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AB Si RA iCal 

An experiment to investigate the directional nature and the 
possible generation mechanisms for waves on the Arctic 
Ocean, an ocean almost entirely covered with sea ice, is de- 
scribed. The waves under consideration have periods 
between 10 and 100 seconds and amplitudes between 0.001 
and 2.0 centimeters. These waves have been previously ob- 
served with gravimeters and seismographs and have been 
described in the literature. 

In the present work an array of two continuously recording 
gravimeters 1,240m apart was established at drift station 
ARLIS Il. The records obtained were examined by cross- 
spectrum analysis techniques. Observed waves with distinct 
periods were associated with a storm over Siberia. 

A continuously recording microbarograph sensitive to atmos- 
pheric micropressure oscillations in the 10- to 100-second 
period range was also installed at ARLIS II. Distinct oscilla- 
tions were observed in this period range having amplitudes 
of from 20 to 400 dynes/cm?. Power spectra of micro- 
pressure records made before, during, and after a storm show 
that the oscillation amplitude is proportional to the period of 
the oscillation and speed of local winds. Cross-correlation 
between the micropressure records and wave records taken 
with a gravimeter at the same location as the microbarograph 
shows a positive correlation between the micropressure waves 
and the ocean waves. This correlation appears to vary with 
the direction of the local surface wind and may be related to 
the orientation of pressure ridges in the ice pack. Although 
the nature of the micropressure oscillations could not be de- 
termined with only the one sensor used, the oscillations were 
assumed to be progressive waves. These waves contained 
sufficient force to bend the ice and generate the observed 
water waves. 



FOREWORD 

The U.S. Naval Oceanographic Office has been engaged in exploratory 

development of methods of sea ice observation and prediction of sea ice 

processes which affect arctic military operations and warfare since 1960. 

A thorough understanding of periodicity and other oscillatory properties 

of sea ice is extremely important for ultimate prediction of ice deforma- 

tion processes. Since deformation processes determine the origin, develop- 

ment, and decay of open water and ridging features throughout the 2 to 4 

million square miles of ice-covered Arctic Basin, they profoundly affect 
global heat balance and quantity of ice produced during any given season. 

This report presents the research results of an initial attempt to 

employ gravimeters for investigation of longwaves on the Arctic Ocean and 

ascribes generation mechanisms to these waves. The evidences relating 

vertical ice oscillations to atmospheric micropressure records suggest that 
this approach be continued. 

Comments and criticisms concerning the experimental design or inter-= 

pretation of the results are welcome and should be addressed to the 

Commander, U.S. Naval Oceanographic Office. 

Rear Admiral, U.S. Navy 
Commander 

U.S. Naval Oceanographic Office 
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1. INTRODUCTION 

a. Preliminary Remarks and Review of Literature 

The study of the origin and behavior of wave motion on the open ocean 

has received considerable attention during the past decade. The primary 

impetus for this work has been provided by the U.S. Navy. The Navy has a 

continuing interest in being able to predict routinely the sea state at a 

given location on the ocean, much the same as the Weather Bureau predicts the 

weather. The greater part of the Navy's work has been oriented toward the 

ice-free, non-polar areas, with little or no attention being given to the 

nature of ocean waves in extensive areas of ice-covered oceans. 

Wave motion and wave generation do not cease in polar oceanic areas 

because a layer of ice has been placed on the water surface, although one 

would intuitively expect severe attenuation of wave amplitudes. This atten- 

vation has been repeatedly reported by mariners navigating in such waters and 

is one of the most outstanding features observed when sailing from the open 

ocean into water with numerous ice floes. 

! 

It was not until Robin's studies with a shipborne wave recorder in 

the Weddell Sea were completed (1963) that any quantitative measure of the 

attenuation of wave motion due to ice cover became available. Robin showed 

that: (1) the ice cover, usually floes 1 to 3 meters thick, could be consid- 
ered elastic plates for the frequencies and amplitudes encountered in the ice 

pack, (2) the waves observed in the ice field had ample energy to bend the 
floes and still propagate, and (3) the wave energy penetrating the pack was 
proportional to \‘/h* where ) = wavelength, and h = ice thickness. 

The vertical component of wave motion deep within the ice pack had 

been observed with gravimeters prior to Robin's study, although quantitative 

discussions of the wave-producing mechanism have been attempted only recently. 

Crary et al. (1952) made gravity observations as part of a geophysical program 

on the pack ice of the Beaufort Sea in 1951. They reported that the optical 

crosshair of the gravimeter oscillated about the instrument's null-position, 

usually within the range of the scale stops, with periods between 20 and ho 

seconds. It was therefore necessary to average a series of values taken over 

an interval of several cycles to obtain a representative value for the gravity 

field at a given location. Further gravity observations were made by Crary 

and Goldstein (1959) on Arctic Drift Station T-3 between 1952 and 1954. As 

part of the geopaysical program, they routinely made daily gravity measure- 

ments, reading the gravimeter every 5 seconds for an interval of 5 to 6 

minutes. A statistical study of these oscillations showed periods ranging 
from 23 to 61 seconds with 70 percent of occurrences falling between 33 and 

43 seconds. They found no correlation between oscillation amplitudes and 

periods with either atmospheric pressure or surface wind speeds. They did, 

however, observe a seasonal trend. The overall amplitude showed peaks during 

March and November with a low in July. July, although having the least ampli- 

tude, has the maximum occurrences of long-period energy. Hunkins (1962) made 



a comprehensive study of waves on the Arctic Ocean, using a seismograph, tide 

gage, and gravimeter to examine the spectrum of waves with periods between 
zo7L and 495 seconds. In particular, he observed (1) a phase difference in 
simultaneous records of two gravimeters read 400m apart and (2) correlated 

surface wind speed with the maximum amplitudes of the oscillations recorded 

by both a seismograph and a gravimeter. Thus, he showed that these oscilla- 

tions were progressive waves and, by Fourier analyses, computed apparent 

phase velocities of several of the components. By correlating surface wind 

speed with maximum oscillation amplitude, he found that when the wind exceeded 

20 to 24 knots there was a significant positive correlation; below this speed 

there was no correlation. He therefore suggested 20 to 24 knots as the thresh- 

old excitation value. 

LeSchack and Haubrich (1964), using power spectrum techniques, examined 
the characteristics of several long gravity records taken in the Arctic. They 

showed the similarity between the spectra of two records taken simultaneously 
at sites more than lkm apart. Representative values for ice displacement as 

a function of wave period were given. 

Sytinskiy and Tripol'nikov (1964) discussed the observations of waves 
measured with a tripartite array of earthquake seismographs at their stations 

N-13 and N-l4. They observed progressive waves having the same period range 

as previously reported and amplitudes averaging 0.02 to 0.025cm, with maximum 

peaks of O.lem in deep water. Maximum amplitude on the continental shelf was 

O.3cm. These amplitude values were consistent with those computed by LeSchack 

and Haubrich. 

Sytinskiy and Tripol'nikov attempted to measure phase velocities and wave 

directions by comparing the records from the tripartite array, presumably by 

matching peaks of the same phase. The phase velocity values were rather scat- 

tered but fell mainly between 20 and 60 m/sec. They attributed the velocity 

scatter to wave interference at the point of observation. They noted, as 

Hunkins had, the general positive correlation of wave amplitudes with high 

local surface wind speed. Accordingly, they examined a wave record made during 
a sudden gust of wind and reported the following sequence: 

(1) A short burst of energy of about 3-second period due to "bobbing" 
of the ice computed from equation (1). 

T=27(ph/pg)”* (1) 

where T = period (sec) 
P = ice density 
h = ice thickness 

p'= water density 
g = gravity 

(2) This "bobbing" was superimposed on a 12- to 15-second wave that 
seemed to be initiated by the wind gust and continued for several minutes 

thereafter. They believed that the generation of the 12=- to 15-second wave 

was analogous to oscillations that would theoretically be produced by a load 



moving across an infinite, elastic plate floating on an ideal liquid. For ice 

over deep water, they used the following expression: 

h 3-5-1/6 

lo = 2 i | (2) 

where T, = natural period (sec) 
y = specific weight of ice (0.9 tons/m3)* 
h = thickness of ice (3m) 
g = gravity (9.83 m/sec2) 

MEX E th: 
Pat: (A(z) 

E = Young's modulus for ice (3 x 109 tons/m@)* 
= Poisson's ratio (0.35) 

Using the above constants they obtained a value of To = 16 sec. Taking 
into account the depth of water at the observation point (150 to 200m) they 
arrived at a value, Tp =12 sec. According to their theory, a vertical load 
moving over an infinite, elastic plate floating on an ideal liquid will gen- 

erate not only waves of period Tp but will also produce "free" oscillations 
or swell with period T, where Tp < T, <0. The oscillations of period To 
are attenuated by cylindrical spreading, while those of T, are primarily 

attenuated in proportion to time. The waves with period T,, therefore, may 
propagate over considerably greater distances than those of period Tp. Their 

observations were in agreement with those predicted in theory; however, con- 
siderably more observations would be necessary to rule out other modes of 
wave generation. 

be Purpose and Design of Experiment 

It clearly appears that oscillations recorded with seismographs and 

gravimeters, as described in the literature, are vertical components of ordi- 
nary gravity waves. Furthermore, correlation between wind speed and wave 

amplitude exists but only above some threshold value. It is therefore inter=- 
esting to study more fully the nature of these waves, their directionality 

and mode of propagation, and the causes of their generation. For example, 

are they associated with storm centers as are waves on the open ocean, and 

is the moving load mechanism suggested by Sytinskiy and Tripol'nikov the 

primary energy source? 

To answer these questions, a series of measurements of these waves 
was begun in June 1961 from drift station ARLIS II in the Arctic Ocean. A 

LaCoste=Romberg undersea gravimeter, modified to record the vertical motion 
of ice automatically on strip charts, was installed on the drift station. 
Nearly continuous recordings of wave acceleration were made during the summer 

of 1961. Simultaneously, a microbarograph sensitive to micropressure varia- 
tions between 6-second and 6-minute periods was placed in operation at the 

same location. Its output was also recorded on strip charts. In this manner, 

¥The units of Sytinskiy and Tripol 'nikov 
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the author hoped to correlate periodic pressure variations, if any, in the 

period range 10 to 100 seconds with the observed wave motion. In addition, 
a second gravimeter, a portable model, was located 1,240m from the primary 

gravimeter, so that a study of phase relationships of the waves could be 

made. Although the meters were operated simultaneously in this way for only 

a short interval, it was felt that much insight into the nature of these waves 
could be gained from the data. 

2. INSTRUMENTATION 

a Site 

All wave measurements were made at ARLIS II (figure 1), an arctic 

drift station operated by the Office of Naval Research's Arctic Research 

Laboratory at Barrow, Alaska. ARLIS II is a block of glacial ice which orig- 

inated from an Ellesmere Ice Shelf and became entrapped in the constantly 

moving pack ice of the Arctic Ocean Basin (LeSchack, 1961). At the time of 
these observations, its dimensions were 3km by 6.5km by about 20m in thick- 

ness. The station, drifting slowly westward during early summer, moved from 

a distance of 110 miles from Point Barrow to a distance of 180 miles during 

the course of the observations. Water depth beneath the station varied from 

150 to 1,600m along the station's track (figure 2). 
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The gravimeter and microbarograph were installed in a heated building 

at the campsite located 650m from the edge of the island. The second gravi- 

meter was set up in the center of an adjacent ice floe separated from the 

island by two pressure ridges. On 3 June 1961 the two gravimeters were read 

simultaneously. 

be LaCoste-Romberg Gravimeter #22 

This instrument was originally built for underwater gravity measure- 

ments, thus, provision for reading it remotely had already been incorporated 

in the gravimeter's construction. It was, therefore, relatively simple to 

modify the meter so that its output could be recorded on Esterline-Angus strip 

charts. This was desirable for long automatic recordings of wave records — an 

impossibility with the usual method of visual recording. 

Tne gravimeter was mounted on a pedestal that passed through a hole 

in the floor of the building. The pedestal was frozen solidly into the ice 

and was not in contact with the building. 

The sensitivity of the gravimeter could be adjusted between limits 

sufficiently wide to keep large amplitude peaks on scale, while intervals of 

low amplitude could easily be read. Sensitivity was varied by adjusting the 

longitudinal level of the gravimeter. Sensitivity calibrations for all values 

of leveling were made on solid land at Point Barrow, Alaska, prior to operation 

on the ice. 

Varying the sensitivity to match wave conditions caused a variation 

of the instrument's natural period and damping constant according to the follow- 

ing equations: 

h = (x)1/2a (3) 
a 

7 = (x)t/2n, (4) 

where h = actual damping 
K = sensitivity in eyepiece divisions per dial division 

d =critical damping 

T = natural period (sec) 
= 22.4 sec (instrument constant) 

For the two sensitivities used in this work, the natural periods and damping 

constants were T = 26.4 sec, h = 1.18 critical, and T= 18.6 sec, h = 0.83 
critical. Since both damping constants were greater than O./O/ critical, the 

problem of resonance was not encountered (Richter, 1958). The response, how- 
ever, fell off 6db per octave below the instrument's natural period, resulting 
in recording little energy with periods less than 10 seconds. The problem of 

aliasing, therefore, was avoided since the period range of interest was 10 to 

100 seconds. 

Ce World-Wide Gravimeter #5 

This is a portable gravimeter used on the pack ice as the second element 
of a 2-element array. The wave motion was read visually and recorded every 5 



seconds for 90 minutes on the one occasion when the 2-element array was used. 

The instrument had a natural period of 7 seconds and was critically damped. 

Although this gravimeter was inherently more sensitive to shorter periods than 

was the LaCoste-Romberg #22, there did not appear to be any energy with periods 

less than 10 seconds. 

A general discussion of the physical construction and theory of gravi- 

meters can be found in any text on exploration geophysics, for example, Nettle- 

ton (1940). 

dad. Microbarograph 

Recordings of micropressure variations in the period range 10 to 100 

seconds were desired for correlation with observed ocean waves. A T=21 micro- 

barograph using pressure transducer #7156 and amplifier #14779 was used to 
automatically record the vertical micropressure variations. This instrument 
was built by the U.S. Navy Electronics Laboratory for the Air Force Cambridge 

Research Center. 

The transducer is basically a condenser microphone composed of two 

enclosed volumes separated by a thin aluminum diaphragm. The condenser is 

formed by the diaphragm and a backing plate with 0.005-inch separation. Hacn 

enclosed volume is vented to the atmosphere, but the time constant of each is 
different. Thus, for a given rate of atmospheric pressure change, a pressure 

difference exists across the diaphragm. Frequency response of the transducer 

is determined by choice of acoustic vents in the enclosed volumes. The re- 

sponse curve for the instrument used in this work is shown in figure 3. 
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FIGURE 3  Microbarograph Response Curve 



The transducer was well insulated so that thermal variations, which 

would cause changes in pressure within the two enclosed volumes, would have 

a@ period considerably greater than the instrument's passband. The input of 

the microbarograph was simply a tube passing from the transducer through the 

wall of the building to the open air. 

e. The Records 

The outputs of the LaCoste-Romberg gravimeter and the microbarograph 

were recorded continuously on Esterline-Angus strip charts generally oper- 

ated at a speed of three-fourths of an inch per minute. The output of the 

gravimeter was expressed in milligals (1 milligal = 10-3 cm/sec@) as a 

function of time, and full-scale deflection was adjusted to either 28 or 35 

milligals. 

The gravimeter records vertical acceleration of the ice as a function 

of time; a seismograph records displacement directly. Displacement of the 

wave wita respect to time is most often observed in wave studies. Gravimeters 

have been used in this work because of their portability and ease of operation 

on ice in comparison to seismographs. In the analysis of these records the 

frequency characteristics of the narrow-band energy peaks will be essentially 

the same whether displacement or acceleration is recorded for the period range 

being considered. A conversion is necessary, however, when spectral power 
density in terms of displacement is desired. This is accomplished by dividing 

the acceleration spectrum by the fourth power of the angular frequency (wi), 

If the ice were not in motion the output of the gravimeter would be a 

straight line in the center of the chart, representing a constant downward 

acceleration of gravity with time. Oscillation above or below this line repre- 

sents a positive or negative change, respectively, of the downward acceleratior 

at a given instant about the constant gravity value at that point in space. 

Positive peaks on the strip chart, therefore, correspond to positive displace- 

ments of the ice. 

The output of the microbarograph is recorded in units of dynes/cm. 

Full-scale deflections of 270 and 500 dynes /cm@ were used in this work with 

pressure increasing in the positive y direction. 

Samples of simultaneous pressure and wave records for 5 and 6 July 

1961 are shown in figures 4a, b, and c. 

3- DATA REDUCTION 

ae Design Considerations 

Power spectrum analysis (Blackman and Tukey, 1958) and cross-spectrum 
techniques discussed by Munk et al. (1959) are probably the most powerful 

tools available for analyzing statistical properties of wave motion with a 

stationary gaussian distribution. The gravity waves and micropressure fluc- 

tuations under consideration fall in this category. These techniques rely 

on data processing by high-speed digital computers. The data collection was 

undertaken with these processing techniques in mind. 
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It was necessary to digitize the analog records for computer process- 

ing. A sampling interval, AT, of 5 seconds was chosen to Pennie resolution 

of energy at spectral periods as low as 10 seconds ((2AT)™~ = the Nyquist 
frequency) and to avoid aliasing. Since the gravimeter records showed little 

energy with periods less than 10 seconds, aliasing was no problem. However, 

there was some short-period, but low amplitude, energy visible on the micro- 
barograph records. It was not considered appreciable; hence a sampling 

interval of 5 seconds was used to produce both time series. 

Power spectrum and cross=-spectral analyses were then computed directly 

from these time series. No low frequency filtering was applied to the data, 

because drift and tidal effects, although observable, had less amplitude than 
the measured waves. This long-period energy is assigned to the first few lags 

of the spectrum. Therefore, with the number of lags used in the following 

analyses (100, 50, and 20), the best spectral estimates are found for periods 
of 100 or less seconds. 

be. Power Spectra and Cross-Spectra 

Given two time series 7,(t) and 7,(t) , their time average 

p., (r)=7, (a, (tte) 
(5) 

is called covariance of the two series. 

(00) 
The quantities Cre (i )= ieee cos 2mfrdt (6) 

@ 

and Chg WHS f pPrstisin 2mrfrtdt (7) 

are the co- and quadrature spectra, respectively. For the special case when 

T= Ss Orr(2):—.0,.and Crr(f) is called the power spectrum. The quantity 

Crr(f) has been used in this work for computing spectral estimates of single 

time series. 

When a pair of time series was compared for coherence, as in the case 

of simultaneous micropressure and gravity records or simultaneous gravity 

records from two different locations, the following relationships were used: 

c 24+ Q 2 1/2 

G G 
rr ss 

iL Qns 
and $,.,(f)= tan™ (9) 

Crs 

ane, 



where R,,(f) is the coherence between time series r and s, and (AGE) ats 
the phase of 7,(t) minus the phase of 7,(t) at frequency f. Thus if 7, (+) 

= A cos 27 ft and meat) = B sin 27-ft, the coherence Isvol(ae)) = 1 and the 

phase angle $,.,(f) = 90°. 

Although the maximum value of 1 Ge) = 1, this value would not be 
anticipated in nature. Instead, a lower value than one is usually obtained. 

According to Munk et al. (1959), the value above zero at which R,,(f) becomes 
meaningful can be expressed by: 

95% confidence limits of (Bue apelin (10) eet*J}2= ob 
where DF = degrees of freedom = (N - »/% 

4’/ 2 

N = number of observations 
M = number of lags 

ce Corrections to the Data 

Coherences computed from equation (8) are a function of only the | 
frequency of the measured waves and are not dependent upon the relative change | 
of signal amplitude at a given frequency, owing to the constant frequency | 
response factor of each instrument. Also, the phase angle is not dependent 

upon this factor but only upon the frequencies and, of course, the phase dif- 

ference between the frequencies. Thus, it has not been necessary to apply any 

correction to the data for those instrument response characteristics that affec 
only the amplitude of the recorded signal. Each instrument produces a phase | 

shift of the recorded signal as a function of frequency. This delay is differ- 

ent for the two gravimeters used and must be considered when studying the phase 

relationships between two incoming signals. 

The phase shift due to each instrument was calculated according to 
equation (11) (Richter, 1958) 

Seapey T ehrt 
= (11) 
arr e | 

where b = the phase shift in radians 

h = the damping constant 

~ =the natural period of the instrument (sec) 
T =the wave period (sec) 

The relative phase shift between the gravimeters was also computed. This 
value was then subtracted from the phase lag computed by the cross=-correlation 

program. 

*Equation (10) is an approximation derived from a complicated equation given 

in Munk et al. (1959). Since the writing of this paper, it has been learned 

from Dre R. A. Haubrich, a colleague of Prof. Munk, that a better approxi- 
mation is now in use: 95% confidence limits of [Ry s(f)F = 6/DF. This increases 

the 95% confidence limit from 0.44 to 0.53. Examination of figures 8b, 9b, 
and 22, where this confidence limit is used, shows that the majority of those 

coherence peaks previously considered significant are still significant, and 

the conclusions based on these values still appear to be valid. 



When wave spectra derived from both gravimeters are plotted on the 

same set of coordinates for direct comparison, corrections for instrument 

response must be applied. This was done by computing the (acceleration)® 

response of each instrument and then applying this directly to the spectra 
plots. A similar correction derived from the microbarograph response curve 

(figure 3), although small, was applied to the micropressure spectra. 

de Length of Time Series 

The number of 5=-second observations used for the spectral analysis 

of each time series was a compromise between the best spectral estimate 

possible and the length of time that the power spectrum remained stationary. 
As mentioned above, the greater the number of observations for a given number 

of lags, the greater the number of degrees of freedom or the closer the esti- 

mated power spectrum is to the true but unknown spectral density. Examination 

of individual records and their power spectra show that for intervals greater 

than 45 to 60 minutes the spectra vary somewhat with slight shifts of peak 

energy with time. This can be seen when any of the 90-minute wave or micro- 

pressure records are divided into two 45-minute sections. Spectra for the 

two Beene 45-minute time series of each record are compared in figures 

5 and 6. 

A 45-minute record appears to be optimum for obtaining stationarity 

and sufficient data points for a meaningful analysis. This was tested by 

dividing a typical 90-minute record into four equal, consecutive time series. 

Comparison of the frequency distribution of observed displacements for each 

adjacent series shows a good degree of stationarity from one series to 

another. Thus, 45-minute series have been used when the spectral distribution 

is more important than the overall estimate of spectral energy. For the 

latter, 90-minute records are used; this essentially doubles the number of 

degrees of freedom. 

4. THE 2-ELEMENT ARRAY 

a General Description 

The LaCoste-Romberg gravimeter #22 was installed at the ARLIS II 

campsite, and automatic recording began on 31 May 1961. On 3 June 1961 the 

World-Wide gravimeter #5 was set up on an ice floe adjacent to the ice island. 

This station was located 1,240m from the campsite on an azimuth of 143°T. 
The World-Wide gravimeter was read visually every 5 seconds for 90 minutes 

beginning 0215Z. A portion of these two records is shown in figure 7. An 

attempt was made to match amplitude peaks of the same phase. Although the 

choice was quite tentative, it suggested that a given phase arrived at the 

ARLIS II station 30 to 35 seconds before it did at the pack ice station. This 

would indicate an apparent average phase velocity of 33 meters per second. 

The 90-minute record taken with this array was divided in two, and the 

spectra of each half were computed (figures 8a and 9a). The coherences and 
phase angles of the two sets of records were computed as described above and 

17 
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plotted in figures 8b and 9b. The same analysis described by Munk et al. 
(1963) for a 2-element array to measure swell in the Pacific Ocean was then 
applied to the present data. 

be Direction Finding 

Figure 10 shows placement of the array on 3 June 1961. The phase 

relationships given in figures 8b and 9b show that the energy passed the 

north (N) station before the south (S) station. With only two elements in 
the array, an ambiguity of wave directions is inherent. The waves may be 

coming either from the west or the north. Examination of the weather maps 

just prior to and during the wave recording shows a strong storm system 

centered over Siberia (figure 11). Strong southerly winds were indicated 

over the western Chukchi Sea. On the other hand, the northern part of the 
Arctic Basin appears calm. It was therefore assumed that the observed waves 

were associated with the Siberian storm and were coming from the west. Con- 

sider, then, an elementary wave train of frequency f coming from a direction 
a measured clockwise relative to the azimuth of the normal to the array 

(233°T). The signals observed at the S and N gravimeters, respectively, 
could be written as 

n, = A cos (27rft - 9) = 
Ny = A cos (2 7ft) 13 

el 
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where g = ate sin a (the phase difference) 

D distance separating instruments (1,240m) 
\ = wave length 

It can be seen that the same phase difference ¢ can be obtained by waves 

coming at an angle a as well as 180° -a . The former value has been chosen 

as the most likely wave direction. 

There is also another ambiguity inherent in the 2-element array when the 

observed waves are so short that the phase angle ¢g exceeds 180°. Only the 

principal value of g, i.c., between + 7 can be estimated. Its true value may 

actually be any additional multiple of 27, and thus several values of the wave 

direction a can be computed according to 

sin a5) — ne ee (1) 

where j = 0, +1, +2,° © ©, up to the largest value for which sin ay still lies 

between +1. 
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In solving equation (14) the following assumptions have been made: 

(1) Coherence peaks greater than 0.44 (the lower limit of the 95 

percent confidence level) are assumed to be meaningful. The periods and 

phase angles associated with these peaks are given in figures 8b and 9b. 

(In one case, the 25-second peak, although falling slightly below the 95 

percent confidence line, has also been used in these computations to pro=- 

vide continuity in the spectra.) 

(2) The waves obey classical gravity wave theory. For the period 

range considered, it was assumed as Robin (1963) had done, that the veloc- 

ities and wavelengths of the waves were essentially unaffected by ice cover. 

1/2 
Thus the velocity @ ._ (fer 2rH (15) = Eee tanh <= | 

1/2 
and A= hea pean ere] / (16) 

a 

C = wave velocity (m/sec) 

g = gravity (9.83 m/sec@) 
H = water depth(m) 

he = gr 
om 

T = period (sec) 

(3) Although the array was located in deep water (approximately 
1,600m) the presumed direction of incoming waves was across the wide and 
shallow continental shelf north of Siberia. Since tne greatest portion of 

the total distance traveled was across this shelf, an average depth of 150m 

was used in the computations of \ . 

where 

The solutions for q@ computed from equation (14) and corresponding to 

waves from the west are plotted in figure 12. The values of a for periods 

of 25 seconds or more are unique. As the wave periods become shorter than 

25 seconds, two, three, four, and finally five solutions become possible. 
For periods shorter than 25 seconds, there is no real guide for the choice 

of solution or solutions. In the analysis of Munk et al. (1963), the exten- 
sion of the unique solutions, i.e., when j = O; was preferred, because a 

sense of continuity was maintained. This was justified because their plot 

of coherences vs frequency, upon which their solutions of a were based, was 

itself fairly continuous. No such continuity was observed in the plot of 

coherences versus frequency in this study, rather there were discrete coher- 

ence peaks emerging from the noise level. Thus, it appears just as likely 

to have short-period solutions of a coming from the higher order branches 

as from the j = O branch. This problem cannot be resolved without an 
additional element in the array. 

The peak at 167-second period (figure 9b) poses an interesting problem. 
With its computed phase angle of 176° no solution of equation (14) exists. 
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FIGURE 12 Computed wave directions as a function of period—3 June 1961, 0215—0345Z 

Since all other values appear fairly continuous in azimuth, it has been 

assumed that some other mechanism or mode of propagation is responsible 

for its existence. If it were due to some instrument characteristics or 

a fault of the digitizing process, one might expect to find the peak in 

both records; however, it appears only in the 0300 to 0345Z record. If 

the peak is real and not extraneous, it may well have been caused by an 

earthquake. The records show an earthquake of magnitude 5 to 5% occur- 
ring at O100 hrs, 13 min, 25.4 sec at a depth of about 29km near Kamchatka 

(53.3°N,164.8°F) on this date. The Wo, second arrival (via the antipodes) 
of seismic surface waves of the "G" type, would fall within the 0300 to 
0345Z record interval. Such waves have periods of from 1 to 4 minutes, and 
multiple arrivals are often observed (Richter, 1958). Such energy could be 

imparted to the shorefast ice cover at many points along its periphery and 

conceivably produce the observed response of 167-second period at the array. 

ce Beam Width 

As shown in Munk et al. (1963), the value for coherence may be 
used as an indication of the beam width of the incoming waves. They give 
the following equation for determining the beam width. 

Na = (= ne)W/2/(22 cos a ) (17) 

where Aq = beam width 
R = coherence 

sina = Ga) 

g = phase angle 

Values of Aa for periods of 62.5, 38.5, and 27.8 seconds are 
about 30°, 20°, and 15°, respectively. These beam widths seem quite 
believable when the proximity and width of the storm are taken into account. 
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d. Evaluation of the Results of the 2-Element Array | 

Probably the most significant conclusions that can be drawn from this | 

experiment are (1) that waves in the Arctic are generated by storms as are 

waves in the open ocean, (2) that they can propagate over substantial distances 

(350 nautical miles or more in this case), and (3) that the wave directions can 

be determined with a multielement array and cross-correlation techniques. 

\ 
| 

The actual values obtained for wave directions and beam width must be 

regarded with caution for, in addition to the ambiguity introduced by using 

only two elements, the values are dependent upon variables that were not well 

known. The waves were assumed to travel at velocities calculated according to 

gravity wave formulas applicable in the open ocean. This assumption was prob- 

ably valid for waves recorded on the thin pack ice, particularly at the long- 

period end of the spectrum. Waves traveling through the thicker ice of ARLIS 

II, however, may have velocities different from those assumed, especially at 

the short-period end of the spectrum. These shorter waves approach the flex- 

ural waves discussed by Ewing and Crary (1934) and by Hunkins (1962). More 
detailed knowledge of the thickness of ARLIS II, the water depths beneath the 
stations and along the wave paths, and the effects of the ARLIS II-pack ice 

boundary would be required for a more accurate analysis. 

The values for the three longest period waves are therefore probably 

most correct, because they were obtained with the least ambiguity of solutions, 

are least likely to be affected by refraction and boundary effects of ARLIS II 

and the pack ice, and are least affected by errors due to recording and digit- 

izing processes. 

For future experiments, at least three instruments should be used 
with a spacing of no more than 300 meters on the thinnest pack ice possible 

and in deep water. It is expected that many of the problems discussed above 

would be avoided by adhering to these conditions. 

5. SIMULTANEOUS WAVE AND PRESSURE SPECTRA BEFORE, DURING, AND AFTER A STORM 

&@. Introduction 

Since it was clear that some relationship existed between the wind 

above the ice and the waves beneath, several simultaneous sets of micropressure 

and wave records were examined. The windspeed and direction graph for July 

1961 (figure 13) suggested a particularly good time interval between 5 and 6 
July for such a study. During this interval, the windspeed increased from 12 

to 25 knots and decreased to 12 knots in the next interval of the same duration. 

This corresponds to the approach and passing of a storm (figures 14 and 15). 
Five 90-minute intervals, 5 hours apart, were selected for this analysis. The | 
records are shown in figures 4a, b, and c. 

be Microbarograph Records 

It was assumed that a moving load mechanism similar to the type sug- 
gested by Sytinskiy and Tripol'nikov (1964) was the primary cause of the waves. | 
Thus the microbarograph, which measures directly the oscillatory loading of the) 
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FIGURE 13 Surface weather conditions, ARLIS Il, 1—15 July 1961 

ice by atmospheric pressure, is well adapted for this study. Power spectra 

for each of the five 90-minute intervals were computed, corrected for instru- 
ment response, and plotted in figure 16. A low lag number (20) was used to 
increase the accuracy of spectral estimates. The most noticeable character= 

istics of spectra plotted on the same set of coordinates are close dependence 

of power density on local windspeed at all periods and increase of power 

density with period. Even with the low resolution used in this example, dis- 

tinct peaks appear and are probably real; instead of appearing to follow a 

set pattern, they shift slowly with time as mentioned in section 3(d). 

Very little is known about the properties of these short-period pressure 

waves — whether they are in fact progressive waves and, if so, how fast they 
propagate. Waves similar to these have been observed on land by Flauraud et 

al. (1954) while studying micropressure waves with periods of 5 to 100 minutes 
with a tripartite array in the Boston area. Waves of 5=- to 100-minute periods 

propagated with velocities of 20 to 175 knots and were correlated with winds 

at the 200-mb level. Wave periods less than 10 minutes were not conservative 

over the length of the array (6 to 9 miles), thus little was learned about 
their propagation characteristics. Martyn (1950) showed that micropressure 
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FIGURE 16 Power spectra of six 90-minute microbarograph records— 

Spectra are corrected for instrument response. 

oscillations could be generated by vertical wind shear in a horizontal 

atmospheric duct bounded on the bottom by the ground and on the top by a 

temperature discontinuity. Such ducts occur frequently in the Arctic; 

however, the period of this generating mechanism has a theoretical lower 

Limit of about 10 minutes. 

Tn any event 10- to 100-second micropressure waves exist in the 

Arctic. As will be shown later, these micropressure waves have sufficient 

energy to bend the ice and generate water waves. It has been assumed that 

micropressure waves propagate in the same direction as the wind. The nature 

of these waves in an area for much further study. 

ec. Gravimeter Records 

Low resolution power spectra for the five wave records taken during 

5 and 6 July were computed, corrected for instrument response, and plotted 

on the same set of coordinates (figure 17). 

Dispersion of long-period waves traveling from a distant source and 

local generation of short-period waves are clearly displayed in this figure. 

(1) The effects of wave dispersion are seen for periods longer than 

16 seconds. Long-period energy (60 or more seconds) in the 1745 to 1915zZ 
record increases 6 to 7 times in magnitude 5 hours later in the 2237 to OO07Z 
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5 and 6 July 1961—Spectra are corrected for instrument 

response. 

record. This long-period buildup can easily be seen by examining the first 

two records. The long-period, high amplitude waves can be seen clearly on the 

2237 to O007Z record (figure 4a). Five hours later, between 0345 and O515zZ, 
this long-period energy has disappeared, and energy between 20- and 40-second 

periods has increased considerably. Later, between 0845 and 1015Z and well 

after the storm's peak, energy of about 25-second period nas increased 2 to 3 

times in magnitude; the long-period energy has essentially disappeared in this 

record. Ten hours after the storm's peak, the overall energy has been substan- 

tially reduced. 

(2) Through examination of energy with periods less than 16 seconds, 

the direct dependency of wave energy on local surface windspeed is readily 

observed. Tnis dependence was previously reported by Sytinskiy and Tripol 'nikov 

(1964) and Hunkins (1962). Hunkins noted that there appeared to be some thresh- 
old velocity above which the wind excited the ice and suggested a value between 

20 and 24 knots. It appears from figure 17 that such a threshold velocity in 

this case is at or below 12 or 13 knots. ARLIS II, however, is a special case, 

since it is considerably thicker than the pack on which the above two studies 
were conducted. Thus, the short-period energy that appears so dependent upon 

the wind is probably the natural bobbing of the ice island as computed 
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according to equation (1), where p = ice density (0.90am/em>) pl = water 

density (1.025em/cm3), and g = gravity (963cm/sec“) 

For ice 20 meters thick (the estimated thickness of ARLIS II), T = 

6.5 seconds; T increases to 14.7 seconds for ice thickness of 60 meters. Short- | 

period spectral peaks of all curves in figure 17 lie between 10 and 14 seconds. | 

To examine this period range more closely, a portion of the 0345 to 0515Z wave 

record was used to recompute the power spectrum using a AT of 2.5 seconds 

(figure 18). This permits the extension of the short-period end of the spectrum 
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FIGURE 18 Power spectrum of a portion of the 0345—0515Z gravimeter record emphasizing short-period energy. 

from a minimum of 10 seconds to 5 seconds. The peak at 11.1 seconds appears 

real and probably is the natural oscillation of tne island excited by the wind. 
When simultaneous wave recordings were made on ARLIS II and the adjacent pack, 

this short-period resonant energy was notably lacking in the pack ice record, 

while long-period energy levels were more nearly alike. Spectra computed from 

these records and corrected for instrument response are compared in figure 19. 

Further evidence of this natural bobbing is obtained by close exami- 

nation of the high amplitude arrivals in the long wave record shown in figure 

20. The three such arrivals shown have average periods of 9.7, 10.9, and 12.5 

seconds. The increased energy at 2035:10 is shown on an expanded scale in 

figure 21. It was assumed that this energy was imparted by collision of the 

island with adjacent floes. The comparatively slow decay of this energy sug-= 

gests that there is little damping action in this ice-water system. 
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FIGURE 19 A comparison of power spectra of simultaneous gravimeter records, 0215—0345Z, 3 June 1961 — Spectra are 

corrected for instrument response. 

6. DISCUSSION 

a. The Relationship of Atmospheric Micropressure Fluctuations to 

Water Waves 

Cross-correlations of many of the simultaneous wave and micropressure 

records were computed to see if quantitative relationships could be determined. 

The coherences of these paired records are plotted in figure 22 and meaningful 

peaks are observed. The coherence values of the peaks seem to have no relation- 

ship to local wind velocity but appear to be a function of the average local 

surface wind direction. This can be seen when the conerences of the significant 

peaks are plotted against the average wind direction observed at the time the 

records were made (figure 23). Maximum coherences occurred when the wind 

direction was about 185°r, suggesting that maximum wind-to-wave energy transfer 

occurs at this location when the wind blows from this direction. 

The dependency on direction could be explained in the following 

Manner. Since the pack ice pressure ridge systems in this area of the Beau- 

fort Sea had a general east-west trend during this time (Wittmann, 1964), they 
would offer the greatest resistance to forces moving in a generally north-south 

direction. Considerably more observations, however, are needed to verify such 

an hypothesis. 

Significant coherences appear only with waves generated at some 

distance from the recording site. As would be expected, there is no coherence 

between local wind and the wave motion due to the resonant period of ARLIS II. 
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is 95 percent confidence limit. 

35 



COHERENCE 

T 

210 220 230 3 170 180 90 200 
LOCAL SURFACE WIND DIRECTION (DEGREES TRUE) 

FIGURE 23 Significant coherences from figure 22 plotted against average surface wind direction observed 

during the recording interval. 

be Energy Transfer Considerations 

Sections 4+ and 6a above indicate that the waves are generated in 
a storm area and are selectively reinforced by micropressure waves acting 

through the ice along the path of the ocean waves. It would be interesting, 

therefore, to determine the relationship of micropressure wave force to the 

force required to bend the ice and generate ocean waves. 

It should be shown first that the ice will indeed behave elastically 

for the ice thicknesses and wave periods and amplitudes involved. Following 

Robin (1963), a rough calculation can be made of the stresses involved in 
bending an ice plate of thickness h into the form expressed by: 

y = A sin (27 +) (18) 

It elastic bending occurs about a neutral plane in the center of the 

plate, the surface stress ae is given by 

Gee 19 a =e (19) 
1/2h 

where M is the bending moment at any point, and I= yody 

-1/2h 

2 
E da 

Since M = = — (20) 

(1 - #) 

where EF = Young's modulus, and # = Poisson's ratio, an expression for Os 

can be made by combining equations (18), (19), and (20) so that 

2 

Txs = aE A am sin (27%) (21) 

Geewe) A 



This should be evaluated at both ends of the wave spectrum being 

considered, since the values of A and ) vary considerably over this range. 

It should also be evaluated for ARLIS II (20m thick) as well as for the pack 

ice (2m thick). 

Figure 24 shows the "displacement" spectra computed from the "accel- 
eration" spectra in figure 17 and plotted in terms of twice the mean wave 
amplitude squared per frequency bandwidth. Representative amplitude maxima 

for observed long- and short-period waves were taken from this plot and used 

for evaluating equation (21). 

The values chosen were for periods of 67 seconds (2237 to 0007Z) and 

11.1 seconds (0345 to 0515Z). These correspond to average amplitudes of 

1.86cm and 0.032cm, respectively. For these periods the following sets of 

values were used: 

T= 67 sec Wes Mikal pee 
} = 2,560m (shallow water wavelength) h= 193m 
A = 1.86cm A= 0.032cm 
h = 2m, 20m h = em, 20m 

H= 0.3 H= 0.3 

Although Robin used 5 x 10° dynes /em@ as an approximate value_for 

E (Young's modulus for sea ice), more recent data suggest that 1 x 1 

dynes/em< is probably closer to the actual value for sea ice, particularly 
for ARLIS II ice (Langleben and Pounder, 1963). 

From these values, the following maximum stresses were obtained: 

= 67 sec 
Co eee aK 104 dynes/cm* for ice 2m thick and 

= 1.23 x 10? dynes/em* for ice 20m thick. 
For T = 11.1 sec 

= 3.72 x 104 aynes/em2 for ice 2m thick and 
= 3.72 x 10° dynes/em* for ice 20m thick. 

These values are considerably less than 2.2 to 3.9 x 10° dynes/em@, the 

range of stresses that Butkovich (1956) found were required to fracture sea 
ice beams under similar conditions in the laboratory. Tabata (1955) indicat- 

ed that the major part of sea ice deformation would be elastic under short- 

period stresses. It is therefore reasonable to conclude, in the same manner 
as Robin, that the ice can be treated as an elastic plate for all wave ampli- 
tudes and periods encountered in this experiment. 

It is now desirable to see if the micropressure waves in fact have 

sufficient vertical force to bend the ice and generate waves beneath it. In 

order to do this, it is necessary to show that the oscillating vertical 
pressure on the ice is enough to bend the ice at least as much as the gravi- 

meter records for that particular period. 

Only the pack ice system will be considered in this connection, for 
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FIGURE 24 ‘'Displacement’’ power spectra computed from the ‘‘acceleration’’ spectra 

shown in figure 17. 



it alone is representative of the Arctic Ocean Basin. The thick ice island 

is an anomaly and, especially because of its resonance, appears to behave 

differently than the pack. 

The vertical pressure vy needed to bend an elastic plate of thickness 

h is given by 

-Eh aty (22) 
h 

12(1 - i) ax 

If the plate is bent about a central plane into the form of equation (18) then 

-lgh? 74 
= A sin (27) (23) 

3(1- 2) d ; 

Computations of o., for a short-period component appear most useful 

because: (1) the required endone pressure will generally be greater, the 

shorter the period; and (2) the shorter period waves are more likely to have 

been generated closer to the Eee CHE ae site owing to the significant attenua- 

tion that they undergo ( & 1/ i hy) compared to the longer periods. Furthermore, 

it appears from section 6a above that atmospheric energy can be added along 
the wave path. Presumably, then, the shorter the wave period, the shorter the 
distance between generating area and receiving site. Therefore, comparison of 

the force of the short-period micropressure waves with the short-period ocean 

waves would probably be most meaningful. 

From figure 25 showing the "displacement" spectra of the two simulta- 

neous time series, the 11.1-second ocean wave component was calculated to 

induce an average displacement of the pack ice of 0.0O0lem between 0215 and 

0345Z. For a wave period of 11.1 seconds, \ = my and the mascLimum stress 
necessary to bend the ice (from equation (23)) is 0.8 dynes/cm@ : 

From figure 16, the 11.l-second component of the micropressure 

spectrum (0215 to 03452, 3 June 1961) was found to have an average value of 
22.4 dynes/em@ or 28 times the theoretical force necessary to bend the ice 
sinusoidally with the observed displacement. This rough calculation suggests 

that there is ample energy in the micropressure waves to completely explain 

the water water generation beneath the ice, even at relatively low wind speeds 

(8 knots in this case). 

7- CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

Waves of the swell type are generated in the Arctic Ocean Basin and 

are associated with storms as are those in the open ocean. The thin, elastic 

ice cover in the Arctic limits considerably the maximum amplitude that the 

swell can have and drastically attenuates waves in the period range usually 

si) 
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FIGURE 25 ‘'‘Displacement’’ power spectra computed from the ‘‘acceleration”’ 

spectra shown in figure 19. 

observed on the open ocean. 

This swell is directional and can be satisfactorily measured by an 

array of gravimeters placed on the ice. The major portion of the wave energy 

is probably derived from storms. However, cross-correlation between micro- 

pressure waves and ocean waves at a point outside the major generating area 

suggests that additional energy is imparted to ocean waves outside of this 

area. Cross-correlation of several micropressure and wave records over an 

interval when the average local surface wind was changing indicates that maxi- 

mum coherence (and presumably maximum coupling) is a function of wind direction 

This in turn suggests that local surface characteristics of the ice influence 
the amount of energy coupling for a given area and wind direction. 

If it is assumed that micropressure wave spectra everywhere over the 

Arctic Ocean are similar to the ones measured at ARLIS II, varying primarily 

as a function of wind velocity, then the total energy of a water wave at a 

given point is probably related to an integration of all the atmospheric 

energy surrounding that point. This would explain the continual wave inter- 

ference observed at the tripartite array of Sytinskiy and Tripol'nikov (1964). 
In addition to observing waves generated by a storm, there would also be 

observed the effects of the micropressure wave system acting like so many smal] 

storms, each contributing energy to the water. 

Waves from distant sources show typical dispersion patterns, the long 



periods arriving before the short periods. No attempt was made to estimate 

the point of origin of these waves by relating their group velocities and 

times of arrival as Munk et al. (1963) had done, because the sources were 
too close and too wide to assume a point source origin necessary for such 

calculations. 

The moving-load-resonant-plate theory of Sytinskiy and Tripol 'nikov 

could not be adequately tested, because the range of periods that they 
associated with a water depth of 150m (12 to 15 seconds) is masked by the 

natural free oscillation of ARLIS II. It appears, however, that there is 
sufficient energy in the micropressure waves alone to cause water waves 

having these periods simply by sympathetic vibration. 

The work discussed so far suggests several further investigations 

both in the Arctic Ocean Basin and in the open ocean. A tripartite gravi- 

meter array, approximately 300 meters on a side, should be established on 

pack ice in deep water somewhere in the central Arctic Ocean Basin. At each 

station there should also be a microbarograph and provision for recording 
surface wind velocity continuously. The gravimeter and microbarograph data 

should be recorded digitally in a form that could be fed directly into a 
computer. Analog output alone should not be considered owing to the immense 

task involved in converting it to digital form. If gravimeter recordings 

are continuous, waves generated anywhere in the Arctic Ocean Basin would be 
recorded. Their sources could also be determined. 

Similarly, the three-dimensionality and propagation characteristics 

of the micropressure waves could be studied with the microbarograph array. 

Finally, cross-correlations between the two phenomena should be useful in 
determining quantitatively air-sea energy transfer relationships as a function 

of wave period. Many of these findings would probably apply to the open ocean 

as well. 

Such a study could provide statistical information on wave directions 

and might provide information on ice breakup ie especially to what Assur 

(1963) calls "long-wave cracks". 

Since the micropressure waves described here have been observed 

elsewhere, it is probable that they would be observed over the open ocean 
also. A station might very profitably be established on a stable platform 

such as ARGUS ISLAND near Bermuda. 
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