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ABSTRACT

Rationale is presented for the development of more effective
measures of pattern association that may "be determined by direct
evaluation of pattern similarities. A general notation is suggested for
mathematical representation of patterns as multidimensional probability
distributions. With respect to this notation, measures of pattern
distance, pattern dissimilarity, and pattern correlation are developed
that are expressible directly in terms of initial pattern quantizations.
The measure of pattern correlation given may be computed invariant with
respect to individual pattern sizes,, positions, and proximate orienta-
tions. The concepts employed would seem well suited for both geometric
and network models of pattern information processing.





1. Introduction

The deficiencies of established correlation techniques for

effective quantification of pattern similarities have discouraged greatly

to date the development of methodologies of pattern recognition based on

methods of direct comparison [1,2,31* Clearly, where patterns of the same

class may differ in size, position, orientation, and degree and nature

of distortion, conventional template-matching procedures are inappropriate.

Thus, with exceptions (see, for example, Widrow [k, 5]), an apparent

majority of researchers have chosen to pursue analytic methodologies of

pattern recognition, i.e., methodologies in which pattern classification

depends either upon analysis of transformation and deformation invariant

pattern properties, attributes, or features (e.g., statistical methods)

or upon analysis of invariant structural relationships between pattern

components (e.g., syntactic methods).

There remains, however, in philosophical opposition to all

analytic methodologies of pattern recognition the basic hypothesis of

gestalt--that there exist, as the most elementary units of perception,

holistic organizations of phenomena, unitary perceptual entities, or

wholes whose phenomenological characters defy analytic description and

are only apprehensible directly. Under this assumption, patterns them-

selves are necessarily their only valid characterizations. To the extent

then that in a particular context meaningful categories of patterns

derive directly from basic similarities of gestalt, we must consider all

analytic methodologies of pattern recognition inappropriate to the task

at hand.

Adopting philosophically the premise that patterns are their

own most valid characterizations, while acknowledging the inadequacies

of conventional correlation methods of pattern similarity measurement,

we consider a fundamental problem of pattern information processing

research to be the development of more general and more effective

measures of pattern association that may be expressed and computed

directly in terms of initial pattern quantizations.
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Relying greatly on mathematical concepts long employed by

social scientists for modeling economic and social interaction patterns

within urban and regional environments, below we suggest a general

representation of quantized patterns as probabilistic spatial distribu-

tions of information and, with respect to a particular mathematical

notation, develop numerical indices of pattern distance, pattern

dissimilarity, and pattern correlation that are expressible directly for

any two patterns so defined. These measures of pattern association are

first developed geometrically for planar pictorial patterns as

coefficients of spatial congruence between pairs of two-dimensional

probability distributions. The indices presented, however, appear

applicable as congruence measures for multidimensional probability

distributions in general. In particular, the index of pattern correla-

tion presented is invariant with respect to individual pattern sizes,

positions, and proximate orientations and continuous with respect to

individual pattern deformations. The concepts employed point toward

general network models of pattern information processing that permit

conceptualization of both patterns and associations between patterns as

probabilistic network distributions of pattern- specific information

quanta.

2. Patterns and Pattern Distance

While generalities surrounding the concept pattern make

difficult any single definition, to assist the present mathematical

discussion we offer the following: a pattern is a unitary organized set

of quantized information whose probabilistic spatial (and/or temporal)

distribution over some set of sampling elements characterizes some more

complex phenomenon source

.

If we adopt at least provisionally the above definition, we

may represent mathematically any particular pattern f as a partitioned

array (w|x)„, as tall as there are sampling elements of f, where W is

a matrix of coordinates indicating the relative spatial positions of

all elements of f, and X is a vector of positive reals indicating the

proportional distribution of quantized units of information across all

pattern elements. For lack of any existing term, we will refer generally

to these quantum units of pattern information—whose distribution
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characterizes a particular pattern source- -simply as pattern quits

(quantization units ). Also, for mathematical convenience we will assume

normalization of pattern intensities, i.e., equalization of recorded

quit totals (or in the case of pictorial patterns normalization of

overall levels of brightness or darkness), so that E. x. = 1. Thus

the representation of a particular pattern f given by (w|x),, may be

considered a discrete probability distribution X of pattern quits over

a spatially arrayed set of sampling elements with centroids W. (See

Figure 1.
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Figure 1. Example pattern quantization and mathematical representation.

With such mathematical notation we consider the following

pattern association measurement problem: given a set of patterns F,

determine a symmetric non-negative scalar index of pattern distance,

Dp = d[(w|x)
, (Y|z) ], pairwise computable for all f € F and g e F,

*- > g -t g
such that D approaches zero as the spatial congruence of the

probability distributions of f and g increases.
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For any two patterns f and g quantized in terms of the

notation given above we may establish such an index of pattern distance

in the following manner. We may determine a weighted correspondence of

elements between f and g such that there exists maximal proximity

between elements corresponding between f and g. We may then take as

our measure of pattern distance the weighted sum of squared distances

between all pairs of elements corresponding between f and g where the

weights of the sum reflect the degree of correspondence between each

element pair.

Let the two patterns f and g consist of m and n elements

respectively and let their quantized representations be denoted (w|x)

and (Y|Z) . We represent a particular weighted correspondence of

elements between f and g as a matrix Q (m x n) satisfying

m

(1) Z q = z j = 1, . .., n

n
(2) Z q, . = x. i = 1, . .., m

i
i, J i

J

(3) q > i = 1, . .., m

j = 1, • • • , n

.

Let jt_ denote the set of all Q matrices satisfying (1), (2), and (3)
f9 g

for given X of f and Z of g. Now by normalization of pattern intensities

Z.x. = Z.z = 1, hence Z.Z.q, .
= 1. Since also q. . > for all i andii J J i J k, j i, j

-

j, we may consider any Q f it to be a discrete joint probability

distribution of "quit correspondences" between the elements of f and the

elements of g. Alternatively, any Q e it represents a probabilistic

matching or connection of the quits of f with the quits of g.

Now assuming fixed geometries for f and g (for example, a font

recognition problem where all quantized patterns may be assumed standar-

dized with respect to positions, sizes, and orientations), let S be the
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matrix of squared distances between all elements of f and all elements

of g given directly by

W =i,j=2(w1)k -yJ)k )

2
1 = 1, .... -

j = 1, ..., n.
.

Our formulation of pattern distance between f and g is then

m n

(5) D = min E E q. . s. . = min tr (Q*S)
f ' g

<*«,« 13 1,J l' J
^*t «

where again Jt^ is the set of all Q matrices satisfying (1), (2), and
f} g

(3)« Note that such a measure of pattern distance may be interpreted

as a minimal mean squared distance of spatial separation between

corresponding quits of f and g.

Now the optimization problem given by (l), (2), (3), and (5),

where Z.x. = Z.z. =7 but 7 not necessarily unity, may be recognized as

the Hitchcock or transportation problem of linear programming [6,7,8] •

Typically, the problem requires determination of a matching between a

spatially distributed set of economic supplies and a spatially distributed

set of demands such that the total cost of all material movements from

suppliers to buyers is minimal. For such problems, computational

algorithms are well known and solution properties well documented [9; 10].

Thus, a variety of computational procedures exist that can be employed

to determine simultaneously an optimal set of weighted correspondences

between pattern elements (an extremal joint probability distribution of

quit correspondences) and the minimal value of pattern distance yielded

by these correspondences.

We may note also at this point that the measure of pattern

distance presented should be useful not only for pattern recognition

applications per se but also for numerous other applications where

there is needed some composite scalar measure of the spatial congruence
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of pairs of probability distributions. For example, the measure

presented would seem well suited as a measure of ecological association

between spatially distributed populations of social and biotic communities

within ecosystem analyses [11,12].

3. Pattern Dissimilarity

The index of pattern distance presented above provides a

measure of the spatial congruence of patterns under the assumption that

individual pattern positions, sizes, and orientations may be regarded as

standardized or, for other reasons, must be taken as fixed. For most

pattern recognition applications, however, no such conditions will prevail.

Hence, we remain faced with the problem: given a set of patterns F whose

overall characters may be considered independent of individual pattern

positions, sizes, and orientations, determine a symmetric non-negative

index of pattern dissimilarity, a = 5[(w|x) , (y|z) ], pairwise
1, g 1 g

computable for all f e F and g e F, such that A^ approaches zero as the

similarity of f and g increases.

As an extension of the method presented above for measurement

of in situ pattern congruence, we establish an index of pattern dissimi-

larity in the following manner. We determine not only a weighted

correspondence of elements between f and g but also a spatial registration

of f with respect to g such that there results maximal spatial congruence

of elements corresponding between f and g. We then take as our criterion

of pattern dissimilarity the weighted sum of resulting squared distances

between all pairs of elements corresponding between f and g where the

weights of the sum again reflect the extent of correspondence determined

for each pair of pattern elements.

Let a particular spatial registration of f with respect to g

be denoted oWR + JT' where J is the vector (1, ..., 1 ) ', T is a

translation vector, a is a scale factor, and R is any additional legitimate

linear transformation, e.g. a proper rotation. For a given registration
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of f with respect to g, let S (m x n) be the resulting matrix of squared

distances between the elements of f and the elements of g.

(6) s. . = Z [ct(Z w. , r - t ) - y ] i = 1, . . ., m

0=1, • • • , n

Let Z denote the set of S matrices obtainable for f and g by (6) over
f, g

all positive scalar s q, all translations T, and all legitimate

transformations R.

Our criterion of pattern dissimilarity may then be formulated:

m n

(7) Ap = min £ ^ 1i n
S

-i if ' e ^ s^, g
lj 1,J l ' J

min tr (Q'S).

^«f, B >
SeE

f,g

Note that such an index of pattern dissimilarity may be interpreted theo-

retically as a minimal mean squared error of registration between all

corresponding quits of f and g.

In the following sections we present a number of alternative

mathematical techniques which, in specific combinations, provide computa-

tional solutions to (7). The methods developed all yield numerical

estimates for Ap via iterative solution of the two interdependent

subproblems implied by (7) -- the correspondences problem requiring

minimization of A„ over all Q, c jt „ for fixed S, and the transformation
f, g .

f, g
problem which requires determination of that spatial registration of f

with respect to g that minimizes A„ over all S c Z _ for fixed Q.
f > g fy g

Since, as pointed out above, we already have at hand established linear

optimization techniques for computational solution of the correspondences

problem, let us now turn to analysis of the specific transformations

required for optimal spatial registration of patterns within pairwise

comparisons.
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k. The Transformation Problem and Normalization Procedures

Let f and g "be two patterns, again with quantizations (w|x)_p

and (y|z) , taken from a set of patterns F not assumed to be standardized

with respect to individual pattern sizes, positions, and orientations.

On the contrary, in this section let us assume that pattern positions

and sizes are arbitrary and that also individual pattern. orientations

may include considerable rotational displacements from prototypical axial

alignments. Our problem is to determine that set of translational, scale,

and rotational transformations that will bring about that particular

spatial registration of f and g, and hence that particular matrix of

squared distances S via (6), such that our previous measure of pattern

distance, D via (*?), might be determined as a minimum over all

S r Z„ as well as over all Q e n^, . This is precisely the meaning of

our measure of pattern dissimilarity A as given via (7).

Now regarding Q as given, consider all possible translations of

f with respect to g and with reference to (5) write

m n p
(8) D = ZZq Z[(w - t ) - y f.

i i ^ ^ k:
f ^'

To determine the particular T that minimizes D over all translations of f

with respect to g, differentiate (8) with respect to t, to obtain

from which it may be determined that t = where Z.Z. q. . w. =
K 1 J 1, J 1, K

Z.Z. q. . y. ., or where Z. x. w. . = Z. z. y. n
. This condition

1 J i>J J,k 1 1 i,k j j °j,k
implies that an optimal registration between f and g requires a coinci-

dence of pattern centroids. Let us therefore normalize the positions of

both f and g so that centroids are coincident at a common origin, i.e.,

so that Z. x. w. . = Z. z. y. ,
=0 for each spatial dimension k. Sinceill, k 3 3 3, k

these new centroids remain invariant over any additional scale and

rotational transformations, we may conclude that no further consideration

of pattern translations is necessary in minimizing Ap .
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Now consider all possible positive scale factors a applied

to f so that

m n „

(10) D = Z Z q Z (a w - y ) .

ij ljJ k
x> k J ' k

Differentiating D with respect to a we find that the particular o

minimizing (10 ) is given by

m n m n

(11) a = [ Z Z q Z w. y ] / [ Z Z q. Z w^ ].

If a scales optimally W with respect to Y, then by symmetry, a scales

optimally Y with respect to W. By an identical analysis we may determine
-1 j.,for o the expression

-, m n _ m n

(12) a"
1

= [ Z Z q Z / ] / [ Z Z q Z w y ].
i j

1
^ J k J> i i > -«J k ' ^

Hence a = a =1 where Zj_Z^ q. . Z^ w^ ^ = Zj_Z^ q. . Z^ y^ ^, or where

Z^ Xj_ Z^ w^ i^ = Z-j z^ Z^ j± j^. This condition implies that optimal

registration of f and g requires equality of pattern second moments about

the origin. Let us therefore normalize the sizes of both f and g so that

second moments equal unity, i.e., so that Z. x. Z, w^ ^ = Z. z . Z, y- i = 1.

Since these second moments remain unchanged over any rotational transfor-

mations that may be required, in minimizing A„ we may now also exclude
i? S

all further consideration of pattern sizes.

The above analysis demonstrates that transformed pattern

positions and sizes, optimal with respect to the minimal A~ > may be

determined directly by normalization procedures independent of whatever

correspondences Q are defined between the elements of f and g and

independent of whatever rotation R may be chosen to effect maximum

spatial congruence of corresponding elements. The specific normalization

procedures given might be profitably included as a pre-processing step

with the generalized template -matching technique given above in Section

2. providing normalized measures of pattern distance for all pairwise
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ci ompari sons. In the present context, it remains to determine that

particular R and that particular Q (which as we shall see are inter-

dependent) that together yield a minimum value of pattern dissimilarity

5. Rotation to Maximum Pattern Correlation

To determine simultaneously the rotation R effecting maximal

spatial congruence of normalized patterns f and g and the matrix of

correspondences Q that together yield a minimal value of pattern

dissimilarity Ap > we adopt a hill-climbing computational procedure.

With respect to initial orientations of f and g, we compute a first

estimate of S via (h) and then a first estimate of Q via (5). Then,

with these initial correspondences fixed, we may determine a first

estimate of the optimal rotation R in the following manner.

Note that, for f and g normalized and Q, fixed, our stepwise

optimal value of pattern dissimilarity may be formulated

(13) A = min tr (Q'S)

where our problem is again to determine a rotation R e 9 (© the set of

proper planar rotations) yielding a new estimate of S via (6) stepwise

optimal with respect to Q.

Define Q and S as rim x mn diagonal matrices such that

and

(15) (s. ,, s ..., s ) = (s.. .., s
n ..., s ).v '

'
K—1, 1 —2, 2 —mn, mn v

1, 1 1, 2 ' m, n '

Then we may express (13) alternatively as

(16) A = min tr (Q'S) = rain tr (QS)

Re0 R€0

where the elements of S remain to be determined as a function of the

unknown R.
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Also define W to "be mn x k where the first row of W is repeated

n times as the first n rows of W, the second row of W repeated as the

next n rows of W and so forth. Define Y to be mn x k where the entire

matrix Y is simply repeated vertically m times.

Now note that ordered diagonal elements of the matrix

[ (WR- Y) (WR- Y)
'
] are identically equal to the elements of S, hence we may

write

(17) tr [(WR-Y) (WR-Y)'] = tr (S)

and since ^ is also diagonal we may restate (16) as

(18) A = min tr [Q(WR-Y) (WR-Y) '
]

•

Re9

! 11
Defining Q

2
, such that Q

2
Q
2 = Q, we may write

1 1

(19) A = min tr [Q
2 (WR-Y) (WR-Y)»Q2 ]

Re9

and after manipulation,

1 ! 1 i
(20) A= min tr [(Q

2 WR-Q2Y)
' (Q

2WR-Q2Y) ]

.

Re0

~ i „ -1-

Now substitute W = Q
2W and Y = Q

2Y into (20) to obtain

(21) A= min tr [(WR-Y) '(WR-Y)

]

Re0

which may be written

(22) A = min tr (R'W'WR - 2R»W'Y + Y'Y)
Re9
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or, since the trace of a sum equals the sum of the traces,

(23) a = min [tr(R'W'WR) - 2tr(R»W rY) + tr(Y'Y)l
Re0

Now consider the first and last terms of (23). Clearly both

are independent of R. Furthermore, by normalization and our definitions

of W, Y, W and Y we may write

{2k) tr(R'W'WR) = tr(W'W) = tr [(Q
2
W)

' (Q
2W)

]

and

- Z Z q. . E w. , = Z x. Z w. , =1
± j *i, j k i,k i 1 k i,k

(25) tr(Y'Y) = tr[(Q 2Y)'(Q 2Y)] = ZZ q. . Z y
2

" - "- iji, J k j,k

2
= Z z Z y = 1.

j J k J,k

i. 1

,2t.t\ I/A2-.Since also the middle term of (23) may be written -2tr[R' (Q W)
' (Q Y) ] =

-2tr(R'W'QY), we have shown that our rotation problem may be formulated

equivalently as

(26) A = 2 - 2 max tr(R'W'QY)
Ree

or,

(27) A = 2 - 2 max tr(R'W'QY)
Ree
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With reference to (27) we notice that solution of (7) is

equivalent to solution of

(28) P = max tr(R'W'QY)
f

' g R£0, Q^Jt
a

where there exist the inverse monotonic mappings A- = 2 - 2P„ and

Pp = 1 - 2 Ap „ Since Ap is formulated as a mean sum of squared

distances, its lower bound is zero, hence the upper "bound for Pp is

unity. We may thus refer to Pp as the pattern correlation of f and g
9 o - .-

and solve (28) as an alternative to (7).

Now if we allow R to be any orthogonal transformation, i.e.,

either a proper or improper rotation, the optimization problem given by

any of the above formulations of our pattern transformation problem

may be recognized as the Procrustes problem of psychometrics [13, 14]. The

problem arises in factor analysis and multidimensional scaling applica-

tions where it is desirable to compare two sets of factor coordinates

independently determined for the same set of variables by rotation of

one set to maximum spatial congruence with the other to maximize between-

set factor correlations. Mathematically, the problem is closely related

to the canonical correlation problem of multivariate analysis.

It has been shown then that for our present problem where W and

Y and hence W, Y, W and Y are of full-column rank k, an optimal orthogonal

transformation R is given by

(29) R = (HL" 2 H') W'Y

where H (k x k) and L (k x k diagonal) represent respectively the

eigenvectors and the eigenvalues of the matrix (WYY'W) [15] • Since both

W and Y are of rank k, all roots of (W'YY'W) are positive and we may take
_i

as the elements of L~ 2 the reciprocals of the positive square roots of

the elements of L [13]*
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While it is true that computation of R via (29) optimizes A

over all orthogonal transformations, definition of element correspondences

Q via (h) (or via (6) where R occurs as a small proper rotation) makes

it extremely improbable that the maximum of tr(R'WQY) will now occur

for an improper rotation—that is, a reflection of f about some axis

as well as a proper rotation of f with respect to g. Exceptions to this

rule occur when comparing patterns whose coordinate matrices, W or Y,

are only weakly of full-column rank, i.e., patterns of nominal full-

column rank k whose spatial geometries can be accommodated with only

slight distortion in a subspace of dimensionality k' < k. For example,

where two patterns being compared represent quantized left and right

parentheses, "(" and ")", and where Q has been given by (k), we would

expect the R given by (29) to contain a horizontal reflection. On the

other hand, if the two patterns being compared are "M" and "W", both

patterns strongly two-dimensional, we would not expect an R computed via

the same method to contain a vertical reflection. In any case, where

pattern reflections are significant, the determinant of the matrix R

(det R) may be computed to detect improper rotations and further action

may be undertaken appropriate to the specific application.

In the last section, we presented a method for determining Q,

optimal with respect to an assumed S. In this section, we have shown

how an optimal transformation R, and hence an optimal S, may be determined

with respect to a given Q,. Since both subproblems are formulated to

optimize the same criterion Ap _ (or P« ), iterative solution of both

yields a value of Ap optimal at least locally over all S € XL _ and

Q p -rt-p . Thus given a set of quantized patterns F for which rotational

displacements can be assumed small, a numerically expressible procedure

exists for determining Ap for all f € F and all g e F.

6. The Network Entropy Formulation of the Correspondences Problem

In Section 2. above, we noted that the problem of determining

an optimal set of weighted correspondences between the elements of two

patterns (an extremal probabilistic matching of pattern quits) can be
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solved via well known linear programming techniques, specifically via

Hitchcock or transportation algorithms. While any of these computational

procedures may he used within a variety of classification methods "based

on D~ and Ap , the computational characteristics of pattern information
if g x > S

processing in general compel us to look further for a numerical expression

of our correspondences problem of a structure more appropriate to parallel

computation.

Here our motivation stems from two sources. For technical and

economic reasons, we wish to explore the applicability of the pattern

recognition methodology presented for special-purpose hardware implemen-

tations. For purely scientific and philosophical reasons, we wish not

to overlook any meaningful analogies between the numerical methodology

itself and naturally- occurring pattern information processes.

Now a problem closely related to the Hitchcock problem (and

well known to urban and regional transportation planners) is called the

entropy network distribution problem [lo, 17]. The problem arises where

it is desirable to simulate traffic flows within a metropolitan region

given data describing distributions of populations and economic activities

over some set of analysis zones subdividing the region, zone-to-zone

travel times, and estimates of mean travel times for specific types of

trips within the region. Borrowing the notation of our pattern corres-

pondences problem, let A represent the mean travel time for all home-work

commuting trips, let X be the probability distribution of workers over

m residential zones, let Z be the distribution of jobs over n employment

zones, and let S be a matrix of network travel times between any

residential zone and any employment zone. The problem requires determina-

tion of a most probable, mean, or maximum entropy joint probability

distribution Q with marginals X and Z such that each element q. .

represents the forecasted proportion of all trips occurring between the

i-th residential zone and the j-th employment zone. Mathematically, the

problem is formulated

m n

(30) max H = - Z Z q log a.
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subject to (1), (2), and (3) (as given in Section 2. above) and the

additional mean-travel-time constraint

m n

(31) Hq s = A.

Note that constraint (31) may be considered simply as an a priori

specification of overall network distribution efficiency or total energy

expenditure.

The solution to the problem is given by

(32) cl = x u z v exp (- p s ) i = 1, . . ., m
J-t J -

1 -1 J J ij J

j = 1, . .
.
, n

where (3 represents the Lagrange multiplier associated with constraint

(31) and the u- and v- are functions of the Lagrange multipliers
J- o

associated with constraint sets (l) and (2). It has been shown [18] that

corresponding to any real (3 there exists a unique Q maximizing (30 ) and

satisfying (l), (2), and (3) given by (32) where the parameters u^ and v-

may be determined by iterative solution of the equations

n
1

(33) u .
= [ E z v exp (- p s )]" i = 1, ..., m

i J J ±) j

m
1

(3*0 v = [ Zx u exp (- p s )]" j = 1, ..., n .

J i x
> "J

Additionally, it has been shown that there exists a monotonic mapping

between all p and all feasible a such that as p approaches -°°,

A approaches A , and as p approaches + c°, A approaches ^j^*

where A™ and A • > respectively, denote the maximum and minimum

values of A feasible for given S, X, and Z [19,20]. Together these

results yield a theoretical basis for iterative determination of the

unique Q maximizing (30) and satisfying a particular feasible efficiency

constraint (31) as well as constraints (l), (2), and (3). Since \^n

of the entropy network distribution problem is analogous to the pattern
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association criteria of our present pattern information processing models,

these results also imply that we may at least theoretically formulate a

maximum entropy correspondence matrix Q*, unique and optimal with respect

to our pattern association criteria via equations (32), (33)> and (3*0

with the parameter (3 set to +°°.

Using theorems developed elsewhere [21] and well known properties

of the Hitchcock model, Evans [20] demonstrates several features of the

matrix Q* and suggests a strategy hy which it may he computed. Let E

denote a hinary matrix such that e n
- 4 = 1 for all subscript pairs (i, j)x j J

where q* > and e,- a = elsewhere. (Properties of the Hitchcock model

imply that E will be sparse. ) The desired Q* and the matrix E then

interrelate arithmetically in the form

(35) q. . = x. u. z.v.e. . i = 1, .... m

j = 1, • ••> n

* *
where the vector elements u. and v. satisfy the relations

1 J

(36) u* = [ Z z v* e. S1
i = 1,x j J J --> J

m

* m * 1
(37) v = [ E x u e, .]" j.-= 1, ..., n

j j_
x -1- j-j j

Despite these simple properties of extremal solutions to the entropy

network distribution problem, Evans ' method for exposing E, and hence

Q*, requires initial solution of the associated Hitchcock problem

presumably by traditional techniques.

7» A Heuristic Procedure for Determination of

Planar Pattern Dissimilarities

Since for any pairwise pattern comparison computation of pattern

dissimilarity via (7) or pattern correlation via (28) is necessarily an

iterative hill-climbing procedure, the particular set of quit correspon-

dences Q determined at any one iteration can only be stepwise optimal

with respect to the particular transformation R determined previously
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at that iteration. Thus given a convenient procedure for determining

good unbiased approximations of Q, we might choose to hill-climb using at

each step only estimates of extremal quit correspondences.

One possible computational strategy for approximating extremal

quit correspondences proceeds as follows.

Establish the matrix E such that e. . = exp(-p s. .) where S is

S scaled linearly to have elements within a specified interval (say between

and 1) and p is chosen as large as computational considerations permit

(say p = 150). Initialize V as (1, ... 1 )' and determine estimates of

the vectors U* and V* via iterative solution of

n « A 1
(38) u = [ I z v e ]' i = 1, ..., m

x j J J ± } J

m A \
1

(39) v = [ Ex u e ]~
J = 1, ..., n

and then estimate Q* via

(40) q. . = x. u. z . v . e. .

1* J 1 1 j 1, j 1 = 1, ..., m

j = 1, . . ., n.

Now assuming that p is sufficiently large such that Q is close

to Q*
f then we may expect small elements of Q to correspond to zero

elements of Q*. Hence we may select for each q. . some threshhold value,

say q"- . = x. * z., and approximate Evans' binary matrix E of Section 6.

above by re-defining e . . = wherever q. . < q. . and re-defining

e. . = 1 wherever q. . > q,- •. Then, with this new definition of E

(hopefully Evans' E above), return to iteration of equations (38) and

(39) obtaining new estimates of U* and V* and compute a final approximation

of Q* via (kO).

Now the Procrustes formulation of our pattern transformation

problem provided a general solution applicable for comparison of patterns

of any dimensionality. In the case of planar pictorial patterns, however,

the problem may be resolved in a more direct fashion.
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Restricting R to be a proper rotation, let C = (WQY) for a

given Q and write max tr(R'W'QY) in (28) as

(kl) f (a) = max tr
a

cos a - sin a

sin a cos a

c c
1,1 1,2

c c
L 2,1 2,2 J

or equivalently,

Then

(^2) f (a) = max (c^
2

- c
2 x

) sin a + (
c
x x

+ c
2 2) cos a

let A =
(
c
1 2

- c
2 x

) and B = (^ x
+ c

2 2
) and write (k2) as

(^3) f (a) = max (a sin a + b cos a).
a

2 2 2

Also, let K = (A + B ) so that A = K sin
<f>
and B = K cos

<J>
and

(kh) f(a) = max (K sin $ sin a + K cos <{> cosa) = max cos (a: -
<f>)

.

a a

2 p —
The maximum occurs (at a = <j> ) as K = [ (c-, - c , ) + (c, -. + c Q ) ]

2
.

The proper rotation maximizing (28) is then determined by the relations

sin a = A/K = (c-l 2 " c
2 1^/K and cos a = B/K =

( cl 1
+ c

2 2^/K * There-

fore, in comparing any two planar patterns f and g, a proper rotation R,

stepwise optimal with respect to a given correspondence matrix Q, can be

determined directly as a function of the four elements of the matrix

C = (W'QY).

The two procedures above for convenient approximation of quit

correspondences and direct determination of stepwise optimal rotations,

in combination, yield a simple heuristic approach to measurement of

pattern dissimilarities for planar patterns. Such a procedure may be

programmed as follows:
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1. Input, normalize (see Section 2.), and store patterns
f and g in terms of quantizations (wlx)^ and (Ylz) .

2. Set a = 1, T = (0,0)', R = I, and A° = M (M some
large value )

.

'

3- Compute S via (6).

h. Approximate Q using the heuristic procedure given above

in this section, and obtain a new estimate of Ar> via (5)-

5- If |A° - A I < 0.01, stop. Otherwise, let A° = A .
t >& *>§ f, g f, g

6. Compute a new R via the short method given in this section
and return to Step 3-

8. Computational Results

To evaluate the effectiveness of such a pairwise pattern

comparison procedure, the following experiment was conducted. A test

set of ten prototype patterns corresponding to the numerals 1 through 9

and was designed. For convenience, the elements of each prototype

were chosen spatially coincident with the cells of a k x 8 integer grid

and all elements of all prototypes were assigned equal quit densities.

Then, sixteen noisy copies of each prototype were generated using the

equations

(4 5 ) W = a
Q

(Y R
e

) + JT^

(k6) X = Z + x
e

where J denotes the vector (1, ..., 1 ) ', a , T and R are, respectively

randomly selected scale, translational, and rotational transformations of

prototype spatial coordinates Y, and x.
represents a random perturbation

of prototype quit distributions Z. The ten prototype patterns selected and

the sixteen noisy versions generated for each are reproduced in Figure 2.

where the sizes of individual pattern elements have been plotted proportional

to quit densities.
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â >s
CS CQ

CD -H
O

<P C
o
o

CQ VD
CD HH
ft H
O H
cj cd

>5 ^ .

CQ -p CQ

•H C Q)

O Pi

a b O1

CD •H

CD Cti I
CD H CJ

P ft a;

X CQ P
•H -H
CD TD CD

>H
• cd P

CVJ c aj

O
CD -H CD

h p ,C!

3 cc)

5o p
P

•H O Hh
fe fn o



22-

Figure 3* A computer graphic showing the rank order of prototype-to-
pattern dissimilarity measures computed for the sixteen noisy "6's" of
Figure 2. Individual blocks have been plotted proportional to l/A,

Also, prototypes have been ordered from left to right in accordance'
with mean prototype similarity with all noisy patterns depicted

,

%&'
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A Fortran implementation of the above outlined algorithm was

executed on the IBM 360/75 of the University of Illinois to compute the

1600 pattern-to-prototype dissimilarity measures. In every case the

minimum pattern-to-prototype dissimilarity measure occurred when a

pattern was matched with the correct prototype. The total IBM 3^0/75

CHJ time required for computation of all 1600 dissimilarity measures

was 10^0 seconds, or approximately .65 seconds per comparison. These

computation times may be reducible by more efficient programming.

As typical of the results obtained, a graphical presentation

of all comparisons for the noisy "6's" is given in Figure 3- There,

individual block heights have been plotted proportional to 1//V, and

scaled vertically with respect to the maximum value of l/A^ occurring

within the l6o comparisons. Thus, while exaggerating proportional

differences, the display makes plainly visible the rank order of all

similarities computed by the pairwise comparison procedure.

9. Conclusions

Adopting the premise that patterns are their own most valid

characterizations and relying greatly on mathematical concepts long

employed within urban systems modeling, we have posited a new methodology

for direct quantification of pattern associations that should serve well

as an alternative to conventional template-matching methods.

The mathematical bases of the methods proposed are quite

general. Wherever it is reasonable to represent patterns as spatial

probability distributions of information, the numerical procedures

presented can be employed to obtain specific measures of association

between patterns. The methodology is general with respect to the spatial

dimensionality of patterns processed. Unlike traditional correlation

methods, moreover, it does not depend on any fixed format or order for

pattern information sampling and quantization and, in fact, seems

relatively insensitive to such considerations.
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It is often argued that we stand to gain from research of

abstract models of pattern information processing, not only more general

methodological bases for technological advancement, but also additional

insights into the possible nature of our own mechanisms of perception

and information processing. Thus, the feature extraction procedures of

our analytic models of pattern recognition have their counterparts

within scientific theories of animal vision. In this context, we are

hopeful that the abstract models of pattern information processing

posited above may lend additional support to existing mathematical and

logical bases for holistic mechanisms within perception such as those

cooperative processes within human vision hypothesized and extensively

investigated by Julesz [22]. To the extent that such reinforcement may

be derivable from the above abstractions, we consider it not without

significance that our models of pattern communications have strong

relationship to, and indeed in this case stem directly from, our models

of community.
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