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INTRODUCTION.

In the French Revolution, when called before the

tribunal and asked what useful thing he could do to

deserve life, Lagrange answered: "I will teach arith-

metic."

Almost invariably now arithmetic is taught by those

whose knowledge of mathematics is most meager. No
wonder it and the children suffer. In this day of the

arithmetization of mathematics and later its logiciza-

tion, are the beauty, the elegance of arithmetical proce-

dures to remain still unexplained? Is the singular, the

lonely precision of this science and art to remain un-

heralded, unexpounded?
In arithmetic a child may taste the joy of the genius,

the joy of creative activity.

Arithmetic is for man an integrant part of his world

construction. Thus do his fellows make their world,

and so must he. Now this is not by passive apprehension
of something presenting itself, but by permeating vitali-

zation spreading life and its substance through what the

ignorant teacher would present as the dead mechanism

of mechanical computation.
More than in any other science, there has been in

mathematics an outburst of most unexpected, most deep-

reaching progress. Its results, if made available for the
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teacher, will revivify this first, most precious of edu-

cational organisms; the more so since mathematics is

seen to possess of all things the most essential, most

fundamental objective reality.



CHAPTER I.

THE PREHUMAN CONTRIBUTIONS TO ARITH-
METIC.

Properly to understand or to teach arithmetic, one

should have a glimpse of its origin, foundation, meaning,

aim.

Arithmetic is the science of number, but for the ordi-

nary school-teacher it is to be chiefly t|ie doctrine of pri-

mary natural number, the decimal and later the fraction,

and the art of reckoning with them.

Numbers are of human make, creations of man's

mind; but they are first created upon and influenced by
a basis which comes from the prehuman.

Before our ancestors were men, they represented to

themselves, as do some animals now, the world as con-

The natural sisting of or containing individuals, definite

individual.
objects of thought, things. They exercised

an individuating creative power. In now understanding

by thing a. definite object of thought, conceived as indi-

vidual, we are using a method of world presentation

which served animals before there were any men to serve.

The child's consciousness certainly begins with a

sense-blur into which specification is only gradually in-

troduced. At what stage of animal development the

vague and fluctuating fusion, which was the world, be-

gins to be broken up into persistently separate entities
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would be an interesting comparative biologico-psycho-

logic investigation. However that might turn out, yet

things, separate objective things, are a gift to man from

the prehuman. Yet simple multiplicity of objects present

to perception or even to consciousness does not give

number. The duck does not count its young. The crow,

wise old bird, has no real counting power to help its

cunning. The animals' senses may be keener than ours,

yet they never give number.

A babe sees nothing numeric. Even an older child

may attend to diverse objects with no suggestion from

them of number. Sense-perception may be said to have

to do with natural individuals, but never, unaided by
other mind-act, does it give number.

To the animal habit of postulating entities as separate

must be added, before cardinal number comes, the human

The artificial unification of certain of them into one whole,
individual. one totality, one assemblage or group or set,

one discrete aggregate or artificial individual man-made.

This artificial whole, this discrete aggregate it is to

which cardinal number pertains. Thus number rests

upon a prehuman basis, yet is not number itself pre-

human. Cardinal number involves more than the animal

or natural individuals or things. It comes only with a

human creation, the creation of artificial individuals, dis-

crete aggregates taken each as an individual, an indi-

vidual of human make, fleeting perhaps as our thought,

transient, yet the necessary substratum for cardinal num-
ber. Unification is necessary. The mind must make of

the distinct things a whole, a totality. Else no cardinal

number.

Now to an educated man a number concept is sug-

gested when a specific simple aggregate of objects is at-
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tended to. Not so to any animal, though just the same

individual objects be recognized and attended to. The

animal has the unity of the natural object or individual,

but that unity is not enough. There is needed the new,

the artificial, the man-made individuality of the total

aggregate. To this artificial individual it is that the

cardinal number pertains. There is thus a unity, man-

made, of the aggregate of natural individuals, of the set

of constituent units. To this unity made of units car-

dinal number belongs.

Going for quite different articles, or to accomplish

entirely different things, may we not help and check

memory by fixing in our mind that we are to get three

things, or that we are to do three things? How man-

made, arbitrary, and artificial, this conjoining of acts

most diverse into a fleeting unified whole!

Each finger of the left hand is different. A dog

might be taught to recognize each as a separate and dis-

tinct individual. Only a man can make of all at once an

individual which, conceived as a whole, is yet multiple,

multiplex, a manifold, fivefold, a five of fingers, a prod-
uct of rational creation beyond the dog.

A primary cardinal number is a character or attribute

of an artificial unit made of natural units. It needs this

Primary single individuality and this multiplicity of
number. individuals. The fingered hand has fiveness

only if taken as an individual made of individuals.

Number is a quality of a construct. If three things
are completely amalgamated, emulsified, like the com-

ponents of bronze or the ingredients of a cake, there re-

mains no threeness. If some things are in no way taken

together the number concept is still inapplicable, we do

not see them as a trio.
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The animally originated primitive individuals, how-

ever complete in their distinctness, have no numeric sug-

gestion. The creative synthesis of a manifold must pre-

cede the conscious perception of its numeric quality. The

set must be conceived as a whole before discriminated

as a dozen. It is only to man-made conceptual unities

that the numeric quality pertains. This "number of

natural individuals" in an artificial individual is called

its cardinal number or cardinal. The cardinal n of a set

j is the class of all sets similar to s.

Primary number would seem in some sense a normal

creation of man's mind. No primitive language has ever

been investigated without therein finding records of the

number idea, unmistakable though perhaps slight, limited,

meager, it may be not going beyond our baby stage, one,

two, many.
There is a baby stage when no many is specialized

but two. One, two, many, then baby waits how long be-

fore that many called three is specialized ? Numeric one

as cardinal only comes into existence in contrast with

many. It involves a distinction between the class whose

only member is x, and the thing x itself. The Stoic

Chrysippos (282-209 B. C.) spoke of the "aggregate or

assemblage one." Number comes when we make a vague

many specific.

The world-mind rose from the animal to the human
when it grouped, aggregated, made wholes of, made arti-

ficial individuals of the distinct individual objects pre-

viously created by the animal mind. We may see babies

recapitulating the race in this.

The number of a particular totality represents the par-

ticular multiplicity of its individual elements and nothing
more. So far as represented in a number, each natural
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individual loses everything but its distinctness; all are

alike, indistinguishably equivalent. The idea of unity

is doubly involved in number, which applies to a unity

of a plurality of units. The units are arithmetically

identical; not so the complex unities man-made out of

collections of the units. To these pertain the differing

cardinal numbers.

In our developed number systems certain manys take

Our base on a peculiar prominence, are of basal char-

acter. Of these ten has now permanently
the upper hand.

What is the origin of this preeminence?
Its origin is prehuman. Our system is decimal, not

because ten is scientifically, arithmetically a good base,

a superior number, but solely because our prehuman an-

cestors gave us five fingers on each of two hands.



CHAPTER II.

THE GENESIS OF NUMBER.

In nature, distinct things are made and perceived as

individual. Each distinct thing is a whole by itself,

- .. . a qualitative whole. The individual thing
Cardinals. . , ... , .

is the only whole or distinct object in na-

ture. But the human mind takes individuals together

and makes of them a single whole of a new kind, and

names it. Thus we have made the concept a flock, a

herd, a bevy, a covey, a genus, a species, a bunch, a gang,
a host, a class, a family, a group, an array, a crowd, a

party, an assemblage, an aggregate, a manifold, a throw,

a set, etc. These are artificial units, discrete magnitudes ;

the unity is wholly in the concept, not in nature; it is

artificial. We constitute of certain things an artificial

individual when we distinguish them collectively from

the rest of the world, making out of subsidiary individ-

uals a single thing, a system, of which each component
is recognizable as distinct from all others. From the

contemplation of the natural individual or element in

relation to the artificial individual, the group, spring the

related ideas "many" and "one." We must have numeric

many before we can have cardinal one. A natural quali-

tative unit thought of in contrast to a "many" as not-

many gives the idea "one" as cardinal. An aggregate

may contain only a single element. Thus we have a set

containing an element with which every element is iden-
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tical. So we get "one." A unity, a "many" composed
of a "one" and another "one" is characterized as two.

The unity, the "many" composed of "one" and the

special many "two" is characterized as three.

Among the primitive ideas of cardinal number, the

idea of "two" is the first to be formed definitely. There

are ever present doublets, things which can be grasped
in pairs. This two is the very simplest many, the simplest

recognized form of plurality. It is incalculably simpler

than three, as witness whole savage tribes whose spoken
number system is "one, two, many" ;

as witness the mind-

wasting primitive stupidities of the dual number in Greek

grammar.
The special many, a one made of three, a trinity, a

trio, triplets, here is an advance. When to the grasp of

the pair, the dominance over the trio is added, when the

three is created, then after-progress is rapid.

With a couple of pairs goes four; with a couple of

threes, six. A hand represents five coming in between

four and six. A pair of hands says ten. A pair of tens

is twenty, a score. A pair of fours is eight. A trio of

threes is nine. A pair of sixes or a trio of fours is twelve,

a dozen.

Arithmetic flowers like a rocket. That seven is left

out, is missed, makes it the sacred, the mystic number of

superstition. To numbers, however complicated their

genesis, is finally ascribed a certain objective reality. In

our mind the number concepts finally become simple

things, objectively real.



CHAPTER III.

COUNTING AND NUMERALS.

The ability of mind to relate things to things, to

correlate, to represent something by some-
Correlation.

thing else, to make or perceive a correspon-

dence between things or thought creations is funda-

mental, essential, necessary.

The operation of establishing such a correspondence

between two sets that every thing or element of each

set is mated with, paired with, just one particular thing

or element of the other, is called establishing a one-to-one

correspondence between the sets. Two sets which can

be so mated are said to be equivalent as regards plural-

ity, or to have the same potency. Two sets equivalent

to the same are equivalent to each other, their elements

correlated to the same element being thereby mated.

Two sets between which a one-to-one relation exists have

the same cardinal number and are said to be cardinally

similar.

A set's cardinal number is what is common to the

set and every equivalent set. Thus a set's cardinal is

independent of every characteristic or quality of any
element beyond its distinctness. To find the cardinal of

a set, we count the set.

Counting is the establishing of a one-to-one corres-

pondence of aggregates, one of which belongs to a well-

known series of aggregates. If a group of things have
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this correspondence with this standard group, then those

properties of this standard group which are carried over

by the correspondence will belong to the new group.

They are properties of the group's cardinal number.

To count an aggregate, an artificial individual, is to

identify it as to numeric quality with a familiar assem-

blage by setting up a one-to-one correspon-To count.
, , Al_

dence between the elements of the two

groups. Thus counting consists in assigning to each

natural individual of an aggregate one distinct individual

in a familiar set, originally a group of fingers, now usu-

ally a set of words or marks. So counting is essentially

the numeric identification, by setting up a one-to-one cor-

respondence, of an unfamiliar with a familiar group.

Thus it ascertains, it fixes the nature of the less familiar

through the preceding knowledge of the more familiar.

Primitively the known groups were the groups of

fingers. The fingers gave the first set of standard groups

The primitive and formed the original apparatus for count-
standard sets. mg) ancj serve(j for the symbolic transmis-

sion of the concepts, the number ideas generated. More
than that, this finger counting gave the names of the

numbers, the numeric words so helpful in the further

development of numeric creation. The name of a number,
when referring to an artificial unit, as of sheep, denoted

that a certain group of fingers would touch successively
the natural units in the discrete magnitude indicated, or

a certain finger would stand as a symbol for the numerical

characteristic of that group of natural units.

Our word "five" is cognate with the Latin quinque,
Greek pente, Sanskrit pancha, Persian pendji; now in

Persian penjeh or pentcha means an outspread hand.
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In Eskimo "hand me" is tamuche; "shake hands" is

tallalue; "bracelet" is talegowruk; "five" is talema.

In the language of the Tamanocs of the Orinoco,

five means "whole hand" ;
six is "one of the other hand" ;

and so up to ten or "both hands."

Philology confirms that the original counting series

or outfit was the series of sets of fingers, and this primi-

tive method preceded the formation of numeral words.

The use of visible signs to represent numbers and aid

reckoning is not only older than writing, but older than

the development of numerical language. In very many

languages the counting words come directly and recog-

nizably from the finger procedure.

But of the fingers there are only a few distinct ag-

gregates, only ten. Developing man needs more, needs

to enlarge and extend his standards.

The Chinese, even at the present day, extend the

series of primary groups, the finger-groups, by substi-

tuting groups of counters movably strung
The abacus.

& s F
. r w*ion rods fixed in an oblong frame. With

this abacus, which they call shwanpan, reckoning board,

and the Japanese call soroban, they count and perform
their arithmetical calculations.

In many languages there are not even words for the

first ten groups. Higher races have not only named

The word-
*nese grouPs

> but have extended indefinitely

numeral this system of names. They no longer count

directly with their fingers, but use a series

of names, so that the operation of counting an assemblage
of things consists in assigning to each of them one of

these numeral words, the words being always taken in

order, and none skipped, each word being thus capable
of representing not merely the individual with which it
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is associated, but the entire named group of which this

individual is the last named.

In making this series of word-numerals, there is

evidently need for a system of periodic repetition. The

prehuman fixes five, ten, or twenty as the
Periodicity. r , . ,

. . , ^ r
number after which repetition begins. Ut

these, ten has become predominant. Thus come our

word-numerals, each applicable to just one of a counted

set and to the aggregate ending with this one. This

dekadic word-system makes easy, with a simple, a light

numerational equipment, the perfectly definite expression

of any number, however advanced.

So for us to count is to assign the numerals one, two,

three, etc., successively and in order, to all the individual

objects of a collection, one to each. The collection is

said to be given in number, the number of things in it,

by the cardinal number signified by the numeral as-

signed to the last natural unit or component of the col-

lection in the operation of counting it. Numerals are

also called numbers. The numeral and a word specify-

ing the kind of objects counted make what is called a

concrete number. In distinction from this, a number is

called an abstract number.

When children are to count, the things should be

sufficiently distinct to be clearly and easily recognizable as

individual, yet not so disparate as to hinder the human

power to make from them an artificial individual. The

objects should not be such as to individually distract the

attention from the assemblage of them.

With little children use a binary system. Build with

twos. Then go on, as did the Romans, to a quinary-

binary system, which suits counting on the fingers.
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In counting, an artificial individual may take the

place of a natural individual. Children enjoy counting

A partitioned Dv fives. Inversely, a unit may be thought
unit> of as an artificial individual, composed of

subsidiary individuals, as a dollar of 100 cents.

An interesting exercise is the instantaneous recog-

nition of the cardinal, the particular numeric quality of

Number with- the collection, its specification without count-
out counting. jng gut ^jg power to picture all the sep-

arate individuals and to recognize the specific given pic-

ture is very limited. If it be attempted to facilitate this

recognition by arrangement, the recognition may easily

become that of form instead of number. It is then simply

recognizing a shape which we know should have just so

many elements. Every teacher should remember when

using blocks in developing the number-concept that only
if very few can their number be perceived without the

help of counting or addition. If 4 blocks lie close their

number may be perceived immediately, but seven are

dealt with as two groups. It is believed that the limit,

even for adults and under favorable conditions, is about

4. We know that even IIII was replaced by IV. Try
the children to see if their primitive number perception,

that of II, has grown, and how far.

In the making of numeral words it is necessary to

fix upon one after which repetition is to begin. Other-

Decimal w *se tnere would be no end to the number
word- of different words required. We have noted
numerals. , , , ,. , ,

that the prehuman has narrowed the choice,

by the fiveness of the extremities of mammalian limbs,

to five, ten or twenty. The majority of races, especially
the higher, in prehistoric time chose ten, the number of

our fingers. Then was developed a system to express
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by a few number-names a vast series of numbers. If we

interpret eleven as "one and ten" and twelve as "two and

ten," teen as "and ten," ty as "tens," then English, until

it took "million," ("great thousand," Latin mille, a thou-

sand,) bodily from the French and Italian, used only a

dozen words in naming numbers, in making a series of

word-numerals with fixed order.

The systematic formation of numerical words is

called numeration.

The cardinal number of any finite set of things is the

same in whatever order we count them.

Invariance This is so fundamental a theorem of

of cardinal,
arithmetic, it may be well to make its reali-

zation more intuitive.

That the number of any finite group of distinct things

is independent of the order in which they are taken, that

beginning with the little finger of the left hand and going
from left to right, a group of distinct things comes ulti-

mately to the same finger in whatever order they are

counted, follows simply from the hypothesis that they
are distinct things. If a group of distinct things comes

to, say, five when counted in a certain order, it will come

to five when counted in any other order.

For a general proof of this, take as objects the letters

in the word "triangle," and assign to each a finger, be-

ginning with the little finger of the left hand and ending
with the middle finger of the right hand. Each of these

fingers has its own letter, and the group of fingers thus

exactly adequate is always necessary and sufficient for

counting this group of letters in this order.

That the same fingers are exactly adequate to touch

this same group of letters in any other order, say the

alphabetical, follows because, being distinct, any pair
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attached to two of my fingers in a certain order can also

be attached to the same two fingers in the other order.

In the new order I want a to be first. Now the letters

t and a are by hypothesis distinct. I can therefore inter-

change the fingers to which they are assigned, so that

each finger goes to the object previously touched by the

other, without using any new fingers or setting free any

previously employed. The same is true of r and e, of

i and g, etc.

As I go to each one, I can substitute by this process

the new one which is wanted in its stead in such a way
that the required new order shall hold good behind me,

and since the group is finite, I can go on in this way
until I come to the end, without changing the group of

fingers used in counting, that is without altering the

cardinal number, in this case 8.

The group of fingers exactly adequate to touch a

group of objects in any one definite order is thus exactly

adequate for every order. But when touching in one

definite order each finger has its own particular object

and each object its own particular finger, so that the

group of fingers exactly adequate for one peculiar order

is always necessary and sufficient for that one order.

But we have shown it then exactly adequate for every

order; therefore it is necessary and sufficient for every

order.



CHAPTER IV.

GENESIS OF OUR NUMBER NOTATION.
The systematic decimal system in accordance with

which, even in the times of our prehistoric ancestors, a

Positional f w number names were used to build all

counting. numeral words, is paralleled by the proce-

dure, even at the present day, of those Africans who in

counting use a row of men as follows rjihe first begins

with the little finger of the left hand, and indicates, by

raising it and pointing or touching, the assignment of

this finger as representative of a certain individual from

the group to be counted; his next finger he assigns to

another individual; and so on until all his fingers are

raised. And now the second man raises the little finger

of his left hand as representative of this whole ten, and

the first man, thus relieved, closes his fingers and begins

over again. When this has been repeated ten times, the

second man has all his fingers up, and is then relieved

by one finger of the third man, which finger therefore

represents a hundred
;
and so on to a finger of the fourth

man, which represents a thousand, and to a finger of the

fifth man, which represents a myriad (ten thousand).
An advance on this actual use of fingers with a posi-

tional value depending only on the man's place in the

row, is seen in the widely occurring abacus,

a rough instance of which is just a row of

grooves in which pebbles can slide. With most races, as
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with the Egyptians, Greeks, Japanese, the grooves or col-

umns are vertical, like a row of men. The counters in the

right-most column correspond to the fingers of the man
who actually touches or checks off the individuals

counted; it is the units column.

But in the abacus a simplification occurs. One finger

of the second man is raised to picture the whole ten

fingers of the first man, so that he may lower them and

begin again to use them in representing individuals. Thus

there are two designations for ten, either all the fingers

of the first man or one finger of the second man. The

abacus omits the first of these equivalents, and so each

column contains only nine counters.

For purposes of counting, a group of objects can be

represented by a graphic picture so simple that it can be

Recorded produced whenever wanted by just making
symbols. a mark for Gacfo distinct object. Thus the

marks I, II, III, IIII, picture the simplest groups with a

permanence beyond gesture or word; and for many im-

portant purposes, one of these stroke-diagrams, though

composed of individuals all alike, is an absolutely per-

fect picture, as accurate as the latest photograph, of any

group of real things no matter how unlike.

The ancient Egyptians denoted all numbers under ten

by the corresponding number of strokes; but with ten

a new symbol was introduced. The Romans regularly

used strokes for numbers under five, using V for five.

The ancient Greeks and Romans both however indicated

numbers by simple strokes as high as ten. The Aztecs

carried this system as high as twenty, but they used a

small circle in place of the straight stroke. I have seen

the same thing done in Japan.

Each stroke of such a picture-group may be called a
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unit. Each group of such units will correspond always

to the same group of fingers, to the same numeral word.

Though to this primitive graphic system of number-

pictures there is no limit, yet it soon becomes cumbrous.

The Hindu Abbreviations naturally arise. Those the

numerals. world now uses, the Hindu numerals, have

been traced back to inscriptions in India probably dating

from the early part of the second century B. C.

The oldest inscription using them positionally with

local value and developed form is of 595 A. D. The

Egyptians had no positional notation for number, though

they had a hieroglyph for nothing, which they substituted

for one side when applying their formula for a quadri-

lateral to a triangle. The Babylonians had a sign of

this kind, not used in calculation, consisting of two angu-
lar marks, one above the other. About A. D. 130, Ptol-

emy in Alexandria used, in his Almagest, the Babylonian

sexagesimal fractions, and designated voids by the first

letter of the word ovSe'v, nothing. This letter was not

used as a zero.

M. F. Nau gives in French translation in Journal

asiatique, Vol. 16 (10th series), 1910, pp. 225-227, a

quotation from Severus Sebokt, of Quennesra, on the

Euphrates, near Diarbekr, written in 662 A. D., more
than two centuries before the earliest known appearance
of the numerals in Europe:

"I refrain from speaking of the science of the Hin-

dus, who are not Syrians, of their subtile discoveries in

this science of astronomy more ingenious than those

of the Greeks and even of the Babylonians and of their

facile method of calculating and computing, which sur-

passes words. I mean that made with nine symbols."
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But probably a long time was yet to pass before the

creation of the most useful symbol in the world, the

naught, the zero, not merely a sign for noth-

ing, but a mark for the absence of quantity,

the cipher, whose first known use in ring form in a

document is in 738 A. D.*

This little ellipse, picture for airy nothing, is an indis-

pensable corner-stone of modern civilization. It is an

Ariel lending magic powers of computation, promoting
our kindergarten babies at once to an equality with Cae-

sar, Plato or Paul in matters arithmetical.

The user of an abacus might instead rule columns on

paper and write in them the number of pebbles or coun-

ters. But zero, 0, shows an empty column and so at

once relieves us of the need of ruling the columns, or

using the abacus. Modern arithmetic comes from ancient

counting on the columns of the abacus, immeasurably

improved by the creation of a symbol for an empty col-

umn.

The importance of the creation of the zero mark can

never be exaggerated. This giving to airy nothing not

merely a local habitation and a name, a picture, a symbol,

but helpful power, is characteristic of the Hindu race

whence it sprang. It is like coining the Nirvana into

dynamos. No single mathematical creation has been more

potent for the general on-go of intelligence and power.
From the second half of the eighth century Hindu writ-

ings were current at Bagdad. After that the Arabs knew

positional notation. They called the zero gifr. The Arab

word, a substantive use of the adjective gifr ("empty"),
was simply a translation of the Sanskrit name sunya,

* E. C. Bayley, 1882 Doubted by G. F. Hill, 1910, who substi-

tuted an inscription of 876 A. D.
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literally "empty." It gave birth to the low-Latin zephi-

rum or zefirum (used by Leonard of Pisa, 1202), whence

the Italian form zefiro, contracted to zefro, and (1307)

zeuero, then zero, whose introduction in print goes back

to the 15th century (1491).

In the oldest known French treatise on algorithm

(author unknown, of the thirteenth century) we read,

"iusca le darraine ki est appellee cifre 0." In the thir-

teenth century in Latin the word cifra for "naught" is

met in Jordan Nemorarius and in Sacrabosco who wrote

at Paris about 1240.

In MS. Egerton 2622, one of the earliest arithmetics

in our language, on leaf \2>7b, we read:

"Nil cifra significat sed dat signare sequent!.

"Expone this verse. A cifre tokens noyt, bot he

makes the figure to betoken that comes aftur hym more

than he schuld & he were away, as thus 10. here the

figure of one tokens ten. it may happe aftur a cifre

schuld come a nothur cifre, as thus 200."

Maximus Planudes (1330) uses tziphra. Euler used

(1783) in Latin the word cyphra. We still say "cipher"
or "cypher." In German Ziffer has taken a more gen-
eral meaning, as has the equivalent French word chiffre,

the most important numeral coming to mean any. The
oldest coin positionally dated is of 1458.

Zero, originally the sign of a blank or nil or vacant

column, may be looked upon as indicating that a class is

void, containing no object whatever, that it is the null

class. Thus it is one of the answers to the question,
"How many?", and so is a cardinal. It is also given a

place in the ordinal series of natural numbers, and is

chief in the series of algebraic numbers. Only in the
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sixteenth century does naught appear as common sym-
bol for all differences in which minuend and subtrahend

are equal, and thus show itself as ready for its second

great application, to standardize algebraic forms.

By the first meaning of cipher, "empty," we have

20 = twain ten, but 2 + = 2. Hankel, 1867, calls modu-

lus of an operation that which combined by the operation

with something leaves this unchanged. So to-day we
use nine digits and have no digit corresponding to the

Roman X, for X is all the fingers of the first man, while

we, like the abacus, use 10, which is one finger of the

second man. Thus the ten, hundred, thousand are only

expressed by the position of the number which multiplies

them.

In the written numeral IIII, we still see in the symbol
the units of which the fourfold unit four is composed.
Later abbreviation veils the constituent units, but their

independence and all-alike-ness remain fundamental, giv-

ing to cardinal number its independence of the order in

which the things are enumerated.

The use of the digits (Latin, digitus, a "finger"), the

substitution of a single symbol for each of the first nine

Our present picture-groups, and that splendid creation of
notation. the Hindus, the zero, 0, naught, cipher,

made possible our present notation for number. This

still has a base, ten, in which the sins of our fathers, the

mammals, are visited on their children. Its perfection

is in its use of position with digits and zero, a positional

notation for number, which the decimal point (or unital

point) empowers to run down below the units, giving the

indispensable decimals.

This positional notation for number consists in the

very refined artifice of representing every number as a
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sum of terms expressed by a row of digits each standing

for a product of two factors, one factor the intrinsic,

the face factor, indicated by the digit itself, the other

factor, the local, the place factor, indicated by the place

of this digit in the row, the local factor being a power
of the base, for units' place, or column b or one, for

the next place to the left b 1 or b (the base), to the right

b~l or \/b, etc. The summation of these binary products
is indicated by the juxtaposition in the row of the digits

representing them by their form and their place in the

row with reference to units' place.

Calculus, (Latin, "a pebble"), ciphering, which thus

by the aid of zero attains an ease and facility which

would have astounded the antique world, consists in com-

bining given numbers according to fixed laws to find

certain resulting numbers.

Teaching is to enable the ordinary child to do what

the genius has done untaught.

A Hindu genius created the zero. The common, even

the stupid, child is now to be taught to understand and

use this wonderful creation just as it is taught to use

the telephone. So the teacher incites, provokes the self-

activity of the child's mind and guides it and confirms

it, stopping this kaleidoscope at a certain turn, when the

evershifting picture is near enough for life to the picture

in the teacher's mind.

Without theory, no practice, yet need not the theory
be conscious. There is a logic of it, yet the child need

not necessarily know, had perhaps better not know, that

logic. The teacher should know, the child practise.

It is striking to realize the centuries that passed after

the present system of number-naming, numeration, had
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been developed, before it had analogous, adequate sym-

bolization, adequate written notation.

As compared with their number-names, how bungling

the Greek and Roman numerals, how arithmetically help-

less the men of classic antiquity for lack of just one writ-

ten symbol, the Hindu naught, giving us a written system

which, except for its base ten, seems to be final and for

all time, a world sign-language more perspicuous and

compendious than any word-language. That prehuman

parasite, the ten, is fixed on us like an Old Man of the

Sea, else we could take the easily superior base twelve.

The number of digit figures required is one less than the

base; since 10 represents the base, whatever it be.

In each case the prebasal figures, by help of the zero,

always express as written in succession to left or to right

of the units place (fixed by the unital point) multiples

of ascending and descending powers of the base. But

while the two and six of twelve are like the two and five

of ten, yet twelve has three and four besides as divisors,

as submultiples, for which tremendous advantage ten

offers no equivalent whatsoever. The prehuman imposi-

tion of ten as base, disbarring twelve, is thus a permanent

clog on human arithmetic.

The mere numerals, 1, 2, 3,.... or the numeral

words, "one," "two," "three," .... are signs for what

are called "natural numbers," or positive integers. In-

teger with us shall always mean positive integer. If

pure numbers, integers, have an intrinsic order, so do

these, their symbols.

The unending series, 1, 2, 3, 4, 5,. ... or one, two,

three, four, five,.. ..is called the "natural scale," or

the scale of the natural numbers, or the number series.

Each symbol in it, besides its ordinal, positional sig-
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nificance in the sequence of symbols, is used also to in-

dicate the cardinal number of the symbols in the piece

of the scale it ends, and so of any group correlated to

that piece.

Thus the ordinal system is the original from which

the cardinal system is derived.

In the primary ordinal system the symbols refer to

the individual objects, while in the derived cardinal sys-

tem these same symbols refer to the successively larger

sets whose names are determined as the name of the

last individual counted ordinally.



CHAPTER V.

THE TWO DIRECT OPERATIONS, ADDITION
AND MULTIPLICATION.

The symbolic representation of numbers and ways
of combining numbers comes under the head

Notation. .

"
.

of what is called notation.

The natural numbers, as shown in the primitive nu-

meral pictures, I, II, III, IIII, begin with a single unit,

and, cardinally considered, are changed to the next al-

ways by taking another single unit.

A number, an integer, is said to be equal to, or the

same as, a number otherwise expressed, when their units

The symbol being counted come to the same finger, the

same numeral word. The symbol =, read

equals, is called the sign of equality, and takes the part

of verb in this symbolic language. It was invented by
an Englishman, Robert Recorde, replacing in his algebra,

The Whetstone of Witte* the sign z used for equality

in his arithmetic, The Grounde of Artes, 1540. Equality
is a relation reflexive, symmetric, invertible. Equality
is a mutual relation of its two members. If x=y, then

y-x. Equality is a transitive relation. If x-y and

yz, then xz. A symbolic sentence using this verb

is called an equality.

Ordinally, x=y means that x and y denote the same

* London (no date, preface 1557).
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number in the natural scale. Formally, x-y means that

either can at will be substituted for the other anywhere.
When the process of counting the units of one num-

ber simultaneously one-to-one with units of a second

number ends because no unit of the second

number remains uncounted, but the units

of the first number are not all counted, then the first

number is said to contain more units than the second

number, and the second number is said to contain less

units than the first.

If a number contains more units than a second, it is

called greater than this second, which is called the lesser.

By successively incorporating single units with the lesser

of two primitive numbers we can make the greater.

Thomas Harriot* (1560-1621), tutor to Sir Walter

Raleigh and one of "the three magi of the Earl of North-

umberland," devised the symbol >, published 1631, read

"is greater than," and called the sign of inequality. In-

equality is a sensed relation. Turned thus < its symbol
is read "is less than." Inequality in the same sense is

transitive. If x > y and y > 2, then x > z.

Since the result of counting is independent of the

order of the individuals counted, therefore of two un-

equal natural numbers the one once found greater is

always the greater. Without knowing the number n,

we can write "either n>5, or n=5, or n < 5." Any
number which succeeds another in the natural scale is

greater than this other. Ordinally, x < y means that x

precedes y in the scale.

* Harriot was sent to America by Raleigh in the year 1585.
He made the first survey of Virginia and North Carolina, the maps
of these being subsequently presented to Queen Elizabeth. He started
the standardizing of algebraic forms and the theory of functions by
writing every equation as a function equal to zero.
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When by any definite process we select one or more

elements of any aggregate A, these form another aggre-

gate B, called a part of A. If any element of A remains

unselected, B is called a proper part of A. It is possible

for an aggregate to be equivalent to a proper part of it-

self
; the aggregate is then called infinite. For example:

for every number there is an even number; again, for

every point on a foot there is a point on an inch.

When we can get a third number from two given

numbers by a definite operation, the two given numbers

joined by the sign for the operation and
Parentheses.

J
, '.

enclosed m parentheses may be taken to

mean the result of that combination. The result can now
be again combined with another given number, and so

we may get combinations of several numbers though
each operation is performed only with two.

Parentheses indicate that neither of the two numbers

enclosed, but only the number produced by their combina-

tion, is related to anything outside the parentheses.

Parentheses (first used by the Flemish geometer Al-

bert Girard in 1629) may without ambiguity be omitted:

First, When of two operations of like rank the pre-

ceding (going from left to right) is to be first carried

out;

Second, When of two operations of unlike rank the

higher is the first to be carried out.

The representation of one number by others with

symbols of combination and operation is called an ex-

pression. By enclosing it in parentheses,
Expressions.

r
.

J

any expression however complex in any way
representing a number, may be operated upon as if it

were a single symbol of that number. If an expression

already involving parentheses is enclosed in parentheses,
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each pair, to distinguish it, can be made different in siae

or shape. The three most usual forms are the parenthesis

(, the bracket [, and the brace {. In translating the ex-

pression into English, ( should be called first parenthesis,

and ) second parenthesis ; [ first bracket, ] second bracket ;

{ first brace, } second brace.

No change of resulting value is made in any expres-

sion by substituting for any number its equal however

expressed. From this it follows that two
Substitution. ... t

numbers each equal to a third are equal to

one another. This process, putting one expression for

another, substitution, is a primitive yet most important

proceeding. A single symbol may be substituted for any

expression whatever.

Permutation consists in a simultaneous carrying out

of mutual substitution, interchange. Thus a and b in an

expression, as abc, are permuted when they are inter-

changed, giving bac. More than two symbols are per-

muted when each is replaced by one of the others, as

in abc giving bca or cab.

Suppose we have two natural numbers written in

their primitive form, as III and IIII; if we write all

these units in one row we indicate another
Addition.

natural number; and the process of getting
from two numbers the number belonging to the group
formed by putting together their groups to make a single

group is called addition. This operation of incorporating
other units into the preceding diagram is indicated by
a symbol first met in print in the arithmetic by John
Widman, (Leipsic, 1489), a little Greek cross, +, read

plus.

If one artificial individual be combined with another

to give a new artificial individual in which each unit of
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the components appears retaining its natural indepen-

dence and natural individuality, while the artificial indi-

viduality of the two components vanishes, the number

of the new artificial individual is called the sum of the

numbers of the two components, and is said to be ob-

tained by adding these two numbers (the terms or sum-

mands). The first of two summands may be called the

augment; the second, the increment. The sum of two

numbers, two terms, is the numeric attribute of the total

system constituted of two partial systems to which the

two terms respectively pertain.

In the child as in the savage, the number idea is not

dissociated from the group it characterizes. But educa-

tion should help on the stage where the number exists

as an independent concept, say the number five with its

own characteristics, its own life. Therefore we have

number-science, pure arithmetic. So though it might per-

haps be argued that there is only one number 5, yet we

may properly speak of combining 5 with 5 so as to retain

the units unaffected while the fiveness vanishes in the

compound, the sum, 10.

Addition is a taking together of the units of two num-

bers to constitute the units of a third, their sum. This

may be obtained by a repetition of the operation of form-

ing a new number from an old by taking with it one

more unit; thus 3 + 2 = 3 + 1 + 1.

If given numbers are written as groups of units, e. g.

(exempli gratia) ,
2=1 + 1, 3 = 1 + 1 + 1, the result of

adding is obtained by writing together these rows of

units, e.g., 2 + 3=(l + !) + (! + 1 + 1) = 1 + 1 + 1 + 1 +1=5.
Since cardinal number is independent of the order

of counting, therefore in any natural number expressed
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in its primitive form, as IIII, the permutation of any

pair of units produces neither apparent nor real change.

The units of numeration are completely interchange-

able. Therefore we may say adding numbers is finding

one number which contains in itself as many units as the

given numbers taken together.

In defining addition, we need make no mention of the

order in which the given numbers are taken to make the

sum. A sum is independent of the order of its parts

or terms. This is an immediate consequence of the theo-

rem of the invariance of the number of a set. For a

change in the order of the parts added is only a change
in the order of the units, which change is without in-

fluence when all are counted together.

To write in symbols, in the universal language of

mathematics, that addition is an operation unaffected by

permutation of the order of the parts added, though

applied to any numbers whatsoever, we cannot use nu-

merals, since numerals are always absolutely definite,

particular. If, following Vieta's book of 1591, we use

letters as general symbols to denote numbers left other-

wise indefinite, we may write a to represent the first

number not only in the sum 2 + 3, but in the sum 4 + 1

and in the sum of any two numbers. Taking b for a

second number, the symbolic sentence a + b = b + a is a

statement about all numbers whatsoever. It says, addi-

tion is a commutative operation.

The words commutative and distributive were used

for the first time by F. J. Servois in 1813.

The previous grouping of the parts added has no

effect upon the sum. Brackets occurring in an indicated

sum may be omitted as not affecting the result. The

general statement or formula (a + b) +c = a+ (b + c) says,



32 FOUNDATION AND TECHNIC OF ARITHMETIC.

addition is an associative operation, an operation having
associative freedom.

Rowan Hamilton in 1844 first explicitly stated and

named the associative law. For addition it follows from

the theorem of the invariance of the number of a group.

Equalities having to do only with the very nature

of the operations involved, and not at all
Formulas. . ,

. . , ,

with the particular numbers used are called

formulas.

A formula is characterized by the fact that for any
letter in it any number whatsoever may be substituted

without destroying the equality or restricting the values

of any other letter. In a formula a letter as symbol for

any number may be replaced not only by any digital num-

ber, but also by any other symbol for a number whether

simple or compound, in the last case bracketed. Thus

a + b = b + a gives (a+c) +b = b+ (a+c). So from a

formula we can get an indefinite number of formulas

and special numerical equations.

Each side or member of a formula expresses a method

of reckoning a number, and the formula says that both

reckonings produce the same result. A formula trans-

lated from symbols into words gives a rule. As equality

is a mutual relation always invertible, a formula will

usually give two rules, since its second member may be

read first.

By definition, from the inequality a > b we know
that a could be obtained by adding units to b. Calling

this unknown group of units n, we have a = b + n.

Inversely, if a=b + n then a > b, that is a sum of finite

natural numbers is always greater than one of its parts.

A sum increases if either of its parts increases.
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Addition may also be defined and its properties es-

Ordinal tablished from the ordinal view-point.
addition. start from the natural scale. To add

1 to the number x is to replace x by the next following

ordinal. So if we know x, we know x+\.

When we have defined adding some particular num-

ber a to x, when we have defined the operation x + a, the

operation x+(a+\} shall be defined by the formula

(1) ..... .r+(a+ l) = (* + a) + l.

We shall know then what ;r+(a + l) is when we
know what x + a is, and as we have, to start with, defined

what x+\ is, we thus have successively and "by recur-

rence" the operations x + 2, x + 3, etc.

The sum a + b is thus defined ordinally as the bth term

after the ath.

It serves to represent conventionally a new number

univocally deduced by a definite given procedure from

the numbers summed or added together.

Associativity : a+ (b + c) = (a + b) +c.

This theorem is by definition true for c=l, since, by

Properties
formula (1), a+ (b + 1) = (a + b) + 1. Now

of addition,
supposing the theorem true for c = y, it will

be true for c = y + l. For supposing

it follows that

(2) . . . . [ (fl + fe) + y] + 1 =

which is only adding one to the same number, to equal
numbers.

Now by definition ( 1 ) the first member of this equa-
tion (2)

.... (3),
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as we recognize that it should be, since y is the number

preceding y+l.
But by the same formula (1), read backward, the

second member of equation (2)

as we see it should be, since b + y is the number preceding

b + y + l. But again by (1), the second member of (4),

Therefore [by (5), (4) and (3)], (2) may be writ-

ten,

Hence the theorem is true for c = y+l.

Being true for c = l, we thus see successively that

so it is for c = 2, for c = 3, etc.

This is a proof by mathematical induction or demon-

stration by recurrence, a procedure first explicitly used,

although without a general enunciation, by Maurolycus
in his work, Arithmeticorum libri duo (Venice, 1575).

Commutativity : 1.... a + l = l+a.

This theorem is identically true for a=l.

Now we can verify that if it is true for a y it will

be true for a = y + l
; for then

by associativity. But it is true for a = 1, therefore it will

be true for a = 2, for a = 3, etc.

2 ----

This has just been demonstrated for & = 1; it can be

verified that if it is true for b-x, it will be true for

For, if true for b = x, then we have by hypoth-
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esis a +x = x + a; whence, by formula (1), by 1 and asso-

ciativity, o+ (-*+!) = (a + .*) + ! = (.* + a) + l=#+(a+l)
=*+(! + a) (*+!)+ a.

The proposition is therefore established by recurrence.

Sums in which all the parts are equal frequently occur.

Such additions are often laborious and liable to error.

Multiplica- But such a sum is determined if we know
tion. one the equai parts and the number of

parts. The operation of combining these two numbers to

get the result is called multiplication; the result is then

called the product. The part repeated is called the multipli-

cand, and the number which indicates how often it occurs

is called the multiplier. Multiplicand and multiplier are

each factors of the product. Such a product is a multiple

of each of its factors. In forming such a product, the

multiplicand is taken once as summand for each unit in

the multiplier. More generally, a product is the number

related to the multiplicand as the multiplier to the unit.

Following Wm. Oughtred (1631), we use the sign

x to denote multiplication, writing it before the multiplier

but after the multiplicand. Thus 1 xlO, read one multi-

plied by ten, or simply one by ten, stands for the product
of the multiplication of 1 by 10, which by definition

equals 10. The multiplication sign may be omitted when
the product cannot reasonably be confounded with any-

thing else, thus la means 1 xa, read one by a, which by
definition equals a.

From our definition also axl, that is a multiplied

by 1, must equal a.

Commutativity. Multiplication of a number by a num-
ber is commutative.

Multiplier and multiplicand may be interchanged with-

out altering the product.
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11111 For if we have a rectangular array of

11111 a rows each containing b units, it is also b

11111 columns each containing a units.

Therefore bxa = axb.

Taking apposition to mean successive multiplication,

for example, abode = {[(ab}c]d}e, calling the numbers

involved factors, and the result their product, we may
prove that commutative freedom extends to any or all

factors in any product.

For changing the order of a pair of factors which

are next one another does not alter the product. abcd-

acbd.

For c rows of a's, each row containing

a a a a a b of them, is b columns of a's, each con-

a a a a a taining c of them. So c groups of ab units

a a a a a comes to the same number as b groups of ac

units.

This reasoning holds no matter how many factors

come before or after the interchanged pair. For example

abcdefg=abc ed fg,

since in this case the product abc simply takes the place

which the number a had before. And e rows with d

times abc in each row come to the same number as d

columns with e times abc in each column. It remains

only to multiply this number successively by whatever

factors stand to the right of the interchanged pair.

It follows therefore that no matter how many num-

bers are multiplied together, we may interchange the

places of any two of them which are adjacent without

altering the product. But by repeated interchanges of

adjacent pairs we may produce any alteration we choose

in the order of the factors.
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This extends the commutative law of freedom to all

the factors in any product.

Associativity. To show with equal generality that

multiplication is associative, we have only to prove that

in any product any group of the successive factors may
be replaced by their product.

abcdefgh = abc(def}gh.

By the commutative law we may arrange the factors

so that this group comes first. Thus abcdefgh = def abc gh.

But now the product of this group is made in carry-

ing out the multiplication according to definition. There-

fore

abcdefgh = def abc gh= (def) abc gh.

Considering this bracketed product now as a single

factor of the whole product, it can, by the commutative

law, be brought into any position among the other fac-

tors, for example, back into the old place; so abcdefgh =

def abc gh- (def} abc gh = abc (def) gh.

Distributivity. Multiplication combines with addition

according to what is called the distributive law.

Instead of multiplying a sum and a number we may
multiply each part of the sum with the number and add

these partial products.

4x5 = 4(2+ 3) = (2 + 3)4=2x4+3x4=5x4.

Four by five equals five by four, and

four rows of (2 + 3) units may be counted

as four rows of two units together with

4 rows of 3 units.

As the sum of two numbers is a num-
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ber, we may substitute (a + b) for b in the formula

, which thus gives

So the distributive law extends to the sum of how-

ever many numbers or terms.

Since a(b+c)> ab and (a+b)b>ab, therefore a prod-

uct changes if either of its factors changes. A product
increases if either of its factors increases.

Notwithstanding the historical origin of addition

from counting and of multiplication from the addition

of equal terms, it is now advantageous to consider multi-

plication, not as repeated addition, but as a separate

operation, only connected with addition by the distribu-

tive law, an operation for finding from two elements,

x, y, an element univocally determined, xy, called "the

product, x by y" which by commutativity equals x
times y.



CHAPTER VI.

THE TWO INVERSE OPERATIONS, SUBTRAC-
TION AND DIVISION.

In the preceding direct operations, in addition and

multiplication, the simplest problem is, from
Inversion. . , . ,, . ,

two given numbers to make a third.

If a and b are the given numbers, and x the unknown

number resulting, then

, or x =ax,

according to the operation.

An inverse of such a problem is where the result of

a direct operation is given and one of the components,
to find the other component. The operation by which

such a problem is solved is called an inverse operation.

Since by the commutative law we are free to inter-

change the two parts or terms of a given sum, as also

the two factors of a given product, therefore here the

inverse operation does not depend upon which of the

two components is also given, but only upon the direct

operation by which they were combined.

Suppose we are given a sum which we designate by

s, and one part of it, say, p, to find the corresponding
other part, which, yet unknown, we repre-

Subtraction. _.
*

sent by x. Since the sum of the numbers

p and x is what p +x expresses, we have the equality



40 FOUNDATION AND TECHNIC OF ARITHMETIC.

But this equation differs in kind from the literal equal-

ities heretofore used. It is not a formula, for any digital

number substituted for one of these letters restricts the

simultaneous values permissible for the others. Such an

equality is called a conditional equality or a synthetic

equation, or simply an equation.

The inverse problem for addition now consists just

in this, to solve the synthetic equation

when a and b are given ;
in other words, to find a definite

number which placed as value for x will satisfy the equa-

tion, that is which added to b will give a, and thus verify

the equation. The number found, which satisfies the

equation is called a root of the equation.

If the operation by which from a given sum a and a

given part of it b we find a value for the corresponding

other part x is called from a subtracting b, then, using

the minus sign (-) to denote subtraction, we may write

the result a-b, read a minus b.

We may get this result, remembering that a number

is a sum of units, by pairing off every unit in b with a

unit in a, and then counting the unpaired units. This

gives a number which added to b makes a.

The expression or result a- b is called a difference.

The term preceded by the minus sign is called the

subtrahend', the other the minuend.

Thus (a-b)+b = a-b + b = a; also

Ordinally, to subtract y from x is to find the number

occupying the ;yth place before x.

Postulating the "rule of signs," that a-(b-c) =

a-b + c, subtraction is associative and commutative.
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The term division has two distinct meanings in ele-

mentary mathematics. There are two ope-
Division. . ... . . .

rations called division: 1, Remainder divi-

sion
; 2, Multiplication's inverse.

1, Given two numbers, a > b, a the dividend, and b

the divisor, the aim of remainder division may be con-

sidered the putting of a under the form bq + r, where

r < b, and b not 0. We call q the quotient, and r the re-

mainder. Both are integral. There is a definite proba-

bility that r will not be 0.

The remainder division of a by & answers the two

questions: 1, What multiple of b if subtracted from a

gives a difference or remainder less than 6? 2, What
is this remainder?

Remainder division will regroup a given set, the divi-

dend, into smaller sets each with the same cardinal as a

given set, the divisor, and a remaining set whose cardinal

is less than that of the divisor.

The number of the equivalent subsets is here the

quotient. There is no implication that the original units

are equal in size. So it would be a blunder to call this

process measuring.

Again remainder division will regroup a given set,

the dividend, into equivalent subsets and a less remainder,

when the number of subsets, the divisor, is given. The
cardinal of each subset is here the quotient. This has

sometimes been called partitive division. But these two

applications of remainder division are not two kinds of

division, and should not be emphasized. In arithmetical

division, dividend and divisor are two given numbers

fixing a third, the quotient. So the division of 15 by 4

tells how often 15 eggs contain 4 eggs and equally well
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how many dollars in each of the 4 equivalent pieces of

15 dollars.

When r is 0, then a is a multiple of b, and a is exactly

divisible by b.

The case 6 = is excluded. In this excluded case the

problem would be impossible if a were not 0. But if

a-0 and b = 0, every number, q, would satisfy the equal-

ity a = bq. So this case must be excluded to make the

operation of division unequivocal, that is, in order that

the problem of division shall have always one and only

one solution. A second solution q', / would give a = bq + r

= bq'+r*t b(q-q')=r'-r. But r
/-r<b, while b(q-q')

not < b.

2, Division may also be regarded as the inverse of

multiplication. Its aim is then considered to be the find-

ing of a number q (quotient) which mulitplied by b (the

divisor) gives a (the dividend). Here division is the

process of rinding one of two factors when their product

and the other factor are given.

The result q is represented by a/b. If a=0, then

g = 0. This definition of division gives the equality

Remember b ^ 0, that is, b not equal to 0.

In particular a/1 =a.

Postulating the rule a/(b/c) =a/bxc, division is as-

sociative, commutative, and distributive.

(a + b)/c=(a/c)+(b/c) ; but

In general 1

2 (a-b)/m = a/m-b/m.
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3 a(b/c)=ab/c.

6 a/b = am/bm.
7o a/b=(a/m)/(b/m).

The Arabs, as early as 1000 A. D., used the solidus,

or slant-sect / and also the horizontal sect, as in $ or %, to

denote the quotient of the first or upper number by the

other.

The symbol -f- is not found until about 1630. It

may have been suggested by the use of the horizontal

sect in ~. Turned on end ! I use it for symmetrical,

as in ! A for isosceles triangle.



CHAPTER VII.

TECHNIC.

In adding a column of digits, consider two numbers

together, but only think their sum.
Addition. XT -it- ,i_- iNow in adding up this column only

think 9, 16, 18, 27, 32, 43, stressing forty,

3 23 and writing down the three while think-

8 48 ing it.

5 35 The stress on the forty is to hold the

9 59 four in mind for use in the next column

2 62 to the left. Such a number is said to be

7 87 carried. Begin adding up the next column

4 74 to the left by thinking 13.

5 95 To check the work, add the column

43 3 downward, since mere repetition of work

tends to repeat the mistake also.

Look at the question of subtracting as asking what

number added to the subtrahend gives the
Subtraction.

,
.

, . ,

minuend. Always work subtraction by add-

ing. Thus subtract 1978 from 3139 as follows: Think

8 and one make 9; 7 and six make 13, carry
3139 1; 10 and one make 11, carry 1; 2 and one

1978 make 3. Write down the spelled digits just

1161 while thinking them.

Explain "carrying" by the principle that the difference
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between two numbers remains the same though they be

given equal increments.

9254 Again think, 5 and nine make 14, carry 1
;

8365 7 and eight make 1 5, carry 1 ; 4 and eight make

889 12, carry 1
;
9 equals 9.

In working the examples we have added

downwards, so check by adding upwards the difference

(the answer) to the subtrahend; think (for 9 and 5) 14,

(for 9 and 6) 15, (for 9 and 3) 12, (for 1 and 8) 9.

It is preferable for several reasons to perform numer-

ical operations from the left. An operation thus cor-

responds more closely with the process it represents.

Again this way fixes the attention at once upon the

greater, more important parts of the quantities concerned,

permitting immediate approximations, and so giving speed

in dealing with life realities, thus increasing practical

efficiency.

Though the immediate conception of a large multiple

of a small number, perhaps because of our mastery of

the number series, is simpler than that of a small multiple

of a large number, yet operatively, as a multiplication,

the latter gives the easier process. Hence choose the

smaller as your multiplier. To find thrice 2104 it would

be best to apply the distributive law from the left, giving

3(2000 + 100 + 4). This is the way of the lightning cal-

culator. Meantime, as a concession, we teach the back-

ward application of the law, (2000+100 + 4)3.

Set down the multiplier precisely in column under

Multiplica- the multiplicand, units under units. Begin
tion.

by multiplying the units figure of the mul-

tiplicand by the leftmost figure of the multiplier, writing
under this leftmost figure the first figure thus obtained.
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35427 Then use the successive figures in order.

1324 The figure set down from multiplying the

35427 units always comes precisely under its mul-

106281 tiplier.

70854 The advantage of this method is that

141708 it gives the most important partial product

46905348 first, and in abridged or approximate work

one or two of the leftmost figures may be

all that are wanted.

Rule : If of two figures multiplied one is in units col-

umn, the figure set down stands under the other.

Check by casting out nines.

Proceed as follows : Add the single figures of the

multiplicand, but always diminish the partial sums by

Verify multi- dropping nine. The remainder is identical

plication. with the remainder found much more labori-

ously by dividing by nine. Thus 35427 gives 3, since 7

and 2 give nine as also 4 and 5. Find just so the remain-

der of the multiplier. Here 1324 gives 1. If our work

is correct, the remainder, or excess, of the product of

these two remainders equals the remainder, or excess,

for our product. Here 46905348 gives 3.

The complete proof of this method of verification

lies simply in the fact that the remainder left when any
number is divided by nine is the same as that left when
the sum of its digits is divided by nine. For 10-1=9,
100 - 1 = 99, 1000 - 1 = 999, etc. Hence i f from any num-
ber be taken its units, also a unit for each of its tens, a

unit for each of its hundreds, a unit for each of its thou-

sands, etc., the remainder is a multiple of nine. But the

part taken away is the sum of the number's digits.
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Shorter
forms.

(a) When the multiplier contains only two digits,

shorten the work by adding in the results

of the multiplication by the second digit

to that already obtained. Here, after multi-

plying by 3, think fourteen; 16, 17 eighteen',

10, 11, seventeen; 18, 19, twenty-six; ten;

three. Write down the unaccented part of

these spelled numbers while thinking it.

9587

32

28761

306784

9867 (b) If in a multiplier of only two digits

15 either is unity, write only the answer.

148005 Here think thirty-five ; 30, 33, forty ; 40,

44, fifty; 45, 50, fifty-eight; fourteen.

7968 Here think eight; 32, thirty-tight; 24,

41 27, thirty-six; 36, 39, forty-six; 28, thirty-

326688 two.

(c) When in a three -place multiplier

1234 taking away either end-digit leaves a mul-

568 tiple of it, shorten by adding to the digit's

9872 partial product the proper multiple of it.

69104 After multiplying by 8, multiply this

700912 partial product by 7 (tens).

4213

864 After multiplying by the 8, (hundreds),
33704 multiply this partial product by 8. This

269632 gives units.

3640032

(Divisor an integer) :

Write the first figure of the quotient precisely over

the last figure of the first partial dividend.

Use no bar to separate them.
Division.
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Omit the partial products, the multiples of the divisor,

writing down the differences while doing the multiplica-

tion.

318 Nineteen into 60 thrice. Three nines

19) 6054 are 27, and three makes 30. Carry 3.

3 Three ones are 3; say 6.

16 Nineteen into 35 once. One nine is

12 9, and six makes 15. Carry 1. One 1 is

1
; say 2, and one makes 3.

Nineteen into 164 eight times. Eight nines are 72,

and two makes 74. Carry 7. Eight ones are 8; say 15,

and one makes 16.

Here, using the 2, think 16 and naught, 1'6. Carry
1. 10, say 11 and six, 1'7. Carry 1.

27 6, say 7 and two, 9. Thus we get the

358) 9762 new partial dividend 2602, which gives

260 in our quotient 7. Using this 7, think

96 56 and six, 6'2. Carry 6. 35, say 41

and nine, 5'0. Carry 5. 21, say 26.

Thus we get our remainder 96.

This method gives at once the true value of each

partial quotient. Moreover its using the partial products

instead of setting them down, actually diminishes error,

besides being easier and quicker and more compact.

The excess of the product of excesses of divisor and

Verify quotient increased by excess of remainder
division.

equals excess of dividend.

In our example the excess from the quotient is 0.

So the excess from the dividend, 6, equals that from

the remainder.
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DECIMALS.

A decimal is a number whose expression in our posi-

tional notation contains digits to the right of units col-

umn. A decimal is a basal subunital; a
Decimals. . . .

number containing subunits which are mul-

tiples of minus powers of the base.

It is the characteristic of our positional notation for

number that shifting a digit one place to the left multi-

plies it by the base of the system. The zero enables us to

indicate such shifting. Thus since our base is ten, 1

shifted one place to the left, 10, becomes ten; two shifted

two places to the left, 200, becomes two hundred.

Inversely, shifting a digit one place to the right, di-

vides it by the base of the system. Thus 3 in the thou-

sands place,, 3000, shifted one place to the right becomes

300.

We now create that this shifting to the right may go
on beyond the units' place with no change of meaning or

effect.

In order to write this, we use a device, a notation to

mark or point out the units place, a point immediately
to its right called the decimal point or unital point. Our

present decimal notation, a development of that of Simon
Stevinus of Bruges, 1585, was not generally used before

the eighteenth century, although the decimal point appears
first in 1617 on page 21 of Napier's Rabdologiae. Thus
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4 shifted one place to the right becomes 0.4 and of course

means a number which multiplied by the base gives 4.

Such numbers have been called decimals. Their theory

is independent of the base, which might be say 12 or 2,

in which case the word decimals would be a distinct mis-

nomer.

The perfection of our system is in its subtle use of a

base-number, not in that number ten. Our system is a

miraculous instrument for easy reckoning, not because

it is decimal, but because the digit figures, by aid of a

potential zero, always express, in their orderly position,

to left or right of a point, multiples of ascending and

descending powers of one basal number. Thus 9(10)
4 +

3(10)-
3 = 90876.543.

If however the base be ten, then shifting a digit one

place to the left multiplies it by ten. But this is accom-

plished for every digit in the number simply by shifting

the point one place to the right. Thus .05 is tenfold

.005. If our unit is a dollar, $1, then the first place to

the right will be dimes. Thus $0.6 means six dimes.

The next place to the right of dimes means cents. Thus

$.07 means seven cents. The next place to the right

of cents means mills. Thus $.008 means eight mills.

Ten mills make a cent. Ten cents make a dime. Ten
dimes make a dollar.

In general we name these basal subunitals so as to

indicate by symmetry their place with reference to the

units' column. As the first column to the left of units is

tens, so the first column to the right of units is called

tenths. As the second column to the left of the units'

column is called hundreds, so the second column to the

right of the units' column is called hundredths. As the
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third column to the left of the units' column is called

thousands, so the third column to the right of the units'

column is called thousandths.

But these names need not be used in reading a sub-

unital. Thus 0.987 may be read: Point, nine, eight,

seven. So mathematicians read it, and all educated sci-

entists.

One-tenth is a number ten of which are together

equal to a unit. "Point, one," says this.

If an integer be read by merely pronouncing in succes-

sion the names of its digits, as in reading 7689 as seven,

six, eight, nine, we do not know the rank and so all the

value of any figure read until after all have been read.

Hence the advantage of reading 7689 seven thousand

six hundred and eighty-nine. But in reading the decimal

.7689 as "point, seven, six, eight, nine" we know every

thing about each figure as it is read, which on the con-

trary we do not know if it be read seven thousand six

hundred and eighty-nine ten-thousandths.

Morever such a habit of reading decimals detracts

from our confident certainty of understanding integers

step by step as read. There may be coming at the end a

wretched subunital designation like this "ten-thousandths"

to metamorphose everything read.

So always read decimals by pronouncing the word

point and the names of the separate single digits.

Read 700.008 seven hundred, point, naught, naught,

eight Read .708 point, seven, naught, eight.

This wholly obviates the imaginary difficulty of the

hysterical country school ma'am (unmarried), whose hy-

pothetical man she supposed could not properly inflect his

voice, and so could not by tone indicate the difference

marked by punctuation, between "seven hundred, and
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eight thousandths," and "seven-hundred-and-eight thou-

sandths." To relieve her wooden man, her femininity

suggested the crime of suppressing the "and" in all such

good English phrases as The Thousand and One Nights.

-4 = 9876. 5432.

To add decimals, write the terms so that the decimal

points fall precisely under one another, in a vertical col-

umn. Then proceed just as with integers, the point in the

sum falling under those of the terms.

Just so it is with subtraction.

In multiplying decimals remember we are dealing

simply with a symmetrical completion, ex-

tension of positional notation to the right

from units' place. Realize the perfect balance resting

on the units' column. 4321 .234.

A shift of the decimal point changes the rank of each

of the digits. So to multiply or divide by any power of

ten is accomplished by a simple shift of the point.

Thus 98 . 76 x 1 is 987 . 6. Just so 98 . 76/10 is 9 . 876,

and is identical with 98.76x0.1. Twice this is 98.76x

0.1x2 or 98.76x0.2=19.752.

So to multiply by a decimal is to multiply by an in-

teger and shift the point.

Hence the rule, useful for check, that the number

of decimal places in the product is the sum of the places

in the factors. There is no need for thinking of tenths

as fractions to realize that two-tenths of a number is

twice one-tenth of it.

In multiplying decimals, write the multiplier so that

its point comes precisely under the point in the multipli-

cand, and in vertical column with these put the point in
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each partial product. The figure obtained from multi-

plying the units figure of the multiplicand must come

precisely under the figure by which

1293.015 we are multiplying.

132.02 Here, beginning to multiply by the

129301.5 1, think five while writing it two

38790.45 places to the left of the figure multi-

2586.030 plied because the 1 is two places to

25.86030 the left of the units' column. Proceed

170703.8403 to multiply by the 3, thinking fifteen;

3, four; naught; nine; twenty-seven;

etc.

Rule : Multiplying shifts as many places right or left

as the multiplier is from the units' column.

Here think twenty-one while writ-

41.27 ing the 1 two places more to the

.03 right than the 7 because the 3 is two

1 . 2381 places to the right of the units' col-

umn.

In division of decimals place the decimal point of

the quotient precisely over the decimal point
Quotient. -

* r
.

of the dividend and, when the divisor is an

integer, the first figure of the quotient over the last figure

of the first partial dividend.

Rule: The first figure of the quo-

638 tient stands as many places to the left

.021)13.4 of the last figure of the first partial divi-

8 dend as there are decimal places in the

17 divisor.

2 Here the quotient 638 is an integer.

The sign + at the end of a number means there is

a remainder, or that the number to which it is attached
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6+ falls short of completely, exactly ex-

2 . 1 ) . 01 34 pressing all it represents, though increas-

8 ing the last figure by unity would over-

pass exactitude and so should be fol-

lowed by the sign
-

(minus).
Thus :r = 3.14 + and

77 = 3.1416-

This is historically the first meaning of the signs +

and -, which arose from the marks chalked on chests of

goods in German warehouses, to denote excess or defect

from some standard weight.

When there is a remainder we may get additional

places in the quotient by annexing ciphers

63 to the dividend and continuing the division.

.21)13.4 The phrase "true to 2 (or 3, etc.)

8 places of decimals" means that a closer

17 approximation can not be written without

using more places.

Thus as a value for TT, 3.14 is true or "correct" to

two places of decimals, since 7r = 3.14159 + ; while 3. 1416

is true to four places.

As an approximation to 1.235 we may say either

1 .23 or 1 .24 is true to two places of decimals.
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FRACTIONS.

Generality is the essence of modern mathematics.

The creative extension of its previously attained system

_ ,. marks the growth of its powers as our great-Generahza- f ,.

tions of est instrument for that ordering and simpli-

fication of our universe, that transforming

of chaos into cosmos, which is the vocation of science.

Such an extension of the original integral numbers we
see in decimals. But just here we have one of the sharp

rebuttals found everywhere in mathematics to the peda-

gogic principle that education should recapitulate the path

of the race. Decimals, roughly two centuries old, should

be taught before fractions, probably more than five thou-

sand years old. The romantic treatise we still possess,

entitled "Directions for obtaining the Knowledge of all

Dark Things," written by the scribe Ahmes about 1700

B. C, and founded on an older work believed by the

Egyptologist Birch to date back as far as 3400 B. C.,

contains, to solve the problem of representing any frac-

tion as a sum of fractions each with numerator one, a

table of solutions for all fractions with numerator 2 and
all denominators from 3 to 99; e. g., 2/99 = 1/66+1/198.

Expansions of the number-idea are guided by one

criterion, that there be no break in the applicability of

the old formal conventions of procedure. They are mo-
tived by the desire to obviate exceptions. Thus after
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decimals and fractions or rationals, mathematicians cre-

ated reals, and signed numbers, and complex numbers.

For the new numbers hold the old laws.

1 st. Every number combination which gives no already

Principle of existing number, is to be given such an

permanence, interpretation that the combination can be

handled according to the same rules as the previously

existing numbers.

2d. Such combination is to be defined as a number,

thus enlarging the number idea.

3d. Then the usual laws (freedoms) are to be proved
to hold for it.

4th. Equal, greater, less are to be defined in the en-

larged domain.

This was first given by Hankel as generalization of

a principle given by G. Peacock, British Association, III,

London, 1834, p. 195. Symbolic Algebra, Cambridge,

1830, p. 105; 2d ed., 1845, p. 59.

If unity in pure number be considered as indivisible,

fractions may be introduced by conventions. Take two

integers in a given order and regard them
Fractions. *

as forming a couple with sense; create that

this ordered couple shall be a number of a new kind, and

define the equality, addition, and multiplication of such

numbers by the conventions,

a/b = c/d if ad = bc;

a/b + c/d= (ad + bc}/bd;

The preceding number is called the numerator of the

fraction
; the succeeding number, the denominator.

Fractions have application only to objects :apable of

partition into equal portions equal in number to the de-

nominator. No fraction is applicable to a person.
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In accordance with the principle of permanence, we
create that the compound symbol of the form a/b, two

natural numbers separated by the slant, shall designate

a number. Either the symbol or the number may be

called a fraction. The slant is to stand for the division

of a by b, of the preceding by the succeeding number,

where this is possible. When a is exactly divisible by b,

that is, without remainder, the fraction designates a nat-

ural number. Always notationally a fraction represents

an unperformed operation, a division, and any approxi-

mate result of the performance of this division is an

approximate value of the fraction
;
but the number repre-

sented by the fraction is always exact, precise, definite,

perfect.

When a is a multiple of b, and a' of b', the equality

ab'=a'b is the necessary and sufficient condition for the

symbols a/b, a'/b' to represent the same number. By this

same condition we define the equality of the new numbers,

the fractions.

A fraction is irreducible when its numerator and de-

nominator contain no common factor other than 1.

To compare two fractions, reduce them to a common

denominator, then that which has the greater numerator

is called the greater.

A proper fraction is a fraction with numerator less

than denominator. It is less than 1.

Subtraction is given by the equality a/b -a''/&'= (ab
f-

a'b')/bb'.

The multiplication of fractions is covered by the

statement: A product is the number related to the mul-

tiplicand as the multiplier is to unity.

(a/b) (a'/b')=aa'/bb'.
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Thus ( 5/7) x (2/3) means trisect, take one of these

three parts, then double, giving 10/21.

So (a/b}x(b/a) = 1. Two numbers whose product

is unity are called reciprocal.

Extending the meaning of "times" so that 2/3 times

thrice equals twice, and n/d times d times equals n times,

we have {x/z)z=x. Hence 5/7 times Q is a quantity such

that 7 times it gives 5Q. Therefore it equals 5 times a

quantity seven of which make Q, that is five-sevenths

ofQ.

'

So 2/3 times Q is 2/3 of Q.

Division is taken as the inverse of multiplication,

hence (c/d)/(a/b) means to find a number whose prod-

uct with (a/b) is (c/d). Such is (c/d)(b/a).
So (c/d)/(a/b) = (c/d)(b/a")=bc/ad.
1. This last expression may be considered simply a

more compact form of the first, obtained by reducing

to a common denominator and cancelling this denom-

inator. This compact form can be obtained by a proce-

dure sometimes called the rule for division by a fraction :

Invert the divisor and multiply.,

2. If we interchange numerator and denominator

of a fraction we get its inverse or reciprocal. So the

inverse of a is I/a.

(a/6) (&/)=!-
Now (x/y}/(a/b} means to find a number which

multiplied by a/b gives x/y, and so the answer is

(x/y)(b/a). Hence: To divide by a fraction, multiply

by its reciprocal.

3. Again to find (a/b}/(c/d), note that c/d is con-

tained in 1 d/c times, and hence in a/b it is contained

(a/b)(d/c) times.



FRACTIONS. 59

A reduced fraction is one whose numerator and de-

Fractions nominator contain no common factor.

ordered. j^ fractions arranged according to size

are an ordered set, but not well ordered; for no fraction

has a determinate next greater fraction, since between

any two numbers, however near in size, lie always in-

numerable others.

But all reduced fractions can be arranged in a well-

ordered set arranged according to groups in which the

sum of numerator and denominator is the same:

1/1, 1/2, 2/1, 1/3, 3/1, 1/4, 2/3, 3/2, 4/1, 1/5,

5/1, 1/6, 2/5, 3/4, 4/3, 5/2, 6/1,. . . .

Thus they make a simply infinite series equivalent to

the number series.

Proper fractions can be arranged by denominators:

To turn a fraction a/b into a decimal c/\0k must

give a\Qk = bc, where c is a whole number. Since a/b

is in reduced form, therefore a and b have no common
factor. So 10^ must be exactly divisible by b. Thus

only fractions with denominator of the form 2n 5m can

be turned exactly into decimals.

Fractions may be thought of as like decimals in be-

ing also subunitals. The unit operated with in a fraction,

the fractional unit, is a subunit, and the denominator is to

tell us just what subunit, just what certain part of the

whole or original or primal unit is taken as this subunit ;

while the numerator is the number of these subunits. The
denominator tells the scale of the subunit, its relation

to the primary integral unit. Thus 3/10 is a three of

subunits ten of which make a unit. Thus, like an integer,
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a fraction is a unity of units (or one unit), but these

are subunits Different subunits may be very simply

related, as are 1/2, 1/4, 1/8.

To add 3/4 and 1/2 we first make their subunits the

same by bisecting the subunit of 1/2, which thus be-

comes 2/4. Then 3/4 and 2/4 may be counted together

to give 5/4.

Fractions having the same subunit are added by add-

ing their numerators, the same denominator being re-

tained since the subunit is unchanged. The like is true

of subtraction.

To add unlike fractions change to one same subunit.

The technical expression for this is "reduce to a common
denominator."

Since we already know that to be counted together

the things must be taken as indistinguishably equivalent,

the procedure of changing to one same subunit is crystal

clear.

To change a half to twelfths is simply to split up the

one-half, the first subunit, into subunits twelve of which

make the whole or original unit.

Thus, operatively, to express a fraction in terms of

some other subunit, the procedure is simply to multiply

(or divide) numerator and denominator by the same

number.

Thus 1/2= (Ix6)/(2x6) =6/12.
So 6/12= (6/3)/(12/3) =2/4.
This principle in the form : "The value of a fraction

is unaltered by dividing both numerator and denominator

by the same number," is freely applied in what is tech-

nically called "reducing fractions to their lowest terms."

It should be applied just as freely and directly in the

form : "The value of a fraction is unaltered by multiply-
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ing both numerator and denominator by the same num-

ber." Thus the complex fraction (2 + 2/3)/(3 + 2/9),

multiplying both terms by 9, gives at once 24/29. Again

(3 feet 5 inches)/ (2 feet 7 inches), multiplying both

terms by 12, gives 41/31.

13% To subtract 7 + 3/4 from 13 + 1/4, that is

7% to evaluate 13% -7%, think 3/4 and two-

5% fourths make 5/4, carry 1
;
8 and five make

thirteen.

The 1 in l/n is the suounit, the n specifying what

particular subunit. In division of a fraction by an in-

Division of teger we meet the s^me limitation which
fractions.

theoretically led to the creation of fractions ;

namely 2/5 is no more divisible by three than any other

two. But here we can easily transform our fraction into

an equivalent divisible by 3. Just trisect the subunit.

Thus 2/5 becomes 6/15, which is divisible by 3 giving

2/15.

Such result is always at once attained simply by mul-

tiplying the given denominator by the given integral

divisor. Hence the rule: To divide a fraction by an

integer, multiply its denominator by the integer.

Our multiplication is to be associative, so when the

multiplier is increased any whole number of times, the

M . . ... product will be increased the same number

tion of of times. For instance, thrice 5 is 15.

Doubling the multiplier, twice thrice 5 is

30, which is double the former product 15. So for frac-

tions, as 4/7 and 9/10, the product is such that when
the multiplier 4/7 is increased 7 times, so is the product.

Now 7 times 4/7 is 4. Thus 4 times the fraction 9/10
will be 7 times the required product. But 4 times 9/10
is 36/10, and the seventh part of this is 36/70. Let
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this then be our product of 4/7 and 9/10. We reach

thus for the product of two fractions the rule : Multiply

the numerators together for the new numerator, and the

denominators for the new denominator.



CHAPTER X.

RELATION OF DECIMALS TO FRACTIONS.

6.214 Fractions may be freely combined with

3% decimals. Thus 1/24= .04%.

18.642 1 meter = 39.37 inches = 3 feet 3%
2.071% inches.

20.713% In finding the product of a decimal

and a fraction use the fraction as multiplier.

By our positional notation, . 1 means one subunit

, . r> ,
such that ten of them make the unit. But

1st. Decimals
into just this same thing is meant by 1/10.

Therefore any decimal may be instantly

written as a fraction; e. g., 0.234 = 2/10 + 3/100 + 4/1000= 234/1000.
First Method.

Any fraction equals the quotient of its numerator

divided by its denominator. Consider the
2d. Fractions
into fraction, then, simply as indicating an ex-

ample in division of decimals, and proceed

to find the quotient.

Thus for 1/2 we have : . 5

2)1.0 So 1/2 = 0.5.

For 3/4 we have . 75

4)3.00 So 3/4=0.75.

For 7/8 we have: .875

8)7.000 So 7/8 = 0.875.
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Second Method.

Apply the principle : The value of a fraction is un-

altered by multiplying both numerator and denominator

by the same number.

Thus 7/8-7/(2x2x2)
= (7x5x5x5)/(2x5x2x5x2x5)
= 875/1000-0.875.

Considering the application of this second method to

1/3, we see there is no multiplier which will convert 3

into a power of 10, since 10 contains no factors but 2

and 5. Ten does not contain 3 as a factor, so we cannot

convert 1/3 into an ordinary decimal. We cannot, as an

example in division of decimals, divide 1 by 3 without

remainder. But we can freely apply remainder-division,

at any length. Thus 333

3)1.
.1

.01

.001

The procedure is recurrent, and if continued the 3

would simply recur.

. 142857 In division by n, not more than n 1

7) 1 . different remainders can occur. But as

.3 soon as a preceding dividend thus re-

2 curs, the procedure begins to repeat it-

6 self. Here then this division by 7 must

4 begin to repeat, and the figures in the

5 quotient must begin to recur.

1

If the recurring cycle begins at once, immediately
after the decimal point, the decimal is called a pure re-

curring decimal. As notation for a pure recurring deci-
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mal, we write the recurring period, the repetend, dotting

its first and last figures thus

1/11 =-6$; 1/9=!.

Every fraction is a product of a decimal by a pure

recurring decimal. Thus

l/6=(l/2)(l/3)=0.5X-3.

To convert recurring decimals into fractions :

12x 100= 12-12

12x 1= -12 Therefore subtracting,

12x 99 = 12

.12 = 12/99=4/33

Rule : Any pure recurring decimal equals the fraction

with the repeating period for a numerator, and that

many nines for denominator.

The base of a number system is the number which

indicates how many units are to be taken together into a

composite unit, to be named, and then to
Base.

, . . ...
be used in the count instead of the units

composing it, this first composite unit to be counted until,

upon reaching as many of them as units in the base, this

set of composite units is taken together to make a com-

plex unit, to be named, and in turn to be used in the

count, and enumerated until again the basal number of

these complex units be reached, which manifold is again

to be made a new unit, named, etc.

Thus twenty-five, twain ten + five, uses ten as base.

Using twelve as base, it would be two dozen and one.

Using twenty, it would be a score and five. In positional

notation for number, a digit in the units' place means

so many units, but in the first place to the left of units'

place it means so many times the base, while in the first
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place to the right of the units' place it means so many
subtmits each of which multiplied by the base gives the

unit. And so on, for the second, etc., place to the left

of the units' column, and for the second, etc., place to the

right of the units' column.

It is the systematic use of a base in connection with

the significant use of position, which constitutes the for-

mal perfection of our Hindu notation for number. The

actual base itself, ten, is a concession to our fingers.

The complete formula for a number in the Hindu

positional notation is

dbn
. . . . + db* + db3 + db2 + db 1 + db ()+db- 1+db-2+ db~n

where juxtaposition of the d (digit) and b (base) means

multiplication. This we condense to d. . .ddd.ddd. . .d,

where the omitted ^-factor is indicated by the position

of the d with reference to the units column, fixed by the

unital point written to its right in the ordered row.

Juxtaposition here means addition. If no base be speci-

fied, ten is understood.

Compare these subunital expressions for the funda-

mental fractions, to base ten, to base twelve, to base two.

DECIMALLY. DUODECIMALLY. DUALLY.
[IN THE DENARY [DUODENARY [DYADIC

SCALE.] SCALE.] SCALE.]

1/2=0-5 1/2 = 0-6 1/2 = 1/10 =0-1

1/3= .3 1/3=0-4 1/3= 1/11 = -61

2/3= -6 2/3= -8 1/4= 1/100 = -01

1/4=0-25 1/4=0-3 1/6=1/110 = -OOl

3/4= -75 3/4= .9 1/8= 1/1000= -001

1/5= .2 1/5 =-249+ 1/9= 1/1001= -OOOlli

1/6=0-16 1/6=0-2
1/8=0-125 1/8=0-16
3/8= .375 3/8= -46

1/9= -1 1/9=0-14
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To express a given number to a new base, divide it

Change of and the successive quotients by the new base
base. until a quotient is reached less than the new

base; this quotient and the successive remainders will be

digits.

Express 1594 to base twelve.

1 1 - Using x for ten and s for eleven, the

12)132-10 answer is sOx.

12)1594

Express sxs (base twelve) to base ten.

1-7 Answer 1715.

1)15-1
x)123-5

Express 98 to base two.

1-1 Answer 1100010.

2)3-0
2)6-0
2)12-0
2)24-1
2)49-0
2)98

Express 1111 (base two) to base ten.

1-101 Answer 15.

1010)1111



CHAPTER XI.

MEASUREMENT.

Says Dr. E. W. Hobson: "It is a very significant

fact that the operation of counting, in connection with

which numbers, integral and fractional, have their origin,

is the one and only absolutely exact operation of a mathe-

matical character which we are able to undertake upon
the objects which we perceive. On the other hand, all

operations of the nature of measurement which we can

perform in connection with the objects of perception

contain an essential element of inexactness. The theory
of exact measurement in the domain of the ideal objects

of abstract geometry is not immediately derivable from

intuition."

Arithmetic is a fundamental engine for our creative

construction of the world in the interests of our dom-

inance over it. The world so conceived bends to our will

and purpose most completely. No rival construct now
exists. There is no rival way of looking at the world's

discrete constituents. One of the most far-reaching

achievements of constructive human thinking is the arith-

metization of that world handed down to us by the think-

ing of our animal predecessors.

In regard to an aggregate of things, why do we care

.. . to inquire "how many" ? Why do we count
Why count? .

, / _ ,_.,
J

an assemblage of things? Why not be satis-

fied to look upon it as an animal would? How does the

cardinal number of it help?
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First of all it serves the various uses of identification.

Then the inexhaustible wealth of properties individual

and conjoined of exact science is through number assimi-

lated and attached to the studied set, and its numeric

potential revealed. Mathematical knowledge is made ap-

plicable and its transmission possible.

Thus the number is basal for effective domination of

the world social as well as natural,

Number arises from a creative act whose aim and

purpose is to differentiate and dominate more perfectly

than do animals the perceived material, primarily when

perceived as made of individuals. Not merely must the

material be made of individuals, but primarily it must

be made of individuals in a way amenable to treatment

of this particular kind by our finite powers. Powers

which suffice to make specific a clutch of eggs, say a

dozen, may be transcended by the stars in the sky.

Number is the outcome of an aggressive operation

of mind in making and distinguishing certain multiplex

objects, certain manifolds. We substitute for the things

of nature the things born of man's mind and more obe-

dient, more docile. They, responsive to our needs, give

us the result we are after, while economizing our output
of effort, our life. The number series, the ordered de-

numerable discrete infinity is the prolific source of arith-

metic progress. Who attempts to visualize 90 as a group
of objects? It is nine tens. Then the fingers tell us

what it is, no graphic group visualization. First comes

the creation of artificial individuals having numeric qual-

ity. The cardinal number of a group is a selective rep-

resentation of it which takes or pictures only one quality
of the group but takes that all at once. This selective

picture process only applies primarily to those particular
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artificial wholes which may be called discrete aggregates.

But these are of inestimable importance for human life.

The overwhelming advantages of the number picture

led, after centuries, to a human invention as clearly a

The measure device of man for himself as the telephone,
device. This was a device for making a primitive

individual thinkable as a recognizable and recoverable

artificial individual of the kind having the numeric qual-

ity, having a number picture. This is the recondite de-

vice called measurement.

Measurement is an artifice for making a primitive

individual conceivable as an artificial individual of the

group kind with previously known elements, conven-

tionally fixed elements, and so having a significant num-

ber-picture by which knowledge of it may be transmitted,

to any one knowing the conventionally chosen standard

unit, in terms of this previously known standard unit and

an ascertained number.

From the number and the standard unit for measure

the measured thing can be approximately reproduced and

so known and recovered. No knowledge of the thing
measured must be requisite for knowledge of the stand-

ard unit for the measurement. This standard unit of

measure must have been familiar from previous direct

perception. So the picturing of an individual as three-

thirds of itself is not measurement.

All measurement is essentially inexact. No exact

measurement is ever possible.

Counting is essentially prior to measuring. The sav-

Counting
a&e ' making the first faltering steps, fur-

prior to nished number, an indispensable prerequisite

for measurement, long ages before measure-

ment was ever thought of. The primitive function of
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number was to serve the purposes of identification. Count-

ing, consisting in associating with each primitive indi-

vidual in an artificial individual a distinct primitive indi-

vidual in a familiar artificial individual, is thus itself essen-

tially the identification, by a one-to-one correspondence, of

an unfamiliar with a familiar thing. Thus primitive count-

ing decides which of the familiar groups of fingers is to

have its numeric quality attached to the group counted.

To attempt to found the notion of number upon measure-

ment is a complete blunder. No measurement can be

made exact, while number is perfectly exact.

Counting implies first a known ordinal series or a

known series of groups; secondly an unfamiliar group;

thirdly the identification of the unfamiliar group by its

one-to-one correspondence with a familiar group of the

known series. Absolutely no idea of measurement, of

standard unit of measure, of value is necessarily involved

or indeed ordinarily used in counting. We count when
we wish to find out whether the same group of horses

has been driven back at night that was taken out in the

morning. Here counting is a process of identification,

not connected fundamentally with any idea of a standard

measurement-unit-of-reference, or any idea of some value

to be ascertained. We may say with perfect certainty

that there is no implicit presence of the measurement

idea in primitive number. The number system is not in

any way based upon geometric congruence or measure-

ment of any sort or kind.

The numerical measurement of an extensive quantity
consists in approximately making of it, by use of a well-

known extensive quantity used as a standard unit, a col-

lection of approximately equal, quantitatively equal, quan-
tities, and then counting these approximately equal quan-
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tities. The single extensive quantity is said to be numer-

ically measured in terms of the convened standard quan-

titative extensive unit. Any continuous magnitude is

measured by discreting it into a standardized set and a

negligible residue, and counting the standard units in

this set.

For measurement, assumptions are necessary which

are not needed for counting or number. Spatial measure-

New ment depends upon the assumption that

assumptions, there is available a standard body which

may be transferred from place to place without under-

going any other change. Therein lies not only an as-

sumption about the nature of space but also about the

nature of space-occupying bodies. Kindred assumptions

are necessary for the measuring of time and of mass.

Now in reality none of these assumptions requisite

for measurement are exactly fulfilled. How fortunate

then that number involves no measurement idea!

But still other assumptions are made in measurement.

After this device for making counting apply to some-

thing all in one piece has marked off the parts which

are to be assumed as each equal to the standard, their

order is unessential to their cardinal number. But it is

also assumed that such pieces may be marked out be-

ginning anywhere, then again anywhere in what remains,

without affecting the final remainder or the whole count.

Moreover measurement, even the very simplest, must

face at once incommensurability. Whatever you take as

standard for length, neither it nor any part of it is exactly

contained in the diagonal of the square on it. This is

proven. But the great probabilities are that your stand-

ard is not exactly contained in anything you may wish
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to measure. There is a remainder large or small, per-

ceptible or imperceptible. Measurement then can only be

a way of pretending that a thing is a discrete aggregate

of parts equal to the standard, or an aliquot part of it.

We must neglect the remainder. If we do it uncon-

sciously, so much the worse for us.

No way has been discovered of describing an object

exactly by counting and words and a standard. Any
man can count exactly. No man can measure exactly.

Arithmetic applies to our representation of the world,

to the constructed phenomena the mind has created to

help, to explain, its own perceptions. This representa-

tion of things lends itself to the application of arithmetic.

Arithmetic is a most powerful instrument for that order-

ing and simplification of perception which is fundamental

for dominance over so-called nature.

Measurement may be analyzed into three primary

procedures: 1. The conventional acceptance or determi-

nation of a standard object, the unit of measure. 2, The

breaking up of the object to be measured into pieces each

congruent to the standard object. 3. The counting of

these pieces.

The standard unit for any particular sort of magni-
tude might have been any magnitude of the same kind.

Race, locality, convenience, chance, have contributed to

establish and maintain diverse units for magnitudes of

the same kind, some wholly bad, stupid, indefensible,

like the acre (160 times 30% square yards).
A magnitude is often measured indirectly, perhaps

by substituting for it and its standard unit two other

magnitudes know to have the same quantuplicity rela-

tion; thus an angle may be measured indirectly by using
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two arcs ;
the thermometer serves for the indirect meas-

urement of a temperature by use of two volumes ;
a mass

is usually measured indirectly by use of two weights at

the same station.
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MENSURATION.

Never forget that no exact measurement is ever pos-

sible, that no theorem of arithmetic, algebra, or geometry
could ever be proved by measurement, that measure could

never have been the basis or foundation or origin of

number.

But the approximate measurements of life are im-

portant, and the best current arithmetics give great space
to mensuration.

Geometry is an ideal construct.

Of course the point and the straight are to be assumed

as elements, without definition. They are
Geometry.

equally immeasurable, the straight in Eu-

clidean geometry being infinite. What we first measure

and the standard with which we measure it are both sects.

A sect is a piece of a straight between two points, the

end points of the sect. The sides of a triangle are sects.

A ray is one of the parts into which a straight is di-

vided by a point on it.

An angle is the figure consisting of two coinitial rays.

Their common origin is its vertex. The rays are its

sides.

When two straights cross so that the four angles
made are congruent, each is called a right angle.

One ninetieth of a right angle is a degree (1).
A circle is a line on a plane, equidistant from a point
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of the plane (the center). A sect from center to circle

is its radius.

An arc is a piece of a circle. If less than a semicircle

it is a minor arc.

One quarter of a circle is a quadrant.

One ninetieth of a quadrant is called a degree of arc.

A sect joining the end points of an arc is its chord.

A straight with one, and only one, point in common
with the circle is a tangent.

To measure a sect is to find the number L (its length)

Length of when the sect is conceived as ~Lu + r, where
a sect. u js f^ standard sect and r a sect less than

u. In science, u is the centimeter.

Thus the length, L, of the diagonal of a square centi-

meter, true to three places of decimals, is 1 .414.

Since there are different standard sects in use, it is

customary to name u with the L. Here 1 .414 cm.

Knowing the length of a sect, from our knowledge
of the number and the standard sect it multiplies we get

knowledge of the measured sect, and can always approxi-

mately construct it.

We assume that with every arc is connected one, and

only one, sect not less than the chord, and if the arc

Length of De minor, not greater than the sum of the

the circle. sects on the tangents from the extremities

of the arc to their intersection, and such that if the arc

be cut into two arcs, this sect is the sum of their sects.

The length of this sect we call the length of the arc.

If r be the length of its radius, the length of the

semicircle is nr.

Archimedes expressed IT approximately as 3 + 1/7.

True to two places of decimals, 7r = 3.14 or 3.1416

true to four places.
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The approximation 7r = 3 + l/7 is true to three signifi-

cant figures. But since TT = 3. 1416 = 3 + 1/7- 1/800, a

second approximation, true to five significant figures, can

be obtained by a correction of the first.

Again ir = 3. 1416= (3 + 1/7) (1-. 0004), which gives

the advantage that in a product of factors including ir,

the value 3 + 1/7 can be used and the product corrected

by subtracting four ten-thousandths of itself.

The circle with the standard sect for radius is called

the unit circle. The length of the arc of unit circle inter-

cepted by an angle with vertex at center is called the

size of the angle.

The angle whose size is 1, the length of the standard

sect, is called a radian.

A radian intercepts on any circle an arc whose length
is the length of that circle's radius.

The number of radians in an angle at the center

intercepting an arc of length L on circle of radius length

r, is L/r. 180=7r/>.

An arc with the radii to its endpoints is called a

sector.

The area of a triangle is half the product of the

length of either of its sides (the base) by
the length of the corresponding altitude,

the perpendicular upon the straight of that side from the

opposite vertex.

A figure which can be cut into triangles is a polygon,
whose area is the sum of theirs. Its perimeter is the sum
of its sides.

Area of Circle. In area, an inscribed regular polygon

(one whose sides are equal chords) of 2n sides equals
a triangle with altitude the circle's radius r and base the

perimeter of an inscribed regular polygon of n sides.
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A circumscribed regular polygon (one with sides on

tangents) of n sides equals a triangle with altitude r and

base the polygon's perimeter.

There is one, and only one, triangle intermediate be-

tween the series of inscribed regular polygons and the

series of circumscribed regular polygons, namely that

with altitude r and base equal in length to the circle.

This triangle's area, rc/2 = r27r, is the area of the circle,

r2*.

From analogous considerations, the area of a sector

is the product of the length of its arc by the length of

half its radius.

A tetrahedron is the figure constituted by four non-

coplanar points, their sects and triangles.
Volume.

_ * -L n j v -j.The four points are called its summits,

the six sects its edges, the four triangles its faces.

Every summit is said to be opposite to the face made

by the other three; every edge opposite to that made by
the two remaining summits.

A polyhedron is the figure formed by n plane polygons
such that each side is common to two. The polygons are

called its faces; their sects its edges; their vertices its

summits.

One-third the product of the area of a face by the

length of the perpendicular to it from the opposite vertex

is the volume of the tetrahedron.

The volume of a polyhedron is the sum of the vol-

umes of any set of tetrahedra into which it is cut.

A prismatoid is a polyhedron with no summits other

than the vertices of two parallel faces.

The altitude of a prismatoid is the perpendicular from

top to base.
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A number of different prismatoids thus have the same

base, top, and altitude.

If both base and top of a prismatoid are sects, it is

a tetrahedron.

A section or cross-cut of a prismatoid is the polygon
determined by a plane perpendicular to the altitude.

To find the volume of any prismatoid. Rule : Multi-

ply one-fourth its altitude by the sum of the base and

three times the cut, at two-thirds the altitude from the

base.

Halsted's Formula: V= (o/4)(B + 3C).
All the solids of ordinary mensuration, and very many

others heretofore treated only by the higher mathematics,

are nothing but prismatoids or covered by Halsted's For-

mula.

A pyramid is a prismatoid with a point as top. Hence

its volume is aB/3.
A circular cone is a pyramid with circular base.

A prism is a prismatoid with all lateral faces paral-

lelograms.

Hence the volume of any prism =aB.

A circular cylinder is a prism with circular base.

A right prism is one whose lateral edges are per-

pendicular to its base.

A parallelepiped is a prism whose base and top are

parallelograms.

A cuboid is a parallelepiped whose six faces are rect-

angles.

A cube is a cuboid whose six faces are squares.

Hence the volume of any cuboid is the product of

its length, breadth and thickness.

The cube whose edge is the standard sect has for

volume 1.
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Therefore the volume of any polyhedron tells how
oft it contains the cube on the standard sect, called the

unit cube.

Such units, like the unit square, though traditional,

are unnecessary.

A sphere is a surface equidistant from a point (the

center).

A sect from the center to sphere is its radius.

A spherical segment is the piece of a sphere between

two parallel planes.

If a sphere be tangent to the parallel planes containing

opposite edges of a tetrahedron, and sections made in the

sphere and tetrahedron by one plane parallel to these are

of equal area, so are sections made by any parallel plane.

Hence the volume of a sphere is given by Halsted's For-

mula.

V= (a/4) (B + 3C) = (3/4)aC.

But a = 2r and C= (2/3)nr(4/3)r.
So Vol. sphere = (4/3) Trr

3
.

Hence also the volume of a spherical segment is given

by Halsted's Formula.

Area of sphere = 4?rr
2

.

The area of a sphere is quadruple the area of its

great circle.

As examples of solids which might now be introduced

into elementary arithmetic, since they are covered by Hal-

sted's Formula,- may be mentioned : oblate spheroid, pro-

late spheroid, ellipsoid, paraboloid of revolution, hyper-
boloid of revolution, elliptic hyperboloid, and their seg-

ments or frustums made by planes perpendicular to their

axes, all solids uniformly twisted, like the squarethreaded

screw, etc.



CHAPTER XIII.

ORDER.

In the counting of a primitive group, any element is

considered equivalent to any other. But in the use even

of the primitive counting apparatus, the fingers, appeared

another and extraordinarily important character, order.

If always when any two elements a, & of a set are

taken, a definite criterion fixes one or other of two alter-

native relations, symbolized by a generalized use of >
and <, such that if a < b then b> a, while if a > b then

b < a, and such that if a < b and b < c, then a < c, we

say the criterion arranges the set in order. So arranged,

it becomes an ordered set.

The savage in counting systematically begins his count

with the little finger of the left hand, thence proceeding
toward the thumb, which is fifth in the count. When
number-words or number-symbols come to serve as ex-

tended counting apparatus, order is a salient character-

istic. Each is associated with a definite next succeeding

number. The set possesses intrinsic order.

By one-to-one adjunction of these numerals the in-

dividuals of a collection are given a factitious order, the

familiar order of the number-set.

When the order is emphasized the number-names are

modified, becoming first, second, third, fourth, etc., and

are called ordinal numbers or ordinals, but this designa-
tion is now applied also to the ordinary forms, one, two,
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three, etc., when order is made their fundamental char-

acteristic.

If we can so correlate each element of the set A with

a definite element of the set B that two different elements

of A are never correlated with the same
Depiction. . _. .. . . .

,

element of B, the element of A is consid-

ered as depicted or pictured or imaged by the correlated

element of B, its picture or image.

Such a correlation we call a depiction of the set A
upon the set B. The elements of A are called the originals.

An assemblage contained entirely in another is called

a component of the latter.

A proper component or proper part of an assemblage
is an aggregate made by omitting some element of the

assemblage.

An assemblage is called infinite if it can be depicted

_ . upon some proper part of itself, or distinctly
Infinite. -11 < < 1

imaged, element for element, by a constit-

uent portion, a proper component of itself. Otherwise

it is finite.

Stand between two mirrors and face one of them.

Your image in the one faced will be repeated by the

other. If this replica could be separately reflected in the

first, this reflection imaged by itself in the second, this

image pictured as distinct in the first, this in turn depicted

in the second, and so on forever, this set would be in-

finite, for it is depicted upon the proper part of it made

by omitting you. It is ordered. You may be called 1,

your image 2, its image 3, and so on.

A relation has what mathematicians call sense, if,

when A has it to B, then B has to A a relation

different, but only in being correlatively op-

posite. Thus "greater than" is a sensed relation. "Greater
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than" and "less than" are different relations, but differ

only in sense.

Any number of numbers, all individually given, form

a finite set. If numbers be potentially given through a

given operand and a given operation, law, of successive

eduction, they are still said to form a set. If the law

educes the numbers one by one in definite succession,

they have an order, taking on the order inherent in time

or in logical or causal succession.

A set in order is a series.

Intrinsic order depends fundamentally upon relations

Analysis of having sense, and, for three terms, upon a

order. relation and its opposite in sense attaching

to a given term.

The unsymmetrical sensed relation which determines

the fixed order of sequence may be thought of as a logic-

relation, that an element shall involve a logically sequen-

tial element creatively or as representative. An individual

or element 1 has its shadow 2, which in turn has its

shadow 3, and so on.

Linear order is established by an unsymmetrical re-

lation for one sense of which we may use the word "pre-

cede," for the opposite sense "follow."

The ordering relation may be envisaged as an opera-

tion, a transformation, which performed upon a preced-

ing gives the one next succeeding it; turns 1 into 2, and

2 into 3, and so on.

If we have applicable to a given individual an opera-
tion which turns it into a new individual to which in

turn the operation is applicable with like result, and so

on without cease, we have a recurrent operation which

recreates the condition for its ongoing. If in such a

set we have one and only one term not so created from
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any other, a first term, and if every term is different

from all others, we have a commencing but unending

ordered series. The number series, 1, 2, 3, and so on,

may be thought of as the outcome of a recurrent opera-

tion, that of the ever repeated adjunction of one more

unit. It is a system such that for every element of it

there is always one and only one next following. This

successor may be thought of as the depiction of its pred-

ecessor. Every element is different from all others.

Every element is imaged. There is an element which

though imaged is itself no image.

Thus the series is depicted without diminution upon
a proper part of itself; is infinite, and by constitution

endless. It has a first element, but no element following

all others, no "last" element.

Any set which can be brought into one-to-one cor-

respondence with some or all of the natural numbers is

said to be countable, and if not finite, is called countably

infinite.

An order of a set is constituted by a relation between

the elements of the set. The same set may
Ordered set.

, . ,.

have at the same time many different orders.

The particular order is defined by the particular serial or

arranging relation.

A set of elements is said to be in simple order if it

has two characteristics:

1. Every two distinct arbitrarily selected elements,

A and B, are always connected by the same unsym-
metrical relation, in which relation we know what role

one plays, so that always one, and only one, say A, comes

before B, is source of B, precedes B, is less than B;
while B comes after A, is derived from A, follows A,
is greater than A.
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2. Of three elements ABC, if A precedes B, and B

precedes C, then A precedes C.

So an arranging relation implies diversity of the ele-

ments, is transitive, and connects any two different ele-

ments related by it to a third. Thus the moments of

time between twelve and one o'clock, and the points on

the sect AB as passed in going from A to B are simply

ordered sets.

Two ordered sets A, B are called similar when a one-

to-one correspondence can be established between their

elements such that if a<a' in A then their correlates

b < b'. Similar ordered sets are said to have the same

order-type.

An arranged finite set of, say, n elements can be

Finite ordinal brought into one-to-one correspondence with

types. tne first n integers.

Such an ordered set has a first and a last element;

so has each ordered component.

Inversely an ordered set with a first and last element,

whose every component has a first and a last element, is

finite. For let a\ be the first element. The remaining
elements form an ordered component; let 02 be the first

of these elements. In the same way determine as. We
must thus reach the last, else were there an ordered com-

ponent without last element, contrary to hypothesis. These

then are the characteristics of the finite ordinal types.

Any set equivalent to the natural number series (the

Numb r
natural scale) is called countably infinite.

series, type The characteristic property of a count-

ably infinite set, when arranged in count-

able order, is that we know of any element a whether,

or no, it corresponds to a smaller integer than does the

element b. Should a and b correspond to the same in-
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teger they would be identical. Thus when arranged in

countable order, the order of any countably infinite set

is that of the natural numbers. The defining character-

istics of this ordered set are that it, as well as each of

its ordered components, has a first element, and that

every element, except the first, has another immediately

preceding it; while each element has one next following,

and consequently, there is no last element.

Any simply ordered set between any pair of whose

elements there is always another element is said to be in

close order.

A simply-ordered set is said to be "well-ordered"

Well-ordered ^ the set itself, as well as every one of its

sets*

components, has a first element.

In a well-ordered set its elements so follow one an-v

other according to a given law that every element is im-

mediately followed by a completely determined element,

if by any. As typical of well-ordered sets we may take

first the finite sets of the ordinal numbers: 1st; 1st, 2d;

1st, 2d, 3d; and so on.

As typical of the first transfinite well-ordered set we

may take the set of all the ordinal numbers, the ascend-

ing order of the natural numbers.

The thousandth even number is immediately followed

by the number 2001.

But if a point B is taken on a sect AC, there is no

next consecutive point to B determinable.

The way in which an iterative operation develops
from an individual operand not only infinity but endless

variety unthought of and so waiting to be thought of,

lights up the fact that mathematics though deductive is

not troubled with the syllogism's tautology but offers

ever green fields and pastures new. Thus in the number
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series is the series of even numbers, in this the set of even

even numbers, 4, 8, 12, 16, 20, etc., each a system in

which every element of every preceding system of this

series of systems can have its own uniquely determined

picture, the first term depicting any first term, the second

any second, etc.



CHAPTER XIV.

. ORDINAL NUMBER.

Numbers are ordinal as individuals in a well-ordered

Ordinal set or series, and used ordinally when taken

number. to gjve to any one object its position in an

arrangement and thus to individually identify and place

it in a series.

The ordinal process has also as outcome knowledge
of the cardinal

;
when we have in order ticketed the ninth,

we have ticketed nine. Thus the last ordinal used tells

the result of the count, being given a cardinal meaning
to denote the particular plurality of the set now ticketed.

The assignment of order to a collection and ascer-

tainment of place in the series made by this putting in

Children's order is shown by that use of count which
counting. occurs in children's games, in their counting
out or counting to fix who shall be it. This counting is

the use of a set of words not ever investigated as to

multiplicity, but characterized by order. Such is the

actually-used set: ana, mana, mona, mike; bahsa, lona,

bona, strike; hare, ware, frounce, nack; halico, baliko,

we, wo, wy, wak. Applied to an assemblage, it gives

order to the assemblage until exhausted, and the last

one of the ordered but unnumbered group is out or else

it. How many individual wprds the ordering group con-

tains is never once thought of. There is successive enu-

meration without simultaneous apprehension.
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Every element has an ordinal significance. No ele-

ment has any cardinal significance.

E nee. me nee, my nee, mo;
Crack ah, fee nee, fy nee, fo ;

Amo neu ger, po po tu ger ;

Rick stick, jan jo.

Such a group but indefinitely extensible, having a first

but no last term, is the ordinal number series.

But in our ordinary system of numeral words, with

fixed and rote-learned order, each word is used to con-

Uses of vey also an exact notion of the multiplicity
ordinals. o f individuals in the group whose tagging
has used up that and all preceding numerals. Thus each

one characterizes a specific group, and so has a cardinal

content.

Yet it is upon the ordered system itself that we chiefly

rely to get a working hold of the number when beyond
the point where we try to have any complete appreciation,

as simultaneous, of the collection of natural units in-

volved. Thus it is to the ordinal system that we look for

succor and aid in getting grasp and understanding par-

ticularly of numbers too great for their component indi-

vidual units to be at once and together separately pic-

turable. Thus the ideas we get of large numbers come

not from any attempt to realize the multiplicity of the

discrete manifold, but rather from place in the number-

set.

Number in its genesis is independent of quantity, and

number-science consists chiefly, perhaps essentially, in re-

lations of one number in the number series to another

and to the series.

That a concept is dependent for its existence upon a

word or language-symbol is a blunder. The savage has
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number-concepts beyond words. On the other hand, the

modern child gets the words of the ordinal series before

the cardinal concepts we attach to them. If a little child

says, "Yes, I can count a hundred," it simply means it

can repeat the series of number-names in order. Its slips

would be skips or repetitions. The ordinal idea has been

formed. It is used by the child who recognizes its errors

in this ordinal counting. The ordinal idea has been made,

has been embodied perhaps in rythmical movements. The

child's rudimentary counting set is a sing-song ditty. The

number series when learned is perhaps chanted. Just so

there is a pleasurable swing in the count by fives.

The use of the terms of the number series as instru-

ments for individual identification appears in the primi-

tive child's game. Before making or using number, chil-

dren delight in making series. Succession is one of the

earliest made thoughts.

We think in substituted symbols. It is folly to at-

tempt to hold back the child in this substitution. The

abstractest number becomes a thing, an objective reality.

Number has not originated in comparison of quantity

nor in quantity at all. Number and quantity are wholly

independent categories, and the application of number to

quantity, as it occurs in measurement, has no deeper mo-

tive than one of convenience.

It has often been stressed, that children knowing the

number-names, if asked to count objects, pay out the

series far faster than the objects ;
the names far outstrip

the things they should mate.

The so-called passion of children for counting is a

delight in ordinal tagging, in ordinal depiction with

names, with no attempt to carry the luggage of cardinals.

The "which one" is often more primitive and more
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important than the "how many." The hour of the day
is an ordinal in an ordered set. Its interest for us is

wholly ordinal. It identifies one element in an ordered

set. The strike of the clock is a word. The striking

clock has a vocabulary of 12 words. These words are

distinguished by the cardinal number of their syllables.

But even when recognized by the cardinal number of

syllables in its clock-spoken name, the hour is in essence

an ordinal.

So the number series as a word-song may well in our

children precede any application to objects. Objects are

easily over-estimated by those who have never come to the

higher consciousness that objects are mind-made, that

every perception must partake of the subjective.

Children often apply the number-names to natural

individuals as animals might, that is without making

any artificial or man-made individual, and so without any
cardinal number. Each name depicts a natural individ-

ual, but not as component of a unity composed of units.

What passes for knowledge of number among animals

is only recognition of an individual or an individual

form.

Serial depiction under the form of tallying or beats

or strokes may precede all thought of cardinal number.

Nine out of ten children learn number names merely as

words, not from objects or groups.

The typical case is given of the girl who could "count"

100 long before she could recognize a group of seven

objects.

The names of the natural numbers are an unending
child's ditty, primarily ordinal, but a ditty to whose terms

cardinal meanings have also been attached. Ordinally
the number name "one" is simply the initial term of this
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series; any number name is simply a term of this series.

The ordinal property it designates is the positional prop-

erty of an element in a well-ordered set, the place of an

individual in a series.

The natural scale is the standard for civilized count-

ing. Its symbols in sequence are mated with the elements

of an aggregate and the last symbol used gives the out-

come of the count, tells the cardinal number of the

counted aggregate. The cardinal, n, of a set is that at-

tribute by which when the set's elements are coupled with

ordinals, the ordinal n and all ordinals preceding n are

used.

The very first step in the teaching of arithmetic should

be the child's chanting of the number names in order.

Then the first application should be ordinal. Use the

numbers as specific tags, conveying at first only order

and individual identification. Afterward connect with

each group, as its name, the last numeral it uses, which

thus takes on a cardinal significance.

Modern civilization has brought out a use of numbers

neither ordinal nor cardinal. It is their employment as

Nominal mere proper nouns. His number is the con-

number, vict's name. This use of what may be called

nominal number has reached its highest social develop-

ment in the telephone. Since the size of the number and

its place in the number series are here alike irrelevant,

the whole stress falls upon its recognition as a unique

name made by the juxtaposition in linear order of ten

simple symbols, the nine digits and the zero. And these

symbols must be orally conveyed to a girl whose vocabu-

lary is so meager it does not contain the word triple. So

333 is read three, three, three. But the profoundest

development is that zero has dropped everything but its
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adventitious Italian ending o, and so evolved a new name,

oh! Thus The Saturday Evening Post, Aug. 5, 1911,

p. 11, has "Six-oh-nine-two Nassau"; for the telephone

rejoices also in a family name. Thus "The Thousand

and One Nights," as a telephone name reads : One-

oh-oh-one Nights. But surely in these proper names

the family should come first as in Magyar, Bolyai John,
and we should have Greeley oh-oh-oh. Since both in-

trinsic and local value have vanished, there are 111 more

nominal than cardinal numbers before 100. Among nom-

inal numbers, the additional class corresponding to no

new cardinals may be called roundheads, e. g., 00, 01, 02,

etc., 000, 030, 099.



CHAPTER XV.

THE PSYCHOLOGY OF READING A NUMBER.

Our marvelous positional notation for number is built

of three elements, digit, base, column. The base it is

which interprets the column. With base ten, 100 means

a ten of tens. With base two, 100 means two twos. With

base twelve, 100 means a dozen dozen.

The Romans had a base, or rather two bases, but

neither digits nor columns. Their V is a trace of the

more primitive base five, seen also in the Greek 7re^7rae0,

to finger fit by fives, to count. This, combining with

the more final base ten, X, explains their having a sepa-

rate symbol, L, for fifty, and D for five hundred.

Their ten of tens has its unitary symbol, C, and their

ten of hundreds is M, a thousand.

Each basal number is a new unit, an atom, a monad,

a neomon, squeezing into an individual the components,

making thus one ball to be further played with.

Our present basal number-word, hundred, is properly

a collective noun, a hundred, literally a tenth count

or tale; for its red is the root in German Rede, talk,

our rate, reckon, and its hund is the Old English word,

cognate with Latin centum, Greek efcarov, to be found

in Bosworth's Anglo-Saxon Dictionary, but seldom used

after A. D. 1200.

The Century Dictionary, to which I may be forgiven

for being attached, says hund is from the root of ten,
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and this leads it far, into the postulating of an assumed

type kanta which it gives as a reduced form of an equally

hypothetical dakanta for an assumed original dakan-

dakan-ta, "ten-ten-th," from assumed dakan, on the anal-

ogy of the Gothic taihun-taihund, taihun-tehund, a hun-

dred, of which it regards hund as an abbreviation or re-

duced form. The same original elements, it says, with-

out the suffix d -
th, appear in Old High German zehanzo

= Anglo-Saxon teon-tig, ten-ty = ten-ten.

The element hund occurring in the Anglo-Saxon

hund-seofontig, seventy, etc., hund-endlefontig, eleventy,

hund-twelftig, twelfty, it gives as representing "ten" or

"tenth," and these words as developed by cumulation

(hund and tig being ultimately from the same root, that

of "ten") from the theoretically assumed hund-seofon,
"tenth seven," etc. Murray is not well persuaded of all

this, and says there is no satisfactory explanation of the

use of hund in these Anglo-Saxon words.

However that may be, just as, in Latin, de-cem gives

centum, so t-enth gives hund, in each case the dental, or

better, lingual, dropping away. Moreover, with us this

enth or hund, with Saxon dogged persistence, reappears
in thous-and, as shown by the Icelandic thusund, thils-

hund, thushundrad, though Latin here takes a new start

with mille, the Sanskrit root mil, to unite, to combine,

seen also in miles, a soldier, and militia. Perhaps our

prefix thous, Icelandic thus, is Teutonic thu, Aryan tu,

to swell, seen in tumor.

So our "a hundred" is an abbreviation for the phrase
"a tenth reckoning [of decads]."

This is consonant with the fact that in Old Norse

the word hundrath, "hundred," "tenthtale," originally

meant 120; it was a tenthtale not of tens but of dozens,
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the rival base twelve, against which the bestial base ten,

an Old-Man-of-the-Sea saddled upon us by our pre-

human simian ancestors, has been continuously fighting

down to this very day. And even in modern English,

remnants of this older usage remain. The Glasgozv

Herald of September 13, 1886, says: "A mease [of

herring] ... .is five hundreds of 120 each."

Chambers Cyclopaedia says: "Deal boards are six

score to the hundred."

This hundred was legal for balks, deals, eggs, spars,

stone, etc.

Peacock, in the Encyclopaedia Metropolitana, I, 381,

says: "The technical meaning attached by merchants to

the word 'hundred' associated with certain objects, was

six score a usage which is commemorated in the popu-
lar distich or Old Saw :

"Five score of men, money and pins,

Six score of all other things."

Just so the Norwegians and Icelanders have two sorts

of thousand, the lesser and the greater, the lesser =10x

100, but the greater =12x100; and this latter is called

tolfraed, twelfth-red, a word the exact analogue of our

hund-red, tenth-reckoning.*

All this abundantly proves that our hundred is very

far from being a simple numeral adjective, like e. g.,

seventy; so that while we properly say seventy-five, to

say a hundred-five is a hideous blunder.

Hundred is strictly not an adjective at all, but a col-

lective noun
;
it is always preceded by a definitive, usually

an article or a numeral, and if followed by a numeral,

this must invariably be preceded by the word "and."

A following noun is, historically, a genitive partitive,

*Hickes, Institutiones Grammaticae, p. 43.
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in Old English a genitive plural, later a plural preceded

by "of." Thus 1663, Gerbier, Counsel, "About one

hundred of Leagues." Hale (1668) : "These many hun-

dred of years." Cowper (1782) Loss of Royal George:

"Eight hundred of the brave." To-day: "A hundred of

my friends," "A hundred of bricks," "Some hundreds of

men were present." [Murray].
Even if there be an ellipsis of "of" before the noun,

the word hundred retains its substantival character so far

as to be always preceded by "a" or some adjective. Com-

pare "dozen," which has precisely parallel constructions,

e. g., "a dozen of eggs." Hooke (1665) : "A hundred

and twenty-five thousand times bigger." Murray's Dic-

tionary (1901) gives as model modern English: "Mod.

The hundred and one odd chances." Again it says: "c.

The cardinal form hundred is also used as an ordinal

when followed by other numbers, the last of which alone

takes the ordinal form: e.g., 'the hundred-and-first,' 'the

hundred-and-twentieth,' 'the six-hundred-and-fortieth

part of a square mile.'
"

Goold Brown, The Grammar

of English Grammars: "Four hundred and fiftieth."

All this furnishes complete explanation and warranty
of the "and" which must always separate "hundred"

from a following numeral. It marks a complete change
of construction : "a hundred of leagues and three leagues" ;

"a hundred and three leagues." This fine English usage
is unbroken throughout the centuries. Thus, Byrhtferth's
Handboc (about 1050) : "twa hundred & tyn"; Cursor

MS. 8886 (before 1300) : "O quens had he [Solomon]
hundrets seuen." Myrr. our Ladye (1450-1530) 309:

"Twyes syxe tymes ten, that ys to a hundereth and

twenty."

Oliver Wendell Holmes, "The Deacon's Masterpiece" :
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"Seventeen hundred and fifty-five.

Georgius Secundus was then alive,

Snuffy old drone from the German hive."

The London Times of February 20, 1885 : "The hun-

dred and one forms of small craft used by the Chinese to

gain an honest livelihood."

The new Encyclopaedia Britannica, llth Edition,

1911, Vol. 2, p. 523: "Thus we speak of one thou-

sand eight hundred and seventy-six, and represent it by
MDCCCLXXVI or 1876." Again, p. 526: "A set of

written symbols is sometimes read in more than one

way. Thus 1820 might be read as one thousand eight

hundred and twenty if it represented a number of men,

but it would be read as eighteen hundred and twenty if

it represented a year of the Christian era."

Though all the numerals up to a hundred belong in

common to all the Indo-European languages, the word

thousand is found only in the Teutonic and Slavonic

languages, and maybe the Slavs borrowed the word in

prehistoric times from the Teutons.

Very naturally thousand is construed precisely like

hundred : "Land on him like a thousand of brick"
;
"The

Thousand and One Nights."

And just so it is with that marvelous makeshift mil-

lion, "big thousand," Old French (1359) augmentative

(Latin mille, a thousand +-one augmentative suffix).

Says Langland in Piers Plowman (1362) A, III,

255:
'

"Coveyte not his goodes

For Milions of Moneye."

And the divine Shakespeare [Henry V, Prol.], antici-

pating the telephonic oh for naught:
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"Or may we cram

Within this wooden O the very casques

That did affright the air at Agincourt?

O, pardon! since a crooked figure may

Attest, in little space, a million!

And let us, ciphers to this great accompt,

On your imaginary forces work."

"Thus, we say six million three hundred and twenty

thousand four hundred and thirty-six,"* which does not

at all militate against our reading 0033 to the telephone

girl as "oh, oh, three, three." The word which speci-

fies the local value of the digit is best omitted when this

local value is unimportant or is otherwise determined.

The date 1911 read "nineteen eleven." The approxima-
tion 77 = 3.14159265+ read "pi equals three, point, one,

four, one, five, nine, two, six, five, plus." Here, as in all

decimals, the "point" fixes the local factor for every sub-

sequent digit.

The country schoolmaster's use of "and" solely to

indicate the decimal point is not merely bad form and

stupid; it is criminal. It introduces a completely un-

necessary ambiguity, doubt, anxiety into the understand-

ing even of oral whole numbers, since he may end with

a wretched fractional, such as hundredths, a retroactive

dampener over all that has preceded it.

When that most spectacular of Frenchmen, who, like

so many great Frenchmen, was an Italian, witness Maza-

rin, Lagrange, Cassini, etc, etc., when the comparatively
unlettered Corsican, Napoleon, sat upon his white horse

at a German jubilee while an official opened at him an

address of felicitation, the great Captain began to be

puzzled at the silent strained attention of those listeners

who were supposed to understand German speech. He
*
Whitney, Essentials of English Grammar, p. 94.
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whispered to his aide, "Why do they not applaud?"

"Sire," was the answer, "on attend le verbe." Just so

when the country schoolmaster reads a number, one

awaits the fractional!

Thus though we may now read Room 203 as "room

two-oh-three" or as "room two, naught, three," or as

"room two hundred and three," reading it "room two

hundred three" remains an abominable gaucherie, a nau-

seating blunder.



CHAPTER XVI.

ARITHMETIC AS FORMAL CALCULUS.

The propositions of arithmetic, as the body of doc-

trine concerning numbers and certain operations by which

numbers may be combined, are all deducible from a few

assumptions.

In a formal calculus we suppose ourselves to know

nothing of the elements (represented by letters) or their

rules of combination (conventions by which two elements

give a third) (represented by symbols) except our as-

sumptions, which themselves are empty frames or forms.

If a specific meaning be read into the letters and sym-
bols, a true proposition may result, or a false.

The logical deductions made from such empty frames

must needs be formal, but this is of advantage in keeping
the logic pure and unaffected by additional unconscious

assumptions which might vitiate it.

We propose to treat a system, a Formal Calculus,

which has arithmetic as a special interpretation.

Whatever has the properties laid down in the assump-
tions will of necessity have also the properties therefrom

deducible.

We shall set up therefore a Formal Calculus of which

Rational Arithmetic shall be merely a true special case.

This chapter is essentially a contribution from Dr.

R. L. Moore, of the University of Pennsylvania.
Our elements are denoted by small italics, a, b, c. . ...
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x, y, z, and may for convenience be called "positive in-

tegers," for which "integers" is only an abbreviation.

Equality is denoted by =, inequality by ^
;
the equality

of two elements meaning that either is everywhere re-

placeable by the other. Our two rules of combination

are symbolized by + and x, and may for convenience be

called addition and multiplication.

I. 1. If a and b are given elements (a=b or a^b},
then a + b (order considered) is a univocally

Assumptions. , . .
,

. , ,

determined element called the sum, a

plus b."

I. 2. Commutativity : a + b = b + a.

I. 3. Associativity: a+ (b + c) = (a + b)+c.
I. 4. If a T* b, then there is not more than one ele-

ment, z, such that a + z = b.

II. 1. If a and b are given elements (a=b or a^b),
then axb (written also simply ab) (order considered)

is a univocally determined element called "the product,

a by b."

II. 2. Commutativity: axb = bxa.
II. 3. Associativity : ax (bxc) = (ax &) xc.

II. 4. If axx = axy, then x=y.
III. Distributivity : ax (b + c) = (axb) + (axe).

Theorem I. If m = nxx, then mnf -m'n is a necessary

and sufficient condition that m'-n'x.

Proof: Firstly if m = nx* and m'=n'x, then m(n'x} -

mm'.

Hence, by II 3, (ww'):r= (nx)m
f

;

by II 2, (mn'}x=m'(nx) ;

by II 3, (mn'')x= (m'ri)x\

* The sign X between two letters will hereafter often be omitted
and understood.
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by II 2, x(mri}-x(m'ri)\

by II 4, mn'=m'n.

Conversely, if m = nx and mn' = m'n, then (w'n)w =

(ww') (TUT).

Hence, by II 2, II 3, (mw)w'= (WM) (w'*) ;

by II 4, w' = w'.*r

Definition 1 : Hm = nx, then and only then x=m/n.
If for a certain pair of integers, m and w, there is no

integer x such that m-nx, and thus no integer equal to

m/n, then if one wishes that in this case also there should

be something which is equal to m/n, that m/n should

enter our Formal Calculus as a new kind of element, he

may choose something other than an integer which it

would be convenient to call m/n. He is at liberty in this

case to call anything (except an integer) m/n. Such a

definition could never possibly contradict our assump-
tions or previous definitions since according to hypoth-
esis there is no x such that, in sense of previous Defini-

tion 1, m/n=x. Now what shall we in this case call

"w/w"? It is desired to establish a Formal Calculus

which shall contain ordinary arithmetic. It is desired

then that m/n, in this case also, and operations in which

it is to figure, should be such that certain laws may be

obeyed. One thing which is desirable then is that (as

in the case when m/n is an integer) m/n and w'/w' here

also shall mean the same thing only in case mn' = m'n.

What sort of definition for m/n would satisfy this con-

dition ?

Evidently the following does:

Definition 2: If there is no x such that m-nx, then

m/n means the set of all sensed pairs (p,q) such that

mq = pn.
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For: Theorem 2: If mq = pn, then mn' = m'n is a ne-

cessary and sufficient condition that m'q = pn'.

Proof: If mn' = m'n and mq = pn then (mq}(m
f

n}-
(pn}(mn'}. Hence, by II 2 and II 3, (mn}(m'q} =

(mn} (pn'}.

From Definition 2 and Theorem 2 it is seen that if

there is no x such that m = nx, then mn' = m'n is a neces-

sary and sufficient condition that m/n = m''/n''; this is

easily seen except perhaps for an obstacle which one may
indicate thus : Suppose it should happen that, even though
mn' = m'n and there is no x such that m = nx, still there

is an x such that m' = n'x and thus m'/n' may not be the

set which m/n is according to Definition 2. But if mn'-

m'n, and there is no x such that m = nx then, by Theorem

1
, there can be no x such that mf = n'x.

From this result and Theorem 1 we have finally:

Theorem 3 : In any case mn' m'n is a necessary and

sufficient condition that m/n = m'/n'.

Theorem 4: If m-nx and m'^n'x* then 1 m/n +
m'/n' = (mn' + nm'} /nn

f and 2 m/n x mf/n' = mm'/nn'.

Proof: 1. mn' + nm'= (nx}n' + n(n'x
r

}.

Hence, by II 2, II 3, and III.

mn' +nmf = nnf

(x + x' ) .

Hence, by Definition 1

x+x*= (mn'+nm'}/nn
f
.

2. mm'/nn' (nx} (n'x'^/nn'.

Hence, by II 2, II 3,

mm'/nn'= (nn') (xx
f

}/nn'.

Hence, by Theorem 3,

(mm'} (nn') = [ (nn'} (xx'} ] (nn'}.

Hence, by II 2 and II 4,

mm' (nn'} (xx'}.
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Hence, by Definition 1,

mm'/nn' = xx
f
.

Definition 3 : If for any particular integers m, n, m',

n', either there is no x such that m = nx or there is no x'

such that m'-n'x', then 1. m/n + m'/n' means (mn' +

mn')/nn' and 2. m/nxm'/n' means mm'/nn'.
In order that there should be no contradiction here,

in order that this may not be defining one thing as being
the same as two different things, it is necessary that this

following theorem should be true :

Theorem 4: If m/n = a/b, and m'/n'-a'/b', then 1.

(mn' + nm'}/nn' = (ab' + ba')/bb'; and 2. wm'/nn'-
aa'/W.

Proof: l:By hypothesis and Theorem 3, mb = an
and m'b' = a'n'. Hence,

Hence, (mb) (&V) + (m'b'} (bn) = (an) (6V) +

(aV)(fe).
Hence, by II 2, II 3, III, (mn'+nm')bb' = nn'(ab' +

ba'Y

Hence, by Theorem 3, (wn' + ww')/w'= (ab' +

ba')/bb'.

2<>. From mb = an and m'b'=a'n' it follows that

(w&)(m
/
&
/

)
= (aw)(aV).

Hence, by II 2 and II 3, (mm'} (bb'} = (aa') (nn
r

).

Hence, by Theorem 3, mm'/nn'=aa'/bb'.

Theorem 5: In any case, m/n + m'/n' = (mn' + nm')/
nn', and (m/nxm'/n')=mm'/nn'.

Proof : See Theorem 4 and Definition 3.
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Definition 4: If m and n are any two integers (the

same or different) then m/n is called a positive fraction,

for which fraction is only an abbreviation. Conversely,

every fraction is m/n, where m and n are integers (the

same or different).

Theorem 6: Every integer is a fraction.

Proof'. If m is an integer, then, by Definition 1,

mm/m=m. Hence, by II 2 and Definition 4, m is a

fraction.

Capital letters are used here to designate fractions

only.

Theorem 7 : If A, B, C are fractions, then the follow-

ing statements are true :

F 1. A + B and AxB are fractions.

F 2. A+B = B + Aand AxB = BxA.
F 3. (A + B)+C =A+(B + C), and (AB)C =

A(BC).
F 4. There is not more than one fraction, D,

such that A + D = B, and there is not

more than one fraction E such that

AxE-B.
F 5. There is a fraction F such that AxF = B.

F 6. There is a fraction G such that, if H is

any fraction whatsoever, then, GH = H.

F 7. A(B + C)=AB +AC

Proof of F 1 : See Theorem 5, Definition 4, I 1 and

II 1.

Proof of F 2 :

a. By Theorem 5, m/n + m'/n' = (mn' + nm')/'.
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Hence, by I 2 and II 2, m/n + m'/n'= (m'n + n'm)/
nn'.

Hence, by Theorem 5, m/n + m'/n'=m' /n' + m/n.

b. By Theorem 5, (w/wxw'/V) =mm'/nn
f

,

Hence, by II 2 and Theorem 5, (ra/nxw'/n') =

Proof of F 3 :

a. By Theorem 5, m/n+ (m'/n' + m"/n")
=m/n + (m'n" + n'm" ) /n'n"
= O(Vtt") + ttO'n" + w'm")]/(w'"), which

by HI,
= [w(w'w") + (ro'n") + ('w")]/('n"),

which by II 3,

= [(mw')w" + (nw')" + (nn')m"]/(nn')n",
which by II 2 and III,

=
(mw' + nm') /nn' +m"/n"= (m/n + m'/n' ) +

m"/n".

b. By Theorem 5 and II, 3,

m/nx (W'/M'XW"/W") =m/nx (m'm"'/n'n")
= m(m'm")/n(b'n") = (mm'}m"/ (nn')n"
= (W/MXW'/W') xmr/

/w//-

Proo/ of F 4 :

a. If a/b + x/y = c/d and a/b+x'/y' = c/d, then, by
Theorem 5 , ( <ry + for ) /fry = (a/ + fo/ ) /by*.

Hence, by Theorem 3, II 2 and II 3,

(W) (^y) = (ay) (&/) + (&&) (^).
Hence, by I 4, (&&) (^/) = (&&) (^3;).

Hence, by II 4, xtf^-tfy.

Hence, by Theorem 3, x/y=



108 FOUNDATION AND TECHNIC OF ARITHMETIC.

b. If (a/bxx/y)=c/d and (a/bxx'/y'}=c/d, then

by Theorem 5, ax/by - ax*/by'.

Hence, by Theorem 3, II 3 and II 2, (ab) (xy') ='

Hence, by II 4, xy'-x'y.

Hence, by Theorem 3, x/y = x'/y'.

Proof of F 5 :

A =m/n and B = m'/w', then Ax (m'n/n'm) =m/n
xm'n/n'm, which, by II 2 and II 3, = (mn)m'/(mn*)n'.

But, by II 2 and II 3, [(WW)W']W' = W'[(WM)W'].
Hence, by Theorem 3, (mri)m'/

'

(mn)n' = m'/n'.

Thus Ax (m'n/n'm) =B.

Proof oi F 6:

If H = m/n, and ^ is any integer, then by Theorem 5,

But, by II 2 and II 3, (km~)n = m(kn).
Hence, km/kn = m/n.
Hence, for any H whatever, (&/)H = H.

Proof of F 7:

By Theorem 5 , m/n x (mr

/n' + m"/n" )
= m/n x [ (m'n"

+ n'm")/n'n"'\= mx(m'n" + n'm")/[nx(n'n")], which

by Theorem 3, II 2 and II 3, = [(mm') (nn"} + (nn')

(mm")]/(nn') (nn"), which by Theorem 5, =(m/nx
wi'/ri ) + (m/n xm"/n" ) .

Definition :

m/n> m'/n
f means there exist x, y such that m/n-

m'/n'+x/y. m/,n < m'/ri means mf

/n' > m/n.

Assumption IV: A necessary and sufficient condition

that integer a should be different from integer b is the
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existence of an integer x such that either a +x=b or

If this assumption IV is added to the others, then

the following additional statements may be added in The-

orem 7:

F 8. Either A < B, A = B, or A > B. But no two
of these three statements are simultaneously true.

F 9.* If A > B, and B > C, then A > C
F 10. If A>B, then A +OB + C, and AC> BC
* F 9 and F 10 may be proved without use of IV.



CHAPTER XVII.

ON THE PRESENTATION OF ARITHMETIC

FIRST GRADE.

All schools heretofore have commenced the study of

number by asking and considering the answers to the

Previous questions, "how many?" "how much?" "how
blunders. far?

" how iong?" They have thus begun
with the cardinal, and with it alone have continued. Thus

all teaching of the beginnings of arithmetic has uncon-

sciously overlooked and missed the more fundamental

and prerequisite question, "which one ?", and so remained

unconscious of, and blind to the infinitely precious and

in fact indispensable succor and aid of order, of the

ordinal.

Had study of the child been fructified by foreknowl-

edge of the modern higher mathematics, it could not have

Begin with overlooked in the spontaneous creative ac-

ordinals. tivities of the child, the prominence and

absolutely basal character of the ordinal, non-cardinal

ideas, the serial, arranging and identifying ideas, histor-

ically and developmentally preceding and prerequisite for

the very apparatus subsequently used for the ascertain-

ment of the "how many."
In the counting of a primitive group, any element is

considered equivalent to any other. But in the use even

of the primitive counting apparatus, the fingers, appeared
another and extraordinarily important character, order.
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The savage, in counting, systematically begins his

count with the little finger of the left hand, thence pro-

ceeding toward the thumb, which is fifth in the count.

When number-words come to serve as extended counting

apparatus, order is not only a salient but an absolutely

essential and indispensable characteristic of the apparatus.

The number series, 1, 2, 3, and so on, is a system such

that for every element of it there is always one and only

one next following.

Numbers are ordinal as individuals in a well-ordered

set or series, and used ordinally when taken to give to

any one object its position in an arrangement and thus

individually to identify and place it.

The ordinal process has also as outcome knowledge
of the cardinal. When we have in order ticketed the

_ ,. . ninth, we have ticketed nine. Thus the last
Cardinal
from ordinal used tells the result of the count.

ma '

But this very ordering process precedes all

cardinal ideas, as is shown by that use of count which

occurs in the spontaneous games of little children, in

their counting out or counting to fix who shall be it.

This counting is characterized by order pure and

simple. There is successive designation with no attempt

Ordinal a* simultaneous apprehension, simply the as-

countmg. signment of order to a collection and the

ascertainment of place in the series made by this putting
in order. Our instrument for this is the number series,

and it is upon the order in the system that we ourselves

rely to get a working hold of the individual number,

especially when beyond the point where we can have any

complete appreciation of the simultaneous multiplicity of

the units involved in the corresponding cardinal.
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It is fortunate then, and natural, that the modern

child, despite the blindness of its teachers hitherto, gets

the words of the ordinal series before it gets the cardinal

concepts we attach to them.

The ordinal coherence of the number series and its

independence of cardinal concepts is shown by the child.

Each name depicts a natural individual, not the so-far

group of natural individuals, not a new kind of unity

composed of units.

Our apparatus for the ascertainment of cardinal num-

ber involves, is based upon and uses order, ordinal num-

Cardinal her. The child should be counting up to

counting. a hundred before it can recognize a group
of seven objects. When the symbols of the number series,

the natural scale, are mated in sequence with the elements

of an aggregate, the last symbol used is also taken as

designation of the particular whole set so far used, and

this identification of the unknown set with a known set

it is which gives the cardinal property or quality of the

hitherto unknown set. In this sense we say the last

symbol used gives the outcome of the count, tells the

cardinal number of the counted aggregate.

First of all then let the teacher put out of her mind

the blunder, pedagogic as well as scientific, that number

N . was in any way dependent upon measure-

precedes ment for origin. Number was created and

used for individual ordering and identifica-

tion and for group identification centuries before any
measurement. There are tribes now using number that

never have used measurement. All natural children use

number long before measurement can even be explained

to them. Measurement is a recondite device. Number
is enormously more simple and primitive. Its uses in
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identification both of individuals and groups are vastly

important and quite independent of measurement. They

long precede any thought of measurement.

The number concepts are wholly apart from measure-

ment, from length, from size, from the late-coming con-

ventional standards for measurement, from the yard,

the mile, the grain, the liter or any other standard for

measurement. Valuation is a false associate for primi-

Cardinal tive number. Number implies no exact size

number.
image. Cardinal number is a quality of a

group. Two eyes and an ear-ache is a less dangerous
trio than three yards, lest the teacher make the mistake

of supposing number in any way dependent upon meas-

urement.

It is the acme of stupidity to attempt to found the

number concepts upon "how much"; for example, "my
desk is greater in length than in width."

Begin by letting the child sing the number names as

far as it enjoys the singing. Follow this up by exercises

How to m designating or tagging objects with these

begin. number-names as identifying tags. Paper
horses may be used, named one, two, three, etc. Paper
automobiles may be named, as the real ones are tagged,

one, two, three, etc. Objects so tagged may be jumbled

up and then arranged in the order of their names. Then

differing objects, say the various differing animals in

animal crackers, may be named, each with a number.

Then the qualities of No. 2 may be contrasted with

those of No. 4.

The children may each be given a number as name.

The teacher and the children may invent games using
the ordinal properties, carefully avoiding as yet any
"how many."
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(1) Thus an instructive ordinal game is using a

set of ordinals to count out the class. Choose a set

Ordinal f ordinals, say the first nine. Distribute

games. them in order and let the child to whom
the nine comes be out. Then begin again with the re-

maining children and again distribute the ordinals in

order, dropping as out the child upon whom the nine now
falls. When there are only eight children remaining,
the count will more than go around, and the child tagged
with one will also be tagged with nine and so be out, etc.

(2) Give each child the same set of disarranged num-
bers. See who can arrange quickest.

(3) One, two;

Buckle my shoe.

Three, four;

Open the door.

Five, six;

Pick up sticks.

Seven, eight;

Lay them straight.

Nine, ten;

A big, fat hen.

Eleven, twelve;

Dig and delve.

(4) One, two, three, four, five;

I caught a bird alive.

Six, seven, eight, nine, ten;

I let it go again.

The call. (5) One, two;
Glad to see you.

Three, four;
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Open the door.

Five, six;

My dog does tricks.

Seven, eight;

Walk to the gate.

Nine, ten
;

Please come again.

(6) Mix up nine blocks numbered from one to nine.

Let the child draw them out of the heap and put
down each in its relative place when drawn until all

are arranged in their proper order.

(7) Hang about the neck of each of nine children a

numbered tag. Let the children arrange themselves in

order in line. Bend the line into a closed curve. Call out

one number. The child so numbered goes within the en-

closure. The others march about him. At a signal he

calls a number. The child so designated takes his stand

within the encircling line, and the caller finds his proper

place in the line.

(8) Give a number to each animal in a Noah's ark.

This so far is only a nominal number, a name for a

natural individual. Then introduce the ordinal by let-

ting the child arrange the numbered animals in accord-

ance with their number-names. Animal crackers may be

substituted for a Noah's ark.

(9) Have colored strips of paper numbered con-

secutively in correspondence with the colors in the pri-

mary rain-bow. Let the children arrange them in order

to make a rain-bow.

(10) Shuffle a pack of numbered cards. Give the

pack to the child to arrange in the order of the numbers.



116 FOUNDATION AND TECHNIC OF ARITHMETIC.

(11) Let the aisles in the school-room be numbered

streets, and the broad cross passage-ways numbered ave-

nues, and each desk a numbered house. Let the children

write and address notes giving the house address, and

let a messenger-child carry and deliver the letters.

Addition :

Ordinal In the ordered row of children ask:

operations. Which is the third after the second? An-

swer: the fifth.

Subtraction :

Which is the third before the fifth? Answer: the

second.

Multiplication :

Which is the third second? Answer: the sixth.

Which is the second third? Answer: the sixth.

When the child is thoroughly familiar with the or-

dered names as applied to natural individuals, we are

The simplest ready for their first application to artificial

cardinal. individuals of the group kind, and first the

application of the ordinal two to a pair. Make couples,

partners, pairs, mates, and call each pair two.

The cardinal two, the simplest cardinal, is that prop-

erty of a set whereby it can be mated, one to one, with

a child's thumbs, or it is the class of such sets.

The idea of a cardinal, belonging as it does to a set

of things as a whole, is a comparatively late concept. It

must follow the concept of a whole composed of parts,

constituents permanently distinguishable. Later comes

the attribution of the geometirc quality of relative size,

big and little, to numbers.

For the next step make trios. The cardinal three is
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the class of all triplets, or that quality of a set whereby

Triplets and ^ can be mated, one to one, with a child's

quartets. eves an(j nOse, also with the ordinal set one,

two, three; the last of which is used as a tag or name
for the group, the trio.

Quartets are groups mateable, individual to individual,

with the fingers of the left hand, or the words one, two,

three, four; the last of which is to be used as a name for

every such set
;
and so on. There may follow in rich variety

the construction, the identification, the tagging, of small

The "how groups. This is at last the "how many"
many" idea. jdea Let jt first be the natural and useful

question of simple identification of groups, recognition

of like or unlike cardinal.

Herein lies abundant opportunity for constructive

work. Give the child the first five ordinals. Let him

then construct groups whose name shall be five, conse-

quently whose "how many" shall be five, the cardinal.

Explain how simple groups were used as symbols
for the numeric quality of all like groups.

Thus, II, III, IIII, are symbols for their

own cardinal quality two, three, four. Then may come

the Hindu symbols 2, 3, 4, primarily as ordinals, then

Cardinal secondarily as cardinals. Now is the time

counting. for cardinal counting, counting as group-

identification, using first the ten different groups of fin-

gers as known groups with one of which the unknown

group is to be identified by setting up a one-to-one

correspondence between the individuals of the unknown

R niti
rouP and the individuals of a finger group,

of the car- Then we go to cardinal counting using the

first dozen groups of ordinal words as

known groups. All in good time, a test that the idea of
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the cardinal has taken root and germinated, is practice

in the instantaneous recognition of the cardinal of a small

group suddenly exhibited, then veiled. The question

"how many" is to be answered without conscious count-

ing. Then larger groups may be used recognizable by
use of symmetry in the arrangement or grouping, as on

playing cards.

Then we may begin to train for the instantaneous

recognition from two components of the cardinal of their

Cardinal compound, for example, the thinking of
addition. seven upon seeing three and four. Here

we should stop to train until every pair from one plus

one up to nine plus nine arouses the image of its sum

instantly and automatically. Coins, cents, nickels, dimes,

dollars, are admirably adapted at this stage as anchors

for the ideas created, while at the same time bringing
home to the child the precious aid of number (anterior

to any measurement) in the child's social relations, in

the interest growing out of and attaching to the very
life of the child itself. Games of buying, and perhaps
actual buying, with the consequent paying and change-

making, are here in place.

Constructive processes familiarize and endear to the

child the ideal numeric creations.

Summary (First Grade).

A. Ordinal counting. Utilize the spontaneously child-

Ordinal arith-
create(^ ordinal systems. Also rhymes and

metic, then jingles,
cardinal. R The number symbolS) 1, 2, 3, 4, 5, 6

etc. as ordinals.

C. Ordinal applications, identification, arrangement,
factitious order.
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D. Ordinal tagging.

E. Ordinal games.
F. Group-making, group distinction, group familiari-

zation.

G. Group identification, cardinal counting.

H. Cardinal applications.

I. Cardinal games.

J. The number symbols as cardinals.

K. Positional notation for number.

L. Addition tables.

M. Coins and their applications and games.
N. Exercises in making conscious the number-needs

of the child's own life, individual and social.

O. Problems oral and motor ; ordinal ; to be solved by
ordinal identification and arrangement. Cardinal; to be

solved by cardinal identification, by addition, by corre-

lation.

SECOND GRADE.

The number work of the second grade, as in all

grades, is to be related as closely as may be to the actually

existing interests and immediate needs of the child.

Do not bend for a moment to the false and exploded
idea that number was originated or created by measure-

Measure- ment, a palpable absurdity, since we must
ment.

already be able to count before we can meas-

ure, and since the preexistent counting is absolutely exact

while no measuring ever can be exact. But now that the

child has the prerequisite number-equipment, we may
envisage measurement.

The "muchness" of a quantity is not determined by
the "how many" parts in it, unless these be all of a

fixed, a preestablished size. Hence in addition to, and
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outside of the number-ideas, the child must now be con-

fronted with the new and difficult idea of definite con-

ventional standards, the so-called units-for-measure or

units of measure, the inch, the quart, the pound, the

second, the degree. To measure is to break the thing

up into pieces each equal to one of these standards, or a

like standard, and to count the pieces. The child must

combine his old knowledge of the number obtained with

his new knowledge of the standard now used.

Measurement then can only come after much prac-

tice in counting. Finally begin measuring by measur-

ing a length. Show that nothing would be gained

here by actually breaking off the pieces, as we do in

measuring milk. We need only see where they could

be broken off. Now we are ready for the consideration

of the actual problems presented to the child by its own

occupations. It may be called upon to use so much

rope or board or food. The outcome of the measure-

ment is a graphic description in known terms, a num-

ber and a unit; and now inversely a metric description

should evoke a graphic image, a picture.

Since mensuration is combined with arithmetic, there

may be training to familiarize the various units and their

subunits, yard, foot, inch, gallon, quart, pint, hour, min-

ute, second, pound, ounce, gram, etc.

Now should be given a thorough-going presentation

of our positional notation for number, and as the neces-

sary extension of it, the decimal. Decimals
The decimal. , .. , ... . , , ,

are made up of the subunits inevitably des-

ignated by the extension of our positional notation to the

right of the units' column.

As the self-interpreting extension of this positional

notation for number to the right of the units' column,



ON THE PRESENTATION OF ARITHMETIC. 121

we have decimals. We need no new elements, nothing

but the already mastered digits, base, column. The deci-

mal is not a fraction; it has no denominator. Decimals

are significant figures to the right of the units' column;

to indicate units' column, we henceforth use the decimal

point. One thousand (1000) means ten of such units

as stand in the adjacent column to the right ;
and one of

these, one hundred (100), means ten of such as stand in

the next column ; and one of these, ten ( 10) , means ten of

our primal units, such as stand in our units' column
;
and

one of these, One (1 ), means ten of such as stand in the

next column to the right, that is in the first column to the

right of our units' column
;
and one of these, one-tenth, . 1 ,

has the same relation to one in the next column. We have

an excellent available illustration in our coins. Taking the

dollar as the primal unit, one-tenth, .1, is one dime or

ten cents; .01 is one cent, or ten mills. These columns

are to be named so that units' column be axis of sym-

metry; twenty (20) gives tens; so 0.2 gives tenths;

three hundred (300) gives hundreds; so 0.03 gives hun-

dredths ; then 4000 gives thousands
; so . 004 gives thou-

sandths.

As no new elements come with decimals, nothing
but our old digits, base, column, so no new principle is in-

volved in their addition, subtraction, multiplication and

division. The child who has the equipment for inter-

preting 23 has that for interpreting 3.14159265. Our
_ . explanation of positional notation contains

the explanation of "carrying" in addition.

Whenever the digit X is reached in any column, it is

carried, appearing as one in the next column to the left.

So we have this word already available when
Subtraction. .

*
.

we reach subtraction, which is always to be
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worked by addition. Look upon difference as the num-

ber which if added to the subtrahend gives the minuend.

Thus to subtract, 9004

5126

3878

Think six and eight make fourteen ; carry 1
;
three and

seven make ten ; carry 1 ; two and eight make ten
; carry

1
;
six and three make nine. We carry one to balance

a one put in to facilitate our procedure. Thus in sub-

tracting,

8% say two-fifths and four-fifths make six-fifths;

6% carry 1 ; seven and one make eight.

~I%~
A fraction is an ordered number-pair where the sec-

ond number, the denominator, tells what
Fractions. ... 11.10

sort of units are represented by the nrst

number, the numerator. Thus 2/3 means two of such

units (subunits) that three of them make the primal unit.

When we come to multiplication, the idea of column

Multiplied-
is to dominate. The fundamental admoni-

tion. tjon js
.

Always keep your columns. Always

begin to multiply with left-most figure of the multiplier.

Thus we get the most important partial product first.

Rule : The figure put down stands as many places to the

right or left of the digit multiplied as the multiplier is

from units' column.

21 .354 Another form of the rule is : Mul-

200 . 003 tiplying shifts as many places right

4270.8 or left as the multiplier is from

64062 units' column. Note as an important

4270.864062 special case of our rule: // of two
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figures multiplied one is in units' column, the figure put

down stands under the other.

There are two interpretations of division, namely

. . . Remainder Division and Multiplication's In

verse. Remainder division may be taught

before the multiplication of fractions. It is to find how

many times one number, the divisor, is contained in an-

other, the dividend; and what then remains. For ex-

ample, if eggs are four cents apiece, how many can be

bought for three nickels? Answer three Or in count-

ing with a compound unit, the divisor, how many times

is it taken before overstepping the dividend?

Historically it was in connection with measurement

that fractions had their origin. By way of review and

advance combined, we may now introduce subtraction,

of course never to be worked by anything but addition,

the "making change" method.

Again multiplication may now be introduced, with the

tables for doubling, tripling, quadrupling. Here may be

given the symbols, +, -, x, /, -T-, =.

Pairs of numbers may now be exhibited for the

child to give their difference; then pairs of numbers,

the second number a 1, 2, 3, 4, or 5, for the child to

give the product. For games we have dominoes, bean

matching, and the like. Use the savage device of a row
of men for counting, to make easy our positional nota-

tion for number. Thus familiarize digits of different

orders.

Sticks and stick-bundles can be correlated with cents,

nickels, dollars, halves, quarters. If the sticks be marked
off in tenths, decimals may be illustrated.

Thus numbers of two and three orders are familiar-

ized, as also the shifting of the decimal point. 9876 mills
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are 987.6 cents, or 98.76 dimes, or 9.876 dollars. Deci-

mals and fractions are made simple by the idea of a prin-

cipal unit and subunits.

Give each child a cheap foot rule; here inches are

subunits. Actual familiarity with standards for measure

is essential, the more so as these are no part of pure arith-

metic or number, but only extraneous components of a

device for the application of number, namely measure-

ment.

Practice in simple multiplication, envisaged first as

condensed addition, may go up through doubling, tripling,

quadrupling, quintupling. Multiplication by ten is equiv-

alent to shifting the decimal point to the right. Quin-

tupling is shifting the point and halving. Measurements

for the application of number knowledge to the attain-

ment of ends desired by the child are in place, but the

so-called "formal work" and "mechanical drill" may give

more joy and interest to the child than any measurement.

From Teachers College Record we quote : "Upon be-

ing given their choice one morning between going to the

new gymnasium and remaining in the room to learn a

new multiplication table, all but three of a class of thirty

chose the mental gymnastics. This is cited to show that

much of the so-called 'formal work,' 'systematic me-

chanical drill,' which sounds so formidable to an out-

sider, may bring much delight to one of our eight year

old children, and that the mechanism of number may be

secured with no sacrifice of interest."

Summary (Second Grade)

A. The extra-arithmetical idea of a standard for

measurement.

B. The usual standards for measure.
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C. Explanation of "to measure."

D. Knowledge obtained by measuring is a combine

of number-knowledge and knowledge of the standard.

E. Length, area, volume, capacity, weight, tempera-

ture; with their standards, foot, square, cube, quart,

pound, degree.

F. Metric description evoking visual image.

G. Positional notation for number.

H. Decimals. Basal subunits. Significant figures to

right of units column.

I. Fractions. Any subunits.

J. Subtraction. Difference.

K. Multiplication.

L. Symbols.
M. Games.

O. Change of unit. Shifting the decimal point.

P. Problems; written work.

Q. Multiplication tables through quintupling.

THIRD GRADE.

We are more than ever to aim at helping the develop-
ment of the child in mental power, accuracy, and pre-

cision, mind-mastery, ability to direct and fix the atten-

tion, and withal to a distinct growth in technically arith-

metical equipment for efficiency and life.

There very often seems here to bloom out spontane-

ously in the child a love for what has sometimes been

called the abstract formal part of arithmetic. It is seen

to give delight. The play-joy, which is perhaps a greater

ingredient in pure science than has been suspected, now
shows forth to illumine the work, and beautify the seem-

ingly mechanical.
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Review Work.

A. Counting with a compound unit, by 2's, by 3's,

by 4's, by 5's, by 10's. Beginning with zero or any
number.

B. Addition with "carrying."

C. Subtraction, with "carrying." (Never use any
but the addition method.)

Advance Work.

D. Multiplication. Complete the tables through 8

constructively. Explain the nine, ten, and eleven tables,

so that they need not be memorized. For example, to

"nine-times" a digit, write the preceding digit and adjoin

what it lacks of being nine : e. g., 9x8 = 72. Connect the

eights with the fours. Written multiplication; begin

always with the left-most figure of the multiplier.

E. Division. Two kinds, but teach first Remainder

Division. First utilize the multiplication work. Teach

to divide by one digit, then by two. Contrast remainder

division and multiplication's inverse.

F. Decimals. The point in addition and subtraction.

Shifting the point in multiplication and division.

G. Fractions. 1/2, 1/4, 1/8, 1/3, 1/6; change the

subunit. Addition; subtraction.

H. Measurement. Square measure.

When objects are used, it should be remembered that

after they have once served their purpose they only ham-

per children and teacher. But buying, selling, making

change may often be used. Let the children, where pos-

sible, make their own problems. Groups of objects may
be used to introduce division. Let a child realize what

he is working to accomplish.
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FOURTH GRADE.

A. A review of addition, subtraction, and multiplica-

tion; but a very extensive presentation and mastery of

remainder division.

B. Verifications. Verify addition and subtraction by
the commutative principle. Verify multiplication and

division by the simplest method of casting out nines.

C. Multiplication's inverse. No remainder. Fraction

in quotient.

D. Invention of problems.

E. Tests of accuracy and speed.

F. Measurements. Include decimals and fractions in

the problems apart and together. Cubic.

G. Plotting on squared paper. Graphic representa-

tion.

H. Illustrations of the life-value of facility and ac-

curacy in the four operations.

I. Divisibility. Factors. Multiples.

K. Emphasize the form of arrangement of written

work.

FIFTH GRADE.

A. Decimals. The identity of decimal notation with
the ordinary positional notation used throughout the first

four grades.

B. Reading of all decimals in the new method.

C. Addition and subtraction shown to involve nothing
new.

D. Illustrations from our money.
E. Multiplication of decimals; (all multiplications

begin with the left-most figure of the multiplier). Shift-

ing the point.
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F. Division of decimals. Shifting the point.

G. Problems.

H. Checking results.

I. Percentage. Applications to discount, commission,

simple interest. The one hundred months method for

interest.

1. Find a percent of a number, (given number

and rate).

2. Find what percent one number is of another.

3. To find a number from a given percent of it.

J. Geometric forms. Denominate numbers.

K. Prime numbers. Prime factors.

L. Business problems.

SIXTH GRADE.

Fractions.

Meaning of fractions. Gain by the notation.

A. Reduction, that is, change of the subunit.

B. Addition and subtraction. Meaning of these ope-

rations for fractions.

C. Least common multiple. Common denominator.

Simplest form.

D. Extension of the idea of multiplication.

E. Multiplication by a fraction.

F. "Of" not multiplication symbol, yet %xQ or %
times Q equals % of Q.

G. Cancellation.

H. Division by a fraction.

I. The so-called business fractions and their percent

equivalents.

J. Expression of decimals as fractions and fractions
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as decimals. Show by squared paper and diagrams the

identity of different expressions for the same fraction.

K. Scale drawing.

SEVENTH GRADE.

Review.

A. Symbols: Row of savages. Zero. Decimal point.

Fracjonal notation. Parentheses. Units added counted

together are thereby taken as equivalent. Illustrations.

Adding with time limit.

B. Business forms and operations. Banks. Interest.

Deposit slips. Checks. Drafts. Notes. Discount.

Stocks. Bonds. Coupons.
C. Meaning of per cent and percentage. Decimals

and fractions in percentage.

D. Percentage equivalents of 1/2, 1/3, 2/3, 1/4, 3/4,

1/5, 1/6, 1/8, 3/8, 5/8, 7/8, when considered as ope-

rators; and vice versa. Percentage equivalents of deci-

mals when considered as operators.

E. Problems on percentage. Commission, taxes tariff,

insurance.

F. Longitude and time.

G. Hundred Months Method.

Interest for one hundred months at twelve percent

equals principal. Interest for one month at twelve per-

cent equals .01 of principal. Interest for a number of

months, an aliquot part of one hundred, is just that part

of the principal. Interest for 3 days is . 001 of the prin-

cipal.

Thus to get interest at twelve percent for eight

months, shift point two places to left in principal and

multiply by eight.
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Interest at 8, 6, 4, 3, 2 % is 2/3, 1/2, 1/3, 1/4, 1/6
of that at 12.

H. Mensuration
; rectangle ; parallelogram ; trapezoid ;

regular polygon; circle; prismatoid; Halsted's Formula:

V= (a/4) (B + 3C) ; prism; cylinder; pyramid; cone;

sphere.

I. Evolution; use of tables. Logarithms. Negative

and positive numbers. The equation. The unknown.

The variable. The constant. The parameter. Coordi-

nates. The graph. The function.

J. General review.



INDEX.

abacus 12, 17
addition 29, 33, 44, 60, 1 16

Ahmes 55

angle 75

Archimedes 76
area 77

arithmetic 68, 73, 101

artificial 4
associative 32

assumptions 72, 102

base 7, 24, 65

Bayley 20

begin 113

binary 13

Birch $5

blunders no
Bosworth 94
Britannica 98
Brown 97

Byrhtferth 97

calculus 22, 1 01

cardinal 5, in, 113
cardinals 8

carrying 121

Cassini 99

Century 94
Chambers 96
child 4, no
Chrysippos 6

cipher 20

columns 122

commutative 31
correlation 10

count n, 68, m
countable 84

counting 10, 71, 88, 117

Cowper 97
cross-cut 79

cuboid 79
Cursor 97

decimal 14, 51, 120

decimals 22, 49, 63

degree 75, 76
difference 40, 122

digits 22

distributive 3t
division 41, 47, 58, 61, 123
dozen 97

Egerton 21

equivalent 10

Eskimo 12

fingers n
five n
formulas 32
fraction 106

fractions 56, 63, 121

games 113

geometry 75
Gerbier 97
Girard 28

grades no, 118

Hale 97
Halsted's 79, 80, 130
Hamilton 32
Hankel 22, 56

Harriot 27
Hickes 96
Hill 20

Hindu 19

Holmes 97
Hooke 97
hundred 94, 129
hundredths 50



132 FOUNDATION AND TECHNIC OF ARITHMETIC.

individual 3
induction 34
inequality 27
infinite 82

integer 24
interest 129
intrinsic 23
invariance 15
inverse 39

Lagrange i, 99
Langland 98

length 76
Leonard 21

local 23

Maurolycus 34
Mazarin 99
measurement 68, 73, 119
million 98
modulus 22

Moore 101

multiple 42

multiplication 35, 38, 45, 61

Murray 95, 97

Napier 49

Napoleon 99
natural 24
Nau 19

Nemorarius 21

nines 46
nine-times 126

nominal 92
notation 26

number 5, 14, 69, 88, 92
numbers 3
numeral 12

numeration 15, 23

one 6

order 81, 83
ordered 59
ordinal 25, 33, 88, in
ordinals Si, 89, no
Oughtred 35

parentheses 28

part 28

partitioned 14
Peacock 56, 96

periodicity 13

permanence 56
Planudes 21

pi ay-joy 125

plus 29, 53

point 51

position 17

positional 22

prehuman 3

presentation no
prism 79

prismatoid 78

product 35, 52

Ptolemy 19

quartets 117

quotient 41, 53

radian 77

Raleigh 27

ray 75
read 51, 94
reciprocal 58
Recorde 26

recur 64
remainder 41
roundheads 93

Sacrabosco 21

scale 59

schoolmaster's 99
Sebokt 19

sect 75
sense 82

Servois 31
seven 9

Shakespeare 98
shift 50
solidus 43

sphere 80

standard n, 73, 124
Stevinus 49

straight 75
substitution 29
subtraction 39, 44, 57, 116
sum 30
summits 78

symbol 26

symbols 18

symmetrical 43

teaching 23
technic 44

telephone 92
ten 7

tenths 50



INDEX. 133

terms 30 verify 46, 48
thousand 96, 98 Vieta 31
thousandths 51 volume 78, 80
three 9, 116

twenty 22 well-ordered 86
two, 6, 9, 116 Whitney 99

Widman 29
unification 4

"nit, 8, 73 zero 20





THE OPEN COURT MATHEMATICAL SERIES

A Brief History of Mathematics.

By the late DR. KARL FINK, Tubingen, Germany. Trans-
lated by Wooster Woodruff Beman, Professor of Math-
ematics in the University of Michigan, and David Eugene
Smith, Professor of Mathematics in Teachers' College,
Columbia University, New York City. With ^biographical
notes and full index. Second revised edition. Pages,
xii, 333. Cloth, $1.50 net. (5s. 6d. net.)

"Dr. Fink's work Is the most systematic attempt yet made to present a
compendious history of mathematics." The Outlook.

"This book Is the best that has appeared In English. It should find a
place In the library of every teacher of mathematics."

The Inland Educator.

Lectures on Elementary Mathematics.

By JOSEPH Louis LAGRANGE. With portrait and biography
of Lagrange. Translated from the French by T. J. Mc-
Cormack. Pages, 172. Cloth, $1.00 net (4s. 6d. net.)

"Historical and methodological remarks abound, and are so woven to-

gether with the mathematical material proper, and the whole is so
vivified by the clear and almost chatty style of the author as to give
the lectures a charm for the readers not often to be found in mathe-
matical works." Bulletin American Mathematical Society.

A Scrapbook of Elementary Mathematics.

By WM. F. WHITE, State Normal School, New Paltz, N.
Y. Cloth. Pages, 248. $1.00 net. (5s. net)
A collection of Accounts, Essays, Recreations and Notes,
selected for their conspicuous interest from the domain of

mathematics, and calculated to reveal that domain as a
world in which invention and imagination are prodigiously
enabled, and in which the practice of generalization is car-

ried to extents undreamed of by the ordinary thinker, who
has at his command only the resources of ordinary lan-

guage. A few of the seventy sections of this attractive

book have the following suggestive titles : Familiar Tricks,

Algebraic Fallacies, Geometric Puzzles, Linkages, A Few
Surprising Facts, Labyrinths, The Nature of Mathematical

Reasoning, Alice in the Wonderland of Mathematics. The
book is supplied with Bibliographic Notes, Bibliographic
Index and a copious General Index.

"The book Is interesting, valuable and suggestive. It Is a book that
really fills a long-felt want. It is a book that should be In the library
of every high school and on the desk of every teacher of mathematics."

>T/ie Educator-Journal,



THE OPEN COURT MATHEMATICAL SERIES

Essays on Mathematics.
Articles by HENRI POINCARE. Published in the
Monist. Price, 60 cents each.

On the Foundations of Geometry Oct. , 1898
The Principles of Mathematical Physics Jan., 1905
Relations Between Experimental Physics and

Mathematical Physics July, 1902
The Choice of Facts April, 1909
The Future of Mathematics Jan., 1910
Mathematical Creations July, 1910
Chance Jan. , 1912
The New Logics April, 1912

Portraits of Eminent Mathematicians.
Three portfolios edited by DAVID EUGENE SMITH,

Ph. D., Professor of Mathematics in Teachers' College,
Columbia University, New York City.

Accompanying each portrait is a brief biographical
sketch, with occasional notes of interest concerning
the artist represented. The pictures are of a size that
allows for framing 11x14.

Portfolio No. 1. Twelve great mathematicians down to

1700 A. D.: Thales, Pythagoras, Euclid, Archi-

medes, Leonardo of Pisa, Cardan, Vieta, Napier,
Descartes, Fermat, Newton, Leibnitz. Price,

per set, $3.00. Japanese paper edition, $5.00.

Portfolio No. 2. The most eminent founders and pro-
moters of the infinitesimal calculus: Cavallieri,

Johann & Jakob Bernoulli, Pascal, L'Hopital,
Barrow, Laplace, Lagrange, Euler, Gauss, Monge,
and Niccolo Tartaglia. Price, per set, $3.00.

Japanese paper edition, $5.00.

Portfolio No. 3. Eight portraits selected from the two
former portfolios, especially adapted for high
schools and academies. Price, $2.00. Japan
vellum, $3.50. Single portraits, 35c. Japan
vellum, 50c.



THE OPEN COURT MATHEMATICAL SERIES

Essays on the Theory of Numbers.

(1) Continuity and Irrational Numbers, (2) The Nature
and Meaning of Numbers. By RICHARD DEDEKIND. From
the German by W. W. BEMAN. Pages, 115. Cloth, 75
cents net. (3s. 6d. net.)
These essays mark one of the distinct stages in the devel-

opment of the theory of numbers. They give the founda-
tion upon which the whole science of numbers may be es-

tablished. The first can be read without any technical,

philosophical or mathematical knowledge; the second re-

quires more power of abstraction for its perusal, but power
of a logical nature only.

"A model of clear and beautiful reasoning."
Journal of Physical Chemistry.

"The work of Dedeklnd Is very fundamental, and I am glad to have it

in this carefully wrought English version. I think the book should be
of much service to American mathematicians and teachers."

Prof. E, H. Moore, University of Chicago.

"It is to be hoped that the translation will make the essays better
known to English mathematicians ; they are of the very first importance,
and rank with the work of Weierstrass, Kronecker, and Cantor in the
same field." Nature.

Elementary Illustrations of the Differential
and Integral Calculus.

By AUGUSTUS DE MORGAN. New reprint edition. With
subheadings and bibliography of English and foreign works
on the Calculus. Price, cloth, $1.00 net. (4s. 6d net.)

"It aims not at helping students to cram for examinations, but to give
a scientific explanation of the rationale of these branches of mathe-
matics. Uke all that De Morgan wrote, it is accurate, clear and
philosophic." Literary World, London.

On the Study and Difficulties of Mathe-
matics.

By AUGUSTUS DE MORGAN. With portrait of De Morgan,
Index, and Bibliographies of Modern Works on Algebra,
the Philosophy of Mathematics, Pangeometry, etc. Pages,
viii, 288. Cloth, $1.25 net. (5s. net.)

"The point of view is unusual ; we are confronted by a genius, who,
like his kind, shows little heed for customary conventions. The 'shak-

ing up' which this little work will give to the young teacher, the stim-
ulus and implied criticism it can furnish to the more experienced, make
its possession most desirable." Michigan Alumnus.
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The Foundations of Geometry.

By DAVID HILBERT, Ph. D., Professor of Mathematics in

the University of Gottingen. With many new additions

still unpublished in German. Translated by E. J. TOWN-
SEND, Ph. D., Associate Professor of Mathematics in the

University of Illinois. Pages, viii, 132. Cloth, $1.00 net

(4s. 6d net.)

"Professor Hilbert has become so well known to the mathematical
world by his writings that the treatment of any topic by him commands
the attention of mathematicians everywhere. The teachers of elemen-
tary geometry in this country are to be congratulated that it is possible
for them to obtain in English such an important discussion of these

points by such an authority." Journal of Pedagogy.

Euclid's Parallel Postulate : Its Nature,Val-
idity and Place in Geometrical Systems.

By JOHN WILLIAM WITHERS, Ph. D. Pages vii, 192. Cloth,

net $1.25. (4s. 6d. net.)

"This is a philosophical thesis, by a writer who Is really familiar with
the subject on non-Euclidean geometry, and as such it is well worth
reading. The first three chapters are historical ; the remaining three
deal with the psychological and metaphysical aspects of the problem ;

finally there is a bibliography of fifteen pages. Mr. Withers's critique,
on the whole, is quite sound, although there are a few passages either
vague or disputable. Mr. Withers's main contention is that Euclid's
parallel postulate is empirical, and this may be admitted in the sense
that his argument requires ; at any rate, he shows the absurdity of
some statements of the a priori school." Nature.

Mathematical Essays and Recreations*

By HERMANN SCHUBERT, Professor of Mathematics in

Hamburg. Contents: Notion and Definition of Number;
Monism in Arithmetic; On the Nature of Mathematical

Knowledge; The Magic Square; The Fourth Dimension;
The Squaring of the Circle. From the German by T. J.

McCormack. Pages, 149. Cuts, 37. Cloth, 75 cents net.

(3s. 6d. net.)
"Professor Schubert's essays make delightful as well as Instructive
reading. They deal, not with the dry side of mathematics, but with the
philosophical side of that science on the one band and its romantic and
mystical side on the other. No great amount of mathematical knowl-
edge is necessary in order to thoroughly appreciate and enjoy them.
They are admirably lucid and simple and answer questions in which
every intelligent man is interested." Chicago Evening Post.

"They should delight the jaded teacher of elementary arithmetic, who
Is too liable to drop into a mere rule of thumb system and forget tho
scientific side of his work. Their chief merit is however their intel-

ligibility. Even the lay mind can understand and take a deep interest
in what the German professor has to say on the history of magic
squares, the fourth dimension and squaring of the circle."

Saturday Review.
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On the Foundation and Technic of Arith-
metic.

By GEORGE BRUCE HALSTED. Cloth, $1.50

Pages, 140.

A practical presentation of arithmetic for the use of

teachers. There has been in mathematics an outburst

of unexpected deep reaching progress and properly to

understand or to teach arithmetic, one should have a

glimpse of its origin, foundation, meaning and aim.

Non-Euclidean Geometry, a Critical and
Historical Study of its Development.

By ROBERTO BONOLA. With an Introduction by
FEDERIGO ENRIQUES. Translated by H, S.

CARSLAW. Cloth, $2.00. Pages, 268. Illus-

trated.

A clear exposition of the principles of elementary

geometry especially of that hypothesis on which rests

Euclid's theory of parallels, and of the long discussion

to which that theory was subjected; and of the final

discovery of the logical possibility of the different

Non-Euclidean Geometries.

In Preparation: Bibliography of 1OO
selected books on the History and Phi-
losophy of Mathematics.

Price, $1.00.
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Geometric Exercises in Paper-Folding.
By T. SUNDARA Row. Edited and revised by W. W. BE-
MAN and D. E. SMITH. With half-tone engravings from
photographs of actual exercises, and a package of papers
for folding. Pages, x, 148. Price, cloth, $1.00 net. (4s.

6d. net.)

"The book is simply a revelation In paper folding. All sorts of things
are done with the paper squares, and a large number of geometric
figures are constructed and explained in the simplest way."

Teachers' Institute.

Magic Squares and Cubes.
By W. S. ANDREWS. With chapters by PAUL CARUS, L. S.

FRIERSON and C. A. BROWNE, JR., and Introduction by
PAUL CARUS. Price, $1.50 net. (7s. 6d. net.)
The first two chapters consist of a general discussion of the

general qualities and characteristics of odd and even magic
squares and cubes, and notes on their construction. The
third describes the squares of Benjamin Franklin and their

characteristics, while Dr. Carus adds a further analysis
of these squares. The fourth chapter contains "Reflections

on Magic Squares" by Dr. Carus, in which he brings out
the intrinsic harmony and symmetry which exists in the

laws governing the construction of these apparently mag-
ical groups of numbers. Mr. Frierson's "Mathematical

Study of Magic Squares," which forms the fifth chapter,
states the laws in algebraic formulas. Mr. Browne con-
tributes a chapter on "Magic Squares and Pythagorean
Numbers," in which he shows the importance laid by the

ancients on strange and mystical combinations of figures.
The book closes with three chapters of generalizations in

which Mr. Andrews discusses "Some Curious Magic
Squares and Combinations," "Notes on Various Con-
structive Plans by Which Magic Squares May Be Classi-

fied," and "The Mathematical Value of Magic Squares."

"The examples are numerous ; the laws and rules, some of them
original, for making squares are well worked out. The volume is

attractive in appearance, and what is of the greatest importance in
such a work, the proof-reading has been careful." The Nation.

The Foundations oi Mathematics.
A Contribution to The Philosophy of Geometry. BY DR.
PAUL CARUS. 140 pages. Cloth. Gilt top. 75 cents net.

(3s. 6d. net.)

The Open Court Publishing Co.
623-633 Walmsh Avenue Chicago
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