases above proposed, must be ra-

tional, or such whose indices are whole positive num-
bers ; because the progression, being an aggregate of
whole numbers, cannot admit of surd quantities; lastly,
itwill appear that the greatest of the said indices can-
notexceed the common index ofthe progression by more,
than unity ; for, otherwise, when n is taken indefinitely

great, the highest power of n would be indefinitely
greater than all the rest of the terms put together.

Thus, the highest power of w, in an expression univer-

sally exhibiting the value of P 4- 2' + 3^ . . . . . n*,
cannot be greater than w' ; for 1

* + 2^ -j- 3* ..... n*
is manifestly less than n^ (or n^ -]- n^ + n'^ -[- &c. con-
tinued to n terms) ; but «*, when n is indefinitely great
is indefinitely greater than n^, or any other inferior

power of n, and therefore cannot enter mto the equation.
This being premised, the metliod of investigation may
be as follows. ^

Case i". To find the sum of the progression 1 + ^4-3
-+- 4 . . . . ;?.

Let An' v B?2 be assumed, according to the foregoing
observations, as an universal expression for the value
of 1+2 + 3 + 4 n\ where A aud B represent

unknown, but determinate quantities. Therefore, since

the equation is supposed to hold universally, whatsoever
is the number of terms, it is evident, that, if the num-
ber of terms be increased by unity, or, which is the same

thing,'if 71-J- 1 be wrote therein, instead of w, the equa-

Jity will still subsis^r, and we shall have A X « -f-T-f
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B X n + 1 = 1 f 2 + 3 4- 4 n V n ^- \,

From which thejjrst equation being subtracted, there re-

mains A X n + 1 r— A.n' 4- B X n \- i — B;2z=w -h 1 :

this contracted will be 2 A.« -I- A -f B ~ n -{- i ; whence
we have 2A— i xn-f-A4-B— izzo: wherefore,

by taking 2A— 1 =: 0, andA -f B— i
— o (acccording

to the lemma) we have A zz f ,
and B z: ^ ; and con*

sequently 1 + 2 4- 3 4-4 . n (— .\n^ 4- B«) z=

n* n n X n 4- 1*— + ^. or
-^-^

Case 2**. Tofind the sum of the progression 1^4-2*^
3' »% or 1 4-44-9+1^ • • • • ^*-

Let A«' 4- Bn* 4- C«, according to the aforesaid ob-
servations, be assumed —

l"" + 2^* 4- 3" 4- 4- . . . . «2;

the^,_by^easoningasintheprecedingc^se^eshall have

A X « 4- iV 4- B X n 4- ll" + C x /<4-l
-

124-2*4-

3* 4- 4' ....;?* 4- n ^ l\^ ; that is, by involving n -\- l

to its several powers. Aw' 4- sAri' 4- 3A« 4- A 4- Btj*

4- 2Bw 4- B 4- C« 4- C zz 12 + 2* 4- 32 4- 4' n^

4- w 4- iT I from which, subtracting the former equa-
tion, we get 3A^i- + sAw -h A 4- 28/2 4- B 4- C
(
= n 4- if) z= «- 4- ^/2 4- I ;. and consequently

* In this investigation it is taken for granted, that the

sum of the progression is capable of being exhibited by
means of the powers of n, with proper co-efficients :

which assumption is Verified by the process itself: for

it is evident from thence, that the quantities An^ -r B^«
and 1 4- 2 4- 3 4- 4 ... «, under the values of A and
B there determined, are always increased equally, by
taking the value of n greater by an unit: if, therefore^

they are equal to each other, when ?? is :=: (as they

actually are) they must also be equal when « is 1 ; and
so likewise, when n is 2, &c. &c. And the same reason-,

ing holds in all the follovving cases.
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3A-— 1 X w» -f'sA + 2B— 2 xw-fA + B + C-l
= O; whence {hy the lemma) sA — 1

—
0, 3A +

2B— 2 = 0, and A + B I- C — 1 zz
; therefore

A=i-,B=2ZI£A^2_.C=1_A-B=4;3 3 2 6
3 ^

and consequently 1 4- 4 + 9 + 16 ....«« = — +—
'

"J M

n n . n \- I • ^n -\r I

+
-g-,

or
g

.

Case 3°. To determine the sum of the progression P+
2^+3^+4' w% or 1 + 8 4- 27 + 64 «^

By putting A?^* 4- B;2^ + C«* + D« = 1 + 8 + 27
+ 64 n^, and proceeding as above, we shall have
4A7J^ +- 6A«" + 4A;z + A + 3B«' + 3B» + B + 2C«
+ C + D( = % + l)' )

-
n^ + Sn"" + 3« + 1 ; and

therefore 4A — l x w^ + 6A + 3B — 3 x »' +
4A+3B + 2C— 3X w + A + B + C + D— 1 =: o;

, A 1 T>, 3— 6A. I ^, 3—4A~3B^henceA -—,B(= --^— )
=— . C(=:

^ )

iz-L, D (zr 1 — A — B — C) = O; and therefore
4

1^ + 2^ + 3^ + 4^ w^ = •^+ "I"
+
"^^

^^

In the very same manner it will be

found that

1- 4 2« + 3- ....»*=- +-+---.

*

'

ft « f,
riJ

^
n^

^
n^ n^

^
n

l»+2^ + 3-....,.^:=-+~ +_-.- +
^-^..

/ &c. &c.

In order to exemplify what has been thus far deliver-

ed, let it, in the hrst place, be required to find the sum
of the series of squares 1+4 + 9 + 16, &c. continued

to 10 terms : then by substituting 10 for n, in the ge-
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neral expresssion-
—

(^^"i""*" T ~6'^*

found by case 2°, there will come out 385, for the re-

quired sum of the progression ; which, the number of
terms being here small, may be easily confirmed, by ac-

tually adding tihe 10 terms together. Secondly, let it

be»required to find the number of cannon shot in a

square pile whose side is 50 ; then , by writing 50 for u

in the same expression,
—^ -^

, we shall have

,
50 X 51 X lOr • ^1 I r

{ X
} 42925, expressing the number ol

shot in such a pile. Lastly, suppose a pyramid com-

posed of 100 stones ©f a cubical figure; whereof the

length of the side of the highest is one inch ; of the •

second two inches ; of the third three inches, &c.

Here, by writing 100 instead of «, in the third general

expression, we have 25502500, for the number of solid

inches in sUch a pyramid.

Hitherto regard has been had to such progressionsas
'

have unity for the first term, and likewise for the
common difference ; but the same equations, or^ theo-

rems, with very little trou^^le, may be also extended
to those cases where the first term, and the common
difference, are any given numbers, provided the for- .

mer of them be any multiple of the latter. Thus, sup-
*

pose it were required to find the sum of the progression
62 ^ go _j_ j,q2 ^^^

^Qj. 36 4. 64 + 100. &c.) conti-

nued to eight terms : then, by making (4), the square of
thecommon difference, ageneralmultiplicator,thegiven

expression will be reduced to 4 x 3M~4M^~5^ , .10":

but the sum of the progression I'** 4- 2f -h 3^ 4-4^ . .10*

is found, by the second Theorem, to be 385 ; from
which, if (3), the sum of the two first terms (which the
series 3- 4- 4^ 4- 5^ ........ 10^ wants) be taken away,
the remainder will be 380; and this, multiplied by 4,

gives 1520, for the true sum of the proposed progres-
sion: and so of others.

But if the first term is not divisible by the common
difference, as in the progression, 5* 4- 7* 4- 9' &c.
the speculation is a little more difficult; nevertheless,
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f

the sum of the series, in any such case, may be still

found, from the same Theorems.
Let the series m + e]'^ + m -\r 2e i* + m + 3e|*

m + neY be proposed, where m and e denote any q'uan-
- tities whatever, and where n represents the number of
*

terms. Then, by actually raising each root to its se-

cond power, and placing the terms in order, the given

expression will stand thus

that the sum of the first rauk, or series , is w X m' t also

the sum of the second, or 2me x 1 + 2 4- 3 -f 4 . . . .n

4- 7W* . . . . 7W*
^

f 6me .... Qnme >. Now, it is evident

4- ge^ ;i'e« 3

appears (5y case 1) to be Qme x,^
^ " ^J

; and that

*

ofthe third, ore' X I + 4«+ 9 4- 16\. . .n^bycsise^)

— e' X : therefore the sum of the
o

, whole progression, 7/2 + ep + w + 2el' 4> wTiel*
. . . . m + we!^ is

- « . 7?j« 4- ;? . « + 1 . me 4-

w . n 4- I . g;z 4- ) . e^

In like manner, if the series proposed be

m^-e]^ 4- nTTlel^ 4- m 4- 3el' m4-we|^ then

may it be resolved

r i -^ 1 4- 1 1 X w^ 1

into <' f±-14-4^^^l^^
^
3^^ !. : whose sum,

[r+ 8 4- 27' 72' X e« J
'

'
by the aforementioned Theorems, w ill appear to be

*>i5 I
^* ^ + I « 3m"e « . « 4- I . 2« 4- 1 . twe«

,"*• ' 4-,
^

4-
^

+

—'- *'— i And, by following the same method,

.
the sums of other series's may be determined, not only
of powers, but likewise of rectangles, and solids, &c.
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» provided that their sides, or factors, are in arithmetical

progression. Thus, for exanjple, let there be proposed
the series of rectangles m+ e.p-\-€+m-{-2e ,p +2e
-t- m + 3e . p \- 3e .... + m + ne , p -j- ne> Then,
the factors being actually multiplied together, and the

terms placed in order, the given series will be resolved

into the three following ones :

*

^^ "^ ^P "*" .^^ + ^jg .. .. + nip

m'^p.e+m-\-p*Qe+m-{-p,3e-\-m-i-pAe .,,. -{-m^p.ne

Whereof the, respective,'sums (by case 1 and 2) are

mp X w, m+p . e X
^ '^ , and e* x

and the aggregate of all these, or

nxmp-{ ^—, m+p, e 4- ^ '—
. e'.js con-

3 o

sequently the true sum of the series of rectangles pro-

posed. »
•

^

From this last general expression, the number ofcan-
non-shot in an oblong pile,* whether whole or broken,
will be known. For supposing e zz i,'our series of

rectangles becomes m ^ i . jo -f 1 + m 4- 2 . p 4- 2 +
m4-3.p + 3 '\- 771 -{ n k p -^ n; and the sum

^u £
'

.
w -h 1 —

,
n+ i , 2«Tl

thereof= n x mp -{ . m + p + -— ~
2 O

:„

the number sought : where m 4- 1 and p 4- 1 repre-
sent the length and breadth of the uppermost rank, or
tire ; n being ^he number of ranks one above another.
But the expression herfe brought out may 436 reduced to

.

--- X 2m4-«4-l . Qp + 7i-\-i 4-
^ ^ ^ '^ ~

\
; which

^ '
« 3 .

is better adapted to practice, and which, expressed in

words, gives the following rule.

To twice the length, and to twice the breadth* of

.the uppermost rank, add the number of ranks less one,
and multiply the two sums together; also multiply the

number of ranks less one, by that number more one,
and add | of this product to the former; then i of the
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sum multiplied by the number of ranks will be the .

answer.
As a rule of this sort is of frequent use to persons

concerned in artillery, it may not be imprdper to add
an example or two, by way of illustration. »

1. Suppose a complete pile, consisting of 15 tires, or

ranks, and suppose the nuniber of shot in the upper-
most (which in this case is a single row) to be 32. -

Then the fi rst product mentioned in the rule will be

64 + 14 X 2^+ 14 — 78 X 16 zi 1248; and the se-

cond = 14 X 16 =: 224; ^ whereof is.74f, and this,

added to 1248, gives 1322|; whereof
:J: part is 330j-:

which, multiplied by 13, gives 4960, for the whole
number of shot in such a pile.

•
.^

2. Let the pile be a broken one, such that the length
and breadth of the uppermost tire may be 25 and 16,
and the number of tires \\, •• -

Here, we have 50 -h lO X 32 + 10.r;60x42zz2520
for the first product; and 12 x 10 n 120,' for the se-

2560 .
^

cond; therefore x -11 = 64o x *11 t= 7040, is
4

the true answers

Having exemplified the use of the Theorem, for find-

ing the sum of a series ofrectangles, I shall here subjoin
one instance of that preceding it^ for determining the

sum of a series of cubes; wherein the value of 'the

first 10 terms of the progression 2 + y^2]^ + 3 + 2 V 2 ^^

+ 4 + 3 -v/ 2lM- 5 4- 4\/?l' &c. is required. Here,

e being 1 + -/S, m will be :r i ; therefore, by writmg
10, 1, and 1 4- \/2 for «, ?», and e, respectively , in the

•^
. .. .„!.

*

10.11.3. I + a/S
general expression, it will become 10 4

10 . 11 . 21 .1 -+- \/2l^ -loo. 121 . i + V^' _+
; ^

+
I

-

24815 -f- 17600v/2, the value sought
If any one is desirous tp see this speculation carried

further, so as to extend to series's of powers, whose in-"

dices are fractions; such as square roots, cube roots,

&c. I must beg leave to refer to my Essays, where it is
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treated in a general manner. Here I must desire the

reader to observe, once for all, that the Theorems
above found will hold equally, in case of a descending

series, such as m— e]* + m—2e]* &c. or m— el^ 4-

m— '2eV- &c. provided the signs of the second, fourth,

&c. terms be changed ; as is evident from the investi-

gation.

Although the subject of this section has, already
been pretty largefy insisted on, yet it may not be im-

proper to add a different method, whereby the same
conclusions will, in many cases, be more easily de-

rived; in order to which it is necessary to premise the

subsequent

LEMMA..

If a 4-^-fc-fc?-f-e + &c, be a series, whereof
the terms, a, b, c, d. Sec. are so related to each other, .

that the sum, or value thereof, can be universally ex-

pounded by an expression of this form, viz. An 4- B

X ;^ X n-rl -tO xn x w—l xn^^ + D x w x n— 1

X 71— 2 X 71 — 3 &c. n being the number of terms to

which the series is to be continued, and A, B, C, D, &c.
determinate co-efticients ; then, Isay,the values of those

co-efficients will be as hereunder specified, viz,

A —
a,

— a 4- b
B =

2

p _ a— 26 4- c

D =

E

— a 4-36 — 3c -]- d

2.3.4
'

a— 4b + 6c— 4d 4- e

2.3.4.5 '

&c. &c.

For, since the equation Ax»4-Bx7iX72—-1 +
C X n X n— i X «— 2 4- D x-n X'^— 1 x n— 2

X '«— 3 &c. zza-\-b+c + d + e, &c. is supposed
to hold universally, let the number oiterms be what it

p
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will, let n be expounded by 1, 2, 3, 4, &c. successively,
and the general equation will become

3\ 3A-f 6B f 6C=ra4-54-<:,
4^ 4A hlsBf 24C+ 24Dz=a4-64-c4-'/,
5°. 3A-f 20B4-6oC f l20D-f l20Ei=a4- i + c + d + e,

&c. &c.

Now, the double of the first of these equations being
subtracted from the second, its triple from the third,
and its quadruple from the fourth, &c. we shall have

2Bzi^»—-a,

6Bf 6C= —2a-i-6+ c,

12B + 24Cf 24D-—-3a^-6fc-ff/,
20B f 60C+120D+120E-—4(J ^\h^c^d^-e,

&c. &c.

Again, if the triple of the first of these be subtracted

from the second, and its sextuple from the third, &c.
we shall, next, have

6C z= a— 2^ 4- c,

24C -f 24Di=3a— 56 -fc+rf,
60C ^- 120D-f 120E=r 6a— 9& + c+^4-e.

Moreover, by taking the quadruple of the first of

these from the second, &c. we get

*24D — — a + 36 — 3c 4- ^, and
120D 4- 120E - —4a 4- 116 — 9c 4- (/ + 6",

from the latter of which subtract the quintuple of the

former, and there will remain

*120E - «— 46 + 6c — 4(/ 4- c.

Now divide each of the equations marked thus, *,

by the co-efiicient of its first term, and there will come
out the very values of A, B, C, D, &c. above exhibited,

Q. E. D.

COROLLARY.

If every term of the proposed series a, i, c, c/, &c. be

subtracted from the next following, the first of the

lemainders,— a 4- ^, — h 4- c,
— c 4- </,

— ^ V ^» ^^'

divided by 2, gives the value of B, the co-ellicient of

the second term of the assumed series. And, if each of
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the quantities thus arising be subtracted from its suc-

ceeding one, the first of the new remainders, a—26+ c,

h — 2c "f c?, c — 2c? -f e, &c. divided by 6, will be

equal to C, the co-efficient of the third term of the
same series. In like manner, if each of these last re-

mainders be, again, subtracted from its succeeding one,
the next remainders will be— a 4- 36— 3c + rf,

— h

\- ^c — Sc? 4- 6, &c. whereof the first, divided by 24,

gives the co-efficient of the fourth term, &c. &c. There-

fore, if the first remainder of the first order be denoted

by P, the first of the second order by Q, the first of the
third by R, the first of the fourth by S, &c. then,

— being zzB,-^
-

C,—^ zz D,
^

2
° 2.3 '2.3.4 '2.3.4.5

~
E, &c. it is manifest that the sum of the series a \-h

4- c -f ^ + « 4- /» &c. will be truly expressed by
w X n — 1

, ^ w X n— 1 X n — 2
aw 4- P X — h Q X

1.2 1

^ n A n — \ A n— 2X« — 3
R X

; 4-

wxw — IX« — 2xn — 3x» — 4^S X
; ,&c.

Example 1. Let the sum of the series of squares
1 4-44- 94- 16 .... 4- w* be required. Then, taking
the difference of the several orders, according to the

preceding corollary, we have

1, 4, 9, 16, 25, 36, &c.

3, 5, 7, 9, 11. &c.

2, 2, 2, 2, &C.

0, o, 0, &c.

Therefore, a in this case being zr 1, P = 3, Q n 2,
and R, S, &c. each — 0, the sum of the whole series,
1 4- 4 4- 9 4- 16 4^ 25 ...

3n X n — I n X n — IXw — 2 _2w'-4-3«*4-to
2

^ ~^
3

~
6

72 X ?2 4- 1 X 2/i 4- 1

P 2
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Example 2. Let it be required to find the sum of n
terms of the following series of cubes, viz, 27 + 64 +
125 -f 216 -f 343 f 512, &c. Proceeding here, us
in the last example, we have

27, 64, 125, 216, 343, 512, &C.

37, 61, 91, 127, 169, &c.

24, 30, 36, 42, &c.

6, 6, 6, &c.

0, 0, &c.

Therefore, by substituting 27 for a, 37 for P, 24 for

Q, and 6 for R, we thence get

37n X n— 1
,
24« X n— 1 x % — 2

,

e7„ + + —
^-^ +

enxn—ixn— 2 X' w— 3 . . , ,. ...—^
; which, abbreviated,1.2.3.4 '

n^ 5n^ 37 ti^

becomes,—- ^ 1 \- I5w, the sum, or value'424 '

required.

Example 3. Let the series propounded be 2 f 6 -h

12 + 20 + 30, &c. In this case, we have

2, 6, 12, 20, 30, &c.

4, 6, 8, 10, &c.
• 2, 2, 2, &C.

Hence, a being = 2, P = 4, Q = 2, and R, S,

&e. each zz o, the sum of the series will therefore be

.
4nxn— 1

,
Qn xn— l x w—2 7i^ + 3?i' + 2n

2»+ ^— +
6

=
'3

nx« + lX7? + 2

And in the very same manner the sum of the series

may be truly found, in all cases where the difterences

of any order become equal among themselves : and

even in other cases, where the differences do not ter-

minate, a near approximation may be obtained, by

carrying on the process to a sufficient length.
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SECTION XV.

OF FIGURATE NUMBERS, THEIR SUMS, AND THB
SUMS OF THEIR RECIPROCALS, WITH OTHER
MATTERS OF THE LIKE NATURE.

iHAT series which arises by adding together a

rank

(-Units (called Fig.N'ofthel St ord.) -^ o^ f2d 1
I Figurate numbers of the 2d order

|
| ^ |

3d
| ^

n] Figurate numbers of the 3d order !

^
®

>' 4th \^
I Figurate numbers of the 4th order

f
^ | i 5th f g

i Figurate numbers of the 5th order I | ^
j
6th

]

Lpigurate numbers of the 6th orderJ
,^

^"^ L7th J
Therefore the figurative numbers

fist order
"^ f 1 . l *. i

I
2d order

| 11.2.3
of the<< 3d order > are << l . 3 . 6

I
4th order

| |
1 . 4 . 10

i_5th orderJ Ll . 5 . 15

Hence it is manifest, that, to find a general expression
for a figurate number of any order, is the same thing
as to find the sum of all the figurate number of the

preceding older, so far. Let n be put to denote the

distance of any such number from the beginning of its

respective order, or the number of terms in the pre-

ceding order whereof it is composed : then it is evident,

by inspection, that the sum of the first order, or the nth
term of the second, will be truly expressed by n, the
number of terms from the beginning. It is also evident,
from Sect. 14, p. 203, that the sum of the second order,

1 +24-3 4-4....w,willbe^+— f= —
2
^

2
^

1

.which, according to the preceding observation, is also

the value of the wth term of the third order. Hence,
P 3

1 . 1
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if th^ numbers, 1 , 2, 3, 4, 5, &c. be successively wrote

instead of «, in the general expression -^ + — > we

shall thence have } + i, f + |. i + 5, V 4- f. ¥ + f,

&c. for the values of the first, second, third, fourth,

fifth, &c. terms of this order, respectively ; whence it

appears, that the series l-4-3-f6-flo + l5-f21,
&c. may be resolved into these two others, viz,

1 + ^ -f 1 + ¥ 4- ¥ -h ¥ &c. and

i + f+f-ff-ff-Vt &c.

The former of which being a series of squares, its sum

will therefore be r: -—• 4- -7^+ y^ (% ^^^^ ^' ?• 203)

and that of the latter series [by case l. p. 203) appears

to be -f ---: and the aggregate of both, which is

— + -+ Y(or
- X -^ X -—-Jwillbethe

true value of the proposed series 14-3 + 6 4- 10 4-15
&c. continued to n terms, and therefore equal, like-

wise, to the nth term of the next superior order,
1 4- 4 4- 10 4- 20 -4- 35, &c. Let, therefore, 1, 2,

3, 4, 5, &c. (as above) be successively wrote for w in

this general expression,
—- ^ -i , and it will be-

come j4-i 4- i, f 4- 1 4- f, 4- V 4-1 + i, V 4- V 4-4,
&c. for the values of the first, second, third, fourth, &c,
terms of the fourth order respectively ; whence it ap-

pears that the series 1 4- 4 + 10 4- 20 4- 35, 5^c may
be resolved into these three others, ziz,

1 4- 8 -h 27 -f 64 + 125 + 216 ii^

6



AND THEIR RECIPROCALS. 215

, r^\ ^i* ^'' «' '^^
. w^ n

whereof the sums are J \-
—

. ^ —~
{24^ 12 24' 6^ 4 ^12

and
"g"

+
"g"

(^1/ P' 202, and 203) the aggregate of

which, or.
-+ -- + —+-( =:-x -^ X

X )
will consequently be the true value of

tlie whole series. After the same manner the sum of the

filth order will appear to be— x x—-—
I
—j—*^' 12 3 4

X ; from whence the law of continuation is
o

manifest. And it may not be amiss to' observe here,
that though the conclusions thus brought out, are deri«

ved by means of the sums of powers determined in the

preceding section, yet the same values may be other-

wise obtained, by a direct investigation, from either of

the two general methods there laid down.

In order now to find the sums of the reciprocals ofany
series of figurate numbers, suppose 1 -\- b -{- he ^ bed

-f bcde 4- bcdef 4- &c to be a series whose terms con-

tinually decrease, from the first to the last, so that the

Jast may vanish, or become indefinitely small : then, by
taking the excess of every term above the next follow-

ing one, we shall have i — 6, 6 x I — c, he x \ — d,

bed X 1 — e, bcde x 1 —/, &c. The sum of all which
is, evidently, equal to the excess of the first term above
the last, or equal to the first term, barely ; because the

last is supposed to vanish, or to be indefinitely smal l in

respect of the fi rst. Hence it appears that i — 6 4-

b X 1 —c+ be X 1 —d 4- bed X 1 — e -{-bcde x 1 •—/
&c. = 1.

Let b be now taktm zz — , c z: , d = :

—
a a 4-p « -f 9

€ - —111-., /~ —11-, &c. Then, 1
- b bemg =

P 4
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Q'-ni a— 771 a—m a-^m
«' a-^p. a+9 a+r'

&c. we shall, by substituting these several values in the

above equation, have ^ -f —^ X —
\ x^ a a a + p a

m^-p a— m, 7n m + p tti {- q a— 7n -—-^ X —
;

— 4- — X—--^ X —--^ X —— + &c.
«+/> a + 7 a a + p a ^ g a -i- r

, ^, m 7)1 771 -\- pm 1 ; and consequently 1 -i \ x
a-\- p a + p a -i- fj

m m At p 771 •\- q . a
+ X T^ X --7--^ + &c. = ; bya -\- p a -\-q a -\- r a — m -^

dividing the whole by - .

Hence, if q be taken = Qp,r
—

3p, s
—

4jd_, &c,

771

and /3 be put
— a + p, we shall have l + "t "^

m»77i-{-p 771 , m \-p»7n 4- 2p ,

m, 7w 4-p . i7i -\- Qp , 771+ 3p

WTJTp'^ (S.(3-\-p.(S-^Qp /3.6 -ip.^+Sp.^+Sp
^ p

-f &c. ad infinitUTTit —
r-;--
—-—-

; which, when

.
m

,
771 .771 ^ \

,
772 . 77Z + 1 . Wi 4- 2

+ &C. — —^—^ : this by taking m —
\ and

1.2.3

w. « 4- 1 .^ 4- 2. w + 3 ^^— 2

ting the general value of a series of the reciprocals of

figurate numbers, infinitely continued ; whereofthe or-

der is represented by 71: from whence as many parti-

cular values as you please may be determined. Thus,

by expounding n by 3, 4, 5, &c. successively, it appears

that
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1 -I-
JL ^ 1

-1-
i -f -L &c. = 2.

3
^

6 10 15

4 10 20 35 2

And so on, for any higher order; but the sums of the

two first, or lowest orders, cannot be determined, these

being infinite.

By interpreting /3 and m by diflferent values, the sums
of various other series's may be deduced from the same

general equation. Thus, in the first place, let /3 =
7w + 2 ; so shall the said equation become 1 + m+ 2

m,m -\- I ^m,m -h I
.

7n .m \- l „
&c.m + 2.m + 3 m -\- 3 . m -\- 4: m4-4.m-f5

::= w 4- 1 ; which, divided by m ,m + 1 , gives

m.m-^l 771+1, m^2 w4-2.m+ 3 7?z4-3.m+4

&c. 1= i.
711

Again, by taking ^ = m + 3, and dividing the

whole equation by m . m + 1 . 7/2 + 2, we have

1 1

+ ——--— -
,

-^- 1;^:= +m.m + l.m+2 ?/z-fl.//i-f2.w-h3

- &c. z:
7/2 + 2 . m -f 3 . m + 4 m.m -\- l ,2

In like manner we shall have— _ -f
772,772 h 1.7724-2.772 + 3

' -.^ &c. = ^
.

772+1 .772 + 2 . 772 + 3 . 772 + 4 772 .772+1 . 772+ 2.3
From Avhence the law for continuing the sums of these
last kinds of series's is manifest; by which it appears
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that, if instead of the last factor in th<2 denominator

of the first term, the excess thereof above the first

factor be substituted, the fraction thence arising will

truly express the value of the v^^hole infinite series.

A few other particular cases will further shew the

wse of the general equations above exhibited.

2 2 4
Let the sum of the series l 4—-- -f -— x -;=- +

2 4 6 2 4 6 8 o

ad infinitum, be required.

Here, by comparing the proposed series with l -f

+ -7;
—w + &c. ( nz —-^- ^-—

) we have rw n 2,

^ = 5, and/> zz 2 ; and consequently
—

^
—--— zz 3

n the true value of the series.

Let the sum of an infinite series of this form, viz*

*

+ ^ ^ I o— + ^ . ^ o + &c. be

m

1.2.3 &c. 2.3.4 &C. 3 . 4 . 5 &c

demanded.

Here, (according to the preceding rule) we have

1.2 2.3 3.4 1.1

1.2.3 2.3.4 3.4.3 1.2.2 4

&c. —
1.2.3.4 2.3.4.5 3.4.3.6

""
1 .2 . 3.3

~
18*

&C. &c.

If, instead of the whole infinite series, you want the

sum of a given number of the leading terms only ; then

let the value of the remaining part be found, as above,

and subtracted from the whole, and you will have your
desire.
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Thus, for instance, let it be required to find the sum

of the ten first terms of the series \ 4- —i-1.2 2.33,4
&c. Then the remaining part.

rt^/e a5oue) and the whole series =. i , the value here

sought will therefore be l i- =H. The like of
uU u 11

others.

The sums of series's
arising from the multiplicationof the terms of a rank of figurate numbers into those

of a decreasing geometrical progression, are deduced in
the following manner.

By the theorem for
involving a binomial {given at

p. 40, and demonstrated
hereafter) it is known that

=J^ (orT=3-«j is = 1 + ^x + m . !1±1 . ^e

^ 3 2 3 4
&c. In which equation let m be expounded by i, 2, 3,
4, 5, &c.

successively, so shall

^''-
rZTi

= ^ + ^-^ 3!'' + 3c' + X* + x' -\- he.

2'

3^
^^==j3

= 1 + 3a: + 6a?' -f lOl'^ + 15t* + Six* &c.

. 1

4 •

f==74 = 1 4- 4a; + 10x*4- 20x3 + 35a:* + 56x'kc;.

^
5 =1+50;+ 15.T2-f 35a:'+70x*+ 126a:' Sec.1—0^

^

*f^^6
= 1 + 6j7+2la;H56x^'l-126.i**+252.i^&c.
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All which series's (whereof the sums are thus given)
are ranks of the different orders of figurate numbers,
multiplied by the terms of the geometrical progression

From these equations the sums of series's composed
of the terms of a rank of powers, drawn into those of

a geometrical progression, such as 1 + 4a7 + 90:'^+ l6x^

&c. and 1 4- ScT + 27a?- 4- 64^^ &c. may atso be de-

rived ; there being, as appears from the former part of

this section, a certain relation between the terms of a

series of powers and those of figurate numbers; the lat-

ter being there determined by means of the former. To
find here the converse relation, or to determine the

former from the latter, it will be expedient to multiply
the several equations above brought out, by a certain

number of terms of an assumed series 1 + A^r + Bx^

+ CcT^ &c. in order that the co-efficients of the powers
of 0? may, by regulating the values A, B, C, D, &c.
become the same as in the series given.

Thus, if the series given be 1 -\- 4x -\- 9x" + l6x^ -{-

25^* &c. ; then, by multiplying our third equation,

J 4- Ax
by 1 + A 07, we shall have ,3 =; i + 3-1-A x x

1 — x\

+ 6 + 3A X ct"" + 10 + 6A X x^ -{- &c. which scries,

it is evident by inspection, will be exactly the same,
in every term, with the proposed one, if the quantity
A be taken zn l. The sum of the said series, intinitely

1 {• X
continued, is therefore truly represented by

-

.

1 — xf

In like manner, if the fourth equation ^ :7
~

1 —-
x\

1 V- 4t + 10.r* f 20x^ + 35.r*&c. be multiplied by
1 + At 4- B^"

1 f Ax 4- B.r^ there will arise .. — 1 1-

1 — xf

4 4- A X .T 4 10 f 4 A 4- B X a- 1- 20 4 lOA 4- 4B x .r'

&c. where, the several terms of the series beinn- coni-

purod with those of the series l \- Sx 4- 27^c* 4- 64.v^ &;c.
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we have '4 + A = 8, and 10 + 4A + B := 27 ;

whence A = 4, and B =: 1 ; and consequently, by sub-

1 4- 4x + x^
stituting these values— .

-.4
-- =1-1- Sx -f 27 x-

1 —— 0P\

4- 64a?' + 125a:* &c.

Again, by multiplying the fifth equation, : >s
^

I + 5x + I5x^ -{- 35x^ &c. by 1 + Ax + Bx" f Cx\
1 + A* + Ba?" + Cx

it becomes
,5 z= 1 4-5fAxa:-f

1 — x\

15 + 5A + B X .t' + 35 4- 15A + 5B h C xa?^&c.

And, by comparing the several terms of the series with
those of 1 + I6:r + 8Lt' -f 256x^ &c. we get 5 + A
z= 16, 15 + 5A 4- B zz 81, and 35 + 15A 4- 5B 4-

C — 256: whence A = n, B (rz 81 — 15— 55) = 11

andC (= 256— 35— 220) =1 1 ; and consequently
1 -I- 1 1 T 4- 1 1 1* 4~ x^-^ ^

.3^
= 1 4- I6a? -f 81a;'» + 256x^ &c.

1 —x\

By proceeding the same way it will- be found, that

1 4- 26.r 4- 66x'' + 26x^ 4- a?*

'

= 14- 2'':r 4- 3^x2 4-

4^x^ 4- &c. &c.

* ,
'

. „ . 7
w 4- 1

And, universally^ puttmg a — m, :=: m ,
—

czz7n.
^ •+• 1

/»
4- 2

^
^^^ ^^^ multiplying the gene-

ral equation,
' - zzl i- ax+ hx^ 4- cx^ 4- dx"^ &c.

by 1 4- Aa: 4- B;c2 ^ Cx^ + Da* &c. there arises

» + ^- + ^^' ^"- = , + «-r-A X . +
1 — x\

i V «A 4- B X 0?'^ 4- c 4- 6A + aB 4- C X a:" &c.

The terms of which series being compared with ihose
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of #ie series i 4- 2"jc + 3V f 4"a:' -H 5"a;% &c.

\ye have A z= 2" - a, B = 3" — rzA — 5, C = 4^ •—

aB — /yA — c, D -
5** — aC — 5B — cA — J, &c.

where the law of continuation is manifest, and where,
from the law observed in all the preceding cases, it ap-

pears, that the value of m must exceed the index w, of

the given series of powers, by an unit ; and that

the series 1 -f Aa? + Bx' -f Cx^, &c. will always con-

sist of 72 terms ; whereof the co-efficients of the first and

last, the second and last butone,&c.willbe respectively

equal to each other : so that having found from the

preceding equations as many of the quantities A, B,C,
&c, as are expressed by {n— 1, the others will be given

1 + Ax-\- BxM-CV&c.
from thence, and consequently, „ . i

1 — x)

the true value of the proposed series l -|- 2"ar -f S^^

-f 4"x' &c. Thus, for example, let n zz 6 : then

m = 7 = a, i = 28, A = 64 — 7 = 57, B = 729— 399 — 28 = 302 ; and therefore

1 4- 57x -f 302X* 4- 302^3 -f- 57x* -f a;'
, . ^n .

.7
— .—— iz 1 4- 2" a; 4-

1 — a I

S^X' 4- 4V &c. and so of others.

These equations, or theorems, give the sum of the

whole series, infinitely continued ; but from thence

the sum of any assigned number of terms may be deter-

mined, not only when the co-efficients are a series of

powers, but likewise when they are produced by factors

that are unetiual : the method of which I shall in-

stance in find in "f the sum of t terms of the series

/— p^g— q'^'-^f—^P^g — '^q. 2''+" 4- /— 3p.

j^
— 37 . 2''+^*' 4- &c. Which series, by actually mul-

tiplying the factors together, is resolved into the three

following ones,

/gz"" X 1 -i- 2^ -f- z^"" f 2^*^ 4- z^'^ &c.

—
/</ 4- gp • S'* X 1 + 2z'^" + 32'^'^ 4- 42'^*' &c.

-r ;>7/ X 1 + 42« 4 92^'' 4- 16^'^" &c.>
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Th€ sum of the first of these infinitely continued,

supposing X zz z"", will be = '^ ; that of the se-

cond

1 -V- X

f9 + gP '^''
. and that of the third =r

1— ^

*

^^^.
, by ichat has been above determined ; and

consequently the sum of all the three equal to

.^^L^y,fg^fi±IP+ ^IlL^^ = the whole

infmtte seriesf—p .g— ^'
. s^+f—2p . g— 29 . s»-+«

I- &c. But the sum of the t first terms only is wanted;
therefore the sum of all the remaining terms, after the
t first, must be found in like manner, and be deducted
from the sum of the whole, here given. Now, to do
this, we are first to get the leading term of the said re-

maining ones ; which, according to the law of the series

will be expressed by/— p — ^P * g— 9
—

/g . 2*"+ '"
:

whence if we make/— tp
~

h, g — tq zz k^ and
^' + ^^ _^^»_ ^^ ^ ^ evident, that the series to be deducted

will be A — p,lc — ^ . ^* 4- h — <2p : k — 27. z*+^' &c.

which having the very same form with that first pro-

posed, its sum will therefore be had by barely writing
h for /, k fbrg, and s for r, in the value above deter-

mined : which, thereby, becomes

z, ,
;, _ hq + kp P7 . 1 + a?

.

1 - X
^ '

I'-x '^

T^ZSl'

In the same manner, supposmgthe t first termsofOie

seiies a^p . h — p^c — p . d — jo
.&:c. X 2'+ ^ - 2p.

ir=r^ .7"^^ . rf^^=^. &c. X z^^^ &c. were to

be required ; by putting thecontinual product of a 1 1he

quantities a.h,c,d, &c. ^ P; the sum ot all the

products (-|-
+ T + ^&^-)

^^'^^ ^'^'^ ^'^ ^""^"^"^
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one letter in each, =: Q; tlie sum of all those

P P
/—

-j-
—

) &c. by omitting two letters,
—

R, &c.
a^ ac '

>ve shall here have

&c. for the sum of the whole infinite series; and if

we make a' = a — tp, b' = h — tp,r'
—

r -\- tv, &c.
it is evident that the sum of the remaining terms, afte^j
the t tirst, will be truly expressed by

z''
X p .- ^'^ Ry .TT^

_^
sy^i. 4-^ -f a^

1.-^ 1-0? 1^=^^ Tzm^
&c. where a? = 2^ and P', Q^ R', S^ &c. are the
same in relation to a\ I/, c\ d\ &c. as P, Q, R, S, &c.
in respect to a, b, c, d,8ic.

A multitude of other cases and examples might be

given, there not being, in the whole scope of the
mathematical sciences, a subject of greater variety and

intricacy than this business of series's : but to pursue
27 farther Aere would be inconsistent with the general

plan of this work. Such, therefore, who are desirous

of a greater insight into the matter, may, if they
please, turn to my Miscellanies, where it is carried

to a greater length.

From the series's for figurate numbers, derived in

the former part of this section, the investigation of

a general theorem for determining how many dif-

ferent combinations any number of things will admit

of, when taken two by two, three by three, &c. may
be very easily deduced. Let the number of things in

each combination be, first, supposed two, only ; and let

n be, unii ersully i^ put to represent the ivhole number of
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things, or letters, a, b, c, d, h)C, to he combined. When
the number of things is only two, as a and b, it is evi-

dent that there can be only one combination {ah) ; but,
it" 7J be increased by 1, or the letters to be combined be

three, as a, 6, c, then it is plain that the number of

combinations will be increased by 2, the number of

the preceding letters a and h ; since, with each of those^

the new letter c may be joined; and therefore the

whole number of combinations, in this case, will be

truly expressed by 1 f 9. Again, if « be increased

by one more, or the whole number of letters be four,

as a, h, c, ci, then it will appear that the number ofcom-
binations must b« increased by 3, since 3 is the num-
ber of the preceding letters, with which the new
letter d can be combined, and therefore will, here, be

truly expounded, by i 4-2+3. And, by reasoning
in the same manner, it will appear, that the whole
number of combinations of two, in five things, will be

1 4- 2 -f 3 + 4 ; in six things, 14-2+34-4 + 5;
and in sevv^n, 14-2+34-44-34-6, &c. Whence,
universally, the number of combinations of n things,

taken two by two, isz: 1-4-2 + 3 + 4 + n — \:

which being a series of figurate numbers of the second

order, where the number of terms is w — i, the sum
thereof, by case l,p. 203, will therefore be truly de-

^ J ,
n— 1 n n— i

fined bv — y^— , oxn x ••'12' 2

Let now the number of quantities in each combination
be supposed to he three.

It is plain, that, in three things, a, h,c, there can be

only one combination; but, \in be increased by l, or

the number of things be 4, as a, b, c, d, then w^ill the

number of combinations be increased by (3) the num-
ber of all the combinations of two, in the preceding
letters a, b^ c; since with each two of those the new
letter d may be combined ; therefore the number of

combinations, in this case, is 1 + 3. Again, if n be

supposed to be increased by 1 more, or the number of

letters to become five, as a, 6, c, r/, e
;
then the number

Q
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of combinations will be increased by six more (=: l +
9 + 3), that is, by all the combinations of two, in the
four preceding letters, «, A, c, d; since (as before) with
each two of those, the new letter e may he combined.
Hence the number of combinations of 7^ things, taken
three by three, appears to be i -f- 3 + 6 + 10, &c.
continuedto?? — Sterms; which being a series of ligurate

- numbers of the third order, the value thereof, by what
is before determined (p. 214) will be truly expressed by
n — 2 » — 1 M . .71 n — 1 w— 2

-y-X --^ X- . or. us equal,- X
-j-

x -^.
And, universally, since it appears, that increasing the

number of letters by l, always increases the number of

combinations by all the combinations.of the next inferior

order with the preceding letters (for this obvious rea-

son, that to each of these last combinations the new
letter may bejoined), it is manifest, that the combina-

tions, of any order, observe the same law, and are ge-
nerated in the very same manner as ligurate numbers ;

and therefore may be exhibited by the same general

expressions; 'only, as there are 2, 3,4, 5, &c. things

necessary to form the first, or one single combination,

according to the different cases, it is plain, that the

number of terms must be less by l, 2, 3, Sec, respec-

tively, than («) the number of things; and therefore,

instead of //, in the aforesaid general expressions, we
must substitute n — l,w— 2, or n — 3,&c. respective-

ly, to have the true value here. Hence, the number of

combinations of two things, in ?i things, will be

71— 1 n n n— 1 r.., «- 2 n—\ n

-^ X
J,

or - X - --
; of three. -_ x -^ x- ,

n n — 1 n — 2 ^^ -n — 3 n — 2 n~i
^'^'^ -^x-^;offour,-^^X-^ x-^

-
(vid. p. 215) :

whence, universally, the number of combinations in the

number, n, of things, taken two by two, three by three,

n n— 1 n— 2 n — 3
&c. will be expressed by

~ x —~ X —y- X —j— ,



OF THE BINOMIAL THEOREM, 227

&c. continued to as many factors as there are things in

each combination.

From this last general expression, shewing the coni-

binations which any number of quantities will admit

of, the known theorem for raising a binomial, to any

given power, is very easily, and naturally derived.

For, it is plain that a^^^^a-f6c
= a+-6x a -i- c ;

-f 6
^

he
^

which, multiplied by a + rf, gives a' + c
[-a*

f- hd^a {-

+ d} cd}

hcd zz cTVb X a^ c x a f rf ; and this, again, multiplied

by a + ^5 gives

+ he
^

hcd
hce

-hb") + bd) 4-

^de^

a'^h X a-fc X a^d x a-^e.

J J ^ a -\- bcde =
hde

cde

Whence it appears, that the co-efTicient of a, in the

second term, is always the sum of .111 the other quanti-
ties 6, c, (/, &c. added together ; and that the coefficient

of the third term is the sum of all the products of those

quantities, or of all their possible combinations, taken
two by two ; since, from the nature of multiplication,

they must be all concerned alike, in every term :

whence it is also manifest, that the coefficient of the
fourth term must be the sum of all the solids of the
same quantities, or of all their possible combinations,
taken three by three, &c. &c.

Hence, if the number of tht quantities b, c, d, e, &c.
or the number of the factors, a + 6, a -\- c, a ^ d,
to be multiplied continually together, be denoted

by n ; it follows, that the number of letters, or qnanti-
ties in the coefficient of the second term of the pro-
duct will likewise be denoted by n ; that the num-
ber of all their products, or of all the combinations of

(22
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two, in the coefficient of the third term, will be w X -~—

(it having been shewn above, that the number of com-

binations of n things, taken two by two, is n x——
J

;

and that the number of all the solids ofthose quantities,
or all the combinations of three, in thecoefficient of the

fourth term, will be w X -^^— X —~, &c. Therefore,
3 o

if all the quantities 6, c, d, e, &c. be novy taken equal

to each other, it is evident that a^-b x a-^-c x a-Vd

xa+ e, &c. will become a-^b x ahb X tf-i-6 X a+b
&c. or u + b\^: and that the coefficient of the power
of a, in the second term of the product, will be ?ib ; in the

fi I

third;tx- b- (since all the rectangles, as well^as

all the solids, 8cc. do here become equal) ; and in the

fourth n x ^^-^ X '^-^— ^% &c. But it is eviden t,from

the nature of multiplication, that the powers of a, in

the second, third, fourth, &c. terms of a H- 5 raised to

' the power fty are d!"^ ,
a"" , a"*" , &c. Therefore

^"^IT)", o\ a \ b raised to the power w, is truly ex-

pressed by a^ + «^a"~^+ « X ^^ *' ^'"''^ +«x ^^
X !Lri63A"-^&c.o^ a«+ «fl"-'6 + nyX^a^^^b'^

3 '^

_|. /I X ^^ X ^^^^a""'^^^ &c. as was to be shewn.
2 "^
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SECTION XVI.

Of Interest and Am^uities,

INTEREST
may be either simple or compound :

simple interest is that which is paid for the loan of

any principal, or sum of money, lent out for some li-

mitted time, at a certain rate per cew^ agreed upon be-

tween the borrower and the lender, and is always pro-

portional to the time. Thus, if the rate agreed upon,
be 4 per cent, per annurn^ or, which is the same, if the

interest of 100/. for one year be 4/. then the simple in-

terest of the same sum for two years, will be 8/. for

three years, 12/. and for 4 years 16/. and so on for any
other time, in proportion.

Compound interest is that which arises by leaving
the simple interest of any sum of money, after it be-

comes due, together with the principal, in the hands
of the borrower, and thereby converting the whole into

anew principal. Thus, he who lets out 100/. for one

year, at the rate of 4 joer cent, has a right to receive 104/.

at the year's end ; which sum he may leave in the bor-

rower's hands, a second year, as anew principal, in order
to receive interest for the whole; and this interest

(which will be found 4/. 3s,
2jc?.) together with 4/. the

interest of the first principal, for the first year, will be
the compound interest of loo/. for two years : and so

on, for any greater number of years. But I shall first

give the investigation of the theorems for simple
interest.

Let the rate per cent, or the interest of I0o7. for one
year = r ; the months, weeks, or days in one year z=. t ;

the months, weeks, or days which any sum, a, is lent

out for — n ; and the amount of that sum, in the said

time, viz. principal and interest, = h.

Then it will be as i oo is to r (the interest of 1 00/.) >so is

the proposed sum [a) to -^, the interest of that sum,100

for the same time. Again, as t, (he time in which the

Q3
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said interest is produced, is tow (the time proposed) so is

-—
", the interest in the former of these times, to . ,

that in the latter ; which added to, a, the principal, gives

« + ——=:/; (the whole amount): from whence, we

also have a - ---—
,
r
- — r

,
and n =

1 00^ -t- nr an
loot y. h — a . r X

' X.
the use oi which equations, or theorems,

will appear by the following examples.
Examp, 1. What is the amount of 550/. at 4 /)er

cent, in seven months?
In this case we have a z=. 550, r z: 4, i zz I2,n zz 7 ;

and consequently a + -^^ =:550-f
'^'^^^ ^

^^=5624/>^ -^

100^ ICO X 12
^

or 562/. 16^. 8(/. the true value sought.
Examp, 2. What is the interest of i/. for one day,

at the rate of 5 per cent. ?

Here r being — 5, t m 365, a zz l, and « = 1, we

have zz —- zz zz 0.0001369863,
100« 100X365 100 X 73

^ '

&c. zz: the decimal parts of a pound required.

Examp, 3. What sum, in ready money, is equiva-
lent to 600/. due nine months hence, allowing 5 per
cent, discount?

Here r being zz 5, t zz 12, n zz 9y and b zz 600, we

h^wea{by Theorem 2)- —^ "^f^^l ^! = 578,213/.^ ^ ' 100 X 124-9X5
'

or 578/. 6s. 3[d, which is the value required,

Examp, 4. At what rate of interest will 300/. in

iifteen months, amount to, or raise a stock of 33o/. ?

In this case we have given « =z 12, n = 15, « =: 300,
and b zz 330 ; whence (by Theorem 3) r will come out

^' " — 8 ; therefore 8 per cent, is tlie rate
300X15

required.
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Exmnp. 5. In how many daysUvill 365/. at the rate

of 4 joer cent, amount to, or raise a stock of 400/.?

100 X 365 X 35
Here {by Theorem 4) we have n — —

-j^^ ^ ^

= 875 = the number of days required.

Of Annuities or Pensions in arrear, computed at Simple

Interest.

Annuities or Pensions in arrear are such, which,

being payable, or becoming due, yearly, remain unpaid

any number of years : and we are to compute what all

those payments will amount to, allowing simple inte-

rest for their forbearance, from the time each particu-
lar payment becomes due ; in order to which,
rA— the annuity, pension, or yearly rent.

J
An zz the time, or number of years, it is forborn.

^
\r —

the interest of l/. for one year.

^m = the amount of the annuity and it*s interest.

Then, as l : r : : A : rA, the interest of the proposed
sum or pension A, for one yen r; which, as the last year's
rent but one, is forborn only one year, will express the

whole interest of that rent, or payment : moreover, since

the last year's rent but two is forborn two years, it's in-

terest will be 2rA : and, in the same manner, that of the

last year's rent but three, will appear to be 3rA, &c. &c.
whence it is manifest that the sum total of all these, or

the whole interest, to be received at the expiration of ;2

years, for the forbearance of the proposed annuity or

pension, will be truly defined by the arithmetical pro-

gression rA f 2rA-f 3rA-\- 4rA-f 5rA, &c. continued
ton— 1 terms, that is, to as many terms as there are

years, excepting the last. But the sum of this pro-

gression is equal to « x —— x rA {by Theor. 4. Sect.lO.)

Therefore, if to this, the aggregate of all the rents, or wA,

be added, we shall have nA ~\ x rA — m ;

Q4
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whence we, also, have A zz n— 1
7? -f w X X r

2

— ^^— 2nA
""

w X n— 1 X -^,
and w zi V ?£ + |,2_p

.

sup-

posing/)
- -i- - — .

Examp. 1. If 600/. yearly rent, or pension, be for-

born five years, what will it amount to, allowing 4 per
cent, interest for each payment, from the time it be-

comes due ?

Here we have given A = 600, w — 5, and r ~ .04

(for as 100 : 4 : : 1 : .04) which values substituted in

fi J

TheoTem 1. give m —
{iiK -J- ^ X Ar — 3000 4-

240) zr 3240/. for the value that was to be found.

Examp. 2. What annuity, or yearly pension, being
forborn five years, will, in that time, amount to, or raise

a stock of 3240/. at 4 per cent, interest ?

In this case we have given n zz d^r
—

.04, and m m

3240, and therefore, by Theorem 2, A ( =: ;
=—

zz > \ = 600 ; which is the annuity required.

Examp, 3. At what rate of interest will an annuity
of 560/. in seven years, raise a stock of 4508/. ?

In this case we have given A ~
560, w= 7, and m —

Qjfl
- 2wA

4508 ; whence (hy Theor. 3) we have r I
—

7JX72— ixA
= -t;. r?

—
)
^ '05 =: the interest of l/. for one

42 X 56o /

year ; therefore it will be as 1 : .05 : : 100 : 5 [per cent,)
the rate required.

Examp, 4. How long must an annuity of 560/. be

forborn, to raise a stock of 4508/. supposing interest to

be 5 per cent. }
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Here, we have given A —
560, r

—
.05, rn z=. 4508 ;

whence, by Theorem 4, we also have p (= )

~
19.5 ; and consequently n {=z y -t-^ p*

—p)— 7 ;

which is the number of years required.

Note. If the rent or pension, is payable half-yearly,
or quarterly, the method of proceeding will be still the

same, provided n be always taken to express the num-
ber of payments, and r the interest of l/. for the time

in which the first payment becomes due. Thus, if it

were required to find what 300 /. half-yearly pension
would amount to in five years at 4 per cent, interest :

then, the simple interest of l/. for half a year being—
.02, and the number of payments

—
10, we, in this

case, have A =: 300, r z: .02, and « — 10 ;
and con-

sequently m [by Theorem i) = rA -f wx X rA

zz 3270/. which is the value sought. And the like is

to be observed in what follows hereafter.

Of the present values of Annuities^ or Pensions, com-

puted at Simple Interest,

Let

C A — the annuity, pension, or yearly rent.

J r = the interest of iL for one year.
1 « — the number of years.

\^v =: the present value of the annuity.

Then, because the amount of the annuity, in n years,
is found above to be nA -f in . n— i . rA, and since

1/. present money, is equivalent to l -f ??r to be re-

ceived at the end of the time w, we therefore have

1 + wr : I : : nA f in , n — 1 .rA (the said amount)
nA 4- {71 . tT^ 1 . rA . , .

,
, .

:
L __^_

^ Its required value, m present

money. But it may be observed, that this method,
given by authors for determining the values of annui-

ties, according to simple interest, is, in reality, a parti-
cular sort, or species of compound interest : since the

allowing of interest upon the annuity, as it becomes
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due, is nothing less than allowing interest upon inte-

rest; the annuity itself being, properly, the simple in-

terest, and the capital, from whence it arises, the prin-

cipal. It is true, the sum, l 4- nr, expressing the

amount of iL is given, strictly speaking, according to

shnple interest: but the conclusion (as a late author*

very justly observes) would be more congruous, and
answer better, were the same allowances to be made

therein, as are made in finding the amount of the annu-

ity ; thht is, were interest upon interest to be taken

once and no more. Agreeable to this assumption r,

the interest of l/. being considered as an annuity, it's

amount in w years (by writing r for A, in the general

formula above) will be given =: wr -f fw . w — 1 . r- :

to which the principa l i/. being added, the aggregate
1 + wr -f \n . n — 1 . r" will therefore be the whole
amount of 1 /. in the time n ; and so we shall have 1 -h

nr -f In . n— 1 . ?-' : 1 : : «A + fw . n— 1 . rA ;

QnX-\-n.7i— 1 .rA
c= V, the true value of the annu-

Q^^nr-^n .n— 1 . r^

itv, according to the said hypothesis. From which

equation others may be derived, by means whereof the

different values of A, n, and r, may be, successively,
determined. But, as this method of allowing interest

upon interest, once and no more, is arbitrary, and the

valuation of annuities, according to simple interest, a

matter of more speculation than real use, it being, not

only custonmrv, but also most equitable to allow com-

pound interest in these cases, I shall not stay to exem-

plify itt but pro( eed to

The resolution of the various cases of Compound Intc^

rest, and Annuities as depending thereon,

r D — / l^he amount of l/. in one year, viz. prin-
Let

\

~"
\ cipal and interest.

I P zz any sum put out at interest.

* 31i\ liardij in his Annuities.
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n n the number of years it is lent for.

a — it's amount in that time.

Let / A. = any annuity forborn n years,
m = it*i> amount.

__ ^the present value of the annuity for the
^' —

i same time.

Therefore, since one pound, put out at interest, in the

first year is increased to R, it will be as i to R, so is R,
the sum forborn the second year, to R^, the amount of
one pound in two years ; and therefore as i to R, so is

R\ the sum forborn the third year, to K^ the amount

in three years : whence it appears that R", or R raised

to the power whose exponent is the number of years,
will be the amount of one pound in those years. But

as l/. is to it's amount R , so is P to {a) it's amount, in

the same time ; whence we have P x R — a , More-

over, because the amount of one pound, in n years, is

R", it's increase in that time will be R'' — 1 ; hut it*s

interest for one single year, or the annuity answering to

that increase, is R — 1 ; therefore as R — i to R — i,

A X K" I

so is A to m. Hence we get
—

5 =:: m, Fur-K— 1

thermore, since it appears that one pound, ready-money,

is equivalent to R", to be received at the expiration of

n A X R" 1

n years, we have, as R to 1, so is —
r^
—

(the sum

in arrear) to r, it's worth in ready money ; and there-

Ax I— -i
f

R"

fore-j^—^—

From Which three original equations, others may be

derived, by help whereof the various questions relating

to compound interest, annuities in arrear, and the pre-

sent values of annuities, may be resolved.
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Thus, because PR" is n a, there will come out P =
•^1

j,„»
and R = --- K &c. or, by exhibiting tbe same

equations in logarithms (which is the moBt easy for

practice} we shall have

1^ Log. a zz log. P + w X log. R.

9^ Log.? zz log. a — n X log. R.

30.
Log.Rz:^^g'^7^^--^.

^ • ^ -
log. R

•

Which four theorems, or equations, serve for the

four cases in compound interest.

Again, since 772 is rr —p -, we shall have

1°. Log. m =log. A + log. R^'— 1 — log. K — l.

2^. Log. A =log. w— log. R«— 1 4- log-R
— L

00 ^ _ log. mR— 7» -f A— log. A3.n^
i^^ns

•

A A
To which the various questions relating to annuities

in arrear are referred.

Moreover, seeing A x is — », we thence have,R—l

r. Log.T? = log. A + log. 1 -. J. — log. R — 1

2°. Log. A -
log. V \- log. R— 1 _ log. 1 —

j77r

3". w - ^Qg A —log. A 4- v~vU
lo-?. Ro

.1^ ir-*-^ --- -f 1 X R« -t-
~
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The use of which theorems, respecting the present
values of annuities, as well as of the preceding ones,
for compound interest and annuities in arrear, will

fully appear from the following examples.

Examp. 1. To find the amount of 575/. in seven

years at four per cent, per annum, compound interest.

In this case we have given P = 575, R = 1,04, and
n — 7 'y therefore, by Theorem 1, log. a = log. 575 -f

7 log. 1,04 = 2,8789011 ; and consequently a =
756,66, or 756/. 13^. ^^d., the value required.

Examp. 2. What principal, put to interest, will

raise a stock of looo/. in fifteen years, at 5 per <:ent. ?

Here, we have given R=:l,03, w=zl5, and aiziooo;
therefore, hy Theorem 2, log. P zz log. looo— 15 log.

1,05 zz 2,6821605; and consequently P zn 481,02, or
481/. OS. 4|df., the value sought.

Examp. 3. In how long time will 575/. raise a stock
of 756/. 13^. 2|:6?., at 4 per cent, f

In this case we have R -
l,04, P n 575, and a —

756.66; whence, &y Theor. 4, n^""^' 756.66-log. 575

log. 1,04
n 7, the number of years required.

Examp. 4. To find at what rate of interest 481/. in

fifteen years, will raise a stock of looo/.

Here we have given P = 481, a =i iooo, and «=15;
., r. T ^, I T> log. 1000 — lo^.48i
theretore, hy Theorein 3, log. R — ^^^

= .0211903, whence R =: 1,05 ; consequently 5 per
cent, is the rate required.

The four last examples relate to the cases in com-

pound interest ; the four next are upon the forbearance
ofannuities.

Examp. 1. If 50/. yearly rent, or annuity, be for-

born seven years, what will it amount to, at 4 percent,

per annum , compound interest ?

Here, we have R zz i,04,, A zz 50, and n — 7 ; and
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therefore, hi/ Theor. l
, log. m (

= log. A -^ log. R"— l

—
log. R— 1)

—
log. 50 f log. i^^— 1,— log. ,04

= 2,396597: and consequently m zz 395/. the value

that was to be found.

Examp. 2. What annuity, forborn seven years, will

amount to, or raise a stock of 395 /. at 4 per cent, com-

pound interest?

In this case we have given R = 1,04, n zz 7, and
m— 395 ; whence, by llieorem 2, log. A (

= log. m—
log. R« — 1 + log. R— 1)

-
log. 395 — log.

l,04t'— 1 4- log. .04 = 1,6989700; and consequently
A zi 50/. which is the annuity required.

Examp, 3. In how long time will 50/. atinuity raise

a stock of 395/. at 4 per cent, per annumy compound
interest ?

Here, we have R zz 1,04, A rz 50, vi
—

395 ; and

therefore, by Theor. 3,„(^
log^^R-^^A--log^^

-. » —
7 the number of years required.

,0170333
J i

Examp, 4. If 120/. annuity, forborn eight years,
amounts to, or raises a stock of 1200/. what is the rate

of interest ?

In this case we have given n — 8, A —
120, and m

•=1 1200, to find R ; therefore, by Theorem 4, we have
R*^ — lOR 4- 9 = ; from which, by any of the me-
thods in Section 13, the required value of R will be
found —

1,06287 ; therefore the rate is 6,287 or
6/. bs. gd, per cent, per annum:

The solution of the last case, where the rate is re-

quired, being a little troublesome, .
I shall here put

down an approximation (derived from the third gene-
ral /or7«w/a, at

jt>. 165) which will be found to answ^er

very near the truth, provided the number of years is
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«.«—!. A ^
Let Q =: -

. ; then will
2 . ?»— wA

3000 Q +- 272— 1 .400
^ ,

be the rate

6Q . 5Q + 3/2 — 4 4- i.^*— 2. 11«- 13

per cent, required.

Thus, for example, let « = 8, A = 120, and wzzzs

5Q 120
1200; then will Q =: -—rr = 14, and the rate it-

2 . 240
.r, 42000 4 6000 ^ ^„ 7

self = --— - 6 . 287, as above,
84 X 90 + 75

The preceding examples explain the different cases

of annuities in arrear ; in the lol lowing ones the rules

for the valuation of annuities are illustrated.

Examp. 1. To find the present value of 100 /. annu-

ity, to continue seveh years, allowing 4: per cent, per
afinum^ compound interest.

Here, we have given R = l,04, A r; lOo, and ?^
—

7 ;

and therefore, by Theorem l, log, » ( = log. A +

log. 1 —_ —
log. K — 1

)

-
log. 100 + log,

1 — c=-— log. ,04 = 2,778296; and consequently
l,04r

-I J

1)
—

000,2 = Goo/. 4^. which is the value that was to
be found.

Examp. 2. What annuity, or yearly income, to con-
tinue 20 years, may be purchased for looo/. at3f per
cent, ?

In this case, R =: 1,035, ?2 = 20, v = lOOO ;

whence, by Theorem 2, we have log. A (

~
log. v

+ log. R - 1 — log. 1 —
-ji; J

=: 1,847336; and con-

sequently A zz 70,36, or 70/. 7^. '2d,
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Examp, 3. For how loni^ time may one, with 6oo/.

purchase an annuity of 100?. at ^per cent. ?

In this example we have R zr i,04, A =: 100, and
V — 600 ; and therefore

, by Theorem 3, w
( =

log. A^— log. A + V — vR\ _
J
~ 7.

years required.

, ^ I _- « , the number of

Examp. 4. To determine at what rate of interest, an

annuity of 50/. to continue 10 years, may be purchased,
for 400 /.

Here, A = 50, n zz lo, and y =! 400 ; whence, hy

Theorem A^K^^^ -f- 1 X R« + ~ being = o, we

have R"-— 1,125 R'° -1- ,125 = 0; which equation
resolved, gives the required value of R :=: 1,042775 ;

and consequently the rate of interest, 4,2775/. per
cent, per annum.

The solution of this last case being somewhat tedi-

ous, the following approximation (which will be found
to answer very near the truth when the number of years
is not very large) may be of use.

^ « . w + 1 . A , „
Assume Q =—^-r-—-—

;
so shall^ 2/2A — 2u

3000Q — 2w + 1 '< 400_^
express

6Q . 5Q — an-— 4 4- ^ . w 1- 2 . 11« + 13

the rate per cent, very nearly.

Thus, for example, let A (as above) be r: 50,

A r. cu ^ u • 10 >C 11 X50
72 z: 10, and v = 400 ; then, Q bemg zz

82500— 8400 . «^„.= ^^'' • '"' ''«^^
103X103.3 +240,

' ^"•- *•'"'•

for the rate, per cent, the same as before.
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SECTION XVIL
OP PLANE TRIGONOMETRY*

DEFINITIONS.

1. "pLANE Trigonometry is the art whereby, hav-

JL ing given any three parts of a plane triangle

(except the three angles) the rest are determined. In
order to which, it is not only requisite that the peri-

pheries of circles, but also that certain right lines, in

and about the circle, be supposed divided into some

assigned number of equal parts.

2. The periphery of every circle is supposed to be
divided into 360 equal parts, called degrees ; and each

degree into 60 equal parts, called minutes, and each
minute, into 60 equal parts, called seconds, or second

minutes, &c. Any part of the periphery is called an
arch, and is measured by the number of degrees and
minutes, &c. it contains.

3. The difference of any arch from 90 degrees, or a

quadrant, is called its complement, and its difference
from 180 degrees, or a semi-circle its aupplement.

4. A chord, or sub-

tense, is a right line

drawn from one ex-

tremity of an arch to

the other ; thus BE
is the chord or sub-

tense of the arch

BAE, or BDE.
5. The sine (or

yight sine) of an arch

is a right line drawn
from one extremity
of the arch perpen-
dicular to the diame-
ter passing through the other extremity : thus BF is

the sine of the arch AB, or BD.
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6. The ver$ed sine of an arch is the part of the dia-

meter intercepted between the arch and its sine : so AF
is the versed sine of AB, and DF of DB.

7. The co-sine of an arch is the part of the diameter

intercepted between the centre and the sine; and is equal
to the sine of the complement of that arch. Thus CF is

the co-sine of the arch AB, and is equal to BI, the sine

of its complement HB.

8. The tangent of an arch, is a right line touching
the circle in one extremity of that arch, continued from
thence to meet a line drawn irom thecentre through the

other extremity; which line is called the secant of the

same arch : thus AG is the tangent, and CG the secant

of the arch AB.

9. The co-tangent and co-secant of an arch are the

tanc^ent and secant of the complement of that arch ;

thus BK and CK are the co-tangent and co-secant of
the arch AB.

10. A trigonometrical canon is a table exhibiting
the length of the sine, tnngent, &c. to every degree
and minute of the quadrant, with respect to the radius

which is supposed unity, and cenceived to be divided

into 10000000 or more decimal parts. Upon this table

the numerical solution of the several cases in trigono-

metry depend; it will therefore be proper to begin with
its construction.

PROPOSITION I.

The number of degrees and minutes, S^c, in an arch

being given ; to find both its sine and co-sine.

This problem is resolved, by having the ratio of the

circumference to the diameter, and by means of the

known series for the sine and co-sine (hereafter
de-

monstrated). For, the semi-circumference of the circle,

whose radius is unity, being 3,141592633589793 &c.
it will therefore be, as the number of degrees or mi-

nutes in the whole semi-circle is to the degrees or

minutes in the arch proposed, so is 3,141592(55358 &c.
to the length of the said arch ; which let be denoted by
a

; then, by the series above quotid, its sine will be ex-
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pressed by g — -—- +
3 2.3.4.3 2.3.4.5.6.7

&c. and its co-sine by l -f
~

2 2.3

&c.
2.3.4.5.6 2.3.4.5.6.7.8

Thus, for example, let it be required to find the sine

of one minute: then, as 10800 (the minutes in 180 de-

grees) : 1 :: 3,14159265358 &C. : .000290888208665— the length of an arch of one minute : therefore, in

this case, a ^ .000290888208665, and -^ (—---)

— .000000000004102, &c. And consequently
.000290888204563 =: the required sine of one minute.

Again, let it be required to find the sine and co-sine

cf five decrees, each true to seven places of decimals.

Here .0002908882, the length of an arch of I minute

(found above) being multiplied by 300, the number of

minutes in 5 degrees, the product .08726646 will be the

length of an arch of 5 degrees : therefore, in this case,
we have

a -
,08726646

-5- := — ,00011076,
o

a}
4- -^ = + ,00000004,

&c. and consequently ,08715574 iz the sine of 5 de-

grees. Also

-^
- .00380771,

a
zz .00000241 ;

24

and consequently ,9961947 = the co-sine of 5 degrees.

After the same manner, the sine and co-sine of any
other arch may be derived ; but the greater the arch
the slower the series will converge, and therefore a

greater number of terms must be taken to bring out the
conclusion to the same degree ot exactness.

R 2
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But there is another method of constructing the trig-
onometrical cannon ; which, though less direct, is more

geometrical ; and that is by determining the sines and

tangents of different arches, one from another, as in

the ensuing propositions.

PROPOSITION II.

The sins of an arch being given ; to find its cO'Sine,

tangent, co^tangent, secant^ and co-secant.

Let AE be the proposed arch, EF its sine, CF its

co-sine, AT its tangent, DH its co-tangent, CT its

secant, and CH its co-secant : then, (hy Euc. 27. 3 .) we
shall have CF = \/CE' — £F^; from whence the

CO sine will be known ; and

then bv reason of the similar

triangles, CFE, CAT, and

CDH, it will be,

1. CF : FK :: CA : AT
whence tlie tangent is known.

2. CF : CE : : CA : CT
whence the secant is known.

3. EF : CF : : CD : DH
whence the co-tangent is known.

4. EF : CE :: CD : CH ; whence the co-secant

is also known.

Hence it appears,

1 . That the tangent is a fourth proportional to the

co.sine, the sine, and the radius.

2. That the secant is a third proportional to the

co-sine, and the radius.

3. That the co-tangent is a fourth proportional
to

the sine, the co-sine and the radius.

4. That the co-secant is a third proportional
to the

sine, and the radius.

5. And that the rectangle of the tangent and co-

tangent is equal to the square of the radius.
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PROPOSITION III,

The co^sine CF ofan arch AE, being given ; tofind the

sine and cosine of half that arch.

From the two extremities of the diameter AB draw
the subtenses AE and BE ; and let CQ bisect the arch

AE in Q and its chord (perpendicularly) in D ; then

since the angle BEA is a right one {hy Euc, 3i, 3.) the

triangles ABE and ^^ ^^^K
ADC are similar;

and therefore AC
being =z i AB, AD
must be — | AE, and
CD =: I- BE: but AE
is =\/AB X AF ; and j^
BE = \/AB X BF; therefore

oUAE,
AD nfy/AB x AT-v/^AC x AF-the sine >

CD -fv/AB X BFn-s/TAC x BF=:the co-sine S

Hence it is evident, that the sine of the half of any
arch, is a mean proportional between half the radius,

and the versed sine of the whole arch ; and its co-sine,
a mean proportional between half the radius and the

versed-sine of the supplement of the same arch.

PROPOSITION IV,

The sine AD, and co-sine CD, of an arch AQ bei?ig

given ; to find EF the sine of the double of that arch (see
the precedingfigure,J

Since AE = sAD and BE - sCD, and the triangles
ABE and AEF are alike {by Euc. 8. 6.) we have, as

AB (2AC) : AE TsAD) : : B*E I2CD) : EF ; whence
it appears, that the sine of double any arch is a fourth

proportional to the radius, the sine, and double the
co-sine of the same arch.

PROPOSITION V.

The sine CD and tangent BE, (fa very small arch are,
nearly^ in the ratio of equality.

For, the triangles ADC and ABE being similar,
K 3
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thence will AD : AB : : DC : BE ! but as the point C
approaches to B, the ditJerence of AB and AD will
become indefinitely small in respect of AB, and there-

fore the difference of
BE and DC will like-

wise become indefinitely
small with respect to BE
or DC.

CoroL Because any
arch BC is greater than

its sine and less than its

tangent ; and since the
sine and tangent of a very small arch are proved to be

nearly equal, it is manifest that a very small arch and
its shne are also nearly in the ratio of equality.

PROPOSITION VI.

To find the sine of an arch of one minute.

The sine of 30 degrees is known, being half the

chord of 60 degrees, or the radius ; therefore by Prop. 2

and 3, the sine of 15 degrees will be known : and, the

sine of 15 degrees being known, the sine of 7° 30' will

be found {by the same Propositions), and from thence the

sine of 3° 45' ; and so likewise the sine of htiUthis ; and

soon, till 12 bisections being made, we come, at last,

to the sine of an arch of 52'', 44' ^^ 03'''', 45"''" ; which

sine(6y CoroL to the preceding Prop.) will (as the co-sine

is nearly equal to the radius) be nearly equal to the arch

itself. Therefore we have, as 52'^ 44"', 03"", 45""',

is to l', so is the length of the former of these arches

(found as above) to the length of an arch of one minute
or that of its sine, very nearly.

If it be taken for granted, that 3,1415926535, &r,
is the length of half the periphery of the circle whose
radius is unity, we shall have, as 10600, the number of
minutes in 180^, or the wlwle semi-circle, is to one

minute, so is 3,1415926535, &c. the whole semi-circle

tot),000290888208, the length of an arch ofone minute,
or that of its sine, very iicarlv.
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PROPOSITION VII.

Jf there he three equidifferent arches AB, AC and AD,
it will be, as the radius is to the co-sine oj their common

difference BC or CD, so is the sine C¥, of the mean, to

half the sum of the sines, BE + DG, ofthe two extremes:

and as the radius is to the sine of the common difference,
so is the co'sine FO of the mean, to half the difference of
the sines of the two extremes.

For, let BD be drawn, cutting the radius OC in m,
also draw mn parallel to CF, meeting AO inn, and
BH and mv parallel to AO, meeting DG in H and v :

then because the arches BC and CD are equal to each

other, OC is not only perpendicular to BD, but also

bisects it (Euc. 3. 3.) ; whence it is evident that B/w, or

Dm, will be the sine of BC or CD; and Om its co-

sine ; and that m?^, being an arithmetical mean between
the sines, BE and DG, of the two extremes, is equal
to half their sum, and Dv equal to half their difference.

Moreover, by reason of the similarity of the triangles

OCF, Omn, and Dmv, it will

be as, OC : Om : : CF mn
and as, OC : Dm :: FO : Dv Q. E, D,

COROL. I.

Since, from the foregoing proportions, mn is =
Om X CF .^ , „^ Dm x FO . .—
^^
—

, and DiJ {
=z i;H) = ^^

—
, it is evident

Jl 4
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that uQ^zzmn-^-uv) will be — —^

o^^ni?/ TTx Om X CF—Dm X FO ^andBE(=m«— cH) ;= ^^ ^; iVom

whence it appears, that the sine (DG) of the sum (AD)
of any two arches (AC and CD) is equal to the sum of
the rectangles of the sine of the one into the co^sine
of the other, alternately, divided by the radius

; and
that the sine (BE) of their difference (AB) is equal to
the difference of tlie same rectangles, divided also by
the radius.

coaoi« 2.

Moreover, seemg, DG + BE (2w n) is
—

^.-^
—

and DG - BE (n DH = 2Dv]=z ^^'^^^^ , from the

former of these, we have DG —
^^p ^^» ^"^

from the latter, DG z=—^^ + BE; which, ex-

pressed in words, gives the two following Theorems.
'

Theor. 1. If the sine 0/ the mean of three equidlfferent
arches (supposing the radius unityJ be rmdtiplied hy
twice the co-sine of the common difference, and the sine

of either extreme he subtractedfrom the product, the rem

mainder will be the sine of the other extreme,

Theor. 2. Or, if the co-sine of the mean he multiplied

by twice the sine of the common difference, and the pro-
duct be added to, or subtracted from the sine of one of
the extremes, the sum or remainder icill he the sine of
the other extreme.

These two theorems are of excellent use in the con-

struction of the trigonometrical canon : for, supposing
the sine snd co-sine ofan arch of 1 minute to be found,

by Prop. 6 and 1, and to be denoted by p and q, respec-

tively/then the sine of 2 minutes being given from

Prop. 4, the sine of 3 minutes will from hence be known,
being = 27 x sine 2' — sine V [by Theor, l) or r= 2p
xco-sineof 2' f sineof l'}hy Theor, 2.) After the same
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manner of the sine 4' will be found, being zi 2q x sine

of 3'— sine of 2^ or
—

2p x co-sine of 3' -f sine of 2'.

And thus the sines of 5, 6, 7, &c. minutes may be suc-

cessively derived by either of the 'I'heorems ; but' the

former is the most commodious.

If the mean arch be 45°, then its co-sine being :=

V^i, it follows (from Theor. 2.) that the sine of the ex-

cess of any arch above 43"*, multiplie<i by Sv^l or\/2^

gives the excess of the sine of that arch above that of

another arch as much below 45°; thus v^s x sine of

10° =: sine of 55° — sine of 35° ; and \/i~x sine of 15®
m sine of 6o°— sine of 30"^ ; and so of others: which is

useful in finding the sines of arches greater than 45^.

But, if the mean arch be 60 degress, then its co-sine

being |, it is evident, from the sariie Theorem^ that the
sine of the excess of any arch above 60°, added to the
sine of another arch as much below 60°, will give the
sine of the first arch, or greater extreme: thus, the sine

of 10° f sine 50° — bine 70°, and sine 15'' + sine 45''
—

sine T^'^'y from whence the sines of all arches above 60

degrees, those of the inferior arches being known, are
had by addition only.

PROPOSITION viir.

/^^ any right-angled plane triangle ABC, it lolll be as

the base Ali is to the perpendicular BC, so is the radius

(of the tablesJ to the tangent of the angle at the base.

Let DA be the radius to which the table of sines

and tangents is adapt-
ed, and DE the tan-

gent of the angle A ;

then, by reason of the

similarity of the trian-

gles ABC and ADE,
it will be, as AB : BC
:: AD.DE. Q. E. 1).
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PROPOSITION IX.

In every plane triangle, it will be, as any one side
is to the sine of the opposite angle, so is any other side
to the sine of its opposite angle.

For, let ABC be the proposed triangle; take CF =
AB, and upon AC, let iail the perpendiculars BD and
FE ; which will be the sines of the angles A and C,

to the equal ra-

dii AB and CF.
But the trian-

gles CBD and
CFE are simi-

lar, and there-

fore CB: BD::

CF(AB) : FE;
that is, as CB is to the sine of A, so is AB to the sine

ot C. Q. E, D.

PROPOSITION X.

In every plane triangle, it will he, os the sum of any
two sides is to their difference, so is the tangent of the

complement of half the angle included by those sides,

to the tangent of the difference of either ofth other two

angles and the said complement.

For, let ABC be the triangle, and AB and AC the

two proposed sides ; and upon A, as a centre, with the

radius A B, let a senii-cir; le be described, cutting CA
produced, in D and F ; so that CF may express the sum,

and CD the
-^ difference of

the sides AC
and AB; join
F, B, and B,

f^ D, and draw
F~

" A B "^

DE parallel

to FB, meeting BC in E ; then, the angle FBD being
a right one [by Euc. 31.3.) ADB will be the comple-
ment of the angle F, which is equal to half the pro-

posed angle A (hy Euc, 20, 3.). Moreover, seeiog the
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angles FBD and EDB are both right ones, (for EDB
is
- FDB {— right angle) because DE is parallel to

FB) it is plain, that, if BD be made the radius, BF
will be the tangent of BDF, and DE the tangent of

DBE : but, because of the similar triangles CFB and

CDE»CF : CD :: BF :: DE ; that is, as the sum ofthe

sides AC and AB, is to their difference ; so is the

PROPOSITION XI.

As the base of any plane triangle is to the sum of the

two sides, so is the difference of the sides to the difference

of the segments of the base, made by a perpendicular

fallingfrom the vertical angle.

For, let ABC be the proposed triangle, and BD the

perpendicular ; from B as a centre, with the interval

BC, let the circumference of a circle be described, cut-

ting the base AC
in G and the side

AB, produced, in

F and E ; then

will AE be the

sum of the sides,

AF their differ-

ence, and AG the

difference of the

segments of the

baseADandDC: _^
but fby Euc. 36. 3,J AE / AF - AC x AG; and
therefore AC : AE : ; AF : AG. Q, E. D,
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The Solution of the cases ofrighUaiigledplane triangles.

C

6

1
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The Solution of the cases of oblique plane triangles. ^

A D
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SECTION XVIII.
THE APPLICATION OF ALGKBRA TO THE SOLUTION

OF GEOMETRICAL PROBLEMS.

WHEN a geometrical problem is proposed to be

resolved by algebra, you are, in the first place
to describe a figure that shall represent, or exhibit the

several parts or conditions thereof, and look upon that

figure as the true one ; then, having considered atten-

tively the nature of the problem, you are next to pre-
pare the figure for a solution (if need be) by producing,
and drawing, such lines therein as appear most con-

ducive to that end. This done, let the unknown line

or lines which you think will be the easiest found (whe-
ther required or not) together with the known ones (or

as many of them as are requisite) be denoted by proper

symbols ; then proceed to the operation, by observing
the relation that the several parts of the figure have to

each other ; in order to which a competent knowledge
in the elements of geometry is absolutely necessary.

As no general rule can be given for the drawing of

lines, and electing the most proper quantities to substi-

tute for, so as to always bring Out the most simple con-

clusions (because difierent problems require different

methods of solution), the best way therefore, to gain ex-

perience in this matter is to attempt the solution of the

same problem several ways, and then apply that which
succeeds best to other cases of the same kind, when they
afterwards occur. 1 shall, however, subjoin a few ge-
neral directions which will be found of use.

1°. In preparing the figure, by drawing lines, let

them be either parallel or perpendicular to other lines

in the figure, or so as to form similar triangles; and
if an angle be given let the perpendicular be opposite
to that angle, and also fall from the end of a given line,

if possible,

2^. In electing proper quantities to substitute for, let

those be chosen (whether required or not) which lie
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nearest the known or given parts of the figure, and

by help whereof the next adjacent parts may be expres-
sed, without the intervention of surds, by addition and
subtraction only. Thus, if the problem were to find

the perpendicular of a plane triangle, from the three

sides given, it will be much better to substitute for one
of the segments of the base, than for the perpendicular,

though the quantity required; because the whole base

being given, the other segment will be given, or ex-

pressed by subtraction only, and so the final equation
come out a simple one ; from whence the segments being-

known, the perpendicular is easily found by common
arithmetic : whereas, if the perpendicular were to be

first sought, both the segments would be surd quan-
tities, and the final equation an ugly quadratic one.

3°. When in any problem, there are two lines or

quantities alike related to other parts of the figure, or

problem, the best way is to make use of neither of

them, but to substitute for their sum, their rectangle,
or the sum of their alternate quotients, or for some line

or lines in the figure, to which they have both the same
relation. This rule is exemplified in Prob. 22, 23, 24,
and 27.

4°. If the area, or the perimeter of a figure be given
or such parts thereof as have but a remote relation to

the parts required, it will, sometimes, be of use to as-

sume another figure similar to the proposed one, where-
of one side is unity, or some other known quantity,
from whence the other parts of this figure, by the known

proportions of the homologous sides, or parts, may be

found, and an equation obtained, as is exemplified in

Prob. 25 and 32.

These are the most jjeneral observations I have been
able to collect ; which I shall now proceed to illustrate

bp proper examples.

^ PROBLEM I.

The base fhj^ and the sum of the hypothemise a^id

'perpeiidicular fa) uf a right-aiigled triangle ABC,
being given ; tojuid'lhe perpendicular.
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Let the perpendicular BC be denoted by .r; the^i

the hypothenuse x\C
^ will be expressed by

a— .r: but(6v EucAI.

1.) AB^4-BC*=AC2;
that IS, I)' -f x^ = «'

— ^ax -f x'^ ; whence

, .- -In^ ^ the

perpendicular required.

PROBLEM II.

The diagonal and the perimeter of a rectangle, ABCD

being given ; to find the sides.

Put the diagonal BD = a, half the perimeter (DA
4- AB) = /^, ai^« AB —
x; then will AD =

^
--

x; and therefore, AB' +
AD^ being = BD% we

have x^ + 6^ — 26a: + a;

-
^/; which, solved, gives

a'=
^

•

PROBLEBl III*

Theareaofmht-angUd triangle ^^C,and the Hdes

cUreZZgL EBFD inscnhed tteran, be,ng given ; to

determine the sides of the triangle.

prDF = «, DE = b, BC = X. and the measure

^ - d ; then, by similar tri-

angles, we shall have x

- 6 (CF) : a (DF) : : x

ax

(BC) : AB zz
^^-^j

Therefore
^-^j-^

^
i*
"

(i,
and consequently

ax'^

. ?^^_^: which, solved,
(L



TO GEOMETRICAL PROBLEMS. 2S7

skives x=: — 4- \/ ~
, from whence AB and

AC will likewise be known.

PROBLEM IV.

Having the lengths ofthe three perpendiculars PF,PG,
PH, draiim from a certain point P loithin an equilateral

triangle ABC, to the three sides thereof; from thence to

determine the sides.

Let lines be drawn from P to the three angles ofthe

triangle; and let CD be perpendicular to AB : call

PF, o ; PG, 6 ; PH, c ; and
AC -

a;; then will AC
(
= AB)

-
'2X, and CD (-

v/AC2_^D2j _ ^^xx -
x\/3', and consequently the

area of the whole triangle
ABCJ= CD X AD) -

xx\/3. But this triangle is

composed of the three trian-

gles APB, BPC, and APC ;

whereof the respective _areas are ax, bx, and ex.

Therefore we have xx\/3 z= ax -{- bx -\- ex ; and from

hence, by division x — a + 6 + c

PROBLEM V.

Having the area of a rectangle DEFG, inscribed in a

given triangle ABC ; to determine the sides of the rect-

angle.
Let CI be perpendi-

cular to AB, cutting DG
in H ; and let CI — a,

AB = Z), DG = a% and
the given area — cc:

then it vi^ill be, as b :

ax

b
zz CH

which, taken from CI,
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ax
leaves a ^ zi IH : and this, multiplied by x, gives

ax*
ax -r- izcczz the area of the rectangle ; whence we

have abx — ax^ ~
bcc\ x*— bx zz , a: — -—

^ a/^ bcc , b
, /6« bee± V , and X —

z: ± \/ .

•^4 a ' 2^4 a

PROBLEM VI.

Through a given point P, within a given circle^ so to

draw a right line, that the two parts thereof PR, PQ,
intercepted by that point and the circumference of the

circle, may have a given difference.

Let the diameter APB be drawn ; and let AP and

BP, the two parts thereof

(which are supposed given)

bedenotedbyaandft; making
PR = X, and PQ z= a + d

[d being the given difference).

Then, by the nature of the

circle, PQ x PR bei ng
—

PA X PB, we have a? + rf

X a = a5, or xx + dx
— ah ; whence x is found

zi \/'ub H- \dd — \d,

PROBLEM VII.

From a given point P, without a given circle, so to

draw a right line ?Q,,.that the part thereof RQ, inter*

cepted by the circle, shall be to the external part PR, in

a given ratio.
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Through the centre O, draw PAB ; put PA =: «,
PB -h, PR ~

X, and let

the given ratio of PR to

RQ be that of m to t? ;

then it will be, as m : 72 : :

.T : —- = RQ ; thereforem

VQi-x-V— ; but PR Xm
PQ = PA X PB, or

X y. X -\
—

ah\ there-

fore mx" -\- nx^ ~
7nab,

^ m + n

PROBLEM VIII.

Tfie sum of the two sides of an isosceles triangle ABC
being equal to the sum of the base and perpendicular, and
the area of the triangle being given ; to determine the

sides.

Put the semi-base AD — x, the perpendicular CD
zr 2/, and the given area ^
ABC zz a^ ; so shal l xy zz

a^, and ^\/xx + yy =z Qx
+ y (by EL 47- 1. and the

conditions of the problem.)
Now, squaring both sides

of the last equation, we
have 4xx -f 4yy

— 4xx +
4xy -\- yy ; whence 3yy

~

4xy, and consequently y-^: which value, substituted

1 n 4XX
in the former equation, gives = a^ ; from whence

~ V ^ = -l^v/s ; y
4x

(=-^) = |av/3; and AC

S 2
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. ^— / ^aa 4:aa . / Q5aa %

PROBLEM IX.

The segments of the base AD and BD, and the ratio

of the sides AC and BC, of any plane triangle ABC,
being given ; tofind the sides.

Put AD zn G, BD = b,

AC = X ; and let the given
ratio of AC to BC, be as m

to 71, so shall BC _ nx

But AC* — AD^ f= DC^)- BC^ — BD% that is, in

species, X a^ = nnxv

mm
b~. Hence we have m'^x-

7i\x" :=z m^ X aa — bb^

and
— 66. / aa —

^ mm — izn

PROBLEM X.

The baseKQ (a), the perpendicular CD {bj, a7?d the

difference fdj of the sides AC — BC, of any plane tri^

angle ABC, being given ; to determine the triangle (see

the preceding figure).

Let the sum of the sides AC 4- BC be denoted by x :

dx
then (by Prop, 11. Sectyll.) ^ve shall have a : x :: d :

-~

•=. the difference of the segments of the base
;
therefore

, A x>. 11 1 <^ dx
the greater segment AD will be = -^ +

aa -I- dx

4aa

But AD

+ 6" =

2

+ DC* = AC*;

X' + 2dx -f dd

2a

that is,

whence
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466 — dd,
. , I J . ^ / aa \- 4bb

which, solved, eives x =z a \/ , ,° ^ aa— dd

PROBLEM XI,

The base AB, the sum of the sides AC + BC, a7id

the length of the line CD drawn from the vertex to the

middle of the base, being given, to determine the triangle.

by AC + BC = c,

C

Make AD (z= BD) = a, DC
and AC zi a?; so shall

BC = c — 07. But
AC* + BC* is =
2AD' + 2DC« (by
El. 12. 2.); that is,

X- -f c — a-i* zz 2a*

+ 26* ; which, l)y

reduction, becomes :r* ^~
-- ex zz a" -\- b' '— ^ J^ ^

Jc' ;
whence x is found zi |c ± v^aa 4- 66 ^- ice.

PROBLEM XII.

The tico sides AC, BC, and the line CD bisecting the

vertical angle of a plane triangle ABC, being given ; to

find the base AB.

Call AC, a; BC, 6; CD, c; and AB, x; then
a + 6 : ^ : : a : AD zz

ax

a + h'

b: DB

and a + b : X

But (btj

hx

a -\' b

El, 20. 3.) AC X CB —
AD X DB zzDC^ that is,

ahx'^
ab

(I -V
6]

c*; from

whence x will be found
7- . / ab — cc

S 3
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PROBLEM XIII.

The perimeter AB +'BC+ CA, and theperpendicular,
BCf fallingfrom the right angle Byto the hypothenuse
AD, being given ; to determine the triangle.

Let BD zz a, AB = Xy BC =: ^, AC = z, and AB
-\- BC 4- CA IT h : then, by reason of the similar tri-

angles ACB and ABD, it will be as 2 : ?/ : : ^ : a ; and
therefore xy iz az : more-

over, 0?' + y- =z z- {by Euc,
47' 1.) and x -h y + z
z= b (by the question). Trans-

pose 3 in the last equation,
and square both sides, and

you will have x^ -f 2xy +
7/2 = b' — Qbz + z"-, from
which take x' + y^

—
z~,

and there will remain Qxy
— b- — 26s; but, by the

first equation, Qxy is tz 2az; therefore 2az zzh^— 2bz

and z — J-; whence z is known. But to find
2a + 26

X and V from hence, put ,
n c, and let this value

of z be substituted in the two foregoing equations,
X + y zz b — z, and xy

—
az, and they will become

X \- y
— b — c, and xy zz ac : from the square of the

former of which subtract the quadruple of the latter,

so shall x^ — Qxy 4- j/*
= b — t'l*

— 4ac; and conse-

quently X— y
— y/b — cf — 4ac. This equation be-

ing added to, and sub tracted from x + y
— b — c,

gives Qx — b — c -f v "6 — cl"— 4ac, and Qy zz: b —
c — \/b — Tl^— 4ac,

PROBLEM XIV.

Having the perimeter ofa right-angled triafigle ABC,
and the radius DF, of its inscribed circle ; to determine

all the sides of the triangle.
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From the centre D, to the angular points, A, B, C,
and the points of contact E, F, G, let lines DA,
DB, DC, DE, DF, DG be drawn ; making DE,

DF, or DG = a, AB =r :r, BC = t/, AC = z, and

X -{- 7j {- z
—

b. It is evident that -—- + ~ + —1,
^

or its equal— (expressing the sum of the areas ADB,

BDC and ADC) will be zz ^ := the aiea of the

whole triangle ABC; and consequently Qxy =: Qab:
moreover {by Euc. 47. 1.) x* -f y'^

= z^; to which if

Qxy
— 2ab be added, we shall have x^ + 2xy -f y^, or

x~T~yf = 2* + 2ab ; but, by the first step, x -f 2/1'
is

=: b— z\-
—

h^ — (ibz 4- z- ; therefore, by making
these two values of x + yf equal to each other, we
get s" -I- ^ab — b^ — <2bz -f- 2^ : whence Qa — b — Qz,
and z

—
\b — a. But, to find x and y, from hence,

we have now given x -\- y (~ b — z) =: \b + a, and

xy zz ab ; the former of these equations, multiplied by
bx

Xf gives X- ^- xy
— -^ + oj? ; from which the latter

xy
— ab being subtracted, we havea:- =|ia: -\- ax— ab,

<2a ^ b
or x^— A X ~ — ab'. whence, by completing

s 4
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the square, &c. x -zz

2a + 5 ± s/^a"— l^ab -f h*
so

that the three sides of the triangle are, \h — a,

2«+Z>4-\/4a*~12a6+62 , 2(2+ h - \/ 4:a"-- \^ah -\- b*—_
, and — .

Otherwise,

The right-angled triangles ADE, ADG, having the

sides DE, DG equal and AD common, have also

AE equal to AG ; and, for the like reason, is CE m
CF; and consequently AC (AE + CE)

- AG + OF.
Whence it appears that the hypothenuse is less than the

sum of the two legs, AB -f- BC, by the diameter of

the inscribed circle, and therefore less than half the pe-
rimeter by the semi-diameter of the same circle. Hence
we have AC =: |6— «, and AB + BC =2 16 + a. Put,

therefore, \h — a zz c, \h -^ a —
d, and half the dif-

ference of AB and BC 1= x; then will AB =z d + .t, and

BC = d--x; and consequently 2d
" + 2x"

(
AB" + BC-)

zzc- (AC^), whence x is found =1 \/ic"— d^; therefore

AB is =: ic? + v/4c2
— d% and BC z= ic?— n/ic^— d",

PROBLEM XV.

^11 the three sides of a triangle ABC being given ;

to find the perpendicularf the segments of the base, the

area, and the angles.

Put AC ~
a, AB == b, BC =: c, and the segment

AD =: x; then BD being
— b — x, we have c- —

b-'xl" (= CD2) zz a" -^ X-, that is, c- -— b" + Qbx

— a' =: a^..— a- ; whence 2bx = aa f bb — ccj and
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^^aa+bb-cc,^ Now CD"- = AC-
2b
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{from above) = —-^^—.
— -—^ x

20
-

b

2s

~b
ZZ -.- X S — c : but DF (

es X s — c
) is to DC

iW s,s— c . s— b

'")
, so is the radius to the tan-

gent of F ; and consequently s x s— c : s— b X s— a
: : sq. rad. : sq. tang, of F ; that is, in words, as the

rectangle under half the sum of the three sides, and the

excess of that half sum above the side opposite the re-

quired angle, is to the rectangle under the differences

between the other two sides and the said half sum, so

is the square of the radius, to the square of the tangent
of half the angle sought.

PROBLEM XVI.

Having given the base AB, the vertical angle ACB,
and the right line CD, which bisects the vertical angle,
and is terminated by the base; tofind the sides and angles

of the triangle.

Conceive a circle to be described about the triangle,
and let EG be a diameter

of that circle, cutting the

base AB perpendicularly
in F ; also from the cen-

ter O, suppose OA and

OB to be drawn, and let

CD be produced to E
(for it will meet the pe-

riphery in that point, be-

cause the angles ACD
and BCD, being equal,

must stand upon equal
arches EA and EB).

Now, because the angle AOB at the centre, standing

upon the arch AEB. is double to the angle ACB at

the periphery, standing upon the same arch (Euc. '20. 3.)
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that angle, as well as ACB, is given ; and, therefore,
in the isosceles triangle AOB, there are given all the

angles and the hase AB ; whence AO and FO will be
both given, by plane trigonometry, and consequently
EF (AO — FO) and EG (~ 2AO). Call, therefore^
EF zz rt, EG zzz h, CD =: c, and DE = x ; and sup-
pose CG to be drawn ; then, the angle ECG being a

right one {Euc. 31.3.) the triangles EDF and EGG
will be similar ; whence x -. a : xb i x -\- c \ therefore,

by multiplying extremes and means, we have x- + ex
—

ahy and consequently x zz \/ab 4- ^cc
—

|c; from

which DF (\/~ED2 — EF^), half the difference of the

segments of the base, will be found, and from thence
all the rest, by plane trigonometry.

Before I proceed further in the solution of problems,
it may not be improper, in order to render such solu-

tions more general, to say something here, with regard
to the geometrical construction of the three forms of
adfected quadratic-equations.

X' 4- ax —
be.

viz,
-s^
X- — ax n be.

C ax — x^
—

be.

CONSTRUCTION OF THE FIRST AND SECOND FORMS.

With a radius equal to ^a, let a circle OAF be de-

scribed ; in which, from any point A in the periphery,

apply AB equal to &— c

(b being supposed greater
than c)and produce the

same till BC becomes
—

e; andfrom C through
the centre O, draw CDE
cutting the periphery in

D audi E ;
then will the

value of X be expounded
by BC, in the first case, nnd by CE, in the sccun<l.
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For, since (by construction) DE is =0, it is plain, if

CD be called .r, that CE will be a? + «
; but if CE be

called X, then CD will be a- — a : but, by Eve, 37. 3.

CE X CD = AC X BC,thatis,FTlt x x{x''-Tax)
is
—

be, in the first case ; and x x x — a
(a?^
— ax)= bcy in the second ; which two, are the very equations

above exhibited.
When b and c are equal, the construction will be

rather more simple ; for, AB vanishing, AC will then
coincide with the tangent CF; therefore, if a right-
angled triangle OFC be constituted whose two )egs
OF and FC are equal respectively to the given quanti-
ties ia and b, then will CD (= CO —- OF) be the true
value of a: in the former case, and CE (z= CO + OF)
its true value in the latter.

CONSTRUCTION OF THE THIRD FORM.

With a radius equal to |«, let a circle be de-
scribed (as in the two preceding forms), in which apply

AB, equal to the sum of the
two given quantities b -\- c,

and take therein AC equal
to either of them ; through
C draw the diameter DCE ;

then either DC, or EC, will

be the root of the equation.
For, the whole diameter

ED being = «, it is evident

that, if either part thereof

(DC, or EC) be denoted by x, the remaining part will

be a — .T : but DC >c EC = AC x CB {Euc. 35^ 3.)
that is, ax — x-zzi bcyas icas to be shown.

The method of construction, when b and c are equal
is no-ways different ; except that it will be unnecessary
to describe the whole circle; for, AC being, here, per-

pendicular to thediameter ED, if a right-angled triangle
OCA be formed, whose hypothenuse is ^w, and one of

its legs (AC) = b, it is evident that the sum (EC)
and the dillcrcnce (DC) of the hypothenuse and th6

other kg will be ihc two values of x required.
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Note. If b and c be given so unequal, that b— c, in

the two first forms, or ^ •+- c, in the last, exceeds (a)
the whole diameter ; then, instead of those quantities,

you may make use ofany others, as ^5 and 2c, or|6 and

3c, whos6 rectangle or product is the same ; or you
may find a mean proportional between them, and then

proceed according to the latter method.

PROBLEM XVII.

The base AB, the vertical angle ACB, and the right
line CD, drawn from the vertical angle, to bisect the

base, being given ; to find the sides and perpendicular.

Suppose a circle to be described about the triangle :

and let CQ be perpendicular to AB, and ED equal, and

parallel toCQ ; moreover, from the centre F, let FA,
FB, and FC be drawn

; also let CE be drawn (parallel
to AB.) Put the

sine of the given

angle ACB, to the

radius 1,
—

m, its

co-sine zz w, the

semi-base BD z=. c,

the bisecting line

CD zz b, and the

perpendicular CQ
(DE)

-
x; then,

since (by Euc. 20.

3.) the angle BFD
is equal to ACB, it

will (by plane tri-

gonometry) be, as m (sine of BFD) : a (DB) : : n (sine

of DBF)
na

m zz DF; and, as m (sine of BFD) : a

(DB) :: 1 (sine of BDF) :
— n the radius BF, or FCm

whence EF (ED — DF)
na mx — na— or

'

m m

But {% Ewe. 12.2.) DF^ 4- FC^ -V 2DF x FE = DC'
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that IS, in species, —v- -\ f -— x — =0%

or —r r- H =: 6 : but, since the sum of them m m
square of the sine and co-sine, of any angle whatever,
is equal to the square of the radius, or, in the present

case, m* -f «^ =: 1
,
therefore is 1 — n^ — ?»-, and conse-

Quently—:; r» (or
—

77 x 1 — n") =—« x m =z a-;

QflCtX
whence our equation becomes a" -\ := 6*; which,^ m

J , . m X b^ — a^ m DC*— DB^
ordered, eives a^

— — =: — x r-T>

m DC+DBx DC — DB
,

m=— X -T-n ; where— expresses

the tangent of the angle ACB : therefore, in any plane
triangle, it will be, as the base is to the sum of the

semi-base and the line bisecting the base, so is their

difference to a fourtii proportional; and, as the radius is

to the tangent of the vertical angle, so is that fourth pro-

portional to the perpendicular height of the triangle :

whence the sides are easily found.

The same otherwise.

Let the tangent of the angle ACB, or BFD, be re-

presented by p, and the rest as above ; then it will be

(hy trigonometry) as p : 1 (the radius) : : a (BD) : —

=: DF; therefore FE (DE — DF) zz a^ — -?-, and FC^
P

(= FB^ - DB"- + DF») =z a* + %; and consequently

~ +a"^4-~4- - X .T— -(DF2fFC- + 2DFxFE)=:

hh [— DC2) that is, «'- f "— —
b"; whence .r

—
p x

P
b- — a^ , , ^—

, tn(^ same as before.
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PROBLEM XVIII.

The area, the perimeter,
and one of the angles of any

plane triangle ABC, being given; to determine the tri.

angle.

Suppose a circle to be inscribed in the triangle, touch-

ing the sides thereof in the points D, E, and F ; also

from the centre O, suppose OA, OD, OC, OF, OB,
and OE to be drawn : ^
and upon BC let fall the a^
perpendicular AG; put- / l\
ting AB + BC 4- AC n / I \
b, the given area = a~, / I \
the sine of the angle ACB .^"'l^VV
(the radius being 1) = m, D/^ I ^J^
the co-tangent of half that 4 ^*^J^^*^\p
angle (or the tangent of /I J^^^^**n\'
DOC) rz n, and AC =: x. / 3<^-*^''^X^\
Therefore, since the area

>^<t^^^^^>L
: ^y^\

of the triangle is equal to ^^ -^==*-^f=^^ ^
4AB X OE+ iBC X OF ^ ^ ^

4- 4AC X OD, that is, equal to a rectangle under
half the perimeter and the radius ofthe inscribed circle,

we have— x OE = aa; and therefore OE = —r-* But
2 b

AD being
—
AE,and BF = BE; it is manifest that the

sum of the sides, CA+ CB, exceeds the base AB, by the

sum of the two equal segments CD and CF; and so

is greater than half the perimeter by one of those equal
segments CD ; that is, CA + CB = 4& 4- CD : but

(by trigonometry) as 1 (radius) : n (the tangent of

DOC) :; ^ (OD) : DC - ^"; whence CA +

CB (= \b f CD)
-

|6-i- -^-
; which, taken from {h)

Qna'^
the whole perimeter, leaves ^b r- zz the base AB.

Make now 4i I ;

— —
c; then will BC — c-^x; also

o

(by trigonometry) it will be, as l (radius) : in (the sine
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of ACG) : : x (AC) : mx zz AG ; half whereof, miil-

— = a-, the areatiplied by c— :r (BC j, gives
i!!££— ^^^'

of the triangle: from whence .t comes out zz |c

Qaa

PROBLEM XIX.

The kypothenuse, AC, of a right-angled triangleABC,
and the side of the inscribed square BEDF, being given ;

to determine the other sides ofthe triangle.

Let DE, or DF zz «, AG = h, AB zz x, audBCzzy;
Q then it will be, as x : y : : x— a (AF )

: a (FD); whence
we have ax zz yx— i/o, and

consequently xy =z ax -{• ay.
Moreover, xx -h yy zz hb :

to which equation let the
double of the former be add-

ed, \ind there arises .t^ + 2xy
\- if zz h" 4- qax 4- 2flr/;

that i s, a- -f yf zz b- -\- 2a

y. X -\- y, or'.'i + y\-
— 9.a y, x -^ y :zib"\ where, by con-

sidering 07 4- 7/ as one quantity, and completing the

square, we have x-\- yr— 2a
j< x -\- y -f a^ z= h- 4- a-;

whence x ^ y— a zn s/^h" + a-, and x -V y ^=- \/a" 4 ^-

4 a , which put zz c : then by substituting, c — x in-

stead of its equal [y] in the equation xy zz ax + ay,
there will arise ex— x- zz ac ; whence x will be found

= ic 4- \/,
— \/icc — ac.

-^cc
— ac, and y z

It appears from hence that c, or its equal \/aa 4 bh

4- a, cannot be less than 4a, and therefore b- not less

than 8a-; because the quantity ^cc — ac, under the

radical sign, would be negative, and its square root im-

possible; it being known tliat all squares, whether from

positive or negative roots, are positive; so that there

cannot arise any such things as negative squares.
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unless the conditions of the problem under considera-

tion are inconsistent and impossible. And this may
be demonstrated, from geometrical principles,by means
of the following

LEMMA.

The sum of the squares of any two quantities is great-
er than a double rectangle under those quantitie^t by the

square of the difference of the same quantities*

For let the greater ofthe two quantities be represented
by AB, and tjfie lesser by BC (both taken in the same

right line) . Upon AB and BC let the squares AK and
CE be constitut- ,^
ed; take AP = H I I^^

BC and complete
the rectangles PH
and CF. There-

fore, because AB
= AH, and AP
n: BC, it is plain
that PH and PD
are equal to two

rectangles under
the proposed quan-
tities AB and BC :

A

E X)

B
but these two rectangles are less

than the two squares AK and CE, which make up the
whole figure by the square FK, that h, by the square
of PB the difference ofthe two quantities given: as icas

to be proved.

Now, to apply this to the matter proposed, let there
be given the quadratic equation x" 4- 6'

~
Qax, orx

— a
+ v/ aa— bb : then, I say, this equation (and conse-

quently any problem wherein it arises) will bs impossi-
ble, when aa—bb is negative, or b greater than a. For,
since b is supposed greater than a, 2bx will likewise be

greater than 2ax ; but ^ax is given =z xx + bb^ there-

fore 2bx will be greater thanao? + bb, that is, the double

rectangle of two quantities will be greater than the sum
of their squares^ which is proved to be impossible.
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PROBLEM XX,

The base AB {^aj and the perpendicular BCfbJ of a

right-angled triangle ABC, being given; it is proposed
to find a point D in the perpendicular ^ so that, if two

right lines be drawn from thence, one to the angular

point A, and the other (DE) perpendicular thereto, the

triangles DEC, ABD, cut off by those lines, shall be to

one another in a given ratio.

Let AB be produced to F so that the angle BFD may
be equal to the angle BCA ; putting AC iz c, CD =z .t.

^ B A
and the given ratio of the triangle DEC to ABD,as m to n.

Then, by reason of the similar triangles ABC, DBF,
it will be, a (AB) : b (BC) :: b — x (BD) : BF -

P^bx
a

c'— bx

; whence AF — a -\-

b"-— bx

a

-f b' — bx

(because a'^ + b^ zz c"). Also, as ADE is a

right angle, the angles FAD, EDC will be equal: there-

fore, the angles C and F being equal (by con.) the tri-

angles AFD, DCE, must be similar ; and consequently

AF^(gERVcDV^) ,:
AFxBD 6-^. X

c.-^-^/.r)

a' 2 2a

h— T X QX^
the area of the triangle AFD :( ^=^===) the area

of the triangle DEC: wherefore, the area of the tri-
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angle ABD being , or we shall have.

m •
ji

^' "" ^ ^ "^'
: ^.""^

^
i{by the question) : and

* *

2 X c'^— 6a; 2

J— mSa? mc'

consequently, wx^ =: w X c^— ox, ora; + -^ ~~^'

which, reduced, gives a: r: y --- + —^

The geometrical construction of this problem, from

7TluX T)ZC

the equation a?* + = , may be as follows. In

CB let there be taken, CH :CB::m: n, and let H K

be drawn parallel to BA ; then CH being :z: —,andCK

z= ^, our equation will be changed to a:^ 4- a? x CH
n *

=:AC X CK,ortoCDxCD + CH = AC x CK.
Upon CH asadiameter letthe circleCTHQ be describ-

ed, in which inscribe CG =z AK; andinCG produced,
take CS = CA ; and from S, through the centre O,
draw the right line STOQ, cutting the circumference
in T and Q, and make CD rz ST; then will D be the

point required. For CG being — AK, and CS = CA;
therefore will ACxCKnCS x GSzz ST x SQ {Euc,

37. 3.) =: ST X ST~TTq z= CD x CD + CH, the

very same as above.

PROBLEM XXI.

Having the perimeter of a right-angled triangle ABC,
and three perpendiculars DE, DF, and DG, falling
from a point within the triangle upon the three sides

thereof; to determine the sides,

SupposeDA,DB,andDC tobe drawn; and let DE
= «, DF -

b, DG -
r, AB - x, BC = y, AC =z.
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and the perimeter, AB +BC + AC, =:p: then, the

(3
area of ADB being ex-

pounded by — ; that

of BDC by ^^
; that

of ADC, by- ; and

thatofthe wholeABC,

by -~ we therefore have

ox
. hi/ ,

cz XV
-^

A- ^ -r —=— , or ax + Inj \ cz = xy : more-

over, we have .t' + y"
—

z", and .t -f ?/ + 2 =: p, by
the conditions of the problem. Let z be transposed in

thelastequation, and both sides squared, soshaUa^-^^xy
\' y'^

—
p'*-

—
9.pz -+• 2^, from which, if a'* + ?/^

r= 2' be subtracted, there will remain 2a\v zz p"
—

2pz = 2f/.T h 2hy + 2C2 {by the first equation) -.whence

\pp : from this last equa-ax ^ hy + c -^ p X z

tion subtract a times a 4-
?/ + z rrp, and there wi

remain by — ay + p -^ c ^ a Y. z — -J-p-
— op ;

also, if from the same equation, b times x \r y -^ %

= p be subtracted, there will remain ax — bx +
p \e — 6x2= ^p-

— bp ; which two last equations,

by putting d zz. b — a^e z:ip \ c — a^ f —
\p'
—

ap^

g =z p + c — b, and h n \p~
—

hp, will stand thus,

cfy-'\' ez zz f, and — dx + gz = h; whence y -zzz

f
',
and a':

(Tz — h
Let these values of x and ?/

d
' d

be substituted in a* + y'^
zz z" and we shall have

d~ d'

X Jt-— '2ef + Qgh y z zz —/-
— h~ : ])ut c- + g'-

— c?-

- /t, (f -\- gh zz /, and/2 ^ ^i
_

^^ ;
so shall /. :^ —

oJz zz m
2/2 wz , /

whence z- r- — —
-j- an(| ;: z: ~
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V 7.2 h

l±\/ I' km
from which x

(
m

'z-'h, f ~~~ €Z
) and y( — ^——-

) will also be known.
d d

If a, 6, and c are all equal to each other, the point D
will be the centre, and each of the given perpendiculars
a radius of the inscribed circle ; and the value of z in

this case, will be barely equal to |p— «; for the equa-

tion, by-—arj-\' p Jf c — a x z — ip'^
—

ap, above

found here becomes pz zz ip*
— ap.

But, if only a and b (or DE and DF) be equal, then

the equation will become p + c — a y. z ::zip-
— ap ;

— 7)^ —— (IT)

and therefore z
— ^~ —^; in which.ifcbetakenzzO,
p -j-c — a

:;willbez= ^'P^' ~

p— a

scribed square.

~: where a is the side of the in-

PROBLEM XXII,

The perpendicular CD, the difference of the sides AD— BD, and the vertical angle D, of any plane triangle
ABD, being given ; to determine the sides.

From B, upon AD (produced if need be) let fall the

perpendicular BE : let the sine of the angle BDE zr s,

its co-sine = c (the radius being unity) ; also let the

perpendicular CD zip, the
lesserside BD —x, and the

greater DA — J? 4 d: then

{by Prop.Q.in trigonometry)
as 1 : 5 : : 07 : 5T = B E ;

and, as l : c \: x : ex —
ED. Now AB\ being =
AD^+D3--AD X 2DE
[Euc. 13. 2.), will be ex-

pounded by X f dY -1- X-

— X + d X 2ca:, or 2x- V
2dx \- d^ — 2c,r' — 2cdx ;

T3

A C B

whence, by reason of the
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similar triangles ABE and ADC, it will be, as Qx'^ +
2dx -f tZ* - 2ca?2 -. cicdx (AB*) : sH^^ (BE*) : : .t»

4- 2xd 4- dd (AD") : p^ (DC)% and consequently
by multiplying extremes and means, s^x* + Qs'dx^ +
s^d*x'^

—
^p'^x^ + Qp-dx-\'p^d^

—
2p^cx'^

— Qp'cdx ; from

whence, bv transposition and division, we have j* +

if — i-—_ — o. Which equation answering the condi-

tions of the second case of biquadratics, explained at

p, 154, we shall therefore have x'^ + dx + -——^ —

V ^^
—h ^ ; and consequently a: rz — |rf-|-

4 ^* ^'

Otherwise,

Supposing ^, c, and jo to be the same as before, put
half the given difference of the sides = a, and half their

sum zr x; then the greater side AD will be =: a? + «,

and the lesser BD =: x—o; wherefore (% trigonometry)

1:5:: X — a : s x x— a zz BE; and, 1 :c :: x — a

: c X x'^- DE: but ABMs = AD^ + DB* — sDE
X AD — X 4- a^^i4- a; — o*'^ — 2c x x — a" x ^ + flf

= 2.r" + 2a' — 2CcT* + 2ca-; whence by reason of the
similar triangles ABE, ADC, it will be 2a" + 2a^ —
2ca;2 + 2ca^ (AB-)

.
^» ^ ^TT^* (BE*) :: rT~?'

(AD") : p" (DC) ; and consequently s^ x jTirjs x
V -\-a\'^ rr 2r' + 2a' — 2c.i* -*- 2ca" x p", or s"x* —
25'aV* + ^'a*

—
2/)-.r<

—
2rjo%t2 -4- 2/>'a* + 2f/>'a' ;

whence by transposition and division, x"^ — 2aV —
-^V- + 2

— = -^o— 4* :
"• Substitute

c* c* e" oV
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then the equation will stand thus, x* — 2/a;« = g :

whence x is found zz v// ± v//^+g.
If, instead of the difference, the sum of the sides had

been given, in order to find the difference, the method
of operation would have been the very same, only, in-

stead of finding the value of .r in terms of a, by means
of the equation s''x* — ^is'^d^x^ •\- s\t'

—
2/>^x*— 2cp'a:*

-f 2/)V f ^cp-a", that of a must have been found, in

terms of a:, trom the same equation.

PROBLEM XXIII.

Having one leg AB of a right-angled triangle ABC ;

to find the other leg BC, so that the rectangle under their

difference (BC—AB) and the hijpothenuse AC, may he

equal to the area of the triangle.

Put A Biz fl!, and BC=.r; so shall AC ~ \/aa^ xx\

and -^— x— a. \/ aa\xx^ by the conditions of the

problem. By squaring both sides C^
of this equa^n we have jaV=
^•'i -J(2.ax +• o:^ X aa -\- xx : in

which the quantities x and a being
concerned exactly alike, the solu-

tion will therefore be brought out

from the general method for ex-

tracting the roots of these kinds of

equations (delivered at p. 156):

according to which, having di-

vided the whole by a:'x'\ we get
— = —

X — 4- — ; which, by makino; z
— —

-\
—

; will bela ^ a X

reduced down to \ =: z —

whence z is given zz \ ^\/ i.

T 4

2 / z, or 2'

But since — +

'2z
—

t-

a
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we have x^— azx — — d^\ and therefore x = -^ +

^22 _4; which by sub-

stituting the value of 7, becomes x — — x

1 + V^l 4-n/:v/5 — -T.

PROBLEM XXIV.

To draw a right-line T>F from one angle D ofa given
rhombus ABCD, so that the part thereof FG intercepted

by one of the sides including the opposite angle and the

other side produced, may he of a given length.

Let DE be perpendicular to AB ; and let AB
(
=AD)

n a, AE z= h, FG
= c, and AF =: x ;

then DF^
(
= AF*

G +AD'^-2AE/AF)
= XX f aa — ^hx ;

and by similar tri-

angles, XX h aa —
E i\ F 2KDF-^):.Tx(AF^)

: : cc (YG^) : x — a^* (BF') ; and consequently
XX \- aa— 2hx y. xx — 2aa' -\- aa — ccxx, Makemazn
by and na — c \ so shall our equation become

XX -{-aa — ^max x xx—^ax -\r aa — n'^a'^x^ ; which, di-

t! a X (1

vided by a'a:%gives -+- — 2mx-+- — 2 ziax ax
jp fi

n^ : this, by making ~ =—
I
-

j becomes z — 2?w x
a X

z — 2 =: w*^ : therefore z'^ — 2//2 +2 x z
—

n""- — 4?n,

and 2
-

1 f m +v/«* + 1 — w)*
-

a 4 7; ^- v^c» + a ~ l>\^
, by restoring tlif values of

7n and w. From whence the value of r xvill be also
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known ; for ^ -f - being = z, we have, by reduc-
a X

tion, x' — azx — — aa\ and therefore x ~
J"

^

S 4- V Z2 — 4.

TROELEM XXV.

The diagonals AC, BD, and all the angles, DAB,
ABC, BCD, 2i\\6.QT>k, of a trapezium ABCD, being

given, to determine the sides.

Let PQRS be another trapezium similar to ABCD,
whose side PQ is unity; andletQPandRS be produced
till they meet in T : also let PR and QS be drawn,
and make Rv and Sid perpendicular to TQ, Let the

(natural) sine of the given angle STP, to the radius i,

be put = m; that of TSP'or PSR, = w; that of
TRQ zi p ; the co-sine of SPQ =: r ; that of RQv zz s ;

AC — a ; BD=:/^; and PT-o:. Then thy plane trigono-
mx

metry) ni m -. i x i YS — —
; and l

mx
n (PS)

rmx
r:Yw ——-: whence, [by Euc.i3.2,) QS^ (

+ PS2-2PQX P..)z=l 4-'^^"^'^
'""'"^

QP*

nn

Again {by trigonometry) p : m

QR = m 4- mx
; and 1 : s

m 4- mx
+ 07 (TQ)

(QR) : Q.V
-

ms 4- msx
And therefore PR= ( = PQ- -f QR2
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PP P
because of the similar figures ABCD, PQRS,it will

be, AC=^ : BD*^ : : FR^ : QS'^ that is, a' : b' : :

m -{- mxY Qms 4- Q7nsx

PP p fin n

and consequently a" ^-
— 6- + -—

^ "^ nn n pp

, Qh"m^x b'^m'^x'^ '^h'^ms Qh'msx ,

-f- .-{- — : whence writ-
PP PP

bhre anrm

pp n

we have Jx^-\- 2ga;
- h

gives :r =\/j+ f-7= f'«"»

whence SQ will also be known : and then, a^^ain, by
reason of the similar figures, it will be as QS : QP
(unity) : ; ^Yy : AB ; which, therefore is known, like-

wise: from whence the rest of the sides BC, CD, and
DA will all be found by plane trigonometry.
The last problem is indeterminate in that particular

case, where the trapezium may be inscribed in a circle,

or where the sum of the two opposite angles is equal
to two right ones; for, then, there can but one diago-
nal be given, in the question, because the value of the

other depends entirely upon that.

PROBLEM XXVI.

Supposing BOD to be a quudrant of a given circle;

to find the semi'diamctcr CK, or CL, of the circle

CEGL.inscrihed therein; and likewise the scmi-diameter

ofthe little circle n¥mV^ touching both the other circles

DLB, LmB, and also the right line OB.

Let BQ, P;?,and CE, be ptrptndicular to BO ; join

C, n and O, n ; and draw OC uietting BQ in Q.
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and nr parallel to BO, meeting CE in r : put OB

(
=r 6Q) = 1, OQ (= \/2 by Euc. 47. l.)

-
b, and

?n(
— nm)=:x; Then, by reason of the similar tri-

angles OBQ, OEC, it will be, OQ : BQ : : OC :

CE; whence, by compositio?i, OQ 4- BQ : BQ : : OL
(OC 4- CEj : CE ; that is, 6 4- 1 : 1 : : 1 : CE =

1 . b-^i . h ~ b 1 = v/2b i-l^ 6 + 1 xT=ri^-/r— 1

— 1 ; which let be denoted by a, then we shall have
Cn 4- Or — 2a, and Cfi — Cr —

2a? ; and therefore nr

(v^C/z + Cr X Cn — Cr) =: 2V^ax, Moreover, O;^
4- ?n beinff =: 1 , and O/i — P« = 1 — Qx, thence will

OP
=l_\/l

— 2x; which also being = PE 4- OE
(2\/ax 4- a), we therefore have n/F^^^x = 2\/Gi
4- a

; whereof both sides being squared, there arises 1—
2r =: 4^0? 4- 4:a\/ax -+ a'^, or 1 — d^ — 2ar — 4ax =z

4a\/ax ; which, because l — aa is 2a, will be a —
1 4 2« X 0? = Qav^ax: this, squared, gives a'— 1 + 2a

X 2a£ 4 1 fi^il' X X- zz 4 air ; whence 1 -1- 2al^ X x^

— 1 f 2a X 2(^r — 4a^^ = —• aa; which, by writing
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^ — 1 instead of its equal a, becomes 26— i|* x a?'

7<5> — 9 X Qx =: Qb—3 ; therefore x' — ^2 X

2x —
. ; from whence x is found r=

26—11"" 26"^^* 26 — 1)*

2~6"=D^

,^_,^v/8/.3+ 296-- 112^.4-78^ ^^.^^^^ ^^, ^^.,^
26— 1^

ing \/ 2 for 6, becomes
7y 2-~9±v^l36— 96 \/2

2v/2~— iV

Tv/ 2— 9 ± 6\/2 T 8 ,, . . -
^ 13v/2 - 17*^

^» that IS, equal to

2v/2 — ir

or to -J!!--^

'

c:, ; which last is the root required, the
2v/2 — ir

"

other being manifestly too large: but this value will be

xetluced to — ^^^^^—, Therefore OP (= v/l — 2.c)
49

^ .

^ /3l — lo-v/2 5\/2 — 1
IS given = Y — —

^ = 2?n; and

consequently BH — IBQ ; from whence we have the

following construction.

In the tangent BQ, take BH = ^BG; drawIIO;
catting the circumference BDL in F, and make the

angle OFP = ^OHB, and draw Pn parallel to BQ,
meeting OH in n, the centre of the lesser circle re-

quired.

SCHOLIUM.

In the preceding solution it was required,not only to

extract the S(]uare root of the radical quantities 136—
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gov's and 51 — 10-/2, but likewise to take away the

radical quantity from the denominator of the fractiou

\/2— 1

Wr——7'
^"^ confine it, wholly, to the numera-

tor: all ofwhich being somewhat difficult, (and,forthat
reason, omitted in the introduction, as too discouraging
to a young beginner) L shall therefore take the oppor-

tunity to explain here the manner of proceeding in suck

like cases, when they happen to occur.

^First, then, with regard to the extraction of roots out.

of radical quantities, let there be proposed A ±n/B, A
being the rational,and y^B the irrational part thereof;

and let the root required be represented hy\/lc'±\/y^ ;

the square of which will be a: + y ± 2 \/^y, or ar + <y

dt\/4:xy ; therefore we have x 4- y±\/4xy— A± ^b"
Let the irrational, as well as the rational parts of these
two equal quantities be now compared together; so

shall X -\- y
—

Ay and v/4.n/=v/B: from the square
of the former of which equations subtract that of the

latter, whence will be had xx— Qxy -{- yy
—

A'^— B :

and, by taking the square root, x— y
— \/ A' — B ;

which added to, and substracted from x -^ y
—

A, &c.

A 4- \/A*^~B , A—\/'a^— B
gives X rz —

, and y
— ^—ft 1±

In the first of the two cases above specified, the quan-
tity whose square root is to be extracted being 13(5—
96\/ 2, we have A = 136, and B - 18432

(

-
5^^

X 2) ; whence we have x (— HI— —
^2 ;

1 ^
A— ^A -

B,and y (
—

)

~ 64 ; and consequently

\/a—t/y — v/ 72"— \/ 64 =: Gs/'Y— 8,the required

square root of 1 36 — 96 v/2. After the very same man-
ner, tlie square root of the other radical quantity 51 —
lO\/o^ or 51 — \^ 200 will be found to be 5/2""- 1 ;
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for, A being here =: 51, and B =: 200, we have x =: 50,
and y =: 1 ; and consequentlyy/J—^Z y = 5 v/s"— l.

What has been said,thus far, relates to the extraction
of the square root only ; but the same method is easily
extended to the cube, biquadratic, or any other root.

Let us take an instance thereof in the cube root ; where
we will suppose the given quantity, out of which the

root is to be extracted, to be represented by A 4; v/B,
as before. Then, if the rational part of the root be de-

noted by a?, and the irrational part by\/y; the root itself

will be expressed by a? ± \/^; and its cube by a:^ i
3x*\/ y -f 3Ty ± yv^y : from whence,by proceeding as

in the extraction of the square root, we have a?' + 3xy
=A,and 3a?* x/y"-!- y \/y - n/B. Let the sum and the
difference of these two equations be taken, and there

will come out x^^3x'\/y + zxy + y\/y
— A \- \/W,

and x^—3x''\/~y -\- 3xy— yv/ y = A —v/B ; where-
of the cube root being extracted on both sides,we thence

have.r -\- \/y
- A 4-\/Bp"* and a?— y" y

- A—a/B>
let the two last equations be added together,and the sum

be divided by 2 : so shall x - ^-^v^^' + ^- ^^1^^^
2

and by multiplying the same equations together, we

getcT-'— y
— A'— Bp, and consequently y

— x'—
A*— B)^, whence y is likewise known.

Universally, let the index of the root to be extracted
be denoted by w, and let the root it?elf be represented

by x±\/ y (as above). Then this expression raised to

the «th power, will be x''±nx''''^\/~y + w x ^^^^ a"'^ y

n— 1 n — 2 r?-5 /— o r 1± n X —-— X —-— X y V y &c. from whence^

still following the same method, we shall here get

»j J
7i — 1 n-2 A 1

X -T n A - - - X y &c. •=. A, and
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«a"-VF+ n X~ X ~x''~'^y-/y &c. = ^/B:

let, therefore, the root of the sum, and also of the dif-

ference of these two last equations, be taken, and you

will have, x + \/^ zz A + |/Bl~ ,
and x c/d \/y iz

1

A — -/ BlV; which two equations being added to-

^j ^_i

,. -n 1 f ^ Ai-/Bl« ± A— v/B\«
gether, a? will be lound z: ^^^

1 1

— Z—!__ -f ; and if the same
2 —

__^L
2>cA+v^Bl»

equations be multiplied together, you will have

^i
1

x^(/^y=: A'- — B|«; whence 2/ r: a:* + A* — B^.n;

The use of which conclusions will appear by the fol.

lowing examples.

First, let it be proposed to extract the cube root of

the radical quantity 26 + 15 \/ 57 or 26 + x/'gtT.

Here, A being iz 26, B = 675, and n z= 3, we have
;!

26 + \/673r ^ 1 _3,732±,268xi
2X26 + v/675)'^

2 J

zz 2*; and 2/ (
= 4 - 676—6751^ ) = 3 ; and conse-

quently X \-s/y
~ 2 4-V/3

— the value required : for

2 f ^/ 3 X 2-h>s/3 X 2 4- V3 = 26 + v/675.

Again, let it be required to extract the biquadratic
root of 161 4- v/25920! In this case, A being 161,

B = 25920, and n = 4. we have x
(
= ^ll^^l^

. 1 _ 4,236 4- ,236 , .

2 X 321,99 &c )*
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y (— 4 + 23921 — 25920V) = 5 ; therefore the root

sought is, here, :z 2 + v^^T

Lastly, if it were required to find the first sursolid

root of 76 f v/ssos; then, by proceeding in the same

•11 1. r . , 2,732X ,732, , J
manner, :r will be found ( = -^-^—

) = I, and

y (= 1 — 5776 — 5808V)
~ 3: and so of others.

But it is to be observed, that the second part of the

value of a', to which both the signs + and — are pre-

fixed, is to be taken affirmative or negative, according
as that or i^z^ shall be found requisite to make the value

of 0? come out a whole, or rational number ; and that,

if neither of the signs give such a value of a:, then this

method is of no use, and we may safely conclude that

the quantity proposed does not admit of such a root as

we would find. It may also be proper to remark here,

that, if the upper sign in the value of x be taken, the

upper sign in that oiy must be taken accordingly ; and

that the application of logarithms will be of use to fa-

cilitate the extraction of the root A + \/~^\

'

^s be-

ing sufficiently exact to determine whether .r be a whole

number, and, if so, what it is.

Thus much in relation to the extraction of the roots

of radical quantities; it remains now to explain the

manner of taking away radical quantities out of the

denominator of a fraction, and transplanting them into

the numerator.

In order to which, supposing r to denote a whole

uumber, it is evident, in the first place, that

since, by an actual multiplication, the product appears

tobe^ f :^ ; ^, where

all the terms, except the first and last, destroy one
another Hence, by inual division, we htive
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in the very same manner, it will appear that

j: + y
""

a?*- ±yr
where the sign+ or— , in the denominator, takes place,
according as the number r is even or odd.

Let now x - A"*, and y =: B"; then our equations
will become

A B *

J^rm _ grn

a" -i-B" A"" ± B'"

From which theorems, or general formuiw, the mat-
ter proposed to be done may be effected with great fa-

cility : for, supposing -— or to be aJ » ff ^
A"~B" A'^+B'*

fraction having radical quantities A''*, B" in the deno-

minator, it is plain, that its equal value, given by the
said equations, will have its denominator entirely free

from radical quantities, if r be so assumed that both rm
and rn may be integers.

To exemplify which, let the fraction yr=z , or
V^2 — 1

— be propounded; then, A being z: 2, B z: l,

m zz I and n-.l, we shall, by taking r z: 2, have(/ro7»

Theorem l)
—i— = ^.±1^ v^+ 1.

^.
- 1 2-1

Again,
V
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Again, let the given fraction be - _= -y=r-

or _j
-

j^

— — . In which case, A being =: ca:,

B = c^ -f a?', m zi i, and n z= |, we shall, by taking

T = 4, have
-—-^ iz

cxl^ + c* + ^^

If the numerator is not an unit, you may proceed
in the same manner, and multiply afterwards by the

numerator given. T'hus, in the case mentioned at the

beginning of this scholium, we had given .^ ^J^lJ:

s

which may be reduced to -/sT— i x -7 x x
8^— 1 s"^-!

—--—
,
or to y/T^:r~i X -r-^— X -x-^,

:

but-; is found (by Theorem 1) to be zi
8i — 1

^ 8—1
21/5" 4- 1 , . ,

—-
— —'—

: whence our expression becomes V2--1

X X T : which, by multiplication,

C3c, is reduced, at length, to
-^-
—-.

PROBLEM XXVII.

EavinfT one leg AC, of a right-angled triangle ABC,
tofind the other leg EC, so that the hypothenuse AB shall

he a mean proportional between the perpendicular CD
falling thereon^ and the perimeter of the triangle.
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Put AC = a, and BC z=z x ; then will AB =
\/xx + a«, andCD (=

therefore, 5?/ </ie ques*

tion, x-^a^ \/xx+aa
'V^xx+aaiiK/xx-i-aa

ax -

and conse-

,, ax 4- ax —
quently _^=.=,+ wa? A^, ax
luently -^

= a:x + aa : whence a^x* + sa'a:' 4- «V =
JTX + aa — axV X j:a?+aa. Divide by a^x^ (according

X a
to the rule at page 156) so shall -

4- 2 + - =:n
tt X

X a r a: a » • i i i .—h 1 X-4— : which, by making z =
a X

\
a X ' •' °

i^
-i- -, is reduced to z + 2 n z — i]^ x z, or z'*

a X

— 22- =: 2. This, solved (by the rule for cubics)

gives x---h-x 35 + v/ irfll^ + 3 X
35 +

a
— 2;,359304 : whence a?

(
n - X - j; ^zz 4) will

likewise be known.

PROBLEM XXVIII.

The base AB, and the perpendicular BE, of a righU
angled triangle ABE being given ; it isproposed tofind a

point (C) in the perpendicular, from whence two right
lines CA and CD being drawn , at right angles to each
othery the two triangles ACD and ABC, formedfrom
thence shall be equal.

Suppose DF parallel to AC, and let AF be drawn;
putting AB-a, BEzi 6, BC = a:,and AC(v'aM- a:«)

U 2
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=: y. Then, since FD is parallel to AC, the triangle,
ACF will be equal to ACD, or ABC; and therefore

CF z: BC = a- ; whence we have EF ( = EB — BF)
zz b --2X, andEC( = EB— BC) zz b — x: more-
over by reason of the si-

milar triangles ABC and

CDF, we have, y (AC):
X (BC) :; X (CF)) : FD
_ OCX

Whence, because of the

parallel lines AC and FD,

it willbe,-(FD):^—2x

(AC; : b — a:(CE); and consequently

z= b — Qfc X y, or bx^-^x^ - 6— 20? X y";
if

which equation, by writing a" 4 x^, instead of its

equal, y"-, becomes bx"— x^ziba"- + bx"— 2a^-ac— 2a:*' ;

whence we have x^ + 2a-.r
~

bar, and therefore x —

(EF) : : y

taa

27
\/t^+ a^\/_^^4.S««

27

PROBLEM XXIX,

Three lines AO, BO, CO, drawn from the angular
points of a triangle to the centre of the inscribed circle,

being given ; tofiiid the radius of the circle and the sides

of the triangle.

If, upon CQ produced, the perpendicular BQ be let

fall, and the radii OE, OF be drawn to the points of

contact, the triangles BOQ and AOF will appear to

be equiangular; because all the angles of the triangle
ABC being equal to two right ones, the sum of all their
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halves, OCB + OBC + OAF will be equd to one

right angle; but the two former of these, OCB -4-

OBC, is equal to the external angle QOB ; therefore

QOB + OAF zz, a right angle
- QOB + OBQ,

and consequently
OAF =: OBQ.
Put now AO — a,
B0=: 6, COz: c,

and OF = a::

then, because of

the similar trian-

gles, we have a :

.r : : 6 : OQ m
bx

whence BQ-
a

= Z)- - bhxx

aa
A F

and BC (=: CO' + BO^ + 2CO x OQ) rr 6» + c'

^hcx
+ -^ But BC^ : BQ' : : OC^ : OE^ ; that is,

ah'' 4- ac- + '2hcx d'h'' — 5V
aa From

, . ah ac
,

be

2c <2b 2a

whence we get th is equation, viz. ax^xab'+ac'-^-^bcx
-

^'<^^J<^ct'
—

a?^; which, by reduction, will become

—-
: whence x may be

found, and from thence the sides of the triangle.
Iftwoofthe given lines, as OC and OB, be sup-

posed equal, the result will be more simple : for, by
writing b for c in the equation ax^- a ab'' -f ac^ + Qbcx-

h^c' xa\-^x\ &c. we shall have a^V x 2a -f QJ-
b* X tt=—J7^; which, divided by b' x a + x, gives

Qax^ - b-" X a — x; whence x' + —
=i i6% and2a

'=/! _ 6t/8aa 4- 6^> — bb

l6aa 4a 4a

V 3
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From the same equations the problem may be re*

solved, when the distances from the three angular

points to the circumference of the inscribed circle are

given : for, denoting the said distances by/, ^, and /i,

you will have AO zz x + f, BO=: x + g, and CO zzx

+ h ; which values being wrote in the room of a, 6,
and c, there will arise an equation of six dimensions :

by means whereof x may be found.

PROBLEM XXX.

To draw a line NM to touch a circle D, given in ma,gt
nitude and position, so that the part thereof AC, inter-

cepted by two other lines BK, BL, given in position^
shall he of a given length.

Suppose CP and DE to be perpendicular to AB, and
DF and DG to AC and PC, respectively ; and let DA
DC, and DP be drawn ; putting DE = a, DF = h,

AC = c, BE zi di PC = X, PA = ^, and the tan-

N/ E
gent of the given angle BCP, to the radius 1, = /.

Then, by trigonometry , 1 : ^ : : a? : «j: = BP ; there-

fore DG ( = PE;
~ d — tx\ which, multiplied by

i7C, or
|.,

gives
^'^—

^^\ for the area of the tri-

angJe GDP: in like manner the area of the triangle

PDA will be found = ?^
he

; and that of ADC = -
;

which three, added together, are equal to the wholearea

A on 4 1 4- ^^— tx"^ ay he xy J

ACP; that IS,
i _^ 4.

— —
-_:^; and conse-

2 ^22 2
'
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iquently he -{- dx — tx" = ocy
—

ay» Let both sides

of this equation be squared, aud you will have

be -{•"dx — tx'f — X — a\'^ x y" = x — a]^ X

c^-^x" ; that is, b'-c- + 2hcdx— Qbctx" + d-x-— ^dtx^

+ fx'^
— — a?* + ^ax^— a-a:3 + cV — 2ac^x -4- a"c- \

whence TV? x x'—2a~V~2di x a^H a"—c'^^- d'^— '2bct

X X- -\- Qac^ 4- 2bcd x x— ft-c* + &Vz=0 : from which
the value of a: may be found : and then, the value of

y (—\/c''
—

x-) being known, the position of the points
A and C, through which the line must pass, will also

become known.
If the given angle B be a right one, the point B will

coincide with P ; and therefore t in this case being
zz 0, the equation will become x*—^ax^ + a^—c^+d*

X a:2 + 2ac2 .^ ^bcd y. x — a-c- -\- b^c^
—

0.

When the circle touches the right line AB, a will

then be equal to b : and, in that case^ the equation
will be l~fT X X-'—ioTs^iXor'+a'— c* -f d'^-^Yact

X X -h ^ac^ + <2.acd
—

0, because the two last terms— aV' 4- b^c'^ destroying each other, the whole may,
here, be divided by x.

Lastly, if Z> be =: 0, or the line AC, instead of

touching a circle, be required to pass through a given

point the equation will then become 1 -f t' y x* —
2a + ^dt X a:^ -f d'— c' + rf* X ^' f Sac'a:—aV=:p,

,. PROBLEM XXXI,

Supposin<r AQ. perpendicular to AF, and the given

right line AF (50) to he divided intofive equal parts, in

the points B, C, D, and E; to find a point P in the per^

pendicular AQ t from i^hich, iffive right lines be drawn
to the points B, C, D, E, and F, the sum of the outer^

most PF 4- PE shall he equal to the sum of the three in-

nermost PD + PC + PB.

Put AP= x\ then {by Euc.47. I.)BP = \/TooTaF
CP -\/400 + x

"-,
&c, and consequently, y/iop ^ x*

4- v/400 + a;* + \/906~T~x^ — k/i6Q0 + a;* —
U 4
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\/s500 + x^ = 0. Now, by reflecting a little on
the nature of the problem, it is easy to perceive that

Q PF -f PE must be

greater than 90, see-

ing AF + AE is =
90; whence it ap-

pears that PD 4-

PC f PB must also

exceed 90, and that

PC (considered as a

mean between PD
and PB) must be

greater than 30 :

hence I conclude, that the value of AP, as it is some-

thing less than PC, will be somewhere about 30;
and therefore I write 30 4- e for a- ; and then, rejecting
all the powers of e, above the first, as inconsiderable,

our equation stands thus,v/iooo h 60e f\/l300 + 6oe

-f \/l 800 + 60e —a/2500 H- 60 e— %/340oT750e
-

;

which, by the method explained in page 174, will be

/> 1 • v/iooo X 3e
,

,
,

transformed to v/iooo + -^—^ + v 1300 f

130

v/3400

f v/l800 f

\/3400 X 5n

340

v/ 1 800 X 3e

180
— 50 — Ge.

—
; this, contracted.

gives 1,8 + l,37e = ; whence e
- — 1,3, and con*

sequently a^ z: 28,7, nearly. Let, now, 28,7 be put
z= X ; and then, by proceeding as above, we shall

have ,0083 + 1.43e = O; hence e = — ,0058, and

X = 28,6942 ; which is true to the last figure.

PROBLEM XXXH.

The perimeter, AB 4- BC + AC, and the perpendi^

cular CP of a triangle ABC whose sides are inharmonic

proportion (AB:hQ :: AB— AC : AC — BC) being

given; to determine the triangle^
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hetabc be another triangle, similar to the proposed
one; and let a6 rz 1, be — x, ac = y, CP =: a, and
AB + BD -f AC —

^>: then, half the sum of the three

1 -I- X A- 1/

sides of the triangle abc being
————?

, if from the

same, each particular side be subtracted, and all the re-

B « /"
/

mainders be multiplied continually together, and that

product, again, by the said half sum, we shall have

1 i- x — y 1 + y X y

2

equal to the second power of the area abc {by prob, ]5) :

which, as the base is unity, also expresses | ofthesquare
of the perpendicular. But the squares of the sides,
as well as the sides of similar triangles, are propor-

tional, &c. and therefore 1 + j? -f ?/p : b* : :

1 +x — yx 1
— X ^- y Xy ^~x — I X 1

— x -^ y
a^

whence we have 4a* x I i- x + y = \ +x—yx 1—x^y
xy^-x—l X 6Z>; but the sides AB, AC, and BC, be-

ing given in harmonic proportion, therefore, 1, ?/, and x,
must likewise be in the same proportion ; that is, l : x
; : l — y : y— x; whence y — x —x— xy, and there-

2t
fore y — ——-—

; which, substituted above, gives

4q" X 1 + 4.r + x"-_ I H-.r'^ l+2x---^' 2.r ^x'—X
1 + a:

"""

1 -f .r 1 f 07 \ ^ x

X 6% or 4a- X 1 f AX V x^ x 1 + ^'
~

1 + J^~ X 1 -f- 2j:— a*

X 2x -f x'^ — T X 6*; from which x will be found, and
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Qx
; and from thence the required side3also 2/ (=1-^.^

of the similar figure ABC, will, by proportion, be like-

wise known.

PROBLEM XXXIII.

Let there he three equi-different arches^ AB, AC, afid

AD ; and, supposing the sine and co-sine of the mean

AC, of the lesser extreme AB, and of the common dif-

ference ^Q for CT>) to he given, it is proposed to find
the sine and co-sine of the greater extreme AD.

Upon the radius AO let fall the perpendiculars BA,

Cc, and T>d\ join B, D, and from the centre O, let

the radius OC be drawn, cutting BD in n : also draw
«R parallel to Cc,

meeting AC in R ;

then, because of the

similar triangles OCc
and OnW, it will be,

OC : 0«;:Cc: «R ;

and, OC : 0/7 : : Oc :

OR : whence we haveA/ ''Kr/

„ Cc X On
wR zz—, ,

and OR=:
Oc X On

but. since BC
OC '" OC

equal to CD (and therefore ^n equal to D«), r^R w'ill,

it is plain, be an arithmetical mean between B/j and D</,

, .
. .,..,. Bft + Drf . ^

and so is equal to half their sum, or : and, for

the very same reason, OR will be equal to
Oh 4- Od

. B6 + Drf
consequently

—
^

Oc X On
OC

'

Oc X 20;^

OC

whence Dd —

Cc X On , Oh A- Od

Cc X ^On
OC

— B/; and Oc? =

Oh ; whidi, if the radiu3 OC be supposed

unity, will become Dff = Cc X sOw —M ; and Od =z

Oc X 20/2— 06 ; from whence we have the two fol-

lowing theorems.
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Theor. 1. Jfthe sine of the mean of any three eqm-
dlff'erent arches (the radius being supposed unity) he

multiplied by twice the co-sine of the common difference^

andfrom theproducty the sine of either extreme be sub-

tracted^the remainder icill be the sine of the other extreme,

Theor. 2. And if the co-sine of the mean of three

eg ui- different arches be multiplied by ticice the co-sine

of the common difference^ and the co-sine of either ex^

treme he sub tract '^dfrom the product, the remainder loill

be the co-sine of the other extreme,

PROBLEM XXXIV.

The sine and co-sine of an arch being given^ to find
the sine and co-sine of any multiple of that arch.

Let the given arch be represented by A, its sine by x,

and co-sine by j?/, the radius being unity. Then,
since the arch A may be considered as an arithmetical

mean between and 2A, we shall, by the first of the

two preceding theorems, have
sine of 2A

(

— sine of A x ?/
— sine of o) rz xy ;

sine of 3A
{

— sine of 2A x y— sine of A) — xy"— a",

sineof4A( = sine of 3A x y — sine of 2A = a- ?/^
—xy

—> xy)
—

xy^
—

2.V7/ ;

sine of 5A
(
= sine of4A xy — sine of 3Ana?^'— 2a'2/^— xy^ -f x) = a?/*

—
3jc?/* + x ;

sine of 6A {~ sine of 5A xy — sine of 4A = xy'^
—3xy^

+ xy — xy^ + ^xy)
—

xy^
—

4:xy^ + 3xy ;

sine of 7A (
1= sine of6A xy— sine of 5A—xy^— 4cxy*

Sxy-—xy^-\- Sxy- —x)
—
xy^— bxy'^ + Qxy^—x :

whence, universally, the sine of the multiple arch wA,
where n denotes any whole positive number, whatever,
will be truly expressed by a x

n-i n— 2 „-3
,

n—3 72—4 Z^ n—4
y j— xy + —j- X ~j~ xy —

7i— 5 72 — 6 n-7
X X X y , &c. Moreover, irom the

2 3*^*
second theorem, we have co-sine of 2A

(
— co-sine of

Ax^—co-sine of 0= i)
— ^—-—

;
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Co-sine of 3A (= co-sine of 2A y y — co-sine of A—

2
-^

2
'

2
'

Co-sine of 4a ( zz co-sine of 3A x y
— co-sine of2Az=

y'—3y\ y"
— g x _ y'

— ^y' 4- 2
,

2 2 ^ 2
*

whence, universally y
the co-sine of the multiple arch

?iA will be truly represented by ? — -f ~

n n—4 71—5 „_6 n n—5
X X X ?/ -f - X

2 2 3 "^22
X y^~ &c. which series, as well as

X
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From this series the sine of the sub-multiple of any-

arch, where the number of parts is odd, may also be

found, supposing (.9)
the sine of the whole arch to be

given: for let x betherequiredsineof thesub-multiple,
and n the number of equal parts into which the whole
arch is divided ; then, by what has been already shewn,

t_ 11 L ^ r{^—\ , .
^ rf"— 1

we shall have nx— — x ——r- x x^ + -7 x - -— X

X a-^ <5rc. zr s: from the solution of which equa-
4.5 ^ ^

tion the value of .r will be known. Hence also, "sve

have an equation for finding the side of a regular po-

lygon inscribed in a circle: for seems: the sine of any
arch is equal to half the chord of double that arch, let

\xi
and \w be wrote above for a* and 5 respectively, and

^, ^. .„ , m n n^— 1 v^
then our equation will become x —-- x ~

^ 2 1 2.3 8

n n^— 1 w^-9 »^
-, ^ n

+ T^T:T ^ ITT^ 3^^^.^-l^^^or..-.
-X

2.3 4 1 2.3 4.3 \Q

pressing the relation of chords, whose corresponding
arches are in the ratio of 1 to n, But,when the greater
of the two arches becomes equal to the whole peri-

phery, its chord {w) will be nothing, and then the equa-
tion, by dividing the whole by wy, will be reduced to

n^—\ tj^ n^ — X n"— Q v' n"— l

^ ""
T:^

^
4

^ 2TF ^ TTT ^
Yd 2TT ^

fi^ q ^2 __ 2 ^ ^6
•-—f X ——~ X —~

^c,
—

; where 7i is the num-
4.5 5.6 64

ber of sides, and v the side of the polygon.

From the foregoing series, that given by Sir Isaac

Newton, in PkiLTrans, mentioned in p. 242 of this Trea-

tise, may also be easily derived. For, if the arch A and
its sine x be taken indefinitely small, they will be to

one another in theralioof equality, indefinitely near, by
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what has been proved at p. 246 ; in which case, the ge-
neral expression, by writing A instead of a-, will become

7?A — - X -—— X A^ + - X -—-- X -—- X
1 2.3 1 2.3 4.3

Therefore, if n be now supposed indefinitely great, so

that the multiple arch fiA may be equal to any given
arch z, the squares of the odd numbers, 1, 3, 5, ^*c, in

the factors w*— l, 7^*— 9, n^-— 23, ^c may be rejected
as nothing, or inconsiderable, in respect oUi^; and then

n^ A^ n^A^
the foregoing series will become n A— —-—

-f r-

w^A^
^•c. wherein, if for wA, its equal

2.3.4.3.6. 7

2, be substituted, we shall then have z — "
- -h

_ A-c. which is the sine
2.3.4.3 2.3.4.3.6.7

of the arch z, and the same with that before given.

Moreover the aforegoing general expressions may be

applied, with advantage, in the solution of cubic, and

certain other higher equations, included in this form,

^,^. z --az + 2- "^ ^ ' - "^ "" ^^ "^

® ^
2/1 3/^ 4w

For, if 2 be put m ?/ \/-, the equation will be trans-

formed to —
n

X

v" w „—.o w w— 3

^c. zz /, and consequently ^
—

g'^^ +2^ "T"
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„.4 n n—4 n—5 »?~6 „ ^ \f ^^^
2 ^ -^ ""Tlw.

f
whence, as it is proved above, that the former part of

the equation (and therefore its equal) represents the

co-sine of n times the arch whose co-sine is |?/,we have

the followincr rule :

Find ^ from the tables^ the arch whose natural co-sine is

n

2"

^ or its log. co-sine = log, |/ log.
- the radius

li

being unity ; take the ni\\ part of that arch, andfind its

co-sine, tvhich multiply by 2 k —
,andtheproductwiil be

the true value ofz, in the proposed equation z^—az^"^

,
^—3 , n—4 n—4: n— 5 „ w—6 ro+ -—-' X a^z X y. aH (^c.
Qn 2n 3n

Thus, let it be required to find the value of 2;,in the
cubic equation 2' — 4322 =z 1728; then, we shall

have n — 3, « — 432, and/ zz 1728 ; consequently

•^^
(

=: ~)
—

,5, and the arch corresponding

-a^
l44l1r

71]

thereto := 60"; whence the co-sine of (20**)
* thereof

will be found ,9396926; and this, multiplied by 24

(
-: 2 v —

) gives 22,53262 for one value ofz. But

besides this, the equation has two other roots, both

of which may be found after the very same manner :

for, since 0,5 is not only the co-sine of 60°, but also of

60°+ 360°, and 60^+ 2 x 36o", let the co-sine of (1 40°)

|.
of the former of these arches be now taken, Avhicli

is — ,7660444, and must be expressed with a negative

sign, because thearch corresponding is greater than one

right angle, and, less than three. Then, the value
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thus found being, in like manner, multiplied by 24

{
— ^Y ^), we shall thence get— 16,38306 for an-

other of the roots: whence the third, or remaining root

will also be known; for, seeing the equation wants the

second term,the positive and negative roots do here mu-

tually destroy each other ; and therefore the remaining
root must be— 4,16756, the dili'erence of the two for-

mer, with a negative sign.

PROBLEM XXXV.

From a given circle ABC H it is proposed to cut off a

segment ABC, such, that a right line DE draicn from
the middle of the chords AC, to make a given angle
therewith^ shall divide the arch BC of the semi-segment
into two equal parts.

Let the chord BC be drawn, and upon the diameter

HDB let fall the perpendicular EF ; put the radius OB^
of the circle zn 7*,and the

tangent of the given angle
C DE (answering to that

radius) =: f, and let OF
= z; then will EF =r

\/rr — zZi and BC ( =
2EF):r: ^s/rr — zz, and
consequently BD

( =
BC2 _ 4r«— 42"-

BH
2

2r

T -k- z , r — z
from

which takino- BF=r--2, we have DF zr
r-h2z xr— r

But, by trigonometry, EF : DF : : rad. : tang. DEF,

f : t. Whencer + 2s . r— 2
that is, s/rr^zz :

we have FT^' x 7*^=^' = ^' x »^ — »*; where
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the whole being divided by r — 2, their results r + Szi^

X T — z
—

i- X T -\- z', which, ordered, gives

Zrr — tt
X z zi — ATT — tU

4

3rr — ti
Put —

a, and — vc rr — tt zz f ; then it
4 4

will be z^ — az zz f. Therefore find, from the tables,

If
the arch whose cosine is —^4=- (the radius beine:

unity) ; take i- thereof, and find its co-sine ; which,

multiplied by 2v/i«> gives the true value of z (see the

last problem*)

Now, hy logarithms, it will be log. \f — log. ^a —
If

flog, la =z — 1.9425328 zi log.
' - ^ z= log. co-
•sci\/-la

sine of 28^ 50' ; whereof the third part is 9° 36F, whose

log. co-sine (to the radius 1) is— 1.9938609; which
added to the ^

log. of ia (z:
— 1.6826316) gives —

1.6764925 = log. of 0.47478^ whose double .94956,
is the true value of 2;, or FO : whence the correspond-
ing arch BE =: 18^ l6Y, and consequently BC
{- 2BE) =: 36"^ 33'.—By means of this problem that

portion of a spherical surface representing the apparent
figure of the sky is determined.

PROBLEM XXXVr.

The base AB, and the difference of the angles at the

base being givcjiy while the angles themselves vary; to

find the locus of the vertex E of the triangle*

Let the base A B be bisected in O, and the angle BOD
so constituted as to exceed its supplementAOD by the

given difference of EAB and EBA; and let ED, APQ,
BSF, be perpendicular, and EFF parallel to OD :

then, since the angle BCE (BOD) as much exceeds
X
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ACE, as CAE exceeds CBE, it is evident that the sum
of the two angles BCE, CBE, of the triangle BCE,

is equal to the sum
of the two angles
ACE, CAE of the

triangle ACE; and,

consequently, that

the remaining* angles
AEC and BEC, are

equal the one to the

other : therefore, by
reason of the similar

triangles EFB, EAP,
we have EF : EP : :

BF : AP, that is, OD
+ OQ:OD —OQ

A : : QA + DE : QA— DE ; whence, by
composition and di-

vision, 2OD : 2OQ
i: 2QA : 2DE ;

wherefore 0.0 x DE
is = OQ X QA;

which is the known property of an equilateral hyper-
bola with respect to its asymptote.

PROBLEM XXXVII.

To find the solidity of a Cimical ungula BFCB, cut off

by a plane BRFSB passing through one extremity of the

base-diameter.

Let EPF be parallel to the base-diameter BC, cuf-

tinp; AD the axis of the cone in P ; also let An be per-

pendicular to BF ; join P, ??, and let RS be the conju-

gate axis of the elliptical section BRFSB : then the

part ABF, above the said section, being an oblique el-

liptical-cone, its solidity will be expressed by '7834 x

SR X BF X ^^', that is, by the area of its base BRFSB
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drawn into ^ of the perpendicular height. But
the triangles BCF and hVn will appear to be equi-

angular ; for, APF and AwF being both right-angles,
the circumference of a circle, described on the diame-
ter AF, will pass through P and n ; and so the angles
AF« (BFC) and APw, as well as AFP (FCB) and A«P,

insisting on the same arch, are respectively, equaL
Hence we have BC : BF : : Am AP; and therefore

BFxA?2=BCxAP: this value being substituted above,
the content of the part A BF becomes SR x BC x AP x
•2618: which, because SR is known to be=:v/BCx EF,
is farther reduced to BC x AP Xv/BCx£F x .2618.
This subtracted from,BC^ x AD x .2618, the content
of the whole cone ABC, leaves

BC^x AD—BC x AP x n/BC^TEF x .2618 for the

required solidity of the ungula BCF ; which, because

,^ DP X BC ,.^ DP X EFAD = -^^ :i=r^, and AP = ^^^ rr^^ will be re*BC — EF' BC— EF'

ducedto?^-^?ii^. ..6,8BP X BC.

X 2
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PROBLEM XXXVm.

Let A and B be two equal weights^ madefast to the

ends of a thread, or perfectly flexible line pVnQq, sup-

ported by two pins, or tacksy P, Q, in the same horizon^
lal plane; over which pins the line canfreely slide either

way; and let C be another weight,fastened to the thread,
in the middle, between P and Q ; now the question isy to

find the position of the iveight C, or its distance beloio

the horizontal line PQ, to retain the other two weights A
and B in equilibrio.

Let PR (=iPQ) be denoted by a, and R« (the
distance sought) by .t ; and then P//, or Qn, will be re-

presented hy\/a' + x\ Therefo re, by the resolution of

forces, it will be, as \/a- + x"^ (P?z) : x (Rw) : : the

whole force of the weight A in the direction P/2, to

A Y— it's force in the direction nR, whereby iten-

deavours to raise the weight C
; which quantity also

expresses theforceof theweightB inthesamedirection :

but the sum of these two forces, since the weights are

supposed to rest in equilibrio, must be equal to that

o A "*<

of the weight C ; that is,
•>• v =: C ; whence we

have 4A"a,^ =: CV -{- C^r^ and consequently x =

__ aC

v/4A'-^~ C'
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PROBLEM XXXIX.

To determine the position of an inclined plane AE,
along which a heavy body descending by theforce of its

own gravity from a given point A, shall reach a right
line BP, given by position, in the least time possible.

Through the given point A, perpendicular to the

horizon, let there be drawn the right-line RB, meeting
BP in B ; also conceive the

semi-circle AER to be de-

scribed, touching BP in E;
then let AE be drawn, which
will be the position required ;

because the time of descent a-

long the chord AE being equal
to that along any other chord

Ajz, it will consequently be
less than the time of the descent

along Ae, whereof An is only
a part : therefore, if AQ and
OE be now made perpendi-
cular to BP, we shall have, (by
reason of the similar triangles)
AB : AQ : : AB + AO : (OE) AO ; whence, by

multiplying extremes and means, AB x AO = AQ x

AB f AQ X AO ; therefore AB x AO - AQ X AO

z=AQ X AB, and AO (OE) = ^^^^q ; f^om which

BE and AE are also given.

The geometrical construction of this problem is ex-

tremely easy; for, if AQ (as above) be drawn perpen-
dicular to BP, and the angle OAQ be bisected by A E,
the thing is done : because, OE being drawn parallel
to AQ, the angle OEA is = QAE = EAO; and so,

AO being =: OE, the semi-circle that touches BP,
will pass through A.

x3
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PROBLEM XL.

A ray of light, from a lucid point P in the axis AP of
a concave spherical surface, is reflected at a given point
E in that surface ; to find the point D where the refiectec^

tay meets the axis.

Draw EQ perpendicular to AP, and from the centre
C let CE be drawn ; also make CE = a,CQ,zz b, CP

=: c, CD =z x;
and {by Euc, 12,2.)
PE will be =

wherefore, the an-

gles of incidence
and reflection,CEP
and CED being e-

qual, we have, as

PC (c) : CD (:r) : : PE (\/ a'' + c^ + 26c) : ED zi

X\/a^ + c2 -f 26<? , „ .

; also, for the same reason, we

PC X CD zz EC^ that is,

ex =! a^\ which, reduced, gives

have PE X ED .

X X flS ^ c2 4- 26c

car
X =: -T- 7-. shewing how far from the centre the

ray cuts the axis. But if the lucid point P be sup-

posed infinitely remote, so that the ray PE may be con-

sidered as parallel to the axis A P, the expression will be

jnore simple; for then a^, in the divisor, may be rejected
as nothing in comparison of 26c; that being done, CD

a^
or X becomes n —r-; which, therefore, if E be takep

near the vertex A, will be — \a, very nearly.

PROBLEM XLI.

Tofind the magnitude and position of an imageform^-
ed by refraction at a given lens.

Let MN be the given lens, DOBCF the axis thereof.
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anri Dn the object whose image FH we would find ; also

kt CB be the radius of that surface of the lens MBN,
which is nearest the object, and Ob that of the other

surface : make RCg perpendicular to DF, and from

O D

«, to any point E in the surface of the lens, draw the

incident ray «E, and let the continuation thereof be

Ei, and let the direction of the same ray, after the

first refraction at E, be E2 ; and, after it is refracted a

second time, at e, let its direction be esH ; draw CE
and OeR, and make 7idv parallel to DF, calling 06, b ;

CB,c; BD, d; Dw, p; and the distance of the point
E from the axis DF, x ; and let the sine of incidence

be to the sine of refraction, out of air into glass, as

m to n. Then, the thickness of the lens being looked

upon as inconsiderable in respect of the focal distance

FB, we shall have, as (i : a? •— p (Ed) : : d -h c {nv) :

-^ ^
^"^ ^ — VI ; which added to Cv [p] gives

dx -h ex— cp _ C 1 therefore m : n
dx -^ ex — cp

ny^dx-^-cx — cp

dm
C2. Moreover, b [Ob] ; x (BE) : :

b 4- c (OC) :
^_±_£2L£ = CK ; whence R2 (= CR

^. 6 -f c X a? dx -{- ex — cp , ^— C2) r=
j^

n X
2

• ^"^ n:m::
b

X

hn
K2:R3z:!!^^Alg + '^'^''' dx

y
and therefore

x4
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ret f — -Do rfn\ m—7ixxxh^-c
^ cp— ex — dx

C3(-R3~RC)=z -h
^

Let X be now taken — 0, and then C3, will become
cp— which let be represented by Ca, and draw B"-, pro-

ducing the same till it meets eS, produced, in H : then

g3being(zrGg-C3)=:^^l^'-^E^'\^^+^^'^.a on
and the triangles Hag* and HEB equiangular, it will

be, as (EB— g3) ^ -^
: (Bg) c : :

(EB) a: : BH -= 1^ = the requir-m— 72 X b-\-cxd— nbc

ed distance of the image from the lens ; and as c

(BCJ: f (C^) : : BH (or BF; : FH =5^ =

-^ (= HF) the magnitude of
j»— « X 6-hc X d— nbc

the image, or its linear amplification.

COROL. 1.

Because the values of BH and HF are alike affected

by b and c, it follows that both the distance and mag-
nitude of the image will remain unaltered, if the place
of the lens be the same, let which side you will be

turned towards the object.

COROL. 2.

If <? be made infinite, or the distance of the object
from the lens be supposed infinitely great, BF will be-

72 DC
come === ; which is the principal focal dls-

\ m —n X b + c

tance, at which the parallel rays unite ; and this dis-

tance, when both sides of the lens have the same con-

vexity, or 6 is z= c, will become ::= — —
: but in

2m — 2»
fte

a plano'Convexo, where b is infinite, it will be ::: ;m — n



TO GEOMETRICAL PROBLEMS. 313

and, in a meniscus, where h is negative, or one surface

concave and the other convex, it will be —~~r^^-
m—'n X b — c

The same answered otherwise^ allowing alsofor the thicks

ness of the lens.

Supposing, as before, that F is the place ofthe image
of an object at D, letFR and DS be supposed perpen-
dicular to the axis FDQ, intersecting the continuation

of Ee (the intercepted part of the ray DE^F) in r and

s, and meeting the radii Oe, CE (produced) in R and
S ; likewise let Ea and ec be perpendicular to QF, and
Ev and ew parallel thereto : then, because the ray is

supposed to be indefinitely near the axis, ac may be
taken for the thickness of the lens, which let be de-

noted by t; putting 5F — z,€e
—

y, aE = x, Ob —
b,

CB — c, and BD = d (as before]. By similar tri>.

angles, Ca (c) : aE (x) : : CD (c + J) ; DS = ^i^±^ ;

and by the law of refraction, m ; n -. ; DS : S5 zz

n ^, xj^jjrj. ^viience D^ [zz DS —
S^) =m

n X X c -\r d
- X ,m c

and vs {= aE — Ds)
-
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re X r — — , by making r
— —

, and g
—

i — r.

Now, c^ : E?j (BD) : : aE : aQ (BQ) ; that is,

X XT-^^ I d :i XI ^^_ , =: EQ ; which is given

from hence.

Again, in the very same manner, Qc (b) : ce (y) : :

OF (6 + 2) : FR = 12LiLl_f
; and m : « : : FR :

Rr — ~ X -—
-J

—
: whence Fr zz l x ~—

-.mo mo
ay X b -^ z J .-^ . qz ,zz——T , and wr (Fr — ce)

—
y x -. r ; and

W6 X C6 bz
therefore cQ (

rr )

— -^—^^-: from which sub-
wr qz

— br

tracting the value of BQ, found above, we get this

equation, viz,
;

: =z t : whence the va^^
qz
— or cr— (jd

cd
lue of z, by making the given quantity t -l ^-, = g,

/ c '

q ci

comes out z: ^. But, if you had rather have the
qg - 6

same in original terms, it is butsubstituting forg ; whence,

rbcd -\- rbt X re — qd
after reduction, z =

qd X 6-f c — rbc \' qt x re— qd'

which, by restoring m and w, becomes

mnbcd -f nbt x nc — m — n x d

m—n X md x b-\-c—mnbc~{- m—n x tx nc—rn—nxd
where, if/ be taken equal o, we shall have

nbcd
z — . r , the very same as was

jfi— n xd X b-{-c— nbc

found by the preceding method.
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APPENDIX:
CONTAINING THE

CONSTRUCTION
OP

GEOMETRICAL PROBLEMS,
WITH THE

MANNER OF RESOLVING THE SAME NUMERICALLY,

PROBLEM I.

The base, the sum of the tico sides, and the angle at

the vertex of any plane triangle being given, to describe

the triangle.

CONSTRUCTION.

DRAW
the indefinite right-line AE, in

take^AB equal to the

sum of the sides, and make
the angle ABC equal to half

the given angle at the vertex,

and upon the point A, as a

centre, with a radius equal to

the given base, let a circle

nCm be described, cuttingBC
in C ; join A, C, and make
the angle BCD zi CBD, and
let CD cut AB in D; then

will ACD be the triangle that

was to be constructed.

which
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DEMONSTRATION.

Because the angles BCD and CBD are equal, there,

fore is CD = DB (Euc, 6. 1.) and consequently AD +
DC :=AB: likewise, for the same reason, the angle
ADC ( =:BCD + CBD, Euc. 32. 1.) is equal to 2CBD.
Q. E. D.

Method of calculation.

In the triangle ABC are given the twosides AB, AC,
and the angle ABC, whence the angle A is known ;

then in the triangle ADC will be given all the angles,
and the base AC ; whence the sides AD and DC will

also be known.

PROBLEM II.

JTie angle at the vertex, the base, and the difference of
the sides being given, to determine the triangle.

CONSTRUCTION.

Draw AC at pleasure, in which take AD equal (o

the diflbrence of the sides,

and tnake the angle CDB
equal to the complement
of half the given angle to

a right angle ; then from
the point A draw AB e-

qual to the given base, so

as to meet DB in B, and
make the angle DBC z=

CDB, then will ABC be
the triangle required.

DEMONSTRATION.

Since, {by construction,) the angles CDB and DCBare
equal, CB is equal to CD, and therefore CA — CB z=

AD : moreover, each of those equal angles being equal
to the complement of half the given angle, their sum,
which is the supplement of the angle C, must therefore

be equal to two right angles
— the (whole) given angle,

and consequently C = the given angle. Q. E. D.

Method ofcalculation.

In the triangle ABD are given the sides AB, AD,
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and the angle ADB, whence the angle A will be

given, and consequently BC and AC,

PROBLEM III,

The angle at the vertex, the ratio ofthe including sides,

and either the base, the perpendicular, or difference of the

segments of the base being given, to describe the triangle.

CONSTRUCTION.

Draw CA at pleasure, and make the angle ACB
equal to the angle given ; take CB to CA in the giveu
ratio of the sides, and jpin A, B ; then, if the base be

given, let AM be taken equal thereto, and draw ME
parallel to CA meeting CB in E,and make ED parallel
to AB; but if the perpendicular be given, let fall CF,
perpendicular to AB, in which take CH equal to the

given perpendicular, and draw DHE parallel to AB :

GMN
lastly, if the difference of the segments of the base be

given, take FG —
AF, and join, C, G, and take GN"

equal to the difference of the segments given, drawing:
NE parallel to CG, and ED to BA (as before) ; then
will CDE be the triangle which was to be constructed.

DEMONSTRATION.
Because of the parallel lines AB, DE ; ME, AC;

and NE, GC ; thence is DE = AM, and EI =: NG ;

and also CD : CE : : CA : CB [Euc. 4. 6.) Q.E.D.
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Method ofcalculation.

LetAC be assumed at pleasure; then, the ratio ofAC
to BC being given, BC will become known ; and there-

fore in the triangle ACB will be given two sides and the

included angle, whence the angles R and A, or E and D
will be found ; then in the triangle EDC, EHC, or

EIC, according as the base, perpendicular, or the dif-

ference of the segments of the base is given, you will

have one side and all the angles, whence the other

sides will be known.-

PROBLEM IV.

The angle at the vertex^ and the segments of the base,

made by a perpendicular fallingJrom the said angle,

being given^ to describe the triangle.

CONSTRUCTION.

Let the given segments of the base be AD and DB ;

bisect AB by the perpendicular EF, and make the angle
EBO equal to the difference

between the given angle and
a right one, and let BO meet
EF in O; from O, as a cen-

tre, with the radius OB, de-

scribe the circle BGAQ, and

draw DC perpendicular to

AB, meeting the periphery of

the circle in C ; join A, C
and C. B, then will ACB be

r.
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to the sine of (COFzrCBG) the difference of the angles
at the base; whence the angles themselves are given.

After the same manner a segment of a circle may he

described to contain a given angle, when that angle is

greater than a right one, if, instead of BO being drawn
above AB, it be taken on the contrary side.

PROBLEM V-

Having given the base, the perpendicular, and the angle
at the vertex of any plane triangle, to covistruct the tri-

angle.

CONSTRUCTION.

Upon AB the given base fsee the precedingfigureJ let

the segment ACGB of a circle be described to contain

the given angle, as in the last problem ;
take EF equal

to the given perpendicular, and draw FC parallel to

AB, cutting the periphery of the circle in C; join
A, C and B, C, and the thing is done: the demonstra-
tion whereof is evident from the last problem.

Method of calculation.

In the triangle EBO are given all the angles and the

side EB, whence EO will be known, and consequently
OF

(
== DC - EOj ; then it will be as EB : OF : :

the sine of EOB (the given angle at the vertex) to, the

sine of OCF, the complement of (COF or CBG) the
difference of the angles at the base; whence these an-

gles themselves are likewise given.
— This calculation

is adapted to the logarithmic canon ; but by means of a

table of natural sines, the same result may be brought
out by one proportion, only : for BE being the sine of

BOE, and OE and OF co-sines of BOE and COF
(answering to the equal radii OB and OC) it will there-

fore be, BE : EF :: sine BOE (ACB) : cosine BOE
4- co-sine COF; from which, by subtracting the co-sine

of BOE, the co-sine of COF ( = CBG} is found.

PROBLEM VI.

The angle at the vertex^ the sum of the two including
sides, and the dJfference of the segments of the base bei'r^

gicen^ to describe the triavgle.
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CONSTRUCTION.
Draw the right line AC at pleasure, in which take

AB equal to the difference of the segments of the base,
and make the angle CBE equal to h'alf the supplement

of the given angle ;

and from A to BE,
apply AE equal to

the given sum of the

sides ; make the an-

gle EBD -BED
and let BD meet AE
in D, and from the

centre D, with the

radius DB, describe

the circle DBG, cut-

ting AC in C, and join D, C ; then will ACD be the

triangle required.

DEMONSTRATION.

The angle EBD being zz BED, therefore is DE
= DB =1 DC, and consequently AD + DC i= AE.
Moreover the angle CDE, at the centre, is double to

the angle CBE, at the periphery, both standing upon
the same arch CE; which \2ist f by construction) is equal
to half the supplement of the given angle, therefore

CDE is equal to the whole supplement,and consequent-
ly ADC equal to the given angle itself. Q. E. D.

Method of calculation.

In the triangle ABE, are given the two sides AB,AE,
and the angle ABE, whence the angle A will be given ;

then in the triangle ABD will be given all the angles
and the side AB, whence AD and DC (DB) will be
also given.

PROBLEM VII.

The angle at the vertex , the sum of the inciudifig sides,

and the ratio of the segments of the base being given ; to

determine the triangle. ,

CONSTRUCTION.

Let AG be to GB, in the given ratio of the segments
of the base, and, upon the right-line AB, let a segment
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of a circle be described, capable of containing the given

angle ; draw GC per-

pendicular to AB,
meeting the periphe-

ry in C; join A, C
and C, B, and in AC,
produced, take CH
zz CB; join B, H,
and in HA, take HD
equal to the given sum
of the sides, draw DE
parallel to AB, and
£F to BC ; then will DEF be the triangle required.

DEMONSTRATION.
Let ¥n be perpendicular to DE. Whereas (by con--

struction) CH is equal to CB, and FE parallel to CB,
therefore is FE = FH [Euc, 4. 6.) and consequently
FE + FD z= HD ; also, because FE is parallel to CB,
therefore is the angle DFE zz ACB : moreover, the

triangles ABC, DEF, being equiangular, it will be, as

AG : GB : : Dn : wE. Q. E. D.

Method of calculation.

From the centre O, conceive AO and OC to be
drawn; supposing KOI perpendicular, and CI parallel
to AB : then it will be, as AK is to CI (KG) so is the
sine of AOK [— ACB, see Prob. 4.) to the sine of

COI, the difference of the angles ABC and BAG;
which are both given from hence, because their sum is

given by the question : therefore in the triangle DHE
are given all the angles and the side HD, whence the
base DE will be known.

PROBLEM VIII.

Having the angle at the vertex, the difference of the in'

chiding sides i and the difference of the segments of the

base, to describe the triangle.

CONSTRUCTION.

Take AB equal to the difference of the segments of
the base, and make the angle AB;j equal to halftiie

V
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given angle ; from

A B

C, join O, C; then is AOC the triangle sought.

apply AE =: the differ-

ence of the sides;

produce AE, and
make the angle EBO
=z BEO, and let BO
meet AE, produced
in O, and from the

centre O, at the dis-

tance of OB, de-

scribe the circumfe*

rence of a circle, cut-

ting AB produced in

DEMONSTRATION.

Because the angle EBO is = BEO (bij construction) ;

therefore is EO zr BO = CO, and consequently AO— 00 =: AE. Furthermore because the angle *AOC
19 double to ADC, and ADC - ABE {Euc. Corol29.

3,) therefore is AOC also double to ABE. Q. E. D.

Method of calculation.

The two sides AB, AE, and the angle ABE being
given, the angle A will from thence be found; then in

the triangle ABO will be given all the angles and the

side AB, whence OB (OC) and AO will be known.

PROBLEM IX.

The angle at the vertex, the difference of the including

sides, and the ratio of the segments of the base being

given, to determine the triangle,

CONSTRUCTION.
Let AG be to GB in

the given ratio of the seg-
ments of the base, and up-
on the right-line AB let a

segment of a circle ACB
be described (by Frob,4,)

capable of the given an-

gle ; draw GC perpendi-
to AB, meeting the periphery in C, and join A,C
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and B, C ; in AC take AP =: BC, and draw BP ; also,

in AC, take CQ equal to the given difFerence of the

sides, drawing QE parallel to PB,and ED to BA ; then

will CDE be the triangle which was to be described.

DEMONSTRATION.

The angle DC£ is equal to the given angle by con-

struction ; also EQ being parallel to BP, DE to AB,
and AP =z BC, therefore must DQ = EC {Euc. 4. 6.)
and consequently DC — EC zr CQ. Moreover, if

CG be supposed to cut DE in n, thenDn : En :: AG
: GB. Q. E. D.

Method of calculation.

Let Cm be equal to CE, and let Em be drawn. It

will be, as AB is to AG — BG, so is the sine of ACB
to the sine of the difFerence ofCBA and CAB [by Prob,

4.) then in the triangle DEm will be given all the an-

gles and the side Dm, whence DE will be given.

PROBLEM X.

The angle at the vertex, the perpendicular and the dif-

ference of the segments of the base being given, to con»

struct the triangle.

CONSTRUCTION.

Draw RS at pleasure, in which take DE equal to half
the difference of the segments of the base, and make
EC perpendicular to RS and equal to the given per-

pendicular, and the angle DEtz equal to the difference
between the given angle and a right one

; join D. C,
and draw DnO parallel to CE, and in DC take the

Y 2
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point p, so that 7?p, (when drawn) may be equal to wE ;

draw CO parallel to np, meeting D«0 in O ; and upon
O as a centre, with the radius OC, describe the circle

BCA, cutting RS in B and A; join A,"C and B, C,
and the thing is done.

DEMONSTRATION.

Join O, B and O, A: since OC is parallel iopn,
therefore is OC : DO : : p?z : ?2D, or OB : DO : :

n% : nD ; and consequently the triangle OBD similar

to the triangle wEt) [by Eucl.Q.) Therefore, seeing,
the angle DE« is (hy construction) ex\n^\ to the excess of
the given angle above a right one, ACS must be equal
to the angle given [hy Prob,4:.) Moreover since, AD
is ~ DB, A E — BE will be equal to 2DE, w4iich is

the given difference of the segments (by construction).

Q. E. D.

MetJiod of calculation.

In the triangle CDE, right-angled at E, are given
both the legs DE and EC, whence the angle EDC will

be known, and consequently ODC ; then as the radius

is to the sine ofDBO(::OB: DO : : OC : DO) so is the

sine of ODC to the sine of OCD ; whence DOC, the

difference of the angles ABC, BAC, [see Prob, 4.) is

also given, and from thence the angles themselves.

PROBL-EM XI.

The ani^le at the vertex, the perpendicular, and the

ratio of the segments of (he base being given, to con-^

struct the triangle.

CONSTRUCTION.

Take AF to FB in the

given ratio of the seg-
ments of the base, and

upon the right-line AB
describe a segment of a

circle ACB capable of

the given angle ; make
FC perpendicular to AB
meeting the circumference
of the circle in C, in which
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take CG equal to the given perpendicular ; draw DG£
parallel to AB, meeting AC and CB in D and E; and
then DCE will be the triangle required.

DEMONSTRATION,
Because of the parallel lines DE and AB, it will be

as AF : DG (: ; CF : CG) : ; FB : GE, or AF :

FB : : DG : GE ; whence it appears, that DG and
GE are in the ratio given. Also the angle DCE and the

perpendicular CG are respectively equal to the given
angle and perpendicular, by construction. Q. E. D.

Method of calculation.

As AB is to AF— BF (see Prob. 4.) so is the sine of
ACB to the sine of the difference of A and B ; whence
both A and B will be given, because their sum, or the

angle at the vertex, is given : then in the triangles
DGC, EGC, will be given all the angles and the per-

pendicular CG, whence the sides will also be known.

PROBLEM XII.

The base, the sum of the sides, and the difference of
theJingles at the base being given, to describe the triangle.

CONSTRUCTION.
At the extremity of the base AB, erect the perpen-

dicular BE, and
make the angle
EBC equal to

half the given dif-

ference of the an-

gles at the base ;

from the point A,
toBC, apply AC
equal to the sum
of the sides ; and
make the angle .

——
-^j-

CBD ~ BCA; A «•

then will ABD be the triangle required.

DEMONSTRATION.
From the centre D, with the radius CD, describe the

Y 3
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semi-circle CHF, and join F, B. Then, whereas by
construction the angle CBD is zz BCD, therefore is

DB — DC ; whence it appears that AD 4- DB is =
AC, and that the semi-circle must pass through the

point B: therefore, the angle CBF, standing in a semi-

circle, being a right angle, and therefore — ABE, let

FBE, which is common, be taken away, and there
will remain ABF = EEC ; but DF being equal to DB,
it is manifest that ABF (EBC) is equal to half the dif-

ference of the angles ABD and DAB. Q. E. D.

Method of calculation.

As the sum of the sides (AC) is to the base (AB) so

is the sine of ABC, or of the complement of half the

given difference, to the sine of (C) half the angle at the

vertex; whence the other angles BAD and ABD are

also given.

PROBLEM XIII.

The base, the diff'erence ofthe sides, and the differenceof
the angles at the base, hO'ing given, to determine the tri^

angle,
CONSTRUCTION.

At the extremity B of the given base AB, make the

angle ABD equal
to half the given
difference of the

angles at the base;

and from A toBD
apply AD z: the

ditference of the

^ sides; draw ADC,
B A and make the an-

gle DBC zr BDC, and ABC will be the triangle re-

quired.

DEMONSTRATION.

Because the anlge DBC is = BDC, CD will be =:

CB and AC will exceed BC by AD. Moreover, since

A + ABD - (CDB) CBD r^?/c. 32. \.J therefore is

% + 2ABD (zz CBD + ABD) zz ABC, and conse.

quently ABC — A z: 2ABD, equal to the dilferencc

given. Q.<E. D.
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Method of calculation.

In the triangle ABD are given the two sides, AB and

AD. and the angle ABD, whence the angles A and

ADB will be given, and from thence the angles CBA
andACB.

PROBLEM XIV.

The difference of the angles at the base, the ratio of
the sides, and either the base, the perpendicular, or the

difference of the segments of the base being given, to de-

scribe the triangle,

CONiTRUCTION.

DrawAC at pleasure, and make the angleACD equal
to theg iven difference of the angles at the base, and take

CD 10 CA in the given ratio of the sides ; draw ADE,
upon which let fall the

perpendicular CQ, take

QE equal to QD, and

join E, C; then, if the

base be given, let AB be

taken equal thereto, and
draw BF parallel to CA
(meeting CE in F) and
FG parallel to EA ; but

if the perpendicular be

given, let CP be taken

equal thereto, and through? draw FPG parallel to AE;
lastly, if the difference of the segments of the base be

given, then let AR be taken equal to that difference,
draw RH parallel to CA, and FHG to EA ; then will

CFG be the triangle required.

DEMONSTRATION.

Since QE = QD, and the angle EQC = DQC,
therefore is CE = CD, and the angle E = QDC =

^ A -f ACD (Ewe. 32. 1.) and therefore E— A =z ACD;
whence, by reason of the parallel lines AE, GF, &c. we
have GFC — FGC - ACD, also FG ~

AB. GH -
AR, and CF : CG : : CE (CD) ; CA. Q, E. D.

Y 4
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Method of calculation,

LetCAand CD be expressed by the numbers exhibit-

ing the given ratio ofthe sides : then in the triangleACD
will be given two sides and the included angle ACD ;

whence the angle CAE (CGF) and CEA (CFG) will be

given, and from thence the sides CG and CF.

PROBLEM XV.

The base, the perpendicular, and the difference of the

angles at the base being given, to construct the triangle,

CONSTRUCTION.

Bisect the given base AB by the perpendicular DF,
in which take DE equal to the given height of the

triangle ; draw CEGH parallel to AB, and make the

angle EDH equal
to the given dif-

ference of the an-

gles at the base;
draw EAQ, and
take Q therein,
so that QD -
DH ; and, paral-
lel to QD, draw

AO, meeting DE
in O; upon O, as

a centre, with the

radius OA, describe the circle AGFCB, and from the

point G, where it cuts the right line OH, draw GA and
GB

;
then will AGB be the triangle required.

DEMONSTRATION.

Let OG and BC be drawn. By reason of the paral-
lel lines QD and AO, it will be QD (DH) : AO (OG)
: : ED : EO ; therefore the two triangles EHD, EGO,
having one angle, E, common, and the sides about the

other angles D and O proportional, are equiangular,

(£wc. 7. 6.) and consequently EOG = EDH. More-

over, because DOEF is perpendicular both to AB and

GC, and AD equal to BD, it is evident that the circle

passes through the point B, and that the arches FC, FG,
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as well as the angles ABC, BAG, are equal ; and con-

fiequcHtly that the angle GBC is the ditFerence of the

angles BAG, ABG : but this difference GBC is equal
toEOG, or EDH (Ettc. 20. 3.) that is, equal to the

difference given. Q. E. D.

Method of calculation.

First, in the right-angled triangle AED are given
both the legs AD and DE, v^hence the angle DEA will

be given ; then it will be, as the radius is to the sine of
the angle H, the complement of the given difference

(: : DH : DE : : DQ : DE) so is the sine of DEA to the

sine of O; whence AOE (QDE) will also be given;
from which take GOE, and there will remain AOG,
equal to twice ABG, the lesser angle at the base.

PROBLEM XVI.

The sum of the sides, the difference of the segments of
the base, and the difference of the angles of the base, be--

ing given, to describe the triangle,

CONSTRUCTION.

Make AD equal to the sum of the sides, and the

angle ADE equal to half the difference of the angles
at the base ; from A to

DE apply AE equal to

the given difference of

the segments of the base ;

make the angle CED
— EDC, and from the

point C, where EC cuts

AD, with the radius EC,
describe the semi-circle

FEB, cutting AE, produced in B ; join B, C, and the

thing is done.

DEMONSTRATION.

Upon AB let fall the perpendicular CQ.
Because EO is

- BQ [Euc. 3. 3.) therefore will AQ
BQ =: AE^: also, because the angles CED, EDC,

lare equal [by construction) CD will be — CE — CB,
liind consequently AC + CB iz AD, Moreover, ABC
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— BAG rr BEG — BAG =r AGE (Euc. 32. l.) =
2ADE (JSwc. 20. 3.) Q.E.D.

Method ofcalculation.

In the triangle ADE are given the sides A D, AE, and
the angle D, whence the angle A will be given ; then
in the triangle ACE are given all the angles and the side

AE, whence AG and CB (CE) will be given likewise.

PROBLEM XVII,

The difference of the angles at the base, the ratio ofthe

segments of the base, and either the sum of the sides, the

difference of the sides, or the perpendicular being given,
to construct the triangle,

CONSTRUCTION,

Let AG be to BG in the given ratio of the segments
of the base ; and wpon AB let a segment of a circle

BPA be described [by Problem 4.) to contain an angle

equal to the difference

of the angles at the

base ; raise GP per-

pendicular to AG, cut-

ting the periphery of
the circle in P, and in

AC produced, take GD
=3 CB, and draw PA,
PB and PD ; then, if

B the perpendicular be

given, take PF equal

thereto, and through F, draw EFG parallel to AD;
but if the sum or difference of the sides be given, let

a fourth proportional PE,1o AP + PD, AP and the

said sum or difference be taken, and draw EFG as

above; then will PEG be the triangle required.

DEMONSTRATION.

Since G P is perpendicular to AD, and GD - GB, the

angle D will be equal to DBP = A + BPA: whence,
because EG is parallel to AD, PGE will be - PEG
+ BPA {Euc. 29. 1) and consequently PGE — PEG
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=: APB, which, by construction, is equal to the given
difference of the angles at the base.

Again, by reason of the parallel lines AD and EG,
it will be, EF : FG : : AC : (BC) CD. Likewise, for

the same reason, AP i PD : PA : : PE ± PG : PE: :

given sum ©r diff. of sides : PE {by construction) and

consequently PE ± PG z= the said given sum or dif-

ference. Q. E. D.

Method of calculation.

First, it will be as AB is to AD, so is the sine ofAPB
to the sine ofAPD(iz/ Proh, 4.) ',

then in the triangle
PGE will be given all the angles, and either the per-

pendicular, or the sum or difference of the sides, whence
the sides themselves are readily determined.

Note, The perpendicular cutting the circle in two

points, indicates that this problem is capable of two
different solutions.

PROBLEM XVIII.

The difference of the sides, the difference of the seg-
ments of the base, and the difference of the angles at the

base being given, to describe the triangle,

CONSTRUCTION.

Draw the indefinite line AQ, in which take AD
equal to the given difference of the eides, and make the

angle QDH e-

qual to the com-

plement of half

the diflerence of

the angles at the

base; from A to

DH apply AC
= the given dif-

ference of the

segments ; and,

having produced
the same to L, make the angle DCE equal to CDE,
and let CE meet AQ in E, and upon the centre E,
with the radius EC, describe an arch, cutting AL in B j

join E, B, so shall AEB be the triangle required.
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DEMONSTRATION.

Upon AB let fall the perpendicular EP,
Because the angle DCE = CDE, therefore is ED

zz EC, and consequently AE - EB (= AE — EC =
AE — ED) zz AD. Also, since EB =z EC, therefore

will PB=:PC, and consequently AP — BP (AP —PC)
= AC» Moreover, the angle EBC being zz ECB
(Euc. 5. 1.) and ECB — An CEA (Euc. 32. 1.) it is

plain that EBC— A — BEA equal to the given differ,

ence, because the triangle EDC is isosceles, and the

angle at the base equal to the complement of half the
said difference, by construction. Q. E. D.

Method of calculation.

In the triangle ADC are g;ven two sides and the angle
ADC, vrhence the angle A will be known ; then in the

triangle ACE will be given all the angles and the side

AC, whence AE and CE (BE) will also become known.

PliOBLEM XIX.

The perpendicular^ the difference of the angles at the

hase, and the difference of the segrnents of the base being

given, to construct the triangle,

CONSTRUCTION.

Upon AQ, equal to the given difference of the seg-
ments of the base, let a segment of a circle QCA be

described, capable of the ditference of the angles at the

base; bisect AQ with

the perpendicular TL,
in which let TE be
taken equal to the

given perpendicular;
draw EC parallel to

AQ, cutting the pe-

riphery of the circle

in C ; also draw CP
P perpendicular to AQ,^ and in AQ produced

take PB =z PQ : join C, A and C, B ; then will ACB
be the triangle required.
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DEMONSTRATION.

Since, (by construction,) CP is perpendicular to QB,
and PB equal to PQ, thence will the angle B

—
PQC,

and B (PQC) — BAG = ACQ z= difference of angles
given : also, for the same reason, will CP z=. TE, and
AP — BP = AP— PQ = AQ. Q. E. D.

Method of calculation.

From the centre O, conceive AO and OC to be
drawn : then in the triangle AOT will be given all the

angles and the side AT, whence OT and OE will be

given ;
then it will be as AT : OE : : sine of AOT

(ACQ) : sine of OCE; whence all the angles in the

figure ai« given.

PROBLEM XX.

The segments of the base, and the sum of the sides of
any plane triangle being given, to determine the triangle^

CONSTRUCTION.

From the greater segment AQ, take QF equal to the
lesser segment BQ ; make QL perpendicular to AB,
and draw A I, mak-

ing any angle with
AB at pleasure, in

which take AE e-

qual to the given
sum of the sides,
and join B, E;
make the angle
AFG - AEB, and
bisect EG in H,
and from B as a

centre, with the ra-

dius EH, describe mCn cutting the perpendicular QL
in C ; join C, A and C, B, and the thing is done.

DEMONSTftATION.

.
From the centre C, with the radius CB, let the circle

pBDLKF be described ; and let AC be produced to meet
Jits periphery in D. By reason of the similar triangles
^AEB, AFG, it will be as AE : AB : ; AF : AG
whence AG x AE =: AF x AB; but {by Euc 37. 3 )
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AF X AB zz AK X AD ; therefore is AG x AE = AK
X AD; whence, as EG and DK are equal, by con-

^

struction, it is evident that AG and AK, as well as AE
and AD, must be equal, Q. E. D.

Method ofcalculation.

As AE : AB : : AF : AG ; which taken from AE,
and the remainder divided by 2, gives BC (EH) the
lesser side of the triangle.

PROBLEM XXI. ^

The segments of the base and the difference of the sides

being given, to describe the triangle.

*

CONSTRUCTION.

Take AF equal to the difference of the given seg-
ments AQ, BQ, (see the precedingfgure) and draw AI
making any angle with AB at pleaslire, in which take

AG equal to the given difference of the sides
; join F, G,

and make the angle ABE = AGF, and from the centre

B, at the distance of ^-EG, describe 7iCm, cutting the

perpendicular QL in C; join C, B and C, A, then will

ACB be the triangle that was to be constructed. The
demonstration of which is so very little difierent from
the precedent, that it would be needless to give it here.

LEMMA.

// a given right-line AH be divided in any given ratio,
at C, and the right-line CBO be taken to AC in the ratio

of BC to AC — BC; and from O as a centre, at the

distance o/OC, a circleC?D be described, and tivo right-
lines AP, BP he drawn from A and B, to meet any ichere

in the periphery thereof ; I say these lines will be to one
aiiother fevery whereJ in the given ratio ofAC to CB.

For, since CO ; AC : : BC : AC — BC, therefore

by composition, CO : AO : : BC : AC, and by per-
mutation, CO : BC : : AO : AC; whence, by di-

vision, CO : BO : : AO : CO, or PO : BO : : AO :

PO : wherefore, seeing the sides of the triangles POB,
AOP, about the common angle O, are proportional.
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those triangles must be similar {Euc, 6. 6.) and there-

fore the other aides also proportional, that is, PO

(COJ : AO : : BP
BC : AC : : BP

AP ; whence (by the second step]

AP. Q. E. D.

PROBLEM XXII.

The segments of the base, and the ratio of the sides

being given, to determine the triangle

Cq

CONSTRUCTION.

Let AQ, and QB be the segments of the base ; and
let the whole base AB be divided at C, in the given
ratio of the sides ;

take CO to AC,
as BC to AC —
BC, and with the

radius CO de-

scribe the circle

CPD, and raise

QP perpendicular to AO, meeting the periphery in P;
join A, P and B, P ; then will ABP be the triangle re-

quired. The demonstration of which is manifest from
the preceding lemma.

Method of calculation.

Since the ratio of AC to CB, and the length of the

whole line AB are given, thence will AC and CB

be giv^n, and consequently OC
{-Yp op) from
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whence the pe4*pendicular PQ (= v^CQ x DQ) is

likewise given.

PROBEEM XXIIL.

Having the base, the perpendicular, and the ratio of
the sides, to describe the triangle.

CONSTRUCTION.

Let the base AB be divided at C, in the given ratio

of the sides, and let the circle CPD be described as in

T^ p the last problem ;

in OR, perpen-
dicular to AD,
take On equal to

the given perpen-
dicular, and, thro*

J\ K^ 15 D {^ ^ u rallel to AD, cut-

ting the periphery of the circle in P; join P, A and
P, B and the thing is done. The truth of this is also

evident from the preceding lemma.

Method of calculation.

Upon AyD let fall the perpendicular PQ, and join

O, P: thenPO(— -r-^ ^) will be given; there-

fore in the triangle OPQ, are given OP and PQ, from
whence not only OQ, but AQ and BQ are also given.

Note, The parallel PwP cutting the circle in two
points, shews that this problem admits of two different

solutions.

PROBLEM xxiy.

The difference of the segments of the base, the perpen-
dicular and the ratio of the sides being given, to con-

struct the triangle,

CONSTRUCTION.

Let AB be the difference of the segments of the base

{see the last fgure) and let every thing be done as in

the preceding problem: take Q6 — QB, and join P, b :

then will A6P be the triangle required. The reasons of
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Avbich are obvious from what has been said already ;

and the numerical solution is also evident from the last

problem.

PROBLEM XXV.

The ratio oj the segments of the base, the perpendicu-i

lar, and the ratio of the sides being given, to construct

the triangle,

CONSTRUCTlOI^.

Draw any right-line ABC at pleasure, in which take

AE to EB in the given ratio of the sides, and AF to

tB in the given ratio of the segments of the base, and
make FQ perpendicular to AB and equal to the given
height of the triangle ; make also EC : AE : : BE : AE—
BE, and with the radius CE describe the circle ERS,
and from the point R where it intersects the perpendi-
cular FQ draw RA and RB, and draw QP and QT
parallel to RA and RB ; then will PQT be the triangle
that was to be described.

DEMONSTRATION.

By the foregoing lemma, AR : BR : : Afc : BE ;

therefore by reason of the parallel lines, it will be
QP : QT f : : RA : RB) : : AE : BE. And, for the
same reason, PF : TF : : AF : BF. Q. E. D.

Method of calculation.

Having assumed AB at pleasure, there will be given

^BE, AE, BF and CE (= f^
^
l^) whence RF

V AE — BE/
I y
'{— \/E¥ X CE f CF) is also given; then, in the

right-angled triangle BRF, will be given both the leg-
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BF and RF, whence the angle B is given; lastly, in
the triangle FQT will be given all the angles and the
side FQ, whence QT and TF will be given, and con-

sequently PQ and FP.

PROBLEM XXYI.

To divide a given angle ABC into tico parts CBF,
A BF, so that their sines may obtain a given ratio.

CONSTRUCTION.

In BA, and CB produced, take BE and BD in the

given ratio of the sine of CBF to the sine of ABF ;

draw DE, and parallel
thereto draw BF, and
the thing is done. For,

bij trigonometry i BE :

BD :; the sine of D
(= CBF) : the sine of

BED (=z ABF). Hence
the numerical solution is

also evident: since it

will be, as the sum of

BE and BD is to their difference, so is the tangent of
half the given angle ABC to the tangent of half the

difference of the two required parts FBC and FBA.

PROBLEM XXVII,

To divide an a?igle given into two parts, so that their

tangents may be to each other in a given ratio.

CONSTRUCTION.

Take any two right-lines AD, BD, which are in the

ratiogiven,and upon thevt^hole

compounded lineAB let a seg-

ment of a circle BCA be de-

scribed, capable of the angle

given; mako DC perpendi-
cular to AB, meeting the peri-

phery in C, and draw AC and

BC, then will A CD and BCD
be the two nnglcs required.
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The reason of which is evident, at one view, from the

construction. The method of solution is also very easy ;

for it will be, as AB is to AD—DB, so is the sine of

ACB to the sine of B—A [see Problem 4.), whence B
and A, and also BCD and ACD are given.

PROBLtJM XXVril.

To divide a given angle ABC into two parts, so that

their secants may obtain a given ratio,

CONSTRUCTION.

Take BE to BT in the given ratio of the secants;

join T, E, and let BF be drawn perpendicular
to

ET, and the thing is done. The truth of which is

manifest, from the construction.

Method of calculation.

The angle EBT and the ratio of the sides BE, and
BT being given, the angles E and T will also be given,
and consequently their complements EBF and FBTi

PROBLEM XXIX.

''From a given point O, to draw a right line OF, to cut

tfwo right lines AC, AB, given by position, so that the

')arts thereof, OE^ OF, intercepted between that point
\nd those lines, may be to o?ie another in a given ratio,

CONSTRUCTION.

From O, through A, the point of concourse of BA
and CA, let GAD be drawn, in which take AD to AO

z 2
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in the given ratio of F£ to EO, and draw DP parallel

to AC, cutting AB in F ; join F, O, and the thing is

done, as is manifest from Eu<:. 2. 6.

Method ofcalculation.

Since the point O and the lines AC and AB arc given

by position, OA and all the angles at the point A are

given; therefore, from the given ratio of AD and AO,
AD will be given likewise; then in the triangle T)A¥
will be given AD and all the angles [because FDA =
CAOj; whence AF is also given.

PROBLEM XXX.

To divide a given arch CD i?ito two such parts, that

the rectangle under their sines may be of a given mag-
nitude.

CONSTRUCTION.

Upon the radius OC let fall the perpendicular DF,
in which (pro-
duced if need be)
take ¥G = i OC,
and thereon con-

stitute a rectangle

FIHG equal to

the given rect-

angle; and sup-

posing HI to cut

the circumference

E, draw OB to bisect DE; then will CB and DB

be the parts required.
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DEMONSTRATION.

Draw CM, and DNE perpendicular to the radius

OB, and N« and Ee perpendicular to DF.
It is evident b}' construction, that the trianglesOCM,

and DNn are similar {because N« is parallel to CO,
and ND to CM); therefore OC : CM : : DN : N«
(zz iEc), and consequently CM x DN zz OC x jEe
zz IOC X Ee zz FG x Ee zz the given rectangle by
construction. Q. E. D.

Method of calculation.

Dividing the measure of the given rectangle by half
the radius, FI will be given, which added to OF, the
co-sine of CD, gives the co-sine (OI) of CE, the dif-

ference of the two parts; whence the parts themselves
will be known,

PROBLEM XXXI.

Having the ratio of the sines, and the ratio of the tan^

gents of two angles, to determine the angles,

CONSTRUCTION*

Let AD be to ED in the given ratio of the sines, and
AD to FD in the given ratio of the tangents ; and
about the centre D, with the interval DE, let the semi-

A E r D N K
circle ERK be described : and, upon AF, describe an-
other serai-circle cutting the former in H, and throughH draw AR. and join H, D ; then will DHR and DAR
be the two angles required.

DEMONSTRATION.

Join F, H, and draw DQ perpendicular to AR.
The angle AHF, standing in a semi-circle, being a

right one, the lines FH and DQ, are parallel (6?/ Ewc.sya.)
z 3
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and therefore AD : FD : : AQ : HQ : : tang, of DHQ :

tang. DAQ. Likewise DA : DE (DH) : : sine ofDHQ :

sine of DAQ, as was to be shewn.
•

Method of calculation.

IfAR be supposed to meet the periphery in R, and
EN be drawn parallel to HF, meeting AK in N ; then
will DN = DF, and AN : AR : : AF : AH ; but

{by Euc. 37. 3.) AR : AK x AE : AH; whence, by
compounding the terms of these two proportions, &c,
AN : AK : : AF x AE : AH» ; whence AH, as well

as AD and DH, being known, the angles A and K will

also be known.

PROBLEM XXXII,

To drawfrom a pointA in the circumference ofa given
circle, two subtenses AB and AD, ivhich shall be to one

another in the given ratio of m to «, and cut off two

arches, AB and KhD, in the ratio of 1 to 3.

CONSTRUCTION.

Draw the diameter AH,
and take the subtense AQ,
in proportion thereto, as

n — m to Sot ; from the

centre O draw OB paral-
lel to AQ, meeting the pe-

riphery in B; join A, B,
and make the subtenses

BC and CD each equal to

AB, and draw AD, and the

thing is done.

DEMONSTRATION.

Join H, Q, and draw BE and CF perpendicular to

AD.
The angle AOB (QAH) at the centre, standmg up-

on the arch AB, is equal to the angiti BAD at the cir-

cumference, standing upon double that arch; therefore,

AQH .being eqyal to AEB or a right angle (£ttC. 31. 3.)

the triangles AOB, AEB, must be e(iui-angular, and

consequently AB : AE :: AH : AQ ; but. by con-
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structioii, AH ; AQ :: 2m : n— fw, whence AB : AE
: : 27n : ri'^m, or AB : sAE :: 2m : 2n— 2m; there-

fore {by composition) AB : AB 4- sAE f
: : 277Z : 2/^) : :

m:n. But AB being = BC zz CD, EF is = BC ziAB,
liF = AE, and AD =: 2AE + AB. Hence AB : AD
::m: n. Qi E. D.

Method of calculation,

Let AP be perpendicular to OB; then, because of
the similar triangles OAP, AHQ, it will be as AO :

OP
(

: : AH : AQj :: 2m : n— m {by construction) ;

therefore OP = ^»— ^ x AO
gp , .^ ^q — OP( =.

3m—
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DEMONSTRATION.
The triangle ABC, standing upon the whole diameter

AB, is equal to the rectangle OE, of the same altitude,

standing upon halfAB {by Euc, 41. l.) which last (by
construction,) is equal to the area given.

Method of calculation.

Join O, C, and let CD be perpendicular to^AB;
then it will be, as AO^ (AO x OC) : AO x DC
( : : OC : DC) : : radius to sine of DOC ; which, in

words, gives this theorem.

As the square of half the hypothenuse of any rights

angled plane triangle is to the area, so is the radius to

the sine ofdouble the lesser of the two acute angles,

N, B, Since no sine can be greater than the radius, it

is plain, that, if the square of half the hypothenuse be
not given greater than the area of the triangle, the pro-
blem will become impossible; in which case the side

EF, instead of cutting, will pass quite above the circle.

PROBLEM XXXIV.

To describe a right-angled triangle, whose area shall

he equal to a given square^ and the sum of its two legs

equal to a given right-line.

CONSTRUCTION.

Upon AB let a semi-circle be described; make ACD
=: half a right an-

gle, and CD = twice

(PQ) the side of the

given square ; draw
DE parallel to AB,
meeting the circum-

ference in E, and EF
perpendicular to AB,
intersecting AB in F

in which produced
so shall AFG be thetake FG = FB, and draw AG

triangle required.

nEMONSTIlATION.

It is evident that AF + FG = AB ; and also that the
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area AFG = xAF x FG = ^AF x FB

fDH2) =z iCD2 _ pQc. Q. E. D.
|FE2 (=

Method of calculation.

If the radius CE be drawn, in the right-angled tri-

angle CEF, there will be given CE (iz ^AB) and

EP]2 (= 2PQ2) whence CF (=: v/^^AB^ — 2PQ")
will be known, and, from thence, both AF and FG.

LEMMA.

The area ofany right-angled triangle, ABC, is equal
to a rectangle under half its perimeter and the excess of
that halfperimeter above thehypothenuse^or longest side.

In the proposed triangle let the circle EGF be in-

scribed, and from the centre D, to the angular points

A, B, C, and the points of contact, E, F, G, let the

right-lines DA, DB, DC, DE, DF, and DG be drawn.

Itgis plain that the sum of the three triangles ADB,
BDC,and ADC, is

equal to the whole

triangle ABC; but
the triangle ADB is

equal to the rect-

angle iAB X DG;
and so of the rest :

therefore the sum of

the rectangles ^AB
X DG + ^CB X
DF + fAC X
DE is equal to the

whole triangle ABC; but the sum of these rectangles

[by Euc. 1, 2.) is equal to the rectangle under half the

perimeter AB -f BC + AC and the semi-diameter

DG, which last rectangle is, therefore, equal to the

triangle given. But the angles E and G being right
ones [Euc, 17. 3.) and the side AD common, and also

DE equal to DG, thence will AE - AG (Euc, 47. \.)

And in the same manner will CE = CF ; consequently
AC (AE + CE) will be = AG + CF ; whence it



346 THE CONSTRUCTION OF

appears that the hypothenuse is less than the sum of the

two legs by BG + BF, or twice the radius of the in-

scribed circle, and therefore less than half the perime-
ter by once that radius, or DG ; whence the proposi-
tion is manifest.

PROBLEM XXXV.

The perimeter and area of a right-angled triangle be-

ing given, to describe the triangle,

CONSTRUCTION.

Make AB equal to the given perimeter, which bisect

and upon AC let a rectangle AC DE be con-in C
.

stituted equal to the given area; take CF CD,

and, from F through D, draw the indefinite line FH, to

which, from B, apply BI = AF ; then, upon x^B let fall

the perpendicular IK, so shall BIK be tlie triangle that

was to be constructed.

DEMONSTRATION.

Since (by construction) CD is zr CF, therefore is IK
r: FK, and consequently IK -f IB 4- BK = FK
-1- AF f BK 1= AB. Again, the excess of the half

perimeter AC above the hypothenuse BI (AF),being =
CF =: CD, it is evident {from the premised lemma)
that the area of the triangle will be — ACDE = the

given area by construction. Q. E. D.

Method of calculation.

Dividing the area by half the perimeter, CD {— CF)
will be given ; then, in the trjanale BFI, will be given
BF, BI, and the angle F(z= 45°); whcMice the angle
13 will also be known, and from thence BK and BI.
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PROBLEM XXXVI.

To make a righUangled triangle equal to agiven square

ABQDf whose sides shall be iji arithmetical progression,

CONSTRUCTION.

sAB
In AB produced take BF :=: , and upon AF

jd

describe the semi-circle AEF, cutting BC produced

D
'^

F Q

; join E, Q, and the thing is

DEMONSTRATION.

Since, by construction, QB : BE : : 4 : 3, therefore

will BQ2 : EB2 : : 16 : 9, andBQ^ + BE^ : BE- ; : \Q

+ 9 (25) : 9, that is, EQ^ : BE^ : : 25 : 9 (-Ewe. 4/. L) ;

whence EQ : BE : : 5 : 3 {Euc. 22. 6.) ; therefore the
sides BE : BQ, and EQ, being to one another in the

ratio of the numbers a, 4, and 5, are in arithmetical

progression. And, because BQ is
— ——

, thence Mrill

I

EB X BQ 2EB2 2BF X AB = AB2. Q.E.D.

Method ofcalculation,

c ." „„ . 3AB
Seeing BF is

—
, (BEi/AB X BF) will be =

ABv^i; whence BQ f~^-) and EQ (~) will
V 3 / \ 3 /

likewise given.
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PROBLEM XXXVII.

Jn a given circle C HIK, to describe three equal circles

E, F, and G, which shall touch one another^ and also the

periphery of the given circle.

CONSTRUCTION.

From the centre C let the right lines CH, CI, and
CK be drawn, dividing the periphery into three equal
parts, in the points H, I, and K; join I, K, and in

CK produced take KL iz |IK ; draw IL, and paral-

lel thereto draw KF meeting CI in F ; make HE and
KG each —

IF, and upon the centres F, E, and G,

throu^^h the points I, H, and K, let the circles FrI,

EtwH, and G«K be described and the thing is done.

DEMONSTRATION.

Draw FE, FG, and EG.
Because fhy constructionJ HE, IF, and KG are equal

CE, CF, and CG will likewise be eciual, and FG pa-
rallel to IK (by Euc. 2. 6.) and therefore, KF being

parallel to IK (by construction) the triangles IKL and
FGK are equian2:ular ; whence, IK being = 2KL,
FG is

— 2GK (sFr) (Euc, 4. 6.) whence it is maniw
lest that the circles F and G touch each other.
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Moreover, the angles ECF, ECG, and FCG, as
well as the containing sides CE, CF, and CO, being
equal, EF, FG, and EG must also be equal (by Euc,
4. I.) and therefore EF or EG — 2FI or sGK ; whence
it is evident that the circles E, F and E, G also touch
one another. But all these circles touch the given cir-

cle, because they pass through given points H, I, K, in

its periphery, and have their centres in right linesjoin-

ing the centre C and the points ofconcourse.

Method of calculation.

In the triangle FGK we have given the angle FGK
(1.50°) and the ratio of the including sides [viz, as 2
to 1), whence the angle FKG will be given; then in

the triangle FGK will be given all the angles and the
side CK, whence CF and also FI will be given. But,
if you had rather have a general theorem for expressing
the ratio of FI to Ci, then let EC be produced to meet
FG in r. Therefore, the angle rFC being

—
30",

Cr wi ll be _ iCF ; whence, (by Eua 47. 1.) FI or

Fr (v/l'C~ - Cr2) is =1 FC x v^^, and therefore CI

i=FC4-FC\/i; consequently CI : FC^:: 1-hv/ii Ij
whence, by division, CI : FI (: : 1 -i- v^ i : \/~\) : : v^ f
4-1:1.

n

TROBLEM XXXVlil.

Jfi a given circle CEHG to describefive equal circles

K, L, M, N, and O, ivhich shall touch one another, and
ike circle given.

CONSTRUCTION.

Let the ^hole periphery EGH be divided into five

equal parts, at the points E, F, G, H, and I, (by Eve.

11. 2.) and draw CE. CF, CG, OH, and CI; join G,
H, and in CH produced take HP - iGH ; join PG,
and parallel thereto draw HM, meeting CG in M;
take FL, EK, 10 and HN, each equal to MG, and

upon the centres K, L, M, N, and O, let circles be
described through the points E, F, G, H, and I, and
the thing, is done.
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The demonstration whereof is evident from the last

proposition : and in the same manner may 6, 8, or 10,

Sec, equal circles be described in a given circle, to

touch one another.

The method of calculation in this, or any other case,
will also be the same as in the last problem : for in the

triangle MNH will be given the ratio of NM to NM
(^s 2 to i) and the included angle MNH equal to

126', 120", I12f', or 108^ &c. according as the num-
ber of circles is 3, 6, S, or 10, &c. from which the angleMHN will be given ; then in the triangle CMH will be

given all the angles,- and the side CH, to find CM.

PROBLEM XXXIX.

The perimeter of a right- angled triangle, whose sides

are in geometricalprogression, being given, to describe the

triangle.

CONSTRUCTION.

Upon AC, equal to the given perimeter, describe the

semi-circle ABC, atid let AC be divided in D, ac-

cording to extreme and mean proportion; make DB
perpendicular to AC, meeting the periphery of the
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circle in B, and having joined A, B, and C, B, let

AE and CE be ^
drawn to bisect

the angles BAG,
BCA; and, from
the point of inter-

section E, let EF
and EG be drawn

parallel to BA and

BC, cutting AC
in F and G; then will EFG be the triangle that was to

be constructed.

DEMONSTRATlOXi

Since {by construction] AC : AD : : AD : DC, there-

fore is ACq : AC X AD : : AC x AD : AC x DC {by
Euc. K6.) ovACqiAB^:\ABg:'^Cq(byCor,toEuc,S,
6.) and consequently AC : AB : : AB : BC; whence,
the triangles ABC, FEG, being equiangular, FG : FE
: : FE : EG. Also EF is i= AF, because the angle
FEA (= EAB) ~ FAE; and in the very same man-
ner is EG = GC ; therefore EF + FG + EG (- AF
+ FG + GC) = AC. Moreover the angle FEG
(= ABC) is a right angle, by Euc. 31. 3. Q, E. D.

Method of calculation.

Because (% construction) AD (
—
\/^ACq— iAC~

AC X \/l — ly thence is AB (y/AC x AD) = AC
X v// f -.

1, and BC (v/AC x CD = AD) =
AC X \/i — t; but, by reason of the similar tri-

angles ABC, FEG, it will be as AC -f AB + BC
(FG + FE + EG) AC :: AC : FG : : AB : FE

EG: or as v^v'f — I + f + v/T : 1

FG : ; AB : FE : : BC : EG; whence FG, FE
and EG are given.
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PROBLEM XL,

To draw o right-line PQ to touch two circles C and Oy
given in magnitude and position.

Upon the line CO, joining the centres of the given
circles, describe the semi-circle CDO, in which inscribe
CD equal to the difference of the semi-diameters OF

and OE ; and from the point B, where CD produced
meets the periphery BF, draw PB perpendicular to

CB; then will BP touch both the circles.

DEMONSTRATION,

Join O, D, and draw OA perpendicular to PQ.
The angle CDO, standing in a semi-circle, is right i

therefore, the angles B and A being both right ones,

by construction, the angle AOD must also be right,
and the figure DOAB a rectangle, and consequently
AO = BD - BC — CD iz CF— CD = OE {by con-

struction). Wherefore, seeing CB and OA are respec-

tively equal to CF and OE, and both the angles A and
B right ones, it is evident that the right-line PQ
touches both the circles. Q. E. D.
The numerical solution of this problem is extremely

easy ; for since the two sides CO and CD of the right-

angled triangle CDO are both given, the angles DCO
and AOC, determining the points of contact B and A,
are from thence given, at one operation.
But if it be required to draw a right-line (ah) to

touch both circles, and to pass between the centres C
#
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and O: then instead of taking CD equal to the dif-

ference of the semi-diameters CF, OE, let Cd be taken

equal to their sum, and the rest of the process will be

exactly the same.

PROBLEM XLI.

To draw a right-line AD through two circles GAEF,
HCSR, given in magnitude and position, so as to cut off

segments thereof, AKB;w, CTD/j, equal respectively to two

given segments EQFa, SPR6.

coMsraucTioir.

Upon the subtenses EF, SR, from the centres G and

H, let fall the perpendiculars GQ and HP; and from

the same centres, at the distances GQ, HP, let two
circles GQK, HPT be described; then draw a right-
line AD to touch both these circles, by the last propo-
sition, and the thing is done; for the lines FE, AB
being at the same distance from the centre G, the seg-
ments cut off by them must consequently be equal:
and, in like manner, the segments SPR6, CTD«, are
also equal.

PROBLEM xm.
To describe the circumference, ofa circle through a given

point P, totouchtworight'linesABf AC , given by position,

CONSTRUCTION.

.loin A, P, and bisect the angle BAG with the right-
liije AK, and, from any point Q in that line, draw QT

* A A
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perpendicular to AC; then, from Q to AP, draw QS
= QT ; draw likewise PO parallel to SQ, meeting

r

AK in O; and from O, as a centre, with the radius

OP, describe the circle PKF, and the thing is done.

DEMONSTRATION.

Let OH be perpendicular to AC, and OW to AB;
then, by reason of the parallel lines, it will be QS :

OP (:: AQ : AG) :: QT : OH; whence as QT
= QS, OH will be - OP ; and therefore the cir-

cumference PKF will pass through the point H, and

so, AHO being a right-angle, AC must touch the circle

in that point. Moreover, the triangles AOH and AOW
being equiangular and having one side common, OW
will therefore be — OH, and the circle also touch AB
in the point W. Q. E. D.

Method of calculation.

Having assumed AQ at pleasure, there will be given,
in the triangle AQT, all the angles and one side, whence
QT (= QS) will be given : then, in the triangle AQS,
will be given AQ, QS, and the angle QAS, whence
the angle AQS {zz AOP) will be given. Lastly, in

fhe triangle AOP will be given all the angles and the

gide AP, whence AO and PO will be given.

Otherwise,

Say, as the sine ofOAH : radius (g
OH : OA :
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OP : OA)::.thesine of OAP : sine of OPA; then,

in the triangle AOP will be given all the angles and

the side AP, whence the other sides AO and OP will

be found.

PllOBLEM XLIII.

To describe the circuynferencc of a circle through two

given points^ D, G, to touch a right-line AB, given by

position.

CONSTRUCTION.

Draw DO, and bisect the same by the perpendicular
FC, meeting AB in

C ; join C, D, and
make FP perpendi-
cular to AB ; and,
from F to CD, pro-
duced, draw FS -zz

FP; make DH pa-
rallel to FS, and
from H, the inter-

section of CF and

Xiiiy with the radius

DH, describe the

circle HDQ, and the thing is done.

P^MONSTRATION.

Join H, G, and draw HT parallel to FP, meeting
AB in T : then because of the parallel lines, it will be,
FS :HD (:: CF : CH) : : FP ; HT ; wherefore, as

the antecedents FS and FP are equal, the consequenftn
HD and HT must likewise be equal; and therefore since

HT is perpendicular to AB, the circumference of the

circle will touch AB in T ; and it will also pass throygh
the point 0, because the two triangles DFH, GFH,
having two sides and the included angles equal, are

equal in every respect. Q, E. D.

Method of calculation.

The angle FCA, and the numbers expressing FC
and DG being given, in the triangle CFD will be

given (besides the right angle) both the legs CF and

FD, whence CD and the angle FCD will be known ;

A A 2
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then it will be, as the sine of FCA (TCH): radius

(: : TH : CH : : DH : CH) : : the sine of HOD : the

sineCDH; therefore in the triangle HCD there will
be given all the angles and the side CD, whence CH
and HD will be known.

PROBLEM XLIV,

Having given AB, and also AD and BG,perpendicU'
lar to AB ; to find a point T in AB, to luhich if two

right-lines DT, GT be drawn, the angle DTG, formed
by those lines, shall he the greatest possible.

CONSTRUCTION.

Describe, by the last problem, a circle GDQ, that

shall pass through G and D and touch AB, and the

point of contact T will be the point required.

DEMONSTRATION.
~

and from any other point
R in the line AB, draw RG
and RD ; also, from the

point Q where GR cuts,the

circle, draw QD : then, the

angle GQD, being exter-

nal with regard to the tri-

angle DQR, will be greater
than GRD ; therefore GTD,
standing in the same segment
with GQD,will be also great-
er than GRD. Q. E. D.

Method of calculation.

Draw DE parallel to AB ; then in the triangle GDE
will be given DE. EG (- BG — AD) and the right-

angle DEG, whence the other angles EDG, EGD,
;and the side DG will be found; then in the triangle

CFP, similar to GDE, will be given all the angles and

the side FP (-
:^^£±15j

whence FC will be given ;

from which, by proceeding as in the Jast problem, all

the rest will be found.
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PROBLEM XLV.

To describe a circle, which shall touch two righutines

AB, AC, given in position, and also another circle O,
given in magnitude and position,

CONSTRUCTION.

Let the angle CAB, made by the concourse of the

two lines, be bisected by AK; and, from any point
P in this line, let fall PQ perpendicular to AB, which

produce to R, so that QR may be equal to the semi-

C

diameter of the given circle ; and through R, parallel
to AB, diaw HM, meeting KA produced in H ; draw
HO, to which, from ?, draw Po = PR, and draw
OE parallel to py, meeting AK in E, and cutting the

periphery of the given circle in r; lastly, from E, with
the radius Er, describe the circle ErKN, and the thing
is done.

DEMONSTRATION.

Draw EG perpendicular to HM, cutting AB in F :

then, by reason of the parallel lines, PR : EG
(:

: HP
: HE) :: Pv : EO ; therefore PR being = ?v {by
construction) EG and EO must likewise be equal ; from
which the equal quantities FG and Or being taken

away, the remainders EF and Er will be equal ; and
A A 3
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therefore the circumference rKN passes through F ;

but it also touches AB in that point, because EF {by

'cmstructioii)h perpendicular to AB ; it likewise touches

AC. because AE bisects the angle BAG; lastly, it

touches the circle O, because the right line OE join-

ing the centres O and E, passes through the point r,

common to both peripheries.

Method ofcalculation.

Supposing AO drawn, and AS perpendicular to HM,
in the triangle AHS (besides the right angle) will be

^iven AS (= rO) and the angle AHS (= EAF =
iBAC) whence AH will be known; then in the tri-

angle AHO will be given AH, AO, and the included

angle, whence AHO and HO will also be given ; then
it will be, as the sine of EHG is to the radius

(: : EG
: EH : : EO : EH) so is the sine of EHO to the sine

of EOH ; therefore in the triangle HEO will be given
all the angles and the side HO, whence EO and EH
are known also.

PliOBLEM XLVI.

To descHhe the circumference of a circle through a

Qiven point P, so as to have given parts cut off by two

right lines A B, AC given in position,

CONSTRUCTION.

;Let the arcs to be cut off by AC and AB be similar

fCBpectively to the arcs ab, he of any given circle ahcq,
whose chords ahy he subtend, at the centre, any given

angles aqb, hqc. Let the angle ahc be bisected by bd ;

take, in AB and AC any two points, E, D, equi-
distant from A; and having drawn DE, make the an-

gle EDF z= qbd, CDK z: qba, and BFR 3: qbc, then

from the intersection R of the lines DR and FR, vvith

the radius RD, describe an arch mSyz, cutting the line

AP in S, draw RS and ARK, and also PQ, parallel to

RS, meeting AX in Q; then from the centre Q, with

the radius PQ, describe the circle KPI, and the thing
is done.
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DEMONSTRATION.

Draw QH and QG parallel to RF and RD, meeting
AB and AC in H and G. The angles BED and CDE
being equal, BFD will exceed CDF by twice EDF,
or by twice qbd, that is, by as much as gbc exceeds qba,
or lastly, by as much as BFR exceeds CDR ; therefore,

seeing the whole angleBED as much exceeds the whole

angle CDF, as the part BFR of the former exceeds the

part CDR of the latter, the remaining parts RFD and
RDF must be equal, and consequently FRmRDizRS.
But by reason of the parallel lines it will be, RF : QH
: : RD : QG : : RS : QP; whence, the antecedents

RF, RD, RS, being equal, the consequents QH, QG
QP, must be equal too, and the circumference pass
through the points H and G ; whence the solution

is manifest.

Method of calculation*

If two perpendiculars be conceived to fall from Q
upon AB and AC, they will, it is plain, be in the given
ratio of the sines of the angles QHl and QGL ; there-
fore the position of the line AQK will be given (from

A A 4
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Prob, 26.) by saying, as the sum of the said sines is to

their difference, so is the tangent of half BAG to the

tangent of halfBAQ — CAQ.
Again, it will be as sine QAH : sine QHA (:

: QH
: QA : : QP : QA) : : sine QAP : sine QPA ; there-

fore, in the triangle AQP, are given all the angles and
one side AP, whence AQ and PQ will be found.

PROBLEM XLVri.

Having the three perpendiculars, let fall from the

angles of a plane triangle on the opposite sides, equal to

three given right-lines K/r, L/, and Mm, to describe the

triangle. ,

CONSTRUCTION.

Draw the indefinite ris^ht line RS, in which take

AB equal to Kk : find" a fourth proportional to Mm,
LI, and Kk, with which as a radius, from the centre A,

let an arch rCs be described ;
and from B, with the

radius L/, let another arch be described intersecting the

former in C : join A, C and B, C, and upon RS let

fall the perpendicular QC, in which produced, take

QP = L/, and draw PF parallel to RS, meeting AC,

produced, in F» draw EG parallel to CB, and AFG
will be the triangle required.

DEMONSTRATION.

Draw FE, Gg and Ar, i^erpendicular to the

sjides of the triangle.

three
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The triangles ABC, AGF; AFE, AGq-, and GFE,
AGr, are equi-angular, by construction

;
therefore G^ :

FE
::^AG:AF::AB(K^);AC('^^^

Mm

: LI; whence, as the consequents FE and LI are equal,
by construction, the antecedents Gg and Mm must be

equal likewise. Again, BC {LI) : AB (Kk) ( : : FG
: AG) : : FE (LI) : At?

; and consequently Kk = Av.
Q.E.D.

Method of calculation.

Since Kk, LI, and Mm are given, AC f=z^^~\
will be known

;
then in the triangle ABC will be given

all the three sides, whence the angles are known; last-

ly, in the triangle AFG will be given all the angles and
the perpendicular EF, whence the sides are also known.

PROBLEM XLVIII.

The position of three points, in the same right-line be-

ing given, it is proposed to find a fourth, tchere lines,
drawnfrom the former three, shall make given angles
with each other.

CONSTRUCTION.
Let the three given points be A, B, and C : make

the angles ACE and
CAE respectively equal
to the given angles
which the lines drawn
from B, A, and B, C
are to make ; and let

AE and CE meet in

E ; thro' A, C and E,
let the circumference
of a circle AECD be

described, and, thro* E
and B, draw EBD,
meeting it in D. then
will D be the point re-

quired.
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DEMONSTRATION.

Join A, D, and C, D.
The angle EDA is equal to ACE, standing on the

same segment ; and for the like reason, is EDC =
CAE. Q. E. D.

Method of calculation.

In the triangle ACE are given all the angles and the

side AC, whence AE will be given ; then, in the trian-

gle ABE, will be given the two sides AE, AB, and the

included angle, whence ABE and all the rest of the

angles in the figure will be given.

PR0BLE3I XLIX.

Three points A, B, C, heingy any how^ given; to find
a fourth, tvhere lines, drawn from theformer three shall

make given angles ivith one another.

CONSTRUCTION.

Join the given points,
and upon the right-line

AB describe a segment of

a circle, capable of the

given angle which that

line is to subtend ; com-

plete the circle, produce
BA, and make the angle
DAQ equal to the angle
which BC is to subtend,
and let AQ meet the pe-

riphery in Q ; draw QC,
cutting the same periphery
in P; join A, P, and B, P,

and the thing is done.

^ DEMONSTRATION.

The angle APB is equal to the given angle which

AB was to subtend [by constrnction) ;
and the angles

QAB and Ot'B, standing upon the same segment, be-

ing equal to each other, their supplements DAQ and

BPC must likewise be equal. Q. E. D.
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Method of calculation.

363

Join B, Q ; then, in the triangle ABQ will be given
all the angles and the side AB, whence BQ and AQ
will be known ; then in the triangle CBQ will be given
two sides, and the included angle CBQ, whence the

angle CQB, equal to BAP, will be known : lastly, in

the triangle APB will be given all the angles and the

side AB, from which AP and BP \yill be found.

PROBLEM L.

To draw a right-line EG through a circle O, givoi in

magnitude and position, which shall also cut a right-line

QC, given by position, in a given angle, and have its parts

EF, FG, intercepted by the circle and that right-line, in

tha given ratio of the two right-lines ab and be,

CONSTRUCTION.

At any point B, in the right-line QC, make the angle
QBA equal to the given angle, and through the centre

O, perpendicular
to BA, draw DQ
meeting BA in

R, and CG in

Q; bisect ah in

d, and in RB take

Rp zz bd, and pq
zz bcy and draw

pm and qn paral-
lel to DQ ; from
the point w, where

qn intersects QC,
draw nL parallel
to BA, meeting
pm in m ; through
the points Q and
rn draw QmF,
cutting the periphery of the circle in F, and through F,
parallel to BA, draw EFG, and the thing is done.

DEMONSTRATION.

The lines GE, RA, and ;?L, bein;.': pnrallcl, the an-
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gles QGE, QBA, &c. will be equal, and likewise
SF : FG : : Lm : mn ; but hm {by construction) i»

(= Up) = db, and inn {— pij]
—

be; therefore SF
: FG : : db ; be, and consequently EF (2 SF) : FG
: : ab {Qbd) : be. Q. E. D.

Method of calculation,

Ln [dc) : Lm {db) : : the tangent of LQn (the com-

plement of the given angle QBR) : thetangent of LQtw;
therefore in the triangle OQF, will be given one angle
OQF and two sides, QO, FO ; whence, not only the

angle SOF, but also SO and SF will be known.

PROBLEM LI.

To apply or inscribe, a given right-line AD between

the peripheries of tico circles C andOy given in magni-'
tude and position, so as to be inclined to the right-line
CO joining the centres in a given angle.

CONSTRUCTION.

Make OCB equal to the given angle, and let CB be

taken equal to the given line; upon the centre B, with
the radius of the circle C, let the arch nDm be describ-

n D

ed, cutting the circle O in D ; then draw BD, and paral-
lel thereto, draw CA, meeting the periphery in A ; join
A, D, and the thing is done.

DEMONSTRATION,

Because (by construction] CA and BD are equal and

parallel, therefore will AD and CB be also equal and

parallel {hy Euc,33. 1.) Q, E. D.
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Method of calculation.

In the triangle CBO are given two sides CO and

CB, and the angle OCB, whence OB and the angle
COB will be known ; then in the triangle OBD will

be given all the three sides, whence all the angles, and

consequently DOC, will also be known.

PROBLEM Lll.

From a given rectangle ABCD, to cut off a gnomon
ECG, ichose breadth shall be every-where the same, and

whose area shall bejust half that of the rectangle.

CONSTRUCTION.

In BA take BH equal to BC, or AD; and in

DA produced take

AP a mean-proporti-
onal between BA and

-J-AD (so that AP2

may = the given area

AGFE). From P to

the middle of AH
draw PO; make OE
r= OP, and DO =
BE ; complete the

rectangle EAGF, and
the thing is done.

DEMONSTRATION.

If the semi-circle EPQ, from the centre O, be de-

scribed, it is plam that AQ z= EH - BH -- BE =z

AD — DG = AG; and consequently that AE x AG
m AE X AQ z: AP^ {Euc, 13. 6.) Q, E, D.

Method of calculation.

In the right-angled triangle AOP are given AG

/__AB_-BC\ ^^^^ ^p (z:v/i\B X BC); whence

OP will be known, and from thence both AE and AG.
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PROBLEM LIII,

Three points A, B, C, Leing given, it is proposed to

find afourth^ '?,from ichence lines, drawn to the three

former, shall obtain the ratio of three given lines a, h,

and c, respectively.

CONSTRUCTION.

Having joined the given points, take AF, in AB,
equal to a, and Al — c; also make the angles AFG

and AIK equal,
each, to ACB;
and from the cen-

tres F and G,
with the radii b

and AK respec-

tively, let two
arcs be described

intersecting in H;
from which point

draw HF and HA ; then draw BP to make the angle
ABP = AHF, and it will meet AH (produced) in the

point P, required.

DEMONSTRATION.

Let BP, CP, and GH be drawn. The triangles

ABP, AHF being ecjui-anguhir (by construction) it will

be AP : BP : : AF fa) : FH (b) ; also AB : AP : :

AH : AF ; and AB : AC : : AG : AF (because ABC
and AGF are likewise equi-angular) whence it is evi-

dent, since the extremes of the two last proportions' are

the same, that AP >; AH =z AC x AG, or AC : AP
: : AH : AG ; therefore the triangles ACP, AHG being

equi-angular {Euc, 6. 6.) we have AP : CP : : AG :

GH (AK) : : AF (aj : AI (c). Q. E. D.

Method of calculation.

In the triangles AFG, AIK are given all the angles
and the sides AF and Al, whence AG, FG, and AK
(GH) will be found ; then in the triangle FGH will l)e

given all the sides, to find the angle HFG ; which, ad-

ded to AFG, gives AFH (APB) from whence, and the

two given sides AF and FII

else is readily determined.

niclLuiiii' it, evL-ry thiui
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PROBLEM LIV.

To describe a triangle (ABC) similar to a given one

AMiNT, such that three lines (AP, BP, CP) may be draim

from its angular points to meet the same point (P) so as to

be equal to three given lines AD, AF, and AK, re-

spectively.

CONSTRUCTION.

Draw DE and KG, making the angles ADE
and AKG, each, equal to the given angle N, and

intersecting AN in

E and G ; from the

centres D and E,
with the intervals

AFand AG, let two
arcs be described,

intersecting in H ;

draw AH, in which
take AP = AD; ,

.

and from P, to AM A K K D B
and AN, apply PB and PC equal, respectively, to AF
and AK, and let B, C be joined; so bhall ABC be the

triangle that was to be determined.

DEMONSTRATION.

The three lines APjBP, CP, are, respectively, equal
to the three given lines AD, AF, AK, by construction ;

we therefore have only to prove that the triangle ABC
is similar to the given one AMN. Now supposingDH
and EH to be drawn, it will be AP : PC (or AD : AK)
:: AE : AG (EH); whence the triangles A PC and
AHEwiil beequi-angular(£2^c. 6.6.) and consequently
AC : AH : : AP (AD) : AE : : AN : AM {Euc, 5. 6.) :

but the triangles ABP and ADH (having AP z: AD,
PB — DH [by construction) and the angle DAP com-

mon) are equal in all respects; therefore, by substituting
AB in the room of AH, our last proportion becomes
AC : AB : : AN : AM ; whence it is manifest tliat the

triangles ABC and AMN are equi-angular. Q. E. D.
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Method of calculation.

Id the triangles ADE, AKG, are given all the an-

gles and the sides AD and AK, from which AE, DE,
and AG will be known; then in the triangle DHE
will be given all the sides, to find the angle EDH,
which added to ADE gives ADH ; from whence, and

the two given sides including it, AH {= A3) will be

known. '

PROBLEM LY.

In the triangle ace, besides the angle c, are given the

segments of the sides ah and de, and the angles aeb and
dbe stthtended therehi) ; to describe th(t tria ngle.

CONSTRUCTION.

Upon AB, equal to a&, let a segment of a circle be

described to contain an angle equal to aeb ; make the

angle ABF = ace, BA7^ -
dbe^ and the line BF —

eti;

from the point n, where kn cuts the periphery of the

circle, through F, draw ;iFE, meeting the periphery in

E; join A, E, and B, E, and draw EC parallel to BF,

meeting AB, produced, in C ; and then the thing is

done.

DEMONSTRATION

LetBD be parallel to FE.

Since the lines BD, EF, and ED, FB, are parallel,

jtherefore is ED = BF {- cd\ and the ans^le ACE also

ZL AUF [ace) Euc, 28. 1. Moreover, the anL;le BE/i
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(DBE) is equal to BAn {dbe), both standing, upon the

same segment Bn, Q. E. D.

Method of calculation*

Join B, n; then in the triangle ABn will be given
all the angles and the side AB, whence Bn will be

known ; then in the triangle nBF will be given B«,

BF, and the included angle «BF, whence BFn (CDB)
and all the rest of the angles in the figure will be known.

PROBLEM LVI.

To make a trapezium, ichose diagonals, and two oppo-
site sides, shall he all of given lengths, and whereof the

angle formed by the given sides, tvhen produced till they

meet, shall also he given.

CONSTRUCTION.

Draw the indefinite right-line AC, and take therein

AB equal to one of the two given sides ; make the angle
CBG equal to

the given an-

gle, and let BG
be made equal
to the other

given side ; up-
on the centres A
and G, with in-

tervals equal to

the two diago-
nals, let two
arches be de-

scribed, cutting
each other in

D; make DE
equal, and parallel, to GB; join D, B, and E, A ;

then ABDE will be the trapezium required.

DEMONSTRATION.

Draw DG, DA and BE, and let BA and DE be

produced to meet each other in F.

The lines BG and DE are equal, and parallel, by
construction; therefore BE is z= DG, which last (by

B B
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construction) IS equal to one of the given diagonals, as

AD is equal to the other: moreover the sides AB and
ED (BG) are equal to the given sides, by construction ;

and the angle F is equal to the given angle CBG, be-

cause DF is parallel to GB. Q. E. D.

Method of calculation.

Suppose AG to be dravi'n ; then in the triangle ABG
will be given the two sides BA and BG,and the included

angle ABG, wiience the side AG and the other two

angles will be known; then in the triangle ADG will

be given all the sides, vi^hence the angle AGD will be

known, and from thence the whole angle BGD ; lastly,

in the triangle BGD will be given the two sides BG
and GD, and the included angle BGD, whence the

side BD will likewise be known.

PROBLEIVI LVI[.

The ^e^ments of the base AD, DB, and the line DC
bisecting the vertical angle ACB, of a plane triangle be-

ing given, to describe the triangle.

^^

CONSTRUCTION.

In AB, produced, lake DO to AD, au DB to AD— DB. and
^ -^ from the cen-

tre O, with the

radius OD,
describe the

circle DCQ;
also from the

centre D, at

the given dis-

tance DC, describe the circle mCn, and from C, the

intersection of the two circles, draw CA and CB, and
the thing is done.

DEMONSTRATION.

Since DO : AD : : DB : AD — DB: therefore (by
the lemma in p, 334,) AC : CB : : AD : DB : whence
CD bisects the angle ACB (by Em. 3. 6.) Q. E. D.
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Method ofcalculation.

Draw CP perpendicular to AQ.
^.T^ - AD X BD

Because, by construction, OD is =:
~a n .HrRn*

therefore will DQ — -
. .^

^
p^ ; whence, by reasonAD — DLJ

of the similar triangles, DCQ, DPC, it will be, as

2AD X BD
AD~BD--^C=-^C^^P =

whence AC and CB are given.

AD — BD X DC^
"sAD X BD

TROBLEM LVIII.

Having given the base, the angle at the vertex^ and
the line drawn Jrom thence to bisect the base ; to con*

struct the triangle.

CONSTRUCTIOK.

Upon the ofivenbase AB
describe (% Prob, 4.) a seg-
ment of a circle ADB ca-

pable of the given angle ;

and, from the point F, in

vjrhich the perpendicular
DF bisects AB, with a ra-

diusFC equal to the bisect-

ing line, describe 7?Cm,

cutting the periphery ACB
in C ; join A, C and B,
C, and the thing is done.
The demonstration of

which is evident from the construction.

Method of calculation.

From the centre O let OA and OC be drawn ; then
in the triangle AOF will be given all the angles and
the side AF, whence FO and OC (OA) will be known-
and m the triangle CFO will be given all the sides'
whence the angle FOC, and its supplement DOC*
expressing the difference of the angles at the base, will
aUo be known.
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PROBLEM LIX.

The base, the difference of the angles at the base, and
the line drawn ffom the vertical angle to bisect the base of
any plane triangle, being given ; to describe the triangle.

CONSTllUCTION.

Upon AB, equal to the given base, let a segment of
acircleAHEB bedescribed to contain anangle equal to

the difference of the

angles at the base ;

bisect AB in C, and
take CD to AC in the

duplicate ratio of AC
to the given bisecting
line KL; make CS
and Dl perpendicular
to AB, cutting the
circle in S and 1 ; draw
AI^ cutting CS in G

;

and, through G, draw
the chord EGH paral-

lel <o AB ; join A, E and A, H, and in AI take AN"

equal toKL; draw MNP parallel to EH, meeting
AE and AH in M andP; then will AMP be the tri-

ano'le which was to be constructed.o

DEMONSTRATION.

Since, {by construction) CG is parallel to DI, and KLq
: ACq :: AC : CD; therefore fEuc.4.6.J KL^ :

ACq : : AG : GI : : AG9 : GI x AG : but GI x AG
= EG X GH z= EG7 {Euc. 33. 3. and 3. 3.) therefore

KL9 : AC9 :: AGq: EG9; and consequently KL :

AC ;: AG : EG :: AN : NM; butAN is [by construction)

equal to KL, therefore NM is = AC, and consequently
MP (sMN) zz AB. Moreover the difference of the aii-

gles at the base, P—M, is (ziAHE- AEH)iz AEB ;

which (by construction) is equal to the diil'erence given.

Q. E. D.

Method of calculation.

From the centre O draw OA and GI, also draw Iv

parallel to EH, meeting OS in ?; : then it will be [bycon*
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strnction) as KL9 : AC^ (: : AC : lo) : : the sine of
AOC or AEB, the given difference of the angles at

the base, to the sine of SOI; which, added to AOS,
gives AOI, whose supplement divided by 2, will be

OIG ; from whence OGI and its supplement OGA are

given, and consequently ANM (equal to AGE); then

in the triangle ANM will be given AN, NM, and the

included angle ANM, whence the angles M, A, P, will

also be given*

PROBLEM LX.

Theperpendicular, the angle at the vertex, and the sum
of the three sides of a triangle being given : to describe

the triangle.

CONSTRUCTION.

Make AB equal to the sum of the sides, which bisect
in P, making PO perpendicular to AB, and the angle
PAO equal to half the given angle at the vertex

;
from

the centre O tj

with the radius
^^ ' ^^

OA describe the

circle AHB, and
in OP, produced,
take PK equal
to the given

perpendicular, and
draw KH parallel*
to BA, cutting the

circle in H ; join A, H and B,'H, and- make the angles
BHF and AHE equal to HBFand HAE respectively,
then will EHF be the triangle required.

DEMONSTRATION.

Join O, B and O, H, and draw HQ perpendicular
to A I'.

The angle EFH is (r=BHF-f HBF)=2HBF [by

construction)
— HOA (Euc. 20, 3.) : and, in the same

manner is FEHziHOB; hence it follows that EFH
4-FEH (=HOA fHOB)=AOB; and by taking
each of these equal quantities from two right-angles^

B B 3
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we have EHFnOAB + OBA (Euc, 32. i) =20AB
zz the given angle (by construction). Moreover QH is—PK— the given perpendicular; and EH beings,
AE, and FlirzBF {Euc, 6. i. ). EH + HF+ EF will

therefore be— A B — the given sum of the sides. Q. E. D.

Method of calculation.

In the triangle AOP are given all the angles and the

side AP, whence OP and AO (HO) are known
;
then in

the triangle OHK will be given the sides OH and OK ,

(OPfPK) whence HK will be given; next, in the

triangle BQH will be given QH and BQ (BP-HK)
whence OB tJ , and its dou ble QFH, will be given ; lastly,
in the triangle EFH are given all the angles and the

perpendicular QH, whence the sides will also be given.
But the answer may be more easily brought out, by

first finding, HOK; the difference of the angles ABH
and BAH, as in the fifth Problem.

PROELKxM LXI.

The sum of the three sides, the difference of the angles
at the base, and the length ofthe line bisecting the vertical

angle of any plane triangle being given ; to describe the

triangle

CONSTJIUCTIOX.

Make AB equal to the sum of the sides, which bisect

in E by the perpendicular DE«, and make the angle wEr

equal to half the

given dff'erence

of the angles at

the base, taking
Er equal to the

line bisecting the

vertical angle ;

through r draw
Cnr parallel to

AB, cutting DEri
in n

;
draw wA,

to which draw Emr:K/, Jind draw AD parallel to Em,

meeting /jED in D ;
and on the centre D, at the distance
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of DA, describe the circle A CB, cutting rnC in C;

join A, C and B, C, and make the angle BCF — CBF,
also make ACG = CAG, and let CF and CG meet

AB in F and G; then will FCG be the triangle that

was to be described.

DEMONSTRATION.

Upon AB let fall the perpendicular CP; letCQbisect
the vertical angle GCF, and let DH be drawn parallel
to Er, meeting Cr in H. Then, by reason of the parallel

lines, it will be as Er : DH (: : En : Dn) : : E^w : DA;
whence, Er being

— Em (hij construction) DH and DA
are also equal, and the point H falls in the periphery

of

the circle : therelore the angle 7zDH (wEr) at the cen-

tre, standing upon half the arch EC, will be equal to

the angle HAG, at the periphery, standing upon that

whole arch, that is, equal to the difference of the an-

gles ABC, and BAG ; but the angle G FC being double

to ABC, and FGC double to BA(; {hy construction) the

difference of GFC aftd FGC will be double to the dif-

ference between ABC and BAG, and therefore equal
to 2/2Er (2/2DH) the diflference given. Moreover, be-

cause GCQ = FGQ, sPCQ will be the difference be^

tween PCG and PCF, which must likewise be equal
to 2/2 Er, the difference of their complements PGC and

PFC; whence PCQ = wEr, and consequently CQ zr

Er. Furthermore, since the angle ACG =: CAG, and

BCF -
CBF, thence will CG = AG, and CF - FBj

and therefore CG + GF + FC =:: AB. Q. <^. D.

Method of calculation.

In the triangle E«r are given all the angles and the

side Er, whence En will be given ; next^ in the tri-

angle h.En will be given (besides the right-angle) both

the legs E'/z and EA, whence the angle EwA is given;
then it will be, as the radius to tlie sine of DH/z or Em
(: : DH : D« : : DA ; Dwj so is the sine of DwA to

the sine of DA?z, whence AD«,the supplementof ACB,
is also given ; from which all the rest of the angles \\\

the figure are given by addition and subtraction only,
B B 4
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This method of solving the problem, it may be ob-

served, requires three operations by the sines and tan-

gents, but the same thing may be performed by two

proportions only : for as Er : AE : : the secant of rEn
to the tangent of E«A ; whence all the rest will be
found as above.

PROBLEM LXII.

To reduce a given triangle into theform of another ^
or

to- make a triansie which shall he similar to one triangle^
and equ'd to atiother.

CONSTRUCTION.

Upon the base AB of the triangle ABC, to which you
would makeanother triangle equal,describeADBsim liar

to the trian-

gle required ;

draw CF pa-
rallel to AB,
meeting AD
in F;takeAE
a mean pro-
portional be-

tween ADand
AFT^ A R Q

rallel to DB, draw EG;
G B. and pa-

then will AGE be the tri-

angle that was to be constructed,

DEMONSTRATION.
Let FR andDQ be perpendicular to AB ; then the tri-

ang. ADB : triang. ACB : : DO : FR {Schol. Euc. \ .6.)

:: AD : AF [Euc.^.Q) ::AD":AD x AF [Euc,

1.6.) : : AD" : AE^ {hy construction) : : triang. ADB
triang. AEG [Euc, 19. 6.) Thereibre, the antece-

dents of the first and last of these equal ratios being
the same, the consequents ACB and AEG must neces-

sarily be equal. Q. E. D.

Method of calculation

III the triangle ADB are given all the angles and the

side AB, whence AD will be given ; next, in the tri-

angle AFR will be given all the angles and the side
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FR (=: CH) whence AF will be given; and then, AD
and AF being given, AE zz VaD x AF will also be

given.

PROBLEM LXIII,

To find a point in a given triangle ABC,from whence

right-lines drawn to the threeMngular points, shall divide

the lohole triangle into parts (COA, AOB, BOC) hav-

ing the same ratio one to another, as three given right-

lines, m, n, and p, respectively.

CONSTRUCTION.

In CA and AB produced, if need be, take CE and

AF, each equal to m -{- n + p, joining E, B and F, C ;

take Ce =: m,
Ac zz n, and
draw eh and cf,

parallel to EB
and CF, meet-

ing the sides of
the given tri-

angle in /; and

f; draw also

'ftQ and /P pa-
rallel to AC
and AB, and
at O, the in-

H B ^f A
tersection of these lines, will be the point required.

DEMONSTRATION.

Let bH and BD be perpendicular to AC. The tri-

angles CBE, Cbe, as also CBD, C6H are similar ;

therefore, m (Ce) : m + n -\- p (CE) : : C6 : CB : :

h'H : BD : : the triangle AOC : triangle ABC. In
the very same manner it may be proved, that the part
AOB IS to the whole triangle ABC, as ti to wi -h w
+ p: whence it follows, that the remaining part BOC
must be to the whole triangle, as p to m + w + /);

therefore these parts are to one another in the given
ratio of w, n, and />. Q. E. D.
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Method of caIculaHo n.

Since
m h n -{- p : m : : AB : AO
m ^- n \- p : 71 :: AC: AriQOJ,

both AQ and QO will be given from thence; then, in

the triangle AOQ, will be given two sides and the in-

cluded angle, from which everything else will be known.

PROBLEM LXIV.

To divide a given trapezium A BCD, ichose opposite
sides AB, CD are parallel, according to a given ratio, bij

a right-line QN, passing through a given point P, and

falling upon the two parallel sides,

CONSTRUCTION.

Bisect AD in G,
and draw GH pa-
rallel to AB (or

DC) meeting BC
in H ; then divide

GH in M, accord-

J\ ^ j^ i\ n
j-jitio, and through

P* M draw PQN,
and the thing is done.

DEMONSTRATION.

Draw EMF and IHK parallel to AD, nieelini;- DC
and AB in E, I. K and F.

Because of the parallel lines, we have GD — ME
= HI, and AG ~ FM = KH ; whence, as GD is
— AG [by construction) ME will be =i FM^ and HI —
HK; and the triangle EMN will be = FxMO. and
IHC =: BHK {Euc. 4. 1.) whence it appears that the

trapezium AQND is also equal to the parallelogram
DF, and the trapezium QBCN equal to the parallelo-

gram FI ; but these parallelograms are to one another

as their bases, or as GM to MH (E?(c. 1. 0.) ; there-

fore GM : MH : : AQND : QBCN. Q. £. D.

Method of calvulation.

Whereas A Band DC are parallel, GH i» an arithme-

tical mean between them, and thcrpfore equ'd to half



GEOMETRICAL rROULIi^MS. 379

their sum. Therefore, as the whole line GH and the

ratio of its parts GM, MH are given, the parts them-
selves will also be given.

PROBLEM LXV.

To cut offjrom a given trapezium ABCD, whose oppO"
site sides AB^ CD, are parallel, a part AQND equal to

a rectangle given, by a right-line passing through a given
point P, and falling upon the two parallel sides. (See
the figure to the last problem,)

CONSTRUCTION.

Bisect AD in G, and draw GH parallel to AB ;

upon AD {by Euc, 43. i.) describe the parallelogram
A n EF equai to the rectangle given, and through the

intersection of GH and Eb' draw PQN, and the thing
is done : The demonstration whereof is manifest from
the preceding problem.

PROBLEM LXVI.

To divide a given trapezium ABCD, whose sides AB
and DC are parallel, into two equal parts, by a right*
line parallel to those sides.

CONSTRUCTION.

Produce AD
and BC till they
meet in H, and
make AG equal,
and perpendcular
to HD ; draw
HG ^

and bisect

the same with
the perpendicular

PQ= HP; join
H, Q, and in

HA take HE e-

qual to HQ, and

G

BC F

parallel to AB draw EF, and the thing is done.

DERtONSTRATION.

Since HE^ ( = HQ^ = HP* + PQ^ = 2HP« zz

HG« HA» + AG" HA* + HD\ .

"^- =
o

= o ) ^8 an arith-
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metical-inean between HA^ and HD^, it is evident that

the triangle HEF will also be an arithmetical-mean

between the triangles HAB .apd HDC (or ABFE zz

EFCD) ; because those triangles, being similar, are to

one another as (HE% HA", HD^) the squares of their

homologous sides. Q. E. D.

Method of calculation.

Since all the sides and angles of the trapezium are

supposed given, the side CD and all the angles of the

triangle HDC will be given ; therefore HP and AH
_ ./ HD'4-HA^willbe known ; whence HE, will

also be given. But the same thing may be had without
the angles; for since DC is parallel to AB, we have

AB — DC : AD : : DC : HD ; whence HE will be

given, as before.

PROBLEM LXVII.

To divide a given trapezium ABCD according to a

ginen ratio, by a right-line LH cutting the opposite sides

AC, BD in given angles.

CONSTRUCTION.

Produce the said opposite sides till they maet in E ;

draw AD, and CF parallel to it, meeting BE in F ;

divide BF in

G, accord-

ing? to the

given ratio ;

and, having
made EAK
equal to the

given angle
which LH

is to make with AC, take EH a mean- proportional be-

tween EG and EK ; then draw HL [)arallel to AK,
and the thing is done.

DExMONSTRATION.

By construction, EG : EH : : EH : EK : : EL :

EA {Euc. 5. 6.) whence it follows that EG a EA =:
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EH X EL, and consequently that the triangles EEIL
and EAG are also equal to each other {Euc. 15. 6.)

from which taking away EDC, common, the remain-
ders CDHL and CDGA will be equal likewise, and

consequently ALHB — AGB, being the diflerences

between those remainders and ACDB, But the tri-

angle ADF is =; ACD, standing upon the same base

AD and between the same parallels; therefore (by
adding AGD, common) AGF is also =z CDGA (==

CDHL); but AGF (CDHL) : AGB (ALHB) : : GF
:GB{Euc. I. 6). Q. E, D.

Method of calculation.

In the triangles ABE and ABK are given all the

angles and the side AB, whence BE, BK, and EC will

be known; then, in the triangle EFC will be given
all the angles and the side CE, whence EF, and from
thence FG and EG, will be known ; lastly, from
the known values of EK, EG, and EF, the value of

FH {= v/EG X EK — EF) will be found.

PROBLEM LXVIII.

Two ri^ht4ines AG and AH, meeting in a point A,

being given by position : it is required to draw a right-
line wP to cut thos& lines in given angles^ so that the

triangle AnV, formed from thence, may be equal to a given
square ABCD.

CONSTRUCTION.

Let the angle ABE be equal to the given angle APfz
and let BE
meet AG in

E; draw EF
perpendicu-
lar to AH,
make BQ
equal 2EF,
and upon
AQ describe

the semi-circle AmQ, cutting BC in w; draw mn pa-
rallel to AH, meeting AG in n, and nV parallel to EB,
and AwP will be the triangle required.

D C
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DEMONSTRATION.

The triangles AEB and AnP, being similar, are to

one another as the squares of their perpendicular
heights EF and mB («S) : but wB* is =r BQ x AB =
2EF X AB; therefore it will be, as the triangle AEB
(EF X iAB) : the triangle An? : : EF« : sEF x AB
: : EF : 2AB : : EF x ^AB : AB^ (Euc, 1. 6.) where-

fore, the antecedents being the same, the consequents
must necessarily be equal, that is, Aji? rz A BCD.
Q. E. D.

Method ofcalculation.

In the triangle ABE are given all the angles and
the side AB, whence EF will be given, and conse-

quently Sn (= y'AB X 2EF); whence AP and An
are also given.

LEMMA.

If from any point C, in one side of a plane an^le
KAL, a right-line CB he drawn, cutting both sides AK,
AL in equal angles (ACB, ABC); andfrom any other

point D in the same side AK another right-line he drawn,
to cut off an area ADE equal to the area ABC ; / say,
that DE will he greater than CB.

DEMONSTRATION.

Complete the parallelogram DCBG, and join B, D,
and in BG (produced if need be) take BF z= BE, and
draw FD.

Since the triangles ABC, AED are equal, by suppo-
sition, and have one^
angle. A, common,
therefore will AD :

AC : : AB (AC):
AE [Euc. 15. 6.)
and consequently
AD -h AE greater
than AC H- AB
( Euc, 25. 5. )

whence it is mani-
fest that C\^ must
be greater ihan EB,

or BG than BF. Moreover, because the angle ABC
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(=: ACB = CDG) is = GBC, it will be greater thaa

GBD, which is but a part of ORG ; and therefore^

ABD must, evidently, be greater than GBD ; where-;

fore, seeing BF and BE are equal, and that DB is com-
mon to both the triangles DBE, DBF, it is manifest

that DE is greater than DF {Euc. ig. 1.) ; but DF is

greater than DG (by the same) because the angle DGF
(DCB), being obtuse, is greater than GFD, which
must be acute {Euc. 32. 1.) : consequently DE is

greater than DG, or its equal CB. O. E. D.

PROBLEM LXIX.

From a giveti polygon ABCDEF, to cut of a ginen
area AFEIK hy the shortest right-line, KI, possible.

CONSTRUCTION.

Let the given area to be cut off be represented by
the rectangle LMNO ; and let the sides AB and DE,
by which the dividing line is terminated, be produced
till they meet in G ; make upon OL [by Euc. 45. 1.) a

rectangle OQ equal to AFEG, and let a square GSTV

be constituted (by Euc. 14. 2.) equal to the whole

rectangle QN: bisect the angle BGD by the right-line
GH, and make GR perpendicular to GH $ and draw
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KI, by the last problem, parallel to RG, so as to form
the triahffle KGI equal to the square GSTV, and the

thing is done

DEMONSTRATION.

Since, by construction, KGI (z= GSTV) = QN,
let AFEG zz OQ be taken away, and there will re-

main AFEIK z= LN. Moreover, since the angle HGI
is =z HGK, and the angle IHG (HGR) a right one,
the angles I and K are equal ; and therefore, by the

preceding lemma, IK is the shortest right-line that can

possibly be drawn to cut off the same area. Q. E. D.

Method of calculation.

Let the area of the figure AFEG be found, by di-

viding it into triangles AFG, EFG, and let this area

be added to the given area to be cut off; and then, the

square root of the sum being extracted, you will have
GS the side of the square GT; from whence GI will

be determined, as in the last problem.

Note, In the same manner may a given area be cut

off, by a right line making any given angles with the

opposite sides.

PROBLEM LXX.

Through a given point P, to draio aright line PED to

cut two right-lines AB, AC given by position, so that the

triangle ADE,formed fi om thence^ may be of a given

magnitude*

CONSTRUCTION.

Draw PFH parallel to AB, intersecting AC in F ;

DB
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and upon AF let a parallelogram AFHI be constituted

equal to the giveu area of the triangle ; make IK

perpendicular to A I, and equal to FP ; and, from the

point K, to AB, apply KD = PH ; then draw DPE,
and the thing is done.

,

DEMONSTRATION.

Supposing M to be the intersection of DE and IH,it
is evident, because of the parallel lines that all the

three triangles PHM, PFE, and MDI are equiangular ;

therefore, all equiangular triangles being in proportion
as the squares of their homologous sides, and the sum
of the squares of PF (IK) and DI being equal to the

square of PH (KDJ, hy construction and Euc, 47- 1. it

is evident that the sum of the triangles PFE and DMI
is
— the triangle PHM ; to which equal quantities in

fig, 1, let AFPMI be added, so shall APE be likewise

equal to AFHI : but, in fig. 2, let PFE be taken

from PHM, and there will remain EFHM = DMI;
to which adding AIME, we have AFHI =: ADE,
as before, Q. E. D.

Method of calculation^

By dividing the given area by the given height of
the point P above AB, the base AI of the parallelogram
AFHI will be known, and consequently PH (nKD) ;

whence DI (= v/K 02— PF*) will likewise become
known.— This problem, it may be observed, becomes

impossible when KD (PH)is less than KI (PF) ; which
can only happen, in case i, when the given area is less

than a parallelogram under AF and FP.

PROBLEM LXXI.

To cut offfrom a given polygon BCIFGH, a part
EDBHG equal to a given rectangle KL, hy a right-line
ED passing through a given point P.

CONSTRUCTION.

Let the sides of the polygon CB and FG, which the

dividing line ED falls upon, be produced till they meet
in A; upon ML (^:>z/ (Eiic^b, \.) make the rectangle

c c
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MN equal to AGHB, and, by the last problem, let ED
be so drawn through the given point P, that the triangle

AED, formed from thence, may be equal to the whole

r

rectangle KN ; then will EDBHG be equal to KL :

for since AED is z= KN, let the equal quantities
AGHB and MN be take^ away, and there will remain

EDBHG = KL.

Method of calculation.

Let the area of the figure AGHB be found, by di-

viding it into triangles, and let this area be added to

the area given, and the sum will be equal to the area

AED, or the rectangle KN; from whence AD will

be found, as in the last problem.

i

PROBLEM LXXII.

Having the base^ the vertical angle and the length of
the line bisecting that angle and tenninating in the base,

to describe the triangle.

CONSTRUCTION.

Upon the given base AB let a segment of a circle

ACB be described {by Problem 4.J to contain the given

angle, and, having completed the whole circle, from

0,"the centre thereof, perpendicular to AB, let the ra-

dius OE.be drawn ;
draw EB, and make BG piipcn-



GEOMETRICAL PROBLEMS. 387

dicular thereto, and equal to half the given bisecting
line

; and from G, as a

centre, with the radius

GB, let a circle BHF
be described, intersect-

ing EG (when drawnj
in F and H ; from E
to AB draw ED -

EF,
and let the same be pro-
duced to meet the cir-

cumference in C ; join
A, C, and B, C

;
so shall ABC be the triangle re-

quired.

DEMOKSTRATION.

The triangles CBE and BDE are similar, because
the angle BEG is common to both, and the angles BCE
and DBE stand upon equal arches BE and AE ; there-
fore EC : EB : : KB : ED, and consequently ED x
EC - EB" : but (67J Rue. 36. 3.) EB^

- EF x EH zz

ED X EH [hy construction). Hence ED x EC - ED
X EH, and consequently EC z: EH ; from which tak-

ing away the equal quantities ED and EF, there remains
DC ,c= FH — the given line bisecting the vertical angle
{hy construction) : and it is evident that DC bisects the

angle ACB, since ACD and BCD stand upon equal
arches AE and EB. Q. E. D.

Method of calculation.

If BE be considered as a radius, BR (fAB) will be
the co-mne of the angle EBR, and BG the tangent of

BEG ; therefore BR : BG (or AB : DC] : : co-sin. EBR
(ACE) : tang. BEG, whose half-complement EHB is

likewise given from hence : then, the angle HBb (sup-

posing EB produced to b) being the complement .of

EHB, we shall have tang. EHB : rad.
(:

: sin. EHB :

co-sin. EHB : : BE : EH : : EB : EC) : : sin. ECB
: sin. CBE = sin. EDB =: co-sin. OED, half the dif-

ference of the angles (ABC and BAC) at the base.

(J c 2
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FROBEEM LXXIII.

Having given the two opposite sides ah, cd, the two

diagonals ac, bd, and also the angle aeh in which they in"

tersect each other ; to describe the trapezium,

CONSTRUCTION.

In the indefinite line, BP, take BD equal to hd, and
make the angle DBF equal to the given angle aeb, and
BF z= flc ; also from the centres D and F, with the

radii dc and ab, let two arches mCn and rCs be de-

scribed intersecting each other in C ; join D, C and F,

C, and make BA equal and parallel to FC ; then draw

AD, AC, and BC, and the thing is done.

DEMONSTRATION.

Since (by construction) AB is equal and parallel to

CF, therefore will AC be equal and parallel to BF
{Euc. 53. 1.) and consequently the angle A EB(jEwc. 29.

1.) = DBF = aeb. Q. E. D.

Method of calculation.

Join D, F ; then in the triangle DBF will be given

two sides DB, BF and the angle included, whence the

angle BFD and the side DF will be known ; then in

the triangle DFC will be given all the three sides,

whence the angle DFC will be known, from which

BFC (BFD— DFC) =z BAG will also bekno'^'u.
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PROBLEM LXXIV,

HaDing given the tioo diagonals and all the angles, to

describe the trapezium.

CONSTRUCTION.

Assume AB at pleasure ; and, having produced the

same both ways, make the angles QAC, RBC equal,

respectively, to two opposite angles a and e of the tra-

pezium; moreover, make ACF equal to ace, one of

the remaining angles ; and from F, the intersection of

CF and BQ, take FG zz the given diagonal dc, and

draw GH parallel to CB, meeting FB in H. Then
from A and B {by the lem, p, 334.) let two lines AE
and BE be drawn to meet in FC, so as to be in the

given ratio of ac to FH : in AE take AN z= ae, and
draw NM parallel to FC, meeting AC in M; lastly,
draw NP making the angle MNP zz ced, and meeting
FB in P ; so shall AMNP be the true figure required.

DEMONSTRATION,

Let ED be parallel to NP, and let DC and PM be
drawn.

It is evident, by construction, that the diagonal AN
and all the angles of the trapezium, are equal to the

respective given ones ; it therefore remains only to

prove that PM is equal to the other given diagonal dc.

Now, the angle RBC being z= CED (% constr,}, the cir-

cumference of a circle may be described through all the
four angular points of rhe trapei/um BCED ; and so the

triangles FBE and FCD (as both the angles FBE and
FCD stand upon the same chord ED) will be similar ;

c c 3
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and consequently BE : DC (: : FB ; FC) : : FH : FG
{dc). But [by construction) AE : BE : : a<; : FH ; there-

fore, by compounding these two proportions, we have
AE : DC \\ ae : dc

',
but (because of the similar figures

ADEC, APNM) we also have AE : DC :: AN (ae)
: PM ; and consequently PM = dc. Q. E. D.

Method of.calculation.

All the angles of the triangles ABC, FAC, and
FBC being given, we shall have sin. ACB x sin. F:
sin. ABC X sin. ACF:;AB:AF; and sin. FHG
(FBC) : sin. FGH (FCB) : : FG [dc) : FH ; whence
AF and FH are known.

„. , .
T-^ AB X ae , ^^ AK x FH

Fnid AK = rrT-f , and KO = -rrn ;

i^H I- ae* l^H -- ae
which last is equal to (OE) the radius of the circle de-

termining the point E [see the aforesaid lemma). There-

fore, in the triangle FOE are given two sides FO and

OE, besides the angle F, whence the angle FOE will

]be given ; then in the triangle AGE will be given OA,
OE aad the included angle; whence the angle 0/\E,
which the diagonal i\N makes with the side AP, will be

known, and from thence every thing else required.

This problem, as the circle described from O cuts

FC in two points, admits of two different solutions

(except, only, when FC touches the circle). If the

circle neither cuts nor touches that line, the problem
will be impossible ; the limits of the ratio ofAE to BE
(and consequently of ae to dc) growing narrower and

narrower, as A B becomes less and less, with respect to

AC, or according as the sum of the opposite angles
a ^ e

— QAC + 1-lBC) approaches nearer and nearer

(to two right-angles; so that, at last (supposing AC and

BC to coincide) A E and BE will be, cver}/-where, in the

ratio of equality; therefore cd can here have only one

particular ratio to ae; and the diagonal ANE may be

drawn at pleasure, the probleui being, in this case, in^

determinate.
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PROBLEM LXXT.

Supposing the right-lines m, w, p, to represent the

lengthsof three staves erected perpendicular to the horizon,

in the given points A, B, C; to .find a point P, in the

plane of ihe horizon ABC, Cijually remotefrom the top of
each staff,

coksthuction.

Join A, B and B, C, and make AE and BF per-

pendicular toAB; also make BG and CH perpendi-
cular to BC, and let AE be taken ~ m, CH =: p, and

BF and BG each zz n\ draw EF and GH, which bisect

/V

yi.,.-./..,..
.\i '—'.^s;* Jl

by the perpendiculars LN and IK, cutting AB and CB
in N and K; make KP and NP perpendicular to BC
and BA, and the intersection P of those perpendiculars
Avill be the point required.

DEMONSTRATION.

Conceive the planes AEFB and BCHG to be turned

up, so as to stand perpendicular to the plane of the ho-
rizon ABC and intersect it in the right lines AB and
BC; then, because BF and BG are equal to each other,
and perpendicular to the plane of the horizon, it is

ce 4
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evident that the points F and G must coincide, and that

AE, BG (BF) and CH will represent the true position
of the staves -.suppose KG, KH, PG, PH, PE, and
PF to be now drawn; then, since (by construction) Gl
= HI, and the angle GIK = HIK, therefore is GK
=: HK. [Euc, 4. 1): moreover, since KP is (by con^

struction) perpendicular to BC, it will also be perpendi-
cular to the plane BCHG, and consequently the angles
PKG and PKH both riglit-angles : therefore, seeing
the two triangles GKP, HKP have two sides and an
included angle equal, the remaining sides PG and PH
must likewise be equal [Euc. 4. l). After the very same
manner it is proved that PF (or PG) is equal to EP.
Q. E. D.

Method of calculation.

Draw Ir perpendicular, and Hq parallel to BC ; then,

by reason of the similar triangles H9G and IrK, it will

Rf 4- CH
be as BC(H9):BG— CH(G9) :: Z 0^"^)

^ BG — CH X BG V CH , . , , , , ,

: Kr —
;

ll____. which subtracted
2BC '

from Br ( z= i BC) gives BK : and, in the same manner
will BN be toiyid ; then in the trapezium KBNPwill
be given all the angles and the two sides BK and BN;
from whence the remaining sides, &c. may be easily
determined.

PROBLEM LXXVI.

The base, the perpendicular and the difference of the

sides being given, to determine the triangle,

CONSTRUCTION.

Bisect the base AB in C, and in it take CD a third

proportional to 2AB and the given difference of the sides

MN; erect DE equal to the given perpendicular,
and

draw EK parallel to AB, and take therein EF - MN;
draw EAG, to which, from F, apply FG

- AB; draw

AH parallel to FG meeting EK in H ; then draw BH,
and the thini;- is done.
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DEMONSTRATION.

By reason of the parallel lines, FG (AB) : FE (MN)
: : AH : EH (DP; ;

therefore AB x DP i= AH x MN,
or2ABxDP=2AH

,^ ^ ^ ^
X MN ; to which last i^ -^ -H iLi ^

equal quantities adding
2ABxCD =MN2 fbij

constructionj we have

2AB X CP = 2AH X
MN f MN^- ;

but

2AB X CP is := BH^— AH* [by a known

property of triangles) ;

therefore BH^ — AH^
= 2AHxMN + MN-,
or BH^ = AH^^ + 2AH X MN -f MN* = AHTmnI*
[Euc. 4. 2.); consequently BH z= AH f MN. Q. E. D.

Method of calculation.

In the right-angled triangle ADE we have DE and
MN* \

AD(=iAB -
^^^ 1, whence the angle DAE

(PEG) will be found; then in the triangle EFG will
be given two sides and one angle, from which the an*

gle GFK (

-
BAHj will also be known.

PROBLEM LXXVII.

The base, the perpendicular^ and the sum of the two
sides being given, to describe the triangle.

CONSTRUCTION,

Bisect the base AB in C, and in it produced take CD
a third proportional to 2AB and the sum of the sides,

MN; erect DE equal to the given perpendicular, and
draw HE parallel to j\B, and take therein EF zi

MX; draw EAG, to which from F, apply FG ~
AB, draw AH parallel to FG, meeting EF in H, then
draw BH, and the thiiig is done. •
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DEMONSTRATION.

Because of the parallel lines, FG (AB):FE(MN)
::AH : EH (DP); and therefore 2MN x AH -
2AB X DP; wliich equal quantities being subtracted
from MN;" = 2AB x CD (% construction) there will

M~ ..

remain MN*— 2MN x AH ir sAB x CP =: BH^ -^

AH" ; whence, by adding AH"" to each, we have

MN^ — 2MN X AH + AH^ = BH-, that is,

MN ~AH\- = BH- ; therefore MN — AH - BH,
orMN =; BH + AH. Q. E. D.

Method ofcalculation.

In the triangle AED are given (besides the right-

angle) both the legs, whence the angle DAE [— FIlG)
will be given; then in the triangle FEG one angle

and two sides will be known, from which the angle
EFG

(
zz BAH) will be determined.

PROBLEM LXXVIJI.

The differcJice of the two sides, the perpendicular, and

the vertical angle being given, to determine the triangle,

CONSTRUCT ION.

Upon the indefinite line FEQ erect the given per-

pendieufar DC, making the angle DCE n: halfthe given

angle; let EF, expressing the given difference of the

sides, be bisected by the perpendicular GI, meeting-
EC in I ; also let liC be biisected in H, and make EK
perpendicular to CE, and equal to Eli and having
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drawn HK take HL, in HE produced, equal ttiereto;

from L to FQ apply LB - £K, and join C, B ; also

draw EM, making the angle CEM equal to DEC,
and cutting CB in M; then from C to QEF apply
CA :r CM, so shall A.CB be the triangle required.

DEMONSTRATION.

Upon EM let fall the perpendicular CN, and join

L, M and F, L Now LB" = EK^' {by construe*

tion) ri HK + HE X HK - HE [Euc, 5. 2,) =z

HlTCH X HL— HE(Z)i/ construction) = CL x EL ;

whence CL : LB : : LB : EL; therefore the triangles
CLB and ELB must be equiangular {Euc, 6. 6.) and

consequently LBM - LEB - CED = CEM [hy con-

struction). Therefore, since the external angle CEM
of the trapezium LEMB, is equal to the opposite inter-

nal angle B, the circumference of a circle will pass
through all the four angular points; and consequently
the angle LMB will be = LEB, both standing upon the

jsame chord LB; but it is proved that LBM is = LEB,
Ltherefore LMB —LBM zz FET; and so the triangles
BLMand EIF, being isosceles, and having LMB =:EFI,
and also LB — EA [by construction), they will be equal
in all respects, and consequently BM —

EF; whence
BC — AC (

- BC — CM :^ BMj -
EF, the givei)
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difference {by construction). Moreover, CEN being —
CED [by construction), CN will be = CD; and so,
CM being zz CA, ACD will be - MCN, to which add-

ing DCM, common, we have ACB — DCN - 2DCE.

Method of calculation.

Seeing EG and EH are the sine and tangent of
EIG and EKH, to the eq»uil radii EI and EK, it

will therefore be EG : EH (or EF : EC^ :: sin. EIG
(ECD):tang. EKH. But, EC : CD :: the radius

: co-sin. EC D; whence, by compounding these pro-

portions, EF : CD : : rad. x sin. ECD ; co-sin. ECD
T7trtj rad. X sin. ECD

, ^ i-r>T^NX tang. EKH : : .
—^„^ (= tangent LCD) :* co-sm. ECD ^ ^ ^

tang. EKH; from which EKL, half the complement
of EKH will be also given : then it will be as the ra-

dius : tang. EKL (: : KE : EL : : LB : EL) : : sin.

LEB(CEp) : sin. LBE (3CE); which proportions,

expressed in words, give the following Theorem.
As the difference of the sides is to the perpendicular,

so is the tangent of half the vertical angle to the tangent

of an angle; and as the radius is to the tangent of half
the complement of this angle, so is the co-sine of half the

vertical angle to the sine of half the difference of the an-

gles at the base.

rnOBLEM LXXIX,

The perpendicular, the difference of the sides, and the

difference of the angles at the base being given, to deters

mine the triangle,
CONSTRUCTION.

Q Let a triangle ABC
be constructed, by the

last prohlon, whose per-

pendicular and diffe-

rence of the sides shall

be the same with those

given, and whereof the

vertical angle ACB is

also equal to the given
diflbrence of angles :
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then upon C, as a centre, with the radius CB let an
arc be described, intersecting AB, produced, in D;
join C, D, and ACD will be the triangle required. For
CD being

-
CB, the angle CDB will also be - CBD

= A + BCA {Etic, 32. i). The method of calcula.

tion is also the same as in the preceding problem.

PROBLEM LXXX.

The perpendicular, the sum of the ttvo sides^ and the

vertical angle, being given ; to describe the triangle,

CONSTRUCTION.

Upon AB, the given sum of the two sides, erect AC
equal to the given perpendicular ; and make the angle
ACD equal to the complement of half the given an-

gle : upon AB {by Prob, 72.) let a triangle ABF be

iF

constituted, whose vertical angle AFB shall be equal
to the given one, and whereof the bisecting line Fli

(terminating in the base) shall be = DC ; then draw
CG and CH parallel to FB and FA, so shall GCH be

the triangle required.

DEMONSTRATION,

It is evident that the angle FICG is = AFB = the

given one. Moreover, if EM and EN be taken as

perpendiculars to AF and BF, they will be equal to each

other, and also equal to the given one AC, because

all the angles EFN, EFM, and ADC are equal, by
construction, and EF is likewise — CD ; whence, as

the angles AHC, AGC are i>espectively equal to EAM,
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EBN, it is evident that HC = EA, and GC -
EB^

and consequentU^, that HC + GC (
= EA + EB) -

AB. Q. E. D.

Method of calculation.

By the problem above referred to, AB : CD (EF)
:: co-sin. ADC (AFE) : tang, of an angle; which
let be denoted by Q.
Now CD : CA : : rad. : sin. ADC ; which propor-

tion being compounded with the former, we have
AB : CA : : co-sin. ADC x rad. : tang. Qx sin. ADC

co-sin. ADC x rad, . ^ ^ at^/^n . r^
• •

sin. ADC (cotangent ADC) : tang. Q.

Then, by the same problem, it will be as tang, -f Q. :

rad. : : sin. ADC : co-sin. of the difference of the an-

gles (G and H) at the base. The ahove proportions,
given in words at length, exhibit the following Theorem.

As the sum of the sides is to the perpendicular, so is

the cotangent of half the vertical angle to the tangent of
an angle ; and, as the tangent of half this angle is to the

radius, so is the sine of half the vertical angle to the co-

sineofhalf the difference of the angles at the base.

PROBLEM LXXXI.

To constitute a trapezium of a given magnitude under

four given lines.

CONSTRUCTION.

Make a right-

angle h with two
of the given lines

A6, he
;
and with

the other two

complete the tra*

pezium AbcD :

upon AD let fall

the perpendicular
cE, in which pro-
duced (if neces-

sary) take EF, so

that the rectangle
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under it, and AD, may be double the given area:

moreover, take a fourth-proportional to AD, A 6, and

be, with which, from the centre F, let an arch be de-

scribed, meeting another arch, described from D with
the radius Dc, in C

; join D, C ; and from A and C draw
the other two given lines AB, CB so as to meet; and

they will thereby form the trapezium ABCD^ as re-

quired.

DEMONSTRATION.

Draw Ac, AC, and FC ; upon AD and AB let fall

the perpendiculars CP, CQ; and make FG perpendi-
cular to PCG.

Because AD'^ + DC- + 2AD x DP {- KC\ Euc.

12. 2.) iz: AB- -f BC- + 2AB X BQ, and AD^ 4- Dc^

-f 2AD X DE
(
= Ac-) 1= A6^t+ he'' {Euc. 47. l.j

it follows, by taking these last equal quantities from
the former, that 2AD x DP — 2AD x DE
(2AD X EP)— 2AB X BQ, and consequentlv^ that

BQ : EP (FG) :: AD : AB : : BC : FC (%
construction) whence the triangles BCQ, FCG are

similar, and so CO : CG : : BC : FC : ; AD : AB
[by construction) and therefore CQ x AB zz CG x AD;
hence, by adding CP x AD to each, we have CP x AD
4- CQ X AB (

;z twice the area ABCD) = CP x AD
-f- CG X AD rz: EF X AD — twice the given area

{by constructiun). Q. E. D.

Method of calculation.

From DE (=:
— ^^ J

and EF

(— -T-y-)
the value of DP, and likewise that of the

angle ADF, will be found: then, all the sides of the

triangle DCF being known, the angle FDC will like-

wise be known
•; which, added to ADF, gives (ADC)

one of the angles of the trapezium.
It may so happen that a trapezium, having one

right-angle, cannot be constituted under the four

given lines; in which case it will be necessary
(instead of forming the trapezium AbcD) to lay
down AD fust, and in it (produced if needfiil) lo
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take DE equal to ill±_m-m-0^, that

is, equal to the altitude of a rectangle, formed on the

base 2AD, whereof the contained area is equal to the

difference of ABI^ + BCl^ andTD,"- 4- 'DCl' (which
line DE is to be set ofl'on the other side of D, when
the latter of these two quantities is the greater) : this

being done, the rest of the solution will remain the

same, as is manifest from the first and second steps ot

the demonstration ; the process, from thence to the

end, being no-ways different.

It may be further observed that the problem itself

becomes impossible, when the two circles, described

from the centres D and F, neither cut nor touch ; the

greatest limit of the area, and consequently of EF,

being when they touch each other; in which case, the

sum of the radii DC, FC becoming = DF, the point
C will fall in the line DF, and the angle DCF will

become equal to two right-angles : but the sum of the

opposite, external angles CDP and CBQ is always

equal to DCF
;
because CDP (supposing C» parallel

to AP) is =: DCw, and CBQ (
- CFG) = FCn :

hence it is evident that the limit, or the greatest area,

will be when the sum of the opposite angles is equal to

two right-angles or when the trapezium may be in-

scribed in a circle.

FINIS.

\V. Glendinn'mg, Prinier, 2j, Hation Garden, London.
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