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INTRODUCTION.

The well-known work of Clebsch and Gordon on the Abelian Functions

assumes that the fundamental curve

f(xy)=
is such that only two of the values of y permute at each branch point, and that

the multiple points are either cusps or multiple points with distinct tangents.

There exists, however, a large class of curves included in the form

y™—G(a?)=
(where G(x) is a rational function of x) which violate both these hypotheses.

They may, it is true, be made to satisfy these hypotheses by subjecting them to

a set of bi-rational transformations, but in the process they are deprived of all

their simplicity.

The purpose of this paper is to make a direct investigation of the integrals

associated with these curves and at the same time retain their characteristic

simplicity of form.

I desire here to express my gratitude and my sincere appreciation of the

great kindness and assistance of Professor Craig and of Professor Franklin, not

only in the preparation of this paper, but throughout my entire residence at

the Johns Hopkins University.

I.

Bi-rational Transformation of the Curve y
m— G(x)=zO.

Consider the algebraic equation

*,-— G(aO= 0,
and write it in the form

*
m
-!t)=

o > (1)

where Bg (x) and B (x) are rational entire functions of x of degree q and r



respectively. On this form Osgood
* has made the following reduction. Put

y' «'

and (1) becomes

y
,mBr (aft)

— t
m + r-<iB

q (a/Q= .

Put now
t=zaxf + bt' V=l]

and we have

y>™Br(x')
—

(ax/+ b) "+'-«22ff (a/)=: . (2)

Again, let

RrW
and we have

y"
m-\Br (x')\'-'Bm + r ^)= 0;

or, grouping together such factors of the product

as occur to the mth degree,

y"
m— {Bl (x')\

mBmir+1). mi (*)= 0.

If finally we put

and drop the accents, we have

y
m—Bm{v + 1) (x)=0, (3)

where v is an integer >0.
This is Osgood's reduction. Examination of (2) will show, however, that

when

the function Bm + r (a/)
is no longer entire, and a different reduction must be

made for this form. The successive transformations

y»'
' -Rq {x')'

give us the form

or as before, if

y
m-Bml,_ 1) (x)= 0, (4)

*
Dissertation, Gottingen, 1890.



where fi
is an integer ]> 1. All possible curves of the form (1) are therefore

reduced by bi-rational transformation to the form

y
m— Bmn (x)= 0. »>0. (5)

The important things to note are : 1. That the degree of the polynomial
R is a multiple of the exponent of y, and 2. that not more than m— 1 of the

linear factors ofR can coincide.

II.

The Cueve y
m— Rmn (x)= 0. Its Genus. Its Multiple Points and

their Equivalent Number op Double Points and Cusps.

We write the curve (5) in the form

y
m—

(x
— a

1)(x
— a2)

. . . {x
— amn )

—
0, (6)

where the a's are real or imaginary constants not more than m— 1 of which

can be equal. These a's are all branch points of the function, and around

each of them all the m values of y permute in one or more cycles, according

as the number of coincident a's is or is not prime to m. Moreover, since the

a's are mn in number, it follows that the point infinity is not a branch point of

the function.*

Introducing homogeneous co-ordinates, we have

iz=mn

f=zmn -m
y
m
—Y[(x

— a
iz)= 0; (7)

and from this form we see at once that no term is of degree, in x and z jointly,

less than m(n— 1); i. e., the curve has at x= z-=zO an m(n— l)-ple point,

whose tangents, as may easily be seen, are all coincident.

Again, the curve (7) has no other multiple points except such as arise from

the coincidence of two or more a's. For the necessary and sufficient conditions

that the point 0/3/2/ shall be a double point, and therefore the necessary con-

ditions that it be a multiple point of higher order, are

J-./VyV)
= 0,

|/(
!B'y*')=o.

*
Forsyth. Theory of Functions, p. 160.



These three conditions are equivalent to the two following,

2/m(n-l)-iym_.Q j

i= mn

^(x
— a

1z)(x
— a2z) .... (x

— a
i_ 1z)(x-—ai^iz) .... (x

— amnz) == ,

i= l

which can be satisfied only by x'zziz'= (the multiple point at infinity), or

when, in connection with an identity of one or more other a's with a we have

x!= a^.
If then the a's are all distinct, the curve will have only the one multiple

point x= z z=
,
and its genus* will be

(mn— l)(mn— 2) ™ ,QX
2>=

v

^
;— #, (8)

where E denotes the number of double points and cusps to which the

m(n— 1 )-ple point is equivalent. The coincidence of the tangents at this

multiple point makes the ordinary relation, "A &-ple point is equivalent to

J& (k
—

1) double points," invalid ;
and we must seek other means for the

evaluation of E.

Assume all the a's to be distinct. The function has then mn branch points

at each of which all the values of y permute in a single cycle, and these are the

only branch points. The genus of the curve is therefore

(m— 1) (mn)
— 2m + 2 (m— 1) (mn— 2) ,Q >.P— 2

~~
2

' { }

and we have

E= m(mn— 2)(n— 1)
^ ^

When, however, some of the a's coincide, the resulting multiple points
have common tangents, the formula \h (k

—
1) again fails, and the method

above employed gives us only the total number of double points and cusps to

which the two multiple points are equivalent. We must accordingly make a

direct investigation of these points, and determine whether the number of

double points and cusps to which they are equivalent is variable with the a's.

Making y= the line at infinity, and returning to the non-homogene-
ous form, the equation of the curve becomes

vm(n— 1)—
It (x

— a
(z)= 0. (11)

*The mathematical faculty of the Johns Hopkins University have agreed to use the

term "genus" in place of "deficiency."



The multiple point is now at the origin, and the line zz=0 is the common

tangent. For the evaluation of the multiple point we will follow the method

introduced by Cayley,* and form by Newton'sf method the expansion for each

branch in the neighborhood of the origin,

z=zAxa +Bx^ + ,

where A, B, . . . . are constants and

i<«</3<r<—
To determine A and a we substitute in (11)

z z= Axa
,

which gives us the form,

Jm(n-l) x*m(n-l)_ xmn _|_ AZ (d^ Xmn~ l + a— A2Z (a^) &>*-*+**+. § § >

_> Q .

The term xmn has its exponent independent of a
,
and none of the following

exponents can be made equal to it so long as we have «^>1. Therefore we
must have

am(n— 1)
—

mn,
n

n— 1

and
Ip-rri

Am*-l*=zl M A^e^^K p=zt,2,&, m(n— 1) .

The curve has evidently m(n— 1) branches corresponding tothem(n— 1)

values of A. For the farther development of any branch we assume

2p7ri n

z z=z em (n— 1
> xn— i + Bx$

,

and again substitute in (11). The result will be

Xmn+ m(n— 1) B&^^) X^l
[m{n ~ l) ~ l] + fi

+. . . . + Bm{n- 1] X^{n-\)_ xmn

+ Z{a i)\J^-^) xmn - l+^rx -\-Bx
mn- l

±P\ = 0.

Now the term

Z{ai)e^{n-\) xmn
- 1+^r1

has its exponent independent of ft and none of the following exponents can be

made equal to it so long as
/9 ^> ——— ^> 1

; and the least of the preceding expo-

* Collected Mathematical Papers, Vol. V, p. 520.

t As given by Salmon, Higher Plane Curves, p. 44.



nents is —^r [m(n
—

1) —1]+ /5.
We have therefore

4pTTt

n^+J.
-

R __ —I{ai)e^^-i)
P — n —l' m(n— 1)

If, as can easily be shown, the terms of the series all have n— 1 as the

common denominator of their exponents, then each of the branches of the curve

is an (n
—

l)-tic branch; i. e., consists of n— 1 partial branches given by the

developments

2 (P) _-.
e
2ni

lm(n-l)
+ r^IJ x^=l_ ^

(
a

i) ^ [m (n
- 1)

+ ,T=1J ^T\ -}-....,
1

m(n 1)

.r p 2 "I n y , \ f 2p . 4
"| n-fl

g (p) e L"1 (n—1)
**" n— lJ^n

— 1
^ W e Lm(»— l)

+ n— lJ
^.n
— 1 I

2

m(n — 1)

* ' * *
'

n_1
ra(w
—

1)

The ensemble of partial branches belonging to the m(n— 1) total branches

will be obtained by giving to p in the above system the values 1, 2, 3 ... .

m(n— 1) . If now we form all possible differences

Z8 Z
8' t

and denote byM the sum of the exponents of their first terms, we may, following

Cayley, say that our m (n
—

l)-ple point is equivalent to }[if
—3m (n

—
l)(w
—

2)]

double points and m (n
—

l)(w
—

2) cusps.

The evaluation of M, while possible in any particular example, is entirely

too complicated to be attempted in the general case. The important thing to

notice is that since the expansions for the partial branches differ only in the

exponents of e
,
the exponents of the first terms of the differences z {

8
r)—

2#"
}

will be independent of the relative values of the a's
;
and therefore that the

number of the double points and cusps to which the m(?i
—

l)-ple point is

equivalent is unchanged when two or more of the a's coincide. If then this

number can be found when all the a's are distinct, it is found for all cases.

But this has already been done. We can therefore now affirm that the

m(n— l)-ple point is equivalent to —± ^ '
ordinary double points

and cusps.



If h (k< m) of the a's coincide, the method of page 4 gives us the com-

bined equivalence of the two multiple points; and the permanence of the

equivalence of the first enables us to find at once the equivalence of the second.

In particular, if Bmn (x) has a factor of the form (x
—

a*)*, where k is

prime to m
,
we will denote its equivalence by JS^ . Then

P (mn— l)(mn
—

2) m(n— l)(mn— 2) ™

But the function has now mn— k + 1 branch points, around each of which all

the values of y permute in a single cycle. Its genus is therefore

P __(m— l)(mn
— & + !)

— 2 m + 2
__ _

.
„ (m -!)(&- 1

)MV 2
'

(12)

On the other hand, if k is not prime to m, let k=.lp , m=zXp , where I is

prime to X, Then the function will have mn— k branch points at which all

the values of y permute in a single cycle, and one where they permute in p

cycles. Its genus will therefore be

(m— l)(mn
—

k) + m— p— 2m + 2

and we have

*= 2

E,= (fn-m-l) + P-l
> (13)

Moreover, a second Newton expansion will show that the equivalence of a
{ is

unaffected by the relative value of the remaining a's. We are therefore able to

find the equivalence of all the multiple points of

ym_ (J,.

__ a^k x ^ __
a2)*

3
fa
__ a^fc

a=
} (14)

where
S? k{ ss mn
i=l



III.

The Most General Rational Function of x and y.

The most general rational function of x and y, when they are connected by

the relation (5), is of the form

A'tf*-
1 + B'y

m- 2 + +I/y+ M'

Ay"
1' 1 + By

m~ 2 + + Ly +M ' (15)

where A', E, .... M', A, B, . . . . if, are arbitrary rational entire func-

tions of x. The first reduction to be made is to render the denominator a

function of x alone.

When m= 2 we have the hyperelliptic case. When m=3, Thomae*

makes the reduction by multiplying both numerator and denominator by

(Atfr* + Byv + 0)(Ayh + Byz* + C) ,

where
2ni

„ 3

In dealing with the general case we may either extend this method of

Thomae's, or follow the method used in the general theory of Abelian Func-

tions. For this denote y
m—Rmn{%) by/and

Ay™-
1 + By

m~ 2 + + Ly +M by <p
.

Then the product of
<p by a factor which renders it rational in x alone is, as is

well known,

1 — R 0..
10 —R 0. . fy

m~ 3

ABODE M 00 0...;^w_1
m — 2A B C D L M 000 n

00 00 A B QBE
* Ueber eine specielle Klasse Abelscher Functionen. Halle, 1877.
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Multiply the first column by y
m and add it to the (m -|~ l)th column. Multiply

the second by y
m and add it to the (ra + 2)nd, etc. Then, since /=0 we

have for our rationalizing factor

J=

M
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IV.

Integrals Connected with the Curve /=z0. Their Reduction to

Two Standard Types.

All possible integrals connected with the curve/=. may now by the use

of the multiplier J %- be reduced to the form
dy

{

A
l3r^+A^r^+....+AmdX9 (16)

J rf
dy

where A
t
and X are rational entire functions of x.

From this point we have two analogies to follow. The curve

y
m—Bmn (x)=z0 evidently occupies a middle ground between the hyperelliptic

curve y
2— Ri(x)=zQ, on the one hand, and the general Abelian curve

F(xy)=z0 on the other.

We will follow first the analogy of the hyperelliptic integrals and reduce

the general integral (16) to integrals of two more simple types.

The theory of decomposition of rational fractions enables us at once to

reduce (16) to a sum of integrals of the two forms

f
P*

(%>**, and f-J2lM*!L

dy dy

where Px and cpx
are rational entire functions. These in turn by simple separa-

tion of their terms and use of the relations f~0, and §£- = my™-
1

,
are

reduced to the two forms

[Q{x)y
a dx m) f <p{x)y«dx nft

.

J my™-
1 ' { }

iix—aymy™-
1 ' {i* }

where a is a positive integer less than m.

Consider the form (17). Let the degree of Q(x) be denoted by q, and let

L (x) be a rational entire function of degree I. If then we subtract from

(Q(x)y*dx
J my™-

1

the expression d (L (x) y
a + 1

),

we shall reduce the integral to an integrated part and to the new integral



11

The relation/= gives us

dy _, R'{x)
dx my

m~ 1>

and by means of this and/=zO we can put the integral in the form

[
lQ(x)-mLi{x)R{x)-(a+\)L{x)R>(x)-\y« ^

J my™—
1

If now we take I= q
—mn+ 1

>
the last two terms in the bracket become a

polynomial in x of degree q. We can now so determine the q
— mn -f- 2

arbitrary constants in this polynomial that the entire expression in the

brackets becomes a polynomial in x of degree q
— q-\-mn— 2= mw— 2 . If

now we separate the terms of this polynomial, we shall reduce all the integrals

of the form (17) to the form

[x^y
a dx /3<mn— 2 ,-.qx

J my
m~ x '

a<mn— 1
* '

and these we will call integrals of the first type.

The form (18) divides into two classes according as a is or is not a root of

Rmn (x)= . When Rmn a^O, we subtract from the integral (18) an expres-

sion of the form

where G is an undetermined constant. The form (18) then reduces to an inte-

grated part and to the integral

rr ,

''
C(a + l)y

a (x— a)^fLdx— (J— l)Ch*+ l dx

[f <p(x)y
a dx \ ~r jj \ J dx \ J y

J L{x
—

a)
l

my
m- 1

{x
—

a)
1

__ tt<p{x)— C(a + 1) R'(x) (x
—

a) + (I— 1) CmR (a;)] y« dx
J (x

—
a)

l

my
m ~ l

If now C be determined by the relation

<p (p) + (I
—

1) CmR (a)= ,

the above integral reduces to one of the form

[
0(x)y

a dx

}(x
—

a)
l - 1

my
m - i;

and this process may evidently be continued till l=z 1
,

i. e. all the integrals

of the form (18) reduce, when Rmn (a) ^p 0, to the form,

<
F{ifi-i - «^™-i- (2°)

(x
—

a) my
m x ^

These we shall call integrals of the second type.
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If, however, a is a root of B (x)= of order h
,
we subtract from the inte-

gral (18) an expression of the form

d (
^a+1

)

,(x
—

a)

C(a + IX*— a) y\Mdx-- 0(1+ k— 1)y+1 <&

^
(«
—

a)
l+ k

my
m - 1

Put now

i2(a0= (s
— aYGx {x),

R>(x)= (x
— af-^G^x),

and this fraction becomes

[g(g + 1) ^ (a?)
-

<?(*+ ft- 1) gg, fefl ^

We are therefore able to reduce the form (18) to an integrated part and to the

integral

La [yW-g^ + ilgiW + g + fe-il^W)] dx
)
y '

(x—aymy™- 1

Since G1 (a) zj= ,
and Gr2 (a) ;£ ,

we can so determine G by the relation

p (a)
— 0{ («+ 1) G2 {a) + (l+ k— l)m01 (a)} =

that this integral shall reduce to the form

f F(x) y
a dx

t

](x
—

a)
l- l

my
m - i;

and the process may evidently be continued till we are reduced to the form

[F{x)y
a dx

J my™-
1

In this we may reduce the degree of F by the method already given and find

again only integrals of the first type.

All the integrals connected with the curvef=zO are now reduced to the

two types

I [rfjfdx /3<mw- 2 ]

IL
f F(x)y*dx R(a) zfz

}(x
—

a)my
m - 1

'

a<m— l
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y.

Integeals of the Fiest Kind. Theie Numbee.

Consider the type I and put it in the form

m— 1
'

)m(R(x))
m

When x becomes very great this becomes comparable to

L^+ an-n(m-l)^
?

which remains finite for x very great so long as /3+ an—n(m— 1)<C— 1«

This inequality for
ft positive is possible for all values of a< m— 1. In order

therefore to find the number of integrals of the first type which remain finite

for x very great, we have the formula

a=m— 2

Vr n (m—l)(mn— 2)/ \mn— an—n— 1J= -

-^
-

•

a= *

The hyperelliptic analogy would lead us to call these l
m

)\—"—J integrals,

"integrals of the first kind," but the analogy fails at this point. In the

hyperelliptic case m= 2, Rt (x) is therefore reducible by bi-rational transfor-

mation to the form

f— R2n (x)= >

where R2n (x)hsiS no multiple factors. The curve has therefore no multiple

points except the 2(n— l)-ple point at x=zz=zO. At this the integrals

remain finite, and therefore the hyperelliptic integral which remains finite for x

very great remains finite throughout the entire plane.

In our case, if x— a is a multiple factor of Rmn(x) ,
the expression

—
\^_ x is, in general, infinite of an order \1 at the point xz=a; and the corre-

sponding integral is therefore not of the first kind. If, however, Rmn (x) has

no repeated factors, we have *— '

^
~^—L

integrals of the first kind, and

this is equal to the genus of the corresponding curve/=0 .

If a is a root of Rmn (x)=zO of order k, we take the general integral of

the first type
( Q(x)y

adx
. (21)

J my"
1' 1 ' v ;
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and subtract from it

At
,{x
—

a)

d (
(¥+1 \

C(a+ l)y(x— a)
d
-ldx— 0(k— l)y«

+ 'dx
(XX

(x
— af

_ y [(7(g + 1) (x
—

a) R'— Cm (k
—

1) #] da;
~"

(a?— aYmtf*-
1 '

which, if we define (xt and 6r2 as before, is equal to

y" \_C(a + 1) &2 (a?)
— Cm {h

—
1) Gt (x) ] cfc

If now C be defined by the relation

Q (a) -<?[(«+ 1) G, (a)+ m (h- 1) fi^a)]= ,

our integral reduces to an integrated part and to an integral of the form

Mx— a) Qi(x)y
adx

J my
m- 1 '

where Qx (x) is of the degree mn— 3 . This reduction may evidently be

continued till we have the form

[
(x—af-

1Qk_ l (x)y
adx

J my™-
1

Denote now by the symbol [2] ,
where z is a real number, integer or fractional,

the greatest integer contained in z. We note, first, that

*_i 5 [A (m _i_ a)],

and therefore, second, that all our integrals of the first type reduce to a set of

integrals of the form

J mym-l-a
*

which are finite when x-=za . Separate this into its terms, put m— 1— a=id
,

and we have the integrals

Ux— a)^xfidx ^ mn~ 2~
[£J

J mf 0<^ro— 1
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In order that these may remain finite for x very great we must have

The number of integers satisfying this condition is

=1

When k is prime to m a known theorem gives us

8=m— 1

(h
— l)(m—l) (22)m 2

a quantity which we have already found as the equivalence of a &-ple point on

f= ,
when k is prime to m.

If k is not prime to m, put h=
fy?

and m= X[>
and an immediate extension

of the above-mentioned theorem gives us

\= m— 1

yp<P__(&
— l)(m— l) + /o

— 1

5= 1"-
2-

-
, (23)

which is the equivalence of the &-ple point when k is not prime to m.

If similar reductions are made for all the multiple factors of R (x) ,
the

number of integrals which remain finite throughout the plane, i. e. the number

of integrals of the first kind, will evidently be

(^2)(»-l),^i =J>| (24)2

where %Et
is the sum of the double points and cusps equivalent to those

multiple points of f=.0 which result from repeated factors of R(x), The

number of integrals of the first kind is therefore in all cases equal to the

genus of the curve.

We have now formed p integrals of the first kind, and they are evidently

linearly independent. But if we ask for the most general form of an integral

of the first kind, and whether there may or may not be more than p of them,

we must turn our attention to the more general theory of Abelian Functions
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and follow the analogy which it presents. We know that the most general

integral connected with the curve fz=. is of the form

f JMT-'-Mar >+ -+A, _.*,. (25)
(x
—

a^i (x
— a2)

?a
. . . . (x— av)

l

vmy
r

What are the conditions under which this will always remain finite ?

Consider the point x=nai
. The integral is evidently infinite at this point

unless the numerator vanish also. Two cases arise corresponding to the two

conditions R («J zfz ,
and R (at)

ss .

When R {at) zfzO , y has for xzzL^m values all different and all different

from zero. In order then that the integral remain finite when x-=.ai it is

necessary and sufficient that the numerator, a polynomial in y of degree m— 1
,

vanish for m different values of y. Its coefficients must therefore all vanish,

i. e. the A's must all have a factor x— a
t )
and the integral reduces to the form

Atf*-
1 + .... + 4

I

(x
— a^ ....(#— 0-i)

li
~ l .... (a?

—
a„)

l

vmy-
m— 1

dx .

A repetition of the argument will evidently remove from the denominator all

the factors (x
— a

t) ,
where R (a{) :£ .

When a
t
is a root of R (x)= of order k

,
we write

R(x)= (x—ai)

k
G(x) )

and put for y its value

(R (x))
m
=z(x

— a
t)

m
(
G {x))

m
.

The integral now becomes

k(m— 1) tn— 1 fc (m— 2) m— 2

f^l(g— «,)
» (G(x))m + A2 (X—0.1)

rn

(g fr))
m +

J

(x
— aj* (x— «,)

i+ ^ - ;
....(a?

—
a,)V(0(aO)

"

In order that this remain finite for x=za
i it must reduce to the form

(
<p (x) dx

where
<p (x) is finite for x-=zaiJ and k is less than unity. The numerator must

therefore contain (x
— a

tY
L m J

as a factor. For this it is necessary and

sufficient that we have
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A1=i(x—ai)

liBl9

A2=(x— a
t)

lmJB2 ,

Am= (x-ai)
L - lBm .

(27)

The repetition of this process will remove from the denominator of (25) all the

factors (x
— «

f), where R(ai)=:0; and (25) accordingly takes the form

U
llr-* + A4r- + .... + Am

<lx . (28 )

J my™'
1 v

This must still be examined for x very great and for those values of x

which satisfy my
m ~ 1= . For x very great we see at once that, if (28) is to

remain finite, we must have

At=0, ~\

A % of degree n— 2

J

(29)

Am of degree (m— 1) n— 2 . J

The points which satisfy my
m~ 1 =z are the roots ofR (x) z= . If a« be

a simple root ofR (x)= ,
the integral reduces to the form

r £ (x) dx R (x) =z(x
— a

t) G (a?)

and is therefore finite. If all the roots of R(x) are simple, the most general

integral of the first kind will be of the form (28) ,
the degrees of the A'b will be

given by (29), and the number of arbitrary constants included in the integral is

therefore

2((i-D»-i)=
('Mt
- a

j
(w
-

1)

t=2

If at
is a Mold root of R (x)= , we have only to put l

t
= in the dis-

cussion above in order to show that the number of constants is reduced by

^ —
,
which we know to be equal to the number of double points and

cusps equivalent to the multiple point a
t on the curve/= . The number of

arbitrary constants in the most general integral of the first kind is therefore

(mn-2)(m— l)_ IJE_
2

* F
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In the more general theory, based on the curve
<p (xy)= of degree m in x

and y, the general integral of the first kind is found to be of the form

( Q(xy)dx
i <P'v

'

where Q is of degree m— 3 in both x and y ,
and has the &-ple points of

<p
=

as (k
—

l)-ple points. Q has therefore
*

^— ' coefficients which are

subject to Ia
t

^
~~

~^ conditions (a^^the number of i-ple points of <pz=zO).

Consequently, if there is no reduction in the number of these conditions, there

will be p and only p integrals of the first kind linearly independent. But in

order to show that there are only p we must show that no such reduction takes

place. In the case we have been considering we find not only the number of

the conditions but the conditions themselves. We thus at once see that there

is no reduction in their number, and affirm that there are p and only p
linearly independent integrals of the first kind.

VI.

Periods of Integrals of the First Kind. Their Form, and
Reductions in their Number.

If we ask after the number and character of the periods of these integrals

of the first kind, we can proceed in two ways. We can, in the first place, form

the Rieman surface connected with the curve/=0. It will be m sheeted and

of genus p. We know that by bending and stretching it can be deformed into

a sphere* with p handles,! and therefore that the integral of a uniform function

has on it 2p periods.

In general these 2p periods are distinct, i. e. there exists between them

no linear homogeneous relation with integer coefficients. The proof of this

last statement need not be given here
;
as it is the same as in the case of the

general Abelian Functions
; except that, in the consideration of the inequality

\
XdY>0,t

*
Jordan, Liouville's Journal, Series 2, t. XI (1866).

f Klein. On Rieman's Theory of Functions. Section 8 of Miss Hardcastle's transla-

tion.

JPicard, Traits d'Analyse, Tome 2, pp. 405-409. X-\-iY is an integral of the first

kind. iT is the contour made up of the p cuts through the holes, the p cuts around the

holes, and the p — 1 cuts joining these into a continuous contour.
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we note that, in the region of the branch points, -=- is no longer of the order

-—
, but of the order ^-r in the case of a simple branch point : and of the order

»7~i (* <C m)
m *ne case °f a multiple branch point, (r is the radius of the

circle of integration about the branch point.)

We might proceed to form a system of normal integrals and to discuss the

relations existing among their periods : but the discussion is so strictly analogous

to that usually given for the general Abelian Functions that we prefer to turn

to the system of integrals already formed, and consider the form, and certain

reductions in the number, of their periods.

We assume, first, that all the factors of R (x) == are distinct. Take upon
the plane an arbitrary point u

,
and draw from it loops to all the mn branch

points of / (i.
e. the roots of R (x) =: 0) . Denote the loop around a

t by a]

when it is described in the positive direction, and by of* when it is described

in the negative direction.

2niS

Take now any one of our integrals of the first kind

^r = [<p(x)dx
^

J my8

The effect on Us of a small circle around a
t is to multiply it by e m ==>*

The value of U along the straight line from u to the small circle about at

will be denoted by A t
.

The inverse function y will have as periods the values of Us along any
contours which return y to its original value. Among such contours we
choose the following,

«1 «2 >
a

l «3 9
a

l
«4 , . . . . «i amn ,



20

and denote the corresponding periods by

co2 ,
ws ,

. . . , wmn .

Consider the first of these. We have evidently

(o2 =:A 1{l—^m- 1^)+A 1(^- 1^— ^m-^) + +A 1 (X*—l)+A2 (X—l).

If now we multiply this by Xs
,
we have a new period Xsw2 to which corresponds

the contour af
-2^^. In the same way we have X28co2 corresponding to

af
_8

«2«i, etc. Treating the other co's in the same way, we have the following

table of periods associated with Us ,

co2 ,
Xsw2y X™<o2 ,

X(
m-V &

a)2 ,

co5 ,
Xs

co3 ,
X
28w3 ,

^m " V s
co3 ,

«i4 ,
Xscoi} X

28
co4 ,

X{m
- 1)8wif

<»mn ,
XS0)mn ,

X28COmn , . . . X{t 1)8,

(30)

We say farther that this table of periods is complete, i. e. that all possible

periods associated with Us can be expressed as linear homogeneous functions,

with integer coefficients, of the periods (30).

In order to show this we note :

1° The most general period of y corresponds to a contour made up of

km -\- 1 loops described in the same direction, and / loops described in the

opposite direction, where h and I may have any positive integer values including
zero. (The same loop described r times is regarded as r loops.)

2° Between any two loops of any period we may introduce the nugatory
contour afcq~

k
, corresponding to the period .

3° Given a general period wx and its corresponding contour, there exists

a period Xucox ,
whose contour consists of the same loops arranged in the same

cyclic order as in the contour belonging to cox ,
but beginning at an arbitrary

point in the cycle. (This is merely a generalization of what has already been

done in the case of w2 ,
Xsw2 ,

.... X^
m - 1^w2 .)

4° The new periods,
— a)

t+ cok , izfzlc, corresponding to the new

contours af
lak ; together with the period w2> which corresponds to both the

contours «f
_1

«;> and aj^a^y enable us to replace the last loop of any contour by

any other loop.

1°, 2°, 3°, and 4° being granted, let it be required to form from the

periods (30) an arbitrary period corresponding to a contour, denoted by 2),

consisting of km + 1 positive and / negative loops. (The argument will
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be the same for hm-\-l negative and I positive loops.) To do this repeat the

contour corresponding to co
2 k times ;

and from this, by the introduction of the

proper nugatory contours «f«7"*> we ge* a new contour A which has the same

number of positive and negative loops as D and in the same order. By
successive cyclic permutation of the loops of A

;
and the addition, after each

permutation, of the proper one of the periods deduced in 4°; A becomes

identical with D ;
and the corresponding period is given as a linear homogeneous

function, with integer coefficients, of the periods (30). The system (30) is

therefore complete.

There are, however, certain reductions among the periods (30). We
know that the value of Us along a contour composed of all the loops is zero.

But this contour, by a process entirely analogous to that used in the case of D
and A

y may be reduced to the contour corresponding to io2 repeated n— 1

times and followed by w
i

. Moreover, the periods used in this reduction are

none of them derived from o)
t . We may therefore express co

t
in terms of the

other periods, and strike out from the table 30 the row of periods

a)iy X8o)if X2So)iy A<« 1)8,

The remaining mn— 2 periods in the first column of (30) are in general

distinct, since each of them contains an A that does not appear in any of the

others.

If d is prime to m
,
the table (30) , by virtue of the relation xm= 1

, and

by a permutation of the columns, takes the form

>2 ,
Xco2 ,

Fw2 ,
tm

Jo>2,
>s ,

*co3 > ^3 f
. . . . Am ^3 ,

(0mn-l> ^wmn-\y * ^mn-1 y
• • • «*

m
^r

(31)

(We have chosen the last row as the one to be dropped.) If m is odd, we have

between the periods of any row the one relation

k=m— 1

Oh>£p=
fc=0

We may therefore strike out any column (say the last). The remaining periods
are in general distinct; and the integral has, under the hypotheses made
above as to d and m, the maximum number of independent periods, i. e.

(mn— 2) (m
—

1)= 2p .
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Ifm is even (d still prime to m) we have the relation

/12-= _1 A
2 =—A«.

?/i

When
-g

is odd, we can express all of the even powers of X in terms of the odd

powers; and the table of periods (31) may be replaced by the table

Xto2 ,

Xcoz ,

Xzco2y

XhoB ,

.•.'.* COi) ~)

^°mn-li A C0mn _ ly

(32)

m,
But X is now a primitive —th root of unity, and therefore

2

x+xB +x5 + +>- i=yA»+i ==o1

k=

We may therefore drop the last column of (32), and the integral has now only

(mn
—

2) I—— 1
) periods, which are in general distinct. (We note that this is

m
twice the genus of the curve y*

— R /m-v 2n (a;)
=.

,
all the factors of B being

distinct.)

If, on the other hand, - is even, we can drop half the columns of (31) ; but

we know of no relation connecting those which remain. The integral has in this

case (mn— 2) =- periods which are in general distinct.

If d is not prime to m
, put S=zs/j. and m= ?y* ,

where s is prime to r .

We have then the relation XrS= 1
,
and from this the relation

k=m—'l k= r— l

2>l
M=

;/£>>.
fc=0 fc=0

The table of periods (30) accordingly takes the form

co2 ,
Xs

co
2 ,

X28co2 , ^"^Vo 1

':;>
XS

(D* \02

«>mn-l, ^Vmn— 1 f
>a>mn— 1 >

. ..AC- 1
*

. . Ji'- 1
)** 'mn— 1 • J

(33)
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2niS

But /I
5 = e"»»~= e"= /5

8
,
where /?

is a primitive rth root of unity. Since r is

prime to s and /9
r= 1

, (33) may, by use of this value of ^ and proper permu-

tation of the columns, be put in the form

co2

CO3>

(0mn — 1

k=r— 1

>{>< 'mn — 1)

F

fr-
x
m.mn— 1

(34)

When r is odd, 2J*
k~

,
we strike out the last column, and have in general

fc=

(mn
—

2)(r
—

1) independent periods. (We note that this is twice the genus
of the curve y

2—B
rt,n (x)= ,

all the factors of B (x) being distinct.)

If r is even, a discussion exactly analogous to that made in the case when

m was even and d prime to m shows that we have in this case (mn
—

2) f

-^
—

l)

or (mn— 2) independent periods, according as ^ is odd or even.

We may tabulate all these results as follows :

m odd, the no. of periods is (mn— 2)(m— 1).

d prime to m
and

d=
sfi. m= r/u.

s prime to r

and

odd,

even,

r odd,
"

"oodd,
«

2
even,

(mri_2)g_l).

(mn-2)g).

(mn— 2)(r— 1).

(
TO

»_2)g-l).

(mn-2)(0.

The meaning of a portion of these reductions is very evident. When

d=zs/jt and m=.r/jt y
the integral

x^dx

m(Rmn (x)}
m y

x^dx
s '

m (Bmn (x))'
r

which last is an integral connected with the curve y
r— Bmn (x)=zO. I am able

at present to offer no satisfactory explanations of the other reductions. We
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have said that the periods, after the above reductions have been made, are

in general distinct. It is evident that the only farther reductions which

can arise, so long as the factors of R(x) are distinct, must come from relations

among the a»'s themselves. It may be possible to so choose the roots of

R (x)= that some at least of the integrals connected with the curve shall

have less than ran— 2 distinct co's. For example, the integral of the first

kind,

[x
n~Hx

connected with the curve

y
m—

(x
n
—a^)(x

n—
a^) (x

n—
a%)=

reduces to the integral

[dx

connected with the curve

yrn_^_ an)(x_ Qn
) _ (*_<)= 0,

when we take x11 as our new variable ; and the new integral has only ra— 2 w's.

A similar case is the reduction of the integrals connected with the sextic

y^
—

(x
i—

al)(x
2—

ai)(x
2

~(4)=
to elliptic integrals.*

It is evident, however, that no farther reductions can take place among
the periods derived from anyone co

,
so long as the factors of R(x) are distinct.

Therefore, while in the case of the hyperelliptic integrals we can only say that

there are at least two periods, we are able in the present case to say that the

integral

(xPdx
d=zs/i

has at least (ran
—

2) ( ^
— 1

)
distinct periods.

We have limited ourselves so far to the case where all the factors of R (x)

are distinct. The case where some of them are the same presents no insuper-

able difficulties, but introduces a great deal of complexity. We shall limit

ourselves to a simple case.

Suppose h (k<^m) of the factors of R (x) to be of the form (x
— a

}),
the

others remaining distinct. We shall have in this case mn— 2— h co's corre-

*Picard, Traits' d'Analyse, Tome I, p. 217.
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sponding to contours of the form «f
_1
«o and one, coj , corresponding to a

contour of the form aj*
_1

«f . If k is prime to ra
,
the point a

t
will accordingly

give rise to m— 1 periods and we have in all (ran
— k— l)(ra

—
l)=z2p

periods.

If k is not prime to ra
, put k= lp and m-=.Xp ,

and by the argument
used when d was not prime to ra we see that the point ctj gives rise to X— 1

periods, and we have in all (ran
— k— 2) (ra

—
1) + ^— 1 «

The number of periods is in this case therefore
(/>
—

1)(X
—

1) less than the

maximum 2p . The number of periods in both these cases will of course be

subject to reduction when ra is even or when d is not prime to ra .

We have been speaking so far of curves reduced to the standard form

y
m—Bmn (x)=zO,

but similar relations exist among the periods associated with the curve,

y
m—Rs {x)= 0,

where R is rational and entire and s is any integer. The difference in the

discussion will arise from the fact that the point infinity is now a branch point

where all the values of y permute in one or more cycles. We will have then a

similar complete system of periods co
t ,
and their multiples by rath roots of

unity.

In particular, if we make ra zz: 3 and s= 4
,
we have for the three integrals

connected with the curve y
z

z=.x(x
—

a)(x
—

b)(x
—

t) ,
the periods given by

Picard,*

ho[, Xco{
f

, ho[",

Comptes Rendus, Tome 93, p. 835.
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