

LIBRARY OF THE
UNIVERSITY OF ILLINOIS

AT URBANA-CHAMPAIGN

510.84
14630
*o.8l-90

ENGWtERwCi

AUG 51976
The person charging this material is re-

sponsible for its return to the library from
which it was withdrawn on or before the

Latest Date stamped below.

Theff, mutilation, and underlining of books

are reasons for disciplinary action and may
result in dismissal from the University.

UNIVERSITY OF ILLINOIS LIBRARY AT URBANA-CHAMPAIGN

WW 6REC*

k kill *S*

k & si» :

LDAtt

L161— O-1096

Digitized by the Internet Archive

in 2012 with funding from

University of Illinois Urbana-Champaign

http://archive.org/details/onlinecomputerte82rois

£10. 8U
Il63c
no. 32

CONFERENCE ROOM

ENGINEERING LIBRARY

UNIVERSITY OF ILLINOIS

3ANA, ILLINOIS

ed Computation
UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

URBANA, ILLINOIS 61801

CAC Document No. 82

On-Line Computer Text Processing

A Tutorial

By

Richard C. Roistacher

Center for Advanced Computation
University of Illinois at Urbana-Champaign

Urbana, Illinois 6l801

August 15, 1973

This work was supported in part by the Advanced Research Projects Agency
of the Department of Defense and was monitored by the U. S. Army Research
Office-Durham under Contract No. DAHCO^-72-C-OOOl, and in part by the

College of Commerce and Business Administration, University of Illinois
at Urbana-Champaign.

ENGINEERING UBRAW

ABSTRACT

The use of an on-line computer system for preparing manuscripts

affords the scholar many advantages. This tutorial discusses text

editing, file, and output processing systems, and how they may be used

for producing and disseminating scientific documents.

On-Line Computer Text Processing: A tutorial

Richard C. Roistacher

Center for Advanced Computation
and

College of Commerce
University of Illinois

Urbana, IL 61801

Text processing is a powerful computing utility whose

user community is rapidly growing. Text processing as used

here refers to the storage and editing of manuscripts

maintained as computer files of text, and the use of

computer programs to format those manuscript files into

documents. Text processing as used in this tutorial does

not include either information retrieval, in which a file of

information is scanned for a desired entry, or such areas as

computer-based analysis of literary text.

The aim of this tutorial is to introduce computer text

processing to a reader who has had some experience with

on-line computer systems, but who is not necessarily a

programmer • While this paper reviews several systems and

machines, it is not meant to be a complete review of the

field. The particular machines, systems, and criticisms

presented here are drawn primarily from the author's

experience, rather than from an exhaustive literature

search.

Text processing services are what might be called

external computing utilities, in that like BASIC or teaching

Computer Text Processing 2

programs, they provide sophisticated computing services to

clients who are not necessarily programmers or even members

of the usual computer user community. Text processing

systems have been in the libraries of several operating

systems for many years. Until recently, text processing has

not been widely used because the programs required

considerable computing sophistication to use, and because

they were quite expensive to run. In academia, it was

possible for interested computing center insiders to use

text processing systems because they had access to the

necessary resources, and because there were not so many text

users among the insiders as to overload the available

resources. However , the potential market for computer text

processing was so wide as to make universiLy computing

administrators fear for their ability to support a

drastically increased community of users, most of when would

have to operate on internal funds.

Text processing systems have now evolved to the point

where they should find more general use, especially among

those who use on-line systems in the course of their other

work. Text processing systems can be found on many

time-sharing systems, including IBM's Time Sharing Option

for OS/ 360; Digital Equipment Corporation's TOPS, and Bolt,

Beranek, and Newman's TFNEX, for the PDP-10, the Burroughs

B-6700 MCP, the University of Michigan's Michigan Terminal

System, and the Massachusetts Institute of Technology's

Computer Text Processing

Multics .

Text Processing System Components and Char act eristics

A computer text processing system has three major

components: a file system, and editor, and an output

processor. The file system is the computer resource for

cataloging and storing information which is not in the

machine's memory. Information may be stored on a variety of

devices, including magnetic disks, drums, and tapes. Most

text files are stored on a rapid access device such as a

disk while they are being edited and processed, and are then

archived onto magnetic tape.

An editor is a program for the insertion, scanning, and

deletion of text in computer files. Most editors are used

primarily for editing programs maintained as disk files,

rather than as decks of punched cards. Editors have evolved

from primitive programs, which allowed only the replacement

of specified lines in a file, into programming languages in

their own right, capable of complex sequences of operations

on text files.

Once text has been input to the file system and has

been corrected with an editor, it must be arranged into a

proper output format through the use of an output processor,

a program for formatting, justifying, and printing text.

Output processors are extremely complicated programs,

Computer Text Processing 4

approaching compilers in complexity. An output processor

uses commands inserted in the stream of text to control the

formatting of the finished document.

Text processing offers the scholar a number of powerful

advantages in the preparation and dissemination of

scientific papers. The most obvious advantage is that error

correction tends to be cumulative. Once corrections are

made, they stay in the file, and thus typographic errors arp

not reintroduced into corrected copy, as is the case when

drafts must be retyped by hand. It is also possible to find

and correct all errors of the same kind in a single editing

operation. The ability to insert, delete, and rearrange

text without regard to page boundaries and numbering allows

the scholar to revise his paper far more easily than is the

case when he must physically cut, paste, and have his

manuscript retyped.

Bibliographic work is especially facilitated by the

computer, even when no formal information retrieval or

indexing procedures are used. It is possible to add to a

file of bibliographic references as each new reference is

found, making sure that each new entry in the file is

correct. Once a paper has been completed, it may be scanned

for all bibliographic citations, e.g., by printing all lines

containing the character string "(19", or ",19", and the

relevant references extracted from the bibliographic file.

Computer Text Processing 5

One advantage of computer text processing, which

becomes apparent only after some experience, is the freedom

from paper copy itself. There is no longer any original

which must be preserved from harm. Duplication of an

original becomes a relatively simple task, as a tape copy of

a sever a 1 -hundred -page document stored on magnetic tape can

be made in a few minutes, and far more cheaply than such a

document could be Xeroxed.

Dissemination of a document via the computer may not be

important when all of the users of a time-sharing system are

in the same institution. However, when users are spread

over a wide area, as in the case of a regional or national

computer network, the system itself provides the fastest

possible way of transmitting a manuscript to an interested

reader

.

Computer text processing, however, cannot be said to be

an unmixed blessing. The obvious disadvantage is the

additional cost to the user, who must invest in a terminal

and extra computer time. The faithful model-33 Teletype,

while technically usable as an input to a text processing

system, is too slow and fatiguing really to fill the bill

and must be replaced by a more expensive device. Another

disadvantage is that on-line computer systems are usually

rather susceptible to Murphy's law that
w
If anything can go

wrong, it will and will tend to be least available when

Computer Text Processing 6

they are most needed. Since text processing tends to be

addictive, an unreliable system can be a major handicap. A

third disadvantage arises directly from one of the

advantages of text processing, the ability to make instant

backup copies of document files. Unless the user exercises

a good deal of self -discipline, it is possible to become

lost in a welter of different versions and copies of a

document, leading to confusion, delay, expense, and

sometimes, loss of a document.

File Systems

File operations and capabilit ies

.

The power and

flexibility of a computer's file system is of great

importance to the text processing user, who will often want

to do rather complex copying and concatenation operations

when such capabilities are available. It is often best

practice to keep a long document in several relatively short

files, which are concatenated (attached end-to-end) at the

time they are fed to the output processor. Sometimes it is

possible to concatenate a file to the interior of another at

run-time, a useful feature for inserting tables and

diagrams •

Numbered-line files

.

Direct access files can be

loosely classified into numbered-line and stream formats. A

number ed-line file, as its name indicates, has a number

Computer Text Processing 7

assigned to each of its lines. It is possible to insert and

delete lines from such a file, but each line is a separate

entity. A numbered-line file need not have its numbers

displayed when it is printed, but it is still stored

internally as separate, numbered lines. In a numbered-line

file, the line numbers are stored in a directory and do not

change when a line is inserted or deleted. Instead they are

explicitly reordered at the user's command.

Stream files

.

A stream file is stored as a continuous

stream of characters. Lines of the file are delimited by a

carriage -return and linefeed character sequence, or by a

special end-of-line character defined by the operating

system. The major advantage of such a file is that it is

extremely easy to edit across lines, since all that is

required is the insertion or deletion of a line-delimiting

character • The major disadvantage of stream organization is

that there is no fixed way to refer to parts of the file.

It is possible for the system to count the number of

line-delimiters between the head of the file and a given

point, but any change in the number of such delimiters will

change the line number of a given piece of text.

Editors

Basic character istics

,

The characteristics of an

editor must match those of the file system on which it

Computer Text Processing 8

operates. It is possible to classify editors as being

either line or character oriented, and as either line number

editors or context editors.

Line oriented ed it or s . Line oriented editors treat

lines as separate units and will not combine lines of text.

They are far more common than character-oriented editors,

which in most cases treat the line -del imit ing character as

they would any other character. The chief advantage of line

oriented editors is their ease of use. The system will keep

track of lines for the user, who is free to add, delete, or

change lines, without having to maintain their boundaries

himself

.

Line oriented editors can be directed to specific line

numbers in a numbered-line file system. Otherwise, it is

necessary to address text exclusively by context. In the

former case, it would be possible to tell the editor to

delete line 44.5, while in the latter case it would be

necessary to tell the editor to delete the line containing

the string, To be or not**. Examples of line oriented

editors are the TSO editor, *ED, residing in the Michigan

Terminal System, and Multics QSDX

.

Character oriented editors,. The only character

oriented editors in general use are variants of TFCO,

resident on the PDP-10 operating systems, and in I-iulties.

Character oriented editors are usable only with stream

Computer Text Processing 9

files, since they process line-delimit or characters. It is

possible to perform certain operations across lines more

easily with a character oriented editor, but TECO offers few

advantages over a good line editor.

Examples of scanning, insertion, and replacement

operations using a line-number editor, a line-context

,

editor, and a character oriented editor appear in the

appendix.

Editor funct ions.. The basic function of an editor is

to construct a text file. In its most basic form, an editor

simply reads a line of text from an input device, such as a

terminal or card reader, and writes it onto a

machine-readable storage medium. In numbered-line file

systems, a primitive editor can also be used to add or

delete particular lines, addressing them by number. In some

computer time-sharing systems, these functions are built

into the command language, and the editor program need not

be explicitly run in order to make minor chances in a file.

For example, to insert the text, "to be, or not to be"

between lines 305 and 306 of a file called FOO would be done

in a sequence of (hypothetical) system commands such as

*OP Els FOO .

305.5 To be or not to be

*CLOSE

Computer Text Processing 10

Beyond its basic use in creating files, an editor's

basic function is to find and replace strings of text. Such

searches and replacements may be done for a single case, for

all occurrences in a given range of line numbers, for a

given number of occurrences, or for all occurrences of the

string in a file. For example, to find the string, not

in a file, a command of the form

*FIND /not /

is typed. A modification of the command can be used to

locate multiple occurrences of the string.

To replace the word, not with the word just in the

text example shown above would be done with a command of the

form

.

*REP /not/just/

resulting in the string

30 5.5 To be or just to be

Finding and changing multiple strings is the capability

on which almost all editor functions are built. In some

editors, it is possible to use special string expressions,

so that replacements are made only when specified concjitions

are met. It is possible to write programs in some editor

command languages which allow for extremely complicated

editing operations. For example, it is possible to write a

program in TECO which will do most of the work of

reformatting an American Psychological Association formatted

Computer Text Processing 11

bibliography into one in American Sociological Association

format

.

Most sophisticated editors have the capacity for

allowing the user to recover from editing steps when he has

made a mistake. In most systems, the editor works on its

own copy of the file, explicitly writing the edited copy

onto the disk or tape at the user's command. If a mistake

has been made, it is possible to copy some or all of the

original text from the disk into the editor's copy of the

file. The MTS editor, which works on the disk copy of the

file, keeps a record of changes made and has a RESTORF

command, which may be invoked for any line or group of lines

to return them to their original state.

Choosing an ed it or

.

The advent of a large text

processing user community is putting greater and greater

demands on the developers of editors. Editors which seem

perfectly satisfactory for correcting programs have proven

far from satisfactory for the far more complex task of

editing large bodies of free-format text. As a result, we

may look forward to the continuing development of editors,

some of which may result in something useful.

The prospective text processor who is a member of a

large user community may find herself with a choice of

several editors of several types. Since an editor is the

single program an on-line text processing user uses most, it

Computer Text Processing 12

is wise to begin by choosing a single editor and sticking

with it until its use becomes second nature.

Accordingly, some rough-and-ready criteria for choosing

an editor are:

1. Take the claims of programmmers , (and

especially system programmers), with many grains of

salt. Document text is much more difficult to edit

than is program text, a fact of which few programmers

are yet aware.

2. If possible, choose a line-oriented editor

with numbered line files. Text references are far

easier when line numbers are available, expecially when

one is discussing a manuscript over the telephone. If

no reasonably convenient and powerful line-number

editor is available, look for a line-oriented context

editor, which will work with stream files. Finally, go

to a character-oriented editor, which may be extremely

powerful, but may be somewhat harder to use.

3. Choose an editor whose basic find -and-rep lace

features are simple, yet powerful. For example, an

editor which requires that the command, REPLACE* be

written out in full and in capital letters is not

nearly as convenient as one which will accept

REPLACE , "REP*, "rep", or "r", as equivalents.

Computer Text Processing 13

Similar elegance can be found in other basic aspects of

the command language. For instance, suppose one wished

to change the first two instances of the word, not to

the word just in a file. In one editor, the only way

to do so would be to give the commands

r 'not' 'just' 1 999

r 'not' 'just' 1 999

Another editor could accomplish the task in two

commands with

r 1 /not /just/

r

The second of the two examples illustrates several

design features which are sadly lacking in the first.

First, there is no set delimiter character, such as the

required of the former example. Instead, the first

non-blank character in the string is recognized as the

delimiter for that string. Second, only a single

delimiter is needed between the find" string and the

change string, rather than the three-character

delimiter (including two upper-case characters) in the

first example. Third, in the latter case, the editor

remembers the previous strings in the "replace command

and uses it in all subsequent replace commands if no

new pair of strings is given. Fourth, the latter

editor has a 'line pointer, a counter which indicates

which line is being edited. In the former example, the

Computer Text Processing 14

user was not sure where the first occurrence of not

could be found, so he specified that the change would

be made in lines 1 through 999. Since the editor has

no line pointer, the user had to repeat the entire line

range specification in the second command. In the

second editor, the line pointer is set at line 1 in the

first command, and the file is searched until not ip

found and replaced. The line pointer is now set at the

line at which the replacement has occurred, and the

next search begins at this line. Many editors which

have no line pointer either require a line number as a

part of each command, or assume that the bottom cf the

file is the default when no number is given.

Relatively simple command language features, which

arise not so much from elegant and difficult

programming as from wide and innovative user

experience, make the difference between editors which

are helpful and those which are a constant trial to the

user •

4. Do not be overly concerned with the operating

speed of an editor if its command language is good.

Editors use very little of the computer's time in

comparison with their demands on the user's time and

temper

•

Computer Text Processing 15

Output Processors

An output processor is a proyram for transforming a

free-form file of text into a document in standard form.

The basic function of the output processor is to fill text

lines and pages in the finished document by concatenating

and splitting lines of the original text file. The program

keeps track of page numbers and formats, and has facilities

for the automatic printing of headers, footers, and page

numbers. Most output processors will also justify output

text lines so that the right margins of the finished

document are smooth, and have a facility fci indicating

symbolically whether a letter or word is to be in upper or

lower case, allowing the use of a Teletype or other

upper -case terminal. The TENEX RUNOFF program, for

instance, normally converts all upper case letters to lower

case unless they are preceded by a . The RUNOFF user

could type "*MY NAME IS "FRED.** which the program would copy

into the document as My name is Fred. Facilities for

handling upper -case-only text are no longer being included

in some of the latest output processors, as the Teletype is

giving way to more versatile terminals

•

Processor command languages . The extensive repertory

of commands necessary to control an output processor gives

this type of program the complexity of a compiler. Commands

are generally inserted into the file of text as it is

Computer Text Processing 16

entered into the original file. Commands are generally

distinguished from text by a leading character, such as

FORMAT'S leading right parenthesis. In some output,

processors, a command must be on a separate line, while in

other systems, commands may be interspersed freely between

words of the text. Like the command languages of editors,

output processor languages come in all degrees of

sophistication and complexity. For example, consider the

problem of beginning a new page with the following text:

CHAPTER III

New heading

.

This is a new chapter...

The TENEX RUNOFF program on the PDP-10 would produce this

output from the following:

.PAGE

.TEST PAGE 8

.CENTER
CHAPTER III
.PARAGRAPH
&Nev7 heading.\&

This is a new chapter....

The IBM FORMAT program would produce the same output from:

)SM CHAPTER III)MPU New heading.)U This is a new

chapter ...

The TENEX RUNOFF program requires that commands be on

separate lines and spelled out in capitals. The commands to

the FORMAT program consist of single letters or of

Computer Text Processing 17

letter -number combinations, and each string beginning with

) is interpreted as a command string. Thus,)S is the

command to start a new page,)P starts a new paragraph,

all text between)u"s is underlined, and all text between

)m"s is centered.

Some output processors combine their command language

with the text itself. The Multics runoff program treats an

empty line (one consisting of nothing but a carriage-return)

as a command to end the present line immediately and begin a

new line of output. If the next line is also empty, the

same action is taken, but if the next line begins with a

horizontal tab character, this tabulation is printed. Thus,

a new paragraph is input to the Multics runoff program just

as it would normally be typed, as a blank line followed by a

tab.

Advanced output processor features

.

Advanced output

processor features include the ability to move text in order

to keep it together, to evaluate symbolic references and

expressions, and to hyphenate.

Fjost output processors have a command which forms

keeps, groups of text lines which are to be kept on the

same page. Sometimes a block of blank lines is reserved for

the insertion of a figure. When a keep command is

encountered, the output processor counts the number of lines

remaining on the current output page and skips to the next

Computer Text Processing 18

page if insufficient space remains, A far more complex

problem is the establishment of floating keeps whose

position in the text stream is altered by the processor. In

a simple keep, a preceding page will simply have blank lines

at the bottom if it has been necessary to place the kept

text on a new page.

In a floating keep, the text immediately following the

kept portion is moved ahead to fill the gap at the end of

the preceding page. A footnote is handled in much the same

manner as a floating keep. It is inserted next to its

reference in the input text, and the output processor moves

the footnote to the bottom of whatever page the footnote

reference occurs on.

Some advanced output processors include a facility for

maintaining counters and for evaluating symbolic references.

The program maintains a set of counters which can be

incremented on command and whose current values can be

substituted into the text on output. Thus, instead of

having to refer to "Table 4" at the time text is input, the

author can use the text "Table %Tab%" where ' "Tab" is a

symbolic reference to the current value of the table

counter. A reference to "Tab" is made in a way which adds 1

to its current value when it is used in the label of a

table. Thus, it is not necessary to renumber tables or

figures as additions or deletions are made. The same

Computer Text Processing 19

counter is referenced but not incremented when it is used in

text which refers to the previous table.

Symbolic reference facilities are not included in most

output processors • The current MTS FORMAT program includes

a set of footnote and equation counters. The Multics runoff

program has facilities for the evaluation of extremely

complex symbolic expressions, which include the substitution

of character strings as well as numbers.

No generally satisfactory method for hyphenating and

breaking words has yet been devised. Most output processors

fill a line and then justify it without breaking words,

sometimes producing an occasional line containing an

unbearable amount of white space. The Multics runoff

program has a facility for allowing the user to introduce

his own hyphenating routine which, in most cases, scans a

list of words and their hyphenation points. Such a repeated

search can become extremely expensive, and is thus not a

part of most simple output processors.

IBM's ATS/ 360 and its variants approach the hyphenation

problem rather successfully from the other side. An input

text line which ends with a hyphen is considered to have its

last word continued onto the beginning of the next line. If

the split word fits completely into an output line, the

hyphen is deleted and the word is reassembled. Otherwise,

it is used in its hyphenated form, split between lines.

Computer Text Processing 20

Hyphens used in other ways are not placed at the end of

input lines.

Choosing an output processor

,

The interested user will

usually have the opportunity to choose from a number of

output processing programs. Some considerations in

selecting an output processor are:

1. Many different processors have the same name.

There are at least three versions of IBM's FORMAT, with

radically different features and performance. There

are at least three programs named RUNOFF, written in at

least two different languages. Look at the program's

documentation and pedigree to make sure you know what

you are dealing with.

2. A wide search for a good processor is often

worthwhile. Unlike editors, which are heavily machine-

and system-dependent, it is often possible to move

output processors between machines relatively easily,

3. Pay attention to the performance of the

processor, as well as the power and convenience of its

facilities. Output processors can become extremely

expensive to operate.

4. Unless you are reviewing this paper as a

referee, do not attempt to write your own output

processor. You have neither the time nor the money to

Computer Text Processing 21

do the job decently.

Two IBM syst ems . Two systems produced by IBM and

fairly widely distributed should be mentioned. The

Administrative Terminal System, ATS/360, is a small document

processing system designed to be used by secretaries. ATS

will produce reasonable documents, but at a fairly heavy

cost. In order to make the system immediately

comprehensible to their conception of a machine-hating, (and

partially retarded) secretary, the designers of PIS made

some decisions which go heavily against the grain of good

computing system design. ATS has no editing capabilities

beyond the replacing of strings in a specified line. It is

not possible to tell ATS to find a particular character

string, but only to go to a line whose number is known and

perform the replacement. Even though ATS uses a line-number

editing procedure, its line numbers change as lines are

added and deleted, forcing the user to edit from back to

front. Finally, ATS has no separation between its file

system, editor, and output processor, which are all mixed

together in a hopeless mass. ATS/360 is better than

nothing, but almost anything else is better than ATS. Some

commercial time-sharing services offer augmented versions of

ATS which have more powerful editing facilities and output

capabilities, and these make the system inore easily usable.

Another IBM product is a series of programs known

Computer Text Processing 22

collectively as TEXT/360. This set of PL/1 programs is used

to produce the IBM documentation and other book-length

pieces. They are not for the short (under 50 pages) piece

of text nor for the inexperienced user.

The bibliography lists some documentation for a variety

of text processing facilities together with some comments.

However, the reader will have to be her own judge of

whatever she finds available.

Editing of Output Text

In most cases, it is unwise to run the output of a

processor directly onto a terminal or printer. Many times,

the program will produce some embarrassments which may be

corrected with a little editing. It is almost always

preferable to direct the output of a processor into a file,

print the file, and make corrections as necessary. Failure

to edit output text will result in greatly increased

expense, as editors are considerably less expensive to run

than are output processors. It is important that changes

made to the output text be added to the input version, in

case the document must be reprocessed later •

Sometimes output text editing is necessary because the

processor lacks the necessary capabilities. For example,

the TENEX RUNOFF program has the irritating habit of

centering all centered lines around space 30, even when the

Computer Text Processing 23

margins have been set so that space 30 is not the center of

the page. The author corrects this on input by beginning

each line which is to be centered with a special character

such as "§**. When the output text is edited, all @ s are

replaced with a number of spaces sufficient to shift the

centered line to the proper center of the page. Other such

editing tricks are dependent on the foibles of each system

and output processor

.

Future Prospects and Final Words

Computer text processing is not yet trivial, but the

increasing reliability and sophistication of computer

systems has made text processing feasible for an increasing

number of computer users. The advantages of a well-behaved

text processing system far outweigh the system's

disadvantages. Once a system is well established, it is

possible to delegate the mechanics of text entry and editing

to a secretary.

As computer networks gain more and more clients, one's

library of manuscripts will be instantly accessible to a

nation- and world-wide set of colleagues for consultation

and exchange of views. This paper was written on a portable

terminal in the author's study at home in Urbana. It was

stored and processed on a PDP-10 at the Information Sciences

Institute at the University of Southern California, where it

Computer Text Processing 24

is presently resident on magnetic tape. The final copy was

printed on a ^odel 37 Teletype located in the machine room

of the Center for Advanced Computation at the University of

Illinois. The arrangement of author, computer, and printing

facility was made possible by the ARPAnet , a nation-wide

computer network, which links the University of Illinois

with the University of Southern California. The author's

situation, while presently somewhat avant garde, will soon

be close to the norm for the scientific community. Computer

text processing by itself is a great convenience. Combined

with computer networking, it is part of a revolution of

knowledge.

Computer Text Processing 25

Appendix

This appendix consists of three versions of the same

editing and formatting Job* The first version is edited

using the PLORTS system on the University of Illinois'

System/360-7

5

t and formatted on the Illinois version of

IBM's FORMAT. The second version is edited in TBNEX TEOO

and formatted using RUNOFF on the PDP-10 at the University

of Southern California's Information Sciences Institute*

The third version is edited using the Maitics version of

QEDX 9 and formatted using Multics runoff*

The TEMEX and Multics jobs are shown entered and

printed on a Model 37 Teletype. The Illinois job is shown

entered on a Model 33 Teletype , and run off on a line

printer* using a TN (upper-and-lower case) print train*

Each editing job consists of the same sequence of

operations:

1* The editor is invoked and the file is read

Into it*

2* The file is scanned to see if the word "page"

has been mistyped* A misspelling is found*

3* All instances of the misspelling are corrected

and printed as the corrections are made*

Computer Text Processing 26

4* The entire file is printed, and a wrong line

is found*

5. The offending line is deleted*

6* The line is replaced*

7* The text immediately containing the correction

is printed in order to verify the correction*

8* The file is written (or closed, as

appropriate) and the editor terminated*

Each example consists of a page of editing* followed by

a page showing the results of the output processor* Ho

post-processing edit has been done in order to show some

differences in the output processors, and to keep the

examples clearer*

Computer Text Processing 27

OS/360 PLORTS Editing Example

OPEN EX

3

S PAEG 4r
7.00 RIGHT PAEG NUMBER

R PAEG PAGE 1 99^-
7.000 RIGHT PAGE NUMBER
9.000 LINES PER PAGE 30
22.000 BE KEPT ON THE SAME PAGE.
4
I. 000 /*ID FORMS=l 100
2.00 //TRIAL EXEC FORMAT
5. 000 //SYSIN DD *

6. 000 WIDTH 60
7.000 RIGHT PAGE NUMBER
8.0 00 CAPS AUTOMATIC
9.000 LINES PER PAGE 30

10. 00 REPEAT TITLE
11.00 SENTENCES 2 BLANKS
12.00 START TEXT 5 5

1.3.000 FOOTER
14.000 (1) CTHIS FOOTNOTE REFERS TO THE DIAGRAM.
15.000)E
16. 00 GO
17.000)MF A TEXT PROCESSING EXAMPLE)MLP
18.000 THIS IS AN EXAMPLE OF TEXT PROCESSING WHICH SHOWS HOW TEXT
19.000 CAN BE INSERTED IN FREE FORM AND THEN FORMATTED BY THE
20.0 00 COMPUTER.
21.0 00)P FOLLOWING THIS PARAGRAPH IS A BLOCK DIAGRAM (1) WHICH MUST
22. fin n RK wttpt nw thf same page-
23.000 IF THERE IS NO ROOM FOR IT ON PAGE 1, THEN IT ON WILL BE
24.0 00 PRINTED ON PAGE 2.
25.000)LLLW7A
26.000 !24 !25 ! 24 !25 !24 !25
27.000 133 133 133 !33 133 ! 33
28.000 133 !33 !33 ! 33 133 !33
29.000 133 CBEGIN 133 >!33 [MIDDLE 533 >!33 CEND ! 33
30.000 133 133 133 !33 !33 !33
31.000 !33 133 !33 133 133 !33
32.000 !22 123 122 123 !22 !23
33.000)

34.000 *****»»*»»*****»*******»* NOSTALGIA ISN'T WHAT IT USED TO BE.**
»•»

35. 000 TITLE
36.000)F TEXT PROCESSING EXAMPLE)FE
37.000 GO
38.000)E
39.0 00 /* + '

34)LM [DIAGRAM 1. >MV ^ — C /C
L 33 35< 7 *

33.000)

34.0 00)LM Z DIAGRAM 1.)MV
35.000 TITLE A

c4 1

Computer Text Processing 28

OS/360 FORMAT Output Example

Text Processing Example

A Text Processing Example

This is an example of text processing which shovs how
text can be inserted in free form and then formatted by the
computer.

Following this paragraph is a block diagram (1) which
must be kept on the same page. If there is no room for it
on page 1, then it on will be printed on page 2.

I

I Begin

i

—

i

I 1

1 J

>| Middle |~
I I

I I

i. j

Diagram 1,

(1) This footnote refers to the diagram.

Computer Text Processing 29

iteco ^«

;y

TENEX TBCO Editing Exampls

— 1

INPUT FILE I ex1.TECO;21 [Confirm] 1 204 CHARS

*spaeg$

5-

*oit$
which must be kept on the same paeg.)*
<rpaeg$page$01t>$^ ' <-

which must be kept on the same page.
If there is no room for it here on page 1 f

then it will occur on page 2.

then it will occur on page 2*

ht$ ^
•LEFT MARGIN 10
.RIGHT MARGIN 70
•PAGE SIZE 20
•TITLE ##########~~TENEX Text Processing Example
•SPACING 2

•SKIP 3
•CENTER
t***#fi#ti*§tf#t8##Sk TENEX Text Processing Example
•PARAGRAPH
This is an example of text processing which
rW*<us >v-ifci t-«jvf- fan v^ insert^cl in frcs fcrrs

•PARAGRAPH
Following this paragraph is a block diagram (1)
which must be kept on the same page.
•FOOTNOTE 3
•CENTER

II) This footnote refers to the diagram.
1

If there is no room for it here on page 1,
then it will occur on page 2.
•SPACING 1

•SKIP 1

•TEST PAGE 10
•NOFILL

•FILL
•SKIP 1

•CENTER
•**«*»«*«*• Your mother wears combat boots »**«»**
•PAGE
TENEX RUNOFF WILL NOT PRINT FOOTNOTES ON THE LAST PAGE OF A DOCUMENT,
SO IT IS NECESSARY TO GENERATE THIS ~&EXTRA\& PAGE
IN ORDER TO PRINT THE FOOTNOTE.

Computer Text Processing 30

TENEX TECO Editing Example (Cont*)

sYour mothe$

•01t$
##*»»** Your mother wears combat boots *»*«**»

•i####################Diagrarn 1.<fc
(J

$

*-2l3t$ £- . /
.CENTER
########//###########Diagrara 1 •

•PAGE

*;u$ 7

^
OUTPUT PILE: ex1.TECO;22 [New version]

J

4

Computer Text Processing 31

TENEX RUNOFF Output Example

A TENEX Text Processing Example

This is an example of text processing which shows how

text can be inserted in free form and then formatted by the

computer*

Following this paragraph is a block diagram (1) which

must be kept on the same page* If there is no room for it

here on page 1, then it will occur on page 2.

—> Middle —_— ...s

Diagram 1,

(1) this footnote refers to the diagram.

TENEX Text Processing Example Page

TENEX RUNOFF WILL NOT PRINT FOOTNOTES ON THE LAST PAGE OP A
DOCUMENT. SO IT IS NECESSARY TO GENERATE THIS EXTRA PAGE IN
ORDER TO PRINT THE FOOTNOTE.

Computer Text Processing 32

Multics QEDX Editing Example

qedx
r ex2.runoff
1 f $gp/pgaeA

>
+ X

which must be Kept on the same pgae.
If there is no room for it here on pgae
»ur %Hp% then it will occur on pgae SWNpX.

1 * $»/pgae/page/ 4r

1,9P<r-
.pi 34
ds
ce

A Multics Text Processing Example
•he 1 'Multics Text Processing Example" %*

This is an example of text processing which shows how text can be
inserted in free form and then formatted by the computer.

.ft
Following this paragraph is a block diagram

This footnote refers to the diagram.
.ft
which must be kept on the same page.
If there ic no room for it hero on page
.ur &Np% then it will occur on page %i*Np%.

•sp 2
• ss
.nf 7
.ce 7
•ne 7

Middle

****** If God wanted man to do anything, He'd have done it Himself******
/If God/d« tj

Diagram 1 •

\34
.-1,$p
.sp 2
Diagram
w
q
r 1419

3*

6

7

8
3.213 127+46

Computer Text Processing 33

Multics Runoff Output Example

A Multics Text Processing Example

This is an example of text processing which shows how

text can be inserted in free form and then formatted by the

computer.

Following this paragraph is a block diagram (1) which

must be kept on the same page. If there is no room for it here

on page 1 then it will occur on page 2.

(1) This footnote refers to the diagram.

Multics Text Processing Example

End

Diagram 1

Computer Text Processing 34

References

The following references consist of documentation for

programs and systems mentioned in the text, as well as a

survey article on text editors* The reader should perhaps

check closer to home before ordering a manual from a distant

installation, since manuals are often incomprehensible away

from their home* They are even more often inaccurate,

either at home or abroad*

Bolt, Beranek, and Newman, Inc. TEMEX User* s Guide*

Cambridge, MAs Author, 1973*

International Business Machines Corporation*

§Yg<rtW3$Q ft4ffli1f4gUflttV9 Tejaajnaj system* S&BBi&fli

Operations Manual. No* H20-0859* 1972*

International Business Machines Corporation* TEXT/360

referent jsafiuai as& operating £u££s* ££2&£els £&*

36QP-29t4tQQi. 1968*

Massachusetts Institute of Technology, Project MAC*

Multics Programmer* s Manual* Cambridge, MAt Author, 1972*

University of California, San Diego* EDITOR 1 User

guide ££ UCSD text editing program for the B670Q* La Jolla,

CA: Author, 1971*

University of Illinois* PLORTS user guide* Urbana,

IL: Author, 1973.

Computer Text Processing 35

University of Michigan* MTS volume 1 1 MTS and the

computing center. Ann Arbor* Hit Author, 1972*

University of Michigan* MTS volume 5i System services*

Ann Arbor, MIt Author, 1972*

Van Dam, A*, and Rice, D. E* On-line text editings A

survey* Computing Surveys 1971, J, 93-114*

%

UNCLASSIFIED

Security Clmiflcilien

DOCUMENT CONTROL DATA R&D
(Sacurity elmatlllemUon of till: body ot , Inowmktg mmolmUon mil bo ontmrod mhmn tho ormrmll roport It clomaltlod)

OBI5INATING ACTIVITY fC6lpoi»l« SuttofJ

Center for Advanced Computation
University of Illinois at Urbana-Champaign
Urbana, Illinois 6l801

im. »EPO»T SECURI TV CLA3SIFIC A TIOK

UNCLASSIFIED
2*. croup

3. REPORT TITLE

On-Line Computer Text Processing: A Tutorial

4. descriptive norm* (Typ* ol rswart mn4 htcluolwo <t(tij

Research Report
5- authorisi (Flntnmmm, mfiSSo InlUml, loot nmmo)

Richard C. Roistacher

a. REPORT DATE

August 15, 1973
7a. TOTAL NO. OF PASES

39

76. NO. OF REFS

2
•A. CONTRACT OR 6RANT NO.

DAHC04-72-C-0001
». PROJECT NO.

AREA Order No. I899

•«. ORIGINATOR'S REPORT NUMS)ER(S)

CAC Document No. 82

SS! OTHER REPORT NOI9) (Any other nunbara thai may ba amalgnad
thin nport)

10. DISTRIBUTION STATEMENT

Copies may he requested from the address given in (l) ahove,

II. SUPPLEMENTARY NOTES

None

IS. SPONSORING MILITARY ACTIVITY

U. S. Army Research Office-Durham
Duke Station
Durham, North Carolina

13. ABSTRACT

The use of an on-line computer system for preparing manuscripts

affords the scholar many advantages. This tutorial discusses text editing,

file, and output processing systems, and how they may he used for producing

and disseminating scientific documents.

DD ,'Z?.A473 UNCLASSIFIED
Security Classification

UNCLASSIFIED
Security Classification

KEV WORDS
RO LE W T

Education (miscellaneous)

Text editing and processing

UNCLASSIFIED
Security Classification

