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ABSTRACT: Using a purely primal approach, we show, in particular,
the existence of a non-trivial stationary optimal stock for a
multisector economy. Our result generalizes earlier work by dropping
the 6 - productivity assumption and by replacing the continuity
hypothesis on the utility function by upper semicontinuity.





1 . [at roduction

The concept of a non-trivial stationary optimal stock (SOS) plays a cen-

tral role in the theory of optimal intertemporal allocation and its existence

in a multi-sector model has been shown by Sutherland (197U), Hansen-Koopmans

(1972), Peleg-Ryder (1974), Cass-Shell (197b), McKenzie (1979, 1982), Flynn

(1980), among others.

The demonstration of existence typically consists of three separate steps.

First, a fixed point argument is used to show the existence of what we call in

the sequel, a discounted golden-rule stock. Second, a separation argument in

the form of the Kuhn-Tucker theorem is used to provide a "price-support" to

the discounted golden-rule stock. Finally, a computation based on the price

support property is used to show that the discounted golden-rule stock is

optimal among all programs starting from that stock.

This is the approach of Cass-Shell (1976), McKenzie (1979, 1982) and Flynn

(1980). Peleg-Ryder (1974) also rely on the Kakutani and Kuhn-Tucker theorems

though they combine the first two steps and differ in terms of the details of

the third. An exception to this is the work of Sutherland (1970) who relies

on methods of dynamic programming and is able to avoid supporting prices and

the Kuhn-Tucker theorem. However, Sutherland does not establish the existence

of a non-trivial SOS, and as noted by Peleg-Ryder (1974), the null stock is

always a SOS in a set-up which allows for the possibility of inaction and the

impossibility of getting positive outputs from zero inputs.

The prevalence of duality methods for the existence results is rather

striking. In proposing a "primal" approach to "turnpike theory", McKenzie

(1982) remarks, "The use of duality in establishing the existence of an

optimal stationary path seems harder to avoid than in proving asymptotic

theorems
.

"
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In this note, we propose a purely primal approach to die existence of a

non-trivial SOS. Our proof avoids the Kuhn-Tucker theorem and by a simple

computation based on Jensen's inequality, we can directly establish that a

discounted golden-rule stock is a non-trivial SOS. The application of

Jensen's inequality is, of course, not new and is implicit in Brock (197U) and

more recently, explicitly used in Dechert-Nishimura (1983). However, its

relevance to the existence problem studied here seems to have been overlooked.

A direct pay-off of our approach is that in dispensing with the Kuhn-

Tucker theorem we no longer need Slater's constraint qualification in the form

of the 5-productivity assumption, i.e., the existence of a feasible input-

output pair (x,y) such that 6y is greater in al 1 coordinates than x where 5 is

the discount factor. In the context of Flynn's (1980) work, our result shows

that the 6-productivity assumption can simply be dropped from his theorem.

The comparison with McKenzie's work is less clear since he does not show the

existence of a non-trivial SOS (in our sense) for his model [see Example 3

and Remark 2 below] . Moreover, in assuming that the technology set is not

necessarily closed, he makes use of the 5-productivity assumption even for

the fixed point argument. We do, however, present an example in which 5-

productivity is violated but a non-trivial SOS exists (see Example 2 below].

Our result also generalizes the Flynn-McKenzie theorem by replacing the

continuity hypothesis on the utility function by upper seraicontinuity . Such

an extension is motivated by a class of economies considered by Peleg in which

the utility functions are not continuous but only upper semicontinuous; see

Peleg (1973, Remark 2).

A secondary contribution of this note is to use a purely primal approach

to show that a non-trivial SOS, k, is a discounted golden-rule stock, provided

(k,k) is in the interior of the technology set. This result is proved by
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McKenzie (1979) relying on duality methods. Again, the proof involves three

steps. First, a sequence of prices is found to support the stationary optimal

program, following the approach of Weitzraan (1973), or Peleg-Ryder (1972).

Second, by an argument due to Sutherland (1967), a "quasi-stationary" price

support [i.e., p(t) = 5 p for t >_ 0] is obtained from the above sequence of

supporting prices. Third, this (quasi-stationary) price support property is

used to show that the SOS is a discounted golden-rule stock. In dispensing

with support prices, we provide a direct and short proof. We also present an

example to show that the result fails when (k,k) is not in the interior of the

technology set [see Example 1 below].

2 . Preliminaries

2a. Notation

We shall be working in n-dimensional Euclidean space R where j|x|

denotes the Euclidean norm of any element x in R . For any x,y in R , we

shall write x >> y (x >_ y) to denote x. > y (x. >_ y , ) for all coordinates

i = l,...,n; and x > y to denote x >_ y and x * y. Let R be the non-negative

orthant of R , i.e., R = {x e R : x >_ 0} . For any set, S, p (S) denotes the

set of all subsets of S and hence we shall write $:X * P (Y) for any corre-

spondence (set-valued map) $ with domain X and range ? (Y). Finally, let e

denote an element of R+ all of whose coordinates are unity.

2b. The Model

An economy £ consists of a triple ( £ ,u,5) where (J e P (R x R ) is

the technology, u is a utility function with domain Z and range R and 5 a

discount factor such that < 6 < 1.

We shall need the following assumptions on 1.

Al. (i) (0,0) e a; (ii)(0,y) e <r implies y = 0.
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A2 . u is (i) closed and (ii) convex.

A3. There is 3 such that ||x|| > 3 for any (x,y) e <r implies |y| |
x ||»

A4 . (x,y) e <Z implies (z,w) e u for all z ! x and <_ w <_ y. Moreover

u(z,w) 2. u(x,y)

.

A5 . u is (i) upper semiconcinuous [(x ,y ) (x,y) imply

lim sup u(x , y ) j< u(x,y)] and (ii) concave.

Except for A3(i), these assumptions are all standard. It may be worth

pointing out, however, that McKenzie (1982) does not assume Al, the upper

semicont inui ty of u and the closedness of a • instead, he assumes a closed-

ness condition on u and a boundedness assumption on Z \ see I and II in

McKenzie (1982, p. 19b).

We now state the following basic concepts for our economy £ .

D.l A program starting from an initial vector k e R is a sequence (k(t)}

such that k(0) = k and (k( t ) ,k( t+1) ) z Z for all t = 0,1,2,...

D.2 A program {k(t);
n , starting from k e R is said to be an optimal

OO —
program if for any other program {k'(t)} n

starting from k, we have

I 5
C
u(k(t),k(t+l)) > Z 6

t
u(k'(t),k , (t+l)).

t=0
'

t=0

U.3 An optimal program {k(t)} _ starting from k £ R is said to be a

stationary optimal program if k(t) = k for all t.

n °°

D.4 A stationary optimal stock k is an element of R such that (k} n is a sta-

tionary optimal program. It is said to be non-trivial if u(k,k) > u(0,0)

D.5 A discounted golden-rule stock k is an element of R such that
+

( i ) ( k , k ) e d

(ii) u(k,k) ' u(x,y) for all (x,y) e a such that x < (l-fi)k + 6y

(iii) u(k,k) > u(0,0)



2c. Existence of Optimal Programs and the Principle of Ootimality

Our first result is on the existence of an optimal program. The proof,

being fairly standard, is omitted.

Theorem 1 . Under Al
, A3 and A4, for any program fk(t)}°° starting from k,

we have ||k(t)|| <_ max [8, ||k||] - B^) for ai -L c » where 8 is taken from A3

Under the additional assumption A5(i), there exists an optimal program

starting from any given initial vector k.

Under the assumptions of Theorem 1, there is an optimal program (k*(t)} n

00

from each k e r". We define V(k) = E 5
C
u(k*( t ) ,k*( t+1) ) ; V is generally

t=0
known as the value function.

The following result is standard and is known as the "principle of

optimality.

"

Lemma 1 . If {k(t)} is an optimal program from k, then
U

N
t S+l

V(k) = E 5 u(k(t),k(t+l)) + 5 V(k(N+l)) for N >

t=0

3 . Equivalence of Discounted Golden-Rule and Non-Trivial Stationary
Optimal Stocks .

The equivalence of a discounted golden rule stock and a non-trivial SOS is

given in McKenzie (1979, p. 42). Our treatment is primal in that it makes no

use of supporting prices.

Theorem 2 . Under Al to A5 , every discounted golden-rule stock k is a non-

trivial stationary optimal stock.

00

Proof . The fact that u(k,k) > u(0,0) is true by hypothesis. Now let {k(t)}~

be any program starting from k. We shall show that tt does not give a higher

utilitv than the path {'«.},,
0*
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T-l T-l T
Let jc(T) = Z (1-6)6 k(t)/(l-5) and y(T) = Z (l-5)5

C
k( t+l)/(l-5 ).

t=0 t-0

Given convexity of <J , certainly (x(T),y(T)) e u for alL T __ 1. From Theorem

1, we know that k(t) is bounded independently of t. Hence (x,y) = Lira(x(T)
,
y(T)

)

is well-defined and by virtue of A2(i), is an element of S.

Now, by A5 and the fact that < 5 < 1, Jensen's inequality yields
OO CO

u(7,~) 2 : (i-0)5
C
u(k(t),k(t+l)). But (7- 57) = Q-<5) [ E 5

C
k(t) -

oo C ='J t=u

Z 6 k(t+l)] = (l-5)k. Since (k,k) is a discounted golden rule stock,

t=0 °° °°

certainly u(k,k)
J>

u(x,y) which implies Z 5 u(k,k) _> £ 6 u(x,y) = u(x,y)/(i-5)
t=0

"

t=0

>_ Z 5
C
u(k(t),k(t+l)).

t=0

We can now state a converse to Theorem 2.

Theorem 3 . Under Al(i), A2(ii), A4 and A5(ii), every non-trivial stationary

optimal stock k such that (k,k) e Interior <Z , is a discounted golden rule

stock.

Proof . Suppose not; then there exists (x,y) £ Z such that x _<_ (l-<5)k + 6y

and u(x,y) > u(k,k). Since u is non-decreasing in the first component by vir-

tue of A4 , we can assume without any loss of generality that x = (l-5)k + <5y.

Let y = u(x,y) - u(k,k) > 0.

CO

Using (x,y), we shall now construct a program [k(t)) n starting from k that

oo

gives more utility than the stationary optimal program {k} . This furnishes

us the required contradiction. Towards this end, for a value of N to be

determined later, let

(1) (z(q),z(q-l)) = (l-5 q )(k,k) + <5
q (x,y) q = 1,...,N

By A2(ii), (z(q) , z(q-l ) ) z Z for all q = 1,...,N. Now let {k(t)}~ be such that

k(0) = k; k(c) = z(N-t+l), t = 1,...,N; k(N+l) = z(0) = x; k(t) =0, t > N +2.



We can show that for large enough N, {k(t)}„ is a program (in the sense of

D.i). For this, it only remains to show that (k,k(l)) = (k,z(N)) e U . 3ut

(k,k) e interior j7 and so there exists a > such that (k,y) z a for all y e

S i {y:k-2ae « y « k + 2ae} . Let S = {y:k-ae <_ y <_ k + ae} . On substi-

tuting the value of x in (1), it is clear that

z(q) - 6z(q-l) = (l-5)k, which implies (z(q)-k) = 5(z(q-l)-k).

Since 5 is less than 1, certainly z(q) * k as q + °» and hence there exists

N such that z(N) e S for all N 2 N .

Next, we can assert, as a consequence of A5(ii) that, for all q = 1,...N,

u(z(q),z(q-l)) 2 (l-6 q )u(k,k) + 5
qu(x,y) 2 u(k,k) + 5

q
T .

By Mangasarian (1969, p. 63), it is also true that

|

ju(k,z(N)) - u(k,k)
| |
1 A| |z(N) - k| |

= A5
N+i

| |

y-k
|

|

where A = (u(k,k) + S)/a, S
_ Min u(k,y) and W is the set of 2n vertices of

yeW
S . Hence we have

N+l
Z 5

t
[u(k(t),k(t+D) - u(k,k)J 2 ~ A6

N+1
| |

y-k
|

|

+ (N+1)5
N+1

y.

t=0

On adding terms after the time period (N+l), we obtain, with V as in Lemma 1,

CO

(2) I 5
t
[u(k(t),k(t+l)) - u(k,k)J 2 5

N+i
((N+l) Y - A|

I
y-k

I

|

t=0

+ C5u(0,0)/(l-5)} - 6V(k)).

Let N be a value of N such that the right hand side of (2) is positive. Let

DO

N' = Max(N ,N
?
). Now any {k(t)}. with N >_ N' furnishes us with a contradic-

00

tion to the fact that {k} t s a stationary optimal program.
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Since k Is a non-trivial stationary program, u(k,k) > u(0,0) and the proof

is finished.

Remark L . The proof is valid if instead of the convexity of £ and the con-

cavity of u over Z , we assume only that Z = {(x,y): x = (l-6)k + 5y}

is convex and that u is concave over d .

A natural question arises as to whether the interiority hypothesis in

Theorem 3 can be dispensed with. The following example shows this not to be

the case.

Example 1 . Let Z {(x,y) 6 R x R : Ay < x, ey < 3} where A (. ]/? )»

Let 5 = 1/2 and u(x,y) = ex. It is clear that this economy satisfies Al - A5

.

We shall show that k = (1,0) is a non-trivial stationary optimal stock. It is

non-trivial because u(k,k) = ek = 1 > u(0,0) = 0. To show that it is a sta-

tionary optimal stock, observe that (k,k) e Z and consider any program

{k(t)}
Q

starting from k. Since (k( t ) ,k( t+1) ) s Z , k(t) < (1,0) for all t.

Hence

O 00 OO X> 00

I 5
C
u(k(t),k(t+l)) = Z 5

C
(ek(t)) <_ Z 5

C
= Z 5

C
(ek) = Z 5

C
u(k,k).

t=0 t=0 t=0 t=0 t=0

Now let x' = (1,1), y' = (1,2). Certainly (x',y') e Z and Sy' - x' =

(5~l)k. But u(x',y') ex' = 2 > ek = u(k,k) and thus k is not a discounted

golden-rule stock.

4 . Existence of Discounted Golden-Rule and Non-Trivial Stationary
Optimal Stocks .

We now turn to the existence issue with Theorem 2 in McKenzie (1982, p.

199) as the relevant benchmark. We shall need the following definition for

our next result.

D.6 An economy is S-normal if there exists (x,y) e Z such that x < 5y and

u(7,V) > u(0,0).
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Theorem 4 . If x. satisfies Al Co A3 and is 5-norraal, there exists a dis-

counted golden-rule stock.

The proof of Theorem 4 relies heavily on the following result.

Lemma 2 . Let S = {xeR : ||x| <_ 8} and $ and t|> be mappings from S

into ?(R x R ) such that for z e S, $(z) = {(x,y) e a : x <_ (l-5)z + <5y}

and -Kz) = ((x,y) £ $(z) : u(x,y) 2 u(x*,y') for all (x',y') e <j>(z)}. If H

satisfies Al to A5
, ty is a non-empty, convex-valued and upper semicontinuous

correspondence.

Proof : Clearly, S is a non-empty, convex and compact set. Next, we claim

that (j) is a non-empty, compact valued correspondence. For any z e 5, (0,0) e

^j(z) and, since £ is convex and closed, <j>(z) is convex and closed. Further-

more, if (x,y) e 4>(z), then ||x|| <_ 3. [Otherwise, if ||x|| > 3, then by A3,

|

|x|| < (1-6) ||*|| + 5 | |y|| < (1-5) ||z|| +5 ||x||, so ||x|| < ||z|| < 8, a

contradiction.] This implies by Theorem 1 that if (x,y) e j>(z) , then |y| _< j

Thus on defining S' - {(x,y) e r" x r" :
|

|x|
| <_ 3,

| |y| | <. 3} , we note that

S' is a non-empty, compact set, and for any z e S, ${z) is a subset of S'.

Since <$(z) is closed for each z e S, so 4>(z) is compact for each z e S.

Since u is an upper semicontinuous function on a , and j>(z) is a non-empty,

compact subset of a, so ty{z) is non-empty for each z z S. It is also convex

as a consequence of A5(ii) and of the convexity of <i(z).

Next, we show the upper semicontinuity of ty. Let z* be an arbitrary point

of S. Consider a sequence z eS, with z + z* as a + ». Let (x ,y ) z ip( z ),

and (x ,y ) - (x,y). We want to show that (x,y) e '^(z*). Since £ is closed,

(x,y) e $(z*). Suppose (x,y) i ij;(z*). Then there is some (x*,y*) z i|;(z*) and

an e > such that u(x*,y*) > u(x,y) + c.
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iNow, since u is an upper semicont inuous function, lim sup u(x ,y°) I u(x,y)

Thus, there is N such that for n 2 N , u(x ,y ) _< u(x,y) + e/3. Consequently

for n 2 N
,

(3) u(x*,y*) 2 u(x
n
,y

n
) + 2e/3

Choose < X < 1 such that (1-X) lu(0,0) - u(x*,y*)] > - e/3. We claim

that there is an N_ such that for n >_ N , (Xx*,Xy*) e j>(z ). To see this,

observe that (0,0) e £ and convexity of (T imply that (Xx*, Xy*) e 4>(Xz*).

Since z + z*, there is N
9 such that for n > N z 2 Xz*. Thus 5Xy* - Xx* >

(5~l)Xz* > (5-l)z , establishing our claim.

Since (x ,y ) e i|»(z ), so for n >_ N_,

u(x
n
,y

n
) > u(Xx*,Xy*) 2 Xu(x*,y*) + (1-X) u(0,0)

- u(x*,y*) + (l-X)[u(U,U) - u(x*,y*)J

2 u(x*,y*) - e/3.

Using this in (3) for n 2 Max (N ,N
2
>,

u(x*,y*) 2 u(x
n
,y

n
) + 2e/3 2 u(x*,y*) + e/3,

which leads to a contradiction and completes the proof.

Proof of Theorem 4 : Define Q : S +?(r"), where for z e S, Q(z) =

{xeR : (x,y) e ij/(z)}. We will show that this correspondence Q satisfies all

the requirements of Kakutani's fixed-point theorem [Debreu (1959* p. 26)].

Lemma 2 implies that Q is a non-empty, convex-valued correspondence,

tt also implies that is upper semicontinuous . To see this, take an

arbitrary z* e X. Let z e S, with z
n

* z* as n * ». Let x
n

e Q(z
n
), and

n ^ * n n
x' * x as n ». We have to show that x e Q(z*). Since x e Q(z ), there is

v
n

such that (x ,v ) e ^(z ). This means (x ,y ) e $(z ), and by compactness
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of i(z ), we can pick a subsequence (x ,y ) tending to (x,y) e $(z*). By

the Lemma, (x,y) s <J»(z*) and the claim is proved.

Thus, all the conditions of Kakutani's fixed point theorem are

fulfilled, and there exists x° e Q(x°). This means there is some y° such that

(x°,y°) e 'Ji(x'), i.e.,

u(x°,y°) >_ u(x,y) for all (x,y) e 1>(x ).

But (x°,y°) £ 4>(x°) implies x° <_ y°, and we obtain from A4 that (x°,x°) e Z

,

and u(x°,x°) _> u(x°,y°) _> u(x,y) for all (x,y) e S, with <5y-x >_ 5x° - x°.

Given 5-normality, there is (x',y') e <j>(x°) such that u(x',y') > u(0,0). Thus

u(x°,x°) > u(0,0), and hence x° is a discounted golden-rule stock.

We can now state the principal result of this paper.

Theorem 5 . If £ satisfies Al to A3 and is 5-normal, there exists a non-

trivial stationary optimal stock.

Proof . The proof is a simple consequence of Theorems 4 and 2.

Flynn (1980) establishes a version of Theorem 5 under the additional

assumption of 5-productivity . A natural question arises as to whether our

generalization is non-vacuous, i.e., there exist economies satisfying the

hypotheses of Theorem 5 (and Theorem 4), whose technologies are not 5-

productive and for which there exists a non-trivial SOS. That this is indeed

so can be seen by the following example.

Example 2 . Let f(x) = 2x for <_ x <_ 1 and f(x) = 2 + (x-l)/2 for x >_ 1.

Let S = {(x,y) e R": <_ y <_ f (x)} , u(x,y) = 2f(x) - y and 5 = 1/2. £

satisfies A3 with B = 3 and it is easy to check that the economy £ also

satisfies the remaining assumptions Al, A2 , A4 and A5

.
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Now (x,7) = (1,2) E 5. Certainly S~y - ~k = and u(x,7) = 2 > u(0,U).

Hence E is 5-norinal. Also, for any (x,y) e a , 6y - x _<_ (l/2)f(x) - x <

since for x >_ 1, f(x) _< 2x. Thus, there cannot exist any (x,y) z Z such that

x << 5y and H is not 6-productive.

Next, we claim that x* = 1 is a discounted golden-rule stock. Pick any

(x,y) z S such that x <_ (1-5) x* + 6y. Then y _> 2x - 1 and u(x,y) _:_ 2f(x)

-2x + 1. Now

u(x,y) _< 2(2x) - 2x + 1 <_ 3 for < x < 1

and u(x,y) _< 2(2 + (l/2)(x-l)) - 2x + 1 <_ 3 for x > 1

In either case, u(x,y) ! u(l,l) and our claim is proved.

It should be noted that x* = 1 is also a non-trivial SOS by Theorem 2.

Finally, we present an example of an economy which satisfies all the

assumptions of Theorem 2 of McKenzie (1982), but which has only a trivial SOS.

2 1/2
Example 3 . Let e, = {(x,y) e R": 0<

L
y<_2x },5 = 1/2 and u(x,y) = x - 2y.

For (x,y) = (1/4,1) e Z , we have <5y » x. Note that our economy satisfies Al

to A4 and I and II of McKenzie (1982, p. 196-198). For any program {k} with
00

< k <_ 4, Z 5
C
u(k,k) < and is dominated by the program (k(t)}" with k(0) =

t=0
oo

k and k(t) = 0, t = 1,2,... . Since there is no stationary program {k} with

on

k > 4, {0} is the unique stationary optimal program.

Remark 2 . It is worth pointing out that McKenzie defines a non-trivial SOS

only for 6-productive technologies and as one which is a local turnpike. In

this sense, (0) in Example 3 is non-trivial because the technology is 5-productive

and (0) is a global turnpike.
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