

14.95: IP 25 C. 3

Press Bulletin Series

For The Oil And Gas Industry

STATE OF ILLINOIS DEPARTMENT OF REGISTRATION AND EDUCATION JOHN J. HALLIHAN, Director DIVISION OF THE STATE GEOLOGICAL SURVEY M. M. LEIGHTON, Chief, Urbana

No. 25

ILLINOIS PETROLEUM

July 21, 1934

Oil and Gas Development in Illinois in 1933*

BY ALFRED H. BELL, † URBANA, ILL.

(Presented before the American Institute of Mining and Metallurgical Engineers, New York Meeting February, 1934)

CONTINUED low prices and restricted markets for crude oil discouraged drilling activity in Illinois oil fields during 1933. Only 36 wells were completed in the state, the smallest number since 1904, and of these the majority were scattered wildcat wells, only 10 having been drilled in producing fields (Table 2). Production was curtailed approximately 40 per cent for the first half of the year. During July, August, and the early part of September there was no restriction on production. On Sept. 8, under the "code of fair competition for the petroleum industry," the quota of allowable production for Illinois was fixed at 12,000 bbl. per day. The state's production in 1933 was 9 per cent less than in 1932. What it would have been had there been no curtailment of production and if economic conditions had permitted a normal amount of cleaning out and repairs to wells, it is not possible to estimate, but it would no doubt have been considerably more than the actual figure. No new pools or new producing horizons were discovered in 1933, but the deepening of a Robinson sand well in Crawford County to the McClosky "sand" horizon (St. Genevieve limestone of the Lower Mississippian) resulted in a production of 3 bbl. per day (Fred Patchel, Savilla Shipman No. 5, NE. 1/4, SW. 1/4, sec. 26, T.6N., R.13W., deepened from 1122 to 1388 ft., August, 1933). Considerable parts of the Crawford County field remain to be tested to the McClosky horizon, and, owing to the rapid variations in porosity within short distances, as shown in the Lawrence County field to the south, one test may not be considered as proving or condemning any large area.

* Reprinted from Trans. A.I.M.E. (1934) 107, 205-217.

[†] Geologist and Head, Oil and Gas Division, Illinois State Geological Survey

ILLINOIS GEOLOGICAL SURVEY LIBRARY FEB 0 4 1991 The average price of Illinois crude oil in 1933, calculated from the posted prices as published in the *Oil and Gas Journal* and *Oil Weekly*, was \$0.862 per barrel. This compares with a calculated average price of \$1.032 in 1932 and 0.852 in 1931. The total value of Illinois crude oil produced in 1933 obtained by multiplying the average price (0.862) by the total production (4,227,000 bbl.) was \$3,643,674.

Of the 26 wildcat wells drilled in 1933, only one was drilled on known favorable structure. This was the Walmar Oil Company's William Pepple well No. 1, sec. 12, T.4N., R.12W., Hancock County, which tested the Warsaw anticline.¹ The lowest horizon tested was the St. Peter sandstone, and fresh water was found in the "Trenton." The total depth was 901 feet.

In the southeastern Illinois field, which has yielded 97 per cent of the state's total production to date, only seven wells were drilled. Six were oil producers having a total initial production of 32 bbl.; one was a gas producer. During 1933 this field produced 90 per cent of the state's total.

The southeastern Illinois field has produced 400,000,000 bbl. of oil and ranks fifth in total production to date in the United States. Available data indicate that probably four-fifths of the original oil is still underground, which would mean a total reserve of 1,600,000,000 bbl. Undoubtedly a substantial quantity will be recoverable by improved methods, possibly as much as 50 per cent of the amount already produced, or 200,000,000 bbl. Increasing attention is being given by the industry to improved recovery methods.

On May 12, 1933, the First Annual Petroleum Conference of Illinois, sponsored by the Illinois-Indiana Petroleum Association, the Illinois State Geological Survey, and the Illinois Chamber of Commerce, was held at Robinson. This conference was devoted to the discussion of improved recovery methods, including air and gas repressuring, and water-flooding. The results of certain studies by the State Geological Survey on these subjects have been published, and the preparation of reports for additional publications is in progress.

The existence of natural water drives in certain areas that resulted in substantial increases in the rate of production on leases located in the path of the advancing flood suggests that artificial water-flooding, such as is practiced in the Bradford field, Pennsylvania, may be applicable to parts of the southeastern Illinois oil field. However, since previously existing statutes required that fresh water be prevented from entering oil sands, new legislation was necessary before tests of artificial waterflooding could be made legally. On June 8, 1933, an amendment to the statute was enacted which permits the injection of water or other fluid into an oil sand for the purpose of recovering oil.

¹ A. H. Bell: Oil Possibilities of the Warsaw Area, Hancock County, Illinois. Ill. State Geol. Survey Press Bull. Ser., Ill. Petr. No. 24 (Dec., 1932).

Two actual tests of artificial water-flooding were begun in 1933, one in the Carlyle oil field, Clinton County, by the Ohio Oil Co. and the other in the main Crawford County field (sec. 12, T.7N., R.14W., Oblong Township) by the Tidewater Oil Co. An increased rate of production from three wells surrounding the input well has already been noted in the latter locality.

No new repressuring plants were installed in Illinois fields during 1933, but all of the existing plants continued in operation. As soon as economic conditions permit, probably there will be a considerable number of new installations. Compressers are now being installed by the Ohio Oil Co. in the Colmar-Plymouth field in McDonough County.

The figures for production by fields (Table 1) were estimated after taking into consideration the state totals as published by the Bureau of Mines, unpublished statistics on production by company and by county in the files of the Illinois State Geological Survey, for the years 1914–1926 inclusive, and estimated productions for various fields in 1932 and 1933 furnished by the Ohio Oil Co. and Illinois Pipe Line Co.

Some of the data on the Wamac field, Marion, Washington and Clinton counties, were furnished by Mr. H. A. Wheeler, Petro Oil Co., St. Louis, Mo. Data on wells and gas production in the Spanish Needle Creek and Gillespie areas were furnished by the Illinois Power and Light Corporation, Hillsboro, Ill. The figures given for maximum and minimum gravity of oil by fields (Table 1) were from a list of gravities by leases determined in November, 1925, furnished by the Illinois Pipe Line Co., and a weighted average for each field has been estimated. There has been a decrease in average gravity of Illinois oil from 33.2° A.P.I. in 1925 to 31.7° A.P.I. in 1933.

The great majority of Illinois oil wells have also produced casinghead gas and, although the gas pressure is now very low, many wells still produce some gas. In the early life of the southeastern Illinois field gas was supplied for municipal use to about 20 towns and villages in the area, but in recent years the available gas has been used only for power on the leases and for making natural-gas gasoline. It is not possible now to ascertain accurately the extent of the areas that produced casinghead gas, and accordingly the acreage productive of oil only and of oil and gas is combined in Table 1.

The total amount of natural-gas gasoline produced in Illinois to the end of 1932 was 118,902,000 gal. (U. S. Bureau of Mines statistics) and the average yield was 2.3 gal. per 1000 cu. ft. This gives a total amount of gas treated, to the end of 1932, of 51,800,000,000 cu. ft. and compares with a total of 104,586,000,000 cu. ft. of natural gas produced in Illinois for the same period. This total is supposed to include gas used for power on leases but does not include gas wasted.

The total production of natural gas in Illinois according to the definition adopted in this symposium is not known.

		End	led	Area	Proved,	Acres	Total O	il Production.	, Bbl.	1933
Line Number	Field, County	Age, Years to F of 1933	Year Abandoned	Oil + Oil and Gas	Gas	Total	To End of 1933	During 1932	During 1933	Daily Average during Nov., 1933
1	Warrenton-Borton, Edgar	27		100	0	100	25,000±	y	$730\pm$	2
$2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 3 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	Westfield (Parker Twp.), Clark, Coles	29		9,000 850 9,000 1,500	50 70 0 0	9,050 920 9,000 -1,500	x x x x	x x x x	x x x x	x x x x
6 7 8 9	Siggins (Union Twp.), Cum- berland, Clark	27		$3,580 \\ 3,135 \\ 435 \\ 855$	75 55 15 105	$3,655 \\ 3,190 \\ 450 \\ 960$	x x x x	x x x x	x x x x	x x x x x
10	York, Cumberland			310	40	350	x	x	x	x
$11 \\ 12 \\ 13 \\ 14$	Casey, Clark	27		$1,925 \\ 190 \\ 400 \\ 1,525$	55 15 0 15	$1,980 \\ 205 \\ 400 \\ 1,540$	x x x x	x x x x	x x x x	x x x x
15 16 17 18 19 20 21	Martinsville, Clark	26		$\begin{array}{c c} 710 \\ 15 \\ 275 \\ 105 \\ 170 \\ 195 \\ 5 \end{array}$	$155 \\ 20 \\ 35 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	$865 \\ 35 \\ 310 \\ 105 \\ 170 \\ 195 \\ 5 \\ 5$	x x x x x x x x x	x x x x x x x x	x x x x x x x x x x	x x x x x x x x x
$22 \\ 23 \\ 24 \\ 25 \\ 26$	North Johnson, Clark	26		1,320 1,115 160 820 215	$20 \\ 0 \\ 0 \\ 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$1,340 \\ 1,115 \\ 160 \\ 825 \\ 215$	x x x x x x	x x x x x	x x x x x	x 2 x x
$27 \\ 28 \\ 29 \\ 30 \\ 31$	South Johnson, Clark	26		1,715 185 295 1,675 845		$1,780 \\ 190 \\ 295 \\ 1,710 \\ 850$	x x x x x	x x x x x	x x x x x	x x x x x x
$32 \\ 33 \\ 34 \\ 35$	Bellair, Crawford, Jasper	26		$1,300 \\ 1,165 \\ 315 \\ 910$	5 0 0 0	$1,305 \\ 1,165 \\ 315 \\ 910$	x x x x	x x x x	x x x x	x x x x
36	Clark County Division ¹			19,960	465	20,425	50,000,000	541,000	475,000	1,500
$37 \\ 38 \\ 39 \\ 40$	Main, ⁹ Crawford	27		$35,135 \\ 340 \\ 33,795 \\ 1,000$	$515 \\ 0 \\ 515 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$35,650 \\ 340 \\ 34,310 \\ 1,000$	x x x x		x x x x x	x x x x
41	New Hebron, Crawford	24		1,350	210	1,460	x	x	x	x
42	Chapman, Crawford	19		1,045	515	1,560	x	x	x	x
43	Parker, Crawford	26		1,310	30	1,340	x	x	x	x
44	Allison-Weger, Crawford	y		1,075	20	1,095	x	x	x	x
45	Flat Rock, ¹⁰ Crawford	y		1,375	545	1,820	x	x	x	x
46	Birds, Crawford, Lawrence	x		4,370	115	4,485	x	x	x	x
47	Crawford Co. Division ⁶	27		45,655	1,945	47,600	136,000,000	1,532,000	1,471,000	4,650

TABLE 1.—Oil and Gas Production in Illinois

¹ Total of lines 1, 2, 6, 10, 11, 15, 22, 27, 32. ⁶ Total of lines 37, 41, 42, 43, 44, 45, 46. ⁹ Includes Kibbie, Oblong, Robinson and Hardinsville ¹⁰ Includes Swearingen Gas.

TABLE	1([Continued])

		End	led	Area	Proved,	Acres	Total O	il Production,	Bbl.	1933
Line Number	Field, County	Age, Years to of 1933	Year Abandoned	Oil + Oil and Gas	Gas	Total	To End of 1933	During 1932	During 1933	Daily Average during Nov., 1933
48 49 50 51 52 53 54 55	Lawrence, Lawrence and Craw- ford	27		$24,150 \\ 5,015 \\ 2,240 \\ 135 \\ 15,690 \\ 4,815 \\ 6,370 \\ 420$	$1,550 \\ 35 \\ 0 \\ 1,095 \\ 220 \\ 200 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 25,700\\ 5,050\\ 2,240\\ 1,230\\ 15,910\\ 5,015\\ 6,370\\ 420 \end{array}$	x x x x x x x x x x x x x	x x x x x x x x y	x x x x x x x x y	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
56	Lawrence County Division7	_		24,570	1,550	26,120	214,000,000	1,980,000	1,650,000	5,250
${57}$	Allendale, Wabash	21		1,660	0	1,660	$3,500,000\pm$	$240.000\pm$	220,000±	604
58	Total Southeastern Illinois Field ⁸			91,845	3,960	95,805	403,500,000	4,293,000	3,816,000	12,304
$\begin{array}{c} 59\\ 60\\ 61\\ 62\\ 63\\ 64\\ 65\\ 66\\ 67\\ 68\\ 69\\ 70\\ 71\\ 72\\ 73\\ 74\\ 75\\ \end{array}$	Colmar-Plymouth, McDon- ough, Hancock. Pike County Gas, Pike. Jacksonville Gas, Morgan. Carlinville, Macoupin. Gillespie Myen), Macoupin. Gillespie Benld Gas, Macoupin. Gillespie Benld Gas, Macoupin. Staunton, Macoupin. Litchfield, Montgomery. Collinsville, Madison. Ayers Gas, Bond. Greenville Gas, Bond. Carlyle, Clinton. Frogtown, Clinton. Sandoval, Marion. Centralia, Marion. Wamac, Marion, Clinton,	$ \begin{array}{r} 17 \\ 54 \\ 24 \\ 11 \\ 23 \\ 22 \\ 15 \\ 24 \\ 23 \\ 12 \\ \end{array} $	$\begin{array}{c} 1920\pm \\ 1925\pm \\ 1919\\ 1904\\ 1921\\ 1926\pm \end{array}$	$\begin{array}{c} 2,450\\ 0\\ 0\\ 30\\ 30\\ 0\\ 40\\ 0\\ 0\\ 100\\ 40\\ 0\\ 0\\ 915\\ 300\\ 770\\ 175\\ 250\\ \end{array}$	0 8,960 1,290 50 80 80 400 0 160 280 160 0 0 0 0 0 0 0	2,450 8,960 1,320 80 40 400 400 400 280 160 915 300 770 175 250	$0\\22,000\\715\\0\\0\\3,200,000\pm x\\2,500,000\pm x$	$\left.\begin{array}{c} 91,200\\ 0\\ 0\\ 0\\ 0\\ 1,825\\ 0\\ 0\\ 0\\ 23,712\\ 0\\ \end{array}\right\} 66,300\pm$	$\begin{array}{c} 93,900\\ 0\\ 0\\ 0\\ 1,095\\ 0\\ 0\\ 0\\ 22,427\\ 0\\ 59,800\pm \end{array}$	$\begin{array}{c} 257\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$
76 77 78	Dupo, St. Clair. Waterloo, Monroe. Sparta Gas, Randolph	5 13 45	1930 x	670 125 65	0 0 100	670 125 165	733,000 166,000	$\begin{array}{c} 117,000\\ 0\\ 0\end{array}$	$\begin{smallmatrix}150,000\\0\\0\end{smallmatrix}$	$\begin{array}{c} 400\\ 0\\ 0\end{array}$
79	Ava-Campbell Hill, Jackson	16	-	70	370	440		0	0 .	0
80	Total Illinois ¹¹			97,875	15,730	113,605	412,276,000	4,673,000	4,227,000	12,933

⁷ Total of lines 48 and 55. ⁸ Total of lines 36, 47, 56 and 57. ¹¹ Total of lines 58 to 79, inclusive.

TABLE 2.—Summary of Drilling	Operations in Illinois
(Figures in body of tabulation repres	ent number of holes.)

		С	omp	lete	l Pr	ior t	o Jan.	1, 1934			Comple	eted du	ring 193	3
		Dr	y and	d/or	Nea	ar-dr	y Hole	s	D 1	Dry a	nd/or N	lear-dry	Holes	D 1
Quarter		To	tal 1	Dept	hs,	Ft.			Produc- tive	Tota	Depths	s, Ft.		Produc- tive Wells
County	Less 1.000	1,000-2,000	2,000-3,000	3,000-4,000	4,000-5,000	5,000-6,000	Unknown	Total	Wells (For Details, See Table 1)	Less 1,000	1,000-2,000	2,000-3,000	Total	(For Details, See Table 1)
Adams. Alexander Bond. Boone. Brown. Bureau. Calhoun. Carroll. Cass. Champaign.	0 0 5 0 5 0 0 0 0 0 3	$ \begin{array}{c c} 8 \\ 3 \\ 27 \\ 2 \\ 0 \\ 8 \\ 1 \\ 2 \\ 3 \\ 11 \end{array} $	$ \begin{array}{c} 1\\0\\8\\1\\1\\2\\0\\1\\0\\0\\0\end{array} $	0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	$9 \\ 3 \\ 40 \\ 3 \\ 6 \\ 10 \\ 1 \\ 3 \\ 3 \\ 14$	$egin{array}{c} 0 \\ 0 \\ 14 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 1 0 0 0 0 0 0 0 0 0	0 0 2 0 0 0 0 0 0 0 0 0 0			

	Av Prod	verage uction,	Oil Bbl.		Gas P illions (_	Number	of Oil	and/or Ga	s Wells		
		1						pu	Durin	ng 1933		At	End of :	1933	
Line Number	Per Acre to End of 1933 ⁴	Per Acre-foot to End of 1933	Per Well Daily during Nov., 1933	To End of 1933	During 1932	During 1933	Maximum Daily during 1933	Completed to End of 1933	Completed	Abandoned	Temporarily Shut Down	Producing Oil Only or Oil and Gas	Producing Oil and Gase	Producing Gas Only	Total Producing
1	250	x	0.2	0	0	0	0	22	0	0	0	12	0	0	12
$2 \\ 3 \\ 4 \\ 5$	x x x x x	x x x x x	x x x x x	x x x x	0 0 0 0	0 0 0 0	0 0 0 0	$1,607 \\ 184 \\ 1,428 \\ 12$	3 3 0 0		0 0 0 0	382 y y y	0 0 0 0	0 0 0 0	382 y y y
6 7 8 9	x x x x	x x x x	x x x x x	x x x x x	0 0 0 0	0 0 0 0	0 0 0 0	$995 \\ 854 \\ 90 \\ 192$	0 0 0 0		0 0 0 0	919 y y y	y y y y	0 0 0 0	919 y y y
10	x	x	x	x	0	0	0	70	0		0	44	y	0	44
$11 \\ 12 \\ 13 \\ 14$	x x x x	x x x x	x x x x	x x x x	0 0 0 0	0 0 0 0	0 0 0 0	$530 \\ 41 \\ 80 \\ 319$	0 0 0 0		0 0 0 0	512 y y y	0 0 0 0	0 0 0 0	512 y y y
$15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21$	x x x x x x x x x	x x x x x x x x x x	<i>х х х х х х х х х х х </i>	x x x x x x 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0	$212 \\ 7 \\ 62 \\ 21 \\ 34 \\ 39 \\ 1$	0 0 0 0 0 0 0		0 0 0 0 0 0 0	171 y y y y y y	0 0 0 0 0 0 0	0 0 0 0 0 0	171 y y y y y y
$22 \\ 23 \\ 24 \\ 25 \\ 26$	x x x x x x	x x x x x x	x x x x x x	x 0 x x x	y y y y y	y y y y y	у У У У У	$484 \\ 296 \\ 32 \\ 177 \\ 43$	0 0 0 0 0		0 0 0 0 0	$\begin{array}{c} 430\\ y\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$	y y y y y	0 0 0 0	$\begin{array}{c} 430\\ y\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$
27 28 29 30 31	x x x x x x	x x x x x x	x x x x x x	x x x x x x	y y y y y	y y y y y	у У У У У	533 38 59 401 170	0 0 0 0		0 0 0 0	505 • y y y y	y y y y y	0 0 0 0 0	505 y y y y
32 33 34 35	x x x x x	x x x x	x x x x x	x x x x x	y y y y	у у у у	y y y y	$485 \\ 309 \\ 63 \\ 182$	0 0 0 0		0 0 0 0	$\begin{array}{c} 409 \\ y \\ y \\ y \\ y \\ y \end{array}$	0 0 0 0	0 0 0 0	409 y y y
36	2,530	80	0 4	<i>x</i>	<u>y</u>	<u>y</u>	<u>y</u>	4,938	3	10	0	3,384	0	0	3,384
$37 \\ 38 \\ 39 \\ 40$	x x x x	x x x x	x x x x x	x x x x	у у у у	y y y y	y y y y	7,309 68 7,131 108	$ \begin{array}{c} 2 \\ 0 \\ 1 \\ 1 \end{array} $	$y \\ 0 \\ y \\ x$	$\begin{array}{c} 0\\ 0\\ 0\\ x\end{array}$	5,896 y y x	$\begin{array}{c} 0\\ 0\\ 0\\ x\end{array}$	$\begin{array}{c} 0\\ 0\\ 0\\ x \end{array}$	5,896 y y
41	x	x	x	x	y	y	y	295	0	x	0	203	0	0	203
42	x	x	x	x	y	y	y	193	0	y	0	94	0	0	94
43 44	x x	x x	x x	x x	y	y	y 1	255 146	0	x x	0	226 77	0	0	226 77
44	x	x	x	x x	y y	y y	y y	280	0	x x	0	164	0	0	164
46	x	x	x		y	y	y	682	0	x	0	486	0	0	486
47	3,000	120	<i>x</i>	x	y	y	y	9,160	2	17	0	6,948	0	0	6,948
$\overline{\begin{smallmatrix} 48\\ 49 \end{smallmatrix}}$	x x	$x \cdot x$	x	x x	y y	y y	y y	4,381 1,228	1 0	x x	x x	3,438 x	y x	0 x	3,438 x

TABLE 1.—(Continued)

^b Footnotes to column headings and explanations of symbols are on page 14.

	Av Produ	erage (iction,	Dil Bbl.	Total Mil	Gas P llions C	oducti lu. Ft.	on,]	Number	of Oil a	and/or Ga	s Wells		
								pu	Durin	g 1933			End of 1	.933	
Line Number	Per Acre to End of 1933 ^b	Per Acre-foot to End of 1933	Per Well Daily during Nov., 1933	To End of 1933	During 1932	During 1933	Maximum Daily during 1933	Completed to End of 1933	Completed	Abandoned	Temporarily Shut Down	Producing Oil Only or Oil and Gas	Producing Oil and Gas ^c	Producing Gas Only	Total Producing
50 51 52 53 54 55	x x x x x x y	* * * * * * *	x x x x x x	x x x x x 0	y y y y y y 0	y y y y y 0	y y y y y 0	$473 \\ 201 \\ 2,978 \\ 820 \\ 832 \\ 54$	0 0 0 1 0	x x x x x y	x x x x x x x	x x x x x 45	x x x x x x x	x x x x x x x	x x x x x 45
56	8,850							4,435	1	36	x	3,483	y	<i>y</i>	3,483
57	2,100	105±	1.73	0	0	0	0	405	0	3	0	355	0	0	355
58	4,390		0.87	<i>x</i>	<i>y</i>	<i>y</i>	<u>y</u>	18,938	6	66		14,170	y	0	14,170
$59 \\ 60 \\ 61 \\ 62 \\ 63 \\ 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ 8$	$735 \\ 70 \\ x \\ 0 \\ x \\ 0 \\ 220 \\ x$	$35 \\ 14 \pm x \\ 0 \\ x \\ 0 \\ 0 \\ x \\ x \\ x \\ x$	0.75 0 0 0 0.75 0 0 0 0	0 x x 14.44 0 135.8 1,050 x 0		$\begin{array}{c} 0 \\ 0 \\ x \\ 0 \\ 0 \\ \pm \\ 0 \\ 6.53 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 0 \\ x \\ 0 \\ 0 \\ \pm \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 450 \\ 68 \\ 53 \\ 8 \\ 7 \\ 111 \\ 4 \\ 18 \\ 17 \\ 5 \end{array}$	0 0 0 0 0 0 0 0 0	0 0 9 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	$343 \\ 0 \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 0 0 0 0 0 0 0	0 9 0 0 0 0 0 0 0 0	$343 \\ 0 \\ y \\ 0 \\ 0 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
69 70 71 72 73 74	$0 \\ 0 \\ 3,500 \pm x \\ 3,250 \pm x \\ x$	$0 \\ 0 \\ 175 \pm x \\ 162 \pm x \\ x$	$ \begin{array}{c} 0\\ 0\\ 0\\ 0\\ y\\ y\\ y\\ y \end{array} $	x 0 0 0	y 0 0 0 0	y 0 0 0 0 0	y 0 0 0 0 0	10 4 164 12 122 22	0 0 0 0 0	0 0 0 0 0 x	0 0 0 13 x	0 98 0 40 x	0 0 0 0 0	7 0 0 0 0	$7 \\ 0 \\ 98 \\ 0 \\ 40 \\ x$
75 76 77 78 79	$1,200\pm 1,100\ 1,328\ x\ 35$		$ \begin{array}{c} 1 \pm \\ 7.0 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 x x x	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	$103 \\ 225 \\ 23 \\ 20 \\ 35$	0 0 0 0	25 15 0 0 0	0 0 0 0 0	60 57 0 0 0	0 0 0 0	0 0 0 0	60 57 0 0 0
80	4,220		0.87	x	y	y	y	20,319	9	106	y	14,772	y	7±	14,779

TABLE 1.—(Continued)

TABLE 2.—(Continued)

		Co	mplete	ed Pr	rior t	to Jan.	1, 1934	Ł		Compl	eted du	ring 193	3
		Dry a	and/or	Nea	r-dr	y Hole	8		Dry a	nd/or N	lear-dry	Holes	
<i>a</i> .		Tota	al Dep	ths, l	Ft.			Produc- tive	Tota	l Depth	s, Ft.		Produc- tive
County	Less 1,000	1,000-2,000	2,000-4,000 3,000-4,000	4,000-5,000	5,000-6,000	Unknown	Total	Wells (For Details, See Table 1)	Less 1,000	1,000-2,000	2,000-3,000	Total	Wells (For Details, See Table 1)
Christian Clark Clay Clay Clinton Coles.	1 		$\begin{array}{cccc} 1 & 0 \\ 9 & 1 \\ 6 & 0 \\ 3 & 0 \\ 6 & 0 \end{array}$	0 0 0	0 0 0 0 0	$ \begin{array}{c} 0 \\ 507 \\ 0 \\ 2 \\ 4 \end{array} $	8 862 9 94 39	0 3,330 0 180 127	0 0 0 0 1	0 1 0 0 1	0 0 0 0	0 1 0 0 2	0 3 0 0 0
Cook Crawford. Cumberland De Kalb De Witt	$\begin{array}{c c} . & 0 \\ . & 212 \\ . & 68 \\ . & 0 \\ . & 0 \end{array}$	$ \begin{array}{r} 183 \\ 261 \\ 8 \\ 8 \\ 1 \end{array} $	$egin{array}{cccc} 34 & 0 \ 3 & 0 \ 4 & 0 \ 1 & 0 \ 0 & 0 \end{array}$	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	0 0 0 0	$ \begin{array}{c} 0 \\ 914 \\ 27 \\ 0 \\ 0 \\ 0 \end{array} $	$217 \\ 1,391 \\ 107 \\ 9 \\ 1$	$0 \\ 9,544 \\ 974 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	0 0 0 0	0 7 0 0 0	0 0 0 0	0 7 0 0 0	0 3 0 0 0

	Ave Dept	rage h, Ft.	(Dil Produ at E				Lb. 1	Pressu per Sq.	ure, . In.¢			ter of Oi., ox. Avera				Gas
			N	umber of	We	lls				age at d of	A. 1	Gravit P. I. at	y 60° F.				rox. rage g 1933
Line Number	Bottoms of Productive Wells	To Top of Productive Zone	Flowing	Pumping	Gas-lift	Air-lift	Injection into Reservoir ^d	Initial	1932	1933	Maximum	Minimum	Weighted Average	Sulfur, Per Cent	Basef	B.t.u. per Cu. Ft.	Gal. Gasoline per M. Cu. Ft.
1	215	159	0	12	0	0		x	x	x	x	x	x	y			
$2 \\ 3 \\ 4 \\ 5$	$376 \\ 446 \\ 2,568$	$281 \\ 334 \\ 2,265$	0 0 0 0	$382 \\ y \\ y \\ y \\ y \\ y \\ y$	$\begin{array}{c} 0\\ 0\\ 0\\ 0\\ 0\\ 0 \end{array}$	0 0 0 0		$200\pm$ x x x	x x x x x	x x x x	38.4 y y y	28.3 y y y y	$34.0 \\ 30.0 \\ 33.5 \\ 37.0$	$egin{array}{c} y \\ y \\ y \\ y \\ y \\ y \end{array}$	M M M M	x x x x x	x x x x x
	$465 \\ 562 \\ 590$	$367 \\ 478 \\ 556$	0 0 0 0	919 y y y	0 0 0 0	0 0 0 0	A2	x x x x	x x x x	x x x x	36.9 y y y	$\begin{array}{c} 27.4\\ y\\ y\\ y\\ y\\ y\end{array}$	$\begin{array}{c} 33.0 \\ (34.0) \\ (33.6) \\ (25.7) \end{array}$	y y y y	M M M M	x x x x x	x x x x x
10	680	588	0	44	0	0		x	x	x	33.9	30.0	(30.3)	y	м	x	x
$11 \\ 12 \\ 13 \\ 14$	$358 \\ 426 \\ 505$	$263 \\ 309 \\ 444$	0 0 0 0	$512 \\ y \\ y \\ y \\ y$	0 0 0 0	0 0 0 0	2	x x x x	x x x x	x x x x	37.2 y y y	27.2 y y y	$\begin{array}{c} 29.2 \\ (31.9) \\ (30.1) \\ (33.6) \end{array}$	у у у у	M M M M	x x x x x	x x x x x
$15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21$	$\begin{array}{c} 411 \\ 511 \\ 506 \\ 1,418 \\ 1,596 \\ 2,830 \end{array}$	$255 \\ 449 \\ 477 \\ 1,340 \\ 1,553 \\ 2,708$	0 0 0 0 0 0	$\begin{array}{c} 171\\ y\\ y\end{array}$	0 0 0 0 0 0 0	0 0 0 0 0 0 0	A2	* * * * *	* * * * * *	x x x x x x x x x	$\begin{array}{c} 37.5\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$	$\begin{array}{c} 30.2\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y \end{array}$	36.8 y y (38.9) (39.6)	y y y y y y y	$egin{array}{c} \mathbf{M} & y & y & y & y & y & \mathbf{M} & y & \mathbf{M} & y & \mathbf{M} $	* * * * * * * * *	* * * * * *
$22 \\ 23 \\ 24 \\ 25 \\ 26$	$486 \\ 451 \\ 508 \\ 554$	$416 \\ 314 \\ 465 \\ 534$	0 0 0 0 0	$\begin{array}{c} 430 \\ y \end{array}$	0 0 0 0 0	0 0 0 0 0		x x x x x x x	x x x x x x x	x x x x x	36.2 y y y y	$\begin{array}{c} 27.7\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$	$\begin{array}{c} 31.0\\ y\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$	y y y y y	$\begin{array}{c} \mathbf{M} \\ y \\ y \\ y \\ y \\ y \\ y \end{array}$	x x x x x x	x x x x x x
27 28 29 30 31	549 518 570 618	$392 \\ 453 \\ 489 \\ 598$	0 0 0 0 0	$505 \\ y $	0 0 0 0 0	0 0 0 0 0		x x x x x x x	x x x x x x	x x x x x x	35.1 y y y y	$\begin{array}{c} 28.5\\ y\\ y\\ y\\ y\\ y\\ y\\ y\\ y\end{array}$	32.2 y y (28.5)	y y y y y	M y y y M	x x x x x x	x x x x x x
$32 \\ 33 \\ 34 \\ 35$	726 907 920	561 817 886	0 0 0 0	$\begin{array}{c} 409 \\ y \\ y \\ y \\ y \\ y \end{array}$	0 0 0 0	0 0 0 0	AG2	x x x x x	x x x x x	x x x x	35.6 y y y	27.3 y y y	33.7 (32.4) (37.0)	у у у у	${}^{\mathrm{M}}_{\mathrm{M}}$	x x x x x	x x x x x
36			0	3,384	0	0	G1 A7 AG13	x	x	x	39.6	25.8	33.0			x	x
$37 \\ 38 \\ 39 \\ 40$	822 960 1,416	508 900 1,337	$\begin{array}{c} 0 \\ x \\ 0 \\ 0 \\ 0 \end{array}$	5,896 x y 108	$\begin{array}{c} 0\\ x\\ y\\ 0\\ \end{array}$	$\begin{array}{c} 0 \\ x \\ x \\ 0 \end{array}$	3 X 4	$\begin{array}{r} \overline{425\pm} \\ 425\pm\\ x\\ x \end{array}$	y x y x	y x y x	$36.8 \\ y \\ 36.8 \\ x \\ x$	25.1 y 25.1 x	33.0 y 32.8 x	x x x x x	M y M x	960 x 960 x	$2.5 \\ x \\ 2.5 \\ x \\ x$
41	975	940	0	203	0	0	G2	x	x	x	35 0	24.3	30.1	x	x	x	x
42	1,015	995	0	94	0	0	AG1	x	x	x	x	x	x	x	x	x	x
43	1,025			226		0		x	x	x	x 20.4	<i>x</i>	x 20.5	x	x	x	x
44 45	930 945	912 935		77 164	0	0		x x	x x	x x	30.4 26.6	22.6	29.5 22.5	x x	x x	x x	x x
46	950	930	0	486	0	0	A7	x	x	x	34.1	26.5	31.3	x	x	x	x
47	x	x		6,948	0	0	δ	$425\pm$		y	38.6	19.6	32.5		M	960	2.5
		<u> </u>		AG11.		G15.	A24, AG						617, A3		21. W	·1.	

TABLE 1.—(Continued)

² G1, A3, AG11. G15, A24, AG20, W1. ⁴G15, A24, AG20. ⁵ G17, A31, AG21, W1.

_	Ave Dept	rage h, Ft.	(Dil Produ at E				Lb.	Pressur per Sq.	e, In.¢			ter of Oil ox. Avera				acter Gas
			N	umber of	We	lls				age at d of	A. 1	Gravit P. I. at				Ave during	rage
Line Number	Bottoms of Productive Wells	To Top of Productive Zone	Flowing	Pumping	Gas-lift	Air-lift	Injection into Reservoir ^d	Initial	1932	1933	Maximum	Minimum	Weighted Average	Sulfur, Per Cent	Base/	B.t.u. per Cu. Ft.	Gal. Gasoline per M. Cu. Ft.
$\begin{array}{r} 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \end{array}$	1,000 1,265 1,345 1,430 1,580 1,710	800 1,250 1,330 1,400 1,560 1,700	0 0 0 0 0 0 0	3,438 x x x x x x x		0 0 0 0 0 0 0	A1	$650\pm x \\ x \\ x \\ 600 \\ 650 \\ x \end{bmatrix}$	x x x x x x x x x	x x x x x x x x x x	39.3 x x x x x x x x	26.7 x x x x x x x	32.9 x x x x x x x x	* * * * * *	M x x x x x x x x	x x x x x x x x x x x	2.4 x x x x x x x x
55	1,865	1,843	0	45	0	0		600			37.3	37.3	37.3	x	<i>x</i>		<i>x</i>
56 57	1.460	1.425		3,483 355	0	0	 G1			 x	35.9	24.1	35.1				
58			-	14,170	0	0	G19 A38 AG34 W1	x	x	x	39.3	20.1	33.1	y	М	y	2.4
$59 \\ 60 \\ 61 \\ 62 \\ 63$	468 275 330 398 405	447 265 335 380 385	0 0 0 0 0	343 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0		$\begin{array}{c c} x \\ x \\ x \\ 135 \\ y \end{array}$	$\begin{bmatrix} x \\ x \\ x \\ x \\ x \\ y \end{bmatrix}$	x x x x y	x x x	x x x x	37.3 ± 27.7	x x x	y y y	x 898 x y	$x \\ 0.05 \\ x \\ y$
$ \begin{array}{r} 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ \end{array} $	670 555 491 674 1,400	$650 \\ 542 \\ 461 \\ 664 \\ 1,305$				0 0 0 0 0		x 155 145 x x x	x y x x x	x y x x x	x x x	x x x	29.2 21.7 <i>x</i>	x x x	y y x	788 x x x	y x x x
69 70 71 72 73	945 993 1,055 957 1,560	940 927 1,035 950 1,540	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $	$ \begin{array}{c} 0 \\ 0 \\ 98 \\ 0 \\ 40 \end{array} $	0 0 0 0 0	0 0 0 0 0	W3	x x x x x	y x x x x	y x x x x	$37.0 \\ y \\ 35.1$	34.2 $\frac{y}{32.7}$	$35.2 \\ 31.9 \\ 34.5$	x x x	x x x	x x	x Dry
74 75 76 77 78	$1,150 \\ 760 \\ 601 \\ 460 \\ 857$	${ \begin{smallmatrix} 1,130\\720\\551\\410\\850 \end{smallmatrix} }$	0 0 0 0 0	$\begin{array}{c} x\\60\\57\\0\\0\end{array}$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} $			x x x x x x	x x x x x x	x x x x x x	$35.0 \\ 30.8 \\ y \\ 30.1 \\ x$	$31.0 \\ 29.3 \\ y \\ 29.5 \\ x$	$32.3 \\ 30.2 \\ 32.7 \\ 30 0 \\ x$	x x x x x x x	x P x x x	x	x
79	798	780	0	0	0	0		115	x	<i>x</i>	x	_ <i>x</i>	x	x	<i>x</i>	<i>x</i>	
80			0	14,772	0	0	G19 A38 AG34 W4										

TABLE 1.—(Continued)

d, l Footnotes to column headings are on page 14. Following are special definitions of d and l for application to this table.
^d W, water; G, gas; A, air; AG, air-gas mixture. Numbers in this column indicate numbers of injection wells.
^t All gravities given (except those in parentheses) were from data for the year 1925 furnished by the Illinois Pipe Line Co. Gravities in parentheses are for particular samples; see Illinois State Geol. Survey Bull. 54 Table 3. The values have been converted from Baumé to A.P.I. gravities.

		ducing Rock		-(001				Deepest Zana	Teated
	rio	ducing Rock					and/or to Ene	Deepest Zone To End of 1	1933
Line Number	Name	Ageg	Character ^h	Porosityi	Net Thickness, Average Ft.	Structurei	Number of Dry and/or Near-dry Holes to End of 1933	Name	Depth of Hole, Ft.
1	Unnamed	Pen	s	Por	x	ML	0	Pen.	715
$2 \\ 3 \\ 4 \\ 5$	See below Shallow gas sand Westfield lime Trenton	Pen Mis L Ord	S L L	Por Por, Cav Por	36 x x	D D D D	99	Trenton (Ord)	2,918
6 7 8 9	See below First Siggins sand Second and Third Siggins sand Lower Siggins sand	Pen Pen Pen	s s	Por Por Por	x x x	D D D D	28	Dev. limestone	2,010
10	York sand	Pen	s	Por	x	AM	2		960
11 12 13 14	See below Upper gas sand Lower gas sand Casey sand	Pen Pen Pen	8 8 8	Por Por Por	x x x	AM AM AM AM	$20 \\ 5 \\ 12 \\ 20$	Lower Miss.	808
$ \begin{array}{r} 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ \end{array} $	See below Shallow sands Casey sand Martinsville "sand" Capper "Niagaran" Trenton	Pen Pen Mis L Mis L Dev Ord	S S L S L L	Por Por Por Por Por Por	x x x x x x x	D D D D D D D	5 1 5 1 3 1	Trenton (Ord)	2,830
$22 \\ 23 \\ 24 \\ 25 \\ 26$	See below Claypool sand Shallow Casey Upper Partlow	Pen Pen Pen Pen	8 8 8 8 8	Por Por Por Por	x x x x	AM AM AM AM AM	$ \begin{array}{r} 16 \\ 12 \\ 4 \\ 12 \\ 16 \\ 16 \\ \end{array} $	Mis	965
$27 \\ 28 \\ 29 \\ 30 \\ 31$	See below Claypool sand Casey Upper Partlow Lower Partlow	Pen Pen Pen Pen	8 8 8 8 8	Por Por Po r Por	x x x x	AM AM AM AM AM	$29 \\ 3 \\ 11 \\ 29 \\ 10$	Mis	1,160
32 33 34 35	See below "500-ft sand" "800-ft sand" "900-ft sand"	Pen Pen Mis U	555	Por Por Por	x x x	AM AM AM AM	$\begin{array}{c}14\\14\\3\\12\end{array}$	Lower Mis	1,471
36					$33 \pm$		213		
$37 \\ 38 \\ 39 \\ 40$	See below Shallow sand Robinson sand Oblong	Pen Pen Mis	S S S or L	Por Por Por	$x^x_{25\pm}x^x_x$	ML ML A, ML	$200 \pm x \\ 167 \\ 23$	Trenton Trenton Miss	4,620 4,620 1,479
41	Robinson sand	Pen	s	Por	x	ML	5	L. Miss	2,056
42	Robinson sand	Pen	s	Por	x	ML	10	Miss	2,279
43	Robinson sand	Pen	s	Por	x	ML	10	Pen?	1,127
44	Robinson sand	Pen	s	Por	x	ML	6	Pen	1,041
45	Robinson (Flat Rock)	Pen	s	Por	x	ML	8	Pen	1,032
46	Robinson sand	Pen	S	Por	<i>x</i>	ML	12	L. Miss	1,731
47	Robinson-Oblong-Shallow	Pen, Mis	S	Por	$25\pm$	ML	251	Trenton	4,620
$\begin{array}{r} 48 \\ 49 \\ 50 \\ 51 \\ 52 \\ 53 \\ 54 \end{array}$	See below Bridgeport sand Buchanan "Gas" sand Kirkwood Tracy McClosky	Pen Mis U Mis U Mis U Mis U Mis L	SSSSL	Por Por Por Por Por Por	40 15 15 30 20 10	A A A A A A A	$83 \\ 19 \\ 3 \\ 5 \\ 10 \\ 11 \\ 23$	St. Peter	5,190

TABLE 1.—(Continued)

	Pro	ducing Rock					und/or to End	Deepest Zone To End of 1	Tested 933
Linc Number	Name	Age ^g	Characte- ^h	Porosityi	Net Thickness, Average Ft.	Structure	Number of Dry and/or Near-dry Holes to End of 1933	Name	Depth of Hole, Ft.
ວຸວ	Kirkwood	Mis U	s	Por	22	ML	0	Miss	1,900
56					}		83		
57	Biehl sand	Pen	S	Por	$35\pm$	AM	43	Miss. (St. Gen.)	2,228
58							590		
$59 \\ 60 \\ 61 \\ 62 \\ 63$	Hoing sand, Devonian LS Niagaran Gas sand Unnamed Unnamed	Dev Sil Pen, Mis Pen Pen	S, H, LS L S, H, SL S S	Por Por Por Por Por	$21 \\ 10 \\ 5 \\ x \\ x \\ x$	A A ML A D	0 0 8 0 1	Trenton (Ord) St. Peter Trenton Pen Pen	805 893 1,390 410 495
$ \begin{array}{r} 64 \\ 65 \\ 66 \\ 67 \\ 68 \\ \end{array} $	Unnamed Unnamed Unnamed Trenton	Pen Pen Pen Ord	8 8 8 8 8 1	Por Por Por Por Por	x x x 20	T A D ML	9 0 0 0 0	Trenton Pen Trenton Pen Trenton	2,560 575 2,371 681 1,500
69 70 71 72 73	Unnamed Lindley Carlyle Garlyle Benoist	Mis U Mis U Mis U Mis U Mis U	88888	Por Por Por Por Por	$5\\66\\20\\7\\20\pm$	A A D D	0 0 17 0 7	L. Mis Mis Sil Carlyle y Mis	$^{1,150}_{\substack{1,065\\2,620\\962\pm\\1,732}}$
74 75 76 77 78	Dykstra, Wilson, Benoist Petro Trenton Trenton Sparta gas sand	Pen, Mis U Pen Ord Ord Mis U	S S L L S	Por Por Por, Cav Por Por Por	$20 \\ 20 \\ 50 \\ 50 \\ 7 $	D, ML D A A D		L. Mis Benoist Trenton Trenton U. Mis	$^{1,779}_{1,484}_{819}_{845}_{985}$
79	Unnamed	Mis U	s	Por	18	A	y	Dev	2,530
80							661±		

TABLE 1.—(Continued)

TABLE 2.—(Continued)

		C	Com	plete	d P	rior	to Jan.	1, 1934	1		Compl	eted du	ring 193	33
		Dry	ano	ł/or	Nea	ar-dr	y Hole	s		Dry a	nd/or N	lear-dry	Holes	
Questio		To	tal 1	Dept	hs,	Ft.			Produc- tive Wells	Tota	l Depth	s, Ft.		Produc- tive
County	Less 1,000	1,000-2,000	2,000-3,000	3.000 - 4,000	4,000-5,000	5,000-6,000	Unknown	Total	(For Details, See Table 1)	Less 1,000	1,000-2,000	2,000-3,000	- Total Wells (For Details, See Table 1)	
Douglas Du Page Edgar Edwards Edmands	11 0 8 0 1	7 7 6 7 5	$ \begin{array}{c} 1 \\ 14 \\ 4 \\ 3 \\ 1 \end{array} $	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	19 21 18 10 7	$ \begin{array}{c} 0 \\ 0 \\ 22 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0
Fayette. Franklin Fulton. Gallitin Greene. Grundy.	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 1 \\ 0 \\ 0 \end{array} $	8 0 11 14 5 4	3 1 3 1 0 1	$ \begin{array}{c} 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 0 \end{array} $	0 0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	$ \begin{array}{c} 11 \\ 16 \\ 18 \\ 5 \\ 5 \end{array} $	0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0
Hamilton Hancock Hardin Henderson Henry	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 2 \end{array} $	$2 \\ 3 \\ 1 \\ 2 \\ 17$	$ \begin{array}{c} 1 \\ 0 \\ 0 \\ 0 \\ 3 \end{array} $	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	$3\\3\\1\\2\\22$	$\begin{smallmatrix}&0\\17\\0\\0\\0\\0\end{smallmatrix}$	0 1 0 0 0	0 0 0 0 0	0 0 0 0 0	0 1 0 0 0	0 0 0 0 0

								1, 1934						3
		Dry	and	/or N	lear-	-dry	Holes		Produc-					
County	Total Depths, Ft.								tive Wells	Total Depths, Ft.				Produc- tive
county	Less 1,000	1,000-2,000	2,000-3,000	3,000 4,000 4 000 5 000	4,000-0,000	5,000-6,000	Unknown		(For Details, See Table 1)	Less $1,000$	1,000-2,000	2,000-3,000	Total	Wells (For Details, See Table 1)
Iroquois. Jackson. Jackson. Jasper. Jefferson. Jefferson. Jersey. Jo Daviess. Johnson. Kane. Kankakee. Kendall. Knox. Lake. La Salle. Lawrence. Lee. Livingston. McDonough. McHenry. McLean. Macon. McHenry. McLean. Macon.		$\begin{array}{c} 4\\ 4\\ 32\\ 11\\ 7\\ 2\\ 2\\ 2\\ 33\\ 10\\ 4\\ 4\\ 1\\ 1\\ 10\\ 27\\ 79\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9\\ 9$	$\begin{array}{c} 000^{\circ} \\ 000^{\circ} \\ 0022250 \\ 021100 \\ 003777691 \\ 3113227 \\ 40400 \\ 011201 \\ 20010 \\ 01201 \\ 200010 \\ 0110000 \\ 4006220 \\ 0002202 \\ 4001020 \\ 02205 \\ 000724 \\ 5466 \\ 000724 \\ 5466 \\ 000724 \\ 5466 \\ 000724 \\ 5466 \\ 000724$	$\begin{array}{c} 000^{\circ} \\ 000^{\circ} \\ 0 \\ 000^{\circ} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Output 0 <td>$2 \\ 4 \\ 7 \\ 12 \\ 324 \\ 4 \\ 18 \\ 5 \\ 6 \\ 6 \\ 6 \end{bmatrix}$</td> <td>$\begin{array}{c} {\rm Table 1} \\ \hline \\ 0 \\ 355 \\ 177 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$</td> <td></td> <td></td> <td>$\begin{smallmatrix} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td> <td>$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td> <td>See Table 1) 0 0</td>	$2 \\ 4 \\ 7 \\ 12 \\ 324 \\ 4 \\ 18 \\ 5 \\ 6 \\ 6 \\ 6 \end{bmatrix}$	$\begin{array}{c} {\rm Table 1} \\ \hline \\ 0 \\ 355 \\ 177 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$			$\begin{smallmatrix} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	See Table 1) 0 0
Will. Williamson	. 0		6 0	0 (0	0	0	6	0	Ō	0	0	0	Ŏ
Winnebago Woodford	0	1	$ \begin{bmatrix} 5 & 1 \\ 3 & 2 \\ - & - \\ \end{bmatrix} $	0	0 0	0	0			0	0	0	0	0
Total	. 941	1,65	8 294	16	1	2	1,655	4,567	20,319	9	15	3	26	10

TABLE 2.—(Continued)

	Total	Per Day
January	297	10
February	263	9
March	314	11
April	284	9
May	313	11
June	357	12
July	404	14
August	411	14
September	412	14
October	406	14
November	388	13
December	378	13
Total	4227	11.6
Year 1932	4673	12.8

TABLE 3.—Production of Crude Oil in Illinois in 1933 by Months^a Thousands of Barrels

^a U. S. Bureau of Mines.

The number of natural gasoline plants operating in Illinois was 79 on Jan. 1, 1932, all being of the compression type. (U. S. Bureau of Mines *Inf. Circ.* 6635.) A number of these plants are now shut down or converted into repressuring plants. Approximately 45 are now in operation to produce natural gasoline.

The oil and gas pools of Illinois are listed in Table 1 in geographical order from north to south, except that the southeastern Illinois field is separated from the remainder of the state and appears first.

Chapter IV. Production

Introduction

BY FRANK A. HERALD,* FORT WORTH, TEXAS

THROUGH the generous cooperation of the authors of the papers in this chapter, a great wealth of fundamental data is being made available. The same plan of securing and submitting data will be carried forward next year, with the hope of making a nearer approach to complete presentation of the data contemplated in the plan.

In order to conserve space, we are printing below such footnotes as have general application to Table 1 in the papers in this chapter:

FOOTNOTES TO COLUMN HEADINGS

Table I

^a In areas where both oil and gas are produced, unless gas is marketed outside the field, such areas are included in column headed "Oil." Manufacture of casinghead gasoline and carbon black is interpreted as outside marketing of gas.

^b Production per acre is determined by dividing into the number of barrels of oil the sum of the number of acres assigned to "Oil" plus such number of acres of the total assigned to "Oil and gas" as represents the portion thereof occupied by oil.

^c Wells producing both oil and gas are classified as "Producing oil only" unless gas from them is marketed off the lease.

^d W, water; G, gas; A, air.

* Bottom-hole pressures are preceded by "e." All other figures represent pressures at casinghead with well closed.

IP, paraffin; A, asphalt; M, mixed.

^o Cam, Cambrian; Ord, Ordovician; Sil, Silurian; Dev, Devonian; Mis, Mississippian; MisL, Lower Mississippian; MisU, Upper Mississippian; Pen, Pennsylvanian; Per, Permian; Tri, Triassic; Jur, Jurassic; CreL, Lower Cretaceous; CreU, Upper Cretaceous; Eoc, Eocene; Olig, Oligocene; Mio, Miocene; Pli, Pliocene.

^h S, sandstone; SH, sandstone, shaly; Ss, soft sand; H, shale; L, limestone; LS, limestone, sandy; C, chalk; A, anhydrite; D, dolomite; Da, arkosic dolomite; GW, granite wash; P, serpentine.

* Figures are entered only for fields where the reservoir rock is of pore type. Figures represent ratio of pore space to total volume of net reservoir rock expressed in per cent. "Por" indicates that the reservoir rock is of pore type but said ratio is not known by the author. "Cav" indicates that the reservoir rock is of cavernous type; "Fis," fissure type.

i A, anticline; AF, anticline with faulting as important feature; Af, anticline with faulting as minor feature; AM, accumulation due to both anticlinal and monoclinal structure; H, strata are horizontal or near horizontal; MF, monocline-fault; MU, monocline-unconformity; ML, monocline-lens; MC, monocline with accumulation due to change in character of stratum; MI, monocline with accumulation against igneous barrier; MUP, monocline with accumulation due to sealing at outcrop by asphalt; D, dome; D, salt dome; T, terrace; TF, terrace with faulting as important feature; N, nose; S, syncline.

^k Information will be found in text as indicated by symbols; A, name of author, other than above, who has compiled the data on the particular field; C, chemical treatment of wells; G, gas-oil ratios; P, proration; U, unit operation; R, references; W, water; O, other information.

* Consulting Petroleum Geologist and Engineer; Vice-chairman for Production, A. I. M. E. Petroleum Division, 1933 and 1934.

INTRODUCTION

INTERPRETATIONS

The following paragraphs from my Circular to Authors, dated July 7, 1933, will facilitate a proper interpretation of the data presented by the various authors.

As to each space in the tabulation, it is either (1) not applicable, (2) the proper entry is not determinable, (3) the proper entry is determinable, but not determinable from data available to the author, (4) the proper entry is determinable by the author. In spaces not applicable, the author will please draw horizontal lines; in spaces where the proper entries are not determinable, the author will please insert x; in spaces where the proper entries are determinable but not determinable from data available to the author, the author will please insert y; in spaces where the proper entries are determinable by the author he will, of course, make such entries. Generally, y implies a hope that in some future year a definite figure will be available.

Inability to determine precisely the correct entry for a particular space should not lead the author to insert merely y. Contributions of great value may be made by the • author in many cases where entries are not subject to precise determination. In such cases the author should use his good judgment and make the best entry possible under the circumstances. For many spaces, the correct entries represent the opinion of the author (for example, "Area Proved") and in such cases the entries need not be hedged to such extent as in cases where the quantities are definite yet can be ascertained only approximately by the author.

In cases under definite headings but where figures are only approximate, the author may use x. For example, if the total production of a field is known to be between 1,800,000 and 1,850,000, the author may report 1,8xx,xxx; or if the production is between 1,850,000 and 1,900,000, the author may report 1,9xx,xxx.

Where a numeral is immediately to the left of x or y, such numeral represents the nearest known number in that position.

As to quantity of gas produced from many fields the question will arise as to whether the figures should include merely the gas marketed or should include also estimates of gas used in operations and gas wasted. Although rough approximations may be involved, our figures should represent as nearly as possible the total quantity of gas removed from the reservoir.

While we have not provided a column for showing the thickness of the productive zone, generally the difference between average depth to bottoms of productive wells and average depth to top of productive zone will represent approximately the average thickness of the productive zone. For fields where this is not true because of unusually high dips, or for other reasons, it is suggested that the authors indicate in their texts the approximate average thickness of the productive zone.

The figure representing net thickness of producing rock should correspond to the total of the net portions of the producing zone which actually yield oil into the drill hole. It is recognized that for some fields the authors can make only rough guesses—so rough that figures would be of no value. In such cases the authors should enter either x or y, whichever is more appropriate. Production per acre-foot will have to be treated, of course, in the same manner for the corresponding fields.

Please note that the heading "Number of Dry and/or Near-dry Holes" is intended to cover only such holes as are within the limits of the defined fields. The holes entered here will be distributed in Table 2 by counties and by depths.

.

41 1. 1. 1000 1. 1. 1. 1. 1. 1. 1. 1.

a there are