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Roger Koenker
and

Gilbert Bassett

1, Introduction

When Gauss discovered least-squares in the twilight of the 18tn

century there were already several well-established proposals for

estimating bivariate linear models. Perhaps the best known of these

"precursors of least-squares" is the proposal of R.oger Boscovich in

1757 to minimize the sum of absolute residuals subject to the constraint

that the mean residual is zero.

Boscovich's proposal attracted the attention of Thomas Simpson, a

leading English I8th century analyst, who provided a partial solution

2 . . .

to the problem of computing the Boscovich estimate. Subsequently, in

1799 Laplace completed characterized the solution of the bivariate com-

3 —

.

putational problem as a weighted median with weights jx. - x | of the

pairwise slopes s. = (y. - y)/(x. - x) , i = 1,2,. ..,n.

After a long hiatus, Edgeworth (1887) revived the idea of the

Boscovich estimator calling it a "remarkable hybrid between the Method

of Least Squares and the Method of Situation ," the latter being

Laplace's rather vague term for I methods. In the next section we

develop an asymptotic theory of the Boscovich estimator for the general

linear model and compare its asymptotic behavior with that of some. of

its better known, but less venerable competitors. The concluding sec-

tion suggests some possible applications of the theory to diagnostic

testing and prediction problems.
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2. Asymptotic Theory of the Boscovich Estimator

We will consider the classical linear model

P

(2.1) y. = Z x. .S . + u. = x.g + u.

j=l 1J J 1 1 1

where u. : i = l,...,n,... are independent with common distribution

function F( * ) , satisfying F(l/2) =0, £u = y, and having density f

which is continuous and strictly positive at and y. The design will

be assumed to have an intercept: explicitly x = 1 for all j, and to

satisfy the usual condition,

(2.2) lim - X'X + D
n

n->-«>

for a positive definite matrix D. The objective function of the

Boscovich estimator may be expressed in Lagrangian form as,

(2.3) Z[ |y - x.b| + X(y
i

- x.b)J.

Reparameterizing, set

6
Q

= /n (X - X
Q

)

6
1

= /n" (b - 8 - ye
x

)

P
where ej = (1,0,..., 0) e R , and X = 2F(y) - 1. Then (2.3) becomes,

(2.4) R(6) = Zlu. - x.SJSn -pi + (X n + 5 n//n)(u. - x.Sj/ri - u )'i ll ' l il

which we study employing the methods of Ruppert and Carroll (1980) and

Jureckova (1977). The gradient of R is,



and

,
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/ Z [u. - x. 5//n - \x]

g(5) = VR(6) = ~
/n

\

\-Z[sgn(u. - x.6 //a - u) + \ + 5 //rTjx.

Eg(<$) = —
/n

-E x.o //n

-Z[l - 2F(x.5 //n + y) + X + 6 //njx..

It is easily shown under our conditions on F that Eg(o) has a unique

root at 6 = which following Jureckova (1977) implies that <5 solving

P P
(2.3) is (1) and hence 3 - jie.. and X -> X . Now expanding F

around 5 = and setting cj = 2f(y), yields,

-x
/ 6,

Eg(5) =

»D/ \ 5
X /

+ o (1)
P

And using the methods of Ruppert and Carroll (1980) we have for fixed

M >

sup !lg(5) - g(0) - Eg(<5) + Eg(0)!l = o (1)

II 5 II <M P

and since g(o) = o (1) and Eg(0) = we have that
P

IEg(5
n

) + g(0) - o (1)
P

Now,
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V(g(0)) = V
1_

/n

/ E(u, - y)

-£[sgn(u. - y) + 2F(y) - ljx.

G(y)x

G(y)x' H( M )D

where G(y) = E|u - u|, and H(y) = 4(1 - F(y))F(y). Condition 2.2 and

the iid assumption on the errors implies that the summands of g(5)

satisfy the Lindeberg condition, and thus 6 converges in distribution

to a p+1 variate normal distribution with mean vector 0, and covariance

matrix

-x \

~1

-x wD

Gx \ /

(G + uo
2
)e'

-, -1
-x

Gx' HD / \ -x f

ooD

H + 2wG + co a (G + too )e|

-2 -1
u H(D

"
Ej^) + a'

where E denotes a pxp matrix with 1 in the (1 ,l)-element and zeros

elsewhere.

To interpret the result, consider first the symmetric case u = 0,

so
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03 = 0)

Q
= 2f(0)

H(u) = 4(1 - F(0))F(0) = 1

and we have

• n(2 - 6) + N(0, u
2
(D

L
- E

1
) + a E.^

Recall that the unconstrained £ estimator under tnose conditions

-2 -1
is asymptotically normal with covariance matrix w D . See Bassett

and Koenker (1978) for details. Thus, the asymptotic theory of the

Boscovich estimator, 8, in the symmetric case, is identical to that of

the ususal £ estimator except that the asymptotic variance of the

2 -2
intercept is a , the variance of F, instead of u , the asymptotic

variance of the normalized sample median from F. This seems to vindi-

date Edgeworth's remark, about the Boscovich estimator as a "remarkable

hybrid" between £ and £ methods.

In asymmetric cases 8 -> 6 - ye so the regression surface is

shifted to the conditional expectation of y rather than its conditional

median as for the unconstrained £ estimator. Secondly, the mean of

the lagrangian is non-zero in the asymmetric case; thus a test for

symmetry based on the lagrange multiplier is possible. The covariance

matrix of /n(3 - 8 - lie ) is fundamentally the same as in the simple

£ -case except that the scale parameter on the covariance matrix of the

-2 -2
slope parameters is (2f(y)) 4(1 - F(y))F(y) instead of (2f(0))

3. Applications

There are two applications of the foregoing theory which we would

like to discuss briefly. The first is a test of symmetry of the error
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distribution in linear models which might be used as a diagnostic for

I regression. The second is an application to prediction problems.

Consider the null hypothesis, H : u = 0, which given the inter-

cept in the linear model is equivalent to Hi: |j
= F (1/2) and repre-

sents a salient necessary condition for symmetry of the errors. If we

consider local alternatives of the form

then a test of JdL is available using the test statistic

A

T = /nA//Q +
D

N(v,l)

2 2 —
where Q = H + 2wG + u a and the parameter, v, takes the form, n //Q.

Unfortunately, while finding a consistent estimator of Q is quite

easy—one could use residuals from the £ -regression, or the empirical

distribution function proposed in Bassett and Koenker (1982)—a reason-

able estimate for small to modest size samples seems problematic.

A second, and perhaps more promising application of the Boscovich

estimator is to prediction problems for linear models. A possible

objection to I methods for prediction is their failure to predict the

conditional expectation of the response variable in asymmetric error

situations. While a reasonable argument might be made for conditional

median predictions, strict adherence to quadratic loss, for example,

dictates prediction of conditional expectations. Nevertheless, to pro-

tect one's self against the consequences of heavy-tailed errors, one

might prefer an estimation method which achieved median precision for
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the slope parameters, while sacrificing this precision for the inter-

cept to remove the median bias effect* This is, in effect, what the

3oscovich estimator achieves. It is easy to construct examples for

4
which it is preferred to both its I and I competitors.

Finally, we might add that nothing we have done depends crucially

on the form of the Boscovicn estimator and could easily be extended Co

problems of the general form,

min Ep(y. - x.b) - \^(y. - x.b).
bslR

1 1 1 X 1

for p and $ corresponding to any plausible m-estimators

.
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Footnotes

We begin on a note of controversy. See Plackett (1972) and Stigler

(1981) for discussions of the least-squares priority debate between

Gauss and Legendre

.

2
Stigler (1984) offers a fascinating glimpse of the Boscovich-

Simpon interchange, and describes an unpublished (1760) fragment in

which Simpson develops his approach to the Boscovich problem. See

Harter (1974) and Stigler (1973) for further background. •
-

3
The term "weighted median" is apparently due to Edgeworth. Given

an ordered sample s.,...,s , and associated weights, w, ,...,w , theIn In
J n

weighted median is simply s such that m = min fj
|

2 |w.
j
> E jw. |/2}.

i=l i=l

4
Take D = I , x' = (1,1) so x'D~

1
x = 2. We need F(y)(l - F( u ))/f(u

2
)

2
< a^(F)* This is satisfied for the Pareto distribution with parameter

a = 3, for which F(u) = 1 - u~
a

= 19/27, f(y) = 3u
_t+

= 16/27, p = 3/2,

„
2 -i.
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