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ABSTRACT
On Post Data Model Evaluation

6. G. Judge, M. E. Bock, and T. A. Yancey

University o£ Illinois

Within the context of the general linear regression model and the

squared error loss measure for gauging estimator performance, preliminary

test, Stein-like and least squares estimators are specified, evaluated

and compared. It is noted that the Stein-James positive part and the

modified Stein-James estimators, not commonly seen in the econometric

literature, are uniformly superior over the range of the parameter space

to the conventional and preliminary test estimators respectively.
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ON POST DATA MODEL EVALUATION
.

G.G. Judge, M.E. Bock and T.A. Yancey*
University of Illinois

In spite of the rapid advances over the last three decades of economic

theory, econometric procedures, and data relating to economic processes and in-

stitutions, the search for quantitative economic knowledge still remains to

some extent an essay in persuasion. In the process of non-e:::erimental model

building there are typically many admissible economic and statistical models

which do not contradict our perceived knowledge of human behavior. Thus, in

model specification there is usually uncertainty, for example, relatJ' .s to f-

algebraic form, classification, number and timing of variablr j to be '.n-

cluded in the behavioral and technical relations, and the corresponding

stochastic assumptions. When econometric models are correctly specified,

statistical theory provides procedures for obtaining point and interval esti-

mates and evaluating the performance of various linear and usually unbiased (at.

least asymptotically) estimators. But, the applied worker must inevitably

work with false models, where the true specification of the sampling model

is unknown. Furthermore, the statistical model employed is usually determined

by some preliminary test hypothesis using the data at hand. This search

procedure, involving two stage or repeated significance test procedures

applied to the same set of data and yielding an estimate after a preliminary

test(s) of significance, is often used in applied work in economics with little

or no information on the sampling properties of the resulting estimator and

with little or no consideration to the possible distortion of subsequent inferences.

Within this context, the purpose of this article is to generalize and extend

*
Arnold Zellner read an early draft of this paper and made a large number of
comments which were helpful in revising this article.
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the results of Wallace and Ashar [12] relative to preliminary test or

two stage estimating procedures and call attention to another class of

estimators. In particular, we review the possible statistical conse-

quences of using preliminary test or sequential estimators in the search

process and suggest old and new estimators, that are superior, under «

squared error loss measure for gauging estimator performance, to the

conventional estimators usually employed. .We also note that conventional

estimating procedures currently used in applied work may not be appropriate

for the problem at hand and, perhaps more importantly for the researcher,

we show that better alternative estimators exist.

When making a choice between estimators the traditional solution is to

restrict consideration to the class of unbiased estimators and hope that among

the estimators in the restricted class one has uniformly smallest risk. Fortun-

ately for many problems a best linear unbiased estimate exists. In this paper,

in discussing the estimators that are alternatives to the conventional least

squares estimator, we will leave the class of linear unbiased estimators. How-

ever, the notion of unbiasedness which has been accepted by or perhaps forced

on applied workers, although intuitively plausible, is an arbitrary restriction

or property and has no direct connection with the loss due to incorrect decisions.

The economist who is interested in parameter estimates or predic-

tions appropriate for choice purposes, may not care if he is right on the average,

and thus the unbiasedness property may be unsatisfactory from a decision point of

view. In any event our purpose, which is expository in nature, is to focus on

point estimation and bring the statistical consequences of making tise of these

alternative estimators to the attention of the applied researcher.

In section II, we develop the regression statistical model, conv.entional

estimators and tests, define a criterion for gauging estimator performance and

/
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contrast the performance of restricted and unrestricted least squares estimators.

In section III, we discuss the preliminary test or sequential estimator which

results when one uses a preliminary te^^t of hypothesis, using the data at hand

to reach a decision concerning the choice of an estimate. In section IV, we

discuss the class of Stein-James [3,^ estimators and the recent modification of

these estimators proposed by Sclove, et^al^-. [^J. The estimators are contrasted

in section V and suggestions are made for choosing between the alternatives.

2. The Statistical Model and Conventional Estimators

Assume the linear hypothesis model

(2.1) X - X6 + e,

where j^ is a (T x i) vector of observations, X is a (T x K) matrix of non-

stochastic variables of rank K, § is a (K x 1) vector of unknown parameters and

e is a (T X 1) vector of unobservable normal random variables with mean and

2
covariance a I. The unrestricted least squares estimator is

(2.2a) b = (X'X)"-^ = S'^^X'j^,

2 -1
where b is distributed normally with mean 6 and covariance a S , and an unbiased

^ 2 -2 (rXb) ' (r^b)
estimate of a is given by a = — ^— . As is well known for the model

T-K

(2.1), b is the maximum likelihood estimator, is unbiased and under a quadratic

loss measure is minimax.

In addition to the sample information (2.1), suppose we either want to test

in the conventional way or utilise additional information which consists of J gen-

eral linear hypotheses about the unknown parameters in 3 which we specify as





(2.3) R§ - r = or R6 - r = 6,

where r is a (J x 1) vector of known elements, R is a (J >< K) known matrix with

rank J, and is a (J x 1) null vector and 6 is a (J x 1) vector representing

specification errors in the perceived information, which are zero if that infor-

mation is correct.

The restricted least squares or general linear hypothesis estimator, which

makes use of both the sample and exact prior information or linear hypotheses,

(2.1) and (2.3), is

(2.4a) § * b - S"^R'(RS"-^R')"^(Rb-r),

where § is normally distributed with mean [§-S" R'(RS' R')" 6] and variance

a^[S"^-S"'^R' (RS'^R')"^RS'^]

.

If the restrictions (hypotheses) are correct , 5=0, the restricted least

squares estimators are unbiased and have smaller variances than do the unres-

tricted least squares estimators. If the prior restrictions are incorrect,

6/0, the estimator 6 has the following meaui square error, involving bias and

variance, associated with it:

(2.5) E(|-§)(0-8)' = a^S"-^ - o^S'-^R'(RS"'^R')"-^RS"^

+ S"-^R'(RS"'^R')'-^55'(RS''^R')"^RS"'^.

Given this general formulation for the statistical model and estimators, let

us for expository purposes assiime that the X's in (2.1) are orthogonal and thus

1/ i^
X'X » Iv-- Also assume for the linear hypotheses (2.3}, R = [I, 0]. Under

this specification, the least squares estimator is

(2.2b) b = iX'Xyh'y = X'j^,

2
where b is normally distributed with mean § and covariance I. The restricted

estimator (2.4a) becomes

/





^-J
where 6 is normally distributed with mean (§-6), covariance cr[ly-

and mean square error a^ +

66' 00

i" hJ 00

Given these results, if we follow tradition and use a quadratic or square

error loss measure for evaluating estimator performance [11], we have the following

expected loss or risk for the least squares and restricted least squares esti-

mator, respectively:

(2.6)

and

(2.7)

pCb,§) = E(b-§)'(b-6) = cr^trljj » ah

p(§,§) = £(§-§)•(§-§) = a^tr
I
K-J

+ tr66'

« a^CK-J) + 5-6 = a^CK-J) + (§j-r)
'
(§j-r)

.

Under this expected squared error loss criterion an estimator 9 is said

— Instead of assuming conditions on the X'X and R matrices, one can repar-

ameterize the model to hypotheses by multiplying § by a non-singular matrix W

such that 6 = WS and generate the equivalent formulation

X = 28 + e

and

tij o]e = r^,

where Z'Z = I„ and W = QP, where P is a non-singular matrix such that PCX'X)" P*

« Ijj and Q is an orthogonal matrix such that Q(P" ) 'R' (RS'^R')" RP" Q' «

1«An estimator 9 for 9 yields an estimator W 9 = 3 for §. Transforming

from £ to e also transforms the measure of goodness. The statistical implications

of this transformation when making estimator comparisons are discussed in Bock,

et. al. [2].





to be better than another 9 if the risk of one estimator is equal to or less

than the other, i.e., £(6-9)
'
(e-e)-E(e-e3

•
(8-0) < 0. In general risk functions

for alternative estimators cross somewhere over the range of the parameter space

and there is no risk function, for all 9, which is uniformly superior to

(below) all others. In the case of the restricted and unrestricted least sqxiares

estimator

(i) if the hypotheses are correct , the risk of § is less than the risk of

b, i.e.

,

p(|,§) < p(b,3) or a^(K-J) < ah-,

(ii) if the hypotheses are incorrect whether the risk of § is equal to,

greater than or less than the risk of b depends on 6 or (gj-r), the size

of the specification error in the hypotheses. If, for example, we are

considering the null hypothesis case where r is equal to a null vector

then the size of the risk depends on the magnitude of §j.

Making use of the risk functions (2.6) and (2.7), the risk of the restricted

estimator is less than or equal to the risk of the conventional least squares

estimator if

(2.8) p(b,B) - p(§,e) >

or

a\ - a^(K-J)+6'6 > 0.

In order for (2.8) to be true, the condition

6'6 (Bj-r)'(6,-r)
(2.9) -J =

-" -/ '

< •J.

a a

must be satisfied. We therefore have a somewhat typical situation where the

risk functions of the two estimators cross.

The characteristics of typical risk functions for the restricted and unre-

stricted least squares estimators are given in Figure 1.

/
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p(6,e)

risk

ff^CK-J)

P(b,6)

6'6 (aj-r)'(§j-r)

~T ~T~
o o

Figure 1.

Typical Risk Functions for the Least Squares,

Restricted Least Squares and Preliminary Test Estimators,

As the errors of the hypotheses get larger and larger, i.e., the magnitude

of 6 or Of-r) increases, the risk o£ the restricted least squares estimator g is

unbounded

.

3. The Preliminary Test Estimator

As noted in the introduction, in applied work there is generally uncer-

tainty concerning the statistical model that generated the data and the inves-

tigator usually proceeds by using the procedure of statistical testing followed

by estimation. Thus, it is conventional when deciding questions concerning the

inclusion or deletion of a variable, the algebraic form of the relation, etc.»

to use likelihood ratio procedures and test the hypothesis H:6j « r against

not H, using the test statistic

/





(3.1) u = Cbj-r) •
(bj-r)/Ja^

and reject H if u is greater than some critical value c, where u is distributed

as the non-central F distribution with J and T-K degrees of freedom and non-

C§j-r) • (Bj-r)

centrality parameter = . Thus, the hypothesis H, that B, r, is

2a^
"-^ "

tested against not H, by using the test statistic u and rejecting H if u > P,^ _ „^

a c. The value of c is determined, for a given level of the test, a, by

00

(3.2) / dF(u) = a,

c

where F is a central F distribution with J and T-K degrees of freedom. By

accepting H, we take 6 as our estimate of B, and by rejecting H, we use b, the

unrestricted least squares estimate.

In this conventional two stage testing procedure, estimation is dependent

on a preliminary test of significance, which implies the use of the preliminary

test estimator,

(3.3) § « l(0,c)*^"^^ * ^^[c,»)^"^^'

where I,-
^l ^^^ ^^^

^fc »1 ^^^ ^^® indicator functions which are one if u falls

in the interval subscripted and zero otherwise.

Since this is the actual estimator used by researchers in the process of

post data model construction or in their attempt to learn from data, this is

the estimator whose properties should be of interest to us, and we should at

least want to know how it compares with the conventional least squares estimator

which does not make use of preliminary tests of significance.

Sclove, et_ al^. [ 6] and Bock, Yancey and Judge [2] have shown that the risk

for the preliminar)' test estimator may be written as
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(3.4) pCB,§) = E (§-§)' (§-3) = a^K - Ja^P^ + 2(p^-2p2) ^ ,

o

I

where P and P. are probabilities that non-central F random variables are equal to oi

2
less than the critical value c. Since a K is the risk of the conventional esti-

mator this means that if the risk of the preliminary test estimator is to be

smaller than the risk of the least squares estimator the sum of the last two

expressions in (3.4) must be negative. As Sclove, et^ al . [6] and Bock, et al.

[2] have shown, the condition for this to occur that is least favorable to

the preliminary test estimator is that

6'6 (e-r)'(e^-r) '

(3.5) -—^ = -^ - --^
-

< i
.

a a

Thus, once again we have two estimators which yield risk functions that

cross. If the general linear hypotheses are correct, 6 or (6^*^) = 0, then

2
the risk of the preliminary test estimator from (3.4) is a (K-Jp,) where n is

a probability and is thus less than or equal to 1. In this situation, as was

the case with the restricted estimator, the risk of the preliminary test esti-

6 '5 C§j-r)'(§j-r)
oator is less than the conventional estimator. When —s- = 5 > J,

a a

the preliminary test has a risk that is greater than that of the conventional

estimator. As the specification error, 6, gets larger and larger, the risk of

the preliminary test estimator reaches a maximum and for very large values of

6, the risk of the preliminary test estimator approaches that of the conven-

tional least squares estimator. The characteristics of a typical risk function

for the preliminary test estimator is depicted in Figure 1.

Since the probabilities p^ and ^^ in (3.4) are a function of the critical

value c, the level of the preliminary test risk function is a function of a.





-10-

the level of the test. As a approaches 1, the p.'s approach zero and the prelim-

inary test risk function approaches that of the conventional least squares. As o

approaches and the p.'s approach 1, t'le risk function for the preliminary test

estimator approaches that of the restricted least squares estimator. Therefore,

the choice of a affects the relative gains .iind losses that one, using the pre-

liminary test estimator, may incur.

In summary, let us note that in the neighborhood of the region where the

Qj-r) ' (§j-r)
J

hypotheses are correct, and in particular if 5—~— 1
''

» ^^® ^^^^ ^°^

a

the preliminary test estimator is less than that for the conventional estimator.

C§j-r)'C6j-r) J
However, for a wide range of the parameter space, i.e., x > y ,

a^ ' ^

the risk for the preliminary test estimator is greater than the risk for

the least squares estimator. Since §j or 3j-r is unknown, if one chooses

the preliminary test estimator, and this is the estimator most often used

by the economic researcher, he chooses an estimator which does well if his

hypotheses are correct at th*; expense of doing very badly over a consider-

able interval of the parameter ^pace. ITiiis possible loss in a decision

context or distortion concerning subsequent inferences raises serious questions

concerning the use of conventional hypotheses testing procedures for post data

model construction. In addition, these results point to the fact that when

preliminary tests are employed, the researcher faces a decision problem concern-

ing the optimum level of the test and/or an assumption concerning the degree of

or distribution of hypothesis specification error.



Me
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4. The Stein-Like Estimators

Given the questionable, virtue of the use of preliminary tests of signifi-

cance and the corresponding preliminary test estimators as one goes through the

process of data dredging, we wish to now review and evaluate a class of estimators

initially suggested by Stein [8] and Stein and James [3]. What we would like, of

course, is an estimator that has a smaller risk than the conventional one over

all of the parameter space. However, this was not true for the preliminary test

and restricted estimators and as Stein and James [3,7] have shown, this is im-

possible in the one or two regressor case, i.e., K or J < 2. Fortunately, for the

usual several parameter (hypothesis) case. Stein and James [3,8] have shown

that in estimation under squared error loss that the conventional estimator b

is dominated (uniformly inferior over the entire parameter space) by the

Stein-James estimator

(4.1) §• = (l-c/u)(b-§) + § =b-c/u(b-i),

under the conditions J > 3 and < c < 2(J-2)/(T-K+2), where c, u, b and § are

defined in (3.2), (2.5), (2.6) and (^.1), respectively. They further show that

the optimal (minimum risk) choice of the critical value c is c » (J-2)/T-K+2,

and thus the Stein-James estimator (4.1) becomes

(4.2) §• = [1 - (J-2)/(T-K+2)u](b-§) + §. .

This means when the above conditions on J and c are fulfilled the risk of the

Stein-James estimator is less than the risk of the least squares estimator over

the range of the parameter space, i.e., p (§*,§)< p(b, 6) and therefore the least

sqiiares estimators are inadmissible. Stein [ 7 ] has shown for J < 2 there is no

other estimator that has a smaller risk than the least squares estimator over



•• "5 Rl •>

Ti/i- 1.



12-

the parameter space. The risk for 3* when (Bj-r) or 6 * (correct hypothesis)

2

when using the optimum value of c, is a*(K-J+2) +
fr K+iY ' *"^ ^^® ^^^^ *°®^

2
to a K, the risk of the conventional estimator, as the hypothesis error gets

larger and larger. These characteristics of the typical risk function for the

Stein-James estimator are reflected in Figure 2.

risk

oh

-2,„ . ,. ^ a^2CJ-2)
T-K+2

pee*, 6)-

/

--^'^^'^'^^'^PCr,!)

6'6

Figure 2.

Comparison of the Risk Functions
for the Stein-James and Least Squares Estimators

P(b,6)

Baranchik [1] and Stein [ 9 ] generalized this result and have shown that

the Stein-James estimator (4.1), (.4.2) is dominated by the corresponding posi -

tive part estimator

(4.3) §* = (l-cVu)*(b-§) + § = I^^^^^^(u)(l-cVu)(b-§) + §,

when the restrictions J > 3 and < c* < 2(J-2)/(T-K+2) are fulfilled,

estimator has the form

This
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and

8* = 6 if u < c*

3* = Cl-c*/u)(b-6) + § if u > c* .

Thus, when u is large relative to c*, then 3 is approximately equal to b.

Unlike (4.1), no one value of c is uniformly optimal in the positive part esti-

mator (4.3). Given this result, Sclove, et al_. [6] conjectured and Bock

proved under the conditions noted above that the positive part estimator (4.3)

is uniformly superior to the preliminary test estimator (3.3) . Thus, the posi-

tive part estimator provides a minimax substitute for the preliminary test esti-

mator. This result, although important in establishing the risk ranking of the

hierarchy of estimators is conditioned by the fact that the risk of the two

estimators are approximately the same over the range of the parameter space and

for the usual values of T and K (T < 20 and K < 10), and the risks of the pre-

liminary test and positive part estimators are approximately equal to that of

the least squares estimator.

Building on this work, Sclove, et_ al_, [6] have shown that the following

modified version of the Stein-James positive part estimator

(4.4) §** = I^^^„j(u)(l-cVu)(b-§) + I

is uniformly superior to the preliminary test estimator (2.10) over the range of

the parameter space and over all values of c , the critical value of the test.

The estimator has the form

§** =
I if u <_c

and

§** = (l-c*/u) (b-§) + I , if u > c.

When c < c*, the modified version is the same as the original positive part
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estimator (4.3). As was the case in going from (4.1) to (4.3), the modified

Stein estimator (4.4) can be improved upon by its positive part. The character-

istics of the modified positive part estimator are reflected in Figure 3.

risk

P(b,§)

6'6

Figure 3

Comparison of Typical Risk Functions for the
Preliminary Test and Modified Positive Part Estimators

5. Concluding Remarks

These estimators and their corresponding sampling characteristics clearly

point to the unsatisfactory nature of conventional search procedures involving

-preliminary tests of significance based on the data at hand. Alternatively, the

Steln-like estimators which involve only minor addition computational burdens are

superior to conventionally used estimators over a range of conditions often found

In practice. In particular, the following conclusions seem to emerge:

(i) If the number of regressors (hypotheses) is greater than 2, the

Stein-James positive part estimator, § , should be used in preference

to the conventional least squares estimator since the risk of this

/
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' estimator is uniformly smaller over the range of the parameter space

(ii) If one engages in the economist's favorite past-time of post d8*a

model construction (e.g., using a preliminary test of significance

based on the data, at hand to decide whether to include or exclude a

particular variable from the relation) then the modified Stein-James

estimator, §**, is uniformly superior over the range of the parameter

space to the conventional preliminary test estimator, |.

While the Stein-like estimators are superior to those conventionally employed,

they, like the least squares estimator, fail to satisfy the conditions necessary

for a generalized Bayes estimator and thus are not admissible [10]. Given this

situation with the sampling theory estimators, one might be led to consider a

Bayesian approach to this problem. Within this context, Zellner and Vandaele [13]

have developed Bayesian interpretations and alternatives to the preliminary test

and Stein-like estimators and the posterior mean estimators that result minimize

average risk and are admissible and consistent. In contrast to the sampling

theory estimators discussed in this paper which emphasize point estimation, the

Bayes pre test estimator yields a posterior distribution which may be used fcr

inference purposes. However, in the search for an acceptable model, the problem

of how to formulate an appropriate prior for the Bayes pre test estimator re-

mains just as the problem of the optimal level of the test with the sampling

theory preliminary test estimators.

What we need to combat this state of affairs, as Learner [4] has noted, xs

a new set of statistical procedures for drawing inferences Tjased on fals« models

and a new set of decision rules to use in model evaluation and construction.

Until such time arrives, it would appear that if the investigator wants to stay

with sampling theory estimators and is willing to leave the class of linear un-

biased estimators and use mean square error or risk as a basis for gauging esti-

mator performance, he would be well advised to consider a version of the Stein-

James estimator.
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