

Digitized by the Internet Archive .in 2013

$$
\%
$$

CENTRAL AND WESTFERN UNITED STATES OF

AMERICA.

By

Richard W. Sharpe.

$$
\begin{gathered}
\text { Thesis } \\
\text { Forthe Degree of } \\
\text { B. S. }
\end{gathered}
$$

IN THE COLLFGE OF SCIFNCF,

UNIVERSITYOFILIINOIS.
1893.

ON THE FRESH-WATER COPFPPODA

OF THE
CENTRAL AND WESTERN UNITED STATES OF
AMERICA.

I ntroductory.

Our copepod fauna has as yet received little, except local, attention. Hoping to extend our knowledge of the order, especially in Illinois, I here present the results of my short study of these forms, with a few general introductory remarks.

Claus, Brady, Sars, Lilljeborg, De Guerne and Richard, and Vosseler, of Furope, with Forbes, Cragin, Say, and Herrick, of America, comprise the list of our most active recent workers on this part of our fauna. Some work has been done on the heterogenetic relationships of what are now called distinct species*, and when we consider the metamorphoses through which copepods pass before reaching maturity, the possibility of such relationships is evident. These metamorphoses and the close inter-gradation of related species cause great confusion. Marked variations are also known to be

[^0]
brought about hy differences in the character of the habitat, and through biological relationships. From the above causes most of the copepod synonyma has arisen.

So far as I can determine from my reading and observation, no mature Cyclops exists having swimming rami with only two segments. The individuals having such rami are usually found in that stage just preceding the adult, and may commonly be distinguished at a glance by the fluctuating character of their antennal segmentation, and the coagulated appearance of alcoholic specimens. Certain variations in the segmentation of the antennāe seem to be due to age and adaptation. Vosseler (18) ${ }^{*}$ notes the finding of Cvclops pulchellus Koch at one time with scarcely any apparent antennal segmentation, at another, with antemnee of sixteen, seventeen, or even eighteen, segments. Cyclops perarmatus Cragin seems to have been described as a distinct species unon some such variation, as it primarily differs from C. phaleratus Koch in having ll-segmented antennāe. In a single collection, adult specimens of this form were found by me having both lo- and ll- segmented antennäe, which, it seems to me, ouglit, to render untenable any specific distinctions on this basis alone.
*Tris and similar parenthetical numbers in tae teext and in the list of synonyms indicate the published work referred to, its name being found against a corresponding number in the hibliographical index appended to this paper.

The occurrence of a "sense club" on the l2th antennal segment of some Cyclops having ly-segmented antennäe may be of considerable importance; but if this is a sense organ and only found in a comparatively few privileged species, the question arises, "Why are closely-related species deprived of it?" A circlet of short hairs on the basal segment of the antennae also seems to be a distinguishing mark in some species of Cyclops, as, again, a ridge, either serrate, hooked, or plain, on one or more of the distal segment.s. (See Pl. III., Fig. 15, and Pl. V., Fig. 27.)

Biological.

The genus Cyclops is found in nearly all parts of the world, the temporary pool as well as the permanent body of water affordit a suitable breeding place. Standing or slowly running water seems to suit these crustaceans best. In ponds especially, they thrive to perfection, where they often grow to three or four times their ordinary size in other waters. In an examination of material by me from ponds near Normal, IlJinois, Cyclops insectus Forbes was found varying in length from 1 mm . to 3.5 mm .

Deeper and larger bodies of water commonly afford smaller, more slender, and semi-transparent copepods, this variation being
probably due to the greater territory necessarily covered by them in seeking a food supply and their need of protection from their enemies. Cyclops thomasi Forbes and Diaptomus sicilis Forbes are both preeminent,ly deep-water forms, and are cases in point. Fpischura was found in permanent bodies of water, while Osphranticum and Canthocamptus seem to inhabit the shallower, or less stable, pools and ponds.

The food of the Copepoda is mainly composed of plant and animals remains, protozoans, and parts of the leaves of water plants picked up from the bottom or from rocks.

Copepods are nearly always found in association with the 0stracoda, Cladocera, and Hydrachnidāe, and are an important element in the food supply of most of our fresh-water fishes. Living, as they do, in the shallower and weedier tracts, they are at once available for the fry of such fishes as make these places their breeding grounds, as do most of our fresh-water species.

The organic relationships of the copepoda, both near and remote, are indeed very complex, and afford the student of biology a very fruitful subject for practical investigation. * Their func-
*For a brief discussion of this auestion see an article by Professor Forbes entitled " The Lake as a Microcosm," p. 87 Bull. Scientific Ass'n Peoria, Ill., or p. 11 Separate.
tion in the aquatic balance of organic life is an important one, as has been demonstrated by Professor Forbes in investigations on the food of some of our most important food fishes.*

Thp essentials to a/thorough study of this important order, either systematic or biglogical, are a variety of collections covering a wide range of territory; and the time, opportunity, and surrqundings favorable to extended work.
systematic.

Though little attention has been bestowed upon the distribution, relative abundance, and economic importance of the copepoda, yet in the systematic line, as well as in economic and philosophic questions pertaining to this order, Professor forbes has opened up a wide field of investigation, with valuable results, while cragin and Herrick lave added to our knowledge of the Copepoda of the Mississippi Valley, Massachusetts, and Alabama.

In 1886, Professor L. M. Underwood published a "List of the Described Species of Fresh-Water Cmustacea from America, North of Mexico." At that time the Copepoda had been studied only in the eastern United States (Massachusetts), the Mississippi Valley, and
*"The First Food of the Common Whit,efish." Bull. Ill. State Lab. Nat. Hist., Vol. I., No. 6, p. 95.

a few scattered localities. The following list is a reproduction of the table of the distribution of copepod species in the United States and the freat, Lakes as known in 1886 and given by Mr. Underwood, to which I have added in a parallel column the number of species now known to occur in the same localities, so far as I have been able to ascertain.

$$
\text { Locrlity. 1886. } 1898 .
$$

Alabama r
California 6
Colorado 1
Connecticut. 1
Illinois 21
Indiana 2
Kentucky 4
Louisiana 3
Maine 1
Massachuset,ts 11
Michigan 4
Minnesota 27
Montana 2
New York 4
Ohio 1
Wyoming 6
Washington 1
Wisconsin 8
La,ke Superior 10
Lake Michigan 6
Lake Frie 1
Lake Ontario 1
Lake Huron 0
were listed, including the parasitic forms. Deducting the lat,ter there remain three families, seven genera, and fort,y species of the free-living forms, as follows:

$$
\text { I. FAMILY CALANID } \overline{A F} \text {. }
$$

(I) Genus Diantornis Westw.

1. I. armatius Herrick.
2. D. kentuckyensis Chambers.
3. D. leptopus Forbes.
4. D. longicomis Herrick.
5. D. minnet,onka Herrick.
6. D. pallidus Herrick.
7. D. sanglinelus Forbes.
8. Il. sicilis Forbes.
9. D. stagnalis Forbes
(2) Gemus Fpischura Forbes.
10. E. lacustris Forbes.
11. E. fluviatilis Herrick.
(3) Genus Limnocalanus Sars.
12. L. macmimes sars.
(4) Genus osphranticum Forbes.
13. O. labronectum Forbes.
II. FAMILY CYCLOPIDAF.
(5) Genus Cyclops Müll.
14. C. agilis Koch.
15. C. ater Herrick.
16. C. brevispinosus Herrick.
17. C. diaphanus Fischer.
18. C. elongatus Claus.
19. C. fimbriatus Fischer.
20. C. fluviatilis Herrick.
21. C. insectus Forbes.
22. C. modestius Herrick.
23. C. navicularis Say.
24. C. navus Herrick. 12. C. oithonoides Sars.
25. C. parcus Herrick.
26. C. pectinatius Herrick.
27. C. phaleratus Koch.
28. C. pulchellus Koch.
29. C. sermilatis Fischer.
30. C. tenuicornis Claiks.
31. C. thomasi Forbes.
32. C. uniangilatus Cragin.
33. C. viridis Fischer.
34. C. ingens Herrick.

III. FAMILY HARPACTIDAF.

(6) Genus Canthocamptus Westw.

1. C. cavernarum Packard.
2. C. illinoisensis Forbes.
3. C. minutus Baird.
4. C. minnesotensis Herrick.
5. C. northumbricus Brady var. americanus Herr.
(7) Genus Tachidius Lillj.
6. T. fonticola Chambers.

Many of the above syecies have never been found or identified since first described, while others are known to be but synonyms.

All of the above genera are represented in Illinois with the exception of Tachidius, which has as yet been recorded only from Kentucky.* of the twenty-one species of cyclops recorded, six have *Jour. Cin. Soc. Nat. Hist., IV., p. 47 (1881).
been found and identified by me,* the remainder not occurring in Illinois waters, as far as yet known. The greater number of the above species are reported and described by Herrick (10,12) as common to Minnesota, but most of them lack identification by others than the original describer. Judging, however, from the different forms to be found even in our wells, a great number of varieties are to be expected which grade into one another so closely as to be a puzzle to the systematist.

Little has been done in the way of a classification of species. Rehburg sought to classify his species of Cyclops under three groups, while Vosseler (13) thinks that a separation into two groups at least is justifiable. The first of his groups includes all Cyclops having three setae or spines on the apical segment of the feet of the fifth pair, while the second group includes all having two setae or spines on this segment. This classification, with some necessary revision, has been essentially adopted by me, and appears in the key at the conclusion of this paper (p .52).
*See Table of Geographic Distribution, p. 48.

FAMILY CYCLOPIDAF.

Cyclops sp.(1). (Pl. I.,Figs. 1-6.)
A small species, but 1.15 mm . long, witr ly-jointed antennae, which, extended, barely reach to the second cepialothoracic segment.

The first cephalothoracic segment as brozd as long (.35 mm.), equaling the following four segments, whick rapidly taper as a series to unite with the abdomen. First abdominal segment mach dilated or tumid anteriorly, tapering posteriorly, and equaling the three following segments, these being subequal and serrate posteriorly, the last segment shortest, and the serrations having the character of spinules. Caudal rami slender, five times as long as wide, and more than equal to the preceding two and λ half abdominal segments. Fach ramus with a stout, broad, knife-like spine at at the outer distal angle about, one third as long as the ramus; a small slender seta at the inner angle slightly longer lone sixth the length of the third from within), which for lialf its length is stout and bare, with nearly parallel sides, the remainder tapering gradually and finely plumose; second seta from within of the same character, except that it is as long as the abdomen and furca, and sparsely setose along the inner margin of the basal half.

Antennae, short, rather stout, and well supplied with long setae. As with many other species with ly-jointed antennae, this one has a lanceolate, spine-like "sense club," or modified bristle, besides the ordinary bristile at the outer apical angle of the twelfth antennal segment. All the joints of the antennae are short and thick, the last three joints equaling the preceding seven. Antennules stout and reaching half the length of the antennae. Latmam with ten teeth.

The armatures of the apical segments of the oiter and inner rami of the thoracic legs are as follows:

First Pair.

Outer ramus.

Ex.,three spines (one apparently at tip).
Ap.,two setae (Fig.6).
In., two setae.

Inner ramus.

Fx., one seta.
Ap., one seta, one spine (stout). In.,three setae.

Second Pair.

Outer ramus.

Fx.,three spines. Ap., one spine, one set,a. I_{n}.,three setae.

Inner ramus.

Fix., one seta.
Ap., one seta, one spine (stout). In.,three setae.

Third Pair.

Outer ramus.
Ex.,three spines (one apparentily at tip).
Ap., one spine (long, stout), one seta.
In.,three setae.

Inner ramus.
Fix., one spine (broad, stout,). Ap.,two spines (broad,equal). In.,three setare.

Fourth Pair.

Outer ramus.
Ex.,three spines (one apparently at tip).
Ap., one spine (long), one seta.
In., three setae (short).

Inner ramis.
Fx.,one spine. Ap., two spines (eaual). In., two setae (slender, short).

The apical segments of both rami of the second, third, and fourth pairs are as long as the remaining two segments; the srines are unusually stout, wide, and coarsely serrated, while the setae are, on the contrary, slender and short.
reet of the fifth pair jointed; apical joint about a third as wide as the basal and nearly as long; basal joint bearing a short slender seta at its outer distal angle, and the apical with a short lanceolate spine at its inner distal angle and a short slender seta (as long as the preceding one) at its outer. (Fig.4.)

[^1]form of the caudal setae, the broad coarse spines of the thoracic legs, and the short antennae.

Described from several specimens collected in July, l891, along the shores of Lake Minnetonka, Minnesota, among mishes and lily pads. (Mr. H. S. Brode collector.)

Cyclops sp.(2). (PI. II.,Figs. 7-12.)
This species is rather slender in all its details, with 17segmented antemnze which reach scarcely to the third cephalothoracic segment.

Length, exclusive of caudal setae, 1.3 mm .
First cephalothoracic segment very long, one fourth longer than the remaining segments of the cephalothorax; the following three subequal, tapering to unite with the narrow abdomen. first abdominal segment equaling the following three, with the anterior half tumid in the female; the last segment about two thirds the length of the preceding, narrow, and armed with a row of spinules posteriorly.

The caudal rami are narrow, parallel, in width one seventh of their length, and equaling the preceding two and one fourth segments. The inner terminal bristle slender, five sixths the length of the ramus, and one and two thirds the length of the outer bris-
tle, which is somewhat stouter, and one fifth the length of the third from within, which is two thirds the length of the second from within. All are slender and weakly pinnate.

Antennae rather elongate, the third and sixth joints equal, the last two equal, each twice as long as the fifteenth, while all three fully equal the preceding seven segments. There are no special marks of distinction on the antennae other than a "sense club" on the l2th segment. Antennules rather slender, with long bristles at the end. Labmum with twelve rather prominent teeth.

Apical segments of thoracic legs armed as follows:

First Pair.

Outer ramis.

Fx., two spines (one spine at tip). Ap., two setae (slender). Fx., two setae.

Inner ramis.

Ex., one seta.
Ap., one seta, one spine (prominent).
In., three setae.

Second Pair.

Outer ramis.
Fx., two spines.
Ap., one spine (long as
segment), one seta. In., three setae.

Inner ramus.

Fix.,one seta.
Ap., one seta (inner angle), one spine (slender).
In., three setae.

Third Pair.

Same as second pair.

Fourth Pair.
Outer ramis.
Inner ramis.

Fix., two spines.
Ap., one spine, one setia. In.,three setae.

Fx., one seta.
Ap., two spines (nearly equal). In., two setae.

Legs of the fiftri pair jointed; basal joint, in width three times the length, with the outer apical angle slighitly produced, and bearing a slender naked seta slightly over twice the length of the apical joint, which in width to length is as one to three, and bears two nearly equal plain setae, littie longer than the precering.

Closely related to species (4), but differing in the proportions of the abdominal segment, of the caudal setae, and in the proportionate lengthis of the antennae, and in the absence of the transverse row of spines of the caudal rami, which is so characteristic of thomasi.

Described from several specimens received from Mr. Chas. C. Adams, which were collected from ponds near Bloomington, Ill.

Cyclops sp. (6). (P1. III.,Fig. 18.)
A stout, robust species, with long narrow furcal rami and 17jointed antennae which reach but to the second cephalothoracic segment. Total length, 2 mm . Cephalothorax, 1.05 mm . long and .7 mm . wide; abdomen, 4 mm . long, and furca. 2 mm --together more than equaling the longest bristies. Labrum with nine prominent teeth.

Anternae not distinguished by amy unusual proportions, but much resembing those of C. viridis Fischer, with the exception that the last three segments of viridis are equal to the five and a half preceding segments, while in my species (3) they equal the seven and a half preceding segments. The last antennal segment but one third as wide as long, and but a mudiment of the usual sense club on the twelfth segment. The basal joint is as long as the three and a half following, while the third is only about one third the length of the tourth, which is equal to the second and third together. Antennules slender, reaching to the tenth antennal segment.

Armatures of apical segments of thoracic legs as follows: The apical segments of the outer ramus of the legs of the first pair nearly as broad as long, with two setae at tip, two spines without, and two setae within; the inner ramus with one spine and one seta at tip, one seta without, and three within.

The apical segments of the legs of the remaining pairs only About half as wide as long, while in C. viridis they average three fifths as wide as long.

Legs of the second pair with one stout spine and one seta at the tip of the apical segment of the outer ramus, three stout spines without, and three setae within; inner ramus like that of the preceding pair.

Outer ramus of the legs of the third pair like that of the second; inner ramas with two spines at tip of the distal segment, one spine without, and three setae within.

Outer ramis of legs of the fourth pair like outer rami of the two preceding pairs, while the inner ramus has two spines at the tip of the apical segment, one spine witrout, and two setae within. (Pl. JII.,Fig. 15.)

The second segment of the inner ramus of all the thoracic legs has two setae on the inner side, and all are unarmed on the outside. The emargination between the segments of the legs is very marked, the indentation amounting to about ralf the entire width of the segments.

Legs of the fiftin pair jointed, the basal segment half as long as wide, the outer part lobed, and bearing at its tip a long seta. The apical segment, is about as long as the preceding, in width to
length as two to four, and bearing on its outer side, near the tip, a short lanceolate spine, and at the tip a seta about as long as the first.

Abdomen slender; furcal rami long and slender, enualing the last three segments of the abdomen, parallel, and but one sixth as wide as long. (In C. viridis they are one fourth as wide as long.) Inner terminal bristle slender, and one half the length of the ramus; outer terminal bristle coarse, spine-like, and ahout one sixth shorter than the inner one. The longest furcal bristle equals the abdomen with furca, and together they equal half the total length of the Cyclops, or, 1 mm. The posterior margin of the last abdominal segment with a row of spinules.

With the exception of species (1), this is the only Cyclops known to me having a spine as the outer armature of the inner ramus of the third and fourth pairs of legs.

Described from several specimens taken by Professor Forbes and party of assistants, under the auspices of the United States Commission of Fish and Fisheries, in Lake Winnebago, Wisconsin, June, 1892, where it is everywhere common in association with \underline{C}. edax Forbes.
-

Cyclops sp. (4). (Pl. IV.,Figs. 20-24.)
Lengtr, 1.3 mm . Antennae 17 -jointed, just, reaching to the end of the first cephalothoracic segment.

The first cephalothoracic segment equals the following four segments, while the first abdominal, equals the following three segments in length, is moderately broadened anteriorly, and .18 mm . long. Abdomen (with furca), . 5 mm . long and .1 mm . wide.

Fach abdominal segment bordered posteriorly with a row of serrations, that of the last segment having the character of fine spinules; last segment two thirds as long as the preceding one. Caudal rami . 1 mm long, and in width to length as three to eleven, equaling the last two abdominal segments, and vearing on their upper upper outer third two or three minute point-like spines, somewhat of the character of those on the caudal rami of C. thomasi. Ramal bristles short, slender, finely plunose, the inner bristle about as long as the ramus, two sevenths the length of the second from within, which is one and one third the length of the third from within, and proportionate to the outer as seven to one, the out Or being about half the length of the ramus.

Antennal segments short, the last, three equaling the preceding seven; sense club and seta at, the posterior outer part. of the twelfth segment; otherwise no special markings. Segments sixteen
and seventeen equal, fifteen, half as long as sixteen.
Apical segments of the thoracic legs armed as follows:

> First Pair.

Outer ramus.
Inner ramus.

Ex. ,two spines.	Ex. , one seta.
Ap. two setae.	Ap., one seta, one spine.
In. two setae	In., three setae.

Second Pair.

Outer ramus.
Inner ramus
Ex., two spines.
Ap., one spine, one seta, (equal).

Fx., one seta. Ap., one seta, one spine, (equal). In., three setae.
In., three setae.

Third Pair.

Same as second pair.

Fourth Pair.

Onter ramis.
Fx., two spines.
Ap.,one spine, one seta.
In.,three setae.

Inner ramus.

```
Fx.,one seta.
Ap.,one seta (spine-like),one
    spine, (equal).
In.,two setae.
```

The fourth legs thus differ from those of thomasi in having the apical spine and seta of the inner ramus equal, and in the proportionate widths of the apical segments of this pair, which in
thomasi is not more than a fifth as wide as long.
Feet of the fifth pair jointed; basal segment somewhat quadrate, half as long as wide, the outer distal angle being produced, and bearing a slender seta about four times as long as the segment; apical segment, long, narrow, sides somewhat, sinuate, length to breadth as four to one, the outer apical angle slightily produced and bearing a slender seta as long as the preceding, the inner angle bearing a setose seta, somewhat stouter but no longer.

Described from specimens taken from a temporary pond south of Urbana, Ill., Apr. 15, 1892.

Cyclops sp.(5). (Pl. V.,Figs. 25-30.)
A small, well-marked species, with seventeen- jointed antennae reaching just to the third cephalothoracic segment, the last segment with a ridge having a semi-lunar hook-like notch (Fig. 27), long, narrow abdomen, znd slender calldal setae as well as setal armatures of the thoracic legs.

Length, exclusive of the caudal setae, 1.1 mm . Cephalothorax, .65 mm . long, .35 mm . wide; abdomen and furca, .45 mm .

Basal segment, of the antennae equal to the following three segments; with no special markings and no circlet of hairs. Twelfth segment without, a prominent seta or sense club. Segment fifteen
two thirds the length of sixteen, which is a fourth longer than the seventeenth, all three equaling the preceding seven.

Antenniles nearly half the length of the antennae. Labmum with twelve teeth.

The armatures of the thoracic legs are remarkable for the width and prominence of the apical spines and the slenderness of the setae.

First Pair.

Outer ramus.

Fx.,two spines (slender).
Ap.,two setre.
In.,two setae.

Inner ramus.

Ex.,one seta.
Ap., one seta, one spine (broad, coarse).
In.,three setae.

Second Pair.

Outer ramus.
Fx., two spines (broad, one apparentiy at tip). Ap., one spine (long, broad), one seta (slender).

Inner ramis. Fix., one seta. Ap., one seta, one spine llong, coarse). In., three setae.

Third Pair.

Same as second pair.

Fourth Pair.

Outer ramus.
Ex.,two spines (coarse).
Ap., one spine (long, coarse), one seta (slender).
In.,three setae.

Inner ramus.
Fx., one setia.
Ap., two spines (inner half length of outer).
In., two setae (slender).

Feet of the fifth pair small and jointed, the basal segment five eights as long as wide, bearing a slender seta,four times as long as the segment, at the slightly prodinced outer angle; apical segment as long as the basal is wide, narrow, produced, and bearing a long slender seta, over four times as long as the apical segment, and a somewhat, coarser setose seta, about the same length, at the midrile inner side of the same segment. (Fig. 28.)

I know of no other species having the peculiar crescentshaped hook on the last antennal segment, or with the fifth feet of such characteristic shape. The spines of the second, third, and fourth pairs of legs are also unusually coarse.

Described from several females taken by Mr. H. S. Brode from a pond, full of water lilies, Mishes, and Anacharis, near Lake Harriet, Minnesota, July 13, 1891.

Cyclops edヶx Forbes. (Pl. VI.,Figs. Bl--36; Pl. III.,Fig. 15). 1887. Cyclops ediax Forbes, (15)*, p. 709, pl.TTI.,fig. 15; pl.IV.,figs. 16-19.

A medium-sized syecies, with caludal setae well developed, l7jointed antennae, reaching nearly to the fourth cephalothoracic segment, the last segment being characterized by a coarse serrate, or notched, ridge (Pl.ITI.,Fig.15). Setae on the outer distal

[^2]
24

angles of segments one, four, and eleven long and stout, a long sense club besides seta on the twelfth segment, and a short blunt spine on the sixth segment; otherwise no special markings.

Basal segment of antennae long, equaling the following four segments, sixth slightily longer than the third, and the seventeenth slightly longer than the fifteenth and just equal to the sixteenth, all three equaling the preceding five and two thirds segments.

Total length, exclusive of caudal setae, 1.4 mm . Cephalothorax $.83 \mathrm{mm}$. ; abdomen .57 mm .

First cephalothoracic segment . 35 mm . long and. 4 mm . wide, equaling the three following segments, which are almost subequal, the middle one perhaps the longer.

First abdominal segment eauals the following three segments; seven tenths as wide as long; the last segment the shortest, bordered posteriorly by a row of rather coarse spinules. Caladal rami somewhat divergent, rather short (equaling the preceding one and a half segments), the width about, one third the length. All the caudal bristles well developed but short, the third from without,or longest, scarcely longer than the furca with the last three abdominal segments; the second from without eight ninths as long; the inner scarcely longer than the first abdominal segment; while the outer is to the inner as one to two.

Thoracic legs armed as follows:

> First Pair.

Out ier remus.

Ex., two spines (one apparentily at tip).
Ap.,two setae.
In., two setae.

Inner ramie
Ex., one seta.
Ap., one set, a, one spine, (equal). In.,three setae.

Second Pair.
Outer ramis. Inner ramus.

Ex.,two spines (one apparently at dipl.
Ap., one spine, one seta, (both long).
In.,three setae.

Fix., one seta.
Ap., one seta, one spine (long
as segment).
In., three setae.

Third Pair.

Armed like the second.

Fourth Pair.

Outer remus.
Ex. .two spines (one apparently at tip).
Ap., one spine flong, nearrow), one seta. .
In., three setae.

Inner rams.

$$
\begin{aligned}
& \text { Ex., one seta. } \\
& \text { Ap., two spines (inner two thirds } \\
& \text { length of outer. } \\
& \text { In., two setae. }
\end{aligned}
$$

Feet of the fifth pair jointed, the basal segment rather broader than long, bearing at, the produced outer apical angle a short slender seta about six times as long as the segment; apical segment
as long as the basal but scarcely as hroad, the outer apical angle being produced, and bearing a long, slender, plain seta three times as long as the preceding one, while the inner apical angle bears a plumose seta, longest of all. (Fig. 34.)

This species has seemingly a wide range of distribution in the United States.

Cyclops insectus Forbes. (Pl. VII., Figs. 87-42.)
1882. Cyclops insectus,Forbes, (9), p. 649.

A variable species, measuring (exclusive of caudal setae) from 1.1 mm . to 4 mm , the cephalothorax being to the abdomen as eleven to six.

First segment of the cephalothorax about eaual to the three following segments. Last abdominal segment bordered posteriorly by a row of small spinules. Caudal rami four times as long as wide, fully equaling the last two segments of the abdomen. Outer caudal seta shortest, half the length of the ramus; the inner, a third longer than the outer; the third from within four times the length of the inner, and three fourths the length of the longest.

Antennae seventeen-jointed, reaching to the middle of the second cephalothoracic segment. No circlet of hairs; sense club and
seta on the twelftr segment. No unusual proportions of antennal segments.

Thoracic legs armed as follows:

> First Pair.

Outer ramis.
Inner ramus.

Fx., two spines.
Ap., one spine, two setae. In., two setre.
F.x., one seta.

Ap., one seta, one spine (coarse). In.,tiree setae.

Second Pair.

Outer ramus.
Inner ramis.

Fix.,three spines.
Ap., one spine, one seta. In.,three setae.

Fix.,one seta.
Ap., one seta, one spine. In.,tiree setae.

Third Pair.
Armed like the second.

Fourth Pair.

Outer ramis.

Ex., three spines. Ap., one spine, one seta. In.,three setae.

Inner ramus.

Ex.,one seta.
Ap.,two spines (inner smaller). In.,two setae.

Fourth pair of feet also characterized by a peculiar narrowing of the basal segment of the inner ramus. (PI. VII.,Fig. 4l.)

Feet, of the fifth pair segmented, the apical segment spmewhat longer than the basal and half as wide, with one short spine half the length of the segment and one seta, six to seven times the lengt, h of the spine, at the tip. Outer distal angle of the basal segment produced, bearing a seta about the same length as the first.

The fifth feet, resemble those of C. thomasi Forbes and C. viridis Fischer, except that the small spine is shorter than in thomasi and longer than in viridis. The two median caudal setae are also more nearly equal than in thomasi, resembling those of viridis; but the rami are much longer and more attenuated in insectus. This is the most variable species yet found by me, ranging in length from 1 to 4 mm .

Abundant in ponds throughout central Illinois.

Cyclops gyrinus Forbes. (Pl.VIII.,Fig. 43; Pl. III.,Fig.19.)
1887. Cyclops gyrinus, Forbes,(15), p. 707, pl. II.,fig. 9; pl.ITT.,fig. 14.
1891.

II Forbes,(18), index.

A robust species, with l7-jointed antemae, the last three joints being characterized by a knife-like ridge, tlat of the last joint faintly serrate (Fig.43). Basal segment, of antemnae with a weak circlet, of hairs; twelfth segment with sense club.

Each side of the fifth thoracic segment furnished with
three transverse rows of minute spinules, much less prominent than in C. tenuicornis Claus.

This species is closely related to C. signatus Koch, from which, however, it differs in the character of the antennal ridge, the absence of the fine teeth of the eighth, ninth, tenth, twelfth, thirteenth, and fourteenth segments of the antennae, and in the presence of a sense club. It differs from C. tenuicornis in not being so coarse in any of its details, in the character of the antennal ridge, in the different proportions of the last antennal joints, and in the lesser width of the second and third cephalothoracic segments.

Cyclops viridis Fischer. (Pl. IX.,Fig. 54.)
1820. Monoculus quadricornis viridis, Jurine,(1),p. 46, pl.IIJ.,fig.l.
1851. Cyclops viridis, Fischer,(2),p. 412, pl.IX.,figs. 1—11.
1857. " brevicornis, Claus,(8),pl.III.,figs.12-17. 1878. " gigas, Brady, (8), p. 105,pl.xX. 1882. " ingens, Herrick(10), p. 228, pl.IV.,figs. 1-8.
1888. " viridis, Cragin,(ll), p. \quad. pl.IV.,figs.8-16. 1884. " " Herrick,(12), p. 145. 1886. " " Vosseler,(18), p. 190, pl. IV., 1886. " " Underwood,(14), p. 332, 1891. "

॥

A widely distributed species, with stout, short, ly-jointed
antennae, reaching barely to the end of the first cephalothoracic segment. Total length 1.6 mm . Longest seta. 6 mm . ; furca .1 mm . Cephalothorax just twice as long as the abdomen. Specimens found at Quincy varied somewhat, reaching nearly twice the above measurements, which represent average specimens.

Abdomen narrow, one fifth the width of the cephalothorax at its widest part; the last segment with sermalations.

Basal segment of antennae longest, the sixth slightly longer than the third, thirteenth and fourteenth of the same length as the eighth, twelfth a little longer, the last three somewhat longer still and not much attemated, equaling the preceding five and a half segments. Setae all rather short or blunt, sense club showing plainly its setose origin by modification. Antennules much developed.

Thoracic legs armed as follows:

> First Pair.

Outer ramis.

Fx.,three spines. Ap.,two setae. In., two setae.

Inner ramis.
Ex., one seta.
Ap., one seta, one spine (large). In., three setae.

Second Pair.
outer ramus.

Ex., three spines. Ap., one spine, one seta. In.,three setae.

Inner ramus.
Fx., one seta.
Ap., one seta, one spine.
In., three setae.

Third Pair.

Armed like the second.

Fourth Pair.

Outer ramus.
Ex., three spines. Ap., one spine, one seta. In., three setae.

Inner ramus.
Ex., one seta.
Ap., two spines (outer the shorter).
In., two setae.

Feet of the fifth pair bi-articulate. Basal segment broad, in length about half its width, with a long seta at its outer produced angle; apical segment small, abolut, as wide as long, with one long seta (six times as long as the segment and somewhat longer than the preceding setal and a minite spine at the inner apical angle about half as long as the segment.

This species is well characterizes by its short, thick antennae, the last three segments of which never equal more than the preceding five and a half segments. Owing to the prominent characters of insectus and my species (3), viridis is not easily confounded
with them.

Cyclops signatus Koch. (Pl. III., Fig. 16.)
1820. Monoculus quadricornis albidus, Jurine, (1), p. 44, pl.II.,figs. 10,ll.
1857. Cyclops coronatus, Claus,(4), p. 29, pl.II.,figs. 1-11.
1868. " . " , Claus, (5), p. 97, pl.II.,fig. 16; pl. X.,fig. 1.
1874. " clausii, Poggenpol,(6), p. 70, pl. XV., figs. 4-14. signatus, Brady,(8), p. 100, pl. XVII., figs. 4-12.

This species is closely related to gyrinus and tenuicornis, occupying a median position with regard to them, tenuicornis being the grosser in all its details. The most prominent characteristics of signatus are the rows of the teeth on the distal borders of segments eight, nine, ten, twelve, thirteen, and fourteen of the first antennae. (Pl. III.,Fig. 16.)

Circlet of hairs on basal antennal joint small, faintily perceptible; serrated ridge on last segment coarser than in gyrinus, and serrate on the proximal half of the segment,instead of the distal as in gyrinus. No sense club on twelfth segment. Like tenuicornis, this species has the three transverse rows of minute spinules on either side of the fifth thoracic segment. Antemmules
with third segment, twice as long as the second, which is trree fourths as wide as long.

This is one of the most widely distributed species of the genus in Furope. Found by me only in collections made from Cedar Lake, in northern Illinois, under the direction of Professor S. A. Forbes, of the Illinois state Laboratory of Natural History.

Cyclops tenuicornis Claus. (Pl. III.,Figs. 17, 18.)
1820. Monoculus quadricornis fuscus, Jurine,(1), p. 47, pl. III.,figs. 2-4.
1857. Cyclops tenuicornis, Claus,(3), p.31, pl. III., figs. l-ll.
1868. " Claus,(5), p. 99, pl. I.,fig.z; pl.II.,fig.17;pl. IV., fig. 5.
1875. " clausii, Poggenpol,(6), p.70, pl. XV.,figs. 4-11.
1878. " tenuicornis, Brady, (8), p.102, pl. XVIII., figs. l-10.

First cephalothoracic segment narrow anteriorly, and nearly twice as wide posteriorly; in length equal to the three following
segments and abdomen, exclusive of caudal rami. Gross in all its details, but, resembling gyrinus and signatus in armatures of thoracic legs and the trree transverse rows of fine spinules on the fifth body segment (Fig. 17).

Circlet of hairs on basal joint of antennae prominent. The last three antennal segments much elongated, with aridge, not serrate nor as prominent as in either gyrinus or signatus. A prominent sense seta on the twelfth segment. The second and third segments of the antennules are almost equal in length, or nearly half as wide as Jong.

Abundant in Fingland, and Furope generally ; found by Cragin at Cambridge, Massachusetts; and by me in a collection received from Mr, Chas. C. Adams, of Bloomington, Illinois.

Cyclops thomasi Forbes. (Pl. 畀IX.,Figs. 55,56.)

1882.	Cyclops	tromas	Forbes,(9), p. 649, pl. IX., figs. $10,11-16$.
1882.	11	-	Cragin,(ll), p. 68, pl. III., figs. 1-18.
1884	"	-	$\begin{aligned} & \text { Herrick,(12), p. 151, pl.U., figs. } \\ & 4,5,7,8 . \end{aligned}$
1886.	"	*	Underwood, (14), p. 332.
1887.	"	"	Forbes, (l6), p. 707, pl. II.,fig. 8.
1891.	"	"	Brady, (17), p. 15, pl. VI.,figs.l-4.
1891.	"	-	Forbes, (18), p. 249, pls. XXXIX., XL.

A widely distributed species, for full description of which
see Forbes,(18), p. 249.
-

Cyclops phaleratus Koch. (Pl. IX.,Fígs. 61-64.)

A medium-sized species, with the first cephalothoracic segment broad, and equaling the four and a half segments following. Length, exclusive of caldal setae, 1.3 mm .

Antennae ll-segmented, reaching to the middle of the first cephalothoracic segment, the basal joint equaling the next two segments, the third as long as the fourth and fifth, the fifth half the length of the sixth, the eighth, ninth, and tenth somewhat oval in outline, the eleventh narrow, bearing one very prominent seta (about three times the length of the segment) and four or five smaller ones. Labmum eight- toothed.

Apical segment of the legs of the first pair somewhat longer than broad, bearing apically two setae, the outer small, slender,
spine-like, three spines without and three setae within. Besides the usual armature, there is a fringe of spinules along the outer edge of each ramus. Apical segment of the inner ramus with one stout spine and two large setae at tip, a row of small spinules, and one seta without and two setae within. A somewhat remarkable lobelike process at the inner base of the inner ramus, the inner edge setose, the outer somewhat thickened, crest-like.

The second and third pairs of feet agree with the first, except that the apical segment of the inner ramus has one extra seta within, and that the apical spine of the outer ramis is large.

Apical segment of the outer ramus of the fourth pair bears one spine and two setae at tip, two spines and a few small spinules without, and two setae within. Apical segment, of the inner ramus tipped with one remarkably long spine, and another about half as long; one seta and a row of small spinules without, and two setae within.

Feet of the fifth pair mere simple flange-like processes bearing three subequal spines, the outer of which is roughly plumose, its inner, plain (Fig. 6l). A ridge of tooth-like processes extends from side to side, uniting the feet.

Abdomen fully half as wide as long, tapering gradually, the last, segment about a third the length of the preceding, with a row
of large spimules posteriorly. Rami of the same proportions, as long as the last two abdominal segments, armed with small spinules besides the usual caudal setae. The inner terminal caudal seta very short and slender; the outer spine-like, about the same length as the ramus; the second from within fully twice the length of the abdomen, plain at the base, and more sparsely spino-plumose on its inner than outer edge; the third from within one third the length of the second, spinose on the outer, cilio-spinose on the inner, edge.

This species was found only in shallow water among rushes and lily pads in the southwest cove of Cedar Lake, in northern Illinois.

Cyclops sermulatus Fischer. (Pl. IX.,Figs. 57, 58; Pl. III.,Fig.14 1851. Cyclops sermilatixs, Fischer,(2), p. 423, pl. X., figs. 22, 28, 26-31. 1857. " " Claus, (3), p. 36, figs. 1-3. 1863. " " Claus,(4), p. 101, pl. I., figs. 1, 2; pl.IV.,fig.12;pl.XI.figh. 1878. "... ". Brady, (8), p. 109, pl. XXII., figs. l-14.
1883. " pectinifer, Cragin,(11), p. 6, pl. IV.,figs. 1—7.
1884. " sermulatus, Herrick,(12), p. 157, pl. O., figs. 17-19.
1886. " agilis, Vosseler,(13), p. 190, pl. v.,figs. 29-81.
1886. " sermulatus, Underwood, (14), p. 381. 1891. " " Brady,(17), p. 18, pl. VII., fig. 1.

Body slender, antemae l2-jointed, reaching to the midile of the third cephalothoracic segment; the last three joints very long and narrow.

The form described by Cragin as C. pectinifer found, but such a variable proportion of caudal setae obtain, that I consider it less a specific character than a mere variation of sermulatus. Awaiting, therefore, further developments, I have classed \underline{C}. pectinifer Cragin under serrulatus.

Feet of the fifth pair consist of but a single joint, lobed or produced at the tip, and bearing one large spine and two setae.

Everywhere common in Furope and the United States.

Cyclops capillifemus Forbes. (Pl. X.,Figs. 65-69.)
1891. Cyclops capillifemus, Forbes,(18), p. 248, pl. XL., figs. 14-17.

A 16-jointed species, examined by me simply for comparison, and as yet only known to occur in Grebe Lake, Yellowstone National Park.

> FAMTLY CALANIDAE.

Diaptomis sicilis Forbes. (Pl. VIII., Fig. 45.)
1882. Diaptomus sicilis, Forbes, (9), p.541-645. 1884. " pallidus var. sicilis, Herrick, (12),p.187. 1886. " sicilis, Underwood,(14), p. 329.
1887. Diaptomus sicilis, Forbes,(16), P. 702, pl. I.,Fig.6. 1891. " " Forbes, (18), index.

Found abundant in every locality indicated in the table of distribution*; it is notably a fresh-water species.

A closely similar form was commonly found with it, which is probably the variety imperfectus.

Diaptomus oregonensis Lillj. (Pl. VIII., Fig. 47.)
1889. Diaptomus oregonensis, de Guerne \& Richard,(16), pr. $53,54, \mathrm{pl} . \mathrm{II} ., f i g .7 ; \mathrm{pl.TT}$. fig. 8.

Collected only in Cedar Lake, in northern Illinois, where numbers were found with a few specimens of D. sicilis. Diaptomus sanguineus Forbes. (Pl. IX., Figs. 59, 60.)
1876. Diaptomus sanguineus, Forbes,(7), p. 15, figs. 24, 28--80.
1882. " * Forbes,(9), p.647, pl.VIII., figs. $1-7,18$.
Herrick,(12), p.138, pl.Q., fig. 12.
1889. de Guerne \& Richard,(16),pp. 20,21, pl.IV.,fig. 24.

A medium-sized species, common to ponds throughout central Illinois; quite abundant in pond collections made at Normal and Urbana, Illinois.
*See F-48.

Diaptomus strgnalis Forbes. (Pl. XI., Fig. 76.)

82.	Iliaptomis	stagnalis	rbes,(9), p. 645, pl. VIII. $\text { figs. 8, 10-12, } 14 .$
1882.		giganteus,	Herrick,(10), p. 222.
1884.		stagnalis,	$\begin{aligned} & \text { Herrick,(12), p. 189, pl.Q., } \\ & \text { figs. il-18. } \end{aligned}$
1886.	"	"	Underwood, (14), p. 329.
1889	"	*	de Guerne \& Richard, (16), p.
			23, pl.IV.,figs. 14-16.

With the exception of J. shoshone this is the largest Diaptomus known to me.

Abundant in collections made in April from pond south of Ura bana, Illinois.

Diaptomus shoshone Forbes. (P1. VIII., Figs. 52, 53.h
1891. Diaptomus shoshone, Forbes, (18), p. 251, pl. XLII., figs. 23-25.

Distinguished by its large size, and as yet found only in
Lake Shoshone and adjacent lakes and pools of Yellowstone National Park.

Diaptomus lintoni Forbes. (Pl. VIII., Figs. 50, 5l.)
1891. Diaptomis lintoni, Forbes,(18), p. 252, pl. XLII., figs. 26-28.

Closely related to n. stagnalis, but smaller and with larger antennae.

Like the previous species, lintoni has as yet been found
only in lakes and pools of Yellowstone Park.

Osphranticum labronectım Forbes. (Pl. VIII., Fig. 44.)
1882. Osphranticum labronectum, Forbes, (9), p. 645, pl. VIII.,figs. 24-28, 29; pl. IX.,figs. $1,2,4,5,7,9$.
1884. " " Herrick,(12), pp.134,135, pl. Q., figs. 1-8. 1886. " " Underwood, (14), p. 329. 1889. " " de Guerne \& Richard, (16),
p. 97, pl. IV., figs.l,2.

Found by me in collections made by Professor Forbes from ponds near Clifton, Ill., and in collections made by Mr. H. S. Brode from a ditch along the Havana hranch of the Illinois Central Railroad near White Heath, Illinois, May 13, 1893.

Epischura lacustris Forbes. (Pl. VIII.,Figs. 48,49.)
1882. Epischura lacustris, Forbes, (9), pp. 541, 648, pl. VIII.,figs.15, 16, 21, 23, 25, 27; pl. IX.,fig. 8.

This species seems to have nuite a wide distribution in the larger lakes of Illinois and Wisconsin, as may be seen by reference to my table of distribution on another page.

FAMILY HARPACTIDÁF.

Canthocamptus illinoisensis Forbes. (Pl. VIII., Fig. 46; Pl. XI., Figs. 70-72.)
1876. Canthocamptus illinoisensis, Forbes,(7),p. 14, figs. 25,26,27,31.
1884. " " Herrick,(12), p. 170, pl. Q., figs. $1-5$.
1886. " " Underwood,(14), p. 882.

A small robust species, averaging 1.2 mm . in length.
Antennae of female 8-segmented, as long as the fused first and second cephalothoracic segments; process on the fourth segment, bearing a sense club about, as long as the following two segments, and three setae somewhat longer; the fifth segment the shortest, obliquely united to the preceding; the last segment somewhat longer than either the sixth or seventh, with a constriction near the end causing an appearance of segmentation; sixth segment bearing two setae near the middle of the segment.

Antennules with five long setae at tip, three of which are prehensile on account of cross articulations; the outer, longest, bristle with two short spinules on the bristle itself, near its middle. Flagellum on the middle of the basal joint, narrow, with two bristles at tip and two on its inner side.

Last three thoracic segments equaling the first two fused, the
posterior one the shortest. Segmentation line between the first and second abdominal segments indistinct, the two segments not quite as long as the following two, which are equal, and each nearly twice as long as the posterior segment. Fach abdominal segment with two rows of coarse spinules slightly anterior to the sutures, the next to the last segment much produced over the last.

Caudal rami triangular to oval ir shape, as wide as long, and two thirds the length of the receding segment. Of the two terminal setae the inner is fully as long as the abdomen, sparsely spi-no-plumose; the outer, slender, half the length of the preceding, bare on the inner side, sparsely spino-plumose on the outer. Besides these there is a tuft of three short spines and one seta, three or four times as long, at, the inner teminal angle; and two setae as long as the preceding seta, and two or three short spines, on the outer margin.

Legs of the first, pair with both rami three-jointed, the inner ramus much elongated, its basal joint almost as long as the outer ramus, the second joint about half the length of the apical, which is scarcely half the length of the basal and very narrow; the apical segrnent tipped in both sexes with three setae, the outer having the character of a spine, the middle the longer, the inner as short as the segment, both the latter prehensile. Segments
of the outer ramus not much longer than broad, the apical segment with two spines and two prehensile setae at tip.

Besides the above armatures, all the leg segments bear small spinules, the number varying.

Legs of the second and third pairs differ in the same individual and in the sexes. Inner ramus of second pair of legs of female three-jointed, nearly the same length as the outer, while in males the inner ramus is only half the length of the outer, but has the same number of segments. Legs of the third pair, in males, with the inner ramus short, the basal and second segments almost aborted, the second segment with two prominent setae within, the ap, ical sub-oval in outline, and about as long as the corresponding segment of the outer ramus.

Legs of the fourth pair not differing much in the sexes, the inner ramus two-jointed, half the length of the outer, the basal joint about a third the length of the apical, which is as long as the middle joint of the outer ramus, and has three setae within. and one seta and one spine at the tip.

Rudimentary legs of the male smaller than those of the female, of two joints, the inner being but a plate-like process, in length to width as one to three, bearing three spines at tip, of which the inner is two and a half times the length of the segment, the others
shorter, the outer about as long as the segment. Outer joint short, almost oval, three spines at tip, the inner about as long as the ramus, while the middle one is stout and twice as long, one spine and three or more spinules without.

Basal joint of the rudimentary legs in the female broad, the outer basal part produced, bearing the second joint, in width to length as three to five, having apically six large plumose setae, of which the inner, or longer, just equals the joint in length. Second joint smaller, two thirds as long as the preceding, half as wide, oval, with two plumose setae at tip, one short bristle within and two without, and numbers of smaller spinules on each margin.

Common in ponds of central Illinois, and also found in a collection made from a small creek munning into Lake Wimebago, Wisconsin, south of Oshkosh, by Professor Forbes and party of assistants under the auspices of the United States Fish Commission, June, 1892.

BIBLIOGRAPHICAL INDEX.

The following list comprises the published works referred to by me in the preparation of this paper.

1. 1820. JURINF, L.,Histoire des Monocles qui se trouvent aux environs de Genève.
1. 1851-53. FISCHER, S., Beiträge zur Kenntniss der in der Umgegend von St. Petersburg sich findenden Cyclopiden (iund Fortsetzung). (Bull. Soc. imp. Moscou. 1851. 1853.)
2. 1857. CLAUS, C., Das Genus Cyclops und seine einheimischen Arten. (Wiegmann's Archiv, 1857.)

CLAJS, C., Weitere Mittheilungen fiber die einheimischen Cyclopiden. (Ibid.)

CLAUS, C., Die frei lebenden Copepoden mit besonderer Bericksichtigung der Fauna deutschlands, der Nordsee und des Mittelmeeres.

POGGFNPOL, M. J., List of the Copepoda, Clatocera, and Ostracoda of the environs of Moscow.*
7. 1876
buRBFiS, S. A., List of the Illinois Cmistacea. Bull. Ill. State Lab. Nat. Hist.Vol.I, No. 1.)
8. 1878.
9. 1882.
10. 1882.
11. 1888.
12. 1884. the Fresh-water Copepoda. (Trans. Kansas Acad. sci. Vol. VIII.)

HFRRICK, C. L., A Final Report on the Cmistacea included in the orders Cladocera and Copepoda. (12th Ann. Rep. Geol. and Nat. Hist. Surv.Minn.)
*I have had access only to the translations of the descriptions of Cyclops contained in this Memoir, as given by Prof. Cragin in Vol. VIII. (1886) Trans. Kan. Acad. Sci.
13. 1886. VOSSFLFR, J., Die freilebenden Copepoden Mirttembergs und angrenzender regenden. (InauguralDissertation der hohen Naturwissenschaftlichen Fakultät der Universitat Tibingen.)

UNDFRWOOD, LUCIFN M., List of the descrined species of Fresh-water Crustacea from America, north of Mexico. (Bull. Ill. State Lab. Nat. Hist. Vol. JI., Art. V.)
15. 1887. FORBES, S. A., On some Lake Siperior Fintomostraca, (Ann. Rep. U. S. Comm. of Fish and Fisheries for 1887.)
16. 1889. DE GUFRNE, J., et RICHARD, J., Revision des Calanides d'eau douce. (Mémoires de la Société Zoologialue de France, Tome II.)
17. 1891.
18. 1893.

FORBES, S. A., A Preliminary Report on the Aquatic Invertebrate Fauna of the Yellowstone $\mathrm{Na}-$ tional Park, Wyoming, and of the Flathead Region of Montana. (Bull. U. S. Fish Comm.189l.)

TABLEOF OFEOGRAPHIC DISTRIBUTION:

[^3]
ARTIFICIAL KFY

TO THF, FAMJLIES OF THE FRFE-LIVING COPFPODA*

Order COPEPODA.

Body without bivalve carapace, first antennae commonly largest. Fye single and simple, or rarely paired and compound, in parasitic forms sometimes wanting. Thorax and abdomen comrnonly well distinglished. Cmist not hardened, ixsually delicate and transnarent. Four or five pairs thoracic legs (rarely wanting), tiese 2-branched, flattened for swimming, but without branchial appendages.
a. Females with one egg sac.
b. Males with but one antenna (the right, seldom the left), with hinge joint. Body elongate, abdomen much narrower than thorax; first antemnae long, normally 24- or 25-jointed, second antennae large, commonly twobranched, accessory branch large, mandibular palpus isually two-branched, maxillipeds large and long, with marginal bristles. Five pairs of developed legs,
*The key to the families is copied from that used in the zoological laboratory of the University of Illinois.
all 2-branched, with δ-jointed outer branches except the fifth pair, which are often not branched, and greatly modified in both male and female, but especially in the former, where they are commonly unlike on the two sides and form sexial grasping organs.
(CALANIDAF.)
c. Furca with but three large terminal bristles to each branch. Abdomen of the male unsymmetrical, provided with lateral prehensile apparatius; fifth pair of legs of the female not branched, 3 -jointed, not terminating with a long spine.

Epischura.
cc. Furca with four large terminal bristles to each branch.
d. The inner branch of the first pair of legs 2jointed, the corresponding branch of the three Other pairs B-jointed. Fifth pair•of legs of male and female 2-branched, internal branch mudimentary. Diaptomus.
dd. Both internal and external branches of all the first four pairs of legs 8 -jointed. Fifth pair of legs of both sexes 2-branched, those of the female only differing from the other legs
by presence of a strong internal hook at the second joint of the outer branch, those of the male with the inner branch 3 -jointed and provided with plumose hairs, as in the other legs.
e. Fifth pair of legs of the female with the inner hairs of the last joint of the outer branch transformed into short thick spines. Fiftli pair of legs of the male with two joints to the outer branch of the left leg and three to the outer branch of the right. osphranticum. өe. Fifth pair of legs of the female with the internal hairs of the last joint of the outer branch long and plumose. Fifth pair of legs. of the male with two joints to both outer branches. Limnocalanus. bb. Both antennae of males with hinge-joint. Body cylindrical, abdomen but, little narrower than thorax and not sharply distinguished fromit; antennae short, 4-10 jointed, scarcely longer than first somite, first four pairs of legs two-branched, fifth pair foliaceous; simi-
lar in the sexes, first pair usually inlike the others, and prehensile (Harpactidae), second antennae with developed accessory branch, body linear; first pair of legs prehensile and different from the others, both branches 3-jointed; mandibular palpus simple, 2-jointed, last maxilliped slender. Cantrocamptus.
aa. Females with two egg sacs. Males with first antennae both prehensile, second antennae never prehensile, simple, 4-jointed, palpus of mandible and of maxilla madmentary; fiftl pair of legs rudimentary, alike in the sexes (Cyclopidae). Mandibular palpus in form of small tubercle, bearing two long bristles, thomax oval or ovate, much broader than abdomen, composed in male of ten segments, in female of nine. Cyclops.

ARTIFICIAL ANALYSIS OF THF SPFCIES OF CYCLOPS MENTIONEI IN THF PRESENT PAPFR.
a. Legs of the fifth pair with three spines or setae on the apical segment; $\operatorname{l-}$-2 segmented. b. Legs of the fiftr pair 2-segmented.
c. Furcal bristles all developed (longer than the furca). Antennae 17-jointed, reaching nearly to the fourth cephalothoracic segment. A circlet of hairs on
the basal antennal segment.
d. No sense club on the l2th antennal joint. 10,
(e) Antennal segments $8,9,12,18,14$ each provided with a crown of coarse serrations. The third segment of the antennules long.

楽ignatus (p. 22). dd. A sense club on the l2th antennal joint.
f. Distal antennal segment with a narrow plain ridge. Third joint of the antenmules equal to the second joint. Circlet of hairs coarse. Tenuicornis (p.33). ff. Distal antennal segment with a broad finely serrate ridge. Circlet of hairs sparse. 1
Gyrinus (p. 28).
bb. Legs of the fifth pair not segmented. (Represented oniy by A narrow plate-like process and three bristles in Phaleratus. p. 65).
g. Only the two middle furcal bristles developed. The inner and outer shorter than the furca.
h. Antennae 12-segmented and as long as the cerhalothorax; the last four segments at,tenuated.

i. Furcal rami slender, the outer margins with凤 row of spimmes.
j. The second furcal bristie from without more than half as long as the third. sermalatus (p. Br).

Aว. Legs of the fifth pair segmented, the apical segment always with two shorter or longer bristles.
k. Both end-bristles of the same length; at least one approvimately half the length of the other.
I. Furcal bristles all developed; at least the inner longer than the furca.
m. Antennae 17-sepmented, shorter than the cephalothorax, with ridge on the last segment. No circlet of hairs on the basal segment. n. Ridge with a semilunar notch or hook. No sense club on l2th segment.
Cyclops sp. (5)(p.21).
nn. Ridge with several hook-like notches. A

Sense club on l2th segment.
Fdax (p. 23).
mm. Antennae 16-jointed. No ridge; no circlet of hairs.
ll. Only the two middle furcal bristles developed; the inner and oldter shorter than the furca. 0. Antennae 17-jointed, shorter thair the cephalothorax. No ridge; no circlet of hairs. p. Antennae not longer than the first cephalothoracic segment. cyclops sp.(4)(p.19). pp. Antiennae reaching to the third cephalothoracic segment. Cyclops sp.(2)(p.13).
ppp. Antennae reaching nearly to the (fourth)

$$
\begin{aligned}
& \text { cephalothoracic segrent. Rami with small } \\
& \text { patch of point-like teeth on their upper } \\
& \text { third. Thomasi (p. } 84) .
\end{aligned}
$$

kk. One end-bristile rediced to a short madiment.
a. Furcal bristies all developed; at least the inner the same length as the furca or longer.
r. Antennae 17-segmented, shortier than the cephalo-
thorax. A sense club on the l2th segment.
s. The last three antennal segments ealualing
the preceding five and a half.

$$
\text { Viridis }(\mathrm{p} .29)
$$

ss. The last three antennal sepments equaling
the seven and a half preceding ones.

$$
\text { Cyclops sp. (3) }(\mathrm{p} .16)
$$

qq. Only the two midile furcal bristles developed; the inner and outer shorter than the fincea.
t. Antennae 17-jointed. A sense club on the l2th
segment. No circlet of hairs; no ridge.
u. Antennae as long as the first cephalothoracic segment. Insectus (p.26). 1u. Antennae shorter than the first cephalothoic segment. (The onter furcal bristle knife-like, resembling a spine.)

Cyclons sp.(1)(p.10).

EXPLANATION OF PLATES.

$$
p I \text { a } t e \mathrm{I}
$$

Figs. 1--6. Cyclops (1). (1) Adult female. (2) Antenna of female. (6) Labrum. (4) Fifth leg. (5) First leg. (6) Fourth leg.
Plate II.

Figs. 7--12. Cyclops (2). (7) Adult female. (9) Labium. (10) Fifth leg. (ll) First leg. (12) Fourth leg.
Plate III.

Fig. 18. Cyclops (5), fourth legs.
Fig. 14. Cyclops sermatus, fifth leg.
Fig. 15. Cyclops edax, terminal segments of antenna of female. Fig. 16. Cyclops signatus, antenna of female.

Figs. 17--18. Cyclops tenuicornis. (17) Fifth leg. (18) Antenna of female.

Fig. 19. Cyclops gyrinus, first legs.

$$
P I \text { a } t e I V
$$

Figs. 20--24. Cyclops (4). (20) Adult female. (21) Fifthrleg. (22) Antenna of female. (23) First leg. (24) Fourth leg.
PIatev.

Figs. 25--30. Cyclops (5). (25) Adult, female. (26) Antenna of female. (27) Terminal segments of antema. (28) Fifth leg. (29) First leg. (30) Fourth leg.
Plate VI.

Figs. 3l--36. Cyclops edax. (81) Adult ferale. (82) Labmum. (38) Ant,enna of female. (34) Fifth leg. (35) Fourth leg. (36) First leg.
PIateVII.

Figs. 37--42. Cyclops insectus. (37) Adult ferale. (38) Antenna of female. (39) Labrum. (40) Fiftit leg. (4I) Fourth leg. (42) First leg.

Plate VIII.

Fig. 43. Cyclops gyrinus, antenna of female.
Fig. 44. Osphranticum labronectum, fiftr. legs of female.
Fig. 45. Diaptomus sicilis, fifth pair of legs of male. Fig. 46. Cantlocamptus illinoisensis, fiftlileg of female. Fig. 47. Diaptomus oregonensis, fifth pair of legs of male. Figs. 48, 49. Fpischura lacustris. (48) Fifth leg of female. (49) Abdomen of male.

Figs. 50, 51. Diaptomus lintoni. (50) Fiftrileg of female.
Fifth pair of legs of male.
Figs. 52, 53. niaptomis shoshone. (52) Fifth leg of female.
(53). Fifth pair of legs of male.

$$
P I \text { a te } I X .
$$

Fig. 54. Cyclops viridis, fifth leg.
Figs. 55, 56. Cvolops thomasi. (55) Rami. (56) Fifth leg.
Figs. 57, 58. Cyclops sermulatus. (57) Rami of typical specimen. (58) Rami of variety pectinifer (?).

Figs. 59. 60. niaptomus sanguineus. (59) Fifth lep of female. (60) Fifth pair of legs of male.

Figs. 61--64. Cyclops maleratus. (61) Fifth leg. (62) Antenna of female. (63) First leg. (64) Fourth leg.

$$
P I a t e x
$$

Figs. 65--69. Cyclops capillifemis. (65) Adult, female. (66) Antenn of female. (67) Fifth leg. (68) First leg. (69) Fourth. leg.

$$
P I a t e X I .
$$

Figs. 70--72. Canthocamptus illinoisensis. (70) First leg of male. (7I) Antenna of female. (72) Fifth leg of male.

Plate II.

Plate III.

-

Plałe IV.

20

Plate V.

Plate VI

Plałe VII

Plate VIII

Plate IX

Plate XI

(se

- $3-3$
\square
-

-i

[^0]: *Herrick, in Amer. Nat. Vol. VII., pp. 208, 381.

[^1]: lluis species is quite readily distinguishable by the peculiar

[^2]: *See foot-note, p. 2.

[^3]: *Of the signs used in this table the $*=$ abunciant, $X=$ common, and $/=$ few.

