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Abstract

In this paper we formulate a game of private precautions against

externalities and obtain a strengthened version of the Coase Theorem:

not only is the result of trading efficient in that it minimizes social

cost, but the distribution of inframarginal gains is constrained to lie

in the core. We show that the core is nonempty, and provide a decen-

tralized rationale for the core deriving from strong perfect equilibria

of the supergame. In addition, the effects of discounting on the set of

stable contracts (strong supergame equilibria) and credible stable con-

tracts (strong perfect supergame equilibria) are investigated.





On the Distributional Implications of the Coase Theorem and the Core

I. Introduction

This paper has two objectives. The first is to strengthen, in a

specific model, the implication of the Coase Theorem that individual

parties will reach a social-cost-minimizing level of precautionary ac-

tivity independently of the liability rule imposed by the courts. We

shall provide two justifications for our stronger result, which is that

the distribution of social and private costs that result from such pri-

vate trading lies in the core of an appropriately-formulated game. The

second objective is to point out that there are certain pitfalls in the

use of core analysis for such situations, and is motivated by the recent

1 2
appearance of several articles ' that suffer from shortcomings of

this sort.

In the original Coase result, it was demonstrated that private parties

would bargain with each other until the marginal cost to the party pro-

viding each precautionary activity (including the marginal reduction in

his own liability, if any) equalled the marginal benefit to the other

3 4
party(s). Various authors, including Brown and Brown and Holohan have

demonstrated this result, and it is fairly well-known [see Sec. II for

a proof] that this results in a level of activity which minimizes the

sum of private and social costs, providing that the liability rule is

a cost-sharing rule. If it is not, as in the case of the Draconian or

eye-for-an-eye rule, the outcome is socially efficient only so long as

trading is not allowed.

However, the original result predicted little beyond this efficiency

result; in particular, the division of the inframarginal gains was left

unspecified. In comparing extreme liability rules, such as no-fault or
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caveat emptor , we can conclude that each party would prefer to be in the

situation where (s)he begins with no liability, but any further charac-

terization of the result depends on the relative bargaining strengths

of the various parties. One way to sharpen the predictive power of this

model of bargaining is to use the structure of the model to tell us some-

thing about the bargaining strengths of the parties. For example, in a

model with only two participants, we would not expect that any partici-

pant could extract so much from another that the latter was left in a

position inferior to that which (s)he could ensure by unilateral pre-

cautionary activity. Extended to the case of more than two participants,

this type of reasoning gives us an outcome in the core : the set of out-

comes with the property that no group can, by independent action, guar-

antee an outcome better for each of its members.

This sort of thinking is appropriate to a world in which the parties

bargain over the terms of an agreement which is to be enforced by an

outside agency. It reflects a basic notion of what is likely to be

acceptable , but there is no clear stress on what sort of agreement is

2
actually enforceable . This was pointed out by Professor Coase in a

recent comment on the use of the core to predict the outcome of bargaining.

He proposed that a better approach might be to look at the type of penalty

clauses agents could write into contracts, and see what agreements are

actually enforceable by the use of such penalties, which require no out-

side enforcement. We shall demonstrate that this approach leads to

precisely the same set of outcomes as the core.

It might also be argued that, in cases where implementation of a

penalty clause against one or more parties found to be in breach of a
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contract is costly to the remaining parties who must carry out the pun-

ishment, the threatened penalty may lose some credibility. In other

words, if party A is held to an agreement only by the threat of a very

costly penalty to be inflicted by party B, party A may not believe that

party B will carry out the punishment in the event. We shall further

demonstrate that the requirement that all threats be credible (in the

sense that each party always finds it to be in his best interest to

carry out any threat) still leaves us with the same set of outcomes.

In this way, we shall have provided both a centralized (or cooper-

ative) and a decentralized (or non-cooperative) justification for pre-

dicting an outcome in the core. However, there is one final issue to

be dealt with. If it happens that that core is empty, then neither of

these justifications has much predictive value. If, for every proposal,

there is some group of individuals that can improve upon the proposal

by independent action, it is difficult to have confidence in any par-

ticular outcome, let alone a socially efficient one. This is the point

made by Professors Aivazian and Callen in a recent article: if there

are more than two players, the core may be empty. However, the game we

are dealing with is of a fairly specific nature, and we shall be able

to demonstrate that, under fairly mild assumptions, the core is not empty.

Finally we shall have some remarks directed to the use of this par-

ticular model [the core of a game with unrestricted sidepayments and

transf errable utility] as a description of situations involving risk

and precaution.

II. The Basic Model and Nonemptiness of the Cora

3 4
This model is adapted from that used by Brown and Brown and Holohan.

Interested readers are referred to those articles for further details.
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There are n participants , or agents, indexed f = l,...,n. We shall

use N to refer to the set of all agents.

Each agent f £ N may take a level of precautionary activity x
,

chosen from some compact convex set X
f

of possible actions. This results

in a private cost of C
f
(x

f
) to be paid by agent f. We assume that the

private cost of each agent's action depends only on his own level of pre-

caution, and not on the levels of precaution adopted by the other agents,

although this assumption can be relaxed. It is further assumed that C^

is an increasing and convex function.

Remark: X, may be multi-dimensional, so that several sorts of pre-

cautionary activities may be engaged in by the same agent.

If each agent f has chosen a level of precautionary activity x
f

,

there results a social cost C(x), where x = (x.,...,x ). C is assumed

to be convex and decreasing in all its arguments. This is an important

assumption since it is vital for the nonemptiness of the core that all

externalities be beneficial to other agents. In addition to the above

structure, we posit the existence of a liability rule , which is a func-

tion L: X-X.^xX^. > R . Each element L
f
(x) of the vector L(x) measures

the proportion of the social cost which must be borne by agent f. We

can distinguish certain important special classes of liability rules:

If L
f
(x) >_ for all f and x, then L is said to be non-indemnificatory ;

if L
f
(x) <_ 1 for all f and x, then L is said to be non-penalizing ;

if I L
f
(x) = 1 for all x, then L is said to be cost-sharing ; and

ffcN

if L(x) is independent of x, then L is said to be constant .

Many of the liability rules implemented by courts are of the cost-

sharing variety, but not all: the ancient rule of an eye for an eye.
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which may be represented by setting L-(x) = 1 for all x and f, is clearly

not a cost-sharing rule, neither are its modern counterparts like public

enforcement of antitrust and consumer protection laws without retro-

spective relief.

We can distinguish between outcomes in this situation on the basis

of efficiency (the size of the sum of private and social costs) and also

on the basis of the mechanism which leads to the outcome.

We shall say that an outcome is efficient if it minimizes the total

cost to society, net of penalties and indemnity payments. This total

cost is given by Z C
f
(x

f ) + C(x
1
,...,x ), so that in circumstances

f€N_
r r 1

where the C
f

, L and C are dif ferentiable , we may characterize efficient

outcomes by:

(1) for all f, Ct(x .) +
3C(x)

= 0.

If each agent pursues his own interests, taking as given the actions

of the other agents, we can calculate the action of agent f that mini-

mizes his own cost subject to the constraint imposed by the other agents'

choices. Denoting the n-1 vector of these other choices by

X/f\
= (x, ,...,x

f , »x- ,.,...,x ), we can define agent f's best response

correspondence b
F
(x ,,.,) by:

(2) b
f
(x

(f)
)

= {x
f

: for a11 x
f<

C
f
CxP + L

f
(x

(f)
,xpc(x

(f)
,xp >_

C
f
(x

f
) + L

f
(x,

f
v ,x

f
)C(x

(

.

f
, ,x

f
) }

In ether words, b c (x, f
,) represents the best actions that f can take,

given the actions x,
f

, of the other agents,
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We would anticipate, in such a noncooperative situation, that the

system would come to rest at a situation where each agent is responding

optimally to the choices of all the others. This is called a Nash

Equilibrium ; formally, it is a vector x with the property that, for

each f, x
f
£ b

f
(x,

f
,). In the dif ferentiable case, we can represent

this by the condition

3L
f
(x ) —. n,

(3) for each f, Ci(x") + —\
• C(x

n
) + L,(x

n
) • iHiLi. = 0>

I 1 dX- I dX-

By comparing this equation with equation (1) , it can be seen that

there is no necessity for this equilibrium to be efficient; in general,

it will net be, unless

— , n. 3L
f
(x )

(4) for each f, (1 - L
f
(x
n
)) .^ ; = —f C(x

n
)

r oxp ox,.

For example, this is clearly true for the eye-for-an-eye rule, so

this results in the socially optimal actions.

On the other hand, if we broaden the degree of cooperation to allow

trade or tranactions between agents, we can reach another outcome, which

we shall call the Coase Equilibrium , and denote by x . It is charac-

terized by the condition that the marginal cost of x„ equals the sum of

the marginal benefits to all the agents:

N 3L (x
C

) _
-, c.

(5) for each f, C^x*) + E [—f- C(x
C
) + L_(x

C)^-;
-] =

t i
g=1

dx
f

g 3x
f

N
We remark that, if L is a cost-sharing rule, Z L (x) = 1 for all

N 9L (x)
s

x so that I —f3 = for all x and f . Inserting these two conditions
, 9x,

g=l r

in equation (5) gives equation (1), so we obtain the following conclusion:
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Proposition 2.1 ; If L is any differential cost-sharing liability rule,

the Coase Equilibrium is efficient.

This is the result that we shall call the Coase theorem : we note"

also that allowing trading may destroy efficiency as well. In the case

of the eye-for-an-eye rule, which had an efficient Nash Equilibrium,

allowing trade moves us to a Coase equilibrium where the relevant mar-

ginal condition is

(6) for each f , C^(x^) + n
5

^
X ) = 0.

By the assumed properties of C
f

and C, this means that each agent

will be led to take more than the socially-optimal level of precaution.

A more serious problem is that the final distribution of wealth at

Coase equilibrium is largely arbitrary. The conditions for Coase equi-

librium are marginal conditions, and the allocation of the infra-marginal

gains is left unspecified. To see what this means, consider a simple

example: there are two agents, and the constant liability rule L (x) = 1,

L~(x) = 0. [Depending on the identities of the agents, this is either

caveat emptor or caveat venditor a/k/a/ strict liability .] In this situ-

ation, the second agent would, in Nash Equilibrium, take no precaution,

and the first agent would adopt a level of precaution in b (0) . Letting

these levels of precaution be x. and x~, and similarly denoting the

c c
socially-optimal levels resulting from Coase equilibrium by x and x

? , it

is obvious that agent 2 will require a payment of at least C
?
(x„) from

agent 1. Agent 1, on the ether hand, will not be willing to pay more

C (x.. ) - C. (x, ) + C(x ) - C(x ): this quantity being the amount he

stands to gain from persuading agent 2 to take some precautions. By

c n
assumption, total cost to society is less at x than at x , i.e.,



C
1
(X

1
} + C

2
(X

2
} + C(xC) - C

l
(x

l
} + C

2
(0) + C(xI1)

from which it follows, given that C„(0) = 0, that there exist payments

P satisfying

(7) C
2
(x

C

2
) < P < C^xJ) - (^(xj) + C(x

n
) - C(x

C
);

i.e., payments that are acceptable to both parties. Any such payment

will do, and the only certain conclusion we can make is that agent 2 is

better off under this scheme, which leaves him with a net wealth of

P - C_(x„) > 0, than he would be had we reached a Coase equilibrium under

the opposite liability rule, L„(x) = 1, where agent 2 is left with a

negative net wealth.

There are many ways of refining this result to focus on the distri-

butional implications. For example, we might presume that the market for

precautions obeyed the conditions of pure competition, so that each unit

of precaution "sold" at a constant price, equal to C^(x-). In this case
£ r

c c
the payment would equal x

f
C'(x

f
); and this would be feasible only so long

Q
as x

f
exceeded the point of minimum average cost. This second-order

inefficiency could be expected to persist, since in this model each agent

is a natural monopolist in the production of his own precautionary ac-

tivity.

Another model might take explicit account of this monopoly power,

and would allow each agent to extract the full monopoly profits from

his precautionary activity. To represent this solution as a trade opti-

mum, we would need to allow each agent to be a perfectly discriminating

monopolist; inasmuch as this results in each agent receiving the whole

amount of the inf ramarginal gains, we shall not further specify it.
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There are three other approaches that we shall explore in this

section* The first makes use of the Nash model of bargaining with vari-

able threats to decide on an efficient allocation that takes account of

the relative bargaining strengths of the various agents. For a complete

3
and thorough discussion of this solution, see Roth, For our pur-

poses, it will suffice to observe that each agent can announce a level

of precaution x, that (s)he will adopt in the event of disagreement.

The disagreement strategies lead to the disagreement payoff : each agent

gets

(8) C
f
(xjb + L

f
(x

d
)C(x

d
) = H

f
(x

d
)

The set of agreements we shall take to be the set of all efficient

and individually-rational levels of precaution, where a level of pre-

caution x is individually-rational for f iff

(9) C
f
(x

f
) + L

f
(x)"c(x) < min max [C

f
(x

f
) + L

f
(x

f
,x )C(x

f
,x

(f )

) ] = m
f

x
f

x
(f)

since agent f can guarantee that he will pay no more than the amount on

the RHS of the above equation.

We must also include the possible side-payments between the agents,

of course, so that an agreement can be thought of as an n-vector,

a = (a.,..., a ) with the following properties:
i n

i) E a = min[ E C
f
(x) + "c(x) ] = C* (efficiency)

fGN x f£N

ii) for each f, a„ <_m
f

(individual rationality)
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Under these circumstances, the Nash Bargaining solution says that,

when the players make the threats x , they receive the agreement payoff

a(x ) where

(10) a(x
d

) minimizes (a
±

- H^x*
1

))^ - H
2
(x

d
) ) . . . (aQ

- H
n (x

d
))

In other words, each player f receives

(11) a (x
d

) = H (x
d

) +^[C* - I H (x
d
)]

g£N g

This defines a new payoff function for a noncooperative game, and player

f will now select his threat to maximize his agreement payoff, subject

to the threats of the other players. This leads to a situation where the

players threaten each other with threats x satisfying

t
3L

f
(xt)

- c t Kfx*!
(12

>
c
J
(x

>
+
~kf- c <* > + V*^J-

gSN
dX

f
g dx

f

If we have an agreement, as prescribed above, each agent will ac-

tually wind up in a situation where (s)he takes the optimal action, and

receives a side-payment from the other players that results in a net

cost of a (x ). It is worth noting that as the number of participants

goes to infinity, the threats approach precisely those levels of precau-

tion which the agents take at the Nash Equilibrium. Another interesting

result is the following: if the liability rules are of the constant

cost-sharing variety, the threats by the agents, and therefore the Nash
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Equilibrium actions, approach the social optimum. To see this, we first

note that the limit of conditions (12) as n tends to infinity is

3L
£
(x

C
) _ - t

(13) for all f , C
f
(x) + —

~

C(x
C

) + L
f
(xV^ } =

which is just condition (3) for Nash Equilibrium. On the other hand,

inserting the condition that L be a constant cost-sharing rule into (12)

gives us

(14) for all f , CUxZ
) + 2-=-i -

3-^- =
r n ox.

and the limit of this condition as n tends to infinity is just condition

(1) for social optimality.

There are two other possible solutions to the distribution problem

that we would like to describe. Both of these stem from a re-casting of

the situation as a cooperative game of transferrable utility . In such

a game, we are given a set of players and, for each subset of players,

or coalition , we are given a number that represents the worth of the

coalition; or the total amount of utility or money it can guarantee

to its members. This amount that a coalition S can guarantee to its

members is denoted v(S) . The coalition of the whole, N, has available

an amount v(N) and we say thac an allocation is the core if, letting

a.,..., a denote the allocation, we have
1 n

i) E a. = v(N) (efficiency)

fSN

ii) for each S C N, I a, >_ v(S) (Ccalitional rationality)
ffSS
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The interpretation is that no coalition could do better using its own

resources; no coalition could guarantee each of its members a higher

payoff.

However, we have not been given a game in this form. Instead, we

have started with a strategic game. It is possible to pass from this to

a game of transferrable utility that represents the cooperative power

of groups of agents. To do this, we must determine what the minimal

cost is that a coalition can guarantee to its members. At this point,

however, a game- theoretic subtlety arises, since the amount that a co-

alition can guarantee itself may not be the same as the amount that the

other players cannot prevent it from getting. In fact, the general sit-

uation is that if a coalition can guarantee itself a certain amount,

then it cannot be prevented from getting that amount, but the converse

may be false. The reason is that when we use the term "guarantee" we

mean that the coalition chooses a certain strategy with the property

that it will get at least the specified amount, no matter what the oppo-

sition does. In this sense the opposition "moves second." On the other

hand, in order to prevent a coalition from getting a certain amount it

is necessary for the opposition to "move first." Since the player who

moves first is at a disadvantage, since his/their move(s) is known, it

follows that anything a coalition can get when it moves first it can

certainly get when it moves second.

We shall therefore define two different characteristic functions

for our Coase game. The first captures the idea of what a coalition can

guarantee itself, and the second the idea of what is cannot be prevented

from obtaining.
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Definition : Let S C N; a strategy for coalition S is a strategy for

S
each agent f e S, and is denoted x ; the strategy adopted by the com-

(S) S Splementary coalition is denoted x . We write x = (x
f

: f S S)

v
a
(S) = mjn max^ E C

f
(x^) + L

f
(x

S
,x

(S)
)C(x

S
,x

(S)
)

v (S) = max min E C f (x^) + L f (x
S
,x

(S)
) C(x

S
,x

(S)
)

D
xW x

b
f£S *

r f

The a-core of the Coase game is the set of allocations a = (a.,a_,...,a ) s.t

i) E a . - C*

ii) for each S, E a r < v (S)

f£S
f _ a

[Remember that the a. are costs, and that each agent wants to minimize

a
f
!] The b-core of the Coase game is defined similarly, except that con-

dition ii) is replaced by:

ii) for each S, E a £ < v, (S)

£ES
f " b

We remark that, for each coalition S, v (S) >_ v, (S) , so that the

a-core contains the b-core. It follows that showing the non-emptiness

of the b-core also suffices to show the nonemptiness of the a-core.

In order to show that the core of our particular game is nonempty,

we make use of the following construction [cf e.g., Luce and Raif fa]

:

Let K be a collection of coalitions, not necessarily disjoint. If

K = [S ,...,S ], and if each iS N belongs to at least one member of K,

s
we can define the characteristic vector x of each coalition S to be
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that n-vector with l's in the elements corresponding to members of S and

O's elsewhere. Then, if there exists a collection of numbers d(S.), one

for each S. in K, which are non-negative and have the property that

S N
E d(S.)x i = X » then K is said to be a balanced collection and the

i=l
1

d(S ) are balancing weights . A core of a game v is nonempty if and

only if, for each balanced collection K and balancing weights d, we have

k

(*) E d(S.)v(S.) > v(N)

i=l
x x

We can now state and prove our main result on the core:

Theorem : Let L be a cost-sharing system of liability rules with the

property that, for each agent f, the function C,(x,) + L-(x)C(x) is

convex in x. Then the b-core of the Coase game is non-empty.

Proof : Let K be a balanced collection of coalitions, and d a set of

balancing weights. Moreover, for each S £ K, define an n-vector

S (S)
x(S) « (x

1
(S),...,x (S)) = (x (S),x (S)) [arranging the players into

the coalitions S and N - S] by the requirement that x(S) be any vector

of precautions that achieves v, (S). Define:
b

(15) x = E d(S)x
f
(S)

By definition, v^(S) = E C r (x,(S)) + L c (x(S))c"(x(S) ) . By the defini-
b

fe s
f f f

tion of v, (N) and the fact that L is a cost-sharing system, we have
b

(16) v,(N) E [C f (x\) +L
f
(x")C(x)] = S C f (xf) + C(x)

b " fEN
f f f

fGN
f f

To show that the core is nonempty, we need to show
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v (N) < Z d(S)v (S) = E d(S)[ Z [C (x (S)) + L
f
(x(S) )C(x(S) ) ]

]

9EK
D

seK fes

RHS = Z [ Z [d(S)[C
f
(x

f
(S)) + L

f
(x(S))C(x(S))]]]

fSN SSK
r

S9f

and by the assumed convexity, this term is less than or equal to

S C
f
(x ) + L

f
(x)C~(x) = E C (x

f ) + C(x)
sen tm

and the theorem is proven. QED

We shall indicate in the next section why we prefer to use the b-

core, instead of the more generous a-core. However, we should point out

that under our convexity assumptions, which are satisfied for any cost-

sharing constant liability rules if C and the C
f

are convex, the

problem raised by Aivazian and Callen cannot arise.

One other solution concept which we should mention is the Shapley

value. This is a solution concept for games in characteristic function

form which is the unique solution satisfying certain axioms of efficiency

and equity . These axioms state that the value allocation should be ef-

ficient, that it should give nothing to agents who contribute nothing

to the worth of any coalition, that it should depend only on the worth

of the players in coalitions and not on outside considerations like names,

and finally, that the value in the sum of two games [w(S) = v(S) + u(S)]

should be the sum of the values in the games. It turns out that the

value assigns to each player his or her expected marginal contribution

to a random coalition consisting of all players preceding the given

player in a random order selected with probability 1/n! That is, the

Shapley value assigns to player i the amount
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(17) *v.(i) = E
(n "

^'i
8 " 1)!

[v. (S) - v, (S - i)]
b

se
. n! b b

As A. Roth has pointed out, this represents the expected utility of

playing position i in this game, and should be thought of as a benchmark

allocation to be used in selecting liability rules on equity grounds.

Although it reflects the relative strengths of the players it does so in

a different way than the Nash Bargaining solution. In the bargaining

solution, the players select optimal threats , where the criterion of

optimality is the payoff at the bargain that will be struck eventually

between all the players. Here, no coalitions are involved except the

individuals and the grand coalition. In the Shapley value, players

bargain on the basis of their contribution to the security level of all

possible coalitions, but the worth of a coalition is calculated on the

basis of defense and not threats. We conclude this section with a

simple example in which the Nash Equilibrium is inefficient, both the

bargaining solution and the Shapley value are in the core, but the bar-

gaining solution and the value rank the players in reverse order. The

liability rule is a modification of Professor Calabrese's idea of the

"least-cost-avoider." Players with higher private costs of precautions

bear lower levels of liability.
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EXAMPLE ;

There are three agents, indexed 1,2,3. They face private costs

C
i^
X
i^

= P
i"

X
i'

liability ^(x) = A
i »

a cost-sharing constant liability

rule, and generate social costs of C(x) = .

X
1
X
2
X
3

A. The efficient outcome . Let Z = 7P P P

e z
x =-^ cost to i = (1 + A )Z

Social cost = Z

Total cost = C* = 4Z

lu
B. The Nash Equilibrium . Let w = /A A A

n A
i Z Z Z

2

x. = •=— • — total cost = —(1 + —-)l P. w w 2
i w

z
3

z z
2

social cost = —= cost to i = A .—(1 + —)
3 iw 2

w w

C. The b-core . In order to keep the cost to the coalitions of 1 and

2 members finite, we adopt the restriction that some minimal level of

precaution is required of all agents. Thus yi x. >_ e > 0. We then have

V
B
(i) = 7^

V (i,j) = -2- } {X + A )P P
B l J l j

V
B
(1,2,3) = 4Z

Then the core is
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1 w-i » a o * S"Y

i) - /xTT > a . > |- ?(x. + xjp.p.
e li- i-^ J Rjk

2) Sa. = 4Z}

Before proceeding, let us further specify the example. Let P, = 1,

P = 2, P_ = 3 and let us adopt a modified Learned Hand Rule : the lower

an agents' cost of precaution, the higher is that agents' liability,

X. = — so a = —:— . Also e = — , X. = .545, X„ = .272, X_ = .181.

i

Here we have

V
B
(1) = V

B
(2) = V

B
(3) = 11.8168

V
B
(1,2) = 7.0704; V

B
(1,2) = 7.7820; V

B
(2,3) = 8.3829

V
B
(1,2,3) = 6.2603

core = {(a
1
,a ,a_): a. + a_ + a- = 6.2603

11.8168 >_ a >_ -2.1226

11.8168 >_ a9 > -1.5217

11.8168 > a
3

> -0.8101}

Nash equilibrium Z = 1.5651 w = .7212

- = 2.1701 TC = 12.39 (!)
w

x^ = 1.1837 payoffs L^ = 6.7584

x!J
= 0.2959 L^ = 3.3792

x^ = 0.1315 L® = 2.2528

Efficient Outcome
Payoffs (uncompensated)

x* = 1.5651 Lj = 2.4188

x^ = 0.7826 L^ = 1.9919

x® = 0.5217 L^ = 1.8497
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Nash Bargaining solution
Coop. Payoffs

threats : x^ = 1.4142 a
1

= 2.2459

xl = 0.7071 an = 2.0413
2 2

c* = 0.4714 a
3

Shapley Value

i|)V_(l) = 1.7675

i()V
B
(2) = 2.0690

iJiV (3) = 2.4244

III. A Decentralized Rationale for the Core

In this section, we take a different approach to the distributional

problem. With the core, distribution was decided during a once-and-for-

all bargaining session, with the bargain being enforced by an outside

agency. There, the relevant question was whether any coalition could

2
do better using its own resources. On the other hand, as Professor Coase

points out, it is likely that such agreements will be secured by a series

of contracts, including penalty clauses. These arrangements have the

effect of changing the incentives acting on the parties in such a way

that their long-run interest is to adhere to the terms of the contract

without the need to invoke an outside agency. What is important is the

punishment that the defectors will suffer at the hands of the remaining

parties. It turns out that the set of agreements that can be supported

by such contracts is precisely the b-core.

In such an arrangement, time is involved explicitly, and future .

behavior is made conditional on past performance, so that such social

institutions as threats and promises form part of the agreement. Perhaps
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the simplest model of this situation is that of the super game , in which

the Coase game described in the previous section is played repeatedly,

and where the actions taken at the t play of the game are allowed to

depend on the history of play up to time t.

Formally, if the actions available to each player in each play of

the game are X
f , and if X = * X- denotes the set of outcomes of each

fiSN

play, a history of length t is just an element of X x ... x X (t times),

which we write X . A strategy for player f is a collection

s
f

= (s
f
,. . . ,s f

,. . .) of functions where:

s
f
e x,., and

s^:X
t-1

•* X for all t > 1

If each player f € N selects such a strategy, we can calculate the

sequence of outcomes x(s) + [x (s) x (s)...], where x (s) is the

play of the game at date t that results from the strategy choice

S — \Sf,...,S / >

l n

x (s) = r (s) = (s. ,. . . ,s )
1 n

x (s) = [s..(r (s)) s (r (s))]
l n

r'Cs) = [r
t_1

(s),x
t
(s)]

So the x(s) are the outcomes, and the r(s) are the partial histories.

Another result of the strategy choice is an infinite stream of costs

LP
1 »«««»Pn »P1 »...J

where
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Pj(s) = C
f
(x*(s)) + L

f
(x

t
(s))C(x

t
(s))

We shall start out by assuming that each agent wishes to minimize

the limiting average of these costs:

H (s) -llni I pj(s)
T-*» t<T

assuming that it exists. We shall sidestep the existence question,

since it will not affect our results— the interested reader is referred

4
to Aumann for details. Later on, we shall replace this evaluation

of the cost stream by the discounted present value at discount rate

6:

00

hJ(s) = (1-6) Z 6
t_1

pf(s)
t=l

which is more intuitive.

Without going into great detail, we shall argue that any supergame

strategy combination can be interpreted as a contract; that a certain

type of equilibrium, called a strong equilibrium , describes a stable

contract; and finally that the set of limiting average costs to strong

equilibria of the supergame coincides with the b-core of the one-shot

Coase game.

Any combination of supergame strategies may be described in two

parts. The first part, represented by x(s), is the "specified behavior":

what happens when things go according to plan. The second part, which

includes all the behavior called for by s after histories r f r (s).

that are not expected, can be termed a penalty clause, it specifies the
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behavior that parties will adopt in the event of a deviation from the

specified behavior, or a breach of the contract.

Recall that a Nash Equilibrium was defined to be a situation from

which no party could profitably and unilaterally defect. Of course,

this is not sufficient for our purposes in a world in which collusion,

cartelization and conspiracy are possible, especially in the repeated-

game context where coordination becomes relatively easy. To account

for these features, we shall describe a situation from which no coalition ,

or subset of players, can profitably defect, given that the remaining

players adhere to their original strategies.

Formally, let us say that s* is a strong equilibrium of the super-

F
game if, for any coalition F C N, letting s denote the strategies of

members of F, we have

(18) Z H (s*) < E H (s
F
,s*

(F)
) for all s

F

fSF fq?

Of course, we could have defined strong equilibria for the one-

shot game. However, since one of the coalitions F is the "coalition of

the whole", N, every strong equilibrium is a_ fortiriori Pareto Optimal,

or efficient, as well as being a Nash equilibrium. Since it is usually

the case that the Nash equilibria of the Coase game are inefficient, it

follows that there are usually no strong equilibria.

On the other hand, the contract represented by a strong equilibrium

of the supergame is stable against any defection, including unanimous

rejection by all the parties. To find out which outcomes of the one-

shot game can be supported by such stable contracts, it suffices to look

at strategies of a very simple form called "grim" strategies . A grim
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strategy has two major parts: the first is a cooperative sequence,

specifying an action for each player on each day. The limiting average

costs obtainable in this way include every convex combination of pure-

strategy costs in the one-shot game. The other part of a grim strategy

is a punishment sequence. If a coalition defects from the cooperative

sequence at any stage, this part of the strategy calls for the strongest

possible punishment to be inflicted on them forever. Since the punish-

ment must be specified in the strategy, it follows that the defecting

coalition can choose a defence in light of the opposition's punishment.

This means that the defectors cannot be forced to pay more than

(19) M_ = max min E [CAxJ + L,(x ,x^
; )C(x ,x

K J
) ]7

(F) F f£F
f f fxx

at any stage of the game. It therefore follows that the strongest

punishment that can be inflicted on a defecting coalition F is to hold

it to its "maxmin" level M„ forever. This in turn means that F will

only defect if its total average cost along the cooperative sequence

exceeds the amount M . The reason for this is that any savings earned
r

at the beginning of the defection vanish during the long-term punish-

ment. The actual average payoff to F will then consist of a certain

amount C(F) paid out before the punishment begins, and an unending

sequence of amounts at least as large as M^ afterwards. The long-

term average payoff is therefore at least

lim fiiS- + M^ = M
F
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We have therefore demonstrated what we set out to show:

Theorem 3.1 ; a6 R can be achieved as the limiting average cost to a

strong equilibrium (stable contract) in the supergame if and only if,

for each F C N

(20) E a <_ max min E [C (x
F

) + L (x
F
,x

(F)
)C(x

F
,x

(F)
)

fiEF
r

(F) F feF
r r

x x

which is exactly equivalent to the condition "a is in the b-core of

the one-shot Coase game."

For a more formal proof of this "Folk Theorem", the reader is

4 5
referred to Aumann or Cave. The result relies heavily on the

fact that no savings accrued during a finite period of time can

affect the limiting average cost. This seems inherently unreasonable,

and we should expect the players to discount the future. This dis-

counting weakens the effect of the grim punishments, and consequently

diminishes the set of outcomes that can be supported by stable con-

tracts. To capture the effects of this myopia more precisely, we shall

observe that the reasoning used above still works if the players use

the discounted evaluation relation H
f
(s) defined above. However, in

this case, the cost savings due to the defection in the first period

become important, and the theorem must be modified to take account of

this.

This is slightly complicated by the existence of sidepayments be-

tween the players. The simplest assumption is that, while everyone

takes the optimal actions everywhere along the cooperative sequence,

the sidepayments cease immediately whenever there is any irregularity
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in the players' actions. In this case, the defecting coalition will

act to minimize its cost during the period of defection, given that

the other players continue to take the efficient actions x
e

:

min E [C (x
F
) + L (x

F
,x

e(F)
)C(x

F
,x
e(F)

)]

F fGF
X

call this "best defection" cost BD„. The scenario is now as follows:
F

because of the discounting, the coalition may as well defect now as at

any future time. If they do not defect, they pay a discounted present

value of E a
f

(notice that we have normalized by multiplying by (1-6)).
fiSF

On the other hand, if they defect today, and receive the grim punish-

ment in the future, they pay a cost of BD^ today, and M_ in all sub-
r F

sequent periods. If we call the set of outcomes that can be sustained

as the result of stable contracts in the discounted super game the 6-core,

we have the following result

:

Theorem 3.2 : a £ R is in the 6-core if and only if, for each coalition

F C N,

(21) £ a
f

<_ (1-6)BD
F
+ 6^

f=F

It will be noticed that we get the previous result by letting the dis-

count rate go to 1, and that we get the definition of strong equilibrium

for the one-shot game by letting the discount rate go to 0. For a for-

mal proof of this proposition, the reader is referred to Cave.

At this point, it is probably instructive to return to the example

used in the previous section, to see what effect discounting has on the

distributions we might expect in the Coase game.
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Example : Recall that there are three agents, and that agent f is

characterized by:

C
f
(x

f
) = p

f
x
f

L
f
(x

f) - [ E i
]

_1

g€N *g

C (.X-j ,X~ , X~ J1' 2' 3 x-x„x_

1/4
Moreover, we define Z = [p p„p.] , p. = 1, p„ 2, p_ = 3. Finally,

we have a minimum precaution restriction, x,. >_ 1/8 for each f. To begin

with, the efficient actions are given by

x* = 1.5651 x® = 0.7826 x* = 0.5217

and result in a total cost to society of 6.2603. If we denote the

F
"best defection" strategies for members of a coalition F by y

f
, f G F,

we find that

y1

1
= 1.559 y^'

2
= 1.4638 y^'

3
- 1.4075

y2
2

= 0.4087 y2

1
'
2

= 0.7319 y2
2 ' 3 = 0.6017

y
3

3
= 0.2225 y

3

1,3 = 0.4692 y.^

2 ' 3 = 0.4011

(and y f
' ' = y

e
f

for each f) . This allows us to calculate the best

defection costs BD„ for each coalition F. In the table below, we have
F

listed BD^ and M_.
F F
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BD
F *F

2.3117 11.8168

1.6347 11.8118

1.3347 11.8168

4.3914 7.0704

4.2223 7.7820

3.6101 8.3829

6.2603 6.2603

1

2

3

1,2

1,3

2,3

1,2,3

In describing the conditions for the 6-core, we shall rearrange the

condition given in the theorem to:

(22) E a. < BD„ + 6[M_-BD_.]

SEF
f " F ^ F

Moreover, we can write all seven conditions for the core, one for each

of the seven nonempty coalitions, in a simplified form by observing

that if (22) is satisfied for both F and N-F, since

E a, + E a, = M^ = 6.2603, we may write
feF flEN-F

It follows that the conditions for the 6-core of our three person game

can be written as conditions in the individual costs a.. , a„ , and a_ as

follows:
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(24) i) a
x
+ a

2
+ a

3
= 6.2603

ii) 2.6502 - (4.7728)6 <_ a. <_ 2.3117 + (9.5051)6

iii) 2.038 - (3.5597)6 <_ &
2

<_ 1.6347 + (10.1821)6

iv) 1.8689 - (2.6790)6 <_ a
3

<_ 1.3347 + (10.4821)6

It can be readily seen that for some values of the discount rate the

6-core is empty; in fact, for any value of the discount rate less than

0.0406 this will be the case.

There are several further questions that we can answer with these

conditions. These are: what is the b-core; what are the first alloca-

tions to appear in the 6-core as the discount rate rises, and for what

values of 6 is the "no-transfer point" where each party takes the cor-

rect action but no sidepayments are made a part of the 6-core?

To find the b-core we substitute 6=1 into equation (24) giving

the conditions obtained in Section II.

To find the first core points we insert the crucial value

6 = 0.0406, giving

(25) 2.4564 <_ a
±

<_ 2.6976

1.8935 <a
2

< 2.0481

1.760 = a
3

We can write this more succinctly as

{(a , 4.5003-a , 1760): 2.4564 <_ a £2.6068} making use of the fact
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that the a, sum to 6.2603. As to the final question: we can determine

that for the no-transfer point to be in the 6-core we need

(26) 2.6502 - (4.7728)6 <_ 2.4118 <_ 2.3117 + (9.5051)6

2.038 - (3.5597)6 <_ 1.9919 <_ 1.6347 + (10.1821)6

1.8689 - (2.679)6 <_ 1.8497 < 1.3347 + (10.4821)6

.04995 < 6

.01532 <_ 6

.01295 < 6

.03508 <_ 6

.00717 <_ 6

.04913 <_ 6

5 > .04913 > .0406

What of the other proposed efficient solutions: by analagous calcula-

tions, we can determine that for the Nash bargaining solution to be

in the 6-core we must have 6 >_ max {.08471, .03993, .05749} = .08471

and for the Shapley value: 6 >_ max {.1849, .04265, .10393} = .1849 .

In the following figure we have illustrated the b-core, the 5-core

for 6 = 0.0406, the no-transfer point, the value and the bargaining

solution.

B
Sh^pily IMi-U-e T S" \ —\ —"4 -<" cr(^^%'^-^S¥V

«3 %
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strategy s
f
had to specify an action for any member of X . A sub game

is a supergame that starts on date t, following some arbitrary history

of length t-1, and a strong perfect equilibrium of the supergame is a

strategy combination, s, that specifies equilibrium behavior in every

subgame. In terms of the previous discussion, this means that the

defecting coalition will show that the specified punishment is, in fact,

the best thing for the remainder of the players to do.

Definition : s is a strong perfect equilibrium iff, for every t, and

every partial history x e X , the strategy s( :x ) defined by:

-t' , t'-l t. t+t' , t t'-lv
s (y :x ) = s (x ,y )

is a strong equilibrium in the original supergame.

It is clear from this definition that the grim punishments will

not work, in general, so that one might anticipate that not all strong

equilibrium outcomes could be supported by credible threats. However,

in the undiscounted game, this anticipation is confounded.

Theorem 4.1 : the set of outcomes a e R that can be supported by

strong perfect supergame equilibria (credible and stable contracts)

coincides with the set of outcomes that can be supported by strong

equilibria; i.e., it is the b-core of the one-shot game.

For details of the proof, the reader is referred to Cave.

However, the idea of the proof is simple enough: to support a given

outcome of a strong equilibrium by credible threats, we recall the

following apparatus from the grim punishment: to begin with, we have

cl ct
the cooperative sequence (x ,...,x ,...) which gives the desired
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IV. The Credibility of Strong Supergame Equilibria

In addition to the "never-never-effect" discussed above, there is

another feature of the grim strategies which may make them seem un-

reasonable. For coalitions which receive nearly their security level

payoffs, the only effective punishments are those which actually hold

them to this level for a long period of time. Consider a world in

which the liability rules are constant; in such a world, the only way

to punish a coalition F is to maximize the social cost in each period.

In addition to increasing F's cost, this increases the cost to the

punishing coalition. This increased cost may be so high that F may

not believe that N-F would actually carry out the planned punishment,

especially if the alternative is to continue receiving the payoff

specified by the cooperative sequence. This credibility problem can

be avoided if we require that the equilibrium strategies specify op-

timal behavior in every eventuality, and not just in those situations

which can arise by individual strategy variations.

In other words , when we defined a strong equilibrium, we asked

each coalition, taking the actions of the complementary group as fixed,

to examine the outcomes it could achieve by varying its own strategy.

The requirement was that the stated behavior give the best of these

outcomes. However, the behavior in situations that could not arise

according to the strategies used by the other players was completely

arbitrary. We shall now strengthen this by defining the concept of a

sub game . Recall that a partial history of length t was defined to be

a member of X . We distinguished the particular member of X that

resulted from the use of strategies s by x (s) , but each t period
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cost a e R as a limiting average. Moreover, for each coalition F,

F
there is a punishment x, . to be employed against F by the members of

F
N-F, which has the property that the best F can do against x, . is to

(F)

F
get M_, in any period where X, . is being employed against them. Now,

let us define a sequence of strictly positive real numbers e ,...,e ,..,

with the property that lim e =0. For any sequence (x x ) of
t-x»

finite length, we may define the cumulative average cost to player f

for each f, and also for each coalition F. Thus, we define

C*(x,F,t) = I I 7 C f (x^') + LAxt,
)C(x

t ')

t'<t f€F
C r r £

The cumulative average costs will be used to measure the amount of

punishment each player or each coalition has suffered. The strategy

will specify that a coalition that defects at period t will be punished

until the first time t' when

(26) C*(x,F,t T

) >_VLp - e
C

This will happen in finite time, since the e are all positive numbers.

At this point, play will return to the cooperative sequence. If all

players adhere to this plan, the coalition F will be left with a limiting

average cost which agrees with their cooperative-sequence cost (while

they are left with some savings when their punishment ends, these

savings disappear in the limit). However, we are still faced with the

original problem: why should play return to the original sequence?

It is clear that no player is affected by the cost of punishment, but

if a coalition defects forever, the strategy will inflict punishment

forever. What we need is a mechanism that ensures that players who do
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not carry out their specified punishments are themselves punished. To

do this, we must define the idea of a "last defection". Suppose that

we are given a collection s = (s.. s ) of strategies and an arbitrary

history y = (y , . . . ,y ) of finite length. We can identify the last

defectors LD(s,y) and the time t*(s,y) of their defection as follows:

(27) t*(s,y) =

r fc * t* , t* 1 t*-l., ._ .max {t*: y ? s (y y )} if it exists

t + 1 otherwise

(28) LD(s,y) =

{f EN: yf
(s

' y)
4

.J*
( ''yV y'^-^-ljj

if t*(s,y) <_ t

otherwise

Finally, we must restrict our attention to those last defectors who

have not paid their debt to society as of the current date (t+1)

:

(29) D(s,y) =

LD(s,y) if LD(s,y) ± and Z I CAyl) + L (y
T
)C(y

T
)

fGLD(s.y) T<t

<
^(s.y)

- e
t*(s,y)

if not

Recalling that the punishments x to be used against a coalition

F are those defined by equation (20), interpreted as x
f

for all f e N,

we can now write the strategy that gives the cooperative sequence

cl ct . . , ., .

x ,...,x ... as a strong perfect equilibrium outcome:
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s
f

= x
f

for all f, and for any partial history y = (y , ...,y )

(30)

sj(y) =

x
D(s,y)

±f D(s>y) ^

x otherwise

It is now clear why this is a strong perfect equilibrium. Consider

any partial history. If we are on the cooperative sequence, any coali-

tion can choose to defect. However, if they defect for a finite number

of periods, they return to the cooperative sequence after a finite num-

ber of periods, and make no savings in the limit. If, on the other hand,

they defect forever, they will be punished forever, and will be forced

to pay at least tt„ in average. Moreover, they will believe in the

punishments, since any coalition that fails to carry out its share of

a specified punishment is itself punished. Finally, we observe that

even if punishment costs the punishers more than M^ , they still

would rather carry out the punishment, which they expect to end in

finite time. In other words, by carrying out the punishment they

guarantee themselves the cooperative payoff in the limit, while by

defection (i.e., failing to punish) they ensure that they will be

forced to pay M^ .

In the undiscounted game, we have already seen that the set of

outcomes that can be supported by stable and credible contracts is the

b-core. Is there an analogous result for the discounted game, saying

that the set of outcomes that can be supported by credible and stable

contracts coincides with the 6-core? Unfortunately, there is not, ex-

cept in a few simple cases. For details of these cases, the reader is
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referred to Cave. The basic idea is that whenever for each coali-

tion F there exists a strong equilibrium of the supergame giving the

members of F a discounted present cost of M_, we can construct a "grim"

strategy that switches to the indicated "punishment equilibrium" when-

ever F defects. However, in general this will not be the case, as we

can show with a simple example.

Example ; There are two participants. Player 1 can take a level of

precaution x.. , which costs him nothing. If he does so, there is a

social cost of (l-x.)C, where C is a large number. Player 2 cannot

take any precautions, but can compensate player 1 by paying him an

amount x„ from her initial wealth of 1. Player 1 pays a constant share,

L, of the social cost, and player 2 pays the balance. It follows that

the payoffs (net wealths) of the two players given the moves x.. , x„ are:

P
1
(x

1
,x

2
) = x

2
- L(l-x

1
)C

P
2

( X;L ,x2
) = 1 - x

2
- (1-L) (l-x

1
)C

In the one-shot game, there is only one equilibrium: it involves

player 1 setting x. = 1, and player 2 setting x
2

= 0. Since it is

Pareto optimal, and there are only two players, it is also the only

strong equilibrium of the one-shot game. In the undiscounted super-

game, the strong equilibrium outcomes are exactly those allocations

(a
1
,a„) of net wealth with the following properties:

i) a
1
+ a„ = 1 (Pareto Optimaiity)

ii) a
1

^_ (individual rationality for player 1)

iii) a„ >_ 1 - (l-L)C (individual rationality for player 2)
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It appears then, that player 1 can use the threat of taking no pre-

caution to extract some payment from player 2. Moreover, by Theorem

4.1 we know that this threat can be made credibly, so that player 1

could wind up with a net profit of as much as (l-L)C.

Now suppose that we are playing the discounted game, and we wish

to see whether we can get the result at, 1, x- = 1 with a stable, and

credible contract. To begin with, in order to get this result, which

gives player 1 a perpetual payoff of 1 and player 2 a perpetual payoff

of 0, from a stable contract, it must be that neither individual player

can profit by unilateral defection. Player 1 will not defect, since

there is no way he can hope to profit by increasing the social loss.

Player 2, on the other hand, can defect in any period for an immediate

payoff of 1. Under the grim strategies, this defection will mean that

player 2 will get at most 1 - (l-L)C in all subsequent periods. If

both players are using the same discount rate d, this means that player

2 will defect unless

>_ (1-d) • 1 + d • [1-(1-L)C], i.e., unless

(31) (l-L)C^j

Now, suppose that player 1 is to punish player 2 for some defec-

tion, by playing a sequence (x , . . . ,x.. , . . . ) . The total punishment that

is inflicted on player 2 is

(32) Z d
t_1

[(l-L)(l-xhc]

while the cost to player 1 is
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(33) Z d
t"1

[(L)(l-x5)C]
t=l

As the ratio of these two quantities is a constant (——) , player 1

might just as well punish sooner rather than later, in terms of cost-

effectiveness. Therefore, we can limit attention to strategies where

player 1 reacts immediately to any defection with some x., that suf-

ficiently punishes player 2

:

(34) (l-^d-DC^

The longer 1 holds off on punishing 2, the cheaper punishment becomes,

so the extremes are: punish immediately with x.. and return to the co-

operative sequence for an expected payoff of -—r - (l-x1 )LC, or hold
1—

a

1

off forever, which gives 1 a payoff of 0. The condition for player 1

to be willing to actually punish player 2 is then

<T~Z - L(l-x-)C or

(35) —- > x-x
(l-d)LC

Combining this with (34) gives the following condition for (1,0) to be

a payoff sustainable by stable, credible contracts in the discounted

supergame

:

(36) - Ml-x,)^ 1—z
(l-d)LC d(l-L)C

From this equation it is clear that, if

(37) _!_ < JL
K J 1-d 1-L
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There is no way to get this outcome via credible stable contracts. In

fact, we can use this analysis to calculate precisely the set of dis-

tributional outcomes supportable by stable credible contracts for this

case. If we consider any outcome (a, 1-a) satisfying the conditions

for strong equilibrium in the undiscounted game, we must first see

whether they are in strong equilibrium in the discounted game. As

before, it is only player 2 who has an incentive to defect. Optimal

defection offers her a payoff of (1-d) • 1 + d • [1-(1-L)C], while not

defecting pays her 1-a. Thus, there is a strong equilibrium of the

discounted game with the result (a, 1-a) in each period iff

(38) d(l-L)C>.a

As before, we may as well assume that player 1 responds immediately to

any defection on the part of player 2, employing some x. with the

property that:

(39) (l-x
x
) (l-L)C >_ a/d

As before, the condition for player 1 to be willing to carry out this

threat is given by inequality (35) , and we may combine the two to ob-

tain the condition for (a, 1-a) to be sustainable by stable, credible

contracts

:

(40)

(l-d)LC d(l-L)C

from which we obtain the original condition by setting a = 1. In fact,

the condition on a can be seen to be independent of C; it is just:
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and this is a complete characterization of the strong perfect equilibrium

outcomes, when combined with condition (38).

This result restores some of our intuition about the distribution

of the inframarginal gains. For example, credibility limits player l's

payoff most when the discount rate is 1/2 and when the liability rates

are equal. If player 1 bears all the liability, a = 0, while if player

2 bears all the liability, 1 can extract up to dC. In order for

credibility to limit the set of attainable outcomes, it must be the

— LC*
case that (l-d)LC >_ d, so the discount rate must be smaller than —

'

1+LC
In other words, this secondary consideration becomes active as the

players become more myopic or as the first player's liability becomes

smaller

.
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